: ".-VEQ“LAUTOMATIC ROUTINE GENERATING AND UPDATING SYSTEM

H

HONEYWELL

HONEYWELL 800

Transistorized Data Processing System

SOVNONV1 ATESINISSY 40 IVANVIA

Litho in U.S.A.

Copyright 1961

Minneapolis-Honeywell Regulator Company

Electronic Data Processing Division
Wellesley Hills 81, Massachusetts

DSI-23C
2461
2861

MANUAL OF ASSEMBLY LANGUAGE

Honeywell
Ebuitriuic Data, Phocossing

Section

Section

Section

Section

Section

Section

II

II1

v

VI

TABLE OF CONTENTS

Page
Introduction e aseaseseesmssse s e st seassanseseanoas 1
The ARGUS System e0vvenns ettt 1
The Assembly Program et 4
The Honeywell 800cctieiennitinnennnernnneeonnans 7
Word Structure ... iieeititiit ettt ssnnens 7
Information Storageceveeivevertcenerncenrsncnns 7
Sequence Control ...ttt ittt nanns 8
Command Codes RN crecssaanens Chereeeaan 9
Addressesiiiieniircrttecttcasans tececetean 9
Masks ... iitieiieiineiniiriinenensaontonsnons e 10
The ARGUS Coding Form ettt et 13
Location Field (Columns 1-10) et .. 13
Command Code (Columns 11-23)iitieneernenns 13
Address Fields (Columns 24-37, Columns 38-51,
Columns 52-65) e e et eet et ettt 15
Line Number (Columns 66-73)veitencnnsns e 15
Identification (Columns 74-80) PN ceee. 16
Remarks (Columns 66-80) ettt e 16
- - 2 17
Symbolic Tags ...viiiieeineniiiiiennnnnannnneeannns 17
Special Register Tags ...eeeevevervenannns Ceesiaaeeen 18
Mask Tagscoeuuuns cetrteceaanns Cesietiaeeae e 19
Link Tags . .viieirineriiniinieerieeneoneennsssenenns 19
Out-of-Sequence Wordscvevnenvocnsonsonnnasas 20
Definition of Tags ..eevtieieteiiinren et onennnans 20
Addresses Cetiae eesens e Creserares e 21
Direct Memory Location Addressccivveunnn oo 21
Address Arithmetic ... ciiiienieneiiininennnnns 23
Direct Special Register Address Crreseteeaes 24
Indexed Memory Location Addresseveevvaveeneess 24
Indexed Special Register Address ceeecasens 25
Indirect Memory Location Addressc000e... . 26
Indexed Indirect Memory Location Address............ 27
Inactive AAdressceitiirirrenroresocnnenaceesons 28
Stopper AdATessciitiiiiietertrettrttaisaeeenan 28
Numbers in Address Fields..... ceteesseseneessereess 28
Program Structure Ceena cheteeseaansaees. 29
Segmentationicieiiiiiiieiniens ettt 29
Segment Loadingcvetertiiiiiieerernenenennnnnns 30
Subsegmentationcceiiieiiiitairrttctaraeseans 31
Allocation ...viietiiieetinieanaenn et aaeas Ceveens .. 32
Relocation ...ceiiiiiiniiiiiieienenennennnnns e 33

TABLE OF CONTENTS (cont)

Page

Section VII Machine Instructionsuoiiie et ieetesossoenasasonenns 37
General Instructionsc000.. cerecsseeneeas e ¥4
Sequence Change Instructions Certecetenranans 38
Field Instructionsieieiererecncasosannonses 38
N-word Instructions ceececeeneatan 3 |
Peripheral Instructionsccvvviiiiiineass ceterese 42
Shift Instructions Ce s et ettt aeses e esenann ce.. 44
Scientific Instructions Chcteseseseser et 46
Simulator Instructionsceveieeetoncccnnsananaans 47
Multiprogram Controlc.vvveuvennn et . 49
Extended Instructions RN ce et 50
Program Control Instructionsvvvueeen 1t
Print Instructionsveeviereteoscssosanocenns 51
Section VIII Assembly Control Instructionsccotiieveenoenass esv.. 53
3 3 A T 1 53
EVEN eeieer et certa e nans cereeeaean ceesa. 55
SIMULATE Ce et e st et eaesean PN ceeess 55
MODLOC i iiiittenvttereseeoasoenesssocnonesatonneas 56
ASSIGN it iiietenenseoestvesseaaasscossonsosnananns " 56
TAS (Temporary Assignment)cceouveienecessae 57
EQUALScvvenee cr et e enteeeeanas ceeeeaseenees BT
RESERVE ces s e ce e Cret e et e . 58
MASKGRP f et s s e e et sesnena Cer et 59
3 Cheiereen 61
Section X Constants Crie et e Ch e ecee e et Cereie e 63
Data Constants «...eeeteesiseeesecssasesssassanansas 63
ALF (Alphanumeric Constant)vc0veeevesene 63
OCT (Octal Constant) ...coeevueiannn Cerreas cere.. b4
DEC (Fixed Decimal Constant)cceieeencones 64
FXBIN (Decimal to Fixed Binary Translation) 65
FLDEC (Floating-Point Decimal Constant) 65
FLBIN (Floating-Point Binary Constant)cu.... 66
EBC (Extended Binary Constant) teertececsees 66
Control Constants «veveees. e e Ceteeiee et ane s 67
SPEC (Special Address Constant) N . 67
CAC (Complete Address Constant) «....covuveeenens 69
MASKBASE (Mask Base Address Constant) 69
CONTROL (Program Control Constant) 71

M (Mixed Constant) «.cieeeeeeeeenns et eeecaaan 72
TAC (Tape Address Constant) ...ceveveenvoocecens 73
LINK (Linkage Constant) «e.oeveeietnnncaronconas 73
SEGNAME (Segment Name Constant) 73

SUBCALL (Subroutine Call Constant) «...coeoueuunn 74

TABLE OF CONTENTS (cont)

Page

Section X Maskingcc0iinieannn e ettt e e 75
Designated Masks ettt i et 75

Generated Masks e e oo T6

Mask GroUPS ivveeurnnennseerooranooecsoasnns e 76

Referencing Masksiiiiiiiiiiiiiiinienennnenennns 77

Subroutine and Macrocoding Masksc.cciiiiinen 79

Mask POOLS .. viiienrnntosiaesnneiassoeacsossnannnnns 79

Section XI ARGUS Updating Functionieeveeerivriieercaeroesocanen 81
ARGUS e e eeietre st et et 81

Program Directorscciciiiiiiiieicerraoteananes 81

U, ELIMPROG ettt e 82

U, REASSEMBiitittrerranneneenns e 82

U,CORRECT .i.iiiiiitteettnenninnessonnnnncsons 82

U NEWVERS ...ttt itititnnnneessoionnnnnnens 84

U, NEWPROG PN e 84

Programmer Macro Routine Markers 84

MACRODEF .. .titetiiinienneeeoraneseraonnnnnns 84

FINIS ..t iiitiiiiiineienesenenanns ettt 85

Segment Directorseeiieeeieeronreannseanenannes 85

ELIMSEG .. ittt etinnteienissrsesnasnsassannnas 85

SEGMENT ...ttt iiinreineenaetsanssanans 85

PROGRAM cessave e ettt 86

Test Data Directors et reeeree e . 87

TESTDAT A it i ittt ittttesasecannnans 87

ELIMDAT A ittt ittt ennneannns 87

Test Data Detail Cards ...ttt eiinnnnnennnnas 87

Debugging (Derail) Pseudo Instructionscvovuveen 88

ELIMDERL ettt e e . 88

Main Coding ... iiiiiieiie e nneeanesensnnnnenes 88

DELETE ...t ttitttiiitniettinnnneerensnnnnnns 89

ENDARGUS 1.t iiiiitininneeeenosnnoeeeessnnnnnns 89

Ordering the ARGUS Input Deckovviviiiinenn s 89

Equipment Requirements for the Updating Run 91

Section XII Output from ARGUS Assembly Operationccovvven.. NRE
ARGUS Listing ...vv0uve. ettt et 93

ANAlYZET i vttr ittt st 94

Programming Errors Detectedv..c.0uuue. 94

Section XIII Library Routines ettt chestectaans . 103
Macro Routinesiieetiniirennnnronorosnsonnenans 103

Programmer-Defined Macro Routines 105

Subroutines ittt ittt ittt e 105

Appendix A Writing Library Routines and the Use of LAMP 107
Writing Macro Routines i, 107

Writing Subroutinesciiiiiiiiiniirtnrenanaanns 110

Appendix A (cont)

Appendix B

Appendix C
Appendix D

Appendix E

TABLE OF CONTENTS (cont)

Page

Type 1 Calling Sequence e e 116
Type 2 Calling Sequence e e .. 118
Special Calling Sequencesccoevuemueeeeennns 121
LAMP (Library Additions and Mamtenance Program) 124
LAMP e e e 124
ENDLAMP ... it e ecaveseseans e 124

Macro Routine Processing e et . 124
MACRODEF et e e 124

FINIS ittt it iiiiienen e e 125
ELIMMAC et e e ... 125
Subroutine Processing o0, Ceee e 125
NEWSUB e e ... 125
ELIMSUB e O 1)

Output from LAMP i iiiiiiiieiinnnns et 126
Symbolic Program Tape Layout e .
Tape Label Record e e ieeereeseeess 129
Loader et et 129
SystemsProgramFﬂe et creeeena.. 129
Symbolic Program File et ebree et 130
Assembly Equipment Configuration Code e 133
Tape, File, and Record Identification e P . 135
Tape Label Recordvuieierneninnnnenns e 135
File and Program Identification Records 136
Segment Identification Recordsccceivvuun.nnn 137
End-of-Information Records N e 137
Banner Words e e e e 137
SUMMAETY + vttt itiiinrennereaneaseannens Cerertean e 138
Honeywell 800 Machine Instructions Ceieeaanaa Cee e 139
General Instructions et ceeee.. 139
Shift Instructions AU -3 |
Simulator Instruction e I ¥4
Peripheral Instructions e cee. 142
Extended Instructions ittt 143
Scientific Instructionsc.0iiieiinann. e 144

LIST OF ILLUSTRATIONS

Page
Figure 1. Honeywell 800 Automatic Programming Systemvvvtevecescases 2
Figure 2. Honeywell 800 Word FOrmatssoeeeescscosscssssossscsoasossas 8
Figure 3. The ARGUS Coding FOrm «..iceeeececnncecsocanns cestensae 14
Figure 4. The ARGUS Input Card ...ceetieeeesosscscesovoscssnasssscsasnns 15
Figure 5. Special Register Names, Subaddresses, and Mnemonic Addresses .. 19
Figure 6. Summary of AAdresses ...eeesessesscsrosocnssssssssssassssssssos 22
Figure 7. Example of Program Relocation ...ieecessescsssssssscssossnsses 35
Figure 8. ARGUS Mnemonic Operation Codes for Honeywell 800 Machine
Instructions cecveeseseccessescsscccsossaccsssncssanca eseresasus 39
Figure 9. Designation and Referencing of Masks ..cceeecsreccssseocccnnssns 78
Figure 10. ARGUS Listing - General FOrmat c..ceeeesccccesascscsacoscsossass 95
Figure 11. ARGUS Listing = Data Constants ..cecsseeeescssssosccasasasssssas 96
Figure 12. ARGUS Listing - Equals and Reserve Instructions and Remarks
Cards v eivsceessioscerteaseosacsessssescaasasosassaseanosnoss 97
Figure 13. ARGUS Listing - Analyzer Lines «seeeessesaccsssosasscssssossass 98
Figure 14. Sample ARGUS Listing (With Analyzer) ..eceveesacsas Ceeseesenans 99
Figure 15. Programming Errors Detected During Assemblycc0eeveeeess 100
Figure A-1. Sample Macro Routine in Generalized FOrm ..iesveceseosasscasss 144
Figure A2, Specification Sheet for Macro Routine SRCHEQU .,...c0ccnevvoensess 142
Figure A-3, Macro Instruction for Sample Routine and Resulting Specialized
CodiNgG ceeeecosncssssocsossnsosssocsasssssssanns tissesecssssssssess 114
Figure A-4. Type 1 Calling SeqUENnce ...eieeersssccasssscssssosssssnssssasse 116
Figure A-5, Type 2 Calling SEqUENCE coveeveecssseosecsssssssesssssansasnsss 118
Figure A-6. Special Calling Sequence CALLMAC +cccvererenrsesecnnnnns cevese 122
Figure A-T. Special Calling Sequence DBLSUM ..eeceeecscoassccsssacsssaness 123
Figure B-1. Over-all Layout of the Symbolic Program Tape «..eseseceasessssss 134

vi

SECTION |
INTRODUCTION

The ARGUS System

ARGUS, the Automatic Routine Generating and Updating System, is the core of the inte-

grated automatic programming system for the Honeywell 800. ARGUS is des1gned to mlﬁ-}

1m1ze programmer effor?‘]]and to maximize the efficiency of every phase of program prepara-

tlon, from the 1n1t1a1 coding through the checkout phase to actual production, Wherever pos-
sible, the burden of routine, clerical operations is lifted from the programmer and the full
power of the Honeywell 800 is brought to bear on such operations. The file-of-programs
approach, whereby batches of programs are assembled, tested, modified, and scheduled for
production, minimizes setup time by eliminating a great multiplicity of brief, repetitive com-
puter runs. The dynamic dumping technique employed by the Program Test System enables
batches of programs to be tested at full machine speed and without interruption. Diagnostic
information is obtained without manual intervention, even if a programming error forces pre-
mature termination of a particular program under test. In short, ARGUS achieves a mating
between the efficiency of program preparation and the remarkable efficiency of production

made possible by Honeywell parallel processing.

As illustrated in Figure 1, ARGUS is composed of the following principal elements:

1. An Assembly Program which translates symbolic coding and produces operat-
ing programs in machine language (binary) on magnetic tape;

2. A Library of Routines containing both subroutines and macro routines, each
thoroughly tested and capable of being incorporated into any program during
assembly by the inclusion of a single pseudo instruction;

3. A Library Additions and Maintenance Program (LAMP) for adding and delet-
. ing routines and modifying existing routines in the library;

4, A Program Test System which operates a file of unchecked programs at full
machine speed, automatically obtaining requested information at points
specified by the programmer for later analysis of program operation;

5. An Executive System which schedules checked-out programs for parallel pro-
cessing, based on their individual hardware requirements, timing, and
urgency, and then automatically loads and executes the scheduled programs.

A program to be processed on the Honeywell 800 may be prepared in ARGUS assembly
language, as described in this manual, or it may be written in the language of either the
Algebraic or FACT (Business) Compiler and automatically converted to assembly language.

In either case, the Assembly Program translates this language and produces an operating

DERAIL CARDS
TEST DATA

DIAGNOSTIC
PRINTOUT

COLLECTION
LIST

[—————n
‘ o

g ALGEBRAIC COLLECTOR 5, |COLLECTION ARGUS CARD ARGUS CARD | FacT

ARDS COMPILER . TAPE PROCESS IMAGES IMAGES COMPILER FACT CARDS

DIAGNOSTIC ARGUS ARGUS
PRINTOUT [~ "|assemBLY LIBRARY

|

A |

DIAGNOSTIC
PRINTOUT,

PROGRAM
LISTING,
ETC.

r——-

SYMBOLIC
PROGRAM
TAPE

SYMBOLIC
PRogRAM ARGUS CARDS

TAPE

9

PROGRAM
r—— —»SELECTION
PROCESS

MASTER PROGRAM
RELOCATABLE TEST TAPE
SCHEDULE
CARDS
{execuTive PROGRAM
TEST
SYSTEM
DIAGNOSTIC

INFORMATION
- AND
OPERATOR

LISTIN

PRODUCTION
RUN TAPE

DIAGNOSTIC

INFORMATION

Figure 1. Honeywell 800 Automatic Programming System

‘I NOILD3S

NOILONAOYLNI

SECTION |. INTRODUCTION

program in both symbolic and machine language on the symbolic program tape, which contains
a file of programs being checked out, together with test data for each program. This is ac~
complished as part of an updating run in which programs are added to or deleted from the
symbolic program tape, and existing programs and test data are modified on the basis of in-

formation derived from the preceding checkout run.

The updating run is normally followed by a program selection run which can prepare a
program test tape, containing programs and test data to be executed during a checkout run,
or a master relocatable tape, containing checked-out programs to be scheduled by Executive
for production o;}eration, or both. Input to this run includes the symbolic program tape, plus
an active program list which specifies the programs to be transferred to either of the output
tapes. Those programs transferred to the program test tape are accompanied by test data
and by derail instructions which specify the kinds and amounts of diagnostic information to be
generated during checkout and the program points where this information is to be generated,
The program test tape is the input to the checkout ‘ruh, during which the ARGUS Program
Test System executes each program on the tape, using the accompanying test data and gen-
erating the requested information at the specified points. The information generated is print-
edin a varie;ty of formats designed for convenient analysis by the pfbgrammer, who uses this
informétion to specify the changes in programs and test data which will be effected dutring the

next updating run.

Programs transferred to the master relocatable tape are éccompanied by relocation in-
formation which Executive uses to modify memory and peripheral equipment assignments in
order to schedule production programs for automatic parallel processing. The master re-
lo‘catable tape is the input to the Executive scheduling run, together with a proposed schedule
which specifies the programs to be scheduled, the memory and equipment requirements of
each, and any necessary production sequence among the various programs. Based on this
" information, Executive schedules groups of programs to be processed in parallel, relocates

the scheduled programs, and records them in operating form on the production run tape.

The Executive run supervisor is also stored on the production run tape, along with the
scheduled programs. This routine executes the schedule, automatically loading the produc-
tion programs, turning them on and off, and communicating with the operator as necessary.
Manual intervention during the production run is minimized, but may be used to alter the

schedule being performed or to handle any unexpected occurrences.

SECTION I, INTRODUCTION

The Assembly Program

As noted above, the Assembly Program translates coding written with mnemonic and
symbolic codes and produces operating programs in machine language. Programs written in
assembly language are independent of fixed men:iory locations and may be modified, correct-
ed, or expanded in assembly language by the computer. The ARGUS Assembly Program
offers the following automatic programming features: symbolic and relative reference, al-

location, translation, library routine insertion, sort generation, and relocation.

SYMBOLIC AND RELATIVE REFERENCE: Since programs are written without reference to
fixed memory locations, program words may be referred to by means of symbolic tags.
However, it is not necessary to tag all of the words of a program. Untagged words may be
referred to relatively, using address arithmetic to specify the desired location either:

1. Relative to the location of a tagged word; or

2. Relative to the location of the word containing the reference.

ALLOCATION: Program words are automatically allocated in the high-speed memory ac-
cording to the sequence in which they are assembled. The programmer may specify the
location of the first word in any sequence, if he so desires, Although the allocation of mem-
ory locations normally proceeds automatically, flexibility is enhanced by the provisions for

programmer control of this process.

TRANSLATION: ARGUS instructions are written using mnemonic operation codes, symbolic
or relative addresses, and decimal numbers. The Assembly Program translates these into
the binary language of the Honeywell 800, Constants written in alphabetic, decimal, octal, or
mixed form are translated into binary-coded alphanumeric, fixed-point or floating-point

binary-coded decimal, or fixed-point or floating-point binary form.

LIBRARY ROUTINE INSERTION: A library of useful, thoroughly tested subroutines and
macro routines is readily available to each Honeywell 800 installation, so that frequently used
coding is preserved for easy insertion into new programs. Each subroutine or macro routine
in the library is represented by a pseudo instruction which specifies the desired routine plus
all parameters required for its execution. These pseudo instructions may be included in a
program as easily as machine instructions. When they are processed, ARGUS obtains the

corresponding coding from the library and inserts it into the program.

SORT GENERATION: Included in the Library of Routines is a group of sort generators which

can produce routines tailored to specific sorting applications. The programmer includes in

SECTION I, INTRODUCTION

his program a pseudo instruction which specifies the type of sort desired and the equipment
available for its execution. The description of the format of the data to be sorted is included
with the data itself. ARGUS sort routines are composed of two phases: a presort phase which
produces ordered strings of data and a merge sort phase which combines these ordered
strings to form a single over-all sequence. A new and unique method of merging is used

which takes optimum advantage of any available number of magnetic tape units.

RELOCATION: ARGUS retains a record of the structure of each program word so that any
assembled program may be automatically relocated to operate in another portion of the high-
speed memory or to utilize other special registers, magnetic tape units, or input/output
terminal units. This feature of ARGUS greatly facilitates the use of the parallel processing

ability of the Honeywell 800,

SECTION 11
THE HONEYWELL 800

Word Structure

Information is handled by the Honeywell 800 in fixed-length words comprising 54 binary
digits, or bits. Six of these bits are reserved for the automatic checking circuits and may be
disregarded by the programmer. The 48 information bits of each word may be grouped to

form several basic types of words as shown in Figure 2.

In an instruction, the information bits are divided into four 12-bit groups which repre-
sent the command code and the A, B, and C addresses, respectively. The address groups
normally designate the locations of operands, but in certain instructions they contain other
.special information. The command code group contains, in addition to the operation code,
other special information which depends upon the type of instruction. The complement of

Honeywell 800 machine instructions is presented in Appendix E.

In a fixed-point constant, the 48 information bits may represent eight alphanumeric
characters, 41 signed or 12 unsigned decimal or hexadecimal digits, 15 signed or 16 unsigned
octal digits, 44 signed or 48 unsigned binary digits, or any combination of characters, digits,
and bits not exceeding 48 bits. Up to four individually signed fixed~point constants, having an
aggregate of not over 44 bits, may be stored in a single word. A floating-point constant may
consist of a seven-bit exponent and a 40-bit mantissa, with sign, or a seven-bit exponent and
a 10-decimal-digit mantissa, with sign. Section IX describes the specification of data con-

stants in assembly language.

Information Storage

The Honeywell 800 main (or high-speed) memory is composed of banks, each capable of
storing 2048 machine words, These memory banks are available in pairs called modules,
and a system may include from one to four such modules (4096, 8492, 12,288, or 16, 384
words), Every main memory location is designated by a unique address, consisting of a bank

indicator from 0 to 7 and a subaddress from 0000 to 2047,

In addition, the Honeywell 800 contains a special control memory which selects instruc-
tions and operand addresses. The control memory is fixed in size and consists of eight

identical groups of 32 special registers each. A special register is designated by a unique

SECTION i, THE HONEYWELL 800

address, consisting of a group indicator from 0 to 7 and a subaddress from 00 to 31, Each
special register has the capacity to store a complete main memory address (sign, bank in-

dicator, and subaddress).

COMMAND CODE ADDRESS A ADDRESS B ADDRESS C
INSTRUCTION (12 BITS) (12 BITS) (12 BITS) (12 BITS) GROUPS
ALPHANUMERIC R 0 8 I N S 0 N CHARACTERS
| 2 3 4 5 6 7 8
CHARACTERS
COMPRESSED | 7 a
ALPHANUMERIC ¢ w E B B AND DIGITS
DECIMAL
(SIGNED OR + I 2 3 4 5 6 7 8 9 0 [DIGITS
UNSIGNED) | 2 3 4 5 6 7 8 9 10 " 12
unsienepocta, | o | 1 |23l a5 |e| 7] 7| els5]|a|l3]2|1]o0] oers
] 2| 3| a s| el 7 8] 9| o ul 2] 131 14] s} e
SIGNED OCTAL + [*l2]3]a|s|e|l7|7|6|ls5|a|3|2]|1i]|o] owrs
i}] 2 3 4 5 [7 8 9 10| 1 12 13 14 15 16
FIXED-POINT
BINARY (SIGNED + (44 BINARY DIGITS) BITS
OR UNSIGNED) L als a8
EXPONENT
FLOATING-POINT
(BINARY OR + BI‘JARY MANTISSA (40 BINARY DIGITS) BITS
DECIMAL) d20161TS)8l9 ‘ a8

% 4-BIT SIGN LEAVES TWO BITS AVAILABLE IN THIS DIGIT POSITION.
SMALL NUMBERS DESIGNATE CHARACTER, DIGIT,OR BIT POSITIONS,

Figure 2, Honeywell 800 Word Formats

Sequence Control

The operational control of an individual program is delegated to a specific special re-
gister group. Each group includes a pair of functionally identical sequencing counters,
called the sequence counter (SC)and the cosequence counter (CSC). Whenever one of these
counters selects an instruction for execution, the contents of the counter are automatically
incremented by 4. Most machine instructions have the ability to designate one of these
counters as the source of the next instruction. Those instructions which do not include this
facility are followed by an instruction selected by the same counter. Instructions which re-
sult in a programmed change of sequence always alter the contents of the counter designated

as the source of the next instruction.

SECTION 1. THE HONEYWELL 800

Also included in each special register group is a pair of history registers, called the
sequence history register (SH) and the cosequence history register (CSH), Whenever the con-
tents of a sequencing counter are altered, other than by normal incrementing or direct ad-
dressing, the corresponding history register stores the incremented contents of the counter
which produced the sequence change. Thus it is. possible to depart from a programming se-
quence and execute several instructions under control of the alternate counter before return-
ing to the original sequence, or to program a sequence change and automatically retain a

record of the next step that would have been performed had the change not occurred.

Command Codes

The command code group in a Honeywell 800 machine instruction contains an operation
code which specifies the instruction to be performed. Depending upon the type of instruction
specified, this group may also contain such information as a peripheral code, a partial mask
address, memory designator bits which reiate each of the three address groups to either
main or control memory, and a bisequence bit which indicates the source of the following

instruction.

Machine instructions are of five types: general, shift, peripheral, simulator, and
scientific, as distinguished by the various command code formats. The details of these for-
mats are described in Section VII. General instructions include arithmetic operations, in-
formation transfers, decisions, and other familiar data processing functions. Many of these
instructions can manipulate variable-length fields by the use of masks. These are called
field instructions. Shift instructions are always performed with masked operands. Peri-
pheral instructions perform all operations which involve magnetic tape units and terminal
input/output equipment, such as reading, writing, and rewinding. Simulator instructions are
defined by the programmer to represent, by means of a single instruction, an entire body of
coding. Scientific instructions manipulate data in floating-point form, which greatly im-

proves the efficiency of scientific computations,

Addresses

Every memory location and every special register in the Honeywell 800 has a unique
numerical designation or address. An instruction may refer to any memory location to obtain
an operand or to store a result., Unmasked general instructions and all shift instructions
may refer to special registers, using memory designator bits to denote this type of address-

ing. Masked general instructions do not have this ability.

SECTION Il. THE HONEYWELL 800

A direct address is an explicit statement of the address of the desired operand. An in-
dexed address is written by specifying an index register and a quantity which augments the
contents of this register to form the desired address. (Eight index registers are included in
each special register group.) An indirect address is written by specifying a special register
in which the desired address is stored, plus an increment which permanently alters the spe-
cial register contents after use. Six types of addresses may be written in the address groups
of instructions. A memory location or a special register may be addressed directly. The
augmented contents of an index register may be interpreted as a memory location address or
as a special register address. A memory location may be addressed indirectly by referring
to a special register where the desired address is stored. Finally, the special register used
to obtain an indirect address may be specified by indexed addressing. The ARGUS formats of

these addressing options are presented in Section V.,

The specifications of certain machine instructions direct that one or more address
groups contain information other than references to memory locations or special registers.
Such information may include, for example, the number of words to be transferred, the num-

ber of positions to shift an operand, or the partial designation of a mask location.

Masks

Reference to a word called a mask in an instruction permits the designation of partial
words as operands and as a result. The mask designates the character, digit, or bit posi-
tions within the operand words on which the stated operation is to be performed. With certain
of the general instructions (field instructions) the use of a mask is optional, but with shift in-

structions a mask is always required.

When an arithmetic operation is masked, the mask is applied to both operands and to
the result. Shift masks are applied after shifting and before delivery to the result location.
All masking in the Honeywell 800 leaves the unmasked portions of the result location un-
changed (protected masking) except for the extract instruction (EX) and the two shift and
extract instructions (SWE and SPE), which clear the unmasked portions of the result loca-

tion to binary zeros (unprotected masking).

Masks are stored in the high-speed memory in groups of consecutive locations., An
instruction which uses a mask references the desired mask relative to an address known as
the base of the mask group. Each special register group includes a mask index register
(MXR) which stores two mask group bases, according to a specified format: the base of a

group of field masks and the base of a group of shift masks (see Section X). The relative

10

SECTION Il. THE HONEYWELL 800

position of the desired mask within the group is specified in the instruction using the mask.
The base of a field mask group must be a muitiple of 32 and the group includes up to 32 masks.
A field instruction can specify in its command code field any of the masks in this group. The
base of a shift mask group must be a multiple of 64 and the group includes up to 64 masks. A
shift instruction can specify in the B address field any of the masks in this group. Therefore,
each setting of the mask index register makes 96 memory locations available to the program-
mer for the storage of masks. To conserve memory space by making certain masks available
for use with either type of instruction, the two mask groups can be made to overlap. With
such an MXR setting, 64 memory locations are made available for the storage of masks, of

which 32 can be used with field instructions and all 64 with shift instructions.

The programmer has the option of specifying the address of the desired mask in mem-
ory, or including information in the command code field which enables ARGUS to generate the
desired mask (with the exception of the substitute (SS) and extract (EX) instructions, which

always require a programmer-specified mask),

SECTION 111
THE ARGUS CODING FORM

Programs to be assembled by ARGUS are written using the coding form shown in Figure
3. The coding on these forms is then punched on standard 80-column cards according to the
fixed-field format shown in Figure 4. An instruction word occupies an entire line on the cod-
ing sheet and an entire punched card. Constants may be combined, however, to allow punch-
ing of more than one on a single card. When an entire program deck, complete with all neces-
sary control instructions, is assembled by ARGUS, the program is produced in operating
form on magnetic tape. In addition, ARGUS produces a listing of the program in printed form.

Assembly outputs are described in Section XII,
Figure 4 shows that the ARGUS input card contains seven fixed fields. The function of
each of these fields is described briefly in the following paragraphs. The format of each in-

put word type is illustrated in detail in the following sections.

Location Field (Columns 1-10)

The location field may contain tags symbolizing memory locations, special registers,
or masks. Any word which is to be referred to symbolically in an address field of some other
word, or which is to be loaded into a special register, or which is to be used as a mask, must
include a tag in this field. Tags may be punched anywhere in the location field; spaces are

ignored. The types and formats of tags are described in Section IV,

Command Code (Columns 11-23)

The command code field is divided into two subfields. Columns 14 through 22 contain
the command code group itself, while column 23 designates the source of the next instruction.
If column 23 contains an "'S" or if this column is blank, the next instruction will be taken
from the sequence counter in the assigned special register group. If column 23 contains a
"C'", the next instruction will be taken from the cosequence counter in this group. This col-

umn is not used in a peripheral or a simulator instruction or in the instruction proceed (PR).

Columns 141 through 22 may contain the mnemonic operation code of a machine instruc-
tion, followed by any other information required by that instruction, as described in Section
VII. In the case of a constant or set of constants, the command code field contains the constant

code and any other required information, as described in Section IX. This field may also be

13

14!

Honeywell v A R G U CODING

@S&m«w'oaﬁ,ﬂwi«% FORM
PROBLEM PROGRAMMER DATE PAGE CF
. LOCATION ol;; COMMAND CODE |, 8 ADDRESS C ADDRESS REMARKS

LINE NUMBER 73174 80
T

L B B e B B B B T T

1 1 1

LI

T T 1 T T T 1

i
|
1
|
I
I
|

}
|
1
|
|
|
I
|
|
!
|
I
|
|
I
|
|
|
|
i
|
1
i
|
|
|
|
|
I
|
|
|

The ARGUS Coding Form

‘11 NOILD3S

WIO4 ONIAOD SNOYV IHIL

SECTION lil. THE ARGUS CODING FORM

used to specify an ARGUS control instruction or the pseudo instruction of a library routine.

The formats of these words are described in Sections VIII and XIII, respectively.

/TOCATION COMMAND CODE [/ A ADDRESS B ADDRESS C ADDRESS REMARKS

o\

. LINE NO.
00/0000000000000/20000000000050/60000000000000(00000000000000000001000(0000G00

10]11 12 13 1415 18 17 18 18 20 21 22| 24 25 26 27 28 29 30 31 32 33 34 2% 35 37]38 39 40 41 42 43 44 45 45 47 48 49 50 5152 53 54 55 56 57 58 50 60 61 62 63 64 65(65 67 68 69 70[71 72 7374 75 76 77 78 79 80

[
IR ARERRERRERE 1Illllllllllll]lllllllilllllIIIIIIIIlllllllIlIlP!llllll!l

-

M

§222%2222222222w
E 333%3333333333
E444ﬂ4444444444:
%555%55555555555
I666566586666666666866665665656656866666656666666666BE6668666666666656q6666656665

7717777777777777777777177777?777777777

GUS SYST

888888888880888888888888888888888588188888888888888338338888838888888N8888888888

|
9999999999/999999999899/9/99999998999999999999999
BUBBIBBOAN QU

999(9999599919999898
1234567800 RBUEBIBB222RNEBI2003P 63 64 65(66 67 68 69 70171 7273174 75 76 77 78 19 80
ABS 10659

Figure 4. The ARGUS Input Card

Address Fields (Columns 24-37, Columns 38-51, Columns 52-65)

These three address fields correspond to the A, B, and C address groups of a Honeywell
800 machine instruction. In a machine instruction, they may designate an operand location or
a result location, using any of the six types of addresses permitted by the instruction. These
six address types are described in Section V. In certain instructions, the address fields may
contain instruction parameters or other information. The three address fields are regarded
as a single 42-column field for the purpose of punching constant words. Their format in a
library routine pseudo instruction is determined by the programmer who designs the library

routine.

Line Number (Columns 66-73)

Line numbers specify the sequence of words within a program. When a new program is
assembled, the cards may or may not contain line numbers. If the cards do not contain line
numbers, they must be read in correct sequence, as ARGUS assigns a line number to each
card based on this sequence. If the cards contain line numbers, ARGUS sorts the cards into

proper sequence.

Line numbers are printed as part of the complete program listing produced by ARGUS.
They are used by the programmer in preparing additions, deletions, and corrections to
assembled programs. Five-digit line numbers are originally assigned the cards of a new pro-

gram. If assigned by the programmer, they are punched in columns 66 through 70. To

SECTION IIl. THE ARGUS CODING FORM

correct or replace one of the original cards of a program, the assigned five-digit number is
punched in columns 66 through 70 of the modification card. Columns 74 through 73 are used
to insert additional cards in the correct sequence. For example, if three cards are to be in-
serted in a program following card 04357 (according to the program listing), line numbers

may be punched on the inserted cards as follows:

Column 66 67 68 69 T T4 12 13
Original Card 0 1 3 5 7 0 0 0
1st Insert 0 1 3 5 7 1 0 0
2nd Insert 0 1 3 5 7 2 0 0
3rd Insert 0 1 3 5 7 3 0 0

0 1 3 5 8 0 0 0

Original Card

Again at some later time, the programmer may insert additional cards following card

04357200 by numbering them 04357240, 04357220, etc.

Identification (Columns 74-80)

These columns may contain a punch combination used to identify the cards of a related
set of coding, such as a program segment. If such codes are used as segment markers, for

example, ARGUS can identify the segment to which each program card pertains.

Remarks {Columns 66-80)

If either the line number or identification field (or both) is not so used by the program-
mer, it may contain remarks., Such information is not assembled but is reproduced for the

programmer's convenience as part of the program listing.

A card containing only remarks may be included at any point in a program. Sucha card

is indicated by an "R" or a ""P" followed by a comma in columns 1 and 2 of the location field.

(R causes the remarks to be printed on the next line; P causes the remarks to be printed at the

top of the next page.) Remarks may be punched in all of the other columns (3-80) of a remarks

card.

16

SECTION 1V
TAGS

A tag punched in the location field of a program word allows the programmer to
refer to that word elsewhere in his program without being aware of its absolute location
in memory., A word may also be tagged to denote its use as a mask or to direct its
storage in a special register. Three groups of words must include a tag punched in the
location field:

1. Certain of the words which are directly referenced in the address fields
of other program words;

2. All words which are to be placed in special registers at loading time; and
3. All masks.

Tags may be punched anywhere in the location field; spaces are ignored.

Symbolic Tags

A symbolic tag is a group of up to eight alphanumeric characters, of which at least
one must be non-numeric. However, there are certain characters which have significance

to ARGUS and must not be included in symbolic tags.

Key Punch Symbol Machine Code
12 + (plus) 010000
11 - (minus) 100000
0,8,3 , (comma) 111011
12,8,3 . (period) 011011
11, 8,4 * (asterisk) 101100
0,1 / (slash) 110001

In addition, the following characters are not permitted within symbols even though they

have no special significance.

Key Punch Symbol Machine Code
8,4 - {hyphen) 001100
11, 8,5 " (quotes) 101101
12,8, 2 ; {semicolon) 011010
8,5 (not assigned) 110000
0,8,7 (not assigned) 111111

Space codes (001101) within symbolic tags are ignored by assembly.

Tags are frequently chosen as mnemonic representations of the content or function

of the tagged words, e.g., GROSSPAY, INPUTI1, or DIVIDEND. Such a tag may directly

SECTION IV, TAGS

represent any location in the high-speed memory. Every symbolic tag which appears in an

address field within a program must appear in the location field within that program.

It is not necessary to tag every word of a program which is referenced by some
other word. Address arithmetic (described in Section V) allows direct reference to an
untagged word by specifying its location relative to a tagged word, e.g., GROSSPAY + 2,
The programmer decides which words of his program to tag and which to reference by
address arithmetic. Note that for purposes of assembly, address arithmetic is permitted

only in an address field and never in the location field. 1

Normally every symbolic tag appearing in the location field is assigned an absolute
value by ARGUS. The program listing includes the assignment of each tag. These assign-
ments are used if the program is loaded independently, as is usually the case during
program testing, However, in production the program is generally loaded under the
direction of Executive and the tag assignments are thereby modified to make the program

compatible with any other programs being processed in parallel.

In addition to their use in referencing program words directly, symbolic tags may
be used to represent other values, such as complete addresses in indexed or indirect
form, or program parameters. The programmer assigns the values of such tags using
special ARGUS control instructions provided for this purpose. These instructions, called

EQUALS, ASSIGN, and TAS (temporary assign), are described in Section VIII,

Special Register Tags

Each of the 32 special registers in a group has both an absolute address and a
mnemonic designation. The names and the absolute and mnemonic addresses of all
special registers in a group are listed in Figure 5. For example, this figure shows
that the mask index register in any group may be designated absolutely as 07 or

mnemonically as MXR.

A special register tag is required in the location field of every word to be loaded
directly into a special register, Such a tag consists of a "Z'" followed by a comma and
the absolute or mnemonic address of the desired register. For example, either of the

following special register tags

1
PTS derail instructions are an exception to this rule, as described in the Program

Test System Manual, Section III, "Expressing Memory Addresses''.

18

SECTION IV. TAGS

Z,11
Z,X3

might be used to load the tagged word into index register 3. For a discussion of special

register tags used in address fields, see Section V.

Subaddress Mnemonic Address Name
00 AUl AU-CU Counter No. 1
01 AU2 AU-CU Counter No. 2
02 SC Sequence Counter
03 CsC Cosequence Counter
04 SH Sequence History Register
05 CSH Cosequence History Register
06 UTR Unprogrammed Transfer Register
07 MXR Mask Index Register
08-15 X0-X7 Index Registers
16-23 RO-R7 General Purpose Registers
24-31 S0-S7%* General Purpose Registers
28 RAC Read Address Counter
29 DRAC Distributed Read Address Counter
30 WAC Write Address Counter
31 DWAC Distributed Write Address Counter
*In certain special register groups, S4-S7 are replaced by RAC, DRAC, WAC, and
DWAC.

Figure 5. Special Register Names, Subaddresses, and Mnemonic Addresses

Mask Tags

Every mask specified by the programmer must be designated in the location field
by a unique symbolic tag. These tags, like all symbolic tags used with ARGUS, can
have up to eight alphanumeric characters, of which at least one must be non-numeric.
In addition, each such tag is preceded by a character which indicates that the corres-
ponding mask is used with field instructions (F), shift instructions (S), or both (B).
Thus, a complete mask tag consists of a mask indicator followed by a comma and a
symbolic tag.

F, M3
S, RIGHT?2
B, SIGN

Link Tags

Any word which is to be the starting location of a segment (except the starting
location of the first segment) should be so marked by tagging the word with a symbolic

tag preceded by the letter '"L' and a comma.

SECTION IV, TAGS

Out-of-Sequence Words

It is sometimes convenient, particularly when writing macro routines, to have certain
words placed out of the main sequence of coding. ARGUS recognizes any word marked by
the letter '"X'" and a comma in the location field as an out-of-sequence word. Such words
are placed at the end of the subsegment in which they appear. The 'X, ' may or may not

be followed by a symbolic tag.

ARGUS assigns out-of-sequence words by maintaining two location counters called
CLC (current location counter) and XLC (out-of-sequence location counter)., Each counter
is incremented after a word of the corresponding type is processed. A word without "X, "
in the location field is assigned to the location contained in the CLC., A word with "X, "

in the location field is assigned to the location contained in the XLC,

Definition of Taﬁ

When a tag appears in the location field of a line of coding, it becomes defined.
This results in the assignment of the tag to a memory location, an integer, or a complex
address (i.e., an indexed address or a special register address). A tag may have one
absolute assignment (memory location or integer) or one complex assignment or one of each.
However, when a tag has conflicting assignments (e.g., two memory location assignments),
it becomes doubly defined and is noted by ARGUS as an error., In general, such a conflict
of assignment can arise only within a single segment., In other words, a tag may have
completely different assignments in the various segments of a program. The only tags
which must maintain their assignments throughout the entire program are link tags and

tags which appear within the common portion of any segment (see Section VI).

When a tag which has both an absolute assignment and a complex assignment appears
in an address field, the complex assignment is normally used. However, there are
several exceptions to this rule, which are noted in connection with machine instructions,

control instructions, and control constants,

20

SECTION V
ADDRESSES

In Section II, it was stated that every Honeywell 800 main memory location has a
unique numerical designation, or address, consisting of a bank number from 0 to 7
and a subaddress from 0000 to 2047. It was stated further that each control memory
location, or special register, is uniquely designated by a group number from 0 to 7

and a subaddress from 00 to 31.

Most instructions can refer to any memory location or special register to obtain
an operand or to store a result, Three methods of addressing main and control memory
are provided. A direct address is a specific reference to the desired location or register,
An indexed address designates a special register called an index register, plus a quantity
which augments the contents of the index register to form the desired address. This
process leaves the original contents of the index register unaltered. An indirect address
designates a special register in which the desired address is stored, plus an increment
which permanently modifies the stored address after use. The internal configurations of

the various types of addresses are presented in the Programmers' Reference Manual.

This section deals with their representation in ARGUS language, as summarized in

Figure 6.

Direct Memory Location Address

The programmer may directly reference a memory location by writing the symbolic
tag assigned to that location in an address field. ARGUS replaces this tag with the absolute
address assigned. Alternatively, the programmer may specify a direct memory location
address by means of address arithmetic (see below). Address arithmetic permits address-
ing relative to a tagged location or relative to one of the location counters (CILC and XLC)

mentioned in Section IV.

Direct addressing may be used in an instruction to reference any location in the
memory bank in which the instruction is stored. An attempt to address any location
outside of this bank results in an ARGUS error indication during assembly. Therefore,

the use of direct addressing is limited by the rules which govern relocation (see Section VI).

21

44

Type

Format

Interpretation

Direct Memory Location

(1) Symbolic Tag
(2) Symbolic Tag,

+ Address Modifier
(3) C, £ Address Modifier
(4) X, + Address Modifier

Direct reference to a high-speed memory
location in assigned bank (1) symbolically,

(2) relative to a tagged location, (3) relative
to the contents of the current location counter,
or (4) relative to the contents of the out-of-
sequence location counter.

Direct Special Register

(1) 2, 15, increment
(2) Z,R2, increment

Direct reference to a related special register
(1) absolutely, or (2) mnemonically.

Indexed Memory Location

(1) IR, numeric augmenter
(2) IR, symbolic augmenter

Reference to a high-speed memory location
in any bank formed by combining contents
of a related index register with (1) numeric
augmenter, or (2) symbolic augmenter
(with or without modifier).

Indexed Special Register

(1) IR, Z, 15, increment
(2) IR, Z, R2, increment

Reference to a special register in any group
formed by combining the contents of a related
index register with (1) an absolute special
register subaddress, or (2) a mnemonic
special register designator.

Indirect Memory Location

(1) N, 15, increment
(2) N, R2, increment

Reference to a related special register ad-
dressed (1) absolutely, or (2) mnemonically
to obtain stored absolute address of a mem-
ory location in any bank.

Indexed Indirect Memory Location

(1) IR, N, 15, increment
(2) IR, N, R2, increment

Reference to a special register in any group
formed by combining the contents of a re-
lated index register with (1) an absolute
special register subaddress, or (2) a mne-
monic special register designator to obtain
stored absolute address of a memory loca-
tion in any bank.

Figure 6. Summary of Addresses

‘A NOILD3S

sassIyaav

SECTION V., ADDRESSES

ADDRESS ARITHMETIC: An address modifier, consisting of a sign and a number from 0
to 2047, may be appended to a symbolic tag to designate a direct memory location address
relative to the location specified by the tag. Such an address modifier may be appended to
a "C" and a comma (C,) to designate a direct memory location address relative to the
contents of the current location counter, or to an '"X'" and a comma to designate a direct

memory location address relative to the contents of the out-of-sequence location counter.

Thus the address

ASSETS +37
is a direct reference to the memory location 37 beyond that represented by the symbolic
tag ASSETS. The address

C,-3
refers to the memory location three before the location whose address is stored in the
current location counter. Likewise, the address

X, +109
refers to the memory location 109 beyond the location whose address is stored in the
out-of-sequence location counter. The address modifier may be a series of numbers
separated by the signs + and -, provided that the absolute value of the entire modifier
does not exceed 2047. Caution is required in the use of address arithmetic, since the

address modifiers are not corrected if coding is inserted or deleted later.

Three types of direct memory location addresses are illustrated in the instruction

ARGUS =

PROBLEM PROGRAMMER DATE PAGE oF ____
LOCATION COMMAND CODE / A ADDRESS 8 ADDRESS C ADDRESS REMARKS
t 1ot 22 {/Cl 24 37(38 5182 6586 uNe numeer T3[74 80
| = . = I e e e e e AR I B i aman S L t]
DA Cy 12 INTEREST AMTPAID-10 | :
e -
———————

The function of this instruction is to add decimally the contents of the memory location
two after the location of the instruction itself to the contents of the memory location
designated by the tag INTEREST, and to store the result in the location 10 before that
tagged AMTPAID, (Since this instruction is not marked by an "X, " in the location field,

the CLC contains the address of this instruction while the instruction is being processed.)
The number of symbolic tags required to write a program can be greatly reduced

by the use of address arithmetic. The programmer decides how many and which words

in a program to tag and which to reference by address arithmetic.

23

24

SECTION V. ADDRESSES

Direct Special Register Address

The direct address of a special register is indicated by a '"Z", a special register
designation, and an unsigned increment from 0 to 31, all separated by commas. The
special register designation may be either the absolute subaddress (from 0 to 31) or the
mnemonic address (e.g., X3 or MXR) of the desired register, as shown in Figure 5, page 19,
If a special register is addressed as an operand location, the numeric increment is added,
under control of the special register sign, to the special register contents, after those
contents have been used. If a special register is addressed as a result location, the
increment is ignored. To address a special register as an operand location without

changing its contents, the programmer may omit the increment or may write an increment

of 0.

Any directly addressed special register is defined as being in the 32-register group
controlling the program. For example,

Z,X2,5
is the direct address of the second index register in the controlling special register group.
If it is used to specify an operand location, this address directs that the contents of X2

are to be incremented by 5 after use.

Indexed Memory Location Address

A special register group includes eight index registers, each capable of storing a
sign, a bank indicator, and a memory location subaddress. An indexed memory location
address designates an index register and a quantity which augments its contents to form
a complete memory location address. The index register designator and the augmenter
are separated by a comma. The index register designator is a number from 0 to 7 which
specifies one of the eight index registers in the controlling special register group. Use
of the letter "X'" before the designator is optional. The augmenter may be a number from
0 to 255 (254 for index register 7) or it may be a symbolic tag, with or without a modifier.
If symbolic, it must be assigned by an EQUALS instruction (see Section VIII) to a number
which is a valid augmenter. The computer forms a memory location address by adding
the augmenter to the address stored in the index register, under control of the stored sign.

The unaugmented address is retained in the index register,

For example, the address
3,15 (or X3, 15)
specifies that the contents of index register 3 in the controlling group are augmented by

15 to form an absolute memory location address, The address

SECTION V. ADDRESSES

7, DIVIDEND +2
specifies that the contents of index register 7 are augmented by 2 plus the quantity equated
to the tag DIVIDEND to form the desired address. If the sum of the augmenter plus the
stored subaddress exceeds 2047, a carry occurs into the bank indicator and the resulting

address will be in a different bank from the stored address.

Indexed addressing permits the programmer to address locations in any main mem-
ory bank, depending upon the value of the bank indicator stored in the index register, This
type of addressing may be used in processing multi-word items or in referring to a stored
table. The address of the first word in the item or table is stored in an index register
and all references to the item or table are made using the index register designator with
the appropriate augmenter. To assure positive augmentation, the programmer must take

care that the index register contains a positive sign.

Indexed Special Register Address

An indexed special register address may be used to refer to a special register in
any of the eight control memory groups. Such an address takes the form:

Index Register Designator, Z, Special Register Designator, Increment
The index register designator is a number from 0 to 7 (or X0 to X7) which specifies one of
the eight index registers in the controlling group. The special register designator may be
an absolute subaddress (0-31) or it may be mnemonic (see Figure 5). The increment may be
a number from 0 to 3 or it may be omitted. The manner in which these numbers are used
to augment the index register contents and form a special register address is illustrated
in terms of bit structure. ARGUS converts the address as written by the programmer to

the following 12-bit configuration:

| X X X X X (o] X X X X X

A\ J\ / W /
l v v 1 v
INCREMENT
INDEXED INDEX DIRECT SPECIAL
ADDRESS REGISTER ADDRESS REGISTER
DESIGNATOR (TAB. BIT) DESIGNATOR

Of this configuration, the low-order eight bits (increment, tabular bit, and special register
designator) are added to the low-order eight bits of the index register contents, under
control of the index register sign, permitting carry into the high-order bits. As usual,

the indexing process does not alter the contents of the index register., The augmented
index register contents are interpreted by the machine as a special register address,

as follows:

25

SECTION V, ADDRESSES

X X X X X X X X X X X X X X X X

l — /o J 1 \ /
A v R
SIGN NOT GROUP INCREMENT TAB.BIT SPECIAL REGISTER
USED INDICATOR (DIRECT OR SUBADDRESS
INDIRECT)

Within the augmented configuration, the group indicator and subaddress uniquely define
a special register in any of the eight groups. The increment is now a number from 0 to 31.
The tabular bit indicates whether the type of addressing is direct or indirect (see below).
In either case, the increment, under control of the special register sign, is added to the
contents of the special register after use, provided the special register is not addressed as

a result location.

If the index register used contains all zeros {except for the sign and the group indicator),
the result of indexed special register addressing is quite simple., In this case, the index
register designates the group and the programmer designates the subaddress of a special
register which is addressed directly and incremented after use by the amount which the
programmer writes, For example, assuming that the programmer writes

3,4,5,2
and that index register 3 contains

+4,0,0,0
(group indicator of 4, increment, tabular bit, and special register subaddress of all zeros),
the machine addresses special register 5 in group 4 directly and then increments its con-
tents by +2. However, if the index register contains more than a sign and a group indicator,
the result of indexed special register addressing can only be understood by combining bit

configurations as above,

Indirect Memory Location Address

This address takes the form

N, Special Register Designator, Increment
where the special register designator specifies a register in the controlling group absolutely
or mnemonically, ahd the increment is a number from 0 to 31, The machine interprets the
contents of the specified register as the bank indicator and subaddress of a memory location
which may be in any bank. Whether the memory location is an operand or a result location,
the increment is added to the contents of the special register, under control of the special
register sign, after they have been used. For example, the address

N, R3,9

specifies the contents of special register R3 in the controlling group, interpreted as an absolute

26

SECTION V. ADDRESSES

memory location address, After use, the contents of register R3 are permanently modified

by 9.

Indirect addressing is convenient for processing multi-item records when an operation
is to be performed on word M of each item. The location of word M of the first item is
stored in a special register, This location is then addressed indirectly, using an increment
chosen to reset the special register to the location of word M of the second item., Since the
bank indicator of the memory location is derived from the special register, any memory bank

may be addressed in this fashion,

Indexed Indirect Memory Location Address

As noted in the discussion of indexed special register addressing, the augmented con-
tents of an index register may be interpreted as a special register group indicator and sub-
address, a tabular bit, and an increment. If the tabular bit specifies indirect addressing,
then the special register so designated is used to address a main memory location in any
bank indirectly. In this manner, any of the 256 special registers may be used to address any
memory location indirectly. This type of address, called an indexed indirect memory loca-
tion address, takes the form

Index Register Designator, N, Special Register Designator, Increment
As with any other indexed address, the index register is one of the controlling group and is
designated by a number from 0 to 7. The special register designator may be absolute (from
0 to 31) or mnemonic, while the increment may be a number from 0 to 3 or may be omitted.
An address of this type is interpreted by the machine in the same manner as an indexed
special register address, except that the 12-bit configuration formed by ARGUS contains a
tabular bit of 1 to indicate indirect addressing. The low-order eight bits of this configuration
modify the low-order eight bits of the index register contents with carry, and the tabular bit
in the result indicates whether the special register is addressed directly or used to address
a memory location indirectly. As with indexed special register addresses, it is simplest
to use an index register containing only a sign and a group indicator and otherwise all zeros,.
In this case, the special register and increment written by the programmer will be used and
indirect addressing is assured. If other information is stored in the index register, the
eight-bit addition process may alter the tabular bit. If this occurs, an IR, N address will

produce the effect of an IR, Z address and vice versa.

Assume that the programmer writes the address
3,N, AUl

and that index register 3 contains only a sign and a group indicator. This group indicator and

27

SECTION V. ADDRESSES

the mnemonic designator AUl define one of the 256 special registers, which is used to address

a memory location indirectly. Since no increment was written, the contents of the special

register are left unchanged.

Inactive Address

An inactive address is denoted in ARGUS language by a hyphen (-). This type of
address may be used to gain access to three non-addressable registers called the accumu-
lator, the mask register, and the low-order product register. In an addition instruction,
for example, inactive addressing may be used to gain access to the accumulator. If the A
and B address groups are inactive, the contents of the accumulator are transferred to C;
if the B and C address groups are inactive, the contents of A are transferred to the accumu-
lator. In similar fashion, inactive addressing may be used with the extract instruction to
gain access to the mask register and with the ""transfer A to B, go to C'" (TS) instruction to
gain access to the low-order product register. Inactive addressing is discussed more

fully in the Programmers' Reference Manual.

Stopper Address

When a main memory address, stored in a special register, is modified by incrementing

or augmenting, a carry may occur from the subaddress into the bank indicator. Thus a se-
quencing counter can be stepped through successive memory banks, and a single instruction
can handle a record which is not stored entirely within one memory bank. There is one
address, however, which by definition is neither incremented nor augmented when it appears
in a special register. This address, called the stopper address, represents the highest-
numbered location in the memory of a given Honeywell 800 system, regardless of the number
of banks in the system (i.e., subaddress 2047 in the highest-numbered bank of the system).
The stopper location can be utilized, for example, in a read instruction to move tape without
disturbing the contents of memory or to read a portion of a tape record, discarding the
balance. Due to relocation considerations, the stopper location can only be addressed
through a special register in ARGUS language. This is accomplished by writing the sym-
bolic tag STOPPER in a special address constant (see Section IX) and storing it in a special
register. ARGUS replaces this tag with the address of the stopper location of the machine

on which the program is to be run.

Numbers in Address Fields

ARGUS will convert any number up to 2047 appearing in an address field into binary.
This ability should be used with caution, especially if the program is to be relocated for

parallel processing.

28

SECTION VI
PROGRAM STRUCTURE

An assembled program may be divided into segments to conform to subdivisions of
program logic. This makes it possible to have the coding for one function in memory
while the coding for other functions remains on tape until it is needed. Segmentation
makes efficient use of available memory storage and increases the number of programs
that can be processed in parallel, Segments may be further broken down into subsegments
to increase the flexibility of relocation by the Executive System, to provide communication
among segments, and to exercise control over the allocation of memory as performed by

the Assembly Program.

Segmentation

A segment is any part of a program which is loaded into memory and executed as
a unit, Segmenfed programs fall into two general categories, One segment may operate
upon the output of a previous segment with no internal communication, as in the case of a
card-to-~tape conversion which is followed by a sort and then by an updating run. Such
segments resemble a series of separate programs run one after another. On the other
hand, there may be communication among segments. The communication link may be
either a control program which decides what segment to load next, or an area of mem-
ory containing data which varies from segment to segment, or both. Thus, unlike the
first category, the order and frequency of executing the segments may not be predictable,

but may depend upon the input data.

Programs in the first category are easily divided into mutually independent segments.
If these segments have different equipment requirements, they can be scheduled for produc-
tion more efficiently if they are written as separate programs. Programs in the second
category, on the other hand, must be separated into interdependent and independent portions,
according to the amount of memory available and the relative frequency of executing the
various portions of coding. The programmer uses the control instructions PROGRAM and

SEGMENT (see Section XI) to segment a program.

Any part of any segment may be specified as '"common' (as described below under
"Subsegmentation'). When part of a segment is common, the area of memory which it

uses is reserved in all segments. It may be overlaid by common portions of other segments

29

SECTION VI. PROGRAM STRUCTURE

only under the programmer's control., The portions of segments not specified as common,
on the other hand, are overlaid by other segments under control of Executive. In other
words, the only parts of the program guaranteed to be in memory during the execution of
one segment are those words belonging specifically to that segment and any common portions
of other segments which occupy the communication area at this time. For this reason, the
symbolic tags defined in the common portions of a program may be referenced from any
segment, while those not in a common area are available only to the segment in which they

are defined.

Segment Loading

The name of the first segment which is to be executed is specified on the END card
(see Section VIII), Executive automatically loads this segment when the program is initiated.
The starting address of this segment must be loaded into the sequence counter by means of

a SPEC constant with '"Z, SC' in the location field.

The programmer uses a macro instruction called read segment to direct the automatic
loading of all segments following the first. This instruction is logically equivalent to a
_ transfer of control to that segment. The Executive System loads the requested segment
and transfers control to a 1o<£ation specified in the macro instruction, under control of the
sequence counter. Thus, no segment except the first one to be executéd need load the
sequence counter., If a segment does load the counter, the address specified in the read

segment instruction will override the one loaded.

The format of the read segment instruction is:

ARGUS =&

PROBLEM PROGRAMMER DATE PAGE _oF
571 REMAGRKS
| LOCATION 1ol;; COMMAND CODE 45 ['¢) 24 A ADDRESS 37|38 8 ADDRESS 5152 C ADDRESS o5[56 e wowaen 7307 m
i e — ———— e BT T s LY
"I _(146) L,READSEG NAME START ‘
S ———
S — S E— —

'"Name' is the segment name specified in the PROGRAM or SEGMENT card, and 'start" is
the symbolic tag of the location in that segment where control is to be transferred. As in

all macro instructions, the symbolic tag in the location field is optional.

The symbolic tag in the B address field must be a link tag, since it is referenced in
one segment, while it actually belongs to another; this is an exception to the rule that all
references within a segment must be to words within that segment or within the commeon
area. Section IV states that a link tag is preceded by an "L' and a comma when it is de-

fined. Such a tag may be referenced from any segment, by means of the read segment

30

SECTION VI, PROGRAM STRUCTURE

macro instruction. It should be noted that a reference to this tag from another segment
must not include address arithmetic. However, within the segment to which it belongs,

this tag may be treated just as any other.

If desired, a segment may contain more than one starting location. Each starting
location must be designated by means of a link tag. Different read segment macro instruc-
tions may be used to effect transfer of control to the different starting locations under

various conditions.

Subsegmentation

A subsegment is a group of words within a segment which must retain the same
relationship to each other in memory; the relationship of one subsegment to other sub-
segments within the segment is immaterial. Each segment may contain a maximum of
seven subsegments. The division of a segment into subsegments is indicated by means of

the control instruction SETLOC (see page 53). If no division is specified, the entire A

segment is considered to consist of one subsegment,

All subsegments of a segment occupy memory at the same time. However, du'ring
relocation each subsegment may be moved in memory independently of the other subseg-
ments with the following exceptions:

1. If any subsegment crosses a bank boundary, all subsegments of every
segment within the entire program will retain their original relation-
ships to each other and to the bank boundaries., That is, the program
is moved only by bank.

2. Two subsegments written to occupy the same memory bank will con-
tinue to share one memory bank unless one of the subsegments is in
the communication area. In this case, the subsegments may be
moved into two different banks.

The programmer may reference any word in a subsegment from any other portion of the

same segment, according to the following rules:

1. Any reference to a word in another bank must be made via a special
register.
2. Unless some subsegment crosses a bank boundary (so that the pro-

gram is relocated by bank), all references to the communication
area from outside this area must be made via special registers.

3. Address arithmetic must not be applied to a tagged word in one
subsegment in order to reference a word in another subsegment
unless the program is relocated by bank.

One of the primary reasons for designating a portion of coding or data as a subsegment

is to specify that it should be made common to all segments. Subsegments not specified

31

SECTION VI. PROGRAM STRUCTURE

as common are called normal subsegments., The normal subsegments of different segments
are completely independent of each other; i.e., a subsegment numbered "1" in one segment
bears no relation to a subsegment numbered '"'1" in another segment unless it is designated
as common, If a subsegment is designated as common, however, its number will refer

to the same subsegment in all segments.

If a subsegment has been designated as common in one segment, words can be added
to it or overlaid on portions of it by other segments. The new words are preceded by a
SETLOC instruction which states whether they are to be overlaid at a specified location

or added at the end of the subsegment,

Another reason for dividing a segment into subsegments is to increase the flexibility
of relocation. If two portions of a program (e.g., coding and data) need not occupy the
same memory bank, it is desirable to code them as two subsegments, one in each of two

banks. Executive may then relocate them into any space which is available.

Allocation

The Assembly Program assumes responsibility for the allocation of memory to a
program; however, in some cases the programmer needs to have control over this allo-
cation. For example, in a multi-bank program he may wish to place his masks in a

particular bank so that he may refer to them directly from coding in that bank.

Each subsegment may contain any or all of these elements:

1. In-Line Coding - This consists of all program words except those
which are designated as masks, loaded directly into special regis-
ters, or marked as out-of-sequence words. As each in-line word
is processed by the Assembly Program, it is assigned to the next
available location in the subsegment. Breaks in this sequence and/
or initial values of this sequence may be specified by SETLOC
instructions.

2. Out-of-Sequence Coding - This consists of all words in the sub-
segment which have "X, " in the location field (see page 20).
These words are assigned locations starting immediately after
the in-line words of that subsegment. Any subsegment which
contains out-of-sequence coding should be stored entirely
within one memory bank for ease of referencing such coding.

3. Masks - Masks are assigned in groups by means of the control
instruction MASKGRP (see page 59). This instruction may
designate a subsegment in which the groups named are to be
placed; otherwise, they are placed in the subsegment in control
at the end of the segment. If the SETLOC instruction for the
subsegment containing the mask groups is immediately followed
by a SETLOC for another subsegment, the mask groups will be

32

SECTION VI. PROGRAM STRUCTURE

allocated in a subsegment by themselves.

Subroutines - If a subroutine is called for within a common subsegment,
it is stored within that subsegment; otherwise, it is stored in the sub-
segment in control at the end of the segment. The programmer may
use a SETLOC instruction immediately following the last line of a seg-
ment to specify the subsegment in which non-common subroutines are
to be stored. All subroutines stored in a subsegment are allocated
immediately following the last location used in the subsegment, The
order in which subroutines are stored at the end of a subsegment is
determined by the Assembly Program on the basis of their size, and
not on the order in which they are called or the order in which they
appear in the library.

If a segment consists of more than 2048 words, so that it must occupy more than one

bank of memory, it can be subsegmented in such a way that the out-of-sequence words and

masks which are referenced by one section of coding will be stored in a bank with that

coding.

Relocation

Because a program is prepared without specific knowledge of the actual rhernory and

equipment which will be assigned to it, certain precautions must be observed during pro-

gram preparation to facilitate successful relocation and operation of the program. Since

the program will undoubtedly be run in parallel with others at some time, observance of

the facts of relocation outlined below is also necessary in order that the program may not

interfere with others.

1.

The relocatable quantities - group and bank indicators and peripheral
codes - should not be treated as numerical values. In other words,
no arithmetic operations should be performed on these quantities.

Although a one-to-one correspondence exists between group indicators
of a program before and after relocation, this is not so with bank
indicators. Different bank indicators may be assigned the same

value during relocation, since subsegments written for different banks
may be loaded into the same bank at run time. However, subsegments
written for the same bank will always be assigned to the same bank,
with the exception of common subsegments.

There is no relationship between bank indicators of different segments,
except for common subsegments which remain in the same absolute
areas throughout execution of the program. Therefore, references
between common and normal subsegments must be made via special
registers,

Statements (2) and (3) above are limited to programs relocatable
modulo 64, not to those relocatable by bank only.

Bank, group, and control unit indicators can be identified properly
only if constants to be loaded into special registers are special
address (SPEC) or complete address (CAC) constants (see Section IX).

33

SECTION VI, PROGRAM STRUCTURE

6. Fixed, non-relocatable locations (e. g., date location and inquiry stations)
must be addressed via special registers. The stopper location, which is
represented by the tag STOPPER in a SPEC constant (see page 28), must
also be addressed via a special register.

7. Because group indicators and tape control unit identifications are relocatable,
care must be used in writing a program control constant to examine the
program control register, A program should examine only group and buffer
bits used by that program.

8. The MPC instruction (see page 50) must be used with great care. In particu-
lar, only those groups used by the program should be altered in any way.

9. The special registers RAC, DRAC, WAC, and DWAC are associated with
control unit indicators and not with group indicators. They must be
addressed via special registers. When they are addressed, control
unit assignments must be uniquely defined, It must be remembered
that these counters may contain information from other programs using
the same control unit.

In those control groups which contain the read-write counters RAC, DRAC, WAC, and
DWAC, special registers S4 through S7 are not available. Relocation is facilitated by always
specifying a group in which these registers are unavailable, unless they are actually required
by the program. However, if a program does use any of the special registers S4 through S7,
it is the programmer's responsibility to specify a group in which these registers are available.

Further information on relocation can be found in the Executive System Manual.

EXAMPLE: Two segments of a program have been assembled and allocated in memory as
shown in the left-hand two columns of Figure 7 (Before Relocation). Segment A consists of
a common subsegment (numbered 1) and four other subsegments. Segment B consists of a
common subsegment (which is also numbered 1) and three other subsegments. This program
has been executed and checked out, using memory banks 0 through 3, as shown., Note that
part of the common subségmen‘c is loaded with segment A and part with segment B and that

these parts are assigned overlapping memory areas.

The same program is to be loaded for processing in parallel with a number of other
programs which are using memory banks 0, 1, and 4 through 7. When this program is
scheduled for a production run, Executive examines its relocation information and re-
locates it as shown in the right-hand two columns of Figure 7 (After Relocation), so that it
can be processed entirely within the available memory banks 2 and 3. A comparison of
the two halves of Figure 7 reveals that the following rules govern the relocation process.

1. All subsegments are relocated in integral multiples of 64 locations to
preserve all mask group relationships;

2. The two portions of common subsegment 1 retain the original over-
lapped relationship; and

34

SECTION VI.

PROGRAM STRUCTURE

3. Normal subsegments 2 and 4 of segment A, originally sharing the same

memory bank, continue to share a bank after relocation.

These sub-

segments may communicate by means of direct addressing. All other
communication between subsegments must be by means of indirect

addressing.

BEFORE RELOCATION

AFTER RELOCATION

SEGMENT A SEGMENT B. SEGMENT A SEGMENT B

////// ////////// SOGSIIS/U/BQE/GIMEII\I;'I;//// 7 7777777777777 77777
7 SUBSEGMENT 2

/-'-'-'-'-‘-'-'-'.'.'.' L -Z //////////////// ZZZ/ 7777 77777777777

0636 5)BSEGMENT |(COMMON)

0895

BANK O

oezeSUBSEGMENT 1(COMMON)

||92
SUBSEGMENT 2
1727

_

A

VL

SUBSEGMENT 2
1073

1074
SUBSEGMENT 4

1888

SUBSEGMENT 3

LTI 777

2047

0000
SUBSEGMENT 5

0000
SUBSEGMENT 5

BANK |

7/

0

SUBSEGMENT 3

Y

ol

0956 SUBSEGMENT | (COMMON)

LR
lIlllnl-lIllllIl
NN) sesEmEmNEN

"“suesseMENT] (COMMON)

3 7
SUBSEGMENT 4
2047

0000

SUBSEGMENT 2
0369
0370

SUBSEGMENT 4

BANK 2184

7

=

///////

_

BANK2

BANK 3

BANK 4

OOOO

0000
SUBSEGMENT 4

s SUBSEGMENT 3
BANK 3

-

.

BANK S

_

Figure 7.

Example of Program Relocation

35

SECTION VII
MACHINE INSTRUCTIONS

Honeywell 800 machine instructions are specified in ARGUS language using the mnemonic
operation codes shown in Figure 8. Note that ARGUS recognizes the five classes of machine
instructions, namely, general, vperiphe>ra1, shift, scientific, and simulator instructions, plus
a group of extended instructions. 'I"he functions of Honeywell 800 machine instructions are
summarized in Appendix. E. The reader will find it convenient to refer to Appendix E for the

details of the machine instructions illustrated on the following pages.

A machine instruction consists of a command code group and three address groups.
The command code group may include such information as a mask tag or a peripheral code in
addition to the mnemonic operation code, depending upon the instruction type. An address
group may refer to a memory location or a special register, using one of the address forms
given in Figure 6, or it may contain a parameter dictated by the format of the instruction.
Information written either in the command code field, or in any address field may be punched
anywhere in the indicated card field; spaces in these fields are ignored when assembling

machine instructions.

General Instructions

The instructions in this class perform such operations as arithmetic, information
transfers, comparisons, program control, and information checking, All of these instruc-
tions, with the exception of proceed, have the ability to designate the source of the following
instruction. If column 23 contains an "S'" or is blank, the address of the next instruction is
obtained from the sequence counter; if this column contains a ""C'", the address of the next
instruction is obtained from the cosequence counter. Column 23 of a proceed instruction is
not used, and the following instruction is always selected by the sequencing counter which

selected the proceed instruction.

Three examples of general instructions are shown on the following page. The first in-
struction adds the contents of location PRICE to the contents of the location three after PRICE
and stores the result in location AMTDUE. Bo.th operands and the result are regarded as
signed 141-digit decimal numbers. The second instruction transfers 10 words from consec-
utive memory locations starting at INPUT to consecutive locations starting at WORK4., The

third compares numerically the contents of a memory location reached by indexed addressing

37

SECTION VII. MACHINE INSTRUCTIONS

with the contents of COUNTER. If (3, 7) is less than or equal to (COUNTER), the cosequence
counter is reset to the memory location 14 beyond the location of this instruction. (Paren-
theses are used around an address to specify the contents of the indicated location.) Each of
the first two instructions is followed by an instruction selected by the sequence counter; the
third instruction designates the cosequence counter as the source of the next instrbuction,
whether or not the comparison is satisfied. The functions of these three instructions can be

verified by referring to Appendix E.

~

ARGUS =

PROBLEM PROGRAMMER DATE PAGE CF.

, LOCATION ||\, COMMAND CODE 55 [l 24 A ADDRESS 373 B ADDRESS glg, N e ary
o oA rrice | erece+3 | amrove 1
2 TN~ 5| (wvPuT /0 WOoRK 1 E
3 LN q 3,7 COUNTER ctigq :

N !

SEQUENCE CHANGE INSTRUCTIONS: Several instructions have the ability to execute a pro-
grammed change of sequence by placing the C address in the sequencing counter specified as
the source of the next instruction. An example is the instruction TS (transfer A to B and go
to C). In such instructions, the C address may take any valid address format. However, if
a special register is addressed, the value of the tabular bit is ignored and the result is always
a memory location address. Thus, a direct or indexed special register address, if used as a
change of sequence, will be interpreted respectively as an indirect or an indexed indirect

memory location address.

FIELD INSTRUCTIONS: Many of the instructions in the general class can be performed under
the control of masks, which allow them to designate partial words as operands and as results.
These instructions, which are indicated by a su.perscript:2 in Figure 8 and in Appendix E, are
called field instructions. When a field instruction is masked, the same mask is applied to
operands and results. Only those bit positions in the operands which correspond to binary
ones in the mask, called the masked portions, are used. All field instructions are masked
protectively; i.e., the unmasked portions of the result locations are not altered by the

operation.

The mask to be used in a field instruction may be designated by writing its symbolic tag
in the command code field, following the operation code and separated from it by a comma.
A mask whose mask indicator is F (for field instructions) or B (for both field and shift in-

structions) may be designated in a field instruction., If the tag which follows the operation

38

SECTION VII. MACHINE INSTRUCTIONS

General Peripheral
DAZ Decimal Add RF Read Forward
DSs2 Decimal Subtract RB Read Backward
DM Decimal Multiply WF Write Forward
BAZ Bihary Add RW Rewind
BS?2 Binary Subtract
BM Binary Multiply Extended
2
wa Word Afid PRA Print Alphanumeric
wD2 Word Difference X .
PRD Print Hexadecimal
HAZ Half Add - , .
X PRO Print Octal
BT Binary Accumulate .
. STOP Stop This Program
DT Decimal Accumulate s
2 X DOFF Stop Specified Programs
SM Superimpose . ps
. DON Start Specified Programs
SS Substitute R . ps
- SCON Give Control of Specified Programs
EX Extract
T2 Transfer A to C to Sequence Counters
> CSCON Give Control of Specified Programs
TS Transfer A to B and go to C .
TN N-word Transfer to Cosequence Counters
MT Multiple Transfer SPCR Transfer (PCR) to C
1T Item Transfer Scientificl
RT Record Transfer —_—
NN2 Inequality Comparison, FBA Floating Binary Add
Numeric FBS Floating Binary Subtract
NAZ Inequality Comparison, FBM Floating Binary Multiply
Alphabetic FBD Floating Binary Divide
LN2 Less Than or Equal FDA Floating Decimal Add
Comparison, Numeric FDS Floating Decimal Subtract
LAZ Less Than or Equal FDM Floating Decimal Multiply
Comparison, Alphabetic FDD Floating Decimal Divide
PR Proceed (no operation) FLN Normalized Less Than Comparison
CcC Compute Orthocount FNN Normalized Inequality Comparison
cp? Check Parity FFN Fixed to Floating Normalize
MPC3 Control Program FBAU Floating Binary Add, Unnormalized
FDAU Floating Decimal Add,
Shift Unnormalized
SWE Shift Word, Extracting FBSU Fl%ﬁzf Dmary Subtract,
SWS Shift Word, Substituting FDSU Floating Decimal Subtract,
SPE Shift Preserving Sign, .
Extracting Unnormalized
SPS Shift Preserving Sign, FBAE Floating Binary {xd.dn:lon,
Substituting Extended Precision
SSL Shift and Select FBSE Floating Binary E-‘»ul.atractlon,
Extended Precision
Simulator ULD Multiple Unload
——— BD Fixed Binary Divide
S Simulator DD Fixed Decimal Divide
1. These instructions are included in Floating-Point Option; machines not
equipped with this option may implement them as library pseudo instructions.
2. These instructions may reference type F or type B masks or may direct

mask generation.
3, Most MPC functions represented by extended instructions STOP, DOFF,
DON, SCON, CSCON, and SPCR,

»

Figure 8. ARGUS Mnemonic Operation Codes for Honeywell 800 Machine Instructions

39

SECTION VII. MACHINE INSTRUCTIONS

code has both a mask assignment and a complex assignment, the mask assignment is used.

The method of assigning masks in groups of consecutive memory locations is described in

Section X.

Alternatively, the programmer may direct ARGUS to generate the desired mask. The
following three items of information in the command code field, separated from the operation
code and from each other by commas, direct the generation of the desired mask by ARGUS:

(Mi) The position of the high-order character in the masked field. This may be
a number from 1 to 8 for alphanumeric characters, from 1 to 12 for un-
signed hexadecimal digits, or from 2 to 12 for signed hexadecimal digits
(see Figure 2).

(MZ) The number of characters in the masked field. This may be a number
from 1 to 8 for alphanumeric characters, from 0 to 14 for signed hexa-
decimal digits, or from 1 to 12 for unsigned hexadecimal digits.

(M3) A character to specify the bit position(s) containing the sign of the
masked field, This character may be a number from 4 to 4, corres-
ponding to the four sign bits from left to right, or it may be an "S" to
specify the use of all four as the sign of the masked field., If the masked
field is unsigned, as in alphanumeric information, this character is a
0 or is omitted.

The use of generated masks is limited to alphanumeric and hexadecimal fields.of con-
secutive characters. Tags must be used to designate masks for binary fields or for fields of
non-consecutive characters. The type of ficld, alphanumeric or hexadecimal, is implied by
the operation code in most cases. Arithzqnetic operations always involve numeric words and
the comparison instructions specify numeric or alphabetic comparison. 1 In certain instruc-
tions, however, the type of field is ambiguous. If one of these instructions (viz.,, WA, WD,
HA, TS, TX, SM and CP) is to be performed with a generated mask, a three-character opera-
tion code must be formed by appending an "A' for alphanumeric or a "D' for hexadecimal to the
two-character code shown in Figure 8. Both designated and generated masks are illustrated in
the following examples.

ARGUS =w°

PROBLEM PROGRAMMER DATE PAGE [o] J—

1 LOCATION jg|y; COMMAND CODE 5, ‘" A ADDRESS 37|33 B ADDRESS 51|52 C ADDRESS 6s]u T 7 7: - 30
! 05,PAYROLL3 ¢! GRoss PAY G ROSSPAY - 3 NETPAY X
T
2 !
: +
3 TxA, 4,7 NAME ARINTOUT i
1
‘ i
j]
5 LN,2,8,5 |8 To7AL PATA ComPUTE |
el e, — ———

In generating a mask for an alphabetic comparison, ARGUS assumes alphabetic operands.
If operands of such an instruction are numeric, any mask used must be designated by a
symbolic tag.

40

SECTION VII. MACHINE INSTRUCTIONS

The first instruction above subtracts decimally the contents of the location three before
location GROSSPAY from the contents of location GROSSPAY and stores the result in location
NETPAY. Assume that the mask designated as PAYROLL3 has the configuration

GO00 000 GGG GGG
in hexadecimal form. This mask is applied to the subtraction operation, with the result that
only the sign and the low-order six digits of each operand are considered and only those digit

positions are affected in location NETPAY,

The second instruction transfers (NAME) to location PRINTOUT. The contents of the
command code field direct ARGUS to generate an alphanumeric mask of seven characters,
starting with character one (the left-most character). Thus, only the first seven characters of

NAME are transferred and the eighth character position in location PRINTOUT is not altered.

The third instruction above compares (TOTAL) with (DATA1) numerically. ARGUS
generates a hexadecimal mask (because a numeric comparison is specified) which masks
eight digits starting with digit 2, the digit immediately following the sign. All four bits of
digit 41 are designated as sign bits. If the masked portion of TOTAL is less than or equal to
the masked portion of DATA1, the sequence counter (specified in the S/C column) is reset to

COMPUTE.

Field instructions are subject to the restriction that when they are masked, they can
neither address special registers nor use them to address main memory indirectly. Con-
sequently, they must obtain their operands and store their results by means of either direct
or indexed addressing of memory locations. This restriction does not apply to the remainder

of the general instructions or to field instructions performed without masks.

N-WORD INSTRUCTIONS: Four general instructions which use the B address field to specify
a number of words to be transferred (from 0-63) are the binary and decimal accumulate,
n-word transfer, and multiple transfer instructions. In any of these instructions, the B ad-
dress field may contain a symbolic tag (with or without address modifier) which is equated
elsewhere to a number, by means of an EQUALS instruction (see Section VIII). The value of
the tag (or the value of the modified tag) must be in the range 0 through 63. For example, if
a block of data 20 words long is to be manipulated by several different n-word instructions,
the tag BLLOCK might be equated to the value 20. Then the following instruction could be used
to transfer the data from locations starting with INPUT to locations starting with OUTPUT.

41

SECTION VII. MACHINE INSTRUCTIONS

ARGUS &w°

PROBLEM PROGRAMMER DATE PAGE [—
3 DRESS B ADDRESS C ADODRES REMARKS
' LOCATION |g[;; COMMAND CODE 2, (/] 24 A AD a7{3s $1)52 Al S 65[66 _uine nunser 73[74 80
e I e e T R B e e e e e e e T
' TN INPUT BLock ouTPuUT ; g
T
————

It is only necessary to modify the instruction which defines the tag BLLOCK, rather than
modifying all of the n-word instructions involved, if the length of the data block changes.

Peripheral Instructions

Every instruction in this class performs some operation involving a magnetic tape unit
or a terminal device. Peripheral instructions are subject to the same addressing restric-
tions as masked field instructions. They cannot specify a special register address or an in-
direct memory location address in any address field. Furthermore, instructions in this
class lack the provision for specifying the source of the following instruction, Therefore,
the S/C subfield (column 23) is not used in a peripheral instruction, and the address of the
following instruction is always taken from the same sequencing counter that selected the

peripheral instruction.

The command code field in a peripheral instruction contains a two-character operation
code followed by a comma and an alphabetic peripheral code from AA to HH. The assignment
of peripheral codes to magnetic tape units and terminal devices is established individually at
each Honeywell 800 installation. In the case of a terminal device, the second letter of the
peripheral code designates the device type, according to the following convention:

A = card reader

B = printer
C = card punch
D = paper tape reader

E = paper tape punch
In the case of a magnetic tape unit, the second character may be any letter from A to H. The
Assembly Program uses this convention to analyze the peripheral requirements of a program
"and to diagnose and report any attempt to address a peripheral device which is not capable of
performing the requested operation (e.g., a rewind addressed to a card reader). Every

Honeywell 800 installation is provided with a table of peripheral code assignments.

The A address field in a peripheral read or write instruction specifies the location into
which the first word is to be read or from which the first word is to be written. The read

address counter (RAC) or the write address counter (WAC) directs the reading of subsequent

42

SECTION Vil. MACHINE INSTRUCTIONS

words into or the writing of subsequent words from consecutive higher-numbered locations
until an end-of-record word is encountered (see Appendix E). (In a read backward instruction,

the RAC directs the reading of subsequent words into consecutive lower-numbered locations.)

If the B address field in a read or write instruction to magnetic tape is active, the
operation is a distributed read or write, and the record read or written is sensed for end-of-
item symbols (see Appendix E). In this case, the B address field specifies the starting loca-
tion of a stored table, which in turn contains the starting addresses of memory areas into
which the items of a record-are to be distributed or from which items are to be assembled to
form a record. The first item is read or written, starting at A; subsequent items are read or
written starting at the addresses stored in the table. The distributed read address counter
(DRAC) or the distributed write address counter (DWAC) directs the selection of addresses
from the stored table to distribute or assemble the items of a record. (If a read backward
is distributed, the B address field specifies the final location of a stored table of final ad-
dresses of items.) If the B address field is inactive, the operation is a normal read or write,

end-of-item symbols are not sensed, and the DRAC and DWAC are not used.

The C address field in any read or write instruction may be used to specify a change in
the contents of the sequencing counter which selected the instruction; if the C address field is
inactive, no change of sequence takes place. If the C address is active, it is interpreted as

in any other sequence change instruction (see above).

If the A address field in a rewind instruction is active, the rewound tape is interlocked
against further peripheral operations. The B and C address fields in a rewind instruction

are not used.

ARGUS &

PROBLEM PROGRAMMER DATE PAGE o] S

| LOCATION jol;y COMMAND CODE 5, sc 2 A ADDRESS 3738 8 ADDRESS 5182 € ADDRESS 528 L...ER.“,:.E.M ,’;_,_:_ ks M
N wWF,F8 uroare | — eeapin+z | |
2 |

!
3 RF, A8 TRANSACT WaRrRk 3 — i
| e—— f

The function of the first instruction above is to write one record or print one line on
device FB, depending upon whether this device is a magnetic tape unit or a printer. The re-
cord to be written is stored in memory starting at location UPDATE. Since the B address
field is inactive, end-of-item symbols are not sensed; i.e., the record is assumed to be
stored in consecutive memory locations. The C address field designates that the counter

which selected this instruction is to be set to address READIN +2.

43

SECTION VII. MACHINE INSTRUCTIONS

The second sample instruction reads one record from device AB. The record is to be
stored in memory, the first item starting at location TRANSACT. WORKS3 is the first loca-
tion of a stored table of starting addresses of items. As the record is read, end-of-item
symbols are sensed, and the RAC and DRAC control distribution of the remaining items to
non~-consecutive memory areas. As terminal devices cannot perform distributed reading,
AB must be a magnetic tape unit. Since the C address field is inactive, the sequencing coun-
ter which selected this instruction is incremented normally to form the address of the next

instruction.

Shift Instructions

Four of the five shift instructions are used to alter the positions of data fields within
words. Two of these substitute the shifted field into a word which is otherwise unaltered; the
other two extract the shifted field into a word which is otherwise cleared to all zeros. The
fifth instruction, shift and select, is used to select one of a possible 2048 locations as the

source of the following instruction, based upon the value of a data field.

Every shift instruction is performed under the control of a mask. The location of the
word to be shifted is written in the A address field. The type, extent, and direction of the
shift are specified in the B address field. All five instructions perforn; end-around shifting;
i.e., every character shifted out of a word at one end reappears at the opposite end. The
shifted word is masked and then delivered to the location specified by C (or used to modify
the C address in the shift and select instruction). The two shift and substitute instructions
protect the unmasked portions of the result location. The two shift and extract instructions
clear the unmasked portions of the result location to all binary zeros. As in the case of field
instructions, the desired mask may be either designated symbolically or generated by
ARGUS. The tag of a designated mask is written in the command code field of the shift in-
struction, following the operation code and separated from it by a comma. A mask with a
mask indicator of S (for shift instruction) or B (for both) may be designated in a shift instruc-
tion. If the tag written has both a mask assignment and a complex assignment, the mask
assignment is used. To generate a mask, ARGUS uses the same three items of information
(Mi’ MZ’ and M3) as outlined under field instructions. Mi’ MZ,,and M3 follow the operation
code and are separated by commas. Since shifting takes place before masking, M1 must
specify the position of the high-order character in the masked field after shifting. The shift
word and the shift and select instructions do not normally include a value of M3.
Any valid address format, as shown in Figure 6, may be used in the A or C address

field of a shift instruction. However, the C address field of a shift and select instruction is

44

SECTION Vil. MACHINE INSTRUCTIONS

interpreted as in any other sequence change instruction (see page 38). The B address field of
a shift instruction normally contains three items of information, separated by commas, which ‘
specify the nature and extent of the shift:

(B'l) A character to designate the type of characters to be shifted.

A six-bit alphanumeric
D four-bit decimal
B or blank = binary

*(BZ) The number of positions that the word is to be shifted, from 0 to 8 for alpha-

numeric characters, from 0 to 12 for decimal digits, or from 0 to 48 for bits.
(B3) A character to designate the direction of shift,

L left
R or blank = right

Alternatively, the B address field may contain a symbolic tag (with or without address modi-
fier) which is equated elsewhere to a number, by means of an EQUALS instruction (see Sec-
tion VIII). The value of the tag (or of the modified tag) must be in the range 0 through 48.
ARGUS interprets such a tag as the number of bit positions to be shifted to the right.

As in the case of field instructions, the use of generated masks is limited to alpha-
numeric and decimal fields of consecutive characters. Masks for binary fields or for fields
of non-consecutive characters must be designated symbolically. If no mask information is
written in the command code field and the shifted field is alphanumeric or decimal (B1 = Aor
D), ARGUS generates a mask to suppress that portion of the word moved either right or left

end around during the shifting process. However, if B, specifies a binary shift or the B ad-

1
dress field is symbolic, ARGUS generates a mask of all ones in the absence of a mask tag in

the command code field. The shift and select instruction requires a mask which allows no

more than 11 low-order bits to be used in modifying the C address.

ARGUS =i

FORM
PROBLEM PROGRAMMER DATE PAGE OF
REMARKS

85/66 une numeer 73174 80
I S e s B LB B S

i

| LOCATION |ol;, COMMAND CODE g, [/l 24 A ADDRESS 37(3p 8 ADDRESS 51182 C ADDRESS

i

%))

! 5P5,/RETNUMB 3,9 8,/0,R PRET L (5T +5

|
|
3 swe, 6,3 EMPLOYEE + 4 0,3 N, R3, |
]
i
T

5 sse, N, 2 ¢ SELECTOR 0,4 c, -5
pecnnss WSS NN SRS

The first sample instruction above shifts the contents of the location specified by indexed
address 3,9 ten binary places to the right, preserving the sign, and stores the result in loca-

tion PARTLIST +5, under control of a mask tagged PARTNUMB. The unmasked portion of the

UIf B1 and B3 are both blank, B2 may be as large as 63,

SECTION VIl. ‘MACHINE INSTRUCTIONS

result location is protected. The sequence counter is consulted for the source of the next

instruction.

The second instruction shifts the contents of location EMPLOYEE +4, including the sign,
three decimal places to the right (B3 is blank) and stores the result in the location specified
by indirect address N, R3, 1. The generated mask produces an unsigned field of three deci-
mal digits beginning with digit 6 and replaces the remainder of the result location with all

0 bits. Again the sequence counter is consulted for the source of the next instruction.

The third instruction shifts the contents of location SELECTOR, including the sign, four
decimal places to the right under control of a generated mask which produces a field of two
low-order decimal digits. These eight bits are added in binary form to the address of a
memory location five before the location of this instruction (since this is not marked as an
out-of-sequence word). The modified address is then stored in the cosequence counter which

is designated as the source of the next instruction.

Scientific Instructions

This class includes the instructions which perform arithmetic operations and compari~-
sons on floating-point numbers. Figure 2, page 8, shows that a Honeywell 800 floating-
point word consists of a 40-bit mantissa, a seven-bit exponent, and a sign bit., This con-
figuration may represent either a decimal number or a binary number in floating-point form.
Arithmetic instructions are provided to handle floating~-point words either as decimal or as
binary numbers. Data which is to be manipulated in floating-point form is normally as-
sembled in this form, using the floating-point binary and floating-point decimal constants
described in Section IX., However, fixed-point binary and decimal constants can be converted
to floating-point form. In normalized floating-point decimal form, the exponent represents a
power of 10 from the -64th to the +63rd and the mantissa a 10-digit number from .1000 to
.9999---~. In normalized floating-point binary form, the exponent represents a power of
16 from the -64th to the +63rd and the mantissa a 40-bit number from ,00010000---~ to
.11111111----, An exception is the value 0. Although any floating-point number whose
mantissa is 0 has the value of 0, a normalized floating-point 0 in the Honeywell 800 is de-
fined as a number having a positive sign and all binary zeros in the exponent and the man-

tissa.
The operands used in a floating-point instruction must be in floating-point form but not

necessarily normalized (with the exception of divisors and operands for the comparison in-

structions). The results are in correct floating-point form, and are normalized except where

46

SECTION VII. MACHINE INSTRUCTIONS

otherwise specified. Exponential overflow occurs if the exponent of the result exceeds +63;

" exponential underflow occurs if the result exponent is less than -64. When exponential over-

flow is sensed, an unprogrammed transfer of control to U + 14 or U + 15 is executed, where
U represents the location whose address is stored in the unprogrammed transfer register
(see Figure 5, page 19). When exponential underflow is sensed, the unprogrammed transfer

isto U+ 12 0r U + 413.

A floating-point divide instruction cannot be executed if the possibility exists that the
divisor is 0. A fixed-point divide instruction cannet be executed if the absolute value of
the quotient equals or exceeds unity. In either case, an unprogrammed transfer of control to

U + 140 or U + 11 is executed.

The machine logic to implement the scientific instructions is an optional feature of the
Honeywell 800. Included in this option are the two fixed-point division instructions. Though
none of these can be performed as machine instructions on systems which do not include the
floating-point option, they are all represented by library routines which can be performed by
such systems. One of the items of input required by ARGUS is an indication of whether or
not programs are to be assembled for a system which includes the floating-point option (see
Section XI). In assembling programs for such a system, scientific instructions are assem-
bled as machine instructions; otherwise, they are handled as library routine pseudo instruc-

tions (as described in Section XIII).

Simulator Instructions

The Honeywell 800 complement of machine instructions is designed to perform the
logical operations normally required for business data processing and scientific computation.
In addition, the provision of simulator instructions permits the programmer to represent with
a single instruction any function not built into the equipment logic, such as a machine instruc-

tion for some other data processing system.

For each simulator instruction, the programmer codes a simulator routine which is
stored elsewhere in memory. The control instruction SIMULATE (see Section VIII) must
precede the simulator routine and must be tagged in its location field. The simulator instruc-
tion sets up a transfer of control to this routine as well as a means of returning control to the

main program.

The command code field of a simulator instruction contains an 'S'" followed by a comma

and the address of the SIMULATE instruction which precedes the desired routine. The S/C

47

SECTION VII. MACHINE INSTRUCTIONS

column is not used. The address fields may contain parameters required by the routine. In
particular, the contents of the A and C address fields are stored as complete addresses in
special registers AU1 and AUZ2. If either or both of these parameters is to be indirectly ad-
dressed via the appropriate special register, it must be either a direct or an indexed memory
location address. Otherwise, each address field may contain any parameter which can be

expressed as a decimal number less than 2048, Decimal parameters are converted to binary

by ARGUS.

The desired routine may be specified by either direct or indexed addressing. Direct
addressing can only be used to execute a routine stored in the same memory baunk as the
simulator instruction, In this case, the programmer writes the tag of the SIMULATE instruc-
tion in the command code field of the simulator instruction. Indexed addressing must be used
in the more general case to execute a simulator routine from any bank of memory. The index
register to be used is loaded with the tag of the SIMULATE instruction and an address modi-
fier of -7, using the special address constant (SPEC) described in Section IX. The same
index register is then referenced with an augmenter of 7 in the command code field of the
simulator instruction. (The Honeywell 800 recognizes a simulator instruction by the presence
of three low-order binary ones in the command code; hence the necessity of modifying the tag

of the SIMULATE instruction by -7 and then augmenting the result by +7 in the simulator in-

struction command code.)

When a simulator instruction is executed, the instruction itself is transferred to the
location specified in its own command code field. This is the location which immediately
precedes the desired routine. ARGUS assures that it is a location whose subaddress contains
three low-order binary ones, as required by the above definition of a simulator instruction.
The cosequence counter is loaded with the starting address of the routine, and the contents of
the source counter, after normal incrementing, are stored in the cosequence history register

to provide a return to the main program.

For example, the control instruction

ARGUS &

PROBLEM PROGRAMMER DATE PAGE CF
3 N REMARKS
| LOCATION |||, COMMAND CODE 5, /cu A ADDRESS 37(38 8 ADDRESS st 82 C ADDRESS o566 T womses 73[9 m
i 2 SRSt A A . B AL | SN At L LS L LS 520
| cuBerROOT | SIMULATE :
e\ !

is followed by a simulator routine which performs a cube root computation. The tag

CUBEROOT is aésigned to the location immediately preceding the start of the routine. The

48

SECTION VIHI. MACHINE INSTRUCTIONS

operand location and the result location of the cube root computation, which are written in the
A and C address fields of the simulator instruction, may be indirectly addressed by referenc-
ing AU1 and AU2, respectively. The cube root routine may be executed from the memory
bank in which it is stored by writing an instruction in the program of the first sample form
shown below. To execute this routine from any memory bank, the programmer must load a
special address constant of CUBEROOT -7 into an index register and write an instruction of

the second sample form shown below.

ARGUS &

PROBLEM PROGRAMMER DATE PAGE of
7 REMAREKS
| LOCATION |4l;; COMMAND CODE 5, [1c| 24 A ADDRESS 37)38 8 ADDRESS 51)82 C ADDRESS 65 (86 e _nomaes 73[74 80
' 5 cuBEROOT 7, /5 COM PUTE +// ;
T
2 !
f
3 5,37 7,15 COMPUTE+ 1) i
f
S S

When either of these instructions is executed, it is transferred to location CUBEROOT,
the cosequence counter is set to CUBEROOT +4, and the contents of the source counter are
stored in the cosequence history register for use as an exit to the main program. The indexed

address of the operand is 7, 15 and the cube root is stored in location COMPUTE +11.

Multiprogram Control

The automatic parallel processing of up to eight programs is directed by a central pro-
cessor element called multiprogram control which examines the group of eight program de-
mand bits in a non-addressable register called the program control register. These bits
represent the eight special register groups and specify the active or inactive status of each
group. Normally, when a machine instruction is completed, these bits are examined and an
instruction is initiated under control of the next active special register group in sequence. In

the following discussion, this process is called hunting for another program demand.

All machine instructions cause multiprogram control to hunt for another demand with
the following exceptions:

1. Any instruction, including a simulator instruction, which results in a pro-
grammed change of sequence;

2. Any instruction, such as multiply, which generates a two-word result;

3. An instruction which contains an inactive C address or an inactive result
address, except rewind, which always causes multiprogram control to
hunt for another demand;

4, An instruction which results in an unprogrammed transfer;

5. All program control instructions (see below) direct multiprogram control
whether or not to hunt for another demand, except STOP which always
causes hunting.

49

SECTION VI, MACHINE INSTRUCTIONS

An instruction which inhibits hunting for another demand is always followed by another
instruction from the same program. This feature is normally used to store the contents of a

non-addressable register which might be destroyed by another program,

Extended Instructions

There are two cases in which a group of ARGUS machine instructions is represented by
a single machine language operation code. These so~-called extended instructions are the print
and the program control instructions. Each ARGUS extended instruction has its own mnemonic
operation code. The corresponding function is uniquely designated in machine language by an
operation code plus a specified portion of an address field, Thus, an ARGUS extended in-
struction represents the corresponding machine operation code plus the additional information

required to designate the desired operation.

PROGRAM CONTROL INSTRUCTIONS: One of the non-addressable registers in the Honeywell

800 is called the program control register. Its contents represent the status of input and out-

put buffer interlocks, the demand conditions of the various special register groups, and the

sequencing counter designated to select the next instruction in each special register group. i
Access to the program control register is normally limited to the Executive System, in order \
to insure fully automatic parallel processing. However, the programmer can gain access to

it by means of a machine instruction called control program. The B address of this instruc-

tion specifies one of eight different operations to be performed on the contents of the program

control register, as well as the portion of these contents to be altered. The machine format

of the control program instruction is described in the Honeywell 800 Programmers' Reference

Manual.

Six of the eight operations which can be performed by the control program instruction
are represented in ARGUS notation by a group of extended instructions called program control
instructions. These six instructions perform all program control operations normally re-
quired by the programmer. In addition, in order to make all eight control functions available,
ARGUS can accept the machine instruction MPC. The B address field of this instruction con-
tains three hexadecimal digits which specify the desired control operation and the programs

to be affected, as described in the Reference Manual.

The present discussion deals with the ARGUS extended instructions. Any of these ex-
tended operation codes may be followed by a comma and an "H'" in the command code field if
the system is to hunt for a demand from another program, Otherwise, with the exception of

STOP, the current instruction is followed by another instruction from the same program.

50

SECTION VII. MACHINE INSTRUCTIONS

After a STOP instruction, the system always hunts for another demand. The S/C subfield is
used in the normal manner., The contents of the A address field, which may be any valid ad-
dress format, are not used in executing a program control instruction. The B address field
contains the numbers of up to seven programs, separated by commas, to be controlled by the
instruction. An exception is the SPCR instruction which performs no control function and in
which the B address field is left blank, The number of a program is the group indicator of
the special register group controlling that program. Before a program control instruction is
executed, the contents of the program control register are transferred to the location speci-
fied in the C address field. This field may contain any valid memory location address form,
but it is interpreted as in a sequence change instruction (see page 38). If it is inactive, the
contents of the program control register are not retained.
ARGUS =&
PROBLEM] PROGRAMMER DATE PAGE oF ____

REMAREKS
, LOCATION joly; COMMAND CODE /|24 A ADDRESS 37|38 B ADDRESS 1|52 C ADDRESS 8

066 LINE Numser T3!7
‘ DOFF s 2,3,4,6 &t 3

2 ScoN, H /, ¢ N, R3,3

|
|
]
1
I
f
|
5 SPER H 4 CONTROL T

re—_—

———

The first of these sample instructions transfers the contents of the program control reg-
ister to the memory location three after the location of the instruction. Then the programs
using special register groups 2, 3, 4, and 6 are turned off. The system is not directed to
hunt for another demand but to execute another instruction in the same program, under con-
trol of the sequence counter. The second instruction stores (PCR) in an indirectly addressed
location and turns over control of programs 41 and 4 to their respective sequence counters.
The sequence counter is specified as the source of the next instruction in the same program
and the system is directed to hunt for another program demand. The third instruction stores
(PCR) in location CONTROL, transfers control of its own program to the cosequence counter,

and directs the system to hunt for another program demand.

PRINT INSTRUCTIONS: From 1 to 47 automatic typewriters can be included in a Honeywell
800 system. The standard unit is located at the console and is referred to as the console
typewriter. A second optional unit, known as the slave, is normally located somewhere near
the control area. The provision of a slave typewriter allows program printouts to be physically
separated from console input information. In addition, two programs operating in parallel

can produce printout information on separate typewriters. Up to 45 optional remote type-

writers can also be included in the system.

51

SECTION Vil. MACHINE INSTRUCTIONS

The machine instruction print is represented in ARGUS notation by three extended in-
structions: print alphanumeric, print hexadecimal, and print octal. Any of these operation
codes may be followed in the command code field by a comma and an '"M' (denoting more in-
formation to follow before carriage return) or an '""MR' (denoting more information to follow
after carriage return). If either of these carriage controls appears, the typewriter is inter-
locked against all other programs until another word is printed from the same program. If
neither appears, the carriage is returned after printing and the typewriter is released to

print from any program.

The A address field specifies the location of the word to be printed and may contain any
valid address format. The B address field contains a ''"C', an '"S", or a two-digit number
specifying the typewriter which is to print. Either ""C'" or 00 indicates the console typewriter;
S or 01 indicates the slave. A remote station may be specified by a number from 02 to 46,
depending upon the number of such stations in the system. If the B address field is left blank,
the console typewriter will print. The C address field may contain a programmed sequence
change or it may be inactive, The contents of this field (if active) are interpreted as in any
sequence change instruction (see page 38) and stored in the counter specified by the S/C sub-

field.

ARGUS &

PROBLEM PROGRAMMER DATE PAGE [T
3 ODRES . REMARKS

1 LOCATION 1g|)) COMMAND CODE 35 /|24 A ADDRESS 37|38 8 ADDRESS 5182 C ADDRESS 85[68_uine_wamszn T3[74 0
' PRA MR || ¢,#5 c — :
.
2 |
- I
3 PRO ¢ RESULT os L 14 I
e~ ——— e I

The first sample instruction causes the console typewriter to print in alphanumeric
form the contents of the location five after that of the instruction itself. The typewriter is
interlocked to receive another print instruction from this program (after carriage return) and
the next instruction is selected by the sequence counter. Since the C address is inactive,
there is no programmed sequence change. The second instruction causes remote typewriter
05 to print in hexadecimal form the contents of location RESULT. The carriage is returned
and the interlock released. The cosequence counter is changed to the contents of X1 aug-

mented by 14, and control is transferred to this location.

52

SECTION VIII
ASSEMBLY CONTROL INSTRUCTIONS

The ARGUS assembly language includes a group of instructions which the programmer
uses to control the assembly of his program. These are punched one per card like machine
instructions, although they are not assembled and do not result in the inclusion of any machine
words in the program. Each of these instructions may be used ag many times as required

within a program.

SETLOC

The primary function of the SETLOC instruction is to direct the subsegmentation of a
program segment. This function can only be accomplished by the use of SETLOC. The pro-
grammer may also use the SETLOC instruction to direct the allocation process by specifying
a memory location address, a bank indicator, a group indicator, or any combination of these
elements. To the extent that the programmer does not control allocation, this process is

automatically handled by the assembly program.

The first SETLOC instruction which specifies a given subsegment number is called the
defining SETLOC for that subsegment. ARGUS assigns the following coding to the subsegment
indicated untﬂ a SETLOC is processed which specifies a different subsegment. A segment in
which no subsegments are specified is assumed to consist of a single subsegment. In the case
of a common subsegment, the subsegment number must be followed by the letter '"C'" on the
defining SETLOC (the first SETLOC in any segment of the program which specifies that sub-
segment number). In every segment in which the common subsegment appears, it must be
represented by a SETLOC which specifies the same subsegment number. (The "C'" following
this number is optional on all but the defining SETLOC; however, if the subsegment is not
specified as common on the defining SETLOC, it must not be so specified on any SETLOC.)

The programmer may either tag a SETLOC instruction or leave the location field blank.
If the instruction is tagged, the tag may be preceded by an "L" (link tag); but it may not be
preceded by "F", 'S", '"B" (mask tag), "Z' (special register tag), or "X" (out-of-sequence
tag). If the SETLOC specifies a subsegment, the command code is followed by a comma and
a subsegment number from 1 to 7 (and a "'C" if this is the defining SETLOC for a common

subsegment),

53

SECTION Vill. ASSEMBLY CONTROL INSTRUCTIONS

The programmer may designate a main memory address in the A address field of a
SETLOC instruction, a bank indicator in the B address field, a group indicator in the C ad-
dress field, or any combination of these elements, subject to the rules stated below. If
these options are not exercised, the Assembly Program assumes complete responsibility for
the allocation of subsegments, guarding against overlap among subsegments and, wherever
possible, against crossing a bank boundary within a subsegment, If the programmer uses the
SETLOC instruction to control allocation, he must assume these responsibilities. For ex-
ample, if the defining SETLOC is used to specify the initial location of a subsegment, enough
room must be allowed for any mask groups, subroutines, and/or out-of-sequence words to be
placed in the previous subsegment, If the programmer assumes control of allocation, he
should assign an initial location which is divisible by 64 to the first subsegment in each mem-

ory bank. !

In a defining SETLOC, the A address field may be blank or it may contain a number up
to 2047 or a symbolic tag which is equated to a number. The tag may be followed by an ad-
dress modifier in the range +16, 383, provided that the resulting subaddress is not greater
than 2047. Unless the A address field is blank, ARGUS converts its contents into an 11-bit
subaddress which is placed in the subaddress bit positions of the current location counter
(CLC). The B address field of a defining SETLOC may be blank or it may contain a "B"
followed by a number from 0 to 7 to be placed in the bank indicator bit positions of the
CLC. The contents of the CLC, either modified or unmodified, specify the location of the
first in-line coding word following the SETLOC.

If the defining SETLOC for a subsegment does not alter the contents of the CLC in any
way (i.e., the A and B address fields are both blank), no SETLOC in that subsegment may
specify a bank indicator. However, any other (non-defining) SETLOC in that subsegment
may specify a main memory address in that subsegment, using a tag which is assigned to
such an address or using C, * a number. The tag may be followed by an address modifier in
the range +16, 383, If the tag has both a memory assignment and a complex assignment, the
memory assignment is used. C, 0 is equivalent to a blank or inactive A address and refers
to the next available location in the subsegment. If the defining SETLOC for a subsegment
does alter the contents of the CLC in any way, any other SETLOC in that subsegment may
specify a main memory subaddress, a bank indicator, or both, or it may specify a tag which

is assigned to a main memory address, using any of the above formats.

1
See the Executive System Manual, Section II.

54

SECTION VIII. ASSEMBLY CONTROL INSTRUCTIONS

The C address field in any SETLOC may be blank or it may contain a '"G'" followed by a
number from 0 to 7 which designates the special register group to be used.1 If a group
indicator is specified, the program is assembled to use the specified group and all fol-
lowing coding words which are marked by special register tags are loaded into that group. If
the C address field is blank, the previous group specification remains in effect. If no group
has been previously specified within the same segment, the Assembly Program uses group 1.
As noted in Section VI, it is the programmer's responsibility to specify a group in which reg-
isters S4 through S7 are available if his program uses those registers., (Note that these reg-
isters are normally unavailable in group 1.) The programrner may use as many special reg-

ister groups as he requires and may change groups as often’as necessary.

EVEN

Each special register group includes an unprogrammed transfer register (UTR), which
should be set up with the initial address of a group of instructions to handle the various un-
programmed transfer conditions described in Appendix E. This initial address must be an
even number for proper execution of the unprogrammed transfers. The Assembly Program
assigns the next even-numbered address in sequence to the word following the EVEN instruc-
tion. The programmer should write a symbolic tag in the location field of either the EVEN
instruction or the following word. This tag may be a link tag, but it may not be a mask tag,
a special register tag, or an out-of-sequence tag. The special address constant (see Section
IX) may be used to load the address assigned to this tag into the UTR. The three address

fields are not used in the EVEN instruction.

It is the programmer's responsibility to set up the UTR and to provide enough instruc-
tions following EVEN to provide for any unprogrammed transfer situations which may arise
in his program. He may use SETLOC, MODLOC (below), or any other valid method in place

of EVEN to assure the assignment of an even address for loading the UTR.

SIMULATE

Every simulator routine is preceded by the instruction SIMULATE, which is punched
with a symbolic tag in the location field to identify the routine. The three address fields are
not used in the SIMULATE instruction. The tag of a SIMULATE instruction may be a link
tag, but not a mask tag, special register tag, or out-of-sequence tag. The Assembly Pro-
gram assigns this tag to the next location in sequence which has three binary ones (octal 7)

in its low-order subaddress bits. The first word of the simulator routine is then assigned to

1Note that a program assembled to use group 0 may not run properly under control of the
Program Test System.

55

SECTION VIil.

ASSEMBLY CONTROL INSTRUCTIONS

the following

location.

To set up and perform the routine, the tag of the SIMULATE instruc~

tion is referenced in the command code field of a simulator instruction, as described in

Section VII.

MODLOC

This instruction directs the Assembly Program to allocate the following word to the

next location whose address is a multiple of 2, 4, 8, 16, 32, or 64, as specified by the num-

ber punched in the A address field. The B and C address fields are not used. Any tag written

in the location field of the MODLOC instruction, or of the following word, is assigned to the

address of the location to which the following word is allocated. This tag may be a link tag,

but not a mask tag, special register tag, or out-of-sequence tag., Note that the address to

which the following word is assigned always ends in from one to six binary zeros, depending

upon the number specified in the A address field.

PROBLEM

ARGUS

CODING
FORM

PROGRAMMER

DATE

'PAGE

| LOCATION o

3
11 COMMAND CODE_ 93

A ADDRESS

37)3s

8 ADDRESS

C ADDRESS

SELTYPE

MoprLO c

8

- REMARKS

65{66 unc Numeer T3
N A

DS e i —————

This instruction causes the Assembly Program to allocate the following word to the next loca~- -

tion in sequence whose address is a multiple of 8 and to assign the tag SELTYPE to the ad-

dress of this

ASSIGN

location,

This instruction assigns a tag to a complex address, such as an indexed or an indirect.

address.

The programmer writes the tag to be assigned in the location field and the complex

address in the A address field. The B and C address fields are not used. The tag in the loca-

tion field may not be a link tag, a special register tag, a mask tag, or an out-of-sequence tag;

however, it nday be assigned elsewhere in the program to a memory location address (as de-

scribed on page 20).

The use of the ASSIGN instruction allows the programmer to change

item formats and to reassign special registers during reassembly, changing only the ASSIGN

instructions rather than changing every reference to the corresponding addresses,

For ex-

ample, to assign the tag GROSSPAY to indexed address 3, 5, and the tag PRODUCT to indirect

address N, R3, 12, the programmer writes the following two instructions.

PROBLEM

PROGRAMMER

DATE

PAGE

[o] S

| LOCATION jg|;; COMMAND CODE 5 Sc 2 A ADDRESS 37{38 B ADDRESS 152 C ADDRESS ss(ee L,NERNUE“:‘,;‘,Z ks M
T T T e F=FF LI R B S S S S B S ms S T LI I e ¥ =TT T =TT
' | gRossPAY #55/GN 35 ;
T
2 1
f
3| PROSUCT ASSIGN N, R3,/2 i
P |

56

SECTION VIII. ASSEMBLY CONTROL INSTRUCTIONS

- TAS (Temporary Assignment)

N

This instruction also assigns a tag to a complex address. However, a tag which has
been assigned by means of a TAS instruction may be freely reassigned to another complex
address by means of another TAS, The instruction is written in the same format as ASSIGN
and the same rules apply to the types of tags that may be assigned. The programmer may
use the TAS instruction to reference the same set of data by several different complex ad-
dresses, using only a single tag. In the following example, the tag DATA is first assigned to

the indexed address 3, 0, then later reassigned to the indirect address N, R1, 1.

ARGUS &*

PROBLEM PROGRAMMER DATE PAGE OF
s REMARKS
1 LOCATION jg];) COMMAND CODE 5 [/c24 A ADDRESS 37|38 8 ADDRESS 51{62 C ADDRESS 85]68_tine wumeen 73[74)
. - - = e e e]
1 .
DPATA) TAS) 3,0 ;
T
2 !
—
1| para 745 NRI,T \
N —

The EQUALS instruction assigns a value to a symbolic tag. The assigned value may be
an integer, another symbolic tag, or an expression which is an algebraic combination of up to
six integers and tags. Addition (+), subtraction (~), multiplication (%), and division (/) may
be used to combine integers and symbols, These operations are performed in the following
order:

1. Multiplication and division;

"2, Addition and subtraction.
Parentheses are not permitted in the combination of integers and symbols. This instruction
is useful in combining programs which use different symbols and in altering such parameters

as data block lengths.,

The tag to be equated is written in the location field and must not be a link tag, mask
tag, special register tag, or out-of-sequence tag. The equated value is written starting in
the A address field and continuing through as many consecutive columns as necessary. Any
symbol used in an equated expression must have been previously assigned either to a memory
location address or to an integer. The computed value of the expression must be either a
valid memory address or an integer. If the only term in the equated expression is a tag which
has both an absolute and a complex assignment, then the same two values are assigned to the
tag in the location field. However, if such a tag is used in an algebraic combination of terms,

its absolute value is used to compute the expression and its complex value is ignored.

57

SECTION VIIl., ASSEMBLY CONTROL INSTRUCTIONS

Care must be taken in combining symbols which are assigned to memory addresses,
since some combinations are meaningless (e. g., the product of two memory addresses). The
programmer may determine whether or not a given combination of symbols is meaningful by
examining it in terms of '"dimension'", which is defined as follows: the dimension of an integer
or of a symbol assigned to an integer is defined to be 0, while the dimension of a symbol as-
signed to a memory location is defined to be 1. The dimension of an equated expression must
be 0 or 1, where:

1. The dimension of the sum (difference) of two terms equals the sum
(difference) of their dimensions; and

2. The dimensions of the two factors in a product or quotient must both
be 0.

In addition to these dimensional requirements, symbols which are combined must have been
assigned in the same subsegment and by the same location counter (CLC or XLC). A mask

tag is not permitted in an equated expression unless it is the only term in the expression.

ARGUS s

PROBLEM PROGRAMMER - DATE PAGE CF
3 REMATRKS
| LOCATION jo)j; COMMAND CODE y [/|aq A ADDRESS 37{38 B ADDRESS 5182 C ADDRESS 6566 une womsen 73[74 10
" | ENDMATRY EQUALS MATRI¥+M % N-1 N
. T
2 |
+
3| pavRoLL EQUALS PROLL |
‘ {
s ALENGTH EQuALS APRODUCT - BFROPUCT {
" R —— t

The first instruction above assigns the tag ENDMATRX to the final location of an M by
N matrix whose initial location is tagged MATRIX. Since M and N are integers, the dimen-
sion of the entire expression is 1. The second instruction equates the tag PAYROLL to the
tag PROLL, which might be used to represent the same quantity in another program. The
third instruction equates the tag ALENGTH to the difference of two memory locations, which
is the length of a table and has a dimension of 0. As stated above, the tags APRODUCT
and BPRODUCT must have been assigned in the same subsegment and by the same location

counter.

RESERVE

This instruction is used to reserve a block of memory locations for data or working
storage. The number of locations to be reserved is specified by means of an integer, a tag,
or a combination of integers and tags which starts in the A address field and continues
through as many consecutive columns as necessary. The same rules apply for combining
integers and tags as in the EQUALS instruction (above), except that the dimension of the

combination must be 0. Any tag which appears in the combination must have been

58

SECTION VI, ASSEMBLY CONTROL INSTRUCTIONS

previously assigned to an absolute value (memory location address or integer). If such a tag
has an additional complex assignment, this assignment is ignored and the absolute assignment
is used in computing the value of the combination. If the programmer writes a tag in the
location field, it is assigned to the first reserved location. This may be a link tag or an out-
of-sequence tag, but not a mask tag or a special register tag. For example, the first instruc-
tion below reserves 100 locations starting at the location tagged INPUT. The second instruc-
tion reserves M times N locations starting at the location tagged MATRIX (where M and N
have been previously assigned integer values),

ARGUS &50°

PROBLEM PROGRAMMER DATE PAGE. [S—

3 REMARKS
) LOCATION g|;) COMMAND CODE 50/ . A ADDRESS 373 8 ADDRESS sifs2 C ADDRESS 6566 uine_wumsen T3[74 0

INPUT ,ét"SlEKVE‘ /00 T

Ll s = T T

w

|
;
MATRIX RESERVE M ¥ N i
SR I E—

MASKGRP

Before any masks can be designated, generated, or referenced in a segment, the con-
trol instruction MASKGRP must be written to assign a shift group number, a field group num-
ber, or both. The only exception is at the beginning of a segment, where any designated or
generated masks are automatically assigned to field and shift groups 0 if they are not pre-

ceded by a MASKGRP instruction.

The location field is not used in a MASKGRP instruction. The A address field of this
instruction may specify the group number of a shift mask group (an ''S" followed by a comma
and a number from 0 to 15), and the B address field may designate the group number of a
field mask group (an "F'" followed by a comma and a number from 0 to 15). The operation
code may be followed by a comma and the identification number of the subsegment in which
the specified mask groups are to be stored. If the subsegment number is omitted, the speci-
fied mask groups are stored in the subsegment which is in control at the end of the segment.
Up to 16 field mask groups and 16 shift mask groups may be set up within any segment. How-
ever, any groups which are stored in a common subsegment are included in the total number
of groups for every segment of the program. A shift group and a field group having the same

group number (e.g., S, 2 and F, 2) must be stored in the same subsegment.

A MASKGRP instruction directs that all of the following designated or generated masks
belong to the groups specified until another MASKGRP specifies different groups. The
Assembly Program assigns a mask base address to each specified group. The base of a

group of field masks must be a multiple of 32; that of a group of shift masks must be a

59

SECTION Viil, ASSEMBLY CONTROL INSTRUCTIONS

multiple of 64. Each designated or generated field or shift mask is assigned the next sequen-
tial location within the proper group until either the group is full or a new group of the same
type is specified. Any mask assigned with a mask indicator of "B" (for use with both shift
and field instructions) must be preceded by a MASKGRP instruction in which the group num-
bers are equal. When a "B'" mask is assembled, an overlapping pair of mask groups is set
up which can include up to 32 field, shift, or "B" mask and up to 32 additional shift masks.
The MASKGRP instruction also directs that all following mz;,skrreferences are to masks
in the specified groups until different groups are specified. Proper execution of a shift
instruction or a masked field instruction requires that ‘the mask index register be set up with
the base address of the desired mask group. This is done by loading or transferring a
MASKBASE constant (see Section IX) into the mask index register. Since machine instructions
can only refex;ence masks in the current groups, any 'referénﬁe to a mask in another group
must be preceded by both a new MASKGRP instruction and the necessary coding to change the

mask index register setting.

ARGUS &

PROBLEM _ PROGRAMMER DATE _ PAGE GF

= REMARKS
, LOCATION joi;; COMMAND CODE us/cz, A ADDRESS a7i38 8 ADDRESS 51(82 C ADDRESS 566 e numace T3]0 M
! MASKGRP, 2 S, ' F, .
-
2 I
I
3 MASKGRP,Z F,2 |
g f
‘ [
I
5 MASKGRP s, 4 ‘ F, 3 !
T N

The first MASKGRP instruction above desig.nates that all following shift masks are in
shift group 1 and all field masks in field group 1 until the n;xt MASKGRP is proces sed.\
Furthermore, these mask groups are to be stored insubsegment 2. If any "B" masks appear
in these groups, the groups willlbe overlapping; otherwise, storage will be providedfor\ the
full 96 masks if required. Should the entire field mask group be assigned while space re-
mains for additional shift masks, for example, the second MASKGRP instruction -can be
written to set up field mask group 2 in subsegment 2. Any reference to a field mask in group
1 after this second group is designated must be preceded by a MASKGRP instruction re- /
designating field group 4. The third instruction aJoove may be written at a later point in the
program to designate shift group 4 and field group 3. Since ne 3ubsegment number is written,
these groups will be stored in the subsegment which is in control at the end of the segniént.

The latter groups may not include any "B masks as their group numbers are not identical.

60

SECTION VII. ASSEMBLY CONTROL INSTRUCTIONS

END

Every program being assembled should include an END card, though the position of this.

card in the program deck is irrelevant, The information punched on the END card is pro-

s e e sk Rt S i
............... sa e

vided for use bj; "‘cil“;E;cuecrutive System. The command code is followed by a comma and the
number of the special register group to be given control at the start of the program./1 If no
gx_‘;up is specified, control is given to group 4. The program name is punched in the A ad-
dress field and the name of the first segment to be loaded is punched in the B address field.
The location and C address fields are not used. An existing program does not requiré a new
END card for reassembly unless any of the information on the original END card is to be
changed. When a program is loaded ‘by Executive, the segment named is loaded first, This

segment must contain coding to load the sequence counter of the group specified as first in

. control.

L . .
Note that a program which gives initial control to group 0 may not operate properly under
control of the Program Test System.

61

SECTION IX
CONSTANTS

Data constants in a number of different formats can be assembled. In addition,
Assembly recognizes several control constants which are used for special functions.

Each type of constant is identified by a constant code punched in the command code field.

Data Constants

The seven types of data constants recognized by Assembly are:

ALF alphanumeric FXBIN fixed-point binary

OCT octal FLBIN floating-point binary

DEC fixed-point decimal FLDEC floating-point decimal
| EBC extended binary

Several constants of the same type may be combined on a single card, the maximum num-
ber depending on the type of constant. Alphanumeric, octal, and fixed decimal constants
are specified in the desired notation. All of the other constants are specified in fixed
decimal notation and translated by Assembly. The constants are punched starting in the
A address field and continuing through as many consecutive columns as necessary (up to
column 65). All data constants except alphanumeric are separated by commas and may

include spaces to aid in visual checking; these spaces are ignored by Assembly.

The location field of a card which contains a single data constant may be blank or
it may contain any standard tag configuration (see Section IV). The location field of a
card which contains more than one constant may be blank or it may contain X, or a sym-
bolic tag, or X, followed by a symbolic tag. Any tag written in this field references the
first constant on the card. All constants punched on the same card are allocated to con-
secutive memory locations, under control of the designated location counter, so that

they may be referenced by address arithmetic.

ALF (Alphanumeric Constant)

If the constant code (ALF) is followed by a comma and a number from 1 through 5,
ARGUS assembles the indicated number of eight-character constants from the contents of
columns 24 through 31, 32 through 39, 40 through 47, etc. Spaces are valid characters
and are assembled by ARGUS. Sentences or related words may be punched consecutively

across a card through column 63. If no information follows ALF in the command code

63

SECTION [X., CONSTANTS

field, n is assumed to be 1 and a single constant is assembled from the contents of columns

24 through 31.

Alternatively, ALF may be followed by a comma and any character other than 0
_through 8, which is then interpreted as a terminating character but is not assembled.
This character is repeated following the last ‘word punched and should not appear in any
of the punched constants (see second example below).

ARGUS &

PROBLEM - PROGRAMMER DATE PAGE OF

|, vocanon o, commann cooe 5[4 A ADDRESS 33 B ADDRESS g g C ADDRESS il e A
+ T T 5l T T T T T e e e N LML B S B Bt B S S S B g T T e e T e e e T T e T
" ALpua 1 ALF, ¢ NEVER BEFORE |IN HISTOLY MHAVE so ;
2 , ;
f
3 ALF, Yo MANY OWED 5& MUCH To 350 |FEW %. |
f
4 |
s| Acewa z | AcF, s A 8 ¢ o E !

OCT (Octal Constant)

Up to 16 unsigned or 15 signed octal digits per word may be punched starting in
column 24 and continuing through column 65. If 15 signed digits are specified, the most
significant digit must be less than 4 (as shown in Figure 2, page 8). Words are separated
by commas and stored in consecutive memory locations. Signed words are justified to the
right, i.e., the least significant digit is placed in digit position 16, the sign is placed in
position 1 (0000 if negative, 1111 if positive), and positions between the sign and the most
significant digit are filled with zeros. Unsigned words are justified to the left; i. e., the
most significant digit is placed in digit position 1 and positions following the least sig-

nificant digit are filled with zeros.

ARGUS =

PROBLEM PROGRAMMER DATE - PAGE OF ..
3 REMARKS

| LOCATION ol COMMAND CODE g5 [/cf24 A ADDRESS 3738 B ADDRESS 5152 C ADDRESS 8586 e nommew T3[72 %

T T, ¥ = T A\ A A AL LENE B S S e B A B AN A LEN B s B B B B A L N L LN L S
"l ocTcoN 1 ocT 01234567765432/10,76¢543210012|34561 ;
4
2 |
_lr
3} OCTCONZ2 ocT f175,-2,5zf,+3241:>o41672.3454 |
N————— — ———— "

DEC (Fixed Decimal Constant)

Decimal constants are punched from column 24 up to column 65 and are separated by
commas. Xach word may contain up to 11 signed or 12 unsigned decimal digits. Any
hexadecimal digit (0-9 and B-G) may be specified. Unsigned decimal constants are
justified left and signed decimal constants are justified right. If the programmer wishes

to position a constant other than by the above rules, he may follow the constant with "P"

64

SECTION IX. CONSTANTS

and a number from 1 to 12 specifying the storage position of the units digit. A decimal point
may be wﬁtten to indicate the units digit; otherwise, the low-order digit is assumed to be
the units digit. If a decimal point is written, the programmer must specify the position of the

units digit.

ARGUS &

PROBLEM PROGRAMMER DATE PAGE OF
REMAREKS

| LOCATION 1ol;, COMMAND CODE ,, sé 2 A ADDRESS 37)38 B ADDRESS 5182 C ADDRESS 5[50 e nonere 7372 m

T T T T L kil Sl S B S B e B B B S B L St S B B S B B B N Bt B S B B S R s e A A B
‘| peccon ! PFC 123456789 ,+12,|~3¢,123.516P7,|171896CDEF, G666 :
t
2 |
1
+
3 DEC 27 |

e —

FXBIN (Decimal to Fixed Binary Translation)

Fixed-point binary constants to be converted by Assembly are specified by their
decimal equivalent. The constants, separated by commas, are punched starting in
column 24 and are stored in consecutive locations in memory. Each constant may con-
tain up to 14 decimal digits, a decimal point, and a sign. If no sign is specified, a plus
sign is assumed. If a decimal point is specified, the bit position of the units bit must
be designated by a "B'" and a number from 4 to 48 immediately following the constant.
If there is no decimal point, the constant may have any absolute value up to 244 -1 (or
17,592,186, 044, 415). If the decimal point is at the far left, the constant is accurate
up to 5:2-44; i.e., it may contain up to 14 significant digits. If the decimal point is

anywhere else, its position determines the maximum value of the constant.

ARGUS &°

PROBLEM PROGRAMMER DATE PAGE oF____
5/ REMARKS
| LOCATION gl;; COMMAND CODE j, [V 24 A ADDRESS 37038 8 ADDRESS sils2 C ADDRESS 566 e wowser 73072 m
; S - 7 T e T
V| FXBEON (FXBIN t3,+24,256-.125B13,-32.8328328/8 ‘
. T ___’/—-—

FLDEC (Floating-Point Decimal Constant)

Floating-point decimal constants are punched starting in column 24 and separated by
commas. They may be specified with a decimal point, an explicit exponent, or both. An
explicit exponent consists of an "E' and a signed or unsigned exponent immediately following
the constant. However such constants are specified, they are converted to floating-point
form and normalized by Assembly. Each constant may contain up to 10 signed decimal
digits and may range in value from 10—65 virtually to 1063. Unsigned constants and ex~
ponents are considered positive. The structure of a floating-point constant is shown in

Figure 2, page 8.

65

SECTION IX., CONSTANTS

ARGUS =*

PROBLEM PROGRAMMER DATE PAGE of ____
5 REMARKS
| LOCATION pl;; COMMAND CODE 25 [£24 A ADDRESS 37)38 8 ADDRESS 51|52 C ADDRESS 5 (65 e womeen T334 M
2 T B S B S A e e e T T T T T T T
‘| FeLocown 1 FLOEC +123.956E415,-[/12989E-20, 1485|6.12389 ;
e N ! s

When the three sample constants above are converted and normalized, they will assume the

following forms:
+123.456E+15 becomes +.123456 times 1018
-12489E-20 becomes -, 12489 times 10713

14856.12389 becomes +.1485612389 times 105

FLBIN (Floating-Point Binary Constant)

These constants are punched in the same manner as floating-point decimal constants.
They are converted to floating-point binary form and normalized by Assembly. Each con-

stant may contain up to 13 signed decimal digits and may range in value approximately from

10—78 to 1076 (16-65 63 -260 to 2252

to 16 7). This is equivalent to the range of 2 . In floating-

point binary form, the exponent represents a power of 16, Unsigned constants are considered

positive.
ARGUS &*
PROSLEM PROGRAMMER DATE PAGE OF
| LOCATION . j5|;i COMMAND CODE 5, sc 2 A ADDRESS arfas 8 ADDRESS 5152 C ADDRESS vy m"_ufu:‘ .,: ,: ks m
LN Y- aca; ' '/'lell‘) o +1/ 23'. fISLVE'f'I'S',‘-/Zlf-'B’?'E‘-"Z'ov,'I#Ia'S 6./2389 ‘‘‘‘ F‘ﬁ*‘ﬁ
P -

EBC (Extended Binary Constant)

Extended binary constants are punched in the same format and have the same range of
values as floating-point binary constants. Each constant may contain up to 25 signed decimal
digits. These constants are converted intonormalized, double-precision, floating-point bin-
ary numbers, retaining 80 binary digits of the mantissa. Assembly stores the high-order
40 bits, with proper exponent and sign, as one machine word. It stores the low-order 40

bits, with the same sign and an exponent 10 less than that of the high-order word, as the

following word.

ARGUS =v°

PROBLEM PROGRAMMER DATE

PAGE oF____
. 5]
, LOCATION ol;; COMMAND CODE 5, ¢l 24 A ADDRESS 37i3 B ADDRESS ¢ lg C ADDRESS il e e
e T ~ = v st — T T]
Y| FBcoN £BC +123.956£175,-(12489F-20,1485|6.12389 .
=S S — el i

66

SECTION IX. CONSTANTS

Control Constants

The Assembly Program recognizes the following control constants:

SPEC special address M mixed

CAC complete address TAC tape address
MASKBASE mask base LINK linkage
CONTROL program control SEGNAME segment name

SUBCALL subroutine call

These constants are punched one to a card.

SPEC (Special Address Constant)

A special address constant specifies an address to be stored in special register format.
If the location field contains a special register tag (see page 18), this constant is loaded
directly into the designated register. Otherwise, it is allocated normally in memory in
the proper form for transfer to a special register (or for comparison with the contents of
a special register). As already noted, a special register has the capacity to store a sign,

a bank or group indicator, and a subaddress.

The A and B address fields are not used in a special address constant. The sign of
the specified address may be written in the S/C column. If no sign is included, a positive
sign is assumed. If no information follows the constant code, the contents of the C address
field are interpreted as a complete address which may be specified in several different ways:

1. An integer up to 16, 383;

2. A symbolic tag which has an absolute assignment, with or without an
address modifier in the range %16, 383, If the tag has both an absolute
and a complex assignment, the absclute assignment is used;

3, C, with or without an address modifier in the range *16, 383, C, is
replaced by the current contents of the CLC;

4, X, with or without an address modifier in the range *16, 383. X, is
replaced by the current contents of the XLC; or

5. Blank which is replaced by a bank indicator and subaddress of all zeros.

If the constant code is followed by a comma, a ''G', and a group indicator (0-7), the
C address field is interpreted as a special register address which may be specified in
several different ways:

1. An integer up to 2047;

2. A symbolic tag which is equated to an integer, with or without an address
modifier in the range 16, 383, provided that the result does not exceed 2047;

3. A direct (absolute or mnemonic) special register address or an indirect
address;

67

SECTION IX. CONSTANTS

4, A tag which has a special register assignment or a complex assignment; or

5. Blank which is replaced by a special register address of all zeros.

Any reference to the read-write address counters associated with a tape or peripheral
control unit must be relocated independently of other references to special register groups.
These counters are addressed using special address constants with indexed special register
addresses (see page 25). The constant code (SPEC) is followed by a comma and the control
unit indicator (A-H) corresponding to the desired counter, The C address field may contain
any of the above formats, but should result in a configuration that can be used successfully
as the index register contents in an indexed special registér address., Assembly combines
the subaddress portion of this information with the group indicator which corresponds to the
specified control unit indicator to form a complete address. Normally, if a SPEC constant
designates a control unit indicator, the C address field contains either the direct address of
the desired counter, an indirect address which references the desired counter, or 0. When
a SPEC constant of this type is stored in an index register, it can be used with an indexed

special register address of the proper type to address the desired read-write counter.

The special address constant is also used to set up the stopper address in special
register format, as mentioned in Sections V and VI. In this case, the constant is written
with the symbolic tag STOPPER in the C address field and no information following the

constant code.

ARGUS &

PROBLEM © PROGRAMMER DATE PAGE [S

| LOCATION jol;; COMMAND CODE ,, /cu A ADDRESS 37|38 8 ADDRESS 5182 C ADDRESS s u“tuf“:‘ ,:,: K$ 30
T T T T LENE S S st B B B B S A LENNN B B B S B B B B B M S EEL A S E R R B L B S L L R e

'\ z,RZ SPEC PAYROLL '
|
T
2 SPEC, 65 z,¢s5¢ I
L
i
3| oz, Xt SPE c STQPPER I
1
4 SPEC,A o i

B S——

The first special address constant above loads special register R2 of the controlling
group with the memory location address assigned to the tag PAYROLL. This tag must
appear in the location field of another card. The second constant stores the address of
the cosequence counter of group 5 in special register form. The third stores the complete
address of the stopper location in index register 1 of the controlling group. The last con-
stant stores a complete address consisting of a plus sign, the group indicator which corres-

ponds to control unit indicator A, and a subaddress of all zeros.

68

SECTION 1X. CONSTANTS

CAC (Complete Address Constant)

A complete address constant specifies up to three complete addresses to be stored in
one memory location. The constant consists of three 16-bit groups, each containing a
sign, bank indicator, and subaddress in special register format. It is used to store addresses
which are to be transferred to special registers, but it may not be compared directly with

the contents of a special register, unless the left-most two addresses are all zeros.

The three addresses which are to be stored in the left-most, middle, and right-most
groups are punched in the A, B, and C address fields, respectively. Each address may
be specified as an integer (up to 16, 383) or as a symbolic tag, with or without an address
modifier in the range %16, 383, If a tag is written, it must have an absolute assignment.

If it has an additional complex assignment, the absolute assignment is used. If any field
is left blank, the corresponding group will contain all zeros. The S/C column may con-
tain a sign to be included in all of the three addresses which are not blank, If no sign is

written, a plus sign is assumed.

Note that the address written in the A address field can be stored in a special register
by means of a 32-bit shift to the right, the address in the B address field by means of a
16-bit shift to the right, and that in the C address field by means of a transfer instruction.

ARGUS =i

PROBLEM PROGRAMMER DATE PAGE CF

REMARKS
| LOCATION |pl;; COMMAND CODE ,,F/c 24 A ADDRESS 3738 8 ADDRESS ullz C ADDRESS 55[[59 Live_wuwern 73[74 80 |
! T ;
! CAC PAYRO UL 4678 | Hours-653 | X
2 CAc - INVENTRY t TooLs | !
T 1 I !

The first constant results in a word containing, frorﬁ left to right, the complete address
assigned to the tag PAYROLIL, the absolute address 4678 and the address 653 before that
assigned to the tag HOURS., All three addresses have positive signs. The second constant
results in a word containing, from left to right, an address of all zeros and the addresses
assigned to the tags INVENTRY and TOOLS. The addresses in the B and C address fields

are combined with negative signs.

MASKBASE (Mask Base Address Constant)

A single setﬁng of the mask index register (MXR) stores two mask base addresses: the
base of a group of up to 32 field masks and the base of a group of up to 64 shift masks. These
two addresses must be in the same bank, as the mask index register contains only one bank

indicator which is used with both bases.

69

SECTION IX, CONSTANTS

The MASKBASE constant contains a shift group number in the A address field and a
field group number in the B address field, The C address field and the S/C column are not
used. This constant results in a special register word containing the base addresses of
the two groups specified, in the format required by the mask index register. The safest
way to insure that both base addresses are in the same memory bank is to write the num-
bers of two groups which are specified by the same MASKGRP instruction, or which are

at least in the same subsegment.

If the MASKBASE constant is tagged Z, MXR in its location field, the mask index
register will be loaded directly. Otherwise, the MXR must be loaded by means of a pro-
grammed transfer, Any reference to a mask in a given group must be preceded by the
coding which sets up the MXR with the base address of that group. If the programmer
desires to change only the shift mask base in the MXR, for example, he may load a
MASKBASE constant containing the new shift group number and repeating the previously

loaded field group number.

In order to give the programmer more control over the allocation of masks, it is
possible under certain conditions to set up a mask group without using the MASKGRP
instruction and without designating the masks by mask tags. It is the programmer's
responsibility to insure that the masks in such groups are stored in consecutive loca-
tions and that the rules governing mask base addresses are met. (The SETLOC or
MODLOC instruction can be used to comply with these modular restrictions.) Mask
groups which are set up in this manner can be referenced by loading the MXR with a
MASKBASE constant which contains the tag of the shift mask base in the A address field
and the tag of the field mask base in the B address field. The masks themselves may be
tagged (without mask indicators) and referenced symbolically in ghift and field instruc~
tions in the normal manner. These tags must have absolute assignments; if they also
have complex assignments, the absolute assignments will be used. Address arithmetic
may be used in referencing masks of this type, as well as in the A and B address fields
of the MASKBASE constant. Moreover, this constant may specify one mask group sym-
bolically and the other by group number, provided that both are in the same memory
bank. This method of setting up mask groups may not be used in any segment which
includes subroutines, macro routines, or generated masks. Under any of these conditions,

the MASKGRP instruction must be used.

70

SECTION IX. CONSTANTS

ARGUS &

PROBLEM PROGRAMMER DATE PAGE [o] S

| LOCATION o|;; COMMAND CODE ns 2 A ADDRESS 7|38 8 ADDRESS 5182 C ADDRESS ss[e8 m"wf“:“ ,: ,2 L m
! z',/'nx/(' MASKBASE ' s,lf,; T H'i"'”ﬁﬂ“
2 MASLBASE 5,1 F, 2 |
3 TX c, -1 z, MXR ;
4 Z, MXR MASK BASE SBASE F BAsE :

— T~

The first constant above results in a special register word containing the base addresses
of shift group 1 and field group 1 in MXR format, which is loaded directly into the mask
index register. Later, if it is desired to set up the MXR so that the program can reference
masks in field group 2, continuing to reference shift group 1, the second constant may be
transferred into the MXR by means of a TX instruction, as shov}n. The last constant illus-
trates the special use of the MASKBASE constant when the programmer assigns the mask

group bases and no MASKGRP instruction is used.

CONTROL (Program Control Constant)

A program control constant may be used as a mask for examining the contents of the
program control register (PCR). If the constant is to be used for examining the program
demand bits, the bisequence bits, or both, no information follows the constant code. The
group indicators of up to seven control groups whose program demand bits are to be examined
are written in the A address field, separated by commas. The group indicators of up to
seven groups whose bisequence bits are to be examined are written in the B address field,
also separated by commas. The resulting constant will contain binary ones in the bit

positions corresponding to the specified positions of the PCR.,

If the program control constant is to be used for examining the buffer interlock bits,
the constant code is followed by a comma and a "B" (for buffer). The indicators (A-H) of
up to seven control units whose input buffer interlock bits are to be examined are written
in the A address field; those of up to seven control units whose output buffer interlock bits
are to be examined are written in the B address field, all separated by commas. The re-
sulting constant will contain binary ones in the bit positions corresponding to the specified

positions of the PCR.

71

SECTION IX. CONSTANTS

ARGUS =

PROBLEM PROGRAMMER DATE PAGE (o] S
LOCATION COMMAND CODE 7 A ADDRESS B ADDRESS C ADDRESS REMARKS

| 10[11 22(/Ci 24 37)38 5i[82 A;oo UNE Numeer 73(74 80

T T LN N B S S e S B B B S e e e e AL S s B s e e
' CONTROL 1,2 2,7 !
T
2 |
- :
3 . COMTROIIB ﬁ, c,0 E,G !
!

i SN

The first program control constant above generates a mask to examine program demand
bits 1 and 2 and bisequence bits 2 and 7. The second generates a mask to examine the input
buffer interlock bits for control units A, C, and D, and the output buffer interlock bits for
control units E and G. The contents of the PCR must be transferred to a memory location

by means of a program control instruction (see page 50) before they can be examined.

M (Mixed Constant)

A mixed constant contains four fields, The constant may include octal, decimal, or
alphanumeric characters or any valid address format, but each field may contain only one
type of character or one address. '"M' is written in the command code field followed by a
comma. The remainder of the command code field and the three address fields correspond,
respectively, to the four 12-bit groups in a Honeywell 800 word (see Figure 2, page 8),

Each of these fields may contain one of the following:

1. An "A'", a comma, and two alphanumeric characters;

2. A "B'", a comma, and four octal characters;

3. A "D'", a comma, and three hexadecimal characters; or
4, Any valid address format described in Section V.

An exception is the command code field, which may not contain a special register address.
An "S" or a "C" in the S/C column results in a 0 bit or a 1 bit, respectively, in bit position
one, overriding whatever the constant puts in this bit position. A blank S/C column is
ignored. Note that if one or more address fields contain special register addresses, the

left-most 12-bit group may not contain the configuration indicated in the command code field.
A mixed constant can be used to store one or more addresses for use in setting up a
program in memory. If a mixed constant contains no symbolic tags, it is actually a data

constant and can be used to specify a data word in compressed alphanumeric form.

The first mixed constant in the following example is stored in memory as decimal 009,

followed by the subaddress assigned to the tag AB+45, followed by 24 binary ones.

72

SECTION IX. CONSTANTS

ARGUS &

PROBLEM PROGRAMMER DATE PAGE OF
| LOCATION o/, COMMAND CODE z | 24 A‘ AD?R'ESE e 'a;A'DD‘lE'ss‘ 1L T '?‘API?RFSf _ el H“wa_'z:‘ ,:,: ks M
! m,p,009 ABtS 88,7777 8,1717 ‘
2 | M neaT o INPUT 2 p,586 oureuT | E
3 M,A,JK A, M GROSSPAY o, 37]I
—_— T

TAC (Tape Address Constant)

This constant is used to specify up to eight tape or peripheral codes to be stored in
one memory location. The codes (AA-HH) are written starting in the A address field,
separated by commas, and continuing through as many consecutive columns as necessary.
The resulting machine word contains the corresponding six-bit peripheral addresses justified
to the left, Any unspecified codes to the right of the last code written are filled with binary
ones, Any unspecified codes to the left of the last code written should be specified as GG.

ARGUS =

PROBLEM PROGRAMMER DATE PAGE OF
3 REMARKS
. LOCATION |o|;; COMMAND CODE 5, P¢| 24 A ADDRESS 373 8 ADDRESS 5152 C ADDRESS o858 womaen T[4
- g T 7 T '———r—v—v—l—r—v—_———'#;
! TAC AA,AD,B”,GG,GG/HA/GC :
| S !

LINK {(Linkage Constant)

The linkage constant is used in the Executive macro routine read segment (see page 30).
The C address field contains the link tag which the programmer writes in the B address field
of the read segment instruction. Address arithmetic is not permitted. The A and B address
fields are not used. The link tag must have a memory location assignment; if it has an
additional complex assignment, the memory location assignment is used. The linkage con-
stant is interpreted by Executive, and only by Executive, as the starting location of the next
segment to be loaded., It is loaded by Executive in special register format, with the assigned
value of the tag in the bank indicator and subaddress positions. The programmer is not re-

quired to write linkage constants unless he is writing additional Executive macro routines.

SEGNAME (Segment Name Constant)

The segment name constant is used in the sort routine calling sequence. It is an alpha-
betic constant containing the name of the segment in which it appears., The programmer is
not required to write segment name constants unless he is writing a macro routine for use as

a sort routine calling sequence.

73

SECTION IX. CONSTANTS

SUBCALL (Subroutine Call Constant)

The subroutine call constant is used in all macro routines which serve as calling
sequences for library subroutines (see Section XIII). ARGUS replaces this constant with
a special address constant containing the address of the subroutine entry. The program-
mer is not required to write subroutine call constants unless he is writing a macro routine

for use as a subroutine calling sequence.

74

SECTION X
MASKING

Many of the preceding sections have discussed masking since this subject relates to most
aspects of the assembly language. As a result, the references required for a firm understand-
ing of masking are found in widely scattered points throughout the manual. The present section

summarizes and illustrates the specification and use of masks in assembly notation.

If an instruction in a program is to operate on part of a word while ignoring the rest, that
instruction must use a word called a mask. This is a 48-bit word containing binary ones in the
bit positions which the instruction is to examine or use and zeros elsewhere. Instructions

which use masks have, in effect, a fourth address for the purpose of referencing the mask.

Many of the machine instructions in the general group can be performed under the control
of masks. Such instructions are called field instructions. In addition, all of the shift instruc-
tions require the use of masks in their execution. Masks may be specified by the programmer,
stored in memory with the proper mask tag, and referenced in the command code field of either

a field or a shift instruction.

Designated Masks

If the word +58393857 320’15 stored in memory and the programmer wishes to work only
with the low-order four digits, he may write a mask which contains binary ones in the low-
order 16 bit positions. Such a mask could be written as a decimal constant and tagged, for
example, MASK1l. The tag should be preceded by S, F, or B, to designate whether it is to

be used with shift instructions, field instructions, or both.

ARGUS =

PROBLEM i PROGRAMMER DATE PAGE [T —
3 T REMARKS
1 LOCATION |ol;; COMMAND CODE [/l 24 A ADDRESS 37)38 8 ADDRESS sils2 C ADDRESS P T M
'\ B,MASK I PEC 000000006GG G | : ,
: }

This is a mask containing 16 low-order 1 bits te be used with both shift and field instructions.
Reference to this mask could be made in the command code field, where the tag MASKI would
be separated from the operation code by a comma, or in any of the address fields. When the
mask is referenced in the command code field, it is used as a mask, and when it is referenced

in an address field, it is used as an operand.

Exceptions are the general instructions substitute (SS) and extract (EX), which always refer-
ence a mask in the B address field. However, since the mask is not referenced via the mask
index register, it need not have a mask tag nor be stored as part of a mask group.

75

" SECTION X. MASKING

Generated Masks

Alternatively, in any field or shift instruction, the programmer may specify information |
from which ARGUS can generate masks during assembly. This information includes the num-
ber and type of characters in the masked field, the position of the left-most character in the
field, and the position(s) of any sign bit(s) which is attached to the field. The use of generated

masks is limited to alphanumeric or hexadecimal fields of consecutive characters.,

To generate a decimal mask for the low-order four digits and the sign of the word
+58393857320 the programmer would write the command code in this manner:
TSD, 9,4, S

This tells Assembly to generate a mask containing ones in the bit positions to be examined and
to put the relative address of this mask in the operation code., When this instruction is execu-
ted under control of the generated mask, hexadecimal digits 9 through 12 and the sign will be
transferred from the location specified in the A address field to the location specified in the B
address field. A generated mask may be used with a field instruction only if the type of charac-
ters in the masked field is inherent in the operation code. (See page 40 for further discussion

of generated masks.)

Mask Grouzs '

Masks are stored in memory in groups. Machine instructions reference masks relative
to an address called the base address of a mask group. A field mask group may contain up to
32 masks and must have d base address which is a multiple of 32. A shift mask group may \
contain up to 64 masks and must have a base address which is a multiple of 64. The program- l

mer may group his masks in consecutive locations and assign valid base addresses (using

SETLOC or MODLOC) under certain circumstances. When masks are allocated by the pro-
grammer they need not be marked by mask tags. Alternatively, the programmer may direct
Assembly to allocate mask groups by using the control instruction MASKGRP. In any segment
which contains subroutines, macro routines, or generated masks, Assembly must control

the allocation of mask groups.

If the MASKGRP instruction is used, it must appear before any masks are generated,
designated, or referenced within a segment. The only exception is at the beginning of a
segment, where any designated or generated masks are automatically assigned to field
and shift groups O if they are not preceded by a MASKGRP instruction. This instruction
may include a shift group number, a field group number, or both. It directs Assembly:

1. To assign a valid base address to each specified group;

2. To allocate all subsequent designated or generated masks to the proper

76

SECTION X. MASKING

specified group until another MASKGRP instruction specifies a group
of the same type; and

3. To obtain all masks referenced from the proper specified group until
another MASKGRP instruction specifies a group of the same type.

The base address of a mask group is not necessarily the starting address of that group.
When the first mask in a group is processed, Assembly attempts to assign the last pre-
vious address of the proper modular value (32 or 64) as the base address of that group.

This involves counting the masks in the group to determine whether they can all be allocated
before another address of the same modular value is reached. If this can be done, the base
address is assigned as above. If not, the next address of the proper modular value is

assigned as the base address of the group.

The MASKGRP instruction may also specify the subsegment in which the mask group(s)
is to be stored. If no subsegment is specified, the masks are stored in the subsegment
which is in control at the end of the segment. A pair of groups having the same group
number must be stored in the same subsegment, When masks are allocated b.y Assembly,

each designated mask must be so marked by preceding it with a mask tag.

If any type B masks are designated, Assembly sets up overlapping shift and field
mask groups. A pair of overlapping groups can store 32 field, shift, or both masks, plus
an additional 32 shift masks. If mask groups are allocated by Assembly, the first B mask
must be preceded by a MASKGRP instruction which specifies identical shift and field group
numbers. If they are allocated by the programmer, the first B mask must be preceded

by the necessary control instructions to set up overlapping groups.

Referencing Masks

Both shift and field instructions reference masks by means of a special register
called the mask index register (MXR). This register stores the base subaddress of a
shift group, the base subaddress of a field group, and a bank indicator to be used with
both subaddresses, all according to a special format. Before any mask in a given group
can be referenced, the base address of that group mmust be stored in the MXR by means
of the control constant MASKBASE, If mask groups are allocated by Assembly, the
MASKBASE constant is written with the group numbers of the desired shift and field
groups. If mask groups are allocated by the programmer, this constant is written
with the tags which represent the base addresses of the desired groups. In either case,
the MASKBASE constant must specify both a shift group and a field group. If only one
subaddress is to be changed in the MXR, the current group of the opposite type is

77

SECTION X, MASKING

respecified, The MASKBASE constant may be loaded directly into the MXR or moved there
by a programmed transfer. Since the MXR contains only one bank indicator, shift and

field mask groups which are referenced concurrently must be stored in the same memory

bank.

N§te that before a mask in a given group can be referenced, it is necessary to set up
the MXR with the base of that group. If MASKGRP instructions are used, it is also necessary
to specify the desired group in a MASKGRP instruction. The control instruction MASKGRP
should not be confused with the MASKBASE constant, The MASKGRP instruction directs
Assembly in ailocating mask groups dand assigning their base addresses. The MASKBASE

constant, on the other hand, stores two mask base addresses in the special MXR format.

ARGUS &

PROBLEM PROGRAMMER - DATE PAGE [o] —
, LOCATION |g|y; COMMAND CODE 5[4 A ADDRESS 37i3 B ADDRESS g5 C ADDRESS e

' o .SIETL;‘C,Z" R R wﬁ '

2 MASK gRP 5,1 ! E

3 TX AB Z,MxR ;

‘ pA, M! A 8 c ;

5 SWE, M3 ' 0 2z D I
S T s B R e SV pupu—

3 E . == —_— 4]L

7 F,o M1 PEC 000000GGGGGGH |

8 s, M3 PEc 006G00 GGOOOY i

’ AB MASK BASE s,/ Al , J|
e~ ——— —t IS R

Figure 9. Designation and Referencing of Masks

EXAMPLE: The coding shown in Figure 9 illustrates the designation of masks and their
use in both shift and field instructions. This coding represents only a portion of a seg-
ment. The first instruction directs Assembly to begin allocation of subsegment 2. The
MASKGRP instruction assigné the following designated masks to field group 1 or shift
group 1 and tells Assembly that the following instructions may reference masks from
these groups. A one-word transfer is performed to load the MXR. This is followed by
two program instructions which utilize field mask M1 and shift mask M3, respectively.
Masks M1 and M3 are designated at another point in the coding, together with the
MASKBASE constant which is used to set up the MXR with the base addresses of field
group 1 and shift group 1.

78

SECTION X. MASKING

Subroutine and Macrocoding Masks

The use of masks in subroutines and in macro routines (see Section XIII) varies with
the type of routine. The following cases may be distinguished:

1. Macro routines in the library may contain their own masks. If a macro
routine is called in a segment, any masks which it contains are auto-
matically stored in the current groups of main program masks and must
be considered in figuring the storage total of these groups. Their
positions within the mask groups depend upon the position of the macro
instruction relative to the main program masks.

2. Dependent subroutines are similar to library macro routines in that
they may contain masks which are included in the current groups of
main program masks.

3. Independent subroutines contain all the necessary coding to designate
their own masks, set up the mask index register, and restore this
register before returning control to the main program.

Mask Pools

To save memory space by eliminating duplicate masks, certain of the masks belonging
to a group may be collected into a mask pool during assembly. All generated masks, macro
routine masks, and masks appearing in dependent subroutines, which are assigned to a specific
field or shift mask group, are automatically included in the pool for that group, and duplicates
among these masks are eliminated. A designated mask is included in the pool of the group to
which it is assigned if a "C'" is written in the S/C column and if the mask is specified as a data
constant with an S, F, or B in the location field (a B designated mask is placed in the field mask
pool). As a result, it will not be duplicated within the same group if a library macro or a de-
pendent subroutine uses the same mask or if a mask having the same binary configuration is

generated.
All masks which remain constant should be placed in the pool, in case they are used by

library routines. However, any mask which is mcdified during the execution of a program

should be withheld from the pool.

79

SECTION XI
ARGUS UPDATING FUNCTION

As stated in Section I, the ARGUS Assembly Program maintains a symbolic program
tape (SPT) which contains a file of programs undergoing checkout. Every program on the
SPT is in the original assembly language, thus allowing modifications or corrections to be
made to the program in this language., The SPT also contains the test data and debugging
pseudo instructions (derails) for each program, which may also be modified or corrected

during an assembly run. The structure of the SPT is described in Appendix B.

In order to maintain this file, the Assembly Program accepts as input the existing
SPT, a deck of cards, and/or one or more reels of tape containing card images. The card
or tape input represents new ARGUS programs to be assembled, corrections to existing
programs on the SPT, and output (new programs) from the compilers. The outputs from
the updating run are a new SPT, requested printed listings and analyses of programs, re-
quested punched cards in ARGUS format, and a list of the programs and segments on the

new SPT., These outputs are described in Section XII,

A group of control instructions is used to direct the ARGUS updating process. These
control instructions are punched one per card, like machine instructions, but they are not
assembled by ARGUS to produce machine words in a program. Each instruction is identified
by an operation code of up to eight alphabetic characters which is punched in the command

code field.

ARGUS

This instruction must be the first card of every ARGUS input deck., The A and B
address fields are not used. The C address field may contain a code describing a standard
assembly equipment configuration to be used for all programs which do not specify a particu-
lar configuration code (see PROGRAM instruction, page 86). A detailed description of this
configuration code is contained in Appendix C. If the C address field is blank, ARGUS
assumes the standard configuration to be that of the machine on which the updating run is

being made.

Program Directors

A program director card marks the beginning of input for the program whose name

is specified in the A address field. The director cards are distinguished by the prefix "U, "

81

SECTION X], ARGUS UPDATING FUNCTION

punched in the first two command code columns (columns 11 and 12). The five types of
director cards described below are distinguished by the command code following this prefix.
The location field, the B and C address fields, and the remarks field are unused except as

otherwise noted.

The program name may consist of from one to eight characters. Leading or imbedded
spaces are eliminated during input processing., This processing includes checks to prevent

duplication of program names on the same tape.

Any input between the ARGUS card and the first program director card is discarded
during input processing. All input for each program must follow its program director card,
and all cards following a particular program director card are included as part of that pro-

gram until the next program director card is encountered.

U, ELIMPROG: This card directs ARGUS updating to eliminate the program named in the
A address field from the new symbolic program tape. The S/C and line number fields are

not used.

U, REASSEMB: This card directs ARGUS to reassemble the program named in the A
address field, using the old program on the symbolic tape as a major input to assembly.
Any changes which follow this director card are merged with the existing program during
updating. The resulting program is reassembled and written on the end of the new sym-

bolic tape, and the old version of the program is eliminated.

If the S/C column is blank, any scientific instruction in the program is replaced by a

call for a library routine. Otherwise, scientific operation codes are translated normally.
If the line number field is blank, the line numbers resulting from merging the inputs
are preserved in the reassembled output. If any legal characters other than blanks appear

in the line number field, ARGUS reassigns line numbers in the reassembled program.

U, CORRECT: This card directs ARGUS to correct without reassembly the program speci-

fied in the A address field. S/C and line number field options are the same as on REASSEMB

cards.

Correction is a process by which certain classes of simple changes can be made to

the old program without requiring the more extensive reassembly process, Correction is

82

SECTION XI, ARGUS UPDATING FUNCTION

restricted to changes in test data, derails, and certain kinds of one-for-one program word
replacements which do not require reallocation of addresses. Wherever possible, the pro-
grammer should elect to correct rather than to reassemble his program in order to save
computer time. However, if the Assembly Program detects a situation which violates the
correction rules, the "CORRECT'" instruction is revised and the program is reassembled
instead. The situations in which revision will occur are as follows:

1. Occurrence of one or more symbols in the address fields of EQUALS
or RESERVE instructions in the program;

2. Reference to more than 100 different symbolic tags in corrections to
any segment of the program;

3. Any reference to a tag which was not defined when the program was
last assembled;

4, Any reference to a tag which was defined by a TAS instruction in the
last previous assembly;

5. Insertion of a new line between existing lines, before the first line
or after the last line of any segment;*

6. Deletion (as opposed to one-for-one replacement) of any line;*

7. Addition or elimination of any segment;

8. Replacement of a line by a new line, where the location fields are

not identical;*

9. Use of the instructions EQUALS, RESERVE, EVEN, SIMULATE,
MODLOC, or MASKGRP, except to replace an identical line;

10. Use of the instructions SETLOC, ASSIGN, TAS, or the LINK constant;
11. Call for a subroutine which was not called in the last previous assembly;

12. Use of mask generation parameters in a field or shift instruction unless
the instruction being replaced generated an identical mask;

13. Use of a mask within macrocoding, unless the instruction being replaced
used an identical mask;

14. Replacement of any line by another line where the numbers of machine
words produced by each line are not identical (e.g., replacement of a
macro routine by another macro routine not of the same length,
replacement of a FLBIN constant by an EBC, or replacement of a line
containing constants by one containing an unequal number of constants);

15. Use of a MASKBASE constant with S,n or F,n in the address fields. Tags
must be used even if the constant being corrected used S,n or F,n. Note
that a group may be specified by any tag assigned within that group; and

16. Since a printed listing is not provided for programs undergoing correction,
the occurrence of any error on an input card will cause the program to
be reassembled and listed.

5 :
Exception: Remark cards and words to be loaded into special registers (Z, -in location field)
may be inserted, deleted, or replaced by other remarks or special register cards even
when the location fields are not identical.

83

SECTION XI., ARGUS UPDATING FUNCTION

S/C and line number field options on CORRECT cards are the same as on REASSEMB

cards.

U, NEWVERS: This card directs ARGUS to make a new version of the program whose name
is specified in the A address field, giving it the new name specified in the B address field.
The new name obviously must not duplicate the name of any other program on the symbolic
tape. Except in name, the new program may exactly duplicate the old one, or it may be

modified to any desired extent by the input following the NEWVERS card.

Regardless of the degree and nature of change, all new versions are put through the
reassembly process. In this respect, NEWVERS has the same effect as REASSEMB except
that the old version is not automatically eliminated unless ARGUS is specifically instructed x

to do so by an ELIMPROG card.

S/C and line number field options on NEWVERS cards are the same as on REASSEMB '

cards.

U, NEWPROG: This card directs ARGUS to assemble the following input as a new program.
The name of the program is specified in the A address field, Aside from the name duplication

checks, no reference is made to the contents of the old symbolic tape.

S/C and line number field options are the same for NEWPROG cards as for REASSEMB

cards.

Programmer Macro Routine Markers

Two instructions, MACRODEF and FINIS, are used to mark the beginning and end,

respectively, of programmer-defined macro routines within programs.

MACRODEF: This instruction must precede each programmer macro routine. The location,
address, and line number fields are not used. The S/C column may be used to specify one
of the following card check options:

1. If the S/C column contains an 'I" (Identification), the contents of columns
74 through 80 of the remarks field are stored (in unjustified form and
without space suppression) and used to check all succeeding cards of
this programmer macro routine., If the corresponding columns of a
succeeding card in this macro routine do not match the stored value, the
card is discarded during assembly.

2. If the S/C column contains an "'S'" (Sort), the contents of the first five
line number columns (66-70) of each card in the routine are converted

84

SECTION XI. ARGUS UPDATING FUNCTION

to a binary number and used as a low-order key, Otherwise, the cards of
this macro routine are assigned keys which will preserve the order in
which they occur.

3. If both identity checking and sorting are desired, the S/C column contains
a '"B", If neither is desired, this column is left blank.

The cards following the MACRODEF instruction represent the master macro instruction
and the actual macro routine. They are described more fully in Appendix A on "Writing Macro
Routines'., These cards are subject to the sorting and identification check options specified
in the MACRODEF card. If the sorting option was specified, columns 66 through 70 must

contain the serial number of each card within the macro routine.
FINIS: This instruction signals the end of a macro routine. An identification check on the
contents of the remarks column (74-80) of the FINIS card is made, provided that this option

was specified in the MACRODEF card.,

Segment Directors

The three types of segment directors defined below all mark the beginning of input for
a particular segment of the program. The name of the program to which the segment belongs
is written in the A address field and is subject to the same conventions as on the program
director cards previously described. The B address field must contain the segment name,
which may contain a maximum of seven characters, but which is otherwise handled in the

same manner as a program name.

ELIMSEG: This card directs ARGUS to eliminate the specified segment from the new
symbolic tape. The names of the program and segment are specified in the A and B address
fields, respectively. The S/C and line number fields are not used in this card. No detail

cards should follow this director.

SEGMENT: This card marks the beginning of input for the specified segment. The program
and segment names are specified in the A and B address fields, respectively. The location
and C address fields are not used, ARGUS determines whether this input represents changes
to an existing segment or an entire new segment by comparing the program and segment names

against a directory of the old symbolic program tape.

The S/C column may be used to specify one of the following handling options:

1. If an "I" is written in the S/C column, the contents of columns 74 through
80 of the remarks field are used to check the identity of all following
detail cards up to the next program or segment director, just as in the

85

SECTION XI. ARGUS UPDATING FUNCTION

MACRODEF instruction.

2. If an "S'" is written in the S/C column and the input is a new segment, the
contents of all eight line number columns (66-73) on the following detail
cards are converted to binary numbers which are used to sort these cards
within the segment. If the input represents changes to an existing seg-
ment, line numbers must be provided to identify the words to be changed
and this input is automatically sorted, regardless of the contents of the
S/C column.

3. If a "B" is written in the S/C column, both identity checking and sorting
are provided.

4, If the S/C column is blank and the input is a new segment, ARGUS generates
line numbers to preserve the existing order of the cards, providing spaces
for later insertion of changes as explained on page 16. As stated above, if
the input represents changes to an existing segment, it is automatically sorted.

The line number field of the segment instruction may be used to specify certain optional
outputs from the assembly process. These outputs, which are described in Section XII, may
be produced only when a segment is assembled or reassembled, not when it is corrected.
The following codes may be written in any combination, separated by commas. The order in

which they are written is immaterial, provided that they are written in the line number field.

Code Interpretation

S Produce a new symbolic card deck for this
segment from the updated SPT.

L Produce a symbolic listing of coding for this
segment, including all diagnostic printouts.

LS Produce a symbolic listing for this segment,
including diagnostic printouts for all definite
errors but suppressing printouts for possible

errors.

A:l Produce an analyzer of the coding for this
segment, including all diagnostic printouts.

AS1 Produce an analyzer of the coding for this

segment, including diagnostic printouts for
‘all definite errors but suppressing printouts
for possible errors.

PROGRAM: This card is a segment director of a special kind, used to introduce the first
(or only) segment of a program. It is identical in function to the SEGMENT instruction
(above) with the following exceptions:

1. The C address field may be used to specify an assembly equipment
configuration code for this program, according to the configuration
statement format described in Appendix C. If this field is blank,

lSince the analyzer includes a symbolic listing, it is never necessary to specify both.

86

SECTION XI. ARGUS UPDATING FUNCTION

the standard configuration is used (see the ARGUS card above).

2. If the program logic requires that tape units assigned to a common tape
control remain assigned to a common tape control, or if the program
containg any reference to a read-write address counter (RAC, DRAC,
WAC, or DWAC), the command code (PROGRAM) must be followed by
the suffix ', R". This suffix designates the so-called R restriction, which
directs the assignment of equipment codes by Executive, as described
in the Executive System Manual.

Test Data Directors

Test data belonging to a segment may appear anywhere within the input for that segment.

The Program Test System Manual should be consulted for a detailed description of the test

data cards which are summarized here.

TESTDATA: This card introduces a set of test data or changes which are to be applied to an
existing set. The location field contains the set number, in the range 0 through 7, the A

and B address fields contain the program and segment names, respectively, and the C address
field contains the first address of the read-in area in high-speed memory, expressed as an

absolute decimal address.
ELIMDATA: This card directs ARGUS to eliminate the specified set of test data from the
SPT. The location field contains the set number (0-7), and the A and B address fields

contain the program and segment names, respectively.

Test Data Detail Cards

1. Distributing Pseudo Instructions. Each distributing instruction contains in

its command code field an "X, '" followed by the operation code of the instruction.
The location field has the format s, r, p where s is the set number (0-7), r is the
record number (three decimal digits)and p is the instruction poéition number (01-20).
The cards are subject to the identification check of columns 74 through 80 as
specified in the TESTDATA card. A detailed description of the functions and

formats of these instructions is found in the Program Test System Manual.

2. Delete Distributing Pseudo Instructions. This card (X, DELETE) directs
ARGUS to delete one or more distributing instructions from a set of test data.
The location field contains s, r, p (set number, record number, and position
number of the first instruction to be deleted)., The A address field contains TO.
The B address field contains f, h, where f is the record number and h is the

position number of the last instruction to be deleted. This card is subject to

87

SECTION Xl. ARGUS UPDATING FUNCTION

the identification check of columns 74through 80 as specified inthe TESTDATA card.

3. Test Data Words. Each test data word card contains in its command code field
a D, and the name of an ARGUS data constant or mixed constant containing numeric
data in all fields. The card may contain several constants of the same type, as may
any constant card. The location field contains s, r, w, (set number, record num-
ber and data word position number for the first constant on the card). These cards
are subject to the identification check of columns 74 through 80 as specified in the
TESTDATA card. Test data words may be altered on a one-to-one basis during

an updating run.

4, Delete Data Words. This card (D, DELETE) directs ARGUS to delete
one or more data words from an existing set of test data. The location field
contains s, r, w, designating set number, record number and data word posi-
tion number of the first word to be deleted. The A address field contains "TO',
and the B address field contains f, h (record number and datd word position
number of the last data word to be deleted). This card is subject to the identi-

fication check.

Debugging (Derail) Pseudo Instructions

A complete description of the formats and functions of these instructions is found in

Section III of the Program Test System Manual. The sort and identification check options,

specified in the segment director card, may be used with these instructions; if the sort
option is desired, colummns 66 through 70 must contain the serial number of the instruction

within the segment.

ELIMDERL: This card directs ARGUS to eliminate the derail whose serial number is
specified in the first five line number columns. If these columns are blank, all derails
are eliminated from the corresponding segment. If the segment director card contains
an '"I" in the S/C field, a segment identification must be punched in columns 74 through_ 80

of the remarks field, The location and address fields are not used in this card.

Main Coding

Main coding refers to all instructions and constants belonging to a segment. The sort
and identification check options, as specified on the segment directors, may be used to check
all main coding cards. If the sort option is used, columns 66 through 73 on every card must

contain a line number representing the position of that card within the segment.

88

SECTION XI., ARGUS UPDATING FUNCTION

The line number field must indicate the words to be changed within an existing segment,
It may indicate the order of a complete new segment. ARGUS automatically generates line

numbers to preserve the original order of new segments if the sort option is not specified.

DELETE: This card directs ARGUS to delete lines of main coding from an existing segment on
the symbolic program tape. The line number columns specify the first line to be deleted. If
the A and B address fields are blank, only this line is deleted. If, however, the A address field
contains the word'"TO" and the B address field contains the line number of the last line to be de-
leted, ARGUS will automatically delete all intervening lines, provided that both specified lines
are contained in the same segment. Original five-digit line numbers may be punched anywhere
in the B address field; insertion line numbers must contain a decimal point to separate the high-

order five digits from the low-order three digits.

ENDARGUS
A card with ENDARGUS punched in the command code field must be used to signal the end
of the ARGUS input deck. The contents of all other fields on the card are ignored.

Ordering the ARGUS Input Deck

ARGUS automatically sorts the entire input deck into an order whichis convenient for up-
dating, but beforethe sorting canbeginthe deck must be in order accordingtothe following rules:

1. All cards belonging to one program must be together, preceded by a
program director card.

2. All cards belonging to a generalized programmer macro routine must
be together, bounded by MACRODEF and FINIS cards. The master
macro instruction must immediately follow the MACRODEF, and the
entire routine must precede the first macro instruction referring to it.

3. All cards (test data, information request pseudo instructions, and main
coding) belonging to a segment must be together, preceded by a seg-
ment director card. In other words, the only cards which may appear
between the program and segment directors are macro routines, but
macro routines may also appear after a segment director.

4, Test data detail cards must be preceded by a TESTDATA card, and
the first card which does not have an "X, ' or "D, " in the command
code field will signal the end of a group of test data cards. That is,
no card other than test data cards may appear within a group of test
data cards. :

5. If the sort option is not specified (i. e., the cards do not contain line
numbers) within a macro routine, the macro routine cards must be
in the proper order with respect to one another.

6. If the sort option is not specified for a new segment, the derail pseudo
instructions, as well as the main coding, must be in the proper order
with respect to one another.

7. Derail pseudo instructions may not appear within programmer macro
routines. The appearance of a program director, segment director,

89

SECTION Xl. ARGUS UPDATING FUNCTION

or MACRODEF card within the macro routine will terminate the routine.

ARGUS sorts the individual program decks so that updating for existing programs occurs

in the order in which the programs are stored on the SPT, and new programs follow in the

order in which they occurred in the input deck. If there is to be a new version of a program,

the updating for the new version precedes the updating (if any) for the old version. Within
a program, the segments are sorted so that updating for existing segments occurs in the
order in which the segments are stored within the program on the SPT, and new segments
follow in the order in which they occurred in the input deck within that program. If there
is an ELIMPROG or ELIMSEG card for the program or segment, that card will precede

any other cards for that program or segment.

Within each program, the program director card is followed by all programmer
macro routines belonging to that program (if any). The routines are in the order in which
they occurred in the input deck. The order within each routine is:

1. MACRODEF;

2. Master macro instruction;

3. Macro routine coding (If the ''S'" option is used, the coding is
ordered in accordance with the contents of columns 66 through
70, otherwise, it is in its original ordex.); and

4. FINIS,

The macro routines are followed by the segments of the program. For each segment,

the segment director card is followed by any test data for the segment. The test data sets
are in order by set numbers. Within each set the order is:

1. ELIMDATA;

2. TESTDATA; and

3. Test data detail words in order by record number. Within each
record, the distributing pseudo instructions (in order by instruc-
tion position number) are followed by the data words (in order by
data word position number). If there is an X, DELETE or D,
DELETE card, it precedes any other X or D card with the same
position number.

The test data is followed by the derail pseudo instructions. If the sort option was
specified, the derail cards are in order according to the contents of columns 66 through
70; otherwise, they are in their original order. If there is an ELIMDERL card in which
columns 66 through 70 are blank (eliminate all derails), this card precedes all other

derail cards. Any other ELIMDERL card precedes the derail card which has the identical

line number.

90

SECTION XI. ARGUS UPDATING FUNCTION

The main coding is the last element within the segment. If the sort option was specified,
these cards are in order according to the contents of colummns 66 through 73; otherwise,
they are in their original order, except that the END card is always the last card for the

segment.

Equipment Requirements for the Updating Run

The normal complement of equipment for the updating run includes a card reader, a
printer, and four magnetic tape units. Two tape units are used for the old and the new sym-
bolic program tapes and two are used for work tapes. A card punch may be added if the
input to the run includes any requests for punched card output. The input deck may be con-
verted off-line and then read from magnetic tape by ARGUS without the necessity of providing
an additional tape unit, unless the amount of input exceeds one tape reel. If either printing
or card punching is off-line, a fifth tape unit is required. However, in no case are more than
five tape units required by the updating run. Updating uses two banks of high-speed memory

and one group of 28 special registers and can be relocated for parallel processing.

N

SECTION XIl
OUTPUT FROM ARGUS ASSEMBLY OPERATION

The primary output of the ARGUS assembly process is a file of programs on magnetic
tape in both symbolic assembly language and machine language. Each program in this file in-
cludes relocation information and error information. The tape containing the program file is
called the symbolic program tape (SPT) and is the communication link between Assembly and
the other ARGUS systems programs (as shown in Figure 1, page 2). The SPT is used in the
following three ways:

1. It is the input to the next ARGUS updating run;

2, It is the source of information for the program test run (as described
in the Program Test System Manual); and

3. It is the source of information for the Executive scheduling run (as
described in the Executive System Manual).

In addition to the updated symbolic program tape, the programmer may direct ARGUS
to produce any or all of the following types of secondary output. The segment directors (see
page 85) are used to specify which, if any, of these secondary outputs shall be produced for

each segment assembled:

1. A complete printed listing of the assembled segment, including the line
number and the symbolic input form and machine form of each included
word, along with any errors detected during assembly;

2, A printed analyzer, including all of the information given in the listing,
pPlus a list of all references to each symbolic tag by line number;

3. A set of punched cards containing the entire segment in assembly lan-
guage, complete with line numbers and in the correct sequence.

ARGUS Listing
Each page of the ARGUS listing is headed by a line of print which includes the program

name, the segment name, and the page number. This is followed by a line which contains the
field headers for the various fields of the listing, These two header lines are included in the
sample output page shown in Figure 14, page 99. Each line of coding is printed in both the
symbolic language of the programmer and the resulting machine language. The line number
appears at the left of each line. In general, program words are listed in the format shown in
Figure 10. Exceptions are data constants, EQUALS and RESERVE instructions, and remarks
cards, which are listed in the formats shown in Figures 14 and 12. Note that if several data
constants are combined on a single input card, each such constant is listed as an individual
line of print and the line number is repeated as necessary. A derail instruction is followed
on the listing by a CAC constant which contains the addresses assigned to the symbolic tags

appearing in the derail. The CAC constant does not appear in the assembled program.

93

SECTION XIl. OUTPUT FROM ARGUS ASSEMBLY OPERATION

If a programming error is detected in a line of coding, the listing for that line includes
an asterisk preceding the line number. This line is followed in the listing by an error print-
out line which indicates the nature of the error(s). Each error is represented in the error
printout line by a key which is printed immediately below the field of the symbolic input word
in which the error is detected. The various keys which may be printed are described below

under "Programming Errors Detected''.

The ARGUS listing is followed by a list of the group numbers of all mask groups used by
the segment and the mask base addresses assigned to these groups. Finally, the names of all
subroutines which are called by the segment are listed, together with the starting address

assigned to each subroutine.

Analyzer

The analyzer is an optional index of every reference to every symbolic tag used within
a segment, If this option is requested, by means of the segment directors, the listing line
for every word which is tagged in the location field is followed by one analyzer line for each
program word which references the corresponding tag. The format of an analyzer line,
shown in Figure 13, includes the segment number, line number, and operation code (or con~-
stant code) of one program word which references the pertinent tag, with the tag itself appear-
ing in the same field in which it appears in the original word. If the reference includes ad-
dress arithmetic, the address modifier also appears in the analyzer line. Note that the sam-

ple output page shown in Figure 14 includes analyzer output.

If the analyzer option is requested, each mask group listed is followed by one analyzer
line for each reference to that group. (Here a reference to a mask group is the generation of
a mask in that group or the appearance of the group number in a MASKGRP instruction or a
MASKBASE constant, since all symbolic mask references have already been listed.) Next,
each subroutine listing is followed by an analyzer line for each call instruction to that sub-

routine. Finally, the analyzer includes an index of all references to peripheral addresses.

Programming Errors Detected

The types of programming and card punching errors which are detected during assembly
are listed in Figure 15. For each error detected, an error indication is recorded on the
symbolic program tape and printed as part of the ARGUS listing. The Assembly Program de-
tects errors which fall into two broad categories: definite errors and possible errors. The
error indications for definite errors are always printed, whereas the programmer may
specify on the segment directors that the error indications for possible errors are to be

suppressed,

94

g6

Print Related
Positions Card Cols. Field Description
S Error Indicator Asterisk indicates the presence of an error. MJWA#@”?(:
2-9 66-73 Line Number May be written by programmer or generated by ARGUS.
100 | eeee- Separator SPACE
11-20 1-10 Location Programmer Notation
24] eeee- Separator SPACE
22-33 11-22 Command Code Programmer Notation
34 23 s/C Programmer Notation
35 | eeee- Separator SPACE
36-49 24-37 A Address (Symbolic)
50-63 38-51 B Address (Symbolic) Programmer Notation
64-77 52-65 C Address (Symbolic)
78 | =mee-- Separator SPACE
79 | emeee- Bank Bank or group indicator of assigned location.
80-83 | @ eem-- Subaddress (Absolute) Subaddress of assigned location: decimal if men or locatlon, in
absolute ARGUS format (see below) 1f spec1a1 reglster. '
84 | =ee-- Separator SPACE SR
85-88 | @ eememe Op Address (Absolute) Absolute value (in decimal) of command code subaddress for shift,
simulator, and masked field instructions and mixed constants.
89-96 | @ —=mm- A Address (Absolute) Absolute value (in decimal) of address fields, right justified.
97-404 | @ ---=- B Address (Absolute) Complex address assignments shown in absolute ARGUS format.
as follows:
405-442 | cem-- C Address (Absolute) Direct memory location address 0199
Indexed memory location address 3,026
Special register address N, 04,02
Indexed special register address 3,N,14, 2
113 | eeee- Separator SPACE
114-120 74-80 Remarks Programmer Notation

Figure 10.

ARGUS Listing ~ General Format

“HX NOILI3S

NOILVY¥IdO ATIWISSY SNOYV WOUd LNdLNO

96

Print Related
Positions Card Cols. Field Description
1 | eeea- Error Indicator Asterisk indicates the presence of an error.
2-9 66-73 Line Number May be written by programmer or generated by ARGUS.
10 | eee-- Separator SPACE
14-20 1-10 Location P_rogra:n.mer Notation
24 | eeme- Separator SPACE
22-33 11-22 Command Code Programmer Notation
34-35 23 Separator SPACES
36-77 24-65 Constant Programmer Notation
8 | e=me- Separator SPACE
79 | e=--- Bank Bank or group indicator of assigned location.
80-83 [@ ----- Subaddress (Absolute) Subaddress of assigned location in decimal.
84-88 | @ ~---- Blank SPACES
89-94 [@ ce--- Op Code OCT (denotes octal nota:tion of machine word)
92-93 | @ eme-- Blank SPACES
94-97 | @ e=--- Op Address (Absolute) Bits 1-12 of machine word (in octal)
98 | —=--- Blank SPACE
99-102 | ew=-- A Address (Absolute) Bits 13-24 of machine word (in octal)
103 | eeee- Blank SPACE
104-107 | ~ew--- B Address (Absolute) Bits 25-36 of machine word (in octal)
108 | ee-e- Blank SPACE
109-1442 | ~-me- C Address (Absolute) Bits 37-48 of machine word (in octal)
113 | em=-- Blank SPACE
114-120 74-80 Remarks Programmer Notation

Figure 11.

ARGUS Listing - Data Constants

‘11X NOILD3S

NOILVYIdO ATEWISSY SNOYIV WOIL LNdLNO

L6

Print Related
Position Card Cols. Field Description
EQUALS AND RESERVE INSTRUCTIONS

1 | eeee- Error Indicator Asterisk indicates the presence of an error.

2-9 66-73 Line Number May be written by programmer or generated by ARGUS:
10 | eee-- Separator SPACE
11-20 1-40 Location Programmer Notation
24 | eeme- Separator SPACE
22-33 14-22 Command Code Pragrammer Notation
34-35 23 Blank SPACES
36-77 24-65 Expression Programmer Notation
78 | eeee- Separator SPACE
79] eeee- Bank Bank indicator or sign of assigned value.
80-83 | @ emm-- Subaddress (Absolute) Subaddress or integers ofiassigned value in decimal.
84-88 | @ cese- Blank SPACES
89-96 | eema- Complex Address Complex assignment in absolute ARGUS format (see Figure 10)

(Absolute) if tag also has a complex assignment.
97-443 | cee-- Blank SPACES
114-120 74-80 Remarks Programmer Notation
REMARKS CARDS

2-9 66-73 Line Number Written by programmer or generated by ARGUS.

25-404 1-80 Remarks Card image of remarks card.

Figure 12. ARGUS Listing - Equals and Reserve Instructions and Remarks Cards

"IIX NOILDO3S

NOILV¥3dO AT8WISSY SNOIY WO INdLNO

86

Print
Positions Field Description
1-24 Blank SPACES
25-34 Command Code Operation code (or constant code) of program word in which the tag
appears. Also the tag with or without address modifier if the tag
appears in the command code field of the program word.
36-49 A Address Tag with or without address modifier if the tag appears in the A
address field of the program word.
50-63 B Address Tag with or without address modifier if the tag appears in the B
address field of the program word.
64-77 C Address Tag with or without address modifier if the tag appears in the C
address field of the program word.
78-79 Segment Number The segment number of the segment in which the reference appears.
80 Blank SPACE
81-88 Line Number May be written by the programmer or generated by ARGUS.
89-120 Blank SPACES

NOILVYIdO ATEWISSY SNOYY WOHEL INdINO

Figure 13.

ARGUS Listing - Analyzer Lines

‘11X NOILD3S

66

PROGNAME SEGNAME PAGE nnn

E LINE NO LOCATION OPERATION S A ADDRESS B ADDRESS C ADDRESS B LOC MASK A B c REMARKS
00065000 COMPUTE WA ,MASK1 C ASSIGN ADDARITH 0,h4 10500 0128 0502 0503 0,004
s COMPUTE 00 00006000
WD COMPUTE+3 00 00138000
83 COMPUTE+) COMPUTE+3 00 00279000
*00066000 TX,MASK2 SYMBOL - LISTIMAG+S 10501 0129 N,09,01 -——- 3,006

+USAGE #AA
00067000 STORETAG ALF TAG 10502 OCT 6321 2715 1515 1515
00068000 B,MASK1 DEC 000GGGOOOGGG 10960 OCT 0000 7777 0000 7777
WA,MASK1 00 00065000
00069000 ASSIGN DIC GGGGGGO00801L 10503 OCT 7777 7777 0000 Loo1l
WA ASSIGN 00 00065000
00070000 ADDARTTH OCT 77750002001677L5 10504 OCT 7775 0002 0016 77L5
WA ADDARITH 00 00065000
00071000 SYMBOL ASSIGN N,X1,1 N,09,01
TX SYMBOL 00 00066000
00072000 IISTIMAG ASSIGN 3,1 3,001
TX LISTIMAG+S 00 00066000
00073000 A EQUALS ABCDE+12 3y /C+BCDEFGH-HABC +0256
0007L000 CACL CAC + OUTBUFA OUTBUFB LSTA 10505 10801 11001 11201
00075000 Z,X1 SPEC INPUTBUF 10506 . 11401
00076000 AB RESERVE A _ 10507 +0256
00077000 ABC EQUALS ADDARTTH 10504
00078000 ABC ASSIGN 'Z,X7,31 Z,15,31
00079000 COMPUTE ASSIGN N,X0,16 10500 N,08,16
00080000 R, AND THIS IS JUST A SAMPLE

NOTES:

Line 65 ~ is an example of the general printed format for an instruction, showing the symbolic coding written by the
prograrmer and the absolute location and address fields of the assembled instruetion. The three analyzer
lines which follow show references to the tag appearing in the location field.

Line 66 - contains two errors, reference to a special register address in a masked instruction, and use of address
arithmetic with a tag assigned a complex address. The error line which follows provides the programmer
with diagnostic information on the errors.

Lines 67-70 - illustrate the octal format of the absolute machine word interpretation.

Lines T1l=79 = illustrate various examples of control constants and control instructions,

Line 80 -

is a remarks card as printed on the listing.

Figure 14. Sample ARGUS Listing (With Analyzer)

NOILVYY¥IdO A19WISSY SNOIV WOUL 1NdLNO

‘11X NOILD3S

SECTION Xil. OUTPUT FROM ARGUS ASSEMBLY OPERATION

100

Printout Field Error Condition
*AA Command, Illegal use of address arithmetic (e.g., with a tag assigned
A, B, orC to a special register address).

*ASSIGN Command Address or augmenter in simulator instruction does not end
in 111.

*ASSIGN A Tag used in A address field of SETLOC has improper assign-
ment.

*ASSIGN Command, Use of a tag inconsistent with its as signment (e.g., symbolic

A, B, or C augmenter not equated to an integer, tag in a masked instruc-
tion assigned to a special register, etc.).

*BNK ERR A, B, orC Result of address arithmetic is negative or greater than the
largest address in the system.

*BNK ERR“ A, B, or C Tag in an address field of an instruction is assigned to a dif-
ferent bank than the instruction.

*BLANK Location Location field is blank in EQUALS, ASSIGN, or TAS,

*CONFIG Location Illegal tag (illegal characters or all numeric).

*CONFIG Command Generated mask parameters exceed limits or resultant mask
goes beyond right end of word.

*CONFIG Command A mask is designated incorrectly.

*CONFIG Command For SPEC, CAC, CONTROL, SETLOC, MASKGRP, or END,
the characters following the command code are neither blank
nor one of the allowed configurations.

*CONFIG A Illegal characters within a data constant.

*CONFIG A Parameters in a macro instruction do not correspond to those
in the master macro instruction or they cross field boundaries
in the coding.

*CONFIG A, B, or C Z, or N, not followed by a valid special register name or
number,

*CONFIG A, B, or C Non-numeric characters following C, or X, .

*CONFIG A, B, or C Non-numeric characters in address modifier or increment.

*CONFIG A, B, or C Non-numeric characters in number of shifts following A, B,
or D,

*DEVICE Command Peripheral address inconsistent with instruction (e.g., WF
to a card reader, etc.).

*DEVICE Command Peripheral address in peripheral instruction or TAC not

or A available according to the equipment configuration.

*DUPLCAT Location A tag appears in the location field more than once with con-
flicting assignments (note that tags may appear more than
once without conflicting assignments).

*GRP OER Command New mask generated when current group is full.

Figure 15. Programming Errors Detected During Assembly

SECTION XIl. OUTPUT FROM ARGUS ASSEMBLY OPERATION

Printout Field Error Condition

*ILLEGAL Location Any character other than Z, F, S, B, X, L, R, or P followed
by a comma in the location field.

*ILLEGAL Location Z, not followed by a legdl special register name.

*ILLEGAL Location F, S, B, or L not followed by a tag.

*ILLEGAL Command Illegal operation code.

*ILLEGAL Command Call for a macro routine which is not in the library.

*MEMOFLO Liocation A segment overflows the memory of the computer.

*MSK ERR‘1 Command Use of a shift mask in a field instruction or vice versa.

1

*MSK ERR Command Symbolic reference to a mask not in the current group.

*MSK ERR C A dependent subroutine is called for twice with two different
mask groups in control.

*OVERFLO Location or More than eight characters in a tag.

Command

*OVERFLO Location New mask designated when current group is full.

*OVERFLO A Data constant larger than the maximum value allowed.

*QVERFLO A, B, or C Address modifier greater than 2047 or 16, 383; augmenter
greater than 255 (254 for X7); increment greater than 31;
number of shifts greater than 8, 11, 12, 44, 48, or 63 (as
allowed); number of words transferred greater than 63, etc.

*OVERLAP Location Overlap of subsegments when programmer has specified the
initial locations.

*REJECTD Location Illegal tag combination in EQUALS or RESERVE (e.g., re-
sult has dimension >1 in EQUALS or > 0 in RESERVE, tag
was not defined previously, etc.).

*REJECTD Location A subsegment which was previously normal is now specified
as common.

*UNASYND Command, A tag which does not appear in the location field is referenced

A, B, or C in an address field.

*¥UNASYND A Symbolic augmenter in ASSIGN or TAS or tag in A address
field of SETLOC not defined previously.

*USAGE Location Location field is not blank in MASKGRP or END.

*USAGE Location Location field is Z, X, F, S, or B in SETLOC, MODLOC,
EVEN, or SIMULATE,

*USAGE Location Location field is Z, F, S, or B in RESERVE,

*USAGE Command A mask is designated in an instruction which cannot be
masked.

*USAGE Command Ambiguous field type in a generated mask ("A" or "D'" not
specified).

*USAGE Command Peripheral operation code not followed by a valid configura-
tion.

Figure 15. Programming Errors Detected During Assembly (cont)

101

SECTION XIl.

OUTPUT FROM ARGUS ASSEMBLY OPERATION

Printout Field Error Condition

*¥USAGE Command Print operation code not followed by blank, M, or MR.

*USAGE Command Multiprogram control op code not followed by blank or H.

*USAGE Command For LINK, MASKBASE, TAC, SEGNAME, MODLOC,
EQUALS, RESERVE, ASSIGN, TAS, EVEN, or SIMULATE,
the command code is not followed by blanks.

*USAGE A A address field of EQUALS, RESERVE, CONTROL, TAC,
or MODLOC is blank.

*¥USAGE A, B, or C Illegal address type for instruction (e.g., special register
address in masked instruction, indexed address in SPEC,
etc.).

*USAGE A, B, or C Address field which should be blank is not blank (e.g., A or
B address field of SPEC, C address field of MASKGRP, etc.).

* s/C Contents of S/C column not legal for instruction.

1Possib1e Errors

102

Figure 15. Programming Errors Detected During Assembly (cont)

SECTION Xill
LIBRARY ROUTINES

The ARGUS system includes a library of checked-out macro routines and subroutines
representing frequently used coding which is preserved for easy insertion into new programs,
Each macro routine or subroutine in the library is requested by means of a pseudo instruction
which specifies the desired routine and all parameters required for its execution. These
ARGUS pseudo instructions may be included in a program as easily as machine instructions.
When a program is assembled, ARGUS recognizes each pseudo instruction, obtains the cor-
responding coding from the library, and incorporates it into the program. The specifications
of every routine in the library are documented on a library routine specification sheet pre-

pared by the programmer who wrote the routine.

Macro Routines

Macro routines are stored in the ARGUS library in the symbolic language in which they
are originally written and in generalized form. When a program being assembled requests a
macro routine from the library, the routine is assembled into machine language and special-
ized to meet the needs of the requesting program, according to the parameter values in the
pseudo instruction. The routine may be designed to be inserted either entirely in sequence at
the point where the pseudo instruction was written or partly in sequence and partly out of
sequence. At least one word of the routine must be inserted in sequence at the point of the
pseudo instruction in order to transfer control to the out-of-sequence portion. If the routine
contains more than one in-sequence word, the programmer must exercise care in using ad- .
dress arithmetic in the vicinity of the pseudo instruction. If the routine contains any out-of-
sequence coding, this coding is stored at the end of the subsegment which includes the re-
questing pseudo instruction. The programmer must see that any subsegment which contains

such out-of-sequence coding can be stored by Assembly within a single memory bank.

The pseudo instruction which is used to call a macro routine is called a macro instruc-

tion and has the following format. The use of a tag in the location field is optional. If the

ARGUS &

PROBLEM PROGRAMMER DATE PAGE oF____
. 5/ [REMARKS
| LOCATION |gi;; COMMAND CODE g5 1|4 A ADDRESS 37)3 8 ADDRESS - gi|g2 C ADDRESS 6586 _ume_wumsee T3[74 0
s, e '
! tag L, NAME, pi/pz 7 p3/p+ doe e e e e e .- /pn | L
! H

macro instruction is tagged, ARGUS assigns this tag to the first word of the assembled macro

103

SECTION Xlil. LIBRARY ROUTINES

routine in the object program. Any reference to this tag within the same program segment
refers to the first word of the assembled routine. The letter "L'" in the command code field
is a control character which designates that the following code is the name of a routine in the
library. The control character is followed by a comma and the name of the desired routihe.
The name may contain up to eight alphanumeric characters, of which at least one must be
non-numeric. If one or more parameters are specified in the command code field, the name

must be followed by a comma.

The S/C column normally designates the same sequencing counter that selected the
macro routine. This causes the routine to be executed under control of the specified counter,
except that any sequencing counter designation(s) within the routine will override the designa-
tion in the macro instruction. However, if the routine includes coding to set up the sequencing
counter designated in the macro instruction, which can be determined from the specification
sheet, then the programmer is free to specify either counter in the macro instruction. Note
that only a macro routine which contains such coding can be entered from different sequencing

counters within the same program.

The codes pllpz/ through P represent the values of the various parameters required by
the macro routine. The type and format of each parameter required by a given routine may
be obtained from the specification sheet. A macro instruction may contain up to 25 para-
meters, but the number of characters which can be written in one field is limited to 412 in the
command code field and 414 in each address field. Individual parameters must not cross field

boundaries and must be separated from each other by slashes or by the end of a field,

ARGUS specializes a macro routine when it is assembled into an object program by in-
serting the parameter values stated in the macro instruction.. For example, P, might specify
the number of words in each item of a table, in which case it could be used in the macrocoding
as an increment to a special register. Another parameter might be the location of the begin-
ning of the table. (See Appendix A for other examples of parameters.) The formats of paré-
meter values are not necessarily the same for each appearance of the macro instruction. For
example, if one of the parameters in the routine is used to reference a mask, the parameter
value might be a symbolic tag in one instruction and mask generation information in another,
However, when the parameter represents a quantity such as an increment to a special reg-
ister, for which there is only one acceptable format, the parameter value must have that for-

mat in every macro instruction which requests the corresponding routine.

104

SECTION Xiil, LIBRARY ROUTINES

Prggr ammer=-Defined Macro Routines

In addition to the use of library macro routines, the programmer may code a macro
routine to perform some function which is required several times in his program. Such a
routine, called a programmer-defined macro routine, is included once in the card deck for
the program in which it is used. Although a programmer macro routine may be called any
number of times by the program with which it is assembled, it is not available for execution

by any other program (unless it is added to the library as described in Appendix A).

The coding of a programmer macro routine is identified by preceding and following it
with the instructions MACRODEF and FINIS, respectively (as described on page 84). The
MACRODEF instruction must be followed immediately by a master macro instruction contain-
ing a control character of "P" (to designate that the routine is a programmer macro), followed
by the name of the routine and the tags of all required parameters. The master macro in-
struction defines the format of all requesting macro instructions for that routine. The macro-

coding is written in the same manner as a library macro routine (see Appendix A),

A programmer macro routine may contain up to 2048 cards. It must be included in the
program deck prior to the first macro instruction for that routine. A macro routine is avail-
able to any segment of the program after the appearance of the routine in the input deck., The
macro instruction which calls for the routine follows the format laid down by the master
macro instruction written with the routine (including a control character of ''"P"), and also
supplies the values of all required parameters. If a deck of changes to an existing program
includes any reference to a programmer macro routine, this routine must precede the refer~-
ence in the input deck, This is because ARGUS derives all change information from the input

deck and does not refer to the old symbolic program tape to obtain the referenced routine.

Subroutines

The ARGUS library of routines includes subroutines as well as macro routines. A sub-
routine differs from a macro routine in several important respects.

1. It is assembled into machine language before it is added to the library;

2. It is inserted only once into each program segment in which it is ex-
ecuted, regardless of the number of times that it is executed within
that segment;

3. It is inserted out of sequence from the main coding and reached by means
of a transfer of control. A second transfer returns control to the main
coding when the subroutine is completed; and

4, It is specialized according to the stated parameter values when it is
executed, rather than when it is inserted into the program.

105

SECTION XIlI. LIBRARY ROUTINES

Since a subroutine is stored out of sequence from the main program, it requires a link-
age, or calling sequence, to make the parameter values available to the subroutine, transfer
control to the routine, and then transfer control back to the main coding after the subroutine
is completed. The ARGUS system makes use of macro routines as calling sequences for sub-
routines. Every subroutine in the library uses one or more library macro routines as its
calling sequence. Like any other macro routine, the calling sequence is inserted into the pro-
gram every time that the subroutine is requested. It may be inserted entirely in sequence or
it may consist of an in-sequence portion and an out-of-sequence portion. The format and
location of the calling sequence are decided by the programmer who writes the subroutine.

The flexibility of subroutings is increased by the ability to design different macro routines for

calling sequences.

The pseudo instruction which is written to execute a subroutine is known as a call in-
struction. Since this instruction calls a macro routine which sets up the desired subroutine,
it has the same format as any other macro instruction. The control character is always an
"L", however, since all subroutines are library routines. A subroutine may be performed
several times within the same program segment, using different parameters each time. How-
ever this cannot be done by a programmed modification of the call instruction. A separate

call instruction must be written for each set of parameters to be used.

As described in Appendix A, a subroutine may be designed to be entered from either
sequencing counter and to return control to either counter after execution. Sequencing counter
control may be changed within the subroutine, provided that the previous contents of the coun-
ters are preserved. In addition, a subroutine may be designed to operate with variables which
are stored in a bank(s) different from that in which the subroutine is stored and also different
from the bank in which the call instruction is stored. The locations of such variables are
specified as parameters., Finally, a subroutine may be designed to be either independent of
or dependent upon the programmer's mask groups. Independent subroutines set up their own
mask groups and restore the programmer's mask groups after they are executed, while de~
pendent subroutines use the program.iner's mask groups. The type of subroutine, dependent or
independent, and the number of masks required are indicated on the specification sheet. The
same mask group must be in control every time a given dependent subroutine is called within

a program segment.

106

APPENDIX A
WRITING LIBRARY ROUTINES AND THE USE OF LAMP

Writing Macro Routines

A macro routine is written in generalized form, using symbolic tags to represent all
parameters of the routine which may vary from one execution to another. The values of these
parameters to be used in a given execution are included in the macro instruction which calls
the routine. Each macro routine is preceded by a master macro instruction which defines the
format of all macro instructions for that routine. Each parameter tag used in the routine
must appear in the master macro instruction. When the routine is called, the value of each
tag appears in the corresponding position in the requesting pseudo instruction. When the
routine is assembled into the object program, it is automatically specialized by replacing
each parameter tag within the routine by the corresponding parameter value. As mentioned
in Section XI, a macro routine must be preceded by a MACRODETF control card and followed
by a FINIS control card when it appears in the ARGUS input deck. The macrocoding itself

may consist of from 1 to 2048 cards.

A parameter may be a constant, a field of an ARGUS language instruction, or any por-
tion of a field down to a single character or digit, A phrase of an ARGUS instruction is de~-
fined as any part of the instruction which is always bounded by punctuation characters (period,
comma, plus, minus, asterisk, or slash) or by the beginning or end of a field. For example,
special register designators, augmenters, increments, address modifiers, and operation
codes are all phrases., Some fields (e.g., a symbolic tag without modifier) contain a single
phrase, while others (e.g., a complex address) contain several phrases. It follows, there-
fore, that a parameter may represent a phrase, a portion of a phrase, or a group of con-
secutive phrases. The type and format of the information which the parameter represents is

noted on the library routine specification sheet by the programmer who writes the routine.

When a parameter represents only a portion of a phrase, it is necessary to designate
the boundary between the parameter and the balance of the phrase. The special symbol@
(punched as an 8,5 combination) performs this function within the macrocoding. For example,
a macro routine contains the following decimal constant consisting of a plus sign, four zeros,

and a seven-digit parameter tagged PAR{.

107

APPENDIX A, WRITING LIBRARY ROUTINES

ARGUS =
FORM
PROBLEM PROGRAMMER DATE PAGE [o] J—

REMARKSES
65]66 une numper 73|74 . 80
T T T

| LOCATION jol), COMMAND CODE 45 [26 A ADDRESS 37|39 B ADDRESS silsz C ADDRESS

DEC 10000 (® PAR)

|
T

The specification sheet for this routine states that PAR1 represents an integer of seven deci-
mal digits. The macro instruction which executes this routine contains a parameter value in
the proper format. When the routine is specialized, this value replaces the parameter tag to

form the complete constant,

A parameter tag may not include any of the punctuation characters which serve as
phrase boundaries (see above) or the chara.cter@ A parameter value may not contain a slash
or a @ , but it may contain any other valid punctuation charactér. When a line of macrocod-
ing is specialized, phrase boundaries (except @) are rétained and parameter tags are literally
replaced by their assigned values, including any phrase boundaries which those values may

include.

In most cases, each field of a macrocoding word is specialized separately. This limits
the number of ¢haracters in a parameter value, since the capacity of a field is fixed at 12
characters for the command code and 14 for each address field. Note, however, that data is
permitted to cross field boundaries in the control instructions EQUALS and RESERVE, in the
TAC constant, and in all of the ;;ata constants. Since a parameter value may not exceed one
field in length, no phrase which is too long to store in one field may be represented by a
single parameter. For example, if a 16-character octal constant appears as a parameter in
a macro routine, such a constant must be represented by two parameter tags, since it is too
long to store in a single field. The first word in the following example is a master macro
instruction in which TAG4 and TAG2 represent two portions of an octal constant shown in the
second word, When the programmer writes a macro instruction of the form of the third word,

this constant is specialized according to the stated values and appears as shown in the fourth

word.
ARGUS &w*
FORM
PROBLEM PROGRAMMER DATE PAGE CF______
| LOCATION yo|;, COMMAND CODE 5, [24 A ADDRESS 37|39 B OADDRESS g C ADDRESS ol AR S
' L, CONVERTY TAG\ TAG 2 '
}
2 oct TAct (D TAG2 |
L
1
3 L, CONVERT 777777713 33333777 I
f
¢ oct T1171773333337| 77 i
1
e e e e}

108

APPENDIX A. WRITING LIBRARY ROUTINES

Alphanumeric constants within macrocoding are limited to left-justified series of char-
acters with no intervening space characters. An alphanumeric constant may contain a para-

meter provided that neither the parameter tag nor its assigned value contain any spaces.

The location field of the first macrocoding word should be left blank, as any tag written
in this field is automatically replaced by the location field contents from the macro instruc-
tion, even if those contents are all blanks. The location field should also be left blank in all
succeeding lines of macrocoding. However, if it is necessary to tag a macrocoding word, a
parameter tag should be used so that it can be varied for each execution of the routine.
Otherwise, an illegal duplication of tags will result if the macro instruction is written twice
within the same segment. Macrocoding words are referenced by using address arithmetic

with letters '"C' and "X", as described on page 23.

The S/C column in a macrocoding word may contain an "S", a "C'", or a blank to specify
that the next instruction is to be executed under control of the sequence counter, the cose-
quence counter, or the sequencing counter designated by the programmer in the macro in-
struction. However, the controlling counter must be set to the proper value before any in-
struction can be executed from it. A macro routine may be written so that it must always be
executed under control of the same counter that selects it, thereby using the setting already
in effect. In this case, the specification sheet must inform the user always to write the
macro instruction so that it designates the same counter by which it was selected, A macro
routine may be written to set the controlling counter explicitly, so that it may be entered
from either counter. In this case, if the routine is to return control to the counter specified
in the macro instruction, then at least the last instruction to be executed must contain a blank
in the S/C column. A special case is a macro routine which exits under control of the counter
designated in the macro instruction to the address which was stored in this counter when the
routine was entered. Such a routine must first preserve the contents of one counter, then
operate out of sequence under control of the preserved counter, and finally restore the pre-

served counter and give control to the counter specified in the macro instruction.

Any masks which are required by a macro routine may be either generated or designated
within the routine. A mask may be generated by specifying the customary three items of in-
formation Mi’ Mz, and M3 (see page 40). The programmer may state the values of these
three phrases in the macrocoding or he may represent any or all of them by parameters. A
mask may be designated by writing an "F" followed by a comma and a number from 0 to 31 (for

a field mask) or an ''S" followed by a comma and a number from 0 to 63 (for a shift mask) in the

location field. Type "B'" masks for use with both field and shift instructions are not permitted

109

APPENDIX A. WRITING LIBRARY ROUTINES

within macrocoding. A designated mask is referenced in an instruction by using the mask
number exactly as though it were a mask tag. It is not necessary to assign mask numbers in
the order in which the masks are designated. Contrary te normal usage, however, the line
which designates a macrocoding mask must follow the last reference to the mask. Note that
all masks which are used by a macro routine are included in the mask groups which are in
control when the routine is executed. To facilitate the accommodation of macrocoding masks
within these groups, ARGUS maintains a mask pool and eliminates any duplication among
macrocoding masks, masks used by dependent subroutines, and all generated masks, whether

generated in the main codihg or in a library routine.

If a macro routine is written to be added to the library of routines, the master macro
instruction should contain a control character of "L'" in the command code field, and the
routine should be included in the deck of cards to be processed by LAMP (the Library Addi-
tions and Maintenance Program). After LAMP has added the routine to the library, it can be
referenced from any program being assembled. If the routine is written for use as a pro-
grammer macro, the master macro instruction should contain a control character of ""P",
and the routine should be included in the object program deck prior to the first macro in-
struction by which it is called. In this case, the routine is not available for reference from
other programs, However, a programmer macro routine may also be included in the LAMP

input deck and added to the library without the necessity of altering the control character.

EXAMPLE: Figure A-1 shows the coding of a macro routine called SRCHEQU as it is written
in generalized form. Lines 1 and 12 contain the control instructions MACRODEF and FINIS,
respectively. Line 2 is the master macro instruction containing all parameter tags used in
the routine. The type and format of each parameter are listed separately on the library rou-
tine specificdtion sheet (shown in Figure A-2). Figure A-3 shows a typical macro instruction
which might be written to execute the routine SRCHEQU, followed by the routine in special-
ized form, as it would be inserted into the object program. Note that each parameter tag is

replaced by the corresponding value as given in the macro instruction.

Writin& Subroutines

A subroutine is written in the form of a program segment, assembled, and placed on
the symbolic program tape. After the routine is checked out, it is added to the library where
it is available for inclusion in any program being assembled. A subroutine is called depend-
ent if it uses the mask groups currently in control in the object program when it is performed.
A subroutine is called independent if it either (1) sets up and uses its own mask groups, pre-

serving and restoring the contents of the mask index register, or (2) does not require any

110

[t

Honeywell

V¥ XIAN3ddV

CODING
@ Elesnie Dits, Pusessin A R G U FORM
PROBLEM MACRO EXAMPLE PROGRAMMER _- DATE PAGE OF
| LOCATION |gl;; COMMAND CODE ,, S/c 2% A ADDRESS 37|38 B ADDRESS sils2 C ADDRESS o558 LMRNU:'“:‘ 7:17: kS 0
| MAcRODEF T contepL daRs
L SRCHEQU M ARG/sg TABLE/SIZE NOMATCH MASTIENim:fwa
X X,+0 zZ, SR SEY BEdl:'g. Of TABLE
™ X, t1 z, AUl END OF ;TABLEWAul
T ARG N, AUl ARG—'TEND OF TABLE
NA NSR, M ARG c. 40 a-r;::(\kﬁ?—v“o
WD Z,SR X, t2 Z,SR SEY ADI??R.C'F LTEM
LA x, Z,SR NOMATCH Ea&)oop\tATLe-'YEs
X, SPEC TABLE connm.l\e: SEQRUENCE]|
X SPEC TABLE + S1ZE T
X, FXBIN —M :
Fints C-ONTIJIOL [CARD
|
o
+
|
|
|
|
|
|
|
[
Figure A-1. Sample Macro Routine in Generalized Form

SINILLNOY A¥VYEIT ONILRM

APPENDIX A, WRITING LIBRARY ROUTINES

INDEX:
SEARCH CODE: SRCHEQU
DATE: 7/41/60
PAGE: 1

LIBRARY ROUTINE SPECIFICATION SHEET

ROUTINE NAME:

BRIEF DESCRIPTION:

SRCHEQU

This macro routine will search a table for

equality on a particular word, continue in se-
quence if the word is found, or jump to a
specified location if not, The location in which
the word was found will be left in a special re-
gister specified by the programmer. The rou-
tine will compare on every nth word of the
table, where 1€ n <34. One location must be
reserved at the end of the table for use by the
macro routine.

PROGRAMMER:

PROGRAM TYPE: MACRO X SUBROUTINE
MASK GROUP DEPENDENCE: DEPENDENT INDEPENDENT
NUMBER OF MASKS USED (IF DEPENDENT): SHIFT 0 FIELD 0

HSM LOCATIONS USED: 9

SPECIAL REGISTERS USED: One specified by parameter, and AU4.

SPECIAL REGISTERS RESTORED: YES NO X

108 + 24x microseconds if word is found, or
408 + 24y microseconds if not, where x =

number of items preceding the desired item
+1, and y = the total number of items in the

TIMING:

table +1.
PERIPHERAL DEVICES: None
ERROR INDICATIONS AND ACTIONS: None
OTHER LIBRARY ROUTINES USED: None

Figure A-2. Specification Sheet for Macro Routine SRCHEQU

112

APPENDIX A, WRITING LIBRARY ROUTINES

INDEX:
SEARCH CODE: SRCHEQU
DATE: 7/44/60
PAGE: 2
LIBRARY ROUTINE SPECIFICATION SHEET (cont)
PSEUDO INSTRUCTION FORMAT;:
LOCATION | COMMAND CODE S/C | A ADDRESS B ADDRESS C ADDRESS
L, SRCHEQU, M ARG/SR TABLE/SIZE NOMATCH
PARAMETER DESCRIPTION:
Symbol Type Description
M Literal Decimal number (unsigned) - The number of
words in each item of the table, £ 31. The
routine will compare on every Mth word.
ARG Symbolic, Indirect, Location of word to be searched for.
or Indexed Address
SR Name (or number) of This special register is used in searching
a Special Register the table and will contain the location of the
word searched for, when it is found.
TABLE Symbolic Tag - Direct Location of the beginning of the table.
Memeory Location
SIZE Literal Number of words in the table. Must be a
multiple of M.
NOMATCH Symbolic, Indirect, Location to jump to when word is not found.

or Indexed Address

Figure A-2,

Specification Sheet for Macro Routine SRCHEQU (cont)

14

Homneywell

CODING
@ MMDMMW% A R G U FORM
PROBLEM _MACRO EXAMPLE - Contdinued ~ PROGRAMMER DATE PAGE _OF
, LOCATION . 1ol,; COMMAND CODE j, % 24 A ADDRESS 3738 8 ADDRESS 51|82 C _ADDRESS o5l58 I-INERNUE“RM 7:[72 KS .
L,SRCHEQU,3 | PROPUCT/R2 PRICETBL /5| WRONGDPT ’snu\m% MAL:&D INSTR
TX ¢l X,*o z,R2 !
I
X o X, +1 Z,Aul !
!
> ¢ PRopucT N, AU |
]
NA c€ N,R2,3 PRODUCT c,to MACRO (ODING As
I NS ERT INTO
WD d z,R2 x,+2 Z,R2 ? ,,ROAR,%‘REMC,N
T ¥
. STRUCTION
LA - g X, t] z, R2 WRONG PPT MACRO | ucTio
[
X, SPEC PRICE TBL |
X, SPEC PRICE TBLt5I !
s
X, FXBIN -3) 1
|
i
I
|
I
|
i
|
I
|
i
!
|
|
|
|
I
I
I
~ L 1 1 i1 1 1 1 1 1 1 1 1 1 1 1 1 !J 1 1 1 1
Figure A-3. Macro Instruction for Sample Routine and Resulting Specialized Coding

'V XIAN3ddV

SINLLNOY AYVIEIT ONILIIM

APPENDIX A, WRITING LIBRARY ROUTINES

masks. Any segment or program on the SPT may be designated as a subroutine and added to

the library, provided that it conforms to the following language restrictions:

1. No special register tags appear in the location field;

2. No link tags are used;

3. No reference is made to a special register group indicator;

4., All peripheral codes are expressed as parameters so that they can be

varied for each individual execution; and

5. If the subroutine is to be dependent, it does not contain any type "B
masks and no mask is referenced as an instruction operand.

The assembled subroutine may or may not be a part of a program containing other segments.
Although a subroutine must be added to the library as a single program segment, it may be
convenient for checkout purposes to write the subroutine as several segments, directing
LAMP to combine these segments into one. LAMP combines segments to form a subroutine
by a simple overlay process; therefore, the programmer must insure that all segments of a

subroutine are capable of being in memory simultaneously and without conflict.

Subroutines may be nested to any desired level. In other words, a subroutine may con-
tain the call instruction of a second subroutine, which may in turn contain another call in-
struction, etc., Any combination of dependent and independent subroutines may be nested. A
subroutine may also contain a macro instruction, although a macro routine is not permitted

to include a library pseudo instruction.

As mentioned in Section XIII, every subroutine is stored out of sequence and reached
from the main coding by means of a calling sequence. ARGUS uses macro routines as calling
sequences, Therefore, to execute a subroutine the programmer writes the macro instruction
of the desired calling sequence. The calling sequence is inserted and specialized at assembly
time; the subroutine itself is inserted out of sequence, in generalized form, and only once in
each program segment in which it is to be executed. When the calling sequence is executed,
it specializes the subroutine according to the parameter values stated in the call instruction
and then gives control to the subroutine, When the subroutine is completed, control is re-

turned to the main coding via the calling sequence.

Every subroutine calling sequence contains a subroutine call constant, written with
SUBCALL in the command code field, blank A and B address fields, and the name of the
desired subroutine in the C address field. This constant, which directs ARGUS to insert the
routine named, is replaced at assembly time by a special address constant containing the
entry address of the subroutine. If the subroutine is to be entered at any point other than

the beginning, the subroutine name is modified by address arithmetic in the SUBCALL

115

APPENDIX A. WRITING LIBRARY ROUTINES

constant. If two or more entry points may be used for different executions of the subroutine,

the desired entry must be designated by means of a parameter.

For each subroutine which is added to the library, a calling sequence must be provided.
ARGUS can be directed to generate either of two standard calling sequences, known as type 1
and type 2, respectively, which fulfill the requirements of many common subroutines. If the

parameter requirements of a subroutine cannot be met by either of these standard calling se-

quences, the programmer must code a special calling sequence to be added to the library along

with his subroutine. When a subroutine is added to the library, LAMP either generates the
requested calling sequence or processes the special sequence provided; in either case, the
calling sequence is added to the macro routine area of the library. Every subroutine consists
of three sections: the entry, the body, and the exit. The body of the subroutine is the coding
which performs the function for which the routine is written, The entry and exit form linkages
from the calling sequence to the subroutine and from the subroutine back to the calling se-
quence to return to the main coding. The programmer who uses a standard (generated) calling

sequence must be familiar with the generated coding in order to prepare his entry and exit.

Type 1 Calling Sequence

The type 1 calling sequence may be used with a subroutine requiring two or three para-
meters, each of which is a single-word variable and none of which are literals. The input
parameters (argument locations) are specified in the A or B address field or both, the output
parameter (result location) in the C address field. Only one parameter may be specified in

each address field and none may be specified in the command code field.

The coding of the type 41 calling sequence is given in Figure A-4., The parameter values
from the call instruction are represented by the quantities in brackets. This calling sequence

performs the following functions:

ARGUS =

PROBLEM PROGRAMMER DATE PAGE [o] .
| LOCATION |g|l;; COMMAND CODE j,[£]24 A ADDRESS a7|3s B ADDRESS 51|52 C ADDRESS Mm _REM ,’; 72 k2 M
T s T T] ziese T xove "T,k;;,ﬁ' o T
2 X, TX 4 x,+s z, AUy }
3 X, EX 9 - [e Aaver. Param]] - J
. X, TS c| [a ApbR. PARAM]] - N, AUy i
5 X, TS q - Lc Appr, PARAM.] - |
s X, TX > x,+2 Z,csc |
7 X, SUBCALL SUBR) |
s X, RESERVE | lﬁ
. I 1

Figure A-4., Type 1 Calling Sequence
116

APPENDIX A, WRITING LIBRARY ROUTINES

Word 1 preserves (CSC) and resets CSC to X, +0, the address of the first out-of-
sequence word in the calling sequence. Word 1 is located in sequence and replaces
the call instruction.

Word 2 stores the subroutine entry address in AU1.

Word 3 stores the B address parameter in the mask register, by means of in-
active addressing.

Word 4 stores the A address parameter in the low-order product register, by
means of inactive addressing. It then transfers the subroutine entry address
from AU4 to the CSC and gives control to this counter to enter the subroutine.

Word 5 is the re-entry to the calling sequence from the subroutine. It transfers
the result from the low-order product register, where it was stored by the sub-
routine, to the location specified by the C address parameter.

Word 6 restores the CSC to its preserved setting and returns control to the
main coding. The next instruction is selected by the sequencing counter speci-
fied in the S/C column of the call instruction.

Word 7, the SUBCALL constant, is in the form of a special address constant
and makes the subroutine entry address accessible to the calling sequence.

Word 8 reserves the temporary storage location for (CSC).
Each subroutine which utilizes a type 1 calling sequence must include an entry which obtains
the parameter values and places them in the subroutine, and an exit which makes the result

available and returns control to the calling sequence.

ENTRY: The entry must include at least the following three words and a constant of all binary
ones. If the subroutine is independent and requires masks, the entry must also preserve

(MXR) and set up the required mask group(s).

ARGUS &

PROBLEM _ PROGRAMMER DATE PAGE oF ___
: 3 REMARKS
| LOCATION |, COMMAND CODE 29 |/|24 A ADDRESS 37)38 8 ADDRESS 81|52 C ADDRESS 8566 _tine_wumsen_T3[74 0
I — N N A e L
' Ts ¢ - ARGA - ;
|
: Ts C Z,CSH C SHSAVE _ :
- T
3 ExX [d ALLONES — ARGSB |
— 1
L

Word 1 transfers the A address parameter from the low-order product register,
where it was stored by the calling sequence, into a temporary location such as
ARGA.

Word 2 preserves (CSH) for exit purposes.

Word 3 transfers the B address parameter from the mask register into a tem-
porary location such as ARGB. This word may be omitted if there is no B ad-
dress parameter.

BODY: The body of the subroutine uses the input parameters stored in ARGA and ARGB to
perform the subroutine function, and stores the result in a temporary location such as

RESULT, where it is available to the exit.

117

APPENDIX A. WRITING LIBRARY ROUTINES

EXIT: The exit must include at least the following two words. If the subroutine sets up its

own mask group(s), the exit must also restore the previous contents of the MXR and set up

the main program mask groups previously in control,

ARGUS ¢

PROBLEM PROGRAMMER DATE PAGE OF ____
/l I REMARKS
| LOCATION |ol;; COMMAND CODE 4, el g A ADDRESS 37)38 8 ADDRESS 152 C ADDRESS 65 (66 e wamsen T[4 m
e ———— e e T 0
' ™ q cosnsAavEe z, AU :
= T
2 Ts q RESULY N, AUl !
Il
o S —— I

Word 4 transfers the previously saved contents of the CSH into AU4.

Word 2 transfers the result into the low-order product register, then transfers
the previous contents of the CSH from AU1 to the CSC and gives control to the
CSC to return to the calling sequence.

Type 2 Calling Sequence

The type 2 calling sequence may be used with a subroutine requiring up to three para-
meters, each of which may be a single-word variable, a list (array) of variables, or a literal
containing up to 16 binary digits, One parameter may be specified in each address field in

any desired sequence; none may be specified in the command code field.

ARGUS =*

PROBLEM PROGRAMMER DATE PAGE oF

| LOCATION' jol11 COMMAND CODE 4, sC/ 2 A ADDRESS 37i38 B8 ADDRESS 51|82 C ADDRESS “i“ mkwfu:“ ,? 75 k> m

F T T T A 7 T T T T T LI E e S B SR LI s A St s I L R T N B S S |
! Ts d z,¢c8¢C xX,tS X, +*O ;
g T
2 X, Ts C X, 13 Z, A0 N, AN :
1
; X, PR,S [A asoress | [saporess|| [c mporess] !
f
¢ X, CAc,s I_PARAMETE&J l_PAkAN\ETERJ L PARAMETERJ |
5 X, sUBcALL suBR2 }
5 X, ™™ ﬁ’j X, 1 - z,csc l
7 X, RESERVE | |

S [— R e S E—

Figure A-5, Type 2 Calling Sequence

The coding of the type 2 calling sequence is given in Figure A-5. This routine rerforms
the following functions:
Word 1 preserves (CSC) and resets CSC to X, +0, the address of the first out-of-

sequence word in the calling sequence. Word 1 is located in sequence and re-
places the call instruction.

Word 2 transfers the subroutine entry address to AU4, then resets the CSC to
that address and gives control to the CSC to enter the subroutine.

Words 3 and 4 contain the parameter values stated in the call instruction. The
""S" characters in the command code fields of these two words direct ARGUS to
store the parameter values in these words according to a special format. Each

118

APPENDIX A, WRITING LIBRARY ROUTINES

parameter which is expressed as a complex address is translated to machine
form and placed in the corresponding address field of word 3. Each parameter
which is expressed as a direct memory location address (with or without ad~
dress modifier) or as a literal of up to 16 binary digits is translated to machine
form and placed in the corresponding 46-bit group of word 4, and the address
"N, AU2" is placed in the corresponding address field of word 3. The use of
the "PR,S'" and "CAC,S" pair allows an address in any valid address format to
be made available to the subroutine. This pair also allows the use of a literal
of up to 16 binary digits as a parameter.

Word 5, the SUBCALL constant, makes the subroutine entry address available
to the calling sequence.

Word 6 restores the CSC to its preserved setting and returns control to the
main coding. The final instruction of the subroutine exit section must give con-
trol to this word. The instruction following word 6 is selected by the sequencing
counter specified in the S/C column of the call instruction.

Word 7 restores the temporary storage location for (CSC).
Each subroutine which utilizes a type 2 calling sequence requires an entry and an exit as link-
ages to and from the calling sequence. The following discussion illustrates a typical entry and
exit for a subroutine which uses a type 2 calling sequence. The precise entry and exit pre-
pared for a given subroutine depends upon the design of the call instruction and the types of
parameters used, In every case, the parameter values must be presented in the form ex-
pected by the subroutine.
ENTRY: The following example illustrates an entry section based on three parameters in any
valid address form, of which the A and B address fields contain one-word input parameters
(arguments) and the C address field contains a one-word output parameter (result). Note that
this is not necessarily the case when a type 2 calling sequence is used. The masks referenced

by this entry coding are defined in the exit section (see below).

ARGUS &5°

PROBLEM PROGRAMMER - DATE PAGE CF
, LOCATION 1g|;; COMMAND CODE 2, 17| 26 A ADDRESS 17|38 B ADDRESS g5 c ADDRESs l R EMARKS o
o Wk d T Zieew | T T T i eshsave | ||
2 ss C N, CcsH AMASK c,ta | ﬁL
3 SWSs, AMASK KK N,<su 3¢ c, 15 j\
4 Sws , ADES e N,CcSH I, L C, ta j]
5 SWs, ALLONES |d] N,CSH 32 z,Auz jr
6 X c [a avor. PARANM.] ASTORE ;
? SW/S, ALLONES |C N,csu 16 Z,AvZ2]\
s TX d[B Avor.PARAM] B STORE 1

Word 1 preserves the contents of the CSH in a temporary location called
CSHSAVE for exit purposes.

Word 2 substitutes the A address field of the "PR'" word in the calling sequence
into the A address field of word 6. Note that if the A address parameter is
specified as a complex address, this parameter. is transferred into word 6;

119

APPENDIX A. WRITING LIBRARY ROUTINES

whereas, if the A address parameter is a direct memory location address, the
address '"N, AU2' is transferred into word 6.

Word 3 shifts and substitutes the B address field of the "PR" word into the A
address field of word 8.

Word 4 shifts and substitutes the address designator bit corresponding to the
address transferred in word 3. It also increments the CSH by 1 so that this
register now contains the address of the "CAC'" word in the calling sequence.

Word 5 transfers the A address field of the "CAC'" word into AU2.

Word 6 transfers the contents of the location specified by the A address field
of the "PR'" word into a temporary storage location called ASTORE. Note that
if the A address parameter is specified as a complex address, the contents of
the location represented by this address are placed in ASTORE; whereas if the
A address parameter is a direct memory location address, the contents of the
location whose address is stored in AU2 are placed in ASTORE.

Words 7 and 8 position and transfer the contents of the location specified by the
B address parameter into a temporary storage location called BSTORE.

If any of the parameters are literals or array locations, they must be treated specially and
removed from the "PR'" or "CAC'" words of the calling sequence with coding other than the
above. If the subroutine is independent and uses masks, the entry section must also preserve

the contents of the MXR and set up the required mask group(s).

BODY: The body of the subroutine in this example uses the input parameters stored in
ASTORE and BSTORE to perform the subroutine function, and stores the result in a temporary
location such as ANSWER, where it is available to the exit section.

EXIT: The following example illustrates an exit section based on the same assumptions as

the foregoing entry section, together with the masks required by both entry and exit. Again,

this coding is merely representative of an exit that might be used with a type 2 calling sequence.
ARGUS =

PROBLEM PROGRAMMER DATE PAGE CF____

 LOCATION 1ol,, COMMAND CODE zz%u A ADDRESS)38 v_'B_'A'DD'R_ErSsI sl ,,C,A.D?Rfssff - “'",‘R"“:“:f’,’:é ‘x‘sl o)

: TX | csSHSAVE Zz,CSH ;

2 Ss ¢ N,CSH,I < MASK c.t2 T

3 X d N,csw,2 z,AUZ :

‘ TX ¢l ANSWER [c avor. PARAM.] :

s ‘ X d z,csH z,cs5¢C T

s| 5,ALLONES| DEC GGGGGGGLGGEG

7| s,AMASK DEC 100GGG '

8| s,ADES DEC 1 . i

7| cMAsSK DEC 0400000006GG }
— S | j—

Word 1 restores the preserved contents of the CSH (the address of the "PR"
word in the calling sequence).

120

APPENDIX A, WRITING LIBRARY ROUTINES

Word 2 substitutes the C address field of the '""PR'" word into the C address field
of word 4. The contents of the CSH are incremented by 4 so that this register
now contains the address of the '""CAC" word in the calling sequence.

Word 3 transfers the "CAC'" word (the word whose address is storedin the CSH)
into AU2. Note that the low-order 16 bits of the "CAC" word are now stored in
AU2, The CSH is incremented by 2 to form the address of the calling sequence
exit instruction.

Word 4 transfers the contents of location ANSWER to the location specified in
the C address field of word 4 (the C address parameter of the call instruction).

Word 5 transfers the contents of the CSH into the CSC and gives control to this
counter to return control to the calling sequence exit instruction.

Special Calling Sequences

The standard calling sequences (type 1 and type 2) can be generated by ARGUS to handle
many common forms of subroutines. Any subroutine which cannot conveniently use a standard
calling sequence requires a special calling sequence which is coded as a macro routine. For
example, a subroutine which requires more than three parameters must use a special calling
sequence, In addition, a subroutine which does not require the flexibility inherent in the
standard calling sequences (such as a one-parameter subroutine) can use a special calling
sequence to advantage. Macro routines which are designed to serve as subroutine calling se-

quences have the same properties as other macro routines.

A special calling sequence must perform the same functions as a generated calling
sequence; i, e., it must provide linkage with the subroutine and handle the parameters speci-
fied in the call instruction. The entry and exit sections of the subroutine must contain the
coding to obtain the parameters and make the result information available to the main pro-
gram. Since this coding is entirely dependent upon the macro routine which serves as calling

sequence, examples are not provided.

Figures A-6 and A-7 show two macro routines designed to serve as special calling se-
quences, The routine CALLMAC (Figure A-6) is a special calling sequence designed to han-
dle a subroutine with many parameters., The routine DBLSUM (Figure A-7) is a special call-
ing sequence designed for efficient handling of a one-parameter subroutine. Figure A-7 shows
both the generalized coding for the macro routine and the routine after insertion of the para-

meter values specified in the sample macro instruction.

121

[44}

Honeywell ARGUS coome
. ’ R
@ W’Dﬂﬁupn‘ow&m% CALLMAC FORM
rrosLem _MACRO ROUTINE FOR CALLING SEQUENCE PROGRAMMER DATE PAGE OF
| LOCATION jo|;, COMMAND CODE 3 [/l 24 A ADDRESS 37|39 B ADDRESS /g2 C ADDRESS ol = MARKS
| MACRODEF . | i
!
L,CALLMAC TAG/TAG 2/TA63| TAGA/BIN/PER | MASK/SR/SmFT }
4+
Ts ¢ z,csc X, +9 X, *Q |
1(7
X, s X,t8 Z, AUl N, AU\ \
T
X, PR,S TAGl TAG 2 TAG3 !
X, CACS TAG\ TAGZ TAG3]
l
X, SWE ,MASK N, SR A, SHIFT, L N, SR, BIN !
l
X, S PEC TAG4 + BIN |
X, FXBIN BIN !
-
X, RF, PER |
X, TX X, 2 z,cs5cC }
x" suBCcAlLL CALLMAC !
|
X, RESERVE 1 |
: f
- FIMLS |
I
|
|
|
I
1
l
T
l
l
) ")1|1|1x||1|'|1|1|1|||4\;14|;141;|111:!1 TS N R S

Figure A-6. Special Calling Sequence CALLMAC

'V XIAN3ddV

SAINLLNOY AYVYEIT ONILIIM

£zl

Homneywell

CODING
Eltiois Dite, P~ P BLSUM ARGUS wu
ROBLEM MACRO ROUNTINE FOoR CALLING SEQUENCE PROGRAMMER DATE PAGE CF
5/ REMARKS
| LOCATION |gl;; COMMAND CODE 3, [Ve| 24 A ADDRESS 37|38 B ADDRESS sils52 C ADDRESS P T — e m
MACRO DEF [’
1
L,0BLSUM LIST 1
. 1
Ts c, %2 zZ, Aul N, AUl 1
i
SPEC LisY |
I
SUBCALL pBaLsum |
|
FINLS
AFTER INSERTING PARAMETER VALUES 3 |
[
|
!
L,DBLSUM PEBITS |
|
|
|
l
i
TS c,+2 Z, AUl N,AU |
i
SPEC PEBITS [
SUBCALL PBLSUM :
I
|
|
1
|
[
L1 L i1 IlLIIIIiIIL.'IlI]AIll\II!lIlIlI‘I‘IIIIIl||LI!I [R R S

Figure A-T7.

Special Calling Sequence DBLSUM

'V XIAN3ddV

SINLLNOY AdvidlT ONILIEM

APPENDIX A, THE USE OF LAMP

LAMP (Library Additions and Maintenance Program)

The library of routines, which is stored on the ARGUS symbolic program tape, is
maintained by a program called LAMP, This program may be used to add a new routine to
the library or to delete or modify one already in the library. The input to LAMP consists of
the SPT (containing assembled programs and library routines) and a deck of punched cards or.

a tape containing punched card images. The input deck uses the following director cards to

control the action of LAMP.
ARGUS &

PROBLEM PROGRAMMER DATE PAGE oF___
. LOCATION jol,; COMMAND CODE 55 [/lz4 A ADDRESS 3739 ® ADDRESS g5 T N —

1 o Lame T T ' R R

2 MACRODEF

3 FINtS

NEWSUB,g |d PROGRAM NAME | SEGMENT NAME | SUBROUTINE NAME

1
|
Il
!
\
i
!
T
5 ELIMMAC MACRO NAME |
|
|
|
I

6 ELIMSUB SUBROUTINE NAME| MACRO NAME
7 ENDLAMP
S ——

LAMP: This director card precedes and identifies the LAMP input deck. The only significant
information is the word LAMP punched in the command code field.

ENDLAMP: This director card signals the end of the LAMP input deck. The only significant
information is the word ENDLAMP punched in the command code field.

Macro Routine Processing

The MACRODEF and FINIS directors are used to add a macro routine to the library.

The card batch for a macro routine must contain the following cards, in the sequence in which

they are listed:

1. A MACRODEF director card;

2. A master macro instruction card;

3. The cards containing the macrocoding; and

4. A FINIS director card,
If a macro routine is included in the LAMP input deck in this form, it is added to the library
of routines in ARGUS input language. If a macro routine is included in the input to a program

being assembled, the routine is handled as a programmer macro routine (see Section XIII)
and is not added to the library.

MACRODEF: This director card precedes and identifies each macro routine in the input deck.
The only significant information is the word MACRODEF punched in the command code field

124

APPENDIX A, THE USE OF LAMP

and the contents of the S/C column. This column may direct LAMP to check the identity of
all cards in the macro routine, to order the macrocoding cards by serial number, or both.
Permissible characters in the S/C column are "I", "S'", '"B", or blank, and the resulting ac~-
tion is identical to the use of the MACRODEF instruction with a programmer macro routine
(as described on page 84). In addition, if identity checking is requested for a given routine
and any card within that routine fails the identity check, the routine is not added to the library

and a diagnostic printout is produced.

FINIS: This director card signals the end of a macro routine. The only significant informa-
tion is the word FINIS in the command code field. A FINIS card must be followed by another

director card.

ELIMMAC: This card directs LAMP to delete a macro routine from the library. The word
ELIMMAC is punched in the command code field and the name of the routine to be deleted is

punched in the A address field. The remaining fields are not used.

In order to modify a macro routine in the library, it is necessary to delete the existing
routine and add the new version, just as if it were an entirely new routine. The card deck for
the new version must be complete with MACRODEF director, master macro instruction,
macrocoding, and FINIS director. LAMP deletes the old version and adds the new version in
two separate operations, always performing the deletion first, regardless of the relative

positions of the ELIMMAC director and the new version in the input deck.

Subroutine Proces sing_

Before a subroutine can be added to the library, it must be assembled and appear as a
segment or as a complete program on the symbolic program tape. The directors NEWSUB
and ELIMSUB are used to add subroutines to the library and to delete subroutines from the

library, respectively.

NEWSUB: This card directs LAMP to add a new subroutine to the library and provides the
information required to accomplish this. If the subroutine has been assembled as a single
program segment, the program and segment names are punched in the A and B address fields,
respectively, of the NEWSUB director, just as they appear on the symbolic program tape. If
the subroutine has been segmented for assembly, the B address field is left blank and LAMP
combines the segments to form a subroutine. In either case, the C address field must contain
a name of up to eight alphanumeric characters by whichthe subroutine is to be identified in

the library, A subroutine name must include at least one non-numeric character.

125

APPENDIX A, THE USE OF LAMP

If the command code NEWSUB is followed by a comma and a digit !''4{" or "2", LAMP
automatically generates a standard calling sequence of the specified type (see page 116) and
adds this calling sequence to the macro routine portion of the library under the same name as
the subroutine. If no information follows the command code, a macro routine should be added
to the library for use as a special calling sequence. This routine must be in standard macro
routine format with MACRODEF and FINIS directors and master macro instruction. It may

or may not have the same name as the subroutine with which it is to be used.

The S/C column of the NEWSUB director must contain either a '"D'" or an "I'" to indicate-
whether the subroutine is dependent upon or independent of the object program mask groups,
respectively. A blank in this column is an error and results in a diagnostic comment. If the

subroutine has been segmented for assembly, it must be specified as an independent subroutine.

ELIMSUB: This card directs LAMP to delete the subroutine named in the A address field from
the library. The B address field may contain the name of a macro routine (usually the calling
sequence for the subroutine to be deleted). In this case, both the subroutine and the macro

routine are deleted. Otherwise LAMP deletes only the subroutine.

Before a subroutine in the library can be modified, the new version must be assembled
and placed on the symbolic program tape. LAMP then requires an ELIMSUB director to delete
the existing subroutine from the library, plus a NEWSUB director to add the new version.
Since deletion is always performed before addition, the sequence of these directors within the

input deck is irrelevant.

Output from LAMPF

LAMP uses the same equipment configuration as the updating run (see page 91). The
principal output from LAMP is the new symbolic program tape containing the updated library.
In addition, LAMP produces a printed table of contents for the updated library, listing all
macro routines and all subroutines in the library under separate headings. The printed output
from LAMP also includes appropriate diagnostic comments if the following programming
errors are detected in the input deck:

1. An illegal command code;

2, Card sequence error (i.e., violation of sequencing rules within a macro
routine);

3. Illegal character;
4, Identity check failure;

5. The name of a routine exceeds eight characters in length;

126

APPENDIX A, THE USE OF LAMP

6.
7.

A line number exceeds 2047;

Macro routine name duplicates name already in macro routine library;

(If any of the above errors is detected within a macro routine, the routine is not added to the

library.)

8.
9.

10.
11.
12,

13,
14.

Subroutine name duplicates name already in subroutine library;

A blank S/C column in a NEWSUB director (i.e., the subroutine is not
designated either dependent or independent);

A subroutine contains errors which are unacceptable to LAMP:
A subroutine contains a reference to a special register group indicator;

A dependent subroutine contains more than 32 field masks or more than
64 shift masks;

A dependent subroutine contains a type ''"B'" mask;

A dependent subroutine contains a reference to a mask as an operand;

(If any of the above errors 8-44 is detected, the subroutine is not added to the library.)

15,

16,
17.

18.

Illegal calling sequence number in a NEWSUB director. (If this error is
detected, the subroutine is added to the library but no calling sequence
is generated.);

The subroutine named on an ELIMSUB director is not in the library;

The macro routine named on an ELIMMAC director or on an ELIMSUB
director is not in the library;

A SUBCALL constant in either a new or an existing macro routine names
a subroutine which is not in the library (information only, no action by
LAMP),

127

APPENDIX B
SYMBOLIC PROGRAM TAPE LAYOUT

The over=-all layout of the symbolic program tape (SPT) is shown schematically in
Figure B-1. The symbolic program tape contains a file of object programs in both sym-
bolic ARGUS language and machine language. The retention of the original input language
after assembly allows object program modification in ARGUS language, reassembly of
existing programs during the updating run, and reproduction of assembled programs in
ARGUS language. The object programs in the symbolic file also contain test data and
debugging pseudo instructions (derails) for use by the Program Test System and information
generated during assembly for use by other systems programs. In addition to the symbolic
program file,” the SPT also contains the file of ARGUS systems programs (Assembly, LAMP,
the Program Test System, Executive, the library of routines, etc.) and a systems program

loader. All programs in the systems file are stored in machine language.

Tape Label Record

The tape label record on the SPT is used to identify the tape. It also contains a boot-~
strap routine and a directory of the symbolic program tape. The bootstrap can be activated
from the console to initiate loading of any of the systems programs. The directory lists
the names of all programs and segments in the symbolic file, in the order in which they

appear on tape. It is used to sort the ARGUS input deck into SPT order.

Loader

The two records following the tape label comprise the systems program loader. To
load and execute a systems program from the SPT, the operator activates the bootstrap
routine and types in the name of the desired program. The bootstrap loads the loader, which

in turn loads and gives control to the program requested.

Systems Program File

The systems program file contains all of the programs comprising the ARGUS system
in machine language. Following the begin file identification record, each systems program
is preceded by a begin program identification record and a record of control information for
use in operating the program. A systems program may include up to 64 segments. Each
segment is headed by a begin segment identification record and consists of machine words

and control information for loading the segment.

129

APPENDIX B, SYMBOLIC PROGRAM TAPE LAYOUT

Symbolic Program File

A second begin file identification record separates the symbolic program file from the
systems file. The elements of each object program are in the order which is established
when ARGUS sorts the input card deck (see page 90). All object program modifications
(insertions, deletions, and replacements) from previous updating runs are incorporated in
their proper places, Program and segment directors are represented by begin program and
begin segment identification records, respectively. Each test data card is represented by
a two-word item containing the test data word and a control word. Each main coding word
and each derail is represented by a variable-length symbolic item containing the original
symbolic word, the assembled machine word, the absolute assignment of the word in memory,

and the relocation information required by Executive.

A symbolic object program also contains the following items of information generated

during the assembly process:

1. The RES table is a list of certain symbolic tags appearing in the program.
It is used only during the reassembly process and is not of concern to the
programmer.

2. The link tag table contains one item for each link tag used in the program.,

It is used by Executive during the relocation process.

3. The memory map is a list of all symbolic tags used in the program and
their absolute assignments. It is used by the Program Test System to
re-create ARGUS language from machine language.

4, The binary relocatable information consists of a two-word item for each
machine word which is not represented by a symbolic item, i.e., sub-
routine words and generated masks.

Each program is followed by an end program identification record containing information

about the equipment complement required by the program.

130

APPENDIX B, SYMBOLIC PROGRAM TAPE LAYOUT

TAPE LABEL RECORD

BEGIN FILE IDENTIFICATION RECORD
(BEGINNING OF SYSTEMS FILE)

LOADER

BEGIN PROGRAM IDENTIFICATION RECORD

CONTROL INFORMATION
BEGIN SEGMENT IDENTIFICATION RECORD

MACHINE WORDS

AND REPEAT FOR
EACH PROGRAM
CONTROL INFORMATION | ptel Saue el e

BEGIN SEGMENT IDENTIFICATION RECORD

MACHINE WORDS
AND

CONTROL INFORMATION

BEGIN FILE IDENTIFICATION RECORD
(BEGINNING OF SYMBOLIC FILE)

BEGIN PROGRAM IDENTIFICATION RECORD
RES TABLE

LINK TAG TABLE

PROGRAMMER MACRO ROUTINES (IF ANY)

BEGIN SEGMENT IDENTIFICATION RECORD

MEMORY MAP

TEST DATA

SYMBOLIC ITEMS REPEAT FOR
FOR DERAILS > EACH PROGRAM

AND MACHINE WORDS IN SYMBOLIC FILE

BINARY RELOCATABLE INFORMATION
BEGIN SEGMENT IDENTIFICATION RECORD

ETC.

END PROGRAM IDENTIFICATION RECORD

END FILE IDENTIFICATION RECORD
(END OF SYMBOLIC FILE)

END-OF-INFORMATION RECORD

Figure B-1. Over-all Layout of the Symbolic Program Tape
131

APPENDIX C
ASSEMBLY EQUIPMENT CONFIGURATION CODE

The assembly equipment configuration code specifies the type and amount of equipment
which ARGUS may assume to be available to a program being assembled. The equipment
array which is available to a specific program is described by punching this code in the C
address field of the PROGRAM card (see page 86). If this code is punched in the C address
field of an ARGUS card (page 81), it describes a standard array which is available to all
programs being assembled or reassembled during the current updating run for which indi-
vidual arrays are not described. If no array is described on the ARGUS card, the standard
array is assumed to be the configuration of the system on which the updating run is being
performed. The equipment array actually required by the assembled program (known as
the program configuration) may be either identical to or a subset of the assembly configura-
tion. The Assembly Program checks the equipment requirements of the object program and

produces a diagnostic comment if the program requires equipment which is not available.

The assembly configuration code consists of 10 characters punched in the C address
field of the PROGRAM card or the ARGUS card. All 10 characters must be specified each
time that the code is punched, since ARGUS automatically justifies the information to the
left, suppressing any included spaces. If more than 10 non-space characters are punched,
the first (left-most) 10 such characters are used and the remainder are ignored. The first
eight characters in the configuration code correspond, respectively, to the eight input-output
channel pairs in every Honeywell 800 system. Each of these characters may be a number
from 0 to 8 or a letter from A to O, and is interpreted according to the following table. The
ninth character must be a comma and the tenth a number from 1 to 4 which specifies the

number of main memory modules (4096 words) in the available configuration.

Character Significance
0 (zero) No equipment is connected with the corresponding

pair of channels.

1-8 A tape control is connected with the corresponding
channel pair and the indicated number of tape units
are attached, in turn, to this control unit. Any
address up to and including the alphabetic code for
this number is legal, since tape units must be
plugged to consecutive hubs starting with 1.

A A card reader is connected to the input channel;
no equipment is connected to the output channel.

133

APPENDIX C. ASSEMBLY EQUIPMENT CONFIGURATION CODE

Character Significance
B No equipment is connected to the input channel,

a printer is connected to the output channel.

C No equipment is connected to the input channel;
a card punch is connected to the output channel.

Note: If one of the letters A through C is punched, the indicated equipment may be connected
by means of either a peripheral control or a multiple terminal unit control.

D A card reader is connected to the input channel;
a printer is connected to the output channel,

E A card reader is connected to the input channel;
a card punch is connected to the output channel.

F No equipment is connected to the input channel;
a printer and a card punch are connected to the
output channel.

G A card reader is connected to the input channel;
a printer and a card punch are connected to the
output channel.

Note: If one of the letters D through G is punched, the indicated equipiment is connected by
means of a multiple terminal unit control.

H A card reader is connected to the input chénnel;
a printer is connected to the output channel.

I A card reader is connected to the input channel;
a card punch is connected to the output channel.

J A paper tape reader is connected to the input channel;
no equipment is connected to the output channel,

K No equipment is connected to the input channel;
a paper tape punch is connected to the output channel.

L A card reader is connected to the input channel;
a paper tape punch is connected to the output channel.

M A paper tape reader is connected to the input channel;
a printer is connected to the output channel.

N A paper tape reader is connected to the input channel,;
a card punch is connected to the output channel.

O (letter) A paper tape reader is connected to the input channel;
a paper tape punch is connected to the output channel.

Note: If one of the letters H through O is punched, all equipment on these channels is connected

by means of individual peripheral controls.

134

APPENDIX D
TAPE, FILE, AND RECORD IDENTIFICATION

All of the ARGUS systems programs, as well as all tape-handling and other standard
routines furnished by Honeywell, use certain conventions to identify information recorded on
magnetic tape. Every tape is identified by means of a tape label record. The tape label and

the end-of-information record define, respectively, the beginning and end of useful informa-

tion on the tape, Each file or program on a tape is bounded by beginning and end identifica-

tion records. Segments are preceded by begin segment identification records. Finally, each
record on tape is identified by a banner word as an identification record, a record of program
coding, or a data record. The banner word also contains a record count which is used in tape

positioning, plus control information if the record is to be printed or punched.

Tape Label Record

The first record on every tape is a tape label. All programs furnished by Honeywell
assume the existence of such a record and preserve the first three words of this record. If
all programs used at an installation observe this convention, these three words may be used
to establish automatic tape accounting procedures based upon the identification of the physical
reel. On all ARGUS systems program tapes, the tape label record normally contains other

information such as a bootstrap routine and/or a directory.

The maximum number of words in a tape label record is 2048, In the case of a data file
or a work tape, care must be exercised in processing this record since its length varies and
its structure differs from that of the other records on the tape. The tape label may be skipped
by reading it into the stopper location; however, if it is to be rewritten, the contents of the

first three words must be preserved for inclusion in the new tape label.

Word 1 The banner word in a tape label record has the octal
configuration 6004 xxxx 0020 xxxx. The first four
digits represent control information to bypass the
tape label on a tape which is to be printed or punched.
The next four digits are irrelevant. The contents of bits
28 through 32 identify the record as a tape label. The
record count is irrelevant, since record counting be-
gins with the second record on tape. (See page 138 for
the binary configuration of a banner word.)

135

APPENDIX D. TAPE, FILE, AND RECORD IDENTIFICATION

*Word 2

*Word 3

Words 4to 11
Words 12 to 12+n-1

Words 12+4+n to 12+n+m-1
Words 12+n+m to 12+n+m+l
Word 12+n+m+2

Tape Identification

Unspecified (contents preserved by ARGUS)
Unspecified (may be used without restriction)
Bootstrap Routine (systems program tapes only)
Program Directory (symbolic program tape only)
Orthowords

End-of-Record Word.

File and Program Identification Records

These records are used to identify the beginning and end of each file on a data tape. On

a program tape, they are used to identify the beginning and end of each program.

Word 1l

Word 2
Word 3

Word 4

Words 5 to 5+n~l

Words 5+n to 5+n+l
Word 5+n+2

Banner Word. Bits 28 through 32 specify the type
of information identified by this record (see page 138).

Name of File or Program (eight alphabetic characters)

Reel Number (two low-order decimal digits) if file
identification record. The reel number is used
primarily for multi-reel files and appears in both
the beginning and end file identification records,
varying from 01 for the first reel to hex GG for the
end identification record of the last reel. The con-
tents of this word are unspecified for a program
identification record.

Date Obsolete and Date Written (begin file or pro-
gram records only). Each date comprises six
decimal digits in the form year (two digits), month
(two digits), day (two digits).

File Parameters:
Relocation information in program identification
records;

Sort parameters in file identification records (see
below).

Orthowords
End-of-Record Word

If a data file is to be sorted by an ARGUS generated sort or collate routine, words 5 to 9 of

the file identification records should contain the following parameters, unless these parameters

are supplied by means of '""own coding',

Word 5 Digits 1-3
Digits 4-6
Digit 7
Digit 8
Digits 9-12

Number of items per record (1-250)

Number of words per item (1-250)

Fixed-length (0) or variable-length (1) records

Banner words present (0) or missing (1) in data records
Not used

*If the information in these words is in standard alphanumeric code, it will appear in
recognizable form if the tape is printed.

136

APPENDIX D. TAPE, FILE, AND RECORD IDENTIFICATION

Word 6 Digits 1-3 1st key position (word 1-250)
Digits 4-6 2nd key position (word 1-250)
Digits 7-9 3rd key position (word 1-250)
Digit 10 Keys not masked (0) or masked (1)
Digits 11-12 Not used

Word 7 Mask for 1st key

Word 8 Mask for 2nd key

Word 9 Mask for 3rd key

Segment Identification Records

These records are used to identify the beginning and end of each segment on a program

tape.

Word 1 Banner Word. Bits 28 through 32 have the configura-
tion 01001 (see page 138).

Word 2 Name of Program (eight alphanumeric characters)

Word 3 Name of Segment (seven high-order alphanumeric
characters)

Word 4 Date Obsolete and Date Written (begin segment
records only). Each date comprises two decimal
digits for year, two digits for month, and two digits
for day.

Words 5 to 5+n-1 Relocation Information

Words 5+n to 5+n+1 Orthowords

Word 5+n+2 End-of-Record Word

End-of-Information Records

The end-of-information record signals the end of useful information on tape. The last

end file identification record should be followed by an end-of-information record and a dummy

record., If an additional file is to be stored on the same tape, the end-of-information record
must be written over and a new end-of-information record must be written at the end of the
new file. However, a program may use the tape area beyond the end-of-information record

for work space without having to destroy the end-of-information record.

Word 1 Banner Word., Bits 28 through 32 have the configura-
tion 10001 (see page 138).

Words 2-4 Unspecified

Words 5-6 Orthowords

Word 7 End-of-Record Word

Banner Wozrds

The first word of every record is a banner word which should contain a record count

in bit positions 33 through 48, This record count starts with a value of 1 in the record

137

APPENDIX D. TAPE, FILE, AND RECORD IDENTIFICATION

following the tape label and continues in ascending sequence through all included files to the
last record on the tape. Programs which include restart provisions, including Executive,
make use of the record count to position tapes. Since the banner word must also serve as a
control word on tapes which are to be printed or punched, bit positions 1 through 30 are re-
served for control information. The contents of bit positions 31 and 32 specify the type of
record which follows the banner word, as follows:k

Bits 31-32 00 = printer or punch record
01 = identification record
10 = program coding record
11 = data record

n

In a tape label record, bit position 1 should contain a 1, which causes the peripheral control
to ignore the remaining control bits (2-30) if the tape is printed or punched. The printer,

for example, prints and then skips to the head of form.

In the case of an identification record, bit positions 28 through 30 are used to specify

the type of identification record as follows:

@

Bit 28 0 = beginning O &
1=end SR v | e |
Bits 29-30 00 = information " '
01 = file or program
10 = segment
11 = other (used only on symbolic program tape to

identify the boundaries of the two program
files) '

Note that the record type of most records can be determined by examining the contents of
banner word bits 31 and 32, If these bits contain the configuration 01, then the contents of

bits 28 through 30 must also be examined.

Summary

Some of the above conventions are required for tapes to be used with Honeywell auto-
matic programming aids and some are optional. As noted above, the restart provisions of
the Executive System require the inclusion of banner words in all records. Likewise, the
ARGUS generated sort and collate routines assume the presence of parameters in words 5
through 9 of the begin file identification records (as noted above), unless this information is
provided by means of "own coding''. These routines also require that each file contain an
end file identification record which specifies the same file name as the begin file identification
record. In addition, the library tape-ﬁandling routines assume the presence of banner words
in all records, plus tape label records, end-of-information records, and beginning-of-file,
program, and segment identification records as appropriate. The use of end program and

segment identification records is optional. Such records may be included wherever their

use facilitates processing.

138

 APPENDIX E
HONEYWELL 800 MACHINE INSTRUCTIONS

The following pages contain a tabular summary of the Honeywell 800 complement of
machine instructions, grouped according to the major instruction categories. The mnemonic
ARGUS operation code and the basic time of each instruction are given, together with a brief
description of the function(s) performed. The machine instructions are described in greater

detail in the Honeywell 800 Programmers' Reference Manual. In particular, the basic

instruction times shown in this Appendix may be affected by masking, indexed and indirect
addressing, and inactive addressing. A detailed listing of instruction times considering

all of these factors is presented in Appendix C of the Reference Manual.

Mnemonic . Time in
Operation Memory
Code Description Cycles!

GENERAL INSTRUCTIONS

BA™ Binary Add algebraically (A) to (B). Store sum in C. If over- 4
flow occurs, transfer this instruction to the address stored in
the unprogrammed transfer register (UTR) and take the next
instruction from (UTR) + 8 if the sequence counter selected
this instruction; transfer this instruction to (UTR) + 1 and take
the next instruction from (UTR) + 9 if the cosequence counter
selected this instruction. The sign of either operand is posi-
tive if the sign digit contains any '"1'" bit, The sign of the sum
is 0000 if negative, 1111 if positive.

DA Decimal Add algebraically (A) to (B). Store sum in C. Other- 4
wise same as BA.

BS Binary Subtract algebraically (B) from (A). Store result in 4
C. Observe same overflow and sign conventions as in BA.

DS Decimal Subtract algebraically (B) from (A). Store result in 4
C. Otherwise same as BS.

BM Binary Multiply (A) by (B). Store high-order product with 33
proper sign in C and accumulator, low-order product with
proper sign in low-order product register. Product signs
are 0000 if negative, 1111 if positive.

DM Decimal Multiply (A) by (B). Store high-order and low-order 27
products as in BM with same sign conventions.

WA Word Add. Binary add absolute value of (A) to absolute value 4
of (B), considered as unsigned 48-bit numbers. Store 48-bit
result in C. Observe same overflow conventions as in BA.
2
WD Word Difference. Binary subtract absolute value of (B) from 4

absolute value of (A). Otherwise identical to WA,

139

APPENDIX E.

HONEYWELL 800 MACHINE INSTRUCTIONS

Mnemonic
Operation
Code

Description

Time in
Memor
Cycles

GENERAL INSTRUCTIONS (cont)

HA

SM

BT

DT

SS

EX

TX*
Ts®

TN

IT

RT

 Extract.

Half Add. Binary add (A) and (B) without carry. Store result
in C. (A) and (B) are unsigned 48-bit numbers. Bits of C are
0 wherever corresponding bits of (A) and (B) are identical,

1 wherever they are different.

Superimpose (A) and (B). Store result in C. Bits of C are
0 wherever bits of both (A) and (B) are 0, 1 everywhere
else,

Binary Accumulate. Clear the accumulator. Transfer (A) to
the accumulator. Perform this transfer B times (0-63 times),
regarding transferred words as signed 44-bit numbers. Add
absolute values of transferred words. Note that if A is an
indirect address with a non-zero increment, B different num-
bers are accumulated. Store result with sign of the first word
transferred in C. Observe same overflow conventions as in
BA.

Decimal Accumulate, Same as binary accumulate except that
transferred words are regarded as signed 11-digit decimal
numbers.

Substitute. Using (B) as a mask, transfer (A) to C, protecting
unmasked portions of C. Note that this is never a field instruc-
tion.

Using (B) as a mask, transfer (A) to C without pro-
tecting unmasked portions of C. Result is 1 wherever bits
(A) and (B) are both 1, 0 everywhere else, Note that this is
never a field instruction. '

Transfer (A) to C. Ignore B.

Transfer (A) to B. Change specified counter to +C, unless C
is inactive.

N-Word Transfer. Transfer.B words from consecutive loca-
tions starting at A to consecutive locations starting at C.
From 0 to 63 words may be transferred.

Item Transfer. Substitute end-of-item symbol4 for high-order
32 bits of (B), clearing low-order 16 bits of (B) to all zeros.
Transfer words from consecutive locations starting with A to
consecutive locations starting with C until an end-of-item sym-
bol is transferred. Upon completion, AUl contains A + n, AU2
contains C + n.

Record Transfer. Store end-of-record word5 in B. Transfer
words from consecutive locations starting with A to consecutive
locations starting with C until an end-of-record word is trans-
ferred. Otherwise same as Item Transfer.

3+ n(s)

3+ n(3)

5 + Zn(3)

7+ Zn(3)

7+ Zn(3)

140

APPENDIX E, HONEYWELL 800 MACHINE INSTRUCTIONS

Mnemonic
Operation
Code

Description

Time in
Memory
Cyclesl

GENERAL INSTRUCTIONS (cont)

NN

NA

PR
CC

CP

MT

MPC

Inequality Comparison, Numeric. Compare algebraically (A)
and (B). If (A) # (B), change specified counter to +C. Plus
0 equals minus 0.

Inequality Comparison, Alphabetic. Same as NN except that
absolute values of (A) and (B) including sign positions are
compared. Plus 0 is not equal to minus 0.

Less Than Or Equal Comparison, Numeric. Compare alge-
braically (A) and (B). If (A) < (B), change specified coun-
ter to +C. Plus 0 equals minus 0.

Less Than Or Equal Comparison, Alphabetic. Same as LN
except that absolute values of (A) and (B) including sign
positions are compared. Plus 0 is greater than minus 0.

Proceed (no operation).

Compute Orthotronic Count. Write a generated end-of-record
word5 in C. Compute orthotronic count from A to end-of-
record word., Store orthoword 1 in C, orthoword 2 in C + 1.
Write an end-of-record word in C + 2. Store +B in AU2. K
B is inactive, control is gichanged for distributed item
handling. If B is active, end-of-item words4 are sensed and
control is changed for distributed item handling.

Check Parity, Test (A) for correct parity. Place (A) with
correct check bits in B, If (B) differs from (A), change speci-
fied counter to +C.

Multiple Transfer. Transfer (A) to C. Perform this instruc-
tion B times (0-63 times). Note that if A and C are indirect

-addresses with non-zero increments, B different transfers

will be performed.

Control Program. Ignore A. Place (PCR) in the location
specified by C. Then alter the bits of PCR specified by bits
5 through 12 of B, using bits 1 through 4 of B to define how
the bits are altered. If B address memory designator bit is
1, hunt for next program in demand. Otherwise, do not hunt.

11 + n(3)

142003

SHIFT INSTRUCTIONS

SPS

Shift Preserving Sign and Substitute. Shift end-around excluding
sign (A) as directed by B. Mask the result and store in C (pro-
tected). B contains three parameters to direct the shift: a
character representing the number of bits per position shifted,
(Bl); the number of positions shifted (B); and the direction of
shift (B3)y.

5+ k6

141

APPENDIX E.

HONEYWELL 800 MACHINE INSTRUCTIONS

tive memory locations from A through the end-of-record
word5. (If device XX is a terminal output unit, print one line

or punch one card.) Set write address counter (WAC) to +A.

If B is not inactive, the distributed write address counter (DWAC)
is set to +B and end-of-item Symbols4 are sensed for distributed
writing of a multi-item record. If B is inactive, end-of-item
symbols are not sensed. Change the source counter to +C unless
C is inactive (S/C subfield is not used). If end of tape is sensed,
transfer this instruction to the contents of the unprogrammed
transfer register (UTR) if the sequence counter selected this
instruction or to (UTR) + 1 if the cosequence counter selected
this instruction and take the next instruction from (UTR) + 4

or (UTR) + 5. If an error was detected during the last previous
write to peripheral device XX, reset the error, do not perform
this instruction. Instead, transfer this instruction to (UTR) or
(UTR) + 1 and take next instruction from (UTR) + 6 or (UTR) + 7.
This instruction is interlocked against device XX and the asso-
ciated buffer,

Mnemonic Time in
Operation Memory
Code Description Cyclesl
SHIFT INSTRUCTIONS (cont)
SPE Shift Preserving Sign and Extract. Same as SPS except that the 5+ k(é)
unmasked portions of C are unprotected (cleared to all 0 bits).
6
SWS Shift Word and Substitute. Shift end-around including sign (A) 5 + k()
as directed by B. Mask the result and store in C (protected).
Otherwise same as SPS, :
SWE Shift Word and Extract. Same as SWS except that the unmasked 5 + k(6)
portions of C are unprotected (cleared to all 0 bits).
SSL Shift and Select. Shift end-around including sign (A) ds directed 6 + k(é)
by B. Binary add under mask control the absolute value of re-
sult to C to form C'. .Change the specified counter to +C!. The
shift operation is specified as in SPS, The mask must not cause
more than 11 low-order bits to be added to C.
SIMULATOR INSTRUCTION
S Simulator. Form a memory location address (direct or indexed) 7
from the low-order 11 bits of the command code and store this
instruction in the location thus specified. Change the cosequence
counter to select the next instruction from the next higher address.
PERIPHERAL INSTRUCTIONS
WF, XX Write Forward on peripheral device XX the contents of consecu- 5

142

APPENDIX E. HONEYWELL 800 MACHINE INSTRUCTIONS

Mnemonic
Operation
Code

Description

Time in
Memory
Cycles!

PERIPHERAL INSTRUCTIONS (cont)

RF, XX

RB, XX

RW, XX

Read Forward from peripheral device XX into consecutive mem-
ory locations starting with A through the end-of-record word. (If .

device XX is a card reader, read one card.) Set read address
counter (RAC) to +A. If B is not inactive, the distributed read
address counter (DRAC) is set to +B and end-of-item symbols
are sensed for distributed reading of a multi-item record. If
B is inactive, end-of-item symbols are not sensed. Change the
source counter to +C unless C is inactive (S/C subfield is not
used). End-of-tape and parity-error rules are identical with
write forward instruction., This instruction is interlocked
against device XX and the associated buffer,

Read Backward from magnetic tape unit XX into consecutive
memory locations starting with A. This instruction is other-
wise identical to read forward except that the RAC is set to
-A and, if B is not inactive, the DRAC is set to -B.

Rewind Tape on peripheral device XX to beginning., If already
rewound, proceed. If A is active, interlock device XX against
any further peripheral operations. B and C are ignored. If
an error was detected during the last previous read or write
for this tape, reset the error and perform the rewind.

EXTENDED INSTRUCTIONS

" STOP

DOFF

DON

SCON

CSCON

SPCR

Transfer the contents of the program control register (PCR)
to C, unless C is inactive, Ignore A and B. Stop the program
in which this instruction appears. -Hunt for another demand.

Transfer (PCR) to C, unless C is inactive. Ignore A. Turn
off up to seven programs specified by B. This instruction
specifies whether or not to hunt for another demand.

Transfer (PCR) to C, unless C is inactive. Ignore A. Turn
on up to seven programs specified by B. This instruction
specifies whether or not to hunt for another demand.

Transfer (PCR) to C, unless C is inactive., Ignore A. Turn
control of up to seven programs specified by B over to their
respective sequence counters. Turn on these programs.
This instruction specifies whether or not to hunt for another
demand.

Transfer (PCR) to C, unless C is inactive. Ignore A. Turn
control of up to seven programs specified by B over to their
respective cosequence counters., Turn on these programs.
This instruction specifies whether or not to hunt for another
demand.

Transfer (PCR) to C, unless C is inactive. Ignore A and B,

143

APPENDIX E, HONEYWELL 800 MACHINE INSTRUCTIONS

Mnemonic Time in
Operation Memory
Code Description Cycles!
EXTENDED INSTRUCTIONS (cont)
SPCR This instruction specifies whether or not to hunt for another
(cont) demand.
PRA Print (A) alphanumerically on the automatic typewriter speci- 5
fied in B. Change the specified counter to +C, unless C is
inactive.
PRD Print (A) hexadecimally on the automatic typewriter speci- 5
fied in B. Change the specified counter to +C, unless C is
inactive.
PRO Print (A) octally on the automatic typewriter specified in B. 5
Change the specified counter to +C, unless C is inactive.
SCIENTIFIC INSTRUCTIONS
FBA Floating Binary Add. Binary add algebraically (A) to (B). 7
Deliver the result as a normalized floating-point number
to C if C is active; retain the result in FLAC if C is inactive.
If exponential underflow occurs, take next instruction from
(UTR) + 12 or (UTR) + 13. If exponential overflow occurs,
take next instruction from (UTR) + 14 or (UTR) + 15, If
either occurs, store current instruction in (UTR) or (UTR)
+ 1.
FDA Floating Decimal Add. Same as floating binary add with the 7
word "'binary' replaced by ''decimal''.
FBS Floating Binary Subtract. Change the sign of the B operand 7
and perform a floating binary add.
FDS Floating Decimal Subtract. Same as floating binary subtract 7
with the word 'binary' replaced by ''decimal".
FBAU Floating Binary Add, Unnormalized. Same as floating binary 7
add, except that the result is not normalized. A four-bit
shift to the right is provided if necessary to compensate for
mantissa overflow, but no compensating left shift occurs to
renormalize a result with 0 in the most significaut mantissa
digit.
FDAU Floating Decimal Add, Unnormalized. Same as floating binary 7
add, unnormalized, with the word 'binary' replaced by
""decimal''.
FBSU Floating Binary Subtract, Unnormalized. Change the sign of 7
the B operand and perform a floating binary add, unnormalized.
FDSU Floating Decimal Subtract, Unnormalized. Same as floating 7

binary subtract, unnormalized, with the word ''binary'' replaced
by "decimal'',

144

APPENDIX E. HONEYWELL 800 MACHINE INSTRUCTIONS

Mnemonic
Operation
Code

Description

Time in
Memor
Cycles

SCIENTIFIC INSTRUCTIONS (cont)

FBAE

FBSE

FBM

FDM

FBD

FDD

BD

DD

FLN

Floating Binary Add, Extended Precision. Form the normalized
double~precision sum of (A) and (B). If C is inactive, retain the
high-order and low-order parts in FLAC and FLLOP. If C is
active, deliver the high-order part to C and the contents of FLOP
are unspecified. Sense for exponential overflow or underflow on
the high-order result. If exponential underflow occurs on the low-
order result, set the low-order underflow indicator.

Floating Binary Subtract, Extended Precision. Change the sign
of the B operand and perform a floating binary add, extended
precision.

Floating Binary Multiply. Multiply (A) by (B). The resulting
product is a normalized, double-precision, floating-point num-
ber whose high-order part is stored in C. If C is inactive, re-
tain the high-order product in FLAC and store the low-order
product in FLOP, Sense for exponential overflow or underflow
on the high-order product. If exponential underflow occurs on
the low-order product, set the low-order underflow indicator.

Floating Decimal Multiply. Same as floating binary multiply
with the word '"binary'' replaced by ''decimal''.

Floating Binary Divide. Divide (B) by (A). Store the quotient
in floating-point form in C. If C is inactive, retain the quo-
tient and remainder in FLAC and FLOP. The quotient is nor-
malized if the operands are normalized., The remainder is not
normalized. Sense for exponential overflow or underflow in
the quotient. Set the remainder underflow indicator if there is
underflow in the remainder. If the divisor is unnormalized or
0, store this instruction in (UTR) or (UTR) + 1 and take the
next instruction from (UTR) + 10 or (UTR) + 11.

Floating Decimal Divide. Same as floating binary divide with
the word ''binary' replaced by '"decimal''.

Fixed Binary Divide. Divide (B) by (A), where both operands
are considered as fixed-point binary numbers. If the absolute
value of (B) equals or exceeds the absolute value of (A), take
the next instruction from (UTR) + 10 or (UTR) + 11; the contents
of C are unspecified, If C is active and the absolute value of
(B) is less than the absolute value of (A), place the quotient

in C. If C is inactive, retain the quotient and the remainder

in FLAC and FLOP,

Fixed Decimal Divide. Same as fixed binary divide with the
word ''binary'" replaced by ''decimal'.

Normalized Less Than Comparison, Compare (A) with (B). If
(A) £ (B), change the specified counter to +C. If (A) and (B)
have different signs (bit 1), then the positive exceeds the nega-
tive. If both operands are positive, then the operand with larger

10

10

13.6

40,5

67

64

74

68

145

"APPENDIX E.

HONEYWELL 800 MACHINE INSTRUCTIONS

Mnemonic Time in
Operation Memor
Code Description Cycles
SCIENTIFIC INSTRUCTIONS (cont)
FLN exponent exceeds the other unless the exponents are alike, in
(cont) which case the operand with larger mantissa exceeds the other.
If both operands are negative, then the operand with smaller
exponent exceeds the other unless the exponents are alike, in
which case the operand with smaller mantissa exceeds the other.
FNN Normalized Inequality Comparison. Compare (A) with (B), 4
including sign positions. If (A) # (B), change the specified
counter to +C, This is identical to the general instruction in-
equality comparison, alphabetic.
FFN Fixed to Floating Normalize. Take the least significant 44 bits 5
of (B) as a mantissa to be normalized. If C is active, store the
normalized mantissa in the least significant 40 bits of C. If C
is inactive, the FLAC and FLOP contain a normalized double-
precision number whose high-order part is in FLAC and whose
least significant 36 bits in FLOP are zeros. The exponent of
the result is the binary sum of the exponent of (A) minus the
amount of left shift plus the amount of right shift minus 1.
The sign of (C) is the logical sum of the four sign bits of (B).
Sense for exponential underflow in the high-order part. Set the
low-order underflow indicator if exponential underflow occurs
in the low-order part.
ULD Multiple Unload. Place the contents of FLAC in A and the con- 4
tents of FLOP in C. The B address must be inactive., If either
the low-order underflow indicator or the remainder indicator is
set when the instruction is initiated, take the next instruction
from (UTR) + 12 or (UTR) + 13,
NOTES
1. One memory cycle equals six microseconds.
2. Instructions so designated are field instructions and may be executed under control
of field masks.
n = number of words transferred, accumulated, or orthocounted.
4, An end-of-item symbol is a word whose high-order 32 bits are
1010 1010 0000 0000 1110 1110 1110 1110
5. An end-of-record word has the configuration
1010 1010 0000 0000 1110 1110 1110 1110 1101 1101 1101 1101
6. Values of k vary fromO to 4, based on number of 16-, 4-, and 1-bit shifts required
(see Reference Manual).

146

INDEX

Accumulator v ittt i i e i s it i e e e
Active Program Llst
Address Arithmetic

Address Fields e e

Address Modifier et e it

Addressescc00000enn cererenas ceesies e enaan
Direct Memory Locationcviiiveninnnnns .
Direct Special Register0iviiiinnnnns

Indexed Indirect Memory Location
Indexed Memory Location ..
Indexed Special Registerciveeeiveennoenn
Indirect Memory Location
Algebraic Compiler
Allocation of Memory
Alphanumeric (ALF) Constantccievereenncnnnns
Analyzer
ARGUS Coding FOrm ...ceeeutuierinroncerecronnnones
ARGUS Card

I I IR SR Y

© e 0 0 ¢ 8 20 0 6 0 s s 0 s s e e s s e e

R A I T R I S N L I B R BT A

L R A I I R R e R R

28,139,140

................ -)
cee. 23,31, 70 73,94,100,103,109,115
N e cee... 15,28

23,54,67, 94
cve.. 9,10,21
ceeeneareeeess 21
22,24, 67
e e 22, 27
cereae.. 22,24,38
ceeeeen 22, 25,68
10, 22, 26, 140, 141

DR

LECECIRY

et eet et cheee ceee. 1,2
credaccneassenreeesnnn N . 32,53

... 63,109
. 86,94, 98
14
81,133

............

ARGUS Input Deck sesecens it ee ettt eaeaassaaessas 89,107,130
ARGUS Listingccvuenen. . Ceeriesenne Ceeceresiesnneen 81 86, 93, 95, 96, 97, 98, 99

ARGUS System .
ASSIGN Instruction
AU-CU Counters
Augmenteriiiieiiiiir ittt

Bank Indicatorivtiiiii it iiereintoriranaons
Banner Word
Binary Accumulate (BT)
Binary Add (BA)
Binary Multiply (BM)
Binary Subtract (BS)
Bisequence Bit.......ciieeiieiinnnnnsn
Buffer Interlock Bits

s e
P I I R I S R R R
D N A R IR AR AP ST AP T R
L I I R I NN R N A N S Y

..........

D I N R SR B RN)

Calling Sequence
Check Parity (CP)
Checkout Run
Command Code Field
Command Codes
Complete Address (CAC) Constant ...vveueans
Compute Orthocount (CC)
Constants
Control
B T -
CONTROL Constant (see Program Control Constant)
Control Instructions ...
Control Program (MPC) Instructmn
Control Unit Indicator ...eeteresacerstsessescnssnsan
CSCON Instructionc...
Current Location Counter (CLC)

I I R T R A R I IR I BT RN
D I N R I N N R AT S N SR

s 660000000000

® * 5 0 0 6 000 800 s 0 s e s 00 s 00

D N I I R R R A I I I A
se e s e
e s e s s s s e e e s e e s
s e s

R I I R R A A

D R N R A A

D A I I SR SRS R R N Y

ciesresesses 1,2
56, 83, 100

..... ceeereeieaeaaaa.s 19,48,49,140
Chereieaes ceeeen Cheeean 24, 48,100
ciesesessaasasases 1,33,53,54,67,69

.. 39,41, 140
ceee. 39,139
«ee.. 39,139
.... 39,139
9,71

.. 73,106,115,126
vesa.. 39,40,141
3
13
33,67,69,93,100
.......... . 39,140
...... B - X

A = AT

e s e
L e I I IR R AR R R S P R R R
R A NI IR SR P A S AP R Y
DR R I A B A A S A SN SR ST R S ST
“ s e e e

c e 0 s e
L I R I N N A A I IR AT Y

s o0 s s 000 e

e e s v e 0 e 000 e

......... 53, 81
Ceeisesseassesesenass 34,50,102,141
Ceteterseseteteiniaaeseass 33,68,71
«.. 39,143
20, 23,54,58, 67

.....

147

INDEX (conf)

.Decimal Accumulate (DT) Ce e eastaeesscsanesaana ceteceseas cetrtteeneanns 39, 41,140
Decimal Add (DA) Cetseesrereasanenae Cieereceensans ceteeeiees et enaecanns 39,78,139
Decimal (DEC) Constant, Fixed-Point00v0. C it bt ereeeretreeaneeeacnananne eeee. 63,78
Decimal Multiply (DM)civvvoneeenns Ceetecee et et ectaecacaceneannsansa 39,139
Decimal Subtract (DS) e eecens e ceteercenanan O, ceeeenaenen ceesenan 39,139
DELETE Card ...ovviviteenncncans cee et aeraenn ceceetasanene ceesrenen .o 89
Derails .voieeeesesesnnesosnensanaoses . 381 83 88, 90,93,129
Dimension st e secerers et e ess e e s eeesessstsesesases e cieteasan 58
Direct Memory Location Address (see Addresses)

Direct Special Register Address (see Addresses)

DOFF Instruction e A - X
DON Instruction ...eeeseeceossossseoseseacsssssasosocsnas esecscsssasessacassnsss 39,143

ELIMDATA Card (see Test Data Directors)

ELIMDERL Card Ceteseteseeertateaestenanaas Cheesesetesaaanns ceeeea. 88,91
ELIMMACCardcvveeeeene ceeesrseaasas . A
ELIMPROG (see Program Directors)

ELIMSEG (see Segment Directors)

ELIMSUB Cardceeeevennas AN cetiarennas Ceececsssecsrarssseses 126
ENDCard00evuuunn. ceresesecsann e Ceteseresaeaans Ceiereaeesaeas 30, 61,91, 100
ENDARGUS Cardvveeeecnnnacens cetessesiaseans N Chereeest e ceeeess 89
End-of-Information Recordcccc00.. s secescssesacsceransanns s cteserssseaasne 135
End-of-Item Symbolco0ievunn ceecessecererscannes Ceeesaansesaneaesnn ... 43,140, 146
End-of-Record Wordiveiuiereesoncecestrsssossoenssnsnssssosassssnnesss 43,140,146
ENDLAMP Cardo00vve ceececaacane S PP -1
EQUALS Instruction chiesetananeeens ececsacsesescensananess 24,41,57,83,93,97,100
Equipment Configurationciecveeiesanssces tveseescsssnessess 81,86,91,100,126,133
EVEN Instructionooee.. L et b eeeseecsccitcses ettt enn e aees veeeess 55,83,101
Executive System0c000000 e teesarsasasneen 1,2, 3, 29 34,50, 54,61, 73, 87,93,129, 138
Extended Binary (EBC) Constantcceceeesnecesensooncsas Cecaeceseeseeaenas 63, 66, 83
Extended Instructions ceerscrserserassenen cetecsrassacennsenn e ceeneea 50, 143
Extract (EX) e eneas ceesecsecareanans cetceanae ceeeeeees.. 10,28,39,75,140

FACT (Fully Automatic Compiling Technique)oceeeeetsssesssossosossssssacsssaces 1,2
Field InStrucCtions 4soeeseveossosesasoeasssasscsssanesssssssssasssesancssnnnsess 38,41,75
File Identification RecOrd ...v.eieseecesenssossoscossnsnnsse cesesesesesnas cesees 129,135
FINIS Card vovvevinnennes cetesssssenasane eteesiesessessosneanessasass 84,89,105,107,124
Fixed Binary Divide (BD) ceceveessertseanaens Cesaseenaae ceaseeasesssss 39,145
FixedDeciyhalDivide(DD) ceeessenns cesesseserase e sescensssstsesen cecenns ceese 39,145
Fixed-Point Binary (FXBIN) COonstant ..eeseeceeesoccscosssssassssssasssssssssnesss 063,65
Fixed to Floating Normalize (FFN) ...vuveveniecennnns Ceerececncstnsesaneeaarsenes 39,146
Floating Binary Add (FBA)cieteesesceccsosasessesssscsssssssssessssssssssss 39,144
Floating Binary Add, Unnormalized (FBAU) cetecesteananas ceteans ceeee 39,144
Floating Binary Addition, Extended Precision (FBAE) ceteesiataans ceeess 39,145
Floating Binary Divide (FBD) et etesaseseesassstetsesassannas ciesssenesesesss 39,145
Floating Binary Multiply (FBM) T I £ 1
Floating Binary Subtract (FBS) ..iiveiiienccsrstoseatotecsssssssosossasssnssssssss 39,144
Floating Binary Subtract, Unnormalized (FBSU)vceeveveccescscncacscacsesssss 39,144
Floating Binary Subtraction, Extended Precision (FBSE)cie0eeitesseeseesss 39,145
Floating Decimal Add (FDA)iiiuiueenereeensocecsossosacsessasscnsssnasssssse 39,144

148

INDEX (cont)

Floating Decimal Add, Unnormalized (FDAU) ...ctiiiiereeneroeensoosaronnsonnnesas 39, 144
Floating Decimal Divide (FDD) ...ttt tetnreernnnnsonnns C et ettt eseee 39,145
Floating Decimal Multiply (FDM) ...t itttuerneesnoessosesssnosacssosnnnnonens 39, 145
Floating Decimal Subtract (FDS)teetereeerenerannnenanns et esens 39,144
Floating Decimal Subtract, Unnormalized (FDSU)ci0iiiiierenernnerennns ceves 39,144
Floating-Point Accumulator (FLAC)covuuenns ettt et e et e 144
Floating-Point Binary (FLBIN) Constantveetecsssasorsraenns ceeeraereseeaas 63,66,83
Floating-Point Decimal (FLDEC) Constanteeeeesesnceesness cereteseeeseasseee. 63,65
Floating-Point Low-Order Product Register (FLOP) ...t .iviiitteensenrossronnssnnnns 145
Floating-Point Option0vvuvvun. e et ettt e e ettt 39, 47, 82
General Instructions c et s e et e s s e e s et a0 . 9,139
Group Indicator vvi i inieteeerorotossenssassserasetosscnsnses 8,33,53,54,67,71,115,127
Half Add (HA) it ittt ittt eeeeeseeeeeseeaseasenessasssesssseasssesssssennas . 39,140
History Registersiiiiiiniricronsoneecsennnnns C e r e et et ettt ettt ae e 9, 48
Identification Columns Ceeraeaen Ceeceaer it e ettt ettt 16
In-Line Coding ceeeas T T S 32,103
Inactive Address . ..ii.i.ieereeeereesossnceeteneonsnnctsannanas P, 28,49,51
InCrement «viieeeieeeeeeeeeeensoeesssocoacenassoansons cereeasne veees. 25,26,27,140,141
Index Registersvevuveiens cheeees ceieenas P N A]

Indexed Indirect Memory Location Address (see Addresses)
Indexed Memory Location Address (see Addresses)

Indexed Special Register Address (see Addresses)

Indirect Memory Location Address (see Addresses)

Inequality Comparison, Alphabetic (NA) . .iiiiiiiiennrtieeseeeesnessosonasnnnnanss 39, 141
Inequality Comparison, Numeric (NN) e . 39,141
Item Transfer (IT) .uieeeeieeieeeeeeeeaonaoneanssoasesossaessaassoancsnesssansons 39,140
LAMP Card cvvveiieesvennnnans ce e ea s cesiesscteaasenne cessssesasasssenane 124
Less Than or Equal Comparison, Alphabetlc (LA) 39, 141
Less Than or Equal Comparison, Numeric (LN) Ceteeesenen et et 39, 40, 141
Library Additions and Maintenance Program (LAMP)cciveierernnnan 1,2,110, 124,129
Library of Routinesccveevvncnnens et tebeaet et enans 1,2,47,74,103,124,129
Line NUmMDeT .ttt iieeeianoneeocasotassassosssssstssassessasssssscnsnssansnssas 15, 86
Linkage (LINK) Constanteeuseeeesssssocoessosssosasonssassassnssssssssss . 73,83,102
Location Field .uveesioueeesorsocsossensssssseoscasstosssossssanssssensasssss Cesaen e 13
Low-Order Product Register (LOP)civivveennnss N eeeee 28,139
Machine Instructionscecvieeveosceccnces seesseses ceee e ches et e .. 37,39,139
Macro Instruction «..vivvienennnn Ceaseaas certe e et e heeea st aans ... 100,103,107
Macro Routinevvveenacrcroancnans eeeeseevesseses 1,,70,73,79,83,89,101,103,107, 124

Programmer-Defined C e e ee ettt ra e e et a0 ... 84,89,105,124
MACRODEF Card ..c.ee coeevosnsnns ceerecetceetresaarasessnsesasses 84,89,105,107,124
Magnetic Tape Unit....oovcevvvinnnnns Gt eeesstec et sisersa et s ettt es e an e 42, 44
Main Coding tiveiineiitieenetiiiseseeessesesssssssseessssssssssasssnsssanns 88, 91,130
Mask Base Address ...eceeeerasensss et e ecseieatatesest e et es st acanras 59,69, 76, 94
Mask Index Register (MXR) N 10,11, 60,69,77,110,118

149

INDEX (cont)

Mask Pool Cee e et s ee ettt e sssaateb e e s e eesse 19,110
Mask Registerieuiieiiieitreneioesasaoessonesoseassnssssssasssessssanaansnss 28
MASKBASE Constant iiveeesossonsosssecsesssesssononsss ee... 60,69,77,83,94,102
MASKGRP (Mask Group) Instructioneeviecnseenennns et 32,59,70,76, 83,94, 100
Masksn ettt ettt .10, 32, 38, 44,59, 75,101, 106, 127, 140

ARGUS Generated Ch ettt e cesean eeee.. 40,44,70,76,100,109

Programmer Designatedc000vueeennn Cerieseiec et eaaen 40, 44, 75, 101, 109
Master Macro Instructionuieeieiiereseneencroosenannnns85,89,100,105,107, 124
Master Relocatable Tapeiiiieieiiintioeeneseneserasosssssnsasacasannesnnns Ceeree 3
Memory

Control (see Special Registers)

Main ..o ieeien Ceeenreanas ceereeteeenes Ceeeserrsesenes sesesesesesionsensens T
Memory Cycleiievieninvenns et e eiees e ceieerseeseneeses139,146
Memory Designator Bits ettt setiii e et teiiee it 9, 141
Mixed (M) Constant ...ceviecernnsooneoss et ettt et e esesecaas ettt saaee e 72
MODLOC Instruction T 55,70,76, 83,101
Multiple Transfer (MT)cvveriunenrss e e Ceiis et 39, 41, 141
Multiple Unload (ULD)iiittiiinneneneseraasnensnans e eteeie et ees 39, 145
Multiprogram Controlciviiieennnnns et et P ST -
N-Word Instructions . .ue.iieieieereeterioneeeesseeesesssnsasssssasssassssosasannns 41
NoWord Transfer (TIN) i ittt teeeeeeeeeeeeatonssosecsenasossassesassaseasenes 39, 41, 140
NEWSUB Card v.ivvieereesooeresssasossssnssseanns ceerereenaan et dessssessesssss 125
Normalized Inequality Comparlson (FNN) tiveiiiitirierosesssennonnnnns ceesseees. 39,146
Normalized Less Than Comparison (FLN) Ceree Ce et ettt 39,145
Octal (OCT) Constantooveu.. et eeeieaee ittt e ettt R X
Operation Codeviiiitirnineroneecosneensennnnsos Chee et .. 7,37,39,76,101
Out-of-Sequence Location Counter (XLC)iiivirrencesencrnenans N 20, 23,58, 67
Out-of-Sequence Words e eeseeseasae et ia e s ase e e et ae e 20, 32,54,103
Parallel Processing ceeeeeeieaereoaens ceceenstasasreensas fiecerveciotnannne 1,29, 50,91
Parameters, Library Routinec.iciiiiiiiiiiieiienensnenensceneonns 4,100,103,107
Peripheral Codecceitiivevannaans Cteceateraanns wevees 9,33,37,42,73,94,100,115
Peripheral Instructionsiieeeeeeeeneconnosnnnnn i . 9,42,142
PRTaSE & eveeneoneneeneneeeeeessonsneanenaensasoneasossososssasssestsssssssssonas 107
Print (PRA) (PRD) (PRO) ..t ititteetonesaseetsessonsssesossssscssssoananns 51,102,144
Proceed (PR) Ceeaeeraa e ceeseane et ee et e eatr e s esstee s ettt aen e 37, 39, 141
Production Run Tapecciuiieeiniennnnnnnnes et iseter e e ettt 3
Program Control (CONTROL) Constant e teseee ettt e 34,71, 100
Program Control Instructions (SPCR) (SCON) (CSCON) (DOFF) (DON) (STOP) B0
Program Control Registerciieiiiiiiiiriiieetnnneennenanans .34,49,50,71, 141, 143
Program Director Cards (U, ELIMPROG) (U, REASSEMB) (U, CORRECT)

(U, NEWVERS) (U, NEWPROG) .1t tttevneerranaorssesterssnserss 81, 82, 83, 84,90, 130
Program Identification Recordcccviieennnnnn B 129,135
PROGRAM Instruction (see Segment Directors)

Program Selection RuUnitiieiiiineinnineroeeeeusseseanassostonssetosanasnasess 3
Program Test Systemcveeuteerieiecescceassennneananses Cevees 1,2,55,61, 87,93,129

150

INDEX (cont)

Program Test Tapecceitienieiecnenanns cetseeneaes Cheeresreer et nenes ceeaen 3
Programming Errors, Detection of
By Assembly .iviiiinenitniiioettiriiiiiicnnnsas Ceeeeee e ceeesseess 94,99,100
By LAMP ..uitieiiinnnnnnnn. ettt e e 126
Read Backward (RB)cvevennen Seee et ettt ettt te e ceraeeas Cresenena 42,143
Read Forward (RF)vevvenenn S et e cett et cete e ceereeseseses 42,143
Read Segment Macro Instructioncioiveiitieesnenas cesecesunas sesesesses 30,73
Read-Write Address Counters (RAC, DRAC, WAC, DWAC) 19 34, 42, 68, 87, 142
Record Transfer (RT) . ..veeeneeeeeneeeensesensseansosssssossasessssascsnanas .e. 39,140
Relocation teieierecaeossasssseasssessasssnscnossssssns teesesasseseaarane 3,5,29, 33, 35
Remarks Card ...ve0eun. eeaes Cireresete s na N .. 16,93,97
" Remarks Columns Ceceane Ciesear et PP I
RESERVE INsStrucCtion s .i.ueveieeesnteossesosessossonssosssanssosasnsns 58, 83,93, 97,101
Rewind (RW) .. .iiietineeenneenonenosenenseanonnnns ceceeens et e e 39,43, 49, 143
Scientific InStructions ..i.c.veeieeeneeernnccnaceanaass e eeseteraeeenteeaannn veees 9,46
SCON Instruction ...c.eeveeoses PP 1° T I X
Segment Directors (ELIMSEG) (SEGMENT) (PROGR_AM) 29, 85 89,90, 93,130,133
Segment Identification Record Ceeesaeiterteeeenns ceeenennn tertecscnens 130,135
SEGMENT Instruction (see Segment Dlrectors)
Segment Loadingcc.00 G et e eeieseeceenec et eateste st oo ts e bss00s e s 30
Segment Name (SEGNAME) Constant .cu.eeeeeoeesttsosessessassossssessssnsens 73,102
Segmentation of Programseeritereecasesetotrassssscccoasssasonns ceeenesees 29,85
Sequence Change Instructionsceeeeevosoevesasoass et re e rens .. 38,43,49
Sequencing Counters et eteteses et ens 8, 37 38 42,48,104,106,109, 140
SETLOC InStructionieeeeieeessossnsssssscasaasnaons 31, 32,53,55,70,76,78, 83,100
Shift and Select (SSL) ...vveeeeenncesenns ce st esseer et es et etas st aae s enua 39, 45,142
Shift Instructionsvvvveeaosas et esesesnenaraaessssseaanes ceesecsaeaans 9, 44, 75, 141
Shift Preserving Sign and Extract (SPE)ccoiiveunnnes ceteeeeneeeaas 10, 39, 142
Shift Preserving Sign, Substituting (SPS)c.etittiveitneroecsersanenseeesess 39,45,141
Shift Word and Extract (SWE) ceeaenee creeeresescsseesasesssl0,39,45,78,142
Shift Word, Substituting (SWS) ...ttt iiiineeeeririeireestossssesssssesnecnssssess 39,142
SIMULATE Instruction Ce sttt e s e naaenns teesersens cesesesese. 47,55,83,101
Simulator (S) veeeeeerrreeencencnns et tetetectes i et eaesesenenenana 9, 39, 47,100, 142
Sort Generationeeeectecesssscsssssassacssconanse St e teceae et 4,773,136
SPCR Instruction ... ueetieeeeoeeesotesesosassossnsssnassasssossessasansossanss 39,143
Special Address (SPEC) Constant 28, 30, 33, 48,55,67,74,100,115
Special RegiSterS .uueeuieeviieeessossasososasasssssssasseasneacsssses 1,8,19,50,55,67,69
Stop (STOP)ieeven. ceeaen Chtarerecatr et en e Cee ettt it 39,50, 143
Stopper Addressceiiininnnn B ees ettt aene s 28, 34,68
SUDAAAr eSS ittt iiit ettt et e e s aa e e s st aaasaeae a0 e aaa et acaseaasnaens 7
Subroutine Call (SUBCALL) Constant ...veeeeeceeeeenss Cert et et ea e cersseees 14,115
Subroutines00000.. chceeerscaecsasses 33,54,70,74, 79,83 94 101,103,105,110, 125
Subsegmentation Ceeeeeees et esit ettt te et e ecereasaeene 31,53,60,77,101,103
Substitute (SS) v ii it iiteetneieansesessesssssotastsaresstonsosasaansssaanes 11, 39,75, 140
Superimpose (SM) trerrescaanan Sttt e iereeac e e et esan e e n e . 39, 40,140
Symbolic Program Tape ...c.eeceeceencss Cer et eesees.3,81,90,93,105,124,129
Systems Program Loader et ee et e ettt et et sesesaases e cersereeses 129

151

INDEX (cont)

Tags
Definition of Ciesecnssceasrcaasasensesensana tetesesetnesssssassseasas 20,101
Link +oeevennnanes Ceshtessasaesenanaans cereseneeen19,30 53,55,56,73,115, 130
Mask ..ovvevennnceceens Ceeeeeens Ceceetieeraa . 19,37, 38, 40, 44,58,70, 76
Special Registerccieeeecnereonnnncocnons f e te et eeeiiees et anennns 18,115
SymboliC t.iitetiiiieiieteeesrreatncisnescsssaans ceieaeens 17, 63,67,72, 83,100, 107
Tape Address (TAC) Constantceeeesesesssssssstscscssssossssasasssssosses 13,100

Tape Label Record ...cccervveeecncesosesosoeoocns P P < 1
TAS (Temporary Assignment) Instructioneeceerieecneesssesaseesesss 57,83,100
Terminal Deviceeveeeeene ceeiseeeneann et et sicansssrsseensneneees 42,44,142
Test Data cesesens cerreseeseaananas ceteseresanes cecieeaeans ... 3,78, 81, 83, 87,129
Test Data Detail Cards ...voveveerenrosenecccsccoocscsonocnnns et ecaireiestestanaaes 87

Test Data Directors (ELIMDATA) (TESTDATA) Ceeeeeietres e Cetectcertenane 87, 89, 90
Transfer A to B, goto C (TS) . e teececesaeneaeennn s ecerecctsesans e 28, 38, 39, 40, 140
Transfer Ato C (TX) cuvieiiiteeetorersrsoessecssossessnseasssssasscases 39,40,71,78,140

Unprogrammed Transferccoeeevecons e theseeereensneesaaereens 47,49, 55
Unprogrammed Transfer Registericceeericeriocrrssecsconstsncassaannns 19, 47, 55,139
Updating RUn «..veeteeateniesceoscssossnsoccsssnsssns cesesetesennnn 3,81,91,93,129, 133

Word Add (WA) tiviieneiinnennsn Checesseessectt st et ess st se oo enans 39,40, 139
Word Difference (WD) Ceerees e ceseceneanoas sesesees Ceeeeetissnasan 39, 40, 139
Word Structure ..scesceacsens teeenean ce et eeeceatas s atsancacasasasesentaneanacaans 7
Write Forward (WF) Cheteeecent e et receciateresttesaarearesanses ees 39,42, 142

152

oneywell

e

