
AUTOMATIC ROUTINE GENERATING AND UPDA ING SYSTEM

- H
HONEYWEll

HONEYWELL 800
Transistorized Data Processing System

Litho in U. s. A .

Copyright 1960

Minneapolis-Honeywell Regulator Company

Electronic Data Processing Division

Wellesley Hills 81, Massachusetts

DSI-43
11260

A

SORT AND

COLLATE MANUAL

Honeywell
H ~Da1a,P~~

Section I

Section II

Section III

ii

TABLE OF CONTENTS

Page
Foreword••..•••••• • . • . • . • . • . • . . . • • • • • • . • • . . • . • • . .• vi

Introduction ...•.... 0 • 1
General Sorting Function and Application •.•.••....•••.....•...• 3
Multi-precision Sorting •••.••....•...••..••....•.•.•..•.•.•.•. 3
Cascade Technique ..•..•..••....••..•.•..•.•....•......•..... 3
Collate•......••••....•..•..•....•.•.. 0 • • • • • • • • • • • • • •• 4

Specifying and U sing the Sorts•.•.•.•.•.......•......•.... 0 •• 5
Basic Routines . . . • • • . . . • • . . . • • • • .. 5
Sort and Collate Routines within the ARGUS Library 5
Sort Routine Specifications•.....•...•..•• '. . . . • • . . • . . . • . .• 5
Collate Specifications . • . • . . • • . . • . • • • . • • . . . • • . . . • •• 6
Tape Positioning .••..•..........•.•...• 0 •• 7
Identification Record ...•.•.•..•........• '. • .. 8
Specifying and Using the Sorts••...•.........•.•.. 0· ••••• 9
Additional Memory Requirements ..•....•.•.... 0 •••••••••••••• 0 13
Calling for, Assembling, and Executing the Sort '•. 0 ••••••••• 15
Macrocoding ...•..... 0 •••••••••• 0 •••••••••••••••••••••••••• 17
Checking Sorts Using the Program Test System, PTS•... 19

Presort ..•.•.•.••..••••.•••.........••...••••..............•.. 23
General Method .••••...• 0 •••••••••••••••••••••••••••••••• 0 •• 23
Reading and Writing Controls••.......••..•......•......... 25
Building Strings ..••...•..•........................•......... 25
Trees•..........•..•.•.•...••....••..........•...•. 25
Bins and Tags (General Description)•........... 0 ••••• 27
Layers of Trees in an ARGUS Presort•.....•......•. 27
Stoppering••...••.•...•... 0 •• 0 ••••••••••••••••••••• 28
Old Key Area•....... 0 ••••••••••••••••••••••••••••••••••• 28
Master Routine (General Description)•. 0 •••••••••••• 0 •••• 28
End of String .•.........•.•........•••.•••.••.•..........••.. 29
Bins and Tags (Detailed Description) •..••.•••.••.....•.....••.. 29
Master Bin and ID Word•..•.....•.•..•..•.....••....•...• 31
Single-Precision Tree••......•....••........•.......••. 31
Double-Precision Tree •....••......•• 0 •••••••••••••••••••••• 0 32
Triple-'Precision Tree ..•....•.•.•.............•..••....••.•. 32
Master Routine (MASTER) (Detailed Description)•... 36
End-of-String Routine (ENDSTR) 0 ••••••••••••••••••••••••• 37
Write Switch Routine (WRSWCH) .•.•.......................••.. 37
Fill Bins Routine (FILBIN) ..•........••.•.••......••.........• 38
Switch Routine (SWIT CH)•...•...••.•.•.•.......•• 0 • • • • • • •• 38
Read Routine (READ)•.•......•....•.•..••.....••...•••.• 39
Write Routine (WRITE) .••••..••.....••••.•..••.....•........•• 39
Beginning the Presort .••.•••...•..•..•.••........•...••...••• 39
Ending the Presort•.•..•.••...••. 0 •••••••••••••••••••••• 40
Over-all Flow of the ARGUS Presort .•....•...•••.....•••.••••• 42
Modifier-Generator .•.....••.•.•••••..•.....••.....•.•...•.•. 44
Error Correction and Restarts .••••....••.......•.•....•••••.. 46

Section IV

Section V

T ABLE OF CONTENTS (cont)

Merge Sort•.....................•...
General Method•••.•.........•....•••••..•....•.•..•.•.
Reading and Writing Controls•.•.••.•.••••.•.......••...•
Read Anticipation •.•..•....••.•.•.•..•...•.....•..•.....•.•.
Equipment and Memory Considerations .••.•.•••......••..•••••
Trees (General Description) .•..•..........•.••....•.•......•.
Perfect Distribution of Strings for Merge Sort ..•.....•.•......•
Banner Words ...•..•.••.•.•..•....•••...••••......•...•.••.
Dummy String (DUMSTR) •.........••...•....•....••.•.....•.
Buffers .••••..••.......••.....•..•......•.•.•.....•.....•..
Trees (Detailed Description)••.•.. " •..•••••••...•••.•..•..
Multi-precision .•........•..••...•.•..••..•••..•.•.••..•. 0 ••

Merge and Read Loop ...••..•.•... 0 ••••••••••• 0 ••••••••••••••

Beginning-of-String Check•......•..•.•.•.....•.....•....
All Items Equal •..•....•.•...••.•..........•.......••.....•.
Write Routine (WRITE)•......•.......•.•......•.......
End of Pass (ENDPASS)•....•....•....•...•....•.....
Beginning of Pass (BEGPASS)•........................
Ending the Merge Sort (ENDSORT)
SPECIAL CASE: One Item per Record
Over-all Flow of the ARGUS Merge Sort
Merge Sort Generation
Error Correction and Restarts

The Collate•.....•.•............•.......•...............
The !!Way!! of the Merge•.................
Merging Function .•.....•..................•............... 0

Equipment and Memory Considerations
The Collate Plan ..•.
Calculation of the Plan
Tape Control .•............•........•.....•...............•.
File Identification '••.
Tape Changing ...•.•.......................•..............•.
Buffers•........•.....................•.........
Trees•....•..••..•.•..........................
Multi-precision ...•.
Main Loop•......•.................
Input Buffer Switching•....•........•...•............•.
End of Output ..•.•.•.•....•.................•.........•.....
End of In put .. 0 ••••••••••••••••••••••••••••••••••••• 0 •••••••

All Items Equal•...•.....•........................•.
Regeneration of the Collate•...•.•...•..•.............•..
Generation of the Collate•......................
Over-all Flow of the ARGUS Collate•.••.......•.....•..
Error Correction and Restarts•.•..•...............

Page
47
47
49
49
49
50
50
53
54
55
58
61
62
62
63
64
66
67
68
69
69
72
73

75
75
75
76
76
77
79
79
80
81
83
85
85
86
87
88
9.1
92
92
93
96

iii

Section VI

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

T ABLE OF CONTENTS (cont)

Own- Coding•••...•.•................ '" ...•.•...... ' ' •.
Own- Coding (Edit) Options in the Sorts•.................
General Technique•.................................•..•

Page

101

101
103

Relocation and Bank As signments•.•..•...........•.. 104
ARGUS Techniques for Own- Coding•.. 106
Specific Own- Coding Options•...........•... III

Presort option 01•.....•...................... III
Presort option 02 .. 112
Presort option 03 .. 113

Adding or Deleting Items (Presort) 114
Presort option 04•.................•... 123
Merge sort option 01•..........•..• 124
Merge sort option 02 . • .• 124
Merge sort option 0'3 • . . • . • 125

Adding or Deleting IteITls (Merge Sort) ...•....................• 125
Merge sort option 04 ..•....•......••.......•...........•. 134
After sort coding•......•..••.•••.•...•...••...... 134
Collate option 01 ...••......••.••.•••.•..•..•.•...•.•..... 134
Collate option 02 ..•...•......•...•...•••.........•...•... 134
Collate option 03 •........••........•.•.••.....•....•....• 136

Adding or Deleting IteITls (Collate) • • • . • . . • • . . .• 136
Collate option 04 ...•..•....•••.•••••.•.•••.•.•.••••..•.•• 138

End File Identification Record (IteITl Design)
Presort to Merge Sort•.......... 139

Presort Special Registers •..................••..•............•. 140

Merge Sort Special Registers•.....••.•.•.............•....• 142

Collate Special Registers 143

Timing of Honeywell 800 Sort Routines••........•.......... 144

A Glossary of Sorting Terms•......................••.•............••.•.• 147

iv

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

Figure 13.

Figure 14.

Figure 15.

Figure 16.

Figure 17.

Figure 18.

Figure 19.

LIST OF ILLUSTRATIONS

Page

. Derivation of a Sort Program through ARGUS•...••..•..•...•..••• 21

Simple Presort Example•.....••....•••..•...••••.••....•.•...•. 24

ARGUS Presort Tree•...............................•......• 26

Bins Accompanying Each Layer of Trees .•.......•......•............ 27

Tag Bins and ID Word Format •............•.•........•......•....... 30

Single, Double, and Triple Precision•..•..............•....•.. 33

Triple-Precision Common Comparison Coding•.............. 35

Over-all Flow Chart of the ARGUS Presort•...•..•..•.•.••...... 43

Simple Three-tape Merge Sort. • . . • • . . . • •. 48

ARGUS Merge Sort Tree .•••..•.............................•....... 51

Two-way Merge•............... '.0 •••••••••••••••••••••••••••• 52

Five-way Merge 0 •••••••• 0' ••••••••••••••••••••••••••••••••••••• 53

Use of Register SO at Exit of Tree•..•.•..•.... 60

Over-all Flow Chart of the ARGUS Merge Sort•....•....... 70

Appearance of Work Tape at End of Presort•.•............ 73

Collate Merging Sequence•.......•..•........••.. 78

Over-all Flow Chart of the ARGUS Collate•.•.•...•............... 94

Presort Own- Coding•...............•.•...............•.... 115

Merge Sort and Collate Own-Coding•....• 126

v

FOREWORD

The sort and collate routines described in this manual are currently undergoing checkout

on the Honeywell 800 System. The checked-out routines will be available in February, 1961.

The user of this manual will be able to obtain a general, as well as a detailed, descrip­

tion of the functions, operations and programming logic of these routines. Because these rou­

tines are still undergoing checkout, they may be subject to minor p:;ogramming modifications.

For the reader who is interested in only a general description of these routines, he will

find this information in the first part of each section. A more detailed discussion follows the

general description.

vi

SECTION I

INTRODUCTION

A series of sort generators for creating sort programs have been designed to be included

in the ARGUS (Automatic Routine Generating and Updating System) Library of Routines. Assem­

bly and use of the ARGUS sort routines have been simplified in keeping with two major considera­

tions inherent in their design:

1. Efficient operation;

2. Universal application.

The ARGUS sort routines represent a departure from conventional sorting methods through the

us e of new programming techniques. The logic of thes e sorting routines provides for inc reas ed

sorting speed while reducing the number of required tape drives and corresponding hardware.

Programming effort in developing a usable sort program for the accurate sorting of ran­

dom data has been minimized to specifying, by means of an instruction, a desired routine from

the ARGUS Library of Routines.

In order to generate a sort program, the programmer simply writes an instruction which

specifies the desired routine from the ARGUS library and which supplies the parameters re­

quired by the routine. These parameters are interpreted and incorporated into a program

tailored to perform a specific sorting function.

Although the ARGUS sorts are capable of handling a wide variety of situations, there are

limitations imposed in the interest of providing the most efficient routines for the most common

cases. Because of these limitations, there will be occasion to modify the routines produced by

the ARGUS sorts, or even to hand-write a sort completely. The former is made easy, in many

cases, by provisions for "own-coding" built into the ARGUS sorts (Section VI). These pro­

visions allow, at specified points throughout the routine, detours into special coding added to

the sort to perform some additional function.

The purpos e of this manual is to provide a desc ription of the ARGUS sorts and supply a

working knowledge of them as an aid to own-coding or sort modification. Knowledge of these

sorts may also be used as a guide in writing one- of-a-kind sorts for the Honeywell 800.

1

SECTION 1. INTRODUCTION

The sorts consist of two segments: presort and merge sort. The presort reads random

data from one tape, orders it as much as memory space permits, and writes the data in ordered

strings onto two or more output tapes. The merge sort then reads these outputs from the pre­

sort, and merges sets of strings, again writing them onto two or more output tapes. As this

process continues, the strings become longer and fewer in number, until finally all of the data

has been combined into one long string, written on a final output tape. In the cas e of large files

which fill more than one tape, a collate routine is used to combine several ordered tapes (or

files) into one continuous file.

At this point, a brief history of the ARGUS sorts might be of interest. The Honeywell 800

can read, write, and compute simultaneously. This type of computer is ideally suited for the

presort method based on the building of continuous strings of items in memory as long as there

are items which qualify. This method, as opposed to a strictly internal, fixed-length- string

type of presort, takes advantage of any pre-ordering of data by producing correspondingly

longer strings. Several other features of the Honeywell 800 are used to improve the presort.

For example, index register addressing permits use of a single "tree" for several purposes

(explained in Section III), and the large memory permits much data to be stored internally,

resulting in long presort strings. The additional memory and the power of instructions us ed

in conjuction with special registers result in a sophisticated generator, which makes very

efficient use of data storage space.

The merge sort portion of the ARGUS sorts represents a complete departure from conven­

tional merge sorting methods. The origin of this method can be traced back to 1956, when

Honeywell mathematicians developed a unique sorting method which requires only three tapes.

When study for the Honeywell 800 sorts was begun, it was felt that it would be desirable to

include the three-tape sort along with conventional two- and three-way merge sorts, in order

to accommodate small systems. As work progressed on the three-tape sort, methods were

discovered which made it workable for any number of tapes. For a given number of tapes, it

was discovered, this "n minus one" concept is always more efficient than conventional merge

sorting. For greater flexibility, and in order to utilize a single set of merge sort generators,

it was decided to use this new approach for all ARGUS merge sorts. Considerable revision has

been made to the original three-tape concept, especially in the area of distribution of strings

by the presort, and in the handling of an uneven number of strings.

2

SECTION 1. INTRODUCTION

General Sorting Function and Application

The basic function of any sorting operation is the ordering of data in a prescribed logical

sequence to make that data accessible for later use. To control large amounts of data, a mas­

ter file of all items of related information pertinent to a particular activity is usually estab­

lished. These items are ordered according to a designated portion of each item. This portion,

or field, is termed the key of the item.

To maintain a master file reflecting the latest transactions, it is necessary to update

the master file periodically. This is accomplished most efficiently by ordering the transactions

in the same sequence as the master file, each transaction containing the same key as the cor-

responding master file item. The power of the ARGUS sort generators can then be brought to

bear to create the program which accomplishes this ordering.

Multi- precision Sorting

ARGUS sort routines are capable of sorting on a key of one field, two fields, or three fields;

each field may be a full Honeywell word or any portion thereof. These operations are termed,

respectively, single-precision sorting, double-precision sorting, and triple-precision sorting.

Own-coding (as explained in Section VI), is used to handle longer sort keys.

Cascade Technique

To implement the merge sort on the Honeywell 800 System, Honeywell has developed a

technique which is radically different from conventional methods employed with other data pro­

cessing systems. This Cascade technique ITlakes optimum use of the flexibility inherent in the

hardware design of the Honeywell 800 to provide faster sorting with fewer magnetic tape units.

In fact, Cascade sorting can be performed on as few as three tapes. The speed and power of

the sort can be enhanced by adding any odd or even nUITlber of tapes. Conventional methods, on

the other hand, require a minimum of four tapes and, in all cases, an even number.

The ARGUS presort differs ITlost froITl the conventional presort in its distribution of strings

on the two or more output tapes. Consider the case of a three-tape sort, in which data from one

input tape is distributed to two output tapes. Instead of alternately writing strings on the two

output tapes, as is normally done, this new method writes more strings on one tape than on the

other. The ratio of the number of strings on the two tapes, which can be determined by a siITl­

pIe counting system, is 1. 618 to 1.

3

SECTION 1. INTRODUCTION

The merge sort reads the two presort output tapes backward, merging successive strings

and writing them on a third tape. When the strings on the shorter input tape are finally exhaus­

ted, there are still a number of strings remaining on the longer tape. These are copied onto the

tape just emptied, in order to have all data on both remaining.tapes in the same ascending (or

descending) order. Thus, there are again two tapes with strings in the approximate ratio of

1. 618 to 1 and another merging pas s is begun. This proc es s continues until one string remains.

As indicated, the same theory of sorting may be applied to any number of tape drives (n),

in which case the presort writes strings in a prescribed ratio onto n-l tapes, and the merge sort

begins with an n-l way merge onto the single remaining tape. Thus, the term n-l sorting has

been used in reference to the Cascade technique. As n becomes greater than 3, the Cascade

method provides a proportionately greater sorting speed than the conventional merge (two way

for four tapes, three way for six tapes, etc.) used with the same number of tapes.

Collate

The ARGUS collate is used to combine large files of sorted information extending over one

or more tapes into one continuous file. While the reading and writing controls and tape handling

are somewhat more complex, the aim and construction of the collate program are quite similar

to those of the merge sort.

4

Basic Routines

SECTION II

SPECIFYING AND USING THE SORTS

The ARGUS sort and collate routines each consist of a skeleton routine and a modifier­

generator. The skeleton routine provides the basic coding, or the programming framework, on

which the modifier-generator can build a working program. The programmerts pseudo instruc­

tion and information from the file identification record of the input tape together supply the

parameters needed to adapt this framework to the requirements of a specific sort or collate.

The modifier-generator consists of two portions which together interpret these parameters to

create the desired routine. The generator portion establishes storage and buffer areas in

unus ed portions of memory (generating conc ept), while the modifier portion performs the actual

adaptation of the skeleton routine (modifying c onc ept).

Sort and Collate Routines within the ARGUS Li9rary

When a programmer wants to execute a sort or collate operation, he inserts an instruc­

tion calling for that operation into his ARGUS program. Because this instruction is not directly

executed by the logic built into the computer, it is called a pseudo instruction. Such a pseudo

instruction calls for the desired subroutine {in this case a sort or collate} froln the ARGUS

library tape and specifies the parameters required for the execution of that subroutine. Para­

meters for a sort subroutine specify the precision of the desired sort, the number of input tapes,

the size of available high-speed memory~ the number of work tapes, etc.

Sort Routine Specifications

INPUT: The ARGUS sort routines are designed to handle one tape reel of unordered data or the

equivalent data on several partially filled reels. Data in excess of this amount can be handled,

provided that there is no overflow from any work tape at the end of the presort or of any inter­

mediate pass of the merge sort. In other words, the input to the presort and the final sorted

output may exceed one reel in length. However, if the capacity of any work tape is exceeded

during the sort, the program will stop with a comment at the console and will have to be rerun

with less data. The exact amount of data that can be handled by any sort is a function of the

structure of the data and the amount of pre-ordering that exists, and therefore cannot be stated

for the general case. Data which exceeds the capacity of the sort can be handled by multiple

executions of the sort pseudo instruction. Each such execution generates and performs a sepa­

rate sort routine, creating a file out of a portion of the data. The resulting files can be then

merged by performing a collate.

5

SECTION II. SPECIFYING AND USING THE SORTS

The input data" which is read in the forward direction, must be preceded and followed by

standard file (or segment) identification records, as described below. The sort routines can

handle either fixed-length or variable-length items; however, the number of items per record

must be fixed. Variable-length items are handled as such throughout the sort and must be fol­

lowed by end-of-item symbols. Such symbols are also required with fixed-length items exceeding

63 words in length. The record size (in items), the maximum item size (in words), and the fixed

or variable nature of the items are specified as parameters in the file identification record, as

are the location and masking (if any) of the key(s).

OUTPUT: The output of the sort is a single file in ascending sequence, preceded and followed by

file (or segment) identification records derived from the input data. The end identification rec­

ord contains a segment number of hexadecimal G's, as required by the collate routine. The

console typewriter produces a listing of all error and restart information, together with a count

of the number of items sorted.

Collate Specifications

INPUT: The ARGUS collate routines are designated to handle up to 99 files of input. Each file

may be contained on one or more reels of tape, and must conform to the following specifications.

Each tape {whether a complete file or part of a file} must have standard identification records

preceding and following the data to be collated. These identification records may be either file

or segment identifications. The identification record preceding the data m.ust be a beginning

file (or segment) identification, and the one following the data must be an end identification. The

beginning identification record must always be the record immediately following the tape identi­

fication block.

Word I of the identification record is a standard banner word, identical to thos e recog­

nized by the sorts. Word 2 contains the name of the file; this must be the same for all identi­

fication records of a file. The low-order four digit positions of word 3 contain the segment

number of the tape within the file, and have significance when a file is contained on more than

one tape. These numbers in the beginning and end identification records of each successive

tape of a file must be a sequence of decimal numbers. The first tape of a file may have any

segment number, but the following tapes of that file must have numbers following it in monotoni-

cally increasing order. The segment number of the end identification record of the last tape of

a file must be hexadecimal G's, as this marks the end of a file for the collate. This also holds

true for files contained on a single tape, in which case the first tape is also the last"

The collate routines can handle the same range of variables as can the sort routines (ex­

cept for the banner option), and these are specified in an identical manner in the beginning file

6

SECTION II. SPECIFYING AND USING THE SORTS

(or segment) identi;ication record of one of the input tapes. The collate will use the tape first

mounted on the IIA" input as its source of parameters; the parameters specified in any other

beginning identification records are bypassed.

OUTPUT: The output of the collate is a single file in ascending sequence, each tape of which

conforms to the above specifications for input tapes. The beginning identification record of the

first tape and the end identification record of the last tape will be file identification records; all

others will be segment identification records. The file name of all identification records will be

the name supplied in the pseudo instruction, and the segment number of the first tape will be

0001. Each tape (except the last) will be filled to capacity, unless a maximum number of records

per tape is specified in the pseudo instruction.

INTERMEDIATE: If a collate consists of !TIore than a single pass, which it will if the nU!TIber

of files to be collated exceeds the way of the collate, then the output of each pass except the last

is an inter!TIediate file which will act as input to a later pass. These inter!TIediate files are

identical in for!TIat to the final output except that tapes are always filled to capacity, and the file

name in word 2 of the identification records will be an identification number arbitrarily assigried

by the routine. These identification numbers specify each file uniquely, and coincide with the

numbers printed in the plan. Further information on these numbers can be found in Section V,

Collate.

Tape Positioning

Sort Input: Positioned so that the first record read forward by the sort will be the

beginning-of-file identification. If both input drives or the "save" option are used,

all input tapes will be rewound after the sort. Otherwise, the input tape will be

positioned following the end-of-file identification record after the sort. There must

be at least one record following the end identification record.

Sort Output: Initial positioning of the output tape has the same specifications as

that of ~he work tapes (see below). After the sort, positioning takes place fol­

lowing the end-of-file identification record of the sorted file, and before an

end-of-file information record.

Sort Work Tapes: If at the beginning of tape, the sort will bypass the identifica­

tion block and begin writing with the record immediately following. Positioning

after the sort (except output tape) will be immediately after the tape identifica­

tion block. It is necessary that there be at least one reco.rd written following the

7

SECTION II. SPECIFYING AND USING THE SORTS

tape identification block; this will be destroyed by the sort. Tapes positioned

other than at the beginning of tape will be written starting at their current location.

Positioning after the sort (except the output tape) will be at this current location.

It is necessary that there be at least one record written beyond the current loca­

tion; this will be destroyed by the sort.

Collate: Because of the tape changing necessary throughout the collate, all beginning

identification records (input and output) are assumed to be the record immediately

following the tape identification label. All tapes are rewound after use. The collate

will bypass the tape identification block and begin reading or writing with the record

immediately following. It is necessary that there be at least one record written fol­

lowing the tape identification block on the output tapes; this will be destroyed by the

collate. Input tapes must have at least one record following the end identification

record.

Identification Record

Every file to be sorted or collated must contain a standard beginning identification record

as its first record. This record must not be greater in length than any of the data records in the

file, and will have the following format in words 5-9:

Wo/l,O
5

WOJU)
6

WOflD
7

WOIUJ
8

WoRf)
9

- - -
· t · l · ITEM$ PE~ RECoRIJ

peelMIIL

;/~S} KEY t!CII;'tllV
P£C/~IIL

I I I J I

I ,
I

,
I

,
I

l~

I I I I
,

I

I
_f I , .

W~RP; peR)rEM ;=FlXEI>
. I I I I i ;=8I1NN~

PE~/MAI. ,~ Villi. 1= 1/011111.
I I I

' J. • J • . ~ . I .
~Et:.fJN# K6Y tfJCAndN 1'NIIlp KE Y ~()CI'I7/IJN ';:~u,:i.s

PEC/MlIl f)£ClMIlL I:NII~£lJ
I I . I 'i I

M~S)
I I · I • I

,
FIRST KEY

I I I ,
I I'" I . I · I · I

,
I

,

SECDNIJ KEY MIISK

I I .
• I I' I I I ,

I · I · I
,

I •
TIIIIlP KEY MA~/(

I I
I ~ I -' I · --I !... ..l. J . -

Words 5 and 6 are to be specified as decimal constants. The number of items per record, the

maximum number of words per item, and the three key positions relative to the fir.st word of

the item, each use three digits. The three options use one digit apiece and are as follows:

o if the item length is fixed, and 1 if variable length; 0 if there are banner words at the beginning

of each record, or I if there are no banner words except in the file identification records (must

be 0 for the collate); 0 if the keys ar.e not masked, and 1 if the keys are masked. The masks

in words 7 -9 are to be specified by the programmer in hexadecimal.

8

SECTION II. SPECIFYING AND USING THE SORTS

The sort assumes that the input tape will be positioned so that the first read forward order

will read the beginning-of-file identification record. The address of the proper input tape is

obtained from the m.acrocoding, and the identification record is then read into mem.ory in the

lowest available register. It is addressed by using index register X6. The sort verifies the

first record as being an identification record by checking for the beginning-of-file banner word.

Banner words have a special significanc e to sort routines. The first word of all identifi­

cation records is assumed to be a banner word of standard format, and will be used by the sorts

to sense for beginning- and end-of-file records. Banner words are also used by the sorts to

identify beginning-of-string records during the operation of the m.erge sort, and to give the

number of each record written on tape relative to the first file identification record (low order

16 bits). If the input file to be sorted does not contain norm.al banner words on data records, the

presort will add banner words to each record, and the final pass of the merge will eliminate

them.. This addition of banner words by the presort will occur if that portion of the parameter

(one digit of the B address field) used for the banner option is 1.

Specifying and U sing the Sorts

A single-, double-, or triple-precision sort routine is requested from the ARGUS Library

of Routines through the use of a pseudo instruction o The format of the pseudo instruction is

shown below.

PRO E BL M

1

,.....

LOCATION

L

SORT

p

S

PROGR ER AMM DATE PAGE OF

10 II COMM#.ND CODE 22 ~ 24 A ADDRESS 8 ADDRESS C ADDRESS
I REMARKS

3731 51 52 65r ..
,

1./.s0~TF' S EI/'O/ MEIlNIlME MMMM/rI/1I1/WI WZ/W3/Wf./W5/W6

- designates library routine.

- designates the subroutine within the library.

- designates the precision.

- single precision.

2 - double precision.

3 - triple precision.

LINE NUnEi n 74

i
I

I

I
I

I

:
I
I

I

- designates an option to allow saving the input tape after the presort
if that drive is to be used by the merge sort for a work tape.

10

9

SECTION II. SPECIFYING AND USING THE SORTS

10

EI

EO

S - change tape after presort.

M - indicates a multi- reel input with only one input tape unit
available. If the input tape unit is assigned as the nth
work tape, the input file is saved, as if S were speci­
fied.

o - do not change tape after presort. If this drive is
assigned as the nth work tape, the portion of the tape
beyond the input will be used as a work tape.

- designates an input edit option (presort own-coding).
00 - no input edit will take place.

01 - edit option number 1 will be us ed to modify the
parameters found in the file identification record
of the input file.

02 - edit option number 2 will be performed immediately
after the generation of the presort.

03 - edit option number 3 will be performed to modify
each item in the input buffer before transferring
it to item storage.

04 - edit option number 4 will perform all three of the
above edit options.

- designates an output edit option (merge sort own- coding).
00 - no output edit will take plac e.

02 - edit option number 2 will be performed immediately
after generation of the merge sort.

03 - edit option number 3 will be used to modify each
item only during the final merge pass, at the point
where an item has been transferred to the output
buffer.

04 - edit option number 4 consists of the combined use
of output edit option number 2 and number 3.

MERNAME - designates the segme~t name to be assigned to the merge
sort own-coding. If there is no output editing, this field
is left blank. The name assigned to merge sort own-coding
can be any seven characters, but must be different from
the name assigned to the segment which contains the sort
pseudo instruction.

MMMM - designates in decimal the number of words of memory
available to the sort in the preceding bank(s) in excess of
the basic requirement of one bank. The basic requirement
includes only the coding for the sort itself, and excludes
own- coding, mac rocoding, Executive Routine, etc. If
sufficient memory is available for the sort specified, this
information will be printed immediately and the sort will
stop.

II - designates input tape drive assignment. All tape drive
assignments are in standard ARGUS format consisting
of a two-character code from AA to HH, except GG.

AI

WI

W2-W5

W6

SECTION II. SPECIFYING AND USING THE SORTS

- designates alternate input tape drive assignment; if only one input
drive is available, II is repeated.

- designates final output tape assignment.

_ designates work tape assignments. A code of "GG" should be
designated for all work tapes not being used.

- nth work tape assignITlent. The input tape as signment must be dup­
licated as the final work tape assignment (W6) whenever it is to be
used as a work tape. If the input tape is to be saved, the S option
must be an ~ (or an M).

A single-, double-, or triple-precision collate routine, like a sort routine, is called for

by ITleans of a pseudo instruction. The format of the collate pseudo instruction is shown below.

I

-

I'ROGRAMMER D T A E OF

LOCATION 10 II COMMAND CODe 22 ~ 24 A ADDRESS 8 ADDRESS C ADDRESS I REMARKS
3731 51 52 651M LINE NUMBER 11 74

/., C()t.LIITE P E()/() TPTNH.ME MMMM /NO!eEC NF
I I

I

Tile III/liZ /81/82/el 'C1./6G!66 I

Ol/O! / EI /EZ/ '" '()Z//)T/t;~
,

THe I
I

I

:
I
I - - i-- - - - J--- - - -

L - designates library routine.

COLLATE - designates the subroutine within the library.

p

EO

designates the prec ision.
1 - single precision.

2 - double precision.

3 - triple precision.

- designates an edit option.
00 - no edit will take place.

01 - edit option nUITlber 1 will occur to modify the parameters
found in the file identification record of input file.

02 - edit option nUITlber 2 will be performed to allow for own­
coding after generation of the collate.

03 - edit option nUITlber 3 will occur to modify each item only
during the final pas s, at the point where an item has been
transferred to the output buffer.

04 - edit option nUITlber 4 will occur which will provide for all
three edit options.

10

-

11

SECTION II. SPECIFYING AND USING THE SORTS

OTPTNAME - designates the file name to be placed in the second word
of the file or segment identification records of the final
output file produced by the collate routine.

MMMM - designates memory (in decimal) available to the collate in
the preceding bank(s) in excess of the basic require-
ment of one bank. The basic requirement includes
only the coding for 'the collate itself, and excludes own­
coding, macrocoding, Executive Routine, etc.

NOREC - designates (in decimal) the maximum number of records to
be written on each tape of the final output file. If this field
is left blank, tapes of the final output file will be filled.

NF - designates (in decimal) the number of files to be collated.
The collate can handle up to 99 original input files, and
thus the range of NF is 02 to 99.

The two Tape Address Constants (TAC) following the pseudo instruction are used to specify

the large number of drives which the collate may use. Although not part of the pseudo instruc­

tion, these must be written in the prescribed format immediately following the pseudo instruc­

tion, so that they will be located immediately after the macrocoding associated with the collate.

When finished, the collate exits to whatever instruction foliows the second TAC.

12

Al

A2

BI

B2

CI

C2

GG

Dl

D2

- designates the first, or main, "A" input tape as signment.
This will be the source of the beginning-of-file identifica­
tion from which the collate will obtain its file format
parameters.

- designates the second, or alternate, "A" input tape assign­
ment. If the "A" input is to be restricted to a single drive,
then Al should be repeated.

- designates the first, or main, "B rr input tape as signment.

- designates the second, or alternate, "B" input tape assign-
ment. If the "B JI input is to be restricted to a single drive,
then B 1 should be repeated.

- designates the first, or main, JlC" input tape as signment.
If a two-way collate is to be performed, this as well as
C2 should be written as "GGJI.

- deSignates the second, or alternate, "c" input tape assign­
ment. If the "crr input is to be restricted to a single drive,
then CI should be repeated.

- unused. These fields should be written as such, however,
in order to fill the T AC instruction.

- designates the first, or main, "D" input tape assignment.
If a two- or three-way collate is to be performed, this as
well as D2 should be written as "GG".

- designates the second, or alternate, "D" input tape assign­
ment. If the "D" input is to be restricted to a single drive,
then DI should be repeated.

SECTION II. SPECIFYING AND USING THE SORTS

El

E2

01

02

DT

GG

designates the first, or ITlain, "E" input tape as sign­
mente If a two-, three-, or four-way collate is
to be performed, this as well as E2 should be writ­
ten as "GG".

designates the second, or alternate, "E" input tape
assignITlent. If the "E" input is to be restricted to
a single drive, then El should be repeated.

designates the first, or ITlain, output tape assignITlent.
This is always the first tape to be written by the col­
late.

designates the second, or alternate, output tape assign­
ment. If the output is to be restricted to a single drive,
then 01 should be repeated.

designates the restart dUITlp tape assignITlent. The code
"GG" specifies that no restart points are to be established
during the collate.

unused. This field should be written as such, however,
in order to fill the T AC instruction.

The paraITleters dealing with the file forITlat are set up in the file identification record

exactly as they are for the sort. Although all of the inputs to the collate must have standard

beginning- of-file identification records, only the fir st "A" input file is us ed as the sourc e of file

parameters. In addition to the requirements mentioned in connection with the sort, the collate

requires that the segITlent number (digits 11 and 12 of word 3 of the file identification record)

of each reel of a file be in decimal sequence with respect to the reel preceding it. The seg­

ment number of the first reel of a file ITlay be any nUITlber the user wishes. The end-of-file

identification record of the final reel of a file must have a segITlent number of "GG" to indicate

end-of-file to the collate. Because reels are norITlally mounted and dismounted during the

course of the collate, the beginning-of-file (or segment) identification record of each reel IS

assumed to be the second record on tape, iITlITlediately following the tape label record .

. Additional MeITlory Requirements

In both the sort and the collate macro instructions, there is a field (MMMM) which speci­

fies the amount of additional memory available to the sort, in addition to the basic requireITlent

of one bank. This figure is the same for both the presort and merge sort, but the requireITlents

for each are somewhat different.

The nature of the presort is such that it ~ always function within a single bank (MMMM :;:;

0000), regardless of item or record size. In some cases, namely when item size and record

size are both relatively small, nothing is to be gained by providing additional ITlemory space to

the presort, since it is able to fit its maximum nUITlber of storage locations (216) within the

basic bank. However, when items or records are larger, less than the maximum number of

13

SECTION II. SPECIFYING AND USING THE SORTS

storage locations will fit within the basic bank, resulting in shorter strings from the presort,

and thus more merge sort passes and a longer sort routine. In such a case, providing the pre­

sort with additional memory would benefit the user by producing more storage, longer strings,

fewer passes, and thus a shorter sort.

The merge sort is less flexible in this respect. Under some conditions, a merge sort

will fit entirely within the basic bank; in other cases, it will have to have additional memory.

The two variables which influence this requirement the most are the maximum "way" of the

merge, determined by the number of tapes used by the sort, and the record size; together, these

determine the size and the number of buffers used by the merge sort. Also influencing the

amount of memory required is the span between the highest and the lowest key locations within

the item, since this amount of space must be reserved for stoppering purposes. In single­

precision sorting, the span is, of course, zero. The following fonTIula gives the amount of

additional memory required by the merge sort:

where
m

p

t

r

s

m = p + 3tr + s - 2, 048

- designates the additional memory locations required (if the result
is negative, less than the basic bank is required, and MMMM may
be zero).

- designates the number of memory locations used by the program:
750 for single precision, 800 for double precision, 825 for triple
precision.

- designates the number of tapes used by the merge sort: three,
four, five or six (W 1 through W6 of the macro instruction).

- designates the maximum number of words per record, including
banner word, data, two ortho words, and end-of-record word,
up to 254.

- designates key span, or highest key location minus lowest key
location.

For example, in a double-precision sort with key fields in words 12 and 2 and a maximum

record size of 100 words to be performed as a six-tape sort, p would be 800, t would be 6,

r would be 100, and s would be 10; also 562 additional memory locations would be required.

However, a four-tape sort of the same specifications (t would be 4) would be contained within

the basic bank.

where

14

A similar formula may be stated for the collate as follows:

m = p + (3w -;- 2) r + s - 2, 048

m - designates the additional memory locations required (if the
result is negative, less than the basic bank is required, and
MMMM may be zero).

p

w

r

s

SECTION II. SPECIFYING AND USING THE SORTS

- designates the number of memory locations used by the pro­
gram: 1, 250 for single precision, 1, 300 for double precision,
1, 350 for triple precision.

- designates the maximum "way" of the collate: two, three,
four, or five.

- designates the maximum number of words per record,
including banner word, data, two ortho words, and end-of­
record word, up to 254.

- designates key span, or highest key location minus lowest
key location.

Calling for, Assembling, and Executing the Sort

There will be occasions when a particular sort may be one of several programs which are

run as a series; at other times, it may be one of several segments making up a program. In

either case, from a programming standpoint, a sort is a logical entity, and the ARGUS System

goes to considerable effort to maintain it as such. Thus, a programmer has only to write the

single pseudo instruction, L,SORT, in order to produce a complex pair of routines which

together form the sort.

Although consisting of two separate phases, presort and merge sort, the sort is called for

and loaded as a single subroutine. This is entered at execution time by a special calling sequence,

or macrocoding routine. Thus, the L, SORT is a macro (pseudo) instruction which is replaced

during Assembly by a 15-word calling sequence.

Being a subroutine, the sort is IG:3.ded along with whatever coding (including the 15-word

calling sequence) the programmer has written. After the macrocoding is reached, it turns con­

trol over to the presort generator portion of the sort subroutine. This, in turn, generates and

modifies the presort coding, using parameters set up by Assembly in the calling sequence, in

order to provide a working presort; in doing so, the merge sort portion of the sort routine is

destroyed. The presort is then performed, and when it is finished, it returns control to the

calling sequence. The calling sequence now reloads the entire segment, namely programmer

coding, calling sequence, and sort subroutine. This time the calling sequence specifies to the

loader that control is to remain within the calling sequence rather than starting the segment at

the beginning again. Once reloaded, the calling sequence tests the MERNAME field (from the

original pseudo instruction), and if it is equal to alpha blanks, the sequence assumes no own­

coding has been written for the merge sort. The merge sort generator portion of the subroutine

is then entered, and this generates and modifies the merge sort coding, this time destroying the

presort. The merge sort is performed, and when it is finished, it returns control to the loca­

tion just beyond the calling sequence. Thus, ·whatever the programmer had written following

15

SECTION II. SPECIFYING AND USING THE SORTS

the pseudo instruction would now be performed in so much as the sort has been completed.

Any own-coding that is performed during the presort (see Section VI) is written as part

of the same segment, together with the rest of the programmer's coding. As part of the same

segment, it is loaded both before and after the presort, along with the programmer coding,

calling sequence, and sort subroutine. Merge sort own-coding, however, is written as a sepa­

rate segment. When the presort has been executed, and the basic sort segment has been re­

loaded, and if the calling sequence discovers that something other than alpha blanks was written

in the MERNAME field, it then loads the segment by that name. The segment representing the

merge sort own-coding must therefore be given the same name as in the MERNAME field and

this will now be loaded. This approach allows merge sort own-coding to overlay the presort

own-coding in order to conserve space, if so desired. Also, special register Z, S2 is used as

the address for the own-coding to which the sort is to branch. This may be loaded as the address

of the presort own-coding by the main sort segment, and then loaded as the address of merge

sort own-coding by the auxiliary segment. More details concerning the handling of own-coding

are contained in Section VI, Own- Coding.

The sort, being a subroutine, is handled as such by Assembly, and is therefore placed

immediately following the programmer's coding. However, since the sort uses almost an

entire bank, it can only be relocated modulo 2, 048. Within its bank, the sort program starts

at location 20 (0020) and ends four locations before the end of the bank. The former unused area

of memory permits the programmer to SETLOC the calling sequence plus the normal exiting

mac rocoding (usually either L, EXIT or L, READSEG) at location zero of a bank to enable the

program to fit entirely within that bank. The four locations at the high end of the bank allow

the sort routine to occupy the highest bank of a given installation without interfering with the

stopper.

1£ the highest location used by the programmer's coding within a bank is greater than 20

(which it inevitably will be unless the programmer specifies a SETLOC of zero and includes

nothing in his program or segment except the L, SORTp and the exiting pseudo instruction), the

sort will be located in the succeeding bank of memory. By judicious use of SETLOCs, the

programmer may determine exactly the space relationship between his coding and the sort rou­

tine. It is possible to separate the programmer coding from the sort by any number of banks

by specifying, within the programmer's coding, a SETLOC whose sole function is to establish a

memory location in some higher bank. Thus, a programmer might SET LOC his coding in bank

o and follow the coding by a SETLOC of location 0000, bank 3. The coding (consisting of the

programmer's instructions, the calling sequence, any own-coding, etc.) would be assigned to

16

SECTION II. SPECIFYING AND USING THE SORTS

bank 0, and, insomuch as a point has been established within the first 20 locations of bank 3,

the sort routine would thereby occupy bank 3. The same result would occur if the second

SETLOC had specified a location higher than 0020 in bank 2.

Macrocoding

The macrocoding corresponding to the L, SORTp pseudo instructions consists of the

following:

PROBLEM PROGRAMMER DATE P GE A OF

LOCATION 10 II COMMAND CODE 22 ~ 24 A ADDRESS B ADDRESS C ADDRESS
REMARKS

I 37 l8 51 52 65 66 LIN E NUMBER 13 14

MIJcIU)PEF I I
I

I

I., $(}!!T f? /5 £ 1/ £() /4t£I!NIIME MMIHM/II/I1I/WI w z/wa/W4/WS/W6
I

I
I

I

'MIUIl() TJ c, +12 Z,IIUI N, /Ill I I
I

NI, /), £0 P,EI II,S I
I

FX8IM f-MMMM) I
TII~][,III/WI, W2,W", W4,W5,W6

I
I

()tT Z6~(lJftl~;IIJ¢;77 77 I
I

10 '£6"IIM~ (1(I9M~ ~F S tMeT 5~ t.JMENT) I

~P£c - c, +4- I - I "
t:J~T Z6d; 4 (JI> tJ 16(J~77 17 I

I
12

13 RtF MEIlN~IIIIE. i
14 ~I'EC - - c,+Z

I
I

15 Nil c,-Z c,-f4 c, -3 :

T$ C, -IZ Z,IIVI N, /ll/I I
I

16

SII6Cl1tl - - SOKTp I
1

17

18 SU8tJ11-l - - 50RTp+1 I
(8LRNIC.S)

I

fltF I 19

FIN~
I
I 20 , , ,

During ARGUS Assembly, any L, SORTp pseudo instruction appearing in'a line of coding is re­

placed by these 15 istructions starting with MACRO. The Assembly Routine matches all of

the fields in the sample L, SORTp pseudo call of the above MACRO definition with the fields in

the various constants below it. Thus MACRO+l, a mixed constant, will contain whatever the

programmer wrote in the EO, El, and S fields of the pseudo instruction. MACRO+2 will con­

tain the quantity written in the MMMM field. MACRO+3, a tape-address constant, will contain

all of the tape addresses from the pseudo instruction in compacted form. MACRO+5 is actually

an alphabetic constant, set up by Assembly to contain the name of the segment containing the

17

80

SECTION II. SPECIFYING AND USING THE SORTS

L, SORTp pseudo instruction. MACRO+8 on the other hand, is set up as an alphabetic constant

containing whatever was written in the MERNAME field of the pseudo instruction. MACRO+12

and MACRO+13 are set up by Assembly as SPEC constants, containing the address of the respec­

tive first and second locations occupied by the sort subroutine.

At execution time, the first order encountered (after any preliminary programmer coding)

is MACRO. This transfers the contents of MACRO+12 to Z, AUI and goes to N,AUl. MACRO+12

is a SPEC constant combining the first location used by the sort routine. This first location

of the sort is, in turn, a TS instruction which stores the sequence history register, and trans­

fers control to the entrance of the presort generator. The address which is stored from the

sequence history register is MACRO+l, and this gives the presort generator access to

the constants in the macrocoding.

When it is finished, the presort exits to MACRO+4 via the stored value of the sequence

history register (just mentioned) which will have been incremented by 3 in the process of inter­

preting the parameter constants. MACRO+4, +5, +6, and also MACRO+7, +8, +9 are the

rnacrocoding equivalents of the L, READSEG pseudo instructions. They are written here in

expanded macrocoding form because macrocoding cannot call other macrocoding. MACRO+4

(as well as MACRO+7) are actually MPC instructions which must be written as constants in

order that the reference to group 0, which they contain, will not be relocated in another group.

These MPC orders specify that groups 1 through 7 will be turned off, group 0 be turned on,

and the contents of the peR be stored in the accumulator; the A address contains a code which

specifies to the Executive Routine that this was a READSEG instruction. Executing one of these

instructions causes the Executive Routine to load the segment specified in the following location,

and to transfer control to the location specified in the SPEC constant following that instruction.

Thus, when the presort exits to MACRO+4, the segment containing the L, SORT pseudo instruc­

tion is unloaded and control is turned over to MACRO+IO.

Whatever was written in the MERNAME field (now in MACRO+8) is compared with alpha­

betic blanks (MACRO+14) in MACRO+lO. 1£ these are not equal, then merge sort own-coding

exists, and that segment will have to be loaded. If MERNAME was left blank, however, the

next move would be to MACRO+ll, which transfers the address of the second location used by the

sort into Z, AU 1 and goes there. The second location of the sort program is similar to the first,

except that it transfers control to the merge sort generator. The sequence history register

is again saved, so that the merge sort, when finished, can use it to exit to the location beyond

MACRO+14, thus returning to whatever programmer coding followed the L, SORT pseudo instruc­

tion.

18

SECTION II. SPECIFYING AND USING THE SORTS

If it had been determined in MACRO+lO that merge sort own-coding existed (MERNAME

field not equal to blanks), the next move would have been to go to MACRO+7. This constant,

like MACRO+4, is actually an MPC instruction which turns control over to the Executive Routine~

telling it to load the segment whose name is in MACRO+8 and to go to the address specified in

MACRO+9. This, in turn, leads to MACRO+ll, an entrance to the merge sort generator, as

stated in the preceeding paragraph, with the only difference being that the segment whose name

was specified in the MERNAME field has been loaded.

In summary, the rather complex macrocoding associated with the L, SORTp pseudo instruc­

tion can be reviewed as accomplishing several purposes. First, it provides for translation of the

parameters supplied in the fields of the pseudo instruction into a form usable by the sort genera­

tors (this function is performed by all subroutine macro calls). Secondly, it provides for reload­

ing the sort's segment over again, thus allowing what is effectively a two-segment program (the

sort) to be called for, and treated, as one. This enables the programmer to consider a sort

routine as a single instruction. Thirdly, it allows the separate merge sort own-coding to over­

lay the presort own-coding after the presort is finished, so that memory space may be utilized

as efficiently as possible.

Checking Sorts U sing the Program T est System, PTS

The L, SORT macrocoding is, of course, designed for use with the ARGUS System; thus,

ARGUS Assembly will set up the parameters, and properly locate the sort subroutine relative to

the programmer's coding. The Executive Routine will relocate the entire segment, if necessary,

and will handle the loading and overlaying at execution time as described previously. Program

Test System, PTS, however, is designed to check out just single segments; hence, special care

must be taken when checking out sort routines or when checking out programs of which sorts are

a part. For each program tested, PTS requires a START card, which specifies the ending loca­

tion of that program. The instruction in this location, however, will not be performed. There­

fore, the first MPC to be encountered, MACRO+4, should be specified as the ending address

in the START card of the sort segment (since PTS will not recognize the Executive Routine MPC).

Insomuch as PTS will automatically load the next program on its tape, the same sort program

should be specified a second time in order that the sort will be reloaded. For this second sort

program, the sequence counter should be set to MACRO+lO, which can be accomplished by means

of a transfer instruction inserted in place of the first instruction of the program, which places

MACRO+6 in the sequence counter.

If there is no merge sort own- coding, the START card for the second program of the pair

can specify the final order of programmer coding as the exit location. However, if merge sort

19

SECTION II. SPECIFYING AND USING THE SORTS

own-coding is employed, then MACRO+7 should be specified as the exit of the second program,

and a third program, which consists of the merge sort own-coding segment, will have to be

included. In this case, only one instruction of the second program will be performed (MACRO+

10), whereupon the third program will overlay the second. BACKGROUND should not be loaded

between the second and third programs since the subroutine and programmer coding brought iH

with the second program must remain in memory. The entrance to the third program should be

temporarily specified as MACRO+ll, following the same manner used in specifying the entrance

to the second program. The START card for the third program specifies the final instruction

of programmer coding as the exit.

Thus, the method of checking out a sort with PTS is the same as that used with any multi­

segment program. Each segment, which would normally be loaded automatically in a production

run by the Executive Routine, is treated as an individual program. Because of the manner in

which it is reloaded, the sort subroutine must be handled as two programs during PTS, both of

which will have the same name, but each of which will have different entrances and exits.

Merge sort own-coding similarly requires the inclusion of a third program to represent the

additional own-coding segment.

20

SECTION II. SPECIFYING AND USING THE SORTS

PROGRAMMER'S CODING

b PROGR AM X 1 }ADDITIONAL

1
CODING

MACRO
(PSEUDO)

-
L,SORT

TION ADDITIONAL
INSTRUC- }

fi; l
CODING (INCLUDING

- OWN-COOING IF ANY)
END

- .- -

ASSEMBLY

I
PROGRAM TO BE

ASSEMBLED

INSTRUCTIONS TRANSLATED TO MACHINE
LANGUAGE,"L ,SORT" REPLACED BY 15-
ORDER MACRO CODING, SUBROUTINES
(INCLUDING SORT) ADDED TO END OF
PROGRAM.

EXECUTION OF PROGRAM X:

ENTER AT START PROGRAM

WHEN ENCOUNTERED,MACRO­
CODING TURNS CONTROL OVER
TO SORT SUBROUTINE @.
SORT SETS ITSELF UP, BASED
ON PARAMETERS FROM MACRO­
CODING, AND FROM BEGINNING
FILE 10 RECORD OF INPUT
TAPE <ID.
SORT IS PERFORMED, USING
INPUT AND WORK TAPES. IF
OWN-CODING IS USED, SORT
B RANCH~ TO IT AT SPECrFlED
POINTS ~.

WHEN FINISHED,SORTED FILE
IS WRITTEN ONTO WORK TAPE,
AND SORT EX ITS TO LOCATIO)t
FOLLOWING MACRO-CODING qv.

PROGRAM
TAPE

ARGUS

ASSEMBLY

2 BANK MEMORY

EXECUTIVE ROUTINE

SORT

SUBROUTINE

~INPUTTO
~SORT

'*"GJ OUTPUT FROM
SORT

~~------~~ WORK

_~ TAPES

Figure 1. Derivation of a Sort PrograITl through ARGUS

21

General Method

SECTION III

PRESORT

Figure 2 shows a simple version of the ARGUS presort. Storage in this simple case con­

sists of only three items, the items each representing a complete record on tape, and the keys

consist of a single digit. The tape on the left (input) contains 10 of these items, in random

order.

Initially (a) the storage area is empty, and all tapes are positioned at the beginning (as

indicated by the arrows). In the fir st step (b), the storage area is filled with the first three

items from tape; the input tape is now positioned just after the third item. The item with the

smallest key is then selected and written on one of the output tapes, and replaced with an item

from the input tape. Thus in (c), the 0 is written out, and replaced with the 6. At this time it

is ascertained that the key which was brought in (6) can be included in the present string because

it is greater than the key just written out (0).

This process continues, and in (d) the 3 is written out and replaced with a 5, and in (e)

this 5 is found smallest and written out, being replaced by a 4. Now, however, since the 4 is

smaller than the last item written, nam.ely the 5, it cannot logically be included in the present

string, so it is stoppered (temporarily removed from consideration), as indicated by the cross

(X) placed through it in the example.

The choice is now confined to the remaining items in storage and the 6, being the smaller,

is written on the output tape and replaced with a 7, as indicated in (f). The 7 is next written on

the output tape (g) and replaced by the 1, at which point this item must also be stoppered. There

is no choice left but to pick the remaining item in storage, so the 9 is written on the output tape

and replaced by the 8, which is also stoppered. At this point (h), all three of the items in stor­

age are stoppered, and one string has been completed on the output tape.

Writing (i) is now switched to the other tape; all items that are presently stoppered in

storage are unstoppered; and again the smallest item is selected. The 1 is written and replaced

by the 2, which happens to be the last input item. When the end of the input is sensed, reading

is discontinued and each item in storage is stoppered after it has been used (j). Thus, in the

23

SECTION III. PRESORT

rem.aining three figures, (j, k, 1) each item. is stoppered, after it is selected and written, and the

presort is com.pleted.

2 2 2

8 8 8
1 1 1
7 7 7
4 OJ] 4 [illli] 4 [§IillJ
5 Storage 5 r .. 5

/~ 6 • 6 6
3 3 3

9 9 9
• 0 ~ .. 0

~
0 0"

• 4
Input (a) Output (b) (c)
Tape Tape

2 2 2
8 8 8
1 1 1

~

7 7

~M 7~ 4 ~ • 4 479
~

5-

~
5

~
5 ------------.. 6 6 6 6

3 3· 5 3 5

9 3~ 9 3 9 3
0 0

~
0 0 0 0

(d) (e) (f)

2 2 • 2
8

~

8 !\ .. 1

~ ~~~ 7
4 4 ~ 9-4 4 0iliJ 9 ..
5 -7 5 7 5
6 6 6 6 6
3 5 3 5 3

9 3 9 3 9
0 0 .. 0 0 0 1~ ..

(g) (h) (i)

~ 2 • 2 • 2
8 8 8
1 1 1
7 7 7

~ • ~
• msJ ~

4 9 4 9 4 9
5 7 5 5 7

6 '6 6 6 8 ..

3 5 3 4" 3 4 ..
9 3 2 9 2 9 2
0 0 1 0 1 0 1

(j) (k) (1)

Figure 2, Sim.ple Presort Exam.p1e

24

SECTION III. PRESORT

Reading and Writing Controls

Reading and writing are both handled by the presort in a conventional manner, using two

input and two output buffer areas to allow simultaneous read-compute-write operations. All four

buffer areas are essentially the same size as the records on tape. As one input buffer is being

loaded from tape and one output buffer is being written on tape, the presort processes data using

the remaining input and output buffers. Since one tape is being read and one is being written at

anyone time, with the same amount of data corning in as going out, reading and writing cycles

are synchronized, although they may operate independently if own-coding (see Section VI) is used

to :modify record or item size or to add or delete items.

Building Strings

Besides the reading and writing controls, the presort consists basically of the coding

necessary to find the smallest usable key in storage. In a :multi-precision sort, all specified

keys are juxtaposed and the presort seeks the smallest value of the combined keys.

The simple example of the ARGUS presort :method, included in this section, de:monstrates

how variable-length strings are produced by a cascade presort. The potential length of each

string is directly influenced by two basic factors: the amount of me:mory that is made available

to store items while comparing for the s:mallest key; and the randomness of the data itself. The

more ite:ms which can be included in storage, the longer the generated strings will be. More­

over, any preordering or natural ordering of the data will directly bias the length of the gen­

erated strings. If the input data is co:mpletely random, meaning that each new item brought in

has a 50-50 chance of having a key which is smaller than the key of the preceding ite:m, the gen­

erated string length will average twice the number of items that are stored internally. Thus, in

the si:m.ple example of the presort method, which uses a storage capacity of three items, the

first string happens to contain six items.

The pre sort modifier ~gener ator take s full advantage of any a:mount of me:mory :made avail­

able to it, setting up as many item storage locations as possible. The skeleton routine can be

adapted to work with any number of storage locations up to and including 216 items, thus being

capable of producing strings of 432 iterns average length.

Trees

The process of finding the smallest key in storage is accomplished by :means of a "tree" or

a series of trees. A tree is a section of coding having a single entrance and several exits.

Figure 3 illustrates a comparison tree having a single entrance and six exits. This tree

25

SECTION III. PRESORT

Figure 3. ARGUS Presort Tree

26

SEC TION III. PRESORT

exaITlines six keys (A, B, C, D, E, and F) and deterITlines which is the smallest, which in turn

determines which exit froITl the tree is to be used.

Bins and Tags (General Description)

As sociated with each tree in the ARGUS presort are several storage areas called bins

which contain the keys being compared. As comparisons are completed at one level of trees, it

is necessary to transfer the key that was found to be smallest in each tree at that level to the bin

associated with the next level. Since moving the entire iteITl would in most cases be unwieldy,

both in terms of transfer time and of space required, tags are used to minimize the amount of

data that has to be transferred.

As each iteITl is brought into mernory, the related key is detached and sent to an area with­

in a bin which corresponds to that item's storage location. Within a bin, every other location is

set up with an identification word which designates the start of an item in storage. Each key is

placed in the bin adjacent to the ID word which designates the start of the corresponding item.

Thus,each item is represented in the bin by a two-word group, called a tag, which contains the

key of the item and its starting location. It is this tag which is actually moved as control pro­

ceeds froITl layer to layer. When the sITlallest key is determ.ined, the ID portion of the tag is

interpreted to find the location of the corresponding item, and that iteITl is transferred to the

ou tpu t buffe r •

Layers of Trees in an ARGUS Presort

In general, trees are most efficient when they have from four to six exits. Therefore, the

trees used in the ARGUS presort never have more than six exits. When ITIore then six keys are

to be compared, the concept of layers of trees is used. For example, a full ARGUS presort of

216 items uses three such layers of six-way trees, as shown in Figure 4.

BINS-
I§J
LAYER

BINS-
2ND
LAYER

3 RD
LAYER

2 3 \I

36
~ ______ ~~~ ______ ~--~----__ ~----L---~~----~--~ __ ----~--~~ __ --~ITEMS

6

Figure 4. Bins Accompanying Each Layer of Trees

6
ITEMS

SMALLEST
ITEM

27

SECTION III. PRESORT

In this example, the first layer consists of 36 bins .. each containing six tags. As a result of all

the comparisons at this level, the smallest key in. each of the 36 bins is determined and the

corresponding tags are delivered to the six bins at the second layer. In the same fashion, the

second-level comparisons result in the transfer of six tags to the final bin, or master bin, which

comprises the third layer. The tag transferred from the master bin contains the smallest of

the original 216 keys, as well as the starting location of the corre sponding item. Various pro­

gramming techniques used to minimize the number of passes through the trees are explained

later in this section, as trees are covered in more detail.

Stoppering

In the presort example, stoppering is represented by drawing a cross through an item in

storage. Stoppering is performed when a new key is found to be too small for the current string.

A constant of hexadecimal GI s is transferred to the corresponding key location in the bin. This

constant will never be found smaller than any other key in the bin. When all of the key locations

in a bin contain hex G constants, the program unstoppers all key locations and starts a new

string. This is accomplished by transferring the keys from all stoppered items to their re s­

pective bins and then repeating all trees to find the new smallest key. The related item is then

written as the start of a new string.

Old· Key Area

That portion of the presort coding which determines whether an item should be stoppered

or whether it qualifies to be included in the present string is termed the "old key area". The

key of the last item written in the present string is retained in this area and compared with the

key of the next item coming into the storage area. If the new key is smaller than the old key,

the new item does not qualify for inclusion in the present string and, therefore, a stopper is

provided.

Master Routine (General Description)

The master routine is used in conjunction with the old key area and the presort tree and

represents the basic routine of the presort. As long as one or more items remain unstoppered,

it transfers out the item having the smallest key, brings in a new one, and gives control to the

old key area. The latter, in turn, gives control to the tree after determining whether the new

item must be stoppered. The master routine checks input and output buffers and branches to

read or write routines whenever necessary. When all of the items in memory become stoppered,

the master routine gives control to an end-of-string routine to close the current string and start

the next.

28

SECTION III. PRESORT

End of String

Each tim.e that a string is com.pleted, there are several tasks to be perform.ed. Because

banner words (one per record) are used by the m.erge sort to identify the beginnings of strings,

it follows that breaks between strings m.ust correspond with breaks between records. Thus, if

the output ?uffer is only partially full when a string is com.pleted, filler item.s, known to have

keys larger than any item. of the file, m.ust be generated in order to com.plete the record. Item.s

consisting entirely of hex GI s are generated by the end-of-string routine for this purpose.

NOTE: The following text refers to m.any special registers used in the ARGUS presort program..

Appendix B of this m.anual provides a list and functional description of these special

registers.

Bins and Tags (Detailed Description)

As previously explained, six item.s are com.pared with the tree in the ARGUS presort, thus

accounting for the fact that six tags are grouped together in the accom.panying bin. In addition to

these six tags, the bin contains several instructions and pieces of inform.ation which will be used

when the tree has determ.ined which of the tags in the bin is the sm.allest. This is necessary

because, in order to preserve space, the ARGUS presorts use only one tree, which is associated

with the appropriate bin via an index register. After the sm.allest item. in any bin has been found,

the additional orders of the bin transfer that sm.allest tag to the next appropriate bin, and after

having set the index register to that bin, control is transferred once again to the six-way tree.

Figure 5 includes a detailed arrangem.ent of a typical tag bin. This represents the layout

of a single-precision bin. Double-precision bins are sim.ilar except that an additional word for

each tag is used as a second key. The triple-precision bins are sim.ilar"to the single, the tree

being supplem.ented by additional coding to com.pare the second and third keys within the item.s

them.selves.

When each of the bins is in use, the index register is set to the location just prior to word

1 (XO in the illustration) so that the increm.ent to the index register will correspond with the

word num.ber. Starting at the top of the bin, the six tags occupy pairs of words. the first word

being the key, and the second being the ID word. The ID word is illustrated at the bottom. of

Figure 5. Following the six tags, which occupy words 1 through 12 in the bin, are three ad­

ditional words (13, 14, and 15) which are additional orders and a constant.

Word 13, called the bin TN instruction, transfers the sm.allest tag to the next bin. This

is constant except for the A address which is set up by the tree each tim.e the tag representing

29

SECTION III. PRESORT

30

2

3

4

5

6

7

8

9

10

II

12

13

14

15

SINGLE- PRECIS ION BIN FORMAT

KEY
1---- - - TAG A- - - - --

ID WORD

'--.- - -- TAG B

---- TAG C

----- TAG D

~-- -- TAG E

1---- -- TAG F

TN (T AG) 2
(NEXT LEVEL

BIN)

TS fJ,15 Z,Xfl,! TREE

SPEC -- -- (IR FOR
NEXT BIN)

I D WORD FORMAT

(AUGME NT TO
INDEX REGISTER) .'

ITEM LOCATION IN KEY LOCATION IN REL. IR SETTIN G OF
TAG STORAGE STORAGE LOC. ORIGINAL TAG BIN

14 BITS 14 BITS 5 BITS 15 BITS

Figure 5. Tag Bins and ID Word Format

SECTION III. PRESORT

the smallest item is found. The tree stores the (indexed) address of the tag here. The B

address indicates the number of words to be transferred (two in this case). The C address is

the location of the tag position in the next bin which corresponds to this tag bin. (It has been

explained previously that six initial bins feed into one bin of the next level; also the smallest tag

from each of these six bins is placed in a corresponding position of the next level bin.) After

setting the A address of word 13, the tree exits to word 13, all through indexed addressing.

Mter word 13 is performed, word 14, which represents the bin TS instruction, transfers

control to the next level bin. This is performed by storing the contents of word 15, a constant,

into the index register, and going to the tree, now associated via the index register with the next

bin, and the process continues. As indicated in the diagram, the A address is indexed, and the

B address is a direct special register address. Word 15 is a SPEC constant, representing

word 0 of the next level tag bin ..

Master Bin' and ID Word

To avoid going from tag bin to tag hin indefinitely, the final tag bin is slightly different

from the others. This final bin is termed the master bin, and as previously explained, is the

bin. from which the smal1est tag of al1 stored items is found and transferred out. The master

bin is actual1y the same as the other bins through word 13, except that the C address of word 13

refers to a working area cal1ed the old key area. Thus, the same tree can be us ed in associa­

tion with the master bin as the others, and the exit will also be the same.

The ID word is used in the section of coding fol1owing word 13 of the master bin. At this

point, the ID word serves to identify the item in storage from which the attached key carne and

the tag bin to which that key was original1y transferred. The ID words are generated original1y

as constants and are placed in the appropriate positions of the initial tag bins to which the keys

from the items are transferred. In the intermediate bins and master bin, these ID words have

been brought along with the keys from previous bins (see Figure 5).

Single-Precision Tree

The description of the bins, and an explanation of their operation, form the external speci­

fications of the tree. A tree, then, must compare indexed words 1, 3, 5, etc. (key words of

the tags) to find the smal1est, substitute the indexed address of the smal1est tag into the A ad­

dress of indexed word 13, and go to indexed word 13 of the bin. At each exit of the tree, there

is a masked TS order which is used to substitute the address of the smal1est tag into the A

address of indexed 13. In order to economize constants, it picks up the address from one of

31

SECTION III. PRESORT

the instructions in the tree (in the one case when such an address does not appear in the A

address position of the tree, a constant is used instead as the source). This TS instruction then

sequence changes to indexed 13. Figure 6(a) illustrates a single-precision tree and how it dif­

fers frorn. a (b) double-precision tree and (c) a triple-precision tree.

Double-Precision Tree

When a key corn.prises more than one word, the logical comparison of such a key will con­

sist of more than the one LA instruction neces sary with single-precision keys. Only if the first

two words compared (high-order portion of key) are equal, is it necessary to compare the next

word of the key. This requires that an NA instruction be performed to determine if the first are

completely equal. Figure 6 illustrates this relationship; (a) illustrates a single instruction

needed for a single-precision comparison between A and B; (b) illustrates double-precision keys,

Ai and B1 being the high-order portions (first keys), and A2 and B2 being the low-order portions

(second keys). The entire array in (b) corresponds to each of the comparisons shown in the

earlier tree. It becomes apparent that each additional word in a key adds considerably to the

number of instructions required as well as the time needed to go through the trees. The final

comparison is simply an LA instruction, so that if two keys are corn.pletely equal, One is

arbitrarily picked as being "srn.allest". A superfluous TS instruction is saved by reversing the

final LA instruction (that is, B:A instead of A:B). In (b), if both LA instructions were A:B, one

will have to be followed by a sequence change, since both obviously cannot remain in sequence,

when A is greater than B, and still end up at the same place. By reversing the second LA in­

struction, a sequence of mern.ory locations, as indicated by the address numbers over each

comparison, can be assigned. When several such comparison arrays are grouped together in a

tree, the sequence of instructions follows down the tree rather than through the levels of com­

parison. Figure 6{b) illustrates this in the double-precision tree.

Triple-Precision Tree

It would be possible to extend the reasoning used in the double-precision tree to handle a

triple-precision tree (accompanied by a corresponding increase in tree size), but in order to

conserve memory as well C!-S facilitate the addition of higher precision, the triple-precision pre­

sort makes use of a space-saving technique. The basic triple-precision tree itself is identical

to the single-precision tree insomuch as each comparison set consists of one LA instruction and

one NA instruction; however, if the first keys are found equal, a special section of coding is

entered. This coding represents a common second and third key comparison array used for all

comparisons after the first key. With own-coding, this section can be easily modified to work

with any number of additional keys. The tag bins are actually simplified, being identical to

32

SINGLE PRECISION

A :5 B A>B

A
"SMALLER"

(a)

DOUBLE PRECISION

I

(b)

TRI PLE PREC ISION
I

4

SC RETURN ,. - --- TSC C,-I
WL WL-I

2

B
"SMALLER"

RETURN ...
/ _____ -.II ,

5

A
"SMALLER"

(c)

2

B
"SMALLER"

Figure 6. Single, Double, and Triple Precision

SECTION III. PRESORT

33

SECTION III. PRESORT

single-precision bins, since only the first key word is carried in the tag. The second and third

keys are compared directly within the item itself. If the first key words in a triple-precision

sort are fairly random, which is the normal case with a presort, the special coding will seldom

be used. When the additional levels of precision are used, this technique is slower than the

straight-forward tree.

The triple-precision tree is illustrated in Figure 6{c}, as well as in Figure 7, which shows

the special common coding area. The latter illustrates a tree that has been arranged so that

when the first keys are found equal, the sequence history register is set to the next instruction

which would be executed if one of the keys were smaller, while the sequence counter is set to

the next instruction to be executed if that key were greater. In place of the second LA instruc­

tion in each comparison group, the triple-precision tree has a TS instruction to switch to co­

sequence. This transfers the NA instruction just performed to a working location in the com­

mon coding before going to that area. Figure 7 illustrates the common coding. Two index re­

gisters (5 and 7) are set to the values of the two corresponding items in storage by using the ID

words of the tags being compared. Next, second and third key comparison instructions {still in

cosequence mode} compare the additional keys directly in item storage through these two ad­

ditional index registers. The third key LA instruction can easily be changed to go to own-coding,

upon finding possible equality, and any number of additional keys can be compared there in the

same way. Two exits are possible: in one, the contents of the sequence history register are

stored in the sequence counter and the program drops out of the cosequence mode so that return

is made to the sequence counter; in the other, the program drops out of the cosequence mode

without modifying the sequence counter.

Suppose that two keys, A and B, are equal in the first and second words, but A3 is smaller

than B3. (Figure 7 illustrates this example.) The first order in the tree is Al:Bl, and since

Ai is less than or equal, go to 3. In order to go to 3, however, the sequence must be changed,

and so the address of 2 is stored in the sequence history register. In 3, Al :Bl is tested for

equality and since they are equal, 4 is performed next. This (4) is a TS instruction specifying

a switch to cosequence, which transfers 3 to WL, and goes to WL+1. In WL+i, a WA instruc­

tion, masked to include the A address only, is performed to add the contents of WL to a 1 bit in

the A position and then stores the result in WL+2. This, in effect, sets the A address of WL+Z

to the ID word of the A tag. WL+2 shifts the ID word so that the item location portion is justified

right and places this into index register 5. WL+3, 4, and 5 similarly put the location of the B

item into index register 7, the only difference being that the B address of WL must first be

shifted to the A address position.

34

WL (NA

WAf AMASK C

SWS,14 BITS C

SWS, AMASK C

WA,AMASK C

SWS.14 BITS C

LA C

TX

NA C

LA C

PR

SET UP SHIFTS
S HI FT ITEM LOC.
IN TAG TO IR

~, I

WL
({lJ,2)

WL

WL+5

(0,4)

5,(2}

Z,SH
5,(2)

7,(3)

A ITEM~X5
B ITEM-+X7

CODING

(lJ,3

ONEINA

34

36

ONEINA

34
7, (2)

-
7,(2)

5,(3)

SECTION III. PRESORT

RET. TO SH

#5) STORED NA

WL+2

Z,X5 SHIFT A ID WORD

WL+5

WL+5

Z,X7 SHIFT B 10 WORD

WL+8 AUGMENTS GENERATED

Z,SC RETURN TO SH

WL+I{lJ AUGMENTS GENERATED

WL+7 AUGMENTS GENERATED

RETURN TO SC

Figure 7. Triple-Precision Common Comparison Coding

35

SECTION III. PRESORT

Now WL+6, the second key LA comparison, is performed. Because the second keys are

equal, the equality test in W L+8 is performed next. This second key comparison almost yields

equality; therefore, WL+9 is performed next. Here, because A3 is less than B3, WL+7 is per­

formed next to transfer the contents of the sequence history register to the sequence counter,

and returns control to the sequence counter. Alternatively, if A3 were greater than B3, the

program would have proceeded to WL+i0 and then reverted directly to the sequence counter. To

extend precision with own-coding, the C address of WL+9 would have to be replaced with the

address of an NA order in own-coding and the process would continue from WL+9. Also the con­

tents of the A and B addresses of WL+9 would be interchanged to keep the logic straightforward.

Master Routine (MASTER) (Detailed Description)

The explanation thus far has been related to the trees and bins and just how they operate

together to determine the smallest item in memory. After it is determined that an item has the

smallest key, that key is transferred to the storage area termed Old Key (OLDKEY). The item

is then processed through the Master Routine (MASTER).

The first operation in the MASTER is a test to see if the key of the smallest item is all

hex G's {or a stopper}. A stopper indicates that there are no more valid items in memory, and

control is turned to the End of String Routine (ENDSTR). Next, the ID word, which is situated

in OLDKEY along with the smallest key, is used to find the item's location in memory. It is

stored in X7 before X7 is used to transfer the item to the output buffer. The output buffer is

standard, using an index register (X3), which is modified to step through the buffer as items are

transferred to it. A check is made to see if the buffer is full, and if so, control is transferred

to the Write Routine (WRITE), which will return to the same point when finished. If own-coding

option number 3 is specified, the routine now branches to modify an item in the input buffer be­

fore it is brought into the sort.

Now the next item is transferred to storage from the input buffer by a section called Item

Transfer (ITEMTRAN). Here the input buffer is stepped through with a modified index register

(Xi), and the item is transferred to the location in stor~ge just vacated (addressed by index re­

gister X7). If the input buffer is now empty, control is transferred to the Read Routine (READ)

which will return to this point upon completion.

U sing the ID word still in OLDKEY, the tree index register (XO) is set to the bin asso­

ciated with the item just replaced. The old key corning from OLDKEY is then compared with

the new k~y from item storage via X7. If the old key is less than or equal to the new key, the

new item will be included in the present string. From the ID word, an order is set up to

36

SECTION III. PRESORT

transfer the key of the item to its bin. This order is performed, and a sequence change is made

to the tree to sort this item with others. Setting the tree index register associates the tree with

the bin to which the new key was just transferred. When the smallest item in this bin is found,

transfer is then made to the next level bin, and finally to the master bin with a new smallest

item.

If. an old item had been greater than the new one, the new item would have been stoppered,

as demonstrated in Figure 2. To do this the Dummy Key Routine (DUMKEY) sets up an order to

transfer all hex GiS to the bin, performs this order, and proceeds to the tree. Except for

transferring GiS instead of the real key, this procedure is the same as described in the pre­

ceding paragraph.

It should be noted that items having words of all hex GiS as keys will appear to MASTER

as stoppers, and will, therefore, indicate an end-of-string just as an ordinary stopper key

would do. However, since an item with a key of hex GiS is never replaced by any other item in

memory storage (for it will never be transferred out), such items will tend to accumulate in the

storage area and accordingly reduce its effective size. Furthermore, if as many hex G-key

items are brought in as there are storage locations, the presort will go into an endless loop

through the end-of-string procedure, reading and writing nothing. Because of this, keys of hex

GiS should be avoided, except possibly to fill up the final record of the data file.

End-of-String Routine (ENDSTR)

The first step in the End-of-String Routine (ENDSTR) is to check the output buffer. If it is

empty, the string did end integrally with a record and control is transferred to Write Switch

(WRSWCH) to determine where the next string is to be written. If the buffer is not empty,

dummy items (hex GiS) are transferred, one at a.time, to the output buffer. The buffer is

checked after each transfer. When it is full, transfer is made to the Write Routine (WRITE)

after setting the exit of the write routine to return to WRSWCH. Just before entering WRSWCH,

a dummy write forward (WF) instruction is performed for the tape presently being written to get

an error check for a bad record before switching tapes.

Write Switch Routine (WRSWCH)

WRSWCH is used in conjunction with ENDSTR to determine on which tape each string is to

be written. A table of ideal ratios of strings on each tape is calculated. The logic of the dis­

tribution of these strings onto the tapes for the merge sort is introduced and explained in Section

IV. To maintain this proper distribution, the presort, at WRSWCH, calculates this table of

37

SECTION III. PRESORT

ideal ratios and provides a constant for each tape, indicating how many strings should be on that

tape. Associated with each tape is a string counter which shows how many strings have actually

been written. In general, strings are placed on one tape until the corresponding string counter

equals the ideal count for that tape. The presort then switches to writing on the next tape.

When all tapes are at their ideal number, the next higher ideal distribution is calculated, and

the process to bring tapes up to it begins. WRSWCH, therefore, consists of a series of com­

parisons which test each tape to see if there are as many strings as there should be on it. If

there should not be enough strings on a tape, the write order is set to address that tape and the

string counter is incremented. When all tapes are full as specified, control is transferred to

the calculating portion to determine the next higher perfect distribution.

The logic involved in the calculation of this ideal distribution is based on the cascade

rn.ethod of rn.erge sorting used by the ARGUS sorts. This method is explained in Section IV.

Fill Bins Routine (FILBIN)

When it is determined onto which tape the next string will be written, transfer is then

rn.ade to FILBIN from WRSWCH to start the new string. This routine performs two functions:

first, it sets a switch (Banner Switch) so that the beginning banner word of the new string will

indicate a beginning of string; secondly, it unstoppers all items. This is accorn.plished by trans­

ferring all of the keys directly from the itern.s to the bins, using several special registers pro­

perly incremented. At this point, transfer is made to the Switch .l{outine (SWITCH).

Switch Routine (SWITCH)

The Switch Routine (SWITCH) performs the initial sorting of all items in storage. As

already stated, only one bin in each level was sorted to process one new item. However, at the

beginning of string, all items must be processed together, and as a result, all bins must be

sorted. SWITCH places temporary "detours" in the TS instructions of all but the last bin.

These detours change sequence back to another portion of SWITCH which increments the tree

index register to associate with the next bin, and then returns to the Comparison Tree (CT). A

switch is also placed in the first order of MASTER which changes sequence to an area terrn.ed

the Reset Area (RESET). Now the tree index register is set to the first bin, and transfer is

made to the tree. Because the bins are adjacent to one another, each bin will be sorted in turn

down to the master bin. The master bin will be sorted, after which control is transferred to

RESET. At this point, all bins have been sorted, and after the SWITCH modifications have been

removed by RESET, control is transferred to MASTER. RESET accomplishes this by restoring

the TS orders in the bins and the first order in MASTER, and then exiting to the first MASTER

38

SECTION III. PRESORT

instruction. Processing now continues as before until another end of string is sensed.

Read Routine (READ)

READ is entered whenever an input buffer is depleted, as determined in MASTER. For

checking purposes, a counter is incremented in READ which keeps a tally of the number of re­

cords of input to the sort. READ also sets up XZ with the address of the empty buffer, and Xi

with the address of the other. The latter proces s is the actual buffer switch, and is accomplish­

ed by shifting (end around) a special word containing both addresses. As a check, hex G's are

placed in the end-of-record word position of the buffer into which reading will take place and into

the word just beyond that. The record is then read while the record in the other buffer is

checked. If this is an end-of-file record, transfer is made to an End-of-File Routine (EDOFILE)

or to the Multiple Input Routine (MULTINPT) (if that was specified in the macrocoding). A check

is made, when working with fixed-length records, to see if the record is too short {hex G's instead

of an end-of-record word} or too long (other than hex G's in word beyond the end-of-record word).

Otherwise, only the test for too long a record is made. If all of these tests are passed, the input

buffer item counter {R7} is reset to unity, and return is made to the master routine. During the

initial loading of storage only, this exit is set to return to the Fill Storage Routine {FILSTR}.

Write Routine (WRITE)

WRITE is entered when the output buffer is full. WRITE first stores AUZ in X6 when

working with variable-size items, since this will contain the address just beyond the last item.

The same type of buffer switch as used in READ is used to switch the empty buffer to X3 and the

full buffer to X4. The banner switch is checked; this switch, which is normally set to 1, is

set to zero at the start of each string by FILBIN. If the switch is zero, "beginning-of-string"

bits are substituted into the banner word, and the banner switch is set to i; otherwise, 'lmiddle­

of-string" bits are substituted into the banner word. The ortho count is then computed, and the

current write order (as set up by WRSWCH) is performed. The record count is incremented in

the banner word and transferred from the current buffer to the alternate one to maintain the

current count from record to record. The exit from WRITE, called COMMONEX, normally

leads to MASTER. At the end of string it leads to WRSWCH.

Beginning the Presort

The information contained within this section, up to this point, has been limited to the

"steady-state" portion of the ARGUS presort. The initializing and beginning portion of the sort

routine which precedes the steady- state portion is discussed in this section and is followed by a

discussion of the ending portion of the presort.

39

SECTION III. PRESORT

Not to be confused with the beginning portion of the sort are the generator and modifier

functions, which are discussed later in this section. The generator and modifier, although

normally performed immediately before the sort, serve only to set up a specific sort routine.

However, a sort routine actually starts manipulating data.in its beginning portion.

The first such section is termed BEGIN, and it starts by initializing the input buffers. X2

is set up, the switch is rotated, and words of hex GIS are placed in the last locations of the

initial buffer, into which a read is then performed. Other special registers, used as counters

and as addresses, are also set up. The storage area is filled with words of hex GIS in case

there should be insufficient items in the file to fill it. The initial banner word is set up, and

control is transferred to the standard read routine.

READ is set up initially to exit to the beginning of the Fill Storage Routine (FILSTR). The

first order in FILSTR switches the READ exit to go to FILSTR4 to avoid the initializing orders of

FILSTR after the first time through. These orders set R2 to unity to count the nUITlber of iteITls

brought in. They also set X7 to the address of the first iteITl in storage, and proceed to the IteITl

Transfer Routine (IT EMT RAN). If specified, exit to own- coding option 3 is ITlade before the iteITl

is brought in. This option is used to modify an iteITl before it is brought froITl the buffer to iteITl

storage. For variable-sized iteITls, the nUITlber of words in the iteITl are deterITlined, and that

nUITlber is stored in the low-order portion of the end-of-item word for later use by the ITlerge

sort. The input buffer is checked, and if empty, control is turned over to READ. Otherwise,

Xi is set to the next item in the buffer (using AUi) and a transfer is ITlade to FILSTR4, to which

READ also exits.

In FILSTR4, iteITl storage capacity is checked against R2 which contains a count of the

iteITls brought in. R2 is increITlented. If storage is not full, a return is ITlade to ITEMTRAN.

When storage is finally full, the last remaining switches for norITlal operation are set up.

These include EDOFILE which has been set up especially for FILSTR, and the exits of ITEM­

TRAN and READ, which will now go directly to MASTER. Exit is then made to FILBIN where

the fir st string is begun in the usual manner.

Ending the Presort

An end-of-file record, sensed by READ, initiates the "ending the presort" process. 1£ a

multi-input was specified, transfer is made to the Multi-option Area (MULTOP), where the

addresses of read orders are switched to the alternate input tape. Control is then transferred

to the Multi-input Area (MULTINPT). MULTINPT is printed out, the old input tape is rewound

40

SECTION III. PRESORT

with interlock, the new tape is positioned, and data from that tape is read into one input buffer.

Return is then made to the portion of READ which performs a read order to insure that the first

record has been brought in. READ now continues as usual. When all the input tapes have been

used, both input drives should be left interlocked or empty, in which case the progra:rn. will stall.

At this point, the operator m.ay start the presort at the cosequence counter and a nor:rn.al ending

will take place. Upon finding an end-of-file record, READ will lead to EDOFILE if the :rn.ulti­

input option is not specified. If the presort is still in the initial process of filling storage, an

initial version of EDOFILE is perform.ed; otherwise, the normal EDOFILE is perfor:rn.ed. (An

item design of the end-of-file record is contained in Appendix A.)

The ~itial EDOFILE section simply modifies ITEMTRAN to place into item. storage an

item of hex GiS (dummy item) instead of a new item. fro:rn. the input buffer. Also, a switch is

stored at the beginning of the WRSWCH which will lead to the End of Sort (ENDSOR T). This is

done because there already are som.e item.s in storage which must be put out as an initial string.

After setting WRSWCH, EDOFILE exits to FILBIN to create the first (and only) string.

The norm.al EDOFILE is som.ewhat m.ore complicated because any ti:rn.e during the steady­

s tate portion of the pre sort there :rn.ay be som.e items in storage which are stoppered; if the sort

should be ended at the completion of the current string, these item.s would never be put out on

tape. To avoid this, ENDSTR is set up with a switch to go to Check Items Routine (CHKIT)

which will determ.ine if there are any items besides dummy item.s in storage. WRSWCH is set

up to allow one m.ore string to be written and then control is transferred to ENDSOR T. This is

accomplished by replacing the first order of WRSWCH with a transfer which will replace itself

and which will go to a constant equivalent to WRSWCH. The constant used to replace the trans­

fer is a TS order to ENDSOR T. CHKIT is a sim.ple looping routine which uses incre:rn.ented

special registers, R4 and R5, to com.pare each key in storage with hex G's. If all the keys in

storage are hex GiS, a TS order to ENDSORT is placed in WRSWCH, and the initial order of

ENDSTR is replaced and return is m.ade to it. If any key in storage is not equal to hex GiS,

WRSWCH is ignored because it was set by EDOFILE.

When ENDSORT is reached, the first routine perfor:rn.ed is called Check String (CHKSTR).

This checks the distribution level counter, which is equivalent to the num.ber of passes the

merge sort will have to make. If this count is equal to 2 (the lowe st po s sible value it can have),

provisions must be m.ade to insure that a :rn.inim.u:rn. nu:rn.ber of strings are written on all tapes.

To accomplish this, CHKSTR sets MASTER to bypass the beginning of ENDSTR (which checks to

see if the output buffer is partially full) and then goes directly to the section of ENDSTR where it

is' assu:rn.ed that dum.m.y ite:rn.s are needed. This guarantees at least one record of du:rn.:rn.y items

41

SECTION III. PRESORT

for each string which is necessary on any tape, even though no real data is transferred out.

The portion of WRSWCH which calculates the next distribution level is set to go to the main

ENDSOR T; this provides that dummy strings are put out until the current distribution level is

full. Due to the nature of the merge sort, once two distribution levels have been reached, or

beyond two m.erge sort passes, it is not necessary to provide as many strings as required for

the particular distribution. Thus, if the pass counter were not 2, ENDSORT would be reached

directly from CHKSTR.

Finally, at ENDSOR T I all data records have been written. The total number of records

from the read counter are now printed for control purposes. If the "save input" option was

specified, "SAVEINPT" is printed, and the tape is rewound with interlock. (A newly mounted

tape is read past the beginning record.) The string deficiencies on each tape are calculated by

subtracting the actual string count from the ideal string count which was calculated for the cur­

rent level; and the numbers of passes are obtained from the level count. This information is

put together to be written as an end-of-file record on all the merge sort data tapes. Two begin­

ning-of-file records are written on the "nth" work tape (the one not being used by the presort),

and the statistical end-of-file records are written on all other tapes. End-of-information re­

cords are then written on these data tapes, and the tapes are positioned just before these end­

of-information records. "TO MERGE" is printed, and control is transferred to the macro­

coding.

Over-all Flow of the ARGUS Presort

Thus far, a simple presort has been discussed in general terms, and various components

of this presort have been explained in detail. These components are tied together in the follow­

ing paragraphs to present a complete presort picture. A presort flowchart is shown in Figure 8.

In BEGIN and FILSTR, special registers are set up and the storage area is filled with hex

GIS. The input buffer settings are initialized, and an initial record of data is read into memory.

From then on READ functions normally. A loop is used to transfer items from the input buffer

to storage until the storage area is filled. Now normal operation can be established and control

is transferred to FILBIN.

FILBIN is the first working part of the sort. It contains the instructions used to transfer

all keys to the tag bins, and is performed at the beginning of each string.

In the next section, SWITCH and TREE-BINS, each bin is inspected once to find the small­

est item in storage, and all bins are sorted.

42

DUMMEY KEY

TRANSFER "GS II
TO BIN IN PLACE
OF KEY.

~

NEW

BEGIN - FILL STORAGE

INITIALIZE

FILL STORAGE AREA
WITH DATA

FILL" BINS

TRANSFER KEY
FROM EACH ITEM l..AS NEC ... READ IN STORAGE TO IT'S ..
CORRESPONDING
INITIAL LEVEL BIN

SWITCH • ,r
MODIFY BINS SO
EACH WILL BE
SORTED I N TURN,
EACH STEPPING TO
NEXT AUTOMATICALLY

f TRE?\ BINS

FIND SMALLEST
ITEM IN BIN
CURRENTLY
ASSOCIATED WITH
TREE

~ ~TWEENJ m ~AT BEG.
EVELs :E:!i OF STR.

01- (SWITCH)
O=(f)
u. <I

MASTER , ,:E
READ ___ AS NEe. IF

C HECK FOR EN 0 - ~
STRING (GS) SMALL
ITEM OUT, NEW ITEM ~-------IN, TEST FOR INCL.
READ AND/OR WRITE ASNEC._
AS NEC.

NEW ITEM/ ,...
OK I (f)

lL
~

0 (!)

~
ITEM TOO SMAl..L 0 0=

Z t;; w
END STRING' ,. WRITESWITCH

FILL RECORD WITH
DUMMIES IF NEC.
AND WRITE SWITCH
WRITE ORDER
CALCULATE NEW
LEVEL rF NEC •

NORMAL IIF ENDING ./
I END SORT .sWITCH SET

FINALIZE

WRITE END FlO
INFO FOR MERGE­
SORT

IF ..
DUMMIES

~ITE

WRITE

SECTION III. PRESORT

END OF FILE

SET UP INPUT
TRANSFER TO
TRANSMIT DUMMY
ITEM, SET WR ITE­
SWITCH TO GO TO

T

Figure 8. Over-all Flow Chart of the ARGUS Presort

43

SECTION III. PRESOR T

The program then proceeds to MASTER where a number of functions are performed. A

check is made for end of string (hex GIS as smallest item). If an end-of-string condition is en­

countered, a transfer is made to ENDSTR. The sorted item is sent to the output buffer and the

write counter is incremented. When the output buffer is full, control goes to WRITE to write the

record, and switch and initialize buffers. The sorted item is then replaced with a new one from

the input buffer, and the read counter is incremented. When an input buffer is empty, control is

turned over to READ to read a new record, and switch and initialize buffers. If the check in

READ finds an end-of-file record, control is turned over to EDOFILE. Back in MASTER, the

key of the new item is tested against that of the old one to see if the new one can be included in

the current string. If it can, its key is transferred to its bin; otherwise, DUMKEY puts· a key

of hex GIS in the bin. In either case, a return is made (via the ID word) to sort that bin. This

bin will, in turn, lead the way to sorting the bin into which it feeds, eventually leading to the

master bin and once again to MASTER. This loop continues as long as a string is being built.

Eventually, when MASTER detects all hex GIS as the key of the smallest item, the program

exits from the loop to ENDSTR.

In ENDSTR the last record of the current string is finished with dummy items, and the

output tapes are switched (if necessary) at WRSWCH. Return is made to FILBIN to transfer all

the new keys to the tag bins. Each bin is proces sed once again at SWITCH and return is made to

the main loop in MASTER. When an end-of-file record is detected in READ, control is trans­

ferred to EDOFILE. At this point, the program will be modified slightly; rather than bringing

in new items from the input buffer, dummy iteIns are brought in to fill storage with permanent

stopper items. WRSWCH is set with a switch which will allow the completion of the present

string, plus one further string if there are any items remaining in storage.

Finally ENDSORT calculates the string deficiencies on each tape and writes this informa­

tion as part of the end-of-file record on each tape. From here, exit is made back to macro­

coding.

Modifier -Generator

Upon entering the modifier -generator coding, the parameters in the FID record, which

are specified in decimal, are converted to binary, and the three options are checked. The

maximum number of words per item specified in word 5 of the FID includes the end-of-item

word, whenever it is used. An end-of-item word must be specified with all items greater than

63 words in size, as well as with variable -length items. The end-of-item symbol is a word

(other than the end-of-record word) whose high-order 32 bits are BBOOFFFF. Its low-order 16

bits are to be reserved for use in variable-length items to specify the number of words in that

44

SECTION III. PRESORT

particular item. Thus, if the fixed or variable option is a 1, the program is modified to handle

variable-length items by determining the number of words in the item and retaining the count in

the end-of-item symbol of each item. Unless the banner word option is a 0, the program is

modified to add banner words to each data record. If the mask option is a!, the necessary

masks are set up in memory and the presort routine is modified to handle masked keys. Since

the parameters and necessary statistical information will be transmitted via tape from the pre­

sort to the merge generator in the form of an end-of-file identification record, the data to be

transmitted to the merge is stored in memory as each parameter is checked or converted, and

as each tape address is obtained from the macrocoding.

All tape addresses are compared to determine the "way" merge, and the necessary read

and write instructions in the presort routine are generated with the appropriate tape addresses.

Also the routine for switching work tapes at the end of a string is modified according to the

determined "way" merge.

The S option is checked for~, and for M. If~, ENDSOR T is modified to save input, as

explained earlier. If M, the read routine in the program is set up to allow for changing input

tapes at the end of each input tape and the input tape assignment is checked for equality with the

Ilnth'l work tape. If II equals the nth work tape assignment, ENDSOR T is set up to re-position

the tape on the input tape drive in the case of multiple input. If not M, II and 1'1' are checked for

equality and if they are not equal, the read routine is set up for multi-tape input.

The item size is checked for 63 or less words per item. It there are less than 64 words

per item, the program is modified to handle the items more efficiently. If unmodified, the pro­

gram handles items up to a maximum of 250 words per ite:m, and assumes that a.n end-of-item

sy:mbol is specified with each ite:m.

To com.plete modification of the presort, the buffer addresses are set up in specified con­

stants, index register XO is set up with the address of the location just before the first tag bin,

and a location tagged FITLC is set up with the address of the first item in item storage. The

beginning-of-file identification record, which has remained untouched in memory, is then writ­

ten twice on all but one work tape. It is written once as the given FID, and a second time as a

full length data record for the particular sort. It is assumed that all the work tapes were posi­

tioned before operation to preserve any desired information on tape. Hence, the FID is used to

mark the beginning of the file which is currently being sorted. For restart purposes, the gene­

rator and :modified basic program are dumped onto the second work tape, and two more FID's

are written on that tape.

45

SECTION III. PRESORT

The presort generator, which was loaded into the high-order registers of the specified

bank along with the basic program., is entered upon com.pletion of the m.odifier. In the generator,

the identification tags for each item. in storage are placed in the tag bins, and the necessary

transfer orders between the different level bins are set up. During generation, com.plete advan­

tage of item. size and record size is taken to determ.ine the m.ost efficient use of the available

m.em.ory for allocation between item. and bin storage.

Error Correction and Restarts

The presort m.akes use of the orthotronic error-correction routines provided by the

Executive Routine, thereby saving m.em.ory space which would otherwise be duplicated. In cases

where, for som.e reason, the Executive Routine is not available, special sort error routines m.ay

be added by m.eans of own-coding; however, they result in a corresponding decrease in the

am.ount of m.emory available to the sort.

In the event of a read error indication, the address and size of the suspected record is

determ.ined by the sort, and control is turned over to the Executive Routine to repair the record.

If the record cannot be repaired, an attempt is m.ade to reread the information and if it is still

erroneous, control is turned over to the Executive Routine once again. In any case, a comment

is printed at the console typewriter to tell the operator what has happened.

If the physical end of any work tape is reached, a printout inform.s the operator and the

tape is rewound with interlock, whereupon control returns to the restart point. The program.

will stall on this tape until it is exchanged, presum.ably for a longer one.

The restart (initiated by starting at RO) is included in the sort coding. After m.odification

of the presort, but before its generation (the distinction being that the former is caused by para­

m.eters in .the m.acrocoding and the latter by the param.eters in the file ID), the contents of

m.emory are "dumped" onto the second work tape of the sort. If a restart is initiated during the

presort, all tapes will be positioned backward to their beginning ID records, and mem.ory will

be reload~d from. the second work tape, whereupon the presort will autom.atically go through

generation and start again. Norm.ally the restart inform.ation on the second work tape will not be

used, and will be ignored by the m.erge sort (a second set of file ID records having been written

after the dum.p). At the com.pletion of the sort, this tape will be repositioned to where it was

before the sort.

46

General 1tlethod

SECTION IV

MERGE SORT

Figure 9 shows a simplified version of a three-tape ARGUS merge sort. For the sake of

clarity, each string from the presort will be considered as a unit and designated by a letter,

rather than showing individual items within each string. It will be assumed that the presort (a)

wrote eight such strings, distributed as in (b). This example represents a simplified case of a

three-tape merge sort, and an ideal distribution for the merge operation.

The merge sort (b) is ready to read tapes A and B backward, merging the last strings from

each tape, and writing the result on tape C. Thus, string G is merged with string H to produce

GH as in (c). It is important to understand that both G and H are composed of a number of ordered

items and that, during the merging process, these are combined to produce a single ordered

series of items, which is called string GH. Likewise, D and F are combined to form DF, and B

and E to form BE. GH, DF, and BE are written, end to end, on tape C. This process stops

when the end of information is sensed on tape B (the shorter tape).

Thus, (c), all the data is on two tapes, the information on the A tape in ascending order

but, because in the merge sort data is read backward and written forward, the data on the C tape

is in descending order. Therefore, to arrange all the data in the same order, tape A is copied,

reading backward, onto tape B. At this point (d), one full merge pass has been completed over

all the data. The number of strings now on the longer tape is equal to the number formerly on

the shorter tape. The number of strings now on the shorter tape is equal to the number formerly

on the longer tape minus the number formerly on the shorter tape.

In (e) and (f) another pas s is completed, following which the data is again in asc ending

order, and the number of strings is reduced as before. (g) and (h) show that the next pass re­

sults in two descending strings, one on each tape. (i) shows the end product of the merge where

all the data has been merged onto a single tape in ascending order.

Each merge pass, except the last, is composed of two phases, or subpasses; a two-way

merge (in this simple example) and a copy pass. This type of merging can be extended to any

number of tapes (up to a total of six in the ARGUS sorts).

47

SECTION IV. MERGE SORT

In a six-tape merge, a five-way merge is first performed onto the sixth tape, then a four­

way merge onto the fifth, a three-way onto the fourth, a two-way onto the third, and finally a

copy (or "one-way" merge) onto the second tape, leaving the first tape empty for the initial phase

of the next pass. Thus, each pass in a six-way merge consists of five subpasses.

B

Inputto~ H E

Presort F

~~
D

E F

C '}::D
~

G

A B H

A\>' B~ A B C
......

Presort Merge Pass Copy Pass
(a) (b) (c)

B F

E D

D C

~%
F E E

G B BJ B

H A A

C B A A B C

Merge Pass Copy Pass Merge Pass
(d) (e) (£)

H

G

F

C C E

D D D Final Output Tape

E F

~/i
F C

(ascending)

B G G B

A H H A

C B A A

Copy Pass Final Merge Pass
(g) (h) (i)

48
Figure 9. Simple Three-tape Merge Sort

SECTION IV. MERGE SORT

Reading and Writing Controls

The reading technique used in the merge sort differs considerably from that used in

the presort. Associated with each input tape is a set of three buffers~ a "current" buffer; a

"next" buffer; and an "open" buffer. These buffers provide for continuity of data availability.

If less than three buffers were provided, the merge program would frequently be interrupted

and delayed to await refilling of depleted buffers.

Writing in the merge sort is handled in the same manner as in the presort, using two

output buffers, a Ilworkingll buffer and a Ilwritingll buffer. Since data comes into the merge

sort from two or more tapes but goes out on one tape at a time, the output operation is the

limiting speed factor. Since as much information must come in as goes out, ideally one input

record should be read each time an output record is written. This balance is realized by using

the three buffers per input tape in conjunction with a technique known as Ilread anticipation".

All buffer areas in the merge sort, as in the presort, are essentially the same size as the

records on tape.

Read Anticipation

Before an input record is read into memory, the key of the last item in each current

buffer is inspected to determine which current buffer will be depleted first, so that the corres­

ponding tape can be read into the next available open buffer of that input set. That tape is then

stoppered (temporarily not considered for reading) until the current buffer is depleted. Thus

the three buffers provide:

1. A current buffer from which items are being taken in order to always
provide input;

2. A next buffer to insure merging will not be delayed when the current
buffer is depleted;

3. An open buffer available to allow reading at any time.

Equipment and M.emory Considerations

The presort is often machine limited, especially if there are many items in storage and

if these items are small. Machine speed is not nearly so critical during the merge sort, since

even for the five-way merge, the program must choose only among five items to select the

output item. Therefore, the merge sort (except when sorting very small items) always pro­

ceeds at tape speed.

The most obvious speed-limiting factor of a merge sort is the number of tapes used by

the sort. It will be noted that this number may be dependent on the size of available machine

memory. This dependenc e sterns from the fact that thre~ input buffer areas and two output

49

SECTION IV. MERGE SORT

buffer areas are provided for each tape to keep the tapes 1l10ving at ll1axill1ull1 speed. Since

these buffersll1ust beas large as tape records, a six-tape ll1erge sort requires considerable

ll1ell1ory space for buffering alone. If this ll1ell1ory is not available, fewer tapes have to be

us ed for the sort.

Trees (General Description)

The ll1eaning of the word "tree" is the sall1e for the merge sort as for the presort. Like

the presorts, the three merge sort routines (single, double, and triple precision) differ ll1ainly

in the structure of their trees. Also, like the presort, the triple-precision ll1erge sort tree

ll1ay be 1l10dified with own-coding to accoll1ll1odate any nUll1ber of additional keys. However,

the ll1erge sort trees differ froll1 those of the presort in structure.

The ll1erge sort uses a "return" tree (see Figure 10), which contains 1l10re cOll1parisons

and 1l10re exits than a corresponding presort tree (Figure 3). Note that there are often several

possible exits for one particular itell1 selected (item E~ for instance, in this exall1ple). The

reason for this apparent duplication is to provide one unique path through the tree for each exit.

This perll1its storing a "return" to the tree at the till1e of exit, so that return can be ll1ade to

that point along the path at which the selected itell1 was first cOll1pared. Thus, when A and B,

then Band C, then C and D, and then D and E are cOll1pared, and E is selected the sll1allest,

a return is ll1a'de, after replacing E directly back to the D vs E cOll1parison. Use of this type

of tree in the ll1erge sort allows going froll1 a five-way to a four-, three-, two-, and one-way

ll1erge without going through any 1l10re cOll1parisons than needed for the particular "way" in

progress.

There are six trees which are used by the ll1erge sort. Two are required for each pre­

cision because the passes of the ITlerge sort alternate between ascending and descending merg­

ing; the ascending trees (like the presort trees) find the sll1allest of the keys of the items com­

pared, while the descending trees find the largest. During any ~ ll1erge sort pass, only one

of the two trees is used, the entrance to it having been set up at the beginning of each pass.

Perfect Distribution of Strings for Merge Sort·

The ARGUS presort produces an ideal distribution of strings all10ng the various output

tapes. This is done by counting the nUll1ber of actual 'Strings produced and calculating the

additional number needed for a perfect distribution. The nUll1ber of required dummy strings,

as well as the nUll1ber of passes required, is passed on to the ll1erge sort through the end-of­

file identification records. These numbers are stored by the ll1erge sort in a table (one entry

for each tape) and are used to effectively create the required number of dUll1ll1Y strings.

50

01- Figure 10. ARGUS Merge Sort Tree

en
t:r:1
()
I-j
H
o
Z

<
~
t:r:1

~
t:r:1
en
o
~ ..,

SECTION IV. MERGE SORT

The distributive logic that the presort follows in placing strings on each of the tapes for the

subsequent merge is directly controlled by two factors: first, the number of actual strings genera­

ted through its sorting operation; second, the "way" of the merge operation that wi~l follow the

presort. For example, Figure 11 illustrates a two-way merge of 34 actual strings generated by

a presort. (For a two-way merge 34 strings represent an ideal number to be distributed in the

ratio 21 to 13, with 21 strings on tape A, 13 strings on tape B.)

FIRST MERGE PASS

SECOND MERGE PASS

THIRD MERGE PASS

FOURTH MERGE PASS

FIFTH MERGE PASS

SIXTH MERGE PASS

SEVENTH AND FINAL
MERGE PASS

TAPE A

STRINGS

(I)

TAPE B

STRINGS

13

8

5

3

-- 3 - - -N-----+----.......j~--
(2)

2

Figure 11. Two-way Merge

TAPE C

STRINGS

ONE
FINAL
STRING

This example illustrates a merge where the number of actual strings produced by the

presort represents an ideal number for a two-way merge and no dummy strings are necessary

to adjust this number. Figure 12 demonstrates a situation where the actual number of strings

generated by the presort does not represent an ideal number for a five-way merge.

For example, 2, 318 actual strings are produced by the presort. Six tapes are allotted

for the merge sort. For a five-way merge, the presort calculates that 2, "318 strings do not

52

SECTION IV. MERGE SORT

represent an ideal number to be distributed onto five tapes. Based on this number, it deter­

mines that 2,353 strings represent the next higher perfect distribution for a five-way merge.

Therefore, 35 dummy strings (2,353 - 2,318 = 35) are added to bring the number of actual

strings up to the ideal number.

TAPE A TAPE B TAPE C TAPE D TAPE E TAPE F

First Pass 671 616 511 365 155+ 35
(or 190)

Second Pass 55 105 146 175 190

Third Pass 55 50 41 29 15

Fourth Pass 5 9 12 14 15

Fifth Pass 5 4 3 2 1

Final Pass

Figure 12. Five-way Merge

Three basic factors of the cascade technique by which its distributive logic can be best

understood are as follows ~

1. There is always one) and only one, string (variable length) on each work
tape for the last (or final) ITlerge pass.

2. The number of strings on the longest tape after a complete merge pass
equals the number formerly on the shortest tape prior to that merge
pass. (In Figure 12, third merge pass, 55 strings on tape A represent
the largest number at that level, while for the previous or second pass,
55 strings on tape B repres ents the smallest number at that level.)
This relationship carries through the entire merge.

3. The number of strings on the longest tape (for any level of the merge)
minus the number on the next-to-longest tape equals the number on
the shortest tape for the next lower level of the merge. (In Figure 12,
first merge pass, 671 strings on tape A minus 616 strings on tape B
equals 55 strings, or the number of strings on tape B for the next or
second merge pass. Again, for the first merge pass, 365 strings on
tape D minus 190 strings on tape E equals 175 strings, or the number
of strings on tape F for the next or second merge pass.) This rela­
tionship can be calculated for all tapes throughout the entire merge.

Banner Words

During the sorts) each record on tape contains a banner word. This word identifies the

record's content, provides a record count, defines the position of the record in the string, and

provides information used for restart purposes.

The banner word of the first record in each string is adjusted by the presort to become a

beginning-of- string marker for the merge sort. Other banner words become middle-of- string

53

SECTION IV. MERGE SORT

markers. Because data is always read backward in the merge sort, the beginning-of-string

marker actually identifies the end of a string. Therefore, each beginning-of-string marker

calls for the tape on which it is discovered to be stoppered until a marker is found for each tape

being merged. All tapes are then unstoppered and a new output string is begun.

The beginning-of- string record of the first string to be merged is preceded by the

beginning-of-file identification record, which includes a beginning- of-file marker as its first

word. Also because the merge always reads data backward, each beginning-of-file marker

actually signals an end-of-file for the merge. Therefore, each beginning-of-file marker calls

for the tape on which it is found to become the new output tape, indicating that the "way" of the

merge is to be decreased, and a new subpass is to begin. When the number of beginning--of­

file markers encountered during a pass equals one less than the number of tapes, the entire

pass is complete, and the merge readies itself for the next complete pass (either asc ending or

des cending). Bit number 30 is a "1" for beginning-of- string, and "0 II for middle-of- string.

NOTE: The following text refers to many special registers used in the ARGUS merge

sort program. Appendix C of this manual provides a list and functional des­

cription of these special registers.

Dummy String (DUMSTR)

Dummy strings are calculated by the presort to bring the number of actual strings up to an

ideal number for perfect merge distribution. Logically, these dummy strings are processed

just like actual strings. However, they are processed before the actual ones so that they can be

eliminated as soon as possible and allow uninterrupted merging of the actual ones. At the begin­

ning of each string, the dummy string counters of all input tapes are inspected; if there are no

dummy strings, the merging process proceeds in the normal manner. If any input tapes have

dummy strings, the corresponding dummy string counters are reduced by 1, and those tapes

are stoppered; effectively, those strings have now been processed. If all input tapes have dummy

strings, a process is followed which subtracts...!.. from each counter, then stoppers, and adds

...!.. to the dummy string counter corresponding to the output tape. Effectively, a number of

dummy strings has been merged together into one dummy string. This method of handling an

imperfect number of strings from the presort has the advantage that the ideal ratios are main­

tained, yet no extra data is proc(;~sed, since handling the flctitious dummy strings is a purely

internal process which takes very little time.

When beginning a stnng, an End-oi-String Switch (SWEOS) is used. (An EOS Switch sig­

nifies that the preceding string has just ended.) This switch is normally set to go to the Dummy

54

SECTION IV. MERGE SORT

String Adjustment Area (DUMSTRE, DUMSTRD, DUMSTRC, DUMSTRB, DUMSTRA). In the

Dummy String Adjustment Area there are five groups of instructions corresponding to the E, D,

C, B, and A inputs; for less than a five-way merge, SWEOS is set to go to the appropriate inter­

mediate group. At the end of the series of groups is another switch, Exit A Switch (EXITA) which

is normally set to add an instruction which will increment the output tape dummy string counter

and return to SWEOS.

Each group consists of the following instructions. First, a comparison tests the appropriate

dummy string counter for zero. If not zero, 1 is subtracted from the counter and a comparison is

then made in the next group. If the counter does equal zero, several instructions are performed to

set up the appropriate input buffer to be ready to merge, and EXIT A is set to Beginning of String

Switch (SWBOS). The process of setting up the input buffer for merging is made clearer in the

following section which contains detailed information concerning the buffers. Essentially, the

operation consists of unstoppering the appropriate input (insomuch as everything is already stop­

pered). Thus, if none of the counters are zero, 1 is subtracted from each counter, going from

group to group, in turn going from EXIT A to an add instruction, which increments the output coun­

ter, and returns to SWEOS to start a new string. However, if any of the counters are zero, the

program proceeds from EXIT A to SWBOS, which sets up the banner switch (in the output area) to

write a beginning-of-string banner word, and theh to the tree to merge. Since only inputs with zero

counters were unstoppered, the tree will merge only the zero counter inputs from which a normal out­

put string will be written. As each input string is ended, it is stoppered. When the tree detects

that all inputs are stoppered, it goes to SWEOS to begin a new string. (This also starts a new

cycle.)

Buffers
The input buffers are divided into sets, designated A, B, etc., up to E, which correspond

to the number of input tapes (from two to five). The physical tape assignment to each buffer set

rests on whether the pass is ascending or descending. As far as the reading and writing controls

are concerned, the buffer sets remain the same. The A tape is always longest at the beginning

of the pass (in terms of strings) and the last to run out. The B tape is next longest, and so on,

down to the E tape (if used), which is always the shortest. For a three-tape merge, the two in­

puts are always A and B. For a six-tape merge, which uses all five inputs at the start of a pass,

tape E is the first to be depleted, followed by D, C, B, and A, in that order. Figure 9 shows

this relationship for a three-tape sort (two-way merge).

Associated with each of these input sets are three buffer areas in memory,. These rotate

among themselves, one being termed "current", one "next", and one "open". When the current

buffer is depleted, it becomes open, and the other two move up accordingly. To accoITlplish this

55

SECTION IV. MERGE SORT

three-way switching with a minimum number of memory locations, use is made of a three-part

word~ actually a Complete Address Constant (CAC) whose three sections correspond to the end­

ing locations of the three buffers. To switch, this word is shifted (end around) 16 bits.

Associated with the A buffer set are index register XI and special register Rl. The for­

mer is used to keep track of the items in the "current" buffer, and the latter acts as an item

count to determine when the buffer has been depleted. It will be recalled that all tapes are read

backward during the merge sort, so the buffers have to be emptied backward to maintain the

correct sequence of items. Thus, Xl is first used as a base of reference for comparing the cur­

rent A item with the others, and assuming this item is selected, Xl is also used to transmit it

to the output area. Then Xl is decremented by the item size (found in the end-of-item word in

the case of variable-length items) and RI is incremented by 1.

When the "current" buffer is depleted, the CAC-type switch is shifted, RI is reset, and Xl

is set to the last item in the new "current" buffer. A location called LAST KEY, which contains

the address of the key of the first item in the new "current" buffer, is set up. This location

is called LAST KEY because it will be the last key processed L. 2m the record. LAST KEY is

used to determine which buffer will be depleted first. The coding wl::i.cI: c>.ccomplishes the switch­

ing of the input buffers is in DUMSTR. It will be recalled that an input set is switched and unstop­

pered in DUMSTR whenever, at the start of a new string, a dummy counter of zero is found. As

a string is being merged, the program switches from an input buffer when that buffer is emptied.

This is done in the Beginning-of-String (BaS) check by branching off to the coding in DUMSTR.

The switch coding is somewhat different for fixed as opposed to variable- size (or over 63 words)

items.

To switch a buffer, assuming variable- size items, the CAC-type table is first switched by

shifting it with a mask of all hex GIS (16 bits) back into itself. Then the variables are set up in

an area called Variable Switch (VARSW), which is a common routine used by all five input sets.

This is effected with two TS instructions and one TN instruction. The first TS instruction leads

(in cosequence) to a common instruction which saves .AUZ, since the TN instruction will destroy

the contents which will be needed later in the routine. The second TS instruction leads (also in

cosequence) to the VARSW section, and here an initializing constant of Z is transferred to R6, a

working register. The appropriate CAC table minus 3 is subtracted into R7, which is also a

working register that provides the end-of-item word of the last item. Then Z,R7 minus N, R7

is subtracted into Z, R7, which leads to the next lower end-of-item word. R6 is then compared

with Z which will be equal the first time only; if they are not equal, the next instruction is skipped.

The next instruction sets up the input index register (Xl-X5) by adding 1 to Z, R7 into the appro-

56

SECTION IV. MERGE SORT

priate index register. R6 is compared (incrementing it by 1) with the constant Number of Items

per Block (NIB). If less than or equal, return is made to the Word Difference (WD) of Z, R7

minus N, R7 into Z, R7. This loop will be repeated until the buffer has been worke.d down to the

beginning of the variable- size record, at which time there is an LN instruction. One is added to

Z, R7 into the appropriate Last Key Area (LASTKEY -LASTKEY+4), finally dropping from cose­

quence with a transfer of 1 into the appropriate input buffer counter (RI-R5). Back in the

DUMSTR group that came before V ARSW, transfer is made from SWBOS to EXIT A (indicating

that at least one real string must be merged) going next to the DUMSTR group, unless a branch­

off had been made from the BOS check. In this case, EXIT A is not affected, but return is made

to the merge process.

For fixed- size items, the switching instructions in the DUMSTR group are much simpler

and faster. As before, the CAC-type table is switched with a 16-bit shift. The buffer index regis­

ter is then set up with a WD of the CAC-type table minus the constant NPLUS2 into the appropriate

index register (XI-XS). The constant WPLUS2 is subtracted from the CAC-type table to set up

the appropriate Last Key Area (LASTKEY - LASTKEY +4). Then 1 is transferred directly to the

buffer counter (RI-RS). Since these three instructions replace the three instructions which set

up V ARSW, as well as doing all that is done in V ARSW, control is transferred directly to the

instruction which puts SWBOS in EXIT A, and the program proceeds with the next DUMSTR group.

All that has been said for the A input set also holds for B, C, D and E sets, even if the latter

sets are not used. Index registers Xl through X5 and special registers Rl through RS correspond

to the five sets A through E. There are five LASTKEY sections (LASTKEY -LASTKEY+4) and

five input buffer switches. The CAC-type switches are called Table A through Table E.

Output buffering is done in a similar, yet simpler, manner. There are only two output

buffers, and the output buffer switch is divided into two equal parts instead of three .. It is switched

by a shift order in the same manner. XO is used to step through the output buffer, and Sl is the

output item counter (since RO must be reserved for restarts). There is nothing corresponding to

LASTKEY. Thus, switching the output buffer consists of shifting the switch, and resetting XO

and S1.

The input buffers are primed at the beginning of each pass by filling two of each set (cur­

rent and next), and starting a read into one of the open buffers (as determined by LASTKEY).

This will be the set whose current buffer will be depleted first. After the initial priming, another

record is read just before the output buffer is ready to be written. Each time the LASTKEY from

a current buffer is used to initiate a read into that set, the LASTKEY area for that set is stop­

pered. It is unstoppered when the current buffer is depleted and the next one becomes current.

57

SECTION IV. MERGE SORT

Trees (Detailed Description)

In the merge, the input items are compared directly as they appear in the buffers in order

to minimize transfer time. To do this, index registers Xl through X5 are set to the first word

of the current lnput item, and the tree compares via indexed-addressing. The augments to the

indexed addresses in the tree are set to refer to the particular key locations, the beginning of the

item being the base of reference. To stopper an input (for instance, when a beginning of string

is found in that set), the corresponding index register is set to a special stopper bas e, which is

set up so that the augment will result in addressing a stopper word of all hex GIS for the ascend­

ing tree, or all zeros for the descending tree.

Special register SO is used at the exits of the tree both for storing the return, and for

going to the appropriate coding to transfer the selected item to the output area. At each exit

there is an instruction "TS x N, SO, Y N, SO", where x is a TS sequence change instruction rep­

resenting the return, and y is an increment of a multiple of 5 representing the item selected.

After storing the return in the location specified by N, SO, SO is incremented to a new value,

and the program proceeds to the location thus specified. SO is set initially to "MERGE" where

it refers to a special table arranged in groups of five instructions each. Each group contains

all the instructions needed to process the item from one input set. This use of SO at the exits

from the tree allows an ascending or descending tree to be related to the same set of processing

instructions. It also determines which input tape is to be read next. This function is performed

to synchronize reading and writing every time the output buffer is filled to a certain point. When

the time comes to read, the contents of Xl through X5 are stored in STORE, and then the index

register is set to the values found in the area termed LASTKEY. A section of LASTKEY is set

up for each input set whenever that input buffer is depleted and switched. To stopper an input

read, the corresponding LASTKEY location is set to the stopper base. SO is also set to READ+3

to refer to a table of instructions in the READ section similar to the one used in the MERGE sec­

tion. In the reading mode, the tree is always entered at the top rather than at the return, since

any of the input sets may have been stoppered or unstoppered since the last read. Thus, the re­

turn stored in N, SO is not used, although SO (incremented) is used to lead to the proper set of

instructions to read the next tape.

As in the presort, it is necessary to know when all of the items being compared are stop­

pers in order to finish one string and start another. The most economical way to make this

check is to go to a special section of coding from the one exit to the tree which will be used if all

items being compared are equal, and then check if they all are stoppers. Thus, this one exit

of each tree increments SO to a special value, used only for this purpose, which leads to the

special checking routine.

58

SECTION IV. MERGE SORT

Figure 13 illustrates the table of instructions in the MERGE section which are performed

when an exit is made from the tree. The first instruction of each group of five is an item trans­

fer, which transfers the selected item from the input buffer directly to the output buffer. Notice

that the B address of the item transfer is indexed, with a base at the beginning of the item to be

transferred, and with an augment equal to the item size. In the case of variable- size items, or

items greater than 63 words, the B address is set to dump the end-of-item word. The item

transfer will be terminated either by the end-of-item word thus produced, or by the end-of-item

word already associated with the item if it is a variable-size item. Since the input buffers are

emptied backward, this will not destroy any useful information, as it would if they were emptied

forward. Also, the item size of variable-length items (which is carried in the low-order portion

of the end- of-item word}will not be destroyed. The current output buffer setting, addressed

through index register XO, is an indirect rather than indexed addre s s in order to minimize the

time required for the itern transfer.

The next instruction, a WD, sets AUI (used as a working special register) to the word

previous to the item just transferred. This will be used subsequently to obtain the item size of

the next item, and (in the BaS section) to check the banner word for the beginning-of- string

indication. For fixed-length items, only the latter use occurs. The third instruction of the set

compares the appropriate special R register (incrementing it once) with the constant NIB, going

to the BaS area when the counts are equal (indicating the input buffer is empty). The fourth

instruction is WD, which resets the input buffer index register to the next item. The amount in

N, AU 1 is used for variable items or those over 63 words long, and the constant Number of Words

per Item (NW) is used for fixed-length items as the amount subtracted. The final instruction of

the set is a TS sequence change to MERGE+28, which is the common area which modifies the

output buffer, resets SO, goes to own-coding, and checks to see if the output buffer is full.

When the tree is in the READ state, exit is made to a similar set of five-instruction groups,

in the same way as in the MERGE state. The first instruction, of the five, sets up the read index

register, X6, by means of a masked shift of the appropriate buffer switch. The second instruc­

tion is the read itself, which reads the appropriate tape into the address specified by X6. The

third order transfers the stopper base address to the appropriate position in the LASTKEY area

(corresponding to this input set). The fourth instruction has the effect of a multi-word transfer

from STORE back to Xl through X5 to set the tree up for merging. Because of timing considera­

tions, a series of TX instructions are used in the cosequence mode rather than making use of

one TN instruction. The fifth instruction sets up SO for the merge mode, and goes to MERGE+33

which will return to the main merging loop.

59

SECTION IV. MERGE SORT

60

Merge (Read+3)

Return

Exit of Tree ,...---------'''
{Merge+I (Read+y:l)

IReturn+N, SO~ tj;;\1--__ --J.~1 I J
~ V --'$:: /

M~"l'ge--t=6- (-R:ea1:l+ 9) -------0 -I I
I Merge+ll (Read+14)

" @·II
Merge+16 (Read+19)

I ®., I
, Merge+21 (Read+24)

@ ~I I
, Merge+26 (Read+29)

I ~ ~ I
I
t

MERGE

AI------~ IT 1,0 1,NW
ONE

N,XO
Z,AUI
BOSA

B

WD Z,Xl
LA NIB
WD Z,Xl
TS

READ

SWS, Ml TABLEA
RB, tt 6,0
TX Stopper
TS C STORE
TS lv'Ierge

Z, RI, 1
N, AUI/NW

32

Z,XI
Z, SO

Z,Xl
MERGE+28

Z,X6

LASTKEY
STOREIRS+8
MERGE+33

Figure 13. Use of Register SO at Exit of Tree

- -~ (Series)

SECTION IV. MERGE SORT

Multi-precision

Just as with the presort, it is possible with own-coding to extend the triple-precision

merge sort to accommodate any number of keys. One slight difference between the presort

and merge sort triple-precision trees is that the merge sort tree accommodates the first and

second precision within the tree, rather than just the first. This is done because, as the sort

progresses, more equal first keys are expected to be found, necessitating comparison on the

second key. Of course, if the second keys are also equal, then some time will be lost in set­

ting up the third (and following) key cOITIparisons.

In modifying the comparison order stored in the COMMON area to accommodate additional

keys, care should be taken to modify only the augment portions of the A and B addresses, and

not the index register bits, since these are the only means of determining the proper input set

being compared. Otherwise, the procedure is exactly as outlined for the presort. The stopper

area may cause some trouble in extending precision. At the time of generation, the three

specified keys are inspected to determine the largest spread of words between keys, and enough

stopper words are set up accordingly. Thus, if keys are in words 5, 10, and 2, an area of

nine words of GIS (or, during descending passes, zeros) is set up, with the base address being

that of the previous word. To insure that this area gets set up properly for a multi-precision

sort, the user must specify within the first three keys, the physically first, second, and last

key of the item. If these are other than the logical first three keys, appropriate modifications

will have to be made, via own-coding, to the COMMON comparison area and possibly to the

stopper base address. This is much easier than expanding the stopper area, which is surrounded

by instructions and constants. In such a case, the best procedure to follow is to specify a fake

third key, leaving the logical first two keys as they are. This fake third key may be any word

in or beyond the item. It siITIply serves the purpose of providing the spread in the stopper

area. Then only the COMMON comparison routine, and possibly the stopper base address, need

be changed with own-coding.

To further clarify these procedures, assume the case of a 10-word item with keys in

words 5, 6, 7, and 1. It is necessary to specify to the sort that the first two keys are in words

5 and 6, as the generator sets up the trees to handle the first two keys. The third key should be

specified so that the range of the stopper area is seven words. The third key should, therefore,

be specified as word 11. The comparison in the COMMON comparison area will be set up wrong,

but this can easily be corrected by the same set of own-coding that sets up the comparison for

the fourth key.

61

SECTION IV. MERGE SORT

Merge and Read Loop

The main loop of the program, that which is performed for each item processed, has been

essentially covered in the preceding paragraphs. Only a few instructions are involved in com­

pleting the loop. In the tree, the smallest item is found, a return is stored, and the program

proceeds to one of the appropriate groups of instructions in the beginning of the MERGE. Here

the item is transferred to the output buffer, and the input buffer is adjusted and tested to see if

it is empty. Then a sequence change is made to MERGE+Z8.

MERGE+Z8 is normally a proceed instruction, but it becomes the branch to own-coding

(if called for) during the final pass of the merge sort. Following this, SO is reset to MERGE,

and XO, the output buffer index register, is set to the next item by transferring the contents

of AUZ to it. The output buffer item counter (as yet not incremented) is compared with a con­

stant NMINUSI to see if the buffer is full but for one item. If it is, transfer is made to READ

to initiate selecting and reading the next input tape. The first three instructions in READ store

Xl through X5 (again by a series of TX instructions in cosequence), set Xl through X5 to

LASTKEY areas, and set SO to READ+3, with a sequence change to TREE. The process of

selecting the input set to be read, and the actual reading, have been discussed in preceding

paragraphs. At the end of these two operations, Xl through X5 and SO are reset to the merge

mode and go to MERGE+33. If the output counter had not been equal to NMINUSI, control would

also have been transferred to MERGE+33. In MERGE+33, the output counter is compared (incre­

menting it in the A address) with NIB to see if the buffer is full. If it is, control is transferred

to WRITE. 1£ not, return is made to TREE. Here the next item is processed, and the loop is

completed.

Beginning-of-String Check

After selecting the smallest item and transferring it out, as described in the preceding

paragraphs relating to the merge sort trees, the input buffer is stepped to the next item. If,

in this process, the input buffer is found empty, control is transferred to the appropriate begin­

ning-of-string section, BOSA through BOSE, depending upon which input set is being dealt With.

All five of these sections are similar, and so it will suffice to describe one, namely BOSA.

In BOSA the contents of AU I are transferred to Xl. This replaces the word difference of

AU I minus the item size into Xl which would have been done in the normal MERGE section after

the comparison of the item count. The word specified by Xl (the banner word of the depleted

record) is compared with a constant to see if it is a beginning-of- string indicator. If it is not,

control is transferred to SWITCHA (sections SWITCHB through SWITCHE correspond to BOSB

through BOSE). SWITCHA, as the name implies, switches the A input buffers so "next" becomes

6Z

SECTION IV. MERGE SORT

"current". At SWITCHA, to save instructions, a "return-and-restore" is set up in the appro­

priate Dummy String Group (DUMSTRA) and control is transferred there. Just as in the dummy

string adjustment routine, the table is switched with a shift instruction, X 1 is set to the next

buffer, LASTKEY is set, and SI is res et to +1. Following this is a restore instruction which

replaces DUMSTRA+5 with its original contents and return is made to MERGE+28.

If the banner word is a beginning-of- string mark (meaning end of string insomuch as

reading is backward), the next record is checked to see if it is a beginning-of-file record. To do

this, the table is shifted one position (16 bits) to Xl, WPLUS2 (the constant referring to buffer

size) is subtracted from this to locate the banner word in the new buffer, and the banner word

is compared with the constant Beginning-of-File Banner Word (BOFBAN). If this record is a

beginning of file, the SWEOS is set to go to the Beginning-of-File Routine (BOFRTNE), and

then proceeds in sequence to BOFA+6. Alternately, if the next record were not a beginning of

file, control would be transferred directly to BOF A+6. Here Xl is set to stopper, then going to

MERGE+28. BOFRTNE simply sets the banner switch to a special setting which will write the

end FID record, and end the current subpass.

In summary, when an item is taken from an input buffer and transferred out, the buffer

is stepped, and there are four possibilities:

1. The buffer is not yet empty;

2. It is empty but not at the beginning of string;

3. It is at the beginning of string but the next buffer is not the beginning of file; or

4. The next buffer is the beginning of file.

The first is the normal case, and control is transferred to MERGE+28. The second occurs

once per (input) record. Here the buffer table is switched and the index register, counter and

LASTKEY are switched. The third possibility occurs once per string and it results in stoppering

this input. In the fourth case, SWEOS is set to go to the beginning-of-file routine at the end of

this string so that the current subpass may be ended.

All Items Equal

Upon reaching the exit of the tree where all items could be equal, an increment, as men­

tioned previously, is applied to refer to a unique section of coding that tests to see if everything

is stoppered. The merge mode procedure is slightly different from the read mode procedure.

In MERGE, end of string is indicated by all stoppers and control is transferred to SWEOS. READ

uses all stoppers to indicate that no read should take place (this will be the case at the very end

of a pass).

63

SECTION IV. MERGE SORT

In the merge mode, a test is made first to see if the selected item (A) is stoppered. If it

is not, control goes directly to MERGE+l to transfer the A item, which is either less than or equal

to the other items. To determine if the A item is stoppered, the value of Xl is checked directly,

comparing it with the constant representing the stopper base address. Thus the test is inde­

pendent of the value of the key itself (allowing keys of any values to be used in the merge sort).

If Xl is set to the stopper base address, the other index registers (Xl-X5) are checked in the same

way to be sure that all are stoppered. If they are, the program proceeds to SWEOS. If any had not

been stoppered, control would have gone to the merge group of instructions corresponding to the

first non- stopper set reached (B- E).

Similarly, in the read mode, each index register is tested to be sure it is stoppered. If one

is found that is not, control goes to the corresponding read group of instructions. If all are stop­

pered, control goes to the final portion of one of the sets of instructions to restore the index regis­

ters and SO to the merge mode only (no reading), and then returns to the merge coding.

Write Routine (WRITE)

WRITE is entered once per (output) record, as determined in MERGE, and it is the section

which writes and switches the output buffers. Since any break in string, subpass, or pass coin­

cides with an integral record of output, it is in WRITE that a good deal of switching takes place.

First, WRITE resets the output counter to unity by transferring 1 to Z, Sl. The address of

the first orthoword in the buffer is set up in X7 (by transferring the contents of XO to it), and then

XO is set to the address previous to the smallest item. Depending upon whether this is an ascend­

ing or descending pass, the smallest item is defined as the item in the output buffer with the smallest

key, which will be either the first or the last item. WRITE+l and WRITE+3 accomplish this set-

ting up of XO, and these instructions in turn are set up at the beginning of each pass as explained

in the following paragraphs.

For an ascending pass (smallest item is first), WRITE+l is a WD instruction of the output

buffer table minus 1 into Z, XO. WRITE+3 is a PR instruction. Since the output buffer table

(which is the two-part switch) is set to the first data word of the current buffer, subtracting 1

will lead to the location just prior to the first item.

For a descending pass (smallest item is last), WRITE+l is a WD of Z, XO minus 1 into Z, XO

which leads to the last word of the last item. If the items are fixed, WRITE+3 is then the WD of

Z, XO minus NW (constant for the number of words or the item size) into Z, XO. If the items are

variable or over 63 words, WRITE+3 is a WD of Z, XO minus N, XO into Z, XO, using the end-of-

64

SECTION IV. MERGE SORT

item word for the item size.

WRITE+4 compares the key of the smallest item (using XO with the proper augment) for

equality with a constant of all hex GIS. If the result is equal, a record of fillers has been accu­

mulated which can be omitted from the output to reduce the amount of data on tape, In this case,

control is transferred to WRITE+13. But normally the smallest item will not be hex GIS and the

program will remain in sequence to write and switch buffers. Thus, in WRITE+5, XO is set to

the banner word position by subtracting I from the buffer table. WRIT E +6 is the banner word

switch, which is similar to the one in the presort. Usually, this transfers a normal banner word

to 0, O. At the beginning of string, the banner switch is set to SETBOS, which transfers a BOS

banner word to 0, a and, in cosequence, transfers the normal setting to WRITE+6. One additional

setting of the banner switch Set End-of-File (SETEOF) occurs when an output tape ends, in

which case an EOF banner is transferred to the FID reserve area IDRES and several instructions

are performed in cosequence. These instructions add Z, XO and 4 into Z, X7; transfer four words

from IDRES to 0, 0; transfer Set End-of Record Indicator (SETEORI) to the banner switch; and

set WRITE+12 to go to the banner switch.

In all these cases, the next instructions performed are WRITE+7 through WRITE+12, which

actually perform the write. The record count is incremented and is substituted into 0, O. Ortho

is computed from 0, a to N, X7, and 0, a is written. Finally, the output buffer table is switched

(by shifting end around, as with the input buffer tables) leading to WRITE+12 which is the write

exit switch. Normally, this transfers the new output buffer table setting to Z, XO, and returns to

MERGE. But during the end-of-file procedure (discussed in the preceding paragraphs), this

exit switch is set to return to the banner switch, presently set to SETEORI. In this special case,

the banner switch will transfer an End-of-Record Indicator (EORI) word to 0, 0, and continue in

cosequence to restore the banner switch to SETBOS. Next, the write exit switch is set to trans­

fer the output buffer table to Z, XO (as usual), and then control goes to EOF (described below).

Thus, in normal usage, the banner switch either sets up a BOS banner word and restores

itself, or sets up a normal banner word. In the special case when ending a tape, it allows a loop

to be established going through WRITE twice to write an EOF record and an EORI record. As

noted earlier, an output buffer full of filler items (keys of all hex G's) will occasionally be found.

In that case, control is transferred to WRITE+13. Normally, such a record can be discarded.

However, if it is the only record of a string, dropping it would upset the balance of strings on tape 1

and the sort would not end properly. To overcome this possibility, the banner switch is checked

(in WRITE+13) to see if it is set to indicate that this record is a beginning of string. If it is,

control is transferred to WRITE+5 and the record is written in a normal manner. If it is not a

65

SECTION IV. MERGE SORT

beginning of string, control is transferred to WRITE+12 to discard it. This will bypass the

process of writing the record, but will reset the output buffer index register for the next record.

The EOF consists of a straightforward series of instructions (including several substitutes,

transfers, and reads). One dummy write and a read backward (into the stopper register) of the

output tape just completed is executed. EXIT A is set up in the dummy string area to the new "way"

according to N, S3, 1 (S3 is the subpass counter used for this purpose, which sets EXIT A back to

the largest "way" after the last subpass). The SWEOS (EOS+4) is set to refer to the next section

in the dummy string area. Three read forward and one read backward of the new tape to be

written are set up and performed, each followed by a dummy read, as well as the common write

instruction (WRITE+IO). The record counter is set to the record count found by the positioning

instructions, which leads to a comparison that tests to see if EXIT A is set to the largest "way"

setting (add to nth counter). If it is, control is transferred to End of Pass (ENDPASS). If not

(meaning that only a subpass has been completed), EOF proceeds to modify some of the EOF

instructions for the next time through. The A addresses of two of the instructions which pick up

the new tape addresses are incremented (with WA) instructions. The WRITE exit (WRITE+12)

is restored to normal, and control goes to SWEOS to start the next string.

End of Pass (ENDPASS)

As noted above, upon coming to the end of an input file, a check is made to see if it is the

last file depleted. When the last file is depleted, control is transferred to a section of coding

called ENDPASS. ENDPASS determines whether another pass is to be performed, which type

(ascending, descending, or a special last pass), and modifies the merge sort routine accordingly.

First, a counter called PASSES (which starts with the total number of passes as deter­

mined by the presort, and is reduced by 1 after each pass is completed) is compared for less

than or equality with 2. If less than or equal, the next pass will be number one (the last), and

control is turned over to a special set-up section termed Last Pass (LASTPASS). Otherwise,

the program continues in sequence. Working register R7 is set to READ+5 (the first of the sets

of read instructions in READ) for later use in ENDPASS. Switch tree (SWTREE), an indicator

which shows which type the current pass happens to be, is checked and control is accordingly

turned over to either APASS or DPASS to set up an ascending or descending pass. These two

sections of coding are similar, and they set up all areas which vary between ascending and

descending passes. In APASS or DPASS, an initial "return" to the top of the appropriate

tree is set up in READ+2. A word of all hex G's or a word of all zeros is stored in STOPPER.

(In double precision, two such words are stored. In triple precision, the area between the two

extremes of the stopper area are filled.) The final orders in the EOF area are modified, as

66

SECTION IV. MERGE SORT

necessary, to step the EOF area one way for ascending passes and the opposite way for descend­

ing. The instructions in WRITE+Z and WRITE+3 are set up to refer to the first or last item in

the output buffer. A small loop is used to set up the read instructions, using R7 (previously

set up) with an increment of 5 to step through the read groups. SWTREE is switched to its

opposite value.

The coding, which is common to both APASS and DPASS, is reached at this point. Here,

1 is subtracted from PASSES, and the write exit switch (WRITE+lZ) is restored to its normal

value. The next section is called Switch Counters' (SWCTRS). This section switches the dummy

string counters around to correspond to the new pass. It will be recalled that each counter

corresponds to a specific tape, but that the A through E designations change from pass to pass,

and the dummy string adjustment area modifies counters on an A through E basis. This sec-

tion of the routine, although quite straightforward for an individual sort, is set up by the genera-

tor differently for a three-, four-, five-, or six-tape sort. Thus, for a three-tape sort, counters

A, B, and C become C, B, and A. From SWCTRS, control transfers to the Beginning-of-Pass

Section (BEGPASS), an initializing routine entered at the beginning of the merge sort as well as

before each further pass. The LASTPASS coding, mentioned above, is explained later in the

ENDSORT discussion.

Beginning of Pas,s (BEGPASS)

BEGPASS is used at the start of every pass, including the first. Its basic function is to

prime two buffers of each input set and to set up an additional read, based on depletion, when

MERGE is entered the first time. The output buffer is initialized, and the input index registers

are stoppered. The SWEOS, and the instructions in EOF which modify it, are reset to the

proper initial value in relation to the dummy string adjustment area. MERGE is set to perform

a read, based on expected depletion, when it is first entered after the dummy string routine.

And finally the banner switch is set to an initial BOS setting, ready to write the first output

string on the output tape.

The buffer is primed using R6 and R7, working special registers. R7 is set to the first

actual read instruction (READ+5) in READ. READ+Z6 is temporarily set to an instruction which

will replace itself and return control to BEGPASS. R6 is set to the A CAC switch (T ABLEA).

A loop is then entered which uses R6 and R7 to set up the read index register (X6) and perform

three reads under cosequence control (the first simply bypasses the EOF record), during which

R6 is incremented by 1 and R7 by 5 to refer to each input set in succession. During this process,

the output buffer counter (Sl) is set to zero, the subpass counter (S3) is set to its initial value,

so that N, S3 will refer to the proper constant when it is used later to modify EXITA. The con-

67

SECTION IV. MERGE SORT

tents of the output buffer table are stored in XO, and a special initializing switch is stored in

MERGE to allow use of the TREE for the one initial read, but then control returns to the top

of the tree for merging. Xl through X5 are set to STOPPER. R6, the working register, is

again set to T ABLEA, and a small loop is us ed to shift each of the input buffer tables 32 bits

around to allow for the table switching that takes place in DUMSTR. An instruction in EOF,

common to both ascending and descending passes, is restored to its initial value (it becomes

modified at the time each subpas s is completed). The banner switch is set to SETBOS and

control goes to SWEOS to enter the dummy string adjustment area and begin the first string.

Ending the Merge Sort (ENDSORT)

When PASSES is equal to ~ at the end of the next-to-last pass, control goes to a section

called LASTPASS to set up all the procedures unique to the final pass of the merge sort. In

LAST PASS, preparation must be made for own-coding, if specified. The final output tape must

be positioned back one record to eliminate the second BOF record, and the banner switch must

be set to always write a normal (not BOS) banner word. F'inally, the EOF section must be

modified to go to ENDSORT, rather than ENDPASS, at the completion of the s<i=ing. ENDSORT

simply prints "MERGED" and exits back to the original macrocoding.

It will be recalled that MERGE+28, when immediately following the transfer of an item

from the input buffer to the output buffer, is normally at PR. LASTPASS transfers the entrance

to own-coding, if any, to this location. The output tape is read backward once into the stopper

buffer. BEGPASS is modified to skip the initialization of the banner switch, and the banner

switch is set to transfer a normal banner word. Finally, LASTPASS replaces the read forward

(RF) instruction in EOF, which starts the positioning of the next output tape. A sequence change

to ENDSORT is transferred into this location. LASTPASS then goes to the compariso'n which

determines whether to go to APASS or DPASS to perform the basic set up of the final pass.

In the final pass, the first tape to be written (the final output) has been backed up one

record. APASS and SWCTRS are gone through in the usual manner, eventually leading to

BEGPASS. BEGPASS is the same except for the last instruction, which no longer sets the ban­

ner switch to SETBOS, but simply goes to SWEOS to start the final pass. Since all dummy

string counters, by now, will be reduced to zero, this section is completed. Also, all inputs

are unstoppered, and control goes to TREE. This exits to MERGE in the normal way, except

that immediately after transferring an item to the output buffer, control is turned over to own­

coding, if specified. Since the banner switch is set to normal, the banner word of the first data

record to be written is the same as all the others to follow (instead of being a BOS banner

word). One by one, the input tapes will reach end, but merging continues until the

68

SECTION' IV. MERGE SORT

items compared are stoppered. This leads to SWEOS, which was set to transfer SETEOF into

the banner switch each time an input tape reached end. From here, control is turned over to

WRITE to write the EOF and EORI records, and then to EOF section. This backs up the output

tape one record, and leads {because of LASTPASS modification} to ENDSORT. In ENDSORT,

"MERGED" is printed, and exit is made from the routine.

SPECIAL CASE: One !tenl per Record

In the generator portion of the merge sort, (discussed later) specific parameters of item

size, key location, items per record, etc., are used to set up a specific routine. In most cases,

the specific routine will be similar or identical to the general one described in the preceding

paragraphs of this section.

The case of a single item per record requires some special handling, however. The

most obvious problem is in the main loop of the program, where the time to read is deter­

mined based on filling the output buffer but for one item. With one item per record, this

difference between "n-l" items and "n" items amounts to a full buffer, with corresponding

problems in synchronizing the reads and writes.

Thus, in this one case, the generator modifies the reading comparison in. MERGE+31 to

compare on NIB instead of NMINUSI (actually the contents of NMINUSI are changed). Also,

the exit of the dummy string adjustment area has been set up to start a read based on expec­

ted depletion at the beginning of every string {rather than at the beginning of every subpass}.

This is necessary because of "n-l" occurring one full record apart from "n". The result is

that a read is skipped at the end of each string, since everything is stoppered at the time the

last read should take place. The extra read at the beginning of the string, then, represents a

read at "n-l" relative to the first item of the string to be transferred out.

Over-all Flow of the ARGUS Merge Sort

Thus far, the merge sort has been discussed i:r;t general terms, and various components

of the merge sort have been explained in detail. These components are tied together in the

following paragraphs to presept a complete merge sort picture. A merge sort flow chart is

shown in Figure 14.

The first section to be performed, BEGPASS, is entered before each pass of the sort,

including the first. BEGPASS primes the buffers, and initializes variables and switches.

The EOS Switch (which might more appropriately be called the BOS Switch) is entered at

69

SECTION IV. MERGE SORT

70

BEGPASS

PRIME BUFFERS

INITIALIZE COUN­
TERS AND
SWITCHES

EOF
BOFRTNE

~B_O_F ___ WRITE 1-----1 ..
SWITCH TO NEXT
WAY, NEXT
OUTPUT

SUB. I FROM EACH
NON gJ COUNTER; IF
ALL" gJ, ADO TO
OUTPUT DUMMY
COUNTj IF ANY=",
SET Ut" BOF

REAL

TREE

FIND NEXT ITEM VIA
XI-X5; STORE

STOPPERS RETURN IN N,S0i GO
TO INCREMENT OF N,
S(61 CHECK FOR
STuPPER

READ
MODE

READ+3 ET SEQ SEQ

READ A RECORD INTO
THIS INPUT SET;
STOPPER LASTKEYj
RESET TREE TO
MERGE MODE

PUT SELECTED ITEM
IN OB,MODIFY IB TO
NEXT ITEMjlF IB
DEPLETED, GO TO
BOS AREA

MERGE+28

STEP OB; IF NOT
FULL, GO TO TREE;
RETURN IF ALMOST

~ ______ FULL; READ IF FULL-
WRITE

NOT FULL

READ

ENDPASS (A -D-LASTPASS)

SET UP FOR ASCEND-
ING, DESCENDING,
AND/OR LAST PASS,
BASED ON PREVo
PASS AND COUNTER

BOS A-E, SWITCH A-E

I F NOT BOS, SWITCH
IB; IF BOS, STOPPER
THIS INPUT SET; IF
BOF, SET BOSSWITCH
TO BOFRTNE

WRITE

SWITCH TREE TO
READ MODE

WRITE OB +SWITCH
IF FILLER RECORD,
SKIP AT 80Ft
WRITE EOF + EORI

Figure 14. Over-all Flow Chart of the ARGUS Merge Sort

SECTION IV. MERGE SORT

the beginning of each string. Normally, it leads to the appropriate section of the dummy string

adjustment area, except that after any input tape is exhausted (and the string then in progress

is completed), it is set to the Beginning-of-File Routine (BOFRTNE).

The dummy string adjustment area handles the merging of any dummy strings. 1£ there

are dummy strings on an input (as indicated by the dummy string counters), it subtracts 1 from

each counter, adds 1 to the output counter, and returns to SWEOS for the next string. 1£ any

inpu'ts do not have the dummy strings, the dummy string adjustment area exits to the TREE,

after setting the banner switch in WRITE to BOS, and subtracting 1 from any non-zero dummy

string counters.

TREE is associated with the quantities to be compared via the index registers, and with

the instructions which follow it via special register SO. Through these special registers, TREE

is either associated with the current input items and the MERGE, or with the last items of the

current input buffers (LASTKEY) and the READ coding. The merge mode is the normal one.

In this mode, the TREE will exit to one of several sections of coding to transfer the selected

item to the output buffer, step the input buffer from which the selected item came to the next

item and, if the buffer has been depleted, go to one of several sections of coding in BOS to

switch that input set.

After the item has been transferred to the output buffer and the input buffer has been stepped

and tested for depletion, a common section of coding, MERGE+Z8, is entered. This section steps

the output buffer and tests to see if it is full but for one item, or if it is completely filled. 1£

neither of these conditions are met, return is made to the TREE to select the next item.

If the buffer is almost full (one item to go), control goes to READ, which sets the TREE to

the read mode, and proceeds to TREE. This compares the LASTKEY areas to find which input

area needs refilling the most, and accordingly exits to the appropriate group of instructions

starting at READ+3. Here a record is read into the vacant buffer of the selected input set, its

LASTKEY word is stoppered, and TREE is reset to the normal merge mode. Return is then

made to TREE to select the next itern.

When the output buffer is full, control goes to WRITE to write the record on tape and switch

the output buffers. 1£ the output record contains redundant fillers only, WRITE is bypassed. 1£

the banner switch is set to BOS, a BOS banner word is written with the record, and banner

switch is set to normal. When set to normal, the banner switch. writes a normal (middle-of­

string) banner word. From WRITE, return is made to TREE tq select the next item.

71

SECTION IV. MERGE SORT

After an input buffer was stepped and found depleted, BOS, which corresponds to the input

set of the depleted buffer, checks the banner word of the buffer. If it is a normal banner word,

control goes to SWITCH, which corresponds to this input set, and the input buffers are switched,

setting up a new last word in the process. If the banner word is a BOS banner, the index regis­

ter corresponding to this input set is set to stopper, and the next record of this set is checked

to see if it is a BOF (meaning the input tape has just been depleted). If it is, the SWEOS is set

to BOFRTNE, and merging of the current string continues.

One by one, the different input strings reach end and become stoppered. Finally, TREE

discovers that al1 items being compared are equal and, furthermore, that they are al1 stoppered.

(When in the reading mode, this simply causes skipping a record.) If all items are stoppered,

the TREE exits to SWEOS, signifying that this string is ended and another is to be started If

the SWEOS is set to its normal setting, control goes to the dummy string adjustment area to

begin a new string.

If an input tape (as opposed to a string) had been depleted earlier during the current string,

SWEOS would have been set to BOFRTNE. In this case, when the string ends, control goes to

the SWEOS, which now leads to WRITE with the banner switch set up to write EOF and EORI

records on the output tape. In this case, control goes to EOF from WRITE, which modifies

the routine for the next "way", and makes the input tape just depleted the new output tape. If

this is not the last subpass, then control goes to SWEOS (now reset to normal) to start another

string. Or, if this was the last subpass (meaning the final input tape has been depleted), control

goes from here to ENDPASS.

In ENDPASS, a check is made to see if an ascending or descending pass has just been com­

pleted. ENDPASS then gets ready to do just the opposite type of pass. This is accomplished in

either APASS or DPASS, from which, as at the beginning, control goes to BEGPASS. Upon

ending the next-to-last pass, however, control goes to LASTPASS also, to make a few modifi­

cations to the program for the final pass. From LASTPASS, control goes to APASS, and then

on to BEGPASS. Among other changes, LASTPASS modifies EOF so that, upon completing the

first (and by definition, last) string of the final pass, EOF writes the EOF and EORI records

and exits from the sort.

Merge Sort Generation

Two special registers are used to relay information from the presort to the merge sort.

Index register X7 contains the address of the macrocoding as set up at the beginning of the pre­

sort and Rl contains the peripheral address of the tape drive from which the merge sort can

72

SECTION IV. MERGE SORT

obtain the sort parameters. If output edit own-coding is used, the programmer must set up

special register S2 with the address of the own-coding. The own-coding must be under the

control of the cosequence counter and the contents of the special registers used by own-coding,

must be stored and restored, as for the presort.

After reading the end-of-file identification record, from the tape specified by R1, into

memory, the merge sort modifier checks the various options transmitted to it by the presort

from the beginning FID parameters. If variable- size items are spec ified, modifications are

made to the sort to use the item size indicated in the low-order 16 bits of the end-of-item word

rather than a fixed item size constant. If the banner word option indicates that banner words

are not used on data records on the input file, the last merge pass is modified to eliminate the

banner words affixed by the presort. If masked keys are indicated in the parameter, the

necessary masks are set up in memory as given in the end FID, from the presort, and the

merge sort is modified to handle masked keys.

Tape addresses and the "way merge" indicators transmitted from the presort are used to

generate the proper read and write instructions and to modify the merge sort as required.

Input buffers are allocated for the given :record size for each input tape, and output buffers are

allocated for the given record size.

TAPE

10

RECORD

POSITION OF TAPE
BEFORE PRESORT

+
FILE

RECORD
AS

PRESERVED GIVEN
ON

DATA INPUT

FILE

FILE
10

RECORD
OF

LENGTH
DETERMINED

BY PRESORT STRINGS OF RECORDS

MODIFIER
FROM

PARAMETERS

Figure 15. Appearance of Work Tape at End of Presort

Error Correction and Restarts

POSITION OF TAPE AT
END OF PRESORT

~

EO FlO
RECORD

OF 23 WORDS
PLUS EO FlO

ORTHOWORDS RECORD
AND

EORWD

)
(

(

In the event of a read error, the location of the suspected record is determined, and con­

trol is turned over to the Executive Routine to try to repair it. If unsuccessful, the information

is reread by the sort, and if still bad, control is again turned over to the Executive Routine.

This process is repeated several times. Suitable printouts at the console indicate the nature

and disposition of the trouble.

73

SECTION IV. MERGE SORT

If physical end of tape is reached, the tape is rewound with interlock, and a printout

tells the operator what has happened. He may then mount a longer tape, and the program will

revert automatically to the most recent restart point.

Restarts in the merge sort, as in the presort, are part of the sort coding. This is

especially necessary in the merge sort, since (due to the nature of data manipulation on tapes)

restart points must be established at every subpass. (These built-in restarts are especially

tailored for the sorts and are therefore more efficient than the general restarts provided by the

Executive Routine.) As with the presort, a restart point is established just after the routine

is loaded, this time on the last, or nth work tape, to allow restarting the routine from the

beginning. Subsequent restart points are stored internally, in the form of counter settings,

at the beginning of each subpass. All of the dummy string counters, as well as the record

number counts (from the banner words in the "current" input buffers), are stored at this time,

and the restart routine is modified to handle the type of subpass about to be performed. These

restart points are established during the EOF routine when all inputs are stoppered, and no

partially depleted input buffers remain.

There are several possible restart procedures. Use of the proper one is governed by

how far the merge sort has progressed at the time it is necessary to restart, and upon what

type of subpass is being performed. During the first subpass of any pass, when writing on

the nth tape, restarting is accomplished by positioning all the input tapes forward to the EOF

records, and positioning the output tape backward to the BOF record. Then, with tape posi­

tioned as at the beginning of the pass, PASSES is incremented and control goes to either

APASS or DPASS. During intermediate subpasses, restarting is somewhat more complex,

since the input tapes will not necessarily be at end of file at the beginning of the subpass.

For this reason record counters are stored, corresponding to each input tape. Using these

counters, which were stored during the most recent break between subpasses, all current

input tapes are repositioned forward to the record counter that is stored. The output tape is

positioned backward to the beginning FID. The deficiency counters are replaced by their

values, which were stored at the most recent break between subpasses, and all tapes are stop­

pered. The current input tapes are primed (two buffers each, as in BEGPASS), and those

instructions in BEGPASS, which are the same for any number of input tapes, are performed.

The routine is then re-entered at SWEOS (just as in BEGPASS) and the current subpass is

restarted.

74

SECTION V

THE COLLATE

The ARGUS collate combines from 2 to 99 ordered files into one long file. Each input file

may be contained on a single reel or may occupy any number of reels. The programming logic

of the c6llate routine resembles that of the rnerge sort, although the two routines differ in func­

tion and in outward characteristics. The heart of the collate is a merging operation, accom­

plished by means of trees, but the associated reading and writing controls are more complex

than those of the merge sort.

Like the ARGUS sort, the collate is stored with the Library of Routines as a subroutine

and consists of a skeleton routine and a modifier-generator. Whereas the presort and merge

sort are generated and performed by executing a single pseudo instruction, collating is a sepa­

rate operation which is called out by executing a collate pseudo instruction. Therefore, although

the collate may be used to cornbine the outputs of several sorting operations, it is performed as

a separate program, completely disassociated from the sorts which produced the files to be

collated.

The "Way" of the Merge

In addition to the parameters supplied to the sort (e. g., item size, key location, etc.),

the collate is supplied with information concerning the number of files to be merged as well as

the "way" merge to be perforrned. A file here is assurned to be a single series of ordered

iterns, which may, or rnay not, extend over several reels of tape. "Way" means the number of

input files merged at anyone time. This is indirectly limited by the number of tape drives

available. Whereas a file contained on a single reel of tape may be read from a single tape

.drive, a multi-reel file is usually allotted two drives. In tliis mode, no tirne is lost when one

tape (or segment) of a file is depleted because the machine has immediate access to the sub­

sequent sectiop. on the alternate drive; therefore, the depleted tape can be replaced, when it is

convenient, by the next installment.

Merging Function

In the simplest case, the collate is used to merge two, three, four, or five files

to form one; an example would be combining the (sorted) outputs frorn several weekly runs at

the end of a month. In such a case, a two-, three-, four-, or five-way rnerge (one single logi­

cal pass) would be perforrned depending upon the nurnber of weekly outputs to be rnerged. (In

75

SECTION V. THE COLLATE

this case, five would be a m.axim.um..) On the other hand, there are tim.es when there are m.ore

files to be m.erged than the num.ber of the "way" that the collate can handle. In such cases, un­

like the m.onthly operation just m.entioned, it is necess"ary to perform. several passes which, for

instance, com.bine files A and B into a file W, C and D into file X, E and F into file Y etc., and

then com.bine files W, X, Y etc. into a final file. "Therefore, in m.ulti-pass m.erging, it is im.­

portant to have a firm. system.. controlling the sequence of files to be m.erged. As the num.ber

of original input files becom.es greater (for instance 20 rather than the six), the need for a firm.

controlling system. becom.es increasingly m.ore im.perative because, without such a system., it

would be highly confusing to m.aintain a fixed control over the entire process.

Equipm.ent and Mem.ory Considerations

In the collate, buffering, reading, and writing are sim.ilar to the corresponding portions

of the m.erge. As with the m.erge, an optim.u:m. balance between reading and writing operations

is established to m.ake the routine as fast as possible. The tree portion of the routine is sim.pler

than that of the m.erge since a collate performs only an ascending pass over all data, requiring

only a single tree. In addition, the input buffers are easier to visualize because reading is

always in the forward direction and inform.ation is always taken from. the top of the buffers

rather than from. the bottom..

In spite of the apparent sim.plification of the collate over the m.erge sort, there are several

factors which could m.ake a collate (particularly one involving sm.all item.s with large keys) slow­

er than a corresponding m.erge. For one thing, a greater equality of keys can be expected as

strings becom.e longer and longer, extending over one or m.ore tapes. Each case of equality of

keys necessitates extra levels of com.parisons in the tree, as well as in the com.parison section

which m.ay be attached. As a precaution, a sequence check has been built into the collate. This,

in effect, checks each item. com.ing in to be sure that it is equal to or greater than the item. which

preceded it on the sam.e file. in m.any cases, such a safety device can often isolate incorrectly

written tape before it has a chance to destroy the whole collating process. This means that two

sets of com.parisons, the tree and the sequence check, are perform.ed for each item. processed.

If a break in sequence is found, a printout on the <;:onsole typewriter inform.s the operator. The

operator then has the chance to redo that tape and, through the restart procedure, start the

collating process over at a point before that tape was first read.

The Collate Plan

When the collate pseudo instruction is executed and the routine generated, the generator

devises a plan which represents the m.ost efficient run for the conditions specified and prints

76

SECTION V. THE COLLATE

this plan on the console typewriter. The operator follows the collate plan in mounting tapes and

uses it to track the progress of the collate.

If the number of files to be merged does not exceed the way of the collate, the plan is re­

latively simple. However, if the number of files is large enougb. to require more than one pass,

a more compUcated plan is devised which minimizes the total number of passes over the input

files. This is accomplished by utilizing, as nearly as possible, the full way of the collate during

each individual pas s.

Figure 16 illustrates this principle in terms of two collate runs, A and B, each of which

uses a three-way merge to combine 17 files. In example (a), five three-way merges and a two­

way merge are first performed to reduce the original 17 files to six. Two three-way merges

then reduce these to two files which are finally combined by a two -way merge. Note that each

of the three layers of merges processes all 17 files for a tol'~l of 51 file times. Example (b) re­

presents a more powerful collate of the same files. Note that by withholding certain files from

the first-layer merging, a full three-way collate can be performed in each individual merge

and, in this instance, the same files can be combined in a total of 46 file times. This is typical

of the manner in which the advance-planning feature of the ARGUS collate results in the most

efficient plan for any collating progra:m..

Calculation of the Plan

The calculation of the plan occurs as a part of the modifying-generating process, before

the collate is run. The theory of the calculation is relatively simple, and is based on the fact

that if a less -than specified way pass has to be done, it is better done at the beginning of the run

when only a few files are involved, rather than at the final pass when the entire volum.e of data

must be pas sed. Therefore, the final pas s is planned first and is specified as full-way. If there

are more original files to be collated than the number that this would handle, then the next-to­

last pass is specified. This is another full pass, whose output will be one of the inputs to the

final pass. This- yields a capacity of way-l additional input files (-1 being the input of the last

pass which is presently taken up with the output of the new pass). If this is not enough, another

pass is specified whose output will be another input of the final pass. This process continues

(going to the inputs of the next-to -last pass when those of the last are filled, etc.) until the total

num.ber of inputs is equal to or greater than the num.ber of files to be collated. The last pass

calculated (the first perform.ed) may be less than a full-way merge, but this will be the only one.

When completed, the plan is printed in a tabular manner on the line printer or console type­

writer. Each line represents a pass, and specifies each input and output file by a unique number.

77

SECTION V. THE COLLATE

EXAMA...E A

51 FILE TIMES

EXAMPLE B

8BOI BB02 BB03 BB04 BB05 BOO6 BB07 BBOB BB09 BBIO BBII 8812 8813 8814 8815 8816 8817

00000000000000000

~Ol ~~ ~3 ~
~ \

~0102

/-
(17]»»)]»1»)0001

46 FILE TIMES

Figure 16. Collate Merging Sequence

78

SECTION V. THE COLLATE

The plan is also kept in memory in compacted form and will be used later by the routine to de­

termine how many passes there will be, and what files are involved in each. The file numbers

of the plan are used as a basis for writing a file name on tape, printing it on the console, and

later for checking the same tape when it is to be read again.

T ape Control

In connection with the collate plan, there is a system of communication between the

machine and the operator with regard to the identification of each file going into or corning out

of the system. In fact, one of the significant advantages of this plan is the fact that it serves as

a check to be sure that the proper files are mounted at all times. This becomes extremely

critical during a large-volume, multi-pass collate when tapes are being constantly mounted,

dismounted, and changed. To implement this communication between the operator and the

·machine, each file is assigned a unique number in the plan. This number becomes the file name

of each file written by the collate, and as each tape is completed, the number is printed on the

console typewriter so that the operator can label the tape in the sam.e manner. Each file written

by the collate, and later read by it, is checked at the time of reading, to insure that it is the file

being called for at that time. As a further check, each segment (tape) of a file is assigned a·

sequential number, and this too is checked. The file naITle for the first segITlent of any original

file, obviously, cannot be checked, but the na:me which is found there is retained so that the

following seg:ments of the file can be checked. The final output :may have any file na:me specified.

File Identification

File nu:mber s, or naITle s, are as signed in the following rnanner. Each file will have a

four -digit nurnber. The fir st two digits specify the level nu:mber. The last two digits specify

the file nurnber within that level. Level refers to the nurnber of ti:mes the data within the file

rnust be passed before the collate is complete. Thus, the final output is level zero; those files

which are rnerged to create it are of level one; the files rnerged to create any first-level files

are of level two, etc. The file nurnbers are assigned sequentially, starting with 1. Therefore,

the final output file will be 0001 (level zero, file 1) and, depending upon the way of the rner ge, it

will be created by the rnerging of 0101, 0102, etc. (Figure 16 (b)).

Initially, the plan section sets up a cornplete table of passes, with file nurnbers assigned

as above. It then deterrnines which of the files are original inputs, and reassigns new numbers

to thern, with "BBII as level nurnber and sequential file nurnbers. Thus, when the collate finds

that an input file having a BB nurnber is called for, it bypasses the check for file nurnber and in­

stead store s the file narne which it finds on the tape. Also, at the beginning of each pas s, the

79

SECTION V. THE COLLATE

output file number is checked against 0001; if they are found equal, the option to insert a user­

specified file name is exercised.

The file na:me or nu:mber, described above, is identical for each tape of a file (by defini­

tion, a file :may extend over any nu:mber of physical tapes), so in order to insure that tapes of a

file are :mounted in correct sequence, so:me further check is necessary. This check is provided

through the seg:ment name or nu:mber. Tapes written by the collate to :make up a file are nu:m­

bered sequentially in the right:most two digits of the seg:ment na:me (01, 02, etc.). When these

tapes are read, this number is checked for unity at the beginning of a pass, and for the next

higher nu:mber for each subsequent tape of the file. On anyone tape, these nu:mbers are the

sa:me in the beginning- and end-of-file identification records, except that the last tape of the file

ends with a seg:ment nu:mber of GG. As with the file na:me, the seg:ment na:me of the final output

:may be specified by the user, except that the last two nu:meric positions will be sequential nu:m­

bers placed there by the collate. Initial input files (those with the BB numbers) are not checked

for segment nu:mber unity at the beginning of the pass. Instead, whatever seg:ment nu:mber is

found is stored, and the next tape is checked for one greater than the one found. Thus, the input

nu:mbering sequence is apt to begin with any nu:mber.

The plan, therefore, which is printed at the beginning of the collate will have as :many BB

file nu:mbers as there are files to be collated. The user arbitrarily assigns one of these nu:m­

bers to each file so that he can know what tapes to :mount as the routine calls for the:m. The only

require:ment of each of these initial files is that their file na:me be constant throughout, the final

two digits of the seg:ment na:me increase sequentially throughout fro:m tape to tape, and the final

end segment name have a word ending in hex G 1 s (GG). As each output tape is co:mpleted by the

collate, the console typewriter will print out: IIREMOVE (file nu:mber) (seg:ment nu:mber) FROM

(peripheral addres s of drive) II. The operator should then re:move the tape fro:m the specified

address and label it with the file and seg:ment nu:mbers specified. Subsequently, when the plan

calls for that file to be processed, there will be no question about which tape is to be :mounted.

Tape Changing

The collate is set up to handle each input and output on two tape drives each, as specified

by the user. Internal indicators tell the collate which drives correspond to each set. If a single

drive is specified, the two internal drive indicators corresponding to that set refer to the sa:me

drive. In either case, as each tape is co:mpleted, it is rewound with interlock and the internal

indicators are switched to refer to the alternate drive (unless the tape just co:mpleted was the

last of that set). If dual drives are used, the next tape will be processed i:m:mediately and the

80

SECTION V. THE COLLATE

operator can change tapes at his leisure. If a single drive is used, the routine will stall on the

tape interlock until the new tape is mounted (as it would with dual drives if the tape were not

changed in time). Although the routine tells what tapes are to be removed, the mounting of the

correct tapes (based upon the plan) is left to the operator. This is because the routine (if dual

drives are used) has no way of telling when any file will end until'the end-of-file identification is

=!-"eached. By this time, the next tape (if there is one) should already have been mounted on the

alternate drive; if not, the routine will stall. The console typewriter prints an indication as

each pass is begun, and this, together with the knowledge of what drives correspond to each in­

put set and to the output,. enable the operator to interpret the plan and mount the tapes accord­

ingly. In the event an incorrect tape is mounted, and just when the collate is ready to use it,

WRONG TAPE, together with the tape drive address and the number of the correct tape, is

printed on the console typewriter.

NOTE: The following text refers to many special registers used in the ARGUS collate. Appen­

dix D of this manual provides a list and functional description of these special registers.

Buffers

Except for the differences which arise from reading forward instead of backward, buffer­

ing in the collate is handled in exactly the same manner as in the merge sort. This is described

in Section IV.

Each of the five input sets, A through E, corresponds to a pair of tape drives, only or ... e of

which is active at anyone time. Logically, A through E are identical. If a less than five-way

pass is specified, input sets are dropped starting with E. Thus, a two-way m.erge uses input

sets A and B.

As in the merge, there are three buffers per input set. They are a "current" buffer, a

"next" buffer, and an "open" buffer. A CAC- (Com.plete Address Constant) type three-way

switch is used, and in this case refers to the beginning locations of the three buffers. Switching

is accom.plished by shifting the switch end around 16 bits.

Index registers Xi through X5 are used to refer to the current item., and R1 through R5

are used as buffer item. counters, as in the merge. Since the buffers are stepped through in a

forward direction, the index register starts by referring to the first item. SWITCH+l to bypass

the banner word. After each item. is transferred, AU1 is used to set the index register to the

next higher item., and the R counter is incremented.

81

SECTION V. THE COLLATE

When the buffer is depleted and switched, the last item (last key) is set up by adding the

constant LKEY t? the new switch setting. In the case of variable-length items, the last item is

found by going through the buffer word-by-word, and looking for and counting end-of-item words.

Both the CAC switches and last key settings are kept in a section called TABLE.

Switching the input buffer is done, whenever a buffer is depleted, in the area called

SWITCH. To switch a buffer, assuming fixed-sized items (under 64 words), the CAC-type

switch is shifted with a mask of all hex GIS 16 bits back into itself. The switch plus LKEY is

then added through a Word Add (WA) instruction, with a mask of the low-order 16 bits, to find

~he last key setting. This is kept in the word immediately after the switch. Then the contents

of the switch are transferred to the index register, and the address thus referred to (the banner

word of the new buffer) is masked and compared with a constant to determine if this is an end­

of-file record. If equal, control goes to the appropriate one of five housekeeping routines (A-E

HSKEEP) to switch tapes. Otherwise, the index register is incremented once (to refer to the

fir st item), the R register counter is set to unity, and control goes to J J. J J, the common

routine which corresponds to MERGE+Z8 in the merge, is used to step the output buffer and de­

termine when it is time to read or write.

The procedure is exactly the same for variable-size items (or those over 63 words) except

that the WA is replaced by a sequence change to a subroutine in cosequence. These subroutines,

1V through SV corresponding to the A through E sets, will set up the last key portion of TABLE

by looking for and counting end-of-item words. Each of these subroutines is the same, and

works as follows: the index register is incremented, and the address it specifies is mask com­

pared with a constant to see if it is an end-of-item word. If not, it is incremented and com­

pared again. If it is, 1 is added to a working location called POCKET and POCKET is compared

with FILE (FILE is a constant set up to equal one less than the number of items per record). If

not equal, return is made to increment the index register. If it is equal, a W A adds 1 to the

index register into the last key portion of TABLE, and after clearing POCKET back to zero, a

return is made to the sequence mode.

The CAC-type switches for the A through E sets are located in TABLE, T ABLE+Z,

TABLE+4, TABLE+6, and TABLE+8. The last key setting$ are in TABLE+1, TABLE+3,

TABLE+S, TABLE+7, and TABLE+9.

Whenever a buffer is written, the output buffer is switched in the JJ section. The two-part

switch to accomplish this is in T ABLE+10. x6 is the output index register and R6 is the output

item counter. R7 is also used as a working register at the time of writing. More detail on

82

SECTION V. THE COLLATE

output buffer switching is contained in the subsequent discussion of the merge and read loop,

which is part of the section describing the trees used in the collate.

The input buffers must be primed at the beginning of each pass, as well as when an input

tape is switched. In the first instance, as in the merge, two buffers of each set are primed, and

reading starts into one of the available buffers based on expected depletion. However, when an

input tape is switched, only two buffers are primed. In this latter case, a detour is made from

the routine simply to check the FID records, switch tapes, and get the new tape started. Return

will be made to the main routine when the new routine has replaced, in the buffers, the end FID

record of the old tape with the first record of data of the new tape.

Trees

Like the sort routines, collate routines are available for single, double, or triple pre­

cision. These routines differ only in the structure of their trees. In each case, the trees used

by a collate are logically identical to those used on ascending passes by a merge sort of the same

precision. The collate routine can also be modified by means of own-coding to accommodate any

additional number of key fields. Section IV contains a description of the structure of these trees.

As in the merge, SO is used at the exits of the tree for storing the return and going to the

appropriate coding to transfer the selected item. As before, this allows the same tree to de­

termine the next input read and the next item to be transferred. One slight difference between

the collate and merge tree is that the former increments SO in multiples of four instead of five,

since only four instructions are required to be unique to each input set. SO is set each time to

TRANSFER, which functions exactly as the location MERGE in the merge sort. At TRANSFER,

the return to the tree is stored.

When switching to the read mode, the contents of Xl through X5 are stored in HOLD

through HOLD+4, and the last key settings (T ABLE+i, +3, etc.) are transferred to Xi through

X5. SO is set to READ to refer to the proper set of read instructions. As in the merge, the re­

turn in READ w.ill not be used.

When all items being compared are equal, SO is incre:m.ented to refer to a si:x;th group of

instructions, either in TRANSFER or in READ, which will check to see if all inputs are stopper­

ed. If the items are not stoppered, a normal exit is made to one of the other five groups of

instructions.

There are five groups of four instructions in the TRANSFER section. In the group

83

SECTION V. THE COLLATE

perform.ed when the A item. is sm.allest, for exam.ple, the first instruction i~ a Less -Than (LA)

instruction between a working location ASKEY (there are corresponding locations in the other

groups, B-ESKEY) and the key of the item. addressed through the index register. ASKEY con­

tains the key of the previous item. from. this input set (an explanation of how this is set up follows

later). Assum.ing single precision, if ASKEY is less than or equal to the current key, then there

is no break in sequence, and the item. is ready to be transferred to the output buffer. To do this,

control is transferred to Continued (CONT) to transfer the item. out. The CONT area consists of

groups of five instructions each, so the B set uses CONTtS, the C set uses CONT+lO, etc. If

ASKEY had been greater than the current key, control would have gone to the second of four A

instructions in TRANSFER. This, together with the third and fourth instructions, prints SEQ,

ERROR, FILE A, and then stops. Instead of going to CONT (or CONTt5, etc.), the double- and

triple-precision sequence check com.parisons go to a section called SUBTRANS to check the sec­

ond and third keys. SUBTRANS will exit either back to the print instructions in TRANSFER, or

will go to the appropriate section of CONT.

In CONT, the key of the current item. is transferred (through the index register) to ASKEY

for use the next tim.e arourtd. The item. is transferred out by an n-word transfer (item. transfer

for variable-size item.s) using index registers 1 and 6. The contents of AUi are transferred to

Xi to set it to the next item.. Finally, Ri is checked, increm.enting it against FILEt1 (a constant

set up to equal the n1.1.m.ber of item.s per record), and if it should be unequal, then control is

transferred to a com.m.on routine, JJ, to com.plete the m.ain m.erging loop. Otherwise, control

goes to the appropriate area in SWITCH to switch the input buffer.

In double precision, SUB TRANS m.akes an equality check on the first keys of the last and

current item. and, if equal, it checks the second key for sequence. ASKEYA through ESKEY A

are used to store the second last key. In triple precision, another set of com.parisons are m.ade

where the third last key is stored in ASKEYB through ESKEYB. In double and triple precision,

the CONT area is expanded accordingly to allow the storage of additional last keys. In the event

that the user wishes to extend precision beyond triple, he does not have to m.odify the sequence

check accordingly, as it should suffice to check sequence on only the first three keys. Most

troubles that a sequence check would isolate revolve around m.ajor breaks in sequence. These

would probably m.anifest them.selves in the first key co:mparison.

When the tree is in the read :mode, the five groups of four instructions in READ function

as follows: the CAC-type switch is shifted 32 bits into working index register X7, a read is

perform.ed into the address specified by X7, STOPADD (a SPEC constant) is transferred to the

84

SECTION V. THE COLLATE

last key porti'on of the TABLE area which applies to this input set (this is the address which will

reference the stopper word of all hex GIS), control goes to the common area GG to restore the

index registers Xl through X5 to their normal values, and finally a return is made to the main

merging loop.

Multi-precision

Since the collate trees are identical to the merge trees, the discussion of multi-precision

in Section IV is applicable here also. There is one additional problem to watch when precision

is extended beyond triple through the use of own-coding, and that is when keys, other than the

first three, are specified (refer to the final paragraph of Multi-precision, Section IV). Thus, if

a fake third key is specified, then the third key comparisons of each of the five sequence checks

(in SDBTRANS) will have to be modified to refer to the logical third key.

Main Loop

The main loop of the program, that which is performed for each item processed, has been

essentially covered in the preceding sections. Only a few instructions are involved in complet­

ing it. In the tree (called LOOP in the collate), the smallest of the items addressed through in­

dex registers Xi through XS is found, a return is stored in the location specified by SO, and SO

is incremented.to go to one of the appropriate groups of instructions in TRANSFER. Here (as

also in the multi-precision of SUB TRANS) the item is sequence checked and, through the section

CONT, is transferred to the output buffer. Also, the input buffer is adjusted and tested to see

if it is empty, and if it is, then a sequence change is made to JJ.

In JJ, the contents of ADZ are transferred to X6 to step the output buffer index register to

the next item position. R6, the output buffer item counter, is then compared with FILE (items

per record minus 1) to determine if it is time to read. If it should not be equal, control goes to

JJ+13. In JJ+13, R6 is compared (incrementing it by 1) with FILE+1 (items per record). If it

is not equal, control goes to TRANSFER. Here the return to the tree is stored. The collate

returns are slightly different than the merge returns in that they make use of the A and B ad­

dresses of the return instruction to reset SO for the next time. (This was done in a separate in­

struction in the merge.) After resetting SO, then the return leads to the tree to process another

item.

Had it been time to read, as determined by an equality in JJ +1, control would have re­

mained in sequence, the contents of Xi through XS would have been stored in HOLD through

HOLD+4, and TABLE+1, +3, +S, +7, and +9 would have been stored in Xi through XS, all

8S

SECTION V. THE COLLATE

through a series of TX instructions. The index registers are thus set to the read mode, and

control goes toFF. This sets SO to READ and goes to LOOP (top of the tree) in order to fn-

itiate a read.

Previously, it was explained that the tree would select the appropriate set to be read and,

to do this, it would have gone to a series of instructions in READ. From this point, control

would hav.e gone to a com.mon section, GG, to restore the index registers, and then from. there

to JJ+13 to get back into the main loop.

When it is time to write, as determined by an equality in JJ+13, sequence control remains

the same. In JJ+14, 1 is added to a counter called ACMLATE, which is the output record

counter. ACMLATE is then compared with PAR+2, the portion of the parameter which specifies

the number of records per tape to be written by the collate. If these are equal, the tape is full

and control goes to EOPT to change output tapes. If not equal, X6 (now set to the word beyond

the last item) is transferred to working register R 7, and T ABLE+10 (the output buffer switch) is

transferred to x6. The contents of ACMLATE are mask transferred into the banner word of the

output buffer, as specified by X6. Ortho is computed from the word specified by X6 to the word

specified by R7, and writing starts from 6, O. TABLE+10 is then shifted 24 bits end around into

itself to switch output buffers, and this plus 1 (to get by the bannnr word) is stored in x6. R6 is

set to unity, and control goes to the return in TRANSFER.

The main loop and the read in the collate, except for the resetting of SO, are very similar

to the corresponding portions of the merge. The writing portion of the collate is considerably

simpler because of the lack of beginning-of-string markers and the corresponding need for a

banner switch.

Input Buffer Switching

After selecting the smallest item and transferring it out, as already described in this sec­

tion under Trees, the input buffer is stepped to the next item. If, in this process, the input

buffer is found empty, control goes to the appropriate section of SWITCH, depending upon which

input set is being handled. All five of these sections are similar. SWITCH corresponds to the

Beginning-of-String (BaS) check in the merge, except that here it is not necessary to check for

beginning of string.

The details of SWITCH are covered in this section under Buffers. In general', the buffer

switch (T ABLE+1, +3, +5, +7, or +9) is set up. The procedure for this is somewhat involved if

86

SECTION V. THE COLLATE

the item size is variable. The index register is reset to the beginning of the new buffer, and

the banner word is checked to see if this is an end-of-file record. If not, control goes to J J , as

would have been done if the buffer had not been depleted. Otherwise, if this is an end-of-file

record, control goes to A through EHSKEEP to switch input tapes. This process corresponds to

going to EOPT when an output tape is filled, although the latter is sensed by an internal counter

or by hitting the physical end of tape, rather than by sensing the end FID record in the data. If

the physical end of an input tape is reached, the resulting unprogrammed transfer is bypassed,

since there must always be an end FID record at the end of each tape.

End of Output

This section of the program, called EOPT, may be reached in either of two ways. A

parameter-supplied limit of the number of records to be written on each output tape allows

switching outputs as soon as that many records have been written. This is detected in JJ when

the record counter is incremented and compared against the constant PAR+2. If, on the other

hand, the output tapes are to be filled to capacity, an infinitely large number of hex GIS may be

supplied through the parameters, in which case the equality of JJ will never be met. An end­

of-tape unprogrammed transfer will be made, however, when the physical end of tape is reached.

This unprogrammed transfer results from writing an output record. This write will be correct­

ly initiated, and the unprogrammed transfer then leads to EOPT, just as if the record counter

had been found equal to the parameter-supplied limit. Actually, the record counter leads to

EOPT only-during the last pass because a eount of hex GIS is arbitrarily used during inter­

mediate passes to fill tapes to their maximum capacity.

In EOPT, X7 is set to the internally stored FID reserve area, and the end FID banner

word is transferred to 7, O. Ortho is computed from 7,0 to 7,9 (the size of the special ID rec­

ords), at which time control goes in co sequence to the write instruction in Write First Begin ID

(W1STBID). This is a write instruction especially set up to write ID records which, like the

write instruction in JJ, uses X7 rather than X6. The instruction following the write instruction

in W1STBID drops control from the cosequence mode, and also transfers plus zero to MEMLOC.

(This latter step has no effect at this time.) Back in EOPT, an end-of-information banner word

is stored into the beginning of IDRES through X7. Ortho is then computed, and again control

goes to the above write instruction in cosequence. Again back in EOPT, a rewind order (with

interlock) is set up this time with the tape address of the current output tape (found in DRIVE+S).

It is performed to initiate the rewinding of the tape just com.pleted.

Following this, "END OPUT, REMOVE TAPE ON" is printed. The tape address is

87

SECTION V. THE COLLATE

substituted from. DRIVE+5 into the working print location MEMLOC+3, and this is printed in

octal. TAPE is then printed, as are contents of KEEP+10 and KEEP+11, which give the file and

segm.ent num.bers assigned to the tape.

At this tim.e, the just-com.pleted tape is rem.oved, and the next one is started. DRIVE+5 is

shifted left, 24 bits end around, to switch the tape drive. The new tape address in the leftm.ost

portion of DRIVE+5 is substituted into JJ+21 and into the write instruction in W1STBID. Dec"­

im.ally, 1 is added to the segm.ent name in IDRES (through 7,2) and a beginning FID is trans­

ferred to 7, O. The new tape is read into stopper. Again, a compute orthocount is performed

from 7,0 to 7,9, the new segment name is also transferred from 7,2 to KEEP+11, and finally

control goes to the write instruction in W1STBID in cosequence to write the beginning FID on the

new output tape. Note that if this is on the same drive as the tape just written, or if a new tape

has not yet been mounted since the last tape was written on this drive, stall is initiated trying to

read because of the rewind with interlock. Once the new tape is mounted, however, the read,

and then write, will proceed correctly.

Back again in EOPT, having bypassed the tape ID record and written the beginning-of-file

ID record, control goes to an exit switch. This is normally set to clear ACMLATE to zero, and

go to JJ+17, which assumes that control was directed here from the counter comparison in

JJ+15. In this case, the output buffer is still full, and control returns to JJ at the point where

it originally branched off just before writing the buffer. If, on the other hand, control had gone

here from the unprogrammed transfer area, the buffer would already have been written. Thus,

the unprogrammed transfer instruction sets ACMLATE to zero and leads to another TS instruc­

tion. This second TS instruction sets a special switch setting at the end of EOPT which will re­

place itself with the normal setting (described above) and go to J J +22. This will lead back to JJ

irn.rn.ediately after the write instruction, which effectively again is the point where control was

originally transferred (through the unprogrammed transfer register) from JJ.

End of Input

In SWITCH, after the input buffers were switched, it will be recalled a check was made to

see if the new record is an end FID. If it is, control goes to AHSKEEP through EHSKEEP, de­

pending upon the input set which is presently being worked. Since these five areas are similar,

it will suffice to describe just AHSKEEP. Actually much of the processing necessary at this

time is corn.rn.on to all five of the input sets, and so AHSKEEP through EHSKEEP serve only to

perform those instructions unique to each set, and to set up several common locations. From

each of these, control goes to Master Housekeeping (MHSKEEP) in order to determine if an

88

SECTION V. THE COLLATE

end of segment or an end of file is reached, and also to check the new input tape (or, if an end

of file, to stopper this input set).

AHSKEEP begins by setting up cornmon locations. The A ipput drive switch (DRIVE) is

transferred into WL1 (the other sets up DRIVE+1 through DRIVE+4). TABLE, the input buffer

switch, is transferred to WL1+1 (TABLE+2, +4, +6, and +8 for the other inputs). The address

of KEEP, which gives the file and segment name, is stored in Z, Sl (likewise KEEP+2, +4, +6,

and +8). The address of the read instruction, READ+2 (+6, +10, +14, and +18) is stored in Z, R7.

The input drive switch is then switched end around 24 bits into itself, thereby switching input

drives (DRIVE, and DRIVE+1 through DRIVE+4). The input item counter, R1 (R2 through RS) is

set to +1, and control goes to MHSKEEP.

In MHSKEEP, the leftmost tape address from WL1 (the address of the tape just depleted)

is substituted into WL1+2 (zeros). Using this, a rewind instruction is set up and performed

with interlock, thus rewinding the input tape just depleted. Then the input drive switch in WL1

is shifted end around 24 bits, so that it also is switched, and its leftmost (new tape) address is

substituted into the read instruction through N, R7. REMOVE is printed and, through N, S1, 1,

the file name is also. The two low-order digits of the segment name, obtained by substituting

incremented N, S1 into WL+3, are printed, as is TAPE ON and the drive address (from WL+2).

Now the address of the end FID, still in the input buffer, is stored in Z, X7 (from the buffer

switch in WL+1) so that it can be interrogated. Next, the low-order two digits of 7, 2, the seg­

ment name word, are compared against a constant of hex G's.

Assume for purposes of explanation that the low-order two digits were not hex G's, mean­

ing there is more of this file on another reel; then END SEG would be printed out, and 1 would

be added to N,S1 (segment name in KEEP). A read instruction is then set up and performed to

bypass the tape ID of the new tape (into stopper). As was true of the output tape, this will cause

a stall if both drives of this set are the same, or if the new tape has not yet been mounted. If

the new tape is mounted, the tape ID record is bypassed, and control goes in cosequence to

N, R7. This was previously set up as the new read instruction, which will bring the beginning

FID record of the new tape into the input buffer just occupied by the end FID of the old tape. The

instruction after each read in READ is a void TX instruction, which will return to MHSKEEP.

Here a dummy read (void A address) is set up and performed to insure that the record just read

is in memory. A check is also made of 7,0 to see if this is a proper beginning FID banner word.

If not, control goes to the error routine covered in the next paragraph.

89

SECTION V. THE COLLATE

If this was the proper banner word, Z, 81 would have been reset one word backward to re­

ference the file name word once again, and 7, 1 would have been checked against it (increment­

ing S1 by 1 again). This matches the new file name against that in KEEP which corresponds to

this input set. If unequal, control goes to the error routine covered below. If the file name is

correct, the low-order two digits of 7, 2, the segment name, are checked against N, S1, and

again, if these do not .agree, control goes to the error routine. This com.m.on error routine

prints X TAPEON (for wrong tape on), and substituting the drive address from WL1, prints that

in octal. S1 is again backed up one word, and used to print the file name and the low-order two

digits of tha segment name. CORRECT TAPE is then printed, and a rewind is set up and per­

formed with interlock. Having done this, a sequence change is made back to the point in

MHSKEEP where the tape ID record is read and at this point a stall is initiated until another tape

(presumably the correct one) is mounted.

If all tests for a new tape had been passed, control would go in cosequence again to the

normal read instruction, thus bringing in the first data record over the FID record just checked.

WL+1 is shifted one position into X7 and the read is again performed in cosequence, thus start­

ing the read of the next record of data into the next input buffer to insure the first record of data

is in. At this point, the end FID record originally discovered has been replaced by the first

record of data from the next tape, and control returns to JJ as if no ID record had ever been

discovered.

Thus far, it has been assumed that the end FID record discovered in SWITCH was not the

final end of the file, but that there was more information on another tape to follow. Consider

now the case where the end FID record was a final end, with hex GIS as the low-order two digits

of the segment number. This fact is discovered in the first comparison of MHSKEEP. In this

case, it is not necessary to examine the new tape, but only to stopper this input set.

First, END FILE is printed (this will follow the printouts calling for the removal of the

final tape from the specified drive) and control wiil go to N, SHe At this point, there has not

been a sequence change since MHSKEEP was reached from AHSKEEP (or B through EHSKEEP),

::)u i.hi:s uevice wiii return to a special set of instructions at the end of each of these sections. In

the case of AHSKEEP, these will transfer STOPADD (the stopper base address) to TABLE+1

(+3, +5, +7, +9) to stopper the last key section of this input set. STOPADD will also be trans-
j

ferred to Z, Xi (X2, 3, 4, 5) to stopper the current item of the set, at which time control re-

turns to JJ.

90

SECTION V. THE COLLATE

The following summary applies to what happens in the A through EHSKEEP areas, as well

as the MHSKEEP area. These areas are reached upon discovering an end FID when the input

buffers are switched in SWITCH. Finding such a record causes the removal information to be

printed on the typewriter, the tape to be rewound, and the alternate input drive to be switched

on. If this should be an intermediate end FID record (no hex G's in segment number), then the

new tape on the alternate drive would be checked, and if it should yield a correct indication, the

buffers would then be primed and the operation would proceed. If the new tape is not the correct

one, information must be printed on the typewriter telling which one should be mounted, and

preparation should be made to check the ID record again. However, if the old end FID was the

final one of this input set (hex G's in segment number), this input set would be stoppered and the

operation would proceed.

All Items Equal

The end of a collate pass is determined by the discovery that all current input items are

stoppered. This will happen after each of the inputs (in turn) has reached a final end FID re­

cord, as described in the preceding paragraphs. As in the merge, when all keys being compared

by the tree are equal, SO is incremented to a special sixth group of instructions which exist in

both the read and merge modes.

In the read mode, this special group of instructions compares each index register, X5

through Xi in turn, with STOP ADD. The first comparison yielding a not equal result will lead

to the normal instructions in READ for processing the corresponding input set. If all index re­

gisters are equal to STOPADD, control goes directly to GG (where control would have gone in

any case after the instructions in READ had been performed), thus skipping any actual reading

at thi s time.

In the merge or transfer mode, Inuch the same procedures are followed. That is, X5

through Xi are compared with STOPADD, and the one not equal will lead to the corresponding

instructions in TRANSFER. If all items are stoppered, control goes to ENDPASS to finish the

output tape and initiate the setup for the next pas s.

In ENDPASS, X7 is set to IDRES, the common FID record in memory, also ali end FID

banner word is set up in 7,0, and the low-order two digits are set up as hex G's in 7,2 (segment

name). Ortho is computed from 7,0 to 7, 9 the drive address is set up in the write instruction

in WiSTBID, and control goes there in cosequence, thus writing the end file ID on the final out­

put tape. Likewise, an end-of-information record is set up and written, and a rewind of the

final output tape is then set up and perforIned with interlock. Tape removal information relative

91

SECTION V. THE COLLATE

to this tape is printed. END PASS is printed, the Pass Count (PSCOUNT) is incremented and

printed. Finally, BEGPASS is printed and also the contents of PSCOUNT plus i, which signify

the beginning of the next pass. (At the time the final pass of the collate is set up, this final set

of print instructions is replaced by instructions which end the collate.) From here, control

goes to MODIFY, where the collate is regenerated to set up for the next pass, based upon the

next entry in the plan.

Regeneration of the Collate

Each pass of the collate is a complete logical entity. It is quite possible that the very

first pass will be somewhat different from the others (the "way" being less) because of the

particular plan calculated. Each pass involves a different set of file and segment names to be

stored, based upon the plan, and also the routine must be completely initialized for each pas s.

Because of the considerations, the collate is partially regenerated between each pass. A

general description of the collate is therefore described in the following paragraphs in so much

as the generating process may occur a number of times during the course of the program. Also,

a portion of the generator, which is repeated, includes the priming of buffers and the writing of

the beginning FID record on the first output tape.

Generation of the Collate

The initial portion of the generator, STARTUP through CALCULATE, calculates, stores,

and prints the plan. These sections will not be repeated. Following this, MODIFY and SET­

PATH are entered and repeated for each pass. They determine the "way" of the pass, and set

up the core routine accordingly. At this time a switch is reached which leads to GENERATE the

very first time through, but which bypasses GENERATE all times after that in order to go to

AA. GENERATE sets up the tape address in the DRIVE area, based upon the parameters in the

macrocoding, as well as setting up some peripheral instructions in the core (skeleton) program ..

Mter GENERATE, BEGIN interprets the parameter from the FID record on tape. Ai, A2, and

A3 calculate buffer size, set up variable-size items, modify the sequence check, modify the

TN instructions to output, as well as modifying tree comparisons, stopper base address, etc.

This represents the bulk of the process normally considered generation. Mter the first pass is

set up, all of the coding mentioned above (except MODIFY, SETPATH, and the plan) is clobber­

ed by the buffers, since it will never be performed again. From here (as well as from MODIFY

after the first pass), control goes to AA.

In AA, BB, BBB, and CCC (which, together with the sections of coding following, are per­

formed before every pass), the buffer areas are set up, and the buffer switches in TABLE are

92

SECTION V. THE COLLATE

built up accordingly. These sections are perforIlled each tiIlle because of the possible dis­

crepancy between first and subsequent passes (as the "way" increases, the buffer area IllUSt be

expanded). FroIll here control goes to LOAD and W1STBID. These sections check all of the

input FIDl s , store the file and segIllent naIlles in KEEP, write the beginning FID record on the

output tape, and check to deterIlline if this is the last pass. If it j.s, special last pass Illodifica­

tions are Illade to the routine.

Following this, CC perforIlls two priIlling reads for each input tape. EE sets up the last

key areas, and sets the tree to the read Illode to do an extra read based on expected depletion.

Input and output counters, as well as the initial sequence check key storage areas, are initial­

ized. Finally, control goes to the tree (LOOP) to begin the actual pass.

Over -all Flow of the ARGUS Collate

Thus far, the over-all collate has been discussed in general terIlls, and various COIll­

ponents of the" collate have been explained in detail. The se cOIllponents are tied together in the

following paragraphs to present a cOIllplete collate picture. A collate flow chart is shown in

Figure 17.

The very first part of the program. to be perform.ed, STARTUP through CALCULATE,

creates the plan and stores it adjacent to the program. in m.eIllory. At this point, the option

exists to print the plan on the console typewriter or to proceed directly with the prograIll. If the

plan is printed, there is a stop point afterwards to allow terIllination or continuation of the col­

late. These options are intended to allow the plan to be printed at one tiIlle (by stopping iIll­

Illediately after) and later to perforIll the actual collate (by starting over again, but bypassing

the printing), or to allow printing the plan and iIllIllediately perforIlling the collate.

In any event, froIll CALCULATE, control goes to MODIFY and SETPATH to deter­

Illine and set up the "way". These portions of the generator will be perforIlled at the beginning

of every pass. Upon cOIllpleting SETPATH (if this is the start of the first pass), control goes to

GENERATE to perforIll the bulk of the generation of the collate. After the first pass, control

goes froIll SETPATH directly to AA. The sections, GENERATE through A3, perforIll all once­

only generation, and they also exit to section AA.

Sections AA through EE once again are perforIlled at the beginning of each pass. Here,

the buffers are set up, the input tapes are checked, and the file and segIllent naIlles found on

these tapes are stored. Also, the beginning FID record on the initial output tape of this pass is

93

SECTION V. THE COLLATE

94

STARTUP- CALCULTE

CALCULATE PLAN.

PRINT, IF DESIRED.

GENERATE-A3

SET UP ADDRESSES
PERIPH. ORDERS;
CALC. BUFFER SIZE;
SET UP FOR VARIABLE
MODIFY TREE, TNS,
STOPPER

MODIFY

DETERMINE WAY
AND SETUP
A CCOR 01 NG L Y .

2ND-N --. TIME

~----------~------~ I :J AA-EE

3t SET UP BUFFERS;
L\J CHECK + STORE
~ INPUTS i WRITE BFID;

PRIME BUFFERS'
~ SET UP LASTKEYSi
~ INITIAL IZE

LOOP ENDPASS

TREE: WRITE END FlO.
FIND SMALLEST
ITEM IF LAST PASS, STOP. END

PRINT END PASS INFO. LAS~
PAS

READ GG

READ~NG

SET UP X7 + READ.
STOPPER LASTKEY.
RESTORE XI-X5, s(lJ

~~T __ ,

~ ~E_OP_T ____ ~ ______ ~

TRANSFER ,CONY

,t!lf!~~~m
RETURN -Z, S(lJ;
SEQ. CHECK; NEXT
ITEM OB; STEP
INPUT IR; CHECK
IF IB EMPTY.

JJ

STEP OB IR (X6)
IF N-I, STORE IRS'+
RESET TO LASTKEYS
IF N, COUNT + WRITE

RECORD

SWITCH

SWITCH TABLE
SET UP LASTKEY

lEND
Id, FlO

A- E HSKEEP III,

SWITCH DRIVES
SET UP COMMON
AREAS.

MHSKEEP

PRINT TAPE
CHANGE INFO. IF
EOF, STOPPER +
PRINT IF~ EOF, STORE
NE W SEG CHECK
NEW TAPE,PRIME

Figure 17. Over-all Flow Chart of the ARGUS Collate

SECTION V. THE COLLATE

written, the routine is set up specially if this is to be the final pass of the collate, and finally

the buffers are primed and the routine is initialized and prepared to do one extra read based

upon expected depletion.

At this point, as indicated in the flow chart, Figure 17, the secti.ons STARTUP through

CALCULATE and GENERATE through A3 have been clobbered by buffers. Frotn this point on,

only the sections MODIFY, SETPATH, and AA through EE, as well as the previously stored

plan, will be used. In the tree (LOOP), one extra read is initiated, and then the tree is re­

stored to nortnal operation, and since the output buffer is not yet filled, control goes to the re­

turn. The return is initially set to the top of the tree.

Now the main loop of the progratn begins. In LOOP, a cotnparison is tnade for the next

itetn, and accordingly control goes to the appropriate section of TRANSFER and CONT. Here

the return to the tree is stored. The item is sequence checked and then transferred to the out­

put buffer. The input buffer thus affected is stepped to the next itetn position. Then, in JJ, the

output buffer is similarly stepped and tested to see if it is full but for one ite:rn or to see if it is

co:rnpletely full. If neither of these conditions exist, then control goes to the stored return,

which leads back to LOOP to process another item.

When the output buffer is full but for one He:rn, it is time to read. Again in J J, the con­

tents of the index registers are stored and the index registers are set to the last key values. SO

is set to READ and control goes to LOOP to initiate a read into the input set which would other­

wise run out first. LOOP determines which set this is and goes to the corresponding section of

READ. Here, a working read index register, X7, is set up and the read instruction is per­

fortned. The last key location of this input set is stoppered, and the index registers are re­

stored to their nor:rnal values. This latter action occurs in section GG, which then leads back

to JJ, and. eventually to the return location to process another item.

When the output buffer is full, as discovered in JJ, the record count is stepped and then

written, and the output buffer is switched and then reset. During the last pass, if the number of

records specified had been written on the output tape, control would go to EOPT to switch output

tape s. If not, then control would go to the return location to proces s another ite:rn.

Eventually, one or another of the input buffers will becotne depleted, as will be discovered

in CONT when the buffer is stepped to the next ite:rn. In such a case, a detour is tnade to

SWITCH, where the input buffers are switched around, the last key location is set up to its new

95

SECTION V. THE COLLATE

value, and the index registers, as well as the R register associated with this input, are reset.

A check is also made to see if the new input record is an end FID. If it is not, control goes on

to JJ, as would normally be done from CONT; if it is however, control goes to the appropriate

HSKEEP area for this input set.

Eventually, an output tape will be filled, and the corresponding unprogrammed transfer

register will lead to EOPT (unless the counter in JJ did so instead during the last pass). Here,

the end FID is written on the filled output tape, at which time the tape is rewound; here also,

the removal information pertaining to it is printed, drives are switched, and a beginning FID

record is written on the next output tape. From here, control returns to JJ at the point which

was vacated to go to EOPT.

When an input tape is depleted, as discovered in SWITCH, control goes to one of the

HSKEEP programs (A through E). Here, input drives are switched, a few common locations

are set up, and control goes to MHSKEEP. The depleted input tape is rewound, and removal

information is printed. If this was the last tape of this file, the input set would be stoppered,

and return would be made to the normal flow in J J. If there is more to follow in this file, how­

ever, the new input tape is checked and the buffers primed with the first records of data from

it. These will replace the end FID record originally discovered, so return can be made to J J to

continue in the normal flow.

When all input have reached final end and have been stoppered, LOOP will sense that all

keys are stoppered and lead to ENDPASS. Here, the final end FID record is written on the cur­

rent output tape, and ENDPASS is printed. If this should be the final pass, the collate ends

here. If, however, there are more passes, the fact that a new pass is beginning is printed out,

and control goes back to MODIFY to set up for it.

In the process of interpreting the plan, MODIFY and other associated routines step the

plan down one entry each time, so that this next pass will be set up according to the next entry

in the plan. Finally, when it is discovered that tape number 0001 is being written, this will be

assumed to be the final pass and the routine will be set up accordingly.

Error Correction and Restarts

The collate, like the presort and merge, makes use of the orthotronic correction pro­

visions of the Executive Routine to detect and repair any read errors and to document such

actions at the console. In the event of a read error, the location of the suspected record is

96

SECTION V. THE COLLATE

determined, and control is turned over to the Executive Routine to try and repair it. If un­

successful, the information is reread by the collate, and if still determined incorrect, control

is again turned over to the Executive Routine. This proces s is repeated several times. Suitable

printouts at the console indicate the nature and disposition of the trouble.

If the physical end of tape is reached while reading, the unprogram.m.ed transfer is ig­

nored. If reached while writing, the output tape involved is completed and tapes are switched.

Since all reading and writing is in the forward direction, there should never be an unprogram­

med transfe'l" caused by reaching the physical beginning of tape.

Restarting is implemented in much the same manner as it is in the merge, although in the

collate restarting is much more versatile. The general theory of restarting used by the collate

is explained here. Restart dumps, or anchor points, are placed on the tape label record of each

output tape. In order to re-create any tape, that tape should be mounted so that the dump may

be read into memory. At the time it is written, the memory dump is checked for correct

parity by reading it back into memory. In the dumping process, all of the special registers

are transferred to memory locations contiguous with the program, as are the banner words

from the current input buffers. Then, one long record, including the plan, program., special

registers, and banner words (but not the buffers) is written onto tape. In the event of a restart,

the dump is read back into the same area, and the special registers are eventually restored.

To position, the input tapes are read into the buffer area, where their banner words are com­

pared with the stored ones from the re start dump.

Therefore, the restart, or anchor points, are established just prior to beginning a new

output tape, so that return can be m.ade to that point at a later time to re-create that tape. There

are two areas in the collate from which a detour can be made to the restart dump routine (the

routine which creates these anchor points). These two areas are found: first, in AA through

EE when the first tape of a pass is started; second, in EOPT when any additional tapes of a

pass are started.

The restart dump routine writes the current status of m.emory on a tape specified by the

user, in such a form that it can be associated with the tape about to be written. To do this, all

of the special registers, and the banner word from each of the current input buffers, are stored

in a block of memory adjacent to the program. This contiguous portion of a program (including

a plan), special registers, and banner words make up one long record and this record is written

on the dump tape. Following the dump portion, the program is continued at the point originally

97

SECTION V. THE COLLATE

vacated. If restarting during the collate is not necessary, then this will be the only portion of

the restart progra:m perfor:med. Suppose, however, that while writing the fifth tape of pass

nu:mber seven, it is discovered that one of the inputs cannot be read. As su:me this was the third

tape produced during the second pass. Obviously, this tape :must be re-created before continu­

ing. Thus, a restart is initiated (by starting at RO). This is a s:mall progra:m logically inde­

pendent fro:m the collate routine itself. Before doing anything, the restart progra:m asks that

the tape which is to be re-created, be specified. The file na:me and seg:ment nu:mber of the tape

are typed in by the operator, and the restart routine begins searching the du:mp tape for a du:mp

with that identification. When the du:mp is found, it is read into :me:mory over the exact loca­

tions fro:m which it was written, that is, the progra:m (including the plan), the special registers,

and the banner words.

Inspecting the KEEP area of the progra:m just brought in, the restart progra:m then in­

dicates the tape nu:mber of each input tape :mounted when the du:mp was taken. After indicating

these on the typewriter, it co:mes to a halt. The operator then :mounts these backup tapes onto

the sa:me drive on which they were originally :mounted (also indicated by the restart progra:m,

based on the settings in DRIVE). Again the restart progra:m is started, and it checks each of

the beginning FID records of the tapes just :mounted for the correct file na:me and s eg:ment nu:m­

ber. If these are good, each tape in turn is positioned, co:mparing the banner word fro:m each

record with the corresponding one brought in fro:m the du:mp.

This paragraph considers the positioning of tapes in :more detail. The restart progra:m

will first check each of the five index registers, Xi through XS, and if any of these are set to

stopper, then the corresponding tape is inactive and not needed. (This is due to a li:mited "way"

pass, or when reaching a final end of file.) Then each active tape is positioned, reading direct­

ly into the "current" buffer until the correct record is brought in. (In order to insure each re­

cord is in, the active and du:m:my read instructions are alternated. In searching, this will not

be a slowing factor.) Another read is started into the "next" buffer, and then the last key loca­

tion of this set is checked. If this last key position is stoppered, an additional read has been

started and a read is initiated into the "open" buffer also. Otherwise, if the last key location is

When the input tapes are all positioned (and the input buffers filled), it is about the ti:me

to re-enter the collate. The special registers are now set to the values stored for the:m in the

du:mp. Using one of the history registers, return can be :made to the point in the routine where

a return was originally :made just after :making the du:mp. The tapes and :me:mory should now

be exactly as they were then, so it is neces sary to re -create the output tape exactly as had been

done before.

98

SECTION V. THE COLLATE

If desired, the collate could be continued from this point forward. However, in this ex­

ample mentioned above, it was required that only the third tape written during the second pass

be reproduced. Once this is completed, it is possible to go back to the fifth tape of the seventh

·pass where trouble was encountered during the writing process. To do so, a restart is per­

formed in exactly the same manner as explained above, this ti:qle specifying that the fifth tape of

pas s seven be re -created. The tape just re-created will be called for as one of the inputs. Us­

ing this in place of the illegible one, the operation should be able to proceed without any further

trouble.

99

SECTION VI

OWN-CODING

The ARGUS sort routines are designed to handle a wide variety of requirem.ents. Never­

theless the need m.ay occasionally arise to sort item.s whose specifications exceed the para­

m.eter lim.itations, or to com.bine the fir st or last pas s of the sort with som.e sim.ple item. pro­

cessing (editing). It is im.practical to provide for every such special case in a sort generator,

or to write a com.plete sort routine for each of these variations. ARGUS provides for all such

special cases by allowing the program.m.er to write the additional coding necessary to accom.­

plish them.. This coding m.ay either be associated with a standard generated sort, or if neces­

sary' it m.ay actually be used to m.odify the generated sort itself. The ARGUS sorts have been

built to incorporate optional detours at specified points to facilitate the tie-in of just such coding.

With this technique, appropriately referred to as own-coding, there is virtually no lim.itation to

the m.odifications which can be m.ade.

Own coding m.ay be divided into two general categories:

1. Data m.odification; and

2. Routine m.odification.

Data m.odification (the sim.pler type) involves any changes to the data which is being sorted.

This includes rearrangem.ent or translation of keys, batch totalling, addition or deletion of items,

and m.odification of item. size. Also included in this category are any changes to the beginning­

of-file identification record, such as m.odification of param.eters specifying item. size, key loca­

tion, etc. Data modification own-coding is covered in this section in detail, with appropriate

exam.ples.

Routine m.odification own-coding involves changes to the sort routine itself, arid requires a

m.ore com.plete knowledge of the ARGUS sort generators plus a com.plete and accurate listing of

the routines. Such own-coding m.ight be used to m.odify a sort to read directly from. a card read­

er, to provide output directly to a line printer, or to handle extended precision. The general

m.ethods by which this type of own-coding m.ay be im.plem.ented are described in this section.

Own-Coding (Edit) Options in the Sorts

The presort, m.erge sort, and collate each have several own-coding options, which m.ay be

specified in the pseudo instruction the program.m.er writes to call a sort. In each case, 00

101

SECTION VI. OWN -CODING

specifies no derails, that is, the sort is to run by itself with no own-coding m.odifications.

There is provision for four presort options (01, 02, 03, or 04) which are specified by

writing one of these numbers in the sort pseudo instruction.

Option 01: specifies a single detour im.m.ediately after the beginning-of-file ID is read and
checked by the presort generator. This allows m.odification or com.plete replacem.ent of
the file ID record.

Option 02: specifies a detour im.m.ediately after the presort has been generated, but before
any data has been handled by the sort. This allows any type of m.odificatiorr to the gener­
ated presort itself.

Option 03: is used for data m.odification and specifies a detour im.m.ediately before each
item. is transferred from. the input buffer. It allows changes to be m.ade to each item be­
fore it is used by the sort.

Option 04: specifies that each of the options 01, 02, and 03 will be observed; hence, all
three detours will be taken.

The m.erge sort has provisions for options 02, 03, and 04, specified by writing one of

these num.bers in the sort pseudo instruction. Option 01 is not available since the param.eters

specified in the beginning-of-file ID record are transferred directly from. the presort to the

m.erge sort.

Option 02: allows m.odification of the m.erge sort itself im.m.ediately after it is generated
but before any sorting takes place.

Option 03: specifies a detour only during the last pass of the sort, each tim.e an item has
been placed in the output buffer. This allows data m.odification on the same scale as per­
form.ed in option 03 of the presort.

Option 04: specifies the use of both detours for options 02 and 03.

It should be noted that any m.erge sort own-coding m.ust be written as a unique segm.ent separate

from. the sort segm.ent itself. The nam.e of this own-coding segm.ent is specified in the sort

ps eudo instruction.

04.

102

The pseudo instruction, which is used to execute the collate, allows options 01, 02, 03, and

Option 01: is identical to the presort option 01. The beginning- of-file ID record, us ed by
the collate as the source of data parameters, is taken from the first input tape of the first
pass.

Option 02: is identical to the 02 option of both the presort and m.erge sort. In the collate,
this option is perform.ed imm.ediately after all of the "once-only" generation has taken place.

Option 03: is like the m.erge sort option 03 in that it specifies a derail for each item dur­
ing the final pass only. This derail is performed irrunediately after the item is placed in
the output buffer.

Option 04: specifies that all three of the options 01, 02, and 03 are perform.ed.

SECTION VI. OWN-CODING

General Technique

Before beginning a detailed discussion of the methods of own-coding, it would be well to

review some of the general problems involved. Since the sort itself is a subroutine, it exists

on the symbolic program tape, not in ARGUS tag notation, but in binary relocatable form. Own­

coding is normally written in ARGUS language. However, the own-coding may not make use of

the symbolic tags originally used in coding the sorts because it is assembled independently from

the sorts. Furthermore, since the sorts occupy a full bank of memory by themselves, the own­

coding must of necessity be located in another bank. Communication between the sorts and

own-coding, therefore, cannot be through the use of tags, nor any form of direct addressing.

Quite obviously, special registers must be used.

S2 is reserved by the sorts as the commumicator between the sorts and own-coding. If

own-coding is used, S2 must be directly loaded by the programmer with the address of the en­

trance to the own-coding. Thus, any detour from the sort will be in the form of a transfer to

N, S2. This transfer will always specify the cosequence mode, implying that if own-coding is

written entirely in the cosequence mode, a return to the sort is made simply by reverting to the

sequence counter. It should be noted, however, that the bank indicator of the cosequence count­

er must be restored to the sort's bank. This may be done by transferring the contents of the

sequence counter to the cosequence counter before returning. Alternatively, the contents of the

sequence counter may be stored by own-coding, allowing it to use the sequence counter also. In

this case, a return to the sort is effected by restoring the sequence counter and reverting to the

sequence mode.

Communication between simple forms of own-coding and the sort is further aided by use

of other special register s. For example, the location of the beginning FID record or of an item

in a buffer is always specified by a certain index register. At times, the sorts use every avail­

able special register (save S4 through S7), requiring that own-coding store and restore any re­

gisters that are to be disturbed for its own use. Alternatively, the own-coding could use another

special register group although communication with the sort must be through the sort's group.

If own-coding should be the routine modification type, then communication is lTIore dif­

ficult than with data modification. At the time the option 02 detour is made from the sort, the

sequence counter is set to a: known location at the beginning of the particular sort routine. Any

location in the sort may be addressed by using the contents of the sequence counter as a base,

and adding fixed quantities (which may be in the form of FXBIN constants) to this value to incre­

ment to the desired address. S2 may be used to store the new address, since it has already

1.03

SECTION VI. OWN -CODING

served its purpose in getting fro:m the sort to own-coding. Thus, if it should be required to

change a location in the sort which is 613 words beyond the current setting of the sequence

counter, and if there should be a constant SXTHRTN FXBIN 613, it would be necessary to per­

for:m a word add (WA) instruction (WA Z, SC SXTHRTN Z, S2) to get the addres s of the location

of interest into S2. Then, anything could be done with the word addressed as N,S2.

Since S2 is used as the detour co:mm.unication point for all the options, own-coding :must

set it up, not only for the first detour point, but also for each successive one. Thus, if option

04 is specified, S2 :must initially be set to the entrance of the option 01 own-coding (except in the

case of the m.erge sort). Mter this part of own-coding is finished, but before returning to the

sort, S2 m.ust be set to the entrance of option 02 own-coding. Likewise, this portion of own­

coding :must set S2 to the entrance of the option 03 own-coding before returning control to the

sort {where it should re:main set for the duration of the sort}. If any detour is not needed under

option 04, then the corresponding portion of own-coding would :merely consist of a single word

that resets S2 and returns control to the sort. It should re noted that a detour is perform.ed only

once for each option except 03, but also noted, however, that option 03 detours for each item. in

the file.

Thus, it has been established in this section that detours exit fro:m the sort at specified

points throughout the routine to perfor:m additional instructions, or own-coding. It should be

noted, however, that it is also pos sible to perfor:m additional coding either before or after the

sort, acco:mplishing such functions as tape positioning, splitting output, etc. Although this

additional coding is not exactly own-coding as it has been defined for using detours fro:m within

the sort, these techniques can be used to acco:mplish si:milar objectives to the own-coding op­

tions, and are thus included in this discus sion.

Relocation and Bank As signm.ents

Since they m.ay expand "down-m.em.ory" only, the sorts should be loaded into the highest

possible bank in a given syste:m. Although they are nor:mally contained within that bank, the

user :may specify that additional :mem.ory is available beyond one bank in any a:mount he wishes.

The sort will correspondingly expand the storage or buffer area over and above the previous

bank, or banks, if it can use the space.

The MMMM field of the sort pseudo instruction indicates to the generators how :much

m.e:mory the sort :may use beyond the one bank it occupies. To properly relocate the sort and to

reserve the appropriate am.ount of m.e:mory, the program.:mer should specify at least one

104

SECTION VI. OWN -CODING

SETLOC preceding the sort pseudo instruction. If no own-coding is given for the sort, one

SETLOC will determine where the sort routine, along with the sort macrocoding, will be locat­

ed. However, when own-coding is used, a SETLOC, if desired for the sort routine its elf, must

be preceded within that segment by another SETLOC which will locate, relative to the sort, the

macrocoding and any further coding the programmer writes. If only one SETLOC is given with

the programmer coding, the sort will be located in the succeeding bank. The MMMM memory

specification in the pseudo instruction, and the A field of the SETLOC instruction, are related.

Starting with location 0000 of a bank, MMMM specifies the number of locations over which the

sort routine will (or may) expand backward. Depending upon the number of words of program­

mer coding, and the location specified by the SETLOC, the highest location used by the pro­

gram.mer, as well as the amount of m.emory available to the sort routine for storage beyond its

own bank, can be readily determ.ined. The MMMM field and the SETLOC should be so estab-

lished that the sort and programmer coding do not conflict. An exception would be the own-

coding of option-type 01 or 02; then own-coding and the MMMM area can overlap, since own­

coding would be completed by the time the MMMM area is used to store data. 11:). determining

the number of locations used by his coding, the programmer should bear in mind that pseudo

instructions will require various amounts of macrocoding. Specifically, L, SOR Tp requires 15

words, L, READSEG three, and L, EXIT a single word.

The sort is contained between locations 0020 and 2043, within one bank, leaving 20 unused

words at the bottom and four at the top of the bank. The latter conform.s to the stopper require­

ments of the Executive Routine, allowing the sort to be relocated to the highest bank of a part­

icular machine. The initial 20 words are enough to allow the inclusion of t~e L, SOR Tp macro­

coding plus the L, READSEG or L, EXIT macrocoding. Thus, to facilitate parallel proces sing,

a sort program may be contained entirely within one bank, when additional memory (MMMM)

equals 0000 and own-coding and pre- or post-coding are not requested. In this case, the pro­

gram.mer would specify a SETLOC of 0000 in any bank he desires above bank O. If no SETLOC

is provided by the programmer, ARGUS Assembly will assume bank 0, location 0512, group 1

for the programmer coding, and the sort would be placed in the next higher bank (normally bank

1), group L

The programmer of own-coding will want to use masks many times. Because the sort

uses the Mask Index Register (MXR), this can present a problem. There are several possibil­

ities, however. First, the own-coding may store and restore the contents of MXR each time

own-coding is entered. Or secondly, certain masked operations can be performed using a few

extra instructions, by means of the substitute (SS) and extract (EX) instructions, which do not

105

SECTION VI. OWN -CODING

require the use of the MXR. Thirdly, with a list of the sort coding, the programmer could use

the sort routine's masks. Fourth, and finally, own-coding could operate in a separate group,

using its own MXR. The first two possibilities are the most practical, since the third one re­

quires the programmer to write masked instructions in the form of decimal constants to specify

the MXR augment because the sort's tags are unavailable. The fourth method involves the use

of the Program Control Register (PCR) to turn groups off and on, and this is accompanied by the

associated problems of control in parallel processing. However, all methods are feasible.

A.RGUS Techniques ~or Own-Coding

It is appropriate first to review the method of writing the simplest type of sort call, in

which no own-coding is to be performed.

I LOCATION 10" COMMAND CODE 22 ~
PR06R,l/M

SeTtee.

ZISC SI'Ee.

£NTE~ '-I So,eTf/ S

~/ £KIT

ENt>

ARGUS CODING
FORM

PROGRAMMER

24 A ADDRESS 3731 8 ADDRESS

50RTFIlE ONt.Y.5Et;

¢¢efl2f gl

- -
¢P/~pI/ ¢~dd/A8/AtJ/RC

.5 ()/lTF/t.E oIl/LY.5Et:i

DATE PAGE OF

C ADDRESS
REMARKS

51 12 65 66 LINE NUJ4BER 7] 74 80

I f
I

(il 1

I

ENTE.e' I
I

I1P/C;4/L;y/tit;/A8 I

:
I
I

In this example, program SOR TFILE is nothing more than a sort. The SETLOC specifies that

the sort macrocoding will be included with the sort in bank 1, and thus occupy a minimum

amount of space. Whatever special register group is specified in the SETLOC will be used by

the sort as well as by the additional coding. No extra memory is available to the sort (thus the

0000 in the first field of the B address of the pseudo instruction).

The sort may also exist without own-coding as one segment of a program as such:

P RO BLEM PROGR MMER A DATE PAGE OF

22 ~ 24
1 REM A R K S

I LOCATION 10 II COMMAND CODE A ADDRESS J7 31 8 ADDRESS 51 52 C ADDRESS 65166 LINE NUM.ER 73 74 80

(j?.f£CEPI1tI4 M£NT(s))
I f SEC;

I

t/ ,eFRDSEti ;5oJ(!TF/LE EIIITE,e 1

I

.5F(iMENT PRIL.Y~UA/ .5o.erF /LE I
I

SET/.. OC ¢¢¢r;J HI 'il I

L/ENTE~ L,.5t:J£Tt,S ¢¢/¢¢/ ¢¢¢¢/IIB/I1B//JC AO/G6/66/C;C;/ALJ :
STA£TEt> I

LI ~E/JDSE<i ED/TOVT I

(FOU" W/NC; ..5E6 /'UENT{5J) I
- -

106

SECTION VI. OWN-CODING

In this case, the sort segment is preceded and followed by one or more segments. If the sort

were the first segment, then the lines preceding the pseudo instruction would be written as in

the first example. If the sort were the last segment, then the L, READSEG following the pseudo

instruction would be replaced by the L, EXIT instruction. Note that in this example the tag

ENTER is a link tag, specifying the entrance to the sort segment in the L, READSEG preceding

the SEGMENT card. Had the sort been the first segment, the tag ENTER would be stored di­

rectly in the sequence counter, as in the previous case. For the sake of uniformity, it should be

as sumed, in the following examples, that the sort, together with any own-coding that is included,

is a unique program.

If it should be necessary to perform some operation before the sort, the coding to ac­

complish this could take place in a separate preceding segment, or it could be part of a single­

segment sort program such as this:

PROBLEM

I LOCATION
10 "

COMMAND CODE 22 ~
?tf06~/lM

SETL.Oc

2 1 SC SPEC

sTA£r

L, 5eJ/zT /, S

L, E,f/T

EN/)

-

ARGUS CODING
FORM

PROGRAMMER

24 A ADDRESS 37 38 B ADDRESS
, i i I

so.eTFlt E ONLY.sECi

Z¢¢r/> s¢

- -
n£ST O£P~.e. eJr £ ~r:eA CCJP~A/6 . . .
L 19sr o,eiJE£. t!>F E XTRN COL)/A/C;

¢~/flp/ ¢ ¢¢ ¢/RB//lB//lC

S(!)~TFIL£ oN.tYSEq

DATE PAGE OF

C ADDRESS
1 REMARKS

51 52 65166 LINE HUNBER 71 74 10
, ;

I

GI 1
I

$TI1,er I
I

I

:
AP/uv/CiG/tiv/A8 I

1

I

i

In this case, the first instruction of the program to be performed is START, which is part of

the extra coding. At its completion, the sort pseudo instruction follows in sequence, and the

sort is performed. The relationship between the extra coding and the pseudo instruction is un­

important; it would have been just as well to have sequence changed to the pseudo instruction.

Note, however, that the SETLOC reflects the assignment of the programmer coding to the top of

the bank which will precede the sort. Of the 48 words between the address 2000 and the top of

the bank, 15 are used by the sort macrocoding, and one by the exit macrocoding; thus 32 words

are allotted for the extra coding. (It should be noted that because the MMMM field in the pseudo

instruction equals 0000, the sort will not extend storage over the bank boundary.)

107

SECTION VI. OWN -CODING

Now, if there had been presort own-coding, it might be written as in the following example:

PROBLEM

I LOCATION
10 "

COMMAND CODE 22 ~
PR06£I1M

SETlOC

Z,SC SPEC

Z,S2 SPEC

ENTEIl ~/SO£T.t/S

L,E%IT

OWNCObE

ENb

24

ARGUS CODING
FORM

PItOGRAMMER

A ADDRESS 37 38 B ADDRESS

soer,nLE oNLYSE~

Z tip" 6¢

- -
- -
¢1/¢¢1 ~¢¢¢I A pi /l6//IC

rt~ST hllST.e~cr;,a W 0/ OWAKO'!INCi . .

DATE

" 52
C ADDR£SS

GI

eNTE;e

OWlflcob£

11~/6lf/6t:T/qC7/Ag

1.."5T /AlST,eucTtoll. Or owN-COPING

so£TF;'Le oNI.YsEG

PAGE OF

I REMARKS
65166 LINE NUMBER 73 74 80

I I
I

1

I

1

I

I
I
I
I
I

I
1

I
I
I

This example is very si:milar to the preceding one, except that the starting location in this case

(ENTER) is the sort pseudo instruction. Again, the relationship of the lines of own-coding to the

line containing the pseudo instruction is unimportant, since the SPEC constant loaded into Z, S2

indicates the starting address. Note, however, that the exit pseudo instruction is again placed

immediately after the sort pseudo instruction since, after the sort, return will be made to this

line of coding. Once again, it is assumed that the own-coding requires 32 words or les s, and

that the program should occupy a minimum amount of space, thus having a SETLOC, of 2000.

The 01 in the first field of the A address of the sort pseudo instruction indicates that the detour

to own-coding is to be made just after the beginn~ng FID record is read from tape AB by the

sort modifier-generator.

Now if there should be merge sort own-coding, it might be written as in the following

example:

PROBLEM

I LOCATION
10 "

COMMAND CODE 22 ~
J7£a6RI1M

5ET/..ac

Z,SC sJ7£c

ENTER i, Soer;.5

LI EXIT

SEGMENT

5 ETL-OC

z,52 SPEC

5TII£T

10

II EN"

108

ARGUS CODING
FORM

PROGRAMMER DATE

24 A ADDRESS 3738 B ADDRESS 51 52 C ADDRESS 6566

.50£71=/££ 50RTSEt:;
I

¢¢¢¢ 81 '1/

- ENTE.e

¢¢/ ~z / ()W!VCLJPE 1{II~¢IAI3/A8IRC liP IqG/1i If/'1C7/AB

saleTFILE oWAiCOf)£

2P~~ B~ t:;/

- - srAler

FI£.>T lNSTRUcTI ~N OF OWN- C~f)INt;
,"'ST lAlSr.eUCTi (>N CJF ,OWN-coP/AlIj

SO£TFILE 50.eTSE~

PAGE OF

REMARKS
LINE NUMBER 13 74

J

I

I
I

I
I

I

:
I
I

I

:
I
I

i
I
I

80

SECTION VI. OWN -CODING

This time, the coding is a bit more involved. The first SETLOC specifies the bank for the sort,

since it is used only to locate the sort and exit macrocoding. Notice that the segment name

OWNCODE is specified in the sort pseudo instruction, where it performs the function of a

L, READSEG pseudo instruction. The own-coding, including the setting up of Z, S2 and any

SETLOC, must be in a separate segment with this name. The exit pseudo instruction is still

located in the same segment as the sort pseudo instruction, and immediately after it. The sec­

ond SETLOC now specifies that the own-coding will be contained in 48 words. Care must be

taken that the merge sort own-coding segment will not overlay the original sort macrocoding.

Now consider the coding to be performed after the sort is finished. As with coding before

the sort, this may take place in a separate segment, or it may be part-of the segment including

the sort:

PROBLEM PROGR ER AMM o ATE PAGE OF

LOCATION COMMAND CODE 22 ~ 24 A ADDRESS B ADDRESS 1 REM A R K S
I 10 II 3731 51 52 C ADDRESS 651116 LINE NUMBER 73 74 80

PR06JUIM so.erFIL.E oNLYsE4
I !

I

5ETLO, 2¢¢p 8¢ til 1

Z,sc SPEC - - ENTER. I

¢¢/¢¢/ ¢¢¢¢//I/J/R/!>/ ~C AI>/(i~/(j(j/(J(;/ AtJ
I

£NTEIZ. t.., SO~7i5 I

FIEST INS7£~CT/(~~ of A/>P/T/P.NAL C ':)/>11/'"
1

J . . . I
LAST INST;ei/CTIO rv OF ;9P~/TION/}L roL)/A/tj I

'-, £;(17 I
END SOR'TFILE ON'-YSEIj : --- - -- ----- - - -----~-t- -- - - - --- -

The SETLOC should again be specified to allow room for the programmer coding in one bank.

Thirty-two words or les s of extra coding are as sumed, since the two pieces of macrocoding will

require 16 words. When the sort is finished, control reverts to the line following the sort

pseudo instruction; thus, the extra coding is performed.

One final example is given to show how all of these features may be combined. Of course,

any combination of own-coding, or before- and after-coding" may be used, and the arrangement

shown is only a suggested approach. To point out some different techniques, assume, for pur­

pose of example, the following: a four- bank machine (implying the existence of the Executive

Routine in locations 0000 to 0511 of the first bank), presort own-coding, merge sort own-coding,

before- and after-extra coding, each of 100 words, and no other program in parallel. For

optimum efficiency, it is required that the sort use as much extra memory as possible. Now

109

SECTION VI. OWN-CODING

observe the following example:

PROBLEM PROGR M ER A M DA E PAGE OF

LOCATION COMMAND CODE 22 ~ 24 A ADDRESS B ADDRESS C ADDRESS
1 REMARKS

I 10 II 37 38 51 52 65166 LINE NUMBER 73 74 80

I'IlOq/lnM SC.eAM.8LE
I 1 MIJ/NSELi

I

Sf:TLOC ¢51 2 i3¥ Ci3 1

I

Z,SC SPEC - - cOMMENCE. I
I

Z,SZ sPEc. - - P50WIVCOD I
c.oMMENCE F/,eST i~Sr.,el/CTION (JF. /J£F(J ~-.sO.eT eX T.e~ cC: 0/..y9 : I

LRST IIW'STRUCTION of ,oc, ~.eE- saeT &;,x T.eA Co ~/N'4/
I

i, SO.eTf, 9 pJ3/¢3/MEKCODE 5316/CA/CA/c8 c.c/CD / CE/t?G I AJj I
R.e~r I VS?;.ellC.TI(J/t/ o~ /1FT. ~.e: 50£T ~k7£A. co ~/~4'

1
I

I Jl¥sT,el/CT/OA! OF Ai
. . I LAST 7Ee-So£T £X7~ U!> IP/N<1

I

10 L, EXIT
1
I

PSOWNCOP F/~j /NST;RUCT/oA/ o~ P~ SOR.T o WAI-c01!1 1\
I

6 • I
II

. . . .
I LAST I/vST.eUCT/oA/ OF P.€Eso£T 'owN- co ~/IV4/
I

12

¢~¢P
I

SETLoC ~3 (i3 I 13

I
14 5Et:;MEAiT SclCAMBlE MERcol>E I

15 S~TLOc p728 i3¢ <i.3 :
16 z,sz 5PEC - - MSOWNCoPE :
17 MSOW/Ilcol> F,! ~T ~NSTIll/CT/ ON. OF M.EI!6ESoeT 0'1'#-' :"'O,?llVti ! . . .
18 LJI~17 /NsT.el/CT/oN OF MJ:tf!6ESo.er 6)1U/V CONIV~ I

I
19 EN!> sc,<,AM8LE MAINSEy I
20 :

Several things should be pointed out here. The initial SETLOC of 512 indicates that the before­

sort coding will occ;upy memory locations 512 through 611, the sort macrocoding 612 through 626,

the after-sort coding 627 through 726, and the exit macrocoding location 727. The presort own­

coding would then occupy 728 through 827. Notice, however, that the second SETLOC places the

merge sort own-coding directly over this area. This is entirely feasible since segment MER­

CODE is loaded only at the time the sort is reloaded, that is, at the beginning of the merge sort.

By the same reasoning, Z, S2 is overlaid by the value MSOWNCOD at this time, so that the

merge sort may communicate with MSOWNCOD rather than PSOWNCOD. In general, the merge

sort own-coding m.ay always overlay the presort own-coding in order to save space. However,

care must be taken that the macrocoding and any before- or after -sort instructions are not des­

troyed. Because of overlaying presort and m.erge sort own-coding, the highest location reached

by programmer coding is 827. 3(2048) minus 828 gives 5316, the amount of memory which the

sort my use for item storage in addition to its own bank.

110

SECTION VI. OWN -CODING

Specific Own- Coding Options

In the preceding section, it was explained how to relate own-coding and before- or after­

sort coding to the sort in terms of ARGUS Assembly and the Executive Routine. Now it is ap­

propriate to examine each of the own-coding options in detail, considering what can and cannot

be done with each option, as well as reviewing all the significant special registers.

Most of the operations performed, before the operation of the sort commences, would be

simple tape positioning routines, since anything more complicated should normally warrant a

separate segment or program. Before the sort, it might be necessary to search the input tape

for a certain segment or file, or rewind all tapes used by the sort, or position all tapes. The

last-mentioned item might be useful at an installation where information is kept in several in­

itial records of each tape. With a small amount of coding attached to the sort to position the

required tapes, tapes could be mounted and control could go directly to the sort segment, with­

out loading and performing a complete tape positioning routine. Since no special registers are

loaded directly by the sort, the programmer has complete freedom. to use any he wishes. In

general, in order to facilitate relocation, it would be well to perform all but the simplest opera­

tions as a separate segment or program.

Although presort option 02 is the method normally used to modify the sort routine after it

is generated, there are occasions when it is necessary to make some modification before

generation. It might be necessary to eliminate the reading of the first record from the input

tape, in the event that a non-standard FID record is used, or it might even be necessary to

eliminate the sort's read routine altogether. Any such changes would require a detailed listing

and knowledge of the sort, as well as some means of locating a point in the sort. The former is

beyond the scope of this manual. The only tie-point at this time is a SPEC constant in the

thirteenth word of the sort macrocoding, which contains the address of the first location of the

sort routines. (See Section II, Calling for, Assembling and Executing the Sort, for a list of the

sort macrocoding.) Using this location as a base, it is possible to step up to the area of the sort

which reads the first record from tape. This can be done by using address arithmetic, and then

modifying or negating the coding found there.

Presort option 01 has been provided to allow a standard set of beginning FID sort para­

meters to be created for files which do not carry such parameters (but which nevertheless must

have a standard beginning FID banner word), as well as to allow the revision of parameters

which may be there. It allows complete specification of the sort parameters thrQugh coding,

independent of the data. The transfer to N, S2 is made after the presort modifier has interpreted

111

SECTION VI. OWN-CODING

the sort pseudo instruction parameters, but before the generator has interpreted the beginning

FID record from the input tape. x6 is set by the presort to the first word of this record, which

has just been read into memory. Therefore, it may be used to addres s (through index addres s­

ing) any words to be replaced with constants from own-coding. The following registers may not

be changed during option 01 coding (unless stored and restored): SC, MXR, UTR, X6, X7, RO,

SO, and also the bank bits of CSC.

To illustrate the normal use of option 01, assume that it is necessary to sort a ITlaster

payroll file. Because this file is already ordered, and therefore not norITlally sorted, its be­

ginning FID record contains no paraITleters. It is ordered by eITlployee nUITlber in word 1 of the

item. However, it is necessary in this case to sort by employee naITle in words 2 and 3. The

items are variable in size, maximum of 30 words each, and packed five to a record. The mas­

ter file itself will, of course, be saved. The output of the sort will be used as input to a report

generator, which will be a separate prograITl following the sort. Here is how such a sort pro­

graITl could be written.

PROBLEM PRO R M ER GAM DATE PAGE OF

LOCATION COMMAND CODe 22 ~ 24 A ADDRESS B ADDRESS C ADDRESS
REMARKS

I 10 II 37 38 51 52 65 116 LINE NUMBER 73 74 80

?R06R,t)A4 SO~TMF N/1M£FL/)
, ;

I

ScT/..Oc 2¢Z7 8{1 <il I
I

Z,sc. SP£C - - 5 TRT.50R7 I
1

Z,S2 SPEC - - o WNcODlVff I

ST~Tso~T 1., SOR.T2,S (J/ /rJ¢/ ¢¢r/ul/tJ/~/8n/8B JJC/ qCi/tiG/(j(j / P/I
I
I

L,cXIT I
I

OWNcobN(i TN c c, +1 2 0,4 I

TX .5 Z, SC - z ... eSC i
PEe ¢¢S(>3tPJ I

I

10 bEe. ¢¢Z¢¢3 I

" EA/I> SO£TMF NnMEFLi>
I
1

- I -12

This own-coding consists of two instructions and two constants, representing the parameters

normally found in the beginning FID record. The TX instruction restores the cosequence coun­

ter bits, and the sequence mode is specified, so that control will be returned to the sort after

the TN instruction is performed.

Presort option 02 has been provided to allow changes to be ITlade to the presort itself,

after it is ITlodified and generated. These changes may be as extensive as the prograITlmer

112

SECTION VI. OWN-CODING

wishes, and m.ay be m.ade by overlaying or m.odifying any existing instructions in the sort pro­

gram.. This, of course, requires fam.i1iarity with an Assembly listing of the sort routine. The

technique used to address the sort, as explained earlier, is to start with som.e known address in

the sort as a base, and to use indirect addressing in the own-coding to step to each word of the

sort to be m.odified. The m.ost convenient tie-point at this tim.e is the sequence counter, which

is set to the first instruction of the presort program.. The following registers m.ay not be used

(unless stored and restored): SC, MXR, UTR, RO, SO, and also bank bits of CSC.

Som.e typical m.odifications which could be perform.ed at this option are: extend pre­

cision beyond triple; add a detour at the end of presort (to perform. sum.m.arizing, totalling, or

checking functions); or m.odify or replace the READ area (for instance to read directly from.

cards). Detailed procedures for these m.odifications are beyond the scope of this m.anual, but

the general approach for each is given. Extended precision is gained, in the triple -precision

sort, by m.odifying the WL area (com.m.on m.ulti-precision routine associated with the tree), as

explained under Precision in Section III. Branches at the end of the presort m.ight be installed

at any of a num.ber of places, depending on what was to be done at that point, or what was to be

changed. A technique for branching off from. the presort to own-coding is to replace two of the

sort instructions with a TS instruction and a SPEC constant. The SPEC constant can contain

the addres s of the first instruction of own-coding to be perform.ed when the branch is reached.

The TS instruction can transfer this SPEC to som.e unused special register, and go to own­

coding indirectly through the special register. Of course, the two instructions replaced in the

sort routine should be ones that are no longer useful, or they should be perforITled in the own­

coding area when the branch is m.ade. In changing the READ portion of the presort, a sort

should be generated which com.es clos est to looking like the final version desired by the user.

This would suggest generating a sort to handle the item. size and record packing to be used

throughout presort and m.erge sort, (specified by the ID record or through presort option 01),

and then, at option 02, m.odifying the read and/ or input routine to conform. to the input specifica­

tions. If, however, input record blocking size is larger than that to be used by the sort, the

buffers will have to be set up in own-coding, and the m.odified item.s m.ust be supplied to the sort

one at a tim.e. The area in the presort involved in m.odifying reading is the READ area, and also

a portion of BEGIN (the initial read).

Presort option 03 has been provided to allow changes to be m.ade to each item. before it is

processed by the sort. This option differs from. the others in that the detour to own-coding is

perform.ed any num.ber of tim.es, depending on the num.ber of item.s, rather than just at one

tim.e for the entire sort. The sim.plest uses of this option are those involving changes within

the item.: key translating based on a table; key rearranging or com.pacting into som.e unused

113

SECTION VI. OWN - CODING

location within the item; batch totalling; or simple item proc es sing. With a small amount

of extra coding, it is possible to duplicate items (expanding a compacted file), or delete

items (selective sorting). Item size may also be expanded or decreased to insert new keys,

or discard unnecessary information~

When the transfer is made to N, SZ for option 03, the sort is ready to transfer an item

from its input buffer to item storage. The item location in the buffer is addressed by Xl,

and the vacant location in storage is addres sed by X7. If control is returned directly to the

sort (without changing the sequence counter), the transfer will be performed by the sort.

Alternatively, own-coding may perform the transfer and increment the sequence counter by

1 to bypass the transfer in the sort. An item transfer (IT) or TN instruction should be used,

since the sort depends on the contents of AUI and AUZ to modify Xl and to place a word count

in the end-of-item symbol of variable- size items. At option 03, the following special regis­

ters may not be changed (unless stored and restored): AUI and AUZ (after item transfer), SC

(except as noted), MXR, UTR, XO, Xl, XZ, X3, X7, RO, RZ, R6, R7, SO, SZ (used continu­

ously as a link to own-coding), and also bank bits of CSC. Since the presort uses all regis­

ters except Sl and S4 through S7, nothing can be stored by own-coding in any registers except

Sl and S4 through S7.

Adding or Deleting Items (Presort)

In adding or deleting items, it is possible to retain the sort's reading and buffering

processes. To do this, it is necessary to understand the relationship of own-coding to the

sort, as sh-own in Figure 18. When the option 03 detour occurs, Xl contains the address of

the current item in the sort input buffer. Immediately after the detour, the sort will trans­

fer this item to its storage area. (placing a word count in the low- order portion of the end­

of- item word if variable- size items are being handled). The sort will then step the input

buffer to the next item (reading and switching buffers, if nec es sary). These functions (trans­

ferring' word counting, and buffer stepping) are performed in an area called ITEMTRAN.

The final instruction in the ITEMTRAN area may be addressed at option 03 by incre­

menting the contents of the sequence counter by 5. This instruction is a TS instruction with

all three addresses active. Its C address is pertinent to this discussion. By effectively

replacing the C address with a branch to own-coding, a return may be made to own-coding

immediately after stepping the buffer and without processing the item. Conversely, own­

coding may exit to the location specified by the C address of the sort TS instruction, and hence

return to the sort to process the current item without stepping the buffer. When performing

ITEMTRAN, but bypassing the complete sorting process of an item, it first is necessary to

114

SECTION VI. OWN-CODING

END SORT'S
PROCESSING
CYCLE

OWN-CODING
r..;....;;~~,.lN~S~2:==-;:;;=~==::~NNOO"RRMM.AL OPTION (l13 EXIT

ITEM
TRAN

.........

1,(l1~7,(l1 .SC
(\\ORO COUNT
-+ EOI SVM
STEP BUFFER "S C+5(AT N,S2

TIME)

...... ---- - ---'

BEGIN SORT'S
PROCESSING
CYCLE

INPUT BUFFER XI_a

Figure 18. Presort Own-Coding

STORAGE

X7~ 1------4

maintain the transfer from A to B in the last order of ITEMTRAN; this is always Z, AU 1 into

Z, Xl (stepping the input buffer). This TS instruction may be replaced in the ITEMTRAN area

with a simple s equenc e change to own- coding, where the transfer of Z, AU 1 to Z, Xl should be

done, The instruction originally at the end of ITEMTRAN should be stored at some time by

own-coding, so that it may be replaced when normal operation is desired. Any of the special

registers, except those used in ITEMTRAN and the reading routine (Xl, XZ, X7, AUI, AUZ, R7),

can be used to transfer control to a particular portion of own-coding from the end of ITEMTRAN,

as long as all the necessary ones are restored before returning to the normal sort process.

When bypassing ITEMTRAN, the low-order 11 bits of the C address of the final instruction

should be substituted into some working special register (the bank designators in the working

special register may be obtained from the sequence counter), whereupon this register can be

used to return to the sort. Once the substitution has been made, the address thus obtained

may be stored by own-coding as a SPEC constant for subsequent use.

Therefore, two connection points between the sort and own- coding must be considered

in the addition and deletion of items. One is the normal option 03 detour from sort to own-coding.

Own-coding may return to the sort at this point by returning control to the sequence counter (if

it has been destroyed, then by restoring the sequence counter and going there). The second

connection point is the end of the ITEMTRAN area, which mu.st be modified by own-coding

115

SECTION VI. OWN - CODING

if a detour is to be made there. Thus a detour from sort to own- coding is made by placing a

TS sequence change in the last location of ITEMTRAN, addressed through the sequence coun­

ter (at the previous detour) plus 5; own-coding must then perform the final instruction. At

this point, a return from own- coding is made by going to the address stored by own- coding

from the C address of the original instruction at the end of ITEMTRAN.

Depending on the type of own-coding desired, these two connecting points may be used in

a variety qf ways. For instanc e, to add items, it would be nec es sary to bypas s the sort's input

buffer stepping (ITEMTRAN). A generated item may be sent to the location specified by X7,

and control returned to the sort at the exit of the ITEMTRAN area. In the case of variable­

size items, the following instructions will supply the word count as the ITEMTRAN area would

have: WD Z, AUZ Z, X7 WORKING, WD Z, AUZ ONE Z, AUZ, SS WORKING l6BITS N, AUZ,

where WORKING is a working location, ONE is a constant of 1 in the right-most position, and

l6BITS is a mask of the low-order 16 bits. When an item is to be processed from the sort's

input (either as it carne or as modified by own-coding), then the ITEMTRAN may be performed

in the usual manner or, alternatively, own-coding can transfer the item to 7, 0 and skip the

first instruction of ITEMTRAN. In this case, Z, AUI should be set as it would after transfer

of the item from the input buffer, and Z, AUZ should be set as it would be after the transfer

of the item to storage. To step through the input buffer without processing items (deleting),

ITEMTRAN is performed (transferring the item and stepping the buffer), and then a return

to own-coding is made to consider the next item. With this method, one or more unwanted

items may be transferred to the same storage location, but they will be overlayed by the

next item to be processed.

In expanding or contracting items, the largest item size involved should be specified

when stating the sort- parameters. Also, the sort should be specified for variable item size,

whether the input is variable or not. Own-coding can transfer the item from N, Xl (the item

in the input buffer) to its own working area, operate on it (expanding, contracting, adding

end-of-item symbol), and then transfer it to N, X7 (the item storage area in the sort). After

the first of these transfers, the contents of AU 1 must be stored. It must then be restored after

the second transfer, before control is returned to the sort, otherwise Xl will be set to the

own-coding working area rather than to the sort input buffer. The sequence counter should be

inc remented by 1 before returnIng to the sort in order to bypas s the sort's transfer instruction.

The following examples illustrate some of the techniques which can be used with own­

coding option 03. Corresponding examples in the section on merge sort option 03 will relate

to these. EXAMPLEA illustrates a simple key translation, assuming a signed numeric key

116

SECTION VI. OWN - CODING

(sign and 11 digits) with some positive and some negative quantities. Also, it is necessary to

sort so that the output is in strict ascending nUITleric order: - 99 ... 9 through ±OO ••• 0 through

+99 ... 9. This will occur if all negative nUITlbers are cOITlplemented, retaining the zero nega­

tive sign, and if careful consideration is given to insure that all positive signs are Gs. As SUITle

for purpos es of explanation, a 10 -word, fixed- size item, packed 10 to the record, with the

numeric key in word 1. The correct paraITleters are in the file ID record.

ARGUS ;g~~NG
PROBLEM PROGRAMMER DATE PAGE OF

LOCATION COMMAND CODe 22 ~ 24 A ADDRESS B ADDRESS C ADDRESS I REM A R K S
I 10 II 3738 51 52 65 1111 LINE NUMBER 73 74 80

r'Ro4£/JM ExJlMPlEI1
I ;

ONtYSECi

jETtoc. 2 tlz I ~? £lz 1

I

Z,SC SPEc. - - .5TRt<.T I
I

Z,Sl .sPEC - - OWNc.opc I

STII£T i,so.eTl,¢ ¢ 3/$tP/ ¢¢¢¢/CI1/CA/C6 eC/CI)/(ilj/llG / C£
I
I

L I EKIT I
I

OW/I!UJPE EX, e
" tJ Sl4NMRSK W(J~/(IN6 I

Nil e WDI!KINq ZER.o e,+3 I
Nil C " ¢ NUMI1.51< I, ¢ I

1

10 Tx 5 Z,SC - z,csc i

" S5 c. S ItiNM ASK. SIt:;/IIM''lSK I, ? I
I

12 TX 5 z/Sc. - Z,CSC I
l

13 WO£/(IA!q RoESE ICVE I i
I

14 51611/ MIISK PEe ~ I

15 ZE/Z.O PEe ¢ :
J/uMM4Sk OEc. ¢Q"(i4Cilili(iliQ<l I

I
16

17 eNo E XAMP:LEI1 ONLYSECi I

EXAMPLEB illustrates a useful technique for keeping running batch totals froITl prograITl

to prograITl. Because it would be necessary to use own-coding option 02 in both the presort and

merge sort in order to modify the end FID records, it is convenient to have a final filler iteITl,

or items, at the e:tld of the file, whose keys are all higher than any possible in the file, so as

to contain the final total for the entire file. In EXAMPLEB, assume the same file structure

as in EXAMPLEA. Here it is desired to keep a running total of the aITlount in word 5 (as SUITle

a full signed decim.al word) and also an iteITl count. These are to be recorded in words 5 and 6

of the dum.m.y iteITl, which consists of words of GG •.. GF (to distinguish it from other fillers

of all hex GIS.).

PROBLEM PROGR MMER A DATE PA GE. OF

LOCATION 10' II COMMAND CODe 22 ~ 24 A ADDRESS B ADDRE.SS C ADDRESS
1 REM ARK S

I 37 38 51 52 651l1li LINE NUMBER 73 74 80

p,eo 6 RNM ExAMPLED oNLYS£4 I ;
I

S£TLac Z¢ZZ 8¢ <;Z I 1

117

SECTION VI. OWN-CODING

z,SC .5PEC - - 3TRRT I
I

Z,5Z SPEC - - OWA/eobE I

STA£T J.,SO~TI, ¢ ¢3/~~/ ¢¢¢~/C/1/cn/C.8 ec/cP/GC;/(iti/C£
I
I
I i, t:XIT 1

OM/NCdPE NA e 1,(1 (jSWITHF C,1-3 I

TAl c TOTALS 2 ',4- 1

TX ~ z,sc - z~:sc-
I
I

10 PA c TbTnls ',4- T()TALS I
TOTI4LS -t/

I PA C Tor/USN ONE I
II

TX s Z,.$c - z,csc I
I

12

13 C,SWITIIF DIEc... tfCiqqy~ti(iqtHi F i
I

14 ONe PEt:. +1 I

15 ToT/U.s pE.e +~ :
16 pEe -tp 1

e/110 EKAMPLe8 ONLYSEt; I
1

17

EXAMPLEC illustrates a useful technique to sort a "compacted" file, which might be an

insurance policy file with one item per policy. Within each item, starting with word 11, are

the names of family members (if any). The number of additional names is specified in the

twelfth digit of word 2. Word 3 contains the family's last name, and word 4, the policyholder's

first name. The items are variable size with a maximum of 30 words. It is also desirable, at

this point, to set up a cross- reference file, sorted on a double-precision key of last name and

then first name, and which represents everyone covered by insurance. The policyholder

(original) items are to remain the same, and the cross- reference iterns are to have a special

identification (stating that this is a cross- referenc e itern) in word 1. Also, the policyholder's

first narne is to be in word 2, the last name in word 3, and the farnily member I s name in word

4. It shall be assumed that the beginning FID record contains the proper parameters to allow

sorting on words 3 and 4.

PROBLEM PROGRAMMER D ATE PAGE OF

LOCATION COMMAND CODE 22 et A ADDRESS B ADDRESS C ADDRESS I REMARKS I 10 " 24 373. 51 52 6566 LINE NUMBER 73 74 80

p~() t?,eAM £X/l/VtPlEC
, i ONLYSEt:l

I

S£Tloe 1964 JJ? Ci2. I

2,SC
I

SPEc - - START I

Z,S2 SPEC -
I - IN'TIRL I

S7neT i, so.er z, p5 P3/11~/ P tlslt)/CA/CA/C/J Cc/CIJ/tili/iZli/CE :
L, EX'T I

I
INITIIlL TX. C z,sc - Z,x4 I

ss c 4,s suBAPb/lS z,X4
1

TX c z,X4 - SKIPITTJe.. I
I

~ ,

118

SECTION VI. OWN-CODING

10 TJI. c :5PECOWNt:: - Z, :52 I

OWNcOOE EX Ie 1,1 q WO~KINq
I
I

II

AlAI c WtJRKIN4 Z£~o C, -1-2 I
I

12

I

13 7X. S Z,SC - z, esc I
r

14 IT e N,KI Plhl1 M IT EM -//- e lIll."RI TEM I

15 TX c SI'Ecl3YPS - ZI S2 :
16 TX c SPEt::NAME - .5 ToR SPEc.. I
17 TJ('e CUliUVTEM+2. - PUMM/TEM-!Z !

Tx.. c. CUR~/TEMf3 - Pl.IMM/TEMf/ I 18

I
19 Tx.. :5 z-, SC- - Z,CSt:: I

Bypnss Tx.. e STo/i!,SPEc - ,ZI !C.I
I
I 20

,---r-r"-T--.-- ,--- T" r--

T " ,
TX AlI,e/,1 PUMM/TEM +3 ,

f C - I

WI) c WOKKINq ONt Wd£.K/Alq I
I

IT C Pi/MAtt/TEM l>UMMITEM-f4 N,X7 I
I

TJ(c Z, Ii:./ - 51oR,SPEC I

7X c SK/PlrT~ - z,~1 :
11111 c WOl?KlNy ZERO S+3 I

I

T.5 c SI'ECC>Wltlc Z, :5 2 ttl, R/ I
TX S Z, sc -

1
Z,csc I

TS .s Z,5C 'Z/csc N,R./ I
I

10 :5U8AP"~S PEC -744 i
'i /JEC -<1

I
I

II

12 ZE~O PEC -¢ I
I

13 ONE Pee -/ i
I

14 51'ECOWNe SPEC - - QWNCClJ)E I

15 :5PEcBYPS SPEC - - 8'/1'.4.5.5 1
16 5f>ECII/IJME SPEC - - ClIt:Ii!..ITEMtl; I
17 tJUMMITEM ALF c/i?eJSSREF !
18 ~ESE.eVE 4- I

I
19 CU~.e/TEII(f R£SE£VE 3Jlf I

WeJRKINq ~ESEteVE I
I
I 20

, r -,---,--

T"~'·'
T,-,-----,--,-

-'KIP/TTR. sPEC
,

f - - I

:5 TO RSPEc SPEC - - - I
I

EN" - - - I

The section called INITIAL is performed only when the first option 03 branch to own­

coding is made. This section changes the contents of Z, S2 to the normal setting of OWNCODE.

This picks up the C address of the last instruction of the ITEMTRAN routine and stores it as

a SPEC constant in SKIPITTR. Whenever an item is found containing family names, several

working areas are initialized. Z, S2 is temporarily reset to BYPASS, and the item is handled

119

SECTION VI. OWN-CODING

normally. Each time the sort branches to BYPASS, through the normal option 03 exit, a dummy

item is created and sent to N, X7, and the sort is entered through the previously stored exit

from the end of ITEMTRAN, thus bypassing the ITEMTRAN routine. When the last dummy item

of a particular policy is sent into item storage, Z, S2 is restored to OWNCODE and the normal

process resumes in order to consider a new item from the input buffer.

EXAMPLED illustrates the opposite approach of deleting items. Suppose it is necessary

to write a "one- shot" program to extract all males over 25 years of age from an employee

file and sort them by age, and (within age) by years of service. Again, it can be assum.ed that

the proper information is set up in the beginning FID record. Also, assume the sex code is the

first digit of word 2 (0 for female, 1 for male), age is the second and third digits, and years

of service the fourth and fifth digits. (The sort can, therefore, be a single-precision sort with

mask of OGGGGOOOOOOO.)

PROBLEM

I LOCATION 10 II COMMAND CODe

The own-coding to perform the selection follows:

I

22 Ie 24

ARGUS CODING
FORM

PR GR 0 AMMER

A ADDRESS 37 38 '0 ADDRESS

DATE

51 52 C ADDRESS 6566
--'~"'-'-"""--'--'--'--'-T -.-.-----r,-- r-r. -,- r'--.--.--,-- -, I I I I [I I

I

P~O(j.eIlM £XAMPLE~ ()NLY5E~

SETLoe 2t;1(8¢ tiZ

2, se SPEc - - 5T'1,cT

Z,SZ .5F'EC - - OWNc.OPE

STIlR7 L,SOIlT~ ¢ ¢3/¢f// ¢~¢?I CAl c///c8 CC/Cb/~(j/Citi/C&

L, eXIT

OWNCot>E ex c ~I .5E~M,LISK W(}RK.(II/(j

NA c W(}/lKIIII(i oNE pELEr£.

eX c 1/ I A (iEMASk W£1RKIA/li

10 Ln c W(}R.KIN4 TWIVTYF/V t>ELE7E

" TX S' Z/se - Z,CSC

/>eLETE TX e z,sc - Z ,,x4
I

12

13 7--' e 4,5 - 5T()RE

14 7x C. R£TlLRA/ - 4/ S-

15 7)(c 5f'ECKST,e - Z,.el

16 TX oS Z,5C - Z,CSC

17 RESToRE. TX c::: Z,IIU! - 2/X1

18 TX c S7aIC/3 - 4,5

19 75 c 2,)(4 2, se t) WNCOf)E

20 SEXMASk DeC G
, , , , , , , , , , , , , , , I ~I ,-'-1 T r-r-r--r : : , , , , , , l' 1 I'

"
: ~1 1I--r--T--!~1

AqEMASK PEe
, I

-¢G4

ONE t>Ee I

TWNTYFIV ()Ec ¢2S

SPEC.~3TIl. .5 PEe - - REST~.e.E

120

PAGE OF

REMARKS
LINE NUMBER 73 74 8,0

; ;

I

I

I

I
I

I
I
I
I
J

I

:
I
I

I

I
1
I
I

i
I
I

:
I
I

I
.1

I
I

I
I
I

1~1 r I r I I I

I
I

I

I

I
I

I

SECTION VI. OWN - CODING

RETLJRN T.s ~RI
I

c - - I

WOIi!K/II/Q PEe II
I
I

.5 Tol!£ PEe ? I
I

EN/) E;(AMPL£b oNLY~Eq I -
(Note that the second instruction in the DELETE section could have been performed once only,

the first time through own- coding, as performed in the prec eding example.) The proc essing

of a normal item to be sorted will require only the OWNCODE section. When an item is to be

deleted, the DELETE section sets up the exit of the ITEMTRAN portion of the sort to return

directly to the RESTORE section of own-coding. Thus ITEMTRAN steps to the next item in

the input buffer, reading if necessary, and then transfers control to RESTORE. Here, the

transfer of Z, AU I to Z, Xl, normally done at the end of ITEMTRAN, is performed and the

exit of ITEMTRAN is restored to its normal setting. OWNCODE is then entered to process

the next item.

In the next example, EXAMPLEE, it is desirable that one word be added to each item,

which will be an item count to be used as an additional key. This technique is useful if an

order-preserving sort is desired, that is, one in which all equal keys will be ordered in the

output the same way they were in the input. In this example, there are again lO-word items,

fixed length, with keys in word 1. Assume the beginning FID record has been modified to

prescribe variable-length itenlS (maximum length of 12 words) with the first key in word 1 and

the second key in word 11. Own-coding will be used to expand each item to include the item

count in word 11, and an end-oi-item symbol in word 12.

PROBLEM PROGR MMER A DATE PAGE OF

LOCATION COMMAND CODe 22 ~ 24 A ADDRESS B ADDRESS C ADDRESS
REMARKS

I 10 II 37 38 51 52 6566 LINE NUMBER 73 74 80

f'R06£AM £~II MF'L£E ONL.YSE(j.
I ;

I

SETL oc. 2¢'Z 13~ 4z I
I

z, sc. SF'£e - - .5 Ta.eT I
I

'Z,52 SPEC - - o WNco I>E I

.5Tf}~T I.,SO£T2,? ¢3/¢11j ¢lfI'f//orcn/c.8 cc/cP/(fu/Ci(i/CE.
I
I

'-,EXIT I
I

ow.vCot>c TN c- 1;1 I{I W().eKI/I/<; I
TX c Z,I1L.1I - I

sToA?eAL.I/ I
PA c: IT£MC.NT ONE IT£MCIIIT I

I

10 17 c W()RKIN4 1t1/()~K lAIC; + 1/ "0(1 I
TX c sTo,fEAU/ z,AU/

I - I
II

12 T)(S z, SC/ I - z, esc I
I

13 WOIl.!(JNq RE,56t<lIe II I

121

SECTION VI. OWN - CODING

14 I TEMc.NT PEe +¢ I
15 .OEc ¢

:
16 STOREAU/ PEe ¢ i
17 CJAlE PEe: -1-/ I

I

18 ENt> E.t'AMPLEe oNLYSE'f i

Of course, if the original file had contained variable- size items, the TN instruction in OWN­

CODE would be an IT instruction. In such a case, the first IT would use the B address to dis-

pos e of the end- of- item symbol in some unus ed location. Care would also have to be taken to

obliterate the original end- of- item symbol in the WORKING area.

The final example, EXAMPLEF, represents a situation where there is a file of variable­

length items (maximum of 30 words), but only the first four words of each item, regardless of

its size, are of interest. In this case, it is still necessary to specify a sort which will have stor­

age and buffer capacity for 30-word items. However, the amount of information on tape can be

reduced by making all items five words (including end-of-item symbol) thus reducing the over­

all time of the sort. Once again, a proper beginning FID record, calling for a variable item-

size sort (maximum of 30 words) can be assumed.

PROBLEM

I LOCATION 10 II COMMAND CODe

P~Ot;ICAM

~ET/...OC

Z,SC SPEC.

z,5Z SPEC

STIU.r l,SO£TI,¢

L, EXIT

OWNCOOE. IT

7K

IT

10 TX

" TX

12 WtJ£KINy RESE~vE

13 ST°R.~AUI pE.e

14 EN/)

ARGUS CODING
FORM

PItOGR MMER A

22 ~ 24 A ADDRESS 37 31 B ADDRESS

ExAMPl£F ONlYSE(j

1996 Bt/J

- -
- -
¢3/",,/ N¢(J/cA/eH/c.t3

c IV, XI WO~KIA/q

c Z, /lUI -
c WOK.KINt; WIJ!ZkIN(i-f4

C sTOICEAV/ -
:; Z, sc., I -

3¢'

¢

£XAMPL~F ONLYSEti

DATE PAGE OF

C ADDRESS
REMARKS

51 12 65 66 LINE NUMBER 13 74 10
,

I
I

(j2 I

I

5Tn~r I
I

OWNcolJE I

c.c/cp/qy/yu/c£ :
I
I

Wollk.INlj I

.5TOICEAU/ I
AI, K7 I

I

Z,l}lI/ I
Z, esC I

I
I
I

i
I
I

It might be considered that a single item transfer instruction, under control of own-coding,

would accomplish the same thing. However, it is necessary to perform both transfers in order

122

SECTION VI. OWN-CODING

that AU 1 will be properly set up to find the next item in the input buffer. Thus, one transfer

handles the full, original, variable item, while the other handles the new, compacted item.

The former is used to pre-set AUl, the latter to set AU2.

Presort option 04 specifies that all options, 01, 02, and '03, are to be observed by

the sort. It is therefore necessary that there be own-coding corresponding to each option

which, if nothing else, performs the task of setting Z, S2 to the entrance of the next set of

own-coding. For example, suppose it should be necessary to perform both the example

illustrating option Oland option 03, (EXAMPLEA).

PROBLEM PROGRAMMER DATE PAG" OF

LOCATION COMMAND CODE 22 ~ 24 A ADDRESS 8 ADDRESS C ADDRESS
REMARKS

I fO II 3738 Sf 52 65 b6 LINE NUMBER 73 74

,P£'(J6£11A1 0/,7104""4- ollLYSE4
I ;

I

:5ETUJc.. Z¢13 8P liZ I
I

Z,SC 5PEc. - - s T.eTSo~T I
I

Z,5Z SPEC. - - oWNCOt)EI I

ST~TSOR.T L, SOIi:.TI, I ¢J4/~fI/ ¢/~I/c.q/C/1/CB e.c/ u(j /c;G/Ci(i/Ol
I
I

L, &XIT
I
I

OWNCOPEI 7N c c.., 1-2 Z 6,4 I

TX , SP[COC2. - Z,:S 2-
I
I

7X. 5 z,sc. - z,cSC I
I

10 Occ. t/J/tJ¢1 ¢
I

I
PEc ¢¢I I

I "
12 sP£COc.z .sPEC - - OWNcolJ£Z I

I
I

13 OWIVe.ol>E 2. TX C SP£coC3 - z,SZ I

14 TX 5 Z,>c
I - z/csc I

15 sPEcoc3 SPEC - - OWNcoP£3 :
OWNa> 1>£3 EX c I, f1 SI6NMIISK WO,ocINej I

I
16

17 NA C W()/Z./CIAl6 ZE~O c,-I-3 I
I

18 /lA c ~~ NUMMASK 1/ (I i
I

19 TX S z,sc - z,csc I

20 SS C SlqAl'M/UK.. SIGNMAsJ;: ~(I I
I

80

" r r 1 I , , I r I r I

51
1'1 I I I T, ~...,.--,--r -r-T··-l I , T--,--T IT I ,", I T I I I I I , I , I , , I' I I r I , 1 11

7X
I I

2,SC - Z,CSc I

WO/ZJ(INe:, PEe. ¢ I
I

5ICtNM!lSK PEe 4 I
I

ZEA?O DEe ? I

NUMM4.5K f)Ec ¢ 6t;GClGG<iliGCiG
I
I

EN/) OPTIOAl'fd'¢ aA/'LYS£Cj
I
I - --- - - -

123

SECTION VI. OWN-CODING

Merge sort option 01 - It should be emphasized again that this option does not exist. If

it should be specified during the generating process, "NO EDIT 1" will be printed. Following

this there will be an unconditional stop.

Merge sort option 02 has been provided to allow changes to be made to the merge sort

itself, after it has been modified and generated. These changes may be as extensive as the

programmer wishes, and may be made by overlaying or modifying any existing instructions

in the sort program. This, of course, requires an extensive knowledge of an Assembly listing

of the sort coding. The technique used to address the sort, as explained earlier, starts with

some known address in the sort as a base and, using indirect addressing and address arith­

metic in the own- coding, steps to each word of the sort to be modified. The most convenient

communicator at this time is the s equenc e counter, which is set to the first instruction of

the merge sort program. The following registers may not be used (unless stored and restored):

SC, MXR, UTR, RO, and also bank bits of CSC.

Some typical modifications which could be performed at this option are: extension of

precision beyond triple; addition of a detour at the end of merge sorting but before writing the

end FID record (for instance to perform summarizing, totalling, or checking functions); or

modification or replac ement of the write area (for instanc e to write directly to the printer).

Detailed procedures for these modifications are beyond the scope of this manual, but the general

approach for each is given. Extended precision is gained, in the triple-precision sort, by

modifying the COMMON area (common multi-precision routine associated with the trees), as

explained under Precision in Section IV. As pointed out in this section, it will sometimes be

necessary also to change the constant K2, which addresses the sort's stopper area. The sort

coding called LAST PASS already has the function of making certain modifications to the sort

routine just before the last merge pass begins. This area can be modified, or expanded, with

own-coding to make even more changes. Thus, the instruction in LAST PASS which sets up a

branch to ENDSORT, after the end FID record is written, could be replaced by an instruction

to go to a special end section of own-coding rather than to the ENDSORT section. The tech­

nique used to branch off from the merge sort to own-coding simply replaces two of the sort

instructions with a TS instruction and a SPEC constant. The SPEC can be the address of the

first instruction of own-coding to be performed when the branch is hit, and the TS instruction

can transfer this SPEC to some unused special register, and go to own-coding through the

special register. Of course, the two sort instructions replaced should be ones that are no longer

essential to the sort operation, or they should be perfQrmed in the own-coding area when the

branch is made. Alternatively, the sort could be allowed to finish in a normal manner, and the

end FID record could be modified with after- sort coding. In changing the write portion of the

124

SECTION VI. OWN-CODING

merge sort (presumably only during the last pass), a sort should be generated which comes

closest to looking like the final version to fulfill the specified requirements. This suggests

generating a sort to handle the item size and record packing to be used throughout the merge

sort, as well as between presort and merge sort. It also suggests augmenting the LAST PASS

area to modify the output and write routines to conform to the output specifications. If output

record blocking size is larger than that which will be used by the sort, buffers must be pro­

vided in the own-coding area, as well as providing communication to them during the final pass.

Alternatively, by using variable- size items, the entire sort can be generated to the larger

specifications. The WRITE area in the merge sort must be modified by LASTPASS in order to

change the writing of records involved in the sort.

Merge sort option 03 has been provided to allow changes to be made to each item after it

is processed by the sort for the last tirne. This option differs from 02 in that the detours to

own-coding are made any number of tirnes, depending on the number of items, rather than having

just one detour at a time. The simplest uses of this option are those involving changes within

the item: key unscrambling (based on a table); item restoration (if temporary changes were

made by the presort); batch totaling; or simple item proc es sing. It is pos sible to duplicate

items (expand a compacted file based upon the new ordering), or delete items (eliminate dup­

licates produc ed by sorting). Item size may also be expanded or dec reased to conform to the

format of the following routine, or to eliminate temporary keys.

When the sort's transfer is made to N, S2, the sort ha s just transferred an item to its

output buffer from one of its input buffers. The item location in the output buffer is addressed

by XO. When control is returned directly to the sort by own-coding (without changing the se­

quence counter), the output buffer will be stepped. This is accomplished by transferring Z, AU2

to Z, XO (if variable items); or word differencing the constant 1 from Z, AU2 into Z, XO (if fixed

items). Also, Z, Sl, 1 will be checked to determine if it is time to write. If it is not time to

write, the sort returns to proces s another item. At option 03, the following special registers

may not be changed (unless stored and restored): AU2 (except as noted), SC, MXR, UTR, XO

(except as noted), Xl, X2, X3, X4, X5, RO, Rl, R2, R3, R4, R5, SO (except as noted), Sl

(except as noted), S2 (used continuously for link to own-coding), S3, and also the bank bits of

esc. Since the sort uses all but S4 through S7, nothing can be stored by own-coding in any

other registers but these.

Adding or Deleting Items (Merge Sort)

In adding or deleting items, it is possible to retain the sort's buffering and writing pro­

cesses. To do this, it is necessary to understand the relationship of own-coding to the sort,

125

SECTION VI. OWN-CODING

as shown in Figure 19. When the option 03 detour occurs, XO contains the address of the item

just transferred by the sort to the sort1s output buffer. Immediately after the detour, the sort

will step the output buffer, writing if necessary, and return to the location addressed by N, SO

to process another item.

The word addressed by N, SO is the sort1s return to its tree, and it is changed during each

item processing cycle. By storing and replacing this instruction with a branch to own-coding,

return may be made to own-coding immediately after stepping the buffer and without producing

another item. Conversely, own-coding may restore the original instruction to N, SO and go

there, and hence return to the sort to produce another item without stepping the buffer. Any of

the special registers except those used in the output buffer and writing routine (AUZ, XO, X7, Sl)

can be used to transfer control to a particular portion of own-coding from N, SO. Howeve-r, it is

irnperative that all the necessary ones are restored before returning to the normal sort process.

OWN-CODING
END SORT'S OUTPUT BUFFER

PROCESSING
CYCLE

N,S2 / - N

(SORT)Xfl) I-------1~X6 (COLLATE)

ORMAL OPTION 9.13SC EXIT

STEP

BUFFER

N,S9J .. --------' ---- ---- - ' ...
BEGIN SORT'S
PROCESSING
CYCLE

Figure 19. Merge Sort and Collate Own- Coding

Therefore, in adding and deleting items, two connection points must be considered between

the sort and own-coding. One is the normal option 03 detour from sort to own-coding. Own­

coding may return to the sort at this point by returning control to the sequence counter (if it

should have been destroyed, then it can return by restoring the sequence counter and going there).

The second connection point is the return to the sort1s trees, addressed N, SO, which must be

modified by own-coding if a detour is to be made there. Thus, a detour from sort to own-coding

is made by placing a TS sequence change into N, SO, having first stored the instruction found

lz6

SECTION VI. OWN-CODING

there. A return froITl own- coding, at this point, is ITlade by restoring the original instruction

into N, SO, and going to N, SO.

Depending on the type of own- coding desired, these two connecting points ITlay be US ed in

a variety of ways. For instance in the deletion of iteITls, it is necessary to bypass the sort's

output buffer stepping. At each option 03 branch, a return ITlay be ITlade to the sort through

N, SO, and one or ITlore iteITls will be overlayed in the output buffer. When an iteITl is trans­

ferred to the desired output buffer, either by the sort or by own-coding, a return is ITlade to

the sort at the location specified by the sequence counter at the option 03 detour. If own-coding

provided the iteITl, care ITlust be taken that AD2 is properly set; this will be the case if an iteITl

transfer instruction is always used (rather than an n-word transfer). If successive iteITls are

to be produced by own-coding (adding iteITls), N, SO can be used to return to own-coding after

the buffer stepping.

It should be pointed out that either during the addition or deletion of iteITls, when an end

of string is reached during the last pas s (and henc e the end of the sort), the sort then as SUITles

that the last output record has just been written. Consequently, if the input and output counters

get out of phase, as they will when adding or deleting, there ITlay be a partial record of output

still in the buffer when the sort finishes. To get around this, there should be a full record IS

worth of filler iteITls in the file, which have keys larger than any legitimate items, and which

will therefore be sorted to the end of the file. Alternatively, own-coding can sense for the

last valid iteITl. When it is found, it then fills up the output buffer with fillers (Z, 51 will always

contain the nUITlber of iteITls in the output buffer).

In the expansion or contraction of item sizes, an iteITl size should be specified to the sort

which will cover the maximuITl size involved. The sort should be specified to handle variable

item size, whether the final output is variable or not. Own- coding can operate on the iteITl in

the output buffer (expanding, contracting, deleting the end-item sYITlbol), and accordingly adjust

the output buffer index register (XO) for the next item. The sequence counter should be incre­

ITlented by 1 before returning to the sort to bypas s the sort's output buffer modification.

The following exaITlples should serve to illustrate SOITle of the techniques which can be

used with own-coding option 03. These exaITlples correspond to the examples in the section on

presort option 03. EXAMPLEA illustrates a simple key translation. Assume for the purpose

of explanation, the availability of a signed nUITleric key (sign and 11 digits), and the fact that

the negative quantities have been complemented for sorting purposes. It is then necessary to

norITlalize them and this ITlay be done by re- compleITlenting, retaining the zero sign. AssuITle

127

SECTION VI. OWN-CODING

again for purposes of explanation, a 10-word fixed- size item, packed 10 to the record, with

the numeric key in word 1. The correct parameters are in the FID record. Although there

·would probably be corresponding presort own-coding, this is not shown in EXAMPLEA.

PROBLEM PROGRAMMER DATE PAGE OF

LOCATION 10 II COMMAND CODe 22~ A ADDRESS B ADDRESS C ADDRESS
I REMARKS

I 24 37 38 51 52 65166 LINE NUMBER 73 74

I'R()tf21l41 FXAMI'LEA S()£rsE(f
I i

I

S.ETLCJC fl~tI¢ 81 <i3 1
I

Z,5C SP£c - - ST/J.e.T I

STIIIZT L/,,5'(J,eT~¢ ¢¢/13/A1£~Y.5Et:7 Ip/J¢/c4/C-9/C~ ce/c~/c,6A;c;/e£
I
I
I

L./&.tIT
I
I

s£t;MENr e,xAMPLEA ME£ tS SEq. I
I

.5cTi.OC Z¢4f/ 8¢ ~3 I

z/sz SPEC - - 1
OWNCOt>E I

OWAlC£)[)E EX. C ¢,¢ SltjAlMASK W~£KINq I
I

10 Nil c WtJ.ek INC; zE.e.O C/ fz
I

I
II JIll c~~ NUMMASI(¢/p I

I

TX. ~ z/sc - z/ esc. I
I

12

13 WO£.KIN4 ()EC ¢ I
I

14 SIGNMASK DEC. q I

15 ZERO Pee ¢ :

NUMMASK. PEC jO fititiQ(jqGG'it7Ci I
I

16

eNP EXAMPL£A .50ers£~ I
1

17

80

EXAMPLEB illustrates a useful technique for keeping running batch totals from program

to program. Because it is necessary to use own-coding option 02 in both the presort and

merge sort to modify the end FID records, it is convenient to have a final filler iteITl, or

items, at the end of the file, whose keys are all higher than any others possible. This

guarantees that it, or they, will remain at the end of the file to contain the final total for the

entire file. In this example, assume the same file structure as in EXAMPLEA. It is neces­

F3.ry to keep a running total of the amount in word 5 (as sume a full signed decimal word) and

also an iteITl count. These are to be compared with words 5 and 6 of the dummy item, which

were calculated previously in the same manner. The key of the dummy item consists of a

word of GG ... GF (to distinguish it from other fillers of all hex GiS, which the sort would

eliminate) .

128

SECTION VI. OWN - CODING

PROBLEM PROGRAM ER M DATE G PA E OF

LOCATiON COMMAND CODE 22 ~ 24 A ADDRESS B ADDRESS C ADDRESS
REMARKS

I 10 II 37 38 51 52 65 l1li LINE NUMIER 7J 74 10
i i lii~

Pf(Of,IZ11M £KIIMl't£iJ
I I

SO/t!.T SE(j
I

SETLOc. ¢¢¢¢ 1>1 (j.3 I
I

Z,sc spec - - START I

.5 TI1£.T L,SO~TlI¢ ¢¢/~3/ME/(qSeCi p~P(J/CII /CIl/CLJ CC/CIJ/C;(j/t:1t;/C£.
I

I

L,eXIT :
SEC;MENT EXAMPt£8 M£,et;SEti

I
I

6

5 ETt. oc. 2~33 13~ ~3 I
Z,SZ sPEC - - OWIVCOPE :

o JAIN {(JPE !VII (¢/(I qSWIT#J= c, -14 I
I

10 NIJ C TOTALS ¢,4 £~RoR i
Nil (; ToTAlS+! ~s £~~o,e

I
I

II

pJ<.n (IJL FoK.. - c,-f.3 I
I

12

13 on (; ToTIIL.5 1,4 70T//£S i
l>R (; ro7ALS+1 011/£ TOTALS-II

I
I 14

15 7)(5 z,sc - Z,csc :
16 C,SWITHF PEe (iGq6GG6GGG GF i
17 ONE PEe -1-1 I

I

18 ER./i?LJ1i? Plln e I1LFeRI<CJ/{ I
I

19 SToP S - - - I
ALFol<. ALF ToTRLSOI<

I
I 20

-,--, , , , -.------r--r··'- T --TO •.. -. , , , , , , , , "l I I' , • , I, , ' , , I, , , , ,

I

I1LFEIi?R..OR. ALF ,OT.4lSNq I

Tor.4LS PEe -f-¢ I

I

PEe -t¢ I
I

EN!> £~tlMPL£8 .soRTSEtj I

- --.J

Now, in EXAMPLEC, suppose that the file was compacted for the sake of sorting speed,

but that for subsequent use it is necessary to expand it. This might be an insurance policy

file, with one item per policy carried through the sort. Within each item, and starting with

word 11, are the names of family members (if any). The number of additional names is speci­

fied in the twelfth digit of word 2. Word 3 contains the family's last name, and word 4 the

policyholder's first name. The items are variable size, maximum of 30 words. It is necessary

to create trailer items, one for each family member, to follow the header items. The policy­

holder, or header, items are to remain the same, and the trailer items are to have a special

129

SECTION VI. OWN-CODING

identification (stating that this is a trailer item) in word 1, the policyholder's first name in

word 2, the last name in word 3, and the family member's name in word 4. It shall be assumed

that the beginning FID record contains the proper parameters to allow sorting on words 3 and

4 of the original items. Note that this will result in a file sorted by policyholder, with trailers

following the header items in the order that the names appear in the policyholder items. By

contrast, EXAMPLEC of presort option 03 results in a file completely ordered on name, regard­

less of the original grouping by family.

PROBLEM PROGR MER AM DATE PAGE OF

LOCATION 10 II COMMAND CODE 22 ~ 2 .. A ADDRESS B ADDRESS C ADDRESS
REMARKS

I 37 38 51 52 65166 LINE NUMBER 73 74 80

PtftJ6R/lM Ex,qM/'~EC solZTS,Eq
I I

I

SETLac. ¢p¢¢ LJI 93 I

I
Z,5C SPEc - - ST.4IZT I

L, Sa/C.T2, fI f/(i/tl3/MERqSEq ¢t>¢~/c/) Ic,q / C 8 cc /CI'/(jli /6(j / C£
I

STIIIl.T I

LI EXIT
I
I

5 Ec;MENT ExAMPI.EC ·ME/i!.(jS£~ I
I

SE-TLDC 1983 l3¢ ($-3 t

Z,SZ :spec - - OWNCOPE
I
I

OWNC.tJl>£ E)(c fjll G WO£/(IAI~ I
I

10 NN I' WIJ/~.KIN6 ZERO c,+2 I
TX S Z,SC Z, csc I - I "
IT e N,XP Pl/MNIITEM 74 eURR/TEM I

I
12

I

13 TX c 1V,,5¢ - S TollETRIII I
1

I .. TX z,sc - STOR£SC I

TX. C TSBYP/)S.s - AI,S? :
16 TX 5,PEcBYPS - z/~7 I
17 TX C S/'Ec/VAME - Z,£.6 !

7X C cU,eIZITEM +2- - I>UMIHITEM I 18

19 TS c cu,e£IT$M+3 fJlIMM/TEMTI OWNC()/JE-I-L
I

I
BYI'195s NA C W()RKINq ZERO c/+2 I

1 20
, , ,

? SToRET.eN N,.5¢
I I TX -

I

TS .5 Z,>C z,csc- ~s¢ I

I

TX c IItK6,1 - PUMIIII/TEM":'3 I
I

Wb C WO/lK/Nt? ONE W(JRIcINti I

IT C I>l1MMITEM f)uMM/TEM -f-/f Mx..fI :
5Tate.€ 2"1 sc I TX c - I

TX s Z,sc - Z,C5C I
I

130

SECTION VI. OWN-CODING

Cr PEe. -q I

I
Z~I<O PEe. -¢ I

I

10 ONE bE(. -/ i
TSBYPA.55 75 - N,fi>.7

I - I
II

12 SPEC8YP s SPEC. - - iJYPA.s5 I
I

13 SPEcNIIM~ SPEC - - c.uRKITEM +I¢ i
I

14 PUMMITEM ALF TRAIL EI{. I
15 I<E:5EI<V.e 4 :
16 C.U~I(ITEM RESE/(VE 3~ 1
17 W61(.t:IN<j PEC ~ I

I

18 SToIl.ET~N DEC ¢ I
I

19 STO/i:.SPEC SPEC - I
STo~sC spec - - - I

I 20

ENt> EX.IIMPlEC
I ;

SO,eTSeq I I

- .,.

Whenever an item is found containing family names, several working areas are initialized,

N, SO (merge) is temporarily reset to transfer control to BYPASS, and control is returned to

the sort to step and interrogate the buffer counters. Each time the sort branches to BYPASS,

a check is made to see if any more dummy items are to be created. If not, N, SO is restored

and the sort is re-e:p.tered to continue in a normal manner. Otherwise, a dummy item is cre-

ated and sent to the output buffer through N, XO. The sort is then re- entered at the normal

point where the output buffer is incremented and tested. Whether or not it is time to write,

the sort will eventually go to N, SO (merge) to process the next item, and then back to the

BYPASS portion of own-coding. Note that the general approach here is slightly different from

EXAMPLEC of presort option 03. There, the dummy item was first produced and then checked

to see if there should be more to follow, whereas here a test is first made to see if there are

more dummy items, and then produc e one if nec es sary. This differenc e relates to the fact

that, in one case, items are being brought in to the sort while in the other case they are being

put out of the sort. Presort own-coding is performed when the sort wants an item, whereas

merge sort own-coding is performed when an item has been produced by the sort.

Now, in EXAMPLED, assume the opposite case from EXAMPLEC, namely, the deletion

of items. Suppose that after sorting, a file will contain many items with duplicate keys, in

which case it may be necessary to delete the duplicates. Again it shall be assumed that the

proper information is set up in the beginning FID record. This then is a single-precision

sort, with the key in word 1.

131

SECTION VI. OWN-CODING

PROBLEM PROGRAMMER DATE PAGE OF

LOCATION COMMAND CODE 22 ~ 24 A ADPRESS B ADDRESS C ADDRESS
1 REM A R K S

I 10 II 3738 51 52 65166 LINE NUMBER 73 74 80

j7'(04RRM eXAMPLE£) SoRTSEti
, i

I

SETt.oc p~tltI 131 &3 1
I

z/sc sPEC - - .5TRRT 1

1.,SO~T/, ¢ ¢¢/?3/M&K(iSc(l ¢¢¢tJ /CI~/CA/CL3 CC/CP/C;4/4' (j/CE
I

5 TIlIi?T I

1./ EXIT
1
I

SEt;M£A/T C-XAMPL.E L> MER(jSE6 I
I

SETtee 2~~Z B¢ C;3 I
Z,52 SPEC - - o WNco/> E i

OWNcoIJ£ NA c L/!STKEY ¢/~ C, -13 I
I

10 Ts s z,Sc z,csc N, Sf i
rx. C ~tI LAsrKEY

I - I "
TX s z, sc - Z,csc I

I
12

13 L/lSTKEY pEe ¢ i
1

14 oN£ PEC -/ I

15 EN~ EX AMPL. EO so.eT,5£t:1 :

Here, in order to delete an item, the proc es sing of the output buffer is simply bypas s ed, so

that the next item produced by the sort will overlay the one to be deleted.

For the next example, suppose it is necessary to add one word to each item so that it

can be used as a serial number by a later run. A variable-item- size sort must have been

specified by using own-coding in the presort, if necessary, so as to convert fixed-size items to

variable (not shown). Assume that the items are, indeed, truly variable size, with a maxi­

mum size of 30 words. This means that the sort will have to be specified with a maximum

item size of 31 words so as to make room in the output buffer for the expanded items. Own­

coding will be used to expand each item to include the serial number in the position before the

first word of the item, thus moving the rest of the item "up" one place.

ARGUS ;g~~~G

PROBLEM PROGRAMMER DATE PAGE OF

LOCATION COMMAND CODE 22 ~ 24 A ADDRESS B ADDRESS C ADDRESS
REMARKS

I 10 " 37 38 51 52 6566 LINE NUMBER 73 74 80

P£ot;R.9M IE x.AM Pi £".E .5CJR-TSEG
, i

I

SETLoc ?/J¢¢ 81 q.3 1

I

"Z, Sc SPEC- - - 5TAIZT I

132

SECTION VI. OWN-CODING

STPIl.T L, 50£TI, ¢ ¢ ¢ / ¢3/ M~6~Et; ~;I¢sf/CA/CA/c8 eel CP/6u#y-/C£ I

'-I £ XIT :
~Et;/II1eIl/7 ExAMPtE£ Me~4.seti

I
I

SeTLoe 2tjll Btl t;3 I
Z,5 2 SPEC - - OWNcal>E

I
I

OWNCOVE IT c rA (5 ¢, Z9 :> To,e/14£ I
I
r

10 I'll I' COliA/TEIf{ oNE COl/NTc,€, I

TJ(~ coL/NTE,e - ;6,¢ I
I

II

12 IT C S7(JJZA~E 5TO£,IJ (j£ + Z, ~/ I I
I
r

13 TJ(5 z, Sc - Z, esc I

STOK.IME !?eSI£/Z.VE 3¢
I

I 14

15 couNre.e.. I>EC +¢ :
16 OJVE PEC -+1 1

ENP cxAMPt££ :so,€rS£q I
I

17

Notice that, in this case, XO was not modified in own-coding, but instead returned direct­

ly to the sort to perform this. This was pos sible becaus e the second item transfer instruction

set up AD2 correctly, so that the sort's buffer modifying instruction would function correctly.

Had the item size been changed directly in the buffer, by moving the end-of-item symbol with

a TX, for instance, then it would have been necessary to modify XO in own-coding, step the

sequence counter by 1, and then return to the sort.

For the final example, again assu:me a file of variable-length items, maximum of 12

words. Assume that presort option 03, EXAMPLEE, had created these items from 10-word

fixed-size items, by adding a key in word 11 and an end-of-item symbol in word 12. It is neces­

sary to eliminate words 11 and 12 in order to make the output consist of fixed-length records

of 10 words each. It shall be assumed that all items corning from the sort are exactly 12 words

A R G U S CFOOR~I.NG in length. ""

PROBLEM PROGRAMMER DATE PAGE OF

I LOCATION
10 "

COMMAND CODE 22 ~ 24 A ADDRESS 37 38 B ADDRESS 51 52 C ADDRESS 65 /06
REMARKS

LINE NUMBER 73 74 80

p;eoc;/2/lM E~4MJ7t.EF
I I

soRTS£u
I

.5ETI.CJC- p~~1 131 (7.3' I

I

Z,5C SPEC - - STR,€r I

L/50£T2,1 ?1¢/13/Me.e6~£6 1¢~I/e/J/CA/cLJ ce/ep/£?ti/y-u/c£
I

'i>TF12T I
I

133

SECTION VI. OWN-CODING

L,£-fIT
I

SEt;/IIf£IVT $XAM,LEF ,f4eA!tis£y I
J

SETt..oc .9?' tj3 I
2,SZ SPEC - - owNCOPe. I

OWNcoPE TX C Z,}(¢/I~ - - I
I

10 TJ(lS Z, SC / I - Z,CSC i
END E-tAMf7,t£ F so£TSEt; I

J
II

- - I

Merge sort option 04 specifies that the exits for 02 and 03 are both to be observed by the

sort. It is therefore necessary that option 02 coding set up Z, S2 for the option 03 coding, before

returning to the sort.

After sort coding - Since, at this time, the sort has completed its operation, there are

no restrictions on the use of special registers, as there are before the sort. Of course, any

special registers loaded with the routine will have been destroyed by the sort, so these should

be loaded by the· coding instead. Since nothing done at this time affects the sort, no examples

of this type of coding are shown.

Collate option 01 has been provided to allow a standard set of beginning FID parameters to

be created for the collate in cases where they do not exist on tape, or to allow for revision of

parameters which may be there. All original files read by the collate must still have standard

beginning-of-file banner words. However, since input to the collate will presumably have corne

from the sort routines, the correct parameters will normally be already present on tape. This

option allows complete specification of the collate parameters through coding, independent of

the data. The transfer to N, S2 is made after the collate generator has interpreted the collate

pseudo instruction parameters, but before it has interpreted the beginning FID record from the

initial A input tape. Index register X7 is set to the first word of this record, in memory, and

X7 may be used to address any of the parameters which will be replaced with constants from

own-coding. The following registers may not be changed by the own-coding (unless stored and

restored): SC, MXR, UT R, XO, X7, and also bank bits of CSC.

For an illustration of the normal use of option 01, refer to the above section on presort

option 01 which, except for specific special register addresses, is similar.

Collate option 02 has been provided to allow changes to be made to the collate routine

itself, after it is generated. Here the distinction must be made between the initial "once-only"

generation of the collate, and that portion of the generator which is performed before each pass.

134

SECTION VI. OWN-CODING

Option 02 causes a detour iTIlmediately after the forTIler. The changes TIlade at this tiTIle TIlay

be as extensive as the programmer wishes, and TIlay be TIlade by overlaying or TIlodifying any

existing instructions in the sort prograTIl. This, of course, requires a thorough knowledge of

a listing of the collate routine. The technique used to address the collate, like the sort, is to

start with a known address in the collate as a base and, using address TIlodification in the own-

.coding, to step to each word of the collate to be altered. The most convenient cOTIlmunicator

to the collate by the own-coding is the sequence counter, which addresses a location at the end

of the A3 section, the last portion of the once-only generator. Because there are several breaks

in the sequence of instru.ctions performed during generation, the exact location of the branch to

own-coding should be noted on the coding sheets; the sequence counter will be set to the location

following this one. The following registers may not be used (unless stored and restore<;l): SC,

MXR, UTR, RO, XO, and also bank bits of CSC.

SOTIle typical TIlodifications which could be perforTIled at this option are: extend precision

beyond triple; add a detour at the end of ea·ch pass (or at the end of the final pass); perforTIl

specialized operations or modify the WRITE area. Because of the connections established

between passes of the collate, the last function (TIlentioned above) should be perforTIled during

the last pass only. Detailed procedures for these modifications are beyond the scope of this

TIlanual, but the general approach for each is given. Since the collate uses the saTIle tree as

the merge sort, extended precision is handled as described under TIlerge sort option 02 in this

section. The collate coding, called FNAME, already has the function of TIlaking certain modi­

fications to the collate routine just before the last pas s begins. This area can be TIlodified, or

expanded, with own- coding to make TIlore extensive changes. Thus, the FNAME instruction,

which sets up a branch in ENDPASS to end the routine, TIlay be replaced so as to set up a

branch to a special end section of own-coding. One technique for branching off froTIl the collate

to own-coding is to replace two of the collate instructions with a TS and a SPEC constant. When

the branch is taken, the SPEC can be the address of the first instruction of own-coding to be

perforTIled, and the TS can transfer this SPEC to SOTIle unused special register, and go to own­

coding under cosequence control through the special register. Of course, the two collate instruc­

tions replaced should be either instructions that are no longer useful, or else they should be

performed in the own-coding area when the branch is TIlade. Alternatively, the collate could

finish in a norTIlal TIlanner, and perforTIl any special end function (such as totaling or checking)

after the collate. In changing the WRITE portion of the collate (presuTIlably during the last

pass only), a collate should be generated which will handle the structure of the input and inter­

TIlediate files. Then, at option 02, the FNAME area could, in turn, be augmented to TIlodify the

output and/ or write routines to conform to the output specifications. If output record blocking

size is larger than that to be used _y the collate, separate buffer areas must be provided in the

135

SECTION VI. OWN-CODING

own-coding, and in the connections to own-coding, for use during the final pass. Alternatively,

by using variable- size items, the entire collate can be generated to the largest specifications.

The area in the collate which must be modified by FNAME to change item transfer or writing

is the J J area.

Collate option 03 has been provided to allow changes to be made to each item after it is

processed by the collate for the last time, i. e., during the final pass. This option differs from

the other two in that the detour to own-coding is performed more than once, depending on the num­

ber of items. The simplest us es of this option are those involving changes within the item: item

rearrangement; batch totaling; or simple item processing. It is possible to duplicate items

(expand the new file), or delete items (eliminate duplicates). Item size may be increased or

decreased to conform to the format of the succeeding routine or to conform to the system.

When the transfer is made to own-coding through N, SZ, the collate has just transferred an

item to its output buffer from one of its input buffers. The item location in the output buffer is

addressed by X6. When control is returned directly to the collate (without changing the sequence

counter), the output buffer will be stepped (by transferring Z, AUZ to Z, X6), and Z, R6, I will be

checked to detennine whether it is time to write. If writing is not indicated, a return is made

to process another item. At option 03, the following special registers Inay not be changed (un­

less stored and restored): AUZ (except as noted), SC, MXR, UTR, XO, Xl, XZ, X3, X4, X5, X6

(except as noted), RO, RI, RZ, R3, R4, R5, R6 (except as noted), SO (except as noted), SZ· (used

as continuous link to own-coding), S3, and also bank bits of esc. Since the collate uses all but

S4 through S7, nothing can be stored by own-coding in any registers but these.

Adding or Deleting Items (Collate)

In the addition or deletion of items, it is possible to retain the collate's buffering and

writing processes. To do this, it is necessary to understand the relationship of own-coding

to the collate, as shown in Figure 19. When the option 03 detour occurs, X6 contains the

address of the item just transferred by the collate to its output buffer. Immediately after the

detour, the collate will step the output buffer, writing if necessary, and return to the location

addressed by N, SO to process another item.

The word addressed by N, SO is the collate's return to its tree, and is changed during each

item processing cycle. By storing and replacing this instruction with a branch to own-coding,

a return may be made to own-coding immediately after stepping the buffer, and without pro­

ducing another item. Conversely, own-coding may restore the original instruction to N, SO and

go there, and then return to the collate to produce another item without stepping the buffer. Any

136

SECTION VI. OWN-CODING

of the special registers, except those used in the output buffer and writing routine (AUZ, X6, R6,

R7), can be used to transfer control to a particular portion of own-coding from N, SO, as long as

all the nee es sary buffers are restored before returning to the normal collate proc es s.

Therefore, in the addition and deletion of items, two connection points between the collate

and own- coding must be considered. One is the normal option a 3 detour from collate to own­

coding; own-coding may return to the collate at this point by returning control to the sequence

counter (if it has been destroyed, then by restoring the sequence counter and going there). The

second connection point is the return to the collate's trees, addressed N, SO, which must be

modified by own- coding if a detour is to be made there. Thus a detour from collate to own­

coding is made by placing a TS sequence change into N, SO, having first stored the instruction

found there. A return from own-coding at this point is made by restoring the original instruction

into N, SO, and going to N, SO.

Depending on the type of own-coding desired, these two connecting points may be used in

a variety of ways. For instance, to delete items, it is necessary to bypass the collate's output

buffer stepping. At each option 03 branch, a return may be made to the collate via N, SO, and

one or more items will be overlayed in the output buffer. When an item is transferred to the

desired output buffer, either by the collate or by own-coding, a return is made to the collate

at the location specified by the sequence counter at the option 03 detour. If own-coding pro­

vided the item, care must be taken that AU Z is properly set; unlike the merge, a TN instruction

should be used for fixed-size items, with less than 63 words per item, and an IT instruction

should be us ed for variable- size items or fixed-size items greater than 63 words per item.

If a succession of items is to be produced by own-coding (adding items), N, SO can be used to

return to own-coding after the buffer stepping.

It should be pointed out ~hat either during the addition or deletion of items, when end of

pass is reached during the last pass (and hence the end of the collate), the collate then assumes

that the last output reco:::-d has just been written. Consequently, if the input and output counters

g,et out of phase, as they will when adding or deleting, there may be a partial record of output

still in the buffer when the collate finishes. To get around this, a full record of filler items

at the end of the file should be produced (corning from any combination of inputs). Alternatively,

own-coding can sense for the last valid item, and when found, fill up the output buffer (if neces­

sary) with fillers. (Z, R6 will always contain the number of items in the output buffer.)

In the expansion or contraction of item sizes, an item size should be specified for the

collate which will cover the largest size involved. The inputs must therefore be variable- size

137

SECTION VI. OWN-CODING

items and it should be specified to the collate whether or not the final output is available. Own­

coding can operate on the item in the output buffer (expanding, contracting, deleting end- of­

item symbol), and can adjust the output buffer index register (X6) for the next item accordingly.

The sequence counter should be incremented by 1 before returning to the sort, so as to bypass

the collate's output buffer modification.

Since collate option 03 own-coding is similar to merge sort option 03 own-coding, the

reader is referred to that section for appropriate examples. The only differences between

(hese examples and the ones which would be prepared for a collate are the addresses of the

special registers.

Collate option 04 specifies that options 01, 02, and 03 are all to be observed by the col­

late. It is therefore necessary that there be own-coding corresponding to each option which,

if nothing else, resets Z, S2 to refer to the next option. The reader is referred to presort

option 04, contained in this section, for an example of this.

138

APPENDIX A

END FILE IDENTIFICATION RECORD (ITEM DESIGN) PRESORT TO MERGE SORT

Included in this appendix is an item design of each word in the End File Identification

Record (FID).

12 II

,

I
iJ 8

I

WI

J
W2

I

W3

W4 I

I

WS
I

W6
I

Cit ¢
I

G ¢
, I

G ¢
J

G ¢
J

'1 ¢
J

G ~
I

4 ¢
I

G ¢
J

¢
I

I

I

I

I

I

B
I

B
I

8

10 9 8 7 6 5 4 2
I I , I , I J I I~I I J , J

RECOKt> COUNT

J I I J I , , I I I ,
rIlE NAME

I , I T -. T T T T T J

I
I

q G
I I T 1 T T T T

I WoRPs ~.E~ liE~ ¢ ¢ F ;: r .c- iJINAIlY
J I ¢ , , ,

I , ,
5~ 4 4 ¢ 7 -. 7
I I J I T T J I I

5 b 4 4 ¢ " 7 7
-' , I J T T T I , I I

5 6 4- 4 tJ ¢ 7 7
J I I , , I J I

56 4 4 ¢ {I 7 7
I I ¢

, , I I I I

5 6 4 4 P 7 7
I I

~
, I I I I

56 I.} 4 ¢ 7 7
I T r -. T 1 T

J ,4 PUMMY CO~NTE~ - l>£CIMAt..
J 1 I I I , I Ie PL/JuMY c"UNTE~

t>E~/MAL
I I I I J 1 r Ie PL/~MY <:.£JUNTEIl.

t>ecIMA L
J I I I I T T r If) Pu M MY CJ:1UNTER

PEe/MAL
I I I , I I J Ie .oli~M y coJNTE~

'P£C-{MAL
J I I I I T T T

J ITfMSI,PE'€RECOIlI>
- BIN;I1~y

I I r , T T T
I W"IU> > , FER ITEM - /3INAIlY

I I , I I I J J NI >(N W '
,

- !JIN.4JZ.Y
I I

tVlJMJEIl OF 'pIU)£.5 I 11~181M FI.eJT 'KEY LOCATiON
L>£CIMAL

EO
PIN,IHZY I /l£~,e'P COU~T '2~1 5EcoNP KEy'L.tJCIIT- 7HI120 IKEy L.()C8TltJlt/

8FIP 0/= IV!!' Vl!o!l.K 71J,I'E IdN 8/NI9£Y 8INJ9Ji!Y
I I , I I I I ,

FI,te S T KEY MASK
I I J J I I I I I ,

SEcoNP KEY MII'>K
I I T , T T T I I

Tfll/Z.P kEY MA'>K
, I , I I I I I I

oR-THo,

I I I J I T r r I , ,
ORTI-Io 2-

I
¢ I

¢
I J I I I I , I

;= F F F E £ £ £
I I I . I I

7 6 5 4 2

8ANNE/l
WO/U>

:>EtiMENT
NAME

eOI
SYMBoL

W/(STo~EI

WK.SToIlE3

WK.STOR£5

S71ZCTI

S TIi?C.TZ,

$TIlc.r .3

sr.ec.l4-

STileT:;

AlI

Nw

w

KEYS

PM~S"I

PMASK..Z

PMA.5k:.3

139

140

X Bin setting.

APPENDIX B

PRESORT SPECIAL REGISTERS

Xl Input buffer for item transfer and EDOFILE check.

X2 Input buffer for reading.

X3 Output buffer for item transfer.

X4 Output buffer for writing;

Stopper address for positioning and searching tape.

X5 Working index register:
1. In BEGFID for file ID reference;
2. In WRITE for CC.

X7 Working index register:
1. Macrocoding;
2. In FILSTR, MASTER, ITEMTRAN and EDCON for smallest item in storage.

R For restarts.

Rl Working special register (as counter):
1. In BEGINI for items in storage;
2. In FILBIN for keys in storage;
3. In SWITCH and RESET to reference 14th location of bin.

R2 Working special register (as counter):
1. In BEGIN 1 to count words per item;
2. In FILSTR to count items in storage;
3. In FILBIN for filling bin with keys;
4. In EDCON to count words per item.

R3 Working special register (as counter):
1. In BEGIN 1 to count items in storage;
2. In FILBIN to count items in storage;
3. In DSCALC to count two levels.

APPENDIX B. PRESORT SPECIAL REGISTERS

R4 Working special register (as counter):
1. In FILBIN to count items per bin;
2. In ENDSTR to count words per item;
3. In CHKIT to count items in storage.

R5 Working special register to addres s keys of item in storage in CHKIT.

R6 Counter for items per output buffer.

R7 Counter for items per input buffer.

S2 Own-coding.

AUl Item in input buffer.

AU2 Item in output buffer.

141

APPENDIX C

MERGE SORT SPECIAL REGISTERS

XO Output buffer.

XI-X5 Items in input buffers.

X6 Input buffer for reading.

X7 Working index register:
1. In WRITE for CC;
2. In EOF and LASTPASS to address STOPPER.

RO For restarts.

RI-R5 Counters for items in input buffers.

R6 Working special register:
1. In VARSWCH as counter;
2. In BEGPASS for TABLE address.

R7 Working special register:
1. In VARSWCH to set item index register and LASTKEY;
2. In BEGPASS and ENDPASS for address in READ.

SO Tree special register.

Sl Item counter for output buffer (used to determine when to read and write).

S2 Own-coding.

S3 EOF counter for "way merge!! (used to reset EXIT A).

142

APPENDIX D

COLLATE SPECIAL REGISTERS

XO Current entry of plan.

XI-X5 Items in input buffers.

X6 Items in output buffer.

X7 Working index register:
1. In READ for reading;
2. In MHSKEEP for reading.

RO For restarts.

RI-R5 Counters for items in input buffers.

R6 Counter for items in output buffer.

R7 Working special register:
1. In JJ for writing;
2. In MHSKEEP to reference read orders;
3. In BEGIN portion of Generator.

SO Tree return special register.

Sl Working special register:
1. In MHSKEEP to reference KEEP location;
2. In Generator.

S2 Working special register:
1. In Generator.

143

APPENDIX E

TIMING OF HONEYWELL 800 SORT ROUTINES

Although there .are tables with which sort times may be readily determined, these have

certain limitations, particularly in the area of record packing. The following formulas may

be used to determine times for any specific case.

144

Given the following factors:

Wb

Wi

Wm

Wp

Wr

If

Ir

Is

Rs

D

S

P

= words per bin:
single and multi precision = 3.0
double precision = 4.2

= words per item (including EOI symbol if used).

= words of memory available {2, 024 + MMMM}.

= words in presort progral1l:
single precision = 500
double and multi = 550

= words per record {including banner, two ortho, and EOR word}.

= items per file (volume to be sorted).

items per record.
(Wm-Wp-4Wr)

items per strings = 2(Wi + Wb }

= records per string = Is/Ir

= number of tape drives used by merge sort.

= number of strings produced by presort = If/Is

= number of passes, from following table of maximum values of S:

P

2
4
6
8

10
12
14
16
18
20

D = 3

3
8

21
55

144
377
987

2584
6765

17711

D = 4

6
31

157
193

4004
20216

D = 5

10
85

707
5864

48620

D = 6

15
190

2353
29056

Trt = time to pass one lrecord on tape, including gap.

Tf = time to pass entire file = Trt ~~)

Td = time for dummy items produced by presort
(S)

= Trtm

APPENDIX E. TIMING OF HONEYWELL 800 SORT ROUTINES

Tip = tim.e per item., presort (given in m.em.ory cycles):

Is

1-12
13-72
73-432

Single Prc.

4Wi + 125
4Wi+ 171
4Wi + 219

Double Prc.

4Wi + 156
4Wi + 218
4Wi + 280

Multi Prc.

4Wi + 156
4Wi + 229
4Wi + 302

Trp = tim.e per record, presort (given in m.em.ory cycles) = 3Wr + 113

Tsp = tim.e per string, presort (given in m.em.ory cycles):
single and m.ulti precision = 12. 1(Is) + 69
double precision = 17. O(Is) + 79

Tim. = tim.e per item., m.erge sort (given in m.em.ory cycles):

D

3
4
5
6

Single Prc.

2Wi + 59
2Wi + 62
2Wi + 64
2Wi + 67

Double Prc. Multi Prc.

2Wi + 62 2Wi + 64
2Wi + 65 2Wi + 69
2Wi + 69 2Wi + 74
2Wi + 73 2Wi + 79

Trm. = tim.e per record, m.erge sort (given in m.em.ory cycles):

D

3
4
5
6

Single Prc.

3Wr + 188
3Wr + 193
3Wr+ 198
3Wr + 203

Double Prc.

3Wr + 191
3Wr + 198
3Wr + 206
3Wr + 213

Multi Prc.

3Wr + 193
3Wr + 203
3Wr + 213
3Wr + 223

Fp = factor, presort = (Ir)(Tip) + Trp + TsplRs
Trt

Note: For tim.ing pur-poses, if Fp is less than 1, the value 1
m.ust be used. In such cases, Fp represents the CP
capacity used by the presort. For Wi less than 5, Fp
is always greater than 1. For Wi greater than 15, Fp
is always les s than 1.

Fm. = factor, m.erge sort = (Ir)(Tim.) + Trm.
Trt

Note: For tim.ing purposes, if Fm. is less than 1, the value 1
m.ust be used. In such cases, Fm. represents the CP
capacity used by the m.erge sort. Fm. is usually les s
than 1.

Tp = tim.e for presort = (Tf)(Fp) + Td

Tm. = tim.e for m.erge sort = P(Tf)(Fm.) + 2Td

Tt = total tim.e for sort = Tp + Tm.

A single pass collate routine m.ay be readily tim.ed in a m.anner sim.ilar to tim.ing one

pass of the m.erge sort. In this case, the factor !I If " , representing item.s per file, is the num.­

ber of items in the output file, or the sum of the items on each input. Timing a m.ulti-pass

collate is m.ore difficult, since different portions, and therefore different quantities of data,

are handled during each pass. For these cases,· it is necessary to determ.ine the amount of

145

APPENDIX E. TIMING OF HONEYWELL 800 SORT ROUTINES

data being processed during each pass, and to time each pass accordingly. The total time is

then the sum of the times for all passes.

146

Given the following factors:

Wi = words per item (including EOI symbol if used).

Wr = words per record (including banner, two ortho, and EOR word).

If = items per file (volume to he collated in one pass).

Ir = items per record.

W = way.

Trt = time to pass one record on tape, including gap.

Tf = time to pass entire (output) file = Trt ~~:)

Tic time per item, collate (given in memory cycles):

W Single Prc. Double Prc. Multi Prc.

2 2Wi + 51 2Wi + 57 2Wi + 60
3 2Wi + 53 2Wi + 60 2Wi + 64
4 2Wi + 56 2Wi + 65 2Wi + 69
5 2Wi + 58 2Wi + 68 2Wi + 72

Trc = time per record, collate (given in memory cycles):

Single Prc. Double Prc. Multi Prc.

3Wr + 179 3Wr+189 3Wr + 194

Fc = factor, collate = (Ir)(Tic) + Trc
Trt

Note: For timing purposes, if Fc is less than 1, the value
1 must be used. In such cases, Fc represents the
CP capicity used by the collate. Fc is usually less
than 1.

Tc = time for collate = (Tf){Fc)

Ascending

Bin

Buffer

Collate

Data

Descending

A GLOSSARY OF SORTING TERMS

Relating to ascending order; that is, a progression

from the smallest alphanumeric key (all zeros) to

the largest (all hex GIS).

A storage area in memory, us ed in the presort, which

contains a number of tags and related coding. The

bin is arranged to coincide with the tree, so that the

smallest tag contained in the bin may be found and

transferred out.

A working area in memory, to or from which data

is read or written on tape. Buffers are usually us ed

in pairs or sets, so that data may be read or written

in one buffer, while other data is processed in the

other buffer.

A routine which has as its input any number (up to

99) of ordered (sorted) files, and as its output a

single ordered file containing all of the input data.

Numeric and alphabetic information supplied to and

processed by a computer. Data differs from a pro­

gram in so much as the program supplies the com­

puter with the logical step- by- step instructions to

process this data. In the sorts, data is that which

is sorted through a presort, merge, and collate

program.

Relating to descending order; that is, a progression

from the largest alphanumeric key (all hex GIS) to

the smallest (all zeros).

147

A GLOSSARY OF SORTING TERMS

Error Routine

File

Generator

Item

Key

Machine Limited

Merge

Merge Sort

148

A section of programming, initiated automatically by

a read-write error UTR, which attempts correction

of the error by an orthotronic correction routine and/

or by rereading.

A set of data used as input to a sort or collate. The

final result of a sort or collate sequence.

A general routine, usually used with a modifier, which

accepts specifications of a specific sort (parameters)

and produces a routine meeting requirements. The

generator sets up (generates) the variable portion of

a routine (bins, buffers, etc.).

The unit of data which is manipulated by the sorts.

A set of characters, usually forming a field, which is

the portion of an item us ed as a criterion for the alpha­

numeric arrangement of that item with other items.

The condition which exists when the time used in

processing a given alTIount of data exceeds the time

used in moving this data between internal and external

storage. Thus, in such a sort, a tape must periodi­

cally wait for the machine to finish proces sing data.

The proc es s us ed in the ARGUS merge sort and col­

late which reads several ordered strings or files of

input and, through a series of comparisons, selects

the smallest (or largest), item by item, and from

these comparisons produces one ordered string or

file for output.

The second and last portion of a sort routine which

performs a series of merging operations until all

data is combined into a single string of ordered

information.

Modifier

N-l

Ordered

Own-coding

Parameter

Presort

Precision

A GLOSSARY OF SORTING TERMS

A general routine, usually used with a generator,

which accepts specifications of a specific sort

(parameters) and produces a routine meeting

requirements. The modifier sets up (modifies)

the fixed portion of a routine (trees, switches,

transfer instructions, etc.), using a skeleton

routine as a basis.

A sorting technique, more properly called "Cas­

cade" sorting, developed by Honeywell and used

by the ARGUS merge sorts.

That which has been sorted; a term usually used to

describe a sequence of items whose keys have been

arranged in alphanumeric order.

A portion of program or additional coding, which

is added to a sort and to which the sort detours at

prescribed intervals. It is most often used on a

item- by-item basis to modify data upon first reading

by the sort, or upon final writing.

A statement of prescribed format which specifies, to

a rnodifier- generator, a specific sort to be generated.

Such factors as item size, key position, tape allo­

cation, etc., are usually specified in a parameter.

In the ARGUS sort system, parameters are sup-

plied in two portions: through the macrocoding

routine which calls the sort, and through the begin­

ning FID record of the data tape.

The first portion of a sort routine which reads a

single tape of random data as input, and writes as

output two or more tapes of ordered strings.

Size of key used for sorting, usually in terms of

computer words. A single-word key is single

149

A GLOSSARY OF SORTING TERMS

150

Precision (cont)

Random

Restart

Segment
(as related to a
sorting operation)

Set

Skeleton

Sort

Stopper

String

precision, a double-word key is double precision,

a triple-word key is triple precision.

Having no specified order. In sorting, random is

the opposite of "ordered".

A section of programming, initiated by the console

operator in case of trouble, which "backs Up" the

program to a specified point and "starts again".

A portion of a file, usually a single tape.

Used in the merge sort or collate to include every­

thing pertaining to one of the inputs; usually desig­

nated A through E.

A basic, generalized, sort routine which provides the

framework on which modification and generation can

build a sort program. Such a routine cannot be run

in itself, since important areas are missing.

A routine (consisting of a presort and merge sort)

which reads random data as its input, and which

writes the same data as its output, in alphanumeric

order, based on a prescribed part of the data (key).

A programming device, also called "freezing",

which is used to indicate that an item in storage

is temporarily not to be considered for sorting. (It

should not be confused with the hardware definition

of stopper.)

A portion of data on tape, and not necessarily on the

entire tape, which has been ordered through a presort.

A string is indicated by a special banner word in its

first record.

Tag

Tape {data}

Tape Limited

Tree

Way

Work Tape

A GLOSSARY OF SORTING TERMS

A condensation of an item, consisting of a key

(used for sorting) and an identification word

(used to identify and relocate the rest of the

item in :memory, after the key of that item

has been determined to represent the smallest

item). The ID word is appended to the key to

form a tag. The result is that which is actually

shuffled around in memory during the sort.

Data which exists on a single reel of magnetic

tape, random or ordered. Such data may

represent part of a file (string or segment), or

a full file.

The condifion which exists when the time used in

moving data from tapes to internal storage, or

from internal storage to tapes, exceeds the time

used in processing that data. Thus, in such a

sort, the machine must periodicaliy wait for the

continuously running tape.

A logical array of machine instructions having

one entrance, and one of several exits, the

latter depending on which of several keys related

to the tree is smallest (or largest).

Presort: number of tags in a bin which the tree

compares {maximum of six}.

Merge Sort and Collate: number of input sets

which the tree compares (maximum of five).

A tape used by the sorts during the sorting process,

the contents of which are immaterial before and

after the sort routine.

151

NOTES

Honeywell
II ~ Da1a-P~4'

