
Heurikon 68000 Microcomputer

HK68 (tm)

User's Manual

Heurikon Corporation
3001 Latham Drive
Madison, WI 53713.

(608)-271~8700

January 1983

Rev B

User's Maual

1.0 INTRODUCTION
1.1 Disclaimer
1.2 Trademarks

2.0 HK68 FEATURE SUMMARY
2.1 Block Diagram

Contents

2.2 P.C.B. Major Component Locations
3.0 GETTING GOING

3.1 Installation Steps
3.2 Troubleshooting Guide
3.3 Monitor Summary

4.0 MPU SUMMARY INFORMATION
4.1 MPU Interrupts
4.2 MPU Exception Vectors
4.3 Status LED's
4.4 Instruction Set Summary

5.0 DMAC USAGE
5.1 DMAC Channel Assignments
5.2 Data Transfer Rates
5.3 Register Summary
5.4 Software Example
5.5 Relevant Jumpers
5.6 DMAC Bypass
5.7 DMAC Application Info

6~O MEMORY MANAGEMENT UNIT (MMU)
6.1 Function Code Definitions
6.2 Address Line Coordination
6.3 MMU Address Line Block Diagram
6.4 Register Summary
6.5 Relevant Jumpers
6.6 MMU Bypass
6.7 Example MMU Software
6.8 MMU Primer

7.0 MEMORY CONFIGURATION
7.1 ROM
7.2 RAM
7.3 Multibus
7.4 Physical Memory Maps
7.5 RAM Size Determination
7.6 Memory Timing
7.7 Relevant Jumpers

8.0 SYSTEM ERROR HANDLING
8.1 Error Conditions
8.2 RAM Parity Logic
8.3 Watchdog Timer
8.4 Relevant Jumpers

9.0 MISCELLANEOUS ON-CARD DEVICES
9.1 Ring Detect Input Port
9.2 DIP Switch Input Port
9.3 Bus Control Latch
9.4 User LED Output Port
9.5 Address Summary
9.6 Relevant Jumpers
9.7 Built-in Board Serial Number

10.0 BUS CONTROL
10.1 Bus Control Signals
10.2 On-card going off (TO the bus)
10.3 Off-card coming on (FROM the bus)
10.4 Bus Map

Block

MPU

Status LED's

DMAC

MMTl
i. ""

Memory

Errors

Misc Devices

DIP Switch

User LED's

Multibus

11.0

12.0

13.0

14.0

15.0
16.0
17.0

18.0
19.0

20.0

21.0

22.0

10.5 Bus Control Latch
10.6 Bus Interrupts
10.7 Write Protection
10.8 Bus Data Conventions
10.9 Relevant Jumpers

CIO USAGE
11.1 Port A Bit Definition
11.2 Port B Bit Definition
11.3 Port C Bit Definition
11.4 Counter/Timers
11.5 Register Summary
11.6 CIO Initialization sequence
11.7 Relevant Jumpers
11.8 CIO Programming Example

SERIAL I/O
12.1 RS-232 Pinouts
12.2 Signal Naming Conventions (RS-232)
12.3 Connector Conventions
12.4 RS-422 Option
12.5 SCC Initialization Sequence
12.6 Port Address Summary
12.7 Baud Rate Constants
12.8 Sample I/O Routines
12.9 Relevant Jumpers

PARALLEL I/O PORTS
13.1 Streamer Tape I/O Port (P3)
13.2 Control Port Addresses (P3)
13.3 Software Example (P3)
13.4 Winchester I/O Port (P4)
13.5 Control Port Addresses (P4)
13.6 16-bit Parallel I/O Port (P3 & P4)
13.7 Use with the DMAC
13.8 Relevant Jumpers

SBX Expansion I/O Interface
14.1 SBX Connector Pin Assignments
14.2 Device Address Summary
14.3 Relevant Jumpers

PHYSICAL ADDRESS MAPPING
I/O PORT ADDRESSES
HARDWARE JUMPERS

17.1 Jumper Functions and Settings
17.2 Jumper Locations

SOFTWARE INITIALIZATION SUMMARY
MULTIBUS INTERFACE

19.1 Connector PI Pin Assignments
19.2 Connector P2 Pin Assignments
19.3 Multibus Compliance Levels
19.4 Power Requirements
19.5 Mechanical

TIDBITS
20.1 PAL Usage
20.2 Configuration Options
20.3 Accessories

APPENDICES (Available Separately)
A MPU
B DMAC
C MMU
D SCC
E CIO

Reader Comment Form

CIO

Serial I/O

Parallel I/O
Streamer

Winchester

SBX

Adrs Map
I/O Map
Jumpers

S/W
Bus I/F

1.0 INTRODUCTION
=================

The purpose of this manual is to document the features and to present
implementation examples of the Heurikon HK68 (tm) microcomputer board.

This manual covers the unique features of the HK68 board. Although general
information such as DMAC, MMU, MPU, CIO and SCC programming is discussed,
more detailed information is available directly from the chip manufacturers.

For more information, contact:

I tern (s)

MPU, MMU

DMAC

CIO, SCC

Winchester
Controllers

DRAM
Controller

Manufacturer

Motorola Inc., 3501 Ed Bluestein Blvd.,
Austin, Texas 78721 (512)-928-7113

Hitachi, Ltd., 1800 Bering Drive
San Jose, Calif 95112 (408)-292-6404

Zilog Inc., 10340 Bubb Road
Cupertino, Calif 95014 (408)-446-4666

Priam Corporation, 3096 Orchard Drive
San Jose, Calif 95134 (408)-946-4600

Shugart Associates, 435 Oakmead Pkwy
Sunnyvale, Calif 94086 (408)-733-0100

Western Digital Corporation, 3128 Red Hill Ave.
Newport Beach, Calif 92663 (714)-557-3550

Xebec, 432 Lakeside Drive
Sunnyvale, Calif 94086

National Semiconductor Corp.,
Santa Clara, Calif 95051

(408)-735-1340
2900 Semiconductor Dr.

(408)-721-5000

Don't be shy about calling us with questions, too. We are prepared to help
with your application.

1.1 Disclaimer

The information in this manual has been checked and is believed to be
accurate and reliable. However, no responsibility is assumed by Heurikon
for its use or for any inaccuracies. Specifications are subject to change
without notice. Heurikon does not assume any liability arising out of use
or other application of any product, circuit or program described herein.
This document does not convey any license under Heurikon's patents or the
rights of others. Portions of Motorola and Zilog manuals reprinted with
permission.

1. 2 Trademarks

Name

HK68
Mul tibus, iSBX
Smart I/F
Zilog, Z-80
CP/M-68K
Unix
UniPlus+

Copyright 1982

Trademark of

Heurikon Corporation
Intel Corporation
Priam Corporation
Zilog Corporation
Digital Research Corporation
Bell Labs
UniSoft Corporation

Heurikon Corporation, 3001 Latham Drive, Madison, WI 53713 (608)-271-8700

2.0 HK68 FEATURE SUMMARY
--

MPU

DMAC

RAM

ROM

Multibus

Serial I/O

Winchester

Streamer Tape

LED's

DIP Switches

SBX

CIO

Other

Motorola 68000 uProcessor chip (or equiv)
32~bit internal architecture, 16-bit external data path
24 address lines, 16 megabyte range

Motorola 68450 chip (or equiv)
Four channels
8-bit or 16-bit data transfers

Motorola 68451 chip (or equiv)
Logical to physical address translation
Operates in segment mode.
Segment sizes of from 256 bytes to 16 megabytes
Separates supervisor, user, DMAC, bus memory areas
Implements write protection

l28K, 256K, 5l2K, 1 megabyte capacities
Single or double-decker configuration
Two parity bits per word
Uses 64K x 1 or 256K x 1 DRAM, with Hardware Refresh

Two ROM sockets (2716, 2732, 2764, 27128)
32K byte capacity

24-bit addressing (16 megabyte range)
16-bit data bus, compatible with 8-bit boards
Eight bus interrupts, bi-directional (via CIO)
Master/Slave modes
On-card byte swap buffer

Two Zilog Z8530 Serial Communication Controllers
Four serial I/O ports
Separate baud rate generators for each port
Asynchronous, synchronous modes
RS-232C I/F (all ports)
RS-422 I/F (optional, one port)

8-bit I/F for Western Digital, Priam, or SASI (Shugart, Xebec)
May be used as a general purpose 8-bit port

8-bit I/F for Archive streamer tape
May also be used for Centronics type printer I/F

Eight user LED's under software control
Four MPU/DMAC status LED's

Four user definable DIP switches

Two expansion SBX connectors for APU, SIO, PIO, FDIO, etc.
One single width space, one double width space.

Zilog Z8536 Counter/Timer and Parallel I/O Unit
Three l6-bit counter/timers
Three parallel ports for on-card control functions

Winchester and Streamer Tape ports may be combined to
form a l6-bit general purpose parallel I/O port.

Built-in board serial number to promote software security

2.1 Block Diagram

HEURIKON HK68 SINGLE BOARD
MICROCOMPUTER
,-

"- 68000
16./

~ MPU
N
en
~ STATUS CD

/ LEDS en en
w a: 68450 C
c "- 16/
<t DMAC
<t

4 CHANNELS (,)

C;
0 I BUS J

MULTIBUS MAP

tt2 24

DATA)
68451 } (16) -- ADRS

MMU (24)

INTERRUPTS

24
S

~ Mise Z8536
eONTROL~ CIO en SIGNALS ~ (3 TIMERS) CD

en SBXCONTROL
en

7e w
a:
c c
<t

EXPANSION {~ SBX1 <t
(,)

I/O l~ -----Ci) SBX2 >-
~
a.

15 2716132164112S
"- - ROM

32K·BYTES

20

"---- DRAM DRAM
CONTROLLER 1 MEGABYTE

PARITY LOGIC

DEVICE ~} DEVICE DECODE
~ SELECT LOGIC SIG NAL S

~~ 8L

~

L-.. SL

"---'

SH

/
I BYTE I SWAP

/
SL

tn
--- 8H ::::»

"--+ £D
c:(

~
~

c

l...-. 4L

'--

8L

~ 8L

"--+

iC SH

'--t.

~
'--

(OPTION)
10 16

MHZ MHZ
SYSTEM CLOCKS

232

9 _

Z8530 -422 9 _ ! SERIAL sec 9 _ I/O RS
PORTS

(4 PORTS) 232 9 _
BAUD RATE

GENERATORS

~DATA

Lll
WINCHESTER

DISK ~CONTRO I/F

WINCH ESTER
CONTRO LLERS:

WD1001,PR IAM,SASI,
XEBEC, OTHERS

~DATA

OL !l STREAMER
TAPE

~CONTR IIF

TREAMER ARCHIVES
ORPRI NTER

USER DIP
SWITCHES

USER
LED'S

CONTROL
LATCH

)s
CONTROL

LOGIC

WATCHDOG TIMER

CONTROL SIGNAL BUS
NOT SHOWN

2.2 Major Component Locations

MHU Bus Gates

Winchester I/F Tape I/F

I-I P4' -1_1 P3 I-I
--

Winc & Tape I/F LED's
10 MHz Osc DIP Sw ROM H

scc
(1) System Control Logic ROM L

SBX P8

DMAC

DMAC Bus Gates

I DRAM Control I
------_.-.------------------

Dynamic
RAM

Bus Arbitrator Mu1tibus I/F

-1-,.------
P1

Mu1tibus
(20 Address, 16 Data, 8 Interrupts)

(15 Control, Power)

P2
Auxiliary Bus

(4 Address, 1 Int)
(1 Reset)

\

3.0 GETTING GOING Read This!
==================

Here's what you need to get the Heurikon HK68 "on-the-air":

Hardware:

Software:

Heurikon HK68 Microcomputer board
Heurikon HK68 Monitor pROM
Card cage and power supply (e.g., Heurikon MLZ-804)
Serial I/F cable (RS-232)
CRT Terminal

Optional equipment: Winchester and/or Floppy disk drives
Expansion memory

Heurikon HK68 Monitor in pROM

Optional programs: UniPlus+ (Unix) Operating System
CP/M-68K Operating System
Application programs

3.1 Installation Steps

All products are fully tested before they are shipped from the factory, so
we know they work. When you receive your first board, follow these steps to
assure yourself that the system is operational:

1. Visually inspect the board(s) for loose components which could
be the result of shipping vibrations.

2. Visually inspect the chassis and all cables.
Be sure all boards are seated properly in the card cage.
Be sure all cables are securely in place.

3. Connect a CRT terminal to Serial Port B. (Connector P6)
If you are making your own cables, refer to section 13.
Set the terminal as follows:

9600 baud, full duplex
Eight data bits (no parity)
Two stop bits for transmit data
One stop bit for receive data

If your terminal doesn't have separate controls for transmit and
receive stop bits, select one stop bit for both transmit and
receive.

4. Connect AC power and turn the system on.

5. Push the system RESET button. A sign-on message and prompt from
the monitor should appear on the screen. If not, check your
power supply voltages and CRT cabling.

6. If you've read this so far, you must not mind reading manuals.
Now's the time to read the monitor manual and the operating
system literature.

7. Reconfigure the jumpers, etc, as necessary for your application.

"There's no sense reading directions to something before you understand a
little about it because they don't mean anything to you. You have to know
enough about something to be confused before directions help." - Andy Rooney

3.2 Troubleshooting Guide

In case of difficulty, use this checklist:

1. Inspect the power cables and connectors. If the HK68 board has
power, the SCC and CIO chips will feel warm to the touch.
They're the big ones near P5 and P6.

2. Verify that the DIP switches are set correctly. (Refer to the
'hhug' monitor manual.)

3. Check your power supply for proper DC voltages. If possible,
look for excessive power supply ripple or noise using an
oscilloscope. Connect your ground probe to the "GND" test point
just below the DMAC chip socket.

Voltage

Vcc (+5)
+12
-12

Test Point

"VCC" TP above U45 (above the DMAC)
016 pin 8 (Top-left corner pin)
U16 pin 5 (Top-right corner pin)

4. Check the chips to be sure they are firmly in place. Look for
chips with bent or broken pins. In particular, check the pROMs.

5. Check your terminal switches and cables. Be sure the P6 connector
is on properly. The cable stripe (wire #1) should be toward the
center of the HK68 board and the cable should flow toward the
rear. The port B portion of the cable is on the wire #34 side.
If you have made your own cables, pay particular attention to the
cable drawings in section 13.

6. Check the jumpers to be sure your board is configured properly.
Use this list of critical jumpers: (See section 17.2 for help
in locating the jumpers and for jumper functions.)

Jumper Position

J1, J2, J3,
J11
J12
J13
J14
J15
J17
J22
J23

all others

open (no shunt plugged in)
open
A
A
B
A
A
A (or "B" if using 256K x 1 RAMS)
A (or "B" if using double decker RAM)
don't care

7. After you've checked all of the above items, call us at
(608)-271-8700 and ask for help. Have the following
information handy:

a. The state of the four status LED's (near P6)
b. The state of the eight user LED's (near P3)
c. The monitor program revision level (part of sign-on msg.)
d. The HK68 p.c.b. revision level (silk screened near MPU)
e. The HK68 p.e.b. serial number (scribed along short edge)

3.3 Monitor Summary ('hbug')

The HK68 monitor program is contained in two 2732 pROMs. It is intended
to provide a fundamental ability to check the memory and I/O devices, to
manually enter a program and to down-line load or bootstrap a larger program
into memory. Advanced features and utilities may be loaded from media or
via an operating system.

Refer to the 'hbug' manual for details on the commands and command formats.

4.0 MPU SUMMARY INFORMATION
============================

This section details some of the important features of the 68000 MPU chip
and, in particular, those items which are specific to the implementation on
the Heurikon HK68. Refer to appendix A for additional information.
See section 7.6 for memory timing data.

4.1 MPU Interrupts

The MPU can set an interrupt priority level in such a way that interrupts of
a lower priority will not be honored. Interrupt level seven, however, cannot
be masked off.

Level

7
6
5

4
3

2
1
o

Interrupt

Power Fail Interrupt (P2-19) Highest Priority, Non-maskab1e
MMU Interrupt
CIa Interrupt

(sub-priority: timer 3, port A, timer 2, port B, timer 1)
DMAC Interrupt
SCC Interrupt

(sub-priority: port A, port B, port C, port D)
(sub-sub-priority: rcv ready, tx ready, status change)

(not assigned)
(not assigned)
(idle, no interrupt)

When an interrupt is recognized by the MPU, the current instruction is
completed and an interrupt acknowledge sequence is initiated whose purpose it
is to acquire an interrupt vector from the interrupting device. The vector
number is used to select one of 256 exception vectors located in reserved
locations in lower memory (see section 4.2 for a listing.) The exception
vector specifies the address of the interrupt service routine.

The SCC, CIO and DMAC devices on the HK68 are capable of generating more than
one vector, depending on the particular condition which caused the interrupt.
This significantly reduces the time required to service the interrupt because
the program does not have to rigorously test for the interrupt cause.

4.2 MPU Exception Vectors

Exception vectors are memory locations from which the MPU fetches the address
of a routine to handle an exception (interrupt). All exception vectors are
two words long (four bytes), except for the reset vector which is four words.
The listing below shows the vector space as it appears to the Heurikon HK68
MPU. It varies slightly from the Motorola 68000 MPU manual listing due to
particular implementations on the HK68 board. Refer to the MPU ducumentation
for more details. The vector table occupies the first 1024 bytes of memory.
Unused vector positions may be used for other purposes (e.g., code or data).

Vector
Number

o
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

16-23

24
25
26
27
28
29
30
31

32-47

48-63

64-255

Address
Dec Hex

o
4
8

12
16
20
24
28
32
36
40
44
48
52
56
60
64

-95
96

100
104
108
112
116
120
124
128

-191
192

-255
256

-1023

000
004
008
OOC
010
014
018
OlC
020
024
028
02C
030
034
038
03C
040

-05F
060
064
068
06C
070
074
078
07C
080

-OBF
OCO

-OFF
100

-3FF

Assignment

Reset: Initial SSP (Supervisor Stack Pointer)
Reset: Initial PC (Supr Program Counter)
Bus Error (Parity, Watchdog Timer, MMU Fault)
Address Error
Illegal Instruction
Divide by Zero
CHK Instruction (register bounds)
TRAPV Instruction (overflow)
Privilege Violation (STOP, RESET, RTE, etc)
Trace (Program development tool)
Instruction Group 1010 Emulator
Instruction Group 1111 Emulator
(reserved)
(reserved)
(reserved)
Uninitialized Interrupt from DMAC or MMU
(reserved-8)

Spurious Interrupt, not used
Levell Interrupt Autovector, not assigned
Level 2 Interrupt Autovector, not assigned
Level 3 Interrupt Autovector, not used
Level 4 Interrupt Autovector, not used
Level 5 Interrupt Autovector, not used
Level 6 Interrupt Autovector, not used
Level 7 Interrupt, Power Fail Detect (P2-l9)
TRAP Instruction Vectors (16)

(reserved-16)

User Interrupt Vectors (192)

Autovectoring is not used except for power fail detect since interrupts
from all other devices can be programmed to provide a vector number (which
would likely point into the "User Interrupt Vector" area, above). Vectors
25 through 30 may be used as user interrupt vectors, if desired.

The table on the following page gives suggested interrupt vectors for each
of the possible device interrupts which could occur. Note that the listing
is in order of interrupt priority, highest priority first.

Int Suggested
LvI Vector # Device Condition

7

6

5

4

3

31

30

96

79
77
75
73
71
69
67
65

98

78
76
74
72
70
68
66
64

100
102

104
105
106
107
108
109
110
III

92
94
88
90
84
86
80
82
93
95
89
91
85
87
81
83

PFIN

MMU

CIO

CIO

CIO

CIO

CIO

DMAC

SCC

Power Fail Interrupt (Must be vector 31)

Write violation, Segment access, Undefined segment
access

Timer 3

XINTO
XINTI
ARDY
AEXC
SA-IO
SA-CD
WINTR
DOG

SBX module interupt ref: section 11.1
SBX modle interrupt
Archive Streamer Tape Ready, et al.
Archive Streamer Tape Exception, et al.
SASI Winchester I/O, et al.
SASI Winchester C/O, et al.
Winchester I/F
Watchdog Timer

Timer 2

INT7
INT6
INT5
INT4
INT3
INT2
INTI
INTO

Multibus Interrupt 7

Timer 1
Timer, Error

II

II

"
II

"
II

II

Channel 0, Normal vector
Channel 0, Error vector
Channell, Normal vector
Channell, Error vector
Channel 2, Normal vector
Channel 2, Error vector
Channel 3, Normal vector
Channel 3, Error vector

6
5
4
3
2
1
o

ref: section 11.2

Note: DMAC Channel
priorities may be
specified when
programming the DMAC.

Port A, Receive character available
Port A, Special receive condition
Port A, Transmit buffer empty
Port A, External/Status change
Port B, Receive character available
Port B, Special receive condition
Port B, Transmit buffer empty
Port B, External/Status change
Port C, Receive character available
Port C, Special receive condition
Port C, Transmit buffer empty
Port C, External/Status change
Port 0, Receive character available
Port 0, Special receive condition
Port 0, Transmit buffer empty
Port 0, External/Status change

The suggested interrupt vectors for the CIO and SCC devices take into account
that the lower bit and upper four bits of the vectors are shared, e.g., all
CIO Port A vectors have five bits which are the same for all interrupt causes.

Each device contains interrupt enable and control bits which allow the actual
interrupt priority levels to be modified under program control by temporarily
disabling certain devices.

Of course, fewer vectors may be used if the devices are programmed not to
use modified vectors or if interrupts from some devices are not enabled.

If you use the suggested vector numbers in the above table, the proper values
to load into the SCC and CIO vector registers are:

scco (Ports A & B) : 50 (hex)
SCCI (Ports C & D) : 51 (hex)

CIO, Port A: 41 (hex)
CIO, Port B: 40 (hex)
CIO, CIT vector: 60 (hex)

Making your way through the Zilog CIO and SCC manuals in search of details on
the interrupt logic is quite an experience. To give you a head start, begin
your quest with these recommended readings from the appendices to this manual:

Device Item

SCC Z8530 Technical Manual, appendix 0
Port priorities: App 0, section 3.2.2, table 3-5
Vector register: App 0, section 4.1.3
Vectors: App 0, section 4.1.10, table 4-3

CIO Z8536 Technical Manual, appendix E

4.3 Status LED's

(located near P6 edge)

Vector register: App E, section 2.10.1
Bit priorities: App E, section 3.3.2

There are four status LED's which give a visual indication of the MPU/DMAC
status. These LED's continuosly show the state of the board as follows:

LED

S
U
o
H

Name

Supr
User
DMAC
Halt

Meaning

The MPU is in the Supervisor state
The MPU is in the User state
The DMAC or Multibus has control of the facilities
The MPU has halted (double bus fault, odd stack

address or the system reset line is active)
See section 8.1.

4.4 Instruction Set Summary

(See next page.)

For information on instruction execution speeds, refer to appendix A and
section 7.6.

M C68000L.4. M C68000L.6. M C68000L.S. MC68000L 10. MC68000L.12

INSTRUCTION SET OVERVIEW
The MC68000 instruction set is shown in Table 10. Some

long words and most instructions can use any of the 14 ad-

additional instructions are variations, or subsets, of these
dressing modes. Combining instruction types, data types,

and they appear in Table 11. Special emphasis has been given
and addressing modes, over 1000 useful instructions are pro-

to the instruction set's support of structured high-level
vided. These instructions include signed and unsigned

languages to facilitate ease of programming. Each instruc-
multiply and divide, "quick" arithmetic operations, BCD

tion, with few exceptions, operates on bytes, words, and
arithmetic and expanded operations (through traps).

TABLE 10 - INSTRUCTION SET

Mnemonic Description Mnemonic Description Mnemonic Description

ABCD Add Decimal with Extend EOR Exclusive Or PEA Push Effective Address

ADD Add EXG Exchange Registers RESET Reset External Devices
AND Logical And EXT Sign Extend ROL Rotate Left without Extend
ASL Arithmetic Shift Left JMP Jump ROR Rotate Right without Extend
ASR Arithmetic Shift Right JSR Jump to Subroutine ROXL Rotate Left with Extend

BCC Branch Conditionally LEA Load Effective Address ROXR Rotate Right with Extend

BCHG Bit Test and Change LINK Link Stack RTE Retu rn from Exception

BClR Bit Test and Clear LSL Logical Shift Left RTR Return and Restore

BRA Branch Always LSR Logical Shift Right RTS Return from Subroutine

BSET Bit Test and Set MOVE Move SBCD Subtract Decimal with Extend
BSR Branch to Subroutine MOVEM Move Multiple Registers SCC Set Conditional
BTST Bit Test MOVEP Move Peripheral Data STOP Stop

CHK Check Register Against Bounds MULS Signed Multiply SUB Subtract

ClR Clear Operand MULU Unsigned Multiply SWAP Swap Data Register Halves

CMP Compare NBCD Negate Decimal with Extend TAS Test and Set Operand

DBCC Test Condition, Decrement and NEG Negate TRAP Trap

Branch NOP No Operation TRAPV Trap on Overflow

DIVS Signed Divide NOT One's Complement TST Test

DIVU Unsigned Divide OR Logical Or UNLK Unlink

TABLE 11 - VARIATIONS OF INSTRUCTION TYPES

Instruction
Variation Description

Instruction
Variation Description

Type Type

ADD ADD Add MOVE MOVE Move
ADDA Add Address MOVEA Move Address
ADDQ Add Quick MOVEQ Move Quick
ADDI Add Immediate MOVE from SR Move from Status Register
ADDX Add with Extend MOVE to SR Move to Status Register

AND AND Logical And MOVE to CCR Move to Condition Codes

ANDI And Immediate MOVE USP Move User Stack Pointer

CMP CMP Compare NEG NEG Negate

CMPA Compare Address NEGX Negate with Extend

CMPM Compare Memory OR OR Logical Or
CMPI Compare Immediate ORI Or Immediate

EOR EOR Exclusive Or SUB SUB Subtract
EORI Exclusive Or Immediate SUBA Subtract Address

SUBI Subtract Immediate
SUBQ Subtract Quick
SUBX Subtract with Extend

. ® MOTOROLA Semiconductor Products Inc .

5.0 DMAC USAGE

The DMA Controller chip will support four separate channels of data
transfer. Each channel may be initialized by the MPU to monitor different
I/O devices and transfer data to or from memory when the particular device
is ready. This allows concurrent operations with multiple I/O devices.

For readers who are not familiar with the workings of a DMA, there is an
excellent paper describing some of the 68450 features in section 5.7.

There are numerous modes with which the DMAC can be programmed to transfer the
data, depending on the device speed, data configuration, etc. For example,
a channel may be programmed to transfer a block of data without releasing the
on-card bus between cycles, until the entire block has been transferred.
Also, there are two addressing modes which may be selected. The choice is
dictated by the hardware configuration of the HK68 board.

The DMAC data transfers may be either 8 or 16 bits per cycle. Memory-to-memory
transfers could be either, depending on whether you want to move a byte or a
word value. I/O-to-memory transfers would usually be eight bits because the
devices only produce (or use) eight bits at a time. If there was a 16-bit
I/O device, e.g., on the Mu1tibus, then a 16-bit transfer would be OK. The
DMAC has four channels. Each channel is independent of the other, and may be
progammed as desired for 8 or 16 bit transfers.

The two addressing modes are detailed below:

Mode

Dual

Single

Description (refer to diagrams, below)

The DMAC does TWO memory cycles for each byte or word
transfer. First, the DMAC puts out the address of the source
byte (or word) and reads the data, loading it into a temporary
(internal) holding register. Then, the DMAC turns around and
puts out the destination address along with the data it had
read in the previous cycle. The DMAC acts as a buffer for the
data between the read and write operation. Note that the
whole process requires the DMAC to consume TWO bus cycles on
the HK68 because the read and write addresses are different
values.

The DMAC is sneaky. In cooperation with some special external
logic on the HK68, the DMAC is able to transfer a byte or word
data value in only ONE cycle. This is done by the external
hardware ASSUMING that either the source (or the destination)
address is fixed, and it is a particular device being
addressed. On the HK68 we assume that DMAC channel 0 will
be accessing the Winchester port, and that channell will be
talking to the Streamer Tape port. The external hardware can
tell if a DMAC cycle is in progress as well as which channel
is active. Then, the DMAC provides the memory address for the
data while the external hardware automatically "tweaks" the
assumed device to get (or store) the data. The data has a
direct path between the device and memory. The DMAC does not
actually receive the data.

The single adddressing mode is capable of transferring data at double the rate
of the dual addressing mode. However, only certain devices (the Winchester or
Steamer Tape ports) may be addressed in the single mode due to the need for
special hardware decoding of the device enable signal. Also, since the
Winchester and Tape ports are only eight bits wide and are associated with
either the upper or the lower half of the data bus, the data organization in
memory requires skipping every other byte. For example, 512 bytes of data
read from the Winchester port using the single addressing mode will require
a 1024 byte RAM buffer. Only the low half 6f each memory word would be
significant.

DUAL MODE

Step 1:
(read data)

Step 2:
(write data)

SINGLE MODE

(one step)

Device address
---------------------> DMAC

Data
<---------------------

Memory address
--------------------->

DMAC
Data

--------------------->

Device address
Device --------------------->
Decoder

...

Memory address
------------~-------->

DMAC

Device

Memory

Winc
or

Streamer
device

~a
V

Memory

Any port may be addressed in dual mode by any channel, while the Winchester
and Streamer ports may optionally be used in single mode by channels 0 and 1.
For those devices, it's up to the programmer as to which mode to use. Jumper
Jll must be set according to the selected mode.

The data transfer rate is controlled by the I/O device with an upper limit
determined by bus arbitration and memory delays. See section 5.2.

The DMAC outputs one of eight function codes during each cycle to allow the
MMU to identify the proper memory segment. Function code 7 is unique in that
no RAM parity checking is performed when that function code is used. If the
parity logic is enabled (via jumper J12) use of function code 7 will allow a
partially initialized block of RAM to be transferred without an error. See
section 5.1 for a complete list of function codes.

Refer to appendix B for additional information on the DMAC.

5.1 DMAC Channel Assignments

Channel Use Addressing Mode Jumpers
------- --------------- --------------- ------------

0 Winchester (P4) Single Install
Dual Remove

1 Streamer Tape (P3) Single J9-l,2
" " Dual J9-l,2

see Port A Dual J9-3,7
SBX P7 Dual J9-7,S

2 see Port A Dual J9-3,4
SBX P7 Dual J9-4,S
SBX PS Dual J9-4,5

3 SBX P7 Dual J9-S,9
SBX PS Dual J9-5,9
see Port B Dual J9-9,lO

All channels may be programmed for memory-to-memory
data transfers using the dual address mode.

Jll
Jll

& 6,7
& 6,7

& Jll
& no Jll

Note that channel 0 is dedicated to the Winchester port because the "ready"
signal for that channel is wired directly to the Winchester I/F logic. Of
course, channel 0 could also be used for memory-to-memory transfers.

5.2 Data Transfer Rates

Since the DMAC and MPU must contend for the use of the on-card bus, the data
transfer speed is dependent on the state of the MPU and DMAC when the device
issues it's ready signal. The DMAC must request the bus from the MPU and
be synchronized with the device and memory. These factors influence the DMA
timing:

1. On-card Bus Arbitration Delay. When the DMAC requests the bus
from the MPU, the MPU completes the current memory cycle and
releases the control signals.

2. MMU Translation Delay. The MMU, if present, translates the
logical device or memory address from the DMAC into the physical
memory address.

3. Multibus Arbitration Delay. If the physical memory address is
off-card, and if the Multibus is not already owned by this board,
there is a delay associated with the acquisition of the Multibus.

4. Memory or Device Access Delay. Some finite time is required to
perform the read or write operation at the target address.
The DMAC is synchronized by the on-card DTACK signal in the same
manner as the MPU.

5. Parity Checking Time. If the RAM parity logic is enabled, the
parity of each byte must be computed before the DMAC is allowed
to read data from on-card RAM.

6. Minimum DMAC Cycle Time. The DMAC requires four or five cycles
for a transfer, depending on the transfer direction.

Refer to the DMAC technical literature in appendix B for additional
information. Also, see section 7.6 on "Memory Timing."

5.3 Register Summary (DMAC)

The internal DMAC registers consist of a General Control Register (one for
the whole DMAC) and four groups of 16 registers (one group per channel.)

Register
Name

CSR
CER
DCR
OCR
SCR
CCR
MTC
MAR
DAR
BTC
BAR

NIV
EIV
CPR

MFC
DFC
BFC

GCR

-------Register Address-------
Chnl 0 Chnl 1 Chnl 2 Chnl 3 Function

16
32
32
16
32

FE9000
FE9001
FE9004
FE9005
FE9006
FE9007
FE900A
FE900C
FE9014
FE901A
FE901C

FE9025
FE9027
FE902D

FE9029
FE9031
FE9039

FE9040
FE9041
FE9044
FE9045
FE9046
FE9047
FE904A
FE904C
FE9054
FE905A
FE905C

FE9065
FE9067
FE906D

FE9069
FE9071
FE9079

FE9080
FE9081
FE9084
FE9085
FE9086
FE9087
FE908A
FE908C
FE9094
FE909A
FE909C

FE90A5
FE90A7
FE90AD

FE90A9
FE90Bl
FE90B9

FE90FF (Global)

FE90CO
FE90Cl
FE90C4
FE90C5
FE90C6
FE90C7
FE90CA
FE90CC
FE90D4
FE90DA
FE90DC

FE90E5
FE90E7
FE90ED

FE90E9
FE90Fl
FE90F9

Channel Status Reg
Channel Error Reg
Device Control Reg
Operation Control Reg
Sequence Control Reg
Channel Control Reg
Memory Transfer Counter
Memory Address Register
Device Address Reg
Base Transfer Counter
Base Address Reg

Normal Interrupt Vector
Error Interrupt Vector
Channel Priority Reg

Memory Function Codes
Device Function Codes
Base Function Codes

General Control Reg

16 means l6-bit register (bytes are individually addressable)
32 means 32-bit register " "" "
others are 8-bit registers

5.4 Software Example

These are the DMA test routines. They set up DMA channel 2 to do a memory-to
memory transfer and interrupt upon completion. The interrupt service routine
sets up the channel again and the process repeats. Once started, the program
returns to the monitor while the interrupts keep the transfer going.

There are two sections to this example: the 'C' code portion and the machine
code portion. First, the IC' code:

.-------
/*

* dma.c
* DMA test routine
*/

idefine DMABASE OxFE9040
idefine LEDS OxFECOOl

/* Base address of channel 2 of DMAC */

idefine VECTOR Ox40
idefine ERRVECT Ox4l

idefine out (port, data) *(char *) (port) = data
idefine in (port) * (char *) (port)

main ()
{

}

/*
*
*
*/

ini tdma () ;
ini tvector () ;
dotransfer();

dotransfer()
Transfers OxlOOO bytes from memory at Ox020000 to memory at Ox030000.

dotransfer()
{

dodma(Ox0200nO, Ox030000, OxlOOO);
}

/*
* initvector()
* Initializes the memory locations in the interrupt vector table to
* point to the interrupt service routines.
*/

ini tvector ()
{

}

int normint (), errint () ;

*(int (**)(»
*(int (**)(»

(VECTOR « 2) = normint;
(ERRVECT « 2) = errint;

/*
* ini tdma ()
* Initializes the DMAC for memory-to-memory transfers in auto request
* at limited rate mode.
*/

ini tdma ()
{

register int index;
static unsigned char dmatable[] = {

Ox04, Ox88,

OxOS, OxI0,

Ox06, OxOS,

Ox2D, OxOO,

Ox2S, VECTOR,

Ox27, ERRVECT,

Ox29, OxOO,

Ox3I, OxOO,

OxFF, OxOF,

OxOO
} ;

/* External request mode irrelevant
since auto requests used, 68000
device type (memory), 16 bit
port, PCL undefined (not used). */

/* Direction memory to device (since
both are essentialy the same the
direction need never change like
with Winchester DMA) , Word
transfers (word to word DMA) , no
chaining, auto request at rate
limited by the GCR (allowing the
MPU to run at the same time). */

/* Both addresses increment. */

/* Channel priority is zero since
not urgent task. */

/* Normal interrupt vector. Upon
completion of the DMA cycle the
DMA will interrupt using this
vector.

/* Error vector.

/* Memory function code.

/* Device function code.

*/

*/

*/

*/

/* The general control register. This
value will generate long bursts
with long spaces in between. */

for (index = 0; dmatable[index] != OxOO; index += 2)
out(DMABASE + dmatable[index], dmatable[index + 1]);

}

#define STATUS DMABASE 1* Status register
#define ERR REG DMABASE + OxOl 1* Error register
#define COMMAND DMABASE + Ox07 1* Command register
#define T COUNT DMABASE + OxOA 1* Transfer count register
#define DEV ADDRS DMABASE + Ox14 1* Device address register
#define MEM-ADDRS DMABASE + OxOC 1* Memory address register

1*
* dodma(source, dest, length)
* Uses the DMA to transfer "length" bytes from "source" to "dest".
*1

static char ledcnt = -0;

dodrna{source, dest, length)
unsigned short int *source, *dest;
int length;
{

}

out {STATUS, OxFF);
* (unsigned short int **) (MEM_ADDRS) = source;
* (unsigned short int **) (DEV ADDRS) = dest;
* (unsigned short int *) (T_COUNT) = (length » 1);
out {COMMAND, Ox88);
out(LEDS, ledcnt--);

1*
* error ()
* Invoked by any error interrupt from the DMAC. Outputs the error
* register on the led port.
*1

error ()
{

}
out{LEDS, in{ERR_REG»;

This is the machine code portion of the DMA sample software:

normint:

errint:

.text

.even

movem.l
jsr
movem.l
rte

movem.l
jsr
movem.l
rte

.globl

.globl

--------------- ----

dO-d7/aO-a6, -(a7)
dotransf

(a7)+, dO-d7/aO-a6

dO-d7/aO-a6, -(a7)
error

(a7)+, dO-d7/aO-a6

normint
errint

._-------------_._---------

*1
*1
*1
*1
*1
*1

5.5 Relevant Jumpers (DMAC)

Jumper

J9

Jll

Function

DMA Request/Ack

See section 5.1
for more about J9

Winc/Tape DMA Mode

5.6 DMAC Bypass

Pos

J9-1,2
J9-3,4
J9-3,7
J9-4,5
J9-4,8
J9-5,9
J9-6,7
J9-7,8
J9-8,9
J9-9,10

Notes

DMA Ackl to Tape Acknowledge
SIO A Ready to DMA Req 2
SIO A Ready to DMA Req 1
SBX P8 Ready to DMA Req 2
SBX P7 Ready to DMA Req 2
SBX P8 Ready to DMA Req 3
Tape Ready to DMA Req 1
SBX P7 Ready to DMA Req 1
SBX P7 Ready to DMA Req 3
SIO B Ready to DMA Req 3

Install for Single Address transfers to
the Winchester or Tape ports.

Remove for Dual Address transfers

The HK68 will operate without the DMAC chip. If it is removed from the
board, the following jumpers must be installed in its place.

Connect U50 pin 25 to 26
Install J9-l,2

If the Watchdog Timer is enabled (jumper J25 removed) the software can
determine if the DMAC chip is installed. Any attempt to access a non-existant
DMAC will result in a Watchdog timeout and a Bus Error Exception. See
section 8.1.

5.7 DMAC Application Info

The following paper was written by Thomas W. Cantrell, of Hitachi, for
presentation at WESCON 1982. It makes for some very good reading about
the DMAC chip. Reprinted with permission.

THE HD68450-A VERSATILE DMA CONTROLLER
FOR HIGH PERFORMANCE SYSTEM DESIGN

Thomas W. Cantrell
Microprocessor and Peripheral Marketing

Hitachi America, Ltd.
1800 Bering Drive

San Jose, CA 95112

INTRODUCTION

High performance DMA (Direct Memory Access)
capability is required for new, powerful systems in
cluding ...

Multiuser, Multiprogramming General Purpose
Computers.

Real Time Control Systems.

Robotics.

Data Communications.

High Speed Data Acquisition.

The HD68450 (figure 1) by combining innovative
DMA protocols, a complete HD68000 bus interface and
extremely high data transfer rates simplifies the design
of high performance systems. Indeed, the integration of
so much capability into one LSI device opens the door
for many new product designs.

.. ["a. I

''-';
"£6; l
"",cLi 6

Jet,' r

..r; •
BGm

0fE,
0TiCi "

uo '1

lOS'

.u:K', J

ACof,
ACK,
~2
ii:c~
iEe, ,
.te; ,

Fe.
Fe, l'
Fe.)

HD68450

(Top View)

Fig. 1

:; I BUSIIO I
HiiY'f1 • . , UiI
OWN
ili
iG

A.

A.

'V~

A

v.
A,O,

' ... 0

...) 0,
A 0

A,O

,.. D. . o.
:,~ A. 0,.
.1'A., 0,
.'A,,, 0" , A"O" ,

A" 0 ..
A" 0"

Clock

FIFO

Execution Control

Fig. 2

The HD68450 is one of the first completely new
complex peripherals for the HD68000 family. The DMAC
contains over. 40 thousand transistors (figure 2) imple
mented using the Hitachi 3 micron depletion load
NMOS process technology. A 64 pin package is used.
No compromise which might sacrifice performance or
flexibility was considered.

WHAT IS A DMA CONTROLLER.1.

Essentially, a Direct Memory Access Controller is
a processing unit which is optimized for a special class

of applications, namely that of moving data within and
between system memory and peripheral devices.
Peripheral devices which are often interfaced (figure 3)
using DMA include disk storage (flexible and rigid), tape
storage, video interfaces, CRTs, printers and other data
comm devices (I.e. local area networks, IEEE-488,
UARTs, etc.).

HO 68000 CPU SUB-SYSTEM

MEMORY SUB-SYSTEM

.110 SUB·SYSTEM I HD68450 OMAC I

I DISK CONTROL I LVIOEO CONTAO:j ISERIAL CONTROll1 LAN. CONTROL I

~ G~6l 0'<' ~ 0
~ OPERA:R

HARD CONSOLE{SI HIGH SPEED '- 0 DISK(S) (GRAPHICS) SERIAL LINK

~

-

't] PRINTERS

~

~ER
I TYPICAL MINICOMPUTERJ lOCAL AREA ARCHITECTURE

NETWORK

PERIPHERALS

Fig. 3

Like a general purpose CPU (i.e. HD68000), a DMAC
acquires use of the system bus, exerting control over
the existing data, address and status/control lines.

Once in control, the DMAC in effect executes a
short program which accomplishes the high speed data
transfer. In this regard, there are two extremes to be
considered.

In older DMAC designs, the data transfer 'program'
is implemented in hardware. In this case, the main CPU
is burdened with the task of initializing the DMAC with
every parameter for each transfer.

At the other extreme, the DMAC is no different
than a general purpose CPU. The DMAC is responsible
for accessing and executing an external data transfer
program as well as fetching and storing the data to be
transferred. The problems with this approach include
making the programmer responsible for all low level
control of the data transfer, and significantly reduced
performance due tothe replacement of dedicated hard
ware with software.

The HD68450 lies between these extremes, incor
porating a fairly high level of intelligence to reduce
main CPU overhead, while retaining dedicated hard
ware to accomplish the data transfer at the highest
possible speed.

By considering a DMA controller as a specialized
CPU, evaluation of the device's characteristics can be
performed using criteria familiar to many designers
(f.igure 4). Utilizing this technique will show that the
HD68450 DMAC exhibits the same flexibility, general

Criteria Processor Type

DMA Controller

DATA ACCESS Channel Organization
CAPABILITY DMA Protocols

BUS Address Space
INTERFACE Memory Protection

Exception Processing
PERFORMANCE Data Throughput

DMA Latency

Fig. 4

General Purpose CPU

Register Organization
Addressing Modes

Address Space
Memory Protection
Exception Processing
Instruction Cycle
Interrupt Response

purpose architecture, and very high performance that
have made the HD68000 CPU the processor of choice
for demanding applications.

FRAMEWORK FOR EVALUATION

The next level of detail for the above framework is
shown in figure 5. In this figure, the relevant aspects of
the HD68450 are compared with those for other popular
DMA controllers. This figure also outlines the format for
the remainder of the paper, i.e. the following topics will
be examined in more detail.

Channel Organization

DMA Protocols/Address SpacelData Types

Bus Interface/Exception Handling

Performance

Clearly, the HD68450 is the most powerful, highest
performance LSI DMAC currently available.

HD68450 ~ H068B44 18257 AMD9517A·2
PERFORMANCE

Clock rate Bmhz 5mhz 2mhz 2mhz 5mhz

No. of channels 4 2 4 4 4

Address Space 16M 1M 64K 64K 64K
(byles)

Maximum single
burst transfer 256K 64K 64K 16K 64K
(byles)

Oala lypes byte. word byte. word byle byle byle
long word

Maximum
transfer rate 4 1.2 0.5 1.6
(M bytes/sec.)

OMAMQO!;;S

Various including
memory to memory
110 to memory YES YES YES YES YES
memory to 110
auto·request
external request

Programmable bus
bandwidth YES YES NO NO NO

Address Increment
or decrement YES YES YES NO YES

Round robin
priority YES YES YES YES YES

Programmable
priority YES YES NO NO NO

Hardware chaining YES NO NO NO NO

SYST!;M BUS
Bus matching YES YES NO NO NO

Bus exception
handling YES NO NO NO NO

Cycle Retry YES NO NO NO NO

Programmable
vectored YES NO NO NO NO
interrupts

Memory protect ion YES YES NO NO NO

A>
Fig. 5

2

CHANNEL ORGANIZATION

In order to best serve the needs of the broadest
range of applications, the HD68450 incorporates four
completely independent channels into one package.
The HD68450's programming model is shown in figure
6. Like the HD68000, the HD68450 does not cut corners
when it comes to register resources to get the job
done ... over 100 bytes of registers are used. A brief
discussion of the purpose of and method of use for
each register follows ...

0,

con,:-:-~.".' I~

15

s. <1<\ "-9,

tun,.",,,,,,,., ..
0-.,

Con"",,,",,,,,.,

Con"",,,,",,,,,,.,

c~ ,
Co"''''''''-II'''.'

Fig. 6

General Control Register

This is the only register that is shared by all four
channels. It is responsible for controlling one of the ma
jor innovative factors of the HD68450, namely the
device's capability for programmable bus bandwidth
utilization_

Consider a large, multiuser minicomputer imple
mented using the HD68000 and multiple HD68450
DMACs. Such a system will typically have a large
number of I/O devices, including high priority devices,
particularly rigid disk storage, and low priority devices,
like terminals and printers.

A key consideration in a sophisticated computer
involves the operating system's schedUling of pro
grams and management of 1/0 resources. This task is
complicated by the fact that the execution mix of the
job stream will typically vary between being 110 bound
and compute bound.

It is well known that even powerful mainframes
can 'choke' if the software and hardware are not cor
rectly 'tuned' to accommodate the dynamic changes in
the computing environment. Common symptoms in
clude poor terminal response time, 1/0 thrashing, ex
cessive execution delays for small, compute bound
tasks, increased response latency to asynchronous real
time events, etc.

This is a difficult problem to solve. One common
solution is to force users to predefine the resources

they expect their job to use. The scheduler then at
tempts a priori to balance the job stream it initiates,
This solution does require dedicated hardware (to
monitor the computing environment in real time) and
software (the scheduler).

Unfortunately, this constraint can negatively
impact users. The ability to dynamically allocate
memory and 110 under program control is often
eliminated, and user programs may become data (size,
device used, etc.) dependent.

In order to eliminate much of the complexity typ
ically required to resolve the above issues, the HD68450
provides the on chip capability to determine the amount
of DMA activity in the system and automatically adjust
the rate at which it makes requests for the system bus.
This prevents 110 devices from 'hogging' the bus and
degrading main CP.U performance. The OS scheduling
algorithms can dynamically allocate more or less bus
bandwidth to individual DMACs and rearrange in
dividual channel priorities as required to maximize
system performance (figure 7).

TOTAL
SYSTEM
PERFORMANCE

JOB STREAM l
~g~~gTE

110
BOUND

OMA PRIORITIES

~~f~~:&~11~uSTeD 1-----0-----[1---[1--
BY 0.5.

TIME -
Fig. 7

The General Control Register defines the portion
of bus bandwidth the DMAC can use. Sophisticated cir
cuitry within the DMAC automatically monitors DMA
activity in the system and dynamically moderates its
own requests for the bus.

The unique programmable bus bandwidth utiliza
tion capability of the HD68450 can be used to provide
minicomputer performance in low cost, lSI based
systems.

Memory Address, Device Address and Transfer
Counter Registers

These define source, destination and length of the
DMA transfer. Note that like the HD68000, provision for
a 32 bit implementation has been made (32 bit address
registers). A single DMA burst can transfer up to 256K
bytes (64K operands x long word (4 byte) operands).

3

Channel Status, Error, Control and Priority
Registers

These registers are used for the basic operation of
each of the four channels contained in the HD68450.

The Status Register allows the CPU to interrogate
the current state of a DMA operation. Indicators include
operation complete, device termination normal, chan·
nel active, c'1annel error, etc.

The Error Register indicates the cause of an error.
These include external errors such as a hardware bus
error or external DMA abort and also internal errors
such as an attempt to incorrectly configure DMAC
operation. The HD68450 provides much useful informa·
tion to the system programmer about the integrity of
the system software and hardware.

The Channel Control Register is used to start,
stop, continue and abort a DMA operation. Also, the
CCR can enable or disable interrupts generated by the
H 068450 programmable interrupt generation logic.

The Channel Priority Register allows the Individual
setting of each channel's priority (0-3). On chip priority
arbitration logic automatically manages a 'round-robin'
service mechanism for channels of equal priority.

Device Control Register

The Device Control Register defines the nature of
the peripheral(s) associated with a channel. The
HD68450 Is quite flexible In this area, supporting both 8
and 16 bit peripheral chips (figure 8). Devices which use
a READY line are directly provided for. Also, a 'periph·
eral control line' (PCl) on the DMAC can be program
mably defined to be a status, status with interrupt on
transition and abort input, ora start 110 pulse output.

Channel Operation and Sequence Control
Registers

These registers define the basic nature of the DMA
operation. The direction of the transfer, size of the
operands, and sequence of addressing are program·
mably controlled using these registers. The H 068450
can manipulate 8 bit, 16 bit or 32 bit operands. The
DMAC will automatically perform bus matching, I.e. a
16 bit word can be fetched from memory and sent as
two 8 bit transfers to an 8 bit peripheral. Also, both the
memory and device addresses can be programmably
defined to either increment, decrement or not count at
all. The latter mode is useful for high speed initializa
tion of memory or 110 devices.

The method of DMA request initiation can be
specified to be auto request at maximum rate, auto reo
quest at limited rate (utilizing the programmable bus
bandwidth feature), or external request. An innovative
mode of auto requesting the first operand and following
with external requests is also provided.

Finally, another new, unique and powerful capa
bility of the HD68450 is defined. This is the ability to

HD68000
PERIPHERAL

LSI

Ul
::>
m
::!l
w
I-

~
Ul

HD68450 - 00.0,5
DMAC

OS
R/W

I DECODE I DTACK
lACK
RES
iRa
ERROR

CS
RS

HD6600
PERIPHERAL

LSI

HD68000 00.0,
CPU

E
R/iii
RES

I DECODE I IRQ

CS

RS

Fig. 8

specify that DMA operations utilize one of two 'chain
ing' modes, array or linked list.

Chaining

The array chaining mechanism (figure 9) works as
follows. The DMAC automatically fetches the address
and length of blocks to be transferred from an 'array' or
'table' in memory. After the operation defined by the
first entry in the array is complete, the DMAC reloads
the address and count registers from the second entry
and so on. Only after all required entries in the table
have been processed does the DMAC terminate the
operation.

In a slightly different manner, linked list chaining
processes command sequences, not in a linear array,
but contained in a linked list format (figure 10). Similar
to array chaining, address and transfer count informa
tion are contained in the list, but in addition, each· entry
is followed by a pointer to the next. The DMAC auto
matically fetches each succeeding entry based on the
link pointer to the next.

The facilities for system design provided by the
HD68450 chaining capabilities are quite significant.
First, the amount of driver software required to control

4

31 0

I Beginning Address 1 I
L. -=--:;==::;:::::::;. First Entry

I Transfer Count 1 II" Array

31 0

I Beg,nnong Address 2 I Second Entry

I Transfer Count 2 I'" Array

31 0

I Beginning Address n I last Entry

I Transfer Count n I In Array

31 0

I Beginning Address 1 !
I Transfer Count 1 I First Link

I POinter To 2

31 0

I Beginnong Address 2 I
I Transfer Count 21 Second Link

I Po,nter To 3

31 0

I Beginning Address n I
I Transfer Count n I Last Link

10· ·0 0· ·0 I
Fig. 9 Fig. 10

DMAC operation is reduced. Also, since the main CPU
isn't burdened with excessive 'handholding' of the
DMAC, system performance is improved.

In fact, the implications of hardware DMA chaining
go past the low level driver software, and can signifi
cantly reduce the cost and improve the performance of
higher level system software if exploited.

An ideal example is the common text editor soft
ware required of all general purpose computers. Since a
CRT screen is conceptually a 'contiguous' piece of
memory (i.e. column 1 precedes column 2, line 5
precedes line 19, etc.),all text editors must be able to
present text data in a contiguous manner. Some text
editors actually maintain data in memory in a sequen
tial manner. If the user inserts a line of text all other text
is moved to accommodate the new entry. More sophisti
cated text editors may utilize linked list techniques, but
the main CPU is burdened with presenting the linked
list to the CRT in a sequential manner.

Now, utilizing the HD68450 linked list chaining
mode, figure 11 shows how the deSign of a text editor
can be simplified and performance enhanced. The text
data can physically be stored in non-contiguous blocks.
The text editor simply maintains a linked list defining

PROGRAM/DATA MEMORY

CHAtN TABLE

THIS IS LINE 1 ADDRESS COUNT LINK

THIS IS LINE 3 pNULL I
THIS IS LINE 2

~

~ BASE ~I ADDRESS
REGISTER

H068450
DMAC

SCREEN ICRT) MEMORY

THIS IS LINE 1

THIS IS LINE 2

THIS IS LINE 3

I TEXT EDITOR EXPLOITING I
DMAC CHAINING

Fig.11

the proper sequential order and the HD68450 auto
matically 'gathers' the data properly for transmission to
the CRT.

Another use for the chained DMA modes is what is
commonly known as 'garbage collection.' Many OS
scheduling and memory allocation systems are faced
with the problem of memory fragmentation. This refers
to a situation in which many blocks of free memory are
scattered or fragmented (non-contiguous) within the
memory map. The HD68450 can easily consolidate
these small blocks into one larger contiguous memory
space (figure 12).

IGARBAGE COLLECTION I
DISK

Program
Waiting
to RUN

128K

BEFORE

MEMORY

Job A
128K

Free
64K

Job B
64K

JobC
192K

.

Free
64K

Fig. 12

DISK MEMORY

Program Job A
Can RUN i-- 128K

128K

Free

c.. 128K

Job C
192K

AFTER

Job B
64K

Note also that the linked list can be circular in that
the last entry can point to the first. This allows repetitive
operations like CRT or dynamic memory refresh to occur
continuously with no main CPU overhead.

In fact, a single entry with a link pointing to itself
mimics the 'autoload' capability of more primitive
DMACs. Note that most DMAC's autoload feature typi
cally requires the dedicated use of two channels, one
for the transfer and one for the autoload information.

Finally, chaining allows massive amounts of data
to be moved in .256K byte bursts, with only a small
latency (less than 5 microseconds) between bursts.
This supports very large, high speed data acquisition
(Le. image, signal processing, etc.) applications better
than more limited DMACs.

This type of hardware support for 'scatter/gather'
operations has only been the luxury of large computers
until now.

Normal and Error Interrupt Vector Registers

The HD68450 fully supports the powerful vectored
interrupt mechanism of the HD68000. The programmer

5

can define which interrupt vectors are associated with
each channel and which interrupt vector to use when a
DMA operation error occurs on any channel. An on chip
priority interrupt controller resolves interrupt requests
between channels of different or equal priorities.

Base Address and Transfer Counter Registers

Used with the chaining modes, the base address
register pOints to the start of the array or linked list of
commands. For array chaining, the base transfer
counter determines the number of entries in the array to
be processed.

Memory, Base and Device Function Code
Registers

Larger HD68000 based systems will often imple
ment the CPU's memory protection facilities. For
tunately, the HD68450 DMAC fully provides for opera
tion in such systems. These registers allow each ac
cess to memory to be defined (USER or SUPERVI~OR,
etc.) exploiting the same function code (FCO-FC2)
scheme used by the CPU. This allows complete flexi
bility in choosing the way in which the DMAC will
operate in a protected environment.

For instance, one configuration might define the
source of a DMA operation as USER memory, the
destination as a SUPERVISOR peripheral. Another
might define the memory and peripheral operands as
USER, but restrict DMAC accesses to the base table
(containing chaining sequences) to SUPERVISOR
memory.

Upon investigation, most previous integrated CPU/
DMAC architectures have significant shortfalls (if any
provision at all!) for managing DMA in a protected
environment.

DMA PROTOCOLS/ADDRESS SPACE/DATA TYPES

The HD68450 incorporates a very flexible DMA
protocol selection. These include ...

Memory to 110, 110 to memory

Memory ·to memory

Software halt and continue mode

Array and linked list chaining

External DMA request

Auto request, maximum rate

Auto request, limited rate

Cycle steal with bus hold or relinquish

Auto increment, decrement or no change of
addresses

The flexibility of the DMAC use in a system is only
limited by the imagination of the deSigner, not a lack in
number or capabilities of the DMAC's resources.

This page has been intentionally left blank.

6.0 MEMORY MANAGEMENT UNIT (MMU)
=================================

This section explains some of the relevant features of the 68451 MMU chip.
Refer to appendix C for more details.

The MMU automatically enters a "transparent" mode following a system reset.
Thus, all logical addresses and physical address will be the same. The MMU
must be programmed and enabled before any address translations will begin.

The MMU allows 32 memory segments to be defined. Each segment may be from
256 bytes to the full 16 megabyte space. Certain users may be given access
to the entire memory space, while other users may be restricted to a smaller
segment or be prohibited from writing to a segment.

6.1 Function Code Definitions

The table below shows the MPU and DMAC function codes which are generated
for each memory reference. They indicate to the MMU the particular type of
reference being made, and are used to index into the MMU Address Space Table
(AST). Ultimately, the function codes determine the logical to physical
mapping and the protection levels for the operation (e.g., write protect,
user/supervisior space).

Hex FC3 FC2

0 O. 0
1 0 0
2 0 0
3 0 0
4 0 1
5 0 1
6 0 1
7 0 1

8 1 0
9 1 0
A 1 0
B 1 0
C 1 1
D 1 1
E 1 1

F 1 1

FCI FCO

0 0
0 1
1 0
1 1
0 0
0 1
1 0
1 1

0 0
0 1
1 0
1 1
0 0
0 1
1 0

1 1

\

> DMA Function Codes

t (no parity checking, code 7)

(reserved)
User DATA
User PROGRAM
(reserved)
(reserved)
Supervisor, DATA
Supervisor, PROGRAM

Access from Multibus

\

I
t

> MPU Function
Codes

These code assignments do not correspond to the example suggested in the
MMU technical manuals. (FC3 is inverted and interrupt acknowledge does
not consume a code.) Disregard the MMU literature in this respect.

6.2 Address Line Coordination

Key:

Physical

A23
A22
A21
A20

A19
A18
A17
A16
A15
A14
A13
A12

All
AIO
A9
A8

A7
A6
A5
A4
A3
A2
Al

AO

"Ax"
"LAx"

"ADRx ll

IIUDS"
"LDS II
IICONV II

II XXII

MPU/DMAC

mapped from
LA23
LA22
LA21
LA20

LA19
LA18
LA17
LA16
LA15
LA14
LA13
LA12

LAll
LAIO
LA9
LA8

direct from
LA7
LA6
LA5
LA4
LA3
LA2
LAI

derived from
UDS, LOS

Access from bus

xx
xx
xx
xx

mapped from
ADR13
ADR12
ADRll
ADRIO
ADRF
ADRE
ADRD
ADRC

direct from
ADRB
ADRA
ADR9
ADR8

ADR7
ADR6
ADR5
ADR4
ADR3
ADR2
ADRI

derived from
ADRO & CONV

Access to bus

mapped to
ADR17
ADR16
ADR15
ADR14

ADR13
ADR12
ADRll
ADRIO
ADRF
ADRE
ADRD
ADRC

ADRB
ADRA
ADR9
ADR8

direct to
ADR7
ADR6
ADR5
ADR4
ADR3
ADR2
ADRI

generates
ADRO

via CONV

refers to the physical, on-card address signal
refers to the logical address output from the

MPU and DMAC
refers to the Multibus address signal (note that

the numbering convention for the Multibus is
hex, while the on-card signals use decimal.)

is the MPU/DMAC upper data strobe signal
is the MPU/DMAC lower data strobe signal
refers to the data CONVENTION in use. See
"Bus Data Conventions," section 10.8, for details.
means the input is undefined (treat as IIzeroll)

6.3 MMU Address Line Block Diagram

Bus
Control
Latch

MPU/DMAC Access to memory or to the bus

LOGICAL PHYSICAL

LA8-LA23 A8-A23
MPU ---------> MMU --------->

(16) (16)
DMAC

AO-A7
------------------------------->

(lower 8)

Memory
I/O

&
BUS

Logic

BCl, BCO

Bus Cntrl
Latch

Memory access from the bus

BMAP3-
BMAPO

--------->
(4)

BUS

Bus
Mapping ---> Request to access control logic

PAL

....

A12-A23 (upper 12)

A12-A19
MMU --------->

A12-A19 (8)
------'---> RAM

(Mid 8)

AO-All
------------------------------->

(lower 12)

During accesses from the bus, the logical A20 through A23 inputs to the MMU
are not defined. Therefore, the upper four bits of the MMU's "LAM" (Logical
Address Mask) register should be programmed with zeros (don't cares).

6.4 Register Summary (MMU)

The MMU registers may be read or written by the MPU. Some addresses map into
actual commands. 16-bit registers may be accessed as either a 16-bit word or
as a pair of 8-bit bytes, i.e., each half of the word registers may be
operated on independently.

Register

ASTO
ASTI
AST2
AST3
AST4
AST5
AST6
AST7

AST8
AST9
ASTIO
ASTII
ASTl2
ASTl3
ASTl4

ASTl5

ACO/ACI
AC2/AC3
AC4/AC5
AC6
AC7
AC8

DP
IVR
GSR
LSR
SSR
lOP
RDP

(command)
(command)

Address

FE8000
FE8002
FE8004
FE8006
FE8008
FE800A
FE800C
FE800E

FE8010
FE8012
FE8014
FE8016
FE8018
FE80lA
FE80lC

FE80lE

FE8020/1
FE8022/3
FE8024/5
FE8026
FE8027
FE8028

FE8029
FE802B
FE802D
FE802F
FE8031
FE8039
FE803B
FE803D
FE803F
(other)

Size (bits)

8
8
8
8
8
8
8
8

8
8
8
8
8
8
8

8

8/8
8/8
8/8

8
8
8

8
8
8
8
8
8
8

n/a
n/a
n/a

Function

DMA code 0
DMA code I
DMA code 2
DMA code 3
DMA code 4
DMA code 5
DMA code 6
DMA code 7

MPU, (reserved)
MPU, User data
MPU, User program
MPU, (reserved)
MPU, (reserved)
MPU, Supervisor data
MPU, Supervisor program

Access from Multibus

LBA & Translation Adrs
LAM (Logical Adrs Mask)
PBA & Translation Reg
ASN (Adrs Space Nmbr)
Segment Status
ASM (Adrs Space Mask)

DP (Descriptor Pointer)
IVR (Interrupt Vector Reg)
GSR (Global Status Reg)
LSR (Local Status Reg)
SSR & Transfer Descrip Oprn
lOP (Int Descrip Pointer)
RDP (Result Descrip Pointer)
Direct Translation Operation
Load Descriptor Operation
Null Operation

peA

--
L~ICAl..
APDRE~

(MPO!DMA
\t-.\pu\,

<:.)

LAM

1<.11

t

1<."
,

\c",

cc ,'\ = ~(c"::>N(F\CAA" (ose: PeA)
'Cd': DOt-l'T c.pp.£, (MA"tO-\ £.&'.)

Ic",

LBA.

I H-lO

) O~

I AAD

lAND

) ><'0'" ,

I A(~D

l-------~v~--------)
o""e: Of' l<.# <:.(~(re

1<' ... P~'SICA<'"
A.ODRE:~

(OOTftU\)

6.5 Relevant Jumpers (MMU)

Jumper Function Pos

J17 MMU Mode Select J17-A
J17-B

Notes

Mode Sl (factory adjustment)
Mode S2

Do not fiddle with this jumper. See "Memory Timing," section 7.6, for
information on MMU timing.

6.6 MMU Bypass

The HK68 will operate without an MMU chip. If the MMU is removed from the
board, the following jumpers must be installed in its place.

Chip U48 Connect pin 2 to 13
Connect pin 5 to 6 to 7
Connect pin 48 to 49

47 TO 50
46 TO 51
45 TO 52
44 TO 53
43 TO 54
42 TO 55

" " 40 TO 57
" " 39 TO 58
" " 38 TO 59
" " 37 TO 60
" " 36 TO 61
" " 35 TO 62
" " 34 TO 63
" " 33 TO 64
11 " 32 TO 1

If the Watchdog timer is enabled (jumper J25 removed) the software can
determine if the MMU chip is installed. Any attempt to access a non-existant
MMU will result in a Watchdog timeout and thus a Bus Error Exception. See
section 8.1.

6.7 Sample MMU Software

idefineMMU
idefine MMUACC
idefine MMULD
idefine MMUAST9

OxFE8000
(MMU + Ox20)
(MMU + Ox3F)
(MMU + Ox12)

/* Accum adrs offset */
/* Load Descriptor */
/* Adrs Space Table 9 */

mmuini t ()
{

}

char i, j, ki
int *Pi
char *q ={ MMULD }i /* Load Descriptor Command */

/* The MMU Table contains groups of values for loading the
descriptors. These values map logical addresses from
Ox008800 through OxOFFFFF to the same physical addresses. */

static int mmutable[]
Ox0088,
OxFFF8,
Ox0088,

={
/* LBA */
/* LAM */
/* PBA */

/* 00 8800 to 00 8FFF 2K */

} i
for

}

Ox0090, OxFFFO, Ox0090, /* LBA, LAM, PBA 00 9000 to
00 9FFF 4K */

OxOOAO, OxFFEO, OxOOAO, /* 00 AOOO to
00 BFFF 8K */

OxOOCO, OxFFCO, OxOOCO, /* 00 CODa to
00 FFFF 16K */

Ox0100, OxFFOO, Ox0100, /* 01 0000 to
01 FFFF 64K */

Ox0200, OxFEOO, Ox0200, /* 02 0000 to
03 FFFF l28K */

Ox0400, OxFCOO, Ox0400, /* 04 0000 to
07 FFFF 256K */

Ox0800, OxF800, Ox0800 /* 08 0000 to

(k=O, i=Oi i<sizeof(mmutable)/6i
p = MMUACCi
for (j=Oi j<3i j++)

*p++ = mmutable[k++]i
*p++ = Ox010li
*p = OxFFOl + ii
if (*q 1= OxOO)

return(ERROR)i

i++) {

/* Load
/* ASN,
/* ASM,
/* Load

OF FFFF 5l2K */

MMU Accum regs */
SSR */
DPn */
despriptor */

q = MMUAST9i
*q = OxOli
*(q+2) = OxOli
return(O)i

/* User AST9, must use pointer to char */
/* Load AST9, User data */
/* Load AST10, User pgm */

6.8 MMU Primer

This section explains the some of the basics of memory management.

1. Logical vs. Physical Addresses:

a. A "logical" address is the value used by a program. A "physical"
address is the actual state required on the address lines to access
the intended memory or device. Physical addresses are determined by
the hardware, and usually cannot be changed except by modifying the
circuitry. A logical address is where the program "thinks" the
memory is; the physical address is the actual location.

In a computer system which does not have an MMU, the logical and
physical addresses for any location will always be the same. The
programmer must determine in advance which address values are
to be used to access, for example, a certain memory block.

If an MMU is used, the logical addresses for a memory block need
not be equal to the physical addresses, although they commonly are.

b. On the HK68, all address values are run through the MMU, even for I/O
device accesses. Actually, an I/O device access is identical to a
memory access since all I/O is "memory mapped." The only difference
is in the physical address values. We have reserved the low physical
addresses for memory and the very top addresses for I/O devices.
But, by using the MMU, a programmer may adjust the logical addresses
for devices and memory; so that, for example, a particular memory
block is in the top address space and the I/O devices at lower
addresses.

MPU
or

DMAC
or

Mu1tibus

Logical
Address

-------------->
(16)

MMU

Physical
Address

-------------->
(16)

-------------------------------------->
(lower 8)

Devices
and

Memory

c. The logical to physical address conversion operates slightly
differently depending on whether the HK68 access is being controlled
by the MPU or some other board on the Multibus. First of all, the
Multibus can only access on-card RAM. There is no direct method
by which another CPU board can touch an on-card I/O device.
Secondly, not as many address lines (only 8) are sent to the MMU
for mapping when the access is from another board. Thus, the
MMU maps in 256 byte blocks when the 68000 MPU or DMAC is in charge
and in the larger 4K blocks when the bus is controlling the cycle.

d. Don't confuse the function of the MMU and the Bus Mapping PAL. They
are completely independent devices. The Bus Map monitors the Multibus
and detects whether or not a valid address (one which is intended for
the HK68) is present on the bus address lines. The MMU converts
incoming logical addresses to physical values. The BuS Map acts as
the "doorman," while the MMU translates the addresses, once the door
has been openned. The Bus Mapping PAL can be programmed in a variety
of ways; however, it only monitors the upper 12 Multibus address lines.
This means that the HK68 can occupy 4K bytes, minimum, of bus address
space. By ignoring some of the upper address lines, the space
occupied can be enlarged (up to the on-card RAM size, in space sizes
which are increments of powers of two).

Refer to section 10.3 for more details about accesses from the
Multibus.

e. MMU implementations operate in different ways since there is,
unfortunately, no standard method. On the HK68, the MMU allows
the upper 16 bits (out of 24) to be adjusted according to certain
rules, which must be followed by the programmer.

The MMU operates by changing some of the upper bits of a (logical)
address to another specified value, which becomes the physical
address. The lower address lines get through unscathed. The number
of bits to change and, of course, the new values are specified by the
programmer and loaded into the MMU's internal registers.

2. Functions:

a. Easily the most important function of the MMU is to provide memory
access protection. The MMU can tell whether an access is generated
by the MPU, the DMAC or the Multibus. Furthermore, for MPU accesses,
the MMU can determine if the memory access is controlled by the
"supervisor" program, which has certain privileges not afforded to
other ("user") programs. The MMU can prevent a user program from
writing (or even reading) from specified memory blocks or I/O device
groups. This function is vital to a multiuser operating system, such
as Unix, to prevent one user from clobberring another, or to protect
data from unauthorized use or alteration.

b. Another function performed by the MMU is to allow a Multi-user
operating system some freedom in memory allocation. Two or more
users could be executing the same program segment but have separate
memory areas for storage of variables. The operating system is
responsible for switching in the correct memory block, depending on
which user is executing. The program doesn't have to worry about
locating the specific RAM block belonging to the active user. In this
example, each user would have a different physical memory block for
variables; but, when one or the other block is being accessed by the
program, the program would always find the active block at the same
logical address. It is a simple procedure for the operating system
to switch the blocks, since all it has to do is change a few registers
inside the MMU. The result of all this is a big time savings for the
MPU, since the MPU is able to effectively "move" a large block of
memory without actually moving each byte.

user.~ Da~~._1 or I User 2 Data. I
-1---------1

or I User 3 Dafa---I

---T-=--
Shared Program

c. Or, let's say you have some programs which, for some reason, must be
at certain addresses when executing. Such programs are called
"absolute" as opposed to "relocatable." If two users each want
to run one of these programs, and if the programs should both demand
the same memory area to run in, the operating system has a problem.
It can either run one program and make the second user wait; or, it
can swap back and forth between the two programs, running each one a
little bit at a time, so both users are being serviced. But, swapping
programs is very time consuming and leaves less time for the programs
to actually execute. Through the use of the MMU logic, however, the
operating system can load both programs into different physical
memory segments, but yet allow them to execute at the logical address
which each program desires. The swapping is accomplished very
quickly "logically" instead of physically.

d. Use of an MMU also provides the ability to gracefully enlarge a
memory segment without having to completely rearrange memory.
Modern programs (those coming out of compliers) typically have
a "text" segment which is the actual executable code, a "heap" or
"data" segment which is used for variable storage (as discussed
above) and a "stack" area for program return addresses and certain
parameters which have a relatively temporary existance. The stack
usually starts near the end of memory and "grows" toward the text
segment, as necessary, during program execution. The operating system
allocates a certain amount of space for the heap and stack when the
program is loaded; but, the operating system really doesn't know if it
has allocated enough space. Indeed, most programs themselves don't
even know, prior to execution, precisely how much memory will be
needed.

So, what happens if the stack grows down and is about to bump into
the data or text segments? One solution would be to move all the
contents of the stack up to higher memory and thus open up additional
space between the stack and the rest of the program. With an MMU,
all that needs to be done is to map in a new memory segment and
LOGICALLY move the stack contents. The logical address of the stack
is changed while leaving the physical addresses alone. No data
movement is necessary; the new segment is "wedged" in, right between
the existing memory areas.

(high memory)
Stack area

(grows up)

-I 1 - 1 - 1 - 1 -heap area

data area

User program

Supervisor·pgm
(low memory)

/ Extra memory
«« may be wedged

\ in here

Unprotected memory

Protected memory

e. Another memory management function, but one not required on the HK68,
is to expand the address range of a CPU chip. For example, the Zilog
Z-80 has only 16 address line outputs, which limits its addressing
range to 65,536 bytes. In order to address more memory, a memory
mapping device may be designed which uses three or four of the upper
CPU address lines as inputs and provides a dozen output lines. Those
outputs are then combined with the remaining CPU address lines to
expand the total physical address lines to, for example, 24.

f. MMU Functional Summary:

1. Read and/or write protection of special memory areas to
prevent unauthorized use or alteration of programs or data.

2. Relieve the MPU of doing a physical swap of programs
and data in order to add memory within a data area.

3. Locate an absolute program at a particular execution
address, even though that physical address is unavailable.

4. Address line expansion.

If you followed more than 80% of all that, you may consider yourself an MMU
expert. A written certification examination will be available. Study up!

7.0 MEMORY CONFIGURATION
=========================

The Heurikon HK68 microcomputer will accommodate a variety of RAM and ROM
configurations. There are two ROM sockets (one for the high byte, one for
the low byte) and 18 RAM sockets (including two parity bits per word).

7.1 ROM

ROM occupies a fixed 32k byte physical address space starting at FEOOOO (hex).
At power-on, the ROM is also mapped into address 000000 in order to allow
the MPU to fetch the reset exception vector and begin execution. Execution
may proceed at base 000000 or FEOOOO. There will be no RAM until the MPU
accesses any physical address at or above FEOOOO, at which time the ROM image
based at 000000 will be turned off and RAM turned on. It is acceptable for
the reset vector to point directly to an initialization routine in block
FEOOOO, in which case the RAM will be turned on immediately after the vector
has been fetched. (Caution: Accessing an I/O device after power-up will also
turn off the lower ROM image.) ROM access time must be 435 nsec or less.

7.2 RAM

ROM type

2716
2732

Board Capacity

4K bytes
8K bytes

ROM type

2764
27128

Board Capacity

16K bytes
32K bytes

RAM must be turned on following power-up, as described above. On-card RAM
starts at physical address 000000 and is contiguous through the end of RAM.
Once the RAM has been turned on, it cannot be turned off; it may only be
logically relocated via the MMU.

The HK68 can accommodate a "double-decker" RAM matrix, for a total of 36
chips, maximum. This is accomplished by using special IC sockets which allow
two chips to be mounted in the same chip position, one above the other. This
method allows a full megabyte of memory, plus parity, when using 256k x 1
parts. Jumper J23 selects the number of decks in use. If the J23 shunt is
removed, on-card RAM will be disabled and all physical space below FEOOOO will
be assigned to the Multibus. See also "RAM Parity Logic," section 8.2, below.

RAM Board Capacity (bytes)
type 1 Deck 2 Decks
-------- ------- -------
64K x 1 128K 256K
256K x 1 5l2K 1 Meg

7.3 Multibus

All physical addresses from the end of on-card RAM to the beginning of the
ROM at FEOOOO are assumed to be off-card, on the Multibus (see the memory
map, below). Bus arbitration is automatic.

It is not possible to access the physical bus addresses occupied by the
on-card RAM or any physical bus address above FEOOOO. However, in systems
using multiple HK68 processors, each board can map its on-card RAM into
different address spaces by use of the bus mapping PAL and the MMU logic.
This will allow all processors access to each other's RAM. The bus cannot
be used following a power-up until the MPU has accessed above FEOOOO. See
"Bus Control," section 10, for more information concerning the Multibus.

7.4 Physical Memory Maps

(The maps are not shown to scale)

Normal Use

FFFFFF -----------------

(I/O)

FESOOO -----------------
ROM

(32k) I
FEOOOO -----------------

Multibus
Memory

100000 --------
RAM
S12k
Deck2

OSOOOO --------
RAM
S12k ------
Deckl l2S-2

l2S-l

1

000000 -----------------
2S6kxl 64k x 1

At Power-up

FFFFFF ----------------- Any access
in this

FEOOOO

FBOOOO

(I/O) region
will turn

----------------- on the
ROM

(32k)

I (see sect 7.5) I

1 1

(undefined)

ROM

"normal"
map.

000000 -----------------

See section 15 for a more detailed map which includes a breakdown of the "I/O"
space.

ROM Map Detail:

(I/O)
FESOOO

(undefined)

FE4000 --'-32K

FE2000 16K -----
FElOOO SK

4K
FEOOOO

-2"7128 2764 2732- 2716

(Mul tibus)

7.5 RAM Size Determination

It is possible for a program to determine the on-card RAM configuration
without using a trial and error block test procedure. Follow these steps
to ascertain the settings of J22 and J23:

1. After power-on (or reset) but BEFORE transferring control to
block FEOOOO, which would turn RAM on:

a. Read the long word at address 000004 (hex) and compare
with the long word at address FC0004 (hex). If they
are equal, J22 is set "A," indicating 64K x 1 type RAM
chips are installed. If equal, skip to step l.d., below.
The particular value of the long word is not significant.
(It will be the PC portion of the reset vector.)

b. Read the long word at address 000004 and compare with the
long word at address FD0004. If they are equal, J22 is set
"B," meaning you've got 256K x 1 type RAM chips installed.
If equal, skip to step l.d., below.

c. If both tests above failed, J22 is not installed. This
indicates that there is no on-card RAM. Skip to step 2.

d. Read the long word at address 000004 and compare with the
long word at address FB0004. If they are equal, J23 is set
"B", which would be the case for a double-decker RAM
configuration. If the long words are not equal, J23 is
set "A," for a single deck RAM.

Summary: The long word at address 000004 will compare equal to
the long word at the indicated addresses, based on the settings
of J22 and J23, according to the table below: (Note: "#" means
not equal, "=" means equal.)

-------Address-------- Jumpers Top
FDOO04 FCOO04 FBOO04 RAM type, decks, Total bytes J22 J23 Adrs
------ ------ ------ ---------------------------- --- --- ------

No on-card RAM ? none
= No on-card RAM ? none
= # 64K x 1, single, l28K A A OlFFFF
= = 64K x 1, double, 256K A B 03FFFF
= # # 256K x 1, single, 512K B A 07FFFF
= # = 256K x 1, double, 1 meg B B OFFFFF
= = # (invalid) ? ?
= = = (invalid) ? ?

2. Temporarily store the results in an MPU register (you don't have
any RAM yet.)

3. Turn on the on-card RAM by transferring control to ROM at block
FEOOOO. (Refer to section 7.1.)

4. Save the results of the tests in RAM for later use.

Once RAM has been turned on, this procedure will no longer be effective. If
you want to determine RAM size using this method, you must do so prior to
turning on the RAM.

To determine the amount of off-card memory, a conventional algorithm, which
writes and reads off-card addresses looking for read errors and/or a Watchdog
timeout, could be used.

7.6 Memory Timing

The HK68 memory logic has been carefully tuned to give optimum memory cycle
times under a variety of conditions. Considerations have been given to
these factors:

1. RAM parity checking requires additional time following the normal
RAM access delay. (Parity Computation Time.) DTACK cannot be
generated early to the MPU because DTACK cannot be cancelled if
the parity computation subsequently determines that an error
occurred. No delay is required, however, for write cycles.

2. The MMU, if present, delays the generation of stable physical
addresses. (Translation Time.)

3. Typical access times for pROMs are 100 to 200 nanoseconds longer
than RAM; however, parity checking is not required, so DTACK may
be delivered to the MPU early. Since most programs will be in
RAM (or could at least be copied to RAM for execution,) ROM timing
need not be optimized.

4. Dynamic memory refreshing must be fast enough that a lengthy (or
infinite) bus access cycle will not cause loss of the RAM contents.
If a long access FROM the bus occurs, which would be terminated by
the Watchdog Timer, refreshing must resume and a complete refresh
cycle must be done before the maximun refresh time allowed by the
RAMs expires. Refreshing operates normally during accesses TO the
bus. The HK68 uses a hardware refresh.

Accordingly, the HK68 design has the following operating characteristics:

Extra clock cycles are inserted in memory references to synchronize the MPU
and DMAC with the MMU and memory. The number of extra clock cycles required
for a memory read or write may be found in the table below. These cycles are
in addition to the four cycles built into the instruction timing charts
provided in appendix A. Each clock cycle is 125 nanoseconds.

RAM reads, with parity enabled:
RAM reads, with parity disabled:
RAM writes:
ROM (all cycles):

Typical RAM access times:
Typical ROM access times:
Maximum ROM access time:

MMU Configuration
with MMU w/o MMU

5
3
3
4

150 nanoseconds

3
1
1
2

250 - 350 nanoseconds
435 nanoseconds

Jumper
J12

B
A

Typical instruction execution times (RAM with parity, without MMU):

Instruction

move register to register
add register to register
add.w memory to register
add.w register to memory
multiply
divide unsiged, register

MPU Actual
Timing Cycles Speed

4(1/0)
4(1/0)
8(2/0)
12(2/1)
70(1/0)*
140(1/0)*

*maximum

7
7

14
20
73*
143*

875 nsec.
875 nsec.
1.75 usec.
2.50 usec.
9.125 usec.*
17.875 usec.*

If the MMU is installed, add 250 nanoseconds for each memory access (total of
the parenthesizes numbers).

The HK68 uses hardware logic to control refreshing of the dynamic memory.
The DRAM refresh rate is controlled by a 125KHz clock signal. This gives a
refresh rate of one millisecond for 128 row, 64K x 1 RAMs or two milliseconds
for 256 row, 256K x 1 RAMs. This is about twice as fast as necessary to keep
the RAMs alive. Spare system clock cycles are used whenever possible to
prevent the memory refreshing from slowing the MPU. Hidden refreshes occur
during I/O, ROM or off-card accesses. Also, refreshing can occur during
lengthy instructions (e.g., rotates or divides) without slowing execution.
If no spare cycles are available, the worst case impact of RAM refreshing on
memory timing is the addition of three clock cycles every 8 microseconds, or
a net speed reduction of 4.7%.

7.7 Relevant Jumpers (Memory Configuration)

Jumper

J12

J13
J14

J22

J23

Function Pos
---------------------- -----
RAM Speed/Parity J12-A

Jl2-B

ROM Type Select Jl3-A,
ROM Type Select J13-A,

Jl3-B,

RAM Device Size Select J22-A
J22-B

RAM Deck Select J23-A
J23-B
(none)

Notes

Fast (no parity)
Slow, Parity Enabled

J14-A
J14-B
J14-B

64K x 1
256K x 1

2716
2732,
27128

type
2764 type
type

Single Deck
Double-Decker
on-card RAM disabled

8.0 SYSTEM ERROR HANDLING
===========================

There are numerous events which could cause an error to occur. The responses
to these events are carefully controlled.

8.1 Error Conditions

The following error conditions may arise during MPU or DMAC cycles:

Type Error Reason Disposition

H/W RAM Parity Incorrect parity was detected The memory cycle is

H/W

H/W
S/W

H/W

Collision

watchdog

Power Fail
Interrupt
(NMI)

during a read cycle from terminated, the bus
on-card RAM memory. This may error exception is taken
be due to a true parity error by the MPU or the bus
(RAM data changed,) or because error code is set in the
the memory location was not DMAC.
initialized prior to the read
and contained garbage. See section 8.2.

An attempt was being made to
use off-card facilities at the
same time as the Multibus was
requesting use of the on-card
memory. Neither the MPU/DMAC
nor the bus could complete
its cycle because both sides
of the bus interface are "busy."
This is known as the "kitchen
door effect."

During an access, usually to
the bus, no XACK (bus ack) was
received within a fixed time
interval defined by a hardware
timer. (About one millisecond.)
This is usually the result of
no bus device being assigned
to the specified bus address
or if an MMU or DMAC access is
attempted without the MMU or
DMAC chips installed.
A timeout could also occur
if an access from the bus is
not terminated by the bus
master. See also section 8.3.

Pin P2-l9 has been brought low
by an external device. This
pin is intended for use by the
power fail detection logic, but
it may be used for a different
function if desired. This
is a non-maskable interrupt.

The on-card request by
the MPU or DMAC is
suspendend, the bus
request is honored
and then the MPU or
DMAC request is
reissued. No muss,
no fuss.

For an access TO the bus,
the memory cycle is
terminated, the BERR
(Bus Error) exception
is taken by the MPU and
execution resumes at
the location specified
by the exception vector.
If the CIO has been so
programmed, the DOG bit
in CIO port A will be
set. If an access FROM
the bus was in progress,
no BERR exception occurs,
but the Bus Control
Latch will be cleared to
terminate the request.
The DOG bit will be set.

The MPU completes the
current instruction
and then initiates
exception processing.
Vector 31 is read and
control is transferred
to the specified adrs.

Error Conditions, continued •••

Type

H/W
S/W

S/W

S/W

S/W

S/W

S/W

Error

Double
Bus Fault

Odd
Stack
Address

HMU Fault

Divide
by Zero

Privileged
Violation

Address
Error

Reason

Another bus error (parity or
timeout) occurred during the
processing of a previous bus
error, address error or reset
exception. This error is the
result of a major software bug
or a hardware malfunction.
A typical software bug which
could cause this error would be

Disposition

The MPU enters the
HALT state. Processing
stops. Dead. The HALT
status LED will come on.
The only way out of this
condition is to issue
a hardware reset.

an improperly initialized stack pointer, which
points to an invalid address. Also, if the bus
error exception vector has not been initialized,
a parity error could have occurred when the vector
was read.

The stack pointer contains an
odd address value. The LSB of
the stack pointer must be zero.

The MMU has detected a write
violation or an undefined
segment address.

The value of the divisor for
a divide instruction is zero.
Even the almighty 68000 can't
compute to infinity.

A program executing in the
user state attempted to
execute a privileged
instruction.

An odd address has been
specified for an instruction
or a word or long word memory
operand.

Same as Double Bus
Fault, Above. The
MPU will HALT.

The memory cycle is
terminated and the BERR
(Bus Error) exception
is taken.

The instruction is
aborted and vector 5
is used to transfer
control.

The instruction is not
executed. Exception
vector 8 is used to
transfer control.

The bus cycle is
aborted and vector 3
is used to transfer
control.

S/W Illegal or
Unimplemented
Instruction

The bit pattern for the
fetched instruction is not
legal.

The instruction is not
executed. Exception
vector 4, 10 or 11 is
used to transfer control

As the above table indicates, there are numerous causes for a BERR (Bus Error)
exception. In order to determine the cause of the exception, make the
following tests, in the order given:

1. Test the DOG bit in CIO Port A.
2. Test the Fault status bits in the MMU.
3. If it wasn't a Watchdog timeout or an MMU Fault, the bus error was

the result of a RAM parity error.

If a bus error occurs during a DMA cycle, the DMAC sets an internal error flag

8.2 RAM Parity Logic

Each byte of the on-card RAM has an associated parity bit which is
automatically written with odd parity. If a byte is read by the MPU or DMAC
which has an incorrect parity bit, a bus error is generated. If the memory
cycle was controlled by the DMAC, the bus error is recorded by the DMAC and
the bus cycle is terminated. No parity checking is done on bytes read by the
bus or if the DMAC is using function code 7. Parity errors could result from
numerous conditions, as outlined below.

Cause

Defective
Memory Chip

Alpha
Particles

Discussion

This "hard" error is the result of a bad bit cell or group
of cells in the memory chip. Bad locations always return
the same value, regardless of what has been written. It can
be temporarily tolerated by the software, if the program has
the smarts to "map around" the bad RAM area. The correct
fix would be to replace the bad memory chip.

This is a "soft," random error. This type of error only
affects one bit, and does not cause permanent damage. An
alpha particle (helium nuclei produced by the environment
or the chip package itself) penetrates the memory cell and
causes a charge reversal, thus altering the data stored at
that location. Rewriting the data will correct the error.

Much concern has been given to the alpha particle phenomena which came
to light with the modern dynamic memory chip technology. Memory
manufacturers have been very successful in reducing this problem. It
is difficult to predict when alpha particle errors will occur because
they are random events. Also, the error must occur in an "active"
memory Location, otherwise you'll never know an error has occurred.
Error rates are a function of chip design, size and capacity, as well
as the size of the memory array. The mean time between failures
(MTBF) for a fully used, I megabyte RAM array is better than 6 months.

Uninitialized
Memory

Lengthy
Access FROM
the Bus

Some programs read data from uninitialized areas of memory
(RAM locations which have not been written since power was
applied). A program might do this, for example, when block
moving a non-contiguous set of bytes. It is usually easier
to program the transfer of a contiguous group of bytes,
including the intermediate uninitialized data. This
practice would probably generate a parity error. The fix
is to clear ALL memory immediately after power-on. Also,
the DMAC can use function code 7 to ignore parity during a
DMA data transfer.

If the watchdog Timer is disabled (jumper J25 installed),
a long access from the bus could cause loss of RAM contents
because memory refreshing ceases during such an access.

Incidentally, use of a parity bit actually decreases the MTBF by 12%. This
is because the parity bit itself could be the victim of a soft error. There
are more targets for the alpha particles to shoot at. Using a parity bit
simply means you'll KNOW when an error occurs and thus improve the system
reliability; but, alas, the parity bit also increases the chances of having
an error. For critical applications, an external memory board with error
correction capability could be used.

The parity logic may be disabled by installing jumper J12-B.

For a good discussion of memory error concepts, see "Choose the Right Level
of Memory-Error Protection," Electronic Design magazine, February 18, 1982,
page ss27. ---------- ------

8.3 Watchdog Timer

Whenever an access is made to or from the Multibus, the timing of the access
is controlled by the bus control signals. The Watchdog's function is to
prevent the HK68 board from being stopped by some malfunction of the
Multibus. The following conditions will trigger the Watchdog Timer:

During an access TO the bus: The Multibus is continuously busy.
The addressed device does not exist.
The addressed device does not respond

with XACK.

During an access FROM the bus: The master processor does not release
the control signals following an
access.

Other:

There was an attempt to write into a
memory segment wich was write
protected by the MMU.

An access has been attempted to a
non-existant HMU or DMAC chip.

All cases result in the DOG bit in CIO port A being set. This bit may be
used to generate an interrupt. Except for accesses FROM the bus, the Bus
Error exception is taken if a timeout occurs during an access.

The Watchdog is required to protect against a long request FROM the bus
causing loss of RAM data. The use of the Watchdog is optional for requests
TO the bus since refreshing continues normally during accesses to the bus.

The timer is factory set to approximately one millisecond. It may be disabled
by installing jumper J25.

8.4 Relevant Jumpers (System Errors)

Jumper Function Pos

J12 RAM Speed/Parity J12-A
J12-B

Notes

Fast (no parity)
Slow, Parity Enabled

J25 Watchdog Disable Install to disable Watchdog Timer

9.0 MISCELLANEOUS ON-CARD DEVICES
=================~================

This section describes the characteristics of the user DIP Switches, LED's and
bus control latch.

9.1 Ring Detect Input Port (physical address FECOOO, upper data, read only)

Each serial I/O interface has one RS-232 line connected to this input port.
The function of these bits is normally for a modem Ring Detect signal;
however, they may be used to monitor a different interface signal, if desired.

D15

x

Bit

11
10

9
8

D14 Dl1 D12 011 DI0 D9 08

x x x I RD-D I RD-C I RD-B I RD-A

P5-34 P5-17 P6-34 P6-17

Function Meaning

Modern Ring Detect input,
Modem Ring Detect input,
Modem Ring Detect input,
Modem Ring Detect input,

SIO Port
SIO Port
SIO Port
SIO Port

D
C
B
A

"0" means true
"0" means true
"0" means true
"0" means true

The default condition of these signals (when no cable is attached)
is dependent on jumper J15.

9.2 DIP Switch Input Port (physical addrs FECOOI hex, lower data, read only)

This input port allows the MPU to test the settings of four user DIP switches
and four on-card status signals.

D7 06 D5 D4 D3 D2 Dl DO

--~------------------------
I WESTDG I PRIAM I MPS-1 I MPS-O I DIP-l I OIP-2 I DIP-3 I DIP-4 I

P4-41 P4-1 P8-8 P7-8

Bit Function

7 Western Digital Indicator
6 Priam Winchester Indicator

5 SBX Module 1 present
4 SBX Module 0 present

3 User DIP switch, #1 (MSB)
2 User DIP switch, #2
1 User DIP switch, #3
0 User DIP switch, #4 (LSB)

Meaning

WESTDG PRIAM P4 Cable type
----- ----- -------------

0 0 no cable
0 1 Priam cable
1 0 Western Dig
1 1 SASI cable

"1" = module 1 (P8) present
"1" = module 0 (P7) present

"1" means ON, "0" means OFF

Note that the Ring Detect port and the DIP Switch port can be treated as one
16-bit device at address FECOOO.

9.3 Bus Control Latch (physical address FECOOO hex, upper, write only)

These eight control bits affect the way the HK68 board interacts with the
Multibus.

Bit

7

6

5
4

3
2
1
0

015 014 013

MISC I SPLIT I BC1

Function

Miscel1anous Control

012 011 010 09 08

BCO I BMAP3 I BMAP2 I BMAPI I BMAPO I

Meaning

J16-B, Data Convention
"0" = Motorola
"1" = Intel/Zilog

J16-C, Write Protect
"0" = disabled
"1" = enabled

16 bit word split function See "Bus Control, " section

Bus Control 1 See "Bus Control, II section
Bus Control 0

Bus Map Select, bit 3 See "Bus Control, II section
Bus Map Select, bit 2
Bus Map Select, bit 1
Bus Map Select, bit 0

All control bits are set to zero ("0") at power on, after a system reset,

10

10

10

as a result of executing an MPU 'RESET' instruction or if the Watchdog timer
expires.

9.4 User LED Output Port (physical adrs FECOOI hex, lower data, write only)

There are eight LED's (located near the P3 board edge) whose meanings may
be defined by the program.

07 06 05 04 D3 D2 Dl DO

I LED 7 I LED 6 I LED 5 I LED 4 I LED 3 I LED 2 I LED 1 I LED 0 I

Writing a one ("1") turns the corresponding LED on. A zero ("O")
will turn the LED off. The state of the LED latch is not determined
at power-on and is not changed by a,RESET.

The control port described above and the LED port can be treated as a single
16 bit output device at address FECOOO.

See section 4.3 for information on the four system status LED's.

9.5 Address Summary (Miscellaneous Ports)
--

Port Direction Address Data
------------ --------- ------- ------
Ring Detect Input FECOOO Upper*
DIP Switch Input FECOOI Lower

Bus Cntrl latch Output FECOOO Upper*
User LED Output FECOOl Lower

*If a byte operation is done between a data register and address
FECOOO, the lower 8 bits of the data register will automatically be
transferred on the upper 8 data lines. Therefore, the data should
be in bits 07 to DO of the MPU register. On the other hand, if a
16 bit word is transferred, the upper 8 bits will be used for port
FECOOO and the lower byte for FEF001.

9.6 Relevant Jumpers (Miscellaneous Control)

Jumper Function Pos

JlS RS-232 Status Default JlS-A
JlS-B

J16 Miscellaneous Control
(See MISC bit, above)

J16-A
J16-B

Notes

True
False

Convention = Motorola
Convention = latched 015
("0" = Motorola)

J16-(not A or B) Conv = Zilog
Jl6-C Bus Wr prot = latched 015

("0" = disable)
J16-D Bus Write Protect disabled
J16-(not C or D) Bus WProt enabled

9.7 Built-in Board Serial Number

In order to promote software security, the Heurikon HK68 microcomputer has
a built-in serial number (in a PAL). The intent of this feature is to
allow an operating system or application program to uniquely identify the host
board, configure itself for that board and then refuse to execute properly on
any other host. This will help prevent the unauthorized duplication and
transfer of software between machines. For obvious reasons, this feature is
not detailed in this manual. Consult the factory for more information.

OEM customers who need to know the details concerning this feature will be
asked to sign a non-disclosure agreement.

10.0 BUS CONTROL

The control logic for the Multibus (a.k.a. IEEE-796) allows numerous bus
masters to share the resources on the bus. The control logic for the
Multibus is divided into the following sections:

1. On-card going off (access TO the bus)
2. Off-card coming on (access FROM the bus)
3. Data Convention control (relative byte locations)
4. Bus Interrupts

10.1 Bus Control Signals

The following signals on connector Pl are used by the Multibus arbitration
logic: (refer to section 19.1 for a complete listing of connector pl and P2
signals.)

Pin

pl-13

Pl-1S

Pl-16

Pl-17

Pl-18

Name Function

BCLK/ Bus Clock. An 8 MHz (10 MHz optional) clock
generated by the highest priority master board on
the bus. This signal is used to synchronize all
bus requests and arbitration. The 10 MHz option
requires the addition of crystal oscillator Yl.

BPRN/ Bus Priority In. A low level indicates that no
higher priority master needs the bus.

BPRO/ Bus Prioity Out. A low level indicates that
neither this board nor any higher priority board
needs the bus.

BPRN/ and BPRO/ form a daisy chain for priority resolution.
BPRO/ of each processor board is connected to the BPRN/ pin
on the next lowest priority processor. BPRN/ of the highest
priority board is tied low by installing jumper J20 on that
board.

BUSY/

BREQ/

Bus Busy. A low level indicates that the bus is in
use.

Bus Request. A low level indicates that this board
needs the bus. This signal may be used to implement
a parallel priority arbitration scheme instead of
a daisy chain. BREQ/ for each slot on the bus is
independent of all other BREQ/ lines; i.e., this
signal is not bused.

Bus Control Signals, continued •••

Pin

PI-25

PI-29

PI-31

PI-27

PI-23

PI-xx

Name Function

LOCK/ Bus Lock. This signal is used to ptevent the target
board from releasing the facilities between a pair
of bus accesses. This is necessary to implement
"test and set" types of instructions which use read/
modify/write cycles. If true (low) during an access
FROM the bus, the HK68 board will not release the
on-card bus to the MPU or DMAC between bus cycles,
unless the Watchdog timer expires. During an access
TO the bus, LOCK will be true whenever the MPU/DMAC
Address Strobe (AS) signal is on. Not all Multibus
compatible boards support this function. If not
required, remove jumper J26.

CBRQ/ Common Bus Request. This signal is common for all
processors in a system. A low level indicates that
there is a bus request pending from a processor
which is not already using the bus, regardless of
priority. This signal allows a processor to
maintain control of the bus, whether actively using
the bus or not, until such time as there is another
processor needing the bus. This method reduces the
bus arbitration time in the absence of multiple
bus requests, since the processor last using the bus
can "keep" it until another board actually needs it.

CCLK/ Constant Clock. The highest priority bus master
provides this signal to the bus. It is used by
the other bus masters to arbitrate for use of the
Multibus. The HK68 provides an 8Mhz clock signal.
A IOMHz clock is available as an option.

BHEN/ Byte High Enable. This signal, when true, indicates
that a 16-bit bus operation is in progress. Otherwise,
bus data transfers are 8-bit bytes, on the lower eight
bits.

XACK/ Transfer Acknowledge. At the completion of a bus
operation, the target board (slave) generates this
signal to indicate that the operation has been
completed. Data is valid for a read or has been
written for a write. XACK synchronizes all transfers
over the bus and allows devices of various speeds to
use the bus.

AACK/ Advanced Acknowledge. Obsolete, not used.

Bus Control Signals, continued •••

Pin

Pl-14

P2-19

P2-38

Pl-19
Pl-20

Pl-21
Pl-22

Name

INIT/

PFIN/

RESET/

MRDC/
MWTC/

IORC/
IOWC/

Function

Initialize. This is the hardware reset line. It may
be either an input or an output, as determined by the
setting of jumper J24. When used as an output, the
MPU can activate this signal by executing a 'reset'
instruction.

Power Fail Interrupt. This is a non-maskable
interrupt input to the MPU. It may be used to
signal any function which must have a super-high
priority. See section 8.1

Reset. This input pin may be used to reset only one
board even though there are other boards on the bus.

Memory Read Control.
Memory Write Control.
These two signals control memory reads and writes.
They indicate that the bus address is valid and, for
writes, that the data bus is valid. The master
processor waits for XACK/ before terminating the
command.

I/O Read Control.
I/O Write Control.
The upper 64K of physical address space maps into
bus I/O commands. Reading a byte (or word) generates
IORC/; writing data generates IOWC/. These signals
are outputs only.

Pl-35 to Pl-42 Bus Interrupt lines INTO/ to INT7/. (8 lines)
The bus supports eight interrupts. The HK68 uses

Pl-33 INTA/

Pl-43 to Pl-58
Pl-2~,30,32,34
P2-55 to P2-56

port B of the CIO to monitor these lines and interrupt
the MPU when one is active. The CIO can mask
particular lines to set priority levels. As outputs,
these lines may be used to generate bus interrupts,
again under control of the CIO. They may also be used
as a general purpose parallel I/O port, if desired.
Refer to section 10.6 for details.

Interrupt Acknowledge. Not used.

Bus Address lines ADRO/ to ADRF/.
Bus Address lines ADR10/ to ADR13/.
Bus Address lines ADR13/ to ADR17/.

(16 lines)
(4 lines)
(4 lines)

Pl-59 to Pl-74 Bus Data lines DATO/ to DATF/. (16 lines)
Note: DATF/ is the most significant data bit, as it
should be, to allow communication with a 16 bit I/O
device.

10.2 On-card going off (TO the bus)

When the MPU or DMAC makes a request for bus facilities, the arbitration
logic takes over. If necessary, the requesting board enters a wait state
until the bus is available (but only for the maximum time allowed by the
Watchdog timer). When the requested operation is completed, the bus will be
released according to the state of the two control signals, BCI and BCO.
These signals are under software control via the Bus Control Latch.

BCI

o
o

1

1

BCO

o
1

o

I

Bus release status

Release bus after e~ery operation
Release bus if any other board has a request for

the bus. (Uses CBRQ/)
Release the bus only if a higher priority board

has a request for the bus. (Uses BPRN/)
Never release the bus, once acquired. This state

can be used to capture the bus.

Logical addresses aimed at the bus are mapped by the HMU in the same manner
as on-card memory.

Although I/O requests from the bus are ignored, it is possible to generate an
I/O command TO the bus. The upper 64K physical addresses are mapped to the
bus as I/O commands. For example, to do an "OUTPUT" to a bus device with an
I/O address of 48 (hex), do a 'move byte' instruction specifiying a physical
destination of rF0048. Since a 64K-byte space is reserved for this function,
eight or l6-bit device addressing is supported. In order to guarantee that
all bytes are transferred over the lower 8 data lines, use byte mode
instructions or turn SPLIT on, as discussed in section 10.8.

10.3 Off-card coming on (FROM the bus)

The conventional method of board assignment in the Multibus address space
is to utilize a group of DIP switches or jumpers to specify a base address
for each board. The Heurikon HK68 uses a special bus mapping PAL which
monitors the Multibus for a particular combination of the upper 12 bus
address lines. The PAL may be programmed with up to 16 different address
space areas; and, the MPU can select the particular space to be used. Since
the upper 12 address lines are used, the board may be mapped into any 4K
address block. By ignoring the state of some of the lower address lines,
the size of the address space may be enlarged (up to 16 megabytes). Refer
to the "Bus Map," section 10.4, below.

Once a valid bus request has been detected, an on-card bus request is
generated to the MPU and DMAC. When the current cycle is completed, the
MPU/DMAC will release the on-card bus. The Multibus address and data is
then gated on. The bus address lines are utilized as follows:

Bus Adrs Line Usage
------------- ---
ADR17 (MSB) Input to bus mapping PAL only. Otherwise ignored.
ADR16 " " " " " " "
ADR1S " " " " " " "
ADR14 " " " " " " "
ADRl3 Input to bus mapping PAL and LA19 input to MMU
ADRl2 " " " LAl8
ADR1l " " " LA17
ADR10 " " " LA16
ADRF " " " LA1S
ADRE " " " LAl4
ADRD " " " LA13
ADRC " " " LA12

ADRB On-card physical address All
ADRA " " " A10

ADR1 " " " A1
ADRO (LSB) " " " AO (UDS, LOS)

The MMU can logically map the bus access into any 4K block of phsyica1 RAM
memory. The bus cannot access the on-card I/O devices or ROM. The MMU
usually has control of the upper 16 physical address lines; however, during
an access from the bus, the MMU controls only A12 through A19 (eight lines).
A20 through A23 are forced to point to the RAM memory bank, and AO through
All are controlled directly by the Mu1tibus address lines. Refer to the
MMU section (6.0) for more details.

I/O commands FROM the bus are ignored. The HK68 does not monitor IORC/ or
IOWC/.

Lengthy memory cycles (hundreds of microseconds), originating from the bus,
should be avoided. RAM refreshing is suspended during an access by the bus.
When XACK is received from the HK68 board, the master processor must
terminate the bus request. If the Watchdog Timer is enabled, any long access
from the bus will automatically be aborted. Refer to section 8.3, "Watchdog
Timer." Memory parity is not checked when doing a read from the bus.

10.4 Bus Map

The MPU selects the address space by setting the four Bus Map Control
lines, via the Bus Control Latch, as follows:

BMAP-
3 2 1 0 Space Standard Configuration

----- ---
0 0 0 0 0 Off. Accesses FROM the bus are not allowed.
0 0 0 1 1 One Megabyte of memory starting at address 000000
0 0 1 0 2 " " " " " " " COOOOO
0 0 1 1 3 " " " " " " " 000000
0 1 0 0 4 " " " " " " " EOOOOO
0 1 0 1 5 512 Kilobytes of memory starting at address 000000
0 1 1 0 6 " " " II II " " EOOOOO
0 1 1 1 7 " " " II II II " E80000
1 0 0 0 8 256 Kilobytes of memory starting at address 000000
1 0 0 1 9 " " II " " II " EOOOOO
1 0 1 0 10 II " " II II II II E40000
1 0 1 1 11 II " " " II " " E80000
1 1 0 0 12 128 Kilobytes of memory starting at address 000000
1 1 0 1 13 II II II " II II " EOOOOO
1 1 1 0 14 " II II II " " II E80000
1 1 1 1 15 All access occuring on the bus will be acknowledged

by this card. i • e. , the HK68 board fills the
entire bus space.

Note that the actual configuaration may be changed by custom programming the
bus mapping PAL (chip U68).

10.5 Bus Control Latch (physical address FECOOO hex, upper, write only)

Bit

7
6

5
4

3
2
1
o

015 014 013 012 011 010 09 08

MISC I SPLIT I BC1 BCO I BMAP3 I BMAP2 I BMAP1 I BMAPO I

Function Meaning

Misce11anous Control
16 bit word split function

See jumper J16 description
See "Bus Data Conventions"

section 10.8

Bus Control 1 See section 10.2
Bus Control 0

Bus Map Select, bit 3 See section 10.4
Bus Map Select, bit 2
Bus Map Select, bit 1
Bus Map Select, bit 0

All control bits are set to zero ("0") at power on, after a system reset,
as a result of an MPU 'RESET' instruction being executed, or if the Watchdog
timer expires.

10.6 Bus Interrupts

The eight Multibus interrupts are monitored and controlled by the CIO chip.
By programming the CIO, certain combinations of the bus interrupt lines may
be monitored, and a vectored interrupt to the MPU can be generated when the
desired state is realized. Also, by selectively programming the CIO lines
as outputs, bus interrupts may be generated under software control.

The "B" CIO input port (physical address FEF603) is used for this function.
The bit assignments are:

D7 D6 D5 D4 D3 D2 Dl DO

lINT 7 lINT 6 lINT 5 lINT 4 lINT 3 lINT 2 lINT 1 lINT 0 I
Pl-36 Pl-35 Pl-38 Pl-37 Pl-40 Pl-39 Pl-42 Pl-41

A "0" indicates an active (true) interrupt condition if the CIO is
not inverting the inputs. (May be changed to "1" by initializing
the CIO to invert these inputs.)

Refer to section 11 for information on programming the CIO.

10.7 Write Protection

There are two ways to protect the on-card RAM from being modified by the bus.

a. When the MMU is used for address conversions, it may be programmed to
provide write protection for the segments assigned to the bus (function
code 15). If the MMU detects a write violation, memory contents will not
be altered. The MMU will not complete the requested operation and no XACK
will be issued to the bus. The Watchdog timer will terminate the request.
The MMU can be programmed to generate an interrupt following the aborted
access.

b. -It is also possible to disable the MWTC signal signal on the Multibus to
prevent write requests from even activating the on-card bus arbitration
logic. In this case, if a write is attempted by the bus, the write
command is ignored and no XACK is issued to the bus. The on-card
facilities will not be disturbed by the request. See section 10.5
("MISC" bit) and jumper J16 in section 10.9.

Note that with either method, the Multibus request is NOT acknowledged. The
processor board making the request must eventually timeout in order to free
the bus facilities for another access.

10.8 Bus Data Conventions

The Motorola data convention specifies that higher order bytes of a word
are stored in lower address cells. This is opposite to the Intel/Zilog
convention. The following chart showes how the two methods differ:

Data to be stored (two 16-bit words): 1234 5678 (hex)

Memory Address
Motorola
Contents

Intel/ Zilog
Contents

(data bit) 15 8 7 o 15 8 7 o

000000 I 12 I 34 I I 34 I 12 I

000002 I 56 I 78 I I 78 I 56 I

This can create some problems in systems using both types of processors.
Also, most 16 bit processor boards require all memory boards to be 16
bits wide if executable code is stored there. The Heurikon HK68 has two
bus control bits which may be used to deal with these problems. (See
"Bus Control Latch," section 10.5 above, for programming information.)

Control Bit

SPLIT

CONVENTION

Multibus Signal
BHEN/ AORO/
----- -----
true false
false false
false true

Function

If True ("1") all 16 bit accesses to the bus are
split into two BYTE operations. A 16 bit word
is divided into two bytes (for a write) or assembled
into a word from two bytes (for a read) using an
on-card byte swap buffer. This allows the HK68 board
to function with 8-bit memory boards without using
the byte mode for the instructions. The HK68 can
even EXECUTE out of an eight bit memory board.

If low, the Motorola convention is used for all byte
operations on the bus. Higher order bytes are stored
in lower addresses. If high, the Zilog convention is
used for byte transfers. This signal also controls
the translation of bus address bit ADRO into Upper
and Lower Data Strobes (UDS, LDS) during a byte
access FROM the bus. If low, a byte access from the
bus with ADRO true operates on the lower half of
a word (Motorola convention).

Motorola Convention Zilog Convention
Byte UOS/ LOS/ UDS/ LOS/

----- ----- ----- -----
both true true true true
even true false false true
odd false true true false

The SPLIT bit effectively turns all l6-bit requests to the bus into a pair
of byte operations. CONVENTION operates to invert address line AORO.

Signal

SPLIT

CONVENTION

Access FROM the bus

no effect

Inverts ADRO if BHEN
false (byte mode)

Access TO the bus

Causes all requests to be
byte-sized and on the lower
bus data lines.

Inverts ADRO if SPLIT on or
if byte mode instruction

BHEN (Byte High Enable) is a Multibus signal which, if true,
indicates that the operation is for l6-bits and will use the upper
eight data lines.

All MPU/DMAC generated Multibus byte operations (as well as word accesses
while SPLIT is on) are conducted on the lower eight Multibus data lines, with
DAT7/ being the most significant bit. For word transfers, DATF/ is the most
significant bit, as per the Multibus specification. Caution: Some of our
competition always puts the MSB on DAT7/, even for 16-bit transfers!

10.9 Relevant Jumpers (Bus Control)

Jumper Function Pos Notes

J15 RS-232 Status Default J15-A
J15-B

True
False

JI6 Miscellaneous Control

J18 Bus Clock Rate Select

J19 Bus CCLK Enable

J20 Bus BPRN Enable

J2l Bus BCLK Enable

J24 Bus INIT/ Select
(Pl-14)

J26 Bus LOCK/ Enable

J16-A Convention = Motorola
J16-B Convention = latched 015

("0" = Motorola)
J16-(not A or B) Conv = zilog
J16-C Bus Wr Prot = latched 015

("0" = disable)
J16-D Bus Write Protect disabled
J16-(not C or D) Bus WProt enabled

J18-A 8 MHz
J18-B 10 MHz (option)

Install on highest priority board

Install on highest priority board

Install on highest priority board

J24-A INIT/ = on-card RESET/ (out)
J24-B INIT/ = AuxRESET/ (Input)

Install to enable Bus LOCK fuction

10.10 Multibus Compliance Levels

Master: 016 M24 116 VO L
Slave: 016 M24 VO L

For PI and P2 connector pinouts, refer to section 19, "Multibus Interface."

11.0 CIO USAGE
===============

The on-card CIO device performs a variety of· functions. In addition to
the three 16-bit timers which may be used to generate interrupts or count
events, the CIO has numerous parallel I/O bits which control functions
such as, SBX module options and Winchester port interrupts~

The following tables show some of the particulars concerning the CIO.
Refer to later pages for more details and for programming information.

Port

A
B
C

Initialize as

Bit Mode
Bit Mode

Function

SBX, Tape, Wine status (inputs)
Multibus Interrupts (input and output)
SBX option controls

11.1 Port A Bit Definition (physical address FEF605 hex, lower data, read)

All bits should be programmed as non-inverting inputs. The one's catcher
should be used for the Watchdog Timer input (bit 0) because the timer
is automatically reset following a time-out.

07 06 05 04 03 02 D1 DO

I XINTO I XINT1 I ARDY I AEXC I SA-IO I SA-CD I WINTR I DOG

P7-S

Bit

7
6

5
4

3
2
1

o

PS-S P3-2S P3-30

Function

SBX Module Interrupt, P7-S
SBX Module Interrupt, PS-8

P3-2S (Archive Tape Ready)
P3-30 (Archive Exception)

P4-50 (SASI Wine I/O)
P4-46 (SASI Wine C/D)
P4-36 (Wine Interrupt)

Watchdog Timer

p4-50 P4-46 P4-36

Meaning (all bits are inputs)

SBX module dependent (See JS)
SBX module dependent (See JS)

"0" means true*
"0" means true*

Depends on controller
Depends on controller
Depends on controller

"1" means the timer expired*
(uses the CIO l's catcher)

*assumes the CIO has NOT been programmed to invert inputs.

11.2 Port B Bit Definition (physical adrs FEF603 hex, lower data, read/write)

The eight Mu1tibus interrupts are monitored and controlled by port B of the
CIO chip. By programming the CIO, certain combinations of the bus interrupt
lines may be monitored, and a vectored interrupt to the MPU can be generated
when the desired state is realized. Also, by selectively programming the CIO
lines as outputs, bus interrupts may be generated under software control.

D7 D6 05 04 03 D2 01 DO

lINT 7 lINT 6 lINT 5 lINT 4 lINT 3 lINT 2 lINT 1 lINT 0 I
Pl-36 Pl-35 Pl-38 Pl-37 Pl-40 Pl-39 Pl-42 Pl-41

A "0" indicates an active (true) interrupt condition if the CIO is
not inverting the inputs. (May be changed to "1" by initializing
the CIO to invert these inputs.) Port B bits may also be programmed
as external I/O lines for counter/timer channels 1 & 2. This feature
could be used to count rapid external events or indicate count
completion.

11.3 Port C Bit Definition (physical adrs FEF601 hex, lower data, read/write)

This bi-directiona1 port is used to control the SBX module option lines.
The exact function of these bits is determined by the particular SBX module
used. The CIO allows bit addressable writes of each of these control bits
by using a mask nibble in the upper four data bits; and they may be
independently programmed as inputs or outputs. Refer to the CIO manual for
details (appendix E).

D7 D6 D5 D4 03 02 01 DO

I OPT11 I OPTIO I OPTOl I OPTOO I
P8-28 P8-30 P7-28 P7-30

Bit Fucntion

3 Controls SBX connector P8 pin 28, Option 1
2 Controls SBX connector P8 pin 30, Option 0
1 Controls SBX connector P7 pin 28, Option 1
0 Controls SBX connector P7 pin 30, Option 0

Refer to section 14 for more details on the SBX interface.

11.4 Counter/Timers

There are three independent, 16-bit counter/timers in the CIO. Each may be
used as a counter in conjunction with the port Band C lines, which are
connected to the Multibus interrupt and the SBX option lines, respectively;
or as timers to implement real-time clocks for programmed delays. For long
delays, timers 1 and 2 may be internally linked together to form a 32-bit
counter chain. When programmed as timers, the following table may be used
to determine the time constant value for a particular interrupt rate.

--Desired Frequency/Rate-- ------Time Constant Values------

Frequency Interrupt Timer --Linked Timer--
(Hz) Rate Value Timerl Timer 2

--------- --------- ------ ------ -------
2,000 0.50 msec 1,000
1,000 1.00 msec 2,000

500 2.00 msec 4,000
200 5.00 msec 10,000
100 10.00 msec 20,000

60 16.67 msec 33,333 (approx)

50 20.00 msec 40,000 or 2,000 20
20 50.00 msec 2,000 50
10 100.0 msec 2,000 100

5 200.0 msec 2,000 200
2 500.0 msec 2,000 500

1.0 1.0 second 2,000 1,000
0.5 2.0 second 2,000 2,000
0.2 5.0 second 2,000 5,000
0.1 10.0 sec 2,000 10,000

30.0 sec 2,000 30,000

1.0 minute 20,000 6,000

When the timer is clocked internally, the count rate is 2 Mhz (500 nanoseconds)
per count. The HK68 board uses a Motorola 16.000 MHz clock oscillator as the
system time base. The frequency stability specification is +/- 0.05% (includes
calibration tolerance, stability versus input voltage, stability versus load,
aging and normal environment). If you are using the 16 MHz clock as the eIO
timebase, the maximum accumulative timing error will be 43 seconds per day.
However, since the day-to-day stability will be high, it is possible for the
operating system to correct for the frequecny error in the software time-of
day routines to yield an accurate time clock.

11.5 Register Summary (CIO)

Register

Port C, Data
Port B, Data
Port A, Data
Control Regs

Physical
Address

FEF601
FEF603
FEF605
FEF607

Function

SBX options (4)
Multibus Interrupts (8)
SBX Ints, Winc & Tape Status
CIO Configuration & Control

11.6 CIO Initialization sequence

The following table shows a typical initialization sequence for the CIO:

Data

x

00
x
00
01
00

00,02

20,00
22,00
23,FF
24,01

28,00
2A,00
2B,FF
2C,01

05,00
06,FF
07,00

lC,80
l6,9C
17,40

01,94

Register Address

FEF607 (read)

..
"
"
..
"
"
"
"
II ..
" ..
"
" ..
"
"
"

"

(write)
(read)
(write)

"
"

"

"
"
"
"

"
"
"
"

"
II

"
II

"
II

"

Function

Read from CIO control reg to insure
we are pointing to reg 0

Cmd Un-reset, internal state unknown
CIO now un-reset and in state 0
CIO ready to write reg 0
Reset command
Force CIO to state 0

Turn off reset, right justify

Port A, Bit control mode
Port A, All paths non-inverting
Port A, All inputs
Port A, lis catcher on DO (Watchdog)

Port B, Bit control mode
Port B, All paths non-inverting
Port B, All inputs
Port B, normal inputs (bus ints)

Port C, non-inverting
Port C, all inputs (SBX options)
Port C, normal inputs

Timer 1, continuous, internal control
Timer 1, Time constant, H (20.0 msec)
Timer 1, Time constant, L (20.0 msec)

Reg 1, enable ports A, B, C

The notation "00,02" (etc) means the values 00 (hex) and 02 should be
sent to the specified CIO port. The first byte selects the internal CIO
register; the second byte is the control data. The above sequence only
initializes ports A, B, C and one timer. The specific directions of some of
the PIO lines (e.g. SBX options), and interrupts need to be set by the user.
An active low signal can be inverted, so that a "1" is read from the data
port when the signal is true, by initializing the port to invert that
particular bit. Refer to section 4.2 concerning CIO interrupt vectors.

11.7 Relevant Jumpers (CIO Usage)

Jumper Function Pos

J8 SBX Interrupt Config J8-A
J8-B
J8-C
J8-0

Notes

SBX P7 pin 12 (INT1) to XINTO
SBX P7 pin 12 (INT1) to XINTl
SBX P8 pin 12 (INT1) to XINTl
SBX P8 pin 12 (INT1) to XINTO

Note: P7-l4 and P8-l4 connect directly to CIO port A bits 7 & 6,
respectively, regardless of J8 settings. See section 14.3.

11.8 CIO Programming Example

The two routines that make up a CIO interrupt test are shown below. They
set up counter/timer channel 3 to generate 60 interrupts a second. The
interrupt service routine divides this by 60 and generates one blink on the
user LEDs every second. Once started, the process is kept alive by
interrupts, while the main body of the routine returns to the monitor.

The routines come in two parts: a IC I section and a machine code section.
First, the IC' code:

7*---.-.------------

*
*

CIO test program has channel 3 generate interrupts and report them on
the leds. It can be used to time the cio ticks.

*/

#define CIOPORT OxFEF60l
#define CIOCTRL CIOPORT + Ox06

#define LEDS OxFECOOl

#define CIO VECTOR Ox60

#define out (port, data) *(char *)
#define in(port) *(char *) (port)

static unsigned short int tickcnt
static unsigned short int seccnt
static unsigned short int mincnt
static unsigned char ledc = 0;

main ()
{

(port)

= 0;
= 0;
= 0;

tickcnt = seccnt = mincnt = ledc = 0;
ini tvec () ;
ini tcio () ;

}

/*
* ini tvec ()
*

= data

* Initializes the interrupt vector to point to the assembly language
* routine interrupt().
*/

in i tvec ()
{

int interrupt();

}
*(int (**) (» (CIO_VECTOR« 2) = interrupt;

/*
* ini tcio ()
* * Initializes the CIO such that channel 3 will generate 60 interrupts
* per second.
*/

initcio()
{

register int cnt;
register char c;
register char *p;
static unsigned char ciotable[] = {

OxOO, Ox86
OxIE, Ox80,
OxIA, Ox82,
OxIB, Ox35,
Ox04, Ox60,
OxOC, Ox20,
OxOC, OxC6,
OxOI, OxIO,

/* Time Constant, H */
/* Time Constant, L */

}

/*

} ;

p = CIOCTRL;
c = in(p);
out (p, 0);
c = in(p);
out(p, OxOO);
out(p, OxOI);
out(p, OxOO);
for (cnt = 0; cnt < sizeof(ciotable); cnt++)

out(p, ciotable[cnt]);

* ciointr ()
* * This is the routine that is invoked during the interrupt service
* routine.
*/

cio intr ()
{

tickcnt++;
if (tickcnt >= 60) {

tickcnt = 0;
ledc = Ox03;
seccnt++;
if (seccnt >= 60) {

seccnt = 0;
mincnt++;

}
ledc = (ledc & OxOF) + (mincnt « 4);
out(LEDS, -ledc);

}

}
out (CIOCTRL, OxOA);
out(CIOCTRL, Ox24);

---------------------- . .-,--_._--_._--

Now, here is the machine code section:

_interrupt:

.text

.even

movem.l
jsr
movem.l
rte

.globl

------------------'------

dO-d7/aO-a6, -(a7)
ciointr

(a7)+, dO-d7/aO-a6

_interrupt

12.0 SERIAL I/O
================

There are four RS-232C serial I/O ports on the HK68 board. One of the ports
may optionally be configured for RS-422 operation. Each port has a
separate baud rate generator and can operate in asynchronous or synchronous
modes.

12.1 RS-232 Pinouts

Data transmission conventions are with respect to the device. The HK68 board
appears as a "Data Set." The connector pinouts are as follows:

Pin "D" Pin
----- -------

Port A x 1
P6- 1 14
P6- 2 2
p6- 3 15
P6- 4 3
P6- 5 16
P6- 6 4
P6- 7 17
P6- 8 5
P6- 9 18
P6-l0 6
P6-l1 19
P6-12 7
P6-13 20
P6-l4 8
P6-l5 21
P6-l6 9
P6-l7 22

x 10-13
x 23-25

Port B x 1
P6-18 14
P6-19 2
P6-20 15
P6-2l 3
P6-22 16
P6-23 4
P6-24 17
P6-25 5
P6-26 18
P6-27 6
P6-28 19
P6-29 7
P6-30 20
P6-31 8
P6-32 21
P6-33 9
P6-34 22

x 10-13
x 23-25

RS-232 Function

Protective ground.
x
Tx Data
Tx Clock
Rcv Data
x

*Request To Send
Rcv Clock
Clear To Send
x
Data Set Ready
x
Signal Ground

*Data Terminal Ready
x
x
x

*Ring Detect
x
x

Protective ground.
x
Tx Data
Tx Clock
Rcv Data
x

*Request To Send
Rcv Clock
Clear To Send
(+5 via J3)
Data Set Ready
x
Signal Ground

*Data Terminal Ready
x
(+12 via Jl)
(-12 via J2)

*Ring Detect
x
x

(di rection)

Not connected on the HK68

(from device)
(from device)
(to device)

(from device)
(to device)
(to device)

(to device)

(from device)

(from device)

Not connected on the HK68

(from device)
(from device)
(to device)

(from device)
(to device)
(to device)

(to device)

(from device)

(from device)

Port C

Port D

Pin

x
Ps- 1
Ps- 2
Ps- 3
Ps- 4
Ps- 5
Ps- 6
Ps- 7
Ps- 8
Ps- 9
Ps-lO
Ps-ll
Ps-12
Ps-13
Ps-14
Ps-ls
Ps-16
Ps-17

x
x

x
Ps-18
Ps-19
Ps-20
Ps-2l
P5-22
Ps-23
P5-24
P5-25
P5-26
Ps-27
Ps-28
Ps-29
P5-30
Ps-31
P5-32
Ps-33
Ps-34

x
x

"D" Pin

1
14

2
15

3
16

4
17

5
18

6
19

7
20

8
21

9
22

10-13
23-25

1
14

2
15

3
16

4
17

5
18

6
19

7
20

8
21

9
22

10-13
23-25

RS-232 Function

Protective ground.
x
Tx Data
Tx Clock
Rcv Data
x

*Request To Send
Rcv Clock
Clear To Send
x
Data Set Ready
x
Signal Ground

*Data Terminal Ready
x
x
x

*Ring Detect
x
x

Protective ground.
x
Tx Data
Tx Clock
Rcv Data
x

*Request To Send
Rcv Clock
Clear To Send
(+5 via J7)
Data Set Ready
x
Signal Ground

*Data Terminal Ready
x
(+12 via J6)
(-12 via J5)

*Ring Detect
x
x

(d irection)

Not connected on the HK68

(from device)
(from device)
(to device)

(from device)
(to device)
(to device)

(to device)

(from device)

(from device)

Not connected on the HK68

(from device)
(from device)
(to device)

(from device)
(to device)
(to device)

(to device)

(from device)

(from device)

Note that the interconnect cables from Ps and P6 are split in such a manner
that the "D" connector pinouts are correct for RS-232C conventions. Not all
pin. on the "D" connectors are used.

Signals indicated with "*" have a default pullup resistor, controlled by Jls.

Refer to "Miscellaneous On-card Devices," section 9.1, for details on the
Ring Detect input port.

12.2 Signal Naming Conventions (RS-232)

Since the RS-232 ports are configured as "data sets," the naming convention
for the interface signals may be confusing. The interface signal names are
with respect to the terminal device attached to the port while the SCC pins
are with respect to the SCC as if it, too, is a terminal device. Thus all
signal pairs, e.g., "RTS" & "CTS," get "reversed" between the I/F connector
and the SCC chip. For example, "Transmit Data," P6-2, is the data
transmitted from the device to the HK68 board; the data appears at the SCC
receiver as "Received Data." For the same reason, the "RTS" and "DTR"
interface signals appear as the "CTS" and "DSR" bits in the SCC, respectively.
If you weren't confused before, any normal person should be by now. Study the
chart below and see if that helps.

SCC Signal I/F Signal
Name (P5 & P6) Direction

---------- ---------- -----------
Tx Data Rcv Data to device
Rcv Data Tx Data from device

Tx Clock Rcv Clock to device
Rcv Clock Tx Clock from device

RTS CTS to device
CTS RTS from device

DTR DSR to device
DCD DTR from device

The SCC was designed to look like a "data terminal" device. Using it as
a "data set" creates this nomenclature problem. Of couse, if you connect the
HK68 board to a modem ("data set"), then the SCC signal names are correct,
however, a cable adapter is needed to properly connect to the modem. (Three
pairs of signals must be reversed.)

SCC P5 & P6 "D" Pin # "D" Pin #
Signal Pin #s at HK68 at modem
------- ------- ---------- ---------

x x 1 1

Rcv Data 2 (or 19) 2 3 \
Tx Data 4 (or 21) 3 2

CTS 6 (or 23) 4 5
RTS 8 (or 25) 5 4 > Reversals

DTR 10 (or 27) 6 20 J DSR 13 (or 30) 20 6

Ring Det 17 (or 34) 22 22
Sig Gnd 12 (or 29) 7 7

12.3 Connector Conventions

The EIA RS-232-C standard says the following concerning the mechanical
interface between data communications equipment (section 3.1):

"The female connector shall be associated with ••• the data
communications equipment... An extension cable with a male
connector shall be provided with the data terminal equipment •••
When additional functions are provided in a separate unit
inserted between the data terminal equipment and the data
communications equipment, the female connector ••• shall be
associated with the side of this unit which interfaces with
the data terminal equipment while the extension cable with
the male connector shall be provided on the side which
interfaces with the data communications equipment."

substituting "modem" for "data communications equipment" and "terminal" for
"data terminal equipment" leaves us with the impression that the modem should
have a FEMALE connector and the terminal should have a MALE. The Heurikon
HK68 microcomputer interface cables are designed with female liD" connectors,
because the serial I/O ports are configured as data sets (modems). Terminal
manufacturers typically have a female connector also, despite the fact that
they are terminals, not modems. Thus, the extension cable used to run
between a terminal and the HK68 (or a modem) will have male connectors at
both ends.

If you do any work with RS-232 communications, you'll end up with zillions
of cable adapters. Double males, double females, double males and females
with reversal, cables with males and females at both ends, you name it!
We'll be happy to help make special cables to fit your needs.

I!
0

c.~j(.
~ (op. po:,)
~

c:.~-~I'5 \"\
c,AA1) t:.CXb£.

c:.oN.t.l~"CI(t..

0
~

I

0 eoN.l)(JC1'QP. I

0
~'!)

" IZ.OO

17
Ie

~EOR(\<'o~ C:O~QAATION

MAt>~ ~ WI~N.~IN

"It.l I O~EI" 0

-I
r7 wloe

PIN.~ IO-I!) 1 OPEN.
PIN.~ e~2S

I'IN. 1 OPEN.

11 WIDE

PlNo 1
1'1"'14-

""to /'I. (~c.)
e-& PI'"
i"\I'4~'(

~D" CD"'NEc.'1QfI..
~-e."5~

(F'EMAtL)

PlIH

"N.14 ""to f> (op.o)
eo:. PIN.
AN'5oCL,(

~b" CONt-le;C.TQR

~-c:'5~

(FeMAL..£.)

12.4 RS-422 Option

Serial port A may be optionally configured as an RS-422/449 port for reliable
data communications at high speeds over long distances. The interface uses
differential data transmission to permit data rates of up to 1 megabit over
400 feet or 100,000 bits per second over 4000 feet.

The following chips and components should be installed according to the
desired configuration:

Port A

Component

Rl & R2
R3 & R4

Pin

U2
U3

U4
U7
U9

x
x

P6- 1
P6- 2
P6- 3
P6- 4
P6- S
P6- 6
P6- 7
P6- 8
P6- 9
P6-10
P6-11
P6-l2
P6-13

x
x
x
x

P6-14
P6-lS
P6-16
P6-17

x
x

"D" Pin

1-3
20,21

22
4

23
S

24
6

25
7

26
8

27
x
9

28
10
29
11
30
12
31
13

32-37
14-19

RS-232C

(remove)
"

"
"

9636A
9636A
75173

RS-422/449

Terminator for Data/Control to device
Terminator for Data/Control from device

75174 Data/Control driver
75173 Data/Control receiver (use U9)

(remove)
"
"

RS-422/449 Function

SD+ Send Data
SD- Send Data
ST+ Send Timing
ST- Send Timing
RD+ Rcv Data
RD- Rcv Data
RS+ Request to Send
RS- Request to Send
RT+ Rcv Timing
RT- Rcv Timing
CS+ Clear to Send
Ground
CS- Clear to Send

TR+ Terminal Ready
TR- Terminal Ready
RR+ Receiver Ready
RR- Receiver Ready

(direction)

(to device)
(to deivce)
(to device)
(to device)
(from device)
(from device)
(to device)
(to device)
(from device)
(from device)
(from device)

(from device)

(to device)
(to device)
(from device)
(from device)

Port B: P6-18 through P6-34, same as RS-232, see section 12.1, above.

All signals to the device are enabled by jumper J4, which may be set to either
allow control via "DTR" from the SCC or to be always enabled. The signal
names for the RS-422 port are consistant with the SCC I/O bits, unlike the
RS-232 interface. The RS-422 interface is wired as a "data terminal."

C4>~
~

A~,{

e..oc, -~,~ 1"\
~~~ec.~ 

e 

Ie.. 

I' 

le.oo" 

HEORll<O~ CORPORATION 
MAOIWt-l , WI~M$IN 

R'::>4e:e 

PIN I 
PI'" 14 

"!>€RIA(... INTERfii!lGE. CA6L£ 

-:'10 A. (R~4c:e) 
2>1 PIN 
A.~ 

+ O· c.ot-INEC.TOR. 

~-l"~ 
(FE:I'W-E) 

'510 e> <R~-e~t.) 
l:"5 PIN 
A~'(" 

--0" COKt-lEC.TQR 
e..o")-e'5"!> 
(FE~) 

o-.:rf:.: 7 -ZD-et 



12.5 see Initialization Sequence 

The following table shows a typical initialization sequence for the see: 

Data 

Port A 00 
09,eO 

Port B 

Port e 

Port D 

04,4e 
05,EA 
03,El 
01,00 
OB,56 
Oe,baudL 
OD,baudH 
OE,03 

00 

00 

00 

Register Address 

FEF403 (wr i te) 
If If 

" 
" 
" 
" 
If 

If 

" 
" 

" 
" 
If 

" 
" 
If 

If 

" 
FEF401 (write) 

FEF503 (write) 

FEF501 (write) 

Function 

--------------------------~---------
Reset see register counter 
Force reset (do for ports A & e only) 

Async mode, x16 clock, 2 stop bits tx 
Tx: RTS, Enable, 8 data bits 
Rcv: Enable, 8 data bits 
No Int, Update status 
No Xtal, Tx & Rcv clk internal,BR out 
Set Low half of baud rate constant 
Set high half of baud rate constant 
Null, BR enable 

Reset ••• 
(repeat above sequence) 

Reset ••• 
(repeat above sequence) 

Reset •• 
(repeat above sequence) 

Note: the notation "09,eO" (etc) means the values 09 (hex) and eo should be 
sent to the specified sec port. The first byte selects the internal see 
register; the second byte is the control data. The above sequence only 
initializes the ports for standard asynchronous I/O without interrupts. 
The 'baudL' and 'baudH' values refer to the low and high halves of the baud 
rate constant which may be determined from the "Baud Rate Table," section 
12.7, below. 

For information concerning see interrupt vectors, refer to section 4.2. 

12.6 Port Address Summary 

Register 

eontrol 
Data 

-----------Physical Address Value-----------
Port A Port B Port e Port D 

FEF403 
FEF407 

FEF401 
FEF405 

FEF503 
FEF507 

FEF501 
FEF505 



12.7 Baud Rate Constants 

If the internal sec baud rate generator logic has been selected, the actual 
baud rate must be specified during the SCC initialization sequence by loading 
a 16-bit time constant value into each generator. The following table gives 
the values to use for some common baud rates. Other rates may be generated 
by applying the formula given below. 

The time 
(The SCC 

Baud Rate Gen Time Constant (Dec imal) 
Baud Rate xl clock rate x16 clock rate 
--------- ------------- --------------

50 39,998 2,498 
75 26,665 1,665 

110 18,180 1,134 
134.5 14,868 927 
150 13,331 831 
300 6,665 415 
600 3,331 206 

1200 1,665 102 
1800 1,109 67 
2400 831 50 
3600 554 33 
4800 415 24 
7200 276 15 
9600 206 11 

19200 102 5 

constant values listed above are computed as follows: 
clock is 4.0 MHz.) 

TC = Integer { [ 4,000,000 / ( 2 * BaudRate * Factor) ] - 1.5 } 
where "Factor" is either 1 or 16. 

There is a tradeoff to consider when selecting the factor (xl or x16). 
When using the xl mode, the baud rate generator is using a larger time 
constant value and thus the resolution of the counter is greater. This 
results in a smaller error between the desired baud rate frequency and 
the actual frequency. (The error occurs because the digital counter cannot 
be set with a fractional value, only the nearest integer.) This problem 
is most prevalent for the higher baud rates. On the other hand, the xl6 
mode will obtain better results with asynchronous protocols because the 
receiver can search for the middle of the start bit. (In fact, the xl mode 
will probably produce frequent receiver errors.) 

The maximum SCC data speed is 1 megabit per second, using the xl clock and 
synchronous mode. For asynchronous transmission, the maximum practical rate 
using the x16 clock is 62,500 baud. 



12.8 Sample I/O Routines 

These two subroutines show a typical sequence for character input and output, 
using machine code, for character I/O over serial port A. Nothing fancy, such 
as interrupts, is handled here. 

Lable Ope ode Operand 
------- ------- ----------------------
SACNTRL = OxFEF403 
SADATA = OxFEF407 

INPUT: btst :/fO,SACNTRL 
beq INPUT 

move.b SADATA,dO 
rts 

(DO has byte to output) 
OUTPUT: btst :/f2,SACNTRL 

bne OUTPUT 

move.b dO,SADATA 
rts 

_. __ ._._._---

Comments 

*Control port address 
*Data port address 

*Test Data Ready bit of SCC 
*Wait for ready 

*Read byte (port A) to reg DO 
*Return 

*Test Transmitter Ready 
*Wait for ready 

*Output Byte to Port A 
*Return 

The next software example is written in 'c' and shows how the SCC ports may be 
initialized and used for asynchronous character I/O. 

--~~--------

:/fdefine NOT READY 0 /* for returns to BDOS */ 
:/fdefine READY -NOTREADY 

:/fdefine PORTAC OxFEF403 /* define I/O port addresses */ 
:/fdefine PORTAD OxFEF407 
:/fdefine PORTBC OxFEF401 
:/fdefine PORTBD OxFEF40S 
#define PORTCC OxFEFS03 
#define PORTCD OxFEFS07 
#define PORTDC OxFEFSOl 
#define PORTDD OxFEFSOS 

:/fdefine Rev READY OxOl 
#define TxREADY Ox04 
:/fdefine BAUDRATE 9600 /* default baudrate for all SCC ports */ 

char *pc[] ={ 
PORTAC, PORTBC, PORTCC, PORTDC 

} ; 

char *pd[] ={ 
PORTAD, PORTBD, PORTCD, PORTDD 

(continued ••• ) 



sccini t () 
{ 

char x, i; 
static char scctab[] ={ 

OxOO, Ox04, Ox4c, 
Ox03, Oxel, 
OxOl, OxOO, 
OxOe, Ox03 

OxOS, Oxea, 
Ox09, OxOO, 
OxOb, OxS6, 

} 

} ; 

for (x=Oi x<4; x++) ( 

} 

for(i=O; i<sizeof(scctab); i++) 
*pc[x] = scctab[i]; 

setbaud(x,BAUDRATE); 

setbaud(port,rate) 
char port; 
int rate; 
{ 

int value; 
*pc[port] = OxOc; 
*pc[port] = value = «4000000/(rate«4»-3)/2; 
*pc[port] = OxOd; 
*pc[port] = value»8; 
return; 

} 

instat(device) 
char device; 
{ 

return ( (*pc[device] & RcvREADY) ? READY: NOTREADY ); 
} 

char portin(device) 
char device; 
{ 

} 

while (instat(device) == NOTREADY) ; 
return (*pd[device] & Ox7f); 

outstat(device) 
char device; 
{ 

return( (*pc[device] & TxREADY) ? READY 
} 

portout(device, ch) 
char device, chi 
{ 

} 

while(outstat(device) == NOTREADY); 
return(*pd[device] = ch); 

NOTREADY ); 

------_._------ ------_._._----------------------



12.9 Relevant Jumpers (Serial I/O) 

Jumper Function Pos Notes 
------ ---------------------- ----- -----------------------------

Jl +12 power to P6 
J2 -12 power to P6 
J3 +5 power to P6 

J4 RS-422 Control J4-A Enable RS-422 outputs 
J4-B Control via Port A DTR signal 

J5 -12 power to P5 
J6 +12 power to P5 
J7 +5 power to P5 

J15 RS-232 Status Default J15-A True 
J15-B False 



13.0 PARALLEL I/O PORTS 
======================== 

The HK68 has two 8-bit parallel I/O ports (P3 and P4), which may be used 
as general purpose ports. They are intended to be used for Winchester 
and Streamer Tape I/O. Alternate functions are: use as printer ports or, 
if both ports are combined, as a 16-bit I/O port for inter-processor 
communications. 

Each port consists of a data latch/buffer and a control PAL. The PALs 
are programmed for the functions decribed below. (Custom PALs may be 
created for special applications.) 

13.1 Streamer Tape I/O Port (P3) 

This 8-bit parallel port is designed for direct connection to an Archive 
Corporation streaming tape drive. This port is also suitable for use as 
a Centronics compatible printer interface. 

Archive Streamer Centronics Printer 
P3 Pin Signal Arch Pin Signal Cent Pin ("D") 
------ ------ -------- ------ --------
P3- 2 HB7/ 12 D7 9 
P3- 4 HB6/ 14 D6 8 
P3- 6 HBS/ 16 DS 7 
P3- 8 HB4/ 18 D4 6 
P3-10 HB3/ 20 D3 S 
P3-12 HB2/ 22 D2 4 
P3-14 HBI/ 24 Dl 3 
P3-16 HBO/ 26 DO 2 

P3-l8 ONL/ 28 x 
P3-20 REQ/ 30 x 
P3-22 RESET/ 32 RESET/ 31 
P3-24 XFER/ 34 STROBE/ 1 
P3-26 ACK/ 36 x 
P3-28* READY/ 38 BUSY 11 
P3-30* EXC/ 40 SLCT 13 
P3-32 DIRC/ 42 x 
P3-34 n/c 44 x 

P3-odd Gnd odd Gnd 19-30 

*P3-28 & 30 signals appear on CIO port A DS & D4, respectively. (See "CIO 
Usage", section 11.) 

The connection to a Centronics device is made via a "crazy cable" which 
contains an in-line p.c.b to correctly adjust the pinouts. 

The data bus interface is inverting. A logical "1" from the MPU translates to 
a low level on the interface data lines. Data sent to a Centronics-type 
device should be inverted prior to being output (see software example, below.) 



(pe~ 

P-'!) 
A~e:< 

<oot7 -~~C~t"I 
CAA.O ~~ c:::oNNe:c:.~ 

o 0 

~~/------------u 

g o 0 

PIN~ I - 10 OPEN 

r-----------------------------~~ 
( 

~.I 
~.Oo·, ------------------------------------------~-. 

A,,",c:.~(vE. ORIVE:. 
~~ 

~-"OI.,t"I 
~ e:~e: <'oH~c:."'OR 

HEURIK..0N CORPORKr\ON 
MAOISON, WI~C:O~~N ARC\-HVE. -::'IR~R 1A~e:. 

\ N""TE:R.E"N:.E: 

DRAWN: AA CJ'\Te.: 1-U-ee. 

~: 1'0.'" c:KO:~t"\ 



~ c c 

g.....g ,. ~ 
~4 PIt" 
AIo..I"!lI..e:( 

CARD Eoc:;,e:. c:.oNt"EC.ToR 
~-~t";>M 

le.oo" 

co~ouc:."iOc::t • \ 

34 

~PI'" 
AA~,( Pc.O i~~ION. c.o ......... ec.TO~ (e) 

(PO~-~O~ 

--~--------------------------~~------------------ e~.oo· 

~CORlfC.ON c:.oRPORAi{OM 
MAD,~r( > WI")CQtol$IN. 

!X.- It> 

A"'~E'C 
RIe.fX)K c.o"",,~~ 

"'~-~I'\ -. (po"-~MA 
~-rAAIK RELla:.·~ -o~ ClPTIOtW. 

J 



This page has been intentionally left blank. 



13.2 Control Port Addresses (P3) 

The Streamer tape I/F logic uses the following physical memory addresses for 
data and control functions: 

Device: Archive Steamer Tape 

Physical 
Address 

FEEOOO 

FEE002 

FEE004 

FEE006 

FEE008 

FEEOOA 

FEEOOC 

FEEOOE 

Function 
(read) 

Read data (8 bits) 
Set XFER 

Read data (8 bits) 
Clear XFER 

Read data 

Read data 
Clear XFER 

Read data 

Read data 
Clear XFER 

DO = ACK ("1" = true) 
(P3-26) 

DO = DIRC ("1" true) 
(P3-32) 

Clear XFER 

Device: Centronics Printer 

Physical Function 
Address (wr i tel 

Function 
(wri tel 

Write to data latch (8 bits) 
Set XFER 

write to data latch (8 bits) 
Clear XFER 

Set REQ (P3-20) 

Clear REQ 
Clear XFER 

Set ONL (P3-18) 

Clear ONL 
Clear XFER 

Set REQ, Set ONL 

Clear REQ, Clear ONL 
Clear XFER 

-------- --------------------------------------------
FEEOOO Write to data latch (8 bits) Set STROBE 

FEE002 Write to data latch (8 bi ts) Clear STROBE 

The printer status bit is read in from the CIO port. Follow this procedure 
when using the tape port for a Centronics printer: (See the software example, 

, below.) 

1. Wait for the printer READY signal. (Test bit D5 in CIO port A.) 
2. write the character (inverted) to port OxFEE002. 
3. " " " " " " OxFEEOOO. (This turns 

the STROBE on. ) 
4. " " " " " " OxFEE002. (This turns 

the STROBE off. ) 



13.3 Software Example (P3) 

Centronics printer routines: This is a routine that sends a test message 
to the streamer tape port configured as a printer interface. 
------_. __ . __ . 
/* 

* Centronics printer test program 
* Outputs a couple lines to the streamer tape port being used as a 
* Centronics interface 
*/ 

idefine SET CENTRONICS 
idefine RES CENTRONICS 
idefine STAT_CENTRONICS 
idefine CIO COMMAND 

(char *) OxFEEOOO 
(char *) OxFEE002 
(char *) OxFEF605 
(char *) OxFEF607 

main () 
{ 

initcio(); 
print () ; 

/* Init the CIO */ 
/* Print a message */ 

} 

print () 
{ 

register int cnt; 

putsprn("This is a test of the Centronics printer interface ••• \n\r"); 
putsprn("If this test fails you will know it because you won't be "); 
putsprn("able to read this.\n\r\n\r"); 
putsprn(nThis is a Heurikon HK68 Microcomputer talking.\n\r\n\r"); 

} 

for (cnt = ' '; cnt < Ox7F; cnt++) 
putprinter(cnt); 

putsprn("\n\r\n\r"); 

putsprn(p) 
register char *p; 
{ 

} 

while (*p 1= '\0') 
putprinter(*p++); 

putprinter(c) 
register char Ci 
{ 

} 

while (*STAT CENTRONICS & Ox20)i 
*RES CENTRONICS = Ci 
*SET-CENTRONICS = -c; 
*RES-CENTRONICS = -ci 

/* handshake with the printer */ 

/* wait for printer ready */ 
/* send data, leave STROBE off */ 
/* turn STROBE on */ 
/* turn STROBE off */ 



ini tcio () 
{ 

} 

register char c, *p; 
register int cnt; 
static char ciotable[] = { 

OxOO, Ox02, 

Ox20, OxOO, 
Ox22, OxOO, 
Ox23, OxFF, 
Ox24, OxOI, 

OxOI, Ox04, 
} ; 

c = *CIO COMMAND; 
*CIO_COMMAND = OxOO; 
c = *CIO COMMAND; 
*CIO COMMAND = OxOO; 
*CIO-COMMAND = OxOI; 
*CIO-COMMAND = OxOO; 

p = ciotable; 
for (cnt = 0; cnt < 12; cnt++) 

*CIO COMMAND = *p++; 

/* Turn off reset */ 

/* Port A Bit control mode */ 
/* Port A Non inverting */ 
/* Port A All inputs */ 
/* Port A Normal exept DOG */ 

/* Enable channel A */ 

/* Reset register pointer */ 
/* Un-reset command */ 
/* CIO now in state 0 */ 
/* Pointer to register 0 */ 
/* Reset the CIO */ 
/* Force CIO to state 0 */ 

-------------------



13.4 Winchester I/O Port (P4) 

The Winchester port is designed to operate with three controller variations: 
a SASI (Shugart standard, type 14030), a Western Digital WDIOOI or a Priam 
"Smart" controller. The cable attached to P4 determines which controller is 
used. The interface control PAL is programmed to operate with all three 
controllers. The proper set of PAL equations are automatically selected by 
the I/F logic through the use of P4 pins 1 and 41. The application program 
can read the controller type by examining two bits in the DIP Switch port and 
branch to the appropriate controller routine. (See section 9.2.) 

P4 Pin 
------
P4- 1* 
P4- 2 
P4- 4 
P4- 6 
P4- 8 
P4-l0 
P4-l2 
P4-l4 
P4-l6 
P4-18 
P4-20 
P4-22 
P4-24 
P4-26 
P4-28 
P4-30 
P4...,.32 
P4-34 
P4-36* 
P4-38 
P4-40 
P4-4l* 
P4-42 
p4-44 
P4-46* 
P4-48 

---Controller Type----
SASI WestOig Priam 
----- ------- ------
Gnd open Gnd 
00/ DO DO 
01/ 01 01 
02/ 02 02 
03/ 03 03 
04/ 04 04 
05/ 05 05 
06/ 06 06 
07/ 07 07 
x AO HAOO 
x Al HAOI 
x A2 HAD2 
x CS/ x 
x WEI HWR/ 
x RE/ HRO/ 
x WAIT/ x 
x x x 
x x x 
BUSY/ INTRQ HIR/ 
ACK/ ORQ x 
RST/ MR/ RESET/ 
Gnd Gnd open 
MSG/ x x 
SEL/ x x 
C/O x OBUSENA/ 
REQ/ x OTREQ/ 

Notes 

To DIP Switch port, 06 

MPU Al 
MPU A2 
MPU A3 

To CIO port A, 01 

To DIP Switch port, 07 

To CIO port A, 02 

P4-50* I/O x HREAO To CIO port A, D3 

P4-odd (except P4-l and P4-4l) are connected to ground (23 pins) 

*P4-36, 46 & 50 appear on CIO port A. (See "CIO Usage.") 
P4-l & P4-4l connect to the DIP Switch port. (See section 9.2.) 

The data bus I/F is inverting. Thus, a high level on an MPU data line 
translates to (or from) a low level on the P4 data pins (P4-2 through P4-l6). 
Logically, the SASI type controllers expect the I/F data to be low true. 
The Western Digital and Priam controllers, however, expect a high true data 
bus. Thus, for those controllers, the MPU and DMAC should invert data, 
commands and status bytes prior to, or following, transfers over the Winchester 
interfaces. Note that it should not be necessary to actually invert the data, 
because any data inverted by the I/F while writing to the disk will be 
re-inverted when reading back. Also, the commands and status bytes need not 
be inverted at run time if they are appropriately defined in the program at 
compile time as inverted constants. 



D 

COIolOoc:.TOF\.. ( J 

I~ 

f 1--1 ------IW 

I I 
1 

1m 

;~ 
I!8Im 
IOlIll 
IOlI!8 
Iilill 
&aD 
DD 
liiIl!! 

) ~: 

~: 1!!.1lI 
DI!8 "11 IDlII 
Dill 
III III 
!!III 
III 1m 

~ '( Ii 
~----------------------~4~~~ 

":>A"=>!. 
COt-4'TRO(...ER 
A~~ 

ooc, -'SO~ 
i!V'<t-t'<>('\ON c.oNNeC:rQR 

~~OR!~ c.oRf'OAATtON 
~ ) W!'SCON'!>I('l 

-"-



D ~ f U 

~P'~'-~ 
e I 

~ B-B ~CO~DQC~O~ I o 0 

ii I 

. 
<Of!)K WOIOOI 
P4 AN.~Y 

NN'eL.£'( ",09-~ISI"\ 

<009 - '301~ M CARD €:D<:£. CO~ 
CJ>P.O €.O<:>E CDN~ 

() ~ 
Ii 

40 
!I 

P\N~ 4Z~ 0Fe..I (~) PIN~ 41-~ oPEt-\ ((0) 

o 0 

l 
~~ 

~.OO " 

H€:UR.ll<Ot..l CORPOI=V\ lION WB"TER.N DI<:'IIAI- ~~ Qk, ~ie:: "1"~O-& 

MI\DI-;,oN 1 WI~1!>IN 
I N"TERFf\<.E: CAeL.E 

~tn=\" CI<D: "')r' 



~ [J [J 

.g.....g -;0"" 
<DSI<. 
1"4 
AN~ 

"'~ -'5015M 

c:.oVf:~ WITH I HEAT "";)~FI.INK T06IN'" 

(P.C..~RO 

r---------~,---+--------~--~ 

'So PIN 
AA~ 

T 

PC.B 'TAANt:>I7ION <:ONNEC.ToR 
(P0':l - "500~ 

I ZeJ> ~cxx..i~:) 
Rle.e.oN c.AOL£ ' 

r---ooP--------+----~\----_,Ir----,'r---~L--------f.~~\ 
0 0 := 1111 

all 
aD 
lOa 
ilia 
lOa 
all 
ilia 

0° :: 

~o~o~JT--------4_--------~e~V~--~L-------------~=: 
f PIN'!> ~7-<\O OPEN <!4r) :: 

lOa 
lOa 
111111 
all 

'- <!.<P PIN 
AN':X_c:'< 

pee ~~(710N c.oto4Na'TOR 
<Po~-e"'03 

4Q 

PRIAM 
""";)MAf(I") IN'reRFA<.E. 

?>M ~11 -7040 
':>O<..KE.T CONNEOC.1OR 

------------------------~4r--------------------- Z4.00"--------------------~ 

t-\eoR.ll<ON ~POAAT(ON 
MAO("::>C;lM , WI~N"'IN 

~~(' ... l·· 



13.5 Control Port Addresses (P4) 

The Winchester I/F logic uses the following physical memory addresses for 
data and control functions: 

Device: Winchester (P4) with WD1000/100l Controller 

Device: 

Physical 
Address 
--------

FEEOOl 
FEE003 
FEE005 
FEE007 
FEE009 
FEEOOB 
FEEOOD 
FEEOOF 

Winchester 

Physical 
Address 

FEEOOl 
FEE003 
FEE005 

FEE007 

(P4) 

Function 
(read) 
---------------------
Read Data 
Read Error Register 
Read Sector Count Reg 
Read Sector Number Reg 
Read Cylinder Low Reg 
Read Cyl inder High Reg 
Read Size/Drive/Head 
Read Status Register 

with SASI 

Function 
(read) 

Controller 

Read data (8 bits) 
Read data 
Turn on I/F DO 

Set SEL (P4-44) 
Clear SEL 

Release I/F DO 

Function 
(write) 
------------------------
Write Data 
Set write Prcomp Register 
Write Sector Count Reg 
Write Sector Number Reg 
Write Cylinder Low Reg 
Write Cylinder High Reg 
Write Size/Drive/Head Reg 
Write Command 

Function 
(write) 

Register 

Write data (8 bits) 
Write data 
Turn on I/F DO 

Set SEL (P4-44) 
Clear SEL 

Release I/F DO 

Device: Winchester (P4) with Priam SMART Controller 

Physical Function Function 
Address (read) (wr i te) 
-------- --------------------- ------------------------

FEEOOl Read Interface Status Write Command 
FEE003 Read Data Write Data 
FEE005 Read Result Reg 0 Write Parameter 0 
FEE007 Read Result Reg 1 Write Parameter 1 
FEE009 Read Result Reg 2 Write Parameter 2 
FEEOOB Read Result Reg 3 Write Parameter 3 
FEEOOD Read Result Reg 4 Write Parameter 4 
FEEOOF Read Result Reg 5 Write Parameter 5 



13.6 16-Bit Parallel I/O Port (P3 & P4) 

P3 and P4 may be combined into a single 16-bit port for high speed data 
transfers. This could be used for inter-processor communications or a 
l6-bit external device. When used in this mode, P3 carries the upper eight 
data bits, and P4 carries the lower eight bits. 

The handshake scheme is similar to the IEEE-488 

P3 Pin Signal 
------ ------
P3- 2 D15/ 
P3- 4 D14/ 
P3- 6 D13/ 
P3- 8 D12/ 
P3-l0 Dl1/ 
P3-l2 DlO/ 
P3-l4 D9/ 
P3-16 D8/ 

P3-l8 ONL/ 
P3-20 REQ/ 
P3-22 RESET/ 
P3-24 XFER/ 
P3-26 ACK/ 
P3-28 To CIO port A, D5 
P3-30 To CIO port A, D4 
P3-32 DIRC/ 
P3-34 n/c 

P3-odd Gnd 

Device: 16-bit Parallel Port 

Physical 
Address 

FEEOOO 

FEE002 

FEEOOC 

FEEOOE 

Function 
(read) 

Read Data (16 bits) 
Set XFER 

Read data (16 bits) 
Clear XFER 

DO = ACK ("1" = true) 
(P3-26) 

DO = DIRC ("1" true) 
(P3-32) 

Clear XFER 

3-wire handshake. 

p4 Pin 
------
P4- 1 
P4- 2 
P4- 4 
P4- 6 
P4- 8 
P4-l0 
P4-l2 
p4-14 
p4-16 

P4-l8 
P4-20 
P4-22 

P4-36 
P4-4l 
p4-46 
P4-50 

P4-odd 
(except 

Function 
(write) 

1 

Signal 
------
To DIP 
DO/ 
D1/ 
D2/ 
D3/ 
D4/ 
D5/ 
D6/ 
D7/ 

Al 
A2 
A3 

To CIO 
To DIP 
To CIO 
To CIO 

Gnd 
& 41) 

Sw port, D6 

port A, Dl 
Sw port, D7 
port A, D2 
port A, D3 

Write to data latch (16 bits) 
Set XFER 

Write to data latch (16 bits) 
Clear XFER 

Set REQ, Set ONL 

Clear REQ, Clear ONL 
Clear XFER 

More details of this mode will be provided with a later manual release. 



13.7 Use with the DMAC 

Channel 0 of the DMAC is dedicated for Winchester I/O operations in that 
the Winchester ready signal is wired directly to the DMAC channel 0 ready 
input and the DMAC channel 0 acknowledge line returns to the Winchester 
logic. This makes the single addressing mode possible for high speed data 
transfers. Refer to section 5 for DMAC details. 

The Streamer Tape port may be used with channel 1 of the DMAC by setting 
jumper J9-l,2 and J9-6,7. 

Set Jll according to the desired DMA mode (see section 5.) 

l3.S Relevant Jumpers (Parallel I/O) 

Jumper Function 
------ ----------------------

J9 DMA Request/Ack 

See section 5 for 
more info on the 
DMAC logic. 

Jll Winc/Tape DMA Mode 

Pos Notes 
------ ----------------------------
J9-l,2 DMA Ackl to Tape Acknowledge 
J9-3,4 SIO A Ready to DMA Req 2 
J9-3,7 SIO A Ready to DMA Req 1 
J9-4,S SBX PS Ready to DMA Req 2 
J9-4,S SBX P7 Ready to DMA Req 2 
J9-S,9 SBX PS Ready to DMA Req 3 
J9-6,7 Tape Ready to DMA Req 1 
J9-7,S SBX P7 Ready to DMA Req 1 
J9-S,9 SBX P7 Ready to DMA Req 3 
J9-9,lO SIO B Ready to DMA Req 3 

Install for Single Address transfers to 
the Winchester or Tape ports. 

Remove for Dual Address transfers 



14.0 SBX Expansion I/O Interface 
================================= 

The HK68 board has provisions for two SBX modules. These modules allow 
users to expand the I/O capabilities of the board by adding appropriate 
modules. The following list shows some of the modules available: 

Function Part Nmbr 

Floppy Disk 
Quad Serial I/O 

*Math Processor (APU) 
*GPIB Bus I/F 
*Real Time Clock 
*Modem 
*Ethernet I/F 
Parallel I/O iSBX 350 
Analog Input iSBX 311 
Analog Output iSBX 328 
Video Display iSBX 270 

* future product 

Manufacturer 

Heurikon 
Heurikon 
Heurikon 
Heurikon 
Heurikon 
Heurikon 
Heurikon 
Intel 
Intel 
Intel 
Intel 

Module 10 

xxxOOOOl 
xx000010 
xxxOOOll 
xxxOOIOO 
xxx0010l 
xxxOOllO 
xxxOOlll 

(n/a) 
(n/a) 
(n/a) 
(n/a) 

The two connectors are arranged so that one standard module and one double 
width module may be used. The connectors on the HK68 board are designated 
"P7" and "P8.) Both can accommodate either a single or double-width module. 
(P7's module, however, must be single-width in order to use P8.) 

/-1-1 P6 P5 1_1----P4---I_I--P3-1_1-\ 

JlO ROM H 

------- J9 
sax P7 J8 SBX P8 

-------- MPU 
MMU DMAC 

RAM --.--.------

----I ____ ~ _______________________ I 1.-
pI -- ___ ---------1 

P2 

We advise that you do not rely on convection cooling when using an SBX module. 
The serial interface logic, located above P7 and P8, runs warm. 



14.1 SBX Connector Pin Assignments 
-----------------------------------

Both connectors are effectively wired in "parallel," except for the control 
signals which appear on the even numbered pins. 

Pin P7 P8 Pin P7 P8 

1 +12 +12 2 -12 -12 
3 Gnd Gnd 4 Vcc Vcc 
5 RESET RESET 6 XCLK XCLK (from JlO) 
7 A3 A3 (MPU) 8 MPS-O MPS-l (OIP Sw Port) 
9 A2 A2 (MPU) 10 nlc nlc 

11 Al Al (MPU) 12 J8-A,B J8-C,0 (see J8) 
13 WRI WRI 14 XINTO XINTI (to CIO) 
15 Rol ROI 16 WAITI WAITI 
17 Gnd Gnd 18 Vcc Vcc 
19 07 07 20 CEll CE31 (see below) 
21 06 06 22 CEOI CE21 (see below) 
23 05 05 24 nlc nlc 
25 04 04 26 nlc nlc 
27 03 03 28 SOPTOI SOPTII (to CIO) 
29 02 02 30 SOPTOO SOPTlO (to CIO) 
31 01 Dl 32 nlc nlc 
33 00 DO 34 DMAROY DMARDY (to J9) 
35 Gnd Gnd 36 Vcc Vcc 

14.2 Oevice Address Summary (SBX) 

The functions assigned to each port address are determined by the particular 
module attached to the port. 

SBX pins P7 Address P8 Address 
7 9 11 CEO CEI CE2 CE3 

------ ------ ------ -----
0 0 0 FEFOOI FEFlOl FEF20l FEF301 
0 0 1 FEF003 FEFI03 FEF203 FEF303 
0 1 0 FEF005 FEFl05 FEF205 FEF305 
0 1 1 FEF007 FEFl07 FEF207 FEF307 
1 0 0 FEF009 FEFl09 FEF209 FEF309 
1 0 1 FEFOOB FEFlOB FEF20B FEF30B 
1 1 0 FEFOOO FEFIOD FEF200 FEF300 
1 1 1 FEFOOF* FEFlOF FEF20F* FEF30F 

MPU: "A3 A2 Al" 
SBX: "A2 Al AO" P7-22 P7-20 P8-22 P8-20 

*Addresses FEFOOF and FEF20F are used by the Heurikon SBX modules to read 
a "Module 10" code number, which uniquely identifies the type of module 
plugged into the respective SBX connector. (In the event that these 
addresses are required for other SBX functions, only the first access 
following a reset will provide the 10 code.) This feature allows a 
program to dynamically configure itself according to the function and 
placement of the modules installed on the board. 

Before accessing the SBX modules, the program should test the module present 
bits (MPS-O and MPS-l) via the OIP switch port to be sure the modules are 
plugged in. See section 9.2 for details. 



14.3 Relevant Jumpers (SBX Expansion) 

Jumper Function Pos Notes 

J8 

J9 

J10 

SBX Interrupt Config 
(See diagram, below) 

DMA Request/Ack 

SBX Clock Select 

J8-A 
J8-B 
J8-C 
J8-D 

J9-1,2 
J9-3,4 
J9-3,7 
J9-4,5 
J9-4,8 
J9-5,9 
J9-6,7 
J9-7,8 
J9-8,9 
J9-9,10 

J10-A 
J10-B 

SBX P7 pin 12 (INTI) to XINTO 
SBX P7 pin 12 (INTI) to XINTI 
SBX P8 pin 12 (INTI) to X1NT1 
SBX P8 pin 12 (INTI) to XINTO 

DMA Ackl to Tape Acknowledge 
SIO A Ready to DMA Req 2 
S10 A Ready to DMA Req 1 
SBX P8 Ready to DMA Req 2 
SBX P7 Ready to DMA Req 2 
SBX P8 Ready to DMA Req 3 
Tape Ready to DMA Req 1 
SBX P7 Ready to DMA Req 1 
SBX P7 Ready to DMA Req 3 
SIO B Ready to DMA Req 3 

8 MHz 
10 MHz (option) 

Jumper J8 diagram: 

XINTO 

14 

12 

I "D" 
<------------0----0------------> 12 

P7 <--------:~:-~-~~-!-:~:--------> 
P8 

14 

-------- I 
XINT1 

"B" 

(to/from CIO) 



15.0 PHYSICAL ADDRESS MAPPING 
============================== 

Hex Function Notes 

FFFFFF ----------------- (TOp of 16 Meg adrs space) 

Mu1tibus I/O 
(64k) 

FFOOOO -----------------

FEFOOO 
I CIO,SCC,SBX 
-----------------
I WINC, TAPE 

FEEOOO -----------------
x 

FECOOO 
I DIP,LED,CNTRL I 

I x 
-----------------
I x 

FEAOOO -----------------

FE9000 

FE8000 

FEOOOO 

100000 

080000 

DMAC I 
-----------------

MMU I -----------------

I ROM I (32k) 
-----------------

1 Multibus 
Memory 

RAM 
5l2k 
Deck2 

RAM 
512k 
Deck1 128-2 

128-1 

1 

Ref sections 11, 12, 14 

Ref section 13 

Ref section 9 

Ref section 5 

Ref section 6 

A" A Upper 128k bytes A. A "'''' 

-------------------------

Ref section 7 

(Top of 1 Meg adrs space) 

If Deck 2 is not present, 
the deck 2 space is released 
to the Multibus. 

000000 ----------------- (Bottom of memory) 
256kxl 64k x 1 

Not shown to scale. 

After an external reset (Power-up or Reset P.B.), RAM is turned off and ROM 
appears at address 000000 until any address above FEOOOO is accessed. Refer 
to section 7.4 for a power-up memory map. If jumper J23 is removed, no on-card 
RAM exists. (All addresses below FEOOOO will be on the Multibus.) 



16.0 I/O PORT ADDRESSES 
======================== 

All I/O devices are memory mapped into the top of the 16 megabyte physical 
address space. The top most 64K memory locations (FFOOOO hex and above) 
are translated into I/O commands on the Mu1tibus with the lower 16 address 
lines providing the 16-bit Multibus I/O device number. The next lower 
addresses are assiqned to the on-card devices according to the table below. 

The logical addresses (those used by the MPU and OMAC) could differ from the 
physical addresses as a result of action by the MMU. This table lists the 
PHYSICAL address values. 

------------Physical Address Lines------------
DEVICE 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 HEX (base) 

Mu1tibus ODD 0 0 0 0 0 0 0 0 0 0 0 0 0 FFxxxx 

(spare) 

CIO 

SCC (1) 
SCC(O) 

SBX(3) 
SBX(2) 
SBX (1) 
SBX(O) 

TAPE 
WINC 

CONTROL 
LED 
RING 
OIPSW 

OMAC 

MMU 

1 

1 

1 
1 

1 
1 
1 
1 

1 
1 

111 

111 

111 
111 

111 
111 
111 
111 

110 
110 

110 0 
1 1 0 0 
110 0 
110 0 

x 1 

x 1 

x 1 
x 1 

x 0 
x 0 
x 0 
x 0 

x x 
x x 

1 1 

1 0 

o 1 
o 0 

1 1 
1 0 
o 1 
o 0 

x x 
x x 

x x x x x x x 

x x x x x 0 D 

x x x x x D 0 
x x x x x 0 0 

x x x x DOD 
x x x x 000 
x x x x 0 0 0 
x x x x 000 

x x x x 0 0 0 
x x x 0 0 D 0 

x 

1 

1 
1 

1 
1 
1 
1 

o 
1 

x 
x 
x 
x 

x x x x 
x x x x 
x x x x 
x x x x 

x 
x 
x 
x 

x x x 
x x x 
x x x 
x x x 

x x 0 
x x 1 
x x 0 
x x 1 

1 0 0 1 x x x x 0 0 0 0 ODD 0 

1 0 0 0 x x x x x x 0 DOD 0 0 

FEF7xx 

FEF6x1 

FEF5x1 
FEF4xl 

FEF3x1 
FEF2x1 
FEF1x1 
FEFOx1 

FEExxO 
FEExx1 

FECxxO (write) 
FECxx1 (write) 
FECxxO (read) 
FECxx1 (read) 

FE9xOO 

FE8xOO 

~OTES: "0" means that address bit function is defined by the device. 
"x" means don't care 

AO = "0" means the device can be used with 8 or 16 bit data 
AO = "0" means the device uses the upper 8 data bits only 
AO = "1" means the device uses the lower 8 data bits only. 

"write" means the device is write only 
"read" means the device is read only 

Refer to individual device descriptions for details on the structure of 
the I/O devices. 



17.0 HARDWARE JUMPERS 
====================== 

17.1 Jumper Functions and Settings 

Jumper Function Pos Notes 

Jl +12 power to P6 
J2 -12 power to P6 
J3 +5 power to P6 

J4 RS-422 Control 

J5 -12 power to P5 
J6 +12 power to P5 
J7 +5 power to P5 

J8 SBX Interrupt Config 

J9 DMA Reguest/Ack 

J10 SBX Clock Select 

Jll Winc/Tape DMA Mode 

J12 RAM Speed/Parity 

J13 ROM Type Select 
J14 ROM Type Select 

J15 RS-232 Status Default 

J16 Miscellaneous Control 

*J4-A 
J4-B 

J8-A 
J8-B 
J8-C 
J8-D 

*J9-1,2 
J9-3,4 
J9-3,7 
J9-4,5 

*J9-4,8 
*J9-5,9 
*J9-6,7 
J9-7,8 
J9-8,9 
J9-9,10 

*J10-A 
J10-B 

Enable RS-422 outputs 
Control via Port A DTR signal 

SBX P7 pin 12 (INT1) to XINTO 
SBX P7 pin 12 (INT1) to XINTl 
SBX P8 pin 12 (INT1) to XINTl 
SBX P8 pin 12 (INT1) to XINTO 

DMA Ackl to Tape Acknowledge 
SIO A Ready to DMA Reg 2 
SIO A Ready to DMA Reg 1 
SBX P8 Ready to DMA Reg 2 
SBX P7 Ready to DMA Reg 2 
SBX P8 Ready to DMA Reg 3 
Tape Ready to DMA Reg 1 
SBX P7 Ready to DMA Reg 1 
SBX P7 Ready to DMA Reg 3 
SIO B Ready to DMA Reg 3 

8 MHz 
10 MHz (option) 

Install for Single Address transfers to 
the Winchester or Tape ports. 

*Remove for Dual Address transfers 

*J12-A Fast (no parity) 
J12-B Slow, Parity Enabled 

J13-A, J14-A 2716 type 
*J13-A, J14-B 2732, 2764 type 
J13-B, J14-B 27128 type 

*J15-A True 
J15-B False 

*J16-A Convention = Motorola 
J16-B Convention = latched D15 

(110" = Motorola) 
J16-(not A or B) Conv = Zilog 
J16-C Bus Wr Prot = latched D15 

("0" = disable) 
*J16-D Bus Write Protect disabled 
J16-(not C or D) Bus WProt enabled 



J17 

J18 

J19 

J20 

J2l 

MMU Mode Select 

Bus Clock Rate Select 

Bus CCLK Enable 

Bus BPRN Enable 

Bus BCLK Enable 

*J17-A Mode Sl (factory adjustment) 
J17-B Mode S2 

*J18-A 8 MHz 
J18-B 10 MHz (option) 

*Insta11 on highest priority board 

*Insta11 on highest priority board 

*Insta11 on highest priority board 

J22 RAM Device Size Select *J22-A 64K x 1 
J22-B 256K x 1 

J23 

J24 

J25 

J26 

RAM Deck Select 

Bus INIT/ Select 
(Pl-14) 

Watchdog Disable 

Bus LOCK/ Enable 

17.2 Jumper Locations 

/-1-2 ! P6 

4 

-1---- 8 

15 

1 MMU 

6~-1~7=-------------

18 

19 
20 
21 

1--

22 23 

24 

Pl 

J23-A Single Deck 
*J23-B Double-Decker 

(none) on-card RAM disabled 

J24-A INIT/ = on-card RESET/ (out) 
*J24-B INIT/ = AuxRESET/ (Input) 

*Insta11 to disable Watchdog Timer 

Install to enable Bus LOCK fuction 

* indicates standard jumper configuration 

5 
6 

7 

9 

P5 

MPU 

P4 I-I 
10 

11 

DMAC 

25 

26 
-_-_-__ 1----1--

P3 1_1"14\ 
ROMH 

12 ROM L 
13 

RAM 

~------I P2 

Selected portions of this listing appear in other parts of this manual -
within the sections describing the particular features. 



18.0 SOFTWARE INITIALIZATION SUMMARY 
==================:========~========= 

This section outlines the steps for initializing the facilities on the HK68 
board. Certain steps must be performed in sequence, while others may be 
rearranged or omitted entirely, depending on your application. 

Item Step 

1. Fetch the reset vector. This is done automatically by the 
the 68000 following a system reset to load the supervisor 
stack pointer and program counter. The reset vector is in 
the first 8 bytes of the ROM. 

2. Determine RAM configuration. (Reference: section 7.6) 

3. Turn on the RAM by branching to the ROM (at base FEOOOO). 
(Reference: section 7) 

4. Clear RAM to prevent parity errors due to uninitialized 
memory reads. (Reference: section 8.2) 

5. Setup the exception vector table in RAM (at base 000000.) 
This step links the various exception and interrupt sources 
with the appropriate service routine. (Reference: 
sections 4.2 and 4.3) 

6. Initialize the MMU. (Reference: section 6) 

7. Initialize the CIO. (See sample program in "CIO Usage," 
section 11.8.) 

. 
8. Initialize the Bus Control Latch. (Reference: section 10.5) 

9. Initialize the Serial ports. (Reference: section 12.5) 

10. Initialize the User LED port. (Reference: section 9.4) 

11. Read the SBX module 10 codes (Heurikon only), and initialize 
the modules, as required. (Reference: section 14) 

12. Initialize off-card memory and I/O devices, as necessary. 

13. Enable system interrupts, as desired. (Reference: section 4.1) 



19.0 MULTIBUS INTERFACE 
======================== 

(See also "Memory Configuration," section 7, and "Bus Control," section 10.) 

The Multibus consists of Pl and P2 address, data, and control signals. 
The following tables indicate which signals are used on each portion of 
the bus. 

19.1 Connector Pl Pin Assignments 
----------------------------------

Pl Pin Signal Pl Pin Signal 
------ -------- --.---- --------
Pl- 1 Gnd Pl- 2 Gnd 
Pl- 3 Vee Pl- 4 Vee 
Pl- 5 Vee Pl- 6 Vee 
Pl- 7 +12 Pl- 8 +12 
Pl- 9 (reserved) Pl-10 (reserved) 
Pl-ll Gnd Pl-12 Gnd 
Pl-13 BCLK/ Pl-14 lNlT/ 
Pl-15 BPRN/ Pl-16 BPRO/ 
Pl-17 BUSY/ Pl-18 BREQ/ 
Pl-19 MRDC/ Pl-20 MWTC/ 
Pl-21 lORC/ Pl-22 lOWC/ 
Pl-23 XACK/ Pl-24 (reserved) 
Pl-25 LOCK/ Pl-26 (reserved) 
Pl-27 BHEN/ Pl-28 ADR10/ 
Pl-29 CBRQ/ Pl-30 ADRll/ 
Pl-31 CCLK/ pl-32 ADR12/ 
Pl-33 (reserved) Pl-34 ADR13/ 
Pl-35 lNT6/ Pl-36 lNT7/ 
Pl-37 lNT4/ Pl-38 lNT5/ 
Pl-39 lNT2/ Pl-40 lNT3/ 
Pl-41 INTO/ Pl-42 INT1/ 
Pl-43 ADRE/ Pl-44 ADRF/ 
Pl-45 ADRC/ Pl-46 ADRD/ 
Pl-47 ADRA/ Pl-48 ADRB/ 
Pl-49 ADR8/ Pl-50 ADR9/ 
Pl-51 ADR6/ Pl-52 ADR7/ 
Pl-53 ADR4/ Pl-54 ADR5/ 
Pl-55 ADR2/ Pl-56 ADR3/ 
Pl-57 ADRO/ Pl-58 ADR1/ 
Pl-59 DATE/ Pl-60 DATF/ 
Pl-61 DATC/ Pl-62 DATD/ 
Pl-63 DATA/ Pl-64 DATB/ 
Pl-65 DAT8/ Pl-66 DAT9/ 
Pl-67 DAT6/ pl-68 DAT7/ 
Pl-69 DAT4/ Pl-70 DAT5/ 
Pl-71 DAT2/ Pl-72 DAT3/ 
Pl-73 DATO/ Pl-74 DAT1/ 
Pl-75 Gnd Pl-76 Gnd 
Pl-77 (reserved) Pl-78 (reserved) 
Pl-79 -12 Pl-80 -12 
Pl-81 Vee Pl-82 Vee 
Pl-83 Vee Pl-84 Vee 
Pl-85 Gnd Pl-86 Gnd 

Refer to section 10.1 for signal descriptions. 



19.2 Connector P2 Pin Assignments 

P2 Pin Signal 
------ --------
P2- 1 Gnd 
P2- 2 (reserved) 
P2-19 PFIN/ 
P2-21 Gnd 

P2-23 (reserved) 
P2-55 AOR16/ 
P2-57 AOR14/ 
P2-59 

19.3 Mu1tibus Compliance Levels 

Master: 016 M24 116 VO L 
Slave: 016 M24 VO L 

19.4 Power Requirements 

Voltage 

+5 
+12 
-12 

Current 

4.0A, max 
1. OA, max 
1. OA, max 

thru 

thru 

Usage 

P2 Pin Signal 

P2- 2 
P2-18 
P2-20 
P2-22 
P2-38 
P2-54 
P2-56 
P2-58 
P2-60 

Gnd 
(reserved) 

Gnd 
AuxRESET/ 
(reserved) 
AOR17/ 
AOR15/ 

All logic 
Timing logic, RS-232 I/F 
RS-232 I/F 

NOTICE: Power dissipation is 20 watts, nominal. The SCC, CIa serial I/F and 
some bus logic runs warm to hot. Fan cooling should be used if the 68K board 
is placed in an enclosure, or if other boards are used in the card cage. 

19.5 Mechanical 

Length width 

12.00 in. 6.75 in. 

--------Maximun-Thickness-------- (height above board) 
RAM decks: 1 deck 2 decks 

w/o SBX: 0.400 in. 
with SBX: 0.810 in. 

0.500 in. 
0.810 in. (Includes SBX module 

max imum thickness.) 

HK68 boards with double decker RAM sockets (but without SBX modules) will 
fit side-by-side in card racks with 0.6 inch slot spacing. 



20.0 TIDBITS 
============= 

These things don't seem to fit anywhere else ••• 

20.1 PAL Usage 

The Heurikon HK68 makes substantial use of Programmable Array Logic to 
implement logical functions. This technique reduces the chip count for the 
random logic sections of the board, and allows additional LSI chips to be used 
to improve the features on the board. It also makes bug correction easier, 
since circuit changes can be made simply by adjusting the PAL logic equations 
and programming a new chip. There are 17 PALs on the HK68 and only a few 
SSI chips, such as 74LS04, 7408, etc. 

PAL 

A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 
M 
N 
P 
Q 
S 
W 

Function Summary 

Bus arbitration control 
Bus Control signal interface 
Multibus I/F timing state machine 
Multibus Data gate control 
Bus arbitration state machine 
Bus Map 
Miscellaneous control 
Memory and Bus Error control 
Internal control signal generator 
Interrupt Acknowledge decoder 
Physical memory map 
MPU and MMU control 
I/O Map 
Leftovers 
More Leftovers 
Streamer Tape I/F control 
Winchester I/F control 

Type 

l6L8 
l6L8 
l6R4 
16L8 
l6R4 
16C1 
16L8 
16R6 
l6L8 
l6L8 
16L8 
l6L8 
16L8 
l6R4 
16L8 
16L8 
l6L8 

As an example, here is the equation used to monitor the Multibus and Bus Map 
for an access request from the bus: 

Key: 
Term 1 Term 2 Term 3 / means "NOT" 

---------- -------------- -------------- * means "AND" 
RQST = MRDC*MAPOK + MWTC*MAPOK*/WP + LOCK*RQST*/DOG + means "OR" 

RQST, when true, indicates that a valid request from the Multibus 
is pending. This is one of the output signals from PAL "A." 
RQST will become true if one or more of the "terms" in the 
equation are true. 

Term 1 causes RQST to go true when the Memory Read Control signal 
(MRDC on the bus) goes true, AND the Bus Map indicates that 
the bus address lines are correct. ("MAPOK" is generated in 
another PAL via an equation whose terms include the Multibus 
address signals.) 

Term 2 causes RQST to go true when the Memory Write Control signal 
(MWTC) goes true, AND the Bus Map indicates a valid address 
AND the HK68 board is NOT Write Protected (by jumper JI6). 

Term 3 causes RQST to STAY true during a "locked" bus cycle as long 
as the bus Watchdog Timer has NOT expired. 



20.2 Configuration Options 

Certain features of the HK68 board may not be useful in your application. 
Standard configuration includes most of the functions described in this 
manual. "Stripped" versions are available. Consult factory for details. 

Standard Configuration: 
All features described in this manual (but without the 10 
Mhz clack) may be required for some SBXmodules or 
Multibus slave boards instead of our 8 Mhz clock.) The RAM 
memory capacity may be specified on your order to be l28K, 
256K, 5l2K or 1 megabyte (assuming 256K x 1 chip availability). 
128K and 5l2K configurations use standard IC sockets. The 
256K and 1 megabyte RAM arrays use double-decker sockets. 
Serial port A is configured for RS-232. 

Additional Options: 
1. 10 MHz oscillator for use by certain SBX modules or the 

Multibus 
2. RS-422 serial interface kit for SIO port A 
3. Software monitor program in ROM 
4. Various SBX modules 
5. Custom Bus Mapping PAL 
6. Board Serialization 

Features which could be deleted: (special order) 
1. MMU and/or DMAC 
2. Connectors for the two SBX modules 
3. RAM parity bits and associated logic 
4. RAM itself (uses all off-card RAM) 
5. For extremely cost sensitive systems, certain other 

features such as DIP switches, LED's, parallel I/F, etc., 
may be removed. 

20.3 Accessories 

Cables 
Enclosures 
Peripherals 
Software 

Operating Systems: UniPlus+, CP/M-68K 
Monitor, Utilities 

Custom Interfaces 
Development Systems 



21.0 APPENDICES 
================ 

The appendices offer detailed technical information on the various chips used 
to implement the Heurikon HK68. Their pages are actually copies of the 
manufacturer's data sheets for the devices. Certain information has been 
deleted to improve clarity (specifically, that which concerns hardware design 
or unnecessary features), and reduce weight. Where a variance exists between 
the manufacturer's data and text earlier in this manual, the earlier 
information should prevail. 

Section Device Document Manual Ref 
------- -------------- ------------------------- ----------

A MPU (MC68000) Motorola MC68000 Spec Section 4 
B DMAC (MC68450) Hitachi HD68450 Spec Section 5 
C MMU (MC6845l) Motorola MC68451 Spec Section 6 
0 SCC (Z8530) Zilog SCC Technical Manual Section 12 
E CIO (Z8536) Zilog CIO Technical Manual Section 11 

Note: The appendices are available as a separate booklets from Heurikon. 

Motorola material reprinted with permission of Motorola Inc. 
Hitachi material reprinted with permission of Hitachi, Ltd. 

"Zilog material has been reproduced by permission, copyright 1981 by Zilog, 
Inc. Such material shall not be reproduced without the written consent of 
Zilog, Inc. Zilog is a trademark of Zilog, Inc., with whom Heurikon is not 
associated." So there! 



This page has been intentionally left blank~ 



22.0 READER COMMENT FORM 
=================== 

We would appreciate any comments you have concerning this manual. Please 
let us know if you have found any errors or feel certain sections should be 
expanded. Thank you. 

Name: Tilte: 

Company: ________________________ _ 

Address: 

City: ____________ _ State: ZIP: 

Telephone: 

Section 

---
}---- --------

Comments 

Would you like us to 
contact you? 

Date: ----------- -----

HK-68-b 

Mail To: Heurikon Corporation 
3001 Lathan Drive 
Madison, WI 53713 




