AUTOMATIC ROUTINE GENERATING AND UPDATING SYSTEM

H

HONEYWELL

HONEYWELL 800

Transistorized Data Processing System

n
o.
A
-
>
4
O
(2)
o
>
I
>
-
m
S
>
Z
c
e
I

Copyright 1960

Minneapolis-Honeywell Regulator Company
Electronic Data Processing Division

Wellesley Hills 81, Massachusetts

Litho in U.S. A.

DSI-43
11260

SORT AND
COLLATE MANUAL

Honeywell
Eleitiowic Data, Phocassing

HONEYWELL

Section I

Section II

Section III

ii

TABLE OF CONTENTS

Foreword «ecescesssesoccnsnss

Introduction +cesveecoscocsasass

General Sorting Function and Application ««....

Multi-precision Sorting ««.....
Cascade Technique ««cecoevenen

e s e e s 0o DRI R R T S A SR)

D R S O I S I B A SRR S NP e s 0 3 e e

I I I R R A S N

R R R S A I LA B ARY

L A SR N BN A}

Collate cesvane T
Specifying and Using the SOrts .veceietietrtstonnsenoasssoearsnssns
Basic Routines tveveveereeneneencacnncnens ceeees cereteaenn .
Sort and Collate Routines within the ARGUS Library
Sort Routine Specifications «eceeieitierereeesnesncnosnssnsonss
Collate Specifications s veevesseceeacnseosasaasasossenasannss
Tape Positioning +eeeieseseetertarteseecasonosenssnssnnas cveses
Identification Record ..eiiiuuetenerinenenoieecnnacnanans -
Specifying and Using the SOrts «..ieeeeerseeenssssttasarasseanns

Additional Memory Requirements «eeeeeereceeseennn
Calling for, Assembling, and Executing the Sort

Macrocoding c.iceieiecoianns

Checking Sorts Using the Program Test System, PTS

Presorticieiiiencnrenans

8000 000c00s 000800

General Methodc..ciiivnnnn .. ettt
Reading and Writing CONtIolsveurveeeeennnnnnneeeanennnnnas
Building Strings ... i.eieertiitiiitetetttttiietiieraeietiatnaos
YT

Bins and Tags (General Description)vovvun.
Layers of Trees in an ARGUS Presort ,......c00..

Stopperingc.cc000n00nn
Old Key AT€a ...vevensennans

D R N A A LI O B B

e e s e s et 00 s e0 0000 e

Master Routine (General Description)c.c0...

End of String00000n .

Bins and Tags (Detailed Descr1pt1on) S e eeeseeeeenns

Master Bin and ID Word .,....
Single-Precision Tree ,......
Double-Precision Tree «c.ees
Triple-Precision Tree «.....

DR R R A R I I R SR TR)

e e s s s e s e s e s 00t e e

¢ s e s s 00 e s 0080000 e

Master Routine (MASTER) (Detailed Description)
End-of-String Routine (ENDSTR) ¢ ¢ttt reerocerennennns veeoann
Write Switch Routine (WRSWCH) covevonetronarenacennnneens cenn

Fill Bins Routine (FILBIN)
Switch Routine (SWITCH) + ..
Read Routine (READ) .+......
Write Routine (WRITE) «¢oevse
Beginning the Presort

L I R R A I S R AR

L R R BN R I S N B RS)

P R N RN N R R R R NI

L I I A R R R I S NI SR

L I N I I B S N A I R RN S

.

Ending the Presort +eteeerteeceesstotcsosssecssoceans
Over-all Flow of the ARGUS Presort cveeseececssacss
Modifier-Generator s ecesessasosasssosscscsssssonscs

Error Correction and Restarts

St e e s e s s s 8000t

- s e e 000
. e e 000 0
Oy s e e e e

e e s 00 s e ..
s 0 e s o0 s 80
.. 2 s e e e o

s 00000800

R N I

s e s 0000400

o
WO 00~ 001Ut Ut W W W e

bt i e
O N

AR BR A WWWWWWWWWWwWWwNNNNDNDNNDND DD DD
RN OVOVVL XTI ~NTODNIDNIEFEWWOWOWOO=N-N g1 Ul Ul ww

Section IV

Section V

TABLE OF CONTENTS

Merge Sort ... in.. e v
General Methodc00vvvnnn
Reading and Writing Controls
Read Anticipationveec00ees

(cont)

% 6 0808000500000 0008008800000
5 9060000000000 0000ee00c00000ac0

R R I R O I I N A R R A I N SR AT

Equipment and Memory Considerationseceoeveeriocecancanns

Trees (General Description)
Perfect Distribution of Strings for
Banner Wordsvctviennnns
Dummy String (DUMSTR)
Buffers ...ciiiiiiiiiiiiiniinns
Trees (Detailed Description).....

Multi-precision ...c.eieieeeneans
Merge and Read Loop v .vvevvnnnnn

Beginning-o0f-String Check
All Items Equal v.viieiiinne cnns
Write Routine (WRITE) e .
End of Pass (ENDPASS)
Beginning of Pass (BEGPASS)....

C et teeceterteat e aann
Merge Sort .covviiieiiiiians
Ceeeatieeresoatetateeanesanan
et rertet et aeterenaeanan
Ctetete ettt
Ceeteaecees et e et aa e

6 60 0 000 e 0 s 0009000060300 800000

9068 08 0008000080 ese00es0a s e
. et s s e s s e v es 000 s e .o .
s s e e e s e s s 00 s e e e s o o e
e s a2 e e s e s e e 20006000 R A A
e e 0 s 0 00 P . s o s a0

‘Ending the Merge Sort (ENDSORT) et ettt
SPECIAL CASE: One Item per Record et ea e
Over-all Flow of the ARGUS Merge SOrt .v..vvuieenvnnnnns ..

Merge Sort Generation
Error Correction and Restarts

The Collate

The "Way' of the Merge

Merging Function,

DR . . . ¢ 6 e 8 s e e s s . .
. 4 s 5 8 s s 01 e 0 e e 0 e e e e s e s .
e 0 v e e LN A IR . . .

s e e .o o s .o . DRCERY

@ 4 e 4 80 0 20 00 e 68 e e s s e e 3000

Equipment and Memory Considerationscc0e0eenen.. e

The Collate Planvvtveveeann

Calculation of the Plan
Tape Controliiveeenieennnn
File Identification .v.veeeeereveacsns
Tape Changing «.oeeeeeeancosaoeeens
Buffers ...iieeerteeecinctsaransnns

Trees «.uieieieieeansnconesseanas
Multi-precisionccic0nn .
Main Loop tveeviiineinnnrenennn
Input Buffer Switching
End of Outputciiiiiiviene.
Endof Input ...cevvieennnnnennn
All Ttems Equal ... iveveeenss
Regeneration of the Collate
Generation of the Collate

« e s 60 8009 80230000 DECE AR A
LR R) DRI
s s 0. .o D A I . Y

. e s s s e e e s s e e * e
e s 0 s e a0 . D A I IR I
s et 0 eses e e e e e .o .o
s e s e s a0 s s 0 e s e s e e e ¢ o0
. et e e s 00 e R
e e R s o000
400400000 000 s s e s e s et s e
DR A I I S A A A . e e e
DR R A S S R R A S s e s e 00 e
e e e s 0o e D A AR SR AT) s e s e s s e e

I R R R R R R R S R A A IR Y

4 8 00 8 0 0 s 008 0 e 08 000t e e 0 e

Over-all Flow of the ARGUS Collate .. vivvivoreeestsecsnsoonsns

Error Correction and Restarts ...

........ D I I I I R S A I

Page
47
47
49
49
49
50
50
53
54
55
58
61
62
62
63
64
06
67
68
69
69
72
73

75
75
75
76
76
77
79
79
80
81
83
85
85
86
87
88
91
92
92
93
96

iii

Section VI

Appendix A

Appendix B
Appendix C
Appendix D
Appendix E

TABLE OF CONTENTS (cont)

OWn-Coding «eoevecuonorocacatonnsonees B 1 0} |
Own-Coding (Edit) Options in the Sortsc.. .00 ceseerses 101
General Techniquec.cceceeeanns Ceeeeen seeeeseceaneanesss 103
Relocation and Bank AsSSignmentsecevevecnssesoancsanasss 104
ARGUS Techniques for Own-Coding ...evveereeerannananenas ... 106
Specific Own-Coding Optionscveveeesosrcososanasssse I B |

Presort option 01 . .uevietenreeroerorsseoensnannescenens .. 111
Presort option 02 N T B)
Presort option 03 et eceaec st cee. 113
AddmgorDeletmgltems(Presort)............................ 114
Presort option 04 Che et B
Merge sort option 01 P
Merge sortoption 02o, et P .
Merge sort option 03 cre s aeseane ceeecitiesneeses. 125
AddlngorDeletlngItems(MergeSort)......................... 125
Merge sort option 04 teererreetesacanetaanasaa 134
After sort codingcviveeeaenn S B 23
Collate option 0l . .ueviureievennoneeasonnoneossesssreneass 134
Collate Option 02 ..vuivirveeeocensssassssnessoessennssssas 134
Collate option 03 ... uviervressensonssoosssnsosassassaseass 136
Adding or Deleting Items (Collate) . cvvvvuieenenreenenansaanaanss 136
Collate option 04vteeisooessasssosnssesaassassesanss 138

End File Identification Record (Item Design)
Presort to Merge Sort B X ¥

Presort Special Registers ...c.veiieeeeessoscsassroseenseesseasess 140
Merge Sort Special Registers B K 74
Collate Special Registerseeveneeeaann O B X

Timing of Honeywell 800 Sort Routinesccevvevernuanenannno.. 144

A Glossary of Sorting Termsiiueiorttesccnsossscesanssossosses Ceeeeeaeea.. 147

iv

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figufe
Figure
Figure

Figure 16.

Figure
Figure

Figure

i
.

.

O VW ® ~N o0 Ul s W N

e e
U D W NV

17.
18.
19.

LIST OF ILLUSTRATIONS

*Derivation of a Sort Program through ARGUSiiceerreersacsssnsees 21

Simple Presort Examplevietitientienocenarensns
ARGUS Presort Tree ...cevieietinrnnnnnrenieneonnns
Bins Accompanying Each Layer of Trees

Tag Bins and ID Word Formatoeuuunn

Single, Double, and Triple Precisionc..eeveeees .

Triple-Precision Common Comparison Coding

Over-all Flow Chart of the ARGUS Presort
Simple Three-tape Merge SOrt «vvvvirvrrocsnnserneocs
ARGUS Merge SOrt TT€e .iveeeernnansrecronssonnanns
Two-way Merge .voveveeneencnns cerea

Five-way Merge . iui ettt ieernneeranersanssonons

Use of Register SO at Exit of Treecvivivvin

Over-all Flow Chart of the ARGUS Merge Soxt

Appearance of Work Tape at End of Presortvvv.n.
Collate Merging SequUence ...eieeeseesensrsssnssssas
Over-all Flow Chart of the ARGUS Collate
Presort Own-Coding .«.ceeieoinrsveenssons
Merge Sort and Collate Own-Codingc.cvvvuns

Page
cetereieiesseaes. 26
e reee e cees 27
Ceteee e ... 30

ceee. 48

e cesesesess 52

e s e s 0000000

R A A A)
R e
............
s e e a0 s e e

FOREWORD

The sort and collate routines described in this manual are currently undergoing checkout

on the Honeywell 800 System. The checked-out routines will be available in February, 1961,

The user of this manual will be able to obtain a general, as well as a detailed, descrip-
tion of the functions, operations and programming logic of these routines. Because these rou-

tines are still undergoing checkout, they may be subject to minor programming modifications.

For the reader who is interested in only a general description of these routines, he will

find this information in the first part of each section. A more detailed discussion follows the

general description.

vi

SECTION 1
INTRODUCTION

A series of sort generators for creating sort programs have been designed to be included
in the ARGUS (Automatic Routine Generating and Updating System) Library of Routines. Assem-
bly and use of the ARGUS sort routines have been simplified in keeping with two major considera-
tions inherent in their design:

1. Efficient operation;

2. Universal application.

The ARGUS sort routines represent a departure from conventional sorting methods through the
use of new programming techniques. The logic of these sorting routines provides for increased

sorting speed while reducing the number of required tape drives and corresponding hardware.

Programming effort in developing a usable sort program for the accurate sorting of ran-
dom data has been minimized to specifying, by means of an instruction, a desired routine from

the ARGUS Library of Routines.

In order to generate a sort program, the programmer simply writes an instruction which
specifies the desired routine from the ARGUS library and which supplies the parameters re-
quired by the routine. These parameters are interpreted and incorporated into a program

tailored to perform a specific sorting function.

Although the ARGUS sorts are capable of handling a wide variety of situations, there are
limitations imposed in the interest of providing the most efficient routines for the most common
cases. Because of these limitations, there will be occasion to modify the routines produced by
the ARGUS sorts, or even to hand-write a sort completely. The former is made easy, in many
cases, by provisions for "own-coding' built into the ARGUS sorts (Section VI). These pro-
visions allow, at specified points throughout the routine, detours into special coding added to

the sort to perform some additional function.

The purpose of this manual is to provide a description of the ARGUS sorts and supply a
working knowledge of them as an aid to own;coding or sort modification. Knowledge of these

sorts may also be used as a guide in writing one-of-a-kind sorts for the Honeywell 800.

SECTION I. INTRODUCTION

The sorts consist of two segments: presort and merge sort. The presort reads random
data from one tape, orders it as much as memory space permits, and writes the data in ordered
strings onto two or more output tapes. The merge sort then reads these outputs from the pre-
sort, and merges sets of strings, again writing them onto two or more output tapes. As this
process continues, the strings become longer and fewer in number, until finally all of the data
has been combined into one long string, written on a final output tape. In the case of large files
which fill more than one tape, a collate routine is used to combine several ordered tapes (or

files) into one continuous file.

At this point, a brief history of the ARGUS sorts might be of interest. The Honeywell 800
can read, write, and compute simultaneously. This type of computer is ideally suited for the
presort method based on the building of continuous strings of items in memory as long as there
are items which qualify. This method, as opposed to a strictly internal, fixed-length-string
type of presort, takes advantage of any pre-ordering of data by producing correspondingly
longer strings. Several other features of the Honeywell 800 are used to improve the presort.
For example, index register addressing permits use of a single ''tree'' for several purposes
{explained in Section III), and the large memory permits much data to be stored internally,
resulting in long presort strings. The additional memory and the power of instructions used
in conjuction with special registers result in a sophisticated generator, which makes very

efficient use of data storage space.

The merge sort portion of the ARGUS sorts represents a complete departure from conven-
tional merge sorting methods. The origin of this method can be traced back to 1956, when
Honeywell mathematicians developed a unique sorting method which requires only three tapes.
When study for the Honeywell 800 sorts was begun, it was felt that it would be desirable to
include the three-tape sort along with conventional two- and three-way merge sorts, in order
to accommodate small systems. As work progressed on the three-tape sort, methods were
discovered which made it workable for any number of tapes. For a given number of tapes, it
was discovered, this ''m minus one' concept is always more efficient than conventional merge
sorting. For greater flexibility, and in order to utilize a single set of merge sort geﬁerators,
it was decided to use this new approach for all ARGUS merge sorts. Considerable revision has
been made to the original three-tape concept, especially in the area of distribution of strings

by the presort, and in the handling of an uneven number of strings.

SECTION I. INTRODUCTION

General Sorting Function and Application

The basic function of any sorting operation is the ordering of data in a prescribed logical
sequence té make that data accessible for later use. To control large amounts of data, a mas-
ter file of all items of related information pertinent to a particular activity is usually estab-
lished. These items are ordered according to a designated portion of each item. This portion,

or field, is termed the key of the item.

To maintain a mas‘;er file reflecting the latest transactions, it is necessary to update
the master file periodically. This is accomplished most efficiently by ordering the transactions
in the same sequence as the master file, each transaction containing the same key as the cor-
responding master file item. The power of the ARGUS sort generators can then be brought to

bear to create the program which accomplishes this ordering.

Multi-precision Sorting

ARGUS sort routines are capable of sorting on a key of one field, two fields, or three fields;
each field may be a full Honeywell word or any portion thereof. These operations are termed,
respectively, single-precision sorting, double-precision sorting, and triple-precision sorting.

Own-coding (as explained in Section VI), is used to handle longer sort keys.

Cascade Technique

To implement the merge sort on the Honeywell 800 System, Honeywell has developed a
technique which is radically different from conventional methods employed with other data pro-
cessing systems. This Cascade technique makes optimum use of the flexibility inherent in the
hardware design of the Honeywell 800 to provide faster sorting with fewer magnetic tape units.
In fact, Cascade sorting can be performed on as few as three tapes. The speed and power of
the sort can be enhanced by adding any odd or even number of tapes. Conventional methods, on

the other hand, require a minimum of four tapes and, in all cases, an even number.

The ARGUS presort differs most from the conventional presort in its distribution of strings
on the two or more output tapes. Consider the case of a three-tape sort, in which data from one
input tape is distributed to two output tapes. Instead of alternately writing strings on the two
output tapes, as is normally done, this new method writes more strings on one tape than on the
other. The ratio of the number of strings on the two tapes, which can be determined by a sim-

ple counting system, is 1.618 to 1.

SECTION I. INTRODUCTION

The merge sort reads the two presort output tapes backward, merging successive strings
and writing them on a third tape. When the strings on the shorter input tape are finally exhaus-
ted, there are still a number of strings remaining on the longer tape. These are copied onto the
tape just emptied, in order to have all data on both remaining.tapes in the same ascending (or
descending) order. Thus, there are again two tapes with strings in the approximate ratio of

1.618 to 1 and another merging pass is begun. This process continues until one string remains.

As indicated, the same theory of sorting may be applied to any number of tape drives (n),
in which case the presort writes strings in a prescribed ratio onto n-1 tapes, and the merge sort
begins with an n-1 way merge onto the single remaining tape. Thus, the term n-1 sorting has
been used in reference to the Cascade technique. As n becomes greater than 3, the Cascade
method provides a proportionately greater sorting speed than the conventional merge (two way

for four tapes, three way for six tapes, etc.) used with the same number of tapes.

Collate

The ARGUS collate is used to combine large files of sorted information extending over one
or more tapes into one continuous file, While the reading and writing controls and tape handling
are somewhat more complex, the aim and construction of the collate program are quite similar

to those of the merge sort.

SECTION II
SPECIFYING AND USING THE SORTS

Basic Routines

The ARGUS sort and collate routines each consist of a skeleton routine and a modifier-
generator. The skeleton routine provides the basic coding, or the programming framework, on
which the modifier-generator can build a working program. The programmer's pseudo instruc-
tion and information from the file identification record of the input tape together supply the
parameters needed to adapt this framework to the requirements of a specific sort or collate.
The modifier-generator consists of two portions which together interpret these parameters to
create the desired routine. The generator portion establishes storage and buffer areas in
unused portions of memory (generating concept), while the modifier portion performs the actual

adaptation of the skeleton routine (modifying concept).

Sort and Collate Routines within the ARGUS Library

When a programmer wants to execute a sort or collate operation, he insérts an instruc-
tion calling for that operation into his ARGUS program. Because this instruction is not directly
executed by the logic built into the computer, it is called a pseudo instruction. Such a pseudo
instruction calls for the desired subroutine (in this case a sort or collate) from the ARGUS
library tape and specifies the parameters required for the execution of that subroutine. Para-
meters for a sort subroutine specify the precision of the desired sort, the number of input tapes,

the size of available high-speed memory, the number of work tapes, etc.

Sort Routine Specifications

INPUT: The ARGUS sort routines are designed to handle one tape reel of unordered data or the
equivalent data on several partially filled reels. Data in excess of this amount can be handled,
provided that there is no overflow from any work tape at the end of the presort or of any inter-
mediate pass of the merge sort. In other words, the input to the presort and the final sorted
output may exceed one reel in length. However, if the capacity of any work tape is exceeded
during the sort, the program will stop with a comment at the console and will have to be rerun
with less data. The exact amount of data that can be handled by any sort is a function of the
structure of the data and the amount of pre-ordering that exists, and therefore cannot be stated
for the general case. Data which exceeds the capacity of the sort can be handled by multiple
executions of the sort pseudo instruction. Each such execution generates and performs a sepa-
rate sort routine, creating a file out of a portion of the data. The resulting files can be then

merged by performing a collate.

SECTION II, SPECIFYING AND USING THE SORTS

The input data, which is read in the forward direction, must be preceded and followed by
standard file (or segment) identification records, as described below. The sort routines can
handle either fixed-length or variable-length items; however, the number of items per record
must be fixed. Variable-length items are handled as such throughout the sort and must be fol-
lowed by end-of-item symbols. Such symbols are also required with fixed-length items exceeding
63 words in length. The record size (in items), the maximum item size (in words), and the fixed
or variable nature of the items are specified as parameters in the file identification record, as

are the location and masking (if any) of the key(s).

OUTPUT: The output of the sort is a single file in ascending sequence, preceded and followed by
file (or segment) identification records derived from the input data. The end identification rec-
ord contains a segment number of hexadecimal G's, as required by the collate routine. The
console typewriter produces a listing of all error and restart information, together with a count

of the number of items sorted.

Collate Specifications

INPUT: The ARGUS collate routines are designated to handle up to 99 files of input. Each file
may be contained on one or more reels of tape, and must conform to the following specifications.
Each tape (whether a complete file or part of a file) must have standard identification records
preceding and following the data to be collated. These identification records may be either file
or segment identifications. The identification record preceding the data must be a beginning

file (or segment) identification, and the one following the data must be an end identification. The
beginning identification record must always be the record immediately following the tape identi-

fication block.

Word 1 of the identification record is a standard banner word, identical to those recog-
nized by the sorts. Word 2 contains the name of the file; this must be the same for all identi-
fication records of a file. The low-order four digit positions of word 3 contain the segment
number of the tape within the file, and have significance when a file is contained on more than
one tape. These numbers in the beginning and end identification records of each successive
tape of a file must be a sequence of decimal numbers. The first tape of a file may have any
segment number, but the following tapes of that file must have numbers following it in monotoni-
cally increasing order. The segment number of the end identification record of the last tape of
a file must be hexadecimal G's, as this marks the end of a file for the collate. This also holds

true for files contained on a single tape, in which case the first tape is also the last..

The collate routines can handle the same range of variables as can the sort routines (ex-

cept for the banner option), and these are specified in an identical manner in the beginning file

6

SECTION II. SPECIFYING AND USING THE SORTS

(or segment) identification record of one of the input tapes. The collate will use the tape first
mounted on the "A' input as its source of parameters; the parameters specified in any other

beginning identification records are bypassed.

OUTPUT: The output of the collate is a single file in ascending sequence, each tape of which
conforms to the above specifications for input tapes. The beginning identification record of the
first tape and the end identification record of the last tape will be file identification records; all
others wWill be segment identification records. The file name of all identification records will be
the name supplied in the pseudo instruction, and the segment number of the first tape will be
0001. Each tape (except the last) will be filled to capacity, unless a maximum number of records

per tape is specified in the pseudo instruction.

INTERMEDIATE: If a collate consists of more than a single pass, which it will if the number

of files to be collated exceeds the way of the collate, then the output of each pass except the last
is an intermediate file which will act as input to a later pass. These intermediate files are
identical in format to the final output except that tapes are always filled to capacity, and the file
name in word 2 of the identification records will be an identification number arbitrarily assigned
by the routine. These identification numbers specify each file uniquely, and coincide with the
numbers printed in the plan. Further information on these numbers can be found in Section V,

Collate.

Tape Positioning

Sort Input: Positioned so that the first record read forward by the sort will be the
beginning-of-file identification. If both input drives or the ''save'' option are used,
all input tapes will be rewound after the sort. Otherwise, the input tape will be
positioned following the end-of-file identification record after the sort. There must

be at least one record following the end identification record.

Sort Output: Initial positioning of the output tape has the same specifications as
that of the work tapes (see below). After the sort, positioning takes place fol-
lowing the end-of-file identification record of the sorted file, and before an

end-of-file information record.

Sort Work Tapes: If at the beginning of tape, the sort will bypass the identifica-

tion block and begin writing with the record immediately following. Positioning
after the sort (except output tape) will be immediately after the tape identifica-

tion block. It is necessary that there be at least one record written following the

SECTION II. SPECIFYING AND USING THE SORTS

tape identification block; this will be destroyed by the sort. Tapes positioned

other than at the beginning of tape will be written starting at their current location.
Positioning after the sort (except the output tape) will be at this current location.

It is necessary that there be at least one record written beyond the current loca-

tion; this will be destroyed by the sort.

Collate: Because of the tape changing necessary throughout the collate, all beginning

identification records (input and output) are assumed to be the record immediately

following the tape identification label. All tapes are rewound after use. The collate
- will bypass the tape identification block and begin reading or writing with the record

immediately following. It is necessary that there be at least one record written fol-

lowing the tape identification block on the output tapes; this will be destroyed by the

collate. Input tapes must have at least one record following the end identification

record.

Identification Record

Every file to be sorted or collated must contain a standard beginning identification record
as its first record. This record must not be greater in length than any of the data records in the

file, and will have the following format in words 5-9:

P =i —— T — e
1] ¥ T L i ¥ 1 3 ¥ R ¥ L] I L 4 i 1) ir ¥
Woro | 1TEms PeR RECoRD | worps PER Irem |FFIED |@-mncy
s PECIMAL vEcimal 2= VAR |- Mo M«I
L 3 13 L
) L] 1 11 14 ¥ ¥ 0' T 13 ¥ ’ ¥
WORD FIRST KEY LOCATION | SECOND KEY LocATION) THIRD KEY LocRTIoN -i%z;s
6 DECIMAL DECIMAL DECIMAL remasees|
14 | : , 1 Ly —i : i 1 13 I ; l + 13 1] I 1)
W07RD FIRST KEY MARSK
i L L
77t T 7T 7 T T T T
WORD SECONL KEY MASK
8 i L I L
T 7T 7t rrvi 1r 17 L) '
WDQRP THIRD KEY MAsSK
L + } " 2] 4['7] : } 4} L] ! ¥ : F T L ¥ }

e

Words 5 and 6 are to be specified as decimal constants. The number of items per record, the

maximum number of words per item, and the three key positions relative to the first word of

the item, each use three digits. The three options use one digit apiece and are as follows:

0 if the item length is fixed, and 1 if variable length; 0 if there are banner words at the beginning
. of each record, or 1l if there are no banner words except in the file identification records (must

be 0 for the collate); 0 if the keys are not masked, and 1 if the keys are masked. The masks

in words 7-9 are to be specified by the programmer in hexadecimal.

SECTION II. SPECIFYING AND USING THE SORTS

The sort assumes that the input tape will be positioned so that the first read forward order
will read the beginning-of-file identification record. The address of the proper input tape is
obtained from the macrocoding, and the identification record is then read into memory in the
lowest available register. It is addressed by using index register X6. The sort verifies the

first record as being an identification record by checking for the beginning-of-file banner word.

Banner words have a special significance to sort routines. The first word of all identifi-
cation records is assumed to be a banner word of standard format, and will be used by the sorts
to sense for beginning- and end-of-file records. Banner words are also used by the sorts to
identify beginning-of-string records during the operation of the merge sort, and to give the
number of each record written on tape relative to the first file identification record (low order
16 bits). If the input file to be sorted does not contain normal banner words on data records, the
presort will add banner words to each record, and the final pass of the merge will eliminate
them. This addition of banner words by the presort will occur if that portion of the parameter

(one digit of the B address field) used for the banner option is 1.

Specifying and Using the Sorts

A single~-, double-, or triple-precision sort routine is requested from the ARGUS Library

of Routines through the use of a pseudo instruction. The format of the pseudo instruction is

shown below.

ARGUS &

PROBLEM PROGRAMMER DATE PAGE OF ____
| LOCATION)g[;; COMMAND CODE [/ A ADDRESS 37|38 8 ADDRESS 51|52 C ADDRESS b;’: T 7': 1: LS M
......... L S e L T T T T T LI Sant B B S B S B S B M B B S B A B B ' j SRR
l —+
: 4 SORTp,S | |EZ/FO/MERNAME | MMMM/1T/AT/WI W2 /ws/wi/w5/wé }
T
3 |
¥
‘ |
s I
L
. |
i
L - designates library routine.
SORT - designates the subroutine within the library.
P - designates the precision.

1 - single precision.
2 - double precision.
3 - triple precision.

S - designates an option to allow saving the input tape after the presort
if that drive is to be used by the merge sort for a work tape.

SECTION II.

SPECIFYING AND USING THE SORTS

10

EI -

EO

1

MERNAME -

MMMM -

S - change tape after presort.

M - indicates a multi-reel input with only one input tape unit
available. If the input tape unit is assigned as the nth
work tape, the input file is saved, as if S were speci-
fied.

0 - do not change tape after presort. If this drive is
assigned as the nth work tape, the portion of the tape
beyond the input will be used as a work tape.

designates an input edit option (presort own-coding).
00 - no input edit will take place.

01 - edit option number 1 will be used to modify the
parameters found in the file identification record
of the input file,

02 - edit option number 2 will be performed immediately
after the generation of the presort.

03 - edit option number 3 will be performed to modify
each item in the input buffer before transferring
it to item storage.

04 - edit option number 4 will pérform all three of the
above edit options,

designates an output edit option (merge sort own-coding).
00 - no output edit will take place.

02 - edit option number 2 will be performed immediately
after generation of the merge sort.

03 - edit option number 3 will be used to modify each
item only during the final merge pass, at the point
where an item has been transferred to the output
buffer.

04 - edit option number 4 consists of the combined use
of output edit option number 2 and number 3.

designates the segment name to be assigned to the merge
sort own-coding. If there is no output editing, this field

is left blank. The name assigned to merge sort own-coding
can be any seven characters, but must be different from
the name assigned to the segment which contains the sort
pseudo instruction.

designates in decimal the number of words of memory
available to the sort in the preceding bank(s) in excess of
the basic requirement of one bank. The basic requirement
includes only the coding for the sort itself, and excludes
own-coding, macrocoding, Executive Routine, etc. If
sufficient memory is available for the sort specified, this
information will be printed immediately and the sort will
stop.

designates input tape drive assignment. All tape drive
assignments are in standard ARGUS format consisting
of a two-character code from AA to HH, except GG.

SECTION II. SPECIFYING AND USING THE SORTS

Al - designates alternate input tape drive assignment; if only one input
drive is available, Il is repeated.

w1 - designates final output tape assignment.

W2-W5 - designates work tape assignments. A code of "GG' should be
designated for all work tapes not being used.

woé - nth work tape assignment. The input tape assignment must be dup-
licated as the final work tape assignment (W6) whenever it is to be
used as a work tape. If the input tape is to be saved, the S option
must be an S (or an M).

A single-, double-, or triple-precision collate routine, like a sort routine, is called for

by means of a pseudo instruction. The format of the collate pseudo instruction is shown below.

ARGUS =

PROBLEM PROGRAMMER DATE éAGE OF.

| LOCATION gl;, COMMAND CODE 5, % 2 A ADDRESS)30 8 ADDRESS 51|82 C ADDRESS “k“ L....K...,f..:‘ ,,A],: ks M
- L, CotLATED Eo/oTPTNAME mmmm [norec | NF ' !
el |
2 TAC ri/az/jeifB2)ct [fc2/66/66 :L
3 TAC o1fez|Etfez/or foz/o7/G6 |
i
* |
: !
: |

? Mrmwv’\”——ww

L - designates library routine.

COLLATE - designates the subroutine within the library.

P designates the precision.
1 - single precision.

2 - double precision.
3 -triple precision.

EO - designates an edit option.
00 - no edit will take place.

01 - edit option number 1 will occur to modify the parameters
found in the file identification record of input file.

02 - edit option number 2 will be performed to allow for own-
coding after generation of the collate.

03 - edit option number 3 will occur to modify each item only
during the final pass, at the point where an item has been
transferred to the output buffer.

04 - edit option number 4 will occur which will provide for all
three edit options.

11

SECTION II. SPECIFYING AND USING THE SORTS

OTPTNAME - designates the file name to be placed in the second word
of the file or segment identification records of the final
output file produced by the collate routine.

MMMM - designates memory (in decimal) available to the collate in
the preceding bank(s) in excess of the basic require-
ment of one bank. The basic requirement includes
only the coding for the collate itself, and excludes own-
coding, macrocoding, Executive Routine, etc.

NOREC - designates (in decimal) the maximum number of records to
be written on each tape of the final output file. If this field
is left blank, tapes of the final output file will be filled.

NF - designates (in decimal) the number of files to be collated.
The collate can handle up to 99 original input files, and
thus the range of NF is 02 to 99.

The two Tape Address Constants (TAC) following the pseudo instruction are used to specify
the large number of drives which the collate may use. Although not part of the pseudo instruc-
tion, these must be written in the prescribed format immediately following the pseudo instruc-
tion, so that they will be located immediately after the macrocoding associated with the collate.
When finished, the collate exits to whatever instruction follows the second TAC.

Al - designates the first, or main, "A' input tape assignment.
This will be the source of the beginning-of-file identifica-
tion from which the collate will obtain its file format
parameters.

A2 - designates the second, or alternate, ""A' input tape assign-
ment. If the "A'" input is to be restricted to a single drive,
then Al should be repeated.

B1 - designates the first, or main, "B' input tape assignment.

B2 - designates the second, or alternate, '"B' input tape assign-
ment. If the "B" input is to be restricted to a single drive,
then Bl should be repeated.

Cl - designates the first, or main, "C'" input tape assignment.
If a two-way collate is to be performed, this as well as
C2 should be written as '"GG'.

Cc2 - designates the second, or alternate, "C' input tape assign-
ment. If the ""C'" input is to be restricted to a single drive,
then C1 should be repeated.

GG - ynused. These fields should be written as such, however,
in order to fill the TAC instruction.

D1 - designates the first, or main, "D'" input tape assignment.
If a two- or three-way collate is to be performed, this as
well as D2 should be written as '""GG''.

D2 - designates the second, or alternate, 'D' input tape assign-
ment. If the "D'" input is to be restricted to a single drive,
then D1 should be repeated.

12

SECTION II. SPECIFYING AND USING THE SORTS

El designates the first, or main, "E'' input tape assign-
ment. If a two-, three-, or four-way collate is
to be performed, this as well as E2 should be writ-
ten as "GG'".

E2 designates the second, or alternate, "E'" input tape
assignment. If the "E' input is to be restricted to
a single drive, then E1l should be repeated.

o1 designates the first, or main, output tape assignment.
This is always the first tape to be written by the col-
late.

(o) designates the second, or alternate, output tape assign-

ment. If the output is to be restricted to a single drive,
then Ol should be repeated.

DT designates the restart dump tape assignment. The code
"GG'" specifies that no restart points are to be established
during the collate.

GG unused. This field should be written as such, however,
in order to fill the TAC instruction.

The parameters dealing with the file format are set up in the file identification record
exactly as they are for the sort. Although all of the inputs to the collate must have standard
beginning-of-file identification records, only the first "A' input file is used as the source of file
parameters. In addition to the requirements mentioned in connection with the sort, the collate
requires that the segment number (digits 11 and 12 of word 3 of the file identification record)
of each reel of a file be in decimal sequence with respect to the reel preceding it. The seg-
ment number of the first reel of a file may be any number the user wishes. The end-of-file
identification record of the final reel of a file must have a segment number of "GG' to indicate
end-of-file to the collate. Because reels are normally mounted and dismounted during the
course of the collate, the beginning-of-file (or segment) identification record of each reel is

assumed to be the second record on tape, immediately following the tape label record.

_Additional Memory Requirements

In both the sort and the collate macro instructions, there is a field (MMMM) which speci-
fies the amount of additional memory available to the sort, in addition to the basic requirement
of one bank. This figure is the same for both the presort and merge sort, but the requirements

for each are somewhat different.

The nature of the presort is such that it can always function within a single bank (MMMM =
0000), regardless of item or record size. In some cases, namely when item size and record
size are both relatively small, nothing is to be gained by providing additional memory space to
the presort, since it is able to fit its maximum number of storage locations (216) within the

basic bank, However, when items or records are larger, less than the maximum number of

13

SECTION II, SPECIFYING AND USING THE SORTS

storage locations will fit within the basic bank, resulting in shorter strings from the presort,
and thus more merge sort passes and a longer sort routine. In such a case, providing the pre-~
sort with additional memory would benefit the user by producing more storage, longer strings,

fewer passes, and thus a shorter sort.

The merge sort is less flexible in this respect. Under some conditions, a merge sort
will fit entirely within the basic bank; in other cases, it will have to have additional memory.
The two variables which influence this requirement the most are the maximum '"‘way'' of the
merge, determined by the number of tapes used by the sort, and the record size; together, these
determine the size and the number of buffers used by the merge sort. Also influencing the
amount of memory required is the span between the highest and the lowest key locations within
the item, since this amount of space must be reserved for stoppering purposes. In single~
precision sorting, the span is, of course, zero. The following formula gives the amount of
additional memory required by the merge sort:

m=p+ 3tr + s - 2,048
where
m - designates the additional memory locations required (if the result
is negative, less than the basic bank is required, and MMMM may
be zero). :

P - designates the number of memory locations used by the program:
750 for single precision, 800 for double precision, 825 for triple
precision.

t - designates the number of tapes used by the merge sort: three,
four, five or six (W1 through Wé of the macro instruction).

r - designates the maximum number of words per record, including
banner word, data, two ortho words, and end-of-record word,
up to 254.

s - designates key span, or highest key location minus lowest key
location.

For example, in a double-precision sort with key fields in words 12 and 2 and a maximum
record size of 100 words to be performed as a six-tape sort, p would be 800, t would be 6,

r would be 100, and s would be 10; also 562 additional memory locations would be required.
However, a four-tape sort of the same specifications (t would be 4) would be contained within

the basic bank.

A similar formula may be stated for the collate as follows:

m=p+ (3w + 2)r + s - 2,048
where
m - designates the additional memory locations required (if the
result is negative, less than the basic bank is required, and
MMMM may be zero).

14

SECTION II. SPECIFYING AND USING THE SORTS

P - designates the number of memory locations used by the pro-
gram: 1, 250 for single precision, 1, 300 for double precision,
1, 350 for triple precision.

W - designates the maximum '"way'' of the collate: two, three,
four, or five.

r - designates the maximum number of words per record,
including banner word, data, two ortho words, and end-of-
record word, up to 254,

s - designates key span, or highest key location minus lowest
key location.

Calling for, Assembling, and Executing the Sort

There will be occasions when a particular sort may be one of several programs which are
run as a series; at other times, it may be one of several segments making up a program. In
either case, from a programming standpoint, 2 sort is a logical entity, and the ARGUS System
goes to considerable effort to maintain it as such. Thus, a programmer has only to write the
single pseudo instruction, L,SORT, in order to produce a complex pair of routines which

together form the sort.

Although consisting of two separate phases, presort and merge sort, the sort is called for
and loaded as a single subroutine. This is entered at execution time by a special calling sequence,
or macrocoding routine. Thus, the L,SORT is a macro (pseudo) instruction which is replaced

during Assembly by a 15-word calling sequence,

Being a subroutine, the sort is loaded along with whatever coding (including the 15-word
calling sequence) the programmer has written. After the macrocoding is reached, it turns con-
trol over to the presort generator portion of the sort subroutine. This, in turn, generates and
modifies the presort coding, using parameters set up by Assembly in the calling sequence, in
order to provide a working presort; in doing so, the merge sort portion of the sort routine is
destroyed. The presort is then performed, and when it is finished, it returns control to the
calling sequence. The calling sequence now reloads the entire segment, namely programmer
coding, calling sequence, and sort subroutine. This time the calling sequence specifies to the
loader that control is to remain within the calling sequence rather than starting the segment at
the beginning again. Once reloaded, the calling sequence tests the MERNAME field (from the
original pseudo instruction), and if it is equal to alpha blanks, the sequence assumes no own-
coding has been written for the merge sort. The merge sort generator portion of the subroutine
is then entered, and this generates and modifies the merge sort coding, this time destroying the
presort. The merge sort is performed, and when it is finished, it returns control to the loca-

tion just beyond the calling sequencé. Thus, whatever the programmer had written following

15

SECTION II. SPECIFYING AND USING THE SORTS

the pseudo instruction would now be performed in so much as the sort has been completed.

Any own-coding that is performed during the presort (see Section VI) is written as part
of the same segment, together with the rest of the programmer's coding. As part of the same
segment, it is loaded both before and after the presort, along with the programmer coding,
calling sequence, and sort subroutine. Merge sort own-coding, however, is written as a sepa-
rate segment. When the presort has been executed, and the basic sort segment has been re-
loaded, and if the calling sequence discovers that something other than alpha blanks was written
in the MERNAME field, it then loads the segment by that name. The segment representing the
merge sort own-coding must therefore be given the same name as in the MERNAME field and
this will now be loaded. This approach allows merge sort own-coding to overlay the presort
own-coding in order to conserve space, if so desired. Also, special register Z,S2 is used as
the address for the own-coding to which the sort is to branch. This may be loaded as the address
of the presort own-coding by the main sort segment, and then loaded as the address of merge
sort own-coding by the auxiliary segment. More details concerning the handling of own-coding

are contained in Section VI, Own-Coding.

The sort, being a subroutine, is handled as such by Assembly, and is therefore placed
immediately following the programmer's coding. However, since the sort uses almost an
entire bank, it can only be relocated modulo 2, 048. Within its bank, the sort program starts
at location 20 (0020) and ends four locations before the end of the bank, The former unused area
of memory permits the programmer to SETLOC the calling sequence plus the normal exiting
macrocoding (usually either L, EXIT or L, READSEG) at location zero of a bank to enable the
program to fit entirely within that bank. The four locations at the high end of the bank allow
the sort routine to occupy the highest bank of a given installation without interfering with the

stopper.

If the highest location used by the programmer's coding within a bank is greater than 20
(which it inevitably will be unless the programmer specifies a SETLOC of zero and includes
nothing in his program or segment except the L, SORTp and the exiting pseudo instruction), the
sort will be located in the succeeding bank of memory. By judicious use of SETLOCS, the
programmer may determine exactly the space relationship between his coding and the sort rou-~
tine. It is possible to separate the programmer coding from the sort by any number of banks
by specifying, within the programmer's coding, a SETLOC whose sole function is to establish a
memory location in some higher bank. Thus, a programmer might SETLOC his coding in bank
0 and follow the coding by a SETLOC of location 0000, bank 3. The coding (consisting of the

programmer's instructions, the calling sequence, any own-coding, etc.) would be assigned to

16

SECTION II, SPECIFYING AND USING THE SORTS

bank 0, and, insomuch as a point has been established within the first 20 locations of bank 3,
the sort routine would thereby occupy bank 3. The same result would occur if the second

SETLOC had specified a location higher than 0020 in bank 2.

Macrocoding
The macrocoding corresponding to the L, SORTp pseudo instructions consists of the
following: ARGU Sg&“‘;
PROBLEM PROGRAMMER DATE PAGE [o] S
OO e SOWMD 0 il oM yw bl e C o g grme e ®
! MACROPEF ' :
z a
3 L,5087p,S EI/Eo/MERNAME | MmMM/II/RT/Wi | W 2/w3/welws/weé ;
‘ 1
5| ‘MACRO Ts ¢, +12 z,RU! N, AU/ }
6 M, Eo I a,s :
7 Fx BIN (-mmmm) |
8 TAC IRI,NI, W2,W3, |WE, W5, Wé ‘I
? oer 2644008164477\ 77 !
to SEGNAME (NRME oF S0RT SEGMENT) |
: srec - - o +4 |
2 ocr 2689204168877 17 1
|
13 ALF MERNAME 1
14 SPEC - - <, +2 :
15 NA ¢, -2 ¢, 14 c -3 {
16 73 ¢, 42 z, aut R }
7 syscALL - - SORTp {
.
e SuBerel - - SolTp+! |
19 ALE (BLANKS) |[
I Famrs I |

During ARGUS Assembly, any L, SORTp pseudo instruction appearing in-a line of coding is re-
placed by these 15 istructions starting with MACRO. The Assembly Routine matches all of

the fields in the sample L, SORTp pseudo call of the above MACRO definition with the fields in
the various constants below it. Thus MACRO+1, a mixed constant, will contain whatever the
programmer wrote in the EO, EI, and S fields of the pseudo instruction. MACRO+2 will con-
tain the quantity written in the MMMM field. MACRO+3, a tape-address constant, will contain
all of the tape addresses from the pseudo instruction in compacted form. MACRO+5 is actually

an alphabetic constant, set up by Assembly to contain the name of the segment containing the

17

SECTION II. SPECIFYING AND USING THE SORTS

L, SORTp pseudo instruction. MACRO+8 on the other hand, is set up as an alphabetic constant A
containing whatever was written in the MERNAME field of the pseudo instruction. MACRO+12
and MACRO+13 are set up by Assembly as SPEC constants, containing the address of the respec-

tive first and second locations occupied by the sort subroutine.

At execution time, the first order encountered (after any preliminary programmer coding)
is MACRO. This transfers the contents of MACRO+12 to Z, AUl and goes to N,AUl. MACRO+12
is a SPEC constant combining the first location used by the sort routine. This first location
of the sort is, in turn, a TS instruction which stores the sequence history register, and trans-
fers control to the entrance of the presort generator. The address which is stored from the
sequence history register is MACRO+1, and this gives the presort generator access to

the constants in the macrocoding.

When it is finished, the presort exits to MACRO+4 via the stored value of the sequence
history register (just mentioned) which will have been incremented by 3 in the process of inter-
preting the parameter constants. MACRO+4, +5, +6, énd also MACRO+7, +8, +9 are the
macrocoding equivalents of the L, READSEG pseudo instructions. They are written here in
expanded macrocoding form because macrocoding cannot call other macrocoding. MACRO+4
(as well as MACRO+7) are actually MPC instructions which must be written as constants in
order that the reference to group 0, which they contain, will not be relocated in another group.
These MPC orders specify that groups 1 through 7 will be turned off, group 0 be turned on,
and the contents of the PCR be stored in the accumulator; the A address contains a code which
specifies to the Executive Routine that this was a READSEG instruction. Executing one of these
instructions causes the Executive Routine to load the segment specified in the following location,
and to transfer control to the location specified in the SPEC constant following that instruction.
Thus, when the presort exits to MACRO+4, the segment containing the L, SORT pseudo instruc-

tion is unloaded and control is turned over to MACRO+10.

Whatever was written in the MERNAME field (now in MACRO+8) is compared with alpha-
betic blanks (MACRO+14) in MACRO+10. If these are not equal, then merge sort own-coding
exists, and that segment will have to be loaded. If MERNAME was left blank, however, the
next move would be to MACRO+11, which transfers the address of the second location used by the
sort into Z, AUl and goes there. The second location of the sort program is similar to the first,
except that it transfers control to the merge sort generator. The sequence history register
is again saved, so that the merge sort, when finished, can use it to exit to the location beyond
MACRO+14, thus returning to whatever programmer coding followed the L, SORT pseudo instruc-

tion.

18

SECTION II. SPECIFYING AND USING THE SORTS

If it had been determined in MACRO+10 that merge sort own-coding existed (MERNAME
field not equal to blanks), the next move would have been to go to MACRO+7. This constant,
like MACRO+4, is actually an MPC instruction which turns control over to the Executive Routine,
telling it to load the segment whose name is in MACRO+8 and to go to the address specified in
MACRO+9. This, in turn, leads to MACRO+11, an entrance to the merge sort generator, as
stated in the preceeding paragraph, with the only difference being that the segment whose name

was specified in the MERNAME field has been loaded.

In summary, the rather complex macrocoding associated with the L, SORTp pseudo instruc-
tion can be reviewed as accomplishing several purposes. First, it provides for translation of the
parameters supplied in the fields of the pseudo instruction into a form usable by the sort genera-
tors (this function is performed by all subroutine macro calls). Secondly, it provides for reload-
ing the sort's segment over again, thus allowing what is effectively a two-segment program (the
sort) to be called for, and treated, as one. This enables the programmer to considera sort
routine as a single instruction. Thirdly, it allows the separate merge sort own-coding to over-
lay the presort own-coding after the presort is finished, so that memory space may be utilized

as efficiently as possible.

Checking Sorts Using the Program Test System, PTS

The L, SORT macrocoding is, of course, designed for use with the ARGUS System; thus,
ARGUS Assembly will set up the parameters, and properly locate the sort subroutine relative to
the programmer's coding. The Executive Routine will relocate the entire segment, if necessary,
and will handle the loading and overlaying at execution time as described previously. Program
Test System, PTS, however, is designed to check out just single segments; hence, special care
must be taken when checking out sort routines or when checking out programs of which sorts are
a part. For each program tested, PTS requires a START card, which specifies the ending loca-
tion of that program. The instruction in this location, however, will not be performed. There-
fore, the first MPC to be encountered, MACRO+4, should be specified as the ending address
in the START card of the sort segment (since PTS will not recognize the Executive Routine MPC).
Insomuch as PTS will automatically load the next program on its tape, the same sort program
should be specified a second time in order that the sort will be reloaded. For this second sort
program, the sequence counter should be set to MACRO+10, which can be accomplished by means
of a transfer instruction inserted in place of the first instruction of the program, which places

MACRO+6 in the sequence counter.

If there is no merge sort own-coding, the START card for the second program of the pair

can specify the final order of programmer coding as the exit location. However, if merge sort

19

SECTION II. SPECIFYING AND USING THE SORTS

own-coding is employed, then MACRO4+7 should be specified as the exit of the second program,
and a third program, which consists of the merge sort own-coding segment, will have to be
included. In this case, only one instruction of the second program will be performed (MACRO+
10), whereupon the third program will overlay the second. BACKGROUND should not be loaded
between the second and third programs since the subroutine and programmer coding brought 1..
with the second program must remain in memory. The entrance to the third program should be
temporarily specified as MACRO+11, following the same manner used in specifying the entrance
to the second programm. The START card for the third program specifies the final instruction

of programmer coding as the exit.

Thus, the method of checking out a sort with PTS is the same as that used with any multi-
segment program. Each segment, which would normally be loaded automatically in a production
run by the Executive Routine, is treated as an individual program. Because of the manner in
which it is reloaded, the sort subroutine must be handled as two programs during PTS, both of
which will have the same name, but each of which will have different entrances and exits.

Merge sort own-coding similarly requires the inclusion of a third program to represent the

additional own-coding segment.

20

SECTION II. SPECIFYING AND USING THE SORTS

PROGRAMMER'S CODING

PROGRAM X ADDITIONAL
CODING
MACRO ARGUS SUBROUTINE
(PSEUDO)P | L,SORT LIBRARY
INSTRUC-
TION ADDITIONAL
————————J L coDING (INCLUDING
OWN-CODING IF ANY)
END
PROGRAM TO BE
ASSEMBLED
ASSEMBLY
INSTRUCTIONS TRANSLATED TO MACHINE ARGUS
LANGUAGE,"L,SORT" REPLACED BY I5-
ORDER MACRO CODING, SUBROUTINES ASSEMBLY
(INCLUDING SORT) ADDED TO END OF
PROGRAM.

EXECUTION OF PROGRAM X :

ENTER AT START PROGRAM

WHEN ENCOUNTERED, MACRO -
CODING TURNS CONTROL OVER
TO SORT SUBROUTINE

SORT SETS ITSELF UP, BASED
ON PARAMETERS FROM MACRO-
CODING, AND FROM BEGINNING
FILE 10 _RECORD OF INPUT
TAPE @).

SORT |S PERFORMED, USING
INPUT AND WORK TAPES. IF
OWN-CODING IS USED, SORT
BRANCHES TO IT AT SPECIFIED
POINTS .

WHEN FINISHED,SORTED FILE
IS WRITTEN ONTO WORK TAPE,
AND SORT EXITS TO LOCATIO
FOLLOWING MACRO-CODING (D).

PROGRAM
X

2 BANK MEMORY
EXECUTIVE ROUTINE

)

4
ADDITIONAL CODING BEG) INPUT TO
REe SORT
SORT MACRO CODING > &
ADDITIONAL CODING A ~
(INC.OWN-CODING F ANY)
. o e OUTPUT FROM
—(BANK BOUNDARY SORT
SORT Cad WORK
TAPES
SUBROUTINE]
N
\

Figure

1. Derivation of a Sort Program through ARGUS

21

SECTION III
PRESORT

General Method

Figure 2 shows a simple version of the ARGUS presort. Storage in this simple case con-
sists of only three items, the items each representing a complete record on tape, and the keys
consist of a single digit. The tape on the left (input) contains 10 of these items, in random

order.

Initially (a) the storage area is empty, and all tapes are positioned at the beginning (as
indicated by the arrows). In the first step (b), the storage area is filled with the first three
items from tape; the input tape is now positioned just after the third item. The item with the
smallest key is then selected and written on one of the output tapes, and replaced with an item
from the input tape. Thus in (c), the 0 is written out, and replaced with the 6. At this time it
is ascertained that the key which was brought in (6) can be included in the present string because

it is greater than the key just written out (0).

This process continues, and in (d) the 3 is written out and replaced with a 5, and in (e)
this 5 is found smallest and written out, being replaced by a 4. Now, however, since the 4 is
smaller than the last item written, namely the 5, it cannot logically be included in the present
string, so it is stoppered (temporarily removed from consideration), as indicated by the cross

(X) placed through it in the example.

The choice is now confined to the remaining items in storage and the 6, being the smaller,
is written on the output tape and replaced with a 7, as indicated in (f). The 7 is next written on
the output tape (g) and replaced by the 4, at which point this item must also be stoppered. There
is no choice left but to pick the remaining item in storage, so the 9 is written on the output tape
and replaced by the 8, which is also stoppered. At this point (h), all three of the items in stor-

age are stoppered, and one string has been completed on the output tape.

Writing (i) is now switched to the other tape; all items that are presently stoppered in
storage are unstoppered; and again the smallest item is selected. The 1 is written and replaced
by the 2, which happens to be the last input item. When the end of the input is sensed, reading

is discontinued and each item in storage is stoppered after it has been used (j). Thus, in the

23

PRESORT
remaining three figures, (j,k,1) each item is stoppered, after it is selected and written, and the

presort is completed.

SECTION III.

v v h | 4
L _ 1_ 8421_
v [l 1 \] \
O_ 6530_ o~ 0 10 b O] 97\6530_
o] _ >4 [~
o] 0 EN g El =
2817456390_ —2817456390_ 2817456390_ 5817456390_
'Y Y A s
L4 v A v
] | | R
v 1 \) /
L 530_ 976530_ 97V0N530_
] _ D _ > —]
BN £ E L (] & o] <
B o] \V«._. X
14817456390_ _28174562.,.90_ _2817456390_ —28174563904
[) A A s
1 A \i A
me _ ~ 214
Yo'g v 1 L] Fd
8 & =o] o n o) > o o]
%)
o N 10] _ L K
b s EN <) [o] o oo} =
& 2] > = X =
.W_e
7817456390_m..m. —2817456390 281745639w_ ?817456390
A — [I A

Simple Presort Example

Figure 2,

24

SECTION III. PRESORT

Reading and Writing Controls

Reading and writing are both haundled by the presort in a conventional manner, using two
input and two output buffer areas to allow simultaneous read-compute-write operations. All four
buffer areas are essentially the same size as the records on tape. As one input buffer is being
loaded from tape and one output buffer is being written on tape, the presort processes data using
the remaining input and output buffers. Since one tape is being read and one is being written at
any one time, with the same amount of data coming in as going out, reading and writing cycles
are synchronized, although they may operate independently if own-coding (see Section VI) is used

to modify record or item size or to add or delete items.

Building Strings

Besides the reading and writing controls, the presort consists basically of the coding
necessary to find the smallest usable key in storage. In a multi-precision sort, all specified

keys are juxtaposed and the presort seeks the smallest value of the combined keys.

The simple example of the ARGUS presort method, included in this section, demonstrates
how variable-length strings are produced by a cascade presort. The potential length of each
string is directly influenced by two basic factors: the amount of memory that is made available
to store items while comparing for the smallest key; and the randomness of the data itself. The
more items which can be included in storage, the longer the generated strings will be. More-
over, any preordering or natural ordering of the data will directly bias the length of the gen-
erated strings. If the input data is completely random, meaning that each new item brought in
has a 50-50 chance of having a key which is smaller than the key of the preceding item, the gen-
erated string length will average twice the number of items that are stored internally. Thus, in
the simple example of the presort method, which uses a storage capacity of three items, the

first string happens to contain six items.

The presort modifier~generator takes full advantage of any amount of memory made avail-
able to it, setting up as many item storage locations as possible. The skeleton routine can be
adapted to work with any number of storage locations up to and including 216 items, thus being

capable of producing strings of 432 items average length,

Trees
The process of finding the smallest key in storage is accomplished by means of a 'tree' or
a series of trees. A tree is a section of coding having a single entrance and several exits.

Figure 3 illustrates a comparison tree having a single entrance and six exits. This tree

25

SECTION III. PRESORT

examines six keys (A, B, C, D, E, and F) and determines which is the smallest, which in turn

determines which exit from the tree is to be used.

Bins and Tags (General Description)

Associated with each tree in the ARGUS presort are several storage areas called bins
which contain the keys being compared. As comparisons are completed at one level of trees, it
is necessary to transfer the key that was found to be smallest in each tree at that level to the bin
associated with the next level. Since moving the entire item would in most cases be unwieldy,
both in terms of transfer time and of space required, tags are used to minimize the amount of

data that has to be transferred.

As each item is brought into memory, the related key is detached and sent to an area with-
in a bin which corresponds to that item's storage location. Within a bin, every other location is
set up with an identification word which designates the start of an item in storage, Each key is
placed in the bin adjacent to the ID word which designates the start of the corresponding item.
Thus, each item is represented in the bin by a two-word group, called a tag, which contains the
key of the item and its starting location. It is this tag which is actually moved as control pro-
ceeds from layer to layer. When the smallest key is determined, the ID portion of the tag is
interpreted to find the location of the corresponding item, and that item is transferred to the

output buffer.

Layers of Trees in an ARGUS Presort

In general, trees are most efficient when they have from four to six exits. Therefore, the
trees used in the ARGUS presort never have more than six exits. When more then six keys are
to be compared, the concept of layers of trees is used., For example, a full ARGUS presort of

216 items uses three such layers of six-way trees, as shown in Figure 4.

BINS- I 2 3 456 7 8 9 1011 21314 15161718 19 2021 222324252627 2829 30 3| 32 33 34 35 36

Sex [Ele[o[eTe]oleTe e [e]e]e[e[eTe[e [e]o[eJe [ele s [e[e [e e o [e[e e [e[eTe o] 28

BINS- |) 2 3 4) 6

EZ_I'Y)ER [6 | 6 | 6] N T 6 1 6 [3Svs

MASTER BIN

RO 6
LAYER é ITEMS

SMALLEST
ITEM

Figure 4. Bins Accompanying Each Layer of Trees

27

SECTION III. PRESORT

In this example, the first layer consists of 36 bins, each containing six tags. As a result of all
the comparisons at this level, the smallest key in.each of the 36 bins is determined and the
corresponding tags are delivered to the six bins at the second layer. In the same fashion, the
second-level comparisons result in the transfer of six tags to the final bin, or master bin, which
comprises the third layer. The tag transferred from the master bin contains the smallest of

the original 246 keys, as well as the starting location of the corresponding item. Various pro-
gramming techniques used to minimize the number of passes through the trees are explained

later in this section, as trees are covered in more detail,

Stoppering

In the presort example, stoppering is represented by drawing a cross through an item in
storage. Stoppering is performed when a new key is found to be too small for the current string.
A constant of hexadecimal G's is transferred to the corresponding key location in the bin. This
constant will never be found smaller than any other key in the bin. When all of the key locations
in a bin contain hex G constants, the program unstoppers all key locations and starts a new
string. This is accomplished by transferring the keys from all stoppered items to their res-
pective bins and then repeating all trees to find the new smallest key. The related item is then

written as the start of a new string.

Old :Key Area

That portion of the presort coding which determines whether an item should be stoppered
or whether it qualifies to be included in the present string is termed the ''old key area'. The
key of the last item written in the present string is retained in this area and compared with the
key of the next item coming into the storage area, If the new key is smaller than the old key,
the new item does not qualify for inclusion in the present string and, therefore, a stopper is

provided.

Master Routine (General Description)

The master routine is used in conjunction with the old key area and the presort tree and
represents the basic routine of the presort. As long as one or more items remain unstoppered,
it transfers out the item having the smallest key, brings in a new one, and gives control to the
old key area. The latter, in turn, gives control to the tree after determining whether the new
item must be stoppered. The master routine checks input and output buffers and branches to
read or write routines whenever necessary. When all of the items in memory become stoppered,
the master routine gives control to an end-of-string routine to close the current string and start

the next.

28

SECTION III. PRESORT

End of String

Each time that a string is completed, there are several tasks to be performed. Becauée
banner words (one per record) are used by the merge sort to identify the beginnings of strings,
it follows that breaks between strings must correspond with breaks between records. Thus, if
the output buffer is only partially full when a string is completed, filler items, known to have
keys larger than any item of the file, must be generated in order to complete the record. Items

consisting entirely of hex G's are generated by the end-of-string routine for this purpose.
NOTE: The following text refers to many special registers used in the ARGUS presort program.
Appendix B of this manual provides a list and functional description of these special

registers.

Bins and Tags (Detailed Description)

As previously explained, six items are compared with the tree in the ARGUS presort, thus
accounting for the fact that six tags are grouped together in the accompanying bin. In addition to
these six tags, the bin contains several instructions and pieces of information which will be used
when the tree has determined which of the tags in the bin is the smallest. This is necessary
because, in order to preserve space, the ARGUS presorts use only one tree, which is associated
with the appropriate bin via an index register. After the smallest item in any bin has been found,
the additional orders of the bin transfer that smallest tag to the next appropriate bin, and after

having set the index register to that bin, control is transferred once again to the six-way tree.

Figure 5 includes a detailed arrangement of a typical tag bin. This represents the layout
of a single-precision bin. Double-precision bins are similar except that an additional wofd for
each tag is used as a second key. The triple-precision bins are similar to the single, the tree
ioeing supplemented by additional coding to compare the second and third keys within the items

themselves.

When each of the bins is in use, the index register is set to the location just prior to word
1 (X0 in the illustration) so that the increment to the index register will correspond with the
word number. Starting at the top of the bin, the six té.gs occupy pairs of words, the first word
being the key, and the second being the ID word. The ID word is illustrated at the bottom of
Figure 5. Following the six tags, which occupy words 4 through 12 in the bin, are three ad-

ditional words (13, 14, and 15) which are additional orders and a constant.

Word 43, called the bin TN instruction, transfers the smallest tag to the next bin. This

is constant except for the A address which is set up by the tree each time the tag representing

29

SECTION III.

PRESORT

Xg—>g

SINGLE- PRECISION BIN FORMAT

ID WORD

— —

TAG B

fp—— —— — ———

TAG C

——— — — — —

TAG D

TAG E

— —— —— ——

TAG F

TN

(T AG)

(NEXT LEVEL

BIN)

TS

@g,15

TREE

SPEC

(IR FOR
NEXT BIN)

ID WORD FORMAT

(AUGMENT TO

INDEX ,REGISTER)

ITEM LOCATION IN KEY LOCATION IN REL. IR SETTING OF
STORAGE STORAGE [‘32 ORIGINAL TAG BIN
14 BITS 14 BITS 5 BITS 15 BITS

30

Figure 5. Tag Bins and ID Word Format

SECTION III. PRESORT

the smallest item is found. The tree stores the (indexed) address of the tag here. The B
address indicates the number of words to be transferred (two in this case). The C address is
the location of the tag position in the next bin which corresponds to this tag bin. (It has been
explained previously that six initial bins feed into one bin of the next level; also the smallest tag
from each of these six bins is placed in a corresponding position of the next level bin.) After

setting the A address of word 13, the tree exits to word 13, all through indexed addressing.

After word 13 is performed, word 14, which represents the bin TS instruction, transfers
control to the next level bin. This is performed by storing the contents of word 15, a constant,
into the index register, and going to the tree, now associated via the index register with the next
bin, and the process continues. As indicated in the diagram, the A address is indexed, and the
B address is a direct special register address. Word 15 is a SPEC constant, representing

word 0 of the next level tag bin.

Master Bin and ID Word

To avoid going from tag bin to tag bin indefinitely, the final tag bin is slightly different
from the others. This final bin is termed the master bin, and as previously explained, is the
bin from which the smallest tag of all stored items is found and transferred out. The master |
bin is actually the same as the other bins through word 13, except that the C address of word 13
refers to a working area called the old key area. Thus, the same tree can be used in associa-

tion with the master bin as the others, and the exit will also be the same.

The ID word is used in the section of coding following word 13 of the master bin. At this
point, the ID word serves to identify the item in storage from which the attached key came and
the tag bin to which that key was originally transferred. The ID words are generated originally
as constants and are placed in the appropriate positions of the initial tag bins to which the keys
from the items are transferred. In the intermediate bins and master bin, these ID words have

been brought along with the keys from previous bins (see Figure 5),

Single-Precision Tree

The description of the bins, and an explanation of their operation, form the external speci-
fications of the tree. A tree, then, must compare indexed words 1, 3, 5, etc. (key words of
the tags) to find the smallest, substitute the indexed address of the smallest tag into the A ad-
dress of indexed word 13, and go to indexed word 13 of the bin. At each exit of the tree, there
is a masked TS order which is used to substitute the address of the smallest tag into the A

address of indexed 13. In order to economize constants, it picks up the address from one of

31

SECTION III. PRESORT

the instructions in the tree (in the one case when such an address does not appear in the A
address position of the tree, a constant is used instead as the source). This TS instruction then
sequence changes to indexed 13. Figure 6(a) illustrates a single-precision tree and how it dif-

fers from a (b) double-precision tree and (c) a triple-precision tree.

Double~Precision Tree

When a key comprises more than one word, the logical comparison of such a key will con-
sist of more than the one LA instruction necessary with single~precision keys. Only if the first
two words compared (high~order portion of key) are equal, is it necessary to compare the next
word of the key. This requires that an NA instruction be performed to determine if the first are
completely equal. Figure 6 illustrates this relationship; (a) illustrates a single instruction
needed for a single-precision comparison between A and B; (b) illustrates double-precision keys,
A1 and B1 being the high-order portions (first keys), and A2 and B2 being the low-order portions
(second keys). The entire array in (b) corresponds to each of the comparisons shown in the
earlier tree. It becomes apparent that each additional word in a key adds considerably to the
number of instructions required as well as the time needed to go through the trees. The final
comparison is simply an LA instruction, so that if two keys are completely equal, one is
arbitrarily picked as being ''smallest'. A superfluous TS instruction is saved by reversing the
final LA instruction (that is, B:A instead of A:B). In (b), if both LA instructions were A:B, one
will have to be followed by a sequence change, since both obviously cannot remain in sequence,
when A is greater than B, and still end up at the same place. By reversing the second LA in-
struction, a sequence of memory locations, as indicated by the address numbers over each
comparison, can be assigned. When several such comparison arrays are grouped together in a
tree, the sequence of instructions follows down the tree rather than through the levels of com-

parison. Figure 6(b) illustrates this in the double-precision tree.

Triple-Precision Tree

It would be possible to extend the reasoning used in the double-precision tree to handle a
triple-precision tree (accompanied by a corresponding increase in tree size), but in order to
conserve memory as well as facilitate the addition of higher precision, the triple-precision pre-
sort makes use of a space-saving technique. The basic triple-precision tree itself is identical
to the single-precision tree insomuch as each comparison set consists of one L.A instruction and
one NA instruction; however, if the first keys are found equal, a special section of coding is
entered. This coding represents a common second and third key comparison array used for all
comparisons after the first key. With own~-coding, this section can be easily modified to work

with any number of additional keys. The tag bins are actually simplified, being identical to

32

SECTION III.

PRESORT

SINGLE PRECISION

(a)

A>B

DOUBLE PRECISION
|

A> B

A # B
(OR
A<By)
Ay >B,
5¢ 2
" A " 1} B ”"
SMALLER “"SMALLER

(b)

TRIPLE PRECISION
!

(OR TsC ¢~
SC RETURN s Crl
A1<B)) P e I W’L—I ~S\H RETURN
/ \
(
5 ¢ L P
n A ” " B 111
SMALLER (©) SMALLER
C

Figure 6. Single, Double, and Triple Precision

33

SECTION III. PRESORT

single-precision bins, since only the first key word is carried in the tag. The second and third
keys are compared directly within the item itself. If the first key words in a triple-precision
sort are fairly random, which is the normal case with a presort, the special coding will seldom
be used. When the additional levels of precision are used, this technique is slower than the

straight-forward tree.

The triple-precision tree is illustrated in Figure 6(c), as well as in Figure 7, which shows
the special common coding area. The latter illustrates a tree that has been arranged so that
when the first keys are found equal, the sequence history register is set to the next instruction
which would be executed if one of the keys were smaller, while the sequence counter is set to
the next instruction to be executed if that key were greater. In place of the second LA instruc-
tion in each comparison group, the triple-precision tree has a TS instruction to switch to co-
sequence. This transfers the NA instruction just performed to a working location in the com-
mon coding before going to that area. Figure 7 illustrates the common coding. Two index re-
gisters (5 and 7) are set to the values of the two corresponding items in storage by using the ID
words of the tags being compared. Next, second and third key comparison instructions (still in
cosequence mode) compare the additional keys directly in item storage through these two ad-
ditional index registers. The third key LA instruction can easily be changed to go to own-coding,
upon finding possible equality, and any number of additional keys can be compared there in the
same way. Two exits are possible: in one, the contents of the sequence history register are
stored in the sequence counter and the program drops out of the cosequence mode so that return
is made to the sequence counter; in the other, the program drops out of the cosequence mode

without modifying the sequence counter.

Suppose that two keys, A and B, are equal in the first and second words, but A3 is smaller
than B3. (Figure 7 illustrates this example.) The first order in the tree is Al:Bl, and since
A1 is less than or equal, go to 3. In order to go to 3, however, the sequence must be changed,
and so the address of 2 is stored in the sequence history register. In 3, Al:Bl is tested for
equality and since they are equal, 4 is performed next. This (4) is a TS instruction specifying
a switch to cosequence, which transfers 3 to WL, and goes to WL+41. In WL+41, a WA instruc-
tion, masked to include the A address only, is performed to add the contents of WL to a 1 bit in
the A position and then stores the result in W1+2. This, in effect, sets the A address of WL+2
to the ID word of the A tag., WL+2 shifts the ID word so that the item location portion is justified
right and places this into index register 5. WL+3, 4, and 5 similarly put the location of the B
item into index register 7, the only difference being that the B address of WL must first be

shifted to the A address position.

34

SECTION III.

PRESORT

SET UP SHIFTS
SHIFT ITEM LOC
IN TAG TO IR

A ITEM—=X5
B ITEM—=X7

A,>B,

A,£B,

(OR

A>< By)

Y
RET. TO SC RET. TO SH
CODING
wL | (NA 9,1 @, 3 #5) STORED NA

WA, AMASK ¢ |we ONEINA |wL+2
SWS, |14 BITS c|(g,2) 34 Z,X5 SHIFT A ID WORD
SWS, AMASK c | we 36 WL+5
WA , AMASK c | wL+s ONEINA | WL+5
SWS, 14 BITS c |(g,4) 34 Z,X7 SHIFT B ID WORD
LA ¢ | 5@ 7,(2) WL+8 AUGMENTS GENERATED
T Z,SH - Z,SC RETURN TO SH
NA c |5, 7,(2) WLHig AUGMENTS GENERATED
LA cl 7. 5,(3) WL+7 AUGMENTS GENERATED
PR ' RETURN TO SC

Figure 7. Triple-Precision Common Comparison Coding

35

SECTION III. PRESORT

Now WL+6, the second key LA comparison, is performed. Because the second keys are
equal, the equality test in WL+8 is performed next. This second key comparison almost yields
equality; therefore, WL+9 is performed next. Here, because A3 is less than B3, WL+7 is per-
formed next to transfer the contents of the sequence history register to the sequence counter,
and returns control to the sequence counter. Alternatively, if A3 were greater than B3, the
program would have proceeded to WL+10 and then reverted directly to the sequence counter. To
extend precision with own-coding, the C address of WL+9 would have to be replaced with the
address of an NA order in own-coding and the process would continue from WL+9. Also the con-

tents of the A and B addresses of WL+9 would be interchanged to keep the logic straightforward.

Master Routine (MASTER) (Detailed Description)

The explanation thus far has been related to the trees and bins and just how they operate
together to determine the smallest item in memory. After it is determined that an item has the
smallest key, that key is transferred to the storage area termed Old Key (OLDKEY). The item
is then processed through the Master Routine (MASTER).

The first operation in the MASTER is a test to see if the key of the smallest item is all
hex G's {(or a stopper). A stopper indicates that there are no more valid items in memory, and
control is turned to the End of String Routine (ENDSTR). Next, the ID word, which is situated
in OLDKEY along with the smallest key, is used to find the item's location in memory. It is
stored in X7 before X7 is used to transfer the item to the output buffer. The output buffer is
standard, using an index register (X3), which is modified to step through the buffer as items are
transferred to it. A check is made to see if the buffer is full, and if so, control is transferred
to the Write Routine (WRITE), which will return to the same point when finished. If own-coding
option number 3 is specified, the routine now branches to modify an item in the input buffer be-

fore it is brought into the soxrt.

Now the next item is transferred to storage from the input buffer by a section called Item
Transfer (ITEMTRAN). Here the input buffer is stepped through with a modified index register
(X1), and the item is transferred to the location in storage just vacated (addressed by index re-
gister X7). If the input buffer is now empty, control is transferred to the Read Routine (READ)

which will return to this point upon completion.

Using the ID word still in OLDKEY, the tree index register (X0) is set to the bin asso-
ciated with the item just replaced. The old key coming from OLDKEY is then compared with
the new key from item storage via X7. If the old key is less than or equal to the new key, the

new item will be included in the present string. From the ID word, an order is set up to

36

SECTION III. PRESORT

transfer the key of the item to its bin. This order is performed, and a sequence change is made
to the tree to sort this item with others. Setting the tree index register associates the tree with
the bin to which the new key was just transferred. When the smallest item in this bin is found,
transfer is then made to the next level bin, and finally to the master bin with a new smallest

item.

If an old item had been greater than the new one, the new item would have been stoppered,
as demonstrated in Figure 2. To do this the Dummy Key Routine (DUMKEY) sets up an order to
transfer all hex G's to the bin, performs this order, and proceeds to the tree. Except for
transferring G's instead of the real key, this procedure is the same as described in the pre-

ceding paragraph.

It should be noted that items having words of all hex G's as keys will appear to MASTER
as stoppers, and will, therefore, indicate an end-of-string just as an ordinary stopper key
would do. However, since an item with a key of hex G's is never replaced by any other item in
memory storage (for it will never be transferred out), such items will tend to accumulate in the
storage area and accordingly reduce its effective size. Furthermore, if as many hex G-key
items are brought in as there are storage locations, the presort will go into an endless loop
through the end-of-string procedure, reading and writing nothing. Because of this, keys of hex

G's should be avoided, except possibly to fill up the final record of the data file.

End-of-String Routine (ENDSTR)
The first step in the End-of-String Routine (ENDSTR) is to check the output buffer. If it is

empty, the string did end integrally with a record and control is transferred to Write Switch
(WRSWCH) to determine where the next string is to be written. If the buffer is not empty,
dummy items (hex G's) are transferred, one at a.time, to the output buffer. The buffer is
checked after each transfer., When it is full, transfer is made to the Write Routine (WRITE)
after setting the exit of the write routine to return to WRSWCH, Just before entering WRSWCH,
a dummy write forward (WF) instruction is performed for the tape presently being written to get

an error check for a bad record before switching tapes.

Write Switch Routine (WRSWCH)

WRSWCH is used in conjunction with ENDSTR to determine on which tape each string is to
be written. A table of ideal ratios of strings on each tape is calculated. The logic of the dis-
tribution of these strings onto the tapes for the merge sort is introduced and explained in Section

IV. To maintain this proper distribution, the presort, at WRSWCH, calculates this table of

37

SECTION III. PRESORT

ideal ratios and provides a constant for each tape, indicating how many strings should be on that
tape. Associated with each tape is a string counter which shows how many strings have actually
been written. In general, strings are placed on one tape until the corresponding string counter
equals the ideal count for that tape. The presort then switches to writing on the next tape.

When all tapes are at their ideal number, the next higher ideal distribution is calculated, and
the process to bring tapes up to it begins. WRSWCH, therefore, consists of a series of com-
parisons which test each tape to see if there are as many strings as there should be on it. If
there should not be enough strings on a tape, the write order is set to address that tape and the
string counter is incremented. When all tapes are full as specified, control is transferred to

the calculating portion to determine the next higher perfect distribution.

The logic involved in the calculation of this ideal distribution is based on the cascade

method of merge sorting used by the ARGUS sorts. This method is explained in Section IV.

Fill Bins Routine (FILBIN)

When it is determined onto which tape the next string will be written, transfer is then
made to FILBIN from WRSWCH to start the new string., This routine performs two functions:
first, it sets a switch (Banner Switch) so that the beginning banner word of the new string will
indicate a beginning of string; secondly, it unstoppers all items. This is accomplished by trans-
ferring all of the keys directly from the items to the bins, using several special registers pro-

perly incremented., At this point, transfer is made to the Switch Routine (SWITCH).

Switch Routine (SWITCH)

The Switch Routine (SWITCH) performs the initial sorting of all items in storage. As
already stated, only one bin in each level was sorted to process one new item. However, at the
beginning of string, all items must be processed together, and as a result, all bins must be
sorted., SWITCH places temporary ''detours' in the TS instructions of all but the last bin.
Thése detours change sequence back to another portion of SWITCH which increments the tree
index register to associate with the next bin, and then returns to the Comparison Tree (CT). A
switch is also placed in the first order of MASTER which changes sequence to an area termed
the Reset Area (RESET). Now the tree index register is set to the first bin, and transfer is
made to the tree. Because the bins are adjacent to one another, each bin will be sorted in turn
down to the master bin. The master bin will be sorted, after which control is transferred to
RESET. At this point, all bins have been sorted, and after the SWITCH modifications have been
removed by RESET, control is transferred to MASTER. RESET accomplishes this by restoring
the TS orders in the bins and the first order in MASTER, and then exiting to the first MASTER

38

SECTION III. PRESORT

instruction. Processing now continues as before until another end of string is sensed.

Read Routine (READ)

READ is entered whenever an input buffer is depleted, as determined in MASTER. For
checking purposes, a counter is incremented in READ which keeps a tally of the number of re-
cords of input to the sort. READ also sets up X2 with the address of the empty buffer, and X1
with the address of the other. The latter process is the actual buffer switch, and is accomplish-
ed by shifting (end around) a special word containing both addresses. As a check, hex G's are
placed in the end~of-record word position of the buffer into which reading will take place and into
the word just beyond that. The record is then read while the record in the other buffer is
checked. If this is an end-of-file record, transfer is made to an End-of-File Routine (EDOFILE)
or to the Multiple Input Routine (MULTINPT) (if that was specified in the macrocoding). A check
is made, when working with fixed-length records, to see if the record is too short (hex G's instead
of an end-of-record word) or too long (other than hex G's in word beyond the end-of-record word).
Otherwise, only the test for too long a record is made. If all of these tests are passed, the input
buffer item counter (R7) is reset to unity, and return is made to the master routine. During the

initial loading of storage only, this exit is set to return to the Fill Storage Routine (FILSTR).

Write Routine (WRITE)
WRITE is entered when the output buffer is full., WRITE first stores AU2 in X6 when

working with variable-size items, since this will contain the address just beyond the last item.
The same type of buffer switch as used in READ is used to switch the empty buffer to X3 and the
full buffer to X4. The banner switch is checked; this switch, which is normally set to 1, is

set to zero at the start of each string by FILBIN. If the switch is zero, " beginning-of-string"
bits are substituted into the banner word, and the banner switch is set to 1; otherwise, ''middle-
of-string' bits are substituted into the banner word. The ortho count is then computed, z;nd the
current write order (as set up by WRSWCH) is performed. The record count is incremented in
the banner word and transferred from the current buffer to the alternate one to maintain the
current count from record to record. The exit from WRITE, called COMMONEX, normally
leads to MASTER. At the end of string it leads to WRSWCH.

Beginning the Presort

The information contained within this section, up to this point, has been limited to the
"steady-state' portion of the ARGUS presort. The initializing and beginning portion of the sort
routine which precedes the steady-state portion is discussed in this section and is followed by a

discussion of the ending portion of the presort.

39

SECTION III. PRESORT

Not to be confused with the beginning portion of the sort are the generator and modifier
functions, which are discussed later in this section. The generator and modifier, although
normally performed immediately before the sort, serve only to set up a specific sort routine.

However, a sort routine actually starts manipulating data in its beginning portion.

The first such section is termed BEGIN, and it starts by initializing the input buffers. X2
is set up, the switch is rotated, and words of hex G's are placed in the last locations of the
initial buffer, into which a read is then performed. Other special registers, used as counters
and as addresses, are also set up. The storage area is filled with words of hex G's in case
there should be insufficient items in the file to fill it. The initial banner word is set up, and

control is transferred to the standard read routine.

READ is set up initially to exit to the beginning of the Fill Storage Routine (FILSTR). The
first order in FILSTR switches the READ exit to go to FILSTR4 to avoid the initializing orders of
FILSTR after the first time through. These orders set R2 to unity to count the number of items
brought in. They also set X7 to the address of the first item in storage, and proceed to the Item
Transfer Routine (ITEMTRAN), If specified, exit to own-coding option 3 is made before the item
is brought in. This option is used to modify an item before it is brought from the buffer to item
storage. For variable-sized items, the number of words in the item are determined, and that
number is stored in the low~order portion of the end-of-item word for later use by the merge
sort. The input buffer is checked, and if empty, control is turned over to READ. Otherwise,
X1 is set to the next item in the buffer (using AU4) and a transfer is made to FILSTR4, to which
READ also exits.

In FILSTR4, item storage capacity is checked against R2 which contains a count of the
items brought in. RZ2 is incremented. If storage is not full, a return is made to ITEMTRAN.
When storage is finally full, the last remaining switches for normal operation are set up.
These include EDOFILE which has been set up especially for FILSTR, and the exits of ITEM-
TRAN and READ, which will now go directly to MASTER. Exit is then made to FILBIN where

the first string is begun in the usual manner.

Ending the Presort

An end-of-file record, sensed by READ, initiates the ""ending the presort' process. If a
multi-input was specified, transfer is made to the Multi-option Area (MULTOP), where the
addresses of read orders are switched to the alternate input tape. Control is then transferred

to the Multi-input Area (MULTINPT). MULTINPT is printed out, the old input tape is rewound

490

SECTION III. PRESORT

with interlock, the new tape is positioned, and data from that tape is read into one input buffer.
Return is then made to the portion of READ which performs a read order to insure that the first
record has been brought in. READ now continues as usual. When all the input tapes have been
used, both input drives should be left interlocked or empty, in which case the program will stall.
At this point, the operator may start the presort at the cosequence counter and a normal ending
will take place. Upon finding an end-of-file record, READ will lead to EDOFILE if the multi-
input option is not specified. If the presort is still in the initial process of filling storage, an
initial version of EDOFILE is performed; otherwise, the normal EDOFILE is performed. (An

item design of the end-of-file record is contained in Appendix A.)

The initial EDOFILE section simply modifies ITEMTRAN to place into item storage an
item of hex G's (dummy item) instead of a new item from the input buffer. Also, a switch is
stored at the beginning of the WRSWCH which will lead to the End of Sort (ENDSORT). This is
done because there already are some items in storage which must be put out as an initial string.

After setting WRSWCH, EDOFILE exits to FILBIN to create the first (and only) string.

The normal EDOFILE is somewhat more complicated because any time during the steady-
state portion of the presort there may be some items in storage which are stoppered; if the sort
should be ended at the completion of the current string, these items would never be put out on
tape. To avoid this, ENDSTR is set up with a switch to go to Check Items Routine (CHKIT)
which will determine if there are any items besides dummy items in storage. WRSWCH is set
up to allow one more string to be written and then control is transferred to ENDSORT. This is
accomplished by replacing the first order of WRSWCH with a transfer which will replace itself
and which will go to a constant equivalent to WRSWCH. The constant used to replace the trans-
fer is a TS order to ENDSORT. CHKIT is a simple looping routine which uses incremented
special registers, R4 and R5, to compare each key in storage with hex G's. If all the keys in
storage are hex G's, a TS order to ENDSORT is placed in WRSWCH, and the initial order of
ENDSTR is replaced and return is made to it. If any key in storage is not equal to hex G's,
WRSWCH is ignored because it was set by EDOFILE.

When ENDSORT is reached, the first routine performed is called Check String (CHKSTR).
This checks the distribution level counter, which is equivalent to the number of passes the
merge sort will have to make. If this count is equal to 2 (the lowest possible value it can have),
provisions must be made to insure that a minimum number of strings are written on all tapes.
To accomplish this, CHKSTR sets MASTER to bypass the beginning of ENDSTR (which checks to
see if the output buffer is partially full) and then goes directly to the section of ENDSTR where it

is assumed that dummy items are needed. This guarantees at least one record of dummy items

41

SECTION III. PRESORT

for each string which is necessary on any tape, even though no real data is transferred out.
The portion of WRSWCH which calculates the next distribution level is set to go to the main
ENDSORT; this provides that dummy strings are put out until the current distribution level is
full. Due to the nature of the merge sort, once two distribution levels have been reached, or
beyond two merge sort passes, it is not necessary to provide as many strings as required for
the particular distribution. Thus, if the pass counter were not 2, ENDSORT would be reached
directly from CHKSTR.

Finally, at ENDSORT, all data records have been written. The total number of records
from the read counter are now printed for control purposes. If the ''save input' option was
specified, "SAVEINPT" is printed, and the tape is rewound with interlock, (A newly mounted
tape is read past the beginning record.) The string deficiencies on each tape are calculated by
subtracting the actual string count from the ideal string count which was calculated for the cur-
rent level; and the numbers of passes are obtained from the level count. This information is
put together to be written as an end-of-file record on all the merge sort data tapes. Two begin-
ning-of-file records are written on the 'nth'" work tape (the one not being used by the presort),
and the statistical end-of-file records are written on all other tapes. End-of-information re-
cords are then written on these data tapes, and the tapes are positioned just before these end-
of-information records. "TO MERGE" is printed, and control is transferred to the macro-

coding.

Over-all Flow of the ARGUS Presort

Thus far, a simple presort has been discussed in general terms, and various components
of this presort have been explained in detail. These components are tied together in the follow-

ing paragraphs to present a complete presort picture. A presort flowchart is shown in Figure 8.

In BEGIN and FILSTR, special registers are set up and the storage area is filled with hex
G's. The input buffer settings are initialized, and an initial record of data is read into memory.
From then on READ functions normally. A loop is used to transfer items from the input buffer
to storage until the storage area is filled. Now normal operation can be established and control

is transferred to FILBIN,

FILBIN is the first working part of the sort. It contains the instructions used to transfer

all keys to the tag bins, and is performed at the beginning of each string.

In the next section, SWITCH and TREE-BINS, each bin is inspected once to find the small-

est item in storage, and all bins are sorted.

42

SECTION III. PRESORT

BEGIN -FILL STORAGE

INITIALIZE

FILL STORAGE AREA
WITH DATA

FiLL BINS

TRANSFER KEY
FROM EACH ITEM | as nec.
INSTORAGE TO ITS |@ READ
CORRESPONDING
INITIAL LEVEL BIN

SWITCH

MODIFY BINS SO
EACH WILL BE
SORTED IN TURN,
EACH STEPPING TO
NEXT AUTOMATICALLY

/ / TREE BINS
FIND SMALLEST

ITEM INBIN
CURRENTLY
ASSOCIATED WITH
TREE
z
BETWEEN ® AT BEG.
EVELS « OF STR.
g w
ol (SWITCH)
Sk
DUMMEY | KEY MASTER READ END OF FILE
— AS NEC. IF EOF
TRANSFER "GS CHECK FOR END —=% SET UP INPUT
TO BIN IN PLACE STRING (GS) SMALL ‘ TRANSFER TO
OF KEY, ITEM OUT, NEW ITEM g — — — — — — — — — | TRANSMIT DUMMY
IN, TEST FOR INCL. ITEM, SET WRITE-
READ AND/OR WRITE | AS NEC, SWITCH TO GO TO
A3 NEC. ENDSQRT
NEW ITEM WRITE
0K ,

NEW ITEM TOOSMALL

END OF
STRING (GS)

END_STRING _Y_WRITESWITCH

FILL RECORD WITH
DUMMIES IF NEC. IF
AND WRITE SWITCH [#———PWRITE
WRITE ORDER DUMMIES
CALCULATE NEW
LEVEL IF NEC.

NORMAL .~ lIF ENDING

I1SWITCH SET
END SORT @ w

FINALIZE

WRITE END FID
INFO FOR MERGE-
SORT

Figure 8. Over-all Flow Chart of the ARGUS Presort

43

SECTION III. PRESORT

The program then proceeds to MASTER where a number of functions are performed. A
check is made for end of string (hex G's as smallest item). If an end-of-string condition is en-
countered, a transfer is made to ENDSTR. The sorted item is sent to the output buffer and the
write counter is incremented. When the output buffer is full, control goes to WRITE to write the
record, and switch and initialize buffers. The sorted item is then replaced with a new one from
the input buffer, and the read counter is incremented. When an input buffer is empty, control is
turned over to READ to read a new record, and switch and initialize buffers. If the check in
READ finds an end-of-file record, control is turned over to EDOFILE. Back in MASTER, the
key of the new item is tested against that of the old one to see if the new one can be included in
the current string. If it can, its key is transferred to its bin; otherwise, DUMKEY puts a key
of hex G's in the bin. In either case, a return is made (via the ID word) to sort that bin. This
bin will, in turn, lead the way to sorting the bin into which it feeds, eventually leading to the
master bin and once again to MASTER. This loop continues as long as a string is being built.
Eventually, when MASTER detects all hex G's as the key of the smallest item, the program
exits from the loop to ENDSTR.

In ENDSTR the last record of the current string is finished with dummy items, and the
output tapes are switched (if necessary) at WRSWCH. Return is made to FILBIN to transfer all
the new keys to the tag bins. Each bin is processed once again at SWITCH and return is made to
the main loop in MASTER. When an end-of-file record is detected in READ, control is trans-
ferred to EDOFILE. At this point, the program will be modified slightly; rather than bringing
in new items from the input buffer, dummy items are brought in to fill storage with permanent
stopper items. WRSWCH is set with a switch which will allow the completion of the present

string, plus one further string if there are any items remaining in storage.
Finally ENDSORT calculates the string deficiencies on each tape and writes this informa-
tion as part of the end-of-file record on each tape. From here, exit is made back to macro-

coding.

Modifier ~-Generator

Upon entering the modifier-generator coding, the parameters in the FID record, which
are specified in decimal, are converted to binary, and the three options are checked. The
maximum number of words per item specified in word 5 of the FID includes the end-of-item
word, whenever it is used. An end-of-item word must be specified with all items greater than
63 words in size, as well as with variable-length items. The end-of-item symbol is a word
(other than the end-of-record word) whose high-order 32 bits are BBOOFFFF. Its low-order 46

bits are to be reserved for use in variable-length items to specify the number of words in that

44

SECTION III. PRESORT

particular item. Thus, if the fixed or variable option is a 1, the program is modified to handle
variable-length items by determining the number of words in the item and retaining the count in
the end-of-item symbol of each item. Unless the banner word option is a 0, the program is
modified to add banner words to each data record. If the mask option is a ;1_, the necessary
masks are set up in memory and the presort routine is modified to handle masked keys. Since
the parameters and necessary statistical information will be transmitted via tape from the pre-
sort to the merge generator in the form of an end-of-file identification record, the data to be
transmitted to the merge is stored in memory as each parameter is checked or converted, and

as each tape address is obtained from the macrocoding.

All tape addresses are compared to determine the '"way' merge, and the necessary read
and write instructions in the presort routine are generated with the appropriate tape addresses,
Also the routine for switching work tapes at the end of a string is modified according to the

determined "way'' merge.

The S option is checked for S, and for M. If S, ENDSORT is modified to save input, as
explained earlier. If M, the read routine in the program is set up to allow for changing input
tapes at the end of each input tape and the input tape assignment is checked for equality with the
"'nth' work tape. If II equals the nth work tape assignment, ENDSORT is set up to re-position
the tape on the input tape drive in the case of multiple input. If not M, II and I'l' are checked for

equality and if they are not equal, the read routine is set up for multi-tape input.

The item size is checked for 63 or less words per item. It there are less than 64 words
per item, the program is modified to handle the items more efficiently. If unmodified, the pro-
gram handles items up to a maximum of 250 words per item, and assumes that an end-of-item

symbol is specified with each item.

To complete modification of the presort, the buffer addresses are set up in specified con-
stants, index register X0 is set up with the address of the location just before the first tag bin,
and a location tagged FITLC is set up with the address of the first item in item storage. The
beginning-of-file identification record, which has remained untouched in memory, is then writ-
ten twice on all but one work tape. It is written once as the given FID, and a second time as a
full length data record for the particular sort. It is assumed that all the work tapes were posi-
tioned before operation to preserve any desired information on tape. Hence, the FID is used to
mark the beginning of the file which is currently being sorted. For restart purposes, the gene-
rator and modified basic program are dumped onto the second work tape, and two more FID's

are written on that tape.

45

SECTION III. PRESORT

The presort generator, which was loaded into the high-order registers of the specified
bank along with the basic program, is entered upon completion of the modifier. In the generator,
the identification tags for each item in storage are placed in the tag bins, and the necessary
transfer orders between the different level bins are éet up. During generation, complete advan-
tage of item size and record size is taken to determine the most efficient use of the available

memory for allocation between item and bin storage.

Error Correction and Restarts

The presort makes use of the orthotronic error-correction routines provided by the
Executive Routine, thereby saving memory space which would otherwise be duplicated. In cases
where, for some reason, the Executive Routine is not available, special sort error routines may
be added by means of own-coding; however, they result in a corresponding decrease in the

amount of memoxry available to the sort.

In the event of a read error indication, the address and size of the suspected record is
determined by the sort, and control is turned over to the Executive Routine to repair the record.
If the record cannot be repaired, an attempt is made to reread the information and if it is still
erroneous, control is turned over to the Executive Routine once again. In any case, a comment

is printed at the console typewriter to tell the operator what has happened.

If the physical end of any work tape is reached, a printout informs the operator and the
tape is rewound with interlock, whereupon control returns to the restart point. The program

will stall on this tape until it is exchanged, presumably for a longer one.

The restart (initiated by starting at RO) is included in the sort coding. After modification
of the presort, but before its generation (the distinction being that the former is caused by para-
meters in the macrocoding and the latter by the parameters in the file ID), the contents of
memory are '"dumped" onto the second work tape of the sort. If a restart is initiated during the
presort, all tapes will be positioned backward to their beginning ID records, and memory will
be reloadgd from the second work tape, whereupon the presort will aﬁtomatically go through
generation and start again. Normally the restart information on the second work tape will not be
used, and will be ignored by the merge sort (a second set of file ID records having been written
after the dump). At the completion of the sort, this tape will be repositioned to where it was

before the sort.

46

SECTION IV
MERGE SORT

General Method

Figure 9 shows a simplified version of a three-tape ARGUS merge sort. For the sake of
clarity, each string from the presort will be considered as a unit and designated by a letter,
rather than showing individual items within each string. It will be assumed that the presort (a)
wrote eight such strings, distributed as in (b). This example represents a simplified case of a

three-tape merge sort, and an ideal distribution for the merge operation,

The merge sort (b) is ready to read tapes A and B backward, merging the last strings from
each tape, and writing the result on tape C. Thus, string G is merged with string H to produce
GH as in (¢). It is important to understand that both G and H are composed of a number of ordered
items and that, during the merging process, these are combined to produce a single ordered
series of items, which is called string GH. Likewise, D and F are combined to form DF, and B
and E to form BE. GH, DF, and BE are written, end to end, on tape C. This process stops

when the end of information is sensed on tape B (the shorter tape).

Thus, (c), all the data is on two tapes, the information on the A tape in ascending order
but, because in the merge sort data is read backward and written forward, the data on the C tape
is in descending order. Therefore, to arrange all the data in the same order, tape A is copied,
reading ba‘ckward, onto tape B. At this point (d), one full merge pass has been completed over
all the data. The number of strings now on the longer tape is equal to the number formerly on
the shorter tape. The number of strings now on the shorter tape is equal to the number formerly

on the longer tape minus the number formerly on the shorter tape.

In (e) and (f) another pass is completed, following which the data is again in ascending
order, and the number of strings is reduced as before., (g) and (h) show that the next pass re-
‘sults in two descending strings, one on each tape. (i) shows the end product of the merge where

all the data has been merged onto a single tape in ascending order.
Each merge pass, except the last, is composed of two phases, or subpasses; a two-way

merge (in this simple example) and a copy pass. This type of merging can be extended to any

number of tapes (up to a total of six in the ARGUS sorts).

47

SECTION 1IV. MERGE SORT

Ina six-tape merge, a five-way merge is first performed onto the sixth tape, then a four-
way merge onto the fifth, a three-way onto the fourth, a two-way onto the third, and finally a
copy (or "one-way'' merge) onto the second tape, leaving the first tape empty for the initial phase

of the next pass. Thus, each pass in a six-way merge consists of five subpasses.

il T

EHEIR
EREEIEE]

Input tO/\/
Presort :{s:
\ A
__ B A B c A \y

Presort Merge Pass Copy Pass
(a) (b) (c)

B F ¥
E D D
B c c
I F E E
/ G B G B H
H A H A G
A B A A B C
Merge Pass Copy Pass Merge Pass
(d) (e) (f)
H
G
F
C C E
D D D | Final Output Tape
E F A F c (ascending)
B G B / G B
A H E li A
A B C B A A
Copy Pass Final Merge Pass

(g) (h) (i)

48 Figure 9. Simple Three-tape Merge Sort

SECTION IV. MERGE SORT

Reading and Writing Controls

The reading technique used in the merge sort differs considerably from that used in
the presort. Associated with each input tape is a set of three buffers: a ''current' buffer; a
"'next' buffer; and an "open'' buffer. These buffers provide for continuity of data availability.
If less than three buffers were provided, the merge program would frequently be interrupted

and delayed to await refilling of depleted buffers.

Writing in the 'merge sort is handled in the same manner as in the presort, using two
output buffers, a '"working' buffer and a '"‘writing' buffer. Since data comes into the merge
sort from two or more tapes but goes out on one tape at a time, the output operation is the
limiting speed factor. Since as much information must come in as goes out, ideally one input
record should be read each time an output record is written. This balance is realized by using
the three buffers per input tape in conjunction with a technique known as ''read anticipation'.
All buffer areas in the merge sort, as in the presort, are essentially the same size as the

records on tape.

Read Anticipation

Before an input record is read into memory, the key of the last item in each current
buffer is inspected to determine which current buffer will be depleted first, so that the corres-
ponding tape can be read into the next available open buffer of that input set. That tape is then
stoppered (temporarily not considered for reading) until the current buffer is depleted. Thus
the three buffers provide:

1. A current buffer from which items are being taken in order to always
provide input;

2. A next buffer to insure merging will not be delayed when the current
buffer is depleted;

3. An open buffer available to allow reading at any time.

Equipment and Memory Considerations

The presort is often machine limited, especially if there are many items in storage and
if these items are small. Machine speed is not nearly so critical during the merge sort, since
even for the five-way merge, the program must choose only among five items to select the
output item. Therefore, the merge sort (except when sorting very small items) always pro-

ceeds at tape speed.

The most obvious speed-limiting factor of a merge sort is the number of tapes used by
the sort. It will be noted that this number may be dependent on the size of available machine

memory. This dependence stems from the fact that three input buffer areas and two output

49

SECTION IV. MERGE SORT

buffer areas are provided for each tape to keep the tapes moving at maximum speed. Since
these buffers must be as large as tape records, a six-tape merge sort requires considerable
memory space for buffering alone. If this memory is not available, fewer tapes have to be

used for the sort.

Trees (General Description)

The meaning of the word ''tree' is the same for the merge sort as for the presort. Like
the presorts, the three merge sort routines (single, double, and triple precision) differ mainly
in the structure of their trees. Also, like the presort, the triple-precision merge sort tree
may be modified with own-coding to accommodate any number of additional keys. However,

the merge sort trees differ from those of the presort in structure.

The merge sort uses a ''return'' tree (see Figure 10), which contains more comparisons
and more exits than a corresponding presort tree (Figure 3). Note that there are often several
possible exits for one particular item selected (item E, for instance, in this example)., The
reason for this apparent duplication is to provide one unique path through the tree for each exit.
This permits storing a ''return'' to the tree at the time of exit, so that return can be made to
that point along the path at which the selected item was first compared. Thus, when A and B,
then B and C, then C and D, and then D and E are compared, and E is selected the smallest,

a return is made, after replacing E directly back to the D vs E comparison. Use of this type
of tree in the merge sort allows going from a five-way to a four-, three-, two-, and one-way
merge without going through any more comparisons than needed for the particular ''way'' in

progress.

There are six trees which are used by the merge sort. Two are required for each pre-
cision because the passes of the merge sort alternate between ascending and descending merg-
ing; the ascending trees (like the presort trees) find the smallest of the keys of the items com-
pared, while the descending trees find the largest. During any one merge sort pass, only one

of the two trees is used, the entrance to it having been set up at the beginning of each pass.

Perfect Distribution of Strings for Merge Sort:

The ARGUS presort produces an ideal distribution of strings among the various output
tapes. This is done by counting the number of actual strings produced and calculating the
additional number needed for a perfect distribution. The number of required dummy strings,
as well as the number of passes required, is passed on to the merge sort through the end-of-
file identification records. These numbers are stored by the merge sort in a table (one entry

for each tape) and are used to effectively create the required number of dummy strings.

50

19

A

IA

A
SMALLEST

SIS

E
SMALLEST

IA
\Y

@@@@@@@@él‘é

Figure 10, ARGUS Merge Sort Tree

LY90S IDYANW "Al NOILDAS

SECTION IV, MERGE SORT

The distributive logic that the presort follows in placing strings on each of the tapes for the
subsequent merge is directly controlled by two factors: first, the number of actual strings genera-
ted through its sorting operation; second, the ''way'' of the merge operation that will follow the
presort. For example, Figure 11 illustrates a two-way merge of 34 actual strings generated by
a presort. (For a two-way merge 34 strings represent an ideal number to be distributed in the

ratio 21 to 13, with 21 strings on tape A, 13 strings on tape B.)

TAPE A TAPE B TAPE C
STRINGS |
8
RECH
(13) STRINGS
FIRST MERGE PASS 13 STRINGS

(5)

— — |3 -

(8)

SECOND MERGE PASS

THIRD MERGE PASS

(2)

- 5 enes e

(3)

(3)
prn o 0 § o= -
(5)

FOURTH MERGE PASS T ——— 3

(1) '
e
(2)
FIFTH MERGE PASS 2
(1)

- -2 ——

(n

SIXTH MERGE PASS

| /

SEVENTH AND FINAL S —— I ;
MERGE PASS T~
ONE
FINAL
STRING

Figure 11. Two-way Merge

This example illustrates a merge where the number of actual strings produced by the
presort represents an ideal number for a two-way merge and no dummy strings are necessary
to adjust this number. Figure 12 demonstrates a situation where the actual number of strings

generated by the presort does not represent an ideal number for a five-way merge.

For example, 2, 318 actual strings are produced by the presort. Six tapes are allotted

for the merge sort. For a five-way merge, the presort calculates that 2,318 strings do not

52

SECTION IV. MERGE SORT

represent an ideal number to be distributed onto five tapes. Based on this number, it deter-
mines that 2, 353 strings represent the next higher perfect distribution for a five-way merge.
Therefore, 35 dummy strings (2,353 - 2,318 = 35) are added to bring the number of actual

strings up to the ideal number.

TAPE A TAPE B TAPE C TAPE D TAPE E TAPE F

First Pass 671 616 511 365 155+ 35 ---
(or 190)
Second Pass -—- 55 105 146 175 190
Third Pass 55 50 41 29 15 ---
Fourth Pass - 5 9 12 14 15
Fifth Pass 5 4 3 2 1 ---
Final Pass -—- 1 1 1 1 1

Figure 12. Five-way Merge

Three basic factors of the cascade technique by which its distributive logic can be best
understood are as follows:

1. There is always one, and only one, string (variable length) on each work
tape for the last (or final) merge pass.

2. The number of strings on the longest tape after a complete merge pass
equals the number formerly on the shortest tape prior to that merge
pass. {In Figure 12, third merge pass, 55 strings on tape A represent
the largest number at that level, while for the previous or second pass,
55 strings on tape B represents the smallest number at that level.)
This relationship carries through the entire merge.

3. The number of strings on the longest tape (for any level of the merge)
minus the number on the next-to-longest tape equals the number on
the shortest tape for the next lower level of the merge, (In Figure 12,
first merge pass, 671 strings on tape A minus 616 strings on tape B
equals 55 strings, or the number of strings on tape B for the next or
second merge pass. Again, for the first merge pass, 365 strings on
tape D minus 190 strings on tape E equals 175 strings, or the number
of strings on tape F for the next or second merge pass.) This rela-
tionship can be calculated for all tapes throughout the entire merge,.

Banner Words

During the sorts, each record on tape contains a banner word. This word identifies the
record's content, provides a record count, defines the position of the record in the string, and

provides information used for restart purposes.

The banner word of the first record in each string is adjusted by the presort to become a

beginning-of-string marker for the merge sort, Other banner words become middle-of-string

53

SECTION IV, MERGE SORT

markers. Because data is always read backward in the merge sort, the beginning-of-string
marker actually identifies the end of a string. Therefore, each beginning-of-string marker
calls for the tape on which it is discovered to be stoppered until a marker is found for each tape

being merged. All tapes are then unstoppered and a new output string is begun.

The beginning-of-string record of the first string to be merged is preceded by the
beginning-of-file identification record, which includes a beginning-of-file marker as its first
word. Also because the merge always reads data backward, each beginning-of-file marker
actually signals an end-of-file for the merge. Therefore, each beginning-of-file marker calls
for the tape on which it is found to become the new output tape, indicating that the ''way'' of the
merge is to be decreased, and a new subpass is to begin. When the number of beginning-of-
file markers encountered during a pass equals one less than the number of tapes, the entire
pass is complete, and the merge readies itself for the next complete pass (either ascending or

descending). Bit number 30 is a "'l for beginning-of-string, and "0'" for middle-of-string.
NOTE: The following text refers to many special registers used in the ARGUS merge
sort program . Appendix C of this manual provides a list and functional des-

cription of these special registers.

Dummy String (DUMSTR)

Dummy strings are calculated by the presort to bring the number of actual strings up to an
ideal number for perfect merge distribution. Logically, these dummy strings are processed
just like actual strings. However, they are processed before the actual ones so that they can be
eliminated as soon as possible and allow uninterrupted merging of the actual ones. At the begin-
ning of each string, the dummy string counters of all input tapes are inspected; if there are no
dummy strings, the merging process proceeds in the normal manner. If any input tapes have
dummy strings, the corresponding dummy string counters are reduced by 1, and those tapes
are. stoppered; effectively, those strings have now been processed. If all input tapes have dummy
strings, a process is followed which subtracts 1 from each counter, then stoppers, and adds
1 to the dummy string counter corresponding to the output tape. Effectively, a number of
dummy strings has been merged together into one dummy string. This method of handling an
imperfect number of strings from the presort has the advantage that the ideal ratios are main-
tained, yet no extra data is processed, since handling the fictitious dummy strings is a purely

internal process which takes very little time.

When beginning a string, an End-of-String Switch (SWEOS) is used. (An EOS Switch sig-

nifies that the preceding string has just ended.) This switch is normally set to go to the Dummy

54

SECTION 1IV. MERGE SORT

String Adjustment Area (DUMSTRE, DUMSTRD, DUMSTRC, DUMSTRB, DUMSTRA). In the
Dummy String Adjustment Area there are five groups of instructions corresponding to the E, D,
C, B, and A inputs; for less than a five-way merge, SWEOS is set to go to the appropriate inter-
mediate group. At the end of the series of groups is another switch, Exit A Switch (EXITA) which
is normally set to add an instruction which will increment the output tape dummy string counter

and return to SWEOS.

Each group consists of the following instructions. First, a comparison tests the appropriate
dummy string counter for zero. If not zero, 1 is subtracted from the counter and a comparison is
then made in the next group. If the counter does equal zero, several instructions are performed to
set up the appropriate input buffer to be ready to merge, and EXITA is set to Beginning of String
Switch (SWBOS). The process of setting up the input buffer for merging is made clearer in the
following section which contains detailed information concerning the buffers. Essentially, the
operation consists of unstoppering the appropriate input (insomuch as everything is already stop-
pered). Thus, if none of the counters are zero, 1 is subtracted from each counter, going from
group to group, in turn going from EXITA to an add instruction, which increments the output coun-
ter, and returns to SWEOS to start a new string. However, if any of the counters are zero, the
program proceeds from EXITA to SWBOS, which sets up the banner switch (in the output area) to
write a beginning-of-string banner word, and then to the tree to merge. Since only inputs with zero
counters were unstoppered, the tree will merge only the zero counter inputs from which a normal out-
put string will be written. As each input string is ended, it is stoppered. When the tree detects
that all inputs are stoppered, it goes to SWEOS to begin a new string. (This also starts a new
cycle.) -

Buffers

The input buffers are divided into sets, designated A, B, etc., up to E, which correspond
to the number of input tapes (from two to five). The physical tape assignment to each buffer set
rests on whether the pass is ascending or descending. As far as the reading and writing controls
are concerned, the buffer sets remain the same. The A tape is always longest at the beginning
of the pass (in terms of strings) and the last to run out. The B tape is next longest, and so on,
down to the E tape (if used), which is always the shortest. For a three-tape merge, the two in-
puts are always A and B. For a six-tape merge, which uses all five inputs at the start of a pass,
tape E is the first to be depleted, followed by D, C, B, and A, in that order. Figure 9 shows

this relationship for a three-tape sort (two-way merge).
Associated with each of these input sets are three buffer areas in memory, These rotate
among themselves, one being termed ''current', one '"'next', and one '"open''. When the current

buffer is depleted, it becomes open, and the other two move up accordingly. To accomplish this

55

SECTION IV, MERGE SORT

three-way switching with a minimum number of memory locations, use is made of a three-part
word, actually a Complete Address Constant (CAC) whose three sections correspond to the end-

ing locations of the three buffers. To switch, this word is shifted (end around) 16 bits.

Associated with the A buffer set are index register X1 and special register R1. The for-
mer is used to keep track of the items in the "'current' buffer, and the latter acts as an item
count to determine when the buffer has been depleted. It will be recalled that all tapes are read
backward during the merge sort, so the buffers have to be emptied backward to maintain the
correct sequence of items. Thus, X1 is first used as a base of reference for comparing the cur-
rent A item with the others, and assuming this item is selected, X1 is also used to transmit it
to the output area. Then X1 is decremented by the item size (found in the end-of-item word in

the case of variable-length items) and Rl is incremented by 1.

When the "current' buffer is depleted, the CAC-type switch is shifted, Rl is reset, and X1
is set to the last item in the new ''current' buffer. A location called LAST KEY, which contains
the address of the key of the first item in the new ''current' buffer, is set up. This location
is called LAST KEY because it will be the last key processed f:iom the record. LAST KEY is
used to determine which buffer will be depleted first. The coding which accomplishes the switch-
ing of the input buffers is in DUMSTR. It will be recalled that an input set is switched and unstop-
pered in DUMSTR whenever, at the start of a new string, a dummy counter of zero is found. As
a string is being merged, the program switches from an input buffer when that buffer is emptied.
This is done in the Beginning-of-String (BOS) check by branching off to the coding in DUMSTR.
The switch coding is somewhat different for fixed as opposed to variable-size (or over 63 words)

items.

To switch a buffer, assuming variable-size items, the CAC-type table is first switched by
shifting it with a mask of all hex G's (16 bits) back into itself. Then the variables are set up in
an area called Variable Switch (VARSW), which is a common routine used by all five input sets,
This is effected with two TS instructions and one TN instruction. The first TS instruction leads
(in césequence) to a common instruction which saves AU2, since the TN instruction will destroy
the contents which will be needed later in the routine. The second TS instruction leads (also in
cosequence) to the VARSW section, and here an initializing constant of 2 is transferred to R6, a
working register. The appropriate CAC table minus 3 is subtracted into R7, which is also a
working register that provides the end-of-item word of the last item. Then Z,R7 minus N, R7
is subtracted into Z, R7, which leads to the next lower end-of-item word. R6 is then compared
with 2 which will be equal the first time only; if they are not equal, the next instruction is skipped.

The next instruction sets up the input index register (X1-X5) by adding 1 to Z, R7 into the appro-

56

SECTION IV. MERGE SORT

priate index register. R6 is compared (incrementing it by 1) with the constant Number of Items
per Block (NIB). If less than or equal, return is made to the Word Difference (WD) of Z, R7
minus N, R7 into Z, R7. This loop will be repeated until the buffer has been worked down to the
beginning of the variable-size record, at which time there is an LN instruction. One is added to
Z, R7 into the appropriate Last Key Area (LASTKEY-LASTKEY+4), finally dropping from cose-
quence with a transfer of 1 into the appropriate input buffer counter (R1-R5). Back in the
DUMSTR group that came before VARSW, transfer is made from SWBOS to EXITA (indicating
that at least one real string must be merged) going next to the DUMSTR group, unless a branch-
off had been made from the BOS check. In this case, EXITA is not affected, but return is made

to the merge process.

For fixed-size items, the switching instructions in the DUMSTR group are much simpler
and faster. As before, the CAC-type table is switched with a 16-bit shift. The buffer index regis-
ter is then set up with a WD of the CAC-type table minus the constant NPLUS2 into the appropriate
index register (X1-X5). The constant WPLUS2 is subtracted from the CAC-type table to set up
the appropriate Last Key Area (LASTKEY-LASTKEY+4). Then 1 is transferred directly to the
buffer counter (R1-R5)., Since these three instructions replace the three instructions which set
up VARSW, as well as doing all that is done in VARSW, control is transferred directly to the
instruction which puts SWBOS in EXITA, and the program proceeds with the next DUMSTR group.
All that has been said for the A input set also holds for B, C, D and E sets, even if the latter
sets are not used. Index registers X1 through X5 and special registers Rl through R5 correspond
to the five sets A through E. There are five LASTKEY sections (LASTKEY-LASTKEY+4) and
five input buffer switches. The CAC-type switches are called Table A through Table E.

Output buffering is done in a similar, yet simpler, manner. There are only two output
buffers, and the output buffer switch is divided into two equal parts instead of three. It is switched
by a shift order in the same manner. XO is used to step through the output buffer, and S1 is the
output item counter (since RO must be reserved for restarts). There is nothing corresponding to
LASTKEY. Thus, switching the output buffer consists of shifting the switch, and resetting X0
and S1i.

The input buffers are primed at the beginning of each pass by filling two of each set (cur-
rent and next), and starting a read into one of the open buffers (as determined by LASTKEY).
This will be the set whose current buffer will be depleted first. After the initial priming, another
record is read just before the output buffer is ready to be written. Each time the LASTKEY from
a current buffer is used to initiate a read into that set, the LASTKEY area for that set is stop-

pered. It is unstoppered when the current buffer is depleted and the next one becomes current.

57

SECTION IV, MERGE SORT

Trees (Detailed Description)

In the merge, the input items are compared directly as they appear in the buffers in order
to minimize transfer time. To do this, index registers X1 through X5 are set to the first word
of the current input item, and the tree compares via indexed-addressing. The augments to the
indexed addresses in the tree are set to refer to the particular key locations, the beginning of the
item being the base of reference. To stopper an input (for instance, when a beginning of string
is found in that set), the corresponding index register is set to a special stopper base, which is
set up so that the augment will result in addressing a stopper word of all hex G's for the ascend-

ing tree, or all zeros for the descending tree.

Special register SO is used at the exits of the tree both for storing the return, and for
going to the appropriate coding to transfer the selected item to the output area. At each exit
there is an instruction "TS x N, 80,y N, S0, where x is a TS sequence change instruction rep-
resenting the return, and y is an increment of a multiple of 5 representing the item selected.
After storing the return in the location specified by N, SO, S0 is incremented to a new value,
and the program proceeds to the location thus specified. S0 is set initially to "MERGE' where
it refers to a special table arranged in groups of five instructions each. Each group contains
all the instructions needed to process the item from one input set, This use of SO at the exits
from the tree allows an ascending or descending tree to be related to the same set of processing
instructions. It also determines which input tape is to be read next. This function is performed
to synchronize reading and writing every time the output buffer is filled to a certain point. When
the time comes to read, the contents of X1 through X5 are stored in STORE, and then the index
register is set to the values found in the area termed LASTKEY, A section of LASTKEY is set
up for each input set whenever that input buffer is depleted and switched. To stopper an input
read, the corresponding LASTKEY location is set to the stopper base. S0 is also set to READ+3
to refer to a table of instructions in the READ section similar to the one used in the MERGE sec-
tion. In the reading mode, the tree is always entered at the top rather than at the return, since
any of the input sets may have been stoppered or unstoppered since the last read. Thus, the re-
turn stored in N, SO is not used, although SO (incremented) is used to lead to the proper set of

instructions to read the next tape.

As in the presort, it is necessary to know when all of the items being compared are stop-
pers in order to finish one string and start another. The most economical way to make this
check is to go to a special section of coding from the one exit to the tree which will be used if all
items being compared are equal, and then check if they all are stoppers. Thus, this one exit
of each tree increments SO to a special value, used only for this purpose, which leads to the

special checking routine.

58

SECTION IV. MERGE SORT

Figure 13 illustrates the table of instructions in the MERGE section which are performed
when an exit is made from the tree. The first instruction of each group of five is an item trans-
fer, which transfers the selected item from the input buffer directly to the output buffer. Notice
that the B address of the item transfer is indexed, with a base at the beginning of the item to be
transferred, and with an augment equal to the item size. In the case of variable-size items, or
items greater than 63 words, the B address is set to dump the end-of-item word. The item
transfer will be terminated either by the end-of-item word thus produced, or by the end-of-item
word already associated with the item if it is a variable-size item. Since the input buffers are
emptied backward, this will not destroy any useful information, as it would if they were emptied
forward. Also, the item size of variable-length items(which is carried in the low-order portion
of the end-of-item word)will not be destroyed. The current output buffer setting, addressed
through index register X0, is an indirect rather than indexed address in order to minimize the

time required for the itern transfer.

The next instruction, a WD, sets AUl (used as a working special register) to the word
previous to the item just transferred. This will be used subsequently to obtain the item size of
the next item, and (in the BOS section) to check the banner word for the beginning-of-string
indication. For fixed-length items, only the latter use occurs. The third instruction of the set
compares the appropriate special R register (incrementing it once) with the constant NIB, going
to the BOS area when the counts are equal (indicating the input buffer is empty). The fourth
instruction is WD, which resets the input buffer index register to the next item. The amount in
N, AU1 is used for variable items or those over 63 words long, and the constant Number of Words
per Item (NW) is used for fixed-length items as the amount subtracted. The final instruction of
the set is a TS sequence change to MERGE+28, which is the common area which modifies the

output buffer, resets S0, goes to own-coding, and checks to see if the output buffer is full.

When the tree is in the READ state, exit is made to a similar set of five-instruction groups,
in the same way as in the MERGE state, The first instruction, of the five, sets up the read index
register, X6, by means of a masked shift of the appropriate buffer switch. The second instruc-
tion is the read itself, which reads the appropriate tape into the address specified by X6. The
third order transfers the stopper base address to the appropriate position in the LASTKEY area
(corresponding to this input set). The fourth instruction has the effect of a multi-word transfer
from STORE back to X1 through X5 to set the tree up for merging. Because of timing considera-
tions, a series of TX instructions are used in the cosequence mode rather than making use of
one TN instruction. The fifth instruction sets up SO for the merge mode, and goes to MERGE+33

which will return to the main merging loop.

59

SECTION IV, MERGE SORT

Exit of Tree

() —
/"””‘.——b_ J—

Merge+ll (Read+14)

/
I
|
|
|
|
|
|
'

Merge (Read+3)

—— —

7

B——

_____ -

Merge+1 (Readl\‘l)

/

MeTgert (Readt9)

Merge+16 (Read+19)

Merge+2]1 (Read+24)

: Mer%e+26 (Read+29)

MERGE
@ IT 1,0 1, NW N, X0
WD Z,X1 ONE Z,AU1
LA NIB Z,R1,1 BOSA
WD Z, X1 N, AUI/NW Z, X1
TS - - MERGE+28
READ
sws, M1 TABLEA 32 Z, X6
RB, tt 6,0 - -
TX Stopper - LASTKEY
TS C STORE Z, X1 STOREIRS+8
TS Merge Z, S0 MERGE+33

L - -»(Series)

60

Figure 13. Use of Register SO at Exit of Tree

SECTION IV, MERGE SORT

Multi-precision

Just as with the presort, it is possible with own-coding to extend the triple-precision
merge sort to accommodate any number of keys. One slight difference between the presort
and merge sort triple-precision trees is that the merge sort tree accommodates the first and
second precision within the tree, rather than just the first. This is done because, as the sort
progresses, more equal first keys are expected to be found, necessitating comparison on the
second key. Of course, if the second keys are also equal, then some time will be lost in set-

ting up the third (and following) key comparisons.

In modifying the comparison order stored in the COMMON area to accommodate additional
keys, care should be taken to modify only the augment portions of the A and B addresses, and
not the index register bits, since these are the only means of determining the proper input set
being compared. Otherwise, the procedure is exactly as outlined for the presort. The stopper
area may cause some trouble in extending precision. At the time of generation, the three
specified keys are inspected to determine the largest spread of words between keys, and enough
stopper words are set up accordingly, Thus, if keys are in words 5, 10, and 2, an area of
nine words of G's (or, during descending passes, zeros) is set up, with the base address being
that of the previous word. To insure that this area gets set up properly for a multi-precision
sort, the user must specify within the first three keys, the physically first, second, and last
key of the item. If these are other than the logical first three keys, appropriate modifications
will have to be made, via own-coding, to the COMMON comparison area and possibly to the
stopper base address. This is much easier than expanding the stopper area, which is surrounded
by instructions and constants. In such a case, the best procedure to follow is to specify a fake
third key, leaving the logical first two keys as they are. This fake third key may be any word
in or beyond the item. It simply serves the purpose of providing the spread in the stopper
area. Then only the COMMON comparison routine, and possibly the stopper base address, need

be changed with own~coding.

To further clarify these procedures, assume the case of a 10-word item with keys in
words 5, 6, 7, and 1. It is necessary to specify to the sort that the first two keys are in words
5 and 6, as the generator sets up the trees to handle the first two keys. The third keyshould be
specified so that the range of the stopper area is seven words. The third key should, therefore,
be specified as word 11. The comparison in the COMMON comparison area will be set up wrong,
but this can easily be corrected by the same set of own-coding that sets up the comparison for

the fourth key.

61

SECTION IV. MERGE SORT

Merge and Read Loop

The main loop of the program, that which is performed for each item processed, has been
essentially covered in the preceding paragraphs. Only a few instructions are involved in com-
pleting the loop. In the tree, the smallest item is found, a return is stored, and the program
proceeds to one of the appropriate groups of instructions in the beginning of the MERGE, Here
the item is transferred to the output buffer, and the input buffer is adjusted and tested to see if

it is empty. Then a sequence change is made to MERGE+28.

MERGE+28 is normally a proceed instruction, but it becomes the branch to own-coding
(if called for) during the final pass of the merge sort. Following this, SO is reset to MERGE,
and X0, the output buffer index register, is set to the next item by transferring the contents
of AU2 to it. The output buffer item counter (as yet not incremented) is compared with a con-
stant NMINUSI to see if the buffer is full but for one item. If it is, transfer is made to READ
to initiate selecting and reading the next input tape. The first three instructions in READ store
X1 through X5 (again by a series of TX instructions in cosequence), set X1 through X5 to
LASTKEY areas, and set SO to READ+3, with a sequence change to TREE, The process of
selecting the input set to be read, and the actual reading, have been discussed in preceding
paragraphs. At the end of these two operations, X1 through X5 and SO are reset to the merge
mode and go to MERGE+33. If the output counter had not been equal to NMINUSI1, control would
also have been transferred to MERGE+33. In MERGE+33, the output counter is compared (incre-
menting it in the A address) with NIB to see if the buffer is full. If it is, control is transferred
to WRITE. If not, return is made to TREE. Here the next item is processed, and the loop is

completed.

Beginning-of-String Check

After selecting the smallest item and transferring it out, as described in the preceding
paragraphs relating to the merge sort trees, the input buffer is stepped to the next item. If,
in this process, the input buffer is found empty, control is transferred to the appropriate begin-
ning-of-string section, BOSA through BOSE, depending upon which input set is being dealt with.

All five of these sections are similar, and so it will suffice to describe one, namely BOSA.

In BOSA the contents of AUl are transferred to X1. This replaces the word difference of
AUl minus the item size into X1 which would have been done in the normal MERGE section after
the comparison of the itemn count. The word specified by X1 (the banner word of the depleted
record) is compared with a constant to see if it is a beginning-of-string indicator. If it is not,
control is transferred to SWITCHA (sections SWITCHB through SWITCHE correspond to BOSB
through BOSE). SWITCHA, as the name implies, switches the A input buffers so "next' becomes

62

SECTION IV. MERGE SORT

"current'. At SWITCHA, to save instructions, a ''return-and-restore' is set up in the appro-
priate Dummy String Group (DUMSTRA) and control is transferred there. Just as in the dummy
string adjustment routine, the table is switched with a shift instruction, X1 is set to the next
buffer, LASTKEY is set, and Sl is reset to +1. Following this is a restore instruction which

replaces DUMSTRA+5 with its original contents and return is made to MERGE+28.

If the banner word is a beginning-of-string mark (meaning end of string insomuch as
reading is backward), the next record is checked to see if it is a beginning-of-file record. To do
this, thte table is shifted one position (16 bits) to X1, WPLUS2 (the constant referring to buffer
size) is subtracted from this to locate the banner word in the new buffer, and the banner word
is compared with the constant Beginning-of-File Banner Word (BOFBAN), If this record is a
beginning of file, the SWEOS is set to go to the Beginning-of-File Routine (BOFRTNE), and
then proceeds in sequence to BOFA+6. Alternately, if the next record were not a beginning of
file, control would be transferred directly to BOFA+6. Here X1 is set to stopper, then going to
MERGE+28. BOFRTNE simply sets the banner switch to a special setting which will write the

end FID record, and end the current subpass.

In summary, when an item is taken from an input buffer and transferred out, the buffer

is stepped, and there are four possibilities:

1. The buffer is not yet empty;

2. It is empty but not at the beginning of string;

3. It is at the beginning of string but the next buffer is not the beginning of file; or
4. The next buffer is the beginning of file,

The first is the normal case, and control is transferred to MERGE+28. The second occurs

once per (input) record. Here the buffer table is switched and the index register, counter and
LASTKEY are switched. The third possibility occurs once per string and it results in stoppering
this input. In the fourth case, SWEOS is set to go to the beginning-of-file routine at the end of

this string so that the current subpass may be ended.

All Items Equal

Upon reaching the exit of the tree where all items could be equal, an increment, as men-
tioned previously, is applied to refer to a unique section of coding that tests to see if everything
is stoppered. The merge mode procedure is slightly different from the read mode procedure.
In MERGE, end of string is indicated by all stoppers and control is transferred to SWEOS. READ
uses all stoppers to indicate that no read should take place (this will be the case at the very end

of a pass).

63

SECTION IV. MERGE SORT

In the merge mode, a test is made first to see if the selected item (A) is stoppered, If it
is not, control goes directly to MERGE+1 to transfer the A item, which is either less than or equal
to the other items. To determine if the A item is stoppered, the value of X1 is checked directly,
comparing it with the constant representing the stopper base address. Thus the test is inde-
pendent of the value of the key itself (allowing keys of any values to be used in the merge sort).
If X1 is set to the stopper base address, the other index registers (X2-X5) are checked in the same
way to be sure that all are stoppered. If they are, the program proceeds to SWEOS, If any had not
been stoppered, control would have gone to the merge group of instructions corresponding to the

first non-stopper set reached (B-E).

Similarly, in the read mode, each index register is tested to be sure it is stoppered. If one
is found that is not, control goes to the corresponding read group of instructions. If all are stop-
pered, control goes to the final portion of one of the sets of instructions to restore the index regis-

ters and SO to the merge mode only (no reading), and then returns to the merge coding.

Write Routine (WRITE)

WRITE is entered once per (output) record, as determined in MERGE, and it is the section
which writes and switches the output buffers. Since any break in string, subpass, or pass coin-

cides with an integral record of output, it is in WRITE that a good deal of switching takes place.

First, WRITE resets the output counter to unity by transferring 1 to Z,S1. The address of
the first orthoword in the buffer is set up in X7 (by transferring the contents of X0 to it), and then
X0 is set to the address previous to the smallest item. Depending upon whether this is an ascend-
ing or descending pass, the smallest item is defined as the item in the output buffer with the smallest
key, which will be either the first or the last item., WRITE+2 and WRITE+3 accomplish this set-
ting up of X0, and these instructions in turn are set up at the beginning of each pass as explained

in the following paragraphs.

For an ascending pass (smallest item is first), WRITE+2 is a WD instruction of the output
buffer table minus 1 into Z,X0. WRITE+3 is a PR instruction. Since the output buffer table
(which is the two-part switch) is set to the first data word of the current buffer, subtracting 1

will lead to the location just prior to the first item.

For a descending pass (smallest item is last), WRITE+2 is a WD of Z, X0 minus 1 into Z, X0
which leads to the last word of the last item. If the items are fixed, WRITE+3 is then the WD of
Z, X0 minus NW (constant for the number of words or the item size) into Z, X0. If the items are

variable or over 63 words, WRITE+3 is a WD of Z, X0 minus N, X0 into Z, X0, using the end-of-

64

SECTION IV. MERGE SORT

item word for the item size.

WRITE+4 compares the key of the smallest item (using X0 with the proper augment) for
equality with a constant of all hex G's. If the result is equal, a record of fillers has been accu-
mulated which can be omitted from the output to reduce the amount of data on tape., In this case,
control is transferred to WRITE+13. But normally the smallest item will not be hex G's and the
program will remain in sequence to write and switch buffers, Thus, in WRITE+5, X0 is set to
the banner word positicn by subtracting 1 from the buffer table. WRITE+6 is the banner word
switch, which is similar to the one in the presort. Usually, this transfers a normal banner word
to 0,0, At the beginning of string, the banner switch is set to SETBOS, which transfers a BOS
banner word to 0,0 and, in cosequence, transfers the normal setting tc WRITE+6, One additional
setting of the banner switch Set End-of-File (SETEOF) occurs when an output tape ends, in
which case an EOF banner is transferred to the FID reserve area IDRES and several instructions
are performed in cosequence. These instructions add Z, X0 and 4 into Z, X7; transfer four words
from IDRES to 0, 0; transfer Set End-of Record Indicator (SETEORI) to the banner switch; and
set WRITE+12 to go to the banner switch.

In all these cases, the next instructions performed are WRITE+7 through WRITE+12, which
actually perform the write. The record count is incremented and is substituted into 0,0. Ortho
is computed from 0,0 to N, X7, and 0, 0 is written, Finally, the output buffer table is switched
(by shifting end around, as with the input buffer tables) leading to WRITE+12 which is the write
exit switch. Normally, this transfers the new output buffer table setting to Z, X0, and returns to
MERGE. But during the end-of-file procedure (discussed in the preceding paragraphs), this
exit switch is set to return to the banner switch, presently set to SETEORI. In this special case,
the banner switch will transfer an End-of-Record Indicator (EORI) word to 0, 0, and continue in
cosequence to restore the banner switch to SETBOS. Next, the write exit switch is set to trans-

fer the output buffer table to Z, X0 (as usual), and then control goes to EOF (described below).

Thus, in normal usage, the banner switch either sets up a BOS banner word and restores
itself, or sets up a normal banner word, In the special case when ending a tape, it allows a loop
to be established going through WRITE twice to write an EOF record and an EORI record., As
noted earlier, an output buffer full of filler items (keys of all hex G's) will occasionally be found.
In that case, control is transferred to WRITE+13. Normally, such a record can be discarded.
However, if it is the only record of a string, dropping it would upset the balance of strings on tape,
and the sort would not end properly., To overcome this possibility, the banner switch is checked
(in WRITE+13) to see if it is set to indicate that this record is a beginning of string. If it is,

control is transferred to WRITE+5 and the record is written in a normal manner. If it is not a

65

SECTION IV. MERGE SORT

beginning of string, control is transferred to WRITE+12 to discard it., This will bypass the

process of writing the record, but will reset the output buffer index register for the next record.

The EOF consists of a straightforward series of instructions (including several substitutes,
transfers, and reads). One dummy write and a read backward (into the stopper register) of the
output tape just completed is executed., EXITA is set up in the durnmy string area to the new ''way"
according to N, 83,1 (S3 is the subpass counter used for this purpose, which sets EXITA back to
the largest '"'way'' after the last subpass). The SWEOS (EOS+4) is set to refer to the next section
in the dummy string area. Three read forward and one read backward of the new tape to be
written are set up and performed, each followed by a dummy read, as well as the common write
instruction (WRITE+10). The record counter is set to the record count found by the positioning
instructions, which leads to a comparison that tests to see if EXITA is set to the largest ''way"
setting (add to nth counter). If it is, control is transferred to End of Pass (ENDPASS)., If not
(meaning that only a subpass has been completed), EOF proceeds to modify some of the EOF
instructions for the next time through. The A addresses of two of the instructions which pick up
the new tape addresses are incremented (with WA) instructions. The WRITE exit (WRITE+12)

is restored to normal, and control goes to SWEOS to start the next string.

End of Pass (ENDPASS)

As noted above, upon coming to the end of an input file, a check is made to see if it is the
last file depleted. When the last file is depleted, control is transferred to a section of coding
called ENDPASS. ENDPASS determines whether another pass is to be performed, which type

(ascending, descending, or a special last pass), and modifies the merge sort routine accordingly.

First, a counter called PASSES (which starts with the total number of passes as deter-
mined by the presort, and is reduced by 1 after each pass is completed) is compared for less
than or equality with 2. If less than or equal, the next pass will be number one (the last), and
control is turned over to a special set-up section termed Last Pass (LASTPASS). Otherwise,
the program continues in sequence. Working register R7 is set to READ+5 (the first of the sets
of read instructions in READ) for later use in ENDPASS. Switch tree (SWTREE), an indicator
which shows which type the current pass happens to be, is checked and control is accordingly
turned over to either APASS or DPASS to set up an ascending or descending pass. These two
sections of coding are similar, and they set up all areas which vary between ascending and
descending passes. In APASS or DPASS, an initial ''return'' to the top of the appropriate
tree is set up in READ+2. A word of all hex G's or a word of all zeros is stored in STOPPER,
(In double precision, two such words are stored. In triple precision, the area between the two

extremes of the stopper area are filled,) The final orders in the EOF area are modified, as

66

SECTION IV, MERGE SORT

necessary, to step the EOF area one way for ascending passes and the opposite way for descend-
ing. The instructions in WRITE+2 and WRITE+3 are set up to refer to the first or last item in
the output buffer. A small loop is used to set up the read instructions, using R7 (previously

set up) with an increment of 5 to step through the read groups. SWTREE is switched to its

opposite value.

The coding, which is common to both APASS and DPASS, is reached at this point. Here,
1 is subtracted from PASSES, and the write exit switch (WRITE+12) is restored to its normal
value. The next section is called Switch Counters (SWCTRS). This section switches the durnmy
string counters around to correspond to the new pass. It will be recalled that each counter
corresponds to a specific tape, but that the A through E designations change from pass to pass,

and the dummy string adjustment area modifies counters on an A through E basis, This sec=-

tion of the routine, although quite straightforward for an individual sort, is set up by the genera-
tor differently for a three-, four-, five-, or six-tape sort. Thus, for a three-tape sort, counters
A, B, and C become C, B, and A. From SWCTRS, control transfers to the Beginning-of-Pass
Section (BEGPASS), an initializing routine entered at the beginning of the merge sort as well as
before each further pass, The LASTPASS coding, mentioned above, is explained later in the
ENDSORT discussion.

Beginning of Pass (BEGPASS)

BEGPASS is used at the start of every pass, including the first, Its basic function is to
prime two buffers of each input set and to set up an additional read, based on depletion, when
MERGE is entered the first time. The output buffer is initialized, and the input index registers
are stoppered. The SWEOS, and the instructions in EOF which modify it, are reset to the
proper initial value in relation to the dummy string adjustment area. MERGE is set to perform
a read, based on expected depletion, when it is first entered after the dummy string routine.
And finally the banner switch is set to an initial BOS setting, ready to write the first output

string on the output tape.

The buffer is primed using R6 and R7, working special registers. R7 is set to the first
actual read instruction (READ+5) in READ, READ+26 is temporarily set to an instruction which
will replace itself and return control to BEGPASS. R6 is set to the A CAC switch (TABLEA).

A loop is then entered which uses R6 and R7 to set up the read index register (X6) and perform
three reads under cosequence control (the first simply bypasses the EOF record), during which
R6 is incremented by 1 and R7 by 5 to refer to each input set in succession. During this process,
the output buffer counter (S1) is set to zero, the subpass counter (S3) is set to its initial value,

so that N, S3 will refer to the proper constant when it is used later to modify EXITA. The con-~

67

SECTION IV, MERGE SORT

tents of the output buffer table are stored in X0, and a special initializing switch is stored in
MERGE to allow use of the TREE for the one initial read, but then control returns to the top
of the tree for merging., X1 through X5 are set to STOPPER. R6, the working register, is

again set to TABLEA, and a small loop is used to shift each of the input buffer tables 32 bits
around to allow for the table switching that takes place in DUMSTR. An instruction in EOF,

common to both ascending and descending passes, is restored to its initial value (it becomes
modified at the time each subpass is completed). The banner switch is set to SETBOS and

control goes to SWEOS to enter the dummy string adjustment area and begin the first string.

Ending the Merge Sort (ENDSORT)

When PASSES is equal to 2 at the end of the next-to-last pass, control goes to a section
called LASTPASS to set up all the procedures unique to the final pass of the merge sort. In
LASTPASS, preparation must be made for own-coding, if specified. The final output tape must
be positioned back one record to eliminate the second BOF record, and the banner switch must
be set to always write a normal (not BOS) banner word. Finally, the EOF section must be
modified to go to ENDSORT, rather than ENDPASS, at the completion of the gt/;ing. ENDSORT
simply prints "MERGED' and exits back to the original macrocoding.

It will be recalled that MERGE+28, when immediately following the transfer of an item
from the input buffer to the output buffer, is normally at PR. LASTPASS transfers the entrance
to own-coding, if any, to this location. The output tape is read backward once into the stopper
buffer. BEGPASS is modified to skip the initialization of the banner switch, and the banner
switch is set to transfer a normal banner word, Finally, LASTPASS replaces the read forward
(RF) instruction in EOF, which starts the positioning of the next outpi:.t tape. A sequence change
to ENDSORT is transferred into this location. LASTPASS then goes to the comparison which
determines whether to go to APASS or DPASS to perform the basic set up of the final pass.

In the final pass, the first tape to be written (the final output) has been backed up one
record. APASS and SWCTRS are gone through in the usual manner, eventually leading to
BEGPASS. BEGPASS is the same except for the last instruction, which no longer sets the ban-
ner switch to SETBOS, but simply goes to SWEOS to start the final pass. Since all dummy
string counters, by now, will be reduced to zero, this section is completed. Also, all inputs
are unstoppered, and control goes to TREE. This exits to MERGE in the normal way, except
that immediately after transferring an item to the output buffer, control is turned over to own-
coding, if specified. Since the banner switch is set to normal, the banner word of the first data
record to be written is the same as all the others to follow (instead of being a BOS banner

word). One by one, the input tapes will reach end, but merging continues until the

68

SECTION IV. MERGE SORT

items compared are stoppered. This leads to SWEOS, which was set to transfer SETEOF into
the banner switch each time an input tape reached end. From here, control is turned over to
WRITE to write the EOF and EORI records, and then to EOF section. This backs up the output
tape one record, and leads (because of LASTPASS modification) to ENDSORT. In ENDSORT,

"MERGED" is printed, and exit is made from the routine.

SPECIAL CASE: One Item per Record

In the generator portion of the merge sort, (discussed later) specific parameters of item
size, key location, items per record, etc., are used to set up a specific routine. In most cases,
the specific routine will be similar or identical to the general one described in the preceding

paragraphs of this section.

The case of a single item per record requires some special handling, however, The
most obvious problem is in the main loop of the program, where the time to read is deter-
mined based on filling the output buffer but for one item. With one item per record, this
difference between ''n-1'" items and '"n'' items amounts to a full buffer, with corresponding

problems in synchronizing the reads and writes.

Thus, in this one case, the generator modifies the reading comparison in MERGE+31 to
compare on NIB instead of NMINUSI (actually the contents of NMINUS1 are changed). Also,
the exit of the dummy string adjustment area has been set up to start a read based on expec-
ted depletion at the beginning of every string (rather than at the beginning of every subpass).
This is necessary because of ''n-1'" occurring one full record apart from 'n''. The result is
that a read is skipped at the end of each string, since everything is stoppered at the time the
last read should take place. The extra read at the beginning of the string, then, represents a

read at ''n-1" relative to the first item of the string to be transferred out.

Over-all Flow of the ARGUS Merge Sort

Thus far, the merge sort has been discussed in general terms, and various components
of the merge sort have been explained in detail. These components are tied together in the
following paragraphs to presept a complete merge sort picture. A merge sort flow chart is

shown in Figure 14,

The first section to be performed, BEGPASS, is entered before each pass of the sort,

including the first. BEGPASS primes the buffers, and initializes variables and switches.

The EOS Switch (which might more appropriately be called the BOS Switch) is entered at

69

SECTION IV. MERGE SORT

BEGPASS

PRIME BUFFERS
| INITIALIZE COUN-
TERS AND \

SWITCHES

EOF

BOFRTNE

SWITCH TO NEXT
WRITE |———¢| WAY, NEXT

ouTRUT
END [Pass
END
ADJUSTMENT SORT
SUB.| FROM EACH ENDPASS Y (A,~D;-LASTPASS)
NON @ COUNTER; IF SET UP FOR ASCEND-
ALL#¢@,ADD TO ING, DESCENDING,
ggtT’m,JT'FDEm‘;’ 4 AND/OR LAST PASS,
ET B BOF ! BASED ON PREV.

PASS AND COUNTER
LL DUMMIES SOME} REAL \ /
TREE \ il
FIND NEXT ITEM VIA
Xi-X5; STORE
sTopPers] RETURN IN N, S@; GO

TO INCREMENT OF N,

S@; CHECK FOR
STOPPER

READ
MODE f

MERGE
MODE

(NORMAL)
MERGE ET SEQ

PUT SELECTED ITEM
IN OB,MODIFY 1B TO
NEXT ITEM;IF 1B Ll

DEPLETED, GO TO
BOS AREA

READ+3 ET SEQW@ BOS A-E, SWITCH A-E

READ A RECORD INTO
THIS INPUT SET;
STOPPER LASTKEY;
RESET TREE TO
MERGE MODE

IF NOT BOS, SWITCH
1B; IF BOS, STOPPER
THIS INPUT SET; IF
BOF, SET BOSSWITCH
TO BOFRTNE

NORMAL ﬂ
MERGE+28

STEP 0B, IF NOT
FULL, GO TO TREE;
RETURN IF ALMOST
FULL; READ IF FULL;
WRITE

FULL
NOT FULL
ALMOST
READ FULL WRITE

SWITCH TREE TO WRITE OB +SWITCH
READ MODE IF FILLER RECORD,
SKIP AT BOF,

WRITE EOF + EORI

~— < J

Figure 14. Over-all Flow Chart of the ARGUS Merge Sort

70

SECTION IV, MERGE SORT

the beginning of each string. Normally, it leads to the appropriate section of the dummy string
adjustment area, except that after any input tape is exhausted (and the string then in progress

is completed), it is set to the Beginning-of-File Routine (BOFRTNE),

The dummy string adjustment area handles the merging of any dummy strings. If there
are dummy strings on an input (as indicated by the dummy string counters), it subtracts 1 from
each counter, adds 1 to the output counter, and returns to SWEOS for the next string. If any
inputs do not have the dummy strings, the dummy string adjustment area exits to the TREE,
after setting the banner switch in WRITE to BOS, and subtracting 1 from any non-zero dummy

string counters.

TREE is associated with the quantities to be compared via the index registers, and with
the instructions which follow it via special register SO. Through these special registers, TREE
is either associated with the current input items and the MERGE, or with the last items of the
current input buffers (LASTKEY) and the READ coding. The merge mode is the normal one.

In this mode, the TREE will exit to one of several sections of coding to transfer the selected
item to the output buffer, step the input buffer from which the selected item came to the next
item and, if the buffer has been depleted, go to one of several sections of coding in BOS to

switch that input set.

After the item has been transferred to the output buffer and the input buffer has been stepped
and tested for depletion, a common section of coding, MERGE+28, is entered. This section steps
the output buffer and tests to see if it is full but for one item, or if it is completely filled, If

neither of these conditions are met, return is made to the TREE to select the next item.

If the buffer is almost full (one item to go), control goes to READ, which sets the TREE to
the read mode, and proceeds to TREE. This compares the LASTKEY areas to find which input
area needs refilling the most, and accordingly exits to the appropriate group of instructions
starting at READ+3. Here a record is read into the vacant buffer of the selected input set, its
LASTKEY word is stoppered, and TREE is reset to the normal merge mode. Return is then

made to TREE to select the next item.

When the output buffer is full, control goes to WRITE to write the record on tape and switch
the output buffers. If the output record contains redundant fillers only, WRITE is bypassed. If
the banner switch is set to BOS, a BOS banner word is written with the record, and banner
switch is set to normal. When set to normal, the banner switch writes a normal (middle-of-

string) banner word. From WRITE, return is made to TREE to select the next item.

71

SECTION IV. MERGE SORT

After an input buffer was stepped and found depleted, BOS, which corresponds to the input
set of the depleted buffer, checks the banner word of the buffer. If it is a normal banner word,
control goes to SWITCH, which corresponds to this input set, and the input buffers are switched,
setting up a new last word in the process. If the banner word is a BOS banner, the index regis-
ter corresponding to this input set is set to stopper, and the next record of this set is checked
to see if it is a BOF (meaning the input tape has just been depleted). If it is, the SWEOS is set
to BOFRTNE, and merging of the current string continues.

One by one, the different input strings reach end and become stoppered. Finally, TREE
discovers that all items being compared are equal and, furthermore, that they are all stoppered.
(When in the reading mode, this simply causes skipping a record.) If all items are stoppered,
the TREE exits to SWEOS, signifying that this string is ended and another is to be started If
the SWEOS is set to its normal setting, control goes to the dummy string adjustment area to

begin a new string.

If an input tape (as opposed to a string) had been depleted earlier during the current string,
SWEOS would have been set to BOFRTNE, In this case, when the string ends, control goes to
the SWEOS, which now leads to WRITE with the banner switch set up to write EOF and EORI
records on the output tape. In this case, control goes to EOF from WRITE, which modifies
the routine for the next "way'", and makes the input tape just depleted the new output tape. If
this is not the last subpass, then control goes to SWEOS (now reset to normal) to start another
string. Or, if this was the last subpass (meaning the final input tape has been depleted), control

goes from here to ENDPASS,

In ENDPASS, a check is made to see if an ascending or descending pass has just been com-
pleted. ENDPASS then gets ready to do just the opposite type of pass. This is accomplished in
either APASS or DPASS, from which, as at the beginning, control goes to BEGPASS., Upon
ending the next-to-last pass, however, control goes to LASTPASS also, to make a few modiﬁ‘-
cations to the program for the final pass. From LASTPASS, control goes to APASS, and then
on to BEGPASS. Among other changes, LASTPASS modifies EOF so that, upon completing the
first (and by definition, last) string of the final pass, EOF writes the EOF and EORI records

and exits from the sort.

Merge Sort Generation

Two special registers are used to relay information from the presort to the merge sort.
Index register X7 contains the address of the macrocoding as set up at the beginning of the pre-

sort and Rl contains the peripheral address of the tape drive from which the merge sort can

72

SECTION IV. MERGE SORT

obtain the sort parameters, If output edit own-coding is used, the programmer must set up
special register S2 with the address of the own-coding. The own-coding must be under the
control of the cosequence counter and the contents of the special registers used by own-coding,

must be stored and restored, as for the presort.

After reading the end-of-file identification record, from the tape specified by Rl, into
memory, the merge sort modifier checks the various options transmitted to it by the presort
from the beginning FID parameters, If variable-size items are specified, modifications are
made to the sort to use the item size indicated in the low-order 16 bits of the end-of-item word
rather than a fixed item size constant. If the banner word option indicates that banner words
are not used on data records on the input file, the last merge pass is modified to eliminate the
banner words affixed by the presort. If masked keys are indicated in the parameter, the
necessary masks are set up in memory as given in the end FID, from the presort, and the

merge sort is modified to handle masked keys.

Tape addresses and the ''way merge'' indicators transmitted from the presort are used to
generate the proper read and write instructions and to modify the merge sort as required.
Input buffers are allocated for the given record size for each input tape, and output buffers are

allocated for the given record size.

POSITION OF TAPE POSITION OF TAPE AT
BEFORE PRESORT END OF PR}ESORT
¥) 1
FILE FILE
RECORD 1D
AS RECORD EOFID
TAPE GIVEN OF RECORD
o [PRESTVD LENGTH OF 23 WORDS
! ON DETERMINED PLUS
DATA | nPuT EOFID
RECORD BY PRESORT STRINGS OF RECORDS ORTHOWORDS | rEcoRD
FILE MODIFIER AND
FROM EORWD
PARAMETERS

Figure 15. Appearance of Work Tape at End of Presort

Error Correction and Restarts

In the event of a read error, the location of the suspected record is determined, and con-
trol is turned over to the Executive Routine to try to repair it. If unsuccessful, the information
is reread by the sort, and if still bad, control is again turned over to the Executive Routine.
This process is repeated several times. Suitable printouts at the console indicate the nature

and disposition of the trouble.

73

SECTION IV. MERGE SORT

If physical end of tape is reached, the tape is rewound with interlock, and a printout
tells the operator what has happened. He may then mount a longer tape, and the program will

revert automatically to the most recent restart point.

Restarts in the merge sort, as in the presort, are part of the sort coding. This is
especially necessary in the merge sort, since (due to the nature of data manipulation on tapes)
restart points must be established at every subpass. (These built-in restarts are especially
tailored for the sorts and are therefore more efficient than the general restarts provided by the
Executive Routine.) As with the presort, a restart point is established just after the routine
is loaded, this time on the last, or nth work tape, to allow restarting the routine from the
beginning. Subsequent restart points are stored internally, in the form of counter settings,
at the beginning of each subpass. All of the dummy string counters, as well as the record
number counts (from the banner words in the '"current'' input buffers), are stored at this time,
and the restart routine is modified to handle the type of subpass about to be performed. These
restart points are established during the EOF routine when all inputs are stoppered, and no

partially depleted input buffers remain,

There are several possible restart procedures. Use of the proper one is governed by
how far the merge sort has progressed at the time it is necessary to restart, and upon what
type of subpass is being performed. During the first subpass of any pass, when writing on
the nth tape, restarting is accomplished by positioning all the input tapes forward to the EOF
records, and positioning the output tape backward to the BOF record. Then, with tape posi-
tioned as at the beginning of the pass, PASSES is incremented and control goes to either
APASS or DPASS, During intermediate subpasses, restarting is somewhat more complex,
since the input tapes will not necessarily be at end of file at the beginning of the subpass.
For this reason record counters are stored, corresponding to each input tape. Using these
counters, which were stored during the most recent break between subpasses, all current
input tapes are repositioned forward to the record counter that is stored. The output tape is
positioned backward to the beginning FID. The deficiency counters are replaced by their
values, which were stored at the most recent break between subpasses, and all tapes are stop-
pered. The current input tapes are primed (two buffers each, as in BEGPASS), and those
instructions in BEGPASS, which are the same for any number of input tapes, are performed.
The routine is then re-entered at SWEOS (just as in BEGPASS) and the current subpass is

restarted.

74

SECTION V
THE COLLATE

The ARGUS collate combines from 2 to 99 ordered files into one long file. Each input file
may be contained on a single reel or may occupy any number of reels. The programming logic
of the céllate routine resembles that of the merge sort, although the two routines differ in func-
tion and in outward characteristics. The heart of the collate is a merging operation, accom-
plished by means of trees, but the associated reading and writing controls are more complex

than those of the merge sort.

Like the ARGUS sort, the collate is stored with the Library of Routines as a subroutine
and consists of a skeleton routine and a modifier-generator. Whereas the presort and merge
sort are generated and performed by executing a single pseudo instruction, collating is a sepa-
rate operation which is called out by executing a collate pseudo instruction. Therefore, although
the collate may be used to combine the outputs of several sorting operations, it is performed as
a separate program, completely disassociated from the sorts which produced the files to be

collated.

The "Way' of the Merge

In addition to the parameters supplied to the sort (e.g., item size, key location, etc.),
the collate is supplied with information concerning the number of files to be merged as well as
the "way' merge to be performed. A file here is assumed to be a single series of ordered
items, which may, or may not, extend over several reels of tape. '""Way'' means the number of
input files merged at any one time. This is indirectly limited by the number of tape drives
available. Whereas a file contained on a single reel of tape may be read from a single tape
drive, a multi-reel file is usually allotted two drives. In this mode, no time is lost when one
tape (or segment) of a file is depleted because the machine has immediate access to the sub-
sequent section on the alternate drive; therefore, the depleted tape can be replaced, when it is

convenient, by the next installment.

Merging Function

In the simplest case, the collate is used to merge two, three, four, or five files
to form one; an example would be combining the (sorted) outputs from several weekly runs at
the end of a month. In such a case, a two-, three-, four-, or five-way merge {one single logi-

cal pass) would be performed depending upon the number of weekly outputs to be merged. (In

75

SECTION V. THE COLLATE

this case, five would be a maximum.) On the other hand, there are times when there are more
files to be merged than the number of the "way' that the collate can handle. In such cases, un-
like the monthly operation just mentioned, it is necessary to perform several passes which, for
instance, combine files A and B into a file W, C and D into file X, E and F into file Y etc., and
then combine files W, X, Y etc. into a final file., Therefore, in multi-pass merging, it is im-
portant to have a firm system, controlling the sequence of files to be merged. As the number
of original input files becomes greater (for instance 20 rather than the six), the need for a firm
controlling system becomes increasingly more imperative because, without such a system, it

would be highly confusing to maintain a fixed control over the entire process.

Equipment and Memory Considerations

In the collate, buffering, reading, and writing are similar to the corresponding portions
of the merge. As with the merge, an optimum balance between reading and writing operations
is established to make the routine as fast as possible. The tree portion of the routine is simpler
than that of the merge since a collate performs onljr an ascending pass over all data, requiring
only a single tree. In addition, the input buffers are easier to visualize because reading is
always in the forward direction and information is always taken from the top of the buffers

rather than from the bottom.

In spite of the apparent simplification of the collate over the merge sort, there are several
factors which could make a collate (particularly one involving small items with large keys) slow-
er than a corresponding merge. For one thing, a greater equality of keys can be expected as
strings become longer and longer, extending over one or more tapes. Each case of equality of
keys necessitates extra levels of comparisons in the tree, as well as in the comparison section
which may be attached. As a precaution, a sequence check has been built into the collate. This,
in effect, checks each item coming in to be sure that it is equal to or greater than the item which
preceded it on the same file. In many cases, such a safety device can often isolate incorrectly
written tape before it has a chance to destroy the whole collating process. This means that two
sets of comparisons, the tree and the sequence check, are performed for each item processed.
If' a break in sequence is found, a printout on the console typewriter informs the operator. The
operator then has the chance to redo that tape and, through the restart procedure, start the

collating process over at a point before that tape was first read.

The Collate Plan

When the collate pseudo instruction is executed and the routine generated, the generator

devises a plan which represents the most efficient run for the conditions specified and prints

76

SECTION V. THE COLLATE

this plan on the console typewriter. The operator follows the collate plan in mounting tapes and

uses it to track the progress of the collate.

If the number of files to be merged does not exceed the way of the collate, the plan is re-
latively simple. However, if the number of files is large enough to require more than one pass,
a more complicated plan is devised which minimizes the total number of passes over the input
files. This is accomplished by utilizing, as nearly as possible, the full way of the collate during

each individual pass.

Figure 16 illustrates this principle in terms of two collate runs, A and B, each of which
uses a three-way merge to combine 17 files. In example (a), five three-way merges and a two-
way merge are first performed to reduce the original 17 files to six. Two three-way merges
then reduce these to two files which are finally combined by a two-way merge. Note that each
of the three layers of merges processes all 17 files for a tofal of 51 file times. Example (b) re-
presents a more powerful collate of the same files. Note that by withholding certain files from
the first-layer merging, a full three-way collate can be performed in each individual merge
and, in this instance, the same files can be combined in a total of 46 file times. This is typical
of the manner in which the advance-planning feature of the ARGUS collate results in the most

efficient plan for any collating program.

Calculation of the Plan

The calculation of the plan occurs as a part of the modifying-generating process, before
the collate is run. The theory of the calculation is relatively simple, and is based on the fact
that if a less-than specified way pass has to be done, it is better done at the beginning of the run
when only a few files are involved, rather than at the final pass when the entire volume of data
must be passed. Therefore, the final pass is planned first and is specified as full-way. If there
are. more original files to be collated than the number that this would handle, then the next-to-
last pass is specified. This is another full pass, whose output will be one of the inputs to the
final pass. This yields a capacity of way-1 additional input files (-1 being the input of the last
pass which is presently taken up with the output of the new pass). If this is not enough, another
pass is specified whose output will be another input of the final pass. This process continues
(going to the inputs of the next-to-last pass when those of the last are filled, etc.} until the total
number of inputs is equal to or greater than the number of files to be collated. The last pass
calculated (the first performed) may be less than a full-way merge, but this will be the only one.
When completed, the plan is printed in a tabular manner on the line printer or console type-

writer. Each line represents a pass, and specifies each input and output file by a unique number.

77

S -
~— A
=B /T
@ N
o—p—F
o
O
S

SECTION V. THE COLLATE

The plan is also kept in memory in compacted form and will be used later by the routine to de-
termine how many passes there will be, and what files are involved in each. The file numbers
of the plan are used as a basis for writing a file name on tape, printing it on the console, and

later for checking the same tape when it is to be read again.

Tape Control

In connection with the collate plan, there is a system of communication between the
machine and the operator with regard to the identification of each file going into or coming out
of the system. In fact, one of the significant advantages of this plan is the fact that it serves as
a check to be sure that the proper files are mounted at all times. This becomes extremely
critical during a large-volume, multi-pass collate when tapes are being constantly mounted,
dismounted, and changed. To implement this communication between the operator and the
machine, each file is assigned a unique number in the plan. This number becomes the file name
of each file written by the collate, and as each tape is completed, the number is printed on the
console typewriter so that the operator can label the tape in the same manner. Each file written
by the collate, and later read by it, is checked at the time of reading, to insure that it is the file
being called for at that time. As a further check, each segment (tape) of a file is assigned a
sequential number, and this too is checked. The file name for the first segment of any original
file, obviously, cannot be checked, but the name which is found there is retained so that the

following segments of the file can be checked. The final output may have any file name specified.

File Identification

File numbers, or names, are assigned in the following manner. Each file will have a
four-digit number. The first two digits specify the level number. The last two digits specify
the file number within that level. Level refers to the number of times the data within the file
must be passed before the collate is complete. Thus, the final output is level zero; those files
which are merged to create it are of level one; the files merged to create any first-level files
are of level two, etc. The file numbers are assigned sequentially, starting with 4. Therefore,
the final output file will be 0001 (level zero, file 1) and, depending upon the way of the merge, it
will be created by the merging of 0404, 04102, etc. (Figure 16 (b)).

Initially, the plan section sets up a complete table of passes, with file numbers assigned
as above. It then determines which of the files are original inputs, and reassigns new numbers
to them, with "BB'" as level number and sequential file numbers. Thus, when the collate finds
that an input file having a BB number is called for, it bypasses the check for file number and in-

stead stores the file name which it finds on the tape. Also, at the beginning of each pass, the

79

SECTION V. THE COLLATE

output file number is checked against 0001; if they are found equal, the option to insert a user-

specified file name is exercised.

The file name or number, described above, is identical for each tape of a file (by defini-
tion, a file may extend over any number of physical tapes), so in order to insure that tapes of a
file are mounted in correct sequence, some further check is necessary. This check is provided
through the segment name or number. Tapes written by the collate to make up a file are num-
bered sequentially in the rightmost two digits of the segment name (04, 02, etc.). When these
tapes are read, this number is checked for unity at the beginning of a pass, and for the next
higher number for each subsequent tape of the file. On any one tape, these numbers are the
same in the beginning- and end-of-file identification records, except that the last tape of the file
ends with a segment number of GG. As with the file name, the segment name of the final output
may be specified by the user, except that the last two numeric positions will be sequential num-
bers placed there by the collate. Initial input files (those with the BB numbers) are not checked
for segment number unity at the beginning of the pass. Instead, whatever segment number is
found is stored, and the next tape is checked for one greater than the one found. Thus, the input

numbering sequence is apt to begin with any number.

The plan, therefore, which is printed at the beginning of the collate will have as many BB
file numbers as there are files to be collated. The user arbitrarily assigns one of these num-
bers to each file so that he can know what tapes to mount as the routine calls for them. The only
requirement of each of these initial files is that their file name be constant throughout, the final
two digits of the segment name increase sequentially throughout from tape to tape, and the final
end segment name have a word ending in hex G's (GG). As each output tape is completed by the
collate, the console typewriter will print out: "REMOVE (file number) (segment number) FROM
(peripheral address of drive)'. The operator should then remove the tape from the specified
address and label it with the file and segment numbers specified. Subsequently, when the plan

calls for that file to be processed, there will be no question about which tape is to be mounted.

Tape Changing

The collate is set up to handle each input and output on two tape drives each, as specified
by the user. Internal indicators tell the collate which drives correspond to each set. If a single
drive is specified, the two internal drive indicators corresponding to that set refer to the same
drive. In either case, as each tape is completed, it is rewound with interlock and the internal
indicators are switched to refer to the alternate drive (unless the tape just completed was the

last of that set). If dual drives are used, the next tape will be processed immediately and the

80

SECTION V. THE COLLATE

operator can change tapes at his leisure. If a single drive is used, the routine will stall on the
tape interlock until the new tape is mounted (as it would with dual drives if the tape were not
changed in time). Although the routine tells what tapes are to be removed, the mounting of the
correct tapes (based upon the plan) is left to the operator. This is because the routine (if dual
drives are used) has no way of telling when any file will end until'the end-of-file identification is
reached. By this time, the next tape (if there is one) should already have been mounted on the
alternate drive; if not, the routine will stall. The console typewriter prints an indication as
each pass is begun, and this, together with the knowledge of what drives correspond to each in-
put set and to the output,. enable the operator to interpret the plan and mount the tapes accord-
ingly. In the event an incorrect tape is mounted, and just when the collate is ready to use it,
WRONG TAPE, together with the tape drive address and the number of the correct tape, is

printed on the console typewriter.

NOTE: The following text refers to many special registers used in the ARGUS collate. Appen-

dix D of this manual provides a list and functional description of these special registers.

Buffers
Except for the differences which arise from reading forward instead of backward, buffer-
ing in the collate is handled in exactly the same manner as in the merge sort. This is described

in Section IV.

Each of the five input sets, A through E, corresponds to a pair of tape drives, only one of
which is active at any one time. Logically, A through E are identical. If a less than five-way
pass is specified, input sets are dropped starting with E. Thus, a two-way merge uses input

sets A and B.

As in the merge, there are three buffers per input set. They are a 'current'' buffer, a
"next' buffer, and an "open' buffer. A CAC- (Complete Address Constant) type three-way
switch is used,and in this case refers to the beginning locations of the three buffers. Switching

is accomplished by shifting the switch end around 16 bits.

Index registers X1 through X5 are used to refer to the current item, and R4 through R5
are used as buffer item counters, as in the merge. Since the buffers are stepped through in a
forward direction, the index register starts by referring to the first item SWITCH+1 to bypass
the banner word. After each item is transferred, AU1 is used to set the index register to the

next higher item, and the R counter is incremented.

81

SECTION V. THE COLLATE

When the buffer is depleted and switched, the last item (last key) is set up by adding the
constant LKEY to the new switch setting. In the case of variable-length items, the last item is
found by going through the buffer word-by-word, and looking for and counting end-of-item words.

Both the CAC switches and last key settings are kept in a section called TABLE.

Switching the input buffer is done, whenever a buffer is depleted, in the area called
SWITCH. To switch a buffer, assuming fixed-sized items (under 64 words), the CAC-type
switch is shifted with a mask of all hex G's 16 bits back into itself. The switch plus LKEY is
then added through a Word Add (WA) instruction, with a mask of the low-order 16 bits, to find
the last key setting. This is kept in the word immediately after the switch. Then the contents
of the switch are transferred to the index register, and the address thus referred to (the banner
word of the new buffer) is masked and compared with a constant to determine if this is an end-
of-file record. If equal, control goes to the appropriate one of five housekeeping routines (A-E
HSKEEP) to switch tapes, Otherwise, the index register is incremented once (to refer to the
first item), the R register counter is set to unity, and control goes to JJ. JJ, the common
routine which corresponds to MERGE+28 in the merge, is used to step the output buffer and de-

termine when it is time to read or write.

The procedure is exactly the same for variable-size items (or those over 63 words) except
that the WA is replaced by a sequence change to a subroutine in cosequence. These subroutines,
1V through 5V corresponding to the A through E sets, will set up the last key portion of TABLE
by looking for and counting end-of-item words. Each of these subroutines is the same, and
works as follows: the index register is incremented, and the address it specifies is mask com-
pared with a constant to see if it is an end-of-item word. If not, it is incremented and com-
pared again. If it is, 1 is added to a working location called POCKET and POCKET is compared
with FILE (FILE is a constant set up to equal one less than the number of items per record). If
not equal, return is made to increment the index register. If it is equal, a WA adds 1 to the
index register into the last key portion of TABLE, and after clearing POCKET back to zero, a

return is made to the sequence mode.

The CAC-type switches for the A through E sets are located in TABLE, TABLE+2,
TABLE+4, TABLE+6, and TABLE+8. The last key settings are in TABLE+4, TABLE+3,
TABLE+5, TABLE+7, and TABLE+9.

Whenever a buffer is written, the output buffer is switched in the JJ section. The two-part

switch to accomplish this is in TABLE+10. X6 is the output index register and R6 is the output

item counter. R7 is also used as a working reégister at the time of writing, More detail on

82

SECTION V. THE COLLATE

output buffer switching is contained in the subsequent discussion of the merge and read loop,

which is part of the section describing the trees used in the collate.

The input buffers must be primed at the beginning of each pass, as well as when an input
tape is switched. In the first instance, as in the merge, two buffers of each set are primed, and
reading starts into one of the available buffers based on expected depletion. However, when an
input tape is switched, only two buffers are primed. In this latter case, a detour is made from
the routine simply to check the FID records, switch tapes, and get the new tape started. Return
will be made to the main routine when the new routine has replaced, in the buffers, the end FID

record of the old tape with the first record of data of the new tape.

Trees

Like the sort routines, collate routines are available for single, double, or triple pre-
cision. These routines differ only in the structure of their trees. In each case, the trees used
by a collate are logically identical to those used on ascending passes by a merge sort of the same
precision. The collate routine can also be modified by means of own=-coding to accommodate any

additional number of key fields. Section IV contains a description of the structure of these trees.

As in the merge, S0 is used at the exits of the tree for storing the return and going to the
appropriate coding to transfer the selected item. As before, this allows the same tree to de-
termine the next input read and the next item to be transferred. One slight difference between
the collate and merge tree is that the former increments SO in multiples of four instead of five,
since only four instructions are required to be unique to each input set. SO0 is set each time to
TRANSFER, which functions exactly as the location MERGE in the merge sort. At TRANSFER,

the return to the tree is stored.

When switching to the read mode, the contents of X1 through X5 are stored in HOLD
through HOLD+4, and the last key settings (TABLE+41, +3, etc.) are transferred to X4 through
X5. S0 is set to READ to refer to the proper set of read instructions. As in the merge, the re-

turn in READ will not be used.

When all items being compared are equal, SO is incremented to refer to a sixth group of
instructions, either in TRANSFER or in READ, which will check to see if all inputs are stopper-
ed. If the items are not stoppered, a normal exit is made to one of the other five groups of

instructions.

There are five groups of four instructions in the TRANSFER section. In the group

83

SECTION V. THE COLLATE

performed when the A item is smallest, for example, the first instruction is a Less-Than (L.A)
instruction between a working location ASKEY (there are corresponding locations in the other
groups, B-ESKEY) and the key of the item addressed through the index register. ASKEY con-
tains the key of the previous item from this input set (an explanation of how this is set up follows
later). Assuming single precision, if ASKEY is less than or equal to the current key, then there
is no break in sequence, and the item is ready to be transferred to the output buffer. To do this,
control is transferred to Continued (CONT) to transfer the item out. The CONT area consists of
groups of five instructions each, so the B set uses CONT+5, the C set uses CONT+10, etc. If
ASKEY had been greater than the current key, control would have gone to the second of four A
instructions in TRANSFER. This, together with the third and fourth instructions, prints SEQ,
ERROR, FILE A, and then stops. Instead of going to CONT (or CONT+5, etc.), the double- and
triple-precision sequence check comparisons go to a section called SUBTRANS to check the sec-
ond and third keys. SUBTRANS will exit either back to the print instructions in TRANSFER, or
will go to the appropriate section of CONT.

In CONT, the key of the current item is transferred (through the index register) to ASKEY
for use the next time around. The item is transferred out by an n~word transfer (item transfer
for variable-size items) using index registers 1 and 6. The contents of AU4 are transferred to
X1 to set it to the next item. Finally, R1 is checked, incrementing it against FILE+1 (a constant
set up to equal the number of items per record), and if it should be unequal, then control is
transferred to a common routine, JJ, to complete the main merging loop. Otherwise, control

goes to the appropriate area in SWITCH to switch the input buffer.

In double precision, SUBTRANS makes an equality check on the first keys of the last and
current item and, if equal, it checks the second key for sequence. ASKEYA through ESKEYA
are used to store the second last key. In triple precision, another set of comparisons are made
where the third last key is stored in ASKEYB through ESKEYB. In double and triple precision,
the CONT area is expanded accordingly to allow the storage of additional last keys. In the event
that the user wishes to extend precision beyond triple, he does not have to modify the sequence
check accordingly, as it should suffice to check sequence on only the first three keys. Most
troubles that a sequence check would isolate revolve around major breaks in sequence. These

would probably manifest themselves in the first key comparison.
When the tree is in the read mode, the five groups of four instructions in READ function

as follows: the CAC-type switch is shifted 32 bits into working index register X7, a read is
performed into the address specified by X7, STOPADD (a SPEC constant) is transferred to the

84

SECTION V. THE COLLATE

last key porti‘on of the TABLE area which applies to this input set (this is the address which will
reference the stopper word of all hex G's), control goes to the common area GG to restore the
index registers X1 through X5 to their normal values, and finally a return is made to the main

merging loop.

Multi-precision

Since the collate trees are identical to the merge trees, the discussion of multi-precision
in Section IV is applicable here also. There is one additional problem to watch when precision
is extended beyond triple through the use of own-coding, and that is when keys, other than the
first three, are specified (refer to the final paragraph of Multi-precision, Section IV). Thus, if
a fake third key is specified, then the third key comparisons of each of the five sequence checks

(in SUBTRANS) will have to be modified to refer to the logical third key.

Main Loop ' '

The main loop of the program, that which is performed for each item processed, has been
essentially covered in the preceding sections. Only a few instructions are involved in complet-
ing it. In the tree (called LOOP in the collate), the smallest of the itermms addressed through in-
dex registers X1 through X5 is found, a return is stored in the location specified by S0, and SO
is incremented.to go to one of the appropriate groups of instructions in TRANSFER. Here (as
also in the multi-precision of SUBTRANS) the item is sequence checked and, through the section
CONT, is transferred to the output buffer. Also, the input buffer is adjusted and tested to see

if it is empty, and if it is, then a sequence change is made to JJ.

In JJ, the contents of AU2 are transferred to X6 to step the output buffer index register to
the next item position. R6, the output buffer item counter, is then compared with FILE (items
per record minus 1) to determine if it is time to read. If it should not be equal, control goes to
JJ+13. In JJ+13, R6 is compared (incrementing it by 1) with FILE+1 (items per record). If it
is not equal, control goes to TRANSFER. Here the return to the tree is stored. The collate
returns are slightly different than the merge returns in that they make use of the A and B ad-
dresses of the return instruction to reset SO for the next time., (This was done in a separate in-.
struction in the merge.) After resetting SO, then the return leads to the tree to process another

item.
Had it been time to read, as determined by an equality in JJ+1, control would have re-

mained in sequence, the contents of X1 through X5 would have been stored in HOLD through

HOLD+4, and TABLE+4, +3, 45, +7, and +9 would have been stored in X1 through X5, all

85

SECTION V. THE COLLATE

through a series of TX instructions. The index registers are thus set to the read mode, and
control goes to FF. This sets SO to READ and goes to LOOP (top of the tree) in order to in-

itiate a read.

Previously, it was explained that the tree would select the appropriate set to be read and,
to do this, it would have gone to a series of instructions in READ. From this point, control
would have gone to a common section, GG, to restore the index registers, and then from there

to JJ+13 to get back into the main loop.

When it is time to write, as determined by an equality in JJ+13, sequence control remains
the same. In JJ+14, 1 is added to a counter called ACMLATE, which is the output record
counter. ACMLATE is then compared with PAR+2, the portion of the parameter which specifies
the number of records per tape to be written by the collate. If these are equal, the tape is full
and control goes to EOPT to change output tapes. If not equal, X6 (now set to the word beyond
the last item) is transferred to working register R7, and TABLE+40 (the output buffer switch) is
transferred to X6. The contents of ACMLATE are mask transferred into the banner word of the
output buffer, as specified by X6. Ortho is computed from the word specified by X6 to the word
specified by R7, and writing starts from 6,0. TABLE+10 is then shifted 24 bits end around into
itself to switch output buffers, and this plus 41 (to get by the bannnr word) is stored in X6. R6 is
set to unity, and control goes to the return in TRANSFER.

The main loop and the read in the collate, except for the resetting of SO, are very similar
to the corresponding portions of the merge. The writing portion of the collate is considerably
simpler because of the lack of beginning~of-string markers and the corresponding need for a

banner switch.

Input Buffer Switching

After selecting the smallest item and transferring it out, as already described in this sec-
tion under Trees, the input buffer is stepped to the next item. If, in this process, the input
buffer is found empty, control goes to the appropriate section of SWITCH, depending upon which
input set is being handled. All five of these sections are similar. SWITCH corresponds to the
Beginning-of-String (BOS) check in the merge, except that here it is not necessary to check for

beginning of string.

The details of SWITCH are covered in this section under Buffers. In general, the buffer
switch (TABLE+1, +3, +5, +7, or +9) is set up. The procedure for this is somewhat involved if

86

SECTION V. THE COLLATE

the item size is variable. The index register is reset to the beginning of the new buffer, and
the banner word is checked to see if this is an end-of-file record. If not, control goes to JJ, as
would have been done if the buffer had not been depleted. Otherwise, if this is an end-of-file
record, control goes to A through EHSKEEP to switch input tapes. This process corresponds to
going to EOPT when an output tape is filled, although the latter is sensed by an internal counter
or by hitting the physical end of tape, rather than by sensing the end FID record in the data. If
the physical end of an input tape is reached, the resulting unprogrammed transfer is bypassed,

since there must always be an end FID record at the end of each tape.

End of Output

This section of the program, called EOPT, may be reached in either of two ways. A
parameter~-supplied limit of the number of records to be written on each output tape allows
switching outputs as soon as that many records have been written. This is detected in JJ when
the record counter is incremented and compared against the constant PAR+2. If, on the other
hand, the output tapes are to be filled to capacity, an infinitely large number of hex G's may be
supplied through the parameters, in which case the equality of JJ will never be met. An end-
of-tape unprogrammed transfer will be made, however, when the physical end of tape is reached.
This unprogrammed transfer results from writing an output record. This write will be correct-
ly initiated, and the unprogrammed transfer then leads to EOPT, just as if the record counter
had been found equal to the parameter-supplied limit. Actually, the record counter leads to
EOPT only-during the last pass because a count of hex G's is arbitrarily used during inter-

mediate passes to fill tapes to their maximum capacity.

In EOPT, X7 is set to the internally stored FID reserve area, and the end FID banner
word is transferred to 7,0. Ortho is computed from 7,0 to 7,9 (the size of the special ID rec-
ords), at which time control goes in cosequence to the write instruction in Write First Begin ID
(WASTBID), This is a write instruction especially set up to write ID records which, like the
write instruction in JJ, uses X7 rather than X6. The instruction following the write instruction
in WASTBID drops control from the cosequence mode, and also transfers plus zero to MEMLOC.
(This latter step has no effect at this time.) Back in EOPT, an end-of-information banner word
is stored into the beginning of IDRES through X7. Ortho is then computed, and again control
goes to the above write instruction in cosequence. Again back in EOPT, a rewind order (with
interlock) is set up this time with the tape address of the current output tape (found in DRIVE+5).

It is performed to initiate the rewinding of the tape just completed.

Following this, "END OPUT, REMOVE TAPE ON" is printed. The tape address is

87

SECTION V. THE COLLATE

substituted from DRIVE+5 into the working print location MEMLOC+3, and this is printed in
octal. TAPE is then printed, as are contents of KEEP+10 and KEEP+141, which give the file and

segment numbers assigned to the tape.

At this time, the just-completed tape is removed, and the next one is started. DRIVE+5 is
shifted left, 24 bits end around, to switch the tape drive. The new tape address in the leftmost
portion of DRIVE+5 is substituted into JJ+241 and into the write instruction in W1STBID. Dec~
imally, 4 is added to the segment name in IDRES (through 7, 2) and a beginning FID is trans-
ferred to 7,0. The new tape is read into stopper. Again, a compute orthocount is performed
from 7,0 to 7,9, the new segment name is also transferred from 7,2 to KEEP+141, and finally
control goes to the write instruction in WASTBID in cosequence to write the beginning FID on the
new output tape. Note that if this is on the same drive as the tape just written, or if a new tape
has not yet been mounted since the last tape was written on this drive, stall is initiated trying to
read because of the rewind with interlock. Once the new tape is mounted, however, the read,

and then write, will proceed correctly.

Back again in EOPT, having bypassed the tape ID record and written the beginning-of-file
ID record, control goes to an exit switch. This is normally set to clear ACMLATE to zero, and
go to JJ+17, which assumes that control was directed here from the counter comparison in
JJ+415. In this case, the output buffer is still full, and control returns to JJ at the point where
it originally branched off just before writing the buffer. If, on the other hand, control had gone
here from the unprogrammed transfer area, the buffer would already have been written. Thus,
the unprogrammed transfer instruction sets ACMLATE to zero and leads to another TS instruc-
tion. This second TS instruction sets a special switch setting at the end of EOPT which will re-
place itself with the normal setting (described above) and go to JJ+22. This will lead back to JJ
immediately after the write instruction, which effectively again is the point where control was

originally transferred (through the unprogrammed transfer register) from JJ.

End of Input

In SWITCH, after the input buffers were switched, it will be recalled a check was made to
see if the new record is an end FID. If it is, control goes to AHSKEEP through EHSKEEP, de-
pending upon the input set which is presently being worked. Since these five areas are similar,
it will suffice to describe just AHSKEEP. Actually much of the processing necessary at this
time is common to all five of the input sets, and so AHSKEEP through EHSKEEP serve only to
perform those instructions unique to each set, and to set up several common locations. From

each of these, control goes to Master Housekeeping (MHSKEERP) in order to determine if an

88

SECTION V. THE COLLATE

end of segment or an end of file is reached, and also to check the new input tape (or, if an end

of file, to stopper this input set).

AHSKEEP begins by setting up common locations. The A input drive switch (DRIVE) is
transferred into WL4 (the other sets up DRIVE+1 through DRIVE+4). TABLE, the input buffer
switch, is transferred to WL4i+1 (TABLE+2, +4, +6, and +8 for the other inputs). The address
of KEEP, which gives the file and segment name, is stored in Z, Sl (likewise KEEP+2, +4, +6,
and +8). The address of the read instruction, READ+2 (+6, +10, +14, and +18) is stored in Z, R7,
The input drive switch is then switched end around 24 bits into itself, thereby switching input
drives (DRIVE, and DRIVE+1 through DRIVE+4)., The input item counter, R4 (R2 through R5) is
set to +1, and control goes to MHSKEEP.

In MHSKEEP, the leftmost tape address from WL4 (the address of the tape just depleted)
is substituted into WL4+2 (zeros). Using this, a rewind instruction is set up and performed
with interlock, thus rewinding the input tape just depleted. Then the input drive switch in WL4
is shifted end around 24 bits, so that it also is switched, and its leftmost (new tape) address is
substituted into the read instruction through N, R7. REMOVE is printed and, through N, S1, 1,
the file name is also. The two low-order digits of the segment name, obtained by substituting
incremented N, S41 into WL+3, are printed, as is TAPE ON and the drive address (from WL+2).
Now the address of the end FID, still in the input buffer, is stored in Z, X7 (from the buffer
switch in WL+1) so that it can be interrogated. Next, the low-order two digits of 7, 2, the seg-

ment name word, are compared against a constant of hex G's.

Assume for purposes of explanation that the low-order two digits were not hex G's, mean~-
ing there is more of this file on another reel; then END SEG would be printed out, and 41 would
be added to N, S1 (segment name in KEEP). A read instruction is then set up and performed to
bypass the tape ID of the new tape (into stopper). As was true of the output tape, this will cause
a stall if both drives of this set are the same, or if the new tape has not yet been mounted. If
the new tape is mounted, the tape ID record is bypassed, and control goes in cosequence to
N,R7. This was previously set up as the new read instruction, which will bring the beginning
FID record of the new tape into the input buffer just occupied by the end FID of the old tape. The
instruction after each read in READ is a void TX instruction, which will return to MHSKEEP.
Here a dummy read (void A address) is set up and performed to insure that the record just read
is in memory. A check is also made of 7,0 to see if this is a proper beginning FID banner word.

If not, control goes to the error routine covered in the next paragraph.

89

SECTION V. THE COLLATE

If this was the proper banner word, Z, S1 would have been reset one word backward to re-
ference the file name word once again, and 7, 1 would have been checked against it (increment-
ing S1 by 1 again). This matches the new file name against that in KEEP which corresponds to
this input set. If unequal, control goes to the error routine covered below. If the file name is
correct, the low-order two digits of 7, 2, the segment name, are checked against N,S41, and
again, if these do not agree, control goes to the error routine. This common error routine
prints X TAPEON (for wrong tape on), and substituting the drive address from WL4, prints that
in octal., S1 is again backed up one word, and used to print the file name and the low-order two
digits of the segment name. CORRECT TAPE is then printed, and a rewind is set up and per-
formed with interlock. Having done this, a sequence change is made back to the point in
MHSKEEP where the tape ID record is read and at this point a stall is initiated until another tape

(presumably the correct one) is mounted.

If all tests for a new tape had been passed, control would go in cosequence again to the
normal read instruction, thus bringing in the first data record over the FID record just checked.
WL+1 is shifted one position into X7 and the read is again performed in cosequence, thus start-
ing the read of the next record of data into the next input buffer to insure the first record of data
is in. At this point, the end FID record originally discovered has been replaced by the first
record of data from the next tape, and control returns to JJ as if no ID record had ever been

discovered.

Thus far, it has been assumed that the end FID record discovered in SWITCH was not the
final end of the file, but that there was more information on another tape to follow. Consider
now the case where the end FID record was a final end, with hex G's as the low-order two digits
of the segment number. This fact is discovered in the first comparison of MHSKEEP. In this

case, it is not necessary to examine the new tape, but only to stopper this input set.

First, END FILE is printed (this will follow the printouts calling for the removal of the
final tape from the specified drive) and control will go to N, SH. At this point, there has not
been a sequence change since MHSKEEP was reached from AHSKEEP (or B through EHSKEEP),
su ihis device will return to a special set of instructions at the end of each of these sections. In
the case of AHSKEEP, these will transfer STOPADD (the stopper base address) to TABLE+1
(+3, 45, +7, +9) to stopper the last key section of this input set. STOPADD will also be trans-
ferred to Z,X1 (X2, 3, 4, 5) to si'topper the current item of the set, at which time control re-

turns to JJ.

90

SECTION V. THE COLLATE

The following summary applies to what happens in the A through EHSKEEP areas, as well
as the MHSKEEP area. These areas are reached upon discovering an end FID when the input
buffers are switched in SWITCH. Finding such a record causes the removal information to be
printed on the typewriter, the tape to be rewound, and the alternate input drive to be switched
on. If this should be an intermediate end FID record (no hex G's in segment number), then the
new tape on the alternate drive would be checked, and if it should yield a correct indication, the
buffers would then be primed and the operation would proceed. If the new tape is not the correct
one, information must be printed on the typewriter telling which one should be mounted, and
preparation should be made to check the ID record again. However, if the old end FID was the
final one of this input set (hex G's in segment number), this input set would be stoppered and the

operation would proceed.

All Items Equal

The end of a collate pass is determined by the discovery that all current input items are
stoppered. This will happen after each of the inputs (in turn) has reached a final end FID re-
cord, as described in the preceding paragraphs. As in the merge, when all keys being compared
by the tree are equal, SO is incremented to a special sixth group of instructions which exist in

both the read and merge modes.

In the read mode, this special group of instructions compares each index register, X5
through X1 in turn, with STOPADD. The first comparison yielding a not equal result will lead
to the normal instructions in READ for processing the corresponding input set. If all index re-
gisters are equal to STOPADD, control goes directly to GG (where control would have gone in
any case after the instructions in READ had been performed), thus skipping any actual reading

at this time.

In the merge or transfer mode, much the same procedures are followed. That is, X5
through X1 are compared with STOPADD, and the one not equal will lead to the corresponding
instructions in TRANSFER, If all items are stoppered, control goes to ENDPASS to finish the

output tape and initiate the setup for the next pass.

In ENDPASS, X7 is set to IDRES, the common FID record in memory, also an end FID
banner word is set up in 7,0, and the low-order two digits are set up as hex G's in 7, 2 (segment
name). Ortho is computed from 7,0 to 7,9 the drive address is set up in the write instruction
in W4STBID, and control goes there in cosequence, thus writing the end file ID on the final out-
put tape. Likewise, an end-of-information record is set up and written, and a rewind of the

final output tape is then set up and performed with interlock. Tape removal information relative

91

SECTION V. THE COLLATE

to this tape is printed. END PASS is printed, the Pass Count (PSCOUNT) is incremented and
printed., Finally, BEGPASS is printed and also the contents of PSCOUNT plus 1, which signify
the beginning of the next pass. (At the time the final pass of the collate is set up, this final set
of print instructions is replaced by instructions which end the collate.) From here, control
goes to MODIFY, where the collate is regenerated to set up for the next pass, based upon the

next entry in the plan.

Regeneration of the Collate

Each pass of the collate is a complete logical entity. It is quite possible that the very
first pass will be somewhat different from the others (the 'way' being less) because of the
particular plan calculated. Each pass involves a different set of file and segment names to be
stored, based upon the plan, and also the routine must be completely initialized for each pass.
Because of the considerations, the collate is partially regenerated between each pass. A
general description of the collate is therefore described in the following paragraphs in so much
as the generating process may occur a number of times during the course of the program. Also,
a portion of the generator, which is repeated, includes the priming of buffers and the writing of

the beginning FID record on the first output tape.

Generation of the Collate

The initial portion of the generator, STARTUP through CALCULATE, calculates, stores,
and prints the plan. These sections will not be repeated. Following this, MODIFY and SET~
PATH are entered and repeated for each pass. They determine the ""way'' of the pass, and set
up the core routine accordingly. At this time a switch is reached which leads to GENERATE the
very first time through, but which bypasses GENERATE all times after that in order to go to
AA. GENERATE sets up the tape address in the DRIVE area, based upon the parameters in the
macrocoding, as well as setting up some peripheral instructions in the core (skeleton) program.
After GENERATE, BEGIN interprets the parameter from the FID record on tape. A1, A2, and
A3 calculate buffer size, set up variable-size items, modify the sequence check, modify the
TN instructions to output, as well as modifying tree comparisons, stopper base address, etc.
This represents the bulk of the process normally considered generation. After the first pass is
set up, all of the coding mentioned above (except MODIFY, SETPATH, and the plan) is clobber-
ed by the buffers, since it will never be performed again. From here (as well as from MODIFY

after the first pass), control goes to AA.

In AA, BB, BBB, and CCC (which, together with the sections of coding following, are per-

formed before every pass), the buffer areas are set up, and the buffer switches in TABLE are

92

SECTION V. THE COLLATE

built up accordingly. These sections are performed each time because of the possible dis-
crepancy between first and subsequent passes (as the "way' increases, the buffer area must be
expanded). From here control goes to LOAD and WASTBID. These sections check all of the
input FID's, store the file and segment names in KEEP, write the beginning FID record on the
output tape, and check to determine if this is the last pass. If it is, special last pass modifica-

tions are made to the routine.

Following this, CC performs two priming reads for each input tape. EE sets up the last
key areas, and sets the tree to the read mode to do an extra read based on expected depletion.
Input and output counters, as well as the initial sequence check key storage areas, are initial-

ized, Finally, control goes to the tree (LOOP) to begin the actual pass.

Over-all Flow of the ARGUS Collate

Thus far, the over-all collate has been discussed in general terms, and various com-
ponents of the collate have been explained indetail. These components are tied together in the
following paragraphs to present a complete collate picture. A collate flow chart is shown in

Figure 17.

The very first part of the program to be performed, STARTUP through CALCULATE,
creates the plan and stores it adjacent to the program in memory. At this point, the option
exists to print the plan on the console typewriter or to proceed directly with the program. If the
plan is printed, there is a stop point afterwards to allow termination or continuation of the col-
late. These options are intended to allow the plan to be printed at one time (by stopping im-
mediately after) and later to perform the actual collate (by starting over again, but bypassing

the printing), or to allow printing the plan and immediately performing the collate,

In any event, from CALCULATE, control goes to MODIFY and SETPATH to deter-
mine and set up the ''way'. These portions of the generator will be performed at the beginning
of every pass. Upon completing SETPATH (if this is the start of the first pass), control goes to
GENERATE to perform the bulk of the generation of the collate. After the first pass, control
goes from SETPATH directly to AA., The sections, GENERATE through A3, perform all once-

only generation, and they also exit to section AA.
Sections AA through EE once again are performed at the beginning of each pass. Here,

the buffers are set up, the input tapes are checked, and the file and segment names found on

these tapes are stored. Also, the beginning FID record on the initial output tape of this pass is

93

SECTION V.

THE COLLATE

STARTUP— CALCULTE

CALCULATE PLAN.
PRINT, IF DESIRED.

N

PLAN

GENERATE-A3

SET UP ADDRESSES
PERIPH. ORDERS
CALC. BUFFER SIZE;

MODIFY TREE, TNS,

STOPPER
\

SET UP FOR VARIABLE [@ — =

AND SET UP

ACCORDINGLY.

MODIFY ¢/ SETPATH

DETERMINE WAY

THIS SIDE_wiLL | BE cLoBIE'ERED BY | BUFFERS!
l
|

2ND-NTH T \ME
&
it AA—EN~
SET UP BUFFERS;
CHECK + STORE
INPUTS ; WRITE BFID;
PRIME BUFFERS ;
SET UP LASTKEYS;
INITIAL 1IZE
LOOP l ENDPASS
TREE: WRITE END FID.
FIND SMALLEST PRINT END PASS INFO.|| acT
—» ITEM [— - IF LAST PASS, STOP. =
ReADIING N j
TRANSFER,CONT SWITCH

SET UP X7+READ.
STOPPER LASTKEY.

RESTORE XI-X5,S@

RETURN +~Z,S@;

SEQ. CHECK j; NEXT
ITEM —O0B; STEP =
INPUT IR ; CHECK

INPUT
BUFFER]
=

DEPLE-

SWITCH TABLE
SET UP LASTKEY
RESET INPUT IR,
COUNT CHECK IF

WRITE EFID; PRINT END
INFO.; SWITCH DRIVES{END,, ™
WRITE BFID,
INITIALIZE RECORD
COUNT (COUNT

APE |

STEP OB IR (X6)

IF N-1, STORE IRS'+
RESET TO LASTKEYS
IF N,COUNT +WRITE

! -

L S L

RECORD

J

IF IB EMPTY. TED | END OF FILE.
cor__ /4 i 15
~ A-E HSKEEP {]
EOPT %) JJ

SWITCH DRIVES
SET UP COMMON
AREAS.

¥

MHskeeP

PRINT TAPE
CHANGE INFO. IF
EOF, STOPPER +
PRINT IF # EOF, STORE

NEW SEG, CHECK
\ NEW TAPE , PRIME

94

Figure 17, Over-all Flow Chart of the ARGUS Collate

SECTION V. THE COLLATE

written, the routine is set up specially if this is to be the final pass of the collate, and finally
the buffers are primed and the routine is initialized and prepared to do one extra read based

upon expected depletion.

At this point, as indicated in the flow chart, Figure 17, the sections STARTUP through
CALCULATE and GENERATE through A3 have been clobbered by buffers. From this point on,
only the sections MODIFY, SETPATH, and AA through EE, as well as the previously stored
plan, will be used. In the tree (LOOP), one extra read is initiated, and then the tree is re-
stored to normal operation, and since the output buffer is not yet filled, control goes to the re-

turn. The return is initially set to the top of the tree.

Now the main loop of the program begins. In LOOP, a comparison is made for the next
item, and accordingly control goes to the appropriate section of TRANSFER and CONT. Here
the return to the tree is stored. The item is sequence checked and then transferred to the out-
put buffer, The input buffer thus affected is stepped to the next item position. Then, in JJ, the
output buffer is similarly stepped and tested to see if it is full but for one item or to see if it is
completely full. If neither of these conditions exist, then control goes to the stored return,

which leads back to LOOP to process another item.

When the output buffer is full but for one item, it is time to read. Again in JJ, the con-
tents of the index registers are stored and the index registers are set to the last key values. SO
is set to READ and control goes to LOOP to initiate a read into the input set which would other-
wise run out first. LOOZP determines which set this is and goes to the corresponding section of
READ. Here, a working read index register, X7, is set up and the read instruction is per-
formed. The last key location of this input set is stoppered, and the index registers are re-
stored to their normal values. This latter action occurs in section GG, which then leads back

to JJ, and eventually to the return location to process another item.

When the output buffer is full, as discovered in JJ, the record count is stepped and then
written, and the output buffer is switched and then reset. During the last pass, if the number of
records specified had been written on the output tape, control would go to EOPT to switch output

tapes. If not, then control would go to the return location to process another item.
Eventually, one or another of the input buffers will become depleted, as will be discovered

in CONT when the buffer is stepped to the next item. In such a case, a detour is made to

SWITCH, where the input buffers are switched around, the last key location is set up to its new

95

SECTION V. THE COLLATE

value, and the index registers, as well as the R register associated with this input, are reset.
A check is also made to see if the new input record is an end FID. If it is not, control goes on
to JJ, as would normally be done from CONT; if it is however, control goes to the appropriate

HSKEEP area for this input set.

Eventually, an output tape will be filled, and the corresponding unprogrammed transfer
register will lead to EOPT (unless the counter in JJ did so instead during the last pass). Here,
the end FID is written on the filled output tape, at which time the tape is rewound; here also,
the removal information pertaining to it is printed, drives are switched, and a beginning FID
record is written on the next output tape. From here, control returns to JJ at the point which

was vacated to go to EOPT.

When an input tape is depleted, as discovered in SWITCH, control goes to one of the
HSKEEP programs (A through E). Here, input drives are switched, a few common locations
are set up, and control goes to MHSKEEP. The depleted input tape is rewound, and removal
information is printed. If this was the last tape of this file, the input set would be stoppered,
and return would be made to the normal flow in JJ. If there is more to follow in this file, how-
ever, the new input tape is checked and the buffers primed with the first records of data from
it. These will replace the end FID record originally discovered, so return can be made to JJ to

continue in the normal flow.

When all input have reached final end and have been stoppered, LOOP will sense that all
keys are stoppered and lead to ENDPASS. Here, the final end FID record is written on the cur-
rent output tape, and ENDPASS is printed. If this should be the final pass, the collate ends
here. If, however, there are more passes, the fact that a new pass is beginning is printed out,

and control goes back to MODIFY to set up for it.

In the process of interpreting the plan, MODIFY and other associated routines step the
plan down one entry each time, so that this next pass will be set up according to the next entry
in the plan. Finally, when it is discovered that tape number 0001 is being written, this will be

assumed to be the final pass and the routine will be set up accordingly.

Error Correction and Restarts

The collate, like the presort and merge, makes use of the orthotronic correction pro-
visions of the Executive Routine to detect and repair any read errors and to document such

actions at the console. In the event of a read error, the location of the suspected record is

96

SECTION V. THE COLLATE

determined, and control is turned over to the Executive Routine to try and repair it. If un-
successful, the information is reread by the collate, and if still determined incorrect, control
is again turned over to the Executive Routine. This process is repeated several times. Suitable

printouts at the console indicate the nature and disposition of the trouble.

If the physical end of tape is reached while reading, the unprogrammed transfer is ig-
nored. If reached while writing, the output tape involved is completed and tapes are switched.
Since all reading and writing is in the forward direction, there should never be an unprogram-

med transfer caused by reaching the physical beginning of tape.

Restarting is implemented in much the same manner as it is in the merge, although in the
collate restarting is much more versatile. The general theory of restarting used by the collate
is explained here. Restart dumps, or anchor points, are placed on the tape label record of each
output tape. In order to re-create any tape, that tape should be mounted so that the dump may
be read into memory. At the time it is written, the memory dump is checked for correct
parity by reading it back into memory. In the dumping process, all of the special registers
are transferred to memory locations contiguous with the program, as are the banner words
from the current input buffers. Then, one long record, including the plan, program, special
registers, and banner words (but not the buffers) is written onto tape. In the event of a restart,
the dump is read back into the same area, and the special registers are eventually restored.
To position, the input tapes are read into the buffer area, where their banner words are com-

pared with the stored ones from the restart dump.

Therefore, the restart, or anchor points, are established just prior to beginning a new
output tape, so that return can be made to that point at a later time to re-create that tape. There
are two areas in the collate from which a detour can be made to the restart dump routine (the
routine which creates these anchor points). These two areas are found: first, in AA through
EE when the first tape of a pass is started; second, in EOPT when any additional tapes of a

pass are started.

The restart dump routine writes the current status of memory on a tape specified by the
user, in such a form that it can be associated with the tape about to be written. To do this, all
of the special registers, and the banner word from each of the current input buffers, are stored
in a block of memory adjacent to the program. This contiguous portion of a program (including
a plan), special registers, and banner words make up one long record and this record is written

on the dump tape. Following the dump portion, the program is continued at the point originally

97

SECTION V. THE COLLATE

vacated. If restarting during the collate is not necessary, then this will be the only portion of
the restart program performed. Suppose, however, that while writing the fifth tape of pass
number seven, it is discovered that one of the inputs cannot be read. Assume this was the third
tape produced during the second pass. Obviously, this tape must be re-created before continu-
ing. Thus, a restart is initiated (by starting at R0). This is a small program logically inde-
pendent from the collate routine itself. Before doing anything, the restart program asks that
the tape which is to be re-created, be specified. The file name and segment number of the tape
are typed in by the operator, and the restart routine begins searching the dump tape for a dump
with that identification. When the dump is found, it is read into memory over the exact loca-
tions from which it was written, that is, the program (including the plan), the special registers,

and the banner words.

Inspecting the KEEP area of the program just brought in, the restart program then in-
dicates the tape number of each input tape mounted when the dump was taken. After indicating
these on the typewriter, it comes to a halt. The operator then mounts these backup tapes onto
the same drive on which they were originally mounted (also indicated by the restart program,
based on the settings in DRIVE), Again the restart program is started, and it checks each of
the beginning FID records of the tapes just mounted for the correct file name and segment num-
ber. If these are good, each tape in turn is positioned, comparing the banner word from each

record with the corresponding one brought in from the dump.

This paragraph considers the positioning of tapes in more detail. The restart program
will first check each of the five index registers, X1 through X5, and if any of these are set to
stopper, then the corresponding tape is inactive and not needed. (This is due to a limited "way"
pass, or when reaching a final end of file.) Then each active tape is positioned, reading direct-
ly into the "current' buffer until the correct record is brought in. (In order to insure each re-
cord is in, the active and dummy read instructions are alternated. In searching, this will not
be a slowing factor.) Another redd is started into the "next'" buffer, and then the last key loca-
tion of this set is checked. If this last key position is stoppered, an additional read has been
started and a read is initiated into the '""open!' buffer also. Otherwise, if the last key location is

cppered, iy Lwu buiiers are primed.

When the input tapes are all positioned (and the input buffers filled), it is about the time
to re-enter the collate. The special registers are now set to the values stored for them in the
dump. Using one of the history registers, return can be made to the point in the routine where
a return was originally made just after making the dump. The tapes and memory should now
be exactly as they were then, so it is necessary to re-create the output tape exactly as had been

done before.

98

SECTION V. THE COLLATE

If desired, the collate could be continued from this point forward. However, in this ex-
ample mentioned above, it was required that only the third tape written during the second pass
be reproduced. Once this is completed, it is possible to go back to the fifth tape of the seventh
pass where trouble was encountered during the writing process. To do so, a restart is per-
formed in exactly the same manner as explained above, this time specifying that the fifth tape of
pass seven be re-created. The tape just re-created will be called for as one of the inputs. Us-

ing this in place of the illegible one, the operation should be able to proceed without any further

trouble.

99

SECTION VI
OWN-CODING

The ARGUS sort routines are designed to handle a wide variety of requirements. Never-
theless the need may occasionally arise to sort items whose specifications exceed the para-
meter limitations, or to combine the first or last pass of the sort with some simple item pro-
cessing (editing). It is impractical to provide for every such special case in a sort generator,
or to write a complete sort routine for each of these variations. ARGUS provides for all such
special cases by allowing the programmer to write the additional coding necessary to accom-
plish them. This coding may either be associated with a standard generated sort, or if neces-
sary, it may actually be used to modify the generated sort itself. The ARGUS sorts have been
built to incorporate optional detours at specified points to facilitate the tie-in of just such coding.
With this technique, appropriately referred to as own-coding, there is virtually no limitation to

the modifications which can be made.

Own coding may be divided into two general categories:
1. Data modification; and

2. Routine modification.

Data modification (the simpler type) involves any changes to the data which is being sorted.
This includes rearrangement or translation of keys, batch totalling, addition or deletion of items,
and modification of item size. Also included in this category are any changes to the beginning-
of-file identification record, such as modification of parameters specifying item size, key loca-
tion, etc. Data modification own-coding is covered in this section in detail, with appropriate

examples.

Routine modification own-coding involves changes to the sort routine itself, and requires a
more complete knowledge of the ARGUS sort generators plus a complete and accurate listing of
the routines. Such own-coding might be used to modify a sort to read directly from a card read-
er, to provide output directly to a line printer, or to handle extended precision. The general

methods by which this type of own-coding may be implemented are described in this section.

Own-Coding (Edit) Options in the Sorts

The presort, merge sort, and collate each have several own-coding options, which may be

specified in the pseudo instruction the programmer writes to call a sort. In each case, 00

101

SECTION VI. OWN-CODING

specifies no derails, that is, the sort is to run by itself with no own-coding modifications.

There is provision for four presort options (01, 02, 03, or 04) which are specified by

writing one of these numbers in the sort pseudo instruction.

Option 01: specifies a single detour immediately after the beginning-of-file ID is read and
checked by the presort generator. This allows modification or complete replacement of
the file ID record.

Option 02: specifies a detour immediately after the presort has been generated, but before
any data has been handled by the sort. This allows any type of modification to the gener-
ated presort itself.

Option 03: is used for data modification and specifies a detour immediately before each
item is transferred from the input buffer. It allows changes to be made to each item be-
fore it is used by the sort.

Option 04: specifies that each of the options 01, 02, and 03 will be observed; hence, all
three detours will be taken.

The merge sort has provisions for options 02, 03, and 04, specified by writing one of

these numbers in the sort pseudo instruction. Option 041 is not available since the parameters

specified in the beginning-of-file ID record are transferred directly from the presort to the

merge sort.

Option 02: allows modification of the merge sort itself immediately after it is generated
but before any sorting takes place.

Option 03: specifies a detour only during the last pass of the sort, each time an item has
been placed in the output buffer. This allows data modification on the same scale as per-
formed in option 03 of the presort.

Option 04: specifies the use of both detours for options 02 and 03.

It should be noted that any merge sort own-coding must be written as a unique segment separate

from the sort segment itself. The name of this own-coding segment is specified in the sort

pseudo instruction.

04.

102

The pseudo instruction, which is used to execute the collate, allows options 01, 02, 03, and

Option 01: is identical to the presort option 01. The beginning-of-file ID record, used by
the collate as the source of data parameters, is taken from the first input tape of the first
pass.

Option 02: is identical to the 02 option of both the presort and merge sort. In the collate,
this option is performed immeédiately after all of the "once-only' generation has taken place.

Option 03: is like the merge sort option 03 in that it specifies a derail for each item dur-
ing the final pass only. This derail is performed immediately after the item is placed in
the output buffer.

Option 04: specifies that all three of the options 01, 02, and 03 are performed.

SECTION VI. OWN-CODING

General Technique

Before beginning a detailed discussion of the methods of own-coding, it would be well to
review some of the general problems involved. Since the sort itself is a subroutine, it exists
on the symbolic program tape, not in ARGUS tag notation, but in binary relocatable form. Own-
coding is normally written in ARGUS language. However, the own-coding may not make use of
the symbolic tags originally used in coding the sorts because it is assembled independently from
the sorts. Furthermore, since the sorts occupy a full bank of memory by themselves, the own-
coding must of necessity be located in another bank. Communication between the sorts and
own-coding, therefore, cannot be through the use of tags, nor any form of direct addressing.

Quite obviously, special registers must be used.

S2 is reserved by the sorts as the commumicator between the sorts and own-coding. If
own-coding is used, S2 must be directly loaded by the programmer with the address of the en-
trance to the own-coding. Thus, any detour from the sort will be in the form of a transfer to
N, S2. This transfer will always specify the cosequence mode, implying that if own-coding is
written entirely in the cosequence mode, a return to the sort is made simply by reverting to the
sequence counter. It should be noted, however, that the bank indicator of the cosequence count-
er must be restored to the sort's bank. This may be done by transferring the contents of the
sequence counter to the cosequence counter before returning. Alternatively, the contents of the
sequence counter may be stored by own~-coding, allowing it to use the sequence counter also. In
this case, a return to the sort is effected by restoring the sequence counter and reverting to the

sequence mode.

Communication between simple forms of own-coding and the sort is further aided by use
of other special registers. For example, the location of the beginning FID record or of an item
in a buffer is always specified by a certain index register, At times, the sorts use every avail-
able special register (save S4 through S7), requiring that own-coding store and restore any re-
gisters that are to be disturbed for its own use. Alternatively, the own-coding could use another

special register group although communication with the sort must be through the sort's group.

If own-coding should be the routine modification type, then communication is more dif-
ficult than with data modification. At the time the option 02 detour is made from the sort, the
sequence counter is set to & known location at the beginning of the particular sort routine. Any
location in the sort may be addressed by using the contents of the sequence counter as a base,
and adding fixed quantities (which may be in the form of FXBIN constants) to this value to incre-

ment to the desired address. S2 may be used to store the new address, since it has already

103

SECTION VI. OWN-CODING

served its purpose in getting from the sort to own-coding. Thus, if it should be required to
change a location in the sort which is 643 words beyond the current setting of the sequence
counter, and if there should be a constant SXTHRTN FXBIN 613, it would be necessary to per-
form a word add (WA) instruction (WA Z,SC SXTHRTN Z,S2) to get the address of the location
of interest into S2. Then, anything could be done with the word addressed as N,S2.

Since S2 is used as the detour communication point for all the options, own-coding must
set it up, not only for the first detour point, but also for each successive one. Thus, if option
04 is specified, S2 must initially be set to the entrance of the option 01 own-coding (except in the
case of the merge sort). After this part of own-coding is finished, but before returning to the
sort, S2 must be set to the entrance of option 02 own-coding. Likewise, this portion of own-
coding must set S2 to the entrance of the option 03 own-coding before returning control to the
sort (where it should remain set for the duration of the sort). If any detour is not needed under
option 04, then the corresponding portion of own-coding would merely consist of a single word
that resets S2 and returns control to the sort. It should te noted that a detour is performed only
once for each option except 03, but also noted, however, that option 03 detours for each item in

the file.

Thus, it hdas been established in this section that detours exit from the sort at specified
points throughout the routine to perform additional instructions, or own-coding. It should be
nofed, however, that it is also possible to perform additional coding either before or after the
sort, accomplishing such functions as tape positioning, splitting output, etc. Although this
additional coding is not exactly own-coding as it has been defined for using detours from within
the sort, these techniques can be used to accomplish similar objectives to the own-coding op-

tions, and are thus included in this discussion.

Relocation and Bank Assignments

Since they may expand 'down-memory'" only, the sorts should be loaded into the highest
possible bank in a given system. Although they are normally contained within that bank, the
user may specify that additional memory is available beyond one bank in any amount he wishes.
The sort will correspondingly expand the storage or buffer area over and above the previous

bank, or banks, if it can use the space.
The MMMM field of the sort pseudo instruction indicates to the generators how much

memory the sort may use beyond the one bank it occupies. To properly relocate the sort and to

reserve the appropriate amount of memory, the programmer should specify at least one

104

SECTION VI. OWN-CODING

SETLOC preceding the sort pseudo instruction. If no own-coding is given for the sort, one
SETLOC will determine where the sort routine, along with the sort macrocoding, will be locat-
ed. However, when own-coding is used, a SETLOC, if desired for the sort routine itself, must
be preceded within that segment by another SETLOC which will locate, relative to the sort, the
macrocoding and any further coding the programmer writes. If only one SETLOC is given with
the programmer coding, the sort will be located in the succeeding bank. The MMMM memory
specification in the pseudo instruction, and the A field of the SETLOC instruction, are related.
Starting with location 0000 of a bank, MMMM specifies the number of locations over which the
sort routine will (or may) expand backward. Depending upon the number of words of program-
mer coding, and the location specified by the SETLOC, the highest location used by the pro-
grammer, as well as the amount of memory available to the sort routine for storage beyond its
own bank, can be readily determined. The MMMM field and the SETLOC should be so estab-
lished that the sort and programmer coding do not conflict. An exception would be the own-
coding of option-type 01 or 02; then own-coding and the MMMM area can overlap, since own-
coding would be completed by the time the MMMM area is used to store data. In determining
the number of locations used by his coding, the programmer should bear in mind that pseudo
instructions will require various amounts of macrocoding. Specifically, L,SORTp requires 15

words, L,READSEG three, and L, EXIT a single word.

The sort is contained between locations 0020 and 2043, within one bank, leaving 20 unused
words at the bottom and four at the top of the bank. The latter conforms to the stopper require-
ments of the Executive Routine, allowing the sort to be relocated to the highest bank of a part-
icular machine. The initial 20 words are enough to allow the inclusion of the I, SORTp macro-
coding plus the L, READSEG or L, EXIT macrocoding. Thus, to facilitate parallel processing,
a sort program may be contained entirely within one bank, when additional memory (MMMM)
equals 0000 and own-coding and pre- or post-coding are not requested. In this case, the pro-
grammer would specify a SETLOC of 0000 in any bank he desires above bank 0. If no SETLOC
is provided by the programmer, ARGUS Assembly will assume bank 0, location 0512, group 1
for the programmer coding, and the sort would be placed in the next higher bank (normally bank

1), group 1.

The programmer of own-coding will want to use masks many times. Because the sort
uses the Mask Index Register (MXR), this can present a problem. There are several possibil-
ities, however. First, the own-coding may store and restore the contents of MXR each time
own-coding is entered. Or secondly, certain masked operations can be performed using a few

extra instructions, by means of the substitute (SS) and extract (EX) instructions, which do not

105

SECTION VI. OWN-CODING

require the use of the MXR. Thirdly, with a list of the sort coding, the programmer could use
the sort routine's masks. Fourth, and finally, own-coding could operate in a separate group,
using its own MXR. The first two possibilities are the most practical, since the third one re-
quires the programmer to write masked instructions in the form of decimal constants to specify
the MXR augment because the sort's tags are unavailable. The fourth method involves the use
of the Program Control Register (PCR) to turn groups off and on, and this is accompanied by the

associated problems of control in parallel processing. However, all methods are feasible.

ARGUS Techniques for Own-Coding

It is appropriate first to review the method of writing the simplest type of sort call, in

which no own-coding is to be performed.

ARGUS &

PROBLEM X PROGRAMMER DATE PAGE Oof
j T REMARKS
) LOCATION o}, COMMAND CODE 5, é " A ADDRESS 37i3s B ADDRESS 182 C ADDRESS 4556 e wowere 73074 m
! PROGEAM SORTFILE OMLYSEG 1 j
T
2 SETLoc BBL S B8/ G/ !
1
3 Z,5c SPEc - - ENTEL !
f
s\ ENTER 4, 50RTL, 5 gé/04/ PEAA A8/ A8/ 5c |AL/GG/6G/ca/A8 I
5 L EXIT ' :
5 END SORTFILE ONLYSEG :
L .

In this example, program SORTFILE is nothing more than a sort. The SETLOC specifies that
the sort macrocoding will be included with the sort in bank 1, and thus occupy a minimum
amount of space. Whatever special register group is specified in the SETLOC will be used by

the sort as well as by the additional coding. No extra memory is available to the sort (thus the

0000 in the first field of the B address of the pseudo instruction).

The sort may also exist without own-coding as one segment of a program as such:

ARGUS =°

PROBLEM PROGRAMMER DATE PAGE OF
, LOCATION jol;, COMMAND CODE g, |24 A ADDRESS 3739 8 ADDRESS 81|82 C_ADORESS oslu m",:uf,‘z,';.{';!,g .K.s. |

o U (meceoms sedmenre) | ! !

2 L, READSEG 50RTFILE ENTER E

3 SEGMENT DPRILYRUN SORTFILE :

4 SETLoOC PEBS -4 G/ ;

s| L, ENTER | ¢,50€71,5 28/38/ BAAS/AB/AE/Ac | A0/86/66/5G/45 :

s L, READSFG EOITOUT STARTED :

7 (FoLLowing SEGMENT &) i

106

SECTION VI. OWN-CODING

In this case, the sort segment is preceded and followed by one or more segments. If the sort
were the first segment, then the lines preceding the pseudo instruction would be written as in
the first example. If the sort were the last segment, then the L, READSEG following the pseudo
instruction would be replaced by the L, EXIT instruction. Note that in this example the tag
ENTER is a link tag, specifying the entrance to the sort segment in the L, READSEG preceding
the SEGMENT card. Had the sort been the first segment, the tag ENTER would be stored di-
rectly in the sequence counter, as in the previous case. For the sake of uniformity, it should be
assumed, in the following examples, that the sort, together with any own-coding that is included,

is a unique program.
If it should be necessary to perform some operation before the sort, the coding to ac-

complish this could take place in a separate preceding segment, or it could be part of a single-

segment sort program such as this:

ARGUS =

PROBLEM PROGRAMMER DATE PAGE OF
' LOCATION 5(j; COMMAND CODE ,, %u A ADDRESS 37138 B ADDRESS 5152 'c ADDRESS aslu u,,zkwf“:‘ nA[.,: ks 20
! FROGRAM soerfie | owmvses |]
2 SE7TLOc 2848 84 G/ i
3 Z,58¢ SPEC - - START ;
4\ s7rer FIRST ORDER of EXTRA corING i
5 zﬂ:vr a.eﬂfe‘ oF ﬁx;‘fl COD;A/G . L
. L, S0rT 1, S p8/24/ p880/58/98/0c | Ar/sc/sc/ec /18 !
7 L, FXIT i
8 ENO SOLT FILE ONLYSEG I
9 bm—— "

In this case, the first instruction of the program to be performed is START, which is part of
the extra coding. At its completion, the sort pseudo instruction follows in sequence, and the
sort is performed. The relationship between the extra coding and the pseudo instruction is un-
important; it would have been just as well to have sequence changed to the pseudo instruction.
Note, however, that the SETLOC reflects the assignment of the programmer coding to the top of
the bank which will precede the sort, Of the 48 words between the address 2000 and the top of
the bank, 15 are used by the sort macrocoding, and one by the exit macrocoding; thus 32 words
are allotted for the extra coding. (It should be noted that because the MMMM field in the pseudo

instruction equals 0000, the sort will not extend storage over the bank boundary.)

107

SECTION VI.

OWN-CODING

Now, if there had been presort own-coding, it might be written as in the following example:

ARGUS ©=w°
FORM
PROBLEM PROGRAMMER DATE . PAGE CF
LOCATION COMMAND CODE P REMARKS
1 1011 22|/c|24 A ADDRESS 37(38 8 ADDRESS) C ADDRESS 85[66 _une numees T3]74 80

' PROGR A M SOLTFILE ONLYSEG ' !
-
2 SETLOC z2H68 88 G/ [
il
[
3 z,s¢ SPEC - - ENTER !
t
4 z,52 SPEC - - OWNCODE I
5. ENTER 4,50871,S é1/p8/ BIBP/AB/RE/FC | A2 f66/6G /6 /98 :
3 L, EXT :
T
7l owNcooE FIRST INSTRYUCTION OF OWNCODING |
il 4 ry - i
s LAST INSTRUCTION OF OwhN-CodNG |
9 END SORTFILE ONLYSEG JI

This example is very similar to the preceding one, except that the starting location in this case

(ENTER) is the sort pseudo instruction.

Again, the relationship of the lines of own-coding to the

line containing the pseudo instruction is unimportant, since the SPEC constant loaded into Z,S2

indicates the starting address.

Note, however, that the exit pseudo instruction is again placed

immediately after the sort pseudo instruction since, after the sort, return will be made to this

line of coding. Once again, it is assumed that the own-coding requires 32 words or less, and

that the program should occupy a minimum amount of space, thus having a SETLOC of 2000.

The 041 in the first field of the A address of the sort pseudo instruction indicates that the detour

to own-coding is to be made just after the beginning FID record is read from tape AB by the

sort modifier-generator.

Now if there should be merge sort own~-coding, it might be written as in the following

example:
ARGUS &°
PROBLEM PROGRAMMER DATE PAGE CF
L LKOSA'TI?bf ol ‘ci)»julnlwl c'o?eﬁ n é u__ IAI ADIIJRESS 37038 8 ADDRESS 51(52 C ADDRESS 65[“ LMRWE.E:‘.,:,"} L M
' pROGEAM soeTFiLE | sorrses | ! '
2 SETLOC P73 8/ G/ j{
1| z,s¢ SPEC - ENTER ;
| eNTER L, SORT, 5 P8/p2/owncovE | JPPB/n8/a8/Ac | AP /66/56/aq /98 T
5 L, EXIT {
6 SEGMENT SORTFILE OWN CODE '{
7 SE7Loc 2984 84 G/ f
8| z,52 SPEC - - START }
? s7ReT F/Zfr INSTRUCTION OF OWN- cODING II
10 L/?S-T 1223 r,éuc T/pn; oOF ,ow”—c‘ap/'vé j]
" END SORTFILE SORTSEG ;

SECTION VI. OWN-CODING

This time, the coding is a bit more involved. The first SETLOC specifies the bank for the sort,
since it is used only to locate the sort and exit macrocoding. Notice that the segment name
OWNCODE is specified in the sort pseudo instruction, where it performs the function of a
L,REAbSEG pseudo instruction. The own-coding, including the setting up of Z,S2 and any
SETLOC, must be in a separate segment with this name. The exit pseudo instruction is still
located in the same segment as the sort pseudo instruction, and immediately after it. The sec-
ond SETLOC now specifies that the own-coding will be contained in 48 words. Care must be

taken that the merge sort own-coding segment will not overlay the original sort macrocoding.

Now consider the coding to be performed after the sort is finished. As with coding before

the sort, this may take place in a separate segment, or it may be part-of the segment including

the sort:
ARGUS &°
FORM
PROBLEM PROGRAMMER DATE PAGE OF
| LOCATION 4l;; COMMAND CODE zz%u A ADDRESS 37038 B ADDRESS 51|52 C ADDRESS 65{“ MRWE“:‘,:,: ks M
AL LA B B B B e 5 T 1 rr 11 rr T r T T LA B S o Tt 11+ rr 11T 15T 7T 1 r r—r tr vt r1 1t 7T T r o 1]
! PROGRAM SORTFILE ONLYSEG ' !
T
2 SETLOC 2888 r-2°4 G/ !
1
3 Z,sc S PEC - - ENTER i
+
‘| Ewree ¢, S0RT,S pd/b60/ PRIB/NE/08/AC | 40)66/G/cGc /A8 |
5 Fresy /A/Jf[l/(]'/ﬂ?ﬁ/ OF ALOITIONAL cPPING i
. 0 A - 0 |
5 LAST (NMSTRUCT 1O OF pOPITIONAL paomlé |
T
7 L, EXIT |
) |
8 END SORTFALE ONLYSEG |
9 MNV\,NWM/\’

The SETLOC should again be specified to allow room for the programmer coding in one bank.
Thirty-two words or less of extra coding are assumed, since the two pieces of macrocoding will
require 16 words. When the sort is finished, control reverts to the line following the sort

pseudo instruction; thus, the extra coding is performed.

One final example is given to show how all of these features may be combined. Of course,
any combination of own-coding, or before- and after-coding, may be used, and the arrangement
shown is only a suggested approach., To point out some different techniques, assume, for pur-
pose of example, the following: a four-bank machine (implying the existence of the Executive
Routine in locations 0000 to 0511 of the first bank), presort own-coding, merge sort own-coding,
before- and after-extra coding, each of 400 words, and no other program in parallel. For

optimum efficiency, it is required that the sort use as much extra memory as possible. Now

109

SECTION VI. OWN-CODING

observe the following example:

ARGUS &
PROBLEM . PROGRAMMER DATE PAGE OF.
| LOCATION |4f;; COMMAND CODE 4, %u A ADDRESS sl 8 ADDRESS 51/52 C ADDRESS Am LMRW:“:‘ 7:172 ks m
A rroarom || sceamsie | mawsea | 1
2 SFTLOC B572 B¢ G3 E
3 zZ,sc S PEC - - COMMENCE E
flozs2 SPEC - - PSOWNCOD |
51 COMMENCE F/K.S'T /VST.E(JC7IOA’ ﬂF. 65/0(5:.5@97 Ex Tle/? cd 0/4/6 :
6 LHS;' /VS’IRI/CTIOIV OI:' 05/25‘5-5087 Exﬂeﬂ‘ ‘o 9//:/6 ‘{
Y L,50e71, #3/B3/MERCODE | 53/6/ch/fcn/cs ce/co/cefac/Ab i
8 /‘/25‘7 /V;ZKUCT/AIV oF. ﬂFffZ‘- SsoR7 EX7£;4. Col’/,!/é ;
9 LAST |WSTRUCTLON OF #A7EL-Sor Fxzes colprns !
10 £, EXIT i
| PSOWNcop FLESTT \INSTRUCT (0N OF /’mésqizr OWAI-CopING, :
12 LI;ST IA/.f‘T;et/cr/olv.of /’,e-gsa,er ‘owAI—-con//-Vq [
I SETLOC bLLS B3 G3 i
4 SEGMENT SCRAMBLE MERCOOE :
18 SETLOC p128 8% G3 }
w| z,52 SPEC - - M SOWNCOOE }
7| MsowNcop FIRST INSTRUCTION OF| MERGESOLT OWN-E00/A/§ !
18 LAST| WSTRUCTION 0F| MERGESORT sewnrl-cosinis |
19 END SCRAMBLE MAINSEG i
]
» L L N B T N

Several things should be pointed out here. The initial SETLOC of 512 indicates that the before-
sort coding will ocqupy memory locations 512 through 611, the sort macrocoding 612 through 626,
the after-sort coding 627 through 726, and thé exit macrocoding location 727. The presort own-
coding would then occupy 728 through 827. Notice, however, that the second SETLOC places the
merge sort own-coding directly over this area. This is entirely feasible since éegment MER-
CODE is loaded only at the time the sort is reloaded, that is, at the beginning of the merge sort.
By the same reasoning, Z,SZ2 is overlaid by the value MSOWNCOD at this time, so that the
merge sort may communicate with MSOWNCOD rather than PSOWNCOD. In general, the merge
sort own-coding may always overlay the presort own-coding in order to save space. However,
care must be taken that the macrocoding and any before- or after-sort instructions are not des-
troyed. Because of overlaying presort and merge sort own-coding, the highest location reached
by programmer coding is 827. 3(2048) minus 828 gives 5316, the amount of memory which the

sort my use for item storage in addition to its own bank.

110

SECTION VI. OWN-CODING

Specific Own-Coding Options

In the preceding section, it was explained how to relate own-coding and before- or after-
sort coding to the sort in terms of ARGUS Assembly and the Executive Routine. Now it is ap-~
propriate to examine each of the own-coding options in detail, considering what can and cannot

be done with each option, as well as reviewing all the significant special registers.

Most of the operations performed, before the operation of the sort commences, would be
simple tape positioning routines, since anything more complicated should normally warrant a
separate segment or program. Before the sort, it might be necessary to search the input tape
for a certain segment or file, or rewind all tapes used by the sort, or position all tapes. The
last-mentioned item might be useful at an installation where information is kept in several in-
itial records of each tape. With ﬁ small amount of coding attached to the sort to position the
required tapes, tapes could be mounted aﬁd control could go directly to the sort segment, with-
out loading and performing a complete tape positioning routine. Since no special registers are
loaded directly by the sort, the programmer has complete freedom to use any he wishes. In
general, in order to facilitate relocation, it would be well to perform all but the simplest opera-

tions as a separate segment or program.

Although presort option 02 is the method normally used to modify the sort routine after it
is generated, there are occasions when it is necessary to make some modification before
generation. It might be necessary to eliminate the reading of the first record from the input
tape, in the event that a non-standard FID record is used, or it might even be necessary to
eliminate the sort's read routine altogether. Any such changes would require a detailed listing
and knowledge of the sort, as well as some means of locating a point in the sort. The former is
beyond the scope of this manual. The only tie-point at this time is a SPEC constant in the
thirteenth word of the sort macrocoding, which contains the address of the first location of the
sort routines. (See Section II, Calling for, Assembling and Executing the Sort, for a list of the
sort macrocoding.) Using this location as a base, it is possible to step up to the area of the sort
which reads the first record from tape. This can be done by using address arithmetic, and then

modifying or negating the coding found there.

Presort option 01 has been provided to allow a standard set of beginning FID sort para-

meters to be created for files which do not carry such parameters (but which nevertheless must
have a standard beginning FID banner word), as well as to allow the revision of parameters
which may be there. It allows complete specification of the sort parameters through coding,

independent of the data. The transfer to N,S2 is made after the presort modifier has interpreted

111

SECTION VI. OWN-CODING

the sort pseudo instruction parameters, but before the generator has interpreted the beginning
FID record from the input tape. X6 is set by the presort to the first word of this record, which
has just been read into memory. Therefore, it may be used to address (through index address-
ing) any words to be replaced with constants from own-coding. The following registers may not
be changed during option 01 coding (unless stored and restored): SC, MXR, UTR, X6, X7, RO,
S0, and also the bank bits of CSC.

To illustrate the normal use of option 01, assume that it is necessary to sort a master
payroll file. Because this file is already ordered, and therefore not normally sorted, its be-
ginning FID record contains no parameters. It is ordered by employee number in word 1 of the
item. However, it is necessary in this case to sort by employee name in words 2 and 3. The
items are variable in size, maximum of 30 words each, and packed five to a record. The mas-
ter file itself will, of course, be saved. The output of the sort will be used as input to a report
generator, which will be a separate program following the sort. Here is how such a sort pro-

gram could be written.

ARGUS &

PROBLEM PROGRAMMER DATE PAGE [o] S
t LOCATION |ol;; COMMAND CODE ,2%24 A ADDRESS 37|38 8 ADDRESS 51|52 C ADDRESS aslu l,““"uf“:"g,g ks m
o kokem (| soerme N vamerco ST
2 SETLoC i 2427 8d I<Zi i
3 z,s¢ SPEC - - STRTSORT :
4 z,52 SPEC - - OWNCODNE ;
5| STRTsorT L, S0RT2,5 a1/d8/ PP S/8R/6A/88 8c/66lac/c6/6p :
s L,EXIT :
7| owwncoong | TN q < 2 6,4 i
8 X ls| Z,5¢ - Z,cs5¢ ;
9 pEC pgosp 34/ !
10 PEC PP2P43 I
H END S0RTMF NAMEFLD :
12 —— ‘\P

This own-coding consists of two instructions and two constants, representing the parameters
normally found in the beginning FID record. The TX instruction restores the cosequence coun-
ter bits, and the sequence mode is specified, so that control will be returned to the sort after

the TN instruction is performed.

Presort option 02 has been provided to allow changes to be made to the presort itself,

after it is modified and generated. These changes may be as extensive as the programmer

112

SECTION VI. OWN-CODING

wishes, and may be made by overlaying or modifying any existing instructions in the sort pro-
gram. This, of course, requires familiarity with an Assembly listing of the sort routine. The
technique used to address the sort, as explained earlier, is to start with some known address in
the sort as a base, and to use indirect addressing in the own-coding to step to each word of the
sort to be modified. The most convenient tie—point at this timme is the sequence counter, which
is set to the first instruction of the presort program. The following registers may not be used

(unless stored and restored): SC, MXR, UTR, RO, S0, and also bank bits of CSC,

Some typical modifications which could be performed at this option are: extend pre-
cision beyond triple; add a detour at the end of presort (to perform summarizing, totalling, or
checking functions); or modify or replace the READ area (for instance tc read directly from
cards). Detailed procedures for these modifications are beyond the scope of this manual, but
the general approach for each is given. Extended precision is gained, in the triple-precision
sort, by modifying the WL area (common multi-precision routine associated with the tree), as
explained under Precision in Section III. Branches at the end of the presort might be installed
at any of a number of places, depending on what was to be done at that point, or what was to be
changed. A technique for branching off from the presort to own-coding is to replace two of the
sort instructions with a TS instruction and a SPEC constant. The SPEC constant can contain
the address of the first instruction of own-coding to be performed when the branch is reached.
The TS instruction can transfer this SPEC to some unused special register, and go to own-
coding indirectly through the special register. Of course, the two instructions replaced in the
sort routine should be ones that are no longer useful, or they should be performed in the own-
coding area when the branch is made. In changing the READ portion of the presort, a sort
should be generated which comes closest to looking like the final version desired by the user,
This would suggest generating a sort to handle the item size and record packing to be used
throughout presort and merge sort, (specified by the ID record or through presort option 01),
and then, at option 02, modifying the read and/or input routine to conform to the input specifica-
tions. If, however, input record blocking size is larger than that to be used by the sort, the
buffers will have to be set up in own-coding, and the modified items must be supplied to the sort
one at a time. The area in the presort involved in modifying reading is the READ area, and also

a portion of BEGIN (the initial read).

Presort option 03 has been provided to allow changes to be made to each item before it is

processed by the sort. This option differs from the others in that the detour to own-coding is
performed any number of times, depending on the number of items, rather than just at one
time for the entire sort. The simplest uses of this option are those involving changes within

the item: key translating based on a table; key rearranging or compacting into some unused

SECTION VI, OWN-CODING

location within the item; batch totalling; or simple item processing. With a small amount
of extra coding, it is possible to duplicate items (expanding a compacted file), or delete
items (selective sorting). Item size may also be expanded or decreased to insert new keys,

or discard unnecessary information.

When the transfer is made to N, S2 for option 03, the sort is ready to transfer an item
from its input buffer to item storage. The item location in the buffer is addressed by X1,
and the vacant location in storage is addressed by X7. If control is returned directly to the
sort (without changing the sequence counter), the transfer will be performed by the sort.
Alternatively, own-coding may perform the transfer and increment the sequence counter by
1 to bypass the transfer in the sort. An item transfer {IT) or TN instruction should be used,
since the sort depends on the contents of AUl and AU2 to modify X1 and to place a word coﬁ.nt
in the end-of-item symbol of variable-size items. At option 03, the following special regis-
ters may not be changed (unless stored and restored): AUl and AU2 (after item transfer), SC
(except as noted), MXR, UTR, X0, X1, X2, X3, X7, RO, R2, R6, R7, S0, S2 (used continu-
ously as a link to own-coding), and also bank bits of CSC. Since the presort uses all regis-
ters except S1 and S4 through S7, rothing can be stored by own-coding in any registers except

S1 and S4 through S7.

Adding or Deleting Items (Presort)

In adding or deleting items, it is possible to retain the sort's reading and buffering
processes. To do this, it is necessary to understand the relationship of own-coding to the
sort, as shown in Figure 18. When the option 03 detour occurs, X1 contains the address of
the current item in the sort input buffer. Immediately after the detour, the sort will trans-
fer this item to its storage area. (placing a word count in the low-order portion of the end-
of-item word if variable-size items are being handled). The sort will then step the input
buffer to the next item (reading and switching buffers, if necessary). These functions (trans-

ferring, word counting, and buffer stepping) are performed in an area called ITEMTRAN.

The final instruction in the ITEMTRAN area may be addressed at option 03 by incre-
menting the contents of the sequence counter by 5. This instruction is a TS instruction with
all three addresses active., Its C address is pertinent to this discussion. By effectively
replacing the C address with a branch to own-coding, a return may be made to own-coding
immediately after stepping the buffer and without processing the item. Conversely, own-
coding may exit to the location specified by the C address of the sort TS instruction, and hence
return to the sort to process the current item without stepping the buffer. When performing

ITEMTRAN, but bypassing the complete sorting process of an item, it first is necessary to

114

SECTION VI, OWN- CODING

AR

END SORT'S
PROCESSING

CYCLE
OWN-CODING INPUT BUFFER STORAGE

PRI — NORMAL OPTION @3EXIT

/ ITEM A
TRAN |1,g—»7,8 [*+SC x| -

(WORD COUNT
—» EOI SYMBOLY
STEP BUFFER [«~SC+5(AT N,S2
TIME)

----------- A __ X7
BEGIN SORT'S

PROCESSING
CYCLE

Figure 18, Presort Own-Coding

maintain the transfer from A to B in the last order of ITEMTRAN; this is always Z, AUl into
Z,X1 (stepping the input buffer). This TS instruction may be replaced in the ITEMTRAN area
with a simple sequence change to own-~coding, where the transfer of Z, AUl to Z, X1 should be
done. The instruction originally at the end of ITEMTRAN should be stored at some time by
own-coding, so that it may be replaced when normal operation is desired. Any of the special
registers, except those used in ITEMTRAN and the reading routine (X1, X2, X7, AUl, AU2, R7),
can be used to transfer control to a particular portion of own-coding from the end of ITEMTRAN,
as long as all the necessary ones are restored before returning to the normal sort process.
When bypassing ITEMTRAN, the low-order 11 bits of the C address of the final instruction
should be substituted into some working special register (the bank designators in the working
special register may be obtained from the sequence counter), whereupon this register can be
used to return to the sort. Once the substitution has been made, the address thus obtained

may be stored by own-coding as a SPEC constant for subsequent use.

Therefore, two connection points between the sort and own-coding must be considered
in the addition and deletion of items. One is the normal option 03 detour from sort to own-coding.
Own-coding may return to the sort at this point by returning control to the sequence counter (if
it has been destroyed, then by restoring the sequence counter and going there). The second

connection point is the end of the ITEMTRAN area, which must be modified by own-coding

115

SECTION VI. OWN-CODING

if a detour is to be made there. Thus a detour from sort to own-coding is made by placing a
TS sequence change in the last location of ITEMTRAN, addressed through the sequence coun-
ter (at the previous detour) plus 5; own-coding must then perform the final instruction. At
this point, a return from own-coding is made by going to the address stored by own-coding

from the C address of the original instruction at the end of ITEMTRAN,

Depending on the type of own-coding desired, these two connecting points may be used in
a variety of ways. For instance, to add items, it would be necessary to bypass the sort's input
buffer stepping (ITEMTRAN). A generated item may be sent to the location specified by X7,
and control returned to the sort at the exit of the ITEMTRAN area. In the case of variable-
size items, the following instructions will supply the word count as the ITEMTRAN area would
have: WD Z, AU2 Z, X7 WORKING, WD Z, AU2 ONE Z, AU2, SS WORKING 16BITS N, AUZ2,
where WORKING is a working location, ONE is a constant of 1 in the right-most position, and
16BITS is a mask of the low-order 16 bits. When an item is to be processed from the sort's
input (either as it came or as modified by own-coding), then the ITEMTRAN may be performed
in the usual manner or, alternatively, own-coding can transfer the item to 7, 0 and skip the
first instruction of ITEMTRAN. In this case, Z, AUl should be set as it would after transfer
of the item from the input buffer, and Z, AU2 should be set as it would be after the transfer
of the item to storage. To step through the input buffer without processing items (deleting),
ITEMTRAN is performed (transferring the item and stepping the buffer), and then a return
to own-coding is made to consider the next item. With this method, one or more unwanted
items may be transferred to the same storage location, but they will be overlayed by the

next item to be processed.

In expanding or contracting items, the largest item size involved should be specified
when stating the sort-parameters. Also, the sort should be specified for variable item size,
whether the input is variable or not. Own-coding can transfer the item from N, X1 (the item
in the input buffer) to its own working area, operate on it (expanding, contracting, adding
end-of-item symbol), and then transfer it to N, X7 (the item storage area in the sort). After
the first of these transfers, the contents of AUl must be stored. It must then be restored after
the second transfer, before control is returned to the sort, otherwise X1 will be set to the
own-coding working area rather than to the sort input buffer. The sequence counter should be

incremented by 1 before returning to the sort in order to bypass the sort's transfer instruction.
The following examples illustrate some of the techniques which can be used with own-
coding option 03. Corresponding examples in the section on merge sort option 03 will relate

to these. EXAMPLEA illustrates a simple key translation, assuming a signed numeric key

116

SECTION VI. OWN-CODING

(sign and 11 digits) with some positive and some negative quantities. Also, it is necessary to
sort so that the output is in strict ascending numeric order: -99...9 through £00...0 through
+99...9. This will occur if all negative numbers are complemented, retaining the zero nega-
tive sign, and if careful consideration is given to insure that all positive signs are Gs. Assume
for purposes of explanation, a 10-word, fixed-size iterm, packed 10 to the record, with the

numeric key in word 1. The correct parameters are in the file ID record.

ARGUS =&w°

PROBLEM PROGRAMMER DATE PAGE CF ___
| LOCATION g|;; COMMAND CODE j, % 2 A ADDRESS 37|38 8 ADDRESS 5152 C ADDRESS 65{“ vm"wf“:‘ 7%75 ks m
' PROGEA M EXAMPLEA oNLYsEG ' !
L
2 SETLoC Z2gz1 84 Gz :
B T
3 Z,sc SPéc - - START |
—
4 z,s2 sPEC - - O W NCoDE |
I
5| sTpeT L,50871,8 #3/68/ pRBP/chfcalc8 | ccJedfeglac/ce |
3 L, Exr :
T
7| OwWNCDPE EX <l 4Lp SIGNMASK WORKING |
1
8 NA C| WORKING ZERO c, +3 |
9 HA d 4g NUMASK L, # L
10 X S| Z,sc - zZ,csc |
n Ss o StGMMAsSK 516 NMASK I i
12 X 5 z,s¢C - zZ,cs¢c L
N
13| WORKING RESERVE / |
f
4| SIGNMASK DEC G |
T
15| ZERO PEC a |
NUMMA o !
1 573 £c #G6G66666666GG I
17 Enp EXAMPLEA ONLY SEG N

EXAMPLEB illustrates a useful technique for keeping running batch totals from program
to program. Because it would be necessary to use own-coding option 02 in both the presort and
merge sort in order to modify the end FID records, it is convenient to have a final filler item,
or items, at the end of the file, whose keys are all higher than any possible in the file, so as
to contain the final total for the entire file. In EXAMPLEB, assume the same file structure
as in EXAMPLEA. Here it is desired to keep a running total of the amount in word 5 (assume
a full signed decimal word) and also an item count. These are to be recorded in words 5 and 6
of the dummy item, which consists of words of GG...GF (to distinguish it from other fillers

of all hex G's).

ARGUS &&°

PROBLEM PROGRAMMER DATE PAGE OF
] 3 T REMAREKS

| LOCATION 41, COMMAND CODE , éu A ADDRESS 37)38 B ADDRESS sils2 C ADDRESS 6568 e wunsen 73]74 m

e T e e e St e TR B
! PROGRAM EXAMPLEB ONLYSEG :
T
2 SETLoC 2422 8¢ G2 !
1

117

SECTION VI. OWN-CODING

3| z,sc SPEC - - 37TART L
‘Y z,s2 SPEC - - ownicodE i

s| srAaer 1,50R71, @ 3/0d/ gBag/chfcalcs | Céfeo/ca fac/cE :

s L EXIT L
7| owwNcapE NA c| 4, & GSWITHF <, +3 |

8 TN c| Toracs 2 "4 ;

i TX z,5¢€ - zZLsc ‘I

0 LA | Tornes 1,4 ToTnes }

" oA ToTAls 1/ ONE TOTALS 1 L
12 Tx Z, #” SC - Z,¢s5¢c E

B3| GSWITWF PEC §GGGGGGGGGGF i
14| ONE DEcC +1 ;

5\ Zo7ALS PEC +4 I,
16 PEC +4 L
17 ENO EXAMPLES ONLYSEG !

EXAMPLEC illustrates a useful technique to sort a ''compacted'' file, which might be an

insurance policy file with one item per policy. Within each item, starting with word 11, are

the names of family members (if any).

twelfth digit of word 2.

first name.

The items are variable size with a maximum of 30 words.

The number of additional names is specified in the
Word 3 contains the family's last name, and word 4, the policyholder's

It is also desirable, at

this point, to set up a cross-reference file, sorted on a double-precision key of last name and

then first name, and which represents everyone covered by insurance.

The policyholder

(original) items are to remain the same, and the cross-reference items are to have a special

identification (stating that this is a cross-reference item) in word 1.

Also, the policyholder's

first name is to be in word 2, the last name in word 3, and the family member's name in word

4.

sorting on words 3 and 4.

It shall be assumed that the beginning FID record contains the proper parameters to allow

ARGUS =i
PROBLEM PROGRAMMER DATE PAGE [o] S—
L L'O(:TION 1011 COMMAND CODE 5, % 2 A ADDRESS 37/ B ADDRESS 152 C ADDRESS As‘; prres R,mf":‘,;‘,: ks m
' FRoGeAM || gxamric | owevses | i
2 SETtLoc 1964 BE Gz !r
3 Z,s¢ SPEC - - START ;
4 z,52 SPEc - - INITIRL |r
5 S7RET £,50872,& $3/6¢6/ PBPBfcajcalcs cc/ctfsc /a6 /ce T
s L, EX1T :
LR R77% 9774 7X c z,5c - z,x4 i
8 ss o 4,5 SLBALORS z, x4 :
? . 7 < Z,x4 - SKIPITTR !
) = T

SECTION VI. OWN-CODING

10 X ¢ 5PECOWNC -~ z,52 |
" owNcooe EX o 4/ G WORKING :
12 Y, | workING ZERO c, +z !
13 7x S|z, s5¢ - Z,csc i
1 17 c| N, Xt DUMMITEM A4S CURRITEM :
15 X cl SPECBYPs - z,52 :
16 X C| SPECNAME - STORSPEC {
17 TX o CURRITEMH+2 - PUMMITEM A2 ||
e 7X ¢ cuerRITEMES - ouUMMIT EMm AL/ i
19 TX S| =z, 5¢ - zZ,cs¢ i
w| sremss Tx [sreeseec |- z &/ |
- 7x ey |- oummiremss | 1 |
2 wo | WORKING a/;/E WoLKING i
3 7 c| OUMMITEM DUMMITEM +4 N, X7 {
4 X d z, R/ - SToRSPEC i
5 X C| SKIPITTR - z, R/ :
s N4 | WORKING ZERO t3 :
7 s c| sPECownc z,52 N, Rt i
8 TX S z,sc - z,csc I
9 Ts S|z, s¢ z,csc N, R? !
10| SyBALORS DEC ~-7G66 i
n G pec -G :
2| zZERO PEC -& !
13| ONE DEC -/ i
14 | SPECOWNC SPEC - - OWNCoPE ‘1[
15| SPECBYFS SPEC - - BYPASs :
16 | SPECNAME SPEC - - cué,e/fﬁuﬁp’ 11
17 | DUMMITEM ALF CROSSREF !
18 RESERVE 4 i
9| cuRRITEM | REsfevE 34 i
2 IM'/o‘kLlill‘vq ‘ .,efxf,ev‘e ' / !
[sepirer | oseec (0 - TP T e
2| S70RSPEC SPEC - — - ;
.
3 END - - - ;

The section called INITIAL is performed only when the first option 03 branch to own-

coding is made.

This picks up the C address of the last instruction of the ITEMTRAN routine and stores it as
a SPEC constant in SKIPITTR. Whenever an item is found containing family names, several

working areas are initialized.

Z,S2 is temporarily reset to BYPASS, and the item is handled

This section changes the contents of Z, S2 to the normal setting of OWNCODE.

119

SECTION VI. OWN-CODING

normally. Each time the sort branches to BYPASS, through the normal option 03 exit, a dummy

item is created and sent to N, X7, and the sort is entered through the previously stored exit

from the end of ITEMTRAN, thus bypassing the ITEMTRAN routine.

When the last dummy item

of a particular policy is sent into item storage, Z, S2 is restored to OWNCODE and the normal

process resumes in order to consider a new item from the input buffer.

EXAMPLED illustrates the opposite approach of deleting items.

Suppose it is necessary

to write a '"'one-shot' program to extract all males over 25 years of age from an employee

file and sort them by age, and (within age) by years of service.

Again, it can be assumed that

the proper information is set up in the beginning FID record. Also, assume the sex code is the

first digit of word 2 (0 for female, 1 for male), age is the second and third digits, and years

of service the fourth and fifth digits.
mask of 0GGGG0000000.)

The own-coding to perform the selection follows:

(The sort can, therefore, be a single-precision sort with

ARGUS &°
PROBLEM PROGRAMMER DATE PAGE CF.
) LOCATION |gf; COMMAND CODE ,, F/c/ 2 A ADDRESS 3738 8 ADDRESS s1l52 C ADDRESS 65I“ mk,,ufu:‘ ,';‘ ,: £ M

! PROGRAM eompies | omvsee | |]
2 SETLOC 2¢un 8¢ ¢z E

3 z, s5¢ SPEC - - START :

4 z,s2 SPEC - - OWNcopE ;

5| START L,50RT & 43/84/ PEBI/cAfcAfs cc/co/GGla6/cE]'

3 L, ExX/T }

7| OWANCILE £Ex c| 47/ SEXMASK WORKING i

8 VA | WoRkING ONE DELETE ;

’ EX cl 1,1 AGEMASK WARKING [

10 LA C| WOIRKING TWNTYF/IV DELETE I

i TX S Z,sc¢ - Zz,csc {

12| DELETE TX c| z,s8C - Z, X4 !

12 T c| 45 - SToRE i

14 ™ | RETURN — 45 :

is 7X C| SPECRSTR - z,R/ :

1 X s Z,5¢ - z,cs5¢ :

17| RESTORE 7X o z,Au/ - z, X! !

18 TX | STORE - 45 i

19 75 <l z, x4 Z,s¢ o WNCoDE ;

2 SEXIMAs‘k DEC <] \ , ‘ . o “

| agemask | pec des | ‘ o ' H

2| ONE PEC / i

3| TWNTYFIV DEC #2585 ;

4| SPECRSTR SPEC - - RESTORE i

120

SECTION VI. OWN-CODING

s| RETURN 7s o - - N RI |
s | WORKING PEC é :
7| s70kE PEC "4 |
8 END EXAMPLED OMLYSEG }
— I ———————— e ———

(Note that the second instruction in the DELETE section could have been performed once only,

the first time through own-coding, as performed in the preceding example.) The processing
of a normal item to be sorted will require only the OWNCODE section.
deleted, the DELETE section sets up the exit of the ITEMTRAN portion of the sort to return
directly to the RESTORE section of own-coding. Thus ITEMTRAN steps to the next item in
the input buffer, reading if necessary, and then transfers control to RESTORE. Here, the
transfer of Z, AUl to Z, X1, normally done at the end of ITEMTRAN, is performed and the

exit of ITEMTRAN is restored to its normal setting, OWNCODE is then entered to process

the next item.

When an item is to be

In the next example, EXAMPLEE, it is desirable that one word be added to each item,

which will be an item count to be used as an additional key.

This technique is useful if an

order-preserving sort is desired, that is, one in which all equal keys will be ordered in the

output the same way they were in the input.

fixed length, with keys in word 1.

In this example, there are again 10-word items,

Assume the beginning FID record has been modified to

prescribe variable-length items (maximum length of 12 words) with the first key in word 1 and

the second key in word 11.

count in word 11, and an end-of-item symbol in word 12.

Own-coding will be used to expand each item to include the item

ARGUS &

PROBLEM PROGRAMMER DATE PAGE OF.

| LOCATION gl;; COMMAND CODE ,, % 2 A ADDRESS 37(38 8 ADDRESS sil52 C ADDRESS “{ m L.N;Rm.f,: 7';‘ ,: K3 0
| pRoceAmM || exammee | omvseq | T
2 SETLoc 2412 BF G2z i
3 z, sc SPEC - - S7TRRT :
4 z,52 SPEC - - OWNCODE i
5| START L,50€72,F &3/8¢/ BOPL AR/ S ccfco/cqfG6/cE]‘
s L EXIT :
7| owANcoOE TN | 14 /& WoRKAING i

'a X |l z,AULl —_ STOR EAU I

9 DA c| /TEMNT ONE ITEMCNT !
10 7 | WoRKING WORK ING + I 7 ;
1" 7X c| sSTOREAL Y/ - z, Au/ }
173 TX sl z,s¢c,/ -~ z,cS5cC !
13| WoRK/NG RESERVE /4 1

121

SECTION VI.

OWN-CODING

4| /TEMCNT DEC +4 ;

is DEC & :

16| STOREAU/ VPEC & l

17| ONE DEC * {

e END EXAMPLEE ONLYSEG |r
- o — —

Of course, if the oriéinal file had contained variable-size items, the TN instruction in OWN-

CODE would be an IT instruction.

pose of the end-of-item symbol in some unused location,

obliterate the original end-of-item symbol in the WORKING area.

In such a case, the first IT would use the B address to dis-

Care would also have to be taken to

The final example, EXAMPLEF, represents a situation where there is a file of variable-

length items (maximum of 30 words), but only the first four words of each item, regardless of

its size, are of interest.

age and buffer capacity for 30-word items.

In this case, it is still necessary to specify a sort which will have stor-

However, the amount of information on tape can be

reduced by making all items five words (including end-of-item symbol) thus reducing the over-

all time of the sort.

size sort (maximum of 30 words) can be assumed.

Once again, a proper beginning FID record, calling for a variable item-

ARGUS =°
PROBLEM PROGRAMMER DATE PAGE OF.
| LOCATION g|;; COMMAND CODE ,, % 2 A ADDRESS 373 8 ADDRESS 51|52 C ADDRESS ‘5‘” L,“RN“E_“MQ ,: K2 M
o | pROGRam || EXAMPLEF | omyses | | !
2 SETLOC 1996 84 G2 E
3 Z, 8¢C SPEC - - START ;
4 Z,52 SPEC - - OWNCODE i
5| START L, SoRTl, J ?3/84/ PEBp/cAlcnfcb ccfeo/s6/e6/cE :
[L, EXIT 1
7| OWNCOOE. T cl N, X/ WORKING WOoRK ING i
8 X < z, AU/l - SToR EAuy {
? T < WorkING WORKING t4 N, X7 !
o X C| STOREAL/ - zZ, AUl I
" TX sl z,s¢,t - z,es¢ ;
12 | \WORKING RESERVE 3 f
13| SJoREAUI DEC 4 i
14 END EXAMPLEF ONMLYSEG :
- ——— — "

It might be considered that a single item transfer instruction,

would accomplish the same thing.

122

under control of own-coding,

However, it is necessary to perform both transfers in order

SECTION VI. OWN-CODING

that AUl will be properly set up to find the next item in the input buffer. Thus, one transfer
handles the full, original, variable item, while the other handles the new, compacted item.

The former is used to pre-set AU1, the latter to set AU2.

Presort option 04 specifies that all options, 01, 02, and 03, are to be observed by

the sort. It is therefore necessary that there be own-coding corresponding to each option
which, if nothing else, performs the task of setting Z, S2 to the entrance of the next set of
own-coding. For example, suppose it should be necessary to perform both the example

illustrating option 0l and option 03, (EXAMPLEA).

ARGUS &

PROBLEM PROGRAMMER DATE PAGE CF
| LOCATION jo|;; COMMAND CODE 37 2 A ADDRESS 37]3p 8 ADDRESS 51|52 C ADDRESS “'m e M ,A 7: K2 0
' moaram || oprrowdd | owevsea | 1]
2 SETLOC 1] 2 #/3 86 GR jlﬁ
3 Z,s¢ SPEC - - STRTSoRT i
‘4z, 52 SPEC - - o WANCODEY |r
5| STRTSORT | L, 50RT/, & 64/08/ pppg/cAlcalcB | cc/aalaclic/ca ,r
6 L, EXIT :
7| OWMNCGDE/ T q ¢, 2 2 6,4 i
8 > ¢| spEcocz - z,52 |l
9 TX sl z,sC - z,€ScC !
10 DEC G881 4 }
" pEC Bé/ |
12| SPECOC2 SPEC — - OWNCosE 2 |1
n| owncooEz | T | sPECOC3 - z,52 1B
14 7x s| Z,s5¢C - zZ,¢5¢ ;
15| SPEcoc3 SPEC - - OWNCOPE 3 :
16| OWNCODE3 | £X | 1, & SIGNMASK WORKING {
1 NA | WorkinNG ZERO c,*3 l
18 HA c| L4 | Nummask L, d i
19 X s z,5¢ - zZ,€5¢C i
2 ss | s/Gamask stoompsk | 4g } ey
O T T s T T T L ese !
|
2| WORKING DEC &]
3| S/GNMASK DEC <} 1l
+| zero DEC "4 ;
5| NU/MMASK DEC # GGGGGGGGGGG :
s END V| orrrondys ONLYSEG :
—~——" ___4,_,_/-\—-

123

SECTION VI. OWN-CODING

Merge sort option 0l - It should be emphasized again that this option does not exist., If

it should be specified during the generating process, 'NO EDIT1'" will be printed. Following

" this there will be an unconditional stop.

Merge sort option 02 has been provided to allow changes to be made to the merge sort

itself, after it has been modified and generated. These changes may be as extensive as the
programmer wishes, and may be made by overlaying or modifying any existing instructions

in the sort program. This, of course, requires an extensive knowledge of an Assembly listing
of the sort coding. The technique used to address the sort, as explained earlier, starts with
some known address in the sort as a base and, using indirect addressing and address arith-
metic in the own-coding, steps to each word of the sort to be modified. The most convenient
communicator at this time is the sequence counter, which is set to the first instruction of

the merge sort program. The following registers may not be used (unless stored and restored):

SC, MXR, UTR, RO, and also bank bits of CSC.

Some typical modifications which could be performed at this option are: extension of
precision beyond triple; addition of a detour at the end of merge sorting but before writing the
end FID record (for instance to perform summarizing, totalling, or checking functions); or
modification or replacement of the write area (for instance to write directly to the printer).
Detailed procedures for these modifications are beyond the scope of this manual, but the general
approach for each is given. Extended precision is gained, in the triple-precision sort, by
modifying the COMMON area (common multi-precision routine associated with the trees), as
explained under Precision in Section IV. As pointed out in this section, it will sometimes be
necessary also to change the constant K2, which addresses the sort's stopper area. The sort
coding called LASTPASS already has the function of making certain modifications to the sort
routine just before the last merge pass begins. This area can be modified, or expanded, with
own-coding to make even more changes. Thus, the instruction in LASTPASS which sets up a
branch to ENDSORT, after the end FID record is written, could be replaced by an instruction
to go to a special end section of own-coding rather than to the ENDSORT section. The tech-
nigue used to branch off from the merge sort to own-coding simply replaces two of the sort
instructions with a TS instruction and a SPEC constant. The SPEC can be the address of the
first instruction of own-coding to be performed when the branch is hit, and the TS instruction
can transfer this SPEC to some unused special register, and go to own-~coding through the
special register. Of course, the two sort instructions replaced should be ones that are no longer
essential to the sort operation, or they should be performed in the own-coding area when the
branch is made. Alternatively, the sort could be allowed to finish in a normal manner, and the

end FID record could be modified with after-sort coding. In changing the write portion of the

124

SECTION VI. OWN-CODING

merge sort (presumably only during the last pass), a sort should be generated which comes
closest to looking like the final version to fulfill the specified requirements. This suggests
generating a sort to handle the item size and record packing to be used throughout the merge
sort, as well as between presort and merge sort. It also suggests augmenting the LASTPASS
area to modify the output and write routines to conform to the output specifications. If output
record blocking size is larger than that which will be used by the sort, buffers must be pro-
vided in the own-coding area, as well as providing communication to them during the final pass.
Alternatively, by using variable-size items, the entire sort can be generated to the larger
specifications. The WRITE area in the merge sort must be modified by LASTPASS in order to

change the writing of records involved in the sort.

Merge sort option 03 has been provided to allow changes to be made to each item after it

is processed by the sort for the last time. This option differs from 02 in that the detours to
own-coding are made any number of times, depending on the number of items, rather than having
just one detour at a time. The simplest uses of this option are those involving changes within
the item: key unscrambling (based on a table); item restoration (if temporary changes were
made by the presort); batch totaling; or simple item processing. It is possible to duplicate
items (expand a compacted file based upon the new ordering), or delete items (eliminate dup-
licates produced by sorting). Item size may also be expanded or decreased to conform to the

format of the following routine, or to eliminate temporary keys.

When the sort's transfer is made to N, S2, the sort has just transferred an item to its
output buffer from one of its input buffers. The item location in the output buffer is addressed
by X0. When control is returned directly to the sort by own-coding (without changing the se-
quence counter), the output buffer will be stepped. This is accomplished by transferring Z, AU2
to Z, X0 (if variable items); or word differencing the constant 1 from Z, AU2 into Z, X0 (if fixed
items). Also, Z,S1,1 will be checked to determine if it is time to write. If it is not time to
write, the sort returns to process another item. At option 03, the following special registers
may not be changed (unless stored and restored): AU2 (except as noted), SC, MXR, UTR, X0
(except as noted}, X1, X2, X3, X4, X5, RO, R1, R2, R3, R4, R5, SO (except as noted), Sl
(except as noted), S2 (used continuously for link to own-coding), S3, and also the bank bits of
CSC. Since the sort uses all but S4 through S7, nothing can be stored by own-coding in any

other registers but these.

Adding or Deleting Items (Merge Sort)

In adding or deleting items, it is possible to retain the sort's buffering and writing pro-

cesses. To do this, it is necessary to understand the relationship of own-coding to the sort,

125

SECTION VI. OWN-CODING

as shown in Figure 19. When the option 03 detour occurs, X0 contains the address of the item
just transferred by the sort to the sort's output buffer. Immediately after the detour, the sort
will step the output buffer, writing if necessary, and return to the location addressed by N, SO

to process another item.

The word addressed by N, SO is the sort's return to its tree, and it is changed during each
item processing cycle. By storing and replacing this instruction with a branch to own-coding,
return may be made to own-coding immediately after stepping the buffer and without producing
another item. Conversely, own-coding may restore the original instruction to N, SO and go
there, and hence return to the sort to produce another item without stepping the buffer. Any of
the special registers except those used in the output buffer and writing routine (AU2, X0, X7, Sl1)
can be used to transfer control to a particular portion of own-coding from N, SO. However, it is

imperative that all the necessary ones are restored before returning to the normal sort process.

OWN-CODING ' '

END SORT'S OUTPUT BUFFER

PROCESSING
CYCLE

(SORT) X0 — <-X6 (COLLATE)

N,S2

NORMAL OPTION @3
-*+—SC Exir

W\

N,S®

BEGIN SORT'S
PROCESSING
CYCLE

__/

Figure 19. Merge Sort and Collate Own-~Coding

Therefore, in adding and deleting items, two connection points must be considered between
the sort and own-coding. One is the normal option 03 detour from sort to own-coding. Own-
coding may return to the sort at this point by returning control to the sequence counter (if it
should have been destroyed, then it can return by restoring the sequence counter and going there).
The second connection point is the return to the sort's trees, addressed N, SO, which must be
modified by own-coding if a detour is to be made there. Thus, a detour from sort to own-coding

is made by placing a TS sequence change into N, S0, having first stored the instruction found

126

SECTION VI. OWN-CODING

there. A return from own-coding, at this point, is made by restoring the original instruction

into N, S0, and going to N, SO.

Depending on the type of own-coding desired, these two connecting points may be used in
a variety of ways. For instance in the deletion of items, it is necessary to bypass the sort's
output buffer stepping. At each option 03 branch, a return may be made to the sort through
N, S0, and one or more iterms will be overlayed in the output buffer. When an item is trans-
ferred to the desired output buffer, either by the sort or by own-coding, a return is made to
the sort at the location specified by the sequence counter at the option 03 detour. If own-coding
provided the item, care must be taken that AU2 is properly set; this will be the case if an item
transfer instruction is always used (rather than an n-word transfer). If successive items afe
to be produced by own-coding (adding items), N, SO can be used to return to own-coding after

the buffer stepping.

It should be pointed out that either during the addition or deletion of items, when an end
of string is reached during the last pass (and hence the end of the sort), the sort then assumes
that the last output record has just been written. Consequently, if the input and output counters
get out of phase, as they will when adding or deleting, there may be a partial record of output
still in the buffer when the sort finishes. To get around this, there should be a full record's
worth of filler items in the file, which have keys larger than any legitimate items, and which
will therefore be sorted to the end of the file. Alternatively, own-coding can sense for the
last valid item. When it is found, it then fills up the output buffer with fillers (Z, S1 will always

contain the number of items in the output buffer).

In the expansion or contraction of item sizes, an item size should be specified to the sort
which will cover the maximum size involved. The sort should be specified to handle variable
item size, whether the final output is variable or not. Own-coding can operate on the item in
the output buffer (expanding, contracting, deleting the end-item symbol), and accordingly adjust
the output buffer index register (X0) for the next item. The sequence counter should be incre-

mented by 1 before returning to the sort to bypass the sort's output buffer modification.

The following examples should serve to illustrate some of the techniques which can be
used with own-coding option 03. These examples correspond to the examples in the section on
presort option 03. EXAMPLEA illustrates a simple key translation. Assume for the purpose
of explanation, the availability of a signed numeric key (sign and 11 digits), and the fact that
the negative quantities have been compleme;lted for sorting purposes. It is then necessary to

normalize them and this may be done by re-complementing, retaining the zero sign. Assume

127

SECTION VI. OWN-CODING

again for purposes of explanation, a 10-word fixed-size item, packed 10 to the record, with
the numeric key in word 1. The correct parameters are in the FID record. Although there

would probably be corresponding presort own-coding, this is not shown in EXAMPLEA.

ARGUS ¢

PROBLEM PROGRAMMER DATE PAGE CF.
| LOCATION g|;; COMMAND CODE ,2%24 A ADDRESS 37|38 B ADDRESS 511852 C ADDRESS “E“ L,“RN“:“:‘M k.3 M

| eoeromt | pamaes | soersee | U
:

2 SETLoc pIFe 8/ : G3 !

31| z,s¢ SPEC - - s7AT ;

“| szaer L, 5087, BB/b3meResss | #BBPfcafcalcs | cc/cofoclosce ;

5 . L, EXIT :

s SEGMENT EXAMPLEA MERGSEG :

? SETLoc 24 B4 G3 i

8| Z,52 SPEC - - OWNCoLE {

9| OWNPE EX qd 44 SIGNMASK WOoRKIN G !

10 VA c| WorkING zERO c, t2 ;

" YA dégd NUMMASK &, 4 :

12 7X z,5¢ - z,cs5¢ ll

13| WorRKING DEC) i

14| SIGAMASK | pEC G \’

15| ZERO PEC & J

16| MUMMASK | DEC P GGGGGGGG GGG {

17 END EXAMPLEA SoerTSEG _'l

EXAMPLESB illustrates a useful technique for keeping running batch totals from program
to program. Because it is necessary to use own-coding option 02 in both the presort and
merge sort to modify the end FID records, it is convenient to have a final filler item, or
items, at the end of the file, whose keys are all higher than any others possible. This
guarantees that it, or they, will remain at the end of the file to contain the final total for the
entire file. In this example, assume the same file structure as in EXAMPLEA. It is neces-
fsary to keep a running total of the amount in word 5 (assume a full signed decimal word) and
also an item count. These are to be compared with words 5 and 6 of the dummy item, which
were calculated previously in the same manner. The key of the dummy item consists of a
word of GG...GF (to distinguish it from other fillers of all hex G's, which the sort would

eliminate).

128

SECTION VI. OWN-CODING

ARGUS =

PROBLEM PROGRAMMER DATE PAGE OF____
| LOCATION 14l;; COMMAND CODE 3, éu A ADDRESS 37(38 B ADDRESS 5152 C ADDRESS “}ﬁ“ﬂui‘:‘ A,: k3 M
' PROGRAM coamnes | soersee | 1|
2 SETLOC PSS B/ G3 i
3 zZ,sc SPEC - - START ;
‘| sTAET L,50RT), & PB/I3IMERGSEG | Pb/ch/ch/cB cc/c0/GG/GG/cE i
5 L, EXIT :
s SEGMENT EXAMPLES MERGSEG 'I
7 S5ETLoC 2433 V.74 G3 i
8| Z,52 SPEC - - OWNcorE j
7| owwcooE NA & GSWITHF c, 4 L
1o wA ¢ ToTALS 8.4 ERROR }
" NA d70TALS +/ a5 ERROR J'
2 PRA o ALFok - c, 3 :L
13 OR (TOTALS 1,4 To7ALS |
14 oA o 7o7ALSH*/ ONE TOTALS +/ 1|
15 7x s z,s¢ - z,c5¢ L
16| GSWITHF | DEC GG6GGG6GGG G F }
| ONE DEC vy L
18| ERROR PRA d ALFERROR |
19 SsToP s| - - - i
20| ALFOK ALF ToTRLSOK {
| acrrrroR | ace 1| roraiswe | R '
1| ToTALS PEC +& E
3 pEC +4 :
4 END EXAMPLEB SORT SEG i
— ————————— e~

Now, in EXAMPLEC, suppose that the file was compacted for the sake of sorting speed,
but that for subsequent use it is necessary to expand it. This might be an insurance policy
file, with one item per policy carried through the sort. Within each item, and starting with
word 11, are the names of family members (if any). The number of additional names is speci-
fied in the twelfth digit of word 2. Word 3 contains the family's last name, and word 4 the
policyholder's first name. The items are variable size, maximum of 30 words. It is necessary
to create trailer items, one for each family member, to follow the header items. The policy-

holder, or header, items are to remain the same, and the trailer items are to have a special

129

SECTION VI. OWN-CODING

identification (stating that this is a trailer item) in word 1, the policyholder's first name in

word 2, the last name in word 3, and the family member's name in word 4. It shall be assumed
that the beginning FID record contains the proper parameters to allow sorting on words 3 and

4 of the original items. Note that this will result in a file sorted by policyholder, with trailers
following the header items in the order that the names appear in the policyholder items. By
contrast, EXAMPLEC of presort option 03 results in a file completely ordered on name, regard-

less of the original grouping by family.

ARGUS =

PROBLEM PROGRAMMER DATE PAGE oF
| LOCATION 4|y, COMMAND CODE 22%24 A ADDRESS 37|38 8 ADDRESS 5152 C ADDRESS ASIFM’ HNERW:“:‘ ék': ks m
' PROGRAM sxamriec | soerses | 1T
2 SETLOC -1 B/ G3 E
3| Zz,5¢ SPEC - - START 4:
4| sTART L, 50R72, 4 PI/P3/mERcSEG | ppdd/calcalc8 | cc/cH/ecfaG/ce i
5 L, EXIT 1
. SEGMENT FXAMPLEC MERGSEG '[
Y SETLOC 1983 84 G3 |
8 Z,52 SFPEC - - OUWNCOPE i
) OWWNCIDE EX d &1 G WORK IN G !
0 AN WORK/ING ZERO c, 42 ;
H X sl z,s¢ - z, csc II
2 T o N, xg DUMMITEM =4 CURRITEM 5
13 X | N, sg@ - STORETRN i
14 TX zZ, S¢ - S7TORESC T
15 X C| 758YPASS - N, SE r
s 7 SPECBYES - z,R7 !
17 7X 7 C| SFECNAME - z,Ré !
18 X | CURRITEM +2 - DUMMITEM i
19 7s C| cuRRITEM+3 PUMMITEM +/ OWNCODE+Z i
w| BYPss ~NA | working zERO I
O e T srekeren - M ese
2 7s s z,5¢ z,c5¢c N, S& 4;
3 TX o MRE, /! - DUMM | TEM = 3 ;
4 wo cl WoRkING ONE WORK ING ;
5 T | DUMMITEM PUMMITEM =4 N, XS :
3 X <| SToréE - Z, sc :
7 7X s| Z,5c - z,€s5¢c i
1

130

SECTION VI, OWN-CODING

8| g PEC -G]

Y| zgrRO DEC -g L

0] oNE DEC -/ |

V| 758YPAss 7s - - N, R7 l

12| SPECBYPS SPEC - - BYPASS !

13| SPECNAME SPEC - - CURRIT EM + /¢ i

4 | pUMMITEM | ALF ‘ TRAILER :

15 RESERVE 4 }

16| CURRITEM | RESERVE 3d }

17 | WORKING PEC ¢ !

'8) SToRETRN | DEC ¢ i

19 | sToRSPEC SPEC - 1

0| STORSC SPEC - |- ‘ -_ L L . L;
o Cene | cxammec | soerses Y B B

— - S S

Whenever an item is found containing family names, several working areas are initialized,

N, SO (merge) is temporarily reset to transfer control to BYPASS, and control is returned to
the sort to step and interrogate the buffer counters. Each time the sort branches to BYPASS,
a check is made to see if any more dummy items are to be created. If not, N, SO is restored
and the sort is re-entered to continue in a normal manner. Otherwise, a dummy item is cre-
ated and sent to the output buffer through N, X0. The sort is then re-entered at the normal
point where the output buffer is incremented and tested. Whether or not it is time to write,
the sort will eventually go to N, SO (merge) to process the next item, and then back to the

BYPASS portion of own-coding.

EXAMPLEC of presort option 03.

Note that the general approach here is slightly different from
There, the dummy item was first produced and then checked
to see if there should be more to follow, whereas here a test is first made to see if there are
more dummy items, and then produce one if necessary. This difference relates to the fact
that, in one case, items are being brought in to the sort while in the other case they are being
put out of the sort. Presort own-coding is performed when the sort wants an item, whereas

merge sort own-coding is performed when an item has been produced by the sort.

Now, in EXAMPLED, assume the opposite case from EXAMPLEC, namely, the deletion
of items. Suppose that after sorting, a file will contain many items with duplicate keys, in
which case it may be necessary to delete the duplicates. Again it shall be assumed that the
proper information is set up in the beginning FID record. This then is a single-precision

sort, with the key in word 1.

131

SECTION VI. OWN-CODING

ARGUS &
PROBLEM PROGRAMMER DATE PAGE GCF
| LOGATION jo|;, COMMAND CODE o, sc 2 A ADDRESS 37038 8 ADDRESS sils2 C ADDRESS 6 Im HNERNU:“:"' ,';‘! 7": ks %
N I N N R
SETLocC rrrxd 8/ 63 5
z,sc SPEC - - START |
START L,50RT/, & BR/I3/MERGSEG | pPPdfcafcnfcs | cc/cofealac/ce ;
L, EX(T :
SEGMENT EXAMPLE D MERGSEG :
SETLoC 2442 B4 G3 i
zZ,52 SPEC - - OWNCODE }
OWNCOOE | NA | cAsTKEY .0 c, +3 |
Ts z,5¢c z, csc N, sg Il
TX 4 & - LASTKEY “
TX 5| Z,8¢C — Z,cs¢c !
LASTKEY PEC & T
ONE DEC -/ {
END EXAMPLED SORTSEG }

Here, in order to delete an item, the processing of the output buffer is simply bypassed, so

that the next item produced by the sort will overlay the one to be deleted.

can be used as a serial number by a later run.

For the next example, suppose it is necessary to add one word to each item so that it

A variable-item-size sort must have been

specified by using own-coding in the presort, if necessary, so as to convert fixed-size items to

variable (not shown).
mum size of 30 words.

item size of 31 words so as to make room in the output buffer for the expanded items.

Assume that the items are, indeed, truly variable size, with a maxi-

This means that the sort will have to be specified with a maximum

Own-

coding will be used to expand each item to include the serial number in the position before the

first word of the item, thus moving the rest of the item ''up' one place.

132

ARGUS &
FORM’
PROBLEM PROGRAMMER DATE PAGE CF
LOCATION | COMMAND CODE 7 A ADDRESS a7l B ADDRESS C ADDRESS I REMARKS
! 100t 22 |/Cl 24 8 5|82 85[66 une numser 73[74 80
T T L e e RN B B e e e e e e e e LR B e e e e e LI A s e e e S e AR
! PROGRAM EXAMPLEE SORTSEG ! !
B T
2 SE7Loc rr 8/ G3 o
T
3 Z,5¢c SPEC - - START |
t

SECTION VI. OWN-CODING

4 sTRRY £, 50RTI, # PP/ P3/NERGSEG | pPPI/cA/cA/cE | ccfecrfsifeqfce |

5 L EXIT :

6 SEGMENT EXAMPLEE MERGSEG 4}

7 SELOC z@ll 84 G3 i

8 z, 582 SPEC - - OWNCIODLE I

'| owncope | /T qéé #,29 S7T0RAGE !

10 PA ¢ COUNTER ONE COUNTER r
" 7x | counrER - 4, & B

12 7 STORAGE Sro£AGE + 29 4,/ f

13 7X s z,5¢ - z,csc I
4| SToRRGE RESERVE 34 |r

15| CouNTER DEC +4 {

16 ONE PEC +7/ 4{7
17 END EXAMPLEE SoRTSEG E

- —

Notice that, in this case, X0 was not modified in own-coding, but instead returned direct-

ly to the sort to perform this.

This was possible because the second item transfer instruction

set up AU2 correctly, so that the sort's buffer modifying instruction would function correctly.

Had the item size been changed directly in the buffer, by moving the end-of-item symbol with

a TX, for instance, then it would have been necessary to rriodify X0 in own-coding, step the

sequence counter by 1, and then return to the sort.

For the final example, again assume a file of variable-length items, maximum of 12

words.

fixed-size items, by adding a key in word 11 and an end-of-item symbol in word 12.

Assume that presort option 03, EXAMPLEE, had created these items from 10-word

It is neces-

sary to eliminate words 11 and 12 in order to make the 6utput consist of fixed-length records

of 10 words each.

It shall be assumed that all items coming from the sort are exactly 12 words

in length. ARGU FoRM

PROBLEM PROGRAMMER DATE PAGE [=S
| LOCATION jg(); COMMAND CODE 4, %24 A ADDRESS 37)38 B ADDRESS 5152 C ADDRESS 65}36 mR,mf“:‘ 7';“5 K2 M
T peoceom (| cxamirer | soersea |]

2 SETCoc Yy B/ G3 1‘

3 Z,5¢ SPEC - - S7ART T

*\ stper L, 50RT2, F PP/ 43/ meecstc | gAgg/cAfcnfcs | ccfcr/caleasce ;

T

133

SECTION VI. OWN-CODING

5 L, EXIT l
s SEGMENT EXAMPLEF MERG 5EG {
! 5ETLOC o4 G2 |
¢ z,52 S PEC - - OWNCOPE ;
’| owNcoPE TX | Z,xf, 18 - - !
0 X s| z,5¢,/ - z,cs5¢c ;
i ENO EXAMPLEF S0RTSEG Il
e —— — —

Merge sort option 04 specifies that the exits for 02 and 03 are both to be observed by the

sort. It is therefore necessary that option 02 coding set up Z, S2 for the option 03 coding, before

returning to the sort.

After sort coding - Since, at this time, the sort has completed its operation, there are

no restrictions on the use of special registers, as there are before the sort. Of course, any
special registers loaded with the routine will have been destroyed by the sort, so these should
be loaded by the coding instead. Since nothing done at this time affects the sort, no examples

of this type of coding are shown.

Collate option 0]l has been provided to allow a standard set of beginning FID parameters to

be created for the collate in cases where they do not exist on tape, or to allow for revision of
parameters which may be there. All original files read by the collate must still have standard
beginning-of-file banner words. However, since input to the collate will presumably have come
from the sort routines, the correct parameters will normally be already present on tape. This
option allows complete specification of the collate parameters through coding, independent of
the data. The transfer to N, S2 is made after the collate generator has interpreted the collate
pseudo instruction parameters, but before it has interpreted the beginning FID record from the
initial A input tape. Index register X7 is set to the first word of this record, in memory, and
X7 may be used to address any of the parameters which will be replaced with constants from
own-coding. The following registers may not be changed by the own-coding (unless stored and

restored): SC, MXR, UTR, X0, X7, and also bank bits of CSC.

For an illustration of the normal use of option 01, refer to the above section on presort

option 01 which, except for specific special register addresses, is similar.

Collate option 02 has been provided to allow changes to be made to the collate routine

itself, after it is generated. Here the distinction must be made between the initial ""once-only"

generation of the collate, and that portion of the generator which is performed before each pass.

134

SECTION VI. OWN-CODING

Option 02 causes a detour immediately after the former. The changes made at this time may
be as extensive as the programmer wishes, and may be made by overlaying or modifying any
existing instructions in the sort program. This, of course, requires a thorough knowledge of

a listing of the collate routine. The technique used to address the collate, like the sort, is to
start with a known address in the collate as a base and, using address modification in the own-
.coding, to step to each word of the collate to be altered. The most convenient communicator

to the collate by the own-coding is the sequence counter, which addresses a location at the end
of the A3 section, the last portion of the once-only generator. Because there are several breaks
in the sequence of instructions performed during generation, the exact location of the branch to
own-coding should be noted on the coding sheets; the sequence counter will be set to the location
following this one. The following registers may not be used (unless stored and restored): SC,

MXR, UTR, RO, X0, and also bank bits of CSC.

Some typical modifications which could be performed at this option are: extend precision
beyond triple; add a detour at the end of each pass (or at the end of the final pass); perform
specialized operations or modify the WRITE area. Because of the connections established
between passes of the collate, the last function (mentioned above) should be performed during
the last pass only. Detailed procedures for these modifications are beyond the scope of this
manual, but the general approach for each is given. Since the collate uses the same tree as
the merge sort, extended precision is handled as described under merge sort option 02 in this
section. The collate coding, called FNAME, already has the function of making certain modi-
fications to the collate routine just before the last pass begins. This area can be modified, or
expanded, with own-coding to make more extensive changes. Thus, the FNAME instruction,
which sets up a branch in ENDPASS to end the routine, may be replaced so as to set up a
branch to a special end section of own-coding. One technique for branching off from the collate
to own-coding is to replace two of the collate instructions with a TS and a SPEC constant. When
the branch is taken, the SPEC can be the address of the first instruction of own-coding to be
performed, and the TS can transfer this SPEC to some unused special register, and go to own-
coding under cosequence control through the special register. Of course, the two collate instruc-
tions replaced should be either instructions that are no longer useful, or else they should be
performed in the own-coding area when the branch is made. Alternatively, the collate could
finish in a normal manner, and perform any special end function (such as totaling or checking)
after the collate. In changing the WRITE portion of the collate (presumably during the last
pass only), a collate should be generated which will handle the structure of the input and inter-
mediate files. Then, at option 02, the FNAME area could, in turn, be augmented to modify the
output and/or write routines to conform to the output specifications. If output record blocking

size is larger than that to be used .y the collate, separate buffer areas must be provided in the

135

SECTION VI. OWN-CODING

own-coding, and in the connections to own-coding, for use during the final pass, Alternatively,
by using variable-size items, the entire collate can be generated to the largest specifications.
The area in the collate which must be modified by FNAME to change item transfer or writing

is the JJ area.

Collate option 03 has been provided to allow changes to be made to each item after it is

processed by the collate for the last time, i.e., during the final pass. This option differs from
the other two in that the detour to own-coding is performed more than once, depending on the num-
ber of items. The simplest uses of this option are those involving changes within the item: item
rearrangement; batch totaling; or simple item processing. It is possible to duplicate items
(expand the new file), or delete items (eliminate duplicates). Item size may be increased or

decreased to conform to the format of the succeeding routine or to conform to the system.

When the transfer is made to own-coding through N, S2, the collate has just transferred an
item to its output buffer from one of its input buffers. The item location in the output buffer is
addressed by X6. When control is returned directly to the collate (without changing the sequence
counter), the output buffer will be stepped (by transferring Z, AU2 to Z, X6), and Z, R6, 1 will be
checked to determine whether it is time to write. If writing is not indicated, a return is made
to process another item. At option 03, the following special registers may not be changed (un-
less stored and restored): AU2 (except as noted), SC, MXR, UTR, X0, X1, X2, X3, X4, X5, X6
(except as noted), RO, R1l, R2, R3, R4, R5, R6 (except as noted), SO (except as noted), S2 (used
as continuous link to own-coding), S3, and also bank bits of CSC. Since the collate uses all but

S4 through S7, nothing can be stored by own-coding in any registers but these.

Adding or Deleting Items (Collate)

In the addition or deletion of items, it is possible to retain the collate's buffering and
writing processes. To do this, it is necessary to understand the relationship of own-coding
to the collate, as shown in Figure 19. When the option 03 detour occurs, X6 contains the
address of the item just transferred by the collate to its output buffer. Immediately after the
detour, the collate will step the output buffer, writing if necessary, and return to the location

addressed by N, SO to process another item.

The word addressed by N, SO is the collate's return to its tree, and is changed during each
item processing cycle. By storing and replacing this instruction with a branch to own-coding,
a return may be made to own-coding immediately after stepping the buffer, and without pro-
ducing another item. Conversely, own-coding may restore the original instruction to N, SO and

go there, and then return to the collate to produce another item without stepping the buffer. Any

136

SECTION VI. OWN-CODING

of the special registers, except those used in the output buffer and writing routine (AU2, X6, R6,
R7), can be used to transfer control to a particular portion of own-coding from N, SO, as long as

all the necessary buffers are restored before returning to the normal collate process.

Therefore, in the addition and deletion of items, two connection points between the collate
and own-coding must be considered. One is the normal option 03 detour from collate to own-
coding; own-coding may return to the collate at this point by returning control to the sequence
counter (if it has been destroyed, then by restoring the sequence counter and going there). The
second connection point is the return to the collate's trees, addressed N, SO, which must be
modified by own-coding if a detour is to be made there. Thus a detour from collate to own-
coding is made by placing a TS sequence change into N, S0, having first stored the instruction
found there. A return from own-coding at this point is made by restoring the original instruction

into N, 80, and going to N, SO.

Depending on the type of own-coding desired, these two connecting points may be used in
a variety of ways. For instance, to delete itermns, it is necessary to bypass the collate's output
buffer stepping. At each option 03 branch, a return may be made to the collate via N, S0, and
one or more items will be overlayed in the output buffer. When an item is transferred to the
desired output buffer, either by the collate or by own-coding, a return is made to the collate
at the location specified by the sequence counter at the option 03 detour. If own-coding pro-
vided the item, care must be taken that AU2 is properly set; unlike the merge, a TN instruction
should be used for fixed-size items, with less than 63 words per item, and an IT instruction
should be used for variable-size items or fixed-size items greater than 63 words per item.
If a succession of items is to be produced by own-coding (adding items}), N, SO can be used to

return to own-coding after the buffer stepping.

It should be pointed out that either during the addition or deletion of items, when end of
pass is reached during the last pass (and hence the end of the collate), the collate then assumes
that the last output record has just been written. Consequently, if the input and output counters
get out of phase, as they will when adding or deleting, there may be a partial record of output
still in the buffer when the collate finishes. To get around this, a full record of filler items
at the end of the file should be produced (coming from any combination of inputs). Alternatively,
own-coding can sense for the last valid item, and when found, fill up the output buffer (if neces-

sary) with fillers. (Z, R6 will always contain the number of items in the output buffer.)

In the expansion or contraction of item sizes, an item size should be specified for the

collate which will cover the largest size involved. The inputs must therefore be variable-size

137

SECTION VI, OWN-CODING

items and it should be specified to the collate whether or not the final output is available. Own-
coding can operate on the item in the output buffer (expanding, contracting, deleting end-of-
itemn symbol), and can adjust the output buffer index register (X6) for the next item accordingly.
The sequence counter should be incremented by 1 before returning to the sort, so as to bypass

the collate's output buffer modification.

Since collate option 03 own-coding is similar to merge sort option 03 own-coding, the
reader is referred to that section for appropriate examples. The only differences between
these examples and the ones which would be prepared for a collate are the addresses of the

special registers.

Collate option 04 specifies that options 01, 02, and 03 are all to be observed by the col-

late. It is therefore necessary that there be own-coding corresponding to each option which,
if nothing else, resets Z,S2 to refer to the next option. The reader is referred to presort

option 04, contained in this section, for an example of this.

138

APPENDIX A
END FILE IDENTIFICATION RECORD (ITEM DESIGN) PRESORT TO MERGE SORT

Included in this appendix is an item design of each word in the End File Identification

Record (FID).

12 I 10 9 8 7 6 5 4 3 2 {
- T —— T —r— F—— e —
I |91 | mecoko counwr el
———— 777 — 7T~
FILE NAME
{ I n — .
v T T L E L A e G —G' SEGMENT
ME
: D AP B PR S AL A B ' woR ££Aﬁre‘m ' E/;AI
ORDS P /
8 8 ¢ 4 £ £ < ~ “eINARY sYm8otL
T T ’ y | A T LI 7 T T T U
w/ 56 4 4 p ¢ J—e e ———————— 7 | WRsTORE!
v I I v T T + l T ¥ ' r T ' T] l 1
w2z 5 o6 ¢4 4 d g 7 , - 7 WRSTORE 2
T T T v T T +— T T T T T T T T T - T T
w3 5 6 4 4 8 2 7 7 |wrstorez
T T T v T T + U T T 1 t " | T —+— -t
w¢ 56 4 4 & ¢ 7 7 |wersrore¢
T T T T T + T T T T + T T T T T t T T
w5 5 6 4 4 2 & 7 7 |WRSTORES
B T T —T T+ T T T T t T T T T T t T T
Weo 56 4 4 g g 7 7 WESTOREE
T T T T T T + | T T T T]T + T T
;a 8 A puo £ACAY COUNTER | STRCT/
A oo Tl ot tg! puhm/f'dﬂ;bzvré.e
C
e 2 s
4 T T T T T T T T T T T T
PUMMY COUNTER
G @ € DECTMAL SIRcT3
A N N S S N 77 YT e 2
G @ — DECIMAL sTRCT 4
' T T T T 4 T 4 T T T T L T T T T T , T T
£ DUMMY couNTER
Q' : [: DECIMAL STRETS
v L4 I T ' l T ’ T ' v r T ' L T T
ITEMS PER k)sao,eo
G P TN AR NI
¥ ' . " ¥ I ¥ l + ' T T lir v l Ll l T A;NA"' YI 1
G & Wo,epsg/lfi e JTEM NW
/N S S A RSB B BRI RN R A IR R AP RS B
NI X Nw
G i 4 , : BINARY w
T 7 T —T . } y T ————
¢ /VUMdEe OF PASSES E£EO F/ BIM| F/RST 'KEY LOCATION EPFBMKEY
) (7 ARY
L T + L4 T T T EC'IAZ,[qL T T ¥ T gr/,v T T
REcoRD counT 2% SECOND KEY' LOCAT- | THIRD KEY (OCRTION
, BFIp OF NI# WORK TRPE |1oN BINRRY BINBRY KEYS
Y T + T T T T + T T T T T T — T
FIRST KEY MAsSK PMPBSK/
T T AN R S SR A S S A — e i | — T
SECOND KEY MASK PMASKZ
N e e e e e A S B B S S
THIRD KEY MASK. PMASE 3
T | I T T T T + T T —7 T + | — T T T d
ORTHO I
T T —+ T T T L + T T T T T t T T T T T + T T
ORTHO 2
T SRS RO IR IR I S B U S R S HH — £oR
8 B F F F F £ £ E
" 1 i i g_ L ? 1 i I . I " | -l f L N Il - L A woﬂp
8 7 6 5 4 3 2 |

139

APPENDIX B
PRESORT SPECIAL REGISTERS

X Bin setting.

X1 Input buffer for item transfer and EDOFILE check.
X2 Input buffer for reading.

X3 Output buffer for item transfer,

X4 Output buffer for writing;

Stopper address for positioning and searching tape.

X5 Working index register:
1. In BEGFID for file ID reference;
2. In WRITE for CC.

X7 Working index register:
1. Macrocoding;
2. In FILSTR, MASTER, ITEMTRAN and EDCON for smallest item in storage.

R For restarts.

R1 Working special register (as counter):
1. In BEGINI for items in storage;
2. In FILBIN for keys in storage;
3. In SWITCH and RESET to reference 14th location of bin.

R2 Working special register (as counter):
1. In BEGINI! to count words per item;
2. In FILSTR to count items in storage;
3. In FILBIN for filling bin with keys;
4. In EDCON to count words per item.

R3 Working special register (as counter):
1. In BEGINI to count items in storage;
2. In FILBIN to count items in storage;
3. In DSCALC to count two levels,

140

APPENDIX B. PRESORT SPECIAL REGISTERS

R4 Working special register (as counter):
1. In FILBIN to count items per bin;
2. In ENDSTR to count words per item;
3. In CHKIT to count items in storage.

R5 Working special register to address keys of item in storage in CHKIT.

R6 Counter for items per output buffer.

R7 Counter for items per input buffer.

S2 Own-coding.

AUl Item in input buffer.

AU2 Item in output buffer.

141

142

X0

X1-X5

X6

X7

RO

R1-R5

R6

R7

S0

S1

52

S3

APPENDIX C
MERGE SORT SPECIAL REGISTERS

Output buffer.

Items in input buffers.

Input buffer for reading.

Working index register:
1. In WRITE for CC;
2. In EOF and LLASTPASS to address STOPPER.

For restarts.

Counters for items in input buffers.

Working special register:
1. In VARSWCH as counter;
2. In BEGPASS for TABLE address.

Working special register:
1. In VARSWCH to set item index register and LASTKEY;
2. In BEGPASS and ENDPASS for address in READ.

Tree special register,

Item counter for output buffer (used to determine when to read and write).

Own-coding.

EOF counter for '"'way merge' (used to reset EXITA).

X0

X1-X5

X6

X7

RO

R1-R5

R6

R7

SO

S1

S2

APPENDIX D
COLLATE SPECIAL REGISTERS

Current entry of plan.

Items in input buffers.

Items in output buffer.

Working index register:
1. In READ for reading;
2. In MHSKEEP for reading.

For restarts.

Counters for items in input buffers.

Counter for items in output buffer.

Working special register:
1. In JJ for writing;
2. In MHSKEEP to reference read orders;
3. In BEGIN portion of Generator,

Tree return special register.

Working special register:
1. In MHSKEEP to reference KEEDP location;
2. In Generator.

Working special register:
1. In Generator.

143

APPENDIX E
TIMING OF HONEYWELL 800 SORT ROUTINES

Although there are tables with which sort times may be readily determined, these have
certain limitations, particularly in the area of record packing. The following formulas may

be used to determine times for any specific case.

Given the following factors:

Wb = words per bin:
single and multi precision = 3,0
double precision = 4.2
Wi = words per item (including EOI symbol if used).
Wm = words of memory available (2, 024 + MMMM).
Wp = words in presort program:
single precision = 500
double and multi= 550
Wr = words per record (including banner, two ortho, and EOR word).
If = items per file (volume to be sorted).
Ir = 1items per record.
Is = items strings = 2(Wrn—Wp-4Wr)
items per ring = (Wi+t Wb)
Rs = records per string = Is/Ir
= number of tape drives used by merge sort.
S = number of strings produced by presort = If/Is
P = number of passes, from following table of maximum values of S:
P D = 3 D = 4 D = 5 D = 6
2 3 6 10 15
4 8 31 85 190
6 21 157 707 2353
8 55 793 5864 29056
10 144 4004 48620
12 377 20216
14 987
16 2584
18 6765
20 17711
Trt = time to pass one record on tape, including gap.
Tf = time to pass entire file = Trt%
Td = time for dummy items produced by presort = Trt(—sl

(2)

144

APPENDIX E. TIMING OF HONEYWELL 800 SORT ROUTINES

Tip = time per item, presort (given in memory cycles):
Is Single Prc. Double Prc. Multi Prc.
1-12 4Wi + 125 4Wi + 156 4Wi + 156
13-72 4Wi + 171 4Wi + 218 4Wi + 229
73-432 4Wi + 219 4Wi + 280 4Wi + 302
Trp = time per record, presort {(given in memory cycles) = 3Wr + 113
Tsp = time per string, presort (given in memory cycles):

single and multi precision = 12. 1(Is) + 69
double precision = 17.0(Is) + 79

Tim = time per item, merge sort (given in memory cycles):

D Single Prc, Double Prc. Multi Prc.

3 2Wi + 59 2Wi + 62 2Wi + 64

4 2Wi + 62 2Wi+ 65 2Wi + 69

5 2Wi + 64 2Wi + 69 2Wi+ 74

6 2Wi + 67 2Wi+ 73 2Wi+ 79
Trm = time per record, merge sort (given in memory cycles):

D Single Prc. Double Prc. Multi Prc.

3 3Wr + 188 3Wr + 191 3Wr + 193

4 3Wr + 193 3Wr + 198 3Wr + 203

5 3Wr 4+ 198 3Wr + 206 3Wr + 213

6 3Wr + 203 3Wr + 213 3Wr + 223
Fp = factor, presort = (Ir)(Tip)+ Trp + Tsp/Rs

Trt

Note: For timing purposes, if Fp is less than 1, the value 1
must be used. In such cases, Fp represents the CP
capacity used by the presort. For Wi less than 5, Fp
is always greater than 1. For Wi greater than 15, Fp
is always less than 1.

Fm = factor, merge sort = (Ir)(Tim) + Trm
Trt

Note: For timing purposes, if Fm is less than 1, the value 1
must be used. In such cases, Fm represents the CP
capacity used by the merge sort. Fm is usually less

than 1.
Tp = time for presort = (T{)(Fp) + Td
Tm = time for merge sort = P(Tf)(Fm) + 2Td
Tt = total time for sort = Tp+ Tm

A single pass collate routine may be readily timed in a manner similar to timing one
pass of the merge sort. In this case, the factor "If', representing items per file, is the num-
ber of items in the output file, or the sum of the items on each input. Timing a multi-pass
collate is more difficult, since different portions, and therefore different quantities of data,

are handled during each pass. For these cases," it is necessary to determine the amount of

145

APPENDIX E. TIMING OF HONEYWELL 800 SORT ROUTINES

data being processed during each pass, and to time each pass accordingly. The total time is

then the sum of the times for all passes.

Given the following factors:

Wi = words per item (including EOI symbol if used).
Wr = words per record (including banner, two ortho, and EOR word).
If = items per file (volume to be collated in one pass).
Ir = items per record.
w = way.
Trt = time to pass one record on tape, including gap.
Tf = time to pass entire (output) file = Trt %I[ir))
Tic = time per item, collate (given in memory cycles):
W Single Prc. Double Prc. Multi Prec.
2 2Wi+ 51 2Wi + 57 2Wi + 60
3 2Wi+ 53 2Wi + 60 2Wi + 64
4 2Wi + 56 2Wi + 65 2Wi + 69
5 2Wi+ 58 2Wi+ 68 2Wi+ 72
Trc = time per record, collate (given in memory cycles):
Single Prc. Double Prc. Multi Prc.
3Wr + 179 3Wr + 189 3Wr + 194
Fc = factor, collate = (Ir)(Tic) + Trc
Trt

Note: For timing purposes, if Fc is less than 1, the value
1 must be used. In such cases, Fc represents the
CP capicity used by the collate. Fc is usually less
than 1.

Tc = time for collate = (Tf)(Fc)

146

Ascending

Bin

Buffer

Collate

Data

Descending

A GLOSSARY OF SORTING TERMS

Relating to ascending order; that is, a progression
from the smallest alphanumeric key (all zeros) to

the largest (all hex G's).

A storage area in memory, used in the presort, which

contains a number of tags and related coding. The
bin is arranged to coincide with the tree, so that the
smallest tag contained in the bin may be found and

transferred out.

A working area in memory, to or from which data
is read or written on tape. Buffers are usually used
in pairs or sets, so that data may be read or written
in one buffer, while other data is processed in the

other buffer.

A routine which has as its input any number (up to

99) of ordered (sorted) files, and as its output a

single ordered file containing all of the input data.

Numeric and alphabetic information supplied to and
processed by a computer. Data differs from a pro-
gram in so much as the program supplies the com-
puter with the logical step-by-step instructions to
process this data. In the sorts, data is that which
is sorted through a presort, merge, and collate

program.

Relating to descending order; that is, a progression
from the largest alphanumeric key (all hex G's) to

the smallest (all zeros).

147

A GLOSSARY OF SORTING TERMS

148

Error Routine

File

Generator

Item

Key

Machine Limited

Merge

Merge Sort

A section of programming, initiated automatically by
a read-write error UTR, which attempts correction
of the error by an orthotronic correction routine and/

or by rereading.

A set of data used as input to a sort or collate. The

final result of a sort or collate sequence.

A general routine, usually used with a modifier, which
accepts specifications of a specific sort (parameters)
and produces a routine meeting requirements. The
generator sets up (generates) the variable portion of

a routine (bins, buffers, etc.).
The unit of data which is manipulated by the sorts.

A set of characters, usually forming a field, which is
the portion of an item used as a criterion for the alpha-

numeric arrangement of that item with other items,

The condition which exists when the time used in
processing a given amount of data exceeds the time
used in moving this data between internal and external
storage. Thus, in such a sort, a tape must periodi-

cally wait for the machine to finish processing data.

The process used in the ARGUS merge sort and col-
late which reads several ordered strings or files of
input and, through a series of comparisons, selects
the smallest (or largest), item by item, and from
these comparisons produces one ordered string or

file for output.

The second and last portion of a sort routine which
performs a series of merging operations until all
data is combined into a single string of ordered

information.

A GLOSSARY OF SORTING TERMS

Modifier

Ordered

Own-coding

Parameter

Presort

Precision

A general routine, usually used with a generator,
which accepts specifications of a specific sort
(parameters) and produces a routine meeting
requirements, The modifier sets up (modifies)
the fixed portion of a routine (trees, switches,
transfer instructions, etc.), using a skeleton

routine as a basis.

A sorting technique, more properly called '"Cas-
cade' sorting, developed by Honeywell and used
by the ARGUS merge sorts.

That which has been sorted; a term usually used to
describe a sequence of items whose keys have been

arranged in alphanumeric order.

A portion of program or additional coding, which

is added to a sort and to which the sort detours at
prescribed intervals. It is most often used on a
item-by-item basis to modify data upon first reading

by the sort, or upon final writing.

A statement of prescribed format which specifies, to
a modifier-generator, a specific sort to be generated.
Such factors as item size, key position, tape allo-
cation, etc., are usually specified in a parameter.

In the ARGUS sort system, parameters are sup-
plied in two portions: through the macrocoding
routine which calls the sort, and through the begin-

ning FID record of the data tape.

The first portion of a sort routine which reads a
single tape of random data as input, and writes as

output two or more tapes of ordered strings.

Size of key used for sorting, usually in terms of

computer words. A single-word key is single

149

A GLOSSARY OF SORTING TERMS

Precision (cont)

Random

Restart

Segment
(as related to a
sorting operation)

Set

Skeleton

Sort

Stopper

String

150

precision, a double-word key is double precision,

a triple-word key is triple precision.

Having no specified order. In sorting, random is

the opposite of '"ordered''.

A section of programming, initiated by the console
operator in case of trouble, which ''backs up' the

program to a specified point and ''starts again''.

A portion of a file, usually a single tape.

Used in the merge sort or collate to include every-
thing pertaining to one of the inputs; usually desig-

nated A through E.

A basic, generalized, sort routine which provides the
framework on which modification and generation can
build a sort program. Such a routine cannot be run

in itself, since important areas are missing.

A routine (consisting of a presort and merge sort)
which reads random data as its input, and which
writes the same data as its output, in alphanumeric

order, based on a prescribed part of the data (key).

A programming device, also called 'freezing'),
which is used to indicate that an item in storage
is temporarily not to be considered for sorting. (It
should not be confused with the hardware definition

of stopper.)

A portion of data on tape, and not necessarily on the
entire tape, which has been ordered through a presort.
A string is indicated by a special banner word in its

first record.

A GLOSSARY OF SORTING TERMS

Tape (data)

Tape Limited

Tree

Work Tape

A condensation of an item, consisting of a key
(used for sorting) and an identification word
(used to identify and relocate the rest of the
item in memory, after the key of that item

has been determined to represent the smallest
item). The ID word is appended to the key to
form a tag. The result is that which is actually

shuffled around in memory during the sort.

Data which exists on a single reel of magnetic
tape, random or ordered. Such data may
represent part of a file (string or segment), or

a full file.

The condition which exists when the time used in
moving data from tapes to internal storage, or
from internal storage to tapes, exceeds the time
used in processing that data. Thus, in such a
sort, the machine must periodically wait for the

continuously running tape.

A logical array of machine instructions having
one entrance, and one of several exits, the
latter depending on which of several keys related

to the tree is smallest (or largest).

Presort: number of tags in a bin which the tree
compares (maximum of six).
Merge Sort and Collate: number of input sets

which the tree compares (maximum of five).

A tape used by the sorts during the sorting process,
the contents of which are immaterial before and

after the sort routine.

151

NOTES

Honeywell
Elitrowin Data, Puscessing

