
801207

ACT Ill
UNION CARBIDE CORPORATION'S

ALGEBRAIC COMPILER-TRANSLATOR

PROGRAMMER'S MANUAL

ACT Ill

An Algebraic Compiler for the LGP-30 Computer

PROGRAMMER'S MANUAL

By

Henry J. Bowlden

Parma Research Laboratory

Union Carbide Corporation

Parma 30, Ohio

and

Roberta R. Smith

Presently with

Stanford University

Distributed by

POOL
LGP-30, RPC-4000, and RPC-9000

Computer Users Organization

1532 N. Cahuenga Boulevard

Los Angeles 28, Calif.

I.

II.

III.

IV.

v.

VI.

VII.

iii

TABLE OF CONTENTS

Introduction ..•.•

ARITHMETIC OF THE SYSTEM
A.
B.
c.

Integer Arithmetic
Floating-Point Arithmetic
Mixed Arithmetic•

SAMPLE PROBLEM AND PROGRAM
A.
B.
c.
D.

Problem .••.••
Flow of Program
Program
Output

ACT LANGUAGE
A.
B.
c.
D.
E.

Characters and Controls
Words .•....
Statements
Program
Other Definitions
(Table - ACT Language Constants)

OPERATORS - GENERAL DISCUSSION
A.
B.
c.

Introduction
Determination of Rank
Basic Rules of Syntax

ARITHMETIC STATEMENTS
A.
B.
c.

Floating Point Arithmetic Operators
Integer Arithmetic Operators
Mixed Arithmetic Operators

...

FLOW CONTROL
A.
B.
c.
D.
E.
F.

Normal Flow .•••....•.•.••..
Labels and Labeled Statements
Logic Operators•.•.•••••.•..•
Unconditional Transfer ..•..••.••••.
Conditional Transfer- - "if 11 Statements
Switches .••...•...•..•

G. Loops-- "for" Statements
H. Stopping the Computer

INPUT AND OUTPUT {Input-Output Operators)
A. The Input-Output Problem
B. Numeric Input
C. Numeric Output
D. Alphabetic Input and Output
E. Compatible Input-Output

Page

1

4
4
4
6

7
7
8
8

1 1

1 2
1 2
1 2
1 5
1 5
1 6

1 7
1 7
1 9
20

22
22
2 5
28

3 1
3 1
3 1
3 1
32
32
32
33
3 5

3 6
3 6
36
40
43
45

- VIII.

IX.

x.

XI.

XII.

iv

INTERMISSION •.••••••••.••••••••.•••••••••••.•••••••••
A. Sample Program No. 2--Mean and Standard Deviation
B. Sample Program No. 3 .••.•.•••••••••••••••••••.•

REGIONS AND SUBSCRIPTED VARIABLES •••••..••..••.••
A. Blocks of Data .•....•••.•••••••.•••••.••.••••.•.
B. Integer Subscripts .••.•••••••.•••••••••••••••...
C. Variable Subscripts .•••.•••••.••••••••..••••••••
D. Arithmetic in Subscripts •.••••.••••••.••.••....••
E. Double Subs er ipts ..••••••••••••••.•••.••••.••..•
F. Some Definitions .••••.••.•••.••.••••...•••.•••••
G. Subscripted Labels •••••.•••.•••••••.•.••••••••.•

PROCEDURES •.•.•••..•••••••.••••••••••••••••••.••••
A. The Subprogram Concept .••••••••.•••.••.•••..••
B. The Procedure As A Subprogram ••••••••.••••••••
C. Procedure Operators .••••••••••••••••.•.•••••.••
D. The Procedure Body ..•••••••••••••.•••••.••.•••
E. The Procedure Name As A Label ••••••..•••••••••
F. The "name block" ...•.••.•.••••••••.•.••••••••••
G. "Global 11 and "local 11 Symbols .••••.•••••..•.••.••
H. Subscripting Formal Parameters .•••••.••••••••••
J. A Procedure Call As An Operand .•••••.••••••••••
K. Avoiding Recompilation •.••••••••••••••••••.•••••
L. Sample Procedures ..•••••••••••••••••••.•••••••

ADDITIONAL TOPICS .•••••••••..••.••••.•••••••••.••.••
A. Machine Language Coding .••••••••••••.••••.•••••
B. Internal Data Format ..•••••.••••••••••••••••••.••
C. Previous Result ("prev") •••••••••••••••••••••.••
D. Direct Address Modification .•••••••••••••••••.••
E. Overflow and Breakpoint Provisions .•••••••••••••
F. Efficiency of Object Program ••••••••••••••••••••

THE STANDARD SYSTEM •
APPENDIX A. List of Abbreviations
APPENDIX B. Table of Characters and Controls

APPENDIX C. Table of Opera tors

APPENDIX D. Sample Programs

Page

48
48
49

50
50
50
51
52
52
53
54

56
56
56
57
59
59
60
62
63
63
64
64

66
66
67
67
68
69
70

73

74

75

77

81

INTRODUCTION

The process of obtaining the solution to a numerical problem using

ACT III is divided naturally into three portions or phases:

1. The programming phase. The first requirement is that the problem

be reduced to a sequence of statements in ACT language. This source program

1

is punched on paper tape manually, using a special typewriter called a flexowriter.

2. The compiling phase. At this point the source program is translated

by the translation program (ACT ill A) into LGP-30 machine language, and the

resulting machine language program is punched into a paper tape by the computer

for subsequent use. This is referred to as the object program.

3. The running phase. The object program combined with a set of

service routines, referred to as the package, constitutes a working pr.ogram with

which data are processed and answers produced.

The present manual is designed as a guide in the first or programming

phase. It contains the basic vocabulary and rules of syntax by which ACT language

programs are to be constructed.

A companion manual, the Operator's Manual, describes the steps involved

in carrying out the second and third phases on the computer. Many errors which

consist of violations of the rules of syntax described in the present manual are

detected in the compiling phase, and errors in overall logic which, are detectable

by incorrect answers or invalid intermediate results are detected in the running

phase. The existence of these detection mechanisms is acknowledged in this

volume, while details of the error displays are included in the Operator 1s Manual,

together with a discussion of remedies.

2

A third manual, the Technical Manual, describes the logic of the transla

tor itself, and also describes the symbolic assembler (SPAR) which is used to

assemble packages and by which most of the language may be changed to suit

varying individual needs.

An attempt has been made to organize the presentation of material in

this manual in such a way that concepts may be developed at each step by means

of illustrative examples. Elements of the language are introduced in each chapter,

along with syntactic rules governing their usage. At the end of each chapter dis

cussing operators, a list of the operators is given, together with the necessary

information concerning precedence, operands and restrictions. This information

is presented in an abbreviated form, the symbols having been explained in each

chapter. These symbols are collected in a table in Appendix A. Appendix B

contains a summary of the operators with reference to the text sections discussing

them. The discussion of operators begins with Chapter IV and the terms used

above are discussed there.

Throughout the manual, definitions will be marked by the symbol, ">11 •

Some terms whose definitions are buried in the text of this introduction are

defined here for reference.

>phase: One of the three basic segments of the process of solving a

problem using the ACT III system. These are: phase 1 (programming), phase 2

(compiling) and phase 3 (running).

>compile time: A common synonym for phase 2.

>run time: A common synonym for phase 3.

>source program: The sequence of statements in ACT language, as

punched manually on paper tape, required to solve a problem.

3

>object program: The machine language program punched by the computer

in phase 2.

>package: A set of service routines in machine language used together

with the object program in phase 3. The package assumed throughout this

manual is labeled P-5-B.

4

CHAPTER I

ARITHMETIC OF THE SYSTEM

Two types of arithmetic are available in ACT III; integer arithmetic

and floating-point arithmetic. Each has its advantages and its limitations, as

will be discussed. Because of this dual arithmetic there are correspondingly two

classes of operators, two classes of variables, and two classes of constants.

Although the system allows converting a number fr om one type to the other, this

is never done automatically. It is up to the programmer to not mix arithmetic

within the same calculation.

A. Integer Arithmetic

The maximum number of significant figures allowed by the system, and

the most accurate representation of a number is obtained with integer arithmetic.

(For the most part integer arithmetic is exact; exceptions are noted under the

specific operators.) However, the range of numbers which can be used, without

causing overflow, is restricted, since 536, 870, 911 (positive or negative) is the

largest integer which may be stored in the computer. In most cases, the bulk

of the arithmetic of a problem is best handled with floating-point numbers.

However, integers and integer arithmetic should be used for counters and sub-

scripts.

B. Floating-Point Arithmetic

Floating-point arithmetic uses numbers represented in a type of scientific

notation. They have the special form

m
y =ax 10 ,

where 11y 11 is the number, 11a 11 is a fraction (positive or negative), and 11m 11

is an integer such that

o. 10000002< la I< o. 99999994

and

-32 < m < +31

In this manual then, "fraction" and "exponent" are defined as follows.

>fraction: The fraction is the fractional part of a floating-point

number. e.g. "a 11 in the notation above.

>exponent: The exponent of a floating-point number is the power of

ten by which the fraction is multiplied,. e.g. "m" in the notation above. As a

general rule, numbers larger in magnitude than . 99999994 x 1031 cannot occur

5

in a calculation without causing an error indication. Numbers smaller in magni

tude than O. 1 x 1 o- 3z are usually replaced by zero.

Of course, the advantage of floating-point arithmetic is the increase of

the range of numbers which can be used with the system; however, it is not

possible for it to be exact. There are two basic reasons. In the first place,

the fraction must be rounded after each operation to fit the word size. In the

second place, problems associated with nondecimal internal arithmetic cause

small changes in the representation of even common values. For example, in

floating-point, 1. 0 is represented internally as 0. 99999994. In general, the

conversion error is no greater than 3 in the eighth significant figure. For

these reasons, we do not recommend that floating-point numbers be used for

counting, or that a zero result of a floating-point operation be used as a test

criterion.

6

C. Mixed Arithmetic

As was mentioned before, mixed arithmetic is not permitted. There

are operators which convert a number from its floating-point form to its

integer representation, and vice versa. The compiler makes no systematic

check against mixed arithmetic. At run time floating-point division with an

integer denominator usually gives an "e2" stop. (See Operator's Manual.)

For the most part, however, the only indication of mixed arithmetic is a wrong

answer. However, if the number should be an integer and is factors of ten too

large this may indicate mixed arithmetic; or if the number should be in floating

point and the fraction has leading zeros as printed out, this may also indicate

mixed arithmetic. So, it is up to the programmer to keep the arithmetic of a

particular calculation (or within a given "statement", Chapter III, C) consistent;

and it is important that he do so.

7

CHAPTER II

SAMPLE PROBLEM AND PROGRAM

Although it is somewhat early, it is hoped that the introduction here of

a specific problem, the mathematics of which most reade~s learned in high school,

and the program for obtaining the answers on the computer, will serve two pur-

poses: first, that it will help the beginner visualize correctly the general aspects

of the problem-to-program process; second, that right from the beginning all

readers will have in front of them a working program which demonstrates at least

some syntax of the language to be discussed in the succeeding chapters.

A. Problem

The problem is to find the roots of a quadratic equation. Any quadratic

equation may be reduced to the form,

Then,

ax2 +bx + c = 0

x = -b ±Jb2
- 4ac

Za

If b 2-4ac is positive the roots are real and unequal.

If b 2-4ac is zero, the roots are real and equal.

If b 2-4ac is negative the roots are complex and unequal.

8

B. Flow of Program

Start

Cale.

I Input
a, b, c

No r
-b/2a--Templ - 1 Is a = O?

Cale.
b2-4ac-discr.

Yes

Equation reduces
to bx + c = 0

Cale. -c/b - Temp!

Output
xl = Temp!

Output
Complex roots

Cale. xl =Temp!, +Temp2
No ..(", Yes x2 =Temp!, -Temp2 ------1 Is discr. neg?1----..-. V-discr/2a-Temp2r--1-.-...----------'

Output
Cale. Real roots

- Vdiscr/2a-Temp2 ~ xl = Templ+Temp2
x2 = Templ-Temp2

C. Program

Suppose also that at run time we want the output to be self-explanatory.

Therefore, in the input and output block of the program, instructions must be

set up which control the flexowriter to print headings and labels in the appropri-

ate positions. To be specific, we want the format at run time as follows:

Roots of Quadratic Equation

a=

b=

c =

Roots

xl =
x2 =

a=

b =
c =

Roots

xl =
x2 =

)

)

~:c:)**

*

Real Imaginary

Real Imaginary

etc.

~:c
Number entered in floating point by operator.

''<''C
'•'•Printed back in decimal by machine.

***~ Answers printed by machine.

For the convenience of printing back the input parameters in decimal form, as

9

well as the roots, a, b, and c are limited to three figures following the decimal

point.

A listing of the program as it is punched on a tape to be compiled by

ACT III is on the left below. It finds the roots of the quadratic equation and

controls the format of input and output. The numbers in the center column are

for reference purposes and refer to a particular line of the program; they are

not part of the program.

10

Program

Problem: Roots of que.dre.tic gquat.5.on
Date: 6/7/61 Programmer: RRS'

daprt' crl~' uc2 'R' lcl 'o 'o 't' s' 'o' f'
'uc2'Q'lcl'u'a'd'r'a't'i'c' ''

daprt'uc2'E'lcl'q'u'a't'i'o'n'.''

sl' daprt'cr4'cr4'cr4'a' 'uc2'='lcl' ''
read'a''
1603'dprt'a''
daprt'cr4'b' 'uc2'='lcl' ''
read'b''
1603 'dprt 'b 1

'

daprt'cr4'c' 'uc2'='lcl' 'r
read' c''
1603 t dprt t Ct I

daprt'cr4'cr4'uc2'R'lcl'o'o't's''
12 1reprt I I I

daprt'uc2'R'lcl'e'a'l''
7'reprt' 'r
daprt'uc2'I'lcl'm'a'g'i'n'a'r'y''
daprt'cr4' 'x'l' 'uc2'='lcl''

if'a'zero's5' r

• 2 • 'e ' l 'x • a' ; '2a. r

0- 'b '/' 2a'; ' 1rempl' '
b'x'b'-'.4''e'l'x'a'x'c';'d.iscr''
if'd.iscr'neg's2''
sqrt 1 discr'/'2a';'Temp2''
1603'dprt'Templ'+'Temp2''
ret ' s6 'use' s7' '
1603'dprt'Templ'-'Temp2''
use' sl. r

s2 1 sqrt' ['0- 1 d.iscr'] '/'2a'; 'Temp2''
1603'dprt'Templ''
1603'dprt'Temp2''
ret 's6 'use' s7' '
1603'dprt'Templ''
1603'dprt'O-'Temp2''
use' sl''

s5' 0-'c'/'b';'Templ''
1603'dprt'Templ''
cr'use'sl''

RU Block '

s7' daprt'cr4' 'x'2' 'uc2'='lcl''
s6 ' go to ' so ' r '

Ji::;:p lana ti on

l
2

) ?rogram labelled :i.n a
) remark

3
4)
5)
6)
7
8)
9)

10)
11)
12)
13)
14)
15)
16)
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
4o
41
42
43
44
45
46
47
48
49
50

Print heading

Read "a", "b", and "c"
as floating-point
numbers
and print them back

Print
labels
for
results.

Is "a" zero?
here if "a" not zero
Calculate "-b /2a"
Calculate "discr"
Is "discr" negative?
here if "d.iscr" not neg.
Print two
real roots
and
return to beginning.

Here if "d.iscr" negative.

Print two
complex
roots
and
return to beginning.

Here if "a" zero.
Print one root and
return to beginning.

This block is called from
line 31 and from line 38.
Label second root.
Switch. End of Program.

11

D. Output

This a reprint of the results of the program at run time.

Roo~s of Qua.dra.tic Equation.

a = +l' +l' 1.000
b = +3'+1' .. 3.000
c = +2'+1 1 2.000

Roots Real Imaginary
xl = -1.000
x2 = -2.000

a = +lr+l' 1.000
b = +0 1 +0' .ooo
c = +1 1+1' 1.000

Roots Real Imaginary
xl = .ooo 1.000
x2 = .ooo -1.000

a = +or+o' .000
b = +l'+O' .100
c = -2r+o' -.200

Roots Real Imaginary
xl = 2.000

2. =

12

CHAPTER III

ACT LANGUAGE

ACT Language consists of words of five characters or less, each word

followed by a conditional stop code ('). These words may represent operators,

C-words (constants), labels, or variables. Words are combined to form instruc-

tive statements, which in turn make up a program. Refer to the program in

Chapter II for specific examples.

A. Characters and Controls

>character: A character is any numeric digit, letter of the alphabet,

or any of the symbols - ; . , / or space. Since the space is a character, it

must be used with care. Note the identity of the letter "L" and the digit 111 11 •

Note, also, that the computer cannot differentiate between upper and lower case

symbols. The correspondence is obvious for the letters. For the digits and other

characters, refer to the table in Appendix C, in which the pairs of characters

in the columns "u. c. 11 and "l. c. " are indistinguishable .

>control: A control causes the flexowriter to perform one of the following:

upper case, lower case, backspace, carriage return, tabulate, and color shift.

It is not recommended that the tabulate be used in source programs except at the

beginning of each statement, as shown in the program of Chapter II. Even this

is not essential, but it is an aid to legibility.

B. Words
>word: A word consists of one to five characters plus controls (except

tabulate) as desired, followed bya conditional stop code('). e.g. a) The word

Temp!', line 26 consists of five characters (t, e, m, p, 1) and two controls (upper

case, lower case). b) The word a' line 9. is a one-character word.

13

>operator: An operator is any word taken from the list of operators,

Appendix B. It can be defined loosely as a "command" to the computer. Indi

vidual operators are discussed separately in appropriate sections. In lines 35

and 36, for example, the operators are: sqrt', 0- 1
, /', ;'and dprt'.

>C-word: A C-word is any word consisting of one to five integers, or

consisting of 11+11 or 11
•

11 followed by one to four integers. e.g. On line 25, .2'

is a C-word.

>constant: A constant is a word or set of words representing a definite

numerical value. The first (or only) word must belong to the class of C-words.

A source-language constant is always positive, and the maximum number of such

constants within a program is limited to 63.

The representation of a constant in the source program depends, as was

mentioned in Chapter I, on whether it is a floating-point constant or an integer

constant.

Integer Constants - Integer constants may consist of one word, or two

words. Integers of five digits or less occupy one word of five digits (or less)

followed by a conditional stop. Integers of six to nine digits occupy two words.

The first consists of a plus sign (+)followed by one to four digits; the second

word must be one to five numeric digits. Remember that the largest integer

the system can handle is 536, 870, 911. e.g. On lines 10, 13, 16, etc. the word

1603 1 is an example of a one-word integer.

Floating-Point Constants - Floating-point constants always occupy four

words. The first two words are the fraction. The first word consists of a

decimal point followed by the first one to four digits of the fraction. The second

14

word contains the remaining digits of the fraction and is limited to five digits.

Ii there are no remaining digits, this second word is a blank. The third word

is e 1 if the exponent is positive and e- 1 if the exponent is negative. The fourth

word is the absolute value of the exponent, one or two digits as though it were

a one-word integer. Remember that although as many as nine digits may be

given for the fraction, the internal form of floating-point numbers is such that

they are rounded to roughly 3 in the 8th significant digit.

There are two floating-point constants in the program in Chapter II;

.2''e'l' (=2.0) on line 25 and .4''e'l' (=4.0) on line 27. The constant 1.0

should be written as . 9999'99999'e '0' (and similarly for other powers of 10)

for most accurate representation. When written this way, it is represented

as 0. 99999994, whereas . l "e 11 1 is represented as 1. 0000002.

Zero - The representation of zero is the one-word integer, 0', and is

zero for both floating-point and integer arithmetic.

The table at the end of the chapter gives examples of source-language

constants.

>labels: A label is word whose first character is "s 11
, and whose

remaining l to 4 characters are numeric digits,, representing an integer from

0 to 190 inclusive. These are used to label statements. There is one exception

to the form described above. This occurs when using procedures and is discussed

in Chapter X, section E. On line 35, s2 1 is a label. Here the statement of line

35 is labeled 11s2 11
• On line 38, s6' and s7 1 are labels and refer to statements

labeled 11s6 11 and 11s7 11 on lines 50 and 49 respectively. Note that sOOOl is the same

as sl.

>variable: A variable is any word of 5 characters or less which is

not an operator, label, or C-word. Variables are discussed further in

Chapter IX. There the definition is extended and the subscripting of a

variable is discussed. The variables in lines 35 and 36 are: discr', 2a 1
,

Temp2 1 , and Temp! 1
•

15

>blank: A blank is a word with no characters (conditional stop code only).

Thus, the last two words of line 50 are blank words. A blank may include con

trols, as desired (except tabulate).

C. Statements

>statement: A statement consists of a sequence of words obeying the

rules of syntax ending with a blank. The first statement of the program starts

on line 4 and ends on line 5. The last statement of the program is on line 50.

>remark: A remark is any sequence of characters and controls (except

tabulate) which is followed by a conditional stop and which obeys the following rule.

It must contain at least six characters and the sixth character preceding the condi

tional stop must be one of the command letters, which are "tidybrazenchumps 11 •

A remark may be inserted in the program at any point; it will be ignored by the

translator. If in such a sequence the sixth character preceding the conditional

stop is any character other than one of the above, the sequence is treated as a

blank. The words of lines 1 and 2 make up a remark.

D. Program

>program: A program consists of a sequence of statements. The last

is followed by a (second) blank. Thus, the extra blank word after the statement

on line 50 signifies that the preceding group of statements make up a complete

program.

16

E. Other Definitions

Other terms which are conveniently defined at this time are:

>operation: This is computation which occurs at run-time (third phase)

as a result of the inclusion of the corresponding operator in the source program

(first phase). Notice the difference between ">operation" and ">operator".

>execution: This is the performance (in phase three) of the operation (s)

associated with an operator, expression, statement, or program.

ACT-LANGUAGE CONSTANTS

SOURCE LANGUAGE EQUIVALENT COMMENTS

l' 1 integer

54321 1 54321 integer

+12'34567' 1234567 integer

O' 0 integer or fl. pt.

.2 11 e 11 1 2.0 floating-point

• 5678 1 9 1e 13 1 567. 89 floating-point

. 9999 '99999 'e •o 1 .99999994 The recommended

form for fl. pt.

"l. 0" •

17

CHAPTER IV

OPERATORS - General Discussion

A. Introduction

Consider the statement on line 27 of the sample program in Chapter II,

which is

b'x'b'-'. 4 11 e 11 1x 1a 1x 1c 1
;

1discr 11

This, of course, is the ACT III translation of the equation,

d = b 2 - 4ac

where 11 d 11 is called "discr" because it is more mnemonic. The above state-

ment is alsc:> an example of the arithmetic statement which is the basic working

unit of any ACT program. Since the form of an arithmetic statement is quite

straightforward, we will use it to illustrate many rules of syntax. In the first

place ACT has no use for the "equal" sign, which expresses a passive statement

of fact. It is replaced by the substitution operator ";"which has the meaning:

store the expression on the left in the (symbolic} location specified on the right.

The Operators "+", and 11
-

11
, and "x" are also illustrated in this statement. The

order of execution of these operations is the same as that understood in algebra.

Thus "x" and 11
/

11 are executed before 11
-

11 and"+". Also note that the multiplica

tion sign "x" must never be omitted in ACT language, as it may be in algebra.

Consider, further, the equation,

y = (a+ bc}/(d - e}.

This equation when transcribed into ACT III language becomes the following

statement:

[
1a 1+1b 1x 1c 1

]
1

/
1

[
1d 1

-
1e 1

]
1

;
1y 11

18

Note the use of brackets in the same manner in which they are used in the

original equation. They must, however, be square brackets. The operators

used in the examples above all imply floating-point arithmetic. Therefore,

the symbols a, b, c, d, e, y, and discr, are all floating-point variables.

In order to be more specific about the order of operations and about

rules of syntax, we will need to make use of a few special concepts. They are

the following.

>precedence: This is a number assigned to each operator to be used in

determining the unambiguous meaning of a statement. In general, except for

cases altered by brackets, operators of higher precedence are executed first.

>operand: This is a quantity upon which an operator acts; thus, in the

combination b 1x 1c 1 the variables 11b 11 and 11c 11 are left and right operand, respec

tively, of the operator "x".

>expression: The simplest expression is a single variable. An expression

is also any sequence of operators, each of which has all the operands which it

requires. Thus, in the above example, b'x'c' is an expression. However,

a 1+1b 1 is not, since b 1x 1c 1 rather than b' is the right operand of + 1
•

>type: The type of an operator or expression indicates the way in which

it may be combined with other operators. Certain capital letters are used to

indicate "type". They are listed here, together with their explanation. m

tables they are often followed by another capital letter; either 11 V 11 for variable

or "E" for expression. Succeeding chapters discuss each type further.

F - Floating Point

I - Integer

L - Logic

X - No Result (This type may not appear in

expressions used as operands).

19

The result, then, of the execution of a type F operator is a floating~point value,

and, therefore, may be operated upon by another operation requiring a floating-

point operand. The type of an expression is the type of its lowest ranking operator.

(The discussion of "rank" follows).

B. Determination of Rank

The basic concept required to determine without ambiguity the exact

meaning to the compiler of any string of words is the "rank". This concept

extends the "precedence 11 idea to include the effect of brackets on the order of

execution.

way.

>rank: This is a number value which may be determined in the following

1) Assign the value zero to the reference quantity, "bracket level".

2) Starting from the left end, scan the statement, adding 4 to the

bracket level for each left bracket "[", and subtracting 4 for each

right bracket "] ".

3) Then as the statement is scanned the rank of any operator is equal

to its precedence plus the bracket level.

General Rule - With this definition of rank, we may state generally that,

of two neighboring operators in a statement, the one of higher rank is executed

first. If they have the same rank, the one on the left is executed first.

20

Rank may also be assigned to expressions and variables. The use of this

concept can be seen in rules 2) and 3) of the next section.

4) The rank of any expression is equal to the smaUest of the ranks of

all the operators in the expression.

5) The rank of a variable is four plus the bracket level.

C. Basic Rules of Syntax

Although the General Rule, above, is adequate for many cases, it does

not completely cover all situations. This section, therefore, gives a complete

set of rules of syntax by which the unambiguous meaning of any statement can be

determined.

1) The bracket level may never be greater than 28 nor less than zero.

In other words, brackets may be nested to a maximum depth of seven.

Redundant brackets are, as a rule, ignored. In any case, they can do

no more harm than add a few milliseconds to the running time of the

program. Thus, when the programmer is doubtful about precedence

rules, it is suggested he play safe and insert brackets to remove

possible ambiguity.

2) The left operand of any operator is determined by scanning left

from the operator to, but not including, the first variable or operator

of smaller rank than the operator in question, or the first expression

of type X or L.

3) The right operand of any operator is determined by scanning right

to, but not including, the first variable or operator of the same or

smaller rank than the operator in question, or the first expression of

type X or L.

4) Every operand must be an expression.

21

5) The type (For I) of an expression used as an operand must agree with

the type required by the definition of the operator. An expression of

type X or L may not be used as an operand.

6) In general, two variables, or a variable and a constant, or two con

stants may not appear in the same statement without an intervening

operator. The exception to this is in a statement beginning with one

of the words - dim, index, db ind, enter, local.

Examples: Consider the sample statement used above,

[1 a •+ 1 b 1x1 c 1] r I 1 [1d1 _ 1 e 1] , ; 1y1 1

Here we observe the following relations:

operator precedence rank left ope rand right operand

0 0 All to its left y

+ 1 5 a b'x'c'

x 2 6 b c

I 2 2 ['a'+ 'b'x'c'] 1 ['d'-'e']'

1 5 d e

Notice that the substitution operator has precedence zero, and therefore,

its rank in the example is zero. Its left operand is the entire expression from

the beginning of the statement. Note that, of course, it is meaningless for the

right operand of ";" to be a complex expression; it must be the variable whose

value is to be as signed.

22

CHAPTER V

ARITHMETIC STATEMENTS

This chapter discusses the arithmetic operators in detail {both floating-

point and integer}, as well as the more common transcendental functions which are

included in ACT III language. Operators used to convert a numerical variable

from floating-point representation to integer representation and vice versa are

also explained here. At the end of the chapter, by way of summary~ the operators

discussed are listed in tabular form.

A. Floating-Point Arithmetic Operators

1. Basic Arithmetic Operators

As illustrated in the previous chapter the symbols representing the

basic floating-point arithmetic operations are the same as that for algebra.

·' ' e.g. a';'b' The value of 11a 11 is substituted into 11b 11
• {

11a 11 is

unchanged). The substitution operator has precedence 11 0 11
•

Its left operand is the entire expression from the beginning

of the statement. The right operand must be a variable whose

value is to be assigned. It is meaningless, of course, for the

right operand to be a complex expression.

+' e.g. a'+'b' Addition is precedence 11 1 11 and both right and left

operands may be either an expression or a variable of type F.

e.g. a 1 -
1b 1 Subtraction is precedence 11 1 11 and both right and

left operands may be either an expression or a variable of

type F.

23

x 1 e.g. a 1x 1b 1 Multiplication is precedence 11 2 11 and both right and

left operands may be either an expression or a variable of type F.

/' e.g. a 1 / 1b 1 Division is precedence 11 2 11 and both right and left operands·

may be either an expression or a variable of type F.

0- 1 e.g. 0- 1a 1 This is a unary operator which has only a right operand,

and which has the effect of changing the sign of its operand {type F).

It has precedence 113 11 which implies that any complex expression used

as an operand for 110- 11 must be bracketed. The phrase a'x'[1-'b']'

is illegal because 11
-

11 has no left operand. It may, however, be

corrected by writing it in the form a 1x 10- 'b 1 • No brackets are nee-

essary because 0- 'b' is unambiguously the right operand of 11x 11
•

abs' e.g. abs 1a 1 This is also a unary operator, the operation of which

produces the absolute value of its {right) operand (type F). It also

has precedence 113 11 and therefore, any expression used as an oper-

and must be bracketed.

2. Exponentiation

pwr' e.g. a'pwr'b' The operation 11pwr 11 has the effect of raising the

left operand {type F and positive) to the power of the right oper

and {type F). Thus a 'pwr 'b 1 gives ab. The left operand {a) must

be positive because the subroutine for 11pwr 11 uses the relationship

b
a = exp (b ln a)

and, of course, the logarithm of a negative number is undefined.

The operator 11pwr" has precedence 113 11 which causes it to be

placed in the order usually under stood in algebraic expressions,

24

before multiplication and division. Consider as an illustration

the coding of the equation,

2
w = a I (b - c -y)

The first attempt might produce,

a'/'[1b 1
-

1c 1pwr 10-'['y'x'y']']';'w 11

This is incorrect, as is seen by seeking the right opera'nd of "pwr".

Since "0-" has the same rank as "pwr ", it is observed that "pwr"

has no right operand. Thus, we must write

a'/'[1b 1
-

1c 1pwr 1
[

10-'y'x'y'] 1
]

1
;

1w 11

Notice that small integral powers of a floating-point value are

most efficiently obtained by direct multiplication and division.

Thus, a 'x 'a 1 is better than a 'pwr 1 • 2 11 e 11 1
•

xlOp' e.g. a'xlOp'b' Change the exponent of a Floating-Point Number.

This is the fir st operator introduced with qne operand of type F

and the other of type I. The operation of xl Op takes the left

operand (type F) "a" times !Ob where "b" is type I.

3. Common Functions

A number of single-valued floating-point functions are available

in ACT III language. They are:

sqrt' e.g. sqrt' a 1 Square root of "a 11 •

In 1 e.g. ln 'a' Natural logarithm of "a".

log' e.g. log'a' Common logarithm of "a".

exp' e.g. exp 1a 1 Exponential of "a" (ea).

sin' e.g. sin 1a 1 Sine of "a (radians)".

cos' e.g. cos 1a 1 Cosine of "a (radians)".

ar tan 1 e. g. artan 'a 1 Arctangent of "a". (Radians, - Tr/ z to +it/ z.)

25

These are all unary operators (right operand only) of

precedence 3. This gives them the rank normally understood

in algebraic expressions. Again any complex expression used

as the right operand must be bracketed. Syntactically then,

the above opera tors plus 110- 11 and "abs 11 are in the same

category.

4. Random Number

randm 1 The operator "randm 11 has no operands, but produces at each

use a new member of a set of pseudo-random floating point

numbers, uniformly distributed over the interval from 0 to 1.

A few examples of some uses are: randm 1 /
1randm 1 ;

1y 11

(The quotient of two random numbers stored in "y");

sin 1 [1randm 1]
11 (The sine of a random number between 0 and 1.).

Note: "randm" has precedence 3.

B. Integer Arithmetic Operators

As was stated earlier, the largest integer which can be handled in

ACT III is 536, 870, 911. The most common use of integers is for counting and

subscripts {see Chapter VII). Under these conditions they are not expected to

become larger than a few thousand (positive or negative). As a general rule,

integer operators begin with the letter 11 i 11 •

1. Basic Arithmetic Operators

• I

' e. g. a 1
;

1b 1 Subs ti tu ti on. This is the same opera tor as was de -

scribed under arithmetic floating point operators. {See A. 1.)

Since it works equally well with integer and floating point values

the programmer must keep track of the type of expression or

variable involved.

26

i+ 1 e.g. a 'i + 'b 1 Machine Addition

i- 1 e.g. a 1i- 1b 1 Machine Subtraction

Addition and subtraction are machine operations in which overflow

will occur if the result exceeds (±) 536, 870, 911. On most machines

this will cause a stop. On machines equipped with overflow logic

modification it will result in an incorrect answer and set a special

indicator which may be tested later (see Chapter XI). These are

precedence "l "; both left and right operands of each may be either

an expression or a variable of type I.

ix' e.g. a 1ix 1b 1 Integer Multiplication, with Error Stop

This operation will yield correct answers if the answer is not greater

(in magnitude) than 536, 870, 911 and will cause an error stop if

this limit is exceeded. It has precedence "2 ", and both right and

left operands may be either an expression or a variable of type I.

nx 1 e.g. a 1nx 1b 1 Integer Multiplication

If small numbers are being handled, and there is no danger of over

flow, integer multiplication is performed much faster by the use of

this operator than by the use of the above operator "ix". However,

if the answer would exceed 13_4, 217, 727 in magnitude, "nx" will

yield an incorrect answer without any warning. This operator is

also precedence 11 2 11 and both right and left operands may be either

an expression or a variable of type I.

i/ 1 e.g. a 1i/ 'b 1 Integer Division

Some special consideration is necessary in integer division, since

the exact quotient of two integers may not be an integer. The operation

of "i/ 11 is be st des cribedwith the help of the formula

27

n = qd + r

where n, d, q and r {all integers) are the numerator, denominator,

quotient and remainder respectively. For a given n· and d, the choice

of q and r is not unique. We use the convention that r must have

the same sign as d and be less than d in absolute value. This is

equivalent to the statement that q is the (algebraically) largest

integer which is {algebraically) less than or equal to the exact value

of n/ d. The answer returned by the operation of 11i/ 11 is q. The

value of r is stored in the symbolic location 11remdr 11
, where it is

available for use immediately or later in the program. Consider

the following examples.

n = 10 11 -10 -11 -11

d = 5 5 5 5 -5

q = 2 2 -2 -3 -3

r = 0 1 0 4 -4

iabs' e.g. iabs'a' Integer Absolute

The operation of 11iabs 11 gives the absolute value of the right

operand (type I). Its syntax is similar to its floating poin~ counter-

part "abs 11
•

ipwr' e.g. a'ipwr 1b 1 Integer Power

b . .
The operation of "ipwr 11 gives the value of a as an integer. If

b = 0 the answer is 1. If a = 0 and b is negative an error indication

is returned. If a = 1 and b is negative the answer is zero. For

all other cases the answer is exact. An error indication is returned

if ab > 22 9. The operator 11ipwr II has precedence 113 II and both of its

operands must be expressions of type I.

28

C. Mixed Arithmetic Operators

These operators are used to change a variable from its integer form

to its floating-point form and vice versa. These operators are all of prece-

dence "3 ".

"fix II•

flo 1 e.g. a 'flo 'b 1 Change"b 11 (type I) to a Floating- Point Number.

unflo'

Both left and right operands are type I. The operation of "flo"

inserts a decimal point in the right operand to space off the

number of fractional digits specified by the left operand, and ex

presses the resulting number (bx 10-a) in floating-point form.

e.g. a'unflo'b' Change "b" (type F) to an Integer With Rounding.

This operator is essentially the reverse of "flo" . The right

operand (type F) is multiplied by 1 Oa, where "a" is of type I and

the resulting number is rounded to the nearest integer.

fix' e.g. a'fix'b'- Change "b" (type F) to an Integer Without Rounding.

The syntax of the operator "fix" is the same as that for "unflo".

In the operation, however, the result is not rounded, fractional

digits being dropped without rounding.

The following examples illustrate the operation of "flo", "unflo", and

Left Operand Right Operand
(Value) Operator (Value) Result

0 flo 50 . 5 x 1 oz

3 flo -1234 - . 1234 x I 01

- I flo 15 . 15 x 103

0 unflo . 1357 x 101 1

1 unflo ±. 1357 x 101 14

1 fix .1357 x 101 13

29

D. Tables

Floating-Point Operators

Left Right
Name Type Operand Operand Precedence Restrictions

F FE FV 0

+ F FE FE 1

F FE FE 1

x F FE FE 2

I F FE FE 2 Rt. Op. i= O.

pwr F FE FE 3 L. Op. >0.

xlOp F IE FE 3

0- F None FE 3

abs F None FE 3

sqrt F None FE 3 Rt. Op.> O.

ln F None FE 3 Rt. Op.> O.

log F None FE 3 Rt. Op.> O.

exp F None FE 3 Rt. Op . < 13 · 8 9 7 42 3

sin F None FE 3 I Rt. Op. I <108

cos F None FE 3 I Rt. Op. I < 108

30

Integer and Mixed Operators
Left Right

Operator Type Precedence Operand Operand Comments

I 0 IE IV {also F)

i+ I 1 IE IE

i- I 1 IE IE

ix I 2 IE IE

i/ I 2 IE IE

nx I 2 IE IE

flo F 3 IE IE

unflo I 3 IE FE

fix I 3 IE FE

iabs I 3 None IE

ipwr I 3 IE IE

29

D. Tables

Floating-Point Operators

Left Right
Name Type Operand Operand Precedence Restrictions

F FE FV 0

+ F FE FE 1

F FE FE 1

x F FE FE 2

I F FE FE 2 Rt. Op . =!= 0 .

pwr F FE FE 3 L. Op. >0.

xlOp F IE FE 3

0- F None FE 3

abs F None FE 3

sqrt F None FE 3 Rt. Op. > 0.

ln F None FE 3 Rt. Op.> O.

log F None FE 3 Rt. Op.> O.

exp F None FE 3 Rt. Op • < 13 · 8 9 7 42 3

sin F None FE 3 I Rt. Op. I <108

cos F None FE 3 I Rt. Op. I < 108

30

Integer and Mixed Operators
Left Right

Operator Type Precedence Operand Operand Comments

I 0 IE IV (also F)

i+ I l IE IE

i- I 1 IE IE

ix I 2 IE IE

i/ I 2 IE IE

nx I 2 IE IE

flo F 3 IE IE

unflo I 3 IE FE

fix I 3 IE FE

iabs I 3 None IE

ipwr I 3 IE IE

A. Normal Flow

CHAPTER VI

FLOW CONTROL

31

By the term "flow" we understand the order of execution (in phase 3) of

the statements in a program. The normal flow is the order in which the state

ments appear in the source program, beginning with the first, and stopping after

execution of the last statement.

B. Labels and Labeled Statements

In order to make it possible to modify the flow~ it is necessary to be able

to label a statement. Such labels must consist of the letter "s 11 followed by one

to four numeric digits representing an integer less than 191.

If the first word of a statement (exclusive of any remarks) is a label, the

statement is assigned this label.- The labeling word is not included in the syntax

of the statement. It is customary to refer to the statement labeled (for example)

s53 as statement number 53.

No two statements may bear the same label in any program.

With this introduction of labels into the normal flow of the program, we

recognize labels as allowable operands of certain operators. This will be indi

cated in the operator tables by the symbol L in the appropriate column. All

labels appearing as operands must be assigned to statements in the program.

C. Logic Operators

We now introduce a class of operators which we call logic operators

whose function is, in general, to control the flow of a program. Logic operators,

like type X operators, may not appear in operands. They usually require labels

32

as operands. They are denoted as type Lin the tables. Operators of this

class have precedence zero.

D. Unconditional Transfer

The operator "use" directs the flow to the statement whose label is the

right operand.

E. Conditional Transfer - - "if" Statements

The statement

if 1a 1neg'sl0 1zero 1sll 1pos 1sl2 1

directs the flow to statement 10, 11 or 12 (these labels are used only as samples)

according to the value of "a" (negative, zero or positive respectively). The

variable "a" (used here only as a sample) may be replaced by any expression,

either integer or floating-point.

Syntactically the operator "if" has precedence zero and has the effect of

evaluating its right operand and leaving the value for use as the "previous result".

Each of the test operators neg, zero and pos causes a test of this "previous

result" and transfers to the statement whose label is its right operand if the con

dition is satisfied. It is not necessary to include all the tests, as long as those

included are in the same order as indicated above. If none of the tests is satis

fied, the normal flow (to the next statement) occurs.

Because of the problems of round-off and conversion errors, the "zero"

test is not recommended for floating-point numbers, except to prevent a division

by zero or related computational error.

F. Switches (Variable Transfers)

The statement

go to 1s0 11

33

{which must be labeled if it is to be used) is a switch or variable transfer

which may be changed in several ways. The symbol 11s0" is not to be interpreted

as a label, but rather as a part of the composite operator go to' sO'. Note the

space in "go to". Operators which require a switch as operand are designated

in the tables by the symbol S in the operand column. The label of a switch may

also be used in any way allowed for ordinary labels.

The statement

set 1s20'to 1sl5 11

when executed during the flow of the computation, sets the switch labeled s20

to the statement labeled sl5. When the switch s20 is reached during the subse..:.

quent flow, it will transfer to statement 15 unless the setting has been changed

in the meantime. If a switch is reached at a point in the flow before it has been

set, it will transfer to itself, thus setting up a tight loop.

The statement

ret's20'use 'sl 5''

when executed during the flow of the computation, first sets the switch labeled

s20 to the statement immediately following this one {which need not be labeled),

then transfers to statement 15. This enables the effective insertion at different

places in the computation of a block of statements beginning with statement 15

and ending with the switch.

G. Loops - - "for 11 Statements

The execution of the statement

for 'i 'step'j 'until 'n 'rpeat 1s20 1

34

has the following effect. First "i' 1 (which represents any integer variable)

is incremented by the amount "j". If this step carries the value of "i" past the

value of "n",. control flows to the next statement. Otherwise, control flows

to statement 20. Note: The magnitude of j(n-i) must not exceed 134, 217, 727.

Here "j 11 represents any integer expression, which may be positive or

negative. If the value of "j" is zero, control always flows to the next statement.

Also "n" represents any integer expression, and "s20" represents any label.

The simplest application of this statement is for programming loops.

Thus sample program No. 1 in Appendix C causes the reading of an integer "n",

followed by the reading of "n" sets of values of two floating-point numbers "a"

and "b", printing for each set the values of a and band their sum, difference,

product and quotient. The test for zero value of "b" prevents a division by zero.

We do not recommend the use of floating-point numbers for loop control;

however, the equivalent to this statement in floating-point arithmetic may be

written using the standard floating-point operators and conditional transfer tests.

LOGIC OPERATORS

Left Right
Operator Type Precedence Operand Operand Comments

use L 0 None L

if x 0 None E

neg L 0 None L

zero L 0 None L

pos L 0 None L Must not occur

before "neg" or

"zero".

35

LOGIC OPERATORS CONT.

Left Right
Operator Type Precedence Operand Operand Comments

go to's0 1 x None None Must occupy

whole statement

set L 0 None s

to L 0 None L

ret L 0 None s

for x 0 None None

step I 0 IV IE

until x 0 IE IE

rpeat L 0 None L

H. Stopping the Computer

The operator "stop", when executed at run-time, causes the computer

to stop. If it is restarted, the program will continue in sequence. The operator

"wait", followed by~ conditional stop (not two) is placed on a source program

tape to suspend compilation. Pressing "start" continues compilation.

36

A. The Input-Output Problem

CHAPTER VII

INPUT AND OUTPUT

The information contained in the preceding chapters is sufficient for the

writing of solutions to many problems; however, no means has been provided for

reading data or printing answers. In order to make it possible to write working

programs at the earliest possible moment, this chapter will discuss the most

commonly used methods of input and output. At this point it is necessary to make

an exception to our basic philosophy of ignoring the mechanics of the computer

at the programming stage.

Numeric· data may be read from punched paper tape,. either through a

Flexowriter (in which case the data are printed as they are read) or through a

photoelectric reader (without simultaneous printing). Output may be taken on the

same Flexowriter (with or without a punched tape copy) or on the high-speed punch

(which produces a tape which must subsequently be listed on a Flexowriter). In

any case, dat;:i. tapes must be initially prepared, and output must be eventually

printed, on a Flexowriter. If the Flexowriter is to be used directly for both input

and output, both will appear on the same "hard copy". If any other option is used,

the input data will not appear in the output unless the program specifically provides

for it to be printed out. Since the output format is, because of hardware limitations,

much more flexible than the input, the latter method is usually to be recommended.

However, the choice may be limited by facilities or local operating procedures at

each installation. We will, therefore, not discuss this matter further.

B. Numeric Input

B. 1. Floating Point Data Input

The execution of the operator "read 11 effects the reading of one floating

·point number and its storage in the location of the right operand, which must be a

37

variable.

The number to be read by "read" must be punched on the data tape in the

following format. First the fraction is punched as a sign (+or-) followed by one

to seven digits of the fraction. The decimal point must not be punched, but it is

understood to be immediately after the sign. The sign must be the first character

read; however, controls (except tab) may be inserted to improve legibility. If

the full seven numeric digits are punched, any desired descriptive material (not

containing an apostrophe or stop code) may precede the sign. The fraction is

followed by a stop code ('), and then the exponent is punched as a sign(+ or -)

and one or two digits followed by a stop code.

The following examples will illustrate the format for floating point data.

Data Tape

Contents Value

+l 1+1 1 o. 1 x 101

+1000000'+1' 0. 1 x 101

-53'+0' -0. 53 x 1 o0

+123 1-15 1 o. 123 x 10- 15

+1 1-35' 0 (too small)

+l 1+35' error (too large)

B. 2. Integer Data Input

The execution of the operator "iread" effects the reading of one integer

and its storage in the location of the right operand, which must be a variable.

The number to be read by "iread11 must be punched on the data tape

in the following format. TheJirst character must be the sign (+ or -), followed

38

by one to seven digits, as required, and followed by a stop code. Zeros or

spaces may be inserted immediately following the sign if desired, provided

the total number of spaces and digits does not exceed seven. A positive integer

may be preceded by any textual material ending with seven spaces. In this case,

do not punch the + sign. Controls (except tab) may be inserted as desired.

The following examples illustrate the format for integer data.

B. 3. Read and Float

Data Tape
Contents

+11

-25 1

+003'

Value

l

-25

3

Numbers may be read in integer form and converted to floating point by

the use of the operator "rdflo". To give a specific illustration, the statement

n 1rdflo 1a 11

has the same effect as the two statements

iread 1a 11

n 1£10 1a 1
; 'a 11

Here the left operand ("n") must be an integer expression, and the right

operand ("a") must be a variable. The value stored in "a" is floating point.

A convenient way of thinking of it is that a decimal point is understood "n"

digits to the left of the stop code (to the right if "n" is negative). Thus, the follow-

ing examples are formulated.

"n II

0

1

-1

B. 4. Syntax of Input Operators

Tape Contents

+12'

-12'

+12'

Value

0. 12 x 1 oz

-0.12 x 101

0. 12 x 103

39

The three input operators, "read", "iread", and "rdflo" are all precedence

zero, and may be used in operands. Thus, the statement

read'a 1 ; 'b 1 ; 'c''

will produce the operation of reading a floating point datum and storing it in a,

b, and c. Also the statement

[
1read 1a 1

]
1x 1b 1

;
1c 11

effects the storing of the number read into "a", and the product ax b into c. The

brackets are necessary for the proper rank relationships.

B. 5. The Input Switch

Normal flow of control ordinarily occurs after execution of an input state

ment. If,however, a blank (stop code only) is read on the data tape, control is

transferred to a switch internal to the package. This switch is set by execution

of the expression

rdxit's 10 1

to the statement labeled {for example) s 10.

This may be used, for example, to signal the end of a data block, or

(on unattended runs with many sets of data) to suspend computation. The input

switch, like program switches, retains a setting until it is changed in the flow of

the computation.

40

C. Numeric Output

C. 1. Format Control for Numeric Output

The output operators to be described next all require as left operand an

integer (expression} which will be referred to as the format control. The value

"n" of this operand is considered to have the form

n = lOOc + f

where c and fare positive integers and f is less than 100. The general effect of

this quantity may be described in the following way. The output number is printed

in a field "c" characters wide, with "f" fractional digits, and leading spaces as

needed to move the output to the extreme right within the specified field. This

gives complete flexibility in the arrangement of output numbers on a single line.

The "sign" referred to in each discussion is a space for positive numbers, "-"

for negative numbers.

Line spacing is controlled by the operator "er", which controls the

typewriter operation "carriage return".· The operator "tab" is available to

control the typewriter operation "tabulate".

C. 2. Integer Output

The execution of the operator "iprt" causes the value of the (integer}

right operand to be printed under format control of the left operand as follows,

where the integer to be printed has "d" digits.

(a) If f is zero, the operation involves the printing of c-d-1 spaces

(no!l~ if this is negative}, then the sign (space or "- "), then the "d" digits.

(b} .If O<f<d, the output will consist of c-d-2 spaces, the sign, d-f

digits, a decimal point, and "f" digits.

(c) If d< f < 9, the output will consist of c-f-3 spaces, the sign, one

zero, a decimal point, f-d zeros, and d digits. If f = 8, the last

digit may be in error by one unit. A value off greater than 8

should not be used.

C. 3. Floating Point Output

The execution of the operator "print" causes the value of the

(floating point) right operand to be printed under format control of

the left operand as follows.

(a) If c >f + 7, the output consists of c-f- 7 spaces, sign of number ,

decimal point, f significant digits of fraction (rounded to last printed

digit), space, the letter 11e 11 , sign and two digits of exponent.

(b) If c is less than f + 8 but greater than 7, the output is as for (a)

but with£ replaced by c-7.

(c) If c is less than 8, the output is as for (b) but with c replaced by 7.

C. 4. Unfloated Output

41

The execution of the operator "dprt" (short for ~ecimal _p::_in!] causes the

value of the (floating point) right operand to be printed under format control of

the left operand as a decimal number in common decimal form. In the specific

description given below,. the exponent of the number to be printed is denoted by

lie II•

(a) If e is greater than zero and c is greater thane + f + 1, the output

consists of c-e-f-2 spaces, sign, "e 11 integral digits, decimal point, f

fractional digits (rounded to the last digit printed).

42

(b} If e is greater than zero and c is less thane + f + 2, the output

is as for (a} but with f replaced by c-e-2, or, if this is negativ~

by zero.

(c} If e is not greater than zero, the output is as for (a} or (b)

above, but with e replaced by zero.

Some illustrative examples will be found in Appendix B.

C. 5. Syntax of Output Operators

The operators "iprt", "print", and "dprt" are all precedence zero

and type X. It may be deduced from the rules of syntax that a single statement

may not include more than one of these operations unless they are separated

by an expression of the same rank. Thus, the statement

1608 'print'a 'er' 1608 'print'b''

is satisfactory, but if the "er" were omitted it would be incorrect.

We note again here that the limit of internal accuracy for floating

point numbers is ±3 in the eighth significant figure, and, therefore, printed

results cannot be relied on beyond this accuracy.

D. Alphabetic Input and Output

D. 1. Direct Alphabetic Print "daprt".

The operator "daprt" effects the printing of any alphabetic information,

giving the programmer direct control over all operations of the output Flexo

writer. Thus, for example, the statement

daprt 1s 1t 10 1p 11

43

will cause the compilation of instructions to print the word 11 stop 11 {at run-time).

Up to 63 characters may be so indicated in a single statement; if more are

required, additional "daprt" statements may be included. Each character to be

printed {including space) must occupy a separate word. The controls are rep

resented by a set of mnemonic codes, each containing at least two characters,

as follows.

lower case

upper case

color shift

carriage return

backspace

conditional stop

(or apostrophe

tab

non printing stop

conditional

unconditional

lcl I

uc2 1

color 1

cr4'

bs5'

stop'

ap')

tab6'

codes:

stop9'

stopu 1

(The last two codes above are for use only when output is on the high

speed punch. When the tape so punched is listed, these codes stop the Flexo

writer without printing; the first of the two is dependent on the conditional stop

44

button, whereas the second is not. If output is on the Fl.exowriter these

instruct ions are ignored.)

D. 2. Repeated Frint "reprt ".

The execution of the statement

IE 1reprt 1C 11

(where IE means any intege~ expression, and C stands for any character or

control, as discussed in section C. 1. above) causes the high-speed printing of

the indicated character or control "IE" times. If "IE" is negative or zero, nothing

is printed. If "IE" is less than 6, it is more efficient to use "daprt".

D. 3. Alphabetic Read "aread".

The execution of the statement

aread 1V''

causes a single word to be read from tape, interpreted as one to four alphameric

characters in a special two-digit code, and stored in location "V". The two-digit

code is given in Appendix A.

A blank word causes a transfer to the input switch.

D. 4. Alphabetic Print "aprt".

The execution of the statement

aprt 1V''

causes the printing of five characters (and/ or controls) or less. The contents of

"V" may have been fed in as data to "aread", in which case a maximum of four

characters may be printed. If "V" is negative, nothing is printed.

Note: Users wishing to do so may code alphabetic data in hex, five 6-bit characters

in bits 1-30. If less than five characters are used,. the remaining 6-bit fields

45

{at the right) are left blank. Such data may be read in using "rdhex'' {see below).

E. Compatible Input-Output.

It is frequently desirable to use the output of one program as input to

another. Several for ms are available.

The output of "punch" and "ipch" is easily read and may be interspersed

with other forms of output {see preceding sections). The other output, unless

it contains stop codes from "daprt", is ignored on read-in.

E. 1. Floating Point "punch".

The execution of the expression

punch'FE'

causes the value of "FE" to be punched {printed) in the following form. The

fraction is rounded to seven digits and punched as sign, seven digits and stop

code. The exponent is punched as sign, two digits and stop code. This may be

used as input to "read".

E. 2. Integer "ipch".

The execution of the phrase

ipch'IE'

causes the value of "IE 11 to be punched as a sign, seven digits {with leading

zeros as needed) and a stop code. This may be used as input to "iread".

E. 3. Use of "iprt 11
•

The execution of the statement

0 1iprt 1IE'daprt 1stop 11

causes the value of "IE" to be punched as a sign, significant digits {n.o leading

zeros) and a stop code. This may also be used as input to "iread". However,

46

it ·must· not follow noncompatible output forms directly.

E . 4. Hexadecimal Output "hxp ch".

The execution of the phrase

hxpch'E'

causes the value of "E" to be punched as an eight-character hexadecimal word

with stop code. This is not easily interpreted as are the forms previously dis

cussed; however, it has certain advantages. In the case of floating point values, it

is not necessary to round to seven digits, and thus greater accuracy is obtained.

In the case of integer values, there is no restriction to seven-digit integers as

in "ipch 11
; the full available range may be used.

E. 5. Hexadecimal Input "rdhex" .

. . The execution of the phrase

rdhex'V'

causes a single hexadecimal word to be read and stored in "V 11
• This may be

used to read output from "hxpch 11
, or numeric or alphabetic data handcoded in

hex. A blank word is stored as blank; the input switch is not associated with

11rdhex".

E. 6. Syntax of Compatible Input -Output.

The operators "punch", "ipch', 11hxpch 11 are all of precedence zero,

and require a right operand only.

and "iread 11 in its syntax.

The operator "rdhex 11 is similar to "read"

/

47

Table of Input- Output Operators

Left Ri ht
Name Type Operand Ope~and Precedence Restrictions

read F None FV 0

ire ad I None IV 0

rdflo F IE FV 0

aread A None AV 0 "A" = alphameric

rdhex F, I, A None v 0

print x IE FE 0

iprt x IE IE 0

dprt x IE FE 0

punch x None FE 0

ipch x None IE 0

aprt x None AE 0

hxpch x None E 0
,,#

daprt x None ,,# 0
,,,
string of ,,,

characters

reprt x IE c 0 C = character.

RDXIT L None L 0

er x None None 0

tab x None None 0

I

48

CHAPTER VIII

INTERMISSION

At this point enough of the vocabulary and syntax of ACT language has

been presented to make possible the writing of meaningful programs. A few

simple examples have been discussed briefly in previous chapters. We now

consider some sample programs in greater detail.

A. Sample Program No. 2- -Mean and Standard Deviation

For a set of numbers y 1, y2 , •••• Yn' the mean y and standard deviation er

are given by the formulas

y=
n

and

n

" "2. 2. 2. . 1 where ~y and ~y stand for the sums y 1+ ... +yn and y 1 + ..• +yn respective y.

Sample program 1'2 1! reads a set of numbers y, expressed as integers,

floats them and accumulates the two sums as the values are read. The input

switch, called by a blank on the data tape, causes computation and printing of

y and er, unfloated to two decimal places, starting at statement 5. If the value

of n is zero (an empty set}, the program stops at statement 10; otherwise, new

sets of data are read and processed. Note the use of "n'' as a counter. When

the blank is read, "n" gives the number of data words which have been read in

the current set. Before this can be used in the floating point formulas, it must

be converted to a floating point number.

49

There is the possibility, when this formula is used, that accumulated

roundoff errors may cause the quantity under the root sign to be negative. This

implies a small value of er, and the program replaces it by zero in s6. A more

accurate method in this case is contained in sample program no. 4, which is

discussed after the introduction of subscripts.

B. Sample Program No. 3

This sample program is designed to illustrate the use of "ret--use"

with a switch. The block of coding so called accomplishes the printing of the

value of y, together with its sine and cosine. The main program reads two

numbers a and b, then uses the block to treat first a, then b, then a + b, then

a - bas y.

50

CHAPTER IX

REGIONS AND SUBSCRIPTED VARIABLES

A. Blocks of Data

There are many situations in which we desire to treat data in blocks,

using a single name for the entire block and calling individual positions in the

block by a serial number. Such blocks are reserved by the special operator

"dim" (for "dimension"). The statement

dim I a I 10 'b I 5 5 I I

as an example, reserves a block of 10 words under the name "a" and a block

of 55 words under the name 'fb". Any number of blocks may be reserved by a

single "dim" statement, and any number of "dim" statements may be used in a

program, the only restriction being that the variables must appear in the

statement before they are used in any other way. (Here and in similar r•

appearing in later sections, the relation "before" is to be interpreted as

physical order of statements in the source program).

B. Integer Subscripts

When a variable name is followed immediately by a one-word inte;

combination is treated as a variable. The ten words reserved, in the abc

example, for block "a" may be referred to as a'O', a'l ', a'9'. Ith

assumed that "a" has previously been named in a "dim" statement before i

so used. If "a" appears without a subscript, the subscript zero is underst

Thus, the first word of block "a" is either a' or a'O' .. In the above exampl

variable a'lO' refers to the first word after a'9', which is b'O'. Blocks reserved

in a single dimension statement may thus be regarded as segments of a single

larger block, if this is useful in a particular application.

C. Variable Subscripts

The statement (example)

index'i 'j 'k' 1

51

defines the variables i, j, k as subscripting variables. As many as 31 variables

may be so defined in a single "index" statement, and any number of "index"

statements may appear in a program. An "index" statement may appear at

any point in the program, as long as the variables it contains have not appeared

in the portion previously compiled.

The combination a 'i' appearing in a program, where "i 11 has been

named in an "index" statement, then refers to the (i+l) 1th word of block "a".

The value given to i is that which has most recently been assigned in the flow.

Thus if i = 2, a'i' is equivalent to a'2'. Subscripts must have integer values.

If a subscript has not been properly set before it is used, the execution of the

program will go astray.

Thus, to read 20 words into the locations beginning with a'l', we may

write

dim 'a'Zl 1 1

index'i 11

l ';Ii II

sl' read'a'i''

for 'i 'step'! 'until '20'rpeat's1 11

•

52

D. Arithmetic in Subscripts

The combinations a 1i 12 1 and a 12 1i 1 (for example), where "i" has appeared

in an "index" statement and "2" is a sample of any one-word integer, represents

a variable, the effect being to add 2 to the value of "i" to obtain the value of the

subscript.

E. Double Subscripts (twoscripts)

The statement (example)

dbind 1m 11

reserves a block of two locations (m 10 1 and m 11 1
) and defines the variable "m"

as a twoscript. Restrictions on "dbind" statements are the same as those on

"index" statements. (The code 11dbind" stands for "dou_!:le _!:r_:9-ex"). The use of

double subscripts is best explained with the help of an example. Suppose the

value of m 1 (i.e. m 10 ') has been set to "i 11 (an integer), and m 11 1 has been set

to "j ". Suppose, further, that the value of a 10 1 has been set to "n".

The variable a'm' then refers to the word in the block "a" whose sub

script has the value

(i-1)n+j.

Thus, if the words in block "a", starting with a'l ', are thought of as being

arranged in a rectangular array by rows, with "n" columns ("n 11 being the

current value of a'O'), the variable a 1m 1 refers to the word in the i'th row

and the j 'th column of this array.

The following coding may be used to cause the printing of the elements

of an array of 3 rows and 4 columns in a block.

s 1 1

s2 1

dim 1a 113 11

dbind1m''

4 1; 1a 10 11

1 1; 1m 10 11

er' 1

1 1
;

1m 1 1 11

l 608 1print 1a 1m 11

for 'm 1l1step 1l1until 14 1rpeat 1sZ 11

for 'm'O'step'l 'until'3 'rpeat'sl 11

53

Combinations such as a'm 12' (where 11m 11 is a twoscript) should be

avoided. They may be used, if the user is careful to observe that the number of

columns must now be in a' 2 1 (in this example), and the array starts with a 13 1.

F. Some Definitions

>subscript: a variable which has been named in an "index" statement,

and which has an integer value. These will be represented by the symbol S.

>twoscripts: a variable which has been named in a 11dbind 11 statement.

These will be represented by the symbol D.

>variable: (extended definition)

a) any word which is not an operator, label, or C-word.

b) two words, of which the fir st is not an operator, label, C-word

or S, and the second is a one-word integer or S or D.

c) three or more words, of which the first is not an operator,

label, C-word or S, one (or none) of the following words is S or D,

and the remaining words are one-word integers.

(Note: the effect is to add all the integers if more than one_ is

written. This is allowed, but not useful.)

54

The reader is advised to recall rule number 6 from Chapter II, Section 3,

and reinterpret it with this new definition of 11variable ". For convenience in

reference, we may use the term "simple variables" to denote those falling

under class (a) above, and 11 subscripted variables 11 for those of class (b) or

(c).

G. Subscripted Labels

The label concept may be extended also by the use of subscripts. Thus,

the word-pair s l 1i 1 (for example,) where "i" is a subscript, is treated as a label.

The statement immediately before number 1 must consist of a series of 11use 'label"

pairs. This is called a transfer vector .

Thus, for example, if the Coding is

use 1s5 1use 1s20'use 1s3'use's75 11sl' (etc.)

then the label sl 1i 1, for the values 0, 1, 2, 3, 4. of "i 11
, will be equivalent to

s 1, s 7 5, s 3, s 2 0, s 5 respective 1 y.

Note the reverse order here.

>transfer vector: a single statement consisting of a series of "use 'label"

pairs. The labels in a transfer vector must not be subscripted. The 11label 11 of

a transfer vector is that of the following statement. The 11length" of a transfer

vector is the number of "use 'label" pairs it contains.

The rules concerning subscripted labels may now be summarized as

follows:

a) a subscripted label refers to an element of the transfer vector so

labeled. The value of the subscript (which must not be greater than

the length of the transfer vector- -this condition must be insured by the

programmer) determines the element as counted backwards from

the last element.

55

b) if the value of the subscript is zero, the reference is to the statement

following the transfer vector.

c) a label with a variable subscript must not be used where a

switch "S" is specified as an operand, or in a "ret-use" or "set-to"

statement.

56

A. The Sub-Program Concept

CHAPTER X

PROCEDURES

The ability to write sub-programs which may be used at different points

in a program, or in different programs, is a valuable one. A simple method

of doing this has been described in Chapter IV, Section 6. This technique, which

involves the "ret use" statement, has certain disadvantages. Thus, it is

necessary for the user to be aware of a number of details of the sub-program,

including statement numbers and variable names, in order that he can avoid

duplication; also, this scheme is not very flexible when large blocks of data must

be referenced. Thus, for example, a matrix inversion routine might be written

which would invert the matrix "mat l" and place the inverse in "mat 2 11
, and this

would be s~itable as long as the user labels the two blocks with these names in

his program; this, however, would be impossible if the routine were required to

operate on several matrices in the same program, unless the user resorted to

moving the data to and from the designated blocks. Thus, the "ret-use 11 sub

program is useful in the informal situation where a certain program segment

can be called efficiently from two or more parts of a specific program.

B. The Procedure as a Sub-Program

The term "procedure" is used here to refer to a more formal type of

sub-program which overcomes the drawbacks listed above. In particular,.

both statement numbers and variable names used within the body of a procedure

are "local", in the sense that their definition is erased after compilation of

the procedure body, thus removing all problems associated with duplication of

57

symbols. In addition, at each use of the procedure, the main program specifies

the location of all data required and the location in which output information is to

be stored. These locations are referred to within the body of the procedure by

dummy symbols~ thus making it possible to use the same procedure to operate

on different blocks of data.

Procedures may be called on from within other procedures, and this

process may be stacked to any depth. Thus this becomes one of the most

powerful features of the ACT language.

As examples of the utility of the procedure concept, we refer to a

number of procedures described and listed in Appendix. At this point, however,

we will refer to one procedure, the details of which involve a wider understanding

of LGP-30 coding than is given in this manual. This is the "MOVE 11 procedure.

This procedure makes full use of the special assembly features of ACT III,

together with a knowledge of the details of the object program, to accomplish

the transfer of a block of data from one location to another as rapidly as the LGP-30

hardware allows. However, all that the user needs to be aware of is, the calling

sequence. Thus, the execution of the statement

if 'n 1 call 'move 'ar g 'a 'ar g 'b 11

causes the rapid transfer of the "n" words starting at a'O' to the "n" locations

starting at b 10 1
, allowing for the possibility of overlap of the two blocks.

C. Procedure Operators

The statement

enter 'name 1a 'b 11

denotes the entry point of the procedure "NAME", and assigns the formal parameters

58

"a" and "b" to represent two main-program variables (or labels) named in

the calling statement. As many as 31 formal parameters may be used in one

"enter" statement. These constitute the formal parameter list of the procedure.

The execution of the statement

call 'name 'arg'ex'arg'y"

causes a transfer of flow to the procedure "NAME". The list of variables

(and/ or labels) punctuated by "arg" is used by the procedure to interpret the

formal parameters appearing in the "enter 11 statement. This is the actual

parameter list.

These two lists must agree in number of entries, and it is the responsi

bility of the programmer to see that they agree in order and type.

The formal parameters in the "enter" statement must be nonsubscripted

variables. The elements of the "arg" list may be variables (simple or sub

scripted) or labels; they may not~ switches or expressions containing operators.

The name of a procedure must not appear in a program before it is

defined in an "enter" statement.

The execution of the statement

exit''

transfers the flow to the statement following the ''call'' statement from which

the procedure was entered.

The statement

end''

59

denotes the physical end of the procedure body. When this statement is com

piled, the statement dictionary is erased and all symbols whose fir st appearance

was after the name of the procedure in the "enter 11 statement are erased from

the symbol table.

D. The Procedure Body

A procedure body begins with an "enter 11 statement and is ended by the

next "end" statement. No other "enter" statement may occur within a procedure

body.

An "end" statement may not appear without a matching "enter 11 state

ment. An "exit" statement may not appear outside of a procedure body. Note

that the "end" statement is merely an instruction to the compiler, and does not

cause a return to the main program.

Computation in any program commences at the statement following the

last "end" statement.

Since the 11end 11 statement causes the statement dictionary to be erased,

every label used before an "end" statement must be defined before that "end"

statement.

E. The Procedure Name as a Label

All "statement-number" labels are erased by compilation of the "end"

statement. Thus it is not possible to transfer flow into or out of a procedure

body by means of such labels. Normal entry to the procedure is through the

"enter" statement, and normal exit is from the 11exit 11 statement.

Compilation of the "enter" statement defines the name of the procedure

as a label. In some cases it may also be used as a switch. It must not be used

60

before it is so defined. Thus, if procedure A calls upon procedure B, then B

must be compiled before A.

A direct but not obvious result of the restrictions above is that all

procedures used by a program must be compiled before any executable state

ment of the main program. (The list of non-executable statements, which

becomes appropriate at this point, is "dim", "index", "dbind".) Another is the

exclusion of recursive schemes, in which a procedure may call upon itself,

either directly or through a chain (however long) of other procedures.

F. The "Name Block"

The locations immediately before the "enter" statement may be used by

or in connection with a procedure in several ways. A block of locations may be

reserved by a single statement preceding the "enter" statement consisting of

repetitions of the two expressions "stop" and "use'O' ". These may be referred

to, either within the procedure or from the calling program, by the name of the

procedure with an integer subscript. The subscripts, starting at 1, refer to

the locations in the "name block" in reverse order, starting at the end of the

statement. If a location contains "use 10 1
", the correspondingly subscripted

name is a switch. If a location contains "stop", the correspondingly subscripted

name is a variable.

A location in the name block may contain "use 1s41 ", where s4 is used

here as an example to denote the label of any statement within the procedure

body. In this case, the correspondingly subscripted name is a label; however,

it may be used also as a switch, but if it. is so used, it becomes a switch during

the subsequent flow. In a similar way, if a value is stored in a "switch" or

"label" element of the name block, it be comes a "variable" element during the

subsequent flow of the program.

Name block variables are useful for conveying single words of data

from the main program to the procedure and vice versa. This is usually

more efficient than an entry in the parameter list for a single word.

Name block switches may be used for alternate exits and entries to

the procedure. The first entry must always be through the "call" and "enter"

system.

61

Many such uses may be proposed; in connection with them, it should be

stated here that the name of a procedure (without a subscript), when used as a

label, refers to the normal exit from the procedure (following the "call 'name 1 11

statement). The statement "exit" used within the procedure "name" is equiva

lent to the expression "use 'name 1 11 • We also note that the statement

call 'name '2 11

(for example) is equivalent to the statement

ret 'name '2 'use 'name 11 11
•

We now present a powerful use of the name block. We suppose that

name 11 1 and name 12 1 are name block switches. Then the statement

call 'name 1 1 11

within the procedure body transfers to the statement following the "call 'name 111

statement in the calling program, at the same time setting name 11 1 for a return

into the procedure. If now the flow in the calling program encounters the state

ment

call 'name 12 11

62

the flow passes back into the procedure at the statement following the

"call'name'l'''' statement and name 12 1 is set up as the exit to the statement

following this last statement in the calling program.

Thus the block of coding in the flow of the calling program between

"call 'name 1 " and "call 'name 12 1 "becomes a subprogram which may be called

at will from within the procedure body by "call 'name 11 1
".

The extension of this device to several such "slave blocks 11 is obvious.

A numerical integration procedure, for example, would use the "slave

block" to obtain the ordinate at each required abscissa. After the process is

completed, execution of the statement

use 'name 12 11

transfers to the statement following "call 'name 12 11 in the calling program.

G. "Global 11 and "Local 11 Symbols

Normally, all labels and variables used within a procedure body are

"local 11
, in the sense that they become undefined and available for reuse after

compilation of the "end" statement.

If it is desired to refer to some symbols from the calling program

also, this can be arranged. Such nonlocal symbols will be called "global"

symbols. "Statement-number" type labels cannot themselves be global but a

name block label may be used to accomplish the same purpose. Global variables

may be defined by a nonexecutable statement preceding the "enter 11 statement.

Thus,

dim'a'l''

before the "enter 11 statement makes "a" a global variable.

63

Formal parameters are usually local. They may be made global by the

use of the operator "local". Compilation of this operator makes all symbols

preceding it global.

Thus, if we write

then "a" and "b" are g 1oba1

enter 'name 'a 1b 11

local 1c 1d 11

symbols and "c" and "d" are local symbols.

Note that "local" must start a new statement, and that symbols (if any)

following it are a continuation of the formal parameter list.

The use of global symbols in procedures is not recommended because

of the possibility of conflict between procedures. We have adopted the rule

that such symbols, if they are considered necessary, shall consist of five

characters commencing with a numeric digit and ending with the first four (or all)

characters of the name (separated by spaces if necessary to make five characters).

H. Subscripting Formal Parameters

Formal parameters, as used in the procedure body, must always be

subscripted as described in Chapter IX. Thus, if the formal parameter "a"

corresponds to a single variable or label (rather than a region) it must be referred

to as a 10 1 ; the use of a' (unsubscripted) is incorrect. Combinations such as a 1i 12 1

are not allowed if "a" is a formal parameter.

J. A Procedure Call as an Operand

If a pr oce du re has a single value as its result (or one of its results), this

value may be left in the accumulator at exit, either as the result of the last

substitution statement executed before "exit" or by replacing "exit" by

if'E 'exit' 1

64

where "E" represents the expression whose value is the result. In this case,

the "call" with the actual parameter list must be used as an expression of prece

dence zero in the calling program.

hi a similar fashion, if a procedure requires a single value as data,

this may be placed in the accumulator before the procedure is called, either

as the result of the previous statement or with the operator "if". Thus, the

calling sequence for the polynomial evaluation procedure in Appendix D is

if1FE'call 1polyn 'ar g'R 1; 'FV' '.

Here, "FE" represents the floating-point expression whose value is

the argument of the polynomial, the coefficients of the polynomial are in region

"R", and the result is stored in location "FV". This entrance argument in the

accumulator is used by the operator "prev" (see Chapter XI, Section C) within

the procedure body.

K. Avoiding Recompilation

Any frequently used group of procedures may be compiled without a

main program and punched out in a form that makes recompilation unnecessary.

This can save valuable time. Details will be found in the Operator's Manual.

L. Sample Procedures

A study of the procedures described in Appendix D is recommended

at this point.

63

Formal parameters are usually local. They may be made global by the

use of the operator "local 11
• Compilation of this operator makes all sym.bols

preceding it global.

Thus, if we write

enter 'name 'a 1b 11

local 'c 1d 1 '

then "a" and "b" are global symbols and "c" and "d" are local symbols.

Note that "local" must start a new statement, and that symbols (if any)

following it are a continuation of the formal parameter list.

The use of global symbols in procedures is not recommended because

of the possibility of conflict between procedures. We have adopted the rule

that such symbols, if they are considered necessary, shall consist of five

characters commencing with a numeric digit and ending with the first four (or all)

characters of the name (separated by spaces if necessary to make five characters).

H. Subscripting Formal Parameters

Formal parameters, as used in the procedure body, must always be

subscripted as described in Chapter IX. Thus, if the formal parameter "a"

corresponds to a single variable or label (rather than a region) it must be referred

to as a 1 0 1
; the use of a 1 (unsubscripted) is incorrect. Combinations such as a 1i 12 1

are not allowed if "a" is a formal parameter.

J. A Procedure Call as an Operand

If a procedure has a single value as its result (or one of its results), this

value may be left in the accumulator at exit, either as the result of the last

substitution statement executed before "exit" or by replacing "exit" by

if 1E 1exit 11

64

where "E" represents the expression whose value is the result. In this case,

the "call" with the actual parameter list must be used as an expression of prece

dence zero in the calling program.

In a similar fashion, if a procedure requires a single value as data,

this may be placed in the accumulator before the procedure is called, either

as the result of the previous statement or with the operator "if". Thus, the

calling sequence for the polynomial evaluation procedure in Appendix D is

if 1FE 1call 1polyn 'arg'R'; 'FV' '.

Here, "FE" represents the floating-point expression whose value is

the argument of the polynomial, the coefficients of the polynomial are in region

"R", and the result is stored in location "FV". This entrance argument in the

accumulator is used by the operator "prev" (see Chapter XI, Section C) within

the procedure body.

K. Avoiding Recompilation

Any frequently used group of procedures may be compiled without a

main program and punched out in a form that makes recompilation unnecessary.

This can save valuable time. Details will be found in the Operator 1s Manual.

L. Sample Procedures

A study of the procedures described in Appendix D is recommended

at this point.

65

Left Right
Operator Type Precedence Operand Operand

Call For I 0 None L

arg For I 0 >:c V or L

local N

enter N

end N

exit L None None

:::c
left operand must begin with "call"

66

CHAPTER XI

ADDITIONAL TOPICS

This chapter includes a discussion of several topics· of interest primarily

to users already familiar with the LGP- 30.

A. Machine Language Coding

The ACT III source language includes most of the LGP-30 machine language

operation codes. The following table gives the proper forms.

b if (or ''bring'')

y stadd

r ret

d div

n nm ult

m mult

e ext rt

u use

t neg (or "trn ")

a add

s sub tr

Where two forms are given, they are interchangeable, but the first

compiles more rapidly. Some of these have already been discussed; the re

maining ones are all precedence zero, type X, and may have any suitable

expression as right operand.

The only missing codes are p, i, and z. The operator "daprt" codes

PxxOO, ZOOOl for each character, and the operator "rdhex" codes POOOO, !0000.

67

These are the most common uses of these codes.

B. Internal Data Format

Data may be coded for 11rdhex 11 by hand, in the proper format .. This

information may also be useful in console debugging.

B. 1. Integer Format

All integers are carried at a q of 29. The bit at 30 is zero.

B. 2. Floating Point Format

The fraction is carried in bits 0-25 at a q of 0, rounded to bit 25. The

exponent plus 32 is in 26-30 at a q of 30. Floating point zero is carried as a

machine zero.

B. 3. Alphameric Format ("aprt").

Words printed by 11aprt 11 are treated as five 6-bit characters. The sign

bit must be zero (positive).

C. Previous Result ("pr ev")

It is frequently possible to increase the run-time efficiency of a program ··.

by use of the operator 11prev 11
• This is a precedence 3 operator which has no

operands, and has the type of the result of the previous statement. To work

:::c:
properly, it must be the first operator compiled in the statement. If this condition

is satisfied, and the previous result w~s stored in a variable-subscripted location,

(or any subscripted dummy parameter location .in a procedure), "prev 11 is always

more efficient than calling the value back from the subscripted location. If the

:::c:
Note, however, that certain operators, such as 11cr 11

, "tab", 11neg 11
, "hold",

"stadd"~ do not change the accumulator.

68

previous result was stored in a nonsubscripted location, "prev" is more

efficient unless it is the right operand of a binary operator (one with both left

and right operands). Thus, the statement

a'- 1prev1
;

1b 11

is correct, but it is more efficient only if the previous result was stored in a

variable-subscripted location. However, the statement

a'- 'b'- 'prev': 1c 11

is incorrect, since ,·'prev" is not the first operator compiled.

"Prev" may also be useful in entering a procedure or in any statement

which may be reached by several different paths.

D. Direct Address Modification

Statement numbers may be used as operators in direct (machine

language) address modification techniques, provided that the numbered statement

so handled is not trace-compiled. A "go to 'sO" statement is never trace

compiled (this is the only reason for its existence as distinct from the "use"

operator). The only other situation in which such techniques are safe is within

a procedure body.

Initial addresses may be set up with the help of the following information.

If "a 11 is a dummy parameter of the procedure, the location referenced by 11a 11

(unsubscripted) contains the complement of the address of word zero of the

actual region (a'O').

Machine language coding may be inserted in the "name block" of a pro

cedure for purposes of storing test constants for address modification loops, or

as part of such loops.

E. Overflow and Breakpoint Provisions

Machine overflow cannot occur in the floating point subroutines of the

standard system. However, the integer operators 11i+ 11 and "i- 11 use machine

69

operations, and overflow may occur in these or in the operations 11add 11
,

11subtr 11
,

and "div". In the case of a standard logic board this will cause a stop. On the

overflow and breakpoint modified logic board, however, no stop will occur, but

the overflow indicator is set "on". This may be tested by the program. The

statement

oflow 1use 1s7 11

will transfer control to statement 7 if the overflow indicator is on, to the

following statement (in sequence) if it is off. In the standard system, the

overflow indicator is turned off only by pressing "clear counter" or execution

of the above statement. If the operating subroutines have been assembled using

a modified machine, the overllow indicator is turned off (if it is on) by the

floating point subroutines 11+ 11 and 11
-

11
• An error stop will occur if the indicator

is on at entry to the 11
/

11 subroutine.

The statement

bkp4'use 1s7 11

when run on an overflow logic machine, will transfer control to statement 7 if

breakpoint 4 is on, to the next statement if it is off. On a standard machine, this

statement does nothing (control to next statement) if breakpoint 4 is on, and

causes a stop if it is off. In the latter case, pressing "start" continues with

the next statement, while execution of the sequence "one operation, manual

input, start, one operation, normal, start' 1 will transfer to statement 7.

70

The operators "bkp8", "bkpl6", "bkp32" perform similar functions with

respect to the corresponding breakpoint switches.

The label "s 7" is used above as a sample label; variable subscripts

must not be used on these labels.

F. Efficiency of Object Program

It is not usually important to consider in detail the problem of efficiency;

however, in a program which is very tight for storage space or where running

time is a vital consideration these problems become important. Thus, for

example, of the two statements

s 1 r a r + 'b 'x' c r; 'd r'

s2 1 b'x'c'+'a';'d"

the second is more efficient. This is because the compiler does not recognize

the commutative property, and is set up for maximum efficiency when binary

operations are performed from left to right. Specifically,

statement 1 above will code two more instructions into the object program

(involving two extra nonoptimum storage accesses) as compared with statement 2.

In a similar way, the expression

a'/'['b'x'c']'

is not as efficient as the expression

a r / 'b ' / 'c ' . ~

As a general rule, greatest efficiency is obtained if, as far as possible,

the operators are arranged so that the natural order of execution proceeds from

left to right.

71

The statement

i 1i+ 1l1; 'i 'until 1m 1neg 1s1 11

is more efficient than the statement

for 1i 'step 11 'until 'n 'rpeat 1s 1 11

by three instructions, three nonoptimum storage accesses and one multiplication.

It is necessary that m = n+l in order that these two statements be equivalent.

Also, the increment must be positive; if it is negative, simply replace the "neg"

by "pos ".

Another efficiency rule is that any operator with a result (type I or F}

should either be the last operator executed in the statement or the lowest ranking

operator of an expression which is used as an operand. Thus, for example, the

statement

a';'b'use 1sl 11

although correct, will compile one unnecessary instruction involving a storage

access. This should, therefore, be separated into two statements for greatest

efficiency.

The statement

n 1reprt'x 11

compiles 10 instructions; it is, therefore, more efficient to use "daprt" if "n"

is five or less, since each character to be printed by "daprt" compiles two

instructions (a P and a Z}. "Aprt" is more efficient than either, if the incon

venience of coding is not considered; each use of "aprt" compiles three instruc

tions and can print up to five characters.

72

Each variable named in "index" or "dbind" statements causes the compila

tion of five instructions. Thus the re may be some advantage in multiple use of

subscripts to as great an extent as the program allows.

While the use of mnemonic names for variables is handy,. each such

name uses an extra data word. Thus, when overlapping does not occur, double

use of such locations may be helpful. If two distinct names are desired (say

"pay" and "rate"), they may be assigned a common data location using "dim" as

follows.

dim 1pay 10'rate 1 1 11

73

CHAPTER XII

THE STANDARD SYSTEM

The ACT III system is designed to be extremely flexible. It is possible

to change both its vocabulary and syntax in many ways. Methods of doing this are

described in Volwne 3, the "Technical Manual''. For purposes of standardization,

however, a "standard system" has been developed. The present volume describes

the vocabulary and syntax of this "standard system". It has proven adequate for

the great majority of applications. It contains all the features described in this

volume and in Volume 2, the "Operator's Manual".

If your program and/ or data storage requirements are too large, it is

possible to gain extra space by sacrificing some of the operators. If you wish to

add to, or modify, the vocabulary this may be done. For details, consult

Volume 3.

74

APPENDIX A

List of Abbreviations

F floating-point type

I integer type

L logic type (operator)

X operator without result

L label

LN label (must not have a variable

subscript; in a procedure, must

not be a dummy parameter)

s

v

E

A

c

switch

Variable

expression

alphanumeric type

character

APPENDIX B

Table of Characters and Controls

The following page contains a list of all the characters and controls on

the LGP-30 Flexowriter, together with the proper two-digit code for "aread"

and the proper code for "daprt".

75

Thus, for example, if the data word 105£0846 1 is read in by "aread", then

the effect of "aprt" using this word will be the printing of upper case, T, lower

case, o(that is, the word "To").

The codes 50 and 48 are used only for controlling the Flexowriter when

listing tape produced by the high-speed punch. They stop the listing without

printing anything. "50 11 is ignored if the conditional stop button is down.

76

Lower Upper "a.read" "daprt" Lower Up1)er "a.read" 11 de...prt"

case case codes codes case case codes codes

a A 72 a' 0) o4 O'

b B Of b' l L Oj l'

c c 6f c' 2 * 14 2'

d D 2f d' 3 It lj 3'

e E 4f e' 4 6 24 4'

f F 54 f' 5 cJ
(J 2j 5'

g G 5j g' 6 $ 34 6'
h H 62 h' 7 i! 3j 7'

i I 22 i' 8 L 44 8'
j J 64 j' 9 (4j 9'
k K 6j k' Space 06
1 L Oj l' Oa

m M 3f m' + = 16 +'

n H 32 n' la . '
0 0 46 o' I '? 26 /'
IJ p 1~2 p' 2a

q (~ 7!~ q' 36 ,
r H lf r'

s 5 7f s' Controls

t '.C 5f t' Lower case 08 lcl'

u u 52 u' Upper case 10 uc2'

v v 3a v' Color shift 18 color'

w w 7j w' Carr. Ret. 20 cr4'

x x 4a x' Backspace 28 bs5'

y y 12 y' Cond. stop (') 40 stop'

z z 02 z' Tabulate 30 tab6 1

Cond. stop** 50 stopf''

** Non-printing, HSP only Uncond. stop** 48 stop9'

APPENDIX C

Table of Operators

The following table lists all the operators included in the standard

system.

77

At this point, it is worth pointing out that this list provides a guide to the

words not available for use as variables. The following must be added to the

list of forbidden variable names: any 1- 5 numeric digits; period (.) or 11 s 11 or

"+" followed by 1-4 numeric digits.

Also note the special variable 11remdr" which is discussed in V-B and

should not be used for any other purpose.

Operator Precedence Type Left Right Reference
Operand Operand (Ch. -Sec.)

0 For I E v V-A;V-B

+ 1 F FE FE V-A

1 F FE FE V-A

x 2 F FE FE V-A

I 2 F FE FE V-A

abs 3 F FE V-A

rdflo 0 F IE FV VII-B

read 0 F FV VII-B

print 0 x IE FE VII-C

dprt 0 x IE FE VII-C

0- 3 F FE V-A

i+ 1 I IE IE V-B

i- 1 I IE IE V-B

ix 2 I IE IE V-B

i/ 2 I IE IE V-B

nx 2 I IE IE V-B

use 0 L L VI-D, IX-G,, XI-E

78

Operator Precedence Type Left Right Reference
Operand Operand (Ch. -Sec.)

step 0 I IV IE VI-G

for 0 x VI-G

until 0 x IE IE VI-G

rpeat 0 L L VI-G

iread 0 I IV VII-B

iprt 0 x IE IE VII-C

iabs 3 I IE V-B

punch 0 x FE VII-E

ipch 0 x IE VII-E

aread 0 A AV VII-D

aprt 0 x AV VII-D

if 0 x E VI-E, XI-A

neg 0 L L VI-E, XI-A

zero 0 L LN VI-E

pos 0 L L VI-E

prev 3 F or I XI-C

er 0 x VII-C

exit X-C

local X-G

end X-C

trace Vol. 2,

wait VI-H

hxpch 0 x E VII-E

bring 0 x E XI-A

add 0 x E XI-A

sub tr 0 x E XI-A

mult 0 x E XI-A

nm ult 0 x E XI-A

div 0 x E XI-A

ext rt 0 x E XI-A

hold 0 x V or L XI-A

clear 0 x V or L XI-A

79

Operator Precedence Type Left Right ··. Reference
Operand Operand (Ch. -Sec.)

stadd 0 x V or L XI-A

tab 0 x VII-C

flo 3 F IE IE V-C

unflo 3 I IE FE V-C

fix 3 I IE FE V-C

xlOp 3 F FE IE V-A

index IV IX-C

db ind IV IX-E

dim IX-A

daprt 0 x VII-D

rep rt 0 x IE c VII-D

stop 0 x VI-H

call 0 For I LN X-C

arg 0 For I E v X-C

ret 0 L s VI-F

trn 0 L L XI-A

rdxit 0 L LN VII-B

sqrt 3 F FE V-A

ln 3 F FE V-A

log 3 F FE V-A

exp 3 F FE V-A

pwr 3 F FE FE V-A

ipwr 3 I IE IE V-B

sin 3 F FE V-A

cos 3 F FE V-A

artan 3 F FE V-A

set 0 L s VI-F

to 0 L LN VI-F

go to'sO' x VI-F

bkp4 0 L XI-E

bkp8 0 L XI-E

bkpl6 0 L XI-E

80

Operator Precedence Type Left Right Reference
Operand Operand (Ch. -Sec.)

bkp32 0 L XI-E

oflow 0 L XI-E

randm 3 F V-A

rdhex 0 F, I, A v VII-E

enter· X-C

APPENDIX D

Sample Programs

This appendix contains sample programs designed to illustrate pro

gramming techniques .

81

Each complete program is documented to illustrate the use of the system.

Specifically, this documentation includes the following: source pro gram,

storage map (see Vol. 2), sample data, and results of sample run.

Three procedures are also included; two of these, POLYN and PLYDR,

are used in Sample Program No. 5. The third, MOVE, is included to demon

strate how the procedure provisions make it possible for sophisticated routines

to be utilized by the average user. This procedure makes extensive use of

LGP-30 hardware features and depends upon a detailed knowledge of the inner

workings of the compiler, but it may just as easily be used by persons lacking

this knowledge.

Notes on La be ling Data

The data tapes listed in this appendix illustrate the simplest technique

for including labels and comments on data tapes. We will summarize some rules

mentioned in the manual, and add a few more comments.

First, any remark ending with eight spaces may precede a positive

integer on the data tape; in this case, the 11 +11 sign must be omitted. If a remark

is placed before a negative integer, the integer must be written with a full seven

digits (using leading zeros as necessary).

A remark may precede a floating point datum; in this case, the mantissa

must be written with a full seven significant digits (the decimal point is under

stood to follow the sign).

82

Another useful technique is to include a "rdhex" in the program, storing

into an unused location. This will then read any string of characters and controls

ending with a stop code (or, if you do not want the stop ~ode printed, roll the

tape back one character after punching it and then overpunch with "upper case").

Sample program no. 1

Accompanying Chapter VI section G, to demonstrate a "for" statement.

This program reads an integer "n", then rer;.ds n pairs of floating point
numbers "a" and "b" and prints them together uith their sum,, difference,
product and quotient. A test prevents di vision by zero. A. blank word
for "n" causes a stop in slO.

HJB : Programmer'

rdxit' slO' '
sl' iread' n 1

'

11; Ii I I initializes 1001): remark 1

83

if 111' zero 1 sl • ' tests to see if 1001J should be executed at all: remark 1

s2' read'a''
read'b 1 '

er' 1305'print'a 1
'

1305 'print 'b''
1305'print 1a'+'b''
1305'print'a1

-
1b 1

'

1305 'print I a. 1 x 'b I I

if'b'zero's3'' to prevent division by zero:rernr.i.rk'
1305 'print' a'/ 'b' '

s)' for'i'step'l'until'n'rpeat's2''
cr'use'sl'' return to read ncu "n":rer:18.l"'k'

slO' stop''
use' sl'' '

f 0463

sOOl
s002
s003
sOlO

remdr
n
i
a
b

0307
0322
0442
0457

4336
3063
3062
3061
3060

here on blank 11n 11 :remark 1

84

Seraple prog:rarn no. 1

Data -- to be separated from output

2'
+l'+l'+l'+l'
+2t+l'+l'+l'

+3'
+l'+l'+:J'+O'
-5'+1'+2'-3'
+l'+l'-1'+1'

.1000() e 01
• 200(YJ e 01

.JDOOO e 01
-.500JO e 01

.10000 e 01

. lCYJOO

.10000

.00000

.20000
-.10000

e 01 .20000
e 01 .30000

e 00 .10000
e-03 -. !t-9998
e 01 .00000

e
e

e
e
e

01 .00000 e 00 .10000 e 01 .10000 e 01
01 .10000 e 01 .20000 e 01 .20000 e 01

01 .10000 e 01 .00000 e 00
01 -.50002 e 01 -.10000 e-02 -.25000 e 05
00 .20000 e 01 -.10000 e 01 -.10000 e 01

Sample progrn.m no. 2

AccompMying Chapter VIII section A.

Corapute mei:.n and standard deviation.

This progrc:. . .m reads a set of nurnbers "y", and computes snd prints their
me8.11 a.Y.Ld standard deviation.
1rne data tape cont~dns, f'irst, the run number, followed by the integer
11 decy11 Giving the decimal point position for the "y" values. Tnese are
then read in by decyx·rdflo*y7~*. A blank "y" signals the end of the set.
h. blank "rt11111 stops the open;.tion in slO.

HJB: Prograr:]acr'

sl' ro . .xit.' slO' '
iI'CS.d. 1 l'll.n f I

irc:-;..(l' clecy' '
rd:=i t' n 5' '
U r ; r Ly r ; 'Ly sq' ; 'n t r

s,J' decy'rdflo 'y' 1

y' + •Zyt .~'Ly' I

y'x'y'+'2::ysq'; 'Lysq'
n'i+'l'; 'n''
use' s)' 1

initializing counter 8.nd swJs: rcrnark'

s5' D'flo'n':. 'en'' here at end of set:remarl\:'
ili::.p:rt 1 cr4' crl1. 'uc2 1!{ 1 lcl 'u 'n r 'n' o'.' '
0 1 iprt'run' I

cr'0 1 iprt'n'd~prt' 'c'a's'e's''
i:f'n 1 zero'sl 1

' to prevent division by zero:remark'
"\'• I

Ly r I ' en r ; r y1x...r ' '
sqrt' [1Lysq'/ 1 en' - 'ybar 'x' ybP .. .r'] '; 'sigma' '
d.s2n .. t' er~-' ue2' 1lcl 1 er!~' y 1 1 uc2 '= 'lcl' '
160~:> '1n·int 'ybar' '
ds.prtrcrLi-'s'i'g'm'r.i.' 'uc2'='lcl''
loUb 'print' sig:"Js.' '
user sl''

slO r stop ry_se' sl' ' r

85

86

Sample program no. 2 - - continued

f 0634

sOOl 0302
s003 0328
s005 04o1
sOlO 0630

remdr 4336
run 3063

decy 3062
Sy 3061

8ysq 3060
n 3059
y ~5058

en 3057
ybai .. 3056

sigma 3055

This trial was run with both input and output through the Flexowriter.

The result is given below.

Srunple program no. 2

Test cl-'3.ta

Hun no. l'
+2 1 +100r+~200 1 +300 1 +155 1 +90'+48 1 +401' +253 '+322 '+298' 1

Hun no. 1
10 c2,,.ses

y = .21669984 e 01
sigma = .31051631 e 01

Ru...11 no. 2'
+Q'+5731'+29(35t+3555t+4e22'+2500'+5052'+3333' I

Hun no. 2
7 ca.ses

Y = .39968550 e o4
sigma= .11149549 e o4.

From data tape

Output

From data tape

Output

From data tape

Sar.aple program no.3

Accompanying Chapter VIII section B.

This program demonstrates the use of a "ret-use" block. The block
beginning at s5 and ending at s6 computes and prints the sine and cosine of
"y" • The main program. reads two variables "a" and "b" and uses the block
successively to treat a, b, a+b, and a-bas "y".

HJB : Prograrn.rnerr

rdxit r s2 1 '

sl' read' a 1
'

read'b''
daprt'cr4'cr4rar 'uc2'='lcl''
1608 'print' a' '
daprt';' 'b' 'uc2 '= 'lcl' '
1608 'print 'b' '
daprt ' cr4' cr4' 'y' ' ' r ' s ' i r n' r yr r r r r r c 'o r s ' 'y' cr4 r cr4' 'a r ' '

a';'yr•
ret' s6 ruse' s5 r '
daprt'cr4• 'b' ''
b';ry''
ret 1 s6 1 users5 1 '

d.aprt' crlt' a'+' b' ' ,
a'+'b';'yr•
ret ' s6 'use ' s 5 ' '
daprt ' cr4' a' - 'b ' '
a'-'b';'y''
ret 1 s6 1use's5''
use' sl''

s2' stop'use'sl' r

s5' 906'dprt'sin'y''
l006'd.prt'cos'y''

s6' go to' sO' ' '

f 0629

sOOl 0307
s002 0602
s005 0606
soo6 0628

remdr 4336
a 3063
b 3062
y 3061

so 0632

here on blank word:remark'

87

88

Test data -- to be separated froTI output

+1000000 1 +1'+1'+1'
+2'+1 1 +)'+1'
t

a = • 9999999!1- e 00; b

y sin y cos y

a .841471 .• 5!t-0302
b .841471 .54o302

a+b .909297 -.Lt-16147
a-b .000000 1.000000

a = .19999999 e 01; b

y sin y cos y

a .909297 -.416147
b .141120 -.989992

a+b -.958925 .285661
a-b -.841471 .540302

-~ .99999994 e 00

= .30000001 e 01

Sample program no. 4

To illustrate the numeric output format.

The program prints floating point numbers under various format controls
to illustrate "print", "dprt", and "iprt-unflo". Each output field is
delimited at left and right by an asterisk(*) • note the following points.
In "print", provision is made for rounding .999999 up to 1.00 by increasing
the exponent. In "dprt", if a number is too large to fit the field, the
number of fractional digits is decreased (i.e. the decimal point is shifted
to the right within a constant field width). In "iprt", however, the specified
nurnber of fractional digits is always printed; the field is extended as
required. Also note that, in the case of numbers less than l.O, 11 iprt11 prints
a zero before the decimal point, whereas "dprt" does not. The accuracy
of internal representation of floating-point numbers also is demonstrated
by comparison of the first output column with the data.

Tne program reads floating-point numbers as input and prints them in the
indicated forms.

HJB: Programr:ier'

rdxit' s5''

89

Sl' daprt'cr4 1 cr4'tab6f f t f llt6tot8tStOp 1p 1r 1 i 1n 1t 1 StOp 1 I I I 1 l 10 1Q 12 1 St0p 1 I

daprt'p'r'i'n't'stop' ' ' ' '7'0'3'stop'd'p'r't'stop' ' ' 1 '7'0'3'stop''
daprt 1 i 'p 'r' t' stop '· 3 ' stop 'u 'n' f' l' o 'cr4 1 cr4' '

s2 1 read' a' '
daprt'tab6'uc2'*'lcl''
1608'print'a'daprt'uc2'*' '*'lcl''
1002'print'a'daprt'uc2'*' '*'lcl''
703'dprt'a'daprt'uc2'*' '*'lcl''
703'iprt'3'unflo'a'daprt'uc2'*'lcl'cr4•'
use' s2''

s5' stop'use'sl'''

f 0651

sOOl 0307
s002 0521
s005 0647

remdr 4336
a 3063

90

Sample program no. 4--continued

The first line below is the data tape, which, because of the design of the program,
must not contain comments or carriage returns.

+l'+l'-75'-1'+523'+2 1 +523'+4 1 I

The run shown below was made with both input and output on the Flexowriter.
The first column contains the input data, the remainder is the computer output.

+1'+1 1

-75'-l'
+523'+2'
+523'+4•

1608 1print' l002'print' 703'dprt' 703'iprt'3'unflo

* .99999994 e 00* * .10 e 01* * 1.000* * 1.000*
* -.75000000 e-01* * -.75 e-01* * -.075* * -0.075*

.52300000 e 02* * .52 e 02* * 52.300* * 52.300*

.52300000 e 04* * .52 e 04* * 5230.0* * 5230.000*
~

*

Sample program no. 5

To illustrate the use of procedures.

This progrem makes use of two procedures which are listed on succeeding
pages. These are POLYN, which evaluates a polynomial, and PLYDR, which
differentiates a polynomial.
This program reads first the coefficients of the polynomial into region
"p". This region is 100 words long, and provision is made to prevent
an attempt to use higher degree polynomials. The procedure PLYDR is
used to produce the coefficients of the derivative polynomial in region
"d", and the procedure POLYN is then used twice for each value of the
argument read in as data, once with "p0 and once with "d".

Data: Coefficients of the polynomial (Fl.pt.), starting with the constant
term and ended by a blank word; then values of the argument (Fl.pt • .), ended
by a blank word. The la.st case is followed by a second blank word.

Output: for each argument value, the value, the polynomial, and the
derivative are printed on a single line.

HJ13: Programmer'

dim' pt 10_1' d' 101' '
index' i''

sl' rdxit's3''
or;tifl

s2 r read' p' i '1' ' reads coefficients, constant term first: remark'
rdxit' s5r'
for'i'step'l'until'lOO'rpeat's2''

s3' stop' user sl' ' here if too many coefficients, or on last case: remark'
s5' i'; 'p' ' degree of polynomial + 1: remark'

rdxit' sl''
read t ex' '
cr'if'ex'call'plydr'arg'p'arg'd';'deriv'' first time only:remark'

s6 1 if'ex'call'polyn'a.rg'p';'pol''
cr'l608'print'ex''
1608 'print 'pol r 1

1608'print'deriv''
read'ex''
if'ex'call'polyn'arg'd';'deriv''
use' s6' ''

91

92

Sample program no. 5 - - continued

f 0626

sOOl 0450
s002 0459
soo3 0517
s005 0521
s006 0545

remdr 4336
polyn 0302
plydr 0343

p 3059
d 2922
i 0449

ex 2749
deriv 2748

pol 2747

Sample program no. 5

Test data. -- to be separated from output

+1000000'+1'-1'+1'+5'+o'+8'-2''
+l'+l'+o'+o'+5'+3'-l'+o'+l'-10' ,,

Program 2!~. O

POLY!~ procedure'

enter 'polyn' a' r

index'i''

prev'; 'ex' r

a'O';'i''
if' a' i' '

HJB

sl r prev'; 'y' r

i'i-'l';'i'until'l'neg's2' r
if'ex'x'y'+'a'i'use'sl' r

s2' if'y' exit' '

end' 'wait'

Polynomial evaluation procedure

(edited 5 /26 /61)

Calling sequence: if*li'E*call*POLYN*arg*Vl*:*V2**

This procedure evaluates the nth degree polynomial whose coefficients
are in "Vl" as a standard row vector (n+l in Vl*O*(integer), coefficient of the
ith power of x in VJ:X·i+l~, i = O •••• n(floating point)) •

If the argument (value of FE) is in the accumulator as the result of
a previous operation, the "if-X·FE*11 may be omitted. The floating point answer is
stored in V2.

93

94

Program 25.l

PLYDR procedure 9/13/61

Uses POLYN 1

enter 'plydr 'p' d' '
index' i ' j ' 1

prev'; 'y''
p'O';'n"
prev'i-'l'; 'd'O''
if 'prev'neg' s2''
l';'i''

sl f i Ii+' 1 f ; r j I I

O'flo'i'x'p'j'; 'd'i''
i'i+'l';'i'until'n'neg'sl''
if'y'call'polyn'arg'd'O''
exit''

s2' if' 0' exit' '

end' 'wait'

Evaluate the first derivative of a polynomial.

Uses POLYN procedure.

Calling sequence: if'*FE*call*PLYDR*arg*Rl*arg*R2*;*FV**

Here (FE) is the value of the argwnent of the polynomial, the region Rl
contains the polynomial in standard form (degree+l as integer in Rl*O*,
coefficient of the ith power of x in Rl*i+l*). The derivative polynomial
is placed in R2 and the value of this for argument (FE) is placed in FV.
R2 and Rl may be the same region; in this case the original polynomial is
lost.

95

MOVE procedure

Calling sequence: bring*n*call~·move*ro"'g*a-K·arg*b**

Moves n uords beginning at a*O* to locations beginning at b-X-0*.
If n is in the accumulator as the result of the previous statement, the "bring*n-X- 11

may be omitted. If the regions a and b overlap, the moving is arranged so that
no information is written over before it is moved.

Running tline: about 600 + 56n milliseconds.

Storage requirement: 52 sectors .

.Symbols used (t;lobul): MOVE, lmove, 2rnove.

Al terns.ti ve Call: bring*n*ret*move*use-¥.·move-x-1 *7~

~L1his call r:lF. .. y be used if the previous use of the procedure
involved the sauc blocks. It mcy also be used when this procedure is called
f'r01:1 another procedure, in which case the indirect address references from
the calling procedure must be placed in "lmove" and "2move" before calling "move".
rl1hus, 8.S an eX8L1plc, i-Tithin the procedure headed by 0 ent.cr*proc*lproc-X·2proc*"
the block at "lprocu uay be moved to n2proc" by the coding

11;roc7~: * lHove**
2proc7:-: ~*2r.lovc·>Hf-
bring*n*ret*move*use*move*l*·*.

':Fh.e contents of "lrnove" and "2rnove" are not altered by the procedure.

Alternative running tine: about 150 + 56n milliseconds. '

stop r stop' stop 'stop' stop' stop 'use' sG' '
cnter'move'lmove'2move''
local''
s8' clear' move' 6' subtr' 1024' nr11ul t 'move' 6 'use' s3 'stop' '
s6 1 prev'i+'move'3'; 'move'2' 1

sl' bring'['sl']'use's2r'
s2' clear'[1move 1 4']'users5' 1

s3' prev'; 'move'2''
lmove'i-'2rnove';'move'5' 1

prev'; 'mover 7 r '
neg' s4 'bring' 4095 'clear 'move' 3 1

'

s7' subtr'lmove''
s5' add 'move '2' stadd' sl' add 'move 1 7 'stadd' s2 r subtr 'move' 5 'neg' s6 'exit' '
s4' bring'4097'cleaJ.~'~ove'3''

prev'i-'move'6'i+'l''
use' s7' 1

end' 'wait'

