THE LOGICAL DESIGN OF A SIMPLE GENERAL PURPOSE COMPUTER

BY
STANLEY P. FRANKEL

The Logical Design of a Simple General Purpose Computer*

STANLEY P. FRANKEL \dagger

Abstract

Summary-The logical design described here is used in MINAC, partially constructed at the California Institute of Technology, and LGP-30, manufactured by Librascope Inc. These serial binary digital computers make use of magnetic drum bulk storage and use three circulating registers and fifteen flip-flops. The procedures used in performing the sixteen elementary operations are described. These descriptions indicate the circumstances in which each flip-flop or circulating register input is activated. The Boolean algebraic equations summarizing these circumstances constitute the logical design.

Introduction

THE LOGICAL design described here was largely composed in the course of work of the Digital Computing Group of the California Institute of Technology. A breadboard model of a computer based on this logical design, called MINAC, was completed at C.I.T. in 1954 and served to check much of the design. A production version of this machine, called the LGP-30, has been completed by Librascope Inc. of Glendale, Calif. Although MINAC and LGP-30 differ in a few details of logical design the present description is substantially correct for either.

The LGP-30 has been discussed in two previous publications. One ${ }^{1}$ describes its elementary operations and the ways in which these are used to perform complex calculations. The other ${ }^{2}$ discussed the useful range of applications of magnetic drum computers in general, with particular reference to LGP-30. It is the purpose of the present paper to present in almost complete detail the logical design structure held in common by MINAC and LGP-30. Their constructional techniques and methods of arithmetic manipulation are described only to the extent necessary to this purpose.

Constructional Techniques

The primary memory device of MINAC is a magnetic drum. Information is held on the drum in three forms. The bulk memory is held in 64 tracks, each served by one "head" which records data in it and can subsequently read the recorded data. The information recorded in each track consists of 64 words, each of 32 bits (binary digits). A second type of memory of shorter access time is provided by three circulating registers, each consisting

[^0]of a recording head and one or more reading heads following it (in the sense of drum rotation) in the same track. The time during which the 32 bits of a word are presented by a head of the bulk memory is called a word period. The time elapsing between the recording of a digit in a circulating register and its presentation by a reading head is about 32 digit periods so as to permit recirculation of information in one word period. The third form of information storage on the drum is represented by the timing tracks. Each of these is served by a single reading head which reads permanently recorded information determined only by the angular position of the drum. The digits presented by three timing tracks are combined to form various timing signals, denoted t, u, v, x, y, z. These are shown in Fig. 1.

Fig. 1-Signals derived from the timing tracks.

Information which must be presented continuously over many digit periods is held in toggles (flip-flop circuits). Each of these can be set to one or the other of two stable states, designated 1 and 0 , at the end of each digit period. The logical design consists primarily of the specification of the circumstances under which each toggle is set to 1 or to 0 . If neither input is activated the toggle retains its prior setting during the next digit period. The logical design also specifies the digit recorded in each circulating register in each digit period and whether a digit is to be recorded in the bulk memory and, if so, what digit and in which track.

The input and output of data are mediated by a Flexowriter, a punched paper tape controlled typewriter. In the input process each character read from the tape sets some of the MINAC toggles. In output the state of the toggles controls the firing of a set of thyratrons which effect the closure of the relays by which the Flexowriter is operated.

The logical design is realized by a logical network， composed primarily of resistors and crystal diodes．Its inputs are the settings of the toggles expressing the present internal state of the computer proper（as dis－ tinct from the memory held on the drum）as well as the digits being presented by the timing tracks，circulat－ ing registers，and bulk memory of the drum．Its outputs go to the recording heads of the circulating registers，to the selected head of the bulk memory（if a recording operation is in progress），to the inputs which set the toggles for the next digit period，and to the Flexowriter thyratrons．Each input or output is，for each digit peri－ od，a binary（Boolean）variable．Each input variable is presented in duplicate，e．g．，by wires from the two sides of the toggle．This facilitates the expression of the logical design primarily by the monotonic Boolean functions $A n d$ and（nonexclusive）$O r$ that are easily realized by diode networks．

Functional Design

The action of MINAC consists of a series of elemen－ tary operations，each performed upon one word of its memory and determined by one instruction word．An instruction word holds an order indicating the operation to be performed and one address identifying the word of the memory involved in the operation．Instructions held in successively numbered memory locations are normally obeyed in succession．Exceptions to this rule occur for＂control transfer＂instructions which specify the address at which the next instruction is to be sought． One circulating register，the counter，primarily recircu－ lates the address in which the next instruction is to be found．As an instruction is read from the memory it is recorded in the instruction register where it is retained to direct the execution of that instruction．

The third circulating register，the accumulator，holds a number－usually the result of the last arithmetic operation．In an arithmetic operation the number held in the accumulator is combined with a number drawn from the bulk memory and the result retained in the accumulator．The accumulator normally recirculates with a period of one word period，like the counter and instruction register．During the performance of a multi－ plication or division the capacity of the accumulator is increased to two word periods by the use of a second reading head．

Sixteen elementary operations are provided，as shown in Table I．The arithmetic operations act upon signed （algebraic）numbers，represented in binary expansion as described below．

Requirements for Continuous Memory

Several phases of the operation of the computer，each terminated at the end of a word period，are to be dis－ tinguished：in phase 1 （abbreviated $\phi 1$ ）the instruction next to be obeyed is sought．This requires selecting the appropriate track and waiting for the desired word in that track to appear．In $\phi 2$ which occupies just one

TABLE I
Instruction Order List Showing Code for Each Instruction

	Code	$\begin{aligned} & \text { Instruc- } \\ & \text { tion } \end{aligned}$	Effect
	0001	B m＊	
	1110	A m	Add contents of m to the contents of the ac－ cumulator，and retain the result in the
	1111	Sm	Subtract the contents of m from the con－ tents of the accumulator，and retain the result in the accumulator
	0111	M m	Multiply the number in the accumulator by the number in memory location m ，termi－ nating the result at 30 binary places．
	0110	N m	Multiply the number in the accumulator by the number in m ，retaining the least signifi－ cant half of the product．
	0101	D m	Divide the number in the accumulator by the number in memory location m ，retain－ ing the rounded quotient in the accumu－ lator．
	1001	Em	Extract，or logical product order，i．e．，clear the contents of the accumulator to zero in those bit positions occupied by zeros in m ．
			Transfer control to m unconditionally，i．e．， get the next instruction from m ．
	1011	T m	Test，or conditional transfer．Transfer control to m only if the number in the accumulator is negative．
$\begin{aligned} & \text { प⿳亠丷⿹弔㇒} \\ & \text { O } \end{aligned}$	1100	H m	Hold．Store contents of the accumulator in m ，retaining the number in the accumula－ tor
	1101	Cm	Clear．Store contents of the accumulator in m and clear the accumulator．
	0010	Y m	Store only the address part of the word in the accumulator in memory location m ， leaving the rest of the word undisturbed in memory．
	0011	R m	Return address．Add＂one＂to the address held in the counter register（C）and record in the address portion of the instruction in memory location m ．The counter register instruction to be executed．
	10100	I	Input．Fill the accumulator from the Flexo－ writer
	100	$\mathrm{P} \dagger$	Print a Flexowriter symbol．The symbol is denoted by the track number part of the address（x）．
	0000	$\mathrm{Z} \dagger$	Stop．Contingent on five switch（ $T_{1} \cdots T_{5}$ ） settings on the control panel．

＊The address part of the instruction is denoted by m when it refers to a memory location，by \dagger when only the track number is significant．For example，m might be 4732，meaning Sector 32 of track 47.
word period the instruction word is set into the in－ struction register．In $\phi 3$ the operand word（i．e．，the word in the bulk memory designated by the address then held in the instruction register）is sought by a process similar to that of $\phi 1$ ．In $\phi 4$ ，which lasts for one word period，the operation is executed，except for the pro－ longed operations，multiplication and division．For these the execution extends into phases 5，6，7，and 8. These extend the time for execution somewhat beyond the time for one drum revolution．

Except in prolonged operations the phases are dis－ tinguished by two toggles，named F and G ．Phases 5 to 8 are distinguished from phases 1 to 4 by the use of a third toggle，H ．

While an instruction or an operand word is being read (or written) the appropriate track of the bulk memory must be selected. Six toggles, named P_{1}, P_{2}, \cdots, P_{6}, perform this selection. They are set serially during phases 1 and 3, then remain unchanged during the word period in which the track selection must be exercised.
In a similar fashion, the order must be continuously in evidence during phases 4 to 8 . Since $16=2^{4}$ orders are to be distinguished, four toggles suffice to mark them. They are denoted $Q_{1}, Q_{2}, Q_{3}, Q_{4}$.
Two more toggles are used, K and L. The primary duty of L is to hold carry digits in addition and subtraction processes. (Since these operations are performed serially, only one carry bit need be "remembered" in each digit period.) The search operations of phases 1 and 3 are performed with the help of toggle K, as described below.
During the execution of a multiplication or division (after $\phi 4$ in which the multiplicand or divisor is read into the instruction register) there are additional requirements for continuous memory. These requirements are met by the P toggles, which after $\phi 4$ are not needed in their track selecting capacity. The functions of the toggles are summarized in Table II.

TABLE II
Toggle Functions

Name	Primary Function	Other Functions
$\begin{aligned} & F \\ & G \\ & H \end{aligned}$	Phase discrimination	K used for augmenting control address
K	Sector search	
L	Carry digit	
Q_{1} Q_{2} Q_{3} Q_{4}	Hold order (Cf. Table I)	$Q_{2}=1$ in $\phi 1$ for blocked state
$\begin{aligned} & P_{1} \\ & P_{2} \\ & P_{3} \\ & P_{4} \end{aligned}$	Track selection	$\begin{aligned} & P_{1} \text { marks odd word in periods } \phi 5 \\ & \text { to } \phi 8 \\ & P_{1} \text { to } P_{4} \text { hold character in input } \end{aligned}$
$\begin{aligned} & P_{5} \\ & P_{6} \end{aligned}$		P_{5} holds sign of multiplier or divisor P_{6} holds digit of multiplier or sign of remainder

The Development of the Logical Design

Except for the occurrence of prolonged operations, H stays in its 0 state, as indicated by the symbol H. The first four phases are distinguished by the four states of F and G, as follows:

Phase	F State	G State	Symbol	Duration (word periods)
$\phi 1$	0	0	$F G H$	1 or more
$\phi 2$	0	1	$F G H$	1
$\phi 3$	1	0	$F G H$	1 or more
$\phi 4$	1	1	$F G H$	1

The "product" of two or more symbols indicates the simultaneous occurrence of the indicated settings. Thus the symbol for $\phi 2, F G H$, has the value 1 only if $F=0$ (hence $F=1$) and $G=1$ and $H=0$.

The last digit period of a word period is marked by a signal denoted by t, derived from the timing tracks. Since each phase change occurs at the end of a word period, the symbol t is included as a factor in each of the F and G setting equations. The phases 1 to 4 occur cyclically in the order listed. Toggle F has the state 0 during phases 1 and 2 . It is set to the 1 state at the end of $\phi 2$. It holds the state 1 during $\phi 3$ and $\phi 4$, then is set to 0 as $\phi 1$ is again entered. Since $\phi 2$ and $\phi 4$ consist of only one word period each the settings of F are easily described. F is set to 1 at time t of any $\phi 2$ period, to 0 at t of a $\phi 4$ word period. The circumstances calling for setting it to 1 are denoted F^{\prime}, those calling for setting it to 0 are denoted F^{\prime}. (The prime here indicates the new condition of the toggle. It should not be mistaken for negation, which is here indicated by boldface.) Thus we have the two following partial equations (the + following an expression indicates that other equations show contributions to that input):

$$
\begin{align*}
& F^{\prime}=F G H t+ \tag{1}\\
& F^{\prime}=F G H t+ \tag{2}
\end{align*}
$$

G is set to 0 on either of these two occasions on which F is changed. This may be written as

$$
G^{\prime}=F G H t+F G H t+.
$$

The symbol + may be read as or. If either or both terms joined by + have the value 1 so also does the sum. By an elementary operation of logical algebra this G^{\prime} expression may be reduced to

$$
\begin{equation*}
G^{\prime}=G H t+. \tag{3}
\end{equation*}
$$

(In the following no explanation of algebraic manipulations will be given.)
G is set to 1 at the ends of phases 1 and 3 . The system provided for determining the durations of these phases is described below. It makes use of toggle K which will be found in the state 1 at the time t only for the last word period of either of these phases. The end of a phase 1 or 3 may thus be recognized by the occurrence of GHKt. Accordingly,

$$
\begin{equation*}
G^{\prime}=G H K t+. \tag{4.1}
\end{equation*}
$$

(The presence of a decimal fraction in the expression number indicates that a revision of this term is introduced below.)

The Instruction Search

In $\phi 1$ a search is conducted for the instruction whose address is being recirculated in the counter. The digits presented by the counter are denoted C. The part of the address (six bits) which determines the track selection is set up on the P toggles by a process described below. The remaining six bits of the address determine
which word of the selected track is wanted, hence the time at which $\phi 1$ should end. The six digit periods in which this sector number is presented by C are marked by a signal u derived from the timing tracks (cf. Fig. 1). Another timing track signal v presents a particular sequence of six digits for each of the 64 word periods of a drum revolution. In each word period it "announces" the sector number of the word period following immediately thereafter. To determine whether a word period of $\phi 1$ is to be the last word period of that phase the digits announced by v are compared with the digits presented by C during the six digit periods marked u. Agreement in all six digits calls for termination of $\phi 1$ at the end of that word period. To detect this agreement toggle K is set to 1 at the end of each word period;

$$
\begin{equation*}
K^{\prime}=t ; \tag{5}
\end{equation*}
$$

thereafter disagreement sets it back to 0 .

$$
\begin{equation*}
K^{\prime}=F G H u(v C+v \mathbf{C})+ \tag{6.1}
\end{equation*}
$$

Thus finding K in the state 1 at time t indicates that agreement has been found, as was assumed in the discussion leading to (4.1). [It is to be noted that the input described by (5) brings K to the 1 state only after the digit period in which it is examined in (4.1).]

The Operand Search

In $\phi 3$ a similar process is carried out, differing only in that the address of the word sought is carried in the instruction register, which presents the digits R, rather than in the counter. The two search processes are thus described by (5) and (6.2).

$$
\begin{equation*}
K^{\prime}=G H u(v r+v r)+, \tag{6.2}
\end{equation*}
$$

where r is C during $\phi 1$ and R in $\phi 3$.

$$
\begin{equation*}
r \equiv F C+F R . \tag{7.1}
\end{equation*}
$$

Track Selection

Like the time of entry to phases 2 and 4, the track to be selected is indicated by the address circulating in C during $\phi 1$, or R during $\phi 4$. In either case it is indicated by the digits r defined above. The six digit periods of each word period during which the track number part of an address is presented by C or R are marked by the signal z. During z in phases 1 and 3 the track number r is set into the toggles $P_{1}, P_{2}, \cdots, P_{6}$. For this purpose these six toggles are connected as a shifting register; the digits r are inserted into P_{1} and passed down the chain to P_{2}, etc. The digit periods in which this setting takes place are denoted p;

$$
\begin{equation*}
p \equiv G H z+ \tag{8.1}
\end{equation*}
$$

During this time P_{1} is set to the digit r,

$$
\begin{equation*}
P_{1}^{\prime}=p r+; \quad P_{1}^{\prime}=p r+ \tag{9.1}
\end{equation*}
$$

P_{2} is set to the $\operatorname{digit} P_{1}$, etc.

$$
\begin{equation*}
P_{2}^{\prime}=p P_{1}+; \quad P_{2}^{\prime}=p P_{1}+, \text { etc. } \tag{10}
\end{equation*}
$$

At the end of z, P_{6} holds the first (least significant) digit of the track number, P_{5} the second, etc. These settings are retained for the remainder of that word period and, if that word period terminates phase 1 or 3 , into the succeeding phase 2 or 4.

Order Setting

In $\phi 2$ the instruction is read from the main memory. The digits presented by the main memory are denoted V. The instruction is set into the register R during $\phi 2$ and recirculated there during the subsequent $\phi 3$. This is represented by the equation,

$$
\begin{equation*}
R^{\prime \prime}=F G H V+F G H R+ \tag{11.1}
\end{equation*}
$$

Here $R^{\prime \prime}$ denotes a digit being recorded in the instruction register. Similarly digits set into the accumulator and counter are denoted $A^{\prime \prime}$ and $C^{\prime \prime}$. (They are not toggle inputs like the singly primed symbols.) The instruction also includes a four digit order which is set into the Q toggles in $\phi 3$ in the same way as the track number is set into the P toggles. The four digit periods in which the order appears are marked by the signal x. Then

$$
\begin{array}{ll}
Q_{1}^{\prime}=F G H x R ; & Q_{1}^{\prime}=F G H x R ; \\
Q_{2}^{\prime}=F G H x Q_{1}+; \quad Q_{2}^{\prime}=F G H x Q_{1}+; \text { etc. } \tag{13}
\end{array}
$$

With a few exceptions, described below, these settings of the Q toggles are held without change until the next occurrence of a $\phi 3$.

Accumulator Input

The execution of orders in $\phi 4$ is chiefly concerned with the behavior of the accumulator. It recirculates its content without change in the first three phases; and also in $\phi 4$ on orders U, T, H, Y, R, P, and Z. As may be verified by use of Table I, these orders are collectively described by:

$$
Q_{1} G_{3} Q_{4}+Q_{2}\left(G_{3}+Q_{4}\right) \text { occurs for } U, T, H, Y, R, P, Z .
$$

Thus the normal recirculation of A is described by,

$$
\begin{equation*}
A^{\prime \prime}=A H\left[F+G+Q_{1} G_{3} Q_{4}+Q_{2}\left(Q_{3}+Q_{4}\right)\right]+. \tag{14}
\end{equation*}
$$

For the remaining orders the input to A in $\phi 4$ is as follows: on order B, A is set to V; on order E to the product $A V$. Together these may be described as $Q_{2} Q_{3} Q_{4}\left(Q_{1}+A\right) V$. On orders A and S, described by $Q_{1} Q_{2} Q_{3}$, the output of the add-subtract mechanism, here abbreviated b, is set into the accumulator. On orders M, N, and D the accumulator content is recirculated unchanged in $\phi 4$ except, for reasons described below, for the omission of the sign digit (at time t). This input to the accumulator is described by $Q_{1} Q_{2}\left(Q_{3}+Q_{4}\right) A t$. In the Input process four digits have (prior to $\phi 4$) been read from the Flexowriter tape and set into the toggles, $P_{1}, P_{2}, P_{3}, P_{4}$. In $\phi 4$ the accumulator content is recirculated through these four toggles; P_{1} following A, P_{2} following P_{1}, etc., and $A^{\prime \prime}$ following P_{4}. This contributes a term $Q_{1} Q_{2} Q_{3} Q_{4} P_{4}$ to $A^{\prime \prime}$. To induce the motion of
digits down the chain of P toggles, expression (8.1) is replaced by

$$
\begin{align*}
p \equiv & F G H z+F G H z\left(Q_{1}+Q_{2}+Q_{3}+Q_{4}\right) \\
& +F G H Q_{1} Q_{2} Q_{3} Q_{4} . \tag{8}
\end{align*}
$$

For order I the last term in p produces the transfer of digits in $\phi 4$, while the parenthetical factor in the second term suppresses the usual transfer in $\phi 3$. Eq. (9.1) expressing the setting of P_{1} must also be modified as

$$
\begin{equation*}
P_{1}^{\prime}=p G r+p G A+; \quad P_{1}^{\prime}=p G r+p G A+ \tag{9}
\end{equation*}
$$

Altogether the inputs to A in phases 1 to 4 are described by (14) and by

$$
\begin{align*}
A^{\prime \prime}=A H Q_{1} Q_{2}\left(Q_{3}+\right. & \left.Q_{4}\right) t+F G H\left[Q_{2} Q_{3} Q_{4}\left(Q_{1}+A\right) V\right. \\
& \left.+Q_{1} Q_{2} Q_{3} b+Q_{1} Q_{2} Q_{3} Q_{4} P_{4}\right]+ \tag{15}
\end{align*}
$$

Instruction Register Input
After $\phi 3$ it is no longer necessary for the instruction register to retain the instruction. For the prolonged orders it is used to store the multiplicand or divisor (read from the bulk memory in $\phi 4$). Thus we change the $R^{\prime \prime}$ equation as follows:

$$
\begin{align*}
R^{\prime \prime} & =F G H V+F G H V+(G+H) R \\
& =G H V+(G+H) R . \tag{11}
\end{align*}
$$

Counter Input

In the part of each word period marked $w \equiv u+z$ the counter holds the address of the instruction next to be obeyed. This information is read, and acted upon, in $\phi 1$. To prepare for the next use of this control address it is augmented by unity in $\phi 2$. This operation is performed with the help of toggle K, which, as described above, is set to 1 at the end of each word period. In $\phi 2, K$ is set to zero whenever the digit 0 occurs in the control address; that is, on the occurrence of $w C$,

$$
\begin{equation*}
K^{\prime}=F G H w C+ \tag{16.1}
\end{equation*}
$$

while the counter content is complemented whenever $K=1$.

$$
\begin{equation*}
C^{\prime \prime}=F G H w(K C+K C)+ \tag{17}
\end{equation*}
$$

The change in control address produced by the U order is effected by transferring the content of the instruction register to the control register in $\phi 4$ on this order.

$$
\begin{equation*}
C^{\prime \prime}=F G H Q_{1} Q_{2} Q_{3} Q_{4} R+F G H\left(Q_{1}+Q_{2}+Q_{3}+Q_{4}\right) C+ \tag{18}
\end{equation*}
$$

Test Execution

The order T is to have the same effect as U provided the sign (t) digit position of the accumulator is occupied by a 1 or if the corresponding digit of the instruction is a 1 and the external transfer switch, z_{0}, is closed. These two circumstances are expressed by $t\left(A+R z_{0}\right)$. To effect the transfer the $\boldsymbol{Q}_{4}{ }^{\prime}$ equation is given the term

$$
\begin{equation*}
\mathcal{Q}_{4}^{\prime}=Q_{1} Q_{2} Q_{3}\left(A+R z_{0}\right) t+ \tag{19}
\end{equation*}
$$

which transforms a T into a U order in $\phi 3$. (These two orders are distinguished only by the setting of the Q_{4} toggle.)

The Blocked State

To provide a way of stopping a computation a "blocked state" is introduced. This is done by making the advance from $\phi 1$ to $\phi 2$ contingent on the occurrence of $Q_{2}=1$. Then (4.1) is replaced by,

$$
\begin{equation*}
G^{\prime}=G \underline{H} K t\left(F+Q_{2}\right)+ \tag{4}
\end{equation*}
$$

In any situation not requiring blockage Q_{2} is set to 1 (or allowed to remain at 1) on entering $\phi 1$. When blockage is required Q_{2} is set to 0 , then $\phi 1$ lasts indefinitely. The start button effects a release from blockage by setting Q_{2} to 1. A variety of circumstances produce blockage: the stop order, Z, induces blockage contingent on the settings of external switches and of the P toggles as set by the address accompanying the Z order. A oneoperation switch causes blockage after each operation. An overflow in an addition or subtraction or an improper division causes blockage, so as to show that the correct result cannot be represented in the usual way. Provision is made to produce a blocked state on first turning on the computer, and as an aid in timing the Input process. All of these effects are peripheral to the operation of the computer and will not be further described here.

Addition and Subtraction

On orders A and S a sum or difference is set into the accumulator in $\phi 4$. The digits of the sum or difference will be denoted b. The Add-Subtract mechanism makes use of toggle L to hold carry digits. It has been set to 0 prior to its use in addition or subtraction. The two inputs are denoted i and j. [In subtraction the number (j), i.e., the number formed by the digits j, is subtracted from (i).] In addition the carry digit, L, is set to one following the simultaneous occurrence of 1-digits in the two inputs. It is set to 0 if i and j are 0 . If i and j differ the setting of L is left unchanged. Thus a carry is initiated by $i j$, is terminated by $i j$, and is propagated by $i j$ or $i j$. However, L is always set to 0 at the end of the operation, after the t digit period. Thus the carry in addition is described by

$$
\begin{align*}
& L^{\prime}=i j t \tag{20.1}\\
& L^{\prime}=i j+t \tag{21.1}
\end{align*}
$$

A digit of the sum, b, is the sum modulo 2 of the digits i, j, and L. Thus

$$
\begin{equation*}
b \equiv L i j+L i j+L i j+L i j \tag{22}
\end{equation*}
$$

In the execution of orders A and S, occurring in $\phi 4$, the two inputs are A and V respectively. Thus

$$
\begin{align*}
& i \equiv A H+ \tag{23}\\
& i \equiv V H+ \tag{24}
\end{align*}
$$

These equations, together with (15), describe the performance of an addition. This process of addition is most easily understood if each number is regarded as expressed in a simple binary expansion with the least significant digit appearing first and the most significant digit appearing at time t. For example the digit at time t might be assigned the value unity, the preceding digit the value $\frac{1}{2}$, the one before that the value $\frac{1}{4}$, etc. Actually, a different system for the interpretation of numbers is normally used in this computer. It differs from this only in that the digit at time t is assigned the value -1 , which permits representing signed (algebraic) numbers in the range -1 to (but not including) +1 . Either interpretation is consistent with the above description of addition or with the process of subtraction described below. However the system for introducing blockage on an improper addition or subtraction (i.e., one which produces a result beyond the capacity of the representation) is made to conform to the signed number interpretation. So also are the processes of multiplication and division.

With this signed number interpretation a number, say (x), formed of digits x is approximately the negative of the number formed from the complementary digits, x, (where $x=1-x$). More precisely, (x) lacks one unit in its least significant digit to be $-(x)$. Thus if (j) were added to (i) the result would be nearly the difference, (i) $-(j)$. By complementing i rather than j, a similarly deficient difference, $(j)-(i)$, is obtained. The correct desired difference, $(i)-(j)$, can now be obtained by complementing that sum. Accordingly the rule for subtraction is obtained from the equations above by replacing i by i, and then complementing (22) for the sum digit. These two changes, however, bring (22) back to its original form. Thus (22) describes the result of subtraction as well as of addition, while the carry equations are replaced by

$$
\begin{align*}
& L^{\prime}=(i s+i s) j t \tag{20.2}\\
& L^{\prime}=(i s+i s) j+t \tag{21.2}
\end{align*}
$$

Here s indicates situations in which a subtraction is performed, s an addition. The codes for Add and Subtract differ only in the setting of toggle Q_{4}, hence

$$
\begin{equation*}
s \equiv H Q_{4}+ \tag{25}
\end{equation*}
$$

(In phases 5 to 8 other conditions determine s as well as i and j.)

Multiplication and Division

At the end of $\phi 4, F$ and G are set to 0 as described above [(2) and (3)]. This usually initiates a $\phi 1$. However, on orders M, N, and D toggle H is set to 1 at the same time, thus producing a $\phi 5$. This is described by

$$
\begin{equation*}
H^{\prime}=F G H t Q_{1} Q_{2}\left(Q_{3}+Q_{4}\right) \tag{26}
\end{equation*}
$$

In phases 5 to 8 a succession of arithmetic processes is carried out during successive intervals of time each
extending over two word periods. Toggle P_{1} is used to mark off these pairs of word periods. It is set to 0 at the end of $\phi 4$, thereafter to 1 and 0 alternately. This alternation is expressed by the terms,

$$
\begin{equation*}
P_{1}^{\prime}=H P_{1} t+; \quad P_{1}^{\prime}=G P_{1} t+H P_{1} t+ \tag{27}
\end{equation*}
$$

Phase Changes for Multiplication and Division

The marking and durations of phases 5 to 8 are as follows:

Phase	Marked	Duration
5	$F G H$	2 word periods
6	$F G H$	61 word periods
7	$F G H$	2 word periods (for M and D only)
8	$F G H$	1 word period (for D only)

The return to $\phi 1$ occurs after $\phi 6$ on order N, after $\phi 7$ on order M, and after $\phi 8$ for D.

The beginning of $\phi 6$ occurs after the second word period of $\phi 5$, in which $P_{1}=1$. It is indicated by the term

$$
\begin{equation*}
F^{\prime}=F G H P_{1} t+ \tag{28}
\end{equation*}
$$

To mark the end of $\phi 6$, use is made of a part of the content of the counter, marked by the timing signal y, which is not used by the control address. In each word period the timing signal v announces a sector number during the digit periods y as well as during u, as shown in Fig. 1. This second sector number announcement is copied into the counter during each word period (hence, in particular, the last) of $\phi 3$ and held there during the subsequent phases 4,5 , and 6 . This is represented by

$$
\begin{equation*}
C^{\prime \prime}=G H v y+(G+H) y C+. \tag{29}
\end{equation*}
$$

During $\phi 6$ toggle K is used to seek agreement between v and C just as it is in $\phi 1$, except that agreement is sought during time y rather than during u. For this purpose (6.2) is replaced by

$$
\begin{equation*}
K^{\prime}=(G H u+H y)(v r+v r)+ \tag{6}
\end{equation*}
$$

and r must now be redefined as

$$
\begin{equation*}
r \equiv F H R+(F+H) C \tag{7}
\end{equation*}
$$

Phases 4,5 , and 6 together occupy one full drum revolution. Thus the end of $\phi 6$ is marked by $K t$ which indicates that the sector number recorded in C during v of the last word period of $\phi 3$ has been recognized. If the order is M or D, which are distinguished from N by the presence of $Q_{4}, \phi 7$ is to be entered. Thus

$$
\begin{equation*}
G^{\prime}=G H K Q_{4} t+. \tag{30}
\end{equation*}
$$

On order N the end of $\phi 6$ calls for return to $\phi 1$, produced by the terms

$$
\begin{align*}
F^{\prime} & =F H K Q_{4} t+, \tag{31}\\
H^{\prime} & =F H K Q_{4} t+. \tag{32}
\end{align*}
$$

Phase 7 lasts for two word periods. Its end is recognized by the appearance of $F G H P_{1} t$, which is used to set toggle F to 0 .

$$
\begin{equation*}
F^{\prime}=F G H P_{1} t+ \tag{33}
\end{equation*}
$$

If the order is D this setting produces $\phi 8$. On order M, which is distinguished from D by the presence of Q_{3}, it is $\phi 1$ which is to be entered, hence toggles G and H must also be set to 0 . Thus

$$
\begin{align*}
& G^{\prime}=F G H P_{1} Q_{3} t+, \tag{34}\\
& H^{\prime}=F G H P_{1} Q_{3} t+. \tag{35}
\end{align*}
$$

After one word period $\phi 8$ ends and $\phi 1$ is begun, thus

$$
\begin{align*}
G^{\prime} & =F G H t+, \tag{36}\\
H^{\prime} & =F G H t+. \tag{37}
\end{align*}
$$

Multiplication Procedure

In $\phi 4$ the operand number is picked up in the instruction register and is held there in the later phases. This number serves as the multiplicand. The previous accumulator content is kept recirculating in the accumulator and functions as the multiplier. In order to provide storage capacity for the successive partial products the accumulator is extended to slightly over twice its normal length by the use of a second reading head. The digits presented by this second head are denoted by A^{*}. A digit, $A^{\prime \prime}$, recorded in the accumulator is presented by A^{*} in the 65th following digit period, that is after a delay of one digit period more than two word periods. Thus information rerecorded from A^{*} appears every other word period but precessing by a one digit period delay per circulation. The enlarged storage capacity of the accumulator is shared by the multiplier and the growing partial product. The partial product is initially of one word length and progressively grows to about two word length. As each digit of the multiplier is used it is dropped from recirculation, hence the storage requirement of the multiplier concurrently drops from one word length to zero.

In each pair of word periods of $\phi 6$ the multiplicand, recirculating in the instruction register, is or is not added to the partial product held in the accumulator as a corresponding digit of the multiplier is 1 or 0 . Most of the digits of the partial product are presented by A^{*} during the "odd" word periods, marked by P_{1}, some however have precessed into the succeeding "even" word period. For this reason the addition process is extended to two word periods. A precaution, described below, is taken to prevent falsification of the circulating digits of the multiplier. The multiplicand is presented by R only to one word period length. It is extended to two word period length by repetition of its sign (t) digit in all digit periods of the second (even) word period.

In the process of addition or subtraction in $\phi 4$ as described above an exception to the normal behavior of toggle L is made for the t digit period. In phases 5 to 8 for multiplication (distinguished from division by Q_{3}) that exception is restricted to the even word periods, thus extending the process to two word periods. Eqs. (20.2) and (21.2) are now replaced by the following:

$$
\begin{equation*}
L^{\prime}=(i s+i s) j\left(t+H Q_{3} P_{1}\right), \tag{20}
\end{equation*}
$$

$$
\begin{equation*}
L^{\prime}=(i s+i s) j+t\left(H+\Theta_{3}+P_{1}\right) . \tag{21}
\end{equation*}
$$

The addition of the (extended) multiplicand in each step of the multiplication during $\phi 6$ is controlled by a digit of the multiplier held in toggle P_{6} during that pair of word periods. This digit was set into P_{6} in the t digit period preceding these word periods, as described by

$$
\begin{equation*}
P_{6}^{\prime}=H P_{1} t A^{*} Q_{3}+; \quad P_{6}^{\prime}=H P_{1} t A^{*} Q_{3}+. \tag{38}
\end{equation*}
$$

Similarly P_{6} picks up the sign digit of the multiplier at the end of $\phi 4$ and holds it during $\phi 5$, as described by

$$
\begin{equation*}
P_{6}{ }^{\prime}=F G H t A+; \quad P_{6}{ }^{\prime}=F G H t A+. \tag{39}
\end{equation*}
$$

Since the action in $\phi 5$ is controlled by the sign digit of the multiplier the multiplicand is (or is not) subtracted rather than added as in $\phi 6$. Since, moreover, this is the first step of the multiplication there is no previous partial product.
The multiplicand sign is needed throughout the even word periods. It is therefore picked up by toggle P_{5} at the end of $\phi 4$ and held through phases 5 to 7.

$$
\begin{equation*}
P_{5}^{\prime}=F G H t V+; \quad P_{5}^{\prime}=F G H l V+. \tag{40}
\end{equation*}
$$

In phases 5 to 7 the accumulator records the sum (or difference), b, except for the digits appearing at time t of even word periods. These are suppressed to prevent their precessing into the odd word periods. Thus

$$
\begin{equation*}
A^{\prime \prime}=H b\left(t+P_{1}\right)+. \tag{41.1}
\end{equation*}
$$

The inputs to the add-subtract unit are as follows: in $\phi 5$ a subtraction is performed, thereafter additions.

$$
s=F \quad \text { on } H Q_{3}
$$

In the routine part of the multiplication, performed in $\phi 6$, the inputs to the adder are A^{*} and R extended by repetition of its sign digit, P_{6}, during the even word period and contingent on the presence of a 1 as multiplier digit, P_{6}. This is expressed by,

$$
i=A^{*} ; \quad=\left(P_{1} R+P_{1} P_{5}\right) P_{6} \quad \text { on } F G H Q_{3} .
$$

In $\phi 5$, in which a subtraction is done, these inputs are slightly modified. The factor, P_{6}, in the second term of j is omitted. This has the effect of subtracting the repeated digit, P_{5}, in the even word period even if the multiplier is positive. That is equivalent to depositing the digit P_{5} in the small gap separating the growing partial product from the multiplier digits. If the multiplicand is negative, $P_{5}=1$, the 1 -digit so deposited serves to guard the multiplier digits from erosion in the later additive steps and does no harm to the growing product. Thus for $\phi 5$ the inputs are,

$$
i=A^{*} P_{1} ; \quad j=P_{1} R P_{6}+P_{1} P_{5} \quad \text { on } F G H Q_{3} .
$$

On order N the completed less significant part of the product is recorded in the accumulator in the last word period of $\phi 6$, and the execution of the operation is then terminated. On order M a completed more significant half is recorded in the first (odd) word period of $\phi 7$.

However, to present this result in the normal form it must be delayed by one digit period. This is accomplished by adding A to itself in the even word period of $\phi 7$, after which the operation is terminated. The odd word period of $\phi 7$ is like those of $\phi 6$. Thus $\phi 7$ for multiplication is described by

$$
\begin{array}{ll}
i=A^{*} ; & j=P_{5} P_{6} \\
i=A ; & j=A
\end{array}
$$

on $F G H P_{1} Q_{3}$,
on $F G H P_{1} Q_{3}$.
This description of the multiplication process may now be summarized as follows:

$$
\begin{align*}
& s=F H Q_{3}+ \tag{42}\\
& i=H Q_{3}\left[A^{*}\left(F G+P_{1}\right)+A G P_{1}\right]+, \tag{43}\\
& j=H Q_{3}\left[R P_{6} P_{1} G+P_{1} P_{5}\left(P_{6}+F\right)+A G P_{1}\right]+. \tag{44}
\end{align*}
$$

Division Procedure

The procedure for division is similar to one which has been described by Burks, Goldstine, and von Neumann. ${ }^{3}$ It is a nonrestoring system, in which each step brings the remainder toward zero by subtracting or adding the divisor as its sign agrees or disagrees with that of the remainder. It makes use of the expanded accumulator, like multiplication, to provide space for the storage of the growing set of quotient digits and to provide, by its precession, for the doubling of the previous remainder at each step. As in multiplication each step requires two word periods.
The divisor is picked up in $\phi 4$ and held thereafter in the instruction register, as described above. Its sign is held by P_{5} as described by (40). The sign of the dividend is held through $\phi 5$ by P_{6} as described by (39). Subsequently the sign of each remainder is set into P_{6} and held for two word periods. A new remainder is formed and recorded in each odd word period. It is, however, convenient to pick up its sign in P_{6} at the end of each even word period, at which time it is presented by A. Thus,

$$
\begin{equation*}
P_{6}^{\prime}=H P_{1} t A Q_{3}+; \quad P_{6}^{\prime}=H P_{1} t A Q_{3}+. \tag{45}
\end{equation*}
$$

In each odd word period of phases 5 to 7 ($\phi 8$ has only an even word period) the doubled prior remainder (or for $\phi 5$ the dividend) is corrected by the subtraction or addition of the divisor (R), as the two signs held in P_{5} and P_{6} are alike or differ.

In $\phi 5$ the first input, i, is to be the dividend which is presented by A except for its sign digit. The sign digit is held in P_{6}, hence the dividend can be reconstituted as $A+P_{6} t$. Thus,
$i=A+P_{6} t ; \quad j=R, \quad s=P_{5} P_{6}+P_{5} P_{6} \quad$ on $H F P_{1} Q_{3}$.
In the odd word periods of phases 6 and 7 the doubled remainder is presented by A^{*},

[^1]$i=A^{*} ; \quad j=R ; \quad s=P_{5} P_{6}+P_{5} P_{6} \quad$ on $H F P_{1} Q_{3}$.
In even word periods of phases 5,6 , and 7 the extended accumulator recirculates without change.
$$
i=A^{*} ; \quad j=0 \quad \text { on } H(F+G) P_{1} Q_{3} .
$$

The even word period part of A^{*} is gradually filled by the sign digits of the remainders recorded in the odd word period. In the even (and only) word period of $\phi 8$ the digits presented by A^{*} consists entirely of these remainder sign digits, each of which, together with P_{5}, determined the direction of one of the corrections used in the progressive reduction of the remainder. The first correction was determined by the sign of the dividend, which by $\phi 8$ has precessed out of the accumulator. However, in a "proper" division the magnitude of the divisor exceeds that of the dividend, hence the sign of the first remainder must be opposite to that of the dividend. These two signs were used at an earlier stage to induce blockage on improper division by a process mentioned above (but not described in detail).

Each digit presented by A^{*} in $\phi 8$ is combined with P_{5} to form a digit, q_{p}, defined by

$$
q_{p}=A^{*} P_{5}+A^{*} P_{5}
$$

where q_{31} corresponds to A^{*} in the first digit period, q_{30} in the second, etc. to q_{0} corresponding to A^{*} in the t digit period. Each $q_{p}=1$ indicates a subtraction of the divisor, each $q_{p}=0$ indicates an addition of the divisor in the progressive reduction of remainders, except that q_{0} corresponds to two successive opposite corrections applied to the dividend and first remainder which, since $\phi 8$ has been reached without interrupting blockage, may be presumed to have been of opposite sign. Taking account of the doubling of the remainder at each step it can be seen that the dividend has been brought approximately to zero by the subtraction of the divisor multiplied by the following number:

$$
\begin{aligned}
q= & -\left(2 q_{0}-1\right)+\frac{1}{2}\left(2 q_{0}-1\right)+\frac{1}{4}\left(2 q_{1}-1\right)+\cdots \\
& +2^{-32}\left(2 q_{31}-1\right) \\
= & -q_{0}+\frac{1}{2} q_{1}+\frac{1}{4} q_{2}+\cdots+2^{-31} q_{31}-2^{-32} .
\end{aligned}
$$

Thus q_{0}, q_{1}, etc. are the sign digit and progressively less significant digits of an indefinitely continued true quotient in accordance with the system of number representation described above. To produce a rounded quotient of sign and 30 significant digits, the digit, q_{31}, is added to the least significant position of the number $\left(q_{p}\right)$ in $\phi 8$. This digit is available in the form

$$
q_{31}=P_{5} P_{6}+P_{5} P_{6}
$$

during $\phi 8$. Its addition to the least significant digit position is more conveniently accomplished by subtracting it from all digit positions. Thus the action in $\phi 8$ is represented by
$i=A^{*} P_{5}+A^{*} P_{5} ; \quad j=P_{5} P_{6}+P_{5} P_{6} ; \quad s=1 \quad$ on $F G H$.

The description of division may now be summarized as follows:

$$
\begin{align*}
s= & H Q_{3}\left(P_{5} P_{6}+P_{5} P_{6}+F G\right)+ \tag{46}\\
i= & H Q_{3}\left[A^{*}\left(F+G P_{1}+G P_{5}\right)+A^{*} P_{5} F G\right. \\
& \left.\quad+F P_{1}\left(A+P_{6} t\right)\right]+ \tag{47}\\
j= & H Q_{3} R P_{1}+F G H\left(P_{5} P_{6}+P_{5} P_{6}\right)+ \tag{48}
\end{align*}
$$

The recording of a sign digit must not be suppressed in $\phi 8$, hence (52) is replaced by

$$
\begin{equation*}
A^{\prime \prime}=H b\left(t+P_{1}+F G\right) \tag{41}
\end{equation*}
$$

Record Orders

Information is recorded in the main memory during $\phi 4$ on the orders H, C, Y, and R. (Cf. Table I.) The time during which recording is performed is denoted f. On orders H and C it is all of $\phi 4$.

$$
\begin{equation*}
f \equiv F G Q_{1} Q_{2} Q_{3}+ \tag{49}
\end{equation*}
$$

On orders Y and R recording is done only during the part of a word period, s, occupied by the address of an instruction. Thus

$$
\begin{equation*}
f \equiv F G Q_{1} Q_{2} Q_{3} s+. \tag{50}
\end{equation*}
$$

The digits to be recorded will be denoted $V^{\prime \prime}$. On orders H, C, and Y they are the digits presented by the accumulator,

$$
\begin{equation*}
V^{\prime \prime}=\left(Q_{1}+Q_{4}\right) A+ \tag{51}
\end{equation*}
$$

On the order Return the address to be recorded is the second address following that of the memory location in which the R instruction was found. (The memory location immediately after that holding the R order is needed for a U order which takes control to the "subroutine" from which it is later returned as a result of the R order.) Since the counter content has already
(in $\phi 2$) been advanced by one since finding the R instruction it must again be augmented by one to provide the digits $V^{\prime \prime}$. For this purpose toggle K is used in $\phi 4$ in the same way as in $\phi 2$. This is accomplished by omitting the factor F from (16.1),

$$
\begin{equation*}
K^{\prime}=G H w C+. \tag{16}
\end{equation*}
$$

The digits to be recorded on order R are then $(K C+K C)$,

$$
\begin{equation*}
V^{\prime \prime}=Q_{1} Q_{4}(K C+K C)+ \tag{52}
\end{equation*}
$$

Print Order

The execution of the Print instruction, marked by the signal e, occurs in $\phi 4$.

$$
\begin{equation*}
e \equiv F G Q_{1} Q_{2} Q_{3} Q_{4} \tag{53}
\end{equation*}
$$

What key of the Flexowriter is struck is determined by the state of the P toggles.

Input

The Input process takes place for the most part with the computer in its blocked state. The action of the Flexowriter on reading a tape symbol sets the Input code in the Q toggles and the digits to be inserted in the P toggles. The computer is then set into $\phi 3$, from which it proceeds to the execution of the Input "order" and then enters a blocked $\phi 1$ to await another tape symbol. A special tape symbol releases the computer from the blocked state to permit it to digest and dispose of the digits set into the accumulator under the control of an input routine.

The Complete Logical Equations

To complete the description of the logical design there remains only the assembly of the partial equations given above. The assembled equations are shown in Table III. Each equation is followed by a list of the

TABLE III
Summary of Logical Equations

partial equations drawn from the text above which compose it. A few equations have been simplified by elementary algebraic manipulation, but no attempt has been made to reduce the equations to a most compact form or to indicate the many constructional simplifications which can be found by algebraic manipulation of this description of the logical design.

The set of logical equations shown in Table III omits a number of features of the LGP-30 structure which can conveniently be described separately: the entire system for the induction of and relase from the blocked state has been omitted. So also has the setting of the P and Q toggles in the Input process. Various devices, not described here, permit the operator to check on the functioning of the computer or to control its action without reliance on instructions already stored in the memory. These devices are necessary, although auxiliary, since the above description provides no way
of inserting the input routine into the memory. The formation of t, u, v, x, y, and z from the three timing tracks is not shown. On orders U and T, which make no use of an operand word, $\phi 3$ is limited to one word period by a means not shown. The recording of a 0 in the spacer bit is ensured in a way not shown.

Acknowledgment

The author is indebted to many friends for advice and helpful discussions in the development of this design. In particular, conversations with James Cass throughout the period of its development have been useful. A number of necessary corrections and improvements of the design have been made by Raymond Davis, William Reinholz, and James Cass of Librascope Inc. during the development of the LGP-30. The assistance of the Librascope staff in the preparation of this manuscript is gratefully acknowledged.

[^0]: * Manuscript received by the PGEC, June 1, 1956; revised manuscript received October 16, 1956.
 $\dagger 1764$ Redondo Ave., Long Beach, Calif.
 ${ }^{1}$ S. Frankel and J. Cass, "The Librascope general purpose computer, LGP-30," Instruments and Automation, vol. 29, pp. 264-270; February, 1956.
 ${ }_{2}$ S. Frankel, "Useful applications of a magnetic drum computer," Elec. Eng., vol. 75, pp. 634-639; July, 1956.

[^1]: ${ }^{3}$ A. Burks, H. Goldstine, and J. von Neumann, "Preliminary Discussion of the Logical Design of an Electronic Computing Instrument," Institute for Advanced Study, Princeton, pt. 1, 2nd ed. vol. 1, pp. 23-29; September 2, 1947.

