
GA 18/30
TIME-SHARING
EXECUTIVE
SYSTEM

GENERAL AUTOMATION, INC.

GA 18/30

PRICE $10.00
88AI0059A-A

TIME -SHARING EXECUTIVE
SYSTEM.

GENERAL AUTOMATION, INC.
A.utomation Products Division
1055 East Street, Anaheim, California 92805 (714) 778-4800

@ 1970,1971, General Automation, Inc.

88AI0059A~A

REVISION

Symbol De scription Approved Date

A Programming Release July 70

PREFACE

This manual provides an introduction to the Time-Sharing Executive System. It

is not a reference manual and, therefore, does not contain extensive detailed infor­

mation concerning programming for the system. It does provide an overview of

the system, describe the interrupt scheme, and explain system generation. The

document is organized in two parts. Part I contains the overview of TSS, intro­

duces each major component of the system, and discusses the processing func­

tions. Part II discusses programming techniques for handling various common

situations, operating considerations, and system generation procedures. The

appendices provide information about certain hardware features and software

considerations; system error messages are summarized in one appendix. The

document also includes a glossary as well as a bibliography, which lists docu­

ments to which the reader may refer for details concerning the implementation

and use of the Time-Sharing Executive System.

CONTENTS

PART I - OVERVIEW

Section 1 INTRODUCTION 1-1

1.1 Basic Elements in Process Control 1-2
1.2 Interrupt Hardware 1-3
1.3 Software Priority Concept 1-4
1.4 Servicing an Interrupt 1-5
1.5 Summary 1-6

Section 2 ON-LINE OPERATION 2-1

2.1 Concept of On-Line Operation 2-1
2.1.1 Skeleton Executive 2-1
2.1.2 System Dynamics 2-3
2.2 System Components 2-4
2.2.1 Skeleton I/O 2-5
2.2.2 In-Skeleton Common 2-5
2.2.3 System Director 2-5
2.2.4 User-Written Subroutines 2-6
2.3 User Contributions in Tailoring the Skeleton 2-6
2.4 System Director Components 2-7
2.4.1 Master Interrupt Control Program 2-9
2.4.1.1 Interrupt Service Routine In Skeleton 2-11
2.4.1.2 Interrupt Core Load 2-12
2.4.1.3 Interrupt Service Routine With Core Load 2-12
2.4.1.4 Mainline Core Load 2-12
2.4.2 Program Sequence Control Program 2-12
2.4.3 Interval Timer Control Program 2-14
2.4.4 Time-Sharing Control Program 2-14
2.4.4.1 Selectable Method 2-15
2.4.4.2 Automatic Method 2-15
2.4.5 Error Alert Control Program 2-16
2.5 User-Supplied Subroutines 2-16
2.6 Reentrant Coding 2-17

Section 3 NONPROCESS MONITOR 3-1

3.1 Nonprocess Monitor Operations 3-1
3.2 Components of the Nonprocess Monitor 3-4

i

CONTENTS (Cont.)

3.2.1 Nonprocess Supervisor 3-4
3.2.2 Disk Utility Program 3-7
3.2.3 FORTRAN Compiler 3-7
3.2.4 Assembler 3-12

Section 4 SYSTEM EVOLVEMENT 4-1

4.1 Temporary Assembled Skeleton 4-1
4.2 System Generation TASK 4-1
4.3 System Generation Overview 4-2
4.4 TASK Disk Write Addresses Program 4-4
4.5 System Loader 4-4
4.5.1 System Loader Monitor 4-4
4.5.2 Table Builder 4-5
4.5.3 Disk Loader 4-5
4.5.4 Disk Edit Phase 4-5
4.5.5 System Loader Error Program 4-5
4.5.6 System Loader Control Cards 4-5
4.5.6.1 Disk Edit Control Card 4-6
4.5.6.2 Assignment Cards 4-6
4.5.6.3 Comment Cards 4-11
4.6 Core Load Builder 4-12
4.7 Skeleton Builder 4-12
4.8 Disk Location Equivalence Tables 4-12
4.9 Cold Start Routine 4-14
4.10 TASK Equate Cards 4-15
4.11 System Director Equate Cards 4-16

PART II - PROCEDURES

Section 5 PROGRAMMING CONSIDERATIONS 5-1

5.1 FORTRAN Subprograms 5-1
5.1.1 SUBROUTINE Subprograms 5-1
5.1.2 FUNCTION Subprograms 5-3
5.2 Assembler Language Subroutines 5-4
5.3 Reentrant Coding 5-6
5.4 Timer Servicing Subroutines 5-7
5.5 Core Loads 5-9
5.5.1 Core Load Coding 5-10
5.5.2 Nonprocess Core Loads 5-10
5.5.3 Process Core Loads 5-17
5.5.4 Interrupt Core Loads 5-18
5.6 INSKEL Interrupt Servicing Routine 5-19

ii

CONTENTS (Cont.)

5.7 Core Load Building 5-19
5.8 Disk Storage Areas 5-22
5.8.1 Core Load Area 5-22
5.8.2 Fixed Location Equivalence Table 5-22
5.8.3 Working Storage 5-24
5.8.4 FORTRAN Disk Input/Output 5-24
5.8.5 Assembler Disk Input/Output 5-29
5.9 Subroutine Library 5-32
5.9.1 Card I/O Subroutine - CARDN 5-34
5.9.2 Disk Stora.ge Subroutine - DISKN 5-35
5.9.3 Printer/Keyboard Subroutine - TYPEN, WRTYN 5-36
5.9.4 Printer Subroutine - PRNTN 5-38
5.9.5 Magnetic Tape Subroutine - MAGT 5-39
5.9.6 Paper Tape I/O Subroutine - PAPTN 5-40
5.9.7 Plotter Subroutine - PLOTX 5-41
5.10 Summary of DUP Operation 5-41
5.10.1 DEFINE Routine 5-41
5.10.1.1 Object Core Size 5-42
5.10.1.2 Number of Disk Drives 5-42
5.10.1.3 Disk Area Configuration 5-43
5.10.1.4 Remove a Processor 5-45
5.10.1.5 Condense Relocatable Program Area 5-45
5.10.2 DLABL Routine 5-45
5.10.3 STORE Routine 5-46
5.10.4 STOREDATA Routine 5-47
5.10.5 STORECI Routine 5-48
5.10.6 STOREMD Routine 5-49
5.10.7 DUMP Routine 5-50
5.10.8 DUMPDATA Routine 5-51
5.10.9 DUMPLET Routine 5-51
5.10.10 DELET Routine 5-51
5.10.11 SEQCH Routine 5-52
5.10.12 DICLE Routine 5-53
5.10.13 DWRAD Routine 5-53
5.11 Common Areas 5-54

Section 6 OPERATING CONSIDERATIONS 6-1

\ 6.1 Operating TASK Off-Line 6-1
6.2 TASK Disk Write Addresses Routine 6-2
6.3 T ASK Disk Duplication Program 6-5
6.4 System Cold Start 6-6
6.4.1 Cold Start Name Card 6-6
6.4.2 Cold Start Procedure 6-7
6.5 Clearing Core 6-8

iii

CONTENTS (Cont.)

Section 7 SYSTEM GENERATION 7-1

7.1 Summary of Generation Procedures 7-1
7.2 System Generation Components 7-1
7.2.1 Supplied TSS System 7-1
7.2.2 User-Prepared Control Cards 7-3
7.3 System Generation Procedures 7-3
7.3.1 Loading TASK and Writing Disk Addresses 7-3
7.3.2 Loading the Supplied Decks on Disk 7-11
7.3.3 Assembling TASK 7-11
7.3.4 Assembling the System Director 7-11
7.3.5 Defining the System Configuration 7-26
7.3.6 Compiling Skeleton Subroutines 7-26
7.3.7 Building the Skeleton 7-26
7.3.8 Compiling Process Programs 7-30
7.3.9 Building Process Core Loads 7-30
7.3.10 On-Line Cold Start 7-30
7.3.11 Storing Relocatable Programs on Disk from Cards 7-30
7.3.12 Building a Nonprocess Monitor Disk Pack 7-47
7.3.13 Off-Line Cold Start 7-47

Appendix A System Error Messages A-1
Appendix B Calling Sequences for System Routines B-1
Appendix C' Differences Between TSS and IBM's· TSX C-1

Glossary G-1

Bibliography

ILLUSTRATIONS

1-1 Multilevel Interrupts 1-4
2-1 Core Map, Illustrating Skeleton Executive 2-2
2-2 Typical Skeleton Executive 2-4
2-3 System Director Components 2-8
3-1 Nonprocess Monitor Storage (On-Line System) 3-2
3-2 Nonprocess Monitor Storage (Off-Line System) 3-3
3-3 Nonprocess Monitor Components 3-4
5-1 Build and Execute a Type 1 Nonprocess Core Load 5-14
5-2 Build and Execute a Type 2 Nonprocess Core Load 5-15
5-3 Delete a Type 2 Nonprocess Core Load 5-16
5-4 Disk Storage Arrangement 5-23

'iv,

ILLUSTRATIONS (Cont.)

7-1 System Generation Flowchart 7-2
7-2 Supplied System Object Decks 7-4
7-3 ZAP Card 7-8
7-4 TASK High Core Loader Cards 7-9
7-5 Sequence of Control Cards and System Decks for

TSS System Load 7-19
7-6 T ASK Source Deck and Equate Cards 7-22
7-7 System Director Source Deck and Equate Cards 7-25
7-8 Skeleton Builder Object Deck and Control Cards 7-36
7-9 On-Line Cold Start 7-43
7-10 Cold Start Cards 7-44
7-11 Off-Line Cold Start 7-51

TABLES

2-1 Priority Interrupt Level Structure and As signment 2-9
3-1 Nonprocess Supervisor Control Records 3-5
3-2 Disk Utility Program Control Statements 3-8
3-3 DUP Routines Control Records 3-10
3-4 FORTRAN Control Records 3-13
3-5 Assembler Control Records 3-16
4-1 Interrupt Assignment Code/Logical Unit

Number As signments 4-8
4-2 Group 1 TASK EQU Cards 4-18
4-3 Group 2 TASK EQU Cards 4-25
4-4 Error Alert Control Printer Combinations 4-26
4-5 System Director Equate Cards 4-27
5-1 Summary of Capabilities and Restrictions of

Nonprocess Core Loads 5-12
7-1 Loading TASK in Core 7-5
7-2 Writing Disk Addresses 7-12
7-3 Loading the Supplied System Decks 7-16
7-4 Assembling TASK 7-20
7-5 Assembling the System Director 7-23
7-6 Defining the System Configuration 7-27
7-7 Compiling Skeleton Subroutines 7-29

. 7-8 Building the Skeleton 7-31
7-9 Compiling Process Programs 7-37
7-10 Building Process Core Loads 7-38
7-11 On-Line Cold Start 7-39.
7-12 Storing Relocatable Programs on Disk from Cards 7-45
7-13 Building a Nonprocess Monitor Disk Pack 7-48
7-14 Off-Line Cold Start 7-49

:v

SECTION 1 - INTRODUCTION

The Time-Sharing Executive System (TSS) is a FORTRAN-oriented disk-resident

operating system that enables the user to make optimum' use of a GA 18/30 Indus­

trial Supervisory System in controlling processes and complex environments. In

addition to this on-line capability, the time-sharing aspect of the TSS allows the

execution of low priority jobs (such as assembling or compiling programs) under

the control of a batch-processing monitor. Such operation is referred to as

"background" operation as contrasted with "foreground" operation, which is the

primary function of TSS: process control.

Another capability included in the Time-Sharing Executive System is off-line oper­

ation. TSS provides the user with a monitor that enables him to operate his GA

18/30 Computer apart from the process it may normally control. Thus, the

equipment is available for any computing function whenever the process is not

running.

In industrial control systems individual installation requirements vary from one

installation to another. These differences may be in the hardware configuration or

in dissimilarities inherent in the application. Therefore, each installation must be

defined, or tailored, for its specific function requirements and input/output config­

uration. The modular design of TSS enables the user to include or exclude any

functions he wishes. Furthermore, user-written programs can be easily incor­

porated in the system. The final result of the tailoring function is an efficient

operating system, unique to the installation.

1-1

1.1 BASIC ELEMENTS IN PROCESS CONTROL

Basically, all on-line real-time control systems behave in much the same fashion.

The computer reacts to input data from a real world environment and outputs data

to correct or control that environment. Emergency conditions are also sensed

and appropriate action is initiated. Status sensing, data computation, and rea.ction

control must occur within a specified interval of time to prevent disruption of the

process. Generally, the system's capability is determined by how well it is able

to respond.

All input and output operations of the GA 18/30 Computer (including data transfer,

interrupt control, and certain internal control operations) are initiated by one

multipurpose, input/output instruction: Execute I/O (XIO). Thus, all commun­

ication between the real world environment and the computer is through the XIO

instruction. The programmer who writes the process control programs and the

interrupt servicing routines uses the XIO instruction to perform a variety of

functions:

• Sense the operational status of an I/o device, process, or internal

condition, or sense devices requesting interrupt recognition

• Control (change) the operating condition of an I/O device or internal

feature

• Read data from an input device into memory

• Output data from memory to a device

The programmer works with the hardware interrupt feature to accomplish his

purposes.

1-2

1.2 INTERRUPT HARDWARE

TSS provides a multi-interrupt priority control scheme, consisting of a hardware

priority structure, data storage areas in core for each interrupt level, and a pro­

gram to recognize, control, and direct the servicing of interrupts. The hardware

priority structure provides for 2 internal and up to 24 external interrupt levels,

which the user may assign to I/o, process, or programmed interrupts. Up to 16

interrupt request lines can be connected to each interrupt level (except trace).

Each interrupt level (except trace) may have an interrupt level status word (ILSW)

of up to 16 bits to identify the source of the interrupt request. Each I/o device

or process has a 16-bit word to identify -- among other conditions -- the specific

condition responsible for an interrupt request. The status word for an I/o

device is called a device status word (DSW); that for a process is called a proc­

ess interrupt status word (PISW).

Thus, each interrupt request line is positioned by order of priority (as defined in

paragraph 2.4.1 and table 2-1). The highest priority is closest to the output, and

the lowest priority is furthest away. When an interrupt request is received at

. a given level and if no higher priority level is presently being served, the control

scheme permits the interrupt request line to be activated. A unique address

associated with that particular level is supplied to the system, which transfers

control to that location. The return address for the interrupted program is pre­

served, and then the Master Interrupt Control Program (see paragraph 2.4. 1) is

executed to direct the servicing of the interrupt. After the interrupt has been

serviced, control is returned to the interrupted program (see figure 1-1).

1-3

FIRST LEVEL
INTERRUPT

SECOND LEVEL
INTERRUPT

THIRD LEVEL
INTERRUPT

~:~~RAM ---+---.... S;J-------.., ~----_--------_--..
Figure 1-1. Multilevel Interrupts

The user has the facility to mask interrupt levels. Masking inhibits interrupts to

the computer. The user can inhibit or permit specified levels of interrupts and

can determine the status of interrupt levels (i. e., inhibited or not) at any time.

Although a level may be masked, the fact that an interrupt has occurred is not lost.

Thus, when a level is unmasked, a pending interrupt can be received.

1.3 SOFTWARE PRIORITY CONCEPT

The user writes the process programs for his installation. Additionally, he pro­

vides routines to service interrupts which can occur. The way interrupts are

assigned to the interrupt levels largely determines the method of programming

used to service the interrupts. Essentially, there are four types of service rou­

tines, determined by method of access. An interrupt service routine may

reside permanently in an area of core reserved for it by the Time-Sharing

Executive System; it may reside on disk and be loaded into core when its

interrupt occurs; it may be stored as a subroutine with a main program and be

loaded from disk each time the main program is loaded; or a main program may

1-4

service an interrupt that was recorded when it occurred but not serviced immedi­

ately. (These types of service routines are discussed in more detail in paragraph

2.4.1.) The first type of subroutine is the fastest (in response time) and should

be used for the most critical interrupts. The second type is slower, since the

interrupted program must be stored on disk and the subroutine must be loaded into

core before it can be executed. The third type is as fast as the first type if the

main program is in core when the interrupt occurs; otherwise, it is as slow as

the second type. The fourth type of subroutine is slowest and is used for the most

infrequent and least critical interrupts.

1.4 SERVICING AN INTERRUPT

When an interrupt is detected at the hardware level, a portion of TSS, the Master

Interrupt Control (MIC) Program, assumes control for the servicing of that inter­

rupt. The MIC program:

• Saves the interrupted registers when an interrupt is processed on the

appropriate work level

• Directs the interrupt to its servicing routine

• Restores the FORTRAN 1/0 buffers (if required)

• Restores the interrupted registers

• Returns control to the interrupted program

For example, assume an interrupt was assigned by the user to level five. The fol­

lowing events occur when that interrupt is recognized.

1. The GA 18/30 Computer recognizes interrupt requests at the completion

of the current instruction cycle. At that time an indirect branch (BSl)

through a fixed location in core is executed. This location contains. the start­

ing address of the level work area associated with level five. The

instructions in this work area set the level busy, save Index Registers 1,

2, and 3, and set in Index Register 3 a pointer to this work level. It is

through the level work area that an interrupt formally enters MIC.

1-5

2. After the various registers of the interrupted program have been saved,

the problem remains of determining which of 16 possible interrupts is to

be serviced on this level. This determin·ation is made by sensing the

ILSW.

3. MIC reads the ILSW for level five and determines which is the left-most

nonzero bit in the ILSW. Then MIG determines where the interrupt ser­

vice routine associated with that nonzero bit is stored (i. e., on disk or

in core -- and where in core).

4. MIG transfers control to the appropriate interrupt service routine (after

loading it from disk" if necessary).

5. After performing its function, the subroutine returns control to MIC via

a special statement (CALL INTEX, see section 5) which includes a

branch or skip on condition instruction (BOSC) with bit 9 set to 1, per­

mitting lower interrupt levels to interrupt the computer.

During the entire time -- from the occurrance of the interrupt to the

execution of the BOSC -- the computer is said to be operating at prior­

ity level five and cannot be interrupted by any lower priority interrupts.

6. MIC reloads the interrupted program, if necessary; i. e., if the inter­

rupt service routine had to be loaded from disk for execution, MIC

would first store the interrupted program in a special save area on disk

so it would not be destroyed when the service routine is read into core.

Finally, control is returned to the program at the instruction following

the one where the interrupt occurred.

1.5 SUMMARY

Real-time computation has been defined as a situation in which input data change

with time so that the execution of the program affects the answers derived by the

program. Job-dependent programs are not real-time; time-dependent and inter­

rupt-dependent programs are real-time. Time-dependent programs must make

decisions based on the time of day, and interrupt-dependent programs must

1-6

respond to interrupts originating at unpredictable times in the world outside the

computer. The Time-Sharing Executive System is a set of programs designed

to provide programming flexibility in a real-time environment. TSS relieves the

user of much of the required system programming effort, freeing him to con­

centrate on the primary task of problem solution. Thus, TSS is the interface

between the hardware and the controlled process for on-line operation and

between the user and the operating system for off-line operation.

1-7

SECTION 2 - ON-LINE OPERATION

In a real-time environment the processor controller receives inputs randomly

from the monitored process. In response to those inputs, the computer returns

an output to the process. Thus, the concept of real-time implies that a proc­

essor controller responds to inputs as they occur in the "outside world. "

2.1 CONCEPT OF ON-LINE OPERATION

The Time-Sharing Executive System (TSS) operates in an on-line mode under

control of the Skeleton Executive. The Skeleton Executive is the basis, or

framework, of an on-line TSS system. It must be resident in core storage;

i. e. , the Skeleton Executive must be in core storage before real-time process­

ing can take place. The Skeleton Executive accepts input, determines which

portion of the system is needed to process that input, and brings that portion

from disk storage into core to perform the required function.

2.1.1 Skeleton Executive

The structure of the Skeleton Executive is flexible and is determined by the user

at system generation time. "System generation" is the process of assembling

some number of routines to form the system. In generating the Skeleton Execu­

tive, the user has numerous options; e. g., he may include frequently used

subroutines, rapid response interrupt servicing routines, or other user-written

routines. System generation is discussed in more detail in section 4, and the

procedures for performing this operation are given in section 7. Figure 2-1

illustrates the area ~f core storage that the Skeleton Executive occupies.

The content of the Skeleton Executive depends upon the application for which it

is to be used, because it contains both supplied and user-written routines. The

supplied routines are considered to be the operating system. The user-written

routines perform the actual control of the processes. Thus, the supplied routines

2-1

LOW CORE

HIGH CORE

SKELETON EXECUTIVE

VARIABLE CORE
(VCORE)

Figure 2-1. Core Map, Illustrating Skeleton Executive

(i. e., operating system) coordinate the execution of the user-written routines

and act as an interface between the actual hardware (interrupt structure,

timers, etc.) and the user-written routines.

That portion of core memory not occupied by the Skeleton Executive is called

variable core or VCORE. The Skeleton Executive loads user routines from

disk storage into VCORE when those routines are to be executed. The size of

VCORE is not intended to be sufficiently large to store at one time all the

instructions requtred for the execution of all functions. Instead, the routines

2-2

must be segmented into units, called core loads, which are stored on disk in

executable core image format. Thus, a core load may be read from disk and

executed, and it, in turn, may request other core loads be brought into core

and executed to complete the function. There are four types of core loads

commonly used in TSS :

• Mainline core load

• Interrupt core load

• Combination core load

• Nonprocess core load

A mainline core load is one that does not directly service an interrupt (e. g. ,

analysis programs, logging programs, etc.); it executes on the lowest interrupt

level. An interrupt core load is a program unit that resides on disk and is

brought into core to service a particular interrupt. A combination core load is

one that can be executed as either an interrupt or a mainline core load. A

nonprocess core load is one that is controlled by the Nonprocess Monitor,

discussed in section 3. (The procedure for creating core loads, storing them on

disk, and establishing system communication for them is discussed in part II.)

2.1.2 System Dynamics

After the user has generated his TSS system and stored it on disk, he must

initiate or start system operation. This process is referred to as "cold start. "

Cold start procedures are described in detail in part II. A cold start routine

is supplied that enables the user to load the Skeleton Executive from disk to

core. Then a user-written core load is brought into VCORE to perform initiali­

zation procedures (such as- setting timers and indicators, etc.). After the cold

start is accomplished, the system operates without operator intervention under

control of the Skeleton Executive. Interrupts from the process are handled by

the Skeleton Executive routines which may initiate core swapping (i. e., the

storing of the contents of VCORE onto disk and transferring of a core load from

disk to VCORE.). If any hardware error occurs -- during input from the process

or during core swapping -- the Skeleton Executive automatically takes appropriate

action to respond to that error.

2-3

2.2 SYSTEM COMPONENTS

As noted before, the content of the Skeleton Executive depends upon the

application the system is to control. The content and, thus, the size of the

Executive are fixed at system generation time. A typical Skeleton Executive

would include the parts illustrated in figure 2-2.

LOW CORE

SKELETON I/O

INSKEL COMMON

SYSTEM DIRECTOR

USER AND TSX SUBROUTINES

VCORE

HIGH CORE

Figure 2-2. Typical Skeleton Executive

2-4

2.2.1 Skeleton I/O

The Skeleton I/O portion is a set of input/output routines that provide communi­

cation between the CPU and the various data processing peripherals (e. g., card

reader, car~ punch, disk, printer) for the transfer of data. These routines are

used by both supplied and user-written routines. A basic set of routines is supplied

with the system and normally constitutes the-Skeleton 1/0; :however ,the user ,can

include other routines at system generation time. The basic set of supplied

routines is:

• Disk Storage Subroutine (DISKN) - performs all reading from and

writing to disk storage

• Printer /Keyboard Subroutine (TYPEN /WRTYN) - transfers data to

and from teletypewriters

• Printer Subroutine (PRNTN) - controls all print and carriage

positioning functions for the line printer

• Card Subroutine (CARDN) -

card reader

controls input from the punched

These four subroutines are provided with and used by the system.

2.2.2 In-Skeleton Common

The In-Skeleton Common (INSKE L) provides communication among the various

user-written core loads. In assigning variables to this area, the user must use

the unique label INSKEL in a FORTRAN COMMON statement. This area can be

referenced by any process or nonprocess program under the on-line system.

2. 2. 3 System Director

The System Director is the basic component of the Skeleton Executive and

controls all facets of process monitoring. The System Director resides in core

2-5

at all times, and all permanent areas are storage protected to avoid being

accidentally destroyed. The System Director is the primary control unit of

TSS and, as such, it:

• Directs the servicing of interrupts

• Supervises the execution of core loads

• Monitors the interval titner8

• Processes errors

Further, when there is no process control to be monitored, the System

Director makes VCORE available for execution of background jobs.

2.2.4 User-Written Subroutines

The user may include in the skeleton area any supplied or user-written subrou­

tines he chooses. These may be interrupt subroutines, timer subroutines, trace

and error subroutines, arithmetic and conversion subroutines, etc. The decision

to include a routine in this area instead of storing it on disk as part of a core load

is influenced by such factors as:

• Size of subroutines (the larger the skeleton area, the smaller the

VCORE area for executing core loads)

• Required response time (subroutines in the skeleton do not require

time for loading from disk as core loads do)

• Frequency of use (core storage of frequently used subroutines avoids

excessive core swapping)

User-written subroutines that are to be included in the Skeleton Executive must

be compiled or assembled in relocatable format and placed on disk prior to

system generation.

2.3 USER CONTRIBUTIONS IN TAILORING THE SKELETON

Because the user defines the TSS system in terms of his own application, each

iilstallation is unique. Differences between installations may take the form of

2-6

• Different applications

• Different core storage sizes

• Different peripheral equipment

• Different priorities

• Different throughput requirements

Therefore, each installation must be tailored for the specific hardware

configuration and process requirements. It is the user's responsibility to

define the Skeleton Executive for his installation via a process called system

generation. Before system generation time, however, the user must deter­

mine what features he wishes to include in his TSS system, because these

considerations directly affect the size and composition of the system.

Basically, three things determine the size of the skeleton:

• Hardware configuration

• Number and size of user-written subroutines

• Amount of INSKE L common

The hardware configuration must be described to the system generator in terms

of core size and available peripherals. In determining what user-written sub­

routines are to be included in the skeleton, the user would consider such

questions as: which interrupts require the fastest response time and, there­

fore, should be handled by in-skeleton subroutines; and, which subroutines

should be in core -- because of frequency of use -- to avoid excessive core

swapping. The amount of INSKE L common storage depends upon both user­

written and supplied routines' requirements. The methods used to specify all

required information at system generation time are explained in section 7 .

2.4 SYSTEM DffiECTOR COMPONENTS

The System Director is a group of supplied programs that constitute 'the nucleus

of the TSS system. The user must understand the functions of the components

of the System Director to utilize fully the TSS system. The five component

programs (figure 2-3) are:

2-7

LOW CORE

HIGH CORE

SKELETON 1/0

INSKEL COMMON

MIC PSC TSC ITC EAC

USER AND TSS SUBROUTINES

VCORE

Figure 2-3. System Director Components

2-8

}
SYSTEM
DIRECTOR

• Master Interrupt Control (MIC)

• Program Sequence Control (PSC)

• Time-Sharing Control (TSC)

• Interval Timer Control (ITC)

• Error Alert Control (EAC)

These programs are discussed in the following paragraphs from a functional

viewpoint; details concerning programming considerations are provided in

section 5.

2.4.1 Master Interrupt Control Program

The Master Interrupt Control (MIC) program is the basic interface between the

hardware interrupts and the user-written programs or the system interrupt

handlers. In the TSS system there are three essential elements to providing

multi-interrupt priority control:

• A hardware priority scheme

• A data storage area in core for each interrupt level

• The MIC program to service the interrupts

The hardware priority structure provides for 2 fixed and up to 24 additional

interrupt levels, which the user may assign to I/O or programmed interrupts,

as shown in table 2-1.

For each priority level used, the system has (in the skeleton) a level work area.

In this area MIC saves the status of the interrupted program. Further, MIC

sets up the status of the level work area for each level so that a system sub­

routine, using the level work area for intermediate storage, can be entered

(executed) from all priority levels. (Paragraph 2.6 discusses reentrant coding.)

From a programming standpoint there are three classes of interrupts: internal,

input/output, and external (or process). Internal interrupts are those associated

with errors within the central processing unit, such as parity error or detection

of an illegal operation code. Interrupts of this class are serviced by supplied

2-9

Table 2-1. Priority Interrupt Level Structure and Assignment

Priority Decimal Program
I/O, Timer,

Interruptt
Leveltt Address Interrupt

Process Interrupt:
Assignment Allowed

Internal 1 8 No No

Trace 26 9 No No

Assigned 0 2 11 Yes Yes
Levels 1 3 12 Yes Yes

2 4 13 Yes Yes

3 5 14 Yes Yes

BASIC 4 6 15 Yes Yes

5 7 16 Yes Yes

6 8 17 Yes Yes

7 9 18 Yes Yes

8 10 19 Yes Yes

9 11 20 Yes Yes

10 12 21 Yes Yes

11 13 22 Yes Yes

12 14 23 Yes Yes

13 15 24 Yes Yes
OPTIONAL

14 16 25 Yes Yes

15 17 26 Yes Yes

16 18 27 Yes Yes

17 19 28 Yes Yes

18 20 29 Yes Yes

19 21 30 Yes Yes

20 22 31 Yes Yes

21 23 32 Yes Yes

22 24 33 Yes Yes

~ 23 25 34 Yes Yes

tAll levels except trace have interrupt level status words, and all levels
except internal and trace can be masked.

ttpriority levels are numbered from highest (1) to lowest (26).

2-10

routines as soon as they are recognized. Input/output interrupts are associated

with peripheral devices. External interrupts are those associated with the

process and programmed interrupt features. They are serviced by one of four

types of user-written routines:

• Interrupt service routine in skeleton

• Interrupt core load

• Interrupt service routine included with core load

• Mainline core load

When the user defines the system, he must designate the way each interrupt is

to be handled, to enable MIC to service the interrupts properly.

2. 4. 1. 1 Interrupt Service Routine In Skeleton

During system generation the user can include interrupt servicing subroutines

in the skeleton. This group normally comprises the majority of the skeleton

routines. This type of interrupt servicing requires less time than the other

three types; i. e., less time elapses between the instant the interrupt signal is

recognized and the instant an instruction is executed to begin the appropriate

reaction.

Interrupt processing occurs in the following sequence. A signal is received

from the process. MIC responds to the interrupt Signal, determine's that the

interrupt is to be handled by a user-written routine that is in the skeleton, and

transfers control to that routine. The routine performs the necessary action.

(e. g., prints a message, outputs information, initiates the correction of a

process condition, etc.) and then returns control to MIC, which in turn returns

control to the interrupted program. MIC stores the contents of the registers

that reflect the status of the machine at the time of the interrupt and restores

these registers after the user's interrupt routine has performed its function,

but before transferring control to the interrupted program.

2-11

2.4. 1.2 Interrupt Core Load

The user can designate a core load as an interrupt core load. In this case

MIC saves the status of the machine and the contents ofVCORE in an interrupt

save area on disk before loading the user's interrupt core load. The interrupt

core load (once in core) responds in the same wayan interrupt service routine

in the skeleton would. When its function is completed, the interrupt core load

returns control to MIC, which restores the machine registers and VCORE to

their previous states (i. e., before the interrupt occurred) and returns control

to the interrupted program.

The response time for this method of interrupt servicing includes the time for

the core exchange and is, therefore, not as fast as in-skeleton interrupt

service routines.

2.4.1.3 Interrupt Service Routine With Core Load

A mainline core load may have included with it subroutines that service inter­

rupts. If the mainline core load is in core when such an interrupt occurs, MIC

uses that subroutine just as if it were included in the skeleton. An interrupt

core load that can process the same interrupt must also exist. Then, if the

mainline core load with the service routine is not in core when the interrupt

occurs, MIC can load the interrupt core load (in the manner explained in

paragraph 2.4.1.2) to service the interrupt.

2.4.1.4 Mainline Core'Load

If neither an interrupt core load nor an in-skeleton servicing routine has been

assigned for a process interrupt, MIC records the fact that the interrupt

occurred. Such interrupts can be serviced by a mainline core load as explained

below under "Program Sequence Control Program. "

2.4.2 Program Sequence Control Program

Core loads are user-written modules on disk that are brought into core by the

Program Sequence Control (PSC) portion of the System Director. Some core

2-12

loads are designed to respond to interrupts. The most common kind of core

loads are those designed to execute on the mainline level. (The process by

which these modules are prepared and placed on disk is described in section 4.

However, for purposes of this discussion, assume that this process i~ defined

by the term "built" so that a core load that has been "built" exists on disk.)

When each core load is built, the level on which it is to be executed is defined.

Mainline core loads operate on the lowest priority level.

In process control, actual timely response is accomplished by using in-skeleton

routines and interrupt core loads. Other functions (reports, file manipulations,

analyses, etc.) must also be performed and in an orderly manner; however,

their importance does not require one to interrupt the other. A method of

sequencing these jobs is provided by PSC. To perform its functions, PSC

utilizes a storage area called the Mainline Core Load Queue Table (referred to

as "the queue ") . This table contains a list -- ordered by name and priority of

function -- of the mainline core loads to be executed. Placing entries into and

remolling them from the queue is not the responsibility of PSC. The function

of PSC is to initiate operation of the highest priority job by loading the appropri­

ate mainline core load and executing it when space in VCORE is available.

Subroutines are provided that enter or remove core loads from the mainline

queue. These subroutines can be used by interrupt service routines as well as

mainline programs. Therefore, a job sequence may be initiated from any level.

The characteristics and calling sequences of the subroutines are explained in

section 5.

A particular job may require more than one core load for its completion.

Essentially, two routines are supplied for the sequencing of jobs that require

multiple core loads:, CHAIN and SPECL.

Chaining allows the present core load to be overlayed by the next sequential core

load. The first core load initiates the chaining process by a call to the CHAIN

subroutine.

2-13

The SPECL subroutine of PSC provides the second method of sequencing. This

subroutine terminates the current core load, saves it in a special save area,

stores the core load status, and executes the core load associated with the call

to SPECL. The core load that is brought into VCORE by SPECL may return

control to the saved core load automatically by a call to the BACK subroutine

of PSC. However, the new core load is not required to return control to the

saved core load; it may call other core loads or may end the job sequence.

Ending the job sequence is accomplished by a call to the VIAQ subroutine of

PSC. This call causes PSC to load the highest priority core load listed in the

queue and to transfer control to it.

2.4.3 Interval Timer Control Program

The GA 18/30 hardware provides three machine timers, designated A, B, and C.

Each timer is assigned a specific time period:

Timer A = O. 1 millisecond

Timer B 1. 0 millisecond

Timer C = 10.0 milliseconds

Timers A and B are available to the user's programs. Timer C is used by the

TSS system to provide nine programmed timers and a real-time clock. There­

fore, 11 timers are actually available to the user. The Interval Timer

Control (ITC) program provides for control of the three hardware timers.

ITC also performs other functions; namely, it tests for no response from the

Teletype, resets the operations monitor during time-sharing, and performs end

of time-sharing (see section 3 for a discussion of time-sharing under TSS).

2.4.4 Time-Sharing Control Program

In most installations there will be a considerable amount of time that is not used

for process control. TSS provides a time-sharing feature to enable the user to

execute low priority jobs (e. g., assembling or compiling programs) during

that "idle" time. The Time-Sharing Control (TSC) program monitors the execution

of low priority jobs (i. e., nonprocess jobs) and automatically interrupts them

when a higher priority job (i. e., any process control function) must be

2-14

executed. Thus, with TSC the user can perform batch processing without

taking his system off-line.

When such idle time is available in the system, control can be automatically

transferred to the N onprocess Monitor, an independent system that is similar

to any batch (stack-job) monitor system. TSC is the portion of the System

Director which, in conjunction with the ITC program, allocates VCORE for

batch processing use. There are essentially two ways in which the Nonprocess

Monitor can obtain time (and, thus, access to VCORE) for its use:

• Selectable method

• Automatic method

2.4.4.1 Selectable Method

Process programs (mainline core loads only) can initiate time-sharing for a

specific period of time by a call to the SHARE subroutine of TSC. This selec­

tion of time-sharing is used for special applications where time-sharing is

desired without the use of the queueing technique. The time-sharing operation,

initiated by a call to SHARE, terminates when the time interval specified by the

user has elapsed; however, interrupts are serviced as they occur, and an inter­

rupt routine can terminate time-sharing mode by a call to the ENDTS subroutine.

(Calls to these subroutines are discussed in part II.)

2.4.4.2 Automatic Method

VCORE automatically becomes available to the Nonprocess Monitor when the

VIAQ subroutine (see part II) of PSC checks the queue and determines that no

core loads are queued for execution. In order for the VIAQ subroutine to

initiate time-sharing, the user must indicate through the use of console switches

that batch jobs are to be handled. For this method the period of time allocated

for time-sharing is specified by the user when the System Director is assembled

at system generation time.

2-15

2.4.5 Error Alert Control Program

The Error Alert Control (EAC) program is the part of the System Director that:

• Receives error interrupts

• Analyzes the type of error (e. g., an I/O error that persists despite

repeated corrective action by an I/O subroutine; an internal machine

error, such as invalid operation code or parity; and other control

subroutine error conditions, such as FORTRAN I/O)

• Saves the machine status at the time of the error so that, after the

error has been corrected, processing can be reinitiated without loss

of information

• Determines operating conditions (eo go , process or nonprocess mode,

availability of user-written error subroutine)

• Selects the appropriate recovery procedure (eo g., continue processing,

restart, reload)

• Produces error messages

EAC also has the capability to dump VCORE to disk if this option is elected

when the System Director is assembled at system generation time.

(See appendix A for information concerning error messages.)

2.5 U::>ER-SUPPLIED SUBROUTINES

As stated earlier, the user may specify that certain subroutines are to be

included in the Skeleton. Other subroutines are assembled or compiled and

stored on disk, to be loaded into VCORE along with the core load that uses them.

However, if a program requires a large number of subroutines, VCORE may

not provide sufficient space for them. To avoid this problem, TSS provides the

capability of loading a subroutine from disk into core at the time the executing

program calls that subroutine. Such a subroutine is referred to as a LOCAL

2-16

(load-on-call) subroutine. All LOCALs called by a core load program are stored

in the same core area; i. e., the second LOCAL subroutine overlays the first one,

the third overlays the second, etc. The effect, then, is that LOCALs enable the

user to have a larger program than would otherwise be possible. (See "Section 5 -

Programming Considerations, " for examples.)

2.6 REENTRANT CODING

It is possible that core loads that are executed on different levels may call .the same

subroutine. To allow a subroutine to be entered at any time and on any interrupt

level, some method of reentrant coding must be used. All TSS system subroutines

are reentrant and can be called repeatedly by different interrupt routines on dif­

ferent levels. Users may write reentrant routines for their core loads.

The method of reentrant coding employed in TSS uses the level work areas. A

level work area of 104 locations is provided for each interrupt level specified by

the user. A level work area for a given interrupt level can be used only by pro­

grams operating on that level. Of the 104 locations that constitute 'a level work

area, the first 62 are reserved for TSS use; the remaining 42 are available for

use by other programs. The starting address of the level work area for any inter­

rupt level is always in location 104 (68
16

). Thus, an index register, loaded with

the contents of that location, should be used to reference all temporary storage,

i. e., the 42 temporary locations available to users' programs. If a subroutine

'being executed is interrupted and the interrupt servicing routine calls that sub­

routine, there will be no storage conflict, because MIC always sets location 104

to the correct level work area address for each interrupt serviced. (Details on

ways to safeguard partial results and other considerations in writing reentrant

code are presented in section 5.)

2-17

SECTION 3 -- NONPROCESS MONITOR

The Nonprocess Monitor is an independent programming system, designed to oper­

ate in one of two modes within the TSS system:

• On-line - In the on-line mode the Nonprocess Monitor operates under con­

trol of the TSC portion of the System Director (see paragraph 2.4.4).

• Off-line - In the off-line mode the Nonprocess Monitor does not time­

share the compute r, but operates as a dedicated monitor system under

control of the Temporary Assembled Skeleton (see section 4).

3.1 NONPROCESS MONITOR OPERATIONS

Primarily, the function of the Nonprocess Monitor is to provide continuous control

over a sequence of jobs that might otherwise require several individual systems.

For example, the user may have a number of programs that are to be assembled

or compiled, built into core loads, executed, and stored on disk for future use;

and at the same time he may require that the running process be allowed to issue

an interrupt that will be serviced immediately. The Nonprocess Monitor controls

the sequencing of operations to load the Assembler or FORTRAN into core, to

load the core load builder after the source program has been processed, to exe­

cute the object programs, etc. If an interrupt occurs during any of these opera­

tions, the Nonprocess Monitor relinquishes control to the System Director to

handle that interrupt, after which control is returned to the Nonprocess Monitor

if the amount of time allocated for time-sharing has not expired. (See figure 3-1.)

The off-line capability .of the Nonprocess Monitor is necessary at system genera­

tion time, since programs must be assembled and stored on disk before the proc­

ess control system can be generated. After system generation time if there is

an occassion when the process is not running and, therefore, the computer is

not needed to control it, the Nonprocess Monitor can be used to control com­

puter operations, for example a data processing application such as a payroll

program. (See figure 3-2.)

3-1

lOW CORE

3600
WORDS

HIGH CORE

SKELETON 1/0

INSKEl COMMON

SYSTEM DIRECTOR

USER AND TSS SUBROUTINES

AREA USED FOR TABLES AND
TEMP STORAGE (I F AVAI lABlE)

NONPROCESS SUPERVISOR
(OVERLAYED BY DUP, ASM,
OR FOR)

DISK COMMUNICATIONS AREA (DCOM)

SKELETON
EXECUTIVE

VCORE

IF1 FO

IFF56

Figure 3-1. Nonprocess Monitor storage (On-Line System)

3-2

LOW CORE

VCORE

HIGH CORE

SKELETON I/O

TASK PROGRAMS

AREA USED FOR TABLES AND
TEMP STORAGE (IF AVAILABLE)

NONPROCESS SUPERVISOR
(OVERLAYED BY DUP, ASM,
OR FOR)

DISK COMMUNICATIONS AREA (DeOM)

TASK

IF1FO

3432 WORDS

} 168WORDS

Figure 3-2. Nonprocess Monitor Storage (Off-Line System)

3-3

3.2 COMPONENTS OF THE NONPROCESS MONITOR

The Nonprocess Monitor comprises four programs as illustrated in figure 3-3.

The functions of each of these components are described in the following para­

graphs. The Nonprocess Monitor is a batch monitor that accepts card input and

produces programs that may be stored on disc or executed. The monitor uses

the Skeleton I/O routines (CARDN, DISKN, PRNTN, and TYPEN/WRTYN) for its

input/ output operations.

TIME-SHARING CONTROL PROGRAM

SUP I

SUPERVISOR

DUP I ASM FOR I
DISK UTILITY

ASSEMBLER PROGRAM FORTRAN

Figure 3-3. Nonprocess Monitor Components

3.2.1 Nonprocess Supervisor

The Nonprocess Supervisor (SUP) controls all Nonprocess Monitor operations.

SUP consists of several routines, the two principal ones being the Skeleton Super­

visor and the Monitor Control Analyzer.

The Skeleton Supervisor is read from disk into core whenever Nonprocess Monitor

operation is initiated. It provides for communication between the Nonprocess Mon­

itor components and user's programs that are being processed or executed. The

Skeleton Supervisor provides for the orderly transfer of control from one program

to another. Thus, several unrelated jobs may be stacked for processing and can

be properly handled without operator intervention.

3-4

The Monitor Control Record Analyzer -- as its name signifies -- reads and inter­

prets control records (such as I/JOB, / / ASM, IIFOR) for the Nonprocess Moni­

tor. This routine also outputs the records to the system printer and loads the

appropriate monitor program for execution. The Monitor Control Record

Analyzer accepts input from cards only. Each control record begins with two

slashes and a blank. Thus, the control identifier begins in the fourth position.

Table 3-1 lists the control records applicable to the Monitor Control Record

Analyzer.

Table 3-1. Nonprocess Supervisor Control Records

Identifier

1/ JOB

I / END OF ALL JOBS

1// ASM

Function

Causes termination of the previous job and init­

ialization for the new one. When a job is

aborted (e. g., if an unrecoverable I/O error

occurs), cards in the card reader are bypassed

until the next JOB card is encountered.

Indicates that there are no more nonprocess

operations to be performed. It must be the

last card in the input stream.

Causes the Nonprocess Monitor to read the

Assembler from disk into core storage for exe­

cution. The name of the mainline program to

be assembled must be on this control card.

IIpmediately following the ASM card must be

the Assembler control cards, specifying the 1

Assembler options (see paragraph 3. 2. 4), and I
I

the source ianguage program~, After a succes Sfu~
1

assembly, the object program is loaded as a ~
1

temporary program. I

3-5

Table 3-1. Nonprocess Supervisor Control Records (Cont.)

Identifier

// FOR

II DUP

II XEQ

/1 PAUS

, Function

Causes the Nonprocess Monitor to read the

FORTRAN compiler from the disk into core

storage for execution •. The name of the main­

line program to be compiled must be on this

control card. Immediately following the FOR

card must be the compiler control cards, spec.~

ifying compiler options (see paragraph 3.2·.3), and

j the FORTRAN language source program. After

a successful compilation, the object program

is loaded as a temporary program.

Causes the Nonprocess Monitor to read the

Disk Utility Program from disk into core stor­

age for execution. Immediately following the

DUP card must be the DUP control cards (see

paragraph 3. 2. 2) .

Causes the Nonprocess Monitor to load the

named program and all required subroutines

from disk into core storage for execution. This

control card can also specify that a core load

map be printed during the loading of a core load

I from relocatable programs.

I Causes the Nonprocess Monitor to execute a

WAIT instruction, allowing the operator to

make setup changes. Monitor operation con­

tinues when the console STEP key is pressed.

If an interrupt occurs during a wait period, it

will be serviced, and control will be returned

to theW AIT instruction.

3-6

Table 3-1. Nonproces's Supervisor Control Records (Cont.)

Identifier Function

II * Identifies a comment record. The contents of

comment.· records are printed on the LIST and

SYSTEM units.

I

3.2.2 Disk Utility Program

The Disk Utility Program (DUP) consists of a groupl of generalized routines that

enable the user to perform easily the usual day-to-day operations of an installa­

tion. The Disk utility Program is called by a I / DUP control card, and DUP

in turn calls its various routines, depending on the control statements that follow

the 1/ DUP card.

The DUP control statements begin with an asterisk in column 1. The code word

that identifies the process to be performed appears in columns 2 through 10.

Following column 10 information for the individual routine may be supplied.

Table 3-2 lists the control statements that activate the individual Disk Utility

Program routines. Table 3-3 lists control records that supply specific direc­

tions to these routines. (See also paragraph 5. 10.)

3.2.3 FORTRAN Compiler

When a I I FOR control record is read, the Nonprocess Monitor loads the

FORTRAN compiler from disk into core storage, passes the name for the

object program from the control record to the compiler, and transfers

control to the compiler. The compiler reads the control cards and the

source language statements that follow the I / FOR control record. After

compilation, the object program can be called for execution with an XEQ control

card or can be stored on disk through a DUP operation. The FORTRAN com­

piler always generates object· programs in relocatable format.

3-7

Table 3-2. Disk Utility Program Control Statements

Identifier . Function

~----------------~~--------~------------------
*STOBE

* STORE DATA

* STORE MOD

*STORECI

*DICLE

*DUMP

stores relocatable programs in the relocatable

program area on disk from cards or from the

temporary program area. Parameters for this

control statement include, such information as

the disk drive where the program is to be stored

and the program name.

stores a block of data on disk from cards or

. from the nonprocess work storage area. Param­

eters for this statement include identification

of t~e disk drive and the name to be assigned to

the data.

Allows the user to store core loads or modify

existing nonprocess core loads and relocatable

programs without previously deleting them.

stores a program in core image form (i. e., as

a core load) i;D. the core load area and assigns

a name to the core load. Parameters specify

storage area,disk drive, type of core load, and

map of core load area.

Allows an interrupt core load, which must

already be on the disk, to be used to service

more than one interrupt, e. g., a generalized

error routine that handles spurious interrupts

for all process core loads.

Writes programs from the disk to the specified

I device (cards or line printer) or from a program

I area to a nonprocess work storage area. '--________ . ________ 1 ___________________________ ___

3-8

T.~ble 3-2~ Disk Utility Program Control Statements (Cont.)

Identifier ,Function
~ ____________ -t-________________ '_'~ ___ --'-__ t

~DUM:PDATA

*DUMPLET

*DELET

*DEFINE

Writes data or a core image program from

disk to a specified device (cards or line printer)

or from a program area to a nonprocess work

storage area.

Writes the contents of the location equivalence

table (LE T) or the fixed location equivalence

table (FLET) to the line printer. The printout

will include certain header information, alpha­

betic names, and disk addresses.

Deletes the specified program, core load, or

data file from the disk. A core load that is

called by another core load or as the result of

an interrupt can be deleted only if a replacement

core load -- also specified via *DELET -- is

available. When programs or data files are

deleted, no c~ecking is performed to determine

whether they are referenced from any core loads~

Defines variable parameter required by the

system, such as number of disk drives, size

of object core storage, packing of relocatable

programs on disk, specific system programs

to be removed from disk, and location and

size of disk areas used by the system. This

routine must be executed before the skeleton

is built.

3-9

Table 3-2. Disk Utility Program Control Statements (Cont.)

Identifier ,Function

------------+---:----------_._----_._--_._-
*SEQCH

*DLABL

*DWRAD

Enables the user to change the sequence· in which

mainline core loads are' executed.

Places an identifying number in the first sector

of the disk pack and writes sector addresses.

If a nonsystem drive is specified, DLABLcreates

a LET area (defining the balance of the pack as

an available area) starting in the second sector.

Writes addresses within a specified area on the

disk pack. Thus,- the user can zero the data

area, retain previous data, and initiate or

remove file protection.

Table 3-3. Core Load Builder Control Records

Identifier

*RCORD

*FILES

Function

Specifies the level and PISW bit positions for in-

I terrupts that are- to be recorded if they occur

during the execution of a core load. Only main­

line and combfuation core loads need this con­

trol record.

Establishes an equivalence between a symbolic

file number used in a FORTRAN DEFINE FILE

statement and the name in FLET of a data area

or the disk drive for the data area. FILE S can be

, used after an XEQ control record, a STORECI

c...----__ ~. ..

3-10

Table 3-3. Core Load Builder Control Records (Cont.)

Identifier

·.·*INCLD

*LOCAL

*CCEND

iFunction

control record, or a STOREMOD control record

for a nonprocess core load.

Specifies:

• By name, level, and bit, the interrupt

subroutines that are included with the

mainline or combination core load.

• The trace and error subroutines to be

used with the mainline, interrupt, com­

bination, or nonproce ss core . load.

• By name and level, the programmed in­

terrupt programs that are to be included

with the mainline or combination core

loads.

INCLD can be used after an XEQ control record,

a STORE MOD control record, or a STORECI

control record for a nonprocess core load.

Identifies load-on-call subprograms. More than

one program can be read into core by specifying

several programs in one LOCAL block. Once

the block is in core, it remains in the area until

it is overlayed by another LOCAL. LOCAL can

be used after an XEQ control record, a

STOREMOD control record, or a STORECI con­

trol record for a nonprocess core load.

Signals the end of the loader control record

stream. CCEND can be used after an XEQ con­

trol record (except when the XEQ record

3-11

Table 3-3. Core Load Builder Control Records (Cont.) .

Identifier !Function

!----~----~------------+---------------------~------.---------"----~
specifies a program in the core load area), a

STOREMOD control record, a STOREPATA

control record, or a STORECI control record

for a nonprocess core load.

Summary: These· five control 'records; enable the user to specify

special core load requirements. FILE S, LOCAL, lNCLE,

and CCEND are used to build nonprocess core loads.

Process core loads (loaded with STORE Cl) permit all

five records. Except for the CCEND record, all these

control records can be multiples.

The compiler control cards begin with an asterisk in column 1, which is

followed by a code word that identifies the process to be performed. Fol­

lowing the code word may be parameters required by the specific process.

Table 3-4 lists the control cards applicable to the FORTRAN compiler.

3.2.4 Assembler

When a / / ASM control record is read, the Nonprocess Monitor loads the

Assembler from disk into core storage, passes the name for the object

program from the control record to the Assembler, and transfers control

to it. The Assembler reads the control cards and the source language

statements that follow the / / ASM control record. After the assembly the

object program can be called for execution with an XEQ control card or

can be stored on. disk through a DUP operation. The Assembler can gen­

erate object programs in absolute or relocatable format.

3-12

Table 3-4. FORTR.AN Control Records .

Identifier

*IOCS

*LIST SOURCE
PROGRAM

*LIST SUBPROGRAM
NAMES

*LIST SYMBOL TABLE

*LIST ALL

* PUNCH

**

iFunction

Must be used to. specify all I/O.devices required

for execution of the program, including all II 0

devices used by any FORTRAN subprograms

that are called. IOCS can appear only in the

mainline program. The parameters (i. e., de­

vice names) must be separated by commas, and

the list enclosed with parentheses.

Specifies that the source program is to be listed

as it is read.

Specifies that the names of all subprograms (in­

cluding EXTERNAL subprograms) called directly

by the compiled program are to. be listed.

Specifies that all variable name.s, statement

numbers, statement function names, and con­

stants . are to be listed along with their respec­

tive relative addresses.

Specifies that all three items (source program,

subprogram names, and symbol table) are to be

listed. If this record is used, the other three

LIST records should not be included and vice

versa.

Causes control to be transferred automatically

after a successful compilation to DUP to punch

an object deck.

Causes the information from card columns 3

through 72 to be printed at the top of each page

produced during compilation.

3-13

Table 3-4. FORTRAN Control Records (Cont.)

Identifier iFu.nction

~-~---~--~---1f------------~'-----~-----

*TRANSFER TRACE

*ARITHMETIC TRACE

Specifies that the compiler is to generate lin.k­

ages to a trac:e routine whenever" an IF or . Com­

puted GO TO statement is encountered. Then,

if data switch 15 is on at execution time, the

trace output routine prints:

• The expression of an IF statement, pre:­

ceded by two asterisks .

• The value for the index of a Computed

GO TO statement, preceded by three

asterisks.

To select only parts of a program for tracing,

the user places statements in the source pro­

gram to indicate where tracing should start and

stop:

CALL TSTRT

CALL TSTOP

(to start trace)

(to stop trace)

TRANSFER TRACE and the operation of data

switch 15 are required as before, but now only

the statements between TSTRT and TSTOP will

be traced. (Data switch 15 can be turned off

at any time to terminate tracing.)

Specifies that the compiler is to generate"link­

ages to a trace routine whenever an arithnetic

statement is encountered. Operation is the

same as for TRANSFER TRACE, except that

the output routine prints the value for the assign­

ment of a variable on the left of an equals sign

~--------------~----~~---

3-14

· Table 3-4. FORTRAN Control Records (Cont ..)

Identifier ,Function

of an arithmetic statement, preceded by one

asterisk.

*EXTENDED PRECISION Directs the compiler to generate three-word'

real constants, and real variables to provide

extended precision for arithmetic operations.

*ONE WORD INTEGERS

*NONPROCESS
PROGRAM

Causes the compiler to allocate in the object

program one word of storage for integer var­

iables in a nonprocess program (instead of

two words for standard precision or three

words for extended precision).' In a process

program all integer variables are automatic­

ally generated as one word.

Differentiates nonprocess programs from

process programs. If this control record is

not present in the source deck, the compiler

assu:n:ss the program is a process program

(and automatically forces one-word integer

variables) •

The Assembler control cards begin with an asterisk in column 1, which is followed

by a code word that identifies the process to be performed. Following the code

word may be parameters required by the specific process. Table 3-5 lists the

control cards applicable to the Assembler.

3-15

Table 3-5. Assembler Control Records

Identifier I Function

~------------~--------+-----------------------------------.--~ .. ----
*TWO PASS MODE

. *LIST DECK

*LIST DECK E

*LIST

*PUNCH

*PUNCH SYMBOL
TABLE

Allows the Assembler to produce the" object pro­

gram by performing two passes over the source

program. Two passes are required when the

nonprocess work storage area used by the

Assembler is too small to hold the intermed-

. iate output of the assembly.

Directs the Assembler to output the uncom­

pressed object program to punched cards. This

operation requires the TWO PASS MODE control

record. Errors are identified by codes punched

in columns 18 and 19.

Directs the Assembler to output punched cards

only for those source statements that contain

errors. This operation requires the TWO

PASS MODE control record.

Causes the Assembler to output a listing of the

object program to the line printer. This oper­

ation requires the TWO PASS MODE control

record.

Directs the Assembler to output the compressed

object program to punched cards. The card

deck will be produced even if assembly errors

are encounte red.

Causes the Assembler to output to punched

. cards the symbol table upon completion of the

assembly.

3-16

Table 3-5. Assembler Control Records (Cont.)

Identifier !Function

~------------+-------------·---·-------I

*PRINT SYMBOL
TABLE

*SYSTEM SYMBOL
TABLE

*SAVE SYMBOL TABLE

Causes the Assembler to output the symbol

table to the line printer upon completion of the

assembly.

Directs the Assembler to incorporate the system

symbol table as part of the assembly symbol

table, thus enabling the user to reference system

symbols without defining them in his own pro-

gram.

Directs the Assembler to save the current as­

sembly symbol table in the system symbol table

area of disk storage, overlaying the previously

saved symbol table.

*OVERFLOW SE CTORS n Indicates to the Assembler the number (n, where

*COMMONn

1 ~ n ~ 32) of sectors of nonprocess working

storage available for possible symbol table

overflow.

Informs the Assembler that n words of the

COMMON area are alloted for linkages between

a FORTRAN mainline program and the assem­

bled program.

3-17

SECTION 4 - SYSTEM EVOLVEMENT

The Time-Sharing Executive System provides the user a selection of operational

modes. Through the Skeleton Executive he can perform process control and can

time-share the computer via the Nonprocess Monitor. On the other hand, the

user may choose to operate with the Nonprocess Monitor in an off-line mode.

The user elects the option of constructing an on-line or off-line system at system

generation time.

System generation is the process of preparing an operating system that comforms

to the user-specified machine configuration and options. The process provides

the facility for creation and maintenance of a monitored system that includes both

supplied and user-written programs and subroutines. For the TSS system this

facility is a stand-alone monitor program, the Temporary Assembled Skeleton.

4.1 TEMPORARY ASSEMBLED SKELETON

The Temporary Assembled Skeleton (TASK) enables the user to generate a system

on disk from absolute and relocatable program decks that contain the executable

phases and relocatable programs necessary for his installation. TASK is sup­

plied as an Assembly-language source deck and, thus, is not directly usable by

the installation. To assist the user in his initial system generation, General

Automation supplies to each installation a "starter" program, called System

Generation TASK.

4.2 SYSTEM GENERATION TASK

System Generation TASK (SYSGEN TASK) is supplied in assembled object format

and contains the basic elements necessary for system generation: Nonprocess

Monitor linkages, Skeleton Builder linkages, Absolute Loader. This starter pro­

gram is a limited version of TASK and supports a minimum machine configuration:

• One GA 18/30 Industrial SUpervisory System with a minimum of
8192 words of core storage

• One disk storage unit with one disk drive
• One card· reader
• One card punch
• One ASR-33 Teletypewriter

4-1

4.3 SYSTEM GENERATION OVERVIEW

The process of generating a TSS system is described brifly in the following para-

graphs to provide a point of orientation for the user in applying the procedures

that are detailed in section 7. Individual programs and routines that are mentioned

in these paragraphs and that have not been previously discussed are defined later

in this section.

SYSGEN TASK is loaded into core storage by a four-card routine, called the

TASK High Core Loader. After SYSGEN TASK is in core, the absolute loader

function can be used to load the Disk-Write Addresses Program. This program

initializes the disk to allow proper writing/reading of information. The system

loader is then used to load the disk-resident programs, including the Disk Util­

ity Program, Core Load Builder, and Nonprocess Monitor, to the disk. (Note

that the System Director and TASK are supplied as source decks; other control

programs ar~ supplied in absolute format; and subroutines are in assembled,

relocatable format.) Now, the Nonprocess Monitor can be called for execution

to assemble the user's configuration of TASK.

After the Nonprocess Monitor is brought from disk into core storage for execution,

the Nonprocess Supervisor accepts input from the card reader and calls the appro­

priate processor. Since TASK is supplied as an Assembl~'-language source deck,

an ASM control card will direct the Supervisor to call the Assembler for execution.

The user included with the TASK source deck certain control cards (i. e., EQU

cards) that define the specific machine configuration and options for his installation.

The Assembler assembles TASK and produces an object deck. Next, the System

Director -- with user-defined options -- is assembled, and an object deck of it is

produced. Finally, all user-written subroutines that are to be in the skeleton and

the user-written program that is to be the initial (cold start) core load are assem­

bled, and object decks for them are produced. At this point all the components

required to construct the skeleton are available in assembled, object deck format.

4-2

The Skeleton Builder is the supplied routine that constructs the system skeleton.

For an off-line system the skeleton consists of the TASK program, which is

loaded to disk by the TASK Disk Loader, and the Skeleton I/O routines.

For an on-line system the skeleton consists of the same Skeleton I/O

routines that TASK uses, INSKE L C OMM ON, the System Director, user-

written and TSS subroutines, and an area for tables and control information needed

by the System Director.

Once the TASK system skeleton has been built, it should be loaded into core, re­

placing SYSGEN TASK, for any further system generation functions. Operating

the off-line system under TASK, the user can assemble or compile his programs

that will execute under the Nonprocess Monitor. The next step in generating an

on-line system is to build the core loads. The Nonprocess Monitor is called to

assemble or compile the user-written process programs. Then the Core Load

. Builder forms the core loads and causes them to be written to disk in the proper

format and with the necessary control information in the various tables (see glossary

for definitions of Fixed Location Equivalence Table and Location Equivalence Table~

When the system is ready to operate, an on-line cold start is performed. The

supplied cold start routine is loaded from cards. The user identifies his cold

start core load to this routine via a name card. The cold start routine loads the

Skeleton Executive into the skeleton area and directs it to load the cold start

core load. The user's cold start core load is brought into VCORE and executed.

Off-line execution is initiated through an off-line cold start. In this case, the

user identifies TASK to the cold start routine via the name card. TASK is loaded

into the skeleton area, and control is transferred to it. The user can then sel­

ect which function to perform.

During system generation up to three separate disk packs can be produced. A non­

defined pack, which is actually an intermediate step of system generation, exists

with TASK in core and the supplied system on disk. This pack is used only for

assembling and compiling operations. The Nonprocess Monitor pack contains

TASK and the user's programs, data, etc. This is the off-line system with TASK

4-3

in the skeleton area and the Nonprocess Monitor in VCORE for execution of non­

process programs. (Process code loads cannot be executed when the system is in

off-line mode; i. e., with an off-line pack). The system pack contains the TSS system

skeleton and the user's process core loads. Both process and nonprocess programs

can be executed under time-sharing.

4. 4 !~~K.!>ISK __ W~rr~~Q~E~.~~J~RQ9~AM

Among the object format routines supplied with the TSS system is the TASK Disk

Write Addresses program. This program writes addresses on a specified disk and

then checks each sector by reading and writing three different bit patterns a given

number of times (specified by user). If no errors are encountered during this check,

an appropriate message is output, and the disk is ready for use. If any errors are

~ncountered during the check, a message is output, describing the sectors that are

not acceptable. If too many sectors are defective, the disk pack is considered

unacceptable, and an appropriate notice is output.

4. 5 ~X~TEM LOADER

The System Loader is used to store the TSS system on disk (the system disk drive).

This program is supplied as an object deck which is loaded by the TASK Absolute

Loader. The System Loader consists of five major components:

• System loader monitor

• Table builder

• Disk loader for absolute and relocatable programs

• Disk edit phase

• System loader error program

4. 5. 1 ~stem Leadter Monitor

This monitor controls the interface between the various components of the System

Loader. It reads control cards, analyzes the information, and takes appropriate

action. Furthermore, the monitor contains the library of input/output linkages

called by all components of the System Loader.

4-4

4.5.2 :.t'able Builder

After reading and verifying user-supplied assignment cards, the table builder routine

develops the assignment and I/O unit tables and initiates the master branch table.

4. 5.3 Disk Loader

Under control of the TASK Absolute Loader, the disk loader routine loads the TSS

system to disk 0 and records the appropriate entries in the Location Equivalence

Table (LET, see paragraph 4.8). Under control of the relocatable loader, this

routine loads the supplied subroutines and records appropriate entries in LET for

them.

4. 5. 4 Disk Edit Phase

This routine initializes the disk and the disk communications area with a standard

format as a base for the TSS nonprocess programs.

4.5.5 System Loader Error Program

When an error is encountered during System Loader operation, the System Loader

error program is called to analyze the error and to produce an error message.

Various types of errors are recognized, such as errors in control cards, procedural

errors in the execution of the System Loader, and errors in the format or sequence

of the loaded programs. The errors and recovery procedures are shown in appendix A.

4. 5.6 System Loader Control Cards

There are two types of control cards the user must insert in the supplied system

card deck prior to system generation:

• *DEDIT

• *I}\SSIClltMENT

These control cards enable the user to define the core size of the object system and

to aSSign the system interrupt levels. Section 7 contains illustrations that show the

proper placement of these control cards in the source deck.

4-5

4. 5.6. 1 Disk Edit Control Card

The disk edit control card (*DEDIT) is supplied partially pre-punched; it must be

completed by the user and included with the system deck at system generation time.

The *DEDIT is used to define the core size of the object machine and the disk

message buffer size. This card is the last control card read by the System Loader.

It oauses the System Loader to initialize the Fixed Location EqUivalence Table (see

paragraph 4. 8) area on the disk, to calculate the core size of the source machine,

to record the core size of the object machine in the disk communications area, to

provide file protection of the system and subroutine area, and to return control to

TASK.

The format of the *DEDIT card is

(~ 81215
*DEDIT ddK nnn CYL

*DEDIT - identifies this card as the disk edit control card.

dd - two-digit, decimal number that specifies the core size of the object

machine. One of three values may be punched in these columns: 08,

16, 32. Any other value is invalid.

K - indicates that the preceding two-digit number is in thousands; i. e OJ

8K, 16K, or 32K core size.

nnn - the number of groups of eight sectors to be .used for the object-time

disk message buffer. The entry must be in the range: 000:s nnn :s 199.

CYL - the letters CYL must be punched in columns 15 through 17.

The remaining card columns must be blank.

4.5.6.2 Assignment Cards

The assignment cards allow the user to aSSign I/O devices and machine functions to

particular interrupt levels. These assignments are made in the form of interrupt

aSSignment codes and logical unit numbers. Interrupt aSSignment codes (lAC) are

4-6

fixed for each device and cannot be changed. Logical unit nwnbers (LUN) are

selected by the user for linkage to FORTRAN programs. The permitted values

for LUNs are 01 through 44. Each device in the system must have one unique LUN

assigned to it. The fixed interrupt assignment codes and permissible LUN values

for the TSS system are listed in table 4-1.

The formats of the assignment cards are:

(!ASSIGNMENT

1 4 7 :> 72
11 ss iac, iac/lun,

*ASSIGNMENT - this card is supplied with the system deck; it contains only

these 11 characters and precedes the user-prepared

assignment cards.

11

ss

- specifies the interrupt level to which this card is applicable.

Each interrupt level used must be specified on an assignment

card. The entry must be in the range of 00 ~ 11 ~ 23 or 99.

The entry 99 specifies a dwnmy level to provide FORTRAN

linkages for either the keyboard-printers or second magnetic

tape unit.

- designates the number of interrupt level status bits assigned

to this level (ILSW). The entry must be in the range

01 ~ ss ~ 16 or ce. The letters CC indicate that this is

a continuation card; i. e., columns 7 through 72 of the

preceding card were not sufficient to contain all the ILSW

bi t assignments and, therefore, the assignments are

continued on this card.

4-7

Table 4-1. Interrupt Assignment Code/Logical Unit Number Assignments

Device
IAC Permitted

(Decimal) LUN Values

Interval timers 00 No LUN assignable

First keyboard-printer or 01 01 through 44
TTY on printer group 1

Card reader 02 01 through 44

Paper tape reader 03 01 through 44

First disk unit 04 No L UN assignable

Plotter 1 05 01 through 44

Line printer 1 06 01 through 44

Reserved 07 No LUN assignable

Second disk unit 08 No L UN assignable

Third disk unit 09 No L UN assignable

First ADC, analog input basic 10 No L UN assignable

Digital input 11 No LUN assignable

Digital analog output 12 No L UN assignable

Channel adaptor 13 No LUN assignable

Magnetic tape unit 14 01 through 44

First keyboard-printer or 15 01 through 44
TTY on printer group 2

Analog input expander, second ADC 16 No LUN assignable

Card punch 17 01 through 44

Line printer 2 18 01 through 44

Plotter 2 19 01 through 44

4-8

Table 4-1. Interrupt Assignment Code/Logical Unit Number Assignments (C,ont.)

Device
lAC Permitted

(Decimal) LUN Values

Keyboard 2 20 01 through 44

Keyboard 3 21 01 through 44

Keyboard 4 22 01 through 44

Keyboard 6 23 01 through 44

Keyboard 7 24 01 through 44

Keyboard 8 25 01 through 44

Paper Tape Punch 26 01 through 44

Command reject INT (magnetic tape) 27 No LUN assignable

End of table INT (magnetic tape) 28 No LUN assignable

Reserved 29-31 No LUN assignable

Console interrupts 32 No L UN assignable

Process interrupts 33 No LUN assignable

First comparator 34 No LUN assignable

Second comparator 35 No LUN assignable

Second TTY on printer group 1 36 01 through 44

Third TTY on printer group 1 37 01 through 44

Fourth TTY on printer group .1 38 01 through 44

Second TTY on· printer group 2 39 01 through 44

Third TTY on printer group 2 40 01 through 44

Fourth TTY on printer group 2 41 01 through 44

4-9

Table 4-1. Interrupt Assignment Code/Logical Unit Number Assignments (Cont.)

Device
IAC Permitted

W~~mal> LUN Values
. 1.·,. '.'_

Keyboard IT. 42 01 through 44

Keyboard 5t 43 01 through 44

Magnetic tape drive 2t 44 01 through 44

RPQXtt 45-63 No LUN assignable

tRequire interrupt level 99 (see paragraph 4. 6. 2) .

ttRPQX is an extension of RPQ for the disposition of the user.

4-10

iac, iac/lun ... groups of lAC or IAC/LUN assignments. The number of

groups must correspond to the number specified by ss

(columns 4-5). Groups are separated by commas. Each

group can consist of an lAC or an IAC/LUN combination.

When a group contains both an lAC and a LUN, the two

values must be separated by a slash. Not all lACs have

LUNs assigned. When an lAC has an assignable LUN, but

the LUN is not specified on the assignment card, the System

Loader assigns the LUN the same number as the lAC. A

LUN number can be assigned to only one device.

Card columns 12 through SO of the * ASSIGNMENT card and columns 3, 6, and 73

through SO (as well as any unused columns from 7 through 72) of the individual assign­

ment cards must be blank.

The System Loader builds a table of aSSignments, providing space for all LUNs up to

the highest LUN assigned. Therefore, when a system has minimum core storage

(SK system), the user should aSSign consecutive LUN numbers beginning with the

lowest possible value to limit the size of the table.

4. 5.6.3 Comment Cards

The user has the option of including comment cards anywhere in the system deck.

The contents of these cards have no effect on system generation, but are merely

output to the printer.

The format of a comment card is:

(1,. :.2/ 3* 5 any character string

The slashes in card columns 1 and 2 identify the comment card to the System Loader.

Card column 3 must contain a non blank character. The comments begin in column 5

and are terminated in column 72 or by three consecutive blank columns - whichever

occurs first.

4-11

4. 6 CORE LOAD BUILDER
I

As explained in Section 2, executable programs must be segmented into units called

core loads. This process is accomplished by the Core Load Builder. This program

operates under control of the Nonprocess Monitor. User-supplied control records

provide the Core Load Builder with information, such as the names of the relocatable

thainline, interrupts to be l'eoorded, data files to be used, interrupt routines to be

included as part of the core load, and LOCAL subprograms. Using this information

along with information provided by the System Loader and the Skeleton Builder, the

Core Load Builder generates the tables, transfer vectors, and work areas that are

combined with the instructions that make up a core load. The Core Load Builder is

used to construct process mainline, interrupt, and nonprocess core loads for storage

in the core image area on disk.

4.7 SKELETON BUILDER

The Skeleton Builder is the program that actually constructs the system skeleton from

the user-written and supplied routines. These routines must have been assembled or

compiled and stored on disk in relocatable format before the Skeleton Builder is

executed. The Skeleton Builder constructs the system skeleton in core image format

and stores it on disk; thereafter, the skeleton can be read into core, for execution,

by a cold start procedure.

In addition to its function at the initial system generation, the Skeleton Builder is used

to rebuild the system skeleton. Rebuilding the system skeleton is necessary any time

routines are added, deleted, or modified.

4.8 ;DISK LOCATION EQUIVALENCE TABLES

Two tables are maintained by the system to record information concerning the location

of programs, data, and core loads that are stored on disk. These tables are the

Location Equivalence Table and the Fixed Location Equivalence Table.

The Location Equivalence Table (LET) provides a map of system programs, sub­

routines, and relocatable programs on disk. Each entry inLET occupies three words

4-12

and includes the name of the function and its size (i. e., disk block count, where one

disc block is 20 words):

NAME
DISK BLOCK
COUNT

An entry is made in LET for each entry point in a subroutine. As user-written

relocatable programs are stored on disk, entries for them are also made in LET.

The System Loader loads the TSS programs for system operation. From information

supplied to it through control cards, the System Loader makes initial entries in LET

concerning the various system programs (FORTRAN, subroutines, skeleton, etc.),

work areas, save areas, message buffer area, branch tables, disk communication

area, core image program area, and process cold start programs.

Entries are also made in LET by DUP. Following the assembly or compilation of a

program, the relocatable object program is stored on disk in the relocatable program

area, and the appropriate entries are recorded in LET.

The Fixed Location Equivalence Table (FLET) provides a map of core loads and data

stored in the process core image storage (or core load) area and the various save

areas on disk. Entries in FLET occupy four words:

WORD SECTOR
NAME COUNT ADDRESS

Entries are made in FLET by the Core Load Builder after it converts relocatable

programs to core loads.

When a program or core load is deleted, its name in LET or FLET is replaced by

the name 9DUMY. Since the system can no longer locate the program or core load

name in the table (LET or FLET), that program or core load cannot be referenced.

Therefore, the area on disk that the program or core load had occupied is available

for the storage of other programs, core loads, or data files.

4-13

4.9 COLD START ROUTINE

The first routine to be executed by the system is the Cold Start routine. This supplied

routine is loaded with the system deck and resides in the storage protected skeleton

area on disk. Cold Start operation is initiated by a two-card cold start loader and a

name card. (Illustrations of these cards and procedures for their use are given in

section 7 .) At least one process core load must be on disk in the core load area to

be called to start the system.

The two-card cold start loader is supplied in a ready-to-use format; however, the

name card must be punched by the user. Its format is

*CLDST

name

p

c

1 8 14 16 18 20 22 24 ~ 80
*CLDST name p c d1 d2 d3 comments

- must be punched in columns 1 through 6.

- identifies the first core load to be called. This entry is required.

The name is entered in the field left justified, may consist of up

to five characters, and must begin with an alphabetic character.

- storage protection option:

blank = no storage protection

1 = storage protection selected

- clock option:

blank = no option selected

1 = clock option selected

4-14

d
1

, d
2

, d
3

- logical disk drive assignment (d1 F ~ F d3):

d1 = required; assigns a physical drive number to logical

drive o. It must be punched 0, 1, or 2.

~ = optional; assigns a physical drive number to logical

drive 1. It may be blank or punched 0, 1, or 2.

d3 = optional; assigns a physical drive number to logical

drive 2. It may be bla.nk or punched 0, it or 2.

comments - any comments may be entered in columns 24 through 80.

Columns 7, 13, 15, 17, 19, 21, and 23 must be blank.

The core load named in columns 8 through 12 is entered in full mask mode, i. e., all

interrupt levels masked. It is the user's responsibility to unmask for his system

configuration.

The nonprocess TASK name card has the same entries as described above with these

exceptions:

• name (columns 8 through 12) must be TASK.

• P and c (columns 14 and 16) must be blank.

TASK will unmask all levels.

4.10 TASK EQUATE CARDS

During the system generation procedure, the user must define the specific configuration

of TASK for his installation. This definition is accomplished through the use of

Assembler-language equate (EQU) cards. After preparing the EQU cards, the user

inserts them into the TASK source deck. (Section 7 contains illustrations that show

the proper location of the EQU cards in the source deck.) Thus, the assembled TASK

will be tailored for the specific hardware configuration and process requirements.

4-15

The TASK equate cards are arranged in two groups and are referred to as "group 1

and group 2 EQU cards." There are certain rules concerning the use of EQU cards

that must be followed:

1. All EQU cards for both group 1 and group 2 must be included in the source

deck when TASK is assembled.

2. The entries on the cards must be left justified in their respective fields.

3. If an EQU card is not applicable to the configuration being defined, that EQU

card must contain a 0 in column 35.

Tables 4-2 and 4-3 define the group 1 and group 2 EQU cards, respectively. These

tables specify the information to be supplied and the card columns it is to occupy.

4.11 SYSTEM DffiECTOR EQUATE CARDS

As with the TASK program, the System Director must be assembled during system

generation. There are a number of EQU cards the user must provide to ensure a

successful assembly. Section 7 contains illustrations that show the proper placement

of these control cards in the source deck. Table 4-5 defines the information to be

supplied and the card columns it is to occupy.

Certain groups of these equate cards are interdependent. That is, the values given

to the groups

NILOOthroughNIL23

USEOO through USE23

NBOO through NB23

and NULEV must not conflict. The following rules apply to the use of System Director

equate cards:

1. The System Director NULEV and the TASK NULEV equate cards must

contain the same value.

2. The value of NULEV must be greater than the value of these TASK equate

cards: CONTA, LVPRl, TYPLl, TYPL2. "

4-16

3. The value of NULEV must be 1 greater than the highest number USExx equate

cards that contains a 1; e. g., if USE16 is the highest numbered USExx card,

NULEV would be 17.

4. USExx equate cards that are assigned the value 1 must be consecutively

numbered starting with USE 00.

5. NBxx equate cards must contain 0 when the corresponding USExx card is 0,

or must contain a value between 1 and 16 when the corresponding USExx card

is 1.

6. The value of the NLWSI equate card plus th~t of the NLWS2~ eattd1lt18S1bb8:'~qual

to or less than the value of NULEV.

7. The sum of the values of NITPI and NITP2 must be 0 if the value of ITeUS

is O.

4-17

Table 4-2. Group 1 TASK EQU Cards

Label
Operation

Values
(cc: 21-25)

Code
(cc: 35-71)

Meaning
(cc: 27-30)

BZ1 EQU 20-319 Message unit size of TTY 1-1. t

BZ2 EQU 20-319 Mess~ge unit size of TTY 1-2.t

BZ3 EQU 20-319 Message unit size of TTY 1-3. t

BZ4 EQU 20-319 Message unit size of TTY 1_4.t

BZ5 EQU 20-319 Message unit size of TTY 2-1. t

BZ6 EQU 20-319 Message unit size of TTY 2-2. t

BZ7 EQU 20-319 Message unit size of TTY 2-3. t

BZ8 EQU 20-319 Message unit size of TTY 2-4. t

CDINS EQU 0, 1 o = CARDN is not to be in
Skeleton I/O. tt

1 = CARDN is to be in the
Skeleton I/O. tt

COMSZ EQU x~O Maximum size of INSKEL
COMMON for object machine.
The value of x may be zero or
any positive decimal number
that does not cause the skeleton
size to exceed the VCORE
boundary.

CONTA EQU 0-23 Interrupt level for console
interrupt routine programming
when a console interrupt occurs
and data switch 7 is off.

CORSZ EQU 8, 16, 32 Core size of object machine.

tIf the TTY has not been defined as buffering messages to disk and FORTRAN
compilations are planned, the message unit size must be greater than 80.

tt When CARDN is to be in the skeleton, it must be included in the Skeleton I/O; it
cannot be referenced in an *INCLD card at skeleton build time. If a Nonprocess
Monitor pack is required, the user should equate CDINS to 1 to conserve space.

4-18

Label
(cc: 21-25)

CRI?NO

DORG1

DORG2

ECPT1

ECPT2

ECPT3

INTKY

LORG1

LVPR1

Table 4-2. Group 1 TASK EQU Cards (Cont.)

Operation
Code

(cc: 27-30)

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

Values
(cc: 35-71)

1

0, 1

0, 1

0, 1

1-15

0, 1

1-23

0, 1

0-23

Meaning

TSS system requires both a card
reader and a card punch; there­
fore, a ° value is not applicable.

° = disk 1 on system.

1 = Any other configuration.

° = More than one disk drive
on system.

1 = 2311 disk drive.

° = EAC t printer is TTY.

1 = EAC t printer is line printer.

If EAC t printer is a TTY, see
table 4-4 for possible
combinations.

o = EAC printer is TTY printer
group 1.

1 = EAC printer is TTY printer
group 2.

User's interrupt level for
TYPEN routine programming
when a teletypewriter interrupt
occurs. Value must be greater
than that for TYPL1 and/or
TYPL2.

o ::: LIST printer is a TTY.

1 = LIST printer is a line
printer.

Interrupt level of line printer.

t EAC stands for TASK Error Alert Control.

4-19

Label
(cc: 21-25)

MKLEV

NOBUF

NOCYL

NlULEV

NUMBE

ONLIN

Table 4-2. Group 1 TASK EQU Cards (Cont.)

Operation
Code

(cc: 27-30)

EQU

EQU

EQU

EQU

EQU

EQU

Values
(cc: 35-71)

0, 1

0, 1

1-200

1-24

'1-1600

0, 1

4-20

Meaning

o = 14 or fewer interrupt levels
on system.

1 = 15 or more interrupt levels
on system.

o = No buffering of messages to
disk.

1 = Buffering of messages to disk.

Number of groups of eight
sectors on disk for buffering
of mes sages to the TTY.

Number of interrupt levels for
final TSS system; e. g., if inter­
rupt levels 0-6 are used, the
NULEV value is 7.

Maximum number of disk
sectors that can hold nonprocess
messages at anyone time. This
area may also be used for proc­
ess messages. The number of
sectors must not exceed
NOCYL x 8.

o = Delete the absolute loader
and the skeleton builder from
T ASK. The resulting TASK
deck is to be used only for
execution of the Nonprocess
Monitor and not for TSS
system generation; i. e. ,
gives the user an off-line
system that provides maxi­
mum core for execution of
Nonprocess Monitor programs.

1 = Provide all TASK functions.

Table 4-2.

Label
Operation

(cc: 21-25)
Code

(cc: 27-30)

ORLPI EQU

ORLP2 EQU

PORG EQU

PRICS EQU

PRILO EQU

PTSKP EQU

SLORG EQU

Group 1 TASK EQU Cards (Cont.)

Values
(cc: 35-71)

0

0

0, 1

0, 1

0-23

0, 1

1-8

Meaning

No overlap on analog input basic.

No overlap on analog input
expander.

o = No line printer on system.

1 = Any other configuration.

o = Standard precision arith-
metic sub:D(1)utines for I

"

process programs.

1 = Extended precision arith-
metic subroutines for
process programs.

Interrupt level of 2311 disk drive.

o :::; Transfer to EAC t for all line
printer not-ready errors.

1 = For a not-ready error when
PRNTN has been called by
a nonprocess program, loop
on not-ready; otherwise,
branch to EAC. f

If the SYSTEM or LIST printer
. is a TTY (see SORGI and LORG1),
it can be any on the system. If
both SYSTEM and LIST printers
are TTYs, they must be ,assigned
to the same TTY.

t EAC stands for TASK Error Alert Control.

4-21

Label
(cc: 21-25)

SORG1

TA01

TA02

TA03

TORG

TORG1

TORG2

TORG3

TORG4

Table 4-2. Group 1 TASK EQU Cards (Cont.)

Operation
Code

(cc: 27-30)

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

Values
(cc: 35-71)

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

Meaning

o = SYSTEM printer is a TTY.

1 = SYSTEM printer is a line
printer.

o = Delete full trace from utility
package.

1 = Retain full trace in utility
package.

o = Delete check/stop trace from
utility package.

1 = Retain check/stop trace in
utility package.

o = Delete disk dump from
utility package.

1 = Retain disk dump in utility
package.

o = No TTY on the system.

1 = Any other configuration.

o = One TTY on printer group 1. t

1 = Any other configuration.

o = Two TTYs on printer group 1.t

1 = Any other configuration.

o = Three TTY s on printer
group 1. t

1 = Any other configuration.

0= No keyboard-printer on
printer group 1.

1 = A keyboard-printer on
printer group 1

t Count a keyboard-printer as if it were a TTY.

4-22

Label
(cc: 21-25)

TORG5

TORG6

TORG7

TORG8

TORG9

TORGN

TRORG

TYPL1

Table 4-2. Group 1 TASK EQU Cards (Cont.)

Operation
Code

(cc: 27-30)

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

Values
(cc: 35-71)

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0-23

Meaning

0= No keyboard-printer/TTY
on printer group 2.

1 = Any other configuration.

° = One TTY on printer group 2. t

1 = Any other configuration.

° = Two TTY s on printer
group 2.t

1 = Any other configuration

o = Three TTY s on printer
group 2.t

1 = Any other configuration.

o = No printer-keyboard on
printer group 2.

1 = A printer-keyboard on
printer group 2.

o = No keyboard-printer/TTY
on system.

1 = Any other configuration".

o = Utility package is not to be
in TASK (when this value
is 0, TA01, TAO 2 , and
T A03 are ignored) .

1 = Utility package is to be in
TASK.

Interrupt level for TTY printer
group 1.tt

tCount a keyboard-printer as if it were a "TTY.

ttlf a keyboard-printer has been included in the group, interrupt
level 23 is not a valid assignment for the group.

4-23

Table 4-2. Group 1 TASK EQU Cards (Cont.)

Label
Operation

Values
(cc: 21-25)

Code
(cc: 35-71)

Meaning
(cc: 27-30)

TYPL2 EQU 0-23 Interrupt level for TTY printer
group 2.t

tIf a keyboard-printer has been included in the group, interrupt
level 23 is not a valid assignment for the group.

4-24

Table 4-3. Group 2 TASK EQU Cards

X identifies the backup printer assigned to the printer on the equate card

ECPT2. If no backup unit is available, assign the X value of the printer

being equated. The values of X are:

Label
(cc: 21-25)

BDT1

BDT2

BDT3

BDT4

BDT5

BDT6

BDT7

BDT8

X

DT1

DT2

DT3

DT4

Operation
Code

(cc: 27-30)

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

TTY Device

TTY 1-1

TTY 1-2

TTY 1-3

TTY 1-4

Value
(cc: 35-71)

X

X

X

X

X

X

X

X

X

DT5

DT6

DT7

DT8

TTY Device

TTY 2-1

TTY 2-2

TTY 2-3

TTY 2-4

Meaning

Backup TTY for TTY 1-1.

Backup TTY for TTY 1-2.

Backup TTY for TTY 1-3.

Backup TTY for TTY 1-4.

Backup TTY for TTY 2-1.

Backup TTY for TTY 2-2.

Backup TTY for TTY 2-3.

Backup TTY for TTY 2-4.

Note: Co~t a keyboard-printer as if it were a TTY.

4-25

Table 4-4. Error Alert Control Printer Combinations

EQU TTY TTY TTY TTY
Value i-lor 2-1 1-2 or 2-2 1-3 or 2-3 1-4 or 2-4

1 Yes No No No

2 No Yes No No

3 Yes Yes No No

4 No No Yes No

5 Yes No Yes No

6 No Yes Yes No

7 Yes Yes Yes No

8 No No No Yes

9 Yes No No Yes

10 No Yes No Yes

11 Yes Yes No Yes

12 No No Yes Yes

13 Yes No Yes Yes

14 No Yes Yes Yes

15 Yes Yes Yes Yes

4-26

Label
(cc: 21-25)

CBASE

DUMPl

ICLLl
ICLL2

ITCUS

NBOO
NBOI
NB02
NB03
NB04
NB05

Table 4-5. System Director Equate Cards

Operation
Code

(cc: 27-30)

EQU

EQU

EQU
EQU

EQU

EQU
EQU
EQU
EQU
EQU
EQU

Permissible
Values

(cc: 35-71)

xxxxx

0, 1

/xxxx
/XXXX

0, 1

xx
XX
XX
XX
XX
XX

4-27

Meaning

The number of times the time clock
is to be incremented before the
programmed times are incremented.

0= The routine that dumps core to
disk is not to be included.

1 = The routine that dumps core to
disk is to be included.

These two cards define two 16-bit
words that are used to identify the
interrupt levels the user has
elected to mask for the servicing
of out-of-core interrupts. The
first 12 bit positions of the ICLLI
value correspond to the 12 standard
interrupt levels (0 through 11) on
the system. Bit positions 13 and 14
of ICLLI and bits 0 through 10 of
ICLL2 correspond to the additional
12 levels available on the system.
The contents of the defined bit
positions of these words are stored
in the interrupt mask register.

o = The ITC program is not to be
included in the System Director.

1 = The ITC program is to be
included in the System Director.

00 :s XX :s 16. Labels NBOO through
NB23 are equated to the rightmost
bit plus 1 that is assigned to an
ILSW for a level. If there are no
bits on a level, the label must be
equated to o.

Table 4-5. System Director Equate Cards (Cont.)

Label
Operation Permissible

(cc: 21-25)
Code Values Meaning

(cc: 27-30) (cc: 35-71)

NB06 EQU XX
NB07 EQU XX
NB08 EQU XX
NB09 EQU XX
NB10 EQU XX
NB11 EQU XX
NB12 EQU XX
NB13 EQU XX
NB14 EQU XX
NB15 EQU XX
NB16 EQU XX
NB17 EQU XX
NB18 EQU XX
NB19 EQU XX
NB20 EQU XX
NB21 EQU XX
NB22 EQU XX
NB23 EQU XX

NILOO EQU XX 00 $ XX ~ 16. The NILOO through
NIL01 EQU XX NIL23 equate cards define PSIWl
NIL02 EQU XX through 24 respectively. XX equals
NIL03 EQU XX the value of 1 plus the highest
NIL04 EQU XX numbered PISW bit assigned to a
NIL05 EQU XX process interrupt; XX equals 0 if
NIL06 EQU XX no process interrupts are assigned
NIL07 EQU XX to a level. For multiple PISWs the
NIL08 EQU XX NILxx values should only be assigned
NIL09 EQU XX to those PISWs that are not serviced
NIL10 EQU XX as I/O devices.
NIL11 EQU XX
NIL12 EQU XX
NIL13 EQU XX
NIL14 EQU XX
NIL15 EQU XX
NIL16 EQU XX
NIL17 EQU XX

4-28

Label
(cc: 21-25)

NIL18
NIL19
NIL20
NIL21
NIL22
NIL23

NITP1

NITP2

NLWS1

NLWS2

NULEV

Table 4-5. System Director Equate Cards (Cont.)

Operation
Code

(cc: 27-30)

EQU
EQU
EQU
EQU
EQU
EQU

EQU

EQU

EQU

EQU

EQU

Permissible
Values

(cc: 35-71)

xx
XX
XX
XX
XX
XX

XX

xx

XX

XX

XX

4-29

Meaning

1 s :xx s 16. Number of CALL
COUNT subroutines 0-15. This
value is 1 plus the highest
numbered subroutine in the fir st
group (0-15).

1 s :xx :$ 16. Number of CALL
COUNT subroutines 16-31. This
value is 1 plus the highest
numbered subroutine in the second
group [16-31 = (0-15) + 1].

1 :$:xx -s 14. The value 1 plus the
number of the lowest priority level
(0-13) as signed to it programmed
interrupt.

1 :$:xx :$ 10. The value 1 plus the
number of the lowest priority level
(14-23) assigned to a programmed
interrupt.

1 s :xx s 24. Specifies the number
of interrupt levels to be compiled
in the System Director. The value
is 1 plus the highest numbered
interrupt level used. If levels 0
through 9 are used, NULEV is
equated to 10 (also see USExx
equate card).

Table 4-5. System Director Equate Cards (Cont.)

Label
Operation Permissible

(cc: 21-25)
Code Values Meaning

(cc: 27-30) (co: 35-71)

NUQUE EQU XX Specifies the number of entries to
be allowed in the Queue Table.
This number should allow sufficient
storage so that the Queue Table will
not overflow under normal conditions.
Each entry point in the Queue Table
requires three words of storage.

OPM01 EQU 0, 1 o = The user is to reset the opera-
tions monitor.

1 = The operations monitor is to be
reset by ITC when time-sharing
is in progress.

TBASE EQU -xxxxx This negative value is put in
timer C (word 6) to be counted down
for the time clock base.

TIMES EQU 0, 1 o = Time-sharing is not to be used.

1 = Time -sharing is to be used.

TIME 1 EQU /XXXX The labels TIME1 and TIME2 are
TIME2 EQU /XXXX the hexadecimal equivalence of a

double-precision number that defines
the time in milliseconds that is
calculated by the equation:

TBASE*HARDWARE BASE
for timer C

TIME1 is set to 10000 except when
the calculated time exceeds 65, 535
milliseconds, in which case two
words are required.

4-30

Table 4-5. System Director Equate Cards (Cont.)

Label
Operation Permissible

(cc: 21-25)
Code Values Meaning

(cc: 27-30) (cc: 35-71)

TISHA EQU XXXXX The number of times the pro-
grammed clock is to be updated
before time-sharing is terminated.

USEOO EQU 0, 1 LabelsUSEOO through USE23 define
USE01 EQU 0, 1 the level work areas. A label is
USE02 EQU 0, 1 equated to 0 if no work area is
USE03 EQU 0, 1 included for that level; it is equated
USE04 EQU 0, 1 to 1 if a work area is included on
USE05 EQU 0, 1 that level. When USE14 is equated
USE06 EQU 0, 1 to 0, the XIO and other coding for
USE07 EQU 0, 1 levels 14 through 23 will be origined
USE08 EQU 0, 1 out.
USE09 EQU 0, 1
USE10 EQU 0, 1
USE11 EQU 0, 1
USE12 EQU 0, 1
USE13 EQU 0, 1
USE14 EQU 0, 1
USE15 EQU 0, 1
USE16 EQU 0, 1
USE17 EQU 0, 1
USE18 EQU 0, 1
USE19 EQU 0, 1
USE20 EQU 0, 1
USE21 EQU 0, 1
USE22 EQU 0, 1
USE23 , EQU 0, 1

VCORE EQU XXXXX The starting address of variable
core; must be an even number.

4-31

SECTION 5 - PROGRAMMING CONSIDERATIONS

This section contains examples and programming sequences to illustrate the

recommended approach for various situations.

5.1 FORTRAN SUBPROGRAMS

Often the same group of statements is required to be executed at various

locations throughout a program. In order to speed up and simplify coding the

subprogram is used. A subprogram consists of a set of logical steps to per­

form a predefined operation on data supplied to it by the calling program. This

data is supplied by the use of arguments.

In 18/30 TSS FORTRAN there are two types of subroutines: SUBROUTINE and

FUNCTION subprograms. In each case the subprogram is coded and compiled

only once. It is then executed as needed without being included in the in-line

coding.

5.1.1 SUBROUTINE Subprograms

The first statement in a SUBROUTINE subprogram is the SUBROUTINE statement:

SUBROUTINE namex (a, b,c,)

namex

a,b,c,

name of the subprogram; it must be one to five alphanumeric

characters, and the first character must be alphabetic.

argument list. These consist of the variables to be used

in the subprogram. They may be nonsubscripted variables,

array names, or another subprogram name.

This is a dummy argument list so the names do not have to agree with those

in the calling program. However, the· arguments must agree in number, type

(REAL or INTEGER), order, and array size. None of the arguments may

appear in an EQUIVALENCE statement in the subprogram. When an argument

is an array name, the argument must appear in a DIMENSION statement in the

subprogram.

5-1

To establish the linkage to a SUBROUTINE subprogram, the CALL statement

is used:

CALL namex (x, y, z,)

namex

x,y,z,

symbolic name of the SUBROUTINE subprogram

arguments being supplied to the subprogram

The arguments in a CALL statement may be real or integer type and may be

subscripted variables, constants, array names, subprogram names, or

arithmetic expressions. The only restriction is that they must agree in order,

type, and array size with the corresponding arguments defined in the subprogram .

. Example:

// JOB X Y Z
// FOR SUBR

SUBROUTINE SUBR(AII,ARRAY)
DIMENSION ARRAY(10)
•
•
ARRAY(I) • A
•
•
RETURN
END

// FOR PROGM
DIMENSION X(lO)
•
•
Y =: 40.075
•
•
CALL SUBRCYI6,X)
•
•
END

// DUP
*STORECI M PROGM PROON RSTRT
*CCEND
// JOB X.Y Z
// END OF ALL JOBS

5-2

5. 1. 2 FUNCTION Subprograms

The FUNCTION subprogram is a FORTRAN subroutine that is executed whenever

its name appears in a FORTRAN program. The rules for FUNCTION names

are the same as those for FORTRAN variables.

The first statement in a FUNCTION subprogram is the FUNCTION statement:

FUNCTION namex (i, j, k)

namex

i, j, k

symbolic name of the subprogram

arguments to be passed to the subprogram

The rules for arguments in a FUNCTION subprogram are the same as those for

a SUBROUTINE subprogram. However, the following rules are also applicable:

1. An argument may not appear on the left side of an equals sign and must

not be redefined in any way.

2. The name of the FUNCTION must appear on the left side of an equals

sign at least once in the subprogram. (This is how the result of the

calculations within the subprogram is returned to the calling program.)

5-3

Example:

II JOB. X Y Z
II FOR SUSR .

FUNCTION,SUBRCX"I .. Z)
DIMENSION Z(10)
•
•
!

SUBR • x*ze!) + 10.835
•
•
RETURN
END

II FOR PROGM,
DIMENSION ARRAY(10)
•
•
XYZ • SUBRCROLxz.a.ARRAY) • 4 + sa.ls
•

•
•
•

. END
/~ DUP
*STORECI M I PROGN PROGM RSTRT
*CCEND
1/ JOB X Y Z
1/ END OF ALL JOBS

5.2 ASSEMBLER LANGUAGE SUBROUTINES

SUBROUTINE and FUNCTION subprograms to be called by a FORTRAN program

may be written in Assembler language. However, a knowledge of the coding

generated by the compiler is required. The linkage to each subprogram is

generated by the FORTRAN compiler in the same manner as an Assembler

language CALL. The argument list consists of a string of DC statements

defining the addresses of the arguments.

At core load build time the Assembler CALL is replaced by a BSI instruction.

5-4

Example:

FORTRAN CALL SUBR (I,J,K,)

ASSEMBLER
CALL SUBR (BSI L SUBR)
DC I Address of I
DC J Address of J
DC K Address of K

(N ext Executable Instruction)

:1 DC 40
J DC 6
K DC 18

A SUBROUTINE subprogram returns the results of its computations by means

of the argument list.

Example:

IIJOB X Y Z
IIASM

ENT
SUBR DC

IIDUP
*STORE
IIJOB X Y Z

LDX
LD
A
STO
BSC
END

I lEND OF ALL JOBS

L I
L I
L I
L I
L I

SUBR Define Entry Point
0 En~ry Point
SUBR XRI = Argument Address
0 LD I
1 Add J
2 Store in K
3 Return to Caller

SUBR

j

A FUNCTION subprogram returns its result via the floating accumulator for

floating-point results or the A-register for integer results.

5-5

Example:

FORTRAN CALL K = SUBR (I, J)

IIJOB X Y Z

IIASM
ENT SUBR Define Entry Point

SUBR DC 0 Entry Point
LDX LI SUBR XRI = ArgUment Address
LD LI 0 Load Argument 1
A LI 1 Add Argument 2

* Leave Result in A
BSC LI 2 Return to Caller
END

IIDUP
*STORE SUBR
IIJOB X Y Z
I lEND OF ALL JOBS

For a subprogram with floating-point results the following coding may be used

to get to the floating accumulator (words 41, 42, and 43 on the work level):

ANSWR

LIBF
DC

DEC

FLD
ANSWR

8.6

5.3 REENTRANT CODING

Since TSS is a multilevel operating system, a subroutine may be called from

different levels of execution. Care must be taken that partial or intermediate

results are not overlaid when subsequent calls are made to the subprogram.

This objective is accomplished by assigning to each interrupt level a block of

104 words, 42 words of which are available for storage by user-written pro­

grams. Also locations 54 and 55 in the fixed area of core, the contents of the

A- and Q-registers, the carry and overflow indicators, and index registers 1,

2, and 3 are saved and subsequently restored by MIC. MIC then sets word 104
10

to the base address of the current interrupt level work area. By loading index

5-6

register 3 (usual case) indirectly with the contents of word 104 and using this as

a base register for indexed instructions, different effective addresses are gen­

erated for each work level used., Note that the examples in paragraph 5.2 are

reentrant· since all data is held in the registers.

An alternative method would be to mask the system and thus prevent interrupts

from being recognized. For short sequences this method may be the most effi­

cient one to use. However, for long sequences it is undesirable since it

lengthens response time to interrupts.

5.4 TIMER SERVICING SUBROUTINES

There are three hardware timers on the 18/30. Under TSS the user has access

to the first two: timer A and timer B. Timer C is used by the system for

internal timing and to provide for nine software timers that are very similar -

from an operational standpoint - to hardware timers. Thus the user has access

to 11 timers.

To access a hardware timer, the following call is made:

CALL TIMER (name, n, int)

name symbolic name of the subprogram to be executed when the

timer goes to zero

n timer number (timer A = 1, timer B = 2)

int number of timer intervals to elapse before executing

subprogram name

NOTE: Name must appear in an EXTERNAL statement. Also a subprogram

cannot reference itself in a CALL TIMER statement.

The software timers are accessed by using the CALL COUNT statement.

When the System Director is assembled, the user has an option of specifying

how many COUNT subprograms will be included at skeleton build time. A

5-7

maximum of 32 is allowed. At skeleton build time the user-written su~programs

are included in the skeleton by use of a special *INCLD card. It has the

following format:

*INCLD name/llbb

name

11

bb

Example:

symbolic name of the subprogram to be included in the skeleton

constant (26 or 27) that spe~ifies the group of count routines

to which name is assigned (26 for routines 0-15 or 27 for

routines 16-31)

specific number (0-15) within the group

Count Routine No. 11 bb
0
1
2

15
16
17
18

31

26
26
26

26
27
27
27

27

00
01
02

15
00
01
02

15

The user can execute these subprograms by using the CALL COUNT statement

which has the format:

CALL COUNT (nt, int, ns)

nt

int

ns

number of the program timer to use (1 through 9)

number of timer intervals to elapse before execution

number of the subprogram to execute. This is the number

assigned during skeleton build.

Note that in the CALL COUNT statement no subprogram is referred to by name,

only by number. Therefore, a COUNT subprogram can reschedule itself for

execution by using a CALL COUNT statement.

5-8

5. 5 CORE LOADS

A core load is a module that resides on disk in an immediately loadable,

executable format. It consists of a program and anysubroutines:~ library

subprograms, or functions referenced by that program which are not part of

the system skeleton. Linkages to skeleton resident subroutines are deter­

mined when the core load is built and placed on the disk. Execution of the

core load begins with the System Director's loading the core load as if it were

data (no :relocation or correction of references is necessary). All core loads

are loaded into variable core, starting at the beginning address of variable core.

When the loading process is complete, the System Director branches to the

beginning of the program which was used as the basis for the building of the

core load. This address was symbolically specified by the END statement

when the program was assembled or was generated automatically by the

FORTRAN compiler.

There are three basic types of core loads: nonprocess, process mainline, and

interrupt. Nonprocess core loads are executed under the Nonprocess Monitor

in either the time-sharing or off-line mode of operation (off-line pack only).

This type of core load is meant to perform functions which are not related to

the on-line system or functions which are performed infrequently, at the

request of the system operator.

Process mainline core loads execute process-related functions as part of the

on-line system. The execution of process mainline core loads is determined

by a job queue within the skeleton as well as by direct core-Ioad-to-core-Ioad

sequencing using skeleton-resident linkage routines.

Interrupt core loads are loaded and executed in response to process interrupts.

When the specified interrupt occurs, variable core is saved in the interrupt

save area on disk. The interrupt core load is loaded for execution, and all

other levels which might be serviced by out-of-core interrupts are masked.

These levels remain masked until the interrupt core load has completed its

5-9

execution. At the completion of the interrupt core load, variable core is

restored so that processing at the mainline level (a process mainline core load

or a nonprocess function) can continue. Only one out-of-core interrupt is

allowed for each interrupt level. One interrupt core load may not interrupt

another interrupt core load regardless of the priority level assignments of the

two core loads.

The same core load can be used as an interrupt core load or a process mainline

core load by being designated as a combination core load when it is built. This

type of core load must be written to conform to the restrictions for both inter­

rupt and process mainline core loads.

5.5.1 Core Load Coding

The bulk of the coding is the same for programs used to construct any type of

core load. System considerations such as response time, available core, and

available disk space determine the type of core load used to perform a particular

function. Each core load type is initiated by a different element of the system.

For proper system performance it is necessary that each type exit via the cor­

rect system routine. Basic restrictions are imposed on each type core load so

that the system can operate efficiently. Coding a program to be used as the

basis for a core load requires a familiarity with the restrictions and capabilities

of each core load type.

5.5.2 Nonprocess Core Loads

Nonprocess core loads perform functions which are not related to the on-line

processor or which are run infrequently at the request of the system programmer

or operator. This type of core load is always executed under the Nonprocess

Monitor, usually during time-share. Nonprocess functions can be run off-line

under TASK only if an off-line disk pack is used.

There are two types of nonprocess core loads. Both types are built and

executed as the result of a nonprocess job stream. Type 1 is built in and

5-10

executed from the temporary (nonprocess working storage) disk area. Since

each / /JOB card causes the clearing of the temporary disk area, this type must

be built each time it is executed. Type 2 is built in the temporary disk area,

but is subsequently stored in the fixed disk core load area, and is executed

from the fixed area.

There are more restrictions placed on type 1 than on type 2 nonprocess core

loads. Table 5-1 summarizes the capabilities and restrictions on each type of

nonprocess core load. The restrictions shown in this table refer to the use of

system subroutines only. For example, a nonprocess core load cannot mask

the system using the MASK subroutine. It can, however, perform a direct XIO

in Assembler language which would accomplish the same results. The restric­

tions placed on nonprocess core loads are safeguards for on-line operation

integrity and should be observed. The restrictions that apply to nonprocess

programs refer also to subroutines called by nonprocess programs.

The coding for a nonprocess core load consists of any legal FORTRAN or

Assembler language statements. Two exits are provided. The normal

method of termination for a nonprocess core load is the CALL EXIT. This

call returns control to the Nonprocess Monitor which searches the control

deck for the next / / JOB card. If a second nonprocess core load has been

stored in the fixed core load area (i. e., a type 2 nonprocess core load), its

execution may be initiated by a CALL LINK (NAME). A call to the LINK rou­

tine terminates the execution of the present nonprocess core load and initiates

the loading for execution of the named nonprocess core load. The named core

load must have been stored in the fixed area prior to the execution of the

CALL LINK.

If FCBRTRAN is used, the *NONPROCESS PROGRAM control card should be

part of the compilation job stream for the program and any subroutines used

by the program. This allows for the checking of system references so that

5-11

Table 5-1. Summary of Capabilities and Restrictions of N onprocess Core Loads

I. Capabilities Type 1 and Type 2

• May be written in FORTRAN or Assembler language

• May use INSKEL subroutines for I/O

• May use system disk files

• May use nonprocess werking storage for temporary

working files

• May use any data processing peripheral

• May link to another nonprocess core load if that core load

resides in the fixed disk area

II. Restrictions Type 1 and Type 2

• Must be executed under time-sharing

• May not use system process I/O subroutines

• May not mask the system

• May not initiate a programmed interrupt

III. Capabilities of Type 2 Not Applicable to Type 1

• May alter mainline queue table

• May reference and set system clock

• May use hardware or programmed timers

• May sense mask status of system

• May clear recorded interrupts

nonprocess programs do not disrupt the on-line system. Use of the COMMON

statement refers to the high core area used by process mainline core loads.

Note, however, that no communication between process and nonprocess core

loads can be attained through this area, since the functions are completely

separate. This area can be used as a communication area between the non­

process program and its subroutines or between linked nonprocess core loads.

INSKEL COMMON may be referenced by nonprocess core loads used to change

system parameters.

5-12

Figure 5-1 depicts the job stream required to build and execute a type 1

nonprocess core load. The main program and each subroutine are assembled

as individual relocatable modules. These maybe stored in the relocatable

program area (LET area), but it is not necessary that they be. The relocatable

modules are placed in the temporary disk area automatically if the assembly

is error free. If the permanent LET area is not used, the modules must be

assembled each time the core load is to be built for execution.

The / / XEQ card is used to build and execute the core load when used as shown.

Columns 16 and 1'1 of this card must contain blanks indicating that the core load

must be built before execution. Columns 8 through 12 contain the name of the

relocatable program to be used as the basis for the core load· building process.

The cards following the / / XEQ card are control cards for the core load builder.

If FORTRAN disk I/O is used, these cards describe the files that the FORTRAN

program references (see summary of Nonprocess Monitor control cards) .

Figure 5-2 depicts the job stream required to build and execute a type 2 non­

process core load. The assembly of each element is identical to a type 1

nonprocess core load. The building sequence contains an important addition.

In this sequence the core load is built and stored in the core load area before

execution. The core load will remain in this area until deleted by a separate

job sequence.

The *STORECI card is used by the core load builder as the source of the basic

information necessary to build the core load. An explanation of the contents of

this card can be found in the summary of Nonprocess Monitor control cards.

Since the core load is stored in the fixed disk area, later execution can be

accomplished using the shorter job stream shown in the figure. The job stream

used to delete the core load from the fixed area is shown in figure 5-3.

5-13

II JOB X Y z
II FOR TEST

CALL SUB1

CALL SUB2

END
II FOR SUBl

SUBROUTINE SUB1

END
II FOR SUB2

SUBROUTINE SUB2

END
II XEQ TEST
*CCEND

II JOB X Y Z
I I END OF ALL JOBS

(FORTRAN Source Program)

(Data Cards if Required by Program)

Figure 5-1. Build and Execute a Type 1 Nonprocess Core Load

5-14

II JOB X Y z
II FOR TEST

CALL SUBl

CALL SUB2

END
II FOR SUB1

SUBROUTINE SUB1

END
II FOR SUB2

SUBROUTINE SUB2

(FORTRAN Source Program.)

END
*STORECI TEST TEST
*CCEND
·11 JOB X Y Z

I I END OF ALL JOBS

II JOB X Y Z
I I XEQ TEST FX

II JOB X Y Z
I I END OF ALL JOBS

(Data Cards if Required by Program.)

Figure 5-2. Build and Execute a Type 2 Nonprocess Core Load

5-15

II JOB

II DUP

*DELET

II JOB

x y Z

TEST

x Y Z

I I END OF ALL JOBS

Figure 5-3. Delete a Type 2 Nonprocess Core Load

5-16

Example:

IIJOB X Y Z
IIFOR NPRCS
*NONPROCESS PROGRAM-....... ---- (Specifies NonpJ'ooess Program;

Mainline Only)

CALL EXIT I-----------(Last Executable Statement in
END Nonprocess Program)

liD UP
*STORECI NPRCS NPRCS
IIJOB X Y Z ~ ~(No Restart Core
I lEND OF ALL JOBS ~ Load Specified)

(No Core Load Type Specified)

5. 5. 3 Process Core Loads

Process core loads perform functions directly related to the process that are

not extremely time critical. This might include a control program for a slow

reaction process, a logging program, or a data collection program. It is

executed by placing its name in the mainline queue table. When it is the highest

priority program in the queue, the VIAQ routine will read it into core and

execute it.

The only restrictions to process programs are as follows:

1. The last logical statement must be one of these:

• CALL VIAQ

• CALL CHAIN (NAME)

• CALL DPART

2. None of the following statements may be included:

• CALL ENDTS

• CALL EXIT

• CALLINTEX

5-17

Example:

//JOB
//FOR

XYZ
PRCSS

CALL VIAQ
END

//DUP
*STORECI M PReSS
//JOB
//END

5. 5. 4 Interrupt Core Loads

PRess

(If *NONPROCESS PROGRAM is
not specified, this is automatically
a process program.)

(Last executable statem.ent in
process program)

(Restart Core Load Name)

Interrupt core loads are loaded and executed in response to process interrupts.

Combination core loads (i. e., core loads that can be executed as both an inter­

rupt core load and a process mainline core load) must conform to the rules for

both types of core loads.

A typical interrupt core load is outlined in the following example.

Example:

//JOB X Y Z
//FOR INTCL

CALL INTEX
END

//DUP
*STORECI I 1 INTCL INTCL
//JOB
//END

(Written as Process Program)

(Last Executable Statement in
Interrupt Core Load)

LLBB

L
L-(Level and Bit to

respond to)

(No Restart Specified)
a....-___ (Specifies Interrupt Core Load)

5-18

5.6 INSKEL INTERRUPT SERVICING ROUTINE

IIJOB
IIFOR

x Y Z
SUBROUTINE INTRP

liD UP

CALLINTEX
END

*STORE INTRP
IIJOB X Y Z
IIFOR PROGM

IIDUP

CALL VIAQ
END

*STORECI M 1 PROGM PROGM RSTRT
*INCLD INTRY /0604
*CCEND
I/JOB X Y Z
/IEND

To include this subprogram in the skeleton use the same *INCLD card when

building the skeleton:

IlxEQ SKBLD
*INCLD INTRP /0604

*CCEND

5.7 CORE LOAD BUILDING

To build a core load all relocatable modules must be on the disk. However,

the modules may be loaded to the nonprocess working storage area of the disk

from cards immediately prior to execution of the core load builder. This fea­

ture may be used to provide a backup on cards in case of a system failure, to

conserve disk room, or to send a compiled or assembled program to another user.

5-19

The method outlined below may be used to generate the object decks.

//JOB X Y Z
//FOR SUBl
*PUNCH

SUBROUTINE SUBl

RETURN
END

//JOB X Y Z
//FOR PROGM
*PUNCH

. CALL SUBl

CALL.VIAQ
END

//JOB X Y Z
I lEND OF ALL JOBS

(FORTRAN Subroutine)

(Blank Cards)

(Blank Cards)

Later the object decks generated above can be used to generate a core load:

//JOB X Y Z

*STORE T RD o SUBl

(SUBl Object Deck)

*STORECI M RD 1 PROGM PROGM RSTRT

*CCEND
//JOB X Y Z
//END

(PROGM Object Deck)

5-20

The occurence of the / I JOB card at the end of the deck has erased any 'reference

to the relocatalble modules SUBl and PROGM in the nonprocess work storage

area. The core load PROGM is permanently stored on drive 1, and an entry

has been made in FLET to that effect.

The core load can be built from the source cards without punching an object

deck. Again, the relocatable modules are left in nonprocess working storage

and are not placed in the permanent user's area with resulting entries in LET:

IIJOB X Y Z
IIFOR SUBl

SUBROUTINE SUBl

RETURN
END

IIFOR PROGM
*NONPROCESSPROGRAM

CALL SUBl

CALL EXIT
END

IlxEQ PROGM
*CGEND
IIJOBXYZ
IIEND

(FORTRAN Subroutine)

Note that there is no I/JOB card between the subroutine·and the main program.

A I I JOB card reinitializes all references to the temporary (nonprocess work
:

storage) area. Thus, a / /JOB card would have erased any reference to SUB1,

and the core load builder would not have been ablE~ to include it in the core load.

If the modules previously compiled were stored in the LET area as well as being

punched into cards, the following sequence would be sufficient to build the core

load.

5-21

//JOB X Y Z

//DUP
*STORECI M 1 PROGM PROGM RSTRT
*CCEND
//JOB
//END

5.8 DISK STORAGE AREAS

There are several storage areas on disk with which the user is concerned.

Figure 5-4 shows a disk storage arrangement.

5. 8. 1 Core Load Area

The core load area is reserved for storage of core image programs and data

files . Each program or file in this area is assigned a fixed location and an

entry in FLET. Therefore, additional core loads or data files will not overlay

those previously defined.

5.8.2 Fixed Location Equivalence Table (FLET)

FLET serves as a disk map for the location of core loads and data files stored

in the process core image storage (or core load) area. Each file or core load

has an entry in FLET. As the user stores additional core loads or data files

on the disk, additional entries are made in FLET. A FLET entry has the

following format:

I NAME 1 NAME 2 I XXXX I y yyy I
L I I I L ;tarting sector addre ..

Drive code

t----Word count for core loads
or

---Sector count for data HIes

'---- Name of core load or data file in truncated EBCDIC

5-22

0000
DISK COMMUNICATIONS AREA

NONPROCESS SUPERVISOR

DISK UTILITY PROGRAM

ASSEMBLER

FORTRAN

LETIFLET

SUBROUTINES AND
RELOCATABLE PROGRAM AREA

NONPROCESS WOR K STORAGE

ERROR DUMP AREA

ERROR SAVE AREA

NONPROCESS SAVE AREA

MESSAGE BUFFER

PROCESS WORK STORAGE

FORTRAN 1/0 SAVE AREA

INTERRUPT SAVE AREA

CORE LOAD AREA

SPECIAL SAVE AREA

PROCESS SAVE AREA

SKELETON AREA

ERROR PROGRAMS

COLD START
1599

Figure 5-4. Disk Storage Arrangement

5-23

FILE
PROTECTED
AREA

NON·
PROTECTED
AREA

FILE
PROTECTED
AREA

There are two ways to make an entry in FLET:

• ' The ~STORECI function of DUP is used to build a core image program

and store it in the core load area. The relocatable mainline program

used to generate the core load may be in the relocatable area on the

disk or it may be in the form of a binary object deck entered through

the card reader.

• The *STOREDATA function of DUP is used to store data from cards to

the working storage or fixed areas. To reserve an area in the core

load area for future use as a data file ,a *STOREDA T A to the fixed area

is used.

5. 8. 3 Working Storage

There are two areas of working storage on the disk that are used as temporary

storage by system programs and user-written process or nonprocess core loads.

There are no entries in FLET for files set up in this area. Thus, any data left

in this area after execution of a system or user-written program may be over­

laid by another program. The nonprocess working storage area is used by the

Nonprocess Monitor and by user-written nonprocess core loads. The process

working storage area is used only by process programs. A process and/or

nonprocess work storage area may be assigned to each drive.

5.8.4 FORTRAN Disk Input/Output

To use the disk I/O routines in a FORTRAN program, an *IOCS(DISK) control

card must precede the source program at compilation time. This control card

can be used only with mainline programs. Subroutines using disk I/O do not

use 10CS control cards. However, a mainline program that calls a subroutine

which uses disk I/O must use an *IOCS(DISK) control card.

The DEFINE FILE statement is used to communicate to the FORTRAN compiler

the quantity and size of the data records within files that are used by a particular

program and its associated subroutines. Subroutines use the files as defined by

the main program so the DEFINE FILE statement will appear only with a

5-24

mainline program. The purpose of the DEFINE FILE statement is to divide the

disk area into files to be used in the disk READ, WRITE, and FIND statements.

The format of the DEFINE FILE statement is as follows:

DEFINE FILE i (n, 1, U, v)

i

n

1

U

v

a positive integer constant that is the symbolic designation

for this file. The value of i must be less than or equal

to 32,767.

an integer constant that defines the number of file records

in this symbolic file.

an integer constant specifying the number of words (length)

of each file record in this symbolic file. The value of 1

must be less than or equal to 320.

the letter U designates the file must be read/written with a

disk READ/WRITE statement; no data conversion is involved.

a nonsubscripted integer variable name that is set at the end

of execution of each disk READ, WRITE, and FIND state­

ment referencing this symbolic file. After a READ or

WRITE statement v is set to the value of the next available

file record. After a FIND statement v is set to the value of

the indicated file record. This variable must appear in

COMMON if it is referenced by more than one program at

execution time.

The format of the READ, WRITE, and FIND statements is as follows:

READ (i'r) list

WRITE (i'r) list

FIND (i'r)

i the symbolic file number; may be an unsigned integer

constant or an integer variable.

5-25

r

list

an integer expression designating the record number where

transmittal will start; may be an integer expression.

a list of variable names, separated by commas, for the

input or output data.

The FIND statement moves the disk read/write head to the specified record.

Its use is not required to perform disk operations.

The *FILES control card is used to assign symbolic FORTRAN files to specific

areas on the disk. The format of the *FILES control card is as follows:

(!FILES (i, NAME, d) (NO embedded blanks are allowed.)

i the symbolic file number that corresponds to the file number

in the DEFINE FILE statement in the FORTRAN source

program.

NAME the name of the data block to use. This is the same as the

name established by the *STOREDA T A control card. When

this parameter is used, the third parameter is ignored.

d the logical drive (0, 1, or 2) to use .ifa name is not present

in the second parameter.

Disk Storage Options. Three options exist for the as signment of files to specific

disk areas.

1. Do not include a *FILES card for a file that was defined in a FORTRAN

source program. The file length specified in the source program is

reserved in either process work storage or nonprocess work storage.

If more than one file is defined, successive files are set up in the disk

work area below the first file. Files that are assigned to disk work

storage by the loader for this option will all be located on the temporary

disk drive assigned by the / /JOB control card.

5-26

Example:

IIJOB X Y Z
IIFOR TEST
*IOCS (DISK)

DIMENSION IDAT(320)
DEFINE FILE 20 (1,320, U, NEXT)

Symbolic

WRITE 2CO~'1:.) ~ID~A~T ______ -=:::::::==:::--File
Number

READ (20 '82) IDAT (82)

CALL EXIT
END

IIDUP
*STORECI TEST TEST

*CCEND
IIJOB X Y Z
I lEND OF ALL JOBS

2. Assign the files to work storage on a specific drive. This method of

storage is the same as described in item 1, above, but the user must

include a *FILES card to assign the drive number. For this option,

no name is specified on the *FILES control card.

5-27

Example:

IIJOB X Y Z
I/FOR TEST
*IOCS (DISK)

DIMENSION IDAT(320)
DEFINE FILE 20 (1,320, U, NEXT)

WRITE

Symbolic
t::---------------=::::::=:;;::::;.,. File

READ (20'82) IDAT(82) Number

CALL EXIT
END

liD UP

*FILES(20, ,gr;J) __ -------------Drive 2
*CCEND L
IIJOB X Y Z
I lEND OF ALL JOBS

3. Write the files in the permanent areas of the disk. This option

requires that the area on disk that is to contain the files must be

named in FLET. Including this name as the second parameter of the

*FILES statement causes the third parameter (drive selection) to be

ignored.

5-28

Example:

//JOB X Y Z
//DUP

*STOREDATAD WSO FX2 NAMEX 001 00320
//FOR TEST
*IOCS(DISK)

DIMENSION IDAT(320)
DE FtNE FILE 20 (1,320, U, NEXT)

WRITE (20'1) IDAT

READ (20'82) IDAT(82)

CALL EXIT
END

//DUP
*STORECI

*FILES(20, NAMEX, 2)
*CCEND
/ /JOB X Y Z
/ /END OF ALL JOBS

5.8.5 Assembler Disk Input/Output

Symbolic
File
Name

The DSA statement allows a symbolic reference to a previously defined data

block in the core load area on the disk without requiring the specific location

of the data file or core load. The for.mat of the DSA statement ·is as follows:

label DSA namex

label the current value of the Location Assignment Counter when

the DSA statement is encountered.

namex name of a data area previously stored on the disk with an

*STORECI or *STOREDATA function.

The Assemblerreserves three words in the object program for each DSA

statement. These words are filled in by the Core Load Builder.

5-29

For a data file these words will contain:

WORD 1 LENGTH (IN SECTORS)

WORD 2 SECTOR ADDRESS

WORD 3 NOT USED

To operate on an entire data file, the length (sector count in word 1) must be

multiplied by 320 before a disk call is executed.

For a core load these words contain:

WORD 1 LENGTH (IN WORDS)

WORD 2 SECTOR ADDRESS

WORD 3 NOT USED

5-30

Example:

//JOB X Y Z
//DUP

*STOREDATAD WSO FX2 NAMEX 001 00320
//ASM TEST

//DUP

1I:E8T LllLD
M
SLT
STO

IOAR
D320
16
IOAR

LIBF DISKN
DC /2000
DC IOAR

D320 DC 320

IOAR DSA NAMEX
BSS 319

END TEST

*STORECI TEST TEST
*CCEND
//JOB X ,Y Z
/ /END OF ALL JOBS

Symbolic
File
Name

In writing to a file in the work storage areas of the disk, the displacement option

in the DISKN control parameter is used. The displacement option is the fourth

hexadecimal digit of the control parameter. When it is set to 1, the starting

address of either the process or nonprocess work storage area for the specified

disk (depending on which type of program called DISKN) is added to the sector

address in the I/O area to generate the effective sector address.

5-31

Example:

//JOB X
//ASM

Y Z
TEST

TEST LIBF
DC
DC
DC

IOAR DC
DC
BSS

DISKN
/2001
10AR
0

320
o
320

END TEST

//DUP
*STORECI
*CCEND

TEST TEST

//JOB X Y Z
/ /END OF ALL JOBS

5.9 INPUT/OUTPUT SUBROUTINES

Word Count
Relative Sector Address
Data Area

Input/output subroutines are provided with the TSS system to relieve the user

of the burden of handling all the details peculiar to each device. The provided

subroutines are:

Subroutine Name

Card I/O CARDN

Disk Storage DISKN

Printer /Keyboard TYPEN

Teletypewriter Printer WRTYN

Printer PRNTN

Magnetic Tape MAGT

Paper Tape I/O PAPTN

Plotter PLOTX

5-32

The CARDN, DISKN, and TYPEN (or PRNTN) subroutines must be included in

the skeleton area since they are required by the System Director. The rest of

the subroutines may either reside in the skeleton area or be loaded into VCORE

as needed.

The disk and printer routines may be referenced from any interrupt level,

masked or unmasked. All other I/O subroutines may be called only from

interrupt levels that are lower than the interrupt level associated with the

device being used. These subroutines assume the necessary interrupt levels

are unmasked so that the associated I/O interrupts can be recognized.

Each of the provided I/O subroutines operates as two units:

• The call unit, which is entered when a user's calling sequence is

executed.

• The interrupt response unit, which is entered as a result of an

I/O interrupt.

Except for DISKN, which does not save the contents of the A-register, all the

I/O subroutines save and restore the contents of the A- and Q-registers, the

index registers, and the overflow and carry indicators. In addition to saving

these register and indicator values, the call unit of each subroutine determines

whether any previous operation on the specified device is still in process,

verifies the legality of the calling sequence, saves the calling sequence, and

initiates the requested I/O operation.

When an interrupt is received during an I/O operation, the interrupt response

unit checks for errors, performs any necessary data manipulation, initiates

character operations, and -- in case of errors -- initiates retry operations.

This unit transfers control the the MIC routine which returns control to the

user's program.

5-33

The subroutines are referenced through calling sequences, which provide the

information (parameters) necessary for the subroutines to operate properly.

The calling sequences for all the I/O subroutines have the same format:

LIBF subroutine mnemonic

DC control parameter

DC I/O area

DC special condition parameters

A synopsis of the function of each of the I/O subroutines is given in the

following paragraphs.

5. 9. 1 Card I/O Subroutine - CARDN

CARDN performs all input/output functions relative to the card reader and card

punch. Although this subroutine is not reentrant for a single device, it may be

called from different levels for different devices. CARDN must be located in

the Skeleton I/O area.

For a read function CARDN first clears and then stores a -1 in each word of the

user-specified I/O area, initiates the input operation to read one card into the

input area, and returns control to the user's program. The data will be stored

in the input area in the format specified by the user.

For a punch function CARDN punches into one card the number of columns of

data specified by the word count at the beginning of the user's I/O area. The

character punched is the image of the leftmost 12 bits in the word.

For a test function CARDN determines whether a device is busy. If the device

tested is not ready (i. e. , the previous operation has not been completed),

control is returned for the calling program at location LIBF+2. If the device

tested is ready, control is returned to location LIBF+3. When CARDN deter­

mines a device is not ready on an I/O operation, it notifies EAC and then

returns control to the user's program (at the proper location depending on

which function was called). The requested operation is retained by CARDN

5-34

and will be executed the next time the routine is called and before the new

operation, if the device is ready. If the device is not ready, CARDN waits

until it becomes ready before executing both calls. Therefore, the user

should have a test function after each read, punch, and feed operation to

ensure that -- if the device was not ready at the time of the call for the I/O

function -- the function can still be executed when the device does become

ready.

For a feed operation CARDN advances all cards in the device to the next station;

e. g., a card at the punch station is moved to the stacker. During a feed opera­

tion no data is read or punched.

5. 9. 2 Disk Storage Subroutine - DISKN

DISKN performs all reading and writing of data from and to the disk. This

subroutine must be resident in the Skeleton I/O area and may be called from

any interrupt level, masked or unmasked.

DISKN is the only one of the input/output subroutines that does not save and

restore the contents of the A-register.

For a test function DISKN may be requested to perform either of two tests:

• Determine if the specified device is not busy

• Determine whether the input/output area referenced is in use by any

disk device

Control is returned to location LIBF+3 if the test indicates busy, or to location

LIBF+4 if the test indicates not busy.

For a read function DISKN positions the access arm and reads data into the

user' s input/output area until the specified number of words have been trans­

mitted. Should a read check error occur during reading, DISKN will ,attempt

ten times to re-read the data. If the error still exists, the read function is

terminated, and control is transferred to EAC.

5-35

For a write with readback check function DISKN determines whether the sector

address specified for writing is located in a file-protected area. If it is, DISKN

transfers control to EAC. If the specified sector is not file protected, DISKN

writes the contents of the I/O area onto disk. Writing a partial sector clears

the remainder of the sector to zero. A readback check is performed on the

data written. If the check identifies an error, the write ·operation is repeated

and rechecked (the function may be repeated up to ten times). If the error

persists, DISKN transfers control to EAC.

For a write without readback check function the operation is similar to that for

write with readbackcheck except that the check is not performed.

For a write immediate function DISKN writes data to the specified sector with

no attempt to recognize any error. To ensure validity of data written to disk,

use of the write with readback check function is recommended. Writing a

partial sector clears the remainder of the sector to zero.

For a seek function DISKN may be requested to:

• Seek to the groupof sectors specified by the sector address in the

user's input/output area.

• Seek to the next group of sectors, regardless of the specified sector

address. However, that sector address must be a valid one.

For a seek home function DISKN performs a seek to cylinder zero and ignores

the sector address specified in lOA. All interrupts are masked during the

operation of this function. Note that for a cold start or reload procedure a

seek home function must be the first disk operation called on a given disk.

5.9.3 Printer /Keyboard Subroutine - TYPEN, WRTYN

A single subroutine handles input and output for both the printer/keyboard and

the teletypewriter. If the system configuration does not include a printer /

keyboard, the keyboard portion of the subroutine is omitted during system

5-36

generation. The subroutine may be called by either of two names: TYPEN or

WRTYN. At assembly time the user must define two conditions for this subroutine:

• Whether or not messages to the teletypewriter are to be buffered to disk

• The message unit size required for each teletypewriter

This subroutine can control up to eight teletypewriters.

The test function is common to TYPEN and WRTYN. The subroutine determines

whether the specified device is busy. If the device tested is busy, control is

returned to the calling program at location LIBF+2. If the device tested is

ready, control is returned to location LIBF+3.

For a ,read-print function the subroutine reads from a keyboard and prints on a

specified printer the requested number of characters. Three keyboard functions

are recognized by the printer/keyboard subroutine:

• Backspace (ER CHR). The backspace key is used to indicate that the

previously entered character was in error. The subroutine overprints

that character with a slash and then is ready to accept a new character

to replace the erroneous one.

• Reentry (ER FLD). The reentry key is used to indicate that an entire

message is in error. The subroutine spaces to a new line and then is

ready to accept a new message to replace the erroneous one.

• End-of-Message (EOF). The end-of-message key is used to indicate

that a message is completed. The subroutine places an NL character

in the input/output area and terminates operations. (If the message

terminates because the word count reached zero, there will not be an

NL character in the I/O area.)

For a print function the subroutine outputs the specified number of characters

on the specified printer. The data to be printed must be in typewriter output­

code, packed two characters per i6-bit word. Control characters may be

embedded in the message. Note that a carriage return to a new line is not auto­

matic when the subroutine is called.

5-37

A message priority may be indicated in the calling sequence. When messages

are buffered to disk, four message priorities exist:

• EAC messages

• Keyboard entries

• Priority messages

• Normal messages

When messages are not buffered, there are only two priorities:

• EAC messages

• Keyboard, priority, and normal messages

To notify the system that data is to be entered, the operator simultaneously

presses the CONTROL and A keys on the keyboard. This action causes the

Printer /Keyboard Subroutine to set up an interrupt to a lower level. At system

generation time the user must have specified the level for this interrupt and

must have provided an interrupt program to service such interrupts.

5.9.4 Printer Subroutine - PRNTN

PRNTN handles all printing and carriage control functions for the line printer.

One line of data can be printed.2!. one carriage operation can be performed with

each call to this subroutine. The data to be printed must be in the user's I/O

area in BCD form, packed two characters per word.

For a test function PRNTN determines whether the previous operation has been

completed. If that operation has not been completed, PRNTN returns control

to the user's program at location LIBF+2. If the previous operation has been

completed, PRNTN transfers control to location LIBF+3.

For a print with checks function PRNTN prints the data from the user's I/O

area and checks for print errors. If an error is detected, PRNTN branches

to EAC after the line has been printed.

For a print without checks function PRNTN prints the data from the I/O area,

but ignores any print errors.

5-38

For a carriage control function PRNTN performs the specified carriage

operation (e. g., skip to indicated channel).

For a read carriage control tape function PRNTN determines which control tape

channel is on and stores a bit in the A-register to reflect the condition.

5.9.5 Magnetic Tape Subroutine - MAGT

MAGT performs all magnetic tape handling functions: test, read, write, and

control. The calling sequence for the MAGT subroutine must specify a special

condition routine. This routine will be entered when any of the following con ...

ditions occurs: end-of-table interrupt, end-of-file read, wrong length record

read, intermediate read or write check, read or write check on last record.

For a test function MAGT determines whether the previous operation has been

completed. If that operation has not been completed, control is returned to the

user's program at location LIBF+2. If the previous operation has been com­

pleted, control is returned to location LIBF+3.

Read functions may be requested with or without error retries. For a read

with error retries operation MAGT reads one record and checks for errors.

If an error occurred, the subroutine will re-read the record until the record

is read correctly or until 100 retries have been performed. If the record is

read successfully, MAGT exits normally. If the error persists after the

100 retries, MAGT branches to EAC, which will return control to the special

condition routine. For a read without error retries operation MAGT reads a

record, checking only for special conditions. Detection of such a condition

causes MAGT to branch to the special condition routine; otherwise, MAGT

exits normally.

Write functions may also be requested with or without error retries. The

operation for the write functions is the same as for the read operations except

that data is output instead of input and the number of retries is 3.

5-39

There are six control functions:

• Rewind. MAGT initiates a tape rewind operation and exits normally.

• Rewind and unload. MAGT rewinds the tape to load point and exits

normally.

• Backspace. MAGT backspaces the tape one record, unless the tape is

already positioned at load point in which case the operation is ignored.

• Write tape mark. MAGT writes a tape mark on the tape.

• Erase. MAGT erases approximately 3. 5 inches of tape.

• Reset. MAGT terminates the tape operation in progress and resets
/

all indicators.

5.9.6 Paper Tape I/O Subroutine - PAPTN

The P APTN subroutine performs all paper tape input and output operations:

test, read, and write. When PAPTN is called, it starts the specified device

and, as interrupts occur, transfers data to or from the user's I/O area in

core. As data is read, it is packed two characters per word into storage.

Data to be punched must appear in the I/O area in the same format.

For a test function P APTN determines whether the previous operation has been

completed. If that operation has not been completed, PAPTN returns control

to the calling program at location LIBF+2. If the previous operation has been

completed, PAPTN transfers control to the calling program at location LIBF+3.

For a read function PAPTN reads data from a paper tape reader into thespeci­

fied number of words in the I/O area.

For a punch function PAPTN transfers paper tape characters from the I/O area

to the paper tape punch. The operation terminates when a stop code is

encountered or when the specified number· of words have been read.

The user has the option of specifying that checking is to be performed during the

read or punch process. If no checking is specified, operation is as described

5-40

above, and no check is made to identify delete or stop characters . If checking

is specified, it functions with the PTTC/8 code. The PT·TC/8 code for DEL

is interpreted as a delete code during a read operation; it is not placed in the

I/O area and is not included in the count of words read. The PTTC/8 code

for NL is interpreted as a stop code during both read and punch operations. A

stop code, encountered during reading, is placed in the I/O area and causes

the operation to be terminated. A stop code, encountered during punching, is

punched in the paper tape and causes the operation to be terminated. When the

specified number of words has been transferred, the operation is terminated

whether a stop code has been encountered or not.

5. 9. 7 Plotter Subroutine - PLOTX

PLOTX converts the hexadecimal digits in the control parameter of the calling

sequence into a control word and stores it in a buffer (within the PLOTX sub­

routine) . One digit is stored in the buffer at each call to PLOTX. When the

plotter is ready to operate, the movement of the recording pen is controlled by

the words in the PLOTX buffer. The pen can be raised, lowered, and moved

in any direction.

5. 10 SUMMARY OF DUP OPERATION

The Disk Utility Program (DUP) is called by the Nonprocess Supervisor in

response to a / /DUP control card (table 3-1). DUP is also called automatically

following the completion of a successful assembly or compilation. The //DUP

control card must be followed by one or more DUP control statements (see

table 3-2). These statements define the functions to be performed by DUP.

The following paragraphs briefly describe the operation of the routines the

DUP control statements reference.

5.10.1 DEFINE Routine

This routine provides five options in performing disk operations. A / /JOB

card must follow each *DEFINE card.

5-41

5.10.1.1 Object Core Size

The OCORE option enables the user to specify the size of object core. Its

format t is

1
9 5

*DEFINE OCORE xx

where

OCORE

xx

identifies the option for defining or redefining the core size of

the machine that will execute the system being generated.

object system core size:

08 = 8192 words

16 = 16385 words

32 = 32768 words

Use of an *DEFINE OeORE card is not required when the System Loader

*DEDIT card is used.

5. 10. 1. 2 Number of Disk Drives

The NDISK option is used to specify the number of disk drives on the system. t

(1 195
*DEFINE NDISK x

where

NDISK

x

identifies the option that alters the communications area (DC OM)

to allow the user to change the number of disk drives assigned

to the system. When loaded initially, DeOM specifies only one

disk drive on the system. This specification must precede

skeleton build operation.

number of drives to be assigned to the system.

t:;~~;t:scot~ numbers are stacked; for example, column number 15

5-42

5.10.1.3 Disk Area Configuration

The CONFG option allows the user to specify the system configuration with

respect to the disk areas. t

~
1 3 3 4

1 9 5 2 8 4 9 4
*DEFINE CONFG x ... x LSKEL LINSV LICP LPWS FS

4 5

where

CONFG

x ... x

identifies the option for defining the user's variable disk area.

Multiple user-assigned disk areas may be specified on a

single card.

one to nine alphabetic characters specifying the user areas

being defined and the disk drives to which they are assigned.

If S is used, it must be in column 15; otherwise, the characters

may appear in any sequence. The field is terminated by a blank

column. The acceptable alphabetic characters are:

S - must appear in column 15 if used; indicates a group of

programs and disk areas (cold start program, etc.)

that are a basic set required by the system and that

are to be file protected. Must be followed by a numeric

character specifying a disk drive, or an X and the

numeric character. X designates that a special save

area is to be included· in the group of programs; i. e. ,

an area for saving VCORE when a CALL SPECL state­

ment is executed.

I - an interrupt save area is to be included; must be used

when an S or SX code is used. I must be followed by

a numeric character that specifies a disk drive.

P - a process work storage area is to be included; must

be followed by a numeric character that specifies a'

disk drive.

fTwo-digit column numbers are stacked; for example, column number 15
appears as ~ .

5-43

LSKEL

LINSV

LICP

M - a message buffer area on disk is required; must be

followed by a numeric character that specifies a

disk drive.

N - process and nonprocess save areas are required.

N is required in generating a time-sharing system;

must be followed by a numeric· character that speci­

fies a disk drive; can only be used when an S or SX

is also used.

F - a FORTRAN save area is to be included; must be

followed by a numeric character that specifies a

disk drive.

DE - a combined error dump and error program save area

is required; must be followed by a numeric character

that specifies a disk drive.

E - an error program save area without an error dump

area is to be included. This parameter is required

by EAC; must be followed by a numeric character that

specifies a disk drive; both E and DE cannot appear

on the same CONFG card.

C - a core load area is required on the disk; must not be

used if an S code is used; must be followed by a

numeric character that specifies a disk drive.

the estimated number of words in the skeleton that is being

built. This number must be an even decimal number, right

justified in the field, and equal to the address of the first word

of VCORE.

number of words in the interrupt save area; must be a decimal

number, right justified in the field.

number of groups of eight sectors required for the core load

area. Must be used if an S, SX, or C is used. Must be a

decimal number (may be all zeros), right justified in the field.

5-44

LPSW number of groups of eight sectors in the process work storage

area; must be used if a P is used. Must be a decimal number,

right justified in the field.

FS number of interrupt levels that use FORTRAN I/O.

5. 10. 1.4 Remove a Processor

The REMOV routine allows the user to remove a processor from the system.

1
9 5 (See footnote page 5-43.)

*DEFINE REMOV XXx

where

REMOV identifies the option to remove the assembler or FORTRAN

compiler from the system.

xxx name of the processor to be removed: ASM or FOR.

5. 10. 1. 5 Condense Relocatable Program Area

The P AKDK routine allows the user to condense the relocatable program area on

disk. Programs that are identified by a LET entry of 9DUMY are eliminated

during this operation, thus increasing the working storage.

1
9 5 (See footnote page 5-43.)

*DEFINE PAKDK x

where

PAKDK identifies the option to pack programs in the relocatable

program area.

x identifies the disk drive on which the packing is to be performed.

5. 10. 2 DLABL Routine

The disk label routine enables a user to address a disk pack, enter a new label,

change an existing label, or establish a LET or FLET area. Before an *DLABL

function can be used, the disk pack must be initialized by the TASK Disk Write

Addresses routine.

1
1

9 2
1 4
9 5

*DLABL n ppppp zzz comments
(See footnote page 5-43.)

5-45

where

n

ppppp

zzz

sp~cifies the logical disk drive number (0, 1, or 2).

a five-digit number; identifies the disk pack; 00000 :s ppppp :s 32767.

designates the size of the LET /FLET area in groups of eight

sectors; 000:s zzz :s 19910 •

5.10.3 STORE Routine

The Disk Utility Program's store routine allows the user to store relocatable

programs in the relocatable program area on disk. All programs loaded by

DUP are automatically file protected. Programs may be loaded from cards to

the user or temporary disk areas or from user and temporary disk areas to the

permanent user's area on disk. By inserting a 9 punch in column 3 of a data

card, the user can direct the store routine to ignore the card checksum.

GSTORE i !s ! Logn tmments
(See footnote page 5-43.)

where

d

ss

n

progn

destination of data being stored:

T = store from cards to temporary user's area.

~~k} = store to permanent area.

source of program to be stored:

RD = source is cards.

~i!nk}= source is temporary user's area (same interpreta-

tion for any character other than RD).

logical drive number (0, 1, or 2) on which program is to be

stored. A blank in this column directs DUP to use the lowest

numbered drive that has sufficient space for the program.

name to be assigned to the relocatable program being stored.

5-46

5. 10. 4 STOREDAT A Routine

The Disk Utility Program's data storage routine enables the user to store data

from cards to the working storage or fixed areas of disk or from working

storage to the fixed area. The data is unformatted. All programs loaded by

DUP are automatically file protected.

~
111112 33

1 135791 06
*STOREDATAt· ss n ii d progn. ccc wwwww

(See footnote page 5-43.)

where

t

ss

n

ii

d

indicates type of data being loaded:

D = "true" data; i. e., high-order bits of the FLET

entry are zero.

I = interrupt core load.

C = combination core load.

M = mainline core load.

blank = nonprocess core load.

source of input:

RD = source is cards and destination is specified by

columns 17-18.

/RD = source is working storage and destination is

implicity the fixed area.

logical disk drive number of source is working storage.

if input is from cards, ii specifies destination:

FX = store to fixed area.

blank = store to working storage.

specifies destination:

blank = if destination is fixed area, a search for space is

made of FLET on all system drives; if destination

is working storage, the temporary drive is searched.

number = only the specified drive is searched. Search is

as described above.

5-47

progn

ccc

wwwww

when destination is a fixed area, this parameter must be a name,

left justified in the field (columns 21-25) . Name should be the

same as used on the associated *FILES cards.

sector count }

word count

For type D (column 11) either parameter may

be used; word count takes precedence if both

appear iI For types other than. D word count

must be specified. If LOCALs occur, both

sector count and word count must be specified.

Maximum word count for a core load is 65536;

maximum sector count (for 64K) is 205.

If input is from cards, a *CCEND card must be the last card in the input stack.

5. 10. 5 STORECI Routine

The core image storage routine is used to cause a core load to be built and

stored in the core image area of disk. All programs loaded by DUP are auto­

matically file protected. When input is from cards, only relocatable mainline

programs can be entered. By inserting a 9 punch in column 3 of a data card,

the user can direct the storage routine to ignore the card checksum.

~
1112 2 3 3

1 91391 7 3 9
*STORECI m t rr n name1 name2 name3 llbb

(See footnote page 5-43.)

where

m

t

rr

specifies a core map is to be printed; blank specifies no map.

indicates type of core load to be stored:

I = interrupt core load

C = combination core load

M = mainline core load

blank = nonprocess core load

location of relocatable mainline to generate the core image

program:

RD = system input device

VA } blank = user area

5-48

n

name1

name2

name3

logical disk drive number (0, 1, or 2) on which core load will

be stored. A blank in this column directs DUP to use the lowest

numbered drive that has sufficient space for the core load.

name to be assigned to the core load being loaded; name is

placed in FLET.

name of relocatable program to be converted to core ima.ge.

name of mainline core load to be used when the core load being

loaded performs a cold start. Required for types (column 11)

M and C.

llbb level and bit position for the interrupt serviced by the core load;

applicable for types (column 11) I and C.

5. 10. 6 STOREMD Routine

The modify routine enables a user to make changes to existing nonprocess core

loads and relocatable programs without having to delete and replace the entire

item. All programs loaded by DUP are automatically file protected. By insert­

ing a 9 punch in column 3 of a data card, the user can direct the modify routine

to ignore the card checksum.

(

1 1 1 1 2
1 935791
*STOREMD m ss n

1
pp n2 namel

2 3
7 2 (See footnote page 5-43.)
name2 comments

where

m

ss

specifies a core map is to be printed if the program being

loaded is a nonprocess core load; blank specifies no map.

source of input:

RD = input is from cards.

:/RD } blank = input is from user's area or temporary area.

logical disk drive number where relocatable program is that is

to be used to modify old version. Blank specifies to search

temporary area first, then user areas.

5-49

pp

n2

name1

name2

Location of program to be replaced by new version:

FX = program to be replaced is a nonprocess core load.

blank = program being replaced is in relocatable format.

logical disk drive number where program to be replaced is stored.

name to be assigned to the program or core load being stored.

name of the relocatable main program used to create the core

load; required if columns 17-18 contain FX.

5. 10. 7 DUMP Routine

The dump routine outputs the specified number of words, sectors, or disk

blocks from the user's area, the fixed area,. or the working storage area to the

system I/O device or the line printer. The same routine may be used to dump

programs from the user's area or fixed area to the working storage area.

-r: 1 1 1 1 2 3 4 (See footnote
!DUMP 3 5 d

7d 9 1 5 5 t page 5-43.)
. ss n

1
n

2
progn xxxx commen s

where

ss

dd

xxxx

location of the program that is to be output:

WS = working storage (blank implies WS)

VA = user's area

FX = fixed area

logical disk drive number on which the program to be dumped

is located.

destination of output:

PN = system I/O device (blank implies PN)

PR = line printer

WS = working storage

logical disk drive for WS output.

name of program or data area to be output.

number of disk sectors to be output from nonprocess working

storage; the decimal number is right justified in the field

(columns 35-38).

5-50

When the output is from the fixed area to cards, an. *CCEND control card is

punched as the last card.

5. 10. 8 DUMPDATA Routine

This routine is similar to DUMP except that it is used to move blocks of data

instead of programs. The parameters are the same as those for *DUMP card,

except that progn identifies a data area rather than. a program.

1 1 1 1 2
35791

*DUMPDATA ss n
1

dd n
2

progn

3
5
xxxx

4
5
comments

(See footnote page 5-43.)

5. 10. 9 DUMP LET Routine

This dump routine outputs the contents of the LET and/or FLET areas from the

specified disk drives to the line printer.

~DUMPLET
where

a

n

1
1
a

2
1
n

4
5
comments

specifies the area to be output:

L = dump LET.

F dump FLET.

(See footnote page 5-43.)

blank dump both LET and FLET.

disk drive number (0, 1, or 2) when only the contents of a

single disk is to be output. Blank indicates all drives are to

be dumped.

5.10.10 DELET Routine

The delete routine allows the user to remove a named program, core load, or

data file from disk or to replace one core load with another core load of the

same type.

/
I !DELET

1
1
t

2 2
1 7
name1 name2

3
9

.llbb

5-51

4
5
comments

(See footnote page 5-43.)

where

t

namel

name2

llbb

indicates type of program to be deleted:

D = data

I = interrupt core load

C = combination core load

M = mainline core load

blank = nonprocess core load

Systems programs and systems areas cannot be deleted with

the DELET function (see *DEFINE REMOV).

name of program or core load to be deleted.

name of replacement core load (data can not be replaced).

the 2-digit interrupt level and 2-digit bit position within that

level, which is associated with the interrupt or combination

core load to be deleted.

5. 10. 11 SEQCH Routine

The sequence change routine allows the user to alter the sequence of existing

core load linkages for process or nonprocess core loads and to change linkages

to core loads referenced in the subroutines included in the skeleton. Names

are limited to five characters and are separated by blanks (except the replace­

ment name which is separated from the first calling core load name by a comma).

1 2
1 8 4 1 (Free Form) ...
*SEQCH curnt newnn, name1 name2 SKEL ... namen

where

(See footnote
page 5-43.)

curnt

newnn

name1-
name2

.SKEL

name of current (present) core load being called

replacement core load to be substituted for curnt in the

specified core loads

names of core loads that presently call curnt and in which the

calls are to be changed to newnn

a name given to the skeleton to allow references in the skeleton

to curnt to be changed

5-52

5.10.12 DICLE Routine

This routine allows a user to insert an interrupt core load entry in the ICL table

for each bit position on each level specified.

/" 1

1 !DT 8 4 *DICLE progn 11 (h1, b2, ... bn) 12 (h1, b2 ...)
(See footnote page 5-43.)

where

progn name of valid interrupt core load identified in FLET.

11 (b1 ...) two-digit level number and two-digit bit positions on which the

named core load (progn) is to be run. For process interrupts

11 may be 00 through 23, and b1 ... bn must specify the PISW

bit position associated with the hardware interrupts. For pro­

grammed interrupts 11 must be 24 or 25, and b1 ... bn must

be 00 through 13 or 00 through 09, respectively.

The first blank encountered after column 14 terminates the card.

5. 10. 13 DWRAD Routine

The Disk Utility Program's disk write addresses routine enables the user to

write addresses within a specified area on disk. The disk pack must have been

initialized by the TASK Disk Write Addresses program before an *DWRAD con-

trol record can be honored.

~WRAD
where

n

1 2 2 3 3 4
1 0 5 0 2 5 (See footnote page 5-43.)
n fff 111 Z P comments

the number (0, 1, or 2) of the drive containing the disk pack

where addresses are to be written. This parameter is required.

fff first address (hexadecimal value) to be written. Must be

divisable by 8.

III last address (hexadecimal value) to be written.

5-53

z

p

specifies that the contents of the disk is to be zeroed when the

addresses are written. If column 30 contains a blank or any

character other than Z, the disk data will be left unchanged.

indicated that disk addresses are to be written with file

protection. If a P is not present in column 32, the addresses

are not file protected.

5.11 COMMON AREAS

There are two areas of common storage available to the programmer using TSS:

the core load COMMON and the INSKEL COMMON. Core load COMMON is used

to communicate between a mainline program and its subroutines without passing

lengthy argument lists (see paragraph 5.1). It is located at the high end of

VCORE and is overlaid by subsequent programs. INSKEL COMMON is used

for communication between core loads. It is located in the skeleton between

the I/O subroutines and the System Director.

Common areas may be used with both FORTRAN and Assembler language

programs. The following FORTRAN statement

COMMON I,J,K

is equivalent to these Assembler language statements:

I
J
K

EQU
EQU
EQU

/FFFF
/FFFE
/FFFD

(-1)
(-2)
(-3)

INSKEL COMMON is referenced as follows:

COMMON/INSKEL I, J, K

The Assembler language equivalent is the same as in the COMMON statement

except the base address of INSKEL COMMON must be added to the addresses

of I, J, and K. This address is always located in word 156 of the fixed area.

5-54

I
J
K

EQU
EQU
EQU

LDX

LD
A
STO

END

11

1
1
1

/FFFF
/FFFE
/FFFD

156 Load Base of INSKEL COMMON

I
J
K

5-55

SECTION 6 - OPERATING CONSIDERATION

This section summarizes frequently required operating procedures. These

procedures require that an operating TASK program or a Skeleton Executive

be available. (The procedures for system generation, including assembling

TASK and building the skeleton, are presented in section 7.)

6.1 OPERATING TASK OFF-LINE

TASK may be operated off-line as a complete operating system. In this case

only data-processing activities are carried on; no process control is allowed.

When operating in this mode, all functions of the Nonprocess Monitor are avail­

able to the user; process core loads may not be built or executed. The pro­

grammed interrupts and hardware timers are not available to the user. If any

error occurs, the TASK error messages are printed rather than those gener-

ated by EAC.

There are two ways to execute a nonprocess program:

• To execute a nonprocess core load previously stored on the disk with

the *STORECI function of DUP.

• To build a core load and execute it immediately with no entry made

in FLET.

The control card for executing a nonprocess program has the following format: t

G/xEQ
1

8 4
name L

or

1 1
8 6 8
name FXn

tTwo-digit column numbers are stacked; for example, column number 14
, appears as ! .

6-1

name

L

(columns 8-12) is the symbolic name of the relocatable main

program to use as a basis for execution or the name of a core

load already built and stored on the disk.

(optional - column 14) when building a core load, a map of core

will be produced if an L is present in column 14. This param­

eter is ignored if the program is already stored on disk as a

core load.

FX (columns 16, 17) used when the program to be executed already

exists on the disk as a core load.

n (column 18) specifies on which drive the nonprocess core load

is located. If this column is blank, all drives beginning with

drive 0 will be searched to find the core load.

6.2 TASK DISK WRITE ADDRESSES

The TASK Disk Write Addresses routine writes addresses on a specified disk.

It verifies each sector of the disk by reading and writing three different bit

patterns. The number of times this process occurs is specified by the user.

When an error is encountered during a sector read/write, that sector is

rechecked 49 times. Should a second error occur on the same sector, the

entire group of eight sectors containing that sector is considered defective.

A table of defective sector groups is written on the first sector of the disk.

The words written are the logical sector addresses of the first sectors of the

defective group of eight sectors. The table is written in words 4, 5, and 6

of sector O.

The following procedures should be used to load and execute the TASK Disk

Write Addresses programs.

1. Load TASK into core.

2. Place the TASK Disk Write Addresses program, followed by two blank

cards, in the card reader hopper. Ready the card reader.

3. Set data switches 0 and 15 on to select the TASK absolute loader

function.

6-2

4. Press STEP switch. After the routine has been loaded, the following

message is printed:

TSS DISK WRITE ADDRESSES PROGRAM.

ENTER NO. TRIES ON DATA SW MAX001F.

5. Enter the number of times that the three patterns are to be written on

each sector, right justified, in the data entry switches. The number

must be a hexadecimal value within the range /0001 to /OOlF. Press

STEP switch.

6. If the number entered is not acceptable, the following message is

printed:

ENTER NO. TRIES ON DATA SW MAX001F.

Correct the entry (see step 5). Press STEP switch.

7. If the number of tries entered is acceptable, this message is printed:

DATA SWITCHES EQUAL LOGICAL DRIVE.

DRIVE CODES -- HEX 0000 THRU 0009.

8. Set data switches to the logical drive number of the disk to be initialized,

right justified (i. e., /OOOX). Press console STEP switch.

9. If the number entered is not acceptable, the following message is printed:

ENTER NO. TRIES ON DATA SW MAX001F.

Correct the entry and return to step 5.

10. If the first group of eight sectors (zero) is defective, the disk pack

cannot be used by TSS and the following mes sages are printed:

TIDS DISK PACK IS NOT ACCEPTABLE TO TSS BECAUSE OF
EITHER TOO MANY BAD CYLINDERS OR CYLINDER ZERO
IS BAD.

CYLINDERS 0000 ARE DEFECTIVE DO NOT USE SKEL. BLD
WITH THIS PACK.

DATASW OON GO TO TASK OFF REDO.

Set data switch 0 on to return to TASK or off to return to step 4.

6-3

11. If all sector groups are acceptable, the following messages are printed:

THERE ARE NO DEFECTIVE CYLINDERS.

DATA SW 0 ON GO TO TASK OFF REDO.

Set data switch 0 on to return to TASK or off to return to step 4.

12. If there is one defective sector group, the following messages are

printed:

CYLINDERS OOAA ARE DEFECTIVE.

DATA SW 0 ON GO TO TASK OFF REDO.

Set data switch 0 on to return to TASK or off to return to step 4. The

value OOAA is the logical sector-group number of the defective group of

eight sectors.

13. If there are two or three defective sector groups, the disk pack may

not be used for the skeleton build function. The following messages

are printed:

CYLINDERS OOAA OOAA OOAA ARE DEFECTIVE.

DO NOT USE SKELETON BUILD WITH THIS PACK.

DATA SW 0 ON GO TO TASK OFF REDO.

Set data switch 0 on to return to TASK or off to return to step 4.

14. If there are more than three defective sector groups, the disk pack

may not be used by TSS. The following messages are printed:

THIS DISK PACK IS NOT ACCEPTABLE TO TSS BECAUSE OF
EITHER TOO MANY BAD CYLINDERS OR CYLINDER ZERO
IS BAD.

CYLINDERS OOAA OOAA OOAA OOAA ARE DEFECTIVE.

DO NOT USE SKEL. BLD WITH THIS PACK.

DATA SW 0 ON GO TO TASK OFF REDO.

Set data switch 0 on to return to TASK or off to return to step 4.

15. If there is a seek failure (and the system is unable to recover), the

job is aborted; the following messages are printed:

CAN NOT COMPLETE SEEK - ABORT JOB.

DATA SW 0 ON GO TO TASK OFF REDO.

Set data switch 0 on to return to TASK or off to return to step 4.

6-4

NOTE: The logical sector-group numbers (N) of the defective groups of eight

sectors are printed in hexadecimal notation. To calculate the physical

cylinder number (C) of a defective cylinder, use the formula

C = N +D

where D is the number of defective sector groups preceding the group

whose physical number is to be calculated. The sector-group numbers

range from 0
10

to 20210 , i. e., from 016 to CA16.

6.3 TASK DISK DUPLICATION PROGRAM

The TASK Disk Duplication program copies the entire contents of one logical

disk drive (platter) onto another. All data words, including file protect status,

are duplicated. Before this routine is executed, disk addresses must be present

on both drives (platters). To load and execute the TASK Disk Duplication pro­

gram, use the following procedure:

1. Load TASK into core.

2. Place the TASK Disk Duplication program deck in the card reader hopper.

3. Set data switches 0 and 15 on to select the TASK absolute loader function.

4. Press STEP switch. After the routine has been loaded, the following

messages are printed:

TSS DISK DUPLICATION PROGRAM.

DATA SWITCHES EQUAL LOGICAL SOURCE DRIVE.

DRIVE CODES -- HEX 0000 THRU 0009.

5. Enter the logical drive number of the drive to be copied from, right

justified, in the data switches (i. e., /OOOX). Press STEP switch.

6. If the number entered is not acceptable, the message shown in step 4

is repeated. Return to step 5.

7. If the number entered is acceptable, the following messages are printed:

DATA SWITCHES EQUAL LOGICAL OBJECT DRIVE.

DRIVE CODES -- HEX 0000 THRU 0009.

8. Enter the logical drive number of the drive to be copied to, right

justified, in the data switches (i. e., /OOOY). Press STEP switch.

6-5

9. If the number entered is not acceptable, the message shown in step 7

is repeated. Return to step 8.

10. If the number entered is acceptable, the following messages are printed:

COPYING FROM DRV OOOX TO DRV OOOY.

DATA SW 0 ON CONTINUE OFF REDO.

11. If the correct drives are indicated, set data switch 0 on (down), and

press STEP switch. If incorrect drives are indicated, leave data

switch 0 off, and press STEP SWitch; the program will print the

messages shown in step 4. Continue with step 5.

12. After program execution is completed, the following message is printed:

DATA SW 0 ON GO TO TASK OFF REDO.

Set data switch 0 on to return to TASK or off to return to step 4.

6.4 SYSTEM COLD START

A system initialization (or cold start) of the TSS skeleton is accomplished by

loading and executing a three-card program using the initial program load (lPL)

feature of the GA 18/30 Computer.

6.4.1 Cold Start Name Card

The cold start program is supplied in a ready-to-use format; however, the name

card must be punched by the user. Its format is

6CLDST !ame
1 1 1 2 2 2)8
4 6 8 0 2 4 0 (See footnote page 6-1.)

P c d
1

d
2

d
3

comments

*CLDST

name

p

must be punched in columns 1 through 6.

identifies the first core load to be called. This entry is required.

The name is entered in the field left justified, may consist of up

to five characters, and must begin with an alphabetic character.

storage protection option:

blank = no storage protection

1 = storage protection selected

6-6

c clock option:

blank = no option selected

1 = clock option selected

d
1

, d
2

, d
3

logical disk drive assignment (d
1

-::f. d
2

-::f. d
3
):

d
1

= required; assigns a physical drive number to

logical drive o. It must be punched 0, 1, or 2.

d
2

= optional; assigns a physical drive number to

logical drive 1. It may be blank or punched 0,

1, or 2.

d
3

= optional; assigns a physical drive number to

logical drive 2. It may be blank or punched 0,

1, or 2.

comments any comments may be entered in columns 24 through 80.

Columns 7, 13, 15, 17, 19, 21, and 23 must be blank.

6. 4. 2 Cold Start Procedure

The operating procedure to load and execute the cold start program is as follows:

1. Clear core (see paragraph 6.5).

2. Place the three-card cold start program, followed by the user-punched

cold start name card and two blank cards, in the card reader hopper.

3. Ready the reader.

4. Place the system disk pack on drive O.

5. Ready the disk drive.

6. Set RUN/IDLE switch to IDLE.

7 . Set all data switches on the console to the off position (up).

8. Set register select switches 8 and 4 on (down).

9. Press ENTER switch.

10. Reset register select switches (all up).

11. Press ENTER switch.

12. Verify that the HALT switch is up.

6-7

13. Press IPL switch.

14. Set RUN/IDLE switch to RUN.

15. Press STEP switch.

16. Follow the instructions printed by the system printer.

6.5 CLEARING CORE

To use properly the storage protect feature of the GA 18/30 Computer, TSS

requires that all storage protect bits be set off and that all core locations

be set to zero when the system is initialized (cold started or loaded from cards).

To accomplish this purpose, a one-card program is loaded (using the initial

program load (IPL) feature) into the computer and executed. This program is

mown as ZAP.

To load and execute ZAP; use the following procedure:

1. Place the ZAP card in the card reader hopper.

2. Ready reader.

3. Set RUN/IDLE switch on console to IDLE.

4. Set all data switches on the console to the off position (up).

5. Set the storage protect override switch (SPO) on (down).

6. Set register select switches 8 and 4 on (down).

7. Press ENTER switch.

8. Reset register select switches (all up).

9. Press ENTER switch.

10. Verify that the HALT switch is up.

11. Press IPL switch.

12. Set RUN/IDLE switch to RUN.

13. Press STEP switch.

When the WAIT light comes on, core is clear.

6-8

SECTION 7 - SYSTEM GENERATION

This section gives step-by-step procedures for generating a TSS system from

supplied object and source card decks and from subroutines written especially

for the system application. Before using these procedures, the reader should

be familiar with section 4 of this manual, "System Evolvement. "

The minimum configuration for the TSS system is a GA 18/30 Industrial Super­

visory System with 8192 words of core memory, a disk drive, a card punch,

and a card reader.

7.1 SUMMARY OF SYSTEM GENERATION PROCEDURES

Generating an on-line or off-line system begins with a set of procedures that is

common to both types of systems. In this stage a "starter" system called

SYSGEN TASK starts the system generation process and directs the writing of

addresses on the disk, loading the supplied nonprocess system, assembling

T ASK and the System Director, and defining the disk system configuration.

In the second stage the procedures depend on whether an on-line or an off-line

system is being generated. For an on-line system, skeleton subroutin~s are

compiled, a system skeleton is built, process core loads are built, and an off­

line start is performed. For an off-line system relocatable programs are stored

on disk from cards, a nonprocess monitor pack is built, and an off-line cold

start is performed. A flowchart of these procedures is shown in figure 7-1.

7.2 SYSTEM GENERATION COMPONENTS

A set of supplied card decks and user-prepared control cards are required for

system generation.

7. 2. 1 Supplied TSS System

System object decks, control cards for the standard TSS system, and two source

decks are supplied for the system. The system object decks comprise a set of

7-1

LOAD SYSTEM
GENERATION
TASK

WRITE DISK
ADDRESSES

LOAD SUPPLI ED
SYSTEM DECKS

ASSEMBLE
TASK

ASSEMBLE
SYSTEM
DIRECTOR

DEFINE
SYSTEM
CONFIGURATION

COMPILE
SKELETON
SUBROUTINES

BUILD
SYSTEM
SKELETON

COMPILE
PROCESS
PROGRAMS

BUILD
PROCESS
CORE LOADS

ON-LINE
COLD START

NO

STORE
RELOCATABLE
PROGRAMS ON
DISK FROM CARDS

BUILD
NONPROCESS
MONITOR PACK

OFF-LINE
COLD START

Figure 7-1. System Generation Flowchart

7-2

cold start cards, a four-card TASK high-core loader, a SYSGEN TASK deckJ a

system loader, disc LET /FLET tables, disk communications area, a bootstrap

program, a supervisor, a core load builder, a cold start program, a set of !disk

utility programs, an assembler, a FORTRAN compiler, a subroutine library, a

skeleton builder, and stand-alone utilities. The supplied source programs are

a TASK and System Director source deck. A set of EQUATE cards for the

standard TSS system are included.

7.2.2 User-Prepared Control Cards

The user must prepare control cards such as *ASSIGNMENT and *INCIJ) cards

to tailor the system to the requirements of his process. Any EQU cards that

are needed for deviation from the standard system must also be prepared.

7.3 SYSTEM GENERATION PROCEDURES

This section contains the detailed procedures for building an on-line process and

nonprocess system as well as an off-line system. Each procedure is given in

the form of a table that includes page references to IBM manual descriptions and

paragraph references to discussions in this manual. Error codes for any errors

that may occur during the procedure are presented in appendix A. The manual

references are from IBM 1800 Time-Sharing Executive System: Operating Proce­

dures, Form C26-3754. The procedures start with the object deck shown in figure 7-2.

7. 3. 1 Loading TASK and Writing Disk Addresses

To generate a TSS system, the user must first load the TASK program and write

addresses on the disk. Table 7-1 lists the steps for loading TASK in core.

The table is applicable for loading SYSGEN TASK at the beginning of system

generation or for loading the operating TASK object deck after TASK has been

assembled.

A TASK Disk Write Address object routine is included as part of the utility

package supplied with TSS system decks. This routine is loaded and executed

by the TASK absolute loader function. The Disk Write Address program writes

7-3

UTILITIES

SYSTEM LOADER DECK

COLD START CARDS

Figure 7-2. Supplied System Object Decks

7-4

Table 7-1. Loading TASK in Core

Procedure Step
Page

Para~aph
Reference

1. Load the user pack on drive 0 and ready the

disk drive

2. Set the RUN - ID LE switch to ID LE (first

step in zeroing core)

3. Set the HALT switch on

4. Unlock the WSPS switch by turning it

clockwise

5. Set the SPO switch on

6. Load the ZAP card, supplied with the

system decks (see figure 7-3)

7. Ready the reader

8. Set all data switches off

9. Set REGISTER SELECT switches 4 and 8 on

10. Press RESET

11. Press ENTER

12. Set the HALT switch off

13. Press the IPL switch

14. Set the HALT switch on

15. Set RE GISTER SE LE CT switches 4 and 8 off

16. Press RESET

17. Press ENTER

18. Set the RUN-IDLE switch to RUN

7-5

Table 7-1. Loading TASK in Core (Cont.)

Procedure Step
Page

Paragraph Reference

19. Press the STEP switch.

20. Set the SPO switch off (last step in

zeroing core)

21. Place in the card reader hopper the 15, 82 4.1

SYSGEN TASK deck without the TASK high core

loader or an operating TASK object deck preceded

by the four-card high core loader (see figure 7-4)

22. Ready the reader

23. Select the loading address in the data

switches (first step in program load)

24. Set the RUN-IDLE switch to IDLE

25. Set the HALT switch on

26. Set REGISTER SELECT switches 4

and 8 on

27. Press RESET

28. Press ENTER

29. Set the HALT switch off

30. Press the IP L switch

31. Set REGISTER SELECT switches 4

and 8 off

32. Set the HALT switch on

33. Press RESET

34. Press ENTER

7-6

Table 7-1. Loading TASK in Core (Cont.)

Procedure Step
Page

Paragraph
Reference

35. Set the RUN-IDLE switch to RUN

36. Press the STEP switch (last step in

program load). Wait for the following message to

be printed:

GENERAL AUTOMATION 18/30 15
TSS V3M5

DATA SW 0 ON FOR ABSOLUTE LOADER

DATA SW 1 ON FOR NONPROCESS MONITOR

DATA SW 2 ON FOR SKELETON BUILDER

7-7

,...,f,lii i .. ·_~~ .\.:::-~ .. • .. 41 ··,.,."..·, ~ .. ·."-.~,.,""""rt'WlllUI ~, ~r·..;· ... "'.,.w #\,.,.~_ ..

I I I I I IIIIIIII I III1I II

I I III II I IIII II IDI II I II I

01000100011101110000001111010000000000001100000110110000011000010001100000000000
I 1. 3 4 5 6 7 8 9 10 11 17 13 14 15 16 11 18 19 70 21 212J 24 1576 21 782930 31 313334 35363738'3940 41 424341 4546 47 48 4~ ~O 51 52515,\ 555657 5P ',:)60 61 62 63 64 656667 69 69 70 /I n 1] 74 7516 17 " 19 10

1 I 1 1 I 1 I 1 11111 11111111 11111111 I I 1 1 1 1 1 1 1 1111 1 I 1 1 1111 111 1 1 1 1111 1 1 111 1 lilt 1 1 111 I 1 1 1·1

I
22222122221122212122121212222222222222112222221122211222211222122221122222.221222

313331333313313333311313133333333333311333333;011511113331ill1333331133333333333

44444444444444114444441444444444444411444444411444441144411444444444444444444444

51555155115551115551151155555555555111111815511555551155511555555551155555555555 1.'

6 6 6 6 6 6 6 '6 G 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 ~

I

;,

71777 7 7 7 7 7 7 7 7 7 7 7 7 11 7 7 7 11 7 777 7 7 7 77 7 7 7 7 7 7 7 7 111 7 7 1 7 7 7 1 7 7 7 777 7 7 7 11 7 7 7 7 7 7 777 7 7·1 717 7 1 7 , .

88 ~ 8 R R 8 8 3 n 8 8 8 R 8 8 8 8 8 8 8 R 8 8 8 8 8 I'

9 ~ 9 9 9 99 99 9 9 9 9 9 9 9 9 9 9 9 9 9 ~ 9 9)'.:.::.:.'
, t ~ 4 5 R 1 a • 10 11 \2 13 14 1~ 15 17 IP 19211 2112 i) ~4 i~ 26 21 28293031 31 J] H 3536 J7 3A 394(111 47 4141 4HG.' ~P ~9!>1I ~1 ~153 5155,,6575859 GO GI 6} rl 61 ~~ 66~' ~'I 6910 71 77. 73 14 1578." '/819111

(01 nSF "10 , ~, If,Nfl/lilO n'RM !i('PI
Sri,? *, ", "+'" ,.;,(*"'54** --_ .. -.....-. -....-..,........

Figure 7-3. ZAP Card

7-8

/. I 1 1 I III m I 1 I 1 II

j
. '00000:00000:10::0000:00010001:0::0::0::010.:.0::::0:100:::0:::0:1000:0.:.00::00:

t , 3 4 5 • 1 •• 10 11 U 13 t4 15 It 11 18 ,q 20 21 U U 24'5" " 282' 30 313233 34 J~ 3r. '7 :.8 3~ ~() 41 47 434445 4ft 41 4R 49 t.n 51 5153 S~ 5J 56 $1 58 U en ~I 82 6.1 B4 t.i 6881 tA M 70 /I 1213 ,. 151~ 1118'~ ~II

11111111tlll11

".11 1111212222212212.'22222111211222222222·121122111212121112122211111221222112222222

33331133333113133333133133311331~3133133333333U3131313331331&1313333133133311333

! 1444444414441414141414414441144444144444144414mCl444441444441144441414444444&444
j

1 15555515555555155555151155151555555555551555151555551555115111~51515155515155511

11111661111166166666611116666666666~ila16666666661alla66666666666666666666666666

17177771177177177771717111711111571117717711111777111777717717777777777777711117

1888888188s188188888s1888108888888818881888R88888Hsl88R888~~888n~888888R88888888

11111~glllmI9911IRI991111999999~999~CCC~9~999~9~9;~illq~9999~9999H9Y9~]9'9999999
1 7 3 4 5 6 7 8 q Ie It 12 13 14 IS I~ 11 18 1970 ?1 n 7J 24" 26 21 le:~)0 31 Jll3 34 JJ ,Iii 31 ,18 J9 40 41 411)44 45 ~6 41 1.0 49 ~o ~I ',} ',1 ~4 " ',.; ~1 ~, ~." ; fI '0) U ~4 (,r, [,r, H (iP 6~ '0 11 /) n 71 Ii Hi 11 18 1980

[,1 crE toH' , <;TilIJ!'MIP rp"M ~.Ofl1 .
.. ,.--..... _-----.. _----.-.. -.,.,~-. .----..

I II I I 1
IIIII IIIII II

I

III

I = III g
I I Ic~ca B Ie

-.----. ~' ~.~~-, -. -~.

10111IOIO~OIOI0100oaIIOOO~llooooonnoooooo~D~n~owOc~~oo00000000000000000000000000
I 1 J 4 ~ S 1 8 9 10 11 17 13 14 15 18 17 18 19 l' 11 1] ;,1 7. 7~ 26 1I ,07))0 31 :I:' 3] H !, 36 31 JR 39 404142 1.14'1 154': ,,, I,!, 49 ~0 :,1 ~15J 54 55 56 5' 58 5HO 61 6J 6J 64 6~, 6h 61 6~ 69 70 11 12 73 74 757677 /87910

11 iii 11 111111 1 1 1 1 1 1i~ g a I a IIII B 1111 1 EO 1 11 ~ 11GB 1 mill 1111 lIt

I 21 21 21 211 2 2 2 2 21 2 2 2 2 • 2 2 2 2 2 2 2 2 2 2 2 2 2 g D 2 2 2 2 2 2 a i1 ; 2 2 2 2 2 i 2

131313133333333133331333333333g33~n~33333igD~33~33333333333333333333j33333333333

14144414441441414441444414144414441;444444DID44444444444444444444444444444444444

51111551115555555515555551555515511155515511155155555555555555555555555555~·55555

11111661111166166666611116666666666IaliI66666666611~.166111116666666666666666666

i

t

~.~.;."' ..
f
!
I
!
I
f

I 7 7 111 71 7 1111 ·'1 7 11 7 1 1111111 71 i 1117 7 g 1 7 711 71 Z I ; 17 7 1 7 a 7 11 7 7 71 "111 7 7 7 7 7 7 7 1 7 7 7 1 7 1 7 7 1 7 i

I 8 8 8 8 8 81 8'8 8 I 8 81 8 8 8 8 8 818 8 R 18 8 8 8 8 8 8 8 8 a 8 8 8 g 8 8 8 6 8 8 8 8 8 8 818 8 8 8 R 81 ti 8 8 8 8 8 8 8 8 8 B 8 8 B B 8 B 8 B 8 8. t
111119~111119911i119911119999999999nBDma999999999mllll99111119g99~Y9Y999999939~9 J
, 2 3 4 5 F ; e 9 10 11 11 11 I. 15 If, 11 I. 1:1 on 71 n 13 H 1526 H 2871 30 11 JI ~] 34 l~ :16 37 3839404142 43 41 4~ 4~ 41 1~ H ~,n ~,I ~1 53 ~II ~" S6 ~7 ~,ft •• III 'I '.' r.l r, I r.'>t,J; f,7 ~8 ~q '0 /1 12 IJ H 75 16 1/ 18 1980 \

c>t(l(1l' ~;" t <:lfl"l[lfiRP ~(\nM !J0BI -_ -,.,. ,,------..-------_._-- _._-_._-,--,._ .. ,._._-

Figure 7-4. TASK High Core Loader Cards (1 of 2)

7-9

't
I
'.!

1
;

1

/ "., ";",.~" ,., .. ,., , ; . ,.,.~-'''''''.'''''.' "--'" '

./ 1 III II III I

II I I III 1I1I1 I

I

II I I

II I

II I

I

II

'" ih... : ', ... ~., ~';':.. .;', " '. ~"':'f

1I00000000oOIIOOOOIIOIOOOOlOOoooooaoi01100loooooOOOiOO01110100010101000000000000
1 2 3 4 5 6 7 8 9 In 11 12 13 14 15 16 t1 IA 19 1011 n 13 742526 11 79 79 30 '1 313334 353631 38 J~ ~il 41 41 4344 4'j 4~ 41 48495051 515354 5556 51 58 5~ 6061 61 63 64 r.~ 66 61 68 6g 70 11 127)14 7518 111819 80

1111 1 111 1 1 I 1 111111 1111111111 lIt 1 III 11111 I till I I I 1 1 1 1 1 1 1 1 111 1 tIl II B I 1 11 1 1 1 1 1 .. 1 1 1 1

221112111222222211221222221222ml221122122122222222222222222222222122222222222222

13133333333131133111333333313333333113133113333333313331313113311131333333333333

4444'444444444444444144444114444144414114414444444414444441114441141444444444444

5555155s155511155551155r555555555555U515555slD555511555~51551555~1~5555555555555

11111661111166166666611116666666666111116666666661111166111116611111666666666666

11117771177171177177717171771g~111/11771/7111iaJ7/7111 1171111117/111771117711711

188888s188818818888881888188888888818881888888888Rijl8888RilI8R~8~~IRH888H88888R88

111119~11111991IBU.99aII199999999g9ngaBD99~99~J99aglll9911.RI:191IAmD99999~g9999q
, 1 .1 • ~ 6 1 P 'I !I! 11 I; 1.1 ,~ 151611 lA 19 1071 n .'lll 7J 1~ 271829 JO JI n II J1 J' 1611 .18.1'140 '114.414' 4~ ~~ ·11 1.1'! '.'1 .' ',,' ',I iI' ,'~ 'I '.~. 1"'!.·1..1 r.~ I! 'II,A &"!II /I 17 1.171 15761/ 18 n p"

l~1 CPI Ii·' 1 <;: IINI'I\III' 1 <,PM ',(lR! . '-'--'~-'.---.--' -" ~----u .----~.-"." .. ,,-.----.----.--.-.-----.------

• I I I II I I

alii II I
o 0 II a i .1. 0 0 0 II 0 0 £I Ii !I n n n 0 0 0 0 0 0 n 0 0 0 0 0 0 r P 0 0 0 0 0 0 0 0 (I ~ 0 COO 0 0 0 n 0 0 0 0 0 0 0 0 0 n 0 (I (J 0 0 0 0 0 0 0 0 0 n 0 0
'1 J 4 ~ ~: 1 :1'11l!)11!1!~!' ,.0', '·I)'iJ7.,ll"7~177q~~JO~IJ;'11J\3IJr.Jll'~I.ntl~!11414~'1r.t'tAl·'·I'~1~'·ISI~J~r,~15A5Hrr.lf.161{1r"GCI"~·16~liJII111l741',1611191190

111111! 1111".' I I 1 I , 1 1 111111111111 I 111

271212.,172111;1 ;. l'li717IZ22212722l272722222222222222222222272222722'2222222222

3 3 13 3 3 1.3 13 ~ 1113 If ~I 1 a .1 I J 13 13 3 ~ 3 ~ 3 3 3 3 3 3 3 3 3 3 3 3 ,1 J 1 3 3 :1 3 3 3 a 3 3 3 3 3 3 3 3 3 33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 :~ 3

4 4 III ,1 ,t ,1 I it. 4 III" U 0' ,1, ~, q 14 ~ 14 4 4 4 ,1 4 .: ,I 4 1 4 ,1 4 4 ·1 4 'I 4 4 ·1 ,1 4 ~ -1 4 4 4 4 " 4 4 4 4 4 4 4 4 4 4 4 1 4 4 4 4 4 4 4 4 4 4 4 4 4

5 5 15 5 5 5 5 I ~i ~1 15 I 'i ~ ii I, ~ ~ ". Q ~1 ~i 5 5 ~i 5 5 5 5 5 ~ 5 5 ~ S 5 !, 5 ~J ~ ~I 5 5 5 5 ~ 5 5 5 5 5 5 5 5 5 !.i 5 r, ~ 5 5 5 5 5 ~I ~i 5 J ~J 5 5 5 5 5 5 ~ !i 5

11111116~111111.~I;gNIIII16616~666166iaggDaI6616G666666666111Ia6IG6GI6~6666666'666

17 7 7 7 1 7 7 7 I , 7 1 7 7 I ! , I I 1 17 7 7 1 7 III g g g 17 7 g 7 1 7 11 77 7 11 7 7 1 7 ., 7 7 111 7 7 17 1 711 7 717 7 1 ., ., 1 7 7 1 7 7 7

'888RRI8811111Ia~8B8818U88818888RIR8~888R8888188888n8RRR8R~18888181H888888888888

111111.4~19999~19999919g99919qg!919yC~aana~ggD~EDAgg999991DII19991999999QU999999
, , ~ 4 .,' P II' " I: I~ HI', ,r l' lR 19,0 '1,-' ;'1 :': 'r, 7r, ;; 7~ ,'1 '0.1' 1: '.I !4 .1" ,hi Ji " 1-1 ·1;1 ,I' ~ .:" 4~; 10, !: " .. : "',".' '., '1\ ", :.r, ~" ',11 :," :111 I,,' I' r.4 (.) f,r, t,/ n 69 7011 n ; I H /" 11; 1/ I~ 1190

'Il ., ;'.\!t'.\rt. 1\\1,"1 ',"1
~ ~ - -.. -... ' ... - .. - .-~----.---.--- -... ----.--.. -- .. --.-........... -.---.-~' .. _ .. _---_ -.... _',.-."'_ .. _-.-..• -_ , " •... -

Figure 7-4. T ASK High Core Loader Cards (2 of 2)

7-10

r
I

I
r

t
r
i,

addresses on a specified disk and checks each sector of the disk by reading and

writing three different bit patterns a specified number of times. If an error

occurs during a sector read or write, that sector is rechecked 49 times. If a

second error occurs on the same sector, the group of sectors containing that

sector is considered defective. The logical sector address of the first sector

of the defective group is recorded in words 4, 5, and 6 of the first sector of

the disk.

To write addresses on the disk, follow the procedure given in table 7-2.

7.3.2 Loading the Supplied System Decks on Disk

To load the supplied system decks on the disk, perform the steps listed in

table 7-3.

7.3.3 Assembling TASK

This procedure is presented with the assumption that the system decks have

been stored on drive ° or that a nonprocess monitor pack is available, and that

SYSGEN TASK or an operating TASK has been loaded in core. To store the

system decks on drive 0, see paragraph 7.3.2. To build a nonprocess monitor

pack, see paragraph 7.3.12. To load TASK in core, see paragraph 7.3.1. If

the nonprocess monitor pack is being used, perform the cold start procedure

described in paragraph 7.3.13.

If the requirements have been met, assemble TASK by performing the steps

outlined in table 7-4.

7.3.4 Assembling the System Director

A preassembled standard System Director deck is supplied with the TSS system.

If it is necessary to change this program for any reason - for example, to change

the base on the time clocks - the supplied source deck should be used and

assembled according to the procedure given in table 7-5. It is assumed in this

procedure that the system decks have been stored on drive ° or that a nonprocess

7-11

Table 7-2. Writing Disk Addresses

Procedure Step

1. Place in the card reader hopper the TASK

Disk Write Address program followed by a blank

card

2. Ready the card reader

3. Set data switch 0 on

4. Set data switch 15 on

5. Press the console STEP switch. The TASK

absolute loader function will be executed. When the

routine is loaded, observe the following. message:

TASK DISK WRITE ADDRESSES PROGRAM

ENTER NO. TRIES ON DATA SW MAX001F

6. Enter right justified in the data switches the

number of times that the three patterns are to be

written on each sector. The range of numbers

accepted is hexadecimal 0001 to 001F

7. Press the console STEP switch. If the

number entered is not acceptable, the following

message is printed:

ENTER NO. TRIES ON DATA SW MAX001F

Correct the entry and return to step 6. If the

number of tries entered is acceptable, the following

message is printed:

DATA SWITCHES EQUAL LOGICAL DRIVE

DRIVE CODES--HEX 0000 0001 0002

7-12

Page
Reference

26

22

Paragraph

4.4, 6.2

6.2

Table 7-2. Writing Disk Addresses (Cont.)

Procedure Step

8. Enter right justified in the data switches

the logical drive number (OOOX) of the disk to be

initialized

9. Press the console STEP switch. If the

o group of sectors is defective, the disk pack

cannot be used by TSS and the following messages

are printed:

TIDS DISK PACK IS NOT ACCEPTABLE TO
TSS BECAUSE OF EITHER TOO MANY BAD
CYLINDERS OR CYLINDER 0 IS BAD

CYLINDERS 0000 t ARE DEFECTIVE

DO NOT USE SKEL. BLD WITH THIS PACK
DATA SW 0 ON GO TO TASK OFF REDO

Set data switch 0 on to return to TASK or off to

return to step 5

Page
Reference

Paragraph

tThe logical number L of the defective group of eight sectors (i. e. ,

"cylinder") is printed in hexadecimal notation. To calculate the physical

group number P of a defective group of sectors, use the following formula:

P = L +N

where N is the number of defective groups preceding the group whose

physical group number is tobe calculated. The group numbers range

from 0
10

to 202
10

, that is from 0
16

to CA
16

.

The TASK Disk Write Address program writes a table of defective

groups of sectors on the first sector of the disk. The words written

are the logical sector addresses of the first sectors of the defective

groups of sectors. The table is written in words 5, 6, and 7 of sector O.

7-13

Table 7-2 ... Writing Disk Addresses (Cont.)

Procedure Step

If a group of sectors (cylinder) other than group 0 is

defective, the following messages are printed:

CYLINDERS OOXX ARE DEFECTIVE

DATA SW 0 ON GO TO TASK OFF REDO

where OOXX is the logical group number of the

defective cylinder. Set data switch 0 on

to return to TASK or off to return to step 5. If

there are two or three defective groups of sectors,

the disk pack may not be used for the skeleton build

function. The following messages are printed:

CYLINDERS OOXX OOXX OOXX
ARE DEFECTIVE

DO NOT USE SKELETON BUILD WITH
THIS PACK

DATA SW 0 ON GO TO TASK OFF REDO

Set data switch 0 on to return to TASK or off to

return to step 5. If there are more than three

defective cylinders, the disk pack may not be used

by TSS. The following messages are printed:

TInS DISK PACK IS NOT ACCEPTABLE TO
TSS BECAUSE OF EITHER TOO MANY BAD
CYLINDERS OR CYLINDER 0 IS BAD

CYLINDERS OOXX OOXX OOXX ARE DEFECTIVE

DO NOT USE SKEL BLD WITH THIS PACK

DATA SW 0 ON GO TO TASK OFF REDO

Set data switch 0 on to return to TASK or off to

return to step 5.

7-14

Page
Reference Paragraph

Table 7-2. Writing Disk Addresses (Cont.)

Procedure Step
Page

Paragraph Reference

If all groups of sectors are acceptable, the

following messages are printed:

THERE ARE NO lJEFECTIVE CYLtNDERS

DATA SW 0 ON GO TO TASK OFF REDO

Set data switch 0 on to return to TASK or off to

return to step 5.

If there is a seek failure and the system is unable

to recover, the job is aborted and the following

messages are printed:

CAN NOT COMPLETE SEEK - ABORT JOB

DATA SW 0 ON GO TO TASK OFF REDO

Set data switch 0 on to return to TASK or off to

return to step 5.

7-15

Table 7-3. Loading the Supplied System Decks

Procedure Step

1. Remove from the supplied system object

decks the following cards:

a. Cold start cards

b. Skeleton builder

c. Disc utility program

d. Stand-alone utilities

2. If nonreentrant arithmetic, functional, and

conversion subroutines are to be used, remove the

reentrant versions from the supplied subroutine

library and insert the nonreentrant subroutines in

their place. The subroutine library can comprise

a mixture of reentrant and nonreentrant subroutines,

but in no case should both versions of the same sub-

routine, that is, two subroutines with the same

name, be placed in the system. This error will

cause the system loader or DUP to generate an ~

error message.

In general, the reentrant version of a subroutine

should be used if the subroutine is to be called from

different levels or is to be included in the skeleton.

The reentrant version must be used if an interrupt

routine is to be included in a mainline core load,

and an interrupt routine on the higher level can

interrupt a routine on the lower level during

execution.

7-16

Page
Reference Paragraph

42

39

51

19

4.9, 6.4

4.6

5.10

6.1

Table 7-3. Loading the Supplied System Decks (Cont.)

Procedure Step

Note

If the above system requirements

are violated, the resulting errors

are not diagnosable and the results

are unpredictable.

The nonreentrant versions of the subroutines may

be placed in the subroutine library after the sup­

plied system has been loaded and the skeleton has

been built (see table 7-12).

3. Insert the system loader assignment cards

(IAC and LUN), comments cards, and the *DEDIT

card in the supplied system

deck as shown in figure 7-5. Assignment cards for

the standard TSS system are supplied with the

system decks

4. Place in the card reader hopper the system

decks without the TASK high core loader or the

SYSGEN TASK deck, as shown in figure 7-5

5. Set data switch 0 on

6. Set data switch 15 on

7. Press the STEP switch. If any error mes­

sages occur during system load, refer to appendix A.

7-17

Page
Reference Paragraph

30-32 4.5.6

Table 7-3. Loading the Supplied System Decks (Cont.)

Procedure Step
Page

Paragraph Reference

Note

If data switch 15 is not on, the

following message is printed:

DATA SW 0 ON LD DISK OFF
EXECUTE

In this case, ensure that data

switch 0 is off and pres s the con-

sole STEP switch.

8. Observe the following messages when

loading is completed:

THE SOURCE CORE SIZE IS nnnnnn

THE OBJECT CORE SIZE IS nnnnnn

DATA SW 0 ON FOR ABSOLUTE LOADER

DATA SW 1 ON FOR NONPROCESS MONITOR

DATA SW 2 ON FOR SKELETON BUILDER

9. Set all console switches to the off position

SYSTEM 01 RECTOR
OBJECT DECK

-',
Iff P' COMMENT CARDS

00 02 00, 01/02

ASSIGNMENT CARDS

REMOVE, PUNCH K AND CYL
FIELDS, AND RETURN TO
INDICATED
LOCATION

/
•

ANY PLACE
BETWEEN

~~6STEM LOADER
~.DEDIT

SHIPPED SEPARATELY
FROM SYSTEM DECK -----...

SUPPLIED
SYSTEM
IN
ABSOLUTE
FORMAT

Figure 7-5. Sequence of Control Cards and Systems Decks for TSS System Load

7-19

Table 7-4. Assembling TASK

Procedure Step

1. Insert the TASK EQU cards defining the

source machine in the TASK source deck as shown

in figure 7-6. The EQU cards for the standard

TSS system are supplied with the TASK source

deck. If a deviation is to be made, EQU cards

must be punched. If the same parameter is entered

in two or more EQU cards, the entries must be the

same

2. If the system has more than one drive,

place an entry in the label field of the / / JOB

card for each drive being used

3. Insert the TASK source deck, including the

required EQU cards and control cards (figure 7-6)

in the card reader hopper. It is suggested that the

*LISTcard be removed until TASK is assembled

without errors

4. Ready the card reader

5. Set data switch 7 on

6. Press the CONSOLE INTERRUPT switch on

the computer console

7. If assembler errors occur, correct the

errors (see appendix A), reload SYSGEN TASK,

and return to step 3

7~20

Page
Reference

15

43

65

Paragraph

4.10

3.2.1

3.2.4

Table 7-4. Assembling TASK (Cont.)

Procedure Step
Page

Paragraph
Reference

Note

The stand-alone card assembler

can be used to assemble TASK,

although this program is not

standard with the TSS system.

Before using the 18/30 card

assembler, remove the first six

cards and the last two cards from

the TASK source deck. If any

errors occur, repeat the assembling

process.

7-21

TASK SOURCE DECK

TASK GROUP 1
EQUATE CARDS

Figure 7-6. T ASK Source Deck and Equate Cards

7-22

Table 7-5. Assembling the System Director

Procedure Step

1. Insert the System Director EQU cards in

the System Director source deck as shown in

figure 7-7. The EQtJ cards for the standard TSS

system are supplied with the System Director

source deck. If a deviation is to be made, EQU

cards must be punched. If the same parameter is

entered in two or more EQU cards, the entries

must be the same

2. Remove the / /DUP and *STORE SYDIR

cards from the System Director source deck unless

the System Director is to be stored on the pack on

drive 0

3. If TASK is already in core, proceed to

step 4. If TASK is not in core, load TASK as

directed in table 7-1 and proceed to step 12

4. Set the HALT switch on (first step in

restarting TASK)

5. Set the RUN - ID LE switch to IDLE

6. Set the HA LT switch off

7 . Enter 0 in the data switches

8. Ensure that the switches in the bottom row

on the console, beginning with the REGISTER

SELECT switches, are in the upper position

9. Press the ENTER switch

7-23

Page
Reference

34

44

15

Paragraph

4.11

5.10.3

4.1

Table 7-5. Assembling the System Director (Cont.)

Procedure Step

10. Set the RUN - ID LE switch to RUN

11. Press the STEP switch. Wait for the data

switch messages to be printed (table· 7 -1)

12. Insert the System Director source deck in

the card reader hopper. It is suggested that the

*LIST card following the / / ASM SYDIR card be

removed until the System Director is assembled

without errors

13. Ready the reader

14. Set data switch 7 on

15. Press the CONSOLE INTERRUPT switch

on the computer console. If there are no assembler

errors, proceed to step 16. If assembler errors

have occurred, return to step 4

16. Insert the System Director object deck in

the system deck (figure 7-5)

7-24

Page
Reference Paragraph

65 3.2.4

Figure 7-7. System Director Source Deck and Equate Cards

7-25

monitor pack is available. To store the system decks, see paragraph 7.3.2.

To build a nonprocess monitor pack, see paragraph 7.3.12.

To assemble the System Director, perform the steps listed in table 7-5. The

procedure is applicable for initial system generation, when TASK is already in

core, and for System Director assembly when TASK has not beenloaded.

7. 3. 5 Defining the System Configuration

It is assumed in this procedure that an initial system generation is being per­

formed or that a new machine configuration is being defined. This is the last

procedure in the first stage of system generation, that is, after the system con­

figuration has been defined, the next procedure to be performed is determined

by whether the system is to be on-line or off-line. If an on-line pack is desired,

proceed to paragraph 7.3.6; if an off-line pack is needed, proceed to

paragraph 7.3. 11.

To define the system configuration, perform the steps listed in table 7-6.

7.3.6 Compiling Skeleton Subroutines

It is assumed in this procedure that the system decks have been stored on drive o.
To store the system decks, refer to paragraph 7.3.2.

To compile user-written skeleton subroutines, perform the steps listed in

table 7-7. The procedure is applicable for initial system generation, when

T ASK is already in core, and for compiling skeleton subroutines when TASK

is not in core.

7. 3. 7 Building the Skeleton

It is assumed in this procedure that the system decks have been stored, the

define configuration function has been performed, the System Director has been

stored, user-written skeleton subroutines have been stored, and an operating

TASK is in core. To store the system decks, see paragraph 7. 3. 2. To define

7-26

Table 7-6. Defining the System Configuration

Procedure Step

1. Punch *DEFINE CONFG card

Note

The value of LSKEL and LICP

must be calculated by the user.

If the user wishes to define his

complete system during initial

system generation, TASK and the

System Director should be assem­

bled before the system configuration

is defined.

2. Place the following user-punched cards in

the card reader hopper:

IIJOB

IIDUP

*DEFINE CONFG SOMOIO ... LSKEL XXXXX
LICP XXXX XX

IIJOB

liD UP

*DUMPLET

IIJOB

I lEND OF ALL JOBS

Note

If the system contains two or more

drives, the I I JOB card must con­

tain all labels for each nonsystem

pack. The *DEFINE CONFG card

can then be used to assign the sys­

tem areas to the desired drives,

for example SOM1I2.

Page
Reference

51, 53

43

44, 51

53

58

45

Paragraph

3.2.1

3.2.1

5.10.1

5.10.9

3.2.1

Table 7-6. Defining the System Configuration (Cont.)

Procedure Step

3. Ready the reader

4. Set data switch 7 on

5. Press the CONSOLE INTERRUPT switch on

the computer console

6. If any error messages occur, correct the

errors according to appendix A

7. After the I lEND OF ALL JOBS card is

printed, verify the configuration defined by

checking the LET IFLET dump printout

8. If the configuration is incorrect, punch a

corrected *DE FINE C ONFG card and return to

step 2

7-28

Page
Reference Paragraph

45, 122 3.2.1

53 5.10.1

Table 7-7. Compiling Skeleton Subroutines

Procedure Step

1. If the user subroutines are not to be stored

on the pack on drive 0, remove any *STORE cards

from the user-written subroutine source decks

2. If TASK is already in core, proceed to

step 3. If TASK is not in core, load TASK as

directed in table 7-1 and proceed to step 11

3. Set the HALT switch on (first step in

restarting TASK)

4. Set the RUN-IDLE switch to IDLE

5. Set the HALT switch off

6. Enter 0 in the data switches

7. Ensure that the switches in the bottom row

on the console, beginning with the REGISTER

SE LECT switches, are in the upper position

8. Press the ENTER switch

9. Set the RUN-IDLE switch to RUN

10. Press the STEP switch. Wait for the data

switch messages to be printed (table 7-1)

11. Insert the subroutine source decks, with

control cards, in the card reader hopper

12. Ready the reader

13. Set data switch 7 on

14. Press the CONSOLE INTERRUPT switch on

the computer console. If assembler or compiler

errors have occurred, return to step 3

7-29

Page
Reference

55

15

Paragraph

5.10.3

4.1

the system configuration, see paragraph 7.3.5. To assemble the System

Director, see paragraph 7.3.4. To store the user-written subroutines, see

paragraph 7.3.6. To load an operating TASK, see table 7-1.

To build the system skeleton, perform the steps listed in table 7-8.

7.3.8 Compiling Process Programs

It is assumed in this procedure that the system skeleton has been built and that

an operating TASK has been loaded in core. If a skeleton has not been built,

refer to paragraph 7. 3. 7. If TASK is not in core, see table 7-1.

To compile the user's process programs, perfo:om the steps listed in table 7-9.

7.3.9 Building Process Core Loads

It is assumed in this procedure that the user's process programs have been

assembled or compiled and loaded to disk and that TASK has been loaded in

core. If process programs have not been compiled, see paragraph 7.3.8. If

TASK is not in core, see table 7-1.

To build process core loads, perform the steps listed in table 7-10.

7 . 3. 10 On- Line Cold Start

It is assumed in this procedure that process core loads have been built. If the

core loads have not been built, see paragraph 7.3.9.

To execute an on-line cold start, perform the steps listed in table 7-11.

7.3. 11 Storing Relocatable Programs on Disk from Cards

It is assumed in this procedure that an operating TASK has been loaded in core.

If TASK has not been loaded, refer to table 7-1.

If an off-line disk pack is being built, store the relocatable programs on the disk

from cards as directed in table 7-12.

7-30

Table 7-8. Building the Skeleton

Procedure Step

1. Punch the Skeleton Builder *INCLD cards

2. Insert the skeleton building *INCLD cards

in the Skeleton Builder deck as shown in figure 7-8

3. Place on drive 0 the pack that is to become

the system pack

4. Place IIJOB and I lEND OF ALL JOBS

cards in the card reader hopper. If the system is

being defined for multiple drives, place the proper

entries in the I I JOB card label fields

5. Ready the reader

6. Set data switch 7 on

7. Press the CONSOLE INTERRUPT switch on

the computer console

8. Set the RUN-IDLE switch to IDLE (first

step in zeroing core)

9. Set the HALT switch on

10. Unlock the WSPS switch by turning it

clockwise

11. Set the SPO switch on

12. Load the ZAP card, supplied with the

system decks (see figure 7-3)

13. Ready the reader

14. Set all data switches off

7-31

Page
Reference

46

39

43, 45

Paragraph.

4.7

4.7

3.2.1

Table 7-8. Building the Skeleton (Cont.)

Procedure Step
Page

Paragraph Reference

15. Set REGISTER SELECT switches

4 and 8 on

16. Press RESET

17. Press ENTER

18. Set the HALT switch off

19. Press the IPL switch

20. Set the HALT switch on

21. Set REGISTER SELECT switches

4 and 8 off

22. Press RESET

23. Press ENTER

24. Set the RUN-IDLE switch to RUN

25. Press the STEP switch

26. Set the SPO switch off (last step in

zeroing core)

27. Reload operating TASK (table 7-1) 15 4.1

28. Set data switch 2 on

29. Set data switch 15 on

30. Ensure that all other console switches are

in the off position

31. Press the console STEP switch

7-32

Table 7-8. Building the Skeleton (Cont.)

Procedure Step

32. Observe the following message:

PLACE TASK DECK IN CARD HOPPER

33. Place the on-line skeleton TASK object

deck, without the TASK high-core loader, in the

card reader hopper

34. Place the Skeleton Builder deck behind the

skeleton TASK object deck. Place a blank card

behind the Skeleton Builder deck, that is, behind

the *CCEND card

35. Press the console STE P switch

Note

If a skeleton has previously been

built or if the disk pack has been

previously defined as a nonprocess

monitor pack (XEQ cards allowed), the

following message is printed:

DATA SW 0 ON
SAVE ICL TABLE

In this case, set data switch 0 as

desired and press the console

STEP switch.

If the TASK skeleton Ilo has

changed size, ICLT may not be

saved. Use DUP *DICLE to restore

the interrupt core load table.

7-33

Page
Reference Paragraph

49 4.7

60 5.10.12

I

Table 7-8. Building the Skeleton (Cont.)

Procedure Step

36. If error message 0026 occurs, return to

step 4

37. Observe the following message:

PUT SKL BUILD PROG IN CARD HOPPER

38. Press the console STEP switch

39. Ensure that data switch 0 is off, press the

console STEP switch, and wait for the following

message:

DATA SW 0 ON TO ABORT SKEL

Note

The abort option should not be

selected.

If any error messages occur before this message,

correct the errors (see appendix A) and return to

step 4

40. Check the skeleton map to be sure that the

skeleton has been correctly built. If the skeleton is

incorrect, set data switch 0 on, press the console

STEP switch, correct the errors, and return to

step 4

41. If the skeleton is correct, press the

console STEP switch. When the skeleton is trans­

ferred from core to disk, one. of the following

messages is printed:

7-34

Page
Reference Paragraph

121 4.7

Table 7-8. Building the Skeleton (Cont.)

Procedure Step
Page

Paragraph
Reference

SKB, SYDIR LD XQ (Skeleton is on disk
and executable)

SKB, SYDIR LD NX (Skeleton is on disk but
contains level 1 errors)

SKB, SYDIR NL NX (loading has been aborted)

42. Press the console STEP switch

43. Set data switch 0 on

44. Set the RUN-IDLE switch to IDLE

45. Ensure that all the switches in the

bottom row on the control panel, beginning with

the REGISTER SELECT switches, are in the

upper position

46. Ensure that all the data switches are off

47. Press the ENTER switch

48. Set the RUN - ID LE switch to RUN

49. Press the STEP switch

Note

Steps 43 through 49 constitute a

return to TASK.

7-35

*INCLD CARDS

SKELETON BUILDER
OBJECT DECK

Figure 7-8. Skeleton Builder Object Deck and Control Cards

7-36

Table 7-9. Compiling Process Programs

Procedure Step

1. Place the stacked input programs in the

card reader hopper

2. Ready the reader

3. Set data switch 7 on

4. Press the CONSOLE INTERRUPT switch on

the computer console

5. If errors occur, correct the errors (see

appendix A) and stack the corrected jobs behind

the last job in the card reader hopper. If the

errors must be corrected before continuing with

the remaining jobs, disable the reader by press­

ing STOP on the reader, set up the corrected

jobs in the proper sequence in the reader, press

the STEP switch on the computer console, and

return to step 3

7-37

Page Paragraph
Reference

Table 7-10. Building Process Core Loads

Procedure Step
Page

Paragraph
Reference

1. Place the core load builder cards in the 40

card reader hopper

2. Ready the reader

3. Set data switch 7 on

4. Ensure that all other console switches are

in the off position

5. Press the CONSOLE INTERRUPT switch on

the computer console

6. Wait for the core load builder Sign-on

message as follows:

CLB, BUILD NAME

7. Check the core load map. If any errors 119 5.7,5.8

have occurred that require reassembling and/or

compiling, go to table 7-9

8. If any errors have occurred because of 50 4.7, 5. 7

improperly punched control cards, or if the core

load does not meet requirements, correct the con-

trol cards and return to step 1

9. Wait for the sign-off message for each core

load, which is one of the following:

CLB, LNAME LD XQ (core load is on disk and
executable)

CLB, LNAME LD NX (core load is on disk but
normally not executable)

CLB, LNAME NL NX (loading has been aborted)

7-38

Table 7-11. On-Line Cold Start

Procedure Step
Page

Paragraph Reference

1. Set the RUN-IDLE switch to IDLE (first

step in zeroing core)

2. Set the HALT switch on

3. Unlock the WSPS switch by turning it

clockwise

4. Set the SPO switch on

5. Load the ZAP card, supplied with the

system decks (see figure 7-3)

6. Ready the reader

7. Set all data switches off

8. Set REGISTER SELECT switches 4 and 8 on

9. Press RESET

10. Press ENTER

11. Set the HALT switch off

12. Press the IPL switch

13. Set the HALT switch on

14. Set REGISTER SELECT switches 4 and 8 off

15. Press RESET

16. Press ENTER

17. Set the RUN-IDLE switch to RUN

18. Press the STEP switch

7-39

Table 7-11. On-Line Cold Start (Cont.)

Procedure Step
Page

Paragraph Reference

19. Set the SPO switch off (last step in

zeroing core)

20. Place the system pack on any drive

defined as part of the system

21. Place the cold start loader cards (for the 42 4.9,6.4

physical drive number corresponding to the physical

drive on which the system pack is loaded) followed

by a cold start name card and a blank card in the

card reader hopper (figure 7-9). The cold start

loader cards are shown in figure 7-10

22. If the skeleton is to be storage protected, 42 6.4

that is, column 14 in the *CLDST card is punched,

turn on the console WSPS switch

23. Ready the reader

24. Select the loading address in the data

switches (first step in program load)

25. Set the R UN- ID LE switch to ID LE

26. Set the HALT switch on

27. Set REGISTER SELECT switches

4 and 8 on

28. Press RESET

29. Press ENTER

30. Set the HALT switch off

31. Press the IPL switch

7-40

Table 7-11. On-Line Cold Start (Cont.)

Procedure Step
Page

Paragraph
Reference

32. Set REGISTER SELECT switches

4 and 8 off

33. Set the HALT switch on

34. Press RESET

35. Press ENTER

36. Set the RUN - ID LE switch to RUN

37. Press the STEP switch (last step in

program load)

38. If error messages occur, correct the

errors (see appendix A)

39. IT the *CLDST card contains a punch in 42 6.4

column 14, the system skeleton in core is storage

protected and the following message is printed:

TURN OFF WRITE STORAGE PROTECT
SWITCH

40. If the following message is printed =

TURN ON WRITE STORAGE PROTECT
SWITCH

return· to step 1

41. Set the WSPS switch off

42. Press the console STEP switch

43. If the *C LDST card contains a 1 in 42 6.4

column 16 (clock option), wait for the following

message:

ENTER TIME THROUGH DATA SWITCHES

7-41

Table 7-11. On-Line Cold Start (Cont.)

Procedure Step

44. Enter the time in hexadecimal: the hours

in switches 0 through 7 and the minutes in

switches 8 through 15

45. Press the console STEP switch. The

time is read from the data switches, converted to

hours and thousandths of an hour, and the following

message is printed:

TIME ENTERED WAS XX. XXX HOURS

The first process core load is called, and the TSS

system runs under control of the System Director

46. To initialize time sharing, turn on data

switch 7 and press the CONSOLE INTERRUPT

switch. The on-line system is now ready for

operation

7-42

Page
Reference

Paragraph

COLD START
NAME CARD

Figure 7-9. On-Line Cold Start

7-43

l
./ I

I II

1 I

I

I aIM III. I I I a. II

fl

I I II II II I IIII I III .1. I I I II 1

00000000000010110000000010001000001000001010101011001000110001001000101010010001
1 7 3 4 S 6 7 I 9 1(1 11 11 1) 14 15 IS 17 19 19 20 21 2223242526 27 H " 30 3'·J? 3)34 J~ 35 31 ;,6 n ~o 414143.4 454641 4049 :lll SI 5253 54 ~r, !,G 57 58 Sg GO 'il ~~ 6364 (,j 66 5158 69 70 71 11 '13 74 7515 111819 "0

1 1 1 1 1 tIl till' till. 1 111 1 1 1 f 1 1. lIt 111 I. f t 11 1 I 1 I t I 111 mill 1 '.'11 I 1111 tIll. 1111 1 1 1 11 1 11

1111212222212212122122211221122222222212112211121212811212221111&221222112222222

33331133333113133333133133311331131331333333338313131333133111313333133133311333

14444444144414141414144144411444441444441444141114444414444411444414144444441444

1 5 ~i 5 5 51 5 5 5 5 5 5 5 I 5 5 5 5 5 I 5 II 5 5 • ~, • 5 5 5 5 5 5 5 5 5 5 5 15 5 5 15 ~ 5 5 5 5 5 15 5 5 115 1115 5 • 5 15 15 5 !j R 5 15 5 ~ II
11111661111166166666611116666666666111116666666668111166666666666666666666666666

1117117171717717777771i77171111RI7711771771BBBI171711777777777771777777111117717
~I

~.

~
t

ISB888818 8s188188 8 88 al8 8 81p8 8 88 88 8 sla HaiRR 88 8 86 63 ~ al8 8R 8 88 P R 8 88 8888888888 8 888888 t

~~!!'~~'!!~~~~~!~!!!~~~!~!~!~~~~~~~!!!!!~~~!~!~~!!!~~!~~~~!~~;~~~~~~~~~~~~~~~~~! [
f:t(;f.lr r"i'.' , l't,v~r'I.J~f' f(,I'IM !V)l~J t:

·"""···~·:,:77~::I,::::::~·.' ··::~,~:;::·.·-~···.:;~~::~:::'~:::~·::I.:;=:1\:::2z.;:~.~:~~·::~~~::=:=::,,,~::::··:r~:~·~:;,:~::".·-··'··-···::::·::·:~::~:~·~:::;~:\C\:~~:l:~~;:;\:~::::::~~;:::;:;:~i:.r:::::~:;·::~:,::~~J.::'~::':::~it£:;~J;~.::::,7':" ''<''

II I I I

1111. IIIII II
IOI.RgO.O.O.ORO.OOOI •• oOola.oooOO~DOOOOOO~IG~.DgoHG~OO00000000000000000000000000
, 1 J 4 S ~ I a 910 1117 I) 1115 IS" 111ft I:' il ni!;~;~]f·1; 2~:)~O 31 J;' 11 H :';,35 JI3RJ9 ~o ~I~; 41 A.ll'~"'~; 4:<~~'JO '.' SI ~.l~. ~:'5~ ~I S8~~6t1 (.1 61 GJ6·' 6SG(,616Qt910'/1 n.'l·/~ 757~ T118n8tJ

1IIIII 1 1 I 1 I. , 1 1 1 1 1 1. i II g Ii m I B i ~ q~ 1 1 ~ ~ 1 1 1f~ 1 ~ ~ ~ I ~ 1 ~ lIn ~ 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 I I 1 1 1 1 1 1 I. 1 1 1 1

17121712112222?li72217.222222722222mg222222~U~22222R?2222272212222222222222222222

I 31 31 31 3 J 3 3 3 3 3 31 3 3 3 J I 3 3 3 3 3 3 3 3 J R :1 3 ~ I ~ J J J 3 .J ~ ~ fi • J 3 ~ 3 3 3 3 3 3 3 3 3 J 3 J 3 3 3 3 3 J 3 3 3 3 J 3 3 3 J 3 3 3 3 3

141444144414414.4441444414144414446.444444~Ga44444444444444444444444444444444444

5111155111555555551555555155551551;155 5 05511U 55 1555555555~5555555~5555~555~55555

.111166111116616666661111666666666 611aR16666666 66 1111166111116666666666G66666666

I 7 1 7 1· 71. 7 7 "11 71/ 7 ., 7 7 781 7 7 • 7 7 I U ~ ~ i 7 7 I 7 11 B 7 Ii ~ Q 19 7 7 1 7 • 7 7 1 7 1 111 7 7 1 7 7 7 7 7 ./ 7 1 7 7 7 1 11 11 .,

I 8 8 8 8 8 81 8 8 8 • 8 R I 8 8 8 8 8 8 I 8 B R B 8 8 8 8 8 8 B 8 8 B 8 B 8 i 8 fl 8 6 ~ 8 S ij e f) 8 a 8 » 8 8 !I R I 6 fl 8 8 H 8 8 ~ tl ~ 8 a 8 8 8 II 8 8 8 (I 8

IIIII 9 ~ .1 R m R 9 911 • ~ I IJ !J • a m I 9 9 9 (l 9 9 !l 9 9 9 a ~ ~ ~ rn ~I 9 ~ 9 ~ 9 9 !I !l ~ ~ m m ~ ~l 9 i GaB R II II !J Y ; iJ :1 :; :1 H !j tJ 9 ~j ~ n !l ~ ~
, 7) • 5 r. 1 q 9 lfl" !J" 1\ , .• f. '1" ': '0)1 1.)1:1 i:, 1~ 1178,1 ill :I1], 1111 .1:':ill ll:oa !~40 414/·\34·14:, ·1') ~l 'n'.,1 :,' ,: '.",1. '." ' .. ··Jr,~'·~· ' •• ",., I;'" (.','.';f.l I,:lf.·, I(! II Ii II ;,!' ,ro lilA I~IIO

f:! I~t ,,-,., 1 '":.,,'J! \i-P J(,I~·.1 ;,,'n t

... ~~'.,...,~:-~ - ' • ••••• ~ •• , ,. ... "" ""I ••• ' ~ ~"'_."" ' 'f' •• ' :,.,.- ••••• - ••• , '!" ,, " ... ,. .~., ,., •• ,,,. '"'''' .. "''' " • ..-~ , ... -,- .. ~"'.I"'"' " "

tl."'"\l\j,\\\,'-¥\I:'i' \\1\\"~"\1"'1'\'\..\\\\\\~ .,, ,.\11"\0. •. • .•• \ ,I' ." .. \\.\~\,\ 'I' •• ' • '. ·\,\., •• ,\·",J.W,\1,'.\\\h·.ht1\'" ,\.\",\1 , ..

I I B .a i D

II 1 I III IRIII D 81 I • II I I.
I.OOOOOOOOOoRlooorrR.~looOO.OOOOOOOHomom~oOIOOooOOOOROooR~golooonololoooooooootioo
1 2 3 • 5 S 1 R 9 10 II 17 IJ II n 16 11 IR I~ ;!J 11 71 n 2~ 7.~ 1(;)1 i~'9 ~I) JI :It 11).115 .In :17 .\" :1 0 ',' '11 4111 41 ~:i ~6 41 .g A9 50 51 ~:: r,J 54 5~ ~6 ~1 !,8 :1960 61 ~? ~J ~~ f,r, &r. 61 ~p f.9 10 11 17 1.1 14 IS 16 71 1~ I:t ptj

III t 1 111 1 1 I 1 111111 1. g 1111111 1 1 1 I 1 ~ 11m 1 ~ 1 I 1 & I' 1 1 1 1 I 1 1 I 1 1 1 111 1 I I I 1 Q D 1 I 1 1 1 1 1 1 1 I 1 I I t

22111211122222221122.222221222BI22~B22~21122222222222222222222722122222222222222

131333333331311331113J3333313333333B13R33D~J333333J13331313113310131333333333333

444414~4444444444444.44444114444144414B&44144444444A4444441114441141444444444444

5555155515551 •• 55551155555S555555555~5m55555115S55BI55555155155~S.555555535555·55

111116611 ••• 661666666mIBI6666666666RliRm666&66666aneml661111166111 •• G66666666666

11777711177117IJ17717117717711111711717111&10&111171117171177111/1/7777711111711

I 8 8 8 8 8 81 8 8 81 8 81 8 8 8 8 8 81 8 8 818 8 8 88 8 88 8 .8 8 8 18 8 8 8 8 8 8 8 8 R. ~ 18 8 8 8 8 Ii 18 R ij 8 R ~ I R N 8 8 8 R 8 8 8 R 8 R 8 8

1IIIIY~IIII~g9.a~I.991 •• 199999999~9gB~~.99q99939~R~mll9911111~~1111199~99~g99g99
1 1 .1 4 5 6 ,~,~!,; I~I.I,' .t' U U 1', '; r',~~~,,~~},O ;~/: ~J ~;:I~/G 111~ 79 JO 31.11).1 ~1 :1:1;16 J/ ;IA .1'1 .0 ~f ~I 0 11 01:; ·IV ,Ii. i i!' .. n I; :./ :,) j·1 !" '.r, '" ';11 '1" ';n {' Ii" f,l (,1 r' I" "'I ,,~ G:I 11) Ii " l) 1\ Jj Ifi /I ,. '/g '11

...... '!"" "-'!.,,~ · .. ''' •• \\''~I:·''·.'~~ ·· ... '··"1.~.··.··'·'~\ .. '':'1'\ ... '· ... '~~t'· ·,.~.'·7\.~:.'~','~~~"'''''''''~'''''''''\\~'!'''''Y'\ ",,.., ••• ,, \", , ... ,.~ ,,,,,'':'I''';\''1''''''''\\~'''~':9'.~'?U~~''!\'''\'''''~fl\~'''''~~"~.~~'''''''''''':'~''''''I'''''~''''''·~ • ...,,:, ... ·,,,,, •• rt."~""':"""''''''~'ff'''~''''''·''~~'''''''_·~:"' "~""""-r~

Figure 7-10. Cold Start Cards
,., AA

Table 7-12. Storing Relocatable Programs on Disk from Cards

Procedure Step
Page

Paragraph Reference

1. Place a IIJOB card, a IIDUP card, and a 43, 44, 51, 3.2.1,

*STORE card in front of each deck to be loaded. If
58 4.8,

5.8.2,
a LET/FLET dump is desired, place a IIJOB, 5.10.9

I ID UP, and a *D UMP LET card after the last deck

being loaded

2. Place the stacked jobs in the card reader

hopper

3. Ready the reader

4. Ensure that the desired disk packs are on

the correct drives

5. Set data switch 7 on

6. Press the CONSOLE INTERRUPT switch

7. Observe the following message after each

program is loaded:

DUP FUNCTION COMPLETE

8. If *DUMPLET was used in the input, check 58, 122 5.10.9,

the LET IFLET dump when all jobs are completed. 4.8,
5.8.2

If any errors have occurred, correct the errors

(see appendix A) and return to step 2

Note

The following sequence of control

cards may be used to replace the

reentrant subroutines in the sub-

routine library with nonreentrant

versions (see table 7-3, step 2):

7-45

Table 7-12. Storing Relocatable Programs on Disk from Cards (Cont.)

Procedure Step

//JOB

//DUP

*DUMPLET
13 17 21

*STOREMD RD UA SUBN
(nonreentrant subroutine) Repeat

for each
subrou-. tine being
replaced

*DEFINE PAKDK 0

//JOB

//DUP

*DUMPLET

//JOB

/ /END OF ALL JOBS

SUBN is the name of the subroutine being loaded.

This name must be the same as the name of the

subroutine it is replacing. Performing a

*DUMPLET is the only way of determining

which version of the subroutine is in the system.

The nonreentrant version has been assembled

with a dummy entry point that distinguishes it

from the reentrant version. In most cases the

name of the dummy entry point comprises the name

of the original entry point with a 1 replacing the

last character. For example the floating-point add

and subtract subroutine has the following entry

points: FADD, FADDX, FSUB, FSUBX, FSBR,

FSBRX. The nonreentrant version would also

have F ADD1 (dummy entry point) as an entry.

7-46

Page
Paragraph Reference

43 3.2.1

44 3.2.1

58 5.10.9

57 5.10.6

51 5.10.1

45 3.2.1

7.3.12 Building a Nonprocess Monitor Disk Pack

This procedure is presented with the assumption that the system decks have

been loaded and the define configuration function has been executed, and that

the TASK program has been loaded in core. If the system decks have not been

loaded, see paragraph 7.3.2. If the configUration has not been defined, see

paragraph 7. 3. 5.

To build a nonprocess monitor disk pack, perform the steps in table 7-13.

This procedure is applicable for initial system generation, when TASK is

already in core, and for building a nonprocess monitor pack when TASK is

not in core.

7.3. 13 Off-Line Cold Start

To perform an off-line cold start, perform the steps listed in table 7-14.

7-47

Table 7-13. Building a Nonprocess Monitor Disk Pack

Procedure Step

1. If TASK is in core, proceed to step 2. If

T ASK is not in core, load TASK as directed in

table 7-1

2. Set the HALT switch on (first step in

restarting TASK)

3. Set the RuN-IDLE switch to IDLE

4. Set the HALT switch off

5. Ensure that the switches in the bottom row

on the computer console, beginning with the

REGISTER SELECT switches, are in the upper

position

6. Set all data switches off

7. Press the ENTER switch

8. Set the R UN- ID LE switch to RUN

9. Press the STEP switch. Wait for the

TASK messages to be printed

10. Set data switches 0 and 15 on to select the

absolute loader

11. Place the TASK disk loader (part of the

utility package supplied with the system), followed

by the operating TASK deck without the high-core

loader, in the card reader hopper

12. Ready the reader

13. Press the STEP switch on the computer

console

14. If any errors occur, correct the errors as

directed in appendix A

7-48

Page
Reference

15

29

Paragrapl1

4.1

4.5.3

Table 7-14. Off-Line Cold Start

Procedure Step
Page

Paragraph
Reference

1. Set the RUN-IDLE switch to IDLE (first

step in zeroing core)

2. Set the HALT switch on

3. Unlock the WSPS switch by turning it

clockwise

4. Set the SPO switch on

5. Load the ZAP card, supplied with the

system decks (see figure 7-3)

6. Ready the reader

7. Set all data switches off

8. Set REGISTER SELECT switches 4 and 8 on

9. Press RESET

10. Press ENTER

11. Set the HALT switch off

12. Pres s the IP L switch

13. Set the HALT switch on

14. Set REGISTER SELECT switches 4 and 8 off

15. Press RESET

16. Press ENTER

17. Set the RUN-IDLE switch to RUN

18. Press the STEP switch

7-49

Table 7-14. Off-Line Cold Start (Cont.)

Procedure Step
Page

Paragraph Reference

19. Set the SPO switch off (last step in

zeroing core)

20. Place the proper cold start loader cards 42 4.9,6.4

(figure 7-10) followed by a cold start TASK name

card and the stacked nonprocess jobs in the card

reader hopper (see figure 7-11)

21. Ready the reader

22. Select the loading address in the data

switches (first step in program load)

23. Set the RUN-IDLE switch to IDLE

24. Set the HALT switch on

25. Set REGISTER SELECT switches

4 and 8 on

26. Press RESET

27. Press ENTER

28. Set the HALT switch off

29. Press the IPL switch

30. Set REGISTER SELECT switches 4

and 8 off

31. Set the HALT switch on

32. Press RESET

33. Press ENTER

34. Set the RUN - IDLE switch to RUN

35. Press the STEP switch (last step in pro-

gram load). The system is now ready for off-line

operation

7-50

NONPROCESS JOBS

Figure 7-11. Off-Line Cold Start

7-51

APPENDIX A - SYSTEM ERROR MESSAGES

The syst~m error messages and recovery procedures--where applicable--are

presented in the following tables.

A.1 TASK ERROR ALERT CONTROL PROGRAM ERRORS

The EAC error messages are divided into four groups:

I/O errors

FORTRAN execution errors

Internal errors

TASK errors

All EAC error messages are listed in table A-l.

A.l.l I/O Errors

The format for I/O error messages produced by TASK is

ERROR code ePl eP2 eP3 ep 4

where

code - identifies the specific error; 0000 ::s code :s 0063.

eP1 - if the error is a CALL error, ePl is the address of the invalid call;

otherwise, ePl is the address of the device table for the hardware

device that caused the difficulty.

eP2 - beginning address of the interrupt level work area for the level of

the call. (eP
2

is not applicable to TYPEN.)

eP3 - address of an invalid call on any but a CALL error. (eP3 is not

applicable to TYPEN.)

ep 4 - applicable only when device is a magnetic tape unit, in which case it

specifies the device status word (DSW).

A. 1. 2 FORTRAN Execution Errors

The format of error messages for errors detected during execution of a

FORTRAN program is

ERROR code

where code identifies the specific error; 0064 ::s code:::: 006D.

A-1

Table A-1. TASK Error Alert Control Errors

Error Type of
Meaning Recovery

Code Error

0000 I/O Illegal call to/from Restart TASK.

teletypewriter

0001 I/O Teletypewriter not ready Correct and continue.

0003 I/O Teletype keyboard not Correct and continue.

ready

0004 I/O Storage protection Reload TASK and restart.

violation

0005 I/O Teletype keyboard Restart TASK.

parity error

0006 I/O Teletypewriter parity Restart TASK.

error

0008 I/O Invalid message on disk Restart TASK; correct

and continue.

OOOA I/O Card reader or card Restart TASK.

punch invalid call

OOOB I/O Card reader last card Remove cards left in reader.

indicator Press console STEP.

Place remainder of cards

to be read in reader hopper,

nonprocessed cards first,

and press reader START.

OOOC I/O Card reader or card Correct and continue;

punch parity error restart TASK.

OOOD I/O Card reader storage Restart TASK; reload

protection violation TASK.

A-2

Table A-1. TASK Error Alert Control Errors (Cont.)

Error Type of
Meaning Recovery

Code Error

OOOE I/O Card reader or card Correct and continue;

punch feed check restart TASK.

OOOF I/O Card reader or card Correct and continue;

punch data overrun restart TASK.

0010 I/O Card reader or card Correct and continue.

punch check

0011 I/O /;~ card illegally read Correct and continue;

restart TASK.

0013 I/O Card reader or card Correct and continue.

punch not ready

0014 I/O Paper tape reader or Restart TASK.

punch invalid call

0015 I/O Paper tape punch Restart TASK.

parity error

0016 I/O Paper tape reader not Correct and continue.

read,

0017 I/O Paper tape punch not Correct and continue.

ready

0018 I/O Paper tape reader Restart TASK; correct

parity error and continue.

0019 I/O Paper tape reader or Restart TASK; reload

punch storage protect TASK.

violation

A-3

Table A-1. TASK Error Alert Control Errors (Cont.)

Error Type of
Meaning Recovery

Code Error

001E I/O Disk invalid call Restart TASK.

001F I/O Disk not ready Correct and continue.

0020 I/O Disk data overrun Restart TASK.

0021 I/O Disk write select Reload TASK.

0022 I/O Disk data error Restart TASK.

0023 I/O Disk storage protect Restart TASK; reload

error TASK.

0024 I/O Disk parity error Restart TASK.

0025 I/O Disk invalid address Restart TASK; reload

TASK.

0026 I/O Disk file protect error Restart TASK.

0027 I/O Disk hardware/program Restart TASK.

malfunction (internal or

lost interrupt)

0028 I/O Plotter invalid call Restart TASK.

0029 I/O Plotter parity error Restart TASK.

002A I/O Plotter not ready Correct and continue.

0032 I/O Line printer invalid call Restart TASK.

0036 I/O Line printer parity error Restart TASK; correct

(i. e. , print operation and continue.

requested, but data not

in printer code)

A-4

Table A-1. TASK Error Alert Control Errors (Cont.)

Error Type of
Meaning Recovery

Code Error

0037 I/O Line printer not ready Correct and continue.

003C I/O Invalid call Restart TASK.

003D I/O Storage protect Restart TASK.

violation

003E I/O Parity control error Restart TASK.

003F I/O Parity data error Restart TASK.

0040 I/O Overlap conflict Correct and continue;

restart TASK.

0041 I/O Intermediate table Correct and continue.

interrupt (error code

passed to user's special

condition routine)

0042 I/O Any error (error Correct and continue.

code passed to user's

special condition routine)

0045 I/O Comparator violation Correct and continue.

(error code passed to

user's special condition

routine)

0046 I/O Invalid call Restart TASK.

0047 I/O Parity error Restart TASK.

0048 I/O Storage protect Restart TASK; reload

violation TASK.

A-5

Table A-1. TASK Error Alert Control Errors (Cont.)

Error Type of
Meaning Recovery

Code Error

0049 I/O Intermediate table Correct and continue.

interrupt (error code

passed to user's

special condition routine)

0050 I/O Invalid call Restart TASK.

0051 I/O Parity error Restart TASK.

0052 I/O Intermediate table Correct and continue.

interrupt (error code

passed to user's

special condition routine)

005A I/O Magnetic tape unit Restart TASK.

invalid call

005C I/O Magnetic tape unit Restart TASK.

storage protect violation

005D I/O Magnetic tape unit Restart TASK; correct

command reject and continue.

005E I/O Magnetic tape unit Restart TASK; correct

excessive tape errors and continue.

005F I/O Magnetic tape unit tape Restart TASK; correct

error and continue.

0063 I/O Magnetic tape unit end Restart TASK; correct

of tape and continue.

0064 FORTRAN Illegal address com- Restart TASK.

puted in an indexed store

A-6

Table A-i. TASK Error Alert Control Errors (Cont.)

Error Type of
Meaning Recovery

Code Error

0065 FORTRAN Illegal integer used in a Restart TASK.

Computed GO TO

statement

0066 FORTRAN File not defined Restart TASK.

0067 FORTRAN Requested number of Restart TASK.

records too large,

zero, or negative

0068 FORTRAN Input record in error Restart TASK.

or illegal conversion

0069 FORTRAN Range of numerical Restart TASK.

values in error

006A FORTRAN Output field too small Correct and continue.

to contain number

006B FORTRAN Illegal unit reference Restart TASK.

006C FORTRAN Requested record length Restart TASK.

exceeds buffer capacity

006D FORTRAN Working storage area Restart TASK.

insufficient for define

files

0096 FORTRAN Illegal unit reference. Restart TASK.

Unit not defined in I/O

unit table, on IOCS card;

or for unedited I/O

A-7

Table A-1. TASK Error Alert Control Errors (Cont.)

Error Type of
Meaning Recovery

Code Error

0097 FORTRAN Read list exceeds length Restart TASK.

of write list. List in

READ statement is

longer than list in cor-

responding WRITE

statement

0098 FORTRAN Record does not exist for Restart TASK.

read list element. Last

physical record of logical

record has been

exhausted

1000 Internal Channel Address Register Restart TASK; reload TASK.
check

2000 Internal Storage protect violation Restart TASK; reload TASK.

4000 Internal Parity error Reload TASK.

8000 Internal Operation code violation Restart TASK.

FOOl TASK Monitor XEQ tried when Restart TASK.

not allowed (i. e., disk

pac k not defined as an

off-line system, error

code of F006 was pre-

viously given, or program

attempting execution is

not in LET /FLET

A-8

Table A-l. TASK Error Alert Control Errors (Cont.)

Error Type of
Meaning Recovery

Code Error

FOO2 TASK No sectors on disk for Reload TASK.

buffering of Teletype

messages when TASK

requires it

FOO3 TASK Invalid word count or Restart TASK.

sector address for pro-

gram to be loaded to

disk

FOO4 TASK TASK conversion rou- Restart TASK.

tines called with a

negative or zero word

count

FOO5 TASK Mode switch on TRACE Correct and continue.

when the trace program

is not in TASK

FOO6 TASK T ASK in core is not the Reload TASK; correct

same one defined on disk and continue.

for off-line systems. No

XEQ will be allowed.

FOO7 TASK Checksum or sequence Correct sequence or check-

error in absolute deck sum error and reload

being loaded by TASK. deck starting with card

ePl is the sequence num- sequence number printed

ber of the card in error in eP2"

(hexadecimal).

A-9

Table A-l. TASK Error Alert Control Errors (Cont.)

Error Type of
Meaning Recovery

Code Error

FOOS TASK Too many defective Reload TASK.

cylinders on disk to

allow skeleton build

FOO9 TASK Logical disk drive named Correct and continue.

in ePl is not ready. If

console STEP is pressed

before the drive becomes

ready, the drive will be

taken off-line.

FOOA TASK Logical disk drive named Correct and continue.

in ePl has been taken

off-line because it is not

ready (see error

message FOO9).

FFFF TASK An error recovery pro- Restart TASK; reload

cedure of "correct and TASK.

continue" was attempted

when not allowed.

A-10

A.1.3 Internal Errors

The format of this group of error messages is

ERROR code

where

code - identifies the specific error; 1000 ::; code::; FOOO.

eP1
- contents of the I-register at the time the error occurred. (tJsually

the instruction that caused the error will be eP1 - 1 or eP1 - 2.)

eP2 - contents of index register 1 at the time of the error.

eP3
- contents of index register 2 at the time of the error.

ep 4 - contents of index register 3 at the time of the error.

A.1.4 TASK Errors

T ASK errors usually denote incorrect system operating procedures. The format

for this group of mes sages is

ERROR code e
l

where

code - identifies the specific error; FOOI:s code 2: F006.

e
l

- defined in table A-1 with applicable message.

A.2 ASSEMBLER ERROR MESSAGES

System error messages produced during the assembly of a source program

have the format:

Ann message

where

Ann - error code; the letter A denotes an Assembler message, and nn

is merely a 2-digit sequence number.

message - character string that describes the situation.

The Assembler error messages are listed in table A-2.

A-II

Table A-2. Assembler Error Messages

Error Message Meaning Recovery

A01 MINIMUM W.S. NOT Available nonprocess 1. Reduce the
A V AILABLE-- working storage is less number of overflow
ASSEMBLY than the number of sectors specified
TERMINATED overflow sectors (number specified

specified plus 1. = 0 if *OVERFLOW
SECTORS control
card is not used) .

2. If more than one
drive is available on
the system, specify
drive on JOB card
with most nonprocess
working storage
available.

A02 SYMBOL TABLE Actual number of Use the *OVERFLOW
EXCEEDS SPECI- sectors of symbol table SECTORS control
FlED OVERFLOW overflow is greater card to increase the

than the number of number of sectors
overflow sectors specified (maximum 32).
allocated.

A03 DISK OUTPUT Intermediate output in 1. If error occurs in
EXCEEDS W.S. pas s 1 or final DS F pass 1, the assembler

output in pass 2 is will wait at:
greater than non- 8K = 1B5E
process working 16K = 3B5E
storage less the 32K = 7B5E
number of overflow When console START
sectors specified. is pressed, the

assembly will auto-
matically be continued
in the *TWO PASS
MODE.

2. If error occurs in
paSs 2, reduce the
number of overflow
sectors specified or
specify drive on JOB
card with the most
nonprocess working
storage available if
more than one drive
is available.

A-12

Table A-2. Assembler Error Messages (Cont.)

Error Message

A04 SAVE SYMBOL
TABLE INIDBITED

AG5 MAINLINE PROGRAM
WITH NO NAME

A06 MORE THAN
25 ERRORS IN ORG,
BSS, OR EQU
ST ATEMENTS-­
ASSEMBLY
TERMINATED

Meaning

With *SA VE SYMBOL
T ABLE option specified:

1. Program is a
relocatable assembly.

2. Program contains
assembly errors.t

3. Source program
causes more than
100 symbols to be
present in the system
symbol table.

Mainline program just
assembled had no
name specified on
/ / ASM card.

Of the specified state­
ments (including BES)
25 operands were
undefined in pass 1
and defined in pass 2.
An attempt has been
made, for example,
to ORG ahead or to
equate a symbol with
a forward reference.

Recovery

1. Use ABS card
and reassemble.

2. Correct source
program errors and
reassemble.

3. Reduce number of
symbols in program
and reassemble.

Punch program name
into name field of
/ / ASM card and
reassemble.

If LIST option is used
or if a partial list
deck has been punched,
look for the error
flag U* in print posi­
tion or column 18 in
statements of the
specified type. If
forward references
have been attempted,
these must be cor­
rected before the
program is
reassembled.

tSpecific assembly-time errors are presented in table A-3.

A-13

Table A-2. Assembler Error Messages (Cont.)

Error Message Meaning Recovery

A07 LOAD BLANK CARDS A card containing a Place blank cards in
nonblank column in the hopper· of the card
columns 1 through 71 punch. Press punch
has been read while START and console
punching the symbol STEP.
table (as a result of a
*PUNCH SYMBOL
T ABLE control card).

A08 CONTROL RECORD A / / control record has Ensure that all cards
READ ... -ASSEMBL Y been read by the including the END
TERMINATED assembler. The card are in the source

assembler passes this deck. Reassemble.
card along to the
Supervisor before
terminating the
assembly. Loading
and DUP operations
are inhibited.

A-14

Table A-3. Assembler Error Detection Codes

Code Cause Assembler Action

A Address Error. Attempt made to Displacement set to zero.

specify displacement field,

directly or indirectly, outside

range of -128 to +127.

C Condition Code Error. Character Displacement set to zero.

other than +, -, Z, E, C, or 0

F

detected in first operand of short

branch or second operand of long

BSC, BOSC, or BSI statement.

Format Code Error. Character

other than L, I, X, or blank

detected in column 32; or L or

I format specified for instruction

not valid in that form.

Instruction processed as if L

format were specified, unless

that instruction is valid only

in short form, in which case it

is processed as if the X format

were specified.

L Label Error. Invalid symbol Label ignored.

detected in label field.

MMultiply Defined Label. Duplicate First occurence of symbol in

symbol encountered in label field label field defines its value;

or in operand.

A-15

subsequent occurrences of the

symbol in label field cause a

multiply defined indicator to be

inserted in Symbol Table entry

(bit 0 of first word).

Table A-3. Assembler Error Detection Codes (Cont.)

Code Cause Assembler Action

R Relocation Error. (1) Expression Expression set to zero.

does not have valid relocation.

S

(2) Nonabsolute displacement

specified.

(3) Absolute origin specified in

relocatable program.

(4) Nonabsolute operand speci­

fied in BSS or BES.

(5) Nonrelocatable operand in

END statement of relocatable

main program.

(6) ENT operand nonrelocatable

Syntax Error. (1) Invalid

expression (e. g. ; invalid

symbol, adjacent operators,

illegal constant).

Displacement set to zero.

Origin ignored.

Operand assumed to be zero.

Entry assumed to be relative

zero.

Statement ignored.

Expression set to zero.

(2) Main program entry point not Entry assumed to be relative

specified in END operand. zero.

(3) Incorrect syntax in EBC state- Location counter incremented

ment (e. g., no delimiter in card by 17.

column 35 or zero character

count).

(4) Invalid label in ENT or ISS Statement ignored

operand.

T Tag Error. Card column 33 con- Tag of zero assumed.

tains character other than blank,

0, 1, 2, or 3 in instruction

statement .\

A-16

Table A-3. Assembler Error Detection Codes (Cont.)

Code Cause

U Undefined Symbol. Undefined

symbol encountered in

expression.

Assembler Action

Expression set to absolute zero.

o Operation Code Error. (1) Oper- Statement ignored and Location

ation code not recognized.

(2) ISS, ILS, ENT, LIBR, SPR,

EPR, or ABS incorrectly placed.

A.3 FORTRAN ERROR MESSAGES

Counter incremented by 2.

Statement ignored.

Error messages produced by FORTRAN during a compilation are listed in

table A-4. If both EAC and FORTRAN messages are output to the line printer,

it is possible that an EAC message may overprint the previous FORTRAN

message. The user can prevent this overprinting by employing either of

two methods:

1. Assign the teletypewriter as the EAC output device.

2. Provide a line space after each FORTRAN printout (e. g., a slash

at the end of each FORMAT statement or a 1H + at the beginning

of each FORMAT statement).

A-17

Error
Number

Cl

C2

Table A-4. FORTRAN Error Codes

Cause of Error

Statement number contains a nonnumeric character.

Maximum number (five) of continuation cards exceeded, or

continuation card out of sequence.

C3 Syntax error in CALL LINK or CALL EXIT statement, or CALL

LINK or CALL EXIT statement in process program.

C4 Undeterminable, misspelled, or incorrectly formed statement.

C5 Statement out of proper sequence.

C6 Statement following STOP, RETURN, CALL LINK, CALL EXIT,

GO TO, IF, or TSS CALL statement should but does not have a

statement number.

C7 Name consists of more than five characters, or name starts with

a nonalphabetic character.

CS Incorrect or missing subscript within dimension information

(DIMENSION, COMMON, REAL, or INTEGER).

C9 Duplicate statement number.

ClO Syntax error in COMMON statement.

Cll Duplicate name in COMMON statement.

Cl2 Syntax error in FUNCTION or SUBROUTINE statement.

Cl3 COMMON statement contains parameter (dummy argument) .

Cl4 SUBROUTINE or FUNCTION statement contains a name twice as

a parameter.

Cl5 *IOCS control record in a subprogram.

Cl6 DIMENSION statement contains a syntax error.

Cl7 DIMENSION statement contains a subprogram name.

ClS Name dimensioned more than once, or not dimensioned on first

appearance of name.

A-lS

Error
Number

C19

Table A-4. FORTRAN Error Codes (Cont.)

Cause of Error

REAL, INTEGER, or EXTERNAL statement contains a syntax

error.

C20 REAL or INTEGER statement contains a subprogram name.

C21 Name in EXTERNAL statement is also in a COMMON or

DIMENSION statement.

C22 Reference to IFIX or FLOAT function in EXTERNAL statement.

C23 Invalid real constant.

C24 Invalid integer constant.

C25 More than 15 dummy arguments, or statement function argument

list contains duplicate dummy arguments.

C26 A subscript expression is missing a right parenthesis.

C27 FORMAT statement contains a syntax error.

C28 Statement number missing from FORMAT statement.

C29 Field width specification greater than 145.

C30 In a FORMAT statement the E or F conversion specifies w greater

than 127, d greater than 31, or d greater than w (where w is an

unsigned integer constant specifying the total field length of the

data, and d is an unsigned integer constant specifying the number

of decimal places to the right of the decimal point).

C31 EQUIVALENCE statement contains a subscript error.

C32 A statement function contains a subscripted variable.

C33 Subscript expression incorrectly formed.

C34 Subscript expression contains undefined variable.

C35 A subscript expression contains some number of subscripts that

does not agree with the dimension information.

A-19

Error
Number

C36

Table A-4. FORTRAN Error Codes (Cont.)

Cause of Error

Invalid arithmetic statement or variable; or, in a FUNCTION

subprogram, the left side of an arithmetic statement is a dummy

argument (or in COMMON).

C37 IF statement contains a syntax error.

C38 IF statement contains an invalid expression.

C39 CALL statement contains a syntax error or invalid simple

argument.

C40 CALL statement contains an invalid expression.

C41 A statement function contains an invalid expression to the left of

an equals sign.

C42 A statement function contains an invalid expression to the right of

an equals sign.

C43 An IF, GO TO, or DO statement number is missing, invalid,

incorrectly placed, or else it is the same as a FORMAT state­

ment number.

C44 READ or WRITE statement contains a syntax error.

C45 A mainline program contains a READ or WRITE statement but

*IOCS record is missing.

C46 A READ or WRITE statement does not contain a FORMAT state-

ment number or the FORMAT statement number is incorrect.

C47 Syntax error in input/output list; or an invalid list element; or, in

a FUNCTION subprogram, the input list element is a dummy

argument or is in COMMON.

C48 GO TO statement contains a syntax error.

C49 Index of Computed GO TO statement is miSSing, invalid, or not

preceded by a comma.

A-20

Error
Number

C50

Table A .. 4. FORTRAN Error Codes (Cont.)

Cause of Error

A mainline program contains a *TRANSFER TRACE or

* ARITHMETIC TRACE control record present with no *IOCS

control record.

C51 DO statements are incorrectly nested; or the terminal statement

of the associated DO statement is a GO TO, IF, RETURN,

FORMAT, STOP, PAUSE, DO, or TSS CALL statement.

C52 Number of nested DO statements exceeds maximum allowed (25).

C53 DO statement contains a syntax error.

C54 DO statement has zero as initial value.

C55 In a FUNCTION subprogram the index variable of DO statement

is a dummy argument or is in COMMON.

C56 BACKSPACE statement contains a syntax error.

C57 REWIND statement contains a syntax error.

C58 END FILE statement contains a syntax error.

C59 A STOP statement occurs in a process program, or a STOP

statement contains a syntax error.

C60 PAUSE statement contains a syntax error.

C61 STOP or PAUSE statement contains an integer constant greater

than 9999.

062 Last executable statement before END statement is not a STOP,

GO TO, IF, CALL LINK, CALL EXIT, RETURN, or TSS CALL

statement.

C63 Statement contains more than 15 different subscript expressions.

C64 Because of compiler expansion of subscript expressions or

compiler addition of generated temporary storage locations,

statement has become too long to be scanned.

A-21

Error
Number

Table A-4. FORTRAN Error Codes (Cont.)

Cause of Error

All variables in an EQUIVALENCE list t are undefined.

Variable made equivalent to an· element of an array in such a

manner as to cause the array to extend beyond the origin of the

COMMON area. t
C67t Two variables or array elements in COMMON are equated, or the

relative locations of two variables or array elements are assigned

more than once (directly or indirectly). t
C68 EQUIVALENCE statement contains a syntax error; or an

EQUIVALENCE list contains an illegal variable name.

C69 Subprogram does not contain a RETURN or TSS CALL statement;

. or a mainline program contains a RETURN statement.

C70 A mainline program that contains disk READ, WRITE, or FIND

statements has no DEFINE FILE.

C71 DEFINE FILE contains a syntax error.

C72 Duplicate DEFINE FILE statements, maximum allowed number

(75) of DEFINE FILE statements exceeded, or DEFINE FILE

statement occurs in subprogram.

C73 Record number of READ, WRITE, or FIND statement contains a

syntax error,

C74 INSKEL COMMON referenced with two-word integers.

C75 DATA statement contains a syntax error.

C76 In a DATA statement the names and constants are not one to one.

C77 DATA statement contains mixed mode values.

C78 DATA statement contains an invalid Hollerith constant.

C79 . DATA statement contains an invalid hexadecimal specification.

tThe detection of an error identified by code 65, 66, or 67 prevents any

subsequent detection of any of these three errors.

A-22

Error
Number

C80

Table A-4. FORTRAN Error Codes (Cont.)

Cause of Error

DATA statement contains a variable that is not used elsewhere

in the program.

C81 COMMON variable loaded with a DATA specification.

C82 DATA statement too long.

C83 TSS CALL statement appears illegally (CALL INTEX, CALL

BACK, CALL DPART, CALL CHAIN, or CALL VIAQ in a

nonprocess program; CALL VIAQ, CALL CHAIN, or CALL BACK

in a process subroutine).

A.4 DISK UTILITY PROGRAM ERROR MESSAGES

Error Messages produced by DUP are listed in table A-5.

A-23

Error
Code

DOl

D02

D03

D04

D05

D06

Table A-5. DUP Error Messages

Message

INVALID CNTRL CD

PGM ALRDY IN TMP

DR USED THIS JOB

DR 0 NOT MON. PK

ABORT SIGN OFF

DRIVE NOT IN USE

Meaning/Action

DUP or Monitor control card

invalid.

The program named already

has entries in temporary LET.

Execute indicator is not set.

Control card specified a disk

drive that is already in use

with this job; therefore, only

the label was changed.

Disk drive zero was specified

for use, but *DLABL control

card did not identify it as a

monitor pack; therefore, the

new label is placed on drive

zero.

When an unrecoverable error

is encountered, this message

is produced following the

appropriate error message.

1. Disk drive specified for

this job is not in use.

2. A dump of LET/FLET

area was requested from a

drive not in use.

tRecovery codes are defined as follows:

R = recoverable error allowing DUP to continue function.

Recovery
Codet

u

u

R

R

U

U

U = unrecoverable error causing DUP to abort the specific function.

A-24

Error
Code

D07

D09

Dl0

Dll

D12

Table A-5. DUP Error Messages (Cont.)

Message

DR GT MAX FOR
SYSTEM

NO CALL IN xxxxx

CD CHKSUM ERROR

Meaning/Action

The source drive specified is

greater than the maximum

allowed for the system.

N a call appears in core load

xxxxx for the core load being

changed.

Checksum error occurred

while binary program cards

were being read.

NE ED BLANK CARDS Insufficient supply of blank

cards for dumping to cards.

Place new supply of blank

cards in punch hopper, press

punch START switch, and

punching will continue.

MaN CRD WAS READ A monitor control card was

read when a DUP card was

expected. The specified

monitor function will be

performed, and the pre­

vious DUP store function

will be terminated.

tRecovery codes are defined as follows:

R = recoverable error allowingDU~ to continue function.

Recovery
Codet

U

R

U

R

U

U = unrecoverable error causing DUP to abort the specific function.

A-25

Error
Code

D20

D21

D22

Table A-5. DUP Error Messages (Cont.)

Message Meaning/Action

INVALID CHARACTER The buffer holding the printer

output contains invalid

EBCDIC characters. The

printer will leave one blank

space for each invalid

character. After the mes­

sage has been printed, the

function will be terminated.

INVALID PGM TYPE

IL PGM HDR
LNGTH

1. Following an assembly or

compilation, an invalid type

code was found in program

header.

·2. An *STORECI control

card contained a program

type code in column 11 that

was not an M, C, I, or

blank. No execute indicator

(INOEX) is set, and the

*STORECI function is aborted.

3. Replacement core load

was not the correct type.

A dump of a relocatable

program was requested, but

an illegal program header

length was detected.

tRecovery codes are defined as follows:

R = recoverable error allowing DUP to continue function.

Recovery
Codet

U

U

U

U = unrecoverable error causing DUP to abort the specific function.

A-26

Error
Code

D23

D24

D25

D28

Table A-5. DUP Error Messages (Cont.)

Message Meaning/Action

DUMP LNGTH = ZERO The size of the program or

data area to be dumped was

calculated to be zero. The

error exists in the LET /

FLET entry or, for a

relocatable program, in

the program header.

CTRL CD NAME BAD An invalid or blank name was

NAME NOT IN L/F

NO SRCE DR SPCFD

found on a control card.

1. If found by DUMP1 or

SEQCH program, function

is aborted.

2. If found by SCONT or

DLETE program, function

may be allowed to continue.

1. Routine to be removed

was not on drive zero.

2. A search of LET /FLET

for a particular program name

was unsuccessful.

Control card failed to specify

a source drive. Source was

indicated as nonprocess work

storage.

tRecovery codes are defined as follows:

R = recoverable error allowing DUP to continue function.

Recovery
Codet

U

U/R

u

u

U = unrecoverable error causing DUP to abort the specific function.

A-27

Error
Code

D29

D31

D32

D34

Table A-5. DUP Error Messages (Cont.)

Message

CNT FLD IN ERROR

INVALID INP CARD

NAME NOT PRIME

NAME NOT IN TEMP

Meaning/Action

Erroneous numeric field in con-

trol card. The count field either

contains invalid characters or

is located in wrong columns.

This error occurs when any

card other than a DUP control

card is input to one of the

store functions and is in error.

Processing is terminated, and

control is returned to the

control card analyzing routine.

The no execute indicator

(INOEX) is set, and the pro­

gram is not stored.

Control card contained a name

that did not compare with

prime entry point in binary

deck. If no other entries with

the same name exist in the

table, the store function will

continue to store program

under prime entry point name

The temporary LET entries

were searched for the name of

the program to be stored, but

it was not found.

tRecovery codes are defined as follows:

R = recoverable error allowing DUP to continue function.

Recovery
Codet

U

U

U

U

U = unrecoverable error causing DUP to abort the specific function.

A-28

Error
Code

D35

D38

041

Table A-5. DUP Error Messages (Cont.)

Message

L/F FIND ILLEGAL

NO DISK ROOM

PNT EXCESS

Meaning/ Action

The name of the program to be

stored already exists in LET /

FLET for a particular drive.

No execute indicator (INOEX)

is set.

1. Sector address is out· of

range. The areas defined on

CONFG card exceed the space

available. Requested size

must be reduced.

2. Search of user area for

permanent store, fixed area

for FLET store, working

storage for data store, or

temporary storage area

revealed insufficient room

to store program.

3. Insufficient nonprocess

work storage to allow dump

operation to be completed.

4. This message is also

produced when the specified

drive is not on the system.

Program name table exceeds

allocated buffer space.

tRecovery codes are defined as follows:

R = recoverable error allowing DUP to continue function.

Recovery
Code t

U

U

u

U == unrecoverable error causing DUP to abort the specific function.

A-29

Error
Code

D43

D44

D45

D46

D47

Table A-5. DUP Error Messages (Cont.)

Message

TEMP ABORT

L/F TABLES FULL

CORE LOAD NAMES
NOT FOUND

INOLD ON

NOPNT CMP

Meaning/Action

This message indicates that

the disk pack is reaching the

maximum number of programs

the system can store. Sug­

gested recourse: execute

*DFINE PAKDK for that drive.

LET or FLET area is full ..

Increase size of LET /FLET

or remove some entries.

This message precedes a list

(10 per line) of core load names

that are not found on disk.

This message notifies the user

that the no-load indicator in the

nonprocess communication area

was set when control returned

to DUP from the Core Load

Builder, FORTRAN, or

Assembler.

During the updating of core

load program name table, the

first entry in the table did not

compare with the name placed

in the nonprocess communica­

tion area from the *STORECI

control card.

t Recovery codes are defined as follows:

R = recoverable error allowing DUP to continue function.

Recovery
Codet

R

U

R

U

U

U = unrecoverable error causing DUP to abort the specific function.

A-30

Error
Code

D50

D52

D75

D78

D79

Table A-5. DVP Error Messages (Cont.)

Message

NO SKEL ON DSK

LEVEL/POS = L1/B1

PGM NAMES EQVAL

CL TYPE IN ERROR

Meaning/ Action

No skeleton exists on disk.

Illegal level/bit position

(i. e., L1/B1) requested.

This message is preceded by

a D79 message for an illegal

interrupt to show the interrupt

level still calling the program.

If this message does follow

D79, the error is recoverable.

Perform a DICLE function to

enter the correct level and

bit in the ICL table.

N ames on the control card are

the same.

The control card- specified type

of core load (M, I, C, D, or

blank) does not agree with the

type indicated in . FLET entry.

PGM STILL CALLING 1. Other core loads have calls

to a program that is to be

deleted. The names of the

calling programs are printed

preceding this error message.

2. See also D52 error

message.

tRecovery codes are defined as follows:

R = recoverable error allowing DUP to continue function.

Recovery
Codet

v

V/R

v

u

u

V = unrecoverable error causing DVP to abort the specific function.

A-31

Error
Code

D90

D91

D92

D93

D94

Table A-5. DUP Error Messages (Cont.)

Message

SKEL TOO LARGE

MESS NOT DEFINED

INVALID FIELD(S)

NO 'I' ON CONFG CD

NO CLST OR ERPG

Meaning/Action

Size of skeleton is greater

than object core. Change

skeleton size or redefine

object core to larger size.

An M appeared on a CONFG

card, but message area not

defined on any system disk.

If system has no message

buffer, remove the M entry

from the card. Ascertain

that the JOB card indicates all

drives that are to be available

to the system.

The control card has some kind

of error in format or content.

See discussion of DUP control

cards in paragraph 3. 2. 2.

Control card contains "S" or

"SX" but no "I". Add drive

number and interrupt save

length to the card.

/CLST or . ERPG not found on

any system drive. Add dis k

pack with these entries or

ensure that all drives are

indicated on JOB card.

tRecovery codes are defined as follows:

R = recoverable error allowing DUP to continue function.

Recovery
Codet

u

u

U

U

u

U = unrecoverable error causing DUP to abort the specific function.

A-32

Error
Code

D95

D96

D99

Table A-5. DUP Error Messages (Cont.)

Message

PSBL CI PGM LOSS

INSV GR THAN COR

Meaning/ Action

This *DFINE CONFG operation

may cause some core image

programs to be lost. Correct

this condition by either of

two methods:

• Precede the *DFINE card

with another *DFINE card

to enlarge the core image

area.

• Remove core image

programs.

Defined interrupt save length

exceeds variable core size.

Check for:

• Object core defined large

enough.

• Skeleton defined too large.

• Interrupt save length defined

too large.

SYST /HARDW ERROR General error alarm; system

or hardware error.

t Recovery codes are defined as follows:

R = recoverable error allOwing DUP to continue function.

Recovery
Codet

U

U

U

U = unrecoverable error causing DUP to abort the specific function.

A-33

A.5 SKELETON BUILDER ERROR MESSAGES

Error messages produced by the Skeleton Builder have the following format:

Kxx lprog rout reinc LEV. Y

where

K

xx

lprog

rout

reinc

LEV.y

identifies Skeleton Builder messages.

sequence number; 00
16

:s XX:S IF 16.

name of the program being relocated.

routine specified within lprog.

relocation increment of rout from lprog.

denotes severity level of the error:

y = 0 - for information only; the Skeleton Builder is

operating properly.

y = 1 - minor error; an error has occurred, but loading

is continued.

y = 2 - major error; no loading possible; pass 2 will not be

attempted.

y = 3 - severe error; abort immediately.

(Parameters lprog, rout, and reinc appear in the output only where

required by the particular message.)

After the skeleton has been built, it can be moved to the skeleton area only

when y is less than 2 (i. e., has the value 0 or 1).

The Skeleton Builder error messages are listed in table A-6.

A. 6 SYSTEM LOADER ERROR MESSAGES

System Loader error messages consist of the identifying letter L and a

two-digit sequence number. These messages are listed in table A-7.

A-34

Table A-6. Skeleton Builder Error Messages

Error Message

K01 LEV.3

K02 lprog LEV. 2

K03.rout LEV. 2

K05 lprog rout
reinc
LEV. 0,1,2

Meaning Recovery

Load table overflow. This 1. Decrease number of

condition causes immediate subroutines.

termination of SkE>leton 2. Decrease number of

Builder operation. in-core interrupt routines

(see *INCLD in Non-

A disk format error has

been found in program

lprog.

The relocatable program

rout cannot be found in

LET.

Within the skeleton the

call to TSS subroutine

rout in program lprog is

invalid. The CALL state-

ment is at relative location

reinc of lprog.

A-35

process Monitor,

paragraph 3. 2. 2) .

Correct program on disk.

1. Delete all references

to rout from the system

skeleton.

2. Store rout on disk and

enter in LET.

Correct the CALL

statement.

Table A-6. Skeleton Builder Error Messages (Cont.)

Error Message Meaning Recovery

K06 lprog rout The required core load Correct Iprog.
reinc LEV.2

name in the list of the TSS

program sequence change

CALL to rout at relative

location reinc does not

occur in the EXTERNAL

statement in lprog.

KO 7 lprog llbb The in-core interrupt sub- Correct the assignment
LEV.2

routine lprog has been of in-core interrupts on

deSignated to service llbb, the *INCLD control card

which has been previously (paragraph 3. 2. 2) .

assigned to another in-core

interrupt subroutine.

K08 LEV.2 The disk drive that was 1. Change the temporary

designated for temporary drive to another drive.

system usage does not 2. Delete programs from

contain enough nonprocess the user's area to provide

working storage space to sufficient nonprocess

build the skeleton. working space.

K09 LEV.2 The maximum length of Decrease the number of

255 words (85 entries) for LIBF subroutines included

the transfer vector (ETV) within the skeleton.

has been exceeded.

KOA lprog LEV. 3 Program lprog has a Correct the lprog back-

back-origin that would origin.

overlay part of the

Skeleton I/O area.

A-36

Table A-6. Skeleton Builder Error Messages (Cont.)

Error Message

KOB LEV.2

KOC lprog iaccd
LEV.1

KOD lprog rout
reinc LEV.2

Meaning

The sum of the lengths of

the skeleton and compo­

nents exceeds the defined

length.

Recovery

Redefine the length of the

skeleton or eliminate or

shorten the skeleton

components. This action

will reduce the size of

the skeleton.

The interrupt service sub- 1. Correct the lAC code.

routine lprog contains an 2. Reload the system.

interrupt service entry

point, defined for lAC

code (iaccd), which is not

in the system master

branch table. The lAC

number (iaccd) is

hexadecimal.

In program Iprog is an

invalid reference to sub-

routine rout at relative

location reinc; i. e., a

LIBF reference to a

type 4 or type 6 sub­

routine when it should be

a CALL, or a CALL ref­

erence to a type 3 or

type 5 subroutine when it

should be a LIBF.

A-37

3. If the device that would

cause the interrupt is not

in the system, ignore the

message.

Correct the reference.

Table A-6. Skeleton Builder Error Messages (Cont.)

Error Message Meaning Recoyery

KOE lprog LEV.2 The integer size or real Correct the precision.

precision indicated for

program lprog does not

agree with that indicated

for the skeleton.

Kl3 rout The LEV. I message indi- Build the core load
LEV. I, 2

cates that core load rout (*STORECI) .

has been referenced via a

CALL CHAIN, CALL

SPECL, CALL QUEUE,

CALL QIFON, or CALL

UNQ, but rout is not in

FLET.

The LEV. 2 message Define the required area

indicates that a required (*DEFINE CONFG).

system area is not present.

Kl4 lprog reinc Program Iprog contains Correct the reference in
LEV.2 an INSKEL COMMON Iprog.

reference at relative loca-

tion reinc that falls outside

the bounds of INSKEL

COMMON.

'f.l.

A-3S

Table A-6. Skeleton Builder Error Messages (Cont.)

Error Message Meaning Recovery

~

K18 LEV. 1 During a skeleton rebuild Use same TASK and

operation, the total length System Director as used

or the length of entries of in previous skeleton

the new ICL table are build operation.

incompatible with those of

the old ICL table.

K19 LEV.2 The number of interrupt 1. Correct definitions for

levels defined for TASK is number of interrupt levels.

different from that defined 2. Correct definition for

for the System Director, length of skeleton.

or the length of the

skeleton defined for the

System Director is dif-

ferent from that defined on

the *DEFINE CONFG card.

Table A-7. System Loader Error Messages

Error
Meaning Recovery

Code

L01 A control card is missing. Examine the system deck and

prepare the necessary card.

(See section 7.) Then place that

card and all cards that should

follow it in the card reader input

hopper. Press reader START

and console STEP.

A-39

Error
Code

L02

L03

L04

L05

Table A-7. System Loader Error Messages (Cont.)

Meaning

An assignment card contains a

nonnumeric value for an

interrupt level, bit, lAC, or

LUN.

The total bits specified on the

assignment card does not

agree with the count specified

in columns 4 and 5 of the card.

A continuation card is defined

for a different level than the

assignment card it continues.

One of three conditions exists:

1. The interrupt level speci­

fied on the assignment card is

greater than 23, but is not 99.

2. More than 16 bits are

specified on an assignment

card.

3. An lAC or L UN greater

than 64 is specified on an

assignment card.

A-40

Recovery

Correct the error; replace the

corrected assignment card in the

system deck; place the

* ASSIGNMENT card and the

entire deck of assignment cards

in the card reader input hopper.

Press reader START and console

STEP.

Same procedure as for L02.

Same procedure as for L02.

Same procedure as for L02.

Table A-7. System Loader Error Messages (Cont.)

Error
Meaning Recovery

Code

L06 An assignment card entry for Same procedure as for L02.

lAC or L UN is not followed by

a slash, comma, or blank.

L07 A duplicate lAC code has been Same procedure as for LO 2.

specified on an assignment

card.

LOS An attempt has been made to Same procedure as for LO 2.

assign a L UN to an lAC that

has no FORTRAN ID and,

thus, no LUN.

L09 A L UN equal to zero or to a Same procedure as for L02.

value greater than 44 has been
; specified on an assignment

card.

Ll0 The same L UN has been Same procedure as for L02.

assigned to more than one lAC.

Lll More than one process inter- Same procedure as for L02.

rupt has been as signed to a

single interrupt level.

L12 Duplicate interrupt level Same procedure as for L02.

assignments have been made.

A-41

Error
Code

L13

L14

L15

Table A-7. System Loader Error Messages (Cont.)

Meaning

Program name from *LDDSK

card was not found in LET.

The specified relocatable

subroutine already has a LET

entry. The LET entry may be

cleared by performing a DUP

DELETE function.

Checksum error.

A-42

Recovery

Verify proper format and spelling

on *LDDSK card. If the card is

correct, reload the LET deck,

preceded by the LDDSK. LET

card. This deck should be fol­

lowed by the * LDDSK. name

subroutines. (N ote: this action

clears all previous LET entries.)

If the * LDDSK card is incorrect,

correct the error, place the cor­

rected card and the proper

absolute program in the card

reader input hopper, and press

reader START.

The subroutine cannot be loaded.

Bypass this subroutine and con­

tinue with the following control

card or program deck.

1. To initiate a retry following

this error, place the binary card

in the card reader input hopper

and press reader START. If the

error persists, enter a punch in

row 9 of column 3 to override

the checksum.

Table A-7. System Loader Error Messages (Cont.)

Error
Meaning Recovery

Code

2. To abort the loading of the

program that caused the error,

bypass the remaining records and

continue With the next program or

control card in the system deck.

L16 The last program deck before 1. Correct the error. Then:

the *CCEND card did not con- • For an absolute program,

tain an end-of-program card place the entire program

(type F). deck, preceded by the

appropriate * LDDSK card,

in the card reader input

hopper and press reader

START and console STEP.

• For a relocatable program,

place the entire program

deck in the card reader

input hopper and press

reader START and console

STEP.

2. To bypass the program deck,

skip to the next header or control

card, place the rest of the cards

in the card reader input hopper,

and press reader START and

console STEP.

A-43

Error
Code

L17

Table A-7. System Loader Error Messages (Cont.)

Meaning

Either a type A card is out of

order in an absolute deck or

the header card is missing

from the deck.

Recovery

Place the proper * LDDSK card,

followed by the corrected pro­

gram deck, in the card reader

input hopper and press reader

START and console STEP.

L18 Illegal back origin encountered. 1. To recover: reassemble,

place the *LDDSK card and

reassembled program deck in

the card reader input hopper,

and pres s reader START and

console STEP.

2. To continue without corrective

action: Bypass the remaining

cards of the program, place

the remaining cards· to be loaded

in the card reader input hopper,

and press reader START and

console ST EP .

L19 *DEDIT card error. Either an Correct the *DEDIT card, place

invalid core size (must be 08, it in the card reader input hopper,

16, or 32) was specified or too and press reader START and

great a buffer size was spec i- console STEP.

fied (maximum 199).

Error
Code

L20

L21

L22

L23

Table A-7. System Loader Error Messages (Cont.)

Meaning

Either there was no LET on

disk or the *DEDIT card was

read before LET was loaded

on disk.

Either there is an illegal

card type in the program

deck or the header card or

type F card is missing from

the subroutine deck.

IOU subroutine is miSSing.

DeOM not found on disk.

Recovery

Place the *LDDSK. LET card, a

valid LET deck, a *LDDSK. subr

card, and the *DEDIT card in the

card reader input hopper. Press

reader START and console STEP.

Same procedure as for L16.

Place the *LDDSK. subr card

followed by the IOU subroutine

deck and the *DEDIT card in the

card reader input hopper and

press reader START and console

STEP.

Place the *LDDSK. DCOM card,

the DCOM deck, and the *DEDIT

card in the card reader input

hopper. Press reader START

and console STEP.

Table A-7. System Loader Error Messages (Cont.)

Error Meaning Recovery
Code

L24 The cards in the program deck Ensure proper. sequencing of

preceding the *LDDSK card program deck:' header card,

were not in the proper data card, and EOP card. To

sequence. continue, follow same procedure

as for L16.

L25 An lAC code has not been Same procedure as for L02.

assigned to the timer, disk,
~

card reader, card punch, line

printer, or console interrupt.

L26 Either there isa sequence Same procedure as for L16.

number error on a type A

binary card or a type A card

is mis sing or out of sequence.

A.7 NONPROCESS MONITOR SUPERVISOR ERROR MESSAGES

The Supervisor error messages are identified by a three-character symbol,

Nxx (N specifies the Supervisor messages and xx is a two-digit sequence

number). These messages are listed in table A-S.

A-46

Table A-8. Supervisor Error Messages

Error Message Meaning

NOl ILLEGAL MTR CD A card has a slash in column 1 but does not con­

tain a mnemonic acceptable to the Nonprocess

Monitor Supervisor (e. g., / /DUMP). The no

execute indicator (lNOEX) is set. The job will be

assembled and stored but will not be executed.

N02 LDR CD ERROR A loader card violates the specifications for its

card type. The erroneous card is printed imme­

diately following the N02 message. The no load

and the no execute indicators are set. The job

is assembled and stored, but it will not be loaded

. as part of the core load nor will it be executed.

N03 NOT CONTROL CD The Supervisor has just encountered a card that

N04 READY READER

N05 NAME ERROR

it cannot identify; i. e., column 1 does not contain

a slash (/) or an asterisk (*). The card image

is printed immediately after the N03 message,

and cards are bypassed until the next control card

is read.

The Supervisor could not read from the card

reader. After printing this message, the Super­

visor loops until the reader is not busy and ready.

A / /FOR, / / ASM, or / /XEQ control card con­

tains a name that is not in a valid format. The

erroneous card is printed immediately following

the N05 message. The no execute indicator is

set. If the card is a / /FOR or / / ASM, the no

load indicator is also set.

A-47

Table A-8. Supervisor Error Messages (Cont.)

Error Message

N06 LDR CD
SEQUENCE

N07 LABEL FORMAT

N08 ILLEGAL LDR CD

N09 NO LOAD

NIO NO EXEC

NIl LABEL ERR DRx

Meaning

The Supervisor has encountered a valid but

unnecessary loader control card (e. g., an

*INCLD without a preceding / /XEQ), or else

Nonprocess Monitor control records contain a

control card that is applicable only to process

jobs (e. g., an *RCORD following a / /XEQ).

The JOB card contains an erroneous pack label

specification field. This error can be the result

of trailing blanks or an alphabetic character in a

numeric field. The job is aborted.

A card has an asterisk in column 1 but does not

contain a mnemonic acceptable to the Nonprocess

Monitor Supervisor (e. g., * ASM).

The no-load indicator has been set, and a store

store core image operation (*STORECI) is

requested. Although the loader is called, the

store operation will not be performed.

The no-execute indicator (INOEX) has been set,

and program execution is requested. Although

the loader is called, the program will not be

executed.

The label that appears on disk pack x does not

match the label specified for that pack on the

JOB card. The job is aborted.

A-48

Table A-S. Supervisor Error Messages (Cont.)

Error Message

N12 TEMP DR ERR

N13 FLET ERR DRx

N14 NO LET /FLET
DRx

N15 *CCEND MISSING

Meaning

Either the temporary drive is not in use or the

drive number selection is not valid for the system.

The job is aborted.

The FLET entry for the disk pack on drive x

contains a drive number that does not match the

drive on which the pack is mounted. The job is

aborted.

Either drive x has no LET /FLET table or the

table is not properly constructed. The job is

aborted.

A monitor control record has been encountered

before proces sing of loader control records was

completed (i. e., before an *CCEND card was

read) . The loader will not be called; therefore,

loading or execution will not occur. The monitor

control record will be processed.

N16 PGM NOT IN FLET The execution of a core image program has been

requested via an XEQ card; however, the FLET

table of the disk pack on the specified drive con­

tains no entry for that program. If no drive is

indicated on the card, all drives are searched.

A-49

Table A-8. Supervisor Error Messages (Cont.)

Error Message Meaning

N17 NOT NP CORE LD The execution of a core image program has been

requested via an XEQ card. Although a FLET

entry has been located, the program is not a

nonprocess core load. The no load and no execute

indicators are set, and the Supervisor reads the

next control card.

N18 [ASM/FOR] NOT
ON DISK

Although the specified program (ASM is

Assembler; FOR is FORTRAN) has been removed

from the system disk through a DUP DEFINE

REMOV function, that program has been called

by a monitor control record. The erroneous

control record is printed immediately following

the NI8 message. The no execute indicator is

set, and the Supervisor reads the next control

card.

A.8 CORE LOAD BUILDER ERROR MESSAGES

The format of error messages produced by the Core Load Builder is the same

as that for Skeleton Builder error messages:

Rxx lprog rout reinc LEV. Y

where

R

xx

lprog

rout

reinc

identifies Core Load Builder message.

sequence number; 00 s xx ::s IF.

name of the program being relocated.

routine specified within lprog.

relocation increment of rout from lprog.

A-50

LEV.y denotes severity level of the error:

y = 0 - minor error/warning. Disk loading and/or

execution is not suppressed.

y = 1 - moderate error. Although disk loading proceeds,

execution is suppressed if the operation was

initiated by a / /XEQ control record. Core loads

built with a level 1 error may be executed via

*STORECI and / /XEQ FX procedures.

y = 2 - severe error. Disk loading and execution are

suppressed. If specified, the core load map will

be printed. A level 2 error indicates a problem

in a subroutine.

y = 3 - abort. Core Load Builder terminates its operations

immediately and transfers control to the Supervisor

or to DUP. A level 3 error indicates a problem in

a mainline program.

The Core Load Builder error messages are listed in table A-9.

Table A-9. Core Load Builder Error Messages

Error Message Meaning Recovery

R01 LEV.3 A load table overflow has 1. As appropriate,

occurred. This situation decrease number of sub-

causes immediate termi- routines, files, and/ or

nation of Core Load Builder in-core interrupt routines.

operation. 2. Perform core load

build operation off-line

under TASK.

A-51

Table A-9. Core Load Builder Error Messages (Cont.)

Error Message

R02lprog
LEV. 2,3

R03 rout LEV. 2

R04 lprog LEV. 2

R05 lprog rout
reinc
LEV.O,1,2

R06 lprog rout
reinc LEV.2

Meaning

A disk format error has

been found in program

lprog.

An entry for relocatable

program rout cannot be

found in LET on disk.

A subroutine that is

specified as a LOCAL

is not a type 3 or type 4.

Within program lprog the

call to TSS subroutine

rout is invalid for the type

of core load being built.

The CALL statement is at

relative location reinc of

lprog.

Recovery

Correct the program on

disk.

1. Delete the reference

to rout from the core load.

2. Assemble or compile

program rout and enter it

in LET.

Delete the subroutine

name from the LOCAL

control card and rebuild

the core load.

Correct the CALL

statement.

The required core load Correct lprog.

name in the . list of the TSS

program sequence change

CALL to rout at relative

location reinc of lprog

does not occur in an

EXTERNAL statement in

program lprog.

A-52

Table A-9. Core Load Builder Error Messages (Cont.)

Error Message Meaning Recovery

R07 lprog llbb The in-core interrupt Correct the assignment
LEV.2

subroutine lprog has been of in-core interrupts.

designated to service llbb,

which has previously been

assigned to another

in-core interrupt

subroutine.

R08 LEV.2 The di'sk drive that was 1. Change the temporary

designated for temporary dri ve to another drive.

system usage does not 2. Delete programs from

contain enough nonprocess the user's area to provide

working storage space to sufficient nonprocess

build the core load. working space.

R09 LEV.2 The maximum length of Decrease the number of

255 words (85 entries) for LIBF subroutines

the transfer vector (ETV) included within the core

has been exceeded. load.

ROA lprog LEV. 2 Program lprog has a Correct the lprog

back-origin that would back-origin.

overlay part of the

skeleton or core load

tables.

ROB novfl LEV. 2 The sum of the lengths of Reduce the size of the core

the core load and COM- load and/or COMMON by

MON exceeds the length of the number of words

variable core. specified in the message

by novfl.

A-53

Table A-9. Core Load Builder Error Messages (Cont.)

Error Message Meaning Recovery

ROC lprog iaccd The interrupt service sub- 1. Correct the lAC code.
LEV.O

routine lprog contains an 2. Reload the system.

interrupt service entry 3. If the device that

point, defined for lAC would cause the interrupt

code (iaccd), which is not is not in the system,

in the system master ignore the message.

branch table. The lAC

number (iaccd) is

hexadecimal.

ROD Iprog rout In program lprog is an Correct the reference.
reinc LEV.2

invalid reference to sub-

routine rout at relative

location reinc; e.g., a

LIBL or CALL reference

to a core load when it

should be PNT.

ROE IprogLEV. 2 The relocatable program Using the TSS system,

lprog was not assembled assemble or compile

or compiled within the program lprog.

TSS system.

ROF lprog LEV. 1 The integer size or real Correct the size or

precision indicated for precision.

program lprog does not

agree with that indicated

for previously loaded pro-

grams in the core load.

A-54

Table A-9. Core Load Builder Error Messages (Cont.)

Error Message Meaning Recovery

R10 drvno secno The accumulated length of 1. Redefine file lengths.
LEV. 1

DEFINED FILES exceeds 2. Delete programs from

(by secno) the amount of the user area to provide

working storage (either sufficient working storage.

nonprocess or process

working storage) currently

availabe on drive drvno.

R11 filnt> recno In order not to exceed the 1. Enlarge the equate file.
LEV.O

area of the equated data 2. Adjust the *DEFINE

file (from * FILES control FILES statement in the

record), the define file main program.

number (filno) and the

number of records (recno)

have been truncated.

R12 LEV.3 The nonprocess system Execute skeleton build

does not allow building of procedure before building

an interrupt, combination, the core load.

or process-mainline core

load.

R13 rout LEV. 2 The required core image Use DUP to allocate the

data file rout cannot be named core image area

found in FLET on disk. on disk.

A-55

Table A-9. Core Load Builder Error Messages (Cont.)

Error Message Meaning Recovery

R14lprog LEV.2 The INSKEL area defined 1. Reduce the amount of

for the system has been INSKEL COMMON used

exceeded by the amount of by lprog.

INSKEL COMMON used by 2. Redefine the size of

program lprog. INSKEL area. This pro-

cedure requires rebuilding

the system and all pre-

viously built core loads.

R15 lprog LINK Program Iprog, built Use the *STORECI
LEV.2

under the XEQ function, function to build all links

contains a CALL LINK of the chain.

statement, which is

invalid.

R16 lprog rout A LOCAL subroutine 1. Change the calling
LEV.3

(rout) called another sub- sequence.

routine designated as a 2. Change the designation

LOCAL in a different of the LOCALs on the

group. control cards.

RE1 LEV. 3 An attempt was made to Build an off-line or

build a core load under an on-line system.

incomplete system.

A.9 COLD START NAME CARD ERRORS

The error codes produced during the processing of a cold start name card are

listed in table A-10.

A-56

Table A-10. Cold Start Name Card Error Codes

Error Meaning
Code

1 The cold start name is incorrect (* CLDST) .

2 Illegal first character of initial core load name.

3 Column 7 is not blank.

4 Column 13 is not blank.

5 Column 15 is not blank.

6 Column 17 is not blank.

7 Column 19 is not blank.

8 Column 21 is not blank.

9 Column 23 is not blank.

10 Either an incorrect disk logical drive assignment was given or the

drive is not on-line.

11 Either the core load name was not in FLET or the drive has not

been assigned to the system.

To recover from error codes 1 through 9, follow this procedure:

1. Remove the cold start name card from the reader.

2. Correct the error.

3. Place the corrected name card in the reader.

4. Ready the reader.

5. Press console ST EP .

To recover from errors 10 and 11, reload the cold start deck.

A-57

A.lO SYSTEM DffiECTOR EAC ERROR MESSAGES

The System Director EAC error messages have the format:

* cxx tt. ttt ac-m prog loc

where

*

c

xx

tt. ttt

ac-m

an asterisk indicates a process core load in core. A blank

indicates a nonprocess core load in core.

a code letter to designate the type of error:

F == FORTRAN
I == general input/output
M == mask
p == process input/output
Q == Queue
X == miscellaneous

a two-digit number denoting the classification of the error.

time, in thousandths of an hour.

the first two characters (ac) identify the area code for the

associated I/O device; the third character (m) is a modifier

and is applicable only where there is more than one device

for that area code.

prog name of the program in core at the time the message is

produced. This program mayor may not be the one that

originated the error condition.

loc location of the call leading to the error.

The System Director EAC error codes and their meanings are listed in

table A-ll.

A-58

Table A-11. System Director EAC Error Codes

Code Meaning

INTERNAL ERRORS

MLTP
EAC

996

An error has occurred while EAC was processing a previous error.

Cold start required

Channel Address Register check error. User is given the option to

RELOAD (if error is in skeleton), RESTART (if error is in variable

core, abort nonprocess job; or execute user's restart core load for

process job), or COLD START (required if EAC is unable to reload

system) .

997 Operation code violation. See code 99·6 for options.

998 Storage protect violation. See code 996 for options.

999 Parity error. See code 996 for options.

USER ERROR TYPE CODES FOR DP I/O

101 Parity error

102 Storage protect violation

103 Illegal CALL

104 Not ready

105 / /blank card

106 Feed check

107 Read-punch check

108 Data overrun

109 Write select

110 No print response

III Data error

112 Invalid message on disk

113 File protect error

114 Tape error

115 Excessive tape errors

A-59

Table A-11. System Director EAC Error Codes (Cont.)

Code Meaning

116 End of tape

117 Invalid call to error routine

118 No response from disk

119 Invalid disk address

USER ERROR TYPE CODES FOR PROCESS I/O

POl Parity data or command reject

P02 Storage protect violation

P03 Illegal CALL

P04 Parity control

P05 Overlap conflict

USER ERROR TYPE CODES FOR QUEUING

Q01 Error option is zero; call ignored

Q02 Error option is not zero; no lower priority in the queue

Q03 Queue entry replaced by new CALL QUEUE

USER ERROR TYPE CODES FOR FORTRAN

F87 Illegal unit reference for unedited I/O

F88 Read list exceeds length of write list

F89 Record does not exist for read list element

F90 Illegal address computed in an indexed store operation

F91 Illegal integer variable used in a Computed GO TO statement

F92 Disk file not defined

F93 Disk record too large, zero, or negative

F94 Input record is in error

F95 Range of numerical values is in error

F96 Output field too small to contain the numbers

A-60

Table A-ll. System Director EAC Error .. Copes (Cont.)

Code Meaning

F97 Illegal unit reference for nondisk I/O

F98 Requested record exceeds allocated buffer

F99 Working storage area insufficient for defined files

USER ERROR TYPE CODES FOR MASK ROUTINES

MOl Illegal CALL RESMK statement

M02 Illegal CALL UNMK statement

USER ERROR TYPE CODES FOR PROGRAM SEQUENCE CONTROL

XOl Illegal CALL BACK statement

X02 Interrupt level error

X03 Core load not loaded on disk

X04 Restart core load not loaded on disk

A-6l

APPENDIX B - CALLING SEQUENCES FOR SYSTEM ROUTINES

The routines described in this appendix are arranged in alphabetical order by

mnemonic:

Mnemonic Paragraph Mnemonic Para~aEh

BACK B.1 OPMON B.13

CHAIN B.2 QIFON B.14

CLEAR B.3 QUEUE B.15

CLOCK B.4 RESMK B.16

COUNT B.5 SAVMK B.17

DPART B.6 SETCL B.1S

ENDTS B.7 SHARE B.19

EXIT B. S SPECL B.20

INTEX B.9 TIMER B.21

LEVEL B.10 UNMK B.22

LINK B.11 UNQ B.23

MASK B.12 VIAQ B.24

B.1 RESTORE SAVED CORE LOAD - BACK

Calling Sequence:

FORTRAN: CALL BACK

ASSEMBLER: CALL BACK

Operation: The BACK routine checks the indicator set by the SPECL routine

(paragraph B. 20) to determine if a core load has been saved in the special save

area. If a mainline core load has not been saved, an error will result (see

summary of system error messages in appendix A) • If a core load has been

saved, that core load is restored to variable core. Execution of the restored

core load continues at the statement following the CALL SPECL statement.

B-1

B.2 EXECUTE PROCESS MAINLINE CORE LOAD - CHAIN

Calling Sequence:

FORTRAN: CALL CHAIN (NAME)

ASSEMBLER: CALL CHAIN

CALL NAME

where

name - the name of a process mainline core load as it exists in FLET.

Operation: The call to the CHAIN routine terminates the present mainline core

load. The named process mainline core load is loaded and executed. No refer­

ence to the process mainline queue is made.

B.3 CLEAR RECORDED INTERRUPTS - CLEAR

Calling Sequence:

FORTRAN: CALL CLEAR(M, L1, II' L2 , 12 , ... , Ln' In>

ASSEMBLER: CALL CLEAR

where

M

L

I

M

L.
1

I.
1

DC

DC

DC

DC

DC

DC

M

L.
1

I.
1

value

value

value

- an integer value specifying the number of L and I parameters

to follow; if M is zero, all indicators are cleared.

- interrupt level or indicator. t

- PISW bit position indicator or COUNT (paragraph B. 5)

indicators. t

tThe parameters L and K for QIFON (paragraph B. 14) for acceptable combinations
of the L and I parameters.

B-2

Operation: The CLEAR routine enables the user to clear, selectively, the

recorded interrupt indicators.

B.4 READ CLOCK - CLOCK

Calling Sequence:

FORTRAN:

ASSEMBLER:

I

CALL

CALL

CLOCK(I)

CLOCK

DC I

DC o

Operation: The CLOCK routine sets the integer expression referenced by the

calling sequence to the current time. I is set to an integer value (0 ::; I ::; 23999
10

),

representing hours and thousandths of hours multiplied by 1000.

B.5 SET PROGRAM INTERVAL TIMER - COUNT

Callin& Seg,uence:

FORTRAN: CALL COUNT(S, T, N)

ASSEMBLER: CALL COUNT

where

S

T

N

S

T

N

DC

DC

DC

DC

DC

DC

S

T

N

value

value

value

- number of the count subroutine to be executed when the

specified time elapses; 0 ~ S ::; 31.

- program interval timer to be set; 1 ::; T ~ 9.

- number of intervals to which T is set.

B-3

Operation: The COUNT routine is identical to the TIMER routine except that

COUNT uses software timers rather than hardware timers.

B.6 END COMBINATION CORE LOAD - DPART

Calling Sequence: /

FORTRAN: CALL DPART

ASSEMBLER: CALL DPART

Operation: The CALL DPART statement is used as the last logical statement of

a combination core load. The DPART routine checks the system level indicator

to determine if the combination core load that called it is presently executing

as a process mainline or interrupt core load. If the level indicator specifies

that the mainline level is currently executing, the CALL DPART statement is

executed as a CALL VIAQ statement (paragraph B. 24). If an interrupt level is

specified by the level indicator, the CALL DPART statement is executed as a

CALL INTEX statement (paragraph B. 9).

B.7 END TIME-SHARE OPERATION - ENDTS

Calling Sequence:

FORTRAN: CALL ENDTS

ASSEMBLER: CALL ENDTS

Operation: This routine is used by interrupt programs to set the time-share

timer to zero. A CALL ENDTS statement has no effect unless a time-sharing

operation is currently underway.

Example: An INSKEL interrupt servicing subroutine (ISS) senses a process

condition to be serviced by a process mainline core load named CL009. Part

of the ISS coding might be as follows:

B-4

CALL QUEUE(CL009, 1, 0)

CALL ENDTS

.CALL INTEX

(see paragraph B. 15)

(see paragraph B. 9)

Time-sharing always continues until the time-share timer has been decremented.

to zero. If the ISS mentioned above had interrupted a time-sharing operation

(assembly; compilation, or execution of a nonprocess core load), that operation

would be terminated the next time Timer C was updated, since Timer C is used

to update the time-share timer. The Nonprocess Monitor, recognizing that the

time-share interval was over, would save the nonprocess job in the nonprocess

save area of the disk.

The last process mainline core load is restored, and control is given to its

VIAQ routine (paragraph B. 24). The VIAQ routine finds core load CL009 in the

queue, so that core load is brought into core and executed.

If the CALL ENDTS statement had not been used, the time- sharing operation

would have continued for the remaining time in the time-share timer. The

time-sharing operation will be automatically continued the next time a CALL

VIAQ statement is executed and the queue is . empty.

B.8 END NONPROCESS CORE LOAD - EXIT

Calling Sequence:

FORTRAN: CALL EXIT

ASSEMBLER: CALL EXIT

Operation: The EXIT routine is referenced by nonprocess core loads. It termi­

nates the execution of the present nonprocess core load and transfers control

to the Nonprocess Monitor, which reads the next card in the nonprocess job

stream.

B-5

B.9 EXIT TO MASTER INTERRUPT CONTROL (MIC) - INTEX

Calling Sequence:

FORTRAN:

ASSEMBLER:

CALL

CALL

INTEX

INTEX

Operation: The INTEX routine returns control to MIC on interrupt exit. It can

be used only in interrupt core loads or INSKEL interrupt subroutines.
!

B.10 INITIATE PROGRAMMED INTERRUPT - LEVEL

Calling Sequence:

FORTRAN:

ASSEMBLER:

where

I

I

CALL

CALL

LEVEL (I)

LEVEL

DC I

DC value

- an integer expression specifying an interrupt level;

o =s I =s 23.

Operation: The LEVEL routine initiates a programmed interrupt on the interrupt

level specified by the value of the integer (I) designated in the calling sequence.

The interrupt will be honored as soon as these two conditions exist:

• The requested level is unmasked.

• All higher priority levels have been serviced.

B.ll EXECUTE A NONPROCESS CORE LOAD - LINK

Calling Sequence:

FORTRAN:

ASSEMBLER:

CALL

CALL

CALL

LINK (NAM E)

LINK

NAME

B-6

where

NAME - the name of a nonprocess core load in the core load (FLET)

area. If the FORTRAN calling sequence is used, NAME

must appear in an EXTERNAL statement.

Operation: A call to the LINK routine terminates the present nonprocess core

load. The nonprocess core load named in the calling sequence (NAME) is loaded

and executed. That nonprocess core load must have been built to reside in the

core load (FLET) area prior to the execution of a CALL LINK statement.

B.12 SET SYSTEM MASK REGISTER - MASK

Calling Sequence:

FORTRAN:

ASSEMBLER:

where

MSK1)

MSK2

MSK1

MSK2

CALL

CALL

MASK(MSK1, MSK2)

MASK

DC MSK1

DC MSK2

DC

DC

/xxxx

/xxxx

- two integer variables specify the bit pattern used to set the

system mask register. Bits 0 through 13 of MSK1 are used

to set the mask status of interrupt levels 0 through 13.

Bits 0 through 9 of MSK2 are used to set the mask status

of interrupt levels 14 through 23. Bits 14 and 15 of MSK1

and hits 10 through 15 of MSK2 are not used.

Operation: The MASK routine uses the bit pattern of the two specified integer

variables to set the system mask register. If the bit corresponding to any level

is set (i. e., is the digit 1), all interrupts associated with that level are inhibited.

If the bit corresponding to any level is not set, the status of that level is not

affected. Both parameters are required, even when the system is equipped

with fewer than 14 levels.

B-7

Example: In the following coding sequence the call to the MASK routine will

mask levels 1 through 3, 5 through 13, and 18 through 23. The mask status of

levels 0, 4, and 14 through 17 will not be changed.

H77FF

HOFFF

CALL

DC

DC

DC

DC

MASK

H77FF

HOFFF

/77FF

/OFFF

Mask Pattern: 0111 0111 1111 1111

Mask Pattern: 0000 1111 1111 1111

If the system were equipped with only 6 levels (i. e., 0 through 5), the bits in

the mask words corresponding to levels 6 through 23 would have no effect.

However, the second mask word would still be required by the calling sequence.

B.13 RESET OPERATION MONITOR - OPMON

Calling Sequence:

FORTRAN:

ASSEMBLER:

CALL

CALL

OPMON

OPMON

Operation: The OPMON routine is used to reset the Operations Monitor (stall

alarm).

B-8

B.14 QUEUE IF INDICATOR ON - QIFON

Calling Seguence:

FORTRAN:

ASSEMBLER:

where

NAME

I

L,K

J

I

J

L

K

CALL

CALL

CALL

DC

DC

DC

DC

DC

DC

DC

DC

QIFON(NAME, I, L, K, J)

QIFON

NAME

I

L

K

J

value

value

value

value

- the name of a process mainline core load, as it exists in

FLET, to be placed into the queue.

- the priority with which the named core load is to be placed

in the queue; 1 sIs 32767.

- interrupt reference combinations:

L

0-23

0-23

Any negative
number

K

0-15

Any negative
number

0-31

Meaning

Level and bit; process
interrupts

Programmed interrupts

Programmed timer (count)
subprogram number

- error parameter; same as parameter J for CALL QUEUE

statement (see paragraph B. 15); 0 ~ J :5 32767.

Operation: The QIFON routine tests a recorded interrupt indicator, as deter­

mined by the Land K parameters in the calling sequence. A recorded interrupt

indicator is set when a process interrupt, a programmed interrupt, or a

B-9

programmed timer interrupt occurs, and the required servicing subroutine

is not in core at the time the interrupt is received. This procedure does not

apply to interrupts that have associated interrupt core loads assigned to them.

If the indicator specified by the L and K parameters is set, the process main­

line core load named in the calling sequence is placed in the queue as a delayed

servicing mechanism. The Land K parameters are interpreted as follows:

1. If both parameters are positive, L indicates the level, and K indicates

the bit of an external process interrupt.

2. If K is negative, L indicates the level of a programmed interrupt.

3. If L is negative, K indicates the number of a subroutine as specified in

a CALL COUNT statement (paragraph B. 5) which was not in core when

the programmed timer interval elapsed.

Requirements: The NAME, I, and J parameters for the CALL QIFON statement

are identical to the NAME, I, and J parameters for a CALL QUEUE statement

(paragraph B.15) and must conform to the same restrictions.

B.15 QUEUE A CORE LOAD - QUEUE

Calling Sequence:

FORTRAN:

ASSEMBLER:

where

NAME

I

J

CALL

CALL

CALL

DC

DC

DC

DC

QUEUE(NAME, I, J)

QUEUE

NAME

I

J

value

value

(priority)

(error option)

- the name of the process mainline core load to be placed in

the process mainline queue.

B-IO

I

J

- the execution priority to be associated with the queue entry;

1 $ I =:; 32767 (highest priority is 1; lowest priority is 32767).

- error option if queue is full:

J=O

1 =::: J ~ 32766

J = 32767

If queue is full, output error message

to EAC printer; then ignore call.

If queue is full, replace the lowest

priority entry with this entry. Do

not replace any entry with a priority

number less than the value of J. If

no replaceable entry can be found,

execute a RESTART error recovery

procedure.

If queue is full, execute a RESTART

error recovery procedure.

Operation: The QUEUE routine places an entry into the process mainline queue,

based on the core load named in the calling sequence. The same core load cannot

be entered into the queue twice with the same priority. The second call is

ignored. The same core load can be placed into the queue with different priori­

ties. If two different core loads are entered with the same priority, the VIAQ

routine (paragraph B. 24) will execute the core load that was placed in the queue

first.

Requirements: It is the user's responsibility to ascertain that the core load

named in the calling sequence is a process mainline core load and that the core

load has been built to reside in the FLET area before the CALL QUEUE state­

ment is executed.

When applicable, the RESTART procedure will consist of executing the restart

core load associated with the process mainline core load which is currently in

VCORE or which last occupied VCORE.

B-11

If the FORTRAN calling sequence to the QUEUE routine is used, the name of the

core load to be placed in the queue must appear in an EXTERNAL statement for

the program.

B.16 RESTORE SYSTEM MASK REGISTER - REMSK

Calling Sequence:

FORTRAN:

ASSEMBLER:

where

1

J

CALL

CALL

ttEMSK(I, J)

REMSK

DC 1

DC J

DC

DC

/xxxx

/xxxx

- two integer variables that specify the status levels to be

masked. A 1 in a bit position causes the corresponding

level to be masked; a 0 causes the corresponding level

to be unmasked.

Operation: The REMSK routine is normally used with the SA VMK routine

(paragraph B. 17) . By referencing the same parameters, the REMSK routine

will set the system mask to the state detected by SA VMK. REMSK uses bits

o through 13 of the first parameter (I) to set the mask status of levels 0

through 13 and bits 0 through 9 of the second parameter (J) to set the mask

status of levels 14 through 23.

B-12

B. 17 SAVE SYSTEM MASK REGISTER - SA VMK

Calling Sequence:

FORTRAN:

ASSEMBLER:

I

J

CALL

CALL

SAVMK(I, J)

SAVMK

DC I

DC J

DC

DC

o
o

Operation: The SA VMK routine records the status of interrupt levels 0 through 13

. in bits 0 through 13 of the first parameter (I) and the status of levels 14 through 23

in bits 0 through 9 of the second parameter (J). After the routine has been exe­

cuted, a 1 in a bit position indicates that the corresponding level is currently

masked; a 0 indicates that the corresponding level is currently unmasked.

B.1S SET SYSTEM REAL-TIME CLOCK - SETeL

Calling Sequence:

FORTRAN

ASSEMBLER:

where

I

I

CALL

CALL

DC

DC

SETCL(I)

SETCL

I

value

- any integer value in the range 0::: I:::: 23999
10

.

Operation: The SETCL routine sets the system real-time clock to the value of

the variable specified in the calling sequence. This parameter specifies the

time in hours and thousandths of hours, multiplied by 1000; for example,

6:00 a.m. would be expressed as 06000, or 11:30 p.m. as 23500.

B-13

B.19 INITIATE TIME-SHARING OPERATION - SHARE

Calling Sequence:

FORTRAN:

ASSEMBLER:

where

I

I

CALL

CALL

SHARE (I)

SHARE

DC I

DC value

- an integer expression designating the number of time

intervals to be allowed for nonprocess program operation.

Operation: The SHARE routine is used by process mainline core loads to

initiate a time-sharing operation for a specific time interval. The value of I

determines the duration of the time-sharing interval in units of the programmed

timer base. Execution of the CALL SHARE statement suspends the execution of

the mainline core load which called it until the interval has elapsed or until a

CALL ENDTS statement (paragraph B. 7) is executed from an interrupt program.

B.20 SPECIAL LINKAGE - SPECL

Calling Sequence:

FORTRAN:

ASSEMBLER

where

NAME

CALL

CALL

CALL

SPECL(NAME)

SPECL

NAME

- the name of the process mainline core load that is to be

executed via the special linkage routine.

Operation: A call to the SPECL routine initiates the following sequence of

operations:

1. All variable core is saved in the special save area on the disk (a

special save area must have been designated at system generation time).

B-14

2. An indicator is set to inform the Skeleton Executive that a core load

has been placed in the special area.

3. The core load named in the calling sequence is loaded and executed.

Requirements: The core load named in the calling sequence must have been

built to reside in the core load (FLET) area. If the FORTRAN calling sequence

is used, NAME must appear in an EXTERNAL statement.

B.21 SET INTERVAL TIMER - TIMER

Calling Sequence:

FORTRAN

ASSEMBLER:

where

NAME

I

T

CALL

CALL

DC

DC

DC

NAME DC

I

T

DC

DC

TIMER (NAME , I, T)

TIMER

NAME

I

T

address of subroutine NAME

value

value

- identifies the program to be executed after the specified

time interval expires.

- identifies the interval timer: (1 or 2).

1 = timer A

2 = timer B

specifies the number of intervals to which I is set (i. e. ,

the number of timer intervals to elapse before execution).

Operation: The TIMER routine is used to obtain extremely accurate delays in

the execution of a programming sequence. It should be used only for short time

intervals because it is on a high level. Subroutine NAME must be in core when

the timer interrupt is recognized.

B-15

B.22 UNMASK INTERRUPT LEVELS - UNMK

Calling Sequence:

FORTRAN:

ASSEMBLER:

CALL

CALL

DC

DC

UNMK(UNMK1, UNMK2)

UNMK

where

UNMK1)

UNMK2

UNMK1 DC

UNMK2 DC

UNMK1

UNMK2

/x:xxx

/xxxx

- two integer variables specify the bit pattern used to unmask

the system interrupt levels. Bits 0 through 13 of UNMK1

correspond to levels 0 through 13; bits 0 through 9 of

UNMK2 correspond to levels 14 through 23.

Operation: The UNMK routine allows interrupts on the levels specified by the

two variables designated in the calling sequence. A 1 in any bit position causes

the corresponding level to be unmasked; a 0 bit allows the corresponding level

to remain unchanged. Both parameters are required, even when the system is

equipped with fewer than 14 interrupt levels.

Example: In the following coding sequence the MASK statement (paragraph B.12)

will mask levels 1 through 3, 5 through 13, and 18 through 23. The UNMK

statement will unmask levels 1, 2, 6 through 11, and 14 through 23.

B-16

H77FF

HOFFF

UN1

UN2

CALL MASK

DC H77FF

DC HOFFF

CALL UNMK

DC UN1

DC UN2

DC

DC

DC

DC

/77FF

/OFFF

/63FO

/FFFF

Mask Pattern: 0111 0111 1111 1111

Mask Pattern: 0000 1111 1111 1111

Bit Pattern: 0110 0011 1111 0000

Bit Pattern: 1111 1111 1111 1111

After these calls are executed, levels 0 and 4 would remain unchanged; levels 3,

5, 12, and 13 would be masked; and, all other levels would be unmasked.

If the system were equipped with only 6 levels (i. e., 0 through 5), the references

in the calling sequences to levels 6 through 23 would have no effect. However,

the second parameter would still be required by the calling sequence.

B.23 REMOVE CORE LOAD FROM QUEUE - UNQ

Calling Sequence:

FORTRAN:

ASSEMBLER:

I

CALL

CALL

CALL

DC

DC

UNQ(NAME, I)

UNQ

NAME

I

value

B-17

where

NAME

I

- the name of the core load to be removed from the queue.

- the execution priority used when the core load was entered

into the queue; 1:s I :5 32767.

Operation: The named core load is removed from the queue. If the named

core load is not in the queue or if it is not currently in the queue with the

specified execution priority (I), the call is ignored.

Requirements: If the FORTRAN call is used, the name of the core load must

appear in an EXTERNAL statement.

B.24 EXECUTE A QUEUED CORE LOAD - VIAQ

Calling Sequence:

FORTRAN:

ASSEMBLER:

CALL

CALL

VIAQ

VIAQ

Operation: The normal function of the VIAQ routine is to return control to the

System Director from a process core load. VIAQ searches the queue table and

initiates execution of the highest priority process mainline core load found. If

the queue is empty, variable core is made available for time-sharing operation.

If no time sharing is requested, the system will wait until an interrupt is

recognized.

B-18

APPENDIX C - DIFFERENCES BETWEEN TSX AND TSS

C.l CARD INPUT /OUTPUT

For TSS the CARDN routine must always be included in the skeleton. The

routine has been written to double buffer all card input/output. Because of

this approach, two "pusher" cards are required at the end of each deck fed

into the card reader.

This approach also poses a small problem with the Absolute Loader and System

Loader. When a card-out-of-sequence or checksum error occurs, two cards

must be removed from the card reader stacker and placed back in the card

reader hopper. After the console STEP switch has been pressed, another error

message will be printed stating that the problem has not been corrected. This

printout occurs because the next card had already been read and placed in

CARDN's core buffer. Press STEP again to continue operation.

C.2 LINE PRINTER

The TSS line printer driver PRNTN is double buffered. Because of this

buffering, the programmer need not be concerned about a buffer busy test after

a call to PRNTN. However, if a program is being written to run under control

of TSX, TSS, and DM2, the buffer busy test should be made.

C.3 DISK INPUT /OUTPUT

As far as the user is concerned, the only new feature with the disk is the ability

to have up to ten platters on the system. The first three platters are the

system-supported drives; additional drives may be addressed through DISKN.

Since all disks are on a single data channel, simultaneous read/write opera­

tions are not allowed.

C.4 TYPEWRITER/KEYBOARD

Up to eight keyboards are allowed with TSS. With TSS read requests may be

intermixed freely with write requests. Read requests will not be honored

C-l

until all pending write requests are completed. This prevents the keyboard

from locking out the printer portion of the TTY prematurely.

C.5 SENSE SWITCHES

There are no sense switches on the GA 18/30 Computer. Therefore, any

request for data through the console must be through the data switches. The

IOCC for sensing the sense switches on the 1800 is the same as that used to

sense the status of the console TTY on the GA 18/30.

C.6 CLEARING CORE

There is no CLEAR CORE feature on the GA 18/30 Computer as there is on

the 1800. To enable the user to clear storage protect bits and set core to

zero as required by TSS, a ZAP card is provided. This is a one-card pro­

gram in IPL format. It is loaded via the IPL feature to core from the card

reader at location zero. Execution begins at core location zero. After core

has been cleared, the program comes to a WAIT.

C.7 RTR INSTRUCTIONS

The register transfer instructions on the GA 18/30 are not supported by the

TSS' assembler. To incorporate these instructions in a program, convert

them to DC format.

C-2

GLOSSARY

The definitions given here are for the terms as they are used in this document.

A

absolute coding - Coding that uses instructions with absolute addresses.

Contrast with "relocatable coding. "

ASM - See "Assembler. "

Assembler - The assembler program that is included in the Nonprocess Monitor.

B

background processing - The automatic execution of lower priority computer

programs when higher priority programs are not using the system resources.

Contrast with "foreground processing. "

buffer - Intermediate storage area between two data processing storage or data

handling systems with different access times or formats. An interim

system to facilitate interface between two other systems.

C

cold start - The procedure of loading the Cold Start Program, whose function

is to load the Skeleton Executive into core, storage protect it, start the

real-time clock, and call the user's initial core load for execution. Thus,

this procedure places the System Director in control of the on-line system.

combination core load - A core load that can be executed as either an interrupt

or a mainline core load.

common areas - Three areas of core storage are used for FORTRAN COMMON

storage: INSKEL common, interrupt common, and core load common.

See individual definitions.

core image format - The format in which core loads are stored on disk, which

is the same form they have when they are in core storage to be executed

(i. e., linkages provided, etc.).

G-l

core load - A complete, executable programming unit, which is stored in core­

image format on dis k . It consists of a main program (interrupt, mainline,

or nonprocess), all required subroutines that are not permanently in core,

and the communications areas. Further, mainline core loads may include

in-core interrupt routines.

core load common - Located at the high-address end of core storage and

referenced only by mainline or nonprocess core loads. See also

"common areas. "

D

data processing input/output - Refers to general input/output devices, such as

printers, card readers/punches, teletypewriters, as compared with process

input/output devices. Subroutines are supplied with the TSS system that

enable the user to reference data processing I/O devices easily.

disk - See "magnetic disk storage. "

Disk Utility Program (DUP) - A set of disk handlers (routines) included in the

N onprocess Monitor.

DUP - See "Disk Utility Program. "

E

EAC - See "Error Alert Control Program. "

Error Alert Control Program (EAC) - One of several programs that constitute the

System Director.

exchange - A save operation followed immediately by the overlaying of VCORE

with a new core load. Also referred to as "swapping. "

F

feedback - In a control system, feedback is the signals fed back from a

controllable process to denote its response to the command signal.

G-2

Fixed Location Equivalence Table (FLET) - Serves as a map for the location of

core loads and data files. Each core load and data file requires at least

one entry in FLET. See also "Location Equivalence Table. "

FLET - See "Fixed Location Equivalence Table. "

FOR - See "FORTRAN. "

foreground processing - The automatic execution of the programs that have been

designated to preempt the use of the computing facility; usually a "real-time"

program. Contrast with ''background processing."

FORTRAN - The compiler that is included in the Nonprocess Monitor.

G

generate - To produce a program by selection of subsets from a set of skeletal

coding under control of parameters ..

generator - A controlling rOQtine that performs a generate function; e. g., core

load builder, skeleton builder.

H

hardware - The equipment or "machinery" used in a computer system. The

computer itself and peripheral devices as opposed to "software, " which

denotes written information.

I

INSKEL Common - Located within the system skeleton and can be referenced by

any process or nonprocess program. See also "common areas. "

interface - In control terminology, the means used to link components in a

control system. In computer terminology, a common boundary between

automatic data processing systems or parts of a single system.

interrupt - To stop a process in such a way that it can be resumed.

G-3

Interrupt Common - Located at the high-address end of the interrupt core load

save area and used for interprogram communication between programs

that form an interrupt core load or between combination core loads when

they are executed on the mainline level. See also "common areas. "

interrupt core load - A program unit that resides on disk and is brought into

core to service a particular interrupt.

interrupt program - A program that is executed as the result of a particular

interrupt. Same as interrupt routine and interrupt servicing routine.

Interrupt Status Table - Specifies which interrupt routines are in core with the

current mainline core load and contains the entry address for the interrupt

routine.

interval timer - A clocking device that cycles a value contained in a word of

main storage, enabling the computer system to read elapsed time.

Interval Timer Control Program (ITC) - One of several programs that constitute

the System Director.

ITC - See "Interval Timer Control Program. "

J

job - A specified group of items prescribed as a unit of work for a computer.

L

By extension, a job usually includes all necessary computer programs,

linkages, files, and instructions to the operating system.

LET - See "Location Equivalence Table. "

level work areas - Contain interrupt level instructions, MIC linkages, and work

areas. One level work area is required for each interrupt level used,

process mainline, nonprocess core load, and internal error level.

linkage - In programming, coding that connects two separately coded routines.

G-4

LOCAL subprograms - Subprograms that are read from disk into core for

execution when called by the object program. All LOCALs associated with

a program use the same area of core storage by overlapping each other as

they are called.

Location Equivalence Table (LET) - Serves as a map for supplied and relocatable

programs. Each relocatable program or subroutine stored on disk has at

least one entry in the table. An entry contains the name of the item and

location information. Each entry point in a subroutine requires an entry in

LET. All operations that involve including or deleting relocatable programs

reference LET. (Core loads and data files refer to FLET.) See also

"Fixed Location Equivalence Table. "

M

magnetic disk storage - A storage device or system consisting of magnetically

coated disks, on the surface of which information is stored in the form of

magnetic spots arranged in a manner to represent binary data.

Mainline Core Load Queue Table - See "Queue Table. "

mainline program - A program that does not directly service an interrupt (1. e. ,

analysis program); it executes on the lowest interrupt level.

map - To establish a correspondence between the elements of one set and those

of another set. [noun:] The listing that represents this correspondence.

mask - A pattern of characters that is used to control the retention or elimina­

tion of portions of another pattern of characters.

Master Interrupt Control Program (MIC) - One of several programs that

constitute the System Director.

MIC - See "Master Interrupt Control Program. "

N

nonprocess core load - A core load that is executed under control of the

Nonprocess Monitor.

G-5

Nonprocess Monitor - An independent programming system that operates under

the System Director in a time-sharing environment or under TASK in an

off-line situation to control the execution of supplied (i. e., FORTRAN,

Assembler, Disk utility Routines) or user-written, nonprocess programs.

nonprocess program - A program that executes under control of the Nonprocess

Monitor and does not (normally) perform any function related to the process

under control. Such a program may be supplied (i. e., compiler or assem­

bler) or user-written (e. g., payroll application).

Nonprocess Supervisor (SUP) - One of several programs included in the

Nonprocess Monitor.

nonprocess work storage area - A temporary storage area on disk used during

the execution of nonprocess programs and extenSively during Nonprocess

Monitor operations (e. g., to store the object program as it is generated by

the Assembler or compiler).

o
object code - Output from a compiler or assembler which is itself executable

machine code or is suitable to produce executable machine code.

off-line - A mode of operation in which the GA 18/30 Industrial Supervisory

System is not monitoring a process and, therefore, can be operated as any

general purpose computer might be.

on-line - A mode of operation in which the GA 18/30 Industrial Supervisory

System, utilizing the Time-Sharing Executive System (TSS) , monitors the

process under control.

p

peripheral equipment - Equipment that is external to and not part of the central

processing instrumentation; includes such equipment as paper tape punches

and readers, disk storage units, line printers, and typewriters.

G-6

process input/output - Refers to special input/output devices that are specific

for an installation and the process to be controlled. Process input/output

subroutines are not included in the supplied routines.

process program. - A program, normally user-written, that performs some

function in relation to controlling the process. There are two types of

process program.s: mainline and interrupt.

process work storage area - A temporary storage area on disk used during the

execution of process programs.

Program Name Table - Consists of the name and disk address of any core loads

that are called by the current core load and the name of a core load speci­

fied for restart.

Program Sequence Control Program (PSC) - One of several programs that

constitute the System Director.

PSC - See "Program Sequence Control Program. "

Q

Queue Table - The Mainline Core Load Queue Table contains the names of main­

line core loads and their respective priorities that have been queued for

future execution.

R

real time - Pertaining to the performance of a computation during the actual

time that the related physical process transpires in order that results of

the computation can be used in guiding the phYSical process.

reentrant program - One that can be interrupted at any point, employed by

another user, and then resumed from the point of interruption. All supplied

routines that are required on multiple levels in TSS are fully reentrant.

relocatable program - One that has been assembled or compiled but has not

been converted into core loads.

G-7

relocate - In computer programming, to move a routine from one portion of

storage to another and to adjust the necessary address references so that

the routine, in its new location, can be executed.

restore - The operation by which the contents of a disk save area are returned

to VCORE.

S

save - An operation by which all or a portion of the variable core area is moved

to a save area on disk so that it will not be destroyed when a higher priority

operation is read into VC ORE.

Skeleton Executive - The basis, or framework, of an on-line TSS system; it

must be resident in core. It consists of both supplied and user-written

routines. Synonymous with system skeleton when referring to an on-line

system.

software - Programs, routines, codes, and other written information used with

digital computers as distinguished from "hardware, " the equipment itself.

subroutine library - Includes the most frequently required subroutines used by

the process and nonprocess programs.

SUP - See "Nonprocess Monitor. "

System Director - That portion of the Skeleton Executive that handles all inter­

rupts, controls user-specified sequence of process control programs, and

controls the time-sharing of nonprocess programs.

system generation - The procedure of assembling, storing on disk, and pre­

paring for execution all elements necessary to constitute a TSS system for

the specific installation.

system skeleton - The permanently assigned area of core storage that contains

the framework of the system, such as programs, work areas, communica­

tion areas, and user-defined options. See also "Skeleton Executive" and

"Temporary Assembled Skeleton. "

G-8

T

TASK - See "Temporary Assembled Skeleton."

Temporary Assembled Skeleton (TASK) - The executive system for off-line

operation; it provides two services: it serves as the vehicle by which the

TSS system is tailored for a specific installation, and it serves as the

system skeleton for the Nonprocess Monitor's off-line operation.

time-sharing - The ability to use the computer to execute nonprocess programs

during times when the process programs are not being executed. The

Skeleton Executive retains the ability to respond to process interrupts.

Time-Sharing Control Program (TSC) - One of several programs that constitute

the System Director.

TSC - See "Time-Sharing Control Program. "

V

variable area (VCORE) - That area of core outside the system skeleton; it is

useq by process and nonprocess core loads and by TSS programs such as

the N onprocess . Monitor.

VCORE - See "variable area. "

w
work area - See "level work areas. "

G-9

BIBLIOGRAPHY

GA 18/30 FORTRAN IV Reference Manual, publication no. 88A00123A

GA 18/30 Industrial Supervisory System, Programming/Operations Manual,

publication no. 88A00121A

GA 18/30 Industrial Supervisory System, Reference Manual, publication

no. 88A00026A

IBM 1130 Assembler Language (Form C26-5927)

IBM 1130/1800 Basic FORTRAN IV Language (Form C26-3715)

IBM 1800 Time-Sharing Executive System, Concepts and Techniques

(Form C26-3703)

IBM 1800 Time-Sharing Executive System, Operating Procedures (Form C26-3754)

IBM 1800 Time-Sharing Executive System, Subroutine Library (Form C26-3723)

Louden, Robert K., Programming the IBM 1130 and 1800, Englewood Cliffs,

New Jersey: Prentice-Hall, Inc., 1967

