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FOREWORD 

The sort and collate routines described in this manual are currently undergoing checkout 

on the Honeywell 800 System. The checked-out routines will be available in February, 1961. 

The user of this manual will be able to obtain a general, as well as a detailed, descrip­

tion of the functions, operations and programming logic of these routines. Because these rou­

tines are still undergoing checkout, they may be subject to minor p:;ogramming modifications. 

For the reader who is interested in only a general description of these routines, he will 

find this information in the first part of each section. A more detailed discussion follows the 

general description. 

vi 



SECTION I 

INTRODUCTION 

A series of sort generators for creating sort programs have been designed to be included 

in the ARGUS (Automatic Routine Generating and Updating System) Library of Routines. Assem­

bly and use of the ARGUS sort routines have been simplified in keeping with two major considera­

tions inherent in their design: 

1. Efficient operation; 

2. Universal application. 

The ARGUS sort routines represent a departure from conventional sorting methods through the 

us e of new programming techniques. The logic of thes e sorting routines provides for inc reas ed 

sorting speed while reducing the number of required tape drives and corresponding hardware. 

Programming effort in developing a usable sort program for the accurate sorting of ran­

dom data has been minimized to specifying, by means of an instruction, a desired routine from 

the ARGUS Library of Routines. 

In order to generate a sort program, the programmer simply writes an instruction which 

specifies the desired routine from the ARGUS library and which supplies the parameters re­

quired by the routine. These parameters are interpreted and incorporated into a program 

tailored to perform a specific sorting function. 

Although the ARGUS sorts are capable of handling a wide variety of situations, there are 

limitations imposed in the interest of providing the most efficient routines for the most common 

cases. Because of these limitations, there will be occasion to modify the routines produced by 

the ARGUS sorts, or even to hand-write a sort completely. The former is made easy, in many 

cases, by provisions for "own-coding" built into the ARGUS sorts (Section VI). These pro­

visions allow, at specified points throughout the routine, detours into special coding added to 

the sort to perform some additional function. 

The purpos e of this manual is to provide a desc ription of the ARGUS sorts and supply a 

working knowledge of them as an aid to own-coding or sort modification. Knowledge of these 

sorts may also be used as a guide in writing one- of-a-kind sorts for the Honeywell 800. 

1 



SECTION 1. INTRODUCTION 

The sorts consist of two segments: presort and merge sort. The presort reads random 

data from one tape, orders it as much as memory space permits, and writes the data in ordered 

strings onto two or more output tapes. The merge sort then reads these outputs from the pre­

sort, and merges sets of strings, again writing them onto two or more output tapes. As this 

process continues, the strings become longer and fewer in number, until finally all of the data 

has been combined into one long string, written on a final output tape. In the cas e of large files 

which fill more than one tape, a collate routine is used to combine several ordered tapes (or 

files) into one continuous file. 

At this point, a brief history of the ARGUS sorts might be of interest. The Honeywell 800 

can read, write, and compute simultaneously. This type of computer is ideally suited for the 

presort method based on the building of continuous strings of items in memory as long as there 

are items which qualify. This method, as opposed to a strictly internal, fixed-length- string 

type of presort, takes advantage of any pre-ordering of data by producing correspondingly 

longer strings. Several other features of the Honeywell 800 are used to improve the presort. 

For example, index register addressing permits use of a single "tree" for several purposes 

(explained in Section III), and the large memory permits much data to be stored internally, 

resulting in long presort strings. The additional memory and the power of instructions us ed 

in conjuction with special registers result in a sophisticated generator, which makes very 

efficient use of data storage space. 

The merge sort portion of the ARGUS sorts represents a complete departure from conven­

tional merge sorting methods. The origin of this method can be traced back to 1956, when 

Honeywell mathematicians developed a unique sorting method which requires only three tapes. 

When study for the Honeywell 800 sorts was begun, it was felt that it would be desirable to 

include the three-tape sort along with conventional two- and three-way merge sorts, in order 

to accommodate small systems. As work progressed on the three-tape sort, methods were 

discovered which made it workable for any number of tapes. For a given number of tapes, it 

was discovered, this "n minus one" concept is always more efficient than conventional merge 

sorting. For greater flexibility, and in order to utilize a single set of merge sort generators, 

it was decided to use this new approach for all ARGUS merge sorts. Considerable revision has 

been made to the original three-tape concept, especially in the area of distribution of strings 

by the presort, and in the handling of an uneven number of strings. 

2 



SECTION 1. INTRODUCTION 

General Sorting Function and Application 

The basic function of any sorting operation is the ordering of data in a prescribed logical 

sequence to make that data accessible for later use. To control large amounts of data, a mas­

ter file of all items of related information pertinent to a particular activity is usually estab­

lished. These items are ordered according to a designated portion of each item. This portion, 

or field, is termed the key of the item. 

To maintain a master file reflecting the latest transactions, it is necessary to update 

the master file periodically. This is accomplished most efficiently by ordering the transactions 

in the same sequence as the master file, each transaction containing the same key as the cor-

responding master file item. The power of the ARGUS sort generators can then be brought to 

bear to create the program which accomplishes this ordering. 

Multi- precision Sorting 

ARGUS sort routines are capable of sorting on a key of one field, two fields, or three fields; 

each field may be a full Honeywell word or any portion thereof. These operations are termed, 

respectively, single-precision sorting, double-precision sorting, and triple-precision sorting. 

Own-coding (as explained in Section VI), is used to handle longer sort keys. 

Cascade Technique 

To implement the merge sort on the Honeywell 800 System, Honeywell has developed a 

technique which is radically different from conventional methods employed with other data pro­

cessing systems. This Cascade technique ITlakes optimum use of the flexibility inherent in the 

hardware design of the Honeywell 800 to provide faster sorting with fewer magnetic tape units. 

In fact, Cascade sorting can be performed on as few as three tapes. The speed and power of 

the sort can be enhanced by adding any odd or even nUITlber of tapes. Conventional methods, on 

the other hand, require a minimum of four tapes and, in all cases, an even number. 

The ARGUS presort differs ITlost froITl the conventional presort in its distribution of strings 

on the two or more output tapes. Consider the case of a three-tape sort, in which data from one 

input tape is distributed to two output tapes. Instead of alternately writing strings on the two 

output tapes, as is normally done, this new method writes more strings on one tape than on the 

other. The ratio of the number of strings on the two tapes, which can be determined by a siITl­

pIe counting system, is 1. 618 to 1. 

3 



SECTION 1. INTRODUCTION 

The merge sort reads the two presort output tapes backward, merging successive strings 

and writing them on a third tape. When the strings on the shorter input tape are finally exhaus­

ted, there are still a number of strings remaining on the longer tape. These are copied onto the 

tape just emptied, in order to have all data on both remaining.tapes in the same ascending (or 

descending) order. Thus, there are again two tapes with strings in the approximate ratio of 

1. 618 to 1 and another merging pas s is begun. This proc es s continues until one string remains. 

As indicated, the same theory of sorting may be applied to any number of tape drives (n), 

in which case the presort writes strings in a prescribed ratio onto n-l tapes, and the merge sort 

begins with an n-l way merge onto the single remaining tape. Thus, the term n-l sorting has 

been used in reference to the Cascade technique. As n becomes greater than 3, the Cascade 

method provides a proportionately greater sorting speed than the conventional merge (two way 

for four tapes, three way for six tapes, etc.) used with the same number of tapes. 

Collate 

The ARGUS collate is used to combine large files of sorted information extending over one 

or more tapes into one continuous file. While the reading and writing controls and tape handling 

are somewhat more complex, the aim and construction of the collate program are quite similar 

to those of the merge sort. 

4 



Basic Routines 

SECTION II 

SPECIFYING AND USING THE SORTS 

The ARGUS sort and collate routines each consist of a skeleton routine and a modifier­

generator. The skeleton routine provides the basic coding, or the programming framework, on 

which the modifier-generator can build a working program. The programmerts pseudo instruc­

tion and information from the file identification record of the input tape together supply the 

parameters needed to adapt this framework to the requirements of a specific sort or collate. 

The modifier-generator consists of two portions which together interpret these parameters to 

create the desired routine. The generator portion establishes storage and buffer areas in 

unus ed portions of memory (generating conc ept), while the modifier portion performs the actual 

adaptation of the skeleton routine (modifying c onc ept). 

Sort and Collate Routines within the ARGUS Li9rary 

When a programmer wants to execute a sort or collate operation, he inserts an instruc­

tion calling for that operation into his ARGUS program. Because this instruction is not directly 

executed by the logic built into the computer, it is called a pseudo instruction. Such a pseudo 

instruction calls for the desired subroutine {in this case a sort or collate} froln the ARGUS 

library tape and specifies the parameters required for the execution of that subroutine. Para­

meters for a sort subroutine specify the precision of the desired sort, the number of input tapes, 

the size of available high-speed memory~ the number of work tapes, etc. 

Sort Routine Specifications 

INPUT: The ARGUS sort routines are designed to handle one tape reel of unordered data or the 

equivalent data on several partially filled reels. Data in excess of this amount can be handled, 

provided that there is no overflow from any work tape at the end of the presort or of any inter­

mediate pass of the merge sort. In other words, the input to the presort and the final sorted 

output may exceed one reel in length. However, if the capacity of any work tape is exceeded 

during the sort, the program will stop with a comment at the console and will have to be rerun 

with less data. The exact amount of data that can be handled by any sort is a function of the 

structure of the data and the amount of pre-ordering that exists, and therefore cannot be stated 

for the general case. Data which exceeds the capacity of the sort can be handled by multiple 

executions of the sort pseudo instruction. Each such execution generates and performs a sepa­

rate sort routine, creating a file out of a portion of the data. The resulting files can be then 

merged by performing a collate. 
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SECTION II. SPECIFYING AND USING THE SORTS 

The input data" which is read in the forward direction, must be preceded and followed by 

standard file (or segment) identification records, as described below. The sort routines can 

handle either fixed-length or variable-length items; however, the number of items per record 

must be fixed. Variable-length items are handled as such throughout the sort and must be fol­

lowed by end-of-item symbols. Such symbols are also required with fixed-length items exceeding 

63 words in length. The record size (in items), the maximum item size (in words), and the fixed 

or variable nature of the items are specified as parameters in the file identification record, as 

are the location and masking (if any) of the key( s). 

OUTPUT: The output of the sort is a single file in ascending sequence, preceded and followed by 

file (or segment) identification records derived from the input data. The end identification rec­

ord contains a segment number of hexadecimal G's, as required by the collate routine. The 

console typewriter produces a listing of all error and restart information, together with a count 

of the number of items sorted. 

Collate Specifications 

INPUT: The ARGUS collate routines are designated to handle up to 99 files of input. Each file 

may be contained on one or more reels of tape, and must conform to the following specifications. 

Each tape {whether a complete file or part of a file} must have standard identification records 

preceding and following the data to be collated. These identification records may be either file 

or segment identifications. The identification record preceding the data m.ust be a beginning 

file (or segment) identification, and the one following the data must be an end identification. The 

beginning identification record must always be the record immediately following the tape identi­

fication block. 

Word I of the identification record is a standard banner word, identical to thos e recog­

nized by the sorts. Word 2 contains the name of the file; this must be the same for all identi­

fication records of a file. The low-order four digit positions of word 3 contain the segment 

number of the tape within the file, and have significance when a file is contained on more than 

one tape. These numbers in the beginning and end identification records of each successive 

tape of a file must be a sequence of decimal numbers. The first tape of a file may have any 

segment number, but the following tapes of that file must have numbers following it in monotoni-

cally increasing order. The segment number of the end identification record of the last tape of 

a file must be hexadecimal G's, as this marks the end of a file for the collate. This also holds 

true for files contained on a single tape, in which case the first tape is also the last" 

The collate routines can handle the same range of variables as can the sort routines (ex­

cept for the banner option), and these are specified in an identical manner in the beginning file 

6 



SECTION II. SPECIFYING AND USING THE SORTS 

(or segment) identi;ication record of one of the input tapes. The collate will use the tape first 

mounted on the IIA" input as its source of parameters; the parameters specified in any other 

beginning identification records are bypassed. 

OUTPUT: The output of the collate is a single file in ascending sequence, each tape of which 

conforms to the above specifications for input tapes. The beginning identification record of the 

first tape and the end identification record of the last tape will be file identification records; all 

others will be segment identification records. The file name of all identification records will be 

the name supplied in the pseudo instruction, and the segment number of the first tape will be 

0001. Each tape (except the last) will be filled to capacity, unless a maximum number of records 

per tape is specified in the pseudo instruction. 

INTERMEDIATE: If a collate consists of !TIore than a single pass, which it will if the nU!TIber 

of files to be collated exceeds the way of the collate, then the output of each pass except the last 

is an inter!TIediate file which will act as input to a later pass. These inter!TIediate files are 

identical in for!TIat to the final output except that tapes are always filled to capacity, and the file 

name in word 2 of the identification records will be an identification number arbitrarily assigried 

by the routine. These identification numbers specify each file uniquely, and coincide with the 

numbers printed in the plan. Further information on these numbers can be found in Section V, 

Collate. 

Tape Positioning 

Sort Input: Positioned so that the first record read forward by the sort will be the 

beginning-of-file identification. If both input drives or the "save" option are used, 

all input tapes will be rewound after the sort. Otherwise, the input tape will be 

positioned following the end-of-file identification record after the sort. There must 

be at least one record following the end identification record. 

Sort Output: Initial positioning of the output tape has the same specifications as 

that of ~he work tapes (see below). After the sort, positioning takes place fol­

lowing the end-of-file identification record of the sorted file, and before an 

end-of-file information record. 

Sort Work Tapes: If at the beginning of tape, the sort will bypass the identifica­

tion block and begin writing with the record immediately following. Positioning 

after the sort (except output tape) will be immediately after the tape identifica­

tion block. It is necessary that there be at least one reco.rd written following the 

7 
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tape identification block; this will be destroyed by the sort. Tapes positioned 

other than at the beginning of tape will be written starting at their current location. 

Positioning after the sort (except the output tape) will be at this current location. 

It is necessary that there be at least one record written beyond the current loca­

tion; this will be destroyed by the sort. 

Collate: Because of the tape changing necessary throughout the collate, all beginning 

identification records (input and output) are assumed to be the record immediately 

following the tape identification label. All tapes are rewound after use. The collate 

will bypass the tape identification block and begin reading or writing with the record 

immediately following. It is necessary that there be at least one record written fol­

lowing the tape identification block on the output tapes; this will be destroyed by the 

collate. Input tapes must have at least one record following the end identification 

record. 

Identification Record 

Every file to be sorted or collated must contain a standard beginning identification record 

as its first record. This record must not be greater in length than any of the data records in the 

file, and will have the following format in words 5-9: 

Wo/l,O 
5 

WOJU) 
6 

WOflD 
7 

WOIUJ 
8 

WoRf) 
9 

- - -
· t · l · ITEM$ PE~ RECoRIJ 

peelMIIL 

;/~S} KEY t!CII;'tllV 
P£C/~IIL 

I I I J I 

I , 
I 

, 
I 

, 
I 

l~ 

I I I I 
, 

I 

I 
_f I , . 

W~RP; peR )rEM ;=FlXEI> 
. I I I I i ;=8I1NN~ 

PE~/MAI. ,~ Villi. 1= 1/011111. 
I I I 

' J. • J • . ~ . I . 
~Et:.fJN# K6Y tfJCAndN 1'NIIlp KE Y ~()CI'I7/IJN ';:~u,:i.s 

PEC/MlIl f)£ClMIlL I:NII~£lJ 
I I . I 'i I 

M~S) 
I I · I • I 

, 
FIRST KEY 

I I I , 
I I'" I . I · I · I 

, 
I 

, 

SECDNIJ KEY MIISK 

I I . 
• I I' I I I , 

I · I · I 
, 

I • 
TIIIIlP KEY MA~/( 

I I 
I ~ I -' I · --I !... ..l. J . -

Words 5 and 6 are to be specified as decimal constants. The number of items per record, the 

maximum number of words per item, and the three key positions relative to the fir.st word of 

the item, each use three digits. The three options use one digit apiece and are as follows: 

o if the item length is fixed, and 1 if variable length; 0 if there are banner words at the beginning 

of each record, or I if there are no banner words except in the file identification records (must 

be 0 for the collate); 0 if the keys ar.e not masked, and 1 if the keys are masked. The masks 

in words 7 -9 are to be specified by the programmer in hexadecimal. 

8 
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The sort assumes that the input tape will be positioned so that the first read forward order 

will read the beginning-of-file identification record. The address of the proper input tape is 

obtained from the m.acrocoding, and the identification record is then read into mem.ory in the 

lowest available register. It is addressed by using index register X6. The sort verifies the 

first record as being an identification record by checking for the beginning-of-file banner word. 

Banner words have a special significanc e to sort routines. The first word of all identifi­

cation records is assumed to be a banner word of standard format, and will be used by the sorts 

to sense for beginning- and end-of-file records. Banner words are also used by the sorts to 

identify beginning-of-string records during the operation of the m.erge sort, and to give the 

number of each record written on tape relative to the first file identification record (low order 

16 bits). If the input file to be sorted does not contain norm.al banner words on data records, the 

presort will add banner words to each record, and the final pass of the merge will eliminate 

them.. This addition of banner words by the presort will occur if that portion of the parameter 

(one digit of the B address field) used for the banner option is 1. 

Specifying and U sing the Sorts 

A single-, double-, or triple-precision sort routine is requested from the ARGUS Library 

of Routines through the use of a pseudo instruction o The format of the pseudo instruction is 

shown below. 

PRO E BL M 

1 

,..... 

LOCATION 

L 

SORT 

p 

S 

PROGR ER AMM DATE PAGE OF 

10 II COMM#.ND CODE 22 ~ 24 A ADDRESS 8 ADDRESS C ADDRESS 
I REMARKS 

3731 51 52 65r .. 
, 

1./.s0~TF' S EI/'O/ MEIlNIlME MMMM/rI/1I1/WI WZ/W3/Wf./W5/W6 

- designates library routine. 

- designates the subroutine within the library. 

- designates the precision. 

- single precision. 

2 - double precision. 

3 - triple precision. 

LINE NUnEi n 74 

i 
I 

I 

I 
I 

I 

: 
I 
I 

I 

- designates an option to allow saving the input tape after the presort 
if that drive is to be used by the merge sort for a work tape. 

10 
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10 

EI 

EO 

S - change tape after presort. 

M - indicates a multi- reel input with only one input tape unit 
available. If the input tape unit is assigned as the nth 
work tape, the input file is saved, as if S were speci­
fied. 

o - do not change tape after presort. If this drive is 
assigned as the nth work tape, the portion of the tape 
beyond the input will be used as a work tape. 

- designates an input edit option (presort own-coding). 
00 - no input edit will take place. 

01 - edit option number 1 will be us ed to modify the 
parameters found in the file identification record 
of the input file. 

02 - edit option number 2 will be performed immediately 
after the generation of the presort. 

03 - edit option number 3 will be performed to modify 
each item in the input buffer before transferring 
it to item storage. 

04 - edit option number 4 will perform all three of the 
above edit options. 

- designates an output edit option (merge sort own- coding). 
00 - no output edit will take plac e. 

02 - edit option number 2 will be performed immediately 
after generation of the merge sort. 

03 - edit option number 3 will be used to modify each 
item only during the final merge pass, at the point 
where an item has been transferred to the output 
buffer. 

04 - edit option number 4 consists of the combined use 
of output edit option number 2 and number 3. 

MERNAME - designates the segme~t name to be assigned to the merge 
sort own-coding. If there is no output editing, this field 
is left blank. The name assigned to merge sort own-coding 
can be any seven characters, but must be different from 
the name assigned to the segment which contains the sort 
pseudo instruction. 

MMMM - designates in decimal the number of words of memory 
available to the sort in the preceding bank(s) in excess of 
the basic requirement of one bank. The basic requirement 
includes only the coding for the sort itself, and excludes 
own- coding, mac rocoding, Executive Routine, etc. If 
sufficient memory is available for the sort specified, this 
information will be printed immediately and the sort will 
stop. 

II - designates input tape drive assignment. All tape drive 
assignments are in standard ARGUS format consisting 
of a two-character code from AA to HH, except GG. 



AI 

WI 

W2-W5 

W6 
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- designates alternate input tape drive assignment; if only one input 
drive is available, II is repeated. 

- designates final output tape assignment. 

_ designates work tape assignments. A code of "GG" should be 
designated for all work tapes not being used. 

- nth work tape assignITlent. The input tape as signment must be dup­
licated as the final work tape assignment (W6) whenever it is to be 
used as a work tape. If the input tape is to be saved, the S option 
must be an ~ (or an M). 

A single-, double-, or triple-precision collate routine, like a sort routine, is called for 

by ITleans of a pseudo instruction. The format of the collate pseudo instruction is shown below. 

I 

-

I'ROGRAMMER D T A E OF 

LOCATION 10 II COMMAND CODe 22 ~ 24 A ADDRESS 8 ADDRESS C ADDRESS I REMARKS 
3731 51 52 651M LINE NUMBER 11 74 

/., C()t.LIITE P E()/() TPTNH.ME MMMM /NO!eEC NF 
I I 

I 

Tile III/liZ /81/82/el 'C1./6G!66 I 

Ol/O! / EI /EZ/ '" '()Z//)T/t;~ 
, 

THe I 
I 

I 

: 
I 
I - - i-- - - - J--- - - -

L - designates library routine. 

COLLATE - designates the subroutine within the library. 

p 

EO 

designates the prec ision. 
1 - single precision. 

2 - double precision. 

3 - triple precision. 

- designates an edit option. 
00 - no edit will take place. 

01 - edit option nUITlber 1 will occur to modify the parameters 
found in the file identification record of input file. 

02 - edit option nUITlber 2 will be performed to allow for own­
coding after generation of the collate. 

03 - edit option nUITlber 3 will occur to modify each item only 
during the final pas s, at the point where an item has been 
transferred to the output buffer. 

04 - edit option nUITlber 4 will occur which will provide for all 
three edit options. 

10 

-
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OTPTNAME - designates the file name to be placed in the second word 
of the file or segment identification records of the final 
output file produced by the collate routine. 

MMMM - designates memory (in decimal) available to the collate in 
the preceding bank(s) in excess of the basic require-
ment of one bank. The basic requirement includes 
only the coding for 'the collate itself, and excludes own­
coding, macrocoding, Executive Routine, etc. 

NOREC - designates (in decimal) the maximum number of records to 
be written on each tape of the final output file. If this field 
is left blank, tapes of the final output file will be filled. 

NF - designates (in decimal) the number of files to be collated. 
The collate can handle up to 99 original input files, and 
thus the range of NF is 02 to 99. 

The two Tape Address Constants (TAC) following the pseudo instruction are used to specify 

the large number of drives which the collate may use. Although not part of the pseudo instruc­

tion, these must be written in the prescribed format immediately following the pseudo instruc­

tion, so that they will be located immediately after the macrocoding associated with the collate. 

When finished, the collate exits to whatever instruction foliows the second TAC. 

12 

Al 

A2 

BI 

B2 

CI 

C2 

GG 

Dl 

D2 

- designates the first, or main, "A" input tape as signment. 
This will be the source of the beginning-of-file identifica­
tion from which the collate will obtain its file format 
parameters. 

- designates the second, or alternate, "A" input tape assign­
ment. If the "A" input is to be restricted to a single drive, 
then Al should be repeated. 

- designates the first, or main, "B rr input tape as signment. 

- designates the second, or alternate, "B" input tape assign-
ment. If the "B JI input is to be restricted to a single drive, 
then B 1 should be repeated. 

- designates the first, or main, JlC" input tape as signment. 
If a two-way collate is to be performed, this as well as 
C2 should be written as "GGJI. 

- deSignates the second, or alternate, "c" input tape assign­
ment. If the "crr input is to be restricted to a single drive, 
then CI should be repeated. 

- unused. These fields should be written as such, however, 
in order to fill the T AC instruction. 

- designates the first, or main, "D" input tape assignment. 
If a two- or three-way collate is to be performed, this as 
well as D2 should be written as "GG". 

- designates the second, or alternate, "D" input tape assign­
ment. If the "D" input is to be restricted to a single drive, 
then DI should be repeated. 
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El 

E2 

01 

02 

DT 

GG 

designates the first, or ITlain, "E" input tape as sign­
mente If a two-, three-, or four-way collate is 
to be performed, this as well as E2 should be writ­
ten as "GG". 

designates the second, or alternate, "E" input tape 
assignITlent. If the "E" input is to be restricted to 
a single drive, then El should be repeated. 

designates the first, or ITlain, output tape assignITlent. 
This is always the first tape to be written by the col­
late. 

designates the second, or alternate, output tape assign­
ment. If the output is to be restricted to a single drive, 
then 01 should be repeated. 

designates the restart dUITlp tape assignITlent. The code 
"GG" specifies that no restart points are to be established 
during the collate. 

unused. This field should be written as such, however, 
in order to fill the T AC instruction. 

The paraITleters dealing with the file forITlat are set up in the file identification record 

exactly as they are for the sort. Although all of the inputs to the collate must have standard 

beginning- of-file identification records, only the fir st "A" input file is us ed as the sourc e of file 

parameters. In addition to the requirements mentioned in connection with the sort, the collate 

requires that the segITlent number (digits 11 and 12 of word 3 of the file identification record) 

of each reel of a file be in decimal sequence with respect to the reel preceding it. The seg­

ment number of the first reel of a file ITlay be any nUITlber the user wishes. The end-of-file 

identification record of the final reel of a file must have a segITlent number of "GG" to indicate 

end-of-file to the collate. Because reels are norITlally mounted and dismounted during the 

course of the collate, the beginning-of-file (or segment) identification record of each reel IS 

assumed to be the second record on tape, iITlITlediately following the tape label record . 

. Additional MeITlory Requirements 

In both the sort and the collate macro instructions, there is a field (MMMM) which speci­

fies the amount of additional memory available to the sort, in addition to the basic requireITlent 

of one bank. This figure is the same for both the presort and merge sort, but the requireITlents 

for each are somewhat different. 

The nature of the presort is such that it ~ always function within a single bank (MMMM :;:; 

0000), regardless of item or record size. In some cases, namely when item size and record 

size are both relatively small, nothing is to be gained by providing additional ITlemory space to 

the presort, since it is able to fit its maximum nUITlber of storage locations (216) within the 

basic bank. However, when items or records are larger, less than the maximum number of 

13 
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storage locations will fit within the basic bank, resulting in shorter strings from the presort, 

and thus more merge sort passes and a longer sort routine. In such a case, providing the pre­

sort with additional memory would benefit the user by producing more storage, longer strings, 

fewer passes, and thus a shorter sort. 

The merge sort is less flexible in this respect. Under some conditions, a merge sort 

will fit entirely within the basic bank; in other cases, it will have to have additional memory. 

The two variables which influence this requirement the most are the maximum "way" of the 

merge, determined by the number of tapes used by the sort, and the record size; together, these 

determine the size and the number of buffers used by the merge sort. Also influencing the 

amount of memory required is the span between the highest and the lowest key locations within 

the item, since this amount of space must be reserved for stoppering purposes. In single­

precision sorting, the span is, of course, zero. The following fonTIula gives the amount of 

additional memory required by the merge sort: 

where 
m 

p 

t 

r 

s 

m = p + 3tr + s - 2, 048 

- designates the additional memory locations required (if the result 
is negative, less than the basic bank is required, and MMMM may 
be zero). 

- designates the number of memory locations used by the program: 
750 for single precision, 800 for double precision, 825 for triple 
precision. 

- designates the number of tapes used by the merge sort: three, 
four, five or six (W 1 through W6 of the macro instruction). 

- designates the maximum number of words per record, including 
banner word, data, two ortho words, and end-of-record word, 
up to 254. 

- designates key span, or highest key location minus lowest key 
location. 

For example, in a double-precision sort with key fields in words 12 and 2 and a maximum 

record size of 100 words to be performed as a six-tape sort, p would be 800, t would be 6, 

r would be 100, and s would be 10; also 562 additional memory locations would be required. 

However, a four-tape sort of the same specifications (t would be 4) would be contained within 

the basic bank. 

where 

14 

A similar formula may be stated for the collate as follows: 

m = p + (3w -;- 2) r + s - 2, 048 

m - designates the additional memory locations required (if the 
result is negative, less than the basic bank is required, and 
MMMM may be zero). 
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- designates the number of memory locations used by the pro­
gram: 1, 250 for single precision, 1, 300 for double precision, 
1, 350 for triple precision. 

- designates the maximum "way" of the collate: two, three, 
four, or five. 

- designates the maximum number of words per record, 
including banner word, data, two ortho words, and end-of­
record word, up to 254. 

- designates key span, or highest key location minus lowest 
key location. 

Calling for, Assembling, and Executing the Sort 

There will be occasions when a particular sort may be one of several programs which are 

run as a series; at other times, it may be one of several segments making up a program. In 

either case, from a programming standpoint, a sort is a logical entity, and the ARGUS System 

goes to considerable effort to maintain it as such. Thus, a programmer has only to write the 

single pseudo instruction, L,SORT, in order to produce a complex pair of routines which 

together form the sort. 

Although consisting of two separate phases, presort and merge sort, the sort is called for 

and loaded as a single subroutine. This is entered at execution time by a special calling sequence, 

or macrocoding routine. Thus, the L, SORT is a macro (pseudo) instruction which is replaced 

during Assembly by a 15-word calling sequence. 

Being a subroutine, the sort is IG:3.ded along with whatever coding (including the 15-word 

calling sequence) the programmer has written. After the macrocoding is reached, it turns con­

trol over to the presort generator portion of the sort subroutine. This, in turn, generates and 

modifies the presort coding, using parameters set up by Assembly in the calling sequence, in 

order to provide a working presort; in doing so, the merge sort portion of the sort routine is 

destroyed. The presort is then performed, and when it is finished, it returns control to the 

calling sequence. The calling sequence now reloads the entire segment, namely programmer 

coding, calling sequence, and sort subroutine. This time the calling sequence specifies to the 

loader that control is to remain within the calling sequence rather than starting the segment at 

the beginning again. Once reloaded, the calling sequence tests the MERNAME field (from the 

original pseudo instruction), and if it is equal to alpha blanks, the sequence assumes no own­

coding has been written for the merge sort. The merge sort generator portion of the subroutine 

is then entered, and this generates and modifies the merge sort coding, this time destroying the 

presort. The merge sort is performed, and when it is finished, it returns control to the loca­

tion just beyond the calling sequence. Thus, ·whatever the programmer had written following 

15 
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the pseudo instruction would now be performed in so much as the sort has been completed. 

Any own-coding that is performed during the presort (see Section VI) is written as part 

of the same segment, together with the rest of the programmer's coding. As part of the same 

segment, it is loaded both before and after the presort, along with the programmer coding, 

calling sequence, and sort subroutine. Merge sort own-coding, however, is written as a sepa­

rate segment. When the presort has been executed, and the basic sort segment has been re­

loaded, and if the calling sequence discovers that something other than alpha blanks was written 

in the MERNAME field, it then loads the segment by that name. The segment representing the 

merge sort own-coding must therefore be given the same name as in the MERNAME field and 

this will now be loaded. This approach allows merge sort own-coding to overlay the presort 

own-coding in order to conserve space, if so desired. Also, special register Z, S2 is used as 

the address for the own-coding to which the sort is to branch. This may be loaded as the address 

of the presort own-coding by the main sort segment, and then loaded as the address of merge 

sort own-coding by the auxiliary segment. More details concerning the handling of own-coding 

are contained in Section VI, Own- Coding. 

The sort, being a subroutine, is handled as such by Assembly, and is therefore placed 

immediately following the programmer's coding. However, since the sort uses almost an 

entire bank, it can only be relocated modulo 2, 048. Within its bank, the sort program starts 

at location 20 (0020) and ends four locations before the end of the bank. The former unused area 

of memory permits the programmer to SETLOC the calling sequence plus the normal exiting 

mac rocoding (usually either L, EXIT or L, READSEG) at location zero of a bank to enable the 

program to fit entirely within that bank. The four locations at the high end of the bank allow 

the sort routine to occupy the highest bank of a given installation without interfering with the 

stopper. 

1£ the highest location used by the programmer's coding within a bank is greater than 20 

(which it inevitably will be unless the programmer specifies a SETLOC of zero and includes 

nothing in his program or segment except the L, SORTp and the exiting pseudo instruction), the 

sort will be located in the succeeding bank of memory. By judicious use of SETLOCs, the 

programmer may determine exactly the space relationship between his coding and the sort rou­

tine. It is possible to separate the programmer coding from the sort by any number of banks 

by specifying, within the programmer's coding, a SETLOC whose sole function is to establish a 

memory location in some higher bank. Thus, a programmer might SET LOC his coding in bank 

o and follow the coding by a SETLOC of location 0000, bank 3. The coding (consisting of the 

programmer's instructions, the calling sequence, any own-coding, etc.) would be assigned to 

16 
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bank 0, and, insomuch as a point has been established within the first 20 locations of bank 3, 

the sort routine would thereby occupy bank 3. The same result would occur if the second 

SETLOC had specified a location higher than 0020 in bank 2. 

Macrocoding 

The macrocoding corresponding to the L, SORTp pseudo instructions consists of the 

following: 

PROBLEM PROGRAMMER DATE P GE A OF 

LOCATION 10 II COMMAND CODE 22 ~ 24 A ADDRESS B ADDRESS C ADDRESS 
REMARKS 

I 37 l8 51 52 65 66 LIN E NUMBER 13 14 

MIJcIU)PEF I I 
I 

I 

I., $(}!!T f? /5 £ 1/ £() /4t£I!NIIME MMIHM/II/I1I/WI w z/wa/W4/WS/W6 
I 

I 
I 

I 

'MIUIl() TJ c, +12 Z,IIUI N, /Ill I I 
I 

NI, /), £0 P,EI II,S I 
I 

FX8IM f-MMMM) I 
TII~ ][,III/WI, W2,W", W4,W5,W6 

I 
I 

()tT Z6~(lJftl~;IIJ¢;77 77 I 
I 

10 '£6"IIM~ (1(I9M~ ~F S tMeT 5~ t.JMENT) I 

~P£c - c, +4- I - I " 
t:J~T Z6d; 4 (JI> tJ 16(J~77 17 I 

I 
12 

13 RtF MEIlN~IIIIE. i 
14 ~I'EC - - c,+Z 

I 
I 

15 Nil c,-Z c,-f4 c, -3 : 

T$ C, -IZ Z,IIVI N, /ll/I I 
I 

16 

SII6Cl1tl - - SOKTp I 
1 

17 

18 SU8tJ11-l - - 50RTp+1 I 
( 8LRNIC.S) 

I 

fltF I 19 

FIN~ 
I 
I 20 , , , 

-----

During ARGUS Assembly, any L, SORTp pseudo instruction appearing in'a line of coding is re­

placed by these 15 istructions starting with MACRO. The Assembly Routine matches all of 

the fields in the sample L, SORTp pseudo call of the above MACRO definition with the fields in 

the various constants below it. Thus MACRO+l, a mixed constant, will contain whatever the 

programmer wrote in the EO, El, and S fields of the pseudo instruction. MACRO+2 will con­

tain the quantity written in the MMMM field. MACRO+3, a tape-address constant, will contain 

all of the tape addresses from the pseudo instruction in compacted form. MACRO+5 is actually 

an alphabetic constant, set up by Assembly to contain the name of the segment containing the 

17 
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L, SORTp pseudo instruction. MACRO+8 on the other hand, is set up as an alphabetic constant 

containing whatever was written in the MERNAME field of the pseudo instruction. MACRO+12 

and MACRO+13 are set up by Assembly as SPEC constants, containing the address of the respec­

tive first and second locations occupied by the sort subroutine. 

At execution time, the first order encountered (after any preliminary programmer coding) 

is MACRO. This transfers the contents of MACRO+12 to Z, AUI and goes to N,AUl. MACRO+12 

is a SPEC constant combining the first location used by the sort routine. This first location 

of the sort is, in turn, a TS instruction which stores the sequence history register, and trans­

fers control to the entrance of the presort generator. The address which is stored from the 

sequence history register is MACRO+l, and this gives the presort generator access to 

the constants in the macrocoding. 

When it is finished, the presort exits to MACRO+4 via the stored value of the sequence 

history register (just mentioned) which will have been incremented by 3 in the process of inter­

preting the parameter constants. MACRO+4, +5, +6, and also MACRO+7, +8, +9 are the 

rnacrocoding equivalents of the L, READSEG pseudo instructions. They are written here in 

expanded macrocoding form because macrocoding cannot call other macrocoding. MACRO+4 

(as well as MACRO+7) are actually MPC instructions which must be written as constants in 

order that the reference to group 0, which they contain, will not be relocated in another group. 

These MPC orders specify that groups 1 through 7 will be turned off, group 0 be turned on, 

and the contents of the peR be stored in the accumulator; the A address contains a code which 

specifies to the Executive Routine that this was a READSEG instruction. Executing one of these 

instructions causes the Executive Routine to load the segment specified in the following location, 

and to transfer control to the location specified in the SPEC constant following that instruction. 

Thus, when the presort exits to MACRO+4, the segment containing the L, SORT pseudo instruc­

tion is unloaded and control is turned over to MACRO+IO. 

Whatever was written in the MERNAME field (now in MACRO+8) is compared with alpha­

betic blanks (MACRO+14) in MACRO+lO. 1£ these are not equal, then merge sort own-coding 

exists, and that segment will have to be loaded. If MERNAME was left blank, however, the 

next move would be to MACRO+ll, which transfers the address of the second location used by the 

sort into Z, AU 1 and goes there. The second location of the sort program is similar to the first, 

except that it transfers control to the merge sort generator. The sequence history register 

is again saved, so that the merge sort, when finished, can use it to exit to the location beyond 

MACRO+14, thus returning to whatever programmer coding followed the L, SORT pseudo instruc­

tion. 
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If it had been determined in MACRO+lO that merge sort own-coding existed (MERNAME 

field not equal to blanks), the next move would have been to go to MACRO+7. This constant, 

like MACRO+4, is actually an MPC instruction which turns control over to the Executive Routine~ 

telling it to load the segment whose name is in MACRO+8 and to go to the address specified in 

MACRO+9. This, in turn, leads to MACRO+ll, an entrance to the merge sort generator, as 

stated in the preceeding paragraph, with the only difference being that the segment whose name 

was specified in the MERNAME field has been loaded. 

In summary, the rather complex macrocoding associated with the L, SORTp pseudo instruc­

tion can be reviewed as accomplishing several purposes. First, it provides for translation of the 

parameters supplied in the fields of the pseudo instruction into a form usable by the sort genera­

tors (this function is performed by all subroutine macro calls). Secondly, it provides for reload­

ing the sort's segment over again, thus allowing what is effectively a two-segment program (the 

sort) to be called for, and treated, as one. This enables the programmer to consider a sort 

routine as a single instruction. Thirdly, it allows the separate merge sort own-coding to over­

lay the presort own-coding after the presort is finished, so that memory space may be utilized 

as efficiently as possible. 

Checking Sorts U sing the Program T est System, PTS 

The L, SORT macrocoding is, of course, designed for use with the ARGUS System; thus, 

ARGUS Assembly will set up the parameters, and properly locate the sort subroutine relative to 

the programmer's coding. The Executive Routine will relocate the entire segment, if necessary, 

and will handle the loading and overlaying at execution time as described previously. Program 

Test System, PTS, however, is designed to check out just single segments; hence, special care 

must be taken when checking out sort routines or when checking out programs of which sorts are 

a part. For each program tested, PTS requires a START card, which specifies the ending loca­

tion of that program. The instruction in this location, however, will not be performed. There­

fore, the first MPC to be encountered, MACRO+4, should be specified as the ending address 

in the START card of the sort segment (since PTS will not recognize the Executive Routine MPC). 

Insomuch as PTS will automatically load the next program on its tape, the same sort program 

should be specified a second time in order that the sort will be reloaded. For this second sort 

program, the sequence counter should be set to MACRO+lO, which can be accomplished by means 

of a transfer instruction inserted in place of the first instruction of the program, which places 

MACRO+6 in the sequence counter. 

If there is no merge sort own- coding, the START card for the second program of the pair 

can specify the final order of programmer coding as the exit location. However, if merge sort 
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own-coding is employed, then MACRO+7 should be specified as the exit of the second program, 

and a third program, which consists of the merge sort own-coding segment, will have to be 

included. In this case, only one instruction of the second program will be performed (MACRO+ 

10), whereupon the third program will overlay the second. BACKGROUND should not be loaded 

between the second and third programs since the subroutine and programmer coding brought iH 

with the second program must remain in memory. The entrance to the third program should be 

temporarily specified as MACRO+ll, following the same manner used in specifying the entrance 

to the second program. The START card for the third program specifies the final instruction 

of programmer coding as the exit. 

Thus, the method of checking out a sort with PTS is the same as that used with any multi­

segment program. Each segment, which would normally be loaded automatically in a production 

run by the Executive Routine, is treated as an individual program. Because of the manner in 

which it is reloaded, the sort subroutine must be handled as two programs during PTS, both of 

which will have the same name, but each of which will have different entrances and exits. 

Merge sort own-coding similarly requires the inclusion of a third program to represent the 

additional own-coding segment. 
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General Method 

SECTION III 

PRESORT 

Figure 2 shows a simple version of the ARGUS presort. Storage in this simple case con­

sists of only three items, the items each representing a complete record on tape, and the keys 

consist of a single digit. The tape on the left (input) contains 10 of these items, in random 

order. 

Initially (a) the storage area is empty, and all tapes are positioned at the beginning (as 

indicated by the arrows). In the fir st step (b), the storage area is filled with the first three 

items from tape; the input tape is now positioned just after the third item. The item with the 

smallest key is then selected and written on one of the output tapes, and replaced with an item 

from the input tape. Thus in (c), the 0 is written out, and replaced with the 6. At this time it 

is ascertained that the key which was brought in (6) can be included in the present string because 

it is greater than the key just written out (0). 

This process continues, and in (d) the 3 is written out and replaced with a 5, and in (e) 

this 5 is found smallest and written out, being replaced by a 4. Now, however, since the 4 is 

smaller than the last item written, nam.ely the 5, it cannot logically be included in the present 

string, so it is stoppered (temporarily removed from consideration), as indicated by the cross 

(X) placed through it in the example. 

The choice is now confined to the remaining items in storage and the 6, being the smaller, 

is written on the output tape and replaced with a 7, as indicated in (f). The 7 is next written on 

the output tape (g) and replaced by the 1, at which point this item must also be stoppered. There 

is no choice left but to pick the remaining item in storage, so the 9 is written on the output tape 

and replaced by the 8, which is also stoppered. At this point (h), all three of the items in stor­

age are stoppered, and one string has been completed on the output tape. 

Writing (i) is now switched to the other tape; all items that are presently stoppered in 

storage are unstoppered; and again the smallest item is selected. The 1 is written and replaced 

by the 2, which happens to be the last input item. When the end of the input is sensed, reading 

is discontinued and each item in storage is stoppered after it has been used (j). Thus, in the 
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rem.aining three figures, (j, k, 1) each item. is stoppered, after it is selected and written, and the 

presort is com.pleted. 
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Figure 2, Sim.ple Presort Exam.p1e 
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Reading and Writing Controls 

Reading and writing are both handled by the presort in a conventional manner, using two 

input and two output buffer areas to allow simultaneous read-compute-write operations. All four 

buffer areas are essentially the same size as the records on tape. As one input buffer is being 

loaded from tape and one output buffer is being written on tape, the presort processes data using 

the remaining input and output buffers. Since one tape is being read and one is being written at 

anyone time, with the same amount of data corning in as going out, reading and writing cycles 

are synchronized, although they may operate independently if own-coding (see Section VI) is used 

to :modify record or item size or to add or delete items. 

Building Strings 

Besides the reading and writing controls, the presort consists basically of the coding 

necessary to find the smallest usable key in storage. In a :multi-precision sort, all specified 

keys are juxtaposed and the presort seeks the smallest value of the combined keys. 

The simple example of the ARGUS presort :method, included in this section, de:monstrates 

how variable-length strings are produced by a cascade presort. The potential length of each 

string is directly influenced by two basic factors: the amount of me:mory that is made available 

to store items while comparing for the s:mallest key; and the randomness of the data itself. The 

more ite:ms which can be included in storage, the longer the generated strings will be. More­

over, any preordering or natural ordering of the data will directly bias the length of the gen­

erated strings. If the input data is co:mpletely random, meaning that each new item brought in 

has a 50-50 chance of having a key which is smaller than the key of the preceding ite:m, the gen­

erated string length will average twice the number of items that are stored internally. Thus, in 

the si:m.ple example of the presort method, which uses a storage capacity of three items, the 

first string happens to contain six items. 

The pre sort modifier ~gener ator take s full advantage of any a:mount of me:mory :made avail­

able to it, setting up as many item storage locations as possible. The skeleton routine can be 

adapted to work with any number of storage locations up to and including 216 items, thus being 

capable of producing strings of 432 iterns average length. 

Trees 

The process of finding the smallest key in storage is accomplished by :means of a "tree" or 

a series of trees. A tree is a section of coding having a single entrance and several exits. 

Figure 3 illustrates a comparison tree having a single entrance and six exits. This tree 
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Figure 3. ARGUS Presort Tree 
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exaITlines six keys (A, B, C, D, E, and F) and deterITlines which is the smallest, which in turn 

determines which exit froITl the tree is to be used. 

Bins and Tags (General Description) 

As sociated with each tree in the ARGUS presort are several storage areas called bins 

which contain the keys being compared. As comparisons are completed at one level of trees, it 

is necessary to transfer the key that was found to be smallest in each tree at that level to the bin 

associated with the next level. Since moving the entire iteITl would in most cases be unwieldy, 

both in terms of transfer time and of space required, tags are used to minimize the amount of 

data that has to be transferred. 

As each iteITl is brought into mernory, the related key is detached and sent to an area with­

in a bin which corresponds to that item's storage location. Within a bin, every other location is 

set up with an identification word which designates the start of an item in storage. Each key is 

placed in the bin adjacent to the ID word which designates the start of the corresponding item. 

Thus,each item is represented in the bin by a two-word group, called a tag, which contains the 

key of the item and its starting location. It is this tag which is actually moved as control pro­

ceeds froITl layer to layer. When the sITlallest key is determ.ined, the ID portion of the tag is 

interpreted to find the location of the corresponding item, and that iteITl is transferred to the 

ou tpu t buffe r • 

Layers of Trees in an ARGUS Presort 

In general, trees are most efficient when they have from four to six exits. Therefore, the 

trees used in the ARGUS presort never have more than six exits. When ITIore then six keys are 

to be compared, the concept of layers of trees is used. For example, a full ARGUS presort of 

216 items uses three such layers of six-way trees, as shown in Figure 4. 

BINS-
I§J 
LAYER 

BINS-
2ND 
LAYER 

3 RD 
LAYER 

2 3 \I 

36 
~ ______ ~~~ ______ ~--~----__ ~----L---~~----~--~ __ ----~--~~ __ --~ITEMS 

6 

Figure 4. Bins Accompanying Each Layer of Trees 

6 
ITEMS 
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In this example, the first layer consists of 36 bins .. each containing six tags. As a result of all 

the comparisons at this level, the smallest key in. each of the 36 bins is determined and the 

corresponding tags are delivered to the six bins at the second layer. In the same fashion, the 

second-level comparisons result in the transfer of six tags to the final bin, or master bin, which 

comprises the third layer. The tag transferred from the master bin contains the smallest of 

the original 216 keys, as well as the starting location of the corre sponding item. Various pro­

gramming techniques used to minimize the number of passes through the trees are explained 

later in this section, as trees are covered in more detail. 

Stoppering 

In the presort example, stoppering is represented by drawing a cross through an item in 

storage. Stoppering is performed when a new key is found to be too small for the current string. 

A constant of hexadecimal GI s is transferred to the corresponding key location in the bin. This 

constant will never be found smaller than any other key in the bin. When all of the key locations 

in a bin contain hex G constants, the program unstoppers all key locations and starts a new 

string. This is accomplished by transferring the keys from all stoppered items to their re s­

pective bins and then repeating all trees to find the new smallest key. The related item is then 

written as the start of a new string. 

Old· Key Area 

That portion of the presort coding which determines whether an item should be stoppered 

or whether it qualifies to be included in the present string is termed the "old key area". The 

key of the last item written in the present string is retained in this area and compared with the 

key of the next item coming into the storage area. If the new key is smaller than the old key, 

the new item does not qualify for inclusion in the present string and, therefore, a stopper is 

provided. 

Master Routine (General Description) 

The master routine is used in conjunction with the old key area and the presort tree and 

represents the basic routine of the presort. As long as one or more items remain unstoppered, 

it transfers out the item having the smallest key, brings in a new one, and gives control to the 

old key area. The latter, in turn, gives control to the tree after determining whether the new 

item must be stoppered. The master routine checks input and output buffers and branches to 

read or write routines whenever necessary. When all of the items in memory become stoppered, 

the master routine gives control to an end-of-string routine to close the current string and start 

the next. 
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End of String 

Each tim.e that a string is com.pleted, there are several tasks to be perform.ed. Because 

banner words (one per record) are used by the m.erge sort to identify the beginnings of strings, 

it follows that breaks between strings m.ust correspond with breaks between records. Thus, if 

the output ?uffer is only partially full when a string is com.pleted, filler item.s, known to have 

keys larger than any item. of the file, m.ust be generated in order to com.plete the record. Item.s 

consisting entirely of hex GI s are generated by the end-of-string routine for this purpose. 

NOTE: The following text refers to m.any special registers used in the ARGUS presort program.. 

Appendix B of this m.anual provides a list and functional description of these special 

registers. 

Bins and Tags (Detailed Description) 

As previously explained, six item.s are com.pared with the tree in the ARGUS presort, thus 

accounting for the fact that six tags are grouped together in the accom.panying bin. In addition to 

these six tags, the bin contains several instructions and pieces of inform.ation which will be used 

when the tree has determ.ined which of the tags in the bin is the sm.allest. This is necessary 

because, in order to preserve space, the ARGUS presorts use only one tree, which is associated 

with the appropriate bin via an index register. After the sm.allest item. in any bin has been found, 

the additional orders of the bin transfer that sm.allest tag to the next appropriate bin, and after 

having set the index register to that bin, control is transferred once again to the six-way tree. 

Figure 5 includes a detailed arrangem.ent of a typical tag bin. This represents the layout 

of a single-precision bin. Double-precision bins are sim.ilar except that an additional word for 

each tag is used as a second key. The triple-precision bins are sim.ilar"to the single, the tree 

being supplem.ented by additional coding to com.pare the second and third keys within the item.s 

them.selves. 

When each of the bins is in use, the index register is set to the location just prior to word 

1 (XO in the illustration) so that the increm.ent to the index register will correspond with the 

word num.ber. Starting at the top of the bin, the six tags occupy pairs of words. the first word 

being the key, and the second being the ID word. The ID word is illustrated at the bottom. of 

Figure 5. Following the six tags, which occupy words 1 through 12 in the bin, are three ad­

ditional words (13, 14, and 15) which are additional orders and a constant. 

Word 13, called the bin TN instruction, transfers the sm.allest tag to the next bin. This 

is constant except for the A address which is set up by the tree each tim.e the tag representing 
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the smallest item is found. The tree stores the (indexed) address of the tag here. The B 

address indicates the number of words to be transferred (two in this case). The C address is 

the location of the tag position in the next bin which corresponds to this tag bin. (It has been 

explained previously that six initial bins feed into one bin of the next level; also the smallest tag 

from each of these six bins is placed in a corresponding position of the next level bin.) After 

setting the A address of word 13, the tree exits to word 13, all through indexed addressing. 

Mter word 13 is performed, word 14, which represents the bin TS instruction, transfers 

control to the next level bin. This is performed by storing the contents of word 15, a constant, 

into the index register, and going to the tree, now associated via the index register with the next 

bin, and the process continues. As indicated in the diagram, the A address is indexed, and the 

B address is a direct special register address. Word 15 is a SPEC constant, representing 

word 0 of the next level tag bin .. 

Master Bin' and ID Word 

To avoid going from tag bin to tag hin indefinitely, the final tag bin is slightly different 

from the others. This final bin is termed the master bin, and as previously explained, is the 

bin. from which the smal1est tag of al1 stored items is found and transferred out. The master 

bin is actual1y the same as the other bins through word 13, except that the C address of word 13 

refers to a working area cal1ed the old key area. Thus, the same tree can be us ed in associa­

tion with the master bin as the others, and the exit will also be the same. 

The ID word is used in the section of coding fol1owing word 13 of the master bin. At this 

point, the ID word serves to identify the item in storage from which the attached key carne and 

the tag bin to which that key was original1y transferred. The ID words are generated original1y 

as constants and are placed in the appropriate positions of the initial tag bins to which the keys 

from the items are transferred. In the intermediate bins and master bin, these ID words have 

been brought along with the keys from previous bins (see Figure 5). 

Single-Precision Tree 

The description of the bins, and an explanation of their operation, form the external speci­

fications of the tree. A tree, then, must compare indexed words 1, 3, 5, etc. (key words of 

the tags) to find the smal1est, substitute the indexed address of the smal1est tag into the A ad­

dress of indexed word 13, and go to indexed word 13 of the bin. At each exit of the tree, there 

is a masked TS order which is used to substitute the address of the smal1est tag into the A 

address of indexed 13. In order to economize constants, it picks up the address from one of 
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the instructions in the tree (in the one case when such an address does not appear in the A 

address position of the tree, a constant is used instead as the source). This TS instruction then 

sequence changes to indexed 13. Figure 6(a) illustrates a single-precision tree and how it dif­

fers frorn. a (b) double-precision tree and (c) a triple-precision tree. 

Double-Precision Tree 

When a key corn.prises more than one word, the logical comparison of such a key will con­

sist of more than the one LA instruction neces sary with single-precision keys. Only if the first 

two words compared (high-order portion of key) are equal, is it necessary to compare the next 

word of the key. This requires that an NA instruction be performed to determine if the first are 

completely equal. Figure 6 illustrates this relationship; (a) illustrates a single instruction 

needed for a single-precision comparison between A and B; (b) illustrates double-precision keys, 

Ai and B1 being the high-order portions (first keys), and A2 and B2 being the low-order portions 

(second keys). The entire array in (b) corresponds to each of the comparisons shown in the 

earlier tree. It becomes apparent that each additional word in a key adds considerably to the 

number of instructions required as well as the time needed to go through the trees. The final 

comparison is simply an LA instruction, so that if two keys are corn.pletely equal, One is 

arbitrarily picked as being "srn.allest". A superfluous TS instruction is saved by reversing the 

final LA instruction (that is, B:A instead of A:B). In (b), if both LA instructions were A:B, one 

will have to be followed by a sequence change, since both obviously cannot remain in sequence, 

when A is greater than B, and still end up at the same place. By reversing the second LA in­

struction, a sequence of mern.ory locations, as indicated by the address numbers over each 

comparison, can be assigned. When several such comparison arrays are grouped together in a 

tree, the sequence of instructions follows down the tree rather than through the levels of com­

parison. Figure 6{b) illustrates this in the double-precision tree. 

Triple-Precision Tree 

It would be possible to extend the reasoning used in the double-precision tree to handle a 

triple-precision tree (accompanied by a corresponding increase in tree size), but in order to 

conserve memory as well C!-S facilitate the addition of higher precision, the triple-precision pre­

sort makes use of a space-saving technique. The basic triple-precision tree itself is identical 

to the single-precision tree insomuch as each comparison set consists of one LA instruction and 

one NA instruction; however, if the first keys are found equal, a special section of coding is 

entered. This coding represents a common second and third key comparison array used for all 

comparisons after the first key. With own-coding, this section can be easily modified to work 

with any number of additional keys. The tag bins are actually simplified, being identical to 
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single-precision bins, since only the first key word is carried in the tag. The second and third 

keys are compared directly within the item itself. If the first key words in a triple-precision 

sort are fairly random, which is the normal case with a presort, the special coding will seldom 

be used. When the additional levels of precision are used, this technique is slower than the 

straight-forward tree. 

The triple-precision tree is illustrated in Figure 6{c}, as well as in Figure 7, which shows 

the special common coding area. The latter illustrates a tree that has been arranged so that 

when the first keys are found equal, the sequence history register is set to the next instruction 

which would be executed if one of the keys were smaller, while the sequence counter is set to 

the next instruction to be executed if that key were greater. In place of the second LA instruc­

tion in each comparison group, the triple-precision tree has a TS instruction to switch to co­

sequence. This transfers the NA instruction just performed to a working location in the com­

mon coding before going to that area. Figure 7 illustrates the common coding. Two index re­

gisters (5 and 7) are set to the values of the two corresponding items in storage by using the ID 

words of the tags being compared. Next, second and third key comparison instructions {still in 

cosequence mode} compare the additional keys directly in item storage through these two ad­

ditional index registers. The third key LA instruction can easily be changed to go to own-coding, 

upon finding possible equality, and any number of additional keys can be compared there in the 

same way. Two exits are possible: in one, the contents of the sequence history register are 

stored in the sequence counter and the program drops out of the cosequence mode so that return 

is made to the sequence counter; in the other, the program drops out of the cosequence mode 

without modifying the sequence counter. 

Suppose that two keys, A and B, are equal in the first and second words, but A3 is smaller 

than B3. (Figure 7 illustrates this example.) The first order in the tree is Al:Bl, and since 

Ai is less than or equal, go to 3. In order to go to 3, however, the sequence must be changed, 

and so the address of 2 is stored in the sequence history register. In 3, Al :Bl is tested for 

equality and since they are equal, 4 is performed next. This (4) is a TS instruction specifying 

a switch to cosequence, which transfers 3 to WL, and goes to WL+1. In WL+i, a WA instruc­

tion, masked to include the A address only, is performed to add the contents of WL to a 1 bit in 

the A position and then stores the result in WL+2. This, in effect, sets the A address of WL+Z 

to the ID word of the A tag. WL+2 shifts the ID word so that the item location portion is justified 

right and places this into index register 5. WL+3, 4, and 5 similarly put the location of the B 

item into index register 7, the only difference being that the B address of WL must first be 

shifted to the A address position. 
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Now WL+6, the second key LA comparison, is performed. Because the second keys are 

equal, the equality test in W L+8 is performed next. This second key comparison almost yields 

equality; therefore, WL+9 is performed next. Here, because A3 is less than B3, WL+7 is per­

formed next to transfer the contents of the sequence history register to the sequence counter, 

and returns control to the sequence counter. Alternatively, if A3 were greater than B3, the 

program would have proceeded to WL+i0 and then reverted directly to the sequence counter. To 

extend precision with own-coding, the C address of WL+9 would have to be replaced with the 

address of an NA order in own-coding and the process would continue from WL+9. Also the con­

tents of the A and B addresses of WL+9 would be interchanged to keep the logic straightforward. 

Master Routine (MASTER) (Detailed Description) 

The explanation thus far has been related to the trees and bins and just how they operate 

together to determine the smallest item in memory. After it is determined that an item has the 

smallest key, that key is transferred to the storage area termed Old Key (OLDKEY). The item 

is then processed through the Master Routine (MASTER). 

The first operation in the MASTER is a test to see if the key of the smallest item is all 

hex G's {or a stopper}. A stopper indicates that there are no more valid items in memory, and 

control is turned to the End of String Routine (ENDSTR). Next, the ID word, which is situated 

in OLDKEY along with the smallest key, is used to find the item's location in memory. It is 

stored in X7 before X7 is used to transfer the item to the output buffer. The output buffer is 

standard, using an index register (X3), which is modified to step through the buffer as items are 

transferred to it. A check is made to see if the buffer is full, and if so, control is transferred 

to the Write Routine (WRITE), which will return to the same point when finished. If own-coding 

option number 3 is specified, the routine now branches to modify an item in the input buffer be­

fore it is brought into the sort. 

Now the next item is transferred to storage from the input buffer by a section called Item 

Transfer (ITEMTRAN). Here the input buffer is stepped through with a modified index register 

(Xi), and the item is transferred to the location in stor~ge just vacated (addressed by index re­

gister X7). If the input buffer is now empty, control is transferred to the Read Routine (READ) 

which will return to this point upon completion. 

U sing the ID word still in OLDKEY, the tree index register (XO) is set to the bin asso­

ciated with the item just replaced. The old key corning from OLDKEY is then compared with 

the new k~y from item storage via X7. If the old key is less than or equal to the new key, the 

new item will be included in the present string. From the ID word, an order is set up to 
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transfer the key of the item to its bin. This order is performed, and a sequence change is made 

to the tree to sort this item with others. Setting the tree index register associates the tree with 

the bin to which the new key was just transferred. When the smallest item in this bin is found, 

transfer is then made to the next level bin, and finally to the master bin with a new smallest 

item. 

If. an old item had been greater than the new one, the new item would have been stoppered, 

as demonstrated in Figure 2. To do this the Dummy Key Routine (DUMKEY) sets up an order to 

transfer all hex GiS to the bin, performs this order, and proceeds to the tree. Except for 

transferring GiS instead of the real key, this procedure is the same as described in the pre­

ceding paragraph. 

It should be noted that items having words of all hex GiS as keys will appear to MASTER 

as stoppers, and will, therefore, indicate an end-of-string just as an ordinary stopper key 

would do. However, since an item with a key of hex GiS is never replaced by any other item in 

memory storage (for it will never be transferred out), such items will tend to accumulate in the 

storage area and accordingly reduce its effective size. Furthermore, if as many hex G-key 

items are brought in as there are storage locations, the presort will go into an endless loop 

through the end-of-string procedure, reading and writing nothing. Because of this, keys of hex 

GiS should be avoided, except possibly to fill up the final record of the data file. 

End-of-String Routine (ENDSTR) 

The first step in the End-of-String Routine (ENDSTR) is to check the output buffer. If it is 

empty, the string did end integrally with a record and control is transferred to Write Switch 

(WRSWCH) to determine where the next string is to be written. If the buffer is not empty, 

dummy items (hex GiS) are transferred, one at a.time, to the output buffer. The buffer is 

checked after each transfer. When it is full, transfer is made to the Write Routine (WRITE) 

after setting the exit of the write routine to return to WRSWCH. Just before entering WRSWCH, 

a dummy write forward (WF) instruction is performed for the tape presently being written to get 

an error check for a bad record before switching tapes. 

Write Switch Routine (WRSWCH) 

WRSWCH is used in conjunction with ENDSTR to determine on which tape each string is to 

be written. A table of ideal ratios of strings on each tape is calculated. The logic of the dis­

tribution of these strings onto the tapes for the merge sort is introduced and explained in Section 

IV. To maintain this proper distribution, the presort, at WRSWCH, calculates this table of 
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ideal ratios and provides a constant for each tape, indicating how many strings should be on that 

tape. Associated with each tape is a string counter which shows how many strings have actually 

been written. In general, strings are placed on one tape until the corresponding string counter 

equals the ideal count for that tape. The presort then switches to writing on the next tape. 

When all tapes are at their ideal number, the next higher ideal distribution is calculated, and 

the process to bring tapes up to it begins. WRSWCH, therefore, consists of a series of com­

parisons which test each tape to see if there are as many strings as there should be on it. If 

there should not be enough strings on a tape, the write order is set to address that tape and the 

string counter is incremented. When all tapes are full as specified, control is transferred to 

the calculating portion to determine the next higher perfect distribution. 

The logic involved in the calculation of this ideal distribution is based on the cascade 

rn.ethod of rn.erge sorting used by the ARGUS sorts. This method is explained in Section IV. 

Fill Bins Routine (FILBIN) 

When it is determined onto which tape the next string will be written, transfer is then 

rn.ade to FILBIN from WRSWCH to start the new string. This routine performs two functions: 

first, it sets a switch (Banner Switch) so that the beginning banner word of the new string will 

indicate a beginning of string; secondly, it unstoppers all items. This is accorn.plished by trans­

ferring all of the keys directly from the itern.s to the bins, using several special registers pro­

perly incremented. At this point, transfer is made to the Switch .l{outine (SWITCH). 

Switch Routine (SWITCH) 

The Switch Routine (SWITCH) performs the initial sorting of all items in storage. As 

already stated, only one bin in each level was sorted to process one new item. However, at the 

beginning of string, all items must be processed together, and as a result, all bins must be 

sorted. SWITCH places temporary "detours" in the TS instructions of all but the last bin. 

These detours change sequence back to another portion of SWITCH which increments the tree 

index register to associate with the next bin, and then returns to the Comparison Tree (CT). A 

switch is also placed in the first order of MASTER which changes sequence to an area terrn.ed 

the Reset Area (RESET). Now the tree index register is set to the first bin, and transfer is 

made to the tree. Because the bins are adjacent to one another, each bin will be sorted in turn 

down to the master bin. The master bin will be sorted, after which control is transferred to 

RESET. At this point, all bins have been sorted, and after the SWITCH modifications have been 

removed by RESET, control is transferred to MASTER. RESET accomplishes this by restoring 

the TS orders in the bins and the first order in MASTER, and then exiting to the first MASTER 
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instruction. Processing now continues as before until another end of string is sensed. 

Read Routine (READ) 

READ is entered whenever an input buffer is depleted, as determined in MASTER. For 

checking purposes, a counter is incremented in READ which keeps a tally of the number of re­

cords of input to the sort. READ also sets up XZ with the address of the empty buffer, and Xi 

with the address of the other. The latter proces s is the actual buffer switch, and is accomplish­

ed by shifting (end around) a special word containing both addresses. As a check, hex G's are 

placed in the end-of-record word position of the buffer into which reading will take place and into 

the word just beyond that. The record is then read while the record in the other buffer is 

checked. If this is an end-of-file record, transfer is made to an End-of-File Routine (EDOFILE) 

or to the Multiple Input Routine (MULTINPT) (if that was specified in the macrocoding). A check 

is made, when working with fixed-length records, to see if the record is too short {hex G's instead 

of an end-of-record word} or too long (other than hex G's in word beyond the end-of-record word). 

Otherwise, only the test for too long a record is made. If all of these tests are passed, the input 

buffer item counter {R7} is reset to unity, and return is made to the master routine. During the 

initial loading of storage only, this exit is set to return to the Fill Storage Routine {FILSTR}. 

Write Routine (WRITE) 

WRITE is entered when the output buffer is full. WRITE first stores AUZ in X6 when 

working with variable-size items, since this will contain the address just beyond the last item. 

The same type of buffer switch as used in READ is used to switch the empty buffer to X3 and the 

full buffer to X4. The banner switch is checked; this switch, which is normally set to 1, is 

set to zero at the start of each string by FILBIN. If the switch is zero, "beginning-of-string" 

bits are substituted into the banner word, and the banner switch is set to i; otherwise, 'lmiddle­

of-string" bits are substituted into the banner word. The ortho count is then computed, and the 

current write order (as set up by WRSWCH) is performed. The record count is incremented in 

the banner word and transferred from the current buffer to the alternate one to maintain the 

current count from record to record. The exit from WRITE, called COMMONEX, normally 

leads to MASTER. At the end of string it leads to WRSWCH. 

Beginning the Presort 

The information contained within this section, up to this point, has been limited to the 

"steady-state" portion of the ARGUS presort. The initializing and beginning portion of the sort 

routine which precedes the steady- state portion is discussed in this section and is followed by a 

discussion of the ending portion of the presort. 

39 



SECTION III. PRESORT 

Not to be confused with the beginning portion of the sort are the generator and modifier 

functions, which are discussed later in this section. The generator and modifier, although 

normally performed immediately before the sort, serve only to set up a specific sort routine. 

However, a sort routine actually starts manipulating data.in its beginning portion. 

The first such section is termed BEGIN, and it starts by initializing the input buffers. X2 

is set up, the switch is rotated, and words of hex GIS are placed in the last locations of the 

initial buffer, into which a read is then performed. Other special registers, used as counters 

and as addresses, are also set up. The storage area is filled with words of hex GIS in case 

there should be insufficient items in the file to fill it. The initial banner word is set up, and 

control is transferred to the standard read routine. 

READ is set up initially to exit to the beginning of the Fill Storage Routine (FILSTR). The 

first order in FILSTR switches the READ exit to go to FILSTR4 to avoid the initializing orders of 

FILSTR after the first time through. These orders set R2 to unity to count the nUITlber of iteITls 

brought in. They also set X7 to the address of the first iteITl in storage, and proceed to the IteITl 

Transfer Routine (IT EMT RAN). If specified, exit to own- coding option 3 is ITlade before the iteITl 

is brought in. This option is used to modify an iteITl before it is brought froITl the buffer to iteITl 

storage. For variable-sized iteITls, the nUITlber of words in the iteITl are deterITlined, and that 

nUITlber is stored in the low-order portion of the end-of-item word for later use by the ITlerge 

sort. The input buffer is checked, and if empty, control is turned over to READ. Otherwise, 

Xi is set to the next item in the buffer (using AUi) and a transfer is ITlade to FILSTR4, to which 

READ also exits. 

In FILSTR4, iteITl storage capacity is checked against R2 which contains a count of the 

iteITls brought in. R2 is increITlented. If storage is not full, a return is ITlade to ITEMTRAN. 

When storage is finally full, the last remaining switches for norITlal operation are set up. 

These include EDOFILE which has been set up especially for FILSTR, and the exits of ITEM­

TRAN and READ, which will now go directly to MASTER. Exit is then made to FILBIN where 

the fir st string is begun in the usual manner. 

Ending the Presort 

An end-of-file record, sensed by READ, initiates the "ending the presort" process. 1£ a 

multi-input was specified, transfer is made to the Multi-option Area (MULTOP), where the 

addresses of read orders are switched to the alternate input tape. Control is then transferred 

to the Multi-input Area (MULTINPT). MULTINPT is printed out, the old input tape is rewound 
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with interlock, the new tape is positioned, and data from that tape is read into one input buffer. 

Return is then made to the portion of READ which performs a read order to insure that the first 

record has been brought in. READ now continues as usual. When all the input tapes have been 

used, both input drives should be left interlocked or empty, in which case the progra:rn. will stall. 

At this point, the operator m.ay start the presort at the cosequence counter and a nor:rn.al ending 

will take place. Upon finding an end-of-file record, READ will lead to EDOFILE if the :rn.ulti­

input option is not specified. If the presort is still in the initial process of filling storage, an 

initial version of EDOFILE is perform.ed; otherwise, the normal EDOFILE is perfor:rn.ed. (An 

item design of the end-of-file record is contained in Appendix A. ) 

The ~itial EDOFILE section simply modifies ITEMTRAN to place into item. storage an 

item of hex GiS (dummy item) instead of a new item. fro:rn. the input buffer. Also, a switch is 

stored at the beginning of the WRSWCH which will lead to the End of Sort (ENDSOR T). This is 

done because there already are som.e item.s in storage which must be put out as an initial string. 

After setting WRSWCH, EDOFILE exits to FILBIN to create the first (and only) string. 

The norm.al EDOFILE is som.ewhat m.ore complicated because any ti:rn.e during the steady­

s tate portion of the pre sort there :rn.ay be som.e items in storage which are stoppered; if the sort 

should be ended at the completion of the current string, these item.s would never be put out on 

tape. To avoid this, ENDSTR is set up with a switch to go to Check Items Routine (CHKIT) 

which will determ.ine if there are any items besides dummy item.s in storage. WRSWCH is set 

up to allow one m.ore string to be written and then control is transferred to ENDSOR T. This is 

accomplished by replacing the first order of WRSWCH with a transfer which will replace itself 

and which will go to a constant equivalent to WRSWCH. The constant used to replace the trans­

fer is a TS order to ENDSOR T. CHKIT is a sim.ple looping routine which uses incre:rn.ented 

special registers, R4 and R5, to com.pare each key in storage with hex G's. If all the keys in 

storage are hex GiS, a TS order to ENDSORT is placed in WRSWCH, and the initial order of 

ENDSTR is replaced and return is m.ade to it. If any key in storage is not equal to hex GiS, 

WRSWCH is ignored because it was set by EDOFILE. 

When ENDSORT is reached, the first routine perfor:rn.ed is called Check String (CHKSTR). 

This checks the distribution level counter, which is equivalent to the num.ber of passes the 

merge sort will have to make. If this count is equal to 2 (the lowe st po s sible value it can have), 

provisions must be m.ade to insure that a :rn.inim.u:rn. nu:rn.ber of strings are written on all tapes. 

To accomplish this, CHKSTR sets MASTER to bypass the beginning of ENDSTR (which checks to 

see if the output buffer is partially full) and then goes directly to the section of ENDSTR where it 

is' assu:rn.ed that dum.m.y ite:rn.s are needed. This guarantees at least one record of du:rn.:rn.y items 
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for each string which is necessary on any tape, even though no real data is transferred out. 

The portion of WRSWCH which calculates the next distribution level is set to go to the main 

ENDSOR T; this provides that dummy strings are put out until the current distribution level is 

full. Due to the nature of the merge sort, once two distribution levels have been reached, or 

beyond two m.erge sort passes, it is not necessary to provide as many strings as required for 

the particular distribution. Thus, if the pass counter were not 2, ENDSORT would be reached 

directly from CHKSTR. 

Finally, at ENDSOR T I all data records have been written. The total number of records 

from the read counter are now printed for control purposes. If the "save input" option was 

specified, "SAVEINPT" is printed, and the tape is rewound with interlock. (A newly mounted 

tape is read past the beginning record.) The string deficiencies on each tape are calculated by 

subtracting the actual string count from the ideal string count which was calculated for the cur­

rent level; and the numbers of passes are obtained from the level count. This information is 

put together to be written as an end-of-file record on all the merge sort data tapes. Two begin­

ning-of-file records are written on the "nth" work tape (the one not being used by the presort), 

and the statistical end-of-file records are written on all other tapes. End-of-information re­

cords are then written on these data tapes, and the tapes are positioned just before these end­

of-information records. "TO MERGE" is printed, and control is transferred to the macro­

coding. 

Over-all Flow of the ARGUS Presort 

Thus far, a simple presort has been discussed in general terms, and various components 

of this presort have been explained in detail. These components are tied together in the follow­

ing paragraphs to present a complete presort picture. A presort flowchart is shown in Figure 8. 

In BEGIN and FILSTR, special registers are set up and the storage area is filled with hex 

GIS. The input buffer settings are initialized, and an initial record of data is read into memory. 

From then on READ functions normally. A loop is used to transfer items from the input buffer 

to storage until the storage area is filled. Now normal operation can be established and control 

is transferred to FILBIN. 

FILBIN is the first working part of the sort. It contains the instructions used to transfer 

all keys to the tag bins, and is performed at the beginning of each string. 

In the next section, SWITCH and TREE-BINS, each bin is inspected once to find the small­

est item in storage, and all bins are sorted. 
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The program then proceeds to MASTER where a number of functions are performed. A 

check is made for end of string (hex GIS as smallest item). If an end-of-string condition is en­

countered, a transfer is made to ENDSTR. The sorted item is sent to the output buffer and the 

write counter is incremented. When the output buffer is full, control goes to WRITE to write the 

record, and switch and initialize buffers. The sorted item is then replaced with a new one from 

the input buffer, and the read counter is incremented. When an input buffer is empty, control is 

turned over to READ to read a new record, and switch and initialize buffers. If the check in 

READ finds an end-of-file record, control is turned over to EDOFILE. Back in MASTER, the 

key of the new item is tested against that of the old one to see if the new one can be included in 

the current string. If it can, its key is transferred to its bin; otherwise, DUMKEY puts· a key 

of hex GIS in the bin. In either case, a return is made (via the ID word) to sort that bin. This 

bin will, in turn, lead the way to sorting the bin into which it feeds, eventually leading to the 

master bin and once again to MASTER. This loop continues as long as a string is being built. 

Eventually, when MASTER detects all hex GIS as the key of the smallest item, the program 

exits from the loop to ENDSTR. 

In ENDSTR the last record of the current string is finished with dummy items, and the 

output tapes are switched (if necessary) at WRSWCH. Return is made to FILBIN to transfer all 

the new keys to the tag bins. Each bin is proces sed once again at SWITCH and return is made to 

the main loop in MASTER. When an end-of-file record is detected in READ, control is trans­

ferred to EDOFILE. At this point, the program will be modified slightly; rather than bringing 

in new items from the input buffer, dummy iteIns are brought in to fill storage with permanent 

stopper items. WRSWCH is set with a switch which will allow the completion of the present 

string, plus one further string if there are any items remaining in storage. 

Finally ENDSORT calculates the string deficiencies on each tape and writes this informa­

tion as part of the end-of-file record on each tape. From here, exit is made back to macro­

coding. 

Modifier -Generator 

Upon entering the modifier -generator coding, the parameters in the FID record, which 

are specified in decimal, are converted to binary, and the three options are checked. The 

maximum number of words per item specified in word 5 of the FID includes the end-of-item 

word, whenever it is used. An end-of-item word must be specified with all items greater than 

63 words in size, as well as with variable -length items. The end-of-item symbol is a word 

(other than the end-of-record word) whose high-order 32 bits are BBOOFFFF. Its low-order 16 

bits are to be reserved for use in variable-length items to specify the number of words in that 
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particular item. Thus, if the fixed or variable option is a 1, the program is modified to handle 

variable-length items by determining the number of words in the item and retaining the count in 

the end-of-item symbol of each item. Unless the banner word option is a 0, the program is 

modified to add banner words to each data record. If the mask option is a!, the necessary 

masks are set up in memory and the presort routine is modified to handle masked keys. Since 

the parameters and necessary statistical information will be transmitted via tape from the pre­

sort to the merge generator in the form of an end-of-file identification record, the data to be 

transmitted to the merge is stored in memory as each parameter is checked or converted, and 

as each tape address is obtained from the macrocoding. 

All tape addresses are compared to determine the "way" merge, and the necessary read 

and write instructions in the presort routine are generated with the appropriate tape addresses. 

Also the routine for switching work tapes at the end of a string is modified according to the 

determined "way" merge. 

The S option is checked for~, and for M. If~, ENDSOR T is modified to save input, as 

explained earlier. If M, the read routine in the program is set up to allow for changing input 

tapes at the end of each input tape and the input tape assignment is checked for equality with the 

Ilnth'l work tape. If II equals the nth work tape assignment, ENDSOR T is set up to re-position 

the tape on the input tape drive in the case of multiple input. If not M, II and 1'1' are checked for 

equality and if they are not equal, the read routine is set up for multi-tape input. 

The item size is checked for 63 or less words per item. It there are less than 64 words 

per item, the program is modified to handle the items more efficiently. If unmodified, the pro­

gram handles items up to a maximum of 250 words per ite:m, and assumes that a.n end-of-item 

sy:mbol is specified with each ite:m. 

To com.plete modification of the presort, the buffer addresses are set up in specified con­

stants, index register XO is set up with the address of the location just before the first tag bin, 

and a location tagged FITLC is set up with the address of the first item in item storage. The 

beginning-of-file identification record, which has remained untouched in memory, is then writ­

ten twice on all but one work tape. It is written once as the given FID, and a second time as a 

full length data record for the particular sort. It is assumed that all the work tapes were posi­

tioned before operation to preserve any desired information on tape. Hence, the FID is used to 

mark the beginning of the file which is currently being sorted. For restart purposes, the gene­

rator and :modified basic program are dumped onto the second work tape, and two more FID's 

are written on that tape. 
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The presort generator, which was loaded into the high-order registers of the specified 

bank along with the basic program., is entered upon com.pletion of the m.odifier. In the generator, 

the identification tags for each item. in storage are placed in the tag bins, and the necessary 

transfer orders between the different level bins are set up. During generation, com.plete advan­

tage of item. size and record size is taken to determ.ine the m.ost efficient use of the available 

m.em.ory for allocation between item. and bin storage. 

Error Correction and Restarts 

The presort m.akes use of the orthotronic error-correction routines provided by the 

Executive Routine, thereby saving m.em.ory space which would otherwise be duplicated. In cases 

where, for som.e reason, the Executive Routine is not available, special sort error routines m.ay 

be added by m.eans of own-coding; however, they result in a corresponding decrease in the 

am.ount of m.emory available to the sort. 

In the event of a read error indication, the address and size of the suspected record is 

determ.ined by the sort, and control is turned over to the Executive Routine to repair the record. 

If the record cannot be repaired, an attempt is m.ade to reread the information and if it is still 

erroneous, control is turned over to the Executive Routine once again. In any case, a comment 

is printed at the console typewriter to tell the operator what has happened. 

If the physical end of any work tape is reached, a printout inform.s the operator and the 

tape is rewound with interlock, whereupon control returns to the restart point. The program. 

will stall on this tape until it is exchanged, presum.ably for a longer one. 

The restart (initiated by starting at RO) is included in the sort coding. After m.odification 

of the presort, but before its generation (the distinction being that the former is caused by para­

m.eters in .the m.acrocoding and the latter by the param.eters in the file ID), the contents of 

m.emory are "dumped" onto the second work tape of the sort. If a restart is initiated during the 

presort, all tapes will be positioned backward to their beginning ID records, and mem.ory will 

be reload~d from. the second work tape, whereupon the presort will autom.atically go through 

generation and start again. Norm.ally the restart inform.ation on the second work tape will not be 

used, and will be ignored by the m.erge sort (a second set of file ID records having been written 

after the dum.p). At the com.pletion of the sort, this tape will be repositioned to where it was 

before the sort. 
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SECTION IV 

MERGE SORT 

Figure 9 shows a simplified version of a three-tape ARGUS merge sort. For the sake of 

clarity, each string from the presort will be considered as a unit and designated by a letter, 

rather than showing individual items within each string. It will be assumed that the presort (a) 

wrote eight such strings, distributed as in (b). This example represents a simplified case of a 

three-tape merge sort, and an ideal distribution for the merge operation. 

The merge sort (b) is ready to read tapes A and B backward, merging the last strings from 

each tape, and writing the result on tape C. Thus, string G is merged with string H to produce 

GH as in (c). It is important to understand that both G and H are composed of a number of ordered 

items and that, during the merging process, these are combined to produce a single ordered 

series of items, which is called string GH. Likewise, D and F are combined to form DF, and B 

and E to form BE. GH, DF, and BE are written, end to end, on tape C. This process stops 

when the end of information is sensed on tape B (the shorter tape). 

Thus, (c), all the data is on two tapes, the information on the A tape in ascending order 

but, because in the merge sort data is read backward and written forward, the data on the C tape 

is in descending order. Therefore, to arrange all the data in the same order, tape A is copied, 

reading backward, onto tape B. At this point (d), one full merge pass has been completed over 

all the data. The number of strings now on the longer tape is equal to the number formerly on 

the shorter tape. The number of strings now on the shorter tape is equal to the number formerly 

on the longer tape minus the number formerly on the shorter tape. 

In (e) and (f) another pas s is completed, following which the data is again in asc ending 

order, and the number of strings is reduced as before. (g) and (h) show that the next pass re­

sults in two descending strings, one on each tape. (i) shows the end product of the merge where 

all the data has been merged onto a single tape in ascending order. 

Each merge pass, except the last, is composed of two phases, or subpasses; a two-way 

merge (in this simple example) and a copy pass. This type of merging can be extended to any 

number of tapes (up to a total of six in the ARGUS sorts). 

47 



SECTION IV. MERGE SORT 

In a six-tape merge, a five-way merge is first performed onto the sixth tape, then a four­

way merge onto the fifth, a three-way onto the fourth, a two-way onto the third, and finally a 

copy (or "one-way" merge) onto the second tape, leaving the first tape empty for the initial phase 

of the next pass. Thus, each pass in a six-way merge consists of five subpasses. 
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SECTION IV. MERGE SORT 

Reading and Writing Controls 

The reading technique used in the merge sort differs considerably from that used in 

the presort. Associated with each input tape is a set of three buffers~ a "current" buffer; a 

"next" buffer; and an "open" buffer. These buffers provide for continuity of data availability. 

If less than three buffers were provided, the merge program would frequently be interrupted 

and delayed to await refilling of depleted buffers. 

Writing in the merge sort is handled in the same manner as in the presort, using two 

output buffers, a Ilworkingll buffer and a Ilwritingll buffer. Since data comes into the merge 

sort from two or more tapes but goes out on one tape at a time, the output operation is the 

limiting speed factor. Since as much information must come in as goes out, ideally one input 

record should be read each time an output record is written. This balance is realized by using 

the three buffers per input tape in conjunction with a technique known as Ilread anticipation". 

All buffer areas in the merge sort, as in the presort, are essentially the same size as the 

records on tape. 

Read Anticipation 

Before an input record is read into memory, the key of the last item in each current 

buffer is inspected to determine which current buffer will be depleted first, so that the corres­

ponding tape can be read into the next available open buffer of that input set. That tape is then 

stoppered (temporarily not considered for reading) until the current buffer is depleted. Thus 

the three buffers provide: 

1. A current buffer from which items are being taken in order to always 
provide input; 

2. A next buffer to insure merging will not be delayed when the current 
buffer is depleted; 

3. An open buffer available to allow reading at any time. 

Equipment and M.emory Considerations 

The presort is often machine limited, especially if there are many items in storage and 

if these items are small. Machine speed is not nearly so critical during the merge sort, since 

even for the five-way merge, the program must choose only among five items to select the 

output item. Therefore, the merge sort (except when sorting very small items) always pro­

ceeds at tape speed. 

The most obvious speed-limiting factor of a merge sort is the number of tapes used by 

the sort. It will be noted that this number may be dependent on the size of available machine 

memory. This dependenc e sterns from the fact that thre~ input buffer areas and two output 
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buffer areas are provided for each tape to keep the tapes 1l10ving at ll1axill1ull1 speed. Since 

these buffersll1ust beas large as tape records, a six-tape ll1erge sort requires considerable 

ll1ell1ory space for buffering alone. If this ll1ell1ory is not available, fewer tapes have to be 

us ed for the sort. 

Trees (General Description) 

The ll1eaning of the word "tree" is the sall1e for the merge sort as for the presort. Like 

the presorts, the three merge sort routines (single, double, and triple precision) differ ll1ainly 

in the structure of their trees. Also, like the presort, the triple-precision ll1erge sort tree 

ll1ay be 1l10dified with own-coding to accoll1ll1odate any nUll1ber of additional keys. However, 

the ll1erge sort trees differ froll1 those of the presort in structure. 

The ll1erge sort uses a "return" tree (see Figure 10), which contains 1l10re cOll1parisons 

and 1l10re exits than a corresponding presort tree (Figure 3). Note that there are often several 

possible exits for one particular itell1 selected (item E~ for instance, in this exall1ple). The 

reason for this apparent duplication is to provide one unique path through the tree for each exit. 

This perll1its storing a "return" to the tree at the till1e of exit, so that return can be ll1ade to 

that point along the path at which the selected itell1 was first cOll1pared. Thus, when A and B, 

then Band C, then C and D, and then D and E are cOll1pared, and E is selected the sll1allest, 

a return is ll1a'de, after replacing E directly back to the D vs E cOll1parison. Use of this type 

of tree in the ll1erge sort allows going froll1 a five-way to a four-, three-, two-, and one-way 

ll1erge without going through any 1l10re cOll1parisons than needed for the particular "way" in 

progress. 

There are six trees which are used by the ll1erge sort. Two are required for each pre­

cision because the passes of the ITlerge sort alternate between ascending and descending merg­

ing; the ascending trees (like the presort trees) find the sll1allest of the keys of the items com­

pared, while the descending trees find the largest. During any ~ ll1erge sort pass, only one 

of the two trees is used, the entrance to it having been set up at the beginning of each pass. 

Perfect Distribution of Strings for Merge Sort· 

The ARGUS presort produces an ideal distribution of strings all10ng the various output 

tapes. This is done by counting the nUll1ber of actual 'Strings produced and calculating the 

additional number needed for a perfect distribution. The nUll1ber of required dummy strings, 

as well as the nUll1ber of passes required, is passed on to the ll1erge sort through the end-of­

file identification records. These numbers are stored by the ll1erge sort in a table (one entry 

for each tape) and are used to effectively create the required number of dUll1ll1Y strings. 
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SECTION IV. MERGE SORT 

The distributive logic that the presort follows in placing strings on each of the tapes for the 

subsequent merge is directly controlled by two factors: first, the number of actual strings genera­

ted through its sorting operation; second, the "way" of the merge operation that wi~l follow the 

presort. For example, Figure 11 illustrates a two-way merge of 34 actual strings generated by 

a presort. (For a two-way merge 34 strings represent an ideal number to be distributed in the 

ratio 21 to 13, with 21 strings on tape A, 13 strings on tape B.) 

FIRST MERGE PASS 

SECOND MERGE PASS 

THIRD MERGE PASS 

FOURTH MERGE PASS 

FIFTH MERGE PASS 

SIXTH MERGE PASS 

SEVENTH AND FINAL 
MERGE PASS 

TAPE A 

STRINGS 

(I) 

TAPE B 

STRINGS 

13 

8 

5 

3 

-- 3 - - -N-----+----.......j~--
(2) 

2 

Figure 11. Two-way Merge 

TAPE C 

STRINGS 

ONE 
FINAL 
STRING 

This example illustrates a merge where the number of actual strings produced by the 

presort represents an ideal number for a two-way merge and no dummy strings are necessary 

to adjust this number. Figure 12 demonstrates a situation where the actual number of strings 

generated by the presort does not represent an ideal number for a five-way merge. 

For example, 2, 318 actual strings are produced by the presort. Six tapes are allotted 

for the merge sort. For a five-way merge, the presort calculates that 2, "318 strings do not 
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represent an ideal number to be distributed onto five tapes. Based on this number, it deter­

mines that 2,353 strings represent the next higher perfect distribution for a five-way merge. 

Therefore, 35 dummy strings (2,353 - 2,318 = 35) are added to bring the number of actual 

strings up to the ideal number. 

TAPE A TAPE B TAPE C TAPE D TAPE E TAPE F 

First Pass 671 616 511 365 155+ 35 
(or 190) 

Second Pass 55 105 146 175 190 

Third Pass 55 50 41 29 15 

Fourth Pass 5 9 12 14 15 

Fifth Pass 5 4 3 2 1 

Final Pass 

Figure 12. Five-way Merge 

Three basic factors of the cascade technique by which its distributive logic can be best 

understood are as follows ~ 

1. There is always one) and only one, string (variable length) on each work 
tape for the last (or final) ITlerge pass. 

2. The number of strings on the longest tape after a complete merge pass 
equals the number formerly on the shortest tape prior to that merge 
pass. (In Figure 12, third merge pass, 55 strings on tape A represent 
the largest number at that level, while for the previous or second pass, 
55 strings on tape B repres ents the smallest number at that level. ) 
This relationship carries through the entire merge. 

3. The number of strings on the longest tape (for any level of the merge) 
minus the number on the next-to-longest tape equals the number on 
the shortest tape for the next lower level of the merge. (In Figure 12, 
first merge pass, 671 strings on tape A minus 616 strings on tape B 
equals 55 strings, or the number of strings on tape B for the next or 
second merge pass. Again, for the first merge pass, 365 strings on 
tape D minus 190 strings on tape E equals 175 strings, or the number 
of strings on tape F for the next or second merge pass.) This rela­
tionship can be calculated for all tapes throughout the entire merge. 

Banner Words 

During the sorts) each record on tape contains a banner word. This word identifies the 

record's content, provides a record count, defines the position of the record in the string, and 

provides information used for restart purposes. 

The banner word of the first record in each string is adjusted by the presort to become a 

beginning-of- string marker for the merge sort. Other banner words become middle-of- string 
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markers. Because data is always read backward in the merge sort, the beginning-of-string 

marker actually identifies the end of a string. Therefore, each beginning-of-string marker 

calls for the tape on which it is discovered to be stoppered until a marker is found for each tape 

being merged. All tapes are then unstoppered and a new output string is begun. 

The beginning-of- string record of the first string to be merged is preceded by the 

beginning-of-file identification record, which includes a beginning- of-file marker as its first 

word. Also because the merge always reads data backward, each beginning-of-file marker 

actually signals an end-of-file for the merge. Therefore, each beginning-of-file marker calls 

for the tape on which it is found to become the new output tape, indicating that the "way" of the 

merge is to be decreased, and a new subpass is to begin. When the number of beginning--of­

file markers encountered during a pass equals one less than the number of tapes, the entire 

pass is complete, and the merge readies itself for the next complete pass (either asc ending or 

des cending). Bit number 30 is a "1" for beginning-of- string, and "0 II for middle-of- string. 

NOTE: The following text refers to many special registers used in the ARGUS merge 

sort program. Appendix C of this manual provides a list and functional des­

cription of these special registers. 

Dummy String (DUMSTR) 

Dummy strings are calculated by the presort to bring the number of actual strings up to an 

ideal number for perfect merge distribution. Logically, these dummy strings are processed 

just like actual strings. However, they are processed before the actual ones so that they can be 

eliminated as soon as possible and allow uninterrupted merging of the actual ones. At the begin­

ning of each string, the dummy string counters of all input tapes are inspected; if there are no 

dummy strings, the merging process proceeds in the normal manner. If any input tapes have 

dummy strings, the corresponding dummy string counters are reduced by 1, and those tapes 

are stoppered; effectively, those strings have now been processed. If all input tapes have dummy 

strings, a process is followed which subtracts...!.. from each counter, then stoppers, and adds 

...!.. to the dummy string counter corresponding to the output tape. Effectively, a number of 

dummy strings has been merged together into one dummy string. This method of handling an 

imperfect number of strings from the presort has the advantage that the ideal ratios are main­

tained, yet no extra data is proc(;~sed, since handling the flctitious dummy strings is a purely 

internal process which takes very little time. 

When beginning a stnng, an End-oi-String Switch (SWEOS) is used. (An EOS Switch sig­

nifies that the preceding string has just ended.) This switch is normally set to go to the Dummy 
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String Adjustment Area (DUMSTRE, DUMSTRD, DUMSTRC, DUMSTRB, DUMSTRA). In the 

Dummy String Adjustment Area there are five groups of instructions corresponding to the E, D, 

C, B, and A inputs; for less than a five-way merge, SWEOS is set to go to the appropriate inter­

mediate group. At the end of the series of groups is another switch, Exit A Switch (EXITA) which 

is normally set to add an instruction which will increment the output tape dummy string counter 

and return to SWEOS. 

Each group consists of the following instructions. First, a comparison tests the appropriate 

dummy string counter for zero. If not zero, 1 is subtracted from the counter and a comparison is 

then made in the next group. If the counter does equal zero, several instructions are performed to 

set up the appropriate input buffer to be ready to merge, and EXIT A is set to Beginning of String 

Switch (SWBOS). The process of setting up the input buffer for merging is made clearer in the 

following section which contains detailed information concerning the buffers. Essentially, the 

operation consists of unstoppering the appropriate input (insomuch as everything is already stop­

pered). Thus, if none of the counters are zero, 1 is subtracted from each counter, going from 

group to group, in turn going from EXIT A to an add instruction, which increments the output coun­

ter, and returns to SWEOS to start a new string. However, if any of the counters are zero, the 

program proceeds from EXIT A to SWBOS, which sets up the banner switch (in the output area) to 

write a beginning-of-string banner word, and theh to the tree to merge. Since only inputs with zero 

counters were unstoppered, the tree will merge only the zero counter inputs from which a normal out­

put string will be written. As each input string is ended, it is stoppered. When the tree detects 

that all inputs are stoppered, it goes to SWEOS to begin a new string. (This also starts a new 

cycle. ) 

Buffers 
The input buffers are divided into sets, designated A, B, etc., up to E, which correspond 

to the number of input tapes (from two to five). The physical tape assignment to each buffer set 

rests on whether the pass is ascending or descending. As far as the reading and writing controls 

are concerned, the buffer sets remain the same. The A tape is always longest at the beginning 

of the pass (in terms of strings) and the last to run out. The B tape is next longest, and so on, 

down to the E tape (if used), which is always the shortest. For a three-tape merge, the two in­

puts are always A and B. For a six-tape merge, which uses all five inputs at the start of a pass, 

tape E is the first to be depleted, followed by D, C, B, and A, in that order. Figure 9 shows 

this relationship for a three-tape sort (two-way merge). 

Associated with each of these input sets are three buffer areas in memory,. These rotate 

among themselves, one being termed "current", one "next", and one "open". When the current 

buffer is depleted, it becomes open, and the other two move up accordingly. To accoITlplish this 
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three-way switching with a minimum number of memory locations, use is made of a three-part 

word~ actually a Complete Address Constant (CAC) whose three sections correspond to the end­

ing locations of the three buffers. To switch, this word is shifted (end around) 16 bits. 

Associated with the A buffer set are index register XI and special register Rl. The for­

mer is used to keep track of the items in the "current" buffer, and the latter acts as an item 

count to determine when the buffer has been depleted. It will be recalled that all tapes are read 

backward during the merge sort, so the buffers have to be emptied backward to maintain the 

correct sequence of items. Thus, Xl is first used as a base of reference for comparing the cur­

rent A item with the others, and assuming this item is selected, Xl is also used to transmit it 

to the output area. Then Xl is decremented by the item size (found in the end-of-item word in 

the case of variable-length items) and RI is incremented by 1. 

When the "current" buffer is depleted, the CAC-type switch is shifted, RI is reset, and Xl 

is set to the last item in the new "current" buffer. A location called LAST KEY, which contains 

the address of the key of the first item in the new "current" buffer, is set up. This location 

is called LAST KEY because it will be the last key processed L. 2m the record. LAST KEY is 

used to determine which buffer will be depleted first. The coding wl::i.cI: c>.ccomplishes the switch­

ing of the input buffers is in DUMSTR. It will be recalled that an input set is switched and unstop­

pered in DUMSTR whenever, at the start of a new string, a dummy counter of zero is found. As 

a string is being merged, the program switches from an input buffer when that buffer is emptied. 

This is done in the Beginning-of-String (BaS) check by branching off to the coding in DUMSTR. 

The switch coding is somewhat different for fixed as opposed to variable- size (or over 63 words) 

items. 

To switch a buffer, assuming variable- size items, the CAC-type table is first switched by 

shifting it with a mask of all hex GIS (16 bits) back into itself. Then the variables are set up in 

an area called Variable Switch (VARSW), which is a common routine used by all five input sets. 

This is effected with two TS instructions and one TN instruction. The first TS instruction leads 

(in cosequence) to a common instruction which saves .AUZ, since the TN instruction will destroy 

the contents which will be needed later in the routine. The second TS instruction leads (also in 

cosequence) to the VARSW section, and here an initializing constant of Z is transferred to R6, a 

working register. The appropriate CAC table minus 3 is subtracted into R7, which is also a 

working register that provides the end-of-item word of the last item. Then Z,R7 minus N, R7 

is subtracted into Z, R7, which leads to the next lower end-of-item word. R6 is then compared 

with Z which will be equal the first time only; if they are not equal, the next instruction is skipped. 

The next instruction sets up the input index register (Xl-X5) by adding 1 to Z, R7 into the appro-
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priate index register. R6 is compared (incrementing it by 1) with the constant Number of Items 

per Block (NIB). If less than or equal, return is made to the Word Difference (WD) of Z, R7 

minus N, R7 into Z, R7. This loop will be repeated until the buffer has been worke.d down to the 

beginning of the variable- size record, at which time there is an LN instruction. One is added to 

Z, R7 into the appropriate Last Key Area (LASTKEY -LASTKEY+4), finally dropping from cose­

quence with a transfer of 1 into the appropriate input buffer counter (RI-R5). Back in the 

DUMSTR group that came before V ARSW, transfer is made from SWBOS to EXIT A (indicating 

that at least one real string must be merged) going next to the DUMSTR group, unless a branch­

off had been made from the BOS check. In this case, EXIT A is not affected, but return is made 

to the merge process. 

For fixed- size items, the switching instructions in the DUMSTR group are much simpler 

and faster. As before, the CAC-type table is switched with a 16-bit shift. The buffer index regis­

ter is then set up with a WD of the CAC-type table minus the constant NPLUS2 into the appropriate 

index register (XI-XS). The constant WPLUS2 is subtracted from the CAC-type table to set up 

the appropriate Last Key Area (LASTKEY - LASTKEY +4). Then 1 is transferred directly to the 

buffer counter (RI-RS). Since these three instructions replace the three instructions which set 

up V ARSW, as well as doing all that is done in V ARSW, control is transferred directly to the 

instruction which puts SWBOS in EXIT A, and the program proceeds with the next DUMSTR group. 

All that has been said for the A input set also holds for B, C, D and E sets, even if the latter 

sets are not used. Index registers Xl through X5 and special registers Rl through RS correspond 

to the five sets A through E. There are five LASTKEY sections (LASTKEY -LASTKEY+4) and 

five input buffer switches. The CAC-type switches are called Table A through Table E. 

Output buffering is done in a similar, yet simpler, manner. There are only two output 

buffers, and the output buffer switch is divided into two equal parts instead of three .. It is switched 

by a shift order in the same manner. XO is used to step through the output buffer, and Sl is the 

output item counter (since RO must be reserved for restarts). There is nothing corresponding to 

LASTKEY. Thus, switching the output buffer consists of shifting the switch, and resetting XO 

and S1. 

The input buffers are primed at the beginning of each pass by filling two of each set (cur­

rent and next), and starting a read into one of the open buffers (as determined by LASTKEY). 

This will be the set whose current buffer will be depleted first. After the initial priming, another 

record is read just before the output buffer is ready to be written. Each time the LASTKEY from 

a current buffer is used to initiate a read into that set, the LASTKEY area for that set is stop­

pered. It is unstoppered when the current buffer is depleted and the next one becomes current. 
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Trees (Detailed Description) 

In the merge, the input items are compared directly as they appear in the buffers in order 

to minimize transfer time. To do this, index registers Xl through X5 are set to the first word 

of the current lnput item, and the tree compares via indexed-addressing. The augments to the 

indexed addresses in the tree are set to refer to the particular key locations, the beginning of the 

item being the base of reference. To stopper an input (for instance, when a beginning of string 

is found in that set), the corresponding index register is set to a special stopper bas e, which is 

set up so that the augment will result in addressing a stopper word of all hex GIS for the ascend­

ing tree, or all zeros for the descending tree. 

Special register SO is used at the exits of the tree both for storing the return, and for 

going to the appropriate coding to transfer the selected item to the output area. At each exit 

there is an instruction "TS x N, SO, Y N, SO", where x is a TS sequence change instruction rep­

resenting the return, and y is an increment of a multiple of 5 representing the item selected. 

After storing the return in the location specified by N, SO, SO is incremented to a new value, 

and the program proceeds to the location thus specified. SO is set initially to "MERGE" where 

it refers to a special table arranged in groups of five instructions each. Each group contains 

all the instructions needed to process the item from one input set. This use of SO at the exits 

from the tree allows an ascending or descending tree to be related to the same set of processing 

instructions. It also determines which input tape is to be read next. This function is performed 

to synchronize reading and writing every time the output buffer is filled to a certain point. When 

the time comes to read, the contents of Xl through X5 are stored in STORE, and then the index 

register is set to the values found in the area termed LASTKEY. A section of LASTKEY is set 

up for each input set whenever that input buffer is depleted and switched. To stopper an input 

read, the corresponding LASTKEY location is set to the stopper base. SO is also set to READ+3 

to refer to a table of instructions in the READ section similar to the one used in the MERGE sec­

tion. In the reading mode, the tree is always entered at the top rather than at the return, since 

any of the input sets may have been stoppered or unstoppered since the last read. Thus, the re­

turn stored in N, SO is not used, although SO (incremented) is used to lead to the proper set of 

instructions to read the next tape. 

As in the presort, it is necessary to know when all of the items being compared are stop­

pers in order to finish one string and start another. The most economical way to make this 

check is to go to a special section of coding from the one exit to the tree which will be used if all 

items being compared are equal, and then check if they all are stoppers. Thus, this one exit 

of each tree increments SO to a special value, used only for this purpose, which leads to the 

special checking routine. 

58 



SECTION IV. MERGE SORT 

Figure 13 illustrates the table of instructions in the MERGE section which are performed 

when an exit is made from the tree. The first instruction of each group of five is an item trans­

fer, which transfers the selected item from the input buffer directly to the output buffer. Notice 

that the B address of the item transfer is indexed, with a base at the beginning of the item to be 

transferred, and with an augment equal to the item size. In the case of variable- size items, or 

items greater than 63 words, the B address is set to dump the end-of-item word. The item 

transfer will be terminated either by the end-of-item word thus produced, or by the end-of-item 

word already associated with the item if it is a variable-size item. Since the input buffers are 

emptied backward, this will not destroy any useful information, as it would if they were emptied 

forward. Also, the item size of variable-length items (which is carried in the low-order portion 

of the end- of-item word}will not be destroyed. The current output buffer setting, addressed 

through index register XO, is an indirect rather than indexed addre s s in order to minimize the 

time required for the itern transfer. 

The next instruction, a WD, sets AUI (used as a working special register) to the word 

previous to the item just transferred. This will be used subsequently to obtain the item size of 

the next item, and (in the BaS section) to check the banner word for the beginning-of- string 

indication. For fixed-length items, only the latter use occurs. The third instruction of the set 

compares the appropriate special R register (incrementing it once) with the constant NIB, going 

to the BaS area when the counts are equal (indicating the input buffer is empty). The fourth 

instruction is WD, which resets the input buffer index register to the next item. The amount in 

N, AU 1 is used for variable items or those over 63 words long, and the constant Number of Words 

per Item (NW) is used for fixed-length items as the amount subtracted. The final instruction of 

the set is a TS sequence change to MERGE+28, which is the common area which modifies the 

output buffer, resets SO, goes to own-coding, and checks to see if the output buffer is full. 

When the tree is in the READ state, exit is made to a similar set of five-instruction groups, 

in the same way as in the MERGE state. The first instruction, of the five, sets up the read index 

register, X6, by means of a masked shift of the appropriate buffer switch. The second instruc­

tion is the read itself, which reads the appropriate tape into the address specified by X6. The 

third order transfers the stopper base address to the appropriate position in the LASTKEY area 

(corresponding to this input set). The fourth instruction has the effect of a multi-word transfer 

from STORE back to Xl through X5 to set the tree up for merging. Because of timing considera­

tions, a series of TX instructions are used in the cosequence mode rather than making use of 

one TN instruction. The fifth instruction sets up SO for the merge mode, and goes to MERGE+33 

which will return to the main merging loop. 
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Multi-precision 

Just as with the presort, it is possible with own-coding to extend the triple-precision 

merge sort to accommodate any number of keys. One slight difference between the presort 

and merge sort triple-precision trees is that the merge sort tree accommodates the first and 

second precision within the tree, rather than just the first. This is done because, as the sort 

progresses, more equal first keys are expected to be found, necessitating comparison on the 

second key. Of course, if the second keys are also equal, then some time will be lost in set­

ting up the third (and following) key cOITIparisons. 

In modifying the comparison order stored in the COMMON area to accommodate additional 

keys, care should be taken to modify only the augment portions of the A and B addresses, and 

not the index register bits, since these are the only means of determining the proper input set 

being compared. Otherwise, the procedure is exactly as outlined for the presort. The stopper 

area may cause some trouble in extending precision. At the time of generation, the three 

specified keys are inspected to determine the largest spread of words between keys, and enough 

stopper words are set up accordingly. Thus, if keys are in words 5, 10, and 2, an area of 

nine words of GIS (or, during descending passes, zeros) is set up, with the base address being 

that of the previous word. To insure that this area gets set up properly for a multi-precision 

sort, the user must specify within the first three keys, the physically first, second, and last 

key of the item. If these are other than the logical first three keys, appropriate modifications 

will have to be made, via own-coding, to the COMMON comparison area and possibly to the 

stopper base address. This is much easier than expanding the stopper area, which is surrounded 

by instructions and constants. In such a case, the best procedure to follow is to specify a fake 

third key, leaving the logical first two keys as they are. This fake third key may be any word 

in or beyond the item. It siITIply serves the purpose of providing the spread in the stopper 

area. Then only the COMMON comparison routine, and possibly the stopper base address, need 

be changed with own-coding. 

To further clarify these procedures, assume the case of a 10-word item with keys in 

words 5, 6, 7, and 1. It is necessary to specify to the sort that the first two keys are in words 

5 and 6, as the generator sets up the trees to handle the first two keys. The third key should be 

specified so that the range of the stopper area is seven words. The third key should, therefore, 

be specified as word 11. The comparison in the COMMON comparison area will be set up wrong, 

but this can easily be corrected by the same set of own-coding that sets up the comparison for 

the fourth key. 
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Merge and Read Loop 

The main loop of the program, that which is performed for each item processed, has been 

essentially covered in the preceding paragraphs. Only a few instructions are involved in com­

pleting the loop. In the tree, the smallest item is found, a return is stored, and the program 

proceeds to one of the appropriate groups of instructions in the beginning of the MERGE. Here 

the item is transferred to the output buffer, and the input buffer is adjusted and tested to see if 

it is empty. Then a sequence change is made to MERGE+Z8. 

MERGE+Z8 is normally a proceed instruction, but it becomes the branch to own-coding 

(if called for) during the final pass of the merge sort. Following this, SO is reset to MERGE, 

and XO, the output buffer index register, is set to the next item by transferring the contents 

of AUZ to it. The output buffer item counter (as yet not incremented) is compared with a con­

stant NMINUSI to see if the buffer is full but for one item. If it is, transfer is made to READ 

to initiate selecting and reading the next input tape. The first three instructions in READ store 

Xl through X5 (again by a series of TX instructions in cosequence), set Xl through X5 to 

LASTKEY areas, and set SO to READ+3, with a sequence change to TREE. The process of 

selecting the input set to be read, and the actual reading, have been discussed in preceding 

paragraphs. At the end of these two operations, Xl through X5 and SO are reset to the merge 

mode and go to MERGE+33. If the output counter had not been equal to NMINUSI, control would 

also have been transferred to MERGE+33. In MERGE+33, the output counter is compared (incre­

menting it in the A address) with NIB to see if the buffer is full. If it is, control is transferred 

to WRITE. 1£ not, return is made to TREE. Here the next item is processed, and the loop is 

completed. 

Beginning-of-String Check 

After selecting the smallest item and transferring it out, as described in the preceding 

paragraphs relating to the merge sort trees, the input buffer is stepped to the next item. If, 

in this process, the input buffer is found empty, control is transferred to the appropriate begin­

ning-of-string section, BOSA through BOSE, depending upon which input set is being dealt With. 

All five of these sections are similar, and so it will suffice to describe one, namely BOSA. 

In BOSA the contents of AU I are transferred to Xl. This replaces the word difference of 

AU I minus the item size into Xl which would have been done in the normal MERGE section after 

the comparison of the item count. The word specified by Xl (the banner word of the depleted 

record) is compared with a constant to see if it is a beginning-of- string indicator. If it is not, 

control is transferred to SWITCHA (sections SWITCHB through SWITCHE correspond to BOSB 

through BOSE). SWITCHA, as the name implies, switches the A input buffers so "next" becomes 
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"current". At SWITCHA, to save instructions, a "return-and-restore" is set up in the appro­

priate Dummy String Group (DUMSTRA) and control is transferred there. Just as in the dummy 

string adjustment routine, the table is switched with a shift instruction, X 1 is set to the next 

buffer, LASTKEY is set, and SI is res et to +1. Following this is a restore instruction which 

replaces DUMSTRA+5 with its original contents and return is made to MERGE+28. 

If the banner word is a beginning-of- string mark (meaning end of string insomuch as 

reading is backward), the next record is checked to see if it is a beginning-of-file record. To do 

this, the table is shifted one position (16 bits) to Xl, WPLUS2 (the constant referring to buffer 

size) is subtracted from this to locate the banner word in the new buffer, and the banner word 

is compared with the constant Beginning-of-File Banner Word (BOFBAN). If this record is a 

beginning of file, the SWEOS is set to go to the Beginning-of-File Routine (BOFRTNE), and 

then proceeds in sequence to BOFA+6. Alternately, if the next record were not a beginning of 

file, control would be transferred directly to BOF A+6. Here Xl is set to stopper, then going to 

MERGE+28. BOFRTNE simply sets the banner switch to a special setting which will write the 

end FID record, and end the current subpass. 

In summary, when an item is taken from an input buffer and transferred out, the buffer 

is stepped, and there are four possibilities: 

1. The buffer is not yet empty; 

2. It is empty but not at the beginning of string; 

3. It is at the beginning of string but the next buffer is not the beginning of file; or 

4. The next buffer is the beginning of file. 

The first is the normal case, and control is transferred to MERGE+28. The second occurs 

once per (input) record. Here the buffer table is switched and the index register, counter and 

LASTKEY are switched. The third possibility occurs once per string and it results in stoppering 

this input. In the fourth case, SWEOS is set to go to the beginning-of-file routine at the end of 

this string so that the current subpass may be ended. 

All Items Equal 

Upon reaching the exit of the tree where all items could be equal, an increment, as men­

tioned previously, is applied to refer to a unique section of coding that tests to see if everything 

is stoppered. The merge mode procedure is slightly different from the read mode procedure. 

In MERGE, end of string is indicated by all stoppers and control is transferred to SWEOS. READ 

uses all stoppers to indicate that no read should take place (this will be the case at the very end 

of a pass). 
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In the merge mode, a test is made first to see if the selected item (A) is stoppered. If it 

is not, control goes directly to MERGE+l to transfer the A item, which is either less than or equal 

to the other items. To determine if the A item is stoppered, the value of Xl is checked directly, 

comparing it with the constant representing the stopper base address. Thus the test is inde­

pendent of the value of the key itself (allowing keys of any values to be used in the merge sort). 

If Xl is set to the stopper base address, the other index registers (Xl-X5) are checked in the same 

way to be sure that all are stoppered. If they are, the program proceeds to SWEOS. If any had not 

been stoppered, control would have gone to the merge group of instructions corresponding to the 

first non- stopper set reached (B- E). 

Similarly, in the read mode, each index register is tested to be sure it is stoppered. If one 

is found that is not, control goes to the corresponding read group of instructions. If all are stop­

pered, control goes to the final portion of one of the sets of instructions to restore the index regis­

ters and SO to the merge mode only (no reading), and then returns to the merge coding. 

Write Routine (WRITE) 

WRITE is entered once per (output) record, as determined in MERGE, and it is the section 

which writes and switches the output buffers. Since any break in string, subpass, or pass coin­

cides with an integral record of output, it is in WRITE that a good deal of switching takes place. 

First, WRITE resets the output counter to unity by transferring 1 to Z, Sl. The address of 

the first orthoword in the buffer is set up in X7 (by transferring the contents of XO to it), and then 

XO is set to the address previous to the smallest item. Depending upon whether this is an ascend­

ing or descending pass, the smallest item is defined as the item in the output buffer with the smallest 

key, which will be either the first or the last item. WRITE+l and WRITE+3 accomplish this set-

ting up of XO, and these instructions in turn are set up at the beginning of each pass as explained 

in the following paragraphs. 

For an ascending pass (smallest item is first), WRITE+l is a WD instruction of the output 

buffer table minus 1 into Z, XO. WRITE+3 is a PR instruction. Since the output buffer table 

(which is the two-part switch) is set to the first data word of the current buffer, subtracting 1 

will lead to the location just prior to the first item. 

For a descending pass (smallest item is last), WRITE+l is a WD of Z, XO minus 1 into Z, XO 

which leads to the last word of the last item. If the items are fixed, WRITE+3 is then the WD of 

Z, XO minus NW (constant for the number of words or the item size) into Z, XO. If the items are 

variable or over 63 words, WRITE+3 is a WD of Z, XO minus N, XO into Z, XO, using the end-of-
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item word for the item size. 

WRITE+4 compares the key of the smallest item (using XO with the proper augment) for 

equality with a constant of all hex GIS. If the result is equal, a record of fillers has been accu­

mulated which can be omitted from the output to reduce the amount of data on tape, In this case, 

control is transferred to WRITE+13. But normally the smallest item will not be hex GIS and the 

program will remain in sequence to write and switch buffers. Thus, in WRITE+5, XO is set to 

the banner word position by subtracting I from the buffer table. WRIT E +6 is the banner word 

switch, which is similar to the one in the presort. Usually, this transfers a normal banner word 

to 0, O. At the beginning of string, the banner switch is set to SETBOS, which transfers a BOS 

banner word to 0, a and, in cosequence, transfers the normal setting to WRITE+6. One additional 

setting of the banner switch Set End-of-File (SETEOF) occurs when an output tape ends, in 

which case an EOF banner is transferred to the FID reserve area IDRES and several instructions 

are performed in cosequence. These instructions add Z, XO and 4 into Z, X7; transfer four words 

from IDRES to 0, 0; transfer Set End-of Record Indicator (SETEORI) to the banner switch; and 

set WRITE+12 to go to the banner switch. 

In all these cases, the next instructions performed are WRITE+7 through WRITE+12, which 

actually perform the write. The record count is incremented and is substituted into 0, O. Ortho 

is computed from 0, a to N, X7, and 0, a is written. Finally, the output buffer table is switched 

(by shifting end around, as with the input buffer tables) leading to WRITE+12 which is the write 

exit switch. Normally, this transfers the new output buffer table setting to Z, XO, and returns to 

MERGE. But during the end-of-file procedure (discussed in the preceding paragraphs), this 

exit switch is set to return to the banner switch, presently set to SETEORI. In this special case, 

the banner switch will transfer an End-of-Record Indicator (EORI) word to 0, 0, and continue in 

cosequence to restore the banner switch to SETBOS. Next, the write exit switch is set to trans­

fer the output buffer table to Z, XO (as usual), and then control goes to EOF (described below). 

Thus, in normal usage, the banner switch either sets up a BOS banner word and restores 

itself, or sets up a normal banner word. In the special case when ending a tape, it allows a loop 

to be established going through WRITE twice to write an EOF record and an EORI record. As 

noted earlier, an output buffer full of filler items (keys of all hex G's) will occasionally be found. 

In that case, control is transferred to WRITE+13. Normally, such a record can be discarded. 

However, if it is the only record of a string, dropping it would upset the balance of strings on tape 1 

and the sort would not end properly. To overcome this possibility, the banner switch is checked 

(in WRITE+13) to see if it is set to indicate that this record is a beginning of string. If it is, 

control is transferred to WRITE+5 and the record is written in a normal manner. If it is not a 
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beginning of string, control is transferred to WRITE+12 to discard it. This will bypass the 

process of writing the record, but will reset the output buffer index register for the next record. 

The EOF consists of a straightforward series of instructions (including several substitutes, 

transfers, and reads). One dummy write and a read backward (into the stopper register) of the 

output tape just completed is executed. EXIT A is set up in the dummy string area to the new "way" 

according to N, S3, 1 (S3 is the subpass counter used for this purpose, which sets EXIT A back to 

the largest "way" after the last subpass). The SWEOS (EOS+4) is set to refer to the next section 

in the dummy string area. Three read forward and one read backward of the new tape to be 

written are set up and performed, each followed by a dummy read, as well as the common write 

instruction (WRITE+IO). The record counter is set to the record count found by the positioning 

instructions, which leads to a comparison that tests to see if EXIT A is set to the largest "way" 

setting (add to nth counter). If it is, control is transferred to End of Pass (ENDPASS). If not 

(meaning that only a subpass has been completed), EOF proceeds to modify some of the EOF 

instructions for the next time through. The A addresses of two of the instructions which pick up 

the new tape addresses are incremented (with WA) instructions. The WRITE exit (WRITE+12) 

is restored to normal, and control goes to SWEOS to start the next string. 

End of Pass (ENDPASS) 

As noted above, upon coming to the end of an input file, a check is made to see if it is the 

last file depleted. When the last file is depleted, control is transferred to a section of coding 

called ENDPASS. ENDPASS determines whether another pass is to be performed, which type 

(ascending, descending, or a special last pass), and modifies the merge sort routine accordingly. 

First, a counter called PASSES (which starts with the total number of passes as deter­

mined by the presort, and is reduced by 1 after each pass is completed) is compared for less 

than or equality with 2. If less than or equal, the next pass will be number one (the last), and 

control is turned over to a special set-up section termed Last Pass (LASTPASS). Otherwise, 

the program continues in sequence. Working register R7 is set to READ+5 (the first of the sets 

of read instructions in READ) for later use in ENDPASS. Switch tree (SWTREE), an indicator 

which shows which type the current pass happens to be, is checked and control is accordingly 

turned over to either APASS or DPASS to set up an ascending or descending pass. These two 

sections of coding are similar, and they set up all areas which vary between ascending and 

descending passes. In APASS or DPASS, an initial "return" to the top of the appropriate 

tree is set up in READ+2. A word of all hex G's or a word of all zeros is stored in STOPPER. 

(In double precision, two such words are stored. In triple precision, the area between the two 

extremes of the stopper area are filled.) The final orders in the EOF area are modified, as 
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necessary, to step the EOF area one way for ascending passes and the opposite way for descend­

ing. The instructions in WRITE+Z and WRITE+3 are set up to refer to the first or last item in 

the output buffer. A small loop is used to set up the read instructions, using R7 (previously 

set up) with an increment of 5 to step through the read groups. SWTREE is switched to its 

opposite value. 

The coding, which is common to both APASS and DPASS, is reached at this point. Here, 

1 is subtracted from PASSES, and the write exit switch (WRITE+lZ) is restored to its normal 

value. The next section is called Switch Counters' (SWCTRS). This section switches the dummy 

string counters around to correspond to the new pass. It will be recalled that each counter 

corresponds to a specific tape, but that the A through E designations change from pass to pass, 

and the dummy string adjustment area modifies counters on an A through E basis. This sec-

tion of the routine, although quite straightforward for an individual sort, is set up by the genera-

tor differently for a three-, four-, five-, or six-tape sort. Thus, for a three-tape sort, counters 

A, B, and C become C, B, and A. From SWCTRS, control transfers to the Beginning-of-Pass 

Section (BEGPASS), an initializing routine entered at the beginning of the merge sort as well as 

before each further pass. The LASTPASS coding, mentioned above, is explained later in the 

ENDSORT discussion. 

Beginning of Pas,s (BEGPASS) 

BEGPASS is used at the start of every pass, including the first. Its basic function is to 

prime two buffers of each input set and to set up an additional read, based on depletion, when 

MERGE is entered the first time. The output buffer is initialized, and the input index registers 

are stoppered. The SWEOS, and the instructions in EOF which modify it, are reset to the 

proper initial value in relation to the dummy string adjustment area. MERGE is set to perform 

a read, based on expected depletion, when it is first entered after the dummy string routine. 

And finally the banner switch is set to an initial BOS setting, ready to write the first output 

string on the output tape. 

The buffer is primed using R6 and R7, working special registers. R7 is set to the first 

actual read instruction (READ+5) in READ. READ+Z6 is temporarily set to an instruction which 

will replace itself and return control to BEGPASS. R6 is set to the A CAC switch (T ABLEA). 

A loop is then entered which uses R6 and R7 to set up the read index register (X6) and perform 

three reads under cosequence control (the first simply bypasses the EOF record), during which 

R6 is incremented by 1 and R7 by 5 to refer to each input set in succession. During this process, 

the output buffer counter (Sl) is set to zero, the subpass counter (S3) is set to its initial value, 

so that N, S3 will refer to the proper constant when it is used later to modify EXITA. The con-
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tents of the output buffer table are stored in XO, and a special initializing switch is stored in 

MERGE to allow use of the TREE for the one initial read, but then control returns to the top 

of the tree for merging. Xl through X5 are set to STOPPER. R6, the working register, is 

again set to T ABLEA, and a small loop is us ed to shift each of the input buffer tables 32 bits 

around to allow for the table switching that takes place in DUMSTR. An instruction in EOF, 

common to both ascending and descending passes, is restored to its initial value (it becomes 

modified at the time each subpas s is completed). The banner switch is set to SETBOS and 

control goes to SWEOS to enter the dummy string adjustment area and begin the first string. 

Ending the Merge Sort (ENDSORT) 

When PASSES is equal to ~ at the end of the next-to-last pass, control goes to a section 

called LASTPASS to set up all the procedures unique to the final pass of the merge sort. In 

LAST PASS, preparation must be made for own-coding, if specified. The final output tape must 

be positioned back one record to eliminate the second BOF record, and the banner switch must 

be set to always write a normal (not BOS) banner word. F'inally, the EOF section must be 

modified to go to ENDSORT, rather than ENDPASS, at the completion of the s<i=ing. ENDSORT 

simply prints "MERGED" and exits back to the original macrocoding. 

It will be recalled that MERGE+28, when immediately following the transfer of an item 

from the input buffer to the output buffer, is normally at PR. LASTPASS transfers the entrance 

to own-coding, if any, to this location. The output tape is read backward once into the stopper 

buffer. BEGPASS is modified to skip the initialization of the banner switch, and the banner 

switch is set to transfer a normal banner word. Finally, LASTPASS replaces the read forward 

(RF) instruction in EOF, which starts the positioning of the next output tape. A sequence change 

to ENDSORT is transferred into this location. LASTPASS then goes to the compariso'n which 

determines whether to go to APASS or DPASS to perform the basic set up of the final pass. 

In the final pass, the first tape to be written (the final output) has been backed up one 

record. APASS and SWCTRS are gone through in the usual manner, eventually leading to 

BEGPASS. BEGPASS is the same except for the last instruction, which no longer sets the ban­

ner switch to SETBOS, but simply goes to SWEOS to start the final pass. Since all dummy 

string counters, by now, will be reduced to zero, this section is completed. Also, all inputs 

are unstoppered, and control goes to TREE. This exits to MERGE in the normal way, except 

that immediately after transferring an item to the output buffer, control is turned over to own­

coding, if specified. Since the banner switch is set to normal, the banner word of the first data 

record to be written is the same as all the others to follow (instead of being a BOS banner 

word). One by one, the input tapes will reach end, but merging continues until the 
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items compared are stoppered. This leads to SWEOS, which was set to transfer SETEOF into 

the banner switch each time an input tape reached end. From here, control is turned over to 

WRITE to write the EOF and EORI records, and then to EOF section. This backs up the output 

tape one record, and leads {because of LASTPASS modification} to ENDSORT. In ENDSORT, 

"MERGED" is printed, and exit is made from the routine. 

SPECIAL CASE: One !tenl per Record 

In the generator portion of the merge sort, (discussed later) specific parameters of item 

size, key location, items per record, etc., are used to set up a specific routine. In most cases, 

the specific routine will be similar or identical to the general one described in the preceding 

paragraphs of this section. 

The case of a single item per record requires some special handling, however. The 

most obvious problem is in the main loop of the program, where the time to read is deter­

mined based on filling the output buffer but for one item. With one item per record, this 

difference between "n-l" items and "n" items amounts to a full buffer, with corresponding 

problems in synchronizing the reads and writes. 

Thus, in this one case, the generator modifies the reading comparison in. MERGE+31 to 

compare on NIB instead of NMINUSI (actually the contents of NMINUSI are changed). Also, 

the exit of the dummy string adjustment area has been set up to start a read based on expec­

ted depletion at the beginning of every string {rather than at the beginning of every subpass}. 

This is necessary because of "n-l" occurring one full record apart from "n". The result is 

that a read is skipped at the end of each string, since everything is stoppered at the time the 

last read should take place. The extra read at the beginning of the string, then, represents a 

read at "n-l" relative to the first item of the string to be transferred out. 

Over-all Flow of the ARGUS Merge Sort 

Thus far, the merge sort has been discussed i:r;t general terms, and various components 

of the merge sort have been explained in detail. These components are tied together in the 

following paragraphs to presept a complete merge sort picture. A merge sort flow chart is 

shown in Figure 14. 

The first section to be performed, BEGPASS, is entered before each pass of the sort, 

including the first. BEGPASS primes the buffers, and initializes variables and switches. 

The EOS Switch (which might more appropriately be called the BOS Switch) is entered at 
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Figure 14. Over-all Flow Chart of the ARGUS Merge Sort 



SECTION IV. MERGE SORT 

the beginning of each string. Normally, it leads to the appropriate section of the dummy string 

adjustment area, except that after any input tape is exhausted (and the string then in progress 

is completed), it is set to the Beginning-of-File Routine (BOFRTNE). 

The dummy string adjustment area handles the merging of any dummy strings. 1£ there 

are dummy strings on an input (as indicated by the dummy string counters), it subtracts 1 from 

each counter, adds 1 to the output counter, and returns to SWEOS for the next string. 1£ any 

inpu'ts do not have the dummy strings, the dummy string adjustment area exits to the TREE, 

after setting the banner switch in WRITE to BOS, and subtracting 1 from any non-zero dummy 

string counters. 

TREE is associated with the quantities to be compared via the index registers, and with 

the instructions which follow it via special register SO. Through these special registers, TREE 

is either associated with the current input items and the MERGE, or with the last items of the 

current input buffers (LASTKEY) and the READ coding. The merge mode is the normal one. 

In this mode, the TREE will exit to one of several sections of coding to transfer the selected 

item to the output buffer, step the input buffer from which the selected item came to the next 

item and, if the buffer has been depleted, go to one of several sections of coding in BOS to 

switch that input set. 

After the item has been transferred to the output buffer and the input buffer has been stepped 

and tested for depletion, a common section of coding, MERGE+Z8, is entered. This section steps 

the output buffer and tests to see if it is full but for one item, or if it is completely filled. 1£ 

neither of these conditions are met, return is made to the TREE to select the next item. 

If the buffer is almost full (one item to go), control goes to READ, which sets the TREE to 

the read mode, and proceeds to TREE. This compares the LASTKEY areas to find which input 

area needs refilling the most, and accordingly exits to the appropriate group of instructions 

starting at READ+3. Here a record is read into the vacant buffer of the selected input set, its 

LASTKEY word is stoppered, and TREE is reset to the normal merge mode. Return is then 

made to TREE to select the next itern. 

When the output buffer is full, control goes to WRITE to write the record on tape and switch 

the output buffers. 1£ the output record contains redundant fillers only, WRITE is bypassed. 1£ 

the banner switch is set to BOS, a BOS banner word is written with the record, and banner 

switch is set to normal. When set to normal, the banner switch. writes a normal (middle-of­

string) banner word. From WRITE, return is made to TREE tq select the next item. 
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After an input buffer was stepped and found depleted, BOS, which corresponds to the input 

set of the depleted buffer, checks the banner word of the buffer. If it is a normal banner word, 

control goes to SWITCH, which corresponds to this input set, and the input buffers are switched, 

setting up a new last word in the process. If the banner word is a BOS banner, the index regis­

ter corresponding to this input set is set to stopper, and the next record of this set is checked 

to see if it is a BOF (meaning the input tape has just been depleted). If it is, the SWEOS is set 

to BOFRTNE, and merging of the current string continues. 

One by one, the different input strings reach end and become stoppered. Finally, TREE 

discovers that al1 items being compared are equal and, furthermore, that they are al1 stoppered. 

(When in the reading mode, this simply causes skipping a record.) If all items are stoppered, 

the TREE exits to SWEOS, signifying that this string is ended and another is to be started If 

the SWEOS is set to its normal setting, control goes to the dummy string adjustment area to 

begin a new string. 

If an input tape (as opposed to a string) had been depleted earlier during the current string, 

SWEOS would have been set to BOFRTNE. In this case, when the string ends, control goes to 

the SWEOS, which now leads to WRITE with the banner switch set up to write EOF and EORI 

records on the output tape. In this case, control goes to EOF from WRITE, which modifies 

the routine for the next "way", and makes the input tape just depleted the new output tape. If 

this is not the last subpass, then control goes to SWEOS (now reset to normal) to start another 

string. Or, if this was the last subpass (meaning the final input tape has been depleted), control 

goes from here to ENDPASS. 

In ENDPASS, a check is made to see if an ascending or descending pass has just been com­

pleted. ENDPASS then gets ready to do just the opposite type of pass. This is accomplished in 

either APASS or DPASS, from which, as at the beginning, control goes to BEGPASS. Upon 

ending the next-to-last pass, however, control goes to LASTPASS also, to make a few modifi­

cations to the program for the final pass. From LASTPASS, control goes to APASS, and then 

on to BEGPASS. Among other changes, LASTPASS modifies EOF so that, upon completing the 

first (and by definition, last) string of the final pass, EOF writes the EOF and EORI records 

and exits from the sort. 

Merge Sort Generation 

Two special registers are used to relay information from the presort to the merge sort. 

Index register X7 contains the address of the macrocoding as set up at the beginning of the pre­

sort and Rl contains the peripheral address of the tape drive from which the merge sort can 
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obtain the sort parameters. If output edit own-coding is used, the programmer must set up 

special register S2 with the address of the own-coding. The own-coding must be under the 

control of the cosequence counter and the contents of the special registers used by own-coding, 

must be stored and restored, as for the presort. 

After reading the end-of-file identification record, from the tape specified by R1, into 

memory, the merge sort modifier checks the various options transmitted to it by the presort 

from the beginning FID parameters. If variable- size items are spec ified, modifications are 

made to the sort to use the item size indicated in the low-order 16 bits of the end-of-item word 

rather than a fixed item size constant. If the banner word option indicates that banner words 

are not used on data records on the input file, the last merge pass is modified to eliminate the 

banner words affixed by the presort. If masked keys are indicated in the parameter, the 

necessary masks are set up in memory as given in the end FID, from the presort, and the 

merge sort is modified to handle masked keys. 

Tape addresses and the "way merge" indicators transmitted from the presort are used to 

generate the proper read and write instructions and to modify the merge sort as required. 

Input buffers are allocated for the given :record size for each input tape, and output buffers are 

allocated for the given record size. 
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In the event of a read error, the location of the suspected record is determined, and con­

trol is turned over to the Executive Routine to try to repair it. If unsuccessful, the information 

is reread by the sort, and if still bad, control is again turned over to the Executive Routine. 

This process is repeated several times. Suitable printouts at the console indicate the nature 

and disposition of the trouble. 
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If physical end of tape is reached, the tape is rewound with interlock, and a printout 

tells the operator what has happened. He may then mount a longer tape, and the program will 

revert automatically to the most recent restart point. 

Restarts in the merge sort, as in the presort, are part of the sort coding. This is 

especially necessary in the merge sort, since (due to the nature of data manipulation on tapes) 

restart points must be established at every subpass. (These built-in restarts are especially 

tailored for the sorts and are therefore more efficient than the general restarts provided by the 

Executive Routine.) As with the presort, a restart point is established just after the routine 

is loaded, this time on the last, or nth work tape, to allow restarting the routine from the 

beginning. Subsequent restart points are stored internally, in the form of counter settings, 

at the beginning of each subpass. All of the dummy string counters, as well as the record 

number counts (from the banner words in the "current" input buffers), are stored at this time, 

and the restart routine is modified to handle the type of subpass about to be performed. These 

restart points are established during the EOF routine when all inputs are stoppered, and no 

partially depleted input buffers remain. 

There are several possible restart procedures. Use of the proper one is governed by 

how far the merge sort has progressed at the time it is necessary to restart, and upon what 

type of subpass is being performed. During the first subpass of any pass, when writing on 

the nth tape, restarting is accomplished by positioning all the input tapes forward to the EOF 

records, and positioning the output tape backward to the BOF record. Then, with tape posi­

tioned as at the beginning of the pass, PASSES is incremented and control goes to either 

APASS or DPASS. During intermediate subpasses, restarting is somewhat more complex, 

since the input tapes will not necessarily be at end of file at the beginning of the subpass. 

For this reason record counters are stored, corresponding to each input tape. Using these 

counters, which were stored during the most recent break between subpasses, all current 

input tapes are repositioned forward to the record counter that is stored. The output tape is 

positioned backward to the beginning FID. The deficiency counters are replaced by their 

values, which were stored at the most recent break between subpasses, and all tapes are stop­

pered. The current input tapes are primed (two buffers each, as in BEGPASS), and those 

instructions in BEGPASS, which are the same for any number of input tapes, are performed. 

The routine is then re-entered at SWEOS (just as in BEGPASS) and the current subpass is 

restarted. 
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THE COLLATE 

The ARGUS collate combines from 2 to 99 ordered files into one long file. Each input file 

may be contained on a single reel or may occupy any number of reels. The programming logic 

of the c6llate routine resembles that of the rnerge sort, although the two routines differ in func­

tion and in outward characteristics. The heart of the collate is a merging operation, accom­

plished by means of trees, but the associated reading and writing controls are more complex 

than those of the merge sort. 

Like the ARGUS sort, the collate is stored with the Library of Routines as a subroutine 

and consists of a skeleton routine and a modifier-generator. Whereas the presort and merge 

sort are generated and performed by executing a single pseudo instruction, collating is a sepa­

rate operation which is called out by executing a collate pseudo instruction. Therefore, although 

the collate may be used to cornbine the outputs of several sorting operations, it is performed as 

a separate program, completely disassociated from the sorts which produced the files to be 

collated. 

The "Way" of the Merge 

In addition to the parameters supplied to the sort (e. g., item size, key location, etc.), 

the collate is supplied with information concerning the number of files to be merged as well as 

the "way" merge to be perforrned. A file here is assurned to be a single series of ordered 

iterns, which may, or rnay not, extend over several reels of tape. "Way" means the number of 

input files merged at anyone time. This is indirectly limited by the number of tape drives 

available. Whereas a file contained on a single reel of tape may be read from a single tape 

.drive, a multi-reel file is usually allotted two drives. In tliis mode, no tirne is lost when one 

tape (or segment) of a file is depleted because the machine has immediate access to the sub­

sequent sectiop. on the alternate drive; therefore, the depleted tape can be replaced, when it is 

convenient, by the next installment. 

Merging Function 

In the simplest case, the collate is used to merge two, three, four, or five files 

to form one; an example would be combining the (sorted) outputs frorn several weekly runs at 

the end of a month. In such a case, a two-, three-, four-, or five-way rnerge (one single logi­

cal pass) would be perforrned depending upon the nurnber of weekly outputs to be rnerged. (In 
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this case, five would be a m.axim.um..) On the other hand, there are tim.es when there are m.ore 

files to be m.erged than the num.ber of the "way" that the collate can handle. In such cases, un­

like the m.onthly operation just m.entioned, it is necess"ary to perform. several passes which, for 

instance, com.bine files A and B into a file W, C and D into file X, E and F into file Y etc., and 

then com.bine files W, X, Y etc. into a final file. "Therefore, in m.ulti-pass m.erging, it is im.­

portant to have a firm. system.. controlling the sequence of files to be m.erged. As the num.ber 

of original input files becom.es greater (for instance 20 rather than the six), the need for a firm. 

controlling system. becom.es increasingly m.ore im.perative because, without such a system., it 

would be highly confusing to m.aintain a fixed control over the entire process. 

Equipm.ent and Mem.ory Considerations 

In the collate, buffering, reading, and writing are sim.ilar to the corresponding portions 

of the m.erge. As with the m.erge, an optim.u:m. balance between reading and writing operations 

is established to m.ake the routine as fast as possible. The tree portion of the routine is sim.pler 

than that of the m.erge since a collate performs only an ascending pass over all data, requiring 

only a single tree. In addition, the input buffers are easier to visualize because reading is 

always in the forward direction and inform.ation is always taken from. the top of the buffers 

rather than from. the bottom.. 

In spite of the apparent sim.plification of the collate over the m.erge sort, there are several 

factors which could m.ake a collate (particularly one involving sm.all item.s with large keys) slow­

er than a corresponding m.erge. For one thing, a greater equality of keys can be expected as 

strings becom.e longer and longer, extending over one or m.ore tapes. Each case of equality of 

keys necessitates extra levels of com.parisons in the tree, as well as in the com.parison section 

which m.ay be attached. As a precaution, a sequence check has been built into the collate. This, 

in effect, checks each item. com.ing in to be sure that it is equal to or greater than the item. which 

preceded it on the sam.e file. in m.any cases, such a safety device can often isolate incorrectly 

written tape before it has a chance to destroy the whole collating process. This means that two 

sets of com.parisons, the tree and the sequence check, are perform.ed for each item. processed. 

If a break in sequence is found, a printout on the <;:onsole typewriter inform.s the operator. The 

operator then has the chance to redo that tape and, through the restart procedure, start the 

collating process over at a point before that tape was first read. 

The Collate Plan 

When the collate pseudo instruction is executed and the routine generated, the generator 

devises a plan which represents the m.ost efficient run for the conditions specified and prints 
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this plan on the console typewriter. The operator follows the collate plan in mounting tapes and 

uses it to track the progress of the collate. 

If the number of files to be merged does not exceed the way of the collate, the plan is re­

latively simple. However, if the number of files is large enougb. to require more than one pass, 

a more compUcated plan is devised which minimizes the total number of passes over the input 

files. This is accomplished by utilizing, as nearly as possible, the full way of the collate during 

each individual pas s. 

Figure 16 illustrates this principle in terms of two collate runs, A and B, each of which 

uses a three-way merge to combine 17 files. In example (a), five three-way merges and a two­

way merge are first performed to reduce the original 17 files to six. Two three-way merges 

then reduce these to two files which are finally combined by a two -way merge. Note that each 

of the three layers of merges processes all 17 files for a tol'~l of 51 file times. Example (b) re­

presents a more powerful collate of the same files. Note that by withholding certain files from 

the first-layer merging, a full three-way collate can be performed in each individual merge 

and, in this instance, the same files can be combined in a total of 46 file times. This is typical 

of the manner in which the advance-planning feature of the ARGUS collate results in the most 

efficient plan for any collating progra:m.. 

Calculation of the Plan 

The calculation of the plan occurs as a part of the modifying-generating process, before 

the collate is run. The theory of the calculation is relatively simple, and is based on the fact 

that if a less -than specified way pass has to be done, it is better done at the beginning of the run 

when only a few files are involved, rather than at the final pass when the entire volum.e of data 

must be pas sed. Therefore, the final pas s is planned first and is specified as full-way. If there 

are more original files to be collated than the number that this would handle, then the next-to­

last pass is specified. This is another full pass, whose output will be one of the inputs to the 

final pass. This- yields a capacity of way-l additional input files (-1 being the input of the last 

pass which is presently taken up with the output of the new pass). If this is not enough, another 

pass is specified whose output will be another input of the final pass. This process continues 

(going to the inputs of the next-to -last pass when those of the last are filled, etc.) until the total 

num.ber of inputs is equal to or greater than the num.ber of files to be collated. The last pass 

calculated (the first perform.ed) may be less than a full-way merge, but this will be the only one. 

When completed, the plan is printed in a tabular manner on the line printer or console type­

writer. Each line represents a pass, and specifies each input and output file by a unique number. 
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EXAMA...E A 

51 FILE TIMES 

EXAMPLE B 

8BOI BB02 BB03 BB04 BB05 BOO6 BB07 BBOB BB09 BBIO BBII 8812 8813 8814 8815 8816 8817 

00000000000000000 

~Ol ~~ ~3 ~ 
~ \ 

~0102 

/-
(17 ]»»)]»1»)0001 

46 FILE TIMES 

Figure 16. Collate Merging Sequence 
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The plan is also kept in memory in compacted form and will be used later by the routine to de­

termine how many passes there will be, and what files are involved in each. The file numbers 

of the plan are used as a basis for writing a file name on tape, printing it on the console, and 

later for checking the same tape when it is to be read again. 

T ape Control 

In connection with the collate plan, there is a system of communication between the 

machine and the operator with regard to the identification of each file going into or corning out 

of the system. In fact, one of the significant advantages of this plan is the fact that it serves as 

a check to be sure that the proper files are mounted at all times. This becomes extremely 

critical during a large-volume, multi-pass collate when tapes are being constantly mounted, 

dismounted, and changed. To implement this communication between the operator and the 

·machine, each file is assigned a unique number in the plan. This number becomes the file name 

of each file written by the collate, and as each tape is completed, the number is printed on the 

console typewriter so that the operator can label the tape in the sam.e manner. Each file written 

by the collate, and later read by it, is checked at the time of reading, to insure that it is the file 

being called for at that time. As a further check, each segment (tape) of a file is assigned a· 

sequential number, and this too is checked. The file naITle for the first segITlent of any original 

file, obviously, cannot be checked, but the na:me which is found there is retained so that the 

following seg:ments of the file can be checked. The final output :may have any file na:me specified. 

File Identification 

File nu:mber s, or naITle s, are as signed in the following rnanner. Each file will have a 

four -digit nurnber. The fir st two digits specify the level nu:mber. The last two digits specify 

the file nurnber within that level. Level refers to the nurnber of ti:mes the data within the file 

rnust be passed before the collate is complete. Thus, the final output is level zero; those files 

which are rnerged to create it are of level one; the files rnerged to create any first-level files 

are of level two, etc. The file nurnbers are assigned sequentially, starting with 1. Therefore, 

the final output file will be 0001 (level zero, file 1) and, depending upon the way of the rner ge, it 

will be created by the rnerging of 0101, 0102, etc. (Figure 16 (b) ). 

Initially, the plan section sets up a cornplete table of passes, with file nurnbers assigned 

as above. It then deterrnines which of the files are original inputs, and reassigns new numbers 

to thern, with "BBII as level nurnber and sequential file nurnbers. Thus, when the collate finds 

that an input file having a BB nurnber is called for, it bypasses the check for file nurnber and in­

stead store s the file narne which it finds on the tape. Also, at the beginning of each pas s, the 
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output file number is checked against 0001; if they are found equal, the option to insert a user­

specified file name is exercised. 

The file na:me or nu:mber, described above, is identical for each tape of a file (by defini­

tion, a file :may extend over any nu:mber of physical tapes), so in order to insure that tapes of a 

file are :mounted in correct sequence, so:me further check is necessary. This check is provided 

through the seg:ment name or nu:mber. Tapes written by the collate to :make up a file are nu:m­

bered sequentially in the right:most two digits of the seg:ment na:me (01, 02, etc.). When these 

tapes are read, this number is checked for unity at the beginning of a pass, and for the next 

higher nu:mber for each subsequent tape of the file. On anyone tape, these nu:mbers are the 

sa:me in the beginning- and end-of-file identification records, except that the last tape of the file 

ends with a seg:ment nu:mber of GG. As with the file na:me, the seg:ment na:me of the final output 

:may be specified by the user, except that the last two nu:meric positions will be sequential nu:m­

bers placed there by the collate. Initial input files (those with the BB numbers) are not checked 

for segment nu:mber unity at the beginning of the pass. Instead, whatever seg:ment nu:mber is 

found is stored, and the next tape is checked for one greater than the one found. Thus, the input 

nu:mbering sequence is apt to begin with any nu:mber. 

The plan, therefore, which is printed at the beginning of the collate will have as :many BB 

file nu:mbers as there are files to be collated. The user arbitrarily assigns one of these nu:m­

bers to each file so that he can know what tapes to :mount as the routine calls for the:m. The only 

require:ment of each of these initial files is that their file na:me be constant throughout, the final 

two digits of the seg:ment na:me increase sequentially throughout fro:m tape to tape, and the final 

end segment name have a word ending in hex G 1 s (GG). As each output tape is co:mpleted by the 

collate, the console typewriter will print out: IIREMOVE (file nu:mber) (seg:ment nu:mber) FROM 

(peripheral addres s of drive) II. The operator should then re:move the tape fro:m the specified 

address and label it with the file and seg:ment nu:mbers specified. Subsequently, when the plan 

calls for that file to be processed, there will be no question about which tape is to be :mounted. 

Tape Changing 

The collate is set up to handle each input and output on two tape drives each, as specified 

by the user. Internal indicators tell the collate which drives correspond to each set. If a single 

drive is specified, the two internal drive indicators corresponding to that set refer to the sa:me 

drive. In either case, as each tape is co:mpleted, it is rewound with interlock and the internal 

indicators are switched to refer to the alternate drive (unless the tape just co:mpleted was the 

last of that set). If dual drives are used, the next tape will be processed i:m:mediately and the 
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operator can change tapes at his leisure. If a single drive is used, the routine will stall on the 

tape interlock until the new tape is mounted (as it would with dual drives if the tape were not 

changed in time). Although the routine tells what tapes are to be removed, the mounting of the 

correct tapes (based upon the plan) is left to the operator. This is because the routine (if dual 

drives are used) has no way of telling when any file will end until'the end-of-file identification is 

=!-"eached. By this time, the next tape (if there is one) should already have been mounted on the 

alternate drive; if not, the routine will stall. The console typewriter prints an indication as 

each pass is begun, and this, together with the knowledge of what drives correspond to each in­

put set and to the output,. enable the operator to interpret the plan and mount the tapes accord­

ingly. In the event an incorrect tape is mounted, and just when the collate is ready to use it, 

WRONG TAPE, together with the tape drive address and the number of the correct tape, is 

printed on the console typewriter. 

NOTE: The following text refers to many special registers used in the ARGUS collate. Appen­

dix D of this manual provides a list and functional description of these special registers. 

Buffers 

Except for the differences which arise from reading forward instead of backward, buffer­

ing in the collate is handled in exactly the same manner as in the merge sort. This is described 

in Section IV. 

Each of the five input sets, A through E, corresponds to a pair of tape drives, only or ... e of 

which is active at anyone time. Logically, A through E are identical. If a less than five-way 

pass is specified, input sets are dropped starting with E. Thus, a two-way m.erge uses input 

sets A and B. 

As in the merge, there are three buffers per input set. They are a "current" buffer, a 

"next" buffer, and an "open" buffer. A CAC- (Com.plete Address Constant) type three-way 

switch is used, and in this case refers to the beginning locations of the three buffers. Switching 

is accom.plished by shifting the switch end around 16 bits. 

Index registers Xi through X5 are used to refer to the current item., and R1 through R5 

are used as buffer item. counters, as in the merge. Since the buffers are stepped through in a 

forward direction, the index register starts by referring to the first item. SWITCH+l to bypass 

the banner word. After each item. is transferred, AU1 is used to set the index register to the 

next higher item., and the R counter is incremented. 
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When the buffer is depleted and switched, the last item (last key) is set up by adding the 

constant LKEY t? the new switch setting. In the case of variable-length items, the last item is 

found by going through the buffer word-by-word, and looking for and counting end-of-item words. 

Both the CAC switches and last key settings are kept in a section called TABLE. 

Switching the input buffer is done, whenever a buffer is depleted, in the area called 

SWITCH. To switch a buffer, assuming fixed-sized items (under 64 words), the CAC-type 

switch is shifted with a mask of all hex GIS 16 bits back into itself. The switch plus LKEY is 

then added through a Word Add (WA) instruction, with a mask of the low-order 16 bits, to find 

~he last key setting. This is kept in the word immediately after the switch. Then the contents 

of the switch are transferred to the index register, and the address thus referred to (the banner 

word of the new buffer) is masked and compared with a constant to determine if this is an end­

of-file record. If equal, control goes to the appropriate one of five housekeeping routines (A-E 

HSKEEP) to switch tapes. Otherwise, the index register is incremented once (to refer to the 

fir st item), the R register counter is set to unity, and control goes to J J. J J, the common 

routine which corresponds to MERGE+Z8 in the merge, is used to step the output buffer and de­

termine when it is time to read or write. 

The procedure is exactly the same for variable-size items (or those over 63 words) except 

that the WA is replaced by a sequence change to a subroutine in cosequence. These subroutines, 

1V through SV corresponding to the A through E sets, will set up the last key portion of TABLE 

by looking for and counting end-of-item words. Each of these subroutines is the same, and 

works as follows: the index register is incremented, and the address it specifies is mask com­

pared with a constant to see if it is an end-of-item word. If not, it is incremented and com­

pared again. If it is, 1 is added to a working location called POCKET and POCKET is compared 

with FILE (FILE is a constant set up to equal one less than the number of items per record). If 

not equal, return is made to increment the index register. If it is equal, a W A adds 1 to the 

index register into the last key portion of TABLE, and after clearing POCKET back to zero, a 

return is made to the sequence mode. 

The CAC-type switches for the A through E sets are located in TABLE, T ABLE+Z, 

TABLE+4, TABLE+6, and TABLE+8. The last key setting$ are in TABLE+1, TABLE+3, 

TABLE+S, TABLE+7, and TABLE+9. 

Whenever a buffer is written, the output buffer is switched in the JJ section. The two-part 

switch to accomplish this is in T ABLE+10. x6 is the output index register and R6 is the output 

item counter. R7 is also used as a working register at the time of writing. More detail on 
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output buffer switching is contained in the subsequent discussion of the merge and read loop, 

which is part of the section describing the trees used in the collate. 

The input buffers must be primed at the beginning of each pass, as well as when an input 

tape is switched. In the first instance, as in the merge, two buffers of each set are primed, and 

reading starts into one of the available buffers based on expected depletion. However, when an 

input tape is switched, only two buffers are primed. In this latter case, a detour is made from 

the routine simply to check the FID records, switch tapes, and get the new tape started. Return 

will be made to the main routine when the new routine has replaced, in the buffers, the end FID 

record of the old tape with the first record of data of the new tape. 

Trees 

Like the sort routines, collate routines are available for single, double, or triple pre­

cision. These routines differ only in the structure of their trees. In each case, the trees used 

by a collate are logically identical to those used on ascending passes by a merge sort of the same 

precision. The collate routine can also be modified by means of own-coding to accommodate any 

additional number of key fields. Section IV contains a description of the structure of these trees. 

As in the merge, SO is used at the exits of the tree for storing the return and going to the 

appropriate coding to transfer the selected item. As before, this allows the same tree to de­

termine the next input read and the next item to be transferred. One slight difference between 

the collate and merge tree is that the former increments SO in multiples of four instead of five, 

since only four instructions are required to be unique to each input set. SO is set each time to 

TRANSFER, which functions exactly as the location MERGE in the merge sort. At TRANSFER, 

the return to the tree is stored. 

When switching to the read mode, the contents of Xl through X5 are stored in HOLD 

through HOLD+4, and the last key settings (T ABLE+i, +3, etc.) are transferred to Xi through 

X5. SO is set to READ to refer to the proper set of read instructions. As in the merge, the re­

turn in READ w.ill not be used. 

When all items being compared are equal, SO is incre:m.ented to refer to a si:x;th group of 

instructions, either in TRANSFER or in READ, which will check to see if all inputs are stopper­

ed. If the items are not stoppered, a normal exit is made to one of the other five groups of 

instructions. 

There are five groups of four instructions in the TRANSFER section. In the group 
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perform.ed when the A item. is sm.allest, for exam.ple, the first instruction i~ a Less -Than (LA) 

instruction between a working location ASKEY (there are corresponding locations in the other 

groups, B-ESKEY) and the key of the item. addressed through the index register. ASKEY con­

tains the key of the previous item. from. this input set (an explanation of how this is set up follows 

later). Assum.ing single precision, if ASKEY is less than or equal to the current key, then there 

is no break in sequence, and the item. is ready to be transferred to the output buffer. To do this, 

control is transferred to Continued (CONT) to transfer the item. out. The CONT area consists of 

groups of five instructions each, so the B set uses CONTtS, the C set uses CONT+lO, etc. If 

ASKEY had been greater than the current key, control would have gone to the second of four A 

instructions in TRANSFER. This, together with the third and fourth instructions, prints SEQ, 

ERROR, FILE A, and then stops. Instead of going to CONT (or CONTt5, etc.), the double- and 

triple-precision sequence check com.parisons go to a section called SUBTRANS to check the sec­

ond and third keys. SUBTRANS will exit either back to the print instructions in TRANSFER, or 

will go to the appropriate section of CONT. 

In CONT, the key of the current item. is transferred (through the index register) to ASKEY 

for use the next tim.e arourtd. The item. is transferred out by an n-word transfer (item. transfer 

for variable-size item.s) using index registers 1 and 6. The contents of AUi are transferred to 

Xi to set it to the next item.. Finally, Ri is checked, increm.enting it against FILEt1 (a constant 

set up to equal the n1.1.m.ber of item.s per record), and if it should be unequal, then control is 

transferred to a com.m.on routine, JJ, to com.plete the m.ain m.erging loop. Otherwise, control 

goes to the appropriate area in SWITCH to switch the input buffer. 

In double precision, SUB TRANS m.akes an equality check on the first keys of the last and 

current item. and, if equal, it checks the second key for sequence. ASKEYA through ESKEY A 

are used to store the second last key. In triple precision, another set of com.parisons are m.ade 

where the third last key is stored in ASKEYB through ESKEYB. In double and triple precision, 

the CONT area is expanded accordingly to allow the storage of additional last keys. In the event 

that the user wishes to extend precision beyond triple, he does not have to m.odify the sequence 

check accordingly, as it should suffice to check sequence on only the first three keys. Most 

troubles that a sequence check would isolate revolve around m.ajor breaks in sequence. These 

would probably m.anifest them.selves in the first key co:mparison. 

When the tree is in the read :mode, the five groups of four instructions in READ function 

as follows: the CAC-type switch is shifted 32 bits into working index register X7, a read is 

perform.ed into the address specified by X7, STOPADD (a SPEC constant) is transferred to the 
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last key porti'on of the TABLE area which applies to this input set (this is the address which will 

reference the stopper word of all hex GIS), control goes to the common area GG to restore the 

index registers Xl through X5 to their normal values, and finally a return is made to the main 

merging loop. 

Multi-precision 

Since the collate trees are identical to the merge trees, the discussion of multi-precision 

in Section IV is applicable here also. There is one additional problem to watch when precision 

is extended beyond triple through the use of own-coding, and that is when keys, other than the 

first three, are specified (refer to the final paragraph of Multi-precision, Section IV). Thus, if 

a fake third key is specified, then the third key comparisons of each of the five sequence checks 

(in SDBTRANS) will have to be modified to refer to the logical third key. 

Main Loop 

The main loop of the program, that which is performed for each item processed, has been 

essentially covered in the preceding sections. Only a few instructions are involved in complet­

ing it. In the tree (called LOOP in the collate), the smallest of the items addressed through in­

dex registers Xi through XS is found, a return is stored in the location specified by SO, and SO 

is incremented.to go to one of the appropriate groups of instructions in TRANSFER. Here (as 

also in the multi-precision of SUB TRANS) the item is sequence checked and, through the section 

CONT, is transferred to the output buffer. Also, the input buffer is adjusted and tested to see 

if it is empty, and if it is, then a sequence change is made to JJ. 

In JJ, the contents of ADZ are transferred to X6 to step the output buffer index register to 

the next item position. R6, the output buffer item counter, is then compared with FILE (items 

per record minus 1) to determine if it is time to read. If it should not be equal, control goes to 

JJ+13. In JJ+13, R6 is compared (incrementing it by 1) with FILE+1 (items per record). If it 

is not equal, control goes to TRANSFER. Here the return to the tree is stored. The collate 

returns are slightly different than the merge returns in that they make use of the A and B ad­

dresses of the return instruction to reset SO for the next time. (This was done in a separate in­

struction in the merge.) After resetting SO, then the return leads to the tree to process another 

item. 

Had it been time to read, as determined by an equality in JJ +1, control would have re­

mained in sequence, the contents of Xi through XS would have been stored in HOLD through 

HOLD+4, and TABLE+1, +3, +S, +7, and +9 would have been stored in Xi through XS, all 
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through a series of TX instructions. The index registers are thus set to the read mode, and 

control goes toFF. This sets SO to READ and goes to LOOP (top of the tree) in order to fn-

itiate a read. 

Previously, it was explained that the tree would select the appropriate set to be read and, 

to do this, it would have gone to a series of instructions in READ. From this point, control 

would hav.e gone to a com.mon section, GG, to restore the index registers, and then from. there 

to JJ+13 to get back into the main loop. 

When it is time to write, as determined by an equality in JJ+13, sequence control remains 

the same. In JJ+14, 1 is added to a counter called ACMLATE, which is the output record 

counter. ACMLATE is then compared with PAR+2, the portion of the parameter which specifies 

the number of records per tape to be written by the collate. If these are equal, the tape is full 

and control goes to EOPT to change output tapes. If not equal, X6 (now set to the word beyond 

the last item) is transferred to working register R 7, and T ABLE+10 (the output buffer switch) is 

transferred to x6. The contents of ACMLATE are mask transferred into the banner word of the 

output buffer, as specified by X6. Ortho is computed from the word specified by X6 to the word 

specified by R7, and writing starts from 6, O. TABLE+10 is then shifted 24 bits end around into 

itself to switch output buffers, and this plus 1 (to get by the bannnr word) is stored in x6. R6 is 

set to unity, and control goes to the return in TRANSFER. 

The main loop and the read in the collate, except for the resetting of SO, are very similar 

to the corresponding portions of the merge. The writing portion of the collate is considerably 

simpler because of the lack of beginning-of-string markers and the corresponding need for a 

banner switch. 

Input Buffer Switching 

After selecting the smallest item and transferring it out, as already described in this sec­

tion under Trees, the input buffer is stepped to the next item. If, in this process, the input 

buffer is found empty, control goes to the appropriate section of SWITCH, depending upon which 

input set is being handled. All five of these sections are similar. SWITCH corresponds to the 

Beginning-of-String (BaS) check in the merge, except that here it is not necessary to check for 

beginning of string. 

The details of SWITCH are covered in this section under Buffers. In general', the buffer 

switch (T ABLE+1, +3, +5, +7, or +9) is set up. The procedure for this is somewhat involved if 
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the item size is variable. The index register is reset to the beginning of the new buffer, and 

the banner word is checked to see if this is an end-of-file record. If not, control goes to J J , as 

would have been done if the buffer had not been depleted. Otherwise, if this is an end-of-file 

record, control goes to A through EHSKEEP to switch input tapes. This process corresponds to 

going to EOPT when an output tape is filled, although the latter is sensed by an internal counter 

or by hitting the physical end of tape, rather than by sensing the end FID record in the data. If 

the physical end of an input tape is reached, the resulting unprogrammed transfer is bypassed, 

since there must always be an end FID record at the end of each tape. 

End of Output 

This section of the program, called EOPT, may be reached in either of two ways. A 

parameter-supplied limit of the number of records to be written on each output tape allows 

switching outputs as soon as that many records have been written. This is detected in JJ when 

the record counter is incremented and compared against the constant PAR+2. If, on the other 

hand, the output tapes are to be filled to capacity, an infinitely large number of hex GIS may be 

supplied through the parameters, in which case the equality of JJ will never be met. An end­

of-tape unprogrammed transfer will be made, however, when the physical end of tape is reached. 

This unprogrammed transfer results from writing an output record. This write will be correct­

ly initiated, and the unprogrammed transfer then leads to EOPT, just as if the record counter 

had been found equal to the parameter-supplied limit. Actually, the record counter leads to 

EOPT only-during the last pass because a eount of hex GIS is arbitrarily used during inter­

mediate passes to fill tapes to their maximum capacity. 

In EOPT, X7 is set to the internally stored FID reserve area, and the end FID banner 

word is transferred to 7, O. Ortho is computed from 7,0 to 7,9 (the size of the special ID rec­

ords), at which time control goes in co sequence to the write instruction in Write First Begin ID 

(W1STBID). This is a write instruction especially set up to write ID records which, like the 

write instruction in JJ, uses X7 rather than X6. The instruction following the write instruction 

in W1STBID drops control from the cosequence mode, and also transfers plus zero to MEMLOC. 

(This latter step has no effect at this time.) Back in EOPT, an end-of-information banner word 

is stored into the beginning of IDRES through X7. Ortho is then computed, and again control 

goes to the above write instruction in cosequence. Again back in EOPT, a rewind order (with 

interlock) is set up this time with the tape address of the current output tape (found in DRIVE+S). 

It is performed to initiate the rewinding of the tape just com.pleted. 

Following this, "END OPUT, REMOVE TAPE ON" is printed. The tape address is 
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substituted from. DRIVE+5 into the working print location MEMLOC+3, and this is printed in 

octal. TAPE is then printed, as are contents of KEEP+10 and KEEP+11, which give the file and 

segm.ent num.bers assigned to the tape. 

At this tim.e, the just-com.pleted tape is rem.oved, and the next one is started. DRIVE+5 is 

shifted left, 24 bits end around, to switch the tape drive. The new tape address in the leftm.ost 

portion of DRIVE+5 is substituted into JJ+21 and into the write instruction in W1STBID. Dec"­

im.ally, 1 is added to the segm.ent name in IDRES (through 7,2) and a beginning FID is trans­

ferred to 7, O. The new tape is read into stopper. Again, a compute orthocount is performed 

from 7,0 to 7,9, the new segment name is also transferred from 7,2 to KEEP+11, and finally 

control goes to the write instruction in W1STBID in cosequence to write the beginning FID on the 

new output tape. Note that if this is on the same drive as the tape just written, or if a new tape 

has not yet been mounted since the last tape was written on this drive, stall is initiated trying to 

read because of the rewind with interlock. Once the new tape is mounted, however, the read, 

and then write, will proceed correctly. 

Back again in EOPT, having bypassed the tape ID record and written the beginning-of-file 

ID record, control goes to an exit switch. This is normally set to clear ACMLATE to zero, and 

go to JJ+17, which assumes that control was directed here from the counter comparison in 

JJ+15. In this case, the output buffer is still full, and control returns to JJ at the point where 

it originally branched off just before writing the buffer. If, on the other hand, control had gone 

here from the unprogrammed transfer area, the buffer would already have been written. Thus, 

the unprogrammed transfer instruction sets ACMLATE to zero and leads to another TS instruc­

tion. This second TS instruction sets a special switch setting at the end of EOPT which will re­

place itself with the normal setting (described above) and go to J J +22. This will lead back to JJ 

irn.rn.ediately after the write instruction, which effectively again is the point where control was 

originally transferred (through the unprogrammed transfer register) from JJ. 

End of Input 

In SWITCH, after the input buffers were switched, it will be recalled a check was made to 

see if the new record is an end FID. If it is, control goes to AHSKEEP through EHSKEEP, de­

pending upon the input set which is presently being worked. Since these five areas are similar, 

it will suffice to describe just AHSKEEP. Actually much of the processing necessary at this 

time is corn.rn.on to all five of the input sets, and so AHSKEEP through EHSKEEP serve only to 

perform those instructions unique to each set, and to set up several common locations. From 

each of these, control goes to Master Housekeeping (MHSKEEP) in order to determine if an 
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end of segment or an end of file is reached, and also to check the new input tape (or, if an end 

of file, to stopper this input set). 

AHSKEEP begins by setting up cornmon locations. The A ipput drive switch (DRIVE) is 

transferred into WL1 (the other sets up DRIVE+1 through DRIVE+4). TABLE, the input buffer 

switch, is transferred to WL1+1 (TABLE+2, +4, +6, and +8 for the other inputs). The address 

of KEEP, which gives the file and segment name, is stored in Z, Sl (likewise KEEP+2, +4, +6, 

and +8). The address of the read instruction, READ+2 (+6, +10, +14, and +18) is stored in Z, R7. 

The input drive switch is then switched end around 24 bits into itself, thereby switching input 

drives (DRIVE, and DRIVE+1 through DRIVE+4). The input item counter, R1 (R2 through RS) is 

set to +1, and control goes to MHSKEEP. 

In MHSKEEP, the leftmost tape address from WL1 (the address of the tape just depleted) 

is substituted into WL1+2 (zeros). Using this, a rewind instruction is set up and performed 

with interlock, thus rewinding the input tape just depleted. Then the input drive switch in WL1 

is shifted end around 24 bits, so that it also is switched, and its leftmost (new tape) address is 

substituted into the read instruction through N, R7. REMOVE is printed and, through N, S1, 1, 

the file name is also. The two low-order digits of the segment name, obtained by substituting 

incremented N, S1 into WL+3, are printed, as is TAPE ON and the drive address (from WL+2). 

Now the address of the end FID, still in the input buffer, is stored in Z, X7 (from the buffer 

switch in WL+1) so that it can be interrogated. Next, the low-order two digits of 7, 2, the seg­

ment name word, are compared against a constant of hex G's. 

Assume for purposes of explanation that the low-order two digits were not hex G's, mean­

ing there is more of this file on another reel; then END SEG would be printed out, and 1 would 

be added to N,S1 (segment name in KEEP). A read instruction is then set up and performed to 

bypass the tape ID of the new tape (into stopper). As was true of the output tape, this will cause 

a stall if both drives of this set are the same, or if the new tape has not yet been mounted. If 

the new tape is mounted, the tape ID record is bypassed, and control goes in cosequence to 

N, R7. This was previously set up as the new read instruction, which will bring the beginning 

FID record of the new tape into the input buffer just occupied by the end FID of the old tape. The 

instruction after each read in READ is a void TX instruction, which will return to MHSKEEP. 

Here a dummy read (void A address) is set up and performed to insure that the record just read 

is in memory. A check is also made of 7,0 to see if this is a proper beginning FID banner word. 

If not, control goes to the error routine covered in the next paragraph. 
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If this was the proper banner word, Z, 81 would have been reset one word backward to re­

ference the file name word once again, and 7, 1 would have been checked against it (increment­

ing S1 by 1 again). This matches the new file name against that in KEEP which corresponds to 

this input set. If unequal, control goes to the error routine covered below. If the file name is 

correct, the low-order two digits of 7, 2, the segment name, are checked against N, S1, and 

again, if these do not .agree, control goes to the error routine. This com.m.on error routine 

prints X TAPEON (for wrong tape on), and substituting the drive address from WL1, prints that 

in octal. S1 is again backed up one word, and used to print the file name and the low-order two 

digits of tha segment name. CORRECT TAPE is then printed, and a rewind is set up and per­

formed with interlock. Having done this, a sequence change is made back to the point in 

MHSKEEP where the tape ID record is read and at this point a stall is initiated until another tape 

(presumably the correct one) is mounted. 

If all tests for a new tape had been passed, control would go in cosequence again to the 

normal read instruction, thus bringing in the first data record over the FID record just checked. 

WL+1 is shifted one position into X7 and the read is again performed in cosequence, thus start­

ing the read of the next record of data into the next input buffer to insure the first record of data 

is in. At this point, the end FID record originally discovered has been replaced by the first 

record of data from the next tape, and control returns to JJ as if no ID record had ever been 

discovered. 

Thus far, it has been assumed that the end FID record discovered in SWITCH was not the 

final end of the file, but that there was more information on another tape to follow. Consider 

now the case where the end FID record was a final end, with hex GIS as the low-order two digits 

of the segment number. This fact is discovered in the first comparison of MHSKEEP. In this 

case, it is not necessary to examine the new tape, but only to stopper this input set. 

First, END FILE is printed (this will follow the printouts calling for the removal of the 

final tape from the specified drive) and control wiil go to N, SHe At this point, there has not 

been a sequence change since MHSKEEP was reached from AHSKEEP (or B through EHSKEEP), 

::)u i.hi:s uevice wiii return to a special set of instructions at the end of each of these sections. In 

the case of AHSKEEP, these will transfer STOPADD (the stopper base address) to TABLE+1 

(+3, +5, +7, +9) to stopper the last key section of this input set. STOPADD will also be trans-
j 

ferred to Z, Xi (X2, 3, 4, 5) to stopper the current item of the set, at which time control re-

turns to JJ. 
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The following summary applies to what happens in the A through EHSKEEP areas, as well 

as the MHSKEEP area. These areas are reached upon discovering an end FID when the input 

buffers are switched in SWITCH. Finding such a record causes the removal information to be 

printed on the typewriter, the tape to be rewound, and the alternate input drive to be switched 

on. If this should be an intermediate end FID record (no hex G's in segment number), then the 

new tape on the alternate drive would be checked, and if it should yield a correct indication, the 

buffers would then be primed and the operation would proceed. If the new tape is not the correct 

one, information must be printed on the typewriter telling which one should be mounted, and 

preparation should be made to check the ID record again. However, if the old end FID was the 

final one of this input set (hex G's in segment number), this input set would be stoppered and the 

operation would proceed. 

All Items Equal 

The end of a collate pass is determined by the discovery that all current input items are 

stoppered. This will happen after each of the inputs (in turn) has reached a final end FID re­

cord, as described in the preceding paragraphs. As in the merge, when all keys being compared 

by the tree are equal, SO is incremented to a special sixth group of instructions which exist in 

both the read and merge modes. 

In the read mode, this special group of instructions compares each index register, X5 

through Xi in turn, with STOP ADD. The first comparison yielding a not equal result will lead 

to the normal instructions in READ for processing the corresponding input set. If all index re­

gisters are equal to STOPADD, control goes directly to GG (where control would have gone in 

any case after the instructions in READ had been performed), thus skipping any actual reading 

at thi s time. 

In the merge or transfer mode, Inuch the same procedures are followed. That is, X5 

through Xi are compared with STOPADD, and the one not equal will lead to the corresponding 

instructions in TRANSFER. If all items are stoppered, control goes to ENDPASS to finish the 

output tape and initiate the setup for the next pas s. 

In ENDPASS, X7 is set to IDRES, the common FID record in memory, also ali end FID 

banner word is set up in 7,0, and the low-order two digits are set up as hex G's in 7,2 (segment 

name). Ortho is computed from 7,0 to 7, 9 the drive address is set up in the write instruction 

in WiSTBID, and control goes there in cosequence, thus writing the end file ID on the final out­

put tape. Likewise, an end-of-information record is set up and written, and a rewind of the 

final output tape is then set up and perforIned with interlock. Tape removal information relative 
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to this tape is printed. END PASS is printed, the Pass Count (PSCOUNT) is incremented and 

printed. Finally, BEGPASS is printed and also the contents of PSCOUNT plus i, which signify 

the beginning of the next pass. (At the time the final pass of the collate is set up, this final set 

of print instructions is replaced by instructions which end the collate.) From here, control 

goes to MODIFY, where the collate is regenerated to set up for the next pass, based upon the 

next entry in the plan. 

Regeneration of the Collate 

Each pass of the collate is a complete logical entity. It is quite possible that the very 

first pass will be somewhat different from the others (the "way" being less) because of the 

particular plan calculated. Each pass involves a different set of file and segment names to be 

stored, based upon the plan, and also the routine must be completely initialized for each pas s. 

Because of the considerations, the collate is partially regenerated between each pass. A 

general description of the collate is therefore described in the following paragraphs in so much 

as the generating process may occur a number of times during the course of the program. Also, 

a portion of the generator, which is repeated, includes the priming of buffers and the writing of 

the beginning FID record on the first output tape. 

Generation of the Collate 

The initial portion of the generator, STARTUP through CALCULATE, calculates, stores, 

and prints the plan. These sections will not be repeated. Following this, MODIFY and SET­

PATH are entered and repeated for each pass. They determine the "way" of the pass, and set 

up the core routine accordingly. At this time a switch is reached which leads to GENERATE the 

very first time through, but which bypasses GENERATE all times after that in order to go to 

AA. GENERATE sets up the tape address in the DRIVE area, based upon the parameters in the 

macrocoding, as well as setting up some peripheral instructions in the core (skeleton) program .. 

Mter GENERATE, BEGIN interprets the parameter from the FID record on tape. Ai, A2, and 

A3 calculate buffer size, set up variable-size items, modify the sequence check, modify the 

TN instructions to output, as well as modifying tree comparisons, stopper base address, etc. 

This represents the bulk of the process normally considered generation. Mter the first pass is 

set up, all of the coding mentioned above (except MODIFY, SETPATH, and the plan) is clobber­

ed by the buffers, since it will never be performed again. From here (as well as from MODIFY 

after the first pass), control goes to AA. 

In AA, BB, BBB, and CCC (which, together with the sections of coding following, are per­

formed before every pass), the buffer areas are set up, and the buffer switches in TABLE are 
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built up accordingly. These sections are perforIlled each tiIlle because of the possible dis­

crepancy between first and subsequent passes (as the "way" increases, the buffer area IllUSt be 

expanded). FroIll here control goes to LOAD and W1STBID. These sections check all of the 

input FIDl s , store the file and segIllent naIlles in KEEP, write the beginning FID record on the 

output tape, and check to deterIlline if this is the last pass. If it j.s, special last pass Illodifica­

tions are Illade to the routine. 

Following this, CC perforIlls two priIlling reads for each input tape. EE sets up the last 

key areas, and sets the tree to the read Illode to do an extra read based on expected depletion. 

Input and output counters, as well as the initial sequence check key storage areas, are initial­

ized. Finally, control goes to the tree (LOOP) to begin the actual pass. 

Over -all Flow of the ARGUS Collate 

Thus far, the over-all collate has been discussed in general terIlls, and various COIll­

ponents of the" collate have been explained in detail. The se cOIllponents are tied together in the 

following paragraphs to present a cOIllplete collate picture. A collate flow chart is shown in 

Figure 17. 

The very first part of the program. to be perform.ed, STARTUP through CALCULATE, 

creates the plan and stores it adjacent to the program. in m.eIllory. At this point, the option 

exists to print the plan on the console typewriter or to proceed directly with the prograIll. If the 

plan is printed, there is a stop point afterwards to allow terIllination or continuation of the col­

late. These options are intended to allow the plan to be printed at one tiIlle (by stopping iIll­

Illediately after) and later to perforIll the actual collate (by starting over again, but bypassing 

the printing), or to allow printing the plan and iIllIllediately perforIlling the collate. 

In any event, froIll CALCULATE, control goes to MODIFY and SETPATH to deter­

Illine and set up the "way". These portions of the generator will be perforIlled at the beginning 

of every pass. Upon cOIllpleting SETPATH (if this is the start of the first pass), control goes to 

GENERATE to perforIll the bulk of the generation of the collate. After the first pass, control 

goes froIll SETPATH directly to AA. The sections, GENERATE through A3, perforIll all once­

only generation, and they also exit to section AA. 

Sections AA through EE once again are perforIlled at the beginning of each pass. Here, 

the buffers are set up, the input tapes are checked, and the file and segIllent naIlles found on 

these tapes are stored. Also, the beginning FID record on the initial output tape of this pass is 
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Figure 17. Over-all Flow Chart of the ARGUS Collate 
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written, the routine is set up specially if this is to be the final pass of the collate, and finally 

the buffers are primed and the routine is initialized and prepared to do one extra read based 

upon expected depletion. 

At this point, as indicated in the flow chart, Figure 17, the secti.ons STARTUP through 

CALCULATE and GENERATE through A3 have been clobbered by buffers. Frotn this point on, 

only the sections MODIFY, SETPATH, and AA through EE, as well as the previously stored 

plan, will be used. In the tree (LOOP), one extra read is initiated, and then the tree is re­

stored to nortnal operation, and since the output buffer is not yet filled, control goes to the re­

turn. The return is initially set to the top of the tree. 

Now the main loop of the progratn begins. In LOOP, a cotnparison is tnade for the next 

itetn, and accordingly control goes to the appropriate section of TRANSFER and CONT. Here 

the return to the tree is stored. The item is sequence checked and then transferred to the out­

put buffer. The input buffer thus affected is stepped to the next itetn position. Then, in JJ, the 

output buffer is similarly stepped and tested to see if it is full but for one ite:rn or to see if it is 

co:rnpletely full. If neither of these conditions exist, then control goes to the stored return, 

which leads back to LOOP to process another item. 

When the output buffer is full but for one He:rn, it is time to read. Again in J J, the con­

tents of the index registers are stored and the index registers are set to the last key values. SO 

is set to READ and control goes to LOOP to initiate a read into the input set which would other­

wise run out first. LOOP determines which set this is and goes to the corresponding section of 

READ. Here, a working read index register, X7, is set up and the read instruction is per­

fortned. The last key location of this input set is stoppered, and the index registers are re­

stored to their nor:rnal values. This latter action occurs in section GG, which then leads back 

to JJ, and. eventually to the return location to process another item. 

When the output buffer is full, as discovered in JJ, the record count is stepped and then 

written, and the output buffer is switched and then reset. During the last pass, if the number of 

records specified had been written on the output tape, control would go to EOPT to switch output 

tape s. If not, then control would go to the return location to proces s another ite:rn. 

Eventually, one or another of the input buffers will becotne depleted, as will be discovered 

in CONT when the buffer is stepped to the next ite:rn. In such a case, a detour is tnade to 

SWITCH, where the input buffers are switched around, the last key location is set up to its new 
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value, and the index registers, as well as the R register associated with this input, are reset. 

A check is also made to see if the new input record is an end FID. If it is not, control goes on 

to JJ, as would normally be done from CONT; if it is however, control goes to the appropriate 

HSKEEP area for this input set. 

Eventually, an output tape will be filled, and the corresponding unprogrammed transfer 

register will lead to EOPT (unless the counter in JJ did so instead during the last pass). Here, 

the end FID is written on the filled output tape, at which time the tape is rewound; here also, 

the removal information pertaining to it is printed, drives are switched, and a beginning FID 

record is written on the next output tape. From here, control returns to JJ at the point which 

was vacated to go to EOPT. 

When an input tape is depleted, as discovered in SWITCH, control goes to one of the 

HSKEEP programs (A through E). Here, input drives are switched, a few common locations 

are set up, and control goes to MHSKEEP. The depleted input tape is rewound, and removal 

information is printed. If this was the last tape of this file, the input set would be stoppered, 

and return would be made to the normal flow in J J. If there is more to follow in this file, how­

ever, the new input tape is checked and the buffers primed with the first records of data from 

it. These will replace the end FID record originally discovered, so return can be made to J J to 

continue in the normal flow. 

When all input have reached final end and have been stoppered, LOOP will sense that all 

keys are stoppered and lead to ENDPASS. Here, the final end FID record is written on the cur­

rent output tape, and ENDPASS is printed. If this should be the final pass, the collate ends 

here. If, however, there are more passes, the fact that a new pass is beginning is printed out, 

and control goes back to MODIFY to set up for it. 

In the process of interpreting the plan, MODIFY and other associated routines step the 

plan down one entry each time, so that this next pass will be set up according to the next entry 

in the plan. Finally, when it is discovered that tape number 0001 is being written, this will be 

assumed to be the final pass and the routine will be set up accordingly. 

Error Correction and Restarts 

The collate, like the presort and merge, makes use of the orthotronic correction pro­

visions of the Executive Routine to detect and repair any read errors and to document such 

actions at the console. In the event of a read error, the location of the suspected record is 
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determined, and control is turned over to the Executive Routine to try and repair it. If un­

successful, the information is reread by the collate, and if still determined incorrect, control 

is again turned over to the Executive Routine. This proces s is repeated several times. Suitable 

printouts at the console indicate the nature and disposition of the trouble. 

If the physical end of tape is reached while reading, the unprogram.m.ed transfer is ig­

nored. If reached while writing, the output tape involved is completed and tapes are switched. 

Since all reading and writing is in the forward direction, there should never be an unprogram­

med transfe'l" caused by reaching the physical beginning of tape. 

Restarting is implemented in much the same manner as it is in the merge, although in the 

collate restarting is much more versatile. The general theory of restarting used by the collate 

is explained here. Restart dumps, or anchor points, are placed on the tape label record of each 

output tape. In order to re-create any tape, that tape should be mounted so that the dump may 

be read into memory. At the time it is written, the memory dump is checked for correct 

parity by reading it back into memory. In the dumping process, all of the special registers 

are transferred to memory locations contiguous with the program, as are the banner words 

from the current input buffers. Then, one long record, including the plan, program., special 

registers, and banner words (but not the buffers) is written onto tape. In the event of a restart, 

the dump is read back into the same area, and the special registers are eventually restored. 

To position, the input tapes are read into the buffer area, where their banner words are com­

pared with the stored ones from the re start dump. 

Therefore, the restart, or anchor points, are established just prior to beginning a new 

output tape, so that return can be m.ade to that point at a later time to re-create that tape. There 

are two areas in the collate from which a detour can be made to the restart dump routine (the 

routine which creates these anchor points). These two areas are found: first, in AA through 

EE when the first tape of a pass is started; second, in EOPT when any additional tapes of a 

pass are started. 

The restart dump routine writes the current status of m.emory on a tape specified by the 

user, in such a form that it can be associated with the tape about to be written. To do this, all 

of the special registers, and the banner word from each of the current input buffers, are stored 

in a block of memory adjacent to the program. This contiguous portion of a program (including 

a plan), special registers, and banner words make up one long record and this record is written 

on the dump tape. Following the dump portion, the program is continued at the point originally 
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vacated. If restarting during the collate is not necessary, then this will be the only portion of 

the restart progra:m perfor:med. Suppose, however, that while writing the fifth tape of pass 

nu:mber seven, it is discovered that one of the inputs cannot be read. As su:me this was the third 

tape produced during the second pass. Obviously, this tape :must be re-created before continu­

ing. Thus, a restart is initiated (by starting at RO). This is a s:mall progra:m logically inde­

pendent fro:m the collate routine itself. Before doing anything, the restart progra:m asks that 

the tape which is to be re-created, be specified. The file na:me and seg:ment nu:mber of the tape 

are typed in by the operator, and the restart routine begins searching the du:mp tape for a du:mp 

with that identification. When the du:mp is found, it is read into :me:mory over the exact loca­

tions fro:m which it was written, that is, the progra:m (including the plan), the special registers, 

and the banner words. 

Inspecting the KEEP area of the progra:m just brought in, the restart progra:m then in­

dicates the tape nu:mber of each input tape :mounted when the du:mp was taken. After indicating 

these on the typewriter, it co:mes to a halt. The operator then :mounts these backup tapes onto 

the sa:me drive on which they were originally :mounted (also indicated by the restart progra:m, 

based on the settings in DRIVE). Again the restart progra:m is started, and it checks each of 

the beginning FID records of the tapes just :mounted for the correct file na:me and s eg:ment nu:m­

ber. If these are good, each tape in turn is positioned, co:mparing the banner word fro:m each 

record with the corresponding one brought in fro:m the du:mp. 

This paragraph considers the positioning of tapes in :more detail. The restart progra:m 

will first check each of the five index registers, Xi through XS, and if any of these are set to 

stopper, then the corresponding tape is inactive and not needed. (This is due to a li:mited "way" 

pass, or when reaching a final end of file.) Then each active tape is positioned, reading direct­

ly into the "current" buffer until the correct record is brought in. (In order to insure each re­

cord is in, the active and du:m:my read instructions are alternated. In searching, this will not 

be a slowing factor.) Another read is started into the "next" buffer, and then the last key loca­

tion of this set is checked. If this last key position is stoppered, an additional read has been 

started and a read is initiated into the "open" buffer also. Otherwise, if the last key location is 

When the input tapes are all positioned (and the input buffers filled), it is about the ti:me 

to re-enter the collate. The special registers are now set to the values stored for the:m in the 

du:mp. Using one of the history registers, return can be :made to the point in the routine where 

a return was originally :made just after :making the du:mp. The tapes and :me:mory should now 

be exactly as they were then, so it is neces sary to re -create the output tape exactly as had been 

done before. 
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If desired, the collate could be continued from this point forward. However, in this ex­

ample mentioned above, it was required that only the third tape written during the second pass 

be reproduced. Once this is completed, it is possible to go back to the fifth tape of the seventh 

·pass where trouble was encountered during the writing process. To do so, a restart is per­

formed in exactly the same manner as explained above, this ti:qle specifying that the fifth tape of 

pas s seven be re -created. The tape just re-created will be called for as one of the inputs. Us­

ing this in place of the illegible one, the operation should be able to proceed without any further 

trouble. 
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OWN-CODING 

The ARGUS sort routines are designed to handle a wide variety of requirem.ents. Never­

theless the need m.ay occasionally arise to sort item.s whose specifications exceed the para­

m.eter lim.itations, or to com.bine the fir st or last pas s of the sort with som.e sim.ple item. pro­

cessing (editing). It is im.practical to provide for every such special case in a sort generator, 

or to write a com.plete sort routine for each of these variations. ARGUS provides for all such 

special cases by allowing the program.m.er to write the additional coding necessary to accom.­

plish them.. This coding m.ay either be associated with a standard generated sort, or if neces­

sary' it m.ay actually be used to m.odify the generated sort itself. The ARGUS sorts have been 

built to incorporate optional detours at specified points to facilitate the tie-in of just such coding. 

With this technique, appropriately referred to as own-coding, there is virtually no lim.itation to 

the m.odifications which can be m.ade. 

Own coding m.ay be divided into two general categories: 

1. Data m.odification; and 

2. Routine m.odification. 

Data m.odification (the sim.pler type) involves any changes to the data which is being sorted. 

This includes rearrangem.ent or translation of keys, batch totalling, addition or deletion of items, 

and m.odification of item. size. Also included in this category are any changes to the beginning­

of-file identification record, such as m.odification of param.eters specifying item. size, key loca­

tion, etc. Data modification own-coding is covered in this section in detail, with appropriate 

exam.ples. 

Routine m.odification own-coding involves changes to the sort routine itself, arid requires a 

m.ore com.plete knowledge of the ARGUS sort generators plus a com.plete and accurate listing of 

the routines. Such own-coding m.ight be used to m.odify a sort to read directly from. a card read­

er, to provide output directly to a line printer, or to handle extended precision. The general 

m.ethods by which this type of own-coding m.ay be im.plem.ented are described in this section. 

Own-Coding (Edit) Options in the Sorts 

The presort, m.erge sort, and collate each have several own-coding options, which m.ay be 

specified in the pseudo instruction the program.m.er writes to call a sort. In each case, 00 
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specifies no derails, that is, the sort is to run by itself with no own-coding m.odifications. 

There is provision for four presort options (01, 02, 03, or 04) which are specified by 

writing one of these numbers in the sort pseudo instruction. 

Option 01: specifies a single detour im.m.ediately after the beginning-of-file ID is read and 
checked by the presort generator. This allows m.odification or com.plete replacem.ent of 
the file ID record. 

Option 02: specifies a detour im.m.ediately after the presort has been generated, but before 
any data has been handled by the sort. This allows any type of m.odificatiorr to the gener­
ated presort itself. 

Option 03: is used for data m.odification and specifies a detour im.m.ediately before each 
item. is transferred from. the input buffer. It allows changes to be m.ade to each item be­
fore it is used by the sort. 

Option 04: specifies that each of the options 01, 02, and 03 will be observed; hence, all 
three detours will be taken. 

The m.erge sort has provisions for options 02, 03, and 04, specified by writing one of 

these num.bers in the sort pseudo instruction. Option 01 is not available since the param.eters 

specified in the beginning-of-file ID record are transferred directly from. the presort to the 

m.erge sort. 

Option 02: allows m.odification of the m.erge sort itself im.m.ediately after it is generated 
but before any sorting takes place. 

Option 03: specifies a detour only during the last pass of the sort, each tim.e an item has 
been placed in the output buffer. This allows data m.odification on the same scale as per­
form.ed in option 03 of the presort. 

Option 04: specifies the use of both detours for options 02 and 03. 

It should be noted that any m.erge sort own-coding m.ust be written as a unique segm.ent separate 

from. the sort segm.ent itself. The nam.e of this own-coding segm.ent is specified in the sort 

ps eudo instruction. 

04. 
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The pseudo instruction, which is used to execute the collate, allows options 01, 02, 03, and 

Option 01: is identical to the presort option 01. The beginning- of-file ID record, us ed by 
the collate as the source of data parameters, is taken from the first input tape of the first 
pass. 

Option 02: is identical to the 02 option of both the presort and m.erge sort. In the collate, 
this option is perform.ed imm.ediately after all of the "once-only" generation has taken place. 

Option 03: is like the m.erge sort option 03 in that it specifies a derail for each item dur­
ing the final pass only. This derail is performed irrunediately after the item is placed in 
the output buffer. 

Option 04: specifies that all three of the options 01, 02, and 03 are perform.ed. 
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General Technique 

Before beginning a detailed discussion of the methods of own-coding, it would be well to 

review some of the general problems involved. Since the sort itself is a subroutine, it exists 

on the symbolic program tape, not in ARGUS tag notation, but in binary relocatable form. Own­

coding is normally written in ARGUS language. However, the own-coding may not make use of 

the symbolic tags originally used in coding the sorts because it is assembled independently from 

the sorts. Furthermore, since the sorts occupy a full bank of memory by themselves, the own­

coding must of necessity be located in another bank. Communication between the sorts and 

own-coding, therefore, cannot be through the use of tags, nor any form of direct addressing. 

Quite obviously, special registers must be used. 

S2 is reserved by the sorts as the commumicator between the sorts and own-coding. If 

own-coding is used, S2 must be directly loaded by the programmer with the address of the en­

trance to the own-coding. Thus, any detour from the sort will be in the form of a transfer to 

N, S2. This transfer will always specify the cosequence mode, implying that if own-coding is 

written entirely in the cosequence mode, a return to the sort is made simply by reverting to the 

sequence counter. It should be noted, however, that the bank indicator of the cosequence count­

er must be restored to the sort's bank. This may be done by transferring the contents of the 

sequence counter to the cosequence counter before returning. Alternatively, the contents of the 

sequence counter may be stored by own-coding, allowing it to use the sequence counter also. In 

this case, a return to the sort is effected by restoring the sequence counter and reverting to the 

sequence mode. 

Communication between simple forms of own-coding and the sort is further aided by use 

of other special register s. For example, the location of the beginning FID record or of an item 

in a buffer is always specified by a certain index register. At times, the sorts use every avail­

able special register (save S4 through S7), requiring that own-coding store and restore any re­

gisters that are to be disturbed for its own use. Alternatively, the own-coding could use another 

special register group although communication with the sort must be through the sort's group. 

If own-coding should be the routine modification type, then communication is lTIore dif­

ficult than with data modification. At the time the option 02 detour is made from the sort, the 

sequence counter is set to a: known location at the beginning of the particular sort routine. Any 

location in the sort may be addressed by using the contents of the sequence counter as a base, 

and adding fixed quantities (which may be in the form of FXBIN constants) to this value to incre­

ment to the desired address. S2 may be used to store the new address, since it has already 
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served its purpose in getting fro:m the sort to own-coding. Thus, if it should be required to 

change a location in the sort which is 613 words beyond the current setting of the sequence 

counter, and if there should be a constant SXTHRTN FXBIN 613, it would be necessary to per­

for:m a word add (WA) instruction (WA Z, SC SXTHRTN Z, S2) to get the addres s of the location 

of interest into S2. Then, anything could be done with the word addressed as N,S2. 

Since S2 is used as the detour co:mm.unication point for all the options, own-coding :must 

set it up, not only for the first detour point, but also for each successive one. Thus, if option 

04 is specified, S2 :must initially be set to the entrance of the option 01 own-coding (except in the 

case of the m.erge sort). Mter this part of own-coding is finished, but before returning to the 

sort, S2 m.ust be set to the entrance of option 02 own-coding. Likewise, this portion of own­

coding :must set S2 to the entrance of the option 03 own-coding before returning control to the 

sort {where it should re:main set for the duration of the sort}. If any detour is not needed under 

option 04, then the corresponding portion of own-coding would :merely consist of a single word 

that resets S2 and returns control to the sort. It should re noted that a detour is perform.ed only 

once for each option except 03, but also noted, however, that option 03 detours for each item. in 

the file. 

Thus, it has been established in this section that detours exit fro:m the sort at specified 

points throughout the routine to perfor:m additional instructions, or own-coding. It should be 

noted, however, that it is also pos sible to perfor:m additional coding either before or after the 

sort, acco:mplishing such functions as tape positioning, splitting output, etc. Although this 

additional coding is not exactly own-coding as it has been defined for using detours fro:m within 

the sort, these techniques can be used to acco:mplish si:milar objectives to the own-coding op­

tions, and are thus included in this discus sion. 

Relocation and Bank As signm.ents 

Since they m.ay expand "down-m.em.ory" only, the sorts should be loaded into the highest 

possible bank in a given syste:m. Although they are nor:mally contained within that bank, the 

user :may specify that additional :mem.ory is available beyond one bank in any a:mount he wishes. 

The sort will correspondingly expand the storage or buffer area over and above the previous 

bank, or banks, if it can use the space. 

The MMMM field of the sort pseudo instruction indicates to the generators how :much 

m.e:mory the sort :may use beyond the one bank it occupies. To properly relocate the sort and to 

reserve the appropriate am.ount of m.e:mory, the program.:mer should specify at least one 

104 



SECTION VI. OWN -CODING 

SETLOC preceding the sort pseudo instruction. If no own-coding is given for the sort, one 

SETLOC will determine where the sort routine, along with the sort macrocoding, will be locat­

ed. However, when own-coding is used, a SETLOC, if desired for the sort routine its elf, must 

be preceded within that segment by another SETLOC which will locate, relative to the sort, the 

macrocoding and any further coding the programmer writes. If only one SETLOC is given with 

the programmer coding, the sort will be located in the succeeding bank. The MMMM memory 

specification in the pseudo instruction, and the A field of the SETLOC instruction, are related. 

Starting with location 0000 of a bank, MMMM specifies the number of locations over which the 

sort routine will (or may) expand backward. Depending upon the number of words of program­

mer coding, and the location specified by the SETLOC, the highest location used by the pro­

gram.mer, as well as the amount of m.emory available to the sort routine for storage beyond its 

own bank, can be readily determ.ined. The MMMM field and the SETLOC should be so estab-

lished that the sort and programmer coding do not conflict. An exception would be the own-

coding of option-type 01 or 02; then own-coding and the MMMM area can overlap, since own­

coding would be completed by the time the MMMM area is used to store data. 11:). determining 

the number of locations used by his coding, the programmer should bear in mind that pseudo 

instructions will require various amounts of macrocoding. Specifically, L, SOR Tp requires 15 

words, L, READSEG three, and L, EXIT a single word. 

The sort is contained between locations 0020 and 2043, within one bank, leaving 20 unused 

words at the bottom and four at the top of the bank. The latter conform.s to the stopper require­

ments of the Executive Routine, allowing the sort to be relocated to the highest bank of a part­

icular machine. The initial 20 words are enough to allow the inclusion of t~e L, SOR Tp macro­

coding plus the L, READSEG or L, EXIT macrocoding. Thus, to facilitate parallel proces sing, 

a sort program may be contained entirely within one bank, when additional memory (MMMM) 

equals 0000 and own-coding and pre- or post-coding are not requested. In this case, the pro­

gram.mer would specify a SETLOC of 0000 in any bank he desires above bank O. If no SETLOC 

is provided by the programmer, ARGUS Assembly will assume bank 0, location 0512, group 1 

for the programmer coding, and the sort would be placed in the next higher bank (normally bank 

1), group L 

The programmer of own-coding will want to use masks many times. Because the sort 

uses the Mask Index Register (MXR), this can present a problem. There are several possibil­

ities, however. First, the own-coding may store and restore the contents of MXR each time 

own-coding is entered. Or secondly, certain masked operations can be performed using a few 

extra instructions, by means of the substitute (SS) and extract (EX) instructions, which do not 
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require the use of the MXR. Thirdly, with a list of the sort coding, the programmer could use 

the sort routine's masks. Fourth, and finally, own-coding could operate in a separate group, 

using its own MXR. The first two possibilities are the most practical, since the third one re­

quires the programmer to write masked instructions in the form of decimal constants to specify 

the MXR augment because the sort's tags are unavailable. The fourth method involves the use 

of the Program Control Register (PCR) to turn groups off and on, and this is accompanied by the 

associated problems of control in parallel processing. However, all methods are feasible. 

A.RGUS Techniques ~or Own-Coding 

It is appropriate first to review the method of writing the simplest type of sort call, in 

which no own-coding is to be performed. 

I LOCATION 10" COMMAND CODE 22 ~ 
PR06R,l/M 

SeTtee. 

ZISC SI'Ee. 

£NTE~ '-I So,eTf/ S 

~/ £KIT 

ENt> 

ARGUS CODING 
FORM 

PROGRAMMER 

24 A ADDRESS 3731 8 ADDRESS 

50RTFIlE ONt.Y.5Et; 

¢¢efl2f gl 

- -
¢P/~pI/ ¢~dd/A8/AtJ/RC 

.5 ()/lTF/t.E oIl/LY.5Et:i 

DATE PAGE OF 

C ADDRESS 
REMARKS 

51 12 65 66 LINE NUJ4BER 7] 74 80 

I f 
I 

(il 1 

I 

ENTE.e' I 
I 

I1P/C;4/L;y/tit;/A8 I 

: 
I 
I 

In this example, program SOR TFILE is nothing more than a sort. The SETLOC specifies that 

the sort macrocoding will be included with the sort in bank 1, and thus occupy a minimum 

amount of space. Whatever special register group is specified in the SETLOC will be used by 

the sort as well as by the additional coding. No extra memory is available to the sort (thus the 

0000 in the first field of the B address of the pseudo instruction). 

The sort may also exist without own-coding as one segment of a program as such: 

P RO BLEM PROGR MMER A DATE PAGE OF 

22 ~ 24 
1 REM A R K S 

I LOCATION 10 II COMMAND CODE A ADDRESS J7 31 8 ADDRESS 51 52 C ADDRESS 65166 LINE NUM.ER 73 74 80 

( j?.f£CEPI1tI4 M£NT(s)) 
I f SEC; 

I 

t/ ,eFRDSEti ;5oJ(!TF/LE EIIITE,e 1 

I 

.5F(iMENT PRIL.Y~UA/ .5o.erF /LE I 
I 

SET/.. OC ¢¢¢r;J HI 'il I 

L/ENTE~ L,.5t:J£Tt,S ¢¢/¢¢/ ¢¢¢¢/IIB/I1B//JC AO/G6/66/C;C;/ALJ : 
STA£TEt> I 

LI ~E/JDSE<i ED/TOVT I 

( FOU" W/NC; ..5E6 /'UENT{5J) I 
- -
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In this case, the sort segment is preceded and followed by one or more segments. If the sort 

were the first segment, then the lines preceding the pseudo instruction would be written as in 

the first example. If the sort were the last segment, then the L, READSEG following the pseudo 

instruction would be replaced by the L, EXIT instruction. Note that in this example the tag 

ENTER is a link tag, specifying the entrance to the sort segment in the L, READSEG preceding 

the SEGMENT card. Had the sort been the first segment, the tag ENTER would be stored di­

rectly in the sequence counter, as in the previous case. For the sake of uniformity, it should be 

as sumed, in the following examples, that the sort, together with any own-coding that is included, 

is a unique program. 

If it should be necessary to perform some operation before the sort, the coding to ac­

complish this could take place in a separate preceding segment, or it could be part of a single­

segment sort program such as this: 

PROBLEM 

I LOCATION 
10 " 

COMMAND CODE 22 ~ 
?tf06~/lM 

SETL.Oc 

2 1 SC SPEC 

sTA£r 

L, 5eJ/zT /, S 

L, E,f/T 

EN/) 

-

ARGUS CODING 
FORM 

PROGRAMMER 

24 A ADDRESS 37 38 B ADDRESS 
, i i I 

so.eTFlt E ONLY.sECi 

Z¢¢r/> s¢ 

- -
n£ST O£P~.e. eJr £ ~r:eA CCJP~A/6 . . . 
L 19sr o,eiJE£. t!>F E XTRN COL)/A/C; 

¢~/flp/ ¢ ¢¢ ¢/RB//lB//lC 

S(!)~TFIL£ oN.tYSEq 

DATE PAGE OF 

C ADDRESS 
1 REMARKS 

51 52 65166 LINE HUNBER 71 74 10 
, ; 

I 

GI 1 
I 

$TI1,er I 
I 

I 

: 
AP/uv/CiG/tiv/A8 I 

1 

I 

i 

In this case, the first instruction of the program to be performed is START, which is part of 

the extra coding. At its completion, the sort pseudo instruction follows in sequence, and the 

sort is performed. The relationship between the extra coding and the pseudo instruction is un­

important; it would have been just as well to have sequence changed to the pseudo instruction. 

Note, however, that the SETLOC reflects the assignment of the programmer coding to the top of 

the bank which will precede the sort. Of the 48 words between the address 2000 and the top of 

the bank, 15 are used by the sort macrocoding, and one by the exit macrocoding; thus 32 words 

are allotted for the extra coding. (It should be noted that because the MMMM field in the pseudo 

instruction equals 0000, the sort will not extend storage over the bank boundary. ) 

107 



SECTION VI. OWN -CODING 

Now, if there had been presort own-coding, it might be written as in the following example: 

PROBLEM 

I LOCATION 
10 " 

COMMAND CODE 22 ~ 
PR06£I1M 

SETlOC 

Z,SC SPEC 

Z,S2 SPEC 

ENTEIl ~/SO£T.t/S 

L,E%IT 

OWNCObE 

ENb 

24 

ARGUS CODING 
FORM 

PItOGRAMMER 

A ADDRESS 37 38 B ADDRESS 

soer,nLE oNLYSE~ 

Z tip" 6¢ 

- -
- -
¢1/¢¢1 ~¢¢¢I A pi /l6//IC 

rt~ST hllST.e~cr;,a W 0/ OWAKO'!INCi . . 

DATE 

" 52 
C ADDR£SS 

GI 

eNTE;e 

OWlflcob£ 

11~/6lf/6t:T/qC7/Ag 

1.."5T /AlST,eucTtoll. Or owN-COPING 

so£TF;'Le oNI.YsEG 

PAGE OF 

I REMARKS 
65166 LINE NUMBER 73 74 80 

I I 
I 

1 

I 

1 

I 

I 
I 
I 
I 
I 

I 
1 

I 
I 
I 

This example is very si:milar to the preceding one, except that the starting location in this case 

(ENTER) is the sort pseudo instruction. Again, the relationship of the lines of own-coding to the 

line containing the pseudo instruction is unimportant, since the SPEC constant loaded into Z, S2 

indicates the starting address. Note, however, that the exit pseudo instruction is again placed 

immediately after the sort pseudo instruction since, after the sort, return will be made to this 

line of coding. Once again, it is assumed that the own-coding requires 32 words or les s, and 

that the program should occupy a minimum amount of space, thus having a SETLOC, of 2000. 

The 01 in the first field of the A address of the sort pseudo instruction indicates that the detour 

to own-coding is to be made just after the beginn~ng FID record is read from tape AB by the 

sort modifier-generator. 

Now if there should be merge sort own-coding, it might be written as in the following 

example: 

PROBLEM 

I LOCATION 
10 " 

COMMAND CODE 22 ~ 
J7£a6RI1M 

5ET/..ac 

Z,SC sJ7£c 

ENTER i, Soer;.5 

LI EXIT 

SEGMENT 

5 ETL-OC 

z,52 SPEC 

5TII£T 

10 

II EN" 

108 

ARGUS CODING 
FORM 

PROGRAMMER DATE 

24 A ADDRESS 3738 B ADDRESS 51 52 C ADDRESS 6566 

.50£71=/££ 50RTSEt:; 
I 

¢¢¢¢ 81 '1/ 

- ENTE.e 

¢¢/ ~z / ()W!VCLJPE 1{II~¢IAI3/A8IRC liP IqG/1i If/'1C7/AB 

saleTFILE oWAiCOf)£ 

2P~~ B~ t:;/ 

- - srAler 

FI£.>T lNSTRUcTI ~N OF OWN- C~f)INt; .. . .. . . 
,"'ST lAlSr.eUCTi (>N CJF ,OWN-coP/AlIj 

SO£TFILE 50.eTSE~ 

PAGE OF 

REMARKS 
LINE NUMBER 13 74 

J 

I 

I 
I 

I 
I 

I 

: 
I 
I 

I 

: 
I 
I 

i 
I 
I 
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This time, the coding is a bit more involved. The first SETLOC specifies the bank for the sort, 

since it is used only to locate the sort and exit macrocoding. Notice that the segment name 

OWNCODE is specified in the sort pseudo instruction, where it performs the function of a 

L, READSEG pseudo instruction. The own-coding, including the setting up of Z, S2 and any 

SETLOC, must be in a separate segment with this name. The exit pseudo instruction is still 

located in the same segment as the sort pseudo instruction, and immediately after it. The sec­

ond SETLOC now specifies that the own-coding will be contained in 48 words. Care must be 

taken that the merge sort own-coding segment will not overlay the original sort macrocoding. 

Now consider the coding to be performed after the sort is finished. As with coding before 

the sort, this may take place in a separate segment, or it may be part-of the segment including 

the sort: 

PROBLEM PROGR ER AMM o ATE PAGE OF 

LOCATION COMMAND CODE 22 ~ 24 A ADDRESS B ADDRESS 1 REM A R K S 
I 10 II 3731 51 52 C ADDRESS 651116 LINE NUMBER 73 74 80 

PR06JUIM so.erFIL.E oNLYsE4 
I ! 

I 

5ETLO, 2¢¢p 8¢ til 1 

Z,sc SPEC - - ENTER. I 

¢¢/¢¢/ ¢¢¢¢//I/J/R/!>/ ~C AI>/(i~/(j(j/(J(;/ AtJ 
I 

£NTEIZ. t.., SO~7i5 I 

FIEST INS7£~CT/( ~~ of A/>P/T/P.NAL C ':)/>11/'" 
1 

J . . . I 
LAST INST;ei/CTIO rv OF ;9P~/TION/}L roL)/A/tj I 

'-, £;(17 I 
END SOR'TFILE ON'-YSEIj : --- - .... -- ----- - - -----~-t- -- - - - --- -

The SETLOC should again be specified to allow room for the programmer coding in one bank. 

Thirty-two words or les s of extra coding are as sumed, since the two pieces of macrocoding will 

require 16 words. When the sort is finished, control reverts to the line following the sort 

pseudo instruction; thus, the extra coding is performed. 

One final example is given to show how all of these features may be combined. Of course, 

any combination of own-coding, or before- and after-coding" may be used, and the arrangement 

shown is only a suggested approach. To point out some different techniques, assume, for pur­

pose of example, the following: a four- bank machine (implying the existence of the Executive 

Routine in locations 0000 to 0511 of the first bank), presort own-coding, merge sort own-coding, 

before- and after-extra coding, each of 100 words, and no other program in parallel. For 

optimum efficiency, it is required that the sort use as much extra memory as possible. Now 
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observe the following example: 

PROBLEM PROGR M ER A M DA E PAGE OF 

LOCATION COMMAND CODE 22 ~ 24 A ADDRESS B ADDRESS C ADDRESS 
1 REMARKS 

I 10 II 37 38 51 52 65166 LINE NUMBER 73 74 80 

I'IlOq/lnM SC.eAM.8LE 
I 1 MIJ/NSELi 

I 

Sf:TLOC ¢51 2 i3¥ Ci3 1 

I 

Z,SC SPEC - - cOMMENCE. I 
I 

Z,SZ sPEc. - - P50WIVCOD I 
c.oMMENCE F/,eST i~Sr.,el/CTION (JF. /J£F(J ~-.sO.eT eX T.e~ cC: 0/..y9 : . . . . . I 

LRST IIW'STRUCTION of ,oc, ~.eE- saeT &;,x T.eA Co ~/N'4/ 
I 

i, SO.eTf, 9 pJ3/¢3/MEKCODE 5316/CA/CA/c8 c.c/CD / CE/t?G I AJj I 
R.e~r I VS?;.ellC.TI(J/t/ o~ /1FT. ~.e: 50£T ~k7£A. co ~/~4' 

1 
I 

I Jl¥sT,el/CT/OA! OF Ai 
. . I LAST 7Ee-So£T £X7~ U!> IP/N<1 

I 

10 L, EXIT 
1 
I 

PSOWNCOP F/~j /NST;RUCT/oA/ o~ P~ SOR.T o WAI-c01!1 1\ 
I 

6 • I 
II 

. . . . 
I LAST I/vST.eUCT/oA/ OF P.€Eso£T 'owN- co ~/IV4/ 
I 

12 

¢~¢P 
I 

SETLoC ~3 (i3 I 13 

I 
14 5Et:;MEAiT SclCAMBlE MERcol>E I 

15 S~TLOc p728 i3¢ <i.3 : 
16 z,sz 5PEC - - MSOWNCoPE : 
17 MSOW/Ilcol> F,! ~T ~NSTIll/CT/ ON. OF M.EI!6ESoeT 0'1'#-' :"'O,?llVti ! . . . 
18 LJI~17 /NsT.el/CT/oN OF MJ:tf!6ESo.er 6)1U/V CONIV~ I 

I 
19 EN!> sc,<,AM8LE MAINSEy I 
20 : 

Several things should be pointed out here. The initial SETLOC of 512 indicates that the before­

sort coding will occ;upy memory locations 512 through 611, the sort macrocoding 612 through 626, 

the after-sort coding 627 through 726, and the exit macrocoding location 727. The presort own­

coding would then occupy 728 through 827. Notice, however, that the second SETLOC places the 

merge sort own-coding directly over this area. This is entirely feasible since segment MER­

CODE is loaded only at the time the sort is reloaded, that is, at the beginning of the merge sort. 

By the same reasoning, Z, S2 is overlaid by the value MSOWNCOD at this time, so that the 

merge sort may communicate with MSOWNCOD rather than PSOWNCOD. In general, the merge 

sort own-coding m.ay always overlay the presort own-coding in order to save space. However, 

care must be taken that the macrocoding and any before- or after -sort instructions are not des­

troyed. Because of overlaying presort and m.erge sort own-coding, the highest location reached 

by programmer coding is 827. 3(2048) minus 828 gives 5316, the amount of memory which the 

sort my use for item storage in addition to its own bank. 
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Specific Own- Coding Options 

In the preceding section, it was explained how to relate own-coding and before- or after­

sort coding to the sort in terms of ARGUS Assembly and the Executive Routine. Now it is ap­

propriate to examine each of the own-coding options in detail, considering what can and cannot 

be done with each option, as well as reviewing all the significant special registers. 

Most of the operations performed, before the operation of the sort commences, would be 

simple tape positioning routines, since anything more complicated should normally warrant a 

separate segment or program. Before the sort, it might be necessary to search the input tape 

for a certain segment or file, or rewind all tapes used by the sort, or position all tapes. The 

last-mentioned item might be useful at an installation where information is kept in several in­

itial records of each tape. With a small amount of coding attached to the sort to position the 

required tapes, tapes could be mounted and control could go directly to the sort segment, with­

out loading and performing a complete tape positioning routine. Since no special registers are 

loaded directly by the sort, the programmer has complete freedom. to use any he wishes. In 

general, in order to facilitate relocation, it would be well to perform all but the simplest opera­

tions as a separate segment or program. 

Although presort option 02 is the method normally used to modify the sort routine after it 

is generated, there are occasions when it is necessary to make some modification before 

generation. It might be necessary to eliminate the reading of the first record from the input 

tape, in the event that a non-standard FID record is used, or it might even be necessary to 

eliminate the sort's read routine altogether. Any such changes would require a detailed listing 

and knowledge of the sort, as well as some means of locating a point in the sort. The former is 

beyond the scope of this manual. The only tie-point at this time is a SPEC constant in the 

thirteenth word of the sort macrocoding, which contains the address of the first location of the 

sort routines. (See Section II, Calling for, Assembling and Executing the Sort, for a list of the 

sort macrocoding.) Using this location as a base, it is possible to step up to the area of the sort 

which reads the first record from tape. This can be done by using address arithmetic, and then 

modifying or negating the coding found there. 

Presort option 01 has been provided to allow a standard set of beginning FID sort para­

meters to be created for files which do not carry such parameters (but which nevertheless must 

have a standard beginning FID banner word), as well as to allow the revision of parameters 

which may be there. It allows complete specification of the sort parameters thrQugh coding, 

independent of the data. The transfer to N, S2 is made after the presort modifier has interpreted 
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the sort pseudo instruction parameters, but before the generator has interpreted the beginning 

FID record from the input tape. x6 is set by the presort to the first word of this record, which 

has just been read into memory. Therefore, it may be used to addres s (through index addres s­

ing) any words to be replaced with constants from own-coding. The following registers may not 

be changed during option 01 coding (unless stored and restored): SC, MXR, UTR, X6, X7, RO, 

SO, and also the bank bits of CSC. 

To illustrate the normal use of option 01, assume that it is necessary to sort a ITlaster 

payroll file. Because this file is already ordered, and therefore not norITlally sorted, its be­

ginning FID record contains no paraITleters. It is ordered by eITlployee nUITlber in word 1 of the 

item. However, it is necessary in this case to sort by employee naITle in words 2 and 3. The 

items are variable in size, maximum of 30 words each, and packed five to a record. The mas­

ter file itself will, of course, be saved. The output of the sort will be used as input to a report 

generator, which will be a separate prograITl following the sort. Here is how such a sort pro­

graITl could be written. 

PROBLEM PRO R M ER GAM DATE PAGE OF 

LOCATION COMMAND CODe 22 ~ 24 A ADDRESS B ADDRESS C ADDRESS 
REMARKS 

I 10 II 37 38 51 52 65 116 LINE NUMBER 73 74 80 

?R06R,t)A4 SO~TMF N/1M£FL/) 
, ; 

I 

ScT/..Oc 2¢Z7 8{1 <il I 
I 

Z,sc. SP£C - - 5 TRT.50R7 I 
1 

Z,S2 SPEC - - o WNcODlVff I 

ST~Tso~T 1., SOR.T2,S (J/ /rJ¢/ ¢¢r/ul/tJ/~/8n/8B JJC/ qCi/tiG/(j(j / P/I 
I 
I 

L,cXIT I 
I 

OWNcobN(i TN c c, +1 2 0,4 I 

TX .5 Z, SC - z ... eSC i 
PEe ¢¢S(>3tPJ I 

I 

10 bEe. ¢¢Z¢¢3 I 

" EA/I> SO£TMF NnMEFLi> 
I 
1 

- I -12 

This own-coding consists of two instructions and two constants, representing the parameters 

normally found in the beginning FID record. The TX instruction restores the cosequence coun­

ter bits, and the sequence mode is specified, so that control will be returned to the sort after 

the TN instruction is performed. 

Presort option 02 has been provided to allow changes to be ITlade to the presort itself, 

after it is ITlodified and generated. These changes may be as extensive as the prograITlmer 
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wishes, and m.ay be m.ade by overlaying or m.odifying any existing instructions in the sort pro­

gram.. This, of course, requires fam.i1iarity with an Assembly listing of the sort routine. The 

technique used to address the sort, as explained earlier, is to start with som.e known address in 

the sort as a base, and to use indirect addressing in the own-coding to step to each word of the 

sort to be m.odified. The m.ost convenient tie-point at this tim.e is the sequence counter, which 

is set to the first instruction of the presort program.. The following registers m.ay not be used 

(unless stored and restored): SC, MXR, UTR, RO, SO, and also bank bits of CSC. 

Som.e typical m.odifications which could be perform.ed at this option are: extend pre­

cision beyond triple; add a detour at the end of presort (to perform. sum.m.arizing, totalling, or 

checking functions); or m.odify or replace the READ area (for instance to read directly from. 

cards). Detailed procedures for these m.odifications are beyond the scope of this m.anual, but 

the general approach for each is given. Extended precision is gained, in the triple -precision 

sort, by m.odifying the WL area (com.m.on m.ulti-precision routine associated with the tree), as 

explained under Precision in Section III. Branches at the end of the presort m.ight be installed 

at any of a num.ber of places, depending on what was to be done at that point, or what was to be 

changed. A technique for branching off from. the presort to own-coding is to replace two of the 

sort instructions with a TS instruction and a SPEC constant. The SPEC constant can contain 

the addres s of the first instruction of own-coding to be perform.ed when the branch is reached. 

The TS instruction can transfer this SPEC to som.e unused special register, and go to own­

coding indirectly through the special register. Of course, the two instructions replaced in the 

sort routine should be ones that are no longer useful, or they should be perforITled in the own­

coding area when the branch is m.ade. In changing the READ portion of the presort, a sort 

should be generated which com.es clos est to looking like the final version desired by the user. 

This would suggest generating a sort to handle the item. size and record packing to be used 

throughout presort and m.erge sort, (specified by the ID record or through presort option 01), 

and then, at option 02, m.odifying the read and/ or input routine to conform. to the input specifica­

tions. If, however, input record blocking size is larger than that to be used by the sort, the 

buffers will have to be set up in own-coding, and the m.odified item.s m.ust be supplied to the sort 

one at a tim.e. The area in the presort involved in m.odifying reading is the READ area, and also 

a portion of BEGIN (the initial read). 

Presort option 03 has been provided to allow changes to be m.ade to each item. before it is 

processed by the sort. This option differs from. the others in that the detour to own-coding is 

perform.ed any num.ber of tim.es, depending on the num.ber of item.s, rather than just at one 

tim.e for the entire sort. The sim.plest uses of this option are those involving changes within 

the item.: key translating based on a table; key rearranging or com.pacting into som.e unused 
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location within the item; batch totalling; or simple item proc es sing. With a small amount 

of extra coding, it is possible to duplicate items (expanding a compacted file), or delete 

items (selective sorting). Item size may also be expanded or decreased to insert new keys, 

or discard unnecessary information~ 

When the transfer is made to N, SZ for option 03, the sort is ready to transfer an item 

from its input buffer to item storage. The item location in the buffer is addressed by Xl, 

and the vacant location in storage is addres sed by X7. If control is returned directly to the 

sort (without changing the sequence counter), the transfer will be performed by the sort. 

Alternatively, own-coding may perform the transfer and increment the sequence counter by 

1 to bypass the transfer in the sort. An item transfer (IT) or TN instruction should be used, 

since the sort depends on the contents of AUI and AUZ to modify Xl and to place a word count 

in the end-of-item symbol of variable- size items. At option 03, the following special regis­

ters may not be changed (unless stored and restored): AUI and AUZ (after item transfer), SC 

(except as noted), MXR, UTR, XO, Xl, XZ, X3, X7, RO, RZ, R6, R7, SO, SZ (used continu­

ously as a link to own-coding), and also bank bits of CSC. Since the presort uses all regis­

ters except Sl and S4 through S7, nothing can be stored by own-coding in any registers except 

Sl and S4 through S7. 

Adding or Deleting Items (Presort) 

In adding or deleting items, it is possible to retain the sort's reading and buffering 

processes. To do this, it is necessary to understand the relationship of own-coding to the 

sort, as sh-own in Figure 18. When the option 03 detour occurs, Xl contains the address of 

the current item in the sort input buffer. Immediately after the detour, the sort will trans­

fer this item to its storage area. (placing a word count in the low- order portion of the end­

of- item word if variable- size items are being handled). The sort will then step the input 

buffer to the next item (reading and switching buffers, if nec es sary). These functions (trans­

ferring' word counting, and buffer stepping) are performed in an area called ITEMTRAN. 

The final instruction in the ITEMTRAN area may be addressed at option 03 by incre­

menting the contents of the sequence counter by 5. This instruction is a TS instruction with 

all three addresses active. Its C address is pertinent to this discussion. By effectively 

replacing the C address with a branch to own-coding, a return may be made to own-coding 

immediately after stepping the buffer and without processing the item. Conversely, own­

coding may exit to the location specified by the C address of the sort TS instruction, and hence 

return to the sort to process the current item without stepping the buffer. When performing 

ITEMTRAN, but bypassing the complete sorting process of an item, it first is necessary to 
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END SORT'S 
PROCESSING 
CYCLE 

OWN-CODING 
r..;....;;~~,.lN~S~2:==-;:;;=~==::~NNOO"RRMM.AL OPTION (l13 EXIT 

ITEM 
TRAN 

......... 

1,(l1~7,(l1 .SC 
(\\ORO COUNT 
-+ EOI SVM 
STEP BUFFER "S C+5(AT N,S2 

TIME) 

...... ---- - ---' 

BEGIN SORT'S 
PROCESSING 
CYCLE 

INPUT BUFFER XI_a 

Figure 18. Presort Own-Coding 

STORAGE 

X7~ 1------4 

maintain the transfer from A to B in the last order of ITEMTRAN; this is always Z, AU 1 into 

Z, Xl (stepping the input buffer). This TS instruction may be replaced in the ITEMTRAN area 

with a simple s equenc e change to own- coding, where the transfer of Z, AU 1 to Z, Xl should be 

done, The instruction originally at the end of ITEMTRAN should be stored at some time by 

own-coding, so that it may be replaced when normal operation is desired. Any of the special 

registers, except those used in ITEMTRAN and the reading routine (Xl, XZ, X7, AUI, AUZ, R7), 

can be used to transfer control to a particular portion of own-coding from the end of ITEMTRAN, 

as long as all the necessary ones are restored before returning to the normal sort process. 

When bypassing ITEMTRAN, the low-order 11 bits of the C address of the final instruction 

should be substituted into some working special register (the bank designators in the working 

special register may be obtained from the sequence counter), whereupon this register can be 

used to return to the sort. Once the substitution has been made, the address thus obtained 

may be stored by own-coding as a SPEC constant for subsequent use. 

Therefore, two connection points between the sort and own- coding must be considered 

in the addition and deletion of items. One is the normal option 03 detour from sort to own-coding. 

Own-coding may return to the sort at this point by returning control to the sequence counter (if 

it has been destroyed, then by restoring the sequence counter and going there). The second 

connection point is the end of the ITEMTRAN area, which mu.st be modified by own-coding 
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if a detour is to be made there. Thus a detour from sort to own- coding is made by placing a 

TS sequence change in the last location of ITEMTRAN, addressed through the sequence coun­

ter (at the previous detour) plus 5; own-coding must then perform the final instruction. At 

this point, a return from own- coding is made by going to the address stored by own- coding 

from the C address of the original instruction at the end of ITEMTRAN. 

Depending on the type of own-coding desired, these two connecting points may be used in 

a variety qf ways. For instanc e, to add items, it would be nec es sary to bypas s the sort's input 

buffer stepping (ITEMTRAN). A generated item may be sent to the location specified by X7, 

and control returned to the sort at the exit of the ITEMTRAN area. In the case of variable­

size items, the following instructions will supply the word count as the ITEMTRAN area would 

have: WD Z, AUZ Z, X7 WORKING, WD Z, AUZ ONE Z, AUZ, SS WORKING l6BITS N, AUZ, 

where WORKING is a working location, ONE is a constant of 1 in the right-most position, and 

l6BITS is a mask of the low-order 16 bits. When an item is to be processed from the sort's 

input (either as it carne or as modified by own-coding), then the ITEMTRAN may be performed 

in the usual manner or, alternatively, own-coding can transfer the item to 7, 0 and skip the 

first instruction of ITEMTRAN. In this case, Z, AUI should be set as it would after transfer 

of the item from the input buffer, and Z, AUZ should be set as it would be after the transfer 

of the item to storage. To step through the input buffer without processing items (deleting), 

ITEMTRAN is performed (transferring the item and stepping the buffer), and then a return 

to own-coding is made to consider the next item. With this method, one or more unwanted 

items may be transferred to the same storage location, but they will be overlayed by the 

next item to be processed. 

In expanding or contracting items, the largest item size involved should be specified 

when stating the sort- parameters. Also, the sort should be specified for variable item size, 

whether the input is variable or not. Own-coding can transfer the item from N, Xl (the item 

in the input buffer) to its own working area, operate on it (expanding, contracting, adding 

end-of-item symbol), and then transfer it to N, X7 (the item storage area in the sort). After 

the first of these transfers, the contents of AU 1 must be stored. It must then be restored after 

the second transfer, before control is returned to the sort, otherwise Xl will be set to the 

own-coding working area rather than to the sort input buffer. The sequence counter should be 

inc remented by 1 before returnIng to the sort in order to bypas s the sort's transfer instruction. 

The following examples illustrate some of the techniques which can be used with own­

coding option 03. Corresponding examples in the section on merge sort option 03 will relate 

to these. EXAMPLEA illustrates a simple key translation, assuming a signed numeric key 
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(sign and 11 digits) with some positive and some negative quantities. Also, it is necessary to 

sort so that the output is in strict ascending nUITleric order: - 99 ... 9 through ±OO ••• 0 through 

+99 ... 9. This will occur if all negative nUITlbers are cOITlplemented, retaining the zero nega­

tive sign, and if careful consideration is given to insure that all positive signs are Gs. As SUITle 

for purpos es of explanation, a 10 -word, fixed- size item, packed 10 to the record, with the 

numeric key in word 1. The correct paraITleters are in the file ID record. 

ARGUS ;g~~NG 
PROBLEM PROGRAMMER DATE PAGE OF 

LOCATION COMMAND CODe 22 ~ 24 A ADDRESS B ADDRESS C ADDRESS I REM A R K S 
I 10 II 3738 51 52 65 1111 LINE NUMBER 73 74 80 

r'Ro4£/JM ExJlMPlEI1 
I ; 

ONtYSECi 

jETtoc. 2 tlz I ~? £lz 1 

I 

Z,SC SPEc. - - .5TRt<.T I 
I 

Z,Sl .sPEC - - OWNc.opc I 

STII£T i,so.eTl,¢ ¢ 3/$tP/ ¢¢¢¢/CI1/CA/C6 eC/CI)/(ilj/llG / C£ 
I 
I 

L I EKIT I 
I 

OW/I!UJPE EX, e 
" tJ Sl4NMRSK W(J~/(IN6 I 

Nil e WDI!KINq ZER.o e,+3 I 
Nil C " ¢ NUMI1.51< I, ¢ I 

1 

10 Tx 5 Z,SC - z,csc i 

" S5 c. S ItiNM ASK. SIt:;/IIM''lSK I, ? I 
I 

12 TX 5 z/Sc. - Z,CSC I 
l 

13 WO£/(IA!q RoESE ICVE I i 
I 

14 51611/ MIISK PEe ~ I 

15 ZE/Z.O PEe ¢ : 
J/uMM4Sk OEc. ¢Q"(i4Cilili(iliQ<l I 

I 
16 

17 eNo E XAMP:LEI1 ONLYSECi I 

EXAMPLEB illustrates a useful technique for keeping running batch totals froITl prograITl 

to prograITl. Because it would be necessary to use own-coding option 02 in both the presort and 

merge sort in order to modify the end FID records, it is convenient to have a final filler iteITl, 

or items, at the e:tld of the file, whose keys are all higher than any possible in the file, so as 

to contain the final total for the entire file. In EXAMPLEB, assume the same file structure 

as in EXAMPLEA. Here it is desired to keep a running total of the aITlount in word 5 (as SUITle 

a full signed decim.al word) and also an iteITl count. These are to be recorded in words 5 and 6 

of the dum.m.y iteITl, which consists of words of GG •.. GF (to distinguish it from other fillers 

of all hex GIS.). 

PROBLEM PROGR MMER A DATE PA GE. OF 

LOCATION 10' II COMMAND CODe 22 ~ 24 A ADDRESS B ADDRE.SS C ADDRESS 
1 REM ARK S 

I 37 38 51 52 651l1li LINE NUMBER 73 74 80 

p,eo 6 RNM ExAMPLED oNLYS£4 I ; 
I 

S£TLac Z¢ZZ 8¢ <;Z I 1 
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z,SC .5PEC - - 3TRRT I 
I 

Z,5Z SPEC - - OWA/eobE I 

STA£T J.,SO~TI, ¢ ¢3/~~/ ¢¢¢~/C/1/cn/C.8 ec/cP/GC;/(iti/C£ 
I 
I 
I i, t:XIT 1 

OM/NCdPE NA e 1,(1 (jSWITHF C,1-3 I 

TAl c TOTALS 2 ',4- 1 

TX ~ z,sc - z~:sc-
I 
I 

10 PA c TbTnls ',4- T()TALS I 
TOTI4LS -t/ 

I PA C Tor/USN ONE I 
II 

TX s Z,.$c - z,csc I 
I 

12 

13 C,SWITIIF DIEc... tfCiqqy~ti(iqtHi F i 
I 

14 ONe PEt:. +1 I 

15 ToT/U.s pE.e +~ : 
16 pEe -tp 1 

e/110 EKAMPLe8 ONLYSEt; I 
1 

17 

EXAMPLEC illustrates a useful technique to sort a "compacted" file, which might be an 

insurance policy file with one item per policy. Within each item, starting with word 11, are 

the names of family members (if any). The number of additional names is specified in the 

twelfth digit of word 2. Word 3 contains the family's last name, and word 4, the policyholder's 

first name. The items are variable size with a maximum of 30 words. It is also desirable, at 

this point, to set up a cross- reference file, sorted on a double-precision key of last name and 

then first name, and which represents everyone covered by insurance. The policyholder 

(original) items are to remain the same, and the cross- reference iterns are to have a special 

identification (stating that this is a cross- referenc e itern) in word 1. Also, the policyholder's 

first narne is to be in word 2, the last name in word 3, and the farnily member I s name in word 

4. It shall be assumed that the beginning FID record contains the proper parameters to allow 

sorting on words 3 and 4. 

PROBLEM PROGRAMMER D ATE PAGE OF 

LOCATION COMMAND CODE 22 et A ADDRESS B ADDRESS C ADDRESS I REMARKS I 10 " 24 373. 51 52 6566 LINE NUMBER 73 74 80 

p~() t?,eAM £X/l/VtPlEC 
, i ONLYSEt:l 

I 

S£Tloe 1964 JJ? Ci2. I 

2,SC 
I 

SPEc - - START I 

Z,S2 SPEC -
I - IN'TIRL I 

S7neT i, so.er z, p5 P3/11~/ P tlslt)/CA/CA/C/J Cc/CIJ/tili/iZli/CE : 
L, EX'T I 

I 
INITIIlL TX. C z,sc - Z,x4 I 

ss c 4,s suBAPb/lS z,X4 
1 

TX c z,X4 - SKIPITTJe.. I 
I 

~ , 
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10 TJI. c :5PECOWNt:: - Z, :52 I 

OWNcOOE EX Ie 1,1 q WO~KINq 
I 
I 

II 

AlAI c WtJRKIN4 Z£~o C, -1-2 I 
I 

12 

I 

13 7X. S Z,SC - z, esc I 
r 

14 IT e N,KI Plhl1 M IT EM -//- e lIll."RI TEM I 

15 TX c SI'Ecl3YPS - ZI S2 : 
16 TX c SPEt::NAME - .5 ToR SPEc.. I 
17 TJ( 'e CUliUVTEM+2. - PUMM/TEM-!Z ! 

Tx.. c. CUR~/TEMf3 - Pl.IMM/TEMf/ I 18 

I 
19 Tx.. :5 z-, SC- - Z,CSt:: I 

Bypnss Tx.. e STo/i!,SPEc - ,ZI !C.I 
I 
I 20 

,---r-r"-T--.-- ,--- T" r--

T " , 
TX AlI,e/,1 PUMM/TEM +3 , 

f C - I 

WI) c WOKKINq ONt Wd£.K/Alq I 
I 

IT C Pi/MAtt/TEM l>UMMITEM-f4 N,X7 I 
I 

TJ( c Z, Ii:./ - 51oR,SPEC I 

7X c SK/PlrT~ - z,~1 : 
11111 c WOl?KlNy ZERO S+3 I 

I 

T.5 c SI'ECC>Wltlc Z, :5 2 ttl, R/ I 
TX S Z, sc -

1 
Z,csc I 

TS .s Z,5C 'Z/csc N,R./ I 
I 

10 :5U8AP"~S PEC -744 i 
'i /JEC -<1 

I 
I 

II 

12 ZE~O PEC -¢ I 
I 

13 ONE Pee -/ i 
I 

14 51'ECOWNe SPEC - - QWNCClJ)E I 

15 :5PEcBYPS SPEC - - 8'/1'.4.5.5 1 
16 5f>ECII/IJME SPEC - - ClIt:Ii!..ITEMtl; I 
17 tJUMMITEM ALF c/i?eJSSREF ! 
18 ~ESE.eVE 4- I 

I 
19 CU~.e/TEII(f R£SE£VE 3Jlf I 

WeJRKINq ~ESEteVE I 
I 
I 20 

, r -,---,--

T"~'·' 
T,-,-----,--,-

-'KIP/TTR. sPEC 
, 

f - - I 

:5 TO RSPEc SPEC - - - I 
I 

EN" - - - I 

The section called INITIAL is performed only when the first option 03 branch to own­

coding is made. This section changes the contents of Z, S2 to the normal setting of OWNCODE. 

This picks up the C address of the last instruction of the ITEMTRAN routine and stores it as 

a SPEC constant in SKIPITTR. Whenever an item is found containing family names, several 

working areas are initialized. Z, S2 is temporarily reset to BYPASS, and the item is handled 
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normally. Each time the sort branches to BYPASS, through the normal option 03 exit, a dummy 

item is created and sent to N, X7, and the sort is entered through the previously stored exit 

from the end of ITEMTRAN, thus bypassing the ITEMTRAN routine. When the last dummy item 

of a particular policy is sent into item storage, Z, S2 is restored to OWNCODE and the normal 

process resumes in order to consider a new item from the input buffer. 

EXAMPLED illustrates the opposite approach of deleting items. Suppose it is necessary 

to write a "one- shot" program to extract all males over 25 years of age from an employee 

file and sort them by age, and (within age) by years of service. Again, it can be assum.ed that 

the proper information is set up in the beginning FID record. Also, assume the sex code is the 

first digit of word 2 (0 for female, 1 for male), age is the second and third digits, and years 

of service the fourth and fifth digits. (The sort can, therefore, be a single-precision sort with 

mask of OGGGGOOOOOOO.) 

PROBLEM 

I LOCATION 10 II COMMAND CODe 

The own-coding to perform the selection follows: 

I 

22 Ie 24 

ARGUS CODING 
FORM 

PR GR 0 AMMER 

A ADDRESS 37 38 '0 ADDRESS 

DATE 

51 52 C ADDRESS 6566 
--'~"'-'-"""--'--'--'--'-T -.-.-----r,-- r-r. -,- r'--.--.--,-- -, I I I I [ I I 

I 

P~O(j.eIlM £XAMPLE~ ()NLY5E~ 
----

SETLoe 2t;1( 8¢ tiZ 

2, se SPEc - - 5T'1,cT 

Z,SZ .5F'EC - - OWNc.OPE 

STIlR7 L,SOIlT~ ¢ ¢3/¢f// ¢~¢?I CAl c///c8 CC/Cb/~(j/Citi/C& 

L, eXIT 

OWNCot>E ex c ~I .5E~M,LISK W(}RK.(II/(j 

NA c W(}/lKIIII(i oNE pELEr£. 

eX c 1/ I A (iEMASk W£1RKIA/li 

10 Ln c W(}R.KIN4 TWIVTYF/V t>ELE7E 

" TX S' Z/se - Z,CSC 

/>eLETE TX e z,sc - Z ,,x4 
I 

12 

13 7--' e 4,5 - 5T()RE 

14 7x C. R£TlLRA/ - 4/ S-

15 7)( c 5f'ECKST,e - Z,.el 

16 TX oS Z,5C - Z,CSC 

17 RESToRE. TX c::: Z,IIU! - 2/X1 

18 TX c S7aIC/3 - 4,5 

19 75 c 2, )(4 2, se t) WNCOf)E 

20 SEXMASk DeC G 
, , , , , , , , , , , , , , , I ~I ,-'-1 T r-r-r--r : : , , , , , , l' 1 I' 

" 
: ~1 1I--r--T--!~1 

AqEMASK PEe 
, I 

-¢G4 

ONE t>Ee I 

TWNTYFIV ()Ec ¢2S 

SPEC.~3TIl. .5 PEe - - REST~.e.E 

120 

PAGE OF 

REMARKS 
LINE NUMBER 73 74 8,0 

; ; 

I 

I 

I 

I 
I 

I 
I 
I 
I 
J 

I 

: 
I 
I 

I 

I 
1 
I 
I 

i 
I 
I 

: 
I 
I 

I 
.1 

I 
I 

I 
I 
I 

1~1 r I r I I I 

I 
I 

I 

I 

I 
I 
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RETLJRN T.s ~RI 
I 

c - - I 

WOIi!K/II/Q PEe II 
I 
I 

.5 Tol!£ PEe ? I 
I 

EN/) E;(AMPL£b oNLY~Eq I -
(Note that the second instruction in the DELETE section could have been performed once only, 

the first time through own- coding, as performed in the prec eding example.) The proc essing 

of a normal item to be sorted will require only the OWNCODE section. When an item is to be 

deleted, the DELETE section sets up the exit of the ITEMTRAN portion of the sort to return 

directly to the RESTORE section of own-coding. Thus ITEMTRAN steps to the next item in 

the input buffer, reading if necessary, and then transfers control to RESTORE. Here, the 

transfer of Z, AU I to Z, Xl, normally done at the end of ITEMTRAN, is performed and the 

exit of ITEMTRAN is restored to its normal setting. OWNCODE is then entered to process 

the next item. 

In the next example, EXAMPLEE, it is desirable that one word be added to each item, 

which will be an item count to be used as an additional key. This technique is useful if an 

order-preserving sort is desired, that is, one in which all equal keys will be ordered in the 

output the same way they were in the input. In this example, there are again lO-word items, 

fixed length, with keys in word 1. Assume the beginning FID record has been modified to 

prescribe variable-length itenlS (maximum length of 12 words) with the first key in word 1 and 

the second key in word 11. Own-coding will be used to expand each item to include the item 

count in word 11, and an end-oi-item symbol in word 12. 

PROBLEM PROGR MMER A DATE PAGE OF 

LOCATION COMMAND CODe 22 ~ 24 A ADDRESS B ADDRESS C ADDRESS 
REMARKS 

I 10 II 37 38 51 52 6566 LINE NUMBER 73 74 80 

f'R06£AM £~II MF'L£E ONL.YSE(j. 
I ; 

I 

SETL oc. 2¢'Z 13~ 4z I 
I 

z, sc. SF'£e - - .5 Ta.eT I 
I 

'Z,52 SPEC - - o WNco I>E I 

.5Tf}~T I.,SO£T2,? ¢3/¢11j ¢lfI'f//orcn/c.8 cc/cP/(fu/Ci(i/CE. 
I 
I 

'-,EXIT I 
I 

ow.vCot>c TN c- 1;1 I{I W().eKI/I/<; I 
TX c Z,I1L.1I - I 

sToA?eAL.I/ I 
PA c: IT£MC.NT ONE IT£MCIIIT I 

I 

10 17 c W()RKIN4 1t1/()~K lAIC; + 1/ "0(1 I 
TX c sTo,fEAU/ z,AU/ 

I - I 
II 

12 T)( S z, SC/ I - z, esc I 
I 

13 WOIl.!(JNq RE,56t<lIe II I 
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14 I TEMc.NT PEe +¢ I 
15 .OEc ¢ 

: 
16 STOREAU/ PEe ¢ i 
17 CJAlE PEe: -1-/ I 

I 

18 ENt> E.t'AMPLEe oNLYSE'f i 

Of course, if the original file had contained variable- size items, the TN instruction in OWN­

CODE would be an IT instruction. In such a case, the first IT would use the B address to dis-

pos e of the end- of- item symbol in some unus ed location. Care would also have to be taken to 

obliterate the original end- of- item symbol in the WORKING area. 

The final example, EXAMPLEF, represents a situation where there is a file of variable­

length items (maximum of 30 words), but only the first four words of each item, regardless of 

its size, are of interest. In this case, it is still necessary to specify a sort which will have stor­

age and buffer capacity for 30-word items. However, the amount of information on tape can be 

reduced by making all items five words (including end-of-item symbol) thus reducing the over­

all time of the sort. Once again, a proper beginning FID record, calling for a variable item-

size sort (maximum of 30 words) can be assumed. 

PROBLEM 

I LOCATION 10 II COMMAND CODe 

P~Ot;ICAM 

~ET/...OC 

Z,SC SPEC. 

z,5Z SPEC 

STIU.r l,SO£TI,¢ 

L, EXIT 

OWNCOOE. IT 

7K 

IT 

10 TX 

" TX 

12 WtJ£KINy RESE~vE 

13 ST°R.~AUI pE.e 

14 EN/) 

ARGUS CODING 
FORM 

PItOGR MMER A 

22 ~ 24 A ADDRESS 37 31 B ADDRESS 

ExAMPl£F ONlYSE(j 

1996 Bt/J 

- -
- -
¢3/",,/ N¢(J/cA/eH/c.t3 

c IV, XI WO~KIA/q 

c Z, /lUI -
c WOK.KINt; WIJ!ZkIN(i-f4 

C sTOICEAV/ -
:; Z, sc., I -

3¢' 

¢ 

£XAMPL~F ONLYSEti 

DATE PAGE OF 

C ADDRESS 
REMARKS 

51 12 65 66 LINE NUMBER 13 74 10 
, 

I 
I 

(j2 I 

I 

5Tn~r I 
I 

OWNcolJE I 

c.c/cp/qy/yu/c£ : 
I 
I 

Wollk.INlj I 

.5TOICEAU/ I 
AI, K7 I 

I 

Z,l}lI/ I 
Z, esC I 

I 
I 
I 

i 
I 
I 

It might be considered that a single item transfer instruction, under control of own-coding, 

would accomplish the same thing. However, it is necessary to perform both transfers in order 
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that AU 1 will be properly set up to find the next item in the input buffer. Thus, one transfer 

handles the full, original, variable item, while the other handles the new, compacted item. 

The former is used to pre-set AUl, the latter to set AU2. 

Presort option 04 specifies that all options, 01, 02, and '03, are to be observed by 

the sort. It is therefore necessary that there be own-coding corresponding to each option 

which, if nothing else, performs the task of setting Z, S2 to the entrance of the next set of 

own-coding. For example, suppose it should be necessary to perform both the example 

illustrating option Oland option 03, (EXAMPLEA). 

PROBLEM PROGRAMMER DATE PAG" OF 

LOCATION COMMAND CODE 22 ~ 24 A ADDRESS 8 ADDRESS C ADDRESS 
REMARKS 

I fO II 3738 Sf 52 65 b6 LINE NUMBER 73 74 

,P£'(J6£11A1 0/,7104""4- ollLYSE4 
I ; 

I 

:5ETUJc.. Z¢13 8P liZ I 
I 

Z,SC 5PEc. - - s T.eTSo~T I 
I 

Z,5Z SPEC. - - oWNCOt)EI I 

ST~TSOR.T L, SOIi:.TI, I ¢J4/~fI/ ¢/~I/c.q/C/1/CB e.c/ u(j /c;G/Ci(i/Ol 
I 
I 

L, &XIT 
I 
I 

OWNCOPEI 7N c c.., 1-2 Z 6,4 I 

TX , SP[COC2. - Z,:S 2-
I 
I 

7X. 5 z,sc. - z,cSC I 
I 

10 Occ. t/J/tJ¢1 ¢ 
I 

I 
PEc ¢¢I I 

I " 
12 sP£COc.z .sPEC - - OWNcolJ£Z I 

I 
I 

13 OWIVe.ol>E 2. TX C SP£coC3 - z,SZ I 

14 TX 5 Z,>c 
I - z/csc I 

15 sPEcoc3 SPEC - - OWNcoP£3 : 
OWNa> 1>£3 EX c I, f1 SI6NMIISK WO,ocINej I 

I 
16 

17 NA C W()/Z./CIAl6 ZE~O c,-I-3 I 
I 

18 /lA c ~~ NUMMASK 1/ (I i 
I 

19 TX S z,sc - z,csc I 

20 SS C SlqAl'M/UK.. SIGNMAsJ;: ~(I I 
I 

80 

" r r 1 I , , I r I r I 

51 
1'1 I I I T, ~...,.--,--r -r-T··-l I , T--,--T IT I ,", I T I I I I I , I , I , , I' I I r I , 1 11 

7X 
I I 

2,SC - Z,CSc I 

WO/ZJ(INe:, PEe. ¢ I 
I 

5ICtNM!lSK PEe 4 I 
I 

ZEA?O DEe ? I 

NUMM4.5K f)Ec ¢ 6t;GClGG<iliGCiG 
I 
I 

EN/) OPTIOAl'fd'¢ aA/'LYS£Cj 
I 
I - --- - - -
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Merge sort option 01 - It should be emphasized again that this option does not exist. If 

it should be specified during the generating process, "NO EDIT 1" will be printed. Following 

this there will be an unconditional stop. 

Merge sort option 02 has been provided to allow changes to be made to the merge sort 

itself, after it has been modified and generated. These changes may be as extensive as the 

programmer wishes, and may be made by overlaying or modifying any existing instructions 

in the sort program. This, of course, requires an extensive knowledge of an Assembly listing 

of the sort coding. The technique used to address the sort, as explained earlier, starts with 

some known address in the sort as a base and, using indirect addressing and address arith­

metic in the own- coding, steps to each word of the sort to be modified. The most convenient 

communicator at this time is the s equenc e counter, which is set to the first instruction of 

the merge sort program. The following registers may not be used (unless stored and restored): 

SC, MXR, UTR, RO, and also bank bits of CSC. 

Some typical modifications which could be performed at this option are: extension of 

precision beyond triple; addition of a detour at the end of merge sorting but before writing the 

end FID record (for instance to perform summarizing, totalling, or checking functions); or 

modification or replac ement of the write area (for instanc e to write directly to the printer). 

Detailed procedures for these modifications are beyond the scope of this manual, but the general 

approach for each is given. Extended precision is gained, in the triple-precision sort, by 

modifying the COMMON area (common multi-precision routine associated with the trees), as 

explained under Precision in Section IV. As pointed out in this section, it will sometimes be 

necessary also to change the constant K2, which addresses the sort's stopper area. The sort 

coding called LAST PASS already has the function of making certain modifications to the sort 

routine just before the last merge pass begins. This area can be modified, or expanded, with 

own-coding to make even more changes. Thus, the instruction in LAST PASS which sets up a 

branch to ENDSORT, after the end FID record is written, could be replaced by an instruction 

to go to a special end section of own-coding rather than to the ENDSORT section. The tech­

nique used to branch off from the merge sort to own-coding simply replaces two of the sort 

instructions with a TS instruction and a SPEC constant. The SPEC can be the address of the 

first instruction of own-coding to be performed when the branch is hit, and the TS instruction 

can transfer this SPEC to some unused special register, and go to own-coding through the 

special register. Of course, the two sort instructions replaced should be ones that are no longer 

essential to the sort operation, or they should be perfQrmed in the own-coding area when the 

branch is made. Alternatively, the sort could be allowed to finish in a normal manner, and the 

end FID record could be modified with after- sort coding. In changing the write portion of the 
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merge sort (presumably only during the last pass), a sort should be generated which comes 

closest to looking like the final version to fulfill the specified requirements. This suggests 

generating a sort to handle the item size and record packing to be used throughout the merge 

sort, as well as between presort and merge sort. It also suggests augmenting the LAST PASS 

area to modify the output and write routines to conform to the output specifications. If output 

record blocking size is larger than that which will be used by the sort, buffers must be pro­

vided in the own-coding area, as well as providing communication to them during the final pass. 

Alternatively, by using variable- size items, the entire sort can be generated to the larger 

specifications. The WRITE area in the merge sort must be modified by LASTPASS in order to 

change the writing of records involved in the sort. 

Merge sort option 03 has been provided to allow changes to be made to each item after it 

is processed by the sort for the last tirne. This option differs from 02 in that the detours to 

own-coding are made any number of tirnes, depending on the number of items, rather than having 

just one detour at a time. The simplest uses of this option are those involving changes within 

the item: key unscrambling (based on a table); item restoration (if temporary changes were 

made by the presort); batch totaling; or simple item proc es sing. It is pos sible to duplicate 

items (expand a compacted file based upon the new ordering), or delete items (eliminate dup­

licates produc ed by sorting). Item size may also be expanded or dec reased to conform to the 

format of the following routine, or to eliminate temporary keys. 

When the sort's transfer is made to N, S2, the sort ha s just transferred an item to its 

output buffer from one of its input buffers. The item location in the output buffer is addressed 

by XO. When control is returned directly to the sort by own-coding (without changing the se­

quence counter), the output buffer will be stepped. This is accomplished by transferring Z, AU2 

to Z, XO (if variable items); or word differencing the constant 1 from Z, AU2 into Z, XO (if fixed 

items). Also, Z, Sl, 1 will be checked to determine if it is time to write. If it is not time to 

write, the sort returns to proces s another item. At option 03, the following special registers 

may not be changed (unless stored and restored): AU2 (except as noted), SC, MXR, UTR, XO 

(except as noted), Xl, X2, X3, X4, X5, RO, Rl, R2, R3, R4, R5, SO (except as noted), Sl 

(except as noted), S2 (used continuously for link to own-coding), S3, and also the bank bits of 

esc. Since the sort uses all but S4 through S7, nothing can be stored by own-coding in any 

other registers but these. 

Adding or Deleting Items (Merge Sort) 

In adding or deleting items, it is possible to retain the sort's buffering and writing pro­

cesses. To do this, it is necessary to understand the relationship of own-coding to the sort, 
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as shown in Figure 19. When the option 03 detour occurs, XO contains the address of the item 

just transferred by the sort to the sort1s output buffer. Immediately after the detour, the sort 

will step the output buffer, writing if necessary, and return to the location addressed by N, SO 

to process another item. 

The word addressed by N, SO is the sort1s return to its tree, and it is changed during each 

item processing cycle. By storing and replacing this instruction with a branch to own-coding, 

return may be made to own-coding immediately after stepping the buffer and without producing 

another item. Conversely, own-coding may restore the original instruction to N, SO and go 

there, and hence return to the sort to produce another item without stepping the buffer. Any of 

the special registers except those used in the output buffer and writing routine (AUZ, XO, X7, Sl) 

can be used to transfer control to a particular portion of own-coding from N, SO. Howeve-r, it is 

irnperative that all the necessary ones are restored before returning to the normal sort process. 

OWN-CODING 
END SORT'S OUTPUT BUFFER 

PROCESSING 
CYCLE 

N,S2 / - N 

(SORT)Xfl) .... I-------1~X6 (COLLATE) 

ORMAL OPTION 9.13 ....... .....SC EXIT 

STEP 

BUFFER 

N,S9J .. --------' ---- ---- - ' ... 
BEGIN SORT'S 
PROCESSING 
CYCLE 

Figure 19. Merge Sort and Collate Own- Coding 

Therefore, in adding and deleting items, two connection points must be considered between 

the sort and own-coding. One is the normal option 03 detour from sort to own-coding. Own­

coding may return to the sort at this point by returning control to the sequence counter (if it 

should have been destroyed, then it can return by restoring the sequence counter and going there). 

The second connection point is the return to the sort1s trees, addressed N, SO, which must be 

modified by own-coding if a detour is to be made there. Thus, a detour from sort to own-coding 

is made by placing a TS sequence change into N, SO, having first stored the instruction found 
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there. A return froITl own- coding, at this point, is ITlade by restoring the original instruction 

into N, SO, and going to N, SO. 

Depending on the type of own- coding desired, these two connecting points ITlay be US ed in 

a variety of ways. For instance in the deletion of iteITls, it is necessary to bypass the sort's 

output buffer stepping. At each option 03 branch, a return ITlay be ITlade to the sort through 

N, SO, and one or ITlore iteITls will be overlayed in the output buffer. When an iteITl is trans­

ferred to the desired output buffer, either by the sort or by own-coding, a return is ITlade to 

the sort at the location specified by the sequence counter at the option 03 detour. If own-coding 

provided the iteITl, care ITlust be taken that AD2 is properly set; this will be the case if an iteITl 

transfer instruction is always used (rather than an n-word transfer). If successive iteITls are 

to be produced by own-coding (adding iteITls), N, SO can be used to return to own-coding after 

the buffer stepping. 

It should be pointed out that either during the addition or deletion of iteITls, when an end 

of string is reached during the last pas s (and henc e the end of the sort), the sort then as SUITles 

that the last output record has just been written. Consequently, if the input and output counters 

get out of phase, as they will when adding or deleting, there ITlay be a partial record of output 

still in the buffer when the sort finishes. To get around this, there should be a full record IS 

worth of filler iteITls in the file, which have keys larger than any legitimate items, and which 

will therefore be sorted to the end of the file. Alternatively, own-coding can sense for the 

last valid iteITl. When it is found, it then fills up the output buffer with fillers (Z, 51 will always 

contain the nUITlber of iteITls in the output buffer). 

In the expansion or contraction of item sizes, an iteITl size should be specified to the sort 

which will cover the maximuITl size involved. The sort should be specified to handle variable 

item size, whether the final output is variable or not. Own- coding can operate on the iteITl in 

the output buffer (expanding, contracting, deleting the end-item sYITlbol), and accordingly adjust 

the output buffer index register (XO) for the next item. The sequence counter should be incre­

ITlented by 1 before returning to the sort to bypas s the sort's output buffer modification. 

The following exaITlples should serve to illustrate SOITle of the techniques which can be 

used with own-coding option 03. These exaITlples correspond to the examples in the section on 

presort option 03. EXAMPLEA illustrates a simple key translation. Assume for the purpose 

of explanation, the availability of a signed nUITleric key (sign and 11 digits), and the fact that 

the negative quantities have been complemented for sorting purposes. It is then necessary to 

norITlalize them and this ITlay be done by re- compleITlenting, retaining the zero sign. AssuITle 
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again for purposes of explanation, a 10-word fixed- size item, packed 10 to the record, with 

the numeric key in word 1. The correct parameters are in the FID record. Although there 

·would probably be corresponding presort own-coding, this is not shown in EXAMPLEA. 

PROBLEM PROGRAMMER DATE PAGE OF 

LOCATION 10 II COMMAND CODe 22~ A ADDRESS B ADDRESS C ADDRESS 
I REMARKS 

I 24 37 38 51 52 65166 LINE NUMBER 73 74 

I'R()tf21l41 FXAMI'LEA S()£rsE(f 
I i 

I 

S.ETLCJC fl~tI¢ 81 <i3 1 
I 

Z,5C SP£c - - ST/J.e.T I 

STIIIZT L/,,5'(J,eT~¢ ¢¢/13/A1£~Y.5Et:7 Ip/J¢/c4/C-9/C~ ce/c~/c,6A;c;/e£ 
I 
I 
I 

L./&.tIT 
I 
I 

s£t;MENr e,xAMPLEA ME£ tS SEq. I 
I 

.5cTi.OC Z¢4f/ 8¢ ~3 I 

z/sz SPEC - - 1 
OWNCOt>E I 

OWAlC£)[)E EX. C ¢,¢ SltjAlMASK W~£KINq I 
I 

10 Nil c WtJ.ek INC; zE.e.O C/ fz 
I 

I 
II JIll c~~ NUMMASI( ¢/p I 

I 

TX. ~ z/sc - z/ esc. I 
I 

12 

13 WO£.KIN4 ()EC ¢ I 
I 

14 SIGNMASK DEC. q I 

15 ZERO Pee ¢ : 

NUMMASK. PEC jO fititiQ(jqGG'it7Ci I 
I 

16 

eNP EXAMPL£A .50ers£~ I 
1 

17 

80 

EXAMPLEB illustrates a useful technique for keeping running batch totals from program 

to program. Because it is necessary to use own-coding option 02 in both the presort and 

merge sort to modify the end FID records, it is convenient to have a final filler iteITl, or 

items, at the end of the file, whose keys are all higher than any others possible. This 

guarantees that it, or they, will remain at the end of the file to contain the final total for the 

entire file. In this example, assume the same file structure as in EXAMPLEA. It is neces­

F3.ry to keep a running total of the amount in word 5 (as sume a full signed decimal word) and 

also an iteITl count. These are to be compared with words 5 and 6 of the dummy item, which 

were calculated previously in the same manner. The key of the dummy item consists of a 

word of GG ... GF (to distinguish it from other fillers of all hex GiS, which the sort would 

eliminate) . 
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PROBLEM PROGRAM ER M DATE G PA E OF 

LOCATiON COMMAND CODE 22 ~ 24 A ADDRESS B ADDRESS C ADDRESS 
REMARKS 

I 10 II 37 38 51 52 65 l1li LINE NUMIER 7J 74 10 
i i lii~ 

Pf(Of,IZ11M £KIIMl't£iJ 
I I 

SO/t!.T SE(j 
I 

SETLOc. ¢¢¢¢ 1>1 (j.3 I 
I 

Z,sc spec - - START I 

.5 TI1£.T L,SO~TlI¢ ¢¢/~3/ME/(qSeCi p~P(J/CII /CIl/CLJ CC/CIJ/C;(j/t:1t;/C£. 
I 

I 

L,eXIT : 
SEC;MENT EXAMPt£8 M£,et;SEti 

I 
I 

6 

5 ETt. oc. 2~33 13~ ~3 I 
Z,SZ sPEC - - OWIVCOPE : 

o JAIN {(JPE !VII ( ¢/(I qSWIT#J= c, -14 I 
I 

10 NIJ C TOTALS ¢,4 £~RoR i 
Nil (; ToTAlS+! ~s £~~o,e 

I 
I 

II 

pJ<.n ( IJL FoK.. - c,-f.3 I 
I 

12 

13 on (; ToTIIL.5 1,4 70T//£S i 
l>R (; ro7ALS+1 011/£ TOTALS-II 

I 
I 14 

15 7)( 5 z,sc - Z,csc : 
16 C,SWITHF PEe (iGq6GG6GGG GF i 
17 ONE PEe -1-1 I 

I 

18 ER./i?LJ1i? Plln e I1LFeRI<CJ/{ I 
I 

19 SToP S - - - I 
ALFol<. ALF ToTRLSOI< 

I 
I 20 

-,--, , , , -.------r--r··'- T --TO •.. -. , , , , , , , , "l I I' , • , I, , ' , , I, , , , , 

I 

I1LFEIi?R..OR. ALF ,OT.4lSNq I 

Tor.4LS PEe -f-¢ I 

I 

PEe -t¢ I 
I 

EN!> £~tlMPL£8 .soRTSEtj I 

- --.J 

Now, in EXAMPLEC, suppose that the file was compacted for the sake of sorting speed, 

but that for subsequent use it is necessary to expand it. This might be an insurance policy 

file, with one item per policy carried through the sort. Within each item, and starting with 

word 11, are the names of family members (if any). The number of additional names is speci­

fied in the twelfth digit of word 2. Word 3 contains the family's last name, and word 4 the 

policyholder's first name. The items are variable size, maximum of 30 words. It is necessary 

to create trailer items, one for each family member, to follow the header items. The policy­

holder, or header, items are to remain the same, and the trailer items are to have a special 
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identification (stating that this is a trailer item) in word 1, the policyholder's first name in 

word 2, the last name in word 3, and the family member's name in word 4. It shall be assumed 

that the beginning FID record contains the proper parameters to allow sorting on words 3 and 

4 of the original items. Note that this will result in a file sorted by policyholder, with trailers 

following the header items in the order that the names appear in the policyholder items. By 

contrast, EXAMPLEC of presort option 03 results in a file completely ordered on name, regard­

less of the original grouping by family. 

PROBLEM PROGR MER AM DATE PAGE OF 

LOCATION 10 II COMMAND CODE 22 ~ 2 .. A ADDRESS B ADDRESS C ADDRESS 
REMARKS 

I 37 38 51 52 65166 LINE NUMBER 73 74 80 

PtftJ6R/lM Ex,qM/'~EC solZTS,Eq 
I I 

I 

SETLac. ¢p¢¢ LJI 93 I 

I 
Z,5C SPEc - - ST.4IZT I 

L, Sa/C.T2, fI f/(i/tl3/MERqSEq ¢t>¢~/c/) Ic,q / C 8 cc /CI'/(jli /6(j / C£ 
I 

STIIIl.T I 

LI EXIT 
I 
I 

5 Ec;MENT ExAMPI.EC ·ME/i!.(jS£~ I 
I 

SE-TLDC 1983 l3¢ ($-3 t 

Z,SZ :spec - - OWNCOPE 
I 
I 

OWNC.tJl>£ E)( c fjll G WO£/(IAI~ I 
I 

10 NN I' WIJ/~.KIN6 ZERO c,+2 I 
TX S Z,SC Z, csc I - I " 
IT e N,XP Pl/MNIITEM 74 eURR/TEM I 

I 
12 

I 

13 TX c 1V,,5¢ - S TollETRIII I 
1 

I .. TX z,sc - STOR£SC I 

TX. C TSBYP/)S.s - AI,S? : 
16 TX 5,PEcBYPS - z/~7 I 
17 TX C S/'Ec/VAME - Z,£.6 ! 

7X C cU,eIZITEM +2- - I>UMIHITEM I 18 

19 TS c cu,e£IT$M+3 fJlIMM/TEMTI OWNC()/JE-I-L 
I 

I 
BYI'195s NA C W()RKINq ZERO c/+2 I 

1 20 
, , , 

? SToRET.eN N,.5¢ 
I I TX -

I 

TS .5 Z,>C z,csc- ~s¢ I 

I 

TX c IItK6,1 - PUMIIII/TEM":'3 I 
I 

Wb C WO/lK/Nt? ONE W(JRIcINti I 

IT C I>l1MMITEM f)uMM/TEM -f-/f Mx..fI : 
5Tate.€ 2"1 sc I TX c - I 

TX s Z,sc - Z,C5C I 
I 
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Cr PEe. -q I 

I 
Z~I<O PEe. -¢ I 

I 

10 ONE bE(. -/ i 
TSBYPA.55 75 - N,fi>.7 

I - I 
II 

12 SPEC8YP s SPEC. - - iJYPA.s5 I 
I 

13 SPEcNIIM~ SPEC - - c.uRKITEM +I¢ i 
I 

14 PUMMITEM ALF TRAIL EI{. I 
15 I<E:5EI<V.e 4 : 
16 C.U~I(ITEM RESE/(VE 3~ 1 
17 W61(.t:IN<j PEC ~ I 

I 

18 SToIl.ET~N DEC ¢ I 
I 

19 STO/i:.SPEC SPEC - I 
STo~sC spec - - - I 

I 20 

ENt> EX.IIMPlEC 
I ; 

SO,eTSeq I I 

- .,. 

Whenever an item is found containing family names, several working areas are initialized, 

N, SO (merge) is temporarily reset to transfer control to BYPASS, and control is returned to 

the sort to step and interrogate the buffer counters. Each time the sort branches to BYPASS, 

a check is made to see if any more dummy items are to be created. If not, N, SO is restored 

and the sort is re-e:p.tered to continue in a normal manner. Otherwise, a dummy item is cre-

ated and sent to the output buffer through N, XO. The sort is then re- entered at the normal 

point where the output buffer is incremented and tested. Whether or not it is time to write, 

the sort will eventually go to N, SO (merge) to process the next item, and then back to the 

BYPASS portion of own-coding. Note that the general approach here is slightly different from 

EXAMPLEC of presort option 03. There, the dummy item was first produced and then checked 

to see if there should be more to follow, whereas here a test is first made to see if there are 

more dummy items, and then produc e one if nec es sary. This differenc e relates to the fact 

that, in one case, items are being brought in to the sort while in the other case they are being 

put out of the sort. Presort own-coding is performed when the sort wants an item, whereas 

merge sort own-coding is performed when an item has been produced by the sort. 

Now, in EXAMPLED, assume the opposite case from EXAMPLEC, namely, the deletion 

of items. Suppose that after sorting, a file will contain many items with duplicate keys, in 

which case it may be necessary to delete the duplicates. Again it shall be assumed that the 

proper information is set up in the beginning FID record. This then is a single-precision 

sort, with the key in word 1. 
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PROBLEM PROGRAMMER DATE PAGE OF 

LOCATION COMMAND CODE 22 ~ 24 A ADPRESS B ADDRESS C ADDRESS 
1 REM A R K S 

I 10 II 3738 51 52 65166 LINE NUMBER 73 74 80 

j7'(04RRM eXAMPLE£) SoRTSEti 
, i 

I 

SETt.oc p~tltI 131 &3 1 
I 

z/sc sPEC - - .5TRRT 1 

1.,SO~T/, ¢ ¢¢/?3/M&K(iSc(l ¢¢¢tJ /CI~/CA/CL3 CC/CP/C;4/4' (j/CE 
I 

5 TIlIi?T I 

1./ EXIT 
1 
I 

SEt;M£A/T C-XAMPL.E L> MER(jSE6 I 
I 

SETtee 2~~Z B¢ C;3 I 
Z,52 SPEC - - o WNco/> E i 

OWNcoIJ£ NA c L/!STKEY ¢/~ C, -13 I 
I 

10 Ts s z,Sc z,csc N, Sf i 
rx. C ~tI LAsrKEY 

I - I " 
TX s z, sc - Z,csc I 

I 
12 

13 L/lSTKEY pEe ¢ i 
1 

14 oN£ PEC -/ I 

15 EN~ EX AMPL. EO so.eT,5£t:1 : 

Here, in order to delete an item, the proc es sing of the output buffer is simply bypas s ed, so 

that the next item produced by the sort will overlay the one to be deleted. 

For the next example, suppose it is necessary to add one word to each item so that it 

can be used as a serial number by a later run. A variable-item- size sort must have been 

specified by using own-coding in the presort, if necessary, so as to convert fixed-size items to 

variable (not shown). Assume that the items are, indeed, truly variable size, with a maxi­

mum size of 30 words. This means that the sort will have to be specified with a maximum 

item size of 31 words so as to make room in the output buffer for the expanded items. Own­

coding will be used to expand each item to include the serial number in the position before the 

first word of the item, thus moving the rest of the item "up" one place. 

ARGUS ;g~~~G 

PROBLEM PROGRAMMER DATE PAGE OF 

LOCATION COMMAND CODE 22 ~ 24 A ADDRESS B ADDRESS C ADDRESS 
REMARKS 

I 10 " 37 38 51 52 6566 LINE NUMBER 73 74 80 

P£ot;R.9M IE x.AM Pi £".E .5CJR-TSEG 
, i 

I 

SETLoc ?/J¢¢ 81 q.3 1 

I 

"Z, Sc SPEC- - - 5TAIZT I 
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STPIl.T L, 50£TI, ¢ ¢ ¢ / ¢3/ M~6~Et; ~;I¢sf/CA/CA/c8 eel CP/6u#y-/C£ I 

'-I £ XIT : 
~Et;/II1eIl/7 ExAMPtE£ Me~4.seti 

I 
I 

SeTLoe 2tjll Btl t;3 I 
Z,5 2 SPEC - - OWNcal>E 

I 
I 

OWNCOVE IT c rA (5 ¢, Z9 :> To,e/14£ I 
I 
r 

10 I'll I' COliA/TEIf{ oNE COl/NTc,€, I 

TJ( ~ coL/NTE,e - ;6,¢ I 
I 

II 

12 IT C S7(JJZA~E 5TO£,IJ (j£ + Z, ~/ I I 
I 
r 

13 TJ( 5 z, Sc - Z, esc I 

STOK.IME !?eSI£/Z.VE 3¢ 
I 

I 14 

15 couNre.e.. I>EC +¢ : 
16 OJVE PEC -+1 1 

ENP cxAMPt££ :so,€rS£q I 
I 

17 

Notice that, in this case, XO was not modified in own-coding, but instead returned direct­

ly to the sort to perform this. This was pos sible becaus e the second item transfer instruction 

set up AD2 correctly, so that the sort's buffer modifying instruction would function correctly. 

Had the item size been changed directly in the buffer, by moving the end-of-item symbol with 

a TX, for instance, then it would have been necessary to modify XO in own-coding, step the 

sequence counter by 1, and then return to the sort. 

For the final example, again assu:me a file of variable-length items, maximum of 12 

words. Assume that presort option 03, EXAMPLEE, had created these items from 10-word 

fixed-size items, by adding a key in word 11 and an end-of-item symbol in word 12. It is neces­

sary to eliminate words 11 and 12 in order to make the output consist of fixed-length records 

of 10 words each. It shall be assumed that all items corning from the sort are exactly 12 words 

A R G U S CFOOR~I.NG in length. "" 

PROBLEM PROGRAMMER DATE PAGE OF 

I LOCATION 
10 " 

COMMAND CODE 22 ~ 24 A ADDRESS 37 38 B ADDRESS 51 52 C ADDRESS 65 /06 
REMARKS 

LINE NUMBER 73 74 80 

p;eoc;/2/lM E~4MJ7t.EF 
I I 

soRTS£u 
I 

.5ETI.CJC- p~~1 131 (7.3' I 

I 

Z,5C SPEC - - STR,€r I 

L/50£T2,1 ?1¢/13/Me.e6~£6 1¢~I/e/J/CA/cLJ ce/ep/£?ti/y-u/c£ 
I 

'i>TF12T I 
I 
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L,£-fIT 
I 

SEt;/IIf£IVT $XAM,LEF ,f4eA!tis£y I 
J 

SETt..oc .9?' tj3 I 
2,SZ SPEC - - owNCOPe. I 

OWNcoPE TX C Z,}(¢/I~ - - I 
I 

10 TJ( lS Z, SC / I - Z,CSC i 
END E-tAMf7,t£ F so£TSEt; I 

J 
II 

- - I 

Merge sort option 04 specifies that the exits for 02 and 03 are both to be observed by the 

sort. It is therefore necessary that option 02 coding set up Z, S2 for the option 03 coding, before 

returning to the sort. 

After sort coding - Since, at this time, the sort has completed its operation, there are 

no restrictions on the use of special registers, as there are before the sort. Of course, any 

special registers loaded with the routine will have been destroyed by the sort, so these should 

be loaded by the· coding instead. Since nothing done at this time affects the sort, no examples 

of this type of coding are shown. 

Collate option 01 has been provided to allow a standard set of beginning FID parameters to 

be created for the collate in cases where they do not exist on tape, or to allow for revision of 

parameters which may be there. All original files read by the collate must still have standard 

beginning-of-file banner words. However, since input to the collate will presumably have corne 

from the sort routines, the correct parameters will normally be already present on tape. This 

option allows complete specification of the collate parameters through coding, independent of 

the data. The transfer to N, S2 is made after the collate generator has interpreted the collate 

pseudo instruction parameters, but before it has interpreted the beginning FID record from the 

initial A input tape. Index register X7 is set to the first word of this record, in memory, and 

X7 may be used to address any of the parameters which will be replaced with constants from 

own-coding. The following registers may not be changed by the own-coding (unless stored and 

restored): SC, MXR, UT R, XO, X7, and also bank bits of CSC. 

For an illustration of the normal use of option 01, refer to the above section on presort 

option 01 which, except for specific special register addresses, is similar. 

Collate option 02 has been provided to allow changes to be made to the collate routine 

itself, after it is generated. Here the distinction must be made between the initial "once-only" 

generation of the collate, and that portion of the generator which is performed before each pass. 
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Option 02 causes a detour iTIlmediately after the forTIler. The changes TIlade at this tiTIle TIlay 

be as extensive as the programmer wishes, and TIlay be TIlade by overlaying or TIlodifying any 

existing instructions in the sort prograTIl. This, of course, requires a thorough knowledge of 

a listing of the collate routine. The technique used to address the collate, like the sort, is to 

start with a known address in the collate as a base and, using address TIlodification in the own-

.coding, to step to each word of the collate to be altered. The most convenient cOTIlmunicator 

to the collate by the own-coding is the sequence counter, which addresses a location at the end 

of the A3 section, the last portion of the once-only generator. Because there are several breaks 

in the sequence of instru.ctions performed during generation, the exact location of the branch to 

own-coding should be noted on the coding sheets; the sequence counter will be set to the location 

following this one. The following registers may not be used (unless stored and restore<;l): SC, 

MXR, UTR, RO, XO, and also bank bits of CSC. 

SOTIle typical TIlodifications which could be perforTIled at this option are: extend precision 

beyond triple; add a detour at the end of ea·ch pass (or at the end of the final pass); perforTIl 

specialized operations or modify the WRITE area. Because of the connections established 

between passes of the collate, the last function (TIlentioned above) should be perforTIled during 

the last pass only. Detailed procedures for these modifications are beyond the scope of this 

TIlanual, but the general approach for each is given. Since the collate uses the saTIle tree as 

the merge sort, extended precision is handled as described under TIlerge sort option 02 in this 

section. The collate coding, called FNAME, already has the function of TIlaking certain modi­

fications to the collate routine just before the last pas s begins. This area can be TIlodified, or 

expanded, with own- coding to make TIlore extensive changes. Thus, the FNAME instruction, 

which sets up a branch in ENDPASS to end the routine, TIlay be replaced so as to set up a 

branch to a special end section of own-coding. One technique for branching off froTIl the collate 

to own-coding is to replace two of the collate instructions with a TS and a SPEC constant. When 

the branch is taken, the SPEC can be the address of the first instruction of own-coding to be 

perforTIled, and the TS can transfer this SPEC to SOTIle unused special register, and go to own­

coding under cosequence control through the special register. Of course, the two collate instruc­

tions replaced should be either instructions that are no longer useful, or else they should be 

performed in the own-coding area when the branch is TIlade. Alternatively, the collate could 

finish in a norTIlal TIlanner, and perforTIl any special end function (such as totaling or checking) 

after the collate. In changing the WRITE portion of the collate (presuTIlably during the last 

pass only), a collate should be generated which will handle the structure of the input and inter­

TIlediate files. Then, at option 02, the FNAME area could, in turn, be augmented to TIlodify the 

output and/ or write routines to conform to the output specifications. If output record blocking 

size is larger than that to be used _y the collate, separate buffer areas must be provided in the 
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own-coding, and in the connections to own-coding, for use during the final pass. Alternatively, 

by using variable- size items, the entire collate can be generated to the largest specifications. 

The area in the collate which must be modified by FNAME to change item transfer or writing 

is the J J area. 

Collate option 03 has been provided to allow changes to be made to each item after it is 

processed by the collate for the last time, i. e., during the final pass. This option differs from 

the other two in that the detour to own-coding is performed more than once, depending on the num­

ber of items. The simplest us es of this option are those involving changes within the item: item 

rearrangement; batch totaling; or simple item processing. It is possible to duplicate items 

(expand the new file), or delete items (eliminate duplicates). Item size may be increased or 

decreased to conform to the format of the succeeding routine or to conform to the system. 

When the transfer is made to own-coding through N, SZ, the collate has just transferred an 

item to its output buffer from one of its input buffers. The item location in the output buffer is 

addressed by X6. When control is returned directly to the collate (without changing the sequence 

counter), the output buffer will be stepped (by transferring Z, AUZ to Z, X6), and Z, R6, I will be 

checked to detennine whether it is time to write. If writing is not indicated, a return is made 

to process another item. At option 03, the following special registers Inay not be changed (un­

less stored and restored): AUZ (except as noted), SC, MXR, UTR, XO, Xl, XZ, X3, X4, X5, X6 

(except as noted), RO, RI, RZ, R3, R4, R5, R6 (except as noted), SO (except as noted), SZ· (used 

as continuous link to own-coding), S3, and also bank bits of esc. Since the collate uses all but 

S4 through S7, nothing can be stored by own-coding in any registers but these. 

Adding or Deleting Items (Collate) 

In the addition or deletion of items, it is possible to retain the collate's buffering and 

writing processes. To do this, it is necessary to understand the relationship of own-coding 

to the collate, as shown in Figure 19. When the option 03 detour occurs, X6 contains the 

address of the item just transferred by the collate to its output buffer. Immediately after the 

detour, the collate will step the output buffer, writing if necessary, and return to the location 

addressed by N, SO to process another item. 

The word addressed by N, SO is the collate's return to its tree, and is changed during each 

item processing cycle. By storing and replacing this instruction with a branch to own-coding, 

a return may be made to own-coding immediately after stepping the buffer, and without pro­

ducing another item. Conversely, own-coding may restore the original instruction to N, SO and 

go there, and then return to the collate to produce another item without stepping the buffer. Any 
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of the special registers, except those used in the output buffer and writing routine (AUZ, X6, R6, 

R7), can be used to transfer control to a particular portion of own-coding from N, SO, as long as 

all the nee es sary buffers are restored before returning to the normal collate proc es s. 

Therefore, in the addition and deletion of items, two connection points between the collate 

and own- coding must be considered. One is the normal option a 3 detour from collate to own­

coding; own-coding may return to the collate at this point by returning control to the sequence 

counter (if it has been destroyed, then by restoring the sequence counter and going there). The 

second connection point is the return to the collate's trees, addressed N, SO, which must be 

modified by own- coding if a detour is to be made there. Thus a detour from collate to own­

coding is made by placing a TS sequence change into N, SO, having first stored the instruction 

found there. A return from own-coding at this point is made by restoring the original instruction 

into N, SO, and going to N, SO. 

Depending on the type of own-coding desired, these two connecting points may be used in 

a variety of ways. For instance, to delete items, it is necessary to bypass the collate's output 

buffer stepping. At each option 03 branch, a return may be made to the collate via N, SO, and 

one or more items will be overlayed in the output buffer. When an item is transferred to the 

desired output buffer, either by the collate or by own-coding, a return is made to the collate 

at the location specified by the sequence counter at the option 03 detour. If own-coding pro­

vided the item, care must be taken that AU Z is properly set; unlike the merge, a TN instruction 

should be used for fixed-size items, with less than 63 words per item, and an IT instruction 

should be us ed for variable- size items or fixed-size items greater than 63 words per item. 

If a succession of items is to be produced by own-coding (adding items), N, SO can be used to 

return to own-coding after the buffer stepping. 

It should be pointed out ~hat either during the addition or deletion of items, when end of 

pass is reached during the last pass (and hence the end of the collate), the collate then assumes 

that the last output reco:::-d has just been written. Consequently, if the input and output counters 

g,et out of phase, as they will when adding or deleting, there may be a partial record of output 

still in the buffer when the collate finishes. To get around this, a full record of filler items 

at the end of the file should be produced (corning from any combination of inputs). Alternatively, 

own-coding can sense for the last valid item, and when found, fill up the output buffer (if neces­

sary) with fillers. (Z, R6 will always contain the number of items in the output buffer.) 

In the expansion or contraction of item sizes, an item size should be specified for the 

collate which will cover the largest size involved. The inputs must therefore be variable- size 
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items and it should be specified to the collate whether or not the final output is available. Own­

coding can operate on the item in the output buffer (expanding, contracting, deleting end- of­

item symbol), and can adjust the output buffer index register (X6) for the next item accordingly. 

The sequence counter should be incremented by 1 before returning to the sort, so as to bypass 

the collate's output buffer modification. 

Since collate option 03 own-coding is similar to merge sort option 03 own-coding, the 

reader is referred to that section for appropriate examples. The only differences between 

(hese examples and the ones which would be prepared for a collate are the addresses of the 

special registers. 

Collate option 04 specifies that options 01, 02, and 03 are all to be observed by the col­

late. It is therefore necessary that there be own-coding corresponding to each option which, 

if nothing else, resets Z, S2 to refer to the next option. The reader is referred to presort 

option 04, contained in this section, for an example of this. 
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APPENDIX A 

END FILE IDENTIFICATION RECORD (ITEM DESIGN) PRESORT TO MERGE SORT 

Included in this appendix is an item design of each word in the End File Identification 

Record (FID). 
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X Bin setting. 

APPENDIX B 

PRESORT SPECIAL REGISTERS 

Xl Input buffer for item transfer and EDOFILE check. 

X2 Input buffer for reading. 

X3 Output buffer for item transfer. 

X4 Output buffer for writing; 

Stopper address for positioning and searching tape. 

X5 Working index register: 
1. In BEGFID for file ID reference; 
2. In WRITE for CC. 

X7 Working index register: 
1. Macrocoding; 
2. In FILSTR, MASTER, ITEMTRAN and EDCON for smallest item in storage. 

R For restarts. 

Rl Working special register (as counter): 
1. In BEGINI for items in storage; 
2. In FILBIN for keys in storage; 
3. In SWITCH and RESET to reference 14th location of bin. 

R2 Working special register (as counter): 
1. In BEGIN 1 to count words per item; 
2. In FILSTR to count items in storage; 
3. In FILBIN for filling bin with keys; 
4. In EDCON to count words per item. 

R3 Working special register (as counter): 
1. In BEGIN 1 to count items in storage; 
2. In FILBIN to count items in storage; 
3. In DSCALC to count two levels. 



APPENDIX B. PRESORT SPECIAL REGISTERS 

R4 Working special register (as counter): 
1. In FILBIN to count items per bin; 
2. In ENDSTR to count words per item; 
3. In CHKIT to count items in storage. 

R5 Working special register to addres s keys of item in storage in CHKIT. 

R6 Counter for items per output buffer. 

R7 Counter for items per input buffer. 

S2 Own-coding. 

AUl Item in input buffer. 

AU2 Item in output buffer. 
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APPENDIX C 

MERGE SORT SPECIAL REGISTERS 

XO Output buffer. 

XI-X5 Items in input buffers. 

X6 Input buffer for reading. 

X7 Working index register: 
1. In WRITE for CC; 
2. In EOF and LASTPASS to address STOPPER. 

RO For restarts. 

RI-R5 Counters for items in input buffers. 

R6 Working special register: 
1. In VARSWCH as counter; 
2. In BEGPASS for TABLE address. 

R7 Working special register: 
1. In VARSWCH to set item index register and LASTKEY; 
2. In BEGPASS and ENDPASS for address in READ. 

SO Tree special register. 

Sl Item counter for output buffer (used to determine when to read and write). 

S2 Own-coding. 

S3 EOF counter for "way merge!! (used to reset EXIT A). 
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APPENDIX D 

COLLATE SPECIAL REGISTERS 

XO Current entry of plan. 

XI-X5 Items in input buffers. 

X6 Items in output buffer. 

X7 Working index register: 
1. In READ for reading; 
2. In MHSKEEP for reading. 

RO For restarts. 

RI-R5 Counters for items in input buffers. 

R6 Counter for items in output buffer. 

R7 Working special register: 
1. In JJ for writing; 
2. In MHSKEEP to reference read orders; 
3. In BEGIN portion of Generator. 

SO Tree return special register. 

Sl Working special register: 
1. In MHSKEEP to reference KEEP location; 
2. In Generator. 

S2 Working special register: 
1. In Generator. 
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APPENDIX E 

TIMING OF HONEYWELL 800 SORT ROUTINES 

Although there .are tables with which sort times may be readily determined, these have 

certain limitations, particularly in the area of record packing. The following formulas may 

be used to determine times for any specific case. 
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Given the following factors: 

Wb 

Wi 

Wm 

Wp 

Wr 

If 

Ir 

Is 

Rs 

D 

S 

P 

= words per bin: 
single and multi precision = 3.0 
double precision = 4.2 

= words per item (including EOI symbol if used). 

= words of memory available {2, 024 + MMMM}. 

= words in presort progral1l: 
single precision = 500 
double and multi = 550 

= words per record {including banner, two ortho, and EOR word}. 

= items per file (volume to be sorted). 

items per record. 
(Wm-Wp-4Wr) 

items per strings = 2( Wi + Wb } 

= records per string = Is/Ir 

= number of tape drives used by merge sort. 

= number of strings produced by presort = If/Is 

= number of passes, from following table of maximum values of S: 

P 

2 
4 
6 
8 

10 
12 
14 
16 
18 
20 

D = 3 

3 
8 

21 
55 

144 
377 
987 

2584 
6765 

17711 

D = 4 

6 
31 

157 
193 

4004 
20216 

D = 5 

10 
85 

707 
5864 

48620 

D = 6 

15 
190 

2353 
29056 

Trt = time to pass one lrecord on tape, including gap. 

Tf = time to pass entire file = Trt ~~) 

Td = time for dummy items produced by presort 
(S) 

= Trtm 
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Tip = tim.e per item., presort (given in m.em.ory cycles): 

Is 

1-12 
13-72 
73-432 

Single Prc. 

4Wi + 125 
4Wi+ 171 
4Wi + 219 

Double Prc. 

4Wi + 156 
4Wi + 218 
4Wi + 280 

Multi Prc. 

4Wi + 156 
4Wi + 229 
4Wi + 302 

Trp = tim.e per record, presort (given in m.em.ory cycles) = 3Wr + 113 

Tsp = tim.e per string, presort (given in m.em.ory cycles): 
single and m.ulti precision = 12. 1(Is) + 69 
double precision = 17. O(Is) + 79 

Tim. = tim.e per item., m.erge sort (given in m.em.ory cycles): 

D 

3 
4 
5 
6 

Single Prc. 

2Wi + 59 
2Wi + 62 
2Wi + 64 
2Wi + 67 

Double Prc. Multi Prc. 

2Wi + 62 2Wi + 64 
2Wi + 65 2Wi + 69 
2Wi + 69 2Wi + 74 
2Wi + 73 2Wi + 79 

Trm. = tim.e per record, m.erge sort (given in m.em.ory cycles): 

D 

3 
4 
5 
6 

Single Prc. 

3Wr + 188 
3Wr + 193 
3Wr+ 198 
3Wr + 203 

Double Prc. 

3Wr + 191 
3Wr + 198 
3Wr + 206 
3Wr + 213 

Multi Prc. 

3Wr + 193 
3Wr + 203 
3Wr + 213 
3Wr + 223 

Fp = factor, presort = (Ir)(Tip) + Trp + TsplRs 
Trt 

Note: For tim.ing pur-poses, if Fp is less than 1, the value 1 
m.ust be used. In such cases, Fp represents the CP 
capacity used by the presort. For Wi less than 5, Fp 
is always greater than 1. For Wi greater than 15, Fp 
is always les s than 1. 

Fm. = factor, m.erge sort = (Ir)(Tim.) + Trm. 
Trt 

Note: For tim.ing purposes, if Fm. is less than 1, the value 1 
m.ust be used. In such cases, Fm. represents the CP 
capacity used by the m.erge sort. Fm. is usually les s 
than 1. 

Tp = tim.e for presort = (Tf)(Fp) + Td 

Tm. = tim.e for m.erge sort = P(Tf)(Fm.) + 2Td 

Tt = total tim.e for sort = Tp + Tm. 

A single pass collate routine m.ay be readily tim.ed in a m.anner sim.ilar to tim.ing one 

pass of the m.erge sort. In this case, the factor !I If " , representing item.s per file, is the num.­

ber of items in the output file, or the sum of the items on each input. Timing a m.ulti-pass 

collate is m.ore difficult, since different portions, and therefore different quantities of data, 

are handled during each pass. For these cases,· it is necessary to determ.ine the amount of 
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data being processed during each pass, and to time each pass accordingly. The total time is 

then the sum of the times for all passes. 
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Given the following factors: 

Wi = words per item (including EOI symbol if used). 

Wr = words per record (including banner, two ortho, and EOR word). 

If = items per file (volume to he collated in one pass). 

Ir = items per record. 

W = way. 

Trt = time to pass one record on tape, including gap. 

Tf = time to pass entire (output) file = Trt ~~:) 

Tic time per item, collate (given in memory cycles): 

W Single Prc. Double Prc. Multi Prc. 

2 2Wi + 51 2Wi + 57 2Wi + 60 
3 2Wi + 53 2Wi + 60 2Wi + 64 
4 2Wi + 56 2Wi + 65 2Wi + 69 
5 2Wi + 58 2Wi + 68 2Wi + 72 

Trc = time per record, collate (given in memory cycles): 

Single Prc. Double Prc. Multi Prc. 

3Wr + 179 3Wr+189 3Wr + 194 

Fc = factor, collate = (Ir)(Tic) + Trc 
Trt 

Note: For timing purposes, if Fc is less than 1, the value 
1 must be used. In such cases, Fc represents the 
CP capicity used by the collate. Fc is usually less 
than 1. 

Tc = time for collate = (Tf){Fc) 



Ascending 

Bin 

Buffer 

Collate 

Data 

Descending 

A GLOSSARY OF SORTING TERMS 

Relating to ascending order; that is, a progression 

from the smallest alphanumeric key (all zeros) to 

the largest (all hex GIS). 

A storage area in memory, us ed in the presort, which 

contains a number of tags and related coding. The 

bin is arranged to coincide with the tree, so that the 

smallest tag contained in the bin may be found and 

transferred out. 

A working area in memory, to or from which data 

is read or written on tape. Buffers are usually us ed 

in pairs or sets, so that data may be read or written 

in one buffer, while other data is processed in the 

other buffer. 

A routine which has as its input any number (up to 

99) of ordered (sorted) files, and as its output a 

single ordered file containing all of the input data. 

Numeric and alphabetic information supplied to and 

processed by a computer. Data differs from a pro­

gram in so much as the program supplies the com­

puter with the logical step- by- step instructions to 

process this data. In the sorts, data is that which 

is sorted through a presort, merge, and collate 

program. 

Relating to descending order; that is, a progression 

from the largest alphanumeric key (all hex GIS) to 

the smallest (all zeros). 
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Error Routine 

File 

Generator 

Item 

Key 

Machine Limited 

Merge 

Merge Sort 
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A section of programming, initiated automatically by 

a read-write error UTR, which attempts correction 

of the error by an orthotronic correction routine and/ 

or by rereading. 

A set of data used as input to a sort or collate. The 

final result of a sort or collate sequence. 

A general routine, usually used with a modifier, which 

accepts specifications of a specific sort (parameters) 

and produces a routine meeting requirements. The 

generator sets up (generates) the variable portion of 

a routine (bins, buffers, etc.). 

The unit of data which is manipulated by the sorts. 

A set of characters, usually forming a field, which is 

the portion of an item us ed as a criterion for the alpha­

numeric arrangement of that item with other items. 

The condition which exists when the time used in 

processing a given alTIount of data exceeds the time 

used in moving this data between internal and external 

storage. Thus, in such a sort, a tape must periodi­

cally wait for the machine to finish proces sing data. 

The proc es s us ed in the ARGUS merge sort and col­

late which reads several ordered strings or files of 

input and, through a series of comparisons, selects 

the smallest (or largest), item by item, and from 

these comparisons produces one ordered string or 

file for output. 

The second and last portion of a sort routine which 

performs a series of merging operations until all 

data is combined into a single string of ordered 

information. 



Modifier 

N-l 

Ordered 

Own-coding 

Parameter 

Presort 

Precision 

A GLOSSARY OF SORTING TERMS 

A general routine, usually used with a generator, 

which accepts specifications of a specific sort 

(parameters) and produces a routine meeting 

requirements. The modifier sets up (modifies) 

the fixed portion of a routine (trees, switches, 

transfer instructions, etc.), using a skeleton 

routine as a basis. 

A sorting technique, more properly called "Cas­

cade" sorting, developed by Honeywell and used 

by the ARGUS merge sorts. 

That which has been sorted; a term usually used to 

describe a sequence of items whose keys have been 

arranged in alphanumeric order. 

A portion of program or additional coding, which 

is added to a sort and to which the sort detours at 

prescribed intervals. It is most often used on a 

item- by-item basis to modify data upon first reading 

by the sort, or upon final writing. 

A statement of prescribed format which specifies, to 

a rnodifier- generator, a specific sort to be generated. 

Such factors as item size, key position, tape allo­

cation, etc., are usually specified in a parameter. 

In the ARGUS sort system, parameters are sup-

plied in two portions: through the macrocoding 

routine which calls the sort, and through the begin­

ning FID record of the data tape. 

The first portion of a sort routine which reads a 

single tape of random data as input, and writes as 

output two or more tapes of ordered strings. 

Size of key used for sorting, usually in terms of 

computer words. A single-word key is single 
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Precision (cont) 

Random 

Restart 

Segment 
(as related to a 
sorting operation) 

Set 

Skeleton 

Sort 

Stopper 

String 

precision, a double-word key is double precision, 

a triple-word key is triple precision. 

Having no specified order. In sorting, random is 

the opposite of "ordered". 

A section of programming, initiated by the console 

operator in case of trouble, which "backs Up" the 

program to a specified point and "starts again". 

A portion of a file, usually a single tape. 

Used in the merge sort or collate to include every­

thing pertaining to one of the inputs; usually desig­

nated A through E. 

A basic, generalized, sort routine which provides the 

framework on which modification and generation can 

build a sort program. Such a routine cannot be run 

in itself, since important areas are missing. 

A routine (consisting of a presort and merge sort) 

which reads random data as its input, and which 

writes the same data as its output, in alphanumeric 

order, based on a prescribed part of the data (key). 

A programming device, also called "freezing", 

which is used to indicate that an item in storage 

is temporarily not to be considered for sorting. (It 

should not be confused with the hardware definition 

of stopper. ) 

A portion of data on tape, and not necessarily on the 

entire tape, which has been ordered through a presort. 

A string is indicated by a special banner word in its 

first record. 



Tag 

Tape {data} 

Tape Limited 

Tree 

Way 

Work Tape 

A GLOSSARY OF SORTING TERMS 

A condensation of an item, consisting of a key 

(used for sorting) and an identification word 

(used to identify and relocate the rest of the 

item in :memory, after the key of that item 

has been determined to represent the smallest 

item). The ID word is appended to the key to 

form a tag. The result is that which is actually 

shuffled around in memory during the sort. 

Data which exists on a single reel of magnetic 

tape, random or ordered. Such data may 

represent part of a file (string or segment), or 

a full file. 

The condifion which exists when the time used in 

moving data from tapes to internal storage, or 

from internal storage to tapes, exceeds the time 

used in processing that data. Thus, in such a 

sort, the machine must periodicaliy wait for the 

continuously running tape. 

A logical array of machine instructions having 

one entrance, and one of several exits, the 

latter depending on which of several keys related 

to the tree is smallest (or largest). 

Presort: number of tags in a bin which the tree 

compares {maximum of six}. 

Merge Sort and Collate: number of input sets 

which the tree compares (maximum of five). 

A tape used by the sorts during the sorting process, 

the contents of which are immaterial before and 

after the sort routine. 
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