
~~y;:~.

COpy NO. ? 8 ;)

DATAmatic 1000

AUTOMATIC PROGRAMMING MANUAL

VOLUME I

THE ASSEMBLY PROGRAM

Copyright - 1957

DATAmatic
A Division of Minneapolis-Honeywell Regulator Company

151 Needham Street
Newton.Highlands 61, Mass.

Printed in U. S. A. DSI-6

PREFACE

The present manual represents Volume I of a set of Autom~tic
Programming Manuals. It serves to introduce the concept of auto­
matic programming as applied to the DATAmatic 1000 Electronic
Data-Processing System. The main body of this volume is devoted
to a description and explanation of an Assembly Program for use
with this system. The DATAmatic 1000 body of instructions is re­
viewed, special Assembly Program instructions are described, and
the procedure for writing a program to be assembled is developed,
step by step. For the benefit of readers not familiar with the DATA­
matic 1000, a brief description of the system precedes the manual.

Volume II is devoted to the DATAmatic ABC-1 Automatic Business
Compiler, which permits the programmer to write complicated pro­
grams in easily learned codes. This volume also describes the
Library Additions and Maintenance Program (LAMP), by means of

which the programmer may utilize, modify, and/or add to a set of

frequently used routines stored on a special tape called the Sub­
routine Library. This Subroutine Library is listed and described in
a loose-leaf appendix to the Automatic Programming Manuals.

Volume m is a Utility Manual which describes a number of Service
Routines, such as a Tracer Routine, a Storage Print Routine, a
Program Modifier Routine, and a Tape Editor Routine. These rou­
tines perform service functions which facilItate maintenance and
use of the various automatic programming devices available with
the DATAmatic 1000.

v

TABLE OF CONTENTS

Preface iii

Introduction to the DATAmatic 1000 vii

Introduction to Automatic Programming xxi

Programmer's Language 1

Word Structure 1

Tags 6

Absolute Tags 6

Relative Tags 8

Constants 12

Control Instructions 14

START 14

SEGMENT START 16

READ DmECTED SEGMENT 17

Hollerith Card Format 19

Input Converter Operation 21

Assembly Program Operation 23 .

Loading the Assembly Program 26

Starting the Assembly Process 26

Error Provisions 28

Resetting the Assembly Program 32

Program Tape 33

Operating Procedure for the Assembled Program 33

Appendix A. Fixed-field Card Format 36

INTRODUCTION TO THE DATAmatic 1000 vii

The DATAmatic 1000 is a high-capacity electronic data-processing
system designed specifically for application to the increasingly complex
problems and procedures required in modern business. The system
incorporates significant new systems techniques as well as several
basically new component developments. One of the primary features
of the DATAmatic 1000 is its exceptionally large capacity to store in­
formation on magnetic tape, coupled with its ability to feed informa­
tion from ma~etic tape to the processing section and back to magnetic
tape at a sustained rate of 60,000 decimal digits per second. In ad­
dition, the operational speed of the processing section maintains full
compatibility with this high speed of information transfer.

Two of the most cumbersome aspects of most business problems are
sorting and file maintenance. The DATAmatic 1000 is equipped with
an extensive and flexible set of instructions, designed specifically to
excel in the performance of these functions and many others. These
instructions may be automatically assembled into complete programs
by the DATAmatic ABC-l Automatic Business Compiler. Thereafter,
a task which is repeated daily or weekly is initiated simply by reusing
the program from its storage on the program magnetic tape.

In the DATAmatic 1000, reliability is a prime consideration through­
out every aspect of engineering and design. The design of electronic
circuitry is highly conservative. Every transfer of information within
the sy~tem is carefully checked to insure that the information is trans­
ferred without alteration. In addition, all arithmetic and logical opera­
tions are completely checked. All units of the system are constructed
of easily replaced standard packages to facilitate maintenance. A
system of marginal checking includes circuitry and a special program
which may be run periodically to locate any package which should be

replaced because of marginal performance. With proper use of this
facility, most machine malfunctions will be corrected before they occur.

viii INTRODUCTION

A High-Speed Memory Amplifier package representative of the
modular construction used throughout the DATAmatic 1000 system

Elements of the System

The system may be conceived functionally as comprising three main
sections, the Input, Central Processor, and Output Sections, although
its physical layout will generally not correspond with such a concep­
tion. Data is initially fed into the Input Section in the form of punched
cards. This section, which includes a Card Reader, an Input Con­
verter, and one Magnetic File Unit, reads the data from the cards,
translates it.into machine language, edits and arranges it into the
desired format, and records it on magnetic tape.

The Central Processing Section includes (1) Arithmetic and Control
Units, (2) the High-Speed magnetic-core Memory, (3) Magnetic File
Units, (4) Input and Output temporary storage Buffers, and (5) the

INTRODUCTION ix

Typical Layout of a DATAmatic 1000 Electronic Data-Processing
System

Central Console. The Central Processor reads data stored permanent­
lyon magnetic tape, performs all manipulations of data, controls the
sequence of functions performed, stores information temporarily while
it is being processed and, after processing, stores it permanently on
magnetic tape. By means of the Central Console, the operator may
monitor the overall operation of the system. As needed, Magnetic
File Units may be used by auxiliary equipment. Such action is con­
trolled by switches.

The Output Section converts data from magnetic tape into either
punched-card form or printed form, performing considerable editing
in the process. The Model 1300 Output Converter, which feeds
standard punching and/or printing equipment, may either replace
or supplement the Model 1400 High-Speed Output Converter and

x INTRODUCTION

Printer, depending on the quantitative requirements of the system
for output information. One Magnetic File Unit may be considered
a part of the Output Section.

Magnetic Tape Storage

The basic medium for the storage of information in the DATAmatic
1000 is magnetic tape. The particular tape used, the method of re­
cording information on it, ~nd the tape-handling equipment have all
been designed or selected to be mutually compatible and to provide
high capacity, ease and speed of access to information, ultra-reliable
storage and recovery of information, and maximum utilization of space
on the tape.

Type VTR-179 magnetic tape has been selected for the DATAmatic 1000
because of its reliability and long life. This tape consists of a layer of
iron oxide bonded to a tough, durable Mylar plastic base. A reel of

tape is three inches wide and 2700 feet long and can store over 37,000,000
decimal digits of information, the equivalent of data which would require
465, 000 punched cards.

Stored information is recorded on the magnetic tape in groups of mag­
netized spots. The length rather than the strength of these spots is
used to form a dot-dash code representing the encoded digits, letters,
and symbols. This, the first of a series of unique reliability features,
assures that variations in the recorded signal strength will not result
in errors.

The information is stored in standard quantities called blocks, which
are arranged in a nov~l fashion along the tape. The virtual elimination
of dead space and the optimum packing of information into the tape area
is achieved by regarding the tape as a series of areas one block in
length, then recording iQ every other block while the tape travels in
one direction and in the blocks omitted while the tape travels in the

INTRODUCTION xi

reverse direction. The blocks not filled in a given direction of travel
provide the space for starting and stopping the tape in that direction.
As a result, informati.on is recorded on almost the entire area of the
tape. Moreover, since the reversal of tape direction is accomlliished
automatically, all of this information is written or read sequentially
and the tape is positioned at its physical beginning at the conclusion of
this process.

Information is recorded lengthwise to the tape in 31 channels, a system
which greatly speeds the transfer of information and facilitates search­
ing processes. Specifically, as many as ten tapes may be searched
simultaneously, which means that the system is actually passing over
600, 000 decimal digits per second while seeking the particular item
desired. The read-record head will write on the tape at the sustained
rate of 60, 000 decimal digits per second and will recover this informa­
tion at the same rate. The reading or searching operations may be
performed with the tape travelling either forward or backward.

The tape-drive mechanism and the read-record head are contained in
the Magnetic Ffi.e Unit. An installation may include from four to one
hundred Magnetic File Units, all directly connected into the system.
They may be divided in any manner and at any time between the reading
and recording operations. The volume of transactions and the com­
plexity of operations govern the number of Magnetic File Units re­
quired for a given system. Furthermore, these units may be added to
or removed from the system at any time as these requirements vary.

In order that any Magnetic File Unit may be interrogated and informa­
tion recovered from it without interrupting the operation of the' Central
Processor, a File Reference Unit is available. Thus a Magnetic File
Unit may, at different times, be recording data received from the In­
put Converter, reading data to the Output Converter, recording data

xii INTRODUCTION

DATAmatic 1000 Magnetic File Units

from the Central Prooessor, reading data to the Central Processor,
or reading data to a File Reference Unit. Also available is a File
Switching Unit which increases the flexibility with which Magnetic
File Units may be arranged into the various functional groups.

Input Section

Data enters the DATAmatic 1000 on standard aO-column punched cards
which are initially read by the Card Reader. In this unit the card is
read tWice, the two readings are compared, and the card is stacked.
If the two readings of the card are not identical, the operation of the
Input Section will stop and the card will be sent to a reject hopper.
The Card Reader holds batches of over 3000 cards at one time and
passes them at the rate of 900 fully punched cards per minute.

INTRODUCTION xiii

The information which is read from the punched cards is translated
into the language of the system and arranged in the format of the mag­
netic tape by the Input Converter. In this process, it passes through
two control panels and two temporary storage locations, providing great
flexibility for transposition, duplication, and discarding of information.
The operator manually sets an identifying . control number into the In­
put Converter, which includes this number in the information to be

written on magnetic tape. The control number may then be written
on the batch of cards which it represents, in case it is desired later
to cross-reference these cards with their corresponding tape.

The encoded information is first arranged in a tOO-column format
within the converter. In this conversion, any number of card columns
may be duplicated provided that the total number of columns does
not exceed tOO. Triplication of columns is not permitted. Thirteen
conversion rules are available for the translation of punch code into
machine code. Any single card column may be translated by anyone
of these thirteen rules. The information is then translated into the
final tape format, the contents of two punched cards being fed to each
block on the magnetic tape. Several automatic checking features are
built in to detect improperly punched cards or errors either in reading
or in one of the conversion steps. The operator contr.ols the settings
of a group of panel switches which direct the course of action that the
machine is to follow in each of these situations.

It must be emphasized that the operation of the Input Converter is
strictly "off-line". That is, it proceeds entirely independently of and
simultaneously with the data -proce ssing and/or output functions.
Normally, one or more specific Magnetic File Units are assigned the
function of writing on tape all raw data received from input and com­
municating it ~o the Central Processor.

xiv INTRODUCTION

Binary Notation

Information which is manipulated, stored, or communicated other than
by electronic systems is generally written using 10 decimal digits, 26
alphabetic characters, and a ~umber of punctuation marks and other
special symbols. Basic to the adaptation of information to electronic
systems is the fact that such information can be written entirely in
terms of two symbols, generally called zero and one. This presenta­
tion is called binary notation and is analogous to the presentation of
information in the more familiar Morse Code, in which the two symbols
used are called dots and dashes. The symbols used in a binary nota­
tion are called binary digits or bits. For example, the ten familiar
decimal digits, 0 through 9, are represented in binary notation as
follows:

0000 - 0 0101 - 5
0001 - 1 0110 - 6

0010 - 2 0111 - 7
0011 - 3 1000 - 8
0100 - 4 1001 - 9

Bars will sometimes be placed over binary digits when there is some danger
of confusing them with decimal zeros and ones.

The storage of information by electronic equipment depends upon the
ability to distinguish between two states which represent the two sym­
bols used in binary codes. There are many electronic devices which
can make such a distinction. An example of such a device which is both
fast and reliable is the tiny, ring-shaped magnetic core. This core
may be magnetized in either of two senses; in one sense it is con­
sidered to be storing a binary zero and in the other sense a binary one.
These tiny magnetic cores constitute the principal element for the
storage of information in the High-Speed Memory and buffer storage
units of the DATAmatic 1000 Central Processor. In a group of four
such magnetic cores, ten of the sixteen possible combinations of states
may be used to represent the ten decimal digits.

INTRODUCTION xv

Central Proces.sing Section

The Central Processor has already been defined to include the Arithmetic
and Control Units, the Input and Output Buffer Storage Units, the High­
Speed Memory, the Magnetic File Units, and the Central Console. To­
gether, these units contain the electronic elements and circuitry for
high-speed performance of the stored programs.

The fast and reliable internal memory is composed of over 100,000
magnetic cores· and has a capacity of 24, 000 decimal digits. Access
is in parallel for rapid readout of stored information. Processing of

data stored on magnetic tape is also enhanced by the inclusion of two
Input and two Output Buffer Storage Units. These buffers, which are
each capable of storing 744 decimal digits, permit a steady flow of

information to and from memory and enable the memory to read from
one tape and write on another simultaneously.

\

The design of the Central Processor and the provision of certain
special instructions are specifically aimed at the attainment of high
sorting, merging, and file-maintenance speeds. Some examples of
the speeds achieved are:

Sort - 60,000 decimal digits per second (equivalent to 750
fully punched cards per second).

Merge - 60,000 decimal digits per second.
File Maintenance - 600,000 decimal digits per second.

Arithmetic instructions are carried out by the Arithmetic Unit. The
sequence of performance of the stored instructions is directed by the
Control Unit. The Central Console is the means of human communica­
tion with, and control over, the system. It affords active human control
over starting and stopping the machine and passive communication in dis­
playing a continuous ·picture of the status of the DATAmatic 1000 as it
processes a program instruction by instruction. The latter property
is an exceptionally useful diagnostic tool for program debugging. The

xvi INTRODUCTION

High-Speed·Memory section of the DATAmatic 1000 Central Processor

Central Console also mounts a special automatic typewriter which is
used for the manual insertion of data to the machine and for the inter­
rogation of the machine. The components of the system can be checked
out by running the marginal check program. The Console displays the
results which indicate whether any package in the system is approach­
ing an unsatisfactory level.

INTRODUCTION xvii

DATAmatic 1000 Central Console showing simplicity of layout
achieved through functional design

A fundamental reliability feature of the system is the fact that each basic
unit of information include s a check digit called the weight count. This
weight count is recomputed after each transfer of information within
the system. The arithmetic comparison of the original and the re­
computed weight counts is ~n extremely positive and economical means
of verifying all internal information transfers, plus arithmetic and
logical operations.

Output Section

The Output Section, like the Input Section of the DATAmatic 1000, op­
erates entirely "off-line". It accomplishes the conversion of information
stored on magnetic tape into the form of punched cards or printed copy.
Two alternative output sections are available which may be purchased

xviii INTRODUCTION

either singly or together, depending on the quantity and speed require­
ments of the application. These are the Model 1300 Output Converter
which provides the required output to drive a standard card punch and/
or a standard 150-line-a-minute printer, and the Model 1400 High-Speed
Output Converter which includes a special DATAmatic High-Speed
Printer capable of printing 900 lines per minute. As is the case in the
Input Section, one or more Magnetic File Units are normally assigned
to communicate between the Central Processor and the Output Converter.

Model 1300: The Model 1300 Output Converter reduces data stored on
magnetic tape to a form acceptable to a standard 150-line-per-minute
tabulator and/or a standard 100-card-per-minute card punch. The
tabulator and card punch functions, governed by standard control
panels, are preserved.

Information is read from magnetic tape to the converter in quantities
of up to 192 decimal digits, 128 alphabetic characters, or equivalent.
Each of these sets of data is processed individually and becomes the
basis of one line of printed output and/or one 80-column punched card.

The data is then read into converter output storage through a code
translator, controlled by a conversion control panel. There are 14
rules for the translation of machine language into standard punch
card code.

The output storage section simulates 120 columns of punch-card data,
in which form the information leaves the converter. Format arrange­
ment and all other standard printout functions are governed in normal
fashion by the control panels associated with the readout equipment.
In the case of the card punch, the data is converted into the standard
SO-column format and transposition and duplication of columns are
effected, as desired, by proper wiring of the card punch control panel.

INTRODUCTION xix

Model 1400: The Model 1400 High-Speed Output Converter oper-
ates from a completely flexible tape format and performs a con­
siderable amount of editing and format arrangement while preparing
information to be printed at the rate of nine hundred 120-character
lines per minute. In fact, the most complicated printed formats are
obtained with a minimum amount of pre-editing required in the Central
Processor. Special symbols and legend material can be emitted. Also
the printing of certain parts of the form may be suppressed, dependent
upon the contents of other data within the particular record. Further­
more, the same output tape may be used for several different types
of printing runs by wiring and using all of the control panels in the
equipment. The ·sequence of information on magnetic tape need not
ha ve any relation to the sequence of printing of information within
a given line. It is, moreover, possible to scan a record on the tape
several times, on each occasion deriving different combinations of
data to be printed on a given form; data from the tape may be rejected
or printed several times at will.

From the moment that information is read from the magnetic tape to
the actual printing process, a complete train of information monitor­
fng exists to preclude the possibility of printing erroneous information.
This system includes a read-back signal from the actual printing ham­
mer to the original stored information to verify the correctness of the
character being printed in every column of the form.

The High-Speed Output Converter reads information from magnetic
tape in discrete quantities of up to 192 decimal digits. These quanti­
ties may be read from any part of the block and are handled as separ­
ate units of information throughout the conversion process. Three
control panels are used to select the input information, trans-
late it, and store it in the 120-position converter storage. There are
160 printing positions available on the High -Speed Printer, of which any

xx INTRODUCTION

120 may be used during a given run. Two additional control panels
are used to select the particular 120 print positions to be used and
to perform further editing.

Integrated Checking

The weight count feature of the DATAmatic 1000, previously described,
is an integrated checking system which verifies every information
transfer, arithmetic and logical operation from the original conversion
to machine language through the final production of printed or punched
output. The weight count digit is originally computed and checked
during the input conversion process. It is then recorded on tape, one
such digit being an integral part of each basic unit of information and
remaining with this basic unit throughout all of the operations of the
system. Thereafter, recomputation and checking of weight count
verifies every transfer of information from tape to the Central Process­
or, and all internal operations within the Central Processor, transfers
from the Central Processor to tape, transfers from tape to the Output
Converter, and Output Converter decoding processes. Each of these
checking sequences is integrated with the preceding and following
sequence to form a single, system-wide verification of accuracy. The
weight count system is augmented in various DATAmatic 1000 units
with duplicate circuitry and other special circuits which further extend
the checking system.

INTRODUCTION TO AUTOMATIC PROGRAMMING xxi

Automatic programming routines aid in preparing programs for elec­
tronic data-processing systems by replacing many repetitious manual
tasks with automatic machine functions. Not only are time and money
saved, but programming accuracy is greatly enhanced. In fact, the
sheer volume of programming required by large data-processing ap­
plications has made such routines a practical necessity. In order to
illustrate how such" routines assist the programmer, it is necessary
first to describe the steps associated with conventional program prep­

aration and then to show the manner in which automatic programming can
replace some of these steps or minimize the work associated with
them.

Manual Programming Procedure

The preparation of a program to perform a large-scale data-processing
operation without the use of automatic programming can be broken down
into these eight major steps:

(1) Analysis of the Operation
(2) System Design
(3) Program Design
(4) Coding
(5) Input Preparation
(6) Checkout Planning
(7) Checkout
(8) Program Operation

Step 1. Analysis of the Operation. In a data -processing operation,
the machine processes a large quantity and a wide variety of data in
order to produce· the required information. Therefore, before a
method of approach can be considered, the operation to be performed
must be carefully analyzed. All of the specific inputs must be

designated, the frequency and manner of processing them must be
determined, and the volume of each type of input data must be

xxii INTRODUCTION

estimated. The same consideration must be given to the required
output information. This analysis is frequently made by means bf
flow charts which show the interconnections and sequential relation­
ships of these inputs, processes, and outputs.

Step 2. System Design. With the inputs, processes, and outputs
of the operation clearly defined, it is possible to design a program­
ming system. The initial task at this step is to specify the format of
the data being ·processed at the input stage, the processing stages,
and the output stage, i. e., the way in which the information will be
punched on input cards, the format of the information on magnetic
tape files, and the printed or punched output format. The procedure
for operating the data -proce ssing system must also be considered;'
tape changing during program operation, console operation, control
panel wiring, and control information printed out at the operator's
console all play an important role in the design of the system.

At this point, the preparation of the actual program begins. A
block diagram is prepared which shows the logical steps that the
input data must go through in order to produce the required out­
put information and the sequence in which these steps are to be
performed. This diagram consists of a series of blocks, one for
each logical step, with lines connecting the blocks to indicate the
sequence in which they are performed.

Step 3. Program Design. Each block of the block diagram is next
broken down into a number of boxes, each of which specifies a func­
tion to be implemented by a few machine instructions. This new
diagram gives a complete picture of how the program will operate
on the machine. It is called a programming flow diagram and it
provides the link between the flow chart, the block diagram, and
the actual program instructions.

INTRODUCTION xxiii

Step 4. Coding. The programmer may now begin the coding
process, that is, writing the instructions which will direct the

I

data -processing system to perform the functions indicated in
each box of the programming flow diagram. Memory locations
must be assigned to all program instructions and other data.

However, prior to the actual start of coding, the method of opera­
tion indicated by the block and flow diagrams should be evaluated
and any changes which will improve the program should be intro­
duced at this point.

Step 5·. Input Preparation. The coded program must be transcribed
onto a medium which the data-processing system can read and trans­
lated into a language which it can understand. This function is
accomplished by keypunc.h operators who transfer the information
from the programmers' coding sheets onto standard aO-column
punched cards. The Input Converter then writes the punched infor­
mation on magnetic tape.

Step 6. Checkout Planning. Up to this pOint, the programming
system has been gradually broken down into a large number of steps,
each of which is implemented by a few machine instructions. These
instructions have been assembled in the proper sequence to perform
the data-processing operation. After a program has been coded,
steps must be taken to verify that it performs the desired functions.
First, an overall checkout plan must be prepared; then the steps
in the checkout process must be specified in detail.

Step 7. Checkout. The first part of the checkout process is to
operate the program using specific controls prepared during step
6 as a part of the overall checkout plan. These controls permit
the programmer to examine information at the various logical breaks
in the program. As errors are detected in this process, correc­
tions to the coding must be made as specified in step 4 (coding),
and step 5 (input preparation) must be repeated. The program

xxiv INTRODUCTION

must be tested with a variety of input data and it should be made
to produce samples of all of the types of output information. There­
fore, to conclude the checkout process, a simulation of the entire
programming system must be performed on the machine.

Step 8. Program Operation. Each checked-out program requires
operating instructions, scheduling information, and set-up plans
in order to make the most efficient use of the machine. These
instructions must specify the techniques necessary to get the input
data into the machine, control the processing of the data, and pre­
pare the required output information. They should also specify all
of the special indications which are produced at the operator's
console to increase the efficiency of program operation. To com­
plete the documentation, a flow diagram and an annotated copy of

the program must be prepared.

Elements of Automatic Programming

A SSE MBL Y PROGRAMS: The purpose of automatic programming is
to replace the routine portions of these eight steps with machine oper­
ations. First of all, the language which the programmer uses differs
from the language of the machine. Programmers work best with easily­
remembered or mnemonic operation codes (e. g., ADD, BUB, MUL)
and decimal numbers; electronic data-processing systems work with
binary information. The translation from the mnemonic-decimal
language of the programmer into the binary language of the machine
is just the sort of task which high-speed data-processing systems do
well. Not only is translation accomplished rapidly, but the results are
error-free. Programs which perform this operation are usually called
Assembly Programs.

COMPILERS: In the program design step, the blocks of the block
diagram are broken down into boxes of a flow diagram to be transcribed
into machine coding and checked out. Frequently, the same block

INTRODUCTION xxv

appears in several programs. Using manual programming procedures,
the cOding and checkout steps must be repeated each time this block
appears. However, much time can be saved in the flow diagramming,
coding, and checkout of routines with identical blocks by having the
person who first codes the block perform a few extra tasks to preserve
the COding for other programmers Wishing to use it. Such reusable
blocks are called subroutines. The routine task of duplication of cod­
ing can be eliminated by extending the Assembly Program so that sub­
routines can be added to any program by a Single instruction. There­
fore, by introducing subroutines into the programming system, all of
the steps after System Design are effectively and automatically eliminated
with respect to the subroutines. A program which is capable of pro­
cessing subroutines in this fashion is called a Compiler because it

~.~ ...• ~"''''''':D''k ~'<r>,~_"~~H~,,, .. ___ _

compiles completely coded and checked-out subroutines into a program.

SUBROUTINE LffiRARY MAINTENANCE: .Subroutines, together with
instructions for their use, . are stored on magnetic tape or on punched
cards in what is called a Subroutine Library. A Compiler may be
supplemented by a program which automatically adds, deletes, or modi­
fies subroutines in the Subroutine Library. This Library Maintenance
Program, as it is generally called, relieves the program~er of another
routine task.

RELATIVE AND SYMBOLIC CODING: Assembly Programs and Compilers
frequently utilize either relative or symbolic tags which permit a pro­
grammer to refer to instructions and data in his program without hav-
ing to assign them specific memory locations. Words with relative
tags are coded in groups and have definite relative positions within
these groups. After detailed COding is completed, the programmer
assigns memory areas to these groups of relative tags. Words with
symbolic tags are automatically assigned memory locations by the
Compiler or Assembly Program. Both systems Simplify detailed
coding and also enable programmers to make program modifications,
additions, and deletions without extensive recoding.

xxvi INTRODUCTION

UTILITY ROUTINES: The automatic routines which have been de­
Be ribed assist in the preparation of programs. There is another
group of automatic routines which aid in the ch~ckout phase of pro­
gram preparation. These are called Utility Routines.

In the checkout step, the programmer is assigned short periods of
time on the machine. During these periods,. he must operate his
program and obtain sufficient information to locate and analyze any
errors it may contain. A listing of the contents of memory at var­
ious stages of thisproceBB may provide the necessary information.
The program which produces such a listing is called a Post Mortem
.or Memory Dump Routine. These routines convert the contents of
memory from the binary form to the mnemonic and decimal language
of the programmer.

Some types of errors are difficult to track down using the Post Mortem
Routine. Under such conditions the programmer would like to know
exactly what happens as each instruction is performed in the region
of the error. This could be accomplished manually by using the
Central Console to examine the affected memory locations after per­
forming each instruction. However, this process is extremely
wasteful of machine time. A program called a Tracing Routine per­
forms this function automatically at high speeds. The Tracing Rou­
tine produces a listing of the instructions performed in the sequence
in which they were performed and for each instruction specifies the
contents of the affected memory locations.

Data-processing systems work with information stored on magnetic
tape; therefore, certain procedures are necessary to insure effi­
cient handling of the data. For example, routines which will copy
files from one tape to another, locate, write, and modify files, and
edit tape files for printing must be available as a part of an auto­
matic programming system.

INTRODUCTION xxvii

There are ~ny other programs in an automatic programming system,
some which perform simpler functions and some which are much more
sophisticated. The complete set of automatic programs provided for
DATAmatic 1000 customers, the DATAmatic Automatic Business Com­
piler System (ABC-i), is described in this and the following volumes.

SECTION I - DATAmatic 1000 ASSEMBLY PROGRAM

The Assembly Program is a routine which translates programs from
the alphabetic and decimal language of the programmer to the binary
language of the computer. The programmer writes the instructions
of his program using three -character mnemonic operation codes.
Each word being coded is assigned a tag which indicates its location
in memory and which may be used within instructions to refer to the

. .

word. A tag may be the absolute address of a specific location in the
High-Speed Memory or it may be a relative tag which designates an
address in relation to a specific memory location. Control information
required by certain instructions, i. e., number of shifts, number of
words transferred, or tape identification codes, is specified in
decimal numbers. The Assembly Program processes programs
written in this form, translating the mnemonic operation codes to the
proper internal codes, assigning memory locations to relative tags J

converting decimal numbers to the appropriate binary configurations,
and producing a copy of the program in machine language on magnetic
tape.

This machine language form of the program is written on magnetic tape
in a prescribed format. This format contains self-loading control words
which automatically read the program into High-Speed Memory upon
request after the read-in process is initiated.

1

SECTION I - THE ASSEMBLY PROGRAM

PROGRAMMER'S LANGUAGE

Table I, pages 2-5, contains a list of the symbolic instructions which
may be used with the Assembly Routine. All DATAmatic 1000 instruc­
tions are included in this list. The complete specifications for the

instructions are given in Section I of the DATAmatic 1000 Programming
Manual. There are special instructions for interpreting three kinds of
constants: signed numeric words consisting of a plus or minus sign

and eleven hexadecimal digits; unsigned numeric words containing twelve
hexadecimal digits; and alphanumeric words containing eight Latin letters,

decimal digits, or special symbols.

Table II, page 7, contains a list of 6 -bit interpretations of all codes used
as input to the Assembly Program. These include letters, numbers,

hexadecimal digits, and special symbols. When a 4-bit interpretation
of a code is required, as in numeric words and instructions, the Assem­

bly Progran'l makes the necessary conversion.

Word Structure

The DATAmatic 1000 word structure is as follows:

Instructions

Alphanumeric

Numeric

Binary

Op Code A B

Figure 1

C Addresses

Characters

Digits

Bits

Reference to the actual DATAmatic 1000 word structure uses the nota­

tion shown in Figure 1. For example, the terms Character Position 3,
Digit Position 7, Bit Position 25, or Address A are used (Address A

consists of the bank designator in bit position 51 and the subaddress in
bit positions 40 to 29).

2 PROGRAMMER'S LANGUAGE

SUlI4MARY OF DATAmatic 1000 INSTRUCTIONS

INSTRUCTION
TYPE

Add

Subtract

Multiply

Divide

Shift Left
(preserving sign)

Shift Right
(preserving sign)

Shift Left
(with sign)

Shift Right
(with sign)

Substitute

Transfer In
(A Buffer)
(B Buffer)
(Same Buffe r)
(Different Buffer)

Transfe r In Bypass
(A Buffer)
(B Buffer)
(Same Buffer)
(Different Buffer)

Double Transfe'r-and
Select
(A Buffer)
(B Buffer)
(Same Buffer)
(Different Buffer)

INSTRUCTION
FORM

ADD/X/Y/Z CJ

SUB/X/Y /Z t:l

"-

MUL/X/Y/Z C1

DIV /X/y/Z CJ

SLP /X/nN/Z CJ

SRP /X/nN/Z p

SLW IX/n{~}z 0

SRW IX/n{$yz 0

SST/X/Y/Zo

TIA/X/N/S CJ
TIB/X/N/SD
TIS/X/N/S CJ
TID/X/N/S CJ

TBA/X/N/S 0
TBB/X/N/S Cl
TBS/X/N/S CJ
TBD/X/N/S CJ

, DTA/X/N/m/S 0
DTB/X/N/m/S C1
DTS/X/N/m/S 0
DTD/X/N/m/S Cl

FUNCTION

Add the contents of X to the contents of Y and
store in Z. X and Y remain unchanged. Sub­
sequence to 1988 in case of overflow.

Subtract the contents of Y from the contents of
X and store in Z. X and Y remain unchanged.
Subsequence to 1988 in case of overflow.

Multiply the contents of X by the contents of Y
and store the rounded high-order product in Z •.
Store the low -orde r product with 5 added to the
high-digit position in 1995.

Di vide the contents of Y by the contents of X
and store in Z. The remainder is stored in
1995.

Shift the contents of X, n numeric places left
and store in Z. Sign character and the con­
tents of X remain unchanged.

Shift the contents of X, n numeric places right
and store in Z. Sign character and the con­
tents of X remain unchanged.

Shift the contents of X, nN (n Numeric), nA
(n Alphabetic), or nT (n Two-bit) places to the
left and store in Z. Sign character is included
in the shift. Contents of X remain unchanged.

Shift the contents of X, nN (n Numeric), nA
(n Alphabetic), or nT (n Two-bit) places to the
right and store in Z. Sign character is included
in the shift. Contents of X remain unchanged.

Insert into Z, the bits of (X) for which there is
a 1 in the corresponding bit posit~ons of (Y).
Leave unchanged the bits of (Z) for which there
is a 0 in the corresponding bit positions of (Y).

Transfer N words from the specified buffer
section into N consecutive HSM locations begin­
ning at location X. Subsequence to S.

Bypassing the interlock, transfer N words from
the specified buffer section into N consecutive
HSM locations beginning at location X. Subse­
quence to S.

1) Transfer N words to Output Buffer from con­
secutive HSM locations beginning at X.

2) Replace these N words by N words from the
specified Input Buffer Section.

3) Use the mth word and the Extractor Register
to form the selection digit. Add digit to units
digit of S and Subsequence to the modified
address.

4) Store the instruction in Select Order
Register (1994).

For complete details of DATAmaticlOOO instructions, see the Programming Manual, Sec. I

Table I (Page 1)

INSTRUCTION
TYPE

Double Transfer and
Select--Bypass
~A Buffer)
B Buffer)

(Same Buffer)
(Different Buffe r)

Transfer and Select
(A Buffer)
(B Buffer)
(Same Buffer)
(Different Buffer)

Transfer and Select
--Bypass

(A Buffer)
(B Buffer)
~same Buffer)
Different Buffer)

Internal Select

Transfer Out

Transfer Internally

Twin Transfer

Transfer and
Subsequence Call

Read Forward

Read Backward

Read Forward,
Key Channel

Read Backward,
Key Channel

Print Alphabetic

INSTRUCTION
FORM

DBA/X/N/m/S CI
DBB/X/N/m/S Cl
DBS/X/N/m/S t:l

DBD/X/N/m/S t:J

TSA/x/NI m/S t:J

TSB!X!N!m!S Cl
TSS/X/N/m/S c
TSD/X/N/m/S 0

BSA/X/N/m/S c
BSB/X/N/m/S c
BSS/X/N/m/S CJ
BSD/X/N/m/S t:l

ISL/X/Y /S t:I

TXO/X/N/S c

TXI/X/Z/N CJ

TTX/X/Y/Zc

TXS/X/Z/Sc

RF A/T / e /S t::J

RFB/T/e/s t:J

RFD/T/e/S CJ

RBA/T /e/s t:J

RBB/T/e/s 0
RBD/T/e/S c

RFK/T/c/s C

RBK/T/e/s 0

PRA/X/e/S CI

PROGRAMMER'S LANGUAGE 3

FUNCTION

Same as Double Transfer and Select except
that the interlock is bypassed.

Same as Double Transfer and Select except
that step 1, the transfer of words to the Output
Buffer, is omitted.

Same as Transfer and Select except that the
interlock is bypassed.

Use X and Y to form a selection digit. Add
this digit to units digit of S and Subsequence
to the modified address.
Transfer N words from consecutive HSM loca­
tions beginning at X to the Output Buffer.
Subsequence to S.

Transfer N words from consecutive HSM lo­
cations beginning at X to consecuti ve HSM
Locations beginning at Z.
Transfer the word in the Select Order Register
(1994) to X and the word at Y to Z.

Transfer the contents of X to Z. Subsequence
to S.
Read next block in forward direction on Tape
T into the

A = A Buffer
B = B Buffer
D = Different Buffer.

Change Sequence Register to C. Subsequence
to S.
Read next block in backward direction on Tape
T into the

A = A Buffer
B = B Buffer
D = Different Buffer.

Change Sequence Register to C. Subsequence
to S.

Put key channel of Tape T in read state and
satellite channels in write state. Read Key
Channel of next block in forward direction into
B Buffer. Change Sequence Register to C.
Subsequence to S.

Same as Read Forward, Key Channel except
that the tape is moved backward.

Print contents of X as 8 alphanumeric charac­
ters on the Console Typewriter. Change
Sequence Register to C. Subsequence to S.

Table I (Page 2)

4 PROGRAMMER'S LANGUAGE

INSTRUCTION
TYPE

Print Numeric

Write Forward

Write Forward, except
Key Channel

Search Forward,
Reading

Search _Backward,
Reading

Search Forward,
Writing

Search Backward,
Writing

Rewind Ta:pe

Switch to First Half

Switch to Second Half

INSTRUCTION
FORM

PRN/X/C/S 0

WFA/T/C/SO

WFP/T/C/Sc

SFR/T/C/S 0

SBR/T/C/S 0

SFW/T/C/Sc

SBW/T7c/s Cl

REW/T/C/SO

SWF/T/C/S Cl

SWS/T/C/S 0

Less Than Comparison, LCN/X/Y/C Cl
Numeric

Inequality Comparison, ICN/X/Y/C 0
Numeric

Less Than Comparison, LCA/X/Y/Cc
Alphabetic

Inequality Comparison, ICA/X/Y/C c
Alphabetic

First Key Comparison FKC/X/Y/CO

Second Key Comparison SKC/X/Y/C 0

Pass
Sequence Change

PSSo

SCS/i/C/SC

FUNCTION

Print contents of X as 12 hexadecimal charac­
ters on Console Typewriter. Change Sequence
Register to C. Subsequence to S.
Put key and satellite channels in write state.
Write one block on Tape T. Change Sequence
Register to C. Subsequence to S.
Put key channel in read state and satellitp
channels in write state. Write one block.
Change Sequence Register to C. Subse~uence
to S.

Put key and satellite channels in read state.
Search one block forward. Change Sequence
Register to C. Subsequence to S.
Same as in Search Forward, Reading except
that tape moves in backward direction.
Put key channel in read state and satellite
channels in write state. Search forward one
block. Change Sequence Register to C. Sub­
sequence to S.
Same as in Search Forward. Writing except
that tape moves backward.
Rewind Tape T. Change Sequence Register
to C. Subsequence to S.
Position tape T to read from the first logical
half of the tape. Change Sequence Register to
C. Subsequence to S.
Same as SWF except tape T is positioned to
read from the second logical half.
If contents of X is numerically less than or
equal to contents of Y, change Sequence Reg­
ister to C.
If contents of X is not numerically equal to
contents of Y, change Sequence Register to
C.
If contents of X is alphabetically less than or
equal to contents of Y, change Sequence
Register to C.
If contents of X is not identical to contents
of Y, change Sequence Register to C.
Transfer conZ§.J>f first key to X. If con-
tents of X is rt'han or equal to contents
of Y, change Sequence Register to C. Tape
number is units digit of X.

Transfer contents of second key to X. If con­
tents of X is less than or equal to contents
of Y. change Sequence Register to C. Tape
number is units digit of X.

Go to Sequence Register for next instruction.
Change the Sequence Register to C. Subse­
quence to S. i may contain up to three
numeric digits.

Table I (Page 3)

PROGRAMMER'S LANGUAGE 5

INSTRUCTION INSTRUCTION
TYPE FORM FUNCTION

Branch and Return BAR/X/C/Se Store in X an instruction to change the Sequence
Register to its present reading. Subsequence
to S. Change the Sequence Register to C.

Stop STOP/i/S 0 Unconditional stop. Subsequence to S. i may
contain up to three numeric digits. ~

Optional Stop OST/i/d/Sc Stov jf spgeUiea BI eakpoint Swttch is 9~J. Subse-
quence to S. i may contain upto 3 numeric digits.

SUMMARY OF DATAmatic 1000 CONSTANTS

CONSTANT TYPE CONSTANT FORM FUNCTION

Alphanumeric Constant A/Constant c Assemble as alphanumeric constant with the
leftmost character in the leftmost position of
the word.

Unsigned Numeric U/u/Constant c Assemble as unsigned numeric constant with
the digit position to the left of the decimal
point placed in the uth digit position of the
word.

Signed Numeric N/n/Constant c Assemble as a signed numeric constant with
the digit position to the left of the decimal point
placed in the nth digit position of the word.
If no sign appears, a + sign will be inserted.

SUMMARY OF ASSEMBLY PROGRAM CONTROL INSTRUCTIONS

INSTRUCTION
TYPE

Start

Segment Start

Read Directed Segment

Tag Assignment

INSTRUCTION
FORM

START/i/s/Y C

~ (JOtp~ ,I"
SEGMENT.
START/J3 (::I

RDS/ f~}/T/S/Y c

TAG/X/nc

FUNCTION

i is Program Search Code, a maximum of 8
alphanumeric characters; s is Segment Number,
2 digits; Y is starting location of program in
absolute.
s is Segment Number, 2 digit's'~, 1

B or F determines read direction on Pro­
gram Tape. T is tape drive of Program
Tape. s is Segment Number, 2 digits. Y is
Starting Location after segment has been
read in.

Defines the stem, X, by giving it a value, n.
This value will be added to the decimal digits
following X when it is used. X may have the
form RS or R.

Table I (Page 4)

s-Jo,. ,..# B,..w-­
pO'"'' ' ~r~
.I" .. ~t;. fI • .,. d

1:S 6",. .9 foP

u",c.",d. i#d::.$

~ ";-.C~'fI cI
;1 d.r:7-

6 PROGRAMMER'S LANGUAGE

The basic structure of a word in the language of the Assembly Routine
is:
Op Code/Zone 1/Zone 2/ •••••• /Last Zone c , where

(1) Op code is the mnemonic code used to specify the machine
command, i. e., ADD, SUB, TIS, etc.,

(2) Zone 1 •••••• Last Zone are the parameters necessary to
specify the complete instruction,

(3) andcis a special symbol used to denote the end of a word.

For example, TIB/1300/16/1800cinstructs the computer to transfer
in 16 words from the B Buffer and store them in consecutive locations
beginning ,with location 1300, then make a subsequence call to 1800.
All zones are decimal, even those which are binary in machine language.
The Assembly Program makes the conversion.

Tags

Each word is "tagged" to indicate its location in memory. The tag of
a word is called an Identification Tag. Every word has an identification
tag. A tag used within a zone to refer to another word is called a
Zone Tag. The distinction applies only to the use of the tag; the same
tag is an identification tag for the word it labels and a zone tag in the
instruction which refers to the labelled word.

Any identification or zone tag referring to a location in memory con­
tains four alphanumeric characters. The two rightmost characters of
a tag must be decimal (00-99). The type of alphanumeric characters
in the first two positions ofa tag determine whether the address is
absolute or relative. Both types of tags may be used in the same pro­
gram and any number of combinations of acceptable tags may be used.

ABSOLUTE TAGS: When atag is in the range 0001-1999, it is abso­
lute, i. e., it is the address interpreted by the machine. In this case,
the programmer codes instructions, such as ADD/1208/1391/0324 0 •

PROGRAMMER'S LANGUAGE 7

INTERNAL ALPHANUMERIC CODES

Character Code Character Code Character

, 001010 0 000000 J

~ 001011 1 000001 K

@ 001100 2 000010 L

+ 001101 3 000011 M

= 101010 4 000100 N

$ 101011 5 000101 0

* 101100 6 000110 P

V- 101101 7 000111 Q

CR 011010 8 001000 R

. 011011 9 001001 S

0 011100 A 010001 T

(011101 B 010010 U

) 011110 C 010011 V

: 111010 D 010100 W

, 111011 E 010101 X

% 111100 F 010110 y

1/2 111101 G 010111 Z

Space 010000 H 011000 /

- 100000 I 011001 &

Note: For the hexadecimal digits 10-15 (to be used in constants only)
use the letters B-G, respectively.

Table II

Code

100001

100010

100011

100100

100101

100110

100111

101000

101001

110010

110011

110100

110101

110110

110111

111000

111001

110001

110000

8 PROGRAMMER'S LANGUAGE

Addresses 1980-1999 are special addresses whose functions are

described in Table ITI, pages 10 - 11. Address 1978 has a special

function described under "Starting the Assembly Process. " p~ge 26.
In absolute coding, the non -significant digits. of an address need - .
not be written. Therefore, 492 is equivalent to 0492, 39 is equivale~t

to 0039. If a zone is all zeros, no digits need be written in it. Figure
2 shows some examples of absolute coding.

Absolute
Identification
Tags

1001

1002

1003

1004

Absolute
Zone Tags

1 r
scsi /1542/1593 0

TXS/1394/492 c
BAR/156/39 c
WFA/9 c

This is equivalent to

Absolute
Identification
Tags

1001

1002

1003

1004

Absolute
Zone T\S

J~
SCS/0000/1542/1593 CJ

TXS/1394/0492/0000 a '
BAR/O 156/0039/0000 c
WF A/0009/0000/00000

Figure 2

There are two types of RELATIVE TAGS:

(1) The first type has the form ~ddd, where R is a digit greater

than one or a letter which identifies a relative counter, and'

each d is a decimal digit. These tags permit as many as

1000 words to be included within a single relative counter.

All tags of this type having the same first digit are related

to the same address.

(2) The. second tag form is RSdd, in which R can be any letter or

number, S must be a letter, and each d is a decimal digit.
I

This tag form permits up to 100 words to be included within -

PROGRAMMER'S LANGUAGE 9

each relative counter. All tags having the fame ~t two characters
c-iI

are related.

In relative coding, the four digits of an address must be written. The

R or RS portion of a tag is called its stem. Before a relative tag is
'", ~

used, the programmer must write a TAG/X/n CJ instruction which

defines the stem, X, by giving it a value, n. The value of a stem is

added to the decimal digits which follow it when used in the program.

If, for some reason, the same stem is defined more than once in a pro­

gram, each definition given will be used by the Assembly Program

until the next one appears. Otherwise, the value of a stem remains

fixed throughout the entire program. If the stem is not defined at all

before a tag using the stem appears, a
TAG
ILLEGAL

error will be printed on the Console Typewriter (see Table IV, pages 30 _

31). If the address which results from adding the decimal digits of

a tag to. the value of the stem is greater than 1999, a
TAG
ILLEGAL

error will be printed. Figure 3 shows SOILe examples of relative coding.

TAG
Instructions

Instructions
in relative
code

Same
instructions
in absolute
code

Stem Value Assigned
_______ ~ Stem

~ \l
TAG/C/4 CJ

TAG/5E/130 0

TAG/4D/98 a {

TAG/ AB/50 CJ

Identification Zone Ta s
~

{

_ 4D02
4D03

4D04

{

0100

0101

0102

Figure 3

ADD/ AB05/C114 AB08D

SLW/C104/3N/5E01 0

TXS/5E01/C115 0

ADD/0055/0118/0058 Cl

SLW/0108/3N/0131 0

TXS/0131/0119/0000 .0

10 PROGRAM1.v.tER'S LANGUAGE

ADDRESSES OF SIGNIFICANCE

There are several Addresses of Significance in High-Speed Memory, whose function
and use are summarized in this chart. Addresses 1981 through 1989 may be used
for the following control purposes.

Address Possible Control Uses

1981 During the editing pass for data recorded on tape by
the Input Converter, if the converter has made an
error during conversion, a sentinel subsequence call
to 1981 is stored in the 16th word ·of the item.

1982 The Console has a special start subsequence to 1982.
This causes the computer to subsequence to 1982 with­
out altering the Sequence Register.

1983

~ 1984

1986

1988

1989

Illegal punches present during the input conversion
process will cause a sentinel instruction with 1983
as the C address to be stored in the 16th word of the
item.

Fillers transferred from the Output Buffer will be
sentinel instructions with 1984 as the C address.

Fillers transferred from the Input Buffer will be
sentinel instructions with 1985 as the C address.

Division overflow results in an automatic subsequence
call to 1986.

If the Console Rerun switch is "on" and there is an
error in transfer of data out of an input buffer, an
automatic subsequence call to 1987 is produced.

Addition or subtraction overflow results in an auto­
matic subsequence call to 1988.

Reaching the end of tape results in an automatic subse­
quence call to 1989.

Storage Addresses 1990 through 1999, located in the Arithmetic and Control u~ts.
are special addresses which store special words used for control purposes. They
can be read into and out of by instructions.

Address Purpose

1990 The Control Register is part of the DATAmatic 1000
control circuitry. It stores each instruction during the
time the instruction is being performed by the system.

TABLE m
Page 1

Address

1992
Output Buffer Register

1993
Extractor Register

1994
Select Instruction Register

1995
Remainder Register

1997
Sentinel Register

1999
Current Instruction Register

PROGRAMMER'S LANGUAGE 11

Purpose

The Output Buffer Register contains the same word
as that found in the first word position of the Output
Buffer.

This register contains the constant used for the
extraction that is performed in the Transfer and
Select instructions.

This register contains one of the operands in the
Double Transfer instruction. All Select instructions
are stored in this register their execution. ""',c.
This register receives the remainder after the execu­
tion of a Divide instruction. It also receives the low­
order product of a multiplication after five has been
added to its high-order digit. The low-order
product is made up of the eleven low-order decimal
digits of the complete product.

Any instruction which implements a transfer between
the High-Speed Memory and a buffer will also imple­
ment the transfer of a word to the Sentinel Register.
If the Transfer instruction senses a sentinel, then
the first sentinel sensed by the instruction is stored
In the Sentinel Register; if no sentinel is sensed, a
Pass instruction is stored there.

DATAmatic 1000 instructions are processed in eight
word cycles. The Current Instruction Register is
used for storing a number of different items of
information related to these cycles under different
modes of operation. The programmer may use this
register as a diagnostic aid when the Central Process­
or stops.

The address 0000 is also of interest. Except in the case of the Comparison instructions,
an instruction to change the Sequence Register to, or make a Subsequence Call to, memory
address 0000 (void address) will be ignored and the Sequence Register will be used in
the normal fashion. There is a Start at 0000 button on the Console.

TABLE III
Page 2

12 PROGRAMMER'S LANGUAGE

Note that the TAG instruction has no identificatiQn tag. TAG instruc­
tions do not get assigned a place in memory. They are only for use by
the Assembly Program. It should also be noted that in assigning tags, -~he programmer must take care to assure proper allocation of the Key , .. ~

<?omparison instructions and the Select instructions. ~ .. ~!he Key e o~-
~ison"iristrB£ElonsLthe units digit of the A address des~gnates th~ ...
pIagnetjc tape address code. The value assigned to the stem, there­
fore, must provide selectiOn of the proper magnetic tape information.
The C address of the Select instructions is incremented by the digit
generated by the instruction. Since a carry occurs if the sum exceeds
nine and an error occurs if it exceeds nineteen, care must also be take-n
in assigning a place in memory to the word specified by the C address.

Constants

In the discussion that follows, the words "alphanumeric character" are
used to denote any of 56 Latin letters, decimal digits, and special sym­
bols which are represented by 6-bit binary codes in the DATAmatic 1000
(see Table IT). Similarly, "hexadecimal" is used to denote any of the
sixteen characters (ten decimal digits and six special symbols called
hex B, C, D, E, F, and G) which represent the sixteen possible group­
ings of a 4-bit binary code.

There are three methods of specifying constants (see Table I).

(1) Alphanumeric constant: A/Constant c. An alphanumeric
constant contains a maximum of eight ~ letters, ~ecimal
digits, or special symbols which are translated into 6-bit
groups. The leftmost character of the constant is put in
the leftmost character position of the word (character
position 8) and zeros are inserted as needed. For exam­
pie, A/BMB41 Cl is stored as

010010

PROGRAMMER'S LANGUAGE 13

The exact bit structure for this word is (see Table II for

translation) ,

1001QO 010010 000100 000001 000000 000000 000000

(2) Signed numeric constant: N/n/Constant CJ. A signed
numeric constant consists of a plus or minus sign, a max­

imum of eleven hexadecimal or decimal digits in 4 -bit
groups, and an indicator (decimal) point. The sign is put

in the normal sign position (bits 52-49). If the sign is not

written, a plus sign is put in the sign position. The charac­

ter to the left of the indicator point is put in the "nth" digit
.\-~ position (see Figure 1). If no indicator point appears in

f ~ \~ ~l;.. the number, the rightmost character of the constant is
stored in the "nth" digit position of the word. For example,

N/5/ + 207. 56 0

N/7/ - 12454 0

gi ve respectively,

1+10101010 \2101715161010

I - 11 I 2 1 4 I 5 I 4 I 0 1 0 -I 0 I 0 I 0 I 0

(3) Unsigned numeric constant: U/u/ConstantCl. The unsigned
numeric constant contains a maximum of twelve hexadecimal

or decimal digits stored in 4 -bit groups and an indicator

(decimal) point. The character to the left of the indicator

point is put in the "uth" digit position. If no indicator
point appears in the number, the rightmost character of

the constant is stored in the "uth" digit position of the word
(see Figure 1). For example,

U/1/0 CJ

U/3/B85.15 0

14 PROGRAMMER'S LANGUAGE

give, respectively,

10101010101 0 I 0 I 0 I 0 I 0 101 0 I
I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 10 1 8 I 5 I 1 I 5 1

Any constant that is neither wholly numeric nor wholly alphabetic

must be reduced to one of the three constant forms available by

referring to Table n. Any configuration of bits in a word may be

expressed as an unsigned numeric constant.

Control Instructions

In order that the Assembly Program produce the program desired,

certain control information must be furnished by the programmer.
The ~r Assembly Program control instructions provide the pro­

grammer witIi a method for specifying this information. The TAG

instruction, previously described, governs the placing of the operat­

ing program in the memory. The START and SEGMENT START
instructions serve to identify the beginning of a program or segment;

respectively. The READ DmECTED SEGMENT (RDS) instruction
facilitates the automatic interconnection of parts of a program.

Detailed descriptions of the control instructions follow.

START/i/s/Y Cl

i-Program Search Code

s - Segment Number

Y - Starting Location of program in absolute.

The- START instruction must be the first card of a program. A

card with a modified START instruction must be punched each time .- ---- --the program is reassembled (modified). This card will replace the
'-. < .------

previous SyABT card. The START instruction is used to set up the

File Identification Block on the Program Tape (see Figure 14, page
34).

PROGRAMMER'S LANGUAGE 15

The program identification or Program Search Code appears in the

first zone of the START instruction. The Program Search Code may
contain a maximum of eight alphanumeric characters which may be

separate and distinct from the Program Identification and Modification
-= •

Code specified in columns 1-7 on the punched cards (see Figure 5,
page 19). However, it is recommended that the 5 -character Pro­
gram Identification followed by the highest Modification Code used on
a card in the program be used as the Program Search Code. ~
program must have its own unique Program Search Code. It is used

to search for the assembled program on the Program Tape. The ~
Program Search Code, the information in columns 1-7 on the card,

and the segment number are printed on the Console Typewriter at
the start of the assembly of each program.

A segment is a portion of a program. A program may be divided into

segments because it is too large to be stored in the High-Speed Mem­
ory at one time and/or because the programmer desires to separate

the logical portions of his program. The segment number, s, is
two digits. If the program is all in one segment, the segment num­

ber is 01. The START instruction serves the same purpose for the

first segment of a program as the SEGMENT START does for all

the others.

The tag of the starting location of the program must be specified in
absolute. When the assembled program is read into memory, the

Sequence Register is set at this starting location, which is printed

on the Console Typewriter as

BEG ----.

The machine will stop after this printout if Console Breakpoint

Switch 1 is set (see Figure 4); otherwise control is immediately

transferred to the starting location of the program.

16 PROGRAMMER'S LANGUAGE

J

J GO tJ I/1t#l

PROGF"tl

Figure 4. Central Console Switch Panel

SEGMENT START/s c:J

s - Segment Number

When more than one segment is used, the coding for each segment is

immediately preceded by a SEGMEN'!' START instruction. This sets

up the Beginning of Segment Identification block on the program tape

(Figure 14). This instruction is used for all segments of a program

except the first, where the START instruction serves the same pur­

pose. As noted, the segment number has two digits. Segments are ~

written on the P;ogram Tape in the order the the

ssembly Program. No atterrlpt is made to arrange segments

s'equentially if they are nOt received that'way.

A sterr:, defined once in a program, maintains its value through all
the segments of a program unless a further TAG instruction reassigns

the value. Hence, simple communication is possible between the seg­
ments of a program.

'PROGRAMMER'S LANGUAGE 17

READ DmECTED SEGMENT: RDS/ {~} /T/s/Y a

The RDS instruction is an optional instruction. H written in the pro­

gram at the point where another segment is needed, the Assembly

Program will automatically insert a routine during assembly which

will search for and read into memory the segment indicated and

transfer control to the address indicated. This instruction has an

identification tag and the next 35 locations in memory must be left

empty. The routine generated is placed in these locations by the

Assembly Program and these locations must be avoided by the pro­

grammer desiring to make use of the RDS instruction. Locations -1972-1977 a~e used durin!-execution of the RDS instruction and,
therefore, cannot contain information to be preserved from one seg­

ment to another.

The first zone indicates whether the segment needed may be found by

reading backward (B) or forward (F) on the Program Tape. If, for

some reason, this is not known, the inserted routine will search

forward, then backward if necessary. The programmer, however,

generally knows the direction of search. Tape number is indicated

by two digits in zone 2 of the RDS instruGtion. This is the tape drive

of the Program Tape when the assembled program is run. ~ote that

if the Assembly ,Program is used to operate the assembled program

immediately after assembly, the Magnetic File Unit is 03. Zone 3
contains two digits to indicate the segment desired. If either zone 2

or 3 is missing, the words .- J1 if
ILLEGAL d- ted seq J'1'1 e

10 I ;re c
RDS • ~eea .

are printed on the Console Typewriter and the instruction is not pro­

cessed. The last zone contains the starting location after the segment

has been read into memory.

When a segment has been read into memory by the assembled pro­

gram, this location is printed on the Console Typewriter as

18 PROGRAMMER'S LANGUAGE

BEG ----.

The machine will stop after printing this out if Console Breakpoint

Switch 1 is set (Figure 4). If no starting location is given, the words

NO BEGIN

are printed on the Console Type writer, the machine stops uncon­

ditionally a~d the programmer is responsible for restarting his
program. If, for some reason, the segment cannot be found,

NO SEG --

is printed and the machine stops. If this RDS instruction is not

used in a program having more than one segment, the programmer

assumes the responsibility for searching for and reading into mem-

0ry his own segments as needed.

Once the proper segment has been located on the program tape, it

is only necessary to read in a word and subsequence to it. This
word causes the read-in of the words following it which are in con­

secutive locations. At the end of each block, there is a sentinel

subsequence call to 1984 or 1985. Hence, these locations must be
loaded with appropriate instructions. For the first segment written

on tape, these locations contain a Sequence Change instruction to .---
1972. A Read instruction with the proper tape number must,

fue~efore, be stored in 1972 for automatIc read-in. The word stored
on tape by the Assembly Program at the end of each segment is a

subsequence call to 1980. This word is read into memory and per­
formed when the rest of the segment is in memory. Proper- sequenc­

ing of instructions may be effected by loading 1980 with an instruction .
which transfers control to the location of the first instruction to be

performed after the segment is in memory.

As an example, the coding produced by the Assembly Program
to load a program reading forward from tape 3 which starts at

~t
t.
0
; -{ q~

.. .tII °i 0.. ...
O~ 00000

1 2 3 4 5 6 7

1 11 1 1 1 t

22222 22

3 333 3 33

44444 44

55555 55

66666 66

7 7 777 77

88888 88

99999 99
I 2 3 4 5 6 7

HOLLERITH CARD FORMAT 19

0011 is:

1972 RFD/03 CJ

1973 TIS/1975/1/1975 0

1974 scsi /1973 CI

1975 CJ (Place for control word)

1976 A/BEG@OOll Cl

1977 OST//10

1980 PRA/1976/0011/1977 CJ

1984 SCS//1972 [J

1985 scsi /1972 CJ

HOLLERITH CARD FORMAT

A sample card form is shown in" Figure 5. Both instructions and

constants use the same card forrrlat. A card has six fixed fields and

a variable field. The six fixed fields are: .'

...
" •
~ ,
" 00

8 9

1 1

22

33

44

55

66

77

88

99
3 •

(1) Program Identification - columns 1-5. The program

identification is a 5-alphanumeric-character field for

identifying the cards of a program.

~

C'lrd
Tat , 0 p Cod e / Z 0 h.. 1 / Z 0 n fl l. / ••• / l a.s t Z 0 ~ e Q C 0 1"1'\ rn e '" ts Nu",b.r ..

00000000 0000 000
10 11 12 13 14 15 16 1 18 1920 21 2 n~~~vu~~,~~~~~~~~~o~~«~~~~~~~~n~~~~~~oo~~~~~~u~~ronnnH~~nn~oo

11111111 1'1

22222222 2222 222

33333333 3 333 333

44444444 4444 4444444444444~444

55555555 5 5 55 555

66666666 6666 66666666666666 S 6 6 66666666666666666666666666 S 6 6 6 6 6 6 S 5 6 6 6 6 £-66

77711111 1177 1 7 7 1 7 11 7 11 7 1 7 7 11 7 711 7 11 7 7 1111 7 11 7 11 7 7 1 7 1 7 7 7 7 1 7 1 7 7 7 7 7 71 7 11 7 7

88888888 8 888 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 a 8 8 8 8 8 8 8 8 8 88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 B 8 8 8 3 8 3 8 8 8 8 8 8

99999999 9999 9 999 9 9 9 9 9 9 9 9 9 99 9 9 9 9 9 9 9 9 S 9 9 999 9 9 S 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 99 9'9 9 9 9 9 9
10 11 12 13 14 15 III 17 18 192021 uu~~mn~~~~~~U~~~~~~~~~«~~~~~~~~~M~$~~~M~~D~e~~~~wnnnN~~n~~oo

Figure 5. Assembly Program Input Card

20 HOLLERITH CARD FORMAT

(2) Modification Code - columns 6 - 7. The modification num­

ber on all cards of a program is set initially. Every time

a program is modified by adding a set of correction cards

at the end or by replacing a card, the modification num­

ber on these cards is changed. Any alphanumeric charac­

ters may be used for the purpose.

(3) Segment Identification - columns 8-9. The segment identi­

fication consists of two decimal digits.

(4) Card Number - columns 10-17. The card number js a

serial number identifying each card. Columns 10-14

are used for consecutive numbering and columns 15-17

contain fractional numbering which permits the insertion

of words into the program after all of the cards have been

prepared. As an example, if an insertion of two cards is

put between cards numbered 15,427 and 15,428, the four

cards might have the following numbers in columns 10-17.

Column 10 11 12 13 14 15 16 17

First Card 1 5 4 2 7 0 0 0

Insert A 1 5 4 2 7 1 0 0

Insert B 1 5 4 2 7 2 0 0

Second Card 1 5 4 2 8 0 0 .0

A further insertion at this point will result in

Column 10 11 12 13 14 15 16 17

First Card 1 5 4 2 7 0 0 0

Insert A 1 5 4 2 7 1 0 0

Insert A' 1 5 4 2 7 1 1 0

Insert B 1 5 4 2 7 2 0 0

Second Card 1 5 4 2 8 0 0 0

Figure 6

INPUT CONVERTER OPERATION 21

(5) Identification Tag - columns 18-21. The identification tag

is the absolute or relative address of the instruction or con­

stant on the card. If consecutive cards contain words for
consecutive locations, loading time for the assembled pro­

gram is shortened considerably.
(6) Locator - column 22. The locator column, L, contains an S

if the instruction on the card is to be a sentinel. Otherwise,

nothing appears in this column.

Starting at column 23, the instruction or constant is written, punctuated

by slashes, and ended by a square. Comments may follow. Cards which

contain only comments have a card number but no tag, and a square

appears in column 23. These cards are not processed, nor are any

comments written on tape.

INPUT CONVERTER OPERATION

The program cards of several different programs to be assembled

may be fed into the Input Converter as one large deck. The program

identification in card columns 1 - 5 is used to distinguish among
programs on the magnetic tape produced by the Input Converter.

Care must be taken to insure that the same program identification

appears on every card of a program and that each program assem­

bled contains a unique program identification.

A special deck of five cards is used to indicate the end of the last

program to be assembled on the Input Converter tape. These five

cards must have the alphanumeric characters E 0 F R I in
columns 1 - 5. The information punched on the rest of the card is

imma ·rial. These cards always follow the last card of the la§t
p ~

22 INPUT CONVERTER OPERATION

J

Figure 7 •. Input Converter Console

The Word 16 Check switch is set to stop for a converter error.
The Eject switch is set to eject a card with an error. If a converter
error occurs, the deck of cards in the input hopper of the Input Con­
verter is moved back and the card with the converter error and those
ejected with it are placed in front of the deck to be processed. Then
the Converter Start button is pressed and processing continues.

The Input Converter reads all information except the card number in
6-bit code from the Hollerith card. The Assembly Program will per­
form any necessary editing. The two Input Converter control panels
are wired as shown in Figures 8 and 9 for use with the Assembly
Program.

Layout Forll -Input Converter, Model 1200
(CARD READING CONTROL PANEL)

Title .. ,

Prepared by ... For program ~ : .. .

By Programmer .. Checked by............ ... ~ ... ~~..
, I'

Date ... Remarksj .j,• ./;: .• ~ ...•.....•..
.. / /.':'

Modification .. Page 0£

o
I

o

1056-657 "I~,t~o
II,.,,", FIGURE 8

Layout Forll - Input Converter, Model 1200
(CONVERSION CONTROL PANEL)

Title ... ; :.~.....................

Prepared by : For program ~~..

By Programmer .. Checked by·········£~········d ··L·······
Date ... Remarks O/:'::~ ·:::···t·~ .. ······ .. · .. ······· .. ···
.. ~
Modification ... ; Page of

80-0-0

-0 0 0
100-0-0

110-0-0

110-0-0

110 0--0 0
6666~~~66

0
% 6 6 6 ~I 105 115

0 0

I~ 6 6 6 ~ol 0
6666~6666

0 6666 125 135
0 0

1* ~I 666 ~ 6666~6666~6666 0

I~ 6 6 6 66 6 6 *1 0 6 6 6"6 ~6 6 66 0 I. 175
0 0

1054-657 FifZUre 9 ~::.r.o

23

ASSEMBL Y PROGRAM OPERATION

The operating procedure for the Assembly Program is outlined in

Figure 11. The input to the Assembly Program is the magnetic tape

produced by the Input Converter. The output from the Assembly Pro­

gram is a Program TaPEt which contains the operating form of the

assembled program and a Console Typewriter listing of any errors

detected during assembly. The Input Tape must be mounted on the
. ...-

Magnetic File Unit which is selected internally by the code 01, and --the Program Tape must be mounted on the Magnetic File Unit which - ,
is selected internally by the code 03. The tapes are positioned to the -beginning by the controls on the Magnetic File Units. Both tapes may

have other information on them.· On the input tape, the Assembly

Program searches for the START instruction containing the Program

Search Code read into 1978. On the Program Tape, the Assembly

Program searches for the end-of-reserved-information block. This

presupposes that if no other program or reserved information is on

the Program Tape, the first block on the tape is an end-of-reserved­

information block. Such a block has the following information in

words 1-6:

1

2

3

4

5

6

\

E

G

0

0

0

Z

0 0

G G

0 0

0 0

0 0

Z

0 0 0

G G G

0 0 0

0 0 0

0 0 0

Z Z
I
I
I

Figure 10

0 0 0 0 0 0

G G G G G G

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

Z Z Z z

24 ASSEMBLY PROGRAM OPERATION

Operating Procedure for Assembly Program

f
PreEare Program To Be Assembled

Write program using available instructions.
Punch program on Hollerith Cards, one instruction per card.
Put program car~s on Input Converter, using Assembly Program control panel.

,If
Load AssemblI Program in MemorI

Mode of Operation With Assembly Program

From Ma~etic Tape From Hollerith Cards

1) Load paper tape with 1) Process cards with Assembly
correct routine to find Program in Input Converter
Assembly Program via (use special control panel).
Console Typewriter.

2) £ ... 3 Load paper tape with correct
2) Type ASSEMBLY in 19~8 Assembly Loading Routine in

via Console Type writer. 1400.

3) Transfer control to paper -3) Type ASSEMBLY in 1978 via
tape. Console Typewriter.

4) Type scsi /14000
(B 00 000 400 000] in loca-
tion 0000.

5) Press Start at 0000 button
on Central Console.

,It

Load Tapes

Input Converter Tape with program to be assembled on Unit 01.
Program Tape for Assembled Program on Unit 03.
Rewind both tapes.

\W

Set Central Console Switches

Console Typewriter Space Suppress to "on".
Console Typewriter Special Symbols to "off".'
Console Typewriter Auto Instruct Print to "off".
Console Error Subsequence to "on".

~.

Figure 11
Page 1

From PaEer Tape

Load paper tape into
me mory starting at
0000.

ASSEMBLY PROGRAM OPERATION 25

~
Writ~ ErggramS~arch Cgde in197~

Console Typewriter Print Style to "alphabet".
Tape Reader Control to "load memory".
Manual Selection Register to 1978.
Type Program Search Code on Console Typewriter keyboard.
Press Write button.

'. f t
O~rate Assembly Program

Press Start at 0000 button.
After assembly, ASSEMBLY COMPLETE is printed on the
Console Typewriter.

Assembled Program To
Be ExecuteCl ImmeCllately

Is machine to stop
after program is in memory?

~Yes ~NO
Set Console r*Press Subse-
Breakpoint quence (1982)
Switch 1 button on the

Central Console

ST~P

Figure 11
Page 2

Another Program To Be
Assem61eCl

Write new Program
Search Code into
memory location 1978

!

; .. - -®

26 ASSEMBLY PROGRAM OPERATION

Loading the Assembly Program

The Assembly Program is contained in one segment. It can be loaded
into the High-Speed Memory in one of three ways;

(1)

'<

Assembly Program on magnetic tape~ Assembly Read-
.$f(, f" 1- /J ~ I r; ., 7

in Routine on short paper tape. The Assembly Program

is kept on magnetic tape in the same way as any assem­

bled program, i. e., with self-loading instructions. A
paper tape finds the Assembly Program on tape and initiates

its read-in. To do this, the word ASSEMBLY is typed into
'Ct~

191-8'on the Console Typewriter and the paper tape is read

into memory. Control is then transferred to the paper
tape r outi ne. .,,'

(2) Assembly Program on a deck of cards, Assembly Load­

ing Routine on short paper tape. The deck of cards on
which the Assembly Program is punched is put through

the Input Converter onto magnetic tape. The Assembly

Loading Routine is read into the machine via paper tape

starting at location 1400 and an scsi 114000 instruction
is read into 0000. Press the Start at 0000 button and

the loading of the Assembly Program into memory is
done by the program on the pape r tape.

(3) Assembly Program on paper tape. The Assembly Pro­

gram is read into the machine on paper tape, starting

at location 0000. This much slower procedure does
not require the use of an Input Converter Tape or a

separate loading routine.

Starting the Assembly Process

After the Assembly Program is in memory and the program to be

assembled is on the Input Converter Tape, the identification of the
program to be assembled is typed into memory using the Console

Typewriter. This is accomplished by setting the Manual Register

ASSEMBLY PROGRAM OPERATION 27

Selector to 1978 (the location of the program identification in memory)

and the Print Style switch to Alphabet. Type the Program Search Code
t:i.., c l ~

and enough zeros to form an 8-character word and depress the Write
button. The Console Typewriter switch panel is illustrated in Figure

12. ·tv~Q f Q6,,(.}f IOQd

1114"'~"o/ ball" n f

Figure 12. Console Typewriter Switch Panel

The Assembly Pro~am is started by pressing the Start at 0000 button.

The Assembly Program locates the program to be assembled on the
Input Tape by searching for the START card containing the Program
Search Code written into 1978. If no program can be found, the words

PROGRAM
MISSING

are written on the Console Typewriter. The place for the program on

the Program Tape is found by finding the "end-of-reserved-information"

block on the Program Tape. The end-of-reserved-information block

is erased and the assembly process is started.

28 ASSEMBLY PROGRAM OPERATION

Programming Error Provisions

At the start of the assembly of each program or segment of a program,

the identification of the program and segment number are printed on the

Console Typewriter. When an error is detected, the Assembly Pro-

gram lists the card number, the identification tag of the word (the con­

tents of the tag field), and the error type on the Console Typewriter.

The types of errors detected by the Assembly Program and the corres­

ponding printouts are summarized in Table IV (pages 30-31). A sample

error printout format appears in Figure 13. In order to obtain these

error printouts in readable form, the Auto Instruct Print and Special -Symbols SWitches must be in the OFF position and the Space Suppress
switch must be in the UN position on the Console Typewriter (see Fig­

urer2). The contents of the card with the error are disregarded by the -Assembly Program;. that is, there is no corresponding word on the Pro­

gram Tape. The detection of an error does not necessarily stop the

assembly process.

If a START card is found which has the correct Program Search Code

in the first zone and then a square (no segment number given), the words

NO SEGMT
,. NUMBER

are printed on the Console Typewriter and the machine stops. This

same printout is also issued if the segment number is not given in the

SEGMENT START instruction. The Assembly Program cannot proceed

after this type of error. If the . STAR T instruction contains more than

three zones, i. e., there is no square after the starting location, the

words

ILLEGAL
START

are printed on the Console Typewriter and the machine stops. At this

point, the Program Search Code, the identification and modification
numbers from columns 1-7 on the card, and the segment number have

been printed. If it is known that the only error was a slash punched in'

place of a square at the end of the third zone, press the Sequence Regis­

ter button on the Central Console. This will cause a printout of the start­

ing location of the program as indicated in the START instruction,

Program Search Code ...
Iden. and Mod. Number

from columns 1-7 on~
card
Segment Number ~

Card Number ~

Identification Tag •

Card Number)J

Identification Tag =>

A

1

0

I

F

0

s

M

S S E

0 0 0

0 0 0

L L' E

0 R M

0 0 0

Q u A

I S S

ASSEMBLY PROGRAM OPERATION 29

M B L

0 0 0

0

1 5 4

A B 0

G A L

A T

1 6 3

c 0 1

R E

I N G

y

0

1

2

1

2

9

7

}

Printed at the
beginning of the
Assembly Process

0 0 0

Type of
Error

6 10 10 1 1

Type of
Error }

Program Search Code~ 1 A I ~ lsi ElM I B I ~ I; I } _
Segment Number ~ . . .

Printed at the
beginning of
each segment

Card Number> 0 0 0 0 2 l 5 3 11 0 10 10 1

Identification Tag ~ 2 A 1 9

1 L L E G A L Type of
Error

0 p C 0 0 E }
A S S E M B L y

C 0 M P L E T E

Figure 13. Sample Error Printout Format

30 ASSEMBLY PROGRAM OPERATION

PRINTOUTS DURING THE ASSEMBLY PROCESS

Printout

PROGRAM
MISSING

ILLEGAL
STAR~

NO SEGMT
NUMBER

ILLEGAL
RDS

TAG
ILLEGAL

ILLEGAL
FORMAT

TOO MANY
ZONES

Reason for Printout

1) The program identified by the pro­
gram search code written into 1978
cannot be found on the input tape on
Magnetic File Unit 1.

2) The assembled program cannot be
found on the program tape.

No square appears after the last zone
of the START instruction. '

Starting location as given is printed
to enable programmer to determine
if this is the correct START card.

The segment number in the SEGMENT
START instruction is not given.

Either the Magnetic File Unit or the
segment number are not given in the
RDS instruction.

1) Stem was not defined previous to
use in the program.

2) The value assigned to a stem plus
the digits which follow it add lip to
a tag greater than 1999.

The form of the instruction or constant
does not comply with its specifications.

More zones appear on the card than
are specified by the instruction.
This type of error may occur if a
square did not terminate the end of
the instruction, but did appear else­
where on the card.

ILLEGAL The operation code is not one listed
OP CODE as applicable to the Assembly Program.

SQUARE A square has not been used to termi-
MISSING nate an instruction or constant to

be assembled. Note the special
printout (ILLEGAL START) when this
occurs with the START instruction.

ILLEGAL The type of character which should
CHARACTR appear in a zone is not there.

TOO MANY There are more characters in a zone
CHARACTS than specified. This is particularly

significant with constants.

TABLE IV
Page 1

Instruction for Programmer

Machine stops unconditionally.
Check program search code. Check
for proper tape number.

If segment number printed on
preceding line is correct, press
Control Register button.
If starting location is correct, press
Control Register button; if not,
Assembly Program cannot continue.

The Assembly Program cannot
continue after this type of error.

The RDS instruction is ignored, and
the routine to search for and read
into memory the segment wanted is
not in the assembled program.

The contents of the card specified
by the card number and identification
tag preceding each of these errors
is ignored. No word corresponding
to the card appears on magnetic
tape.

The programmer is responsible for
correcting the incorrect card by
re-assembly or by making use of
an appropriate ~ervice routine.

Printout

ASSEMBLY
COMPLETE

RERUN OK

TWC ERR

ASSEMBLY PROGRAM OPERATION 31

Reason for Printout

When a program is assembled and on
magnetic tape ready for use, this is
printed on the Console Typewriter.

A transfer weight count error on
reading information into the buffer
from the Input Converter tape was
encountered. Rerun brought the
correct information into the memory.

A transfer weight count error in
reading information into the buffer
from the Input Converter tape was
encountered. Rerun could not
bring in the correct information.

Instructions for Programmer

If the program is to be used
immediately, press Subsequenc e
(1982) button.
a) Program to start immediately

after loading into memory, do
not set Breakpoint Switch 1.

b) Program to stop after it is in
memory, set Breakpoint
Switch 1.

This printout is for statistical
purposes only and has no bearing
on the operation of the program.

The card number and identification
tag are printed preceding this error
printout. It is possible that one
or the other is not correct. The
information from this block is not
processed by the Assembly Pro­
gram but operation continues.

PRINTOUTS DURING OPERATION OF THE ASSEMBLED PROGRAM

BEG----

NO BEGIN

NO SEG--

1) This indicates the starting loca-
tion of'the first segment read into
memory.

2) The same printout will appear for
each segment read into memory by
an RDS instruction.

1) The starting location was not indi-
cated in the START instruction.

2) The starting location was not indi-
cated in the RDS instruction.

The segment called for cannot be
found on the tape indicated.

TABLE IV
Page 2

If Breakpoint Switch 1 has been
set and the machine stops, press
the Control Register button on
the Console to start program opera-
tion. This is automatic if Break-
point Switch 1 is not set.

The machine stops regardless of
breakpoint switch settings. The
program mer is responsible for
starting his program at the proper
location.
Machine stops unconditionally.
Check segment identification.
Check for proper tape number.

32 ASSEMBLY PROGRAM OPERATION

after which the machine will stop again. If this printout is correct, the
Assembly Program continues to process the program when the Control

Register button on the Central Console is pressed.

During the assembly process, the following types of errors are detected

(see Table IV):

(1) TOO MANY
ZONES

(2) SQUARE
MISSING

(3) ILLEGAL
CHARACTR

(4) TOO MANY
CHARACTS

(5) ILLEGAL
OP CODE

(6) TAG
ILLEGAL

(7) ILLEGAL
FORMAT

(Cannot determine the end of
significant information on card)

(Not Rank 0 or Assembly Control instruction)

(Tag greater than 1999 or no assignment
to letters previous to use)

To correct errors, correction cards may be placed at the end of the

program deck, or the faulty card may be corrected. The program is

then reassembled to correct the errors. An alternate procedure for

program correction is to mak~ corrections on the Program Tape using

a service routine. For this latter method, any changes and/or insertions
to be made follow the procedure for the use of the routine chosen. When

the assembly is complete, the words

ASSEMBLY
COMPLETE

are printed- on the Console Typewriter.

Resetting the Assembly Program

The Assembly Program may be used to process more than one program

at a time. When the words

OPERATING PROCEDURE FOR THE ASSEMBLED PROGRAM 33

ASSEMBLY
COMPLETE

are printed, the new Program Search Code is written into 1978 on the

Console Typewriter and the Start at 0000 button on the Central Console

is pressed.

Program Tape

Programs prepared by the Assembly Program are placed on the Pro­

gram Tape, i. e., the tape on Magnetic File Unit 03. Each program is

identified by its unique Program Search Code (tl1e contents of the first

zone of the START instruction). No attempt is made to order the pro­

grams by their search codes. A program on the Program Tape has the

following logical sections:

(1) Program and Segment Identification block

(2) Instructions for significant locations for automatic read­

in of first segment

(3) Program in DATAmatic 1000 language with control words

for read-in

(4) Two blocks of scsi / /19800 to allow program modification

without reassembly

(5) Next Beginning of Segment Identification block.

Sections 5, 3, and 4 are repeated until the end of the program is reached,

at which time the final block is an end-of-program block. Following

this is an end-of-reserved-information block. The format is illustrated

in Figure 14.

OPERATING PROCEDURE FOR THE ASSEMBLED PROGRAM

If it is desired to read the program into memory immediately, type the

Program Search Code in 1978 and press the Subsequence (1982) but­

ton. This will cause a search of the Program Tape for the assembled

program. If the program cannot be found, the words

PROGRAM
MISSING

34 OPERATING PROCEDURE FOR THE ASSEMBLED PROGRAM

Beginning of
Program and
Segment Identifi­
cation Block

1 EOO 000 000
2 GGG GGG GGG
3 000 000 000
4 I I I I I I

000
GGG
000

5 I
6~0---0----0--0----0~~0~~0~0~

7AA AA AA AA
800000000
9AA AA AA AA

10 0 0 0 0 0 0 I.---,O~O-,O=--_O-=--...:::O~0-t
I

1 TIS/1980/1 c
2 PRA/1976/Y/1977o
3 TIS. '1984/2 0
4 SCSI11972 c
5 ScS/11972 c
6 TIS'1976/2 0

BEGY
7 (or)

NO BEGIN
8 OST/11 c

or
STOP 0

Word of all hex G's
Sentinel
Program Search Code
Segment Number

Beginning of Program

Beginning of Segment
For Service Purposes

Y is Starting Location

"-These instructions require
loading a Read instruction

',in 1972 with proper tape number.
Y given for this segment

Y not given for this segmt
Y given, stop if break-point
switch 1 is set.
Y not given, must stop.

Program in - - - - - • I

DATAmatic 1000. ... _..... scsI //1980 c
Language .;,...... rS~C=S~:/+'ln,/~1~98~0~c--------------~

Beginning of
next Segment
Identification
Block

End of Program
Identification
Block

End-of-Reserved­
Information Block

BCSIII1980 c Two full blocks (for use
SCSI1j1980 CJ of service routines used

1----:-------:---:---'--::-;--:--:---~::---=---::-_t • to aid in progr am c hec kout)
1 EOO 000 000 000
2 G G G G G G G G G G G G Word of all hex G's
3 000 000 000 000
4 I I I Il I Program Search Code
5 t-------------.L---I~-_I Segment Number
6 I-"0~O><------"O~O",------>:O,---,O~---:::O,-----:O~
7 t-'Jl_.>o<.--O---'O'"-O"'----->O"----'O"'-----=O~O:;---..t
800000000

. 9 I-lA~A~-A~~A-~A--:=A<-----":A~A:<---I

10~0~0~0_~0_0~0~~0~0_0~~0~0~0~

1 EOO 000 000 000
2 GGG GGG GGG G'3G
3 0 0 0 0 0 0 00 0 0 () 0
4 I J I J L I
5 I
6 ~O=__=O_-=O:--::O=----:O=-=O=-_=O --=0;--1
7 I....lZ~Z~_~Z~Z"--~Z:.....-=:Z::-------:Z=--=Z~
8 J-lO"--.x-.O_O¥--~O~~O---":O<----->:O'---'0=-----t
900000000
10~0~0~O~~O~0~O-~O-0~O~~0~O~O~

1 E 0 0
2 G GG'
3 0 0 0
4 0 0 0
5 0 0 0
6 Z Z

000
GGG
000
000
000
Z Z

:
000
GGG
000
000
000
Z Z

000
GGG
000
000
000
Z Z

Beginning of Segment

Word of all hex G's

Program Search Code
Segment Number

End of Program

Word of all hex G's

End of Reserved Information

Figure 14. Program Tape Format

OPERATING PROCEDURE FOR THE ASSEMBLED PROGRAM 35

are printed and the machine stops. When the correct program is
found, its Program Search Code is printed on the Console Typewriter
and the program (or first segment) is read into memory. After the
program is in the High -Speed Memory, if the starting l~ation, Y,

was given, the words

BEG,J{

are printed. If the programmer wishes the machine to stop for any
reason after the program is loaded and prior to its execution, con­
sole Breakpoint switch 1 is set. If Breakpoint switch 1 is not set,
control is transferred to the program in memory without stopping.
If the starting location, Y, was not given, the words

NO BEGIN

are printed and the programmer is responsible for starting his pro­
gram.

When the assembled program is not to be used immediately, the Pro­
gram Tape may be mounted on any Magnetic File Unit and the procedure
for use of the standard input program used. If the RDS instruction is
not used, the programmer must load in 1980 a Sequence Change instruc­
tion to the starting location to be used after each segment is read into
memory. This is done automatically for the first segment on the
tape.

36 FIXED-FIELD CARD FORMAT

Appendix A

Hollerith Card Format

It may be desirable, at some installations, to use a fixed-field

card format which will fit most instructions. The Hollerith Card will
then have the following format (see Figure 5A).

1) Program Identification -- columns 1 - 5

2) Modification Code -- columns 6 - 7
3) Segment Identification -- columns 8-9
4) Card Number -- columns 10-17
5) Tag -- columns 18-21

6) Locator -- column 22
7) Operation code -- columns 23-25

Slash - - column 26
8) Zone 1 -- columns 27-30

Slash -- column 31
9) Zone 2 -- columns 32-35

Slash -- column 36
10) Zone 3-- columns 37 -40

Square (c) - - column 41

Columns 42-80 may be used as the programmer desires.
!

'.; . ~ t .. ~ ~ ~
,." .; E e ... d 0
:O~ .~ -: Tat ~ c~1 ZO l/ __ Z' Z '3 a Co \In'M. "._05
:. ~ E'" N.,~~e... !:

, ooOtoo00000000000000000000000000
1 2 3 4 5 6.7 8 9 1011 12131415 1617 18 1920 21 2223242526 27'2S 29 3 31 233 34 3~ 3. 37 38 39 41 41424344 45 46 4748 49 50 51 52 $3 54 55 56 57.50 59 60 616263 64 65 66 67 68 69 70 11 '72 73 74 75 76 77 78 7980

1 1 1 1 1 11 1 1 1 1 11 11 t 1 1

22222J1222221222

33

44

555555S55555555555555555555555555555555~5555555555555555555555555555555555555.55

666666r66666666666666666666~666&16

77177177777777777777717777777717777777177777777177777777777771177771711777717177

8888889888

9999ge~9S99999999999J999
1 2 3 4 5 a 1 8 9 10 \I 12 13 1415 16 17 IS 19 20 21 22 ~3 24 25 2!i ~7 28 2'J 3C 31 2 33 34 35 31 37 38 39 4l!41 4243 44 45 46.47 48 49 50 51 52 53 54 55 56 57 .l8 5S 60 61 S2 £3 64 65 66 67 68 69 70 11 72 73 74 75 16 71 73 7980

Figure 5A. Assembly Program Input Card - Fixed Fields

FIXED-FIELD CARD FORMAT 37

Programmer's Language

The fixed-field format introduces the following changes and nota­

tions in Programmer's Language.

Instructions which have more than three zones, that is, Transfer

and Select (TSA, TSB, TSD, TSS) , Double Transfer and Select (DTA,

DTB, DTD, DTS) and the corresponding Bypass Interlock orders can­

not be written in the fixed-field format. All constants, Alphabetic,

Signed Numeric, and Unsigned Numeric, cannot be written in the fixed­

field format. The Assembly Control Instructions START, SEGMENT

START, and RDS, also require special cards. The instructions dis­

cussed in this paragraph are written in a varied-length field from

column 23 on.

The second zone of the Shift Instructions must be modified so

that it always contains four alphanumeric characters. This is done

by placing enough zeros to the left of the number to make a total of

four characters. Hence a shift of four (4) alphabetic places would be

written 004A; ten (10) numeric(places will be written 010N.

A zone must always contain four alphanumeric characters. Hence,

in both absolute and relative 'coding, all four digits of a tag must be

written. The major difference between variable and fixed-field format

is that in the fixed-field format the TAG instruction must specify four
characters in the first zone. Since there are only two zones in the

TAG instructions, the third-zone field contains four zeros or four

blanks. An example of coding is:

CD25
CD26
CD27
CD28

TAG/1AOO/0500/0000 0
TAG/2AOO/0560Ioooo 0
TAG/cnOO/0450/0000 D
ADD/1AOO/2A05/1AIO t:l
BAR/2A30/2A10100oo 0
SLW/2A05/003N!2A05 a
SCS/0000/CD49/0000 0

38 FIXED-FIELD CARD FORMAT

This is equivalent to the absolute coding:

0475
0476
0477
0478

ADD/0500/0565/0510 a
BAR/0590/0570/oooo c
SL W/0565/003N/0565 Q
SCS/OOOO/0499/0000 Cl

Note that only if four characters are used in the first zone of
I

the TAG instruction, does the Assembly Program consider that fixed
fields are used.

All other specifications and results of the Assembly Program
remain unchanged.

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	1-00
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-22a
	1-22b
	1-23
	1-24
	1-25
	1-26
	1-27
	1-28
	1-29
	1-30
	1-31
	1-32
	1-33
	1-34
	1-35
	1-36
	1-37
	1-38

