
UTOMATIC 0 TINE GENERATING AND UPDA ING SYSTEM

""'

H
HONEYWELL 800

Transistorized Data Processing System

A

MANUAL OF ASSEMBLY LANGUAGE

Honeywell
!I ~ Da:w., P~4-

Section I

Section II

Section III

Section IV

Section v

Section VI

ii

TABLE OF CONTENTS

Introduction ..•...
The ARGUS System•........•.....•...........
The Assembly Program•....•.•............

The Honeywell 800•.•......
Word Structure•......................•..•..
Information Storage ...•............................
Sequence Control•.•...•.................•..
Command Codes•.•...•...........•.•...•....
Addresses

Page

1
1
4

7
7
7
8
9
9

Masks • . • 10

The ARGUS Coding Form • . . • . . . • . • • • • 13
Location Field (Columns 1-10) •.....•......•........ 13
Command Code (Columns 11-23) . • . . • • 13
Address Fields (Columns 24-37, Columns 38-51,

Columns 52-65) • . . • • 15
Line Number (Columns 66-73) • • 15
Identification (Columns 74-80) • • . • • . . • • . . 16
Remarks (Columns 66-80) . • • • • • 16

Tags . . • . • . • • . • . . . • • . . . • . . . • • 17
Symbolic Tags • . . • 1 7
Special Register Tags . • • . . • 18
Mask Tags • • • • • . 19
Link Tags • . . • • . . • . . • . • . . . • 19
Out-of-Sequence Words . . • • • • . . • • 20
Definition of Tags . . • . . • • . . • . . . • . • 20

Addresses••.........•.. ·.........•...•.•........ 21
Direct Memory Location Address • • • • . . 21

Address Arithmetic • • 23
Direct Special Register Address . . . • . . • . • . . • • . . . • . . . • 24
Indexed Memory Location Address • . . • • . . . • • . • • . • 24
Indexed Special Register Address • . . • 25
Indirect Memory Location Address . . • • • . . . • . . . • 26
Indexed Indirect Memory Location Address............ 27
Inactive Address • . • • . . 28
Stopper Address . • • • • • . • 28
Numbers in Address Fields.. . . . • . . . • • . . • . . • • . 28

Program Structure • • . . • . • • • . . . • • 29
Segmentation •.. ·. . . . • • • . . . • . . • . . • • • 2 9
Segment Loading • • • • • • • . . . • • 30
Subsegmentation • . • . • . • • . • . . . • • 31
Allocation . • . • • . . . • • • • • . 32
Relocation 33

Section VII

Section VIII

Section IX

TAB LE OF CONTENTS (cont)

Machine Instructions
General Instructions•.....•......•...•.•••.••.•

Sequence Change Instructions .••.••..•..........•
Field Instructions •.....•.....•......•...•......
N-word Instructions••...••..•.....•••..

Peripheral Instructions .•...•..........•.....••.....•
Shift Instructions•......•.•...•...••.•.•...•••..
Scientific Instructions
Simulator Instructions
Multiprogram Control
Extended Instructions

Program Control Instructions ...•..•••...•..•....
Print Instructions•.........•......•..

Page

37
37
38
38
41
42
44
46
47
49
50
50
51

Assembly Control Instructions • • . . • • . . . 53
SETLOC • . . . • • • • • 53
EVEN • • • . . • • • . • • • • • • • • • • 55
SIMULATE . • . . • . . • . • • . . • • • . . . • • • • • • . • . . 55
MODLOC • . • . . • • • . . . • • • • • • • . . . • 56
ASSIGN•.....•...•. ~. • • . • • • 56
T AS (Temporary Assignment) • . . . • . • • . • • . . . • . . • 57
EQUALS • • . • • • . • . • . . • . • 57
RESERVE.. 58
MASKGRP • • • 59
END . . • • • . • • • • . • . . . • . • . . 61

Constants • • • • • . • . • . . • 63
Data Constants • • • • • . • . . . • 63

ALF (Alphanumeric Constant) . . . • . . • • . . 63
OCT (Oc_tal Constant) • . . . • . • • . . • • . • • . • . . 64
DEC (Fixed Decimal Constant) • • 64
FXBIN (Decimal to Fixed Binary Translation) . . . • . . 65
FLDEC (Floating-Point Decimal Constant) . • • • 65
FLBIN (Floating-Point Binary Constant) . . . • • . • . • • . 66
EBC (Extended Binary Constant) . . • • . • • . • • . 66

Control Constants • • • • • • . . • • . • . • . • • 67
SPEC (Special Address Constant) • . . • • • 67
CAC (Complete Address Constant) • 69
MASKBASE (Mask Base Address Constant) . . . • • • . . 69
CONTROL (Program Control Constant) . • • . • • • 71
M (Mixed Constant) . . • • . . . • . • . • . . • • • 7 2
TAC (Tape Address Constant) . . • . • . . • . • • . . • • • 7 3
LINK (Linkage Constant) • . . • • . • • . . 7 3
SEGNAME (Segment Name Constant) • . . • . • . 7 3
SUBCALL (Subroutine Call Constant) • 74

iii

Section x

Section XI

Section XII

Section XIII

Appendix A

iv

TABLE OF CONTENTS (cont)

Page

Masking • . . . • . • 7 5
Designated Masks • . • . . 75
Generated Masks• . • 76
Mask Groups • . 76
Referencing Masks • • . 77
Subroutine and Macrocoding Masks • 79
Mask Pools • . 79

ARGUS Updating Function . • . • • 81
ARGUS•.•................•............ 81
Program Directors • . 81

U, ELIMPROG • • 82
U, REASSEMB • • • . . . • 82
U, CORRECT . • • • 82
U, NEWVERS . • 84
U, NEWPROG . • • • . . • • 84

Programmer Macro Routine Markers ; 84
MACRODEF • . . • . • • 84
FINIS • . . . • • . . . • • • • . . • • 85

Segment Directors • . • • . . • . . • 85
ELIMSEG....................................... 85
SEGMENT • • • • • . . . 85
PROGRAM • . . • . . • • • . . . • • . • 86

Test Data Directors • 87
TESTDATA•.......... 87
ELIMDATA • . . • . . • • 87

Test Data Detail Cards • • • . . • 87
Debugging (Derail) Pseudo Instructions • 88

ELIMDERL • • . 88
Main Coding • . • 88

DELET.E . • . . 89
ENDARGUS . 89
Ordering the ARGUS Input Deck • 89
Equipment Requirements for the Updating Run 91

Output from ARGUS Assembly Operation • . . 93
ARGUS Listing . . . • • . • • • . . 93
Analyzer • • 94
Programming Errors Detected • • 94

Library Routines•...............••..•......... 10 3
Macro Routines•.•...........•.....•••.•..... 103
Programmer-Defined Macro Routines•....... 105
Subroutines ...•...........•....•....•...........•... 105

Writing Library Routines and the Use of LAMP 101'
Writing Macro Routines 107
Writing Subroutines ...•..................•.......... 110

Appendix A (cont)

Appendix B

Appendix C

Appendix D

Appendix E

TABLE OF CONTENTS (cont)

Page

Type 1 Calling Sequence , 116
Type 2 Calling Sequence . 118
Special Calling Sequences ... , 121
LAMP (Library Additions and Maintenance Program) 124

LAMP ~ .. . 12 4
ENDLAMP 124

Macro Routine Processing 124
MACRODEF . 124
FINIS .. 125
ELIMMAC 125

Subroutine Processing 125
NEWSUB 125
ELIMSUB 126

Output from LAMP 126

Symbolic Program Tape Layout
Tape Label Record
Loader
Systems Program File
Symbolic Program File ·

129
129
129
129
130

Assembly Equipment Configuration Code 133

Tape, File, and Record Identification . 135
Tape Label Record . 135
File and Program Identification Records 136
Segment Identification Records 137
End-of-Information Records 137
Banner Words .. 137
Summary . 13 8

Honeywell 800 Machine Instructions . 139
General Instructions . 139
Shift Instructions . 141
Simulator Instruction . 142
Peripheral Instructions : ..•.............. 142
Extended Instructions . 143
Scientific Instructions 144

v

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

Figure 13.

Figure 14.

Figure 15.

Figure A-1.

Figure A:..2.

Figure A-3.

Figure A-4.

Figure A-5.

Figure A-6.

Figure A-7.

Figure B-1.

vi

LIST OF ILLUSTRATIONS

Page

Honeywell 800 Automatic Programming System . . • • • • • • . • • • • 2

Honeywell 800 Word Formats • • • . • . • • • • • • • . . . • • . • . • • • • • • • • • • 8

The ARGUS Coding Form

The ARGUS Input Card • ...
14

15

Special Register Names, Subaddresses, and Mnefuonic Addresses • • 19

Summary of Addresses 22

Example of Program Relocation . • • • • . . • . • • • . • • • • • • • • • • • • • • • • . • • 35

ARGUS Mnemonic Operation Codes for Honeywell 800 Machine
Instructions 39

Designation and Referencing of Masks • • • • • . • . • • • • . • • • • • • • • • • • • • • 78

ARGUS Listing - General Format • • • • • • • • • • • • • • • • . • • • . . • . . • . • . • • 95

ARGUS Listing - Data Constants •••••••••••••••.•••••••.••••••• ·• 96

ARGUS Listing - Equals and Reserve Instructions and Remarks
Cards • . 97

ARGUS Listing - Analyzer Lines • • • • . • • • • • • • • • • • • • . . • • . • . • • • • • • 98

Sample ARGUS Listing (With Analyzer)

Programming Errors Detected During Assembly

Sample Macro Routine in Generalized Form

99

100

111

Specification Sheet for Macro Routine SRCHEQU • • . • . • . • • • • • • • • • • • 112

Macro Instruction for Sample Routine and Resulting Specialized
Coding . i 14

Type 1 Calling Sequence • • . • • • • • . • • • • • • • • • • • • . • • • • • • . • • . • • • • • • • 116

Type 2 Calling Sequence • • . • • • • . • . • • • • • • • . • • • . • • • • . • • • • • • • • • • . • 118

Special Calling Sequence CALLMAC • . • • • • . . • • • • . • • • • • • • • 122

Special Calling Sequence DBLSUM 123

Over-all Layout of the Symbolic Program Tape • • • • • • • • . • • • • • • • • • • 131

SECTION I

INTRODUCTION

The ARGUS System

ARGUS, the Automatic Routine Generating and Updating System, is the core of the inte-

~-~::,;..,~~ automatic programming system for the Honeywell 800. ~1~~::~~"~;!;.!j,~~~"'.~:"~~:~~:~
§~~:::~o~~~~~,;'.:"~,~!~?.,,dJand to maximize the efficiency of every phase of program prepara­

tion, from the initial coding through the checkout phase to actual production. Wherever po s-

sible, the burden of routine, clerical operations is lifted from the programmer and the full

power of the Honeywell 800 is brought to bear on such operations. The file-of-programs

approach, whereby batches of programs are assembled, tested, modified, and scheduled for

production, minimizes setup time by eliminating a great multiplicity of brief, repetitive com­

puter runs. The dynamic dumping technique employed by the Program Test System enables

batches of programs to be tested at full machine speed and without interruption. Diagnostic

information is obtained without manual intervention, even if a programming error forces pre­

mature termination of a particular program under test. In short, ARGUS achieves a mating

between the efficiency of program preparation and the remarkable efficiency of production

made possible by Honeywell parallel processing.

As illustrated in Figure 1, ARGUS is composed of the following principal elements:

1. An Assembly Program which translates symbolic coding and produces operat-:­
ing programs in machine language (binary) on magnetic tape;

2. A Library of Routines containing both subroutines and macro routines, each
thoroughly tested and capable of being incorporated into any program during
assembly by the inclusion of a single pseudo instruction;

3. A Library Additions and Maintenance Program (LAMP) for adding and delet­
, ing routines and modifying existing routines in the library;

4. A Program Test System which operates a file of unchecked programs at full
machine speed, automatically obtaining requested information at points
specified by the programmer for later analysis of program operation;

5. An Executive System which schedules checked-out programs for parallel pro­
cessing, based on their individual hardware requirements, timing, and
urgency, and then automatically loads and executes the scheduled programs.

A program to be processed on the Honeywell 800 may be prepared in ARGUS assembly

language, as described in this manual, or it may be written in the language of either the

Algebraic or FACT (Business) Compiler and automatically converted to assembly language.

In either case, the Assembly Program translates this language and produces an operating

"'

ALGEBRAIC
COMPILER

ARDS

r-----,
I

DIAGNOSTIC
PRINTOUT

COLLECTION
LIST

PARAMETERS

SCHEDULE
CARDS

DIAGNOSTIC
INFORMATION

AND
OPERATOR

TEST DATA

ARGUS
CARDS

DIAGNOSTIC
INFORMATION

Figure 1. Honeywell 800 Automatic Programming System

DIAGNOSTIC

PRINTOUT

FACT CARDS

ARGUS CARDS

(./')

m
()

:::!
0 z
::-

z
-I
~

0
0
c
()
-I

0 z

SECTION I. INTRODUCTION

program in both symbolic and machine language on the symbolic program tape, which contains

a file of programs being checked out, together with test data for each program. This is ac­

complished as part of an updating run in which programs are added to or deleted from the

symbolic program tape, and existing programs and test data are modified on the basis of in­

formation derived from. the preceding checkout run.

The updating run is normally followed by a program selection run which can prepare a

program test tape, containing programs and test data to be executed during a checkout run,

or a master relocatable tape, containing checked-out-programs to be scheduled by Executive

for production operation, or both. Input to this run includes the symbolic pro·gram tape, plus

an active program list which specifies the programs to be transferred to either of the output

tapes. Those programs transferred to the program test tape are accompanied by test data

and by derail instructions which specify the kinds and amounts of diagnostic information to be

generated during checkout and the program points where this information is to be generated.

The program test tape is the input to the checkout run, during which the ARGUS Program

Test System executes each program on the tape, using the accompanying test data and gen­

erating the ~equested information at the specified points. The information generated is print­

ed in a variety of formats designed for convenient analysis by the programmer, who uses this

information to specify the changes in programs and test data which will be effected during the

next updating run.

Programs transferred to the master relocatable tape are accompanied by relocation in­

formation which Executive uses to modify memory and peripheral equipment assignments in

order to schedule production programs for automatic parallel processing. The master re­

locatable tape is the input to the Executive scheduling run, together with a proposed schedule

which specifies the programs to be scheduled, the memory and equipment requirements of

each, and any necessary production sequence among the various programs. Based on this

information, Executive schedules groups of programs to be processed in parallel, relocates

the scheduled programs, and records them in operating form on the production run tape.

The Executive run supervisor is also stored on the production run tape, along with the

scheduled programs. This routine executes the schedule, automatically loading the produc­

tion programs, turning them on and off, and communicating with the operator as necessary.

Manual intervention during the production run is mi'nimized, but may be used to alter the

schedule being performed or to handle any unexpected occurrences.

3

SECTION I. INTRODUCTION

The Assembly Pro gram

As noted above, the Assembly Program translates coding written with mnemonic and

symbolic codes and produces operating programs in machine language. Programs written in

assembly language are independent of fixed memory locations and may be modified, correct­

ed, or expanded in assembly language by the computer. The ARGUS Assembly Program

offers the following automatic programming features: symbolic and relative reference, al­

location, translation, library routine insertion, sort generation, and relocation.

SYMBOLIC AND RELATIVE REFERENCE: Since programs are written without reference to

fixed memory locations, program words may be referred to by means of symbolic tags.

However, it is not necessary to tag all of the words of a program. Untagged words may be

referred to relatively, using address arithmetic to specify the desired location either:

1. Relative to the location of a tagged word; or

2. Relative to the location of the word containing the reference.

ALLOCATION: Program words are automatically allocated in the high-speed memory ac­

cording to the sequence in which they are assembled. The programmer may specify the

location of the first word in any sequence, if he oo desires. Although the allocation of mem­

ory locations normally proceeds automatically, flexibility is enhanced by the provisions for

programmer control of this process.

TRANSLATION: ARGUS instructions are written using mnemonic operation codes, symbolic

or relative addresses, and decimal numbers. The Assembly Program translates these into

the binary language of the Honeywell 800. Constants written in alphabetic, decimal, octal, or

mixed form are translated into binary-coded alphanumeric, fixed-point or floating-point

binary-coded decimal, or fixed-point or floating-point binary form.

LIBRARY ROUTINE INSERTION: A library of useful, thoroughly tested subroutines and

macro routines is readily available to each Honeywell 800 installation, so that frequently used

coding is preserved for easy insertion into new programs. Each subroutine or macro routine

in the library is represented by a pseudo instruction which specifies the desired routine plus

all parameters required for its execution. These pseudo instructions may be included in a

program as easily as machine instructions. When they are processed, ARGUS obtains the

corresponding coding from the library and inserts it into the program.

SORT GENERATION: Included in the Library of Routines is a group of sort generators which

can produce routines tailored to specific sorting applications. The programmer includes in

4

SECTION I. INTRODUCTION

his program a pseudo instruction which specifies the type of sort desired and the equipment

available for its execution. The description of the format of the data to be sorted is included

with the data itself. ARGUS sort routines are composed of two phases: a presort phase which

produces ordered strings of data and a merge sort phase which combines these ordered

strings to form a single over-all sequence. A new and unique method of merging is used

which takes optimum advantage of any available number of magnetic tape units.

RELOCATION: ARGUS retains a record of the structure of each program word so that any

assembled program may be automatically relocated to operate in another portion of the high­

speed memory or to utilize other special registers, magnetic tape units, or input/output

terminal units. This feature of ARGUS greatly facilitates the use of the parallel processing

ability of the Honeywell 800.

5

SECTION II

THE HONEYWELL 800

Word Structure

Information is handled by the Honeywell 800 in fixed-length words comprising 54 binary

digits, or bits. Six of these bits are reserved for the automatic checking circuits and may be

disregarded by the programmer. The 48 information bits of each word may be grouped to

form several basic types of words as shown in Figure 2.

In an instruction, the information bits are divided into four 12-bit groups which repre­

sent the command code and the A, B, and C addresses, respectively. The address groups

normally designate_ the locations of operands, but in certain instructions they contain other

special information. The command code group contains, in addition to the operation code,

other special information which depends upon the type of instruction. The complement of

Honeywell 800 machine instructions is presented in Appendix E.

In a fixed-point constant, the 48 information bits may represent eight alphanumeric

characters, 11 signed or 12 unsigned decimal or hexadecimal digits, 15 signed or 16 unsigned

octal digits, 44 signed or 48 unsigned binary digits, or any combination of characters, digits,

and bits not exceeding 48 bits. Up to four individually signed fixed-point constants, having an

aggregate of not over 44 bits, may be stored in a single word. A floating-point constant m~y

consist of a seven-bit exponent and a 40-bit mantissa, with sign, or a seven-bit exponent and

a 10-decimal-digit mantissa, with sign. Section IX describes the specification of data con­

stants in assembly language.

Information Stor~ge

The Honeywell 800 main (or high-speed) memory is composed of banks, each capable of

storing 2048 machine words. These memory banks are available in pairs called modules,

and a system may include from one to four such modules (4096, 8192, 12, 288, or 16, 384

words). Every main memory location is designated by a unique address, consisting of a bank

indicator from 0 to 7 and a subaddress from 0000 to 2047.

In addition, the Honeywell 800 contains a special control memory which selects instruc­

tions and operand addresses. The control memory is fixed in size and consists of eight

identical groups of 32 special registers each. A special register is designated by a unique

7

SECTION II. THE HONEYWELL 800

8

address, consisting of a group indicator from 0 to 7 and a subaddress from 00 to 31. Each

special register has the capacity to store a complete main memory address (sign, bank in­

dicator, and subaddress).

INSTRUCTION

ALPHANUMERIC

COMPRESSED
ALPHANUMERIC

DECIMAL
(SIGNED OR
UNSIGNED)

UNSIGNED OCTAL

SIGNED OCTAL

FIXED-POINT
BINARY (SIGNED
OR UNSIGNED)

FLOATING-POINT
(BINARY OR
DECIMAL)

Sequence Control

COMMAND CODE ADDRESS A ADDRESS B ADDRESS C
(12 BITS) (12 BITS) (12 BITS) (12 BITS)

R 0 B I N s 0 N

I 2 3 4 5 6 7

c w E B B I 7

± I 2 3 4 5 6 7 8 9 0

I 2 3 4 5 6 7 8 9 10 II

0 I 2 3 4 5 6 7 7 6 5 4 3 2 I

I 2 3 4 5 6 7 8 9 10 II 12 13 14 15

± I * 2 3 4 5 6 7 7 6 5 4 3 2 I

I 2 3 4 5 6 7 B 9 10 IJ 12 13 14 15

± (44 BINARY DIGITS)

I 4 5

EXPONENT
:J: (7 MANTISSA (40 BINARY DIGITS)

BINARY
12 DIGITS)e 9

* 4-BIT SIGN LEAVES TWO BITS AVAILABLE IN THIS DIGIT POSITION.

SMALL NUMBERS DESIGNATE CHARACTER, DIGIT,OR BIT POSITIONS.

Figure 2. Honey-Well 800 Word Formats

B

4

I

12

0

16

0
16

48

48

GROUPS

CHARACTERS

CHARACTERS
AND DIGITS

DIGITS

DIGITS

DIGITS

BITS

BITS

The operational control of an individual program is delegated to a specific special re­

gister group. Each group includes a pair of functionally identkal sequencing counters,

called the sequence counter (SC) and the cosequence counter (CSC). Whenever one of these

counters selects an instruction for execution, the contents of the counter are automatically

incremented by 1. Most machine instructions have the ability to designate one of these

counters as the source of the next instruction. Those instructions which do not include this

facility are followed by an instruction selected by the same counter. Instructions which re­

sult in a programmed change of sequence always alter the contents of the counter designated

as the source of the next instruction.

SECTION II. THE HONEYWELL 800

Also included in each special register group is a pair of history registers, called the

sequence history register (SH) and the cosequence history register (CSH). Whenever the con­

tents of a sequencing counter are altered, other than by normal incrementing or direct ad­

dressing, the corresponding history register stores the incremented contents of the counter

which produced the sequence change. Thus it is. possible to depart from a programming se­

quence and execute several instructions under control of the alternate counter before return­

ing to the original sequence, or to program a sequence change and automatically retain a

record of the next step that would have been performed had the change not occurr~d.

Command Codes

The command code group in a Honeywell 800 machine instruction containa an operation

code which specifies the instruction to be performed. Depending upon the type of instruction

specified, this group may also contain such information as a peripheral code, a partial mask

address, memory designator bits which relate each of the three address groups to either

main or control memory, and a bisequence bit which indicates the source of the following

instruction.

Machine instructions are of five types: general, shift, peripheral, simulator, and

scientific, as distinguished by the various command code formats. The details of these for­

mats are described in Section VII. General instructions include arithrnetic operations, in­

formation transfers, decisions, and other familiar data processing functions. Many of these

instructions can manipulate variable-length fields by the use of masks. These are called

field instructions. Shift instructions are al ways performed with masked operands. Peri­

pheral instructions perform all operations which involve magnetic tape units and terminal

input/ output equipment, such as reading, writing, and rewinding. Simulator instructions are

defined by the programmer to represent, by means of a single instruction, an entire body of

coding. Scientific instructions manipulate data in floating-point form, which greatly im­

proves the efficiency of scientific computations.

Addresses

Every memory location and every special register in the Honeywell 800 has a unique

numerical designation or address. An instruction may refer to any memory location to obtain

an operand or to store a result. Unmasked general instructions and all shift instructions

may refer to special registers, using memory designator bits to denote this type of address­

ing. Masked general instructions do not have this ability.

9

SECTION II. THE HONEYWELL 800

A direct address is an explicit statement of the address of the desired operand. An in­

dexed address is written by specifying an index regie-ter and a quantity which augments the

contents of this register to form the desired address. {Eight index registers are included in

each special register group.) An indirect address is written by specifying a special register

in which the desired address is stored, plus an increment which permanently alters the spe­

cial register contents after use. Six types of addresses may be written in the address groups

of instructions. A memory location or a special register may be addressed directly. The

augmented contents of an index register may be interpreted as a memory location address or

as a special register address. A memory location may be addressed indirectly by referring

to a special register where the desired address is stored. Finally, the special register used

to obtain an indirect address may be specified by indexed addressing. The ARGUS formats of

these addressing options are presented in Section V.

The specifications of certain machine instructions direct that one or more address

groups contain information other than references to memory locations or special registers.

Such information may include, for example, the number of words to be transferred, the num­

ber of positions to shift an operand, or the partial designation of a mask location.

Masks

Reference to a word called a mask in an instruction permits the designation of partial

words as operands and as a result. The mask designates the character, digit, or bit posi­

tions within the operand words on which the stated operation is to be performed. With certain

of the general instructions (field instructions) the use of a mask is optional, but with shift in­

structions a mask is always required.

When an arithmetic operation is masked, the mask is applied to both operands and to

the result. Shift masks are applied after shifting and before delivery to the result location.

All masking in the Honeywell 800 leaves the unmasked portions of the result location un­

changed (protected masking) except for the extract instruction (EX) and the two shift and

extract instructions (SWE and SPE), which clear the unmasked portions of the result loca­

tion to binary zeros (unprotected masking).

Masks are stored in the high-speed memory in groups of consecutive locations. An

instruction which uses a mask references the desired mask relative to an address known as

the base of the mask group. Each special register group includes a mask index register

{MXR) which stores two mask group bases, according to a specified format: the base of a

group of field masks and the base of a group of shift masks (see Section X). The relative

10

SECTION II. THE HONEYWELL 800

position of the desired mask within the group is specified in the instruction using the mask.

The base of a field mask group must be a muitiple of 32 and the group includes up to 32 masks.

A field instruction can specify in its command code field any of the masks in this group. The

base of a shift mask group must be a multiple of 64 and the group includes up to 64 masks. A

shift instruction can specify in the B address field any of the masks in this group. Therefore,

each setting of the mask index register makes 96 memory locations available to the program­

mer for the storage of masks. To conserve memory space by making certain masks available

for use with either type of instruction, the two mask groups can be made to overlap. With

such an MXR setting, 64 memory locations are made available for the storage of masks, of

which 3Z can be used with field instructions and all 64 with shift instructions.

The programmer has the option of specifying the address of the desired mask in mem­

ory, or including information in the command code field which enables ARGUS to generate the

desired mask (with the exception of the substitute (SS) and extract (EX) instructions, which

always require a programmer-specified mask).

11

SECTION Ill

THE ARGUS CODING FORM

Programs to be assembled by ARGUS are written using the coding form shown in Figure

3. The coding on these forms is then punched on standard 80-column cards according to the

fixed-field format shown in Figure 4. An instruction word occupies an entire line on the cod­

ing sheet and an entire punched card. Constants may be combined, however, to allow punch­

ing of more than one on a single card. When an entire program deck, complete with all neces­

sary control instructions, is assembled by ARGUS, the program is produced in operating

form on magnetic tape. In addition, ARGUS produces a listing of the program in printed form.

Assembly outputs are described in Section XII.

Figure 4 shows that the ARGUS input card contains seven fixed fields. The function of

each of these fields is described briefly in the following paragraphs. The format of each in­

put word type is illustrated in detail in the following sections.

Location Field (Columns 1-10)

The location field may contain tags symbolizing memory locations, special registers,

or masks. Any word which is to be referred to symbolically in an address field of some other

word, or which is to be loaded into a special register, or which is to be used as a mask, must

include a tag in this field. Tags may be punched anywhere in the location field; spaces are

ignored. The types and formats of tags are described in Section IV.

Command Code (Columns 11-23)

The command code field is divided into two subfields. Columns 11 through 22 contain

the command code group itself, while column 23 designates the source of the next instruction.

If column 23 contains an "S" or if this column is blank, the next instruction will be taken

from the sequence counter in the assigned special register group. If column 23 contains a

11 C", the next instruction will be taken from the cosequence counter in this group. This col­

umn is not used in a peripheral or a simulator instruction or in the instruction proceed (PR}.

Columns 11 through 22 may contain the mnemonic operation code of a machine instruc­

tion, followed by any other information required by that instruction, as described in Section

VII. In the case of a constant or set of constants, the command code field contains the constant

code and any other required information, as described in Section IX. This field may also be

13

.i::...

2

4

5

6

7

8

9

10

II

12

13

14

15

16

17

18

19

20

Honeywell
~~vaa~"'t

ARGUS ~g~~NG

PROBLEM ________________________ ~ PROGRAMMER ------------ DATE PAGE. ___ OF __

S/ REMARKS
LOCATION 10 II COMMAND CODE 22 IC 24 A ADDRESS 37 38 B ADDRESS 51 52 C ADDRESS 65 66 LINE NUMBER 73 J4 80 I

' ''
,,,,,,

f

t
I
I
I

I
I

I
I
I
I
I
I

I
I
I
I
1
I
I
l
I

-t
I
T
I
T
I
I
+
I

_l
I

I
I

I
I
I

' ' ' _J_ _J_J._J_

Figure 3. The ARGUS Coding Form

Vl
m
()
-I

0 z

-I
I
m
)>
:;;:c

0
c
Vl

()

0
0

z
0 ,,
0
~

SECTION Ill. THE ARGUS CODING FORM

used to specify an ARGUS control instruction or the pseudo instruction of a library routine.

The formats of these words are described in Sections VIII and XIII, respectively.

LOCATION COMMAND CODE % A ADDRESS B ADDRESS C ADDRESS REMAR!<S

LINE NO.
0000000000 000000000000 000000000000030 bOOOOOOOOOOOOO 00000000000000 000001000 0000~00
12345171910 111213141516171819 20 21 22 23 24 25 26 27 28 29 30 3132333' •• 31! 37 3839404142434445464746495051 5253545556575859606162636465 66 67 68 69 70171 72 73 74 75 76 7778 79 80

I 1 1 1 11 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 111111111111111 11111111111111 11111111111111 1 1 1 1 111 ~ 1 1111111
0 I

2222222~ ~ 2222222222 222222222222 222222222222222 22222222222222 22222222222222 2 2 2 2 212 2 2
I V)

~3333333333 333333333333 333333333333333 33333333333333 33333333333333 3 3 3 3 313 3 3 3333333~
I

~ 4444444444 444444444444 444444444444444 44444444444444 44444444444444 4 4 4 4 4144 4 4444444:g
w I C>
~5555555555 555555555555 555555555555555 55555555555555 55555555555555 5 5 5 5 515 5 5 5555555~

I

:r6666666666 666666666666 666666666666666 66666666666666 66666666666666 6 6 6 6 616 6 6 6666666
I

7777777777 777777777717 777777777777777 77777777777777 77777777777777 777771777 7777777
I

8888888888 8 8 8 8 8 8 8 I I 8 8 8 8 8 8 8 8 8 8 I I 8 8 8 I 8 8 I 8 8 8 8 8 8 8 8 8 8 8 8 8 8 I 8 8 8 8 8 I 8 8 I 8 8 8 8 8 8 8 a:• 8 818 8 8 8 8 8 a
9999999999 919 9 9 9 9 9 9 9 9 9
1234517B910 11 12 13 1415 18 11 11 19 20 21 22 23 24 25 28 27 28 28 30 31 3:> l3 34 35 38 37 38 38 40 41 42 43 44 45 46 47 48 48 50 51 52 53 54 55 55 57 58 59 BO 81 62 83 64 65 66 87 68 69 70171 72 73 74 75 76 77 78 79 80

ABS10659

Figure 4. The ARGUS Input Card

Address Fields (Columns 24-37, Columns 38-51, Columns 52-65)

These three address fields correspond to the A, B, and C address groups of a Honeywell

800 machine instruction. In a machine instruction, they may designate an operand location or

a result location, using any of the six types of addresses permitted by the instruction. These

six address types are described in Section V. In certain instructions, the address fields may

contain instruction parameters or other information. The three address fields are regarded

as a single 42-column field for the purpose of punching constant words. Their format in a

library routine pseudo instruction is determined by the programmer who designs the library

routine.

Line Number (Columns 66-73)

Line numbers specify the sequence of words within a program. When a new program is

assembled, the cards may or may not contain line numbers. If the cards do not contain line

numbers, they must be read in correct sequence, as ARGUS assigns a line number to each

card based on this sequence. If the cards contain line numbers, ARGUS sorts the cards into

proper sequence.

Line numbers are printed as part of the complete program listing produced by ARGUS.

They are used by the programmer in preparing additions, deletions, and corrections to

assembled programs. Five-digit line numbers are originally assigned the cards of a new pro­

gram. If assigned by the programmer, they are punched in columns 66 through 70. To

15

SECTION Ill. THE ARGUS CODING FORM

correct or replace one of the original cards of a program, the assigned five-digit number is

punched in columns 66 through 70 of the modification card. Columns 71 through 73 are u_sed

to insert additional cards in the correct sequence. For example, if three cards are to be in-

serted in a program following card 01357 (according to the program listing), line numbers

may be punched on the inserted cards as follows:

Column 66 67 68 69 70 71 72 73

Original Card 0 1 3 5 7 0 0 0

1st Insert 0 1 3 5 7 i 0 0

2nd Insert 0 1 3 5 7 2 0 0

3rd Insert 0 1 3 5 7 3 0 0

Original Card 0 1 3 5 8 0 0 0

Again at some later time, the programmer may insert additional cards following card

01357200 by numbering them 0135721.0, 01357220, etc.

Identification (Columns 74-80)

These columns may contain a punch combination used to identify the cards of a related

set of coding, such as a program segment. If such codes are used as segment markers, for

example, ARGUS can identify the segment to which each program card pertains.

Remarks (Columns 66-80)

If either the line number or identification field (or both) is not so used by the program­

mer, it may contain remarks. Such information is not assembled but is reproduced for the

programmer's convenience as part of the program listing.

A card containing only remarks may be included at any point in a program. Such a card

is indicated by an "R" or a "P" followed by a comma in columns 1 and 2 of the location field.

(R causes the remarks to be printed on the next line; P causes the remarks to be printed at the

top of the next page.) Remarks may be punched in all of the other columns (3-80) of a remarks

card.

16

SECTION IV

TAGS

A tag punched in the location field of a program word allows the programmer to

refer to that word elsewhere in his program without being aware of its absolute location

in memory. A word may also be tagged to denote its use as a mask or to direct its

storage in a special register. Three groups of words must include a tag punched in the

location field:

1. Certain of the words which are directly referenced in the address fields
of other program words;

2. All words which are to be placed in special registers at loading time; and

3. All masks.

Tags may be punched anywhere in the location field; spaces are ignored.

Symbolic Tags

A symbolic tag is a group of up to eight alphanumeric characters, of which at least

one must be non-numeric. However, there are certain characters which have significance

to ARGUS and must not be included in symbolic tags.

Key Punch

12
11
0, 8, 3
12, 8, 3
11, 8, 4
0, 1

Symbol

+ (plus)
- (minus)

' (comma)
(period)

)~ (asterisk)

I (slash)

Machine Code

010000
100000
111011
011011
101100
110001

In addition, the following characters are not permitted within symbols even though they

have no special significance.

Key Punch

8,4
11, 8, 5
12, 8, 2
8, 5
0, 8, 7

Symbol

- (hyphen)
" (quotes)

(semicolon)
(not as signed)
(not as signed)

Machine Code

001100
101101
011010
110000
111111

Space codes (001101) within symbolic tags are ignored by assembly.

Tags are frequently chosen as mnemonic representations of the content or function

of the tagged words, e.g., GROSSPAY, INPUT!, or DIVIDEND. Such a tag may directly

17

SECTION IV. TAGS

represent any location in the hig{l.-speed memory. Every symbolic tag which appears in an

address field within a program must appear in the location field within that program.

It is not necessary to tag every word of a program which is referenced by some

other word. Address arithmetic (described in Section V) allows direct reference to an

untagged word by specifying its location relative to a tagged word, e.g., GROSSPAY + 2.

The programmer decides which words of his program to tag and which to reference by

address arithmetic. Note that for purposes of assembly, address arithmetic is permitted

only in an address field and never in the location field.
1

Normally every symbolic tag appearing in the location field is assigned an absolute

value by ARGUS. The program listing includes the assignment of each tag. These assign­

ments are used if the program is loaded independently, as is usually the case during

program testing. However, in production the program is generally loaded under the

direction of Executive and the tag assignments are thereby modified to make the program

compatible with any other programs being processed in parallel.

In addition to their use in referencing program words directly, symbolic tags may

be used to represent other values, such as complete addresses in indexed or indirect

form, or program parameters. The programmer assigns the values of such tags using

special ARGUS control instructions provided for this purpose. These instructions, called

EQUALS, ASSIGN, and TAS (temporary assign), are described in Section VIII.

Special Register Tags

Each of the 32 special registers in a group has both an absolute address and a

mnemonic designation. The names and the absolute and mnemonic addresses of all

special registers in a group are listed in Figure 5. For example, this figure shows

that the mask index register in any group may be designated absolutely as 07 or

mnemonically as MXR.

A special register tag is required in the location field of every word to be loaded

directly into a special register. Such a tag consists of a "Z" followed by a comma and

the absolute or mnemonic address of the desired register. For example, either of the

following special register tags

1
PTS derail instructions are an exception to this rule, as described in the Program
Test System Manual, Section III, "Expressing Memory Addresses".

18

Z, 11
Z,X3

SECTION IV. TAGS

might be used to load the tagged word into index register 3. For a discussion of special

register tags used in address fields, see Section V.

Subaddress Mnemonic Address Name

00 AUl AU-CU Counter No. 1
01 AU2 AU-CU Counter No. 2
02 SC Sequence Counter
03 csc Gosequence Counter
04 SH Sequence History Register
05 CSR Cosequence History Register
06 UTR Unprogram.med Transfer Register
07 MXR Mask Index Register
08-15 XO-X7 Index Registers
16-23 RO-R7 General Purpose Registers
24-31 SO-S7* General Purpose Registers
28 RAC Read Address Counter
29 DRAC Distributed Read Address Counter
30 WAC Write Address Counter
31 DWAC Distributed Write Address Counter

~cin certain special register groups, S4-S7 are replaced by RACt DRACt WAC, and
DWAC.

Figure 5. Special Register Names, Subaddresses, and Mnemonic Addresses

Mask Tags

Every mask specified by the programmer must be designated in the location field

by a unique symbolic tag. These tags, like all symbolic tags used with ARGUS, can

have up to eight alphanumeric characters, of which at least one must be non-numeric.

In addition, each such tag is preceded by a character which indicates that the corres­

ponding mask is used with field instructions (F), shift instructions (S), or both (B).

Thus, a complete mask tag consists of a mask indicator followed by a comma and a

symbolic tag.

F,M3
S, RIGHT2
B, SIGN

Link Tags

Any word which is to be the starting location of a segment (except the starting

location of the first segment) should be so marked by tagging the word with a symbolic

tag preceded by the letter "L" and a comma.

19

SECTION IV. TAGS

Out-of-Sequence Words

It is sometimes convenient, particularly when writing macro routines, to have certain

words placed out of the main sequence of coding. ARGUS recognizes any word marked by

the letter "X" and a comma in the location field as an out-of-sequence word. Such words

are placed at the end of the subsegment in which they appear. The "X, n may or may not

be followed by a symbolic tag.

ARGUS assigns out-of-sequence words by maintaining two location counters called

CLC (current location counter) and XLC (out-of-sequence location counter). Each counter

is incremented after a word of the corresponding type is processed. A word without "X,"

in the location field is assigned to the location contained in the CLC. A word with "X, "

in the location field is assigned to the location contained in the XLC.

Definition of Tags

When a tag appears in the location field of a line of coding, it becomes defined.

This results in the assignment of the tag to a memory location, an integer, or a complex

address (i.e., an indexed address or a special register address). A tag may have one

absolute assignment (memory location or integer) or one complex assignment or one of each.

However, when a tag has conflicting assignments (e.g., two memory location assignments),

it becomes doubly defined and is noted by ARGUS as an error. In general, such a conflict

of assignment can arise only within a single segment. In other words, a tag may have

completely different assignments in the various segments of a program. The only tags

which must maintain their assignments throughout the entire program are link tags and

tags which appear within the common portion of any segment (see Section VI).

When a tag which has both an absolute assignment and a complex assignment appears

in an address field, the complex assignment is normally used. However, there are

several exceptions to this rule, which are noted in connection with machine instructions,

control instructions, and control constants.

20

SECTION V

ADDRESSES

In Section II, it was stated that every Honeywell 800 main memory location has a

unique numerical designation, or address, consisting of a bank number from 0 to 7

and a subaddress from 0000 to 2047. It was stated further that each control memory

location, or special register, is uniquely designated by a group number from 0 to 7

and a subaddress from 00 to 31.

Most instructions can ref er to any memory location or special register to obtain

an operand or to store a result. Three methods of addressing main and control memory

are provided. A direct address is a specific reference to the desired location or register.

An indexed address designates a special register called an index register, plus a quantity

which augments the contents of the index register to form the desired address. This

process leaves the original contents of the index register unaltered. An indirect address

designates a special register in which the desired address is stored, plus an increment

which permanently modifies the stored address after use. The internal configurations of

the various types of addresses are presented in the Programmers' Reference Manual.

This section deals with their representation in ARGUS language, as summarized in

Figure 6.

Direct Memory Location Address

The programmer may directly reference a memory location by writing the symbolic

tag assigned to that location in an address field. ARGUS replaces this tag with the absolute

address assigned. Alternatively, the programmer may specify a direct memory location

address by means of address arithmetic {see below). Address arithmetic permits address­

ing relative to a tagged location or relative to one of the location counters (CLC and XLC)

mentioned in Section IV.

Direct addressing may be used in an instruction to reference any location in the

memory bank in which the instruction is stored. An attempt to address any locatidn

outside of this bank results in an ARGUS error indication during assembly. Therefore,

the use of direct addressing is limited by the rules which govern relocation (see Section VI).

21

......,

......, Type

Direct Memory Location

Direct Special Register

Indexed Memory Location

Indexed Special Register

Indirect Memory Location

Indexed Indirect Memory Location

Format

(1) Symbolic Tag
(2) Symbolic Tag,

±Address Modifier
(3) C, ±Address Modifier
(4) X, ±Address Modifier

(1) Z, 15, increment
(2) Z, R2, increment

(1) IR, numeric augmenter
(2) IR, symbolic augmenter

(1) IR, Z, 15, increment
(2) IR, Z, R2, increment

(1) N, 15, increment
(2) N, R2, increment

(1) IR, N, 15, increment
(2) IR, N, RZ, increment

Interpretation

Direct reference to a high-speed memory
location in assigned bank (1) symbolically,
(2) relative to a tagged location, (3) relative
to the contents of the current location counter,
or (4) relative to the contents of the out-of­
sequence location counter.

Direct reference to a related special register
(1) absolutely, or (2) mnemonically.

Reference to a high-speed memory location
in any bank formed by combining contents
of a related index register with (1) numeric
augmenter, or (2) symbolic augmenter
(with or without modifier).

Reference to a special register in any group
formed by combining the contents of a related
index register with (1) an absolute special
register subaddress, or (2) a mnemonic
special register designator.

Reference to a related special register ad­
dressed (1) absolutely, or (2) mnemonically
to obtain stored absolute address of a mem­
ory location in any bank.

Reference to a special register in any group
formed by combining the contents of a re­
lated index register with (1) an absolute
special register subaddress, or (2) a mne­
monic special register designator to obtain
stored absolute address of a memory loca­
tion in any bank.

Figure 6. Summary of Addresses

(./)

m
()

::!
0
z
:<­
)>
0
0
;:::o
rT1
(./)
(./)

m
(./)

SECTION V. ADDRESSES

ADDRESS ARITHMETIC: An address modifier, consisting of a sign and a number from 0

to 2047, may be appended to a symbolic tag to designate a direct memory location address

relative to the location specified by the tag. Such an address modifier may be appended to

a "C" and a comma (C,) to designate a direct memory location address relative to the

contents of the current location counter, or to an "X" and a comma to designate a direct

memory location address relative to the contents of the out-of- sequence location counter.

Thus the address

ASSETS +37

is a direct reference to the memory location 37 beyond that represented by the symbolic

tag ASSETS. The address

C, -3

refers to the memory location three before the location whose address is stored in the

current location counter. Likewise, the address

x, +109

refers to the memory location 109 beyond the location whose address is stored in the

out-of-sequence location counter. The address modifier may be a series of numbers

separated by the signs + and - , provided that the absolute value of the entire modifier

does not exceed 2047. Caution is required in the use of address arithmetic, since the

address modifiers are not corrected if coding is inserted or deleted later.

Three types of direct memory location addresses are illustrated in the instruction

PROBLEM _________________ PROGRAMMER-------- DATE----- PAGE -- OF --

I LOCATION 10 II COMMAND CODE 22ltl2• A ADDRESS 37131 B ADDRESS C ADDRESS 1 REMARKS
51 12 fl5lbb LINE NUMBER 7J].!4

l> A
Tj

I l I ll c, +2 l
INTEREST AMTFAID-10

_l - -
The function of this instruction is to add decimally the contents of the memory location

two after the location of the instruction itself to the contents of the memory location

designated by the tag INTEREST, and to store the result in the location 10 before that

tagged AMTPAID. (Since this instruction is not marked by an "X, 11 in the location field,

the CLC contains the address of this instruction while the instruction is being processed.)

The number of symbolic tags required to write a program can be greatly reduced

by the use of address arithmetic. The programmer decides how many and which words

in a program to tag and which to reference by address arithmetic.

10

~

23

24

SECTION V. ADDRESSES

Direct Special Register Address

The direct address of a special register is indicated by a "Z 11
, a special register

designation, and an unsigned increment from 0 to 31, all separated by commas. The

special register designation may be either the absolute subaddres s (from 0 to 31) or the

mnemonic address (e.g., X3 or MXR) of the desired register, as shown in Figure 5, page 19.

If a special register is addressed as an operand location, the numeric increment is added,

under control of the special register sign, to the special register contents, after those

contents have been used. If a special register is addressed as a result location, the

increment is ignored. To address a special register as an operand location without

changing its contents, the programmer may omit the increment or may write an increment

of O.

Any directly addressed special register is defined as being in the 32-register group

controlling the program. For example,

z, X2, 5

is the direct address of the second index register in the controlling special register group.

If it is used to specify an operand location, this address directs that the contents of X2

are to be incremented by 5 after use.

Indexed Memory Location Address

A special register group includes eight index registers, each capable of storing a

sign, a bank indicator, and a memory location subaddress. An indexed memory location

address designates an index register and a quantity which augments its contents to form

a complete memory location address. The index register designator and the augmenter

are separated by a comma. The index register designator is a number from 0 to 7 which

specifies one of the eight index registers in the controlling special register group. Use

of the letter "X" before the designator is optional. The augmenter may be a number from

0 to 255 (254 for index register 7) or it may be a symbolic tag, with or without a modifier.

If symbolic, it must be assigned by an EQUALS instruction (see Section VIII) to a number

which is a valid augmenter. The computer forms a memory location address by adding

the augmenter to the address stored in the index register, under control of the stored sign.

The unaugmented address is retained in the index register.

For example, the address

3, 15 (or X3, 15)

specifies that the contents of index register 3 in the controlling group are augmented by

15 to form an absolute memory location address. The address

SECTION V. ADDRESSES

7, DIVIDEND +2

specifies that the contents of index register 7 are augmented by 2 plus the quantity equated

to the tag DIVIDEND to form the desired address. If the sum of the augmenter plus the

stored subaddress exceeds 2047, a carry occurs into the bank indicator and the resulting

address will be in a different bank from the stored address.

Indexed addressing permits the programmer to address locations in any main mem­

ory bank, depending upon the value of the bank indicator stored in the index register. This

type of addressing may be used in processing multi-word items or in referring to a stored

table. The address of the first word in the item or table is stored in an index register

and all references to the item or table are made using the index register designator with

the appropriate augmenter. To assure positive augmentation, the programmer must take

care that the index register contains a positive sign.

Indexed Special Register Address

An indexed special register address may be used to refer to a special register in

any of the eight control memory groups. Such an address takes the form:

Index Register Designator, Z, Special Register Designator, Increment

The index register designator is a number from 0 to 7 (or XO to X7) which specifies one of

the eight index registers in the controlling group. The special register designator may be

an absolute subaddress (0-31) or it may be mnemonic (see Figure 5). The increment may be

a number from 0 to 3 or it may be omitted. The manner in which these numbers are used

to augment the index register contents and form a special register address is illustrated

in terms of bit structure. ARGUS converts the address as written by the programmer to

the following 12-bit configuration:

x x x x x 0 x x x x x

i \ I~ ! v
INCREMENT

INDEXED INDEX DIRECT SPECIAL
ADDRESS REGISTER ADDRESS REGISTER

DESIGNATOR (TAB. BIT) DESIGNATOR

Of this configuration, the low-order eight bits (increment, tabular bit, and special register

designator) are added to the low-order eight bits of the index register contents, under

control of the index register sign, permitting carry into the high-order bits. As usual,

the indexing process does not alter the contents of the index register. The augmented

index register contents are interpreted by the machine as a special register address,

as follows:

25

SECTION V. ADDRESSES

x I x x x x x x x x x x x x x x x

l ! '--v---1 i
SIGN NOT GROUP INCREMENT TAB. BIT SPECIAL REGISTER

USED INDICATOR (DIRECT OR SUBADDRESS
INDIRECT)

Within the augmented configuration, the group indicator and subaddress uniquely define

a special register in any of the eight groups. The increment is now a number from 0 to 31.

The tabular bit indicates whether the type of addressing is direct or indirect (see below).

In either case, the increment, under control of the special register sign, is added to the

contents of the special register after use, provided the special register is not addressed as

a result location.

If the index register used contains all zeros (except for the sign and the group indicator),

the result of indexed special register addressing is quite simple. In this case, the index

register designates the group and the programmer designates the subaddress of a special

register which is addressed directly and incremented after use by the amount which the

programmer writes. For example, assuming that the programmer writes

3, Z, 5, 2

and that index register 3 contains

+4,0,0,0

(group indicator of 4, increment, tabular bit, and special register subaddress of all zeros),

the machine addresses special register 5 in group 4 directly and then increments its con­

tents by +2. However, if the index register contains more than a sign and a group indicator,

the result of indexed special register addressing can only be understood by combining bit

configurations as above.

Indirect Memory Location Address

This address takes the form

N, Special Register Designator, Increment

where the special register designator specifies a register in the controlling group absolutely

or mnemonically, and the increment is a number from 0 to 31. The machine interprets the

contents of the specified register as the bank indicator and subaddress of a memory location

which may be in any bank. Whether the memory location is an operand or a result location,

the increment is added to the contents of the special register, under control of the special

register sign, after they have been used. For example, the address

N,R3, 9

specifies the contents of special register R3 in the controlling group, interpreted as an absolute

26

SECTION V. ADDRESSES

memory location address. After use, the contents of register R3 are permanently modified

by 9.

Indirect addressing is convenient for processing multi-item records when an operation

is to be performed on word M of each item. The location of word M of the first item is

stored in a special register. This location is then addressed indirectly, using an increment

chosen to reset the special register to the location of word M of the second item. Since the

bank indicator of the memory location is derived from the special register, any memory bank

may be addressed in this fashion.

Indexed Indirect Memory Location Address

As noted in the discussion of indexed special register addressing, the augmented con­

tents of an index register may be interpreted as a special register group indicator and sub­

addres s, a tabular bit, and an increment. If the tabular bit specifies indirect addressing,

then the special register so designated is used to address a main memory location in any

bank indirectly. In this manner, any of the 256 special registers may be used to address any

memory location indirectly. This type of address, called an indexed indirect memory loca­

tion address, takes the form

Index Register Designator, N, Special Register Designator, Increment

As with any other indexed address, the index register is one of the controlling group and is

designated by a number from 0 to 7. The special register designator may be absolute (from

0 to 31) or mnemonic, while the increment may be a number from 0 to 3 or may be omitted.

An address of this type is interpreted by the machine in the same manner as an indexed

special register address, except that the 12-bit configuration formed by ARGUS contains a

tabular bit of 1 to indicate indirect addressing. The low-order eight bits of this configuration

modify the low-order eight bits of the index register contents with carry, and the tabular bit

in the result indicates whether the special register is addressed directly or used to address

a memory location indirectly. As with indexed special register addresses, it is simplest

to use an index register containing only a sign and a group indicator and otherwise all zeros.

In this case, the special register and increment written by the programmer will be used and

indirect addressing is assured. If other information is stored in the index register, the

eight-bit addition process may alter the tabular bit. If this occurs, an IR, N address will

produce the effect of an IR, Z address and vice versa.

Assume that the pr9grammer writes the address

3, N, AUl

and that index register 3 contains only a sign and a group indicator. This group indicator and

27

SECTION V. ADDRESSES

the mnemonic designator AUl define one of the 256 special registers, which is used to address

a memory location indirectly. Since no increment was written, the contents of the special

register are left unchanged.

Inactive Address

An inactive address is denoted in ARGUS language by a hyphen(-). This type of

address may be used to gain access to three non-addressable registers called the accumu­

lator, the mask register, and the low-order product register. In an addition instruction,

for example, inactive addressing may be used to gain access to the accumulator. If the A

and B address groups are inactive, the· contents of the accumulator are transferred to C;

if the B and C address groups are inactive, the contents of A are transferred to the accumu­

lator. In similar fashion, inactive addressing may be used with the extract instruction to

gain access to the mask register and with the "transfer A to B, go to C" (TS) instruction to

gain access to the low-order product register. Inactive addressing is discussed more

fully in the Programmers 1 Reference Manual.

Stopper Address

When a main memory address, stored in a special register, is modified by incrementing

or augmenting, a carry may occur from the subaddress into the bank indicator. Thus a se­

quencing counter can be stepped through successive memory banks, and a single instruction

can handle a record which is not stored entirely within one memory bank. There is one

address, however, which by definition is neither incremented nor augmented when it appears

in a special register. This address, called the stopper address, represents the highest­

numbered location in the memory of a given Honeywell 800 system, regardless of the number

of banks in the system {i.e., subaddress 2047 in the highest-numbered bank of the system).

The stopper location can be utilized, for example, in a read instruction to move tape without

disturbing the contents of memory or to read a portion of a tape record, discarding the

balance. Due to relocation considerations, the stopper location can only be addressed

through a special register in ARGUS language. This is accomplished by writing the sym­

bolic tag STOPPER in a special address constant (see _Section IX) and storing it in a special

register. ARGUS replaces this tag with the address of the stopper location of the machine

on which the program is to be run.

Numbers in Address Fields

ARGUS will convert any number up to 2047 appearing in an address field into binary.

This ability should be used with caution, especially if the program is to be relocated for

parallel processing.

28

SECTION VI

PROGRAM STRUCTURE

An assembled program may be divided into segments to conform to subdivisions of

program logic. This makes it possible to have the coding for one function in memory

while the coding for other functions remains on tape until it is needed. Segmentation

makes efficient use of available memory storage and increases the number of programs

that can be processed in parallel. Segments may be further broken down into subsegments

to increase the flexibility of relocation by the Executive System, to provide communication

among segments, and to exercise control over the allocation of memory as performed by

the Assembly Program.

Segmentation

A segment is any part of a program which is loaded into memory and executed as

a unit. Segmented programs fall into two general categories. One segment may operate

upon the output of a previous segment with no internal communication, as in the case of a

card-to-tape conversion which is followed by a sort and then by an updating run. Such

segments resemble a series of separate programs run one after another. On the other

hand, there may be communication among segments. The communication link may be

either a control program which decides what segment to load next, or an area of mem­

ory containing data which varies from segment to segment, or both. Thus, unlike the

first category, the order and frequency of executing the segments may not be predictable,

but may depend upon the input data.

Programs in the first category are easily divided into mutually independent segments.

If these segments have different equipment requirements, they can be scheduled for produc­

tion more efficiently if they are written as separate programs. Programs in the second

category, on the other hand, must be separated into interdependent and independent portions,

according to the amount of memory available and the relative frequency of executing the

various portions of coding. The programmer uses the control instructions PROGRAM and

SEGMENT (see Section XI) to segment a program.

Any part of any segment may be specified as "common" (as described below under

"Subsegmentation"). When part of a segment is common, the area of memory which it

uses is reserved in all segments. It may be overlaid by common portions of other segments

29

SECTION VI. PROGRAM STRUCTURE

only under the programmer's control. The portions of segments not specified as common,

on the other hand, are overlaid by other segments under control of Executive. In other

words, the only parts of the program guaranteed to be in memory during the execution of

one segment are those words belonging specifically to that segment and any common portions

of other segments which occupy the communication area at this time. For this reason, the

symbolic tags defined in the common portions of a program may be referenced from any

segment, while those not in a common area are available only to the segment in which they

are defined.

Segment Loading

The name of the first segment which is to be executed is specified on the END card

(see Section VIII). Executive automatically loads this segment when the program is initiated.

The starting address of this segment must be loaded into the sequence counter by means of

a SPEC const,ant with "Z, SC" in the location field.

The programmer uses a macro instruction called read segment to direct -t;he automatic

loading of all segments following the first. This instruction is logically equiva].ent to a

transfer of control to that segment. The Executive System loads the requested segm~1'.t

and transfers control to a location specified in the macro instruction, under control of the

sequence counter. Thus, no segment except the first one to be executed need load the

sequence counter. If a segment does load the counter, the address specified in the read

segment instruction will override the one loaded.

The format of the read segment instruction is:

PROBLEM _________________ _ PROGRAMMER ---------- DATE ----- PAGE.~_·OF __

I LOCATION 10 II COMMAND CODE 22~ 24 A ADDRESS 37 38 8 ADDRESS C ADDRESS
REMARKS

SI 52 65 l>I> LINE NUMBER 73174 80

(TA6) L
1

R.EAPSE6 NAME START
_L I -- - - I

"Name" is the segment name specified in the PROGRAM or SEGMENT card, and "start" is

the symbolic tag of the location in that segment where control is to be transferred. As in

all macro instructions, the symbolic tag in the location field is optional.

The symbolic tag in the B address field must be a link tag, since it is referenced in

one segment, while it actually belongs to another; this is an exception to the rule that all

references within a segment must be to words within that segment or within the common

area. Section IV states that a link tag is preceded by an "L" and a comma when it is de­

fined. Such a tag may be referenced from any segment, by means of the read segment

30

SECTION VI. PROGRAM STRUCTURE

macro instruction. It should be noted that a reference to this tag from another segment

must not include address arithmetic. However, within the segment to which it belongs,

this tag may be treated just as any other.

If desired, a segment may contain more than one starting location. Each starting

location must be designated by means of a link tag. Different read segment macro instruc­

tions may be used to effect transfer of control to the different starting locations under

various conditions.

Sub segmentation

A subsegment is a group of words within a segment which must retain the same

relationship to each other in memory; the relationship of one subsegment to other sub­

segments within the segment is immaterial. Each segment may contain a maximum of

seven subsegments. The division of a segment into subsegments is indicated by means of

the control instruction SETLOC (see page 53). If no division is specified, the entire

segment is considered to consist of one subsegment.

All subsegments of a segment occupy memory at the same time. However, during

relocation each subsegment may be moved in memory independently of the other subseg­

ments with the following exceptions:

1. If any subsegment crosses a bank boundary, all subsegments of every
segment within the entire program will retain their original relation­
ships to each other and to the bank boundaries. That is, the program
is moved only by bank.

2. Two subsegments written to occupy the same memory bank will con­
tinue to share one memory bank unless one of the subsegments is in
the communication area. In this case, the subsegments may be
moved into two different banks.

The programmer may reference any word in a subsegment from any other portion of the

same segment, according to the following rules;

1. Any reference to a word in another bank must be made via a special
register.

2. Unless some subsegment crosses a bank boundary (so that the pro­
gram is relocated by bank), all references to the communication
area from outside this area must be made via special registers.

3. Address arithmetic must not be applied to a tagged word in one
subsegment in order to reference a word in another subsegment
unless the program is relocated by bank.

One of the primary reasons for designating a portion of coding or data as a subsegment

is to specify that it should be made common to all segments. Subsegments not specified

31

SECTION VI. PROGRAM STRUCTURE

as common are called normal subsegments. The normal subsegments of different segments

are completely independent of each other; i.e., a subsegment numbered "l" in one segment

bears no relation to a subsegment numbered "l" in another segment unless it is designated

as common. If a subsegment is designated as common, however, its number will refer

to the same subsegment in all segments.

If a subsegment has been designated as common in one segment, words can be added

to it or overlaid on portions of it by other segments. The new words are preceded by a

SET LOC instruction which states whether they are to be overlaid at a specified location

or added at the end of the subsegment.

Another reason for dividing a segment into subsegments is to increase the flexibility

of relocation. If two portions of a program (e.g. , coding and data) need not occupy the

same memory bank, it is desirable to code them as two subsegments, one in each of two

banks. Executive may then relocate them into any space which is available.

Allocation

The Assembly Program assumes responsibility for the allocation of memory to a

program; however, in some cases the programmer needs to have control over this allo­

cation. For example, in a multi-bank program he may wish to place his masks in a

particular bank so that he may refer to them directly from coding in that bank.

32

Each subsegment may contain any or all of these elements:

1. In-Line Coding - This consists of all program words except those
which are designated as masks, loaded directly into special regis­
ters, or marked as out-of- sequence words. As each in-line word
is processed by the Assembly Program, it is assigned to the next
available location in the subsegment. Breaks in this sequence and/
or initial values of this sequence may be specified by SETLOC
instructions.

2. Out-of-Sequence Coding - This consists of all words in the sub­
segment which have "X," in the location field (see page 20).
These words are assigned locations starting immediately after
the in-line words of that subsegment. Any subsegment which
contains out-of- sequence coding should be stored entirely
within one memory bank for ease of referencing such coding.

3. Masks - Masks are assigned in groups by means of the control
instruction MASKGRP (see page 59). This instruction may
designate a subsegment in which the groups named are to be
placed; otherwise, they are placed in the subsegment in control
at the end of the segment. If the SET LOC instruction for the
subsegment containing the mask groups is immediately followed
by a SETLOC for another subsegment, the mask groups will be

SECTION VI. PROGRAM STRUCTURE

allocated in a subsegment by themselves.

4. Subroutines - If a subroutine is called for within a common subsegment,
it is stored within that subsegment; otherwise, it is stored in the sub­
segment in control at the end of the segment. The programmer may
use a SETLOC instruction immediately following the last line of a seg­
ment to specify the subsegment in which non-common subroutines are
to be stored. All subroutines stored in a subsegment are allocated
immediately following the last location used in the subsegment. The
order in which subroutines are stored at the end of a subsegment is
determined by the Assembly Program on the basis of their size, and
not on the order in which they are called or the order in which they
appear in the library.

If a segment consists of more than 2048 words, so that it must occupy more than one

bank of memory, it can be subsegmented in such a way that the out-of-sequence words and

masks which are referenced by one section of coding will be stored in a bank with that

coding.

Relocation

Because a program is prepared without specific knowledge of the actual memory and

equipment which will be assigned to it, certain precautions must be observed during pro­

gram preparation to facilitate successful relocation and operation of the program. Since

the program will undoubtedly be run in parallel with others at some time, observance of

the facts of relocation outlined below is also necessary in order that the program may not

interfere with others.

1. The relocatable quantities - group and bank indicators and peripheral
codes - should not be treated as numerical values. In other words,
no arithmetic operations should be performed on these quantities.

2. Although a one-to-one correspondence exists between group indicators
of a program before and after relocation, this is not so with bank
indicators. Different bank indicators may be as signed the same
value during relocation, since subsegments written for different banks
may be loaded into the same bank at run time. However, subsegments
written for the same bank will always be assigned to the same bank,
with the exception of common subsegments.

3. There is no relationship between bank indicators of different segments,
except for common subsegments which remain in the same absolute
areas throughout execution of the program. Therefore, references
between common and normal subsegments must be made via special
registers.

4. Statements (2) and (3) above are limited to programs relocatable
modulo 64, not to those relocatable by bank only.

5. Bank, group, and control unit indicators can be identified properly
only if constants to be loaded into special registers are special
address (SPEC) or complete address (CAC) constants (see Section IX).

33

SECTION YI. PROGRAM STRUCTURE

6. Fixed, non-relocatable locations (e.g., date location and inquiry stations)
must be addressed via special registers. The stopper location, which is
represented by the tag STOPPER in a SPEC constant (see page 28), must
also be addressed via a special register.

7. Because group indicators and tape control unit identifications are relocatable,
care must be used in writing a program control constant to examine the
program control register. A program should examine only group and buffer
bits used by that program.

8. The MPC instruction (see page 50) must be used with great care. In particu­
lar, only those groups used by the program should be altered in any way.

9. The special registers RAC, DRAC, WAC, and DWAC are associated with
control unit indicators and not with group indicators. They must be
addressed via special registers. When they are addressed, control
unit assignments must be uniquely defined. It must be remembered
that these counters may contain information from other programs using
the same control unit.

In those control groups which contain the read-write counters RAC, DRAC, WAC, and

DW AC, special registers S4 through S7 are not available. Relocation is facilitated by always

specifying a group in which these registers are unavailable, unless they are actually required

by the program. However, if a program does use any of the special registers S4 through S7,

it is the programmer's responsibility to specify a group in which these registers are available.

Further information on relocation can be found in the Executive System Manual.

EXAMPLE: Two segments of a program have been assembled and allocated in memory as

shown in the left-hand two columns of Figure 7 (Before Relocation). Segment A consists of

a common subsegment (numbered 1) and four other subsegments. Segment B consists of a

common subsegment (which is also numbered 1) and three other subsegments. This program

has been executed and checked out, using memory banks 0 through 3, as shown. Note that

part of the common subsegment is loaded with segment A and part with segment B and that

these parts are assigned overlapping memory areas.

The same program is to be loaded for processing in parallel with a number of other

programs which are using memory banks 0, 1, and 4 through 7. When this program is

scheduled for a production run, Executive examines its relocation information and re­

locates it as shown in the right-hand two columns of Figure 7 (After Relocation), so that it

can be processed entirely within the available memory banks 2 and 3. A comparison of

the two halves of Figure 7 reveals that the following rules govern the relocation process.

34

1. All subsegments are relocated in integral multiples of 64 locations to
preserve all mask group relationships;

2. The two portions of common subsegment 1 retain the original over­
lapped relationship; and

SECTION VI. PROGRAM STRUCTURE

3. Normal subsegments 2 and 4 of segment A, originally sharing the same
memory bank, continue to share a bank after relocation. These sub­
segments may communicate by means of direct addressing. All other
communication between subsegments must be by means of indirect
addressing.

BEFORE RELOCATION AFTER RELOCATION
SEGMENT A SEGMENT B SEGMENT A SEGMENT B

Figure 7. Example of Program Relocation

35

SECTION VII

MACHINE INSTRUCTIONS

Honeywell 800 machine instructions are specified in ARGUS language using the mnemonic

operation codes shown in Figure 8. Note that ARGUS recognizes the five classes of machine

instructions, namely, general,. peripheral, shift, scientific, and simulator instructions, plus

a group o'f extended instructions. The functions of Honeywell 800 machine instructions are

summarized in Appendix, E. The reader will find it convenient to refer to Appendix E for the

details of the machine instructions illustrated on the following pages.

A machine instruction consists of a command code group and three address groups.

The command code group may include such information as a mask tag or a peripheral code in

addition to the mnemonic operation code, depending upon the instruction type. An address

group may refer to a memory location or a special register, using one of the address forms

given in Figure 6, or it may contain a parameter dictated by the format of the instruction.

Information written either in the command code field, or in any address field may be punched

anywhere in the indicated card field; spaces in these fields are ignored when assembling

machine instructions.

General Instructions

The instructions in this class perform such operations as arithmetic, information

transfers, comparisons, program control, and information checking. All of these instruc­

tions, with the exception of proceed, have the ability to designate the source of the following

instruction. If column 23 contains an "S" or is blank, the address of the next instruction is

obtained from the sequence counter; if this column contains a "C", the address of the next

instruction is obtained from the cosequence counter. Column 23 of a proceed instruction is

not used, and the following instruction is always selected by the sequencing counter which

selected the proceed instruction.

Three examples of general instructions are shown on the following page. The first in­

struction adds the contents of location PRICE to the contents of the location three after PRICE

and stores the result in location AMTDUE. Both operands and the result are regarded as

signed 11-digit decimal numbers. The second instruction transfers 10 words from consec­

utive memory locations starting at INPUT to consecutive locations starting at WORK1. The

third compares numerically the contents of a memory location reached by indexed addressing

37

SECTION VII. MACHINE INSTRUCTIONS

with the contents of COUNTER. If (3, 7) is less than or equal to (COUNTER), the cosequence

counter is reset to the memory location 14 beyond the location of this instruction. {Paren­

theses are used around an address to specify the contents of the indicated location.) Each of

the first two instructions is followed by an instruction selected by the sequence counter; the

third instruction designates the cosequence counter as the source of the next instruction,

whether or not the comparison is satisfied. The functions of these three instructions can be

verifi~d by referring to Appendix E.

PROBLEM PROGRAMMER DATE PAGE OF

~/ A ADDRESS B ADDRESS C ADDRESS
REMARKS

I LOCATION 10 II COMMAND CODE 22 it 24 37 31 51 12 45M LINE NUMBER 7] 74_ 10

l)A /'K IC. E PK/Cc +3 AM7l>UE
_l

TN 5 I Nl>l/T 10 WOil.JC I I

I

LN 1'1 3, 7 COUNTER c,--t 14 I
J_

__ ,

......

SEQUENCE CHANGE INSTRUCTIONS: Several instructions have the ability to ~xecute a pro­

grammed change of sequence by placing the C address in the sequencing counter specified as

the source of the next instruction. An example is the instruction TS {transfer A to B and go

to C). In such instructions, the C address may take any valid address format. However, if

a special register is addressed, the value of the tabular bit is ignored and the result is always

a memory location address. Thus, a direct or indexed special register address, if used as a

change of sequence, will be interpreted respectively as an indirect or an indexed indirect

memory location address.

FIELD INSTRUCTIONS: Many of the instructions in the general class can be performed under

the control of masks, which allow them to designate partial words as operands and as results.

These instructions, which are indicated by a superscript
2

in Figure 8 and in Appendix E, are

called field instructions. When a field instruction is masked, the same mask is applied to

operands and results. Only those bit positions in the operands which correspond to binary

ones in the mask, called the masked portions, are used. Al:'l field instructions are masked

protectively; i.e., the unmasked portions of the result locations are not altered by the

operation.

The mask to be used in a field instruction may be designated by writing its symbolic tag

in the command code field, following the operation code and separated from it by a comma.

A mask whose mask indicator is F (fq,r field instructions) or B (for both field and shift in­

structions) may be designated in a field instruction. If the tag which follows the operation

38

SECTION VII. MACHINE INSTRUCTIONS

General Peripheral

DA2 Decimal Add RF Read Forward
Dsz Decimal Subtract RB Read Backward
DM Decimal Multiply WF Write Forward
BA2 Bihary Add RW Rewind
BS2 Binary Subtract
BM Binary Multiply Extended
WA2 Word Add

PRA Print Alphanumeric
wnz Word Difference
HA2 Half Add

PRD Print Hexadecimal
PRO Print Octal

BT Binary Accumulate
STOP Stop This Program

DT Decimal Accumulate
SM2 Superimpose

DOFF Stop Specified Programs
DON Start Specified Programs

SS Substitute
SCON Give Control of Specified Programs

EX Extract
TX2 Transfer A to c

to Sequence Counters

TS2 Transfer A to B and go to C
CS CON Give Control of Specified Programs

TN N-word Transfer
to Cosequence Counters

MT Multiple Transfer
SPCR Transfer (PCR) to C

IT Item Transfer
Scientific 1

RT Record Transfer
NN2 Inequality Comparison, FBA Floating Binary Add

Numeric FBS Floating Binary Subtract
NA2 Inequality Comparison, FBM Floating Binary Multiply

Alphabetic FBD Floating Binary Divide
LN2 Less Than or Equal FDA Floating Decimal Add

Comparison, Numeric FDS Floating Decimal Subtract
LA2 Less Than or Equal FDM Floating Decimal Multiply

Comparison, Alphabetic FDD Floating Decimal Divide
PR Proceed (no operation) FLN Normalized Less Than Comparison
cc Compute Orthocount FNN Normalized Inequality Comparison
cpz Check Parity FFN Fixed to Floating Normalize
MPC3 Control Program FBAU Floating Binary Add, Unnormalized

FDAU Floating Decimal Add,
Shift Unnormalized

SWE Shift Word, Extracting
FBSU Floating Binary Subtract,

Unnormalized
sws Shift Word, Substituting

FDSU Floating Decimal Subtract,
SPE Shift Preserving Sign,

Unnormalized
Extracting

FBAE Floating Binary Addition,
SPS Shift Preserving Sign,

Extended Precision
Substituting

FBSE Floating Binary Subtraction,
SSL Shift and Select

Extended Precision

Simulator
ULD Multiple Unload
BD Fixed Binary Divide

s Simulator DD Fixed Decimal Divide

1. These instructions are included in Floating-Point Option; machines not
equipped with this option may implement them as library pseudo instructions.

2. These instructions may reference type F or type B masks. or may direct
mask generation.

3. Most MPC functions represented by extended instructions STOP, DOFF,
DON, SCON, CSCON, and SPCR.

Figure 8. ARGUS Mnemonic Operation Codes for Honeywell 800 Machine Instructions

39

SECTION VII. MACHINE INSTRUCTIONS

code has both a mask assignment and a complex assignment, the mask assignment is used.

The method of assigning masks in groups of consecutive memory locations is described in

Section X.

Alternatively, the program.mer may direct ARGUS to generate the desired mask. The

following three items of information in the command code field, separated from the operation

code and from each other by commas, direct the generation of the desired mask by ARGUS:

The position of the high-order character in the masked field. This may be
a number from 1 to 8 for alphanumeric characters, from 1 to 12 for un­
signed hexadecimal digits, or from 2 to 12 for signed hexadecimal digits
(see Figure 2).

The number of characters in the masked field. This may be a number
from 1. to 8 for alphanumeric characters, from 0 to 11. for signed hexa­
decimal digits, or from 1. to 12 for unsigned hexadecimal digits.

A character to specify the bit position(s} containing the sign of the
masked field. This character may be a number from 1. to 4, corres­
ponding to the four sign bits from left to right, or it may be an "S" to
specify the use of all four as the sign of the masked field. If the masked
field is unsigned, as in alphanumeric information, this character is a
0 or is omitted.

The use of generated masks is limited to alphanumeric and hexadecimal fields o.f con­

secutive characters. Tags must be used to designate masks for binary fields or for fields of

non-consecutive characters. The type of fi~:!.1, alphanumeric or hexadecimal, is implied by

the operation code in most cases. Arithn.1.etic ope..l."ations always involve numeric words and

the comparison instruction~ specify numeric or alphabetic comparison.
1

In certain instruc­

tions, however, the type of field is ambiguous. If one of these instructions (viz., WA, WD,

HA, TS, TX, SM and CP) is to be performed with a generated mask, a three-character opera­

tion code must be formed by appending an "A" for alphanumeric or a "D" for hexadecimal to the

two-character code shown in Figure 8. Both designated and generated masks are illustrated in

the following examples.

p RO LE B M PROGRAMMER DATE PAGE OF

,.f 24 A ADDRESS 8 ADDRESS C ADDRESS
REMARKS

I LOCATION 10 II COMMAND CODE 22 37 31 II 12 65 &6 LINE NUMBER 7J 74. 80

·T I 1
-,-.

05,PllY.f?.OlL~ GK.055 PAY
I

4 Rossp11 Y - 3 NETPA'(l _l_
I
I I I

+
Tx.4 1 11 7 NAME PlflNTOUT i

T

i

I
L N 1 l 1 lJ, S

I
TOTAL PA111 I ! I l SI C.CMPUTE I

i - ~

1
In generating a mask for an alphabetic comparison, ARGUS assumes alphabetic operands.

40

If operands of such an instruction are numeric, any mask used must be designated by a
symbolic tag.

SECTION VII. MACHINE INSTRUCTIONS

The first instruction above subtracts decimally the contents of the location three before

location GROSSPAY from the contents of location GROSSPAY and stores the result in location

NETPAY. Assume that the mask designated as PAYROLL3 has the configuration

GOO 000 GGG GGG

in hexadecimal form. This mask is applied to the subtraction operation, with the result that

only the sign and the low-order six digits of each operand are considered and only those digit

positions are affected in location NETPAY.

The second instruction transfers (NAME) to location PRINTOUT. The contents of the

command code field direct ARGUS to generate an alphanumeric mask of seven characters,

starting with character one (the left-most character). Thus, only the first seven characters of

NAME are transferred and the eighth character position in location PRINTOUT is not altered.

The third instruction above compares (TOTAL) with (DATA1) numerically. ARGUS

generates a hexadecimal mask (because a numeric comparison is specified) which masks

eight digits starting with digit 2, the digit immediately following the sign. All four bits of

digit 1 are designated as sign bits. If the masked portion of TOTAL is less than or equal to

the masked portion of DATA1, the sequence counter (specified in the S/C column) is reset to

COMPUTE.

Field instructions are subject to the restriction that when they are masked, they can

neither address special registers nor use them to address main memory indirectly. Con­

sequently, they must obtain their operands and store their results by means of either direct

or indexed addressing of memory locations. This restriction does not apply to the remainder

of the general instructions or to field instructions performed without masks.

N-WORD INSTRUCTIONS: Four general instructions which use the B address field to specify

a number of words to be transferred (from 0-63) are the binary and decimal accumulate,

n-word transfer, and multiple transfer instructions. In any of these instructions, the B ad­

dress field may contain a symbolic tag (with or without address modifier) which is equated

elsewhere to a number, by means of an EQUALS instruction (see Section VIII). The value of

the tag (or the value of the modified tag) must be in the range 0 through 63. For example, if

a block of data 20 words long is to be manipulated by several different n-word instructions,

the tag BLOCK might be equated to the value 20. Then the following instruction could be used

to transfer the data from locations starting with INPUT to locations starting with OUTPUT.

41

SECTION VII. MACHINE INSTRUCTIONS

PROBLEM __________________ PROGRAMMER--------- DATE----- PAGE __ CF __

COMMAND CODE 22 ~ 24 A ADDRESS B ADDRESS C ADDRESS
REMARKS

I LOCATION 10 II J7 JI 51 52 65 116 LINE NUMBER 7JJ74 10

TN INPUT /JlOCI(OUTPUT
+ I -

It is only necessary to modify the instruction which defines the tag BLOCK, rather than

modifying all of the n-word instructions involved, if the length of the data block changes.

Peripheral Instructions

Every instruction in this class performs some operation involving a magnetic tape unit

or a terminal device. Peripheral instructions are subject to the same addressing restric­

tions as masked field instructions. They cannot specify a special register address or an in­

direct memory location address in any address field. Furthermore, instructions in this

class lack the provision for specifying the source of the following instruction. Therefore,

the S/ C subfield (column 23) is not used in a peripheral instruction, and the address of the

following instruction is always taken from the same sequencing counter that selected the

peripheral instruction.

The command code field in a peripheral instruction contains a two-character operation

code followed by a comma and an alphabetic peripheral code from AA to HH. The assignment

of peripheral codes to magnetic tape units and terminal devices is established individually at

each Honeywell 800 installation. In the case of a terminal device, the second letter of the

peripheral code designates the device type, according to the following convention:

A = card reader

B =printer

C = card punch

D = paper tape reader

E = paper tape punch

In the case of a magnetic tape unit, the second character may be any letter from A to H. The

Assembly Program uses this convention to analyze the peripheral requirements of a program

and to diagnose and report any attempt to address a peripheral device which is not capable of

performing the requested operation (e.g., a rewind addressed to a card reader). Every

Honeywell 800 installation is provided with a table of peripheral code assignments.

The A address field in a peripheral read or write instruction specifies the location into

which the first word is to be read or from which the first word is to be written. The read

address counter (RAC) or the write address counter (WAC) directs the reading of subsequent

42

SECTION VII. MACHINE INSTRUCTIONS

words into or the wridng of subsequent words from consecutive higher-numbered locations

until an end-of-record word is encountered (see Appendix E). (In a read backward instruction,

the RAC directs the reading of subsequent words into consecutive lower-numbered locations.)

If the B address field in a read or write instruction to magnetic tape is active, the

operation is a distributed read or write, and the record read or written is sensed for end-of­

item symbols (see Appendix E). In this case, the B address field specifies the starting loca­

tion of a stored table, which in turn contains the starting addresses of memory areas into

which the items of a record ·are to be distributed or from which items are to be assembled to

form a record. The first item is read or written, starting at A; subsequent items are read or

written starting at the addresses stored in the table. The distributed read address counter

(DRAG) or the distributed write address counter (DWAC) directs the selection of addresses

from the stored table to distribute or assemble the items of a record. (If a read backward

is distributed, the B address field specifies the final location of a stored table of final ad­

dresses of items.) If the B address field is inactive, the operation is a normal read or write,

end-of-item symbols are not sensed, and the DRAG and DWAC are not used.

The C address field in any read or write instruction may be used to specify a change in

the contents of the sequencing counter which selected the instruction; if the C address field is

inactive, no change of sequence takes place. If the C address is active, it is interpreted as

in any other sequence change instruction (see above).

If the A address field in a rewind instruction is active, the rewound tape is interlocked

against further peripheral operations. The B and C address fields in a rewind instruction

are not used.

PROBLEM __________________ PROGRAMMER--------- DATE----- PAGE __ CF __

COMMAND CODE 22 ~ 24 A ADDRESS 8 ADDRESS C ADDRESS
REMARKS

I LOCATION 10 II J7 JI 51 12 ()5 b6 LIN£ NUMBER 7J 74_ 10

WF 1 F8 UPPATE - /i?.EA/)tN+Z :
j_

I
r

RF I AIJ TRIMIS 11<-7 WOii!.IC 3 - I
i;: - ::r

The function of the first instruction above is to write one record or print one line on

device FB, depending upon whether this device is a magnetic tape unit or a printer. The re­

cord to be written is stored in memory starting at location UPDATE. Since the B address

field is inactive, end-of-item symbols are not sensed; i.e., the record is assumed to be

stored in consecutive memory locations. The C address field designates that the counter

which selected this instruction is to be set to address READIN +2.

43

SECTION VII. MACHINE INSTRUCTIONS

The second sample instruction reads one record from device AB. The record is to be

stored in memory, the first item starting at location TRANSACT. WORK3 is the first loca­

tion of a stored table of starting addresses of items. As the record is read, end-of-item

symbols are sensed, and the RAC and DRAC control distribution of the remaining items to

non-consecutive memory areas. As terminal devices cannot perform distributed reading,

AB must be a magnetic tape unit. Since the C address field is inactive, the sequencing coun­

ter which selected this instruction is incremented normally to form the address of the next

instruction.

Shift Instructions

Four of the five shift instructions are used to alter the positions of data fields within

words. Two of these substitute the shifted field into a word which is otherwise unaltered; the

other two extract the shifted field into a word which is otherwise cleared to all zeros. The

fifth instruction, shift and select, is used to select one of a possible 2048 locations as the

source of the following instruction, based upon the value of a data field.

Every shift instruction is performed under the control of a mask. The location of the

word to be shifted is written in the A address field. The type, extent, and direction of the

shift are specified in the B address field. All five instructions perform end-around shifting;

i.e., every character shifted out of a word at one end reappears at the opposite end. The

shifted word is masked and then delivered to the location specified by C (or used to modify

the C address in the shift and select instruction). The two shift and substitute instructions

protect the unmasked portions of the result location. The two shift and extract instructions

clear the unmasked portions of the result location to all binary zeros. As in the case of field

instructions, the desired mask may be either designated symbolically or generated by

ARGUS. The tag of a designated mask is written in the command code field of th~ shift in­

struction, following the operation code and separated from it by a comma. A mask with a

mask indicator of S (for shift instruction) or B (for both) may be designated in a shift instruc­

tion. If the tag written has both a mask assignment and a complex assignment, the mask

assignment is used. To generate a mask, ARGUS uses the same three items of information

(M
1

, M
2

, and M
3

) as outlined under field instructions. M
1

, M
2
,. and M

3
follow the operation

code and are separated by commas. Since shifting takes place before masking, M
1

must

specify the position of the high-order character in the masked field after shifting. The shift

word and the shift and select instructions do not normally include a value of M
3

.

Any valid address format, as shown in Figure 6, may be used in the A or C address

field of a shift instruction. However, the C address field of a shift and select instruction is

44

SECTION VII. MACHINE INSTRUCTIONS

interpreted· as in any other sequence change instruction (see page 38). The B address field of

a shift instruction normally contains three items of information, separated by commas, which

specify the nature and extent of the shift:

(B
1

) A character to designate the type of characters to be shifted.

A
D
B or blank

= six-bit alphanumeric
= four-bit decimal
=binary

The number of positions that the word is to be shifted, from 0 to 8 for alpha­
numeric characters, from 0 to 12 for decimal digits, or from 0 to 48 for bits.

A character to designate the direction of shift.

L = left
R or blank = right

Alternatively, the B address field may contain a symbolic tag (with or without address modi-

fier) which is equated elsewhere to a number, by means of an EQUALS instruction (see Sec­

tion VIII). The value of the tag (or of the m.odified tag) must be in the range 0 through 48.

ARGUS interprets such a tag as the number of bit positions to be shifted to the right.

As in the case of field instructions, the use of generated masks is limited to alpha­

numeric and decimal fields of consecutive characters. Masks for binary fields or for fields

of non-consecutive characters must be designated symbolically. If no mask information is

written in the command code field and the shifted field is alphanumeric or decimal (B
1

= A or

D), ARGUS generates a mask to suppress that portion of the word moved either right or left

end around during the shifting process. However, if B
1

specifies a binary shift or the B ad­

dress field is symbolic, ARGUS generates a mask of all ones in the absence of a mask tag in

the command code field. The shift and select instruction requires a mask which allows no

more than 11 low-order bits to be used in modifying the C address.

PROBLEM PROGRAMMER DATE PAGE OF

I LOCATION 10 II COMMAND CODE 22 ~ 24 A ADDRESS 37 31 B ADDRESS C ADDRESS
REMARKS

51 52 65 (16 LINE NUMBER 7J 74 10

5 P 51 1'/1£.TNUlltf/J s ..J/ 9 61 10, ..(,PH~T L /ST -1 S"
I

I

-t
SWliJ (,I ..J eM/'l.OYEE + + o, .J A/, .e 3 1 I I

I
i

S5L 1 111 2 ' ~~l.~C.TO/f:. P, 4 c, -s 1

c::::::::;\

The first sample instruction above shifts the contents of the location specified by indexed

address 3, 9 ten binary places to the right, preserving the sign, and stores the result in loca­

tion PARTLIST +5, under control of a mask tagged PARTNUMB. The unmasked portion of the

*If B
1

and B
3

are both blank, B
2

may be as large as 63.

45

SECTION VII. MACHINE INSTRUCTIONS

result location is protected. The sequence counter is consulted for the source of the next

instruction.

The second instruction shifts the contents of location EMPLOYEE +4, including the sign,

three decimal places to the right (B
3

is blank) and stores the result in the location specified

by indirect address N, R3, 1. The generated mask produces an unsigned field of three deci­

mal digits beginning with digit 6 and replaces the remainder of the result location with all

O bits. Again the sequence counter is consulted for the source of the next instruction.

The third instruction shifts the contents of location SELECTOR, including the sign, four

decimal places to the right under control of a generated mask which produces a field of two

low-order decimal digits. These eight bits are added in binary form to the address of a

memory location five before the location of this instruction {since this is not marked as an

out-of-sequence word). The modified address is then stored in the cosequence counter which

is designated as the source of the next instruction.

Scientific Instructions

This class includes the instructions which perform arithmetic operations and compari­

sons on floating-point numbers. Figure 2, page 8, shows that a Honeywell 800 floating­

point word consists of a 40-bit mantissa, a seven-bit exponent, and a sign bit. This con­

figuration may represent either a decimal number or a binary number in floating-point form.

Arithmetic instructions are provided to handle floating-point words either as decimal or as

binary numbers. Data which is to be manipulated in floating-point form is normally as­

sembled in this form, using the floating-point binary and floating-point decimal constants

described in Section IX. However, fixed-point binary and decimal constants can be converted

to floating-point form. In normalized floating-point decimal form, the exponent represents a

power of 10 from the -64th to the +63rd and the mantissa a 10-digit number from . 1000 to

. 9999----. In normalized floating-point binary form, the exponent represents a power of

16 from the -64th to the +63rd and the mantissa a 40-bit number from. 00010000---- to

.11111111----. An exception is the value O. Although any floating-point number whose

mantissa is 0 has the value of 0, a normalized floating-p<>int 0 in the Honeywell 800 is de­

fined as a number having a positive sign and all binary zeros in the exponent and the man­

tissa.

The operands used in a floating-point instruction must be in floating-point form but not

necessarily normalized (with the exception of divisors and operands for the comparison in­

structions). The results are in correct floating-point form, and are normalized except where

46

SECTION VII. MACHINE INSTRUCTIONS

otherwise specified. Exponential overflow occurs if the exponent of the result exceeds +63;

exponential underflow occurs if the result exponent is less than -64. When exponential over­

flow is sensed, an unprogrammed transfer of control to U + 14 or U + 15 is executed, where

U represents the location whose address is stored in the unprogrammed transfer register

(see Figure 5, page 19}. When exponential underflow is sensed, the unprogrammed transfer

is to U + 12 or U + 13.

A floating-point divide instruction cannot be executed if the possibility exists that the

divisor is O. A fixed-point divide instruction cannot be executed if the absolute value of

the quotient equals or exceeds unity. In either case, an unprogrammed transfer of control to

U + 10 or U + 11 is executed.

The machine logic to implement the scientific instructions is an optional feature of the

Honeywell 800. Included in this option are the two fixed-point division instructions. Though

none of these can be performed as machine instructions on systems which do not include the

floating-point option, they are all represented by library routines which can be performed by

such systems. One of the items of input required by ARGUS is an indication of whether or

not programs are to be assembled for a system which includes the floating-point option (see

Section XI}. In assembling programs for such a system, scientific instructions are assem­

bled as machine instructions; otherwise, they are handled as library routine pseudo instruc­

tions (as described in Section XIII}.

Simulator Instructions

The Honeywell 800 complement of machine instructions is designed to perform the

logical operations normally required for business data processing and scientific computation.

In addition, the provision of simulator instructions permits the programmer to represent with

a single instruction any function not bµilt into the equipment logic, such as a machine instruc­

tion for some other data processing system.

For each simulator instruction, the programmer codes a simulator routine which is

stored elsewhere in memory. The control instruction SIMULATE (see Section VIII} must

precede the simulator routine and must be tagged in its location field. The simulator instruc­

tion sets up a transfer of control to this routine as well as a means of returning control to the

main pro gram.

The command code field of a simulator instruction contains an "S" followed by a comma

and the address of the SIMULATE instruction which precedes the desired routine. The S/C

47

SECTION VII. MACHINE INSTRUCTIONS

column is not used. The address fields may contain parameters required by the routine. In

particular, the contents of the A and C address fields are stored as complete addresses in

special registers AU1 and AU2. If either or both of these parameters is to be indirectly ad­

dressed via the appropriate special register, it must be either a direct or an indexed memory

location address. Otherwise, each address field may contain any parameter which can be

expressed as a decimal number less than 2048. Decimal parameters are converted to binary

by ARGUS.

The desired routine may be specified by either direct or indexed addressing. Direct

addressing can only be used to execute a routine stored in the same memory bank as the

simulator instruction. In this case, the programmer writes the tag of the SIMULATE instruc­

tion in the command code field of the simulator instruction. Indexed addressing must be used

in the more general case to execute a simulator routine from any bank of memory. The index

register to be used is loaded with the tag of the SIMULATE instruction and an address modi­

fier of -7, using the special address constant (SPEC) described in Section IX. The same

index register is then referenced with an augmenter of 7 in the command code field of the

simulator instruction. (The Honeywell 800 recognizes a simulator instruction by the presence

of three low-order binary ones in the command code; hence the necessity of modifying the tag

of the SIMULATE instruction by -7 and then augmenting the result by +7 in the simulator in­

struction command code.)

When a simulator instruction is executed, the instruction itself is transferred to the

location specified in its own command code field. This is the location which immediately

precedes the desired routine. ARGUS assures that it is a location whose subaddress contains

three low-order binary ones, as required by the above definition of a simulator instruction.

The cosequence counter is loaded with the starting address of the routine, and the contents of

the source counter, after normal incrementing, are stored in the cosequence history register

to provide a return to the main program.

For example, the control instruction

PROBLEM __________________ PROGRAMMER--------- DATE----- PAGE __ OF __

I LOCATION 10 II COMMAND CODE 22 ~ 24 A ADDRESS J7 31 8 ADDRESS C ADDRESS
L REMARKS

51 112 65JC16 LINE NUMBER 7lj_74 10

Cl/8£~00T s1MUl.ATE I _L l _ _ - ..1

is followed by a simulator routine which performs a cube root computation. The tag

CUBEROOT is assigned to the location immediately preceding the start of the routine. The

48

SECTION VII. MACHINE INSTRUCTIONS

operand lo·cation and the result location of the cube root computation, which are written in the

A and C address fields of the simulator instrudion, may be indirectly addressed by referenc­

ing AU1 and AU2, respectively. The cube root routine may be executed from the memory

bank in which it is stored by writing an instruction in the program of the first sample form

shown below. To execute this routine from any memory bank, the programmer must load a

special address constant of CUBEROOT -7 into an index register and write an instruction of

the second sample form shown below.

PROBLEM PROGRAMMER DATE PAGE OF

IS/
I LOCATION 10 II COMMAND CODE 22 J 24 A ADDRESS 37 38 8 ADDRESS c ADDRESS

REMARKS
51 52 65" LINE NUMBER 7] 74.. 80

5 C..U!JE/WOT 71 IS" c..oMPlJTE +II
.i -,-
I

-t
'5, 3, 7 7 / 15 CoMPUT£.-r II i

- I - -

When either of these instructions is executed, it is transferred to location CUBEROOT,

the cosequence counter is set to CUBEROOT +f, and the contents of the source counter are

stored in the cosequence history register for use as an exit to the main program. The indexed

address of the operand is 7, 15 and the cube root is stored in location COMPUTE +11.

Multiprogram Control

The automatic parallel processing of up to eight programs is directed by a centrai pro­

cessor element called multiprogram control which examines the group of eight program de­

mand bits in a non-addressable register called the program control register. These bits

represent the eight special register groups and specify the active or inactive status of each

group. Normally, when a machine instruction is completed, these bits are examined and an

instruction is initiated under control of the next active special register group in sequence. In

the following discussion, this process is called hunting for another program demand.

All machine instructions cause multiprogram control to hunt for another demand with

the following exceptions:

1. Any instruction, including a simulator instruction, which results in a pro­
grammed change of sequence;

2. Any instruction, such as multiply, which generates a two-word result;

3. An instruction which contains an inactive C address or an inactive result
address, except rewind, which always causes multiprogram control to
hunt for another demand;

4~ An instruction which results in an unprogrammed transfer;

5. All program control instructions (see below) direct multiprogram control
whether or not to hunt for another demand, except STOP which always
causes hunting.

49

SECTION VII. MACHINE INSTRUCTIONS

An instruction which inhibits hunting for another demand is always followed by another

instruction from the same program. This feature is normally used to store the contents of a

non-addressable register which might be destroyed by another program.

Extended Instructions

There are two cases in which a group of ARGUS machine instructions is represented by

a single machine language operation code. These so-called extended instructions are the print

and the program control instructions. Each ARGUS extended instruction has its own mnemonic

operation code. The corresponding function is uniquely designated in machine language by an

operation code plus a specified portion of an address field. Thus, an ARGUS extended in­

struction represents the corresponding machine operation code plus the additional information

required to designate the desired operation.

PROGRAM CONTROL INSTRUCTIONS: One of the non-addressable registers in the Honeywell

800 is called the program control register. Its contents represent the status of input and out­

put buffer interlocks, the demand conditions of the various special register groups, and the

sequencing counter designated to select the next instruction in each special register group.

Access to the program control register is normally limited to the Executive System, in order

to insure fully automatic parallel processing. However, the programmer can gain access to

it by means of a machine instruction called control program. The B address of this instruc­

tion specifies one of eight different operations to be performed on the contents of the program

control register, as well as the portion of these contents to be altered. The machine format

of the control program instruction is described in the Honeywell 800 Programmers 1 Reference

Manual.

Six of the eight operations which can be performed by the control program instruction

are represented in ARGUS notation by a group of extended instructions called program control

instructions. These six instructions perform all program control operations normally re­

quired by the programmer. In addition, in order to make all eight control functions available,

ARGUS can accept the machine instruction MPC. The B. address field of this instruction con­

tains three hexadecimal digits which specify the desired control operation and the programs

to be affected, as described in the Reference Manual.

The present discussion deals with the ARGUS extended instructions. Any of these ex­

tended operation codes may be followed by a comma and an "H" in the command code field if

the system is to hunt for a demand from another program. Otherwise, with the exception of

STOP, the current instruction is followed by another instruction from the same program.

50

SECTION VII. MACHINE INSTRUCTIONS

After a STOP instruction, the system. always hunts for another demand. The S/ C subfield is

used in the norm.al manner. The contents of the A address field, which may be any valid ad­

dress form.at, are not used in executing a program. control instruction. The B address field

contains the numbers of up to seven programs, separated by commas, to be controlled by the

instruction. An exception is the SPCR instruction which performs no control function and in

which the B address field is left blank. The number of a program is the group indicator of

the special register group controlling that program. Before a program control instruction is

executed, the contents of the program control register are transferred to the location speci­

fied in the C address field. This field may contain any valid memory location address form,

but it is interpreted as in a sequence change instruction {see page 38). If it is inactive, the

contents of the program cohtrol register are not retained.

PROBLEM PROGRAMMER DATE PAGE OF

I LOCATION 10 II COMMAND CODE 22 ~ 24 A ADDRESS 37 31 B ADDRESS C ADDRESS
REMARKS

51 52 65" LINE NUMBER l'_l_ R _Ill_

POFF s 2,J,'1,6 t;-f 3 1 ·

+
I

+
s co1111 II 1, .,. N, K.3,3 I

T

I

sPc~,N c CONTR~L
T
I

-
The first of these sample instructions transfers the contents of the program control reg­

ister to the memory location three after the location of the instruction. Then the programs

using special register groups 2, 3, 4, and 6 are turned off. The system is not directed to

hunt for another demand but to execute another instruction in the same program, under con­

trol of the sequence counter. The second instruction stores (PCR) in an indirectly addressed

location and turns over control of programs 1 and 4 to their respective sequence counters.

The sequence counter is specified as the source of the next instruction in the same program

and the system is directed to hunt for another program demand. The third instruction stores

(PCR) in location CONTROL, transfers control of its own program to the cosequence counter,

and directs the sys tern to hunt for another program demand.

PRINT INSTRUCTIONS: From 1 to 47 automatic typewriters can be included in a Honeywell

800 system. The standard unit is located at the console and is referred to as the console

typewriter. A second optional unit, known as the slave, is normally located somewhere near

the control area. The provision of a slave typewriter allows program printouts to be physically

separated from console input information. In addition, two programs operating in parallel

can produce printout information on separate typewriters. Up to 45 optional remote type­

writers can also be included in the system.

51

SECTION VII. MACHINE INSTRUCTIONS

The machine instruction print is represented in ARGUS notation by three extended in­

structions:- print alphanumeric, print hexadecimal, and print octal. Any of these operation

codes may ~e followed in the command code field by a comma and an "M11 (denoting more in­

formation to follow before carriage return) or an "MR" (denoting more information to follow

after carriage return). If either of these carriage controls appears, the typewriter is inter­

locked against all other programs until another word is printed from the same program. If

neither appears, the carriage is returned after printing and the typewriter is released to

print from any program.

The A address field specifies the location of the word to be printed and may contain any

valid address format. The B address field contains a 11 C 11 , an "S", or a two-digit number

specifying the typewriter which is to print. Either "C" or 00 indicates the console typewriter;

11S 11 or 01 indicates the slave. A remote station may be specified by a number from 02 to 46,

depending upon the number of such stations in the system. If the B address field is left blank,

the console typewriter will print. The C address field may contain a programmed sequence

change or it may be inactive. The contents of this field (if active) are interpreted as in any

sequence change instruction (see page 38) and stored in the counter specified by the S/ C sub­

field.

PROBLEM ----------------- PROGRAMMER--------- DATE _____ PAGE __ Of __

22 ~ 24 A ADDRESS B ADDRESS C ADDRESS
REMARKS

I LOCATION 10 II COMMAND CODE 37 31 51 52 65 66 LINE NU•BER 7J 74 10
rn

?RA IM~ s CI -f 5 c - I

I

+
!'~ /) c RESULT 05' ~14 I

I

The first sample instruction causes the console typewriter to print in alphanumeric

form the contents of the location five after that of the instruction itself. The typewriter is

interlocked to receive another print instruction from this program (after carriage return) and

the next instruction is selected by the sequence counter. Since the C address is inactive,

there is no programmed sequence change. The second instruction causes remote typewriter

05 to print in hexadecimal form the contents of location RESULT. The carriage is returned

and the interlock released. The cosequence counter is changed to the contents of Xi aug­

mented by 14, and control is transferred to this location.

52

SECTION VIII

ASSEMBLY CONTROL INSTRUCTIONS

The ARGUS assem.bly language includes a group of instructions which the programm.er

uses to control the asse~ly of his program. These are punched one per card like machine

instruction•, although they are not assembled and do not result in the inclusion of any m.achine

words in the program.. Each of these instructions may be used as many times as required

within a pro gram..

SETLOC

The primary function of the SETLOC instruction is to direct the subsegmentation of a

program segment. This function can only be accomplished by the use of SETLOC. The pro­

gramm.er m.ay also use the SETLOC instruction to direct the allocation process by specifying

.a m.emory location address, a bank indicator, a group indicator, or any co.mbination of these

elements. To the extent that the programmer does not control allocation, this process is

automatically handled by the assembly program.

The first SETLOC in.truction which specifies a given subsegment number is called the

defining SETLOC for that subsegm.ent. ARGUS .assigns the following coding to the subsegment

indicated until a. SETLOC is processed which specifies .a different subsegment. A segment in

which no subsegments are specified is assumed to consist of a single subsegment. In the case

of a comm.on subsegment, the subsegment number must be followed by the letter "C" on the

defining SETLOC (the first SETLOC in any segment of the program which specifies that sub­

segment number). In every segment in which the comm.on subsegment appears, it must be

represented by a SETLOC which •pecifies the same subsegment number. (The "C" following

this number is optional on all but the defining SETLOC; however, if the subsegment is not

specified as comm.on on the defining SETLOC, it must not be so specified on any SETLOC.)

The program.mer may either tag a SETLOC instruction or leave the location field blank.

If the instruction is tagged, the tag m.ay be preceded by an ''L" (link tag}; but it may not be

preceded by "F", "S", "B" (mask tag), "Z" (special register tag), or "X" (out-of-sequence

tag). If the SETLOC specifies a subsegment, the command code is followed by a comm.a and

a subsegment number from 1 to 7 (and a "C" if this is the defining SETLOC for a common

subsegment).

53

SECTION VIII. ASSEMBLY CONTROL INSTRUCTIONS

The programmer may designate a main memory address in the A address field of a

SETLOC instruction, a bank indicator in the B address field, a group indicator in the C ad­

dress field, or any combination of these elements, subject to the rules stated below. If

these options are not exercised, the Assembly Program assumes complete responsibility for

the allocation of subsegments, guarding against overlap among subsegments and, wherever

possible, against crossing a bank boundary within a subsegment. If the programmer uses the

SETLOC instruction to control allocation, he must assume these responsibilities. For ex­

ample, if the defining SETLOC is used to specify the initial location of a subsegment, enough

room must be allowed for any mask groups, subroutines, and/or out-of-sequence words to be

placed in the previous subsegment. If the programmer assumes control of allocation, he

should assign an initial location which is divisible by 64 to the first subsegment in each mem-
1

ory bank.

In a defining SETLOC, the A address field may be blank or it may contain a number up

to 2047 or a symbolic tag which is equated to a number. The tag may be followed by an ad­

dress modifier in the range ±16, 383, provided that the resulting subaddress is not greater

than 2047. Unless the A address field is blank, ARGUS converts its contents into an 11-bit

subaddress which is placed in the subaddress bit positions of the current location counter

(CLC}. The B address field of a defining SETLOC may be blank or it may contain a "B"

followed by a number from 0 to 7 to be placed in the bank indicator bit positions of the

CLC. The contents of the CLC, either modified or unmodified, specify the location of the

first in-line coding word following the SETLOC.

If the defining SETLOC for a subsegment does not alter the contents of the CLC in any

way (i.e., the A and B address fields are both blank}, no SETLOC in that subsegment may

specify a bank indicator. However, any other (non-defining) SETLOC in that subsegment

may specify a main memory address in that subsegment, using a tag which is assigned to

such an address or using C, ± a number. The tag may be followed by an address modifier in

the range ±16, 383. If the tag has both a memory assignment and a complex assignment, the

memory assignment is used. C, ±0 is equivalent to a blank or inactive A address and refers

to the next available location in the subsegment. If the defining SETLOC for a subsegment

does alter the contents of the CLC in any way, any other SE1TLOC in that subsegment may

specify a main memory subaddress, a bank indicator, or both, or it may specify a tag which

is as signed to a main memory address, using any of the above formats.

1
See the Executive System Manual, Section II.

54

SECTION VIII. ASSEMBLY CONTROL INSTRUCTIONS

The C address field in any SETLOC may be blank or it may contain a "G" followed by a
1

number from 0 to 7 which designates the special register group to be used. If a group

indicator is specified, the program is assembled to use the specified group and all fol­

lowing coding words which are marked by special register tags are loaded into that group. If

the C address field is blank, the previous group specification remains in effect. If no group

has been previously specified within the same segment, the Assembly Program uses group 1.

As noted in Section VI, it is the programmer's responsibility to specify a group in which reg­

isters S4 through S7 are available if his program uses those registers. {Note that these reg­

isters are normally unavailable in group 1. l The programmer may use as many special reg­

ister groups as he requires and may change groups as often 'as necessary.

EVEN

Each special register group includes an unprogrammed transfer register (UTR), which

should be set up with the initial address of a group of instructions to handle the various un­

programmed transfer conditions described in Appendix E. This initial address must be an

even number for proper execution of the unprogrammed transfers. The Assembly Program

assigns the next even-numbered address in sequence to the word following the EVEN instruc­

tion. The programmer should write a symbolic tag in the location field of either the EVEN

instruction or the following word. This tag may be a link tag, but it may not be a mask tag,

a special register tag, or an out-of-sequence tag. The special address constant (see Section

IX) may be used to load the address assigned to this tag into the UTR. The three address

fields are not used in the EVEN instruction.

It is the programmer's responsibility to set up the UTR and to provide enough instruc­

tions following EVEN to provide for any unprogrammed transfer situations which may arise

in his program. He may use SETLOC, MODLOC (below), or any other valid method in place

of EVEN to assure the assigrunent of an even address for loading the UTR.

SIMULATE

Every simulator routine is preceded by the instruction SIMULATE, which is punched

with a symbolic tag in the location field to identify the routine. The three address fields are

not used in the SIMULATE instruction. The tag of a SIMULATE instruction may be a link

tag, but not a mask tag, special register tag, or out-of-sequence tag. The Assembly Pro­

gram assigns this tag to the next location in sequence which has three binary ones {octal 7)

in its low-order subaddress bits. The first word of the simulator routine is then assigned to

1
Note that a program assembled to use group 0 may not run properly under control of the
Program Test System.

55

SECTION VIII. ASSEMBLY CONTROL INSTRUCTIONS

the following location. To set up and perform the routine, the tag of the SIMULATE instruc­

tion is referenced in the command code field of a simulator instruction, as described in

Section VII.

MODLOC

This instruction directs the Assembly Program to allocate the following word to the

next location whose address is a multiple of 2, 4, 8, 16, 32, or 64, as specified by the num­

ber punched in the A address field. The B and C address fields are not used. Any tag written

in the location field of the MODLOC instruction, or of the following word, is assigned to the

address of the location to which the following word is allocated. This tag may be a link, tag,

but not a mask tag, special register tag, or out-of-sequence tag. Note that the address to

which the following word is assigned always ends in from one to six binary zeros, depending

upon the number specified in the A address field.

PROBLEM __________________ PROGRAMMER--------- DATE----- PAGE __ OF __

COMMAND CODE 22~ 24 A ADDRESS B ADDRESS c ADDRESS
REMARKS

1 LOCATION 10 11 37 31 51 52 65" LINE NUMBER 7ij)4 10
--,---,-----,-

I 'l
5/;L TYPE Mornoc. 8

..L
i.....---

This instruction causes the Assembly Program to allocate the following word to the next loca- ~

tion in sequence whose address is a multiple of 8 and to assign the tag SELTYPE to the ad­

dress of this location.

ASSIGN

This instruction assigns a tag to a complex address, such as an indexed or an indirect,.

address. The program.mer writes the tag to be assigned in the location field and the complex

address in the A address field. The B and C address fields are not used. The tag in the loca­

tion field may not be a link tag, a special register tag, a mask tag, or an out-of-sequence tag;

however, it may be assigned elsewhere in the program to a memory location address (as de­

scribed on page 20). The use of the ASSIGN instruction allows the programmer to change

item formats and to reassign special registers during reassembly, changing only the ASSIGN

instructions rather than changing every reference to the corresponding addresses. For ex­

ample, to assign the tag GROSSPAY to indexed address 3, 5, and the tag PRODUCT to indirect

address N, R3, 12, the programmer writes the following two instructions.

PROBLEM __________________ PROGRAMMER---------- DATE----- PAGE __ CF __

LOCATION COMMAND CODE 22 Yc 24 A ADDRESS B ADDRESS C ADDRESS
REMARKS

1 10 11 37 31 51 52 65" LINE NUMBER 7J 74_ 80

4.eossr-AY /IS.Sl~N :JI 5 +
I

+
;:'.(OIJUCT ASSl<;/I/ N, ,f?.3, 12. i

:I

56

\

SECTION VIII. ASSEMBLY CONTROL INSTRUCTIONS

TAS (Temporary Assignment)

This instruction also assigns a tag to a complex address. However, a tag which has

' been assigned by means of a TAS instruction may be freely reassigned to another complex

address by means of another TAS. The instruction is written in the same format as ASSIGN

and the same rules apply to the types of tags that may be assigned. The programmer may

use the TAS instruction to reference the same set of data by several different complex ad­

dresses, using only a single tag. In the following example, the tag DATA is first assigned to

the indexed address 3, 0, then later reassigned to the indirect address N, Rf, 1.

PROBLEM __________________ 'ROGRAMMER --------- DATE----- PAGE __ OF __

I LOCATION 10 II COMMAND CODE 22 c 24 A ADDRESS l7 ll 8 ADDRESS 51 52 c ADDRESS
REMARKS

65 66 LINE NUMBER JJ 74_ 10
-,--,--,

PA-7A TAS 3,0 +
I

I

PAM 7115 N, IV, I I --

EQUALS

The EQUALS instruction assigns a value to a symbolic tag. The assigned value may be

an integer, another symbolic tag, or an expression which is an algebraic combination of up to

six integers and tags. Addition(+), subtraction(-), multiplication(~<), and division(/) may

be used to combine integers and symbols. These operations are performed in the following

order:

1. Multiplication and division;

2. Addition and subtraction.

Parentheses are not permitted in the combihation of integers and symbols. This instruction

is useful in combining programs which use different symbols and in altering such parameters

as data block lengths.

The tag to be equated is written in the location field and must not be a link tag, mask

tag, special register tag, or out-of-sequence tag. The equated value is written starting in

the A address field and continuing through as many consecutive columns as necessary. Any

symbol used in an equated expression must have been previously assigned either to a memory

location address or to a.1'1 integer. The computed value of the expression must be either a

valid memory address or an integer. If the only term in the equated expression is a tag which

has both an absolute and a complex assignment, then the same two values are assigned to the

tag in the location field. However, if such a tag is used in an algebraic combination of terms,

its absolute value is used to compute the expression and its complex value is ignored.

57

SECTION VIII. ASSEMBLY CONTROL INSTRUCTIONS

Care must be taken in combining symbols which are assigned to memory addresses,

since some combinations are meaningless (e.g., the product of two memory addresses). The

programmer may determine whether or not a given combination of symbols is meaningful by

examining it in terms of "dimension", which is defined as follows: the dimension of an integer

or of a symbol assigned to an integer is defined to be 0, while the dimension of a symbol as­

signed to a memory location is defined to be 1. The dimension of an equated expression must

be 0 or 1, where:

1. The dimension of the sum (difference) of two terms equals the sum
(difference) of their dimensions; and

2. The dimensions of the two factors in a product or quotient must both
be 0.

In addition to these dimensional requirements, symbols which are combined must have been

assigned in the same subsegment and by the same location counter (CLC or XLC). A mask

tag is not permitted in an equated expression unless it is the only term in the expression.

PROBLEM DATE PAGE -- OF --
COMMAND CODE 22 M 2• A ADDRESS B ADDRESS C ADDRESS

REMARKS
I LOCATION 10 II l7 JI 51 52 65" LINE NUMIER 73 74 10

m ! eNPM/ITl!'JC /EQUALS MATRllt'-fM * N-1 +
I
f

I'll y/l()L L e~UALS Pll..OLL I

T
Al£Na TH E~UAL.S Af'~OOUC.T- 8F'£0PU lcT l - -

The first instruction above assigns the tag ENDMATRX to the final location of an M by

N matrix whose initial location is tagged MATRIX. Since M and N are integers, the dimen­

sion of the entire expression is 1. The second instruction equates the tag PAYROLL to the

tag PROLL, which might be used to represent the same quantity in another program. The

third instruction equates the tag ALENGTH to the difference of two memory locations, which

is the length of a table and has a dimension of 0. As stated above, the tags APRODUCT

and BPRODUCT must have been assigned in the same subsegment and by the same location

counter.

RESERVE

This instruction is used to reserve a block of memory locations for data or working

storage. The number of locations to be reserved is specified by means of an integer, a tag,

or a combination of integers and tags which starts in the A address field and continues

through as many consecutive columns as necessary. The same rules apply for combining

integers and tags as in the EQUALS instruction (above), except that the dimension of the

combination must be O. Any tag which appears in the combination must have been

58

SECTION VIII. ASSEMBLY CONTROL INSTRUCTIONS

previously assigned to an absolute value (memory location address or integer). If such a tag

has an add~tional complex assignment, this assignment is ignored and the absolute assignment

is used in computing the value of the combination. If the programmer writes a tag in the

location field, it is assigned to the first reserved location. This may be a link tag or an out­

of-sequence tag, but not a mask tag or a special register tag. For example, the first instruc­

tion below reserves 100 locations starting at the location tagged INPUT. The second instruc­

tion reserves M times N locations starting at the location tagged MATRIX (where M and N

have been previously assigned integer values).

PROBLEM

I LOCATION 10 11 COMMAND CODE

INPUT RE.SE1'?VE

MATR.I~ ~ESE~VE-

-
MASKGRP

22~ 24

ARGUS CODING
FORM

PROGRAMMER

A ADDRESS 17 JI 8 ADDRESS

/t>t>

M *-N

DATE PAGE.._ CF -

c ADDRESS
REMARKS

51 12 65 bb LINE NUMBER 73 74 10
I r--"T

J_

!

I

i

Before any masks can be designated, generated, or referenced in a segment, the con­

trol instruction MASKGRP must be written to assign a shift group number, a field group num

ber, or both. The only exception is at the beginning of a segment, where any designated or

generated masks are automatically assigned to field and shift groups 0 if they are not pre­

ceded by a MASKGRP instruction.

The location field is not used in a MASKGRP instruction. The A address field of this

instruction may specify the group number of a shift mask group (an "S" followed by a comma

and a number from 0 to 15), and the B address field may designate the group number of a

field mask group (an "F" followed by a comma and a number from 0 to 15). The operation

code may be followed by a comma and the identification number of the subsegment in which

the specified mask groups are to be stored. If the subsegment number is omitted, the speci­

fied mask groups are stored in the suhsegment which is in control at the end of the segment.

Up to 16 field mask groups and 16 shift mask groups may be set up within any segment. How­

ever, any groups which are stored in a common subsegment are included in the total number

of groups for every segment of the program. A shift group and a field group having the same

group number (e.g., S, 2 and F, 2) must be stored in the same subsegment.

A MASKGRP instruction directs that all of the following designated or generated 'masks

belong to the groups specified until another MASKGRP specifies different groups. The

Assembly Program assigns a mask base address to each specified group. The base of a

group of field masks must be a multiple of 32; that of a group of shift masks must be a

59

SECTION VIII. ASSEMBLY CONTROL INSTRUCTIONS

multiple of 64. Each designated or generated field or shift mask is assigned the next sequen­

tial location within the proper group until either the group is full or a new group of the same

type is specified. Any mask assigned with a mask indicator of "B" (for use with both shift

and field instructions) must be preceded by a MASKGRP instruction in which the group num­

bers are equal. When a ''B" mask is assembled, an overlapping pair of mask groups is set

up which can include up to 32 field, shift; or "B" mask and up to 32 additional shift masks.

The MASKGRP instruction also directs that all following mask references are to masks

in the specified groups until different groups are specified. Proper execution of a shift

instruction or a masked field instruction requires that _the mask index register be set up with

the base address of the desired mask group. This is done by loading or transferring a

MASKBASE constant (see Section IX) into the mask index register. Since machine instructions

can only reference masks in the current groups, any 'reference to a mask in another group

must be preceded by both a new MASKGRP instruction and the necessary coding to change the

mask index register setting.

PROBLEM PROGRAMMER DATE PAGE OF

I LOCATION 10 II COMMAND CODE 22 ~ 24 A ADDRESS 37 38 B ADDRESS c ADDRESS
REMARKS

51 12 65 (>6 LINE NUMBER 7J J4 80

MAS~~tz.P1 l S/ I F/ I J_

I
.I
T

MASKqRP,z F1 2- · I
T

I

M.As~ti~P s, 4- F,3
T

L-----..

The first MASKGRP instruction above designates that all following shift masks are in
/

shift group 1 and all field masks in field group i until the next MASKGRP is processed.

Furthermore, these mask groups are to be stored in-subsegment 2. If any "B" masks appear

in these groups, the groups will be overlapping; otherwise, storage' will be provided ·for_ the

full 96 masks if required. Should the entire field mask group be assigned while space re­

mains for additional shift masks, for example, the second. MASKGRP instruction ·can be

written to set up field mask group 2 in subse,gment 2. Any reference to a field mask in group

1 after this second group is designated must be preceded by a MASKGRP instruction re-

de signating field group 1. The third instruction above may be written at a later point in the

program to designate shift group 4 and field group 3. Since nC' .Jubsegment number is written,

these groups will be stored in the subsegment which is in control at the end of the segment.

The latter groups may not include any "B" masks as their group numbers are not identical.

60

SECTION VIII. ASSEMBLY CONTROL INSTRUCTIONS

END

Every program being assembled should include an END card, though the _posi~ie>,.n of.this.

card in the program deck is irrelevant. The information punched on the END card is pro­

~&<l ... £~;-~~·eLby the E;·;~~ti~;'"·s;;t~·m. The command code is followed by a comma and the

1
number of the special register group to be given control at the start of the program. If no

group is specified, control is given to group 1. The program name is punched in the A ad­

dress field and the name of the first segment to be loaded is punched in the B address field.

The location and C address fields are not used. An existing program does not require a new

END card for reassembly unless any of the information on the original END card is to be

changed. When a program is loaded by Executive, the segment named is loaded first. This

segment must contain coding to load the sequence counter of the group specified as first in

control.

1
Note that a program which gives initial control to group 0 may not operate properly under
control of the Program Test System.

61

SECTION IX

CONSTANTS

Data constants in a number of different formats can be assembled. In addition,

Assembly recognizes several control constants which are used for special functions.

Each type of constant is identified by a constant code punched in the command code field.

Data Constants

The seven types of data constants recognized by Assembly are:

ALF alphanumeric FXBIN fixed-point binary

OCT octal FLBIN floating-point binary

DEC fixed-point decimal FLDEC floating-point decimal

EBC extended binary

Several constants of the same type may be combined on a single card, the maximum num­

ber depending on the type of constant. Alphanumeric, octal, and fixed decimal constants

are specified in the desired notation. All of the other constants are specified in fixed

decimal notation and translated by Assembly. The constants are punched starting in the

A address field and continuing through as many consecutive columns as necessary (up to

column 65). All data constants except alphanumeric are separated by commas and may

include spaces to aid in visual checking; these spaces are ignored by Assembly.

The location field of a card which contains a single data constant may be blank or

it may contain any standard tag configuration (see Section IV). The location field of a

card which contains more than one constant may be blank or it may contain X, or a sym­

bolic tag, or X, followed by a symbolic tag. Any tag written in this field references the

first constant on the card. All constants punched on the same card are allocated to con­

secutive memory locations, under control of the designated location counter, so that

they may be referenced by address arithmetic.

ALF (Alphanumeric Constant)

If the constant code (ALF) is followed by a com.ma and a number from I through 5,

ARGUS assembles the indicated number of eight-character constants from the contents of

columns 24 through 31, 32 through 39, 40 through 47, etc. Spaces are valid characters

and are assembled by ARGUS. Sentences or related words may be punched consecutively

across a card through column 63. If no information follows ALF in the command code

63

SECTION IX. CONSTANTS

field, n is assumed to be 1 and a single constant is assembled from the contents of columns

24 through 31.

Alternatively, ALF may be followed by a comma and any character other than 0

through $, which is then interpr~ted as a terminating character but is not ass em.bled.

This character is repeated following the last word punched and should not appear in any

of the punched constants (see second example below}.

ARGUS ~g:~NG
PROBLEM PROGRAMMER DATE PAGE OF

I LOCATION 10 II COMMAND CODE 221% 24 A ADDRESS 8 ADDRESS C ADDRESS
REMARKS

37 31 II 12 65 66 LINE NUMIER 7J 74

ALfHA I AL F1 f IV~VE/l. 8~FO/l.E /N HIS To£Y HiAVE so
+
I

ALF 1 °/o MANY OWE/) .s c:I> MUC.11 T" 30 FEW "/o
+
I

T
I

ALPHA 2. AlFJ S A B c D E. : - - - -·- - - -
OCT (Octal Constant)

10

Up to 16 unsigned or 15 signed octal digits per word may be punched starting in

column 24 and continuing through column 65. If 15 signed digits are specified, the most

significant digit must be less than 4 (as shown in Figure 2, page 8). Words .are separated

by com.mas and stored in consecutive memory locations. Signed words are justified to the

right, i.e., the least significant digit is placed in digit position 16, ·the sign is placed in

position 1 (0000 if negative, 1111 if positive), and positions between the sign and the most

significant ·digit are filled with zeros. Unsigned words are justified to the left; i.e., the

most significant digit is placed in digit position 1 and positions following the least sig­

nificant digit are filled with zeros.

ARGUS ;g:~NG
PROBLEM PROGRAMMER DATE PAGE OF

LOCATION COMMAND CODE 22 ~ 24 A ADDRESS B ADDRESS C ADDRESS
REMARKS

I 10 II J7 31 51 52 65 66 LINE NUMBER 7J 74 10

OC.TC.ONI OCT O IZ~4 5" 7 7 6 54-J.zj I 0 J 7 (, S 'l:J Z 1 o O I Z. 3+5'· 1
_l

I

I

OC.TCON 2.. OCT 1" /15
1

- 2 1 3 l 'f It J 2'1150'1-li:.12. 3'1sj 9 I

--
DEC (Fixed Decimal Constant}

Decimal constants are punched from column 24 up to column 65 and are separated by

comm.as. Each word may contain up to 11 signed or 12 unsigned decimal digits. Any

hexadecimal digit (0-9 and B-G) may be specified. Unsigned decimal constants are

justified left and signed decimal constants are justified right. If the programmer wishes

to position a constant other than by the above rules, he may follow the constant with "P"

64

SECTION IX. CONSTANTS

and a number from 1 to 12 specifying the storage position of the units digit. A decimal point

may be written to indicate the units digit; otherwise, the low-order digit is assumed to be

the units digit. If a decimal point is written, the programmer must specify the position of the

units digit.

~ROBLEM PROGRAMMER DATE PAGE OF
. -

COMMAND CODE 22 ,~ 24 ADDRESS B ADDRESS c ADDRESS
REMARKS

I LOCATION 10 II A 37 JI 51 52 65 116 LINE NUMBER 7J 74

{)ECCON I PEC. I 231/5'1789 J +/.ti -3 f / I Z.3. S 11. P 7 J l896e/JE 1 4'<i4
+
I

J
I

/)£C.. L I
....__

FXBIN (Decimal to Fixed Binary Translation)

Fixed-point binary constants to be converted by Assembly are specified by their

decimal equivalent. The constants, separated by com.mas, are punched starting in

column 24 and are stored in consecutive locations in memory. Each constant may con­

tain up to 14 decimal digits, a decimal point, and a sign. If no sign is specified, a plus

sign is assumed. If a decimal point is specified, the bit position of the units bit must

be designated by a 11B 11 and a number from 4 to 48 immediately following the constant.

If there is no decimal point, the constant may have any absolute value up to 2
44

- 1 (or

17, 592, 186, 044, 415). If the decimal point is at the far left, the constant is accurate

up to ±2-
44

; i.e., it may contain up to 14 significant digits. If the decimal point is

anywhere else, its position determines the maximum value of the constant.

PROBLEM PROGRAMMER DATE ----- PAGE OF

10

LOCATION
JS:;

IO 11 COMMAND CODE 22 /c 74 A ADDRESS 37 31 8 ADDRESS 51 52 C ADDRESS
REMARKS j

65 116

F X8~ cJN I FX61N t-J,+-24-, ZS'-1. / Z~JJl.3 1 -32.l'-32832818
-1] J

FLDEC (Floating-Point Decimal Constant)

Floating-point decimal constants are punched starting in column 24 and separated by

commas. They may be specified with a decimal point, an explicit exponent, or both. An

explicit exponent consists of an 11E 11 and a signed or unsigned exponent immediately following

the constant. However such constants are specified, they are converted to floating-point

form and normalized by Assembly. Each constant may contain up to 10 signed decimal

d . . d in 1 f lo- 65 . 11 . 063 u . d d 1g1ts an may range va ue rom virtua y to 1 • ns1gne constants an ex-

ponents are considered positive. The structure of a floating-point constant is shown in

Figure 2, page 8.

65

SECTION IX. CONSTANTS

PROBLEM ___________________ PROGRAMMER--------- DATE----- PAGE __ OF __

I LOCATION 10 II COMMAND CODE 22~ 24 A ADDRESS 37 11 8 ADDRESS C ADDRESS
REMARKS

II 12 65 66 LINE NUMBER 7J}74 10

fLOCON I F L/JtC t/2J./f5i.Efl51- 1Zlf89E-Zo, lf8j h·IZ389
J_ I .___, l --

When the three sample constants above are converted and normalized, they will assume the

following forms:

+123. 456E+15 becomes

-12489E-20 becomes

14856.12389 becomes

+. 123456 times 10
18

-15
- • 12489 times 10

+. 1485612389 times 10
5

FLBIN (Floating-Point Binary Constant)

These constants are punched in the same manner as floating-point decimal constants.

They are converted to floating-point binary form and normalized by Assembly. Each con­

stant may contain up to 13 signed decimal digits and may range in value approximately from
-78 76 -65 63 -260 252

10 to 10 (16 to 16). This is equivalent to the range of 2 to 2 . In floating-

point binary form, the exponent represents a power of 16. Unsigned constants are considered

positive.

PROBLEM PROGRAMMER DATE PAGE OF

LOCATION COMMAND CODE 22 ~·~ 24 A ADDRESS 8 ADDRESS c ADDRESS
REMARKS

I 10 II 37 18 51 12 65 66 LINE NUMBER 7Jl74 10

f'L 8C.tJ/I/ F-t.f>IN -t!Z3. #51:.E-t/5 1 - /Zf8,E-'20 1 14-85 G. I 2 .3~9 l _I

EB C (Extended Binary Constant)

Extended binary constants are punched in the same format and have the same range of

values as floating-point binary constants. Each constant may contain up to 25 signed decimal

digits. These constants are converted into normalized, double-precision, floating-point bin­

ary numbers, retaining 80 binary digits of .the mantissa. Assembly stores the high-orde:r

40 bits, with proper exponent and sign, as one machine word. It stores the low-order 40

bits, with the same sign and an exponent 10 less than that of the high-order word, as the

following word.

PROBLEM ___________________ PROGRAMMER--------- DATE----- PAGE -- OF

LOCATION COMMAND CODE ~i A ADDRESS 37 11 8 ADDRESS c ADDRESS
65166

REMARKS
I 10 II 22 iC 24 51 12 LINE NUMBER TJJ..74

EIJCON E 13 C fl 23 • '!56£.·f/ s, - J 2 ~ 8 9 E - 2 0 1 I 4 85 6.12389 l l J_ -- -- - -- -

66

10

SECTION IX. CONSTANTS

Control Constants

The Assembly Program recognizes the following control constants:

SPEC

CAC

MAS KB ASE

CONTROL

special address

complete address

mask base

program control

These constants are punched one to a card.

SPEC (Special Address Constant)

M

TAC

LINK.

SEGNAME

SUB CALL

mixed

tape address

linkage

segment name

subroutine call

A special address constant specifies an address to be stored in special register format.

If the location field contains a special register tag (see page f8), this constant is loaded

directly into the designated register. Otherwise, it is allocated normally in memory in

the proper form for transfer to a special register (or for comparison with the contents of

a special register}. As already noted, a special register has the capacity to store a sign,

.a bank or group indicator, and a subaddress.

The A and B address fields are not used in a special address constant. The sign of

the specified address may be written in the S/C column. If no sign is included, a positive

sign is assumed. If no information follows the constant code, the contents of the C address

field are interpreted as a complete address which may be specified in several different ways:

1. An integer up to 16, 383;.

2. A symbolic tag which has an absolute assignment, with or without an
address modifier in the range ::1:16, 383. If the tag has both an absolut_e
and a complex assignment, the absolute assignment is used;

3. C, with or without an address modifier in the range ::1:16, 383. C, is
replaced .by the current contents of the CLC;

4. X, with or without an address modifier in the range ::1:16, 383. X, is
replaced by the current contents of the XLC; or

5. Blank which is replaced by a bank ,indicator and subaddres s of all zeros.

If the constant code is followed by a comma, a "G", and a group indicator (0-7), the

C address field is interpreted as a special register address which may be specified in

several different ways:

1. An integer up to 2047;

2. A symbolic tag which is equated to an integer, with or without an address
modifier in the range ±16, 383, provided that the result does not exceed 2047;

3. A direct (absolute or mnemonic) special register address or an indirect
address;

67

SECTION IX. CONSTANTS

4. A tag which has a spe~ial register assignment or a complex assignment; or

5. Blank which is replaced by a special register address of all zeros.

Any reference to the read-write address counters associated with a tape or peripheral

control unit must be relocated independently of other references to special register groups.

These counters are addressed using special address constants with indexed special register

addresses (see page 25). The constant code (SPEC) is followed by a comma and the control

unit indicator (A-H) corresponding to the desired counter. The C address field may contain

any of the above formats, but should result in a configuration that can be used successfully

as the index register contents in an indexed special register address. Assembly combines

the subaddress portion of this information with the group indicator which corresponds to the

specified control unit indicator to form a complete address. Normally, if a SPEC constant

designates a control unit indicator, the C address field contains either the direct address of

the desired counter, an indirect address which references the desired counter, or O. When

a SPEC constant of this type is stored in an index register, it can be used with an indexed

special register address of the proper type to address the desired read-write counter.

The special address constant is also used to set up the stopper address in special

register format, as mentioned in Sections V and VI. In this case, the constant is written

with the symbolic tag STOPPER in the C address field and no information following the

constant code.

PROBLEM __________________ . PROGRAMMER--------- DATE----- PAGE __ OF __

LOCATION COMMAND CODE 22 ~ 24 A ADDRESS B ADDRESS C ADDRESS
REMARKS

I 10 II J7 JI 51 52 65 &b LINE NUMBER 73 74

z ,1'2 SPEC PA'(R.OLL
_l

SPEC1 G5 z,c.sc I

+
Z, XI 5F'E c STQPPER I

T
SF'EC 1 A 0 I

'

The first special address constant above loads special register RZ of the controlling

group with the memory location address assigned to the tag PAYROLL. This tag must

appear in the location field of another card. The second constant stores the address of

10

the cosequence counter of group 5 in special register form. The third stores the complete

address of the stopper location in index register 1 of the controlling group. The last con­

stant stores a complete address consisting of a plus sign, the group indicator which corres­

ponds to control unit indicator A, and a subaddress of all zeros.

68

SECTION IX. CONSTANTS

CAC (Complete Address Constant)

A complete address constant specifies up to three complete addresses to be stored in

one memory location. The constant consists of three 16-bit groups, each containing a

sign, bank indicator, and subaddress in special register format. It is used to store addresses

which. are to be trans£ erred to special registers, but it may not be compared directly with

the contents of a special register, unless the left-most two addresses are all zeros.

The three addresses which are to be stored in the left-most, middle, and right-most

groups are punched in the~, B, and C address fields, respectively. Each address may

be specified as an integer (up to 16, 383) or as a symbolic tag, with or without an address

modifier in the range ±16, 383. If a tag is written, it must have an absolute assignment.

If it has an additional complex assignment, the absolute assignment is used. If any field

is left blank, the corresponding group will contain all zeros. The S/ C column may con-

tain a sign to be included in all of the three addresses which are not blank. If no sign is

written, a plus sign is assumed.

Note that the address written in the A address field can be stored in a special register

by means of a 32-bit shift to the right, the address in the B address field by means of a

16-bit shift to the right, and that in the C address field by means of a transfer instruction.

PROBLEM PROGRAMMER DATE PAGE OF

[, 22~24 A ADDRESS 37131 8 ADDRESS C ADDRESS
L REMARKS

LOCATION 10 II COMMAND CODE 51 12 65jllb LINE NUMBER 73JJ4 10

I cAC j PAY/(_Oll 1 4 678 llOURS-6S3 l i 11 l J.

l CAC H l /NVEIV TRY TOOLS 1 I

11 l

The first constant results in a word containing, from left to right, the complete address

assigned to the tag PAYROLL, the absolute address 4678 and the address 653 before that

assigned to the tag HOURS. All three addresses have positive signs. The second constant

results in a word containing, from left to right, an address of all zeros and the addresses

assigned to the tags INVENTR Y and TOOLS. The addresses in the B and C address fields

are combined with negative signs.

MASKBASE (Mask Base Address Constant)

A single setting of the mask index register (MXR) stores two mask base addresses: the

base of a group of up to 32 field masks and the base of a group of up to 64 shift masks. These

two addresses must be in the same bank, as the mask index register contains only one bank

indicator which is used with both bases.

69

SECTION IX. CONSTANTS

The MASKBASE constant cop.tains a shift group number in the A address field and a

field group number in the B address field. The C address field and the S/ C column are not

used. This constant results in a special register word containing the base addresses of

the two groups specified, in the format required by the mask index register. The safest

way to insure that both base addresses are in the same memory bank is to write the num­

bers of two groups which are specified by the same MASKGRP instruction, or which are

at least in the same subsegment.

If the MASKBASE constant is tagged Z, MXR in its location field, the mask index

register will be loaded directly. Otherwise, the MXR must be loaded by means of a pro­

grammed transfer. Any reference to a mask in a given group must be preceded by the

coding which sets up the MXR with the base address of that group. If the programmer

desires to change only the shift mask base in the MXR, for example~ he may load a

MASKBASE constant containing the new shift group number and repeating the previously

loaded field group number.

In order to give the programmer more control over the allocation of masks, it is

possible under certain conditions to set up a mask group without using the MASKGRP

instruction and without designating the masks by mask tags. It is the programmer's

responsibility to insure that the masks in such groups are stored in consecutive loca-

tions and that the rules governing mask base addresses are met. (The SETLOC or

MODLOC instruction can be used to comply with these modular restrictions.) Mask

groups which are set up in this manner can be referenced by loading the MXR with a

MASKBASE constant which contains the tag of the shift mask base in the A address field

and the tag of the field mask base ~n the B address field. The masks themselves may be

tagged (without mask indicators) and referenced symbolically in shift and field instruc­

tions in the normal manner. These tags must have absolute assignments; if they also

have complex assignments, the absolute assignments will be used. Address arithmetic

may be used in referencing masks of this type, as well as in the A and B address fields

of the MASKBASE constant. Moreover, this constant may specify one mask group sym­

bolically and the other by group number, provided that both are in the same memory

bank. This method of setting up mask groups may not be used in any segment which

includes subroutines, macro routines, or generated masks. Under any of these conditions,

the MASKGRP instruction must be used.

70

SECTION IX. CONSTANTS

PROBLEM __________________ PRO~RAMMER ---------- DATE----- PAGE __ OF __

22~ 24 A ADDRESS B ADDRESS C ADDRESS
REMARKS

I LOCATION 10 II COMMAND CODE l7 31 51 52 65" LINE NUMBER 73 74 80

Z,M XI{ MASK8A5E. s,, I F1 I
j

MASt.131/SE s, I F1 Z I
...L

I

TA c, _, Z. 1 MXI(I
I

7,MJCR.. MAS/c BASE 58ASE F 8.115E i

I

The first constant above results in a special register word containing the base addresses

of shift group 1 and field group 1 in MXR format, which is loaded directly into the mask

index register. Later, if it is desired to set up the MXR so that the program can reference

masks in field group 2, continuing to reference shift group 1, the second constant may be

transferred into the MXR by means of a TX instruction, as shown. The last constant illus­

trates the special use of the MASKBASE constant when the programmer assigns the mask

group bases and no MASKGRP instruction is used.

CONTROL (Program Control Constant)

A program control constant may be used as a mask for examining the contents of the

program control register (PCR). If the constant is to be used for examining the program

demand bits, the bisequence bits, or both, no information follows the constant code. The

group indicators of up to seven control groups whose program demand bits are to be examined

are written in the A address field, separated by commas. The group indicators of up to

seven groups whose bisequence bits are to be examined are written in the B address field,

also separated by commas. The resulting constant will contain binary ones in the bit

positions corresponding to the specified positions of the PCR.

If the program control constant is to be used for examining the buffer interlock bits,

the constant code is followed by a comma and a "B" (for buffer). The indicators (A-H) of

up to seven control units whose input buffer interlock bits are to be examined are written

in the A address field; those of up to seven control units whose output buffer interlock bits

are to be examined are written in the B address field, all separated by commas. The re­

sulting constant will contain binary ones in the bit positions corresponding to the specified

positions of the PCR.

71

SECTION IX. CONSTANTS

PROBLEM __________________ PROGRAMMER--------- DATE----- PAGE __ OF __

LOCATION COMMAND CODE A ADDRESS 8 ADDRESS c ADDRESS
REMARKS

I 10 11 22 c 24 37 31 51 52 65 116 LINE NUMBER 7J 71l. 10

CON7i?.OL 1, 2 2, '1
+
I

T

CONTR.0l 1 B A 1 C,O E, ((I
..... i..--.... -

The first program control constant above generates a mask to examine program demand

bits 1 and 2 and bisequence bits 2 and 7. The second generates a mask to examine the input

buffer interlock bits for control units A, C, and D, and the output buffer interlock bits for

control units E and G. The contents of the PCR must be transferred to a memory location

by means of a program control instruction (see page 50) before they can be examined.

M (Mixed Constant)

A mixed constant contains four fields. The constant may include octal, decimal, or

alphanumeric characters or any valid address format, but each field may contain only one

type of character or one address. "M" is written in the command code field followed by a

comma. The remainder of the command code field and the three address fields correspond,

respectively, to the four 12-bit groups in a Honeywell 800 word (see Figure 2, page 8).

Each of these fields may contain one of the following:

1. An 11A 11
, a comma, and two alphanumeric characters;

2. A 11B 11
, a comma, and four octal characters;

3. A 11D 11
, a comma, and three hexadecimal characters; or

4. Any valid address format described in Section V.

An exception is the command code field, which may not contain a special register address.

An "S" or a "C" in the S/ C column results in a 0 bit or a 1 bit, respectively, in bit position

one, overriding whatever the constant puts in this bit position. A blank S/ C column is

ignored. Note that if one or more address fields contain special register addresses, the

left-most 12-bit group may not contain the configuration indicated in the command code field.

A mixed constant can be used to store one or more addresses for use in setting up a

program in memory. If a mixed constant contains no symbolic tags, it is actually a data

constant and can be used to specify a data word in compressed alphanumeric form.

The first mixed constant in the following example is stored in memory as decimal 009,

followed by the subaddress assigned to the tag AB+5, followed by 24 binary ones.

72

SECTION IX. CONSTANTS

PROBLEM PROGRAMMER DATE PAGE OF

I LOCATION 10 II COMMAND CODE 22 k 24 A ADDRESS J7 JI B ADDRESS C ADDRESS
REMARKS

II 12 65 116 LINE NUMBER 7J 74 10

M 1 P,009 AIJt-S. 8, 7777 8, 7777
J

M 1 INl'UT I //I/PUT z o, 58 6 OUTPUT I I
-1
I

M 1 A,JK A,LM 4~0S.S/?A Y o, 31 I

-- I

TAC (Tape Address Constant)

This constant is used to specify up to eight tape or peripheral codes to be stored in

one memory location. The codes {AA-HH) are written starting in the A address field,

separated by commas, and continuing through as many consecutive columns as necessary.

The resulting machine word contains the corresponding six-bit peripheral addresses justified

to the left. Any unspecified codes to the right of the last code written are filled with binary

ones. Any unspecified codes to the left of the last code written should be specified as GG.

PROBLEM PROGRAMMER DATE PAGE. OF

22 IYcl 24
B ADDRESS 5Js2 C ADDRESS

R E M A R K S
I LOCATION 10 11 COMMAND CODE A ADDRESS 37 38 65 66 LINE NUMBER 7il7~ ~

AA 1 A0, 811 1 C,~ 1 C:,G 1 H4 1 4C l ' J TAC I

..___ ±

LINK (Linkage Constant)

The linkage constant is used in the Executive macro routine read segment {see page 30).

The C address field contains the link tag which the programmer writes in the B address field

of the read segment instruction. Address arithmetic is not permitted. The A an(!. B address

fields are not used. The link tag must have a memory location assignment; if it has an

additional complex assignment, the memory location assignment is used. The linkage con­

stant is interpreted by Executive, and only by Executive, as the starting location of the next

segment to be loaded. It is loaded by Executive in special register format, with the assigned

value of the tag in the bank indicator and subaddress positions. The programmer is not re­

quired to write linkage constants unless he is writing additional Executive macro routines.

SEGNAME {Segment Name Constant)

The segment name constant is used in the sort routine calling sequence. It is an alpha­

betic constant containing the name of the segment in which it appears. The programmer is

not required to write segment name constants unless he is writing a macro routine for use as

a sort routine calling sequence.

73

SECTION IX. CONSTANTS

SUBCALL (Subroutine Call Constant)

The subroutine call constant is used in all macro routines which serve as calling

sequences for library subroutines (see Section XIII). ARGUS replaces this constant with

a special address constant containing the address of the subroutine entry. The program­

mer is not required to write subroutine call constants unless he is writing a macro routine

for use as a subroutine calling sequence.

74

SECTION X

MASKING

Many of the preceding sections have discussed masking since this subject relates to most

aspects of the assembly language. As a result, the references required for a firm understand­

ing of masking are found in widely scattered points throughout the manual. The present section

summarizes and illustrates the specification and use of masks in assembly notation.

If an instruction in a program is to operate on part of a word while ignoring the rest, that

instruction must use a word called a mask. This is a 48-bit word containing binary ones i,n the

bit positions which the instruction is to examine or use and zeros elsewhere. Instructions

which use masks have, in effect, a fourth address for the purpose of referencing the mask.

Many of the machine instructions in the general group can be performed under the control

of masks. Such instructions are called field instructions. In addition, all of the shift instruc­

tions require the use of masks in their execution. Masks m.ay be specified by the program.mer,

stored in memory with the proper mask tag, and referenced in the command code field of either

a field or a shift instruction.

Designated Masks

If the word +58393857 320 is stored in memory and the program.mer wishes to work only

with the low-order four digits, he may write a mask which contains binary ones in the low­

order 16 bit positions. Such a mask could be written as a decimal constant and tagged, for

example, MASKI. The tag should be preceded by S, F, or B, to designate whether it is to

be used with shift instructions, field instructions, or both.

PROBLEM______ . l'ROGRAMMER

~ LOCATION 1ol11 COMMAND CODE 22 _Ef 24 A ADDRESS 37 JI 8 ADDRESS

l _ _!,MAsK 1 T PEc. } 0000000064 <i ct
..L I

____________ DATE ----- l'AGE __ Of __

51 12 C ADDRESS
1 REMARKS

65j66 LINE NUMBER 71}74

1 ~ l
10

This is a mask containing 16 low-order 1 bits to be used with both shift and field instructions.

Reference to this mask could be made in the command code field, where the tag MASKI would

be separated from the operation code by a comm.a, or in any of the address fields. When the

mask is referenced in the command code field, it is used as a mask, and when it is referenced
1

in an address field, it is used as an operand.

1
Exceptions are the general instructions substitute (SS) and extract (EX), which always refer­
ence a mask in the B address field. However, since the mask is not referenced via the mask
index register, it need not have a mask tag nor be stored as part of a mask group.

75

SECTION X. MASKING

Generated Masks

Alternatively, in any field or shift instruction, the programmer may specify information

from which ARGUS can generate masks during assembly. This information includes the num­

ber and type of characters in the masked field, the position of the left-most character in the

field, and the position{s} of any sign bit{s} which is attached to the field. The use of generated

masks is limited to alphanumeric or hexadecimal fields of consecutive characters.

To generate a decimal mask for the low-order four digits and the sign of the word

+5839385/320 the programmer would write the command code in this manner:

TSD, 9, 4, S

This tells Assembly to generate a mask containing ones in the bit positions to be examined and

to put the relative address of this mask in the operation code. When this instruction is execu­

ted under control of the generated mask, hexadecimal digits 9 through lZ and the sign will be

transferred from the location specified in the A address field to the location specified in the B

address field. A generated mask may be used with a field instruction only if the type of charac­

ters in the masked field is inherent in the operation code. {See page 40 for further discussion

of generated masks. }

Mask Groups

Masks are stored in memory in groups. Machine instructions reference masks relative

to an address called the base address of a mask group. A field mask group may contain up to

3Z masks and must have a base address which is a multiple of 3Z. A shift mask group may

contain up to 64 masks and must have a base address which is a multiple of 64. The program­

mer may group his masks in consecutive locations and assign valid base addresses {using

SETLOC or MODLOC) under certain circumstances. When masks are allocated by the pro­

grammer they need not be marked by mask tags. Alternatively, the programmer may direct

Assembly to allocate mask groups by using the control instruction MASKGRP. In any segment

which contains subroutines, macro routines, or generated masks, Assembly must control

the allocation of mask groups.

If the MASKGRP instruction is used, it must appear before any masks are generated,

designated, or referenced within a segment. The only exception is at the beginning of a

segment, where any designated or generated masks are automatically assigned to field

and shift groups 0 if they are not preceded by a MASKGRP instruct-ion. This instruction

may include a shift group number, a field group number, or both. It directs Assembly:

I. To assign a valid base address to each specified group;

Z. To allocate all subsequent designated or generated masks to the proper

76

SECTION X. MASKING

specified group until another MASKGRP instruction specifies a group
of the same type; and

3. To obtain all masks referenced from the proper specified group until
another MASKGRP instruction specifies a group of the same type.

The base address of a m.a.sk group is not necessarily the starting address of that group.

When the first m.a.sk in a group is processed, Assembly attempts to assign the last pre­

vious address of. the proper modular value (32 or 64) as the base address of that group.

This involves counting the masks in the group to determine whether they can all be allocated

before another address of the same modular value is reached. If this can be done, the base

address is assigned as above. If not, the next address of the proper modular value is

assigned as the base address of the group.

The MASKGRP instruction may also specify the subsegment in which the mask group(s)

is to be stored. If no subsegment is specified, the masks are stored in the subsegment

which is in control at the end of the segment. A pair of groups having the same group

number must be stored in the same subsegment. When masks are allocated by Assembly,

each designated mask must be so marked by preceding it with a mask tag.

If any type B masks are designated, Assembly sets up overlapping shift and field

mask groups. A pair of overlapping groups can store 32 field, shift, or both masks, plus

an additional 32 shift masks. If mask groups are allocated by Assembly, the first B mask

must be preceded by a MASKGRP instruction which specifies identical shift and field group

numbers. If they are allocated by the program.mer, the first B mask must be preceded

by the necessary control instructions to set up overlapping groups.

Referencing Masks

Both shift and field instructions reference masks by means of a special register

called the mask index register (MXR). This register stores the base subaddress of a

shift group, the base subaddress of a field group, and a bank indicator to be used with

both subaddresses, all according to a special format. Before any mask in a given group

can be referenced, the base address of that group must be stored in the MXR by means

of the control constant MASKBASE. If mask groups are allocated by Assembly, the

MASKBASE constant is written with the group numbers of the desired shift and field

groups. If mask groups are allocated by the programmer, this constant is written

with the tags which represent the base addresses of the desired groups. In either case,

the MASKBASE constant must specify both a shift group and a field group. If only one

subaddress is to be changed in the .MXR, the current group of the opposite type is

77

SECTION X. MASKING

respec:iiied. The MASKBASE constant may be loaded directly into the MXR or moved there

by a programmed transfer. Since the MXR contains only one bank indicator, shift and

field mask groups which are referenced concurrently must be stored in the same memory

bank.

Note that before a mask in a given group can be referenced, it is necessary to set up

the MXR with the base of that group. If MASKGRP instructions are used, it is also necessary

to spec:iiy the desired group in a MASKGRP instruction. The control instruction MASKGRP

should not be confused with the MASKBASE constant. The MASKGRP instruction directs

Assembly in allocating mask groups and assigning their base addresses. The MASKBASE

constant, an the other hand, stores two mask base addresses in the special MXR format.

PROBLEM PROGRAMMER DATE PAGE OF

I LOCATION 10 II COMMAND CODE 22 ~ 24 A ADDRESS 37 31 B ADDRESS c ADDRESS
REMARKS

51 52 65 66 LINE NUMBER n 74 10

.5 ETLOC 1 Z J_

MAS,t: c-,RP 5, I F~ I I

+
TX A 13 Z,Mx.R. I

T

OA.1 Ml A 8 c I

.SWE,M3 D 12. D 1
I ____ ..., _____

--.--------., .. ·- - - ---=-,,.. - ... - - - 1-~---------- ------ - - ---1 ----.r-.-1 -----
F, Ml OEC.. o ooo oo G ti <i ~li< , T
s, M3 l>~c.. O 04'100 Ge? 0 0 04:J :
/t/3 NI.II SK.BASE s, I F-, I I

l
~ - -

Figure 9. Designation and Referencing of Masks

EXAMPLE: The coding shown in Figure 9 illustrates the designation of masks and their

use in both sh:iit and field instructions. This coding represents only a portion of a seg­

ment. The first instruction directs Assembly to begin allocation of subsegment 2. The

MASKGRP instruction assigns the following designated masks to field group 1 or shift

group 1 and tells Assembly that the following instructions may reference masks from

these groups. A one-word transfer is performed to load the MXR. This is followed by

two program instructions which utilize field mask Ml and shift mask M3, respectively.

Masks Ml and M3 are designated at another point in the coding, together with the

MASKBASE constant which is used to set up the MXR with the base addresses of field

group 1 and shift group 1.

78

SECTION X. MASKING

Subroutine and Macrocoding Masks

The use of masks in subroutines and in macro routines (see Section XIII) varies with

the type of routine. The following cases may be distinguished:

1. Macro routines in the library may contain their own masks. If a macro
routine is called in a segment, any masks which it contains are auto­
matically stored in the current groups of main program masks and must
be considered in figuring the storage total of these groups. Their
positions within the mask groups depend upon the position of the macro
instruction relative to the main program masks.

2. Dependent subroutines are similar to library macro routines in that
they may contain masks which are included in the current groups of
main program masks.

3. Independent subroutines contain all the necessary coding to designate
their own masks, set up the mask index register, and restore this
register before returning control to the main program.

Mask Pools

To save memory space by eliminating duplicate masks, certain of the masks belonging

to a group may be collected into a mask pool during assembly. All generated masks, macro

routine masks, and masks appearing in dependent subroutines, which are assigned to a specific

field or shift mask group, are automatically included in the pool for that group, and duplicates

among these masks are eliminated. A designated mask is included in the pool of the group to

which it is assigned if a "C" is written in the S/ C column and if the mask is specified as a data

constant with an S, F, or B in the location field (a B designated mask is placed in the field mask

pool). As a result, it will not be duplicated within the same group if a library macro or a de­

pendent subroutine uses the same mask or if a mask having the same binary configuration is

generated.

All masks which remain constant should be placed in the pool, in case they are used by

library routines. However, any mask which is mcdified during the execution of a program

should be withheld from the pool.

79

SECTION XI

ARGUS UPDATING FUNCTION

As stated in Section I, the ARGUS Assembly Program m.aintains a symbolic program

tape (SPT) which contains a file of programs undergoing checkout. Every program on the

SPT is in the original assembly language, thus allowing modifications or corrections to be

made to the program in this language. The SPT also contains the test data and debugging

pseudo instructions (derails) for each program, which may also be modified or corrected

during an assembly run. The structure of the SPT is described in Appendix B.

In order to maintain this file, the Assembly Program accepts as input the existing

SPT, a deck of cards, and/ or one or more reels of tape containing card images. The card

or tape input represents new ARGUS programs to be assembled, corrections to existing

programs on the SPT, and output (new programs) from the compilers. The outputs from

the updating run are a new SPT, requested printed listings and analyses of programs, re­

quested punched cards in ARGUS format, and a list of the programs and segments on the

new SPT. These outputs are described in Section XII.

A group of control instructions is used to direct the ARGUS updating process. These

control instructions are punched one per card, like machine instructions, but they are not

assembled by ARGUS to produce machine words in a program. Each instruction is identified

by an operation code of up to eight alphabetic characters which is punched in the comm.and

code field.

ARGUS

This instruction must be the first card of every ARGUS input deck. The A and B

address fields are not used. The C address field may contain a code describing a standard

assembly equipment configuration to be used for all programs which do not specify a particu­

lar configuration code (see PROGRAM instruction, page 86). A detailed description of this

configuration code is contained in Appendix C. If the C address field is blank, ARGUS

assumes the standard configuration to be that of the machine on which the updating run is

being made.

Program Directors

A program director card marks the beginning of input for the program whose name

is specified in the A address field. The director cards are distinguished by the prefix "U, 11

81

SECTION XI. ARGUS UPDATING FUNCTION

punched in the first two command code columns (columns 11 and 12). The five types of

director cards described below are distinguished by the command code following this prefix.

The location field, the B and C address fields, and the remarks field are unused except as

otherwise noted.

The program name may consist of from one to eight characters. Leading or imbedded

spaces are eliminated during inpUt processing. This processing includes checks to prevent

duplication. of program. names on the same tape.

Any input between the ARGUS card and the first program director card is discarded

during input processing. All input for each program must follow its program director card,

and all cards following a particular program director card are included as part of that pro­

gram. until the next program director card is encountered.

U, ELIMPROG: This card directs ARGUS updating to eliminate the program. named in the

A address field from the new symbolic program tape. The S/ C and line number fields are

not used.

U, REASSEMB: This card directs ARGUS to reassemble the program named in the A

address field, using the old program on the symbolic tape as a major input to assembly.

Any changes which follow this director card are merged with the existing program during

updating. The resulting program is reassembled and written on the end of the new sym­

bolic tape, and the old version of the program is eliminated.

If the S/ C column is blank,· any scientific instruction in tl~e program is replaced by a

call for a library routine. Otherwise, scientific operation codes are translated normally.

If the line number field is blank, the line numbers resulting from merging the inputs

are preserved in the reassembled output. If any legal characters other than blanks appear

in the line number field, ARGUS reassigns line numbers in the reassembled program.

U, CORRECT: This card directs ARGUS to correct without reassembly the program speci­

fied in the A addreE!S field. S/ C and line number field options are the same as on REASSEMB

cards.

Correction is a process by which certain classes of simple changes can be made to

the old program without requiring the more extensive reassembly process. Correction is

82

SECTION XI. ARGUS UPDATING FUNCTION

restricted .to changes in test data, derails, and certain kinds of one-for-one program word

replacements which do not require reallocation of addresses. Wherever possible, the pro­

grammer should elect to correct rather than to reassemble his program in order to save

computer time. However, if the Assembly Program detects a situation which violates the

correction rules, the "CORRECT" instruction is revised and the program is reassembled

instead. The situations in which revision will occur are as follows:

*

1. Occurrence of one or more symbols in the address fields of EQUALS
or RESERVE instructions in the program;

2. Reference to more than 100 different symbolic tags in corrections to
any segment of the program;

3. Any reference to a tag which was not defined when the program was
last assembled;

4. Any reference to a tag which was defined by a T AS instruction in the
last previous assembly;

5. Insertion of a new line between existing lines, before the first line
or after the last line of any segment;*

6.. Deletion (as opposed to one-for-one replacement) of any line;*

7. Addition or elimination of any segment;

8. Replacement of a line by a new line, where the location fields are
not identical;*

9. Use of the instructions EQUALS, RESERVE, EVEN, SIMULATE,
MODLOC, or MASKGRP, except to replace an identical line; .

IO. Use of the instructions SETLOC, ASSIGN, TAS, 6r the LINK constant;

11. Call for a subroutine which was not called in the last previous assembly;

12. Use of mask generation parameters in a field or shift instruction unless
the instruction being replaced generated an identical mask;

13. Use of a mask within macrocoding, unless the .instruction being replaced
used an identical mask;

14. Replacement of any line by another line where the numbers of machine
words produced by each line are not identical (e.g., replacement of a
macro routine by another macro routine not of the same length,
replacement of a FLBIN constant by an EBC, or replacement of a line
containing constants by one containing an unequal number of constants);

15. Use of a MASKBASE constant with S,n or F, n in the address fields. Tags
must be used even if the constant being corrected used S, n or F, n. Note
that a group may be specified by any tag assigned within that group; and

16. Since a printed listing is not provided for programs undergoing correction,
the occurrence of any error on an input card will cause the program to
be reassembled and listed.

Exception: Remark cards and words to be loaded into special registers (Z, in location field)
may be inserted, deleted, or replaced by other remarks or special register cards even
when the location fields are not identical.

83

SECTION XI. ARGUS UPDATING FUNCTION

Sf C and line number field options on CORRECT cards are the same as on REASSEMB

cards.

U, NEWVERS: This card directs ARGUS to make a new version of the program whose name

is specified in the A address field, giving it the new name specified in the B address field.

The new name obviously must not duplicate the name of any other program on the symbolic

tape. Except in name, the new program may exactly duplicate the old one, or it may be

modified .to any desired extent by the input following the NEWVERS card.

Regardless of the degree and nature of change, all new versions are put through the

reassembly process. In. this respect, NEWVERS has the same effect as REASSEMB except

that the old version is not automatically eliminated unless ARGUS is specifically instructed

to do so by an ELIMPROG card.

Sf C and line number field options on NEWVERS cards are the same as on REASSEMB

cards.

U, NEWPROG: This card directs ARGUS to assemble the following input as a new program.

The name of the program is specified in the A address field. Aside from the name duplication

checks, no reference is made to the contents of the old symbolic tape.

Sf C and line number field options are the same for NEWPROG cards as for REASSEMB

cards.

Programmer Macro Routine Markers

Two instructions, MACRODEF and FINIS, are used to mark the beginning and end,

respectively, of programmer-defined macro routines within programs.

MACRODEF: This instruction must precede each programmer macro routine. The location,

address, and line number fields are not used. The Sf C column may be used to specify one

of the following card check options:

84

1. If the Sf C column contains an "I" (Identification), the contents of columns
74 through 80 of the remarks field are stored (in unjustified form and
without space suppression) and used to check all succeeding cards of
this programmer macro routine. If the corresponding columns of a
succeeding card in this macro routine do not match the stored value, the
card is discarded during assembly.

2. If the Sf C column contains an "S" (Sort), the contents of the first five
line number columns (66-70) of each card in the routine are converted

SECTION XI. ARGUS UPDATING FUNCTION

to a binary number and used as a low-order key. Otherwise, the cards of
this macro routine are assigned keys which will preserve the order in
which they occur.

3. If both identity checking and sorting are desired, the S/ C column contains
a "B ". If neither is desired, this column is left blank.

The cards following the MACRODEF instruction represent the master macro instruction

and the actual macro routine. They are described more fully in Appendix A on "Writing Macro

Routines". These cards are subject to the sorting and identification check options specified

in the MACRODEF card. If the sorting option was specified, columns 66 through 70 must

contain the serial number of each card within the macro routine.

FINIS: This instruction signals the end of a macro routine. An identification check on the

contents of the remarks column (74-80) of the FINIS card is made, provided that this option

was specified in the MACRODEF card.

Segment Directors

The three types of segment directors defined below all mark the beginning of input for

a particular segment of the program. The name of the program to which the segment belongs

is written in the A address field and is subject to the s.ame conventions as on the program

director cards previously described. The B address field must contain the segment name,

which may contain a maximum of seven characters, but which is otherwise handled in the

same manner as a program name.

ELIMSEG: This card directs ARGUS to eliminate the specified segment from the new

symbolic tape. The names of the program and segment are specified in the A and B address

fields, respectively. The S/C and line number fields are not used in this card. No detail

cards should follow this director.

SEGMENT: This card marks the beginning of input for the specified segment. The program

and segment names are specified in the A and B address fields, respectively. The location

and C address fields are not used. ARGUS determines whether this input represents changes

to an existing segment or an entire new segment by comparing the program and segment names

against a directory of the old symbolic program tape.

The S/ C column may be used to specify one of the following handling options:

1. If an "I" is written in the S/ C column, the contents of columns 74 through
80 of the remarks field are used to check the identity of all following
detail cards up to the next program or segment director, just as in the

85

SECTION XI. ARGUS UPDATING FUNCTION

MACRODEF instruction.

2. If an 11S 11 is written in the S/C column and the input is a new segment, the
contents of all eight line number columns (66-73) on the following detail
cards are converted to binary numbers which are used to sort these cards
within the segment. If the input represents changes to an existing seg­
ment, line numbers must be provided to identify the words to be changed
and this input is automatically sorted, regardless of the contents of the
S/C column.

3. If a "B 11 is written in the S/ C column, both identity checking and sorting
are provided.

4. If the S/ C column is blank and the input is a new segment, ARGUS generates
line numbers to preserve the existing order of the cards, providing spaces
for later insertion of changes as explained on page 16. As stated above, if
the input represents changes to an existing segment, it is automatically sorted.

The line number field of the segment instruction may be used to specify certain optional

outputs from the assembly process. These outputs, which are described in Section XII, may

be produced only when a segment is assembled or reassembled, not when it is corrected.

The following codes may be written in any t:ombination, separated by commas. The order in

which they are written is immaterial, provided that they are written in the line number field.

Code

s

L

LS

Interpretation

Produce a new symbolic card deck for this
segment from the updated SPT.

Produce a symbolic listing of coding for this
segment, including all diagnostic printouts.

Produce a symbolic listing for this segment,
including diagnostic printouts for all definite
errors but suppressing printouts for possible
errors.

Produce an analyzer of the coding for this
segment, including all diagnostic printouts.

Produce an analyzer of the coding for this
segment, including diagnostic printouts for
all definite errors but suppressing printouts
for possible errors.

PROGRAM: This card is a segment director of a special kind, used to introduce the first

(or only) segment of a program. It is identical in function to the SEGMENT instruction

(above) with the following exceptions:

1. The C address field may be used to specify an assembly equipment
configuration code for this program, according to the configuration
statement format described in Appendix C. If this field is blank,

1
Since the analyzer includes a symbolic listing, it is never necessary to specify both.

86

SECTION XI. ARGUS UPDATING FUNCTION

the standard configuration is used {see the ARGUS card above).

2. If the program logic requires that tape units assigned to a common tape
control remain assigned to a common tape control, or if the program
contains any reference to a rea:d-write address counter {RAC, DRAC,
WAC, or DW AC), the command code {PROGRAM) must be followed by
the suffix ", R". This suffix designates the so-called R restriction, which
directs the assignment of equipment codes by Executive, as described
in the Executive System Manual.

Test Data Directors

Test data belonging to a segment may appear anywhere within the input for that segment.

The Program Test System Manual should be consulted for a detailed description of the test

data cards which are summarized here.

TEST DATA: This card introduces a set of test data or changes which are to be applied to an

existing set. The location field contains the set number, in the range 0 through 7, the A

and B address fields contain the program and segment names, respectively, and the C address

field contains the first address of the read-in area in high-speed memory, expressed as an

absolute decimal address.

ELIMDAT A: This card directs ARGUS to eliminate the specified set of tf;!st data from the

SPT. The location field contains the set number {0-7), and the A and B address fields

contain the program and segment names, respectively.

Test Data Detail Cards

1. Distributing Pseudo Instructions. Each distributing instruction contains in

its command code field an "X, 11 followed by the operation code of the instruction.

The location field has the format s, r, p where s is the set number {0-7), r is the

record ·number {three decimal digits) and pis the instruction position number {.01-20).

The cards are subject to the identification check of columns 74 through 80 as

specified in the TEST DATA card. A detailed description of the functions and

formats of these instructions is found in the Program Test System Manual.

2. Delete Distributing Pseudo Instructions. This card {X, DELETE) directs

ARGUS to delete one or more distributing instructions from a set of test data.

The location field contains s, r, p {set number, record number, and position

number of the first instruction to be deleted). The A address field contains TO.

The B address field contains f, h, where f is the record number and h is the

position number of the last instruction to be deleted. This card is subject to

87

SECTION XI. ARGUS UPDATING FUNCTION

the identification check of columns 74through 80 as specified in the TEST DATA card.

3. Test Data Words. Each test data word card contains in its command code field

a D, and the name of an ARGUS data constant or mixed constant containing numeric

data in all fields. The card may contain several constants of the same type, as may

any constant card. The location field contains s, r, w, (set number, record num­

ber and data word position number for the first constant on the card). These cards

are subject to the identification check of columns 74 through 80 as specified in the

TESTDATA card. Test data words may be altered on a one-to-one basis during

an updating run.

4. Delete Data Words. This card (D, DELETE) directs ARGUS to delete

one or more data words from an existing set of test data. The location fie.Id

contains s, r, w, designating set number, record number and data word posi­

tion number of the first word to be deleted. The A address field contains "TO",

and the B address field contains £, h (record number and data word position

number of the last data word to be deleted). This card is subject to the identi­

fication check.

Debugging (Derail) Pseudo Instructions

A complete description of the formats and £Unctions of these instructions is found in

Section III of the Program Test System Manual. The sort and identification check options,

specified in the segment director card, may be used with these instructions; if the sort

option is desired, columns 66 through 70 must contain the serial number of the instruction

within the segment.

ELIMDERL: This card directs ARGUS to eliminate the derail whose serial number is

specified in the first five line number columns. If these columns are blank, all derails

are eliminated from the corresponding segment. If the segment director card contains

an "I" in the S/ C field, a segment identification must be punched in columns 7 4 through 80

of the rem.arks field. The location and address fields are not used in this card.

Main Coding

Main coding refers to all instructions and constants belonging to a segment. The sort

and identification check options, as specified on the segment directors,. may be used to check

all main :coding cards. If the sort option is used, columns 66 through 73 on every card must

contain a line number representing the position of that card within the segment.

88

SECTION XI. ARGUS UPDATING FUNCTION

The line number field must indicate the words to be changed within an existing segment.

It may indicate the order of a complete new segment. ARGUS automatically generates line

numbers to preserve the original order of new segments if the sort option is not specified.

DELETE: This card directs ARGUS to delete lines of main coding from an existing segment on

the symbolic program tape. The line number columns specify the first line to be deleted. If

the A and B address fields are blank, only this line is deleted. If, however, the A address field

contains the word "TO" and the B address field contains the line number of the last line to be de-

leted, ARGUS will automatically delete all intervening lines, provided that both specified lines

are contained in the same segment. Original five-digit line numbers may be punched anywhere

in the B address field; insertion line numbers must contain a decimal point to separate the high­

order five digits from the low-order three digits.

ENDARGUS

A card with ENDARGUS punched in the command code field must be used to signal the end

of the ARGUS input deck. The contents of all other fields on the card are ignored.

Ordering the ARGUS Input Deck

ARGUS automatically sorts the entire input deck into an order which is convenient for up­

dating, but before the sorting can begin the deck must be in order according to the following rules:

1. All cards belonging to one program must be together, preceded by a
program director card.

2. All cards belonging to a generalized programmer macro routine must
be together, bounded by MACRODEF and FINIS cards. The master
macro instruction must immediately follow the MACRODEF, and the
ent·ire routine must precede the first macro instruction referring to it.

3. All cards (test data, information request pseudo instructions., and main
coding) belonging to a segment must be together, preceded by a seg­
ment director card. In other words, the only cards which may appear
between the program and segment directors are macro routines, but
macro routines may also appear after a segment director.

4. Test data detail cards must be preceded by a TESTDATA card, and
the first card which does not have an "X, " or "D, " in the command
code field will signal the end of a group of test data cards. That is,
no card other than test data cards may appear within a group of test
data cards.

5. If the sort option is not specified (i. e., the cards do not contain line
numbers) within a macro routine, the macro routine cards must be
in the proper order with respect to one another.

6. If the sort option is not specified for a new segment, the derail pseudo
instructions, as well as the main coding, must be in the proper order
with respect to one another.

7. Derail pseudo instructions may not appear within programmer macro
routines. The appearance of a program director, segment director,

89

SECTION XI. ARGUS UPDATING FUNCTION

or MACRODEF card within the macro routine will terminate the routine.

ARGUS sorts the individual program decks so that updating for existing programs occurs

in the order in which the programs are stored on the SPT, and new programs follow in the

order in which they occurred in the input deck. If there is to be a new version of a program,

the updating for the new version precedes the updating (if any) for the old version. Within

a program, the segments are sorted so that updating for existing segments occurs in the

order in which the segments are stored within the program on the SPT, and new segments

follow in the order in which they occurred in the input deck within that program. If there

is an ELIMPROG or ELIMSEG card for the program or segment, that card will precede

any other cards for that program or segment.

Within each program, the program director card is followed by all programmer

macro routines belonging to that program (if any). The routines are in the order in which

they occurred in the input deck. The order within each routine is:

1. MACRO DEF;

2. Master macro instruction;

3. Macro routine coding (If the "S" option is used, the coding is
ordered in accordance with the contents of columns 66 through
70, otherwise, it is in its original order.); and

4. FINIS.

The macro routines are followed by the segments of the program. For each segment,

the segment director card is followed by any test data for the segment. The test data sets

are in order by set numbers. Within each set the order is:

1. ELIMDATA;

2. TESTDATA; and

3. Test data detail words in order by record number. Within each
record, the distributing pseudo instructions (in order by instruc­
tion position number) are followed by the data words (in order by
data word position number). If there is an X, DELETE or D,
DELETE card, it precedes any other X or D card with the same
position number.

The test data is followed by the derail pseudo instructions. If the sort option was

specified, the derail cards are in order according to the contents of columns 66 through

70; otherwise, they are in their original order. If there is an ELIMDERL card in which

columns 66 through 70 are blank (eliminate all derails), this card precedes all other

derail cards. Any other ELIMDERL card precedes the derail card which has the identical

line number.

90

SECTION XI. ARGUS UPDATING FUNCTION

The main coding is the last element within the segment. If the sort option was specified,

these cards are in order according to the contents of columns 66 through 7 3; otherwise,

they are in their original order, except that the END card is always the last card for the

segment.

Equipment Requirements for the Updating Run

The normal complement of equipment for the updating run includes a card reader, a

printer, and four magnetic tape units. Two tape units ar~ used for the old and the new sym­

bolic program tapes and two are used for work tapes. A card punch may be added if the

input to the run includes any requests for punched card output. The input deck may be con­

verted off-line and then read from magnetic tape by ARGUS without the necessity of providing

an additional tape unit, unless the amount of input exceeds one tape reel. If either printing

or card punching is off-line, a fifth tape unit is required. However, in no case are .more than

five tape units required by the updating run. Updating uses two banks of high- speed memory

and one group of 28 special registers and can be relocated for parallel processing.

91

SECTION XII

OUTPUT FROM ARGUS ASSEMBLY OPERATION

The primary output of the ARGUS assembly process is a file of programs on magnetic

tape in both symbolic assembly language and machine language. Each program in this file in­

cludes relocation information and error information. The tape containing the program file is

called the symbolic program tape (SPT) and is the communication link between Assembly and

the other ARGUS systems programs (as shown in Figure 1, page 2). The SPT is used in the

following three ways:

1. It is the input to the next ARGUS updating run;

2. It is the source of information for the program test run (as described
in the Program Test System Manual); and

3. It is the source of information for the Executive scheduling run (as
described in the Executive System Manual).

In addition to the updated symbolic program tape, the programmer may direct ARGUS

to produce any or all of the following types of secondary output. The segment directors (see

page 85) are used to specify which, if any, of these secondary outputs shall be produced for

each segment assembled:

1. A complete printed listing of the assembled segment, including the line
number and the symbolic input form and machine form of each included
word, along with any errors detected during assembly;

2. A printed analyzer, including all of the information given in the listing,
plus a list of all references to each symbolic tag by line number;

3. A set of punched cards containing the entire segment in assembly lan­
guage, complete with line numbers and in the correct sequence.

ARGUS Listing

Each page of the ARGUS listing is headed by a line of print which includes the program

name, the segment name, and the page number. This is followed by a line which contains the

field headers for the various fields of the listing. These two header lines are included in the

sample output page shown in Figure 14, page 99. Each line of coding is printed in both the

symbolic language of the programmer and the resulting machine language. The line number

appears at the left of each line. In general, program words are listed in the format shown in

Figure 10. Exceptions are data constants, EQUALS and RESERVE instructions, and remarks

cards, which are listed in the formats shown in Figures H and 12. Note that if several data

constants are combined on a single input card, each such constant is listed as an individual

line of print and the line number is repeated as necessary. A derail instruction is followed

on the listing by a CAC constant which contains the addresses assigned to the symbolic tags

appearing in the derail. The CAC constant does not appear in the assembled program.

93

SECTION XII. OUTPUT FROM ARGUS ASSEMBLY OPERATION

If a programming error is detected in a line of coding, the listing for that line includes

an asterisk preceding the line number. This line is followed in the listing by an error print­

out line which indicates the nature of the error(s). Each error is represented in the error

printout line by a key which is printed immediately below the field of the sym.bolic input word

in which the error is detected. The various keys which may be printed are described below

under "Program.ming Errors Detected".

The ARGUS listing is followed by a list of the group numbers of all mask groups used by

the segment and the mask base addresses assigned to these groups. Finally, the names of all

subroutines which are called by the segment are listed, together with the starting address

assigned to each subroutine .

.Analyzer

The analyzer is an optional index of every reference to every symbolic tag used within

a segment. If this option is requested, by means of the segment directors, the listing line

for every word which is tagged in the location field is followed by one analyzer line for ea-ch

program word which references the corresponding tag. The format of an analyzer line,

shown in Figure i3, includes the segment number, line number, and operation code (or con­

stant code) of one program word which references the pertinent tag, with the tag itself appear­

ing in the same field in which it appears in the original word. If the reference includes ad­

dress arithmetic, the address modifier also appears in the analyzer line. Note that the sam­

ple output page shown in Figure i4 includes analyzer output.

If the analyzer option is requested, each mask group listed is followed by one analyzer

line for each reference to that group. (Here a reference to a mask group is the generation of

a mask in that group or the appearance of the group number in a MASKGRP instruction or a

MASK.BASE constant, since all symbolic mask references have already been listed.) Next,

each subroutine listing is followed by an analyzer line for each call instruction to that sub­

routine. Finally, the analyzer includes an index of all references to peripheral addresses.

Program.ming Errors Detected

The types of programming and card punching errors which are detected during assembly

are listed in Figure 15. For each error detected, an error indication is recorded on the

symbolic program tape and printed as part of the ARGUS listing. The Assembly Program. de­

tects errors which fall into two broad categories: definite errors and possible errors. The

error indications for definite errors are always printed, whereas the programmer m.ay

specify on the segment directors that the error indications for possible errors are to be

suppressed.

94

'()
01

Print
Positions

i

2-9

iO

H-20

2i

22-33

34

35

36-49
50-63
64-77

78

79

80-83

84

85-88

89-96
97-1.04

iOS-11.2

H3

ii4-i20

Related
Card Cols. I

66-73

i-1.0

I -----
H-22

23

24-37
38-51.
52-65

---/--

74-80

Field

Error Indicator

Line Number

Separator

Location

Separator

Comm.and Code

S/C

Separator

A Address (Symbolic}
B Address (Symbolic)
C Address (Symbolic)

Separator

Bank

Subaddress (Absolute)

Separator

Op Address (Absolute)

A Address (Absolute)
B Address (Absolute)

C Address (Absolute)

Separator

Remarks

Description

Asterisk indicates the presence of an error./ ~7,~jr;14~/f/f¢
May be written by programmer or generated by ARGUS.

SPACE

Program.mer Notation

SPACE

Programmer Notation

Program.mer Notation

SPACE

Programmer Notation

SPACE

Bank or group indicator of assigned location.

Subaddress of assigned location: ffi decimaj if memory location, in
~lute ARGUS format (see below) if special register. -

m ; ., ."Ml .1:r ~~~l'-~~ ~~~rnrs Hi t!im-~

SPACE ,,.,,.. .._...,,, &~.

Absolute value (in. de<ii~a{) of command code subaddress for shift,
simulator, and masked field instructions and mixed constants.

Absolute value Jin dec;;in;all of address fields, right justified.
Complex address assignments shown in absolute ARGUS format.
as follows:

Direct memory location address
Indexed memory location address
Special register address
Indexed special register address

SPACE

Programmer Notation

Of 99
3,026

N, 01, 02
3,N,14,2

Figure 1.0. ARGUS Listing - General Format

Vl
m
()

::::!
0 z
x

0 c
-t
-0 c
-t
'TI
;::'Cl

~
)>
;::'Cl

Q
c
Vl

)>
Vl
Vl

~
c::J

!:(
0
-0
m

> ::::!
0 z

"° °" Print
Positions

i

2-9

iO

if-20

2f

22-33

34-35

36-77

78

79

80-83

84-88

89-9i

92-93

94-97

98

99-i.02

103

104-i.07

108

i09-H2

H3

ii4-120

Related
Card Cols.

66-73

f-iO

f f-22

23

24-65

74-80

Field Description

Error Indicator Asterisk indicates the presence of an error.

Line Number May be written by program.mer or generated by ARGUS.

Separator SPACE

Loc~tion Program.mer Notation

Separator SPACE

Command Code Program.m.er Notation

Separator SPACES

Constant Program.mer Notation

Separator SPACE

Bank Bank or group indicator of assigned location.

Subaddress (Absolute) Subaddress of assigned location in decimal.

Blank SPACES

Op Code OCT (denotes octal not~tion of machine word)

Blank SPACES

Op Address (Absolute) Bits 1-12 of machine word (in octal)

Blank SPACE

A Address (Absolute) Bits i.3-24 of machine word (in octal)

Blank SPACE

B Address (Absolute) Bits 25-36 of machine word (in octal)

Blank SPACE

C Address (Absolute) Bits 37-48 of machine word (in octal)

Blank SPACE

Remarks Program.mer Notation

Figure H. ARGUS Listing - Data Constants

V)
m
()

::!
0 z
x

0 c,,
c ,,
'°
~
)>

'° G'>
c
V)

)>
V)
V)

~
g:J

!:(
0 .,,
m
'°)>
::!
0 z

'°

Print
Position

i

2-9

iO

ii-20

2i

22-33

34-35

36-77

78

79

80-83

84-88

89-96

97-H3

H4-i20

2-9

Z5-i04

Related
Card Cols. Field Description

EQUALS AND RESERVE INSTRUCTIONS

----- Error Indicator Asterisk indicates the presence of an error.

66-73 Line Number May be written by programmer or generated by ARGUS.

----- Separator SPACE

i-iO Location Programmer Notation

----- Separator SPACE

ii-22 Cormn.and Code Programmer Notation

23 Blank SPACES

24-65 Ex;pression Prograrxuner Notation

----- Separator SPACE

----- Bank Bank indicator or sign of assigned value.

----- Subaddress (Absolute) Subaddress or integers of, assigned value in decimal.

----- Blank SPACES

----- Complex Address Complex assignm.ent in absolute ARGUS format (see Figure iO)
(Absolute) if tag also has a complex assignm.ent.

----- Blank SPACES

74-80 Remarks Programmer Notation

REMARKS CARDS

66-73 Line Number Written by programmer or generated by ARGUS.

i-80 Remarks Card image of remarks card.

Figure i.2. ARGUS Listing - Equals and Reserve Instructions and Remarks Cards

Vl
m
()

::::!
0 z
x

0
c
-I .,,
c
-I
"Tl
;:;t1

~
)>
;:;t1

G)
c
Vl

)>
Vl
Vl

~
o:J

~
0 .,,
m
;:;t1
)>
::::!
0 z

'()
CX>

Print
Positions

f-24

25-34

36-49

50-63

64-77

78-79

80

81-88

89-120

I

I

Field

Blank

Command Code

A Address

B Address

C Address

Segment Number

Blank

Line Number

Blank

Description

SPACES

Operation code (or constant code) of program word in which the tag
appears. Also the tag with or without address modifier if the tag
appears in the command code field of the program word.

Tag with or without address modifier if the tag appears in the A
address field of the program word.

Tag with or without address modifier if the tag appears in the B
address field of the program word.

Tag with or without address modifier if the tag appears in the C
address field of the program word.

The segment number of the segment in which the reference appears.

SPACE

May be written by the programmer or generated by ARGUS.

SPACES

Figure 13. ARGUS Listing - Analyzer Lines

VI
m
()

:::!
0 z
x

0
c
-I
""t1 c
-I
11
:;::io

2
)>
:;::io

G'>
c
VI

)>
VI
VI

~
c::J

~
0 .,,
m
:;::io
)>
:::!
0 z

'° '°

PRDGN.AME SEGNAME PAGE nnn
E LINE NO LOCATION OPERATION S A ADDRESS B ADDRESS C ADDRESS B LOC MASK A B c REMARKS

ooo65ooo COMPUTE WA,MASKl C ASSIGN ADDAH.ITH o,4 10500 0128 0502 0503 0,004
TS COMPUTE oo oooo6ooo
WID COMPUTE+3 00 00138000
SS COMPUTE+4 COMPUTE+) 00 00279000

*ooo66ooo TX,MASK2 SYMBOL - LISTIMAG+5 10501 0129 N,09,0l ----- 3,0o6
*USAGE *AA

OOo67000 STORETAG ALF TAG 10502 OCT 6321 2715 1515 1515
00068000 B,MASKl DEC OOOGGGOOOGGG 10960 OCT 0000 7777 0000 7777

WA,:MASKl oo ooo65ooo
ooo69000 ASSIGN me GGGGGG000801 10503 OCT 7777 7777 0000 4001

WA ASSIGN oo ooo65ooo
00070000 ADDARITH OCT 7775000200167745 10504 OCT 7775 0002 0016 7745

WA ADDARITH oo ooo65ooo
00071000 SYMBOL .ASSIGN N,ll,l N,09,01

TX SYMBOL oo ooo66ooo
00072000 LISTIMAG ASSIGN 3,1 3,001

TX LISTIMAG+5 oo ooo66ooo
00073000 A EQU!LS ABCDE+l234/C+BCDEFGH-H.ABC +0256
00074000 CACl CAC + OUTBUFA OUTBUFB LSTA 10505 10801 11001 11201
00075000 Z,Xl SPFXj INPUTBUF l05o6 11401
00076000 AB RESERVE A 10507 +0256
00071000 ABC EQUALS ADD.ARI TH 10504
00078000 ABC ASSIGN :z,x7 ,31 Z,15,31
00079000 COMPUTE ASSIGN w,xo,16 10500 N,08,16
00080000 R, AND THIS IS JUST A SAMPLE

NOTES:

Line 65 - is an example of the general printed format for an instruction, showing the symbolic coding written by the
progranmer and the absolute location and address fields of the assembled instruction. The three analyzer
lines ~hich follow show references to the tag appearing in the location field.

Line 66; - contains two errors, reference to a special register address in a masked instruction, and use of address
arithmetic with a tag assigned a complex address. The error line which follows provides the programmer
with diagnostic information on the errors.

Lines 67-70 - illustrate the octal format of the absolute machine word interpretation.

Lines 71-79 - illustrate various examples of control constants and control instructions.

Line 80 - is a remarks card as printed on the listing.

Figure 14. Sample ARGUS Listing (With Analyzer)

Vl
m
()

::!
0
z
x

0
c
-I
-c c
-I ,,
;::o

2
)>
;::o
G)
c
Vl

)>
Vl
Vl

~
o:J

Q
0 ..,,
m
;::o
)>
::!
0
z

SECTION XII. OUTPUT FROM ARGUS ASSEMBLY OPERATION

Printout

*AA

*ASSIGN

*ASSIGN

*ASSIGN

*BNK ERR

*BNK ERRi

*BLANK

*CON FIG

*CON FIG

*CONFIG

*CON FIG

*CON FIG

*CONFIG

*CONFIG

*CONFIG

*CON FIG

*CON FIG

*DEVICE

*DEVICE

*DUPLCAT

*GRP OER

100

Field

Command,
A, B, or C

Command

A

Command,
A, B, or C

A, B, or C

A, B, or C

Location

Location

Command

Command

Command

A

A

A,

A,

A,

A,

B,

B,

B,

B,

or C

or C

or C

or C

Command

Command
or A

Location

Command

Error Condition

Illegal use of address arithmetic (e.g., with a tag a,ssigned
to a special register address).

Address or augmenter in simulator instruction does not end
in 111.

Tag used in A address field of SETLOC has improper assign­
ment.

Use of a tag inconsistent with its assignment (e.g., symbolic
augmenter not equated to an integer, tag in a masked instruc­
tion assigned to a special register, etc.).

Result of address arithmetic is negative or greater than the
largest address in the system.

Tag in an address field of an instruction is assigned to a dif­
ferent bank than the instruction.

Location field is blank in EQUALS, ASSIGN, or T AS.

Illegal tag (illegal characters or all numeric).

Generated mask parameters exceed limits or resultant mask
goes beyond right end of word.

A mask is designated incorrectly.

For SPEC, CAC, CONTROL, SETLOC, MASKGRP, or END,
the characters following the command code are neither blank
nor one of the allowed configurations.

Illegal characters within a data constant.

Parameters in a macro instruction do not correspond to those
in the master macro instruction or they cross field boundaries
in the coding.

Z, or N, not followed by a valid special register name or
number.

Non-numeric characters following C, or X,.

Non-numeric characters in address modifier or increment.

Non-numeric characters in number of shifts following A, B,
or D.

Peripheral address inconsistent with instruction (e.g., WF
to a card reader, etc.).

Peripheral address in peripheral instruction or TAC not
available according to the equipment configuration.

A tag appears in the location field more than once with con­
flicting assignments (note that tags may appear more than
once without conflicting assignments).

New mask generated when current group is full.

Figure 15. Programming Errors Detected During Assembly

Printout

*ILLEGAL

*ILLEGAL

*ILLEGAL

*ILLEGAL

*ILLEGAL

*MEMOFLO

*MSK ERRi

*MSK ERRi

*MSK ERR

*OVERFLO

*OVERFLO

*OVERFLO

*OVERFLO

*OVERLAP

*REJECTD

*REJECTD

*UNASYND

*UNASYND

*USAGE

*USAGE

*USAGE

*USAGE

*USAGE

*USAGE

Field

Location

Location

Location

Command

Command

Location

Command

Command

c

Location or
Command

Location

A

A, B, or C

Location

Location

Location

Command,
A, B, or C

A

Location

Location

Location

Command

Command

Command

SECTION XII. OUTPUT FROM ARGUS ASSEMBLY OPERATION

Error Condition

Any character other than Z, F, S, B, X, L, R, or P followed
by a comma in the location field.

Z, not followed by a legal special register name.

F, S, B, or L not followed by a tag.

Illegal operation code.

Call for a macro routine which is not in the library.

A segment overflows the memory of the computer.

Use of a shift mask in a field instruction or vice versa.

Symbolic reference to a mask not in the current group.

A dependent subroutine is called for twice with two different
mask groups in control.

More than eight characters in a tag.

New mask designated when current group is full.

Data constant larger than the maximum value allowed.

Address modifier greater than 2047 or 16, 383; augmenter
greater than 255 (254 for X7); increment greater than 31;
number of shifts greater than 8, 11, 12, 44, 48, or 63 (as
allowed); number of words transferred greater than 63, etc.

Overlap of subsegments when programmer has specified the
initial locations.

Illegal tag combination in EQUALS or RESERVE (e.g., re­
sult has dimension> 1 in EQUALS or > 0 in RESERVE, tag
was not defined previously, etc.).

A subsegment which was previously normal is now specified
as common.

A tag which does not appear in the location field is referenced
in an address field.

Symbolic augmenter in ASSIGN or TAS or tag in A address
field of SET LOC not defined previously.

Location field is not blank in MASKGRP or END.

Location field is Z, X, F, S, or Bin SETLOC, MODLOC,
EVEN, or SIMULATE.

Location field is Z, F, S, or Bin RESERVE.

A mask is designated in an instruction which cannot be
masked.

Ambiguous field type in a generated mask ("A" or "D" not
specified).

Peripheral operation code not followed by a valid configura­
tion.

Figure 15. Programming Errors Detected During Assembly (cont)

101

SECTION XII. OUTPUT FROM ARGUS ASSEMBLY OPERATION

Printout

*USAGE

*USAGE

*USAGE

*USAGE

*USAGE

*USAGE

*

Field

Command

Command

Command

A

A, B, or C

A, B, or C

S/C

1t>ossible Errors

Error Condition

Print operation code not followed by blank, M, or MR.

Multiprogram control op code not followed by blank or H.

For LINK, MASKBASE, TAC, SEGNAME, MODLOC,
EQUALS, RESERVE, ASSIGN, TAS, EVEN, or SIMULATE,
the command code is not followed by blanks.

A address field of EQUALS, RESERVE, CONTROL, TAC,
or MODLOC is blank.

Illegal address type for instruction (e.g., special register
address in masked instruction, indexed address in SPEC,
etc.).

Address field which should be blank is not blank (e.g., A or
B address field of SPEC, C address field of MASKGRP, etc.).

Contents of S/ C column not legal for instruction.

Figure 15. Programming Errors Detected During Assembly (cont)

102

SECTION XI 11

LIBRARY ROUTINES

The ARGUS system includes a library of checked-out macro routines and subroutines

representing frequently used coding which is preserved for easy insertion into new programs.

Each macro routine or subroutine in the library is requested by means of a pseudo instruction

which specifies _the desired routine and all parameters required for its execution. These

ARGUS pseudo instructioni; may be included in a program as easily as machine instructions.

When a program is assembled, ARGUS recognizes each pseudo instruction, obtains the cor­

responding coding from the library, and incorporates it into the program. The specifications

of every routine in the library are documented on a library routine specification sheet pre­

pared by the programmer who wrote the routine.

Macro Routines

Macro routines are stored in the ARGUS library in the symbolic language in which they

are originally written and in generalized form. When a program being assembled requests a

macro routine from the library, the routine is assembled into machine language and special­

ized to meet the needs of the requesting program, according to the parameter values in the

pseudo instruction. The routine may be designed to be inserted either entirely in sequence at

the point where the pseudo instruction was written or partly in sequence and partly out of

sequence. At least one word of the routine must be inserted in sequence at the point of the

pseudo instruction in order to transfer control to the out-of-sequence portion. If the routine

contains more than one in-sequence word, the program.mer must exercise care in using ad­

dress arithmetic in the vicinity of the pseudo instruction. If the routine contains any out-of­

sequence coding, this coding is stored at the end of the subsegment which includes the re­

questing pseudo instruction. The programmer must see that any subsegment which contains

such out-of-sequence coding can be stored by Assembly within a single memory bank.

The pseudo instruction which is used to call a macro routine is cal.led a macro instruc­

tion and has the following format. The use of a tag in the location field is optional.. If the

ARGUS ;g~~NG

PROBLEM----~------------- PROGRAMMER--------- DATE----- PAGE __ Of __

~ LOCATION 1ol11 COMMAND CODE 22_M24 A ADDRESS 37131 8 ADDRESS · sJ12 c ADDRESS
L REMARKS

115Jfl6 LINE NUMBER 7Jj_74 10

b!:9 T l •.• i / .[·T /p11 l ± L1 NAME,p1/pz i~ f3 f4
-1.

:
I
i i

macro instruction is tagged, ARGUS as signs this tag to the first word of the assembled macro

103

SECTION XIII. LIBRARY ROUTINES

routine in the object program. Any reference to this tag within the same program segment

refers to the first word of the assembled routine. The letter "L" in the command code field

is a control character which designates that the following code is the name of a routine in the

library. The control character is followed by a comma and the name of the desired routine.

The name may contain up to eight alphanumeric characters, of which at least one must be

non-numeric. If one or more parameters are specified in the command code field, the name

must be followed by a comma.

The S/ C column normally designates the same sequencing counter that selected the

macro routine. This causes the routine to be executed under control of the specified counter,

except that any sequencing counter designation(s) within the routine will override the designa­

tion in the macro instruction. However, if the routine includes coding to set up the sequencing

counter designated in the macro instruction, which can be determined from the specification

sheet, then the programm.er is free to specify either counter in the macro instruction. Note

that only a macro routine which contains such coding can be entered from different sequencing

counters within the same program.

The codes p
1
I p

2
/ through pn represent the values of the various parameters required by

the macro routine. The type and format of each parameter required by a given routine may

be obtained from the specification sheet. A macro instruction may contain up to 25 para­

meters, but the number of characters which can be written in one field is limited to i2 in the

command code field and i4 in each address field. Individual parameters must not cross field

boundaries and must be separated from each other by slashes or by the end of a field.

ARGUS specializes a macro routine when it is assemble:d into an object program by in­

serting the parameter values stated in the macro instruction. For example, pi might specify

the number of words in each item of a table, in which case it could be used in the macrocoding

as an increment to a special register. Another parameter might be the location of the begin­

ning of the table. (See Appendix A for other examples of parameters.) The formats of para­

meter values are not necessarily the same for each appearance of the macro instruction. For

example, if one of the parameters in the routine is used to reference a mask, the parameter

value might be a symbolic tag in one instruction and mask generation information in another.

However, when the parameter represents a quantity such as an increment to a special reg­

ister, for which there is only one acceptable format, the parameter value must have that for­

mat in every macro instruction which requests the corresponding routine.

104

SECTION XIII. LIBRARY ROUTINES

Programmer-Defined Macro Routines

In addition to the use of library macro routines, the programmer may code a macro

routine to perform some function which is required several times in his program. Such a

routine, called a programmer-defined macro routine, is included once in the card deck for

the program in which it is used. Although a programmer macro routine may be called any

number of times by the program with which it is assembled, it is not available for execution

by any other program (unless it is added to the library as describe:! in Appendix A).

The coding of a programmer macro routine is identified by preceding and following it

with the instructions MACRODEF and FINIS, respectively (as described on page 84). The

MACRODEF instruction must be followed immediately by a master macro instruction contain­

ing a control character of "P" (to designate that the routine is a programmer macro), followed

by the name of the routine and the tags of all required parameters. The master macro in­

struction defines the format of all requesting macro instructions for that routine. The macro­

coding is written in the same manner as a library macro routine (see Appendix A).

A programmer macro routine may contain up to 2048 cards. It must be included in the

program deck prior to the first macro instruction for that routine. A macro routine is avail­

able to any segment of the program after the appearance of the routine in the input deck. The

macro instruction which calls for the routine follows the format laid down by the master

macro instruction written with the routine (including a control character of "P"), and also

supplies the values of all required parameters. If a deck of changes to an existing program

includes any refer·ence to a program.mer macro routine, this routine must precede the refer­

ence in the input deck. This is because ARGUS derives all change information from the input

deck and does not refer to the old symbolic program tape to obtain the referenced routine.

Subroutines

The ARGUS library of routines includes subroutines as well as macro routines. A sub­

routine differs from a macro routine in several important respects.

i. It is assembled into machine language before it is added to the library;

2. It is inserted only once into each program segment in which it is ex­
ecuted, regardless of the number of times that it is executed within
that segment;

3. It is inserted out of sequence from the main coding and reached by means
of a transfer of control. A second transfer returns control to the main
coding when the subroutine is completed; and

4. It is specialized according to the stated parameter values when it is
executed, rather than when it is inserted into the program.

105

SECTION XIII. LIBRARY ROUTINES

Since a subroutine is stored out of sequence from the main program, it requires a link­

age, or calling sequence, to make the parameter values available to the subroutine, transfer

control to the routine, and then transfer control back to the main coding after the subroutine

is completed. The ARGUS system makes use of macro routines as calling sequences for sub~

routines. Every subroutine in the library uses one or more library macro routines as its

calling sequence. Like any other macro routine, the calling sequence is inserted into the pro­

gram every time that the subroutine is requested. It may be inserted entirely in sequence or

it may consist of an in-sequence portion and an out-of-sequence portion. The form.at and

location of the calling sequence are decided by the program.mer who writes the subroutine.

The flexibility of subroutines is increased by the ability to design different macro routines for

calling sequences.

The pseudo instruction which is written to execute a subroutine is known as a call in­

struction. Since this instruction calls a macro routine which sets up the desired subroutine,

it has the same format as any other macro instruction. The control character is always an

"L11 , however, since all subroutines are library routines. A subroutine may be performed

several times within the same program segment, using different parameters each time. How­

ever this cannot be done by a program.med modification of the call instruction. A separate

call instruction must be written for each set of parameters to be used.

As described in Appendix A, a subroutine may be designed to be entered from either

sequencing counter and to return control to either counter after execution. Sequencing counter

control may be changed within the subroutine, provided that the previous contents of the coun­

ters are preserved. In addition, a subroutine m.ay be designed to operate with variables which

are stored in a bank(s) different from that in which the subroutine is stored and also different

from the bank in which the call instruction is stored. The locations of such variables are

specified as parameters. Finally, a subroutine may be designed to be either independent of

or dependent upon the programmer's mask groups. Independent subroutines set up their own

mask groups and restore the program.m.er's mask groups after they are executed, while de­

pendent subroutines use the program.mer' s mask groups. The type of subroutine, dependent or

independent, and the number of masks required are indicated on the specification sheet. The

same mask group m.ust be in control every time a given dependent subroutine is called within

a program segment.

106

APPENDIX A

WRITING LIBRARY ROUTINES AND THE USE OF LAMP

Writing Macro Routines

A macro routine is written in generalized form, using symbolic tags to re pre sent all

parameters of the routine which may vary from one execution to another. The values of these

parameters to be used in a given execution are included in the macro instruction which calls

the routine. Each macro routine is preceded by a master macro instruction which defines the

format of all macro instructions for that routine. Each parameter tag used in the routine

must appear in the master macro instruction. When the routine is called, the value of each

tag appears in the corresponding position in the requesting pseudo instruction. When the

routine is assembled into the object program, it is automatically specialized by replacing

each parameter tag within the routine by the corresponding parameter value. As mentioned

in Section XI, a macro routine must be preceded by a MACRODEF control card and followed

by a FINIS control card when it appears in the ARGUS input deck. The macrocoding itself

may consist of from 1. to 2048 cards.

A parameter may be a constant, a field of an ARGUS language instruction, or any por­

tion of a field down to a single character or digit. A phrase of an ARGUS instruction is de­

fined as any part of the instruction which is always bounded by punctuation characters (period,

comma, plus, minus, asterisk, or slash) or by the beginning or end of a field. For example,

special register designators, augmenters, increments, address modifiers, and operation

codes are all phrases. Some fields (e.g., a symbolic tag without modifier) contain a single

phrase, while others (e.g., a complex address) contain several phrases. It follows, there­

fore, that a parameter may represent a phrase, a portion of a phrase, or a group of con­

secutive phrases. The type and format of the information which the parameter represents is

noted on the library routine specification sheet by the program.mer who writes the routine.

When a parameter represents only a portion of a phrase, it is necessary to designate

the boundary between the parameter and the balance of the phrase. The special symbol©

(punched as an 8, 5 combination) performs this function within the macrocoding. For example,

a macro routine contains the following decimal constant consisting of a plus sign, four zeros,

and a seven-digit parameter tagged PAR1.

107

APPENDIX A. WRITING LIBRARY ROUTINES

PRO BLEM PROGRAMMER DATE PAGE OF

LOCAY-ION 22 lc 24 ADDRESS 8 ADDRESS c ADDRESS
REMARKS

I 10 II COMMAND CODE A 37 38 51 52 65 116 LINE NUMBER 7jf74 10
,-

T DE.C -tOOOO @PAR\
I :r

The specification sheet for this routine states that PAR1 represents an integer of seven deci­

mal digits. The macro instruction which executes this routine contains a parameter value in

the proper format. When the routine is specialized, this value replaces the parameter tag to

form the complete constant.

A parameter tag may not include any of the punctuation characters which serve as

phrase boundaries (see above) or the character@ A parameter value may not cdntain a slash

or a @, but it may contain any other valid punctuation character. When a line of macrocod­

ing is specialized, phrase boundaries (except (~)} are retained and parameter tags are literally

replaced by their assigned values, including any phrase boundaries which those values may

include.

In most cases, each field of a macrocoding word is spedalized separately. This limits

the number of characters in a parameter value, since the capacity of a field is fixed at 12

characters for th,e command code and 14 for each address field. Note, however, that data is

permitted to cross field boundaJ.ies in the control instructions EQUALS and RESERVE, in the
r -

TAC constant, and in all of the c:iata constants. Since a parameter value may, not exceed one

field in length, no phrase which is too long to store in one field may be represented by a

single parameter. For example, if a 16-character octal constant appears as a parameter in

a macro routine, such a constant must be represented by two parameter tags, since it is too

long to store in a single field. The first word in the following example is a master macro

instruction in which TAGi and TAG2 represent two portions of an octal constant shown in the

second word. When the programmer writes a macro instruction of the form of the third word,

this constant is specialized according to the stated values and appears as shown in the fourth

word.

PROBE L M PROGRAMME;,R DATE PAGE OF

COMMAND CODE 22 ~ 24 A ADDRESS 8 ADDRESS C ADDRESS
REMAR,KS

I LOCATION 10 II 37 31 SI 12 65 116 LINE NUMBER 7] 74,, 10

L1 CONVE&t"l TA~\ TA4 ~
-+

OC.T TAG 1@'TA~ 2 I
I -T

L, CONVEl!-"'f 77777773 .33~3"!1'771 I
T

OC.T 177717 U~33337
I

11 I
I

108

APPENDIX A. WRITING LIBRARY ROUTINES

Alphanumeric constants within macrocoding are limited to left-justified series of char­

acters with no intervening space characters. An alphanumeric constant may contain a para­

meter provided that neither the parameter tag nor its assigned value contain any spaces.

The location field of the first macrocoding word should be left blank, as any tag written

in this field is automatically replaced by the location field contents from th~ macro instruc­

tion, even if those contents are all blanks. The location field should also be left blank in all

succeeding lines of macrocoding. However, if it is necessary to tag a macrocoding word, a

parameter tag should be used so that it can be varied for each execution of the routine.

Otherwise, an illegal duplication of tags will result if the macro instruction is written twice

within the same segment. Macrocoding words are referenced by using address arithmetic

with letters "C" and "X", as described on page 23.

The S/ C column in a macro coding word may contain an "S", a "C 11
, or a blank to specify

that the next instruction is to be executed under control of the sequence counter, the cose­

quence counter, or the sequencing counter designated by the programmer in the macro in­

struction. However, the controlling counter must be set to the proper value before any in­

struction can be executed from it. A macro routine may be written so that it must always be

executed under control of the same counter that selects it, thereby using the setting already

in effect. In this case, the specification sheet must inform the user always to write the

macro instruction so that it designates the same counter by which it was selected. A macro

routine may be written to set the controlling counter explicitly, so that it may be entered

from either counter. In this case, if the routine is to return control to the counter specified

in the macro instruction, then at least the last instruction to be executed must contain a blank

in the S/ C column. A special case is a macro routine which exits under control of the counter

designated in the macro instruction to the address which was stored in this counter when the

routine was entered. Such a routine must first preserve the contents of one counter, then

operate out of sequence under control of the preserved counter, and finally restore the pre­

served counter and give control to the counter specified in the macro instruction.

Any masks which are required by a macro routine may be either generated or designated

within the routine. A mask may be generated by specifying the customary three items of in­

formation M
1

, M
2

, and M
3

(see page 40). The programmer may state the values of these

three phrases in the macrocoding or he may represent any or all of them by parameters. A

mask may be designated by writing an "F" followed by a comma and a nnmber from 0 to 31 (for

a field mask) or an "S" followed by a comma and a number from 0 to 63 (for a shift mask) in the

location field. Type "B" masks for use with both field and shift instructions are not permitted

109

APPENDIX A. WRITING LIBRARY ROUTINE$

within macrocoding. A designated mc;tsk is referenced in an instruction by using the mask

number exactly as though it were a, mask tag• It is not necessary to assign mask numbers in

the order in which the masks are de,signated. Contrary tq normal usage, however, the line

which designates a macrocoding mask must follow the last reference to the mask. Note that

all masks which are used by a macro routine are included in the mask groups which are in

control when the routine is executed. To facilitate the accommodation of macrocoding masks

within these groups, ARGUS maintains a mask pool and eliminates any duplication among

macrocoding masks~ :tnasks used by dependent subroutines, and all generated masks, whether

generated in the main coding or in a library routine.

If a macro routine is written to be added to the library of routines, the master macro

instruction should contain a control character of "L" in the command code field, and the

routine should be included in the deck of cards to be processed by LAMP (the Library Addi­

tions and Maintenance Program). After LAMP has added the routine to the library, it can be

referenced from any program being assembled. If the routine is written for use as a pro­

grammer macro, the master macro instructidn should contain a control character of "P",

and the routine should be included in the object program deck prior to the first macro in­

struction by which it is called. In this case, the routine is not available for reference from

other programs. However, a programmer macro routine may also be included in the LAMP

input deck and added to the library without the necessity of altering the control character.

EXAMPLE: Figure A-1 shows the coding of a macro routine called SRCHEQU as it is written

in generalized form. Lines 1 and 12 contain the control instructions MACRODEF and FINIS,

respectively. Line 2 is the master macro instruction containing all parameter tags used in

the routine. The type and format of each parameter are listed separately on the library rou­

tine specification sheet (shown in Figure A-2). Figure A-3 shows a typical macro instruction

which might be written to execute the routine SRCHEQU, followed by the routine in special­

ized form, as it would be inserted into the object program. Note that each parameter tag is

replaced by the corresponding value as given in the macro instruction.

Writing Subroutines

A subroutine is written in the form of a program segment, assembled, and placed on

the symbolic program tape. After the routine is checked out, it is added to the library where

it is available for inclusion in any program being assembled. A subroutine is called depend­

ent if it uses the mask groups currently in control in the object program when it is performed.

A subroutine is called independent if it either (1) sets up and uses its own mask groups, pre­

serving and restoring the contents of the mask index register, or (2) does not require any

110

2

4

5

6

7

8

9

10

II

12

13

14

15

16

17

llJ

19

20

Honeywell
[jjJ e~ DaW., P~~

PROBLEM MAC.RO E X.AMl'Le.

ARGUS ;g~~NG

PROGRAMMER -------------- DATE PAGE ___ CF __

/ REMARKS
I LOCATION 10 11 COMMAND CODE 22 k 24 A ADDRESS 37 38 B ADDRESS 51 52 c ADDRESS 65 66 LINE NUMBER 73 74. 80

f ! ! j ! ' T l I MACRODEF i l l CONTliti>L CAR.D

I / . ! N\ASTE1t
1 MA~2.o l L,SRC..HfQU ,M AR~ SR TASLE/sn .. E N.OMATC\.\ ,,;_iTRt,tc..TtON

1 TX. X, -tO Z, SR. SE"\" BE~. OF TABLE.

t
TX. X,1'\ z

1
Au1 eNooF-[TAB~E-rAu1

IX. I AR~ N, Au' AR4 ~ ~N.O Of "tASLE.

I
1-rEM:.. A ~qt? -PKO

NA N,sR,M AR<i c,,-to I vts i
!

WD Z, SR X. 1 -t 2 Z, SR sE,T A~~l?., QF l"TE.N\

LA x -tl z SR NOUA._"{C.H EN.f OFl-rAilJLE.~'{ES
~ ' I IY\n NO I

x SPEC TA s LE C.ON.TINJE ·~ SE.QUEttCE
I l

1.
x.' SPEC. TA.&\..E + 5\ z E I

I x, FXB\N -~ J

F INtS C..ON\~OL C.AR.I>
I I

I I
I I

I
I

I ! l
I I I

c-- ; l t J L

1· I 1

I l I i

I i
T

I
I T

___!___L_ -----'---I ' I ' I I ' I I

Figure A-i. Sam.ple Macro Routine in Generalized Form

)> .,, .,,
m z
0 x .,..
~
:;t1

-t

z
G'>
!::
OJ
:;t1
)>
:;t1

-<
:;t1

0
c
::::!
z
m
U')

APPENDIX A. WRITING LIBRARY ROUTINES

INDEX:
SEARCH CODE:

DATE:
PAGE:

SRCHEQU
7/11/60
1

LIBRARY ROUTINE SPECIFICATION SHEET

ROUTINE NAME:

BRIEF DESCRIPTION:

PROGRAMMER:

PROGRAM TYPE:

MASK GROUP DEPENDENCE:

SRCHEQU

This macro routine will search a table for
equality on a particular word, continue in se­
quence if the word is found, or jump to a
specified location if not. The location in which
the word was found will be left in a special re­
gister specified by the programmer. The rou­
tine will compare on every nth word of the
table, where f S n S 31. One location must be
reserved at the end of the table for use by the
macro routine.

MACRO X SUBROUTINE

DEPENDENT INDEPENDENT ---
NUMBER OF MASKS USED (IF DEPENDENT): SHIFT 0 FIELD 0

HSM LOCATIONS USED:

SPECIAL REGISTERS USED:

SPECIAL REGISTERS RESTORED:

TIMING:

PERIPHERAL DEVICES:

ERROR INDICATIONS AND ACTIONS:

OTHER LIBRARY ROUTINES USED:

--- ---
9

One specified by para.meter, and AUL

YES NO X ---
108 + 24x microseconds if word is found, or
1.08 + 24y microseconds if not, where x =
number of items preceding the de sired item
+1, and y = the total number of items in the
table +1..

None

None

None

Figure A-2. Specification Sheet for Macro Routine SRCHEQU

112

APPENDIX A. WRITING LIBRARY ROUTINES

INDEX:
SEARCH CODE:

DATE:
PAGE:

SRCHEQU
7/H/60
2

LIBRARY ROUTINE SPECIFICATION SHEET (cont)

PSEUDO INSTRUCTION FORMAT:

LOCATION COMMAND CODE S/C A ADDRESS B ADDRESS C ADDRESS

L, SRCHEQU, M ARG/SR TABLE/SIZE NO MATCH

PARAMETER DESCRIPTION:

Symbol Type Description

M Literal Decimal number (unsigned) - The number of
words in each item of the table, s 31. The
routine will compare on every Mth word.

ARG Symbolic, Indirect, Location of word to be searched for.
or Indexed Address

SR Name (or number) of This special register is used in searching
a Special Register the table and will contain the location of the

word searched for, when it is found.

TABLE Symbolic Tag - Direct Location of the beginning of the table.
Memory Location

SIZE Literal Number of words in the table. Must be a
multiple of M.

NOMATCH Symbolic, Indirect, Location to jump to when word is not found.
or Indexed Address

Figure A-2. Specification Sheet for Macro Routine SRCHEQU (cont)

113

~

2

4

5

6

7

8

9

10

II

12

13

14

15

16

17

18

19

20

Honeywell
~~Diaa,~4-

ARGUS ;g~~NG

PROBLEM MACRO EXAMPLE - Con-lin11ed PROGRAMMER DATE PAGE ___ . OF __

;; R E M A R K· S
1 LOCATION 10 11 COMMAND cooe 22 /c 24 A ADDRESS 31 38 e ADDRESS 51 52 c _ADDRESS 65 66 LINE NUMBER 73 74 80

1 1 . ! . ' ' ' I' ' -r -r '

l 1SRC.HEQU1 3 'c) PROPUC."T/R2. PRIC.ET&L/451 WRON<?tDPt j 'SAMPl_§_ MAjc.20 1NS1__~
T- I
. I

TX C X., -to z, 1'2 i

I

TX. C x, +t Z,AUl I
l

TX C PR.OOU<:.T N, AU l i

PJA cl N, R2, 3 PR.oouc:t c,-to MAC..JQ JOPl>Jq /ttS

) I NSER'l~ INTO
\/JD Jc z,_ R2 x, -t 2. z, R'2 PRo..Y..&AN\..LREPLAc.•Nii

MAc.ao ... ~TRUC..TlON
LA IC X, i" I Z, RZ WRONG PPT "T

T
x, SP£C. PR I CE TBL I

X 5PEc.. PRl<:..E. T&L-tSI l
I 1

x fXf,tN -3 14 I
I I

l
I

J
I

I
1

I

I I
: l

I
l
I

l

I
I

I
I 1
I ' " 1 I ' I 1

Figure A-3. Macro Instruction for Sa.m.ple Routine and Resulting Specialized Coding

)> .,, .,,
m
z
0
x
'!>
~
:::::0

::!
z
G)

c
OJ
:::::0
)>
:::::0
-<
:::::0
0
c
::!
z
m
V\

APPENDIX A. WRITING LIBRARY ROUTINES

masks. Any segment or program on the SPT may be designated as a subroutine and added to

the library, provided that it conforms to the following language restrictions:

i. No special register tags appear in the location field;

2. No link tags are used;

3. No reference is made to a special register group indicator;

4. All peripheral codes are expressed as parameters so that they can be
varied for each individual execution; and

5. If the subroutine is to be dependent, it does not contain any type "Bu
masks and no mask is referenced as an instruction operand.

The assembled subroutine may or may not be a part of a program containing other segments.

Although a subroutine must be added to the library as a single program segment, it may be

convenient for checkout purposes to write the subroutine as several segments, directing

LAMP to combine these segments into one. LAMP combines segments to form a subroutine

by a simple overlay process; therefore, the prograrnm.er must insure that all segments of a

subroutine are capable of being in memory simultaneously and without conflict.

Subroutines may be nested to any desired level. In other words, a subroutine may con­

tain the call instruction of a second subroutine, which may in turn contain another call in­

struction, etc. Any combination of dependent and independent subroutines may be nested. A

subroutine may also contain a macro instruction, although a macro routine is not permitted

to include a library pseudo instruction.

As mentioned in Section xm, every subroutine is stored out of sequence and reached

from the main coding by means of a calling sequence. ARGUS uses macro routines as calling

sequences. Therefore, to execute a subroutine the program.mer writes the macro instruction

of the desired calling sequence. The calling sequence is inserted and specialized at assembly

time; the subroutine itself is inserted out of sequence, in generalized form, and only once in

each program segment in which it is to be executed. When the calling sequence is executed,

it specializes the subroutine according to the parameter values stated in the call instruction

and then gives control to the subroutine. When the subroutine is completed, control is re­

turned to the main coding via the calling sequence.

Every subroutine calling sequence contains a subroutine call constant, written with

SUBCALL in the command code field, blank A and B address fields, and the nam.e of the

desired subroutine in the C address field. This constant, which directs ARGUS to insert the

routine named, is replaced at assembly time by a special address constant containing the

entry address of the subroutine. If the subroutine is to be entered at any point other than

the beginning, the subroutine name is modified by address arithmetic in the SUBCALL

115

APPENDIX A. WRITING LIBRARY ROUTINES

constant. If two or m.ore entry points m.ay be used for different executions of the subroutine,

the desired entry m.ust be designated by means of a parameter.

For each subroutine which is added to the library, a calling sequence m.ust be provided.

ARGUS can be directed to generate either of two standard calling sequences, known as type 1

and type 2, respectively, which fulfill the requirements of m.any comm.on subroutines. If the

parameter requirements of a subroutine cannot be m.et by either of these standard calling se­

quences, the program.mer m.ust code a special calling sequence to be added to the library along

with his subroutine. When a subroutine is added to the library, LAMP either generates the

requested calling sequence or processes the special sequence provided; in either case, the

calling sequence is added to the macro routine area of the library. Every subroutine consists

of three sections: the entry, the body, and the exit. The body of the subroutine is the coding

which performs the function for which the routine is written. The entry and exit form linkages

from. the calling sequence to the subroutine and from. the subroutine back to the calling se­

quence to return to the m.ain coding. The program.m.er who uses a standard (generated) calling

sequence m.ust be familiar with the generated coding in order to prepare his entry and exit.

Type 1 Calling Sequence

The type 1 calling sequence may be used with a subroutine requiring two or three para­

meters, each of which is a single-word variable and none of which are literals. The input

parameters (argument locations) are specified in the A or B address field or both, the output

parameter (result location) in the C address field. Only one parameter m.ay be specified in

each address field and none may be specified in the command code field.

The coding of the type 1 calling sequence is given in Figure A-4. The parameter values

from. the call instruction are represented by the quantities in brackets. This calling sequence

performs the following functions:

ARGUS ;g~~NG
PROBLEM ________ -'---------- PROGRAMMER-------- DATE----- PAGE __ OF __

LOCATION COMMAND CODE 22 ~ 24 A ADDRESS 8 ADDRESS C ADDRESS
REMARKS

I 10 II 17 31 51 12 65 ()6 LINE NUMBER 73 74 10

15 c Z 1 C .SC x., -t(:. x, +o
J_

x, TX. ' X. 1 -t-S Z, AUi l
I

x, t:.X q - [8 Al>l>R.. PARAMJ - I

x, TS C (A AOl>R, PA~AM:)
I

- N,AUI I
x, TS I~ - (c.. ADI>~. PARAM.) - :
x, TX I'S

I~ }(,-+2 Z
1

C5C. I

J(' SU SC.ALL SU6R.I I
I x, RE.SER.VE I I

~ ____....,, - I - - - - -
Figure A-4. Type 1 Calling Sequence

116

APPENDIX A. WRITING LIBRARY ROUTINES

Word 1 preserves (CSC) and resets CSC to X, +0, the address of the first out-of­
sequence word in the calling sequence. Word 1. is located in sequence and replaces
the call instruction.

Word 2 stores the subroutine entry address in AUL

Word 3 stores the B address parameter in the mask register, by means of in­
active addressing.

Word 4 stores the A address param.eter in the low-order product register, by
means of inactive addressing. It then transfers the subroutine entry address
from AU1 to the CSC and gives control to this counter to enter the subroutine.

Word 5 is the re-entry to the calling sequence from. the subroutine. It transfers
the result from the low-order product register, where it was stored by the sub­
routine, to the location specified by the C address parameter.

Word 6 restores the CSC to its preserved setting and returns control to the
main coding. The next instruction is selected by the sequencing counter speci­
fied in the S/ C column of the call instruction.

Word 7, the SUBCALL constant, is in the form. of a special address constant
and makes the subroutine entry address accessible to the calling sequence.

Word 8 reserves the temporary storage location for (CSC).

Each subroutine which utilizes a type 1. calling sequence must include an entry which obtains

the parameter values and places them in the subroutine, and an exit which makes the result

available and returns control to the calling sequence.

ENTRY: The entry must include at least the following three words and a constant of ali binary

ones. If the subroutine is independent and requires masks, the entry must also preserve

(MXR) and set up the required mask group(s).

ARGUS CODING
FORM

PROBLEM _________________ PROGRAMMER-------- DATE----- PAGE __ OF __

I LOCATION 10 11 COMMAND CODE 22~24 A ADDRESS 37 38 8 ADDRESS C ADDRESS
REMARKS

51 52 65 llfl LJNE NUMBER 7] 74

TS c - A~GA - +
TS c Z,C.S.H c s"sAVE. - I

!
I

EX lq ALLONE:.S - AR~S I
I

-
Word i transfers the A address parameter from the low-order product register,
where it was stored by the calling sequence, into a temporary location such as
ARGA.

Word 2 preserves (CSH) for exit purposes.

Word 3 transfers the B address parameter from the mask register into a tem­
porary location such as ARGB. This word may be omitted if there is no B ad­
dress parameter.

10

BODY: The body of the subroutine uses the input parameters stored in ARGA and ARGB to

perform the subroutine function, and stores the result in a temporary location such as

RESULT, where it is available to the exit.

117

APPENDIX A. WRITING LIBRARY ROUTINES

EXIT: The exit must include at least the following two words. If the subroutine sets up its

own mask group(s), the exit must also restore the previous contents of the MXR and set up

the main program mask groups previously in control.

PROBLEM PROGRAMMER DATE PAGE OF

LOCATION COMMAND CODE 15/
22 /c 24 A ADDRESS 37131 B ADDRESS C ADDRESS

1 REMARKS
65 rfl6 LINE NUMBER 73 74 I 10 II 51 12

TX (C..5HSAVE. T z.,AUI I i _l

TS
I c R.ESU L "l ~ N, AUi I I

"I -t

Word 1 transfers the previously saved contents of the CSH into AUi.

Word 2 transfers the result into the low-order product register, then transfers
the previous contents of the CSH from AU1 to the CSC and gives control to the
CSC to return to the calling sequence.

Type 2 Calling Sequence

10

The type 2 calling sequence may be used with a subroutine requiring up to three para­

meters, each of which may be a single-word variable, a list (array) of variables, or a literal

containing up to i6 binary digits~ One parameter may be specified in each address field in

any desired sequence; !\One may be specified in the command code field.

PROB E L M PROGRAMMER DATE PAGE OF
I

A ADDRESS B ADDRESS C ADDRESS
REMARKS

I LOCATION 10 II COMMAND CODE 22 /C 24 37 31 51 112 65 fl6 LINE NUMBER 73 74 10

T.S iJ z. csc x,-ts x., +o I I
I

)(J TS c x, -t3 Z,AUI N,~UI I

LA AODR~S.S l l .s APPRESS _} r C ADDRESSl
T

x., PR,S I

L PARAMETER] L rAttAMe-rt:R. J l PARAMETt:.R]
I

>'-, CAc,s I

x, .SU8C:AlL I suBR2 l
I

fS1
I

I "· TX [£ x, -t' - Z, C.. SC.
-+

x., ltESE.lt\IE I !
I]

Figure A-5. Type 2 Calling Sequence

The coding of the type 2 calling sequence is given in Figure A-5. This routine Ferforms

the following functions:

118

Word 1 p:':'eserves {CSC) and resets CSC to X, +0, the address of the first out-of­
sequence word in the calling sequence. Word 1 is located in sequence and re­
places the call instruction.

Word 2 transfel's the subroutine entry address to AU1, then resets the CSC to
that address and gives control to the CSC to enter the subroutine.

Words 3 and 4 contain the parameter values stated in the call instruction. The
"S" characters in the command code fields of these two words direct ARGUS to
store the parameter values in these words according to a special format. Each

APPENDIX A. WRITING LIBRARY ROUTINES

paratneter which is expressed as a complex address is translated to machine
form and placed in the corresponding address field of word 3. Each paratneter
which is expressed as a direct memory location address (with or without ad­
dress modifier) or as a literal of up to 16 binary digits is translated to machine
form and placed in the corresponding 16-bit group of word 4, and the address
"N, AUZ. 11 is placed in the corresponding address field of word 3. The use of
the "PR, S" and "CAC, 5 11 pair allows an address in any valid address format to
be made available to the subroutine. This pair also allows the use of a literal
of up to i6 binary digits as a parameter.

Word 5, the SUBCALL constant, makes the subroutine entry address available
to the calling sequence.

Word 6 restores the CSC to its preserved setting and returns control to the
main coding. The final instruction of the subroutine exit section must give con­
trol to this word. The instruction following word 6 is selected by the sequencing
counter specified in the S/ C column of the call instruction.

Word 7 restores the temporary storage location for (CSC).

Each subroutine which utilizes a type 2 calling sequence requires an entry and an exit as link­

ages to and from the calling sequence. The following discussion illustrates a typical entry and

exit for a subroutine which uses a type 2 calling sequence. The precise entry and exit pre­

pared for a given subroutine depends upon the design of the call instruction and the types of

paratneters used. In every case, the paratneter values must be presented in the form ex­

pected by the subroutine.

ENTRY: The following example illustrates an entry section based on three parameters in any

valid address form, of which the A and B address fields contain one-word input parameters

(arguments) and the C address field contains a one-word output parameter (result). Note that

this is not necessarily the case when a type 2 calling sequence is used. The masks referenced

by this entry coding are defined in the exit section (see below).

PROBLEM _________________ PROGRAMMER-------- DATE----- PAGE __ OF __

I

I

!

REMARKS
LOCATION 10 II COMMAND CODE -22 Yc 24 A ADDRESS J7 ll B ADDRESS 51 52 C ADDRESS 65 116 LINE NUMBER 7J174

1 x. 'cT Z,CSH C SHSA.VE. l
SS le N, CSH A MA"::.K. c' --t.q..

5ws, AMASK ~ N,CSH 3'=> c, -ts

5WS I ADES c N 1 CSH,' 1, L c, -t4-

S Vt/S, A LLO NES ~ N,CSM .3 2. z,AU2.

TX. icj [A AOl>R.. PA RA~.] AS"TOE!,E I

SWS 1 A LLONE.S C N,cs\i lb Z,AU2

TX. C (S ADDlt. PAR.AM] BS"TOli:.E

Word 1 preserves the contents of the CSH in a temporary location called
CSHSAVE for exit purposes.

+
I

I

I

l

I

T
I
I

-l-
!

T
I

Word 2 substitutes the A address field of the "PR" word in the calling sequence
into the A address field of word 6. Note that if the A address parameter is
specified as a complex address, this parameter is transferred into word 6;

10

119

APPENDIX A. WRITING LIBRARY ROUTINES

whereas, if the A address parameter is a direct memory location address, the
address "N, AU2" is transferred into word 6.

Word 3 shifts and substitutes the B address field of the "PR" word into the A
address field of word 8.

Word 4 shifts and substitutes the address designator bit corresponding to the
address transferred in word 3. It also increments the CSH by i so that this
register now contains the address of the "CAC" word in the calling sequence.

Word 5 transfers the A address field of the ''CAC" word into AUZ.

Word 6 transfers the contents of the location specified by the A address field
of the "PR" word into a temporary storage location ctalled ASTORE. Note that
if the A address parameter is specified as a complex address, the contents of
the location represented by this address are placed in ASTORE; whereas if the
A address parameter is a direct memory location address, the contents of the
location whose address is stored in AU2 are placed in ASTORE.

Words 7 and 8 position and transfer the contents of the location specified by the
B address parameter into a temporary storage location called BSTORE.

If any of the parameters are literals or array locations, they must be treated specially and

removed from the "PR" or "CAC" words of the calling sequence with coding other than the

above. If the subroutine is independent and uses masks, the entry section must also preserve

the contents of the MXR and set up the required mask group(s).

BODY: The body of the subroutine in this example uses the input parameters stored in

ASTORE and BSTORE to perfo;rm. the subroutine function, and stores the result in a temporary

location such as ANSWER, where it is available to the exit section.

EXIT: The following example illustrates an exit section based on the same assumptions as

the foregoing entry section, together with the masks required by both entry and exit. Again,

this coding is merely representative of an exit that might he used with a type 2 calling sequence.

120

ARGUS ;g~~NG

PROBLEM PROGRAMMER DATE PAGE. -- OF

22 ~ 24 8 ADDRESS C ADDRESS
REMARKS

I LOCATION 10 11 COMMAND CODE A ADDRESS 37 31 51 52 65 b6 LINE NUMBER 73 J4
. ,--

TX le C.SHSAVE. z,c.su
.J_

SS c N,CSH, I c MASK. c:,i-2. !

+ ""x. (N,CSH,2 z,AU2 i

[c ADOR. PAli?.AM.]
T

TX (AN5WE£. i

TX c z, C.SH z_, csc.. :
S,ALLONfS DEc 4666G6c,G~4Gct

s ,AMASK. DEC IOOGGG !

s, A DES DEC l
I
I

cM,AS\;;;. DEC 04-QOOOOOS'6GG I
J_
J_ -

Word i restores the preserved contents of the CSH (the address of the "PR"
word in the calling sequence).

--

80

APPENDIX A. WRITING LIBRARY ROUTINES

Word 2 substitutes the C address field of the "PR" word into the C address field
of word 4. The contents of the CSH are incremented by i so that this register
now contains the address of the "CAC" word in the calling sequence.

Word 3 transfers the "CAC" word (the word whose address is stored in the CSH)
into AU2. Note that the low-order 16 bits of the "CAC" word are now stored in
AU2. The CSH is incremented by 2 to form the address of the calling sequence
exit instruction.

Word 4 transfers the contents of location ANSWER to the location specified in
the C address field of word 4 (the C address parameter of the call instruction).

Word 5 transfers the contents of the CSH into the CSC and gives control to this
counter to return control to the calling sequence exit instruction.

Special Calling Sequences

The standard calling sequences (type 1 and type 2) can be generated by ARGUS to handle

many common forms of subroutines. Any subroutine which cannot conveniently use a standard

calling sequence requires a special calling sequence which is coded as a macro routine. For

example, a subroutine which requires more than three parameters must use a special calling

sequence. In addition, a subroutine which does not require the flexibility inherent in the

standard calling sequences (such as a one-parameter subroutine) can use a special calling

sequence to advantage. Macro routines which are designed to serve as subroutine calling se­

quences have the same properties as other macro routines.

A special calling sequence must perform the same functions as a generated calling

sequence; i.e., it must provide linkage with the subroutine and handle the parameters speci­

fied in the call instruction. The entry and exit sections of the subroutine must contain the

coding to obtain the parameters and make the result information available to the main pro­

gram. Since this coding is entirely dependent upon the macro routine which serves as calling

sequence, examples are not provided.

Figures A-6 and A-7 show two macro routines designed to serve as special calling se­

quences. The routine CALLMAC (Figure A-6) is a special calling sequence designed to han­

dle a subroutine with many parameters. The routine DBLSUM (Figure A-7) is a special call­

ing sequence designed for efficient handling of a one-parameter subroutine. Figure A-7 shows

both the generalized coding for the macro routine and the routine after insertion of the para­

meter values specified in the sample macro instruction.

121

N
N

2

4

5

6

7

8

9

10

II

r2

13

14

15

16

17

18

19

20

Honeywell
[j]~Da10.,P~~ CALLM~C.

ARGUS ;g~~NG

PROBLEM MAC.RO tlOUTlNE. f"O~ C...ALLIM6 :=,EQU ENC.£ PROGRAMMER DATE PAGE. ___ OF_.-

I LOCATION IO 11 COMMAND COD'E 22 ~ 24 A ADDRESS 37 38 e. ADDRESS C ADDRESS
REMARKS

51 52 65 66 LINE NUMBER 73 74 80

! j
I r l

l ' '

MA c..R.o Of;.f
! -t

L
1
CALLN\AC. Tl\f~d/TAC:t 'Z /TA4' T A<:t 4/ 8tN/ PER MASK I 5> R-ls .. 1FT I

..1
I

1'$ c z, c.sc. "'-1 -\- 9 "· -t' 0
I
I

ll, ... ,,. x, -te Z 1 AU l N,AUt I

,~,s ';~41 T.\6 2 7A4..3
1 x, !

.•.. -----
' i

)'., CAC..i,5 .,-A._\ TA4Z "l"'Ati3 j
I

x, SWE,MA.SK N,SR A, SH IF'"f, L N,SR,BIN I
I

>C., s Pf.C. TAG4-tBtN I

x., f~5t"1 f,t N I
J
I

x, Rf I Pf.ft I

TX X,-t2. z, c.sc I
~, J
x(SUl3C..ALL c A Ll-N\AC... I

J
I

X, I iz. es e Rve: I I
I

flN.l s I
I

I I l -----t~- I
l l
I I I
I l

I

I
I

I

...L I
I

. IL ...L" ...L ...L ...L ...L ...L ...L • ...L ...L 1 ...L ...L
I

...!.
----- ----- --r ·-- ------ -------·- -~ -- -- --- - - ' -·- - -· - ·-· . -----·

Figure A-6. Special Calling Sequence CALL.MAC

)>

" " m
z
0
x
'!>

~
::!
z
G)

c
gJ

"')>

"' -<
"' 0
c
::!
z
m
V)

I\)·
w

4

5

6

8

9

10

II

12

13

14

!5

16

17

18

19

20

Honeywell
rm~vaa~~ pe,LSUN\

ARGUS CODING
FORM

PROBLEM MAc&o &nU'T INE fog CALLlN6 SEQUENCE. PROGRAMMER DATE PAGE __ OF __

LOCATION 10111 COMMAND CODE 22 Fk124 A ADDRESS 37138 B ADDRESS 51152 C ADDRESS

MACR.ODEF

L,OSLSUM Lt ST

T .5 c.,-t2 Z,AUl N, AUi

SPEC. LtS"l

SU BCALL DBL SUM

FINlS

AFTER INS.ER.1"~tll4 pAllAM.E."TE2. VAjLUE.S:

l.. 1 DBL SUN\ DE.6\'TS

l'S c,-t z Z, AUl N,"u I

5PEC.. DE5lT~

5U lKALL DB LSU IV\

I I l _ _J~=""=""=='~

Figure A-7. Special Calling Sequence DBLSUM

REMARKS
65166 LINE NUMBER 73174 80

_l
I

I

-t
I

i

1
I
I

I

I
1
I
I

+
I
l
I

-t

I
I

1
l
I

l
I
I

I

I
-,-
l

1
r

)>
-0
-0
m z
0
x
'!>
~
;;:g

-I

z
G')

c
OJ
:;=1:1
)>
:;=1:1

-<
:;=1:1

0
c
:::!
z
m
V>

APPENDIX A. THE USE OF LAMP

LAMP (Library Additions and Maintenance Program)

The library of routines, which is stored on the ARGUS symbolic program tape, is

maintained by a program called LAMP. This program may be used to add a new routine to

the library or to delete or modify one already in the library. The input to LAMP consists of

the SPT (containing assembled programs and library routines) and a deck of punched cards or.

a tape containing punched card images.

control the action of LAMP.

The input deck uses the following director cards to

PROBLEM PROGRAMMER DATE PAGE OF

I LOCATION 10 II COMMAND CODE 22 5k 24 A ADDRESS J7 31 B ADDRESS C ADDRESS
REMARKS

II 12 65 6' LINE NUMI.. n 14 10

LAMP
_l

MAC~OOE'f I
I

I

Fl'llS I

NEW SUB, g d PRO"-RAM NAME SE&ME.N"C NAME
I

5U&ROUTIN£. NAME. I

EllMMAC M.\C.R.O NAME
1
!

EllMSU8 Su 8 R.OU TINE NAME MAc2o NAME. I
l

eNDLAMP I

::r -
LAMP: This director card precedes and identifies the LAMP input deck. The only significant

information is the word LAMP punched in the command code field.

ENDL.AMP: This director card signals the end of the LAMP input deck. The only significant

information is the word ENDLAMP punched in the comm.and code field.

Macro Routine Processing

The MACRODEF and FINIS directors are used to add a macro routine to the library.

The card batch for a macro routine must contain the following cards, in the sequence in which

they are listed:

1. A MACRODEF director card;

2. A master macro instruction card;

3. The cards containing the m.acrocoding; and

4. A FINIS director card.

If a macro routine is included in the LAMP input deck in this form., it is added to the library

of routines in ARGUS input language. If a macro routine is included in the input to a program

being assembled, the routine is handled as a programmer macro routine (see Section Xill)

and is not added ·to the library.

MACRODEF: This director card precedes and identifies each macro routine in the input deck.

The only significant information is the word MACRODEF punched in the command code field

124

APPENDIX A. THE USE OF LAMP

and the contents of the S/ C column. This column may direct LAMP to check the identity of

all cards in the macro routine, to order the macrocoding cards by serial number, or both.

Permissible characters in the S/C column are "I", ttS 11 , "B", or blank, and the resulting ac­

tion is identical to the use of the MACRODEF instruction with a programmer macro routine

(as described on page 84). In addition, if identity checking is requested for a given routine

and any card within that routine fails the identity check, the routine is not added to the library

and a diagnostic printout is produced.

FINIS: This director card signals the end of a macro routine. The only significant informa­

tion is the word FINIS in the comm.and code field. A FINIS card must be followed by another

director card.

ELIMMAC: This card directs LAMP to delete a macro routine from the library. The word

ELIMMAC is punched in the comm.and code field and the name of the routine to be deleted is

punched in the A address field. The remaining fields are not used.

In order to modify a macro routine in the library, it is necessary to delete the existing

routine and add the new version, just as if it were an entirely new routine. The card deck for

the new version must be complete with MACRODEF director, master macro instruction,

macrocoding, and FINIS director. LAMP deletes the old version and adds the new version in

two separate operations, always performing the deletion first, regardless of the relative

positions of the ELIMMAC director and the new version in the input deck.

Subroutine Processing

Before a subroutine can be added to the library, it must be assembled and appear as a

segment or as a complete program on the symbolic program tape. The directors NEWSUB

and ELIMSUB are used to add subroutines to the library and to delete subroutines from the

library, respectively.

NEWSUB: This card directs LAMP to add a new subroutine to the library and provides the

information required to accomplish this. If the subroutine has been assembled as a single

program segment, the program and segment names are punched in the A and B address fields,

respectively, of the NEWSUB director, just as they appear on the symbolic program tape. If

the subroutine has been segmented for assembly, the B address field is left blank and LAMP

combines the segments to form a subroutine. In either case, the C address field must contain

a name of up to eight alphanumeric characters by which the subroutine is to be identified in

the library. A subroutine name must include at least one non-numeric character.

125

APPENDIX A. THE USE OF LAMP

If the comm.and code NEWSUB is followed by a comm.a and a digit 11 1 11 or 11 2 11
, LAMP

automatically generates a standard calling sequence of the specified type (see page 116) and

adds this calling sequence to the macro routine portion of the library under the same name as

the subroutine. If no information follows the command code, a macro routine should be added

to the library for use as a special calling sequence. This routine must be in standard macro

routine format with MACRODEF and FINIS directors and master macro instruction. It may

or may not have the same name as the subroutine with which it is to be used.

The S/ C column of the NEWSUB director must contain either a "D" or an "I" to indicate

whether the subroutine is dependent upon or independent of the object program mask groups,

respectively. A blank in this column is an error and results in a diagnostic comment. If the

subroutine has been segmented for assembly, it must be specified as an independent subroutine.

ELIMSUB: Thi~ card directs LAMP to delete the subroutine named in the A address field from

the library. The B address field may contain the name of a macro routine (usually the calling

sequence for the subroutine to be deleted}. In this case, both the subroutine and the macro

routine are deleted. Otherwise LAMP deletes only the subroutine.

Before a subroutine in the library can be modified, the new version must be assembled

and placed on the symbolic program tape. LAMP then requires an ELIMSUB director to delete

the existing subroutine from the library, plus a NEWSUB dire.ctor to add the new version.

Since deletion is always performed before addition, the sequence of these directors within the

input deck is irrelevant.

Output from LAM!-'

LAMP uses the same equipment configuration as the updating run (see page 91). The

principal output from LAMP is the new symbolic program tape containing the updated library.

In addition, LAMP produces a printed table of contents for the updated library, listing all

macro routines and all subroutines in the library under separate headings. The printed output

from LAMP also includes appropriate diagnostic comments if the following programming

errors are detected in the input deck:

126

i. An illegal command code;

2. Card sequence error (i.e., violation of sequencing rules within a macro
routine);

3. Illegal character;

4. Identity check failure;

5. The name of a routine exceeds eight characters in length;

APPENDIX A. THE USE OF LAMP

6. A line number exceeds 2047;

7. Macro routine name duplicates name already in macro routine library;

(If any of the above errors is detected within a macro routine, the routine is not added to the

library.)

8. Subroutine name duplicates name already in subroutine library;

9. A blank S/ C column in a NEWSUB director (i.e., the subroutine is not
designated either dependent or independent);

10. A subroutine contains errors which are unacceptable to LAMP:

1 f. A subroutine contains a reference to a special register group indicator;

12. A dependent subroutine contains more than 32 field masks or more than
64 shift masks;.

13. A dependent subroutine contains a type "B" mask;

14. A dependent subroutine contains a reference to a mask as an operand;

(If any of the above errors 8-14 is detected, the subroutine is not added to the library.)

15. Illegal calling sequence number in a NEWSUB director. (If this error is
detected, the subroutine is added to the library but no calling sequence
is generated.);

16. The subroutine named on an ELIMSUB director is not in the library;

17. The macro routine named on an ELIMMAC director or on an ELIMSUB
director is not in the library;

18. A SUBCALL constant in either a new or an existing macro routine names
a subroutine which is not in the library (information only, no action by
LAMP).

127

APPENDIX B

SYMBOLIC PROGRAM TAPE LAYOUT

The over-all layout of the symbolic program tape (SPT) is shown schematically in

Figure B-1. The symbolic program tape contains a file of object programs in both sym­

bolic ARGUS language and machine language. The retention of the original input language

after assembly allows object program modification in ARGUS language, reassembly of

existing programs during the updating run, and reproduction of assembled programs in

ARGUS language. The object programs in the symbolic file also contain test data and

debugging pseudo instructions {derails) for use by the Program Test System and information

generated during assembly for use by other systems programs. In addition to the symbolic

program file,, the SPT also contains the file of ARGUS systems programs (Assembly, LAMP,

the Program Test System, Executive, the library of routines, etc.) and a systems program

loader. All programs in the systems file are stored in machine language.

Tape Label Record

The tape label record on the SPT is used to identify the tape. It also contains a boot­

strap routine and a directory of the symbolic program tape. The bootstrap can be activated

from the console to initiate loading of any of the systems programs. The directory lists

the names of all programs and segments in the symbolic file, in the order in which they

appear on tape. It is used to sort the ARGUS input deck into SPT order.

Loader

The two records following the tape label comprise the systems program loader. To

load and execute a systems program from the SPT, the operator activates the bootstrap

routine and types in the name of the desired program. The bootstrap loads the loader, which

in turn loads and gives control to the program requested.

Systems Program File

The systems program file contains all of the programs comprising the ARGUS system

in machine language. Following the begin file identification record, each systems program

is preceded by a begin program identification record and a record of control information for

use in operating the program. A systems program may include up to 64 segments. Each

segment is headed by a begin segment identification record and consists of machine words

and control information for loading the segment.

129

APPENDIX B. SYMBOLIC PROGRAM TAPE LAYOUT

Symbolic Program File

A second begin file identification record separates the symbolic program file from the

systems file. The elements of each object program are in the order which is established
("

when ARGUS sorts the input card deck (see page 90). All object program modifications

(insertions, deletions, and replacements) from previous updating runs are incorporated in

their proper places. Program and segment directors are represented by begin program and

begin segment identification records, respectively. Each test data card is represented by

a two-word item containing the test data word and a control word. Each main coding word

and each derail is represented by a variable-length symbolic item containing the original

symbolic word, the assembled machine word, the absolute assignment of the word in memory,

and the relocation information required by Executive.

A symbolic object program also contains the following items of information generated

during the assembly process:

1. The RES table is a list of certain symbolic tags appearing in the program.
It is used only during the reassembly process and is not of concern to the
programmer.

2. The link tag table contains one item for each link tag used in the program.
It is used by Executive during the relocation process.

3. The memory map is a list of all symbolic tags used in the program and
their absolute assignments. It is used by the Program Test System to
re-create ARGUS language from machine language.

4. The binary relocatable information consists of a two-word item for each
machine word which is not represented by a symbolic item, i.e., sub­
routine words and generated masks.

Each program is followed by an end program identification record containing information

about the equipment complement required by the program.

130

APPENDIX B. SYMBOLIC PROGRAM TAPE LAYOUT

TAPE LABEL RECORD

BEGIN FILE IDENTIFICATION RECORD
(BEGINNING OF SYSTEMS FILE)

LOADER

BEGIN PROGRAM IDENTIFICATION RECORD

CONTROL INFORMATION

BEGIN SEGMENT IDENTIFICATION RECORD

MACHINE WORDS

AND

CONTROL INFORMATION

BEGIN SEGMENT IDENTIFICATION RECORD

MACHINE WORDS

AND

CONTROL INFORMATION

BEGIN FILE IDENTIFICATION RECORD
(BEGINNING OF SYMBOLIC FILE)

BEGIN PROGRAM IDENTIFICATION RECORD

RES TABLE

LINK TAG TABLE

PROGRAMMER MACRO ROUTINES (IF ANY)

BEGIN SEGMENT IDENTIFICATION RECORD

MEMORY MAP

TEST DATA

SYMBOLIC ITEMS

FOR DERAILS

A ND MACHINE WORDS

BINARY RELOCATABLE INFORMATION

BEGIN SEGMENT IDENTIFICATION RECORD

ETC.

END PROGRAM IDENTIFICATION RECORD

END FILE IDENTIFICATION RECORD
(END OF SYMBOLIC FILE)

END-OF-INFORMATION RECORD

REPEAT FOR
EACH PROGRAM
IN SYSTEMS FILE

REPEAT FOR
EACH PROGRAM
IN SYMBOLIC FILE

Figure B-1. Over-all Layout of the Symbolic Program Tape

131

APPENDIX C

ASSEMBLY EQUIPMENT CONFIGURATION CODE

The assembly equipment configuration code specifies the type and amount of equipment

which ARGUS may assume to be available to a program being assembled. The equipment

array which is available to a specific program is described by punching this code in the C

address field of the PROGRAM card {see page 86). If this code is punched in the C address

field of an ARGUS card {page 81), it describes a standard array which is available to all

programs being assembled or reassembled during the current updating run for which indi­

vidual arrays are not described. If no array is described on the ARGUS card, the standard

array is assumed to be the configuration of the system on which the updating run is being,

performed. The equipment array actually required by the assembled program (known as

the program configuration) may be either identical to or a subset of the assembly coniigura­

tion. The Assembly Program checks the equipment requirements of the object program and

produces a diagnostic comment if the program requires equipment which is not available.

The assembly configuration code consists of 10 characters punched in the C address

field of the PROGRAM card or the ARGUS card. All 10 characters must be specified each

time that the code is punched, since ARGUS automatically justifies the iniormation to the

left, suppressing any included spaces. If more than 10 non-space characters are punched,

the first {left-most) 10 such characters are used and the remainder are ignored. The first

eight characters in the coniiguration code correspond, respectively, to the eight input-output

channel pairs in every Honeywell 800 system. Each of these characters may be a number

from 0 to 8 or a letter from A to 0, and is interpreted according to the following table. The

ninth character must be a comma and the tenth a number from 1 to 4 which specifies the

number of main memory modules {4096 words) in the available coniiguration.

Character

0 {zero)

1-8

A

Significance

No equipment is connected with the corresponding
pair of channels.

A tape control is connected with the corresponding
channel pair and the indicated number of tape units
are attached, in turn, to this control unit. Any
address up to and including the alphabetic code for
this number is legal, since tape units must be
plugged to consecutive hubs starting with 1.

A card reader is connected to the input channel;
no equipment is connected to the output channel.

133

APPENDIX C. ASSEMBLY EQUIPMENT CONFIGURATION CODE

Character

B

c

Significance

No equipment is connected to the input channel;
a printer is connected to the output channel.

No equipment is connected to the input channel;
a card punch is connected to the output channel.

Note: If one of the letters A through C is punched, the indicated equipment may be connected

by means of either a peripheral control or a multiple terminal unit control.

D

E

F

G

A card reader is connected to the input channel;
a printer is connected to the output channel.

A card reader is connected to the input channel;
a card punch is connected to the output channel.

No equipment is connected to the input channel;
a printer and a card punch are connected to the
output channel.

A card reader is connected to the input channel;
a printer and a card punch are connected to the
output channel.

Note: If one of the letters D through G is punched, the indicated equipment is connected by

means of a multiple terminal unit control.

H

I

J

K

L

M

N

0 (letter)

A card reader is connected to the input channel;
a printer is connected to the output channel.

A card reader is connected to the input channel;
a card punch is connected to the output channel.

A paper tape reader is connected to the input channel;
no equipment is connected to the output channel.

No equipment is connected to the input channel;
a paper tape punch is connected to the output channel.

A card reader is connected to the input channel;
a paper tape punch is connected to the output channel.

A paper tape reader is connected to the input channel;
a printer is connected to the output channel.

A paper tape reader is connected to the input channel;
a card punch is connected to the output channel.

A paper tape reader is connected to the input channel;
a paper tape punch is connected to the output channel.

Note: If one of the letters H through 0 is punched, all equipment on these channels is connected

by means of individual peripheral controls.

134

APPENDIX D

TAPE, FILE, AND RECORD IDENTIFICATION

All of the ARGUS systems programs, as well as all tape-handling and other standard

routines furnished by Honeywell, use certain conventions to identify information recorded on

magnetic tape. Every tape is identified by means of a tape label record. The tape label and

the end-of-information recorci_define, respectively, the beginning and end of useful informa­

tion o~ the tape. Each file or program on a tape is bounded by beginning and end identifica­

tion records. Segments are preceded by begin segment identification records. Finally, each

record on tape is identified by a banner word as an identification record, a record of program

coding, or a data record. The banner word also contains a record count which is used in tape

positioning, plus control information if the record is to be printed or punched.

Tape Label Record

The first record on every tape is a tape label. All programs furnished by Honeywell

assume the existence of such a record and preserve the first three words of this record. If

all programs used at an installation observe this convention, these three words may be used

to establish automatic tape accounting procedures based upon the identification of the physical

reel. On all ARGUS systems program tapes, the tape label record normally contains other

information such as a bootstrap routine and/ or a directory.

The maximum number of words in a tape label record is 2048. In the case of a data file

or a work tape, care must be exercised in processing this record since its length varies and

its structure differs from that of the other records on the tape. The tape label may be skipped

by reading it into the stopper location; however, if it is to be rewritten, the contents of the

first three words must be preserved for inclusion in the new tape label.

Word 1 The banner word in a tape label record has the octal
configuration 6004 xxxx 0020 xxxx. The first four
digits represent control information to bypass the
tape label on a tape which is to be printed or punched.
The next four digits are irrelevant. The contents of bits
28 through 32 identify the record as a tape label. The
record count is irrelevant, since record counting be­
gins with the second record on tape. (See page 138 for
the binary configuration of a banner word.)

135

APPENDIX D. TAPE, FILE, AND RECORD IDENTIFICATION.

):cw ord 2 Tape Identification

*Word 3 Unspecified (contents preserved by ARGUS)

Words 4 to 11 Unspecified (may be used without restriction)

Words 12 to 12+n-l Bootstrap Routine (systems program tapes only)

Words 12+n to 12+n+m-l Program Directory (symbolic program tape only)

Words l 2+n+m to l 2+n+m+ 1 Orthowords

Word 12+n+m+2 End-of-Record Word·

File and Program Identification Records

These records are used to identify the beginning and end of each file on a data tape. On

a program tape, they are used to identify the beginning and end of each program.

Word 1

Word 2

Word 3

Word 4

Words 5 to 5+n-l

Words 5+n to 5+n+ 1

Word 5+n+2

Banner Word. Bits 2 8 through 32 specify the type
of information identified by this record (see page 138).

Name of File or Program (eight alphabetic characte.rs)

Reel Number (two low-order decimal digits) if file
identification record. The reel number is used
primarily for multi-reel files and appears in both
the beginning and end file identification records,
varying from 01 for the first reel to hex GG for the
end identification record of the last reel. The con­
tents of this word are unspecified for a program
identification record.

Date Obsolete and Date Written (begin file or pro­
gram records only). Each date comprises six
decimal digits in the form year (two digits), month
(two digits), day (two digits).

File Parameters:
Relocation information in program identification
records;

Sort parameters in file identification records (see
below).

Orthowords

End-of-Record Word

If a data file is to be sorted by an ARGUS generated sort or collate routine, words 5 to 9 of

the file identification records should contain the following parameters, unless these parameters

are supplied by means of "own coding".

Word 5 Digits 1-3
Digits 4-6
Digit 7
Digit 8
Digits 9-12

Number of items per record (1-250)
Number of words per item (1-250)
Fixed-length (O) or variable-length (1) records
Banner words present (0) or missing (1) in data records
Not used

>:elf the information in these words is in standard alphanumeric code, it will appear in
recognizable form if the tape is printed.

136

APPENDIX D. TAPE, FILE, AND RECORD IDENTIFICATION

Word 6 Digits
Digits
Digits
Digit
Digits

Word 7

Word 8

Word 9

1-3
4-6
7-9

10
11-12

Segment Identification Records

1st key position (word 1-250)
2nd key position (word 1-250)
3rd key position (word l •250)
Keys not masked (O) or masked (l)
Not used

Mask for l st key

Mask for 2nd key

Mask for 3rd key

These records are used to identify the beginning w .. 1d end of each segment on a program

tape.

Word l

Word 2

Word 3

Word 4

Words 5 to 5+n- l

W ords 5+n to 5+n+ l

Word 5+n+2

End-of-Information Records

Banner Word. Bits 28 through 32 have the configura­
tion 01001 (see page 138).

Name of Program (eight alphanumeric characters)

Name of Segment (seven high-order alphanumeric
characters)

Date Obsolete and Date Written (begin segment
records only). Each date comprises two decimal
digits for year, two digits for month, and two digits
for day.

Relocation Information

Orthowords

End-of-Record Word

The end-of-information record signals the end of useful information on tape. The last

end file identification record should be followed by an end-of-information record and a dummy

record. If an additional file is to be stored on the same tape, the end-of-information record

must be written over and a new end-of-information record must be written at the end 'of the

new file. However, a program may use the tape area beyond the end-of-information record

for work space without having to destroy the end-of-information record.

Word 1

Words 2-4

Words 5-6

Word 7

Bann·er Words

Banner Word. Bits 28 through 32 have the configura­
tion 10001 (see page 138).

Unspecified

Orthowords

End-of-Record Word

The first word of every record is a banner word which should contain a record count

in bit positions 33 through 48. This record count starts with a value of l in the record

137

APPENDIX D. TAPE, FILE, AND RECORD IDENTIFICATION

following the tape label and continues in ascending sequence through all included files to the

last record on the. tape. Programs which include restart provisions, including Executive,

make use of the record count to position tapes. Since the banner word must also serve as a

control word on tapes which are to be printed or punched, bit positions 1 through 30 are re­

served for control information. The contents of bit positions 31 and 32 specify the type of

record which follows the banner word, as follows:

Bits 31-32 00 = printer or punch record
01 = identification record
10 = program coding record
11 = data record

In a tape label record, bit position 1 should contain a 1, which causes the peripheral control

to ignore the remaining control bits (2-30) if the tape is printed or punched. The printer,

for example, prints and then skips to the head of form.

In the case of an identification record, bit positions 28 through 30 are used to specify

the type of identification record as follows:

Bit 28

Bits 29-30

0 = beginning
1 =end

00 = information ~--·,~---·-·--·

01 = file or program
10 = segment

D

11 = other (used only on symbolic program tape to
identify the boundaries of the two program
files)

Note that the record type of most records can be determined by examining the contents of

banner word bits 31 and 32. l£ these bits contain the configuration 01, then the contents of

bits 28 through 30 must also be examined.

Summary

Some of the above conventions are required for tapes· to be used with Honeywell auto­

matic programming aids and some are optional. As noted above, the restart provisions of

the Executive System require the inclusion of banner wor.ds in all records. Likewise, the

ARGUS generated sort and collate routines assume the presence of parameters in words 5

through 9 of the begin file identification records (as noted above), unless this information is

provided by means of "own coding". These routines also require that each file contain an

end file identification record which specifies the same file name as the begin file identification

record. In addition, the library tape-handling routines assume the presence of banner words

in all records, plus tape label records, end-of-information records, and beginning-of-file,

program, and segment identification records as appropriate. The use of end program and.

segment identification records is optional. Such .records may be included wherever their

use facilitates processing.

138

APPENDIX E

HONEYWELL 800 MACHINE INSTRUCTIONS

The following pages contain a tabular summary of the Honeywell 800 complement of

machine instructions, grouped according to the major instruction categories. The mnemonic

ARGUS operation code and the basic time of each instruction are given, together with a brief

description of the function(s) performed. The machine instructions are described in greater

detail in the Honeywell 800 Programmers' Reference Manual. In particular, the basic

instruction times shown in this Appendix may be affected by masking, indexed and indirect

addressing, and inactive addressing. A detailed listing of instruction times considering

all of these factors is presented in Appendix C of the Reference Manual.

Mnemonic
Operation
Code

BA
2

DA
2

DS
2

BM

DM

WD
2

Description

GENERAL INSTRUCTIONS

Binary Add algebraically (A) to (B). Store sum in C. If over­
flow occurs, transfer this instruction to the address stored in
the unprogrammed transfer register (UTR) and take the next
instruction from (UTR) + 8 if the sequence counter selected
this instruction; transfer this instruction to (UTR) + 1 and take
the next instruction from (UTR) + 9 if the cosequence counter
selected this instruction. The sign of either operand is posi­
tive if the sign digit contains any "l" bit. The sign of the sum
is 0000 if negative, 1111 if positive.

Decimal Add algebraically (A) to (B). Store sum in C. Other­
wise same as BA.

Binary Subtract algebraically (B) from (A). Store result in
C. Observe same overflow and sign conventions as in BA.

Decimal Subtract algebraically (B) from (A). Store result in
C. Otherwise same as BS.

Binary Multiply (A) by (B). Store high-order product with
proper sign in C and accumulator,, low-order product with
proper sign in low-order product register. Product signs
are 0000 if negative, 1111 if positive.

Decimal Multiply (A) by (B). Store high-order and low-order
products as in BM with same sign conventions.

Word Add. Binary add absolute value of (A) to absolute value
of (B), considered as unsigned 48-bit numbers. Store 48-bit
result in C. Observe same overflow conventions as in BA.

Word Difference. Binary subtract absolute value of (B) from
absolute value of (A). Otherwise identical to WA.

Time in
Memory
Cyclesl

4

4

4

4

33

27

4

4

139

APPENDIX E. HONEYWELL 800 MACHINE INSTRUCTIONS

Mnemonic
Operation
Code

HA
2

BT

DT

SS

EX

TN

IT

RT

140

Description

GENERAL INSTRUCTIONS (cont)

Half Add. Binary add (A) and (B) without carry. Store result
in C. (A) and (B) are unsigned 48-bit numbers. Bits of C are
0 wherever corresponding bits of (A) and (B) are identical,
1 wherever they are different.

Superimpose (A) and (B). Store result in C. Bits of C are
0 wherever bits of both (A) and (B) are 0, 1 everywhere
else.

Binary Accumulate. Clear the accumulator. Transfer (A) to
the accumulator. Perform this transfer B times (0-63 times),
regarding transferred words as signed 44-bit numbers. Add
absolute values of transferred words. Note that if A is an
indirect address with a non- zero increment, B different num­
bers are accumulated. Store result with sign of the first word
transferred in C. Observe same overflow conventions as in
BA.

Decimal Accumulate. Same as binary accumulate except that
transferred words are regarded as signed 11-digit decimal
numbers.

Substitute. Using (B) as a mask, transfer (A) to C, protecting
unmasked portions of C. Note that this is never a field instruc­
tion.

Extract. Using (B) as a mask, transfer (A) to C without pro­
tecting unmasked portions of C. Re.sult is 1 wherever bits
(A) and (B) are both 1, 0 everywhere else. Note that this is
never a field instruction.

Transfer (A) to C. Ignore B.

Transfer (A) to B. Change specified counter to +C, unless C
is inactive.

N-Word Transfer. Transfer -B words from consecutive loca­
tions starting at A to consecutive l~cations starting at C.
From 0 to 63 words may be transferred.

4.
Item Transfer. Substitute end-of-item symbol for high-order
32 bits of (B), clearing low-order 16 bits of (B) to all zeros.
Transfer words from cons·ecutive locations starting with A to
consecutive locations starting with C until an end-of-:j_tem sym­
bol is transferred. Upon completion, AUl contains A+ n, AU2
contains C + n.

Record Transfer. Store end-of-record word
5

in B. Transfer
words from consecutive locations starting with A to consecutive
locations starting with C until an end-of-record word is trans­
ferred. Otherwise same as Item Transfer.

Time in

Memorf
Cycles

4

4

3
(3)

+n

5

5

3

4

5 + 2n(3)

7 + 2n (3)

7 + 2n (3)

Mnemonic
Operation
Code

NA
2

PR

cc

MT

MPC

SPS

APPENDIX E. HONEYWELL 800 MACHINE INSTRUCTIONS

Description

GENERAL INSTRUCTIONS (cont)

Inequality Comparison, Numeric. Compare algebraically (A)
and (B). If (A) ;/: (B), change specified counter to +C. Plus
0 equals minus 0.

Inequality Comparison, Alphabetic. Same as NN except that
absolute values of (A) and (B)· including sign positions are
compared. Plus 0 is not equal to minus 0.

Less Than Or Equal Comparison, Numeric. Compare alge­
braically (A) and (B). If (A) S (B), change specified coun­
ter to +C. Plus 0 equals minus 0.

Less Than Or Equal Comparison, Alphabetic. Same as LN
except that absolute values of (A) and (B) including sign
positions are compared. Plus 0 is greater than minus O.

Proceed (no operation).

Compute Orthotronic Count. Write a generated end-of-record
word5 in C. Compute orthotronic count from A to end- of­
record word. Store orthoword 1 in C, orthoword 2 in C + 1.
Write an end-of-record word in C + 2. Store +B in AUZ. If
B is inactive, control is not changed for distributed item
handling. If B is active, end-of-item words4 are sensed.and
control is changed for distributed item handling.

Check Parity. Test (A) for correct parity. Place (A) with
correct check bits in B. If (B) differs from (A), change speci­
fied counter to +C.

Multiple Transfer. Transfer (A) to C. Perform this instruc­
tion B times (0-63 times). Note that if A and C are indirect
addresses with non-zero increments, B different transfers
will be performed.

Control Program. Ignore A. Place (PCR) in the location
specified by C. Then alter the bits of PCR specified by bits
5 thrc:mgh 12 of B, using bits 1 through 4 of B to define how
the bits are altered. If B address memory designator bit is
1, hunt for next program in demand. Otherwise, do not hunt.

SHIFT INSTRUCTIONS

Shift Preserving Sign and Substitute. Shift end-around excluding
sign (A) as directed by B. Mask the result and store in C (pro­
tected). B contains three parameters to direct the shift: a
character representing the number of bits per position shifted,
(B 1); the number of positions shifted (Bz); and the direction of
shift (B3).

Time in
Memory
Cycles 1

4

4

4

4

2

11 + n(3)

4

1 + 2n (3)

4

141

APPENDIX Ee HONEYWELL 800 MACHINE INSTRUCTIONS

142

Mnemonic
Operation
Code

SPE

sws

SWE

SSL

s

WF,XX

Description

SHIFT INSTRUCTIONS (cont)

Shift Preserving Sign and Extract. Same as SPS except that the
unmasked portions of C are unprotected (cleared to all 0 bits).

Shift Word and Substitute. Shift end-around inc~uding sign (A)
as directed by B. Mask the result and store in C (protected).
Otherwise same as SPS.

Shift Word and Extract. Same as SWS except that the unmasked
portions of C are unprotected (cleared to all 0 bits).

Shift and Select. Shift end-around including sign (A) as directed
by B. Binary add under mask control the absolute value of re­
sult to C to form C 1• -Change the specified counter to +C '· The
shift operation is specified as in SPS. The mask must not cause
more than 11 low-order bits to be added to C.

SIMULATOR INSTRUCTION

Simulator. Form a memory location address (direct or indexed)
from the low- order 11 bits of the command code and store this
instruction in the location thus specified. Change the cosequence
counter to select the next instruction from the next higher address.

PERIPHERAL INSTRUCTIONS

Write Forward on peripheral device XX the contents of consecu­
tive memory locations from A through the end-of-record
word5. (If device XX is a terminal output unit, print one line
or punch one card.) Set write address counter (WAC) to +A.
If B is not inactive, the distributed write address counter (DW AC)
is set to +B and end-of-item symbols4 are sensed for distributed
writing of a multi-item record. If B is inactive, end-of-item
symbols are not sensed. Change the source counter to +C unless
C is inactive (S/ C subfield is not used). If end of tape is sensed,
transfer this instruction to the contents of the unprogrammed
transfer register (UTR) if the sequence counter selected this
instruction or to (UTR) + 1 if the cosequence counter selected
this instruction and take the next instruction from (UTR) + 4
or (UTR) + 5. If an error was detected during the last previous
write to peripheral device XX, reset the error, do not perform
this instruction. Instead, transfer this instruction to (UTR) or
(UTR) + 1 and take next instruction from (UTR) + 6 or (UTR) + 7.
This instruction is interlocked against device XX and the asso­
ciated buffer.

Time in
Memory
Cycles!

7

5

Mnemonic
Operation
Code

RF,XX

RB,XX

RW,XX

STOP

DOFF

DON

SCON

CS CON

SPCR

APPENDIX E. HONEYWELL 800 MACHINE INSTRUCTIONS

Description

PERIPHERAL INSTRUCTIONS (cont)

Read Forward from peripheral device XX into consecutive mem­
ory locations starting with A through the end-of-record word. (If _
device XX is a card reader, read one card.) Set read address
counter (RAC) to +A. If B is not inactive, the distributed rea~
address counter (DRAC) is set to +B and end-of-item symbols
are sensed for distributed reading of a multi-item record. If
B is inactive, end-of-item symbols are not sensed. Change the
source counter to +C unless C is inactive (S/ C subfield is not
used). End-of-tape and parity-error rules are identical with
write forward instruction. This instruction is interlocked
against device XX and the associated buffer.

Read Backward from magnetic tape unit XX into consecutive
memory locations starting with A. This instruction is other­
wise identical to read forward except that the RAC is set to
-A and, if B is not inactive, the DRAC is set to -B.

Rewind Tape on peripheral device XX to beginning. If already
rewound, proceed. If A is active, interlock device XX against
any further peripheral operations. B and C are ignored. If
an error was detected during the last previous read or write
for this tape, reset the error and perform the rewind.

EXTENDED INSTRUCTIONS

Transfer the contents of the program control register (PCR)
to C, unless C is inactive. Ignore A and B. Stop the program
in which this instruction appears. Hunt for another demand.

Transfer (PCR) to C, unless C is inactive. Ignore A. Turn
off up to seven programs specified by B. This instruction
specifies whether or not to hunt for another demand.

Transfer (PCR) to C, unless C is inactive. Ignore A. Turn
on up to seven programs specified by B. This instruction
specifies whether or not to hunt for another demand.

Transfer (PCR) to C, unless C is inactive. Ignore A. Turn
control of up to seven programs specified by B over to their
respective sequence counters. Turn on these programs.
This instruction specifies whether or not to hunt for another
demand.

Transfer (PCR) to C, unless C is inactive. Ignore A. Turn
control of up to seven programs specified by B over to their
respective cosequence counters. Turn on these programs.
This instruction specifies whether or not to hunt for another
demand.

Transfer (PCR) to C, unless C is inactive. Ignore A and B.

Time in
Memory
Cycles l

5

5

2

4

4

4

4

4

4

143

APPENDIX E. HONEYWELL 800 MACHINE INSTRUCTIONS

144

Mnemonic
Operation
Code

SPCR
(cont)

PRA

PRD

PRO

FBA

FDA

FBS

FDS

FBAU

FDAU

FBSU

FDSU

Description

EXTENDED INSTRUCTIONS (cont)

This instruction specifies whether or not to hunt for another
demand.

Print (A) alphanumerically on the automatic typewriter speci­
fied in B. Change the specified counter to +C, unless C is
inactive.

Print (A) hexadecimally on the automatic typewriter speci­
fied in B. Change the specified counter to +C, unless C is
inactive.

Print (A) octally on the automatic typewriter specified in B.
Change the specified counter to +C, unless C is inactive.

SCIENTIFIC INSTRUCTIONS

Floating Binary Add. Binary add algebraically (A) to (B).
Deliver the result as a normalized floating-point number
to C if C is active; retain the result in FLAC if C is inactive.
If exponential underflow occurs, take next instruction from
(UTR) + 12 or (UTR) + 13. If exponential overflow occurs,
take next instruction from (UTR) + 14 or (UTR) + 15. If
either occurs, store current instruction in (UTR) or (UTR)
+ 1.

Floating Decimal Add. Same as floating binary add with the
word "binary" replaced by "decimal".

Floating Binary Subtract. Change the sign of the B operand
and perform a floating binary add.

Floating Decimal Subtract. Same as floating binary subtract
with the word "binary" replaced by "decimal".

Floating Binary Add, Unnormalized. Same as floating binary
add, except that the result is not normalized. A four- bit
shift to the right is provided if necessary to compensate for
mantissa overflow, but no compensating left shift occurs to
renormalize a result with 0 in the most significa11t mantissa
digit.

Floating Decimal Add, Unnormalized. Same as floating binary
add, unnormalized, with the word "binary" replaced by
"decimal".

Floating Binary Subtract, Unnormalized. Change the sign of
the B operand and perform a floating binary add, unnormalized.

Floating Decimal Subtract, Unnormalized. Same as floating
binary subtract, unnormalized, with the word "binary" replaced
by "decimal".

Time in
Memory
Cyclesl

5

5

5

7

7

7

7

7

7

7

7

Mnemonic
Operation
Code

FBAE

FBSE

FBM

FDM

FBD

FDD

BD

DD

FLN

APPENDIX E. HONEYWELL 800 MACHINE INSTRUCTIONS

Description

SCIENTIFIC INSTRUCTIONS (cont)

Floating Binary Add, Extended Precision. Form the normalized
double-precision sum of (A) and (B). If C is inactive, retain the
high-order and low-order parts in FLAC and FLOP. If C is
active, deliver the high-order part to C and the contents of FLOP
are unspecified. Sense for exponential o,verflow or underflow on
the high-order result. If exponential underflow occurs on the low­
order result, set the low-order underflow indicator.

Floating Binary Subtract, Extended Precision. Change the sign
of the B operand and perform a floating binary add, extended
precision.

Floating Binary Multiply. Multiply (A) by (B). The resulting
product is a normalized, double-precision, floating-point num­
ber whose high-order part is stored in C. If C is inactive, re­
tain the high-order product in FLAC and store the low-order
product in FLOP. Sense for exponential overflow or underflow
on the high-order product. If exponential underflow occurs on
the low-order product, set the low-order underflow indicator.

Floating Decimal Multiply. Same as floating binary multiply
with the word "binary" replaced by "decimal".

Floating Binary Divide. Divide (B) by (A). Store the quotient
in floating-point form in C. If C is inactiv~, retain the quo­
tient and remainder in FLAC and FLOP. The quotient is nor­
malized if the operands are normalized. The remainder is not
normalized. Sense for exponential overflow or underflow in
the quotient. Set the remainder underflow indicator if there is
underflow in the remainder. If the divisor is unnormalized or
0, store this instruction in (UTR) or (UTR) + 1 and take the
next instruction from (UTR) + 10 or (UTR) + 11.

Floating Decimal Divide. Same as floating binary divide with
the word "binary" replaced by "decimal".

Fixed Binary Divide. Divide (B) by (A), where both operands
are considered as fixed-point binary numbers. If the absolute
value of (B) equals or exceeds the absolute value of (A), take
the next instruction from (UTR) + 10 or (UTR) + 11; the contents
of C are unspecified. If C is active and the absolute value of
(B) is less than the absolute value of (A), place the quotient
in C. If C is inactive, retain the quotient and the remainder
in FLAC and FLOP.

Fixed Decimal Divide. Same as fixed binary divide with the
word "binary" replaced by "decimal".

Normalized Less Than Comparison. Compare (A) with (B). If
(A) S (B), change the specified counter to +C. If (A) and (B)
have different signs (bit 1), then the positive exceeds the nega­
tive. If both operands are positive, then the operand with larger

Time in

Memorf
Cycles

10

10

13.6

40.5

67

64

74

68

4

145

. APPENDIX E. HONEYWELL 800 MACHINE INSTRUCTIONS

Mnemonic
Operation
Code

FLN
(cont)

FNN

FFN

ULD

Description

SCIENTIFIC INSTRUCTIONS (cont)

exponent exceeds the other unless the exponents are alike, in
which case the operand with larger mantissa exceeds the other.
If both operands are negative, then the operand with smaller
exponent exceeds the other unless the exponents are alike, in
which case the operand with smaller mantissa exceeds the other.

Normalized Inequality Comparison. Compare (A) with (B),
including sign positions. If (A) -:/:. (B), change the specified
counter to +C. This is identical to the general instruction in­
equality comparison, alphabetic.

Fixed to Floating Normalize. Take the least significant 44 bits
of (B) as a mantissa to be normalized. If C is active, store the
normalized mantissa in the least significant 40 bits of C. If C
is inactive, the FLAC and FLOP contain a normalized double­
precision number whose high-order part is in FLAC and whose
least significant 36 bits in FLOP are zeros. The exponent of
the result is the binary sum of the exponent of (A) minus the
amount of left shift plus the amount of right shift minus 1.
The sign of (C) is the logical sum of the four sign bits of (B).
Sense for exponential underflow in the high-order part. Set the
low- order underflow indicator if exponential underflow occurs
in the low- order part.

Multiple Unload. Place the contents of FLAC in A and the con­
tents of FLOP in C. The B address must be inactive. If either
the low-order underflow indicator or the remainder indicator is
set when the instruction is initiated, take the next instruction
from (UTR) + 12 or (UTR) + 13.

NOTES

1. One memory cycle equals six microseconds.

Time in

Memoy
Cycles

4

5

4

2. Instructions so designated are field instructions and may be executed under control
of field masks.

3. n = number of words transferred, accumulated, or orthocounted.

4. An end-of-item symbol is a word whose high-order 32 bits are
1010 1010 0000 0000 1110 1110 1110 1110

5. An end- of- record word has the configuration
1010 1010 0000 0000 1110 1110 1110 1110 1101 1101 1101 1101

6. Values of k vary from 0 to 4, based on number of 16-, 4-, and 1-bit shifts required
(see Reference Manual).

146

INDEX

Accumulator•... 28, 139, 140
Active Program List ..•........ 3
Address Arithmetic 23, 31, 70, 73, 9-4, 100, 103, 109, 115
Address Fields•....................................•• 15, 28
Address Modifier ..•.......................•.......................•..... 23, 54, 67, 94
Addresses•.....................................•... 9, 10, 21

Direct Memory Location•................••..•.......•.............. 21
Direct Special Register•..•................ 22, 24, 67
Indexed Indirect Memory Location•.............•............. 22, 27
Indexed Memory Location•..•.........•...•..............•..... 22, 24, 38
Indexed Special Register•.......•.......•........................• 22, 25, 68
Indirect Memory Location .•.............•..•..................... 10, 22, 26, 140, 141

Algebraic Compiler . • • . . • . • • • • • • . . . 1, 2
Allocation of Memory • • • • • • 32, 5 3
Alphanumeric (ALF) Constant•..............•.......•...•.•..... 6 3, 109
Analyzer ~ ..•...............•..................... 86, 94, 98
ARGUS Coding Form ...••.........•.......•........••...................••.•••..•• 14
ARGUS Card•...••.................... 81,133
ARGUS Input Deck•....•..•.............•........................... 89, 107, 130
ARGUS Listing•....•.................•.•....... 81, 86, 93, 95, 96, 97, 98, 99
ARGUS System . • . . • . . . • . . • • . . . • . . . • . • 1, 2
ASSIGN Instruction . • . • • . 56, 83, 100
AU-CU Counters•......•....•.....•......•..•.•..........• 19, 48, 49, 140
Augmenter•..•.....•......•.........•.....•........ 24, 48, 100

Bank Indicator•..•..........•..........•..•............ 7, 33, 53, 54, 67, 69
Banner Word•.......•....•..•...•......................•....•.. 135
Binary Accumulate (BT)•.•...•.....•.•.........•......•.•............. 39, 41, 140
Binary Add (BA)••...•..•.....•.....•........•..•.•..•..•.•......•...•.. 39, 139
Binary Multiply (BM) ...•...•..•.•..•..•.......•.....•......•..•.•.•.....•...•• 39, 139
Binary Subtract (BS)•...•........•................................•..... 39, 139
Bisequence Bit••.•.••••..........•.......••...............•.... 9, 71
Buffer I~terlock Bits • . • . • • • . . • • • • • . . • • • . 71

Calling Sequence ••••.....•....•.....•.•••...........•......••••...••.. 73, 106, 115, 126
Check Parity (CP) . • • • • . . • . . • . • • . . . • . • • . • . • • • • 39, 40, 141
Checkout Run . • • . . . • . • . . • • . • • . . • • . . • • • . • • . . • • . • 3
Command Code Field••.....•...•.......•••.••...••.••..•••.•...••.•...... 13
Command Codes .•...••..•......•.•........•..•.....•........•.•..•....•...... · ...••••• 9
Complete Address (CAC) Constant •.....•.•..•...•.•.•••.••.••.••......• 33, 67, 69, 93, 100
Compute Orthocount (CC) ..•..••.•...••••....•.•.•.....••..••.•..•.•...•..•...• 39, 140
Constants ...•...•...........•.•..•..••.•...••.•...•••.•.••••..•.•....•..••.••••.•. 6 3

Control•. . . • • . • . • . . • . . • . . • • • • • . • • • . • • • • • • • . . • . • . • . . • • . . • . . • . . • . . . • • . . . • 67
Data ...•..•...........•...•.•..••••.•.......•.•.•...•••..•....•............ 63, 96

CONTROL Constant (see Program Control Constant)
Control Instructions ..•....•..•..........•..................•...........••...... 5 3, 81
Control Program (MPC) Instruction ..••.••..•.••..•••.•.•...•••...•...... 34, 50,.102, 141
Control Unit Indicator ... 33, 68, 71
CSCON Instruction ...•...•.•..••...••••.........•..•••••.••.••....•.•.•..••...• 39, 143
Current Location Counter (CLC) ••.•..•.•••..•...•..••..•..••..••.•..... 20, 23, 54, 58, 67

147

INDEX {cont)

Decimal Accumulate (DT) •••.•.•••••••..•.••.••.•.....•••....•..•..•.....•••. 39, 41, 140
Decimal Add (DA) . . . • • • • • • . . • . • • • • • • . . • . • • • • • . • • • • . . • • . • . . . • • • . • • . • . . . • • • • . • 39, 7 8, 139
Decimal (DEC) Constant, Fixed-Point .••••••••.•••••.•••.••.••.••••••....•••••••• 63, 78
Detimal Multiply (DM) ...••••.•••••.••••.••••.••••••••••..•••••..•.....••.•..•• 39, 139
Decimal Subtract (DS) ..••.•••..••••••..••..•••..•.•.••.••...••...••.•..•.•••••• 39, 139
DELETE Card . . • . . . • . • • . • • . . • • • . • • • • • • • • • . . • . • . . • • • • • • • • . • • . • • . . • . . • . . . • . • • • 89
Derails . • • • . . . • . . • • . . . • . • . . . • • . . • . . . • • • • . . . • . • • • • . • . • . • 3, 81, 83, 88, 90, 93, 129
Dimension .•......•.•.•..•..•••..••••••••..••.•••.••••..•••.•.••..•.•....•••.. , ..••• 5 8
Direct Memory Location Address (see Addresses)
Direct Special Register Address (see Addresses)
DOFF Instruction .•••..•••••••.•••••••••.••..•.•••••••.•.••.••.•.••••.•...••••• 39, 143
DON Inst ruction ••.••••••..••••••.••••••••••••..•..•..•.••••••••.••. , .•.••••. , . 3 9, 14 3

ELIMDATA Card (see Test Data Directors)
ELIMDERL Card . • • . • • • • • . • • • • • • • • • . . . • • • • • • . • . • . . • . • . . • . . • • • • . • . • • • • • 88, 91
ELIMMAC Card • . • . . • • • . • • . • . • • . • • • • • • . • . . . • • • • • • . • • • • . • • • • • • . • . • • • • • . • • . • • • • • • • . 125
ELIMPROG (see Program Directors)
ELIMSEG (see Segment Directors)
ELIMSUB Card • • • • • . • . . . • • • • • • • • • • • . • • • • • • • • • • . . . • . • • . • • • . . • • • • • • • • • 126
END Card •.••.•••••..•••..•••.•••••••.•...•...••.••••••.•••.••.••••••.. 30, 61, 91, 100
ENDARGUS Card . • • • • • • • • • • . • • • • • • . . . • . • • • . • • • • • . • . • • • . . • • . • . . • . . • • • • • • • • • • • • 89
End-of-Information Record ..•..••.••••••.•.••..••••.•••••••....•••.•....•••••••••• 135
End-of-Item Symbol ..•.••.••••••.•.••••••••••••••••.••••.•.•••••.•.•. , ••• , • 43, 140, 146
End-of-Record Word ••.•••••••••.••••••••...••••••.••••.•••••.••...•••.•.• 43, 140, 146
ENDLAMP Card • • • • • • . . • . . . • . • . • . • • . . • . • • • • • • 124
EQUALS Instruction ••..••••••.••.••••••••.•••.••••••••.•.•.•.•. 24, 41, 57, 83, 93, 97, 100
Equipment Configuration •••.••••••.•..••••...•.•.•.•••••••••••••• 81, 86, 91, 100, 126, 133
EVEN Instruction ••••••....••••••••••••••..•••••...••.••.••••••••••.•••••••• 55, 83, 101
Executive System .•.•...••••••••..•••••••••••••• 1, 2, 3, 29, 34, 50, 54, 61, 73, 87, 93, 129, 138
Extended Binary (EBC) Constant ••..•••••••.•.•••••..•••••..•..••.•••••••••.•. 63, 66, 83
Extended Instructions .••.•...•••••••.••••••.•••••..••..•••••••...•..•••.•••.••• 50, 143
Extract (EX) ••••••...•.••• , ••••••••.••••••••••••••.••• , •••••••..•..•. 10, 28, 39, 75, 140

FACT (Fully Automatic Compiling Technique) • • . • • • • • . • • • • • • • • • • • • . . • • • • • • • • . . • • • • . • 1, 2
Field Instructions •.•.••••••••••••••••••.•••••.••••••••••••••••.•.•.••.••••••• 38, 41, 7 5
File Identification Record • • . • . • • • • • • • • • • • • . . • . • • . • • • • • • • • • • • • • . • • • • • • • • • • • 12 9, 135
FINIS Card ..•.••.•••..••••.•.••••.••••••••••.•••.••.••.••••••..•.•• 84, 89, 105, 107, 124
Fixed Binary Divide (BD) .•.•.•••••••••••..•••••.••..••...••••••••••••••••••••• 39, 145
Fixed Deciri:tal Divide (DD) •••.•••••••.•••••..•••.•.••..•••••••••••••••••.••.••• 39, 145
Fixed-Poin'.t Binary (FXBIN) Constant ••••••.••.••••••••••••••••.••.•.••••••••••.•• 63, 65
Fixed to Floating Normalize (FFN) ••••••••••••••••..••••.••••••••••••••••••••••• 39, 146
Floating Binary Add {FBA) •.•••••••••••••••••••••••••••••••.••••••••••••.•••••• 39, 144
Floating Binary Add, Unnormalized (FBAU) •••••••••••••.••.•••••••••••.••••••••• 39, 144
Floating Binary Addition, Extended Precision (FBAE) •••••••••••.•••.•.•.••••••••. 39, 145
Floating Binary Divide (FBD) ••• 39, 145
Floating Binary Multiply (FBM) ••.•••••••••.••.•••••••••••••••.•••••••.••••••••• 39, 145
Floating Binary Subtract (FBS) ••••••••••••.•••.•••.•••.•••••••••••••••••••.•••• 39, 144
Floating Binary Subtract, Unnormalized (FBSU) •••••••••••••••••••••.••••..•••••• 39, 144
Floating Binary Subtraction, Extended Precision (FBSE) •••••••.••••••••••••••.••• 39, 145
Floating Decimal Add (FDA) •..••••••••••••••..•••••••••••••••••••••••••••••••.• 39, 144

148

INDEX (cont)

Floating Decimal Add, Unnormalized (FDAU) ...•..............••....•...•.....•• 39, 144
Floating Decimal Divide (FDD) . • • • • . . . • • . • • • . . • 39, 145
Floating Decimal Multiply (FDM)•..•..••...••.....•...................• 39, 145
Floating Decimal Subtract (FDS) •••.•.••.....•....•..•..•.....•......•.......... 39, 144
Floating Decimal Subtract, Unnormalized (FDSU) ..•...••....................•...• 39, 144
Floating-Point Accumulator (FLAC) •..•.•....•......••....•.................•.•.... 144
Floating-Point Binary (FLBIN) Constant ..••..•......•.•........•....••...•...• 63, 66, 83
Floating-Point Decimal (FLDEC) Constant .•.••••..•.••.........•....•..•.•.•.••.. 63, 65
Floating-Point Low-Order Product Register (FLOP) ..•••.•.........•....•..•.....••. 145
Floating-Point Option•..••.......................•............ 39, 47, 82

General Instructions •.•...•••.•••..••••••........•..•.•..••..............•....•• 9, 139
Group Indicator .•..•.•..•.....•.•....•.•.........•..••.•.•... 8, 33, 53, 54, 67, 71, 115, 127

Half Add. (HA) . • . . . • • . • • . • • • . . • • . • . • 39, 140
History Registers • • • • • . . . • • • . . • . . • . . • • . . • 9, 48

Identification Columns • • • . • . • • . • • • . . • • . • • • • 16
In-Line Coding . • . • . . . • . . • . . . • • . • • . • • • • • . • . • • . . • • . • . . • • • • . . • • • • • . . . 32, 10 3
Inactive Address •.••..........•.••••..........•...•.••....•.•.....•....•••.. 28,49,51
Increment ••..•••........•....••..••••................•..•.•.•.•••... 25, 26, 27, 140, 141
Index Registers • . • • • • . . • . . • • • . • • . • . . • . • . . • • • . • . • • • • • • . . • . • . . • . . . • . . . • • 10, 19
Indexed Indirect Memory Location Address (see Addresses)
Indexed Memory Location Address (see Addresses)
Indexed Special Register Address (see Addresses)
Indirect Memory Location Address {see Addresses)
Inequality Comparison, Alphabetic (NA) •.•••.••.••••....••.••.•.•..••...•....••.. 39, 141
Inequality Comparison, Numeric (NN) .•...•.•.••.•....•........•........•......•• 39, 141
Item Transfer (IT)•.••..••••.••.••••..•..••..••.....•.•.•••......... 39, 140

LAMP Card • • . • • • • . • . . . • • • . • . • • . . . • . • • . • . . . • . • . • 124
Less Than or Equal Comparison, Alphabetic (LA) ..•.••...•••••••.•..•........... 39, 141
Less Than or Equal Comparison, Numeric (LN)•.....••...••.•...•.•.•.. 39, 40, 141
Library Additions and Maintenance Program {LAMP) •....•...•..••....••• 1, 2, 110, 124, 129
Library of Routines ..••..•.•...•••.••.•••..••.•••...••.....•.••• 1, 2, 47, 74, 103, 124, 129
Line Number •..•.......••.••..•..••.•••••.•.•......••...•••.••.............•.•. 15, 86
Linkage (LINK) Constant••.•.••••..••.•....•..•.••..••.....•....•.• 7 3, 83, 102
Location Field •.••............•.•.•••••••••....•..•..••••••.•.....•.•...•• ·• • . . • • • • 13
Low-Order Product Register (LOP) ...•....•••...••••••..•.••••••.•.•......•. • ••.• 28, 139

Machine Instructions••...•.•...........•....•.•.••.....•••..•........•. 37, 39, 139
Macro Instruction • . • • . . • . • • • . . . • . • • • • . • • • • . • 100, 10 3, 107
Macro Routine •••....•.••.....•...•..•••.•..•.•.•... 1, 70, 73, 79, 83, 89, 101, 103, 107, 124

Programmer-Defined • . . • • • • • • • . • • • . • . . . • • • . • • • • . • • • • 84, 89, 105, 124
MACRODEF Card •••••••...........•.•••.•.•.....••••••..•.••..•.. 84, 89, 105, 107, 124
Magnetic Tape Unit•........•..•.••...••.•..•.••....••....•..•...•....•. 42, 44
Main Coding • • . . • • . . • • . • . • . • • • . • • . . • • • • • . • • • • . • . 88, 91, 130
Mask Base Address•.........•.•••••.....•.•.•••.•••••••••••.•.•.••• 59, 69, 76, 94
Mask Index Register (MXR) . . • • • . . • . . • • • • • • • • 10, 11, 60, 69, 77, 110, 118

149

INDEX (cont)

Mask Pool • . . . • • . . • . • • • . . • • • . • . • • • . • • . • 79, 110
Mask Register • • • . • • • • • • 2 8
MASKBASE Constant . • • . . . • . • . . . • • • . • • • . • . . • • . . . 60, 69, 77, 83, 94, 102
MASKGRP (Mask Group) Instruction•...•..........•••...••. 32, 59, 70, 76, 83, 94, 100
Masks ...•.......•.•.......••.........•........... 10, 32, 38, 44, 59, 75, 101, 106, 127, 140

ARGUS Generated • • . . . • • . . . • • • • • • • • • • • . . . 40, 44, 70, 76, 100, 109
Programmer Designated••..••..•.••..•... 40, 44, 75, 101, 109

Master Macro Instruction .•......................•...••.•.•.••.• 85, 89, 100, 105, 107, 124
Master Relocatable Tape • . . • • . • . . • • • • . . . • • . . . • . • • 3
Memory

Control (see Special Registers)
Main . . • . • . • • • . . • . . • • • . . • • • • • . . . • • . • . . . • . • • • . • . • . • • . . . • • . . . 7

Memory Cycle•..........•......•.........•..•••...••......•.•...••.. 139, 146
Memory Designator Bits•..•.•••..•.....•.....••.•...•••••.•.••....•••.• 9, 141
Mixed (M) Constant . • • • . . • . . • . • • . • . • • • . • • . • • . • . . 7 2
MODLOC Instruction•.•....•...•...........•.............. 55, 70, 76, 83, 101
Multiple Transfer (MT)•.........•........•..•••.•.••............• 39, 41, 141
Multiple Unload (ULD) • • . . • • . . • • • • • . • • . . . • . • . 39, 145
Multiprogram Control • • • . • . . • • . . • • . • . . . • • . . . • • • . • . 49

N-Word Instructions•.................••.....••••..••......•..••.......... 41
N-Word Transfer (TN)••••.••.•..•.••..••.•..•••......•....... 39, 41, 140
NEWSUB Card • . . . • . . . • • . . . • . • . . . • . • . • • . • . • . • 125
Normalized Inequality Comparison (FNN) • . • • • • . • . . • • • . • 39, 146
Normalized Less Than Comparison (FLN) . . • • • . . . • . • . • . . . • . • . • . • • . • . 39, 145

Octal (OCT) Constant • • . • • • • • . • . . . • • • . • • . • . 6 3
Operation Code ..•.•...••....•.......••............•••...•.........•. 7,37,39,76,101
Out-of-Sequence Location Counter (XLC) . . • • . • • . . • • 20, 23, 58, 67
Out-of-Sequence Words ...•.••.•.•..••••.......•......•.•.•.•.........•. 20, 32, 54, 103

Parallel Processing ••••.•............•..••...........•••...•..•.......... 1, 29, 50, 91
Parameters, Library Routine ...••.•.•...•....•..•.•.•.••..•......••.. 4, 100, 103, 107
Peripheral Code . • • . . • • • . . . • . . . • • . . • • • • • • • • . 9, 33, 37, 42, 7 3, 94, 100, 115
Peripheral Instructions . . • • . . • • . . • • . • • . • • . . . • • . 9, 42, 142
Phrase .•.•.•.••.•••........••••.••....•............•.•.....•....•.•............ 107
Print (PRA) (PRD) (PRO) • • . . . • • • . . • . • • • . . • • . . • . . 51, 102, 1 ~4
Proceed (PR)•.•.........•••.....•..••...•.....••.•...•............•. 37, 39, 141
Production Run Tape . . • . • . . • . . • • . . • • . • • . . . • . . • • • . . . • • • . 3
Program Control (CONTROL) Constant •.•....•..•. ~ ..••.••......•......••.•• 34, 71, 100
Program Control Instructions (SPCR) (SCO:N) (CSCON) (DOFF) (DON) (STOP) ..•.••...• 50
Program Control Register•..•..•.•....•..•..•.•.........•. 34, 49, 50, 71, 141, 143
Program Director Cards (U, ELIMPROG) (U, REASSEMB) (U, CORRECT)

(U, NEWVERS) (U, NEWPROG)•..••....•.......•••.•..••.•. 81, 82, 83, 84, 90, 130
Program Identification Record • • . . . • . • • • . . • • • • • • . • . • . . . • • • 129, 135
PROGRAM Instruction (see Segment Directors)
Program Selection Run • • • • . 3
Program Test System ..•...••.•....•••••••...........•.•..••.•.. 1, 2, 55, 61, 87, 93, 129

150

INDEX (cont)

Program Test Tape • • • . . • • • • • • . . • . . 3
Programming Errors, Detection of

By Assembly•.•...•.••........•...•••....•.••...•••.•.•..• 94, 99, 100
By LAMP •......•...•..........•••••..•.••.•.•.•..•••.•••..•..•.......•••••.• 126

Read Backward (RB) • • . • . . . • . • • • . • • . . • . • . . • . • . • . • . . . 42, 143
Read Forward (RF)••..•.........•.....•.•..•...•...••..••••••...• 42, 143
Read Segment Macro Instruction • • • . • . . • . . • . • • • • • • . • . • . • • . • • . • • . . • 30, 7 3
Read-Write Address Counters (RAC, DRAC, WAC, DWAC) • . . • • . . • . . 19, 34, 42, 68, 87, 142
Record Transfer (RT) ...••..•.•.•....•.••..•••.••....••••••...••..•...•••.••• 39, 140
Relocation .•.•.•.•...•...••...•..•....••.....•.•..••.•..•••••....•....• 3, 5, 29, 33, 35
Remarks Card • • • . • • . • . • . • . . . • . . • . . • • . • • • • . • • • • • • . • • • . 16, 93, 97
Remarks Columns • • . . . • . • • . • • . . • . . • . . . • • . • • • . • • • • • . • • • • • • . . . • • . • • • • • • • • 16
RESERVE Instruction •...•.•...•.•...•••.•...•.........•.•.•.•.•.•. 58, 83, 93, 97, 101
Rewind (RW) • . • . • • • . . • • • • . . • • • • . • 39, 43, 49, 143

Scientific Instructions . . • . • • . • . • • • . . . • . . • . . • • • . . . • . • . • • • . . • . . • . . . • • . . . 9, 46
SCON Instruction . • . • • . • • • . • • . • • • • • . . • . . • . • . • • . • • • • . . • . . • • . • • . • • • • 39, 143
Segment Directors (ELIMSEG) (SEGMENT) (PROGRAM) ••..•...•.• 29, 85, 89, 90, 93, 130, 133
Segment Identification Record .•••......••••.•....••.••.•..••••.•.•.•...••••••• 130, 135
SEGMENT Instruction (see Segment Directors)
Segment Loading . . • • . • . • • • • • • • • • . • • • . • • • • . • • • . • • • • • • • . • • • . • • • • • • • • • 30
Segment Name (SEGNAME) Constant • • . • • • • • • . • • . • • . • • • . . • • . • • . . • . • • • • • . . 73, 102
Segmentation of Programs • • . . • • • • • • • • • . . . • • • • . . • • • • . . • . . • • . • . . . • . . . • • . . . • • • • • 29, 85
Sequence Change Instructions • . • • • . • • • • . • • • • . . • • . . • . • • • • . . • . . . • . . • • • • • 38, 43, 49
Sequencing Counters•.••...•••••••••••.....•..... 8, 37, 38, 42, 48, 104, 106, 109, 140
SETLOC Instruction ..••.••...•••••••••.•••...•.••.•••••• 31, 32, 53, 55, 70, 76, 78, 83, 100
Shift and Select (SSL) . • . • • . • • . • • • • . • . . • . • • • . • . . • • • . • • • • . • . • • • . • • . • • • • . 39, 45, 142
Shift Inst ructions ..•.•....•••.•..••.•••••••••.•••...••..•....•.•••..•..... 9, 44, 7 5, 141
Shift Preserving Sign and Extract (SPE) • • • . . • • • . . • • • . • • . • . • . • . . . • 10, 39, 142
Shift Preserving Sign, Substituting (SPS) .•..•...••.••••••••••••••••••.•..•• 39, 45, 141
Shift Word and Extract (SWE) •...•..•.•••....••.•..•..••••••••••.••••• 10, 39, 45, 78, 142
Shift Word, Substituting (SWS) •.•.•••••••••••••.•..•.••••••••••••.•.••.••••••.• 39, 142
SIMULATE Instruction • • . . • • • . • • • • • • . • . • • . • • . • • • • • • • • • • • • • . • • • • • . . • . . . • 47, 55, 83, 101
Simulator (S) ••.•••....••••.••••••••••.•.....•.•...•.•••••••.•.•••.• 9, 39, 47, 100, 142
Sort Generation • • • • • • . . . • • . • • . . • • . . . • • • • • . . • . • . • • • • 4, 7 3, 136
SPCR Instruction • . • • • • • . . . • . • • • • • . • . • • . • . . • • • . . . • . . 39, 143
Special Address (SPEC) Constant •••••••.•••.•.•••.....•. 28, 30, 33, 48, 55, 67, 74, 100, 115
Special Registers . • . . . • . • . . • • • • . • • • • . • • • • • . . • • • • • • . • • • • . 7, 8, 19, 50, 55, 67, 69
Stop (STOP) .••..•.••..••..•.••••••.••.••.••.......•.•••.•...•..••..•••••• 39, 50, 143
Stopper Address • • • . • • . • • . . • . • • • . . • • • . . • • . • • • • . • . . . • • • • • • • 28, 34, 68
Subaddress . • • . • . . . • • • . . . • . . • . • . . • . 7
Subroutine Call (SUBCALL) Constant • . • • • . • • • • • . . . • • 74, 115
Subroutines •.....•..••..•..••..•.••.•.•.•• 33, 54, 70, 74, 79, 83, 94, 101, 103, 105, 110, 125
Subsegmentation•.•...•.••.••........•.•.......•..•....... 31, 53, 60, 77, 101, 103
Substitute(SS) •.•.•.•••.••..•.••••.•.•.••.••..•....•.•.•••....•..•..•.• 11,39,75,140
Superimpose (SM) ..•..••....••.•••.••••.......•.•.•••.•••••.....•.•...• 39; 40~ 140
Symbolic Program Tape ..•••..••..•.•.••.............•••••... 3, 81, 90, 93, 105, 124, 129
Systems Program Loader • . . • . • • • • • • • . • . • • . . • . . • • • • . • . . . • • • . • . . . • • • • • . . 12 9

151

INDEX (cont)

Tags
Definition of ••.•••••••.••••••••.•••••.•••••••••••••••.••.••••••••.••••..• 20, 101
Link ••••••••.••••••••.••••••••••••••••••••.•••••••••• 19,30,53,55,56,73,115,130
Mask •..••.•••••••.•..••••.••.•••••••.•.•..•••.•••.•.•• 19, 37, 38, 40, 44, 58, 70, 76
Special Register •••••••••••.•••••••••••••••••..•••••••••.••••••••••••••.•• 18, 115
Symbolic •.••••••••.•.••••••••••••.•.•.•••.•••.•••••••••• 17, 63, 67, 72, 83,.100, 107

Tape Address {TAC) Constant • • • • • • • • • • . • • • • • • . • • • • • • • • • • • . • • • • • • • • • • • • • • • 73, 100
Tape Label Record ••.••••..•••.•••••.•••••••••••••.••••••••••••••.•••••••••• 129,135
TAS {Temporary Assignment) Instruction • • • • • . • • . • . . . • . • . • • • • • • • • . • • • • • • • . • 57, 83, 100
Terminal Device • • • • • • • • • . • • • • • • • • • • • • • • • . • • • • • • • . • • • • • • • • • • • • • • • . • • . • • • • 42, 44, 142
Test Data ••..••••••••••.•.•••••••.••••••.••••••.•.•••••.•••••••.••• 3, 78, 81, 83, 87, 129
Test Data Detail Cards . • • • . • • • • • • • . • • • • • • . • • • • • • • • • • . • • . • • • • • • • • . • • • • • • • • 87
Test Data Directors {ELIMDATA) {TEST DATA) •••.••.•....••••.••••••.••.••.• 87, 89, 90
Transfer A to B, go to C {TS) •.•••••.•••••••..•.•.•...••••••••••.••••. 28, 38, 39, 40, 140
Transfer ·A to C {TX) •.•.•••••••••.•••••••••.•••••••••.••.•••••..••.•. 39, 40, 71, 78, 140

Unprogrammed Transfer ••••••.••••••.•••••••.••.••••••••..•••.•••..•.••••.. 47, 49, 55
Unprogrammed Transfer Register .•••••••••..•••••••••...•••••••••.••..• 19, 47, 55, 139
Updating Run • • • • • • • • • • • . • . • • . • • • • • • • • • • • • • • • • • • . • . • • • . • • • . • • . • • • . 3, 81, 91, 9 3, 12 9, 13 3

Word Add {WA) ••••••••••...•••.•••.•.•••••••••••••••.•..•.•••.•...••.•.••. 39, 40, 139
Word Difference {WD) .••••..••••••.••••••••.••••.•..••.•••••••••.•..•••.••• 39, 40, 139
Word Structure •.•.•••.•..•..•..•.•••••••...•.............•....•..•.•...•.....•..• 7
Write Forward {WF) ..•.••.•••.•.••••••••••..•••..•••••..•••.••••..•...•••• 39, 42, 142

152

\ Honeywell
I! e~ Va10., P~~

