
REFERENCE MANUAL

DISK BASED

OPERATING SYSTEM

GENERAL AUTOMA TION, INC.

I I""" I

I I ,'II '

",

@ PRICE $10.00 GENERAL AUTOMATION, INC. _____________ ~~

88A00142A-B

REFERENCE MANUAL

GA18/30
D-ISK BASED

OPERATING SYSTEM
Technical Notice No. 1 Installed

GENERAL AUTOMATION, INC.
Automation Products Division
1055 East Street, Anaheim, California 92805 (714) 778-4800

@ 1970, General Automation, Inc.

~~L~~~~ __ --------------------
88A00142A-B

REVISION

Symbol Description Approved Date

A Programming Release

B RevisIOn Aug 70

~~L~~~~ __ ---------------8-8-A-O-O-1-4~~-i;-~

Section

1

2

Revised Dec 70

CONTENTS

Title

INTRODUCTION
1.1 General

DBOS PROCESSING
2. 1 General Information
2. 2 Control Command Input

2.2. 1 Control Command Input from the
Teletype Keyboard

2.2.2 Control Commands Input from Cards
2. 3 Control Command Listing
2. 4 Sy stem Control Command and Commentary

2.4. 1 Logical Unit Assignment
2.4.2 Job Command
2.4.3 Copy Command
2. 4 . 4 Replace Command
2.4. 5 Delete Command
2.4.6 List Directory Command
2.4. 7 Pack Directoried File Com~ard
2.4. 8 Dump Command ,I;:

2.4.9 PDump Command
2.4. 10 Program Execution Command
2.4~ 11 Processor Execution
2.4. 12 Write End-of-Data Image ($EOD)
2.4. 13 Paper Tape Segment Routine

($PREEL)
2. 5 Predefined DBOS Processors

2.5. 1 Symbolic Assembler
2. 5. 2 Fortran Compiler
2 • 5.3 Core Image Converter
2.5.4 Source Image Editor
2. 5. 5 Debug Program
2. 5. 6 Sequence/Compare Program
2.5. 7 System Generation Utility
2. 5. 8 Bootstrap Loader
2.5.9 Paper Tape Visual Header Generator

2.6 DBOS Processing Examples
2. 7 Media Data Record Formats

2 . 7 • 1 Card Data
2.7.2 Paper Tape Formats
2.7.3 Disk Formats

Page

1.1-1
1.1-1

2.1-1
2.1-1
2.1-1

2.2. 1-1
2.2.2-1

2.3-1
2.4-1

2.4.1-1
2.4.2-1
2, 4 3-1

':-.~1(. ~ , •. ~.":' •

;~Z~'4 • 4-1
2.4.5-1
2.4.6-1
2.4.7-1
2.4.8-1
2.4.9-1

2.4.10-1
2.4.11-1
2.4.12-1

2.4.13-1
2.5-1

2.5.f-l
2.5.2-1
2.5.3-1
2.5.4-1
2.5.5-1
2.5.6-1
2.5.7-1
2.5.8-1
2.5.9-1

2.6-1
2.7-1
2.7-1

2.7.2-1
2.7.3-1

i

~~L~~n~~ ____ ------------------
88A00142A

CONTENTS (continued)

Section Title Page

2.8 Establishing New Files 2.8-1
2.8.1 Reas signing Files 2.8.1-1

2.9 JOB Control from Directoried Disk File 2.9-1

3 DBOS OPERATIONS 3.1-1
3.1 DBOS Operations 3.1-1

3.1.1 Bootstrap Loading from Disk 3.1.1-1
'3. 1 .2 Console Interrupt to the Monitor 3.1.2-1
3. 1. 3 Programmed Return to Monitor 3.1.3-1
3.1.4 Program Restart Through the Monitor 3.1.4-1
3.1. 5 Manual Entry to the Monitor 3.1.5-1
3. 1 .6 Monitor Fixed Locations 3.1.6-1

1.2 Executi ve Operations 3.2-1
3.3 System Messages 3.3-1

3.3. 1 Input/Output Error Messages 3.3.1-1
3.3.2 Control Command Error Messages 3.3.2-1
3.3.'3 Prace s sing Error s 3.3.3-1

4 SYSTEM GENERATION 4. 1-1
4. 1 Introduction 4. 1-1
4.2 Console Bootstrap Procedure 4.2-1
4.3 Bootstrap Program Execution 4.3-1
4.4 System Generator Execution 4.4-1

4.4. 1 Store Monitor 4.4 1
4.4.2 Store Executive 4.4-1
4.4.3 DBOS Characteristic Definition 4.4-2
4.4.4 Store Monitor and Execute 4.4-2

4.5 Completlon of the System Generation 4. 5-1
4.6 Card Controlled System Generation 4.6-1
4.7 Paper Tape Systems 4.7-1

4.7. 1 Console Bootstrap Procedure 4.7-2
4.8 Bootstrap Program Execution 4.8-1/2
4.9 System Generator Execution 4.9-1/2
4.10 Loading the Executive Tape 4.10-1/2
4.11 DBOS Characteristics Definition 4.11-1/2
4.12 Store Monitor and Execute 4.12-1/2
4.13 Completion of System Generation 4.13-1/2
4.14 DBOS Configuration Kit 4.14-1

11 Revi sed Dec 70

~~L~~~~ ____________________ ~
88A00142A

CONTENTS (continued)

Section Title Page

5 LOGICAL INPUT/OUTPUT SYSTEM 5.1-1
5.1 General Information 5.1-1
5.2 LIO Calling Sequences 5.2-1

5.2. 1 Input/Output Request 5.2.1-1
5.2.2 I/O Request Status Check 5.2.2-1

5.3 LIO Usage 5.3-1
5.3. 1 Logical Disk Driver 5.3.1-1
5.3.2 Logical Disk Packing Driver 5.3.2-1
5.3.3 Logical Card Driver 5.3.3-1
5.3.4 Logical Line Printer Driver 5.3.4-1
5.3.5 Logical Teletype Driver 5.3.5-1
5.3.6 Logical Paper Tape Driver 5.3.6-1

6 DESCRIPTION OF I/O SUBROUTINES 6.1-1
6. 1 General 6.1.1-1

6. 1. 1 I/O Driver Organization 6.1.1-1
6.2 Basic Calling Sequence 6.2-1

6.2. 1 N arne Parameter 6.2.1-1
6.2.2 I/O List Parameters 6.2.2-1

6.3 General Format of I/O Calls 6.3-1
6.3.1 Calling Sequences 6.3-1

6.4 Bulk Storage Subroutine (BULKN) 6.4-1

Appendix

A DISK SECTOR MAP A-I
B STANDARD CHARACTER CODES B-1
C EBCDIC DECIMAL EQUIVALENCE C-l
D FORTRAN EXECUTION (RUNTIME) ERRORS D-l
E FORTRAN COMPIlATION ERRORS E-1
F DBOS LOGICAL UNIT ASSIGNMENTS F-1
G DBOS FILE NAMES AND DESCRIPTION TABLES G-1

Revised Dec 70 iii

~~L~~~~ ______________________ ~
88A00142A

1.1 GENERAL

SECTION 1
INTRODUCTION

The GA 18/30 Disk Based Operating System (DBOS) is a comprehensive, user-

oriented operating system which provides the User with the following features:

a. System Operation.

Provides efficient operations under monitor control.

Simplifies manual operations.

Reduces operator errors and job set-up time.

Provides simplified control sequences.

Allows efficient file control.

b. Job Processing.

Initiates assemblies, compilation, program check out and execution.

Assigns files and peripheral equipment.

Allocates memory.

Provides batch-processing of jobs.

c. Input/Output System

I/O drivers.

I/O interrupt control.

Data packing and unpacking.

Device independent 101 ica 1 I/O units and devices.

1.1-1

~~L~~~~ __ - ___________________ ~
88A00142A

d. Standard Processor Master Files.

Symbolic assembler.

FORTRAN

Core image converter (loading and linking program) .

Source language editor.

Debug routine.

e. Programmer/Operator Aids

Program execution by program name.

Diagnostic error mes sages.

Simplified calling sequences.

Memory dump.

Directoried files.

f. Sy stem Preparation and Maintenance.

Simplified system generation.

Replacement and deletion of directoried files.

Listed output of file directories.

User program in directoried files.

DBOS a llows job proces sing to proceed under the direction of control commands.

Control commands may be submitted by the programmer or prepared by the

operator and input to the system from the teletype keyboard I card reader I or

paper tape reader. Jobs may be batched or singly processed under guidance by

the operator.

1.1-2

~~L~~~~ _______________________ ~
88A00142A

DBOS operates in the following minimum hardware configuration:

a. A GA 18/30 Industria 1 Supervisory System Computer with 8192 word s

of core memory.

b. 1 Model 1362 or 1363 teletype unit.

c. 1 Model 1341 or 1344 Disk storage unit.

The addition of the following peripherals enhances the utility of DBOS:

a. Model 1311 card reader.

b. Model 1313 card punch.

c. Model 1352 line printer.

d. Model 1321 paper tape reader.

e. Model 1322 paper tape punch.

DB OS generation requires high speed paper tape or card input. This manual

is intended as a general reference manual to be used by both programmers and

operators. It provides descriptions of DBOS proces sing functions I including

control command configurations I and standard processor usage; system

operations I including bootstrapping I system entry methods I end system

messages; system generation methods and techniques; and usage of the input/

output system.

1.1-3/-4

~~L~~~~ ______________________ _

88A00142A

2. 1 GENERAL INFORMATION

SECTION 2
DBOS PROCESSING

The GA 18/30 Disk Based Operating System (DBOS) provides complete proces.sing

capabilities in the following areas:

a. As sembly and compilation of source language programs.

b. Loading and execution of user programs.

c. Maintenance of user and system programs on disk storage.

d. Device independent input/output operations.

e. Sequential job processing from control commands.

DBOS consists of the following components:

1. The Monitor.

The monitor is a core resident program which processes internal

interrupts I loads system processors from disk, processes user-

programmed returns to DBOS I and contains system-wide parameters.

2. The Logical I/O System.

The logical I/O system is a core resident set of input/output

drivers, I/O device tables I and a central control routine for

performing operation s according to logical device specifications.

2.1-1

~~L~~~~ _______________________ ~
88A00142A

3. The Executive.

The executive is a system processor which is loaded by the

monitor to proces s control commands. The control commands define

logical unit assignments, program assembly or compilation, program

execution, and disk utility functions.

DBOS is initially created by a system generation process. This process is

described in section 4 of this manual. During system generation, the system

is written onto disk and , when it is to be activated, is read into core via

a disk IPL operation (see section 3, DBOS Operation).

2.1-2

~~L~~~~ ______________________ _

88A00142A

2.2 CONTROL COMMAND INPUT

The DBOS user communicates processing requests to the system by means of

control commands. Control commands are read by the system and input to an

80-character storage buffer for processing.

These commands ha ve the following syntactical format:

where:

$

command

~PtiO~

$command [, oPtion] 6comments

is the control command identification character and is always

the first character of the control command input record.

represents one of the legal command syntax structures.

represents an optional command modifier. All data within

braces is optional including delimiters.

indicates a blank character. This blank acts as the command

terminator. Only comments may follow.

comments represents an optional string of characters from the GA 18/30

character set and arc included for annotation purposes. Comments

are listed on the system log but have no processing function.

2.2-1

~~L~~~~ ______________________ ~

88A00142A

Control commands are input from the system I s logical unit CC. The teletype

keyboard is the standard device assigned to logical unit CC. The most

meaningful alternate CC device is the card reader since this provides batch

processing capability to the system.

2.2-2

~~L~~~~ __ --------------------~
88A00142A

2.2. 1 CONTROL COMMAND INPUT FROM THE TELETYPE KEYBOARD

When logical unit CC has its standard device assignment (teletype keyboard) I

DBOS indicates the start of a new control command sequence with the message

DBOS CC

This signifies that subsequent control commands are to be keyed-in by the

operator. The system processes these commands as follows:

1. The system signals its readiness to receive a control command

by output of a control command request which consists of a Line

Feed I a Return I a ? and a space. Only following this request can

the operator key-in a control command.

2. The operator may key-in a control command of up to 80 characters I

including comments. Keyed-in control commands are terminated

by striking the RETURN key on the keyboard (no trailing blank is

required). Proces sing begins immediately following the RETURN key.

If comments are included I a blank (space) must appear before the

comment string.

2.2.1-1

~~L~~~~ ______________________ _

88A00142A

2.2.1-2

3. Key- in errors may be deleted, if detected prior to the RETURN key I

in either of two ways:

a) By striking the RUB-OUT key on the keyboard, the operator

deletes the entire command. Upon receipt of the RUB-OUT key,

the system immediately requests a control command as in 1. ,

above.

b) To delete the last n characters of the control command, the

operator strikes the left arrow (-) key n times. Each time

the -is struck the last remaining input character is deleted from

the input record.

~~L~~~~ ______________________ ~
88AQ0142A

2.2. 2 CONTROL COMMAN DS INPUT FROM CARDS

When logical unit CC is reassigned to the card reader I the system reads and

processes 80-column card image records. The $ character must be in column 1

and all characters up to the first blank constitute the control command.

Once the card reader is assigned as the CC device I it continues as the control

command input medium until CC is reassigned or the system is reinitialized.

2.2.2-1/-2

~~L~~~~ ______________________ ~
88A00142A

2. 3 CONTROL COMMAND LISTING

Control Commands are always listed, during processing I on the system log

(logical unit 8L). The line printer is the standard 8L device. If 8L is assigned

to the teletype printer, the listing is suppressed if the CC input is from the

teletype keyboard.

2.3-1/-2

~~L~~~~ ______________________ _

88A00142A

2.4 SYSTEM CONTROL COMMAND AND COMMENTARY

The following subparagraphs define the specific control commands acceptable

to DBOS. Each must conform to the general format specified in paragraph 2. 2.

Optional elements are indicated by brackets ([]). An optional element

includes all items within the braces, i. e. , [, pJ indicates that the comma and

P may be omitted. These commands define the major processing functions of

the system.

Commentary

The comment command allows additional commentary in the control command input

stream. It is of the form:

Example

STOB

Sc

SA

Revised Dec 70

SC~ commentary

Assemble real time executive

10/15/70 version 1, modification 2

Invoke assembler

2.4-1/-2

~~L~~~~ ______________________ ~
88A00142A

2.4. 1 LOGICAL UNIT ASSIGNMENT

Each DBOS system is generated with standard logical unit assignments to

conform to the particular hardware configuration. This includes User disk sector

allocation. Table 2-1 defines the generated standard assignments. Logical

units may be referred to symbolically or by number (0-15).

A logical unit assignment command is provided which can override the generated

standard as signments. This override can be defined to continue for the duration

of only one JOB or through multiple JOBS. A JOB duration is defined as the

period between the occurrence of a SJOB command and a subseqte nt SJOB

command. Programs which use the Logi cal I/O system for input/output

may, through use of this command, use any devices. This command assigns

one of the logical units shown in table 2-1 to one of the files shown in

table 2-2. It has the following format:

where:

$lun=file [<name) l C pJ
L (bS-es>j

lun represents one of the logical unit names or valid decimal

numbers shown in table 2-1.

file is the name of the device (CR, PR) or II file II (DS I we) as

shown in table 2-2 I to which the logical unit is being assigned.

2.4.1-1

~~L~~~~ _______________________ _

88A00142A

(name)

(bs-es)

p

represents a program name if II file" is a directoried file

(DS, LB, DC or UL). If (name) is used, the logical unit

assignment is to that program within the specified file.

represents a disk storage area. "bs II defines the beginning

sector address (in hexadecimal) and "es" defines the ending

sector address (in hexadecimal). If this option is used I the

logical unit assignment is to that area of disk.

specifies that a LUN assignment is to be maintained through

successive JOBS. Logical units defined with the P option will

be overridden by an IP L operation. When the P option is omitted

the LUN assignment will be maintained for one JOB sequence

only. The next $JOB will reset the LUN assignments to the

last user specified LUNs tagged with the "P" option. LUNs

not specifically specified by the user will be reset to the

generated system standard.

Examples:

1. $LO=TY

·The teletype printer is aSSigned as the listing output device.

2. $CC=CR

The card reader is assigned as the control command device.

2.4.1-2

~~L~~~~ ______________________ ~
88A00142A

3. $SI=WS

The working source language data file (WS) is assigned to symbolic

input; i. e. I subsequent symbolic input will be taken from the WS file

on disk.

4. $SI=DS (USRI)

The symbolic input logical unit is assigned as program USRI which

is in the directoried source file (DS).

Note: Caution must be exercised when ass.i.gning non-standard

devices to OM I CC and SL. For example; assignment of the

line printer to OM to list FORTRAN error messages is inadvisable.

FORTRAN expects to receive input from device OM which is

not possible from a line printer. Caution should always be

exercised not to assign output only devices as input files

and vice versa.

2.4.1-3/-4

~~L~~~~ ______________________ ~
88A00142A

2.4.2 JOB COMMAND

The JOB command sets the logical unit assignments to the generated standards

(table 2. 1) or to the last user specified assignments tagged with the ., P" option.

(see 2.4. 1) In addition the JOB command initializes (opens) disk files. This

command may be used at any time, but it normally is the first command in a job

stack.

The format is:

SJOB

2.4.2-1/-2

~~L~~~~ ______________________ ~
88A00142A

2.4. 3 COpy COMMAND

The COpy command provides file-to-file copying capability. It also provides

a method for defining names of programs in directoried files (DS, LB, UL

and DC file s) .

The format of the COpy command is:

A
[(name) J A

~name)] B B
$COPY , file

l (bs-es) ~ , file 2 (bs-es)
C C
D ,

T I D
" y I

Source .-J Destination

Where:

A are optional data type specifications

B A- specifies ASCII data in 80 character record form.

C

o

B- specifics bin ary data in 54 word assembler object

or core image record form.

2.4.3-1

~~,~LAU~~~ _______________________ ~
88A00142A

C- specifies unchecksummed binary data in 60 word

record form

D- specifies binary data in 320 word record form on disk.

, file 1 represents the input (source) file involved in the COpy

represents the output (destination) file involved in the COpy

[

(name) J
(bs-es)

represent options, and (name) and (bs-es) have the same meaning

as defined in subparagraph 2.4. 1.

When the COPY command is processed, data is copied from filel to file2 until

an ASCII END I binary end (OFOO) record I end -of-data ($EO D), or end-of-file

is encountered. An ASCII END may exist as the first or second field of a

source record. Therefore a label may appear before the END record in an I

assembler source filel' i. e. I NAME END. NOTE: The END statement may

not begin in columns 1 or 21.

If A, B, C or 0 is not specified, the data type is determined from the file

name. Disk files are assumed to be 320 word binary records. If the file is capable

of maintaining both ASCII and binary data, ASCII is taken as the normal type.

The DBOS system maintains implicit definitions for all files, whether disk

resident or external devices. The optional typo specification overrides thoso'

.lmplicH dcfin.lUons, L e., SCOPY, CI{,A In this example the .implicit

definHion of type binary for file LB is overriden and forced to be ASCII. Such

action, while permis sible, will create improper structure of the file for the

2.4.3-2

~~L~~~~ ______________________ ~
88A00142A

inserted program (LB may contain only type "B" data). The user should only

specify a type code when:

1. The destination file is of a "type" different from the input file "type".

2. An external file of unchecksummed binary data is to be copied, type "C II
•

3. Both files are capable of containing ASCII and binary data and type

"binary" is required. Note: the default type for such files is.

ASCII. (Le., CR, CP)

2.4.3-3

~~L~~n~~ ______________________ _

88A00142A

LIBRARY EXPANSION

When a program is copied to a directoried library file (LB or UL) I the program

name(s) is taken from the input program. Multiple programs may be input to

create or append a library. The input must be terminated with an end of data

($EOD) record. (See section 2.4. 12 for use of $EOD.)

2.4.3-4

~~L~~~~ ______________________ _

WC AND DC INPUT

Core image data are absolute programs with subroutines properly linked and all

external references satisfied. In order for programs to be in core image format,

they must have been processed by the core image converter (see subparagraph

2.5.3) which loads binary object programs, links program elements and per-

forms proper relocation adjustments, or the assembled binary object from an

absolute assembly. No external references may be used in assembly. Precede

SA with SBO=WC to create object in WC file.

Once a program is in core image format, it can be loaded from the DC or we

file and executed without further processing. 'See paragraphs 2.4.20 and 2.4.11).

SCOpy Examples:

1. SCOPY, DS (PROGA), WS

Copy PROGA from the DS file to the WS file. ASCII 80 character record

form is used.

2. SCOPY, B, CR, LB
SEOD
Copy a binary file from the card reader to the 18 file. The binary file

is identified in the L8 directory according to the name contained on

the input program data records. (B specification is redundant but

permissible.)

The last copy operation affecting a library must be followed by a SE0D.

2.4.3-5

~~L~~~~ _____________________ ~
" 88A00142A

2.4.3-6

3. SCOpY, WC , DC(PROGX)

Copy the working core image file (WC) into the directoried core

image program data file and give the program the name PROGX in the

DC directory.

4. SCOPY, DS(PROGS) I LP

Copy program PROGS from the DS file to the line printer (LP) •

S. SCOPY, DC(NAME),B, TY

COpy program name from DC to the teletype.

~~L~~~~ ______________________ ~
88A00142A

2.4.4 REPLACE COMMAND

The REPLACE command provides the capability to replace a previously named

program in a directoried file with data from another file.

The format of the REPLACE command is:

where:

, file l

(name)

IA
, B
,C
,D

$REPLACE , file 1 (name)
(bs-es)

If

destination

A

I B I file2
C
D

\"

I(name) l
L(bs-es~

source

represents the output file, i. e. I the file which will receive

the replacement program.

repre sents the name of the program in file 1 which is being

replaced. The name will be assigned to the new program unless

file I is a library file. In this case the program name will be

taken from the input data.

are optional data type specifications, as defined in subparagraph

2.4.3.

represents the input file; i. e. I the file from which the replace-

ment program is to be copied.

2.4.4-1

~~L~~~~ _____________________ _

88A00142A

(name) are optional and have the same meanings as defined in

(bs-es) subparagraph 2.4. 1 .

$REPLACE examples:

2.4.4-2

1. $REPLACE I DC(PROG7), WC

Replace PROG 7 in the DC file with the program in the WC file.

2. $REPLACE, LB(SUBA) ,CR
$EOD
SPACK
Program SUBA of the LB file is replaced by the binary record in the

CR file. The last REPLACE operation affecting a library file must be

followed by a $EOD and $PACK.

3. $REPLACE, DS(PROG23) ,A, WS

Program PROG23 of the DS file is replaced by the symbolic program

in the WS file.

NOTE

The REPLACE command does not write the new program

over the program being replaced. Rather I the new program

is written in the first unused space of the file and the nbs II

and II es II addresses in the directory are altered to reflect

the replacement. A subsequent $LDIR command would

indicate the area occupied by the replaced program as

****** unless a SPACK command has compressed the

file. See $LDIR (2.4. 6) and SPACK (2. 4. 7). After re-

placing a library routine a SPACK must be executed. (See 2.4. 7 .)

~~L~~~~ ______________________ ~
88A00142A

2.4. 5 DELETE COMMAND

The DELETE command is used to delete an existing named program from a

directoried file.

The format of the DELETE command is:

where:

, file

(name)

Example:

$DELETE, file (name)

represents the name of one of the directoried files (DS, LB,

UL or DC)

represents the name of the program which is to be deleted.

$DELETE, LB (SUBA)
SPACK

The program named SUBA is deleted from the LB file. Note: A SPACK command

must be executed after deleting subroutines from the library. See 2.4. 7 .

2.4.5-1/-2

~~L~~~~ __ --------------------~
88A00142A

2.4. 6 LIST DIRECTORY COMMAND

The list directory command causes the current status of a directoried file to

be listed on the SL (system log) unit.

The command format is:

$LDIR. file ~s-e~

where It file" is the name of the directoried file whose directory is to be listed.

The LDIR listing has the format:

bs es type rpr ipr name

for each item in the directory. "bs" specifies the beginning sector address

(in hexadecirna 1) I and" es II the ending sector address (in hexadecimal), of the

disk area assigned to the storage of program "name". For library subroutines

type indicates the program type as

LIB Called by LIBF

ENT Called by CALL

2.4.6-1

~~L~~~~ __ --------------------~
88A00142A

"rpr" indicates the precision of real numbers and II ipr" indicates the precision

of integer numbers as

blank

SPR

EPR

Unspecified

Standard pre ci s ion

Extended precision

If an area has been deleted or replaced I the listing format is:

bs es ******

2.4.6-2

~~L~~~~ ______________________ _

88A00142A

2.4.7 PACK DIRECTORIED FILE COMMAND

The pack directoried file command packs the elements in directoried files to

eliminate unused sectors resulting from program deletions or replacements.

The format of the command is:

SPACK, file

where II file II is the name of one of the directoried files (DS, L8, UL or DC) .

NOTE

For proper processing of libraries (L8 or UL) by the

Core Image Converter . The PACK command must be

is sued following any update to the library.

2.4.7-1/-2

~~L~~~~ ______________________ _

88A00142A

2.4.8 DUMP COMMAND

The dump command produces a hexadecimal listing of a file on the 8L (system

log) unit.

The command format is:

A (name)
B

$DUMP , I file
C (bs-es)
D

where:

I A are optional data type specifications

I B as defined in subparagraph 2.4. 3 I

I C and define the data type of the file

I D data.

I file is the name of the file to be dumped

[

(name)Jare optional and have the same meanings as defined in

(bs-es) subparagraph 2.4.2.

A $DUMP listed line has the format:

lac datal data 2 ... datan

2.4.8-1

~~L~~~~ ______________________ ~
88A00142A

where:

loc represents the relative record location (hexadecimal) of the

first data item in the first data item in the line.

datai represents a data item

n is 16 if 8L is assigned to the line printer and 8 if the 8L is

as signed to the teletype printer.

If the nth item of a line (8th or 16th item) and the next n items are identical,

the next line is not printed. When this occurs one response occurs.

Assume a block of 32 words contains a recurring series of numbers; 1, 2 I 3, 4,

5, 6, 7, 8 followed by a disimilar pattern 8, 7, 6 I 5, 4, 3, 2, 1.

The listed output would appear as two lines as follows:

examples:

2.4.8-2

LaC
1

33

Datal
, 1

8 7

$DUMP, DC(PROGA)

3 4 567

6 543 2

Data8
8

1

~~L~~~~ __ ------------------~
88A00142A

Dumps the program named PROGA from the DC file.

$DUMP,B,DK(lSFO-lSF5) .

Dumps the binary data from the DK file, sectors 15FO through 15F 5.

2.4.8-3/-4

~~L~~~~ ______________________ _

88A00142A

2.4. 9 PDUMP COMMAND

When the monitor assumes control of the system, core memory is saved prior

to execution of the system executive. The PDUMP command provides a selective

dump of this core memory in hexadecimal.

The command is:

where:

-Ioc2

represents the location (in hexadecimal) of the first core

memory word to be dumped.

represents the location (in hexadecimal) of the last core

memory word to be dumped.

Output resulting from PDUMP is on the 8L (system log) unit and consists of

lines in the following format:

loc datal data2 ... data
n

2.4.9-1

@.~~L~~~~ ______________________ ~
88A00142A

where:

loc the memory location (in hexadecimal) of the first data item in the

line. "loc ll is always a modulo 8 address.

data
i

represent the contents of man ory location IIlocZ II through II loc
n

II .

n is 16 if SL is as signed to the line printer and 8 if SL is a s signed to

the teletype printer.

If the nth item of a line (8th or 16th item) and the next n items are identical,

the next line is not printed. When this occurs, one upspace occurs. See

section Z. 4. 8 for listing example.

If the optional [, locI - IOCzJ is not present in the PDUMP command, the

entire core memory is dumped.

The system saves the program registers in the following locations:

REGISTER LOCATION (HEX)

I /77
A /78
Q /79
Index I /7A
Index 2 /7B
Index 3 /7C

2.4.9-2

~~L~~~~ ___ ~ __________________ ~
88A00142A

examples:

1. $PDUMP, 15A5-15B3
Dumps the contents of saved core locations /15AO through /15B F .

2. $PDUMP ,70-7F

Dump the contents of saved core locations /70 through /7F which

includes the program registers.

NOTE

The monitor performs a core save function every time it is

entered by a functional program. Control may be returned

to the monitor in any of several ways:

1. Manual entry at locations /71 or /73.

2 • Programmed return via a

a. CALL MaN normal return

b. CALL MaNE error (abort) return

c. FORTRAN CALL EXIT or STOP.

d. Console interrupt.

Refer to sections 3. 1 . 2 through 3. 1 . 6.

2.4.9-;3/-4

~~L~~~~ ______________________ ~
88A00142A

2.4. 10 PROGRAM EXECUTION COMMAND

A program which is conta ined in core image format in the working core ima ge

file (WC) may be loaded and executed by use of the following command:

$LOAD [. name2]

where "name211 is optional and represents the name of a second program from

the DC file which is loaded along with the program from the WC file. If "name2"

is present in the command I program "name2" is executed when loading is

complete. If "name2" is not present, the program from the WC file is executed.

Only one program may be contained in the WC file at a time.

This command is similar to the Processor execution command (2.4. 11) except

that it allows loading unnamed programs.

A program may be placed in the WC file by a SCOPY operation.

2.4.10-1

~~L~~~~ __ -------------------_
88A00142A

Example:

SCOPY, WB ,WC would copy the object output from the

as sembler in file WB to the core image file WC. $COPY I

CR I we would copy an obj ect deck to WC for execution.

The following command sequence will result in an executable program in file

WC from source media.

$IOB

$A and $F

Source Statements

$EOD

$CIC

[*MAPJ

*BUILD

$LOAD Immediate execution or

SIOB

$BO=WC assembler object output to WC

SA

$ LOAD immediate execution

A second program may be called into core from the De file along with the pro

gram from we.

2.4.10-2


~~~~~~---------------------~ 
88A00142A 

The format: 

$ LOAD , PROG2 

where PROG2 is a program stored in the directoried file De. 

The second program must be origined such that it does not overlay the program 

loaded from we. (See BOUND directive under eIe, section 2.5.3.) (An assem

bler ABS and ORG directive may be used to origin an assembly language program.) 

A typical use for the double program call is in debugging. The command 

$LOAD,D 

will load the program from we and the DBOS debug routine from De. Exe

cution will begin with debug (see section 2. 5. 5) . 

Note: The debug program occupies /700 locations of high core. 

(origin /7900) 

Revised Dec 70 2.4.10-3/-4 





~~L~~~~ __ --------------------_ 
88A00142A 

2.4. 11 PROCESSOR EXECUTION 

Any program may be specified as a processor by having that program stored in 

the directoried core image file (DC) with its name in the DC directory. A 

number of predefined processors are included in DBOS. These are defined in 

paragraph 2. 5. 

A user may add his programs (processor) to the DC file by use of the copy 

command. 

Examples: 

SCOpy I CR I DC(NAMEX) 

SCOPY, WC ,DC(PROGl) 

Copy an external program into DC 

from cards. 

Copy the unnamed program in WC into 

the DC file and call it PROGl . 

Programs which are in the DC file may be loaded and executed by use of the 

following control command: 

2.4.11-1 



~~L~~~~ ___ ~ __________________ ~ 
88A00142A 

where: 

name represents the name of the program (processor) to be loaded. 
1 

[,name~ is optional and represents the name of a second program from 

the DC file which is also to be loaded. 

If Iname2" is specified both programs are loaded into core memory and program 

Iname2" is executed. 

Normally I " name II is a debug program. 
2 

Example: 

1. $PRGI5 

Load and execute program PRG 15. 

2. $PRGI5,D 

Load both program PRG 15 and D (the debug program) and execute 

the debug program. See section 2. 4. 10 for examples and origin 

re strictions • 

2.4.11-2 



~~L~~~~ _____________________ _ 

88A00142A 

2.4. 12 WRITE END-OF-DATA IMAGE ($EOD) 

The Core Image Converter I CIC I (see section 2.5.3) will accept data from up 

to four separate binary files. Each file must terminate with a $EOD image 

record. This image causes the CIC to terminate access of one file and advance 

to the next or if the file is LB to stop accessing completely. 

The command $EOD will close a file. 

Example: 

$IOB 

$F 

$A 

$EOD 

Fortran mainline to file WB. 

Assembler output to file WB. 

Close WB file. No more data may be entered into WB. 

NOTE: The $EOD command writes on logical unit BO. 

The standard assignment for BO is WB. 

When a library is being terminated the $EOD command writes into the library 

ft Ie instead of BO. 

2.4.12-1 



~~L~~~~ _____________________ ~ 
88A00142A 

Example: 

$JOB open files 

$COPY I CR I UL(bs-es) build library starting at bs. 

$EOD 

$JOB 

terminate UL 

reset limits for UL to standard 

To make use of this new library the following steps might be used. 

$JOB 

$F 

open files 

compile mainline 

Source Statements 

$EOD close WB file 

$SB=DP(bs-es) set disk limits for new SB 

$CIC 

*BUILD ,SB 

$JOB 

$F 

call core image converter 

build program and include ALL data in SB in program 

open files 

compile mainline 

Source Statements 

$EOn close WB file 

$UL=DP(bs-es) set disk limits for new UL 

$CIC 

*BUILD I UL 

2.4.12-2 

call can vert 

build program using only those routines called by mainline 

from UL. 



~~L~~~~ _____ ~ _______________ _ 

$TOB 

$F 

open files 

compile mainline 

Source Statements 

$A 

$EOD 

as semble subprogram 

close WB file 

$SB=DP(bs-es) set disk limits for SB 

$CIC call convert 

*BUILD I SB I UL build program using all data from new SB and required 

routines from UL. 

NOTE: In all cases the standard library file, LB is used to complete build 

process. 

2.4.12-3/-4 





~~L~~~~ ______________________ ~ 
88A00142A 

2.4.13 PAPER TAPE SEGMENT ROUTINE ($PREEL) 
~ 

A large subroutine library may require a volume of bin ary tape too great to be 

handled in one reel. The DBOS command I $PREEL I will punch a $REEL image 

to terminate a tape segment. The user may use this command to terminate any 

number of segments. See section 2. 5. 3 for use of $REEL. 

2.4.13-1/-2 





~~L~~~~ ______________________ _ 

88A00142A 

2. 5 PREDEFINED DBOS PROCESSORS 

During system generation (section 4) I a group of predefined DBOS processors 

are copied into the directoried core image program data file (DC). These I and 

other non-predefined processors I may be loaded and executed by use of the 

proces sor execution control command (subparagraph 2.4. 11) . 

The standard predefined processors are: 

a. Symbolic assembler. 

b. FORTRAN compiler. 

c. Core image converter. 

d. Source image editor. 

e. Debug program. 

Each of these processors is described in the following subparagraphs. 

2.5.-1/-2 





~~L~~~~ __ -------_____________ ~ 
88A00142A 

2. 5. 1 SYMBOLIC ASSEMBLER 

The GA 18/30 symbolic assembler is a two-pass assembler and is given the name 

A in the DC file. Thus I it can be loaded into core and executed by use of the 

control command: 

SA 

The assembler uses the following logical units: 

SI Source input (pas s 1 input) 

LO Listing output 

BO Binary output 

IS Intermediate storage (pass 1 output, 
pass 2 input) 

If the SI unit is a disk file I then the IS unit should be assigned to NO to avoid 

disk duplication during pass 1. 

If the IS unit is assigned to NO I both passes are taken from the SI unit. Thus 

if the SI unit is the card reader and IS is assigned to NO the symbolic source 

deck must be input twice. 

2.5.1-1 



~~L~~n~~ ____ -------------------~ 
88A00142A 

2.5. 1. 1 DBOS Assembler Extensions 

Refer to the 18/30 Programming Operations Manual for assembler usage data. 

The DBOS as sembler has been extended beyond the basic GA assembler. These 

extensions are enumerated in the following paragraphs. 

ASCII Text (ASC) P seudo-op 

The ASC pseudo-op i.s i.dentical to the EBC statement described in the GA 18/30 

Programming/Operations Manual except that ASCII data strings are generated. 

REF /DEF Pseudo-op 

These features per llit ., progr·,m to REFerence symbols DEFi.ned in other external 

programs. The tern, ext~rnal 1S meant to indicate a program or storage location 

not assembled with the object program. A data table separately assembled but 

referenced by the object program would be an example. 

A DEF pseudo-op 1 s used to specify that the symbol in its variable field may be 

REFerenced by an 9xt~rnal program. A DEF statement may not appear in an 

absolute program. All DEF's must appear at the beginning of the source fHe to 

which they make reference. A DEF is identical to an ENT except that the defined 

symbol need not bf-~ a program entry point. It is permissable to define a symbol 

used in the vanable held ot a DEF with an EQU statement, i. e. I 

2.5.1-2 Revised Dec 70 



~~L~~~~ __ --------__________ ~ __ 

88A00142A 

OUTOl 

DEF 

EQU 

END 

OUTOl 

/57 As sign absolute value hex 57 to symbol 

OUTOl. A REF to OUTOl will result in 

the value /57 in the variable field. 

A maximum of 30 ENT and/or DEF symbols may be included in a single program. 

REF 

A REF pseudo-op specifies that the symbol in its variable field is external. 

REF's may occur anywhere in a program. Symbols which are declared as external 

by REF's may occur in a multiple item expression except as an operand of a 

multiply (*) operator. Machine instructions which contain REFed symbols 

in their variable fields must be of the two word or long format. 

Conditional Assembly 

A DO pseudo-op has been provided to permit a programmer to include/exclude 

selected source statements. 

The statement: 

DO L M,N 

directs the assembler to assemble the next M lines N times. The values must fall 

within the range of 0 and 255. All symbols used must be previously defined. If 

M I the number of lines I is greater than one I N must be zero or one. If N is 

omitted I it is assumed to be one. None of the statements within the range of the 

DO can be another DO. 

Revised Dec 70 2.5.1-3 



~~L~~~~ __ --------------------_ 
88A00142A 

Examples: 

DO L 3,1 Assemble the next 3 lines 

DC 1 

DC 2 

DC 3 

DO L 3,0 Do not assemble the next 3 lines 

DC 1 

DC 2 

DC 3 

Source Data Preparation rormat 

The DBOS Assembler wlll accept source statements which originate in column 

1 or 21. The remalndc~r of the statement must be punched in relative columns, 

i. e., the OP code: l'·l.j I S eIther started in column 7 or 27. A maximum of 60 

columns of data is red,] and interpreted. 

2.5.1-4 Revised Dec 70 



~~L~~~~ ______________________ ~ 
88A00142A 

2. 5. 2 FORTRAN COMPILER 

The GA 18/30 FORTRAN compiler is given the name F in the DC file. Thus it can 

be loaded into core and executed by use of the control command: 

$F 

FORTRAN uses the following logical units: 

SI Source input 

LO Li sting output 

BO Binary output 

FORTRAN is a one-pass compiler and requires no intermediate storage. The 

FORTRAN logical unit number u in the FORTRAN I/O statements (e. g. I READ 

(u I f) list) will reference DBOS logical unit u. The user may use the standard 

assignment described in table 2. 1 or define his own assignments with the 

executi ve command. 

$u=file. 

The *IOCS control card has no purpose and may be omitted. The user is advised 

to use the standard DBOS LUN assignments. (See table 2-1) This procedure 

permits any system LUN reassignments to be effective for all programs 

2. 5 .. 2-1 



~~L~~~~ __ -------------------~ 
88A00142A 

operating under the system. 

Example: 

if $lun=CR 

then READ(lun, f) list would cause data to be input from the card reader. 

Note: The FORTRAN disk READ and WRITE operations will always use logical 

unit 13 which must be assigned to fHe DK (standard assignment). The 

DK file is the only unpacked disk file. The disk limits for the DK file 

may be preset to any area of the disk. See section 2.8. 1 . 

Refer to the IBM FORTRAN IV manual for compiler usage data (C26-3715-4). 

Note: 

Note: 

2.5.2-2 

The * control cards which are u sed to specify compiler options are 

not listed. 

The *ONE WORD INTEGERS is the default option when not specified. 

Revised Dec 70 



~~L~~~~ ______________________ _ 

88A00142A 

2.5.2.1 DBOS FORTRAN Extensions 

Introduction 

General Automation supplies subroutine library extensions for each of its 

executives and operating sy stems. These routines generally are supplied to 

permit access to Monitor functions by the FORTRAN programmer. This section 

will be updated as new routines are made available. 

Array Characteristics 

FORTRAN on the 18/30 stores arrays in reverse order. That is, ARFAY(l) refers 

to the highest core address assigned to the array. This arrangement is contrary 

to the manner in which the machine and Monitor store data. In the following 

extension discussion paragraphs special characters will be used. These char

acters are defined as: 

N = length of array (number of variables) 

10 = N + 1 value to be used as subscript ba se 

FORTRAN Logical I/O Interface 

This subroutine provides access to the logical I/O system of DBOS. The sub

routine operates in two modes controlled by the first argument. Details of LIO 

are described in Section 5. 0 • 

Revised Dec 70 2.5.2-3 



~~L~~~~ __ --------------------_ 
88A00142A 

Mode 1 Data Transfer and Control 

CALL FLIO(I, JOQ-I)) 

where: 

FLIO= name of routine 

I = control variable for LIO>O 

J = a dimensioned array. The first variable in array J must define 

the length of array J . 

i. e., JOQ-I) = length in words 

JOQ-2 through IQ-N) = Data 

This call results in a call to LIO of the type: 

CALL LIO 

DC (I) 

DC J 

DC 0 

Mode 2 Device Status Test and Return 

CALL FLIO(I, J) 

where: 

FLIO= name of routine 

I = control variable for LIO and must be <0 

J = a variable which will contain the device status word upon 

return from FLIO. 

2.5.2-4 Revised Dec 70 



~~L~~~~ __ ----------_________ _ 

8BA00142A 

This call results in a call to LIO of the type 

CALL 

DC 

STO 

LIO 

(1) 

J 

The use of FLIO requires that a control variable" I" be established. This 

variable can be defined in a DATA statement. 

Example: READ 54 binary characters into array J from logical unit 12. 

DIMENSION J( 55) 

DATA IRASC/Z110C/ 

J(55) = 54 

CALL FLIO(IRASC I J( 5 5)) 

Example: To test status of logical unit 12 

DATA ITEST/ZFOOC/ 

CALL FLIO( ITEST I K) 

The status of logical unit 12 will be stored in variable K. 

Note: A TEST operation must be performed before the next read/write call. 

LIO returns immediately to the user and does not wait for operation 

complete. 

Revised Dec 70 2.5.2-5 



~~L~~~~ __ -----------------~-~ 
88A00142A 

FORTRAN DBOS BULKN Interface 

This subroutine provides access to the bulk handling routine (BULKN) in DBOS. 

CALL BULK(I,} ,K) 

where: 

B ULK= name of routine 

I = BULKN function (use DATA statement) 

J = a dimensioned array such that 

J(IQ-I) = word count 

}(IQ- 2) = sector addres s 

}(IQ-3 through IQ-N) is data 

K = variable whi.ch will contain error status on return. 

BULK waits for operation complete status before returning to the user. 

Refer to Section 6.4.2 for a detailed description of BULKN . 

Extreme caution must be exercised when lS ing this subroutine. It is possible 

to write anywhere on the disk including areas occupied by the Monitor and files. 

For safety, use FLIO or DEFINE FILE which monitors file boundaries. 

2.5.2-6 Revised Dec 70 



~~L~~~~ __ --------------------_ 
88A00142A 

2. 5. 3 CORE IMAGE CONVERTER 

The GA 18/30 Core Image Converter is given the name CIC in the DC file. Thus 

it can be loaded into core and executed by use of the Control command: 

SCIC 

The Core Image Converter uses the following logical units to perform a core 

image file build: 

BI Primary binary input 

SB Secondary binary input (optional) 

UL User Library (optional) 

LB System library 

CI Binary output 

IS Intermediate storage (used to temporarily store obj ect 
modules from Bl and SB) 

SL Load map output (optional), missing subroutines list, and 
error messages 

OM Operator messages 

CC Control command input 

2.5.3-1 



~~L~~~~ ______________________ ~ 
88A00142A 

The Core Image Converter (CIC) performs the functions of fixing relocatable 

obj ect code, linking together main programs and subroutines and producing 

an absolute core image file which can then be loaded from the disk and executed 

by the DBOS disk loader. All CIC core image file builds are performed by making 

two pas ses. over the obj ect data. The first pas s is required to build a list of 

referenced subroutines, resolve the subroutine entry addresses and obtain a 

map of memory. During the second pass I the executable core image output 

file is produced on logical unit CI (normally the WC file). Note that the CIC 

does not load the executable program directly into memory, hence all of avail

able memory may be allocated and used during problem program execution. 

The Core Image Converter can accept object program modules from up to four 

logical files. The CIC will first reference BI, which must contain the MAIN 

program as itl s first object module and any number of subroutine modules. 

Optionally, subroutines may be input from[s~. Both BI and SB must be terminated 

by $EOD image records (use $EOD command). All subroutines included in BI 

and SB are incorporated into CI whether actually referenced or not. The user may 

therefore include object modules which will be used in place of standard library 

routines to better satisfy his requirements even though they are not explicitly 

called out from his program logic. 

2.5.3-2 Revised Dec 70 



~~L~~~~ __ -------_____________ _ 

88A00142A 

The final two input files are subroutine libraries [ULJ (optional) and LB. Only 

those subroutines actually called out in the load process will be included in CI. 

The CIC will make multiple passes over a library to satisfy references. This 

feature makes it unnecessary to 'level' a subroutine library. To optimize pro-

cessing time the use of leveled libraries is preferred. 

CIC Control Commands: 

(Items enclosed in brackets are optional.) 

rMA~ . 
rBOUND [.low Jfh.igh I common]C INSKEL common J] 
*9 UILD r SB] [. U~ 

MAP - The optional MAP command provides a memory map of the resulting core 

image file. 

BOUND - The optional BOUND command provides a means to override the default 

memory boundary values. These defaults are designed to maximize user core in 

batch job operation. The default value for each optional field is defined below. 

Any or all of these values may be specified, however all values between the 

BOUND and the particular value must be specified. 

Parameter Definitions 

low - first location to be occupied by program. 

Revised Dec 70 2.5.3-3 



~~L~~~~ __ ------______________ _ 

88A00142A 

high - last available location for program. 

common - highest address assigned for common data storage. Data is stored 

downward toward core location zero from address common. 

INSKEL common - highest addre ss as signed for INSKEL common data storage. 

Data is stored downward in core toward location zero from address INSKEL commal. 

Default Definitions for BOUND Parameters 

If no BOUND command is specified or some fields are selectively omitted the 

following rules apply for determining default values. 

low - the first location following the DBOS resident monitor. 

high - the last location available to DBOS (usually end of core). 

common - set to same value as high. (Note: COMMON data is stored backwards 

in core.) 

INSKEL common - the origin of INSKEL common is defined by the expression 

(COMMON - size of common). (Note: INSKEL common data is stored backwards 

in core.) 

BUILD - The BUILD command initiates core image conversion. It must be the last 

eIe command. [8B] and [u~ specify optional binary inputs. BI will always be 

the first logical file and LB will be the last logical file. 

2.5.3-4 Revised Dec 70 



~~L~~~~ __ --------------------_ 
88A00142A 

eIe Error Messages 

Error Messages 

eIe error messages are output on 8L and prefixed by two slashes (/ /). Error 

messages discussed in this section always cause eIe to abort. 

Revised Dec 70 2.5.3-5 



_~~L~~~~ _______________________ _ 

88A00142A 

MESSAGE 

II CHECKSUM ERROR 

IICODE ERROR 

IIPRECISION ERROR 

I lEND OF FILE 

IIMISSING ROUTINES 

IICC ERROR 

IIRANGE ERROR 

MEANING AND REMEDIAE ACTION 

A particular card image element within the object 

module is either missing, out of sequence or was not 

punched properly when generated. Regenerate the 

object module. 

A card image contains a card type code not processed 

by the CIC. ILS and ISS subroutine header cards are 

not processed. Remove the object module from the 

core image build. 

A subroutine object module input from either BI or 

SB has a precision code specification different from 

that of the MAIN program. Change the precision 

definition of the object module or include the correct 

object module. 

An end-of-file was encountered on either the IS or 

CI file. Allocate more storage for the working fUes. 
(see section 2.8.1) 

This message is output followed by a list of the sub

routines referenced but not included in any of the 

specified input files. Include the required object 

modules and restart the core image build. 

A card image record which did not contain an asterisk 

in character position 1 was encountered before the 

BUILD directive. Include or correct CIC Control 

Commands. 

The program being built is too large for the specified 

core area. The parameters specified on the BOUND 

statement may be changed if used. 

eIC Operator Messages (for paper tape input only) 

When the eIe encounters a $REEL record the following mes sage is output on 

logical unit OM followed by a type-in request: 

//REEL 
? (input request) 

2.5.3-6 Revised Dec 70 



~~L~~~~ ______________________ ~ 
88A00142A 

2. 5.4 SOURCE IMAGE EDITOR 

The GA 18/30 source image editor is given the name EDIT in the DC file. Thus 

it can be loaded into core and executed by the us e of the control commcn d. 

SEDIT 

File Usage 

The following files are used by EDIT. 

S1 Source input 

SO Edited source output 

CC Control commands and insert lines 

La Edited source list 

SL Control comma nd list 

Control Command 

Control commands (identified by an II @" a s the first character of a line) and 

Insert Lines to the source deck are all input from device CC. Blanks are not 

permitted in Control Commands. In the description below I optional elements of 

a control command are enclosed in braces. 

2.5.4-1 



~~L~~~~ _____________________ _ 

88A00142A 

A file to be edited is input via device 81. 81 may be assigned to the card 

reader, a directoried source file (D8, NAME) or a user file. Format: 

$81=CR 

$81=D8 (NAME) 

$SI=file rname)l 

~bs-es~ 

Editing commands are input from device CC, usually the TTY keyboard. CC 

may be assigned to a device other than the teletype but may not be the device 

assigned to 81. Examples: 

If 81 = D8 (NAME) 

or = file ~name) l 
~bs-es2.l 

then 

$CC = CR is permissible. 

2.5.4-2 



~~L~~~~ ______________________ _ 

88A00142A 

Editor Control Commands 

For the following I the character "Y" or the character "N" must follow the 

"=" character. The chara cter shown is the default case I which will be 

assumed upon entrance to EDIT. 

@B=Y Insert blanks 

For B=Y I the generated source output will be preceded by 20 blanks I thus 

permitting the as sembler format to be generated without need of spacing. 

Data already having the leading 20 blanks will be passed unmodified. For 

B = N I the records will be passed unmodified. 

@O=N Online mode 

For O=Y I the On-Line mode will be entered I with the additional editing 

controls de scribed below. 

@L=N List control 

For L=Y I the full Edited Source Output will be listed while for L=N I only the 

changes are listed. 

2.5.4-3 



~~L~~~~ ______________________ ~ 
88A00142A 

@S=y Sequence control 

For S=Y, the listing will be re sequenced while for S=N I the listing will reflect 

the sequence number of the Source Input. 

Y 
@C= 

N 

For C=Y, the balance of the source input is copied to the output file. For 

C=N, the output file is terminated at its current position. 

On Line Commands 

When in the On Line mode, the following two additional commands may be used. 

In addition, the line reached by an L + n option or by the following two options, 

will be listed: 

@- Delete the current line and advance to the next. 

@+ Copy the current line and advance to the next. 

2.5.4-4 



~~L~~~~ ______________________ ~ 
88A00142A 

Editing Commands 

All editing commands except the Completion Command may be followed by one 

or more lines to be inserted at the current position of the input record. 

@ [LJ [+~ [, m] 
@ Indicates line is command 

L is a 1-5 character label. 

n is the count of lines after L has been reached. If L is 

omitted, n is an absolute line number with the first line of the 

program having n=l. 

m is the number of lines to be deleted. (Assumed to be zero if 

omitted. ) 

In operation, the source input is read and copied to the output file until line 

L + n is reached. Then if m is specified, m lines, including the current line, 

are deleted after which any inserts are input. If m is omitted, the line 

L + n is copied to the output after which any inserts are input. 

Editing examples: 

Assume a freshly key punched deck is to be processed. The operator wishes 

to list his deck, with sequence numbers I make corrections and then assemble 
his program. 

2.5.4-5 



~~L~~~~ _____________________ ~ 
88A00142A 

STOB 

SCOPY,CR,DS(NAME) 

SSI=DS(NAME) 

SEDIT 

@L=Y 

@S=Y 

@C=Y 

Place source on disk 

Edi tor source input from new file 

Call editor 

List all 

Provide line numbers 

Copy DS(NAME) to WS to produce 
a sequenced listing. 

At this point the operator may punch an edit deck or edit from the te letype. 

SCC=TY or SCC=CR 

Editing procedure examples: 

To delete a line at label +3 the edit command 

@Label+3 11 

To delete n lines at starting at line number 2384 the edit command 

@+2384,n . 

2.5.4-6 



~~L~~~~ ______________________ ~ 
88A00142A 

To add a line @ line 200 with no delete the edit command 

@+200 

data to be inserted I may include leading blanks. 

NOTE 

No leading blanks are required because" 8" edit 

command was = Yes. 

To delete m lines starting at label + n and then make insertions the edit 

sequence would be: 

@label+n,m 

data records I 

data records· 

etc ... 

In all cases the master file DS(NAME) is copied to WS until the to be edited 

Hne is encountered. At this point the edit functions specified are performed. 

y 
The last record input from device CC must be an @C=: command. 

- N 

2.5.4-7 



~~L~~~~ ______________________ ~ 
88A00142A 

This operation will complete the copying of the source file (DS I (NAME)) to WS. 

A new sequence listing was produced during the edit operation. The operator may 

alter the list status any time by @ L= Y. At this point the user may assemble 
N 

his program to determine any additional source erro rs. This may be accomplished 

a~ follows: 

$SI=WS 

$IS=NO 

[SBO=NO] 

SA 

assembler source from edited file 

No intermediate storage required as source is already 

on disk 

No binary output. 

Call assembler 

The operator may now edit his source file further. If editing wa s accomplished 

from card data add the necessary new edit cards. Call the editor as above. 

If editing was done from the TTY two alternatives are available. 

1 • Reenter all edit commands plus the new ones via the keyboard. 

2. Copy the partially edited file back to DS(NAME). The listing produced 

during the previous edit would be used for reference. 

2.5.4-8 



~~L~~~~ ______________________ _ 

88A00142A 

Example: 

$REPLACE, DS(NAME) I WS: 

$PACK,DS 

$EDIT 

Edited file to DS 

Compress disk file 

Start next edit. 

The card edit procedure is preferred. This method maintains one master file 

(that which was originally copied) and an edit deck. Recovery in the event 

of mishap is positive and simplified. 

Once a source file has been totally edited I it should replace the unedited file. 

Refer to example above. The PACK operation closes up the disk file by 

removing the old source data. 

2.5.4-9/-10 





~~L~~~~ ______________________ _ 

88A00142A 

2.5. 5 DEBUG PROGRAM 

The GA 18/30 Debug program is given the name D in the DC file. Thus, it can 

be loaded into core and executed by us e of the command 

$D 

Typically, however, the DEBUG program is loaded in conjunction with a program 

to be debugged: 

$LOAD,D 

$pname,D 

Load the program in the WC file and load D. Execute D. 

Load the program given the name 'pname' in the DC file 

and load D. Execute D. 

DEBUG uses the following logical units: 

CC 

OM 

LO 

CI 

command input 

listing output, error message output, secondary command 

input 

listing output, command output, error mes sage output 

binary output 

Debug occupies approximately /700 locations of high core origined at /7900. 

Programs to be debugged must not occupy storage above /7900 (truncated to 

t.) reflect available core} . 

Revised Dec 70 2.5.5-1 



~~L~~~~ _______________________ ~ 
88A00142A 

COMMAND FORMAT 

A command consists of a one-letter operator and one or more operands. Multiple 

commands may be placed on aline. The slash (/) delimits commands; the comma 

(,) delimits operands. No comma should be placed between the operator and the 

first operand. A space terminates the last command, optional commentary may 

follow (for teletype input, a carriage return terminates the command line; no 

space is required unless the user includes optional commentary.) Example: 

Command Operand I Operand ... ,Operand/Command, Oper, .•. 

OPERAND FORMATS 

The following are the possible DEBUG operands: 

1. Addresses/Constants 

2.5.5-2 

An addres sl constant consists of 1 - 4 hexidecimal digits, written as 

/nnnn, with an optional modifier of R,X, L,P or S. If more than four digits 

are input, only the last four are considered; non-hexadecimal characters 

(other than modifiers) are ignored. The modifier may be placed anywhere 

in the digit sequence and has the following effect on an address (not 

applicable to constants): 

None 
R 
X 
L 
P 
S 

Memory address 
Register buffer address 
Disk buffer address 
Limit buffer address 
Program relative address 
Sector addres s 

The S modifier is not allowed for certain operands. 



~~L~~~~ ______________________ ~ 
88A00142A 

Examples of operand addresses are: 

3A location /3A or constant /3A 

R3 register 3 

31X location /31 of disk buffer 

AS6 sector address /A6 

P43 program relative address /43 

2. Address/Constant Field 

An address/constant field is of the form: 

a. A pair of addres ses/ constants separated by a dash. The modifier 

of the second address is ignored (and may be omitted, it is assumed 

to use the same modifier as the first addres s) . 

b. A single address; may be used when the first and last address 

are the same. 

c. The letters R ,X I Land P are fields which are defined as follows: 

R = RO-6 

X = XO-13f 

L = (contents defined by user) LO-1 

P = contents of LO-contents of L1 

(Any reference to the letters R/X,L or P without an address constant 

is interpreted as a reference to the entire field.) 

2.5.5-3 



~~L~~n~~ ______________________ ~ 
88A00142A 

In the text which follows the lower case letters a I ca I rf I f I k I kf denote: 

a address or constant, S modifier allowed 

ca core address I no S modifier 

f address or constant field 

cf core field I no S modifier 

k a 1-4 digit hexadecimal constant 

kf double word constant 

Refer to table A. 

BUFFERS 

Four buffers are accessible to the user. 

1. Register buffer. When control passes from the user program to the DEBUG 

program I the register buffer is set as follows: 

RO Instruction counter 

Rl Index register 1 

R2 Index register 2 

R3 Index register 3 

R4 A register 

RS Q register 

R6 Carry and overflow (bits 14 and 15) 

2. Disk buffer. This buffer holds one disk sector (320 words) which can be 

used as a work area for disk modifications. 

3. Limit buffer and Program buffer. The limit buffer (2, words) defines the 

limits of the program buffer. (LO) 1s the low program address and (Ll) 1s 

2.5.5-4 



~~L~~~~ ______________________ _ 

88A00142A 

the high program address. Proper definition of the limit buffer allows 

relative references to relocatable program addres ses. The limit buffer 

is normally defined by the replace command; e. g. , 

RL,1092,2301 Low program buffer limit = 1092, high=2301 

then PO=/1092 and P (buffer)=PO-126F=/1092-/2301 

A reference to PI 00 would give the value of relative location 1192. A 

reference to P by itself would refer to a field defined as PO-126f'. 

2.5.5-5 



~~L~~~~ _______________________ ~ 
88A00142A 

DEBUG COMMANDS 

Table A indicates allowable DEBUG commands and their function. Items in 

brackets are optional. The notation ( ... ) indicates that the operand sequence 

may be repeated. A more complete explanation of each command, along with 

examples, is given below. 

1. Type 'T' 

2.5.5-6 

Tf 1 ' f 2· .. I fn ' 

The Type command causes the contents of each location within a field 

to be output to OM. Any number of fields may be specified following the 

type command. After output of all fields is complete, the user has 

3 options: ~ 

a. Enter a new command. 

b. Enter a carriage return (blank record for card input). The successive 

location and its contents will be output, Le., if P52 was just 

output, P53 would be output. 

c. Enter a hexadecimal constant. This constant will replace the 

contents of the last location output; then the successive location 

and its contents will be output. 

Options I b I and I c I are available only when: 

a. The type command is the last command of a sequence e. g. , 

P37/T36,47,R3 (Print location 37, Type location 36, 

47 and the contents of R3.) 



~G~MM~~~ ______________________ ~ 
88A00142A 

At this point R3 and successive locations can be modified. 

Options Ib l and lei are not available in the example below 

T36,47-Al/P52 

P refers to a command and is recognized as last command because 

slash delimiter was processed. 

b. In the following example the letter Ip I denotes a program location 

and may, therefore, be modified. 

T83, P4 (Type contents of disk sector 3, and relative 

progra m location 4.) 

An exception to the la st item may be changed option 

exists if the last item referred to was a disk location. Example: 

TP4,X30,R3,825 (825 refers to disk sector 25.) 

2. PRINT Ip i 

Pfl , f 2 . .. , fn 

The print command causes the contents of each location within the field 

to be output to LO. No subsequent modification is allowed. An example is: 

P30,R,8306,500-800,X4-9,P 

which will print absolute core location /30, the entire register buffer, 

disk sector /306, core locations /500-/800, locations /4-/9 (If th(j 

di$k buftdr, and all of the program buffer. To print program buffer 

location 30 the command PP30 is r-equired. 

2.5.5-7 



~~L~~~~ ______________________ _ 

88AOOI42A 

3. REPLACE 

2.5.5-8 

This command replaces the contents of I fl with the pattern ,kI ,k2 

, k . If the pattern is shorter than the field length, the pattern is 
n 

repeated until the field is exhausted. (If If I is a sector field, the pattern 

is expanded into the disk buffer (320 words) and the buffer is output to 

each sector in the field.) If no pattern is supp lied, a pattern of 0 is 

assumed. An alternate form of the replace command is: 

Rca, k I' k 2 · · . I kn 

In this form, one copy of the pattern replaces the contents of the locations 

starting at lea I. Examples of the replace command are: 

iTF' R61 Zero location /61 

RX Zero the di sk buffer 

RS90-I03 Zero sectors /90-/103 

R80,4 Replace location /80 with /4 

RL, 1057 , lA3 2 Define the limit buffer 

RRO,3 Replace register 0 with 3. 

RX, 1,24,8 Fill the disk buffer with the repeating pattern 

/1,/24,/8. 

R83 ,A2, B 7, C4 Replace /83-/85 with /A2, /B 7 ,/C4. 



~~L~~~~ ______________________ ~ 
88A00142A 

4. MOVE IMI 

MP1,P2···,Pn p=f1 ,f2 f 1=sendingfield. 

Move fl to f2. If the sending and receiving fields are both core or both 

disk, the receiving field determines the number of elements to move. If 

one field is core and the ct her field is disk, the core field determines 

the number of elements to move. Data movement starts from the low 

address. Examples of the move instruction are: 

Note: 

M70,80-AO 

M70-500,80-AO 

MP,8501 

M8501,P 

M810,811-20 

Move locations /70-/90 to /BO-/AO. 

Move locations /70-/90 to /BO-/AO. 

(receiving field limit control) 

Move the program buffer to disk 

starting at sector /501. 

Move disk starting at sector /501 to 

the program buffer. Preset limits with 

RL, 11 ,1 2 ' 

Copy sector /10 to sectors /11 to /20. 

The command MS5, 811-20 will copy disk sectors starting at sector 5 

to sector II, 6 to 12, 7 -13 etc. 

2.5.5-9 



~~L~~~~ _______________________ ~ 
88A00142A 

The command MS10,S11-20 above copies sector 10 into each sector 

from sector 11 to 20. The key point here is that the source sector (or 

core location if moving core); is only one field length below the destina-

tion area. Each successive move or copy effectively copies the same 

information. 

5. EXECUTE/TRAP IX I 

X Ica) /.k) [;c 111/c2) ••• {lCN] 
----_. -- ._--' .. '.- .. 

The X command format provides the operator with program entry address 

selection, trap address selection, trap loop count and execution control. 

The X command initiates program execution by placing the contents of 

registers RO-6: into their hardware counterparts. The value of RO re-

places the instruction counter and is therefore the point of execution. 

To specify an execution addres s: 

RRO ,a Replace register RO with execution addres s 

X Execute 

The X command may be written as part of the replace sequence. 

RRO, a/X 

To set up a trap condition the X command is followed by one or two para-

meters. 

X,ca,k 

Execute from core location specified by contents of RO. TRAP at location 

I ca I after Ik I encountors or trap location. If Ik I is not -specified one is 

assumed. 

2.5.5-10 



~~L~~~~ __ --------------------~ 
88A00142A 

After a TRAP is encountered register RO is equal to the trap address. A 

subsequent X command will resume execution from the TRAP location (ca). 

A series of Debug commands may be specified to be executed each time 

the TRAP is encountered. 

X,ca,k/c1/c2 ···/cn 

After TRAP at location 'ca' execute specified Debug commands c1, c2. · • cn 

The command sequence is executed before the trapped instructions are executed. 

When control returns to DEBUG, RO is defined as the trap address, the trap 

locations are restored, but have not been executed. The following rules must be 

followed in selecting a trap location: 

G. The contm ts of ca and ca+ 1 must not be modified or referenced 

during program execution. Control must pass to ca, not ca+1. 

b. If the trap execution count is greater than one, the trapped loca

tions may not be instruction counter relative (the instructions are 

not executed in place). Also, the command sequence may not 

contain an 'X' operator if k is greater than one. 

After an object program and debug have been loaded ($NAME, D or $ LOAD ,D) RO 

is set to the entry point of the loaded program. Execution may be started 

immediately by entering a X command to debug. 

Revised Dec 70 2.5.5-11 



~~L~~~~ __ ---------------------
88AOOl42A 

Example s of the Execute/Trap command are: 

X 

XA53 

X62,5 

XA32,A/PR/T54 

Execute at RO. 

Set trap at /A53, execute at RO. Return to DEBUG 

when the trap is encountered. 

Set trap at /62, execute atRO. Return to DEBUG, 

after the fifth encounter of the trap. 

Set trap at /A32, execute at RO. After each 

encounter of the trap I print the register buffer and 

type location /54. Return to DEBUG after the trap. 

is encountered /A times. 

Xl 04/PR/X32/T80, R3 Set trap at /104, execute at RO. When the trap is 

encountered, print the register buffer. Set a trap 

at /32, execute at RO (=104) . When the trap is 

encountered, type location /80 and register 3. 

6. SEARCH'S' 

Scf, kf II' k~21 Search for kfl . 

2.5. 5-12 

The search command searches cf for kf1 • Each match is output to OM. 

If kf2 (a mask) is supplied, kfl is compared with the logical product of 

cf and kf2 , element by element. kf1 is a single or double word constant. 

A doubleword constant is of the form k 1-k 2 where kl is the high order 

word. Similarly, kf2 may be a single or doubleword mask. 



~~L~~~~ ______________________ _ 

88A00142A 

If kfl is a doubleword and kf2 is not, then kf2 is assumed to be of the form 

kl-FFFF. Examples of the search command are: 

SI 00-500 ,ABCD 

SP,3781-46A2 

SX,157,FFF 

7 . OBJECT OUTPUT '0' 

Search locations /100 to /500 for /ABCD 

Search the program buffer for the double-

word /3781,/ 46A2. 

Search the disk buffer for /157. Mask 

each element with /FFF • 

Ocfl [, Cf2 ) ... [, CfnJ [, k] Object output to CI. 

Output the core fields in 54 word binary object format to CI. If a core 

field represents a single address, it must be of the form aI-aI' otherwise 

the address will be interpreted as the execution address (k). The 

execution address may appear anywhere in the operand sequence. 

If more than one execution address appears, only the last is considered. 

If the execution address is omitted, RO is assumed. The DEBUG buffers may 

be included as operands, e. g. , 

OlOOO-l500,R,X 

or if L is defined as 1=1000 and 8=1500, then 

OP,L,R,X 

At a future time the $ LOAD ,D will restore the user program end DEBUG 

buffers and debugging may continue. 

2.5.5-13 



~~L~~~~ ______________________ ~ 
88A00142A 

This feature permits partially debugged program segments to be saved_, 

should the program be destroyed during debug of the next segm3nt a 

simple reload of the patched program is pos sible. The program may be 

stored as a directoried file also. ($COPY, WC I DC(NAME)) In this case 

$NAME I D would be used to reload. 

8. SWITCH COMMAND INPUT. 'K' 

The K command switches command input from CC to OM or OM to CC. 

This command allows program modification commands to be punched on 

cards or paper tape; by using K as the last command I control will pass 

to OM (normally the teletY13e) to allow further modifications. 

9. RETURN TO DBOS. 'Z' 

The Z command terminates the DEBUG program by returning to DBOS. 

2.5.5-14 



~~L~~~~ ______________________ ~ 

OUTPUT FORMAT 

A DEBUG listed line has the format 

loc=data 1 data 2 •• • datan 

where: 

loc 

hhh 

Rh 

Xhhh 

Lh 

Phhh 

represents the location of the first data item in the line. 

loc is of the form 

core addre s s 

register address 

disk buffer address 

limit buffer address 

program relative address (if the relative address exceeds 

/FFF the modifier increments alphabetically to Q, R I S I etc. 

represents a data item (hexadecimal) 

is 16 for La and 8 for OM. 

2.5.5-15 



~~L~~~~ _______________________ _ 

2.5.5-16 

Table A 

Output to OM, allow changes 

Output to LP 

Move f1 to f2· 

Execute until trap (C=command) 

Search f for kf 1 with mask kf2 

Ocf 1I,cf2 1···1 ,cfn II ,k I Object output, k=exccution address 

K 

z 

a 

ca 

k 

cf 

kf 

Change command input 

Return to DBOS. 

Address/constant. address may have modifiers of 

R,X,L,P or S. 

Core address. Same as 'a', but S modifier 

not allowed 

A constant 

Address/constant field of the form al - a2' 

a, or R,X, L,P 

Core field. Same as 'f', but S modifier 

not allowed. 

Constant field of the form k or kl-k2 

(doubleword constant) 



~~L~~~~ __ --------------------_ 
88A00142A 

2.5. 6 SEQUENCE/COMPARE PROGRAM 

The Sequence and Compare utility program permits the user to copy, and 

sequence and compare (verify) files. The program uses L10 and may therefore 

copy from and to any file. 

The GA 18/30 Sequence/Compare utility is given the name 8QCM in the DC file. 

Thus, it can be loaded by use of the command: 

$8QCM 

The command format is: 

$SQCM 

> [ba seJ [, increment] ~ mOde] 

where: 

> 

Revised Dec 70 

Indicates a SQCM command statement. 

Is n alphanumeric characters (except blanks). These 

characters will replace the n rightmost characters of the 

input (81) file image. Blanks may be included by use of the 

# symbol. Typically, the last few characters of Ibase l 

are numeric establishing the first sequence number. 

Note: A limit of 8 characters is imposed if the mode 

specified is (B or U). If no base is specified, 

SQCM will perform a straight copy or compare. 

2.5.6-1 



~~L~~~~ __ ---------------------
88A00142A 

[ increment] 

[, mOd~ 

A positive value of any size which SQCM will use to in

crement the base. If no incran ent is specified I SQCM 

will use the numeric portion of 'ba se' as the increment. 

Input data mode specification. Four modes are accepted: 

A - 40 word ASCII 

B - 54 word binary 

C - 60 word binary 

U - unformatted paper tape 

If mode is omitted, ASCII is assumed. 

If lUI is specified and the input device is not 'PR', ·C· input is assumed. The 

output mode is the same as the input mode except for 'B' input, which is output 

in 'C' mode. If 'U' is specified and the output device is not 'PP', 'c' output is 

assumed. 

SQCM uses the following logical files: 

CC - command input 

OM - operator I/O 

SI - data input 

SO - data output 

15 - compare/copy switch 

Copy/Compare Control 

If $15=NO, SQCM will copy the file from SI modified by sequence data if 

specified to SO. If $15=iNO, then SQCM will compare the file input from SI 

modified by sequence data if specified to file assigned to $15. 

2.5.6-2 Revised Dec 70 



~~L~~~~ ______________________ ~ 
88A00142A 

Error Detection and Correction 

On compare error I the correct image will be output to 80 and the message ERROR 

will be output to OM. The correct image will be taken from 8I modified by sequence 

information. The operator must respond after an error with one of the following: 

C - Continue and ignore error. 

R - Reread image to double check or verify new image output when 

error occurred. 

D - Terminate and return to the DB08 monitor. 

End of File Control 

Each data mode has a unique end-of-file condition. Operation will terminate 

when an end-of-file is encountered. They are: 

A - Any number of leading blanks followed by the characters" END" . 

Note: The word END may not start in column 1 or 21 as it will be 

ignored. 

B - A type IF' object record. 

C - The characters $EOD in columns 1-4 of a card image. 

U - 15 inches of blank trailer (blank leader is ignored) . 

Note: The end-of-file image is both sequenced and compared as part of the file. 

Revised Dec 70 2.5.6-3 



~~L~~~~ __ --------------------_ 
88A00142A 

Control Command Insertions 

Any number of ASCII records may precede the SQCM command (». These records 

will be copied to or compared with the object file. The inserted records are not 

sequenced or titled. This feature permits annotation or control commands to be 

inserted prior to the obj ect data. 

A special termination procedure is provided if only insertions are desired .. 

Example: 

SQCM 

Insert 1 

Insert 2 

» Terminate job after Insertion number 2. 

Examples of SQCM Operation 

2.5.6-4 Revised Dec 70 



~~L~~~~ __ ---------------------_ 
88A00142A 

SAMPLES OF SOCM USAGE 

1. ASSUME A BINARY FILE IS ALREADY IN WC FROM CIC 

TO GENERATE A SEQUENCED BACKUP OBJECT OECK DO 

2. 

3. 

SJOB 
SSI=WC 
SSO=CP 
SSOCM 
>NAMOOl.B 

TO VERIFY DECK 

#\ 
INPUT FROM WC , 
OUTPUT TO CP 
CALL SQCM 
NAME PROGRAM NAM. SEQ FROM 1 BY IS 

COMPARE INPUT FROM CARD READER 
CALL SOCM 
SUPPLY SAME SEQUENCE CONTROL AS ABOVE 
CORRECTIONS. IF ANY. WILL BE OUTPUT TO CP 

$15=CR 
$SOCM 
>NAMOOl,B 

TO SEOUFNCf AN ASSEMRLER OR FORTRAN SOURCE FILE 
INTO CARDS AND VERIFY. 

$JOR 
SCOPY.C~.WS 
SSI=WS 
SSO=LP 
$15=CR 
SSOCM 
>.A 
$SO=CP 
S15=NO 
$SOCM 
>TITLEOOOOO,lO.A 

$15=CR 
$SOCM 
>TITLEOOOOO,lO.A 

INPUT UNSEQUENCED DECK FROM CAR~S TO WS. 
SOURCE F~OM WS 
VERIFY FILE. IF DESI~ED. AND LIST ERRORS ON LP. 

VERIFY SOURCE FILE DISK IMAGE 

SE~UENCE OUTPUT TO CP 

CALL SQCM 
FIVE CHARACTER TITLE. FIVE DIGIT SE~. NO •• INC.XIO 
INPUT WILL TERMI~ATE ON SOURCE FILE 'END' STATEMENT 

CALL SOCM 
COMPARE DECK TO FILE ON DISK MODIFIED BY SEQ DATA 

TO PROOUCE A TITLED AND SEOUENCED CARD DECK AFTER 
A FORTRAN COMPILATION AND BUILD. 

$JOB 
$F 

$A 

SEOO 
SCIC 
-MAP 
-BUILD 
$SI=WC 
sso=cp 

SOURCE 

SSOCM 
>FOROOOOO.IO.B 
S15=CR 
$SOCM 
>FOROOOOO.IO.B 

SEQUENCE WC FILE TO CP AND TITLE AS FOR 

COMPARE BACKUP DECK. CORRECTIONS TO CP 

Revised Dec 70 2.5.6-5 



~ GENERAL AUTOMATION. INC. _______ _ 

88A00142A 

4. 
TO ASSEMBLE A PROGRAM AND PRODUCE A SEQUENCED BACKUP 
CARD DECK WITH TITLE AND VERIFY. 

SJOR 
$A 

ISOUPCE 
SSI=WA 
$SO=CP 

$SQCM 
>TITLOOOl,B 
$lS=CR 
$SQCM 
>TITLOOO},B 

STATEMENTS FOR ASSEMBLY, MlJST TERMINATE 
INPUT fROM WA WHICH IS ASM OUTPUT 
SEQUENCED OUTPUT TO CP 
SEQ SW. 
CALL SOCM 
SUPPLY SEQ AND TITLE DATA + FORMAT 
SET COMPARE FROM CR 
CALL SQCM 
SEQ AND TITLE DATA + FORMAT 

WITH AND 'FNOJ 

5. TO SEQUfNCE A SOURCE FILE CONSISTING OF MULTIPLE 
STACKED JOBS WITH MANY 'END' STATEMENTS TO THE CPt 

SJOR 
$SI=CR UNSEQUENCED SOURCE FROM CR 
$SO=WS SEQUENCED SOURCE TO WS 
$lS=NO SEQUENCf/COPY SWITCH 
$SQCM CALL SOCM 
>TIU oooo~:c TTT! F + INCR OF/STARTING FRQM 00001 

'SOUR~~ F I LE ANY DECI\ OF £a.BJ.2s..NQLQlNIA.l.till'iG_l&.Q.U.1 
$EOD ~~~~~----~T~E~R~M~I~N~AT·E FILE AS TYPE C UNFORMATTED DATA 

$COPY,C,WS,CP PUNCH CARD DECK FROM SEQUENCED FILE, INCLUDES $EOD 

$SI=WS 
$SO=CP 
$}5=CR 
$SQCM 

SQCM COMPARE MASTER 
SQCM CORRECTIONS TO CP 
SQCM COMPARE FILE 
CALL SOCM 
COMPARE AS C FORMAT DATA 

SEQUENCED SOURCE FILE WHICH INCLUDE~ '$EOO' RECORD 

NOTE: THE SEQUENCED FILE IN WS IS NOT LISTABLE. 
THE SEQUENCED CARD DECK MAY BE LISTED wITH A SERIES OF 
COpy COMMANDS, ONE FOR EACH JOB. THE DECK MAY BE 
STORED AS A SERIES OF JOBS IN OS. 

NOTE: THAT WHILE THE WHOLE FILE HAS A CONTINUOUS SEQUENCE NO. 
IT STILL CONSISTS OF MANY INDIVIDUAL FILES. THE FILE MAY 
RE COPIED IN C FORMAT BUT MAY NOT BE 
STORED IN OS IN C FORMAT. A SERIES OF COpy COMMANDS 
IS REQUIRED TO STORE THE FILE IN A FORMAT SUITABLE FOR 
LISTING OR INPUT TO THE PROCESSORS. 

$COPY,C,WC,C,DCCTITL) 
$COPY,C,WC.CP 

COpy DATA AS C FORMAT DATA 
COpy C FORMAT DATA TO PUNCH 

2.5.6-6 Revised Dec 70 



~~L~~~~ __ ---------------------~ 
88A00142A 

6. TO ASSEMBLE A PROGRAM. PRODUCE A SEQUENCED BACKUP 
CARD DECK WITH TITLES AND VERIFY + STORE IN DC FILE 

SJOB 
SA 

bOURCE STATEMENTS. LAST RECORD MUST BE AN 'END' CARD.I 

SSI=WR SQCM INPUT fROM WB 
SSO=WC OUTPUT TO WC 
$15=NO SEQ.ICOPY 
$SaCM CALL SQCM 
>TITLOOOO.l,B TITL AND SEQ •• INC 
SCOPy.C.WC.C.DCCTITL) STORE SEQUENCED 
$LDIR.DC 
$C 

=1, BINARY 
IMAGE IN DC FILE. 

$15=DC (TITL) 
$SaCM 
>TITLOOOO.l.B 

COMPARE DC fILE TO WB 

SC 
$COPY.C.WC.CP 
S15=CR 
SSaCM 
>TITLOOOO.l.B 

OUTPUT SEQUENCED BINARY BACKUP DECK 
COMPARE TO CR 
CALL SQCM 
DO COMPARE 

7. TO COpy AND VERIfY A PAPER TAPE Of ANY fORMAT 
SJOR 
SSI=PR FROM PR 
SSO=WC TO WC 
$SaCM COpy UNFORMATTED DATA TO DISK 
>,U 
$15=WC 
SSaCM 
>.U 
$15=NO 
$SO=PP 
SSI=WC 
$SaCM 
>,U 
S15::PR 
$SaCM 
>,U 

VERIfY DISK FILE 

COpy WC fILE TO PP 

VERIFY PUNCHED TAPE 

THE DISK IMAGE IN WC CAN BE STORED AS A OIRECTORIED FILE IN 
DC AS SHOWN BELOW. THE DATA IS NOT EXECUTABLE IN THIS FORM 
HOWEVER. THIS PROVISION IS FOR STORAGE ONLY 

$COPy.C,WC,C.DCCNAME) UNfORMATTED TAPE TO DISK FILE 

TO RECOVER THIS FILE AND PUNCH A PAPER TAPE 

$JOR 
$SI=DC(~AME) 

SSO=PP 
SSaCM 
>.U 
S15=PR 
$seCM 
>,U 
SC 

Revised Dec 70 

TO PUNCH A BACKUP BINARY PAPER TAPE AND VERIfY 

PUNCH NEW TAPE FROM DC FILE (NAME) 

VERIFY NEW TAPE. IF AN ERROR OCCURS THE TTY WILL 
TYPE 'ERROR'. RETURN TO MONITOR (ENTER 0 C/R) AND 
RETRY VERIFY OR PUNCH NEW TAPE. 

2.5.6-7/8 





~~L~~~~ __ - ___________________ _ 

88A00142A 

2. 5. 7 SYSTEM GENERATION UTILITY 

The System Generation Utility is designed primarily for initial system configurating 

and building as described in Section 4.0. SYSGN, however, is also useful as a 

utility routine. Used as a utility many system characteristics may be redefined. 

All redefined parameters become effective immediately upon return to the Monitor. 

The GA System Generation Utility is given the name SYSGN in the DC file. Thus, 

it can be loaded via the command: 

$SYSGN 

The SYSGN utility inputs commands expressly designed to ease the generation 

procedure. The Debug feature is included in SYSGN and is described in Section 

2.5.5. 

System Generation Commands 

All commands are written in standard DBOS format as described in Section 2.2. 

Disk Unit Assignment 

$DISK, unit 

where unit is one of the following: 

1341 - Model 1341 Disk Storage Unit 

1344 - Model 1344 Disk Storage Unit 

1345 - Model 1345 Disk Storage Unit 

Revised Dec 70 2.5.7-1 



~~L.AU~~~~_---------------------_ 
88A00142A 

This command establishes the proper code in BULKN to handle the specified type 

disk. This command would not ordinarily be used in the utility mode. 

Core Size Assignment 

SCORE, size 

where size is one of the following: 

8K - for 8192 word memory 

16K - for 16384 word memory 

32K - for 32768 word memory 

This command establishes the upper core address limit for many programs which 

execute under DBOS. The input value must reflect the actual available core in 

the system. 

Disk File Limit Assignment 

$file(bs-es) 

where: 

2.5.7-2 

file 

(bs-es) 

Is the name of a disk file as shown in table 2-2. 

Define s an area of contiguous sectors to be allocated to th 

named file. The values bs and es are specified in hexa

decimal. 

Revis ad Dec 70 



~~L~~~~ __ --------------------~ 
88A00142A 

This command is especially valuable when a currently defined file structure is 

found to be inadequate. Caution must be exercised v:hen redefining files to not 

overlay a previously defined file. Typically, all files which follow the file to be 

redefined must also be redefined if they are to remain contiguous. A file may be 

redefined to follow the last previously defined file; however, the space vacated 

is frequently wasted. Sectors O-FF are reserved for system use. The ordering of 

disk files shown in appendix A has been selected to minimize seek time. It is 

preferable to reassign all files following a specific file to preserve the indicated 

order. All moved files must be rebuilt. 

Initialize Disk 

~IDISK ~bs-e~ 
where bs-es, if specified, are the beginning and ending sectors (in hexadecimal) 

to be initialized. If the optional limits are omitted, the entire disk is initialized. 

Those sectors which are initialized will be cleared of all previous data and 

addressed. Each sector is verified for reading accuracy. 

An accuracy failure in a sector marks that sector as a "bad Sector". The bad 

sector and its alternate are logged in the bad sector table, locations /66 to /6F 

of the Monitor. The bad sector table may be examined by use of the Debug routine. 

The bad sector table consists of word pairs which contain the bad sector and its 

alternate. A value of /FFFF ,/FFFF is used for unused word pairs. 

Revised Dec 70 2.5.7-3 



~~L~~~~ __ -------------------~_ 
88A00142A 

Define Initial and Standard Logical File Assignments 

$lun=fi1e [(bS-eS)] ,p 

This command is the same as described in Section 2.4. 1 except that in SYSGN I 

the system basic definitions are established. The define file command in SYSGN 

is used to establish the disk resident lun/file assignment table. The table contains 

two assignments for each lun. The first assignment is in effect immediately after 

an initial system load from disk (IPL). The second or Standard assignment goes 

into effect after a JOB command is processed. 

Procedurally, all Standard assignments must be made prior to the initial assign-

ments. The command to define a Standard assignment also defines the initial 

assignment. Generally I the same file assignment is satisfactory for both the 

initial and Standard condition. In the se cases, only Qne file as s ignment command 

is necessary. 

Example: 

$SL=LP,P Standard and initial assignment is to line printer. 

To force a special initial file assignment for a lun 

$SL=TY Initial assignment is TY which overrides previous assign- L 

ment of LP. 

2.5.7-4 Revised Dec 70 



_~~L~~~~ ______________________ ~ 
88A00142A 

Copy System Executive to Disk 

- -
$EXEC,file ,S ,file2(bs-es) 

~ -

This command is a special form of the copy command used to write a new Executive 

to the disk. The parameter file 2 must be a disk file, usually defined as sectors 

/12-/27. 

Example: 

$EXEC, CR, B, DP( 12-27) Cards to disk 

$EXEC, PR, B, DP( 12- 2 7) Paper tape to disk 

Initialize Directoried File 

$IDIR, file 

where file is a directoried disk file. 

The purpose of this command is clear a directoried file, i. e., DC, DS I LB I UL. 

This command is used when it is desired to completely replace the contents of a 

file. The alternative to this comna nd is to use the DELETE or REPLACE commands 

for all entries in the file. 

Patch Monitor 

$D 

This command invokes the Debug routine described in section 2. 5. 5. Its purpose 

in SYSGN is to permit the user to examine and/or change the Monitor. The 'Z' 

command which normally returns to the Monitor will return control to SYSGN. 

Revised Dec 70 2.5.7-5 



_~G~L~~~~ __ ---------------------
88A00142A 

Write Monitor to Disk 

$WMON 

This command writes the system bootstrap and monitor to disk. This command 

must be executed prior to returning to DBOS. 

Initial System Operation 

$START 

This command transfers control to DBOS. All modifications made with any of the 

SYSGN commands will be in effect immediately. 

2.5.7-6 Revised Dec 70 



~~L~~~~ __ --_____ ~ ____________ _ 

88A00142A 

2.5.8 BOOTSTRAP LOADER GENERATOR 

The Bootstrap Loader Generator is used to generate a card or paper tape bootstrap 

loader for stand alone use. The operator may precede the generation of an object 

deck or tape with this routine. This feature is especially advantageous to paper 

tape users. This loader recognizes type codes of 0 I A and F only. The assembler I 

Debug and core image converter outputs may be loaded. 

The Bootstrap Loader Generator is given the name BOOT in the DC file. Thus I it 

can be loaded by use of the command: 

$BOOT 

BOOT uses the following logical units: 

SO - data output 

15 - generate/compare input switch 

OM - error messages 

CC - operator input 

Generate/Compare Control 

If $lS=NO I BOOT will output an IPL format bootstrap loader to SO. SO may be 

assigned to PP or CP. If $IS=iNO I then BOOT will compare the input file assigned 

to 81 with the correct bootstrap image. 

Revised Dec 70 2.5.8-1 



~~L~~~~ __ --------------------_ 
88A00142A 

Error Detection and Correction 

On compare error, the correct image is output to SO and ERROR is output to OM. 

The operator must respond after an error with one of the following: 

C - continue 

R - reread image to double check or verify new image output 

when error occurred. 

D - terminate and return to the DBOS monitor. 

2. 5. 8. 1 Card Bootstra·p Loader Execution 

The Card Bootstrap Loader may be loaded anywhere in core. Once loaded the 

loader may be re-entered at location Q as required for loading subsequent pro

gram modules. Care must be exercised to place the loader in an area of core which 

will not be overlaid by the object program. The execution/loading address (0) 

must be an even address. 

The following steps are required to load and execute the Card Bootstrap Loader 

at location (Q): 

2.5.8-2 

1. IPL bootstrap into location Q (normally zero). 0 must be even 

a. Unlock the 'Console Enable' and 'WSPB ' switches, set all 

switches off (up) except for 'sPa', 'IDLE', 'HALT', and card 

IPL channel (normally "Register Select' switches 8 and 4), press 

and release 'reset'. 

Revised Dec 70 



~~L~~~~ __ --------------------_ 
88A00142A 

b. Load card reader with 3 card bootstrap/loader followed by one or 

more object decks. Ready the card reader. 

c. Set Q into the console data switches I press and release 'Enter', 

set 'Halt' switch off (up) I press and release 'IPL' (card 1 of the 

bootstrap/loader will be input) I set 'Halt' on (down). 

2. Execute bootstrap at location Q with data switch options. 

Revised Dec 70 

a. Press and release 'Reset', set Q into the console data switches I 

set register select switches off (up) I press and release' Enter' • 

b. Select data switch options 

Switch 0 = load/execute option 

Off = Load according to switch 1 

On = Execute last complete object deck loaded. 

Switch 1 = load option 

Off = Load and execute one object deck 

On = Load multiple object decks 

Both switches may be changed at any time during the execution of 

the loader Ii. e. I if multiple object decks are being loaded I 

switch 1 may be reset while loading the last object deck to effect 

execution I or switch 0 may be set after the last card in the 

reader is input to effect execution. 

2.5.8-3 



~~L~~~~ __ ------------------__ ~ 
88A00142A 

2.5.8-4 

c. Set I Idle/run I switch to IRun', press and release 'Step' to 

execute the bootstrap/loader. 

3. Errors 

a. Checksum error or card reader error. Program will enter a wait 

condition. Correct error and ready reader to reinput card. 

Press and release step. 

b. Loader overlay error. Occurs when obj ect program destroys 

loader while loading. Choose a suitable Q (see core requirements) 

and return to 1A. 

4. Core requirements. The Bootstrap (first card) requires 40 locations 

7FF F 

0-181 

0+39 

0+1 

o 

starting at Q. After the bootstrap has loaded the loader, locations 

0+1 to 0+39 are available to the user. The loader (cards 2 and 3) 

requires 181 locations I the last of which is Q, the entry point. If Q 

is zero (normal case) the loader will reside in the top of core with Q 

at location zero. 

LOADER 

CORE 

~ vailable after 
oader loaded 

h 

7FFF 

0+39 Available after loader 
loaded 

o 
LOADER 

Q-181~ ______________ ~ 

o 

0=0 
o = 100016 

Revised Dec 70 



~~L~~~~ __ -------_____________ _ 

88A00142A 

2. 5. 8.2 Paper Tape Bootstrap Loader Execution 

The paper tape bootstrap loader may be loaded anywhere in core. Once loaded 

the loader may be re-entered at locat~on 0 as required for loading subsequent. 

program modules. Care must be exercised to place the loader in an area of core 

which will not be occupied by the object program. The loading/execution address 

(0) must be an even address. 

The following steps are required to load and execute the Paper Tape Bootstrap 

Loader at location 0: 

1. IPL or use teletype boot (programming/operations manual, 88AOO 121A, 

appendix G) to read loader into location Q. Q must be even. The IPL 

procedure is described below. 

Revised Dec 70 

a. Unlock the 'console enable ' and 'WSPB I switches, set all 

switches off (up) except for ISPOI, 'idle ' , 'haIti, and paper tape 

IPL channel (normally 'register select' switches 8 and 4), press 

and release Ire set ' . 

b. Load paper tape reader with 'rubouts' over read head. Ready the 

reader. 

c. Set 0 into the console data switches, press and release 'enter l 

set 'haIti switch off (up), press and release 'IPL' the entire 

loader should be read stopping on the terminating '5' punch. 

Set 'halt I down. 

2.5.8-5 



~~L~~~~ __ ---------------------~ 
88AOOl42A 

2.5.8-6 

2. . Execute loader at location Q. 

a. Press and release 'reset', set 0 into the console data switches I 

set register select switches off (up). Press and release 'enter'. 

b. Load object paper tape into paper tape reader/teletype. Set 

'idle/run' switch to 'run', press and release 'step' to execute 

the loader. If no errors occur I loading will stop after an end 

record (type 'F') is encountered. The A register will be zero. See 

data switch options. 

3. Errors 

a. Checksum error. The A register will be non-zero. 

b. Loader overlay error. Occurs when obj ect program destroys loader 

while loading. Choose a suitable 0 (see core requirements) . 

4. Data switch options. Switch zero is used a s follows: 

Off = load another tape I return to step 2b. 

On = execute last successfully loaded program. Pres s step. 

5. Core requirements. The loader requ:ir es 176 locations starting at 0 

through 0+175. 

Revised Dec 70 



~~L~~~~ __ --------------------_ 
88A00142A 

2.5.9 PAPER TAPE VISUAL HEADER GENERATOR 

The visual header generator is supplied in DBOS to permit labeling of paper tapes. 

The user may enter a series of characters which will be punched as a header in 

ticker tape visual format. 

The header routine is given the name HDR in the DC file. Thus, it may be called 

to execution by the command: 

$HDR 

HDR use the following logical units: 

OM - Opem tor error mes sages 

PP - Punched output 

15 - Compare input via PR 

CC - Header data input 

Generate Compare Control 

If $15=NO, HDR will punch a header in visual format cons isting of characters 

input from CC prior to the terminating C/R. If $15=PR, HDR will compare the tape 

in PR to the input data. 

Error Detection 

HDR will abort and return to DBOS if the input tape does not compare. The message 

ERROR is output to OM. 

Revised Dec 70 2.5.9-1 



~~L~~~~ __ --------------------_ 
88A00142A 

Character String Format 

The following characters are valid: 

A-Z 0-9 (). -/ and space. 

Trailer may be included in the header by following the last trailer blank character 

with a if symbol. The special character @ will cause 8 rubout frames to be punched 

2.5.9-2 Revised Dec 70 



~~L~~~~ ______________________ ~ 
88A00142A 

2. 7 MEDIA DATA RECORD FORMATS 

2.7.1 CARD DATA 

"A" Format - 80 Hollerith characters. 

IrB" Format - Assembler and core iImge converter 54 word binaryformat (call - 72) 

This fermat is the primary data storage unit for programs stored in the DC 

file. Each 54 word record contains an address and checksum. The checksum 

includes the relative sequence number of the record within the program file. 

The checksum is verified during all load operations. 

IrC" Format - This format consists of a packed format which results in 60 

binary words per punched card. No address or checksum appears in the format. 

rr D rr Format - Not applicable to cards. 

2.7-1/-2 





~~.~L~~~~ ______________________ ~ 
88A00142A 

2.7. 2 PAPER TAPE FORMATS 

"A" Format - Formatted ASCII data records. Each record must appear as follows: 

LF, DATA, TRAILING BLANKS (which are omitted 

by DBOS) CR 

The LF is not packed as part of the data record and leader is slewed. A 

maximum of 80 characters can be input per record. A CR will terminate input 

and blank fill the remainder of input buffer. 

"BII and "c" Format - In these formats the first frame contains a word count 

for the following record. Data is packed two frames per word. Leader is 

ignored. 

Data transfer terminates when the DBOS word count, 54 or 60 words is reached. 

If the frame count is exhausted before the word count, the remainder of the input 

buffer is filled with zeroes. 

2.7.2-1/-2 





~~L~~~~ _______________________ ~ 
88A00142A 

2.7.3 DISK FORMATS 

Data is stored on disk in four formats. It is generally I not acceptable to mix 

formats within files. The user should consider the forma. t of data to be copied 

to/from a general purpose device. Refer to table 2- 2 for implicit data type for 

each device. 

A Format - Data stored in source form on disk are in packed ASCII format. 

Blarks are compressed and each input record requires a variable amount of disk 

storage. An average of 15 records are stored per sector. 

B Format - The 54 word binary storage format is the primary unit under DBOS. 

A $COPY command or $DUMP command which references a DC or library file 

will result in 54 word records as output. (The user should note that at no 

time is a program stored on disk in core image format. Section 2. 7 . 4 diagrams 

a method for obtaining a hexadecimal dump of a program in core image format.) 

All loading operations process the" B" format and each record is checksummed. 

Fi ve records are stored per sector. 

C Format - Sixty word binary record format. This format permits unchecksummed 

data to be processed. 

rive records are stored per sector. 

2.7.3-1 



~~L~~~~ ______________________ _ 

88A00142A 

D Format - Sector data format. Each record contains 320 words. Files consists 

of multiples of disk sectors. A file may be defined by its name or its beginning I 

bs I and ending sector es. 

2.7.3-2 



~~L~~~~ ______________________ ~ 
88A00142A 

2. 8 ESTABLISHING NEW FILES 

A new file may be defined at any time as a function of the JOB stream. For 

exampl e: 

$SI=DS(800-lE82) ,[pJ 

would define a directoried source file I DS, origined at sector 800 and terminating 

at sector lE82. The P option defines the new DS definition as standard for 

multiple JOBs. A temporary assignment is reset on occurrence of the next JOB 

command. The user should also be aware that reloading the system, IPL, 

resets all LUN as signments to the basic set. 

To add a source deck to the new file the command: 

$COPY ,CR, DS(NAME) 

will add the label NAME to the directory for the file and store the source. 

Any definition of a file in terms of beginning and ending sector establishes 

new temporary or standard limits for that file. A subsequent reference to DS in 

the example above is to the file bounded by 800 and 1E82 and not the basic set 

of boundaries (900-frf). 

2.8-1 



~~L~~~~ __ --------------------_ 
88A00142A 

To reset the boundaries of DS to the basic limits 

$SI=DS (900-FFF) 

The reference to SI is for formatting only. The file DS is the effected entHy. 

SI may be reassigned without affecting DS. 

2.8-2 

NOTE 

Care should be exercised when enlarging a file to not 

overlay another file. Considerable disk space is available 

outside the basic limits for user files. The user may reassign 

all file boundaries at any time. 

NOTE 

User library files must be terminated with an EOD image. 

Example: 

$TOB 

$2=UL(bs-es) 

$A 

Source Statements 

$A 

Source Statements 

$EOD 

$C()PY I WI3 I Ur.. 

define limits for user library 

build library data records 

close file 

copy assembler generated subroutines 
and EOD to UL. 



~~L~~~~ ______________________ ~ 
88A00142A 

2. 8. 1 REASSIGNING FILES 

In the previous section on defining new files the processes required to reassign 

files were defined. It is permissible to reassign files during a JOB stream 

repeatedly. This feature makes it possible to assemble or compile from several 

source files to build a particular c:b ject program. Example: 

$SI=DS(NAME) 

$A 

$l=DS(bs-es) 

$SI=DS(NAMEF) 

$F 

$SI=DS (bs2-es2) 

$A 

$EOD 

$CIC 

*BUILD 

$ LOAD 

Unit 1 from basic DS file 

object to WB 

Set SI to Fortran source file 

Set SI to named segment of Fortran file 

Compile unit 2 

Set SI to source file 2 

Assemble unit 3 

Close binary object file 

Build program 

Execute program 

2.8.1-1 



~~L~~~~ _______________________ _ 

88A00142A 

Table 2-1. DBOS Logical Units 

STANDARD 

NUMBER NAME USAGE 
ASSIGNMENT (FILE) 

(SEE FILE NAMES, TABLE 2-2) 

0 CC Control Command Input TV (Teletype Keyboard) 

1 SI Symbolic Input CR (Card Reader) 

2 SO Symbolic Output WS (Working Symbolic File) 

3 BI Binary Input WB (Working Binary File) 

4 BO Binary Output WB (Working Binary File) 

5 LO Listing Output LP (Line Printer) 

6 IS Intermediate Symbolic WS (Working Symbolic File) 

7 OM Opera tor Messages TV (Teletype Printer) 

8 CI Core Image Data WC (Working Core Image File) 

9 LB Binary Library LB (Directoried Library File) 

10 SL System Log LP (Line Printer) 

12 SB Secondary Binary Library CR (Card Reader) 

11 UL User Library UL (Directoried User Library File) 

13 User Disk Temporary OK (Unformatted Disk I/O File) 

14 User Packed Disk Temporary DP (Disk) 

15 NO NO (Delete I/O) 

2.8.1-2 



~~L~~~~ __ ---------------------~ 
88A00142A 

NAME 

WC2 

CR 

CP 

LP 

TY 

PR 

PP 

NO 

DEVICE 

Disk 

Disk 

Table 2-2. DBOS File Nqmes 

USAGE 

Directoried source language program data 

Directoried binary object subroutine library 

Disk Directoricd user binary object subroutine library. 

Disk Directoried core image program data 

Disk Working source language data 

Disk Working binary object data 

Disk Working core image data 

Card Reader ASCII or binary card input 

Card punch ASCII or binary card output 

Line Printer ASCII listing output 

Teletype ASCII or binary teletype input/output 

Paper Tape Reader ASCII or binary high-speed paper tape input 

Paper Tape Punch ASCII or binary high-speed paper tape output 

Disk ASCII or binary disk sector input/output 

Disk ASCII or biliary logical packed disk input/uutput 

N<Hll' Dell'tl' illput or output 

ASCII character strillg 80 character records. Data 

type A in file manipulation commands. 

2 Binary object format 54 word records. Data type B 

ill file manipulatioll commands. 

J Biliary data ill 320 word record form. 

2.8.1-3/-4 





~~L~~~~ _____________________ ~ 
88A00142A 

2.9 JOB CONTROL FROM DIRECTORIED DISK FILE 

2.9. 1 DIRECTORIED JOB FILE 

The directoried job file DJ is functionally identical to the DS file. Data is 

entered into the file by use of the copy command. 

B name B ' ~A] [( )J ~A~ $COPY ~ • filel bs-es ~,DJ(NAME) 

The use of A format is mandatory for job string storage. (Note: The file may be 

used for general storage of any type data when not in use for directoried job 

string storage. The DJ file has an implicit mode of A. 

Job strings stored in DJ are invoked by assigning logical unit CC to DJ. 

$CC=DJ{NAME) 

The last command in the job string must be a command which will transfer control 

back to the teletype or another file in DJ. 

Example: 

$CC=DJ(NAME) 

$CC=TY or $CC=DJ(NAME2) 

Revised Dec 70 2.9.1-1/2 





~~L~~~~ _____________________ ~ 

3 . 1 DBOS OPERATIONS 

SECTION 3 
OBOS OPERATIONS 

DBOS monitor operation may be initialized by a bootstrap load from disk or, 

when the monitor is resident in core memory, by a manual interrupt or a pro-

grammed return to the monitor from an executing program. 

3.1-1/-2 





~~L~~~~ __ -------------------~ 

3. 1 • 1 BOOTSTRAP LOADING FROM DISK 

With DBOS resident on disk, the user may load and initiate execution of the 

monitor by executing the following bootstrapping procedure: 

1. Make the disk ready for initial program load (IPL) • 

2. Unlock CONSOLE ENABLE and WSPB switches. 

3. Set the following switches ON (down). All other switches should be 

orr (up). 

a. RUN/IDLE 

b. SPO 

c. REGISTER SELECT switch 8 

d. HALT 

4. Operate the following switches in the following order: 

a. Press and release RESET 

b. Press and release ENTER 

c. Reset HALT (up) 

d. Press and release IPL 

e. Set HALT (down) 

f. Press and release RESET 

g. Reset REGISTER SELECT switch 8 (up) 

h. Press and release ENTER 

1. Set RUN/IDLE switch to RUN 

j • Press and release STEP 

3.1.1-1 



~G~L~~~~ __ ---------------------~ 

Following step 4j the bootstrap loader begins execution and loads the 

DBOS monitor and logical I/O system into core from disk and transfers 

control to the monitor. 

When the monitor begins execution following this bootstrapping process, a 

series of initialization functions are performed: 

1 • Initialize channels. 

Zeroes are placed in channel addres s registers. 

2. Set interrupt addresses. 

Pointers to interrupt handlers are placed in the interrupt addres ses • 

3. Unmask interrupts. 

All interrupts are made operational. 

4. Execute executive. 

The system executive is loaded from disk and executed. (See executive 

operation I paragraph 3.2.) 

All standard logical unit assignments are in effect following bootstrap loading 

of the monitor except SL which is a s signed to TY. 

3.1.1-2 



~~L~~~~ _______________________ _ 

3. 1 .2 CONSOLE INTERRUPT TO THE MONITOR 

The operator may interrupt computer activity at any time and return control to 

the monitor by pressing the console interrupt switch. This causes the following: 

1 . The console interrupt handler transfers control to the monitor. 

2 . The monitor as signs the teletype keyboard as the CC device. 

3 • M emory is written to disk beginning at sector 75. 

4. The message ***CONSOLE INTERRUPT is output to the teletype printer. 

5. The monitor performs the four initialization functions listed in subpara

graph 3. 1 . 1. Only the CC logical unit assignment is reset. 

3.1.2-1/-2 





~~L~~~~ _______________________ ~ 

3. 1 • 3 PROGRAMMED RETURN TO MONITOR 

Two methods are provided for returning control to the monitor from an executing 

program or proces sor: 

1 . Normal return. Normal return to the monitor is accomplished by a CALL 

to MON. A FORTRAN program should use the STOP statement which closes 

any logical files opened by the program before returning to the monitor. 

'" 2. Error return. Error return to the monitor is accomplished by a CALL to 

MONE. This return is the same as a normal return except an error message 

is output on OM . 

Upon either return the monitor writes the entire memory to disk and performs 

the four initialization functions listed in 3.1 .1. 

3.1.3-1/-2 





~G~L~~~~ ______________________ ~ 

3. 1 .4 PROGRAM RESTART THROUGH THE MONITOR 

Monitor operations provide a method for restarting a user program or system 

processor. This is used primarily for program checkout purposes. This operation 

uses a program restart addres s established in the monitor at the time a console 

interrupt or error return situation occurs. 

The symbolic location RSTRT (location 74) is the monitor entry for program 

restart. 

To perform a program restart, the operator executes the following console opera-

tions: 

1. Unlock the CONSOLE ENABLE switch. 

2. Place the computer in the idle mode by setting the RUN-IDLE switch to 

IDLE. 

3. Set the HALT switch to the lower position (ON) • 

4. Press and release the RESET switch. 

5. Set the REGISTER SELECT switches to /0000 (all switches in the upper 

position) to select the I-register. 

6. Set the console data switch to /0074 (RSTRT location of the monitor) . 

7 . Press and release the ENTER switch. 
- - ~--------------

8. Set the RUN-IDLE switch to RUN. 

9. Press and release the STEP switch. 

3.1.4-1 



~G~L~~~~ _______________________ ~ 

This procedure transfers control to the monitor at its RSTRT point. The monitor 

initializes interrupt conditions and restarts the user's program at the point at 

which operation previously ceased. 

3.1.4-2 



~~L~~~~ ______________________ _ 

3. 1. 5 MANUAL ENTRY TO THE MONITOR 

In addition to the manual restart of a user program or system processor and 

console interrupt, the operator may initiate monitor operation manually at 

either the normal or error operating level. 

The following steps achieve manual entry: 

1. Unlock the CONSOLE ENABLE switch. 

2. Place the computer in the idle mode by setting the RUN -IDLE switch 

to IDLE. 

3. Set the HALT switch to the lower position. 

4. Press and release the RESET switch. 

5. Set the REGISTER SELECT switches to /0000 (all switches in the upper 

position) to select the I-register. 

6. Set the console data switch to /OOXX, where 'XX' is one of the following: 

71 Normal console entry. Achieves the same operations as a 

normal return to the monitor. 

73 Abort console entry. Achieves the same operations as an error 

return or console interrupt to the monitor. 

74 Restart console entry. (See subparagraph 3.1.4.) 

7. Press and release the ENTER switch. 

8. Set the RUN-IDLE switch to RUN. 

9. Press and release the STEP switch. 

3.1.5-1 



~~L~~~~ _______________________ _ 

This procedure transfers control to the appropriate monitor entry point and initiates 

monitor execution. Except for RSTRT (location 74) entry to the monitor transfers 

control to the executive (see executive operations I paragraph 3.2). 

3.1.5-2 



~G~~~~~ _______________________ _ 

3. 1 .6 MONITOR FIXED LOCATIONS 

The monitor contains a series of fixed locations utilized as entry points (previous 

paragraphs) or as storage locations for pertinent program information. These 

locations are shown in table 3-1. 

3.1.6-1 



~G~L_~~~~ _______________________ _ 

88A00142A 

3.1.6-2 

HEXADECIMAL 

LOCATION 

70 

71 

72 

73 

74 

77 

78 
79 

7A 

7B 

7C 

85 

Table 3-1. Storage Locations for Pertinent Program Information 

NAME 

MON 

MONE 

RSTRT 

LlO 

USAGE 

Normal program return to the monitor to transfer 

control to the executive. 

CALL MON 

Normal console entry to the monitor to transfer con

trol to the executive. 

Abort program (error) en try to the mon i tor to trans

fer control to the executive. 

CALL MONE 

Abort console entry to the monitor to transfer con

trol to the executive. 

Console entry to the monitor to initialize interrupt 

conditions and restart the user)s program or system 

processor in core. 

Location register saved. In cases of program interrup

tion or error abort, this location contains the address 

of the next instruction following the interrupted 

instruction. 

A register save location. 

Q register save location. 

Index 1 save location. 

Index 2 save location. 

Index 3 save location. 

Entry point to LlO. 



~~LM~~~ ___ --------------------~ 
88A00142A 

3.2 EXECUTIVE OPERATIONS 

Following entry into the monitor (except for program or processor restart), the 

monitor loads and transfers control to the executive. The executive initializes 

the I/O channels and the busy indicators of the I/O drivers and then begins 

processing control commands. Control commands are read from logical unit CC. 

When the teletype keyboard is the CC device, the executive requests control 

command input by output of a line feed, return, a £ and space on the teletype 

printer and waits for a key-in. (See subparagraph 2.2. 1, control commands 

input from the teletypewriter.) 

The teletype keyboard is the standard CC assignment (see table 2-1) and 

retains this assignment unless changed by a I $lun=file ' control command (sub

paragraph 2.4. 1). If the CC device as signment is changed, the assignment 

reverts back to the teletype keyboard under one of the following conditions. 

1. SCC=TY 

Control command unit reassignment. 

2. Console interrupt. 

3. Anyone of the proces sing errors or interrupt conditions listed in 

subparagraph 3.3. 3. 

The executive processes control commands as described in section 2. It does 

not remain resident in core during execution of a user program or a system pro

cessor. It is reloaded by the monitor as needed to process control commands. 

Revised Dec 70 3.2-1/2 





~~L~~~~ _______________________ _ 

3.3 SYSTEM MESSAGES 

DBOS provides output messages to indicate device not ready and error or interrupt 

circumstances. These mes sages fall into three categories: 

1. Input/output messages. 

2. Control command error messages. 

3. Processing error and interrupt messages. 

3.3-1/-2 





~G~L_~n~~ _______________________ ~ 

3.3.1 INPUT/OUTPUT ERROR MESSAGES 

These messages are printed on the console teletype printer and reflect conditions 

of devices which require operator action. 

MESSAGE: 

file NOT HEADY 

'file' is a file name as defined in table 2-2. This message indicates that a 

device is not turned on or is not ready due to a lack of physical data (e. g., card 

hopper empty) . 

When the operator has made the device READY, operation resumes automatically. 

MESSAGE: 

file ERROR 

'fUe' is a file name as defined in table 2-2. 

This mes sage indicates a problem condition with the device. 

Following output of this message, the system requests a key-in by the operator 

to indicate the next action. The following al ternati ves may be taken: 

3.3.1-1 



_~G~L~~~~ _______________________ ~ 

3.3.1-2 

ACTION 

Retry the operation 

Ignore the error 

Ignore the error I 

proceed (continue) 

Abort the proces s I 

return to the executive 

KEY-IN 

R return 

C return 

Any other chara cter 



~~L~~~~ __ --------------------_ 
88.A00142A 

3.3.2 CONTROL COMMAND ERROR MESSAGES 

These messages are listed on the teletype printer and also on the 8L device (if 

8L is not assigned to teletype). Upon printing these messages, the system con

tinues to read the next control command. 

* * SYNTAX 

* *FILE(NAME) DEFINED 

**UNDEFINED FILE 

**UNDEFINED NAME 

**INVALID ADDRESS 

**INVALID CC 

**INVALID LUN 

Revised Dec 70 

The statement is syntactically incorrec 

The output file of a COpy command 

references an existing entry in a 

directoried file. Change name of pro

gram to be copied or use REPLACE 

command. 

An undefined file name was specified. 

The program (processor) specified in 

a $NAME command is not in the DC file 

directory. COpy program to DC file or 

use $LOAD if program is in WC file. 

The 'bs-es I sector address or the 

'loc1-loc2 I memory address specified 

is incorrect. 

A CONTROL command was not preceded 

by a $. 

An illegal logical name or number was 

specified, refer to table 2 -1 . 

3.3.2-1 



~~~L~~~~ ______________________ _ 

88A00142A

**ILLEGAL OPERATION

**PARAMETERS IGNORED

**INVALID DELIMITER

**UNUSABLE DISK PACK

**DEVICE FAIL

**DISK UNIT UNDEFINED

**CHECKSUM ERROR

3.3.2-2

Operation is valid only for directoried

files. Correct file assignment or pro

cedure.

Notification only. A 'bs-es' was

specified for a non-disk file.

A character other than blank I comma I

dash or parenthesis was contained in

the control command. Correct control

record or input correctly.

M ore than fi ve defective sectors

were encountered during disk initia

lization. Retry initialization and/or

replace disk pack.

Disk error. Attempt operation again.

Either the type of disk drive has not

been defined or the disk has not been

initialized. Refer to section 2. 5 .7

for disk initialization.

A checksum error has occurred while

copying the Executive to disk. Check

sequence number on cards for correct

order and retry.

Revised Dec 70

~~L~~~~ __ ---_________________ _

88A00142A

**CORE SIZE UNDEFINED

**MONITOR NOT ON DISK

**EXECUTIVE NOT ON DISK

Revised Dec 70

An attempt has been made to write the

Monitor to disk without defining the

size of available core. Refer to

section 2.5. 7 I $CORE.

An attempt wa s made to cole start a

new system with $START command prior

to writing Monitor to disk. Refer to

section 2.5.7, $WMON.

An attempt wa s made to cold start a

new system with $START command

prior to writing the Executive to disk.

Refer to section 2. 5. 7, $EXEC.

3.3.2-3/4

~~L~~~~ _______________________ ~
88A00142A

3.3.3 PROCESSING ERRORS

Processing errors indicate a failure during processing of user programs. When

these occur the operation is terminated and control is returned to the executive

with CC forced to the teletype keyboard. Since memory is written to disk when

such a return occurs I a memory dump can be obtained using the PDUMP control

command.

Processing error messages a.re listed on the teletype printer and on the SL

device (unless 8L is assigned to teletype).

**PROCESSING ERROR. Control was transferred to the monitor abort

location.

**LOAD ERROR. An error occurred during loading of a system processor

or a user program.

**CONSOLE INTERRUPT. The console interrupt switch was pressed.

(See note below) •

**ILLEGAL INSTRUCTION EXECUTION. An operation code not included

in the GA 18/30 instruction set was encountered. (See note below.)

**POWER FAIL. Power to the hardware system falls below mi.nimum limit.

(Soe note below.)

**RESTAHT. Processing is automatically restarted following power failure.

"(See note below.)

3.3.3-1

~~L~~~~ ______________________ ~
88A00142A

3.3.3-2

**MEM PARITY. Memory parity check indicates incorrect read-out of a

memory word. (See note below.)

* *MEM PROTECT VIOLATION. Attempt made to invade protected memory.

(See note below.)

**DATA CHANNEL ERROR. Hardware error in data transmission. (See note

below.)

NOTE

In cases where an error condition or operator inter

vention causes an internal interrupt I the message

**AT LOCATION XXXX

is printed. XXXX is the hexadecimal addres s of

the next instruction following the instruction at

which interrupt occurred.

~~LB~~~ ______________________ _

88A00142A

4.1 GENERAL

SECTION 4
SYSTEM GENERATION

The GA DBOS is supplied to the user as a deck of cards or several rolls of

punched paper tape. All standard components for generating the system are

supplied.

The following procedures are designed to make the task of system configuration

and generation as minimal as possible. The SYSGN program consists of a set of

utilities which are used initially to build a DBOS, but which may also be used

for later modification of the system. The following paragraphs detail the steps

which must be executed and in what order. Those steps which are optional are

bracketed and may be executed in any order. Refer to section 2 for details of

SYSGN utilities. For paper tape procedures skip to section 4. 7 .

4. 1. 1 CARD SYSTEMS

The following components are included in the supplied card deck and appear in

the following order:

1. Bootstrap program

2. Monitor, logical I/O and system generator

3 . Executive

4. Standard processors (order is arbitrary)

a. Assembler

b. FORTRAN compiler

Revised Dec 70 4.1-1

~G~L~~n~~ ____ -------------------~

SCC=TY

SLDIR,UL (OPTIONAL) 1
SLDIR,LB (OPTIONAL)

SLDIR,DS (OPTIONAL) 1
SLDIR,DC (OPTIONAL)

·ICUPY,CR,UL (uYnuNALCu~TOMER I RWAR.Y It LAST MUST BE SEOD)

OPTIONAL CUSTOMER PROGRAMS

SCOPY,CR,DC(name) (COPY OPTIONAL ClJSTOMER PROGRAMS) 1
(' GA SUPPLIED LIBRARY (LAST CARD IS SEOD)

VSCOPY,CR,LB 1
(,/ GA SUPPLIED PROCRAMS

COPY,CR,DC(name) I
'SJOB BEGIN DISK BUILD SEGMENT I

~
SSTART (OPTIONAL) ~

SWMON (OPTIONAL)

.I
L

EXECUTIVE

SDP=(1100-11FF) (OPTIONAL) J
VSEXEC,CR,B,DP(12-27) (OPTIONAL)

/ SCORE,size (OPTIONAL)

VV SDISK,type (OPTIONAL)

I ,
L

L

V MONITOR, LOGICAL I/O SYSTEM
AND SYSTEM GENERA TOR

f
L

BOOTSTRAP LOADER

Figure 4-1. System Generation Deck

4.1-2

~~L~~~~ __ --------------------~
88A00142A

c. Core image converter

d. Editor

e. Debug routine

f. System generation utility

g. Sequence/compare utility

h. Bootstrap generator

i. Header generator

5. Sy stem library

Each processor is in absolute format, directly storeable into directoried files.

The following paragraphs describe the procedures for generating the disk system

from the supplied deck.

Revised Dec 70 4.1-3/4

~~L~~~~ ______________________ ~
88A00142A

4.2 CONSOLE BOOTSTRAP PROCEDURE

To initiate system generation I the operator execute the following steps:

1. Load the system on the card reader and make the reader ready.

2. Unlock CONSOLE ENABLE and WSPB switches.

3. Set the following switches ON (down). All other switches should be

OFF (up).

a. RUN/IDLE

b. SPO

c. REGISTER SELECT switches 8 and 4.

d. HALT

4. Operate the following switches in the following order:

a. Press and release RESET

b. Press and release ENTER

c. Reset HALT (up)

d. Press and release IPL

e. Set HALT (down)

f. Press and release RESET

g. Reset REGISTER SELECT switches 8 and 4

h. Press and release ENTER

i. Set RUN/IDLE switch to RUN

j • Press and release STEP.
NOTE

At this point control is transferred to the bootstrap program.

4.2-1/-2

~~L~~~~ ______________________ ~
88A00142A

4. 3 BOOTSTRAP PROGRAM EXECUTION

Execution of the system generation bootstrap program loads the system

generator/monitor/logical I/O segments of the system from the card reader

into core. When this loading is complete, control is transferred to the system

generator.

If the computer halts during this loading proces s, a checksum error has

occurred. No message is printed. To recover from this situation, the system

generation must be begun again with the console bootstrap procedure

(paragraph 4. 2) .

4.3-1/-2

~~L~~~~ __ ------------------__ _
88A00142A

4. 4 SYSTEM GENERATION EXECUTION

When the bootstrap program transfers control to the system generator, the

following message is printed on the teletype printer:

BEGIN SYSTEM GENERATION

The system generator then waits for an operator response.

Four basic steps are involved to accomplish system generation.

1 . Define hardware and executive storage.

2. Define DBOS characteristics.

3. Storage of Monitor.

4. Loading of processors.

4.4. 1 HARDWARE DEFINITION

Enter the following commands through the teletype keyboard. (See section 4.6

for card control method.)

$DISK, unit

SCORE, size

$IDISK

4.4. 2 STORE EXECUTIVE

Enter the following command:

$EXEC, CR, B, DP (12-27)

Revised Dec 70

134 1, 1 344 or 1 34 5

8K, 1 6K or 32K

Initialize entire disk

4.4-1

~~L~~~~ __ --------------------~
88A00142A

When loading is complete control will be returned to the teletype. Enter the

following command:

$DP=(11 00-11FF)

4.4. 3 DBOS CHARACTERISTIC DEFINITION

The monitor supplied with the system is complete and ready to operate. The

logical unit assignments in effect after a $JOB command is processed are

detailed in Appendix F. The assignment of logical unit 8L is to the teletype

after an Initial Program Load operation and prior to execution of a $JOB. The

standard disk file as signments are outlined in appendix A of this manual. In

some cases I however, the user may require a different file structure of logical

unit definition. For example when the line printer operations are included I but

no line printer is present, these operations must be removed by file redefinition.

The following commands are all optional. If none of the options are desired,

skip to section 4.4.4.

$file(bs -e s)

$lun=file[bs-esJ ,P

4.4.4 STORE MONITOR AND EXECUTE

change disk file limits

change initial and/or standard logical
unit assignments

The fully configured monitor is written to disk by use of the following command:

$WMON

This command writes the system bootstrap and monitor to disk.

4.4-2 Revised Dec 70

@~L~~~~ __ -------------------_
88A00142A

Initial System Operation

$START

This command transfer control to DBOS. All modifications made with any of the

SYSGN commands will be in effect immediately.

Revised Dec 70 4.4-3/4

~~L~~~~ __ --------------------~
88A00142A

4.5 COMPLETION OF THE SYSTEM GENERATION

The generation of additional elements (processors) into DBOS is a function of

the executive. Therefore I after the executive has been read into core and suc

cessfully written on disk, execution of the executive begins.

Control commands (section 2, paragraph 2.4) to the executive are read from the

system generation input device (card reader) preceding each processor. The

appropriate commands are supplied with the system deck. As many processors

as desired may be generated into the system at this time if each is preceded by

a properly configured COpy command.

Enter one of the following commands to initiate loading of proces sors:

SCC=CR for card systems

SCC=PR or TY for paper tape systems

The user may store programs in the directoried object program file, DC I and

create a secondary library I UL. Refer to section 2. 5.3 for details of UL usage.

Revised Dec 70 4.5-1

~~L~~n~~ ____ -------------------~
88A00142A

To create a user library file a copy command of the form $COPY, CR, UL must

precede the actual library in the card stream. See section 2.4. 3 for us e of copy

command.

To create a DS file the user must precede each program source deck to be included

in DS with a copy command.

The copy command is, $COPY, CR, DS(NAMEX) .

When a user supplied file is stored during generation, a list directory command

should be included to map the file. Refer to figure 4-1.

The last control command read from the system generation deck should be:

$CC=TY

As the elements are read into core and written on disk, the executive builds a

directory on disk containing the element names and the disk storage area (be

ginning and ending sectors) of each.

Following the terminating library $EOD control command, a series of $LDIR

commands causes the system directories to be printed on the SL device (line

printer or teletype printer). (See list directory command ($LDIR) I section 2 I

subparagraph 2.4. 6.)

4.5-2 Revised Dec 70

~~L~~~~ __ -------------------_~
88A00142A

When the $CC=TY command is encountered, this command is printed on the SL

and OM devices (line printer and teletype printer, if both devices are available)

and then requests control command input from the CC device (teletype keyboard;

the $CC=TY reassigns CC to the teletype by output of a Line Feed, Return, ?

and Space on the teletype printerl

The executive then waits for operator response. At this point, system generation

is complete and operation I using DBOS I may begin either by issuing control

commands to the executive or by executing a bootstrap loading procedure from

disk (section 3 I paragraph 3. l) .

Revised Dec 70

NOTE

It will be recognized by the user that

during generation of DBOS I the system

generator is used only to generate the

monitor, logical I/O I and executive

portions of the system and to initiate

execution of the executive for completion

of system generation. Therefore, the

makeup of the system beyond these basic

elements is optional. However, the user

should be thoroughly familiar with the

executive control commands before

altering or adding to the standard,

delivered system.

4.5-3/4

~~L~~~~ __ ----------------____ ~
88A00142A

4.6 CARD CONTROLLED SYSTEM GENERATION

The DBOS deck as supplied returns control to the teletype keyboard after the

monitor I LIO and system generator have been input so that user supplied in-

structions may be input.

Total batch generation via the card reader is possible if the following steps are

taken:

1. Insert the following cards in front of the cards remaining in the reader:

$DISK, unit

$CORE, size

$IDISK

$ EXEC I CR , B , D P (1 2 - 2 7)

$DP~(11 00-IIFF)

2. Locate the last card of the executive deck and insert immediately after

the following optional cards if any:

$file(bs-es)

$lun=file ~s-es] ,P

$IDIR I file

$D

3. Insert the following cards after those in section 2.

$WMON

$START

Revised Dec 70 4.6-1

~~L~~~~ __ --------------------_
88A00142A

4. Enter the following command via the teletype keyboard:

$CC=CR

5. Control will return to the teletype when generation is complete.

4. 6- 2 Revised Dec 7 a

~~L~~~~ __ --------____________ _

88A00142A

4. 7 PAPER TAPE SYSTEMS

The GA 18/30 DBOS is supplied to the user as a set of pcp er tapes. All standard

components for generating the system on disk are included and are grouped as

follows by individual tape:

Drawing No./Label

94Z00138A02

94Z00138A03

94Z00138A04

94Z00138AOS

94Z00138A06

94Z00l38A07

Description

Bootstrap program, Monitor, logical I/O
and system generator

Executive

Editor, assembler, debug routine, core
image converter and system generator
utility

Header utility, boot utility and sequence/
cbmpare utility

FORTRAN Compiler - parts 1 and 2

Sys tern library

SPC-12 Cross Assembler

SPC-16 Cross Assembler and Simulator

If loading is to be accomplished via the TTY reader, refer to the 18/30 Pro-

gramming Operations Manual, 88A00121A, Appendix G for bootstrap procedures.

Revised Dec 70 4.7-1

~~L~~~~ __ ---------------------
88A00142A

4.7.1 CONSOLE BOOTSTRAP PROCEDURE

To initiate system generation, the operator must execute the following steps:

1. Load the tape labeled 94Z00138A02 into the paper tape reader and

make the reader ready.

2. Unlock CONSOLE ENABLE and WSPB switches.

3. Set the following switches ON (down). All other switches should be

OFF (up).

a. RUN/IDLE

b. SPO

c. REGISTER SELECT switches 8 and 4

d. HALT

4. Operate the following switches in the following order:

a. Press and release RESET

b. Set data switch 3,4,5,6 and 7 down (lFOO)

c. Press and release ENTER

d. Reset HALT (up)

e. Press and release IPL (indicators = 1078 when finished)

f. Set HALT (down)

g. Make disk ready

h. Press and release RESET

i. Reset REGISTER SELECT switches 8 and 4

j. Press and release ENTER

4. 7-2 Revised Dec 70

~~L~~~~ __ -----_______________ _

88A00142A

k. Set RUN/IDLE switch to RUN

1. Press and release STEP

Note: At this point I control is transferred to the bootstrap program.

Revised Dec 70 4..7-3/4

~~L~~~~ __ -------------------~
88A00142A

4. 8 BOOTSTRAP PROGRAM EXECUTION

Execution of the bootstrap program loads the System Generator/Monitor/Logical

I/O segments of the system from the paper tape reader into core.

When the program has been loaded into core I a WAIT at location /103F will occur.

At this point, set REGISTER SELECT switch 4 down. If the register indicators

display all zeros I the load was successful - any other value indicates a

checksum error which requires restarting with the console bootstrap procedure.

If a successful load is indicated, set REGISTER SELECT switch 4 up and data

switch 0 down. Press STEP to transfer control to the system generator.

Revised Dec 70 4.8-1/2

~~L~~~~ __ -------------------_
88A00142A

4.9 SYSTEM GENERATOR EXECUTION

When the bootstrap program transfers control to the system generator I the

following message is printed on the teletype printer:

BEGIN SYSTEM GENERATION

?

The following commands must be input via the teletype keyboard:

$DISK, unit

$CORE, size

$IDISK

Revised Dec 70

1 34 1 I 1344 or 1 345

8K , 16K or 32K

Initialize entire disk

4.9-1/2

~~L~~n~~ ____ ----______________ _

88AOQ142A

4.10 LOADING THE EXECUTIVE TAPE

Load the tape labeled 94Z00138A03, Executive into the tape reader with the

blank leader following the title under the read head.

Enter the following command via the teletype keyboard:

$EXEC, PR ,B ,DP(12-27)

1. The Executive is then read from the paper tape reader and written to

disk.

2. If a checksum error is encountered while reading this or any other pro

cessor, the message:

**CHECKSUM ERROR

is printed on the teletype printer. The only alternative is to restart

the loading process for that particular tape.

3. If the Executive was successfully written to disk, the teletype printer

will then print a question mark and wait for operator response.

Enter the following command:

$DP=(11 00-1 IFF)

Revised Dec 70 4.10-1/2

~~L~~~~ __ --------------------_
88A00142A

4. 11 DBOS CHARACTERISTICS DEFINITION

The monitor supplied with the system is complete and ready to operate. The

logical unit assignments in effect after a $IOB command is processed are

detailed in table 2-2. The assignment of logical unit SL is to the teletype after

an IPL operation and prior to execution of a $IOB. The standard disk file

assignments are outlined in appendix A of this manual. In some cases, how-

ever I the user may require a different file structure or logical unit definition.

(For example that the line printer is included and must be removed from operation

by file redefinition if not present on the object system.) The following commands

are optional, if none of the options are required skip to section 4. 12.

$file(bs-es)

$lun=file [bs-esJ ,p

Revised Dec 70

change disk file limits

change logical unit assignments

4.11-1/2

~~L~~~~ __ --------------------_
88A00142A

4.12 STORE MONITOR AND EXECUTE

The fully configured monitor and bootstrap loader are written to disk by use of

the following command:

$WMON

Initiate System Operation

The following command places the defined monitor into execution:

$START

Revised Dec 70 4.12-1/2

~~L~~~~ __ - ___________________ ~
88A00142A

4.13 COMPLETION OF SYSTEM GENERATION

Section 4. 5 describes the general procedures for completing system generation.

The procedures for paper tape generation differ on slightly from those used for

cards.

A separate control command must be entered via the teletype keyboard to load

each processor object tape:

$CC=PR

Tapes supplied in more than one part must be processed in order (FORTRAN

compiler - parts 1 and 2). The system library must be processed last.

Refer to section 4. 5.

Revised Dec 70 4.13-1/2

~~L~~n~~ ____ ---_______________ _

88A00142A

4.14 DBOS CONFIGURATION KIT

The DBOS Configuration Kit provides the means for altering DBOS to suit an

installation's particular input/output structure. The following capabilities are

included:

1. Add or remove standard I/O dev.i.ce drivers.

2. Add user written device drivers for any I/O device.

3. Include a second system disk buffer for increased disk transfer

rates.

4. Add disk files.

The Configuration Kit cons ists of the following on cards or paper tape:

1. The System Monitor (relocatable object).

2. A library of standard I/O device drivers and monitor components

(relocatable obj ect) .

3. A library containing SYSGN components and the DEB UG subroutines

(relocatable obj ect) .

4. The configuration subroutine CONFIG (source). CONFIG is a portion of

the Resident Monitor and contains:

a. Logical Unit table

b. Physical Unit table

c. System disk packing buffers.

Revised Dec 70 4.14-1

~~L~~n~~ ____ -----------------_
88A00142A

4. 14.1 LIO OPERATIONS

All input/output under DBOS is performed on logical units. A logical unit is

known only by its logical unit number or logical function name. Logical function

names are permanently equated to a corresponding logical unit number as listed

below:

CC = logical unit 00

S1 = logical unit 01

SO = logical unit 02

B1 = logical unit 03

BO = logical un it 04

LO = logical unit 05

IS = logical unit 06

OM = logical unit 07

C1 = logical unit 08

LB = logica 1 unit 09

SL = logical unit 10

UL = logical unit 11

SB = logical unit 12

There are three additional logical units included in the standard system. These

may only be referred to by their numbers (13 I 14 I and 15).

4.14-2 Revised Dec 70

~~L~~~~ ______________________ ~
88A00142A

When LIO processes an I/O operation it connects a logical unit number or

name to a device driver in the following manner:

1. Given a logical unit number (00-15) or logical unit name (CC,SI,etc.)

refer to the Logical Unit table for a pointer associating that logical

name/number with an entry in the Physical Unit table.

2. The entry in the Physical Unit table will contain the address of an

I/O List which defines the operation.

3. The I/O List contains the address of a logical unit driver (a program

which performs the input/output function).

4. Control is given to the logical driver for the operation. Communicatio

between LIO and the logical driver is maintained via the I/O list.

5. The logical driver may in turn call another program I the Physical

device driver I which actually operates the device. The logical and

physical drivers also communicate via the I/O list.

The physical driver is the lowest level program in the chain. It may be used

by many logical drivers. A logical driver may be used by many I/O lists. An I/O

list may be used by many logical unit names/numbers.

The functions of the physical driver may be incorporated into the logical driver,

thus eliminating the need for a separate physical driver.

Revised Dec 70 4. 14-3

~~L~~~~ __ --------------------~
88A00142A

The separation of logical and physical driver simplifies configuration of non

standard devices. Usually I only a new physical driver need be written

functionally replacing an existing physical driver. However I this approach

requires more core than writing a single I/O driver. The I/O list contains

parameters for both logical and physical drivers. Some parameters may be

omitted if the I/O driver is coded as a single entity.

4.14-4 Revised Dec 70

~~L~~~~ __ -----_______________ _

88A00142A

4.14.2 LOGICAL UNIT TABLE

The Logical Unit Table contains ordered logical unit assignments and appears

as:

LNMAX DC

LUTB DC

DC

DC

LUTBE EQU

LUTBE-LUTB

/ppcc

/ppcc

*

Number of entries

Physical Unit Table assignment for
logical unit 0

Physical Unit Table assignment for
logical unit 1

Physical unit table assignment for
la st logical unit

The pp and cc are, respectively, the permanent and current assignments of

logical units to Physical Unit Table entries. There is not a one to one

correspondence between logical entries and physical entries. The standard

system contains 16 logical unit entries. If more are desired, it is neces sary

only to add additional entries following the standard entries in the form:

DC /ppcc

where:

pp = a value equal to twice the physical unit table entry

number to which this logical unit is to be permanently

assigned (Le., if the physical entry number is 18

this value is 36)

Revis ed Dec 70 4. 14- 5

~~L~~~~ __ ---------------------_
88A00142A

cc = a value equal to twice the physical unit table entry

number to which this logical unit is to be temporarily

assigned (usually identical at generation time to the

permanent assignment) .

If the Physical Unit Table has been altered from standard by deletions I

insertions or replacement it may be neces sary to change the standard

logical unit assignments. f'or example, logical unit CC is normally assigned

to the tenth entry, the TTY I in the physical unit table. If, due to re-sequencing,

the tenth entry is a non-input device I the system would fail.

4.14-6 Revised Dec 70

~~L~~~~ __ -----_______________ _

88A00142A

4.14.3 PHYSICAL UNIT TABLE.

The Physical Unit Table (within CONFIG) must have an entry for each file

name and its associated device list. Each entry consists of two words:

1. The file name - this must be two letters preceded and followed

by periods.

2 • The name of the I/O List which defines the operation.

The Physical Unit Table appears as:

PUMAX DC

PUN1v1 ASC

DC

ASC

DC

ASC

DC

PUNME EQU

PUNME-PUNM

· $$.

0

· namel .

list
l

• name .
n

list
n

*

System Dummy

File name l

List name
l

Last file name

Last list name

The usual case is to have the lists external to CONFIG (the lists are kept

in file UL). Thus I for each external list name a REF must be included in

CONFIG Ie. g . ,

88A00142A 4.14-7

~'~L~~~~ __ ------~---------------
88A00142A

REF

REF

REF

name
l

name
2

name
n

It is advisable to not remove or replace entries in the table. New entries should

not be inserted between existing entries but rather at the end of the table.

This prevents the necessity for altering the Logical Unit Table for standard

assignments.

If I however I it is desired to alter the sequence of the Physical Unit Table

by replacement I removal, or ins ertion, the following con81d era tions apply:

1. The system dummy must be maintained as entry zero.

2. The third entry must be . DC.

3. The sixth entry must be . WC.

4. The deflections jn the Logical Unit Table must be coordinated with the

new Physical Unit Table sequence. (See Logical Unit Table.)

4.14-8 Revised Dec 70

~~L~~~~ __ ------------------__ _
88A00142A

4 . 14 . 4 110 LISTS

An I/O List is a block of data which acts as the link between an I/O request,

the logical driver, and the physical driver performing an I/O operation.

When adding a new driver an I/O List must be inserted into the library to

correspond with an entry in the Physical Unit Table. Note that appropriate

REFs and DEFs must appear in the Physical Unit Table, I/O Lists, and

drivers to effect linkage.

See figure 4-2 for an outline of an I/O List. The parameters are explained below:

M 0 Physical List Busy

Set/Reset by physical driver

o - not busy

I 0 - busy

M 1 Physical Driver OPCOP

The OPCOP parameter may be used to specify the address of a

subroutine to be executed by the physical driver when the operation

requested of the physical driver is complete. If the parameter

contains a zero, no OPCOP subroutine entry is specified.

If the value of the parameter is non-zero, the physical driver assumes

the value to be the entry address to a subroutine. The parameter sent

to the OPCOP subroutine is the addres s of a word which contains

the address of the I/O List which activated the physical driver

Revised Dec 70 4.14-9

~~L~~~-~_'---------------------~
88A00142A.

DEF name
name EQU * I/O List name

DC 0 (MO) Physical Driver List Busy
DC popco (M 1) Physical Driver OPCOP
DC pbusy (M2) Busy Location in Physical Driver
BSS 3 (M3-S) Unassigned
DC *-* (M6) Physical Driver Error Code
DC 0 (M7) Control Parameter
DC 0 (M8) Area Address

DC ,lopco (Ll) Logical Driver 0 PCO P
DC driv (L2) Logical Driver Address
DC *-* (L3) Logical Driver Error Code
DC (L4) Logical Device Characteristics
DC 0 (L5) Logical Function Code

DC (E 1) Available (used mainly for disk files)

DC (E)
n

Fi.gure 4- 2 I/O List

4.14-10 Revised Dec 70

~~L~~~~ __ -----------------~ __ _
88A00142A

operation. Entry to the OPCOP routine is made with a calling sequence

as shown:

BSI

DC

I Ml

PARA

PARA DC LIST

The physical driver may again be called from within the OPCOP routine I

only if all of the following are true:

1. The error parameter in the I/O List I M 6, is set to a one (1), (operation

complete) .

2. The control parameter specified a valid op-code on the previous

request, and

3. No request was made to the physical driver between the time of the

initial call and the OPCOP exit.

Also, if a subsequent call is made to physical driver from within the OPCOP

routine, no status waits or delays can be used since the OPCOP routine

is entered in an interrupted state.

Revised Dec 70 4. 14-11

~G~L~~~~~_--------------------~
88AOOl42A

M2 Busy Location in Physical Driver

This entry in the I/O List contains the addres s of a location within the

physical driver. The value in this location is set by the physical driver to

zero (0) for not busy I non-zero for busy.

(M2) = 0 - busy

(M2) -I 0 - not busy

(Note that MO and (M2) have reverse notations)

M3- May be used for physical driver/logical driver communi.cation.
M5

M 6 Error Parameter

When the physical list busy (MO) i.ndicator is set to zero, following an

I/O operation, M6 i.s set to one of the following values by the physical drive

1 • Succes sful completion of the call.

2. Device logically disconnected from the system.

3. Device hardware non-ready.

>3. Any hardware malfunction which did not allow completion of the call.

Error values of greater than 3 generally have different meanings for each

driver.

Note that it is the user's responsibility to initiate any desired error

recovery procedures.

4.14-12 Revised Dec 70

~~L~~~~ ______________________ _

88A00142A

M 7 Control Parameter

This parameter consists of four hexadecimal digits which define the I/O

operation to the physical driver. The first two digits defines the I/O

function in terms of read, write, control, etc. The second two digits

rilodify the function digits.

If no physical driver exists, parameters Mo-M7 should be defined as follows:

MO DC 0

M1 DC 0

M2 DC *+1

M3 DC 1

M4 DC *-*

M5 DC *-*

M6 DC 0

M7 DC 0

M8 I/O area address of the form:

AREA DC n word count

BSS n data area

L1 Address of user OPCOP or zero. This contains the address of a sub-

routine in the user's program which is to be executed by the logical

drive prior to returning to the user's program via LIO.

L2 Address of logical Driver

L3 Logical Driver error code

Must be set by logical driver according to table 5- 2 in the DBOS Reference

Manual.

Revised Dec 70 4.14-13

~~LA~~~ ___ ------~----------~_
88A00142A

L4 Device Characteristics

A word which contains the sum of one or more of the following characteristic

DR EQU /1 Directoried

IN EQU /4 Input device

OT EQU /8 Output device

BI EQU /410 Implicit binary mode

AL EQU /420 Implicit alpha mode

DK EQU /42 Disk

PK EQU /80 Packed format

LW EQU /100 Line width record s

LB EQU /200 Library file

L5 LIO Operation code with logical unit number removed /X1X200. (See

table 5-1 in the DBOS Reference Manual).

4. 14-14 Revised Dec 70

~~L~~~~ __ -------_____________ _

88A00142A

4. 14. S ADDITION OF I/O DRIVERS

a. The Physical Unit Driver

A new physical unit driver which may be used by many logical dr ivers

must include the following functions.

1 . It I S name must appear in a DEF as;

DEF PDNAM

2. It must reserve a location as a driver busy indicator. The address

of this location must be made available to an I/O List via a DEF as:

DEF PDBSY

PDBUSY DC non-zero

where PDBUSY is maintained by the physical driver as zero for busy,

non-zero for not busy.

3. It must accept a call from the logical driver of the form:

BSI

DC

PDNAM

LIST

The parameter being the address of MO in the I/O List.

4. It must maintain MO and M6 in the I/O List.

s. It must execute optional OPCOP if M 1 in I/O List so specifies.

Revised Dec 70 4.14-15

~~L~~~~ __ --------------------_
88A00142A

A physical unit driver which performs the I/O operation and the above actions

is coded and placed in the User1s Library. 'See Section 4.14.10)

b. The Logical Uni t Driver

A new logical unit driver which may be called by many I/O Lists must

perform the following functions:

1. It's name must appear in a DEF as:

DEF LDNAM

2 . It mu st accept a call from LIO via an I/O L 1st of the form:.

BSI I L2

DC LIST

where L10 sets the contents of I/O List locations:

M8 = AREA

L1 = OPCOP

L5 = FUNC

3. It must maintain L3 in the I/O List.

4. It must provide the physical driver with its control parameter (M 7)

using L10 supplied codes in L5.

5. It must ca1l the physical driver, passing on the address of the I/O Li

6. It must execute optional OPCOP if specified by L10.

4.14-16 Revised Dec 70

~~L~~~~ __ --------------------_
88A00142A

A logical I/O driver which performs the above functions as well as it's own

operation (data conversion, etc.), is coded and placed in the User's Library.

c. The Combined Logical/Physical Driver

88A00142A

Much of the bookkeeping neces sary for separate drivers is eliminated.

A combined driver need perform only the following:

1 .

2.

The actual I/O operation.

Numbers b-1, b-2, b-3 and b-6 above.

4.14-17

~~L~~~~ __ --------------------_
88A00142A

4. 14. 6 DELETION OF I/O DRIVERS

It is to the user's advantage to remove all standard drivers which do not pertain

to his actual configuration. This will increase the amount of core storage avail

able to user programs.

The following steps must be taken to remove unwanted drivers:

1 • Remove from eONFIG source deck all references and entries pertaining

to the drivers.

a. Physical Unit Table - Remove the two word entry and the REF for

that entry. Replace the two word entry with:

ASe .NO.

De NOFL

This null entry eliminates the need to alter deflections in the

Logical Unit table.

b. Logical Unit table - If any of the logical units are assigned to the

deleted entry I this as signment should be changed to another

physical unit.

2. Build a new system as shown in Section 4. 14. 10.

When the new system is built by ele the unwanted I/O Lists and drivers will

not be included.

4.14-18 88A00142A

~~L~~~~ ______________________ _

88A00142A

The following example illustrates the removal of the line printer driver from the

standard system:

1. In the Phys ical Unit table replace the ninth entry I

ASC . LP.

DC LPRT

with

ASC .NO.

DC NOFL

Also remove the entry:

REF LPRT

2. Since logical units 05 (LO) and 10 (SL) are standardly assigned to the

Line Printer I these entries in the Logical Unit table must be re-as signed

to the TTY. This is accomplished by replacing respectively the entries:

with

DC

DC

DC

DC

/1212

/1214

/1414

/1414

LO

SL

LO

SL

3. Build new system as shown in Section 4. 14. 10.

Since no reference is made to LPRT the I/O List will not be included. Since

the I/O List is not included there will be no reference to the driver and it

also will not be included.

88A00142A 4.14-19

~~L~~~~ __ --------------------_
88A00142A

4. 14.7 SYSTEM DISK BUFFERS

Standard systems are configured with one system disk buffer in the

system monitor. An additional buffer may be added to reduce the time

for disk to disk transfers. This requires only a change in CONFIG. To

implement the second buffer replace the

SBUF2 EQU SBUF1

card in CON FIG with:

SBUF2 DC 0

DC 320

BSS 321

Note that this will add 323 words to the resident size of the monitor -

see Section 4. 14.9.

4.14-20 88A00142A

~~L~~~~ __ --------------------_
88A00142A

4. 14.8 ADDITIONAL DISK FILES

Ad\.lltional drivers are nat required to add more disk files. This can be

acco:nplished by adding more I/O lists and entries in the Physical Unit

Table. Disk files require additional I/O list parameters (El-E10):

81 -operation code of last operation
E2 -first sector
E3 -" now" sector
E4 -last sector
E5 -buffer
£6 -buffer pointer
E7 -user area save
E8 -first permanent sector
E9 -last permanent sector
EI0 -system buffer
Ell -first directoried sector (directoried files only)
E12 -last directory sector (directoried files only)

Example:

To add a directoried file I DF, to be assigned to sectors lCOO-lCFF and

use SBUF2:

1 . Add file name and list name to the Physical Unit Table:

REF DFFL

ASC .DF. File name

DC DFFL List name

88A00142A 4.14-21

~~L~~~~ __ -------~---------~~
88A00142A

2. Add I/O list:
DEF DFFL
REF LDZ
REF BSYDK
REF SBUF2

BS EQU /ICOa
ES EQU /IcrF
DFFL DC 0 MO

DC 0 MI
DC BSYDK M2
BSS 3 M3-MS
DC 0 M6
BSS 2 M7-M8
DC 0 Ll
DC LDZ L2
DC *-* L3
DC /4EF L4=DR+IN+OT+AL+DK+PK
DC *=* L5
DC 0 El*
DC BS E2*
DC BS £3*
DC £S E4*
DC SBur2 £5*
DC SBUF2+3 E6*
DC 0 £7
DC BS £8
DC ES E9
DC SBUF2 EI0

DC BS Ell*
DC ES E12*
END

These parameters may be left undefined (-*) if a STOB command is used
before using the file. For safety I they should be defined as shown in the example.

4.14-22 Revised Dec 70

~~L~~~~ __ ------_____________ ~
88A00142A

4.14.9 OTHER CONSIDERATIONS

Adding more drivers or a system buffer increases the resident size of monitor.

If this size exceeds the origin of an existing processor (or the executive), that

processor must be re-origined (using the CIC BOUND command) above the moni-

tor. This is done as follows:

1. Build new processor in WC
SJOB
SBI=CR
SCIC
*MAP
*BOUND, mon-end+l
*BUILD
PROCESSOR
SEOD

2. Punch new processor

a. CARDS
SJOB
SSI=WC
SSO=CP
SSQCM
>name001,B

b. PAPER TAPE
STOB
SCOpy, WC, PP

Revised Dec 70 4.14-23

~~L~~~~ __ -------------------_
88A00142A

4.14.10 OPERATING PROCEDURES

Once the subroutine CONFIG has been modified and optional non- standard

drivers have been written, the following must be done:

1 • Add the GA configuration components to an existing DBOS pack:

$COPY I CR I UL
GA supplied monitor
components and
drivers
$EOD

SCOPY.CR LB
SYSGN components
and DEBUG sub
routines
$EOD

Copy components to UL File

Clo se UL File

Copy to LB File

Close LB File

2. Optionally add user generated drivers and/or I/O lists to UL:

4.14-24

$TOB
SA
User C omponen t 1
SA
User Component 2

$A
I User Component N I

$EOD
$COPY I WB, UL

Assemble drivers and I/O lists

Close WB File
Copy drivers and lists to UL File

Revised Dec 70

~~L~~~~ ____________________ _

88A00142A

3. Build a new DBOS system in WC:

$TOB
$A
CON FIG
$EOD
$IS=WS
$BI=CR
$SB=WB
$CIC
*MAP
*BOUND,6C
*BUILD I SB I UL
SYSTEM MONITOR'

Assemble updated CONFIG
Close WB File
Assign eIC intermediate storage to WS File
Assign BI to card reader
Assign SB to WB (object CONFIG)

Build from BI, SB, UL and LB into WC
Monitor relocatable binary cards

4. Punch new system with 'bootstrap:

a. CARDS
$TOB
$SI=WC
$SO=CP
$BOOT
$SQCM
>MON001,B

b. PAPER TAPE
$TOB
$SO=PP
$BOOT
$COPY ,WC , PP

Revised Dec 70 4. 14-25/26

~.G~ALAUro~~~~ ______________________ ~
88A00142A

SECTION 5
---- ------ ---

LOGICAL INPUT/OUTPUT SYSTEM

5. 1 GENERAL INFORMATION

The logical input/output system (LIO) provides system capability for performing

device independent input/output operations.

LIO data transmission is processed on a record basis and internal data is

represented as ASCII information packed two characters per word or as binary

word data. Conversion for particular devices is performed automatically.

LIO consists of three separate levels of processors:

a. The central control routine which processes user calls and converts

logical unit numbers to particular device specifications.

b. The logical I/O drivers which perform data conversion and logical

record packing.

c. The physical I/O drivers which communicate with the actual device.

All operations are performed on a record basis; 1. e. I card records contain 40

or less words. Any request processes exactly one record. If more words are

request~d than are contained in a record, only the amount contained in the

record are significant.

5.1-¥-2

~~L~~~~ ______________________ _

88A00142A

5.2 LIO CALLING SEQUENCES

The LIO sy stem accepts two different calling sequences:

1. Input/output request call.

2. Status check call.

Both are described in the following paragraphs. In the generalized calling

sequences shown in these descriptions the label a identifies the branch instruc

tion which transfers control to LIO. The labels of other elements are shown

relative to a.

5-.2-1/-2

~~L~~~~ __ ------------------__ _
88A00142A

5.2. 1 INPUT/OUTPUT REQUEST

In an assembly language program, the LIO user may request an input/output

operation by programming the following calling sequence:

a+l

a+2

a+3

a+4

where:

L10

CALL

DC

DC

DC

L10

/x1x 2x 3x 4

AREA

OPCOP

(return location)

is the name of the entry to the L10 central

command routine.

represents a hexadecima 1 word (hexadecimal

indicated by /) containing the following:

an L10 operation code as defined in

table 5-1.

either 0 or 1 to specify data type-

o = ASCII data

1 = Binary data

2 = Special mode

Revised Dec 70 5.2.1-1

~~L~~~~ __ --------------------_
88A00142A

AREA

AREA

represents a logica 1 unit number

(hexadecimal) as defined.in table 2-1.

NOTE

In the text which follows a reference to XN

is used specify the value of the subscripted

hex field. For example; OPEN with X2=1

specifies that hex digit two is to be set

equal to l(X1XX).

DC

BSS

represents the address of a data area. The value

contained in the first word of the data area

specifies the number of data words in the area.

In symbolic notation this area is defined by the

statements:

n

n

n = number of words in the data area.

OPCOP

5.2.1-2

represents the addres s of a routine to be executed

upon completion of the requested operation I or it

is zero.

A zero indicates no user routine is provided.

Revised Dec 70


~~~L~~~~ ______________________ _ 

88A00142A 

CODE 

o 

1 

2 

3 

4 

5 

6 

7 

8 

Table 5-1. LIO Operation Code 

OPERATION 

No operation (ignored by LIO) 

Read 

Write 

Write 

Read 

Open 

Special for each device 

Special for each device 

Close 

An OPCOP address causes the user 

routine to be executed at the interrupt 

level (i. e. I called by the I/O interrupt 

service routine when operation is 

complete) . 

The user routine is executed as a 

subroutine and must accept the calling 

sequence. 

BSI OPCOP 

DC 

'loc ' contains the addres s of on I/O 
i 

list (see section 6 I I/O subroutines). 

5.2.1-3/-4 



~~L~~~~ ____ ~ _________________ ~ 
88A00142A 

When this call is made to LIO I the operation is initiated and control is returned 

to the location following the DC OPCOP location. 

5.2.2 I/O-REQUEST STATUS CHECK 

If no OPCOP routine is specified in the I/O request calling sequence, the user 

may check the status of the operation with the call: 

a CALL LIO 

a +1 DC 

a +2 (return location) 

where: 

F 

x =0 2 

specifies a check operation 

specifies the wait/no-wait option (0 or 1). 

indicates that LIO should wait for the operation to be 

completed before returning to the user's program. 

If the device is not ready or an error condition exists I 

the operator is notified and may take remedial action. 

Upon return to the user's program I the A-register will 

conta i.n the status of the operation as specified in 

table 5-2 (0, 1 or l' only) . 

indicates that LIO is to place the current status of the 

operation in the A-register and return immediately. Any 

status code as specified in table 5-2 is possible. 

5.2.2-1 



_~~L~~~~ ______________________ ~ 
88A00142A 

specifies the logical unit number (hexadecimal) of the 

unit being tested. Logical unit numbers are defined in 

section 2, table 2-1. 

Return from this call is to the location immediately following / Fx2x 3x 4 · 

5.2.2-2 

CODE 

o 

1 

2 

3 

4 

5 

6 

7 

8 

9 

A 

B 

C 

D 

E 

F 

-1 

Table 5-2. Status Indicators 

STATUS 

Operation ignored 

Succes sful completion 

Device off-line (logically) 

Device not ready 

Parity error (device dependent) 

Write select (device dependent) 

Data error (device dependent) 

Data overrun (device dependent) 

Seek error (device dependent) 

File protect error (device dependent) 

Bad sector address (device dependent) 

Address modification (device dependent) 

Unused 

Unused 

Unused 

End-of-file 

Busy 



~G~M~ro~~~ ______________________ ~ 
88A00142A 

5.3 LIO USAGE 

Normal usage of the L10 system consists of using the status check and wait 

call as opposed to the OPCOP subroutine. Since the logical unit may be as signed 

to any physical device, the user should perform operations as follows: 

a. Call LIO with an OPEN operation code. This insures that the device 

is initialized. 

b. Call L10 to perform any number of read/write or special operations. 

c. Call LIO with a CLOSE operation code to insure that all data has 

been proces sed. 

The following subparagraphs describe the various logical I/O device drivers. 

Included I are calling sequences for each driver. 

5.3-1/-2 



_~~L~~n~~ ______________________ _ 

5.3. 1 LOGICAL DISK DRIVER 

The logical disk driver provides I/O processing using the following operation 

codes: 

CODE 

1,4 

2,3 

5 

A 

PROCESS 

Read the specified number of words into 

the user. data area 

Write the specified. number of words on 

disk from the user data area. 

Open - position at the beginning of a 

disk file. 

Seek - position the disk at a specified 

sector 

5.3.1-1 



~~L~~~~ __ ~ __________________ ~ 

The user data area for disk I/O contains two parameters preceding the data area 

itself. The first specifies the number of words to be transmitted. The second 

specifies the logical sector number (relative sector position in the file) to be 

used in the transmission or seek operation. 

An OPEN operation (5) will position the disk at the beginning of a file and set 

zero as the logical sector number. 

Successive reads or writes will automatically process consecutive sectors. 

After each read or write operation, the logical sector number is adjusted to 

indicate the next available sector. 

Logical I/O disk records (i. e. I the user's data area) must be <320 words. 

Following are disk I/O calling sequences (DK file is used; DP file could also 

be used): 

5.3.1-2 



~~L~~~~ ______________________ ~ 
88A00142A 

1. OPEN - Position at beginning of disk file. 

Q CALL LIO 

a+1 DC /510D 

a+2 DC A 

a+3 DC 0 
(return location) 

A DC n 

DC (any) 

BSS n 

2. SEEK - Position at specified sector. 

ct CALL LIO 

a+1 DC /700 A 

a+2 DC A 

a+3 DC 0 

(return location) 

A DC n 

DC 

BSS n 

CALL LlO SYSTEM 

POSITION AT BEGINNING 

OFDK FILE' 

IDENTIFY DATA AREA 

NOOPCOP 

DEFINE RECORD SIZE 

(n~320) 

THE VALUE WILL BE 

ZEROES FOLLOWING OPEN 

RESERVE n WORDS. 

CALL LIO SYSTEM 

SEEK SPECIFIED SECTOR 

IN DK FILE. 

IDENTIFY DATA AREA. 

NOOPCOP 

DEFINE RECORD SIZE 

(n92O) 

DEFINE SECTOR NUMBER 

(ALSO MAYBE ESTABLISHED 

AS PRODUCT OF PROGRAM 

EXECUTION) 

RESERVE n WORDS 

5.3.1-3 



~~L~~~~ _____________________ ~ 
88A00142A 

3. READ 
Q 

Q+l 

Q+2 

Q+3 

A 

4. WRTE 

Q 

Q+l 

Q+2 

Q+3 

A 

-----
CALL LIO 

DC /1100 

DC A 

DC 0 

(return location) 

DC n 

DC 

BSS n 

CALL LIO 

DC /1100 

DC A 

DC 0 

(return location) 

DC 

DC 

BSS 

n 

n 

5. CHECK STATUS 

5.3.1-4 

Q 

Q+l 

CALL LIO 

DC /F(Y)OD 

(return location) 

CALL LIO SYSTEM 

READ, BINARY, OK FILE 

IDENTIFY DATA AREA 

NOOPCOP 

DEFINE RECORD SIZE 

(n92O) 

SECI'OR NUMBER 

RESERVE DATA AREA 

CALL LIO SYSTEM 

READ, BINARY, DK FILE 

IDENTIFY DATA AREA 

NOOPCOP 

DEFINE RECORD SIZE 

(n~320) 

SECI'OR NUMBER 

RESER VE DATA AREA 

USAGE 

CHECK STATUS ON 
OK FILE 



_~~L~~~~ __ ---_________________ _ 

88A00142A 

5.3.2 LOGICAL DISK PACKING' DRIVER 

The logical disk packing driver performs packing and unpacking of data within 

an internal system buffer prior to performing disk operations. This driver pro

cesses the following operation codes: 

CODE 

1,4(read) 

2,3(write) 

5(open) 

Revised Dec 70 

PROCESS 

Read the number of words specified in 

the data area from the system buffer 

«319 words) .If the buffer is empty, 

initiate reading of the next sector 

into the buffer. If the number of words 

requested exceeds the length of the 

next record in the buffer I the driver 

will fill the rema inder of the data 

area with blanks (ASCII) or zeros 

(binary) . 

Write the number of words specified 

«319)in the data area into the system 

buffer. If the buffer is full; write the 

buffer onto the disk, then transfer 

the data area to the buffer. 

Position at beginning of file (option

ally attach user buffer) . 

5.3.2-1 



~~G~L~~~~ __ -----------------~---_ 
88A00142A 

CODE 

8(close) 

PROCESS 

If the last operafion was write; write 

the buffer·onto disk" and position 

successive writes to start on the next 

available sector. 

The disk files for these operations may be any packed file. (In the standard 

configuration, the only disk file that is not packed is ok.) 

Before a series of read or writes using this driver, the OPEN operation must be 

performed. The series must be terminated by a CLOSE operation. 

This driver provides a method for economic use of disk files by maintaining 

packed 320 word disk sectors. For example, when ASCII data are transmitted 

with this driver all excessive blanks are removed. Also, several records may 

occupy a single disk sector as opposed to the disk driver (5.3. 1) where each 

read or write requires at least one sector. Unlike the disk driver, the disk 

packing driver does not require or use a sector number specification in the user 

data area. 

User Buffers - The standard system configuration allocates one core buffer for 

system use. This results in very slow disk-to-disk packed transfers. The user 

may allocate some of his core for buffering (323 words). A user buffer may be 

shared by several files. To allocate a user buffer, OPEN with X
2

=1. 

5.3.2-2 Revised Dec 70 



~~L~~~~ __ ------------________ _ 

88A00142A 

Following are the calling sequences used with this driver (ASCII data and DP 

file specifications are used; however I binary data and working files may be 

used) : 

1. OPEN - Position at beginning of file. 

ct CALL LIO 
ct+l DC 15(~)OO+LUN 
ct+2 DC UBUFF 

ct+3 DC 0 

(return location) 

UBUFF DC 
DC 
BSS 

o 
320 
321 

CALLLIO 

OPEN, DP FILE 
ADDRESS OF.!l~ER 1,\UFFER 
IF X2=1 OR IGNORED 

TRANSMITTED 

NOOPCOP 

IF A USER BUFFER IS DESIRED, 
IT MUST BE OF THIS FORM 

2. CLOSE - Terminate, write last buffer onto disk. 

ct CALL LIO CALL LIO 

ct+l DC /800E CLOSE, DP FILE 

ct+2 DC any NO EFFECT IN CLOSE 
OPERATION 

ct+3 DC 0 NOOPCOP 

(return location) 

Revised Dec 70 5.3.2-3 



~~L~~~~ __ ---------------------~ 
88A00142A 

3. READ 
Q 

cr+l 
cr+2 
cr+3 

A 

4. WRITE 

Q 

cr+l 
cr+2 
cr+3 

A 

5.3.2-4 

CALL LlO 

DC /100E 

DC A 

DC 0 

(return location) 

DC 

BSS 

CALL 

DC 

DC 

DC 

n 

n 

LlO 

/200E 

A 

0 

(return location) 

DC 

BSS 

n 

n 

CALL LIO 

READ, ASCII, DP FILE 

IDENTIFY DATA AREA 

NOOPCOP 

DEFINE AREA SIZE (n (319) 

RESER VE n WORDS 

CALL LlO 

WRITE, ASCII, DP FILE 

IDENTIFY DATA AREA 

NOOPCOP 

DEFINE AREA SIZE (n(319) 

RESER VE n WORDS 

Revised Dec 70 



~~~L~~~~ __ ------______________ _ 

88A00142A

5. 3. 3 LOGICAL CARD DRIVER

The logical card driver performs automatic conversion and buffering of data. The

driver processes the following operation codes:

CODE

1,4 (read)

2, 3 (write)

PROCESS

Read ASCII or binary data from the card

read buffer into the specified data area.

If the card contains a $ in column 1, an

EOF status is returned.

Wri te ASCII or binary data from the

specified data area to the card punch

buffer. Initiate punching of the buffer.

OPEN and CLOSE operations on the card reader or punch have no effect.

The data area specified for card read/punch must be at least 40 words in length.

Data is packed in this area as two card-columns per word (either ASCII or

binary) •

The card reader driver normally reads ahead two records. The user may inhibit

this feature as follows:

REF

SRA

STO

Revis ad Dec 70

L

XEOF

16

XEOF

Clear accumulator

5.3.3-1

~~L~~~~_'-'----------------------~
88A00142A

1 • READ

5.3.3-2

a

0:+1

0:+2

0:+3

A

Q:

0:+1

0:+2

0:+3

A

Q:

0:+1

CALL LIO

DC 1(1)(Y)01

DC A

DC 0

(return location)

DC 40
BSS 40

CALL LIO

DC Id)(?)02

DC A

DC 0
(return location)

DC

BSS

CALL

DC

40
40

CALL LIO SYSTEM

READ, ASCII OR

BINARY CARD READER
IDENTIFY DATA AREA

NOOPCOP

DEFINE RECORD SIZE

RESERVE SPACE

CALL LIO SYSTEM

PUNCH, ASCII OR
BINA R y' CARD PUNCH

IDENTIFY DATA AREA

NOOPCOP

DEFINE RECORD SIZE

RESERVE SPACE

CALL LIO SYSTEM

CHECK, WAIT OR GIVE
CURRENT STATUS,

. CARD DEVICE

RETURN WITH
INDICATOR; IN

A-REGISTER

(return location)

_~~L~~~~ ______________________ ~
88A00142A

5.3. 4 LOGICAL LINE PRINTER DRIVER

The logical line printer driver provides for both output of ASCII data and page

formatting. It proces ses the following operation codes:

CODE

2,3 (write)

5

7

PROCESS

Output ASCII data onto one line on the

printer followed by an upspace. Code 3

is used for FORTRAN writes (1 st

character form control) .

OPEN - page eject. Position paper

at top of next page.

Vertical page format. The contents of

the area word specifies format controls

as described below.

5.3.4-1

_~~L~~~~ _______________________ ~
88A00142A

Control
(Contents of Area Word)

2

3

4

5

6

7

8

9

A

B

C

D

E

F

LP Function

Immediate skip to channel 1

Immediate skip to channel 2

Immediate skip to channel 3

Immediate skip to channel 4

Immediate skip to channel 5

Immediate skip to channel 6

Immediate skip to channel 7

Immediate skip to channel 8

Immediate skip to channel 9

Immediate skip to channel 10

Immediate skip to channel 11

Immediate skip to channel 12

Immediate upspace of 1

Immediate upspace of 2

Imri-Iediate upspace of 3

Line Printer Format Control: The vertical formatting of printed output to the line

printer (operation code 7) is guided by a carriage control tape on the line printer.

The channels of this tape are used for vertical positioning of the paper. In

addition I there are several immediate spacing methods which are not dependent

on the tape.

Using L10 I the correspondence between the contents of the user's area word

and format control is as follows:

5.3.4-2

~~L~~~~ _______________________ ~
88A00142A

At anytime that the bottom of the form is sensed on the printer I an automatic

page eject is performed.

Calling Sequences:

1. OPEN - Page eject.

(k+3

CALL

DC

DC

DC

LIO

15005

A

o
(return location)

CALL LIO SYSTEM

OPEN, ASCII, LiNE PRINTER

IDENTIFY DATA AREA
(FOR PAGEE]ECf' ANY

_ ~~~ MAY BE USED)
NOOPCOP

2. WRITE - Print a line and ups pace.

Q

Q+l

Q+2

Q+J

A

3. FORMAT

F

CALL ~-

DC 'd)OOS
DC A

DC 0

(return location)

DC

BSS

CALL

DC

DC

DC

n

LlO

11005

F

o
(return location)

DC looon

4. CHECK STATUS

Q

Q+l

CALL

OC

(return location)

------_ ... _- -
CALL LlO SYSTEM

OUTPUT, ASCII, LINE PRINTER

IDENTIFY DATA AREA

NOOPCOP

DEFINE RECORD SIZE (n WORDS,

TWO CHARACTERS PER WORD)

RESERVE SPACE

CALL LiOSYSTEM-

FORMAT CONTROL, LINE PRINTER

IDENTIFIES WORD WHICH CONTAINS

FORMATTING VALUE'

NOOPCOP

DEFINE FORMAT CONTROL

WHEREn(F

CALL LlO SYSTEM

CHECK, WAIT OR RETURN CURRENT

ST.&1:US, LINE PRINTER

5.3.4-3/-4


~~~L~~n~~ ______________________ _ 

88A00142A 

5. 3. 5 LOGICAL TELETYPE DRIVER 

The logical teletype driver provides I/O operation functions for both the teletype 

keyboard/printer and teletype paper tape I/O. Selection between keyboard/ 

printer and paper tape is a manual operation on the teletype unit. 

This driver processes the following operation codes: 

CODES 

1,4 (read) 

2,3 (write) 

PROCESS 

Input into specified data area. 

Output from specified data area. 

OPEN and CLOSE operation s have no meaning to the teletype unit. 

Teletype Binary Format: The first character of a binary paper tape record specifies 

the number of words in the record. The record may be up to 255 characters in 

length. 

Input: On input the driver reads the first character to determine the record size 

in words and then reads the specified number of characters. The characters are 

formatted into words and stored into memory. If the input record is insufficient 

to fill the users area the remaining area is filled with zeroes. Leading zeroes 

are ignored. 

Revised Dec 70 5.3.5-1 



~~L~~~~ __ -------~~------------~ 
88A00142A 

Output: The record length is output as the first data word followed by the data 

record. Trailing zeroes are not output from the users area. Binary records always 

contain at least one word. 

NOTE 

All binary operations are executed with the 

teletype in the non-echo mode. 

Teletype ASCII Format: 

Input: When ASCII character input is requested, the driver fir st outputs a Line 

Feed, a ? and a Space and then accepts keyboard or paper tape input. The 

input characters are stored (2 characters per word) in the users I data area. 

Input terminates when a Return character is read. Leading zeroes (leader) and 

code deletes are ignored. 

If the return occurs before the end of the data area, the remainder of the data 

area is filled with blanks. If the return occurs beyond the data area I the exces s 

characters are ignored. 

If a Rub-Out character is read in I input is reinitiated and all previously input 

characters are deleted. 

5.3. 5-2 Revised Dec 70 



~~L~~~~ ______________________ _ 

88A00142A 

If a back-arrow (-) character is read in, the last stored chcracter in the data 

area is deleted. Any number of back-arrows may be read in, and with each, 

another previously stored character is deleted. The back-arrow characters are 

not counted as input characters and as each character is deleted, the input 

character count is decremented by one. 

Output: A line feed and two spaces are output first followed by the characters in 

the data area. Trailing blanks in the data area are not output. A carriage return is 

output as the final character. 

NOTE 

The teletype is set to non-echo 

for binary input. 

Teletype Character Format: This format consists of n 8-bit characters. Each word in 

the data area contains two characters. Use a subfunction code of 2(X
2 
=2). The 

first word of the data area must be the character count. 

Input: Exactly n characters are input. Odd numbered characters fill bits 0-7 and 

even numbered characters fill bits 8-15. 

Revised Dec 70 5.3.5-3 



~G~L~~~~ __ ---------------------_ 
88A00142.A 

Output: Exactly n characters are output. 

Calling Sequences 

1. READ 

2. 

a 

a+l 
a+2 
a+3 

A 

PUNCH 

a+l 
a+2 

A 

CALL 

DC 
DC 
DC 

LIO 
o 
1 

/1(2)OO+lun 
A 
o 

(RETURN LOCATION) 

DC N 

BSS n 

CALL LIO 
0 

DC 
1 

12(2)OO+lllll 

DC A 
(RETURN LOCATION) 

DC 11 

BSS n 

3. CHECK STATUS 
a CALL LIO 

0 
a+l DC / F( 1 )OO+lun 

(RETURN LOCATION) 

CALL 1/0 SYSTEM 

READ 
DATA AREA 
NO OPCOP 

AREA SIZE (WORDS OR CHARACTERS) 

AREA 

CALL LlO SY STEM 

PUNCH 
DATA AREA 

AREA SIZE (WORDS OR CHARACTERS) 
AREA 

CALL LIO SYSTEM 

CHECK. WAIT OR CIVE CURRENT STATUS 

4. PUNCH LEADER (Open (II Cluse) Call LIO system 
a CALL LlO 

S 
a+l DC (8)OOO+lun 

a+2 DC 
a+3 DC 0 

5. PUNCH 

a CALL LIO 
a+l DC /800X 
a+2 DC ANY 
a+3 DC 0 

5.3.5-4 

(CLOSE WAITS FOR COMPLETION PRIOR TO RETURN TO USER) 
NOT USED 
NO OPCOP 

CALL LIO SYSTEM 
CLOSE, PAPER TAPE 
NO EFFECT 
NO OPCOP 

Revised Dec 70 



_~~L~~~~ __ -------_____________ _ 

88A00142A 

5.3. 6 LOGICAL PAPER TAPE DRIVERS 

The logical paper tape drivers provide I/O operation functions for the paper tape 

reader and paper tape punch. 

This driver processes the following operation codes: 

CODES 

1 ,4(read) 

2 I 3(write) 

5, (open) 

8(close) 

PROCESS 

Input into specified data area. 

Output from specified data area. 

No effect on paper tape reader. 

Punch 10 inch leader on pcp er tape 

when punch is specified. 

No effect on paper tape reader. Punch 

10 inch trailer on paper tape when 

punch is specified. A close waits for 

completion prior to return to user. 

Paper Tape Binary Format: The first character of a binary paper tape record 

specifies the number of words in the record. The record may be up to 255 character 

long. 

Input: On input the driver reads the first character to determine the record size 

in words (leading zeroes are bypassed) and then reads the specified number of 

characters and stores them I two characters per word, into the user's data area. 

The remainder of the user area is set to zero. 

Revised Dec 70 5.3.6-1 



~~L~~~~ __ ---__________________ _ 

88A00142A 

Output: Trailing zeroes are deleted from output records. The record length (in 

words) is output preceding the record. Binary records will always contain at 

least one word. 

Paper Tape ASCII Format 

Input: The input characters are stored (2 characters per word) in the user's data 

area. Input terminates when a Return character is read. Leading zeroes (leader) 

are ignored. Line feed characters are ignored. 

If the return occurs before the end of the data area I the remainder of the data area 

is filled with blanks. If the return occurs beyond the data area, the excess 

character s are ignored. 

If a Rub-Out character is read in, input it reinitiated and all previously input 

characters are deleted. 

If a back-arrow (-) character is read in I the last stored character in the data 

area is deleted. Any number of back-arrows may be read in I and with each, an

other previously stored character is deleted. The back-arrow characters are not 

counted as input characters and as each character is deleted I the input character 

count is decremented by one. 

5.3.6-2 Revised Dec 70 



~~L~~~~ __ ---------------------_ 
88A00142A 

Output: A line feed is output first, followed by the characters in the data area. 

Trailing blanks are not output. A return is output at the end of the record. 

Paper Tape Character Format: This character format consists of n 8-bit characters • 

Each word in the data area contains two characters. Also a subfunction code of 

2. The first word of the data area is a character count. 

Input: Exactly n characters are input. Character one fills bits 0-7 and character 

two bits 8-15. 

Output: Exactly n characters are output. 

Calling Sequences 

1. READ 
a CALL LIO 

0 

aH DC l(~)OO+lun 
00-2 DC A 
00-3 DC 0 

(RETURN LOCATION) 

A DC n 

BSS n 

2. PUNCH 
a CALL LIO 

0 

00-1 DC 12(~)OO+lun 
00-2 DC A 
00-3 DC 0 

(RETURN LOCATION) 

A DC n 

BSS n 

Revised Dec 70 

CALL LIO SYSTEM 

READ 
IDENTIFY DATA AREA 
NOOPCOP 

DEFINE AREA SIZE (WORDS OR CHARACTERS) 

CALL LIO SYSTEM 

PUNCH 
IDENTIFY DATA AREA 
NOOPCOP 

DEFINE AREA SIZE (WORDS OR CHARACTERS) 
RESERVE n WORDS 

5.3.6-3 



~~L~~~~_.~.-------~-------~~~~~--~ 
88A00142A 

3. CHECK STATUS 
CALL LIO CALL LlO SYSTEM 

o 
at1 DC /F(l)OO CHECK, WAIT OR GIVE CURRENT STATUS 

(RETURN LOCATION) 

4. PUNCH LEADER OR TRAILER (Open or Close) 
a CALL LlO CALL LlO SYSTEM 

5 
at1 DC (8)OOO+lun (CLOSE WAITS FOR COMPLETION) 
at2 DC ANY NO EFFECT 
at3 DC 0 NO OPCOP 

NOTE 

A close insures all data is 

fully output from packed buffers. 

5.3.6-4 Revised Dec 70 



~~L~~~~ __ --------------------~ 
88A00142A 

6.1 GENERAL 

SECTION 6 
DESCRIPTION OF I/O SUBROUTINES 

All input/output operations in DBOS are performed by subroutines referred to as 

I/O drivers. The I/O drivers perform the function of formatting and transferring 

data to and from the various peripheral devices in a system. Each peripheral 

device is supported by a unique I/O driver subroutine which performs all the 

required formatting I error recovery and interrupt processing for that device. 

The I/O drivers supplied with DBOS are used by the logical I/O system (LIO) for 

all data transfer operations. In addition I the disk I/O subroutine may be refer-

enced directly by the user for special I/O requirements. All required r/o drivers 

are contained in the resident monitor. All r/o drivers contained within DBOS 

are coded as non re-entrant subroutines. That is, one operation must be completed 

before a subsequent operation is initiated. When successive calls are made to 

the same I/O driver I the driver will wait internally for the previous operation to 

be completed before the later request is initiated and control is returned to the 

user. There is no queueing of I/O requests. 

Revised Dec 70 6.1-1/-2 



~~L~~~~ _______________________ ~ 
88A00142A 

6. 1. 1 I/O DR NER ORGANIZATION 

All I/O drivers are organized into two portions - an I/O initialization and an 

interrupt re sponse routine. 

I/O Initialization Routine: The functions of the I/O initialization routine are 

to verify the I/O list presented by the user, determine device readiness to 

accept a command and build a data pool for use by the interrupt response routine. 

Immediately upon entry I the I/O initialization routine determines if the Pre-

viously initiated operation is complete. if not, a wait loop is entered until 

such time as the prior operation is completed. Once the I/O driver is free to 

process another request, the control parameter is interrogated to determine if 

the operation code is valid (see bas ic calling sequence, paragraph 6. 2, for a 

complete description of the I/O list). If the control parameter contains an opera-

tion code (Xl) which is not valid for the I/O driver referenced, the error 

parameter is set with an operation complete indication (1) and control is returned 

to the user immediately. Following the verification of the control parameter, 

both the device and I/O channel are checked to determine if an I/O operation 

can be initiated. If the device returns a not ready response, the error parameter 

in the list is set to three (3) and an exit is made to the user immediately. An 

indication that the I/O channel is presently being used by another device will 

cause the initialization routine to loop until the channel becomes free. The 

convention adopted is that the even channel register must contain zero (0) before 

an operation is initiated. All I/O drivers write zero into the register upon final 
completion of an operation. 

Revised Dec 70 6.1.1-1 



~~L~~~~ _______________________ ~' 
88A00142A 

When all of the fore mentioned checks have been made I the initialization 

routine will set the link/busy indicator to minus one (1) I initiate the operation 

and return control to the user. Control will be returned to the I/O driver interrupt 

response routine upon occurrence of an interrupt to signal completion of the 

operation. 

Interrupt Response Routine: The interrupt response routines are entered as a 

result of an I/O interrupt. Upon interrupt I control is initially transferred to the 

appropriate interrupt level proces sor which in turn transfers control to the appro

priate I/O driver interrupt routine. The interrupt routine checks for errors I 

performs data formatting I initiates subsequent operations for character oriented 

devices and sets I/O list parameters when a request is completed. Whenever 

possible erroneous operations are retried a specified number of times. If errors 

persist or the device is not capable of error recovery I the user is notified of 

the type of error via the error parameter in the I/O list. 

6.1.1-2 



~~L~~~~ __ ---------------------_ 
88A00142A 

6.2 BASIC CALLING SEQUENCE 

All I/O drivers are entered via a standard calling sequence. The calling sequence 

for BULKN follows the basic pattern for all drivers I but is the only driver to 

which the user may have access. A special indirect address vector is provided 

for this access. The following is the format of the calling sequence: 

LIST 

CALL 
DC 

DC 

DC 

BSS 

DC 

DC 

oc 

AREA OC 

BSS 

Revised Dec 70 

NAME 

LIST 

0 

0 

4 

0 

1)1:1)1:2)1:)"4 

AREA 

WORDS 

Words 

(1/0 DRIVER NAME) 

ADDRESS OF 110 LIST 

LINK/BUSY 

OP-cOP (0 OR SUBROUTINE ADDRS) 

4 WORDS OF SYSTEM RESERVED 

ERROR PARAMETER 

CONTROL PARAMETER 

ADORES OF 1/0 AREA 

WORD COUNT 

BUFFER AREA 

6.2-1/2 



~~L~~~~ ______________________ ~ 
88A00142A 

6. 2 . 1 NAME PARAMETER 

The NAME PARAMETER is the symbolic name of the I/O driver. The reference 

name for the indirect vector to BULKN is BULKA. 

6.2. 2 I/C LIST PARAMETERS 

All calling sequences have nine (9) I/O list parameters. The I/O list conveys 

to the driver all the information required to perform an I/O operation. 

Link/Busy: The LINK/BUSY indicator is used by a calling program to determine 

when the operation requested of the driver is complete. When an operation is 

in progress, the LINK/BUSY parameter will contain either a positive or negative 

value. Upon completion of the call, the indicator is set to zero. It is the respon

sibility of the user to make certain that a previous operation performed through 

the I/O list is complete before a subsequent call is made to a driver using the 

same list. 

OPCOP: The OPCOP parameter may be used to specify the address of a subroutine 

to be entered when the operation requested by the I/O list is complete. If 

the parameter contains a zero, no OPCOP subroutine entry is specified. 

If the value of the parameter is non-zero, the driver assumes the value to be 

the entry address to a subroutine (entered via a BSI instruction). The parameter 

sent to the OPCOP subroutine is the address of a word which contains the list 

address whose operation has just been completed. Entry to the user OPCOP 

routine is made with a calling 'sequence as shown: 

Revised Dec 70 6.2.1-1/2 



~~L~~~~ __ --------------------~ 
88A00142A 

BSI 

DC 

L USER 

PARA 

(OPCOP subroutine addres s) 

Address of li st parameter 

PARA DC LIST Contains addres s of list completed 

The user may again call the I/O driver from within the OPCOP routine, only if all 

of the following are true: 

1. The error parameter in the list is set to a one (1), (operation complete). 

2. The control parameter specified a valid op-code on the previous request, 

and 

3. No reque st wa s made to the 110 driver between the time of the initial 

call and the OPCOP exit. 

Also, if a subsequent call is made to an I/O driver from within the OPCOP 

routine, no status waits or delays can be used since the OPCOP routine is 

entered in an interrupted state. 

System Reserved: These four (4) words of the I/O list are required for compat

ability with MPX calling sequences. 

Revised Dec 70 6.2.2-1 



~~L~~~~ _______________________ _ 

88A00142A 

Error Parameter: The seventh list parameter is the error parameter. When the 

link/busy indicator is set to zero, the error parameter is set to one of the follow

ing values: 

1. Successful completion of the call. 

2. Device logically disconnected from the system. 

3. Device hardware not-ready. 

Any hardware malfunction which did not allow completion of the call. 

Error values of greater than 3 generally have different meanings for each driver. 

Note that it is the user's responsibility to initiate any desired error recovery 

procedure s . 

Control Parameter: The eighth list parameter .is the CONTROL PARAMETER. This 

parameter consists of four hexadecimal digits which define the I/O operation. 

The first digit defines the I/O function in terms of read I write, control, etc. 

The second digit modifies the function digit. The ninth and final list parameter 

is the address of the I/O area (AREA). 

Area: AREA is the label of the users I/O area. 

6.2.2-2 Revised Dec 70 



~~L~~~~ _______________________ _ 

88A00142A 

Error Parameter: The seventh list parameter is the error parameter. When the 

link/busy indicator is set to zero, the error parameter is set to one of the follow

ing values: 

1 . Succes sful completion of the call. 

2. Device logically disconnected from the system. 

3. Device hardware not-ready. 

> 3 Any hardware malfunction which did not allow completion of the call. 

Error values of greater than 3 generally have different meanings for each driver. 

Note that it is the user's responsibility to initiate any desired error recovery 

procedures. 

Control Parameter: The eighth list parameter is the CONTROL PARAMETER. This 

parameter consists of four hexadecimal digits which define the I/O operation. 

The first digit defines the I/O function in terms of read, write, control, etc. 

The second digit modifies the function digit. The ningh and final list parameter 

is the address of the I/O area (AREA). 

Area: AREA is the label of the users: I/O area. 

6.2.2-3/~4 



~~L~~~~ ______________________ ~_ 
88A00142A 

6. 3 GENERAL FORMAT OF I/O CALLS 

6.3.1 CALLING SEQlE NCES 

The general format for assembler language calls with a type one (1) or type two 

(2) exit is as follows: 

CALL NAME 

DC LIST 

LD LIST 

BSC L *-3. Z 

MDX L L1ST+6. -1 

BSI ERROR 

NOP 

LIST DC 0 

DC 0 

BSS 4 

DC 0 

DC /XXXX 

DC AREA 

AREA DC WDCT 

BSS WDCT 

Revised Dec 70 

I/O DRIVER NAME 

POINTS TO I/O LIST 

BUSY TEST 

DETERMINE IF I/O OPERATION 

COMPLETED SUCCESSFULLY 

BRANCH TO ERROR IF NOT. 

OTHERWISE CONTINUE 

LINK/BUSY 
EXIT TYPE to OR SUBR ADDR) 

SYSTEM RESERVED 1 to 4 

ERROR PARAMETER 

CONTROL PARAMETER 

I/O AREA ADDRESS 

WORD COUNT 

DATA AREA 

6.3-1/-2 



rt!!f!j) GENERAL AUTOMATION. INC. _____________________ _ 

88A00142A 

6.4 BULK STORAGE SUBROUTINE (BULKN) 

The bulk storage subroutine performs all reading and writing of data relative to 

the model 1341 and 1344 disk storage unit. This includes the major functions; 

seek, read and write in conjunction with read-back check. 

~,':: LT(N reads and writes consecutive sectors most of the time (depending on 

when the disk interrupt occurs) on most systems without extra disk revolutions. 

SI]ccessful use of the bulk storage subroutines can be expected only if programs 

arc~ built within the framework of certain conventions. The primary concern 

behind the convention is the safety of data recorded on the disk. The file-

protection scheme is dependent upon the sector-numbering technique. It con-

tributes to data integrity by allowing the disk subroutine to verify the correct 

positioning of the access arm before it actually IE rforms write operations. 

This verification requires that sector identifications be pre-recorded on each 

sector and that subsequent writing to the disk be done in a manner that preserves 

the existing identification. The disk subroutines have been organized to comply 

with these requirements. The sector numbers are recorded at system generation 

time. 

Revised Dec 70 6.4-1 



~G~L~~~~ _______________________ _ 

88A00142A 

Sector Numbering: The details of the numbering scheme are as follows: Each 

disk sector is assigned a logical address from the sequence 0 I 1 ... ,8104 for 

1341 (1608 for model 1344 and 1345) corresponding to the sector's position in 

the ascending sequence of cylinder and sector numbers from cylinder 0 (outermost) 

sector 0, through cylinder 202 (innermost) sector 39 for 1341 (sector 7 for 

model 1344). An additional four tracks are used as alternates. 

Utilization of this first word for identification purposes diminishes the per 

sector availability of data words to 320; therefore I transmission of full sectors 

of data is performed in units of this amount. 

Calling 

6.4-2 

Sequence 
REF 
BSI 
DC 

LIST DC 

DC 

BSS 

DC 

DC 

DC 

AREA DC 

DC 

BSS 

OPCOP DC 

BULKA 
BULKA 
LIST 

0 

OPCop 

4 

0 

/XXXX 

AREA 

WDCT 

SECAD 

WDCT 

o 

MDX L OPCOP. 1 

BSC OPCOP 

LINK/BUSY 

o IF NOT TYPE 2 EXIT 

SYSTEM RESERVED 1 to 4 

ERROR PARAMETER 

CONTROL PARAMETER 

I/O AREA ADDRESS 

WORD COUNT 

SECTOR ADDRESS 

DATA AREA 

OP-COMPLETE SUBROUTINE 

ENTRY POINT 

SET UP RETURN ADDRESS 

EXIT BACK TO IOCR 

Revised Dec 70 



~~L~~~~ __ --------____________ ~ 
88AOOl42A 

List Parameters: Link/Busy. Upon completion of the I/O call specified by the 

list, this parameter is set to zero. Link/Busy must be 0, /4400 or /4480 at the 

time the driver is called. 

Exit Type: If zero, this parameter indicates a type one (1) or type three (3) 

exit is to be made. If non-zero, it indicates a type two (2) exit is to be made 

and it contains the entry address of the operation-complete subroutine. 

System Reserved 1-4: These words are reserved for system use only. See basic 

calling sequence. 

Error Parameter: This parameter is set upon I/O completion to one of the following 

values: 

Revised Dec 70 

Value 

1 

2 

3 

4 

5 

6 

7 

8 

Meaning 

Succes sful completion of call 

Device logically off-line 

Device not-ready 

Parity error 

Write select 

Data error 

Data overrun 

Seek error 

6.4-3 



~~L~~~~ __ ---------------------~ 
88A00142A 

6.4-4 

Control Parameter: This parameter consists of four hexadecimal digits as 

defined below. 

Hexadecimal Digit 1. This digit defines the I/O operation and must be set to 

one of the following values: 

Value 

o 

1 

Meaning 

Put device in on-line or off-line status 

(see hexadecimal digit 2). 

Read. Positions the access arm and reads 

data into the user's I/O area until the 

specified number of words have been 

transmitted. Although sector identification 

words are read and checked for agreement 

with expected values, they are neither 

transmitted to the I/O data area nor are 

they counted in the tally of words read. If 

during the reading of a sector a read check 

occurs, the operation is retried a maximum 

of 15 times. If the error persists, the 

function is discontinued, and the error 

parameter is set in the I/O list. 

Revised Dec 70 



~~L~~~~ __ --------------------_ 
88A00142A 

Revised Dec 70 

Value 

2 

3 

4 

Meaning 

Write without readback check. The function 

is the same as write with readback check I 

except that no readback check is performed. 

Write with readback check. This function 

writes the contents of the indicated I/O 

data area into consecutive disk sectors. 

Writing begins at the designated sector 

and continues until the specified number of 

words has been transmitted. A readback 

check is performed on the data written. 

If any errors are detected, the operation 

is retried a maximum of 15 times. If the 

function cannot be completed in 15 trie s I 

the ERROR PARAMETER is set in the I/O 

LIST. 

Write immediate. Writes data with no 

attempt to check for hardware errors. This 

function is provided to fulfill the need for 

more rapid writing to the disk than is pro

vided in the previously described write 

function. The primary application of write 

immediate is in the 'streaming' of analog 

6.4-5 



~G~L~~~~ __ --------------------_ 
88A00142A 

6.4-6 

Value 

4 (continued) 

5 

Meaning 

input data to the disk for temporary bulk 

storage. 

Seek. Initiates a seek as specified by the 

seek option digit. If any errors are 

detected I the operation is retried a maxi

mum of 15 times. 

Hexadecimal Digit 2. When digit 1 is zero (0) I this digit specifies whether the 

device is to be put on-line or taken off-line. 

o - take device off-line 

1 - put device on-line 

If digit 1 specifies a seek (function code 5) then digit 2 specifies the seek 

option. If zero, a seek is executed to the cylinder whose sector address is in 

the disk I/O area control word. If non-zero I a seek is executed to the next 

cylinder toward the center, regardless of the sector address in the disk I/O 

area control word. The seek option is valid only when the seek function is 

specified. 

NOTE 

The seek function requires that the user 

set up the normal I/O area used. The I/O 

area control word (first word) is ignored. 

Revised Dec 70 



~~L~~~~ __ --------------------_ 
88A00142A 

Area Parameter: The I/O area parameter is the addres s of the first word of the 

user's I/O area. The first word contains a count of the number of data words 

that are to be transmitted during the disk operation. This count need not be 

limited by sector or cylinder size I since the BULKN subroutine crosses sector 

and cylinder boundaries I if necessary I in order to process the specified num

ber of words. 

The second word contains the sector address where reading or writing is to 

begin. 

Following the two control words is the users data area. No chaining of disk 

I/O area is permitted. 

Operation-Complete Subroutine: There is one parameter passed to the user's 

operation-complete subroutine and that is the address of the list most completed. 

Revised Dec 70 6.4-7/8 



~~L~~~~ __ --------------------_ 
88A00142A 

APPENDIX A 

DISK SECTOR MAP 

FILE ALLOCATED SECTORS EFFECTIVE SIZE 

DC 100 - 2FF 2560 binary cards 

LB 300 - 4FF 2560 binary cards 

WC 500 - 57F 640 binary cards 

WB 580 - 5FF 640 binary cards 

WS 600 - 8FF 11,5001 ASCII cards 

DS 900 - FFF 27,0001 ASCII cards 

UL 1000 - 10FF 1,280 binary cards 

DP 1100 - l1FF 1,280 binary cards or 

4,0001 ASCII cards 

DK 1200 - 12FF 256 sectors 

DJ 1300 - 13FF 3840 ASCII cards 

Sectors 0 - FF are for system use only. 

Sectors 1400 - 1 F3Farc available to the user. 

1 Approximate number of cards. 

Revised Dec 70 A-1/A-2 



~~L~~~~ __ ----------~----------~ 
88A00142A 

APPENDIX B 
STANDARD CHARACTER CODES 

The ASCII c·odc is an eight-bit code, represented in this table by hexadecimal digits. Although the printer recognizes a 

six-bit code (that is. ignores the two high-order bits of the eight-bit ·code ),. the codes are represented in this table by 

hexadecimal digits. 

Graphic 

or Control 

NULL 

SOM 

EOA 

EOM 

EOT 

WRU 

RU 

BELL 

FE 

H. Tab 

Line Feed 

V. Tab 

Form 

Return 

SO 

SI 

DCO 

X-On 

Tape Aux. On 

X-Off 

Tape Aux. Off 

Error 

Sync 

l.EM 

SO 

Sl 

S2 
5] 

sot 

55 

56 

S7 

ASCII 

(Hexadecimal) 

80 

81 

82 

83 

84 

85 

86 

87 

88 

89 

8A 
8B 

8e 

8D 

8E 

8F 

90 

91 

92 

93 

94 

95 

96 

97 

98 

99 

9A 

9B 

9C 

91) 

9E 

9F 

Hollerith 

((l, 
((Arr,P" ~ 

T;4A 
If ;"'J)} ~ f,t~lP (' :' 

Foy,,,, TUfJ/ 
cl( 

-F-o-rTCt?;+_·· __ ·.d I? 

.So~ 

t~l,..,/.i".,tG" ~. 

/","' .... $pr .,. 

J/ . 1/ f.·"-{f!' vQ !(../t!!i.;/ ~.,!" 

1Ii:;,' f·e. (/~I" fAsr f 

.t /,~ k .t~~:/ 

/}I/"I; f~ #1 

Printer 

(Hexadecimal) 

IJ· t 



(!i!JJ GENERAL AU~OMATION. INC. 

88AOO142A 

, 

Graphic ASCII Hollerith Printer 
or Control (Hexadecimal) IBM 029* IBM 026 (Hexadecimal) 

ACK FC 
Al t. Mode FD 
Rubout FF 

Al 5-8 11-2-8 El 

A2 7-8 0-5-8 E2 
# A3 3-8 0-7-8 E3 
S A4 11-3-8 E4 
% A5 0-4-8 11-7-8 E5 
& A6 12 12-7-8 E6 

A7 5-8 4-8 E7 
( A8 12-5-8 0-4-8 E8 . 
) A9 11-5-8 12-4-8 E9 

* AA 11-4-8 EA 
+ AB 12-6-8 12 EB 

AC 0-3-8 EC 
AD 11 ED 
AE 12-3-8 EE 

I AF 0-1 EF 
BA 2-8 5-8 FA 
BB 11-6-8 FB 

< BC 12-4-8 12-6-8 FC 
BD 6-8 3-8 FD 

> BE 0-6-8 6-8 FE 
? BF 0-7-8 12-2-8 FF 
[ DB 12-5-8 DB 
\ DC 0-6-8 OC 

] DD 11-5-8 DD 
t DE 7-8 DE 
+- DF 2-8 DF 
@ CO 4-8 0-2-8 CO 
blank AO No Punch EO 
0 BO 0 FO 
1 Bl I FI 
2 B2 2 F2 
3 83 3 F3 
4 84 4 F4 
5 B5 5 F5 
6 n6 6 F6 p, 

87 7 F7 

'" MUST BE USED WITH DBOS 

/1-2 

L 



~G~L~~~~ __ ---------------------~ 
BBA00142A 

Graphic ASCII Printer 
or Control (Hexadecimal) Hollerith (Hexadecimal) 

~ 

8· B8 8 F8 
9 B9 9 F9 
A C1 12-1 Cl 
B C2 12-2 C2 
C C3 12-3 C3 
D C4 12-4 C4 
E C5 12-5 C5 
F C6 12-6 C6 
G C7 12-7 C7 
H C8 12-8 C8 
I C9 12-9 C9 

J CA 11-1 CA 
K CB 11-2 CB 
L CC 11-3 CC 
M CO 11-4 CO 
N CE 11-5 CE 
0 CF 11-6 CF 
P 00 11-7 DO 

Q 01 11-8 D1 

R 02 11-9 D2 
S 03 0-2 03 
T 04 0-3 04 
U 05 0-4 05 
V 06 0-5 06 
W 07 0-6 07 
X 08 0-7 08 
y 09 0-8 09 
Z OA 0-9 OA 

n-J/LJ-4 



~~L~~~~ ____________________ ~ 
88A00142A 

APPENDIX C 
EBCDIC DECIMAL EQUIVALENCE 

These values may be used by the Fortran programmer for character checking. 

FILL NICOMP 

EBCDIC Character Decimal Eguivalence 

Low ~ 2-0) -16320 
A -16064 
B -15808 
C -15552 
D -15296 
E -15040 
F -14784 
G ~14528 
H -14272 
I -14016 

(11- 0) -12224 

J -11968 
K -11712 
L -11456 
M -11200 
N -10944 
0 -10688 
P -10432 
Q -10176 
R -9920 
S -7616 
T -7360 
U -7104 
V -6848 
W -6592 
X -6336 
y -6080 
Z -5824 

C-1 



~~L~~~~ ___________________ ~ 
88A00142A 

FILL NICOMP 
EBCDIC Character Decimal Equivalence 

Low 0 -4032 
1 -3776 
2 -3520 
3 -3264 
4 -3008 
5 -2752 
6 -2496 
7 -2240 
8 -1984 
9 -1728 

Q) 
t) 
s:: blank 16448 Q) 

::l (period) 19264 0-
Q) 

<(less than) 19520 CI) 

01 ( 19776 s:: 
• .-f + 20032 -4-' 
co 

& 20544 ........ ........ 
0 $ 23360 U 
s:: * 23616 

• .-f 

23872 "0 
Q) -(minus) 24640 -4-' 
CJl / 24896 ..... 
~ 

~ 
27456 

% 27712 
High it 31552 

@ 31808 
I (apostrophe) 32064 
= 32320 

C-2 



~~L~~~~ __ -------_____________ _ 

88A00142A 

APPENDIX D 
FORTRAN EXECUTION (RUNTIME) ERRORS 

FORTRAN execution errors are classified into two categories; those which cause 

a run to be aborted and those which are logged but processing is allowed to 

continue. 

In either case a message is output to OM which identifies the error, the sub-

routine and associated variables. This message takes the form: 

**ERROR NUMBER IN NAME UP TO 8 VALUES 

Table D-l details the error message and system affect for each logable error. 

Table D-l 

In 
No. Routine Abort Values Reason 

1 COMGO No Variable Variable range error 
1 LUCS Yes - Conflict in logical unit usage 
1 BCKSP Yes - Bad binary record 
1 DSKIO Yes File No. File not defined 
2 DSKIO Yes - No files defined 
3 DSKIO Yes - Too many arguments 
4 DSKIO Yes Rec.No Illegal record number 
1 FRMAT No Format Buffer exceeded on input (the 

address, variable s listed are output for 
buffer all FRMAT errors) . 
pointer, 
terminal 
character 

2 FRMAT No Same as Buffer exceeded on output 
1 FRMAT 

3 FRMAT No Same as Input exponent >99 
1 FRMAT 

Revised Dec 70 D-l 



~~L~~~~ __ --------------------_ 
88A00142A 

Table D-l. (continued) 
In 

No. Routine Abort Values Reason 

4 FRMAT No Same as Real data in integer field 
1 FRMAT 

5 FRMAT No Same as Integer too large on input 
1 FRMAT 

6 FRMAT No Same as Exponent overflow on input 
1 FRMAT 

7 FRMAT No Same as Exponent underflow on input 
1 FRMAT 

16 FRMAT Yes Same as Argument has no format 
1 FRMAT 

1 UNFMT Yes Data count, Too many arguments 
block count 

D-2 Revised Dec 70 



_~~L~~~~ ______________________ _ 

88A00142A 

APPENDIX E 
FORTRAN COMPILATION ERRORS 

All FORTRAN compilation errors cause an abort situation. No binary output is 

generated and any attempt to build a program subsequently will result in a 

Proce s sing Error. 

Error 
Number 

CI 

C2 

C3 

Table E-I 
FORTRAN Error Codes 

Cause of Error 

Non-numeric character in statement number. 

More than five continuation cards, or continuation card out 
of sequence. 

Syntax error in CALL LINK or CALL EXIT statement or END 
statement mis sing. 

C4 Undeterminable I mis spelled, or incorrectly formed statement. 

CS 

C6 

C7 

C8 

C9 

CIO 

Revised Dec 70 

Statement out of sequence. 

Statement following STOP, RETURN, CALL LINK, CALL EXIT, 
GO TO, IF, does not have statement number. 

Name longer than five characters, or name not starting with 
an alphabetic character. 

Incorrect or missing subscript within dimension information 
(DIMENSION, COMMON, REAL, or INTEGER). 

Duplicate statement number. 

Syntax error in COMMON statement. 

E-l 



_~~L~~n~~ ____ ----______________ _ 

88A001421\ 

E-2 

Error 
Number 

CII 

Cl2 

Cl3 

Cl4 

Cl6 

Cl7 

Cl8 

C19 

C20 

C21 

C22 

C23 

C24 

C25 

C26 

C27 

C28 

C29 

Table E-l • (continued) 

Cause of Error 

Duplicate name in COMMON statement. 

Syntax error in FUNCTION or SUBROur INE statement. 

Parameter (dummy argument) appears in COMMON statement. 

Name appears twice as a parameter in SUBROUTINE or 
FUNCTION statement. 

Syntax error in DIMENSION statement. 

Subprogram name in DIMENSION statement. 

Name dimensioned more than once I or not dimensioned on 
first appearance of name. 

Syntax error in REAL I INTEGER, or EXTERNAL statement. 

Subprogram name in REAL or INTEGER statement. 

Name in EXTERNAL which is also in a COMMON or DIMENSION 
statement. 

IFIX or FLOAT in EXTERNAL statement. 

Invalid real constant. 

Invalid integer constant. 

More than 15 dummy arguments I or duplicate dummy arguments 
in statement function argument list. 

Right parenthesis missing from a subscript express ion. 

Syntax error in FORMAT statement. 

FORMAT statement without statement nUlT,ber. 

Field width specification greater than 145. 

Revised Dec 70 



~~~L~~~~ ______________________ _ 

88A00142A

Error
Number

C30

C31

C32

C33

C34

C35

C36

C37

C38

C39

C40

C41

C42

C43

C44

Revised Dec 70

Table E-l. (continued)

Cause of Error

In a FORMAT statement specifying E or F conversion, w greater
than 127, d greater than 31, or d greater than w, where w is
an unsigned integer constant specifying the total field length
of the data and d is an unsigned integer constant specifying
the number of decimal places to the right of the decimal point.

Subscript error in EQUIVALENCE statement.

Subscripted variable in a statement function.

Incorrectly formed subscript expres sion.

Undefined variable in subscript expres sion.

Number of subscripts in a subscript expression does not agree
with the dimension information.

Invalid arithmetic statement or variable; or, in a FUNCTION
subprogram, the left side of an arithmetic statement is a
dummy argument (or in COMMON).

Syntax error in IF statement.

Invalid expres sion in IF statement.

Syntax error or invalid simple argument in CALL statement.

Invalid expression in CALL statement.

Invalid expression to the left of an equal sign in a statement
function.

Invalid expression to the right of an equal sign in a statement
function.

If an IF, GO TO, or DO statement, statement number is missing
invalid, incorrectly placed, or is the number of a FORMAT
statement.

Syntax error in READ or WRITE statement.

E-3

_~~L~~~~ __ --------------------~
88A00142A

E-4

Error
Number

C46

C47

C48

C49

C51

C52

C53

C54

C55

C56

C57

C58

C59

C60

C61

Table E-l. (continued

Cause of Error

FORMAT statement number missing or incorrect in a READ
or WRITE statement.

Syntax error in input/output list; or an invalid list element;
or, in a FUNCTION subprogram, the input list element is a
dummy argument or in COMMON.

Syntax error in GO TO statement.

Index of a computed GO TO is missing, invalid, or not precedec
by a comma.

Incorrect nesting of DO statements; or the terminal statement
of the associated DO statement is a GO TO, IF, RETURN,
FORMAT, STOP, PAUSE or DO.

More than 25 nested DO statements.

Syntax error in DO statement.

Initial value in DO statement is zero.

In a FUNCTION subprogram the index of DO is a dummy
argument or in COMMON.

Syntax error in BACKSPACE statement.

Syntax error in REWIND statement.

Syntax error in END FILE statement.

Syntax error in STOP statement or STOP statement in process
program.

Syntax error in PAUSE statement.

Integer constant in STOP or PAUSE statement is greater
than 9999.

Revis ed Dec 70


~~~L~~~~ __ --------------------_ 
88A00142A 

Error 
Number 

C62 

C63 

C64 

C65* 

C66* 

C67* 

C68 

C69 

C70 

C71 

C72 

C73 

C74 

Revis ed Dec 70 

Table E-l. (continued) 

Cause of Error 

Last executable statement before END statement is not a 
STOP, GO TO, IF, CALL EXIT or RETURN. 

Statement contains more than 15 different subscript expression:: • 

Statement too long to be scanned due to compiler expansion 
of subscript expressions or compiler addition of generated 
temporary storage locations. 

All variables are undefined in an EQUIVALENCE list* 

Variable made equivalent to an element of an array, in such 
a manner a s to cause the array to extend beyond the origin 
of the COMMON area* 

Two variables or array elements in COMMON are equated, or 
the relative locations of two variables or array elements 
are assigned more than once (directly or indirectly)* 

Syntax error in a EQUIVALENCE statement; or an illegal 
variable name in an EQUIVALENCE list. 

Subprogram does not contain a RETURN statement, or a main
line program contains a RETURN statement. 

No DEFINE FILE in a mainline program which has disk READ, 
WRITE or FIND statements. 

Syntax error in DEFINE FILE. 

Duplicate DEFINE FILE, more than 75 DEFINE FILES, or 
DEFINE FILE in subprogram. 

Syntax error in record number of READ, WRITE I or FIND 
statement. 

INSKEL COMMON referenced with two word integers. 

E -5 



_~G~L~~~~~_---------_____________ ~I/ 
88A00142A 

E-6 

Error 
Number 

C75 

C76 

C77 

C78 

C79 

C80 

C8l 

C82 

Table E-1. (continued) 

Cause of Error 

Syntax error in data statement. 

Names and constants in a data statement not one to one. 

Mixed mode in data statement. 

Invalid hollerith constant in a data statement. 

Invalid hexadecimal specification in a data statement. 

Variable in a data statement not used elsewhere in the 
program. 

Common variable loaded with a data specification. 

Data statement too long. 

* The decis ion of a code 65, 66 or 67 error prevents any subsequent detection 
of any of these three errors. 

Revised Dec 70 



~~L~~~~ __ ---------------------~ 
88A00142A 

APPENDIX F 
DBa'S LOGICAL UNIT ASSIGNMENTS 

STANDARD 

NUMBER NAME USAGE 
ASSIGNMENT (FILE) 

(SEE FILE NAMES, TABLE 2-2) 

0 CC Control Command Input TY (Teletype Keyboard) 

1 SI Symbolic Input CR (Card Reader) 

2 SO Symbolic Output WS (Working Symbolic File) 

3 BI Binary Input WB (Working Binary File) -

4 BO Binary Output WB (Working Binary File) 

5 LO Listing Output LP (Line Printer) 

6 IS Intermediate Symbolic WS (Working Symbolic File) 

7 OM Operator Messages TY (Teletype Printer) 

8 CI Core Image Data WC (Working Core Image File) 

9 LB Binary Library LB (Directoried Library File) 

10 SL System Log LP (Line Printer) 

12 SB Secondary Binary Library CR (Card Reader) 

11 UL User Library UL (Directoried User Library File) 

13 User Disk Temporary DK (Unformatted Disk I/O File) 

14 User Packed Disk Temporary DP (Disk) 

15 NO NO (Delete I/O) 

Revised Dec 70 F-l/2 



~~L~~~~ _______________________ ~ 
88A00142A 

NAME 

DS1 

LB2 

UL 2 

DC3 

DJ1 

WS 1 

WB 2 

WC2 

CR 

CP 

LP 

TY 

PR 

pp 

DK3 

IW 2 

NO 

APPENDIX G 
DBOS FILE NAMES AND DESCRIPTION 

DEVICE 

Disk 

Disk 

Disk 

Disk 

Disk 

Disk 

Disk 

Disk 

Clrd Reader 

Cud punch 

Line Printer 

Teletype 

Paper Tape Reader 

Paper Tape Punch 

Disk 

I )isk 

NllIll' 

USAGE 

Directoried source language program data 

Directoried binary object subroutine library 

Directoricd user binary object subroutine library. 

Directoried core image program data 

Directoried job string file 

Working source language data 

Working binary object data 

Working core image data 

ASCII or binary card input 

ASCII or binary card output 

ASCII listing output 

ASCII or binary teletype input/output 

ASCII or binary high-speed paper tape Input 

ASCII or binary high-speed paper tape output 

ASCII or binary disk sector IIIput/outpllt 

ASCII or binary logical pat hd disk Inpllt/olltput 

Delete illpll t 01 Olltpllt 

ASCII l:harartn strtll.,. IW I:haral:tcr rl'lords. Data 

type A ill tile mOlnipulal\on commands. 

2 hlllary objcl:t formal ')4 word records. DoH,l type B 

II. file m;mipulatlOIl (olllmands. 

Biliary data ill \20 word rl'(ord form. 

Revised Dec 7' G-l/2 


	0001
	0002
	0003
	0004
	001
	002
	003
	004
	1.01.00-01
	1.01.00-02
	1.01.00-03
	1.01.00-04
	2.01.00-01
	2.01.00-02
	2.02.00-01
	2.02.00-02
	2.02.01-1
	2.02.01-2
	2.02.02-1
	2.02.02-2
	2.03.00-01
	2.03.00-02
	2.04.00-01
	2.04.00-02
	2.04.01-01
	2.04.01-02
	2.04.01-03
	2.04.01-04
	2.04.02-01
	2.04.02-02
	2.04.03-01
	2.04.03-02
	2.04.03-03
	2.04.03-04
	2.04.03-05
	2.04.03-06
	2.04.04-01
	2.04.04-02
	2.04.05-01
	2.04.05-02
	2.04.06-01
	2.04.06-02
	2.04.07-01
	2.04.07-02
	2.04.08-01
	2.04.08-02
	2.04.08-03
	2.04.08-04
	2.04.09-01
	2.04.09-02
	2.04.09-03
	2.04.09-04
	2.04.10-01
	2.04.10-02
	2.04.10-03
	2.04.10-04
	2.04.11-01
	2.04.11-02
	2.04.12-01
	2.04.12-02
	2.04.12-03
	2.04.12-04
	2.04.13-01
	2.04.13-02
	2.05.00-01
	2.05.00-02
	2.05.01-01
	2.05.01-02
	2.05.01-03
	2.05.01-04
	2.05.02-01
	2.05.02-02
	2.05.02-03
	2.05.02-04
	2.05.02-05
	2.05.02-06
	2.05.03-01
	2.05.03-02
	2.05.03-03
	2.05.03-04
	2.05.03-05
	2.05.03-06
	2.05.04-01
	2.05.04-02
	2.05.04-03
	2.05.04-04
	2.05.04-05
	2.05.04-06
	2.05.04-07
	2.05.04-08
	2.05.04-09
	2.05.04-10
	2.05.05-01
	2.05.05-02
	2.05.05-03
	2.05.05-04
	2.05.05-05
	2.05.05-06
	2.05.05-07
	2.05.05-08
	2.05.05-09
	2.05.05-10
	2.05.05-11
	2.05.05-12
	2.05.05-13
	2.05.05-14
	2.05.05-15
	2.05.05-16
	2.05.06-01
	2.05.06-02
	2.05.06-03
	2.05.06-04
	2.05.06-05
	2.05.06-06
	2.05.06-07
	2.05.06-08
	2.05.07-01
	2.05.07-02
	2.05.07-03
	2.05.07-04
	2.05.07-05
	2.05.07-06
	2.05.08-01
	2.05.08-02
	2.05.08-03
	2.05.08-04
	2.05.08-05
	2.05.08-06
	2.05.09-01
	2.05.09-02
	2.07.00-01
	2.07.00-02
	2.07.02-01
	2.07.02-02
	2.07.03-01
	2.07.03-02
	2.08.00-01
	2.08.00-02
	2.08.01-01
	2.08.01-02
	2.08.01-03
	2.08.01-04
	2.09.01-01
	2.09.01-02
	3.01.00-01
	3.01.00-02
	3.01.01-01
	3.01.01-02
	3.01.02-01
	3.01.02-02
	3.01.03-01
	3.01.03-02
	3.01.04-01
	3.01.04-02
	3.01.05-01
	3.01.05-02
	3.01.06-01
	3.01.06-02
	3.02.00-01
	3.02.00-02
	3.03.00-01
	3.03.00-02
	3.03.01-01
	3.03.01-02
	3.03.02-01
	3.03.02-02
	3.03.02-03
	3.03.02-04
	3.03.03-01
	3.03.03-02
	4.01.00-01
	4.01.00-02
	4.01.00-03
	4.01.00-04
	4.02.00-01
	4.02.00-02
	4.03.00-01
	4.03.00-02
	4.04.00-01
	4.04.00-02
	4.04.00-03
	4.04.00-04
	4.05.00-01
	4.05.00-02
	4.05.00-03
	4.05.00-04
	4.06.00-01
	4.06.00-02
	4.07.00-01
	4.07.00-02
	4.07.00-03
	4.07.00-04
	4.08.00-01
	4.08.00-02
	4.09.00-01
	4.09.00-02
	4.10.00-01
	4.10.00-02
	4.11.00-01
	4.11.00-02
	4.12.00-01
	4.12.00-02
	4.13.00-01
	4.13.00-02
	4.14.00-01
	4.14.00-02
	4.14.00-03
	4.14.00-04
	4.14.00-05
	4.14.00-06
	4.14.00-07
	4.14.00-08
	4.14.00-09
	4.14.00-10
	4.14.00-11
	4.14.00-12
	4.14.00-13
	4.14.00-14
	4.14.00-15
	4.14.00-16
	4.14.00-17
	4.14.00-18
	4.14.00-19
	4.14.00-20
	4.14.00-21
	4.14.00-22
	4.14.00-23
	4.14.00-24
	4.14.00-25
	4.14.00-26
	5.01.01-01
	5.02.01-01
	5.02.01-01a
	5.02.01-02
	5.02.01-03
	5.02.02-01
	5.02.02-02
	5.03.01-00
	5.03.01-01
	5.03.01-02
	5.03.01-03
	5.03.01-04
	5.03.02-01
	5.03.02-02
	5.03.02-03
	5.03.02-04
	5.03.03-01
	5.03.03-02
	5.03.04-01
	5.03.04-02
	5.03.04-03
	5.03.05-01
	5.03.05-02
	5.03.05-03
	5.03.05-04
	5.03.06-01
	5.03.06-02
	5.03.06-03
	5.03.06-04
	6.01.01-00
	6.01.01-01
	6.01.01-02
	6.02.00-01
	6.02.01-01
	6.02.02-01
	6.02.02-02
	6.02.02-03
	6.03.00-01
	6.04.00-01
	6.04.00-02
	6.04.00-03
	6.04.00-04
	6.04.00-05
	6.04.00-06
	6.04.00-07
	A-01
	B-01
	B-02
	B-03
	C-01
	C-02
	D-01
	D-02
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	F-01
	G-01

