7112248

Informatnon
Services '

World Leader
In Time-Sharing
Service

'REFERENCE MANUAL

BASIC
Language

GENERAL @3 ELECTRIC

INFORMATION SERVICE DEPARTMENT

711224B

REFERENCE
MANUAL

BASIC
Language

Revised November 1970
Supersedes Revision A

The contents of this reference manual are sold on an ‘‘as is"’
basis. Buyer hereby waives all warranties, express or implied
or statutory, including but not limited to any warranty of
merchantability or fitness for use for a particular purpose.

GENERAL @D ELECTRIC

INFORMATION SERVICE DEPARTMENT

PREFACE

This manual, which supersedes the Preliminary Reference Manual of the same title and number,
describes the version of the BASIC language used with the MARK II Time-Sharing Service. All
material released 1n the BASIC Language supplement, publication number 711224A-1 is included
in this manual.

Another manual, the MARK II Command and Edit Systems Reference Manual (Publication
number 711223) explains all of the system commands that are a part of the MARK II Time-
Sharing Service.

The development of the BASIC language was supported by the National Science Foundation under
the terms of a grant to Dartmouth College. Under this grant, Dartmouth College developed,
under the direct.on of Professors John G. Kemeny and Thomas E. Kurtz, the BASIC language
compiler. Since that development, BASIC has been offered as part of the Time-Sharing Service
of General Electric's Information Service Department.

@ 1967, 1968, 1969, 1970 by General Electric Company, USA, and the Trustees of Dartmouth
College

INTRODUCTION

In this reference manual which describes the version of the BASIC language used with MARK II,
the extensions and additions to the versatile BASIC language are as follows:

ASCII sequential, binary sequential, and binary random data files.
String processing, which permits manipulation of alphanumeric data.

Chaining, which permits a program to stop and begin execution of another program
without direct intervention.

Liberal defining of variables in a function statement.
Powerful subfunction capability for formatting output.

Ability for initializing all variables, lists, and tables to zero.

A first introduction to writing a BASIC program is given in Section 2; it includes all that you
will need to know in order to write a wide variety of useful and interesting programs. Section
3 deals with more advanced computer techniques.

Appendix A provides a reference for Error Messages.

TABLE OF CONTENTS

Page
PREFACE
INTRODUCTION
Section 1. WHAT IS A PROGRAM? . it vttt ittt ettt et e et e eeeenn 1
Section 2. ABASICPRIMERt vt iiiit ittt ettt et eeeeeennn.. 2
An Example of a Complete BASIC Programoue.... 2
Formulaso i it i i e e e e e e e e e e e e e e 5
NUMDEIS. & vt v it ittt it e et ettt ettt et e 7
Variables ittt e e e e e e e e e e e 8
Relational Symbols.o v i ittt ittt e et e 8
70T) ¢ 8
Lists and Tableso vt ittt ittt ettt it e s eennnas 11
ErrorsandDebuggingo v ittt ittt e e e e 13
Summary of Elementary BASIC Statements oo v v v nn .. 16
LET Statement.o v ittt ittt ettt et ettt e eeeens 16
READ and DATA Statement00t renn.. 17
PRINT Statement i i ittt ittt et ettt etennenn 17
GOTOStatemento v vttt ittt et e ettt e 18
IF - THENor IF -G@ T@ Statemento v ennnn. 19
FOR and NEXT Statements. . . . v v v v v vt v nee et et eenns 19
DIM Statement i ittt ittt 20
END Statement.0ttt i i e e e 20
Section 3. ADVANCED BASIC .+« & vttt vttt ittt ettt et ettt ttneees 21
More About the PRINT Statementc.c0vi.... 21
The Tab Function00ttt ieneeinneennn 23
FormattedOutput. it ennn. 24
PRINT USING and Image Statements 24
Integer Fields o v vt v it ittt it ittt et e e enennn 25
Decimal Fieldso it i vt ittt ittt ittt ettt 26
Exponential Fields it inennnnn 27
Dollar Sign Fieldsottt it ineenennnn 27
Alphanumeric Fieldsttt ittt innnnnn 28
Literal Fields v i vt i ittt i ittt it e ittt eenenn 28
Functions and Stateme:}s./ 29
Integer Function Y. i it ittt nnnn 29
Sign Function.0 ittt ittt ittt et 29
RND FUnction i i ittt ineteeneneeeenenneneen 30
RANDOMIZE Statement oo v oo vvvvvnnnnenenenens 31
TIM Function. e e et e et e e 31
CLKS FUnCtion. vttt ittt it ettt ettt eeneenens 32
BCLFunctionc.i ittt tineeeeeennoneeeen 33
DATE FUNCHiOn. « . v vt ittt ettt ettt e teeeeennnn 33
IDAFUNCHiOnt v ittt ittt ittt et e e 34
HPS Function.t v i ittt it ittt ettt e naeennnes 34
VPS Function. v it ittt ittt ittt eneneeeenesas 35
LIN FUnCtion . . v v v v it ittt ettt et et ettt enneeeeennes 35
ASC Function. vt ittt i ittt it ittt et et e e 37
STRE FUNCHION . + v v v vt vt e et et e ettt et eeeeeseennnnns 37

iv

TABLE OF CONTENTS (Continued)

Page

VAL Functionottt i ittt it ettt ettt neoeneas 38
LEN Function ittt ittt ittt ittt e aeeenns 39
UNDB FUNCHION. & o v vttt ettt et e et et et et et taeeeees 40
USE Function. i it i ittt i ittt e et ettt eenaaens 40
DEF Statement. i i ittt ittt et e 41
GOSUB and RETURN Statement . . . oo oo v v v v vt vn oo 42
ON Statement. . . . v v v vttt ettt ettt ettt et eeeeeen 44
INPUT Statement i ittt it ittt i ittt e cnennn 44
CHAIN Statement0 it it ittt ittt ettt neneas 45
STOP Statement. . . . v v v vttt et ettt e e e 47
REM Statement i ittt i ittt e et e 47
RESTQRE Statement.ot vvv ittt ittt et e iee e 47
TRACE N, TRACE @FF Statementso00.... 48
B 21 5 = 49
Alphanumeric Data and String Variables 55
DIM Statement. i i i i e e e e e e e e e e 55
LET Statement ittt ittt ittt eenenns 55
IF—-THEN Statement. ittt 56
CHANGE Statementttt ittt eeennn. 56
Data Files . . . v v it i it it i e i i et e e e e e e e e e e e e e 58
File Types . . . o o it it it e et e e e e e 58
File Access Capabilities 59
Initial File Preparation. 59
ASCIL FileS . & v v i it it et e et e ettt e ettt ettt e e 59
Binary Files o 0 ot it e e 59
File Classification i i i i ittt ittt ettt i 59
File Reference v i i it i it ittt ettt ee e eeenn 60
FileDesignator i e 60
FILE Statement i ittt it e it et 61
File MOdeS . . & v v i i it i i e e e e e e e e e e e e e e e e e e e 62
ReadingData. ittt it 63
File READ ittt ittt ettt e it eiin 63
Reading with INPUT Statement 65
ReadingInternal Data 67
READ FORWARD Statement. oo v vt v oo i v iennnn 69
WritingData i e e 69
File WRITE Statement., 69
Writing with PRINT Statement 1
Matrix Input/Output Statements 72
MAT READ Statement. 72
MAT WRITE Statement 73
RESTORE Statement. v v v v v vttt it et et e e eeeeen 74
SCRATCH Statement. ittt ittt i 5
DELIMIT Statement i ittt i ittt et et nenn 75
APPEND Statementttt ittt te e eeeennneens mm
MARGIN Statement. v i i ittt ittt et et ee e "
IFEND Statement0 ittt ettt nnnn. 78
IF MORE Statement . . . o v v v v v v v e vt v et e e oot oo e e e 80
BACKSPACE Statement. v v it it ittt et et et ennnn 82
BACKSPACES$ Statementttt i it i innen. 83
SETW Statement ittt ennen 84

TABLE OF CONTENTS (Continued)

LCW FUNCHON « + v v v v o e
LEW Function i i it i it e e e e e e e e e e e et e e

SUMMARY .

....................................

Appendix A ERROR MESSAGES o ittt ittt et e e e e e e e e e e ee e
Compilation Errors i e e

Execution Errors

Section 1. WHAT IS A PROGRAM

A program is a set of directions that is used to tell a computer how to provide an answer to
some problem. It usually starts with the given data, contains a set of instructions to be per-
formed or carried out in a certain order, and ends up with a set of answers.

Any program must meet two requirements before it can be carried out. The first is that it must
be presented in a language that is understood by the computer. If the program is a set of in-
structions for solving a system of linear equations and the computer is an English-speaking
person, the program will be presented in some combination of mathematical notation and
English. If the computer is a French-speaking person, the program must be in his language;
and if the computer is a high-speed digital computer, the program must be presented in a
language which the computer understands.

The second requirement for all programs is that they must be completely and precisely stated.
This requirement is crucial when dealing with a digital computer, which has no ability to infer
what you mean--it does what you tell it to do, not what you meant to tell it.

We are, of course, talking about programs which provide numerical answers to numerical
problems. It is easy for a programmer to present a program in the English language, but such
a program poses great difficulties for the computer because English is rich with ambiguities
and redundancies, those qualities which make computing impossible. Instead, you present your
program in a language which resembles ordinary mathematical notation, which has a simple
vocabulary and grammar, and which permits a complete and precise specification of your
program. The language you will use is BASIC (Beginner's All-purpose Symbolic Instruction
Code) which is, at the same time, precise, simple, and easy to understand.

Section 2. A BASIC PRIMER

Example of a Complete BASIC Program

The following example is a complete BASIC program for solving a system of two simultaneous
linear equations in two variables

ax + by=c¢
dx + ey =1

and then solving two different systems, each differing from this system only in the constants c
and f.

You should be able to solve this system, if ae - bd is not equal to 0, to find that

xzu d _af-cd
ae - bd an Y= 326 -bd

If ae - bd = 0, there is either no solution or there are infinitely many, but there is no unique
solution. If you are rusty on solving such systems, take our word for it that this is correct.
For now, we want you to understand the BASIC program for solving this system.

Study this example carefully; in most cases, the purpose of each line in the program is
self-evident - and then read the commentary and explanation.

A first observation is that each line of the program begins with a number. These numbers are
called line numbers and serve to identify the lines, each of which is called a statement. Thus,
a program is made up of statements, most of which are instructions to the computer. Line
numbers also serve to specify the order in which the statements are to be performed by the
computer. This means that you may type your program in any order. Before the program is
run, the computer sorts out and edits the program, putting the statements into the order
specified by their line numbers. (This editing process facilitates the correcting and changing
of programs, as we shall explain later.)

A second observation is that each statement starts, after its line number, with an English
word. This word denotes the type of the statement. There are several types of statements in
BASIC, nine of which are discussed in this section. Seven of these nine appear in the sample
program of this section.

A third observation, not at all obvious from the program, is that spaces have no significance in
BASIC, except in messages which are to be printed out, as in Line 65 in the preceding example.
Thus, spaces may be used at will to make a program more readable. Statement 10 could have
been typed as 10READA, B,D, E, and Statement 15 as 15 LETG=A*E-B*D.

2

With this preface, let us go through the example, step by step. The first statement, 10, is a
READ statement. It must be accompanied by one or more DATA statements. When the computer
encounters a READ statement while executing your program, it will cause the variables listed
after the READ to be given values according to the next available numbers in the DATA state-
ments. In the example, we read A in Statement 10 and assign the value 1 to it from Statement

70 and similarly with B and 2, and with D and 4. At this point, we have exhausted the available
data in Statement 70, but there is more in Statement 80, and we pick up from it the number 2 to
be assigned to E.

We next go to Statement 15, which is a LET statement, and first encounter a formula to be
evaluated. (The asterisk is used to denote multiplication.) In this statement we direct the
computer to compute the value of AE - BD, and to call the result G. In general, a LET state-
ment directs the computer to set a variable equal to the value of the formula on the right side of
the equals sign. We know that if G is equal to zero, the system has no unique solution. There-
fore, we next ask, in line 20, if G is equal to zero, If the computer discovers a ''yes' answer
to the question, it is directed to go to Line 65, where it prints "N@ UNIQUE S@LUTI@N."
From this point, it would go to the next statement. But Lines 70, 80, and 85 give it no instruc-
tions since DATA statements are not "executed, " and it then goes to Line 90 which tells it to
"END" the program.

If the answer to the question "Is G equal to zero?" is ''no, " as it is in this example, the com-
puter goes on to the next statement, in this case 30. (Thus, an IF-THEN tells the computer
where to go if the IF condition is met but to go on to the next statement if it is not met.) The
computer is now directed to read the next two entries from the DATA statements, -7 and 5,
(both are in Statement 80) and to assign them to C and F, respectively. The computer is now
ready to solve the system

X+ 2y=-7 4x + 2y =5

In Statement 37 and 42, we direct the computer to compute the values of X and Y according to
the formulas provided. Note that we must use parentheses to indicate that CE - BF is divided
by G; without parentheses, only BF would be divided by G, and the computer would let

X = CE - BF/G.

The computer is told to print the two values computed, that of X and that of Y, in Line 55.
Having done this, it moves on to Line 60 where it is directed back to Line 30. If there are
additional numbers in the DATA statements, as there are here in 85, the computer is told in
Line 30 to take the next one and assign it to C, and the one after that to F. Thus, the computer
is now ready to solve the system

X+ 2y=1 4x + 2y =3

As before, it finds the solution in 37 and 42, and prints the values of X and Y in 55, and then
is directed in 60 to go back to 30.

In Line 30 the computer reads two more values, 4 and -7, which it finds in Line 85. It then
proceeds to solve the system

X+ 2y=4 4x + 2y = -1
and to print out the solutions. It is directed back again to 30, but there are no more pairs of

numbers available for C and F in the DATA statements. The computer then informs you that it
is out of data, printing on the paper in your terminal GUT @JF DATA IN 30, and stops.

For a moment, let us look at the importance of the various statements. For example, what
would have happened if we had omitted Line 55? The answer is simple: The computer would
have solved the three systems and told us when it was out of data. However, since it was not
asked to tell us (PRINT) its answers, it would not do it, and the solutions would be the com-
puter's secret. What would have happened if we had left out Line 20? In this problem just
solved, nothing would have happened. But, if G were equal to zero, we would have set the com-
puter the impossible task of dividing by zero in 37 and 42, and it would tell us so emphatically,
printing DIVISIGN BY ZER@ IN 37 AND DIVISIN BY ZERQ@ IN 42. Had we left out Statement
60, the computer would have solved the first system, printed out the values of X and Y, and
then gone on to Line 65 where it would be directed to print N UNIQUE S@LUTI@N. It would do
this and then stop.

One very natural question arises from the seemingly arbitrary numbering of the statements: Why
this selection of line numbers? The answer is that the particular choice of line numbers is ar-
bitrary, as long as the statements are numbered in the order which we want the machine to fol-
low in executing the program. We could have numbered the statements 1, 2, 3, ..., 13, although
we do not recommend this numbering. We would normally number the statements 10, 20, 30, ...,
130. We put the numbers such a distance apart so that we can later insert additional statements
if we find that we have forgotten them in writing the program originally. Thus, if we find that we
have left out two statements between those numbered 40 and 50, we can give them any two num-
bers between 40 and 50—say 44 and 46; and in the editing and sorting process, the computer will
put them in their proper place.

Another question arises from the seemingly arbitrary placing of the elements of data in the DATA
statements: Why place them as they have been in the sample program ? Here again, the choice is
arbitrary, and we need only put the numbers in the order that we want them read (the first for A,
the second for B, the third for D, the fourth for E, the fifth for C, the sixth for F, the seventh for
the next C, etc.). In place of the three statements numbered 70, 80, and 85, we could have put

or we could have written, perhaps more naturally,

to indicate that the coefficients appear in the first data statement and the various pairs of
right-hand constants appear in the subsequent statements.

The program and the resulting run is shown below exactly as it appears on the terminal:

After typing the program, we type RUN followed by a carriage return. Up to this point the
computer stores the program and does nothing with it. It is this command which directs the
computer to execute your program.

Note that the computer, before printing out the answers, prints the name which we gave to the
problem (LINEAR) and the time and date of the computation, *

The message GUT @F DATA IN 30 here may be ignored. But sometimes it would indicate an
error in the program. For more detail see the paragraph "READ and DATA."

Formulas

The computer can do a great many things - it can add, subtract, multiply, divide, extract
square roots, raise a number to a power, and find the sine of a number (on an angle measured

in radians), etc. We shall now learn how to tell the computer to do these things in the order
that we want them done.

The computer computes by evaluating formulas which are supplied in a program. These for-
mulas are similar to those used in standard mathematical calculation, except that all BASIC
formulas must be written on a single line. Five arithmetic operations can be used to write a
formula. These are listed in the following table:

*The time zone and date are not shown in this and subsequent examples.

Symbol Example Meaning

+ A+ B Addition (add B to A)

- A-B Subtraction (subtract B from A)
* A*B Multiplication (multiply B by A)
/ A/B Division (divide A by B)

4 or ** X } 20rX**2 Raise to the power (find X2)

NOTE: Some terminals use a A in place of the } .

We must be careful with parentheses to make sure that we group together those things which we
want together. We also must understand the order in which the computer does its work. For
example, if we type A + B * C 4 D, the computer will first raise C to the power D, multiply this
result by B, and then add A to the resulting product. This is the same convention as is usual for
A + B CD, If this is not the order intended, then we must use parentheses to indicate a different
order. For example, if it is the product of B and C that we want raised to the power D, we must
write A + (B * C) 4D; or, if we want to multiply A + B by C to the power D, we write

(A+ B) *C4D. We could even add A to B, multiply their sum by C, and raise the product to
the power D by writing ((A+B) *C) 4 D.

The order of priorities is summarized in the following rules:

1. The formula inside parentheses is computed before the parenthesized quantity is used
in further computations.

2. In the absence of parentheses in a formula involving addition, multiplication, and the
raising of a number to a power, the computer first raises the number to the power,
then multiplies, then adds. Division has the same priority as multiplication, and
subtraction the same as addition.

3. In the absence of parentheses in a formula involving only multiplication and division,
the operations are done from left to right, as they are read. Addition and subtrac-
tion are also done from left to right.

These rules are illustrated in the previous example. The rules also tell us that the computer,
faced with A - B - C, will (as usual) subtract B from A and then C from their difference; faced
with A/B/C, it will divide A by B and that quotient by C. Given A4 B4 C, the computer follows
the usual mathematical convention and calculates ABC, If there is any question in your mind
about the priority, put in more parentheses to eliminate possible ambiguities.

In addition to these five arithmetic operations, the computer can evaluate several mathematical
functions. These functions are given special three-letter English names, as the following list
shows:

Functions Interpretation

SIN (X) Find the sine of X)
X interpreted as
COs (X) Find the cosine of X a number, or as
/ an angle measured
TAN (X) Find the tangent of X in radians
COT (X) Find the cotangent of X
ATN (X) Find the arctangent of X
EXP (X) Find e
LOG (X) Find the natural logarithm of X (1n X)
ABS (X) Find the absolute value of X (1X1)
SQR (X) Find the square root of X (vX)

Two special functions, NUM and DET, are explained under Matrices in Section 3. Three other
mathematical functions are alsu available in BASIC: INT, SGN, and RND. These are explained
under Functions in Section 3. In place of X, we may substitute any formula or any number in
parentheses following any of these formulas. For example, we may ask the computer to find
J4 + X3 by writing SQR (4 + X 4 3), or the arctangent of 3X - 2eX + 8 by writing ATN
(3*X-2*EXP(X) + 8).

If, sitting at the terminal, you need the value of (g) 17, you can run the two-line program

Since we have mentioned numbers and variables, we should be sure that we understand how to
write numbers for the computer and what variables are allowed.

Numbers

A number may be positive or negative and it may contain up to nine digits, but it must be ex-
pressed in decimal form. For example, all of the following are numbers in BASIC: 2,-3.675,
123456789, -.987654321, and 483.4156. The following are not numbers in BASIC: 14/3, J/T7,
and .00123456789. The first two are formulas but not numbers, and the last one has more than
nine digits. We may ask the computer to find the value of 14/3 or </7 and to do something with
the resulting number, but we may not include either in a list of DATA.

We gain further flexibility by use of the letter E, which stands for 'times ten to the power."
Thus, we may write .00123456789 in a form acceptable to the computer in any of several forms:
.123456789E-2 or 123456789E-11 or 1234.56789E-6. We may write ten million as 1E7 and

1965 as 1.965E3. We do not write E7 as a number but must write 1E7 to indicate that it is 1
that is multiplied by 107. Numbers cannot be larger than 1.70141E38 or smaller than 1.49637E-
39.

When entering a series of numbers, separate them by commas. The comma following the last
number is optional.

Variables

A variable in BASIC is denoted by any letter, or by any letter followed by a single digit. Thus,
the computer will interpret E7 as a variable, along with A, X, N5, I0, and 1. A variable in
BASIC stands for a number, usually one that is not known to the programmer at the time the
program was written. Variables are given or assigned by F@R, LET, READ, or INPUT state-
ments. The value assigned will not change until the next time a FGR, LET, READ, or INPUT
statement is encountered with a value for that variable.

Note that since all variables are set to zero before a RUN, it is necessary to assign a value to
a variable only when you do not want it to be zero.

Relational Symbols

Six mathematical symbols are provided for in BASIC. These are symbols of relation used in
IF-THEN statements where it is necessary to compare values. An example of the use of these
relation symbols was given in the sample program in Section 1. Any of the following six
standard relations may be used:

Symbol Example Meaning

= A=B Is equal to (A is equal to B)

< A<B Is less than (A is less than B)
<= A<=B Is less than or gqual to

(A is less than or equal to B)
> A>B Is greater than (A is greater than B)

>= A>=B Is greater than or equal to
(A is greater than or equal to B)

<> A<>B Is not equal to (A is not equal to B)

Loops

We are frequently interested in writing a program in which one or more parts are done not just
once but a number of times, perhaps with slight changes each time. In order to write the
simplest program, the one in which the part to be repeated is written just once, we use the
programming device known as a loop.

Programs which use loops can be illustrated and explained by two programs for the simple task
of printing out a table of the first 100 positive integers together with the square root of each.
Without a loop, our program would be 101 lines long and read

With the following program, using one type of loop, we can obtain the same table with far fewer
lines of instruction, 5 instead of 101,

Statement 10 gives the value of 1 to X and "initializes" the loop. In Line 20 is printed both 1
and its square root. Then, in Line 30, X is increased by 1, to 2. Line 40 asks whether X is
less than or equal to 100; an affirmative answer directs the computer back to Line 20. Here it
prints 2 and /2, and goes to 30. Again X is increased by 1, this time to 3, and at 40 it goes
back to 20. This process is repeated--Line 20 (print 3 and ~/3), Line 30 (X = 4), Line 40 (since
4 =100 go back to line 20), etc.--until the loop has been traversed 100 times. Then, after it
has printed 100 and its square root has been printed, X becomes 101. The computer now
receives a negative answer to the question in Line 40 (X is greater than 100, not less than or
equal to it), does not return to 20 but moves on to Line 50, and ends the program. All loops
contain four characteristics: initialization (Line 10), the body (Line 20), modification (Line 30),
and an exit test (Line 40).

Because loops are so important and because loops of the type just illustrated arise so often,
BASIC provides two statements to specify a loop even more simply. They are the F@R and
NEXT statements, and their use is illustrated in the program,

In Line 10, X is set equal to 1, and a test is set up, like that of Line 40 above. Line 30 carries
out two tasks: X is increased by 1, and the test is carried out to determine whether to go back
to 20 or go on. Thus Lines 10 and 30 take the place of Lines 10, 30, and 40 in the previous
program--and they are easier to use.

Note that the value of X is increased by 1 each time we go through the loop. If we wanted a
different increase, say 5, we could specify it by writing

and the computer would assign 1 to X on the first time through the loop, 6 to X on the second
time through, 11 on the third time, and 96 on the last time. Another step of 5 would take X
beyond 100, so the program would proceed to the end after printing 96 and its square root. The
STEP may be positive or negativ. 'nd we could have obtained the first table, printed in reverse
order, by writing line 10 as

In the absence of a STEP instruction, a step size of +1 is assumed.

More complicated F@R statements are allowed. The initial value, the final val e, and the step
size may all be formulas of any complexity. For example, if N and Z have been 3pecified
earlier in the program, we could write

F@GR X = N + 7*Z T@ (Z-N) / 3 STEP (N-4*Z) / 10
For a positive step-size, the loop continues as long as the control variable is less than or

equal to the final value. For a negative step-size, the loop continues as long as the control
variable is greater than or equal to the final value.

If the initial value is greater than the final value (less than for negative step-size), then the
body of the loop will not be performed at all, but the computer will immediately pass to the
statement following the NEXT. As an example, the following program for adding up the first n
integers will give the correct result 0 when n is 0.

It is often useful to have loops within loops. These are called nested loops and can be expressed
with F@R and NEXT statements. However, they must actually be nested and must not cross, as
the following skeleton examples illustrate:

Allowed Allowed

—— F@R X F@R X

— F@GR Y — FQRY

L— NEXTY F@R Z
NEXT X |:-NEXT Z

‘Not Allowed FOR W
— FOR X l: NEXT W
FGR Y —— NEXT Y

—— NEXT X l: FQR Z
NEXT Y Nt 2

10

Lists and Tables

In addition to the ordinary variables used by BASIC, there are variables which can be used to
designate the elements of a list or of a table. These are used where we might ordinarily use a
subscript or a double subscript, for example the coefficients of a polynomial (ag, a1, a2, ...)
or the elements of a matrix (bj, j). The variables which we use in BASIC consist of a single
letter, which we call the name of the list, followed by the subscripts in parentheses. Thus, we
might write A(1), A(2), etc., for the coefficients of the polynomial and B(1, 1), B(1, 2), etc., for
the elements of the matrix.

We can enter the list A(0), ...A(10) into a program very simply by the lines

We need no special instruction to the computer if no subscript greater than 10 occurs. How-
ever, if we want larger subscripts, we must use a dimension (DIM) statement, to indicate to
the computer that it has to save extra space extra space for the list or table. When in doubt,
indicate a larger dimension than you expect to use. For example, if we want a list of 15
numbers entered, we might write

Statements 20 and 60 could have been eliminated by writing 30 as FGR I= 1 T@ 15, but the form
as typed would allow for the lengthening of the list by changing only Statement 60, so long as it
did not exceed 25.

We would enter a 3x5 table into a program by writing

11

Here again, we may enter a table with no dimension statement, and it will handle all the entries
from B(0, 0) to B(10,10). If you try to enter a table with a subscript greater than 10, without a
DIM statement, you will get an error message telling you that you have a subscript error. This
is easily rectified by entering the line

if for instance, we need a 20 by 30 table.

The single letter denoting a list or a table name may also be used to denote a simple variable
without confusion. However, the same letter may not be used to denote both a list and a table in
the same program. The form of the subscript is quite flexible, and you might have the list item
B(I + K) or the table items B(I,K) or Q(A(3,7), B - C).

The sample program which follows illustrates a LIST and RUN of a problem which uses both a
list and a table. The program computes the total sales of each of five salesmen, all of whom
sell the same three products. The list P gives the price/item of the three products, and the
table S shows the quantity of each item sold by each man. You can see from the program that
product number 1 sells for $1.25, number 2 for $4.30, and number 3 for $2. 50 per item; and
also that salesman number 1 sold 40 items of the first product, 10 of the second, and 35 of the
third, and so on. The program reads in the price list in Lines 10, 20, 30, using data in Line
900, and the sales table in Lines 40-80, using data in Lines 910-930. The same program could
be used again, modifying only Line 900 if the prices change, and only Lines 910-930 to enter
the sales in another month. '

This sample program did not need a dimension statement since the computer automatically saves
enough space to allow all subscripts to run from 0 to 10. A DIM statement is normally used to
save more space, but in a long program, requiring many small tables, DIM may be used to save
less space for tables in order to leave more for the program.

Since a DIM statement is not executed, it may be entered into the program on any line before
END; it is convenient, however, to place DIM statements near the beginning of the program.

12

Errors and Debugging

It may occasionally happen that the first run of a new problem will be free of errors and give
the correct answers. But it is much more common that errors will be present and will have to
be corrected. Errors are of two types: errors of form (or grammatical errors) which prevent
the running of the program; and logical errors in the program which cause the computer to
produce wrong answers or no answers at all.

Errors of form will cause error messages to be printed, and the various types of error
messages are listed and explained in Appendix A. Logical errors are often much harder to
uncover, particularly when the program gives answers which seem to be nearly correct. In
either case, after the errors are discovered, they can be corrected by changing lines, by in-
serting new lines, or by deleting lines from the program. As indicated in the last section, a
line is changed by typing it correctly with the same line number; a line is inserted by typing it
with a line number between those of two existing lines; and a line is deleted by typing its line
number and pressing the Return key. Notice that you can insert a line only if the original line
numbers are not consecutive integers. For this reason, most programmers will start out
using line numbers that are multiples of five or ten, but that is a matter of choice.

These corrections can be made at any time--whenever you notice them--either before or after
a run. Since the computer sorts lines out and arranges them in order, a line may be retyped
out of sequence. Simply retype the incorrect line with its original line number.

Although the computer does little in the way of "correcting'' during computation, it will some-
times help you when you forget to indicate absolute value. For example, if you ask for the
square root of -7 or the logarithm of -5, the computer will give you the square root of 7 with
the error message that you have asked for the square root of a negative number, or the
logarithm of 5 with the error message that you have asked for the logarithm of a negative
number.

As with most problems in computing, we can best illustrate the process of finding the errors
(or bugs) in a program, and correcting (or debugging) it, by an example. Let us consider the
problem of finding the value of X between 0 and 3 for which the sine of X is a maximum, and
ask the system to print out this value of X and the value of its sine. If you have studied
trigonometry, you know that m/2 is the correct value; but we shall use the system to test suc-
cessive values of X from 0 to 3, first using intervals of .1, then of .01, and finally of .001.
Thus, we shall ask the system to find the sine of 0, of .1, of .2, of .3, of 2.8, of 2.9,
and of 3, and to determine which of these 31 values is the largest. It will do it by testing SIN
(0) and SIN (.1) to see which is larger, and calling the larger of these two numbers M. Then
it will pick the larger of M and SIN (.2) and call it M. This number will be checked against
SIN (.3) and so on down the line. Each time a larger value of M is found, the value of X is
"remembered' in X0. When it finishes, M will have been assigned to the largest of the 31
sines, and X0 will be the argument that produced that largest value. It will then repeat the
search, this time checking the 301 numbers 0, .01, .02, .03, ..., 2.98, 2.99, and 3, finding
the sine of each and checking to see which sine is the largest. Lastly, it will check the 3001

13

numbers 0, .001, .002, .003,, 2.998, 2.999, and 3, to find which has the largest sine.
At the end of each of these three searches, we want the computer to print three numbers: the
value X0 which has the largest sine, the sine of that number, and the interval of search.

Before going to the terminal, we write a program and let us assume that it is the following:

We shall list the entire sequence on the terminal and make explanatory comments on the right
side.

Notice the use of the backwards arrow
(on some terminals, an underline) to
erase a character in Line 40, which
should have started IF SIN(X) etc., and
in Line 80.

After typing Line 90, we notice that LET
was mistyped in Line 20, so we retype it,
this time correctly.

After receiving the first error message,
we inspect Line 70 and find that we used
X@ for a variable instead of X0. The
next two error messages relate to lines
30 and 80, where we see that we mixed
variables. This is corrected by changing
Line 80.

NOTE: The use of the word "LET" is assignment statements is optional. Line 20 could also
be written X0=0.

14

We make both of these changes by retyping
Lines 70 and 80. In looking over the pro-
gram, we also notice that the IF-THEN
statement in 40 directed the computer to

a DATA statement and not to Line 80

h it should

This is obviously incorrect. We are
having every value of X printed, so we
direct the machine to cease operations by
pressing the break key, even while it is
running. We ponder the program for a
while, trying to figure out what is wrong
with it. We notice that SIN(0) is com-
pared with M on the first time through
the loop, but we had assigned a value to
X0 but not to M. However we recall that
all variables are set equal to zero before
a RUN so that line 20 is unnecessary.

Of course, Line 90 sent us back to Line
20 to repeat the operation and not back to
Line 10 to pick up a new value for D.

We are about to print out the same table
as before. It is printing out X0, the

current value of X, and the interval size
each time that it goes through the loo

We fix this by moving the PRINT state-
ment outside the loop. Typing 70 deletes
that line, and line 85 is outside of the
loop. We also realize that we want M
printed and not X. We also decide to put
in headings for our columns by a PRINT
statement.

There is an error in our PRINT state-
ment: no left quotation mark for the third
item

Retype Line 5, with all of the required
quotation marks.

Exactly the desired results. Of the 31
numbers (0, .1, .2, .3, ..., 2.8, 2.9,
3), it is 1.6 which has the largest sine,
namely .999574. Similarly for the finer
subdivisions.

15

Having changed so many parts of the
program, we ask for the corrected pro-

The program is saved for later use. This
should not be done unless future use is
necessary.

In solving this problem, there are two common devices which we did not use. One is the in-
sertion of a PRINT statement when we wonder if the machine is computing what we think we
asked it to compute. For example, if we wondered about M, we could have inserted 65
PRINT M, and we would have seen the values. The other device is used after several correc-
tions have been made and you are not sure just what the program looks like at this stage - in
this case type LIST, and the computer will type out the program in its current form for you to
inspect.

Summary of Elementary Basic Statements

In this section we shall give a short and concise description of each of the types of BASIC state-
ments discussed earlier in this section. In each form, we shall assume a line number, and
shall use underlining to denote a general type. Thus, variable refers to a variable, which is a
single latter, possibly followed by a single digit.

LET Statement

The LET statement is referred to as a replacement or assignment statement. It has the form

Constant
LET variable = {Variable
Arithmetic Expression

Examples

The expression on the right of the equals sign is evaluated, and the result is stored as the value
of the variable on the left of the equals sign.

Multiple assignments may be made with the LET statement. For example,

16

The word "LET" is optional in both the simple assignment and multiple assignment statements.
LET statements may be of the form

Constant
Variable = Variable
Expression

For example, X = (A=3) * (B=4)

READ and DATA Statement

We use a READ statement to assign to the listed variables values obtained from a DATA state-
ment. Neither statement is used without one of the other type. A READ statement causes the
variables listed in it to be given, in order, the next available numbers in the collection of DATA
statements. Before the program is run, the system takes all of the DATA statements in the order
in which they appear and creates a data block. Each time a READ statement is encountered any-
where in the program, the data block supplies the next available number or numbers. If the data
block runs out of data, with a READ statement still asking for more, the program is assumed

to be done and we get an GUT @F DATA message.

Since we have to read in data before we can work with it, READ statements normally occur near
the beginning of a program. The location of DATA statements is arbitrary, as long as they oc-
cur in the correct order. A common practice is to collect all DATA statements and place them
just before the end statement.

Each READ statement is of the form: READ sequence of variables and each DATA statement of
the form: DATA sequence of numbers

Examples:

150 READ X, Y, Z, X1, Y2, Q9
330 DATA 4, 2, 1.7
340 DATA 6.734E-3, -174.321, 3.14159265

234 READ B (K) W ¢
263 DATA 2, 3, 5, 17, 9, 11, 10, 8, 6, 4 T

10 READ R (I, J) T
440 DATA -3, 5, -9, 2.37, 2.9876, -437.234E-5 :
450 DATA 2.765, 5.5576, 2.3789E2

- “v.

When entering numeric values, remember that only numbers are put in a DATA statement and
that 15/7 and V3 are expressions, not numbers. AR e e e

PRINT Statement

The PRINT statement has a number of different uses and is discussed in more detail in Section
3. The common uses are

To print out the result of some computations

To print out verbatim a message included in the program
To perform a combination of a and b

To skip a line

poop

We have seen examples of only the first two in our sample programs. Each type is slightly
different in form, but all start with PRINT after the line number.

17

Examples of type a:

The first will print X and then, a few spaces to the right of that number, its square root. The
second will print five different numbers: X, Y, Z, B2 - 4AC, and eA-B, The system will com-
pute the two formulas and print them for you, as long as you have already given values to A, B,
C. It can print up to five numbers per line in this format.

Examples of type b:

Both have been encountered in the sample programs. The first prints that simple statement; the
second prints the three labels with spaces between them. The labels in 430 automatically line
up with three numbers called for in a PRINT statement - as seen in MAXSIN.

Examples of type c:

If the first has computed the value of X to be 3, the system will print out: THE VALUE @F X
IS 3. If the second has computed the value of X to be 625, the system will print out: THE
SQUARE RQ@T @F 625 IS 25.

Example of type d:

The system will advance the paper one lirie when it encounters this command.

G@ TQ Statement

There are times in a program when you do not want all commands executed in the order that
they appear in the program. An example of this occurs in the MAXSIN problem where the
system has computed X0, M, and D and printed them out in Line 85. We did not want the pro-
gram to go on to the END statement yet, but to go through the same process for a different
value of D. So we directed the system to go back to Line 10 with a G@ T@ statement. Each is
of the form G@ T line number.

Example:

18

IF—THEN or IF—G@ T Statement

There are times that we are interested in jumping the normal sequence of commands if a cer-
tain relationship holds. For this we use an IF--THEN statement, sometimes called a conditional

G@ TQ statement. Such a statement occurred at Line 40 of MAXSIN. Each such statement is
of the form

IF formula relation formula THEN line number or IF formula relation formula GO T®
line number

Examples:

Line 40 asks if the sine of X is less than or equal to M, and directs the system to skip to Line
80 if it is. Line 20 asks if G is equal to 0, and directs the system to skip to Line 65 if it is. In
each case, if the answer to the question is '"N@", the system will go to the next line of the
program. .

F@R and NEXT Statement

We already have encountered the F@R and NEXT statements in our loops and have seen that they
go together, one at the entrance to the loop and one at the exit, directing the system back to the
entrance again. Every F@R statement is of the form

F@R variable = formula T@ formula STEP formula

Most commonly, the formulas will be integers and the STEP omitted. In the latter case, a step
size of one is assumed. The accompanying NEXT statement is simple in form, but the variable
must be precisely the same one as that following F@R in the F@R statement. Its form is NEXT
variable. The variable following the word "F@R'" is called the index.

Examples:

Notice that the step size may be a formula (1/4), a negative number (-1), or a positive number
(2). In j:he example with Lines 120 and 235, the successive values of X4 will be . 25 apart, in
increasing order. In the next example, the successive values of X will be 8, 7,6,5 4,3. In

ghe ladstlilaxample, on successive trips through the loop, J will take on values -3, -1, 1, 3, 5, 1,
, an .

If the initial, final, or step-size values are given as formulas, these formulas are evaluated

only once, upon entering the F@R statement. The index variable can be changed in the body of
the loop; the exit test always uses the latest value of this variable.

19

If you write 50 F@R Z = 2 TQ -2 without a negative step size, the body of the loop will not be
performed, and the system will proceed to the statement immediately following the correspond-
ing NEXT statement. If you write 50 FOR Z = 1 T@ 1 without a step size, the body of the loop
will be executed once.

BASIC does not check for a step size of zero. It is possible to set up a loop with a step size
that at some time may become zero, and the result will be looping without end. If the step size
might give you problems in any program, include a test that will cause an exit from the loop on
finding a zero step size. For this and other reasons, manipulating the value of the index in the
body of the loop is not recommended.

In the sequence of program statements which follow, the loop with the index J is said to be
"nested' within the loop with the index I:

Nesting to a depth greater than 20 is not allowed.

DIM Statement

Whenever we want to enter a list or a table with a subscript greater than 10, we must use a
DIM statement to instruct the system to save us sufficient room for the list or the table.

Examples:

The first would enable us to enter a list of 35 items and the second a table 5 by 25.

END Statement

Every program must have an END statement, and it must be the statement with the highest
line number in the program. Its form is simple: a line number with END.

Example:

20

Section 3. ADVANCED BASIC

More About the PRINT Statement

The uses of the PRINT statement were described in Section 2, but we shall give more detail
here. Although the format of answers is automatically supplied for the beginner, the PRINT
statement permits a greater flexibility for the more advanced programmer who wishes a dif-
ferent format for his output.

The terminal line is divided into five zones of fifteen spaces each. Some control of these
comes from the use of the comma. A comma is a signal to move to the next print zone or if the
fifth print zone has just been filled, to move to the first print zone of the next line.

A closer grouping of numbers can be obtained by use of the semicolon. Numbers printed next
to each other by use of the semicolon will be in closest readable format. For example, if you
were to write the program

the terminal would print 1 at the beginning of a line, 2 at the beginning of the next line, and so
on, finally printing 15 on the fifteenth line. But, by changing Line 20 to read

you would have the numbers printed in the five print zones, reading

If you wanted the numbers printed in this fashion but more tightly packed, you would change line
20, replacing the comma with a semicolon.

The result would be printed

You should remember that a label inside quotation marks is printed just as it appears and also
that the end of a PRINT line signals a new line, unless a comma or semicolon is the last
symbol. When a label is followed by a semicolon, the label is printed with no space after it.

Thus, the instruction

21

will result in the printing of two numbers and the return to the next line, while

will result in the printing of these two values and no return—the next number to be printed will
occur in the third zone, after the values of X and Y in the first two.

Since the end of a PRINT statement signals a new line,

will cause the terminal to advance the paper one line. It puts a blank line in your output if you
want to use it for vertical spacing of your results, or it causes the completion of a partially
filled line, as illustrated in the following sequence of program statements:

This program will print B(1,1) B(1,2)...B(1,M) on one line if there is sufficient space. With-
out Line 140, the terminal would then go on printing B(2,1), B(2,2)...B(2,M) on the same line,
and even B(3,1), B(3,2), etc., if there were room. Line 140 directs the terminal after printing
B(1,1), B(1,2),...the values corresponding to I = 1, to start a new line and to do the same
thing after printing the values corresponding to I = 2, etc.

The following rules for the printing of numbers will help you in interpreting your printed
results:

1. If a number is an integer, the decimal point is not printed. If the integer contains
more than nine digits, the terminal will give you the first digit, followed by (a) a
decimal point, (b) the next five digits, and (c) write E followed by appropriate integer.
For example, it will write 32, 437, 580, 259 as 3.24376 E 10.

2. For any decimal number, no more than six significant digits are printed.

3. For a number less than 0.1, the E notation is used unless the entire significant part
of the number can be printed as a six-decimal number. Thus, .03456 means that the
number is exactly .0345600000, while 3.45600 E - 2 means that the number has been
rounded to .0345600.

4. Trailing zeros after the decimal point are not printed.
The following program, in which we print out the first 45 powers of 2, shows how numbers are
printed. The semicolon ""packed" form sometimes causes the last few characters in a number

to be printed on top of one another. BASIC checks to see if there are 12 or more spaces at the
end of a line before printing a number there, but some numbers require 15 spaces.

22

If you are using a wide carriage terminal (more than 75 characters per line) and wish to print
more than 75 characters per line, you should use the MARGIN statement in the following manner

line number MARGIN # file designator, margin value

or

line number MARGIN # file designator: margin value

When the system receives a margin value of 0, the margin at the terminal is assumed to be
infinite.

The TAB Function

The TAB (TABULATE) function permits you to specify tabulated formatting. For example, TAB
(17) would cause the teletypewriter to move to column 17. Positions on a line are numbered
0 through 74; 75 is assumed to be position 0 again.

TAB may contain any formula as its argument and may be the first argument after PRINT. The
value of the formula is computed, and its integer part is taken. This in turn is treated modulo
75, provided there is no preceding MARGIN command, to obtain a value 0 through 74. The
teletypewriter is then moved to this position. If it already has passed this position, the TAB is
ignored. For example, inserting the following line in a loop:

causes the X-values to start in column 0, the Y-values to start in column 12, and the Z-values
in column 27.

Combined with appropriate use of the MARGIN command, you may TAB up to 158 characters. If
all of the digits in a number and one additional blank cannot be printed on one line, the entire
number will be printed on the next line starting in column 0.

23

Formatted Output

PRINT USING and Image Statements

The PRINT USING and image statements provide formatted line output of up to 158 characters
per line, not including carriage return and line feed, without using the MARGIN statement.

The PRINT USING statement is in one of the following forms:

PRINT USING line number, output list

or

PRINT USING string variable, output list

In the first form the line number is that of the image statement to be used in formatting the
output line. In the second form, the image statement is a character string stored in the desig-
nated string variable.

The output list consists of elements to be placed in the output line. The elements may be
numbers, expressions, string constants, string variables, or functions.

Punctuation (delimiter) between elements in the list may be either commas or semicolons.

Each PRINT USING statement begins in the first field in the referenced image statement, even
if a previous list has not used all fields in that image statement; it also starts a new line of
output. If there are more data elements than replacement fields, the image is reused, starting
with the first replacement field, on a new line.

The form of the image statement is

line number: line image

where the line number is that in a PRINT USING statement, and the line image consists of for-
mat control characters and printable constants.

An image statement may be assigned to a string variable in the following way:

LET string variable="1line image"

Format control characters are

’ (Apostrophe) a one-character field that is filled with the first character of an alpha-
numeric string regardless of the string length.

E A continuation character which must be preceded by the apostrophe, for example,
'EEE...E. This specifies left justification of the data within the field if the data
does not fill the field, and field widening to the right if the data overflows the field.

L A continuation character which must be preceded by the apostrophe, for example,

'LLL...L. This specifies left justification of the data within the field. If the output
element overflows the field, the field is not widened and the element is truncated on
the right. P

R A continuation character which must be preceded by the apostrophe, for example,
RRR...R. This specifies right justification of the output element within the field.
If the element overflows the field, it is truncated on the right.

24

C A continuation character which must be preceded by the apostrophe, for example,
'CCC...C. This specifies centering the output element within the field. If the
element overflows the field, it is truncated on the right.

(Pound sign) the replacement field for a numeric character.
MM (Four up-arrows) scientific notation for a decimal field.

$ (Dollar sign) the replacement field for a dollar sign. When placed at the beginning
of a decimal or integer field, it causes a dollar sign to be printed to the left of the
numeric data in that position.

All other characters are treated as printable constants.

The image consists of one or more replacement fields. Together these form a pictorial layout
of the line to be printed. Every data element in the output list replaces a replacement field in
the image statement.

There are six types of fields:

Integer fields
Decimal fields
Exponential fields
Dollar sign fields
Alphanumeric fields
Literal fields

Integer Fields
The following rules apply to integer fields
¢ An integer field is composed of pound signs (#).

® If the number overflows the field, an asterisk is printed and the field is widened to
the right.

® Numbers in an integer field are right-justified and truncated if not integers.

® Any number equal to or greater than 2427 is converted according to the format
A

® The sign of the number is included in the field width.

Example:

Example of image statement assigned to string variable:

Decimal Fields

The following rules apply to decimal fields:

A decimal field is a string of pound signs (#) with a decimal point either preceding,
embedded, or terminating.

The number will be rounded and truncated to the number of places specified by the

ame—

pound signs following the decimal point.

The number is right-justified, and the decimal point is placed as specified in the
field definition.

When the number overflows the field, an asterisk is printed in the leftmost field
position, and the field is widened to the right.

Eight digit accuracy is<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>