
r
r
r
r
r

r
r
r
r
r
r
r
r
r
L

r
r
r
r

Technical Reference:

Bayes· Synchronous Interface for

Applications Software

Release 1.0

March 12, 1987

Hayes Microcomputer Products, Inc.
705 Westech Drive

Norcross, Georgia 30092

Please register for updates .
You are encouraged to register with Hayes Miaocomputer Products, Inc. All licensed developers will receive
updates to this specl,ncatton when additions or modifications are made.

For more Information, call Hayes Customer service at 404/441·1617 (United States); 416/283-2627 (Canada);
852-5-845-9818 (Hong Kong); or 01-848-1868 (United Kingdom) or by calling Hayes Bulletin Board System at
1-8oo-USHAYES or 404/HIMODEM (United States) or 01-569·1774 (United Kingdom).

Notice: Hayes Microcomputer Products, Inc. (Hayes) provides the information contained in this document to you
for your convenience. Hayes does not guarantee the accuracy of the Information and reserves the right to change
this document, as well as the hardware and software products, and Interface specifications described herein at any
time without notice.

This document may be copied for your own use, but you cannot sell or lease the copies.

The Hayes Standard AT Command set 15 proprietary to, and subject to the copyrights of Hayes Microcomputer
Products, Inc., and distribution of this document In DO way represents a waiver of those rights.

Hayes and the Hayes logo are registered trademarks, and Smartmodein 2400B Is a trademark, of Hayes
Microcomputer Products, Inc.

IBM is a registered trademark of international Business Machines Corporation.

Document 44-00005 AA A40

(I)Hayes"
C1986, 1990 Hayes Microcomputer Products, Inc. All rights reserved.

l
l
l
l
,.-'

l
~

]

l
l
l
l
l
l
]

l
l
l
l
l
l
l

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
l

r

TECHNICAL REFERENCE··HAYES SYNCHRONOUS INTERFACE
FOR APPLICATION SOFTWARE

TABLE OF CONTENTS

Introduction

What is the Hayes Synchronous Interface? 1
What is the Hayes Synchronous Driver?• 2
Review of Synchronous Concepts and Terminology•....... 2
Role of the Synchronous Driver• 5
Recap: What are HSI and HSD?• 6
Advantages of Using HSI and HSD•..... 7

Overview

The InterfaceRec 9
Inside the InterfaceRec 10
The Driver Routines 10
The Service Routines 11
Buffer Usage 11
What the Synchronous Driver Does 0 0 • • • • • • • • • • • • 12
What the Application Does .. 0 ••••••••••••••••••• 0 • • • • • 12
Starting Synchronous Operation 14

Calling Preprocess 0 ••••••••••••••••• 0 •• 0 0 0 •••••• 14
Calling StartSync 0 •••••••••••••••• 0 0 •• 16

How the Driver Gets Control of the CPU 0 • • • • • • • • • • 0 16
The Signaling Mechanism ... 0 0 •• 0 ••••••••• 0 ••••• 0 ••••• 17
Stopping Synchronous Operation 0 •• 0 •••••• 0 0 • _ • 0 0 ••••••• 19
Error Handling . 0 ••••••• 0 0 ••••••• 0 ••••••••••••• 0 •• 19
BISYNC VSO SDlClHDlC 0 • 0 0 0 ••••••••••••••• 0 ••••• 20
Modem Signal Support 0 ••••• 0 ••• 0 ••• 20
Trace Fadlity .. 0 • • • • 0 • • • • • • • • • • 0 • • • • • • • • • • • • • • • 0 0 21

Chapter 1-·Starting Synchronous Operation

Creating the InterfaceRec . 0 0 0 •••• 0 ••••••••••••••••••• 22
Device Qualifiers 0 •••••••••••••••••••••••••• 23
I/O Port and Interrupt Vector 0 0 •••••••••••••••••• 24
Calling Preprocess .. 0 ••••••••••• 0 ••••••• 0 ••••••••••• 24
RECALL Facility . 0 ••• 0 ••••••••• 0 0 ••••••••• 0 •••••••• 25
Preprocess Result Codes 0 • 26
Calling StartSync 0 •• 0 ••••••••••••••••••••• 26

Chapter 2-Receiving and Transmitting: SDLClHDLC

SOLC and HDLC 27
Frame Format . • • 27
What the Synchronous Driver Provides 28
Synchronous Protocol Options for SOLClHDLC•....... 28
Start-up Considerations for Receiver•..•.......... 29
Receiver Operation: Driver 30
Receiver Operation: Application•..... 31
PILEUP Errors •...........•..........•............ 31
Activelldle Status Reporting .•.•.•.•.....•..... : ••...•. 32
Start-up Considerations for Transmitter•......•....... 32
Transmitter Operation: Application ..•..........••.•....• 33
Transmitter Operation: Driver•..•.•..••••.•... 34
Aborting Transmissions•.•••••••••••.•..• 35
Error Handling ..•..................•..•.•........ 36
Error Codes 37
Internal Errors 37
Modem Signal Usage•....... 37

Chapter 3--Receiving and Transmitting: BISYNC

BISYNC vs. SDLClHDLC•.•...... 39
Block Format•......................... 39
What the Synchronous Driver Provides•... 40
Per-character Processing•......•....•• 40
Synchronous Protocol Options for BISYNC...........•........ 41
Receiver Operation•..... 42
Transmitter Operation • 44
Buffer Switching•... .. 45
Modem Signal Usage•.. 45
Error Handling•......•••.... 45
Aborting Transmission and Reception• 46
Activelldle Status Reportin~•........ 46
Finite State Machine Initialization 46

Chapter 4--Terminating Synchronous Operation

Effect on Operations in Progress 47
Use of DelayProc•.•..... 47
Restarting Synchronous Operation•..........••....•. 50
Protection Against Race Conditions • ••......•• 51

Chapter S--Signaling Mechanism

Application and Synchronous Driver Processes 52
Need for Signaling Mechanism 53
How the Synchronous Driver Sends Signals 53
How the Application Responds 54
Nested SignalProc Calls 54
The Signal Word 55
The Signal Word 55
Special Considerations 56

ii

l
l
l
l
l
l
l
l
1
l
l
l
l
'1

J

l
1
l
l
l

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

Chapter &--Modem Signals

Modem Signal Mapping 57
Components of Modem Signal Support 58
Reading the Modem Signals 58
Controlling Output Modem Signals 59
Supported vs. Unsupported Modem Signals 59
Input vs. Output Modem Signals 60
Updating the Modem Signals•.......... 60
Start-up and Shutdown Considerations &1
Programming with Modem Signals 62

Chapter 7··Trace Facility

What is the Trace Facility? 63
How the Trace Facility is Used? 63

Appendix A--Interface Record Layout

General Information . A-1
Explanation of Columns A-1
Section 1 -- Device Identification A-2
Section 2 -- Synchronous Parameter Selection A-2
Section 3 -- Data Exchange Interface A-3
Section 4 -- Service Routine Addresses A-5
Section 5 -- Reserved Areas A-S

Appendix B--Procedure Calling Conventions for the IBM PC Environment

Other Environments B-1
General Information B-1
Enabling and Disabling Interrupts B-1
Linkage Considerations B-2
Explanation of Headings B-2
Driver Routines B-2
Service Routines B-3

Appendix C--Reserved Device Qualifiers C-1

ii,

1
1
1
1
J
J
J
J
J
1
1
~

1
1
J
J
1
1
J
1

INTRODUCTION

What is the Hayes Synchronous Interface?

The Hayes Synchronous Interface (HSI) is a specification describing the interface
between two layers of software in a synchronous communications package. One
layer of software, the "synchronous driver," consists of the routines necessary to
operate the synchronous communications hardware. The synchronous driver
services device interrupts and transfers data to and from the hardware using the
computer's I/O instructions.

The other layer of software, the"application," transmits and receives messages. HSI
describes how these messages, and control information, are exchanged between
the application and the synchronous driver.

r
r
r
r
r
r
r
r
r
r
·r
r
r
r
r
r
r
r
r

s
o
F
T
W
A
R
E

IUser I

Application

Sync Driver

I Hardware I
1Sync data

1

What is the Hayes Synchronous Driver? -

Su ortin HSI is the Hayes S.ynchronous Driver.<HSD). HSD is ~oftware that
pe~rmst~e interrupt serviCing and other detailed I/O operatlons.ne"cessary to
operate specific hardware, sucn as the Hayes Smartmodem 24008, In Its synchronous
mode. Its interactions with the main body of the synchronous application software
conform to the HSI design specification described in this document. The Hayes
Synchronous Driver therefore.bridges the gap between the synchronous application
software and the Smartmodem 24008 hardware. The Hayes Synchronous Driver can
be licensed from Hayes Microcomputer Products, Inc., on an annual fee basis by
software developers.

Review of Synchronous Concepts and Terminology

Synchronous communications differ from asynchronous communications in that
data is organized into messages. In asynchronous communications, data is
exchangeCt character-by-character. There is no strict timing relationship between
the transmission of one character and the next. Start and stop bits must be
transmitted to announce when each character is transmitted.

l
l
l
1
l
l
l
l

1

·Data character
/

-'D')-"O~O) D) 0 I ~

Asynchronous data

2

2

,
)

~

j

l
l

l
i

I

l,
j

l
"1
l

In synchronous communications, however, data is exchanged in messages. The
characters which comprise each message are transmitted 6ack-to-back, with no start
or stop bits. Removing this start bit/stop bit overhead makes synchronous
communication more efficient than asynchronous communication. Furthermore,
the message-oriented nature of synchronous communication can be used to greater
advantage by sophisti1:ated applications (such as office automation) than the more
primitive character-by-character asynchronous communication.

Synchronous data

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

Message
/

-I '" I)

1...__.----(-...[....''] (

3

I)

2

1
1
1
1
1
l
l
l
1
1
l
1,

J

I I I I I I I I I I I I

··················

Chars-to
messages

Async

Sync
------------------....;,-~~

111010110111 B1ts-to-
~_..-.....-........ characters 0 0 0

__H_A_R_D_W_A_R_E IS 0 F TWA R E

:

In general, the beginning and end of each synchronous message is indicated by
protocols which place a special bit pattern or control character at the beginning and
at the end of the message. Synchronous protocols using control characters are byte
oriented; those using bit patterns (not necessarily corresponding to characters) are
bit-oriented. Byte-oriented protocols, such as IBM's Binary Synchronous
Communications (BISYNC), are generally older and being replaced by the more
modern bit-oriented protocols, such as IBM's Synchronous Data Link Control (SOLC)
or X.25's High-Level Data Link Control (HOLC).

In both synchronous and asynchronous communication, the stream of ones and
zeros coming in from the ~ommunicationsline ml;lst be converted. into a stream of
characters. Various technlq"!es are.used to e~a~hsh the boundaries ~etween the
characters in the stream of bits. This conversion IS almost always carried out by
specialized hardware in the synchronous or asynchronous communications adapter.
In addition, synchronous communications convert the stream of characters into
messages, ana various techniques are used to indicate the beginning and end of

. each message.

BISYNC
message:

Block check characters

STX ETX~

mDDDD~DD
1:~~~~J =Control

SOLC characters
message: 01111110DDDDDD 01111110

/ Fram~ sequence

-Flog- pattern

4

l
l

l
1

·l

1

Role of the Synchronous Driver

The characters-to-messages conversion is carried out jointly between the
communications interface adapter hardware and the synchronous driver software.
The responsibility of the synchronous driver software is to:

Respond to interrupts generated by the adapter using 1/0 instructions.

Assist the communications interface adapter hardware in characters-to
messages conversion.

Accept messages to be transmitted from the application and send it messages
that have been received.

./ t1essage that
has been
received

ReceiverYr.nlmi tter

Hardware

Sync Driver

Application

5

t1essage
to be ~
transmitted

3.

1.

2.

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

r
r
r
r

Recap: What are HSI and HSD?

This document describes the Hayes Synchronous Interface (HSI), a standard way of
fitting the application and synchronous driver together. HSI is the interface used by
the Hayes Synchronous Driver (HSD), a complete driver module that supports Hayes
synchronous devices. The source code for HSD is available for license from Hayes
Microcomputer Products, Inc., Customer Service group. By following the
specifications in this document, software developers can write synctironous drivers
for non-Hayes synchronous devices that support the same application interface as
HSD.

6

l
l
l
l
l
l
l
l

"I
l
l
l
l
~

1

l
l

"1

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

Advantages of Using HSI and HSD

By using HSI in a synchronous communication software package, compatibility with
current and future synchronous products from Hayes can be achieved. Hayes has
made available an HSI-compatible sync~ronousdriver supporting current products
and will update this driver to support future synchronous products.

General compatibility with other synchronous hardware devices can be achieved by
writing or obtaining HSI-compatible synchronous drivers. Since these synchronous
drivers would share the same application interface, support is added to the
synchronous communication package without changing the application side of the
standard interface.

User I

Appllcetlon

HSD Driver Driver
)(V

I \.

7 4~

\"'l"
Heyes Herdwere Herdwere
Sync X y

Herdwere

f ~ \
Sync dete Sync dete Sync dete

7

1
1
1
1
1
1
J
J
1
1
1
1
1
1
1
J
1
1
1

OVERVIEW

Physically, a synchronous driver (such as HSD) consists of a code segment containing
the five driver routines, plus a device service routine for each device supported by
the driver.

HSI consists of three main components:

1. Interface Record, or InterfaceRec, a control block shared between the driver
and the application

2. Driver Routines, five routines inside the driver that the application calls

3. Service Routines, five routines inside the application that the driver calls

8

5 Service Routtnes
• StgnalProc
• TxCharProc
• RxCharProc
• DelayProc
• TraceProc

/

""" 5 Driver Routines
"" • Preprocess

• StartSync
• EndSync
• StartTx
• UpdateStgs

Application

!
InterfaceRec

.. ~
'lIIr

Sync Driver

Device
service routines

I
I Devtce I

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

The InterfaceRec

The InterfaceRec is a control block containing information used to control the
operation of one synchronous device. If more than one device is being operated
simultaneously, there would be an InterfaceRec for each one, but each InterfaceRec
would have the same format. The address of the InterfaceRec is passed as a
parameter every time a driver routine or service routine is called. It is the
application's responsibility to allocate memory for the InterfaceRec.

Interface
Record

Dev1C8 Ident1f1 cat1on

Sync Parameter Select10n

Data Exchange Interface

Modem
Transmit Recelue Signals

Service Routine Addresses
1 I 2 I 3 I 4 I 5

Reserved Areas

Rppllcatlon Drluer

l
l
l
l
l
l
l
c=:q

I

l
l
l
l
1
1

I

9

l
l
l

·l
l

The Driver Routines

The five driver routines, called by the application, are as follows:

Inside the InterfaceRec

Adetailed breakdown of the InterfaceRec is presented in Appendix A. Some fields
in the InterfaceRec are controlled by the application, the synchronous driver, or
both. The fields in the InterfaceRec can be divided into five sections:

1. Device Identification

These fields are set by the application, read by the synchronous driver, and
used during set-up to help the driver identify the device it will operate.

2. Synchronous Parameter Selection

These fields are also set by the application and read by the synchronous driver.
They are also used during the set-up phase to establish synchronous protocol
options.

3. Data Exchange Interface

This section contains fields that are controlled by the synchronous driver, the
application, or both. These fields are used during active,·on-line- operation
to coordinate the flow of data messages sent back and forth between the
driver and the application; to control and report the status of the modem
signal lines; and to report and record error conditions. The data exchange
interface can be divided into three subsections: receive side, transmit side,
and modem signals.

4. Service Routine Addresses

Five fields are defined in this section, in which the application stores the
addresses of the five service routines. This is the linkage mechanism by which
the synchronous driver learns the addresses of the service routines, wtlich are
essentially subroutines inside the application that the driver may call.

5. Reserved Areas

Two 48-byte reserved areas are included in the InterlaceRec: one for the
synchronous driver's internal use and one for the application to use however it
wishes.

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

1. Preprocess

2. StartSync

3. EndSync

Called before starting synchronous operation, Preprocess
identifies the device to be operated and completes driver
initialization.

Starts synchronous operation.

Terminates synchronous operation.

10

t18SS~11

In essence, the synchronous driver transmits and receives messages via specific
hardware and passes these messages to and from the application using a standard
interface, HSI. Buffers are used to store these messages; a buffer is a reusable block
of memory large enough to contain an entire message. Usually, one standard
buffer size is used in a given application. HSI is compatible with any buffer size, up
to 64K b~es. Each message must be stored in a separate buffer and must fit into a
single buffer.

l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l

-l
l

Buffer 3Buffer 2

11

The application calls StartTx to inform the synchronous driver
that it has a message to transmit.

Calling UpdateSigs causes the synchronous driver to update
the status of the modem signals.

Buffer 1

Unused ./
buffer".,...,.
space

1. SignalProc

2. TxCharProc

3. RxCharProc

4. DelayProc

5. TraceProc

Buffer Usage

5. UpdateSigs

The Service Routines

The five seNice routines, called by the driver, are:

Part of the signaling mechanism the synchronous driver uses
to inform the application when certain events occur.

Used to customize transmitter operation in BISYNC mode.

Used to customize receiver operation in BISYNC mode.

Used when a delay is required during termination.

Part of a simple trace facility useful for debugging driver code.

4. StartTx

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

HSI supports two basic synchronous protocols: SDLClHDLC and BISYNC. In the case
of SDLClHDLC, messages are called frames, so each buffer corresponds to one
SDLClHDLC frame. In the case of BISYNC, messages are called blocks, so each buffer
corresponds to one BISYNC block.

What the Synchronous Driver Does

The synchronous driver performs all interrupt handling and device I/O necessary to
transmit and receive messages: on the transmit side, it takes da,ta characters from

. the buffers and feeds them to the hardware transmitter; on the receive side, it
accepts data characters from the hardware receiver and stores them in empty

. buffers.

What the Application Does

The application is responsible for buffer allocation and management. In general,
the application does everything that might involve interacting with the host
operatin~system, such as memory allocation and deallocation, and process
.synchronlzation. When it has a message to transmit, the application stores the
message in a buffer and passes the buffer to the synchronous driver. The
application also maintains a queue of messages to be transmitted, if this is desired.
The synchronous driver signals the application when it has completed message
transmission; the application may then remove the spent buffer and replace it with
a buffer containing the next message to transmit.

0001 HlIrdwlIre 1000 O~

Trensmlt
dete

-----./
Signal: Transmit Done

12

Similarly for the receive side, the application supplies the synchronous driver with
an empty buffer to receive the next incoming message. When message reception is
completed, the driver signals the application, which queues the message for
processing and replaces the full buffer with an empty one.

eeeI Hardware Ieee ~e
Receive
dete

~
51anel: Recelve Done

13

l
l
l
l
l
l
l
1
1
r=iJ
I

l,
1

1
1
1
1
1

-1

1

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

Starting Synchronous Operation

Calling Preprocess

An application using HSI first initializes itself, allocating memory for buffers and
the InterfaceRec. Ttle application fills in a number of InterfaceRec fields,
including those for device identification and synchronous parameter selection,
then calls Preprocess. Preprocess identifies the hardware configuration and
examines the selected synchronous protocol options. It returns a result code to
the application indicating whether it completed its operations normally or
whether an error occurreCt (perhaps a protocol option was selected that the
hardware being used didn't support).

ADpl1 cotI on Sync Dr1yer
J,.

I AJlocete buffers
and InterfeceRec

1IDeulc:e Id fields - VIIIues
Sync perm fields+-- velues

~
I CeJl Preprocess I

I 1
Identify device

Examlne perameters

I
•

I Check result code I
t

14

s
I-

Sometimes synchronous devices have an alternate communications channel or
method used to exchange control and status information. Preprocess may need
to interact with the device over that alternate channel to carry out its functions,
(e.g., the asynchronous command state of the Hayes Smartmodem 24008).

In such cases it may be desirable to use a separate driver to operate the alternate
channel or communication method (e.9., an asynchronous driver for the
Smartmodem 24008). HSI allows for thiS by defining a mechanism by which
Preprocess can interact with the separate driver. For example, when Preprocess
passes an AT command to the asynchronous driver," the asynchronous driver
Issues the command, collects the modem's response string, and passes it back to
Preprocess.

Async Driyer ADDlta;uiiun Sync Driyer

•
Call Preprocess I

I .~

QQQ Identify deulce

1 (Hamlne peremeters
Build RT command

Issue commend
Collect response

QQQ/1 -- ..
/ Process response

I•5"24008 Checle result Icode NOTE: Reali (.Q.Q2.) Indlcete--- t thet the Rppllcetlon pertic
petes In the processing.

15

1
1
1
1
]

1
I

1
1
l
1
1
1
1
]

1
1
]

.]

i

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

Calling StartSync

When Preprocess returns with an "OK" result code, both the driver and the
application are completely initialized and ready to go. To actually start
synchronous operation, the application calls StartSync. The driver takes control
of the device, installs its interrupt service routine, initializes the device registers
according to the selected synchronous protocol options, and begins transferring
data.

ADDlt ~lIttnn Sync Drtyer

'll"

Cell StertSyoc

1
Instell Interrupt routine
Set up deulce registers

I

.+\: •..•./
:::::Onl108·:::::...- .- ..o· I•• I

How the Driver Gets Control of the CPU

After control returns from the StartSync call, the driver gets control of the processor
again to perform its functions in one of two ways:

in response to device interrupts, or

whenever the application calls StartTx to start a transmission or calls
UpdateSigs to update the modem signals.

16

l
l
l
l
l
l
1
1
J
l
l
l
l
l
l
l
l

\
Driver
processes
Interrupt
or call

Sync
Driver

Return

Interrupt
or call

...Processlng
resumes,

Application
)IF~~---=-~~-_

/
Application
processing
suspended...

The Signaling Mechanism

On a number of occasions the driver must interact with the application. For
example, message reception may have just been completed or a modem signal
might have changed state. To manage such events, the application must execute
specialized code. The signaling mechanism enables that code to be executed at the
right time.

The driver keeps control as long as it takes to carry out the necessary operations to
service the interrupt, start the transmission, or update the modem signals. Control
is then returned to the interrupted process or the caller of the driver procedure.

·1
~

17

l

Decision
based on
event

Application
......--t~~~~-++--_

18

When the driver detects one or more events, it constructs a special signal word
indicating which events have occurred. Before it returns control to the interrupted
process or the caller of the driver procedure, it calls SignalProc, and passes the signal
word as a parameter. Inside SignalProc, the application handles each event by
executing the appropriate code or causing the multitasking system (if- one is being
used) to schedule a high-priority task to handle the event.

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

.•.. :
...... Offline '"..-.: ~

1
l
1
l
l
l
l
l
l
l
l
l
l
l
l
l
l

Sync PrJ,gr ·

Remoue Interrupt
routine

Tum off deulce

. I .'
e•••.. : :

...... Online '".....: .~

Error Handling

The synchronous driver is responsible for handling all error situations that might
arise during device operation. An error code field is defined in the InterfaceRec for
both transmit and receive. When a transmit or receive operation is completed
(either normally or with an error), an appropriate code is stored in this field to
indicate the outcome of the operation. In addition, an array of error counters, one
for each error code for both transmit and receive, is defined in the InterfaceRec.
The driver automatically maintains these counters, which indicate how many
transmit and receive errors have occurred.

Stopping and restarting synchronous operation is necessary if the application needs
to use tile device (e.g., a Hayes modem) to perform a short, transient operation,
such as issuing a status-inquiry AT command.

Stopping Synchronous Operation

When the application is ready to terminate synchronous operation, it calls EndSync,
causing the driver to turn off the device, remove the interrupt service routine, and
terminate synchronous operation. The synchronous communication session may be
restarted by calling StartSync again. Preprocess should not be called again unless a
new synchronous session (with different parameters) is desired.

19

!
\

l

r
r
r
r
r
r
r
r
r
r
.r
r
r
r
r
r
r
r
r

BISYNC V5. SDLClHDLC

HSI supports both BISYNC and SDLClHDLC protocols. Support of SDLClHDLC is
straightforward, as these protocols (essentially identical for our purposes) enjoy
well-established standards for frame formats, transmission and reception rules, etc.
Many BISYNC applications, however, use slightly different variations of the basic
protocol. Thus, the application must customize the operation of the synchronous
driver in BISYNC mode according to the BISYNC protocol variant being used..

This is accomplished through two per-character routines, RxChart:!roc and
TxCharProc. On the receive side,·the driver calls RxCharProc after each character is
received. Inside RxCharProc, the application examines the characters as they are
received, and decides to accept them, delete them, or initiate end-of-message
processing. On the transmit side, the driver calls TxCharProc just before
transmitting each character. Inside TxCharProc, the application decides to issue the
character for transmission, substitute a different character, or insert a new character
into the message. In general, the application must do more work when BISYNC
mode is selected instead of SDLClHDLC.

Modem Signal Support

Modem signals are binary, electronic signals carried between the synchronous
hardware and the device it is connected to, usually a modem. The use of these
signals is standardized by the RS-232 specification, but the standard is not adhered
to precisely by every device. To accommodate nonstandard use of these si9nals
(such as occurs in IBM's modems to support Link Problem Determination Aid, LPDA),
HSI makes few assumptions about the modem signals.

20

Sixteen of the 25 possible modem signals are provided for in a modem signal word
found in the InterfaceRec, which shows the current status of these signal lines (data,
clock, and ground signals are omitted). The application can set and test these
signals individually. The InterfaceRec also contains a word set by the synchronous
driver, indicating which of the 16 signals are actually functional in the device being
used.

InlerfaceRec

t10demSlgs

HSI specifies the operation of three modem signals: RTS, CTS, and DCD. The
synchronous driver's transmit routines automatically raise RTS (Request To Send)
before each transmission, if the application has not programmed this signal high. In
addition, these routines wait for CTS (Clear To Send) before beginning the
transmission. An error is generated if CTS is lost during transmission. Similarly, an
error is generated by the receive routines if DCD (Data Carrier Detect) is not present
during a receive operation.

Trace Facility

HSI provides a simple trace facility, useful for debugging driver code. The TraceProc
service routine can be used to pass trace information from the synchronous driver to
the application. The application makes sure that the trace information is displayed
or printed for the programmer to study.

21

l
l
l
l
i

\

l
l
l
l
l
l
l
l
l
l
l
l

-l

l

CHAPTER 1--STARTING SYNCHRONOUS OPERATION

InterfaceRec
Deyjce IdentI fl catIon

Inltlallze---' • DEVICEQUAL

This chapter describes the process of starting-synchronous operation using HSI. In
chronological order, it describes the operations the application and the synchronous
driver must perform.

22

Reseryed Areas

Data Exchange Interface

SerYlce Routine Addresses
1 I 2 I 3 I 4 15

.' .' :.:. '", ... '. . .' . . ~~

Inltla11ze---'

Sync Parameter Selection
• BSC • BSCSYNC

Initiallze---' • ADDRDET • NRZI
• SDLCADDR • FLAGIDLE

• WRAP

Creating the InterfaceRec

The application is responsible for allocating memory for the InterfaceRec. Using the
memory management services available through the host operating system and/or
programming ranguage, a block of memory o~the correct size is allocated. The size
of the InterfaceRec is indicated in Appendix A. After allocating the InterfaceRec,
the application clears the entire block of memory to zeros.

Next, the application fills in the device qualifier field, DEVQUAL, and the
synchronous parameter selection fields. The synchronous parameter selection fields
are discussed in Chapters 2 and 3 on SDLClHDLC and BISYNC operation, respectively.
The device qualifier field is discussed below. The application also stores the
addresses of the five service routines in the InterfaceRec fields defined for this
purpose.

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

1
1
1
1
1
1
1
1,

I

1
1
1
1
1
1
1
1

·1

1

v

I"tertIIceRsc

1

DEYICEQUAL-

When. the drivers for several different synchronous devices are packaged in one
large synchronous driver module (such as HSO), it is not possible through hardware
alone to determine which synchronous device is present at any ~iven time.
Therefore, the device qualifier field may be used to indicate which device-specific
driver will be activated within the large synchronous driver module.

2

DEYICEOUAL-

23

Device Qualifiers

The synchronous driver determines the hardware confjguration present, but may
require assistance to do so. To assist the synchronous driver establish device
identity, the OEVQUAL field is provided in the InterfaceRec. This 16-bit field is not
definea in detail by HSI, since the information needed by a synchronous driver to
establish device identity cannot be anticipated.

To clarify the OEVQUAL concept, consider a synchronous driver for a device such as
the Hayes Smartmodem 24008. This device can be set to one of two possible
configurations: COM 1 or COM2. It is impossible for the driver to know which COM
port it must use to access the Smartmodem 24008; therefore the device qualifier
field is used to provide this information. OEVQUAL = 1 could be used to indicate
COM1, and OEVQUAL =2 to indicate COM2.

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

Appendix C lists a number of reserved device qualifier values, including those used
with HSO. As a service to HSO licensees, Hayes is coordinating the assignment of
additional OEVQUAL values for use with synchronous drivers other than HSO. These
values will be opeJ:'ly published with the values currently listed in Appendix C.

UQ Port and Interrupt Vector

For some choices of DEVQUAL, the InterfaceRec fields 10PORT and INTVEC must be
filled in with the I/O port address and interrupt vector number of the hardware in
use. This step is necessary when these quantities can vary over a relatively wide
range, according to the position of DIP switches or jumpers on the hardware device.

The synchronous driver determines whether or not 10PORT and INTVEC is set. If
10PORT and INTVEC are not set by the application, the synchronous driver may use
them to store the I/O port and interrupt vector it chooses. Appendix Cdetails the
use of 10PORT and INTVEC with current OEVQUAL values.

Calling Preprocess

Having allocated and partially initialized the InterfaceRec, the application next calls
Preprocess. As with all driver routines and service routines, the address of the
InterfaceRec is passed as a parameter to Preprocess. Inside Preprocess, the driver
·examines the device qualifier and completely establishes device identity. It also
looks at the synchronous parameter selections and makes sure that the hardware in
use supports all of the selected options. Preprocess returns a result code to indicate
whether or not it detects an error in the selected options, or to invoke the RECALL
facility.

ARnlt ~fttton Driyer

"'III"

ICall preprocess:
1

Identify deulce
Check protocol options

I

Check result code

o(r~ERROR
"'III

RECALL

24

RECALL Facility

In general, Preprocess does not interact with the synchronous device to perform its
functions, since the device may be operating in an alternate mode or capability
which must not be disturbed. However, Preprocess may need to interact with the
device in order to identify it or preset some of the synchronous protocol options. At
such times, it is best to use an alternate driver (such as an asynchronous driver) to
operate the device. To support this type of interaction, the RECALL facility is
provided.

The RECALL facility lets Preprocess send a message to the device and receive a reply.
To use the RECALL facility, Preprocess stores its message (a character string) in the
InterfaceRec field STRING, then returns to the calling application with the result
code RECALL. When it receives this RECALL result code, the application interacts
with the alternate driver to communicate the message to the device and collect the
response. The response, also a character string, is stored back into the STRING field,
and Preprocess is called again.

With the Hayes Smartmodem 24008, asynchronous AT commands must be issued to
preset some of the synchronous protocol options. Preprocess stores the necessary
command string in the·STRING field and returns RECALL. The application then uses
an asynchronous driver to issue the command string to the Smartmodem 24008,
collects the modem's response characters, and stores them back into the STRING. It
then recalls Preprocess. This RECALL mechanism may be repeated before Preprocess
returns a result code indicating that the process is completed, with or without error.

Algnc PrJyer

Transmt t ter~STRIN6
STRIN6 ~ Recetver

25

1
1
1
1
1
1
1
1
1
1
~

J

1
1
1
1
1
1

·1

1

26

Preprocess Result Codes

Appendix B describes how Preprocess is called and how the result code is returned.
The following result codes may be returned by Preprocess:

Calling StartSync

To actually start synchronous operation, the application calls StartSync. Before
calling StartSync, the application prepares its side of the data exchange interface
(see Chapter 2) since data transfer could commence immediately. Insiae StartSync,
the driver takes control of the device, programs its registers for the selected
synchronous protocol options, installs an interrupt service routine, and begins
operation. When control returns from StartSync, synchronous communication is
fully operational.

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

OK

RECALL

BADQUAL

BADCALL

MODENS

WRAPNS

METHDNS

Preprocess operations complete, no error.

Application should transmit message in STRING to device,
store reply back into STRING, and call Preprocess again.

Driver does not understand the supplied device qualifier.

Preprocess called again;RECALL not activated.

Selected SDLClHDLC or BISYNC mode not supported by device.

Wrap option (explained in Chapter 2) not supported by device.

Device doesn't support synchronous method implemented by
the selected driver.

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

CHAPTER 2··RECEIVING AND TRANSMITTING: SDLClHDLC

01111110
CloltD9

na,

I
fr.me
cbect

lequ,ence
Information field

Information field

c..trol
field

27

SDLe Frame Format

Add....1 Control
ftel. field

Buffer

01111110
Oplat.,

na,

Frame Format

SOLClHOLC messages are called frames. Each frame is stored in a separate buffer
provided by the application. Frames cannot span buffer boundaries, and the
maximum buffer size is 64K bytes. HSI assumes that 8-bit characters are being used,
and provides no support for alternate character sizes.

The address and control fields of each frame are stored in the buffer as if they were
data. In general, the synchronous driver does not distinguish between the address,
control, and information fields of a frame. (An exception is the address detect
option described later in this chapter.) Flags are not stored in the buffer, nor is the
Frame Check Sequence (FCS).

SDLC and HDLC

For our purposes, SOLC and HOLC are essentially the same. They share the same
frame format, flag pattern, and frame check sequence. They both make use of
techniques such as zero bit insertion and deletion. The differences between SOLC
and HOLC lie at the level of data link control procedures. They differ in how
messages relate to each other, not how individual messages are transmitted. Since
the synchronous driver is concerned only with transmitting and receiving individual
messages, and not with determining the corred response to a received message, it is

."not aware of the differences between SOLC and HOLe. .

r
r
r
r·
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

Synchronous Protocol Options for SDLClHDLC

The application must select certain protocol options during set-up (before calling
Preprocess). To makes its choices, the application sets the InterfaceRec fields (in the
Synchronous Parameter Selection section) to the appropriate values. The choices
relevant to SDLClHDLC mode are as follows:

What the Synchronous Driver Provides

The synchronous driver (with the hardware device) automatically appends the
opening and closing flags to transmitted messages, and computes and appends the
FCS. On the receive side, the opening and closing flags are detected, and the FCS is
computed and checked. An error is reported if ttle received FCS is incorrect. Abort
sequences are properly detected on receive data and properly generated on
transmit data. Zero-bit insertion on transmit data and deletion on receive data is
performed in a manner transparent to the application.

BSC

ADDRDET

SDLCADDR

BSCSYNC

NRZI

FLAGIDLE

WRAP

To select SDLClHDLC mode, this field is set to o. Some
synchronous devices might not support SDLClHDLC operation;
in such a case Preprocess would return the result code
MODENS (Mode Not Supported).

To enable the address detect option, this field is set to 1;
otherwise, it is set to o.
If the address detect option is enabled, only frames whose
address field matches the programmed station address will be
received and passed on to the application. Frames with the
broadcast address FF will also be received. Frames that match
neither address will be ignored and no error code will be
generated. Extended address fields are not supported; only
the first byte of the address field is checked.

If the address detect option is enabled, the desired station
address is stored in this field. If the option is not enabled, the
driver ignores this field.

The driver ignores this field for SDLClHDLC mode.

If Non-Return To Zero Inverted (NRZI) encoding and decoding
is desired, this field should be set to 1; otherwise, it is set to o.
If this field is set to 1, the transmitter will send continuous flag
patterns (01111110) when it has no data to transmit. If this
field is set to 0, the transmitter will send a continuous mark
level (all ones).

Some hardware devices have a wrap mode in which transmit
data is immediately fed back into the receiver for test
purposes.

28

l
l
l
l
l
l
l
l

l
l

l
l
l
l
l
l

·l

l

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

To select wrap mode, this field is set to 1; otherwise, it is set to
o. If the hardware device in use does not support wrap mode,
Preprocess will return the result code WRAPNS (Wrap Not
Supported). If wrap mode is selected, it remains in effect for
the duration of the synchronous session. To turn wrap mode
off, a new synchronous session must be started by clearing the
WRAP field, changing necessary synchronous parameters, and
calling Preprocess ana StartSync again.

Start-up Considerations for Receiver

The application and the synchronous driver go through the following sequence to
receive incoming data. Before starting syoctironous operation, the application
stores the size of the buffers being used in the field RXBUFSIZ found in the data
exchange section of the InterfaceRec. The buffer size selection is fixed at this point;
it may De changed only after terminating synchronous operation. Notice, however,
that RXBUFSIZ only pertains to the receive side.

. Before starting synchronous operation, the application gets two empty buffers and
places their addresses in RXBUF and RXNXTBUF. RXBUF points to the buffer which
will store the next incoming message; RXNXTBUF points to the buffer which will
store the next message.

AIlAltcatton

RXBUFSIZ ~ Buffer size -
RXBUF ~ Address of empty buffer

RXNXTBUF ~Address of empty buffer

Call StartSync

29

Receiver Operation: Driver

When the next message arrives, its characters are stored in sequential positions in
the buffer pointed to by RXBUF. The driver uses the RXINDEX field to point to the
next place to store a character in the buffer.

At the end of the message, the driver stores the number of characters received (the
final value of RXINDEX) in the field RXCOUNT (the PILEUP error is explained later).
If an error occurred, it stores an error code in RXERROR and increments the
corresponding error counter. If no error occurred, the driver stores a zero in
RXERROR. In preparation for receiving the next message, it then clears RXINDEX
and transfers the buffer address in RXNXTBUF to RXBUF. Finally, the driver sets
RXREADY to 1 and sends a signal, RXDONE, to the application.

The driver sets the flag RXINPROG to 1 when it receives the first charader of a
message, and clears it to 0 when the end of the message is reached. RXINPROG
indicates that a receive operation is in progress.

l
l
l
l
l
l
~

1

30

l
l
1

I

l
l
l
l

l
l

I

Watt for next Incoming message
RXINPROG4-1

RXINDEX 4-0
RXBUF 4- RXNXTBUF
RXREADY4-1
RXINPROG 4-0

Recelue character
RXBUF IRXINDEX) 4- character

RXINDEX 4- RXINDEX. I

r
r
r
r
r
r
L.

r
r
[

r
r
r
r
r
r
r
r
r
r

Receiver Operation: Application

In response to the RXDONE signal, the application checks RXERROR and reads the
number of characters received from RXCO~NT. Then it stores the address of a new,
empty buffer in RXNXTBUF and clears RXREADY.

Annlf ~lIlttnn

'liP l
Walt for RXDoNE signal

~

outcome of
recel ve operation+-RXERRoR

Number of
characters recel wed +- RXCOUNT

l
RXNXTBUF+-Address of empty buffer

RXREADY +- 0

~

Process message Just recel wed

PILEUP Errors

Notice that the receiver sets itself up to receive the next message immediately after
the preceding message is received. Thus, the application has one entire message
time to respond to the RXDONE signal. If for some reason the application fails to
absorb the preceding message when the next message is received, the driver will
find that the RXREADY flag is still set to 1. This situation is called a message PILEUP
error.

To handle a PILEUP error, the driver increments the PILEUP error counter, clears
RXINDEX to zero, and begins receiving the next message. The error is not reported
in RXERROR because this field (and RXCOUNT) must not be changed once the
RXDONE signal has been sent. The application will learn about the PILEUP error
when it receives an out-of-sequence message (due to dropping one or more
messages) or when it scans the error counters directly.

31

Adive/ldle Status Reporting

Some applications require a response to a "line idle" condition. An idle condition
occurs when eight or more consecutive 1 bits are detected on the line. Usually, the
flag idle option is selected, in which the transmitter sends continuous fla~ patterns
(01111110) between frames, preventing an idle condition. Detecting an Idle
condition may indicate that the transmitting station is out of order.

The driver (with the hardware in use) automatically maintains a flag in the
InterfaceRec called RXACTIVE. This flag is set to 1 whenever the line is active and 0
when it is idl,e. Each time the RXACTIVE flag changes value, the driver sends the
ACTCHG signal to the application. Using this mecllanism, the application can
maintain a time-out on the length of time the line is idle. If the idle condition is
irrelevant to a given application, that application may ignore the RXACTIVE flag
and the ACTCHG signals.

Start-up Considerations for Transmitter

On the transmit side, the application does nothing special before starting
synchronous operation. Zeroing the InterfaceRec clears the transmitter's control
fields, causing it to wait until the application has a message to transmit.

32

l
l
l
l
l

l
l
l
l
l
l
l
l
l
l,

I

l
'9

1

l

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

Transmitter Operation: Application

When the application has a message to transmit, it stores the address of the buffer
containing the message in the field TXBUF. It stores the number of characters in the
message (not the total size of the buffer) in TXCOUNT and sets TXREADY to 1. To
make sure the driver notices that the application has given it a message to transmit,
the application calls StartTx.

TXBUF~ Addre88 of buffer containing me88age
TXCOUNT~ "e88age 81ze

TXREADY ~ 1

Call StartTx

33

"llP ..

34

I

ITXINPROG =1 :....n_o --.

l
J
l
l
l

l
l
l
l
l
'l
l
'l

l
l
l
l

·l

l

I Rbort I
Transmission

no

Errort I~y~e_s ~
I ..

TXERROR.- code
Increment counter

for that codeTXERROR +- 0 I
I

IIIr yes

Character+-TXBUF (TXINDEX)
Transml t character

TXINDEX +- TXINDEX + 1

~ 1

Walt tn transmItter Is ready to start
and TXREADY=1

TXREADY+- 0
TXINPROG +-1
TXINDEX+- 0

TXINPROG .- 0
Send TXDONE

signal

Driver

!

~_n-o-tl TXINDE. =TXCOUNT71

yes

.. r J,

Transmitter Operation: Driver

When the hardware transmitter is ready to begin transmitting another message,
the driver clears TXREADY, sets TXINPROG, and begins transmitting the message. It
uses TXINDEX to keep its place in the buffer. When message transmission is
completed, the driver stores zero (or an error code) in TXERROR, clears TXINPROG,
and sends the signal TXDONE to the application. (The use of the TXINPROG flag is
explained later.)

r
r
r
r
r
r
r
r
r
r
r
r.
r
r
r
r
r
r'"
l

r

Upon receiving the TXDONE signal, the application checks TXE.RROR, then sets up
the next message for transmission if there is one. The application should try to
respond to the TXDONE signal as quickly as possible. This keeps the transmitter
b~syduring periods of heavy data traffic.

Wat t for TXDONE stgna1

Outcome of .- TXERROR
transmtt operation

TXBUF +- Address of next buffer to send
TXCOUNT .- "essage stze

TXREADY +- 1

Call StartTx

Aborting Transmissions

To prematurely abort a transmit operation (e.g., for a priority message), the
application uses TXINPROG "transmission in progress" flag.

The driver sets TXINPROG at the beginning of each transmission and clears it at the
end of each transmission. During tile transmission, the driver checks TXINPROG
before transmitting each character. If TXINPROG is still 1, transmission continues; if
the application has cleared TXINPROG to 0, the driver aborts the transmission.

35

For example, suppose the application has a higher-priority message to transmit,
requiring the current transmission to be aborted. The application would clear
TXINPROG, set up the new message for transmission~then set TXREADY and call
StartTx.

TXBUF +- Address of buffer contelnlng
prlorl ty mes.ege

TXCOUNT+- Size of priority me••ege

TXREADY +- 1

The following situation is possible: the application decides to abort the current
transmission, but before it clears TXINPROG the current transmission is completed
normally. In this case, the driver would have already cleared TXINPROG at the end
of message transmission and no abort would occur.

Error Handling

The error code fields, RXERROR and TXERROR, report the outcome of each receive
and transmit operation, respectively. When a transmit or receive operation is
completed, the synchronous driver sets the error field to zero if no error occurred,
or to a non-zero error code if an error did occur. The driver also increments the
error counter of the corresponding error code every time an error occurs, to provide
a more permanent record of errors. There are separate error counters for the
transmit side and the receive side.

The RXERROR and TXERROR fields can only be used when an error occurs during a
specific transmit or receive operation. The error counters record errors which occur
both during and outside of transmit and receive operation.

36

l
l
l
l
.....

l
l
'l
l
l
l
l
l
l

j

l
l
i
J

l
.,

I

l

1. OVUNDR

2. ABORT

3. NOSIG

4. PILEUP

5. OVFLOW

6. BADCK

Internal Errors

r
r
r
r
r
r
r
l

r
r
r
r
r
r
r
r
r
r
~

l

r

Error Codes

HSI provides for 20 error codes, numbered 1 through 20. (Code 0 is used to indicate
that no error occurred.) Six error codes, numbered 1 through 6, are defined by HSI.
The remaining 14 are reserved for future or specialized use by each application.
Chapter 3, on BISYNC operation, describes how the undefined error codes may be
used. There is an error counter in the InterfaceRec for the 20 error codes for both
transmit and receive, (40 altogether).

The error conditions and their code numbers are:

Hardware overrun/underrun.

Abort sequence transmitted or received.

Modem signal lost (DCD for receive side, CTS for transmit).

Reception of next message completed before application
processed previous message.

Incoming message overflowed buffer (RXLlMIT was less than
message length). .

Incoming message has bad check sequence.

Two fields, RXINTERR and TXINTERR, may be used by the synchronous driver to
report internal errors. An internal error usually occurs when the driver is in the
wrong operating mode (e.g.,the driver may be in the end-of-message mode before
the first character of a message has been received). - :

HSI does not specify the format of the error codes stored in RXINTERR and
TXINTERR, beyond stipulating that they be nonzero. A zero code indicates no error.
Internal error should not occur; it indicates a programming error in the synchronous
driver or a problem in the hardware.

Modem Signal Usage

HSI does not define specific modem signal usage, except for the signals RTS (Request
To Send), CTS (Clear To Send), and DCD (Data Carrier Detect). Assuming the
hardware being used supports them, these three si~nalsare controlled or tested by
the synchronous driver during the course of transmit and receive operations. The
driver requires the presence of an active OeD signal before it validates received
data. If OCD is not present or is lost during message reception, an error code is
generated.

37

'1
1

"9

1

l
l

l
l
l
l
l
lRTS Transmitter

'----~~ ioglc
Receiver

logic

U
IIex
II CTSu
G

t
I)

- RTSc

AJ2J)J ication

DCD

On the transmit side, the synchronous driver raises RTS each time it is ready to
transmit a message, then it waits for CTS to go high before beginning message
transmission. At the end of the message, it drops RTS. If CTS is lost during message
transmission, an error code is generated.

The application can program RTS high or low, just like any other modem signal that
functions as an output. The state ofRTS as outputted is the logical OR of ttle
application's setting and the driver's control. If the application programs RTS low,
the signal will be under the control of the driver, and will go high and low as
messages are transmitted. If the application programs RTS higl1, it will be fixed
high. In every case, however, the driver requires an active CTS signal for proper
message transmission.

In certain types of hardware, other modem signals (such as Data Set Ready, DSR)
might be required in order for transmit and receive operations to occur. HSI does
not address these signals.

l
l
l
1

)

38

.~

I

l

r
r
r
~

l

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

CHAPTER 3··RECEIVING AND TRANSMllTING: BISYNC

BISYNC V5. SDLClHDLC

BISYNC operation is identical to SDLClHDLC operation in many ways. The same
mechanism is used to exchange buffers containin~messages back and forth
between the synchronous driver and the application. All of the fields in the data
exchange interface section of the InterfaceRec work the same way for BISYNC mode
as they eto for SDLClHDLC mode. Refer to Chapter 2, covering SDLClHDLC operation,
for a complete discussion of the topics that are common to both BISYNC and
SDLClHDLC operation. This chapter points out the differences between the two
modes of operation and covers topics that pertain only to BISYNC operation.

Block Format

BISYNC messages are called blocks. Unlike SDLClHDLC frames, which have a very
well-defined and universally accepted format, BISYNC blocks come in many

.different forms. There is no universally accepted format for BISYNC blocks. For

.example, it is not possible to define a method for establishing the end of a BISYNC
block that will work for every variation of the BISYNC protocol in use today. Thus,
BISYNC operation is characterized by a greater reliance on the application to
participate in the operation of the synchronous data link.

A BISYNC block consists of a series of characters. Blocks always include one or more
control characters and may also include data characters. Each block is preceded by a
series of two or more synchronization (SYN) characters. The purpose of these
characters is to lock the receiver into character synchronization. Blocks containing
data characters usually also contain a Block Check Character (BCC) sequence,
analogous to the SDLClHDLC's Frame Check Sequence. Each block is stored in a
separate buffer and cannot span buffer boundaries. The maximum buffer size is
64K bytes. Eight bit characters are assumed, but any character set can be used.

39

All characters comprising the block, except for the opening SYN characters, are
stored in the buffer. Any SYN characters appearing later in the block, as well as all
other control, data, and block check characters, are stored in the buffer.

Buffer

l
l
l
l-
l
I

I

\

J
i

Typical BSe Block Format l

l

What the Synchronous Driver Provides

The synchronous driver (with the hardware being used) automatically appends two
opening SYN characters to transmitted blocks. The application may specify the
particular 8-bit character which will serve as the SYN character. On the receive side,
the opening SYN characters are detected but not stored in the buffer. The
application processes block check characters, control characters, and idle SYN
characters. The application also determines the end of the message being received.

Per-character Processing

In order to perform its functions, the application must get involved in the character
by-character processing of data. The two per-character service routines, TxCharProc
and RxCharProc, are defined to enable this. The presence ofper-character
processing does not eliminate the data-buffering function of the driver.

40

M)

I

'\
I
1

l
l
1

J

l
l

Synchronous Protocol Options for BISYNC

The following are the synchronous protocol choices relevant to BISYNC mode:

The synchronous driver continues to transfer data between the buffers and the
hardware but in BISYNC modes, the driver lets the application "peek" at the data as
it is transferred and give the driver special character-by-character processing
instructions.

r
r
r
r
~

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

BSC

ADDRDET

SDLCADDR

BSCSYNC

Buffer

CCCI H.~w.~ ~CC CC

Sync
data

To select BISYNC mode, this field is set to 1. Some synchronous
devices might not support BISYNC operation; in such cases,
Preprocess would return the result code MODENS (Mode Not
Supported).

The driver ignores this field for BISYNC mode.

The driver ignores this field for BISYNC mode.

The application stores the desired SYN character in this field.
(usually 32 hex for the EBCDIC character set or 16 hex for
ASCII).

41

Receiver Operation

The application and the synchronous driver go through the same sequence of
events for BISYNC operation as described in Chapter 2 for SOLCI HOLC operation. At
the same time, however, per-character processing occurs. The driver calls
RxCharProc just after it receives each character. Inside RxCharProc, the application
has the opportunity to examine the stream of incoming characters and influence
the driver's processing by selecting certain processing options.

Unless instructed otherwise, the synchronous driver simply stores the character in
the buffer and waits for the next character after control returns from RxCharProc.
As an alternative, the application can select two select processing options on each
received character:

NRZI

FLAGIDLE

WRAP

IGNORE

ENOMSG

If Non-Return To Zero Inverted (NRZI) encoding and decoding
is desired, this field should be set to 1; otherwise, this field is
set to o.
If this field is set to 1, the transmitter sends continuous SYN
characters when it has no data to transmit. If this field is set to
0, the transmitter sends a continuous mark level (all ones).
Notice that this choice is made only once during set-up for the
synchronous session (before calling Preprocess). It is not
possible to switch back and forth tjetween mark idle and SYN
idle in the middle of one session.

Setting this field to 1selects the hardware wrap option, if
available. See Chapter 2 for a more complete discussion of the
wrap option.

Ignores the character just received.

Treats character as the last character of the message and
performs end-of-message processing. With this option,
RxCharProc may return an error code to be associated with the
message, otherwise the driver indicates no error.

42

l
l
~

1

-l
l

J

"J

~

I

l
l
l
l

l
l
l
l
l

·l
"

l

.- - .•
UI ('Wal

J,
6llPJ1clllon Recelue ...

next cherecter ~

J,
I Cell RxCherProc..

(Hemlne character
Select processlng

option ?
I

/RE/"f E.~
Def1a1t

Ignore Store Perform
charecter cherecter end-of-

tn buffer mes8ege
processtng

~I

r
r
r
r
r
r
l

r
r Either or both processing options may be selected independently for each character.

r

r
r
F"1

l

r
r
r
r
r
r
r

The use of per-character ~rocessing to implement BISYNC communications is the
"application programmer sdecision. HSI requires only that the ENDMSG option be
selected at the proper time to terminate each received message. To do this, the
application implements some sort of finite-state machine to follow the BISYNC
protocol for each message that it receives. Each time RxCharProc is called, the
application uses the character just received to advance the machine to a new state.
When a terminal state is reached, the ENDMSG option is selected.

With per-character processing, the application can also compute and check the
block check character sequence at the end of each message, and return an error
code with the ENDMSG option if the check sequence is bad. Other error conditions,
such as BISYNC protocol violations, can be detected and reported making use of the
undefined error codes. With the IGNORE option, the application can strip idle SYN
characters and OLE (Data Link Escape) characters from transparent text. By
stripping these characters from the data before it is stored in the buffer, the data
need not be recopied to remove the characters later.

Refer to Appendix B for a detailed description of how RxCharProc and TxCharProc
are called, what parameters are passed to them, and what results they return.

43

2. SUBST

Transmitter Operation

Transmitter operation in BISYNC mode is similar to SDLClHDLC mode, with the
addition of per-charader processing. After the synchronous driver reads each
character from the buffer, and before it transmits the charader, the driver calls
TxCharProc. Inside TxCharProc, the application can examine the stream of transmit
data and seled processing options. If no processing option is seleded, the driver
transmits the charader normally. One of the two alternatives to this default
processing may be seleded:

c.

1. INSERT By selecting this option, the application can cause a specified
charader to be inserted in the message just before the
charader about to be transmitted. After transmitting the
charader, the driver calls TxCharProc again for the ctiarader
that was to be transmitted previously.

By seleding this option, the synchronous driver transmits a
substitute charader to replace the charader about to be
transmitted. After transmitting the substitute character, the
driver proceeds to the next charader in the buffer.

Appllc.tlpn -~UI IYIII

J.,
Fetch character ~

from buffer I'

J,
I Call TxCharProc I~•

Examlne character
Select processing

option ?
I

SUBST/f I.~/ Defrlt
Send Send Send

specified original specified
character character character

J I
r

44

1
l
l
l
l

I

l
Fl

I
I

'i
\

1
J

l
:;~t,.":

l
1

},
I

1
l
l

oJ

l

r
r
r
r
r
r
r
r
r
r
r
r
r
~

t

r
r
r
r
r

Per-character processing on the transmit side is not as ~ritical to BISYNC link .
operation as it is on the receive side. HSI does not specify what or when processing
options must be selected. A BISYNC Iin~ may be run wit~outusing per-charact~r.
processing on the transmit side, by storing the message In the buffer exactly as It IS
to be transmitted.

Some applications may choose to use per-character processing on the transmit side
to process data as it goes cut to the transmitter, rather than processing data in
advance in the buffer. For example, the trailing block check character sequence can
be computed inside TxCharProc and placed in the message on top of dummy, place
holder characters using the SUBST option. Also, idle SYN characters can be inserted
at regular intervals into the message by tying TxCharProc into some kind of real
time clock service provided by the application. OLE characters can be inserted into
transparent text where necessary via the INSERT option. Again, a finite-state
machine is usually used to control TxCharProc, so that it chooses each processing
option at the rigftt time.

Buffer Switching

The open-ended nature of HSI, with regard to BISYNC operation, allows for creative
application designs. For example, it may be advantageous in some applications to
store control characters separately from data characters, the latter being stored in
data buffers. TxCharProc or RxCharProc could be programmed to switch the BUF,
COUNT, and INDEX fields to point to different data sources as message transmission
(or reception) progresses.

For examrle, TXBUF can be set to point to a data area containing a fixed sequence
of contro characters. TXCOUNT can be set to the length of this sequence, or to
some arbitrary high value. Under the control of a finite-state machine inside
TxCharProc , the synchronous driver is allowed to transmit the control characters.
TXBUF, TXCOUNT, and TXINDEX then can be reset to point to a buffer containing
the data portion of the message. To support this type of creative programming, the
driver does not hold the value of variables such as TXBUF, TXCOUNT, or TXINDEX in
registers across calls to TxCharProc or RxCharProc.

Modem Signal Usage

Modem signals are used exactly as described in Chapter 2 for SDLClHDLC mode.

Error Handling

BISYNC error handling is the same as that described for SDLClHDLC, except that
user-defined error codes may be returned from RxCharProc via the ENDMSG option.
If RxCharProc fails to return the ENDMSG option for a given incoming message, a
buffer overflow error (OVFLOW) will eventually be generated.

4S

Aborting Transmission and Reception

HSI does not support an abort sequence for BISYNC mode. If an abort sequence is
defined for the BISYNC protocol variant being used in a given application, it is
detected by RxCharProc. The ENDMSG option is taken, and the ABORT error code is
returned. On the transmit side, the synchronous driver responds to the application's
clearing the TXINPROG flag the same as it does in SDLClHDLC mode, except that no
abort sequence is sent. The transmitter simply reverts to its idle state (SYN idle or
mark idle). Transmission of the next message may begin immediately thereafter.

Activendle Status Reporting

This facility is not relevant to BISYNC mode.

Finite State Machine Initialization

It may be simpler in some applications for the finite state machines within
RxCharProc and TxCharProc to automatically reset themselves to their initial states
at the be~inningof each message ratherthan having this action performed at
another time (when the state machines detect end-of-message, for example). To do
this, RxCharProc and TxCharProc should test the InterfaceRec fields RXINDEX and
TXINDEX, respectively, each time they are called. If the field has the value 1, the
state machine should reset itself then process the first character of the message.
Otherwise, the character should be processed normally.

46

J
1
J,

)

l
l
l,

1

l
1
~

I
I

,
I
I

1
l
l-',

!

-1,
)

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

CHAPTER 4--TERMINATING SYNCHRONOUS OPERATION

To terminate synchronous operation, the application calls EndSync. Inside EndSync,
the synchronous driver shuts the device off, removes the interrupt service routine,
and performs whatever other operations are necessary to terminate synchronous
operation.

Effed on Operations in Progress

If transmit or receive operations are occurring when EndSync is called, the driver will
abort them automatically. For transmit operations, an abort sequence is sent; for
receive operations, the driver pretends to receive one. The appropriate signal,
TXDONE or RXDONE, is sent with an ABORT error code. The signaling mechanism
may be invoked during EndSync processing; it should be left intact on the
application side until control returns from EndSync.

Use of DelayProc

Some synchronous devices require a time delay during their deactivation sequence.
This time delay is obtained by the driver calling the DelayProc service routine. The
application may do whatever it wishes with the CPU during the delay interval, as
long as it returns control when the interval expires. The use of DelayProc avoids the
use of an idle loop inside the driver. DelayProc is called only during termination
processing, as the result of a call to EndSync. It may be used by some device drivers
and not others.

47

Since the delay required by synchronous devices may differ, the synchronous driver
passes the desired time delay as a parameter to DelayProc. The delay may vary from
oto 65535 milliseconds and should be timed as accurately as possible by the
application using the timer services provided by the host operating system or
programming language. However, the driver must not depend on this mechanism
for extremely accurate delays.

1
l
1
I
.I

........ : ...' .'
....sync' operat1o~ .
.... .termlnated ... :: ..

Ann1t r:lltton

Call EndSync

..1.

~ Unrelated g
.., processing 0<

I
T

DrlYlr

1
Begin termination

!
can Delay Proc

Retum from DelauPnc

1IComplete termlnatIon I
I

1
l,

)

1
l
1

l

Usually, DelayProc is used to time-out an event which occurs during termination. If
DelayProc returns before the event occurs, the synchronous driver assumes that
something is wrong and stops waiting for the event. If the event occurs before the
time-out expires, the delay is no longer needed and DelayProc may return. A signal
DLVEND, is defined for use in this situation. '

48

l

l
1

-'

1,
J

1

r
r
r
r
r
r
r
r
l

r
r
r
r
r
r
r
r
r
r
r

If DelayProc has been called to time-out an event within 3 seconds, and the event
occurs after 1 second, the device hardware generates an interrupt which the
synchronous driver services. The driver recognizes the event and sends a DLVEND
signal to the application. At t~is point, interrupt servicing is completed and the
application again has control of the cpu. In response to tne DLVEND signal, the
application causes DelayProc to return control immediately to the driver.

ADA) Icltlgn -UI" ""1"

"ll~

.:l. I Cllll Dell1Y Proc IJ I
. Unrelllted 0

Hllrdwllre~ processing g
. J,. ...torra,1. ~ *eYent- i"

*~
SIgnll): DLYEND I Serv'ce Interrupt IT I

I
d P

Return from Dell1UProc
J,

I Complete termlnlltlon I
t

If a delay is not in progress when the DLVEND signal is received, the application may
apply the signal to the next call of DelayProc, returning the call immediately. In
fact, the DLVEND signal may set a flag which returns all subsequent calls to
DelayProc immediately. This flag should be reset before StartSync is called again.

49

Restarting Synchronous Operation

By calling StartSync again, synchronous operation may be restarted after it has
been terminated. The application should not call Preprocess again unless a new
synchronous session (with a new set of parameters) is desired. Synchronous
communications picks up where it left off when EndSync was called. Since most
synchronous protocols have error detection and automatic request (ARQ) for re
transmission facilities, the service interrupt is not visible to the user except for a
momentary pause in communications. An extended service interrupt, however, may
result in a time-out by the other party and a termination of the c,all on that side.

Ailolicatton

e.. ... : ..-

Zero InterfaceRec
Select new parameters

Call Preprocess

1
1
l
l
1
1
1
l

J

'1
\,
1

1
I

e ••••• : ••- .:..-

·"Same session· ...- :. • • -. e.. . .
e ••••• : ••- .:. ..- • • • •

.. New session ."
9

I
\

50

.- -..
1

i

1
'1

l

l
l

·l
1

Sync Driver

ReturnReturn

Update modem
signals

51

ReturnReturn

Protection Against Race Conditions

The synchronous driver routines EndSync, StartTx, and UpdateSigs have built-in
protection against race conditions which might occur during termination. Since
calls to these routines may be made from several different tasks running inside the
application, improper calling sequences may occur during termination.

For example, one task might call StartTx after another task called EndSync. Two
separate tasks might deciae to terminate synchronous operation, resultin9 in two
consecutive calls to EndSync. Even though these situations are programming errors,
they may be difficult to avoid in complex applications.

A simple mechanism built into EndSync, StartTx, and UpdateSigs prevents these
errors from occurring. The first call to EndSync sets an internal flag indicating that
the driver is down. When this flag is set, a subsequent call to any of these three
routines will result in no operation. The flag is reset the next time StartSync is
called.

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

,
1
1
1
J
]

.]

1
1
1
J,
,
1,
1
1
1
1

r
r
r
r
r
r
r
r
r
r
r
L

r
r
r
r
r
r
r
r

CHAPTER 5··SIGNALING MECHANISM

Application and Synchronous Driver Processes

The operation of the application and the synchronous driver may be considered two
independent processes. Once synchronous operation begins, the synchronous
driver runs independently from the application, getting control of the CPU in
response to device interrupts. Exceptions occur when the application explicitly calls

',a driver routine, (either StartTx or UpdateSigs). The driver can be thou~htof as
always taking control from the application at unpredictable times, leaving the
application in a suspended state while the driver executes.

When the driver completes all processing, it returns the CPU to the interrupted flow
of control in the application. In a driver routine call, control is returned to the
.caller, but the application usually is unaware that anything happened.

r Interrupt.
en StartTx or
~ UpdateSt s
CDJ!P-------t------...:..--I~--_'\U
o
~.

a.'
I

••

52

Need for Signaling Mechanism

Some occasions during the execution of the synchronous driver require a reaction
from the application. For example, if an incoming message has just been received,
the application must attempt to process that message. If the driver simply returns
control to the int~rruptedprocess, the application will continue as though no
message was received.

Clearly, a mechanism must be defined to permit the driver to occasionally
communicate with the application. This mechanism would be invoked when events
occur within the driver, calling for the application to alter its flow of control. This is
the role played by the signaling mechanism.

How the Synchronous Driver Sends Signals

The signaling operation occurs just before the synchronous driver returns control to
the interrupted process (or caller of StartTx or UpdateSigs). At this point, the

. driver's immediate processing needs have been satisfied, all interrupt conditions
have been cleared, and the interrupt system has been re-enabled.

Before returning control to the interrupted process, an extra step is inserted: the
driver constructs a special signal word, indicating the signals it wants to issue, and
calls SignalProc, one of the five service routines provideCi by the application. The
signal word is passed as a parameter to SignalProc. .

1
1
1
1
1
1

1
1
J
~
I

Reeneble Interrupt system

Return .-.--_.....

S3

Construct stgnel ward

l
1
1
1
1

·1

1

no

54

Interrupt

Cell SlgnelProc

Retum from
Interrupt

511..81
Proc

•••
I
I
I
I

Tesk : *
(@

.
~ tt ••
~: ---t~------_-+--_

• "'----..... RetumI

Nested SignalProc Calls

If a task activated by SignalProc has a higher priority than the one that was
originally interrupted (which the multitasking system assumes is still in control), it
may preempt the execution of SignalProc itself. In this situation the execution of
SignalProc is suspended as long as it takes to execute the high-priority task. This
task may in turn be preempted by even higher-priority tasks. A relatively long
period of time may, therefore, elapse between a call to SignalProc and the
corresponding return.

While SignalProc, or the tasks it activates, is executing, interrupts may occur
resulting in new calls to SignalProc, even before control returns from the original
call. These nested SignalProc calls may result in signals being processed out of
order. This should cause no problem, since the signals do not interact with each
other.

How the Application Responds

Inside SignalProc, the application examines the signal word and reacts. based on the
indicated signals. Sometimes all of the appropriate processing can be performed
inside SignalProc. If a multitasking system is in use, SignalProc may activate one or
more high-priority tasks to perform the processing. Eventually control returns to
the synchronous driver from SignalProc and is then transferred back to the
interrupted process.

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

Because nested calls may occur, SignalProc must be reentrant, and process more
important tasks (such as RXDONE and TXDONE) before less important ones.

Event 1

*

J
1
J
1
1
l
'1

J

The Signal Word

Five possible signals are mapped to individual bits in the 16-bit signal word. For
each signal the synchronous driver wishes to send, the corresponaing bit is set to 1;
all other bits are set to O. After constructing the signal word, the driver passes it as a
parameter to SignalProc. Thus, any combination of the five signals can be sent in
one operation. Appendix B describes in detail how SignalProc is called, including
the format of the signal word.

The five possible signals are as follows:

1. RXDONE

2. TXDONE

3. ACTCHG

4. SIGCHG

5. DLYEND

Indicates that a receive operation is complete.

Indicates that a transmit operation is complete.

Indicates that the RXACTIVE flag has changed state.

Indicates that one of the modem signals in MODSIGS has
changed state.

Indicates that DelayProc may now return, even if the delay
period has not expired.

55

~
i
)

l,
J,
\,
l

1
1

·1
l

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

Start-up and Shutdown Considerations

The application must be ready to receive signals when it calls StartSync. Si~nals may
come at any point until control returns from EndSync. Therefore, tf1e application
leaves its signal handling mechanism intact until control returns from EndSync.

.Special Considerations

Some multi-tasking systems require that all interrupt service routines be installed
using a special system call. This gives the multi-tasking system a chance to surround
the user's interrupt service routine with its own entry and exit code needed to
support multi-tasking operation. Since HSI specifies that the synchronous driver
install its own interrupt service routine directly, the special entry/exit code is not
executed for interrupts from the synchronous device.

Most interrupts simply transfer one byte of data and return, but problems may arise
when interrupts result in a call to SignalProc. If SignalProc makes a system call to
"wake up· a task, post an event, etc., the system will believe that this call was made
by the interrupted process since the special interrupt entry GOde was not executed.
This is not necessarily a problem; however, it can lead to deep stack nesting if

.SignalProc calls are made faster than they can be processed.

A solution to this problem is to install a second, dummy interrupt service routine
with the aid of the system call, and invoke it from SignalProc by means of a software
interrupt mechanism. By making the multi-tasking calls inside this second interrupt
service routine, they wit be properly preceded and followed by the system's
interrupt entry/exit code.

56

J
J
J,
J
J
1
1
1
1
J
1
J
1
1
1
J
J
1

57

CHAPTER 6··MODEM SIGNALS

I

~ '{ 9 ~ V \- 9 V ~,,* *li~,
14 15 16 11 18 19 10 21 22 21 24 ~'Jo 0 0 0 t. t••••••• t. 0 ••

-

~ta2SI'ta23I'ta22f 'fft2~,tft2~'ial+1D18I'IDI~'tal~'.II,tDl~ ,.9 , tae l,fD6 ,IDS I,tD4 1tml
lID

1I111S 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

The nine signals which aren't provided for are the data, clock, and ground signals;
any signal that the application might want should be there, as long as the signal is
actually supported by the hardware.

All of the commonly used modem signals are provided for: RTS (pin 4), CTS (pin 5),
OeD (pin 8), DSR (pin 6), DTR (pin 20), Ring Indicate (pin 22),and Rate Select (pin 23).
In addition, signals that have been redefined for special purposes by particular
vendors are present, such as IBM's Test (pin 18), Test Indicate (pin 25), and Select
Standby (pin 11).

Modem Signal Mapping

The InterfaceRec field, MODSIGS, contains the current state of the modem signals,
both inputs and outputs. MODSIGS is a 16-bitword, providing for 16 of the 25
possible RS-232 signals.

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

Components of Modem Signal Support

The complete modem signal support package consists of three bit-mapped fields in
the InterfaceRec: MOOSIGS, MOO.SET, and MOOSUP, (plus the driver procedure
UpdateSigs). MODSIGS and MOOSUP are set by the synchronous driver and read by
the application; MooSET is set by the application and read by the driver. .

InterteceRec

t10DSI6S
t10DSET
t10DSUP

Updete
Stgs

Herdwere

l
l
l
l
l
l,

I

"\

l
l

Reading the Modem Signals

The synchronous driver maintains MODSIGS to reflect the current status of the
hardware-supported modem signals. Whether a signal functions as an input or an
output, the corresponding bit in MODSIGS is a 1 if that signal is asserted, and a 0 if it
is not. Any time a bit in MODSIGS changes state, the driver sends the signal,
SIGCHG, to the application.

58

1

l

l
l

·l

l

r
r
r
L

r
r
r
r
r
r
r
r
r
r
t

r
r
r
r
r
r

Controlling Output Modem Signals

To control modem signals that function as outputs, the application stores its modem
signal settings in MOOSET, then calls UpdateSigs.

"ODSET+- Desired setttngs of
output slgnals

Call UpdateSIgs

Inside UpdateSigs the synchronous driver copies the bit settings in MOOSET to the
actual signal outputs. Bits in MOOSET corresponding to input signals are ignored.
At the same time, the driver updates MODSIGS to reflect the new settings of the
output signals, and sends a SIGCHG if necessary.

Supported vs. Unsupported Modem Signals

Because all hardware devices do not support the same subset of the modem signals,
the application must be informed as to which signals are supported in the particular
hardware device being used. The InterfaceRec field MOOSUP performs this
function. As part of the processing performed by Preprocess, the driver sets each bit
in MOOSUP to one that corresponas to a supported modem signal. A zero bit
indicates that the corresponding signal is not supported. The unsupported signals
are always reported as zeros in MODSIGS. The driver ignores the bits in MODSET
corresponding to unsupported signals.

59

Input V5. Output Modem Signals

HSI does not specify which signals are inputs or outputs, except for RTS, CTS, and
OCD. Where these signals are supported, CTS and OCD are always inputs and RTS is
always an output. Ctlapter 2 describes how these three signals are used to regulate
transmit and receive operations.

Updating Modem Signals Updated?

Many hardware devices generate interrupts when a modem signal changes state.
Thereby, the synchronous driver can automatically track the status of these signals
in the MODSIGS field and generate SIGCHG signals as necessary. HSI does not
require this automatic updatin9 for all signals, since some hardware devices do not
provide interrupts on modem signal changes. To make sure that MODSIGS reflects
the current status of all supported modem signals, the application periodically calls
UpdateSigs.

UpdateSigs causes the synchronous driver to read the current status of the input
signals, copy the settings in MODSET to the output signals, and construct a new
MODSIGS word reflecting the current state of all signals. It also issues the SIGCHG
signal if the new MODSIGS is different from the previous one.

Driver (UpdateSlgs)

New~HardwaFe inputs

Hardware outputs ~ "ODSET

l
l
l
l
l
l

l
l

l
1

)

"I

~------Return

New ~ New + "ODSET

no
New~ MODSIGS?

yes

Send SIGCHG signal

110DSIGS~New

l
l
l
l
1

J

60

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

Calling UpdateSigs updates the signals as soon as possible, but not always
immediately. Some devices have states in which the modem signal registers are
inaccessible. In such cases the modem signals are actually updated some time after
control returns from Upd~teSigs.

Start-up and Shutdown Considerations

UpdateSigs is automatically called by the synchronous driver when synchronous
operation is being started. The driver constructs a new MODSIGS word as usual and,
before storing it in the InterfaceRec, compares it to the value of MODSIGS already
there, sending a SIGCHG signal if they differ. When the driver terminates, MODSIGS
is left the same as its last update. These features allow for smooth transitions into
and out of synchronous driver control.

If the application has an estimate of the status of the modem signals, it sets
MODSIGS to reflect this estimate before calling StartSync for the first time. It also
sets MOOSET to reflect the desired settings of the output modem signals.
Subsequent calls to StartSync (following EndSync calls) are made without changing
MOOSIGS, unless the application has additional knowledge of the status of the
modem signals from some other source.

When StartSync is called, the driver automatically makes any necessary corrections
to MOOSIGS to reflect the actual status of the modem signals, informing the
application when necessary via the SIGCHG signal.

MDDSIGS~ Best guess
MODSET ~ Desired output setting

----Signal: SIGCHG

Call EndSync

61

Programming with Modem Signals

A number of functions can be programmed into the application making use of
mode-m signal support. For example, the delay between the time RTS is raised and
CTS goes tligh can be measured; an error message can be printed if the delay
exceeds an established time-out value.

l
l
l
l
r.;
I
!

l
l
l

l
l

.......- ... Start timer

Current t10DSIGS Yalue
becomes -before- Yalue

for next time

no

CTS low before. now hlgh?......- ... Stop timer
no

.gnJlLYiI&a.a.~ (51gnaIProc)

Return

Process other
signals

~
I
!
;

Some devices have on-line/off-line states under the control of OTR; the application
can control OTR to place these types of devices in the desired state. Devices may
have other states (such as the Link Problem Determination Aid (LPDA) facility in
some IBM modems) that the application can invoke by manipulating other modem
signals. In all cases, however, the application first checks MOOSUP to make sure
that the modem signals it will be using are actually supported by the hardware.

l

l
l
l,

1

62

l
·l
l

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

CHAPTER 7··TRACE FACILITY

What is the Trace Facility?

HSI defines a simple trace facility that system developers may use to help them
debug driver code. The trace facility lets the driver send trace data to the
application, which is then responsible for displaying or printing it.

How the Trace Facility is Used

A trace macro is usually defined in the synchronous driver source program, which
the programmer may code anywhere to obtain trace data. The trace ijata may be
any 16-bit value, such as the contents of a CPU register or memory location. Paired
with the trace data is a 2-character mnemonic code, called the trace message, that
identifies the data.

The trace macro generates a call instruction to the TraceProc service routine. The
trace data and trace message are passed as parameters to TraceProc and the address
of the InterfaceRec. Inside TraceProc, the application prints or displays the trace
data and message, returning control to the driver as quickly as possible.

ADD) tcotton -.... "B.

Call TraceProc
(data. message)

.,..
Print trace data

PM nt trace message
I

t

The trace facility is an optional feature of HSI to be used for debug purposes only.
All trace macros should be removed from driver code that will be put in a
production environment.

63

J
1
J,
1
1
1
1
1
1
J
1
"]

1
1
1
]

1
l

APPENDIX A··INTERFACE RECORD LAYOUT

Explanation of Columns

Offset Byte offset of field from beginning of InterfaceRec.

General Information

All numerical values in the InterfaceRec are unsigned binary. Two-byte values and
-addresses are stored in the customary format for the machine being used. For the
'IBM PC, two-byte values are stored least-significant byte first; addresses take the
form segment:offset and are stored offset first. .

In this document, the least significant (right-most) bit is bit o.

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

Field name

Bytes

Set by

Oescription

Name this document uses to refer to field.

Size of field, in bytes.

"A" means application sets field and driver reads it;
"0" means driver sets field and application reads it;
·O/A" means field is set and read by both driver and
application.

Note: There may be unusual circumstances, described in this
document, in which the ·Set by" information provided here is
violated.

Comments describing use of field.

A-1

1
Section 1--Device Identification 1
Offset Bytes Description ~

Field Set j
name by

0 STRING 100D/A Used in conjunction with the RECALL facili:r of 1
Preprocess, this 100-character buffer is use to store a
character string that the synchronous driver wishes to 1pass to an alternate driver, and to receive the reply
string from the alternate driver.

100 DEVQUAL 2 A Device qualifier used to assist Preprocess in device
~

Iidentification.

10210PORT 2 A For some choices of DEVQUAL, the application must ~

store the device I/O port address here. \

1041NTVEC 2 A For some choices of DEVQUAL, the application must lstore the device interrupt vector number here.

Section 2--Synchronous Parameter Selection l
I

Offset Bytes Description 1Field . Set .. .
name by

~

106 BSC 1 A 1selects BISYNC mode; 0 selects SDLClHDLC mode.

107 ADDRDET 1 A 1 enables the SDLClHDlC address detect option; 1odisables this option.

108 SDlCADDR 1 A If the SDlClHDLC address detect option is enabled, the 1desired station address is stored here.

109 BSCSYNC 1 A In BISYNC mode, the desired SYN character is stored

lhere.

110 NRZI 1 A 1selects NRZI encoding and decoding; 0 selects NRZ.

111 FLAGIDLE 1 A 1 specifies that the transmitter will send continuous l
flags (for SDlClHDLC mode) or SYN characters (for
BISYNC mode) when idle; 0 specifies that a continuous

1mark level will be sent.

112 WRAP 1 A 1 enables the wrap option if it is available; 0 disables
th is option. r.;;

I
113 9 Reserved for future parameters.

1
A-2 l

r
r
r
r
r
r
r
r
r
r
.r
r
r
r
r
r
r
r
r

Sedion 3--Data Exchange Interface

Offset Bytes Description
Field Set
name by ** RECEIVE SIDE **..

122 RXACTIVE 1 0 1 means the data link is active; 0 means it is idle.

123 RXREADY 1 D/A Driver sets to 1when receive operation ends.
Application clears to 0 after picking up message.

124 RXINPROG 1 D Driver sets to 1when receive operation begins and
clears to 0 when operation is completed.

125 1 This byte is not used.

126 RXERROR 2 D After receive operation, driver stores error code here
(or 0 if no error).

128 RXCOUNT 2 D After receive operation, driver stores number of
characters received here.

130 RXINDEX 2 0 Driver uses this field to mark place in buffer for next
character.

132 RXBUFSIZ 2 A Application stores size of receive buffer here.

134 RXBUF 4 A Application stores address of receive buffer here.

138 RXNXTBUF 4 A Application stores address of next receive buffer here.

142 RXINTERR 2 0 Driver may store any internal error code here,
otherwise this field is O.

144 RXERRCNT 40 0 Array of 20 error counters for receive side.

A-3

Offset Bytes Description
Field Set
name by ** TRANSMIT SIDE **

184 TXREADY 1 D/A Application sets to 1 when transmit buffer is ready;
driver clears to 0 when transmit operation begins.

185 TXINPROG 1 D Driver sets to 1 when transmit operation begins and
clears to 0 when operation is completed.

186 TXERROR 2 0 After transmit operation, driver stores error code here
(or 0 if no error).

188 TXINDEX 2 D Driver uses this field to mark place in buffer to fetch
next character.

190 TXCOUNT 2 A Application stores size of transmit message here.

192 TXBUF 4 A Application stores address of transmit buffer here.

196 TXINTERR 2 D Driver may store any internal error code here,
otherwise this field is O.

198 TXERRCNT 40 D Array of 20 error counters for transmit side.

** MODEM SIGNALS **

238 MODSIGS 2 0 Current status of all modem signals.

240 MODSET 2 A Desired state of output modem signals.

242 MOOSUP 2 0 Indicates which modem signals are supported by
hardware.

A-4

l
l
l
l
l

l
l

"I

l
l
1
l
l

l
l
l
l

°l
l

Section 4--Service Routine Addresses

The total size of the InterfaceRec is 360 bytes.

264 APPLAREA 48 A Reserved for application to use as it wishes.

312 DRIVAREA 48 0 Reserved for driver's internal use.

244 SIGPROC 4 A Application stores address of SignalProc here.
,

248 RXCHPROC 4 A Application stores address of RxCharProc here.

252 TXCHPROC 4 A Application stores address of TxCharProc here.

256 DLYPROC 4 A Application stores address of DelayProc here.

260 TRACEPRC 4 A Application stores address of TraceProc here.

Description

Bytes Descriptio~

: Set
by

Bytes
Set
by

A-S

Field
name

Field
name

Offset

Section 5-·Reserved Areas

Offset

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

APPENDIX B--PROCEDURE CALLING CONVENTIONS
FOR THE IBM PC ENVIRONMENT

Other Environments

This appendix describes how the driver routines and service routines are called in
the IBM PC environment. It explains what parameters are passep, how they are
passed, and how the CPU registers are affected. For non-IBM PC environments, the

. same parameters are passed to each subroutine, but the detailed calling
conventions may differ.

General Information

All procedure calls and returns are of the "FAR" variety. All addresses are of the
form segment:offset. Data is pushed on the stack in the usuaJ 8086 manner
(segment first, etc.). The remark nAil registers = garbage- is made in reference to a
subroutine call does not apply to registers such as CS, IP, 55, and SP.

The caller is to remove parameters from the stack after control returns from a
routine call.

Enabling and Disabling Interrupts

Interrupts may be disabled temporarily inside the driver routines to protect critical
code sections. They are not blindly reenabled after the critical section, but rather
are restored to the enabled/disabled state prevailing when the driver routine was
called.

With the exception of RxCharProc and TxCharProc, which are always called with
interrupts disabled, the other service routines are usually called with interrupts
enabled. Calls with interrupts disabled would only occur as a consequence of the
application's calling a driver routine with interrupts disabled.

B - ,

Explanation of Headings

Linkage Considerations

The application needs to know the addresses of the five driver routines. HSI does
not specify how this is accomplished, but two techniques are suggested:

1. Combine the driver and application source programs; compile/assemble them
together and link edit in the usual manner.

2. Provide a table of entry points at the beginning of the driver code segment.

The driver obtains the addresses of the five service routines from the fields defined
for this purpose in the InterfaceRec.

Entry:

Exit:

Driver Routines

Conditions that are true before the subroutine is called.

Conditions that are true after the subroutine returns.

1
1
l
l
1
1

-1

1
1. Preprocess

Entry: Address of InterfaceRec pushed on stack

Exit: OS, SI, 01, BP = unchanged
AX =result code
ax = resu'tcode
All other registers = garbage

Result codes: 0 -- OK
1 -- RECALL
2-BAOQUAL
3 -- BADCALL
4-- MOOENS
5--WRAPNS
6--METHDNS

2. StartSync

Entry: Address of InterfaceRec pushed on stack

Exit: OS, 51, 01, BP = unchanged
All other registers = garbage

3. EndSync

Entry: Address of InterfaceRec pushed on stack

Exit: OS, SI, 01, BP = unchanged
All other registers =garbage

B-2

"\

1

".~~:'" .
1

1
"1
I

1
1
1
1
1
1

Service Routines

3. TxCharProc

Entry: OS:SI =address of InterfaceRec
AL =character about to be transmitted

1. SignalProc

Entry: Address of InterfaceRec pushed on stack (first)
Signal word pushed on stack (second)
OS =OS value stored by synchronous driver

when StartSync last entered.

Exit: All registers = garbage

4. StartTx

Entry: Address of InterfaceRec pushed on stack

Exit: OS, 51, 01, BP = unchanged
All other ~egisters =garbage

5. UpdateSigs

Entry: Address of InterfaceRec pushed on stack

Exit: OS, SI, 01, BP = unchanged
All other registers =garbage

Bit 0 -- RXDONE
Bit 1 -- TXDONE
Bit 2 -- ACTeHG
Bit 3 -- SIGeHG
Bit 4 -- DLYEND
Bits 5 through 7 are ignored.

Signal bits:

2. RxeharProc

Entry: DS:SI =address of InterfaceRec
AL =character just received

Exit: OS, 51, ex, ox, BP =unchanged
BH =option bits {set bit to 1 to select that option}
BL =error code or zero (for ENDMSG option)
All other registers =garbage

Option bits: Bit 0 --IGNORE
Bit 1 -- ENDMSG
Bits 2 through 7 are ignored

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

8-4

Exit: OS, 51, AL, ex, ox, BP =unchanged
BH =option bits (set bit to 1to select that option)
BL =specified character (for INSERT and SUBST options)
All other registers =garbage

Entry: Address of InterfaceRec pushed on stack (first).
16-bit trace data word pushed on stack (second).
2-character trace message word pushed on stack (third).
OS =OS value stored by synchronous driver

when StartSync last entered.

Exit: All registers = garbage

OelayProc

Entry:" Address of InterfaceRec pushed on stack (first).
Delay interval in milliseconds pushed on stack (second).
OS =OS value stored by synchronous driver

when StartSync last entered.

Exit: All registers =garbage

TraceProc

l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l

Bit 0 --INSERT
Bit 1 -- SUBST
Bits 2 through 7 are ignored

Option bits:

5.

4.

The following device qualifiers are reserved for use with HSD:

APPENDIX C--RESERVED DEVICE QUALIFIERS

NOTE: Software developers may register additional values of OeVQUAL for'
inclusion in this Appendix by calling Hayes Customer Service (404-441-1617). This
service is extended to licensees of HSO only. Hayes Customer Service personnel are
available from 8 a.m. to 8 p.m. EST Monday through Friday.

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

DEVQUAL=O.

OEVQUAl= 1.

OEVQUAL=2.

OEVQUAl=3.

Indicates that the device has an asynchronous channel at a
nonstandard address. The application stores the 1/0 port
address and interrupt vector number in 10PORT and INTVEC,
respectively. The driver queries the device for further
identification by sending it AT commands via the RECALL
facility of Preprocess.

Same as OEVQUAL = 0, but the asynchronous channel is at the
standard address for COM1. The driver sets IOPORT to 3F8H
and INTVECto 4.

Same as OEVQUAL =0, but the asynchronous channel is at the
standard address for COM2. The driver sets IOPORT to 2F8H
and INTVEC to 3.

Indicates that the device is an IBM SOLC Communications
Adapter. The driver sets IOPORT to 388H and INTVEC to 3.

C -1

1
]

1
1
l
1
1
l
1
1
1
1
1
1
1
1
1
1
1

(l)Hayes
Hayes Microcomputer Products, Tnc.
70S Westech Dnve. Norcross GcOrgl.l 30<N.?
Telephone (4041449·8791 Telex 703S00 HAYES USA

mailing <lddH~SS

P_o Box 105203. Atlanra Georgia 30348

Dear Developer:

Thank you for your interest in the Hayes Synchronous Interface (HSI) and the Hayes
Synchronous Driver (HSD).

Enclosed is your copy of:

I. Technical References: Hayes Synchronous Interface for Applications Software.
2. Two contracts for licensing the Hayes Synchronous Driver.
3. A return envelope for licensing the Hayes Synchronous Driver.

Should you desire to use the Hayes Synchronous Driver, you will need to sign both
copies of the license agreement in order to receive the actual code that constitutes the
Hayes Synchronous Driver. Once the agreement is executed, we will send you the
Hayes Synchronous Driver technical reference guide with sample source code, and a
disk containing the HSD source code.

Please review the agreement carefully, and have an authorized representative of your
company execute both copies as follows:

1. Sign at the bottom of the front page.
2. Complete all information required on the back page.
3. Initial the back page.

When the agreements have been completed, please return both copies to us with your
$250 license fee in the enclosed return envelope to the attention of the Contracts
Administration. Once we have executed the agreement, we will send you the HSD
material described above and a signed copy of the agreement

Thank you for your interest in what we think is an important interface in the PC
communications environment. If you have any other questions about this or our Hayes
Developer Support Program please call me at (404) 449-8791.

Kathy Hamdy-Swink
ISHY Relations Manager

WHayes·Microcomputer Products, Inc.
Software Developer License Agreement

Bayes~ ProducII. IDe. ("'Hayes1 aDd the UlUlenfgned Jiamce
("'UIzDIee1 ape that the fDIknviDa tams aDd cnndtttOlll Iball paD the ;
IkleDIe 1D UcmIee by IIaJ'eI ofthe coznpm=r IOftwue pzopamIsn-d GIl f

IJ:bJb1t A. _ 'mended by the parties flam time 1D time (the -software, mel
I8IOda1Bf~ (the -ooa!!!!f71t!tlan1- I'of puIpOIeS of thiI~

.1IIeDt=-otbeawile JDdk:atIed em B:I:hibItA.1be tam -software- IbaIlmaD
the object CDde embodiment of such Software IDd all enNncpmentl mel
.... thezeaf pgvided haeuDder.

L I.IcaI& Ba,es pm1I tID Li:e:DIee a DaDGduItve. DOMi'nsf'mbte. wmtd
wide JkmRUDderBa,eI' CD1'JIfIht to die Software IDd the 000"",, '!JUan (a)
tDure.~ aDd~mpIaofdle Software inobjeaCDde farm cmly
wbm JDaIIpaIaIIecI ilIaD • app1katIcm popam med IDtmIIDy by U&zaIee or
cIIItIibuCI!dby UcmIee tD mel..by ale or1k:Imesubject 1D the tmIII aDd
cnndtttnm of dill~ (the ·AwlJc3tkm~ (b) tD the GISt chat the
8GflwIae.JlamedtDIGUamdebm.1DnpOdI1Cle IIIdlllDdlfysuch8Gflwlae
fDr IDaapaIatiGD iDtD the Aprltntt nn. IIKi (t) to \lie tbe 1)on!!!!ft!!J!km
IDtmIIDy meL 1D die atmt mJtbmtzrd by IIayeI III wdIiDB &am time tD time.
tD~ ad dIItzibute CD sd URII mpJcI of~ paztIanI of the
Doo!!!!ft!!J!km tD &be ate:at that the lime• mcmpoaattd iDtD UICf donJmrn.
tItiDD far the App1tt.atioD. I.IcmIee may !lOt~ &be Software ill IO\IIa!
CDde fm:m. by JIIe1f or _ madrmd by Bayes IDd may DOt dip'H"'ble or
dmmIpt1e lIlY Software JkeDIed ill object code fmm. DudaB the teml of this
~Ua:DIee IbaIl be eJItltIm to Jea!lft enlpnepments 1Dd....of
die 1,"nll_lifted Software IDd the DocumeDtItiaIl whlc.h may be reI.eued by
Bayes. ill til I01e diIaeUon. to all JiaDea of the Softwam

Z. 0InIInJdp ofSc4twaae. BayeI OWJII the Software IDd the J')ocllmentJttnn

the CDl'JIiIhsIdJemD aDd lIlYCDpies theftoflJamedhen!umta IfaJelhaI the
autbm:ity to eater iIltD tbia~ aDd 1D pIIIt 1D UcmIee • Iiame to
~ the Softwue aDd I)onzmentatlnu ArJy modfftC'JUoDS ofme Software
developed by I.keDIee IbaJl be the pmpezty ofLfl:eDRe.subject II) tbe IfBhts of
Ba,es UDder this Apeemmt aDd applicable CDpJDght Jaws.

,. 'lema. 'l1Us Apeemmt Iba1l become e&'ecIift upon the elm IaZpted by
Baya. shall CDAtlDue Em apaIGd ofODe year tbere.aiier aDd Iba1lbe .utDmati
ca1lysaewedfor I\X"eISlve ODe year1mDS upoD paymentoftheazmuallicmse
leeupnmdediDSectioD4andupoD aecuUoDbyIJcmseeofanymcvftAcannns
tD this~which Bayes may spedfy &om time to time. UDJea eadIer
tenn1nated iD ac.cmdaDce with Section 10 below.

4.Ucaae Fee. tJpcm aecutioD ofthis AgIeemmt and pzior II) the mmm.",..

mmt of lIlY aDDUI1 reaewal teIID. I.kmsee WD pay II) Hayes the IDMNI1t let
fotth iD I:Ib1bit A. Hayes ft!IeIftS the IfBbt CD cbaDBe tbe Ucaase fee for the
Software upon tbizy (JO) days W'IittIm D01icepDorII) the mmmenceme:atoflIlY
amwalzmewal tmD.

S.UcaHeAppUcatlou.1JceDsee sbaIlbe mtit1ed II) iDcmpame the Softwue
IDto any AppliaU.cm Jdemified in Ezhlblt A. UpoD pdGr WJ1Um DOU&atkm II)

1fayel.1JceDIeemayaddAppJicatioDs ItDO add1UoDa1 cbuge.and the ImIDI aDd I

amditious ofthiI~ IbaD apply to each such additIoD. For the puzpose
of mablq Hayes II) R!er md UIeIS to the appmprIale penans for ,ssimnce
Ucmsee aha11 pI091de Hayes wIIh IDfmmaUoD~ nailable eve""".,.
support for each Appl1catLaD. Wlndtng either .geaeral teebDkal desc:dpdDD of
or a campreheDstve sales bJocbme for. ach App1k:atkm upoD UcI!DIee'l
disaibutioD of the App1lQ1Xm II) a third party.

6. tUeJhII. LiceDIee sbaJl Dot zmsove aDy coPJIiiht DOtia!I or other propJie.
tal)' legends amtaiIled iD or OD the cmgiDal Software. and IbaD zeproduce md
include aD)' Ha,es CD1'JIfIht notice u it appem in or OD the Softwue OD all
copies ofaDd packa~ng for the Applications. !Kept as set forth in this Sea:ion
orotbelw1se penIlltted by law. Uc:.emee sbaIl have DO light II) use my ofHayes'
trademarks or tadenames without Hayes' specific pzior wDtteD consent. IJce.n·
see shall cause the foIlowmg wmanty disclaimer to be pDDted CODlplcu.ously
on the packaging for any Application:

THIS PACKAGE CONTAINS CERTAIN SOFIWARE COPnUGIn'ED BY HAYES
NICl\OCOMPt11'ER PlODUers.lNC. \HAlES1 AND UCENSEO '1'0 UCENSEE.
HAlES MAKES NO EXPRESS OR JMPLIm WARRANIlES OF ANY mm FOR
THE SOFlWARE WHICH IS PROVIDED ON AN -AS IS- BASIS.lNa.tJOING Bur
NOT LIMrI'ED TO. 'mE IMPLIED WARRANIlES OF MERCHANI'ABIIm AND
HmESS FOR APARTICULAR PURPOSE. HAYES SHALL HAVE NO IJABn.rrrOF
ANY KIND '1'0 YOU. INCLUDING ANY 1JABIIm FOR SPECIAL INDIRECT. IN·

aDINW. 01 CONSBQtJINl'W. DAMAGES-

1. Dhc"tm. of • ...,. 'DIB SOPlWAII AND'DIB ooa:JYD1'rA1tON
AlBP.IOVJDBD'1'OUCINSIB-.ASSWIlBOurWABaANnOFANfDm.JI.
"lBD1IPIBSS OIIUPUBD.IHCUJDlNG.ItJ'l'NOI'IAmZDTO.'lBBDaUBD
WABBANDBS OF UBRaIAHrAI1U1'Y AND mNBSS 101 A pAmaJLAI
KJiU'OSi. BA1BS SHALL NOr.& 1WILI POl ANY SPICW. JNDIBBC1'•
INaDBNl'ALOI CONSBQtJINDALDMIAG'S AND'l'BIINDBB..AlTO
nm QUAlm AND PBBPOBYANCB OFl'BI SOFIWAIB IS ASS"M"" If
UCBNSIB.JNaDDINGAU.amsOFSBIVICING.IBPADlSOllCX)lJllCDONS.

L 'It!'"I' CD tbe aIBIt pwvldtd III 8eI:IIaD ,
WoW. uaaee Iha1l mol 'n'l1 IIaJes mel ha1d!t 1pmz1ae &am 11I!J'" aU
claim&. Ja.I. ItphI1trtee flIlI'eIIa (Inch" r able dIJdJI!Jt .., ...
cIImaa-maa.ctby......l!IIIkoforldliDl.....JIIdIIdJ iam(a)
UcaIIce'. UIt. repc:adaa:ls= or cfIIatl-dkm ofdie saftwam IDd the Da '!1M!!
tIIkm: or (b) IIIJ MIl. "'Df-krt F Ipep , 'Imps W 'IN CICHCiiWdtIar
ob1JpUoDs herI!uDdI!r bJ UraIRe orII ..,1cl'......or ' • ,

10. "erm"''!toa Hayes may tlSlDiDate tIdI~ u:pcm wdIIID DaIIce If
UceDsee breaches I1l'/ of the tmmI and mndttfmts ofthis Apc!mentadD.IIa
tD zemedy such bzacb wlthiD 30 days abr wzbIm DO't8attnD 6ealD£
TeDDiDatkm IhaJl DOt advmely affect 1be JIBhII of any tbtrc:I party•••
IiceDtee of IIlf ApplkaUml at tbe UIDe of termtNttem tJpoD., Ire'....

UcmIee aha11plampd) deItmyormum CD Bayesallmpiaofdle SoftwaRmi
the OoozmerrraUoD in til IICI._em GIItDCIy or amtraL IhaJl diaamtiDne die
makiDB ofcopies ofthe Saftwue. the Docnm-mUDD IUd the Appl.A'inn' aDd
sbaIl immediately ceue dIItI:lbuUaDby 1I1e.1ease or otberwDe ofIDJ mp1eI of
the App11catkm tbm or tbaafcer ill til Pca=OJl GIItDCIy or amtmL

BADS MlcaocOMPU'ID PaODUCI'L IRe.

.,.-----------------
mIe.-------------------
AcceptaDce Dates--------------_

UCENSD-----------------
11:------------------
11tles-------------------
Dates _

085·1002

IDHayes·Microcomputer Products, Inc.

Exhibit A
to .

Software Developer License Agreement

1.UceDIeeI
Name: _

Addless: _

z. Software Llceueds

BSD

3. ADDaaI LlceDle fees

$250

,. 4. Llc..lee CODtacta
Name: _

'Dde:, _

PhoDe: _

..: ..\~ .

s. DescdptloD(l) ofAppUcatloD(l)

.. ~~.-

. 3J~::.

~~·~-·th:''.j-i."

6. Ltceueell Commercial software Prodact(l)
IDcorporatIDg the AppUcatloD(l)

WHayes·Microcomputer Products, Inc.
Software Developer License Agreement

....~ PmducII. IDe.~ aDd the vndermaned IIaIIIee
rua-ee11111e 1bat the~ tI!ImI aDd mncItttnns IbID Fft!ID" ..
Ifame CD I.k:mIeebJ IIQeI ofthe mmplllf Ia!twuePftCWiiI dntpaed GD •
II:bibit A. • unencH by die putieI £ram time CD tilDe (die -software, aDd
.., :Jaled clnallM""l'km (die -om. """,,.rar pUIPOIS oldill"...
meat UII1sI adlawJle mdk:ated_1ItdbltA. die tI!IID~ IIIID..
the object axte cmbocftmrzrt of such Sahue IDd ID enWnCP!M!!tJ aDd
updaus dIealafpgndelI~

L UcaIe. Ba,apmll CD UlzDIee I """"'nIft. DOII-'Dnsf'rnbJe. wadd
wideIIaae UDderIIIyes' c:DpJrJght (D the Software IDddie Don"!' " hm (I)
CD..."P""''CPIDd cIIIaibuIe CDpiesofdieSahue ill object CDde billcmly
wIleD IDcmpcaIrtcl iDtD III appllc31tnn JIl'OIIIID \8ed IaIImII1J byuca...or
.....byuameeCD"''''"'..orJkaIe IUbjectCD tIIe.._
Cl ., !'drm• of dill Apeea!at (tbe .App1katJcm~ (b) tD tbe __..die
8c1ha1eil~tIl ICIIIIZmCDdebm.CDi4 i t.,.......,1IIdl8clhale_ '""'II' mHO" JIdD die AppItcpH n' ad (c) CD .e die Dil"n ..
......,...CD die aIIIIt'" I ! '"sa,a III wdIiDI faa tIlDe CD....
CD 'i ! • .. cIIItdINr2 CD aad..cqdeI of+spatec' pcdaDI cl tbe
OIl "'n "1m CD tbeSlat tbIt the 1liiie iI=mpozatalmtD aa tlnnrmerJ
tItleD far the App1lcaUcm. uamee may DDt cIlIUibutIe tbe Sahue m IDIIK'e

CDde fmm. by JIIe1f or • IIIIdretI!d '" JIaJes IDd may DGt cit rile or
cIeaampJ1e lIlY Sahue Ikaaed mobje(t cade bID. DudDI the teDD of t1dI
ApIaDaIt UcmIee IbIIl be muded CD IeCI!M enhmc:emen!llDd updates of
die 'smnndlfied Software aDd the Doaam.eDtatIaD which l1li)' be reJeaecI by
&,a. ill IllI01e~ CD an Jit I'~ ees of tbe Softwue.

Z. 0ImBI1dp of......1IayeI OWDI the Sahuead tbe DonIlM""l'km
die CDpJIishtItbeMD IDd.,CDpkstbeRof1lamed~""_the
&UIbadt, CD emrr JIItD tbII Apeemeat aDd CD IIIDt CD uamee • lame CD
dIItdbIIII' die SahueudDocnm"""J'1on ADy ynocfiftpt1°Dl ofthe saftwaJe
dneIopedbyU&mIee shaD be the popeny oflRalee.lUbjec:tCD 1be IIPts of
BaJa aDder dUI ApemeDt aDd appJK:abJe CDI'JIfIbt Jaws.

J. -r... b ~t IbaIl become effec:rM vpcm the _1Cmpted by
Illyel.IbaIl CODtmue fDr I ped.ocl ofcme year therea£ta IDd IbaIl be IUIDmItI
aIlysmewedfor auanstge ODe yearcams upollpaymmt ofd:ae1IIIlUI11iceD1e
&le.pmvidedillSectiaIl4mdupcmaecutlaDbyIJameeoflll}'znodtflClt1C!TJJ
tD this ApemeDt which Bayes may ipedfy &om tilDe CD lime. aaJaa adier
tenntnated maccmdaDce with 5ectkm 10 below,

4.UClIIIIe'" tJpcm aecuUoD ofdUI~lDdpdar1D the"""~
mmt of III}' IDDUI1 RDe'WIl tmD. Ucr:aIee IhaJl pay CD Hayes the IIDDUDt let
bth mBIbiblt A. 1IayeI1'I!IeIftI1be IIIbt CD c:bIZI&e the Ucr::DIe fee far die
Softwaeupcmtlmy (JO)'"WIiIIm IlOtice pDar CD die mmmenc:emmtoflDJ
&aIlual zmewal tmm.

s.UceueeAppIlcadna.IJ.crDsee IbaIlbe aItitIed to mcr,JPCIiate theSoftwue
iDtD uq App1ic::aUcD JdeIlded in Em1blt A Opoll pdor~ DOtI&:atiaD CD .
Baya.UGeDsee l1li)' addApp1icat1=aItDO addItioDII c:baqe.aDdtheCI'IIDI1Dd •
amditiaDIofdUI Apemeat IbIIl apply meach IUCb addltkm. Fordiepuzpose
ofeDlblq Ba,a mRfrr md UIeII CD the IppI'OpdatII! paIGDI b •.....nee
IJcrDIee IhaJl pmvkIe IIa)'B widl Jllfazmauem ftPIdIa& nalJabJe GIl"""""
support fDr each ApplkJt10n mdndtng either I.maaltedmIcal~of
or 1~ Illes bmcbuR rm. ac:h App1ic:atkm upcm UcaIee'l
cI1st:zibuticm of the~ CD I tldrd pIZty.

6. taNJbaI. Ucrasee Iha11 DOt RIDOft Illy~ DDtkeI or other~
tIZy Jesmds amWDed mor on the 0Iigi.Da1 Softwue. mel shaIl zeproduce mel
include aD)' Hayes c:DpJrJght Ilotice u it appears mor em d:ae Softwue OIl aD
copies ofand packaging for the Applications. £Kept u set fOrth ill this Sectkm
or otherwise permitted by Jaw. Lk.eDIee &baIl have DO Dght tD use my ofHayes'
aademarb or tndc:names wiI:bout Hayes' sped&c plior written CCDRDt Ucm·
lee sbaIl ause cbe following wurmty disclaimer to be pzmted amspkwNlly
on the pacbgl.ng for an)' Apphatton:

nus PACKAGE CONI'AINS CEKI'AIN SOFlWAIE COPnUGHI'EO BY HAlES
NICBOCOMPUIER PlOOum. INC. rHAlES1 AND lJCENSED TO lJCENSEE.
HAlES MAXES NO EXPRESS OR IMPLIED WARRANIlES OF ANY l\IND fOR
mE SOFlWARE WHICH 15 PROVIDED ON AN -AS IS" BASIS. INa.voING Bur
NOT LIMlI'ED TO. mE JMPLIED WARRANIlES OF MERCHANI'ABILlI'Y AND
mmss FOR APAlmCtJLAR PURPOS~ HAlES SHA1J. HAVE NO UABIIm OF
ANY mm TO YOU. INa.uDING ANY IJABII.1I1' fOR SPEaAL. INDIREC'. IN·

QDBNrAL 01 cmISBQOBN1W. DAMAGES.

7. DIr'''. fIl 'lBB SOFl'WAII AND 1111~
ADPIOVIDBDTOuc:BHSII-AS rWDBOUrWAllAR'rrOlARfIIRD.JIo
'DIBaB:IPIIISOAJMlIUID.JNaJJDJMG.IUrHOTIAmID'lO.1BIaauBD
WAIIAlmBS or MIICBARl'MIUl'r AIm II'lNBIS lOa A 'AI"""A'
riJiPOSlE. BADS SHALL NOT II IWU 10& AN! SPIQAL. illDEt
DlClDINrALOI CONSBQtJIMDALDAHAG'S ARD'DIIIRDIB1IK1tJ1O
'DIE QtJALIl"r AIm I'IUOIYANCB at 'l'BB IOPl'WAIB IS ASSUM'" If
UCBNSBI. JNaJJDJNGAlLCOS'l'SOPSBIVICDIG.IBPAIISC&CXIII!OIP

10. T..tn"tlOlL IIayeI may trnntNtr this~ upaD WIIaID IIIIIbJf
UcrDIee bruchellII}' ofdie CI'IIDI1Dd amditiaDI ofdlll~"JiIII
tD IeIDeCI, such Inacb widdIl JO .,. a£Irr WIIIIm t1IalI&
Termination Iha11I1Gt IoChmely a&d die..of 1111 dIInI pIftJ wbo ill
IklmIee of 1111 App'lcatton • dae ttme of Wi "p,m 0p0D. I p""
taueeIhaJlpawaapd) deamyor.-CD Ba,aallCDpiaafdaeSahaleIDll
Ibe DDo"!'entatSm til III pClrrmda CUDdy or amtmI: IbaD dj. Ii" e die
maJdaa ofCDpla ofthe SaftwaR. tbe Donn Arkm IDddieAppltpttmg-'
Iha11=mediatrly celie dlmimlUcm by II1e. Je.ue or otbeswile ofIIIJCIII*Iof
die AppI1cadaD dim or tbezafIrr mIIIp c.:::fa CUDdy or CDIIIID1.

BA1'IIIGCIOCOMPODI RODVCII.IRC.

.,.-----------------
!It1e-------------------
AcceptaDceDatea- _

UCINSDa-----------------
BJI------------------
'nt1c-------------------
Datea _

OSSol002

(I)Hayes·Microcomputer Products, Inc.

BxhibitA
to ~

Software Developer License Agreement

1.UcenMel
Name:~ - _

Address: _

• 4. Ucen'ee CoDtacb
Name: _

'Dde; _

Phone: .~'?_.

,.\~ ,- .

2.loftware LlcensecL

BSD

3. ADDaal LlceDle fee:

$250

s. DesaIptIoD(l) ofAppUcatIoD(l) ~."" .
. ~'..,. ..

1';.="

·:-,0-". '.'"

....-:o~.~•... :.....
6. LlCeDSH'1 CommerdallOftware Prodact(l)
IDcorporatlD, the AppUcatloD(s):

•

(l)Hayes
Hayes Microcomputer Products. Inc.
PC'! lk1x Hl~~lH :\t!.lIlLl Gt,\.1r~l.l hl~4S

HAYES MICROCOMPUTER PRODUCTS INC.
P.O. BOX 105203
ATLANTA, GA 30348
Attn: Contracts Administration

	20-text-block
	98-cover-letter

