GA 18/30
TIME-SHARING
EXECUTIVE
SYSTEM |

GENERAL AUTOMATION, INC.

PRICE $10.00
88A10059A-A

| GA 18/30
TIME-SHARING EXECUTIVE
SYSTEM

GENERAL AUTOMATION, INC.

Automation Products Division
1055 East Street, Anaheim, California 92805 (714) 778-4800

© 1970, 1971, General Automation, Inc.

88A10059A-A

REVISION

Symbol Description Approved Date

A Programming Release /? CM July 70

PREFACE

This manual provides an introduction to the Time-Sharing Executive System. I
is not a reference manual and, therefore, does not contain extensive detailed infor-
mation concerning programming for the system. It does provide an overview of
the system, describe the interrupt scheme, and explain system generation. The
document is organized in twd parts. Part I contains the overview of TSS, intro-
duces each major component of the system, and discusses the processing func-
tions. Part II discusses programming techniques for handling various common
situations, operating considerations, and system generation procedures, The
appendices provide information about certain hardware features and software
considerations; system error messages are summarized in one appendix. The
document also includes a glossary as well as a bibliography, which lists docu-
ments to which the reader may refer for details concerning the implementation

and use of the Time-Sharing Executive System.

CONTENTS

PART I — OVERVIEW

Section 1 INTRODUCTION

Basic Elements in Process Control
Interrupt Hardware

Software Priority Concept
Servicing an Interrupt

Summary

el e
Ul W N

Section 2 ON-LINE OPERATION

Concept of On-Line Operation
Skeleton Executive

System Dynamics

System Components

Skeleton 1/0

In-Skeleton Common

System Director

User-Written Subroutines

User Contributions in Tailoring the Skeleton
System Director Components
Master Interrupt Control Program
Interrupt Service Routine In Skeleton
Interrupt Core Load

Interrupt Service Routine With Core Load
Mainline Core Load

Program Sequence Control Program
Interval Timer Control Program
Time-Sharing Control Program
Selectable Method

Automatic Method

Error Alert Control Program
User-Supplied Subroutines
Reentrant Coding

> SVUR VI DN =
B> W N

.

N =

CUBRPRARPRRBRARRRONNNNNRRR

I R e e

NDNNMNNDMNDNDNNDNNDNDODNDNDNDNDNNDNNDNNDNDNDNDDNDNDNDDNDNDDNDDN

Section 3 NONPROCESS MONITOR

Nonprocess Monitor Operations

3.1
3.2 ~ Components of the Nonprocess Monitor

1-2
1-3
1-4
1-5
1-6

2-1
2-1
2-3
2-4
2-5
2-5
2-5
2-6
2-6
2-7
2-9
2-11
2-12
2-12
2-12
2-12
2-14
2-14
2-15
2-15
2-16
2-16
2-17

3-1

LW ww
NN NDN
B> W N =

Section 4

. .
. .

AU A WN -

W N =

0
1

PR R R R R R e e e

CONTENTS (Cont.)

Nonprocess Supervisor

Disk Utility Program
FORTRAN Compiler
Assembler

SYSTEM EVOLVEMENT

Temporary Assembled Skeleton
System Generation TASK

System Generation Overview
TASK Disk Write Addresses Program
System Loader

System Loader Monitor

Table Builder

Disk Loader

Disk Edit Phase

System Loader Error Program
System Loader Control Cards
Disk Edit Control Card
Assignment Cards

Comment Cards

Core Load Builder

Skeleton Builder

Disk Location Equivalence Tables
Cold Start Routine

TASK Equate Cards

System Director Equate Cards

PART II — PROCEDURES

Section 5

.
AT U OO O WN =
N =

N

.
.

[0 B; B2 B 7 B 1 R) B2) B |

PROGRAMMING CONSIDERATIONS

FORTRAN Subprograms
SUBROUTINE Subprograms
FUNCTION Subprograms
Assembler Language Subroutines
Reentrant Coding

Timer Servicing Subroutines
Core Loads

Core Load Coding

Nonprocess Core Loads

Process Core Loads

Interrupt Core Loads

INSKEL Interrupt Servicing Routine

ii

5-10
5-10
5-17
5-18
5-19

.
.

)

SO OO O O

Gl W N

oUW

o e e
coocooo
LI R '

o

.
.

B el el = =l el el e e e
o o
- o

HEHBO®IoamwNHRERRERR

S O OO
w

et

.

U‘li-hrhlhwl\')l—‘

N =

DA OOHOD

CONTENTS (Cont.)

Core Load Building

Disk Storage Areas

Core Load Area

Fixed Location Equivalence Table
Working Storage

FORTRAN Disk Input/Output
Assembler Disk Input/Output
Subroutine Library

Card I/0 Subroutine - CARDN
Disk Storage Subroutine - DISKN
Printer/Keyboard Subroutine - TYPEN, WRTYN
Printer Subroutine - PRNTN
Magnetic Tape Subroutine - MAGT
Paper Tape 1/0 Subroutine - PAPTN
Plotter Subroutine - PLOTX
Summary of DUP Operation
DEFINE Routine

Object Core Size

Number of Disk Drives

Disk Area Configuration

Remove a Processor

Condense Relocatable Program Area
DLABL Routine

STORE Routine

STOREDATA Routine

STORECI Routine

STOREMD Routine

DUMP Routine

DUMPDATA Routine

DUMPLET Routine

DELET Routine

SEQCH Routine

DICLE Routine

DWRAD Routine

Common Areas

OPERATING CONSIDERATIONS

Operating TASK Off-Line

TASK Disk Write Addresses Routine
TASK Disk Duplication Program
System Cold Start

Cold Start Name Card

Cold Start Procedure

Clearing Core

iii

5-19
5-22
5-22
5-22
5-24
5-24
5-29
5-32
5-34
5-35
5-36
5-38
5-39
5-40
5-41
5-41
5-41
5-42
5-42
5-43
5-45
5-45
5-45
5-46
5-47
5-48
5-49
5-50
5-51
5-51
5-51
5-52
5-53
5-53
5-54

CONTENTS (Cont.)

Section 7 SYSTEM GENERATION

7.1 Summary of Generation Procedures

7.2 System Generation Components

7.2.1 Supplied TSS System

7.2.2 User-Prepared Control Cards

7.3 System Generation Procedures

7.3.1 Loading TASK and Writing Disk Addresses
7.3.2 Loading the Supplied Decks on Disk

7.3.3 Assembling TASK ;

7.3.4 Assembling the System Director

7.3.5 Defining the System Configuration

7.3.6 Compiling Skeleton Subroutines

7.3.7 Building the Skeleton

7.3.8 Compiling Process Programs

7.3.9 Building Process Core Loads

7.3.10 On-Line Cold Start

7.3.11 Storing Relocatable Programs on Disk from Cards
7.3.12 Building a Nonprocess Monitor Disk Pack
7.3.13 Off-Line Cold Start

Appendix A System Error Messages
Appendix B Calling Sequences for System Routines
Appendix C - Differences Between TSS and IBM's TSX

Glossary
Bibliography
ILLUSTRATIONS
1-1 Multilevel Interrupts
2-1 Core Map, Illustrating Skeleton Executive
2-2 Typical Skeleton Executive
2-3 System Director Components
3-1 Nonprocess Monitor Storage (On-Line System)
3-2 Nonprocess Monitor Storage (Off-Line System)
3-3 Nonprocess Monitor Components
5-1 Build and Execute a Type 1 Nonprocess Core Load
5-2 Build and Execute a Type 2 Nonprocess Core Load
5-3 Delete a Type 2 Nonprocess Core Load
5-4 Disk Storage Arrangement

viv,

7-1
7-1
7-1
7-3
7-3
7-3
7-11
7-11
7-11
7-26
7-26
7-26
7-30
7-30
7-30
7-30
7-47
7-47

1-4
2-2
2-4
2-8
3-2
3-3
3-4
5-14
5-15
5-16
5-23

7-2
7-3
7-4
7-5

7-6
7-7
7-8
7-9
7-10
7-11

ILLUSTRATIONS (Cont.)

System Generation Flowchart

Supplied System Object Decks

ZAP Card

TASK High Core Loader Cards

Sequence of Control Cards and System Decks for
TSS System Load

TASK Source Deck and Equate Cards

System Director Source Deck and Equate Cards

Skeleton Builder Object Deck and Control Cards

On-Line Cold Start

Cold Start Cards

Off-Line Cold Start

TABLES

Priority Interrupt Level Structure and Assignment

Nonprocess Supervisor Control Records

Disk Utility Program Control Statements

DUP Routines Control Records

FORTRAN Control Records

Assembler Control Records _

Interrupt Assignment Code/Logical Unit
Number Assignments

Group 1 TASK EQU Cards

Group 2 TASK EQU Cards

Error Alert Control Printer Combinations

System Director Equate Cards

Summary of Capabilities and Restrictions of
Nonprocess Core Loads

Loading TASK in Core

Writing Disk Addresses

Loading the Supplied System Decks

Assembling TASK

Assembling the System Director

Defining the System Configuration

Compiling Skeleton Subroutines

Building the Skeleton

Compiling Process Programs

Building Process Core Loads

On-Line Cold Start

Storing Relocatable Programs on Disk from Cards

Building a Nonprocess Monitor Disk Pack

Off-Line Cold Start

SECTION 1 - INTRODUCTION

The Time-Sharing Executive System (TSS) is a FORTRAN-oriented disk -resident
operating system that enables the user to make optimum‘ use of a GA 18/30 Indus-
trial Supervisory System in controlling processes and complex environments. In
addition to this on-line capability, the time-sharing aspect of the TSS allows the
execution of low priority jobs (such as assembling or compiling programs) under
the control of a batch-processing monitor. Such operation is referred to as
"background™ operation as contrasted with '"foreground' operation, which is the

primary function of TSS: process control.

Another capability included in the Time-Sharing Executive System is off-line oper-
ation. TSS provides the user with a monitor that enables him to operate his GA
18/30 Computer apart from the process it may normally control. Thus, the
equipment is available for any computing function whenever the process is not

running,

In industrial control systems individual installation requirements vary from one
installation to another. These differences may be in the hardware configuration or
in dissimilarities inherent in the application. Therefore, each installation must be
defined, or tailored, for its specific function requirements and input/output config-
uration. The modular design of TSS enables the user to include or exclude any
functions he wishes. Furthermore, user-written programs can be easily incor-
porated in the system. The final result of the tailoring function is an efficient

operating system, unique to the installation.

1.1 BASIC ELEMENTS IN PROCESS CONTROL

Basically, all on-line real-time control systems behave in much the same fashion.
The computer reacts to input data from a real world environment and outputs data
to correct or control that environment. Emergency conditions are also sensed
and appropriate action is initiated. Status sensing, data computation, and reaction
control must occur within a specified interval of time to prevent disruption of the
process. Generally, the system's capability is determined by how well it is able

to respond.

~

All input and output operations of the GA 18/30 Computer (including data transfer,
interrupt control, and certain internal control.operations) are initiated by one
multipurpose, input/output instruction: Execute I/0 (XIO). Thus, all commun-
ication between the real world environment and the computer is through the XIO
instruction. The programmer who writes the process cbntrol programs and the
interrupt servicing routines uses the XIO instruction to perform a variety of
functions:
e Sense the operational status of an I/O device, process, or internal
condition, or sense devices requesting interrupt recognition
e Control (change) the operating condition of an I/0 device or internal
feature
o Read data from an input device into memory

e Output data from memory to a device

The programmer works with the hardware interrupt feature to accomplish his

purposes.

1.2 INTERRUPT HARDWARE

TSS provides a multi-interrupt priority control scheme, consisting of a hardware
priority structure, data storage areas in core for each interrupt level, and a pro-
gram to recognize, control, and direct the servicing of interrupts. The hardware
priority structure provides for 2 internal and up to 24 external interrupt levels,
which the user may assign to I/O, process, or programmed interrupts. Up to 16
interrupt request lines can be connected to each interrupt level (except trace).
Each interrupt level (except trace) may have an interrupt level status word (ILSW)
of up to 16 bits to identify the source of the interrupt request. Each I/O device
or process has a 16-bit word to identify ~- among other conditions -- the specific
condition responsible for an interrupt request. The status word for an I/O

device is called a device status word (DSW); that for a process is called a proc-

ess interrupt status word (PISW).

Thus, each interrupt request line is positioned by order of priority (as defined in

paragraph 2.4.1 and table 2-1). The highest priority is closest to the output, and
the lowest priority is furthest away. When an interrupt request is received at

a given level and if no higher priority level is presently being served, the control
'scheme permits the interrupt request line to be activated, A unique address
associated with that particular level is supplied to the system, which transfers
control to that location. The return address for the interrupted program is pre-
served, and then the Master Interrupt Control Program (see paragraph 2.4.1) is
executed to direct the servicing of the interrupt. After the interrupt has been

serviced, control is returned to the interrupted program (see figure 1-1).

1-3

FIRST LEVEL -
INTERRUPT

SECOND LEVEL
INTERRUPT

THIRD LEVEL
INTERRUPT

MAIN =J§3K‘ - \1 ' -—
PROGRAM f J, : y

Figure 1-1. Multilevel Interrupts

The user has the facility to mask interrupt levels. Masking inhibits interrupts to
the computer. The user can inhibit or permit specified levels of interrupts and
can determine the status of interrupt levels (i.e., inhibited or not) at any time,
Although a level may be masked, the fact that an interrupt has occurred is not lost.

Thus, when a level is unmasked, a pending interrupt can be received.

1.3 SOFTWARE PRIORITY CONCEPT

The user writes the process programs for his installation., Additionally, he pro-
vides routines to service interrupts which can occur. The way interrupts are
assigned to the interrupt levels largely determines the method of programming
used to service the interrupts. Essentially, there are four types of service rou-
tines, determined by method of access. An interrupt service routine may

reside permanently in an area of core reserved for it by the Time-Sharing
Executive System; it may reside on disk and be loaded into core when its
interrupt occurs; it may be stored as a subroutine with a main program and be

loaded from disk each time the main program is loaded; or a main program may

1-4

Y

service an interrupt that was recorded when it occurred but not serviced immedi-
ately. (These types of service routines are discussed in more detail in paragraph
2.4.1,) The first type of subroutine is the fastest (in response time) and should
be used for the most critical interrupts. The second type is slower, since the
interrupted program must be stored on disk and the subroutine must be loaded into
core before it can be executed. The third type is as fast as the first type if the
main program is in core when the interrupt occurs; otherwise, it is as slow as
the second type. The fourth type of subroutine is slowest and is used for the most

infrequent and least critical interrupts.

1.4 SERVICING AN INTERRUPT
When an interrupt is detected at the hardware level, a portion of TSS, the Master
Interrupt Control (MIC) Program, assumes control for the servicing of that inter-
rupt. The MIC programs:

e Saves the interrupted registers when an interrupt is processed on the

appropriate work level

e Directs the interrupt to its servicing routine

e Restores the FORTRAN 1/0 buffers (if required)

o Restores the interrupted registers

o Returns control to the interrupted program
For example, assume an interrupt was assigned by the user to level five. The fol-
lowing events occur when that interrupt is recognized.

1. The GA 18/30 Computer recognizes interrupt requests at the completion

of the current instruction cycle, At that time an indirect branch (BSI)

through a fixed location in core is executed. This location contains.the start-

ing address of the level work area associated with level five, The
instructions in this work area set the level busy, save Index Registers 1,
2, and 3, and set in Index Register 3 a pointer to this work level, It is

through the level work areay that an interrupt formally enters MIC,

2, After the various registers of the interrupted program have been saved,
the problem remains of determining which of 16 possible interrupts is to
be serviced on this level, This determination is made by sensing the
ILSW.

3. MIC reads the ILSW for level five and determines which is the left-most
nonzero bit in the ILSW. Then MIC determines where the interrupt ser-
vice routine associated with that nonzero bit is stored (i.e., on disk or
in core -- and where in core).

4, MIC transfers control to the appropriate interrupt service routine (after
loading it from disk, if necessary).

5. After performing its function, the subroutine returns control to MIC via
a special statement (CALL INTEX, see section 5) which includes a
branch or skip on condition instruction (BOSC) with bit 9 set to 1, per-

mitting lower interrupt levels to interrupt the computer.

During the entire time -- from the occurrance of the interrupt to the
execution of the BOSC -~ the computer is said to be operating at prior-
ity level five and cannot be interrupted by any lower priority interrupts.
6. MIC reloads the interrupted program, if necessary; i.e., if the inter-
rupt service routine had to be loaded from disk for execution, MIC
would first store the interrupted program in a special save area on disk
so it would not be destroyed when the service routine is read into core.
Finally, control is returned to the program at the instruction following

the one where the interrupt occurred,

1.5 SUMMARY

Real-time computation has been defined as a situation in which input data change
with time so that the execution of the program affects the answers derived by the
program. Job-dependent programs are not real-time; timé-dependent and inter-
rupt-dependent programs are real-time. Time-dependent 'programs must make

decisions based on the time of day, and interrupt-dependent programs must

1-6

respond to interrupts originating at unpredictable times in the world outside the
computer, The Time-Sharing Executive System is a set of programs designed
to provide programming flexibility in a real-time environment. TSS relieves the
user of much of the required system programming effort, freeing him to con-
centrate on the primary task of problem solution. Thus, TSS is the interface
between the hardware and the controlled process for on-line operation and

between the user and the operating system for off-line operation.

1-7

SECTION 2~ ON-LINE OPERATION

In a real-time environment the processor controller receives inputs randomly
from the monitored process. In response to those inputs, the computer returns
an output to the process. Thus, the concept of real-time implies that a proc-

essor controller responds to inputs as they occur in the "outside world."

2.1 CONCEPT OF ON-LINE OPERATION

The Time-Sharing Executive System (TSS) operates in an on-line mode under
control of the Skeleton Executive. The Skeleton Executive is the basis, or
framework, of an on-line TSS system. It must be resident in core storage;
i.e., the Skeleton Executive must be in core storage before real-time process-
ing can take place. The Skeleton Executive accepts input, determines which
portion of the system is needed to process that input, and brings that portion

from disk storage into core to perform the required function.

2.1.1 Skeleton Executive

The structure of the Skeleton Executive is flexible and is determined by the user
at system generation time. 'System generation' is the process of assembling
some number of routines to form the system. In generating the Skeleton Execu-
tive, the user has numerous options; e.g., he may include frequently used
subroutines, rapid'response interrupt servicing routines, or other user-written
routines. System generation is discussed in more detail in section 4, and the
procedures for performing this operation are given in section 7. Figure 2-1

illustrates the area of core storage that the Skeleton Executive occupies.

The content of the Skeleton Executive depends upon the application for which‘it
is to be used, because it contains both supplied and user-written routines. The
supplied routines are considered to be the operating system. The user-written

routines perform the actual control of the processes. Thus, the supplied routines

2-1

LOW CORE

SKELETON EXECUTIVE

VARIABLE CORE
(VCORE)

HIGH CORE

Figure 2-1. Core Map, Illustrating Skeleton Executive

(i.e., operating system) coordinate the execution of the user-written routines
and act as an interface between the actual hardware (interrupt structure,

timers, etc.) and the user-written routines.

That portion of core memory not occupied by the Skeleton Executive is called
variable core or VCORE. The Skeleton Executive loads user routines from
disk storage into VCORE when those routines are to be executed. The size of
VCORE is not intended to be sufficiently large to store at one time all the

instructions required for the execution of all functions. Instead, the routines

2-2

must be segmented into units, called core loads, which are stored on disk in
executable core image format. Thus, a core load may be read from disk and
executed, and it, in turn, may request other core loads be brought into core

and executed to complete the function. There are four types of core loads

commonly used in TSS:

e Mainline core load
e Interrupt core load
e Combination core load

e Nonprocess core load

A mainline core load is one that does not directly service an interrupt (e.g.,
analysis programs, logging programs, etc.); it executes on the lowest interrupt
level. An interrupt core load is a program unit that resides on disk and is
brought into core to service a particular interrupt. A combination core load is
one that can be executed as either an interrupt or a mainline core load. A
nonprocess core load is one that is controlled by the Nonprocess Monitor,
discussed in section 3. (The procedure for creating core loads, storing them on

disk, and establishing system communication for them is discussed in part II.)

2.1.2 System Dynamics

After the user has generated his TSS system and stored it on disk, he must
initiate or start system operation. This process is referred to as "'cold start."
Cold start procedures are described in detail in part II. A cold start routine

is supplied that enables the user to load the Skeleton Executive from disk to

core. Then a user-written core load is brought into VCORE to perform initiali-
zation procedures (such as setting timers and indicators, etc.). After the cold
start is accomplished, the system operates without operator intervention under
control of the Skeleton Executive. Interrupts from the process are handled by
the Skeleton Executive routines which may initiate core swapping (i.e., the
storing of the contents of VCORE onto disk and transferring of a core load from
disk to VCORE.). If any hardware error occurs -- during input from the process
or during core swapping -- the Skeleton Executive automatically takes appropriate

action to respond to that error.

2-3

2,2 SYSTEM COMPONENTS

As noted before, the content of the Skeleton Executive depends upon the
application the system is to control. The content and, thus, the size of the
Executive are fixed at system generation timé. A typical Skeleton Executive

would include the parts illustrated in figure 2-2,

LOW CORE
SKELETON 1/0
INSKEL COMMON
SYSTEM DIRECTOR
USER AND TSX SUBROUTINES
VCORE
HIGH CORE

Figure 2-2, Typical Skeleton Executive

2-4

2.2.1 Skeleton I/0

The Skeleton I/O portion is a set of input/output routines that provide communi-
cation between the CPU and the various data processing peripherals (e.g., card
reader, card punch, disk, printer) for the transfer of data. These routines are
used by both supplied and user-written routines. A basic set of routines is supplied
with the system and normally constitutes the Bkeleton I/0; however, the user.can
include other routines at system generation time. The basic set of supplied

routines is:

e Disk Storage Subroutine (DISKN) — performs all reading from and

writing to disk storage

e Printer/Keyboard Subroutine (TYPEN/WRTYN) — transfers data to

and from teletypewriters

e Printer Subroutine (PRNTN) — controls all print and carriage

positioning functions for the line printer

e Card Subroutine (CARDN) — controls input from the punched

card reader

These four subroutines are provided with and used by the system.

2.2,2 In-Skeleton Common

The In-Skeleton Common (INSKEL) provides communication among the various
user-written core loads. In assigning variables to this area, the user must use
the unique label INSKEL in a FORTRAN COMMON statement. This area can be

referenced by any process or nonprocess program under the on-line system.

2.2.3 System Director
The System Director is the basic component of the Skeleton Executive and

controls all facets of process monitoring. The System Director resides in core

2-5

at all times, and all permanent areas are storage protected to avoid being
accidentally destroyed. The System Director is the priinary control unit of

TSS and, as such, it:

e Directs the servicing of interrupts
e Supervises the execution of core loads
& Monitors the ifiterval timers

¢ Processes errors

Further, when there is no process control to be monitored, the System

Director makes VCORE available for execution of backg’round jobs.

2.2.4 User-Written Subroutines

The user may include in the skeleton area any supplied or user-written subrou-~
tines he chooses. These may be interrupt subroutines, timer subroutines, trace
and error subroutines, arithmetic and conversion subroutines, etc. The decision
to include a routine in this area instead of storing it on disk as part of a core load

is influenced by such factors as:

e Size of subroutines (the larger the skeleton area, the smaller the

VCORE area for executing core loads)

o Required response time (subroutines in the skeleton do not require

time for loading from disk as core loads do)

e Frequency of use (core storage of frequently used subroutines avoids

excessive core swapping)

User-written subroutines that are to be included in the Skeleton Executive must
be compiled or assembled in relocatable format and placed on disk prior to

system generation.

2.3 TUSER CONTRIBUTIONS IN TAILORING THE SKELETON
Because the user defines the TSS system in terms of his own application, each

installation is unique. Differences between installations may take the form of

e Different applications

e Different core storage sizes

e Different peripheral equipment
e Different priorities

e Different throughput requirements

Therefore, each installation must be tailored for the specific hardware
configuration and process requirements. It is the user's responsibility to
define the Skeleton Executive for his installation via a process called system
generation. Before system generation time, however, the user must deter-
mine what features he wishes to include in his TSS system, because these
considerations directly affect the size and composition of the system.

Basically, three things determine the size of the skeleton:

e Hardware configuration
e Number and size of user-written subroutines

e Amount of INSKE L common

The hardware configuration must be described to the system generator in terms
of core size and available peripherals. In determining what user-written sub-
routines are to be included in the skeleton, the user would consider such
questions as: which interrupts require the fastest response time and, there-
fore, should be handled by in-skeleton subroutines; and, which subroutines
should be in core -- because of frequency of use -- to avoid excessive core
swapping. The amount of INSKEL common storage depends upon both user-
written and supplied routines' requirements. The methods used to specify all

required information at system generation time are explained in section 7.

2.4 SYSTEM DIRECTOR COMPONENTS

The System Director is a group of supplied programs that constitute the nucleus
of the TSS system. The user must understand the functions of the components
of the System Director to utilize fully the TSS system. The five component

programs (figure 2-3) are:

2-7

LOW CORE

HIGH CORE

SKELETON /0

INSKEL COMMON
MIC PsC TSC ITC EAC
USER AND TSS SUBROUTINES
VCORE
Figure 2-3. System Director Components

|

SYSTEM
DIRECTOR

e Master Interrupt Control (MIC)
e Program Sequence Control (PSC)
e Time-Sharing Control (TSC)

e Interval Timer Control (ITC)

e Error Alert Control (EAC)

These programs are discussed in the following paragraphs from a functional
viewpoint; details concerning programming considerations are provided in

section 5,

2.4.1 Master Interrupt Control Program
The Master Interrupt Control (MIC) program is the basic interface between the
hardware interrupts and the user-written programs or the system interrupt
handlers. Inthe TSS system there are three essential elements to providing
multi-interrupt priority control:

e A hardware priority scheme

@ A data storage area in core for each interrupt level

e The MIC program to service the interrupts

The hardware priority structure provides for 2 fixed and up to 24 additional
interrupt levels, which the user may assign to I/O or programmed interrupts,

as shown in table 2-1.

For each priority level used, the system has (in the skeleton) a level work area.
In this area MIC saves the status of the interrupted program. Further, MIC .
sets up the status of the level work area for each level so that a system sub-
routine, using the level work area for intermediate storage, can be entered

(executed) from all priority levels. (Paragraph 2.6 discusses reentrant coding.)

From a programming standpoint there are three classes of interrupts: internal,
input/output, and external (or process). Internal interrupts are those associated
with errors within the central processing unit, such as parity error or detection

of an illegal operation code. Interrupts of this class are serviced by supplied

Table 2-1, Priority Interrupt Level Structure and Assignment

I/0, Timer,

Interrupt? izt’;ig igccl?:sa; II;It‘Zf'Tr 3;; Process Interrupt:
Assignment Allowed

Internal 1 8 No No
Trace 26 9 No No

Assigned 0 2 11 Yes Yes

Levels 1 3 12 Yes Yes

2 4 13 Yes Yes

3 5 14 Yes Yes

BASIC 4 6 15 Yes Yes

| 5 7 16 Yes Yes

6 8 17 Yes Yes

7 9 18 Yes Yes

8 10 19 Yes Yes

9 11 20 Yes Yes

10 12 21 Yes Yes

11 13 22 Yes Yes

12 14 23 Yes Yes

13 15 24 Yes Yes

OFTIONAL 14 16 25 Yes Yes

15 17 26 Yes Yes

16 18 27 Yes Yes

17 19 28 Yes Yes

18 20 29 Yes Yes

19 21 30 Yes Yes

20 22 31 Yes Yes

21 23 32 Yes Yes

22 24 33 Yes Yes

23 25 34 Yes Yes

TAll 1evels except trace have interrupt level status words, and all levels
except internal and trace can be masked.
TPriority levels are numbered from highest (1) to lowest (26).

2-10

routines as soon as they are recognized. Input/output interrupts are associated
with peripheral devices. External interrupts are those associated with the
process and programmed interrupt features. They are serviced by one of four

types of user-written routines:

e Interrupt service routine in skeleton
e Interrupt core load
e Interrupt service routine included with core load

® Mainline core load

When the user defines the system, he must designate the way each interrupt is

to be handled, to enable MIC to service the interrupts properly.

2.4.1.1 Interrupt Service Routine In Skeleton

During system generation the user can include interrupt servicing subroutines
in the skeleton. This group normally comprises the majority of the skeleton
routines. This type of interrupt servicing requires less time than the other
three types; i.e., less time elapses between the instant the interrupt signal is
recognized and the instant an instruction is executed to begin the appropriate

reaction.

Interrupt processing occurs in the following sequence. A signal is received
from the process. MIC responds to the interrupt signal, determines that thé
interrupt is to be handled by a user-written routine that is in the skeleton, and
transfers control to that routine. The routine performs the necessary action
(e.g., prints a message, outputs information, initiates the correction of a
process condition, etc.) and then returns control to MIC, which in turn returns
control to the interrupted program. MIC stores the contents of the registers
that reflect the status of the machine at the time of the interrupt and restores
t.ﬁese registers after the user's interrupt routine has performed its functioh,

but before transferring control to the interrupted program.

2-11

2.4.1.2 Interrupt Core Load

The user can designate a core load as an interrupt core load. In this case
MIC saves the status of the machine and the contents of VCORE in an interrupt
save areakon disk before loading the user's interrupt core load. The interrupt
core load (once in core) responds in the same way an interrupt service routine
in the skeleton would. When its function is completed, the interrupt core load
returns control to MIC, which restores the machine registers and VCORE to
their previous states (i.e., before the interrupt occurred) and returns control

to the interrupted program.

The response time for this method of interrupt servicing includes the time for
the core exchange and is, therefore, not as fast as in-skeleton interrupt

service routines.

2.4.1.3 Interrupt Service Routine With Core Load

A mainline core load may have included with it subroutines that service inter-
rupts. If the mainline core load is in core when such an interrupt occurs, MIC
uses that subroutine just as if it were included in the skeleton. An interrupt
core load that can process the same interrupt must also exist. Then, if the
mainline core load with the service routine is not in core when the interrupt
occurs, MIC can load the interrupt core load (in the manner explained in

paragraph 2.4.1.2) to service the interrupt.

'2.4.1.4 Mainline Core Load

If neither an interrupt core load nor an in-skeleton servicing routine has been
assigned for a process interrupt, MIC records the fact that the interrupt
Qccurred. Such interrupts can be serviced by a mainline core load as explained

below under '""Program Sequence Control Program."

2.4.2 Program Sequence Control Program
Core loads are user-written modules on disk that are brought into core by the

Program Sequence Control (PSC) portion of the System Director. Some core

2-12

loads are designed to respond to interrupts. The most common kind of core
loads are those designed to execute on the mainline level. (The process by
-which these modules are prepared and placed on disk is described in section 4.
However, for purposes of this discussion, assume that this process is defined
by the term "built" so that a core load that has been '"built" exists on disk.)
When each core load is built, the level on which it is to be executed is defined.

Mainline core loads operate on the lowest priority level.

In process control, actual timely response is accomplished by using in-skeleton
routines and interrupt core loads. Other functions (reports, file manipulations,
analyses, etc.) must also be performed and in an orderly manner; however,
their importance does not require one to interrupt the other. A method of
sequencing these jobs is provided by PSC. To perform its functions, PSC
utilizes a storage area called the Mainline Core Load Queue Table (referred to
as ""the queue'!). This table contains a list -~ ordered by name and priority of
function -- of the mainline core loads to be executed. Placing entries into and
removing them from the queue is not the responsibility of PSC. The function

of PSC is to initiate operation of the highest priority job by loading the appropri-

ate mainline core load and executing it when space in VCORE is available.

\

Subroutines are provided that enter or remove coré loads from the mainline
queue. These subroutines can be used by interrupt service routines as well as
mainline programs. Therefore, a job sequence may be initiated from any level.
The characteristics and calling sequences of the subroutines are explained in

section 5,

A particular job may require more than one core load for its completion.
Essentially, two routines are supplied for the sequencing of jobs that require

multiple core loads: CHAIN and SPECL.

Chaining allows the present core load to be overlayed by the next sequential core
load. The first core load initiates the chaining process by a call to the CHAIN

subroutine.

2-13

The SPECL subroutine of PSC provides the second method of sequencing. This
subroutine terminates the current core load, saves it in a special save area,
stores the core load status, and executes the core load associated with the call
to SPECL. The core load that is brought into VCORE by SPECL may return
control to the saved core load automatically by a call to the BACK subroutine
of PSC. However, the new core load is not required to return control to the
saved core load; it may call other core loads or may end the job sequence.
Ending the job sequence is accomplished by a call to the VIAQ subroutine of
PSC. This call causes PSC to load the highest priority core load listed in the

queue and to transfer control to it.

2.4.3 Interval Timer Control Program
The GA 18/30 hardware provides three machine timers, designated A, B, and C.

Each timer is assigned a specific time period:

Timer A = 0.1 millisecond

Timer B 1.0 millisecond

1l

Timer C 10.0 milliseconds

Timers A and B are available to the user's programs. Timer C is used by the
TSS system to provide nine programmed timers and a real-time clock. There-.
fore, 11 timers are actually available to the user. The Interval Timer

Control (ITC) program provides for control of the three hardware timers.

ITC also performs other functions; namely, it tests for no response from the
Teletype, resets the operations monitor during time-sharing, and performs end

of time-sharing (see section 3 for a discussion of time-sharing under TSS).

2.4.4 Time-Sharing Control Program

In most installations there will be a considerable amount of time that is not used
for pllocess control. TSS provides a time-sharing feature to enable the user to
execute low priority jobs (e.g., assembling or compiling programs) during '
that ""idle" time. The Time-Sharing Control (TSC) program monitors the execution
of low priority jobs (i.e., nonprocess jobs) and automatically interrupts them

when a higher priority job (i.e., any process control function) must be

2-14

executed. Thus, with TSC the user can perform batch processing without

taking his system off-line.

When such idle time is available in the system, control can be automatically
transferred to the Nonprocess Monitor, an independent system that is similar
to any batch (staék—job) monitor system. TSC is the portion of the System
Director which, in conjunction with the ITC program, allocates VCORE for
batch processing use. There are essentially two ways in which the Nonprocess

Monitor can obtain time (and, thus, access to VCORE) for its use:

® Selectable method

® Automatic method

2.4.4.1 Selectable Method

Process programs (mainline core loads only) can initiate time-sharing for a
specific period of time by a call to the SHARE subroutine of TSC. This selec-
tion of time-sharing is used for special applications where time-sharing is
desired without the use of the queueing technique. The time-sharing operation,
initiated by a call to SHARE, terminates when the time interval specified by the
user has elapsed; however, interrupts are serviced as they occur, and an inter-
rupt routine can terminate time-sharing mode by a call to the ENDTS subroutine.

(Calls to these subroutines are discussed in part II.)

2.4.4.2 Automatic Method

VCORE automatically becomes available to the Nonprocess Monitor when the
VIAQ subroutine (see part II) of PSC checks the queue and determines that no
core loads are queued for execution. In order for the VIAQ subroutine to
initiate time-sharing, the user must indicate through the use of console switches
that batch jobs are to be handled. For this method the period of time allocated
for time-sharing is specified by the user when the System Director is assembled

at system generation time,

2-15

2.4.5 Error Alert Control Program
The Error Alert Control (EAC) program is the part of the System Director that:

® Receives error interrupts

@ Analyzes the type of error (e.g., an I/0 error that persists despite
repeated corrective action by an I/O subroutine; an internal machine
error, such as invalid operation code or parity; and other control

subroutine error conditions, such as FORTRAN 1/0)

® Saves the machine status at the time of the error so that, after the
error has been corrected, processing can be reinitiated without loss

of information

e Determines operating conditions (e.g., process or nonprocess mode,

availability of user-written error subroutine)

o Selects the appropriate recovery procedure (e.g., continue processing,

restart, reload)

e Produces error messages

EAC also has the capability to dump VCORE to disk if this option is elected

when the System Director is assembled at system generation time.
(See appendix A for information concerning error messages.)

2.5 USER-SUPPLIED SUBROUTINES

As stated earlier, the user may specify that certain subroutines are to be
included in the Skeleton. Other subroutines are assembled or compiled and
stored on disk, to be loaded into VCORE along with the core load that uses them.
However, if a program requires a large number of subroutines, VCORE may
not provide sufficient space for them. To avoid this problem, TSS provides the
capability of loading a subroutine from disk into core at the time the executing

program calls that subroutine. Such a subroutine is referred to as a LOCAL

2-16

(load-on-call) subroutine, All LOCALs called by a core load program are stored
in the same core area; i.e., the second LOCAL subroutine overlays the first one,
the third overlays the second, etc. The effect, then, is that LOCALs enable the
user to have a larger program than would otherwise be possible. (See ''Section 5 -

Programming Considerations, ' for examples.)

2.6 "REENTRANT CODING

It is possible that core loads that are executed on different levels may call the same
subroutine, To allow a subroutine to be entered at any time and on any interrupt
level, some method of reentrant coding must be used. All TSS system subroutines
are reentrant and can be called répeatedly by different interrupt routines on dif-

ferent levels. Users may write reentrant routines for their core loads.

The method of reentrant coding employed in TSS uses the level work areas. A
level work area of 104 locations is provided for each interrupt level specified by
the user. A level work area for a given interrupt level can be used only by pro-
grams operating on that level. Of the 104 locations that constitute a level work
area, the first 62 are reserved for TSS use; the remaining 42 are available for
use by other programs. The starting address of the level work area for any inter-
rupt level is always in location 104 (681 6). Thus, an index register, loaded with
the contents of that location, should be used to reference all temporary storage,
i.e., the 42 temporary locations available to users' programs. If a subroutine
‘being executed is interrupted and the interrupt servicing routine calls that sub-
routine, there will be no storage conflict, because MIC always sets location 104
to the correct level work area address for each interrupt serviced. (Details on
ways to safeguard partial results and other considerations in writing reentrant

code are presented in section 5.)

2-17

SECTION 3 -- NONPROCESS MONITOR

The Nonprocess Monitor is an independent programming system, designed to oper-
ate in one of two modes within the TSS system:
e On-line - In the on-line mode the Nonprocess Monitor operates under con-
trol of the TSC portion of the System Director (see paragraph 2.4.4),
e Off-line - In the off-line mode the Nonprocess Monitor does not time-
share the computer, but operates as a dedicated monitor system under

control of the Temporary Assembled Skeleton (see section 4).

3.1 NONPROCESS MONITOR OPERATIONS

Primarily, the function of the Nonprocess Monitor is to provide continuous control
over a sequence of jobs that might otherwise require several individual systems.
For example, the user may have a number of programs that are to be assembled
or compiled, built into core loads, executed, and stored on disk for future use;
and at the same time he may require that the running process be allowed to issue
an interrupt that will be serviced immediately. The Nonprocess Monitor controls
the sequencing of operations to load the Assembler or FORTRAN into core, to
load the core load builder after the source program has been processed, to exe-
cute the object programs, etc. If an interrupt occurs during any of these opera-
tions, the Nonprocess Monitor relinquishes control to the System Director to
handle that interrupt, after which control is returned to the Nonprocess Monitor

if the amount of time allocated for time-sharing has not expired. (See figure 3-1.)

The off-line capability of the Nonprocess Monitor is necessary at system genera-
tion time, since programs must be assembled and stored on disk before the proc-
ess control system can be generated, After system generation time if there is
an occassion when the process is not running and, therefore, the computer is

not needed to control it, the Nonprocess Monitor can be used to control com-
puter operations, for example a data processing application such as a payroll

program, (See figure 3-2,)

3-1

LOW CORE

SKELETON 1/O

INSKEL COMMON

SYSTEM DIRECTOR

USER AND TSS SUBROUTINES

AREA USED FOR TABLES AND
TEMP STORAGE (IF AVAILABLE)

3600 { NONPROCESS SUPERVISOR
WORDS (OVERLAYED BY DUP, ASM,
OR FOR)
DISK COMMUNICATIONS AREA (DCOM)
HIGH CORE

) SKELETON
EXECUTIVE

7 VCORE

/F1FO

/FF56

Figure 3-1. Nonprocess Monitor Storage (On-Line System)

3-2

LOW CORE \
SKELETON 1/0
> TASK
TASK PROGRAMS
r P
) AREA USED FOR TABLES AND
VCORE TEMP STORAGE (IF AVAILABLE)
N\ /F1FO
NONPROCESS SUPERVISOR
(OVERLAYED BY DUP, ASM, p 3432 WORDS
OR FOR) ,
y
DISK COMMUNICATIONS AREA (DCOM) } 168 WORDS
HIGHCORE

Figure 3-2. Nonprocess Monitor Storage (Off-Line System)

3.2 COMPONENTS OF THE NONPROCESS MONITOR

The Nonprocess Monitor comprises four programs as illustrated in figure 3-3.
The functions of each of these compbnents are described in the following para-
graphs. The Nonprocess Monitor is a batch monitor that accepts card input and
produces programs that may be stored on disc or executed. The monitor uses

the Skeleton I/0 routines (CARDN, DISKN, PRNTN, and TYPEN/WRTYN) for its

input/output operations.

TIME-SHARING CONTROL PROGRAM
T
|
!

Sup 1
'SUPERVISOR
DUP ASM FOR
DISK UTILITY
PROGRAM ASSEMBLER FORTRAN

Figure 3-3. Nonprocess Monitor Components

3.2.1 Nonprocess Supervisor
The Nonprocess Supervisor (SUP) controls all Nonprocess Monitor operations.
SUP consists of several routines, the two principal ones being the Skeleton Super-

visor and the Monitor Control Analyzer.

The Skeleton Supervisor is read from disk into core whenever Nonprocess Monitor
operation is initiated. I provides for communication between the Nonprocess Mon-
itor components and user's programs that are being processed or executed. The
Skeleton Supervisor provides for the orderly transfer of control from one program
to another. Thus, several unrelated jobs may be stacked for processing and can

be properly handled without operator intervention.

3-4

The Monitor Control Record Analyzer -- as its name signifies -- reads and inter-
prets control records (such as //JOB, //ASM, //FOR) for the Nonprocess Moni-
tor. This routine also outputs the records to the system printer and loads the
appropriate monitor program for execution. The Monitor Control Record
Analyzer accepts input fromcards only. Each control record begins with two
slashes and a blank, Thus, the control identifier begins in the fourth position,
Table 3-1 lists the control records applicable to the Monitor Control Record
Analyzer,

Table 3-1. Nonprocess Supervisor Control Records

Identifier ' Function

// JOB Causes termination of the previous job and init-
ialization for the new one, When a job is
aborted (e.g., if an unrecoverable I/O error
occurs), cards in the card reader are bypassed
until the next JOB card is encountered.

// END OF ALL JOBS Indicates that there are no more nonprocess
operations to be performed. It must be the
last card in the input stream.

// ASM Causes the Nonprocess Monitor to read the
Assembler from disk into core storage for exe-
cution. The name of the mainline program to
be assembled must be on this control card.,
Immediately following the ASM card must be
the Assembler control cards, specifying the
Assembler options (see paragraph 3.2.4), and
the sourcelanguage program. After a successfu%
assembly, the object program is loaded as a

temporary program.

3-5

Table 3-1. Nonprocess Supervisor Control Reéords (Cont.)

Identifier

: Function

// FOR

// DUP

// XEQ

// PAUS

Causes the Nonprocess Monitor to read the
FORTRAN compiler from the disk into core
storage for execution. The name of the main-
line program to be compiled must be on ‘this‘
control card. Immediately following the FOR
card must be the compiler control cards, spec_-v-.
ifying compiler options (see paragraph3.2.3), and
the FORTRAN language source program. After |
a successful compilation, the object program

is loaded as a temporary program.

Causes the Nonprocess Monitor to read the
Disk Utility Program from disk into core stor-
age for execution. Immediately following the
DUP card must be the DUP control cards (see
paragraph 3.2.2). '
Causes the Nonprocess Monitor to load the
named program and all required subroutines
from disk into core storage for execution. This
control card can also specify that a core load
map be printed during the loading of a core load
from relocatable programs. _

Causes the Nonprocess Monitor to execute'a
WALIT instruction, allowing the operéttor to
make ,sétup changes. Monitor operation con-
tinues when the console STEP key is preséed.

If an interrupt occurs during a wait period, it

~ will be serviced, and control will be returned

to the WAIT instruction,

3-6

Table 3-1. Nonproces's Supervisor Control Records (Cont.)

Identifier Function

// * Identifies a comment record. The contents of
comment - records are printed on the LIST and

SYSTEM units,

3.2.2 Disk Utility Program

The Disk Utility Program (DUP) consists of a group; of generalized routines that
enable the user to perform easily the usual day-to-day operations of an installa-
tion. The Disk Utility Program is called by a // DUP control card, and DUP

in turn calls its various routines, depending on the control statements that follow

the // DUP card.

The DUP control statements begin with an asterisk in column 1. The code word
that identifies the process to be performed appears in columns 2 through 10.
Following column 10 information for the individual routine may be supplied.
Table 3-2 lists the control statements that activate the individual Disk Utility
Program routines. Table 3-3 lists control records that supply specific direc-

tions to these routines, (See also paragraph 5.10.)

3.2.3 FORTRAN Compiler

When a // FOR control record is read, the Nonprocess Monitor loads the
FORTRAN compiler from disk into core storage, passes the name for the
object program from the control record to the compiler, and transfers
control to the compiler. The compiler reads the control cards and the
source language statements that follow the // FOR control record. After
compilation, the object program can be called for execution with an XEQ control
card or can be stored on disk through a DUP operation, The FORTRAN com-

piler always generates object - programs in relocatable format,

Table 3-2.

Disk Utility Program Control Statements - -

. Idenf:i.fier .

. Function

*STORE

*STOREDATA

*STOREMOD

*STORECI

*DICLE

*DUMP

Storés reloecatable programs in the relocatable

program area on disk from cards or from the
temporary program area., Parameters for this
control statement include. such information as
the disk drive where the program is to be stored
and the program name,

Stores a block of data on disk from cards or
from the nonprocess work storage area. Param-
eters for this statement include identification

of the disk drive and the name to be assigned to
the data.

Allows the user to store core loads or modify
existing nonprocess core loads and relocatable
programs without previously deleting them,
Stores a program in cdre image form (i.e., as »
a core load) in the core load area and assigns

a name to the core load. Parameters specify
storage area,disk drive, type of core load, and

map of core load area,.

" Allows an interrupt core load, which must

already be on the disk, to be used to service
more than one interrupt, e.g., a generalized
error routine that handles spurious interrupts
for all process core loads.

Writes programs from the disk to the specified
device (cards or line printer) or from a program

area to a nonprocess work storage area,

3-8

Table 3-2.

Disk Utility Program Control Statements (Cont.)

Identifier

. Function

*DUMPDATA

*DUMPLET

*DELET

*DEFINE

Writes data or a core image program from '

disk to a specified device (cards or line printer)

or from a program area to a nonprocess work
storage area,

Writes the contents of the locatiqn.equivalence
table (LET) or the fixed location equivalence
table (FLET) to the line printer. 'i‘he printout
will include certain header information, alpha-
betic names, and disk addresses.

Deletes the specified program, core load, or
data file from the disk. A core load that ié
called by another core load or as the result of
an interrupt can be deleted only if a replacement
core load -- also specified via *DELET -- is
available., When programs or data files ai-e
deleted, no checking is performed to determine
whether they are referenced from any core loads.
Defines variable pérameter required by the
system, such as number of disk drives, size
of object core storage, packing of relocatable
programs on disk, specific system programs
to bé removed from disk, and location and

size of disk areas used by the system. This
routine must be executed before the skeleton

is built.

3-9

Table 3-2. Disk Utility Program Control Statements (Cont.)

Identifier . .Function

*SEQCH . Enables the user to change the seqﬁence »inbwhich
R ‘ mainline core loads are‘execﬁted. |
*DLABL | Places an identifying number in the first sector
of the disk pack and writes sector addresses.

If a nonsystem drive is specified, DLABL creates
a LET area (defining the balance of the pack as
an available area) starting in the second sector.
*DWRAD Writes addresses within a specified area on the
disk pack., Thus, the user can zero the data
area, retain previous data, and initiate or

remove file protection.

Table 3-3. Core Load Builder Control Records

Identifier Function

*RCORD | Specifies the level and PISW bit positions for in-
. terrupts that are to be recorded if they occur
during the execution of a core load. Only main-
line and combination core loads need this con- -
trol record.

*FILES . Establishes an equivalence between a symbolic
file number used in a FORTRAN DEFINE FILE
statement and the name in FLET of a data area
or the disk drive for the data area, FILES can be
used after an XEQ control record, a STORECi

3-10

Table 3-3. Core Load Builder Control Records (Cont.)

- Identifier

; Function

*INCLD

*LOCAL

| *CCEND

control record, or a STOREMOD control record
for a nonprocess core load.
Specifies:

e By name, level, and bit, the interrupt
subroutines that are included with the
mainline or combination core load.

“® The trace and error subroutiﬂes to be
used with the mainline, interrupt, com-
bination, or nonprocess core load.

e By name and level, the programmed in-
terrupt programs that are to be included
with the mainline or combination core
loads.

INCLD can be used after an XEQ control record,
a STOREMOD control record, or a STORECI
control record for a nonprocess core load.
Identifies load-on-call subprograms. More than
one program can be read into core by specifying
several programs in one LOCAL block. Once
the block is in core, it remains in the area until
it is overlayed by another LOCAL. LOCAL can
be used after an XEQ control record, a
STOREMOD control record, or a STORECI con-
trol record for a nonprocess core load,

Signals the end of the loader control record
stream. CCEND can be used after an XEQ con-

trol record (except when the XEQ record

3-11

Table 3-3. Core Load Builder Control Records (Cont.)

Identifier : © : Function

specifies a program in the core load area), a
STOREMOD control record, a STOREDATA
control record, or a STORECI control record

for a nonprocess core load.

Summary: ‘These five control records enable the user to specify
special core load requirements. FILES, LOCAL, INCLE,
and CCEND are used to build nonprocess core loads.
Process core loads (loaded with STORECI) permit all
five records. Except for the CCEND record, all these

control records can be multiples.

The compiler control cards begin with an asterisk in column 1, which is
followed by a code word that identifies the process to be performed. Fol-
lowing the code word may be parameters required by the specific process.

Table 3-4 lists the control cards applicable to the FORTRAN compiler.

3.2.4 Assembler

When a // ASM control record is read, the Nonprocess Monitor loads the
Assembler from disk into cdre storage, passes the name for the object
program from the control record to the Assembler, and transfers control
to it, The Assembler reads the control cards and the source language
statements that follow the // ASM control record. After the assembly the
object program can be called for execution with an XEQ control card or
can be stored on. disk through a DUP operation. The Assembler can gen-

erate object programs in absolute or relocatable format.

3-12

Table 3-4, FORTRAN Control Records

 Hdentifier

s Function

~*I0CS

*LIST SOURCE
~ PROGRAM

*LIST SUBPROGRAM
NAMES

*LIST SYMBOL TABLE

*LIST ALL

*PUNCH

*%k

Must be used to specify all 1/O devices required
for execution of the program, including all I/0O
devices used by any FORTRAN subprograms
that are called. IOCS can appéar only in the
mainline program. The parameters (i.e., de-
vice names) must be separated by commas, and
the list enclosed with parentheses.

Specifies that the source progrém is to be listed
as it is read.

Specifies that the names of all subprograms (in-
cluding EXTERNAL subprograms) called directly
by the compiled program are to be listed.
Specifies that all variable names, statement
numbers, statement function names, and con-
stants are to be listed along with their respec—
tive relative addresses.

Specifies that all three items (source program,
subprogram names, and symbol table) are to be
liéted. If this record is used, the other three
LIST records should not be included and vice
versa.

Causes control to be transferred automatically
after a successful compilation to DUP to punch
an object deck.

Causes the information from card columns 3
through 72 to be printed at the top of each page

produced during compilation.

3-13

Table 3-4. FORTRAN Control Records (Cont.)

Identifier

s Function

*TRANSFER TRACE

*ARITHMETIC TRACE

Specifies that the compiler is to genérate link-
ages to a trace routine whenever an IF or _Coni-
puted GO TO statement is encountered. Then,
if data switch 15 is on at execution time, the
trace output routine prints:

e The expression of an IF statement, pre-

ceded by two asterisks,

e The value for the index of a Computed |

GO TO statement, preceded by fhree
asterisks.
To select only parts of a program for tracing,
the user places statements in the source pro-
gram to indicate where tracing should start and
stop: ' |

CALL TSTRT (to start trace)

CALL TSTOP (to stop trace)
TRANSFER TRACE and the operation of data
switch 15 are required as before, but now only
the statements between TSTRT and TSTOP will
be traced. (Data switch 15 can be turned off
at any time to terminate tracing.)

Specifies that the compiler is to generate link-
ages to a trace routine whenever an arithnetic
statement is encountered. Operation is the
same as for TRANSFER TRACE, vexcept that

the output routine prints the value for the assign-

ment of a variable on the left of an equals'sig‘n

3-14

' Téble 3-4, FORTRAN Control Records (Cont.)

Identifier . , Function

of an arithmetic statement, preceded by one
; , asterisk, .
*EXTENDED PRECISION | Directs the compiler to generate three%word'
- ' real constants. and real variables to provide
extended precision. for arithmetic operations.
*ONE WORD INTEGERS Causes the compiler to allocate in the object

| program one word of storage for integer var-
iables in a nonproéess program (instead of
two words for standard precision or three
words for extended precision).” In a process
program all integer variables are automatic—
ally generated as one word.

*NONPROCESS Differentiates nonprocess programs from
PROGRAM process programs. If this control record is
not present in the source deck, the compiler
assumes the program is a process program
(and automatically forces one-word integer

variables).

The Assembler control cards begin with an asterisk in column 1, which is followed
by a code word that identifies the process to be performed. Following the code
word may be parameters required by the specific process. Table 3-5 lists the

control cards applicable to the Assembler.

3-15

Table 3-5. Assembler Control Records

Identifier

iFunection

*TWO PASS MODE

' *LIST DECK

*LIST DECK E
*LIST
*PUNCH

*PUNCH SYMBOL
TABLE

Allows the Assembler fo produce the object pro-

gram by performing twoipasse's ovér the source.

‘program, Two passes are required when the

nonprocess work storage area used by the
Assembler is too émall to hold the intermed-
iate output of the aésembly. |

Directs the Assembler to output the uncom-
pressed object program to punched cards. This
operafion requires the TWO PASS MODE control
record. Errors are identified by codes punched
in columns 18 and 19,

Directs the Assembler to output punched cards
only for those source statements that contain
errors. This operation requires the TWO
PASS MODE control record,

Causes the Assembler to output a listing of the
object program to the line printer. This oper-
ation requires the TWO PASS MODE control
record, |

Directs the Assembler to output the compressed
object program to punched cards. The card
deck will be produced even if assembly errors
are encountered,

Causes the Assembler to output to punched

_cards the symbol table upon completion of the

assembly.

3-16

Table 3-5.

‘Assembler Control Records (Cont.)

Identifier

: Function

*PRINT SYMBOL
TABLE

*SYSTEM SYMBOL
TABLE

| *SAVE SYMBOL TABLE

*OVERFLOW SECTORS n

*COMMON n

Causes the Assembler to output the symbol

table to the line printer upon completion of the
assembly. |

Directs the Assembler to incorpofate the system
symbol table as paft of the assembly symbol
table, thus enabling the user to reference system
symbols without defining them in his own pro- |
gram, |

Directs the Assembler to save the current as-
sembly symbol table in the system symbol table
area of disk storage, overlaying the previously
saved symbol table.

Indicates to the Assembler the number (n, where
1< n < 32) of sectors of nonprocess working
storage available. for possible symbol table
overflow,

Informs the Assembler that n words of the

COMMON area are alloted for linkages between »

a FORTRAN mainline program and the assem-

bled program,

3-17

SECTION 4 - SYSTEM EVOLVEMENT

The Time-Sharing Executive System provides the user a selection of operational
modes,. Through the Skeleton Executive he can perform process control and can
time-share the computer via the Nonprocess Monitor. On the other hand, the
user may choose to operate with the Nonprocess Monitor in an off-line mode.

The user elects the option of constructing an on-liné or off-line system at system

generation time,

System generation is the process of preparing an operating system that comforms
to the user-specified machine configuration and options. The process provides
the facility for creation and maintenance of a monitored system that includes both
supplied and user-written programs and subroutines. For the TSS system this

facility is a stand-alone monitor program, the Temporary Assembled Skeleton.

4.1 TEMPORARY ASSEMBLED SKELETON

The Temporary Assembled Skeleton (TASK) enables the user to generate a system
on disk from absolute and relocatable program decks that contain the executable
phases and relocatable programs necessary for his installation. TASK is sup-
plied as an Assembly-language source deck and, thus, is not directly usable by
the installation. To assist the user in his initial system generation, General
Automation supplies to each installation a '"starter' program, called System

Generation TASK.

4.2 SYSTEM GENERATION TASK

System Generation TASK (SYSGEN TASK) is supplied in assembled object format
and contains the basic elements necessary for system generation: Nonprocess
Monitor linkages, Skeleton Builder linkages, Absolute Loader. This starter pro-
gram is a limited version of TASK and supports a minimum machine configuration:

e One GA 18/30 Industrial Supervisory System with a minimum of
8192 words of core storage

One disk storage unit with one disk drive

One card reader

One card punch

One ASR-33 Teletypewriter

4-1

4,3 SYSTEM GENERATION OVERVIEW

The process of generating a TSS system is described brifly in the following para-
graphs to provide a point of orientation for the user in applying the procedures

that are detailed in section 7. Individual programs and routines that are mentioned
in these paragraphs and that have not been previously discussed are defined later

in this section.

SYSGEN TASK is loaded into core storage by a four-~card routine, called the
TASK High Core Loader. After SYSGEN TASK is in core, the absolute loader
function can be used to load the Disk-Write Addresses Program. This program
initializes the disk to allow proper writing/reading of information. The system
loader is then used to load the disk-resident programs, including the Disk Util-
ity Program, Core Load Builder, and Nonprocess Monitor, to the disk. (Note
that the System Director and TASK are supplied as source decks; other control
programs are supplied in absolute format; and subroutines are in assembled,
relocatable format.) Now, the Nonprocess Monitor can be called for execution

to assemble the user's configuration of TASK.

After the Nonprocess Monitor is brought from disk into core storage for execution,
the Nonprocess Supervisor accepts input from the card reader and calls the appro-
priate processor. Since TASK is supplied as an Assembly-language source deck,
an ASM control card will direct the Superv;isor to call the Assembler for execution,
The user included with the TASK source deck certain control cards (i.e., EQU
cards) that define the specific machine configuration and options for his installation.
The Assembler assembles TASK and produces an object deck, Next, the System
Director -- with user-defined options -- is assembled, and an object deck of it is
produced. Finally, all user-written subroutines that are to be in the skeleton and
the user-written program that is to be the initial (cold start) core load are assem-
bled, and object decks for them are produced. At this point all the components

required to construct the skeleton are available in assembled, object deck format.

The Skeleton Builder is the supplied routine that constructs the system skeleton.
For an off-line system the skeleton consists of the TASK program, which is

loaded to disk by the TASK Disk Loader, and the Skeleton I/O routines.

For an on-line system the skeleton consists of the same Skeleton I/0

routines that TASK uses, INSKEL COMMON, the System Director, user-

written and TSS subroutines, and an area for tables and control information needed

by the System Director.

Once the TASK system skeleton has been built, it should be loaded into core, re-
placing SYSGEN TASK, for any further system generation functions. Operating

the off-line system under TASK, the user can assemble or compile his programs
that will execute under the Nonprocess Monitor. The next step in generating an
on-line system is to build the core loads. The Nonprocess Monitor is called to
assemble or compile the user-written process programs. Then the Core Load
Builder forms the core loads and causes them to be written to disk in the proper
format and with the necessary control information in the various tables (see glossary

for definitions of Fixed Location Equivalence Table and Location Equivalence Table)

When the system is ready to operate, an on-line cold start is performed. The
supplied cold start routine is loaded from cards. The user identifies his cold
start core load to this routine via a name card. The cold start routine loads the
Skeleton Executive into the skeleton area and directs it to load the cold start

core load. The user's cold start core load is brought into VCORE and executed.
Off-line execution is initiated through an off-line cold start. In this case, the
user identifies TASK to the cold start routine via the name card. TASK is loaded
into the skeleton area, and control is transferred to it, The user can then sel-

ect which function to perform,

During system generation up to three separate disk packs can be produced. A non-
defined pack, which is actually an intermediate step of system generation, exists
‘with TASK in core and the supplied system on disk. This pack is used only for
assembling and compiling operations. The Nonprocess Monitor pack contains

TASK and the user's programs, data, etc. This is the off-line system with TASK

4-3

in the skeleton area and the Nonprocess Monitor in VCORE for execution of non-
process programs. (Procesé code loads cannot be executed when the system is in
off-line mode; i.e., with an off-line pack). The system pack contains the TSS system
skeleton and the usér's process core loads. Both process and nonprocess programs

can be executed under time-sharing.

4.4 TASKDISK WRITE ADDRESSES PROGRAM

Among the object format routines supplied with the TSS system is the TASK Disk
Write Addresses program. This program writes addresses on a specified disk and
then checks each sector by reading and writing three different bit patterns a given
number of times (specified by user). If no errors are encountered during this check,
an appropriate message is output, and the disk is ready for use. I aﬁy errors are
encountered during the check, a message is output, describing the sectors that are
not acceptable. If too many sectors are defective, the disk pack is considered

unacceptable, and an appropriate notice is output.

4.5 SYSTEM LOADER
The System Loader is used to store the TSS system on disk (the system disk drive).
This program is supplied as an object deck which is loaded by the TASK Absolute

Loader. The System Loader consists of five major components:

e System loader monitor

e Table builder

e Disk loader for absolute and relocatable programs
e Disk edit phase

e System loader error program

4.5.1 System Loader Monitor

This monitor controls the interface between the various components of the System
Loader. It reads control cards, analyzes the information, and takes appropriate
action. Fﬁrthermore, the monitor contains the library of input/output linkages

called by all components of the System Loader.

4-4

4.5.2 Table Builder
After reading and verifying user-supplied assignment cards, the table builder routine

develops the assignment and I/O unit tables and initiates the master branch table.

4.5.3 Disk Loader

Under control of the TASK Absolute Loader, the disk loader routine loads the TSS
system to disk 0 and records the appropriate entries in the Location Equivalence
Table (LET, see paragraph 4.8). Under control of the relocatable loader, this
routine loads the supplied subroutines and records appropriate entries in LET for

them.

4.5.4 Disk Edit Phase
This routine initializes the disk and the disk communications area with a standard

format as a base for the TSS nonprocess programs.

4.5.5 System Loader Error Program

When an error is encountered during System Loader operation, the System Loader
error program is called to analyze the error and to produce an error message.
Various types of errors are recognized, such as errors in control cards, procedural
errors in the execution of the System Loader, and errors in the format or sequence

of the loaded programs. The errors and recovery procedures are shown in appendix A.

4.5.6 System Loader Control Cards
There are two types of control cards the user must insert in the supplied system

card deck prior to system generation:

e *DEDIT
e +*ASSIGNMENT

These control cards enable the user to define the core size of the object system and
to assign the system interrupt levels. Section 7 contains illustrations that show the

propei' placement of these control cards in the source deck.

4-5

4.5.6.1 Disk Edit Control Card

The disk edit control card (*DEDIT) is supplied partially pre-punched; it must be
completed by the user and included with the system deck at system generation time.
The *DEDIT is used to define the core size of the object machine and the disk
message buffer size. This card is the last control card read by the System Loader.
It causes the System Loader to initialize the Fixed Location Equivalence Table (see
paragraph 4. 8) area on the disk, to calculate the core size of the source machine,
to record the core size of the object machine in the disk communications area,‘ to
provide file protection of the system and subroutine area, and to return control to

TASK.

The format of the *DEDIT card is

/1 8 12 15
*DEDIT ddK nnn CYL

*DEDIT - identifies this card as the disk edit control card. -

dd - two-digit, decimal number that specifies the core size of the object
machine. One of three values may be punched in these columns: 08,
16, 32. Any other value is invalid.

K - indicates that the preceding two-digit number is in thousands; i.e.,
8K, 16K, or 32K core size.

nnn - the number of groups of eight sectors to be used for the object-time
disk message buffer. The entry must be in the range: 000 < nnn < 199,

CYL - the letters CYL must be punched in columns 15 through 17.

The remaining card columns must be blank.

4.5.6.2 Assignment Cards
The assignment cards allow the user to assign I/O devices and machine functions to
particular interrupt levels. These assignments are made in the form of interrupt

assignment codes and logical unit numbers. Interrupt assignment codes (IAC) are

fixed for each device and cannot be changed. Logical unit numbers (LUN) are

selected by the user for linkage to FORTRAN programs. The permitted values

for LUNSs are 01 through 44. Each device in the system must have one unique LUN

assigned to it. The fixed interrupt assignment codes and permissible LUN values

for the TSS system are listed in table 4-1.

The formats of the assighment cards are:

*ASSIGNMENT

11

S8

1
(*ASSIGN MENT

1 4 7 > 72
11 ss iae, iac/lun, ...

this card is supplied with the system deck; it contains only
these 11 characters and precedes the user-prepared

assignment cards.

specifies the interrupt level to which this card is applicable.
Each interrupt level used mus't be spepified on an assignment
card. The entry must be in the range of 00 < 11 < 23 or 99.
The entry 99 specifies a dummy level to provide FORTRAN
linkages for either the keyboard-printers or second magnetic

tape unit.

designates the number of interrupt level status bits assigned
to this level (ILSW). The entry must be in the range

01 < ss <16 or CC. The letters CC indicate that this is

a continuation card; i. e., columns 7 through 72 of the
preceding card were not sufficient to contain all the ILSW
bit assignments and, therefore, the assignments are

continued on this card.

Table 4-1. Interrupt Assignment Code/Logical Unit Number Assignments

Device IAC Permitted
(Decimal) LUN Values

Interval timers 00 No LUN assignable
First keyboard-printer or 01 01 through 44

TTY onh printer group 1

Card reader 02 01 through 44
Paper tape reader 03 01 through 44
First disk unit 04 No LUN assignable
Plotter 1 05 01 through 44

Line printer 1 06 01 through 44
Reserved 07 vNo LUN assignable
Second disk unit 08 No LUN assignable
Third disk unit 09 No LUN assignable
First ADC, analog input basic 10 - No LUN assignable
Digital input 11 No LUN assignable
Digital a.nalog outpuf: 12 No LUN assignable
Channel adaptor 13 No LUN assignable
Magnetic tape unit 14 01 through 44
First keyboard-printer or 15 01 through 44

TTY on printer group 2

Analog input expander, second ADC 16 No LUN assignable
Card punch 17 01 through 44

Line printer 2 18 01 through 44
Plotter 2 19 01 through 44

ont.)

Table 4-1, Interi'upt Assignment.Code/ Logical Unit Number Assignments (C
Device IAC Permitted
(Decimal) LUN Values

Keyboard 2 20 01 through 44
Keyboard 3 21 01 through 44
Keyboard 4 22 01 through 44
Keyboard 6 23 01 through 44
Keyboard 7 24 01 through 44
Keyboard 8 25 01 through 44
Paper Tape Punch 26 01 through 44
Command reject INT (magnetic tape) 27 No LUN assignable
End of table INT (magnetic tape) 28 No LUN assignable
Reserved 29-31 No LUN assignable
Console interrupts 32 No LUN assignable
Process interrupts 33 No LUN assignable
First comparator 34 No LUN assignable
Second comparator 35 No LUN assignable
Second TTY on printer group 1 36 01 through 44
Third TTY on printer group 1 37 01 through 44
Fourth TTY on printer group 1 38 01 through 44
Second TTY on printer group 2 39 01 through 44
Third TTY on printer group 2 40 01 through 44

41 01 through 44

Fourth TTY on printer group 2

4-9

Table 4-1. Interrupt Assignment Code/Logical Unit Number Assignments (Cont.)

Device IAC Permitted
(Lg{egma],) LUN Values
Keyboard 1T - 42 01 through 44
Keyboard 5t 43 01 through 44
Magnetic tape drive 2§ 44 01 through 44
RPQXTT 45-63 No LUN assignable

1'Require interrupt level 99 (see paragraph 4.6.2).

TTRPQX is an extension of RPQ for the disposition of the user,

4-10

iac, iac/lun ... - groups of IAC or IAC/LUN assignments. The number of
groups must correspond to the number specified by ss
(columns 4-5). Groups are separated by commas. Each
group can consist of an IAC or an IAC/LUN combination.
When a group contains both an IAC and a LUN, the two
values must be separated by a slash. Not all IACs have
LUNSs assigned. When an IAC has an assignable LUN, but
the LUN is not specified on the assignment card, the System
Loader assigns the LUN the same number as the IAC. A

LUN number can be assigned to only one device.

Card columns 12 through 80 of the *ASSIGNMENT card and columns 3, 6, and 73
through 80 (as well as any unused columns from 7 through 72) of the individual assign-

ment cards must be blank.

The System Loader builds a table of assignments, providing space for all LUNs up to
the highest LUN assigned. Therefore, when a system has minimum core storage
(8K system), the user should assign consecutive LUN numbers beginning with the

lowest possible value to limit the size of the table.

4.5.6.3 Comment Cards
The user has the option of including comment cards anywhere in the system deck.
The contents of these cards have no effect on system generation, but are merely

output to the printer.

The format of a comment card is:

123 5
/:/ * any character string

The slashes in card columns 1 and 2 identify the comment card to the System Loader.
Card column 3 must contain a nonblank character. The comments begin in column 5
and are terminated in column 72 or by three consecutive blank columns - whichever

occurs first.

4-11

4.6 CORE LOAD BUILDER

As explained in Section 2; executable programs must be segmented into units called
core loads. This process is accomplished by the Core Load Builder. This program
operates under control of the Nonprocess Monitor. User-supplied control records
provide the Core Load Builder with information, such as the names of the reloca_table
mainline, interrupts to be recorded, data files to be used, interrupt routines to be
included as part of the core load, and LOCAL subprograms. Using this information
along with information provided by the System Loader and the Skeleton Builder, the
Core Load Builder genei'ates the tables, transfer vectors, and work areas that are
combined with the instructions that make up a core load. The Core Load Builder is
used to construct process mainline, interrupt, and nonprocess core loads for storage

in the core image area on disk.

4.7 SKELETON BUILDER

The Skeleton Builder ié the program that actually constructs the system skeleton from -
the user-written and supplied routines. These routines must have been assembled or
compiled and stored on disk in relocatable format before the Skeleton Builder is
executed. The Skeleton Builder constructs the system 'skeleton in core image format
and stores it on disk; thereafter, the skeleton can be read into core, for execution,

by a cold start procedure.

In addition to its function at the initial system generation, the Skeleton Builder is used
to rebuild the system skeleton. Rebuilding the system skeleton is necessary any time

routines are added, deleted, or modified.

4.8 DISK LOCATION EQUIVALENCE TABLES
Two tables are maintained by the system to record information concerning the location |
of programs, data, and core loads that are stored on disk. These tables are the

Location Equivalence Table and the Fixed Location Equivalence Table.

The Location Equivalence Table (LET) provides a map of system programs, sub-

routines, and relocatable programs on disk. Each entry in LET occupies three words

4-12

and includes the name of the function and its size (i.e., disk block count, where one
disc block is 20 words):

DISK BLOCK
NAME COUNT

An entry is made in LET for each entry point in a subroutine. As user-written

relocatable programs are stored on disk, entries for them are also made in LET.

The System Loader loads the TSS programs for system operation. From information
supplied to it through control cards, the System Loader makes initial entries in LET
concerning the various system programs (FORTRAN, subroutines, skeleton, etc.),
work areas, save areas, message buffer area, branch tables, disk communication

area, core image program area, and process cold start programs.

Entries are also made in LET by DUP. Following the assembly or compilation of a
program, the relocatable object program is stored on disk in the relocatable program

area, and the appropriate entries are recorded in LET.

The Fixed Location Equivalence Table (FLET) provides a map of core loads and data
stored in the process core image storage (or core load) area and the various save

~areas on disk. Entries in FLET occupy four words:

WORD SECTOR
NAME : COUNT ADDRESS

Entries are made in FLET by the Core Load Builder after it converts relocatable

programs to core loads.

When a program or core load is deleted, its name in LET or FLET is replaced by
the name 9DUMY. Since the system can no longer locate the program dr core load
name in the table (LET or FLET), that program or core load cannot be referenced.
Therefore, the area on disk that the program or core load had occupied is available

for the storage of other programs, core loads, or data files.

4-13

4.9 COLD START ROUTINE
The first routine to be executed by the system is the Cold Start routine. This supplied
routine is loaded with the system deck and resides in the storage protected skeleton
area on disk. Cold Start operation is initiated by a two-card cold start loader and é
name card. (Illustrétions of these cards and procedures for their use are given in
section 7.) At least one process core load must be on disk in the core load area to

be called to start the system.

The two-card cold start loader is supplied in a ready-to-use format; however, the

name card must be punched by the user. Its format is

(1 8 14 16 18 20 22 24 —>80
*CLDST name p c¢ d; dy dg comments

*CLDST must be punched in columns 1 through 6.

name - identifies the first core load to be called. This entry is required.
The name is entered in the field left justified, may consist of up

to five characters, and must begin with an alphabetic character.
P - storage protection option:

blank

no storage protection

il

1 storage protection selected
c - clock option:

blank .no option selected

1 clock option selected

4-14

d,, d, d, - logical disk drive assignment (d; # dy # dg):

1 2 3

d; = required; assigns a physical drive number to logical
drive 0. It must be punched 0, 1, or 2.

d2 = optional; assigns a physical drive number to logical
drive 1. It may be blank or punched 0, 1, or 2.

dg = optional; assigns a physical drive number to logical
drive 2. It may be blank or punched 0, 1, or 2.

comments - any comments may be entered in columns 24'through 80.

Columns 7, 13, 15, 17, 19, 21, ahd 23 must be blank.

The core load named in columns 8 through 12 is entered in full mask mode, i.e., all
interrupt levels masked. It is the user's responsibility to unmask for his system

configuration.

The nonprocess TASK name card has the same entries as described above with these

exceptions:

e name (columns 8 through 12) must be TASK.
e pand c (columns 14 and 16) must be blank.

TASK will unmask all levels.

4.10 TASK EQUATE CARDS

During the system generation procedure, the user must define the specific configuration
of TASK for his installation. This definition is accomplished through the use of
Assembler-language equaté (EQU) cards. After preparing the EQU cards, the user
inserts them into the TASK source deck. (Section 7 contains illustrations that show

the proper location of the EQU cards in the source deck.) Thus, the assembled TASK

will be tailored for the specific hardware configuration and process requirements.

4-15

The TASK equate cards are arranged in two groups and are referred to as "group 1
and group 2 EQU cards." There are certain rules concerning the use of EQU cards
that must be followed:

1. All EQU cards for both group 1 and group 2 must be included in the source
deck when TASK is assembled.

2. The entries on the cards must be left justified in their respective fields.

3. I an EQU card is not applicable to the configuration being defined, that EQU

card must contain a 0 in column 35.

Tables 4-2 and 4-3 define the group 1 and group 2 EQU cards, respectively. These

tables specify the information to be supplied and the card columns it is to occupy.

4.11 SYSTEM DIRECTOR EQUATE CARDS

As with the TASK program, the System Director must be assembled during system
generation. There are a number of EQU cards the user must provide to ensure a
successful assembly. Section 7 contains illustrations that show the proper placement
of these control cards in the source deck. Table 4-5 defines the information to be

supplied and the card columns it is to occupy.

Certain groups of these equate cards are interdependent. That is, the values given

to the groups

NILO0O through NIL23
USEO00 through USE23
NBO0O through NB23

and NULEV must not conflict. The following rules apply to the use of Systeni Director

equate cards:

1. The System Director NULEV and the TASK NULEV equate cards must

contain the same value.

2. The value of NULEV must be greater than the value of these TASK equate
cards: CONTA, LVPR1, TYPL1, TYPL2. -

4-16

The value of NULEV must be 1 greater than the highest number USExx equate
cards that contains a 1; e.g., if USE16 is the highest numbered USExx card,
NULEV would be 17.

USExx equate cards that are assigned the value 1 must be consecutively

numbered starting with USE00.

NBxx equate cards must contain 0 when the corresponding USExx card is 0,
or must contain a value between 1 and 16 when the corresponding USExx card

is 1.

The value of the NLWS1 equate card plus that of the NLWS2 eatid-mustbergqual
to or less than the value of NULEV.

The sum of the values of NITP1 and NITP2 must be 0 if the value of ITCUS

is 0.

4-17

Table 4-2. Group 1 TASK EQU Cards

Label Opgx::;;;on Values Meaning
: -2 : -
(cc: 21-25) (co: 27-30) (cc: 35-71)

BZ1 EQU 20-319 Message unit size of TTY 1-1.T

BZ2 EQU 20-319 Message unit size of TTY 1-—2.T

BZ3 EQU 20-319 Message unit size of TTY 1-3.7

BZ4 EQU 20-319 - Message unit size of TTY 1-4.1‘

BZ5 EQU 20-319 Message unit size of TTY 2—1.T

BZ6 EQU 20-319 Message unit size of TTY 2-2.T

BZ7 EQU 20-319 Message unit size of TTY 2-3.T

BZS8 EQU 20-319 Message unit size of TTY 2-4.7

CDINS EQU 0,1 0 = CARDN is not to be in

Skeleton 1/0.1T
1 = CARDN is to bein the
Skeleton 1/0.1T

COMSZ EQU X220 Maximum size of INSKEL
COMMON for object machine.
The value of x may be zero or
any positive decimal number
that does not cause the skeleton
size to exceed the VCORE
boundary.

CONTA EQU 0-23 Interrupt level for console
interrupt routine programming
when a console interrupt occurs
and data switch 7 is off.

CORSZ EQU 8, 16, 32 | Core size of object machine.

T1f the TTY has not been defined as buffering messages to disk and FORTRAN
compilations are planned, the message unit size must be greater than 80.

7T When CARDN is to be in the skeleton, it must be included in the Skeleton I/0; it
cannot be referenced in an *INCLD card at skeleton build time. If a Nonprocess
Monitor pack is required, the user should equate CDINS to 1 to conserve space.

4-18

Table 4-2. Group 1 TASK EQU Cards (Cont.)

Label Opgrc':;;on Values Meaning
: -2 : -
(ce: 21-25) (cc: 27-30) (cc: 35-71)

CRDNO EQU 1 TSS system requires both a card
reader and a card punch; there-
fore, a 0 value is not applicable.

DORG1 EQU 0,1 0 = disk 1 on system.

1 = Any other configuration.

DORG2 EQU 0,1 0 = More than one disk drive

on system.
1 = 2311 disk drive.

ECPT1 EQU 0,1 0 = Eact printer is TTY.
1= EACT printer is line printer.

ECPT2 EQU 1-15 If EACT printer is a TTY, see
table 4-4 for possible
combinations.

ECPT3 EQU 0,1 0 = EAC printer is TTY printer

group 1.
1 = EAC printer is TTY printer
group 2.

INTKY EQU 1-23 User's interrupt level for
TYPEN routine programming
when a teletypewriter interrupt
occurs. Value must be greater
than that for TYPL1 and/or
TYPL2.

LORG1 EQU 0,1 0 = LIST printer is a TTY,

1 = LIST printer is a line
printer,

LVPR1 EQU 0-23 Interrupt level of line printer,

TEAC stands for TASK Error Alert Control.

4-19

Table 4-2. Group 1 TASK EQU Cards (Cont.)

Label
(cc: 21-25)

Operation
Code
(cc: 27-30)

Values
(ce: 35-T1)

Meaning

MKLEV

NOBUF

NOCYL

NULEV

NUMBE

ONLIN

EQU

EQU

EQU

EQU

EQU

EQU

0,1

1-200

1-24

1-1600

= 14 or fewer interrupt levels
on system.

1 = 15 or more interrupt levels
on system.

0 = No buffering of messages to
disk.

1 = Buffering of messages to disk.

Number of groups of eight
sectors on disk for buffering
of messages to the TTY.

Number of interrupt levels for
final TSS system; e.g., if inter-
rupt levels 0-6 are used, the
NULEYV value is 7.

Maximum number of disk
sectors that can hold nonprocess
messages at any one time, This
area may also be used for proc-
ess messages. The number of
sectors must not exceed
NOCYL x 8.

0 = Delete the absolute loader
and the skeleton builder from
TASK. The resulting TASK
deck is to be used only for
execution of the Nonprocess
Monitor and not for TSS
system generation;i.e.,
gives the user an off-line
system that provides maxi-
mum core for execution of
Nonprocess Monitor programs.

1 = Provide all TASK functions.

4-20

Table 4-2, Group 1 TASK EQU Cards (Cont.)

Label Opzl;a;:;on Values Meanin
(co: 21-25) | Torag | (oot 35-71) &
ORLP1 EQU 0 No overlap on ahalog input basic.
ORLP2 EQU 0 No overlap on analog input
expander.
PORG EQU 0,1 0 = No line printer on system.
1 = Any other configuration.
PRICS EQU 0,1 0 = Standard precision arith-
metic subroutines for
process programs.

1 = Extended precision arith-
metic subroutines for
process programs.

PRILO EQU 0-23 Interrupt level of 2311 disk drive.
PTSKP EQU 0, 1 0 = Transfer to EACT for all line
printer not-ready errors.

1= For a not-ready error when
PRNTN has been called by
a nonprocess program, loop
on not-ready; otherwise,
branch to EAC.T

SLORG EQU 1-8 If the SYSTEM or LIST printer

is a TTY (see SORG1 and LORG1),

it can be any on the system. If
both SYSTEM and LIST printers

| are TTYs, they must be assigned

to the same TTY.

TEAC stands for TASK Error Alert Control.

4-21

Table 4-2, Group 1 TASK EQU Cards (Cont.)

Label Op(éxz;;on Values Meaning
¢ 21-2 : 35-T1
(cc: 21-25) (cc: 27-30) (cc 71)
SORG1 EQU 0,1 0 = SYSTEM printer is a TTY.
1 = SYSTEM printer is a line
printer.
TAO1 EQU 0,1 0 = Delete full trace from utility
package.
1 = Retain full trace in utility
package.
TA02 EQU 0,1 0 = Delete check/stop trace from.
utility package.
1 = Retain check/stop trace in
utility package.
TAO03 EQU 0,1 0 = Delete disk dump from
utility package.
1 = Retain disk dump in utility
package.
TORG EQU 0,1 0 = No TTY on the system.
1 = Any other configuration.
TORG1 EQU 0,1 0 = One TTY on printer group I.T
1 = Any other configuration,
TORG2 EQU 0,1 0 = Two TTYs on printer group 1.T
1 = Any other configuration,
TORGS3 EQU 0,1 0 = Three TTYs on printer
' group 1.
1 = Any other configuration.
TORG4 EQU 0,1 0 = No keyboard-printer on

printer group 1.

1 = A keyboard-printer on.
printer group 1

*TCount a keyboard-printer as if it were a TTY.

4-22

Table 4-2, Group 1 TASK EQU Cards (Cont.)

Label
(cc: 21-25)

Operation
Code
(cc: 27-30)

Values
(cc: 35-T1)

Meaning

TORGS

TORG6

TORGT

TORGS8

TORG9

TORGN

TRORG

TYPL1

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

0,1

0-23

0 = No keyboard-printer/TTY
on printer group 2.

1 = Any other configuration.

0 = One TTY on printer group 2.*
1 = Any other configuration.

0 = Two TTYs on printer
group 2.}

1 = Any other configuration

0 = Three TTYs on printer
- group 2.

1 = Any other configuration.

0 = No printer-keyboard on
printer group 2.

1 = A printer-keyboard on
printer group 2.

0 = No keyboard-printer/TTY
on system.

1 = Any other configuration.

0 = Utility package is not to be
in TASK (when this value
is 0, TAO01, TAO02, and
TAO03 are ignored).

1 = Utility package is to be in
TASK.

Interrupt level for TTY printer
group 1.5

TCount a keyboard-printer as if it were a TTY.

Tt a keyboard-printer has been included in the group, interrupt
level 23 is not a valid assignment for the group.

4-23

Table 4-2. Group 1 TASK EQU Cards (Cont.)

Operation ,‘ :
Label Code Values Meaning
(cc: 21-25) (ce: 27-30) (cc: 35-71)
TYPL2 EQU 0-23 ~ Interrupt level for TTY printer

group 2.1

Tif a keyboard-printer has been included in the group, interrupt
level 23 is not a valid assignment for the group.

4-24

Table 4-3. Group 2 TASK EQU Cards

X identifies the backup printer assigned to the printer on the equate card

ECPT2. If no backup unit is available, assign the X value of the printer

being equated. The values of X are:

X TTY Device X TTY Device
DT1 TTY 1-1 DT5 TTY 2-1
DT2 TTY 1-2 DTé6 TTY 2-2
DTS TTY 1-3 DT7 TTY 2-3
DT4 TTY 1-4 DTS8 TTY 2-4
Label Op‘é*::;:’“ Value Moaning
(cc: 21-25) (cc: 27-30) (cc: 35-T1)
BDT1 EQU X Backup TTY for TTY 1-1.
BDT2 EQU X Backup TTY for TTY 1-2.
BDT3 EQU X Backup TTY for TTY 1-3.
BDT4 EQU X Backup TTY for TTY 1-4.
BDTS EQU X Backup TTY for TTY 2-1.
BDT6 EQU X Backup TTY for TTY 2-2.
BDT7 EQU X Backup TTY for TTY 2-3.
BDTS8 EQU X Backup TTY for TTY 2-4.

Note: Count a keyboard-printer as if it were a TTY.

4-25

. Table 4-4. Error Alert Control Printer Combinations

EQU TTY TTY TTY TTY
Value 1-1 or 2-1 1-2 or 2-2 1-3 or 2-3 1-4 or 2-4

1 Yes No No No

2 No' Yes No No

3 Yes Yes No No

4 No No Yes No

5 Yes No Yes No

6 No Yes Yes No

7 Yes Yes Yes No

8 No No No Yes

9 Yes No No Yes
10 No Yes No Yes
11 Yes Yes No Yes
12 No No Yes Yes
13 Yes No Yes Yes
14 No Yes Yes Yes
15 Yes Yes Yes Yes

4-26

Table 4-5. System Director Equate Cards

Label Operation Permissible .
(ce: 21-25) Code Values Meaning
(ce: 27-30) | (cc: 35-T1)

CBASE EQU XXXXX The number of times the time clock
is to be incremented before the
programmed times are incremented.

DUMP1 EQU 0, 1 0 = The routine that dumps core to

disk is not to be included.
1 = The routine that dumps core to
disk is to be included.

ICLL1 EQU /XXXX These two cards define two 16-bit

ICLL2 EQU /XXXX words that are used to identify the
interrupt levels the user has
elected to mask for the servicing
of out-of-core interrupts. The
first 12 bit positions of the ICLL1
value correspond to the 12 standard
interrupt levels (0 through 11) on
the system. Bit positions 13 and 14
of ICLL1 and bits 0 through 10 of
ICLL2 correspond to the additional
12 levels available on the system.
The contents of the defined bit
positions of these words are stored
in the interrupt mask register.

ITCUS EQU 0, 1 0 = The ITC program is not to be

included in the System Director.
1 = The ITC program is to be
included in the System Director.

NBO00 EQU XX 00 < XX <16. Labels NB0O through

NBO1 EQU XX NB23 are equated to the rightmost

NB02 EQU XX bit plus 1 that is assigned to an

NBO03 EQU XX ILSW for a level. If there are no

NB04 EQU XX bits on a level, the label must be

NBO05 EQU XX equated to 0.

4-27

Table 4-5. System Director Equate Cards (Cont.)

Label Operation Permissible
(cc: 21-25) Code Values Meaning
(cc: 27-30) | (cc: 35-T1)
NBO06 EQU XX
NBO7 EQU XX
NBO08 EQU XX
NBO09 EQU XX
NB10 EQU XX
NB11 EQU XX
NB12 EQU XX
NB13 EQU XX
NB14 EQU XX
NB15 EQU XX
NB16 EQU XX
NB17 EQU XX
NB18 EQU XX
NB19 EQU XX
NB20 EQU XX
NB21 EQU XX
NB22 EQU XX
NB23 EQU XX
NILO0O EQU XX 00 < XX =< 16. The NIL0O through
NILO1 EQU XX NIL23 equate cards define PSIW1
NILO02 EQU XX through 24 respectively. XX equals
NILO3 EQU XX the value of 1 plus the highest
NIL04 EQU XX numbered PISW bit assigned to a
NILO5 EQU XX process interrupt; XX equals 0 if
NILO06 EQU XX no process interrupts are assigned
NILO7 EQU XX to a level. For multiple PISWs the
NILOS8 EQU XX NILxx values should only be assigned
NILO09 EQU XX to those PISWs that are not serviced
NIL10 EQU XX as I/0 devices.
NIL11 EQU XX
NIL12 EQU XX
NIL13 EQU XX
NIL14 EQU XX
NIL15 EQU XX
NIL16 EQU XX
NIL17 EQU XX

4-28

Table 4-5. System Director Equate Cards (Cont.)

Label Operation Permissible .
(cc: 21-25) Code Values Meaning
(cc: 27-30) | (cc: 35-T1)

NIL18 EQU XX

NIL19 EQU XX

NIL20 ~ EQU XX

NIL21 EQU XX

NIL22 EQU XX

NIL23 EQU XX

NITP1 EQU XX 1=<XX =16. Number of CALL
COUNT subroutines 0-15. This
value is 1 plus the highest
numbered subroutine in the first
group (0-15).

NITP2 EQU XX 1<XX <16. Number of CALL
COUNT subroutines 16-31. This

~ value is 1 plus the highest
numbered subroutine in the second
group (16-31 = (0-15) + 1].

NLWS1 EQU XX 1= XX < 14. The value 1 plus the
number of the lowest priority level
(0-13) assigned to a programmed
interrupt.

NLWS2 EQU XX 1 = XX =10. The value 1 plus the
number of the lowest priority level
(14-23) assigned to a programmed
interrupt.

NULEV EQU XX 1= XX =24. Specifies the number
of interrupt levels to be compiled
in the System Director. The value
is 1 plus the highest numbered
interrupt level used. If levels 0
through 9 are used, NULEV is
equated to 10 (also see USExx
equate card).

4-29

Table 4-5.

System Director Equate Cards (Cont.)

Label
(cc: 21-25)

Operation
Code
(ce: 27-30)

Permissible
Values
(ce: 35-T1)

Meaning

NUQUE

OPMO1

TBASE

TIMES

TIME1
TIME2

EQU

EQU

EQU

EQU

EQU
EQU

XX

0, 1

0, 1

/XXXX
/XXXX

Specifies the number of entries to
be allowed in the Queue Table.

This number should allow sufficient
storage so that the Queue Table will
not overflow under normal conditions.
Each entry point in the Queue Table
requires three words of storage.

0 = The user is to reset the opera-
tions monitor.

1 = The operatiens monitor is to be
reset by ITC when time-sharing
is in progress.

This negative value is put in
timer C (word 6) to be counted down
for the time clock base.

0 = Time-sharing is not to be used.
1 = Time-sharing is to be used.

The labels TIME1l and TIME2 are
the hexadecimal equivalence of a
double-precision number that defines
the time in milliseconds that is
calculated by the equation:

TBASE*HARDWARE BASE
for timer C

TIMEL1 is set to 10000 except when
the calculated time exceeds 65, 535
milliseconds, in which case two
words are required.

4-30

Table 4-5. System Director Equate Cards (Cont.)

Label Operation Permissible .
(ce: 21-25) Code Values Meaning
(cc: 27-30) | (cec: 35-T1)

TISHA EQU XXXXX The number of times the pro-
grammed clock is to be updated
before time-sharing is terminated.

USE00 EQU 0, 1 LabelsUSE00 through USE23 define

USEO1 EQU 0, 1 the level work areas. A label is

USE02 EQU 0, 1 equated to 0 if no work area is

USE03 EQU 0, 1 included for that level; it is equated

USE04 EQU 0, 1 to 1 if a work area is included on

USE05 EQU 0, 1 that level. When USE14 is equated

USE06 EQU 0, 1 to 0, the XIO and other coding for

USEO07 EQU 0, 1 levels 14 through 23 will be origined

USE08 EQU 0, 1 out.

USE09 EQU 0, 1

USE10 EQU 0, 1

USE11l EQU 0, 1

USE12 EQU 0, 1

USE13 EQU 0, 1

USE14 EQU 0, 1

USE15 EQU 0, 1

USE16 EQU 0, 1

USE17 EQU 0, 1

USE18 EQU 0, 1

USE19 EQU 0, 1

USE20 EQU 0, 1

USE21 EQU 0, 1

USE22 EQU 0, 1

USE23" EQU 0, 1

VCORE EQU XXXXX The starting address of variable
core; must be an even number.

4-31

SECTION 5 — PROGRAMMING CONSIDERATIONS

This section contains examples and programming sequences to illustrate the

recommended approach for various situations.

5.1 FORTRAN SUBPROGRAMS

Often the same group of statements is required to be executed at various
locations throughout a program. In order to speed up and simplify coding the
subprogram is used. A subprogram consists of a set of logical steps to per-
form a predefined operation on data supplied to it by the calling program. This

data is supplied by the use of arguments.

In 18/30 TSS FORTRAN there are two types of subroutines: SUBROUTINE and
FUNCTION subprograms. In each case the subprogram is coded and compiled
only once. It is then executed as needed without being included in the in-line

coding.

5.1.1 SUBROUTINE Subprograms
The first statement in a SUBROUTINE subprogram is the SUBROUTINE statement:
SUBROUTINE namex (a,b,c,....)
namex name of the subprogram; it must be one to five alphanumeric
characters, and the first character must be alphabetic.
a,b,c,.... argument list. These consist of the variables to be used
in the subprogram. They may be nonsubscripted variables,

array names, or another subprogram name.

This is a dummy argument list so the names do not have to agree with those

in the calling program. However, the arguments must agree in number, type
(REAL or INTEGER), order, and array size. None of the arguments may
appear in an EQUIVALENCE statement in the subprogram. When an argument
is an array name, the argument must appear in a DIMENSION statement in the

subprogram.

5-1

To establish the linkage to a SUBROUTINE subprogram, the CALL statement
is used:

CALL namex (X,y,Z,....)

namex symbolic name of the SUBROUTINE subprogram

X, VsZyoono arguments being supplied to the subprogram

The arguments in a CALL statement may be real or integer type and may be
subscripted variables, constants, array names, subprogram names, or
arithmetic expressions. The only restriction is that they must agree in order,

type, and array size with the corresponding arguments defined in the subprogram.

Example:

// JOB X Y A

// FOR SUBR
SUBROUTINE SUBR(AsI,ARRAY)
DIMENSION ARRAY(10)

*

- ARRAY(1) = A

*

RETURN
END

// FOR PROGM
DIMENSION X(10)

Y = 40.07S

L]

L4 . -
CALL SUBR(Y,6,X)

. END
// DUP .
*STORECI M PROGM PROGM RSTRT
*CCEND
// JOB X Y Z

// END OF ALL JOBS

5-2

5.1.2 FUNCTION Subprograms
The FUNCTION subprogram is a FORTRAN subroutine that is executed whenever
its name appears in a FORTRAN program. The rules for FUNCTION names

are the same as those for FORTRAN variables.

The first statement in a FUNCTION subprogram is the FUNCTION statement:
FUNCTION namex (i,j,k....) '
namex symbolic name of the subprogram

i,j,k.... arguments to be passed to the subprogram

The rules for arguments in a FUNCTION subprogram are the same as those for
a SUBROUTINE subprogram. However, the following rules are also applicable:
1. An argument may not appear on the left side of an equals sign and must
not be redefined in any way.
2. The name of the FUNCTION must appear on the left side of an equals
sign at least once in the subprogram. (This is how the result of the

calculations within the subprogram is returned to the calling program.)

5-3

Example:

// JoB . X Y 4

// FOR SUBR .
FUNCTION . SUBR(X»122)
DIMENSION Z<10)

SUBR = X%ZC1) + 10835

L]

RETURN
END
// FOR PROGM.
DIMENSION ARRAY(10)

XYZ = SUBRCROLXZs2sARRAY) * 4 + 82418

ABC = SUBRCROLAC»8»ARRAY)

. END
// DUP ' _ :
#STORECI M 1 PROGM PROGM RSTRT
*CCEND
/7 JOB X Y A

/7 END OF ALL JOBS

5.2 ASSEMBLER LANGUAGE SUBROUTINES

SUBROUTINE and FUNCTION subprograms to be called by a FORTRAN program
may be written in Assembler language. However, a knowledge of the coding
generated by the compiler is required. The linkage to each subprogram is
generated by the FORTRAN compiler in the same manner as an Assembler
language CALL. The argument list consists of a string of DC statements

defining the addresses of the arguments.

At core load build time the Assembler CALL is replaced by a BSI instruction.

5-4

Examgle:

FORTRAN CALL

ASSEMBLER
CALL
DC
DC
DC

1 DC
J DC
K DC

SUBR (I,J,K)

SUBR (BSI L SUBR)

I Address of 1
J Address of J
K Address of K

(Next Executable Instruction)

40
6
18

A SUBROUTINE subprogram returns the results of its computations by means

of the argument list.

ExamEle:

//JOB XY Z

//ASM
ENT

SUBR DC

LDX
LD
A
STO
BSC
END

//DUP

*STORE

//JOB XY Z

//END OF ALL JOBS

ol ol ol ol o

SUBR Define Entry Point

0 Entry Point
I SUBR XRI = Argument Address
I 0 LD I
I 1 Add J
I 2 Store in K
I 3 Return to Caller

SUBR

A FUNCTION subprogram returns its result via the floating accumulator for

floating-point results or the A-register for integer results.

5-5

Example:

FORTRAN CALL K=SUBR (,J)
//JOB XY Z

//ASM
ENT SUBR Define Entry Point
SUBR DC 0 Entry Point
LDX LI SUBR XRI= Argument Address
LD LI 0 Load Argument 1
A LI 1 Add Argument 2
N : Leave Result in A
BSC LI 2 Return to Caller
END :
//DUP
*STORE SUBR

//JOB XY Z
//END OF ALL JOBS

For a subprogram with floating-point results the following coding may be used

to get to the floating accumulator (words 41, 42, and 43 on the work level):

LIBF FLD
DC ANSWR

ANSWR DEC 8.6

5.3 REENTRANT CODING

Since TSS is a multilevel operating system, a subroutine may be called from
different levels of execution. Care must be taken that partial or intermediate
results are not overlaid when subsequent calls are made to the Subprogram.
This objective is accomplished by assigning to each interrupt level a block of
104 words, 42 words of which are available for storage by user-written pro-
grams. Also locations 54 and 55 in the fixed area of core, the contents of the
A- and Q-registers, the carry and overflow indicators, and index registers 1,
2, and 3 are saved and subsequently restored by MIC. MIC then sets word 104

10
to the base address of the current interrupt level work area. By loading index

5-6

register 3 (usual case) indirectly with the contents of word 104 and using this as
a base register for indexed instructions, different effective addresses are gen-
erated for each work level used. Note that the examples in paragraph 5.2 are

reentrant since all data is held in the registers.

An alternative method would be to mask the system and thus prevent interrupts
from being recognized. For short sequences this method may be the most effi-
cient one to use. However, for long sequences it is undesirable since it

lengthens response time to interrupts.

5.4 TIMER SERVICING SUBROUTINES

There are three hardware timers on the 18/30. Under TSS the user has access
to the first two: timer A and timer B. Timer C is used by the system for
internal timing and to provide for nine software timers that are very similar —
from an operational standpoint — to hardware timers. Thus the user has access

to 11 timers.

To access a hardware timer, the following call is made:
CALL TIMER (name, n, int)
name symbolic name of the subprogram to be executed when the
timer goes to zero
n timer number (timer A =1, timer B = 2)
int number of timer intervals to elapse before executing

subprogram name

NOTE: Name must appear in an EXTERNAL statement. Also a subprogram

cannot reference itself in a CALL TIMER statement.
The software timers are accessed by using the CALL COUNT statement.

When the System Director is assembled, the user has an option of specifying

how many COUNT subprograms will be included at skeleton build time. A

5-7

maximum of 32 is allowed. At skeleton build time the user-written subprograms

are included in the

following format:

skeleton by use of a special *INCLD card. It has the

*INCLD name/1lbb
name symbolic name of the subprogram to be included in the skeleton
1 constant (26 or 27) that specifies the group of count routines
to which name is assigned (26 for routines 0-15 or 27 for
routines 16-31)
bb specific number (0-15) within the group
Example:
Count Routine No. 11 bb
0 26 00
1 26 01
2 26 02
15 26 15
16 27 00
17 27 01
18 27 02
31 27 15

The user can execute these subprograms by using the CALL COUNT statement

which has the format:

CALL COUNT
nt '
int

ns

(nt, int, ns)

number of the program timer to use (1 through 9)

number of timer intervals to elapse before execution
number of the subprogram to execute. This is the number

assigned during skeleton build.

Note that in the CALL COUNT statement no subprogram is referred to by name,

only by number. Therefore, a COUNT subprogram can reschedule itself for

execution by using a CALL COUNT statement.

5-8

5.5 CORE LOADS

A core load is a module that résides on disk in an immediately’ loadable,
executable format. It consists of a program and any subroutines, library
subprograms, or functions referenced by that program which are not part of
the system skeleton. Linkages to skeleton resident subroutines are deter-
mined when the core load is built and placed on the disk. Execution of the
core load begins with the System Director's loading the core load as if it were
data (no relocation or correction of referencés is necessary). All core loads
are loaded into variable core, starting at the beginning address of variable core.
When the loading process is complete, the System Director branches to the
beginning of the program which was used as the basis for the building of the
core load. This address was symbolically specified by the END statement
when the program was assembled or was generated automatically by the

FORTRAN compiler.

There are three basic types of core loads: nonprocess, process mainline, and
interrupt. Nonprocess core loads are executed under the Nonprocess Monitor
in either the time-sharing or off-line mode of operation (off-line pack only).
This type of core load is meant to perform functions which are not related to
the on-line system or functions which are performed infrequently, at the

request of the system operator.

Process mainline core loads execute process-related functions as part of the
on-line system. The execution of process mainline core loads is determined
by a job queue within the skeleton as well as by direct core-load-to-core-load

sequencing using skeleton-resident linkage routines.

Interrupt core loads are loaded and executed in response to process interrupts.
When the specified interrupt occurs, variable core is saved in the interrupt
save area on disk. The interrupt core load is loaded for execution, and all
other levels which might be serviced by oﬁt—of—core interrupts are masked.

These levels remain masked until the interrupt core load has completed its

execution. At the completion of the interrupt core load, variable core is
restored so that processing at the mainline level (a process mainline core load
or a nonprocess function) can continue. Only one out-of-core interrupt is
allowed for each interrupt level. One interrupt core load may not interrupt
another interrupt core load regardless of the priority level assignments of the

two core loads.

The same core load can be used as an interrupt core load or a process mainline
core load by being designated as a combination core load when it is built. This
type of core load must be written to conform to the restrictions for both inter-

rupt and process mainline core loads.

5.5.1 Core Load Coding ;

The bulk of the coding is the same for programs used to construct any type of
core load. System considerations such as response time, available core, and
available disk space determine the type of core load used to perform a particular
function. Each core load type is initiated by a different element of the system.
For proper system performance it is necessary that each type exit via the cor-
rect system routine. Basic restrictions are imposed on each type core load so
that the system can operate efficiently. Coding a program to be used as the
basis for a core load requires a familiarity with the restrictions and capabilities

of each core load type.

5.5.2 Nonprocess Core Loads ’

Nonprocess core loads perform functions which are not related to the on-line
processor or which are run infrequently at the request of the system programmer
or operator. This type of core load is always executed under the Nonprocess
Monitor, usually during time-share. Nonprocess functions can be run off-line

under TASK only if an off-line disk pack is used.

There are two types of nonprocess core loads. Both types are built and

executed as the result of a nonprocess job stream. Type 1 is built in and

5-10

executed from the temporary (nonprocess working storage) disk area. Since
each //JOB card causes the clearing of the temporary disk area, this type must
be built each time it is executed. Type 2 is built in the temporary disk area,
but is subsequently stored in the fixed disk core load area, and is executed

from the fixed area.

There are more restrictions placed on type 1 than on type 2 nonprocess core
loads. Table 5-1 summarizes the capabilities and restrictions on each type of
nonprocess core load. The restrictions shown in this table refer to the use of
system subroutines only. For example, a nonprocess core load cannot mask
the system using the MASK subroutine. It can, however, perform a direct XIO
in Assembler language which would accomplish the same results. The restric-
tions placed on nonprocess core loads are safeguards for on-line operation
integrity and should be observed. The restrictions that apply to nonprocess

programs refer also to subroutines called by nonprocess programs.

The coding for a nonprocess core load consists of any legal FORTRAN or
Assembler language statements. Two exits are provided. The normal
method of termination for a nonprocess core load is the CALL EXIT. This
call returns control to the Nonprocess Monitor which searches the control
deck for the next //JOB card. If a second nonprocess core load has been
stored in the fixed core load area (i.e., a type 2 nonprocess core load), its
execution may be initiated by a CALL LINK (NAME). A call to the LINK rou-
tine térm_inates the execution of the present nonprocess core load and initiates
the loading for execution of the named nonprocess core load. The named core
load‘ must have been stored in the fixéd area prior to the execution of the

CALL LINK.

If FORTRAN is used, the *NONPROCESS PROGRAM control card should be
part of the compilation job stream for the program and any subroutines used

by the program. This allows for the checking of system references so that

5-11

Table 5-1. Summary of Capabilities and Restrictions of Nonprocess Core Loads

I. Capabilities Type 1 and Type 2

® May be written in FORTRAN or Assembler language

® May use INSKEL subroutines for I/0

® May use system disk files

e May use nonprocess working storage for temporary
working files

e May use any data processing peripheral

® May link to another nonprocess core load if that core load

resides in the fixed disk area

II. Restrictions Type 1 and Type 2

® Must be executed under time-sharing
e May not use system process I/0 subroutines
e May not mask the system

May not initiate a programmed interrupt

III. Capabilities of Type 2 Not Applicable to Type 1

e May alter mainline queue table

® May reference and set system clock

® May use hardware or programmed timers
® May sense mask status of system

® May clear recorded interrupts

nonprocess programs do not disrupt the on-line system. Use of the COMMON
statement refers to the high core area used by process mainline core loads.
Note, however, that no communication between process and nonprocess core
loads can be attained through this area, since the functions are completely
separate. This area can be used as a communication area between the non-
process program and its subroutines or between linked nonprocess core loads.
INSKEL COMMON may be referenced by nonprocess core loads used to change
system parameters.

5-12

Figure 5-1 depicts the job stream required to build and execute a type 1
nonprocess core load. The main program and each subroutine are assembled
as individual relocatable modules. These may be stored in the relocatable
program area (LET area), but it is not necessary that they be. The relocatable
modules are placed in the temporary disk area automatically if the assembly

is error free. If the permanent LET area is not used, the modules must be

assembled each time the core load is to be built for execution.

The // XEQ card is used to build and execute the core load when used as shown. -
Columns 16 and 1% of this card must contain blanks indicating that the core load
must be built before execution. Columns 8 through 12 contain the name of the
relocatable program to be used as the basis for the core load building process.
The cards following the // XEQ card are control cards for the core load builder.
If FORTRAN disk I/0 is used, these cards describe the files that the FORTRAN

program references (see summary of Nonprocess Monitor control cards).

Figure 5-2 depicts the job stream required to build and execute a type 2 non-
process core load. The assembly of each element is identical to a type 1

nonprocess core load. The building sequence contains an important addition.
In this sequence the core load is built and stored in the core load area before
execution. The core load will remain in this area until deleted by a separate

job sequence.

The *STORECI card is used by the core load builder as the source of the basic
information necessary to build the core load. An explanation of the contents of

this card can be found in the summary of Nonprocess Monitor control cards.

Since the core load is stored in the fixed disk area, later execution can be
accomplished using the shorter job stream shown in the figure. The job stream

used to delete the core load from the fixed area is shown in figure 5-3.

5-13

// JOB X Y Z
// FOR TEST

CALL SUB1

CALL SUB2
. (FORTRAN Source Program)
END
// FOR SUB1
SUBROUTINE SUB1

END
// FOR SUB2
SUBROUTINE SUB2

END
// XEQ TEST
*CCEND
. (Data Cards if Required by Program)

// JOB X Y Z
// END OF ALL JOBS

Figure 5-1. Build and Execute a Type 1 Nonprocess Core Load

5-14

// JOB X Y z
// FOR TEST

CALL SUB1

CALL SUB2
. (FORTRAN Source Program)

END
// FOR SUB1
SUBROUTINE SUB1

END
// FOR SUB2
SUBROUTINE SUB2

END

*STORECI TEST TEST
*CCEND
// JOB X Y 2Z

// END OF ALL JOBS

// JOB X Y Z
// XEQ TEST FX
. (Data Cards if Required by Program)

// JOB X Y Z
// END OF ALL JOBS

Figure 5-2. Build and Execute a Type 2 Nonprocess Core Load

5-15

// JOB X Y Z

// DUP
*DELET TEST
// JOB X Y Z

'// END OF ALL JOBS

Figure 5-3. Delete a Type 2 Nonprocess Core Load

5-16

Example:

//JOB X Y Z

//FOR NPRCS :

*NONPROCESS PROGRAM -«—————— (Specifies Nonprooess Program;
Mainline Only)

CALL EXIT = (Last Executable Statement in
END Nonprocess Program)

//DUP

*STORECI NPRCS NPRCS

//JOB X Y Z ~ L (No Restart Core
//END OF ALL JOBS Load Specified)
(No Core Load Type Specified)

5.5.3 Process Core Loads

Process core loads perform functions 'directly related to the process that are
not extremely time critical. This might include a control program for a slow
reaction process, a logging program, or a data collection program. It is
executed by placing its name in the mainline queue table. When it is the highest
priority program in the queue, the VIAQ routine will read it into core and

execute it,

The only restrictions to process programs are as follows:

1. The last logical statement must be one of these:
e CALL VIAQ
e CALL CHAIN (NAME)
e CALL DPART

2. None of the following statements may be included:
e CALL ENDTS |
e CALL EXIT
e CALL INTEX

5-17

Example:

//JOB X Y Z

//FOR PRCSS
(If *NONPROCESS PROGRAM is

not specified, this is automatically
a process program.)

CALL VIAQ (Last executable statement in
END ' process program)
//DUP
*STORECI M PRCSS PRCSS RSTRT
//JOB L (Restart Core Load Name)
//END

5.5.4 Interrupt Core Loads

Interrupt core loads are loaded and executed in response to process interrupts.
Combination core loads (i.e., core loads that can be executed as both an inter-
rupt core load and a procéss mainline core load) must conform to the rules for

both types of core loads.

A typical interrupt core load is outlined in the t’ollbwingexa.mple.

Example:
//JOB X Y Z
//FOR INTCL
(Written as Process Program)
CALL INTEX (Last Executable Statement in
END Interrupt Core Load)
//DUP :
*STORECI I 1 INTCL |INTCL LLBB
//JOB : A (Level and Bit to
//END ' respond to)

(No Restart Specified)
(Specifies Interrupt Core Load)

5-18

5.6 INSKEL INTERRUPT SERVICING ROUTINE

//JOB X Y Z
//FOR SUBROUTINE INTRP

CALL INTEX
END
//DUP
*STORE INTRP
//JOB X Y 2
//FOR PROGM

CALL VIAQ
END
//DUP
*STORECI M 1 PROGM PROGM RSTRT
*INCLD INTRY /0604
*CCEND
//JOB X Y Z
//END

To include this subprogram in the skeleton use the same *INCLD card when
building the skeleton:

//XEQ SKBLD
*INCLD INTRP/0604

*CCEND

5.7 CORE LOAD BUILDING

To build a core load all relocatable modules must be on the disk. However,
the modules may be loaded to the nonprocess working storage area of the disk
from cards immediately prior to execution of the core load builder. This fea-
ture may be used to provide a backup on cards in case of a system failure, to

conserve disk room, or to send a compiled or assembled program to another user.

5-19

The method outlined below may be used to generate the object decks.

//J0OB X Y Z

//FOR SUB1

*PUNCH
SUBROUTINE SUB1

(FORTRAN Subroutine)
RETURN
END
(Blank Cards)
//JOB X Y Z

//FOR PROGM
*PUNCH

.CALL SUB1

CALL-VIAQ
END

(Blank Cards)

//JOB XY Z
//END OF ALL JOBS

Later the object decks generated above can be used to generate a core load:

//JOB XY Z
*STORE T RD 0 SUBL
(SUB1 Object Deck)

*STORECI M RD 1 PROGM PROGM RSTRT
(PROGM Object Deck)
*CCEND

//JOB X Y Z
//END

5-20

The occurence of the //JOB card at the end of the deck has erased any reference
to the relocatable modules SUB1 and PROGM in the nonprocess work storage
area. The core load PROGM is permanently stored on drive 1, and an entry

has been made in FLET to that effect.

The core load can be built from the source cards without punching an object

deck. Again, the relocatable modules are left in nonprocess working storage

and are not placed in the permanent user's area with resulting entries in LET:
//30B X Y Z

//FOR SUB1
SUBROUTINE SUB1

(FORTRAN Subroutine)
RETURN
END
//FOR PROGM
*NONPROCESS PROGRAM

CALL SUB1

CALL EXIT
END
//XEQ PROGM
*CCEND
//JOB XYZ
//END

Note that there is no //JOB card between the subroutine and the main program.
A //JOB card reinitializes all references to the temporary (nonprocess work
storage) area. Thus, a //JOB card would have erased any reference to SUB1,

and the core load builder would not have been able to include it in the core load.

If the modules previously compiled were stored in the LET area as well as beirig
punched into cards, the following sequence would be sufficient to build the core

load.

5-21

//JOB XY Z

- //DUP
*STORECI M 1 PROGM PROGM RSTRT
*CCEND
//JOB
//END

5.8 DISK STORAGE AREAS
There are several storage areas on disk with which the user is concerned.

Figure 5-4 shows a disk storage arrangement.

5.8.1 Core Load Area

The core load area is reserved for storage of core image programs and data
files. Each program or file in this area is assigned a fixed location and an
entry in FLET. Therefore, additional core loads or data files will not overlay

those pfeviously defined.

5.8.2 Fixed Location Equivalence Table (FLET)

FLET serves as a disk map for thé location of core loads and data files stored
in the process core image storage (or core load) area. Each file or core load
has an entry in FLET. As the user stores additional core loads or data files
on the disk, additional entries are made in FLET. A FLET entry has theA

following format:

- NAME 1 NAME 2 XXXX Y YYY

L ' J 1] L J
, | Starting sector address
Drive code

Word count for core loads
or

Sector count for data files

Name of core load or data file in truncated EBCDIC

5-22

1599

DISK COMMUNICATIONS AREA

NONPROCESS SUPERVISOR

DISK UTILITY PROGRAM

ASSEMBLER FILE
PROTECTED
FORTRAN AREA
LET/FLET
SUBROUTINES AND
RELOCATABLE PROGRAM AREA |
|
NONPROCESS WORK STORAGE ‘
ERROR DUMP AREA
ERROR SAVE AREA
NONPROCESS SAVE AREA NON-
PROTECTED
MESSAGE BUFFER AREA
PROCESS WORK STORAGE
FORTRAN I/O SAVE AREA
INTERRUPT SAVE AREA {
[
CORE LOAD AREA
SPECIAL SAVE AREA
. FILE
PROCESS SAVE AREA PROTECTED
AREA

SKELETON AREA

ERROR PROGRAMS

COLD START

Figure 5-4. Disk Storage Arrangement

5-23

There are two ways to make an entry in FLET:

e The SSTORECI function of DUP is used to build a core image program
and store it in the core load area. The relocatable mainline program
used to generate the core load may be in the relocatable area on the
disk or it may be in the form of a binary object deck entered through
the card reader.

e The *STOREDATA function of DUP is used to store data from cards to
the working storage or fixed areas. To reserve an area in the core
load area for future use as a data file a *STOREDATA to the fixed area

is used.

5.8.3 Working Storage

There are two areas of working storage on the disk that are used as temporary
storage by system programs and user-written process or nonprocess core loads.
There are no entries in FLET for files set up in this area. Thus, any data left
in this area after execution of a system or user-written program may be over-
laid by another program. The nonprocess working storage area is used by the
Nonprocess Monitor and by user-written nonprocess core loads. The process
working storage area is used only by process programs. A process and/or

nonprocess work storage area may be assigned to each drive.

5.8.4 FORTRAN Disk Input/Output

To use the disk I/0 routines in a FORTRAN program, an *IOCS(DISK) control
card must precede the source program at compilation time. This control card
can be used only with mainline programs. Subroutines using disk I/0 do not
use IOCS control cards. However, a mainline program that calls a subroutine

which uses disk I/0 must use an *IOCS(DISK) control card.

The DEFINE FILE statement is used to communicate to the FORTRAN compiler
the quantity and size of the data records within files that are used by a particular
program and its associated subroutines. Subroutines use the files as defined by

the main program so the DEFINE FILE statement will appear only with a

5-24

mainline program. The purpose of the DEFINE FILE statement is to divide the
disk area into files to be used in the disk READ, WRITE, and FIND statements.

The format of the DEFINE FILE statement is as follows:
DEFINE FILE i (n, LU,v)

i

a positive integer constant that is the symbolic designation
for this file. The value of i must be less than or equal

to 32,767.

an integer constant that defines the number of file records
in this symbolic file,

an ’integer constant specifying the number of words (length)
of each file record in this symbolic file. The value of }
must be less than or equal to 320.

the letter U designates the file must be read/written with a
disk READ/WRITE statement; no data conversion is involved.
a nonsubscripted integer variable name that is set at the end
of execution of each disk READ, WRITE, and FIND state-
ment referencing this symbolic file. After a READ or
WRITE statement v is set to the value of the next available
file record. After a FIND statement v is set to the value of
the indicated file record. This variable must appear in
COMMON if it is referenced by more than one program at

execution time.

The format of the READ, WRITE, and FIND statements is as follows:
READ (i'r) list
WRITE (i'r) list

FIND (i'r)

i

the symbolic file number; may be an unsigned integer

constant or an integer variable.

5-25

r an integer expression designating the record number where
tra.nsrhittal will start; may be an integer expression.
list a list of variable names, separated by commas, for the

input or output data.

The FIND statement moves the disk read/write head to the specified record.

Its use is not required to perform disk operations.

The *FILES control card is used to assign symbolic FORTRAN files to specific

areas on the disk. The format of the *FILES control card is as follows:

(iFILES (i, NAME, d) (No embedded blanks are allowed.)

i the symbolic file number that corresponds to the file number
in the DEFINE FILE statement in the FORTRAN source
program,

NAME the name of the data block to use. This is the same as the
name established by the *STOREDATA control card. When
this parameter is used, the third parameter is ignored.

d the logical drive (0, 1, or 2) to use if a name is not present

"in the second parameter.

Disk Storage Options. - Three options exist for the assignment of files to specific

disk areas.

1. Do not include a *FILES card for a file that was defined in a FORTRAN
source program. The file length specified in the source program is
reserved in either process work stofage or nonprocess work storage.

If more than one file is defined, successive files are set up in the disk
work area beldw the first file. Files that are assigned to disk work
storage by the loader for this option will all be located on the temporary

disk drive assigned by the //JOB control card.

5-26

Example:

//JOB X Y Z
//FOR TEST
*JOCS (DISK)
DIMENSION IDAT(320)
DEFINE FILE 20 (1,320, U, NEXT)

Symbolic
WRITE Qg'l) IDAT File
. - Number

READ (20'82) IDAT (82)

CALL EXIT
END

//DUP

*STORECI TEST TEST

*CCEND
//JOB X Y Z
//END OF ALL JOBS

Assign the files to work storage on a specific drive. This method of
storage is the same as described in item 1, above, but the user must
include a *FILES card to assign the drive number. For this option,

no name is specified on the *FILES control card.

5-27

ExamEIe:

//JOB X Y Z
//FOR TEST
*JOCS (DISK)
DIMENSION IDAT(320)
DEFINE FILE 20 (1,320, U, NEXT)

WRITE

5 Symbolic
- .
READ (20'82) IDAT(82) lfl‘:jriber

CALL EXIT
END
//DUP

*STORECI TEST TEST

*FILES(20 ,v,%)_——’—_/,_____——Drive 2

*CCEND

//J0OB X Y Z

//END OF ALL JOBS
Write the files in the permanent areas of the disk. This option
requires that the area on disk that is to contain the files must be
named in FLET. Including this name as the second parameter of the
*FILES statement causes the third parameter (drive selection) to be

ignored.

5-28

Example:

//JOB X Y Z
//DUP

*STOREDATAD WSO FX2 NAMEX 001 00320

//FOR TEST

*I0CS (DISK)
DIMENSION IDAT (320)
DEFINE FILE 20 (1,320, U, NEXT)

WRITE (20'1) IDAT .
Symbolic
File

READ (20'82) IDAT (82) Name

CALL EXIT

END
//DUP
*STORECI

*FILES(20, NAMEX, 2)
*CCEND

//JOB X Y Z
//END OF ALL JOBS

5.8.5 Assembler Disk Input/Output

The DSA statement allows a symbolic reference to a previously defined data

block in the core load area on the disk without requiring the specific location

of the data file or core load. The format of the DSA statement is as follows:

label
label

namex

DSA namex
the current value of the Location Assignment Counter when
the DSA statement is encountered.
name of a data area previously stored on the disk with an

*STORECI or *STOREDATA function.

The Assemblerreserves three words in the object program for each DSA

statement.

These words are filled in by the Core Load Builder.

5-29

For a data file these words will contain:

WORD 1 LENGTH (IN SECTORS)
WORD 2 SECTOR ADDRESS
WORD 3 NOT USED

To operate on an entire data file, the length (sector count in word 1) must be

muitiplied by 320 before a disk call is executed.

For a core load these words contain:

WORD 1 LENGTH (IN WORDS)
WORD 2 SECTOR ADDRESS
WORD 3 NOT USED

5-30

Example:
//JOB X Y Z

//DUP
*STOREDATAD WSO FX2 NAMEX 001 00320
//ASM TEST '
EEST LILD
M
SLT
STO
LIBF Symbolic
DC File
DC Name
D320 DC
JIOAR DSA NAMEX
BSS 319
END TEST
//DUP
*STORECI TEST TEST
*CCEND

//JOB X Y Z
//END OF ALL JOBS

In writing to a file in the work storage areas of the disk, the displacement option
in the DISKN control parameter is used. The displacement option is the fourth
hexadecimal digit of the control parameter. When it is set to 1, the startihg
address of either the process or nonprocess work storage area for the specified
disk (depending on which type of program called DISKN) is added to the sector

address in the I/0 area to generate the effective sector address.

5-31

Example:

//3I0B X Y Z
//ASM TEST

TEST LIBF
DC
DC
DC

IOAR DC
DC
BSS

END

//DUP

*STORECI TEST TEST
*CCEND

//JOB X Y Z
//END OF ALL JOBS

DISKN
/2001
IOAR

320 Word Count
0 Relative Sector Address
320 Data Area

TEST

5.9 INPUT/OUTPUT SUBROUTINES

Input/output subroutines are provided with the TSS system to relieve the user

of the burden of handling all the details peculiar to each device. The provided

subroutines are:
Subroutine
Card 1/0
Disk Storage
Printer/Keyboard
Teletypewriter Printer
Printer
Magnetic Tape
Paper Tape 1/0
Plotter |

Name
CARDN
DISKN
TYPEN
WRTYN
PRNTN
MAGT
PAPTN
PLOTX "

5-32

The CARDN, DISKN, and TYPEN (or PRNTN) subroutines must be included in
the skeleton area since they are required by the System Director. The rest of
the subroutines may either reside in the skeleton area or be loaded into VCORE

as needed.

The disk and printer routines may be referenced from any interrupt level,
masked or unmasked. All other I/0 subtoutines may be called only from
interrupt levels that are lower than the interrupt level associated with the
device being used. These subroutines assume the necessary interrupt levels

are unmasked so that the associated I/0 interrupts can be recognized.

Each of the provided 1/0 subroutines operates as two units:
e The call unit, which is entered when a user's calling sequence is
executed.
@ The interrupt response unit, which is entered as a result of an

1/0 interrupt.

Except for DISKN, which does not save the contents of the A-register, all the
I/0 subroutines save and restore the contents of the A- and Q-registers, the
index registers, and the overflow and carry indicators. In addition to saving
these register and indicator values, the call unit of each subroutine determines
whether any previous operation on the specified device is still in process,
verifies the legality of the calling sequence, saves the calling sequence, and

initiates the requested I/0O operation.

When an interrupt is received during an I/0O operation, the interrupt response
unit checks for errors, performs any necessary data manipulation, initiates
character operations, and -- in case of errors -- initiates retry operations.
This unit transfers control the the MIC routine which returns control to the

user's program.

5-33

The subroutines are referenced through calling sequences, which provide the
information (parameters) necessary for the subroutines to operate properly.

The calling sequences for all the I/O subroutines have the same format:

LIBF subroutine mnemonic

DC control parameter

DC I/0 area

DC special condition parameters

A synopsis of the function of each of the I/0 subroutines is given in the

following paragraphs.

5.9.1 Card I/O Subroutine — CARDN

CARDN performs all input/output functions relative to the card reader and card
punch. Although this subroutine is not reentrant for a single device, it may be
called from different levels for different devices. CARDN must be located in

the Skeleton I/0 area,

For a read function CARDN first clears and then stores a -1 in each word of the
user-specified I/O area, initiates the input operation to read one card into the
input area, and returns control to the user's program. The data will be stored

in the input area in the format specified by the user.

For a punch function CARDN punches into one card the number of columns of
data specified by the word count at the beginning of the user's I/0 area. The

character punched is the image of the leftmost 12 bits in the word,

For a test function CARDN determines whether a device is busy. If the device
tested is not ready (i.e., the previous operation has not been completed),
control is returned for the calling program at location LIBF+2. If the device
tested is ready, control is returned to location LIBF+3. When CARDN deter-
mines a device is not ready on an I/O operation, it notifies EAC and then
returns control to the user's program (at the proper location depending on

which function was called). The requested operation is retained by CARDN

5-34

and will be executed the next time the routine is called and before the new
operatibn, if the device is ready. If the device is not ready, CARDN waits
until it becomes ready before executing both calls. Therefore, the user
should have a test function after each read, punch, and feed operation to
ensure that -- if the device was not ready at the time of the call for the I/O
function -- the function can still be executed when the device does become

ready.

For a feed operation CARDN advances all cards in the device to the next station;
e.g., a card at the punch station is moved to the stacker. During a feed opera-

tion no data is read or punched.

5.9.2 Disk Storage Subroutine — DISKN
DISKN performs all reading and writing of data from and to the disk. This
subroutine must be resident in the Skeleton 1/0 area and may be called from

any interrupt level, masked or unmasked.

DISKN is the only one of the input/output subroutines that does not save and

restore the contents of the A-register.

For a test function DISKN may be requested to perform either of two tests:
e Determine if the specified device is not busy
@ Determine whether the input/output area referenced is in use by any

disk device

Control is returned to location LIBF+3 if the test indicates busy, or to location

LIBF+4 if the test indicates not busy.

For a read function DISKN positions the access arm and reads data into the
user's input/output area until the specified number of words have been trans-
mitted. Should a read check error occur during reading, DISKN will attempt
ten times to re-read the data. If the error still exists, the read function is

terminated, and control is transferred to EAC.

5-35

For a write with readback check function DISKN determines whether the sector

address specified for writing is located in a file-protected area. If it is, DISKN
transfers control to EAC. If the specified sector is not file protected, DISKN
writes the contents of the 1/0 area onto disk. Writing a partial sector clears
the remainder of the sector to zero. A readback check is performed on the
data written. If the check identifies an error, the write operation is repeated
and rechecked (the function may be repeated up to ten times). If the error

persists, DISKN transfers control to EAC.

For a write without readback check function the operétion is similar to that for

write with readbackcheck except that the check is not performed.

For a write immediate function DISKN writes data to the specified sector with

no attempt to recognize any error. To ensure validity of data written to disk,
use of the write with readback check function is recommended. Writing a

partial sector clears the remainder of the sector to zero.

For a seek function DISKN may be requested to:
e Seek to the group of sectors specified by the sector address in the
user's input/output area.
o Seek to the next group of sectors, regardless of the specified sector

address. However, that sector address must be a valid one.

For a seek home function DISKN performs a seek to cylinder zero and ignores
the sector address specified in IOA. All interrupts are masked during the
operation of this function. Note that for a cold start or reload procedure a

seek home function must be the first disk operation called on a given disk.

5.9.3 Printer/Keyboard Subroutine — TYPEN, WRTYN
A single subroutine handles input and output for both the printer/keyboard and
the teletypewriter. If the system configuration does not include a printer/

‘keyboard, the keyboard portion of the subroutine is omitted during system

5-36

generation. The subroutine may be called by either of two names: TYPEN or
WRTYN. At assembly time the user must define two conditions for this subroutine:
‘ Whether or not messages to the teletypewriter are to be buffered to disk
e The message unit size required for each teletypewriter

This subroutine can control up to eight teletypewriters.

The test function is common to TYPEN and WRTYN. The subroutine determines
whether the specified device is busy. If the device tested is busy, control is
returned to the calling program at location LIBF+2. If the device tested is

ready, control is returned to location LIBF+3.

For a read-print function the subroutine reads from a keyboard and prints on a
specified printer the requested number of characters. Three keyboard functions
are recognized by the printer/keyboard subroutine:

e Backspace (ER CHR). The backspace key is used to indicate that the
previously entered character was in error. The subroutine overprints
that character with a slash and then is ready to accept a new character
to replace the erroneous one.

e Reentry (ER FLD). The reentry key is used to indicate that an entire
message is in error. The subroutine spaces to a new line and then is
ready to accept a new message to replace the erroneous one.

o End-of-Message (EOF). The end-of-message key is used to indicate
that a message is completed. The subroutine places an NL character
in the input/output area and terminates operations. (If the message
terminates because the word count reached zero, there will not be an

NL character in the I/O area.)

For a print function the subroutine outputs the specified number of characters
on the specified printer. The data to be printed must be in typewriter output-
code, packed two characters per 16-bit word. Control characters may be
embedded in the message. Note that a carriage return to a new line is not auto-

matic when the subroutine is called.

A message priority may be indicated in the calling sequence. When messages
are buffered to disk, four message priorities exist:

e EAC messages

o Keyboard entries

e Priority messages

® Normal messages

When messages are not buffered, there are only two priorities:
e EAC messages

e Keyboard, priority, and normal messages

To notify the system that data is to be entered, the operator simultaneously
presses the CONTROL and A keys on the keyboard. This action causes the
Printer /Keyboard Subroutine to set up an interrupt to a lower level. At system
generation time the user must have specified the level for this interrupt and

must have provided an interrupt program to service such interrupts.

5.9.4 Printer Subroutine — PRNTN

PRNTN handles all printing and carriage control functions for the line printer.
One line of data can be printed or one carriage operation can be performed with
each call to this subroutine. The data to be printed must be in the user's 1I/0

area in BCD form, packed two characters per word.

For a test function PRNTN determines whether the previous operation has been
completed. If that operation has not been completed, PRNTN returns control
to the user's program at location LIBF+2. If the previous operation has been

completed, PRNTN transfers control to location LIBF+3.

For a print with checks function PRNTN prints the data from the user's 1/0

area and checks for print errors. If an error is detected, PRNTN branches

to EAC after the line has been printed.

For a print without checks function PRNTN prints the data from the 1/0 area,

but ignores any print errors.

5-38

For a carriage control function PRNTN performs the specified carriage -

operation (e.g., skip to indicated channel).

For a read carriage control tape function PRNTN determines which control tape

channel is on and stores a bit in the A-register to reflect the condition.

5.9.5 Magnetic Tape Subroutine — MAGT

MAGT performs all magnetic tape handling functions: test, read, write, and
control. The calling sequence for the MAGT subroutine must specify a special
condition routine. This routine will be entered when any of the following con=:
ditions occurs: end-of-table interrupt, end-of-file read, wrong length record

read, intermediate read or write check, read or write check on last record.

For a test function MAGT determines whether the previous operation has been
completed. If that operation has not been completed, control is returned to the
user's program at location LIBF+2. If the previous operation has been com-

pleted, control is returned to location LIBF+3,

Read functions may be requested with or wifhout error retries. For a read
with error retries operation MAGT reads one record and checks for errors.
If an error occurred, the subroutine will re-read the record until the record
is read correctly or until 100 retries have been performed. If the record is
read successfully, MAGT exits normally. If the error persists after the

100 retries, MAGT branches to EAC, which will return control to the special
condition routine. For a read without error retries operation MAGT reads a
record, checking only for special conditions. Detection of such a condition
causes MAGT to branch to the special condition routine; otherwise, MAGT

exits normally.

Write functions may also be requested with or without error retries. The
operation for the write functions is the same as for the read operations except

that data is output instead of input and the number of retries is 3.

5-39

There are six control functions:

e Rewind. MAGT initiates a tape rewind operation and exits normally.

e Rewind and unload. MAGT rewinds the tape to load point and exits
normally. |

e Backspace. MAGT backspaces the tape one record, unless the tape is
already positioned at load point in which case the operation is ignored.

e Write tape mark. MAGT writes a tapé mark on the tape.

e [Erase. MAGT erases approximately 3.5 inches of tape.

® Reset. MAGT terminates the tape operation/;in progress and resets

all indicators.

5.9.6 Paper Tape I/0 Subroutine — PAPTN

The PAPTN subroutine performs all paper tape input and output operations:
test, read, and write., When PAPTN is called, it starts the specified device
and, as interrupts océur, transfers data to or from the user's I/0O area in
core. As data is read, it is packed two characters per word into storage.

Data to be punched must appear in the I/0 area in tlie same format.

For a test function PAPTN determines whether the previous 'operation has been
completed. If that operation has not been completed, PAPTN returns control
to the calling program at location LIBF+2. If the previous operation has been

completed, PAPTN transfers control to the calling program at location LIBF+3.

For a read function PAPTN reads data from a paper tape reader into the speci-

fied number of words in the I/O area.

For a punch function PAPTN transfers paper tapé characters from the I/0 area
to the paper tape punch. The operation terminates when a stop code is

encountered or when the specified number of words have been read.

The user has the option of specifying that checking is to be performed during the

read or punch process. If no checking is specified, operation is as described

5-40

above, and no check is made to identify delete or stop characters. If checking v
is specified, it functions with the PTTC/8 code. The PTTC/8 code for DEL

is interpreted as a delete code during a read operation; it is not placed in the
1/0 area and is not included in the count of words read. The PTTC/8 code

for NL is interpreted as a stop code during both read and punch operations. A
‘stop code, encountered during reading, is placed in the I/O area dnd causes

the operation to be terminated. A stop code, encountered during punching, is
punched in the paper tape and causes the operation to be terminated. When the
specified number of words has been transferred, the operation is terminated

whether a stop code has been encountered or not.

5.9.7 DPlotter Subroutine — PLOTX

PLOTX converts the hexadecimal digits in the control parameter of the calling
sequence into a control word and stores it in a buffer (within the PLOTX sub-
routine). One digit is stored in the buffer at each call to PLOTX. When the
plotter is ready to operate, the movement of the recording pen is controlled by
the words in the PLOTX buffer. The pen can be raised, lowered, and moved

in any direction.

5.10 SUMMARY OF DUP OPERATION

The Disk Utility Program (DUP) is called by the Nonprocess Supervisor in
response to a //DUP control card (table 3-1). DUP is also called automatically
following the completion of a successful assembly or compilation. The //DUP
control card must be followed by one or more DUP control statements (see
table 3-2). These statements define the functions to be performed by DUP.

The following paragraphs briefly describe the operation of the routines the

DUP control statements reference.

5.10.1 DEFINE Routine
This routine provides five options in performing disk operations. A //JOB

card must follow each *DEFINE card.

5-41

5.10.1.1 Object Core Size
The OCORE option enables the user to specify the size of object core. Its

formatT is
1
1 9 5
*DEFINE OCORE xx
where
OCORE identifies the option for defining or redefining the core size of
the machine that will execute the system being generated.
XX object system core size:

08 = 8192 words
16 = 16385 words
32 = 32768 words

Use of an *DEFINE OCORE card is not required when the System Loader
*DEDIT card is used.

5.10.1.2 Number of Disk Drives
The NDISK option is used to specify the number of disk drives on the system.T

1
1 9 5
*DEFINE NDISK x

where
NDISK identifies the option that alters the communications area (DCOM)
to allow the user to change the number of disk drives assigned
to the syétem. When loaded initially, DCOM specifies only one
disk drive on the system. This specification must precede
skeleton build operation.
X number of drives to be assigned to the system.

TTwo-digit co}umn numbers are stacked; for example, column number 15
appears as j .

5-42

5.10.1.3 Disk Area Configuration
The CONFG option allows the user to specify the system configuration with

respect to the disk areas.t

1 3 3 4 4 5
1 9 5 2 8 4 9 4

*DEFINE CONFG x ... x LSKEL LINSV LICP LPWS FS

where

CONFG identifies the option for defining the user's variable disk area.
Multiple user-assigned disk areas may be specified on a
single card.

X...X one to nine alphabetic characters specifying the user areas
being defined and the disk drives to which they are assigned.
If S is used, it must be in column 15; otherwise, the characters
may appear in any sequence. The field is terminated by a blank
column. The acceptable alphabetic characters are:

S - must appear in column 15 if used; indicates a group of
programs and disk areas (cold start program, etc.)
that are a basic set required by the system and that
are to be file protected. Must be followed by a numeric
character specifying a disk drive, or an X and the
numeric character. X designates that a special save
area is to be included in the group of programs; i.e.,
an area for saving VCORE when a CALL SPECL state-
ment is executed.

I - an interrupt save area is to be included; must be used
when an S or SX code is used. I must be followed by
a numeric character that specifies a disk drive.

P - a process work storage area is to be included; must
be followed by a numeric character that specifies a’

disk drive.

TTwo-digit column numbers are stacked; for example, column number 15
appears as .

5-43

LSKEL

LINSV

LICP

M -

N -

DE -

a message buffer area on disk is required; must be
followed by a numeric character that specifies a

disk drive.

process and nonprocess save areas are required.

N is required in generating a time-sharing system;
must be followed by a numeric character that speci-
fies a disk drive; can only be used when an S or SX

is also used.

a FORTRAN save area is to be included; must be
followed by a numeric character that specifies a

disk drive.

a combined error dump and error program save area
is required; must be followed by a numeric character
that specifies a disk drive.

an error program save area without an error dump
area is to be included. This parameter is required
by EAC; must be followed by a numeric character that
specifies a disk drive; both E and DE cannot appear
on the same CONFG card.

a core load area is required on the disk; must not be
used if an S code is used; must be followed by a

numeric character that specifies a disk drive.

the estimated number of words in the skeleton that is being

built. This number must be an even decimal number, right

justified in the field, and equal to the address of the first word

of VCORE.

number of words in the interrupt save area; must be a decimal

number,

right justified in the field.

number of groups of eight sectors required for the core load

area. Must be used if an S, SX, or C is used. Must be a

decimal number (may be all zeros), right justified in the field.

5-44

LPSW number of groups of eight sectors in the process work storage
area; must be used if a P is used. Must be a decimal number,
right justified in the field.

FS number of interrupt levels that use FORTRAN 1/0.

5.10.1.4 Remove a Processor

The REMOYV routine allows the user to remove a processor from the system.

1
ﬁ 9 5 (See footnote page 5-43.)
*DEFINE REMOV xxx

where
REMOV identifies the option to remove the assembler or FORTRAN
compiler from the system.

XXX name of the processor to be removed: ASM or FOR.

5.10.1.5 Condense Relocatable Program Area
The PAKDK routine allows the user to condense the relocatable program area on
disk. Programs that are identified by a LET entry of 9DUMY are eliminated

during this operation, thus increasing the working storage.

1
ﬁ 9 5 (See footnote page 5-43.)
*DEFINE PAKDK x

where
PAKDK identifies the option to pack programs in the relocatable
program area.

X identifies the disk drive on which the packing is to be performed.

5.10.2 DLABL Routine

The disk label routine enables a user to address a disk pack, enter a new label,
change an existing label, or establish a LET or FLET area. Before an *DLABL
function can be used, the disk pack must be initialized by the TASK Disk Write
Addresses routine. ‘

1 1 4
1 9 2 9 5 (See footnote page 5-43.)
*DLABL n ppppp zzz comments

5-45

where

n specifies the logical disk drive number (0, 1, or 2).
PPPPP a five-digit number; identifies the disk pack; 00000 < ppppp = 32767.
ZZZ designates the size of the LET/FLET area in groups of eight

sectors; 000 < zzz < 19910.

5.10.3 STORE Routine

The Disk Utility Program's store routine allows the user to store relocatable
programs in the relocatable program area on disk. AllAprograms loaded by
DUP are automatically file protected. Programs may be loaded from cards to
the user or temporary disk areas or from user and temporary disk areas to the
permanent user's area on disk. By inserting a 9 punch in column 3 of ai data

card, the user can direct the store routine to ignore the card checksum.

11 12 4 :
1 13 91 5 (See footnote page 5-43.)
*

STORE d ss n progn comments

where

d destination of data being stored:
T = store from cards to temporary user's area.
:irank] = store to permanent area.

ss source of program to be stored:
RD = source is cards.
UA . .
blank]= source 1$ temporary user's area (same mterpreta—»

tion for any character other than RD).

n logical drive number (0, 1, or 2) on which program is to be
stored. A blank in this column directs DUP to use the lowest
numbered drive that has sufficient space for the program.

progn name to be assigned to the relocatable program being stored.

5-46

5.10.4 STOREDATA Routine

The Disk Utility Program's data storage routine enables the user to store data
from cards to the working storage or fixed areas of disk or from working
storage to the fixed area. The data is unformatted. All programs loaded by
DUP are automatically file protected.

r 11 1112 3 3
1 13 5791 0 6 (See footnote page 5-43.)
*STOREDATAt ss n ii d progn ccc wwwww
where
t indicates type of data being loaded:
D = '"true' data; i.e., high-order bits of the FLET
entry are zero.
I = interrupt core load.
C = combination core load.
M = mainline core load.
blank = nonprocess core load.
ss source of input:
RD = source is cards and destination is specified by
columns 17-18. '
#RD = source is working storage and destination is
implicity the fixed area.
n logical disk drive number of source is working storage.
ii if input is from cards, ii specifies destination:
FX = store to fixed area.
blank = store to working storage.
d specifies destination:

blank = if destination is fixed area, a search for space is
made of FLET on all system drives; if destination
is working storage, the temporary drive is searched.
number = only the specified drive is searched. Search is

as described above.

5-47

progn when destination is a fixed area, this parameter must be a name,
left justified in the field (columns 21-25). Name should be the
same as used on the associated *FILES cards.

cce sector count For type D (column 11) either parameter may

WWWWW word count] be used; word count takes precedence if both

appear. For types other than D word count

must be specified. If LOCALs occur, both

sector count and word count must be specified.

Maximum word count for a core load is 65536;

maximum sector count (for 64K) is 205.
- If input is from cards, a *CCEND card must be the last card in the input stack.

5.10.5 STORECI Routine

The core image storage routine is used to cause a core load to be built and
stored in the core image area of disk. All programs loaded by DUP are auto-
matically file protected. When input is from cards, only relocatable mainline
programs can be entered. By inserting a 9 punch in column 3 of a data card,

the user can direct the storage routine to ignore the card checksum.

(11 12 2 3 3
1 913 91 7 3 9 (See footnote page 5-43.)
*STORECI m t rr n namel name2 name3 llbb
where |
m specifies a core map is to be printed; blank specifies no map.
t indicates type of core load to be stored:
I = interrupt core load
C = combination core load
M = mainline core load
blank = nonprocess core load
rr location of relocatable mainline to generate the core image
program:
RD = system input device

UA = Uuser are
blank a

5-48

n logical disk drive number (0, 1, or 2) on which core load will
be stored. A blank in this column directs DUP to use the lowest
numbered drive that has sufficient space for the core load.

namel name to be assigned to the core load being loaded; name is
placed in FLET.

name2 name of relocatable program to be converted to core image.

name3 name of mainline core load to be used when the core load being
loaded performs a cold start. Required for types (column 11)

M and C.
11bb level and bit position for the interrupt serviced by the core load;

applicable for types (column 11) I and C.

5.10.6 STOREMD Routine

The modify routine enables a user to make changes to existing nonprocess core
loads and relocatable programs without having to delete and replace the entire
item. All programs loaded by DUP are automatically file protected. By insert-
ing a 9 punch in column 3 of a data card, the user can direct the modify routine

to ignore the card checksum.

11 1 1 2 2 3
1 9 3 5 7 91 7 2 (See footnote page 5-43.)
*STOREMD m ss n, pp n, namel name2 comments
where
m specifies a core map is to be printed if the program being
loaded is a nonprocess core load; blank specifies no map.
ss source of input: .
RD = input is from cards.
7RD = input is from user's area or temporary area
blank[~ P porary area.
n, logical disk drive number where relocatable program is that is

to be used to modify old version. Blank specifies to search

temporary area first, then user areas.

5-49

rp Location of program to be replaced by new version:
FX = program to be replaced is a nonprocess core load.
blank = program being replaced is in relocatable format.

logical disk drive number where program to be replaced is stored.

n
2

namel name to be assigned to the program or core load being stored.

name2 name of the relocatable main program used to create the core

load; required if columns 17-18 contain FX,

5.10.7 DUMP Routine

The dump routine outputs the specified number of words, sectors, or disk
blocks from the user's area, the fixed area, or the working storage area to the
system I/0 device or the line printer. The same routine may be used to dump

programs from the user's area or fixed area to the working storage area.

(1 ; ; i ; i 2 g (See fqotnote
*DUMP s n, dd n, progn XXXX comments ToE¢ 5-43.)
where
ss location of the program that is to be output:
WS = working storage (blank implies WS)
UA = user's area
FX = fixed area
nl logical disk drive number on which the program to be dumped
is located.
dd destination of output: ’
PN = system I/O device (blank implies PN)
PR = line printer
WS = working storage
n, logical disk drive for WS output.
progn name of program or data area to be output.
XXXX number of disk sectors to be output from nonprocess working

storage; the decimal number is right justified in the field

(columns 35-38).

5-50

When the output is from the fixed area to cards, an *CCEND control card is

punched as the last card.

5.10.8 DUMPDATA Routine

This routine is similar to DUMP except that it is used to move blocks of data
instead of programs, The parameters are the same as those for *DUMP card,
except that progn identifies a data area rather than a program.

1111 2 3 4
1 3 57 91 5 5 (See footnote page 5-43.)
*DUMPDATA ss n, dd n, progn XXXX comments

5.10.9 DUMPLET Routine
This dump routine outputs the contents of the LET and/or FLET areas from the

specified disk drives to the line printer.

1 2 4
1 1 1 5 (See footnote page 5-43.)
*DUMPLET a n comments
where

a specifies the area to be output:

L = dump LET.

F = dump FLET.

blank = dump both LET and FLET.

n disk drive number (0, 1, or 2) when only the contents of a
single disk is to be output. Blank indicates all drives are to

be dumped.

5.10.10 DELET Routine
The delete routine allows the user to remove a named program, core load, or

data file from disk or to replace one core load with another core load of the

same type.
/ 1 2 2 3 4 |
1 1 1 7 9 5 (See footnote page 5-43.)

*DELET t namel name2 1llbb comments

5-51

where

t indicates type of program to be deleted:
D = data
I = interrupt core load ‘
C = combination core load
M = mainline core load |
blank = nonprocess core load

Systems programs and systems areas cannot be deleted with

the DELET function (see *DEFINE REMOV).

namel name of program or core load to be deleted.
name2 name of replacement core load (data can not be replaced).
11bb the 2-digit interrupt level and 2-digit bit position within that

level, which is associated with the interrupt or combination

core load to be deleted.

5.10.11 SEQCH Routine

The sequence change routine allows the user to alter the sequence of existing
core load linkages for process or nonprocess core loads and to change linkages
to core loads referenced in the sﬁbroutines included in the skeleton. Names
are limited to five characters and are separated by blanks (except the replace-

ment name which is separated from the first calling core load name by a comma).

rl 8 i i (Free Form) ... (See footnote
*SEQCH curnt newnn, namel name2SKEL ... namen page 5-43.)
where v
 curnt name of current (present) core load being called

newnn replacément core load to be substituted for curnt in the

specified core loads
namel- names of core loads that presently call curnt and in which the
namez2 calls are to be changed to newnn
.SKEL a name given to the skeleton to allow references in the skeleton

to curnt to be changed

5-52

5.10.12 DICLE Routine
This routine allows a user to insert an interrupt core load entry in the ICL table

for each bit position on each level specified.

1
(8 4 (See footnote page 5-43.)
*DICLE progn 11 (b1, b2, ... bn) 12 (b1, b2...)

where

progn name of valid interrupt core load identified in FLET.

11 (b1l ...) two-digit level number and two-digit bit positions on which the
named core load (progn) is to be rﬁn. For process interrupts
11 may be 00 through 23, and bl ... bn must specify the PISW
bit position associated with the hardware interrupts. For pro-
grammed interrupts 11 must be 24 or 25, and bl ... bn must

be 00 through 13 or 00 through 09, respectively.
The first blank encountered after column 14 terminates the card.

5.10.13 DWRAD Routine

The Disk Utility Program's disk write addresses routine enables the user to
write addresses within a specified area on disk. The disk pack must have been
initialized by the TASK Disk Write Addresses program before an *DWRAD con-

trol record can be honored.

1 2 2 33 4

1 1 0 5 02 5 (See footnote page 5-43.)

*DWRAD n fffl1ll Z P comments

where

n the number (0, 1, or 2) of the drive containing the disk pack
where addresses are to be written. This parameter is required.

fff first address (hexadecimal value) to be written. Must be
divisable by 8.

111 last address (hexadecimal value) to be written.

5-53

V7 specifies that the contents of the disk is to be zeroed when the
addresses are written. If column 30 contains a blank or any
character other than Z, the disk déta will be left unchanged.

P indicated that disk addresses are to be written with file
protection. If a P is not present in column 32, the addresses

are not file protected.

5.11 COMMON AREAS

There are two areas of common storage available to the programmer using TSS:
the core load COMMON and the INSKEL COMMON. Core load COMMON is used
to communicate between a mainline program and its subroutines without passing
lengthy argument lists (see paragraph 5.1). It is located at the high end of
VCORE and is overlaid by subsequent programs. INSKEL COMMON is used

for communication between core loads. It is located in the skeleton between

the I/0O subroutines and the System Director.

Common areas may be used with both FORTRAN and Assembler language

programs. The following FORTRAN statement |
COMMON I, J,K

is equivalent to these Assembler language statements:

I EQU /FFFF (-1)
J EQU /FFFE (-2)
K EQU /FFFD (-3

INSKEL COMMON is referenced as follows:

COMMON/INSKEL 1, J, K
The Assembler language equivalent is the same as in the COMMON statement
except the base address of INSKEL COMMON must be added to the addresses

of I, J,and K. This address is always located in word 156 of the fixed area.

5-54

A&

EQU
EQU
EQU

LDX

LD

STO

END

I1

o

/FFFF
/FFFE
/FFFD

156

Cy

Load Base of INSKEL COMMON

5-55

SECTION 6 — OPERATING CONSIDERATION
This section summérizes frequently required operating procedures. These
procedures require that an operating TASK program or a Skeleton Executive
be available. (The procedures for system generation, including assembling

TASK and building the skeleton, are presented in section 7.)

6.1 OPERATING TASK OFF-LINE

TASK may be operated off-line as a complete operating system. In this case
only data-processing activities are carried on; no process control is allowed.
When operating in this mode, all functions of the Nonprocess Monitor are avail-
able to the user; process core loads may not be built or executed. The pro-
grammed interrupts and hardware timers are not available to the user. If any
error occurs, the TASK error messages are printed rather than those gener-

ated by EAC.

There are two ways to execute a nonprocess program:
e To execute a nonprocess core load previously stored on the disk with
the *STORECI function of DUP.
e To build a core load and execute it immediately with no entry made

in FLET.

The control card for executing a nonprocess program has the following format:T

1
1 8 4
//XEQ name L

or

11
1 8 6 8
//XEQ name FXn

TTwo-digit column numbers are stacked; for example, column number 14
appears as i .

name (columns 8-12) is the symbolic name of the relocatable main
progi‘am to use as a basis for execution or the name of a core
load already built and stored on the disk.

L (optional - column 14) when building a core load, a map of core
will be produced if an L is present in column 14. This param-
eter is ignored if the program is already stored on disk as a
core load.

FX (columns 16, 17) used when the program to be executed »already
exists on the disk as a core load.

n (column 18) specifies on which drive the nonprocess core load
is located. If this column is blank, all drives beginning with

drive 0 will be searched to find the core load.

6.2 TASK DISK WRITE ADDRESSES

The TASK Disk Write Addresses routine writes addresses on a specified disk.
It verifies each sector of the disk by reading and writing three different bit
patterns. The number of times this process occurs is specified by the user.
When an error is encountered duririg a sector read/write, that sector is
rechecked 49 times. Should a second error occur on the same sector, the
entire group of eight sectors containing that sector is considered defective.

A table of defective sector groups is written on the first sector of the disk.
The words written are the logical sector addresses of the first sectors of the
defective group of eight sectors. The table is written in words 4, 5, and 6

of sector 0.

The following procedures should be used to load and execute the TASK Disk
Write Addresses programs.
1. Load TASK into core.
2. Place the TASK Disk Write Addresses program, followed by two blank
cards, in the card reader hopper. Ready the card reader. '
3. Set data switches 0 and 15 on to select the TASK absolute loader
function.

10.

Press STEP switch. After the routine has been loaded, the following
message is printed:
TSS DISK WRITE ADDRESSES PROGRAM.
ENTER NO. TRIES ON DATA SW MAXO001F.
Enter the numbér of times that the three patterns are to be written on
each sector, right justified, in the data entry switches. The number
must be a hexadecimal value within the range /0001 to /001F. Press
STEP switch.
If the number entered is not acceptable, the following message is
printed:
ENTER NO. TRIES ON DATA SW MAXOO01F.
Correct the entry (see step 5). Press STEP switch.
If the number of tries entered is acceptable, .this message is printed:
DATA SWITCHES EQUAL LOGICAL DRIVE.
DRIVE CODES -- HEX 0000 THRU 0009.

Set data switches to the logical drive number of the disk to be initialized,

right justified (i.e., /000X). Press console STEP switch.

If the number entered is not acceptable, the following message is printed:

ENTER NO. TRIES ON DATA SW MAXO001F.
Correct the entry and return to step 5.
If the first group of eight sectors (zero) is defective, the disk p'ack
cannot be used by TSS and the following messages are printed:

THIS DISK PACK IS NOT ACCEPTABLE TO TSS BECAUSE OF
EITHER TOO MANY BAD CYLINDERS OR CYLINDER ZERO
IS BAD.

CYLINDERS 0000 ARE DEFECTIVE DO NOT USE SKEL. BLD
WITH THIS PACK.

DATA SW 0 ON GO TO TASK OFF REDO.

Set data switch 0 on to return to TASK or off to return to step 4.

6-3

11.

12,

13.

14.

15,

If all sector groups are acceptable, the following messages ére printed:

THERE ARE NO DEFECTIVE CYLINDERS.

DATA SW 0 ON GO TO TASK OFF REDO.
Set data switch 0 on to return to TASK or off to return to step 4.
If there is one defective sector group, the following messages are
printed:

CYLINDERS 00AA ARE DEFECTIVE.

DATA SW 0 ON GO TO TASK OFF REDO.
Set data switch 0 on to return to TASK or off to return to step 4. The
value 00AA is the logical sector-group number of the defective group of
eight sectors.
If there are two or three defective sector groups, the disk pack may
not be used for the skeleton build function. The following messages
are printed:

CYLINDERS 00AA 00AA 00AA ARE DEFECTIVE.

DO NOT USE SKELETON BUILD WITH THIS PACK.

DATA SW 0 ON GO TO TASK OFF REDO.
Set data switch 0 on to return to TASK or off to return to step 4.
If there are more than three defective sector groups, the disk pack
may not be used by TSS. The following messages are printed:

THIS DISK PACK IS NOT ACCEPTABLE TO TSS BECAUSE OF
EITHER TOO MANY BAD CYLINDERS OR CYLINDER ZERO
IS BAD.

CYLINDERS 00AA 00AA 00AA 00AA ARE DEFECTIVE.

DO NOT USE SKEL. BLD WITH THIS PACK.

DATA SW 0 ON GO TO TASK OFF REDO.
Set data switch 0 on to return to TASK or off to return to step 4.
If there is a seek failure (and the system is unable to recover), the
job is aborted; the following messages are printed:

CAN NOT COMPLETE SEEK - ABORT JOB.

DATA SW 0 ON GO TO TASK OFF REDO.
Set data switch ¢ on to return to TASK or off to return to step 4.

6-4

NOTE: The logical sector-group numbers (N) of the defective groups of eight
sectors are printed in hexadecimal notation. To calculate the physical
cylinder number (C) of a defective cylinder, use the formula

C=N+D
where D is the number of defective sector groups preceding the group
whose physical number is to be calculated. The sector-group numbers

range from 0., to 202,,, i.e., from 016 to CAqg.

10

6.3 TASK DISK DUPLICATION PROGRAM
The TASK Disk Duplication program copies the entire contents of one logical
disk drive (platter) onto another. All data words, including file protect status,
are duplicated. Before this routine is executed, disk addresses must be present
on both drives (platters). To load and execute the TASK Disk Duplication pro-
gram, use the following procedure:
1. Load TASK into core.
2. Place the TASK Disk Duplication program deck in the card reader hopper.
3. Set data switches 0 and 15 on to select the TASK absolute loader function.
4. Press STEP switch. After the routine has been loaded, the following
messages are printed:
TSS DISK DUPLICATION PROGRAM.
DATA SWITCHES EQUAL LOGICAL SOURCE DRIVE.
DRIVE CODES -- HEX 0000 THRU 0009.
5. Enter the logical drive number of the drive to be copied from, right
justified, in the data switches (i.e., /000X). Press STEP switch.
6. 1If the number entered is not acceptable, the message shown in step 4
is repeated. Return to step 5.
7. If the number entered is acceptable, the folloWing messages are printed:
DATA SWITCHES EQUAL’ LOGICAL OBJECT DRIVE.
DRIVE CODES -- HEX 0000 THRU 0009.
8. Enter the logical drive number of the drive to be copied to, right

justified, in the data switches (i.e., /000Y). Press STEP switch.

9. If the number entered is not acceptable, the message shown in step 7
is repeated. Return to step 8. |
10. If the number entered is accéptable, the following messages are printed:
COPYING FROM DRV 000X TO DRV 000Y.
DATA SW 0 ON CONTINUE OFF REDO.

11. 1If the correct drives are indicated, set data switch 0 on (down), and
press STEP sWitch. If incorrect drives are indicated, leave data
switch 0 off, and press STEP switch; the program will print the
messages shown in step 4. Continue with step 5.

12, After program execution is completed, the following message is printed:

DATA SW 0 ON GO TO TASK OFF REDO.

Set data switch 0 on to return to TASK or off to return to step 4.

6.4 SYSTEM COLD START
A system initialization (or cold start) of the TSS skeleton is accomplished by
loading and executing a three-card program using the initial program load (IPL)

feature of the GA 18/30 Computer. /

6.4.1 Cold Start Name Card
The cold start program is supplied in a ready-to-use format; however, the name

card must be punched by the user. Its format is

111 2 2 2 8
1 8 4 6 8 0 2 4 0 (See footnote page 6-1.)
*CLDST name p c¢ d1 d2 d3 comments

*CLDST must be punched in columns 1 through 6.

name identifies the first core load to be called. This entry is required.

The name is entered in the field left justified, may consist of up
to five characters, and must begin with an alphabetic character.

P storage protection option: |

blank
1

]

no storage protection

storage protection selected

6-6

c clock option:
blank
1

no option selected

clock option selected

dl’ dz, d3 logical disk drive assignment (d1 # d2 # d3):

d1 = required; assigns a physical drive number to
logical drive 0. It must be punched 0, 1, or 2.
d2 = optional; assigns a physical drive number to

logical drive 1. It may be blank or punched 0,
1, or 2,
d = optional; assigns a physical drive number to
~ logical drive 2. It may be blank or punched 0,
1, or 2,

comments any comments may be entered in columns 24 through 80.
Columns 7, 13, 15, 17, 19, 21, and 23 must be blank.

6.4.2 Cold Start Procedure
The operating procedure to load and execute the cold start program is as follows:

1. Clear core (see paragraph 6.5).

2. Place the three-card cold start program, followed by the user-punched
cold start name card and two blank cards, in the card reader hopper.
Ready the reader.

Place the system disk pack on drive 0.

Ready the disk drive.

Set RUN/IDLE switch to IDLE.

Set all data switches on the console to the off position (up).
Set register select switches 8 and 4 on (down).

Press ENTER switch.

© 00 1 & O B~ W

10. Reset register select switches (all up).
11. Press ENTER switch.
12, Verify that the HALT switch is up.

6-7

13. Press IPL switch.
14. Set RUN/IDLE switch to RUN.
15. Press STEP switch.

16. Follow the instructions printed by the system printer.

6.5 CLEARING CORE

To use properly the storage protect feature of the GA 18/30 Computer, TSS
requires that all storage proteét bits be set off and that all core locations

be set to zero when the system is initialized (cold started or loadeéd from cards).
To accomplish this purpose, a one-card program is loaded (using the initial
program load (IPL) feature) into the computer and executed. This program is

known as ZAP.

To load and execute ZAP, use the following procedure:
1. Place the ZAP card in the card reader hopper.
Ready reader.

Set RUN/IDLE switch on console to IDLE.

Set all data switches on the console to the off position (up).
Set the storage protect override switch (SPO) on (down).
Set register select switches 8 and 4 on .(down).

Press ENTER switch.

Reset register select switches (all up).

W 0 3 & U W N

Press ENTER switch.

Verify that the HALT switch is up.
Press IPL switch.

Set RUN/IDLE switch to RUN.
Press STEP switch.

S S S
W N O
. . . L]

When the WAIT light comes on, core is clear.

SECTION 7 - SYSTEM GENERATION

This section gives step-by-step procedures for generating a TSS system from
supplied object and source card decks and from subroutines written especially
for the system application. Before using these procedures, the reader should

be familiar with section 4 of this manual, '"System Evolvement. "

The minimum configuration for the TSS system is a GA 18/30 Industrial Super-
visory System with 8192 words of core memory, adisk drive, a card punch,

and a card reader.

7.1 SUMMARY OF SYSTEM GENERATION PROCEDURES

Generating an on-line or off-line system begins with a set of procedures that is
common to both types of systems. In this stage a ''starter' system called
SYSGEN TASK starts the system generation process and directs the writing of
addresses on the disk, loading the supplied nonprocess system, assembling

TASK and the System Director, and defining the disk system configuration.

In the second stage the procedures depend on whether an on-line or an off-line
system is being generated. For an on-line system, skeleton subroutines are

~compiled, a system skeleton is built, process core loads are built, and an off-
line start is performed. For an off-line system relocatable programs are stored
on disk from cards, a nonprocess monitor pack is built, and an off-line cold

~ start is performed. A flowchart of these procedures is shown in figure 7-1.

7.2 SYSTEM GENERATION COMPONENTS
A set of supplied card decks and user-prepared control cards are required for

system generation.

7.2.1 Supplied TSS System
System object decks, control cards for the standard TSS system, and two source

decks are supplied for the system. The system object decks comprise a set of

7-1

LOAD SYSTEM
GENERATION
TASK

Y

WRITE DISK
ADDRESSES

v

LOAD SUPPLIED
SYSTEM DECKS

v

ASSEMBLE
TASK

v

ASSEMBLE
SYSTEM
DIRECTOR

v

DEFINE
SYSTEM
CONFIGURATION

ON-LINE
PACK

YES

COMPILE
SKELETON
SUBROUTINES

.

BUILD
SYSTEM
SKELETON

STORE
RELOCATABLE
PROGRAMS ON
DISK FROM CARDS

v

y

COMPILE
PROCESS
PROGRAMS

BUILD
NONPROCESS
MONITOR PACK

v

v

BUILD
PROCESS
CORE LOADS

OFF-LINE
COLD START

£

ON-LINE
COLD START

Figure 7-1.

System Generation Flowchart

cold start cards, a four-card TASK high-core loader, a SYSGEN TASK deck, a
system loader, disc LET/FLET tables, disk communications area, a bootstrap
program, a supervisor, a core load builder, a cold start program, a set of 'disk
utility programs, an assembler, a FORTRAN compiler, a subroutine library, a
skeleton builder, and stand-alone utilities. The supplied source programs are
a TASK and System Director source deck. A set of EQUATE cards for the

standard TSS system are included.

7.2.2 User-Prepared Control Cards
The user must prepare control cards such as *ASSIGNMENT and *INCLD cards
to tailor the system to the requirements of his process. Any EQU cards that

are needed for deviation from the standard system must also be prepared.

7.3 SYSTEM GENERATION PROCEDURES

This section contains the detailed procedures for building an on-line process and
nonproéess system as well as an off-line system. Each procedure is given in
the form of a table that includes page references to IBM manual descriptions and
paragraph references to discussions in this manual. Error codes for any errors
that may occur during the procedure are presentéd in appendix A. The manual

references are from IBM 1800 Time-Sharing Executive System: Operating Proce-

dures, Form C26-3754. The procedures start with the object deck shown in figure 7-2.

7.3.1 Loading TASK and Writing Disk Addresses

To generate a TSS system, the user must first load the TASK program and write
addresses on the disk. Table 7-1 lisfs the steps for loading TASK in core,

The table is applicable for loading SYSGEN TASK at the beginning of system
generation or for loading the operating TASK object deck after TASK has been

assembled.

A TASK DiskWrite Address object routine is included as part of the utility
package supplied with TSS system decks. This routine is loaded and executed

by the TASK absolute loader function. TheDiskWrite Address program writes

7-3

UTILITIES

/.

SKELETON
n BUILDER
oy
*CCE oyL '(o
SYoig CCENp R
SYSTEM ' SYsTey £-00S%
DIRECTOR —] —7 ARG “LODsp
SUBROUTINES ERROR —/ Or
PROGRAMS FORTRAN
/4
. CORE LOAD BUILDER
pa
74
R R
‘LDDSK.SUP SUPERVISO
p 4
:L D%
< Kmgy BOOTSTRAP
C\ O
\¢) <
BA R
NG %, DCOM
. % A
% :
4&9 .,
OAogR LET
!1
—

SYSTEM LOADER DECK]

2
—
SYSGEN TASK DECK |

TASK HIGH CORE LOADER

COLD START CARDS

Figuré 7-2. Supplied System Object Decks

7-4

Table 7-1. Loading TASK in Core

Procedure Step

Page
Reference

Paragraph

1.

Load the user pack on drive 0 and ready the

disk drive

2,

Set the RUN-IDLE switch to IDLE (first

step in zeroing core)

3.

4.

Set the HALT switch on

Unlock the WSPS switch by turning it

clockwise

5.

6.

Set the SPO switch on

Load the ZAP card, supplied with the

system decks (see figure 7-3)

7.

8.

9.

10.

11.

12,

13.

14.

15.

16.

17.

18.

Ready the reader

Set all data switches off

Set REGISTER SELECT switches 4 and 8 on
Press RESET

Press ENTER

Set the HALT switch off

Press the IPL switch

Set the HALT switch on

Set REGISTER SELECT switches 4 and 8 off
Press RESET

Press ENTER

Set the RUN-IDLE switch to RUN

7-5

Table 7-1. Loading TASK in Core (Cont.)

Procedure Step Reiia;‘iice Paragraph
19. Press the STEP switch.
20. Set the SPO switch off (last step in
zeroing core)
21. Place >in the card reader hopper the 15, 82 4.1

SYSGEN TASK deck without the TASK high core
loader or an operating TASK object deck preceded

by the four-card high core loader (see figure 7-4)
22. Ready the reader

23. Select the loading address in the data

switches (first step in program load)
24. Set the RUN-IDLE switch to IDLE
25. Set the HALT switch on

26. Set REGISTER SELECT switches 4

and 8 on
27. Press RESET
28. Press ENTER
29. Set the HALT switch off
30. Press the IPL switch

31. Set REGISTER SELECT switches 4
 and 8 off

32. Set the HALT switch on
33. Press RESET

34. Press ENTER

7-6

Table 7-1. Loading TASK in Core (Cont.)

Page
Procedure Step Reference Paragraph
35. Set the RUN-IDLE switch to RUN
36. Press the STEP switch (last step in
~ program load). Wait for the following message to
be printed:
GENERAL AUTOMATION 18/30 15
TSS V3M5

DATA SW 0 ON FOR ABSOLUTE LOADER
DATA SW 1 ON FOR NONPROCESS MONITOR
DATA SW 2 ON FOR SKELETON BUILDER

7-7

P R SR TN R W R . SEL S o R regpC P LEe e oo At e,

'); 1 | 1 11 ERRQREND | [FI'11]]]

11 e § nn 1] gan (1] | 1] [|
oBooocRoooBERoRANRoooocoBERNoBRooo000000000BoocooBRoRNoocoooNAooooBoooABoooo0000000
123456789101 1213WI5161718 192020222124252627 282930 313233343536 37 383940 41424341 4546 47 484950 51 525354 5556 57 58 %260 61626364 656667686370 11 7273 74757517 71879 80
RRRRRRRRI 11 ERE I I R RRY 1 R RRERRRAERRRY t ARRRERI I'RY I ARERRE | EEER] EERE 1 ARERE ERRRAR

22222022220222282022020202222222222222002222228 02220 0222200222022220022222220222
30333033330330333330N3N303333333333330B333333GN0NGB0AR 3 0aRNR333330032333333333
44444444444444Il444444|4444444444444al4444444!!44444Il444ll444444444444444444444
sHsssHsSHESSSHBEsssMAsHls555555555 s QARNERANssBEs5555MM555H055555555 055555555555
6666666666666666666666656666666666666666666666666666666666666C666666666666666666
77717711777777777771717777777717777777777717777777771777177777717177771717777717
.asssaaaasasasssassssssssaassssasssasssaassaaasasasesssssnaaasuhssnnsaasssssanssa

999999999999 99999999999999999399595999999999999999999999959999999999599999999994%
vzaaseIaswunn 1 I TIRIG 202 22201 T 26 2 28293031 1N c s: 313340243400 54 47 4R.4350 91 57 53 54 9 56 57 50 59 60 61 62 11 G4 £ 66 61 64 69 10 1 7 NUBBINBT
FIOSF NO Y ANDARD FORM SCRI

Figure 7-3. ZAP Card

7-8

K
i i 0§ § §E@ GQNEd iR i il]

i 1 | | i 0B H@ §E B BRER & NNN HER R B 1 &0

1 0000000000OUIOIIU0000000'000[00000'00000 OROKO
!2:0501tQwunnuﬁwnwmmnuuuﬂnvn”wunnu!mumnm!ugugn!ggggggggggggggggg!aa&&%Egggg;gggg
1||ll!II1II!I1IIIIllllllliilllllllllilllllllllililllllliltlIlIlil|IIII|lII‘I|III

EERE2N22222027 202222220220 022222222 20 B2 2Bz Moo Az 22222 R2228R2222222
a333||33333||3|;3333|33|333||33ﬂi3n33i33333333us|aﬁala33|33nﬂI3|3333|33I333|l333
BasaaadaBaaaBeRoQaReNocRasaRaadaadBoaaaaBesaQeRORos4aaRadaaalRet4aRafaddaaaafaay
B5555505555555055555 Mo MMSoMoM55555555555@55505Ms5555M55sNASNANs NS B M55 B N555R0
RURNRcoNENANccNecccccMRAMcecoc6hcscBUAMMAc6666666 AUNEMUCE666666666666666666666666
[RARREEE RRRI RAE RREREEY RARE XAR ULLERAE EARE RAR 11 VRRRRA RARRRR R R R R R RRRRRRRRRRRRRY
lesssaalsaslsslasseaslssslasssaasasasssisssussusaxalsadassasasaaesssssaasassasaa
BRERE O SREBRROoRRERR o BRANO 99999299 OAGR0u 0999099 AREEY09999590900999009909995999

172 9 10) - - .
? 456 7 8 91011121304 1516 17 18197021 2223242526 212079030 323334 35 16 37 38 10 40 A1 47 1344 4546 47 204950 LT G253 A SRS PR LR G €1GA LSRG I GR GO 1 12 T3 14 7506 1) TR 18 80

i g A+ o i

et e g e S s

T % g g e

Gl &'*RE‘ NO Y STANDARD FORM 501

ks g b et a doves we

JE T e J T

/. my 1l P §B BE B @G BHGEE R

GRERE RANER NN BER NMEE G0 0O @ B HOQGR @ EC

|olaﬁlololuln|o|uonﬁ|inoonlnoououunou0onnﬁnmﬂgnznnaaoooonuonuuunonounononouonoon
; 120456 78 9101121310 1518101819277 721242526 20262330 3137 33 34 5036 37 30 39 40 A1 42 4143 9546 47 454350 1 1725254 5556 51 58 5960 61 62 6364 6566 6/ 6469 70 1 1273741516 71 1679 80
: llﬂﬂllltl!ﬁllllllItﬁallﬂllllﬂllﬁtlﬁﬂlllﬂlﬁﬁﬁlﬁlillﬂllllllll!lltllllllllllltll1||
|2l2l2l2||22222I2222I22222222222229E22222ZHQEZZZZ2ﬂ22222222222222222222222222222
I3|3I3I33333333.3333|333333333533&9933333Hﬁﬂﬁ33§33333333333333333333333333333333
|4|444]444|44I4I444I4444I4I444H444ﬁﬂ444444ﬂ!ﬂ44444444444444444444444444444444444
5|IHI55III55555555I555555'5555I55IHHSSSI55IEI55I55555555555555555555555555&55555
IIIllG6II|IIGBISSSGSSIIIIGBGBGGSBGGEHIHEGS5GBGGBSHHEHIBGIIIIIGG66865666886668866

|177771|777'71'777777|777I77ﬂﬂﬁﬁﬂ?7ﬁ]77ﬁ77ﬂﬂi§§7777!777777!777777777777777177717

s v

lllulasllsilsslnﬁﬂls9l|||99999a999QHEQENuaasaasgaﬁnﬂllg9|||||99999999999999939&9
123456 (7 9 ? ILRIRPARRRLI K ‘E;XJ:,,:";';:‘ ?u,f‘*qu 34{\7{}5'26 27282930 31 322134 3535 37 38 39 40 11 42 43 41 4546 A2 434350 61 52 5358 G556 1 N e AL ! FAGIAR ARG RB G970 NN J2 13 M 7576 11 18 79 6O
NORE NO Y o I Y

[N

I888888l8h8.88'888388!888'8888888883888H888888888B8H88BBRBI888388888888888888888‘

Figure 7-4, TASK High Core Loader Cards (1 of 2)

7-9

et SR, 0 M 0 o b A U o T

;"fl BEE BR EER & , g T |

i BRI R MR § mi n

||uudhnonouolloounllnlnoouloonnooononuﬁlonionounounluonaalonnoolbloiqonunoononnu
12345678 91010120 15161718192021222124252627 2829230 31323334 3536 37 38 2040 4147 4344 4545 47 48 4950 51 52 53 54 55 56 57 58 5960 61 62 6364 156667686370 11 7273 4 157§17 187380
(TTRER]I RRRRERI BI I RRE T RI AN P ARRRREE- AR R RRAE ARRRRRRRRRRRRAT ARRRRE] 1 ARREERRRRRERRE
22000 200022222220022022222022208226822022822222222222222222222222022222222222222
B3033333333N3NN330AN33323330833333330B3N33ME33333333M333M3MAN33NRA3R333333333333
A444F44044444400884003444a0R4444044a QR840 440a4444aRRR440RRAR044044440444
555sls5$|5sslllssssllsssssssssssss55ﬂ5l55555H55555ll55555|55|5555l55555555555555
RERENcoNNNERcoMecoeccNENMcccceoc6ccREAANecccoccoccHANNMcoNEONRGoBRAANG66666666666
 RERREEE RRRI RN RARRERA RARE RRE N1 1 RRR RARE RRA 11 EL-RRANE RRARARE ERRRRNE IRARRRRRRRRRAR
BosoaosNoosolsoaoaossgooo@eccscsasnphosaNessasssssna@ossaaullarnanohoos86668R8888

IllllwJlllllsqllaﬂlsﬂnillsss999qe°snuﬂﬂ599°@9~JqsnﬂlllﬂulllnllJIHullwqq999vuﬂﬂen

l7“‘87!"‘u"| W56 17 181920 21 727 th?ﬁZl’!?‘lJﬂ}l‘?HHJ15]138!”0!“1““‘9“Hl4 ERPAN PLORIRTET CTRRGT M N T IA T IS8 11 18 19 P
G STANDARD 1 ORM HOR?

g

Eea8 B8 31

AERE AR i ;
oollEElllooollnonnnn{nnnonoonooooononnoouonuu E600000000000000000000000000000000
123145872 N NDNIY G SN CEIINS R 27200930 1030 MU 03R40 AT A2 VA4 4545 47 28 40T BT S0 TSR OG BT SR SOEP M2 YA GBS LT RIRI O N 12 3 1506 11 18 1190
llllﬂﬁlllllllllt'l!llllllllllllllllllllll!lillllllllllllllllllllill!iIII‘I!IIIII
2202028 02280008 2 3 R BoM222222220222222222222222222222222222222222272222222222
3383333 B3 WBR IR B o @aHaB232323333333333332213333333333333333333333333333333333
44lllaa4lmdlﬂl4ﬂlazﬁlﬁi44l444444444144
sl By oMM R BEC o H55555556060055555555665555555555555555555555555555555555
Illllllsﬁillilﬁﬂnu&ﬁﬁﬂlllsslssssslnnﬁanﬂﬂﬁﬁuﬁisaﬁssssosasllliﬁslosoﬂsnsossssshes
FERRRRRRE ERRARL RREREE SRR L L I LI ERA:RRRRRAREL IRRRRARARERRRA TRAR RRRE RRRRRRRRERY
RosannMoo BROENEHsenaoMoososBenaonfasbiosnnaasnbenesensnnnsncMosonBoluosnyesssoans

Illllllu"lgsssﬂianqslwwsaglsqsonlaoﬂﬁnlﬂﬁﬁqnﬁﬁhﬂlﬂﬁqqaus!llﬂlnsslssssswqunqqnqg
[B B SRR .ﬂ 11'1 LR LIRL T I mm‘"\n L R I I KRN IR TR PR ERHE N TIAp AR AR A et A BERYAR S R R LI RARSRARTRRGITO T 22 71 1A 05 0 T 1R 1180
e TOMOAR L § ety 6 n

Figure 7-4. TASK High Core Loader Cards (2 of 2)

7-10

B S Y e L S I R T P T

. e B g
—— -

e S e e e o

addresses on a specified disk and checks each sector of the disk by reading and
writing three different bit patterns a specified number of times. If an error
occurs during a sector read or write, that sector is rechecked 49 times. Ifa
second error occurs on the same sector, the group of sectors containing that
sector is considered defective. The logical sector address of the first sector
of the defective group is recorded in words 4, 5, and 6 of the first sector of

the disk.
To write addresses on the disk, follow the procedure given in table 7-2.

7.3.2 Loading the Supplied System Decks on Disk
To load the supplied system decks on the disk, perform the steps listed in
table 7-3.

7.3.3 Assembling TASK

This procedure is presented with the assumption that the system decks have
been stored on drive 0 or that a nonprocess monitor pack is available, and that
SYSGEN TASK or an operating TASK has been loaded in core. To store the
system decks on drive 0, see paragraph 7.3.2. To build a nonprocess monitor
pack, see paragraph 7.3.12. To load TASK in core, see paragraph 7.3.1. If
the nonprocess monitor pack is being used, perform the cold start procedure

described in paragraph 7.3.13.

If the requirements have been met, assemble TASK by performing the steps

outlined in table 7-4.

7.3.4 Assembling the System Director

A preassembled standard System Director deck is supplied with the TSS system.
If it is necessary to change this program for any reason — for example, to change
the base on the time clocks — the supplied soui*ce deck should be used and
assembled according to the procedure given in table 7-5. It is assumed in this

procedure that the system decks have been stored on drive 0 or that a nonprocess

7-11

Table 7-2. Writing Disk Addresses

Page
Procedure Step Reference Paragraph

1. Place in the card reader hopper the TASK 26 4.4, 6.2
Disk Write Address program followed by a blank
card '

2. Ready the card reader

3. Set data switch 0 on

4. Set data switch 15 on

5. Press the console STEP switch, The TASK 22 6.2

absolute loader function will be executed. When the

routine is loaded, observe the following message:
TASK DISK WRITE ADDRESSES PROGRAM
ENTER NO. TRIES ON DATA SW MAX001F

6. Enter right justified in the data switches the
number of times that the three patterns are to be
written on each sector. The range of numbers

accepted is hexadecimal 0001 to 001F

7. Press the console STEP switch. If the
number entered is not acceptable, the following
message is printed:

ENTER NO. TRIES ON DATA SW MAXO001F
Correct the entry and return to step 6. If the
number of tries entered is acceptable, the following
message is printed:

DATA SWITCHES EQUAL LOGICAL DRIVE

DRIVE CODES--HEX 0000 0001 0002

7-12

Table 7-2. Writing Disk Addresses (Cont.)

Page

Reference Paragraph

Procedure Step

8. Enter right justified in the data switches
the logical drive number (000X) of the disk to be
initialized

9. Press the console STEP switch. If the
0 group of sectors is defective, the disk pack
cannot be used by TSS and the following messages

are printed:

THIS DISK PACK IS NOT ACCEPTABLE TO
TSS BECAUSE OF EITHER TOO MANY BAD
CYLINDERS OR CYLINDER 0 IS BAD

CYLINDERS 00007 ARE DEFECTIVE

DO NOT USE SKEL. BLD WITH THIS PACK
DATA SW 0 ON GO TO TASK OFF REDO

Set data switch 0 on to return to TASK or off to

return to step 5

TThe logical number L of the defective group of eight sectors (i.e.,
"cylinder') is printed in hexadecimal notation. vTo calculate the physical
group number P of a defective group of sectors, use the following formula:

P=L+N |
where N is the number of defective groups preceding the group whose
physical group number is to be calculated. The group numbers range

from O10 to 20210, that is from 016 to CA16’

The TASK Disk Write Address program writes a table of defective
groups of sectors on the first sector of the disk. The words written
are the logical sector addresses of the first sectors of the defective

- groups of sectors. The table is written in words 5, 6, and 7 of sector 0.

7-13

Table 7-2, Writing Disk Addresses (Cont.)

Procedure Step

Page
Reference

Paragraph

If a group of sectors (cylinder) other than group 0 is
defective, the following messages are printed:
CYLINDERS 00XX ARE DEFECTIVE
DATA SW 0 ON GO TO TASK OFF REDO
where 00XX is the logical group number of the
defective cylinder. Set data switch 0 on
to return to TASK or off to return to step 5. If
there are two or three defective groups of sectors,
the disk pack may not be used for the skeleton build
function. The following messages are printed:

CYLINDERS 00XX 00XX 00XX
ARE DEFECTIVE

DO NOT USE SKELETON BUILD WITH
THIS PACK

DATA SW 0 ON GO TO TASK OFF REDO
Set data switch 0 on to return to TASK or off to
return to step 5. If there are more than three
defective cylinders, the disk pack may nof be used
by TSS. The following messages are printed:

THIS DISK PACK IS NOT ACCEPTABLE TO
TSS BECAUSE OF EITHER TOO MANY BAD
CYLINDERS OR CYLINDER 0 IS BAD

CYLINDERS 00XX 00XX 00XX ARE DEFECTIVE
DO NOT USE SKEL BLD WITH THIS PACK
DATA SW 0 ON GO TO TASK OF F REDO

Set data switch 0 on to return to TASK or off to

return to step 5.

7-14

Table 7-2. Writing Disk Addresses (Cont.)

Procedure Step

Page
Reference

Paragraph

If all groups of sectors are acceptable, the

following messages are printed:
THERE ARE NO DEFECTIVE CYLINDERS

DATA SW 0 ON GO TO TASK OFF REDO

Set data switch 0 on to return to TASK or off to

return to step 5.

If there is a seek failure and the system is unable
to recover, the job is aborted and the following
messages are printed:
CAN NOT COMPLETE SEEK - ABORT JOB
DATA SW 0 ON GO TO TASK OFF REDO
Set data switch 0 on to return to TASK or off to

return to step 5.

7-15

Table 7-3. Loading the Supplied System Decks

Procedure Step Regeigeice Paragraph
1. Remove from the supplied system object
decks the following cards:
a. Cold start cards 42 4.9, 6.4
b. Skeleton builder 39 4.6
c. Disc utility program 51 5.10
d. Stand-alone utilities 19 6.1

2. H nonreentrant arithmetic, functional, and
conversion subroutines are to be used, remove the
reentrant versions from the supplied subroutine
library and insert the nonreentrant subroutines in
‘their place. The subroutine library can comprise
a mixture of reentrant and nonreentrant subroutines,
but in no case should both versions of the ’same sub-
routine, that is, two subroutines with the same
name, be placed in the system. This error will
cause the system loader or DUP to generate an -

error message.

In general, the reentrant version of a subroutine
should be used if the subroutine is to be called from
different levels or is to be included in the skeleton.
The reentrant version must be used if an interrupt
routine is to be included in a mainline core load,
and an interrupt routine on the higher level can
interrupt a routine on the lower level during

execution.

7-16 -

Table 7-3. Loading the Supplied System Decks (Cont.)

Page

Procedure Step Reference

Paragraph

‘Note
If the above system requirements
are violated, the resulting errors
are not diagnosable and the results

are unpredictable.

The nonreentrant versions of the subroutines may
be placed in the subroutine library after the sup-
plied system has been loaded and the skeleton has

been built (see table 7-12).

3. Insert the system loader assignment cards 30-32 4.5.6
(IAC and LUN), comments cards, and the *DEDIT
card in the supplied system
deck as shown in figure 7-5. Assignment cards for
the standard TSS system are supplied with the

system decks

4. Place in the card reader hopper the system
decks without the TASK high core loader or the
SYSGEN TASK deck, as shown in figure 7-5

5. Set data switch 0 on
6. Set data switch 15 on

7. Press the STEP switch. If any error mes-

sages occur during system load, refer to appendix A.

7-17

Table 7-3. Loading the Supplied System Decks (Cont.)

Page

Procedure Step Reference

Paragraph

Note
If data switch 15 is not on, the -
following message is printed:

DATA SW 0 ON LD DISK OFF
EXECUTE

In this case, ensure that data
switch 0 is off and press the con-

sole STEP switch.

8. Observe the following messages When
loading is completed:

THE SOURCE CORE SIZE IS nnnnnn

THE OBJECT CORE SIZE IS nnnnnn

DATA SW 0 ON FOR ABSOLUTE LOADER

DATA SW 1 ON FOR NONPROCESS MONITOR

DATA SW 2 ON FOR SKELETON BUILDER

9. Set all console switches to the off position

7-18

REMOVE, PUNCH K AND CYL
FIELDS, AND RETURN TO

INDICATED
LOCATION

SYSTEM DIRECTOR
OBJECT DECK

s)

-

COMMENT CARDS

)

[—"——

ANY PLACE
BETWEEN

ﬂ“
|

AND "DEDIT

p A

00 02 00, 01/02

)

ASSIGNMENT CARDS

SHIPPED SEPARATELY
FROM SYSTEM DECK —————»1

//ISYSTEM LOADER

*
X
A
Q,

.,
Ce,
é)yo)\
O <
AR

//'SYD’R

K3
oq%s

SUBROUTINES >
(SUPPLIED)

G CEND

/-

CORE LOAD BUILDER

‘(O
Gs,
’chB

SUPERVISOR

SYSTEM LOADER

SUPPLIED
SYSTEM

IN
ABSOLUTE
FORMAT

Figure 7-5. Sequence of Control Cards and Systems Decks for TSS System Load -

7-19

Table 7-4. Assembling TASK

Procedure Step

Page
Reference

Paragraph

1. Insert the TASK EQU cards defining the
source machine in the TASK source deck as shown
in figure 7-6. The EQU cards for the standard
TSS system are supplied with the TASK source
deck. If a deviation is to be made, EQU cards
must be punched. If the same parameter is entered
in two or more EQU cards, the entries must be the

same

2. If the system has more than one drive,
place an entry in the label field of the //JOB

card for each drive being used

3. Insert the TASK source deck, including the
required EQU cards and control cards (figure 7-6)
in the card reader hopper. It is suggested that the
*LIST card be removed until TASK is assembled

without errors
4. Ready the card reader
5. Set data switch 7 on

6. Press the CONSOLE INTERRUPT switch on

the computer console

7. If assembler errors occur, correct the
errors (see appendix A), reload SYSGEN TASK,

and return to step 3

15

43

65

4.10

3.2.1

3.2.4

7-20

Table 7-4. Assembling TASK (Cont.)

Procedure Step

Page
Reference

Paragraph/|

Note
The stand-alone card assembler
can be used to assemble TASK,
although this program is not
standard with the TSS system.
Before using the 18/30 card
assembler, remove the first six
cards and the last two cards from
the TASK source deck. If any
errors occur, repeat the assembling

process.

7-21

TASK GROUP 2
EQUATE CARDS

y 4
N P
a3\ 8 TASK SOURCE DECK
. b X4 p
4% Qez’\
* Q, o [1})
T
DI\ 2
o\ ® TASK GROUP 1 —
sbe 2\ | equaTE cARDS
Eo P,
R
Ry W
//A
/1308

Figure 7-6. TASK Source Deck and Equate Cards

7-22

Table 7-5. Assembling the System Director

Procedure Step

Page
Reference

Paragraph,

1. Insert the System Director EQU cards in
the System Director source deck as shown in
figure 7-7. The EQU cards for the standard TSS
system are supplied with the System Director
- source deck. If a deviation is to be made, EQU
cards must be punched. If the same parameter is
entered in two or more EQU cards, the entries

must be the same

2. Remove the //DUP and *STORE SYDIR
cards from the System Director source deck unless
the System Director is to be stored on the pack on

drive 0

3. If TASK is already in core, proceed to
step 4. If TASK is not in core, load TASK as
directed in table 7-1 and proceed to step 12

4. Set the HALT switch on (first step in
restarting T ASK)

5. Set the RUN-IDLE switch to IDLE
6. Set the HALT switch off
7. Enter 0 in the data switches

8. Ehsure that the switches in the bottom row
on the console, beginning with the REGISTER
SELECT switches, are in the upper position

9. Press the ENTER switch

34

44

15

4.11

5.10.3

4.1

7-23

Table 7-5. Assembling the System Director (Cont.)

Procedure Step Refiiiic o Paragraph
10. Set the RUN-IDLE switch to RUN
11. Press the STEP switch. Wait for the data
switch messages to be printed (table 7-1)
12, Insert the System Director source deck in 65 3.2.4

the card reader hopper. It is suggested that the
*LIST card following the //ASM SYDIR card be
removed until the System Director is assembled

without errors
13. Ready the reader
14. Set data switch 7 on

15. Press the CONSOLE INTERRUPT switch
on the computer console. If there are no assembler
errors, proceed to step 16. If assembler errors

have occurred, return to step 4

16. Insert the'System Director object deck in
the system deck (figure 7-5)

7-24

SYSTEM
DIRECTOR
SOURCE

DECK

SYSTEM DIRECTOR
EQUATE CARDS

Figure 7—7; System Director Source Deck and Equate Cards

7-25

monitor pack is available. To store the system decks, see paragraph 7.3.2,

To build a nonprocess monitor pack, see paragraph 7.3.12.

To assemble the System Director, perform the steps listed in table 7-5. The
procedure is applicable for initial system generation, when TASK is already in

core, and for System Director assembly when TASK has not been loaded.

7.3.5 Defining the System Configuration

It is assumed in this procedure that an initial system generation is being per-
formed or that a new machine configuration is being defined. This is the last
procedure in the first stage of system generation, that is, after the system con-
figuration has been defined, the next procedure to be performed is determined
by whether the system is to be on-line or off-line. If an on-line pack is desired,
proceed to paragraph 7. 3. 6; if an off-line pack is needed, proceed to

paragraph 7.3.11.
To define the system configuration, perform the steps listed in table 7-6.

7.3.6 Compiling Skeleton Subroutines
It is assumed in this procedure that the system decks have been stored on drive 0.

To store the system decks, refer to paragraph 7.3.2.

To compile user-written skeleton subroutines, perform the steps listed in
table 7-7. The procedure is applicable for initial system generation, when
TASK is already in core, and for compiling skeleton subroutines when TASK

is not in core.

7.3.7 Building the Skeleton

It is assumed in this procedure that the system decks have been stored, the
define configuration function has been performed, the System Director has been
stored, user-written skeleton subroutines have been stored, and an operating

TASK is in core. To store the system decks, see paragraph 7.3.2. To define

7-26

Table 7-6. Defining the System Configuration

Procedure Step

Page
Reference

Paragraph

1. Punch *DEFINE CONFG card
Note

The value of LSKEL and LICP
must be calculated by the user.
If the user wishes to define his
complete system during initial
system generation, TASK and the
System Director should be assem-
bled before the system configuration

is defined.

2. Place the following user-punched cards in
the card reader hopper:

//JOB

//DUP

*DEFINE CONFG SOMOI0 ... LSKEL XXXXX
LICP XXXX XX

//3JOB

//DUP

*DUMPLET

//JOB

//END OF ALL JOBS

Note

If the system contains two or more
drives, the //JOB card must con-
tain all labels for each nonsystem
pack. The *DEFINE CONFG card
can then be used to assign the sys-
tem areas to the desired drives,

for example SOM1I2.

51, 53

43
44, 51
53

58

45

3.2.1
3.2.1
5.10.1

5.10.9

3.2.1

7-27

Table 7-6. Defining the System Configuration (Cont.)

Page

Procedure Step Reference Paragraph
3. Ready the reader
4, Set data switch 7 on
5. Press the CONSOLE INTERRUPT switch on
the computer console '
6. If any error messages occur, correct the
errors according to appendix A
7. After the //END OF ALL JOBS card is 45, 122 3.2.1
printed, verify the configuration defined by
checking the LET/FLET dump printout
8. If the configuration is incorrect, punch a 53 5.10.1

corrected *DEFINE CONFG card and return to
step 2

7-28

Table 7-7. Compiling Skeleton Subroutines

Page
Procedure Step Reference Paragraph|
1. If the user subroutines are not to be stored 55 5.10.3
on the pack on drive 0, remove any *STORE cards
from the user-written subroutine source decks
2, If TASK is already in core, proceed to 15 4.1

step 3. If TASK is not in core, load TASK as
directed in table 7-1 and proceed to step 11

3. Set the HALT switch on (first step in
restarting TASK)

4. Set the RUN-IDLE switch to IDLE
5. Set the HALT switch off
6. Enter 0 in the data switches

7. Ensure that the switches in the bottom row
on the console, beginning with the REGISTER
SELECT switches, are in the upper position

8. Press the ENTER switch
9. Set the RUN-IDLE switch to RUN

10. Press the STEP switch. Wait for the data

switch messages to be printed (table 7-1)

11. Insert the subroutine source decks, with

control cards, in the card reader hopper
12, Ready the reader
13. Set data switch 7 on

14. Press the CONSOLE INTERRUPT switch on
the computer console. If assembler or compiler

errors have occurred, return to step 3

7-29

the system configuration, see paragraph 7.3.5. To assemble the System
Director, see paragraph 7.3.4. To store the user-written subroutines, see

paragraph 7.3.6. To load an operating TASK, see table 7-1.
To build the system skeleton, perform the steps listed in table 7-8.

7.3.8 Compiling Process Programs
It is assumed in this procedure that the system skeleton has been built and that
an operating TASK has been loaded in core. If a skeleton has not been built,

refer to paragraph 7.3.7. I TASK is not in core, see table 7-1.
To compile the user's process programs, perform the steps listed in table 7-9.

7.3.9 Building Process Core Loads

It is assumed in this procedure that the user's process programs have been
assembled or compiled and loaded to disk and that TASK has been loaded in
core. If process programs have not been compiled, see paragraph 7.3.8. If

TASK is not in core, see table 7-1.
To build process core loads, perform the steps listed in table 7-10.

7.3.10 On-Line Cold Start
It is assumed in this procedure that process core loads have been built. If the

core loads have not been built, see paragraph 7.3.9.
To execute an on-line cold start, perform the steps listed in table 7-11.

7.3.11 Storing Relocatable Programs on Disk from Cards
It is assumed in this procedure that an operating TASK has been loaded in core.

If TASK has not been loaded, refer to table 7-1.

If an off-line disk pack is being built, store the relocatable programs on the disk

from cards as directed in table 7-12.

7-30

Table 7-8. Building the Skeleton

Page

Procedure Step Reference Paragraph|
1. Punch the Skeleton Builder *INCLD cards 46 4.7
2. Insert the skeleton building *INCLD cards 39 4.7
in the Skeleton Builder deck as shown in figure 7-8
3. Place on drive 0 the pack that is to become
the system pack
4. Place //JOB and //END OF ALL JOBS 43, 45 3.2.1

cards in the card reader hopper. If the system is
being defined for multiple drives, place the proper

entries in the //JOB card label fields
5. Ready the reader
6. Set data switch 7 on

7. Press the CONSOLE INTERRUPT switch on

the computer console

8. Set the RUN-IDLE switch to IDLE (first

step in zeroing core)
9. Set the HALT switch on

10. Unlock the WSPS switch by turning it

clockwise
11. Set the SPO switch on

12. Load the ZAP card, supplied with the
system decks (see figure 7-3)

13. Ready the reader

14. Set all data switches off

7-31

Table 7-8. Building the Skeleton (Cont.)

Procedure Step

Page
Reference

Paragraph

15,

- Set REGISTER SELECT switches

4 and 8 on

16.

17.

18.

19,

20.

21.

Press RESET

Press ENTER

Set the HALT switch off
Press the IPL switch
Set fhe HALT switch on

Set REGISTER SELECT switches

4 and 8 off

22,

23.

24.

25.

26.

Press RESET

Press ENTER

Set the RUN-IDLE switch to RUN
Press the STEP switch

Set the SPO switch off (last step in

zeroing core)

27.

28.

29,

30.

Reload operating TASK (table 7-1)
Set data switch 2 on
Set data switch 15 on

Ensure that all other console switches are

in the off position

31.

Press the console STEP switch

15

4.1

7-32

Table 7-8. Building the Skeleton (Cont.)

Procedure Step

Page
Reference

Paragraph

32.

Observe the following message:

PLACE TASK DECK IN CARD HOPPER

33.

Place the on-line skeleton TASK object

deck, without the TASK high-core loader, in the

card reader hoppér

34. Place the Skeleton Builder deck behind the
skeleton TASK object deck. Place a blank card
behind the Skeleton Builder deck, that is, behind
the *CCEND card

35,

Press the console STEP switch
Note

If a skeleton has previously been
built or if the disk pack has been
previously defined as a nonprocess
monitor pack (XEQ cards allowed), the
following message is printed:

DATA SW 0 ON

- SAVE ICL TABLE

In this case, set data switch 0 as
desired and press the console

STEP switch.

If the TASK skeleton 1I/0 has
changed size, ICLT may not be
saved. Use DUP *DICLE to restore

the interrupt core load table.

49

60

4.7

5.10,.12

7-33

Table 7-8. Building the Skeleton (Cont.)

‘Procedure Step

Page
‘Reference

Paragraph

36. If error message 0026 occurs, return to

step 4

37. Observe the following message:

PUT SKL BUILD PROG IN CARD HOPPER
38. Press the console STEP switch

39. Ensure that data switch 0 is off , press the
console STEP switch, and wait for the following
message:

DATA SW 0 ON TO ABORT SKEL

Note
The abort option should not be
selected. »
If any error messages occur before this message,
correct the errors (see appendix A) and return to

step 4

40, Check the skeleton map to be sure that the
skeleton has been correctly built. If the skeleton is
incorrect, set data switch 0 on, press the console
STEP switch, correct the errors, and return to

step 4

41. If the skeleton is correct, press the
console STEP switch. When the skeleton is trans-
ferred from core to disk, one.of the following

messages is printed:

121

4.7

7-34

Table 7-8. Building the Skeleton (Cont.)

Page

Reference Paragraph

Procedure Step

SKB, SYDIR LD XQ (Skeleton is on disk
and executable)

SKB, SYDIR LD NX (Skeleton is on disk but
contains level 1 errors)

SKB, SYDIR NL NX (loading has been aborted)
42. Press the console STEP switch

43. Set data switch 0 on

44. Set the R‘UN-li)LE switch to IDLE

45. Ensure that all the switches in the
bottom row on the control panel, beginning with
the REGISTER SELECT switches, are in the

upper position
46. Ensure that all the data switches are off
47. Press the ENTER switch
48, Set the RUN-IDLE switch to RUN

49. Press the STEP switch
Note
Steps 43 through 49 constitute a
return to TASK.

7-35

/.

*INCLD CARDS

SKELETON BUILDER
OBJECT DECK

Figure 7-8. Skeleton Builder Object Deck and Control Cards

7-36

Table 7-9. Compiling Process Programs

Procedure Step

Page
Reference

Paragraph

1. Place the stacked input programs in the

card reader hopper
2. Ready the reader
3. Set data switch 7 on

4, Press the CONSOLE INTERRUPT switch on

the computer console

5. If errors occur, correct the errors (see
appendix A) and stack the corrected jobs behind
the last job in the card reader hopper. If the
errors must be corrected before continuing with
the remaining jobs, disable the reader by press-
ing STOP on the reader, set up the corrected
jobs in the proper sequence in the reader, press
the STEP switch on the computer console, and

return to step 3

7-37

Table 7-10. Building Process Core Loads

improperly punched control cards, or if the core
load does not meet requirements, correct the con-

trol cards and return to step 1

9. Wait for the sign-off message for each core
load, which is one of the following: -

CLB, LNAME LD XQ (core load is on disk and
executable)

CLB, LNAME LD NX (core load is on disk but
normally not executable)

CLB, LNAME NL NX (loading has been aborted)

‘Page
Procedure Step Reference Paragraph
1. Place the core load builder cards in the 40
card reader hopper
2. Ready the reader
3. Set data switch 7 on
4. Ensure that all other console switches are
in the off position
5. Press the CONSOLE INTERRUPT switch on
the computer console
6. Wait for the core load builder sign-on
message as follows:
CLB, BUILD NAME
7. Check the core load map. If any errors 119 5.7, 5.8
" have occurred that require reassembling and/or
compiling, go to table 7-9 |
8. If any errors have occurred because of 50 4,7, 5.7

7-38

Table 7-11. On-Line Cold Start

Procedure Step

Page
Reference

Paragraph

1.

step in zeroing core)

2.

3.

clockwise

4.

3.

system decks (see figure 7-3)

6.

10.

11,

12.

13.

14.

15.

16.

17.

18.

Set REGISTER SELECT switches 4 and 8 off

‘Set the RUN-IDLE switch to RUN

Set the RUN-IDLE switch to IDLE (first

Set the HALT switch on

Unlock the WSPS switch by turning it

Set the SPO switch on

Load the ZAP card, supplied with the

Ready the reader

Set all data switches off

Set REGISTER SELECT switches 4 and 8 on
Press RESET

Press ENTER

Set the HALT switch off

Press the IPL switch

Set the HALT switch on

Press RESET

Press ENTER

Press the STEP switch

7-39

Table 7-11. On-Line Cold Start (Cont.)

Page

Procedure Step Reference

Paragraph

19. Set the SPO switch off (last step in

zeroing core)

20. Place the system pack on any drive

defined as part of the system

21. Place the cold start loader cards (for the 42 4.9, 6.4
physical drive number corresponding to the physical
drive on which the system pack is loaded) followed
by a cold start name card and a blank card in the
card reader hopper (figure 7-9). The cold start

loader cards are shown in figure 7-10

22, If the skeleton is to be storage protected, 42 6.4
that is, column 14 in the *CLDST card is punched,

turn on the console WSPS switch
23. Ready the reader

24. Select the loading address in the data

switches (first step in program load)
25. Set the RUN-IDLE switch to IDLE
26. Set the HALT switch on

27. Set REGISTER SELECT switches

4 and 8 on
28. Press RESET
29. Press ENTER
30. Set the HALT switch off

31. Press the IPL switch

7-40

Table 7-11. On-Line Cold Start (Cont.)

Procedure Step

Page
Reference

Paragraph|

32,

Set REGISTER SELECT switches

4 and 8 off

33.

34.

35.

36.

37.

Set the HALT switch on

Press RESET

Press ENTER

Set the RUN-IDLE switch to RUN

Press the STEP switch (last step in

program load)

38.

If error messages occur, correct the

errors (see appendix A)

39.

If the *CLDST card contains a punch in

column 14, the system skeleton in core is storage

protected and the following message is printed:

TURN OFF WRITE STORAGE PROTECT
SWITCH

40.

If the following message is printed:

TURN ON WRITE STORAGE PROTECT
SWITCH

return to step 1

41,

42.

43.

Set the WSPS switch off

Press the console STEP switch

If the *CLDST card contains a 1 in

column 16 (clock option), wait for the following

message:

ENTER TIME THROUGH DATA SWITCHES

42

42

6.4

6.4

7-41

Table 7-11. On-Line Cold Start (Cont.)

Procedure Step

Page
Reference

Paragraph

44, Enter the time in hexadecimal: the hours

in switches 0 through 7 and the minutes in

switches 8 through 15 -

45, Press the console STEP switch., The
time is read from the data switches, ‘converted to

hours and thousandths of an hour, and the following

message is printed:

TIME ENTERED WAS XX.XXX HOURS
The first process core load is called, and the TSS

system runs under control of the System Director

46. To initialize time sharing, turn on data
switch 7 and press the CONSOLE INTERRUPT

switch. The on-line system is now ready for

operation

7-42

COLD START
NAME CARD

COLD START
LOADER CARD il
COLD START
LOADER CARD H
COLD START
LOADER CARD |

Figure 7-9. On-Line Cold Start

7-43

) .
: . ng B
; i i 0§ BOR ORED R E R RN]|

i (] | i B 8 RE B B HEER R HER RED B i §F B8 ¥
000000000000&0!'0000000UlDﬂOHO0000'00000!050ﬂ0§l@ﬁ00'000.'000500&000lﬂlOHUUlOOOI
023 4 5 B 78 8100 171214 151517 18 1920 24 222324 2526 27 23 7930 313230 34 15 35 37 1 39 €0 4142 43 44 45 46 47 40 49 50 51 5253 54 55 66 57 58 5360 61 62 6364 636867 686970 1 2 A TS 76 17 7879 00
1111|llllll!ﬂ?ﬁl‘lIlllllIllll,lﬂlllilﬂlllllilllﬁﬁﬁﬂl!lﬂlﬂllllﬁﬁllllﬁlil1ll1lll]ﬂ

BOEE28222220220282222220022882222222228 20022800282 02088202220000082202228082222222
3333I|33saaiaslssssslsslsaslﬁs3§ﬂansslaassszasasﬂsiai333|33ﬂ§ﬂal3333ﬂ33§33355333
la444444l444§4|4|4!4|44|444§ﬁ44444&44444!44434&&544444!44444&54444ﬂ4§4444444ﬁ444
ls&sssis555555|55555|5li5555§55sssssssssxsssﬁsgﬁsﬁssﬂs55555&&55sasﬁsﬂsssasasssﬂﬁ
BBEBBcocBERRAcoBoocsooHRBococcoenocooHEEERooc66co6 o ARBROCOA6C666666666666666666666

 RRRERRE RREA RA1 RRRAARE AR AR 11 L1 AR AR KRR 111 RRRRA KRR AR R NE DR NN RN RN NN NA)
BosssssBoocHoogesoonnfoscfosoassascoRovafnreanssssarneoarasarnoosnncessssnssosanss
IllllﬂﬁﬂﬂlﬂﬂqGBEEEEQ9§EEI9SQSGQQQHQNﬁﬁﬁﬁf’WﬂﬂqDﬂqﬁﬁHENQGQQQJ%"QBWQQQQnlﬂ"??qqgﬂﬂ
l??l‘SYB‘H-"H‘ PRI EIN R O YRR I IR NP 2P R B2 i1 O T DTS B B L i K T I I I INAQ AL S 12 A4 AT AN 47 AQAG B B N2 1A BARNE RS BIRAGHECRI GRS I N 1T 24050 110 e
”(u, (7 CTANDGRD FORM ROAT
¥ i WA . A ey ¥ T 0 & b 1 R N S P
1 \l\'.\'.“»‘;. M\@n\\ St el e .u\\‘k\‘ " v, el 3“ “\ S T e [N Wi \u\.-lvv\»wnv.\h\-. ST SRRSO GRS R it PRRCHGRIRTIRAAR I ¢ A Lt A :\ﬁém\ﬁ'\f;u-wﬁ.‘.

AR R § B F ER B BB RER |

NEEER ROUGRE HR BES GAEEE BE ER B R NORER B MR
nvauﬁanan§n|u§nuonualanuogaaunnuuﬁauouooumﬁwﬁsn“naggunnoouonnnnnnonnnonnononoonn
122456 78 910017001610 1819700201287 WTIID AT VI 2637 3809 40 A1 47) A4 A5 A6 4T 404950 41 92 SIS 54 51 58 59 64 61 62 6769 6566 57 69707 7’11)47575 17187980
|ﬁﬁ§§n|Ialﬁﬁl1|11rlaﬁlasaﬂalgawﬁllgulnzﬁuﬁgwxatﬁnzaﬁnltlltltxll11t|1|11r11111111
B7R2B202602222202222822222222222228822222280022222022222222222222212222222222222
RIBIRB2333333303933023333333383 3 BR2933 NAHE33832333333333333333333333333333333
BAR A RataBadaRadaBassaBafaoaBesafiaaaaaa RBoarsaaaaadasqaeaniaaqqansaatnaasssy
SERRE5SARES5555555M55555505555R55 FRAS 55059 RN EH5556555545555555555555555555585
Eniils558§§assﬁasssssa§§lsesssssﬁssﬁggﬁﬁﬁssssssssﬁﬂaslssﬂﬂgaﬂssssssssssssasssass
'RERREEI RER1 BRI RRRRRRE RARE RRE 11T RRL RARY RRA T 1t 1 RRRRY RRRRRR) ERRRRERRRERRRRRRRRREN
FososscEosageaafonnosoBoonRecassosaaBanoRanscssasacseBenss efEnnanansiinsnoncasnes

TTITERTIEE “ﬁﬁﬁﬁﬁﬁ“ﬂaﬁﬂssﬂﬂﬁﬂﬂﬂﬂﬂﬁﬁﬁaﬁﬂﬁﬂvqqgﬂﬂﬁﬁﬁﬁﬁﬂﬂﬁﬁl@%“»“q 4009499539509
|7345l‘?ﬂ9!! ERN \‘li'."-' SN 214 a5 2 TRV AT L 0V A0 30 1 GR 49 40 48 42 AT 40 AN A5 40 ARk Lol BTG RIHR KT R AT [y S RN I T E I WA [A G R
I 1 u 1 " DO opt

aradAa T B Gea MWe “ NTIES oG AT it Bt S B R LR e e e B e e A BV Kot R
B NP SR P S . B g A

o TIRTRILL i B T
KR N N RAE ARARR ‘TR T I T

ERooooooooooE§ooonBEoBoooogoo00000fofooogoo000000§o00BERoB000FoRoE000000000000
P23 456 78 9100120156810 5002825222028 303232 300536 37 1330 40 4142 43444345 47 49495050 52 5354 5596 57 b8 SAGD 61 B GIEA LR GRBIEREI N TV 12 03 M 1576 1 JA 19 p0
LI RRRI RRRRRRE RE I AR LI RN AR 1 AR AR RN AR RRNRRRRRRRRRERT ERRRERE I IRRRERRRERRERE
22880 2BB82222222BB2202222202220 8228822 822822222222222222222222722822222222222222
B3N3333333 30 BRI NER333333303333333 RN 3AR?33333350332H3H3NR I RARM232333333333
RN FRE NN RN YRR FERRRY FERRNY FRNE EY T LR ERRRKRERE FRERTEE |1 EXRN 1 LY IR RERRYY
5555|555l5555555555i55555 55555555650 Bs oo BEss SRS Hao Mool 555555555555
FREABCoRARARAccRocoooocRNARcoe6ecocscFRARRcccococorERAAAccARABRBo o RRARBCA60666666666
| RRRERRI DR RN RRREREE RRRE RRA L1V T R REAR IR 1R ' RRRRE RRRRARE L RRARRE L RRRRRRRARERAD
lssaaaslsaslaslssaassiaaslsassaa8aaﬁaanlaasesaasaaaﬁssassalasaaaanﬁxsussauuaasas

WRRRR o RRRER s o RRREAO T RBRRs 059900 s RRRRRS 029890« BUBRR s RANRE s RARRAs5989: 500080

1271458 lﬂ‘vH“l! 100506 (7 1B 1920 20 22 22742526 27 282930 31 D 531 jn 1 &Q 8 J
AR LSRR, \ut;" VAR DD SE 2T AQ ST A2 AT AN A58 A2 45050 51 LE Y2 VISR G ST [R RYGA R G T RGBT IO M 02 13 1R 1576 1 TN 13 en
S ey

s

Flgure 7 10 C'orldJStar"c Cards

7 AA

e I s v Ta

Table 7-12. Storing Relocatable Programs on Disk from Cards

Procedure Step

Page
Reference

Paragraph

1. Place a //JOB card, a //DUP card, and a
*STORE card in front of each deck to be loaded. If
a LET/FLET dump is desired, place a //JOB,
//DUP, and a *DUMPLET card after the last deck
being loaded

2. Place the stacked jobs in the card reader

hopper
3. Ready the reader

4. Ensure that the desired disk packs are on

the correct drives
5. Set data switch 7 on
6. Press the CONSOLE INTERRUPT switch

7. Observe the following message after each
program is loaded:

DUP FUNCTION COMPLETE

8. If *DUMPLET was used in the input, check
the LET/FLET dump when all jobs are completed.
If any errors have occurred, correct the errors

(see appendix A) and return to step 2

Note
The following sequence of control
cards may be used to replace the
reentrant subroutines in the sub-
routine library with nonreentrant

versions (see table 7-3, step 2):

43, 44, 51,
58

58, 122

7-45

Table 7-12, Storing Relocatable Programs on Disk from Cards (Cont.)

Page |
Procedure Step Refergence Paragraph
//JOB 43 3.2.1
//DUP 44 3.2.1
%k
DUMPLET 13 17 21 58 5.10.9

*STOREMD RD UA SUBN 57 5.10.6
(nonreentrant subroutine) Repeat

for each

subrou~-

tine being

replaced
*DEFINE PAKDK 0 51 5.10.1
//JOB
//DUP
*DUMPLET
//JOB
//END OF ALL JOBS 45 3.2.1

SUBN is the name of the subroutine being loaded.
This name must be the same as the name of the
subroutine it is replacing. Performing a
*DUMPLET is the only way of determining
which version of the subroutine is in the system.
The nonreentrant version has been assembled
with a dummy entry point that distinguishes it
from the reentrant version. In most cases the
name of the dummy entry point comprises the name
of the original entry point with a 1 replacing the
last character. For example the floatingépoint add
and subtract subroutine has the following entry
points: FADD, FADDX, FSUB, FSUBX, FSBR,
FSBRX. The nonreentrant version would also

have FADD1 (dummy entry point) as an entry.

7-46

7.3.12 Building a Nonprocess Monitor Disk Pack

This procedure is presented with the assumption that the system decks have
been loaded and the define configuration function has been executed, and that
the TASK program has been loaded in core. If the system decks have not been
loaded, see paragraph 7.3.2. I the configuration has not been defined, see
paragraph 7.3.5.

To build a nonprocess monitor disk pack, perform the steps in table 7-13.
This procedure is applicable for initial system generation, when TASK is
already in core, and for building a nonprocess monitor pack when TASK is

not in core.

7.3.13 Off-Line Cold Start

To perform an off-line cold start, perform the steps listed in table 7-14.

7—47

Table 7-13. Building a Nonprocess Monitor Disk Pack

Page

Procedure Step Reference Paragraph

1. K TASK is in core, proceed to step 2. If 15 4.1
TASK is not in core, load TASK as directed in
table 7-1

2. Set the HALT switch on (first step in
restarting TASK)

3. Set the RUN-IDLE switch to IDLE

4, Set the HALT switch off

5. Ensure that the switches in the bottom row
on the computer console, beginning with the
REGISTER SELECT switches, are in the upper
position

6. Set all data switches off

7. Press the ENTER switch

8. Set the RUN-IDLE switch to RUN

9. Press the STEP switch. Wait for the
TASK messages to be printed

10. Set data switches 0 and 15 on to select the
absolute loader
11. Place the TASK disk loader (part of the 29 4.5.3

utility package supplied with the system), followed
by the operating TASK deck without the high-core

loader, in the card reader hopper

12, Ready the reader

13. Press the STEP switch on the computer
console

14. I any errors occur, correct the errors as

directed in appendix A

7-48

Table 7-14. Off-Line Cold Start

Procedure Step

Page
Reference

Paragraph|

1.

step in zeroing core)
2,

3.

clockwise
4,

5.
system decks (see figure 7-3)

6.

10.
11.
12,
13.
14.
15.
16.
17,

18.

Set the RUN-IDLE switch to IDLE (first

Set the HALT switch on

Unlock the WSPS switch by turning it

Set the SPO switch on

Load the ZAP card, supplied with the

Ready the reader

Set all data switches off

Set REGISTER SELECT switches 4 and 8 on
Press RESET

Press ENTER

Set the HALT switch off

Press the IPL switch

Set the HALT switch on

Set REGISTER SELECT switches 4 and 8 off
Press RESET |
Press ENTER

Set the RUN-IDLE switch to RUN

Press the STEP switch

7-49

Table 7-14. Off-Line Cold Start (Cont.)

Page
Procedure Step Reference Paragraph
19. Set the SPO switch off (last step in
zeroing core)
20. Place the proper cold start loader cards 42 4.9, 6.4

(figure 7-10) followed by a cold start TASK name
card and the stacked nonprocess jobs in the card

reader hopper (see figure 7-11)
21. Ready the reader

22. Select the loading address in the data

switches (first step in program load)
23. Set the RUN-IDLE switch to IDLE
24, Set the HALT switch on

25. Set REGISTER SELECT switches

4 and 8 on
26. Press RESET
27. Press ENTER -
28. Set the HALT switch off
29. Press the IPL switch

30. Set REGISTER SELECT switches 4
and 8 off

31. Set the HALT switch on

32. Press RESET
33. Press ENTER
34. Set the RUN-IDLE switch to RUN

35. Press the STEP switch (last step in pro-
gram load). The system is now ready for off-line

operation

7-50

P

NONPROCESS JOBS
(*CLDST TASK
COLD START
LOADER CARD Ili
COLD START
LOADER CARD |i
COLD START
LOADER CARD |

Figure 7-11. Off-Line Cold Start

7-51

APPENDIX A — SYSTEM ERROR MESSAGES

The system error messages and recovery procedures--where applicable--are

presented in the following tables.

A.1 TASK ERROR ALERT CONTROL PROGRAM ERRORS
The EAC error messages are divided into four groups:

I/0 errors

FORTRAN execution errors

Internal errors

TASK errors

All EAC error messages are listed in table A-1,

A.1.1 1/0O Errors
The format for I/0 error messages produced by TASK is
ERROR code ep; €ep, ep, ep 4
where
code - identifies the specific error; 0000 < code = 0063.
ep, - if the error is a CALL error, ep; is the address of the invalid call;
otherwise, epy is the address of the device table for the hardware
device that caused the difficulty.
epz - beginning address of the interrupt level work area for the level of
the call, (ep2 is not applicable to TYPEN.)
ep, - address of an invalid call on any but a CALL error. (ep3 is not
applicable to TYPEN.)

ep, - applicable only when device is a magnetic tape unit, in which case it

specifies the device status word (DSW).

A.1.2 FORTRAN Execution Errors
The format of error messages for errors detected during execution of a

FORTRAN program is
ERROR code
where code identifies the specific error; 0064 < code = 006D.

A-1

Table A-1. TASK Error Alert Control Errors

Error Type of .
Code Error Meaning Recovery
0000 | 1I/0 Illegal call to/from Restart TASK.
teletypewriter
0001 1/0 Teletypewriter not ready | Correct and continue.
0003 |1I/0 Teletype keyboard not Correct and continue.
ready
0004 1/0 Storage protection Reload TASK and restart.
violation
0005 | I/0 Teletype keyboard Restart TASK.
parity error
0006 I/0 Teletypewriter parity Restart TASK.
error
0008 1/0 Invalid message on disk Restart TASK; correct
and continue.
000A |I/O Card reader or card Restart TASK.
punch invalid call
000B | 1/0 Card reader last card Remove cards left in reader.
indicator Press console STEP,
Place remainder of cards
to be read in reader hopper,
nonprocessed cards first,
| and press reader START.
000C |I/0 Card reader or card Correct and continue;
punch parity error restart TASK.
000D |{I/0 Card reader storage Restart TASK; reload

protection' violation

TASK.

Table A-1. TASK Error Alert Control Errors (Cont.)

Error Type of)

Code Error Meaning Recovery

000E 1/0 Card reader or card Correct and continue;
punch feed check restart TASK.

000F |1/0 Card reader or card Correct and continue;
punch data overrun restart TASK.

0010 1/0 Card reader or card Correct and continue,
.punch check

0011 |I/O //'B card illegally read Correct and continue;

restart TASK.

0013 1/0 Card reader or card Correct and continue.
punch not ready

0014 1/0 Paper tape reader or Restart TASK.
punch invalid call

0015 1/0 Paper tape punch Restart TASK.
parity error

0016 |I/O Paper tape reader not Correct and continue.
ready

0017 |1/0 Paper tape punch not Correct and continue,
ready

0018 1/0 Paper tape reader Restart TASK; correct
parity error and continue.

0019 1/0 Paper tape reader or Restart TASK; reload

punch storage protect

violation

TASK.

Table A-1. TASK Error Alert Control Errors (Cont.)

Eg:g: Tgffogf Meaning Recovery

001E I/0 Disk invalid call Restart TASK.

001F |I1/0 Disk not ready Correct and continue.

0020 {1I/0 Disk data overrun Restart TASK.

0021 | 1/0 Disk write select Reload. TASK.

0022 |1I/0 Disk data error Restart TASK.

0023 1/0 Disk storage protect Restart TASK; reload
error TASK.

0024 |1/0O Disk parity error Restart TASK.

0025 1/0 Disk invalid address ‘Restart TASK; reload

TASK.

0026 |I/0 Disk file protect error Restart TASK.

0027 1/0 Disk hardware/program | Restart TASK.
malfunction (internal or
lost interrupt)

0028 |1/0 Plotter invalid call Restart TASK.

0029 1/0 Plotter parity error Restart TASK.

002A |I/O Plotter not ready Correct and continue.

0032 I/0 Line printer invalid call Restart TASK.

0036 1/0 Line printer parity error ‘Restart TASK; correct

(i.e., print operation
requested, but data not

in printer code)

and continue.

Table A-1. TASK Error Alert Control Errors (Cont.)

Storage protect

violation

Error Type of -
Code Error Meaning Recovery
0037 1/0 Line printer not ready Correct and continue.
003C | 1/0 Invalid call Restart TASK.
003D | I/O ‘Storage protect Restart TASK.
violation
003E | I/O Parity control error Restart TASK.
003F |1/0 Parity data error Restart TASK.
0040 |1/0 Overlap conflict Correct and continue;
restart TASK.
0041 }1/0 Intermediate table Correct and continue.
interrupt (error code
passed to user's special
condition routine)
0042 |1/0 Any error (error Correct and continue.
code passed to user's
special condition routine)
0045 |1I/0 Comparator violation Correct and continue.
(error code passed to
user's special condition
routine)
0046 | I/0 Invalid call Restart TASK.
0047 1/0 Parity error Restart TASK.
0048 |1/0 Restart TASK; reload

TASK.

Table A-1, TASK Error Alert Control Errors (Cont.)

Error Type of .

Code Error Meaning Recovery

0049 |I/O Intermediate table Correct and continue.
interrupt (error code
passed to user's
special condition routine)

0050 1/0 Invalid call Restart TASK.

0051 1/0 Parity error Restart TASK.

0052 I/0 Intermediate table Correct and continue.
interrupt (error code
passed to user's
special condition routine)

005A | 1/0 Magnetic tape unit Restart TASK.
invalid call

005C 1/0 Magnetic tape unit Restart TASK.
storage protect violation

005D I/0 Magnetic tape unit Restart TASK; correct
command reject and continue.

005E |I/O Magnetic tape unit Restart TASK; correct
excessive tape errors and continue.

005F |1I/0 ~ Magnetic tape unit tape Restart TASK; correct
error and continue.

0063 1/0 Magnetic tape unit end Restart TASK; correct
of tape and continue.

0064 FORTRAN | Illegal address com- Restart TASK.

puted in an indexed store

Table A-1. TASK Error Alert Control Errors (Cont.)

Error Type of .

Code Error Meaning Recovery

0065 FORTRAN | Illegal integer used in a Restart TASK.,
Computed GO TO
statement

0066 FORTRAN | File not defined Restart TASK.

0067 FORTRAN | Requested number of Restart TASK,
records too large,
zZero, or negative

0068 FORTRAN | Input record in error Restart TASK.
or illegal conversion

0069 FORTRAN | Range of numerical Restart TASK.
values in error

006A FORTRAN | Output field too small Correct and continue.
to contain number

006B FORTRAN | Illegal unit reference Restart TASK.

006C FORTRAN | Requested record length Restart TASK.
exceeds buffer capacity

006D FORTRAN | Working storage area Restart TASK.
insufficient for define
files

0096 FORTRAN | Illegal unit reference. Restart TASK.

Unit not defined in 1/0
unit table, on IOCS card,
or for unedited I/0

A-7

Table A-1. TASK Error Alert Control Errors (Cont.)

Error

Type of

Code Error Meaning Recovery
0097 FORTRAN | Read list exceeds length Restart TASK.
of write list. List in
READ statement is
longer than list in cor-
responding WRITE
statement
0098 FORTRAN | Record does not exist for | Restart TASK.
read list element. Last
physical record of logical
record has been
exhausted
1000 Internal Channel Address Register | Restart TASK; reload TASK.
check
2000 Internal Storage protect violation Restart TASK; reload TASK.
4000 Internal Parity error Reload TASK.
8000 Internal Operation code violation Restart TASK.
F00o1 TASK Monitor XEQ tried when Restart TASK.

not allowed (i.e., disk
pack not defined as an
off-line system, error
code of FO06 was pre-
viously given, or program
attempting execution is

not in LET/FLET

Table A-1. TASK Error Alert Control Errors (Cont.)

Error
Code

Type of
Error

Meaning

Recovery

F002

F003

F004

F005

F006

F007

TASK

TASK

TASK

TASK

TASK

TASK

No sectors on disk for
buffering of Teletype
messages when TASK

requires it

Invalid word count or
sector address for pro-
gram to be loaded to
disk

TASK conversion rou-
tines called with a
negative or zero word

count

Mode switch on TRACE
when the trace program

is not in TASK

TASK in core is not the
same one defined on disk
for off-line systems. No

XEQ will be allowed.

Checksum or sequence
error in absolute deck
being loaded by TASK.
ep, is the sequence num-
ber of the card in error

(hexadecimal),

Reload TASK.

Restart TASK.

Restart TASK.

Correct and continue.

Reload TASK; correct

and continue.

Correct sequence or check-

sum error and reload
deck starting with card
sequence number printed

in €p,-

Table A-1. TASK Error Alert Control Errors (Cont.)

Error
Code

Type of
Error

Meaning

Recovery

F008

F009

FO00A

FFFF

TASK

TASK

TASK

TASK

Too many defective
cylinders on disk to

allow skeleton build

Logical disk drive named
in epy is not ready. If
console STEP is pressed
before the drive becomes
ready, the drive will be

taken off-line,

Logical disk drive named
in ep;y has been taken
off-line because it is not
ready (see error

message F009).

An error recovery pro-
cedure of "correct and
continue' was attempted

when not allowed.

Reload TASK.

Correct and continue.

Correct and continue.

Restart TASK; reload

TASK.

A-10

A.1.3 Internal Errors
The format of this group of error messages is
ERROR code ep1 epz ep3 ep,
where
code - identifies the specific error; 1000 < code = F000.
ep; - contents of the I-register at the time the error occurred. (Usually
the instruction that caused the error will be ep; - 1or ep; - 2.)
ep, - contents of index register 1 at the time of the error.

epy - contents of index register 2 at the time of the error.

ep, - contents of index register 3 at the time of the error.

A.1.4 TASK Errors
TASK errors usually denote incorrect system operating procedures. The format
for this group of messages is
ERROR code e
where

code - identifies the specific error; F001 < code = F0086.

e, - defined in table A-1 with applicable message.

A.2 ASSEMBLER ERROR MESSAGES
System error messages produced during the assembly of a source program
have the format: |
Ann message
where
Ann - error code; the letter A denotes an Assembler message, and nn
is merely a 2-digit sequence number.

message - character string that describes the situation.

The Assembler error messages are listed in table A-2,

A-11

Table A-2. Assembler Error Messages

Error Message

Meaning

Recovery

A01 MINIMUM W.S. NOT

AVAILABLE--
ASSEMBLY
TERMINATED

A02 SYMBOL TABLE
EXCEEDS SPECI-
FIED OVERFLOW

A03 DISK OUTPUT
EXCEEDS W.S.

Available nonprocess
working storage is less
than the number of
overflow sectors
specified plus 1.

Actual number of
sectors of symbol table
overflow is greater
than the number of
overflow sectors
allocated.

Intermediate output in
pass 1 or final DSF
output in pass 2 is
greater than non-
process working
storage less the
number of overflow
sectors specified.

1. Reduce the
number of overflow
sectors specified
(number specified
= 0 if *OVERFLOW
SECTORS control
card is not used).

2. If more than one
drive is available on
the system, specify
drive on JOB card
with most nonprocess
working storage
available.

Use the *OVERFLOW
SECTORS control
card to increase the
number of sectors

specified (maximum 32).

1. If error occurs in
pass 1, the assembler
will wait at:

8K = 1B5E
16K = 3B5E
32K = TB5E

When console START
is pressed, the
assembly will auto-
matically be continued
in the *TWO PASS
MODE.

2. If error occurs in
pass 2, reduce the
number of overflow
sectors specified or
specify drive on JOB
card with the most
nonprocess working
storage available if

more than one drive

is available.

A-12

Table A-2, Assembler Error Messages (Cont.)

Error Message

Meaning

Recovery

A04 SAVE SYMBOL
TABLE INHIBITED

A05 MAINLINE PROGRAM
WITH NO NAME

A06 MORE THAN
25 ERRORS IN ORG,
BSS, OR EQU
STATEMENTS--
ASSEMBLY
TERMINATED

With *SAVE SYMBOL

TABLE option specified:

1. Program is a
relocatable assembly.

2. Program contains
assembly errors.t

3. Source program
causes more than

100 symbols to be
present in the system
symbol table.

Mainline program just
assembled had no
name specified on

// ASM card.

Of the specified state-
ments (including BES)
25 operands were
undefined in pass 1
and defined in pass 2.
An attempt has been
made, for example,
to ORG ahead or to
equate a symbol with
a forward reference.

1. Use ABS card
and reassemble.

2. Correct source
program errors and
reassemble.

3. Reduce number of
symbols in program
and reassemble.

Punch program name
into name field of

// ASM card and
reassemble.

{ If LIST option is used

or if a partial list
deck has been punched,
look for the error
flag U* in print posi-
tion or column 18 in
statements of the
specified type., If
forward references
have been attempted,
these must be cor-
rected before the
program is
reassembled.

TSpecific assembly-time errors are presented in table A-3.

A-13

Table A-2. Assembler Error Messages (Cont.)

Error Message

Meaning

Recovery

A07 LOAD BLANK CARDS

A08 CONTROL RECORD
READ--ASSEMBLY
TERMINATED

A card containing a
nonblank column in
columns 1 through 71
has been read while
punching the symbol
table (as a result of a
*PUNCH SYMBOL
TABLE control card).

A //control record has
been read by the
assembler. The
assembler passes this
card along to the
Supervisor before
terminating the
assembly. Loading
and DUP operations
are inhibited.

Place blank cards in
the hopper of the card
punch. Press punch
START and console
STEP.

Ensure that all cards
including the END
card are in the source
deck. Reassemble,

A-14

Table A-3. Assembler Error Detection Codes

Code Cause Assembler Action
A Address Error. Attempt made to | Displacement set to zero.
specify displacement field,
directly or indirectly, outside
range of -128 to +127,
C Condition Code Error. Character | Displacement set to zero.
other than +, -, Z, E, C, or O
detected in first operand of short
branch or second operand of long
BSC, BOSC, or BSI statement.
F Format Code Error. Character Instruction processed as if L
other than L, I, X, or blank format were specified, unless
| detected in column 32; or L or that instruction is valid only
I format specified for instruction in short form, in which case it
not valid in that form. is processed as if the X format
were specified.
L Label Error. Invalid symbol | Label ignored.
detected in label field.
M Multiply Defined Label. Duplicate | First occurence of symbol in

symbol encountered in label field

or in operand.

label field defines its value;
subsequent occurrences of the
symbol in label field cause a
multiply defined indicator to be
inserted in Symbol Table entry

(bit O of first word).

A-15

Table A-3. Assembler Error Detection Codes (Cont.)

Code Cause Assembler Action
R Relocation Error. (1) Expression | Expression set to zero,
does not have valid relocation.
(2) Nonabsolute displacement Displacement set to zero.
specified.
(3) Absolute origin specified in Origin ignored.
relocatable program., k
(4) Nonabsolute operand speci- Operand assumed to be zero.
fied in BSS or BES.
(5) Nonrelocatable operand in Entry assumed to be relative
END statement of relocatable zZero.
main program.
(6) ENT operand nonrelocatable Statement ignored.
S Syntax Error. (1) Invalid Expression set to zero.
expression (e.g., invalid
symbol, adjacent operators,
illegal constant).
(2) Main program entry point not Entry assumed to be relative
specified in END operand. zero.
(3) Incorrect syntax in EBC state- | Location counter incremented
ment (e.g., no delimiter in card by 17.
column 35 or zero character
count). _
| (4) Invalid label in ENT or ISS Statement ignored
operand.
T Tag Error. Card column 33 con- | Tag of zero assumed.

tains character other than blank,
0, 1, 2, or 3 in instruction

statement.

A-16

Table A=-3. Assembler Error Detection Codes (Cont.)

Code Cause Assembler Action

U Undefined Symbol. Undefined Expression set to absolute zero.

symbol encountered in

expression.

0 Operation Code Error. (1) Oper- | Statement ignored and Location

ation code not recognized. Counter incremented by 2.
(2) 1SS, ILS, ENT, LIBR, SPR, Statement ignored.
EPR, or ABS incorrectly placed.

A.3 FORTRAN ERROR MESSAGES

Error messages produced by FORTRAN during a compilation are listed in
table A-4, If both EAC and FORTRAN messages are output to the line printer,
Ait is possible that an EAC message may overprint the previous FORTRAN
message. The user can prevent this overprinting by employing either of

two methods:

1. Assign the teletypewriter as the EAC output device.

2. Provide a line space after each FORTRAN printout (e.g., a slash
at the end of each FORMAT statement or a 1H+ at the beginning
of each FORMAT statement).

A-17

Table A-4. FORTRAN Error Codes

N?zrmrlgle‘r Cause of Error
C1 Statement number contains a nonnumeric character.
C2 Maximum number (five) of continuation cards exceeded, or
continuation card out of sequence.
C3 Syntax error in CALL LINK or CALL EXIT statement, or CALL
LINK or CALL EXIT statement in process program.
C4 Undeterminable, misspelled, or incorrectly formed statement.
C5 Statement out of proper sequence, |
Cé Statement following STOP, RETURN, CALL LINK, CALL EXIT,
GO TO, IF, or TSS CALL statement should but does not have a
statement number.
Cc7 Name consists of more than five characters, or name starts with
a nonalphabetic character.
C8 Incorrect or missing subscript within dimension information
(DIMENSION, COMMON, REAL, or INTEGER).
- C9 Duplicate statement number.
C10 Syntax error in COMMON statement.
Cl1 Duplicate name in COMMON statement,
Cil2 Syntax error in FUNCTION or SUBROUTINE statement,
C13 COMMON statement contains parameter (dummy argument).
C14 SUBROUTINE or FUNCTION statement contains a name twice as
a parameter,
.Cl5 *IOCS control record in a subprogram.
C16 DIMENSION statement contains a syntax error.
C17 DIMENSION stétement contains a subprogram name.
C18 Name dimensioned more than once, or not dimensioned on first

appearance of name.

A-18

Table A-4, FORTRAN Error Codes (Cont.)

N?r‘rl;g; Cause of Error

C19 REAL, INTEGER, or EXTERNAL statement contains a syntax
error.

C20 REAL or INTEGER statement contains a subprogram name.

C21 Name in EXTERNAL statement is also in a COMMON or
DIMENSION statement.

c22 Reference to IFIX or FLOAT function in EXTERNAL statement.

Cc23 Invalid real constant.

C24 Invalid integer constant.

C25 More than 15 dummy arguments, or statement function argument
list contains duplicate dummy arguments.

C26 A subscript expression is missing a right parenthesis.

c27 FORMAT statement contains a syntax error.

C28 Statement number missing from FORMAT statement.

C29 Field width specification greater than 145,

C30 In a FORMAT statement the E or F conversion specifies w greater
than 127, d greater than 31, or d greater than w (where w is an
unsigned integer constant specifying the total field length of the
data, and d is an unsigned integer constant specifying the number
of decimal places to the right of the decimal point).

C31 EQUIVALENCE statement contains a subscript error.

C32 A statement function contains a subscripted variable.

C33 Subscript expression incorrectly formed.

C34 Subscript expression contains undefined variable.

C35 A subscript expression contains some number of subscripts that

does not agree with the dimension information.

A-19

Table A-4. FORTRAN Error Codes (Cont.)

N]i:;;ng Cause of Error

C36 Invalid arithmetic statement or variable; or, in a FUNCTION
subprogram, the left side of an arithmetic statement is a dummy
argument (or in COMMON),

C37 IF statement contains a syntax error,.

C38 IF statement contains an invalid expression.

C39 CALL statement contains a syntax error or invalid simple
argument.

C40 CALL statement contains an invalid expression.

Cc41 A statement function contains an invalid expression to the left of
an equals sign.

C42 A statement function contains an invalid expression to the right of
an equals sign.

C43 An IF, GO TO, or DO statement number is missing, invalid,
incorrectly placed, or else it is the same as a FORMAT state-
ment number.

C44 READ or WRITE statement contains a syntax error.

C45 A mainline program contains a READ or WRITE statement but
*IOCS record is missing.

C46 A READ or WRITE statement does not contain a FORMAT state-
ment number or the FORMAT statement number is incorrect.

Cc47 Syntax error in input/output list; or an invalid list element; or, in

A a FUNCTION subprogram, the input list element is a dummy
| argument or is in COMMON.
C48 GO TO statement contains a syntax error.
C49 Index of Computed GO TO statement is missing, invalid, or not

preceded by a comma.,

A-20

Table A~4. FORTRAN Error Codes (Cont.)

NI?:;;Zr Cause of Error

C50 A mainline program contains a *TRANSFER TRACE or
*ARITHMETIC TRACE control record present with no *IOCS
control record.

C51 DO statements are incorrectly nested; or the terminal statement
of the associated DO statement is a GO TO, IF, RETURN,
FORMAT, STOP, PAUSE, DO, or TSS CALL statement.

C52 Number of nested DO statements exceeds maximum allowed (25).

C53 DO statement contains a syntax error.

C54 DO statement has zero as initial value.

C55 In a FUNCTION subprogram the index variable of DO statement
is a dummy argument or is in COMMON,

C56 BACKSPACE statement contains a syntax error.

C57 REWIND statement contains a syntax error.

C58 END FILE statement contains a syntax error.

C59 A STOP statement occurs in a process program, or a STOP
statement contains a syntax error.

C60 PAUSE statement contains a syntax error.

C61 STOP or PAUSE statement contains an integer constant greater
than 9999.

ce62 Last executable statement before END statement is not a STOP,
GO TO, IF, CALL LINK, CALL EXIT, ‘RETURN, or TSS CALL
statement.

C63 Statement contains more than 15 different subscript expressions.

Ccé64 Because of compiler expansion of subscript expressions or

compiler addition of generated temporary storage locations,

statement has become too long to be scanned.

A-21

Table A-4. FORTRAN Error Codes (Cont.)

Error

Number Cause of Error

cest | All variables in an EQUIVALENCE listT are undefined.

0667 Variable made equivalent to an element of an array in such a
manner as to cause the array to extehd beyond the origin of the
COMMON area.T

cerl Two variables or array elements in COMMON are equated, or the
relative locations of two variables or array elements are assigned
more than once (directly or indirectly). T

C68 | EQUIVALENCE statement contains a syntax error; or an
EQUIVALENCE list contains an illegal variable name.

C69 Subprogram does not contain a RETURN or TSS CALL statement;
-or a mainline program contains a RETURN statement.

C70 A mainline program that contains disk READ, WRITE, or FIND
statements has no DEFINE FILE.

C71 DEFINE FILE contains a syntax error.

C72 Duplicate DEFINE FILE statements, maximum allowed number
(75) of DEFINE FILE statements exceeded, or DEFINE FILE
statement occurs in subprogram.

CT73 Record number of READ, WRITE, or FIND statement contains a
syntax error,

C74 INSKEL COMMON referenced with two-word integers.

C75 DATA statement contains a syntax error.

C76 In a DATA statement the names and constants are not one to one.
cT7 DATA statement contains mixed mode values.

C78 | DATA statement contains an invalid Hollerith constant.

CT79 | DATA statement contains an invalid hexadecimal specification.

T The detection of an error identified by code 65, 66, or 67 prevents any

subsequent detection of any of these three errors.

A-22

Table A-4. FORTRAN Error Codes (Cont.)

Nrflggzr Cause of Error
C80 DATA statement contains a variable that is not used elsewhere
in the program.
C81 COMMON variable loaded with a DATA specification.
C82 DATA statement too long.
C83 TSS CALL statement appears illegally (CALL INTEX, CALL

BACK, CALL DPART, CALL CHAIN, or CALL VIAQ in a
nonprocess program; CALL VIAQ, CALL CHAIN, or CALL BACK

in a process subroutine).

A.4 DISK UTILITY PROGRAM ERROR MESSAGES
Error Messages produced by DUP are listed in table A-5.

A-23

Table A-5.

DUP Error Messages

Error
Code

Message

Meaning/Action

Recovery
CodeT

D01

Do2

D03

D04

D05

Do6

INVALID CNTRL CD

PGM ALRDY IN TMP

DR USED THIS JOB

DR 0 NOT MON. PK

ABORT SIGN OFF

DRIVE NOT IN USE

DUP or Monitor control card

invalid.

The program named already

has entries in temporary LET.

Execute indicator is not set.

Control card specified a disk

“drive that is already in use

with this job; therefore, only

the label was changed.

Disk drive zero was specified
for use, but *DLABL control
card did not identify it as a
monitor pack; therefore, the
new label is placed on drive

Zero.

When an unrecoverable error
is encountered, this message
is produced following the

appropriate error message. -

1. Disk drive specified for
this job is not in use.

2. A dump of LET/FLET
area was requested from a

drive not in use.

U

TRecovery codes are defined as follows:

R = recoverable error allowing DUP to continue function.

U = unrecoverable error causing DUP to abort the specific function.

A-24

Table A-5. DUP Error Messages (Cont.)

Error
Code

Message

Meaning/Action

Recovery
Codet

D07

D10

Di1

D12

DR GT MAX FOR
SYSTEM

NO CALL IN xxxxX

| CD CHKSUM ERROR

NEED BLANK CARDS

MON CRD WAS READ

The source drive specified is
greater than the maximum

allowed for the system.

No call appears in core load
xxxxx for the core load being

changed.

Checksum error occurred
while binary program cards

were being read.

Insufficient supply of blank
cards for dumping to cards.
Place new supply of blank
cards in punch hopper, press
punch START switch, and

punching will continue.

A monitor control card was
read when a DUP card was
expected. The specified
monitor function will be
performed, and the pre-
vious DUP store function

will be terminated.

U

TRecovery codes are defined as follows:

R = recoverable error allowing DUP to continue function.

U = unrecoverable error causing DUP to abort the specific function.

A-25

Table A-5. DUP Error Messages (Cont.)

Error
Code

Message

Meaning/Action

Recovery
Codet

D20

D21

D22

INVALID CHARACTER

INVALID PGM TYPE

IL PGM HDR
LNGTH

The buffer holding the printer
output contains invalid
EBCDIC characters. The
printer will leave one blank
space for each invalid
character. After the mes-
sage has been printed, the

function will be terminated.

1. Following an assembly or
compilation, an invalid type
code was found in program

header.

2. An *STORECI control

card contained a prograni
type code in column 11 that
was not an M, C, I, or
blank. No execute indicator

(INOEX) is set, and the

*STORECI function is aborted.

3. Replacement core load

was not the correct type.

A dump of a relocatable
program was requested, but
an illegal program header

length was detected.

U

TRecovery codes are defined as follows:

R = recoverable error allowing DUP to continue function.

U = unrecoverable error causing DUP to abort the specific function.

A-26

Table A-5. DUP Error Messages (Cont.)

Error
Code

Message

Meaning/Action

Recovery
Code

D23

D24

D25

D28

DUMP LNGTH = ZERO

CTRL CD NAME BAD

NAME NOT IN L/F

NO SRCE DR SPCFD

The size of the program or
data area to be dumped was
calculated to be zero. The
error exists in the LET/
FLET entry or, for a
relocatable program, in

the program header.

An invalid or blank name was
found on a control card.

1. If found by DUMP1 or
SEQCH program, function

is aborted.

2. If found by SCONT or
DLETE program, function

may be allowed to continue.

1. Routine to be removed

was not on drive zero,

2. A search of LET/FLET
for a particulai’ program name

was unsuccessful.

Control card failed to specify
a source drive. Source was
indicated as nonprocess work

storage.

U

U/R

TRecovery codes are defined as follows:

R = recoverable error allowing DUP to continue function.

U = unrecoverable error causing DUP to abort the specific function.

A-27

Table A-5. DUP Error Messages (Cont.)

Error
Code

Message

Meaning/Action

Recovery
CodeT

D29

D31

D32

D34

CNT FLD IN ERROR

INVALID INP CARD

NAME NOT PRIME

NAME NOT IN TEMP

Erroneous numeric field in con-
trol card. The count field either
contains invalid characters or

is located in wrong columns,

This error occurs when any
card other than a DUP control
card is input to one of the
store functions and is in error.
Processing is terminated, and
control is returned to the
control card analyzing routine,
The no execute indicator
(INOEX) is set, and the pro-

gram is not stored.

Control card contained a name
that did not compare with
prime entry point in binary
deck. If no other entries with
the same name exist in the
table, the store function will
continue to store program

under prime entry point name

The temporary LET entries

were searched for the name of
the program to be stored, but

it was not found.

U

TRecovery codes are defined as follows:

R = recoverable error allowing DUP to continue function.

U = unrecoverable error causing DUP to abort the specific function.

A-28

Table A-5. DUP Error Messages (Cont.)

Error
Code

Message

Meaning/Action

Recovery
CodeT

D35

D38

L/F FIND ILLEGAL

NO DISK ROOM

PNT EXCESS

The name of the program to be
stored already exists in LET/
FLET for a particular drive.
No execute indicator (INOEX)

is set,

1. Sector address is out of
range. The areas defined on
CONFG card exceed the space
available. Requested size
must be reduced.

2. Search of user area for
permanent store, fixed area
for FLET store, working
storage for data store, or
temporary storage area
revealed insufficient room

to store program.

3. Insufficient nonprocess
work storage to allow dump
operation to be completed.

4. This message is also
produced when the specified

drive is not on the system.

Program name table exceeds

allocated buffer space.

U

7Recovery codes are defined as follows:

R = recoverable error allowing DUP to continue function.

U = unrecoverable error causing DUP to abort the specific function.

A-29

Table A-5. DUP Error Messages (Cont.)

Error
Code

Message

Meaning/Action

Recovery
Code'

D46

D47

TEMP ABORT

L/F TABLES FULL

CORE LOAD NAMES
NOT FOUND

INOLD ON

NO PNT CMP

This message indicates that

the disk pack is reaching the
maximum number of programs

the system can store. Sug-
gested recourse: execute

*DFINE PAKDK for that drive.

LET or FLET area is full..
Increase size of LET/FLET

or remove some entries.

This message precedes a list

(10 per line) of core load names

1 that are not found on disk.

This message notifies the user
that the no-load indicator in the

nonprocess communication area
was set when control returned
to DUP from the Core Load

Builder, FORTRAN, or

Assembler.

During the updating of core

‘ load program name table, the
first entry in the table did not
compare with the name placed
in the nonprocess communica-
tion area from the *STORECI

control card.

R

1'Recovery codes are defined as follows:

R = recoverable error allowing DUP to continue function.

U = unrecoverable error causing DUP to abort the specific function.

A-30

Table A-5. DUP Error Messages (Cont.)

Error
Code

Message

Meaning/Action

Recovery |
Codet

D50

D52

D75

D78

D79

NO SKEL ON DSK

LEVEL/POS = L1/B1

PGM NAMES EQUAL

CL TYPE IN ERROR

PGM STILL CALLING

No skeleton exists on disk.

Illegal level/bit position

(i.e., L1/B1) requested.

This message is preceded by
a D79 message for an illegal
interrupt to show the interrupt

level still calling the program.

If this message does follow

D79, the error is recoverable.

Perform a DICLE function to
enter the correct level and

bit in the ICL table.

Names on the control card are

the same.

The control card-specifiedtype
of core load M, I, C, D, or
blank) does not agree with the
type indicated in FLET entry.

1. Other core loads have calls
to a program that is to be
deleted. The names of the
calling programs are printed
preceding this error message.
2. See also D52 error

message.

U

U/R

TRecovery codes are defined as follows:

R = recoverable error allowing DUP to continue function.

U = unrecoverable error causing DUP to abort the specific function.

A-31

Table A-5. DUP Error Messages (Cont.)

Error
Code

Message

Meaning/Action

Recovery
Codef

D90

D91

D92

D93

D94

SKEL TOO LARGE

MESS NOT DEFINED

INVALID FIELD(S)

| NO "' ON CONFG CD

NO CLST OR ERPG

Size of skeleton is greater
than object core. Change
skeleton size or redefine

object core to larger size.

| An M appeared on a CONFG

card, but message area not
defined on any system disk.

If system has no message
buffer, remove the M entry
from the card. Ascertain
that the JOB card indicates all
drives that are to be available

to the system.

The control card has some kind
of error in format or content.
See discussion of DUP control

cards in paragraph 3.2.2.

Control card contains "'S'" or
"SX'" but no "I"'. Add drive
number and interrupt save
length to the card.

/CLST or . ERPG not found on

any system drive. Add disk
pack with these entries or
ensure that all drives are

indicated on JOB card.

U

TRecovery codes are defined as follows:

R = recoverable error allowing DUP to continue function.

U = unrecoverable error causing DUP to abort the specific function.

A-32

Table A-5. DUP Error Messages (Cont.)

Error
Code

Message

Meaning/Action

Recovery
Code

D95

D96

D99

PSBL CI PGM LOSS

INSV GR THAN COR

SYST/HARDW ERROR

This *DFINE CONFG operation
may cause some core image
programs to be lost. Correct
this condition by either of

two methods:

o Precede the *DFINE card
with another *DFINE card
to enlarge the core image
area.

e Remove core image

programs.

Defined interrupt save length

exceeds variable core size.

Check for:

o Object core defined large
enough.

o Skeleton defined too large.

e Interrupt save length defined

too large.

General error alarm; system

or hardware error.

U

TRecovery codes are defined as follows:

R = recoverable error allowing DUP to continue function.

U = unrecoverable error causing DUP to abort the specific function.

A-33

A.5 SKELETON BUILDER ERROR MESSAGES
Error messages produced by the Skeleton Builder have the following format:

Kxx Iprog rout reinc LEV.y

where
K identifies Skeleton Builder messages.
XX sequence number; 0016 =XxX =< IF16.
Iprog name of the program being relocated.
rout routine specified within lprog.
reinc relocation increment of rout from lprog.

LEV.y denotes severity level of the error:
y = 0 - for information only; the Skeleton Builder is
operating properly.
y = 1 - minor error; an error has occurred, but loading
is continued.
y = 2 - major error; no loading possible; pass 2 will not be
attempted.
y = 3 - severe error; abort immediately.
(Parameters lprog, rout, and reinc appear in the output only where

required by the particular message.)

After the skeleton has been built, it can be moved to the skeleton area only

when y is less than 2 (i.e., has the value 0 or 1).
The Skeleton Builder error messages are listed in table A-6.

A.6 SYSTEM LOADER ERROR MESSAGES
System Loader error messages consist of the identifying letter L and a

two-digit sequence number. These inessages are listed in table A-7,

A-34

Table A-6. Skeleton Builder Error Messages

Error Message

Meaning

Recovery

K01 LEV.3

K02 lprog LEV. 2

K03 rout LEV.2

K05 lprog rout
reinc
LEV.0,1,2

Load table overflow. This
condition causes immediate
termination of Skeleton

Builder operation.

A disk format error has

been found in program
Iprog.

The relocatable program
rout cannot be found in

LET.

Within the skeleton the
call to TSS subroutine
rout in program lprog is

invalid. The CALL state-

ment is at relative location

reinc of lprog.

1. Decrease number of
subroutines.

2. Decrease number of
in-core interrupt routines
(see *INCLD in Non-
process Monitor,

paragraph 3. 2. 2).

Correct program on disk.

1. Delete all references

to rout from the system

‘skeleton.

2. Stqre rout on disk and

enter in LET.

Correct the CALL

statement,

A-35

Table A-6. Skeleton Builder Error Messages (Cont.)

Error Message

Meaning

Recovery

K06 lprog rout
reinc LEV. 2

K07 lprog 11bb
LEV.2

K08 LEV.2

K09 LEV.2

KOA lprog LEV.3

The required core load

name in the list of the TSS

program sequence change
CALL to rout at relative
location reinc does not
occur in the EXTERNAL

statement in lprog.

The in-core interrupt sub-
routine lprog has been
designated to service 11bb,
which has been previously
assigned to another in-core

interrupt subroutine.

The disk drive that was
designated for temporary
system usage does not
contain enough nonprocess
working storage space to

build the skeleton.

The maximum length of
255 words (85 entries) for
the transfer vector (ETV)

has been exceeded.

Program lprog has a
back-origin that would
overlay part of the

Skeleton I/0O area.

Correct Iprog.

Correct the assignment

of in-core interrupts on

the *INCLD control card
(paragraph 3.2.2).

1. Change the temporary
drive to another drive.

2. Delete programs from
the user's area to rprovideA
sufficient nonprocess

working space.

Decrease the number of
LIBF subroutines included

within the skeleton.

Correct the lprog back-

origin.

A-36

Table A-6. Skeleton Builder Error Messages (Cont.)

Error Message

Meaning

Recovery

KOB LEV. 2

KOC lprog iaccd
LEV.1

KOD lprog rout
reinc LEV.2

The sum of the lengths of
the skeleton and compo-
nents exceeds the defined

length.

The interrupt service sub-
routine lprog contains an
interrupt service entry
point, defined for IAC
code (iaccd), which is not
in the system master
branch table. The IAC
number (iaccd) is

hexadecimal.

In program lprog is an
invalid reference to sub-
routine rout at relative
location reinc; i.e., a
LIBF reference to a

type 4 or type 6 sub-
routine when it should be
a CALL, or a CALL ref-
erence to a type 3 or
type 5 subroutine when it

should be a LIBF.

Redefine the length of the
skeleton or eliminate or
shorten the skeleton
components, This action
will reduce the size of

the skeleton.

1. Correct the IAC code.
2. Reload the system.

3. If the device that would
cause the interrupt is not
in the system, ignore the

message.

Correct the reference.

A-37

Table A-6. Skeleton Builder Error Messages (Cont.)

Error Message

Meaning

Recovery

KOE lprog LEV.2

K13 rout
LEV.1,2

K14 lprog reinc
LEV.2

The integer size or real
precision indicated for
program lprog does not
agree with that indicated

for the skeleton.

The LEV.1 message indi-
cates that core load rout
has been referenced via a
CALL CHAIN, CALL
SPECL, CALL QUEUE,
CALL QIFON, or CALL
UNQ, but rout is not in
FLET.

The LEV.2 message
indicates that a required

system area is not present.

Program lprog contains

an INSKEL COMMON
reference at relative loca-
tion reinc that falls outside
the bounds of INSKEL
COMMON.

Correct the precision.

Build the core load
(*STORECI).

Define the required area

(*DEFINE CONFG).

Correct the reference in

Iprog.

A-38

Table A-6. Skeleton Builder Error Messages (Cont.)

Error Message

Meaning

Recovery

K18 LEV.1 During a skeleton rebuild Use same TASK and
operation, the total length | System Director as used
or the length of entries of in previous skeleton
the new ICL table are build operation.
incompatible with those of
the old ICL table.

K19 LEV.2 The number of interrupt 1. Correct definitions for
levels defined for TASK is | number of interrupt levels.
different from that defined |2. Correct definition for
for the System Director, length of skeleton.
or the length of the
skeleton defined for the
System Director is dif-
ferent from that defined on
the *DEFINE CONFG card.

Table A-7. System Loader Error Messages
Eg;;;): Meaning Recovery
Lo1 A control card is missing. Examine the system deck and

hopper.
and console STEP,

prepare the necéssary card.
(See section 7.) Then place that
card and all cards that should

follow it in the card reader input

Press reader START

A-39

Table A-7. System Loader Error Messages (Cont.)

Error
Code

Meaning

Recovery

LO02

Lo3

L04

LO05

An assignment card contains a
nonnumeric value for an
interrupt level, bit, IAC, or
LUN.

The total bits specified on the
assignment card does not
agree with the count specified

in columns 4 and 5 of the card.

A continuation card is defined
for a different level than the

assignment card it continues.

One of three conditions exists:
1. The interrupt level speci-
fied on the assignment card is
greater than 23, but is not 99.
2. More than 16 bits are
specified on an assignment
card.

3. An JAC or LUN greater
than 64 is specified on an

assignment card.

Correct the error; replace the
corrected assignment card in the
system deck; place the
*ASSIGNMENT card and the
entire deck of assignment cards
in the card reader input hopper.
Press reader START a.nd console

STEP.

Same procedure as for L02,

Same procedure as for L02.

Same procedure as for L02.

A-40

Table A-7. System Loader Error Messages (Cont.)

Error
Code

Meaning

Recovery

Lo6

L07

Lo08

L09

L10

Li1

Li2

An assignment card entry for
IAC or LUN is not followed by

a slash, coinma, or blank.

A duplicate IAC code has been
specified on an assignment

card.

An attempt has been made to
assign a LUN to an IAC that
has no FORTRAN ID and,
thus, no LUN,

A LUN equal to zero or to a
value greater than 44 has been
specified on an assignment

card.

The same LUN has been

assigned to more than one IAC.

More than one process inter-
rupt has been assigned to a

single interrupt level.

Duplicate interrupt level

assignments have been made.

Same procedure as for L02.

Same procedure as for L02.

Same procedure as for L02.

Same procedure as for L.02,

Same procedure as for 1.02.

Same procedure as for L02.

Same procedure as for 102,

A-41

Table A-7, System Loader Error Messages (Cont.)

Error
Code

Meaning

Recovery

L13

L14

L15

card was not found in LET.

The specified relocatable

DELETE function.

Checksum error,

Program name from *LDDSK

subroutine already has a LET
entry. The LET entry may be
cleared by performing a DUP

Verify proper format and spelling
on *LDDSK card. If the card is
correct, reload the LET deck,
preceded by the LDDSK. LET
card. This deck should be fol-
lowed’ by the *LDDSK. name
subroutines. (Note: this action
clears all previous LET entries.)
If the *LDDSK card is incorrect,
correct the error, place the cor-
rected card and the proper
absolute program in the card

reader input hopper, and press

reader START.

The subroutine cannot be loaded.
Bypass this subroutine and con-
tinue with the following control

card or program deck.

1. To initiate a retry following
this error, place the binary card
in the card reader input hopper
and pressy reader START. If the
error persists, enter a punch in
row 9 of column 3 to override

the checksum.

A-42

Table A-7. System Loader Error Messages (Cont.)

Error

Code

Meaning

Recovery

L16

The last program deck before
the *CCEND card did not con-

tain an end-of-program card

(type F).

2. To abort the loading of the
program that caused the error,
bypass the remaining records and
continue with the next program or

control card in the system deck.

1. Correct the error. Then:

e For an absolute program,
plaCe the entire program
deck, preceded by the
appropriate *LDDSK card,
in the card reader input
hopper and press reader
START and console STEP.

e For a relocatable program,
place the entire program
deck in the card reader
input hopper and press
reader START and console
STEP.

2. To bypass the‘program deck,
skip to the next header or control
card, place the rest of the cards
in the card reader input hopper,
and press reader START and
console STEP,

A-43

Table A-7. System Loader Error Messages (Cont.)

Error
Code

Meaning

Recovery

L17

L18

L19

Either a type A card is out of

order in an absolute deck or

the header card is missing

from the deck.

Illegal back origin encountered.

*DEDIT card error.

Either an

invalid core size (must be 08,

16, or 32) was specified or too

great a buffer size was speci-

fied (maximum 199).

Place the proper *LDDSK card,
followed by the corrected pro-
gram deck, in the card reader

input hopper and press reader

START and console STEP.

1. To recover: reassemble,
place the *LDDSK card and
reassembled program deck in
the card reader input hopper,
and press reader START and
console STEP.

2. To continue without corrective
action: Bypass the remaining
cards of the program, place

the remaining cards to be loaded
in the card reader input hopper,
and press reader START and
console STEP,

Correct the *DEDIT card, place
it in the card reader input hopper,
and press reader START and
console STEP.

A-44

Table A-7. System Loader Error Messages (Cont.)

Error
Code

Meaning

Recovery

L20

L21

L22

L23

Either there was no LET on

disk or the *DEDIT card was

read before LET was loaded

on disk.

Either there is an illegal
card type in the program

deck or the header card or

type F card is missing from

the subroutine deck.

I0U subroutine is missing.

DCOM not found on disk.

Place the *LDDSK. LET card, a
valid LET deck, a*LDDSK. subr
card, and the *DEDIT card in the
card reader input hopper. Press

reader START and console STEP.

Same procedure as for L16.

Place the *LDDSK. subr card
followed by the I0U subroutine
deck and the *DEDIT card in the
card reader input hopper and
press reader START and console

STEP.

Place the *LDDSK.DCOM card,
the DCOM deck, and the *DEDIT
card in the card reader input
hopper. Press reader START
and console STEP. .

A-45

Table A-7. System Loader Error Messages (Cont.)

Error

Code Meaning L Recovery

L24 The cards in the program deck | Ensure proper sequencing of

preceding the *LDDSK card program deck: header card,
were not in the proper data card, and EOP card. To
sequence, continue, follow same procedure
as for L16.
L25 An IAC code has not been Same procedure as for L02.

assigned to the timer, disk,
card reader, card punch, line

printer, or console interrupt.

L26 Either there is a sequence " | Same procedure as for L16.
number error on a type A
binary card or a type A card

is missing or out of sequence.

A.7 NONPROCESS MONITOR SUPERVISOR ERROR MESSAGES
The Supervisor error messages are identified by a three-character symbol,
Nxx (N specifies the Supervisor messages and xx is a two-digit sequence

number). These messages are listed in table A-8.

A-46

Table A-8. Supervisor Error Messages

Error Message

Meaning

NO1 ILLEGAL MTR CD

NO02 LDR CD ERROR

N03 NOT CONTROL CD

N04 READY READER

N05 NAME ERROR

A card has a slash in column 1 but does not con-
tain a mnemonic acceptable to the Nonprocess
Monitor Supervisor (e.g., //DUMP). The no
execute indicator (INOEX) is set. The job will be

assembled and stored but will not be executed.

A loader card violates the specifications for its
card type. The erroneous card is printed imme-
diately following the N02 message. The no load
and the no execute indicators are set. The job

is assembled and stored, but it will not be loaded

' as part of the core load nor will it be executed.

The Supervisor has just encountered a card that

it cannot identify; i.e., column 1 does not contain
a slash (/) or an asterisk (*). The card image

is printed immediately after the N0O3 message,
and cards are bypassed until the next control card

is read.

The Supervisor could not read from the card
reader. After printing this message, the Super-

visor loops until the reader is not busy and ready.

A //FOR, //ASM, or //XEQ control card con-
tains a name thatis not in a valid format. The
erroneous card is printed immediately following
the NO5 message. The no execute indicator is
set. If the card is a //FOR or //ASM, the no

load indicator is also set.

o A-47

Table A-8.

Supervisor Error Messages (Cont.)

Error Message

Meaning

N06 LDR CD
SEQUENCE

N07 LABEL FORMAT

NO8 ILLEGAL LDR CD

N09 NO LOAD

N10 NO EXEC

N11 LABEL ERR DRx

The Supervisor has encountered a valid but
unnecessary loader control card (e.g., an

*INCLD without a preceding //XEQ), or else

~ Nonprocess Monitor control records contain a

control card that is applicable only to process

jobs (e.g., an *RCORD following a //XEQ).

The JOB card contains an erroneous pack label
specification field. This error can be the result
of trailing blanks or an alphabetic character in a

numeric field. The job is aborted.

A card has an asterisk in column 1 but does not
contain a mnemonic acceptable to the Nonprocess

Monitor Supervisor (e.g., *ASM).

The no-load indicator has been set, and a store
store core image operation (*STORECI) is
requested. Although the loader is called, the

store operation will not be performed.

The no-execute indicator (INOEX) has been set,
and program execution is requested. Although

the loader is called, the program will not be

executed.

The label that appe‘ars on disk pack x does not
match the label specified for that pack on the
JOB card. The job is aborted.

A-48

Table A-8.

Supervisor Error Messages (Cont.)

Error Message

Meaning

N12 TEMP DR ERR

N13 FLET ERR DRx

N14 NO LET/FLET
DRx

N15 *CCEND MISSING

N16 PGM NOT IN FLET

Either the temporary drive is not in use or the
drive number selection is not valid for the system.

The job is aborted.

The FLET entry for the disk pack on drive x
contains a drive number that does not match the
drive on which the pack is mounted. The job is

aborted.

Either drive x has no LET/FLET table or the
table is not properly constructed. The job is

aborted.

A monitor control record has been encountered

before processing of loader control records was

completed (i.e., before an *CCEND card was

read). The loader will not be called; therefore,
loading or execution will not occur. The monitor

control record will be processed.

The execution of a core image program has been
requested via an XEQ card; however, the FLET
table of the disk pack on the specified drive con-
tains no entry for that program. If no drive is

indicated on the card, all drives are searched.

A-49

Table A-8.

Supervisor Error Messages (Cont.)

Error Message

Meaning

N17 NOT NP CORE LD

N18 [ASM/FOR] NOT
ON DISK

The execution of a core image program has been
requested via an XEQ card. Although a FLET
entry has been located, the program is not a
nonprocess core load. The no load and no execute
indicators are set, and the Supervisor reads the

next control card.

Although the specified program (ASM is
Assembler; FOR is FORTRAN) has been removed
from the system disk through a DUP DEFINE
REMOYV function, that program has been called
by a monitor control record. The erroneous
control record is printed immediately following
the N18 message. The no execute indicator is
set, and the Supervisor reads the next control

card.

A.8 CORE LOAD BUILDER ERROR MESSAGES

The format of error messages produced by the Core Load Builder is the same

as that for Skeleton Builder error messages:

Rxx lprog rout reinc LEV.y

where
R identifies Core Load Builder message.
XX sequence number; 00 = xx < 1F,
lbrog name of the program being relocated.
rout routine specified within lprog.
reinc relocation increment of rout from lprog.

A-50

LEV.y denotes severity 1evel of the error:

y = 0 - minor error/warning. Disk loading and/or
execution is not suppressed.

y =1 - moderate error. Although disk loading proceeds,
execution is suppressed if the operation was
initiated by a //XEQ control record, Core loads
built with a level 1 error may be executed via
*STORECI and //XEQ FX procedures.

y = 2 - severe error. Disk loading and execution are
suppressed. If specified, the core load map will
be printed. A level 2 error indicates a problem
in a subroutine.

abort. Core Load Builder terminates its operations

<
I
34}
1

immediately and transfers control to the Supervisor
or to DUP. A level 3 error indicates a problem in

a mainline program.

The Core Load Builder error messages are listed in table A-9,

Table A-9. Core Load Builder Error Messages

Error Message Meaning Recovery
R01 LEV.3 A load table overflow has 1. As appropriate,
occurred. This situation decrease number of sub-
causes immediate termi- routines, files, and/or

nation of Core Load Builder |in-core interrupt routines.
operation. 2. Perform core load
build operation off-line

under TASK.

A-51

Table A-9. Core Load Builder Error Messages (Cont.)

Error Message

Meaning

Recovery

RO2 Iprog
LEV.2,3

R0O3 rout LEV.2

R04 Iprog LEV.2

RO5 lprog rout
reinc
LEV.0,1,2

R06 lprog rout
reinc LEV.2

A disk format error has
been found in program

Iprog.

An entry for relocatable
program rout cannot be

found in LET on disk.

A subroutine that is
specified as a LOCAL
is not a type 3 or type 4.

Within program lprog the
call to TSS subroutine
rout is invalid for the type
of core load being built.
The CALL statement is at

relative location reinc of

Iprog.

The required core ioad
name in the list of the TSS
program sequence change
CALL to rout at relative
location reinc of lprog
does not occur in an |
EXTERNAL statement in
program lprog.

Correct the program on

disk.

. 1. Delete the reference

to rout from the core load.
2. Assemble or compile
program rout and enter it

in LET.

Delete the subroutine
name from the LOCAL
control card and rebuild

the core load.

Correct the CALL

statement.

Correct lprog.

A-52

Table A-9. Core Load Builder Error Messages (Cont.)

Error Message

Meaning

Recovery

RO7 lprog llbb
LEV.2

R08 LEV.2

R09 LEV.2

ROA lprog LEV.2

ROB novfl LEV. 2

The in-core interrupt
subroutine lprog has been
designated to service llbb,
which has previously been
assigned to another
in-core interrupt

subroutine.

The disk drive that was
designated for temporary
system usage does not
contain enough nonprocess
working storage space to

build the core load.

The maximum length of

255 words (85 entries) for

the transfer vector (ETV)

has been exceeded.

Program lprog has a
back-origin that would
overlay part of the
skeleton or core load

tables.

The sum of the lengths of
the core load and COM-

| MON exceeds the length of

variable core.

1. Change the temporary

Correct the assignment

of in-core interrupts.

drive to another drive.
2. Delete programs from |
the user's area to provide
sufficient nonprocess

working space.

Decrease the number of
LIBF subroutines
included within the core

load.

Correct the lprog
back-origin.

Reduce the size of the core
load and/or COMMON by
the number of words

specified in the message

by novfl.

A-53

Table A-9. Core Load Builder Error Messages (Cont.)

Error Message

Meaning

Recovery

ROC Iprog iaccd
LEV.0

ROD Iprog rout
reinc LEV.2

ROE lprog LEV.2

ROF lprog LEV.1

The interrupt service sub-
routine lprog contains an
interrupt service entry
point, defined for IAC
code (iaccd), which is not
in the system master
branch table. The IAC
number (iaccd) is

hexadecimal.

In program lprog is an
invalid reference to sub-
routine rout at relative
location reinc; e.g., a
LIBL or CALL reference
to a core load when it

should be PNT.

The relocatable program
Iprog was not assembled
or compiled within the

TSS system.

The integer size or real
precision indicated for
program lprog does not

agree with that indicated

for previously loaded pro-

grams in the core load.

1. Correct the IAC code.
2. Reload the system.

3. If the device that
would cause the interrupt
is not in the system,

ignore the message.

Correct the reference.

Using the TSS system,
assemble or compile

program lprog.

Correct the size or

precision.

A-54

Table A-9. Core Load Builder Error Messages (Cont.)

Error Message

Meaning

Recovery

R10 drvno secno
‘ LEV.1

R11 filnd recno
LEV.0O

R12 LEV.3

R13 rout LEV.2

The accumulated length of
DEFINED FILES exceeds
(by secno) the amount of
working storage (either
nonprocess or process
working storage) currently

availabe on drive drvno.

In order not to exceed the
area of the equated data
file (from *FILES control
record), the define file
number (filno) and the
number of records (recno)

have been truncated.

The nonprocess system
does not allow building of
an interrupt, combination,
or process-mainline core

load.

The required core image

data file rout cannot be

‘ found in FLET on disk.

1. Redefine file lengths.
2. Delete programs from
the user area to provide

sufficient working storage.

1. Enlarge the equate file,
2. Adjust the *DEFINE
FILES statement in the

main program.

Execute skeleton build
procedure before building

the core load.

Use DUP to allocate the
named core image area

on disk.

A-55

Table A-9. Core Load Builder Error Messages (Cont.)

Error Message

Meaning

Recovery

R14 Iprog LEV.2

R15 lprog LINK
LEV.2

R16 lprog rout
LEV.3

RE1 LEV.3

The INSKEL area defined
for the system has been
exceeded by the amount of
INSKEL COMMON used by
program lprog.

Program lprog, built
under the XEQ function,
contains a CALL LINK
statement, which is

invalid.

A LOCAL subroutine
(rout) called another sub-
routine designated as a
LOCAL in a different

group.

An attempt was made to
build a core load under an

incomplete system.

1. Reduce the amount of

INSKEL COMMON used

by Iprog.
2. Redefine the size of
INSKEL area. This pro-

cedure requires rebuilding
the system and all pre-

viously built core loads.

Use the *STORECI
function to build all links

of the chain.

1. Change the calling
sequence.

2. Change the designation
of the LOCALSs on the

control cards.

Build an off-line or

on-line system.

A.9 COLD START NAME CARD ERRORS

The error codes produced during the processing of a cold start name card are

listed in table A-10.

A-56

Table A-10. Cold Start Name Card Error Codes

Error Meaning
Code
1 .The cold start name is incorrect (*CLDST).
2 Illegal first character of initial core load name.
3 Column 7 is not blank.
4 Column 13 is not blank.
5 Column 15 is not blank.
6 Column 17 is not blank.
7 Column 19 is not blank.
8 Column 21 is not blank.
9 Column 23 is not blank.
10 Either an incorrect disk logical drive assignment was given or the
drive is not on-line.
11 Either the core load name was not in FLET or the drive has not

been assigned to the system.

To recover from error codes 1 through 9, follow this procedure:

1.
2.

3
4.
5

Remove fhe cold start name card from the reader.
Correct.the error,

Place fhe corrected name card in the reader.
Ready the reader.

Press cohsole STEP.

To recover from errors 10 and 11, reload the cold start deck.

A-57

A.10 SYSTEM DIRECTOR EAC ERROR MESSAGES
The System Director EAC error messages have the format:
* exx tt.ttt ac-m prog loc
where
* an asterisk indicates a process core load in core. A blank
indicates a nonprocess core load in core.
c a code letter to designate the type of error:
= FORTRAN
= general input/output

= mask
process input/output

= Queue

miscellaneous

i

HKOHWE"H
i

XX a two-digit number denoting the classification of the error.

tt, ttt time, in thousandths of an hour.

ac-m the first two characters (ac) identify the area code for the
associated I/0 device; the third character (m) is a modifier
and is applicable only where there is more than one device
for that area code.

prog name of the program in core at the time the message is
produced. This program may or may not be the one that
originated the error condition.

loc location of the call leading to the error.

The System Director EAC error codes and their meanings are listed in

table A-11.

A-58

Table A-11. System Director EAC Error Codes

Code

Meaning

INTERNAL ERRORS

MLTP
EAC

996

997
998
999

USER E

An error has occurred while EAC was processing a previous error,
Cold start required

Channel Address Register check error. User is given the option to
RELOAD (if error is in skeleton), RESTART (if error is in variable
core, abort nonprocess job; or execute user's restart core load for
process job), or COLD START (required if EAC is unable to reload
system).

Operation code violation. See code 996 for options,

Storage protect violation. See code 996 for options,

Parity error. See code 996 for options.

RROR TYPE CODES FOR DP I/0

101
102
103
104
105
106
107
108
109
110
I11
I12
113
114
I15

Parity error

Storage protect violation
Illegal CALL

Not ready

//blank card

Feed check

Read-punch check

Data overrun

Write select

No print response -
Data error

Invalid message on disk
File protect error

Tape error

Excessive tape errors

A-59

Table A-11. System Director EAC Error Codes (Cont.)

Code Meaning
116 End of tape
117 Invalid call to error routine
118 No response from disk
119 Invalid disk address

USER ERROR TYPE CODES FOR PROCESS 1/0

P01
P02
P03

- P04

P05

Parity data or command reject
Storage protect violation
Illegal CALL

Parity control

] Overlap conflict

USER ERROR TYPE CODES FOR QUEUING

Qo1
Q02
Q03

Error option is zero; call ignored
Error option is not zero; no lower priority in the queue

Queue entry replaced by new CALL QUEUE

USER ERROR TYPE CODES FOR FORTRAN

F87
F8s8
F89
F90
Fo1
F92
F93
F94
F95
F96

Illegal unit reference for unedited I/0

Read list exceeds length of write list

Record does not exist for read list element

Illegal address computed in an indexed store operation
Illegal integer variable used in a Computed GO TO statement
Disk file not defined

Disk record too large, zero, or negative

Input record is in error

Range of numerical values is in error

Output field too small to contain the numbers

A-60

Table A-11. System Director EAC Errof,Codes (Cont.)

Code Meaning

F97 Illegal unit reference for nondisk I/0
F98 Requested record exceeds allocated buffer

F99 Working storage area insufficient for defined files

USER ERROR TYPE CODES FOR MASK ROUTINES

Mo1 Illegal CALL RESMK statement
Mo02 Illegal CALL UNMK statement

USER ERROR TYPE CODES FOR PROGRAM SEQUENCE CONTROL

Xo01 Illegal CALL BACK statement

X02 Interrupt level error

X03 Core load not loaded on disk

X04 Restart core load not loaded on disk

A-61

APPENDIX B — CALLING SEQUENCES FOR SYSTEM ROUTINES

The routines described in this appendix are arranged in alphabetical order by

mnemonic:
Mnemonic Paragraph Mnemonic Paragraph
BACK B.1 OPMON B.13
CHAIN B.2 QIFON B.14
CLEAR B.3 QUEUE B.15
CLOCK B.4 RESMK B.16
COUNT B.5 SAVMK B.17
DPART B.6 SETCL B.18
ENDTS B.7 SHARE B.19
EXIT B.8 SPECL B. 20
INTEX B.9 TIMER B.21
LEVEL B.10 UNMK B.22
LINK B.11 UNQ B.23
MASK B.12 - VIAQ B.24

B.1 RESTORE SAVED CORE LOAD - BACK
Calling Sequence:
FORTRAN: CALL BACK
ASSEMBLER: CALL BACK

Operation: The BACK routine checks the indicator set by the SPECL routine
(paragraph B. 20) to determine if a core load has been saved in the special save
area. If a mainline core load has not been saved, an error will result (see
summary of system error messages in appendix A). If a core load has been
saved, that core load is restored to variable core. Execution of the restored

core load continues at the statement following the CALL SPECL statement.

B.2 EXECUTE PROCESS MAINLINE CORE LOAD - CHAIN

Calling vSequence: ‘
FORTRAN: CALL CHAIN(NAME)
ASSEMBLER: CALL CHAIN
CALL NAME

where

name - the name of a process mainline core load as it exists in FLET.

Operation: The call to the CHAIN routine terminates the present mainline core
load. The named process mainline core load is loaded and executed. No refer-

ence to the process mainline queue is made.

B.3 CLEAR RECORDED INTERRUPTS - CLEAR

Calling Sequence:

FORTRAN: CALL CLEARM, L sy Igy oo, L, 1)

} 1’ 2’ n’ n
ASSEMBLER: CALL CLEAR
DC M
DC L,
1
DC I
|
DC value
Li DC value
Ii DC value
where
M - an integer value specifying the number of L. and I parameters

to follow; if M is zero, all indicators are cleared.
L - interrupt level or indicator.T '
- PISW bit position indicator or COUNT (paragraph B.5)

indicators .T

TThe parameters L and K for QIFON (paragraph B. 14) for acceptable combinations
of the L and I parameters.

B-2

Operation: The CLEAR routine enables the user to clear, selectively, the

recorded interrupt indicators.

B.4 READ CLOCK - CLOCK

Calling Sequence:
FORTRAN: CALL CLOCK(])
ASSEMBLER: CALL CLOCK
DC I
I DC 0

Operation: The CLOCK routine sets the integer expression referenced by the

calling sequence to the current time. I is set to an integer value (0 =1 = 239991 0),

representing hours and thousandths of hours multiplied by 1000,

B.5 SET PROGRAM INTERVAL TIMER - COUNT

Calling Sequence:

FORTRAN: CALL COUNT(S,T,N)
ASSEMBLER: CALL COUNT
DC S
DC T
DC N
] DC value
T DC value
N DC value
where
S - number of the count subroutine to be executed when the

specified time elapses; 0 =S =31.
T - program interval timer tobe set; 1 =T =<9,

N - number of intervals to which T is set.

Operation: The COUNT routine is identical to the TIMER routine except that

COUNT uses software timers rather than hardware timers.

B.6 END COMBINATION CORE LOAD - DPART

Calling Sequence: /

FORTRAN: CALL DPART
ASSEMBLER: CALL DPART

Operation: The CALL DPART statement is used as the last logical statement of
a combination core load. The DPART routine checks the system level indicator
to determine if the combination core load that called it is presently executing
és a process mainline or interrupt core load. If the level indicator specifies
that the mainline level is currently executing, the CALL DPART statement is
executed as a CALL VIAQ statement (paragraph B.24). If an interrupt level is
specified by the level indicator, the CALL DPART statement is executed as a
CALL INTEX statement (paragraph B.9).

B.7 END TIME-SHARE OPERATION - ENDTS

Calling Sequence:
FORTRAN: CALL ENDTS
ASSEMBLER: CALL ENDTS

Operation: This routine is used by interrupt programs to set the time-share
timer to zero. A CALL ENDTS statement has no effect unless a time-sharing

operation is currently underway.

Example: An INSKEL interrupt servicing subroutine (ISS) senses a process
condition to be serviced by a process mainline core load named CL009. Part

of the ISS coding might be as follows:

CALL QUEUE(CLO009, 1, 0) (see paragraph B.15)
CALL ENDTS
CALL INTEX (see paragraph B.9)

Time-sharing always continues until the time-share timer has been decremented
to zero. If the ISS mentioned above had interrupted a time-sharing operation
(assembly, ‘compilation, or execution of a nonprocess core load), that operation
would be terminated the next time Timer C was updated, since Timer C is used
to update the time-share timer. The Nonprocess Monitor, recognizing that the
time-share interval was over, would save the nonprocess job in the nonprocess

save area of the disk.

The last process mainline core load is restored, and control is given to its
VIAQ routine (paragraph B.24). The VIAQ routine finds core load CL009 in the

queue, so that core load is brought into core and executed.

If the CALL ENDTS statement had not been used, the time-sharing operation
would have continued for the remaining time in the time-share timer. The
time-sharing operation will be automatically continued the next time a CALL -

VIAQ statement is executed and the queue is empty.

B.8 END NONPROCESS CORE LOAD - EXIT

Calling Sequence:
FORTRAN: CALL EXIT
ASSEMBLER: CALL EXIT

Operation: The EXIT routine is referenced by nonprocess core loads. It termi-
nates the execution of the present nonprocess core load and transfers control
to the Nonprocess Monitor, which reads the next card in the nonprocess job

stream.

B-5

B.9 EXIT TO MASTER INTERRUPT CONTROL MIC) - INTEX

Calling Sequence:
FORTRAN: CALL INTEX

ASSEMBLER: CALL INTEX

Operation: The INTEX routine returns control to MIC on interrupt exit. It can

be used only in interrupt core loads or INSKEL interrupt subroutines.

B.10 INITIATE PROGRAMMED INTERRUPT - LEVEL

Calling Sequence:

FORTRAN: CALL LEVEL(Q)
ASSEMBLER: CALL LEVEL
DC I
I DC value
where
I - an integer expression specifying an interrupt level;
0=1=23.

Opération: The LEVEL routine initiates a programmed interrupt on the interrupt
level specified by the value of the integer (I) designated in the calling sequence.
The interrupt will be honored as soon as these two conditions exist:

e The requested level is unmasked.

e All higher priority levels have been serviced.

B.11 EXECUTE A NONPROCESS CORE LOAD - LINK

Calling Sequence:
FORTRAN: CALL LINK(NAME)
ASSEMBLER: CALL LINK
CALL = NAME

where
NAME - the name of a nonprocess core load in the core load (FLET)
area. If the FORTRAN calling sequence is used, NAME
must appear in an EXTERNAL statement.

Operation: A call to the LINK routine terminates the present nonprocess core
load. The nonprocess core load named in the calling sequence (NAME) is loaded
. and executed. That nonprocess core load must have been built to reside in the

core load (FLET) area prior to the execution of a CALL LINK statement.

B.12 SET SYSTEM MASK REGISTER - MASK

Calling Sequence:

FORTRAN: CALL MASK(MSK1, MSK2)
ASSEMBLER: CALL MASK
| DC MSK1
DC MSK2
MSK1 DC /xxxX
MSK2 DC /XXXX
where
MSK1 - two integer variables specify the bit pattern used to set the
MSK2 } system mask register. Bits 0 through 13 of MSK1 are used

to set the mask status of interrupt levels 0 through 13.
Bits 0 through 9 of MSK2 are used to set the mask status
of interrupt levels 14 through 23. Bits 14 and 15 of MSK1
and bits 10 through 15 of MSK2 are not used.

Operation: The MASK routine uses the bit pattern of the two specified integer
variables to set the system mask register. If the bit corresponding to any level
isset (i.e., is the digit 1), all interrupts associated with that level are inhibited.
If the bit corresponding to any level is not set, the status of that level is not

affected. Both parameters are required, even when the system is equipped

with fewer than 14 levels.

Example: In the following coding sequence the call to the MASK routine will
mask levels 1 through 3, 5 through 13, and 18 through 23. The mask status of
levels 0, 4, and 14 through 17 will not be changed.

CALL MASK

- DC H77FF

DC HOFFF
H77FF DC /TTFF Mask Pattern: 0111 0111 1111 1111
HOFFF DC /OFFF Mask Pattern: 0000 1111 1111 1111

If the system were equipped with only 6 levels (i.e., 0 through 5), the bits in
the mask words corresponding to levels 6 through 23 would have no effect.

However, the second mask word would still be required by the calling sequence.

B.13 RESET OPERATION MONITOR - OPMON

Calling Sequence:
FORTRAN: CALL OPMON
ASSEMBLER: CALL OPMON

Operation: The OPMON routine is used to reset the Operations Monitor (stall

alarm).

B.14 QUEUE IF INDICATOR ON - QIFON

Calling Sequence:

FORTRAN: CALL QIFON(NAME, I, L, K, J)
ASSEMBLER: CALL QIFON
CALL NAME
DC I
DC L
DC K
DC Jd
I DC value
J DC value
L DC value
K DC value
where
NAME - the name of a process mainline core load, as it exists in

FLET, to be placed into the queue.
I - the priority with which the named core load is to be placed

in the queue; 1 =1 =32767.

L, K - interrupt reference combinations:
L K Meaning
0-23 0-15 Level and bit; process
interrupts
0-23 Any negative Programmed interrupts
number
Any negative 0-31 Programmed timer (count)
number subprogram number
J - error parameter; same as parameter J for CALL QUEUE

statement (see paragraph B.15); 0 = J = 32767.

Operation: The QIFON routine tests a recorded intérrupt indicator, as deter-
mined by the L and K parameters in the calling sequence. A recorded interrupt

indicator is set when a process interrupt, a programmed interrupt, or a

programmed timer interrupt occurs, and the required servicing subroutine

is not in core at the time the interrupt is received. This procedure does not

apply to interrupts that have associated interrupt core loads assigned to them.

If the indicator specified by the L and K parameters is set, the process main-

line core load named in the calling sequence is placed in the queue as a delayed

servicing mechanism. The L and K parameters are interpreted as follows:

1. If both parameters are positive, L indicates the level, and K indicates

the bit of an external process interrupt.

2. If Kis negative, L indicates the level of a programmed interrupt.

3. 1If L is negative, K indicates the number of a subroutine as specified in

a CALL COUNT statement (paragraph B.5) which was not in core when

the programmed timer interval elapsed.

Requirements: The NAME, I, and J parameters for the CALL QIFON statement

are identical to the NAME, I, and J parameters for a CALL QUEUE statement

(paragraph B.15) and must conform to the same restrictions.

B.15 QUEUE A CORE LOAD - QUEUE

Calling Sequence:

FORTRAN: CALL QUEUE(NAME, I, J)
ASSEMBLER: CALL QUEUE
CALL NAME
DC I
DC J
I DC value (priority)
J DC value ' (errork option)
where
NAME - the name of the process mainline core load to be placed in

the process mainline queue.

B-10

I - the execution priority to be associated with the queue entry;
1 =1 =32767 (highest priority is 1; lowest priority is 32767).
J - error option if queue is full:
J=0 If queue is full, output error message
to EAC printer; then ignore call.
1=J=32766 If queue is full, replace the lowest
priority entry with this entry. Do
not replace any entry with a priority
number less than the value of J. If
no replaceable entry can be found,
execute a RESTART error recovery
procedure.
J = 32767 If queue is full, execute a RESTART

error recovery procedure.

Operation: The QUEUE routine places an entry into the process mainline queue,
based on the core load named in the calling sequence. The same core load cannot
be entered into the queue twice with the same priority. The second call is
ignored. The same core load can be placed into the queue with different priori-
ties. If two different core loads are entered with the same priority, the VIAQ
routine (paragraph B.24) will execute the core load that was placed in the queue

first.

Requirements: It is the user's responsibility to ascertain that the core load

named in the calling sequence is a process mainline core load and that the core
load has been built to reside in the FLET area before the CALL QUEUE state-

ment is executed.

When applicable, the RESTART procedure will consist of executing the restart
core load associated with the process mainline core load which is currently in

VCORE or which last occupied VCORE.

B-11

If the FORTRAN calling sequence to the QUEUE routine is used, the name of the
core load to be placed in the queue must appear in an EXTERNAL statement for
the program.

B.16 RESTORE SYSTEM MASK REGISTER - REMSK

Calling Sequence:

FORTRAN: CALL REMSK(, J)
ASSEMBLER: CALL REMSK
DC I
DC J
I DC /XXXX
J DC /XXXX
where
I - two integer variables that specify the status levels to be
Jd] masked. A 1 in a bit position causes the corresponding

level to be masked; a 0 causes the corresponding level

to be unmasked.

Operation: The REMSK routine is normally used with the SAVMK routine
(paragraph B.17). By referencing the same parametei's, the REMSK routine
will set the system mask to the state detected by SAVMK. REMSK uses bits
0 through 13 of the first parameter (I) to set the mask status of levels 0
through 13 and bits 0 through 9 of the second parameter (J) to set the mask
status of levels 14 through 23.

B-12

B.17 SAVE SYSTEM MASK REGISTER - SAVMK

Calling Sequence:

FORTRAN: CALL SAVMK(, J)
ASSEMBLER: CALL SAVMK
DC I
DC J
I DC 0
J DC 0

Operation: The SAVMK routine records the status of interrupt levels 0 through 13
- in bits 0 through 13 of the first parameter (I) and the status of levels 14 through 23
in bits 0 through 9 of the second parameter (J). After the routine has been exe-
cuted, a 1 in a bit position indicates that the corresponding level is currently

masked; a 0 indicates that the corresponding level is currently unmasked.

B.18 SET SYSTEM REAL-TIME CLOCK - SETCL

Calling Sequence:

FORTRAN CALL SETCL(D)
ASSEMBLER: CALL SETCL
DC I
I DC value
where
I - any integer value in the range 0 <1 =23999

10°

Operation: The SETCL routine sets the system real-time clock to the value of
the variable specified in the calling sequence. This parameter specifies the
time in hours and thousandths of hours, multiplied by 1000; for example,

6:00 a.m. would be expressed as 06000, or 11:30 p.m. as 23500.

B-13

B.19 INITIATE TIME-SHARING OPERATION - SHARE

Calling Sequence:

FORTRAN: CALL SHARE(])
ASSEMBLER: CALL SHARE
DC I
I DC value
where
I - an integer expression designating the number of time

intervals to be allowed for nonprocess program operation.

' Operation: The SHARE routine is used by process mainline core loads to
initiate a time-sharing operation for a specific time interval. The value of 1
determines the duration of the time-sharing interval in units of the programmed
timer base. Execution of the CALL SHARE statement suspends the execution of
the mainline core load which called it until the interval has elapsed or until a

CALL ENDTS statement (paragraph B.7) is executed from an interrupt program.

B.20 SPECIAL LINKAGE - SPECL

Calling Sequence:
FORTRAN: CALL SPECL(NAME)
ASSEMBLER CALL SPECL
CALL NAME

where
NAME - the name of the process mainline core load that is to be

executed via the special linkage routine.

Operation: A call to the SPECL routine initiates the following sequence of
operations:
1. All variable core is saved in the special save area on the disk (a

special save area must have been designated at system generation time).

B-14

2. An indicator is set to inform the Skeleton Executive that a core load
has been placed in the special area.

3. The core load named in the calling sequence is loaded and executed.

Requirements: The core load named in the calling sequence must have been

built to reside in the core load (FLET) area. If the FORTRAN calling sequence
is used, NAME must appear in an EXTERNAL statement.

B.21 SET INTERVAL TIMER - TIMER

Calling Sequence:

FORTRAN CALL TIMER(NAME, I, T)
ASSEMBLER: CALL TIMER
DC NAME
DC I
DC T
NAME DC address of subroutine NAME
I DC value
T DC value
where
NAME - identifies the program to be executed after the specified

time interval expires.

I - identifies the interval timer: (1 or 2).
1 = timer A
2 = timer B
T specifies the number of intervals to which I is set (i.e.,

the number of timer intervals to elapse before execution).

Operation: The TIMER routine is used to obtain extremely accurate delays in
the execution of a programming sequence. It should be used only for short time
intervals because it is on a high level. Subroutine NAME must be in core when

the timer interrupt is recognized.

B-15

B.22 UNMASK INTERRUPT LEVELS - UNMK

Calling Sequence:

FORTRAN: CALL UNMK(UNMK1, UNMK?2)
ASSEMBLER: CALL UNMK
DC UNMK1
DC UNMK2
UNMK1 DC /XXXX
UNMK2 DC /XXXX
where
UNMK1 " - two integer variables specify the bit pattern used to unmask
UNMK2] the system interrupt levels. Bits 0 through 13 of UNMK1

correspond to levels 0 through 13; bits 0 through 9 of
UNMK2 correspond to levels 14 through 23,

Operation: The UNMK routine allows interrupts on the levels specified by the
two variables designated in the calling sequence., A 1 in any bit position causes
the corresponding level to be unmasked; a 0 bit allows the corresponding level
to remain unchanged. Both parameters are required, even when the system is

equipped with fewer than 14 interrupt levels.

Example: In the following coding sequence the MASK statement (paragraph B. 12)
will mask levels 1 through 3, 5 through 13, and 18 through 23. The UNMK
statement will unmask levels 1, 2, 6 through 11, and 14 through 23.

B-16

CALL
DC
DC

CALL
DC
DC

H77FF DC
HOFFF DC
UN1 DC
UN2 DC

MASK
H77FF
HOFFF

/TTFF
/OFFF
/63F0
/FFFF

Mask Pattern: 0111 0111 1111 1111
Mask Pattern: 0000 1111 1111 1111
Bit Pattern: 0110 0011 1111 0000
Bit Pattern: 1111 1111 1111 1111

After these calls are executed, levels 0 and 4 would remain unchanged; levels 3,

5, 12, and 13 would be masked; and, all other levels would be unmasked.

If the system were equipped with only 6 levels (i.e., 0 through 5), the references

in the calling sequences to levels 6 through 23 would have no effect. However,

the second parameter would still be required by the calling sequence.

B.23 REMOVE CORE LOAD FROM QUEUE - UNQ

Calling Sequence:
FORTRAN:
ASSEMBLER:

CALL
CALL
CALL
DC

DC

UNQ(NAME, 1)
UNQ
NAME

value

B-17

where

NAME - the name of the core load to be removed from the queue.
1 - the execution priority used when the core load was entered

into the queue; 1 = I =32767.

Operation: The named core load is removed from the queue. If the named
core load is not in the queue or if it is not currently in the queue with the

specified execution priority (I), the call is ignored.

Requirements: If the FORTRAN call is used, the name of the core load must

appear in an EXTERNAL statement.

B.24 EXECUTE A QUEUED CORE LOAD - VIAQ

Calling Sequence:
FORTRAN: CALL VIAQ
ASSEMBLER: CALL VIAQ

Operation: The normal function of the VIAQ routine is to return control to the
System Director from a process core load. VIAQ searches the queue table and
initiates execution of the highest priority process mainline core load found. If
the queue is empty, variable core is made available for time-sharing operation.
If no time sharing is requested, the system will wait until an interrupt is

recognized.

B-18

APPENDIX C - DIFFERENCES BETWEEN TSX AND TSS

C.1 CARD INPUT/OUTPUT |

For TSS the CARDN routine must always be included in the skeleton. The
routine has been written to double buffer all card input/output. Because of
this approach, two "pusher' cards are required at the end of each deck fed

into the card reader.

This approach also poses a small problem with the Absolute Loader and System
Loader. When a card-out-of-sequence or checksum error occurs, two cards
must be removed from the card reader stacker and placed back in the card
reader hopper. After the console STEP switch has been pressed, another error
message will be printed stating that the problem has not been corrected. This
printout occurs because the next card had already been read and placed in

CARDN's core buffer. Press STEP again to continue operation.

C.2 LINE PRINTER

The TSS line printer driver PRNTN is double buffered. Because of this
buffering, the programmer need not be concerned about a buffer busy test after
a call to PRNTN. However, if a program is being written to run under control

of TSX, TSS, and DM2, the buffer busy test should be made.

C.3 DISK INPUT/OUTPUT
As far as the user is concerned, the only new feature with the disk is the ability -
to have up to ten platters on the system. The first three platters are the

system-supported drives; additional drives may be addressed through DISKN.
Since all disks are on a single data channel, simultaneous read/write opera-

tions are not allowed.

C.4 TYPEWRITER/KEYBOARD
Up to eight keyboards are allowed with TSS. With TSS read requests may be

intermixed freely with write requests. Read requests will not be honored

C-1

until all pending write requests are completed. This prevents the keyboard

from locking out the printer portion of the TTY prematurely.

C.5 SENSE SWITCHES

There are no sense switches on the GA 18/30 Computer. Therefore, any
request for data through the console must be through the data switches. The
IOCC for sensing the sense switches on the 1800 is the same as that used to

sense the status of the console TTY on the GA 18/30.

C.6 CLEARING CORE

There is no CLEAR CORE feature on the GA 18/30 Computer as there is on
the 1800. To enable the user to clear storage protect bits and set core to
zero as required by TSS, a ZAP card is provided. This is a one-card pro-
gram in IPL format. It is loaded via the IPL feature to core from the card
reader at location zero. Execution begins at core location zero. After core

has been cleared, the program comes to a WAIT.

C.7 RTR INSTRUCTIONS
The register transfer instructions on the GA 18/30 are not supported by the
TSS assembler. To incorporate these instructions in a program, convert

them to DC format.

GLOSSARY

The definitions given here are for the terms as they are used in this document.

A
absolute coding - Coding that uses instructions with absolute addresses.

Contrast with '"relocatable coding. "
ASM - See "Assembler, "

Assembler - The assembler program that is included in the Nonprocess Monitor.'

B
background processing - The automatic execution of lower priority computer
programs when higher priority programs are not using the system resources.

Contrast with "foreground processing. "

buffer - Intermediate storage area between two data processing storage or data
handling systems with different access times or formats. An interim

system to facilitate interface between two other systems.

C

cold start - The procedure of loading the Cold Start Program, whose function
is to load the Skeleton Executive into core, storage protect it, start the
real-time clock, and call the user's initial core load for execution. Thus,

this procedure places the System Director in control of the on-line system.

combination core load - A core load that can be executed as either an interrupt

or a mainline core load.

common areas - Three areas of core storage are used for FORTRAN COMMON
storage: INSKEL common, interrupt common, and core load common.

See individual definitions.

core image format - The format in which core loads are stored on disk, which
is the same form they have when they are in core storage to be executed

(i.e., linkages provided, etc.).

core load - A complete, executable programming unit, which is stored in core-
image format ondisk. It consists of a main program (interrupt, mainline,
or nonprocess), all required subroutines that are not permanently in core,
and the communications areas. Further, mainline core loads may include

in-core interrupt routines.

core load common - Located at the high-address end of core storage and
referenced only by mainline or nonprocess core loads. See also

"common areas,"

D

data processing input/output - Refers to general input/output devices, such as
printers, card readers/punches, teletypewriters, as compared with process
input/output devices. Subroutines are supplied with the TSS system that

enable the user to reference data processing I/0 devices easily.
disk - See ''magnetic disk storage."

Disk Utility Program (DUP) - A set of disk handlers (routines) included in the

Nonprocess Monitor.

DUP - See ''Disk Utility Program. "

E
EAC - See "Error Alert Control Program."

Error Alert Control Program (EAC) - One of several programs that constitute the

System Director.

exchange - A save operation followed immediately by the overlaying of VCORE

with a new core load. Also referred to as ''swapping."

F
feedback - In a control system, feedback is the signals fed back from a

controllable process to denote its response to the command signal.

Fixed Location Equivalence Table (FLET) ~ Serves as a map for the location of
core loads and data files. Each core load and data file requires at least

one entry in FLET. See also "Location Equivalence Table."
FLET - See "Fixed Location Equivalence Table. "
FOR - See "FORTRAN. "

foreground processing - The automatic execution of the programs that have been
designated to preempt the use of the computing facility; usually a '"real-time"

program. Contrast with '"background processing."

FORTRAN - The compiler that is included in the Nonprocess Monitor.

G
generate - To'produce a program by selection of subsets from a set of skeletal

coding under control of parameters. -

generator - A controlling routine that performs a generate function; e.g., core

load builder, skeleton builder.

H
hardware - The equipment or '""machinery'" used in a computer system. The
computer itself and peripheral devices as opposed to "software, ' which

denotes written information.

I
INSKEL Common - Located within the system skeleton and can be referenced by

any process or nonprocess program. See also '"common areas."

interface - In control terminology, the means used to link components in a
control system, In coinputer terminology, a common boundary between

automatic data processing systems or parts of a single system.

interrupt - To stop a process in such a way that it can be resumed.

Interrupt Common - Located at the high-address end of the interrupt core load
save area and used for interprogram communication between programs
that form an interrupt core load or between combination core loads when

they are executed on the mainline level. See also 'common areas."

interrupt core load - A program unit that resides on disk and is brought into

core to service a particular interrupt.

interrupt program - A program that is executed as the result of a particular

interrupt. Same as interrupt routine and interrupt servicing routine.

Interrupt Status Table - Specifies which interrupt routines are in core with the
current mainline core load and contains the entry address for the interrupt

routine.

interval timer - A clocking device that cycles a value contained in a word of

main storage, enabling the computer system to read elapsed time,

Interval Timer Control Program (ITC) - One of several programs that constitute

the System Director.

ITC - See "Interval Timer Control Program."

J
job - A specified group of items prescribed as a unit of work for a computer.
By extension, a job usually includes all necessary computer programs,

linkages, files, and instructions to the operating system.
L
LET - See '""Location Equivalence Table."

level work areas - Contain interrupt level instructions, MIC linkages, and work
areas. One level work area is required for each interrupt level used,

process mainline, nonprocess core load, and internal error level.

linkage - In programming, coding that connects two separately coded routines.

LOCAL subprograms - Subprograms that are read from disk into core for
execution when called by the object program. All LOCALs associated with
a program use the same area of core storage by overlapping each other as

they are called.

Location Equivalence Table (LET) - Serves as a map for supplied and relocatable
programs. Each relocatable program or subroutine stored on disk has at
least one entry in the table. An entry contains the name of the item and
location information. Each entry point in a subroutine requires an entry in
LET. All operations that involve including or deleting relocatable programs
reference LET. (Core loads and data files refer to FLET.) See also

"Fixed Location Equivalence Table."

M
magnetic disk storage - A storage device or system consisting of magnetically
coated disks, on the surface of which information is stored in the form of

magnetic spots arranged in a manner to represent binary data.
Mainline Core Load Queue Table - See ""Queue Table."

mainline program - A program that does not directly service an interrupt (i.e.,

analysis program); it executes on the lowest interrupt level.

map - To establish a correspondence between the elements of one set and those

of another set. [noun:] The listing that represents this correspondence.

mask - A pattern of characters that is used to control the retention or elimina-

tion of portions of another pattern of characters.

Master Interrupt Control Program (MIC) - One of several programs that

constitute the System Director.
MIC - See '""Master Interrupt Control Program."
N

nonprocess core load - A core load that is executed under control of the

Nonprocess Monitor.

Nonprocess Monitor - An independent programming system that operates under
the System Director in a time-sharing environment or under TASK in an
off-line situation to control the execution of supplied (i.e., FORTRAN,

Assembler, Disk Utility Routines) or user-written, nonprocess programs.

nonprocess program - A program that executes under control of the Nonprocess
Monitor and does not (normally) perform any function related to the process
under control. Such a program may be supplied (i.e., compiler or assem-

bler) or user-written (e.g., payroll application).

Nonprocess Supervisor (SUP) - One of several programs included in the

Nonprocess Monitor.

nonprocess work storage area - A temporary storage area on disk used during
the execution of nonprocess programs and extensively during Nonprocess
Monitor operations (e.g., to store the object program as it is generated by

the Assembler or compiler).

(o)
object code - Output from a compiler or assembler which is itself executable

machine code or is suitable to produce executable machine code.

off-line - A mode of operation in which the GA 18/30 Industrial Supervisory
System is not monitoring a process and, therefore, can be operated as any

general purpose computer might be.

on-line - A mode of operation in which the GA 18/30 Industrial Supervisory
System, utilizing the Time-Sharing Executive System (TSS), monitors the

process under control.

P
peripheral equipment - Equipment that is external to and not part of the central
processing instrumentation; includes such equipment as paper tape punches

and readers, disk storage units, line printers, and typewriters.

process input/output - Refers to special input/output devices that are specific
for an installation and the process to be controlled. Process input/output

subroutines are not included in the supplied routines.

process program - A program, normally user-written, that performs some
function in relation to controlling the process. There are two types of

process programs: mainline and interrupt.

process work storage area - A temporary storage area on disk used during the

execution of process programs.

Program Name Table - Consists of the name and disk address of any core loads
that are called by the current core load and the name of a core load speci-

fied for restart.

Program Sequence Control Program (PSC) - One of several programs that

constitute the System Director.

PSC - See "Program Sequence Control Program."

Q

Queue Table - The Mainline Core Load Queue Table contains the names of main-
line core loads and their respective priorities that have been queued for

future execution,

R
real time - Pertaining to the performance of a computation during the actual
time that the related physical process transpires in order that results of

the computation can be used in guiding the physical process.

- reentrant program - One that can be interrupted at any point, employed by
another user, and then resumed from the point of interruption. All supplied

routines that are required on multiple levels in TSS are fully reentrant.

relocatable program - One that has been assembled or compiled but has not

been converted into core loads.

relocate - In computer programming, to move a routine from one portion of
storage to another and to adjust the necessary address references so that

the routine, in its new location, can be executed.

restore - The operation by which the contents of a disk save area are returned

to VCORE.

S
save - An operation by which all or a portion of the variable core area is moved
to a save area on disk so that it will not be destroyed when a higher priority

operation is read into VCORE.

Skeleton Executive - The basis, or framework, of an on-line TSS system; it
must be resident in core. It consists of both supplied and user-written
routines. Synonymous with system skeleton when referring to an on-line

system.

software - Programs, routines, codes, and other written information used with

digital computers as distinguished from '"hardware, ' the equipment itself.

subroutine library - Includes the most frequently required subroutines used by

the process and nonprocess programs.
SUP - See "Nonprocess Monitor, "

System Director - That portion of the Skeleton Executive that handles all inter-
rupts, controls user-specified sequence of process control programs, and

controls the time-sharing of nonprocess programs.

system generation - The procedure of assembling, storing on disk, and pre-
paring for execution all elements necessary to constitute a TSS system for

the specific installation.

system skeleton - The permanently assigned area of core storage that contains
the framework of the system, such as programs, work areas, communica-
tion areas, and user-defined options. See also "Skeleton Executive' and

"Temporéry Assembled Skeleton. "

T
TASK - See "Temporary Assembled Skeleton. "

Temporary Assembled Skeleton (TASK) - The executive system for off-line
operation; it provides two services: it serves as the vehicle by which the
TSS system is tailored for a specific installation, and it serves as the

system skeleton for the Nonprocess Monitor's off-line operation.

time-sharing - The ability to use the computer to execute nonprocess programs
during times when the process programs are not being executed. The

Skeleton Executive retains the ability to respond to process interrupts.

Time-Sharing Control Program (TSC) - One of several programs that constitute

the System Director.
TSC - See '"Time-Sharing Control Program."
v
variable area (VCORE) - That area of core outside the system skeleton; it is

used by process and nonprocess core loads and by TSS programs such as

the Nonprocess Monitor.

VCORE - See ''variable area."

w

work area - See '"level work areas."

BIBLIOGRAPHY

GA 18/30 FORTRAN IV Reference Manual, publication no. 88A00123A

GA 18/30 Industrial Supervisory System, Programming/Operations Manual,
publication no. 88A00121A

GA 18/30 Industrial Supervisory System, Reference Manual, publication

no. 88A00026A
IBM 1130 Assembler Language (Form C26-5927)
IBM 1130/1800 Basic FORTRAN IV Language (Form C26-3715)

IBM 1800 Time-Sharing Executive System, Concepts and Techniques
(Form C26-3703)

IBM 1800 Time-Sharing Executive System, Operating Procedures (Form C26-3754)
IBM 1800 Time-Sharing Executive System, Subroutine Library (Form C26-3723)

Loudén, Robert K., Programming the IBM 1130 and 1800, Englewood Cliffs,

New Jersey: Prentice-Hall, Inc., 1967

