
KNOTTED LIST STRUCTURES

Computer Organization Unit
General Electric Computer Laboratory

Sunnyvale, California
January, 1962

By

J. Weizenbaum
R. Shepardson
B. Hellerstein
D. Masters

TABLE OF CONTENTS

SECTION 1 Introduction

SECTION 2 Instructions

SECTION 3 Programming System

SECTION 4 Sample Problem

INTRODUCTION

1.0

This paper describes a list processing language called the KNOTTED LIST

STRUCTURE system (KLS). In this day of the prolification of computer languages

it is in order to say a few words relating to the motivation underlying the

design and construction of yet another language. Most importantly, the design of

KLS was undertaken not so much in an attempt to create a list language superior

to existing languages, but rather as an effort to gain insight into the hard-

ware software relationships list languages in general might bring to light. The

fundamental question which ought ultimatly to be answered by efforts of this

nature relates therefore to efforts to design computer organizations which may be

very effective vehicles for list processing. At the moment, of course, all list

processing systems exist, as does the KLS system, merely as compiled macro systems

or as interpretive systems, in other words, as programming systems imposed on

otherwise "orthodox" computers. The fact that there exist a class of problems

which are currently being solved only by list processing systems of one form or

another, even though these systems impose serious penalties in computer running

time, certainly suggests that one day a computer may be designed which ~ll be

particularly effective ,for that class of problems or for subproblems of "ordinary"

problems which fall into that class. The basic motivation mentioned seems there

fore to be realistic.

What distinguishes list processing from "ordinary" processing? The main

distinction lies in a redefinition of the successor,'relationship which is funda

mental to the random access memory machines known today. In such machines a

datum found in a particular memory cell, say cell alpha,'has its successor stored

in the "next" cell, namely alpha + one. Many of ' the operational characteristics

of ordinary computers are derived from this single fact. Furthermore, a vast

inventory of programming techniques is built on it. In particular a premium is

placed on the orderly placement of data within the core memory. A consequence of

this is that data which in its natural environment has a complex structure (as

opposed to, say, matrices which have a very orderly natural structure) must

nevertheless be fitted into memory in a very "regular" way. The natural complexity

of the data structure must therefore be reflected in the programs which manipulate

these data. This gives rise to programs which are very complicated not so much

because of what they must "do to" data, but because of the "decoding" they must

do on the structural properties of the data themselves. List processing introduces

a different successor relationship. In list processing each symb~l is accompanied

Ll

by an ancillary datum which serves as a pointer to its successor. This pointer is

called a LINK. In addition, each symbol carries with it an identifying tag (called

the SUFFIX) which, among other things, makes it possible for the symbol itself to

be identified as a pointer to some other datum. List processing systems have been

proposed in which each symbol carries with it a number of links, thus making

possible elaborate cross referencing. The KLS system provides for only one link

with each symbol. It is readily apparent that a link is simply an address of a cell

in memory.

An objection frequently voiced by people when they are first exposed to a

list processing system is that links waste memory space. The issue is really

whether or not links are economic carriers of useful information. When data to

be stored is naturally highly sequential (e.g. ordinary matrices with few null

elements), links can contribute very little. But, where the important point about

data is that they are interrelated in a complex way and, often even more important,

that processing causes them to be reorganized dynamically, particularly where

reorganization itself constitutes part of the solution of the problem, there links

contain information which would otherwise have to be contained in program.

Experience with list processing programs reveals this point to be of vital importance.

A LIST is a sequence of list cells linked to one another by link addresses.

Every list has one member which has the property that the link address of no other

cell in the system is pointing to it. This list cell is called the TOP of the list.

Every list also has a terminal member, i.e. a list cell whose link address is not

pointing to any other member of the list. This cell is called the LIST TRAILER and

has a distinct format reflecting its special function. The list cell whose link

address is pointing to the trailer is called the BOTTOM of the list. The address of

the trailer is the NAME of the list.

Names of lists are single symbols and are handled as such. This means that

data structures (of arbitrary lengths and complexities) are capable of being treated

as single symbols when appropriate.

When a lis t is trans ferred from core to bulk storage (e. g. drum) .the trail er

stays in core. It is marked such that its list can be retrieved from bulk storage

whenever required. Although the body of the list is returned to an entirely new

set of disjoint registers, the name of the list does not change.

A SIMPLE LIST consists of a sequence of list cells none of the symbols of which

are names of lists and one of which is a trailer (Figure 2). An 7mpty list is a

simple list consisting of only a trailer (Figure 1). Any list may be a sublist of

1.2

another list, i. e. its name may appear (with suitable suffix) on a list. Sublists

may in turn have sublists and so on. A complex consisting of a list together with

all its sublists, the sublists of its sublists, etc., is called a LIST STRUCTURE

(Figure 3).

In the KLS system a list cell consists of three parts: the ID suffix, the

function of which is to identify the function of the cell; the link portion L,

which serves to determine the successor relationship of the cell to another; and the

symbol portion S which stores symbols. In addition, there are three other types of

cells with distinct formats. These are:

1. Two types of trailers

a) Trailers for lists which have description lists

b) Trailers for lists which do not have description lists

2. Readers

The following table identifies each type of cell which may occur in the system:

Suffix
o
I

2

3

4

5

6

7

8

9

10

11

12

Mnemonic
R

DLIST

LIST

AN

DI

BI

BFL

RO

RM

A

Suffix Table

TABLE I

1.3

~
Reader

Description Trailer

Non-description trailer

Alphanumeric

Machine detectable alphanumeric
del1meter

Decimal number

Binary fixed point number

Floating point binarY'number

Occurrence of a list name

Mention of a list name

Address of list cell

Command

Address of reader

A trailer consists of four parts: the suffix P, the address of the top of

its list (i.e. the list of which it is the trailer), the address of the bottom

of its list, and a reference counter. The function of the last will be defined

below. The address fields of the trailer of an empty list both contain the address

of the trailer itself. The suffix of a trailer may have one of two values. One of

these indicates that the list named by the trailer is non-empty and that the S portion

of the top cell of the list is the name of a special list called the DESCRIPTION

SUBLlST of the subject list. The other value of P signifies that the top cell of

the list is an ordinary list cell, possibly the trailer itself.

There exists with the system a special kind of list called a DESCRIPTION LIST.

What distinguishes this list from other lists is that it is thought of as having

a special format. In fact, any list maybe treated as a description list, i.e. may

be subjected to operations which assume that list to have the description list

format. The TOP cell of a non-empty descrition list is called an ATTRIBUTE, the
\

next cell the VALUE of that attribute, the next cell another attribute, and so on.

There are operations which, for example, will search such a list for an attribute

and produce the value of that attribute as an output. That value may, of course,

be the name of a list structure, a number, or any other kind of datum.

Certain lists are said to be DESCRIBED, i.e. to have a description list

associated with them. A described list is one the TOP cell of which contains the

name of a list which can be retrieved on the basis of conunands which address them

selves to certain description list processes (e.g. IDL: Input the name of the

description list of the list referenced by the address portion of this conunand).

Any reference to the TOP cell of such a list in non-description list context is a

reference to the cell linked to that containing the name of the description list.

The programmer need exercise no special precautions in this regard because the

trailers of described lists are so marked that the system automatically handles any

special problems which may arise in this connection.

Lists and list structures exist as entities in memory. Their content becomes

available to other parts of the machine bya mechanism call list reading. There

exists a piece of machinery called a READER. A reader is a list cell which contains

the follOwing pieces of information:

1. It suffix identifying it as a reader

2. An address called the CURRENT POINTER (CP)

3. An address field containing the address of the trailer for which
this cell is currently serving as a reader (N)

4. An address field Which, when not empty, contains the name of a list
called the controillst (CL) of that reader.

1.4

A reader is said to be empty or cleared when its CP, Nand CL fields are zero.

It is in its initial state when its CP field is the same as its N field and

neither are empty. There is no restriction on the number of readers in which the

name of a given list may appear.

There exist operations whose functions are to advance the CP within any given

reader and to cause a certain datum to be deposited in working registers accessable

to the programmer. These READ operations make possible the traversal of list

structures. The general philosophy underlying reading is that the CP is to be

advanced such that it pOints to one after the other of the list cells of a list

structure. When the name of a sublist is encountered as an occurrence, that

sublist should either be turned down on, or tbemain list should be pursued at the

programmer's option. In any event, after one of these operations has been partially

executed, it remains to be determined what datum is to be deposited in a working

register. In general, this datum will consist either of the information pointed to

by CP after the advance, or some information pointed to by that information, however

indirectly. The content of a CP advance command is therefore:

1. An operation code signifying the advance CP operation per _~, 1. e.
distinguishing it from other operations.

2. A "mode" indicator which can take either the value "linear" or
"structure". The first of these indicates that any sublist encountered
is not to be turned down on as a consequence of this operation, the
the-second that any sublist so encountered is to be turned down on.

3. A "target" indicator which determines on what kind
to stop. The CP continues to advance until either
indicated type is found (within the constraints of
or the end of the list (in the linear mode) or the
strucutre (in the structure mode) is encountered.
which can be specified are:

of symbol the CP is
a symbol of the
the indicated mode)
end of the list
The types of targets

a) "Word"~ the next symbol encountered is the target, whatever its
type (other than trailer).

b) "Element", the next symbol which is not an occurrence of the name
of a sub list (nor of a trailer) is the target.

c) "Name", the next symbol which is an occurrence of the name of a
sub list is the target.

d) "Mention", the next symbol which is an occurrence of the mention of
a list is the target.

e) "Occurrence", the next symbol which is an occurrence of the
occurrence of a sub list name is the target.

f) "Element or Mention", the next symbol which is the occurrence of
either a mention of a list name or an element is th~ target.

1.5

The distinctions among "NAME", "OCCURRENCE", and "MENTION" are the following:

The NAME of a list, as has already been pointed out, is the address of its

trailer. NAME is therefore a general term which serves as a token for the whole

list (or list structure) named. If a list L-O is to be a sublist of another list

L-l, then the name of the list L-O will appear on the list L-l in the form of a

symbol encoded (i.e. with an identifying suffix) as an OCCURRENCE. If, on the

other hand, the list L-O is simply a single datum (no matter how lenthy or

complex) on, but not part of the structure of, the list L-l, then its name will

appear on the list L-I in the form of a symbol encoded as a MENTION. The

operational significance of this will become clear when the READ instructions are

described.

With the machinery so far describe~ it is possible to traverse a list up to

the first encounter of a sublist, traverse that sublist until a sublist of it is

encountered, turn down it, and so on until finally a trailer is reached. The

mechanism for going back up the list structure is the control iist. The control

list (CL) whose name appears in the reader is a push down list. Whenever a

sublist is turned down on, the address of the cell of the higher level list which

led to the sublist is pushed down on CL. When the trailer of a sublist is reached,

CL is popped up and the contents of the popped up cell placed in CPo The required

advance is then carried on from that point. Hence traversing list structures is

accomplished with a minimum of attention from the programmer. The control list is,

of course, outside the realm of accessibility of a programmer.

There must be essentially three ways of erasing a list structure; one is to

erase or clear a reader of a list structure, another to delete the name of a sublist

from a list, and finally to overwrite the name of a list structure. In any case,

the intention is to erase the entire list structure to which the reference points,

i.e. the list named as well as all sublist structure to which that list leads.

(The special case where only the list starting at CP is intended for erasure is not

discussed separately here.) The available space list has a TOP the address of

which appears in a register called, say MT. A list is effectively erased, 1. e. all

its cells restored to the available space list, when the present contents of the MT

register are made the link portion of the trailer and the address of the top cell

of the erased list is placed in MT. Two difficulties are that (1) the name of the

list to be erased may appear within the system in other contexts, e.g. in another

reader, and (2) the erased list may have sublist structures itself, i.e. some of its

symbols may be names of sub lists which may need erasure. The second of these

1.6

difficulties is taken care of when list cells are fetched from available space.

It is at that time that an examination of the previous symbol status is made. If

the list cell about to be used last contained the occurrence of a name of a sublist~

then that sublist is erased.

The difficulty exemplified by the circumstance that a list may have several

readers is remedied by the reference counter in the list trailer. This counter

counts the number of references currently being made to that list, i.e. how many

readers it has plus how many times its name appears anywhere within the system.

When a list is to be erased, the reference counter is decreased by one. Only if

the resulting count is zero is the list restored to available space as described. I

Clearly, the time required to erase a list is independent of the length of the list.

In addition to the list, there is another device for storing information within

the system. This is the STORAGE CELL, a term borrowed from IPL-V. 3 The term STACK

is used equivalantly. Any cell in memory may be a storage cell. The format of such

a cell is exactly that of a list cell. The essential difference between a storage

cell and a list is that a list has a trailer the address of which serves as the name

of the list, whereas the storage cell is a list without a trailer, a list the name

of which is the address of its top cell. This distinction has certain important

consequences:

1. No reader may be appointed for a storage cell. Access to information on a
storage cell is gained only via its top cell. This means that if the datum
next to that contained in the top cell is to be retrieved, the top cell
must first be vacated and the desired information placed in it. The
operation which causes this sequence of events to take place is called
''RSS'', or RESTORE STACK.

2. The only way a datum may be placed on a storage cell is for that datum to
overwrite whatever information is already contained in the top cell of the
stack. Since, in many cases, it is desirable to preserve the datum in the
top cell even though some new datum needs to be on the stack, an operation
called "PRS", or PRESERVE STACK, is provided which causes .the symbol at the
top of the storage cell to be copied into a cell which is placed just below
the top (i.e. to which the top cell is then linked).

One important application of the storage cell concept is the accumulator of

the KLS system. The command format and philosophy of the system is essentially

that of a single address computer. This implies that, in general, every command con

tains an operation code which as usual, specifies what the command is to do to some

data, and an address portion which designates the operand on which the specified

operation is to be performed. Many operations are, however, binary in the sense that

they require two operands (but usually yield only a single result), One of the two

operands may be pointed to (however indirectly) by the address portion of the command.

1.7

The other operand is generally understood to be in the accumulator. In certain cases

the accumulator contains an address or the name of a list which, by a chain of

indirection the length of which is not explicitly given, leads to the desired

operand. In the KLS system this accumulator is called "WO" and is a storage cel1.

The operations "PRS" and "RSS" therefore apply to the accumulator. One implication

of this fact is that, under suitable circumstances, intermediate results ne'ed not

be stored in especially selected storage cells but may be merely preserved in we
for later recall by way of the RSS operation.

Commands themselves are symbols in list cells. A program is therefore a list

or list structure. The functions usually assigned to the command counter are carried

out by a reader which is designated as the CURRENT INSTRUCTION READER. Fetching the

next command from storage is thus simply a READ operation. A consequence of this

approach is that the control list (CL) which is part of the reader serves as

a powerful subroutine linkage device. There exists a command "VST" (VISIT) which

is an unconditional transfer of control (i.e. a branch in the program) to the

address specified. The effect of this operation is, however, not merely to transfer

control but to store the address of the VST command itself on the top of the control

list of the current instruction reader. When the command "TERM" (TERMINATE) is

encountered as part of a Brogram, the control list on the current instruction reader

is "popped up", i.e. its top element deleted, and the link address of the command

pointed to by the popped up datum is placed in the current pointer portion of the

current instruction reader. The effect of this is, of course, to resume the

computation at the point after the VST command upon subroutine termination. Because

of the fact that the control list is a list, visits and termination may be nested in

any arbitrary way. This helps make the programming of the computation of recursive

functions quite easy.

Within the KLS system indirect addressing of operands is the rule rather than

the exception. (This is also the case in the IPL-V system.) In most cases the

programmer need hardly be aware of the fact that he is arriving at his operands

indirectly. Commands which require a particular kind of operand, e.g. the READ

operations require a reader, will begin with the address given in the command, examine

the contents of the location specified, and, if the information stored there is not

of the type required, will follow the chain of indirection (if possible) until the

proper datum is located. If the chain of indirection so initiated does not terminate

successfully, then an error is reported to the programmer by means of an appropriate

remark sent to an output device of the computer.

1.8

Controlled indirection can also be achieved at the option of the programmer.

Associated with certain conunands is a designation code called the "Q CODE". For

those commands for which Q is meaningful, the following table defines Q:

Q CODE TABLE

1

2

3

J..9

MEANING

The content of the address given
in the command is to be considered
as if it had been the address
portion of the command and the Q
CODE had been absent. (One level
address substitution.)

This Q CODE applies only to
commands the address portion of
which leads (by any chain of
indirection) to a datum which is
either a number or an alphanumeric
symbol. The Q = 2 code then
signifies that the address of that
datum is .the desired operand.

The same conditions on commands
as applicable to Q = 2 apply in
this instance. The desired operand
is the numeric or alphannmeric
datum at the end of the chain of
indirection.

SUMMARY:

The fundamental motivation of this work arose out of questions of machine

organizations. The experience gained in designing and using this system has indeed

revealed a number of points of great interest in that context. Unfortunately,

discussion of hardware issues must be beyond the scope of this presentation. But,

apart from gains in that direction, it may be claimed that the KLS system has

contributions to make. One of these is that KLS is easy and "natural" to use.

Of course, the use of the word "natural" here is undoubtedly related to the fact

that the single address concept has become a habit. Nonetheless, the ease with

which a small sample of programmers have become enthusiastic converts to this

system is remarkable. Another contribution which will lead to further development

and is therefore perhaps more important, relates to the so;'c.alled "responsibility

issue". The question arises as to what program has the responsibility for finally

erasing a list which may exist in differing program contexts. When the last

appearance ~ a list name within the KLS system is overwritten or otherwise

destroyed, the list associated ~th that name is erased. Because of the way

lists are finally restored to available space, it turns out that nothing is ever

erased if the subject program does not run through available space at least once.

But the main thing is that a large part of the responsibility (for list erasure)

burden has been taken over by the system itself. . All other advantages which
. 4

normally accrue to list processing have been kept. Threaded lists are a subcase

of knotted lists, KLS being more

may be a sublist of many lists.

is to think of the KLS READER as

general at least in the sense that a given sublist

The, way to see a relationship betweenKLS and T-Lists

the T-List ALIAS.

1.10

Reader

CL CP N ~------------------,

An Empty List

Figure 1

1

....
N

Reader

I CL 1 CP 1 Nl

~
~ --+

A Simple List

Figure 2

I J

~ ---.,. B T 1

t I Trailer

·1) l' 2, 3 ' 2' l' 2 3' 4 ' 4 ' 3
H(A) = (A «C C C) B CD D, D D) B) A)

CL CP N

" '-.
~ I , -.......... ~ "-

"-J-~ 1
,

Al ~ B T
\ \ t I \ /,:;'J

" ..
"- --...

..... _----- \- ' -------------- -

~
C1

I C2 j----:;J C3 I
,

H (D) = (D , D'2' D3 , D4)

I CP N CL

'"
~

I--4l B2

J

1
H B T 1

t

1
Dll

I

-'" , D2

A List Structure
Figure 3

... ".

,
A3 ~ B

t J

~ B4 ~ B

t 1

D3
l .."::a

DtJ, ~ B J
,

t j

I 'II

T 1

T 1

I \r v
T I 21

INSTRUCTIONS

2.0

INSTRUCTlON LIST

2.1.1

OP
CODE INSTRUCTION PAGE

ADD ADD .2
AND LOGICAL AND .25
APR APPOINT READER .13
ASC ASCEND .4
ASG ASSIGN .4
AVA APPEND VALUE AND ATTRIBUl'E .7
BCF BRANCH ON CONTROL FF .2
BDF BRANCH ON DECISION FF .2
BSF BRANCH ON SEARCH FF .2
BTl BRANCH ON TOGGlL.E 1 .2
BT2 BRANCH ON TOGGlE 2 .2
BT3 BRANCH ON TOGGLE 3 .2
BT4 BRANCH ON TOGGLE 4 .2
BT5 BRANCH ON TOGGLE 5 .2
BT6 BRANCH ON TOGGLE 6 .2
BT7 BRANCH ON TOGGLE 7 .2
BTB BRANCH ON TOGGLE B .2
BT9 BRANCH ON TOGGLE 9 .2
BTF BRANCH ON TEST FF .2
BTO BRANCH ON TOGGLE 0 .2
BU BRANCH UNCONDITIONALLY .2
IVA BRANCH,O ADDRESS .3
8WAN BRANCH, 0 ALPHANUMERIC .3
BWB BRANCH, 0 BINARY .3
8WC BRANCH, 0 COMMAND .3
IWD BRANCH, 0 DECIMAL .3
mm BRANCH, 0 ELEMENT .3
BWE' BRANCH ON W FF .2
BWM BRANCH, 0 MENTION .3
OWN BRANCH, 0 NAME .3
BWO BRANCH, 0 OCCURRENCE .3
BXL BRANCH ON X LINEAR. .3
BXS BRANCH ON X STRUCTURE .3
eBIT COMPLEMENT BIT .24
CiS CREATE EMP'rY STORAGE CELL .7
cum CLEAR .4
COL COpy LINEARLY .11
COR COpy READER .13
CRN CREATE NAME .7
CXF CHANGE X FF .4
DLE DELETE LINEAR ELEMENT .16
DLN DELETE LINEAR NAME .16
DLW DELETE LINEAR WORD .16
DVD DIVIDE .2
EDN ERASE DESCRIPTION LIST .B
ERL ERASE LIST .9
ERN ERASE NAME .9
ERR ERASE READER .10
ERS ERASE STACK .10
ETM ENTER TRACING MODE .24
EVA ERASE ATTRIBUl'E AND VALUE .B
FVA FIND VALUE OF ATTRIBUl'E .B

2.1. 2

OP
CODE

ICI
IC2
ICP
IDL
IFI
IF2
ILC
ILF
INl
IN2
IN3
IN4
INS
IN6
IN7
IN8
IN9
IND
INN
INP
INO
INS
IWR
LCL
LCS
LOC
LTM
MNS
MPY
NLR
NTL
NUL
OCF
OCP
OLF
OLP
OR
OSF
OSP
PAUSE
PDL
PLl
PL2
PL3
PL4
PL5
PL6
PL7
pta
PL9
PLO

INSTRUCTION

INPUf FROM CARDS, MODE 1
INPUf FROM CARDS, MODE 2
INPUT CURRENT POINTER
INPUT DESCRIPTION LIST NAME
INPUf FROM FLEX, MODE 1
INPUT FROM FLEX, MODE 2
INPUT LIST FROM CARDS
INPUT LIST FROM FLEX
INSERT BEFORE, oce
INSERT BEFORE, RESP MEN
INSERT BEFORE, MEN
INSERT BEFORE, NON-NAME
INSERT AFTER, RESP OCC
INSERT AFTER, OCC
INSERT AFTER, RESP MEN
INSERT AFTER, MEN
INSERT AFTER, NON-NAME
INPUT DELIMITER
INPUT NAME
INPUT
INSERT BEFORE, RESP OCC
INPUT SYMBOL
INPUT STACK AND RESTORE
LOCATE LINEARLY
LOCATE STRUCTURALLY
LOCATE
LEAVE TRACING MODE
MAKE NAME SAFE
MULTIPLY
NULL READ
NEGATIVE TALLY
NULLIFY
OUTPUT CELL, FLEX
OUfPUT CELL, PRINTER
OUTPUT LIST, FLEX
OUTPUT LIST, PRINTER
LOGICAL OR
OUTPUT STRUCTURE, FLEX
OUTPUT STRUCTURE, PRINTER
PAUSE
PUSH DESCRIPTION LIST ON
PUSH ON TOP, LIST, OCC
PUSH ON TOP ,LIST, RESP MEN
PUSH ON TOP, LIST., MEN
PUSH ON TOP, LIST, NON-NAME
PUSH ON BOT, LIST, RESP OCC
PUSH ON BOT, LIST, OCC
PUSH ON BOT, LIST, RESP MEN
PUSH ON BOT, LIST MEN
PUSH ON BOT, LIST, NON-NAME
PUSH ON TOP, LIST, RESP OCC

2.1. 3

PAGE

.10

.10

.14
.8

.10

.10

.10

.10

.22

.22

.22

.22

.23

.23

.23

.23

.23

.16

.11

.15

.22

.16

.15

.14

.14

.12

.24

.12
.2

.16
.2

.10

.12

.12

.12

.12
~25
.13
.13
.4
.9

.21

.21

.21

.21

.22

.22

.22

.22

.22

.21

OP
CODE INSTRUCTION PAGE

PRL PRESERVE LIST .10
PRS PRESERVE STACK .14
PSO PUSH DOWN ON TOP OF STACK .23
RBIT RESET BIT .24
RLD RESTORE LIST TO DELIMITER .11
RLE READ LINEAR ELEMENT .17
RLEM READ LINEAR ELEM OR· MEN .17
RLF READ LINEAR FIND .18
RLM READ LINEAR MENTION .17
RLN READ LINEAR NAME .17
RLO READ LINEAR OCCURRENCE .17
RLW READ LINEAR WORD .17
RSD RESTORE STACK TO DELIMITER .15
RSE READ STRUCTURE ELEMENT .17
RSEM READ STRUCTURE ELEM OR MEN .17
RSF READ STRUCTURE FIND .19
RSL RESTORE LIST .11
RSM READ STRUCTURE MENTION .17
RSN READ STRUCTURE NAME .17
RSO READ STRUCTURE OCCURRENCE .17
RSRL RESET READER LINEAR .5
RSRS RESET READER STRUCTURE .5
RSS RESTORE STACK .15
RSW READ STRUCTURE WORD .17
RVA REPLACE VALUE OF ATTRIBUTE .9
RVO REVERSE ONE LEVEL .5
RVT REVERSE TO TOP .5
RXE READ X ELEMENT .17
RXEM READ X ELEM OR MEN .17
RXM READ X MENTION .17
RXN READ X NAME .17
RXO READ X OCCURRENCE .17
RXW READ X WORD .17
SBIT SET BIT .24
SCP STORE CURRENT POINTER .14
SDF SET DECISION FF .5
SL SHIFT LEFT, .5
SLX SHIFT LEFT INTO X .6
SR SHIFT RIGHT .6
STL STORE ON LIST .23
STOP STOP .6
STS STORE ON STACK .24 '
SUB SUBTRACT .2
SXL SET X LINEAR .7
SXS SET X STRUCTURE .7
TAL TALLY .2
TBIT TESt BIT .24
TCE TEST CONTROL LIST EMP,TY .19
'l'EQ TEST EQUAL .19
TERM TERMINATE .3

2.1. 4

OP
CODE INSTRUCTION PAGE

TGE TEST GRTR THAN OR EQUAL .19
TGR TEST GREATER THAN .19
TID TEST IDENTICAL .19
TLE TEST LESS THAN OR EQUAL .20
TLEW TEST LIST LENGTH EQUAL .20
TLGW TEST LIST LENGTH GRTR THAN .20
TLL! TEST LIST LENGTH EQU ONE .20
TLLO TEST LIST LENGTH EMPTY .20
TLS TEST LESS THAN .20
TMI TEST FOR MINUS SIGN .20
TNE TEST NOT EQUAL .21
TNS TEST NATURE OF SYMBOL .21
TUN TEST FOR UNITY .21
TZR TEST FOR ZERO .21
VST VISIT .4
XCL EXCHANGE ON LIST .11
XCS EXCHANGE ON STACK .15
XEQ EXECUTE .7

201.5

INSTRUCTION DESCRIPTIONS

2.2.1

Arithmetic Instructions

ADD

SUl3

MPY

DVD

Tally Instructions

TAL

NTL

Branch Instructions

BWF
BCF

BDF

BSF

BT(n)

BTF

Add

Subtract

Multiply

D:i.vide

e.g. ADD A

The arithmetic instructions above operate
on the top two cells of any stack. Q(A)
defines the stack and the top two cells
of the stack must either contain the
operands for the arithmetic instructions
or addresses which lead to the operands.

Tally

Negative Tally

Q(A) must lead to an operand. If the
instruction is TAL, the operand is in
cremented by one (1). The operand is
decremented by one by NTL.

Branch on Ii Flip Flop

Branch on Control Flip Flop

Branch on Decision Flip Flop

Branch on Search Flip Flop

e.g. NTL A

Branch on Toggle "n" (where n may be 0-9)

Branch on Test Flip Flop e.g., BDF A

If the particular flip flop or console toggle
is set during the execution of the branch
instruction testing it, the next instruction
is taken from Q(A). Flip flops tested are
reset at the conclusion of the instruction.

2.2.2

BU

BWD

BWA

BWAN

BWB

BWC

BWD

BWM

BWN

BW¢

BXL

BXS

TERM

Branch Unconditionally

e.g.

The next instruction is taken from
(,t(A) •

Branch if HO contains a Decimal

Branch if WO contains an Address

Branch if WO contains an Alphanumeric

Branch if HO contains a Binary Integer

Branch if WO contains a Command

Branch if WO contains an Element

Branch if WO contains a Mention

Branch if WO contains a Name

Branch if WO contains an Occurrence

e.g.

The symbol type contained in the WO
register is tested with the appropriate
configuration of this command.

e.g. If the WO register contains a
command at the time when "BWC A" instruc
tion is executed, the next instruction
will be taken from Q(A).

Branch on X Flip Flop Linear e.g.

Branch on X Flip Flop Structure e.g.

If the X flip flop is in the state being
test, the next instruction is taken from
Q(A) • The X flip flop is left unchanged.

Terminate e.g.

The instruction reader's (IR's) COn'trol
lis~ is popped up, ~he current pOinter
from the top cell replacing the IR current
pointer.

Iflihe IR cOn'[lrol list is found to be empty,
the program is terminated.

BU A

BWC A

BXL A

l3XS A

TERM

TERM provides the return for the VST instruction.

2.2.3

ASC

ASG

CLER

CXF

PAUSE

Vlslt

The current pointer from the instruc
tion reader (IR) is pushed down on the
IR control list and Q(A) replaces the

e.g. VST A

IR current pointer. The next instruction
executed after VST is taken from Q(A).

See TERM for return from VST.

Ascend

The IRIs control list is popped up ~nd
the current pointer from the cell
popped off the list is lost. The next
instruction is taken in order.

NOTE: ASC is not a branch.

Assign

;WO assumes the same symbol identity
as the cell described by Q(A).

The /Symbol described by Q(A) is set
to zero and the cell identity set to
alphanumeric.

Change X Flip Flop

If the X flip flop is in the Linear
State, it is set to the Structure
State. If it is in the Structure
State, it is set to the Linear State.

Pause

The machine stops and waits for operator
to restart by depressing the console
advance switch.

2.2.4

e.g. ASC

e.g. ASG A

e.g. CLER A

e.g. CXF

e.g. PAUSE

RSRL

RSRS

RVT

SDF

SL

Reset Reader Linear e.g.

The current pointer in the reader
described by "A" is set to point to
the trailer of the list into which
it is currently pointing.

Reset Reader structure e.g.

The control list of the reader
described by "A" is popped up until
empty and the reader's current pointer
is set to point to the trailer of the
main list.

Reverse ~ne Level e.g.
I

The control list of the reader described
by "A" is popped up and the current pointer
from the cell popped off replaces the current
pointer in the reader. The control flip flop
is reset.

If the control list can not be popped up, the
control list being already empty, the control
flip flop is set.

RSRL A

RSRS A

RV~ A

Reverse to Top e.g. RVT A

The control list of the reader described
by "A" is popped up until empty •. The last
current pointer popped off the control list
replaces the current pointer in the reader.

If the control list can not be popped up, the
control list being already empty, the reader's
current pOinter is left unchanged.

Set Decision Flip Flop

The decision flip flop is set
regardless of its previous state.

Shift Left

e.g. SDF

e.g. SL A

The binary fixed point symbol described
by "A", where "All can only be an address,

2.2.5

SLX

SR

or chain of addresses leading to the
symbol, is shifted one bit position
to the left. The high order bit is
lost and a zero bit is entered into
the low order bit position.

If a,:binary fixed point symbol is not
encountered, a statement to this effect
will be printed out and the program
continued.

Shift Left Into X e.g. SLX A

The binary fixed point symbol described
by "A", where "A" can only be an address
or chain of addresses leading to the
symbol, is shifted one bit position to
the left, the X flip flop assuming the
state of the original high order bit of
the symbol and a zero bit is entered into
the low order position.

If a binary fixed point symbol is not
encountered, a statement to this effect
will be printed out and the program
continued.

Shift Right

The binary fixed point symbol described
by "A", where "A" can only be an address

e.g. SR A

or chain of addresses leading to. the symbol,
is shifted one bit position to the right.
A zero bit is entered into the high order
bit position and the low order bit is lost.

If a binary fixed point symbol is not
encountered, a statement to this effect
will be printed out and the program
continued.

stop Program

The program is terminated regardless of
the number of entries on the instruction
reader's control list.

2.2.6

e. g. ST¢P

SXL

SXS

XEQ

CES

CRN

AVA

Set X Linear e.g. SXL

The X flip flop is set, to the linear
state.

Set X Structure e.g. SXS

The X flip flop is set to the structure
state.

Execute

WO must contain an instruction. The

e.g. XEQ (7)

WO stack is first restored and then the
instruction originally in WO is executed.
If the address of the XEQ instruction is
blank, the original instruction address from
WO is used during the execution. If the
address of the XEQ instruction is not blank,
this address is substituted in the instruction
from WO before execution.

The next instruction to be executed is next
to the XEQ instruction in the instruction
list unless the instruction from WO re~ulted
in a branch.

Create Empty Storage Cell

A cell is obtained from available space.
The nameaf this cell is placed ip Q(A),
and the identity of Q(A) is made that of
an address.

Create Name

e. g. CES A

e.g. CRN A·

An empty list (empty trailer) is created.
Its name is placed in Q(A) with an identity
that of a responsible occurrence (R~).

Append Value and Attribute

"A" must lead to a description list.
The "attribute" in WO and the "value" o
in WOl are appended to the description
list of the describable list.

WOo and WOI are unchanged.

2.2.7

e.g. AVA

EDN

EVA

FVA

rot

Erase Description List Name

"An must lead to a describable
list. The name of the description
list is returned to available space
and the list is made non-describable.

If the list is either non-describable
or the top element on the list is not
a name, the appropriate statement is
printed out and the program continued.

Erase Value and Attribute

"A" must lead to a description list
which is searched for an attribute
identical to the attribute in WO.

If the attribute in WO is found to be
on the description list, both the
attribute and its value are removed
from the list and the search flip flop
set. WO remaIns unchanged.

If the attribute in WO does not appear
on the description list, the search flip
flop is reset. WO remains unchanged.

Find Value of Attribute

"A" must lead to a description list
which is searched for an attribute
identical to the attribute inWO.

If the attribute in WO is found on the
description list, the value is copied
into WO and the search flip flop set.

If the attribute in WO does not appear
on the description list, WO is unchanged
and the search flip flop reset.

Input Description List

"Ali must lead to a describable list.
The name of the description list with
an identity that of a responsible
occurrence is copied into WO.

2.2.8

e.g. EDN A

e."g. EVA A

e.g. FVA A

e.g. IDt A

PDL

RVA

ERL

ERN

If the list is not describable or the
top cell is not a name, the appropriate
statement is printed out and the program
continued.

Push Down Description List e.g. PDL A

"A" must lead to the name of a non
describable list. WO must contain a
name. The name in WO with an identity
that of a responsible occurrence is
pushed down on the list. The list's
trailer is made describable.

If "A" leads to a describable list or
WO is not a name, the appropriate state
ment is printed out and the program
continued.

Replace Value of Attribute e.g. RVA A

"A" must lead to a description list
which is searched for an attribute
identical to the attribute in WOo

If the attribute in WOo is found on
the description list, the value in WOI
replaces the value on the description
list and the search flip flop is set.
WOo and WOI remain unchanged.

If the attribute in WOo does not appear
on the description list, the search flip
flop is reset. WOo and WOI remain unchanged.

Erase List

"A" must lead to a list. The list, with
the exception of the trailer is returned
to available space. The trailer is made
empty by setting it to point to itself.

Erase Name

"Ail must lead to a list. The reference
counter in the trailer is decremented.
If the reference counter goes to zero,
the entire list, including the trailer
is returned to available space.

2.2.9

e.g.

e.g.

ERL A

ERN A

ERR

ERS

Input Instructions

I (C/F) (1/2)

I = Input

Erase Reader e.g. ERR A

"A" must lead to a reader. The reader
is returned to available space and the
reference counter in tb,e list pointed to
by the reader is deciI'emented. If the
reference counter goes ito zero, the entire
list, including trailer, is returned to
available space.

Erase Stack e.g. ERS A

Q(A) must lead to a stack~ The entire
stack, including the t'01pl -cell, is returned
to available space.

e.g. IC2

C/F = Cards or Flexowriter (Console Typewriter)

1/2 = Mode 1 or Mode 2

Mode 1

Mode 2

NUL

PRL

In mode 1, a unity input is expected, Le.,
a single symbol or a single list. At the
end of the input, 1NO will contain either the
address of the cell containing the single
symbol or a responsible occurrence on the
list.

In Diode 2, a multiple input is expected, I.e.,
input a number of symbols or a number of lists.
The input is terminated by the B~eak Pseudo
Command C' - "in the command field).

In either mode, if a break is the first input
received, WO will be unchanged and the control
flip flop set. Otherwise, CFF is reset.

If a PEND (Program End) is encountered, control
is transferred to the monitor and the appropriate
post mortem performed.

Nullify e.g. NUL A

"A" must lead to a reader. The cell pointed
to by the current pointer is made null unless
the cell contains a trailer.

Preserve List e.g. PRL A

"A" must lea.d to a reader. The symbol plus
its ID on top of the list is copied into a
cell frvm available space and pushed down on
top of the list.

2.2.10

RLD

RBI.,

XCI.,

C¢L

INN

If the reader poInts to an empty
list, a statement to this effect
is printed out and the proGram
continued.

Restore List to J)elimiter

"A' must lead to a list. The list

e.g. HID f\

is restored linearly up to and including
the delimiter. The description list (if
it exists) is not included in the restore
operation.

If a trailer is encountered before the
delimiter, the entire list is erased
and the appropriate comment printed.

Restore List

"A" must lead to a list. The top cell
in the list is removed. If a top cell
doesn't exist, the control flip flop
is set, otherwise, it is reset.

Exchange on List

"A" must lead to a reader. The top two
cells on the list are reversed in order.
(There must be at least two cells on the
list.)

Copy Linearly

"A" must lead to a list. A linear copy

e.g. RSL A

e.g. XCL A

e.g. C¢L A

of the list is made. The name of the copy
is placed in WO with a responsible occurrence
ID. (Null cells are not copied.)

Input Name

"A' must lead to a. list. The trailer
a.ddress is copied into WO with a. respon
sible occurrence (R¢) ID.

2.2.11

e.g. INN A

1.¢C

MNS

¢CF

¢CP

¢LF (Blank/l/2)

¢LP (Blank/l/2)

Locate e.g.

liN' must lead to a. list. This list
and its sub-list structures are searched
for a symbol and ID identical to those
in WOo If the symbol and ID are found
on the list structure, the search flip
flop is set, otherwise, it is reset.

Make Name Safe e.g.

"A" must lead to a list. The
reference count in the trailer is
increased by one.

¢utput Cell to Flexowriter (Console e.g.
Typewriter)

¢utput Cell to Printer e.g.

The symbol in the cell described by
Q(A) is printed on either the flexo-
writer or printer.

The format is: Symbol location, Symbol
ID, and the numeric representation of the
symbol.

LOC A

MNS A

¢CF A

¢CP A

¢utput List to .Flexowriter (Console
Typewriter) (Mode)

e.g. ¢LFl A

¢utput List to Printer (MOde)

"A" must lead to a list. The list
is printed on either the flexowriter
or printer in a~y one of the three
output modes.

e.g. ¢LP A

In the "blank";;. mode (the mnemonic for the
instruction is not followed with either a
1 or 2), the list name is printed on one
line followed by a one symbol per line
listing on the list, sub-lists are not
included.

In the "1" mode, the list is printed out
horizontally across the page, the name of
the list first followed by a colon and
apostrophes separating the symbols.

2.2.12

~SF (Blank/l/2)

~SP (Blank/l/2)

APR

C~R

In the "2" mode, the format is the same
as the "1" mode except that there is no
separation between symbols.

An alpha numeric symbol requires four
type or print character positions. Commands
and floating point numbers require 12
positions. All other symbols require 8
positions.

~utput Structure to Flexowriter (Console e.g. ~SF A
Typewriter) (MOde)

~utput Structure to Printer (MOde) e.g. ~SP A

ilA" must lead to a list. The list is
printed on either the fle~owriter or
printer in any of the three output
modes. (See Output List commands
description of three modes.)

In the output structure commands, the
main list, referred to by or through "A",
is printed first. If this list has on it
references to sub-lists, these sub-lists
are printed in the same mode as the main
list following it. These lists will be
printed in the same order as they occur
on the main list with no duplication in
the case where two references refer to
the same list. Sub-lists of sub-lists
are includE;ld.

Appoint Reader

WO must lead to a list. Q(A) becomes
8 reset reader with an empty cont1"Ol
l.ist for the 1.1st.

Copy Reader

"A" must lead to a reader. A copy of
this reader is made in a cell from
available space. The new cell address
is placed in WO with an address !D.

2.2.13

e.g. APR A

e,g. C~R A

ICP

INR

LCL

LCS

SCP

PRS

Input Current Point~r e.g.

"A" must lead to a reader. The current
pointer from this reader is copied into
WO with an address ID.

Input Reader Address e.g.

"A" must lead toa reader. The address
of this reader is copied into WO with an
address ID.

Locate Linearly e.g.

"A" must lead to a reader. Each symbol,
including its ID, on the reader's main
list is compared with the symbol and ID
in WO. If the symbol, including its ID,
is identical to the symbol and ID in WO,
the current pOinter in the reader is set
to the point to the symbol and the search
flip flop is set. If no such symbol is .
found, the reader's current pointer is not
changed and the search flip flop is reset.

ICP A

INR A

LeL A

Locate structurally e.g. LCS A

Locate Structurally is identical to
Locate Linearly with the exception
that the entire list structure pointed
to by the reader, found through "A",
is searched for a symbol and ID identical
to those in WOo

store Current Pointer

"A" must lead to a reader. The address
in WO is copied into the current pointer
of the reader.

Preserve Stack

Q(A) must lead to a stack. The symbol
in the top cell of the stack is copied
into a cell from available space and
pushed down on top of the stack.

e.g. SCP A

e.g. PRS A

RSD Restore Stack to Delimiter e.g. RSD A

Q(A) must lead to the name of a
stack. The stack is restored up
to and including the delimiter.
If no delimiter is found the
entire stack is restored and an
appropriate comment is printed.

RSS Restore Stack e.g. RSS A

Q(A) must lead to a stack. The top
cell of the stack is popped up, the
symbol in the second cellon the stack
taking its place.

If RSS results in WO being restored and
WO is a single cell stack, the W flip
flop is set, otherwise, it is reset.

If RSS results in any other one cell
stack being restored, the control
flip flop is set, otherwise it is
reset.

xes Exchange on Stack e.g. xes A

Q(A) must lead to a stack. The top
two ,symbols on the stack are reversed,
that is, the second symbol becomes the
top symbol, etc. (There must be at least
two symbol cells on the stack.)

INP Input e.g. INP A

Q(A) is copied into WOo WO will assume
the ID of Q(A) with two exceptions:
1) If Q(A) • Trailer, the ID placed in

WO will be that of a RO (responsible
occurrence).

2) If Q(A) = Reader, the ID placed in
WO will be that of an Address.

IWR Input WO and Restore e.g. IWR A

Q(A) must lead to a stack. The top cell
of the stack is copied into WO and the
stack restored.

2.2.15

nro

INS

DLE

DLN

DIM.

NLR

If Q(A) leads to a single cell stack, the
control flip flop will be set, otherwise,
it will be reset.

Input Delimiter

A delimiter symbol is placed in WOo

Input Symbol

"A' itself is copied into WO with an
alpha numeric ID.

Delete Linear Element

Delete Linear Name

Delete Linear Word

These three commands are identical
to their corresponding Read Linear
counterparts with the following
exception. If the current pOinter
in thelreader for the list being
read is pointing to a symbol on the
list and not the trailer, the symbol
is removed from the list either by
deleting or nullifying the cell
containing the symbol. The cell is
nullified only if it is the bottom
cellon the list.

NUll Read

e. g. IND

e.g. INS A

e.g. DLE A

e.g. DLN A

e.g. DLW A

e.g. NLR A

"A" must lead to a reader. The symbol
pointed to by the current pointer is
copied into WO unless the CP is pOinting
to a trailer. If the CP is pointing to a
trailer, the control flip flop is set,
otherwise it is reset.

2.2.16

Read Instructions

R(L/S/X)(W/E/N/M/~/EM)

R • Read

(L/S/X) • Linear, Structure or X Mode

W III object of read is Word

E • object of read is Element

N = object of read is Name

M .- object of read is Mention

~ = object of read is ~ccurrence

EM = object of read is Element or Mention

Linear Mode

Structure Mode

e.g. RLN A
"A" must lead to a reader. The reaaer's
current pointer is advanced linearly along
the list into whi€h it is currently pointing.
After the CP is advanced once,. the symbol
in the cell to which the CF is advanced
is tested for the object of the instruction,
in the case of a RLN instruction, a "Name".
If the symbol is the object of the instruction,
it plus its IDis copied into WOo If the
symbol is not the object, the CP is advanced
again, etc.

If, after the CP is advanced, the cell tested
is found to be a trailer, the previous CP is
left in the reader, the control flip flop is
set, arid WO is left unchanged.

Description list names can not be the object
for any of the read instructions.

e.g. RSN A
II A" must lead to a reader. Before the
current pointer is advanced, the symbol
currently pointed to is tested for the
occurrence (¢) of 'a Name. If the cell is
an ~, the CP is pushed down on the readers
control list (CL) and the ¢ replaces the CP
in the reader. (The CP is now pointing one
level deeper into the list.)

The read mode now-is identical to the linear
mode with two exceptions:

2.2.17

X Mode

RLF

1) If another ~ is encountered in the
list before the object, the CP is
again pushed down on the CL a~d the
reader's CP replaced by the ¢~.

2) If a trailer is encountered before
the object, the CL is popped up and
the top CP used to replace the reader's
CPo (This results in the exit from a
sublist into the next lower list.) If
the CL is found empty when a trailer is
encountered, the CP is left pointing to
the cell.just ahead of the trailer, the
control flip flop is set, and WO is left
unchanged.

e.g. IDCN A

If when a Read X instruction is executed,
the X flip flop is in the linear state,
the read instruction is executed in the
linear mode. If X is in the structure
state, the read instruction will be executed
in the structure state.

Read Linear Find e.g. RLF A

"AU must lead to a reader. The current
pointer is advanced linearly along the list,
into which it is currently pOinting, and each
symbol encountered is compared with the symbol
in WOo using WOl (the second cell on the WO
staCk) as a mask. For every'l" bit in WOll
the corresponding bit pOsition in the symbols
from the list are compared with the corresponding
bit positions of the symbol in WOo

If a symbol is found on the list which results
in an equal comparison; the symbol in WOo and the mask
from WOlare popped off the WO stack and a copy of
the equal symbol pushed down on WOo The CP is left
pointing to the symbol on the list and the search
flip flop is set.

If no symbol is found on the list which results in
an equal comparison, the symbol from WOo is popped
up, leaving the mask in WO. The CP is left pointing
to the bottom symbol on the list and the .search flip
flop is reset.

2.2.18

RSF

TeE

TEQ

TGE

TGR

TID

Read Structure Find e.g. RSF A

The Read Structure Find differs from the
Read Linear Find only in the sense that the.
CP is advanced structurally instead of
linearly. The final results are the same
for both instructions.

Test Control List Empty e.g. TeE A

"A" must lead to a reader. The -cont:rol
list from this reader is tested fGT
empty. If the CL is empty, the test
flip flop is set, otherwise, it is reset.

Test Equal e.g. TEQ A

The symbol, not including ID, described
by Q(A) is compared with the symbol in WOo
If the symbols are equal, the test flip
flop is set, otherwise, it is reset.

Test Greater Than or Equal e.g. TGE A

The symbol, not including ID described by
Q(A) is compared with the symbol in WOo
If the symbol in WO is greater than or
equal to the symbol described by Q(A) the
test flip flop is set, otherwise, it is
reset.

Test Greater Than e.g. TGR A

The symbol, not including ID, described by
Q(A) is compared with the symbol in WOo
If the symbol in WO is greater than the symbol
described by Q(A) , the test flip flop is set,
otherwise, it is reset.

Test Identity

The ID of the symbol described by Q(A)
1s compared with the ID of WOo If the
tvo rD's are equal, the test flip f'l.op
:18 set,. otherwise it is reset.

2.2.19

e.g. TIS A

TLE

TLEW

TLGW

TLIJ.

TLS

TMI

Test Less Than or Equal

The symbol, not including ID, described
by Q(A) is compared with the symbol in
WO. If the symbol in WO is less than or
equal to the symbol described by Q(A),
the test flip flop is set, otherwise, it
is reset.

Test List Length Equal to WO

.ok must lead to a list. The number
of symbols on the list is computed.
(Description lists do not contribute
to this count.) If the number of the
symbols on the list is equal to the
binary integer in WO, the test flip
flop is set, otherwise, it is reset.

Test List Length Greater Than WO

"A" must lead to a list. The number of

e.g. TLE A

e.g. TLEW A

e.g. TLGW A

symbols on the list is computed. (Description
lists do not contribute to this count.) If the
number of symbols on the list is greater than the
binary integer in WO, the test flip flop is set,
otherwise, it is reset.

Test List Length Equal ¢ne e.g. TLI.J.. A

"A" must lead to a list. If the list
length is equal to one, the test flip
flop is set, otherwise, it is reset.

Test List Length Empty

itA" must lead to a list. If the list
is empty, the test flip flop is set,
otherwise, it is reset.

Test Less Than

e.g. TUJ. A

e.g. TLS A.

The symbol, not including ID, described
by Q(A) is compared with the symbol in WO.
If the symbol in WO is less than the
symbol described by Q(A), the test flip
flop is set, otherwise, it is reset.

Test for Minus Sign e.g. TMI A

If the symbol described by Q(A) is
less than zero (minus), the test flip
flop is set, otherwise, it is reset.

2.2.20

TNE

TNS

TUN

TZR

PLO-4

Test Not Equa.l e. g.

The symbol, not including ID, described
by Q(A) is compared with the symbol
in WOo If the symbols are not equal,
the test flip flop is set, otherwise,
it is reset.

Test Nature of Symbol e .. g ..

The symbol and ID described by
Q(A) is compared with the symbol and
ID in WO respectively. If the comparison
proves equality, the test flip flop is
set, otherwise, it is reset.

TNE I\.

TNS A

Test for Unity e.g. TUN A

If the symbol described by Q(A) is
unity, the test flip flop is set,
otherwise, it is reset.

Test for Zero

If the symbol described by Q(A) is
zero, the test flip flop is set,
otherwise, it is reset.

Put on Top (Modes 0 through 4)

"A" must lead to a list. The symbol
in WO is put on top of this list (the

e.g. TZR A

e.g. PL2 A

top of a described list is the cell next
to the name of the description list). The
ID of the symbol is determined by the mode
of the instruction. For PL2, the 2-mode
will result in the symbol being placed on
top of the list with an ID tha-t of a responsible
mention.

Modes:

PLO:

PIJ.:

PL2:

PL3:
PL4:

Resulting Symbol ID

Responsible ~ccurrence (R~)

Non-responsible Occurrence (NR~)

Responsible Mention (RM)

Non-responsible Mention (NRM)

The ID of the symbol as it appeared in WOo

2.2.21

PL5-9

INo-4

["or PLO, I'Ll, Pl.;? or PL3, the symbol ID
in WO must be that of a name.

Put on Bottom (Modes 5 through 9)

"A must lead to a list. The symbol
in WO is put on the bottom of the list
(the bottom of the list being the cell
just ahead of the trailer). The ID of

e. g. pr.:r A

the symbol is determined by the mode of
the instruction. For PL'(, the '7 -mode will
result in the symbol being placed on the
bottom of the list with an ID tha~ of a
responsible mention.

Modes:

PL5:

PL6:

PL7:
pili:

PL9:

Resulting Symbol ID

Responsible ¢ccurrence (R¢)

Non-responsible ¢ccurrence (NR¢)

Responsible Ment:i.on (RM)

Non-responsible Mention (NRM)

The ID of the symbol as it appeared
in WOo

For PL5, PL6, PL7, or pIB, the symbol ID in WO
must be that of a name.

Insert Before (Modes 0 through 4) e.g. IN3 A

"A" must lead to a reader. The symbol
in WO is copied into a cell from available
space. This cell-is inserted in the reader's
list structure just ahead of the cell to which
the readers CP is pointing. The ID of the new
cell is dependent upon the mode of the instruction.
For IN3, the 3 mode will result in the new cell
being inserted into the list structure with a non
responsible mention ID.

Modes:

INO:

INl:

IN2:

IN3:

IN4:

Resulting Symbol ID

Responsible Occurrence (R¢)

Non-responsible Occurrence (NR¢)

Responsible Mention (RM)

Non-responsible Mention (NRM)

The ID of the symbol as it appeared in WOo

2.2.22

IN5-9

PSO

STL

F'or INa, IN1., IN2, or IN3, the symbol in HO
must be that of a name.

Insert After (Modes 5 through 9) e.g. INS A

"A must lead to a reader. The symbol
in HO is copied into a cell from available
space. This cell is inserted in the reader's
list structure just after the cell to which
the reader's CP is pointing. The ID of the
new cell is dependent upon -the mode of the
instruction. For IN8, the 8-mode will result
in the new cell being inserted into the list
structure wl-lih a non-responsible men"ion ID.

Modes:

IN5:

INa:

IN'(:

IN8:

ResultJing Symbol ID

Responsible ¢ccurrence (R¢)

Non-responsible ~ccurrence (NR~)

Responsible Mention (RM)

Non-responsible Mention (NRM)

IN9: The ID of the symbol as it appeared in WOo

For IN5, IN6, IN7 or INS, the symbol in WO must be
that o:f a name.

Push Down on Top of Stack

Q(A) must lead to a stack. The symbol
in WO is pushed down on the top of the
stack.

Store ¢n List

"Art must lead to a reader. The symbol
and its ID are copied into the cell
pointed to by the reader's current
pointer.

e.g. PSO

e.g. STL A

If the CP is pointing to a header or
trailer or if WO contains either a header
or trailer, the symbol is not copied into
the cell painted to by the CP and an
appropriate statement is printed out.

2.2.23

STS

EI'M

LTM

store on Stack e.g.

Q(A) must lead to a stack. The symbol
in "TO replaces the top symbol on the
stack.

Enter Tracing Mode e.g.

EI'M starts the tracing of instructions
and the tracing cqntinues until terminated
with a LTM (Leave Tracing Mode). A Vis:it
instruction will cause a temporary termination
of the tracing, the tracing continued when the
Visit is te'rminated bring the instruction list
back to the level at which the ETM initiated
the tracing.

STS

EI'M

Leave Tracing Mode e.g. LTM

Instruction tracing is discontinued
upon execution of LTM. Tracing is
also discontinued when the instruction
list terminates.

A

~it Manipulation Instructions

SBIT

RBIT

CBIT

TBIT

Set Bit

Reset Bit

Complement Bit

Test Bit

e.g. CBIT A

WO must contain an operand (BFL, DI, BI, AN).
Q(A) must lead to a BI (binary integer), "i",
where 0 !: i $. 23,: Tb.e "ith .. bit position or
the symbol in WO is operated upon as follows:

SBIT: The "ith .. bit is set to a "1".

RBIT: The flith" bit is set to a "0",

CBIT: The "ith" bit is complemented.

TBIT: If the "ith" bit of WO is a "1",
the test flip flop is set, other
wise, it is reset.

2.2.24

Logical Instructions

AND

OR

Logical And

Logical OR

e.g. OR A

Q(A) must lead to a stack. The top two
cells on the stack must either be operands
or addresses leading to operands. The ID's
of the operands found must be identical.

The top two cells on the stack are popped
off and the logical "and" or "or" preformed
on the two operands. The result of the
logical operation is pushed down on the stack.

2.2.25

PROGRAMMING SYSTEM

3.0

KLS PROGRAMMING SYSTEM
(Philco S-2000 Version)

The KLS programming system enables one to simulate KLS programs on the

Philco 8-2000. The system includes its' own operating system, assembler and

simulator with extensive debugging facilities.

All KLS system runs are batch runs and each program is assembled by the

loader (part of the input system) at load time and then executed.

KL8 simulates programs (including assembly time) at the rate of 225

instructions/second without tracing and 20 instructions/second with tracing.

Input to the KLS System is either from cards or the flexowriter. Each

line of input represents either a pseudo command or an executable instruction.

PSEUDO COMMAND FORMAT

Col. 1 - 9 ignored

10- 16 location field

17 - 24 command field

25 - 40 variable field

41 - 80 ignored

EXECUTABLE INSTRUCTION CARD FORMAT

Col. 1 - 9 ignored

10 - 16 location field

17 - 24 command field

25 - 31 address field

36 Q - code

41 - 80 ignored

FLEXOWRITER INPUT FORMAT

Pertinent fields of a line of input from the flexowriter are separated

by a ",,., and the last field is terminated by a "I".
E.g.:

,lc21
AI, RSE, G-R25 , 21
,CLER,ALPHA, 1f
,LISTJ
Al,RS ,G-R25 I
,CLER,ALPHA,ll

3.1

PSEUDO COMMANDS:

PROGRAM·

PEND:

SUBR:

KLs-t~IB

LIB-END-

The Program card is the first card of each

program and defines the program running

requirements. The PROGRAM card requir es a

special format defined later.

The PEND ca:cd is ithe las't ,ea;rdof each

program. When encountered, fthe Ipresent

program is terminated and the. next program

is started.

The SUBR command will cause (upon completion

of the present input sequence) the searching

and loading of a subroutine from one of the

libraries. The search is made for a program

on the libraries whose name corresponds to

the name in the variable field of the SUBR

card. Upon finding such subroutine, an IC2

command is used to load the subroutine into

KLS. It may in turn call for more subroutines.

Up to 4 subroutine library tapes are

allowed in the system. Tape units for the

libraries are ITAPE, ITAPF, ITAPG, & ITAPH.

The format of an individual library is a

tape produced from cards (code-mode) of

which the first card is a KLS-LIB card

followed by debugged programs, followed by

a LIB-END card.

The first: card of a library tape.

(see sma card description.)

The last card of a library tape.

(see ST.JiBR card description.l

3.2

GMODE

LMODE

+

LIST

LEND

DLST

Dr

6r

The GMODE command declares that all

symbolic addresses which follow (until

encountering a LMODE card) are to be

assumed global.

The LMODE command declares that all

symbolic addresses which follow (until

encountering aGMODE card) are to be

assumed local.

A + command causes the local symbol table

(LST) to be erased when encountered.

Serves to terminate the execution of the

IC2 instruction.

Defines the beginning of a list. All

cells which follow (until a LEND card)

are to link together so as to form a

list. The location field may contain

a name for the list.

Defines the list end. (see LIST card)

Same as a LIST card except the list is

defined as a describable list. The first

symbol on such a list must be the name

of the description sub-list.

This defines a cell as representing a

decimal integer. The decimal integer

is defined in the variable field, with or

without sign, followed by a maximum of 6

decemal dig(its.

This defines a cell as representing a

binary integer. The binary integer is

defined in the w.1llJriabie H€ld. with or

m t::hout s:fgn~ foHolii'ed by a Rl!<\1iXinDlllll of .,

decimal digits.

3.3

BFL

AN

MAN

A

RO

This defines a cell as representing a

binary floating poent number. The number

is defined in the variable field, with or

without sign, followed by 1 to 6 decimal

digits. A decimal point may be included.

A base 10 exponent (one digit) may follow

and must be preceded by a sign.

E.g, :

3.1416
-27.2
+16.4 - 3
-28145.6 - 4

This defines a cell as representing a 4

character alpha-numeric constant. The

first 4 characters of the variable field

define the constant.

This defines a series of cells which contain

alpha-numeric information. The variable

field for this command starts in column 25

and is terminated at the first occurrance of

a "$/1. In the absence of a "$" column, 80

is the last column of the variable field.

The first 4 characters of the variable field

form the first alpha-numeric cell, the next

4 characters form the next cell, etc. A

partial cell is fi lled with trai ling lin"

characters. A MAN command may only occur

between a LIST and LEND card, e.g.,

A LIST
BFL
MAN
LEND

3.1416
KLS SYSTEM $

This defines a cell as being an address cell.

The variable field contains the symbolic

address of the cell which is being addressed.

This defines a cell as representing a

responsible occurrance of a sub-list. The

sub-list name is in the variable field.

3.4

RM

M

~CTAL

R

SYMBOLIC ADDRESSES

This defines a cell as representing a

responsible mention of a sub-list. The

sub-list name is in the variable field.

This defines a cell as representing an

occurrance of a sub-list. The sub-list

name is in the variable field.

This defines a cell as representing a

mention of a sub-list. The sub-list name

is in the variable field.

This defines a cell contents (both the

symbol and the cell identification). The

variable field contains 11 octal digits

representing the cell contents. This

pseudo command should be used only with

extreme caution.

This defines a cell as representing a

reader. The cell is made a reader (reset)

of the list whose name is in the variable

field. A reader may not be a cellon a

list, therefore, must not ·occur between a

LIST and LEND card.

Symbolic addresses (in the location field, address field or variable field)

when encountered are treated as either local or global depending as to whether

the input system is in the local mode or global mode. However, Wo is always

treated as a special global symbol regardless of mode.

If the input system is in the global mode, a local symbolic address may

be referenced by preceding the symbolic address with a "L-".

If the input system is in the local mode, a global symbolic address may be

referenced by preceding the symbolic address with a "G- II •

Symbolic addresses must be of the form I alphabetic characters followed by

up to 4 alpha-numeric characters.

3.5

KLS PROGRAM CARD

1 - 16

17 - 24

25 - 32

33

34

35

36

37 - 39

40 - 52

Ignored (may be comments)

PROGRAM

Program Name

~
N,Y, or T - Trace all commands (if T, test toggle 10)

N,Y, or T - Trace VST, TERM and Branch Commands which are met

(if T, test toggle 11)

N,Y, or T Execute ETM commands, otherwise ignore ETM commands
(if T, test toggle 12)

Toggle settings for toggles 0 - 12:

o - reset
1 - set

A - ignore

53 - 55 6.. A b.
56 - 62

63

64

Instruction count limit; if blank or zero, 2000 is assumed.

Philco S-2000 Dumps:

KLS

1 - Dump lower memory in command format
2 - Dump upper memory in octal format
3 - Dump upper & lower memory
~- No dump

Global Symbol Table Dump:

1 - Dump items named in' GST; if a list,
2 - Dump items named in GST; if a list,
~- No dump.

3.6

dump list only
dump list structure.

KLS LIBRARY DECK FORM

1st program
subroutine

2nd program
subroutine

last program
subroutine

KLS-lL1B

PROGRAM

PROGRAM

LIB-END

program name

instructions

program name

instructions

program name

3.7

KLS SYSTEM INPUT DECK

1st program

2nd program f
t
" • f
I
I
I
(

last program)

PROGRAM

(
(

l?END

FINISH

program name

instructions loaded by system

data loaded by program

3.8

KLS SYSTEM PROGRAM PROCESSING PROCEDURE:

The following steps define the processing procedure of KLS programs:

1) Search input tape for a PROGRAM card. If a FINISH card is

encountered during this search, the run is completed.

2) Initialize available space, toggle settings, etc. according to

PROGRAM card.

3) Execute an IC2 command (loading program).

4) Transfer control to first cellon the list whose name is in Woo

Therefore immediately following the PROGRAM card, there must be a

list of instructions, the first of which, will be the starting

instruction.

5) Upon 'terminatiion ,of the program, the required post mortems will be

performed. StEIP '1 is then performed.

KLS PROGRAM TERMINNl'lION:

A KLS Program will ,be :terminated by any of the following circumstances:

1) Executiono£ a STOP command.

2) Running out of instructions by either bumping into 'a trailer or

executing a TERM command when the instruction reader control list is

empty,.

3) Error; a diagnostic will be printed.

3.9

CHARACTER SET:

o
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
G
H
I
J
K
L
M
N
o
p
Q
R
S
T
U
V
W
X
Y
Z

n - Restore carriage on flexo; filler
character on printer, i.e., does not
print

I - Not legal on flexowriter. (as output)
@

=

&

+

)
%
?

"
$

* ffi
,
(

e
-.....
<
L-I

>
D.

3.10

blank

KLS OPERATING PROCEDURE:

ASSEMBLY:

EXECurION:

1) TAC II absolute assembly.

2) Process 2 libraries:

a) latest APED standard TAC II library

b) and RCS library on tape 46.

3) Add RPL to separate tape.

4) 4 copies of code edit unless otherwise indicated.

1) Set Breakpoint Switch to STOP.

2) If computer appears to be looping perform

loop test as follows:

a) Set toggle 47, if " OK" is not typed on flexo

within 6 seconds KLS is in a loop and operator

should manually stop machine, then follow step 3.

Reset toggle 47.

3) If any stop should occur, record program name and JA

register contents only. Then manually jump to 1000L.

4) Always return flex output to run requestor.

5) SMART program card:

a) A dump card is included although if should only be

used if the KLS system cannot be recovered by a jump

to lOOOL.

b) Preclear memory starting at location 1000 with

"JBTL3". This is indicated by an ''F'' in col. 19.

3.11

SAMPLE PROBLEM
(WANG'S ALGORITHM)

4.0

As an illustration of the use of the system, the code for an

example problem is given. This code is a realization of a proof

procedure for the propositional calculus developed by Hao Wang (6).

For a detailed description and justification of the procedure, the

reader is referred to the paper cited. In brief, however, the

procedure is as follows:

Given any theorem to be proved, that theorem is first written

in Polish prefix notation. This notation is convenient in that it

brings the main connective to the front of the expression. An arrow

is prefixed to the total expression which is then thought of as having

a LEFT and a RIGHT side with respect to the arrow.

Initially, of course, the LEFT side is empty. Associated with

each connective and the side on which it appears, there is a rule

which eliminates that connective and which dictates which of the

connected terms are to be either left in place or moved to the

other side of the arrow. Certain rules also dictate that a sub

problem is to be generated, that is that the connected terms are

to be reassigned to LEFT and RIGHT sides respectively in two differ

ent ways. One of the expressions so created is then set aside as

a problem to be treated subsequently. When finally all connectives

have been removed by the application of the rules, the LEFT side

is inspected to see if it contains terms in common with the RIGHT

side. If it does, then that portion of the proof indicates validity.

If all subproblems end validly, the theorem is true, otherwise not.

The way the program handles these issues can be seen from the

accoItlpanying illustration of the proof of the simple theorem

(Not (P Or Q)) Imp (Not P)).

Initially the LEFT side is empty, while the RIGHT side contains

the whole theorem in a list structure form. Notice that every

connective is the first (i.e. top) element of a seperate list which

is, in fact, a sublist of some list structure. The program now

looks for the first name of a list on the LEFT side. Finding none

there, it proceeds to look for a name on the RIGIIT side. This name

is that of a list which has as its top element the connective "IMP",

The appropriate rule for the "IMP" connective found on the RIGHT

side causes the first term of the implication to be moved to the

LEFT side and the second term to remain where it is, the connective

4.1

itself being eliminated. Thus the second picture is generated.

This time, the search for a name on the LEFT side is successful.

The "NOT" connective is found and the appropriate rule applied.

Going on in this fashion finally results in the fifth picture.

There the literal "P" appears on both the LEFT and the RIGlIT sides

and there are no more names of lists on either side. Since, in

this simple example, there are no subproblems, the theorem is proved.

The accompanying program appears more complicated than the

discussion would lead one to believe mainly for the reason that

it includes editing functions both for input and output. The

theorem to be proved, for example, is put into the system in

ordinary parenthethis notation which is then translated to list

structure format by the initialization procedure. Similarly, the

output is presented in a form a little more readable to a nonspecialist

than a straight printout of the internal machine format would be.

Both these editing programs, by the way, provide good exercises to

the interested reader.

An important consideration relating to the efficiency of the

system is that when a list structure is moved, only the name of

that structure is actually transferred to a new location in memory.

The structure to which that name "points" is carried along as a

natural consequence. This illustrates the important property of

list manipulation systems that entities of arbitrary complexity

may be manipulated as if they were in fact single symbols. Another

important observation is that the program is not written with any

detailed knowledge of the depth or complexity of the list structures

which it must manipulate. The program knows, so to speak, only the

general characteristics of these structures. The complexity is

contained in the way in which the data is stored, as opposed to the

more usual situation in which data is stored very "regularly" but

programs are very complex. Furthermore, the complexity in data

organization arises partially as a result of processing, i.e. is

created dynamically. In particular it is not planned in great

detail--only in general outline-- by the progrannner. Thus a great

planning burden is lifted from the shoulders of the progrannner.

4.2

((NOT (P OR Q)) IMP (NOT P}}

Q

I

N2

4 .• 3 II

OR p Q

ill

e 1 p

8 {p ~ 1 Q

4.4

PROGRAM WANG3 VVV
LIST RP AN

EDIT CRN X3 2 AOO INN EG
CRN LED AO CLER RI
INN LED CLER LFT
STS OUTP CLER RGT
BTO AOO APR Rl
IC2 AOII RLW Rl
BCF J5 APR LFT
OSP2 WO RLW RI
APR ERI APR RGT
RLW ER1 aU AOI
VST ED2 At CLER CRT
ERL L RSRL RGT
ERL R RSRL LFT
INN OUTp RLN LFT
PLO R 8CF A2
VST AOO 3 APR CRT
8U EDIT NUL LFT

ED26 8U ED24 RLW CRT
LPP TID LP 8CF A3

8TF ,)1 A3 FVA LCL
TERM BSF A3t

Jl VST ED23 A31 XEQ
TERM A2 RLN RGT

.)5 STOP BCF A4
ED2 RLW ERI APR CRT

TID NOT NUL RGT
8TF XKI RLW CRT
VST LPP BCF A5
PL4 O;UTp A5 FVA RCL
RLW !E:R1 BSF A51

XKl PL4 ,o.UTp A51 XEQ
RLW IE~l RNOT RUN CRT
VST !L'PP PL9 LFT
PL9 ,()UTp BU AOI
RLW 'ERI ROR RLW CRT
TERM PL9 RGT

ED23 CRN .wo RORI RUN CRT
PSO :OUTp PL9 RGT
VST E02 8U AOt
INN GUTP RIMP RLW CRT
RSS OVTp PL9 LFT
TERM RLW CRT

DONE AN END PL9 RGT
LP AN (BU AOt

4.5

RAND VST A20 A6 CLER Rl
RUN CRT CLER RGT
PL9 W2 CLER LFT
BU RORI CLER CRT

RIFF VST A20 INN X3
RLW CRT APR Rl
PL9 RGT RLW Rt
PL9 WI BCF A7

RIFt RLW CRT RSRL Rl
PL9 LFT CRN X4
PL9 W2 RLW Rl
BU AOI NUL Rl

LAND RLW CRT PL9 X4
PL9 LFT RLW Rl
BU RNOT NUL Rl

LOR VST A20 PL9 X4
RLW CRT INN X4
PL9 Wl APR Rl
BU RNOT BU AO 11

LIMP VST A20 A7 OCP DONE
LIMl RLW CRT TERM

PL9 W2 A20 COL LFT
BU RNOT PL5 X3

LtFF VST A20 STS WI
RLW CRT COL RGT
PL9 W2 PL5 X3
PL9 LFT STS W2
BU RIFI TERM

AOt INN LFT LMODE
VST OSPA +
INN RGT G-OSPA CRN OUTP
VST OSPA AO APR RDR 2
BU Al VST A2

A4 RSRL LFT OLP2 OUTP
A4t RLW LFT CLER OUTP

BCF A~O CLER RDR
LOC RGT TERM TERM
BSF VALD A2 BWN A3
BU A41 A5 PL9 OUTP

A50 OCP Dl BU All
BU A6 A3 TLLO WO

Dl AN FALS BTF A4
QED AN QED INP LP
VALD OCP QED PL9 OUTP

BU A6 RSW RDR

4.6

VST A2
tNP RP
PL9 OUTP
RVO RDR
BU All

A4 INP MT
BU A5

LP AN (J I J
RP AN) J I J
MT AN (, 1 J

A 11 RUAI RDR
BCF TERM
PRS WO
INP COMA
PL9 OUTP
RSS WO
BU A2 EG LIST

COMA AN • I I I RO L

+ RO R
GMODE LEND
LEND

LCL LIST
NOT AN NOT

BU RORI
OR AN OR

BU LOR
AND AN AND

BU LAND
IMP AN IMP

BU LIMP
IFF AN IFF

BU LIFF
LEND

RCL LtST
AN NOT
BU RNOT
AN OR
BU ROR
AN AND
BU RAND
AN IMP
BU RIMP
AN IFF
BU RIFF
LEND

4.7

PHO!l~ AM "" ANG
. No.

IN PU r 'L IS f p l P ~ II CJ H1 E: N T L······ -.
INPUT LIST pEPLAOEMENT R
1 N plJ r 1. J[S T ~'E pl,lIer ME: N TA i iJ· .--- .. ---------... ---,--

'INPUT ~IS' ~iPLAOEMENT N1
INPUT lIST ~EPLACEMENT·Nli
INPUT ~IST ~EPLAClM£NT "112
INPUT LIst' ~f.:PI.Ac:r.MENTN2 ,,-.---- .. -

Ie C I Not p » AHn c ~OT ~

• tI~p 'ANU , N;Q T Ip 'NO r .1) 'IFF' Ip tu
'F INOl '0

....
• Q •
'NOT 4.(1 ,
, Q f

:tMP Itt Q

'ANO 'NOT
llF"r 'P
P.JOT 'F
un° 'P
'Nor 'Q
'IF"F' I,p

- . _ .. _._ .~ , ... , .. _._. ___ ~._h' .. _ , _. _'" ·r~~··"'· ' _,._. ____ . __________ _. ___ ... __ .. _. ____ ." •.....

• :tIF"r #p
ttl ~
t,p

of:o .

~o

4l1>
'0(0

,
)

'tP

~, fa •
I

tP
IP to • • ..•.... ___ .'. __ " .•• _ ._ ••• __ ••• _ •• _1 ..

Qtfl
EN!)

NOT , fl' 'IMP C' NOT P · ~ f·' _._ _. -_ --_._._---,--- ----_ ... _. __ ._.--_.- .--... _-_._-----------
f !f\I.Q :t ' 0 R , P
f .Q.R , P , f Q
toP •

rtl-HI
'NOli"
,Not ,
!. N()T i,p

'. P tOR
t p,
IP

:tlf

" 4

AN
AoN

f

'P' 1 a
• !. ..

f.(J

t(.

,
Qtl,)
E Nt)

.. NO T"-P---J

'Q
I

, Q
. ~ . ,. -.- .. -.. ~.-~-~-.

"IFF'" .

UfoF' tI~(H !I.p
IS ·AIN1:> "NoO T "P
j N'OT tI>p

.... NIIiI 'NOT 'P
tliG~ "NOIIP

IiN,O T If",
it N'OT "rP
'* OR "NeIT
il N:OT "1fII
ill·G "

"'OR~~:Gl r . , p ..

" , p._---, Q. (._.

'p .1

._---_. __ _------------

'Q

--------_._----

:I'NtOT ".p •. p ."
ij,Q .. 1p-- .. ·'-- .. ·· ,- -- _._-- .. _ _ ... _ .. __ ._ .. _._--_.-----_. __ .-_ __ ... --_ _ .. -'- - ,----_ .. _'--,,-'-' .. --. ,

-.. , •..... ~. . .. -.... ~ ..•.. ,. ", .--. ~ --.. -- -- _. -....... -

Proof of Theorems by ~ang's Algorithm. Produced by KLS Interpreter
. -... -- .. -...... - .. -....... - -' .. i - , -.-__ _._. _________ .. __ . ___ .. --.--.. - .. --.

',' I,

i

... __ .. __ . _____ :_~ __ ~_ .. J~~~a;t:y .~-' .J,~_~ .. Z _

4.8

References:

1. Collins, G.E., A Method for Overlapping and Erasure of Lists, Comm.
ACM, 3 (1960), 655 - 657.

2. McCarthy, J., Recursive Functions of Symbolic Expressions and Their
Computation by Machine, Part I., Comm. ACM, 3 (1960), 184 - 195.

3. Newell, A., et 801, Information Processing Language V Manual, Sect.
I, II, Rand Corp., P.- 1918, March, 1960.

4. Perlis, A.J. and Thornton, C., Symbol Manipulation by Threaded Lists,
Comm. ACM 3 (1960), 195 - 204.

5. Shaw, J.C., et aI, A Command Structure for Complex Information
Processing, Proceedings of the 1958 WJCC, May 1958.

6. Wang, Hao, "Toward Mechanical Mathematics", IBM Journal of Research
and Development, v.4, No.1, 1/60, p.2.

