
Georgia
Institute

of
Technolo gy RICH ELECTRONIC COMPUTER CENTER 1(404) 894-3100 I ATLANTA, GEORGIA 30332

DEMAN D TERMINAL US ER 's MANUAL

FOR THE

UNIVAC 1108

May 1972

(Revised)

DEMAND TERMINAL USER'S MANUAL

FOR THE

UNIVAC 1108

May 1972

(Revised)

PREFACE

This manual is one of a series of manuals prepared by the Rich Electronic

Computer Center for the benefit of its users. It is concerned with usage of

demand terminals (Teletypes and other keyboard devices) when connected to

Georgia Tech's UNIVAC 1108 computer. The executive system in use on the 1108

is called EXEC 8.

This manual is intended to satisfy two objectives. First, the manual

provides an introduction to terminal operation and system concepts. No previous

knowledge is assumed. Second, complete details on exclusively demand features

of the system are given. Thus, each chapter is either an introductory, tutorial

chapter or a reference chapter.

Chapters 1 and 2 provide information on how to connect to the 1108 and

begin a run. All users need this information. Chapter 3 is for FORTRAN,

COBOL, and ALGOL programmers and demonstrates use of these languages. A

basic knowledge of one of the languages would be helpful. Chapter 4 is the

reference chapter for the ED processor, a tool widely used from demand terminals.

Chapter 5 describes system failures and how to be prepared for them. Chapter

6 is a reference chapter describing demand terminal operation. Features such

as paper tape, the BREAK and TAB keys, and messages to and from the central

site operator are discussed here. Chapter 7 is a tutorial showing how certain

EXEC 8 features may be used to advantage. Finally, Chapter 8 describes several

programs of general application written especially for demand use.

The primary reference for the system is the RECC publication, Programmers

Reference Manual for the UNIVAC 1108, EXEC 8 Executive System (hereafter

referred to as the GTPRM). It is hoped that sufficient information is presented

here to avoid the necessity of referencing the GTPRM; however, users with

special interest or unusual applications may need to do so. For this reason,

there are numerous references to sections in the GTPRM that may be referenced

for further detail.

The demand programmer will probably require one or more UNIVAC reference

manuals describing a programming language, because the languages themselves are

not discussed here. But, if a user is already familiar with FORTRAN, ALGOL, or

ANSI COBOL, the examples presented here may provide sufficient information to

permit him to run programs.

i

Much of the reference material contained in this manual was reprinted

from UNIVAC 'documentation, with appropriate editing for the Georgia Tech

environment.

ii

TABLE OF CONTENTS

1. DEMAND TERMINAL BAS ICS

2.

1.1. Definition of Demand Processing

1.2.

1.3.

1.4.

1.5.

EXEC

2.1.

2.2.

2.3.

Establishing a Connection
Initiating a Run

Terminating a Run
Disconnecting the Tenninal .

8 CONTROL STATEMENTS

Control Statement Format

The @RUN Control St~tement . .
@F<v.N) IN +0 spee.cl up rt.-t1'l

Commonly Used Control Statements .

., .

3. CREATING AND USING A FILE IN A RUN

3.1. EXEC 8 Program Files •

3.2. Establishing a Program File

3.3. Inserting a Symbolic Element into a Program File . •

3.4. Compilation

3.4.1. General

3.4.2. FORTRAN V

3.4.3. ANSI COBOL .

3.4.4. ALGOL

3.5. Correcting Symbolic Elements

3.6. Creating Absolute Element

3.6.1. MAP Processor Call . .

3.6.2. MAP Directives . • .

3.6.3. System Relocatable Library •.

3.6.4. ANSI COBOL MAP .•

iii

. · · ·
· · ·

. · · ·
· · ·

Page
1-1

· 1-1

1-2

• 1-3

· 1-3

1-4

2-1

2-1

· 2-1

· 2-3

3-1

· 3-1

· 3-3

3-3

3-4

3-4

3-6

3-6

3-6

3-7

3-8

3-8

3-9

3-10

3-10

3.7. Program Execution

3.8. Referencing Previously Catalogued Files

3.8.1. General

3.8.2. System Responses to @ASG, A •

3.9. Catalogued File Maintenance

3.9.1. The List Files Processor.

3.9.2. The @DELETE Statement

3.9.3. The @PACK Statement
I

3 • 10. Examp 1 e s • • • • • • . • • .

3.10.1. A Complete ALGOL Run with Debugging •••

3. 10.2. An ANS I COBOL Program

3.10.3. FORTRAN with Subprograms

4 • THE ED PROCES SOR -----...
4.1. The ED Processor Call Statement

4.2. ED Processor Usage

4.3. Editing Commands •

5. SYSTEM FAILURES

6. DEMAND TERMINAL OPERATION

6.1.

6.2.

Demand Terminal/System Interface Messages
Probably obsf)\ete.. OY\ ()J \ \0

Executive Language Interface . • . • . • •

6.3. General Operation of the Demand Symbionts

6.3.1. Teletypewriter Demand Symbiont .•.

6.3.1.10 Operational C6nsiderations •

6.3.1.2. Paper Tape Input • . • • . •

FORM I Paper Tape Input

FORM II Paper Tape Input .

iv

Page

• • 3-10

3-12

3-12

3-13

· 3-12.

· 3-15

• .' 3-16

• • 3-16

3-17

· • 3-17

3-23

· 3-27

4-1

4-1

· 4-2

· 4-3

5-1

6-1

6-1

• 6-2

• • 6-2

· 6-2

• • 6-2

• 6-3

· 6-3

· 6-5

6.3.1.3. Special Control Sequences.

6.3.1.4.

6.3.1.5.

6.3.1.6.

BREAK Key . . ~ ,. . .
(ffl.eSSctJc:, WOrtl\/fJ)

Tab Control State~en~ (@TAB SET) •.
N 6+ I rf\p !eflte.ni-e.Cl

Central Site to Remote Side
Operator Communication

6.3.1.7. DCT 500 in Teletypewriter Mode

7. ADVANCED DEMAND TERMINAL TECHNIQUES

7.1. The @ADD Statement •..

7.2. The @START Statement

7.3. The @BRKPT Statement

7.4. Considerations for Public Files .

8. CONVERSATIONAL SYSTEM PROCESSORS

8.1. BRK ~ Demand Breakpoint Interface

8.2. FED - Conversat~onal File Editor.
(lAse. FPt=:D)

8.3. FASG - List Files Assigned. • • •
(®rRi) T (5 fos-te-r) brAt not os Co~rre.h~~S~~C)

8.4. CPMD - Conversational Post Mortem Dump •.

Appendix A. UNIVAC 1108 Card Codes . • • •

v

Page
6-6

6-7

6-8

6-8

6-9

7-1

7-1

7-1

7-3

7-3

8-1

8-1

. · 8-2

• 8-4

8-5

• A-I

FIGURES

1-1. Establishing a Connection, Initiating a Run

1-2. Terminating a Run (Option 1)

3-10 Establishing a Program File; Using @PRT,T

3-2. Using ED to Insert an Element

3-3. Compiling an Element Using FOR

3-40 Updating and Re-compi1ing an Element

3-5. Creating an Absolute Element

3-6 0 Execution of a Program

3-70 Re-execution of the Same Program

3-80 @ASG,A Statement and Normal System Response

3-9. Catalogued File Maintenance

3-100 ALGOL Example (4 pages)

3-110 ANSI COBOL Example (3 pages)

3-120 FORTRAN Example (4 pages)

7-10 Example of @ADD

8-1.- Usage of CPMD (2 pages)

vi

Page

1-3

1-4

3-3

3-5

3-6

3-8

3-11

3-12

3-12

3-14

3-17

3-19

3-24

3-28

7-2

8-10

1. DEMAND TERMINAL BASICS

1.1. Definition of Demand Processing

Demand processing is defined as a mode of operation in which run processing

is dependent on manual interface with the executive during processing. Basically,

it is a conversational mode of operation requiring a demand and response type of

activity. Conversational operation via a remote terminal causes the executive,

a demand processor, or an active program to immediately react and respond.

Demand processing terminals are generally thought of as being remote from the

computer site and to have a printer or a cathode ray tube and a keyboard. An

example of a demand terminal is the teletypewriter keyboard and printer.

The distinction between batch-mode processing and demand processing lies

in the frequent interaction with the user that occurs during demand processing.

The terminal user is considered to be in conversation with the executive, special

demand function, user programs, or the batch functions of the executive on a

unit basis.

Tasks executed by the demand terminal user normally have frequent but short

bursts of computation. Progress is always insisted upon; however, to receive a

substantial amount of computation may require a long period of time. Access to

computation is a percentage of the total computing facility and is scheduled in

small increments of time at frequent intervals to provide immediate responses.

This action gives the appearance of total system control to the user and the

impression that he is the only user currently running. The more a user is

required to interact with a demand program, the shorter the bursts of computa­

tion required to service a given request. The bursts of computation are time­

shared within the executive to provide an apparent immediate response, with the

program placed in a dormant mode during idle periods awaiting response from the

user.

While a demand program is in a dormant mode, it may be necessary to swap

the program from main storage. Normally, this happens only when main storage

is full and another program, which is currently on mass storage, has work to do.

The following is a brief discussion of the operational procedures for

initialization of a demand terminal, submission of a demand run, termination

of the demand run, and deactivation of the demand terminal.

1-1

1.2. Establishing a Connection

1. Dial the UNIVAC 1108.

On a Teletype machine, press the ORIG button, wait for the dial tone, and dial
the assigned telephone number. If the number is incorrectly dialed, or a busy
signal is received, press the CLR button and try again.

On other types of terminals, follow the ma~ufactu~er's instructions.

2. Wait for the data tone.

The data tone is a "beep" which indicates that the data communication circuit
between the demand terminal and the 1108 is complete. If the data tone is not
received, press CLR and try again.

3. Type in the siteid assigned to the terminal you are using.

Each device that is registered as a demand terminal with Georgia Tech has a
unique six-character siteid assigned to it. The siteid should be posted on
or near the demand terminal and will be of the form

UGTOxx 110 baud, 72 character line
UFGTxx 110 baud, 132 character line
UGT3xx 110/300 baud, 72 character line
UDGTxx 110/300 baud, 132 character line

where each x represents a digit.

While typing the siteid, no carriage-returns or line-feeds are required. If
a typing mistake is made, merely begin again with the first character.

If the siteid is correctly typed but no response is received, re-type several
times. If a response is still not received, hold down the CTRL key, press the
EOT key (this will normally disconnect you), and redial. If this also fails,
the 1108 may be down or the central site operator may have communications
disabled. Press CLR and try again later.

4. Receive the sign-on message.

When EXEC 8 receives the siteid, verifies that it is defined and not active,
it will respond with the message

UNIVAC 1108 TIME/SHARING EXEC VERS. x

and provide a blacked-out area for the password (see 1.3). The x in the above
message represents the version of EXEC 8 in use at the present time, and
should be mentioned in reporting troubles.

After the above is accomplished, the user is in communication with an

EXEC 8 demand symbiont which controls all input and output to the terminal.

The following conventions apply at all times:

a. The carriage-return (CR) indicates the completion of an input

line, and the symbiont will indicate acceptance by transmitting a line-feed

(LF) .

1-2

b. The question mark (?) indicates that the current line is to be

discarded. The symbiont transmits CR, LF and waits for the next line.

c. The left-arrow (~) (underline on some terminals) indicates that

the previous character on the line is to be "erased." As many left-arrows as

desired may be used.

1.3. Initiating a Run

1. Type in your password over the blacked-out area, followed by a
carriage-return.

A unique, six-character password is assigned to each authorized 1108 demand
user. Care should be taken not to disclose the password to anyone.

If a typing mistake is made and detected prior to pressing the carriage return,
type a question mark (?), roll the platen back one line, and retype the entire
password.

The symbiont will respond with the message NO RUN ACTIVE, indicating that the
password has been received. Checking the password is deferred until after a
@RUN statement has been entered.

2. You may now enter a @RUN statement as described in Section 2.2 of this
manual, followed by your "runstream" (control and data statements).

UGT003

UNI VAC 1108 TIME/SHARING EXEC VERS 27.20. 143: 30

JggB!I:f:\7
NO RUL'>J ACTI VE
fiRUN CCRAY ~ 9 7C 12420" SPAL DI N G- R
DATE: 040372 TIME: 105703

Figure 1-1. Establishing a Connection, Initiating a Run

1.4. Terminating a Run

To terminate a demand run, two options are available.

Option 1. Enter a @FIN statement.

The @FIN statement causes all facilities assigned to the run to be released,
and prints accounting information on the terminal.

1-3

@FIN should not be typed unless the rUn is in "control mode;" i.e., EXEC 8
is waiting for control statement input. If, for example, @FIN is typed when
a program is executing, the symbiont will not allow any input until the
program has terminated and all remaining control statements have been pro­
cessed. This may cause unnecessary waiting by the demand user.

After the accounting information is printed, the symbiont will provide
another blacked-out area so that another run may be initiated from the same
site. If you want to disconnect instead, follow the disconnect procedure
of Section 1.5.

@FIN

RtmI D: CCRAY REF. NO: 9 7C 12420 NAME: SPALDIN G- R

TIME: OO:00:OO.b19 IN: 2 OUT: 0 PAGES: 1

INITIATION TIME: 1 0: 57: 03- APR 3, 19 72

TERMINATION TIME: 10: 57: 42-APR 3, 1972

Figure 1-2. Terminating a Run (Option 1)

Option 2. Hold down the CTRL key, and press the EOT key.

The symbiont will terminate the run and disconnect the terminal. No accounting
information is printed.

It should be noted that if a program is active, it will be aborted when EOT is
pressed.

1.5. Disconnecting the Terminal

If Option 1 was used to terminate the run, then the terminal may be disconnected
by holding down the CTRL key and pressing the EOT key.

Do not use the CLEAR button. This may prevent reestablishing a connection at
a'later time.

1-4

2. EXEC 8 CONTROL STATEMENTS

2.1. Control Statement Format

Control statements from a demand terminal are identified by the master

space character (@) in column 1. Every statement that begins with the mas­

ter space is considered as a control statement. All control statements are

"free field" in format (i.e., they are not fixed in format) with a variable

number of specifications required. In general, a blank may be replaced by

any number of blanks and a comma may be followed by any number of blanks.

There are no column restrictions except that the master space must be in

column 1.

The general format of a control statement is:

@ Command, options specl, spec2, ••• ,specn

This is the most frequently used form of a control statement. For other forms

see GTPRM Sec. 4.2.2."

The 'command' field must always be specified and should be followed by a

comma only when 'options' are specified. The other fields are required or

optional depending on the control statement used. (See GTPRM chapter 4,

"EXECUTIVE CONTROL LANGUAGE").

Examples:

@RUN DEMO, 99X1012, DOE-JOHN-Q

@RUN DEMO,99X1012,DOE-JOHN-Q

(Note: The above two control statements are equivalent.)

@XQT

@FOR

@FOR MA INPROG, MA IN

2.2. The @RUN Control Statement

The first control statement that must be entered by the demand user is

the @RUN statement. A suitable @RUN statement has the format

2-1

The 'runid' field may be from 0 to 6 characters of the user's choice.

However, it is recommended that the first two characters of the runid be the

same as the first two characters of the user's password. These characters

are an abbreviation for the user's school or department, and will ensure

that any output produced on the onsite printers or punches will be returned

to the proper bin.

The parameters 'reference-number' and 'user-name' will be supplied to

the user by his Departmental Computer Coordinator. When an acceptable @RUN

statement has been entered, Exec 8 will respond with the time and date as

follows:

DATE: mmddyy T!ME : hhmms s

meaning that the password and @RUN card are valid (see Figure 1). Further

control statements may now be entered. Other possible responses to the @RUN

statement are:

1. NO RUN ACTIVE

The input image was not recognizable as a @RUN statement. Run initiation must

begin again with step 1, section 1.30 No new black-out area is provided, so

the platen should be rolled back.

2 • INV 0 NAME OR REFNO.

The name and/or reference number supplied on the @RUN statement are invalid.

3 • INV. PRIORITY REQ.

The priority specified on the @RUN statement is higher than allowed.

4. INV. TIME REQ.

The estimated run time exceeds the maximum allowed for the user.

5. INV. PAGE REQ.

The estimated pages exceed the maximum allowed.

6. INV. ACCESS MODE.

The supplied reference number is not allowed demand access.

7. INCORRECT PASSWORD

The specified password does not belong to the user named on the @RUN statement.

2-2

8. BUDGET EXCEEDED

Either the reference number has exhausted its budgeted dollars, or the user

has exceeded the charge limit set up for him.

9 . BAD RUN STATEMENT

A syntax error was discovered.

In case of responses 2 through 9, a new blacked-out area will be provided.

The user may attempt the entire Run Initia.tion procedure (see 1.3) or follow

the disconnect procedure explained in 1.5.

2.3. Commonly Used Control Statements

Four commonly used control statements are presented here. As the user

becomes more experienced, he may require others, such as @ASG and "FURPUR"

statements. For further information on all control statements, see GTPRM

chapters 4 and 5.

1. @FIN

This statement terminates a run which was previously started with a @RUN

statement 0 The user may disconnect the terminal or begin a new run as pre­

viously described.

2. @processor

This statement is the processor call sta.tement used to call programs and

compilers which are resident on the EXEC 8 system. For example, @FOR is used
@/J/AALG

to call the FORTRAN compiler,~for the ALGOL compiler @ACOB for the ANSI

COBOL compiler, and @ED for the ED processor.

3. @XQT

This statement is used to execute programs previously compiled by the user,

or to execute the application programs provided by EXEC 8.

4. @EOF

This statement may be used to terminate program language statements to a

compiler, statements to a processor, or data images to a user program.

2-3

3. CREATING AND USING A FILE IN A RUN

This chapter is presented to exemplify demand usage of prDnarily batch

system components, such as FORTRAN V. Although a demand runstream may

actually be the same as a batch deck setup, this is not efficient or even

convenient.

If the user intends to use demand components of the system, such as

BASIC or APL, this chapter may be skipped. Such components usually provide

their own, terminal-oriented file system. Such file systems will not be

discussed in this manual.

3.1. EXEC 8 Program Files

The EXEC 8 language processors (e.g., the FORTRAN, COBOL, and ALGOL

compilers) operate on elements of program files. A program file, by

definition, must exist on a random access device. Elements of a program

file are of three general types: symbolic, relocatable, and absolute.

Symbolic elements contain source programs (e.g., FORTRAN or ANSI COBOL state­

ments) and are used as input to the language processors. The language pro­

cessors place their output in relocatable elements. The system processor

:MAP collects one or more relocatable elements into a single absolute element

which may be executed with the @XQT control statement.

In simplest form, both program files and elements are named by one to

twelve characters from the set A through Z, 0 through 9, -, and $. The char­

reter $ is used in all system-defined names and hence should be avoided to

prevent conflicts. In the control language, an element named E in a program

file named PF is denoted

A program file may contain many elements, provided only that all elements

of the same type have unique names. The control statement

@PRT, T PRFIL.

will print a listing of the elements in program file PRFIL. This is frequently

called a "table of contents," or TOC.

3-1

In addition to the element names, the element type will be listed. As

mentioned above, the type may be symbolic (SYM), re1ocatab1e (REL), or abso­

lute (ABS). Symbolic elements are further classified depending on the source

language contained in the element, and thus symbolic elements may be denoted

with one of the types:

SYM
ELT
ASM
COB
FOR
ALG
MAP
DOC
SEC

A/50
Although

general symbolic
data or control stream
1100 assembler source language
COBOL source language
FORTRAN source language
ALGOL source language
1100 Collector source statements
Document processor element
1100 file administrator source statements

BAS) SND) L.ISP) etc,
source language procedures will not be discussed in this manual,

the following symbolic element codes are mentioned for completeness:

ASMP
COBP
FORP

1100 Assembler procedure
COBOL Library procedure
FORTRAN Include procedure

. ~OJll~J:;.~~a11y assigns a temporary program file to every run, and

its name is TPF$. In the control language, if a program file name is not

specified where one is expected, TPF$ is Unp1ied by default. Thus, element

MAIN in program file TPF$ may be denoted either

TPF$.MAIN or simply MAIN

In order to run a program, then, a user must

1. Establish a program file.

2. Insert symbolic elements into the program file.

3. Direct language processors to compile the symbolic elements,

producing re1ocatab1e elements.

4. Make corrections to the symbolic elements, and recompile.

5. Direct the MAP processor to create an absolute element.

6. Direct EXEC 8 to load and execute the absolute element.

The next 6 sections of this chapter describe, primarily by means of

examples, how these six steps would typically be accomplished. For more de­

tailed information on program files, see GTPRM Sec. 1.7.

3-2

3.2. Establishing a Program File

The control statement

@CAT,P X,F2

will catalogue a file named X; that is, it is entered into the file directory.

When the system responds with the message, READY, X may be used as a program

file.

@CAT,P X"F2
READY
@PRT, T X.
FURPUR 023A-04/03-11:16

SPALDING- R*X
END PRT

I S EMPTY

Figure 3-1. Establishing a Program File; Using @PRT,T

File names are qualified by the user name from the @RUN statement; thus

every user may have a file named X (or anything else)., and no interference

between users will occur.

A file created in this manner is said to be catalogued. What this means

is that when the user terminates his run, the information in the file is

saved. The user may then initiate a new run at a later time and retrieve his

information.

In the case of program files, this allows the user to conveniently de­

velop and check out a program over an extended period, rather than having to

do everything in one session at the terminal. MOre will be said about this

in section 3.8, "Referencing Previously Catalogued Files."

3.3. Inserting a Symbolic Element into a Program File

The system processor, @ED, is a convenient means by which a demand user

may insert (and correct) a symbolic element. @ED is called to insert an

element by a statement such as

@ED,I X.MAIN

3-3

The ED processor will solicit images (with consecutive line numbers) to

be inserted into program file X, element MAIN. If a symbolic element named

MAIN already exists in program file X, it is automatically deleted.

After typing in the element, a carriage return switches ED to EDIT mode

so that, if desired, the symbolic type may be set and the element displayed.

@EOF (or any ~ontrol statement) terminates ED.

The @PRT,T statement may be used at this time to see that program file

X actually contains symbolic element MAIN. (See Figure 3-2) •

3.4. Compilation

3.4.1. General

After a user has placed source statements in a symbolic element of a

program file, he should direct the appropriate compiler to process it. This

is done by means of the language processor call statement, a suitable format

of which is:

@processor, optionss-i-el tname, ro-e ltname

'processor' names the compiler to be used. Often used compilers include:

FOR FORTRAN V (C01AFbR' -\or FDPTAAN -sL) @lfDR Of' 10RFOR -\Or RJ~)
ALG .ALGOL (@N(.;tA LG)
ACOB ANSI COBOL

'opt{ons' define the listing desired, the handling of symbolic elements, and

processo~-dependen~ features.

'si-eltname' names the program file and element to be used as source input.

'ro-eltname' names the program file and element in which the relocatable output

will be placed. Usually, this may be left blank in which case it is ass~

to be the same as 'si-eltname'.

An @EOF statement (or other control statement) must be entered follow­

ing the language processor call statement before compilation will be

completed.

3-4

QED~ 1 X. MAl N
. ED 12. 02-04/03-11: 17-(~ 0)
INPUT
1 I :
21:
31:
41 : 101
51: 5
61 : 102
71:
8 I :
91:
101 : 10
1 11 :

SUM=O.
N=O
\'JR I TE C 6, 19 1 ... - 0 1)
FUR'1AT(' ENTER NUMBERS
READ(5,102,END=10>VAL
FD fu'1AT(E 20. 5)
SUM= SUi~+ VAL
N=N+ 1
GO TO 50
. AVG= SUt-1/N

WRITEe6,103)SUM,N,AVG

TO BE AVERAGED')

. 121: 103
131 :

FORMATe' SU~=', EIC. 3" , N=', I 10, , AVG=', E10. 3
STOP

1 41 : END
1 51 :
EDIT
14: TYPE 4-FO H
14: PRINT!

101
5
102

SUM=O.
N=O
"TRITEC 6~ 101)
FORMATe' ENTER NUMBERS
READe 5~ 1 02~ DJ D= 10) VAL
FORMATe E20. 5)
SUM=S U'1+ VAL
N=N+l
GO TO 50

10 AVG=SlM/N
\lIRI TEe 6" 103) SUM .. N" AVG

TO BE AVERAGED')

103 FO&\1AT(' SUM= 'i EIC. 3, , N= '.I 110" • AUG='" EtO. 3
STOP
END

SCAN: 14
EOF: 14
0: @EOF
LINES: 14
@PRT" T X.
FURPUR 023A-04/03-11:21

SPALDING-R*X
FOR MAINe 1)
FND PRT

Figure 3-2. Using ED to Insert an Element

3.4.2. FORTRAN V
OBfI T vEe My 0pl-lD») 0-+ a,)} .

For FORTRAN V compilations, the D optionAis reconunended·for demand runs.

This will list only the lines with errors along with the error messages.

However, the S option may be used to list the entire program. Complete

details on options, except for the D option, are contained in the UNIVAC

FORTRAN V Programmer's Reference Manual.

3.4.3. ANSI COBOL
IV

Recommended options for ANSI COBOL are ;t. This will list errors and

inhibit sequence checking.

When using ANSI COBOL from~a demand terminal, the compiler will request

information regarding the margins used in the source language. This is done

to allow free-form input from the terminal. The user must follow the

instructions printed, and answer A, B, or C.

The options BES may be used for a listing of the whole program.

3.4.4. ALGOL

There is currently no option to list only errors. The user must list

the whole program (8 option) or none of it (N option). Also, the 'ro-eltname'

field must be specified. These restrictions will be removed in the future.

@ FO R, D X. MAl N
FOR S9A- OL!/ 03/72- 11: 24: 43 (0,)
@EOF

00115
00115
00115

* ERROH* THERE I S ~fo LAEEL 50~
9* GO TO 50

ERROR THI SASSI G'Jt1E:'JT IS r"1EA'JINGLESS SINCE THERE I S ~Q FO
SSIBLE REFER~CE TO THIS LABEL.

DIAGNOSTI C THI S STATE~1E:-JT HAS TOO MANY LEFT PARE:\11HESES~ 00124
00124 12* 103 FOR:~AT(' SU!1=',E10.3,' N=',I 10,' AVG=',E10.3

E:'lD OF COMPILATION:
ERRORS IN RELOCATABLE

@PRT, T X.
FURPUR 023A-04/03-11:25

SPALDI:-.1G-R*X
FOR MAIN(1)
REL MAIN
END PRT

3 DI P.G:.JO STI CS.
ELE~DJT

Figure 3-3 •. Compiling an Element Using FOR.

3-6

3.5. Correcting Symbolic Elements

The ED processor can be used to correct and update symbolic elements. The

appropriate control statement to call ED to update element MAIN in program file X is

@ED,U X.MAIN

The details of using ED are covered in Chapter 4 of this manual. However,

a few widely used capabilities of ED will be described below.

Initially, ED copies the element to a scratch file. A pointer is set to

line 0, ahead of line 1 (the actual first line). The element is processed

image by image, from top to bottom, and then the pointer is reset to line O.

ED solicits editing commands by displaying the line number of the image

currently pointed to. The user may change the pOinter by typing an unsigned

number (which moves the pointer to that line), a plus sign and a number (which

moves forward the specified number of images), or a minus sign and a number

(which moves backward). In addition, the user may search for a particular

character combination by using the LOCATE (L) and FIND (F) commands.

Suppose it is desired to change the line GO TO 50 to GO TO 5. The pointer

must be advanced to that line. If it is the first line on which the string GO appears,

LGO

will locate the proper line. ED types out the image when found, then displays

its number and waits for other commands.

The CHANGE (C) command may be used to alte~ the image presently pointed

to. The format is:

C delim stringl delim string2 delim

Any single, non-blank character may be used as the delimiter, 'delim', as

long as it does not appear in 'stringl' or 'string2'.

Thus, to change the GO TO 50 to GO TO 5, the command

C /50/5/

may be used. ED will print the result and wait for further commands.

The FIND (F) command is similar to the locate command, except that fixed

columns are used. In FIND 103, a match occurs only when 103 is in columns

1 through 3 of an image.

Any control statement indicates that all editing on the element is complete.

ED will copy its scratch file back to the program file specified on the@ED statement,

file a new symbolic element of the name specified, and delete the old symbolic element.

Of course, after a symbolic element has been updated, it must be

recompiled as in Section 3.4.

3-7

@ED~U X.MAIN
ED 12. 02- 04/03- 11: 27- (0, 1)
EDIT
O:L GO

GO TO 50
9: C 150/51

GO TO 5
9: FIN D 101
EOF: 14
0: ~-IND 103
103 FORt1AT(' SUM=', E10. 3, • N= ',110, • .A.VG=', E10. 3
12: C I G= ., E i o. 31 G= ., E 1 O. 3) I
1 03 FO RM AT (, . SUM = • , E 1 o. 3,,' N = ., I 1 0" • A V G = ., E 1 O. 3)
12: @FOR" D X. MAIN
LINES: 14
FOR S9A- 04/03/.72- 11: 29: 13· (1,)
@EOF

END'OF COMPILATIO~: 'NO DIAG~OSTICS.

Figure 3-4. Updating and Re-compi1ing an Element

3.6. Creating an Absolute Element

The MAP processor (also called the COLLECTOR) is used to combine one or

more re10catab1e e1ementi into a single absolute element.

3.6.1. MAP Processor Call

A suitable MAP processor call statement is:' d-e3tre ~'r 'tDU'r
~ PtJ:f fh-e, 'flofr\e- ycM

where:

I option

N option

spaces before
the second
comma

X.MAIN

@MAP, IN ,X.MA~ r('~'oJY\ he-re.

- specifies that MAP directives follow in the input stream

- specifies that no listing (other than errors) is to be
produced

specify that the MAP directives are not to be saved ina
symbolic element

specifies that the resu1tirig absolute element is to be called
MAIN and placed in program file X.

, 3-8

3.6.2. MAP Directives

The IN directive is used to specify relocatable elements that are to be

included in the resulting absolute element. Some"examples are:

IN X.MAIN

Include relocatable element MAIN from program file X.

IN X.MAIN, X.SUBI, X.SUB2

Include relocatable elements MAIN, SUBI, and SUB2 from program file X.

IN X.MAIN, MYNE.CALLER

IN MYNE.XYZ

IN X.SUBI

Include relocatable elements MAIN and SUBI from program file X, and relocata­

ble elements CALLER and XYZ from program file MYNE.

IN X.

Include all relocatable elements in program file X.

IN X

Include relocatable element X from program file TPF$. (Note that the period

is quite significant here!)

The LIB directive is used to specify program files to be used as library

files. Relocatable elements in a library file will be included in the

absolute element only if they are referenced by another element already

selected for inclusion. In order to be used as a library file, a program

file must have been prepared by the FURPUR @PREP command. (See GTPRM, 5.4.8)

Example:
LIB USERLIB.

The computer center maintains several standard library files that users

may specify on a LIB directive. Such files are @PREP'ed by the computer

center. For example, the MATH-PAKand STAT-PAK routines are kept in the

program file

SYSTEM$*MATHSTAT.

3-9

Thus, if the user has a relocatable X.MAIN that references one or more

MATH-PAK routines, appropriate MAP directives would be:

IN X.MAIN

LIB SYSTEM$*MATHSTAT

NOTE: SYSTEM$ is calle.d thegualifier, and is separated from the
file by the *. If the qualifier were not specified, the
user name would be used ~y default (see Section 3.2.), and
the proper file would not be used.·

Additional directives are described in the GTPRM, Section 6.1.3.

The user must indicate the end of directives with an @EOF statement, or

other control statement.

3.6.3. System Re10catab1e Library

The collector will automatically include referenced relocatab1e elements

from the system re10catab1e library, SYS$i(RLIB$. Routines in this file

include standard math routines (SQRT, LOG, SIN, etc.), input/output routines

(READ, WRITE, etc.), and various other routines that perform utility functions

for the user program.

3.6.4. ANSI COBOL MAP

All users of @ACOB (ANSI COBOL) should use the following MAP directive

when they collect their absolute:

LIB SYSTEM$*EXTRA

ANSI COBOL users should also note that the compiler generates several

'relocatable elements for one symbolic. Therefore, IN directives may be more

complicated than for FORTRAN or ALGOL programs. Consult the ANSI COBOL

Programmers Reference Manual, and see the example in Section 3.10.2.

~.7. Program Execution!

The control statement

@XQT X.MAIN

will cause EXEC 8 to load and transfer control to absolute element MAIN in

program file X.

3-10

@MAP, IN , X. MAIN
MAP 0023- 041 03- 12: 58

IN X.MAIN
@EOF

@PRT, T X.
FURPUR 023A-04/03-12:58

SPALDING-R*X
FOR MAINe 2)
REL MAI~
ABS MAIN
END PRT

Figure 3-5. Creating an Absolute Element

If the program being executed is set up to read data images from the

"card reader," such images are entered innnediately following the @XQT control

statement. If the program directs output to the "printer," such output will

be displayed on the terminal •. In FORTRAN, the card reader is unit 5, and

the printer is unit 6. In ALGOL, the assumed input device is the card reader

and the assumed output device is the printer; hence if no devices are specified

in READ and/or WRITE procedure calls, the input and output will automatically

be directed to the terminal. In ANSI COBOL, files for which terminal input/

output is desired would be ASSIGNed to PRINTER and CARD-READER in the

ENVIRONMENT DIVISION.

Program execution can usually be terminated by entering the control

statement

@EOF

(or, in fact, any control statement) which will cause an end-of-file condition

to be returned to the program when it attempts to read the statement as data.

If a program cannot be terminated in this way, the BREAK key on the teletype

may be used as described in Section 6.3.1.4.

@®X TJ:O UJtn kill Oflr1-h't'r:J btd- GTS) pCtln.lessl/.

3-11

@XQ, X.MAIN
~~TER NUMBERS TO BE AVERAGED

5.0
10.0
15. 0
@EOF

SU'1=
DJD

.300+ 02 N=
54 ~lLSEC

3 AVG= • 100+ 02

Figure 3-6. Execution of a Program

The program may be executed again without modification simply by

entering another @XQT control statement.

@ X Q T X. C-1 A I N
ENTER NU~BERS

19. 70
TO BE AVERAGED

31. 001
16.35
128. 37
29.47
@EOF

SUM=
END

.225+03 N=
51 MLSEC

5 AVG= .450+ 02

Figure 3-7. Re-execution of the Same Program

If it is desired to change the program following execution, the @ED,U

statement may be used as in Section 3.5. If a symbolic element is changed,

'it should be recompiled. The MAP processor should be called again following

all recompilations. It is not necessary to recompile symbolic elements which

were not changed.

3.8. Referencing Previously Catalogued Files

3.8.1. General

If the user terminates his run, and then initiates a new run at a later

time, he may retreive his programs that were placed in catalogued

3-12

files. This may be done to update the programs or simply execute them with

new data.

In all cases, the file(s) in q ues tion should be assigned as follows:

@ASG,A X ~ASG)A2: f. uJ t t! /::.e-ep 'jDlL f'n~)rY1 IJ

hClvt'!lg a (/ ?Uft:r:.u:/IJ{;::, ON FACIwl'j PL-esSctJc
'x', of course, is the name of the file.

3.8.2. System Responses to @ASG,A

The most common responses are covered below. A complete set of responses

is given in the GTPRM, Section 4.5.2.6.

READY

The assign was completed normally.

FACILITY WARNING 000000000200

The file was assigned when the system failed (see Chapter 5). This is

a warning only, and means that the file may have been only partially updated

by an updating run. The user should examine the file (with, say, a @PRT,T),

and after noting its condition, enter an @ENABLE filename command.

FACILITY REJECTED 400000000100

The file was not properly reloaded from a computer center backup tape.

An @ENABLE filename should be done, followed by another @ASG,A. If this

fails, @DELETE the file and recreate it. If recreation would be difficult,

contact a Programmer's Aide as he may be able to load an older version.

FACILITY REJECTED 400000000400

The file was destroyed by a hardware or software error. @ENABLE may be

attempted, but it is unlikely that the file will be intact. @DELETE it, then

recreate it or contact a Programmer's Aide.

FACILITY REJECTED 400010000000

The file is not catalogued! If spelling is correct, then the computer

center may have deleted the file while enforcing its mass storage policy.

The following classes of files are likely to be delet~~~ ("it) ~r" Ftf~

(1) catalogued with equipment type other than F2.A This includes files

catalogued with the 'F2' omitted from the @CAT statement.

3-13

(2) of zero size. If a file has nothing in it, it is a waste of

resources to maintain it.

(3) of size greater than the "maximum allowable size."

(4) files that have not been assigned for a period longer than the

"expiration period."

A Programmer Aide may be able to reload the file if it cannot be

conveniently recreated by the user.

Additional classes of files may be designated to be deleted in the

future. Your Departmental Computer Coordinator will have current information

concerning mass storage policy, including the current "maximum allowable

size" and "expiration period."

WAITING ON FACILITY

This may mean two different things: someone else is using the file, or

the file is "unloaded." In either case, the run will be held until the file

is available; at that time, the message READY will be displayed. If the user

wishes to do something else while waiting for availability, the BREAK key may

be used as described in Section 6.3.1.4 to remove the hold condition. If

the BREAK key is used, the assign must be 'reattempted later before the file

may be used. 'lflSJ--ecct of BreAk of' fYleJ!J tf13{2 ~mYl3 f<e'(S,
~X TO It

@ASG,A X
READY

Figure 3-8. @ASG, A Statement and Normal System Response

3-14

3.9. Catalogued File Maintenance

From time to time, the user should perform maintenance (housekeeping)

on his files. This includes deleting files no longer needed, deleting elements

no longer needed, and "packing" program files to release space occupied by

deleted elements.

3.9.1. The List Files Processor

The LF (list files) processor maybe used to list all the files belonging

to the user. Complete details are in GTPRM Section 6.7; commonly used

features are described below.

@LF 5l()w) 'StDW) -VlDW!
will list all files belonging to the user.

@LF, options

will list certain information about all the user's files. Commonly used

options are:

L - list everything.

S list the size in tracks (a track contains 1792 36-bit words).

T - list the time and date of cataloguing and of last assign.

P - list the cataloguing parameters (specification 2 of the @CAT).

o - list the @CAT options.

B - list computer center backup information: TFW means the time that
the file was first written into (if such was done) following the
last time the file was copied to tape. BU means the time the file
was last copied to tape.

@LF, options filename,

will list the requested information about the specified files only.

Certain files may be annotated as follows:

-UNLOADED- The text of the· file exists only on tape. If the user assigns the

file, he will be placed in WAITING ON FACILITIES mode while the text is being··

reloaded.

-DISABLED- -·INCOMPLETE WRITE- The file was assigned during a system failure.

See Section 3.8.2.

-DISABLED- -DESTROYED- A hardware or software error destroyed the file. See Section 3.8.2.

·3-15

-DISABLED- -BACKUP CANNOT BE READ OR LOAD IN PROGRESS-'An assign will receive

FACILITY REJECTED 400000000100. See Section 3.8.2.

The user should periodically list the names of all his files, and

delete those no longer needed.

3.9.2. The @DELETE Statement

The @DELETE statement may be used to delete files or delete elements of

program.fi1es.

@DELETE filename

deletes the specified file.

@DELETE,options filename.eltname

deletes element 'e1tname' from program file 'filename'. Since 'e1tname' may

exist concurrently as symbolic, re10catab1e, and absolute, the 'options'

indicate the type(s) of elements to delete, as follows:

A option - absolute element

R option - re10catab1e element

S option - symbolic element

The user should periodically delete files and elements no longer

needed.

~l~ ~ 3.9.3. The @PACK Stateme~) r-t:, .
71..\--~~~~···- ~ / PACK statement rewrites an entire program file so as to exclude

deleted elements and release unneeded mass storage. Remember that in addition

to elements explicitly deleted by the @DELETE statement, elements are h' '. __ 1 d
~ t3 trDUJ,~

deleted each time an element is updated, recompiled, remapped, or re-inserted. 5ASJ[~

It is important that users pack their program files frequently, for the pr~~~'

computer center typically finds ·thousands of mass storage tracks tied up in

deleted elements. In addition, failure to pack frequently may cause a file

to exceed its max~um size prematurely.

The format of the @PACK statement is

@PACK filename

or @PACK filename, filename, filename (etc.)

(As many files as desired may be specified.)

3-16

Neither BREAK nor EOT should be pressed when a pack is being done,

as this will destroy the file. Always wait for the END PACK message.

@PRT,T x.
SPALDI N G- R*X
FOR [-'JAI N (2)
HE!. MAL ~
ABS t1AI N
E:.'l D PRT·
@DELETE, R X. MAL N
END DELETE
@PRT, T X •

. SPALDING- R*X
FO R tvI A I N (2)
ABS t-1AI N
END PRT
@LF, S X.
LF-12-0LtI03/72-13: 01: 24
SPALDING-R*XC 1)
£\JD LV 7 TRACKS
@PACK X.
FUR?UR 023A-04/03-13:02
END PACi{
@LF, S x.
L F- 12- 04/03/72- 13: 02: 23
SPALDING-R*XC 1)
~\JD LV 4 TRACKS

S2-7

5Z-4

Figure 3-9. Catalogued File Maintenance

3.10. Examples

The examples in this section are reprinted from actual demand terminal

output. Having previously studied Chapter 3, the reader should understand

these examples except for a few techniques; these are pointed out in the

text included with each example.

3.10.1. A Complete ALGOL Run with Debugging

This example serves two purposes. First, it shows the ALGOL programmers

how to apply the techniques explained previously in this chapter for FORTRAN.

Second, it provides a review of the procedures used for any language. For

the latter reason, all users would benefit from reading this example.

3-17

Note that the standard ED TAB character is the semicolon which is used in

the source language. Therefore, the TAB feature is inhibited before the ,­

program is entered. An alternative would be to use the dollar sign in the

source language rather than a semicolon.

(\JrAA L6 docs not accept dotiO!' sgns. Use ct
<1
)

3-18

UGT003

tN I VAC 1108 TI ~~ E/ SHARI ~ G EXEC VEHS 27. 20. 143: 32 .

EEES)fl1
NO HlN ACT! VE
@RU~ CCkAY" 9 7C 12lJ20, SPALDI N G-R
DATE: 0L!1372 TI~>1E: 113507
GASG, A X
READY
@ED"I X. ALGTEST
ED 12. 02- 04/ 13- 11: 36- (" 0)
I>JPUT
11:
EDIT
O:TAB
0: TYPE ALG
0:
INPUT
1 I: BEGI~
2 I : I ~ TE GER ~H REjl.L VAL" SU~v1;
3 I : FO HI"l AT F l' 0 3 C' S lEt] = ' , Ii. 1 O. 3, ,
.tIl: LO CAL LABEL EO FLAB;
51: \·jRI TEe • EN TER . N U'l BEES \TO BE
61 : REAOONE: READe V~L" EO FLAB) ;
7 I: SUM= SUM+ VAL
BI:N=N+l ,
9 I : GO TO REAOONE;
101: EO FLAB: AVG=VAL/N;
11 I : vIRI TEe SU1, N, AVG, F 103) E1'J D
121: '
EDIT
'11: LNPRINT!

1: EEGIN
2: INTEGER Nf REAL VAL, SLr.1;
3: FO R!1AT F103 (' SUf1= " R 1 O. 3, , N='" I 10, 'AVG=.', RIO. 3) ;
4: LO CAL LABEL EO FLAB;
5: \.JRI TEe ,'ENTER NUMEERS TO BE AVERAGED ');
\6: READONE: READC VAL, ED FLAB);
7: SU:~= St.M+ Vf=\L'
8:N=N+ 1
9: GO TO READONE;

10: EO FLAB: AVG= VALIN;
11: vIR! TE.C S U'i, N, AVG, Fl 03) EJ."l D

SCA'J: 11
EOF: 11

" 0:

\

Figure 3-10. ALGOL Exatnp 1e (Pag,e 1 of 4)

3-19

0:7
S LTY.:..; ~U 1+ V~L
7: C ,., \·'.~J~/L- VAL; I
SU~'l= SU:·1+ VAL;
7: + 1
~J =~~+ 1
[~: C / 111; /
>J=\J+ 1;
B:F:XIT
LI)JE:S: 11
GAL (o! X:. f\L GTEST" X. AL CiTF.ST

/ CYCLE 000 CO~PILED bY 1204 0008 O:'J, 04/13/72 AT 11: ill: 36
@EOF
@\lAP" I;'] "X. PLGTEST
~AP 0023- 04/13- 11 :-41

I ~J x. ALGTEST
D.EOF

ERROR IN ELEME\jT: ALGTEST
@ALG, S X. PL GTE ST, X. ALGTEST
CYCLE 000 COM PI LEn BY 120LJ' 0008 ,ON 041 13/72 AT 11': 42:' 19
BEOF

Bl
1 \ BEGIN
Sl L 1

2 INTEGER N; REAL VAL, SUYB
3 FORYIAT FI03 ('SUM=',RI0.3,' N=',I 10, 'AVG=',R10.3);
4 LO CPL LABEL EO FLAB;
5 'HRI TEe 'E~TER NtMBERS TO BE .AVERAGED·)';
,6 , R~ADONE: READe VAL, EO FLAB)';
7 Slt-l= S1£1+ VAL;
8 N=N+ 1;
9 GO TO REAOONE;

10 EO FLAB: A V G= VPL/N;

* UNDEFINED VARI AELE
El

11 "JRITECSUM,N,AVG,FI03) END

1 ERRORe S). \1,'EF.E FOUND
@ED .. U X. ~LGTEST
ED 12. 02- OLII ,I 3- 11: 43- (0, 1)
EDIT
0:2
INTEGER N; REAL VAL, SUM;
2: C I SUMI AVG, A- SUM/
I NTEGER ~J; REAL VAL, P. VG, SUt-1;
2: 3
FORMAT FI03 ('SUM=""HI0.3,' N=',! 10, 'AVG=',RI0.3);
3: C 'AVGI' AVGI
FOR£-lAT FI03 ('SU1=',RI0.3,' N=',I 10,' AVG=',RI0.3);
3: EXI T '
LINES: t 1

Figure 3-100 ALGOL Example (Page 2 of 4)
3-20

GALC;, >l x .. ~L GTEST, X. AL (.;1'E ST
CY CL F. 001 CO:v1 PI LED BY 1204 0008 O~ OLI/ 13/72 AT 11: LtLt: 54
GEEF-"'OF
Or-JAP, IN X-?
Q:'1AP, I~ , x. P.LGTEST
~AP 0023-04/13-11:45

IN X.ALGTEST
GEOF

GXQT X.ALGTEST
E:.\JTEH NlE1BEH,S TO BE AVERAGE:D
5. 0
10. 0
15. 0
@EOF
END 52 MLSEC
@,ED, U x. P..LGTEst
ED 12. 02- 041 13- 11: -46'"'\(1, 2)
EDIT
0: L FORy1AT
FORl'1AT FI03 ('SPM=', RIO. 3, • N='; I 10,·1 AVG= I, RIO. 3).; ,
3: C I) I., AI) 1 ' •
FO n~ AT FlO 3 (' S {n~ = • , R 1 o. 3, , N = '., I 1 0, • A VG= • , R 1 O. 3, A 1) ,;
3: GALCi X. ALGTES1', 1~. ALGTEST
LINES: 11 .
CYCLE 002 COrtlPILED BY 1204 0008 ON 04/13/72 AT 11: 46: 49.
@EOF
@~'iAP" IN .Ix. ALGTS-EST

, MAP 0023- 04(1'3- 11: 47

IN X. ALGTE ST
@EO'F

@XQT X.P.LGTEST
DJTER NUMBERS TO BE· AVEHAGED
5.0
10. a
15. 0
@EOF
S U~vl = 3. 00, + 0 1 N = .. 3 A V G= 5. 00 .. + 00 •
END 58 MLSEC
@ED, U X. ALGTEST
ED 12.02-04/13-11: 48-(2,3)
EDIT
0: F EOFLAB
EO FLAB: AVG=VAL/N;
10:C II-VPL/SU£11

. EO FLAB: AVG= SU-l/N;
10: @PLG X. AL GTE T'" ST .. x.~.L GTEST
LINES: 11
CYCLE 003 COMPILED BY 120<4 0008 ON 04/13:172 AT 11:49:40
@EOF

Figure 3-100 ALGOL Example (Page,3 of 4)

3-21;

OMAP~IN ~X.ALGTF.ST
MAP 0023- 04/13- 11: 50

IN X. ALGTEST
@EOF

@XQT X. ALGTEST
ENTER NIDlEERS TO BE AVERAGED
5.0
10.0
15.0
@EOF
SUM= 3.00~+01 N= 3 AVG= ·1.00~+01
END 60 MLSEC
@XQT X.ALGTEST, . .
ENTER NUMBERS TO BE·AVERAGED
19.70
31. 001
16. 35 .
'l2B. 37
29. 47,
QEOF
SUM:: 2.25" + 02 N=
EN,D,;', 70,·ML"SEC<;·
@PACK X

'. FURPUR 023A- 04/13- 11: 52
END PACK

SPALDING-R*X
FOR MAIN(2)
ABS MAl N .
ALG ALGTESTC 4)

'. REL' ALGTEST
,ABS ALGTEST

END 'PRT
@FIN .

5 A VG= 4. 5 o~ + 0 1

RtN I D: . CCRAY . REF. NO: 97C12420

TIME: ·QO:OO:D6.741 IN: 87· OUT: 0

INI TIATION 'TIME:, 11: 35: 07-APR 13~ 1972

TE&~INATION TIME: 11: 53: 06-APR 13~ 1972

NAME: SPALDING-R

PAGES: 3'

.-

. /

Figure. 3-10. ALGOL Example; (Page 4 0.£.4)'
, , , .

3 .. 22

Note that this user properly PACK'ed his file before terminating. After

the blacked-out area was printed, he held down the CTRL key and pressed the

EaT key.

3.10.2. An ANSI COBOL Program

This example shows the procedures used to debug and run ANSI COBOL

programs. The symbolic element X.COBTEST was previously entered using ED.

Interesting points in this example include the @PRT,T following

compilation that shows that ACOB generates several re1ocatab1es, and the

@PREP and @MAP which are unique for ANSI COBOL programs.

f2-A. . (' Alrl abst-lrdd,:'1 -thai fDilc>ws l I ~ L I
~UOfe. err -t I L.C,.

3-23

OED, H, {. CO BTE ST
REA1~D:~LY :10 DE
ED 12. 02- 04/14- 13: 25- (6,)
EDIT

, 0: L~~ PH IN T !
1 :
2:
3:
4:
5:
6:
7:
8:
9:

10:
11 :
12:
13:
14:

, 15:
16:
17:
18:
19 :
20:
21 :
22:
23:
24:
25: ,
2,6:

.' 27:
28: -
29: '
30:
31 :
32:
33: ,
34:
35:
36:
37:
38:
39:
40:
41":
42:
43:
44:
45:'

, 46:
47:
46:'
49:

SCA\J: 49
\ EOF: 49

0: @EOF

I DDJTI FI C.4TI O:--JDIVI SI ON.
PRO GRAtvl- I J). EXAYiPLE.
ENVI RON~1DJT DI VI 51 ON.
CONFIGURATIO:--J SECtIO~.
SO. UR CE- co t-1PUTER. uN I VAC- 1 1 08.
o EJ ECT- COt1PUTEH. t.i:'l I 'UAC- 1108.
I~PUT-GUTPUT SECTIO~.
FI LE- CO~THOL.

SELECT IN FI LE ASS! G)J TOCAHD~ READER •....
SELECT OUTFILE ASS1 G'J TO PRINTER.

DATA Dl VI SI ON.
, FILE SECTIO>J.

FD' INFILE, LABEL RECORDS STP ... 'lDARD.
01 CAED.

02 DVAL PI C 9999 V999.
02 FI LLER PI C XC 72) •

FD OUTFILE" LABEL RECORDS STA\JDARD.
01 AN SLINE. .

, 02 DS lR1 PIX, Z Z Z 9 • 999 •
02 FILLER PIC XX~
02 D:J{J.1 PI C ZZZZZZZ9.
02' FILLER PIC XK.
02 DAVG PIC 2Z29.999.'

, 0 1 H DR PIC' X (1 32) • .
vDR1<IN G- STORAGE SECTION.
77 SUM PI C 99999V999 VALUE O.
77 NUtw1 PI C 9999 VAL UE O. /
77 . AVG PI C 99999 V999 •
PRO CEDURE DI VISION.
OPEN-UP. OPEN INPUT INFILE" OUTPUT OUtFILE.

MOVE.'ENTER NUMBERS TO· BE AVERAGED' TO HDR.
HRI TE HDR.

, MO VE '9999 V999· I S THE PI CTURE' TO HDR WRI TE, HDR.
GETVAL. \

READ INFILE AT END GO TO GETAVG.
ADD ,1 TO· NUM.
ADD DVAL TO SUM.
C"() TO GEJVAL.

GETAVG.
CLOSE INFILE., .
DIVIOE SUM BY NOM GI VING AVG.
MOVE • SUM NtM AVG' ro' HDR
vlRI TE H DR. _
MOVE SPACES TO AN SLINE."
MOVE SUM TO DSUM. MOVE NUM TO D.\1IDl.
vIRI TE A"l SLI N E.

CLOSE-UP.
CLOSE OUTFILE~
STOPRLN.

MOVE AVG TO DAVG.

Figure 3-11.· ANS~ COBOL "Exatltpie ·(Page 1 of 3) ,

NO, CO RRECTI ON S APPLI ED.
3-24

GACO B, BE X. CO BTEST
COBOOA5- 04/14- 13: 57- (6")

THE A .Ai~D B l~ARGI~S \'HLL BE COL. 1 A~'JD 2, (NO .SEQ. NUMBERS)
CONTINUATION MARK MUST BE IN COL. 1, TEXT OF CONTIN IN roL 2
ABOVE FDR11AT' APPLI ES TO •• A-NONE, B-TTY, C-TTY+PF INPUTS
PLEASE TYPE A B OR C, THEN CARR. RET. A
@EDF
ERROR* 0019 3

4
U'JRECO Ci'JI ZABLE OR MISPLACED t .. ORD.

ERROR 0019 CHARACTER AFTER PUNCTUATION I S .BEGIN:~I:-.J G a F ~ E{l
\\rQ RD •

ERROR*
EHROR*
ERROR*
EHROR
ERBOR

. 0019
0019
0019 ..

4 lNHECOGNIZAELE OE MISPLACED-YDRD.
CLASS IS LN SPEC I FI ED FOR ELENENTAHY I TE~-1.
SIZE OF ITEl'1 IS MISSING.· .

0046
0045

NUf'1ERI C ttJO VE MAY RESUL T IN LEFT TRU~CATION
ILLEGAL MOVE - NUMERI C TO ALPHA, SPECIAL, OR NO:-l

-~UMEHI C·

EHROR* INDI CATES FATAL ERROR~

END COB. ERRORS: 4
'.

COMPI LE 1'1 ME I S 0000.93 SECON DS
@ED, U X. COBTEST
ED 12. 02- 04/ 14- 13: 59- C 6, 7)
EDIT
0: 19

02· DSLM PIX·ZZZ9.999.
19: C/PIX/PI C/ ,

02 DSU~ PIC ZZZ9.999.
19: 45

MOVE SUM 10 DSUM. MOVE NLM TOINtJ.~. MOVE AVG TO D.l\VG.
4S:@ACOB,BE X.COBTEST
LINES: 49
COBOOA5- 04/14- 14: 00- C 7,)

THE A P.N DB' MARGI N S t,n LL BE COL. 1 A'J D' 2, (NO SEQ. N U~'1EERS)
CONTINUATION. MAR~ £-lUST BE IN' COL. 1, TEXT OF CONTIN IN 'COL 2.
ABOVE FOH~1AT APPLIES TO •• A-NONE,B-TTY" C-TTY+PF I.NPUTS
PLEASE TYPE AS OR'C,THEN CARR. RET.A
@EOF
ERROR· 0046.
ERROR 0045

NU~~ERI C r~oVE lViAY RESULT IN LEFT. TRtNCATI ON
NUMERI C MOVE MAY' RESULT IN LEFT TRlNCATION

DJD COB ERRORS: 0

'COMPI LE TIME l·S 0000.95 SECOt·{ns

figure 3-11 •. ANSI COBOL Examp~le (Page, 2 of 3)
.• • J

.3-25 ,. -'

QPPT, T X.·
FU}~PP!i 023A- OLJ/ 14- 1 LJ: 02

SP_l\T .. nI~G-R*X .
FOR !''1AI N(2)
ARS MAIN
ALG l~LGTF ST(4) ~
REL ALGTE:ST

·ARS ALGTEST
COB CO BTEST(5)

,REL INFILE
REL OUTFILE
REI.. CSFO RKCOBTES
REL CS0101COETES
REL C$Ol02COBTES
REL COBTEST
Fl~D PRT' ,
@PREP" X.
END PREP
@MAP,IN ,X.COBTEST

,MAP 0023-04/14-14:03

IN X. COBTEST
1..1 B X, SY STEM $* EXTRA
@EOF.

@XQT X'. CO BTEST ' .'
ENTER ~JU1'1BERS TO BE' AVERAGED
9999V999 IS THE PICTURE
0005000
0010000
0015000
@EOF

, 'SUM,
30.000

NIDl
3

@XQT X. COBTEST '

,,'

'AVG
10.000

ml'ER NUMBERS TO BE AVERAGED
9999V999 IS THE PICTURE
.001970
0031001
0016350
0128370
0029470
'@EOF

.­, ,

. '

NUM
5

AVG
44.980

Fi,glire 3-1141 ANSI' COBOL Example (page 3 of 3). .
, ' '/ ~-'

3-26
"

3.10.3. FORTRAN With Subprograms

In this example, a main program, function, and subroutine are entered

into separate symbolic elements, separately compiled, and collected

together with the MAP processor.

()f' CDu.:f"0e--) yDrA- oan J 0 -{-his; wi-lh
fiLf) sf c..ase-S rvt! X I cU13lLQ8C5' I

fl G.) AL00L t1 t1Ct rOIZ7t<AN /'

I3EG:JN
£Xf£R/UAL FoRTr<flN PRD6EO~RE oUTPUT j

~NTEGER Ij REAL X;
ReAD (r))
FOR X::::: (,. b) I. ()):r:.,) Dr') 0 itT ptf-I (S&RT (~))

END

SUJSRbllT1JJE OtJTpuT LX)
PRI.-NT 5)X

5 F01<fV1 AT L ')
r<ETUj<.N
END

Note. -fu r-tr of) free.-- to('VYlaf.

3-27

@ED" I X. CO RMAIN
ED 1 2. 02- 041 1 7- 15: 25- C " 0)
INPUT
1 I :
EDIT
0: TYPE FOR
0: SET ,7
0: ,
INPUT
1 I : ,; vlRI TEe 6" 100)
21: 100; FD Ht1AT(' EN TER DATA: ')
3I:2;READes" 101"END=900"ERR=800)X"Y
41 : 101; FO RA"MATC)
51:; N=~+ 1
61: ; SUMX= SUMX+X
71:'; SUMY=SUMY+Y
8I:;SUMX¥=SU1XY+X*Y
9 I : ; SUt1X SQ= SUt'1X SQ+X*X,
101:; SU~1YSQ=SUt1YXQ+Y*Y
111:;GO TO 2
121: 9 00; C=CO RRe N" SLD1X" SUL1Y" sur'1XY" SUi1X SQ" SUL'1Y SQ)
131 : ,; "nn TEC 6" 102) C
141 : 102; FO Ri'1AT(' CO RRELATI O'N CO EFFI CI Ei"1 T: ,'" F8.' 3)
\151:,; CPLL STDEveN, SUMX" SUMXSQ, C)
1 61 : ,; vJRI TEe 6, 103) C
1 71 : 103; FORr'1AT(' STAN DARD DEVI ATI ON --x .. X: '" Fa. 3)
18 I: ,; CALL STDEV(N, Slh1Y, SUMY SQ" C)
19 I: ,; "'RI TEe 6" 1 04) C
201: 104; FORMATe' STA\lDARD DEVIATION -- Y: ." F8.,3)
21 I: ,; STOP
221: 800,; '''RI TEC 6" 105)
231:,10S; FOru'1AT(' ERROR - RETYPE LINE')
241 :'; GO ,TO 2
251:; END
261: @FOR, D X. CO Rl'1AIN
LINES:25
FOR S9A- 04/17/72- 15:,30: 59 ,(O,,~)
@EOF

, I

00000 *DIAGNOSTIC* THE VARIABLE" SUt'1YXQ, IS REFERENCED IN nilS PROGR4.'1
" BUT IS NOWrlERE ASS I (NED A VALUE.

END OF COMPILATIO~~ 1 DIACNOSTICS.
@ED" U X. COR"'1AIN
ED 12.02- 04/ 17- 15: 32-(0" I>
EDIT
0: C / SUMYXQ/ SUMY SQ/ A

, SUMYSQ=SUMYSQ+Y*Y
SCA'J: 25
EOF: 25
0: @EOF·
LINES:25

Figure 3-120 FORTRAN"Examp1e (Page 1 ,of 4)

3-28

@FUR, D X.o)RMAIN
FOR S9A-04/17/72- 15: 33: 03 (1,,)
@EOF

END OF COMPILATION:
@ED" I X. CORR
ED 12. 02- 04/ 1 7- 15: 33- (.; 0)
INPUT
11 :
EDIT
0: TYPE FOR
O:SET 7
0:
INPUT ~

NO DI A6:'JOSTI CS.

11:'; FLNCTION CORR (N" SX" SY, SXY" SX2, SY2)
21:'; TX=N* SX2- SX* SX,
31 : .; TY=N* SY 2- SY* Sy
41:.:TXY=N*SXY-SX*SY
51:.: CO RR=TXY/ SQRT(TX*TY)
61 : .; RETURI\J
71:'; END

·8 I: @FOR, D S-X. CORR
LINES:7

•

FOR S9,A- 04/ 17/7'2- 15: 35: 40 (0,) ,
@EOF

END OF COMPILATIO~:
@ED, I X. STDEV
ED 12. 02- 04/1 7- f 5: 36- C, 0)
INPUT
1 I :
EDIT
0: TYPE FOR
0: SET 7
0:
INPUT

NO DI ACNO STI CS.

11.:'; SUBROUTINE STDEV CN, SX" SX·2, STD)
21:.; STD = SQRT(SX2/N-(SX/N)**2)
31:'; RETURN
41:'; END
51: @FOR, D X. STDEV .
LINE-S: 4
FOR S9A- 04/17/72-15: 37: 31 CO,)
@EOF

END OF COMPILATION: NO DI AGJO STI C S.

Figure 3-l2.·FORTRAN. Example (Page 2, o~ .4)"

3-29

@MAP~IN ~X.STATIS

MAP 0023- Olll 1 7- 1 5: 38

IN X.CORMAIN,X.CORR,X.STDEV
@EOF

@XQT X. STAT! S
ENTER DATA:

1. ~ 1.
2.,2.
3.,3.
4.,4.
5., 5.
@EOF

CORRELATION CO EFFI CI ENT:
STA~DARD DEVIATION X:
STA~DARD DEVIATION -- Y:

EN D 64 ML SEC
@XQT X. STAT! S

mTER DATA:
1., 5.
2.,4.
3., 3.
4. ~ 2.
5., 1.
@EOF

CORRELATION COEFFI CI ENT:
STANDARD DEVIATION X:
STANDARD DEVrATION -- Y:

E'JD 60 MLSEC
@XQT X. STAT! S

ENTER DATA:
5., 1 •.
10. , 6.
5.,2.
11.,8 •.
t 2., 5.
4., 1.
3., 4.
2., 6.

·7. # 5.
1.,2.
@EOF'

CORRELATION COEFFI CI E\1T:
STA'JDARD DEVIATION X:
STANDARD DEVIATION -- Y:

END 80 MLSEC

1. 000
1. 414
1.414

-1.000
·1. 414
1.414

•. 575
3.661
2.280

Figure 3-120 FORTRAN Example (Page 3 of 4)

3-30

@PACK X.
FURPUR 023A- Oll/ 1 7- 15: 44
END PACK
@PRT" T X.

SPALDING- R*X
FOR MAIN(2)

ABS MAIN
ALG ALGTEST(4)
REL ALGTEST
ABS ALGTEST
COB COBTEST(5)
REL INFILE
REL OUTFILE

. REL. C$'~ORKCOBTES
REL C$OlOlCOBTES
REL C$Ol02COBTES
REL COBTEST
ABS. COBTEST
FOR CORMAINC 2)
REL CORMAIN
FOR CORRe 1)
REL CORR
FOR STDEV(1)

REL STDEV
ABS STATIS
END PRT

Figure 3-120 . FORTRAN Example (Page 4 .of 4)

4. THE ED PROCESSOR

The ED processor is a text editor which allows the user to conversationally

edit a symbolic file or element. It allows insertion, deletion, and replace­

ment of text.

4.1. The ED Processor Call Statement

The ED processor is called by the control statement:

@ED,options namel, name2

All parameters are optiona.l except 'name 1 ' • 'namel' and 'name2' may

specify either data files or program file elements (filenames must be followed

by a period).

The allowable options are:

B - Batch mode when using a demand terminal: ED will not

solicit input from the user.

D - Demand mode from a batch run: output listing will

contain solicitation messages.

I - Initial insertion of symbolic input from the runstream

which causes ED to enter input mode. The images following

the @ED statement are inserted into 'namel'; 'name2' is

ignored. The I option takes precedence over the R or U

option.

L - Print all lines following the @ED statement. The lines

printed are indented and preceded by three asterisks.

N - Suppress printing of changed, located, or moved lines.

This option serves the same purpose as the ON BRIEF

command.

R - Input is taken from

(read-only mode).

'namel', no output text is produced

'name2' is ignored.

4-1

U - Update the symbolic element 'namel' by applying

corrections and create a new symbolic element cycle.

The output "element name is the same as 'namel'

but with a cycle number one greater. If 'name 1 ,

names a data file in System Data Format, the or­

iginal images will be replaced with the updated

ones. 'name2' is ignored.

x - Kill the run (batch only) if any errors are en­

countered.

If none of the options I, R, or U is s.pecified, the R option is assumed

for elements and the U option is assumed for data files.

4.2. ED Processor Usage

ED operates in two modes: input and edit. In input mode, all lines

entered are directly inserted into the text. In edit mode, various connnands

may be used to modify existing text. Changing between modes is accomplished

by entering a blank line (except when ON EOF is in effect). MOst editing

commands implicitly reference a particular part of the text. This is ac­

complished by an internal cursor maintained by ED. This cursor may be posi­

tioned directly by some commands (e.g., <number>, + <number» and indirectly

by others (e.g., LOCATE, FIND)o

ED proceeds sequentially through the text. It is therefore more efficient

to perform editing operations in sequential order, starting at the beginning

of the text.

If the user wishes to interrupt the processor, he may depress the BREAK

key at any time. The system will respond with: INTRPT LAST LINE. The user

should answer with a carriage return if he wishes to escape the current com­

mand. A few lines of backed-up printout may follow; then ED will request a

new editing command.

Files with names of the form ED$xx (where 'x' is any character) should

be avoided since ED uses such names internally.

fVlall fL[~5 (1r~ ED:ttM¢) ED ttMI) ~f-c,

4-2

4.3. Editing Commands

Following is a list of commands that may be used when ED is in EDIT mode.

All commands may be abbreviated to the first three" characters. Some have

shorter forms; these are indicated by surrounding the shorter form with

parentheses.

1. A) <number>

B) + <number>

C) - <number>

These commands are used to position the editor at a desired line in the

text. Form (A) directs the editor to line <number>o Form (B) directs the

editor to move to the position current line plus <number>. Form (C) directs

the editor to move to the position current line minus <number>. When the

specified line is located, it is typed out if in VERIFY mode, and modifica­

tions may be made to it.

2. A) (L)OCATE <string>

B) (L)OCATE <quote char> <string> <quote char>

C) LC <string:::>

D) LC <quote char> <string> <quote char>

This command is used to search the text for a given string of characters.

The search begins at the line following the current line and proceeds sequen­

tially through the text until a find is made or the end of file is encountered.

Form (A) ignores mUltiple blanks in the images. Form (B) requires that the

text image be exactly the same as the string within the two quote characters.

Forms (C) and (D) behave in the same manner respectively as (A) and (B) except

that all occurrences of the string in the remaining text are located. Just

before each line containing an occurrence is typed out, the line number is

typed out.

Example: LOCATE lAP EI

Will locate AP E but not AP E in the text.

4-3

30 LCHAR <char>

This command sets the quote character for the locate commando The default

character is quote ('). A non-inputtable character w~ll be assumed if <char>

is a blank.

4. (C)HANGE <dliml> <stringl> <dliml> <string2> <dliml> <number> <GI>

This command searches a specified number of text lines for <stringl> (as

with LOCATE command except that CHANGE starts with the current line and LOCATE

starts with the following line). When and if the desired string, <stringl>,

is found, <string2> is substituted for it. The number of lines to be scanned

is indicated by <number>. The global indicator, <GI>, tells whether to change

all occurrences of <stringl>· in the range of lines or just the first occurrence

in each line. A 'G' means all occurrences and any other character (or no

character) means just the first. <dliml> may be any character which does not

occur in <stringl> or <string2> except for a blank. Instead of using <number>

and <GI>, a user may change all subsequent occurrences in the file by using

the word 'ALL' (abbr. A) where <number> is usually specified.

50 CLIMIT <column number>

This command allows the user to set a limit on the number of columns which

will be searched during performance of the change command. This is useful for

protecting areas of data in a file. The default value is 132.

6. (IN)LINE <number> <termination substitute>

This command allows inline editing of a given line. If <number> is blank,

the current line is assumed to be the one to be edited. Otherwise, the editor

proceeds to line <number>. The line will be printed out. The user can then

enter editing information directly below the line to modify it. Following are

the editing characters to be used.

I The string following this command is inserted following the character

immediately above the I. The string is delimited on the right by the

termination character

Example:

*INLINE
++APPLE = GREEN G
+ 1m!

" ,

4-4

results in:

APPLE=GREENING

D - The characters in the line above are deleted .between the D and the

Example:

++APPLE=GREENING

+ D

results in:

APPLE=GREEN

R - The characters following the R will replace the characters immediately

above them. A! is required to terminate replacemento

Example:

++APPLE=GREEN

+ R PIE

results in:

APPLE PIE

If one wished to use another character instead of ! for termination (for

example, if one wished to insert a !) then an alternate symbol may be specified

as <termination substitute>. This will remain in effect for this inline only.

7. A) (P)RINT <huml> <hum2>

B) (P)RINT <numl>

C) (P)RINT!

This command is used to print out lines of text. The first form prints

lines <huml> through <num2>. The second form prints the next <numl> lines.

If the command is immediately followed with a + the printing starts with the

next line instead of the current one (example: PRINT + 3). Form C prints the

entire file from the top. If no number or recognizable symbol follows the

command, a 1 is assumed; that is, the present line will be printed out.

8. A) LNPRINT <numl> <num2>

B) LNPRINT <numl>

C) LNPRINT!

4-5

This command behaves like the PRINT command except that each line is

preceded with its line number. Syntax is the same as the PRINT command.

9. A) (Q) UICK <numl> <num2>

B) (Q)UICK <numl>

'C) (Q)UICK!

This command prints lines with all nonsignificant blanks omitted. This

provides a fast method of examining areas of the file. <l1um1> and <num2> are

the same as on the PRINT command. Plus (+) may also be used on form B with

the same meaning.

10. A) LNQUICK <num1> <num2>

B) LNQUICK <num1>

C) LNQUICK!

This command behaves like the QUICK command except that each line is

preceded with its line number. Syntax is the same as the QUICK command.

11. A) DITTO <num1>

B) DITTO <numl> <num2>

This command allows duplication of other lines in the file.

The duplicated lines are inserted at the present position in the file.

The first form results in the one line at <hum1> being inserted in the present

position. The second form results in all lines <num1> through <num2> being

duplicated at the present position. Care must be exercised to be sure the

most current line numbers are used. At the finish of the ditto the pointer

is positioned at the next line following the lines inserted.

12. (I)NSERT <string>

This command is used to insert a line following the line presently pointed

at by the editor. This new line will then be the point at which the editor is

positioned. The string to be inserted starts after the first blank following

INSERT. If insertion of a line longer than the space remaining o"n the tele­

type is desired, the user may type:

INSERT+

then the next teletype line will be interpreted as the <string>. If the

command with no image is entered when not in EOF mode (see 'ON' command) the

4-6

editor will switch to input mode. In EOF mode this simply results in the

insertion of a blank line.

13. (R)ETYPE <string>

This command is used to completely replace the current line with the

string following the first blank after the command. A + may be used after

the command with the same meaning as with the INSERT command.

14. A) (D)ELETE <numl> <num2>

B) (D)ELETE <numl>

This command is used to delete lines' from the text. The first form

deletes lines <numl> through <num2>. The second form deletes the next <numl>

lines starting with the current one.

15. IB <string>

This command behaves exactly the same as the INSERT command except that

the line is inserted before instead of after the current line.

16. INPUT

This command directs the editor to enter a special input mode. In this

mode everything which is typed in is inserted in the file until an exit from

the mode is taken. This is especially useful when large volumes of input are

to be entered. Exiting from this mode is accomplished by typing an @EOF when

in EOF mode (see ON and OFF commands) or a carriage return when not. Tabs

are recognized in this mode.

17. EXIT

This is the command used to take a normal exit from the editor. All of

the corrections will be applied to the designated file and a normal EXIT$

will be taken.

18. OMIT

This is the commanrl to be used if the user does not want his corrections

to be applied to the file on exit. The input file will remain as it was at

the beginning of the editing session, and the output file, if any, will not

be produced.

4-7

19. TAB <tab char>

This command is used to specify which character is to be used as a

tabulator character. This character is recognized on the INSERT, IB, and

RETYPE strings and is recognized on all input when in the input mode. The

character is not trarismitted to the file and behaves just as a tab on a type­

writer. If no TAB command has been entered, a semicolon (;) is assumed as the

tab character. If <tab char> is omitted from the command, or the tab feature

is inhibited.

20 0 SET <tab1> <t:ab2> <tab3> ••• <tabn>

This command is used to set the tabs for the commands which allow them

as explained aboveo As many tabs as desired may be designated. Each SET

wipes out all previous tabs, and so a SET with no tabs clears the tabs. If

no SET has been performed a default of 11,21,40,73 is assumed.

21. TYPE <symbolic type>

The editor cannot tell what type of symbolic element is being produced.

Therefore this c01IlIIland has been provided to allow the user to specify the

type of element he is producing if he so desires o The values <symbolic type>

may have are:

Meaning

ELT ELT processor
ASM 1108-1110 ASSEMBLER
COB 1108-1110 COBOL Compiler
FOR FORTRAN V
ALG ALGOL
MAP COLLECTOR (MAP processor)
DOC DOC processor J- 't (JJ}Y).Y -\rDM.-this Ore
SEC 5 \. SECURE processor ~ 51\0- I

P(~ 5A lor- BASIC
For untyped elements, a default of ELT is assumed.

22. A) SITE <l1um1> <l1um2>

B) SITE <l1um1>

C) SITE!

This command is used to direct output to an onsite printer (PR). The

meanings of <l1um1> and <num2> are the same as for the PRINT except that if no

numbers are given, form (C) is assumed. After this command is entered, a

message as follows will be typed out:

4-8

HDG?

The line typed in here will be used to head the onsite output. Periods must

not be used in this header as anything beyond the ,period will not be printed

out due to @HDG implementation. After the output is done, the following will

be typed:

MSG?

The user should enter the information here necessary to indicate where and to

whom the output should be returned.

23. A) LNSITE <numl> <hum2>

B) LNSITE <huml>

C) LNSITE!

This command behaves the same as the SITE command except that each line

is preceded with its line number.

24. A) CPUNCH <l1uml> <hum2>

B) CPUNCH <huml>

C) CPUNCH!

This command is used to punch parts or all of a file at an onsite card

punch. The syntax has the same meaning as with the site command. After the

command is entered, a message as follows will be typed out:

MSG?

the line typed in here will be sent to the console onsite before the cards are

punched.

25. A) OPR <string>

B) OPR* <string>

This command is used to send a message to the onsite console. Form (A)

sends the message <string>. Form (B) does the same, but also solicits an

answer. The strings may not be more than 50 characters or they will be

truncated.

26. A) PUNCH <numl> <hum2>

B) PUNCH <huml>

C) PUNCH!

4-9

This command is used to punch paper tape for FORM II paper tape input

at a terminal which has punch and read hardware. The syntax for this command

is the same as that for the print command. When the command is entered, the

following response will be given:

DEPRESS PUNCH ON

The processor will then pause to allow the user to push the punch on button

on the paper tape punch hardware. It is suggested that the user previously

punch several rubouts on the tape to make a leader for later reading the

tape. This is accomplished by switching the paper tape punch on and holding

the repeat key (REPT) and the rub out key down simultaneously. This may be

safely done even while executing a run at the terminal since rubouts are

ignored by the EXEC 8 software. The user should backspace the paper tape punch

over one (1) rubout so that the initial carriage return will not be considered

as a blank lineo After pausing the designated lines will be typed out which

will cause the paper tape to be punched at the same time. When the typing is

finished, the editor will again pause to allow the user to switch the punch

off. Rubouts should also be used at the end of the tape. The tape so pro­

duced can be used as normal FORM II input.

27. A) ON <special mode>, ••• ,<special mode>

B) OFF <special mode>, .•• ,<special mode>

This command is used to define some special modes within the editor. ON

turns the mode on, and OFF turns it off. The special modes are:

QUICK
BRIEF
NUMBER
PCNTRL
DSPLIT
XBRIEF
SEQ
LOOK
EOF

MEMORY

compress extra blanks out of all output to device.
do not echo corrected images for CHANGE and DITTO.
precede each line printed out with its line number.
recognize and print print control images.
delete lines transferred by SPLIT command.
do not echo lines transferred by SPLIT or ADD commands.
print sequence numbers when soliciting input.
look for mail after each command is executed.
special mode where blank lines may be entered.
INP command enters input mode and @EOF exits from input
mode to edit mode. While in input mode blank lines may
be entered. Also the insert command with no image
following will enter a blank line.
remember modes on successive executions.

All of the modes may be abbreviated to one letter.

4-10

28. RP <number>

This command is used to set a repeat counter for the INSERT command. Any

insertion will be repeated <number> times.

29. A) ADD <EXEC 8 element or file designation>

B) ADD <EXEC 8 element or file designation> <numl> <num2>

This command is used to add all or. portions of a file to the current file.

Form (A) adds the whole file, and Form (B) adds lines <numl> through <num2>

to the current file. The lines to be added are inserted at the end of the file

unless A + immediately follows the conunand in which case the lines are inserted

following the current position within the edit file. The <EXEC 8 element or

file designation> is the element, version, filename, qualifier or whatever is

needed to identify the element or file according to standard EXEC 8 dropout

rules.

30. A) SPLIT <EXEC 8 element or file designation>

B) SPLIT <EXEC 8 element or file designation> <numl> <num2>

This command is used to build new elements or files from portions of a

current file. Form (A) causes all the lines preceding the line currently

pointed at to be reproduced as the designated file. Form (B) causes lines

<numl> through <num2> to be reproduced. An immediately after the SPLIT

command causes' the whole file to be copied.

31. A) (F)IND <mask>

B) FC <lI1ask>

FIND searches for an image which corresponds exactly column for column

starting at column 1 with the <lnask>. Transparent characters may be in the

mask which will test successfully with any character in the column. The

normal transparent character is a blank, but alternate ones may be designated

with the TCHAR command. The search begins with the line following the current

one and proceeds until a match or end-of-file is detected.

Example:

Let us suppose we wanted to find a label whose form is

AB'1CD

where '1 can be a number from 1 to 9. The following command will find the

first occurrence of such a label:

4-11

FIND AB CD

The FC command behaves in the same way as the FIND command except that all

occurrences are flagged for the rest of the file.

32. TCHAR <character>

This command is used to set an alternate transparent character for the

FIND command. Only one character at a time can be designated as transparent.

33. APPEND

This command positions the editor at the last line in the file and

changes to input mode. This is useful when building up a file.

34. SEQ, <ID> <increment> <starting value>

This command is used to apply sequencing to columns 73-80 of the file.

<ID> is a two letter identification applied to columns 73-74. <starting value>

is the value at which to start numbering the remaining columns, and <increment>

is the increment to use for each card.

35. TIME

This command prints out the date, time, and cycle information.

36. CPT

This command prints out the CPU time used so far in the present run. The

form of the message is (minutes)M and (seconds)S.

37. SCALE <humber>

This command causes a line to be printed out which can be used for column

sensitive operations. The form of the line is:

123456789012345678901234567890 •.•

Starting in column <number>. If <number> is omitted, one (1) will be used.

38. CCHAR <char>

This command sets the continuation character. When an input line to

the editor has this character in it, the editor assumes that the next line

of input is a continuation of this current line. This next line will be

solicited in the normal manner except that A + will precede the solicitation.

The character is initially set to a character which cannot be typed in. The

4-12

character can be reset to this non-enterable character by using this command

wi th no <char> •

39. MSCHAR <char>

This command sets a character which will be translated to a masterspace

when it is input in column one; the default character is an exclamation

point (!). A non-inputtable character will be assumed if <char> is a blank.

40. CSF <EXEC 8 control statement>

This command is used to submit a control statement via CSF$. Only state­

ments valid for CSF$ may be submitted. The control statement must start in

column 5.

41. EXCH <char> <octal number>

This command is used to allow input of characters not represented in the

keyboard typeset. <char> is the character which is to be used to stand for

the number whose internal representation is <octal number>. When <char>

occurs anyplace in an input line it will be replaced by this character. An

EXCH with no parameters disables this feature.

42. MAIL <userid>

This allows the user to send messages to another user. The <userid> is

the nongenerated runid of the person to whom the message is directed. The

editor will then solicit 10 lines of input with:

If the desired message is to be less than 10 lines the mode can be ended by

entering an @EOF. After the message is received by the designated person,

it will be deleted.

43. PCN

This command is used to enter a print control ~age into the file being

edited. When the command is entered, the editor will solicit the image with:

CONTROL IMAGE-

This image can only be read when in a special mode set by the ON command.

44. LAST

4-13

This command causes the editor to move to the last line in the text and

stay in edit mode. The last line may not be altered at this time.

450 MAXLINE <number>

This sets the maximum length to which a line may increase. If it is

exceeded, the line will be truncated. The default is 80.

460 PLIMIT <column number>

This command is used to set a limit on the number of columns which will

be printed out by the PRINT Command.

470 UP

This command is used to cause an element or file to be saved as if the U

option was specified on the control card. This is used if the entry to the

editor was made with an R option.

48. A) MOVE <numl>

B) MOVE <numl> <num2>

This command performs the same operation as the DITTO command except that

the original lines are deleted after the duplication has taken placeo The

syntax is the same as for the DITTO command. Care must be exercised to be

sure the most current line numbers are used.

490 STATUS <special mode>, •• o, <special mode>

This command is used to request the status of special modes set by the ON

and OFF commands o If no special modes are specified, the status of all will be

listed.

4-14

5. SYSTEM FAILURES

A system failure occurs when the executive determines that, due to a

hardware or software error, processing cannot continue. The system is also

said to have failed if the operator determines that the executive is not

correctly operating. When the system fails, it is often said to have "crashed",

"hung", or "died", or to be "down". Failures occur (with varying frequency)

on all large-scale computer systems.

A minimum requirement for recovery from a system failure is that main

storage be reinitialized. This means that all active runs are discarded,

temporary files are released, program execution is aborted, and all response

to demand terminals ceases. This minimum recovery sequence is normally per­

formed without operator intervention, and takes a couple of minutes. If

complications exist, it may take longer for the operator to recover the system

via a process known as "rebooting." MeSSt l t l \

When system recovery is complete, the message ENTER SITEID is sent to all

demand terminals currently dialed in. The user must reinitiate a run, as

described in sections 1.2 and 1.3. Normally, all catalogued files are re­

covered, so if the user has been using catalogued files as described in

chapter 3, most of his work can be recovered. Of course, all data kept in

main (core) storage and in temporary files is lost.

In the worst case, recovery of catalogued files is not possible. The

computer center will reload all files from its latest set of backup tapes,

and all user changes since that set was created will be lost. In this

event, a message giving the time of backup creation and of file reloading

will be displayed after all @RUN statements.

As was mentioned in section 3.8.2, files that were assigned during a system

failure are marked "disabled" and the message FACILITY WARNING 000000000200 is

printed on subsequent assign requests. This is primarily an aid for batch users,

and generally may be disregarded by demand users o An @ENABLE filename command

will remove the disabled flag from 'filename', and hence the warning message will

no longer appear.

5-1

6. DEMAND TERMINAL OPERATION

Basic operational procedures were described in Chapter 1. This chapter

presents details on all operating features.

6.1. Demand Terminal/System Interface Messages

The following table lists the messages and their meanings used as aids

in communicating between the system and the user.

Message

NO RUN ACTIVE

TIMEOUT
UMEOLtT WPtRNrNC:;
ct\'ter 5 minctl-e5 o.htj * TE-«jYIrNAL TNA~ rrv£-;t':
aft€)" (D I

READY

Not ~ I ve;f) QJ\Y fr16(8,

Interpretation

This message is sent to the terminal whenever an image is
received from it and no run has been initiated. A @RUN
control statement must then be submitted to properly initiate
the demand mode.

No activity has occurred on the line for a predefined interval.
If another time interval elapses without activity, the
terminal is terminated and the message TIME-OUT TERMINATION
is displayed a t the terminal. (§YTAt1 * ,-rB~ WAr.T 01'

@IA-Af; LrB, LUff IT) 5 wi l/ Py~ljeYtt- f-h(S,
Informs user that the symbiont is conditioned to receive
input. This message is only transmi tted if a ~bb~AIT*~b\-

had previously been sent to the terminal. The READY message
is not sent to the terminal if output from the run is
available. In either case, the wait condition is terminated.

This message is sent to the terminal when:
_1""'-'1\ 1\J-\- I)\\(\1- INPuT IGt\CREi?;:t () ~W~ vr'~ 1 An attempt is made to input from the terminal before the

@RUN control statement has been completely processed
(no input is accepted until the @RUN control statement is
processed). The **i~AIT*** message is displayed following
each character the user attempts to input.

(2) An attempt is made to input from the terminal before the
@FIN control statement has been completely processed
(same conditions as for (1)).

(3) The executive is executing programs of higher priority.

(4) Both 28-word input buffers are full. The user is noti­
fied that additional input can be accepted by the READY
message (no output is available) or the symbiont output
to the terminal.

A line image can be considered as accepted if the CR input
character results in a LF/CR sequence and no ~'''*~\-WAIT~b\-~\- is
displayed.

6-1

6.2. Executive Language Interface

The demand user communicates with the system through the standard

executive control statements. There are a few exceptions to the interpretation

and use of some control statements when operating in the demand mode. These

exceptions are:

@BRKPT Control Statement (see GTPRM, sec. 4.4.7., and sec. 8.1
of this manual) - The @BRKPT control statement is used in the same manner
as it is used for a batch run. @BRKPT PRINT$/filename puts the normal
print file into an SDF-formatted file.

@HDG Control Statement (see GTPRM sec. 4.4.4.) - This control statement
is ignored when submitted through a demand terminal except when the
output is directed elsewhere by a @BRKPT control statement.

@START Control Statement (see GTPRM sec. 4.4.6.) - Any run scheduled by
a @START control statement submitted through a demand terminal is
scheduled as a batch run. All output generated by the run is queued to
the output device associated with the primary onsite card reader.

@SYM Control Statement (see GTPRM sec. 4.4.8.) - This control statement
can be used to direct output to an onsite device or remote batch terminal,
but not to a demand terminal.

6.3. General Operation of the Demand Symbionts

Each demand terminal supported by the operating system is controlled by

a specific demand symbiont. Currently, Georgia Tech supports only the

Teletypewriter Demand Symbiont. The DCT 500 (teletypewriter mode) is

described as an extension of the teletypewriter symbiont.

6.3.1. Teletypewriter Demand Symbiont

The teletypewriter demand symbiont provides support for Models 33 and

35 (KSR/ASR), and the DCT 500 operating in the teletypewriter mode.

6.3.1.1. Operational Considerations

The following are features of the Teletypewriter Demand Symbiont:

(1) The symbiont accepts two forms of paper tape input (see 6.3.1.2.).

(2) Several characters are recognized by the symbiont as control sequences
(see 6.3.1.3.).

6-2

(3) If a timeout occurs when a user program has a registered contingency
activity, the contingency is activated and the activity is passed as an
error type 28 and contingency type 108. The site's timeout process is
again initialized. If no contingency is regi.stered, the site is terminated.

(4) If a ~'(*i(PARITY ERROR~bb'(message is displayed at the terminal, the symbiont
has detected a parity error on at least one character and the entire
input image is discarded. b '1 Ve.. up, Co II the- Ope-red-or,

(5) The @TABSET control statement is available to teletypewriter users as
an aid in formatting input data at the teletypewriter terminal (see
6.3.1.5.).

(6) A special routine for communications between the central site operators
console and the teletypewriter terminal (see 6.3.1.6.).

6.3.1.2. Paper Tape Input

Two forms of paper tape input are permitted; they are:

Form I Interactive Mode

Form II - Continuous Mode

6.3.1.2.1. Form I Paper Tape Input

Images on paper tape consist of 'a string of up to 80 characters followed

by the character sequence:

. LF X-OFF CR DEL

where:

LF is line feed

CR is carriage return

DEL is delete (or rub out)

The DEL may not be required depending upon the teletypewriter model (experi­

mentation may be required).

In the tape mode, all images must be in this format, or the results are

unpredictable.

The paper tape mode is initiated by ~nserting a tape in the reader,

sending the character X-ON (control Q) and on the ASR-35 models, switching

from keyboard to tape mode. This causes the symbiont to send an X-ON back

to the teletypewriter which then reads one image. After the end-af-image

6-3

sequence is received, any available output is sent. When the symbiont is

ready to accept another image, an X-ON is sent to the teletypewriter. At no

time should the teletypewriter operator manually initiate paper tape motion

except by the X-ON key.

'The paper tape mode is terminated by a series of two X-OFF characters

in a row followed by a DEL and this causes the message 'END OF TAPE' to be

displayed. These may be on the tape or entered manually.

Several of the special characters are treated differently for' form I

paper tape input.

BREAK - Terminates paper tape mode (no more X-ON characters are sent to
the teletypewriter). The normal rules for 'manual input after
the BREAK key input apply. Paper tape mode may be reinitiated
by pressing the X-ON key. The BREAK key should not be used while
the tape is in motion.

? Causes the image in which it occurs to be ignored; however, the
image must still end with the LF X-OFF CR DEL sequence.

- - Causes a one-character backspace.

LF - Needed in the end-of-image sequence to produce a readable copy
on the teletypewriter printer. The LF is never considered part
of the image text and,is treated like a DEL.

If a tape is improperly formatted, or if characters are typed in manually

while in the tape mode and the symbiont is not ready for more input, the tape

mode is terminated and the message ***WAIT*** is sent to the teletypewriter.

The tape mode may be reinitiated with X-ON.

If, for any reason, no input or output occurs for more than five minutes,

the tape mode is terminated and the message TIMEOUT is displayed. If no

further action occurs within another five minutes, the site is terminated.

A tape which ends without the end-of-tape sequence can cause this since the

symbiont will have sent a request for input (X-ON) and cannot do output until

the request is satisfied. This problem may be cured by inserting three

X-OFF's manually.

The control statements @Rllli and @FIN should never appear on a paper tape,

except that a @RUN control statement may occur while in the @DATA mode (see

GTPRM sec. 6.5.).

6-4

The model 33 teletypewriter must have the option which allows the

teletypewriter to initiate tape motion by sending an X-ON to the teletypewriter.

This feature also includes the ability to have the tape stop when an X-OFF is

read.

6.3.1.2.2. Form II Paper Tape Input A!{ Cry:- -th is ! s no -[0 Vl9 eY
See belDw I

Form II provides for continuous paper tape input with no interaction

until the end-of-tape signal is received. The images are buffered on mass

storage. At end-of-tape, the buffered input is internally added to the input

stream.

The only requirement as to the image format is that a CR character

mark the end-of-image. A LF, however, is useful for monitoring the tape as it

is read. Without a LF, overprinting of each image will result. No X-ON or

X-OFF characters are needed or desirable on the tape.

The following procedure is used for form II paper tape:

(a) The user must have an active run. If an attempt is made to read form II

without a run active, the following message is printed at the terminal:

NO RUN ACTIVE

(b) To start the tape input, the terminal operator must press keys CNTL and

TAPE. Tqe message

is printed at the terminal. If the tape is in the reader and the reader

MODE switch is set to AUTO, the tape is read automatically. If the tape

is not in the reader, the operator must place it there and set the

reader MODE switch to MANUAL READ.

(c) When the tape read is completed, the terminal operator then must press

keys CNTL and TAPE with LINE. (i.e~, CNTL and T). The message

END OF TAPE

is printed at the terminal. Tape input images are now added to the

input stream.

To 23tart pctpeJf' -rape) -type., @)3) PTI t TD 8)Act p~peV' tape I'np~
type,- @@£/'JO,

6-5

The @RUN and @FIN control statements are disregarded if they are on the

input tape. It is suggested that neither should be used, except when using

@DATA or @ELT,D control statements (see GTPRM, 6.5 and 6.4, respectively).

The EOT character is recognized in the form II mode. The terminal run

is terminated as in manual mode.

The rub-out character may be used to rub out errors during preparation of

the tape. The rub-out is ignored by the handler as are nulls.

The question mark and left arrow are not recognizable as delete characters.

6.3.1.3. Special Control Sequences

The following table lists the teletypewriter control characters and their

functions. These control characters are used to control image formats, image

input, and so forth.

Keyboard Key Function

? Delete
yo~ ciaYlT t't~ this DVL ct CRT.

o f'\ 0.. ttY) lASe. C6m-ro t .., X

RETURN

EOT

End of Image

End of
Transmission

ESC Escape
Obsole.-te) y\Dt n-e-ccte& QnYMOre,

BREAK or RTS Interrupt

Description

When received from the terminal, the current
image is discarded. The symbiont responds to
delete function with a CR/LF sequence.

Used to indicate the end of the input image.
Maximum input image length is 80 characters.
The symbiont responds with a LF.

Terminates and disconnects the teletypewriter
terminal.

One preceding character is deleted each time the
key is pressed. Characters are deleted right
to left.

When the key is pressed,· the next character and
only the next character is inputted in the escape
mode. This control character allows the user
to input the? character as data.

Causes the symbiont to suspend its current
operation and accept an input image immediately.
The message INTERRUPT LAST LINE is sent to the
terminal. When the user keys in the CR follow­
ing his input image, the line of output that
was interrupted is immediately resumed. (See
6.3.1.4.)

6-6

6.3.1.4. BREAK Key

The BREAK key character is represented on the keyboard as BREAK or RTS.

The BREAK key may be used at any time other than within an input image; that

is, once an input image has been started, a CR or a ? (line delete) must be

sent before the BREAK key can be used. If used within an input image, the

BREAK key is inserted in the image as an unknown character.

Upon receiving the BREAK key, the symbiont suspends its current operation

and sends the follOWing message to the terminal:

INTERRUPT LAST LINE

Teletypewriter models 33 and 35 require that the BRK/RLS key be pressed

before any character can be sent from the terminal after a BREAK key.

The symbiont is now ready to receive one of three possible commands.

(1) Terminate user execution. This is accomplished by the character X

followed by a CR. If the X is received while in the @ADD mode, all @ADD

files and backed-up input are discarded. A few lines of backed-up output

may be printed. The next input is then expected from the terminal.
U:5e,- ~@>X TID,

(2) Contingency interrupt. The contingency routine specified for the user's

run is given control with the error code of 08 in the contingency status

word when any character other than an XCR (for example, just a CR) is

received by the symbiont. If a contingency routine has not been specified,

the execution is terminated as if the BREAK key was followed by an XCR.
USe. ~@JX CD

(3) Remove a run from a facilities-held status. From a terminal, the BREAK

key followed by the keyin of an X may be used to take a demand run out

of the hold status due to its facility requirements. All backed-up input

including the facilities request is discarded. ~t(~O

If the terminal operator should decide not to enter a command or if he

decides he has made an error after pressing the BREAK key, he may us~ the

question mark(?) character to signal the symbiont to disregard the BREAK key

interrupt. {)S~ @@)CD~ It- uJl)dcS Dr\. C-Y<-i}~ or n-y!s, t

6-7

6.3.1.5. Tab Control Statement (@TABSET)

The demand terminal user can define horizontal tab columns for the input

by use of the @TABSET control statement. The only optional parameter is the

label parameter. The format of the @TABSET control statement is

@TABSET xl, x2, ••• ,x18

where each 'xi' is the numeric specification of the tab column ranging from

1 through 80, specified in ascending order. A maximum of 18 tab positions

may be specified. The following is an example of a @TABSET control statement:

@TABSET 3,20,30,57,60

Once the @TABSET control statement has been introduced from the terminal,

it is in effect until either another @TABSET control statement or a @FIN

control statement is received by the symbiont.

If the @TABSET control statement is accepted (no error message), the

tab character (press the CNTL and I keys on the keyboard) spaces the next

character of input to the next position specified by the @TABSET control

statement.

Should the symbiont encounter the tab character when a @TABSET definition

has not been specified or when the last defined position has been exceeded,

the character is placed in the input image as a blank.

If the @TABSET control statement is in error, the message

TAB STATEMENT ERROR

is displayed on the terminal and any previous tab definition is ineffective.

6.3.1.6. Central Site to Remote Site Operator Communication

Two unsolicited keyins are available which enable the central site

operator to initiate remote site communications.

The teletypewriter broadcast keyin can be used to display the specified

text at all active teletypewriter terminals.

The teletypewriter message keyin can be used to display the message at

the active terminal specified in the keyin.

Except when the operator specifies otherwise, the broadcast or teletype­

writer message is not displayed until after execution of the current task or

when the system encounters a @RUN control statement.

6-8

The user may send a message to the onsite operator via the @@MSG state­

ment. The format is

@@MSG text

The 'text' will be prefixed by the siteid and displayed ~ediately, regardless

of backed-up input, program execution, etc. The @@MSG is completely trans­

parent in that it never causes an end-of-fi1e condition.

6.3.1.7. DCT 500 in Teletypewriter Mode

A DCT 500 operating in teletypewriter mode is very similar to teletype­

writer operation. There are, however, some minor considerations.

(1) The DCT 500 must be strapped to appear to the system as if it were a

teletypewriter. Specifically, the DCT 500 hardware must have the

following:

(a) The RID, SID, and STX feature must be inhibited.

(b) The parity select feature must be set to ignore parity on data
received from the system.

(c) The DCT 500 must be in the master mode.

(d) The DCT 500 full/half-duplex option must be set to the half-duplex
mode.

Once the-terminal has established a line connection with the central

site, the terminal operator must depress the PROCEED key to establish

c1ear-to-send at the DCT 500. The CLEAR TO SEND indicator lights if the

data set is in data mode when the PROCEED key is pressed. Once this

sequence is performed, the terminal operator can send a siteid to the

system.

(2) The DCT 500 has the capability of generating the full ASCII character

set; however, the teletypewriter symbiont does not handle the full ASCII

set. Lower case characters are translated as upper case characters, that

is, a lower case a and an upper case A will produce a Fie1data A after

translation by the teletypewriter symbiont. It should be noted that

the idle line logic does not recognize lower case ASCII; therefore, the

terminal operator must key-in the alphabetic characters of the siteid

6-9

in upper case. There is no upper case for the ASCII numerics. The

second character of siteid must be a D to signify that the terminal is

a DCT 500. The teletypewriter symbiont allows the DCT 500 to receive up

to 132 characters of output per line.

(3) Whenever the terminal operator desires to utilize the break (interrupt

last line) feature, press the INTRPT key. This key is analogous to the

BREAK key on the teletypewriter.

(4) When submitting form II paper tape from the DCT 500:

(a) The teletypewriter CNTL-TAPE character is a CTL-R on the DCT 500

and the CNTL-TAPE-LINE character is a CTL-T.

(b) The teletypewriter erase character is the shift with underline on

the DCT 500.

6-10

7 . ADVANCED DEMAND TERMINAL TECHNIQUES

This chapter deals with executive control statements that help the user

efficiently use a demand terminal.

7.1. The @ADD Statement

If a sequence of images are to be repeatedly entered, it is possible to

enter them once and subsequently have one @ADD statement represent all such

images in the runstream. The images may be source language, data, control

statements, or any combination.

The ED processor (Chapter 4) is recommended for placing the images in a

file or element. The MSCHAR feature of ED can be used to enter control

statements.

After the file or element has been created, the same effect as typing in

the images may be achieved by entering:

@ADD filename.

or @ADD filename.eltname

as appropriate. The @ADD statement itself does not cause an end of file

condition for an executing program.

Some warnings: If the @ADD file or element is being updated via ED, be

sure to terminate ED before doing the @ADD. If this is not done, the file or

element without the latest corrections will be added. Also, @ADD of an element

containing an @ASG of the file it is in accomplishes nothing, because the exec

returns the file to its original assign status after the @ADD has been fully

processed.

Additional details are in GTPRM, section 4.4.5.

7.2. The @START Statement AlS() 30d,
The @START statement causes the exec to treat the images in a file or

element as if they had been read in from an onsite card reader. @START is

recommended when lengthy, non-conversational processing is to be done.

Again, the ED processor is recommended for building the file or element.

7-1

@ED" I X. COMPILE
. ED 12. 02- 04/17- 15: LI9-(" 0)

INPUT
1 I :
EDIT
0: MSCHAR I . ,
0:

. INPUT
lI:/ACOB"BE X.COBTEST
21: A
31: /PREP X.
4I:/MAP"IN "X.COBTEST
51: IN X. COBTEST
61 : LI B X." SY STEM $*EXTRA.
7I:IXQT?
IPACl{ X.
81: IXQT X. COETEST
91:
EDIT
8:LNQUI CK!
1: @ACOB" BE X. COBTEST
2:A
3:@PREP X.
4:@MAP"IN "X.COBTEST
5: IN X. COBTEST
6: LI B X." SYSTEM $* EXTRA.
7:@PACK x.
8: 6XQT X. COBTEST
SCA"J: 8
EOF:8
0: @EOF
LINES: 8
@XQT?
@ADD X. COMPILE
COBOOA5- 041 17- 1 5: 53- (7,)

@)DPvIA) OI' I r (,,' "
CL2-Y\ be uL-SeQ \0(' Tt LeB I

THE A A'J D BMARGI N S \Ill LL BE COL. 1 AN D 2" (NO SEQ. NUMBERS)
CONTINUATION MARK MUST BE IN COL. 1" TEXT 0 F CONTIN IN COL 2
ABOVE FOR~AT APPLIES TO •• A-NONE"B-TTY"C-TTY+PF INPUTS
ERROR 0046 NlMERIC MOVE MAY RESULT IN LEFT TRLNCATION
ERROR 0045 NUMERIC MOVE MAY RESULT IN LEFT TRUNCATION

•

END COB ERRORS: 0

COMPILE TIME IS 0001.16 SECONDS
FURPUR 023A- OLI/I 7- 1 5: 54
END PREP
MAP 0023- 04/1 7- 15: 54

FURPUR 023A- OLI/1 7-'15: 54
END PACK
ENTER NUMBERS TO BE AVERAGED
9999V999 IS THE PICTURE

Figure 7-1. Ex~mple of @ADD

7-2

The file or element must begin with a @RUN statement. No @PWRD statement

may be used. The end of file or element is treated as an implied @FIN statement.

The 'runid', 'reference-number', and 'user-name' for the started run are

taken from the starting run. This ensures proper disposal of the onsite print­

out and prevents unauthorized use of a reference number.

There are three rules that must be followed to ensure a proper start:

(1) The file being started, or the program file containing the element

being started, must be @FREE'd before the @START. Otherwise, the starting

run may have the file exclusively assigned and prevent the exec from reading

the file.

(2) Any files referenced by the started run must be @FREE'd before the

@START. Otherwise, the run may abort or go into a facilities wait.

(3) The started runstream may not reference the file it is in. Since

the exec has the file assigned to read the runstream, the run can never gain

exclusive use of the file. The run will abort or go into an unresolvab1e

facilities wait.

The simplest forms of the @START statement are:

@START filename.

and @START filename.eltname

Additional fields allow replacement of certain fields on the @RUN statement

in the file or element. See GTPRM section 4.4.6 for further details.

7.3. The @BRKPT Statement

The @BRKPT statement allows the user to send lengthy output to the central

site high-speed printers. Convenient demand usage of @BRKPT may be achieved

by use of the BRK processor, described in section 8.1.

7.4. Considerations for Public Files

The following sequence should be used to set up a file for use by many

users:

7-3

@ASG,CPR

@COPY,P

@FREE

qual*file//wkey,F2

master.,qual*file.

qual*file

The C option on the @ASG means the file is to be catalogued. The P option

means that any user may assign the file (public). The'R option means the

file is to be read-only; this will allow many users to have the file assigned

"exclusively" (as is required by many system components) at the same time.

The qualifier, 'qual', and 'file' should be selected to be descriptive and

easily spelled. 'qual' should be explicitly specified, since if it is omitted

the user name will be used, and most user names are hard to spell.

'wkey' is the write key. The file is read only and hence cannot be written

into regardless if the key is known; however, the key must be known in order

to delete the file.

The @COPY transfers the desired information into the file. It is a good

idea to build up the information in a normal file (one that can be easily

changed), and once it is checked out transfer it into the special public file.

Omit the P option if the file 'master' is not a program file.

The @FREE performs final cataloguing action for the file, including making

it read only. Note that @CAT should not be used instead of @ASG,C to create

a read only file, since the file will be immediately read only and hence can

never contain any data.

If changes become necessary, they should be made in the file 'master'.

Then 'qual*file' should be deleted and the above sequence redone. However,

if anyone is using the file, it cannot actually be deleted until everyone

using it is through. In this case, the following sequence may be used:

@ASG,CPR

@COPY,P

@FREE

qual*file(+I)//wkey,F2

master.,qual*file(+l)

qual*file(+l)

This creates the next F-cycle, and anyone subsequently referencing 'qual*file'

will get the latest. Beware, though, that no more than 32 F-cycles may

ever be created for a 'qual*file' combination.

One other note: if the file contains subroutines (relocatable elements)

and is to be referenced on a MAP processor LIB directive, don't forget to

@PREP qual*file after the @COPY and before the @FREE.

7-4

8. CONVERSATIONAL SYSTEM PROCESSORS

System processors differ from language processors in that they perform

system-related functions, such as file handling. 7he GTPRM, Chapter 6,

describes several systemprocessors (e.g., MAP, LF) that are useful in both

batch and demand modes. This chapter is devoted to complete descriptions of

system processors whose primary usage is in the demand mode.

The ED processor can be considered to ~e a conversational system

processor, but it is described in a separate chapter (Chapter 4) because of

its singular importance.

8.1. BRK - Demand Breakpoint Interface

The @BRKPT PRINT$ feature available for demand runs can be quite useful

for handling large print files. By breakpointing the print file, the user

can cause printout to be placed in a mass storage file rather than being

typed on the terminal. Subsequently, the file can be printed onsite or

scanned with the ED processor.

The BRK pr?gram merely generates the EXEC 8 control statements necessary

to accomplish the breakpoint, thus saving the user some typing.

To cause printout to be placed in a file,

@BRK,F

is typed. The response will be

OUTPUT DIVERTED TO FILE filename

where 'filename' is a mass storage file catalogued by BRK for the user.

To return print mode to the terminal,

f
®BRr:)N

@BRK, T use tl • frA Y
~ t)RK)

is typed. The response will be

PRINT FILE filename NOW?

~ yb~ d.Oyt'+ uJoYt+ It- cprliLtet)

It 'I D II ot q) ,

If the user's answer is Y, 'filename' will be @SYM'd and decatalogued. If

the answer is N~ no further action is taken and it is the user's responsibility

to dispose of 'filename' as he sees fit. X+ eM be, e.o{~hct) e..-'i-t-
I

8-1

Each @BRK,F call should be paired with a @BRK,T call.

A calIon @BRK,Fis equivalent to entering:

@ASG,UGP
@BRKPT

file,F2///3000
PRINT$/file

A calIon @BRK,T is equivalent to entering:

@BRKPT
@FREE

PRINT$
file

And, if the Y response is given,

@SYM file, ,PR

8.2. FED - Conversational File Editor

This program allows the user to examine, and if necessary, to modify

the contents of any mass storage file in any format. It deals strictly with

sectors and tracks, and makes no attempt to conform to any particular data

format. Observations may be taken in octal or alphabetic format, while

corrections may be made in any combination of octal, alphabetic, integer,

or floating pOirit.

The processor call is:

@FED

The program will respond

GENREL FILEDIT LEVEL X
FILENAME?

Answer the 'FILENAME?' question with the complete filename, including,

if required, qualifier, read key, write key, etc. FED will assign the file

if it is not already assigned, print the status if non-zero, and then query:

FUNCTION?

This question can be answered in a number of ways. Possible answers

are listed below.

8-2

GET n

ALPHA m,n

OCTAL m,n

Sector 'n' (octal or decimal integer, octal denoted by

a leading zero) is loaded into the sector buffer.

Prints 'n' words beginning with word 'm' in alphabetic

format. The words in a sector are numbered from 1 to 28.

Any attempt to print a word numbered less than 1 or

greater than 28 will result in an error message.

same as the ALPHA command, except that it prints in an

octal format.

CHANGE m,wl,w2 •.•• Changes the contents of the sector buffer beginning with

word 'm'. The words 'wl,w2, •.• ' may be any combination

of octal (leading zero), floating point (decimal point

in number), integer, or alphabetic (delimited by quotes).

An alphabetic item which is longer than 6 characters

will occupy more than one word. The words 'wl,w2, ••. '

are written over the existing contents of words m,m+l, •..

in the sector buffer. The mass storage file itself is

not changed until the execution of a WRITE command.

WRITE

NEXT
NEXT n

TOP

SEARCH target

Writes the current contents of the sector buffer back

to mass storage. This command must be executed after any

change commands if the changed values are to be saved.

Loads the sector buffer with the contents of the 'n'th

sector after the current one. If 'n' is left blank, it

is assumed to be 1.

Loads the sector buffer with the contents of sector

zero. This command is primarily used in conjunction with

the SEARCH command described below.

Searches the mass storage file for the next occurrence of

the item 'target' following the current sector. The

search target may be any number of words long and may be

a comma-separated mixture of octal, decimal, floating

point, and alphabetic items. See the CHANGE function above

for a description of the format for entering the target

8-3

LENGTH n

TRACK n

(blank line)

END

as octal, etc. The search is performed up to and including

the track specified in the LENGTH directive. If no LENGTH

directive has occurred, a length of 64 tracks is assumed.

Declare the length (in tracks) of the working file, for

SEARCH purposes only.

Loads the sector buffer with the first sector of track

'n',

A blank line in response to the 'FUNCTION?' question

causes FED to re-ask the question 'FILENAME?' after

returning the old file to its original assign status ..

Typing 'END' will terminate FED, and return the current

file to its original assign status.

In all cases, the function names may be abbreviated to the first character.

8.3. FASG - List Files Assigned

The FASG program prints a. tabular listing of all files and @USE names

currently assigned to the run.

or by

FASG is called by

@FASG

@FASG,options

The following options are available:

A - Only list assigned files.
U - Only list @USE relations.

In the absence of both the A and U options, both assigned files and @USE

relations will be listed.

S - List TPF$, DIAG$, and SYS$*LIB$.

Lack of the S option will inhibit listing of these files.

L - Dump file descriptors and granule tables.
M - Dump file descriptors.

8-4

The user would not normally be concerned with the L or M options.

The following information is printed about each file:

Read/write permissions:

R - read only
W - write only
N - neither read nor write
(blank) - both read and write

Status:

T - temporary
A - catalogued
C - being conditionally catalogued
U - being unconditionally catalogued
D - being conditionally deleted
K - being unconditionally deleted

8.4. CPMD - Conversational Post Mortem Dump

The Conversational PMD is a program designed to allow the demand terminal

user all the conveniences of a full core dump (and then some), with none of

the obvious drawbacks. For example, most core dumps are taken in octal, but

most of the real information to be gleaned from the dump can be gotten only

by converting the octal numbers to a different format. The CPMD program will

automatically 'convert to anyone of a number of useful formats, thus saving

the tired programmer the work of conversion.

When a program terminates on the 1108 system, the final contents of its

memory are written to a file whose name is 'DIAG$'. The CPMD program allows

the demand user to selectively examine the contents of this file, which is

equivalent to selectively examining a full core dump.

The processor call for CPMD is simply:

@CPMD

with no options or fields. The program will respond with the level of the

CPMD program and the lower and upper storage limits of the program's

instruction and data banks. Next, input is solicited with the typeout:

FUNCTION?

8-5

A description of the permissable functions is given below. In all cases,

the function names may be abbreviated to the first 2 characters. In" addition,

A may be used for ALPHA; 0 for OCTAL; and I for PROGRAM.

OCTAL

The OCTAL command causes CPMD to print out the contents of selected cells

of memory in an octal format. Four words of twelve digits each are printed

on each line. The format of the command is:

OCTAL m,n

where 'm' is the starting address and 'n' is the count of consecutive words

to be dumped. If the field 'n' is omitted, it will be taken as one. The

field 'm' is always treated as octal, regardless of the presence or absence

of a leading zero. The address 'm' may be relative or absolute. See the

section entitled "Relative Dumping Mode" for a description of relative

addresses.

ALPHA

The ALPHA command causes CPMD to print out the contents of selected

cells of memory in an alphabetic format. Eight words of six characters

each are printed per line. The format of the command is:

ALPHA m,n

where interpretation of the 'm,n' field is the same as for the OCTAL command.

FLOATING

The FIDATING command causes CPMD to print out the contents of selected

memory cells in an edited floating-point (REAL) format, five numbers per

line. The calling format and restrictions are exactly as described above for

OCTAL.

INTEGER

The INTEGER command causes CPMD to print out the contents of selected

cells of memory in a base 10 integer format. Five numbers are printed per

line. The format and restrictions are as described above for OCTAL.

PROGRAM

The PROGRAM command causes CPMD to print out the contents of selected

cells of memory in a reconstructed assembly language format. Operation

8-6

mnemonics and register names are printed. The format is one instruction per

line. When relative addressing mode is used, all U-field addresses printed

which reference the same relocatable element that .contains the instruction

are un-relocated and printed as 'address/location-counter' rather than

'address' •

MAP

The MAP command causes CPMD to access the diagnostic tables in the

absolute element from which the program was executed and from these tables to

reconstruct the storage allocation map which resulted from the program

collection. Only user-generated subroutines and the main program will be

listed--no information about library and system subroutines will be printed.

If a relocatable element name is specified on a MAP command, then only

the allocation information for that element will be printed.

mAP

The mAP command is identical to the MAP command except that it prints

all subroutines, both user-generated and system library-provided.

DECK

The DECK command is used to specify a deck name (i.e., relocatable

element name) to be used as the base of relative addressing. (See the section

on relative addressing). All relative addresses are taken as relative to the

specified deck name. The call is simply:

DECK deckname

where 'deckname' is the 1 to 12 character relocatable element name.

IDENTIFY

The IDENTIFY command causes CPMD to search its diagnostic tables in an

attempt to determine the deck, location counter, and relative address correspond­

ing to the specified absolute address. The call is:

IDENTIFY m

where 'm' is an absolute address in octal. If 'm' is in the program being

dumped, the CPMD will print out the corresponding deck name, location counter,

and relative address; otherwise, an error.message.

8-7

ADD

The ADD command causes CPMD to add a list of numbers and print the sum

in both octal and decimal. It may be used for subscript calculations, link

tracing, etc. If only one number is provided to be added, it will be printed

out in both octal and decimal, thus serving as a converter.

DIMENSION

The dimension command is used to specify dimension information for use

with the SUBSCRIPT command. The call is:

DIMENSIONa,b,c, •••

where 'a', etc. are decimal integers.

SUBSCRIPT

The SUBSCRIPT command computes multiple subscripts for FORTRAN arrays.

Suppose, for example, that one wanted to dump VAR(4,2,1), where VAR had been

dimensioned to (5,6,7). The statement

DIMENSION 5,6,7

would enter the appropriate dimension information. Then, typing

SUBSCRIPT 4,2,1

will cause CPMD to print the equivalent linear subscript. Using the ADD

command to add the base address to the linear subscript will give the address

to dump.

Relative Dumping Mode

If the address portion of a dump command ~hown as 'm' in the above

descriptions) is coded as· 'address/counter' instead of just 'address', then

the address will be interpreted as being a relative address, relative to the

specified location counter in the deck declared in the last DECK command.

For example, suppose that there exists a deck UUU which contained data in

location counter 3 from addresses 013044 to 023266. Then the following two

commands would print the same values:

OCTAL 13050,2
OCTAL 4/3,2

Thus, location 13050 is relative location 00004 on location counter

3 in the deck under study, UUU.

8-8

Example of CPMD Usage

This example shows the interaction of system components necessary for

CPMD.

The complier (in this case, FOR) is used to print a storage map. For

large programs, this may be done using BRK or @START to print the listing

onsite.

The program is executed. Then CPMD is executed.

The first function, MAP, shows the addresses of all user-created relocatable

elements. The remainder of the program was collected from SYS$*RLIB$.

The DECK function is used so that relative addresses (as appear in the

compiler's storage map) may be used for element MAIN.

Relative location 27 (octal) under location counter 1 is displayed in

"program" format. "Location counter," "block," and "control counter" are all

synonymous in this context.

Relative locations 4 through 14 (octal) under location counter 0 are

printed in "alpha" format. This is the FORMAT statement 101, indicated by 101F

in the compiler's storage map.

Relative location 3 under location counter 0 is displayed in both "floating"

and "octal" formats. This is the final value of the variable AVG . .
Relative l:.ocation 0 under location counter 0 is displayed in "floating"

format. This is the final value of the variable SUM.

The final value of the variable N is displayed with the function

INTEGER 1/0.

8-9

@FOR, S X. MAIN
FOR S9A-OLl/17/72-16: 33: 55 (1,)
@EOF "

MAIN PROGRAl\1,

STORAGE USED: CODEe!) 000050; DATAeO) 000030; BLA~K COMMON(2) 000000

EXTEHNAL ,REFEREN CES e BLO CK, NA.t-.1E)

0003 N,INTR$
OOOL! NWDU$
0005 NI02$
0006 NRDUS
0007 NSIDP$

STORAGE ASSI G\Jr"lENT (BLOCK, TYPE, RELATI VE LOCATION, NAME)

0001 000027 taL 0000 000004 101F 0000 n00012 102F
0000 000014 103F 0001 000011 5L

0000 R 000003 AVG 0000 I 000001 N ~OOO R 000000 SUM
0000 R 000002 VAL

00101 1* ~ St..X'vl=O.
00103 2* N=O
00104 3* WRI TEe 6, 1 0 1)
00106 4* 101 FORMATe • E:.\J TER ' N UM BE RS TO BE AVERAGED')
00107 5* '5 READe 5, 102, EN D= 10) VAL
00112 6* 102 FORf\1ATC E20. 5) ,
00113 7* . - SUM=SUM+VAL
00114 8* N=N+ 1

, 00115 9*- GO TO 5
00116 10* 10 AVG=SUM/N
00117 11* WRI TEe 6, 103) su:vt.. N, A VG
00124 12* 103 ,FORMAT(• SUM= '.I E 10. 3, , N= '0' I 10, , AVG= ',~1 O. 3)
00125 13* STOP
00126 14* END

END OF COMPILATION: NO DI ACNO STI CS.

Figure 8-1. rUsage of CPMD (Page 1 of 2)

8-10

GXQT X.MAIN
ENTER NUMBERS TO BE AVERAGED

5.0
10.0
15.0
20.0
@EOF

SUM= '. 500+ 02 N= LA AVG= • 125+02
END 50 MLStC
@CPt-1D
GENREL CPMD LEVEL 10.
IBA~K: 001000 TO 010352
DBA~K: 040000 TO 044030
STARTING ADDRESS: 010303
FLN CTI ON? MAP
BLA~K$COMMON 00 044001 044000
MAIN 00 044001 044030

01 010303 010352
FtNCTION? DECK t1AIN
FLNCTION? PROGRAM 27/1
000027 LA~XU AO~0233
FtN CTI ON? ALPHA 41 O~ 8 -
000004 (029H ENTER NUrwlBER
FUNCTION? FLOATING 3/0 I

000003 0.125000+02
FUNCTION? OCTAL 3/0
000003 204620000000
FUNCTION? FLOATING 010
000000 0.500000+02
FUNCTION? INTEGER 1/0
000001 4
FLN CTI ON? @EOF
END CPMD.

S TO B E·AVER AGED)

. - ;Figure 8-10 Usage- of CPMD (Page 2 of 2)

(E20.5)

Char In Fie1dat"
Machine (Octal)

@ (1)
[

]

it
13.

(Blank)
A
B
C
D
E
F

G
H
I
J
K
L
M
N
0
P
Q
R

S
T
II

v
w
x
Y
Z
)

+

>

I ,

00
01

02

03
04
05
06
07
10
11
12
13

14
15
16
17
20
21
22
23
24
25
26
27
30
31
32
33
34

& 46
47

,', 50
51

% i 52
i 53

? I
! (Exclaim) I
,(Comma) !

o
1
2
3
4
5
6
7
8

; (Quote) I
! I

~ (Period) 1

I- or stop ~
(2) I

Appendix A

UNIVAC 1108 CARD CODES

I - 029 Mode

Holes 1 Key On I Key On I
029 i 026 I

I

7-8 I ~ !None(3)
12-4-8 ! [1)

0-6-8 I iNone(3)]
.11 i

I 3-8 11-7-8
None

I
12-1
12-2
12-3

I
12-4
12-5

I 12-6

I 12-7
I 12-8
\ 12-9
I 11-1
I 11-2
I 11-3

I 11-4 \
11-5

! 11-6
I 11-7

1

11- 8
. 11-9
I 0-2
I 0-3
I 0-4
1 0-5

\ if 1-
: ~ INone(3)
:. (Space) i (Space)
IA ,
i B
i C
iD
i E
! F

:G

IH
I I
,J

lK
'L
i M
'N
10
I P
:Q
iR

: S

:T
'U
iV

I A
i B
I C

D

i E
I F
i
I G

I ~
I J
i K
I L
1M
iN
i 0
i P
! Q
I R
I S
! T
I U

i 0-6 , W
I 0-7 " X

I V
iw
,x

1 0-8 : Y
\ 0-9 ' Z
I 11-5-8 :)

I
II i - (5)
12-0

0-5-8
! 6-8
I] 2

1 11- 3-8
+

I 11-4-8 i ,',
I 12-5-8 None(3)
I 0-4-8
I 5-8
I] 2-7-8
i 11-0
I 0-3-8

2-8
I 0

1
2
3
4
5
6
7
8

; % (
I : j None(3)
i +- I None (3)
I X (Times ~ None (3)
, ,(Comma~ ,
! None(3) I None(3)
,0 : 0
: 1 I 1
: 2 I 2

3 1 3
4 4
5 5
6 6
7 7
8 8
9 ! 9
11 ! None(3)

9
0-7-8
11-6-8
0-1 /

: None(3)

I /
! 12-3-8

4-8

!
!
i

i
,
I
,

i
I
!

026 Mode
, Key 0,1 : Key On

Holes 029 1 026

7-8 : ~"·I.'· \\ INone(3)
12-5-8 i (None(3)

11-5-8 I) None(3)
I

12-7-8: +- S, 't . None(J)
11-7-8 I ~ c ~ INone(3)
None I (Spac~) I (Space)
12-1 IA fA
12-2 : B l~ 12-3 I C
12-4 ID iD
12-5 . E lE
12-6 i F iF

i
12-7 ,G ,G
12-8 'H IH
12-9 ! I iI
11-1 ; J IJ
11-2 ·K K
11-3 iL iL
11-4 iM 1M
11-5 iN IN
11-6 : 0 iO
11-7 . P ,p

I
11-8 : Q !Q
11-9 i R : R
0-2 ~ S ! S
0-3 I T iT
0-4 i U i U
0-5 j V
0-6 ! W
0-7 \ X
0-8 : Y
0-9 'Z

12-4-8 i [
11 - (5)
12 ! &
12-6-8 i < .,J ...
3-8 ! if ' =
6-8 i > ': iNone(3)
2-8 ; None (3hl None(3)

11-3-8 I $ i $
11-4-8 : ,', I,',
0-4-8 I % (
0-5-8 I = -~,\ (, None
5-8 :: 1'i:7,H None(3)

12":0 i + None 3)
11-0 ;X(Times None(3)
0-3-8 : ,
0-6-8 :]

1
2
3
4
5
6 j 6
7 I 7
8 i 8

0-1 : /
12-3-8 i •
0-7-8 I " ;,',
0-2-8

16
'7
18 ,9
I - (4)
I None(3)

A-I

I Key On
I Teletype

i·
If (shift K)

I] (shift M)
I

! It
I~space)
iA
IB
Ic
:u
IE
iF

:li
IH
:1
IJ
'K
iL
1M
IN
:0
,p

;Q
:R

S

:T
iU
.V

W

:X
IY
,Z
i)

- (5)
:+
:<

.>
,&

:
i Note
1

;6
I 7

i 8
'9
i '(Quote)
! •

! i
! •

! It

Char Printed
On TTY

@

[

]

It
t
(Space)
A
B
C
u
E
F

li

H
I
J
K
L
£1

N
0
p

Q
R
S
T
U
V
w
X
Y
Z
)
-(5)
+
<

>
&
$
--'(

I.

'\
a

4
5
6
7
8
9
'(Quote)

i

I , ,---,,\". .,' I.. ,
\,,,) t ~'~ " ,',. .. : '. " .. , .

.' I.: (,'
• I I

NOTES:

1) The @ is the control card flag if it appears in column 1 of any
card o

2) The + will not be printed on the high speed printer or the teletype.
On these two devices the ~ character acts as the line termination character.

3) None means that there is no such key. This hole pattern must be
multipunched.

4) This is the underscore character that is under the = sign on the
026 keypunch.

5) This is the minus character and is marked SKIP on the 026 keypunch.
Either upper or lower shift may be used.

6) Normally, the? key causes deletion of the current line. To enter
? as an input character, press ESC (ESCAPE), then the? key.

A-2

