
THE COMPATIBLES/600

Military M-605 Programming
Reference Manual

GENERAL. ELECTRIC

l\t1ilitary Computer
M-605 Programming
Reference Manual

GENERAL fl ELECTRIC

I.

TT.

TABLE OF CONTEt"TS

M-605 SYSTEM DESCRIPTION ..

A. General Description ...
B. Computer Components .
C. System Characteristics

1. Dual Mode Processor ..
2. Dynamic Program Relocation.
3. Processor-Oriented Memory Protection
4. Input-Output-Oriented Memory Protection
5. Execute Interrupt Orientation .
6. Interval Timer
7. Fault Traps

D. Software System ..

PROGRAMI\flNG ENVIRONMENT

A. Programming Characteristics

'l. :\lnhanumt'ric Dab

c. Binary Floating-Point Numbers
d. Instructions

3. Program Addressable Registers.
4. Indicators

a. Zero Indicator .. .
b. Negative Indicator
c. Carry Indicator ..
d. Overflovv Indicator .
e. Exponent Overflow Indicator
f. Exponent Underflow Indicator .
g. Overflow Mask Indicator .
h, Tally Runout Indicator
i. Parity Error Indicator
j. Parity Mask Indicator.
k. Master Mode Indicator

5. Instruction Classifications
a. Data Movement
b. Fixed-Point Arithmetic.
c. Boolean Operations ...
d. Comparison
e. Floating-Point Arithmetic
f. Transfer of Control ..
g. Special Operations ...
h. Input-Output Initiation.

G. Address :\Tod if ication
a. Register Designator ..
b. Register Modification (R).
c. Register Then Indirect (R)I
d. Indirect Then Register I(R)

I-1

I-1
I-1
I-2
I-2
I-2
I-2
I-2
I-2
I-2
I-3
I-3

II-1

II-1
1I

J)

TT-,'1
II ''

II-5
II-7
II-7
II-8
II-9
II-9
II-9

II-10
II-11
II-11
II-11
II-11
II-11
II-11
II-12
II-12
II-1~

II-13
II-14
II-14
II-14
TT 1 ,-
11- .lJ

II-15
II-13
II-16
II-17
II-18
II-19
II-20

©@~J lP ill lJU rn~~~ ti®®®----------------------------

iii

II.
(cont)

B.

TABLE OF CONTENTS (Cont)

e. Indirect Then Tally I(T)
f. Indirect Only (I)
g. Increment Address, Decrement Tally (ID)
h. Decrement Address, Increment Tally (DI)
i. Increment Address, Decrement Tally, and Continue (IDC)
j. Decrement Address, Increment Tally, and Continue (DIC)
k. Add Delta (AD)
1. Subtract Delta (SD)
m. Character From Indirect (CI)
n. Sequence Character (SC)
o. Fault (F)

Operational Characteristics
1. Master/Slave Modes of Operation ..
2. Program Execute Interrupts
3. Faults

a. Instruction Generated Faults ..
b. Program Generated Faults .. .
c. Hardware-Generated Faults
d. Manually Generated Faults

4. Memory Cycles .
5. Instruction Execution Timing

III. INSTRUCTION REPERTOIRE

A. General Remarks and Format
B. M-6 05 Machine Instructions . .
C. M-605 MACRO Instructions

IV. SYMBOLIC l\IACRO ASSEMBLER -- G::\IAP

A.
B.

General Description
Language Characteristics
1. Language Format ...

a. Location Field ..
b. Operation Field .
c. Variable Field
d. Comments Field ..
e. Identification Field.

2. Symbols
3. Expressions

a. Elements
b. Terms
c. Algebraic Expressions
d. Boolean Expressions

4. Literals
a. Decimal Literals
b. Octal Literals
c. Alphanumeric Literals
d. Instruction Literals ..
e. Variable Field Literals
f. Literals Modified by DU or DL.

II-20
11-21
II-22
II-22
II-23
II-23
II-23
II-24
11-24
11-26
11-26
11-27
11-27
11-28
II-31
II-31
II-31
11-32
11-33
II-35
II-36

III-1

III-1
III-3

III-83

IV-1

IV-1
IV-2
IV-2
IV-2
IV-2
IV-3
IV-4
IV-4
IV-4
IV-5
IV-5
IV-5
IV-5
IV-6
IV-7
IV-7
IV-8
IV-9
IV-9

IV-10
IV-10

©@~[pffiu~W[L~~I®®®-------------

iv

IV.
(~ont)

c.

5.
6.

TABLE OF CONTENTS (Cont)

Processor Instructions
Address l\fodification Features
a. Summary
b. Register (R) Modification
c. Register Then Indirect (RI) Modification.
d. Indirect Then Register (IR) Modification.
e. Indirect Then Tally (IT) Modification .. .

Pseudo-Operations
1. General
2. Control Pseudo-Operations .

a. Detail ON/OFF (Detail Output Listing).
b. Eject (Restore Output Listing)
c. List ON/OFF (Control Output Listing)
d. REM (Remarks)
e. LBL (Label)
f. PCC ON/OFF (Print Control Cards) .
g. REF ON/OFF (References)
h. P.\lC Ol\/ OFF (Print .\lACRO Expansion) .

TTT tTitlo\
..L .!.. _i......... ~ .!.. -"· ~ L <,_ ,J ,;, ;. ~

TTLS (Subtitle)
'"-.'1TfT1 ,-,,, 1,,vv -- ~---~· - -~,

1. ABS (Output Absolute Text)
rn. FUL (Output Full Binary Text) .
n. TCD (Punch Transfer Card)
o. PUNCH ON/OFF (Control Card Output) .. .
p. DCARD (Punch BCD Card)
q. END (End of Assembly)

3. Location Counter Pseudo-Operations
a. USE (Use Multiple Location Counters) .
b. BEGIN (Origin of a Location Counter)
c. ORG (Origin Set by Programmer) .
d. LOC (Location of Output Text) .
e, EVEN
f. ODD
g. EIGHT

4. Symbol Defining Pseudo-Operations
a. EQU (Equal To)
b. FEQU (FORTRAN Equal To) .. .
c. BOOL (Boolean)
d. SET (Symbol Redefinition)
e. MIN (Minimum)
f. MAX (Maximum)
g. HE~AC>.D (Heading) ..•.........
h. SYMDEF (Symbol Definition) ..
i. SY~rnEF (Symbol Reference) .. .
j. OPD (Operation Definition)
k. OPSYN (Operation Synonym)

:1. Data Generating Pseudo-Operations
a. OCT (Octal)
b. DEC (Decimal) ..

IV-10
IV-11
IV-11
IV-12
IV-13
IV-14
IV-16
IV-23
IV-23
IV-24
IV-24
IV-25
IV-25
IV-26
IV-26
IV-27
IV-28
IV-28
rv -l ~i
IV-29

IV-30
IV-31
IV-31
IV-32
IV-32
IV-33
IV-33
IV-33
IV-34
IV-34
IV-35
IV-35
IV-35
IV-35
IV-36
IV-36
IV-36
IV-37
IV-37
IV-38
IV-38
IV-38
IV-40
IV-41
IV-42
IV-43
IV-43
IV-43
IV-45

©@~ ~17\Tlu w~~~ 1l ®®®-----------------------------

v

IV.
(cont)

TABLE OF CONTENTS (Cont)

c. BCI (Binary Coded Decimal Information)
d. VFD (Variable Field Definition)
e. DUP (Duplicate Cards)

6. Storage Allocation Pseudo-Operations .
a. BSS (Block Started by Symbol)
b. BFS (Block Followed by Symbol)
c. BLOCK (Block Common)
d. LIT (Literal Pool Origin)

7. Conditional Pseudo-Operations
a. INE (If Not Equal)
b. IFE (If Equal) ...•................................
c. IFL (If Less Than)
d. IGL (If Greater Than)

8. Special Word Formats
a. ARG A, M (Argument -- Generate Zero Operation Code

Computer Word)
b. NONOP (Undefined Operation)
c. NULL (Null)
d. ZERO B, C (Generate One Word With Two Specified 18-bit Fields) .
e. MAXSZ (Maximum Size of Assembly)

9. Address Tally Pseudo-Operations
a. TALLY A, T, B (Tally)
b. TALL YB A, T, B
c. TALL YD A, T, D (Tally and Delta)
d. TALLYC A, T, mod (Tally and Continue)

10. Repeat Instruction Coding Formats
a. RPT .•..•.••.••..•..• · ..•.•....................
b. RPTX .•••.......•.......••....................
c. RPD .•••••..••.••..•.•.•••....................
d. RPDX .•..•.•..•.........•.....................
e. RPDB .•..••.•...........•.....................
f. RPDA •..........•.............................
g. RPL .·, •...•............. ,
h. RPLX .. .

11. Program Linkage Pseudo-Operations
a. CALL (Call -- Subroutines)
b. SAVE (Save -- Return Linkage Data)
c. RETURN (Return -- From Subroutines)
d. ERLK (Error Linkage -- To Subroutines)

D. MACRO Operations
1. Introduction .
2 . Definition of the Prototype .

a. MACRO (MACRO Identification) Pseudo-Operation
b. ENDM (End MACRO) Pseudo-Operation
c. Prototype Body .

3. Using a Macro Operation
4. Pseudo-Operations Used Within Prototypes

a. Need for Prototype Created Symbols
b. Use of Created Symbols
c. CRSM ON/OFF (Created Symbols)•...•..
d. ORGCSM (Origin Created Symbols)

IV-47
IV-48
IV-49
IV-51
IV-51
IV-51
IV-52
IV-52
IV-53
IV-53
IV-53
IV-54
IV-54
IV-55

IV-55
IV-55
IV-55
IV-55
IV-56
IV-56
IV-56
IV-56
IV-56
IV-56
IV-57
IV-57
IV-57
IV-57
IV-57
IV-57
IV-58
IV-58
IV-58
IV-58
IV-58
IV-60
IV-62
IV-63
IV-64
IV-64
IV-65
IV-65
IV-65
IV-66
IV-68
IV-70
IV-70
IV-70
IV-72
IV-72

©©~~ffiv~rn~rn~t®®®~~~~~~~~~~~~~

vi

IV.
(conL)

v.

E.
F.
G.

TABLE OF CONTENTS (Cont)
e. IDRP (Indefinite Repeat)
f. .,-... T-T ""tr ~ - 1 - L _ "I\ If" ,\ .r"lfT""\ r"\.\

U~LlVl \Uelet.e lVlf\\...11"\V/ •••••••••••••••••••••

g. PUN1VI (Punch lVIACRO Prototypes on Controls) .
h. LODM (Load System MA CR Os)

o. Notes and Examples on Defining a Prototype ..
a. Field Substitution
b. Concatenation of Text and Arguments
c. Argument in a BCI Pseudo-Operation
d. MACRO Operation in a Prototype . . .
e. Indefinite Repeat
f. Subroutine Call MACRO

6. System (Built-In) MACROS and Symbols .
Source Program Input
Relocatable and Absolute Assemblies
Assembly Outputs
1. Binary Decks
2. Preface Card Format
3. Relocatable Card Format
4. Relocation Scheme ...
5. Absolute Card Format
I' ,) . Transfer Card Format

a. Full Listing Format .
n...., ~.f-, 0,~ ·p,-1 I ~~-··f.~i.1,-1 _,_..._ .._ --~ ~.

c. Blank Common Entry
d. Symbolic Reference Table .
e. Error Codes

H. MACRO Assembler Implementation.
I. Relocatable and Absolute Expressions

PROGRAl\11\IING EXAMPLES

Example 1: Accumulative Summation.
Example 2: Character Movement ..
Example 3: List Comparison
Example 4: Gray Code to Binary
Example 5: Binary to Binary Coded Decimal (BCD) ..
Example 6: BCD Addition
Example 7: BCD Subtraction
Example 8: Fixed-Point Integer to Floating-Point Conversion
Example 9: Character Transliteration
Example 10: Table Lookup

APPENDIX A BINARY TO BCD CONVERSION

APPENDIX B GRAY CODE•....

APPENDLX C M-605 STANDARD CHARACTER SET

APPENDIX D PSEUDO-OPERATIONS BY FUNCTIONAL CLASS WITH PAGE
REFERENCES

IV-72
T"tT "7'1
.1 y- I"%

!V-74
IV-75
IV-76
IV-76
IV-76
IV-76
IV-76
IV-77
IV-77
IV-77
IV-78
IV-79
IV-80
IV-80
IV-80
IV-82
IV-83
IV-84
IV-84
rV-i-\4

IV-85
TV-Qf;

IV-86
IV-86
IV-86
IV-88
IV-92

V-1

V-1
V-2
V-3
V-3
V-4
V-5
V-6
V-8
V-8

V-12

A-1

B-1

C-1

D-1

©@~~J LB ill uu wlL~IB J ®®® -----------------------------

vii

TABLE OF CONTENTS (Cont)

APPENDIX E CONVERSION TABLE OF OCTAL-DECIMAL INTEGERS
AND FRACTIONS . E-1

APPENDIX F TABLE OF POWERS OF TWO AND BINARY-DECIMAL
EQUIVALENTS . F-1

APPENDIX G M-605 INSTRUCTION MNEMONICS WITH ALLOWABLE ADDRESS
J\i10DIFICATIONS. G-1

APPENDIX H M-605 INSTRUCTION MNEMONICS CORRELATED WITH THEIR
OPERATION CODES. H-1

APPENDIX I M-605 MNEMONICS IN ALPHABETICAL ORDER WITH PAGE
REFERENCES. I-1

APPENDIX J M-605 INSTRUCTIONS LISTED BY FUNCTIONAL CLASS WITH
PAGE REFERENCES AND TIMING . J -1

©©~rPffivurn~~~1 ®®®-------------

viii

i. M-605 SYSTEM DESCRIPTIOl\i

A. GENERAL DESCRIPTION

The M-605 Computer is a militarized digital computing system that is designed for medium
scale real-time applications. It is one member of General Electric's high performance
Compatibles/600 family, which also includes the G E-635 and G E-625 for large scale business,
scientific and real-time applications; the M-625 for large scale aerospace and defense
applications; and the micro-miniaturized M-605 for airborne and spaceborne applications.

The GE-635, GE-625, and M-625 Computers are exact functional equivalents that differ only
in speed and construction. The M-605 and A-605 Computers are identical to the GE-625 and
GE-635 Computer systems in concept and organization. Their features and instruction reper
toire are a compatible subset of those in the GE-635 Computer, and are directed to real-time
applications not requiring the features of the larger systems.

B. COMPUTER COMPONENTS

Ihc l\'l,,,.,U05 Con1puter Sy stern uc.;r1:::;i!::itc of th . .cct: \3) 11E1Jul. .t1iodu.lt::s. thf; l\1c·rnory, the Processor,
?.!:rl thP l"Pfi,1-timP inpnt-n11tpnt <'ontroller <RT-TOC). These module:;;; can he arrang-ed in a
Val'lely Ui CUI1li~ula1..iu110, uolii!:, il1ulLit-Jlc u1<..01lH.hJ iln.JJ..ii1..,;:) ~v p.L'Jv.i-::!L ~1~..:.__:'-:1~.i.;:· J ...;t;:;.:.:::.;~,
multiple processor modules to provide the necessary computation capability, and, if necessary,
multiple RT-IOC modules for the complement of real-time and peripheral equipments required
in an installation. System expansion is accomplished by the addition of modules and connecting
cables. Various options are available for each of the major modules.

The processor module is that portion of the system which performs the function of executing
the various programs stored in the memory module and processing execute interrupts acknow
ledged by the memory modules. The M-605 processor uses a 36-bit, single address instruction
and a 36-bit operand. Each processor can be connected to, and can communicate with as many
as four memory modules. Therefore, each processor can directly address as many as 262, 144
words of magnetic core storage. All of the memory modules appear to the processor as a
single memory with contiguous addresses. All M-605 processor modules contain a basic set of
all fixed point, single-precision, real-time, character handling and special instructions. The
floating point and double-precision instructions are handled by macro-operations or an optional
hardware package.

The memory module is the heart of the computer system through which all communications
and control functions are routed, whether between processor and external devices or between
several processors. The M-605 Computer System uses an asynchronous; coincident-current
magnetic core memory available in a 1 or 2-microsecond cycle time. Each memory module
is normaliy available with from 16, 384 to 65, 536 36-bit words of storage, but can be
provided with more memory capacity if so required for a specific application.

The RT-IOC module is the input-output terminal for the M-605 Computer System. Standard and
non-standard peripherals and real-time devices are interfaced through the RT-IOC. Each RT
IOC module can contain up to 30 channels. These may be expanded using channel multiplexers to

(~ 1'11'1 i~V~ I]//:\ Ii il ~ 11 IS~ 17 I~ 1~1 ~'1
~ ~uvu lJ Ln..l u U~L.::::iL.::::iC"J v \.V\.V\.V ------------------------------

I-1

serve as many as 64 low data-rate devices for each external channel. The RT-IOC channel
provides an efficient interface for the device since the channel is customized to the device.

C. SYSTEM CHARACTERISTICS

1. Dual Mode Processor

Two classes of programs are executed by the M-605 Computer system: those that provide system
control, and those that are directly related to the application. Control programs are executed
in the master mode, whereas all applications programs are executed in the slave mode. In a
multiprogramming environment, this essential and distinct delineation of operating modes assures
that each program in the system will not alter or affect the others.

2. Dynamic Program Relocation

Each object program in memory is stored with addresses relative to zero. The absolute
effective address is determined for each instruction as it is executed. Therefore, programs
can be moved within memory, or they can be temporarily interrupted, placed in secondary
storage, and returned to any available block of memory locations without the need for software
relocation.

3. Processor- Oriented Memory Protection

Multiple programs occupying the same memory modules at the same time must be protected
from each other. Each processor module in an M-605 Computer System has provisions for
automatically limiting itself to any predetermined memory area when it is in its slave mode.

4. Input-Output-Oriented Memory Protection

Input-output activities that are requested by one object program must not be permitted to
disturb any other object program unintentionally. Consequently, the memory has provision
to protect blocks of memory for data transfers through the RT-IOC to insure that pre-assigned
data-transfer area limits are not violated. This is controlled by the Real-Time Input-Output
Supervisor within G ECOS/605.

5. Execute Interrupt Orientation

In the modern multi-programming computer system it is necessary to free both the hardware
and software from any specific timing requirements as well as from the responsibility of
checking other components of the system for either completion of tasks or requests for service.
Therefore, in the M-605 System, devices that have completed assigned tasks or that require
service will generate execute interrupts to the current flow of instructions. These interrupts
may be generated by processors as well as by input-output devices.

6. Interval Timer

Over-all systems control is facilitated by a timer register that is provided in each processor
module. The timer is used to prevent any single program from monopolizing the processor or
from running longer than the maximum time specified by the user. The timer is also used as a
countdown clock to provide time-of-day and component utilization data.

I-2

7. Fault Traps

Because of the continuous access needs in a real-time programming application, the M-60S
Computer provides for continuous on-line operation. Any operation that could cause the system
to "hang up" results in a fault trap to the master mode supervisor program. GECOS/605, so
that immediate remedial action can be initiated.

D. SOFTWARE SYSTEM

The nrimarv obiective of the M-605 software svstem is to provide support of the M-605 hard-
.~.~·.:,.;;...., fl"'n ._,,.._,.._..,.f,.._..,."YV'l'lY'ln<:> nf Y'£>'ll-til'YIO l'Yll<::!Qll'"\n<::?v <:infl tr. n"l"Al;lflP tho /"'<:l~~hilihr tr. 11<::!0 tho l\/f_g()r:;
VVc::t..LV .LiJ. l,..J.J.'J .PV.J...J..V.L..LJ.J.(..L.l..LVV V..L ..L'-'L4'..L V.&...1...1..1.'-' ..1...1..L..L.._,.._,_,, "''-' I-'.&.-1'.L_, V.L.L.._, _. 1-' "-'.&..&..&.V,J '"'"-'_.....,.._,_, _.._ '-J\..JV

concurrently for scientific data processing. The standard M-605 software is user-compatible
with equivalent software for the GE-635 Computer. The following standard software is available
for the M-605:

GECOS/605

GMAP

FORTRAN IV
COBOL 61 Extended

JOVIAL J3*

GELOAD/605

Utility- Library Routines

Diagnostic Package

bupport Software

Operating Supervisor

MACRO Assembly Program

Compiler

Compiler+

Compiler+

Loader

'T'hr' 1\'L.J:(lr.:; ("f"l"YV'lnqtp,... 'lnil He! Q.n.fhP'lY'P C!~~c:tr>'YY' ic: 'YY'<:l'P"l<:IO"Pri hv th0 !'"'!i:n"IPY'".l~ f'f"ll'i">'l"tohPncd"0 flnnY""I-..

ting Supervisor (G ECOS/605). G ECOS/605 permits th~ con~urrent processing of a real-ti~e
program and any completely unrelated non real-time program. Both types of programs can
occupy the magnetic core memory at the same time and time-share the use of the processor.
This multi-programming environment is completely automatic under the control of GECOS/605.
The real-time program is guaranteed highest priority in the system and is always given control
of the processor when it requires it. The non-real-time program is only given processor time
during slack periods in the real-time program. A sequential monitor version of GECOS/605 is
also available for real-time only or job shop only applications.

GECOS/605 performs the following basic functions:

On-line media conversion

Allocation of memory and peripherals to each program

Dispatching of programs on a time-shared processor basis

Input-output supervision of all real-time and peripheral devices

Processing of multiplexed execute interrupts from the RT-IOC

Standard fault processing

Queuing of input-output requests

Job sequencing

The user program interface to GECOS/605 is identical with the GECOS interface on the GE-625,
GE-635, and M-625 Computers. However, because different peripheral devices are used with
the M-605 Computer, the status returned may vary in some cases from status returned by a
similar peripheral device used with the GE-625 and GE-635 Computers.

+Presently available only with optional floating point hardware.
*Including I/O capabilities of J3X.

Ir\\ Ir\\ nn In\ n c;-;:i n lo\ n r;::i (,;') /) (;::::, In\ In\

\JD~ L~)J l? ill U U lEJ l1~~ t1 ®WW ------------------------------

I-3

ii. 1-'RuGRAMMii~G Ei~ViROi~fviENT

A. PROGRAMMING CHARACTERISTICS

1. Number System

The binary number system is used in the M-605 Computer. All negative numbers are expressed
in two's complement form. The full range of numbers possible in the computer considering the
36-bit word length is shown in binary and decimal form below:

011111111111111111111111111111111111

011111111111111111111111111111111110

000000000000000000000000000000000010

000000000000000000000000000000000001

000000000000000000000000000000000000

111111111111111111111111111111111111

111111111111111111111111111111111110

100000000000000000000000000000000001

100000000000000000000000000000000000

Decimal

+-235 -1

~ 23 ;) -2

0

-1

-2

Under this system of notation, all positive numbers are represented by their binary equivalent
and all negative numbers by the two's complement of the positive value. The leftmost or most
significant bit (bit position 0) gives the sign of the number \Vith a "0" indicating positive num
bers and a "1" indicating negative numbers. It should be noted that as positive numbers increase
positively, the "1" bits propagate to the left, i.e., become more significant, while as negative
numbers increase negatively, the "O" bits propagate to the more significant bit positions.

©©[Gt]~ufITuw[L~IB l ®®® __________________ _

II-1

The two's complement of a number is formed by taking the one's complement of the number
(by changing all "0" bits to "1" and all "1" bits to "0") and adding "1", or by the following
method:

a) All low order (least significant, i.e., rightmost) bits are left unchanged up to and
including the first low order "1".

b) All bits of higher order than the lmvest order "1" are changed substituting "0" for
"1" bits and "l" bits for "0" bits.

Example:

O· · ·000000000001000110
1· .. 111111111110111010

+70
-70

2. Representation of Information

The processor is fundamentally organized to deal with 36-bit groupings of information. Special
features are also included for ease in manipulating 6-bit or 9-bit characters, 18-bit half words,
and 72-bit double precision words.

The numbering of bit positions, character positions, words, etc., increases in the direction of
conventional reading and writing: from the most- to the least-significant digit of a number, and
from left to right in conventional alphanumeric text.

Graphical presentations in this manual show registers and data with position numbers increasing
from left to right.

The machine word consists of 36 bits arranged as follows:

0

ONE MAC~INE WORD I
UPPER HALF 17 18 LOWER HALF 35

WORD WORD

Data transfers between the processor and memory are word orientated: 36 bits are transferred
at a time. When words are transferred to a magnetic core storage unit, this unit adds a parity
bit to each 36-bit word before storing it. When words are requested from a magnetic core
storage unit, this unit verifies the parity bit read from the core and removes it from the word
transferred prior to sending each word to the processor.

©©~l?illu~IB~[g~f ®®®-------------

II-2

a. ALPHANUMERIC DATA

Alphanumeric data are represented by six-bit or nine-bit characters. A machine word contains
either six or four characters:

CHARACTER POSIT IONS
WITHIN A WORD:

BIT POSITIONS
WITHIN A CHARACTER:

0

0

0 2 3

5,6 11,12 17,18

I'\
v

8,9 17, 18

0 I I I 2 I 3 I 41 51} SIX - BIT

4

23,24 29,30

2 3

26,27

0 I I I 2 I 3 I 4 I 5 I 6 I 7 I 8 I} NINE - BIT

b. BINARY FIXED-POINT NUMBERS

"' 5 It SIX- BIT

35 -

I 1 NiNE-BiT If
35

The instruction set comprises instructions for binary fixed-point arithmetic with half-word and
single-word precision. Double-word precision is handled by macro-instructions or by an optional
hardware package.

PREC!SION REPRESENTATIVE
-----,

...__ _____ ..._ -- -- -- _J
UPPER HALF

HALF-WORD
0 17

LOWER HALF
r---
L-----

18 35

SINGLE - WORD

0 35

DOUBLE -WORD

0 EVEN ADDRESS 35,36 ODD ADDRESS 71

Instructions can be divided into two groups according to the way in which the operand is inter
preted: the "logic" group and the "algebraic" group.

For the nlogicn group, operands and results are regaraea as unsigned, pos1uve omary numbers.
In the case of addition and subtraction, the occurrence of any overflow is reflected by the carry
out of the most-significant (leftmost) bit position:

• Addition -- If the carry out of the leftmost bit position equals 1, then the result is
above the range.

©©~[Pill u~ rn~~~ t ®®®----------------------------

II-3

• Subtraction -- If the carry out of the leftmost bit position equals 0, then the result is
below the range.

For the "algebraic" group, operands and results are regarded as signed, binary numbers, the
leftmost bit being used as a sign bit, (a 0 being plus and 1 minus). When the sign is positive
all the bits represent the absolute value of the number; and when the sign is negative, they
represent the 2's complement of the absolute value of the number.

In the case of addition and subtraction the occurrence of an overflow is reflected by the carries
into and out of the leftmost bit position (the sign position). If the carry into the leftmost bit
position does not equal the carry out of that position then overflow has occurred. If overflow has
been detected and if the sign bit equals 0, the resultant is below range; if with overflow, the
sign bit equals 1, the resultant is above range. (See Paragraphs 4c and 4d, Carry and Overflow
Indicators, below.)

An explicit statement about the assumed location of the binary point is necessary only for mul
tiplication and division; for addition, subtraction, and comparison it is sufficient to assume
that the binary points are "lined up".

In the M-605 processor, multiplication and division are implemented in two forms for 2 's
complement numbers: integer and fractional.

In integer arithmetic, the location of the binary point is assumed to the right of the least
significant bit position, that is, depending on the precision, to the right of bit position 35 or
71. The general representation of a fixed-point integer is then:

n n-1 n-2 1 0 -a 2 +a
1

2 +a
2

2 + ... +a
1

2 +a
0

2 n n- n-

where a is the sign bit.
n

In fractional arithmetic, the location of the binary point is assumed to the left of bit position 1.
The general representation of a fixed-point fraction is then:

II-4

The number ranges for the various cases of precision, interpretation, and arithmetic are
listed below:

INTER
PRETATION

I\ OITUUC"Tlr .,.n, 1 n1w11 ... 11v II HALF-WORD
(Xn, Y0 .. 17)

flt C.:FFH~Alr. INTF<:::RAI - 2 17 ~ N S <.2
17-1.)_ I . ·-~--·; I ... -~- .. ·- 11

FRACTIONAL - I S N ~ (1-2- ii)

LOGIC INTEGRAL OSNS(2
18

-1)

FRACTIONAL 0 SN$ (1-2-IS)

c. BINARY FLOATING-POINT NUMBERS

PREC!S!ON

SINGLE-WORD
(A,Q,Y)

- I S N S (1-235)

OSN S (23~1)

0 SNS (t-2-36)

DOUBLE-WORD
(AO, Y-PAIR)

-IS NS (l-f 71)

0 S N S (2
72

- I)

0 SN S (1-2- 72)

Instructions for hinary floating-point arithmetic with numbers of single-word and double-word
prf'cision arc handled h~' macro-instructions 01· bv an optional hardware pad~age. The uppc r
o bits represent the integral exponent l:. anJ Lile lowe1 28 u1 G-± Lib l cµ1c::::iu1t tl-1._. L a.ctio11ctl
:~·;;;_:";.tissJ. :'.L The ::ot:ltio~ for '1. fln'.1.ting-:ininf- n11mhPr '7 i~·

7 '.\T x2 E (2).
~ (2) 4'~ (2)

0 I 7 8 9 35
SINGLE-WORD Isl Is! I PRECISION:

I+-- E .; 4 M ~1

0 I 7 8 9 71
DOUBLE-WORD Is: Is! I PRECISION:

!+--E ~1~ M

WHERE S SIGN BIT

Before doing floating-point additions or subtractions, the processor aligns the number which
has the smaller positive exponent. To maintain accuracy, the lowest permissible exponent of
-128 together with the mantissa equal to 0. 00 0 has been defined as the machine represen
tation of the number zero (\vhich has no unique floating-point representation). Whenever a
floating-point operation yields a resultant untruncated machine mantissa equal to zero (71 bits
plus sign because of extended precision), the exponent is automatically set to -128.

The general representation of the exponent for single and double precision is:

7 6
-e 2 -t-e 2 -+-

7 6

where e 7 is the sign.

II-5

The general representations of single- and double-precision mantissas are:

Single Precision:

and

0 -1 -2 -62 -63
Double Precision: -m

0
2 +m12 +m22 + ... +m62 2 +m 632

where m 0 is the sign in both cases.

For normalized floating-point numbers, the binary point is placed at the left of the most-
s ignificant bit of the mantissa (to the right of the sign bit). Numbers are normalized by shifting
the mantissa (and correspondingly adjusting the exponent) until no leading zeros are present in
the mantissa for positive numbers, or until no leading ones are present in the mantissa for
negative numbers. Zeros fill in the vacated bit positions. With the exception of the number
zero (represented as 0 x 2-128), all normalized floating-point numbers will contain a binary 1
in the most-significant bit position for positive numbers and a binary 0 in the most-significant
bit position for negative numbers. Some examples are:

Unnormalized positive number

Same number normalized

Unnormalized negative number

Same number normalized

(0 I 000110l)X2 7

sl
(0 I 1101000) X2 4

s'
I -4

(l 11101011l)X2
SI

(11 01011100)X2-G
s' I

The number ranges resulting from the various cases of precision, normalization, and sign are
listed in the table following:

SIGN SINGLE PRECISION DOUBLE PRECISION
1--·

POSITIVE 2 -129::; N::; (l- 2-27) 2 127 2 -129 ::; N ::; (I _ 2 - 63) 2 I 2 7

NORMALIZED
NEGATIVE -(l+ 2 -26) 2-129 ~ N < _2 127 -(l+ 2-62) 2-129 ~ N ~- 2 127

POSITIVE 2 -155 :SN :S (l- 2 -27) 2 127 2 - 191 :S N :S (1_2 - 63) 2 1 2 7

UNNORMALIZED

NEGATIVE _2-155 ~ N ~ _ 2 127 _2-191 ~ N ~ _2 127

NOTE: THE FLOATING- POINT NUMBER ZERO IS NOT INCLUDED IN THE TABLE

©©lDJ[?illuurn~~~t®®®-------------

II-6

d. INSTRUCTIONS

~\lachine instructions have the following general format:

18

'J

0

l
I

17,18

9

OP

I I 6

TAG

26 28 30 35

where

y =- g_ddress field: specifies the address of the memory location, whose contents is to
be used as the operand for this instruction; also used to specify the number of
shifts in shifting instructions.

OP Operation Code: specifies the code of the machine instruction to be executed.

interrupt inhibit: when set to "1 ", prevents the interruption of the program after
this instruction by an execute interrupt.

0 not used: must be zero.

TAG specifies the address modification to be performed

Certain instructions in the repertoire, e.g., the repeat instructions, use a different format
1see incHvidual instruction descriptions).

3. Program Addressable Registers

The registers of a computer are used for temporary storage of data in the processor. Most
instructions deal with the loading or storing of information to and from the machine registers
or the arithmetic or logical combination of this information. The registers of the M-605
processor which are accessible by machine instruction are shown below:

Mnemonic Length

Accumulator AR 36 bits

Quotient QR 36 bits

Combined Accumulator-Quotient AQ 72 bits

x 18 bits each n
(n=O, , 7)

Index (0-7)

Exponent E 8 bits

Base ,Aiddress BAR 18 hits

Indicator IR 18 bits

Timer TR :24 hits

Instruction Counter IC 18 bits

((;'\ 0. nn .rn: n c;ri ,IJ rn: ,IJ :r=i ~ fc:.l .rn: .rn:
\01.QJL(U lr IA~ lJ U~5l1~~ Wi~J® ----------------------------

II-7

The accumulator, quotient and combined accumulator quotient registers are the basic registers
for holding data. These registers are used as follows:

• In fixed point operations as operand registers

• In floating point operations as mantissa registers

• In address modification as index registers.

These halves then are called AU (namely Ao-17), AL (namely A18-35), QU (namely Qo-17), and
QL (namely Q18-35) where U means upper and L means lower.

The eight index registers are used as follows:

• In fixed-point operations as operand registers for half precision

• In address modification as index registers.

The exponent register supplements the AQ-register in floating-point operations, serving as the
register which holds the 8-bit exponent.

The base address register is used in address translation and memory protection. It stores the
base address (absolute address of the object program being executed) and the number of 1024-
word blocks assigned to that program.

The indicator register is a generic term for all the program-accessible indicators within the
processor. The name is used where the set of indicators appears as a register, that is, as
source or destination of data.

The timer register is decremented by one each 1/64 milliseconds (15. 625 microseconds) and a
timer runout fault trap occurs whenever its contents reach zero. If timer runout occurs in
master mode, the trap does not occur until the processor returns to slave mode; but decremen
tation continues beyond zero.

The instruction counter holds the address of the next instruction to be executed.

4. Indicators

The indicators give the programmer information about the present state. of the processor and
the program it is executing. The indicators are set automatically by the processor and, in
general, indicate the results after the execution of the present instruction. The indicators can
be regarded as individual bit positions in an 18-bit half-word indicator register (ffi). An
indicator is set to the ON or OFF state by certain events in the processor, or by certain
instructions. The ON state corresponds to a binary 1-in the respective bit position of the
ffi; the OFF state corresponds to a 0.

The description of each machine instruction includes a statement about those indicators that
may be affected by the instruction and the condition under which a setting of the indicators to a
specific state occurs. If the conditions stated are not satisfied, the status of this indicator
remains unchanged.

©®~[pffiuuw[L~~;®®®-------------

II-8

The instruction set includes certain instructions which transfer data between the lower half of
a storage location and the indicator register directly. The following table lists the indicators
th8t have been implemented, their relation to the bit positions of the lower half of a memory
location, and the instructions directly affecting indicators.

Implementation Bit Position

18
19
20
21
22

Assigned 23

lTnaRsignerl

24
25
26
27
28

29
30
31
~2

33
34

-7 -r- ~ - ~ •-Y-,, T/""<O '1. '"'T'"'~--·-,T'!

cl. 1 li\.\j .l..i..' .LJ.iv.c·~ l. \...J.i\.

Indicator

Zero
Negative
Carry
Overflow
Exponent Overflow
Exponent Underflow
Overflow Mask
Tally Runout
Parity Error
Parity Mask
Master Mode

1\-Tust be
Zero

Indicator Instructions

1. Load Indicators (LDI)
2. Store Indicators (STI)
3. Store Instruction Counter

Plus 1 and Indicators (STC 1)
4. Return (RE T)

The zero indicator is used to test for zero or non-zero operands or resultants. It is affected
by instructions that change the contents of a processor register (A, Q, AQ, Xn, BAR, IR, TR)
or adder, and by the comparison instructions. The indicator is set ON when the new contents
of the affected register or adder output contains all binary O's; otherwise the indicator is set OFF.

The zero indicator is tested by the Transfer on Zero (TZE) and the Transfer on Not Zero
(TN Z) instructions.

b. NEGATIVE INDICATOR

The negative indicator is used to test for negative or positive operands or resultants. It is
affected by instructions that change the contents of a processor register (A, Q, AQ, Xn, BAR,
IR, TR) or adder, and by comparison instructions. The indicator is set ON when the new
contents of bit position 0 of this register or adder output is a binary l; otherwise it is set OFF.

The negative indicator is tested by the Transfer of Minus (TlVII) and Transfer on Plus (TPL)
instructions.

c. CARRY INDICATOR

The carry indicator is used to determine if an operation has generated a carry out of the two
most significant bits (bit positions 0 and 1). This is not an arithmetic overflow. The carry

©®~ [? ffi v~ rnn~~~ t ®®®-----------------------------

II-9

indicator is affected by left shifts, additions, subtractions, and comparisons. The indicator is
set ON when a carry is generated out of bit position 0; otherwise it is set OFF.

In single precision arithmetic operations, a carry out of bit position zero is normally ignored
by the programmer since it does not affect the operation. In multi-precision arithmetic, the
carry out of each lower portion of the resultant must be recognized and added to the next higher
portion of the operand. The addition of two negative numbers is an example of the generation
of a carry:

single precision:

1111 11100 -4
1111 11101 -3

carry 1111 11001 -7
~,,;.;

double precision:

upper operand

1111. .. 1111
1111. .. 1111

lower operand

1111 11100
1111. ... 11101

-4
-3

carry 1111 ... 1110 1111 11001

(not us~ 1~arry - (used on upper operand)

1111. .. 1111 -7

The Transfer on Carry (TRC) and the Transfer on No Carry (TNC) instructions test the state of
the carry indicator. The Add with Carry (AWCA, AWCQ) and the Subtract with Carry (SWCA,
SWCQ) instructions facilitate the handling of multi-precision arithmetic.

d. OVERFLOW INDICATOR

The overflow indicator is used to determine if the resultant of an operation has exceeded the
capacity of the computer. It is affected by the arithmetic instructions, but not by compare
instructions and Add Logical (ADL(R)) or Subtract Logical (SBL(R)) instructions. When the
indicator is set, it is not automatically reset until it is specifically reset by the program.

The overflmv indicator is set if there is a carry out of either the most significant bit (bit posi
tion 0) or the next most significant bit (bit position 1) but not both.

Example:

0111. ... 11111
0000 00001

1000 00000
'U carry

+235 -1
+1

On arithmetic shifts to the left, an overflow is produced whenever the number involved is
changed in sign during the shift.

II-10

The Transfer on Overflow (TOV) instruction tests the status of the overflow indicator and sets
it OFF. The Load Indicator (LDI) and Return (RET) instructions destroy the contents of the
overflow indicator since they reset it a specified position.

e. EXPONENT ()VERFLOW INDICATOR

The exponent overflow indicator is affected by arithmetic operations with floating-point numbers
or with the exponent register (E). The indicator is set ON when the exponent of the result is
larger than + 127 which is the upper limit of the exponent range. Since it is not automatically
set to OFF otherwise, the exponent overflow indicator reporLs any exponenL overflow that has
happened since it was last set OFF by certain instructions (LDI, RET, and Transfer on
Exponent Overflow (TEO)).

f. EXPONENT UNDERFLOW INDICATOR

The exponent underflow indicator is affected by arithmetic operations with floating-point
numbers, or with the exponent register (E). The indicator is set ON when the exponent of the
result is smaller than -128 which is the lower limit of the exponent range. Since it is not
automatically set to OFF otherwise, the exponent underflow indicator reports any exponent
underflow that has happened since it was last set OFF by certain instructions (LDI, RET,
and Transfer on Exponent Underflow (TEU)).

g. OVERFLOW 1\IASK INDICATOR

\\'hen the t_:\ 1.:ri'lov\ n:~Lsk ir1dicator is C)~~, thr;n the setting CJ~~ of the o\~crflo\\' indicator .. exponent
overflow inrlicator, or exoonent underflow indicator does not cause an overflow fault trap to

indicator can be set ON or OFF only by the instructions LDI and RET. Clearing of the overflow
mask indicator to the unmask state does not generate a fault from a previously set overflow
indicator, exponent overflow indicator, or exponent underflow indicator. The status of the
overflow mask indicator does not affect the setting, testing or storing of these indicators.

h. TALLY RUNOUT INDICATOR

The tally runout indicator is affected by the Indirect Then Tally (IT) address modification type
(all designators except Indirect and Fault) and by the Repeat, Repeat Double, and Repeat Link
instructions (RPT, RPD, and RPL). The termination of a Repeat instruction because a specified
termination condition is met sets the tally runout indicator to OFF. The termination of a
Repeat instruction because the tally count reaches 0 (and for RPL because of a O link address)
sets the tally runout indicator to ON: the same is true for tally equal to O in some of the IT
address modifications. The tally runout indicator is tested by means of the Transfer On Tally
Runout Indicator OFF (TTF) instruction.

i. PARITY ERROR INDICATOR

The parity error indicator is set to ON when a parity error is detected during the access of
vvords from memory. It may be set to OFF by the LDI or RET instruction.

j. PARITY l\IASK INDICATOR

When the parity mask indicator is ON, the setting of the parity error indicator does not cause
a parity error fault trap to occur. When the parity mask indicator is OFF, such a trap will

riD r'm m IDl !.\ ~ n lo) n R G? /1 ~ 1n1 (iii
_ll) \UJ I;~~ 11; L~J U lJ l.!'.J I~ l_c:;\'1)) (I lQ) l~J l~J ------------------------------

II-11

occur. The parity mask indicator can be set to ON or OFF only by the instructions LDI and
RET. Clearing of the parity mask indicator to the unmasked state does not generate a fault
from a previously set parity error indicator. The status of the parity mask indicator does not
affect the setting, testing, or storing of the parity error indicator.

k. MASTER MODE INDICATOR

The master mode indicator can be changed only by an instruction. For a description of how the
indicator can be changed, refer to the description of the response to execute interrupts on page
11-30 and to the following instruction descriptions:

Instruction

Master Mode Entry (MME)

Return (RE T)

Derail (DRL)

Transfer and Set Slave (TSS)

When the master mode indicator is ON, the processor is in the master mode; however, the
converse is not necessarily true. (See the MME and DRL descriptions.)

5. Instruction Classifications

Most of the instructions available on the M-605 Computer are familiar to experienced program
mers of large-scale computers. However, additional instructions have been provided to give
the M-605 programmer extended capability for character handling, decision making, and
advanced programming techniques involving list processing. A large portion of the instruction
repertoire is devoted to real-time applications.

The instructions are grouped into the following classifications and sub-classifications:

• Data Movement
Load
Store
Shift

• Fixed-Point Arithmetic
Addition
Subtraction
Multiplication
Division
Negation

• Boolean Operations
AND
OR
EXCLUSIVE OR

• Comparison
Compare
Comparative AND
Comparative NOT AND

©@~[pffilf~(ID[L~~t®®®-------------

II-12

• Floating-Point
Load
Store
Addition
Subtraction
Multiplication

Negation and Normalization
Comparison

• Transfer of Control
Transfer
Conditional Transfer

• Miscellaneous Operations

• Master Mode Operations
Master Mode
Master Mode and Control Processor

The double precision and floating point instructions in the above groups may be handled by
macro-instructions or by an optional hardware package. The results of the execution of these
instructions~ however, are completely compatible with the results of the hardware instruc
tions on the GE-635.

The following paragraphs briefly describe the uses and salient features of the major instruction
types. For a complete description of each instruction see Section III.

a. DATA MOVEMENT

Besides the ability to load and store all processor registers, the Effective Address to (Register)
instructions permit inter-register transfer. A zero address with Register modification replaces
the contents of the register specified by the instruction with the contents of the register
specified by address and modification.

The Store Zero (STZ) instruction permits the clearing of a memory location. This may be
executed in a repeat mode. The Store Instruction Counter plus 1 (STCl) instruction stores
both the instruction counter plus the indicators. This is complemented by the Return (RE T)
instruction which restores these indicators as it transfers.

Character handling and manipulation is facilitated by indirect-and-tally address modification
and by instructions for directly loading and storing selected character positions of the accumu
lator or quotient register. The A and Q registers can be shifted individually or as one unit.
The shift commands include right or left shift arithmetic, right shift logical, and left shift
rotate.

b. FIXED-POINT ARITHMETIC

Fractional and integer instructions for both multiplication and division afford the programmer
freedom from scaling the results of these operations. Normally, integer divide or multiply
operations take place in the Q register and fractional divide or multiply operations take place
in the A register. This convention permits easy programming of fixed-point arithmetic
operations.

II-13

ArithrneLic operations which add directly to a memory location and, which place the result of a
subtraction directly in memory are included. An Add One to Store (AOS) instruction facilitates
distribution and analysis and switch word settings.

c. BOOLEAN OPERATIONS

The logical operations AND, OR, and EXCLUSIVE OR can be performed by both the arithmetic
and the index registers. The result may be placed in either the register or directly in memory.

d. COMPARISON

Compare operations do not alter the contents of storage or the specified register but merely
set or clear indicators as the result dictates.

The fixed-point Compare instructions are shown below:

Instruction

Compare Magnitude

Compare with Register

Comparative AND with Register

Comparative NOT AND with Register

Compare Masked

Compare with Limits

e. FLOATING-POINT ARITHMETIC

Principal Functions

Compare absolute values

1. Compare algebraic values
2. Compare characters

Test for zeros in word fields

Test for ones in word fields

Search for identical, selectable fields

Search for a word whose value is
within given limits

Although all rr.odels of the M-605 Computer do not have hardware for floating point arithmetic,
all have hardware and instructions to facilitate and speed up floating point macro-instructions.
The GMAP assembler will recognize the floating point instructions of the GE-635 and place
macros in the assembled program. Sub-routines are used with some of the macro-instructions
to minimize the length of the required macro.

Floating-point operations can be performed on both single- and double-precision data words;
complete sets of data movement, arithmetic, and control instructions are provided for use in
both types of operations. Unless specified otherwise by the programmer, the mantissas of all
floating-point operation resultants are automatically normalized by the hardware. In performing
addition and subtraction, addends and subtrahends are automatically aligned by the circuit
components of the processor. Operations on floating-point numbers are performed by means
of the A register or the 72-bit A-Q register to hold the mantissa, and a separate 8-bit exponent
register.

©©~Willu~ill[L~~I®®®-------------

11-14

The floating-point instruction repertoire includes two divide instructions that are especially
convenient: Floating Divide Inverted (FDI) and Double-Precision Floating Divide Inverted
(DFDI). These instructions cause the contents of the memory location to be divided by the
contents of the A Register or the combined A-Q register - the reciprocal of other divide
instructions in the repertoire. Therefore, regardless of whether the contents of the A
Register must be a dividend or a divisor, the programmer can always perform a division
w~ithout recourse to wasteful data movement operations. Floating Negate. Normalize, and
Single- and Double-Precision Compare instructions are also included in the repertoire.

f.

Transfer instructions are included which transfer only when the indicator condition specified is
met. The Transfer and Set Index Register (TSXn) instructions are a set of eight separate and
unique instructions which save the contents of the instruction counter in the specified index
register. Because there is a unique instruction code for each of these instructions, address
modification by another register is possible for transfer destination calculation.

g. SPECIAL OPERATIONS

Several special instructions are provided for expanding programmer options and reducing
coding work through utilization of hardware features.

Three repeat instructions in the repertoire provide unusual programming advantages: Repeat
(RPT). Repeat Double (RPD). and Repeat Link (RPL). The Repeat ~md Repeat Double instruc
tions permit execution of the next one or two instructions a selected number of times, according
to nroe:ram reauirements: thev are especial iv useiul for operating upon sequential lists in
memory. For example, if Repeat is used with any of several compare instructions to search a
list, termination of the repeats will occur when a "hit" is made.

The Repeat Link instruction is similar in its execution to the Repeat and Repeat Double instruc
tions; it facilitates the processing of threaded lists scattered throughout memory.

The Binary-to-Binary Coded Decimal (BCD) instruction performs one step in an algorithm for
the conversion of a binary number to its BCD equivalent. The instruction can be executed in
the Repeat mode.

The Gray Code-to-Binary (GTE) instruction converts a 36-bit number from Gray code to its
binary equivalent (in one execution of the instruction). This instruction is particularly useful
when physical measurements are read directly into the computer.

h. INPUT-OUTPUT INITIATION

The Connect instruction is the only instruction in the M-605 instruction repertoire that initiates
input-output action. The processor, having set up the input-output control words in the system
memory, issues a Connect instruction to the input-output controller, which then assumes
input-output responsibility.

©@~~~muurn~~IB t1 ®®®-------------------------

Il-15

6. Address f'.'1odification

The address specified by the address field of an instruction is translated into an "effective
address" before it is submitted to the memory as the operand address. An effective address
is the final address produced by the address modification process; it is the address used for
obtaining an operand or for storing a result. If no address modification is specified by the
instruction, the address specified by the instruction address field is the effective address.

It should be noted that the effective address described may not be the absolute address of the
operand in memory: it is the relative address of the operand within a program. The absolute
address is formed automatically by the processor, however, and is not usually of concern to
the programmer. (See Section II B 1 - Master/Slave Mode of Operation.)

The address specified in the address field of the instruction may be modified in a specified
manner to form an effective address. The manner in which this address modification takes
place is specified by the tag field of the instruction. The address may be modified by adding
the contents of a register to the address, by using the address to access a memory word
(indirect word) whose contents specify the effective address, or various combinations of the
above.

The first case mentioned above is called register modification. The second case is called
indirect modification. Indirect modification is a technique whereby the effective address is
found in a memory location specified by the address field of the instruction word. Register
and indirect modification types may be combined into one or indirect modification may be
extended such that the effective address is only found after several levels of indirecting takes
place.

The instruction tag field consists of two parts, the modifier (tm) and the designator (td):

TAG

f I ! I l l I
30 35

I• tm •14 td •I

Where

tm specifies one of the four possible modification types.

td specifies further the action for each modification type.

The four basic methods of address modification in the M-605 computer are:

Mnemonic

R
RI
IR
IT

II-16

Modifier

Register
Register Then Indirect
Indirect Then Register
Indirect Then Tally

I

There are a number of variations of each of the four. These variations are designated by the
tag designator (td) field. In Register, Register Then Indirect and Indirect Then Register
modification, td is the register designator which generally specifies the register to be used in
the address modification. In Indirect Then Tally modification, td is the tally designator and
specifies the tallying in detail.

The following table gives a general characterization of each of the four modification types.

tm I Binary I Modification Type _J
R 00 Register

Indexing according to td as register designator and termination of the
address modification procedure.

HI 01 Register then Indirect

Indexing according to trt as register designator, then substitution and
continuation of the modification procedure as directed by the Tag field
of this indirect word ..

rn 11 Indirect then Register

Saving of td as final register designator, then substitution and continua-
+·ir..-.. r ... f 4-t-1n r ,. ,1;r-~,.!.-ltin-·-· ,-,rnc·f··cliirt-· ;;:=: Ah,..c..~tc.;! h1:"" t~~ r-r~fi fir1~ nf thi~ l : ., ... vu V.l l-1 ... t:;; ... I ... Uu-J.-~'---" }'- - -- ----- _ -L'-' '-'-'-'- '-'-'"'-''-' •J,;

inflirPd worn.

IT 10 Indirect then Tally

Substitution, then use of this indirect word according to td as tally
designator.

a. REGISTER DESIGNATOR

Each of the three modification types R, RI, IR includes an indexing step which is further
specified by the register designator td. In most cases, td specifies a register which is added
to the address field of the instruction. However, td may also specify that the address field of
the instruction is to be used directly as operand and not as address of an operand (DU, DL),
or that nothing takes place at all (N). Nevertheless, td is called "register designator" in
these cases.

©@~[pill uu W~~~ I®®®----------------------------

II-17

REGISTER DESIGNATOR

SYMBOLIC BINARY ACTION

N 0000 y REPLACES y

XO 1000

XI 1001

. .

. . Y + C(Xn) REPLACES Y . .
X7 1111

AU 0001 y + C(A) O ..• 17 REPLACES y

AL 0101 y + C(A) 18 ... 35 REPLACES y

QU 0010 y + c (Q) o ... 17 REPLACES y

QL 0110 y + C(A) 18 ... 35 REPLACES y

IC 0100 y + C(IC) REPLACES y

DU 0011 Y,00 •.• 0 IS THE OPERAND

DL O 11 I 00 ••. O,Y IS THE OPERAND

b. REGISTER :'\TODIFICATION (R)

The effective address Y is formed by: (1) adding the contents of a specified register to the
address field of the instruction word or (2) using the address field directly as the effective
address - no modification.

When a register is used for modification, the contents of the register remain unchanged.

The specific type of Register address modification desired is specified symbolically by the
programmer. Given below are the registers which may be used for address modification.

:'\I~E:'\IONIC SUBSTITUTION LIST

Mnemonic Register Effective Address

(R)=XO XR0 Y=y+C(XRO) 0-17

Xl XRl Y=y+C(XRl) 0-17

X2 XR
2 Y=y+C(XR2) 0-17

X3 XR
3 Y=y+C(XR3) 0-17

X4 XR4 Y=y+C(XR4) 0-17

©@~[pfil1f~OO[L~~I®®®-------------

II-18

Mnemonic Register Effective Address

X5 XR5 Y=y+C(XR5) 0-17

X6 XR
0 Y=y+C(XR6) 0-17

X7 XR7 Y=y+C(XR7) 0-17

AU AR0-17 Y=y+C(AR)
0-17

AL AR18-35 Y=y+C(AR) 18-35

QU QR0-17 Y=y+C(QR)
0-17

QL QR18-35 Y-=y+C(QR) 18-35

IC IC0-17 Y=y+C(IC)
0-17

DU IR0-17 C(Y)0-17 = y

DL IR0-17 C (Y) 18-35 = y

N None Y=y

A special kind of address modification is provided. The use of the instruction address field
a:s the operand is referred. Lo a~ ··DirecV' add1=css rnodilication, Cif -...-rhich there :ire t\\~O t~ypcs:

• Direct Lower

With Direct Upper, the address field of the instruction serves as bits 0-17 of the operand and
O's are used-as bits 18-35 of the operand. With Direct Lower modification, the address field
of the instruction serves as bits 18-35 of the operand and O's are used as bits 0-17 of the
operand.

c. REGISTER THEN INDIRECT (R)I

The effective address is found by first performing the specified Register modification on the
address field of the instruction to obtain an indirect word from the address so formed. The
format of the indirect word is interpreted to be:

18 12 2 4

ADDRESS ~tmjtd
0 17,18 29,3031,32 35

Next, the address modification specified by the indirect word is carried out. Thus, if the
indirect word specifies RI, IR, or IT modification, the indirect sequence is continued. When
an indirect word is found that specifies R modification, the R modification is carried out using
the register specified by the tag of this indirect word and the address field of that final indirect
word to form the effective address, Y.

@@~~ !i~ uurn~~~ t? ®m® ___________________________ _

II-19

If indirect modification, not preceded by Register modification is desired, it is accomplished
by specifying the "no-modification11 Register variation, (R) = N.

The mnemonic substitutions for (R) are listed under the Register modification description. All
can be used except for DU or DL which cannot be substituted for the (R) of the (R)I modification.

The effective address, Y, is equal to C(Y+C(R)) 0_17 for a reference to an indirect word that
specifies no modification.

d. INDIRECT THEN REGISTER I(R)

The effective address is found by first obtaining an indirect word from the memory location
specified by the address field, y, of the instruction.

The format of the indirect word is interpreted to be:

18 12 2 4

ADDRESS ~tml td

0 17,18 29,3031,32 35

Secondly, the address modification specified by the indirect word is carried out. If that
modification is RI, the indirect sequence is continued until an indirect word is found that
specifies R or IT modification. If the indirect word specifies R modification, the register R
specified by the instruction is substituted for the R of the indirect word, producing an effective
address which is the address field of the indirect word as modified by the R of the instruction
word. If the indirect word specifies IT modification, it is converted to an R modification
which is performed as above.

If any indirect word in the sequence specifies IR, the R of that indirect word supersedes the R
of either the instruction word or any preceding indirect word in the final R modification.

If an indirect modification without Register modification is desired, the "no-modification"
variation of Register modification should be specified in the instruction.

The mnemonic substitutions for (R) are listed under the Register modification description. All
can be used except for DU or DL which cannot be substituted for the (R)_ of the I(R) modification.

The effective address, Y, is equal to C(Y) 0_17 + C(R) for a single indirect reference.

e. INDIRECT THEN TALLY I(T)

The effective address is the address field of the indirect word obtained from the location
specified by the address field of the instruction or a preceding indirect word, whichever one
specified the IT modification. There are ten variations of the IT modification. The variation
desired is specified symbolically by the programmer by substituting the mnemonic from the
substitution list for (td).

©@~[pfilu~WQJ~~I®®®-------------

II-20

The following table gives the possible tally designators under IT type modification.

I TALLY DESIGNATOR II
I I 11

I SYMBOL I c I BINARY II
NAME

I
1001 II INDIRECT ONLY

ID 1110 INCREMENT ADDRESS, DECREMENT TALLY

DI 1100 DECREMENT ADDRESS, INCREMENT TALLY

IDC 11 11 INCREMENT ADDRESS,DECREMENT TALLY, AND CONTINUE

DIC 1101 DECREMENT ADDRESS, INCREMENT TALLY, AND CONTINUE

AD 1011 ADD DELTA (TO ADDRESS FI ELD)

SD 0100 SUBTRACT DELTA (FROM ADDRESS FIELD)

Cl 1000 CHARACTER FROM INDIRECT

SC 1010 SEQUENCE CHARACTER

0000 FAULT

The format of the indirect word is:

18 12 6

'(TALLY TAG

0 17,18 29,30 35

Where

y .. :- address field

Tally .::_ tally field

Tag = tag field

A description of the use of the tally and tag fields of the indirect word is found under the
description of each type of IT modification.

f. INDIRECT ONLY (I)

The effective address is the address field of the indirect word obtained from the memory
location specified by the address field of the instruction or indirect word whichever one
specified the indirect modification.

~1n1,oom,0:\1rnmn ,IS~ /?~(ri\(ri\
\J 'VUVLJ LJ LrJ LJ LJL':JL'::::il'::::i~ (/ \V\V\V -----------------------------

II-21

The format of the indirect word is interpreted as:

18 18

ADDRESS

0 17, 18 35

The tally and tag fields of the indirect word are not used. This instruction may be used in
conjunction with the ID or DI modifier when it is desired to reference the indirect word without
incrementing or decrementing either the address or tally portion of the indirect word.

g. INCREMENT ADDRESS, DECREMENT TALLY (ID)

The effective address is the address field of the indirect word obtained from the location speci
fied by the address field of the instruction or preceding indirect word, whichever one specified
the ID modification.

The indirect word is interpreted as:

18 12 6

ADDRESS TALLY ~
0 17, 18 29,30 35

Each time such a reference is made to the indirect word, the address field of the indirect word
is incremented by one and the tally portion of the indirect word is decremented by one. The
incrementing and decrementing is done after the effective address is provided for the instruction
operation. The tag field is not used.

When the tally reaches 0, the tally runout indicator is set.

h. DECREMENT ADDRESS, INCREMENT TALLY (DI)

The effective address is the address field-1 of the indirect word obtained from the location
specified by the address field of the instruction or preceding indirect word, whichever one
specified the DI modification.

The indirect word is interpreted as:

18 12 6

ADDRESS TALLY

0 17,18 29,30 35

Each time a reference is made to the indirect word, the address field of the indirect word is
decremented by 1 and the tally portion is incremented by 1. The incrementing and decrementing
is done prior to providing the effective address for the instruction operation. The tag field is
not used.

©©[DJ[pfiluuw[JJ~~t®®®-------------

II-22

When the tally reaches 0, the tally runout indicator is set.

i. INCREMENT ADDRESS, DECREMENT TALLY, AND CONTINUE (IDC)

lDC modification is the same as rn mooificaiion exeept the Lag fiehl
specify a continuation of the indirect chain.

The indirect word is interpreted as:

18 12 2 4

ADDRESS TALLY

- £ 4- 1- - .: ~-....] ! -- - ~+ ,. ... - ,.],.
Ul Lile lllUll C:L:l VVVl U 111<1.y

0 17,18 29,30 31, 32 35

The tag field may specify any form of IT or IR modification; but if R or RI is used, the register
designator must specify N (none).

j. DECREMENT ADDRESS, INCREMENT TALLY, AND CONTINUE (DIC)

DIC modification is the same as DI modification except the tag field of the indirect word may
specify a continuation of the indirect chain.

T'he indirect word is interpreted as:

18 12 2 4

ADDRESS TALLY

0 17, 18 29,30 31,32 35

The tag field may specify any form of IT or IR modification: but if R or RI is used, the register
designator must specify N (none). The incrementing and decrementing is done prior to obtain
ing the contents of the address from memory.

k. ADD DELTA (AD)

The effective address is the address field of the indirect word specified by the address field of
the instruction or the preceding indirect \vord, \vhichever one specified the ID modification.

The indirect word is interpreted as:

18 12 6

ADDRESS TALLY DELTA

0 17, 18 29,30 35

©©~[pill u~ rn~~~ r ®®®----------------------------

II-23

Each time a reference is made to the indirect word, the address field of the indirect word is
increased by delta and the tally is decremented by one. The addition of delta and the decre
menting is done after the contents of the address is provided for the instruction operation.

When the tally reaches 0, the tally runout indicator is set.

1. SUBTRACT DELTA (SD)

The effective address is the address field minus the tag field of the indirect word specified by
the address field of the instruction or the preceding indirect word, whichever one specified the
SD modification.

The indirect word is interpreted as:

18 12 6

ADDRESS TALLY DELTA

0 17,18 29,30 35

Each time a reference is made to the indirect word, the address of the indirect word is
decreased by delta and the tally is incremented by one. The subtraction of delta and the
incrementing is done prior to obtaining the contents of the address from memory.

m. CHARACTER FROM INDIRECT (CI)

The effective address is the address field of the indirect word obtained from the location
specified by the address field of the instruction or preceding word, whichever one specified
the CI modification.

The indirect word is interpreted as:

18

ADDRESS

0

12 I 2

17,18 29, 30,31 32,33

CHARACTER
POSITION

The character size to be used is specified by bit 30 (C) of the indirect word:

c

0
1

Character Size

6-bit
9-bit

35

©©~UJmuuw[U~~t®®®-------------

II-24

The character position field is used to specify the character involved in the operation. The
character position field specifies characters in accordance with the following:

Character
Position

0

1

2

3

4

5

Character Position
Field

000

001

010

010

100

101

Character Handling
6-Bits

C(Y)A ~
. . V-tJ

C(Y)6-11

C<YL _ . _
'1~ -1'1

C(Y)l8-23

C(Y)24-29

C(Y)30-35

Character Handling
9-Bits

C(Y)9-l 7

C<YL ~ _ ~
'H:S-~b

C(Y)27-35

This form of IT modification is intended for use only with those instructions which involve the
A or Q Registers.

For six-bit character operations in which the operand is taken from memory, the effective
operand from memory is presented as a single word with the specified character justified to
character posit ion G: positions 0-4 are presented as zero. For operations in which the resultant
i~ pl:tct'd in ffH:'mo1·y. ch:u·::1cter :'}of the resultant replaces the specified characte:r in memory
location Y: the remaining characters in memory location Y are not changed.

For nine-bit character operations in which the operand is taken from memory, the effective
operand from memory is presented as a single word with the specified character justified to
character position 3: positions 0-2 are presented as zero. For operations in which the resultant
is placed in memory, character 3 of the resultant replaces the specified character in memory
location Y: the remaining characters in memory location Y are not changed.

Example: SIX-BIT CHARACTER NINE-BIT CHARACTER

OPERAND FROM x I x I x !CHAR.I x I x x x
MEMORY:

0 2 3 5 0 2 3

0 0 0 I 0 I 0 ICHAR. 0 0

0 2 3 4 5 0 2 3

I I

x :cHAR.l RESULT TO x x I x x I)(x
MEMORY: I I

475
I

0 2 3 0 3

x x x icHA~ x x x x

0 2 3 4 5 0 2 3

r-ru re-\ 1-V~HO) -~ ~-rin lo) n 12 (~ II r~ ® (r1I
\.!:IJ~~lMJlf U'J U Ul0l1LS~ u ~ u l!!) --------------------------

II-25

This modifier is similar to the Sequence Character modifier except that no incrementing or
decrementing of the address, tally, or character position is performed. This instruction can
be used in conjunction with the SC indirect word when it is desired to reference the indirect
word and use the character position, without disturbing the indirect word.

n. SEQUENCE CHARACTER (SC)

For the SC modifier the effective address is the address field of the indirect word obtained
from the location specified by the address field of the instruction or preceding indirect word,
whichever one specified the (SC) modification.

The indirect word is interpreted as:

18 12 2 3

ADDRESS TALLY I c W/J CHARACTER I
. ~ POSITION .

0 17, 18 29,30 t 31 32,33 35

The type of character handling to be used is specified by Bit 30 (C) of the indirect word. If
C=l, 9 bit character handling is specified or if C=O, 6 bit character handling is specified.

The character position field is used to specify the character to be involved in the operation.
The character position field is interpreted the same as for CI modification.

This form of IT modification is intended for use only with those instructions which involve the
A or Q register. For operations in which the resultant is placed in the A or Q register, the
effective operand from storage is 36-bits in length with the specified character justified to
bits 30-35 (6 bit character) or 27-35 (9 bit character). Bits 0-29 (6 bit character) and 0-26
(9 bit character) are set to zero. For operations in which the resultant is placed in storage,
the justified character from bits 30-35 (6 bit character) or 27 -35 (9 bit character) of the
resultant is placed in the character position specified by the indirect word. The remaining
bits in the specified storage location are unchanged.

The tally is used to count the number of times a reference is made to the indirect word. Each
time a reference is made to the indirect word by an SC modification, the tally is decremented
by one; and the character position is incremented by one to specify the next character position.
When the character position 5 (6 bit character handling) or 3 (9 bit character handling) is
incremented, it is changed to position "0'', and the address field is incremented by one. All
incrementing and decrementing is done after the effective address has been provided for the
instruction execution.

Characters are operated on in sequence from left to right. The Tally runout indicator is set
when the Tally reaches "0".

o. FAULT (F)

The use of this address modification will cause a fault trap to occur. The tally and tag fields
of the indirect word are not used. For examples of the coding and applications of these address
modifications see Section IV.

©@~[pfil1J~OO[L~~!®®®-------------

II-26

B. OPERATIONAL CHARACTERISTICS

1. Master/Slave Modes of Operation

To permit separation of control programs and object programs with corresponding protection
of control programs from undebugged object programs, two modes of operation, Master :::inrl
Slave, are provided in the processor. Control programs will run in the Master Mode, and
object programs will run in the Slave Mode. Programs running in Master Mode have access
to the entire memory, may initiate peripheral and internal control functions~ and do not have
base address relocation applied. Programs runni11g in Slave lVIode have access to a limited
portion of the memory, cannot generate peripheral control functions and have the base address
register added to all relative memory addresses of the object program.

Master Mode operation is the state in which the processor:

• Presents an "unrelocated" address to the memory

• Has an unbounded access to memory

• Causes the memory to be in the unprotected state when accessed by the processor

This permits access to protected areas of memory (protected by the File protect
register -- when provided), setting of execute interrupt cells, generation of
peripheral comrpands, alteration of the file protect register (when installed) and
channel and execute interrupt masks.

• Permits setting the timer and base address register by the appropriate instructions.

The processor is in the Master Mode when any of the following exists:

• The Master Mode Indicator is in the master condition

• An execute interrupt is recognized

• A fault is recognized

Slave Mode operation is the state in which the processor:

• Presents a relocated address to the memory, as specified by the base address register.

• Restricts the effective address formed to the bounds specified by the boundary register
(lower half of the base address register).

• Causes the memory to be in the "protected" state when accessed by the processor.

a. This prohibits access to protected areas of memory (controlled by the file protect
register).

b. This prohibits g·eneration of peripheral commands, alteration of the file protect
register. interrupt masks, or setting of execute interrupt cells, even if the
processor is designated the control processor by the memory module.

Il-27

• Prohibits setting of the timer, and base address register.

The processor is in the Slave Mode when the :Master Mode indicator is in the slave condition
or when the Transfer and Set Slave (TSS) instruction is being executed.

The processor base address register contains a base address in bit positions 0-7 for the
purpose of address translation. The translation takes place only in the Slave Mode of operation.
It consists of adding this base address to bit positions 0-7 of the program address.

In the Master Mode no address translation takes place. Any program address to be used in a
memory access request while the processor is in the Master Mode is used directly as an actual
address and submitted to the memory without any translation.

Address translation is actually based on nine bits, namely the base address register positions
0-8 and the bit positions 0-8 of the program address; this permits address relocation by
multiples of 512 words. In order to maintain compatibility with the GE-635, bit positions
8 and 17 of the base address register contain 0 's and cannot be altered by the Load Base Address
Register (LBAR) instruction. Thus, address relocation is performed in multiples of 1024.

Any object program address to be used in a memory access request while the processor is in
the Slave Mode is checked, just prior to the fetch, for being within the address range allocated
by the Comprehensive Operating Supervisor (GECOS/605) to the program for this execution.
This address range protection is commonly referred to as memory protection.

For the purpose of memory protection, the 18-bit processor base address register is loaded
by GECOS with an address range in bit positions 9-16. The portion of the base address register
is called the bounds register. The check takes place only in the Slave Mode. It consists of
subtracting bit positions 0-7 of the program address from this address range. When the result
is zero or negative, then the program address is out of range; and a Memory Fault Trap
occurs. (Refer to Section II B 3.)

More specifically, the checking is actually based on nine bits, namely the base address register
positions 9-17 and the bit positions 0-8 of the program address. Memory protection is per
formed in multiples of 1024 words.

In the Master Mode no checking takes place: thus, any memory location (in those memory
modules that are connected to this processor) can be accessed.

2. Program Execute Interrupts

Data transfer between the M-605 memory module and external devices is normally completely
asynchronous with processor operation or program execution. The program execute interrupt
facility of the M-605 is the means by which these external devices can interrupt the program
being executed by the processor and thereby notify it that an external event has occurred.

©@[0J[pffiu~W[U~~t®®®-------------

II-28

Located in each memory module is a program interrupt facility that consists of up to 32 unique
interrupt cells. Although any of the eight devices - either processor or RT-IOC modules -
that may be connected to the memory module can set any of the cells, only specific cells will
generally be assigned to a given device. Associated with the 32 cells is a 32 bit execute
interrupt mask register that is re::id or set by program control and which can be used to change
the wired priority of the 32 cells. A binary 1 or 0 in a given bit position of the mask register
will respectively permit or inhibit the ack11owledgement of Lnterrupt requests m8rle hy one of
the devices connected to the memory. If a device requests a program interrupt by setting one
of the cells and if the cell is unmasked~ the interrupt will be acknowledged. If several demands
are made simultaneously, the highest in priority will be serviced first.

Whenever an unmasked interrupt cell has been set, the memory presents an "interrupt present"
flag to the processor designated as its control processor. As soon as the processor has
completed the current instruction and assuming that interruption has not been inhibited, the
processor will interrupt its program sequence and request of the memory the number of the
cell causing the interrupt. Using this number as a part of an address, the processor executes
the pair of instructions corresponding to the 32 interrupt cells. These instructions can trans
fer program control to the entry point of the desired routine which can safe store the proces
sor's instruction counter and registers to permit a later return to the interrupted program.

The execute mask register is used to change the priority. Once a program is initiated, the
mask register is set to permit interruption of the program only by events of a higher priority
than the one that initiated the current program.

Aithoug·h interrupts commonlv cause a tran::>fe1 of control to the operating system, the transfer
can be direct to a specific program that is to respond to the interrupt without the intervention
of an executive program to determine the priority of the interrupt. This is significant in real
time applications to minimize the computer response time.

The 64 core locations associated with the 32 interrupt cells are located in the block of memory
starting with absolute location O. If a processor has a control relationship with more than one
memory module, each block of 64 locations, one block per memory module, is contiguous.

A program may inhibit interruption by placing a binary 1 in bit position 28 of an instruction.
When specified, interruption is inhibited until the execution of an instruction that does not
inhibit interruption, or until a lockup fault occurs (see Section II B 3).

The processor carries out the execute interrupt procedure as soon as an instruction is being
executed that:

• Did not have its interrupt inhibit bit (bit position 28) set to 1

• Did not cause an actual transfer of control (A transfer of control is effected if the
instruction is an unconditional transfer, or a conditional transfer with the condition
satisfied.)

• Was not an Execute or Execute Double (XE C or XED) instruction (Note than an XE C
or XED instruction and the one or two instructions carried out under its control are
regarded as a single instruction execution.)

II-29

The step by step execute interrupt procedure is as follows:

• Enter the Master Mode (the Master Mode Indicator is not affected.)

• Return the transfer interrupt number command code to the memory (system) controller
that sent the interrupt request present signal.

• Receive a five-bit interrupt code on the data lines from the memory module (bit posi
tions 12-16), specifying the number of the highest priority nonmasked interrupt cell
that was set to ON when the transfer interrupt number command code was recognized
at the system controller.

• Carry out an Execute Double (XED) instruction with an effective address (Y) as shown
below, bits 0-17:

0 8,9 11,12 16, 17 ,18 26, 27, 28,29 35

The memory number is determined by the position of the address reassignment
switches associated with the system controller causing the execute interrupt. The
switches are three-position toggles having the positions 0, 1, and EITHER. A
switch in the EITHER position is interpreted as a 0 in preparing the address for the
instruction.

The cell number is determined by the highest priority unmasked interrupt cell (in the
system controller) causing the execute interrupt.

• Return to the mode specified by the ::\laster Mode Indicator (see belO\v) and continue
with the instruction from the memory location specified by the Instruction Counter.

Each of the two instructions from the memory location Y-pair may affect the :J\Iaster Mode
Indicator as follows:

• If this instruction results in an actual transfer of control and is not the Transfer and
Set Slave instruction (TSS), then OK (that is, l\Iaster ::\lode).

• If this instruction is either the Return instruction (RET) with bit 28 equal to 0 or the
TSS instruction, then OFF (that is, Slave Mode).

The first of the two instructions from the memory location Y must not alter the contents of the
location of the second instruction, and must not be an XED instruction. If the first of the two
instructions alters the contents of the instruction counter, then this transfer of control is
effective immediately; and the second of the two instructions is not executed.

©@~[pffilfuw[L~~t®®®-------------

II-30

3. Faults

The M-605 processor also responds to interrupts caused by internal events. This class of
interrupt is called a "fault" although not all are true faults with the computer itself but rather
are used to request a specific action from the processor. The connect fault, for example, is
used by a control processor to initiate the action of a non-control processor. There arc four
general categories of faults:

• Instruction generated

• Program generated

• Hardware generated

• Manually generated

a. INSTRUCTION GENERATED FAULTS

The Instruction generated faults are:

• Master Mode Entry (MME)

The instruction Master Mode Entry has been executed. This is a normal request to
the supervisor, GECOS/605.

e Derail (DRL)

The instruction Derail has been executed. rhis is normally used m maintenance
procedures.

• Fault Tag

The address modifier I(T) where T=F has been recognized. The indirect cycle will
not be made upon recognition of F, nor will the operation be completed; a fault trap
will be entered.

• Connect (CON)

The processor has received a Connect from a control processor via a system
controller.

e Illegal OP Code (ZOP)

An operation code of all zeros has been executed.

b. PROGRAM GENERATED FAULTS

Program generated faults are defined as :

• The Arithmetic Faults

a. Overflow (FOFL) -- An arithmetic overflow, exponent overflow, or exponent
underflow has been generated. The generation of this fault is inhibited when the
overflow mask is in the mask state. Subsequent clearing of the overflow mask to
the unmasked state will not generate this fault from previously set indicators.
The overflow mask state does not affect the setting, testing, or storing of
indicators.

©®~lPilluurnlL~~ ~1 ®®®----------------------

II-31

Divide Check <FDIV) -- A divide check fault occurs when the actual division
cannot be car~ied o~t for one of the reasons specified with each divide instruction.

• The Elapsed Time Interval Faults

a. Timer Runout (TROF) -- This fault is generated when the timer count reaches
zero. If the processor is in Master Mode, recognition of this fault will be delayed
until the processor returns to the Slave Mode; this delay does not inhibit the
counting in the timer register.

b. Lockup (LUF) -- The processor is in a program lockup which inhibits recognizing
an execute interrupt or interrupt type fault for greater than 16 milliseconds. t
Examples of this condition are the coding TRA *or the continuous use of inhibit
bit.

c. Operation Not Completed (FONC) -- This fault is generated due to one of the
following:

1. No memory attached to the processor for the address.

2. Operation not completed. (See Hardware Generated Faults)

• The Memory Faults

a. Command (F CMD) -- This fault is interpreted as an illegal request by the
processor for action of the system controller. These illegal requests are:

1. The processor is in the Slave Mode, and issues a CIOC, RMCM,
RMFP, SMCM, SMFP, or SMIC. The CIOC, SMCM, SMFP, and
SMIC commands will not be executed. (Refer to Section III for
descriptions and references concerning these instruction mnemonics.)

2. When the processor has issued a connect to a channel that is masked off
(by program or switch).

b. Memory (FMEM) -- This fault is generated when:

1. No physical memory existed for the address.

2. An address (in Slave Mode) is outside the program boundary or inside file
protected memory.

3. The memory did not respond to a request within several milliseconds.

c. HARDWARE-GENERATED FAULTS

The hardware-generated faults are defined as:

• Operation Not Completed (FONC) -- This fault is generated due to one of the following:

a. The processor has not generated a memory operation within 1 to 2 milliseconds
and is not executing the Delay Until Interrupt Signal (DIS) instruction.

b. The system controller closed out a double-precision or read-alter-rewrite cycle.

c. See Operation Not Completed under Program Generated Faults (above).

tThe time interval can be changed for individual site requirements.

©@~[pfil1JUOO[L~~I®®®-------------

II-32

• Parity (FPAR) -- This fault is generated when a parity error exists in a word which
is read from a core location:

. l
Ll.

a. Instruction word fetch -- if the odd instruction contains a parity error, the instruc
tion counter retains the location of the even instruction.

b. Indirect word fetch -- if a parity error exists in an indirect and tally word in
which the word is normally altered and replaced, the contents of that memory
location are destroyed.

c. Operand fetch -- when a single-precision operand, C(Y) is requested, the contents
of the memory pair located at Y, Y+l where Y is even, or Y-1, Y, where Y is
odd are read from memory by the system controller. The system controller
will not report a parity error if it occurs in C(Y+l) or C(Y-1), but will restore
the C(Y+ 1), C(Y-1) with a parity bit equal to 1.

If a parity error occurs on any instruction for which the C(Y) are taken from a
core location (this includes "to storage" instructions, ASA, ANSA, etc.), the
processor operation is completed with the faulty operand before entering the
fault routine.

The generation of this fault is inhibited when the parity mask indicator is in the
mask state. Subsequent clearing of the parity mask to the unmasked state will
not generate this fault from a previously set parity error indicator. The parity
mask does not effect the setting, testing, or storing of the parity indicator .

• Execute (EXF)

a. The EXECUTE PUSHBUTTON on the processor maintenance panel has been
activated.

b. The external frequency of a pulse generator has been substituted for the EXECUTE
pushbutton.

The above two are dependent on other switch positions on the processor control panel.

• The Power Turn On/Off Faults

a. Startup (SUF) -- A power turn-on has occurred.

b. Shutdown (SDF) -- Power will be turned off in approximately 1 millisecond.

The 16 faults are organized into five groups to establish priority for the recognition
of a specific fault when faults occur in more than one group. Group I has highest
priority.

Only one fault within a priority group is allowed to be active at any one time. In the
event that two or :more faults occur concurrently, only the fault which occurs first
through normal program sequence is permitted.

Faults in Groups I and II cause the operations in the processor to abort unconditionally.

rrurmoolo)fA\lPnlo)n R~ ;?~ln\ln\
~\l:Vuvu Lf UJ Li Li LEJ LSLS~ U ~ ~ ~ -------------------------------

II-33

Faults in Groups III and IV cause the operations in the processor to abort conditionally upon the
completion of the operation presently being executed.

Faults in Group V are recognized under the same conditions that program interrupts are
recognized. Faults in Group V have priority over program interrupts and are also subject to
being inhibited from recognition by use of the inhibit bit in the instruction word.

Upon recognition of a fault, the contents of the Instruction Counter (IC) are as shown in the
Table of Faults below.

Group
Fault No. Fault Name (Priority) IC Contents

llOO

1111

1011

0111

1110

llOl

1001

0101

0001

0010

OllO

0011

1010

1000

0100

0000

Notes:

1.

2.

Startup I N+O, 1, or 2

Execute N+O, 1, or 2

Operation Not Completed II N+O, 1, or 2

Lockup II N+O, 1, or 2

Divide Check III N (note 4)

Overflow III N

Parity IV N (note 2)

Command IV N+l

Memory IV N+ 1 (note 4)

Master Mode Entry IV N (note 4)

Derail IV N (note 4)

Fault Tag IV N (note 4)

Illegal Op Code IV N

Connect v N

Timer Runout v N

Shut Down v N

N = Last operation completed

If parity occurred on operand fetch, operation N+ 1 was completed with faulty
data.

If parity occurred on instruction fetch, operation N + 1 was not completed.

If parity occurred on IT, IT was not completed.

3. Number of IND cycles, and ITs performed is unknown.

4. These operations are considered complete when the fault is recognized.

Each of the sixteen types of faults and other events have a fault trap assigned.

©©~LPfiluuOO[L~~t®®®-------------

II-34

The fault trap procedure is similar to the program execute interrupt procedure except that the
effective address is defined differently. The fault trap procedure consists of the following
steps:

• Automatically enter the Master Mode (the Master Mode Indicator is not affected).

• Carry out an Execute Double (XED) instruction with an effective address (Y) as defined
for bits 0-17 of a machine word as follows:

I ZEROS CONSTANT CODE 0

0 5 6 12 13 16 17

Constant: Set up by the fault switches in the processor (also see the description of the
instructions Master Mode Entry (MME) and Derail (DRL)

Code: The four-bit fault trap code which identifies the respective fault trap
(See Table above)

• Return to the mode specified by the Master Mode indicator, and continue with the
instruction from the memory location specified by the instruction counter. Unless
the executed instructions under the XED caused a transfer of control.

Each of the two instructions from the memory location Y -pair may affect the l\faster l\fode
lndicator as iollo\YS: If this instructior1 results in an 8.ctual transfer of control Qnd is not the
Transfer and Set Slave instruction (TSS), the ON: if this instruction is either the Return

The first of the two instructions from the memory location Y must not alter the contents of the
location of the second instruction, and must not be an Execute Double instruction (XED). If
the first of the two instructions alters the contents of the Instruction Counter, then this transfer
of control is effective immediately; and the second of the two instructions is not executed.

4. Memory Cycles

The M-605 memory is capable of three basic types of memory cycles: (1) read-restore,
(2) real-alter-rewrite, (3) clear-write. The type of cycle required for a particular memory
operation is specified by the processor or the external device, whichever is involved in the
operation.

The first type of memory cycle, read-restore, is normally used to obtain a memory word. The
contents of the specified memory location are transferred from the magnetic core storage unit
to a register in the memory (system) controller. Immediately, both the write-back to storage
and the data transfer to the requesting device is started. By the time the original contents of
the memory location has been restored, the communicating device has received (and usually
used) the information. The memory permits both single- and double-precision read-restore
cycles.

The second type of cycle, clear-write, is most commonly used when it is desired to place a
word in storage. This type of cycle is started as before by reading the memory location: but
the contents of the location are inhibited from entering the memory register in the system
controller. Shortly after the start of the memory cycle, the given word that is to be entered

©©~rPffiu~rn~~~1 ®®®--------------

II-35

into storage is placed in the memory register. During the rewrite part of the cycle; the
contents of the memory register are placed into storage. Thus, the contents of the specified
location are replaced with the given value. The memory permits both single- and double
precision clear-write cycles.

The third type, read-alter-rewrite, is used for those processor instructions where the resultant
of an arithmetic operation is placed in storage (such as Add Stored to A-ASA) and the indirect
then tally address modifications. For the Read-Alter-Rewrite memory cycle the contents of
the requested memory location is transferred to the system controller as in the Read-Restore
cycle. The rewrite part of the cycle is delayed, however, until the communicating device
e.g. processor or RT-IOC, processes the word just obtained and returns the altered value to
the system controller for subsequent restorage. For example, in the instruction Add Stored
to A, the contents of the specified memory location are transferred to the processor, added to
the contents of the A Register, and the resulting sum returned to the memory for storage in
the location from which the addend was obtained. Thus, an extra store instruction is not
necessary.

In addition to single- and double-precision cycles, the memory also contains zone control to
permit the reading of six-bit or nine-bit characters.

5. Instruction Execution Timing

The instruction execution times listed in Appendix J are based on fetching of instructions in
pairs from memory. Unlike the G E-635, however, the M-605 does not perform overlap
between the operation execution and the address modification and fetching of the operand of the
next instruction. The execution of the even numbered instruction is completed before the
address modification of the odd numbered instruction is started. The transfer of control
instructions include the time to procure another instruction pair. If the transfer does not take
place in a conditional transfer instruction, the execution time will be lower than indicated.

The instruction execution times of shift and floating-point operations are average times based
on a five-shift step. A single shift step may effect a shift by one, four, or sixteen positions.
Thus a shift of 22 positions will be executed in a four-shift step consisting of one 16-position,
one 4-position, and two 1-position shifts. Each shift step takes approximately O. 24 micro
seconds.

©@[DJ[pffilf~rn~~~1®®®-------------

11-36

Ill ·~·s..,...R· .. ,....-r-."'"' Ill. 11"1 I Uv I 1\JI~ REPERTOIRE

A. GENERAL REMARKS AND FORMAT

For the description of the machine instructions that follow it is assumed that the reader is
familiar with the general structure of the processor, the representation of information, the
data formats, and the method of address modifications, as presented in the preceding sections
of this manual.

The M-605 instruction set described in this Section is arranged by functional class in two cate
gories: Section III B describes the M-605 standard hardware implemented instructions; Section
IIIC describes those instructions which are implemented by optional hardware. In those
cases where the optional Floating-point hardware is not implemented, those instructions are
software implemented by use of a Macro-operation. In some cases where the length of a Macro
is prohibitive, a Macro-Subroutine combination is used, in which case the Macro serves as a
linkage to the subroutine. The appendices to this manual listing the instruction set by both
functional class and in alphabetical order afford convenient page references to all instructions
in this section.

A fixeJ fon11at i;:; used for the description of Each machine instruction, this is summarized ir.
the comments following.

Mnemonic Name of Instruction Op Code (Octal)

Summary: (The change in the status of the system effected by the execution of tht::
instruction is described in a short and generally symbolic form. If
reference is made here to the status of an indicator, then it is the status
of this indicator before the operation is executed.)

Modifications: (Those designators are listed explicitly that cannot be used with this instruc
tion either because they are not permitted with this instruction or because their
effect cannot be predicted from the general address modification procedure.)

Indicators Affected: (Only those indicators are listed whose status can be changed

Notes:

by the execution of this instruction. In most cases, a condition for set
ting ON as well as one for setting OFF is stated. Unless explicitly stated
otherwise, the conditions refer to the contents of registers, etc., as
existing after the execution of the instruction's operation.)

(This part of the description exists only in those cases where the SUMMARY
is not sufficient for an understanding of the operation.)

Abbreviations and Symbols.

The following abbreviations and symbols are used for the description of the machine operations.

©®~rPilluurn~~g)t@®®-------------------------

III-1

Registers:

A A Register (36 bits)
Q Q Register (36 bits)
AQ Combined A-Q Register (72 bits)
Xn Index Register n (n = 0, 1, ... , 7) (18 bits)
E Exponent Register (8 bits)
EA Combined Exponent -A Register (8 + 36 bits)
EAQ Combined Exponent-A-Q Register (8 + 72 bits)
BAR Base Address Register (18 bits)
IC Instruction Counter (18 bits)
IR Indicator Register (18 bits, 11 of which are used at this time)
TR Timer Register (24 bits)
Z Temporary Pseudo-result of a non-store comparative operation.

Effective Address and Memory Locations:

Y = The effective address (18 bits) of the respective instruction.

Register Positions and Contents:

("R" standing for any of the registers listed above as well as for a memory location or a pair
of memory locations.)

R.
1

R. .
1 •••]

C(R)
C(R).

1

C(R). .
1 •••]

the ith position of R

the positions i through j of R

the contents of the full register R
the contents of the ith position of R

the contents of the positions i through j of R

When the description of an instruction states a change only for a part of a register or memory
location, then it is always understood that the part of the register or memory location which is
not mentioned remains unchanged.

other Symbols:

:::> replaces

compare with

AND the Boolean connective AND (symbol /\)

OR the Boolean connective OR (symbol v)
1 the Boolean connective NON-EQUIVALENCE (or EXCLUSIVE OR)

©@~[pfilu~OOQJ~~I®®®-------------

III-2

B. M-605 MACHINE INSTRUCTIONS

DATA MOVEMENT - LOAD

LOA Load A

C(Y) ~ C(A)

SUMMARY: The contents of Y replace the contents of the A Register.

MODIFICATIONS: All

INDICATORS AFFECTED:

Zero

Negative

LDQ

SUMMARY:

If C(A)

If C(A)
0

C (Y) ::;> C (Q)

0, then ON; otherwise OFF

1, then ON; otherwise OFF

Load Q

The contents of Y replace the contents of the Q Register.

MODIFIC,\TIOXS: ;\ll

INDICATORS AFFECTED:

Zero

Negative

LDXn

SUMMARY:

If C(Q)

If C(Q)
0

0, then ON; otherwise OFF

1, then ON; otherwise OFF

Load Xn

C(Y>o ••• 17 ~ C(Xn)

The contents of Y, bit positions 0 through 1 7, replace the contents of the

Index Register specified by n.

MODIFICATIONS: All except CI, SC

INDICATORS AFFECTED:

Zero

Negative

If C(Xn)

If C(Xn)0

0, then ON; otherwise OFF

1, then ON; otherwise OFF

©®~lPilluurn~~~; ®®®--------------------

III-3

LDLXn

SUMMARY:

DATA MOVEMENT - LOAD

Load Xn in Lower

C(Y)18 ... 35 ~ C(Xn)

The contents of Y, bits 18 through 35, replace the contents of the Index

Register specified by n.

MODIFICATIONS: All except Cl, SC

INDICATORS AFFECTED:

Zero

Negative

LDI

SUMMARY:

If C(Xn) 0, then ON; otherwise OFF

If C(Xn)
0

= 1, then ON; otherwise OFF

Load Indicator Register

C(Y)18 ... 35 :::;:. C(IR)

The contents of Y, bit positions 18 through 35, replace the contents of the

Indicator Register.

MODIFICATIONS: All except Cl, SC

INDICATORS AFFECTED:

All except
Master Mode

If corresponding bit in C(Y) is ONE, then ON;
otherwise OFF

NOTES: 1. The relation between bit positions of C(Y) and the indicators is as follows:

Bit Position

18
19
20
21
22
23
24
25
26
27
28

--29--
30
31
32
33
34
35

Indicators

Zero
Negative
Carry
Overflow
Exponent Overflow
Exponent Underflow
Overflow Mask
Tally Runout
Parity Error
Parity Mask
Master Mode

Not used
at this
time

2. The Tally Runout Indicator will reflect C(Y)25 regardless of what address
modification is performed on the LDI instruction (for Tally Operations).

III-4

DATA MOVEMENT - LOAD

LREG Load Registers

C(Y, y + 1, ..•• y + 7) ~ corn, Xl, •.. X7, A, Q, E, TR)

SUMMARY: The contents of Y through Y + 7 replace the contents of the Index,

exponent, and Timer Registers.

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS AFFECTED:

None

NOTES; 1. C(Y)0-17 ~ C(XO) C(Y+3)0-l 7 ~ C(X6)

C(Y)18-35 ~ C(Xl) C(Y+3)18-35 ~ C(X7)

C(Y+l)0-17 ~ C(~2) C(Y+4)0-35 ::;> C(A)

C(Y+l)l8-35 ~ C(X3) C(Y+5)0-35 => C(Q)

C(Y+2)0-l 7 ~ C(X4) C(Y+6)
0

_
7 => C(E)

C(Y+2\8-35 "-/ C(X5) * C(Y+7)0 2-1 --=> C(TR)

* <) T!le contentR of the Timf"r Register are not chang-ed when the processor
is in Slave Mode.

LCA Load Complement A

- C(Y) ~ C(A)

073
8

SUMMARY: The two's complement of the contents of Y replace the contents of the A

Register.

MODIFICATIONS: All

INDICATORS AFFECTED:

Zero

Negative

If C(A)

If C(A)
0

0, then ON; otherwise OFF

1, then ON; otherwise OFF

Overflow If range of A is exceeded, then ON

ff\J ((\\ fin 1n1 n sri n 1n1 n rri ((;:i /) ~ In\ In\

\\8\JVlMJ l1 [}Ju u L§.Jl1lS~ u \QJl!U l!U ----------------------

III-5

LCQ

SUMMARY:

DATA MOVEMENT - LOAD

Load Complement Q

- C(Y) ~ C(Q)

The two's complement of the contents of Y replace the contents of the Q

Register.

MODIFICATIONS: All

INDICATORS AFFECTED:

Zero

Negative

Overflow

LCXn

SUMMARY:

MODIFICATIONS:

If C(Q)

If C(Q)
0

0, then ON; otherwise OFF

1, then ON; otherwise OFF

If range of Q is exceeded, then ON

Load Complement Xn

- C(Y>o ..• 17 ~ C(Xn)

The two's complement of the contents of Y, bit positions 0 through 17,

replace the contents of the Index Register specified by n.

All except CI, SC

INDICATORS AFFECTED:

Zero If C(Xn) 0, then ON: otherwise OFF

Negative If C(Xn)
0

1, then ON; otherwise OFF

Overflow If range of Xn is exceeded, then ON

©@~[pfiluUW[L~~t®®®-------------

III-6

DATA MOVEMENT - LOAD

EAA Effective Address to A

y ~ C(A)O ..• 17; 00 •.. 0 => C(A)18 ... 35

SUMMARY: The address field of the instruction repiaces the contents of bits 0 through

17 of the A register. Bit positions 18 through 35 of the A Register are set

to zero.

MODIFICATIONS: All except DU, DL

INDICATORS AFFECTED:

Zero

Negative

NOTE:

EAQ

SUMMARY:

If C(A)

If C(A)
0

0, then ON; otherwise OFF

1, then ON; otherwise OFF

This instruction, and the instructions EAQ and EAX.n, facilitate interregister
data movements. The data source is specified by the address modification, and
the data destination by the operation of the instruction.

1'.:fiective Addreoo to Q
- -- -----------------------------·--·- ·-------------------

y => C(Q)O ..• 17; OO •.. O ~> C(Q)18 .•• 35

The address field of the instruction replaces the contents of bits 0 through

17 of the Q Register. Bit positions 18 through 35 of the Q Register are set

to zero.

MODIFICATIONS: All except DU, D L

INDICATORS AFFECTED:

Zero

Negative

NOTE:

If C(Q)

If C(Q)
0

0, then ON; otherwise OFF

1, then ON; otherwise OFF

This instruction, and the instructions EAA and EAXn, facilitate interregister
data movements. The data source is specified by the address modification, and
the data destination by the operation of the instruction.

@,@, 00.10 !A\ 1rinf~ n rs~ /7 ~0 (nJ (nJ
'----' '--' uvu LJ liJ LJ LJ ~LSLS~ U \V \V \V -----------------------------

III-7

EAXn

SUMMARY:

DA'fA MOVEMENT - LOAD

Effective Address to Xn

Y => C(Xn)

The address field of the instruction replaces the contents of the Index

Register specified by n.

MODIFICATIONS: All except DU, DL

INDICATORS AFFECTED:

Zero

Negative

NOTE:

If C(Xn) - 0, then ON; otherwise OFF

If C(Xn)
0

1, then ON; otherwise OFF

This instruction, and the instructions EAA and EAQ facilitate interregister
data movements. The data source is specified by the address modification, and
the data destination by the operation of the instruction.

©©[DJ~illuuwuJ~~t®®® _______________ _

III-8

DAT A MOVEMENT - STORE

STA Store A

C (A) :;> C (Y)

SUMMARY: The contents of the A Register replace the contents of Y.

MODIFICATIONS: All except DU, DL

INDICATORS AFFECTED: None

STQ Store Q

C(Q) ~ C(Y)

SUMMARY: The contents of the Q Register replace the contents of Y.

MODIFICATIONS: All except DU, DL

INDICATORS AFFECTED: None

STXn Store Xn

c (Xn) :;> c (Y)0 .•. 1 7

SUMMARY: The contents of the Index Register specified by n replace the contents of

Y, bits 0 through 17.

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS AFFECTED: None

STLXn Store Xn in Lower

C(Xn) ~ C(Y)18 ..• 35

44n
8

SUMMARY: The contents of the Index Register specified by n replace the contents of

Y, bits 18 through 35.

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS AFFECTED: None

rrurfi'1 m 1o1 !.\ 17 n fD) n R G? fl ~ 1n1 1n1
\!:!J\!:iJlMJ Lr U'J U U lEJ LSL£~ U \!!\!IJ \!IJ ---------------------------

III-9

DATA MOVEMENT - STORE

SREG Store Registers

C(XO, Xl, X2, ...• X7, A, Q, E, TR) ~ C(Y, Y+l, Y+7)

SUMMARY: The contents of the Index, A, Q, Exponent, and Timer Registers replace

the contents of Y through Y+7. Bits 8 through 35 of Y+6 and 24 through 35 of

Y+7 are set to zero.

MODIFICATION: All except DU, DL, CI, SC

INDICATORS AFFECTED: None

NOTE: C(XO) ~ C(Y)0-17 C(X6) ~ C(Y+3)0-17

C(Xl) => C(Y)18-35 C(X7) ~ C(Y+3)18-35

C(X2) => C(Y+l)0-17 C(A) ~ C(Y+4)0-35

C(X3) ~ C(Y+l)18-35 C(Q) ~ C(Y+5)0-35

C(X4) ~ C(Y+2)0-17 C(E) ~ C(Y+6)
0

_
7

; 00 .. 0 ::;> C(Y+6)8-35

C(X5) => C(Y+Z)18-35 C(TR) ~ C(Y+7)
0

_23 ; 00 ... 0 ? C(Y+7)24-35

STCA Store Characters of A (Six Bit) 7518

Characters of C(A) => corresponding characters of C(Y).

SUMMARY: The contents of the selected 6 bit characters of the A Register replace the

contents of the corresponding 6 bit characters of Y. Character positions

are specified in the instruction tag field.

MODIFICATIONS: No modification can take place

INDICATORS AFFECTED: None

:\OTE:

0

Binary ones in the tag field of this instruction specify the chri racter positions of A
and Y that are affected by this instruction. The control relation is shown in the
diagram below.

17 18 26 30 35

OPCODE !ol1io! TAG J STRUCTURE OF
.___ ______________ _:.,_ ____ -..;•:.....:...• .._: ...:..•---.-

1
-.--~,........,....__, THIS INSTRUCTION

ADDRESS

STRUCTURE
OF A ANDY

0

: CHAR.#5
I

35

©@~[pffiuuwrL~@1®®®-------------

IIl-10

STCQ

SUMMAJ,i.Y:

DATA MOVEMENT - STORE

Store Characters of Q (Six Bit)

Characters of C(Q) ::;:. corresponding characters of C(Y).

The contents of the selected 6 bit characters of the Q Register replace the

contents of the corresponding 6 bit characters of Y. Character positions

are specified in the instruction tag field.

MODIFICATIONS: No modification can take place

INDICATORS AFFECTED: None

NOTE:

0

Binary ones in the tag field of this instruction specify the character positions of
Q and Y that are affected by this instruction. The control relation is shown in
the diagram below.

17 18 26 30 35

ADDRESS OP CODE TAG

___..012345
BIT POSITIONS ..------ ~~~ ~) \

WITH!N TAG FIE~~_:~~// .

STRUCTURE OF
THIS INSTRUCTION:

STRUCTURE I I I I I

OF Q AND y CHAR. #o:CHAR.#1 ! CHAR.#2 ! CHAR. #3: CHAR.#4: CHAR.#5

III-11

DATA MOVEMENT - STORE

STBA Store Characters of A (Nine Bit)

Characters of C(A) =? corresponding characters of C(Y).

SUMMARY: The contents of the specified 9 bit characters of the A Register replace the

contents of the corresponding 9 bit characters of Y. Character positions

are specified in the instruction tag field.

MODIFICATIONS: No modification can take place

INDICATORS AFFECTED: None

NOTE: Binary ones in the tag field of this instruction specify the character positions of
A and Y that are affected by this instruction. The control relation is shown in the
diagram below.

0 17 I 8 26 30 35

I ADDRESS j oP coDE 10!1 jo! TAG I STRUCTURE OF
--~~~~~~~~~~~~~~~1.._~~~~....1-.L..L~·--1 - 1-.....1--1 --1 ...J THIS INSTRUCTION

BIT POSITIONS --- O I 2 3 4 5

STRUCTURE
OF A ANDY

WITHIN TAG Fl ELD

I

CHAR. #o : CHAR. #1 : CHAR. #2 : CHAR. #3
I I

©©~[?filv~rn[L~~J®®®-------------

III-12

DATA MOVEMENT - STORE

STBQ Store Characters of Q (Nine Bit)

Characters of C(Q) :::;> corresponding characters of C(Y).

SUMMARY: The contents of the specified 9 bit characters of the Q Register replace the

contents of the corresponding 9 bit characters of Y. Character positions

are specified in the instruction tag field.

MODIFICATIONS: No modification can take place

INDICATORS AFFECTED: None

NOTE:

0

Binary ones in the tag field of this instruction specify the character positions of
A and Y that are affected by this instruction. The control relation is shown in
the diagram below.

17, 18 26 30 35

©®~~muurnlL~~ 1 ®®® ________________________ _

Ill-13

STI

SUMMARY:

DATA MOVEMENT - STORE

Store Indicator Register

C (IR) :::;:> C (Y) 18 ... 3 5

The contents of the Indicator Register replace the contents of Y, bit

positions 18 through 35.

MODIFICATIONS: All except DU, DL. CI, SC

INDICATORS AFFECTED: None

75L
b

NOTE: 1. The relation between bit positions of C(Y) and the indicators is as follows:

Bit Position

18
19
20
21
22
23
24
25
26
27
28 -29 __ _

30
31
32
33
34
35

Indicators

Zero
Negative
Carry
Overflow
Exponent Overflow
Exponent Underflow
Overflow Mask
Tally Runout
Parity Error
Parity Mask
Master Mode

Not used at this time;
these indicators appear always
as if being set OFF

2. The ON state corresponds to a ONE bit, the OFF state to a ZERO bit.

3. The C(Y)25 will contain the state of the Tally Runout Indicator prior
to address modification of the STI instruction (for Tally operations).

©@~rfillu~W~~~J®®®-------------

III-14

STT

SUMMARY:

DATA MOVEMENT - STORE

Store Timer Register

C(TR) ~ C(Y)O ••. 23
00 ... 0 ::;> C (Y)24 .•• 35

The contents of the Timer Register replace the contents of Y, bit positions

0 through 23. Bit positions 24 through 35 are set to zero.

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS AFFECTED: None

SBAR Store Base Address Register

C(BR) ~ C(Y)O .•• l 7

SUMMARY: The contents of the Base Address Register replace the contents of Y, bit

positions 0 through 1 7 •

. MODIFICATIONS: All except DU, DL, CI, SC

lNDlCAIOR:::i Ar-FECTED: None

STZ store Zero

00 ••. 0 ~ C(Y)

SUMMARY: The contents of Y are replaced with zeros.

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS AFFECTED: None

(;;'\ w nn f""01 n 9 n f""01 n r.:::i ~ /) r;:::, In\ In\

~®lMJ lf ill U U Wl1LS~ u ®UUUU ----------------------

III-15

STC·1

SUMMARY:

DATA MOVEMENT - STORE

Store Instruction Counter Plus One

C(IC) + 0 ... 01 ::;> C(Y)O ... 17 (Note the difference between STCl
and STC2~)

C(IR) ::;> C (Y)l 8 ... 35

The contents of the Instruction Counter plus one replace the contents of Y,

bits positions 0 through 17. The contents of the Indicator Register replace

the contents of Y, bit positions 18 through 35.

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS AFFECTED: None

NOTES: 1. The relation between bit positions of C (Y) and the indicators is as follows:

Bit Position

18
19
20
21
22
23
24
25
26
27

--~
29
30
31
32
33
34
35

Indicators

Zero
Negative
Carry
Overflow
Exponent Overflow
Exponent Underflow
Overflow Mask
Tally Runout
Parity Error
Parity Mask
Master Mode

Not used at this time;
these indicators appear always
as if being set OFF

2. The ON state corresponds to a ONE bit, the OFF state to a ZERO bit.

3. The C(Y)25 will contain the state of the Tally Runout Indicator prior to
address modification of the STCl instruction (for Tally operations).

©©~[rwu~rn~~@J®®®-------------

Ill-16

STC2

SUMMARY:

DATA MOVEMENT - STORE

Store Instruction Counter Plus Two

C(IC) + O •.• 010 ~ C(Y)0 _ .. 17
(Note the difference between STCl
and STC2~)

The contents of the Instruction Counter plus two replace the contents of Y,

hH nncdtinnC! (I th-rnncrh 17
U.&." tJ'-'U.LU.L'\J.l..&.U \J V&..&.a.. - -o&.L ..- • e

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS AFFECTED: None

111-17

ARS

SUMMARY:

DATA MOVEMENT - SHIFT

A Right Shift

Shift right C(A) by Y
11

.•. l
7

positions; fill vacated positions with C(A)0

The contents of the A Register are shifted right the number of positions

specified in bit positions 11 through 17 of the instruction address field.

Positions vacated by the shift are filled with the contents of the A Register,

bit 0 (sign bit).

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS AFFECTED:

Zero

Negative

QRS

SUMMARY:

If C(A)

If C(A)
0

0,

1,

then ON;

then ON;

otherwise OFF

otherwise OFF

Q Right Shift

Shift right C(Q) by Y ll ... 17 positions; fill vacated positions with C(Q)0

The contents of the Q Register are shifted right the number of positions

specified in bit positions 11 through 17 of the instruction address field.

Positions vacated by the shift are filled with the contents of the Q Register,

bit 0 (sign bit).

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS AFFECTED:

Zero

Negative

If C(Q)

If C(Q)
0

0, then ON; otherwise OFF

1, then ON; otherwise OFF

©@~[pfilTiuwrL~~t®®®-------------

III-18

LRS

SUMMARY:

DATA MOVEMENT - SHIFT

Long Right Shift

Shift right C(AQ) by Y11 .•. 17 positions; fill vacated positions with C(AQ)o

The contents of the combined A and Q Registers are shifted right the

number of positions specified in bit positions 11 through 17 of the instruction

address field. The vacated positions are filled with the contents of the A

Register, bit 0 (sign bit).

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS AFFECTED:

Zero

Negative

ALS

;:,GM.MARY:

If C(AQ)

If C(AQ)
0

0, then ON; otherwise OFF

1, then ON; otherwise OFF

A Left Shift

Shift left C(A) by Y11 ... 17 positions, fill vacated positions with zeros

Ti1e content:::> of ~he A .RegL:~te1 art shifted ltft the 11un1bei of positions

specified in bit positions 11 through 17 of the instruction address field.

Positions vacated are filled with zeros.

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS AFFECTED:

Zero

Negative

Carry

If C(A)

If C(A)
0

If C(A)
0

0, then ON; otherwise OFF

1, then ON; otherwise OFF

ever changes during the shift, then ON; otherwise OFF

©©~l?filuurn~~~ t ®®®------------------------

Ill-19

QLS

SUMMARY:

DATA MOVEMENT - SHIFT

Q Left Shift

Shift left C (Q) by Y l1 ... 17 positions; fill vacated positions with zeros

The contents of the Q Register are shifted left the number of positions

specified in bit positions 11 through 17 of the instruction address field.

Positions vacated are filled with zeros.

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS AFFECTED:

Zero

Negative

Carry

LLS

SUMMARY:

If C(Q)

If C(Q)
0

If C(Q)
0

0, then ON; otherwise OFF

1, then ON; otherwise OFF

ever changes during the shift, then ON; otherwise OFF

Long Left Shift

Shift left C(AQ) by Y ll. .. 17 positions; fill vacated positions with zeros

The contents of the combined A and Q Registers are shifted left the number

of positions specified in bit positions 11 through 17 of the instruction

address field. Positions vacated are filled with zeros.

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS AFFECTED:

Zero

Negative

Carry

ARL

SUMMARY:

If C(AQ) 0, then ON; otherwise OFF

If C(AQ)
0

1, then ON: otherwise OFF

If C(AQ)
0

ever changes during the shift, then ON; otherwise OFF

A Right Logic

Shift right C(A) by Y ll ... 17 positions; fill vacated positions with zeros

The contents of the A Register are shifted right the number of positions

specified in bit positions 11 through 17 of the instruction address field.

Positions vacated are filled with zeros.

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS AFFECTED:

Zero

Negative

If C(A)

If C(A)
0

0, then ON; otherwise OFF

1, then ON; otherwise OFF

©@~~illlf~w[L~~t®®®-------------

III-20

DATA MOVEMENT - SHIFT

QRL Q Right Logic

Shift right C(Q) by Y11. .. 17 positions; fill vacated positions with zeros

SUMMARY: The contents of the Q Register are shifted right the number of positions

specified in bit positions 11 through 17 of the instruction address field.

Positions vacated are filled with zeros.

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS AFFECTED:

Zero

Negative

LRL

SUMMARY:

If C(Q) = 0, then ON; otherwise OFF

If C(Q)
0

= 1, then ON; otherwise OFF

Long Right Logic

Shift right C(AQ) by Y
11

... 17 positions; fill vacated positions with zeros

The contents of the combined A and Q Registers are shi:tted right the

address field. Positions vacated are filled with zeros.

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS AFFECTED:

Zero

Negative

ALR

SUMMARY:

If C(AQ)

If C(AQ)
0

0, then ON; otherwise OFF

1, then ON; otherwise OFF

A Left Rotate

Rotate C(A) by left Y 1l ... 17 positions; enter each bit leaving position 0 into

position 35

The contents of the A Register are rotated, bit position O into bit position

35, the number of positions specified in bit positions 11 through 17 of the

instruction address field.

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS AFFECTED:

Zero If C(A)

Negative If C (A)
0

0, then ON; otherwise OFF

1, then ON; otherwise OFF

©©~LVffiuurnrL~~ 1 ®®®---------------------

III-21

QLR

SUMMARY:

DATA MOVEMENT - SHIFT

Q Left Rotate

Rotate C(Q) left by Y
11

... l 7 positions; enter each bit leaving position 0 into

position 35

The contents of the Q Register are rotated, bit 0 into bit 35, the number of

positions specified in bit positions 11through17 of the instructions address field.

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS AFFECTED:

Zero

Negative

LLR

SUMMARY:

If C(Q)

If C(Q)
0

0, then ON; otherwise OFF

1, then ON; otherwise OFF

Long Left Rotate

Rotate C (AQ) left by Y l l ... 17 positions; enter each bit leaving position 0 into

position 71

The contents of the combined A and Q Registers are rotated, bit 0 into bit

71, the number of positions specified in bit positions 11 through 17 of the

instruction address field.

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS AFFECTED:

Zero

Negative

If C(AQ)

If C(AQ)
0

0, then ON; otherwise OFF

1, then ON; otherwise OFF

©@~[pffilY~W[L~~t®®®-------------

IIl-22

ADA

SUMMARY:

FIXED- POINT ARITHMETIC - ADDITION

Add to A

C(A) + C(Y) ~ C(A)

The contents of Y are added to the contents of the A Register and the

result replaces the contents of the A Register.

MODIFICATIONS: All

INDICATORS AFFECTED:

Zero

Negative

Overflow

Carry

ADQ

~PMMARY:

If C(A)

If C(A)
0

0, then ON; otherwise OFF

1, then ON; otherwise OFF

If range of A is exceeded, then ON

If a carry out of A0 is generated, then ON; otherwise OFF

Add to Q

C(Q) + C(Y) ~ C(Q)

The ~ontPnts of Ya re added to the contents of the Q Register and the result

replaces the contents of the Q Register

MODIFICATIONS: All

INDICATORS AFFECTED:

Zero

Negative

Overflow

Carry

If C(Q)

If C(Q)
0

0, then ON; otherwise OFF

1, then ON; otherwise OFF

If range of Q is exceeded, then ON

If a carry out of Q0 is generated, then ON; otherwise OFF

©@~lPffiTIUWlL~~c®®®---------------

lll-23

ADXn

SUMMARY:

FIXED- POINT ARITHMETIC - ADDITION

Add to Xn

C(Xn) + C(Y)O ... l? ~ C(Xn)

The contents of Y, bit positions 0 through 17, are added to the contents

of the Index Re~ister specified by n and the result replaces the contents of

that Index Register.

MODIFICATIONS: All except CI, SC

INDICATORS AFFECTED:

Zero

Negative

Overflow

Carry

ASA

SUMMARY:

If C(Xn)

If C(Xn)
0

0, then ON; otherwise OFF

1, then ON; otherwise OFF

If range of Xn is exceeded; then ON

If a carry out of Xn
0

is generated, then ON; otherwise OFF

Add Stored to A

C(A) + C(Y) ::? C(Y)

The contents of Y are added to the contents of the A Register and the result

replaces the contents of Y.

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS AFFECTED:

Zero

Negative

Overflow

Carry

If

If

C(Y)

C(Y)
0

0,

1,

then ON;

then ON;

otherwise OFF

otherwise OFF

If range of Y is exceeded, then ON

If a carry out of Y
0

is generated, then ON; othenvise OFF

III-24

FIXED POINT ARITHMETIC - ADDITION

ASQ Add Stored to Q

C(Q) + C(Y) => C(Y)

SUMMARY: The contents of Y are added to the contents of the Q Register and the result

replaces the contents of Y.

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS AFFECTED:

Zero

Negative

Overflow

Carry

ASXn

If C(Y)

If C(Y)0

0, then ON; otherwise OFF

1, then ON; otherwise OFF

If range of Y is exceeded, then ON

If a carry out of Y
0

is generated, then ON; otherwise OFF

Add Stored to Xn

C(Xn) + C(Y)o .. '17 ~ C(Y>o ... 17

The cn11tent~ nf Y, hit f'OSitinns fl thrnngh 17 ~re ~clded to the contf>nts

of the Index Register specified by n and the result replaces the contents of

Y, bit positions 0 through 17.

MODIFICATIONS: All except DU, DL, Cl, SC

INDICATORS AFFECTED:

Zero

Negative

Overflow

Carry

If C(Y)0 .•. 17 = O, then ON; otherwise OFF

If C(Y)
0

= 1, then ON; otherwise OFF

If range of Y 0 ... 17 exceeded, then ON

If a carry out of Y
0

is generated, then ON; otherwise OFF

III-25

ADLA

SUMMARY:

FIXED POINT ARITHlVIETIC - ADDITION

Add Logic to A

C(A) + C(Y) ? C(A)

The contents of Y are added to the contents of the A Register and the result

replaces the contents of the A Register.

MODIFICATIONS: All

INDICATORS AFFECTED:

Zero

Negative

If C (A)

If C(A)
0

0, then ON; otherwise OFF

1, then ON; otherwise OFF

Carry If a carry out of A
0

is generated then ON, otherwise OFF

NOTE: This instruction is identical to the ADA instruction, except the Overflow Indicator
is not affected by this instruction.

ADLQ

SUMMARY:

Add Logic to Q

C(Q) + C(Y) => C(Q)

The contents of Y are added to the contents of the Q Register and the result

replaces the contents of the Q Register.

MODIFICATIONS: All

INDICATORS AFFECTED:

Zero

Negative

If C(Q)

If C(Q)
0

0, then ON; otherwise OFF

1, then ON; otherwise OFF

Carry If a carry out of Q
0

is generated then ON; otherwise OFF

NOTE: This instruction is identical to the ADQ instruction, except the Overflow Indicator
is not affected by this instruction.

©®~lPilluuIB~~~t®®®-------------

IIl-26

ADLXn

SUMMARY:

FIXED POINT ARITHMETIC - ADDITION

Add Logic to Xn

C(Xn) + C(Y)n 1 '7 ::;> C(Xn)
V • • •.LI

The contents of Y, bit positions 0 through 17 are added to the contents of

the Index Register specified by n and the result replaces the contents of

that Index Register.

MODIFICATIONS: All except Cl, SC

INDICATORS AFFECTED:

Zero

Negative

If C(Xn)

If C(Xn)0

0, then ON; otherwise OFF

1, then ON; otherwise OFF

Carry If a carry out of Xn
0

is generated, then ON; otherwise OFF

NOTE: This instruction is identical to the ADXn instruction, except the Overflow
Indicator is not affected by this instruction.

AWCA

SUMMARY:

Add with Carry to A

Carry Indicator OFF: C(A) + C(Y) ~ C(A)

Carry Indicator ON: C(A) + C(Y) + O ••• 01 ~ C(A)

The contents of Y are added to the contents of the A Register and the result

replaces the contents of the A Register. If the Carry Indicator is ON be

fore the addition takes place, a 1 is added to the result.

MODIFICATIONS: All

INDICATORS AFFECTED:

Zero

Negative

Overflow

Carry

If C(A) = 0, then ON; otherwise OFF

If C(A)
0

= 1, then ON; otherwise OFF

If range of A is exceeded, then ON

If a carry out of A
0

is generated, then ON; otherwise OFF

©©~~filvuw~~~t®®®---

111-27

AWCQ

SUMMARY:

FIXED POINT ARITHMETIC - ADDITION

Add with Carry to Q

Carry Indicator OFF: C(Q) + C(Y) => C(Q)

Carry Indicator ON: C(Q) + C(Y) + O ••• 01 => C(Q)

The contents of Y are added to the contents of the Q Register and the

result replaces the contents of the Q Register. If the Carry Indicator is

ON before the addition takes place, 1 is added to the result.

MODIFICATIONS: All

INDICATORS AFFECTED:

Zero

Negative

Overflow

Carry

AOL

SUMMARY:

If C(Q) = 0, then ON; otherwise OFF

If C(Q)
0

= 1, then ON; otherwise OFF

If range of Q is exceeded, then ON

If carry out of Q
0

is generated, then ON; otherwise OFF

Add Low to AQ

C (AQ) + C (Y), right adjusted, => C(AQ)

The sign bit of the contents of Y (Y
0

) is Extended 3n bits. The resultant 72

bit number is added to the contents of the combined A and Q Registers and

the results replace the contents of the A and Q Registers.

MODIFICATIONS: All except CI, SC

INDICATORS AFFECTED:

Zero

Negative

Overflow

Carry

If C(AQ)

If C(AQ)
0

0, then ON; otherwise OFF

1: then ON; otherwise OFF

If rnnge of AQ is exceeded, then ON

If a carry out of AQ
0

is generated, then ON; otherwise OFF

©@~[pfilu~W[L~~t®®®-------------

III-28

FIXED POINT ARITHMETIC - ADDITION

AOS Add One to Storage

C(Y) + O ••• 01 ~ C(Y)

SUMMARY: The contents of Y are incremented by 1.

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS AFFECTED:

Zero

Negative

Overflow

Carry

If C(Y)

If C(Y)
0

0, then ON; otherwise OFF

1, then ON; otherwise OFF

If range of Y is exceeded, then ON

If a carry out of Y
0

is generated, then ON; otherwise OFF

III-29

SBA

SUMMARY:

FIXED- POINT ARITHMETIC - SUBTRACTION

Subtract from A

C(A) - C(Y) ~ C(A)

The contents of Y are subtracted from the contents of the A Register and

the result replaces the contents of the A Register

MODIFICATIONS: All

INDICATORS AFFECTED:

Zero

Negative

Overflow

Carry

SBQ

SUMMARY:

If C(A)

If C(A)
0

0, then ON; otherwise OFF

1, then ON; otherwise OFF

If range of A is exceeded, then ON

If a carry out of A
0

is generated, then ON; otherwise OFF

Subtract from Q

C(Q) - C(Y) ::;> C(Q)

The contents of Y are subtracted from the contents of the Q Register and the

result replaces the contents of the Q Register.

MODIFICATIONS: All

I!\TJJICATORS AFFECTED:

Zero

Negative

Overflow

Carry

If C(Q)

If C(Q)
0

0, then ON; otherwise OFF

1. then ON: otherwise OFF

If range of Q is exceeded, then ON

If a carry out of Q
0

is generated, then ON; otherwise OFF

III-30

SBXn

SUMMARY:

FIXED-POINT ARITHMETIC - SUBTRACTION

Subtract from Xn

C(Xn) - C(Y>o •.. 17 ='> C(Xn)

The contents of Y, bit positions 0 through 17, are subtracted from the

contents of the Index Register specified by n and the result replaces the

contents of the Index Register.

MODIFICATIONS: All except CI, SC

INDICATORS AFFECTED:

Zero

Negative

Overflow

Carry

SSA

SUMMARY:

If C(Xn)

If C(Xn)
0

0, then ON; otherwise OFF

1, then ON; otherwise OFF

If range of Xn is exceeded, then ON

If a carry out of Xn
0

is generated, then ON; otherwise OFF

Subtract Stored from A

C'(I\) - C'(Y) => ClY)

The contents of Y are subtracted from the contents of the A Register and

the result replaces the contents of Y.

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS AFFECTED:

Zero

Negative

Overflow

Carry

If C(Y)

If C(Y)
0

0, then ON; otherwise OFF

1, then ON; otherwise OFF

If range of Y is exceeded, then ON

If a carry out of Y
0

is generated, then ON; otherwise OFF

©®RAJwmuurn~~~t®®®--------------------------------------~

III-31

SSQ

SUMMARY:

FIXED-POINT ARITHMETIC - SUBTRACTION

Subtract Stored from Q

C(Q) - C(Y) ~ C(Y)

The contents of Y are subtracted from the contents of the Q Register and

the result replaces the contents of Y.

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS AFFECTED:

Zero

Negative

Overflow

Carry

SSXn

SUMMARY:

If C(Y)

If C(Y)
0

0, then ON; otherwise OFF

1, then ON; otherwise OFF

If range of Y is exceeded, then ON

If a carry out of Y
0

is generated, then ON; otherwise OFF

Subtract Stored from Xn

C(Xn) - C(Y>o ... 17 ~ C(Y)o ... 17

The contents of Y, bits positions 0 through 17, are subtracted from the

contents of the Index Register specified by n and the result replaces bits

0 through 1 7 of the contents of Y.

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS AFFECTED:

Zero

Negative

Overflow

Carry

If C(Y)0 ... 17 = 0, then ON, otherwise OFF

If C(Y)
0

= 1, then ON, otherwise OFF

If range of Y0 .•. l 7 is exceeded, then ON

If a carry out of Y
0

is generated, then ON; otherwise OFF

Ill-32

FIXED- POINT ARITHMETIC - SUBTRACTION

SBLA Subtract Logic from A

C(A) - C(Y) ? C(A)

SUMMARY: The contents of Y are subtracied from the contents of the A Register and the

result replaces the contents of the A Register.

MODIFICATIONS: All

INDICATORS AFFECTED:

Zero

Negative

If C(A)

If C(A)
0

0, then ON; otherwise OFF

1, then ON; otherwise OFF

Carry If a carry out of A
0

is generated, then ON; otherwise OFF

NOTE: This instruction is identical to the SBA instruction, except the Overflow Indicator
is not affected by this instruction.

SBLQ Subtract Logic from Q

C(Q) - C(Y) ~ C(Q)

SUMMARY: The contents of Y are subtracted from the contents of the Q Register and the

result replaces the contents of the Q Register.

MODIFICATIONS: All

INDICATORS AFFECTED:

Zero

Negative

If C(Q)

If C(Q)0

0, then ON; otherwise OFF

1, then ON; otherwise OFF

Carry If a carry out of Q
0

is generated, then ON; otherwise OFF

NOTE: This instruction is identical to the SBQ instruction except the Overflow Indicator
is not affected by this instruction.

riD rm oo m 1a1 l? n lo) n re: G? /1 ~ nMnl
_l!7\LV uvu Lr Laj U U ~LSLS0 U \.V~UJ _l!J -----------------------------

III-33

SBLXn

SUMMARY:

FIXED- POINT ARITHMETIC - SUBTRACTION

Subtract Logic from Xn

C(Xn) - C(Y)O ... 17 ~ C(Xn)

The contents of Y, bit positions 0 through 17, are subtracted from the

contents of the Index Register specified by n and the result replaces the

contents of that Index Register.

MODIFICATIONS: All except CI, SC

I~TIICATORS AFFECTED:

Zero

Negative

If C(Xn)

If C(Xn)
0

0, then ON; otherwise OFF

1, then ON; otherwise OFF

Carry If a carry out of Xn
0

is generated, then ON; otherwise OFF

NOTE: This instruction is identical to the SBXn instruction except the Overflow Indicator
is not affected by this instruction.

SWCA

SUMMARY:

Subtract with Carry from A

Carry Indicator ON: C(A) - C(Y) ~ C(A)

Carry Indicator OFF: C(A) - C(Y) - O ••• 01 ~ C(A)

The contents of Y are subtracted from the contents of the A Register and

the result replaces the contents of the A Register. If the Carry Indicator

is OFF before the suhtraf'tion takes place. 1 is subtracted from the result.

MODIFICATIONS: All

INDICATORS AFFECTED:

Zero

Negative

If C(A)

If C(A)
0

0, then ON: otherwise OFF

1. then ON: otherwise OFF

Overflow If range of A is exceeded, then ON

Carry If a carry out of A
0

is generated, then ON; otherwise OFF

NOTE: This instruction is used for multiple-word precision arithmetic. The SUMMARY
can also be worded as follows in order to show the intended use:

Carry Indicator ON: C (A) + 1 's complement of C (Y)
+ O ... 01 ~ C(A)

Carry Indicator OFF: C(A) + 1 's complement of C(Y)
~ C(A)

(The +-1 which is added in the first case represents the carry from the next lo\ver
part of the multiple-length subtraction.)

©@~[p5fITuw[l~~!®®®--------------

III-34

SWCQ

SUMMARY:

FIXED- POINT ARITHMETIC - SUBTRACTION

Subtract with Carry from Q

Carry Indicator ON: C(Q) - C(Y) ~ C(Q)

Carry Indicator OFF: C(Q) - C(Y) - 0 .•• 01 ~ C(Q)

The contents of Y are subtracted from the contents of the Q Register and

the result replaces the contents of the Q Register. If the Carry fadicator

is OFF before the subtraction takes place, 1 is subtracted from the result.

MODIFICATIONS: All

INDICATORS AFFECTED:

Zero

Negative

If C(Q)

If C(Q)
0

0, then ON; otherwise OFF

1, then ON; otherwise OFF

Overflow If range of Q is exceeded, then ON

Carry If carry out of Q
0

is generated, then ON; otherwise OFF

NOTE: This instruction is used for multiple-word precision arithmetic. The SUMMARY
can also be worded as follows in order to show the intended use:

Carry Indicato1 ON: C(Q) + l's complement of C:(Y)
-r 0 .•• vi -.;;> C(Q)

Carry Indicator OFF: C(Q) + l's complement of C(Y)
:;> C(Q)

(The + 1 which is added in the first case represents the carry from the next lower
part of the multiple-length subtraction).

@rmOOID)!Alllnmn IS~ /J ~llilllil
\'.'.J~uvuLJ liJ LJ U~LSLSQ'..J U \V\V\V -----------------------------

III-35

MPV

SUMMARY:

FIXED-POINT ARITHMETIC - MULTIPLICATION

Multiply Integer

C(Q) x C(Y) ~ C(AQ), right-adjusted

The contents of the Q Register are multiplied by the contents of Y and the

results, right-adjusted, replaces the contents of the combined A and Q

Registers.

MODIFICATIONS: All except CI, SC

INDICATORS AFFECTED:

Zero

Negative

NOTES:

If C(AQ)

If C(AQ)
0

0, then ON; otherwise OFF

1, then ON; otherwise OFF

1. Two 36-bit integer factors (including sign) are multiplied to form a 71-bit
integer product (including sign), which is stored in AQ, right-adjusted.
Bit position AQ

0
is filled with an "extended sign bit".

_0 __ 1 ___________;3;...;;,.5 0 I 35 ? l FACTOR --~•I x ,-:-; ---F-AC-T-OR-_-_-_-_-_-_ _.....;;..;;,._...,,

Q REGISTER MEMORY LOCATION Y

0 I 71

~ ls !Sl------- PRODUCT-------~•!
COMBINED AQ REGISTER

2. In the case of (-2
35) x (-2

35) = + 2
70

, the position AQ1 is used to represent
this product without causing an overflow.

©@~[])illu~W~~~I®®®-------------

III-36

MPF

SUMMARY:

FIXED-POINT ARITHMETIC - MULTIPLICATION

Multiply Fraction

C(A) x C(Y) ~ C(AQ), left-adjusted

The contents of the A Register are multiplied by the contents of Y and the

result, left-adjusted, replaces the contents of the combined A and Q Registers.

MODIFICATIONS: All except CI, SC

INDICATORS AFFECTED:

Zero

Negative

Overflow

NOTES:

If C(AQ)

If C(AQ)
0

0, then ON; otherwise OFF

1, then ON; otherwise OFF

If range of AQ is exceeded, then ON

1. Two 36-bit fractional factors (including sign) are multiplied to form a 71-bit
fractional product (including sign), which is stored in AQ, left-adjusted.
Bit position AQ

71
is filled with a zero bit.

~0~1-----------~3..;...5 ~Ori ----------~__;;3;.;;.,5
t:s:.::::::::_FA_.c_T_o_R_··---=====:·I ei+-: ----FACTOR _____ _.., .. ,

A REGISTER MEMORY LOCATiON Y

01 70 71

----joj + ... p~;------------ PRODUCT

COMBINED AQ REGISTER

2. An overflow can occur only in the case (-1) x (-1).

III-37

DIV

SUMMARY:

FIXED-POINT ARITHMETIC - DIVISION

Divide Integer

C(Q) .;. C(Y); integer quotient ~ C(Q)
fractional remainder ~ C(A)

The contents of the Q Register are divided by the contents of Y. The

results replace the contents of the A and Q Registers with the integer

quotient in the Q Register and the fractional remainder in the A Register.

MODIFICATIONS: All

INDICATORS AFFECTED:

Zero

Negative

NOTES:

If division takes place:

If C(Q)

If C(Q)
0

0, then ON; otherwise OFF

1, then ON; otherwise OFF

If no division takes place:

If divisor = 0, then ON; otherwise OFF

If dividend <o,then ON; otherwise OFF

1. A 36 bit integer dividend (including sign) is divided by a 36 bit integer divisor
(including sign) to form a 36-bit integer quotient (including sign) and a 36 bit
fractional remainder (including sign). The remainder sign is equal to the
dividend sign unless the remainder is zero.

0 I 35 0 I 35

1~: DIVIDEND •17 l~i DIVISOR •I
Q REGISTER MEMORY LOCATION Y

01 35 0 I 35

I
s! .. 1 .. s; I => ,.. .. '""";----REMAINDER ----..i-:.---,---- QUOTIENT------i•.,.

A REGISTER Q REGISTER

2. If dividend= -2
35

and divisor= -1 or if divisor= 0, then the division itself
does not take place.

Instead, a Divide-Check Fault Trap occurs; the divisor C(Y) remains un
changed. C(Q) contains the dividend magnitude in absolute, and the Negative
Indicator reflects the dividend sign.

III-38

FIXED-POINT ARITHMETIC - DIVISION

DVF Divide Fraction

C(AQ) C(Y); fractional quotient ~ C(A)
remainder :::;> C(Q)

SUMMARY: The contents of the combined A and Q Registers are divided by the contents

of Y. The results replace the contents of the A and Q Register; with the

fractional quotient in the A Register and the remainder in the Q Register.

MODIFICATIONS: All

INDICATORS AFFECTED:

Zero

Negative

NOTES:

If division takes place: If no division takes place:

If C(A) 0, then ON; otherwise OFF If divisor =0, then ON; otherwise OFF

If C(A)
0

1, then ON; otherwise OFF If dividend<o, then ON; otherwise OFF

1. A 71-bit fractional dividend (including sign) is divided by a 36-bit fractional
divisor (including sign) to form a 36-bit fractional quotient (including sign)
and a 36-bit remainder (including sign), bit position 35 of the remainder
corn~~ponding tn hit position 70 of the dividend. The remainder sign is
equal to the dividend sign unless the remainder is zero.

01 70 71

Is' • I DIVIDEND :~1
COMBINED AQ REGISTER NOT USED}

IN DIVISION
01 35

µ: DIVISOR ·I
MEMORY LOCATION Y

01

~~~:' 
35 

:;> 1~; QUOTIENT REMAINDER ·I 
A REGISTER Q REGISTER 

2. If I dividend I 21 divisor I or if divisor = 0, then the division itself does not 
take place. -

Instead, a Divide-Check Fault Trap occurs; the divisor C(Y) remains un
changed, C(AQ) contains the dividend magnitude in absolute, and the 
Negative Indicator reflects the dividend sign. 

©©~~illuurnlL~~ 11 ®®®-----------------------

III-39 



NEG 

SUMMARY: 

FIXED-POINT ARITHMETIC= NEGATE 

Negate A 

- C(A) ~ C(A) 

The contents of the A Register are negated by forming the two's comple

ment and the result replaces the contents of the A Register. 

MODIFICATIONS: Are without any effect on the operation 

INDICATORS AFFECTED: 

Zero 

Negative 

Overflow 

NEGL 

SUMMARY: 

If C(A) 

If C(A)0 

0, then ON; otherwise OFF 

1, then ON; otherwise OFF 

If range of A is exceeded, then ON 

Negate Long 

- C(AQ) ~ C(AQ) 

The contents of the combined A and Q Registers are negated by forming the 

two's complement and the result replaces the contents of the A and Q Registers. 

MODIFICATIONS: Are without any effect on the operation 

INDICATORS AFFECTED: 

Zero 

Negative 

If C(AQ) 

If C(AQ)
0 

0, then ON; otherwise OFF 

1, then ON; otherwise OFF 

Overflow If range of AQ is exceeded, then ON 

©@~[pilllfuW[L~~I®®®-------------

III-40 



ANA 

SUMMARY: 

BOOLEAN OPERATIONS - AND 

AND to A 

C(A); AND C(Y)i ~ C(A), .... for all i = 0, 1, ... , 35 
J. .I. 

The logical AND of each bit of the contents of the A Register and the 

corresponding bit of the contents of Y replace the contents of the A Register. 

MODIFICATIONS: All 

INDICATORS AFFECTED: 

Zero 

Negative 

ANQ 

SUMMARY: 

H C(A) 

H C(A)
0 

0, then ON; otherwise OFF 

1, then ON; otherwise OFF 

AN"'D to Q 

C(Q). AND C(Y). ~ C(Q). for all i = 0, 1, .•. , 35 
1 1 1 

The logical AND of each bit of the contents of the Q Register and the 

corresponding bit of the contents of Y replaces the conlenls of the Q Register. 

MODIFICATION:::,: All 

INDICATORS AFFECTED: 

Zero 

Negative 

ANXn 

SUMMARY: 

H C(Q) 

H C(Q)
0 

0, then ON; otherwise OFF 

1, then ON; otherwise OFF 

AND to Xn (n = 0, 1, ... , 7) 

C(Xn). AND C(Y). ~ C(Xn). for all i = 0, 1, ... , 17 
1 1 1 

The logical AND of each bit of the contents of the Index Register specified 

by n and the corresponding bit of the contents of Y replace the contents of 

that Index Register. 

MODIFICATIONS: All except CI, SC 

INDICATORS AFFECTED: 

Zero 

Negative 

H C(Xn) 

H C(Xn)
0 

0, then ON; otherwise OFF 

1, then ON; otherwise OFF 

©©~~muurn~~~t®®®---------------------------------------~--

111-41 



ANSA 

SUMMARY: 

BOOLEAN OPERATIONS - ANU 

AND to Storage A 

C(A). AND C(Y). ~ C(Y). for all i = 0, 1, •.. , 35 
1 1 1 

The logical AND of each bit of the contents of the A Register and the 

corresponding bit of the contents of Y replace the contents of Y. 

MODIFICATIONS: All except DU, DL, CI, SC 

INDICATORS AFFECTED: 

Zero 

Negative 

ANSQ 

SUMMARY: 

If C(Y) 0, then ON; otherwise OFF 

If C(Y)
0 

1, then ON; otherwise OFF 

AND to Storage Q 

C(Q). AND C(Y). ~ C(Y). for all i = 0, 1, ..•.• ' 35 
1 1 1 

The logical AND of each bit of the contents of the Q Register and the 

corresponding bit of the contents of Y replace the contents of Y. 

MODIFICATIONS: All except DU, DL, Cl, SC 

INDICATORS AFFECTED: 

Zero 

Negative 

ANSXn 

SUMMARY: 

If C(Y) 

If C(Y)
0 

0, then ON; otherwise OFF 

1, then ON; otherwise OFF 

AND to Storage Xn 

C(Xn). AND C(Y). => C(Y). for all i = 0, 1, •.• , 17 
1 1 1 

The logical AND of each bit of the contents of the Index Register specified 

by n and the corresponding bit of the contents of Y replace the contents of 

Y. 

MODIFICATIONS: All except DU, DL, CI, SC 

INDICATORS AFFECTED: 

Zero 

Negative 

If C(Y)
0 
... 17 = 0, then ON; otherwise OFF 

If C(Y)
0 

= 1, then ON; otherwise OFF 

©@~[?L~rIT~W[L~~I®®®-------------

IIl-42 



BOOLEAN OPERATIONS - OR 

ORA OR to A 

C(A). OR C(Y). => C(A)~ for all i = 0, 1, .•. , 35 
. . l l J. 

SUMMARY: The logical OR of each bit of the contents of the A Register and the cor-

responding bit of the contents of Y replaces the contents of the A Register. 

MODIFICATIONS: All 

INDICATORS AFFECTED: 

Zero 

Negative 

ORQ 

SUMMARY: 

If C(A) 

If C(A)
0 

0, then ON; otherwise OFF 

1, then ON; otherwise OFF 

OR to Q 

C(Q). OR C(Y). ? C(Q). for all i = 0, 1, ... , 35 
1 1 1 

276 
8 

The logical OR of each bit of the contents of the Q Register and the corres

ponding bit of the contents of Y replaces the contents of the Q Register. 

MODIFi°CATIONS: All 

INDICATORS AFFECTED: 

Zero 

Negative 

ORXn 

SUMMARY: 

If C(Q) 

If C(Q)
0 

0, then ON; otherwise OFF 

1, then ON; otherwise OFF 

OR to Xn 

C(Xn). OR C(Y). => C(Xn). for all i = 0, 1, ..• , 17 
1 1 1 

The logical OR of each bit of the contents of the Index Register specified by 

n and the corresponding bit of the contents of Y replaces the contents of 

that Index Register. 

MODIFICATIONS: All except Cl, SC 

INDICATORS AFFECTED: 

Zero 

Negative 

If C(Xn) 

If C(Xn)
0 

0, then ON; otherwise OFF 

1, then ON; otherwise OFF 

©©~~mTiurn~~~t®®®----------------------------~~----

Ill-43 



ORSA 

SUMMARY: 

BOOLEAN OPERATIONS - OR 

OR to Storage A 

C(A)i OR C(Y)i ~ C(Y\ for all i = 0, 1, ... , 35 

The logical OR of each bit of the contents of the A Register and the corres

ponding bit of the contents of Y replaces the contents of Y. 

MODIFICATIONS: All except DU, DL, CI, SC 

INDICATORS AFFECTED: 

Zero 

Negative 

ORSQ 

SUMMARY: 

If C(Y) 

If C(Y)
0 

0, then ON; otherwise OFF 

1, then ON; otherwise OFF 

OR to Storage Q 

C(Q). OR C(Y). ::;> C(Y). for all i = 0, 1, ... , 35 
1 1 1 

The logical OR of each bit of the contents of the Q Register and the corres

ponding bit of the contents of Y replaces the contents of Y. 

MODIFICATIONS: All except DU, DL, CI, SC 

INDICATORS AFFECTED: 

Zero 

Negative 

ORSXn 

SUMMARY: 

If C(Y) 

If C(Y)
0 

0, then ON; otherwise OFF 

1, then ON; otherwise OFF 

OR to Storage Xn 

C(Xn). OR C(Y). ? C(Y). for all i = 0, 1, ... , 17 
1 1 1 

The logical OR of each bit of the contents of the Index Register specified 

by n and the corresponding bit of the contents of Y replaces the contents of 

Y. 

MODIFICATIONS: For all except DU, DL, CI, SC 

INDICATORS AFFECTED: 

Zero 

Negative 

If C(Y)0 .. _ 17 = 0, then ON; otherwise OFF 

If C(Y)" = 1, then ON; otherwise OFF 
v 

©©~rPmuuOO[L~~1®®®-------------

Ill-44 



ERA 

SUMMARY: 

BOOLEAN OPERATIONS - EXCLUSIVE OR 

EXCLUSIVE OR to A 

C(A): ~ C(Y); ::;> C(A). for i = 0, 1, ... , 35 
1 ~ l 

The logical EXCLUSIVE OR of each bit of the contents of the A Register 

and the corresponding bit of the contents of Y repiacen the contents of the 

A Register. 

MODIFICATIONS: All 

INDICATORS AFFECTED: 

Zero 

Negative 

ERQ 

SUMMARY: 

If C(A) 

If C(A)
0 

0, then ON; otherwise OFF 

1, then ON; otherwise OFF 

EXCLUSIVE OR to Q 

C(Q). " C(Y). =? C(Q). for i = 0, 1, ... , 35 
1 1 1 

The logical EXCLUSIVE OR of each bit of the contents of the Q Register 

Q Register. 

MODIFICATIONS: All 

INDICATORS AFFECTED: 

Zero 

Negative 

ERXn 

SUMMARY: 

If C(Q) 

If C(Q)
0 

0, then ON; otherwise OFF 

1, then ON; otherwise OFF 

EXCLUSIVE OR to Xn 

C(Xn). ~ C(Y). ~ C(Xn). for i = 0, 1, ... , 17 
1 1 1 

The logical EXCLUSIVE OR of each bit of the contents of the Index Register 

specified by n and the contents of Y replaces the contents of that Index 

Register. 

MODIFICATIONS: All except Cl, SC 

INDICATORS AFFECTED: 

Zero 

Negative 

If C(Xn) 

If C(Xn)
0 

0, then ON; otherwise OFF 

1, then ON; otherwise OFF 

©©~~muuwlL~~ tl ®®®---------------------------

III-45 



ERSA 

SUMMARY: 

BOOLEAN OPERATIONS - EXCLUSIVE OR 

EXCLUSIVE OR to Storage A 

C(A). ~ C(Y). ~ C(Y). for i = 0, 1, ... , 35 
1 1 1 

The logical EXCLUSIVE OH of each bit of the contents of the A Register 

and the corresponding bit of the contents of Y replaces the contents of Y. 

MODIFICATIONS: All except DU, DL, CI, SC 

INDICATORS AFFECTED: 

Zero 

Negative 

ERSQ 

SUMMARY: 

If C(Y) 

If C(Y)
0 

0, then ON; otherwise OFF 

1, then ON; otherwise OFF 

EXCLUSIVE OR to Storage Q 

C(Q). :t: C(Y). ~ C(Y). for i = 0, 1, .•• , 35 
1 1 1 

The logical EXCLUSIVE OR of each bit of the contents of the Q Register 

and the corresponding bit of the contents of Y replaces the contents of Y. 

MODIFICATIONS: All except DU, DL, CI, SC 

INDICATORS AFFECTED: 

Zero 

Negative 

ERSXn 

SUMMARY: 

If C(Y) 

If C(Y)
0 

0, then ON; otherwise OFF 

1. then ON; otherwise OFF 

EXCLUSIVE OR to Storage Xn 

C(Xn). ':f: C(Y). ::=;> C(Y). for i = 0, 1, ... , 17 
1 1 1 

(n = 0, 1, ..• , 7) 64n 
8 

The logical EXCLUSIVE OR of each bit of the contents of the Index Register 

specified by n and the corresponding bit of the contents of Y replaces the 

contents of Y. 

MODIFICATIONS: All except DU, DL, CI, SC 

INDICATORS AFFECTED: 

Zero 

Negative 

If C(Y)
0 
..• 17 = 0, then ON; otherwise OFF 

If C(Y)
0 

= 1, then ON; otherwise OFF 

©@~~ffilJ~ill[L~~t®®®-------------

III-46 



CMPA 

SUMMARY: 

MODIFICATION: 

COMPARISON - COMPARE 

Compare with A 

Comparison C (A) •. 01V\ . . '-'' ..... , 
The contents of the A Register are compared with the contents of Y. 

A 11 
J-Hl 

INDICATORS AFFECTED: 

Q) 

> 
•.-4 :>., Algebraic Comparison ..µ 

0 ca H 
H bll H 

Relation Sign Q) Q) ca 
N z 0 

0 0 0 C(A) > C(Y) C(A)
0 

= 0, C(Y)
0 

= 1 

0 0 1 C(A) > C(Y) 

1 0 1 C(A) = C(Y) C(A)
0 = C(Y)

0 
0 1 0 C(A) < C(Y) 

0 1 1 C(A) < C(Y) C<AL = 1. C(Y),., = 0 
L li i 'U \) 

:>., Logic Comparison 
0 H 
io-; S.. 
Q) ca Relation 
N 0 

0 0 C(A) < C(Y) 

1 1 C(A) = C(Y) 

0 1 C(A) > C(Y) 

j 

©©~~muurn~~IBt®®®--------------------------------------------~ 

III-47 



COMPARISON - COMPARE 

CMPQ Compare with Q 

Comparison C (Q) : : C (Y) 

SUMMARY: The contents of the Q Register are compared with the contents of Y. 

MODIFICATIONS: All 

INDICATORS AFFECTED: 

Q) 

> ....... ::;:..., Algebraic Comparison -1-) 

0 "° ::... 
::... bD ::... 
Q) 

~ "° Relation Sign 
N 0 

0 0 0 C(Q) > C(Y) C(Q)O = 0, C(Y)
0 

= 1 

0 0 1 C(Q) > C(Y) I C(Qlo 1 0 1 C(Q) = C(Y) = C(Y)0 
0 1 0 C(Q) < C(Y) 

0 1 1 C(Q) < C(Y) C(Q)O = 1, C(Y)0 = 0 

::;:..., Logic Comparison 0 ::... 
::... ::... 
Q) "° Relation N 0 

0 0 C(Q) < C(Y) 

1 1 C(Q) = C(Y) 

0 1 C(Q) > C(Y) 

©@[DJ[?ffilY~OO[lJ~IB!®®®-------------

III-48 



CMPXn 

SUMMARY: 

COMPARISON - COMPARE 

Compare with Xn 

Comparison C(Xn) l""I /"IT\ 

v\.1/o ••• 17 

The contents of the Index Register specified by n are compared with the 

contents of Y, bits O through 17. 

MODIFICATIONS: All except CI, SC 

INDICATORS AFFECTED: 

(l) 

> 
•.-4 » Algebraic Comparison ., 

0 clj ~ 
~ bD ~ 
(l) (l) clj Relation Sign 
N z C,) 

0 0 0 C(Xn) > C(Y>o ..• 17 C(Xn)
0 = 0, C(Y)

0 = 1 

0 0 1 C(Xn) > C(Y>o ... 17 

1 0 1 C(Xn) = C(Y)O ... 17 ! C(Xn)0 = C(Y)
0 

.. ' 
~~o~-1~0~-l-l~C-(_x_n_>_<~c-~_1_0_._ .. _1_7~~~~~~~--~--- _______ _ 

0 1 1 II C(Xn) < C(Y>o ... 11 l, C(Y)
0 

= v 

» Logic Comparison 0 ~ 
~ ~ 
(l) clj Relation N C,) 

0 0 C(Xn) < C(Y>o .•• 17 

1 1 C(Xn) = C(Y>o .•• 17 

0 1 C(Xn) > C(Y>o ••. 17 

Ill-49 



CWL 

SUMMARY: 

COMPARISON - COMPARE 

Compare with Limits 

Algebraic comparison of C(Y) with the closed interval [ C(A); C(Q)] 

The contents of Y are compared with the contents of the A Register and the 

Q Register to determine if the value of the contents of Y falls between an 

upper and lower limit set into the A Register and the Q Register, respectively. 

MODIFICATIONS: All 

INDICATORS AFFECTED: 

Zero If C(Y) is contained in the closed interval 
[C(A); C(Q)], i.e., 
either C(A) < C(Y) < C(Q) 

or C(A) > C(Y) ~ C(Q), 
then ON; otherwise OFF 

Cl> 
> ..... >, -1-) Relation between Signs of ro ~ 
b£) ~ 
Cl> ro C(Q) and C(Y) C(Q) and C(Y) z C,) 

0 0 C(Q) > C(Y) C(Q)O = 0, C(Y)
0 = 1 

0 1 C(Q) 2. C(Y) } 1 0 C(Q) < C(Y) C(Q)O = C(Y)
0 

1 1 C(Q) < C(Y) C(Q)O = 1, C(Y)
0 

= 0 

©@[DJ[punrnrn[L~~;®®®-------------

IIl-50 



COMPARISON - COMPARE 

CMG Compare Magnitude 

Algebraic comparison I c (A) I : : I c (Y) I I .. I • . I 

SUMMARY: The absolute value of the contents of the A Register is compared with the 

absolute value of the contents of Y. 

MODIFICATIONS: All 

INDICATORS AFFECTED: 
Q) 

> 
·~ 
~ 

0 C'j 
~ b1l 
Q) Q) Relation 
N z 
0 0 I C(A)l >I C(Y) I 
1 0 I c (A) I = I c (Y) I 
0 1 I c (A) I < I c (Y) I 

©®~lPilluurn~~IBt®®® 
----------------------------------------------------~ 

III-51 



COMPARISON - COMPARE 

SZN Set Zero and Negative Indicators from Memory 

Test the Number C(Y) 

SUMMARY: The zero and negative indicators are set to reflect the contents of Y. 

MODIFICATIONS: All 

INDICATORS AFFECTED: 
Q.) 

> 
·~ 
~ 

0 ro 
H bD 
Q.) Q.) 

N z 
0 0 

1 0 

0 1 

CMK 

SUMMARY: 

Relation 

Number C (Y) > 0 

Number C (Y) = 0 

Number C(Y) < 0 

Compare Masked 

Z. = C(Q). AND [ C(A). ¢= C(Y).] for all i = 0, 1, ..• , 35 
1 1 1 1 

Selected bits of the A Register are compared with the corresponding bits of 

the contents of Y. The bits to be compared are the corresponding bits in 

the Q Register which are not masked by a 1. 

MODIFICATIONS: All 

INDICATORS AFFECTED: 

Zero 

Negative 

NOTE: 

0, then ON; otherwise OFF 

1, then ON; otherwise OFF 

This instruction compares those corresponding bit positions of A and Y for 
identity that are not masked by a 1 in the corresponding bit position of Q. 

The Zero Indicator is set ON, if the comparison is successful for all bit positions; 
i.e. if for all i = 0, 1, •.. 35 there is 

either C(A). 'E/= C(Y). or C(Q). = 1 
1 1 1 

(identical) (masked) 

Otherwise it is set OFF. 

The Negative Indicator is set ON, if the comparison is unsuccessful for bit 
position 0, i.e. if 

C(A)0 :/= C(Y)0 as well as C(Q)0 = o 
(nonidentical) 

Otherwise it is set OFF. 

(nonmasked) 

©@[0J[pu,nrmmL~~t®®®-------------

III-52 



COMPARISON - COMPARATIVE AND 

CANA Comparative AND with A 

z. = C(A)! AND C(Y): for all i = 0, 1, ... , 35 
l 1 1 

SUMMARY: The logical AND of each bit of the contents of the A Register and the corres-

ponding bit of the contents of Y is used to set appropriate indicators and the 

contents of Y and the A Register are not changed. 

MODIFICATIONS: All 

INDICATORS AFFECTED: 

Zero 

Negative 

CANQ 

SUMMARY: 

0, then ON; otherwise OFF 

1, then ON; otherwise OFF 

Comparative AND with Q 

zi = C(Q)i AND C(Y)i for all i = 0, 1, ... '35 

The logical ANTI of each bit of the contents of the Q Register and the corres

ponding hit of the c-ontents of Y is used to set indicators and the contents of 

Y and the Q Register are not changed. 

MODIFICATIONS: All 

INDICATORS AFFECTED: 

Zero 

Negative 

CANXn 

SUMMARY: 

0, then ON; otherwise OFF 

1, then ON; otherwise OFF 

Comparative AND with Xn (n = 0, 1 .•. , 7) 

Zi = C(Xn)i AND C(Y)i for all i = 0, 1, ..• 17 

The logical AND of each bit of the contents of the Index Register specified 

by n and the corresponding bit of the contents of Y is used to set appropriate 

indicators and the contents of Y and the Index Register are not changed. 

MODIFICATIONS: All except CI, SC 

INDICATORS AFFECTED: 

Zero 

Negative 

0, then ON; otherwise OFF 

1, then ON; otherwise OFF 

©@~[pfilu~IBQJ~?BI®®®-------------

IIl-53 



CNAA 

SUMMARY: 

COMPARISON - COMPARATIVE NOT AND 

Comparative NOT AND with A 

Z. = C(A). AND C(Y)
1
. for all i = 0, 1. .•. , 35 

l l 

The logical- AND of the contents of the A Register and the complement of the 

contents of Y is used to set appropriate indicators. 

MODIFICATIONS: All 

INDICATORS AFFECTED: 

Zero 

Negative 

CNAQ 

SUMMARY: 

0, then ON; otherwise OFF 

1, then ON; otherwise OFF 

Comparative NOT AND with Q 

Z. = C(Q). AND C(Y)
1
. for all i = 0, 1, ... , 35 

1 1 

The logical AND of the contents of the Q Register and the complement of 

the contents of Y is used to set appropriate indicators. 

MODIFICATIONS: All 

INDICATORS AFFECTED: 

Zero 

Negative 

CNAXn 

SUMMARY: 

0, then ON; otherwise OFF 

1, then ON; otherwise OFF 

Comparative NOT AND with Xn 

Z. = C(Xn). AND C(Y)
1
. for all i = 0, 1, ... 17 

1 l 

The logical ANTI of the contents of the Index Register specified by n and 

the complement of the contents of Y is used to set appropriate indicators. 

MODIFICATIONS: All except CI, SC 

INDICATORS AFFECTED: 

Zero 

Negative 

0, then ON; otherwise OFF 

1, then ON; otherwise OFF 

©@~[pffilf~ffi[L~~t®®®-------------

III-54 



LOE 

SUMMARY: 

FLOATING POINT OPERATIONS 

Load Exponent Register 

C(Y)O ... ? :;> C(E) 

The contents of Y, bit positions 0 through 7, replace the contents of the 

Exponent Register. 

MODIFICATIONS: All except CI, SC 

INDICATORS AFFECTED: 

Zero 

Negative 

STE 

SUMMARY: 

ivlODIFICA TI0~~.3: 

Set OFF 

Set OFF 

Store Exponent Register 

c (E) ~ C(Y>o ••• 7 ; 00 .. 0 ~ C(Y>s ••• 17 

The contents of the Exponent Register replace the contents of Y, bits 0 

Lhruugh 7. Bits 8 through 17 of the contents of Y arc filled '\Yith zeros. 

'"!" - __ J ~"!"- ~T ,....,T _,,....... 
rtl.l eAL;t::(Jl .Uu, LJ.u, 01, ov 

INDICATORS AFFECTED: None 

ADE Add to Exponent Register 

C(E) + C(Y)O ... 7 ~ C(E) 

SUMMARY: The contents of Y, bits 0 through 7, are added to the contents of the 

Exponent Register and the result replaces the contents of the Exponent 

Register. 

MODIFICATIONS: All except CI, SC 

INDICATORS AFFECTED: 

Zero 

Negative 

Exp.Overflow 

Exp. Underflow 

Set OFF 

Set OFF 

If exponent above +127, then ON 

If exponent below -128, then ON 

©©~[pmuurn~~~ 1 ®®®-----------------------

III-55 



FLOATING POINT OPERATIONS 

FNO Floating Normalize 

C(EAQ) normalized ~ C(EAQ) 

SUMMARY: The contents of the combined Exponent, A, and Q Registers are normalized. 

MODIFICATIONS: Are without any effect on the operation 

INDICATORS AFFECTED: 

Zero 

Negative 

If C(AQ) 

If C(AQ)
0 

0, then ON; otherwise OFF 

1, then ON; otherwise OFF 

Exp. Overflow 

Exp. Underflow 

Overflow 

If exponent above +127, then ON 

If exponent below -128, then ON 

Set OFF 

NOTE: The instruction normalizes the number in EAQ. If the Overflow Indicator is ON, 
then the number in EAQ is normalized one place to the right; and then the sign bit 
C(AQ)o is inverted in order to reconstitute the actual sign. Furthermore, the 
Overflow Indicator is set OFF. 

This instruction can be used to correct overflows that occurred with fixed-point 
numbers. 

©©~[?filu~w[JJ~~t®®®-------------

III-56 



TRANSFER OF CONTROL - TRANSFER 

TRA Transfer Unconditionally 

Y => C(IC) 

SUMMARY: The address field of the instruction word replaces the contents of the 

instruction Counter causing a transfer of control. 

MODIFICATIONS: All except DU, DL, CI, SC 

INDICATORS AFFECTED: None 

TSXn 

SUMMARY: 

Transfer and Set Xn 

C(IC) + O ••• 01 ? C(Xn); Y ~ C(IC) 

The contents of the Instruction Counter, plus 1, replace the contents of the 

Index Register specified by n. The address field of the instruction word 

replaces the contents of the Instruction Counter causing a transfer of control. 

MODTFTCATIONS: All except DU, DL, CI, SC 

INlHCATC>k::-i AFFECTED: i~uue 

TSS 

SUMMARY: 

Transfer and Set Slave 

Y => C(IC) 

The address field of the instruction word replaces the contents of the 

Instruction Counter and the processor enters the slave mode. 

MODIFICATIONS: All except DU, DL, CI, SC 

INDICATORS AFFECTED: 

Master Mode Set OFF 

©©l0JUJillvurn~~~ t ®®® -------------------------------------------------------

Ill-57 



RET 

SUMMARY: 

TRANSFER OF CONTROL - TRANSFER 

Return 

C(Y)O ... 17 => C(IC); C(Y)18 ... 35 => C(IR) 

The contents of Y, bits 0 through 1 7, replace the contents of the Instruction 

Counter, and bits 18 through 35 replace the contents of the Indicator Register. 

MODIFICATIONS: All except CI, SC, DU, DL 

INDICATORS AFFECTED: 

Master Mode 

All other 
indicators 

If corresponding bit in C(Y) is 1, then no change; otherwise OFF 

If corresponding bit in C(Y) is 1, then ON; otherwise OFF 

NOTES: 1. The relation between bit position of C(Y) and the indicators is as follows: 

Bit Position 

18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

Indicator 

Zero 
Negative 
Carry 
Overflow 
Exponent Overflow 
Exponent Underflow 
Overflow Mask 
Tally Runout 
Parity Error 
Parity Mask 
Master Mode 

Not used 
at this 
time 

2. A possible change of the status of the Master Mode Indicator takes place as 
the last part of the instruction execution. 

3. The Tally Runout Indicator will reflect C(Y)25 regardless of what address 
modification is performed on the RET instruction (for tally operations). 

©@[DJ[pfilu~rn[L~~t®®®-------------

III-58 



TRANSFER OF CONTROL - CONDITIONAL TRANSFER 

TZE Transfer on Zero 

If Zero Indicator ON, then Y ~ C (IC) 

SUMMARY: The address field of the instruction word replaces the contents of the 

Instruction Counter, if the Zero fodicator is ON. 

MODIFICATIONS: All except DU, DL, CI, SC 

INDICATORS AFFECTED: None 

TNZ 

SUMMARY: 

Transfer on Not Zero 

If Zero Indicator OFF, then Y ~ C(IC) 

The address field of the instruction word replaces the contents of the 

Instruction Counter IF the Zero Indicator is OFF. 

MODIFICATIONS: All except DU, DL, CI, SC 

I~.:-DICATORS AFFECTED: None 

TMI 

SUMMARY: 

Transfer on Minus 

If Negative Indicator ON, then Y ~ C (IC) 

The address field of the instruction word replaces the contents of the 

Instruction Counter if the Negative Indicator is ON. 

MODIFICATIONS: All except DU, DL, CI, SC 

INDICATORS AFFECTED: None 

TPL 

SUMMARY: 

Transfer on Plus 

If Negative Indicator OFF, then Y ~ C (IC) 

The address field of the instruction word replaces the contents of the 

Instruction Counter if the Negative Indicator is OFF. 

MODIFICATIONS: All except DU, DL, CI, SC 

INDICATORS AFFECTED: None 

6008 

©@~[?illu~ffi[L~~I®®®-------------

III-59 



TRC 

SUMMARY: 

TRANSFER OF CONTROL - CONDITIONAL TRANSFER 

Transfer on Carry 

If Carry Indicator ON, then Y ~ C(IC) 

The address field of the instruction word replaces the contents of the 

Instruction Counter if the Carry Indicator is ON. 

MODIFICATIONS: All except DU, DL, CI, SC 

INDICATORS AFFECTED: None 

TNC 

SUMMARY: 

Transfer on No Carry 

If Carry Indicator OFF, then Y => C(IC) 

The address field of the instruction word replaces the contents of the 

Instruction Counter if the Carry Indicator is OFF. 

MODIFICATIONS: All except DU, DL, CI, SC 

INDICATORS AFFECTED: None 

TOV 

SUMMARY: 

Transfer on Overflow 

If Overflow Indicator ON, then Y ~ C(IC) 

The address field of the instruction word replaces the contents of the 

Instruction Counter if the Overflow Indicator is ON. 

MODIFICATIONS: All except DU, DL, CI, SC 

INDICATORS AFFECTED: 

Overflow 

TEO 

SUMMARY: 

Set OFF 

Transfer on Exponent Overflow 

If Exponent Overflow Indicator ON, then Y => C(IC) 

The address field of the instruction word replaces the contents of the 

Instruction Counter if the Exponent Overflow Indicator is ON. 

MODIFICATIONS: All except DU, DL, CI, SC 

INDICATORS AFFECTED: 

Exp. Overflow Set OFF 

III-60 



TRANSFER OF CONTROL - CONDITIONAL TRANSFER 

TEU Transfer on Exponent Underflow 

If Exponent Underflow Indicator ON, then Y ~ C (IC) 

SUMMARY: The address field of the instruction word replaces the contents of the 

Instruction Counter if the Exponent Underflow fadicator is ON. 

MODIFICATIONS: All except DU, DL, CI, SC 

INDICATORS AFFECTED: 

Exp. Underflow Set OFF 

TTF 

SUMMARY: 

Transfer on Tally Runout Indicator OFF 

If Tally Runout Indicator OFF, then Y => C(IC) 

The address field of the instruction word replaces the contents of the 

Instruction Counter if the Tally Runout Indicator is OFF. 

MODIFICATIONS: All except DU, DL, CI, SC 

II\lTIICATORS AFFECTED: None 

607g 

©@~[pfiluurn~~~t®®®---------------------

III-61 



MISCELLANEOUS OPERATIONS 

NOP No Operation 

SUMMARY: No operation takes place. 

MODIFICATIONS: Generally the modification DU or DL is used (see the notes below) 

INDICATORS AFFECTED: None 

NOTES 

DIS 

SUMMARY: 

1. If any modification other than DU or DL is used, the effective address will be 
used in a memory access request which could lead to memory faults. 

2. The use of a modification ID, DI, IDC, DIC causes the respective changes in 
the address and the tally. 

Delay Until Interrupt Signal 

No operation takes place, and the processor does not continue with the next 
instruction, but waits for a program interrupt signal. 

MODIFICATIONS: Are without any effect on the operation 

INDICATORS AFFECTED: None 

©@~[pffilf~OO[L~~c®®®-------------

III-62 



BCD 

SUMMARY: 

MISCELLANEOUS OPERATIONS 

Binary to Binary-Coded-Decimal 

C(A) -:- C(Y) ===> 4-bit quotient and remainder. 

Shift C(Q) left 6 positions; 4-bit quotient ~ C(Q)L' 0 '7 1 
uo ••• '.L 

and remainder ~ C(A). Shift C(A) left 3 positions. 

The contents of the A Register are converted to their binary coded decimal 

equivalent and the result is formed in the Q Register. The conversion is 

made at the rate of one decimal digit per execution of the instruction; in the 

order of decreasing digit significance. A conversion constant stored in Y 

is used in the conversion and a new constant is used for each digit. With 

each instruction execution the contents of the Q Register are shifted left 4 

positions and the converted 4 bit BCD digit is placed in the Q Register, 

bits 33-36. 

MODIFICATIONS: All except CI, SC 

INDICATORS AFFECTED: 

Zero 

Negative 

NOTES: 

If ('(A) = 0, then ON 

If before execution C(A)
0 

= 1, then ON; otherwise OFF 

1. This instruction carries out one step in an algorithm for the conversion of a 
number from the binary to the decimal system of notation, which requires 
the repeated short division of the binary number or last remainder by certain 
constants 

C. = 8i x lON-i (for i = 1, 2,. .. ), 
l 

with N being defined by 

lON-l < I number I < lON -1. 

2. See example in Section 5. 

3. See Appendix for Conversion constants. 

III-63 



GTB 

SUMMARY: 

l'v1ISCELLANEOUS OPERATIONS 

Gray to Binary 

C(A) converted fromGray Code to binary representation => C(A) 

The contents of the A Register are converted from Gray Code to binary and 

replace the contents of the A Register. 

MODIFICATIONS: Are without any effect on the operation 

INDICATORS AFFECTED: 

Zero 

Negative 

NOTE: 

XEC 

SUMMARY: 

If C(A) 

If C(A)
0 

0, then ON; otherwise OFF 

1, then ON; otherwise OFF 

This conversion is defined by the following algorithm, when R. and S. denote the 
contents of bit positions i of the A- register before and after tile conv~rsion: 

SO RO 

Si (Ri AND Si _1) OR (Ri AND Si_ 1) 

for i = 1,2, ... ,35. 

Execute 

Obtain and execute the instruction stored at memory location Y. 

MODIFICATIONS: All except DU, DL, CI, SC 

INDICATORS AFFECTED: None 

NOTE: 

The XEC instruction itself does not affect any indicator. However, the 
execution of the instruction from Y may affect indicators. 

After the execution of the instruction obtained from location Y, the next 
instruction to be executed is obtained from C (IC) + 1. This is the one stored 
in memory right after this XEC instruction, unless the contents of the 
Instruction Counter have been changed by the execution of the instruction 
obtained from memory location Y. 

@@[DJ[?fillf~W[JJ~~t®®®-------------

III-64 



MISCELLANEOUS OPERATIONS 

XED Execute Double 

SUMMARY: Obtain and execute the two instructions stored at the memory location Y-pair. 

MODIFICATIONS: All except DU, 

II~vICATORS AFFECTED: None 

NOTES: 

The XED instruction itself does not affect any indicator. However, the 
execution of the two instructions from Y-pair may affect indicators. 

1. The first instruction obtained from Y-pair MUST NOT alter the memory 
location from which the second instruction is obtained, and MUST NOT be 
another XED instruction. 

2. If the first instruction obtained from Y-pair alters the contents of the 
Instruction Counter, then this transfer of control is effective immediately; 
and the second instruction of the pair is not executed. 

3. After the execution of the two instructions obtained from Y-pair, the next 
instruction to be executed is obtained from C (IC) + 1. This is the instruction 
stored in memory right after this XED instruction unless the contents of the 
Instruction Counter have been changed by the execution of the two instructions 
obtained from the memory locations Y-pair. 

©@~[pffiu~W[l~~tl®®®----------------

III-65 



MME 

SUMMARY: 

MISCELLANEOUS OPERATIONS 

Master Mode Entry 

Causes a fault which obtains and executes, in the Master Mode, the two 

instructions stored at the memory locations 4 + C and 5 + C (decimal). 

MODIFICATIONS: Are without any effect on the operation. 

INDICATORS AFFECTED: None 

Master 
Mode 

NOTES: 

The MME instruction itself does not affect any indicator. However, the 
execution of the two instructions from 4 + C and 5 + C may affect indicators; 
particularly, each one in turn will affect the Master Mode Indicator as 
follows: 

If the instruction obtained actually results in a transfer of control and is 
not the TSS instruction, then ON 

If the instruction obtained is either the RET instruction with bit 28 = ZERO 
or the TSS instruction, then OFF 

1. The value of the constant C is set up in the FAULT switches. 

2. During the execution of this MME instruction and the two instructions ob
tained, the Processor is in the Master Mode, independent of the value of its 
Master Indicator. The Processor will stay in the Master Mode, if the 
Master Indicator is set ON after the execution of these three instructions. 

3. The instruction from 4 + C MUST NOT alter the memory location 5 + C, and 
MUST NOT be an XED instruction. 

4. If the instruction from 4 + C alters the contents of the Instruction Counter, 
then this transfer of control is effective immediately; and the instruction 
from 5 + C is not executed. 

5. After the execution of the two instructions obtained from Y-pair, the next 
instruction to be executed is obtained from C (IC) + 1. This is the instruction 
stored in memory right after this MME instruction unless the contents of the 
Instruction Counter have been changed by the execution of the two instructions 
obtained from 4 + C and s + C. 

©©~~illu~w[L~~t®®®-------------

Ill-66 



MISCELLANEOUS OPERATIONS 

DRL Derail 

C'TTl\/fl\lr t\ PV. 
t.JU.LY.l..LY.1...£"1..1.\ ..L • Causes a fault \vhich obtains and executes in the Master Mode the two 

instructions stored at the memory locations 12 + C and 13 + C (decimal). 

MODIFICATIONS: Are without any effect on the operation 

INDICATORS AFFECTED: None 

Master 
Mode 

NOTES: 

The DRL instruction itself does not affect any indicator. However, the 
execution of the two instructions from 12 + C and 13 + C may affect 
indicators; particularly, each one in turn will affect the Master Mode 
Indicator as follows: 

If the instruction obtained actually results in a transfer of control and is not 
the TSS instruction, then ON 

If the instruction obtained is either the RET instruction with bit 28 = ZERO 
or the TSS instruction, then OFF 

1. The value of the constant C is set up in the FAULT switches. 

2. During the execution of this DRL instruction and the two instructions ob
tained, the processor is in the Master Mode, indepemlent of the value of 
itc;: Mac;:ter Inrlicator, The prnc-ec:isor will Rt::ty in the M~rntPr Morle, if thP 
Ma::He1· Indicator b 01~ after Lhe exeeuLivn uf Lhecie Lhn::e in6LrucLion::>. 

3. The instruction from 12 + C MUST NOT alter the memory location 13 + C, and 
MUST NOT be an XED instruction. 

4. If the instruction from 12 + C alters the contents of the Instruction Counter, 
then this transfer of control is effective immediately; and the instruction 
from 13 + C is not executed. 

5. After the execution of the two instructions obtained from Y-pair, the next 
instruction to be executed is obtained from C (IC) + 1. This is the instruction 
stored in the memory right after this DRL instruction unless the contents of 
the Instruction Counter have been changed by the execution of the two instruc
tions obtained from 12 + C and 13 + C. 

III-67 



RPT 

SUMMARY: 

MISCELLANEOUS OPERATIONS 

Repeat 

Execute the next instruction a specified number of times or until a specified 

terminate condition is met. 

MODIFICATIONS: No modification can take place 

INDICATORS AFFECTED: 

Tally Runout If termination because of Tally = 0, then ON 
If because terminate condition is met, then OFF 

All other 
indicators 

The RPT instruction itself does not affect any of the other indicators. 
However, the execution of the repeated instruction may affect indicators. 

NOTES: 1. This RPT instruction has the following format: 
0 7 8 9 10 11 17 18 26 27 28 29 30 35 

TALLY '""'"''CI TERM. COND. I OP CODE I 0 I I I 0 I DELTA 

2. If C = 1, then bits 0 - 17 of the RPT instruction *XO. 

3. In any case, the terminate condition and tally from XO will control the 
repetition loop for the instruction following this RPT instruction; initial 
tally = 0 will be interpreted as 256. 

4. The repetition loop consists of the following steps: 

a. Execute the repeated instruction, 

b. c (XO)o ... 7-1 ~ C(XO)o ... 7 

c. If Termination Condition met (see 7), then set Tally Runout Indicator 
OFF and terminate, 

d. If C(X0)
0 
... 

7 
= 0, then set Tally Runout Indicator ON and terminate: 

e. Go to a. 

5. All instructions can be used as repeated instructions except the following: 

All tr an sf er of control instructions 

All miscellaneous instruction operations except BCD. 

All shift instructions, NEG, FNO 

6. Address modification for the repeated instruction: 

The repeated instruction must be modified. Only the modifiers Rand RI 
are permitted, and one of the designators Xl, ... , X7 must be specified. 

©@~~mTIUW~~~c®®®-------------

IIl-68 



MISCELLANEOUS OPERATIONS 

The effective address Y (in the case of R) or the address Y of the indirect 
word to be referenced (in the case of RI) will be: 

a. For the first execution of the repeated instruction 
Y + C(R)=> Y, Y +Delta~ C(R) 

b. For anv successive execution 
C(R) ~ Y, Y +Delta~ C(R) 

In the case of RI, only one indirect reference will be made per repeated 
execution. The Tag portion of the indirect word will not be interpreted as 
usual, but will be ignored; and instead the modifier R and the designator 
R = N will be applied. 

7. The Terminate Conditions: 

The possible terminate conditions are the same for all repeat instructions. 

The bit configuration in bit positions 11 - 17 of the RPT instruction defines 
the terminate conditions for which the repetition loop will be terminated 
immediately. If more than one condition is specified, the repeat will terminate 
if any of the specified conditions are met. 

Rit 17 = 1: any overflow terminates the repetition loop, and it is treated as 
usual; i.e., the respective Overflow Indicator is set ON, and if 
the Overflow Mask Indicator is OFF. lheu au Overflow Fault Trap 
occurs. 

Bit 16 = 

Bit 15 = 

Bit 14 = 

Bit 13 = 

Bit 12 = 

Bit 11 = 

1· 

1: 

1: 

1: 

1: 

1: 

if Carry Indicator is OFF, terminate the repetition loop. 

if Carry Indicator is ON, terminate the repetition loop. 

if Negative Indicator is OFF, terminate the repetition loop. 

if Negative Indicator is ON, terminate the repetition loop. 

if Zero Indicator is OFF, terminate the repetition loop. 

if Zero Indicator is ON, terminate the repetition loop. 

A 0 in both positions for one indicator will cause this indicator to be 
ignored as a termination condition. 

8. At the time of termination: 

XOo ... 7 will contain the tally residue; i.e., the number of repeats remaining 
until a Tally Runout would have occurred, and also the terminate condition. 

The Xn specified by the designator of the repeated instruction will contain the 
effective address of the next operand or indirect word that would have been 
secured (this is because of the overlap between an execution of the repeated 
instruction and the address modification for the next execution of the repeated 
instruction). 

©®~rPmuuwlL~IBt®®®-----------------

III-69 



RPL 

SUMMARY: 

MISCELLANEOUS OPERATIONS 

Repeat Link 5008 

Execute the next instruction a specified number of times, until a specified 

terminate condition is met, or until a Link Address Zero is found. 

MODIFICATIONS: No modification can take place 

INDICATORS AFFECTED: 

Tally Runout If termination because of Tally= 0 or Link Address = 0, then ON. 
If because terminate condition is met, then OFF. 

All other The RPL instruction itself does not affect any of the other indicators. 
indicators However, the execution of the repeated instruction may affect indicators. 

NOTES: 1. This RPL instruction has the following format: 

0 7 8 9 10 11 17 18 26 27 28 29 30 35 
I TALLY ~8 C ! TERM. COND. ! OP CODE l 0 ! I ! 0 ! 

2. If C = 1, then bits 0 - 17 of the RPL instruction ::;:>XO. 

3. In any case, the terminate condition and tally from XO will control the repeti
tion loop for the instruction following this RPL instruction; initial tally = 0 
will be interpreted as 256. 

4. The repetition loop consists of the following steps: 

a. Execute the repeated instruction 

b. C(XO>o ••• 7-1 => C(XO>o ••• 7 

c. If termination condition met (see 7), then set Tally Runout Indicator OFF 
and terminate 

d. If the tally C(Xn)o .•• 7 = O or the link address C(Y)o 17 = 0, then 
set Tally Runout Indicator ON and terminate · · · 

e. Go to a. 

5. All instructions can be used as repeated instructions except the following: 

Instructions that could alter the link address C(Y)o ... 17 
EAA, EAQ, EAX, NEG, NEGL 

All miscellaneous operations instructions 

All shift instructions 

All transfer of control instructions. 

6. Address modification for the repeated instruction: 

The repeated instruction must be modified. Only the modifier R is 
permitted, and one of the designators specifying Xl. .. X7 must be used. 

©©~[f)mu~rnuJ~~t®®®-------------

Ill-70 



MISCELLANEOUS OPERATIONS 

6. The effective address Y will be 

For the first execution of the repeated instruction 

Y + C (R) ~ Y, Y ~ C (R) 

For any successive execution of the repeated instruction 

C( C(R) >o •.• 17 ::;> Y, Y :;> C(R) 

The effective address Y is the address of the next list word. The lower half 
of this list word contains the operand to be used for this execution of the 
repeated instruction; the operand is 

00 •.• 0 ' 
--....-" 

18 times 

C(Y)18 ... 35 . 

The upper half of the list word contains the Link Address, i.e., the address 
of the next successive list word, and thus the effective address for the next 
successive execution of the repeated instruction. 

The 'Terminate Conditions: 

The bit configuration in bit positions 11 - 17 of the RPL instruction defines 
the terminate conditions for which the repetition loop will be terminated 
immediately. If more than one condition is specified, the repeat will 
terminate if any of the specified conditions are met. 

Bit 17 = 1 : any overflow terminates the repetition loop, and it is treated as 
usual; i.e., the respective Overflow Indicator is set ON, and if 

Bit 16 

Bit 15 

Bit 14 

Bit 13 

Bit 12 

Bit 11 

the Overflow Mask Indicator is OFF, an Overflow Fault Trap occurs. 

1 : if Carry Indicator is OFF, terminate the repetition loop. 

1 : if Carry Indicator is ON, terminate the repetition loop. 

1 : if Negative Indicator is OFF, terminate the repetition loop. 

1 : if Negative Indicator is ON, terminate the repetition loop. 

1 : if Zero Indicator is OFF, terminate the repetition loop. 

1 : if Zero Indicator is ON, terminate the repetition loop. 

A O in both positions for one indicator will cause this indicator to be ignored 
as a termination condition. 

©©~~illuurn~~~c®®®-----------------------------------

IIl-71 



lVIISCELLANEOUS OPERATIONS 

8. At the time of termination: 

XOo ... 7 will contain the tally residue, i.e., the numbers of repeats 
remaining until a tally runout would have occurred, and also the terminate 
condition. 

The Xn specified by the designator of this repeated instruction will contain 
the address of the list word that contains: 

In its lower half: the operand used in the last execution of the repeated 
instruction 

In its upper half: the address of the next list word. 

(This is because there is no overlap between an execution of the repeated 
instruction and the address modification for the next execution of the 
repeated instruction. ) 

©@~[f)filu~IB[}J~~u?®®®-------------

III-72 



RPO 

SUMMARY: 

MISCELLANEOUS OPERATIONS 

Repeat Double 

Execute the pair of instructions from the next location Y-pair a specified 

number of times or until a specified Terminate Condition is met. 

MODIFICATIONS: No modification can take place 

INDICATORS AFFECTED: 

Tally Runout If termination because of Tally= 0, then ON. 
If because Terminate Condition is met, then OFF. 

All other 
indicators 

The RPD instruction itself does not affect any of the other indicators. 
However, the execution of the repeated instructions may affect 
indicators. 

NOTES: 1. The RPD instruction nmst be stored in an odd memory location except when 
accessed via the XEC instruction in which case the RPD instruction can be 
either even or odd. 

2. This RPD instruction has the following format: 

0 7 8 9 10 II 17 18 26 27 28 29 30 '.35 

TALLY !Alai c i TERM. coND. I OP. coDE i 0 i I ! 0 ! DELTA I 

3. If C = 1, then bits 0 - 17 of the RPD instruction =?>XO. 

4. In any case, the Terminate Condition and Tally from XO will control the 
repetition loop for the instruction following this RPD instruction; initial 
Tally = 0 will be interpreted as 256. 

5. The repetition cycle consists of the following steps: 

a. Execute the pair of repeated instructions 

b. C(XO)o ..• 7-1 = C(XO)o ... 7 

c. If Termination Condition met (see 8), then set Tally Runout Indicator OFF 
and terminate 

d. If C(X0)0 ... 7 = 0, then set Tally Runout Indicator ON and terminate 

e. Go to a. 

Note that if an Overflow Fault occurs on the even instruction, this precludes 
execution of the odd instruction. 

©©~~ffivurn~~~f ®®®--------------------------------------

III-73 



6. All instructions can be used as repeated instructions except the following: 

a. Transfer of control instruction 

b. All miscellaneous operations instructions except BCD 

c. Macro operations 

7. Address Modification for the pair of repeated instructions: 

Both of the two repeated instructions must be modified. Only the modifiers R 
and RI are permitted, and one of the designators Xl, ••• , X7 for each of the two 
repeated instructions must be specified. 

The effective address Y (in the case of R) or the address Y of the indirect 
word to be referenced (in the case of RI) will be: 

a. For the first execution of each of the two repeated instructions 

Y + C(R) :::> Y, Y +Delta ~ C(R) 

b. For any successive execution of 

The first of the two repeated instructions 

if A= 1, then C(R) => Y, Delta+ Y => C(R) or 

if A = 0, then C(R) => Y 

The second of the two repeated instructions 

if B = 1, then C(R) => Y, Delta+ Y ::;:> C(R) or 

if B = 0, then C(R) => Y 

(A and B are the contents of bit positions 8 and 9 of the RPD instruction) 

In the case of RI, only one indirect reference will be made per repeated 
execution. The Tag portion of the indirect word will not be interpreted as 
usual, but will be ignored; and instead the modifier R and the designator 
R = N will be applied. 

8. The Terminate Conditions: 

The possible Terminate Conditions are the same for all repeat instructions. 

The bit configuration in bit positions 11 - 17 of the RPT instruction defines 
the Terminate Conditions for which the repetition loop will be terminated 
immediately. If more than one condition is specified, the repeat will ter
minate if any of the specified conditions are met. 

Bit 1 7 = 1 : any overflow terminates the repetition loop, and it is treated as 
usual; i.e., the respective Overflow Indicator is set ON, and if the 
Overflow Mask is OFF, then also an Overflow Fault Trap occurs. If 
the Overflow Fault Trap occurs on the even instruction, the odd instruc
tion is not executed. 

Bit 16 = 1 : if Carry Indicator is OFF, terminate the repetition loop. 

Bit 15 = 1 : if Carry Indicator is ON, terminate the repetition loop. 

©@~[fffiu~OO[L~~I®®®-------------

III-74 



MISCELLANEOUS OPERATIONS 

Bit 14 = 1: if Negative Indicator is OFF, terminate the repetition loop. 

Bit 13 = 1 : if Negative Indicator is ON, terminate the repetition loop. 

Bit 12 = 1 : if Zero Indicator is OFF, terminate the repetition loop. 

Bit 11 = 1: if Zero Indicator is ON, terminate the repetition loop. 

9. At the time of termination: 

XOo ... 7 will contain the Tally Residue, i. e. , the number of repeats remain
ing until a Tally Runout would have occurred, and also the Terminate Condi
tion. 

The Xn specified by the designator of each of the two repeated instructions 
will contain the effective address of the next operand or indirect word that 
would have been secured (special provisions have been made that this state
ment is true for both of the repeated instructions). 

f,;\ f,;\ nn r;;) n c;-;:i n fO\ n r;:i lr:'i /) r;;::, In\ In\ 

llD~~lMJlf ill U UWl1LS~ u ®WW---------------------

III-75 



LBAR 

SUMMARY: 

l\1ASTER lVIODE OPERATIONS 

Load Base Address Register 

C(Y)0 .•. 17 ~ C(BR) 

The contents of Y, bits 0 through 17 replace the contents of the Base Address 

Register. 

MODIFICATIONS: All except CI, SC 

INDICATORS AFFECTED: 

Zero If C(BR) 0, then ON; otherwise OFF 

Negative If C(BR)0 = 1, then ON; otherwise OFF 

NOTE: This instruction can be used in the Master Mode only. If its use is attempted in 
the Slave Mode, the instruction functions like the NOP instruction. 

LDT 

SUMMARY: 

Load Timer Register 

C(Y)O ..• 23 ~ C(TR) 

The contents of Y, bits 0 through 23, replace the contents of the Timer 

Register 

MODIFICATIONS: All except CI, SC 

INDICATORS AFFECTED: 

Zero 

Negative 

NOTE: 

If C(TR) 

If C(TR)
0 

0, then ON; otherwise OFF 

1, then ON; otherwise OFF 

This instruction can be used in the Master Mode only. If its use is attempted in 
the Slave Mode, the instruction functions like the NOP instruction. 

©@~[pffi[J~ffi[L~~I®®®-------------

III-76 



MASTER MODE OPERATIONS 

SMIC Set Memory Controller Interrupt Cells 

SUlVIMARY: C (A) is used to set selected Interrupt Cells ON in the system controller of 

the memory unit selected by Y
0

_2 

All except DU, DL, SC, and CI 

INDICATORS AFFECTED: None 

NOTES: 1. The effective address Y is used in selecting a memory module as with a 
normal memory access request. However, the selected module does not 
store the data received in a memory location, but uses it to set selected 
Interrupt Cells ON. 

For i = 0, 1, ••• , 15 AND C(A)35 = 0: 

if C(A). = 1, then set Interrupt Cell i ON 
1 

For i = 0, 1, ... , 15 AND C(A)
35 

= 1: 

if C(A). = 1, then set Interrupt Cell (16 + i) ON. 
1 

6 This rnstrucLHJtl can ue u:seJ 111 Ll1e T\Ia;::,tel ?viude cn:i.lv. li thL u.;:;c ,Jf thi;:::; 
instruction is attempted by a processor that is in the Slave Mode, a 
Command Fault Trap will occur. 

®,@,OOIQ)~cirnmn rs~ 17Rlnllnl 
'---' '.J uvu LJ LiJ LJ LJ ~L'.::il'.::i~ u \._ll)\._ll)\_I!) ------------------------------

III-77 



RMCM 

SUMMARY: 

MASTER MODE OPERATIONS 

Read Memory Controller Mask Register 

C (Memory Controller Interrupt Mask Register) 

C ( Memory Controller Access Mask Register) 

of memory unit specified by Y0_2 

} ~ C(AQ) 

MODIFICATIONS: All except DU, D L, CI, SC 

INDICATORS AFFECTED: 

Zero 

Negative 

NOTES: 1. 

If C(AQ) 

If C(AQ)
0 

0, then ON; otherwise OFF 

1, then ON; otherwise OFF 

The effective address Y is used in selecting a memory module as with a 
normal memory access request. However, the selected module does not 
transmit the contents of an addressed memory location, but the contents of 
its memory controller Interrupt Mask Register and memory controller 
Access Mask Register. 

INTERRUPT MASK------------------ACCES; lASI 
REGISTER \ ~ REGISTER 

I ZEROS ~ I ZEROS 

o 151 •o ~ 31 14 1
1 I I I I 

! ll !lli Jl ! ll ill! 
15!16 31!32 35136 51 !52 67!68 71i 0 

COMBINED AQ REGISTER 

2. This instruction can be used in the Master Mode only. If the use of 
this instruction is attempted by a processor that is in the Slave 
Mode, a Command Fault Trap will occur. 

III-78 



RMFP 

SUMMARY: 

MASTER MODE OPERATIONS 

Read Memory File Protect Register 

C (Memory File Protect Register) ~ C(AQ) 

Of memory unit specified by Y" <> - v-~ 

MODIFICATIONS: Ali except DU, DL, CI, SC 

INDICATORS AFFECTED: 

Zero 

Negative 

NOTES: 

If C(AQ) 

If C(AQ)
0 

0, then ON; otherwise OFF 

1, then ON; otherwise OFF 

1. The effective address Y is used in selecting a memory module as with a 
normal memory access request. However, the selected module does not 
transmit the contents of an addressed memory location, but the contents of 
its Memory File Protect Register. 

MEMORY FILE PROTECT REGISTER 

COMBINED AQ REGISTER 

2. This instruction can be used in the Master Mode only. If the use of 
this instruction is attempted by a processor that is in the Slave 
Mode, a Command Fault Trap will occur. 

©©~[p ru uu rnuJ~~ 1l ®®®----------------------------

III-79 



SMCM 

SUMMARY: C(AQ) ~ 

MASTER MODE OPERATIONS 

Set Memory Controller Mask Register 

j C (Memory Controller Interrupt Mask Register) 

f C (memory Controller Access Mask Register) 

Of memory unit specified by Y 0_2 

MODIFICATIONS: All except DU, DL, CI, SC 

INDICATORS AFFECTED: None 

NOTES: 1. The effective address Y is used in selecting a memory module as with a 
normal memory access request. However, the selected module does not 
store the data received in a memory location, but in its memory controller 
Interrupt Mask Register and memory controller Access Mask Register. 

COMBINED AQ REGISTER 

I I 
: {J, I 1-!l-1 {J, I 
10 isl lo 3l1s 311 

I _I __ l_J;= I 
INTERRUPT MAsl ~ 
REGISTER 

2. This instruction can be used in the Master Mode only. If the use of this 
instruction is attempted by a processor that is in the Slave Mode, a Command 
Fault Trap will occur. 

©©~[pffiuurn~~~c®®®-------------

III-80 



:MASTER MODE OPERATIONS 

SMFP Set Memory File Protect Register 

SUMMARY: C(AQ) ~ C (lWemory File Protect Register) in the system controller of the 

memory unit specified by Y 
0

_2 

MODIFICATIONS: All except DU, ~T f""T <;;;!(""" 
JJD, v.a., '-''-' 

INDICATORS AFFECTED: None 

NOTES: 1. The effective address Y is used in selecting a memory module as with a 
normal memory access request. However, the selected module does not 
store the data received in a memory location, but in its memory File 
Protect Register. 

COMBINED AQ REGISTER 

I J I 67 i 10 I 136 

~ 
I I I I I 

I 
3d 

I 
63! 10 132 

! I I I 
MEMORY FILE PROTECT REGISTER 

2. This instruction can be used in the Master Mode only. If the use of this 
instruction is attempted by a processor that is in the Slave Mode, a Command 
Fault Trap will occur. 

©©~CTJfiluuffiLL[g~ 1 ®®® 
----------------------------------~--------~-----------

Ill-81 



CIOC 

SUMMARY: 

MASTER MODE OPERATIONS 

Connect I/O Channel 

C(Y) are transferred from the memory module via the channel that 
is specified by C (Y) 

MODIFICATIONS: All except DU, DL, SC, and CI 

INDICATORS AFFECTED: None 

NOTES: 1. The effective address Y is used to access a memory location as usual. 
However, the memory module does not transmit the contents of this 
location to the processor that submitted the effective address; it uses 
C(Y)33 ... 35 to select one of its eight channels, sends a connect pulse 
to the unit on this channel, and then transmits C (Y) on the data lines to 
this unit. 

2. This instruction can be used in the Master Mode only. If the use of this 
instruction is attempted by a processor that is in the Slave Mode, a 
Command Fault Trap will occur. 

©@~[pilllf~W[L~~I®®®-------------

Ill-82 



C. M-605 MACRO INSTRUCTIONS 

The following instructions are handled by Macro operations or a Macro, subroutine 
combination if the optional floating point/double-precision hardware is not implemented. 

LDAQ 

SUMMARY: 

DATA MOVEMENT - LOAD 

Load AQ 

C(Y-pair) ~ C(AQ) 

The contents of the Y-pair of addresses replace the contents of the combined 

A and Q Registers with the contents of the even numbered location in the A 

Register. 

MODIFICATIONS: All except DU, DL, CI, SC 

I:t\TDICATORS AFFECTED: 

Zero 

Negative 

LCAQ 

SUMMARY: 

MODIFICATIONS: 

If C(AQ) 

If C(AQ)
0 

0, then ON; otherwise OFF 

1, then ON; otherwise OFF 

Load Co1nplen1ent .A.Q 

- C(Y-pair) ~ C(AQ) 

The two's complement of contents of the Y-pair of addresses replaces the 

contents of the combined A and Q Registers. The contents of the even 

numbered location are in the A Register. 

All except DU, DL, CI, SC 

INDICATORS AFFECTED: 

Zero 

Negative 

Overflow 

If C(AQ) 

If C(AQ)
0 

0, then ON; otherwise OFF 

1, then ON; otherwise OFF 

If range of AQ is exceeded, then ON 

©©~l?w uurn~[g~ t ®®®------------------------

III-83 



STAQ 

SUMMARY: 

DATA MOVEMENT - STORE 

Store AQ 

C(AQ :::;:> C(Y-pair) 

The contents of the combined A and Q Registers replace the contents of the 

Y-pair of addresses with the contents of A in the even numbered location. 

MODIFICATIONS: All except DU, DL, CI, SC 

INDICATORS AFFECTED: None 

ID-84 



ADAQ 

SUMMARY: 

MODIFICATIONS: 

FIXED-POINT ARITHMETIC - ADDITION 

Add to AQ 

C(AQ) + C(Y-pair) ~ C(AQ) 

The contents of the Y-pair of locations are added to the contents of 

the combined A and Q Registers and the result replaces the contents 

of the A and Q Registers. The contents of the even numbered loca

tion are added to the contents of the A Register. 

All except DU, D L, CI, SC 

INDICATORS AFFECTED: 

Zero 

Negative 

Overflow 

Carry 

ADLAQ 

SUMMARY: 

MODIFICATIONS: 

If C(AQ) 

If C(AQ)0 

0, then ON; otherwise OFF 

1, then ON; otherwise OFF 

If range of AQ exceeded, then ON 

lf a carry out of AQ
0 

is generated, then ON; otherwise OFF 

-'\~dd Logic to 

C(AQ) + C(Y-pair) ~ C(AQ) 

n31 
8 

The contents of the Y-pair of locations are added to the contents of the 

combined A and Q Registers and the result replaces the contents of the A 

and Q Registers. The contents of the even numbered location are added to 

the contents of the A Register. 

All except DU, DL, CI, SC 

INDICATORS AFFECTED: 

Zero 

Negative 

If C(AQ) 

If C(AQ)0 

0, then ON; otherwise OFF 

1, then ON; otherwise OFF 

Carry If a carry out of AQ
0 

is generated, then ON; otherwise OFF 

NOTE: This instruction is identical to the ADAQ instruction, except the Overflow Indicator 
is not affected by this instruction. 

fr\J ,'r:\ nn I;;\ n c;-;::i n 1n1 n r.=i (;;:) 11 r;::, ((;\ ((;\ 

U91,W~~u l? ill U U W~lSC0 ti ®WW-------------------------

IIl-85 



SBAQ 

SUMMARY: 

MODIFICATIONS: 

FIXED- POINT ARITHMETIC - SUBTRACTION 

Subtract from AQ 

C(AQ) - C(Y-pair) 9 C(AQ) 

The contents of the Y-pair of locations are subtracted from the contents of 

of the combined A and Q Registers and the result replaces the contents of the 

A and Q Registers. The contents of the even numbered location are subtracted 

from the contents of the A Register. 

All except DU, DL, CI, SC 

INDICATORS AFFECTED: 

Zero 

Negative 

Overflow 

Carry 

SBLAQ 

SUMMARY: 

MODIFICATIONS: 

If C(AQ) 

If C(AQ)
0 

0, then ON; otherwise OFF 

1, then ON; otherwise OFF 

If range of AQ exceeded, then ON 

If carry out of AQ
0 

is generated, then ON; otherwise OFF 

Subtract Logic from AQ 

C(AQ) - C(Y-pair) ~ C(AQ) 

The contents of the Y-pair of locations are subtracted from the contents of 

the combined A and Q Registers and the result replaces the contents of the 

A and Q Registers. The contents of the even numbered location are subtracted 

from the contents of the A Register. 

All except DU, DL, CI, SC 

- INDICATORS AFFECTED: 

Zero 

Negative 

Carry 

NOTE: 

If C(AQ) 

If C(AQ)
0 

0, then ON; otherwise OFF 

1, then ON; otherwise OFF 

If a carry out of AQ
0 

is generated, then ON; otherwise OFF 

This instruction is identical to the SBAQ instruction,except the Overflow 
Indicator is not affected by this instruction. 

©®~~mu~rn[L~~t®®®-------------

III-86 



ANAQ 

SUMMARY: 

MODIFICATIONS: 

INDICATORS AFFECTED: 

Zero 

Negative 

If C(AQ) 

If C(AQ)0 

©©~l?illVurn~~~ 1 ®®® 

BOOLEAN OPERATIONS - AND 

AND to AQ 

C(AQ)i AND C(Y-pair)i ~ C(AQ\ for all i = 0, 1, ... , 71 

The logical AND of the contents of the combined A and Q Registers 

and the contents of the Y-pair of locations replaces the contents of 

the A and Q Registers. The contents of the even numbered 

location are ANDed with the contents of the A Register. 

All except DU, DL, Cl, SC 

0, then ON; otherwise OFF 

1, then ON; otherwise OFF 

----------------------------------------------------~ 

Ill-87 



ORAQ 

SUMMARY: 

MODIFICATIONS: 

INDICATORS AFFECTED: 

Zero 

Negative 

If C(AQ) 

If C(AQ)
0 

BOOLEAN OPERATIONS~ OR 

OR to AQ 

C(AQ). OR C(Y-pair). ::> C(AQ). for all i = 0, 1, ... , 71 
1 1 1 

The logical OR of the contents of the combined A and Q Registers 

and the contents of the Y-pair of locations replaces the contents of 

the A and Q Registers. The contents of the even numbered 

location are ORed with the contents of the A Register. 

All except DU, DL, CI, SC 

0, then ON; otherwise OFF 

1, then ON; otherwise OFF 

©@[DJ[pffilJ~W~~~t®®®-------------

TII-88 



ERAQ 

SUMMARY: 

BOOLEAN OPERATIONS - EXCLUSIVE OR 

EXCLUSIVE OR to AQ 

The logical EXCLUSIVE OR of the contents of the combined A and Q 

Registers and the contents of the Y-pair of locations replaces the contents 

of the A and Q Registers. The contents of the even numbered locations 

are EXCLUSIVE ORed with the contents of the A Register. 

MODIFICATIONS: All except DU, DL, CI, SC 

INDICATORS AFFECTED: 

Zero 

Negative 

If C(AQ) 

If C(AQ)0 

0, then ON; otherwise OFF 

1, then ON; otherwise OFF 

©©~~muurn~~~1®®®---------------------------------

IIl-89 



CMPAQ 

SUMMARY: 

COMPARISON -- COMPARE 

Compare with AQ 

Comparison C(AQ) : : C(Y-pair) 

The contents of the combined A and Q Registers are compared with the 

contents of the Y-pair of locations. 

MODIFICATIONS: All except DU, DL, CI, SC 

INDICATORS AFFECTED: 

Q) 

> Algebraic Comparison •.-4 » +.) 

0 ~ H 
H bl) H 
Q) Q) ~ Relation Sign 
N z 0 

0 0 0 C(AQ) > C(Y-pair) C(AQ)
0 = 0, C(Y-pair)

0 = 1 

0 0 1 C(AQ) > C(Y-pair) 

1 0 1 C(AQ) = C(Y-pair) C(AQ)
0 = C(Y-pair)

0 
0 1 0 C(AQ) < C(Y-pair) 

0 1 1 C(AQ) < C(Y-pair) C(AQ)
0 = 1, C(Y-pair)

0 = 0 

» 
0 H 

Logic Comparison H H 
Q) ~ 
N 0 Relation 

0 0 C(AQ) < C(Y-pair) 

1 1 C(AQ) = C(Y-pair) 

0 1 C(AQ) > C(Y-pair) 

©@~[pfil1J~W[L~~I®®®-------------

IIl-90 



COMPARISON - COMPARATIVE AND 

CANAQ Comparative AND with AQ 

Z. = ClAQ). AND ClY-oair). for all i = 0., 1, ...•. , 71 
1 ' _, 1 ' L '1 

SUMMARY: The logical AND of the contents of the combined A and Q Registers and 

thP ,...ontPnt~ of ~ V-n~ir of lo,...~tion~ ~rp n~Prl to ~Pt ~nnrnnri~tP inrlir>!:!tn ..... i:: ---- ---------- -- - - c---- -- -- -------- -- - -·- -- -- - -- -t""'t""' ..... -I:"' ... ----- ......... _ ... ____ ..._ -

and the contents of the A and Q Register and the Y-pair are not changed. 

MODIFICATIONS: All except DU, DL, CI, SC 

INDICATORS AFFECTED: 

Zero 

Negative 

0, then ON; otherwise OFF 

1, then ON; otherwise OFF 

©©[DJ rP m v~rn~~~ 1 ®®®----------------------------

III-91 



CNAAQ 

SUMMARY: 

COMP A RISON - COMPARATIVE NOT AI~"D 

Comparative NOT AND with AQ 

Z. = C(AQ). AND C(Y-pair). for all i = 0, 1, ..• , 71 
1 1 1 

The logical AND of the contents of the combined A and Q Registers and 

the complement of the contents of the Y-pair of locations are used to set 

appropriate indicators and the contents of the A and Q Register and the 

Y-pair are not changed. 

MODIFICATIONS: All except DU, DL, CI, SC 

INDICATORS AFFECTED: 

Zero 

Negative 

0, then ON; otherwise OFF 

1, then ON; otherwise OFF 

III-92 



FLOATING POINT - LOAD 

FLO Floating Load 

C(Y) ~ C(EAQ) 

SUMMARY: The contents of Y replace the contents of the Exponent, and A Registers. 

The Q Register is cleared. 

MODIFICATIONS: All except CI, SC 

INDICATORS AFFECTED: 

Zero 

Negative 

DFLD 

If C(AQ) 

If C(AQ)
0 

0, then ON; otherwise OFF 

1, then ON; otherwise OFF 

Double- Precision Floating Load 

C(Y-pair) ~ C(EAQ) 

SUMMARY: The contents of a Y-pair replace the contents of the Exponent, A, and 

Q Registers. 

MODIFICATIONS: All except DU, DL, CI, SC 

INDICATORS AFFECTED: 

Zero 

Negative 

If C(AQ) 

If C(AQ)
0 

0, then ON; otherwise OFF 

1, then ON; otherwise OFF 

©®~l?5ruurn~~~ t ®®®-------------------------

III-93 



FST 

SUMMARY: 

FLOATING POINT~ STORE 

Floating Store 

C(EA) ~ C(Y) 

The contents of the Exponent Register replace the contents of Y, bits 

O through 7. The contents of the A Register, bits 0 through 2 7, replace 

the contents of Y, bits 8 through 35. 

MODIFICATIONS: All except DU, DL, CI, SC 

INDICATORS AFFECTED: None 

DFST 

SUMMARY: 

Double- Precision Floating Store 

C(EAQ) ~ C(Y-pair) 

The contents of the Exponent Register replace the contents of Y-pair, 

bits 0 through 7, and the contents of the combined A and Q Registers, 

bits O through 63, replace the contents of Y-pair, bits 8 through 71. 

MODIFICATIONS: All except DU, DL, CI, SC 

INDICATORS AFFECTED: None 

©@~[?fillrUWlL~~I®®®-------------

III-94 



FAD 

SUMMARY: 

FLOATING POINT - ADDITION 

Floating Add 

C(EAQ) + C(Y) normalized ~ C(EAQ) 

The contents of Y are added to the contents of the Exponent, A, and Q 

Registers. The result is normalized and replaces the contents of the 

Exponent, A, and Q Registers. 

MODIFICATIONS: All except Cl, SC 

INDICATORS AFFECTED: 

Zero 

Negative 

If C(AQ) 

If C(AQ)
0 

0, then ON; otherwise OFF 

1, then ON; otherwise OFF 

Exp. Overflow If Exponent above +127, then ON 

Exp. Underflow If Exponent below -128, then ON 

Carry 

UFA 

SUMMARY: 

If a carry out of AQ
0 

is generated, then ON; otherwise OFF 

Unnorn1alized Floating 1\dd 

C(EAQ) + C(Y) not normalized ? C(EAQ) 

The contents of Y are added to the contents of the Exponent, A, and Q 

Registers. The result replaces the contents of the Exponent, A, and Q 

Registers. 

MODIFICATIONS: All except CI, SC 

INDICATORS AFFECTED: 

Zero 

Negative 

If C(AQ) 

If C(AQ)
0 

0, then ON; otherwise OFF 

1, then ON; otherwise OFF 

Exp. Overflow If exponent above +127, then ON 

Exp. Underflow If exponent below -128, then ON 

Carry If a carry out of AQ
0 

is generated, then ON; otherwise OFF 

©®~~mvurn~~~t®®®-----------------------------------

IIl-95 



DFAD 

SUMMARY: 

FLOATING POINT - ADDITION 

Double- Precision Floating Add 

C(EAQ) + C(Y-pair) normalized => C(EAQ) 

The contents of a Y-pair are added to the contents of the Exponent, A, 

and Q Registers. The result is normalized and replaces the contents of 

the Exponent, A, and Q Registers. 

MODIFICATIONS: All except DU, DL, CI, SC 

n.._1DICATORS AFFECTED: 

Zero 

Negative 

If C(AQ) 

If C(AQ)
0 

0, then ON; otherwise OFF 

1, then ON; otherwise OFF 

Exp. Overflow If exponent above +127, then ON 

Exp. Underflow If exponent below -128, then ON 

Carry 

DUFA 

SUMMARY: 

If a carry out of AQ
0 

is generated, then ON; otherwise OFF 

Double- Precision Unnormalized Floating Add 

C(EAQ) + C(Y-pair) not normalized => C(EAQ) 

The contents of a Y-pair are added to the contents of the Exponent, A, and 

Q Registers. The result replaces the contents of the Exponent, A, and 

Q Registers. 

MODIFICATIONS: All except DU, DL, CI, SC 

INDICATORS AFFECTED: 

Zero 

Negative 

If C(AQ) 

If C(AQ)
0 

0, then ON; otherwise OFF 

1, then ON; otherwise OFF 

Exp. Overflow If exponent above +127, then ON 

Exp. Underflow If exponent below -128, then ON 

Carry If a carry out of AQ
0 

is generated, then ON; otherwise OFF 

©@~[pfillJ~W[L~~I®®®-------------

III-96 



FSB 

SUMMARY: 

FLOATING POINT - SUBTRACTION 

Floating Subtract 

C(EAQ) - C(Y) normalized ~ C(EAQ) 

The contents of Y are subtracted from the contents of the Exponent, A, 

and Q Registers. The result is normalized and replaces the contents of 

the Exponent, A, and Q Registers 

MODIFICATIONS: All except CI, SC 

INDICATORS AFFECTED: 

Zero 

Negative 

If C(AQ) 

If C(AQ)
0 

0, then ON; otherwise OFF 

1, then ON; otherwise OFF 

Exp. Overflow If exponent above +127, then ON 

Exp. Underflow If exponent below -128, then ON 

Carry 

UFS 

SUMMARY: 

If a carry out of AQ0 is generated, then ON; otherwise OFF 

Unnormalized i'loatrng Subtract 

C(EAQ) - C(Y) not normalized ~ C(EAQ) 

The contents of Y are subtracted from the contents of the Exponent, A, 

and Q Registers and the result replaces the contents of the Exponent, A, 

and Q Registers. 

MODIFICATIONS: All except CI, SC 

INDICATORS AFFECTED: 

Zero 

Negative 

If C(AQ) 

If C(AQ)
0 

0, then ON; otherwise OFF 

1, then ON; otherwise OFF 

Exp. Overflow If exponent above +127, then ON 

Exp. Underflow If exponent below -128, then ON 

Carry If a carry out of AQ
0 

is generated, then ON; otherwise OFF 

III-97 



FLOATING POINT - SUBTRACTION 

DFSB Double- Precision Floating Subtract 

C(EAQ) - C(Y-pair) normalized ~ C(EAQ) 

SUMMARY: The contents of a Y-pair are subtracted from the contents of the Exponent, 

A, and Q Register. The result is normalized and replaces the content of 

the Exponent, A, and Q Registers. 

MODIFICATIONS: All except DU, DL, CI, SC 

INDICATORS AFFECTED: 

Zero 

Negative 

Exp. Overflow 

Exp. Underflow 

Carry 

DUFS 

If C(AQ) = 0, then ON; otherwise OFF 

If C(AQ)
0 

= 1, then ON; otherwise OFF 

If exponent above +127, then ON 

If exponent below -128, then ON 

If a carry out of AQ
0 

is generated, then ON; otherwise OFF 

Double- Precision unnormalized Floating Subtract 

C(EAQ) - C(Y-pair) not normalized ~ C(EAQ) 

537g 

SUMMARY: The contents of a Y-pair are subtracted from the contents of the Exponent, 

A, and Q Register and the results replaces the contents of the Exponent, 

A and Q Registers. 

MODIFICATIONS: All except DU, DL, CI, SC 

INDICATORS AFFECTED: 

Zero 

Negative 

If C(AQ) 

If C(AQ)
0 

0, then ON; otherwise OFF 

1, then ON; otherwise OFF 

Exp. Overflow If exponent above +127, then ON 

Exp. Underflow If exponent below -128, then ON 

Carry If a carry out of AQ0 is generated, then ON; otherwise OFF 

III-98 



FMP 

SUMMARY: 

FLOATING POINT - MULTIPLICATION 

Floating Multiply 

C(EAQ) x C(Y) normalized ? C(EAQ) 

The contents of Y, bits 0 through 7, are added to the contents of the 

Exponent Register. The contents of the A and Q Register are multiplied 

by the contents of Y, bits 8 through 35. The result is normalized and 

replaces the contents of the Exponent, A, and Q Register. 

MODIFICATIONS: All except CI, SC 

INDICATORS AFFECTED: 

Zero 

Negative 

Exp. Overflow 

Exp. Underflow 

UFM 

SUMMARY: 

If C(AQ) = 0, then ON; otherwise OFF 

If C(AQ)
0 

=1, then ON; otherwise OFF 

If exponent above +127, then ON 

If exponent below -128, then ON 

Unnormalized Floating Multiply 42L 
u 

The contents of Y, bits 0 through 7, are added to the contents of the 

Exponent Register. The contents of the A and Q Register are multiplied 

by the contents of Y, bits 8 through 35. The result replaces the contents 

of the Exponent, A, and Q Register. 

MODIFICATIONS: All except CI, SC 

INDICATORS AFFECTED: 

Zero 

Negative 

Exp. Overflow 

Exp. Underflow 

If C(AQ) 

If C(AQ)
0 

0, then ON; otherwise OFF 

1, then ON; otherwise OFF 

If exponent above +127, then ON 

If exponent below -128, then ON 

NOTE: This multiplication is executed like the instruction FMP except the final normaliza
tion is performed only in the case of both factor mantissas being = - 1. 00 • • • 0. 

lr.J@l'fl lnl n S7 n 1n1 n rr=i ~ /) (i;l fn\ In\ 

~ u lJVlllf UJ u u Wl1LS~ u ~uvuv -----------------------

III-99 



DFMP 

SUMMARY: 

FLOATING POINT - MULTIPLICATION 

Double- Precision Floating Multiply 

C(EAQ) x C(Y-pair) normalized ~ C(EAQ) 

The contents of a Y-pair, bits 0 through 7 are added to the contents of 

the Exponent Register. The contents of the A and Q Registers are 

multiplied by the contents of the Y-pair, bits 8 through 71. The result is 

normalized and replaces the contents of the Exponent, A, and Q Register. 

MODIFICATIONS: All except DU, DL, CI, SC 

INDICATORS AFFECTED: 

Zero 

Negative 

Exp. Overflow 

Exp. Underflow 

DUFM 

SUMMARY: 

MODIFICATIONS: 

If C(AQ) 

If C(AQ)
0 

0, then ON; otherwise OFF 

1, then ON; otherwise OFF 

If exponent above +127, then ON 

If exponent below -128, then ON 

Double- Precision Unnormalized Floating Multiply 

C(EAQ) x C(Y-pair) not normalized ~ C(EAQ) 

The contents of the Y-pair, bits 0 through 7, are added to the contents of 

the Exponent Register. The contents of the A and Q Register are multi

plied by the contents of the Y-pair, bits 8 through 71. The result replaces 

the contents of the Exponent, A, and Q Register. 

All except DU, DL, CI, SC 

INDICATORS AFFECTED: 

Zero 

Negative 

Exp. Overflow 

Exp. Underflow 

If C(AQ) 

If C(AQ)
0 

0, then ON; otherwise OFF 

1, then ON; otherwise OFF 

If exponent above +127, then ON 

If exponent below -128, then ON 

NOTE: This multiplication is executed like the instruction DFMP, except the final 
normalization is performed only when both factor mantissas are = -1. 00 • ~ • 0 . 

©©~[J)filuuw[L~g)1®®®-------------

III-100 



FDV 

SUMMARY: 

FLOATING POINT - DIVISION 

Floating Divide 

C(EAQ) .;. C(Y) ~ C(EA) ; 00 ... 0 ~ C(Q) 

The contents of the A and Q Register are shifted right, and the contents 

of the Exponent Register are increased until the contents of the A and Q 

Register are less than the contents of Y, bits 8 through 35. The contents 

of Y, bits 0 through 7, are then subtracted from the contents of the 

Exponent Register. The contents of the A and Q Register are divided by 

the contents of Y, bits 8 through 35. The result replaces the contents 

of the Exponent and A Register. The Q Register is filled with zeros. 

MODIFICATIONS: All except Cl, SC 

INDICATORS AFFECTED: 

If division takes place: 

Zero If C(A) 0, then ON; otherwise OFF 

Negative If C(A;
0 

:.::.. l, then ON; otherwise OFF 

If no division takes place: 

If divisor mantissa = 0, 
then ON: otherwise OFF 

If Ji vi<len<l -( 0, then 
ON· othPrwi~P OFF 

Exp. Overflow 

Exp. Underflow 

If exponent above + 127, then ON 

If exponent below -128 then ON 

NOTES: 1. This division is executed as follows: 

The dividend mantissa C(AQ) is shifted right and the dividend exponent C(E) 
increased accordingly until 

I C(AQ>o ... 27 I< I C(Y>s ... 351; 

C(E) - C(Y)O ... 7 ::;> C(E) ; 

C(AQ) 7 C(Y)8 •.. 35 ~ C(A) 

00 .•. 0 ~ C(Q) . 

2. If mantissa of divisor = 0, then the division itself does not take place. 
Instead, a Divide-Check Fault Trap occurs; and all the registers remain 
unchanged. 

©©~rPillvurnlL~~ 1 ®®® _______________________ _ 

IIl-101 



FDI 

SUMMARY: 

FLOATING POII\J"'T - DIVISION 

Floating Divide Inverted 525g 

C(Y) -:- C(EAQ) ~ C(EA) ; 00 ... 0 => C(Q) 

The contents of Y, bits 8 through 35, are shifted right and the contents of 

Y, bits 0 through 7, are increased accordingly until the contents of Y, bits 

8 through 35, are smaller than the contents of the A and Q Register, bits 

0 through 27. The contents of the Exponent Register are then subtracted 

from the contents of Y, bits 0 through 7. The contents of Y, bits 8 through 

35, are divided by the contents of the A and Q Register. The result 

replaces the contents of the Exponent and A Registers. The Q Register is 

filled with zeros. 

MODIFICATIONS: All except CI, SC 

INDICATORS AFFECTED: 

If division takes place: 

Zero If C(A) 0, then ON; otherwise OFF 

Negative 

If no division takes place: 

If divisor mantissa = 0, 
then ON; otherwise OFF 

If dividend < 0, then ON; 
otherwise OFF 

Exp. Overflow 

Exp. Underflow 

If C(A)
0 

= 1, then ON; otherwise OFF 

If exponent above +127, then ON 

If exponent below -128, then ON 

NOTES: 1. This division is executed as follows: 

The dividend mantissa C(Y)
8

_ •• 
35 

is shifted right and the dividend exponent 

C(Y)O ... 7 increased accordingly until I C(Y)8 ... 35 j < j C(AQ)0 _ .• 27 j ; 

C (Y) O ••• 7 - C (E) => C(E) 

C(Y)8 ••• 35 -:- C(AQ) ~ C(A) 

00 ... 0 => C(Q) . 

2. If mantissa of divisor = 0, then the division itself does not take place. 
Instead, a Divide-Check Fault Trap occurs; and all the registers remain 
unchanged. 

III-102 



DFDV 

SUMMARY: 

FLOATING POINT - DIVISION 

Double- Precision Floating Divide 

C(EAQ) 7 C(Y-pair) ~ C(EAQ) 

The contents of the A and Q Registers are shifted right and the contents of 

the Exponent Register are increased accordingly until the contents of the 

A and Q Registers, bits 0 through 63, are smaller than the contents of the 

Y-pair, bits 8 through 71. The contents of the Y-pair, bits 0 through 7, are 

then subtracted from the contents of the Exponent Register. The contents 

of the A and Q Registers are divided by the contents of the Y-pair, bits 8 

through 71. The result replaces the contents of the Exponent Register and 

bits 0 through 63 of the A and Q Registers. The Q Register, bits 64 through 

71, is filled with zeros. 

MODIFICATIONS: All except DU, DL, CI, SC 

INDICATORS AFFECTED: 

Negative 

If division takes place: If no division takes place: 

Tf C'(AQ) 

If C(AQ)
0 

o then ON: otherwise OFF If divisor mantissa = 0. 
4-h:-""""I 0'-T_ '°'th0, ..... ,..,..; ~ 0 (YL'l7' 
v.1..1.\....-.1..i ...._... ..... 11, ..._,..,._.._;,.,....._ •• ...;......,,,_. ---- ...... ......_ 

1, then ON; otherwise OFF If dividend < 0, then ON; 
otherwise OFF 

Exp. Overflow 

Exp. Underflow 

If exponent above + 12 7, then ON 

If exponent below -128, then ON 

NOTES: 1. This division is executed as follows: 

The dividend mantissa C(AQ) is shifted right and the dividend exponent C(E) 
increased accordingly until j C(AQ)0 ... 63 j < J C(Y-pair)8 ... 71 j ; 

C(E) - C(Y-pair>o ... 7 => C(E) ; 

C(AQ) .;. C(Y-pair)8 ... 71 ~ C(AQ>o ••. 63 

00 ... 0 ~ C(AQ)64 .•. 71 . 

2. If mantissa of divisor 0, then the division itself does not take place. 
Instead 1 a Divide-Check Fault Trap occurs; and all the registers remain 
unchanged. 

©©~lPilluurnlL~~ 1 ®®®------------------------

III-103 



DFDI 

SUMMARY: 

FLOATING POINT - DI\l1SION 

Double- Precision Floating Divide Inverted 

C(Y-pair) .;. C(EAQ) ? C(EAQ) 

The contents of the Y-pair, bits 8 through 71, are shifted right and the 

contents of the Y-pair, bits 0 through 7 are increased accordingly until the 

the contents of the Y-pair, bits 8 through 71, are smaller than the contents 

of the A and Q Registers, bits 0 through 63. The contents of the Exponent 

Register are then subtracted from the contents of the Y-pair, bits 0 through 

7. The contents of the Y-pair, bits 8 through 71, are divided by the 

contents of the A and Q Register. The result replaces the contents of the 

Exponent, A and Q Registers, bits 0 through 63. Q Register bits 64 through 

71 are filled with zeros. 

MODIFICATIONS: All except DU, DL, CI, SC 

INDICATORS AFFECTED: 

If division takes place: 

Zero If C(AQ) 0, then ON; otherwise OFF 

Negative If C(AQ)0 = 1, then ON; otherwise OFF 

If no division takes place: 

If divisor mantissa = 0, 
then ON; otherwise OFF 

If dividend < 0, then ON; 
otherwise OFF 

Exp. Overflow 

Exp. Underflow 

If exponent above +127, then ON 

If exponent below -128, then ON 

NOTES: 1. The dividend mantissa C(Y-pair)s ..• 71 is shifted right and the dividend 
exponent C(Y-pair)o ... 7 increased accordingly until j C(Y-pair)s ..• 711 
< I C(AQ)o ... 631 

C(Y-pair>o ... 7 - C(E) ~ C(E) ; 

C(Y-pair>s ... 71 7 C(AQ) ~ C(AQ>o ... 63 

00 ..• 0 ? C(AQ)64 ... 71 . 

2. If mantissa of divisor= 0, then the division itself does not take place. 
Instead, a Divide-Check Fault Trap occurs; and all the registers remain 
unchanged. 

IIl-104 



FLOATING POINT - NEGATE 

FNEG Floating Negate 

- C(AQ) normalized ~ C(AQ) 

SUMMARY: The two's complement of contents of the A and Q Registers are normaiized. 

The result replaces the contents of the A and Q Registers. 

MODIFICATIONS: Are without any effect on the operation 

INDICATORS AFFECTED: 

Zero 

Negative 

Exp. Overflow 

Exp. Underflow 

If C(AQ) 

If C(AQ)
0 

0, then ON; otherwise OFF 

1, then ON; otherwise OFF 

If exponent above +127, then ON 

If exponent below -128, then ON 

NOTES: 1. Even if originally C(EAQ) were normalized, an exponent overflow can still 
occur, when originally C(AQ) = -1. 00 ... 0 and C(E) = +127. 

©®~~illv~rn~~IBt®®®---------------------------------

III-105 



FCMP 

SUMMARY: 

FLOATING POINT - COMPARE 

Floating Compare 

Algebraic comparison C( (E) (AQ0 ... 27)) : : C(Y) 

The contents of the Exponent Register are compared with the contents of Y, 

bits 0 through 7. The mantissa of the number with the lower exponent is 

shifted right as many places as the difference of the exponents. The contents 

of the A Register are then compared with the contents of Y, bits 8 through 

35 and the appropriate indicators are set. 

MODIFICATIONS: All except CI, SC 

INDICATORS AFFECTED: 
Cl) 

> 
·~ 
~ 

0 co:l 
Relation ~ bJ) 

Cl) 

~ N 

0 0 C [ (E) (AQO ••. 27 )) > C(Y) 

1 0 C ( (E) (AQO ••• 27)) = C(Y) 

0 1 C [ (E) (AQO ... 27)) < C(Y) 

©@~[pfilu~OO[L~~I®®®-------------

IIl-106 



FCMG 

SUMMARY: 

FLOATING POINT - COMPARE 

Floating Compare Magnitude 

Algebraic comparison I c[ (E) (AQ0 _ ~. 27 >] I : : I C(Y) I 
The contents of the Exponent Register are compared with the contents of 

Y, bits O through 7. The mantissa of the number with the lower exponent 

is shifted right as many places as the difference of the exponents. The 

absolute value of the contents of the A Register is then compared with the 

absolute value of the contents of Y, bits 8 through 35 and the appropriate 

indicators are set. 

MODIFICATIONS: All except CI, SC 

INDICATORS AFFECTED: 
iJ) 

> •.-I 
.j..) 

0 Cl::l 
~ bD 
iJ) iJ) 

N z 
0 0 

:-l v 

v j_ 

DFCMP 

SUMMARY: 

Relation 

I c [ (E) (AQO ..• 27>] I > I C(Y) I 
I ~ ,. ,T""', , • ,... ,, I I ,....,.,.n I 
i \..., L p: .. i v~\.c{o .•• 21'j i i '-'\J-i I 

Double- Precision Floating Compare 

Algebraic comparison C [ (E)AQ0 ... 63 )] : : C(Y-pair) 

The contents of the Exponent Register are compared with the contents of a 

Y-pair, bits 0 through 7. The mantissa of the number with the lower 

exponent is shifted right as many places as the difference of the exponents. 

The contents of the A and Q Registers are then compared with the contents 

of the Y-pair, bits 8 through 71 and the appropriate indicator is set. 

MODIFICATIONS: All except DU, DL, CI, SC 

INDICATORS AFFECTED: 
iJ) 

> •.-I 

0 ~ 
~ bD 
w ~ N 

0 0 

1 0 

0 1 

Relation 

C [ (E) (AQO .•. 63 )] > C(Y-pair) 

C ( (E) (AQ0 ... 63 )] = C(Y-pair) 

C ( (E) (AQO .•• 63 )] < C(Y-pair) 

III-107 



DFCMG 

SUMMARY: 

FLOATING POINT - COMPARE 

Double- Precision Floating Compare Magnitude 

Algebraic comparison IC [ (E) (AQ0 ... 63 )] I : : I C(Y-pair) I 
The contents of the Exponent Register are compared with the contents of a 

Y-pair, bits 0 through 7. The mantissa of the number with the lower 

exponent is shifted right as many places as the difference of the exponents. 

The absolute value of the contents of the Y-pair, bits 8 through 71, is 

compared with the absolute values of the contents of the A and Q Registers, 

bits 0 through 63, and the appropriate indicator is set. 

MODIFICATIONS: All except DU, DL, CI, SC 

INDICATORS AFFECTED: 
Q) 

> 
·~ -1-> 

0 cl:! 
H bll 
Q) Q) Relation 
N z 
0 0 I c [ (E) (AQO ..• 63)] I > I C(Y-pair) I 
1 0 I C [ (E) (AQ0 ... 63 )] I = j C(Y-pair) I 
0 1 I C [ (E) (AQ0 ... 63 )] I < I C(Y-pair) I 

FSZN Floating Set Zero and Negative Indicators from Memory 

SUMMARY: The zero and negative indicators are set to reflect the contents of Y. 

l\IODIFICATIONS: All except CI, SC 

INDICATORS AFFECTED: 

Q) 

.~ 
-1-> 

8 cl:! 
b.O Relation Q) Q) 

N z 
0 0 Mantissa C(Y)8 ... 35 > 0 

1 0 Mantissa C(Y)8 ... 35 = 0 

0 1 Mantissa C(Y)8 _ .• 35 < 0 

III-108 



• , I 

IV. ,.....,,. ·s"' '"' v Y IVI UL.Iv 

A. GENERAL DESCRIPTION 

The M-605 macro assembly program is a program which will translate symbolic machine 
language convenient for programmer use into binary machine instructions. The symbolic 
language is sufficiently like machine language to permit the programmer to utilize all the 
facilities of the computer which would be available to him if he were to code directly in 
machine language. 

An assembler resembles a compiler in that it produces machine language programs. It differs 
from a compiler in that the symbolic language used with an assembler is closely related to the 
language used by the computer, while the source language used with a compiler resembles the 
technical language in which problems are stated by human beings. 

Compilers have several advantages over assemblers. The language used with the compiler is 
easier to learn and is oriented toward the problem to be solved. The user of a compiler 
usually does not need an intirnate kno\vledge of the inner \1lorkings of the computer~ Pro
Q'ra mmirnr iR faRter. Finally. the time required to obtain a finished. working program is 
~reatly r~ductd since there is less chance for the programmer to m;ike rnistakes. The 
assembler compensates for its disadvantages by offering those programmers, who need a 
great degree of flexibility in writing their programs, that flexibility which is not currently 
found in compilers. 

The M-605 Macro Assembler is provided to give the professional programmers some of the 
conveniences of a compiler and the flexibility of an assembler. The ability to design desired 
MACROS in order to provide convenient shorthand notations plus the use of all M-605 machine 
instructions, as well as a complete set of pseudo-operations, provides the programmer with 
a very powerful and flexible tool. The output options enable him to obtain binary text in 
relocatable as well as absolute formats. 

The classic format of a variable field symbolic assembly program is used throughout the 
M-605 Macro Assembler. Typically, a symbolic instruction consists of four major divisions; 
location field, operation field, variable field, and comments field. 

The location field normally contains a name by which other instructions may refer to the 
instruction named. The operation field contains the name of the machine operation or pseudo
operation. The variable field normally contains the location of the operand. The comments 
field exists solely for the convenience of the programmer and plays no part in the assembly 
process. An identification field is provided to give a means of identifying the location of a 
card within a deck. 

((\j In\ m In'\ 'al 17 n lo) n 17 (l;:J /1 ~ In\ In\ 

llQ lU) l1VtJ lf UJ U U ~ l1LS~ u lQ) l!V UU -------------------------

IV-1 



B. LANGUAGE CHARACTERISTICS 

1. Language Fiormat 

Symbolic instructions are punched one per card, each card representing one line of the coding 
sheet (Figure IV-1). The following is a breakdown of the card columns normally used. 

Columns 1 - 6 Location field 

Column 7 Even/ odd/ eight subfield 

Columns 8 - 13 Operation field 

Columns 14 - 15 Blank 

Columns 16 - Blank* Variable field 

Column Blank - 72 Comments field (separated from variable 
field by at least one blank) 

Columns 73 - 80 Identification field 

* First blank column encountered within an e:21..-pression will terminate the processing of the 
variable field. 

GENERAL fj ELECTRIC 

PROBLEM 

PROGRAMME_R_ 

LOCATION ~ OPERATION ADDRESS, MODIFIER 

l 2 617 8 l.tl15i16 

COMMENTS 

SYMBOLIC CODING FORMS 

OF 

IDENTIFI
CATION 

n 73 80. 

1------1 l----~ ~-------+----------------------11--------1 

1------1 1---~ 1---------+---------------------+---~1 

--~ t------------1 !----------------+---·--·----------

,_____ I----~ ~-------+--------------------1------l 

Macro Assembler Coding Form 

a. LOCATION FIELD 

For machine instructions or MACROS this location may contain a symbol or may be left blank, 
if no reference is made to the instruction. (With certain pseudo-operations, this field has a 
special use and is described later in this publication.) Associated with the location field is a 
one-character field which allows the programmer to specify whether this generated machine 
word should fall in an even, odd or multiple of 8 memory location. If this is left blank, then 
the instruction will be located in the next available location. But, if there is an O in this field, 
the instruction will be located at the next available odd location; if an E, then at the next 
available even location; if an 8, then at the next available location which is a multiple of eight. 

b. OPERATION FIELD 

The operation field may contain from zero to six characters taken from the set 0-9, A-Z, and 
the period. The group of characters must be: (1) a legal M-605 operation,* (2) a Macro 

©@RAJ[pffilJ~ill[lJ~~t®®®-------------

IV-2 



Assembler pseudo-operation or a special MACRO call (CALL, SA VE, etc.) as described in this 
publication, (3) macro operation defined by programmer, (4) a GE-625/635 instruction which is 
not in the M-605 hardware implemented instruction repertoire, for which a macro will be substi
tuted. The character group must begin in column eight (left-justified) and must be followed by 
at least one blank. 

A blank field or the special code ARG will be interpreted as a zero operation. and the operation 
field will be all zeros in the assembly coding. Anything appearing in the operation field which 
is not in (1), (2), (3), or (4) above is in "illegal" operation and will result in an error flag in 
the nssemhly listing. 

c. VARIABLE FIELD 

The variable field contains one or more subfields that are separated by the programmer 
through the use of commas placed between subfields. The number and type of subfields vary 
depending upon the content of the operation field: (1) machine instruction, (2) Macro Assembler 
pseudo-operation, or (3) macro operation. 

The subfields within the variable field of M-605 instructions consist of the address and the tag 
(modifier). The address may be any legitimate expression or a literal. This is the first 
subfield of the variable field and is separated from the tag by a comma. (See below for 
allowable tag mnemonics and their meanings.) Through address modification, as directed by 
the tag, a program address is defined. This program address is either (1) an instruction 
:1rtdress used tor !etching instructions, (~)a tentative address used for fetching an indirect 
word, or (;3) an etfective address used lor ol>Laining an operand or storing a resuit. 

The subfields used with pseudo-operations vary considerably; they are described individually 
in this publication under each pseudo-operation. Subfields used with macro operations are 
substitutable arguments which, in themselves, may be instructions, operand addresses, 
modifier tags, pseudo-operations, or other macro operations. All of these types of subfields 
are presented in the discussion on macro operations. 

The first character of the variable field must begin by column 16. The end of the variable 
field is designated by the first blank character encountered in the variable field (except for 
the BCI instruction and in the use of Hollerith literals). If any subfield is null (no entry given 
when one is needed), it is interpreted to be zero. 

* All indexing instructions (LDX. STX, ADX, etc.) may be used without the index register 
number appended. Thus, 

LDX 1, 5, DU 

is equivalent to 

LDXl 5,DU 

Also, the following is permissible: 

LDX B+A, Y, DU where B+A specifies the index register 

IV-3 



d. COMMENTS FIELD 

The comments field exists solely for the convenience of the programmer; it plays no part in the 
assembly process. Programmer comments follow the variable field and are separated from 
that field by at least one blank column. 

e. IDENTIFICATION FIELD 

This field is used or not used according to programmer option. Its intended use is for 
instruction identification and sequencing. 

2. Symbols 

A symbol is a string of from one to six non blank characters, at least one of which is non
numeric and the first of which is non-zero. The characters must be taken from the set made 
up of 0-9, A-Z and the period (. ). Symbols can appear in the location and variable fields of the 
Assembler coding form. (Symbols are also known as location symbols and symbolic addresses. ) 

Symbols are defined by: 

• Their appearance in the location field of an instruction, pseudo-operation, or MACRO. 

• Their use as the name of a subprogram in a CALL pseudo-operation. 

• Their appearance in the Symbol Reference (SYMRE F) pseudo-operation. 

Every symbol used in a program must be defined exactly once, except for those symbols 
which are initially defined and redefined by the SET pseudo-operation. An error will be 
indicated by the assembler if any svmbol is used but never defined, or if any symbol is 
defined more than once. 

The following are examples of permissible symbols: 

A 
z 
Bl 
ERR 

AlOOO 
FIRST 
ALOGlO 
BEGIN 

E1XP3 
.XP3 
ADD TO 
ERROR 

A ....• 
B. 707 
1234X 
3.141P 

Symbols are classified into four types: 

• Absolute --

• Common --

• Relocatable --

• SYMREF --

A symbol which refers to a specific number. 

A symbol which refers to a location in common storage. These 
locations are defined by the use of the BLOCK pseudo-operation. 

A symbol which appears in the location field of an instruction. 
Symbols that appear in the location field of symbol defining 
pseudo-operations are defined as the same type as the symbol 
in the variable field. 

A symbol which appears in the variable field of a SYMRE F pseudo
operation; it is considered to be defined external to the subprogram 
being assembled and is to be considered specially by the Loader. 

©©~~ffiu~OOQJ~~t®®®-------------

IV-4 



3. Expressions 

In writing symbolic instructions, the use of symbols only in the allowable subfields presents 
the programmer with too restrictive a language and, in effect, impairs efficient use of the 
hardware. Therefore, in the notation of subfields of machine instructions and in the variable 
fields of pseudo-operations in accordance with the rules set forth in each specific case, the 
capability to use expressions rather than just symbols is permitted. Before discussing 
expressions, it is necessary to describe the building blocks used to construct them. These 
building blocks are elements, terms, and operators. 

a. ELEMENTS 

The smallest component of a complete expression is an element. An element consists of a 
single symbol, an integer less than 235, or an asterisk. 

An asterisk (*) may be used as an element in addition to being used as an operator. When it 
is used as an element, it refers to the location of the instruction in which it appears. For 
example, the instruction 

AlO TRA *+2 

is equivalent to 

AlO TRA Alo-i-2 

:ir!d :rep res er.ts :i tr:insfer to the second location follo'.'.'ing the transfer instruction. There is 
no ammguny iJetween this usage 01 Lne a:::;tensK. a::; an eiemenL ami it::; u~e a::; Lite uver·awr ior 
multiplication since the position of the asterisk always makes clear what is meant. Thus, 
**M means "the location of this instruction multiplied by the element M", and the ** means 
"the location of this instruction times the null element" and would be equal to zero. The 
notation *-* means "the location of this instruction minus the location of this instruction." 
(See description of the operators below.) 

b. TERMS 

A term is a string composed of elements and operators. It may consist of one element or, 
generally speaking, n elements separated by n - 1 operators of the type * and I where * 
indicates multiplication and/ indicates division. If a term does not begin with an element or 
end with an element, then a null element will be assumed. It is not permissible to write two 
operators in succession or to write two elements in succession. --

Examples of terms are: 

M 
436/2 
START 

MAN*T 
BETA/3 
4*AB/ROOT 

c. ALGEBRAIC EXPRESSIONS 

7*Y 
A*B*C/X*Y*Z 
ONE*TWO/THREE 

An algebraic expression is a string composed of terms separated by the operators + (addition) 
- (subtraction). Therefore, an expression may consist of one term or, more generally 
speaking, n terms separated by n - 1 operators of the type + and - . It is permissible to write 

IV-5 



two operators, plus and minus, in succession and the Assembler will assume a null element 
between the two operators. If no initial term or final term is stated, it will be assumed to be 
zero. An expression may begin with the operator plus or minus. Examples of permissible 
algebraic expressions are: 

A 

SINE 

XYZ 

A-3 

B+4 

7 

+99 

-88+2 

-X/Y 

X*Y 

CX*DY+EX/FY-100 

-EXP* FUNC /LOGX + XYZ /10-SINE 

*+5*X (Note: the first asterisk refers to the 
instruction location) 

-- (Note: equivalent to zero minus zero 
minus zero) 

An algebraic expression is evaluated as follows: first, each symbolic element is replaced by 
its numerically-defined value; then, each term is computed from left-to-right in the order of 
its occurrence. In division, the integral part of the quotient is retained; the remainder is 
immediately discarded. For example, the value of the term 7 /3 * 3 is 6. In the evaluation of 
an expression, division by zero is equivalent to division by one and is not regarded as an 
error. After the evaluation of terms, they are combined in a left-to-right order with the 
initial term of the expression assumed to be zero followed by the plus operator. If there is no 
final term, a null term will be used. At the completion of the expression evaluation, the 
Assembler reduces the result by modulo 2n where n is the number of bits in the field 
being defined, 18 for address field evaluations and variable according to specified field size 
for the VFD pseudo-operation. Grouping by parentheses is not permitted, but this restriction 
may often be circumvented. 

d. BOOLEAN EXPRESSIONS 

A Boolean expression is defined similarly to an algebraic expression except that the operators 
*, /, +, or - are interpreted as Boolean operators. The meaning of these operators is 
defined below: 

1. The expression that appears in the variable field of a BOOL pseudo-operation uses 
Boolean operators. 

2. The expression that appears in the octal subfield of the variable field of a VFD pseudo
operation uses Boolean operators. 

A Boolean expression is evaluated following the same procedure used for an algebraic 
expression except that the operators are interpreted as Boolean. 

In a Boolean expression, the form operators +, -, *, and I have Boolean meanings, rather 
than their normal arithmetic meanings, as follows. 

©@~[fffilY~OO[L~~I®®®-------------

IV-6 



0Eerator Meaning Definition 

+ OR, INCLUSIVE OR, 0 + 0 0 
union 0 + 1 1 

1 + 0 1 
1 + 1 1 

EXCLUSIVE OR 0 0 0 
symmetric difference 0 1 1 

1 0 1 
1 1 0 

* AND, intersection 0 * 0 0 
0 * 1 0 
1 * 0 0 
1 * 1 1 

I 1 's complement, /0 1 
complement, NOT /l 0 

Although / is a unary operation involving only one term, by convention A/B is taken to mean 
A* /B; and the A is ignored. This is not regarded as an error by the Assembler. Thus, the 
table for I as a two-term operation is= 

0/0 

0/1 

~ 

•'-

-A 
*A 
A/ 

0 

0 

A-
A* 
A/O 

~ 

A 
0 

=A 

1/0 

1/1 

1 

0 

For a discussion of relocatable and absolute expression evaluation see Section I. 

4. Literals 

A literal in a subfield is defined as being the data to be operated on rather than an expression 
which points to a location containing the data. 

A programmer frequently must refer to a memory location containing a program constant. 
For example, if the constant 2 is to be added to the A Register, the number 2 must be some
where in memory. Data generating pseudo-operations in the Macro Assembler enable the 
programmer to introduce data words and constants into his program; but often the introduction 
is more directly accomplished by the use of the literal that serves as the operand of a machine 
instruction. Thus, the literal is data itself. 

The Assembler retains source program literals by means of a table called a literal pool. 
When a literal appears, the Assembler prepares a constant which is equivalent in value to the 
rlata in the literal subfield. This constant is then placed in the literal pool, providing an 
identical constant has not already been so entered. If the constant is placed in the literal pool, 

(f'J (n\ IYI I Dl I I 1711 lo) n 12 (<i;) II ~ (ril(il\ 
~~ \~) l~A I l( L~J Ii U lE,) LbLS~l // \~) l_U) \!J -----------------------------

IV-7 



it is assigned an address; and this address then replaces the data in the literal subfield, the 
constant being retained in the pool. If the constant is already in the literal pool, the address 
of the identical constant replaces the data in the literal subfield. 

The Assembler processes five types of literals: decimal, octal, alphanumeric, instruction, 
and variable field. The appearance of an equal sign (=) in column 16 of the variable field instructs 
the Assembler that the subfield immediately following is a literal. The instruction and variable
field literal are placed in the literal pool; because they cannot be evaluated until pass two of the 
assembly, no attempt is made to check for duplicate entries into the pool. Literals on the CALL 
and TALLY pseudo-operations are restricted to decimal, octal, and alphanumeric where the 
character count is less than 13. 

a. DECIMAL LITERALS 

• Integers 

A decimal integer is a signed or unsigned string of digits. It is unique from the other 
decimal types by the absence of a decimal point, the letter B, the letter E, or the 
letter D. 

• Single-Precision Floating-Point 

A floating-point subfield consists of two parts: the principle and the exponent. 

Principle part - is a signed or unsigned decimal number written with a decimal 
point. The decimal point is mandatory unless the exponent field is present. The deci
mal point may appear anywhere within the principle part. If absent, it is assumed to 
be at the right-hand end. 

Exponent part - if present, follows the principle part and consists of the letter E, 
followed by a signed or unsigned decimal integer. The floating-point number is dis
tinguished by the presence of an E, or a decimal point, or both. 

• Double-Precision Floating-Point 

The format of the double-precision floating-point number is identical to the normal 
single-precision format with two exceptions: 

1. There must always be an exponent 
2. The letter E must be replaced by the letter D 

The Assembler will ensure that all double-precision numbers begin in even memory locations. 
Ambiguity of storage assignment as to even or odd will always cause the Assembler to force 
double-precision word pairs to even locations; it will then issue a warning in the printout 
listing. This feature is maintained for GE 625/635 compatibility. 

• Fixed-Point 

A fixed-point quantity possesses the same characteristics as the floating-point - with 
one exception: it must have a third part present. This is the binary scale factor denoted 
by the letter B, followed by a signed or unsigned integer. The binary point is initially 
assumed at the left-hand end of the word between bit position O and 1. It is then ad
justed by the binary scale factor, designated with plus implying a shift to the right and 
with minus, a shift to the left. Double-precision fixed-point follows the rules of double
precision floating-point with addition of the binary scale factor. 

©@~[pffiv~rn~~~t®®®-------------

IV-8 



Examples of decimal literals are: 

=-10 
=26.44167E-1 
=1.27743675385DO 

b. OCTAL LITERALS 

Integer 
Single-precision floating-point 
Double-precision floating-point 
Fixed-point 

The octal literal consists of the character 0 followed by a signed or unsigned octal integer. The 
octal integer may be from one to twelve digits in length plus the sign. The Assembler will store 
it in a word, right-justified. The word will be stored in its real form and will not be comple
mented if there is the presence of a minus sign. The sign applies to bit 0 only. 

Examples of octal literals are: 

=01257 
=0-3 777777777 42 

c. ALPHANUMERIC LITERALS 

The alphanumeric, or Hollerith~ literal consists of the letters H or kH, where k is a character 
count followed by the data. If there is no count specifie<l, a literal of exactly six 6-hit characters 
including blanks is assumed to follow the letter H. If a count exists~ the k characters following 
me character li are to be used as the literal. if the value k is not a multiple oi six, the last 
1;2 rtbl '.1.'ord •;:il1 be 1cft-·jl.1stificcl ~nd filled in '.vith bl:rnks. The •.r:iluc 1: c8.n nn;:::,-c fron:. 1 th-:.·c'-.1~h 
dJ. (lmDectctect DlanKs oo not ternunate scanmng or tne carets Dy me Assemu1er.) 

Examples of alphanumeric literals are: 

=-HALPHAl 
=-HGONE 
c-4HGONEE1ID 
:c7HTHE-15END 

(1J represents a blank) 

d. INSTRUCTION LITERALS 

The instruction literal consists of the character = followed by the letter, M. This is followed 
in turn by an operation code, one blank, and a variable field. (The imbedded blank does not 
terminate scanning of the card in this instance.) 

Examples of instruction literals are: 

=MARG-DB ETA 
=MLDA1':>5 

Instructions containing instruction literals cannot make use of any of the forms of tag modifier. 
since any modifier encountered is assumed to be a part of the instruction literal. 

©©~lPillvurn~~~ t ®®®-----------------------

IV-9 



e. VARIABLE FIELD LITERALS 

The variable field literal begins with the letter V. Reference should be made to the description 
of the VFD pseudo-operation for the detailed description of using variable field data description. 
The subfields of a variable field literal may be one of three types: Algebraic, Boolean, and 
Alphanumeric. 

Examples of variable field literals are: 

=Vl0/895, 5/37, H6/C, 15/ ALPHA 
=V18/ALPHA,012/235, 6/0 

Instructions containing variable field literals cannot make use of any of the forms of a tag 
modifier. See page IV -48. 

f. LITERALS MODIFIED BY DU OR DL 

When a literal is used with the modifier variations DU or DL, the value of the literal is not 
stored in the literal pool but is truncated to an 18-bit value, and is stored in the address field 
of the machine instruction. Normally, a literal represents a 36-bit number. For the DU or DL 
modifier variations, if the literal is a floating-point number or Hollerith, then bit 0-17 of the 
literal will be stored in the address field. In the case of all other literals, bits 18-35 of the 
literal will be stored in the address field. 

Examples of literals modified by DU and DL are: 

CODED LITERAL 

=100,DL 
=-1. O,DU 
=320.,DU 
=0.,DU 
=077,DU 
=2B25,DU 
=3HOOA,DL 

5. Processor Instructions 

RESULTANT ADDRESS FIELD {OCTAL) 

000144 
001000 
022500 
400000 
000077 
004000 
000021 

Processor instructions written for the Assembler consist of a symbol (or blanks) in the location 
field, a 3- to 6-character alphanumeric code representing an M-605 operation in the operation 
field, and an operand address, (symbolic or numeric), plus a possible modifier tag in the 
variable field. 

Standard machine mnemonics are entered left-justified in the operation field. These are any 
instruction mnemonic, as presented in the listings in the Appendices. 

Several Assembler pseudo-operations are closely related to machine instructions. These are: 

• OPSYN (operation synonym) - redefinition of a machine instruction by equating a new 
mnemonic to one already existing in the Assembler operation table. 

©©~~illu~rn[L~~t®®®-------------

IV-10 



• OPD (operation definition) - definition of a new machine instruction to the Assembler. 

• J'v1ACRO (macro instruction definition) - define a mnemonic operation code to cause 
one or more standard operations to be generated by the Assembler. 

The operand address and modifier tag of most machine instructions comprise the subfield 
entries of the variable field. The address portion may be any legitimate expression, described 
earlier. The address is the first subfield in the variable field and begins in column 16. The 
modifier tag subfield is separated from the address subfield by a comma. Coding of the modifier 
tag subfield entries is described on the pages following. 

6. Address Modification Features 

a. Summary 

The M-605 performs address modification in four basic ways: Register modification (RL Regis
ter Then Indirect modification (RI), Indirect Then Register modification (IR), and Indirect then 
Tally modification (IT). Each of these basic types has associated with it a number of variations 
in which selectable registers can be substituted for the R in R, RI, and IR and in which various 
tallying or other substitutions can be made for the T in IT. I always indicates indirect address 
modification and is represented by the asterisk *placed in the variable field of the Macro As
sembler coding sheet as *R or R* when IR or RI is specified. To indicate IT modification, only 
the substitution for T appears in the coding sheet variable field; that is, the asterisk is not used. 

In indirect addressing, the contents of the instruction address y are treated a~ another address, 
i aLhei Lha11 as the operand of the instruction code. Ir. the :'.'.I ~605, indirect :-lddress modific'.'.lti.0n 
is handled automatically as a hardware tunction whenever cailea 1or uy program mstructwn. 
This form of modification precedes direct address modification for IR and IT; for RI, it follows. 
'v'v11en the I modification is called for by a program instruction, an indirect word is always ob
tained from memory. This indirect word may call for continued I modification, or it may 
specify the effective address Y to be used by the original instruction. Indirect addressing for 
RI, IR, and IT is performed by the processor whenever a binary 1 appears in either position 
of the tm field (bit positions 30 and 31) of an instruction or an applicable indirect word. The 
four basic modifications types, their mnemonic substitutions as used in the variable field of 
the coding sheet. and the binary forms presented to the processor by the Assembler are as 
follows: 

MODIFICATION 
TYPE 

R 

RI 

IR 

IT 

CODI NG SHEET 
MNEMONIC 

BETA,(R) 

BETA,(R) * 

BETA,* (R} 

BETA, (T) 

BINARY 
FORMS 

30,31, 32 35 

l z I i I z I o o!TAG 
30,31, 32 35 

30,31,32 35 

30,31, 32 35 

30,31,32 35 

@@~[pffiTimmu~~t®l~J® ___________________ _ 

IV-11 



The parentheses in (R) and (T) indicate that substitutions are made by the programmer for R 
and T; these are explained under the separate discussions of R, IR, RI, and IT modification. 
Binary equivalents of the substitution are used in the td subfield. 

b. REGISTER (R) MODITICATION 

Shnple R-type address modification is performed by the processor whenever the programmer 
codes an R-type variation (listed below) and causes the Assembler to place binary zeros in 
both positions of the modifier subfield tm of the general instruction. Accordingly, one among 
16 variations under R will be performed by the processor, depending upon bit configurations 
generated by the Assembler and placed in the designator subfield (ta) of the general instruction. 
The 16 variations, their mnemonic substitutions used on the Assembler coding sheet, the ta 
field binary forms presented to the processor, and the effeciive addresses Y generated by the 
processor are indicated in the following table. 

A special kind of address modification variation is provided under R modification. The use of 
the instruction address field as the operand is referred to as direct operand address modifica
tion, of which there are two types; (1) Direct Upper and (2) Direct Lower, With the Direct 
Upper variation, the address field of the instruction serves as bit positions 0-17 of the operand 
and zeros serve as bit positions 18-35 of the operand. With the Direct Lower variation, the 
address field of the instruction serves as bit positions 18-35 of the operand and zeros serve as 
bit positions 0-1 7 of the operand. 

BINARY 
MODIFICATION MNEMONIC FORM EFFECTIVE 

VARIATION SUBSTITUTION (ta FIELD) ADDRESS 

(R) =XO 0 1000 y = y + C(X0)0-17 

= Xl 1 1001 y = y + C(Xl)0-17 

= X2 2 1010 y = y + C(X2)0-17 

= X3 3 1011 y = y + C(X3)0-17 

= X4 4 1100 y = y + C(X4)0-17 

= X5 5 1101 Y = Y + c (X 5 >o -1 7 
= X6 6 1110 y = y + C(X6)0-17 

= X7 7 1111 Y=y+C(X7)0-17 

= AR0-17 AU 0001 y = y + C(AR)0-17 

= AR18-35 AL 0101 y = y + C(AR)lS-35 

= QR0-17 QU 0010 y = y + C(QR)0-17 

= QR18-35 QL 0110 y = y + C(QR)lS-35 

= IC0-17 IC 0100 y = y + C(IC)0-17 

= IR0-17 ,DU 0011 C(Y)0-17 = y 

= IR0-17 DL 0111 C(Y)lS-35 = y 
=None Blank or N 0000 Y=y 

= Any symbolic Any defined 
index register symbol* 

*Symbol must be defined as 0-7 by use of an applicable pseudo-operation. (See discussion 
of EQU and BOOL.) 

IV-12 



The examples following show how R-type modification variations are entered in the variable field 
and their resultant control effects upon processor development of effective addresses. 

VARIABLE FIELD COMMENTS 

MODIFICATION EFFECTIVE 
T nf"" "'T'Tnl\T nnvo A 'T'Tnl\T 11innp"J7'c;;:c;;: 'T'A~\ TYPE ADDRESS .Ll\Jv~ ..L J.\J.l.'I '-....IL.J....:.J..L~i..L'-...1.J.., ~.L.1...L.JLJ..J...l...L.o!U..._, z ..L J,. .L'-A l 

1. B,0 (R) Y = B + C(XO) 

2. C,AL (H) Y = C + C(AH)-, 0 'lr:'. J..o-0u 

3. M,QU (R) y = M + C(QR)0-17 

4. -2,IC (R) Y = C(IC) - 2 

5. *,DU (R) Operand
0

_
17 

= C(IC)t 

6. 1,7 (R) Y = 1 + C(X7) 

7. 2,DL (R) Operand
18

_
35 

= 2 

8. B (R) Y=B 

9. B,N (R) Y=B 

10. C,ALPHA (R) Y = C + C(X2) 

ALPHA EQU 2 
tNote: \Vhen used in an indirect modification reference, Operand 0_17 =location of indirect word 

c. REGISTER THFl\'" I:\l1IRECT (RI) MODIFICATION 

RE>gi~terThpri In.direct qrlrlresci n"lnrliffrMion in thP l\tT-hOf' i~ 'l 0ffmhin'ltinri t~'!1f> in ,~.,hfrh hnth 
indexing (register modification) and indirect addressing are performed. For indexing modifi
cation under RI, the mnemonic substitutions for R are the same as those given under the dis
cussion of Register (R) modification with the exception that DU or DL cannot be substituted for 
R. For indirect addressing (I), the processor treats the contents of the operand address as
sociated with the original instruction or with an indirect word. 

Under RI modification, the effective address Y is found by first performing the specified Re
gister modification on the operand address of the instruction; the result of this R modification 
under RI obtains the address of an indirect word which is then retrieved. 

After the indirect word has been accessed from memory and decoded, the processor carries 
out the address modification specified by this indirect word. If the indirect word specifies RI, 
IR~ or IT modification (any type specifying indirection), the indirect sequence is continued. 
When an indirect word is found that specifies R modification, the processor performs R modifi
cation~ using the register specified by the td field of this last encountered indirect word and 
the address field of the same word, to form the effective address Y. 

It should be observed again that the variations DU and DL of Register modification (R) cannot be 
used with Register Then Indirect modification (RI). 

If the programmer desires to reference an indirect word from the instruction itself without in
cluding Register modification, he specifies the "no modification" variation; under RI modifica
tion, this is indicated on the coding form by an asterisk alone placed in the variable field tag 
position. 

©©~ lr ill vurn~~IB t1 ®®® ___________________________ _ 

IV-13 



The examples below illustrate the use of R combined with RI modification, including the use of 
(R) = N (no register modification). The asterisk (*) appearing in the modifier subfield is the 
Assembler symbol for I (Indirect). The address subfield, single-symbol expressions shown are 
not intended as realistic coding examples but rather to show the relation between operand ad
dresses, indirect addressing, and register modification. 

VARIABLE FIELD 

LOCATION OPERATION {ADDRESS 2 TAG} 

1. Z,AU* 

Z + C (AR)
0

_
17 

B, 1 

2. 7 * ~, 

z B,QU 

3. z * ' 
z B, 5* 

~ -1- r' Nr::.\ r' ~ * 
J....J 1 '-....I \....:'.lrrr..UJ '-', ..... 

C + C(X3) M 

d. INDIRECT THEN REGISTER (IR) MODIFICATION 

COMl\IENTS 

MODIFICATION EFFECTIVE 
ADDRESS TYPE 

(R)* Y = B + C(XRl) 

(R) 

(R)* -v - R + C:fQR) 
l. - - _, \ - 0-17 

(R) 

(R)* Y=M 

(R)* 

fR\* 
,~., 

(R) 

Indirect Then Register address modification is a combination type in which both indirect ad
dressing and indexing (register modification) are performed. IR modification is not a simple 
inverse type of RI; several important differences exist. 

Under IR modification, the processor first fetches an indirect word (obtained via I or IR) from 
the core storage location specified by the address field y of the machine instruction; and the 
C (R) of IR are safe-stored for use in making the final index modification to develop Y. 

Next, the address modification, if any, specified by this first indirect word is carried out. If 
this modification is again IR, another indirect word is retrieved from storage immediately; 
and the new C (R) are safe-stored, replacing the previously safe-stored C (R). If an IR loop 
develops, the above process continues, each new R replacing the previously safe-stored R, until 
something other than IR is encountered in the indirect sequence - R, IT, or RI. 

If the indirect sequence produces an RI indirect word, the R-type modification is performed 
immediately to form another address; but the I of this RI treats the contents of the address as 
an indirect word. The chain then continues with the R of the last IR still safe-stored, awaiting 
final use. At this point the new indirect word might specify IR-type modification, possibly re
newing the IR loop noted above; or it might initiate an RI loop. In the latter case, when this loop 
is broken, the remaining modification types are R or IT. 

\\Then either R or IT is encountered, it is treated as type R where R is the last safe-stored C (R) 
of an IR modification. At this point the safe-stored C(R) are combined with they of the indirect 
word that produced R or IT, and the effective address Y is developed. 

©@~[pfillJ~OO[L~~I®®®-------------

IV-14 



If an indirect modification without Register modification is desired, the no-modification variation 
(N) of Register modification should be specified in the instruction. This normally will be entered 
on the coding sheet as *N in the modifier part of the variable field. (The entry * alone is equiva
lent to N* under RI modification and must be used in this way.) The mnemonic substitutions for 
(R) are listen un<ler the Register modification description. 

The examples below illustrate the use of IR-type modification, intermixed with R and RI types, 
under the several conditions noted above. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

LOCATION 

z 

z 
B + C(X5) 

z 
B + C(X3) 

z 

z 

z 
B 

z 
B 

z 

VARIABLE FIELD COMMENTS 

MODIFICATION EFFECTIVE 
ADDRESS OPERATION (ADDRESS, TAG) TYPE 

Z,*QL 

M 

Z, *3 

B,5* 

C,IC 

Z, *3 

B, *5 

l\I. 7 

Z,*DL 

B,3* 

M,QL 

Z,*AL 

B,AD 

Z, *N 

B,3 

Z, *N 

B, *5 

M,DU 

z * ' 
B, *5 

M,DU 

Z, I 

B, *5 

IV-15 

*(R) 

(R) 

*(R) 

(R)* 

(R) 

*(R) 

*(R) 

*(R) 

(R)* 

(R) 

*(R) 

(T) 

*(R) 

(R) 

*(R) 

*(R) 

(R) 

(R)* 

*(R) 

(R) 

(T) 

*(R) 

y = M + C (QR)lS-35 

Y = C + C(X3) 

y = M + C(QR)0-17 

C (Y)lS-35 = M 

y = B + C (AR)lS-35 

Y=B 

Y = M + C(X5) 

Y = M + C(X5) 

y =B 

(Note: I modification does 
not permit continuation of 
the indirect chain. ) 



e. INDIBECT THEN TALLY (IT) MODIFICATION 

• Summary. Indirect Then Tally address modification in the M-605 is a combination type in 
which both indirect addressing and reference tallying are performed. In addition, automatic 
incrementing/ decrementing of fields in the indirect word are done as hardware features, thus 
relieving the programmer of these responsibilities. The automatic tallying and other functions 
of the IT type modification greatly enhance the processing of tabular data in memory, provide 
the means for working upon character data, and allow termination on programmer-selectable 
numerical tally conditions. These features are explained in the nine subparagraphs to follow. 
(Refer to the special word formats TALLY, TALLYB, TALLYD, and TALLYC for Assembler 
coding of the indirect words used with IT.) 

The ten variations under IT modification are summarized in the following table. It should be 
noted that the mnemonic substitution for IT on the Macro Assembler coding sheet is simply (I'); 
the designator I for indirect addressing in IT is not represented. (Note that one of the substitu
tions for T is I.) 

NAME OF THE 
VARIATION 

Indirect 

Increment address, 
Decrement tally 

Decrement address, 
Increment tally 

Sequence Character 

Character from Indirect 

Add Delta 

Subtract Delta 

Fault 

Increment address, 
Decrement tally, 
and Continue 

Decrement address, 
Increment tally, 
and Continue 

CODING FORM 
SUBSTITUTION FOR I{T) 

I 

ID 

DI 

SC 

CI 

AD 

SD 

F 

IDC 

DIC 

BINARY 
FORM 

{td FIELD} 

1001 

1110 

1100 

1010 

1000 

1011 

0100 

0000 

1111 

1101 

EFFECT UPON THE 
INDIRECT WORD 

None. 

Add one to the address; 
subtract one from the tally. 

Subtract one from the ad
dress; add one to the tally. 

Add one to the character 
position number; subtract 
one from the tally; add one 
to the address when the 
character count crosses 
a word boundary. 

None. 

Add an increment to the ad
dress; decrement the tally 
by one. 

Subtract an increment from 
the address; increase the 
tally by one . 

None; the processor is 
forced to a fault trap 
starting at a predetermined, 
fixed location. 

Same as ID variation ex
cept that further address 
modification can be per
formed. 

Same as DI except that 
further address modifica
tion can be performed. 

©®~~mu~OO[JJ~~c®®®-------------

IV-16 



~ Indirect (T) = I Variation. The Indirect (I) variation of IT modification is in effect a subset 
of the ID and DI variations described below in that all three - I, ID, and DI - make use of one 
indirect word in order to reference the operand. The I variation is functionally unique, however, 
in that the indirect word referenced by the program instruction remains unaltered - no incre
menting/decrementing of the address field. Since the tm and td subfields of the indirect word 
under T are not interrogated, this word wi11 always terminate the indirect chain. 

The following differences in the coding and effects of *, *N, and I should be observed: 

1. RI modification is coded as R * for all cases, excluding R = N. 

2. For R = N under RI, the modifier subfield can be written as N* or as *alone, accord
ing to programmer preference. 

3. When N* or just *is coded, the Assembler generates a machine word with 20 in posi
tions 30-35; 20 causes the processor to add 0 to the address y of the word containing 
the N* or * and then to access the indirect word at memory location y of the N* or * 
word. 

·1. IR modification is coded as *R for all cases, including R = N. 

5. For R = N under IR, the modifier subfield must be written as *N. 

6. When *N is coded, the Assembler generates 60 in positions 30-35 of the associated 
machine word; 60 causes the processor to (1) retrieve the indirect word at location v 
of the machine word, and (2) effectively safe-store zeros (for possible final index 
modification of the last indirect word - to develop the effective address Y). 

7. IT modification is coded using only a variation designator (I, ID, DI, SC, CI, AD, SD, 
F, IDC, DIC); that is, the asterisk (*) is not written (for I). Thus, a written IT address 
rnodification appears as ALPHA, DI; BETA, AD; etc. 

8. For the variation I under IT, the Assembler generates a machine word with 51 in bit 
positions 30-35; 51 causes the processor to perform one and only one indirect word 
retrieved from memory location y (of the word with I specified) to obtain the effective 
address Y. 

e Increment Address, Decrement Tally (T) =ID Variation. The ID variation under IT modi-
fication provides the programmer with automatic (hardware) incrementing/decrementing of an 
indirect word that is best used for processing tabular operands (data located at consecutive 
memory addresses). The indirect word always terminates the indirect chain. 

In the ID variation the effective address is the address field of the indirect word obtained via 
the tentative operand address of the instruction or preceding indirect word, whichever specified 
the ID variation. Each time such a reference is made to the indirect word, the address field of 
the indirect word is incremented by one; the tally portion of the indirect word is decremented 
by one. The incrementing and decrementing are done after the effective address is provided for 
the instruction operation. When the tally reaches zero; the tally runout indicator is set. 

(iD In\ m rn1 1.1 l? n 1n1 n r;=i ~ /) ((0 tO\ '"'' 

\~ \~JL~~1J lf UJ U U !Ji) LLLS~ ti W U!J lV -----------------------------

IV-17 



The example following shows the effect of ID. 

VARIABLE FIELD 

LOCATION OPERATION ADDRESS, TAG 

z 
Z,ID 
B 

COMMENTS 

MODIFICATION EFFECTIVE 
TYPE ADDRESS 

(T) 
B 

B + 1 

Assuming an initial tally of j, the tally runout indicator is 
set on the jth reference B+n 

REFERENCE 

1 
2 

n+l 

• Decrement Address, Increment Tally (T) = DI Variation. The DI variation under IT modi
fication provides the programmer with automatic (hardware) incrementing/decrementing of an 
indirect word that is best used for processing tabular operands (data located at consecutive 
memory addresses). The indirect word always terminates the indirect chain. 

In the DI variation the effective address is the address field minus one of the indirect word ob
tained via the tentative operand address of the instruction or preceding indirect word, which
ever one specified the DI variation. Each time a reference is made to the indirect word, the 
address field of the indirect word is decremented by one; and the tally portion is incremented 
by one. The incrementing and decrementing is done prior to providing the effective address 
for the current instruction operation. 

The effect of DI when writing programs is shown in the example following. 

COMMENTS 
VARIABLE FIELD 

MODIFICATION EFFECTIVE 
LOCATION OPERATION ADDRESS, TAG TYPE ADDRESS REFERENCE 

z 
Z,DI 
B 

Assuming an initial tally of 4096-j the tally runout is 
set on the jth reference. 

(T) 
B - 1 
B - 2 

B-n 

1 
2 

n 

• Sequence Character (T) = SC Variation. The Sequence Character (SC) variation is provided 
for programmed operations on 6-bit or 9-bit characters that are accessed sequentially in mem
ory. Processor instructions that exclude character operations are so indicated in the individual 
instruction descriptions. For the SC variation, the effective operand address is the address 
field of the indirect word obtained via the tentative operand address of the instruction or 

©@~[f)L~rIT~OOOJ~~i®®®-------------

IV-18 



preceding indirect word that specified the SC variation. The character size is specified in the 
indirect word (see TALLY and TALLYB pseudo-operations). 

Characters are operated on in sequence from left to right within the machine word. The character 
position field of the indirect word is used to specify the character to be involved in the operation 
and is intended for use only with those operations that involve the A- or Q-registers. The tally 
runout indicator is set when the tally field of the indirect word reaches 0. 

The tallv field of the indirect word is used to count the number of times a reference is made 
to ~ ch;,~acter. Each time an SC reference is made to the indirect word, the tally is decremented 
by one; and the character position is incremented by one to specify the next character position. 
When character position 5 is incremented, it is changed to position O; and the address field of 
the indirect word is incremented by one. All incrementing and decrementing is done after the 
effective address has been provided for the correct instruction execution. --

The effect of SC is shown in the following example. 

COMMENTS 
VARIABLE FIELD MODIFICATION EFFECTIVE 

LOCATION OPERATION ADDRESS, TAG 

z 
7.~r 

B 

{'T\ 

An initial character position of 0 is assumed here. 
Assuming an initial tally of j, the tally runout 
indicator is set on the jth reference. 

TYPE ADDRESS REFERENCE 

Effective 
Address 

B 
B 

B 
B + 1 

B+n 

Character 
Position 

0 
1 

5 
0 

0 

Heference 

1 
2 

6 
7 

6n + 1 

• Character From Indirect (T) = Cl Variation. The Character from Indirect (Cl) variation 
is provided for programmed operations on 6-bit or 9-bit characters in any situation where re
peated reference to a single character in memory is required. 

For this variation substitution, the effective address is the address field of the CI indirect 
word obtained via the tentative operand address of the instruction or preceding indirect word 
that specified the CI variation. The character position field of the indirect word is used to specify 
the character to be involved in the operation and is intended for use only with the operations that 
involve the A- or Q-register. The character size is specified in the indirect word (see TALLY 
and TA LL YB pseudo-operations. ) 

rl\J rm nn !ol D S? n 1o1 n 1r1 ((;J /) ~ 1n1 1n1 
~~UVUlJUj u UW~LSC0il ~ww ______________________ _ 

IV-19 



This variation is similar to the SC variation except that no incrementing or decrementing of the 
address or character position is performed. 

A CI example is: 

VARIABLE FIELD 
LOCATION OPERATION ADDRESS, TAG 

z 
Z, CI 

B 

COMMENTS 
MODIFICATION EFFECTIVE 

TYPE ADDRESS REFERENCE 

(T) Y=B 

• Add Delta (T) =AD Variation. The Add Delta (AD) variation is provided for programming 
situations where tabular data to be processed is stored at equally spaced locations, such as 
data words, each occupying two or more consecutive memory addresses. It functions in a 
manner similar to the ID variation, but the incrementing (delta) of the address field is select
able by the programmer. 

Each time such a reference is made to the indirect word, the address field of the indirect word 
is increased by delta and the tally portion of the indirect word is decremented by one. The 
addition of delta and decrementing is done after the effective address is provided for the 
instruction operation. 

The example following shows the effect of AD. 

VARIABLE FIELD 
LOCATION OPERATION ADDRESS, TAG 

z 
Z, AD 

B 

COMMENTS 
MODIFICATION EFFECTIVE 

TYPE ADDRESS 

(T) 

(R) B 

B+o 

B+2o 

B+no 

REFERENCE 

1 

2 

3 

n+l 

• Subtract Delta (T) = SD Variation. The Subtract Delta (SD) variation is useful in pro-
cessing tabular data in a manner similar to the AD variation except that the table can easily 
be scanned from back to front using a programmer specified increment. The effective 
address from the indirect word is decreased by delta and the tally is increased by one each 
time the indirect word is used. This applies to the first reference to the indirect word, 
making the SD variation analogous to the DI variation. 

IV-20 



• Fault (T) = F Variation. The fault variation enables the programmer to force program 
transfers to General Comprehensive Operating Supervisor routines or to his own corrective 
routines during the execution of an address modification sequence. (This will usually be an 
indication of some abnormal condition against which the programmer wishes to protect himself. ) 

• Increment Address, Decrement Tally and Continue (T) = IDC Variation. The IDC variation 
under lT modification functions in a manner similar to the ID variation except that, in addition 
to automatic incrementing/decrementing, it permits the programmer to continue the indirect 
chain in obtaining the instruction operand. Where the ID variation is useful for processing 
tabular data, the IDC variation permits processing of scattered data by a table of indirect 
pointers. More specifically, the ID portion of this variation gives the sequential stepping 
through a table; and the C portion (continuation) allows indirection through the tabular items. 
The tabular items may be data pointers, subroutine pointers or possibly a transfer vector. 

The address and tally fields are used as described under the ID variation. The tag field uses 
the instruction address modification variations under the following restrictions: No variation 
is permitted which requires an indexing modification in the IDC cycle since the indexing adder 
is in use by the tally phase of the operation. Thus, permissible variations are any form of 
I(T) or I(R); but if (R)I or (R) is used, R must equal N. 

The effect of IDC is indicated in the following example: 

COMMENTS 
\TAflL'\DLE FIELD l\TODIFICATIO~J EFFECTIVE 

LOCATION OPERATION 

z 

ADDRESS, TAG 

Z,IDC 

B 

TYPE 

(T) 

(R) 

Assuming an initial tally of j, the tally runout indicator 
is set on the jth reference. 

ADDRESS REFERENCE 

B 

B+l 

B+n 

1 

2 

n+l 

• Decrement Address, Increment Tally, and Continue (T) =DIC Variation. The DIC 
variation under IT modification works in much the same way as the DI variation except that 
in addition to automatic decrementing/incrementing it allows the programmer to continue the 
indirect chain in obtaining an instruction operand. The continuation function of DIC operates 
in the same manner and under the same restrictions as IDC except that (1) it increments in 
the reverse direction, and (2) decrementing/incrementing is done prior to obtaining the 
effective address from the tally word. (Refer to the example under IDC; work from the bottom 
of the table to the top.) DIC is especially useful in processing last-in, first-out lists. 

fr\\ fr.:\ nn 1n1 n c;ri n lo'\ n r;::i fn:j /) r;;:::. ln'i .~ 

\l0®LvJ lf ill U U Wl1lS~ 61 ®WW-----------------------

IV-21 



COMMENTS 
VARIABLE F1ELD MODIF1CATION EFFECTIVE 

LOCATION OPERATION 

z 
B-1 

B-2 

B-3 

1\HC(XR5) 

D 

ADDRESS 2 TAG 

Z, DIC 

B, *3 

C, QU 

M, 5* 

D, *AU 

A 

Q 

Assuming an initial tally of 4096-j, the tally runout 
indicator is set on the jth reference. 

TYPE 

(T) 

*(R) 

(R) 

(R)* 

*(R) 

(R) 

(R) 

ADDRESS 

C+C(X3) 

A+C(X:1) 

Q+C (AR) 0-1 7 

REFERENCE 

1 

:2 

') 
d 

@@~[J)~~uuOOOJ~~)J®®®--------------

IV-22 



C. PSEUDO-OPERATIONS 

1. General 

Pseudo-operations are so-called because of their simiiarity to machine operations in an object 
program. In general, hm11ever, machine operations are produced by computer instructions and 
perform some task, or part of a task, directly concerned with solving the problem at hand. 
Pseudo-operations work indirectly on the problem by performing machine conditioning functions, 
~m~h ::iR mPmorv ::illo~::itirn:r _ :rnn hv nirectinQ" the Macro Assembler in the oreoaration of machine ....... -·--- --- ---- ---- -.; ----- - ------o' -- . - - .., 0 .... .... 

coding. A pseudo-operation affecting the Assembler may generate several, one, or no \Vords 
in the object program. The Macro Assembler generative pseudo-operations are: OCT, DEC, 
BCI, DUP, CALL, SAVE, RETURN, and VFD. 

All pseudo-operations for the Macro Assembler are grouped according to function and des
cribed as to composition and use. The pseudo-operation functional groups and their uses are: 

FUNCTIONAL GROUP 

Control pseudo-operations 

Location counter pseudo-operations 

-~" 1 ., 1 ("• .. , , .. 

>:>y llliJVl Lleil1iillb lR:>tllllU-v1jt 1 uLiUilO 

Data generating pseudo-operations 

Storage allocation pseudo-operations 

Special pseudo-operations 

lVIACRO pseudo-operations 

Conditional pseudo-operations 

Program linkage pseudo-operations 

Address, tally pseudo-operations 

PRINCIPAL USES 

Selection of printout options for the assembly 
listing, direction of punchout of absolute/re
locatable binary program decks, selection of 
format for the absolute binary deck. 

Programmer control of single or multiple in-
l 1• ' 

SLI'UCLlOil cvunLer!:'. 

..-""; . r" ~ - -. ~ 4 : . - -- . - (' -', ' . - -. "'! ~ 
LJtl.i.iUL,iVll Vi .nbotillUitl bUUlCt _µivb.Ci::iili 

symbols by means other than appearance in 
the location field of the coding form. 

Production of binary data words for the 
assembly program. 

Provision of programmer control for the use 
of memory. 

Generation of zero operation code instructions, 
of binary words divided into two 18-bit fields, 
and of continued subfields for selected pseudo
operations. 

Begin and end MACRO prototypes; Assembler 
generation of MACRO-argument symbols; and 
repeated substitution of arguments within 
MACRO prototypes. 

Conditional assembly of variable numbers of 
input words based upon the subfield entries of 
these pseudo-operations. 

Generation of standard system subroutine 
calling sequences and return (exit) 
linkages. 

Control of automatic address, tally, and character 
incrementing/decrementing. 

IV-23 



FUNCTIONAL GROUP 

Repeat mode coding formats 

PRINCIPAL USES 

Control of the repeat mode of instruction 
execution (coding of RPT, RPD (macro
operation) and RPL instructions). 

The above pseudo-operation functional groups, together with their pseudo-operations, are 
given as a complete listing with page references in Appendix D. 

2. Control Pseudo-Operations 

a. DETAIL ON/OFF (Detail Output Listing) 

ADDRESS, MODIFIER CX>MMENTS LOCATION ~ OPERATION 

0 
1 2 61718 lA 11.5 16 132 

Blanks DETAIL bN Normal mode 

1 

j 

! Blanks DETAIL loFF 

7 
Blanks DETAIL lsAVE, ON 7 

j 

Blanks DETAIL SAVEi OFF 

-l Blanks DETAIL ~ESTO RE 
~ --

Some pseudo-operations generate no binary words; however, several of them generate more 
than one. The generative pseudo-operations are: OCT, DEC, BCI, DUP, CALL, SAVE, 
RETURN, and VFD. The DETAIL pseudo-operation provides control over the amount of 
listing detail generated by the generative pseudo-operations. 

The use of the DETAIL OFF pseudo-operation causes the assembly listing to be abbreviated by 
eliminating all but the first word generated by any of the above pseudo-operations. In the case 
of the DUP pseudo-operation, only the first iteration will be listed. The DETAIL ON pseudo
operation causes the Assembler to resume the listing which had been suspended by a DETAIL 
0 FF pseudo-operation. The SAVE option in the variable field causes the present mode of the 
DETAIL pseudo-operation to be saved and then the mode specified by the second term in the 
variable field is set. The RESTORE option causes the saved status to be reset as the mode of 
DETAIL. If at the end of the listing the Assembler is in the DETAIL OFF mode, the literal 
pool will not be printed, but a notation will be made as to its origin. 

©©~[pffiummL~~t®®®-------------

IV-24 

, 
!.\ 



b. EJECT {Restore Output Listing) 

ADDRESS, MODIFIER COMMENTS 

Column 16 must be blank 

The EJ.t.;CT pseudo-operation causes the Assembier to position the printer paper at the top of 
the next page, to print the title{s), and then print the next line of output on the second line 
below the title{s). 

c. LIST ON/OFF (Control Output Listing) 

LOCATION k? OPERATION ADDRESS, MODIFIER COMMENTS l 0 
1 2 612._ll 14 115 116 132. 

Blank_§ LIST ON Normal mode 1 
Blanks LIST OFF 1 

I I I Blank~ I LIST j l SAVE, ON l 
I I I I I I / 

Blank~ LIST SAVE, OFF / 
/ 

Blanks LIST RESTORE / 
__.,.,-' 

The use of LIST in the operation field with 0 FF in the variable field causes the normal listing 
to change as follows: the instruction LIST 0 FF will appear in the listing; thereafter, only 
instructions which are flagged in error will appear. If the assembly ends in the LIST OFF 
mode, only the error messages will appear. 

The use of LIST in the operation field with ON in the variable field causes the normal listing, 
which was suspended by a LIST OFF pseudo-operation, to be resumed. The SAVE option in the 
variable field causes the present mode of the LIST pseudo-operation to be saved and then the 
mode specified by the second term in the variable field is set. The RESTORE option causes 
the saved status to be reset as the mode of LIST. 

rrurmrYH[))f.l'l?nlo)n 12~ !){[;l~fnl 

~ l~) l!l_AJ lf LiJ lJ U W lb~~!/ l!J W l!J ----------------------------

IV-25 



d. REM (Remarks) 

LOCATION ~ OPERATION ADDRESS, MODIFIER CDMMENTS ' 0 
1 2 611 8 1Al1.5 16_ 132 

BlankE REM Remarks and comments in the variable 
I or field start at column 12 or later 7 

remar K$ 7 
~ 

The REM pseudo-operation causes the contents of this line of coding to be printed on the 
assembly listing (just as the comments appear on the coding sheet). Hmvever, for purposes of 
neatness, columns 8-10 are replaced by blanks before printing. 

REM is provided for the convenience of the programmer; it has no other effect upon the 
assembly. 

* (In Column One--Remarks) 

LOCATION p OPERATION ADDRESS, MODIFIER CDMMENTS I 
0 

1 2 61718 l4 lls h6 132 ~ 

'." Remarks and comments in 7 
columns 2-80 7 

7 -
A card containing an asterisk (*) in column 1 is taken as a remark card. The contents of 
columns 2-80 are printed on the assembly listing (just as they appear on the coding sheet); 
the asterisk has no other effect on the assembly program. 

e. LBL (Label) 

LOCATION k? OPERATION ADDRESS, MODIFIER CD MM EN TS 
0 

1 2 132 ~ 6 l1Ja Ml1s ll6_ 

Blanks LBL Blanks or up to 8 alphabetic and numeric} 
characters in the variable field 7 

'-

LBL causes the Assembler to serialize the binary cards using columns 73-80, except when 
punching full binary cards by use of the FUL pseudo-operation. The LBL pseudo-operation 
allows the programmer to specify a left-justified alphabetic label for the identification field 
and begin serialization with some initial serial number other than zero. 

©@~[pffi1J~OO~~~u7®®®-------------

IV-26 



The following conditions apply: 

1. If the variable field is blank, the Assembler will discontinue serialization of the binary 
deck. 

2. If the variable field is not blank, serialization will begin with the characters 
appearing in the variable field; the characters are left-justified and filled in \vith 
terminatirur zeros un to the nositionfs) used for the sequence number. Serialization 
is incre~e~ted untii th~ rightmost-n~~numeri~ character is encountered, at which time 
the sequence recycles to zero. 

3. If no LBL pseudo-operation appears in the symbolic deck, the Assembler will begin 
serializing with 00000000. 

f. PCC ON/OFF (Print Control Cards) 

LOCATION E OPERATION 
0 

1 2 6 

Blank 

Blank PCC 

, Blank 

Blank PCC 

Blank PCC 

ADDRESS, MODIFIER 

OFF 

I 
. SAVE, ON 

I ! 
SAVE, OFF 

RESTORE 

Normal mode 

-----~---

The PCC pseudo-operation affects the listing of the following pseudo-operations: 

DETAIL 
EJECT 
LBL 
INE 

LIST 
PCC 
REF 
IFE 

TTL 
TTLS 
CRSM 
IFG 

PMC 
PUNCH 
IDRP 
IFL 

CDMMENTS 

PCC ON causes the affected pseudo-operations to be printed. PCC OFF causes the affected 
pseudo-operations to be suppressed; this is the normal mode at the beginning of the assembly. 
If the Assembler is already in a specified ON/OFF mode, then the pseudo-operation requesting 
the same ON/OFF mode is ignored. The SAVE option in the variable field causes the present 
mode of the PCC pseudo-operation to be saved and then the mode specified by the second term 
in the variable field is set. The RESTORE option causes the saved status to be reset as the mode 
of PCC. 

IV-27 



g. REF ON/OFF (Reference) 

LOCATION p OPERATION ADDRESS, MODIFIER CX>MMENTS r 
0 

1 2 611 ls tills l6_ 132 j 

Blank~ REF ON Normal mode 7 
I l Blank~ REF OFF 

7 
Blanks REF SAVE, ON 7 

I 
7 

Blanks REF SAVE, OFF 

7 
Blanks REF RESTORE 

The REF pseudo-operation controls the Assembler in making entries in the symbol reference 
table. 

REF ON causes the Assembler to begin making entries into the symbol reference table. REF 
OFF causes the Assembler to suppress making entries into the symbol reference table. The 
SAVE option in the variable field causes the present mode of the REF pseudo-operation to be 
saved and then the mode specified by the second term in the variable field is set. The RESTORE 
option causes the saved status to be reset as the mode of REF. 

h. Pl\TC ON/OFF (Print MACRO Expansion) 

LOCATION l?j OPERATION ADDRESS, MODIFIER CX>MMENTS I 
0 

1 2 617 8 1.4 11.5 16 132 j 

Blanks PMC ON 1 
J 

Blanks PMC OFF Normal mode 7 
7 

Blanks PMC SAVE, ON J 
7 

Blanks PMC SAVE, OFF ~ 
~ 

Blanks PMC RESTORE ~ 

-
The PMC pseudo-operation causes the Assembler to list or suppress all instructions 
generated by a MACRO call. 

IV-28 



PMC ON causes the Assembler to print all generated instructions. PMC 0 FF causes the 
Assembler to suppress all but the initial generated instruction. The SAVE option in the 
variable field causes the present mode of the PMC pseudo-operation to be saved and then the 
mode specified by the second term in the variable field is set. The RESTORE option causes 
the saved status to be reset as the mode of PMC. 

i. TTL (Title) 

'LOCATION ~OPERATION 11 ADDRESS, MOO!F!ER 
u 

2 6 

Title in the variable field 

The TTL pseudo-operation causes the printing of a title at the top of each page of the assembly 
listing. In addition, when the assembler encounters a TTL card, it will cause the output 
listing to be restored to the top of the next page and the new title will be printed. The infor
mation punched in columns 16-72 is interpreted as the title. 

Redefining the title by repeated TTL pseudo-operations may be used as often as the programmer 
desires. Deletion of the title may be accornplisheu by a TTL pseuuo-operaLion wilh a blank 
variable fielrl. If ::i rlecim::il integer ::ippe::irs in the location field, the page count will he re
nuntbt:reJ beginning with the bJJecific:Li integer. 

j. TTLS (Subtitle) 

LOCATION E OPERATION 
0 

2 6 . 

Blanks TTLS 

or an 

·nteger 

ADDRESS, MODIFIER CDMMENTS j 
Subtitle in the variable field 

The TTLS pseudo-operation is identical in function to the TTL pseudo-operation except that it 
causes subtitling to occur. When a TTLS pseudo-operation is encountered, the subtitle 
provided in columns 16-72 replaces the current subtitle; the output listing is restored to the 
top of the next page. The title and new subtitle are then printed. Only one level of subtitling 
may follow a title. 

©@~[pfilv~w[L~~t®®®---------------

IV-29 



k. INHIB ON/OFF (Inhibit Interrupts) 

LOCATION l? OPERATION ADDRESS, MODIFIER CX>MMENTS r 
1 2 _i ~18 j_( Its h6 .132 

j Blanks INlilB ON 
I 7 

Blanks INHIB OFF Normal mode / 
/ 

Blanks INHIB SAVE, ON 

7 
Blanks INHIB SAVE, OFF / 
Blanks INHIB RESTORE 

~ 

The instruction INHIB ON causes the Assembler to set the program interrupt inhibit bit in bit 
position 28 of all machine instructions which follow the pseudo-operation. The setting of the 
program interrupt inhibit bit continues for the remainder of the assembly, unless the pseudo
operation INHIB OFF is encountered. 

The INHIB 0 FF causes the Assembler to stop setting the program interrupt inhibit bit in each 
instruction, if used when the Assembler is in the INHIB ON mode. The SA VE option in the 
variable field causes the present mode of the INHIB pseudo-operation to be saved and then the 
mode specified by the second term in the variable field is set. The RESTORE option causes 
the saved status to be reset as the mode of INHIB. 

I. ABS (Output Absolute Test) 

LOCATION E OPERATION ADDRESS, MODIFIER 

1 2 

Blanks ABS Column 16 must be blank 

The ABS pseudo-operation causes the Assembler to output absolute binary text. 

The normal mode of the Assembler is relocatable; however, if absolute te:x'i: is required for a 
given assembly, the ABS pseudo-operation should appear in the deck before any instructions 
or data. It may be preceded only by listing pseudo-ope rations. It may, however, appear 
repeatedly in an assembly interspersed with the FUL pseudo-operation. It should be noted 
that the pseudo-operations affecting relocation are considered errors in an absolute assembly. 

©@~[f)ffiu~W[L~~t®®®-------------

IV-30 



Those pseudo-operations that will be in error if used in an absolute assembly are: 

BLOCK 
ERLK 

SYMDEF 
SYMREF 

(Refer to the descriptions of binary punched card formats in this chapter for details of the 
absolute binary text.) 

m. FUL (Output Full Binary Text) 

LOCATION ADDRESS, MODIFIER COMMENTS 

1 2 

Blanks FUL ----- Column 16 must be blank 

The FUL pseudo-operation is used to specify absolute assembly and the FUL format for 
absolute binary text. 

The FUL pseudo-operation has the same effect and restrictions on the Assembler as ABS, 
except for the format of the binary text output. The format of the text is of continuous infor
mation with no address identification: that is. the absolute binary cards are punched with 
program instructions in columns 1-78 (26 words). Such cards can be used in self-loading 
onerations or other environments where control words are not required on the Linarv eard. 

n. TCD (Punch Transfer Card) 

Blanks TCD 

or a 
symbol 

-----
COMMENTS 

An expression in the variable field 

In an absolute assembly, the binary transfer card, produced at the end of the deck as a result 
of the end card, directs the loading program to cease loading and turn control over to the 
program at the point specified by the transfer card. Sometimes it is desirable to cause a 
transfer card to be produced before encountering the end of the deck. This is the purpose of 
the TCD pseudo-operation. Thus, a binary transfer card is produced generating a transfer 
address equivalent to the value of the expression in the variable field. 

TCD is an error in the relocatable mode. 

©©~[ffiluurnclrn~1@®®---------------

IV-31 



o. PUNCH ON/OFF (Control Card Output) 

LOCATION ~ OPERATION ADDRESS, MODIFIER CX>MMENTS I 
0 

1 2 61718 14 15'16 b2 j 

I Blanks PUNCH ON Normal mode 7 
7 

Blanks PUNCH OFF -? 
Blanks PUNCH SAVE, ON ~ 
Blanks PUNCH SAVE, OFF 

7 
Blanks PUNCH RESTORE ~ 

~ 

The normal mode of the Assembler is to punch binary cards. If PUNCH is used in the opera
tion field with OFF in the variable field, the binary deck will not be punched, beginning at the 
point the Assembler encounters the pseudo-operation. 

If PUNCH is used in the operation field with ON in the variable field, the punching of binary 
cards, which was suspended by the PUNCH OFF pseudo-operation, will be resumed. The 
SAVE option in the variable field causes the present mode of the PUNCH pseudo-operation to 
be saved and then the mode specified by the second term in the variable field is set. The 
RESTORE option causes the saved status to he reset as the mode of PUNCH. 

p. DC ARD (Punch BCD Card) 

LOCATION ~OPERATION ADDRESS, MODIFIER CX>MMENTS l 0 
1 2 611 8 14115 116 132 

Rl~:mk~ DC ARD Two subfields on the variable field J 
7 
~ -

The first subfield contains a decimal integer N (limited only by the size of available memory), 
and the record subfield contains a single BCD character used as a decimal data identifier. 
The Assembler punches the next N cards after the DCARD instruction with the specified BCD 
identifier in column one of each of these N cards and with the BCD information taken from the 
corresponding source cards on a one-for-one basis. 

There are no restrictions on the BCD information that can be placed in columns 2-72 of the 
source cards. (One of the significant uses of DCARD is to generate Operating Supervisor 
(G ECOS/605) control cards.) 

@@~~[pffilJ~[]j[L[~@t®®®---------------

IV-32 



q. END (End of Assembly) 

ADDRESS, MODIFIER l. CDMMENTS 

Blanks or an expression in the 
variable field 

The END pseudo-operation signals the Assembler that it has reached the end of the symbolic 
input deck; it must be present as the last physical card encountered by the Assembler. 

If a symbol appears in the location field, it is assigned the next available location. 

In a relocatable assembly, the variable field must be blank; in an absolute assembly, the 
variable field may contain an expression. In relocatable decks, the starting location of the 
program will be an entry location and the location specified is given to the General Loader 
(GELOAD/605) by a special control card used with the GELOAD/605. Absolute programs 
require a binary transfer card which is generated by the END pseudo-operation. The transfer 
address is obtained from the expression in the variable field of the end card. 

3. Location Counter Pseudo-Operations 

a. USE (Use Multiple Location Counters) 

LOCATION E OPERATION 
0 

ADDRESS, MODIFIER CD MM EN TS 

in the variable field 

The Assembler provides the ability to employ multiple location counters via the USE pseudo
operation. The location counters are established by the user and are usually originated with 
the location value of their first appearance in the program. However, their initial value may 
be specified by the BEGIN pseudo-operation. 

The employment of this pseudo-operation causes the Assembler to place succeeding cards 
under control of the location counter represented by the symbol in the variable field. Any 
regular location counter in control at the appearance of USE is suspended at its current value 
and is preserved as the PREVIOUS counter. 

If the word PREVIOUS appears in the variable field, the Assembler reactivates the regular 

©©~CTJffilJLJW[L~~t®®®--------------

IV-33 



location counter which appeared just before the present one. The normal mode of the Assem
bler is under the blank location counter; that is, all instructions up to the first USE pseudo
operation are controlled by the blank location counter. 

b. BEGIN (Origin of a Location Counter) 

LOCATION ~ OPERATION ADDRESS, MODIFIER CD MM EN TS 

1 2 _i_ 12.lt 1Al1.51 lt6 132 

Blanks BEGIN Two subfields in the variable field J 
~ 

The BEGIN pseudo-operation is used to specify to the Assembler the origin of a given location 
counter if the location counter is to be other than the nominal (the blank counter). 

The location counter symbol is specified in the first subfield and is given the value specified by 
the expression found in the second subfield. Any symbol appearing in the second subfield must 
have been previously defined and must appear under one location counter. The BEGIN pseudo
operation may appear anywhere in the deck. 

If BEGIN is not used to give the nth location counter (under USE) an origin, its initial value is 
assigned as the first location not used by the (n-l)th location counter. The BEGIN pseudo
operation makes the location counter affected by it, independent of the order of location counter 
definition, i.e. if the origin of the Nth location counter is defined by BEGIN, the origin of the 
(N+l)th location counter is the first location not used by the (N-l)th counter, provided that 
neither is affected by BEGIN. 

c. ORG (Origin Set by Programmer) 

LOCATION OPERATION ADDRESS, MODIFIER CDMMENTS 

An expression in the variable field 

The ORG pseudo-operation is used by the programmer to change the next value of a counter, 
normally assigned by the Assembler, to a desired value. If ORG is not used by the pro
grammer, the counter is initially set to zero. 

All symbols appearing in the variable field must have been previously defined. If a symbol 
appears in the location field, it is assigned the value of the variable field. If the result of the 
evaluation of a variable field expression is absolute, the instruction counter will be reset to 
the specified value relative to the current location counter. If an expression result is reloca
table, the current location counter will be changed to the value given by the expression in the 
variable field. 

IV-34 



d. LOC (Location of Output Text) 

LOCATION ~OPERATION ADDRESS, MODIFIER I CDMMENTS 

I 
1 2 6 liis_ yj lU 1.6_ 132 

n1 .... ..,.1 ........ ILOC An ex_gression in the variable field _. 

I 
D.Lcl.11.n..O 

l l ~ 

The LOC pseudo-operation functions identically to the ORG pseudo-operation, with one excep
tion; it has no effect on the loading address when the Assembler is punching binary text. That 
is, the value of the location counter will be changed to that given by the variable field expres
sion, but the loading will continue to be consecutive. This provides a means of assembling 
code in one area of memory while its execution will occur at some other area of memory. 

All symbols appearing in the variable field of this pseudo-operation must have been previously 
defined. 

The sole purpose of this pseudo-operation is to allow program coding to be loaded in one section 
of memory and then to be subsequently moved to another section for execution. 

e. EVEN 

I LOCA TIOW ! ! 

I o 
ADDRESS, MODIFIER 

·1 2 6 

Blanks EVEN Blanks 

The EVEN pseudo-operation causes the machine instruction following the pseudo-operation to 
be located at the next even location. It is equivalent to an E in column 7 of that instruction. 

f. ODD 

LOCATION E OPERATION 
0 

Blanks ....... o_D_D_----' 

ADDRESS, MODIFIER 

Blanks 

The ODD pseudo-operation causes the machine instruction following the pseudo-operation to be 
located at the next odd location. It is equivalent to an 0 in column 7 of that instruction. 

g. EIGHT 

LOCATION E OPERATION ADDRESS, MODIFIER 

Blanks EIGHT Blanks 

The EIGHT pseudo-operation causes the machine instruction following the pseudo-operation to 
be located at the next available location which is a multiple of eight. It is equivalent to an 8 in 
column 7 of that instruction. 

©@~~r?illu~OOQJ~~I®®®-------------

IV-35 



4. Symbol Defining Pseudo-Operations 

Increased facility in program writing frequently can be realized by the ability to define symbols 
to the Assembler by means other than their appearance in the location field of an instruction or 
by using a generative pseudo-operation. Such a symbol definition capability is used for (1) 
equating symbols, or (2) defining parameters used frequently hy the program but which are 
subject to change. The symbol-defining pseudo-operations serve these and other purposes. 

It should be noted that they do not generate any machine instructions or data but are available 
merely for the convenience of the programmer. 

a. EQU (Equal To) 

LOCATION OPERATION ADDRESS, MODIFIER CDMMENTS 

The purpose of the EQU pseudo-operation is to define the symbol in the location field to have 
the value of the expression appearing in the variable field. The symbol in the location field 
will assume the same mode as that of the expression in the variable field, that is, absolute or 
relocatable. (See Relocatable and Absolute Expressions.) 

All symbols appearing in the variable field must have been previously defined and must fall 
under the same location counter, SYMDEF or SYMREF symbols cannot appear in the variable 
field. 

If an asterisk (*) appears in the variable field denoting the current location counter value, it 
will be given the value of the next sequential location not yet assigned by the Assembler with 
respect to the unique location counter presently in effect. 

b. FEQU (FORTRAN - Equal To) 

LOCATION ~ OPERATION ADDRESS, MODIFIER CDMMENTS 

0 
1 2 612 Le_ ll5 l~ _14'_ l32 
Symbo~ FE_Q_U An ex..J!ression in the variable field J 

.I 

FEQU defines the symbol in the location field to have the value of the expression appearing in 
the variable field. FEQU is the same as EQU except that it does not require previous definition 
of the symbols appearing in the variable field. 

Symbols defined by FEQU cannot be used on pseudo-operations affecting location counters, 
such as BSS, DUP, etc. 

©@~lPffiu~W[U~~I®®®-------------

IV-36 



c. BOOL (Boolean) 

.ADDRESS, MODIFIER CDMMENTS ILOCATION -~-OPERATION. lJ_ L I' ~vmb:traooL 11

1'~. A Boolean expression in the variable field rr ] l 1 ~o~---~-=-=-=-~;;.___;___~~------"------..~ 

The BOOL pseudo-operation defines a constant of 18 bits and is similar to EQU except that the 
evaluation of the expression in the variable field is done assuming Boolean operators. By 
definition, all integral values are assumed in octal and are considered to be in error other
wise. The symbol in the location field will always be absolute, and the presence of any 
expression other than an absolute one in the variable field will be considered an error. 

All symbols appearing in the variable field must have been previously defined. 

rl. SET (Symbol Redefinition) 

LOCATION lz. OPERATION .ADDRESS, MODIFIER CDMMENTS 

0 
1 2 61118 J_4_ lts 116_ 132. 

lsvmboJ SET An expression in the variable field] 

u_ l i j j 
7 

...1 

The SET pseudo-operation permits the redefinition of a symbol previously defined to the 
Assembler. This ability is useful in MACRO expansions where it may be unrlesirahle to use 
created symbols (CRSM). 

All symbols entered in the variable field must have been previously defined and must fall 
under the same location counter. SYMDEF or SYMREF symbols cannot be used in the variable 
field. 

The symbol in the location field is given the value of the expression in the variable field. The 
SET pseudo-operation may not be used to define or redefine a relocatable symbol. 

When a symbol occurring in the location field has been previously defined by a means other than 
a previous SET, the current SET pseudo-operation will be ignored and flagged as an error. 

The last value assigned to a symbol by SET affects only subsequent in-line coding instructions 
using the redefined symbol. 

@co)~[plinrnrnrugg)c~? ®®® ____________________ _ 

IV-37 



e. MIN (Minimum) 

ADDRESS, MODIFIER CDMMENTS 

ressions 

The MIN pseudo-operation defines the symbol in the location field as having the minimum value 
among the various values of all relocatable or all absolute expressions contained in the variable 
field. 

All symbols appearing in the variable field must have been previously defined and must fall 
under the same location counter. SY:MDEF or SYMREF symbols cannot be used in the variable 
field. 

f. MAX (Maximum) 

The MAX pseudo-operation is coded in the same format as MIN above. It defines the symbol 
in the location field as having the maximum value of the various expressions contained in the 
variable field. 

All symbols appearing in the variable field must have been p.reviously defined and must fall 
under the same location counter. SYl\IDE F or SYMRE F symbols cannot be used in the variable 
field. 

g. HEAD (Heading) 

LOCATION ADDRESS, MODIFIER CX>MMENTS 

1 2 

Blanks HEAD From 1 to 7 subfields in the variable field 

In programming, it is sometimes desirable to combine two programs, or sections of the same 
program, that use the same symbols for different purposes. The HEAD pseudo-operation 
makes such a combination possible by prefixing each symbol of five or fewer characters with a 
heading character. This character must not be one of the special characters, that is, it must 
be one of the characters A-Z or 0-9. Using different heading characters, in different program 
sections later to be combined for assembly, removes any ambiguity as to the definition of a 
given symbol. 

©@~[pfillJ~[ID[L~~t®®®-------------

IV-38 



The effect of the HEAD pseudo-operation is to cause every symbol of five or less characters, 
appearing in either the location field or the variable field, to be prefixed by the current HEAD 
character. The current HEAD character applies to all symbols appearing after the current 
HEAD pseudo-operation and before the next HEAD or END pseudo-operation. 

nPbP::lilinP- iR accomnlished bv a zero or blanks in the variable field. To understand more 
th~~~~~"hi; the operition of the heading function, it is necessary to know that the Assembler 
internally creates a six-character symbol by right-justifying the characters of the symbol and 
filline: in leading zeros. Thus, if the Assembler is within a headed program section and en
count~rs a symbol of five or fewer characters, it inserts the current HEAD character into the 
high-order, leftmost character position of the symbol. Each symbol, with its inserted HEAD 
character, then can be placed in the Assembler symbol table as unique entries and assigned 
their respective location values. 

It is also possible to head a program section with more than one character. This is done by 
using the pseudo-operation HEAD in the operation field with from two to seven heading charac
ters in the variable field, separated by commas. The effect of a multiple heading is to define 
each symbol of that section once for each heading character. Thus, for example, if the 
symbols SHEAR, SPEED, and PRESS are headed by 

HEAD 

nine unique symbols 

XS HEAR 
YSHEAR 
ZSIIEAR 

XS PEED 
YSPEED 
ZSPEED 

X,Y, Z 

XPRESS 
YPRESS 
ZPRESS 

are generated and placed in the Assembler symbol table. This allows regions by HEADX, 
HEADY or HEADZ to obtain identical values for the symbols SHEAR, SPEED, and PRESS. 

Cross-referencing among differently headed sections may be accomplished by the use of six
character symbols or by the use of the dollar sign($). Six-character symbols are immune to 
HEAD; therefore, they provide a convenient method of cross-referencing among differently 
headed regions. 

To allow the programmer more flexibility in cross-referencing, the Assembler language 
includes the use of the dollar sign ($) to denote references to an alien-headed region. 

If the programmer wishes to reference a symbol of less than six characters in another program 
section, he merely prefixes the symbol by the HEAD character for that respective section, 
separating the HEAD character from the body of the symbol by a dollar sign ($). 

To reference from a headed region into a region that is not headed, the programmer may use 
either the heading character zero (0) preceding the symbol or, if the symbol is the initial value 
of the variable field, then the appearance of the leading dollar sign will cause the zero heading 
to be attached to the symbol. 

rr::. rn-1 ~VJ iD) r;1 ~ n fD) l-_1_ 1_c: c~ /1 r~ (n\ r111 
\_LJJ®uvuu /JJ U LJ L!!J ~I ~cl>) U lWJlllJ ----------------------------

IV-39 



EXAMPLE OF HEAD PSEUDO-OPERATION 

START LDA A Initial instruction (no heading) 

TRA B$SUM Transfer to new headed section 
A BSS 1 

HEAD B 
SUM LDA $A 

Section headed B 
TRA O$START + 2 
END 

The LDA $A could have been written as LDA O$A, as they both mean the same. 

h. SYMDE F (Symbol Definition) 

LOCATION ~I OPERATION ADDRESS, MODIFIER CDMMENTS 
0 

1 2 _j_ 12-la lls 1.16_ _H 132. 

Blanks SYMDEF S_ymbols se_Rarated b_y commas in the I 
variable fields ~ 

The SYMDEF pseudo-operation is used to identify symbols which appear in the location field of 
a subroutine when these symbols are referred to from outside the subroutine (by SYMRE F). 
Also, the programmer must provide a unique SYMDEF for use by the Loader to denote the 
main program entry point for the loading operations (non-FORTRAN). The symbols used in 
the variable field of a SYMDEF instruction will be called SYMDEF symbols. Multiple SYMDEF 
symbols cannot occur since the Assembler ignores the current definition if it finds the same 
symbol previously entered in the SYMDEF table. 

The appearance of a symbol in the variable field of a SYMDEF instruction indicates that: 

1. The symbol must appear in the location field of only one of the instructions within the 
subroutine in which SYMDE F occurs. 

2. The Assembler will place each such SYMDEF symbol along with its relative address 
in the preface card at assembly time. 

3. At load time, the Loader will form a table of SYMDEF symbols to be used for linkage 
with SYMRE F symbols. 

It is possible to classify SYMDEF symbols as primary and secondary. A secondary SYMDEF 
symbol is denoted by a minus sign in front of the symbol. The Loader will provide linkage for 
a secondary SYMDEF symbol only after linkage has been required to a primary SYMDE F within 
the same subprogram. The use of secondary SYMDEF symbols is intended for programmers 
who are specifically concerned with using the system subroutine library and generating routines 
for accessing the library. Secondary SYMDEF symbols are normally thought of as secondary 

©@~[pfilu~OO[U~~t®®®-------------

IV-40 



entries to subroutines contained within a subprogram library package that will be used as an 
entire package. 

i. SYMRE F (Symbol Reference) 

!LOCATION ·~OPERATION I I ADDRESS, MODIFIER <DMMENTS 
0 

I A seauence of svmbols seoarated bv commas .I 

I entered in the variable field 7 

The SYMRE F pseudo-operation is used to denote symbols which are used in the variable field 
of a subroutine but are defined in a location field external to the subroutine. Symbols used in 
the variable field of a SYMRE F instruction will be called SYMRE F symbols. 

When a symbol appears in the variable field of a SYMREF instruction, the following items 
apply: 

1. The symbol should occur in the variable field of at least one instruction within the 
subroutine. 

2. At assembly time the Assembler will enter the SYMTIEr symbol in the preface card 
of the assembled deck and place a special entry number (page 1 V-7 t5, 7 ~) in the variable 
fields of all instructions in the referenced subroutine which contain the symbol. 

3. At load time the Loader will associate the SYMREF symbol with a corresponding SYMDEF 
symbol and place the appropriate address in all instructions that have been given the 
special entry entry number. 

Symbols appearing in the variable field of a SYMREF instruction must not appear in the location 
field of any instruction within the subroutine in which SYMREF is used. 

ATAN2 
AT ANS 

ATAN 

EXAMPLE OF SYMDEF AND SYMREF PSEUDO-OPERATIONS 

Base Program or Subprogram 

SYMDEF 
STC2 
SAVE 
SZN 
TZE 

STZ 
TRA 

ATAN, ATAN2 
IND IC 
0,1 
INDIC 
START 

IND IC 
ATANS 

POLYX 

IV-41 

Referencing Subroutine 

SYMREF ATAN, ATAN2 

FLD x 

TSXl ATAN 

TSX2 ATAN2 



j. OPD (Operation Definition) 

LOCATION ~ OPERATION ADDRESS, MODIFIER CX>MMEHTS 

1 2 6 ltll 14 lts 1.6.. 132 

New OPD One or more subfields, separated by comm:: 

O..Q.era- in the variable field. The subfields define tl 

tt_ion bit confi_g_uration of the new o_Qeration code ...o1111 

code 

The OPD pseudo-operation may be used to define or redefine machine instructions to the 
Assembler. This allows programmers to add operation codes to the Assembler table of 
operation codes during the assembly process. This is extremely useful and powerful in 
defining new instructions or special bit configurations, unique in a particular program, to the 
Assembler. 

The variable field subfields are bit-oriented and have the same general form as described 
under the VFD pseudo-operation. In addition, the variable field, considered in its entirety, 
requires the use of either of two specific 36-bit formats for defining the operation. 

1. The normal instruction format 
2. The input/ output operation format 

The normal instruction-defining format and subfields are shown below: 

op ~pl+l+l+H++·~ 1 l 1 I 
0 II, 12 

op--new operation code (bits 0-11) 
p--p=l, machine operation 

p=O, pseudo-operation 
z--must be zero 

17,18 

m--modifier tag type (O=allowed; l=not allowed) 
m 1: register modification (R) 

m 2 : indirect addressing (*) 

m
3

: not used 

m4 : Direct Upper (DU) 

m
5

: Direct Lower (DL) 

28,29 

m 6 : Sequence Character (SC) and Character from Indirect (CI) 

a--address field conditions (0 =not required; l=required) 
a 1: address required/not required 

33 35 

~ 

©@[('.1][pffilf~ffi[L~~t®®®-------------

IV-42 



a 2: address required even 

a
3

: address required absolute 

1--octal assembly listing format (x represents one octal digit) 
00: xx xxxx xxxxxx 
01: xxxxxxxxxxxx 
10: xxxxxx xxxxxx 
11: xxxxxx xxxx xx 

The assembly listing types 00, 01, 10, and 11 are used for input/output commands. data
generating pseudo-operations (OCT, DEC, BCI, etc.), special word-generating pseudo-opera
tions (such as ZERO), and machine instructions. 

To illustrate the use of OPD, assume one wished to define the extant machine instruction, Load 
A (LDA). Using the preceding format and the octal notation (as described under the VFD pseudo
operation), one could code OPD as 

or 
or 

LDA 
LDA 
LDA 

OPD 
OPD 
OPD 

012/2350,6/,02/2,6/,03/4,5/,02/3 
018/235000,02/2,6/,03/4,5/,02/3 
036/235000401003 

or in other forms, providing the bit positions of the instruction-defining format are individually 
specified to the Assembler. 

The input/output operaiion-defining format and subfields are as follows: 

OP (BIT OP 
(BIT POSITIONS 18-35) 

I I POSITIONS o, 0203 I 
0-5) 

0 17, 18,19,20 25,26,27,28,29,30,31 33,34 35 

op--new operation code for bit positions 18-35 and 0-5 (see Appendix E) 
a--address field conditions (O=not required; l=required) 

a 1: address required/not required 

a 2 : address required even 

a3 : address required absolute 

i--type of input/ output command (see Appendix E) 
OO:OP DA,CA KKDACAKKKKKK 
Ol: OP NN,DA,CA KKDACAKKKKNN 
10: OP CC,DA,CA KKDACAKKCCKK 
ll:OP A,C AAAAAAKKCCCC 

1--see preceding normal instruction format 

NOTE: Bit position 19 must be a binary 1 for input/output operations. 

Input/output operation types 00, 01, and 10 are the formats for the commands; type 11 is the 
format for a Data Control Word (DCW). 

©@~~illTI~w~~~I®®®--------------------------------

IV-43 



As an example of the use of OPD to generate an input/output command (using the above format 
for the variable field and defining the bits according to the rules for VFD), assume one wanted 
to generate the command, Write Tape Binary. This could be written as 

WTB OPD 18/,02/3,06/15,10/0 

or in various other bit-oriented forms. 

k. OPSYN (Operation Synonym) 

ADDRESS, MODIFIER COMMENTS 

A mnemonic o eration code in the 

variable field 

The OPSYN pseudo-operation is used for equating either a newly defined symbol or a presently 
defined operation to some operation code already in the operation table of the Assembler. The 
operation code may have been defined by a prior OPD or OP SYN pseudo-operation; in any case, 
it must be in the Assembler operation table. 

5. Data Generating Pseudo-Operations 

The Assembler language provides four pseudo-operations which can be used to generate data 
in the program at the time of assembly. These are BCI, OCT, DEC, and VFD. The first 
three, BCI, OCT, and DEC, are word-oriented while VFD is bit-oriented. There exists a 
fifth pseudo-operation, DUP, which in itself does not generate data, but through its repeat 
capability causes symbolic instruction and pseudo-operations to be iterated. 

a. OCT (Octal) 

ADDRESS, MODIFIER COMMENTS 

The OCT pseudo-operation is used to introduce data in octal integer notation into an assembled 
program. The OCT pseudo-operation causes the Assembler to generate n locations of OCT 

©@~rPilllr~W[L~~I®®®-------------

IV-44 



data where the variable field contains n subfields (n-1 commas). Consecutive commas in the 
variable field cause the generation of a zero data word, as does a comma followed by a terminal 
blank. Up to 12 octal digits plus the leading sign may make up the octal number. 

The OCT configuration is considered true and \Vill not be complemented on negatively signed 
numbers. The sign applies only to bit 0. All assembly program numbers are right-justified, 
retaining the integer form. 

EXAMPLE OF OCT P8EUUO-OPEHATION 

OCT 1,-4,7701,+3,,-77731,04 

If the current location counter were set at 506, the above would be printed out as follows (less 
the column headings): 

Location Contents Relocation 

000506 000000000001 000 OCT 1, -4, 7701, +3,, -7731, 04 

000507 400000000004 000 

000510 000000007701 000 

000511 000000000003 000 

000512 000000000000 000 

000513 c±00000077731 000 

Ci00fil4 0000000000(14 01111 

b. DEC (Decimal) 

LOCATION ~ OPERATION ADDRESS, MODIFIER <DMMENTS 

0 
1 2 61tlt 1~ lls 116 132 

1 
Symbol DEC One or more subfields in the variable field,...J 
or each containing a decimal entry -blanks 

The Assembler language provides four types of decimal information which the programmer may 
specify for conversion to binary data to be assembled. The various types are uniquely defined 
by the syntax of the individual subfields of the DEC pseudo-operation. The basic types are 
single-precision, fixed-point numbers; single-precision, floating-point numbers; double
precision fixed-point numbers; and double-precision floating-point numbers. All fixed-point 
numbers are right-justified in the assembly binary words; floating-point numbers are left
justified to bit position eight with the binary point between positions O and 1 of the mantissa. 
(The rules for forming these numbers are described under Decimal Literals, see B4a.) 

©@~[pfiluurn~~~1®®®---------------

IV-45 



EXAMPLES OF SINGLE-PRECISION DEC PSEUDO-OPERATION 

GAMMA DEC 3,-1,6.,.2El,1B27,1.2ElB32,-4 

The above would print out the following data words (without column headings), assuming that 
GAMMA equals 1041. 

Location 

001041 

001042 

001043 

001044 

001045 

001046 

001047 

Contents 

000000000003 

77777777777 

00660000000 

00440000000 

00000000400 

00000000140 

77777777774 

Relocation 

000 

000 

000 

000 

000 

000 

000 

GAMMA DEC 3,-1,6., .2El, 
1B27, 1. 2E1B32, 
-4 

The presence of the decimal point and/or the E scale factor implies floating-point, while the 
added B {binary scale) implies fixed-point binary numbers. The absence of all of these 
elements implies integers. Several more examples follow (see decimal literals for further 
explanation): 

DEC -lBl 7, -1., 1000 

With the location counter at 1050, the above would generate: 

Location 

001050 

001051 

001052 

Contents 

777777000000 

001000000000 

000000001750 

Relocation 

000 

000 

000 

DEC -lBl 7, -1., 1000 

EXAMPLE OF DOUBLE-PRECISION DEC PSEUDO-OPERATION 

BETA DEC . 3DO, 0. DO, 1. 2D1B68, lD-1 

The location counter is at the address BETA (1060); the above subfields generate the following 
double-words: 

Location Contents Relocation 

001060 776463146314 000 BETA DEC .3DO, O.DO, 
1. 2D1B68, lD-1 

001061 631463146314 000 

©@~[J)filu~OO[U~~t®®®-------------

IV-46 



Location Contents Relocation 

001062 400000000000 000 

001063 000000000000 000 

001064 000000000000 000 

001065 000000000140 000 

00i066 772631463146 000 

0010()7 314n314n314n 000 

c. BCI (Binary Coded Decimal Information) 

LOCATION E OPERATION 
0 

ADDRESS, MODIFIER <DMMENTS 

Two subfields in the variable field· a 
count subfield and a data subfield 

The BCI pseudo-operation is used by the programmer to enter Binary-Coded Decimal (BCD) 
character information into a program. 

The first subfield is numeric and contains a count that determines the length of the data sub
field. The count specifies the number of 6-character machine words to be generated; thus, if 
the count field contains n, then the data subfield contains 6n characters of data. The maximum 
value which n can be is 9. The minimum value for n is O. If n is 0, no words will be generated. 

The second subfield contains the BCD characters, six per machine word. 

©©~~filvurn~~~t®®®-----------------------------------

IV-47 



EXAMPLE OF BCI PSEUDO-OPERATION 

BETA BCI 3, NO ERROR CONDITION 

Again assume the location counter set at 506 (location of BET A); the above would print out 
(less column headings): 

Location 

000506 

000507 

000510 

Contents 

454620255151 

465120234645 

243163314645 

d. VFD (Variable Field Definition) 

LOCATION ~ OPERATION ADDRESS, MODIFIER 
0 

1 2 _6_'118_ uhsl16 

Symbol VFD J.,...;-.;.;;.__ __ __ 

or 
lhbnk~ 

Relocation 

000 

000 

000 

BETA BCI 3,NOERROR 
CONDITION 

CX>MMENTS 

One or more subfields in the variable) 
field J 

The VFD pseudo-operation is used for generation of data where it is essential to define the data 
word in terms of individual bits. It is used to specify by bit count certain information to be 
packed into words. 

In considering the definition of a subfield, it is understood that the unit of information is a 
single bit (in contrast with the unit of information in the BCI pseudo-operation which is six 
bits). Each V FD subfield is one of three types: an algebraic expression, a Boolean expression, 
or alpha-numeric. Each subfield contains a conversion type indicator and a bit count, the 
maximum value of which is 36. The bit count is an unsigned integer which defines the length of 
the subfield; it is separated from the data subfield by a slash (/). If the bit count is immediately 
preceded by on 0 or H, the variable-length data subfield is either Boolean or alphanumeric, 
respectively. In the absence of both the type indicators, 0 and H, the data subfield is an 
algebraic field. A Boolean subfield contains an expression that is evaluated using the Boolean 
operators (*, /, +, -). 

The data subfield is evaluated according to its form: algebraic, Boolean, or alphanumeric. A 
36-bit field results. The low-order n bits of the algebraic or Boolean expression determine 
the resultant field value; whereas for the alphanumeric subfield the high-order n bits are used. 

If the required subfields cannot be contained on one card, they may be continued by the use of 
the ETC pseudo-operation. This is done by terminating the variable field of the VFD pseudo
operation with a comma. The next subfield is then given as the beginning expression in the 
variable field of an ETC card. If necessary, subsequent subfields may be continued onto 

©©~rPL~n-rnw[L~~J®®®-------------

IV-48 



following ETC cards in the same manner. The scanning of the variable field is terminated upon 
encountering the first blank character. 

The VFD may generate more than one machine word; if the sum of the bit counts is not a mul-
.L, __ , _ _ .c - ..l!----"-- ---t.!~- T .. -~~ +t.- 1,.....,+ ~,.....,.+.;,..1 .,.+ ... .;....,..,. ,.,..f h.;+c nr.;11 ha la.ft_;,,ct;.f;arl <:>nrl t"ha 
llIJle u1 a U.LO\.Jl.t:a .. v 111a..v11.1.11c vvu.1.u., ..,.iJ.v .1.a.01,, pa..L\,.LU.L Q\l..L.&.J...LE; vi "'-'.&."u ..-.-.a..&..&. u....., ... '-' .... "' Jllo.4'""'"".1.i..a. ....... \i.A. L'-.L.L'-4. "'.L .......... 

word completed with zeros. 

EXAMPLES OF VFD PSEUDO-OPERATION 

Assume one would like to have the address ALPHA packed in the first 18 bits of a word, octal 
3 in the next 6 bits, the literal letter B in the next 6 bits, and an octal 77 in the last 6 bits. 
One could easily define it as follows: 

VFD 18/ ALPHA, 6/3, H6/B, 06/77 

With the location counter at 1053 and the location 7318 assigned for ALPHA, this would print 
out (without column headings) : 

Location Contents 

001053 000731032277 

Relocation 

000 VFD 18/ ALPHA, 6/3, H6/ 
B, 06/77 

NOTE: Relocation digits 000 refer to binary code data for A, BC, and DE of the relocation 
scl:emc. 

If ALPHA had been a relocatable element, the relocation bits would have been 010; that is, the 
relocation scheme would have specified the left half of the word as containing a relocatable 
address. The relocation is only assigned if the programmer specifies a field width of 18 bits 
and has it left- or right-justified; in all other cases the fields are considered absolute. The 
total number of bits under a V FD need not be a multiple of full words nor is the total field (sum 
of all subfields) restricted to one word. The total field width, however, for a single subfield 
is 36 bits. 

Consider a program situation where one wishes to generate a three-word identifier for a table. 
Assume n is the word length of the table and is equal to 12. You wish to place twice the length 
of the table in the first 12 bits, the name of the table in the next 60 bits, the location of the 
table (where TABLE is a relocatable symbol equal to 23518) in the next 18 bits, zero in the 
next 8 bits, and -1 in the next 6 bits--all in a three-word Rey. 

With the location counter at 1054, 

VFD 12/2*12, H36/PRESSU, H24/RE, 18/TABLE, 8/, 6/-1 

will gene rate 

©®~:AJ ~ill uu rn~~IB J ®®®------------------------------

IV-49 



Location Contents Relocation 

001054 003047512562 000 VFD 12/2*12, H36/PRESSU, 
H24/RE, 18/TABLE, 8/ 
,6/-1 

001055 626451252020 000 

001056 002351001760 010 

where 010 specifies the relocatability of TABLE. 

e. DUP (Duplicate Cards) 

LOCATION E OPERATION ADDRESS, MODIFIER CX>MMENTS 

Two subfields in the variable field, 

The DUP pseudo-operation provides the programmer with an easy means of generating tables 
and/or data. It causes the Assembler to duplicate a sequence (range) of instructions or pseudo
operations a specified number of times. 

The first subfield in the variable field is an absolute expression which defines the count. The 
value of the count field specifies the number of cards, following the DUP pseudo-operation, 
that are included in the group to be duplicated. The value in the count field must be a decimal 
integer less than or equal to ten. 

The second subfield of the pseudo-operation is an absolute expression which specifies the 
number of iterations. The value in the iteration field specifies the number of times the group 
of cards, following the DUP pseudo-operation, is to be duplicated. This value can be any 

positive integer less than 2
18 

-1. The groups of duplicated cards appear in the assembled 
listing immediately behind the original group. 

If either the count field or the iteration field contains 0 (zero) or is null, the DUP pseudo
operation will be ignored. 

If a symbol appears in the location field of the pseudo-operation it is given the address of the 
next location to be assigned by the Assembler. 

If an odd/even address is specified for an instruction within the range of a DUP pseudo
operation, the instruction will be placed in odd/even address and a filler used when needed. 
The filler for a nondata-generating instruction will be an NOP instruction. No filler for a 
data-generating instruction is needed. 

©@~[pffilf~W[U~~I®®®-------------

IV-50 



All symbols appearing in the variable field of the DUP pseudo-operation must have been pre
viously defined. Any symbols appearing in the location field of cards in the range of DUP are 
defined only on the first iteration, thus avoiding multiply-defined symbols (the SET pseudo
operation is the only exception). 

The only instructions or pseudo-operations which may not appear in the range of a DUP instruc
tion are END, MACRO, and DUP. ETC may not appear as the first card after the range of a 
DUP. 

6. Storage Aiiocation Pseudo-Operations 

These pseudo-operations are used to reserve specified core memory storage areas within the 
coding sequence of a program for use as storage areas or work areas. 

a. BSS (Block Started by Symbol) 

LOCATION E OPERATION 
0 

II 1-1 --
' I I 

ADDRESS, MODIFIER CDMMENTS 

A permissable expression in the 

variable field defines the amount 

of stora e to be reserved. 

The BSS pseudo-operation is used by the programmer to reserve an area of memory within his 
assembled program for working and for data storage. The variable field contains an 
expression that specifies the number of locations the Assembler must reserve in the program. 

If a symbol is entered in the location field, it is assigned the value of the first location in the 
block of reserved storage. If the expression in the variable field contains symbols, they must 
have been previously defined and must fall under the same location counter. No binary cards 
are generated by this pseudo-operation. 

b. BFS (Block Followed by Symbol) 

LOCATION l? OPERATION ADDRESS, MODIFIER CDMMENTS J 0 
1 2 _illll _l_4' 115 16. 132. 

Symbq_l BFS A permissible expression in the 1 
lo.r. variable field defines the amount of] 
!blanks storage to be reserved. ~ 

©®~~muurn~~~ t ®®®-----------------------------

IV-51 



The B FS pseudo-operation is identical to BSS with one exception. If a symbol appears in the 
location field, it is assigned the value of the first location after the block of reserved storage 
has been assigned; if the expression in the variable field contains symbols, they must have 
been previously defined and must fall under the same location counter. 

c. BLOCK (Block Common) 

ADDRESS, MODIFIER COMMENTS 

I Blanks BLOCK A s mbol in the variable field 

The purpose of the BLOCK pseudo-operation is to specify that program data following the 
BLOCK entry is to be assembled in the LABELED COMMON region of the user program under 
the symbol appearing in the variable field. BLOCK is, in effect, another location counter 
external to the text of the program. 

A BLOCK pseudo-operation continues in effect until another BLOCK is encountered, or until a 
USE pseudo-operation appears (specifying return of control to the program located counter or 
another counter), or until the END pseudo-operation occurs. 

The symbol in the variable field specifies the label of the COMMON area to be assembled. If 
the variable field is left blank, the normal FORTRAN BLANK COMMON is specified, and 
temporary storage will be reserved in the unlabeled (BLANK COMMON) memory area of the 
user program. 

d. LIT (Literal Pool Origin) 

ADDRESS, MODIFIER COMMENTS 

Column 16 must be blank 

The LIT pseudo-operation causes the Assembler to punch and print out at assembly time all the 
previously developed literals. If the LIT instruction occurs in the middle of the program, the 
literais up to that point are output and printed out starting with the first available location after 
LIT; the literal pool is reinitialized as if the assembly had just begun. 

If no LIT instruction is encountered by the Assembler, the origin of the literal pool will be one 
location past the final word defined by the program. 

©@~[pffiu~OO~~~t®®®-------------

IV-52 



7. Conditional Pseudo-Operations 

The pseudo-operations INE, IFE, IFL, and IFG to follow are especially useful within MACRO 
prototypes to gain additional flexibility in variable-length or conditional expansion of the 
MACRO prototype. Their use, however, is not limited to MACROS= they can be employed 
elsewhere in coding a subprogram to effect conditional assembly of segments of the program. 

The programmer is responsible for avoiding noncomparable elements within these pseudo
operations. In addition, symbols used in the variable field will normally have been previously 
defined. On the other hand, one of the primary uses of conditionals is to test whether or not a 
symbol has been defined at a given point in an assembly. Consequently, undefined symbols 
within a conditional are not flagged in the left margin of the listing. However, if the symbol is 
never defined within the assembly, the symbol will be listed as undefined at the end of the 
listing; if the symbol is defined later in the assembly, it is not listed as undefined. Alpha
numeric literals as used with these pseudo-operations differ from those described under 
literals earlier in this section. The literal information used with the conditional pseudo
operations is right-justified with leading zeros. 

a. INE (If Not Equal) 

LOCATION E OPERATION 

0 

ADDRESS, MODIFIER CDMMENTS 

Two or three subfields in the 
· variable field 

The INE pseudo-operation provides for conditional assembly of the next n instructions, 
depending on the value of the first two suhfie1ds of the variable field. 

The value of the expression in the first subfield is compared to the value of the expression in 
the second subfield. If they are not equivalent, the next n cards are assembled, where n is 
specified in the third subfield; otherwise, the next n cards are bypassed, resumption beginning 
at the (n+ l)th card. If the third subfield is not present, n is assumed to be one. 

Two types of comparisons are possible in the subfields of the INE pseudo-operation. The first 
is a straight numeric comparison after the expression has been evaluated. The second is 
alphanumeric comparison and the relation is the collating sequence. Alphanumeric literals 
in the variable field of INE are denoted by placing the subfield within apostrophe marks. If 
either the first or second subfield is designated as an alphanumeric literal, the other will 
automatically be classified as such. 

b. IFE (If Equal) 

LOCATION ~ OPERATION .ADDRESS, MODIFIER I c:DMMENTSJ 
0 

1 2 6li~ JA l1s ll6- 132 

Blanks IFE Two or three subfields in the 7 
variable field 

©©~l?muurnlL~~11 ®®®---------------------

IV-53 



The IFE pseudo-operation provides for conditional assembly of the next n cards depending on 
the value of the first two subfields of the variable field. The next n cards are assembled if and 
only if the expression or alphanumeric literal in the first subfield is equal to the expression or 
alphanumeric literal in the second subfield. Then is specified in the third subfield and 
assumed to be one if not present. If the compared subfields are not equal, the next n cards are 
bypassed. 

Alphanumeric literals in the variable field of IFE are denoted by placing the subfield within 
apostrophe marks. If either the first or second subfield is designated as an alphanumeric 
literal, the other will automatically be classified as such. 

c. IFL (If Less Than) 

ADDRESS, MODIFIER a>MMENTS 

Two or three subfields in the 
variable field 

The IFL pseudo-operation provides for conditional assembly of the next n cards depending on 
the value of the first two subfields of the variable field. The next n cards are assembled if 
the expression or alphanumeric literal in the first subfield is algebraically less than the 
expression or alphanumeric literal in the second subfield; otherwise, the next n cards are 
bypassed. The n is specified in the third subfield and assumed to be one if not present. 
Alphanumeric literals in the variable field of IFL are denoted by placing the subfield within 
apostrophe marks. If either the first or second subfield is designated as an alphanumeric 
literal, the other will automatically be classified as such. 

d. IFG (If Greater Than) 

LOCATION l? OPERATION ADDRESS, MODIFIER CDMM~TSJ 
0 

1 2 6 17 ls 1A 11.§ 116 bl 
!Blanks IFG Two or three subfields in the 7 

variable field 
...,,,,,,,,_,,, 

The IFG pseudo-operation provides for conditional assembly of the next n cards depending on 
the value of the first two subfields of the variable field. The next n cards are assembled if the 
expression or alphanumeric literal in the first subfield is algebraically greater than the ex
pression or alphanumeric literal in the second subfield; otherwise, the next n cards are by
passed. The n is specified in the third subfield and assumed to be one if not present. Alpha
numeric literals in the variable field of IFG are denoted by placing the subfield within apos
trophe marks. If either the first or second subfield is designated as an alphanumeric literal, 
the other will automatically be classified as such. 

©@~[pfilu~ffi[L~~I®®®-------------

IV-54 



8. Special Word Formats 

a. ARG A, M (Argument--Generate Zero Operation Code Computer Word) 

'LOCATION ~ OPERATION ADDRESS, MODIFIER CX>MMENTS 

1 2 

I ~ 11-='-==AR .............. G_ 
I I I !--1 ---~ 

The use of ARG in the operation field causes the Assembler to generate a binary word with bit 
configuration in the general instruction format. The operation code 000 is placed in the opera
tion field. The variable field is interpreted in the same manner as a standard machine 
instruction. 

b. NONOP (Undefined Operation) 

When an undefined operation is encountered, NONOP is looked up in the operation table and 
used in place of the undefined operation. NONOP is initially set as an error routine, but the 
programmer through the use of OPSYN or MACRO may redefine NONOP to his own purpose. 
For example, NONOP could be redefined by the use of a MACRO to be a MME to GECHEK 
with a dump sequence. 

r NlTLT (Null) 

LOCATION ~ OPERATION ADDRESS, MODIFIER CX>MMENTS 

ro1 
hs h~ 1:12 7 1 2 6 1718 1.C 

~ymbol NULL The variable field is not interpreted-;J 

The NULL pseudo-operation acts as an NOP machine instruction to the Assembler in that no 
actual words are assembled. A symbol on a NULL will be defined as current value of the 
location counter. 

d. ZERO B, C (Generate One Word With Two Specified 18-bit Fields) 

ADDRESS, MODIFIER CX>MMENTS 

Two subfields in the variable field 

The pseudo-operation ZERO is provided primarily for the definition of values to be stored in 
either or both the high- or low-order 18-bit halves of a word. The Assembler will generate 

©@~[pffiuurn~~~t®®®---------------------

IV-55 



the binary word divided into the two 18-bit halves; bit positions 0-17 and 18-35. The equivalent 
binary value of the expression in the first subfield will be in bit positions 0-17. The equivalent 
binary value of the expression in the second subfield will be in bit positions 18-35. 

e. MAXSZ (Maximum Size of Assembly) 

LOCATION ~I OPERATION ADDRESS, MODiFiER COMMENTS. J 
1 2 6 1718 14 11.§ h6 132. 

Blanks MAXSZ A decimal number in the variable 7 
field ~ 

The decimal number represents the programmer's estimate of the largest number of assembled 
instructions and data in his program or subprogram. The variable field number is evaluated, 
saved, and printed out at the end of the assembly listing. It can then be compared with the 
actual size of the assembly. 

MAXSZ is provided as a programmer convenience and can be inserted anywhere in his coding. 

9. Address Tally Pseudo-Operations 

The Indirect Then Tally (IT) type of address modification in several cases requires special 
word formats which are not instructions and do not follow the standard word format. The 
following pseudo-operations are for this purpose. 

a. TALLY A, T, B, (Tally) 

Used for ID, DI, and SC type of tally modification. A is the address, T is the tally count, 
and B is the character position. In ID and bl, the third subfield B is not specified. Character 
from indirect (CI) may be denoted with tally by allowing T to be zero. A six bit character is 
specified for the SC and CI modifications. 

b. TALLYB A, T,B 

Same as TALLY pseudo-operation except a nine-bit character is specified for the SC and CI 
modifications. 

c. TALLYD A, T, D, (Tally and Delta) 

Used for Add Delta (AD) and Sequence Delta (SD) modification. A is the address, T the tally, 
and D the delta of incrementing. 

d. TALLYC A, T, mod (Tally and Continue) 

Used for Address, Tally, and Continue. A is the address, T the tally count, and mod the 
address modification as specified under normal instructions. 

©@[DJ[pfilTJuOO[U~~t®®®-------------

IV-56 



10. Repeat Instruction Coding Formats 

The machine instructions Repeat (RPT), Repeat Double (RPD), (macro operation), and Repeat 
Link (RPL) use special formats and have special tally, terminate repeat, and other conditions 
associated with them. The Assembler coding formats for the several RPI', RPD, and RPL options 
foil ow. 

a. RPT N, I, kl, k2, ....... , kj 

The command generated by the Assembler from the above format wiil cause the instruction 
immediately following the command to be iterated N times and the increment value for each 
iteration set to I. The range for N is 0-255. If N=O, the instruction will be iterated 256 times. 
The fields kl, k2 ..... , kj may or may not be present. They are conditions for termination. 
These fields may contain the allowable codes of TOV, TNC, TRC, TMI, TPL, TZE, and TNZ. 

It is also possible to use an octal number rather than the special symbols to denote termination 
conditions. Thus if field kl is found to be numeric, it will be interpreted as octal; the low-order 
seven bits will be ORed into positions 11-17 of the instruction. The variable field scan will be 
terminated with the octal field. 

b. RPTX , I 

This instruction behaves just as the RPT instruction with the exception that N and the conditions 
of termination will be found in index register zero instead of imbedded in the instruction. 

c. RPD ~,I,kl,k2, .•..• ,kj 

The command generated by the Assembler from the above format will cause the two instructions 
immediately following the RPD instruction to be iterated N times and the increment value for 
each iteration set to I. The increment I will apply to both instructions being repeated. 

The variables kl, ..... , kj are identical to those explained in the RPT instruction. Since the 
double repeat must fall in an odd location, the Assembler will force this condition and use an 
NOP instruction for a filler when needed. 

d. RPDX ,I 

This instruction behaves just as the RPD instruction with the exception that N and the conditions 
of termination will be found in index register zero instead of imbedded in the instruction. 

e. RPDB N,I,kl,k2, ..... ,kj 

This is the same as the RPD instruction except that only the address of the second instruction 
following the RPDB instruction will be incremented by I on each iteration. 

©©~[pill u~rnlL~~ (l ®®® __________________________ _ 

IV-57 



f. RPDA N ,I,kl,k2, .•••• ,kj 

This is the same as the RPD instruction except that only the address of the first instruction 
following the RPDA instruction will be incremented on each iteration by I. 

g. RPL N, kl; k2, ..... , kj 

The instruction above will cause the instruction immediately following it to be repeated N times 
or until one of the conditions specified in kl, ..... , kj are satisfied. The relation of kl, ..... , kj 
is the same as in RPT. The address effectively used by the repeated instruction is the linked 
address. (See RPL instruction description.) 

h. RPLX 

This instruction behaves just as the RPL instruction except that N and conditions of termination 
will be found in index register zero instead of imbedded in the instruction. 

11. Program Linkage Pseudo-Operations 

The CALL, SAVE, RETURN and ERLK pseudo-operations are used in such a way that each 
generates many lines of coding in the assembly program from a single instruction input to the 
Assembler; they are therefore considered to be system MACROS. 

a. CALL (Call-Subroutines) 

LOCATION ~ OPERATION ADDRESS, MODIFIER <X>MMENTS 

ft>I 
1 2 _6_ l2Ja 1 .. 11.51 116 13.2. 
~ymbol CALL Subfields in the variable field with j 

jOr contents and delimiters as ~ 
!blanks described below -~ 

The CALL pseudo-operation is used to generate the standard subroutine calling sequence. 

The first subfield in the variable field of the instruction is separated from the next n subfields 
by a left parenthesis. This subfield contains the symbol which identifies the subroutine being 
called. It is possible to modify this symbol by separating the symbol and the modifier with a 
comma. (The symbol entered in this subfield is treated as if it were entered in the variable 
field of a SYMREF instruction.) 

The next n subfields are separated from the first subfield by a left parenthesis and from sub
field n+ 1 by a right parenthesis. Thus the next n subfields are contained in parentheses and 

©@~(Pillu~OO[L~~t®®®-------------

IV-58 



are separated from each other by commas. The contents of these subfields are arguments 
which will be used in the subroutine being called. 

The next m subfields are separated from the previous subfields by a right parenthesis and from 
each other by commas. These subf ieids are used to define locations for error returns from 
the subroutine. If no error returns are needed, then m=O. In addition, if the programmer has 
placed all data under BLOCK pseudo-operations, the automatic generation of error linkage 
words is suppressed. The programmer must then supply his own error linkages. (See ERLK 
following. ) 

The last subfield is used to contain an identifier for the instruction. This identifier is used 
when a trace of the path of the program is made. The identifier must be a number contained 
in apostrophes. Thus the last subfield is separated from the previous subfields by an 
apostrophe. If the last subfield is omitted, the assembly program will provide an identifier. 

In the examples following, the calling sequences generated by the pseudo-operation are listed 
below the CALL pseudo-operation. For clarification AAAAA defines the location the CALL 
instruction; SUB is the name of the subroutine called; MOD is an address modifier; Al through 
An are arguments; E 1 through Em define error returns; E. I. is an identifier; and E. L. defines 
a location where error linkage information is stored. E. L. is automatically defined by the 
Assembler after the END card is encountered unless previously defined by the ERLK pseudo
operation. The number sequences 1, 2, ... , n and 1, 2, ... , m designate argument positions only. 

_A_A_A_A_A ___ C_A_L_L ___ S_U_B_._1V_IO_D_(A_l_,_A_2_, ..... , An)El, E2, ......... , Em' E. I.' 

AAAAA TSXl 
fRA 
ZERO 
ARG 
ARG 

ARG 
TRA 

TRA 
TRA 

SUR, 1\10D 
+-t-2-t-ii-t-lli 

E.L.,E.I. 
Al 
A2 

An 
Em 

E2 
El 

The preceding example of instructions generated by the CALL pseudo-operation was in the 
relocatable mode. The following example is in the absolute mode. 

AA AAA 

AA.AAA 

CALL 

TSXl 
TRA 
ZERO 
ARG 
ARG 

SUB, MOD(Al, A2, .... , An)El, E2, ..... , Em' E. I.' 

SUB, MOD 
*+2+n+m 
0, E. I. 
Al 
A2 

©©~lPilluurn~~g) 1 ®®®-----------------------

IV-59 



ARG An 
TRA Em 

TRA E2 
TRA El 

If the variable field of the CALL cannot be contained on a single line of the coding sheet, it may 
be continued onto succeeding lines by use of the ETC pseudo-operation. This is done by 
terminating the variable field of the CALL instruction with a comma (, ). The next subfield is 
then placed as the first subfield of the ETC pseudo-operation. Subsequent subfields may be 
continued onto following lines in the same manner. 

b. SAVE (Save--Return Linkage Data) 

LOCATION E OPERATION ADDRESS, MODIFIER CDMMENTS 

1 2 

Symbo Blanks or subfields separated by 

commas in the variable field- -
as described below 

The SA VE speudo-operation is used to produce instructions necessary to save specified index 
registers and the contents of the error linkage index register. 

The symbol in the location field of the SA VE instruction is used for referencing by the RETURN 
instruction. (This symbol is treated by the Assembler as if it had been coded in the variable 
field of a SYMDEF instruction when the Assembler is in the relocatable mode.) 

The subfields in the variable field, if present, will each contain an integer 0-7. Thus, each 
subfield specifies one index register to be saved. 

The instructions generated by the SAVE pseudo-operation are listed below. The argument 
symbols i 1 through in are integers 0-7. E. L. defines the location provided for the contents of 
the error linkage register. If the programmer has placed all program data under BLOCK 
pseudo-operations, automatic generation of error linkage words is suppressed. 

BBBBB is a symbol that must be present; it is always a primary SYMDEF. Example one is in 
the relocatable mode, and example two is in the absolute mode. 

©@~[pffiVUW[U~~I®®®-------------

IV-60 



BBB BB 

BBB BB 

BBB BB 

BBBBB 

EXAMPLE ONE 

SAVE 

SYMDEF 
TRA 
LDX(i1) 

LDX(i
0

) 

RET 
STI 
STXl 
STX(i1) 
STX(i2) 

BB BBB 
*+2+n 
**,DU 

**,DU 
E. L. 
E.L. 
E.L. 
BBBBB+l 
BBBBB+2 

BBBBB+n 

EXAMPLE TWO 

SAVE 

TRA 
ZFRO 
LDX(i1) 
LDX(i2) 

LDX(i0 ) 

RET 
STI 
STXl 
STX(ii) 
STX(i2) 

il' i2' ... 'in 

*+3+n 

**,DU 
**,DU 

**,DU 
BBBBB+l 
BBBBB+l 
BBBBB+l 
BBBBB+2 
BBBBB+3 

BBBBB+n+l 

©©~~illu~ill~~~I®®®---------------------------------

IV-61 



c. RETURN (Return--From Subroutines) 

ADDRESS, MODIFIER CDMMENTS 

One or two subfields in the 
variable field 

The RETURN pseudo-operation is used for exit from a subroutine. The instructions generated 
by a RETURN pseudo-operation must make reference to a SAVE instruction within the same 
subroutine. This is done by the first subfield of RETURN. The first subfield in the variable 
field must always be present. This subfield must contain a symbol which is defined by its 
presence in the location field of a SAVE instruction. 

The second subfield is optional and, if present, specifies the particular error return to be 
made; that is, if the second subfield contains the value k, then the return is made to the kth 
error return. If the programmer has placed all program data under BLOCK pseudo-operations, 
automatic generation of error linkage words is suppressed. 

In the examples following, the assembled instructions generated by RETURN are listed below 
the RETURN instruction. For both examples the group of instructions on the left are generated 
when the Assembler is in the relocatable mode, and the instructions on the right when the 
Assembler is in the absolute mode. 

EXAMPLE ONE 

RETURN BB BBB 

TRA BBBBB+l } Generated 
TRA BBBBB+2 } Generated 

Instruction Instruction 

EXAMPLE TWO 

RETURN BBBBB, k 

LDXl E.L., * LDXl BBBBB+l, * 
SBXl k,DU Generated SBXl k,DU Generated 
STXl E.L. Instructions STXl BBBBB+l Instructions 
TRA BBBBB+l TRA BBBBB+2 

©©~~ffiu~rn~J~~t®®®-------------

IV-62 



d. ERLK (Error Linkage--between Subroutines) 

ADDRESS, MODIFIER 

Column 16 must be blank 

The normal operation of the Assembler is to assign a location for error linkage information, as 
shown in the examples of the CALL, SAVE, and RETURN pseudo-operations. However, if the 
programmer wishes to specify the location for error linkage information, he can do so by using 
ERLK. Thus, ERLK makes the location of the error linkage register known and available to the 
programmer. The appearance of ERLK causes the Assembler to generate two words of the 
following form: 

E.L. ZERO 
BCI 1, NAME 

These words will be placed in the assembly at the point the Assembler encountered ERLK. 
Note that if the programmer has placed all program data under the BLOCK pseudo-operation, 
he must use ERLK since in this case automatic error linkage is suppressed. (See CALL, SA VE, 
and RE TURN. ) 

In the example, the location symbol NAME must appear under the coded SY:.\IDEF pseudo
operation (l) if ERLK is used within CALL, ur (2) if not using C/. ... LL; the prognmmer generates 
his own subroutine c::i 11 ing seriuence. If ERL K appears within the SA VE, SYMDEF need not be 
cocieu :::;rnc:e SAVb automatwally ~enerate6 a SY:\IDEF. 

NAME, as generated by the Assembler, is the first symbol defined under the first SYMDEF of 
the program containing ERLK. 

©@~[f illuurn~~~ f ®®®--------------------------

IV-63 



D. MACRO OPERATIONS 

1. Introduction 

Programming applications frequently involve (1) the coding of a repeated pattern of instructions 
that within themselves contain variable entries at each iteration of the pattern and (2) basic 
coding patterns subject to conditional assembly at each occurrence. The macro operation gives 
the programmer a shorthand notation for handling (1) and (2) through the use of a special type 
of pseudo-operation referred to in the Macro Assembler as a MACRO. Having once determined 
the iterated pattern, the programmer can, within the MACRO, designate selectable fields of 
any instruction of the pattern as variable. Thereafter, by coding a single MACRO instruction, 
he can use the entire pattern as many times as needed, substituting different parameters for 
the selected subfields on each use. 

When he defines the iterated pattern, the programmer gives it a name, and this name then 
becomes the operation code of the MACRO instruction by which he subsequently uses the macro 
operation. 

As a generative operation, the macro operation causes n card images (where n is normally 
greater than one) to be generated; these may have substitutable arguments. The MACRO is 
known as the prototype or skeleton, and the card images that may be defined are relatively 
unrestricted as to type. 

They can be: 

• Any processor instruction 

• Most Ass~mbler pseudo-operations 

• Any previously defined macro operation (such as the GE-635 instructions handled by 
software in certain models of the M-605). 

Card images of these types are subject to the same conditions and restrictions when generated 
by the macro processor as though they had been produced directly by the programmer as 
in-line coding. 

To use the MACRO prototype, once named, the programmer enters the macro operation code 
in the operation field and arguments in the variable field of the MACRO instruction. (The 
arguments comprise variable field subfields and refer directly to the argument pointers 
specified in the fields of the card images of the prototype.) By suitably selecting the arguments 
in relation to their use in the prototype, the programmer causes the Assembler to produce 
in-line coding variations of the n card images defined within the prototype. 

The effect of a macro operation is the same as an open subroutine in that it produces in-line 
code to perform a predefined function. The in-line code is inserted in the normal flow of the 
program so that the generated instructions are executed in-line with the rest of the program 
each time the macro operation is used. 

IV-64 



An important feature in specifying a prototype is the use of macro operations within a given 
prototype. The Assembler processes such "nested" macro operations at expansion time only. 
The nesting of one prototype within another prototype is not permitted. If macro operation 
codes are arguments, they must be used in the operation field for recognition. Thus, the 
MACRO must be definerl hefore its appearance as an argument: that is, the prototype must be 
available to the Assembler before encountering a demand for its usage. 

2. Definition of the Prototype 

The definition of a l\'IACRO prototype is made up of three parts: 

• Creation of a heading card that assigns the prototype a name 

• Generation of the prototype body of n card images with their substitutable arguments 

• Creation of a prototype termination card 

These parts are described in the following three subparagraphs. 

a. MACRO (MACRO Identification) PSEUDO-OPERATION 

ADDRESS, MODIFIER 

Blanks in the variable field 

The MACRO pseudo-operation is used to define a macro operation by symbolic name. The 
symbol in the location field can contain up to six allowable alphanumeric characters and defines 
the name of a MACRO whose prototype is given on the next n lines. (The prototype definition 
continues until the Assembler encounters the proper ENDM pseudo-operation.) The name of 
the MACRO is a required entry. If the symbol is identical to an operation code already in the 
table, then the macro operation will be used as a new definition for that operation code. It is 
entered in the Assembler operation table with a reference to its associated prototype that is 
entered in the MACRO skeleton table. 

b. ENDM (End MACRO) PSEUDO-OPERATION 

CX>MMENTS 

Blanks ENDM A symbol in the variable field 

The symbol in the variable field is the symbolic name of the MACRO instruction as defined in 
the location field of the corresponding MACRO heading card. Every MACRO prototype must 
contain both the terminal ENDM pseudo-operation and the MACRO pseudo-operation. 

©©~~ffiu~w~~IBI®®®---------------------------------------------

IV-65 



Thus, every prototype will have the form 

Heading card { OP NAME MACRO 
-------
-------
-------
-------

Prototype body 

-------

{ -------
Terminal card ENDM OPNAME 

where OPNAME represents the prototype name that is placed in the Assembler operation table. 

c. PROTOTYPE BODY 

The prototype body contains a sequence of standard source-card images (of the types listed 
earlier) that otherwise would be repeated frequently in the source program. Thus, for example, 
if the iterated coding pattern 

LOCATION 

~ 
OPERATION ADDRESS, MODIFIER CX>MMENTS 

1 2 _! It la _H lls lii 132. 

LDA 5,DL 

LDQ 13..i DL 
CWL ALPHA, 2 

TZE FffiST 

~ 
: J 
. 7 

LDA u 1 
LDQ v 
CWL BETA, 4 

TZE SCND -' I 
J 

_/ 
LDA rw+x J 
LDQ Y+Z f 
CWL GAMMA _,,.,/ r---_.., 
TZE NEXT 1 

©@~[pffi1J~ill~~~I®®®-------------

IV-66 



appeared in a subprogram, it could be represented by the following prototype body (preceded 
by the required prototype name): 

ADDRESS, MODIFIER a>MMEHTS 

MACRO prototype with substitutable 
arguments in the variable field 

Then the previous coding examples could be represented by the macro operation CMPAR as 
follows: 

CMPA.R (5, DL), (13, DL), (ALPHA, 2), FIRST 

CMPAR U, V, (BETA, 4), SCND 

CMPAR W+X, Y+Z, GAMMA, NEXTl 

rne Assembier recognizes substitutable arguments by the presence ot the number-sign 
identifier (#). Having sensed this identifier, it examines the next one or two digits. (Sixty
three is the maximum number of arguments usable in a single prototype.) 

MACRO prototype arguments can appear in the location field, in the operation field, in the 
variable field, and coincidentally in combinations of these fields within a single card image. 
Substitutions that can be made in these fields are: 

• Location field--any permissible location symbol (see comments below) 

• Operation field--all machine instruction, all pseudo-operations (except the MACRO 
pseudo-operation) and previously defined macro operations 

• Variable field--any allowable expression followed by an admissible modifier tag and 
separated from the expression by a delimiting comma. 

In general, anything appearing to the right of the first blank in the variable field will not be 
copied into the generated card image. For example, a substitutable argument appearing in 
the comments field of a card image--that is, separated from the variable field by one or more 
blanks--will not be interpreted by the Assembler (except in the case of the BCI, REM, TTL, 
and TTLS pseudo-operations). This means that only pertinent information in the location, 
operation, and variable fields is recognized, that internal blanks are not allowed in these fields, 
and that the first blank in these fields causes field termination. 

©®~~illu~rn~~~t®®®-------------------------------

IV-67 



When specifying a symbol in a location field of an instruction within a prototype the programmer 
must be aware that this MACRO can be used only once since on the second use the same symbol 
will be assigned a different location, causing a multiply-defined symbol. Consequently, the use 
of location symbols within the prototype is discouraged. Alternatively, for cases where repeated 
use of a prototype is necessary, two techniques are available: (1) use of Created Symbols and 
(2) placement of substitutable argument in the location field and use of a unique symbol in the 
argument of the macro operation each time the prototype is used. (These techniques are 
described under Using a Macro Operation, following below.) 

The location field, operation field, and variable field may contain text and arguments which can 
be linked together (concatenated) by simply entering the substitutable argument (for example, 
AB#3) directly in the text with no blanks or special symbols preceding or following the entry. 
Concatenation is especially useful in the operation field and in the partial subfields of the vari
able field. (Refer to the discussion of BCI, REM, TTL, and TTLS immediately following.) 
As an example of the first use, consider a machine instruction such as LD(R) where R can 
assume the designators A, Q, AQ, and XO-X7. 

The prototype NAME 

NAME MACRO 

LD#2 
A,#1 

contains a partial operation field argument; and when the in-line coding is generated, LD#2 
becomes LDA, LDQ, etc. , as designated by the argument used in the macro operation. 

The BCI, REM, TTL, and TTLS pseudo-operations used within the prototype are scanned in 
full for substitutable arguments. The variable field of these pseudo-operations can contain 
blanks and argument pointers. The following illustrates a typical use: 

ALPHA MACRO 

NOTE#l REM IGNOREi:>#2-t;ERRORstSONt5#3 

(Note: b = blank) 

An asterisk (*) type comment card cannot appear in a MACRO prototype. 

3. Using a Macro Operation 

Use of a Macro operation can be divided into two basic parts; definition of the prototype and 
writing the Macro operation. The first part has been described on the preceding pages; writing 
the Macro operation to call upon the prototype is the process of using the Macro and is 
described in the following paragraphs. 

©@~[fffilf~OO[L~~c®®®-------------

IV-68 



The Macro operation card is made up of two basic fields; the operation field that contains the 
name of the prototype being referenced and the variable field that contains subfield arguments 
relating to the argument pointers of the prototype on a sequential, one-to-one basis. For 
example, the defined prototype CMPAR, mentioned earlier, could be called for expansion by 
the l\1ACRO instruction 

rtl\!Tn/\D 
\ ... .dV.1.L ~.I.\. 

TT U /UV 'T' I! Jl \ c;;;!f""'l\Tn u, v, \.L.1~.L.L.J.' .L,,.._,'-'J.."LJ 

where the variable field arguments, separated by commas and taken left-to-right, correspond 
with the prototype pointers #1 through #4. These arguments are then substituted in their cor
responding positions of the prototype to produce a sequence of instructions using these arguments 
in the assigned location, operation, and variable fields of the prototype body. (The above 
MACRO instruction expands to the coding shown on page IV-67.) 

The maximum number of MACRO-call arguments is 63; arguments greater than 63 are treated 
modulo 64. For example, the 70th argument is the same as the 6th argument and would be so 
recognized by the Assembler. Each such argument can be a literal, a symbol, or an expression 
(delimited by commas) that conforms to the restrictions imposed upon the field of the machine 
instruction or pseudo-operation within the prototype where the argument will be inserted. 

The following conditions and restrictions apply to the expansion of MACROS: 

• Anything appearing in the location field of a prototype card image, whether text or a 
substitutable argument, causes generation to begin in column 1 for that text or 
~lrgumPnt. 

• 1,0C'::it10n tIPlrt tPxt g·enPrateri from :rn arE!ument nointer tin a prototvne location i'ield1 
so as to produce a resultant field extending beyond column 8 causes the operation 
field to begin in the next position after the generated text. Normally, the operation 
field will begin in column 8. 

• Operation field text generated from an argument pointer (in a prototype operation 
field) so as to produce a resultant field extending beyond column 16 causes the variable 
field to start in the next position after the generated text. Normally, the variable field 
will begin in column 16. 

• The variable field may begin after the first blank that terminates the operation field 
but not later than column 16 in the absence of the condition in 3 above. 

• No generated card image can have more than 72 characters recorded; that is, the 
capacity of one card image cannot be exceeded (columns 73-80 are not part of the card 
image). 

• No argument string of alphanumeric characters can exceed 57 characters. 

• Up to 63 levels of MACRO nesting are permitted. 

An argument can also be declared null by the programmer when writing the MACRO instruction; 
however, it must be declared explicitly null. Explicitly null arguments of the MACRO instruc
tion argument list can be specified in either of two ways; by writing the delimiting commas in 
succession with no spaces between the delimiters or by terminating the argument list with a 
comma with the next normal argument of the list omitted. (Refer to the CRSM description, 
following.) A null argument means that no characters will be inserted in the generated card 
image wherever the argument is referenced. When a macro operation argument relates to an 

~®~~~1~11n~n ~~ 11 ~lf1!f1 
'J 'J uvU u uu u u ~L!::JL!::Jc::J v \!'..) \.:'.) v --------------------------------

IV-69 



argument pointer and the pointer requires the argument to have multiple entries or contains 
blanks, the corresponding argument must be enclosed within parentheses with the parenthetical 
argument set off by the normal comma delimiters. The parenthetical argument can contain 
commas as separators. Examples of prototype card images that require the use of parentheses 
in the MACRO call are pseudo-operations such as IDRP, VFD, BCI, and REM, as well as the 
variable field of an instruction where the address and tag may be one argument. 

It is also possible to enclose an argument within brackets, making them subarguments, in which 
case blanks are ignored as part of the argument. For example the MACRO call of the MACRO 
named ABC can be written as 

ABC 
ETC 
ETC 

[A, 
nA 
.::i'±' 

2*D] 

and is equivalent to 

ABC (A, 24, 2*D) 

even though numerous blanks occur after the arguments A, and 24, . Thus, the Assembler 
packs everything it finds within brackets and suppresses all blanks therein. The above manner 
of \V riling the TvIACRO call permits the programmer additional flexibility in placing one sub
argument per card by means of using ETC, the blanks no longer being significant. 

It can happen that the argument list of a macro operation extends beyond the capacity of one 
card. In this case, the ETC pseudo-operation is used to extend the list on to the next card. 
In using ETC, the last argument entry of the macro operation is delimited by a following comma, 
and the first entry of the ETC card is the next argument in the list. Within the prototype, as 
many ETC cards as required can be used for internal MACROS or VFD pseudo-operations. 

4. Pseudo-Operations Used Within Prototypes 

a. NEED FOR PROTOTYPE CREATED SYMBOLS 

In case of a .. MACRO prototype in which an argument pointer is used in the location field, the 
programmer must specify a new symbol each time the prototype is called. In addition, for 
those cases where a nonsubstitutable symbol is used in a prototype location field, the program
mer can use the macro operation only once without incurring an Assembler error flag on the 
second and all subsequent calls to the prototype (multiply-defined symbol). Primarily to avoid 
the former task (having to repeatedly define new symbols on using the macro operation) and to 
enable repeated use of a prototype with a location field symbol (nonsubstitutable), the created 
symbol concept is provided. 

b. USE OF CREATED SYMBOLS 

Created symbols are of the type . xxx. where xxx runs from 001 through 999, thus making 
possible up to 999 created symbols for an assembly. The periods are part of the symbol. The 
Assembler will generate a created symbol only if an argument in the macro operation is impli
citly null; that is, only if the macro operation defines fewer arguments than given in the related 
MACRO prototype or if the designator# is used as an argument. Explicitly null arguments will 
not cause created symbols to be generated. The example given clarifies these ideas . 

.. ©@~[pffi1J~OO[L~~I®®®-------------

IV-70 



Assume a MACRO prototype of the form 

NAME MACRO 
:If 1 di9 -------
II .L' "'-' 

#4 ------- x 
11.- ------- A T T"\TT A Jln 
rru .t1..L1Y nrt, rru 

===--=-- #4 
TMI #5 
ENDM N.AME 

with five arguments, 1 through 5. The macro operation NAME in the form 

NAME A,7,, ,B 

specifies the third and fourth arguments as explicitly null; consequently, no created symbols 
would be provided. The expansion of the operation would be 

B 

TMI 

The macro operation co.rd 

A, 7 
x 
ALPHA, 

B 

NAME A,7, 

indicates the third argument is explicitly null, while arguments four and five are implicitly null. 
Consequently, created symbols would be provided for arguments four and five but not for three. 
This is shown in the expansion of the macro operation as follows: 

. 011. 

. 012. 

TMI 

A, 7 
x 
ALPHA, 
. 011. 
. 012. 

A created symbol could be requested for argument three simply by omitting the last comma, 
The programmer can conveniently change an explicitly null argument to an implicitly null one by 
inserting the # designator in an explicitly null position. Thus, for the preceding example 

NAME A,7,,#,B 

the fourth argument becomes implicitly null and a created symbol will be generated. 

IV-71 



c. CRSl\'l ON/OFF (Created Symbols) 

LOCATION E OPERATION ADDRESS, MODIFIER CDMMENTS 
0 

1 2 6 1 

I lBlanks ICRSM I 
ON Normal mode 

lanks CRSM OFF 

lanks le RSM I lsAVE,_ON 

lanks CRSM SAVE, OFF 

lanks CRSM RESTORE 

Created symbols are generated only within MACRO prototypes. They can be generated for 
argument pointers in the location, operation, and variable fields of instructions or pseudo
operations that use symbols. Accordingly, the created symbols pseudo-operation affects only 
such coding as is produced by the expansion of MACROS. CRSM ON causes the Assembler to 
initiate or resume the creation of symbols: CRSM OFF terminates the symbol creation if CRSM 
ON was previously in effect. The SA VE option in the variable field causes the present mode of 
the CRSM pseudo-operation to be saved and then the mode specified by the second term in the 
variable field is set. The RESTORE option causes the saved status to be reset as the mode of 
CRS:\I. 

d. ORGCSl\'l (Origin Created Symbols) 

LOCATION ~OPERATION ADDRESS, MODIFIER CDMMENTS l 0 
1 2 6 l1 8 lA l1S l6_ 132 

iBlanks ORGCSM One ex_Q_ression in the variable field ] __, 

The variable field is evaluated and becomes the new starting value between the decimal points of 
the created symbols. 

e. IDRP (Indefinite Repeat) 
-

LOCATION 0 OPERATION ADDRESS, MODIFIER CDMMENTS !, 
0 

1 2 6 [t 8 1 .. 1 11 s1 16_ 132. 
Blanks IDRP #3 An argument number or blanks in the 

variable field, depending on the IDRJ?) 
of the IDRP pair """""""" 

..... 

IV-72 



The purpose of the IDRP is to provide an iteration capability within the range of the MACRO 
prototy-pe by letting the number of grouped variables in an argument pointer determine the 
iteration count. 

The IDRP pseudo-operation must occur in pairs, thus delimiting the range of the iteration within 
the MACRO prototype. The variable field of the first IDRP must contain the argument number 
that points to the particular argument used to determine the iteration count and the variables to 
be affected. The variable field of the second IDRP must be blank. 

At expansion time, the programmer denotes the grouping of the variables (subarguments) of the 
iteration by placing them, contained in parentheses, as the nth argument where n was the argu
ment value contained in the initial IDRP variable field entry. 

IDRP is limited to use within the MACRO prototype, and nesting is not permitted. However, as 
many disjoint IDRP pairs may occur in one MACRO as the programmer wishes. 

For example, given the MACRO skeleton 

NAME MACRO 

IDRP 
ADA 
IDRP 

ENDM 

#2 
#2 

NAME 

the MACRO call (with variables Xl, X2, and X3) 

A 

would generate 

A 

NAME Q+2, (Xl, X2, X3), B 

ADA 
ADA 
ADA 

Xl 
X2 
X3 

In the example, arguments #1 and #3, Q+2, and B respectively, are used in the skeleton ahead 
of and after the appearance of the IDRP, range-iteration pair. 

©©R1JlPillu~~~~g)1 ®®®-------------------------

IV-73 



f. DELM (Delete MACRO) 

LOCATION p OPERATION ADDRESS, MODIFIER CllMMENTS J 
0 

l 2 6 7 8 14 15 16 l32. 

Svmbo DELM A s_ymbol in the variable field 7 r ~ 
I I 7 lor I I 

Blank_S 7 

The function of this pseudo-operation is to delete the MACRO named in the variable field from 
the MACRO prototype area, and disable its corresponding operation table entry. Through the 
use of this pseudo-operation, systems which require many, or large MACRO prototypes, or 
which have minimal storage allocation at assembly time, can re-use storage in the prototype 
area for redefining or defining new MACROSs. Redefinition of a deleted MACRO will not pro
duce an M multiply defined flag on the assembly listing. 

g. PUNM (Punch MACRO Prototypes and Controls) 

r- I ' 

l LOCATION ~ OPERATION ADDRESS, MODIFIER CD MM EN TS 
0 

l 2 6 7 8 1A lS 16 132 • 
Blanks PUNM The variable field is not examined ~1 

---

~ 

----1 

This pseudo-operation causes the Assembler, in pass one, to scan the operation table for all 
MACROs defined. It then appends their definitions to the end of the prototype table and con
structs a control word specifying the length of this area and the number of MACROs defined 
therein. 

At the beginning of pass two, this information is punched onto relocatable binary instruction 
cards, along with$ OBJECT, preface, and$ DKEND cards. The primary SYMDEF of this deck 
will arbitrarily be . MACR. . 

In the normal preparation of System MACROs, it would not be desirable to include the GMAP 
System MACROs. For this reason, the assembly of a set of System MACROs should have 
NGMAC elected on its$ GMAP card. 

IV-74 



h. LODM (Load System MACROs) 

ADDRESS, MODIFIER l, CDMMENTS 

A s mbol in the variable field 

.._____..... t------il t-1 ------~~~----~--

This pseudo-operation causes the Assembler to issue an MME GECALL for a set of System 
MACROs. The name used in the GECALL sequence is the symbol taken from the variable field 
of the LODM pseudo-operation. MACROs thus loaded will be appended to (not overlay) the 
MACRO prototype table. They will be defined and made available for immediate use. If a 
MACRO is redefined by this operation the LODM instruction will be flagged with an M. 

IV-75 



5. Notes and Examples On Defining A Prototype 

The examples following show some of the ways in which MACROS can be used. 

a. FIELD SUBSTITUTION 

Prototype definition: 

ADDTO 

Use: 

MACRO 
LDA 
ADA 
STA 
E:NDM 

ADD TO 

#1 

#3 
A.DDTO 

A, (1, DL), B+5 

b. CONCATENATION OF TEXT AND ARGUMENTS 

Prototype definition: 

INCX MACRO 
ADLX#2 #3,DU 
INE #1, '*+l' 
TRA #1 
ENDM INCX 

Use: 
INCX LOCA,4, 1 

or 
INCX *+1,4,1 

c. ARGUMENT IN A BCI PSEUDO-OPERATION 

Prototype definition: 

ERROR 

Use: 

MACRO 
TSXl 
ARG 
BCI 
ENDM 

DIAG 
#1 
5, ERROR f>#l f>CONDITION 15IGNORED 
ERROR 

ERROR 5 

d. MACRO OPERATION IN A PROTOTYPE 

Prototype definition: 

TEST 

Use: 

MACRO 
LDA 
CMPA 
#3 
ERROR 
ENDM 

TEST 

#1 
#2 
#4 
#5 
TEST 

A, B, TZE, ALPHA, 3 

©@~[pffilJ~OO[L~~I®®®-------------

IV-76 



e. INDEFINITE REPEAT 

Prototype definition (for generating a symbol table): 

SYMGEN 

#1 

Use; 

MACRO 
IDRP 
BCI 
IDRP 
ENDM 

SYMGEN 

f. SUBROUTINE CALL MACRO 

Prototype definition: 

DOO 
K 

K 

MACRO 
SET 
IDRP 
SET 
IDRP 
TSXl 
TRA 
IDRP 
ARG 
IDRP 

#1 
1, #1 

RYMGEN 

(LABEL, TEST, ERROR, MACRO) 

0 
#2 
K+l 

#1 
*+l+K 
#2 
#2 

~; NJ)i\il iJUU 

Use: 
DOO SRT, (ARGl, ARG2, ARG3) 

6. System (Built-In) MACROS and Symbols 

GMAP has been implemented with the facility for loading a unique set (or sets) of MACROs, 
under control of a pseudo-operation. This permits the various language processors to uniquely 
identify those standard system MACROs that are required for the assembly of their generated 
code. 

System MACROs are located on the system file in mass storage. They are put there by the 
System Editor, in System Loadable Format, as a free-standing system program. Their catalog 
name is that which is to be used by GMAP in the loading operation. For proper implementation, 
the MASTER option of the System Editor parameters card must be elected. It may be in ab
solute or relocatable System Loadable Format. 

This implementation technique permits any unit, or functionally related group of users of 
GMAP to define and implement a unique set of System MACROs; or on a larger scale, it allows 
various M-605 installations to install local standard sets of MACROs,\.vithout changing the 
Assembler. 

@(nj 00 m /Al lrinl~~{ n IS~ ;7 ~ lnHOI 
~ ~uvu u LnJ u u L'::JL':::il':::iC':J u \V\!0\V -----------------------------

IV-77 



E. SOURCEPROGRAMINPUT 

The input job stream managed by the Comprehensive Operating Supervisor (GECOS, GEFLOW 
module) can comprise assembled object programs, Macro Assembler language source programs, 
and FORTRAN compiler-language source programs. Such programs of a job are referred to as 
activities or as subprograms. A source program input to the Assembler written in the l\1-60G 
machine language is an Assembler language input subprogram. Comments to foilow in this 
section pertain to this subprogram, as opposed to the others noted above. 

The Assembler language subprogram is composed of the following parts, in order: 

• $ GMAP control card (calls the Assembler into Memory from external storage and 
provides Assembler output options; refer to the paragraph following) 

• Text of the subprogram (one instruction per card) 

• END pseudo-operation card (terminates the input subprogram) 

The $ GMAP control card is prepared as shown below: 

CARD COLUMN 

SYMBOLIC EXAMPLE 

ACTUAL EXAMPLE 

$ 

$ 

8 

I GMAP 

I GMAP 

16 

I OPTION I, OPTION 2, ... 

INDECK, LSTOU 

The operand field specifies the system options listed in any random order. When an option, or 
its converse, does not appear in the operand field, there is a standard entry which is assumed. 
(The standard entries are asterisked below. ) 

The options available with GMAP are as follows: 

• LSTOU--A listing of the output will be prepared. 

• NLSTOU--No listing of the output will be prepared. 

• DECK--A program deck will be prepared as part of the output of this processor. 

• NDECK--No program deck will be prepared. 

The content of columns 73-80 is used as an identifier to uniquely identify the binary object 
programs resulting from the assembly. 

IV-78 



F. RELOCATABLE AND ABSOLUTE ASSEMBLIES 

The normal operating mode of the Assembler in processing input subprograms is relocatable; 
that is, each subprogram in a job stream is handled individually and is assigned memory loca
tions nominally beginning with zero and extending to the upper limit required for that subprogram. 
Since a job stream can contain many such subprograms, it is apparent that they cannot all be 
loaded into a memory area starting with location zero; they must be loaded into different 
memory areas. Furthermore, they must be movable (relocatable) among the areas. Then for 
relocatable subprograms, the Assembler must provide (1) delimiters identifying each subpro
gram, (2) iriJormation specifying that the subprogram is relocatable, (3) the length of the 
subprogram, and (4) relocation control bits for both the upper and lower 18 bits of each 
assembled word. 

Subprogram delimiters are the Assembler output cards $ OBJECT, heading the subprogram 
assembly, and$ DKEND, ending the assembly. An assembly is designated as relocatable on a 
card-to-card basis by a unique 3-bit Assembler punched code value in each binary output card. 
(See descriptions of Binary Punched Cards, page IV-78 and following.) The subprogram length 
is punched in the preface card(s) which immediately follows the $ OBJECT card of each sub
program. The relocation control bits are grouped together on the binary card and are referenced 
by GELOAD/605 while it is loading the subprogram into absolute memory locations. 

The Assembler designates that the assembly output is absolute on a card-to-card basis by 
punching a unique 3-bit code value in each card. This value causes GELOAD/605 to regard all 
addresses on :=i card as actual (physical) memory addresses and to load accordingly. Each 
absolute subprogram assembly begins with a$ OBJECT card and terminates with the !1) DK.END 
card, as in the case of relocatable assemblies. 

The normal Assembler operating mode is relocatable; it is set to the absolute mode by pro
grammer use of the ABS pseudo-operation. 

©@~~~1TIWID[L~~ I®®®-----------------------

IV-79 



6. ASS EM BL V OUTPUTS 

1. Binary Decks 

When the $ GMAP control card specifies the DECK option, the Assembler punches a binary 
assembly output deck. Since the normal mode of the Assembler is relocatable, all addresses 
punched in the output cards are normally relative to the blank location counter (relative to zero) 
and the text is described as relocatable. Alternatively, still considering the DECK option, the 
Assembler can operate in the absolute mode and punch only absolute addresses in the output 
cards. 

Relocatable or absolute addresses can be punched in four types of binary cards. These cards 
and their uses are summarized below. The user subprogram memory map blocks are (1) the 
subprogram region, (2) the LABELED COMMON region, and (3) the BLANK COMMON region. 

CARD TYPE 

Preface 

Relocatable 

Absolute 

Transfer 

USE 

Provides the Loader with (1) the length of the subprogram text 
region; (2) the length of the BLANK COMMON region; (3) the total 
number of SYMDEF, SYMREF, and LABELED COMMON 
symbols; (4) the type identification of each symbol in (3); and (5) 
the relative entry value or the region length for each symbol in 
(3 ). 

Supplies the Loader with relocatable binary text by using preface 
card information and relocation identifiers, where the relocation 
identifiers specify whether the 18-bit field refers to a subpro
gram, LABELED COMMON, or BLANK COMMON regions (of 
the assembly core-storage area) and will allow the loader to re
locate these fields by an appropriate value. 

Provides the Loader with absolute binary text and the absolute 
starting-location value for Loader use in assigning core-storage 
addresses to all words on the card. 

Can be generated only in an absolute assembly and causes the 
Loader to transfer control to the routine at the location given 
on the card. (The transfer card is generated automatically as 
the last card of an absolute subprogram assembly by the END 
pseudo-operation; however, use of the TCD pseudo-operation can 
cause the card to appear anywhere in the assembly. ) 

The formats in which the Assembler punches the above cards are described in the paragraphs 
to follow. 

2. Preface Card Format 

Preface card symbolic entries are primary SYMDEF symbols, secondary SYMDEF symbols, 
SYMREF symbols, LABELED COMMON symbols (from the BLOCK pseudo-operation), and the 
. SYMT. LABELED COMMON symbol. These symbols appear on the card in a precise order. 
All SYMDEF symbols appear before any other symbol. Following the SYMDEF symbols are any 
LABELED COMMON symbols that may have relocatable binary data loaded into that region. 
The SYMREF symbols are then recorded followed by the remaining LABELED COMMON symbols. 

©@~~illu~W[L~~I®®®-------------

IV-80 



The format and content of the preface card are summarized as follows: 

WORD ONE: I 100 I n, I 101 I n2 n3 

o,;:, II II"\ 
11,1 ~ 

._, 10 
11,1g 

n1--V is a value within the range 5 < V < 35 and represents the 
size of the field within a special relocation entry needed to point 
the specific preface card entry. Thus, V = log2 N + 1, where 
N is the number of LABELED COMMON and SYMREF entries. 

n2--Word count of the preface card text 

n3-- Length of the subprogram 

Word Two: Checksum of columns 1-3 and 7-72 

The value A is the length of BLANK COMMON; and N is two times the total number of SYMDEFs, 
SYMREFs, and LABELED COMMONs. 

Words Four, 
Symbol( Al' Kl Five: 

Words Six. 
6yrnooi

2
; A2' I~ Seven: 

The even-numbered word contains the symbol in BCD. The value K defines the type symbol in 
the even-numbered word; A is a value associated with K, as explained in the following list. 

If K equals zero, then the symbol is a primary SYMDEF symbol; A is the entry value rela
tive to the subprogram region origin. 

If K equals one, then the symbol is a secondary SYMDEF symbol; A is the entry value rela
tive to the subprogram region origin. 

If K equals five, then the symbol is a SYMREF symbol; A is zero. 

If K equals six, then the symbol is a LABELED COMMON symbol; A is the length of the 
region. 

If K equals seven, then the symbol is a . SYMT. LABELED COMMON symbol; A is the 
length of the region reserved for debug information. 

NOTE: If preface continuation cards are necessary, word three will be repeated unchanged on 
all continuation cards. 

WORDS 2n +2 
2n + 3 I CHAR. CHAR. CHAR. CHAR. CHAR. CHAR. 

SYMBOLn,An,Kn~-----'--__...__ ___ 2 ____ ---'------3----_._----4-----'---~5-----L-----6-----' 
0 5,6 11, 12 17, 18 23, 24 29,30 35 

A K 

0 17, 18 35 

©@~[pfilu~rn~~~(; ®®®-------------------------

IV-81 



3. Relocatable Card Format 

A relocatable assembly card has the format and contents summarized in the following comments. 

WORD ONE: I 010 I "1 j 101 I "2 "3 

0 2,3 

or for the alternative cases: 

Word Two: 

Word 3 IAiB 
1 

c!o EI 
0 4,5 

Word 4 IA!B 
8 

c!o EI 
0 4,5 

Word 5 IA!B
15

cio EI 
0 4,5 

Words Six
Twenty-Four: 

8,9 11,12 17,18 35 
ni--0 indicates that loading is within the subprogram region of 
the user subprogram core-storage area 

n2--Word count of the data words to be loaded using the origin 
and relative address in this control word 

n3--Loading address, relative to the subprogram region origin. 

n1--i, where i -/: 0 indicates that the ith entry (beginning with the 
first LABELED COMMON or SYMREF entry in the preface card 
text has been used and that n3 is relative to the origin of that 
entry. 

Checksum of columns 1-3 and 7-72 

2 

9 

16 

• 

3 4 

9,10 14,15 

10 II 

9,10 14,15 

17 

• 
18 

• 

5 6 7 

19,20 24,25 29,30 

12 13 14 

19,20 24,25 29,30 

19 

• 

34 35 

34 35 

9,10 14,15 19, 20 24 35 

Relocation data--words three and four comprise seven 5-bit re
location identifiers, while word five holds 5 such identifiers. 
The five bits of each identifier carry relocation scheme data for 
each of the card words (7 + 7 + 5 = 19, or fewer). The identifiers 
are placed in bit positions 0-34 of words three and four and in 
0-24 of word five. (Refer to the Relocation Scheme description 
in the paragraph following. ) 

Instructions and data (up to 19 words per card). If the card is not 
complete and at least two words are left vacant, then after the 
last word entered, word one may be repeated with a new word 
count and loading address. The loading is then continued with the 
new address, and the relocation bits are continuously retrieved 
from words three through five. This process may be repeated as 
often as necessary to fill a card. 

©@~[pfilTI~OO[l~~t®®®-------------

IV-82 



4. Relocation Scheme 

For each binary text word in a relocatable card, the five bits--A, BC, and DE--of each reloca
tion scheme identifier are interpreted by the Loader as follows: 

Bit A--0 (reserved for future use) 

Bits BC-- Left half-word 

Bits DE--Right half-worn 

To every 18-bit half-word one of four code values apply; these are: 

CODE VALUE 

xx= 00 
:::: 01 

:::: 10 

= 11 

Absolute value that is not be to modified by the Loader. 
Relocatable value that is to be added to the origin of the sub
program region by the Loader. 
BLANK COMMON, relative value that is to be added to the origin 
of the BLANK COMMON region by the Loader. 
Special entry value (to be interpreted as described in the next 
paragraph) 

apply where XX stands for BC or DE. 

If special entry is required, the Loader decodes and processes the text and bits of the 18-bit 
tielrt <left /right half of each relocatable card word) as follows: 

Bit 1 

Bits 2-.v + 1 

Bits V + 2~18 

--This is the sign of the addend; 0 implies a plus (+) and 1 implies 
a minus (-). 

--The value V that was specified in word 1 of the preface card dic
tates the length of the field. The contents of the field is a relative 
number which points to a LABELED COMMON region or a 
SYMREF that appeared in the preface card. The value one in 
this field would point to the first symbol entry after the last 
SYMDEF. 

--The value in this field is the addend value that appeared in the 
expression. If the field is all bits then the corresponding 18 bits 
of the next data word are interpreted as the addend. 

All references to each undefined symbol are chained together. When the symbol is defined, the 
Loader can rapidly insert the proper value of the symbol in all relocatable fields that were 
specified in the chain. 

©©~~illu~rn~~~J®®®-----------------------------------

IV-83 



5. Absolute Card Format 

The absolute binary text card appears as shown below. 

woRoONEI ~0 __ 0_1~l...._ ___ "_1 ----~l __ 10_1__._l _____ "2 ____ ..J.-______________ "_3 ____________ ___, 

0 2,3 

Word Two: 

Words Three
Twenty- Four: 

8,9 !l,12 !7,18 35 

n1--o 
n

2 
--Word count of the card text 

n
3
-- Loading address relative to the absolute core-storage origin 

zero 

Checksum of columns 1-3 and 7-72 

Instructions and text (22 words per card, maximum). H the card 
is not complete and at least two words are left vacant, then after 
the last word entered word one may be repeated with a new word 
count and loading address. 

6. Transfer Card Format 

The transfer card is generated by the Assembler only in an absolute assembly deck. Its format 
and contents are: 

WORD ONE: I 000 I 
0 

Words Two
Twenty- Four: 

2,3 

"1 

7. Assembly Listings 

I IOI 

8,9 
n --0 

1 
n --0 

2 

I "2 "3 

11,12 17,18 

n<)--Transfer address (in absolute only). 
t.) 

Not used 

Each Assembler subprogram listing is made up of the following parts: 

• The sequence of instructions in order of input to the Assembler 

35 

• The contents of all preface cards (primary SYMDEF symbols, secondary SYMDEF 
symbols, SYMREF symbols, LABELED COMMON symbols (from the BLOCK pseudo
operation), and the . SYMT . LABELED COMMON symbol) 

• The symbolic reference table 

©@~[ffilu~illQJ~~I®®®-------------

IV-84 



a. FULL LISTING FORMAT 

Each instruction word produced by the Assembler is individually printed on a 120-character line. 
The line contains the following items for each such word of all symbolic cards: 

1. Error flags--one character for each error type (see Error Codes beiow). 

2. Octal location of the assembled word 

3. Octal representation of the assembled word 

4. Relocation bits for the assembled word (see the topic, Relocation Scheme, Loader 
manual) 

5. Reproduction of the symbolic card, including the comments and identification fields, 
exactly as coded 

The exact format of the full listing is shown below. 

FIELDS A B c D E F G H 

PRINT LINE 1-6 7-12 ~5-20 22-25 27,2~ 31-33 35-39~ COLUMNS 
V" 

MACHINE SOURCE CARD 
INSTRUCTION IMAGE 

A--ERROR FLAGS 
B- - RELATIVE/ ABSOLUTE LOCATION 
C--OPERAND ADDRESS 

E--TAG FiELD MODiFiER 
F- - RELOCATION BITS 
G- -ALTER STATEMENT NUMBER 
H--CARD IMAGE D- -OPERATION CODE 

Several variations appear for bit positions 15 through 28. (The six, four, two subfield groups 
C, D, and E shown above is the octal configuration for machine instructions.) These are summa
rized in the table below in which the X represents one octal digit. 

Type of Machine Word 

Processor instruction 
and indirect address 

Data 

Data Control 

Special 18-bit field data 

Input/output command 

Listing Format 

xxxxxx xxxx xx 

xxxxxxxxxxxx 

xxxxxx xx xxxx 

xxxxxx xxxxxx 

Source Program Instruction 

Processor instruction and 
indirect address word 

Data generating pseudo
operations (OCT, DEC, 
BCI, etc.) 

Data Control Word (DCW) 

ZERO pseudo-operation 

Input/ output pseudc
operation 

(rD rm !.Vl In) 'A' 17 n lo) n 12 (QJ /) ~ In\ In\ 
~~JL~JJlf L~J U JlJDlb~C0 {I ~\JU\Jl) ____________________________ _ 

IV-85 



Error flags are summarized at the end of this section. The interpretation of the relocation bits 
is described in the Loader manual. 

b. PREF ACE CARD LISTING 

The contents of one or more preface cards are listed using a self-explanatory format. The 
LABELED COMMON symbols are listed according to type in the same order as presented on 
single or multiple cards: SYMDEFs, SYMREFs, LABELED COMMON, and . SYMT. 

c. BLANK COMMON ENTRY 

Following the LABELED COMMON symbols, the Assembler enters a statement of the amount of 
BLANK COMMON storage requested by the subprogram. The statement format is self
explanatory. 

d. SYMBOLIC REFERENCE TABLE 

The symbol table listing contains all symbols used, their octal values (normally, the location 
value), and the alter numbers of all instructions that referenced the symbol. The table format 
is as follows: 

Definition Symbol Alter Numbers 

00364 BETA 00103,00103,01027,01761,03767,07954 

The above sample indicates that the symbol BET A has been assigned the value 3648 and is ref
erenced in five places: namely, at alter number positions 00103, 01027, 01761, 03767, and 
07954 in the listing of instructions. The first alter number is the point in the instruction listing 
where the symbol was defined. If an instruction contains a symbol twice, the alter number for 
that point in the instruction listing is given twice. The alter numbers are assigned sequentially 
in the subprogram listing, one per instruction. Because of this fact, it is easy for the program
mer to locate in the listing those card images that referenced any particular symbol as well as 
locate the card image that caused the symbol to be defined. 

e. ERROR CODES 

The following list comprises the error flags for individual instructions and pseudo-operations. 

ERROR FLAG 

Undefined u 

Multidefined M 

Address A 

CAUSE 

Undefined symbol(s) appear in the variable 
field. 

Multiple-defined symbol(s) appear in the loca
tion field and/or the variable field. 

Illegal value or variable appears in the vari-
able field. Also used to denote lack of a required 
field. 

©@~[pwu~ill[L~~t®®®-------------

IV-86 



ERROR FLAG 

Index x 

Relocation R 

Phase p 

Even E 

Conversion c 

Location L 

Operation 0 

Table T 

CAUSE 

Illegal index or address modification. 

Reiocation error; expression in the variable 
field will produce a relocatable error upon 
loading. 

Phase error; this implies undetected machine 
error or symbols becoming defined in Pass 
Two which were undefined in Pass One. 

Address in the variable field is odd, the current 
instruction requires an even reference. 

Error in conversion of either a literal constant 
or a subfield of a data-generative pseudo
operation. 

Error in the location field 

Illegal operation 

An assembly table overflowed not permitting 
proper processing of this card completely. 
Table overflow error information will appear 
at the end of testing. 

r;\\ fr\\ nn !;;'\ n S7 n !;;'\ n r;:::i r;;J /) l.:!i {,;\ {,;\ 

UBlmL~~~Hr ill u u WlblS~ 01 WWW -------------------------

IV-87 



H. MACRO ASSEMBLER IMPLEMENTATION 

This Assembler is implemented in the classic format of Macro Assemblers with several varia
tions. The Assembler makes two passes over the external text. During pass one, all symbols 
are collected and assigned their absolute or relocatable values relative to the current location 
counter. MACRO prototypes are processed and placed in the MACRO skeleton table immedi
ateiy ready for expansion. All MACRO calis, therefore, are expanded in pass one, allowing 
the MACRO skeleton table to be destroyed prior to pass two. 

Machine operation codes, pseudo-operations, and MACRO names are all carried in the opera
tion table during pass one. This implies that all operation codes, machine or pseudo, along 
with MACROS are looked up during pass one, and that the general operation table is destroyed 
at the end of pass one. The literal pool is completely expanded during pass one, avoiding dupii
cates (except for V, M, and nH literals where n is greater than 12 ), which are assigned unique 
locations in pass one and will be later expanded in pass t\vo. Double-precision numbers in the 
literal pool start at even locations. 

At the end of pass one, the symbol table is sorted; and a complete readjustment of symbols by 
their relative location counter is performed. The preface card is then punched. 

All instructions are generated during pass two. This is accomplished by performing a scan 
over the variable fields and address modifications. This information is then combined with the 
operation code from pass one by using a Boolean OR function. Apparent errors are flagged. 

The symbolic cross-reference table is created as the variable fields are scanned and expanded. 
The final edit of the symbol table is done at the end of pass two. Generative pseudo-operations 
are processed with the conversion being done in pass two. Pseudo-operations are available to 
control punching of binary cards and printing images of source cards. Images of source cards 
in error will be printed, regardless of control pseudo-operations. Multidefined symbols, un
defined symbols, and error conditions will be noted at the end of the printer listing. 

The following is a summary of Pass 1 and Pass 2 functions. 

PASS 1 

1. Location symbols are placed in the symbol table along with their definitions. 

2. The operation code is looked up in the operation table and the operation control 
word passed on to Pass 2. Pseudo-operations requiring Pass 1 processing are 
processed. 

3. Literals that can be evaluated in Pass 1 are converted to binary and placed in 
the literal pool. Literals M, V, and nH, where n > 12, are not processed until 
Pass 2. 

4. Macro definitions are entered in the macro prototype table. 

5. Card images required by DUP and macro expansions are produced. 

©©~rPffiu~OO[L~~t®®®-------------

IV-88 



6. Tables are formed from information supplied by certain pseudo-operations (USE, BEGIN, 
SYMDEF, BLOCK, LIT). 

Housekeeping at End of Pass 1: 

7. The USE tables are processed in conjunction with the BEGIN information to determine 
the origin of each USE. 

8. The location of the literal pool, the error linkage and the program break are computed. 

9. The symbol table is sorted, the symbols are given their true definitions based on the 
origin of their associated USE and the table is checked for multidefined symbols which 
are flagged. 

10. The LIT table is processed to set the origins of each literal pool based on the origin 
of the USE under which the LIT occurred. 

11. The values for the preface are computed. 

12. Pass 2 is called. 

PASS 2 

1. The preface is punched and listed for relocatable programs. 

2. The binary deck and iisting are produced using information from the mt.er mediate file 
and the tables built by Pass 1. 

3. The symbolic reference table is formed. 

©©~r?ffiuurnuJ~~ 1 ®®®---------------------------

IV-89 



CORE MEMORY ALLOCATION FOR GMAP 

Pass 1 Pass 2 Overlay 

Sto ag nd r ea 
subroutines 
common to both 
Pass 1 and Pass 2 

Pass 1 Subroutines 

Pass 1 

Pseudo-Operation Processors 

\j 
\ 

~ 

Operation Table 

Macro Prototypes 
and Expansions 

+ 
t 

Symbol Table 

SYMDEF Table 

Literal Pool 

PASS 1 CONTROL LOGIC 

v 
I 
I 

I Pass 2 Subroutines 

Pass 2 

Pseudo-Operation Processors 

Symbolic Reference 
Table 

* + 
Sorted 
Symbol Table 

SYMDEF Table 

Literal Pool 

1. Initialize GMAP table locations and I/O routines. Read GMAP system macros. 

2. Read a record; go to step 9. 

3. Hnot in DUP mode, go to step 7. 

4. Hnot the first time through the range of the DUP, go to step 6. 

5. Save record for succeeding times through DUP range. Strip location symbol if not a 
SET and go to step 7. 

6. Write intermediate file, retrieve next record from those previously saved and go to 
step 10. 

7. Write intermediate file. 

8. H expanding a macro, get next record from macro processor and go to step 10. 

9. Move record into working storage and read next record. 

10. H any records are to be skipped, reduce count and go to step 9. 

©@~[pfil[Y~[fil[L~~J®®®-------------

IV-90 



11. Set up controls for processing the record. 

12. H processing a macro prototype, pack record in prototype storage and go to step 3. 

13. Look up operation code and, if a pseudo-operation, go to appropriate processor. 

14. Enter location symbol in the symbol table. 

15. Increase location counter, process literal if it exists and go to step 3. 

PASS 2 LOGIC 

1. Punch system macros, if required. 

2. List and punch preface, if required. 

3. Read a record from the intermediate file. 

4. Hnot a BCD card to be punched by the DCARD pseudo-operation, go to 6. 

5. Punch and list BCD card and go to 3. 

6. If pseudo-operation, go to appropriate processor. 

7. Check location symbol for phase error. 

cs. If a literal is present, get address and go to 12. 

;J, li I/O-type in::;tructioa, go to 11. 

10. Evaluate symbolic index, if required. 

11. Evaluate address field, if present. 

12. Assemble operation code. 

13. Evaluate tag field, if present. 

14. List and punch instruction; increase location counter. 

15. If literal is not to be assembled at this point, go to 3. 

16. Assemble required literal and go to 3. 

17. Assemble I/0-type instruction word and go to 14. 

1~ rf11 l.'v1 loJ 17117 n ~ n IS~ 11 r~ rT11T1 
\V \V lMJ Lf LiJ u u ~ L.!:iLSc:'..J u \.V \.V \.V ------------------------------

IV-91 



I. RELOCATABLE AND ABSOLUTE EXPRESSIONS 

Expression evaluation can result in either relocatable or absolute values. There are three types 
of relocatable expressions: program relocatable (R), BLANK COMMON relocatable (C), and 
LABELED COMMON relocatable (L). The rules by which the assembler determines the reloca
tion validity of an expression are of necessity a little complex, and the presence of multiple 
location counters compounds the problem somewhat. Certain of the principle pseudo-operations 
impose restriction as to type of expression that is permissible; these are described separately 
under each of the affected pseudo-operations. These are: 

EQU 
SET 
MIN 

MAX 
BOOL 
BSS 

BFS 
ORG 
BEGIN 

LOC 

The following ten rules summarize the conditions and restrictions governing the admissibility 
of relocation: 

1. The sum, difference, product, or quotient of two different types of relocatable elements 
is not valid. 

2. An absolute element is an absolute expression. 

3. A relocatable element is a relocatable expression. 

4. An expression containing only absolute terms is absolute. 

5. The difference between two relocatable elements is an absolute expression. 

6. The asterisk (*) symbol (implying current location counter) is a relocatable element. 

7. The sum, product. or quotient of two relocatable elements is not valid for relocation. 

8. The product or quotient of an absolute element and a relocatable element is not valid. 

9. The complement of a relocatable element is not valid. 

10. The sum or difference of a relocatable element and an absolute element is relocatable. 

These ten rules are not a complete set of determinants but do serve as a basis for establishing 
a method of defining relocation admissibility of an expression. 

Let Rr denote a program-text relocatable element, Re denote a BLANK COMMO::"J element, and 
R1 denote a LABELED COMMON element. Next, take any expression and process it as follows: 

1. Replace all absolute elements with their respective values. 

2. Replace any relocatahle element with the proper Ri, where i = r, c, or 1. This yields 
a resulting expression involving only numbers and the terms Rr, R1 , and Re . 

3. Discard all terms in which all elements are absolute. 

©@~[?filu~W[L~~I®®®-------------

IV-92 



4. Evaluate the resulting expression. If it is zero or numeric, the original expression is 
absolute; if it is explicitly Rr, Re, or R1, then the original expression is normal relo
catable, BLANK COMMON relocatable, or LABELED COMMON relocatable, respec
tively. 

5. If the resulting expression is not as given in 4 above, it is a relocation error and/or 
an invalid expression. 

In the illustrative examples following, assume ALPHA and BET A to be normal relocatable ele
ments (Rr), GAMMA and DELTA to be BLANK COMMON relocatable elements (Re), and 
EPSILON and ZETA to be LABELED COMMON relocatable elements (RI). Let N and K be ab
solutely equivalent to 5 and 8, respectively. 

1. 4*ALPHA-7-4*BETA 
reduces to 
4*Rr - 4*Rr = 0, 
thus indicating a valid absolute expression. 

2. N* ALPHA+ 8*GAMMA + 21 - K*DELTA 
reduces to 
5*Rr+8*Rc-8*Rc = 5*Rr, 
thus indicating an invalid expression. 

3. EPSILON+N-ZETA 
reduces to 
Rl +5-Rl = 5, 
thus indicating a valid absolute expression. 

4. ALPHA-GAMMA+DELTA+7 
reduces Lo 

Rr-Rc+Rc = Rr, 
thus indicating a valid relocatable expression. 

{,;\ {,;\ nn r;;\ n c;-?n 1o1n irJ!n:\ /) r;:::i In\ In\ 

U8®L~~AJ l? ill U U L§5 ~lS~ ii ®WW -----------------------------

IV-93 





V. PROGRAMMING EXAMPLES 

EXAMPLE 1: ACCUMULATIVE SUMMATION 

Two 100 word blocks of variables, ai and bi, start at locations A and B, respectively. It is 
required to compute: 

100 
a. I a. 

i=l 
1 

store in SA 

100 
b. '\' ia. u 1 

i=l 
store in SIA 

100 
c. ) b. 

Li 1 
i=l 

store in SB 

100 
u. \' ib. L 

i-==-1 
1 

:::>tore in SIB 

STZ SIA Clear for sum IA(I) 

STZ SIB Clear for sum IB (I) 

LDA =cO, DU Clear for sum A(I) 

LDQ =O, DU Clear for sum B (I) 

LDXl =100, DU Set Index to 100 

LOOP ADA A-1, 1 Add A(I) 

ASA SIA Add sum of A(I) 

ADQ B-1, 1 Add B(I) 

ASQ SIB Add sum of B (I) 

SBXl =1, DU Decrement Index 

TNZ LOOP Continue if I not zero 

STA SA Store sum of A(I) 

STQ SB Store sum of B(I) 

The four summations are formed simultaneously in a loop controlled by index register 1. 
Problem a is accumulated in the A register. Problem c is accumulated in the Q register. 
Problem b is accumulated in memory location SIA. Problem d is accumulated in memory 
location SIB. 

©©~l?muurn~~~1®®®-----------------------

V-1 



The algorithm for problems b and c is to add a 10o to SIA 100 times, add a 99 to SIA 99 times, 
etc. This is accomplished by accumulating the summation of the a. 's starting with a100 and 
adding the partial summation to SIA each time through the loop. This algorithm comes about 
by expanding the summation: 

100 
\' · · 2 · " · · 99a ' 1 "Oa /..__; lai =-- al T a2 T .:>a3 T • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 99 T 1.V • 100 

i=-1 

=- alOO + (alOO + a99) + (alOO + a99 + a98) + · · · · · · · · · · · · · · · · · · · · · · · • 

EXAMPLE 2: CHARACTER MOVEMENT 

At A and following is a string of up to 15 six-bit characters ending in a slash, /. The number 
of characters before the slash is unknown. Move the string of characters excluding the slash 
to location B and following. Store the number of characters moved in an index register. 

LOOP 

Al 

Bl 

A2 

SLASH 

A 

A+I 

A+ 2 

LDA 

CMPA 

TZE 

STA 

TRA 

LDA 

SBA 

EAXl 

TALLY 

TALLY 

TALLY 

BOOL 

Al, SC Load char. in A reg. , right adjusted 

SLASH,DL Is char. a SLASH? 

*+3 Yes, exit LOOP 

Bl, SC Store char. in B block 

LOOP Return to get next char. 

=15, DL Max. char. count = 15 

A2,CI Char. count = 15 - tally 

O,AL Move count to XRl 

A, 15, 0 IND word - A Block 

B, 15, 0 IND word - B Block 

Bl, 0, 4 IND word - char. TALLY 

61 SLASH= 61,GE char. set 

This example illustrates both forms of character address modification, Sequence Character, 
and Character from Indirect. The Sequence Character modification is used to obtain each 
character from the A block and to store each non-slash character in the B block using indirect 
words Al and Bl respectively. The Character from Indirect modification is used to obtain the 
tally from the Al indirect word which tells how many characters are left in A that have not 
been examined. 

©@~[pfillJ~OO[L~~c®®®-------------

V-2 



EXAMPLE 3: LIST COMPARISON 

A table of 100 data words is stored in locations A to A + 99. Find the first number in the table 
whose value is between two numbers stored in locations L (lower limit) and U (upper limit). 

LDA 

LDQ 

LDX7 

RPT 

CWL 

TNZ 

LDA 

L 

u 
=0,DU 

100, 1, TZE 

A, 7 

NONE 

-1,7 

Lower limit in A w~g, 

Upper limit in Q reg. 

Initialize XR7 

Repeat next inst. 100 times, 
increment address by 1, 
terminate on hit 

Compare table entries with limits 

None within limits 

Hit in A register 

This example shows the technique used with the repeat instruction. Index register 7 contains 
the address of the next entry in the table to be compared. Using XR7-1 as the address of the 
successful hit, the successful hit is loaded into the A Register. The terminate condition 
specified in the Repeat Instruction (TZE) is the zero indicator condition for a successful 
comparison within the limits set in the A and Q registers. 

EXAMPLE 4: GRAY CODE TO Bi NARY 

An unsigned, Gray-coded binary integer is stored in bits 0 - 19 of location DATA. Extract the 
word, convert it to binary and store it as an integer in location DAT Al. 

LDA 

ARL 

GTB 

STA 

DATA 

16 

DAT Al 

Load Data 

Shift Integer Right 

Convert to Binary 

Store converted integer 

The logical shift to the right brings the integer to the lower accumulator and fills the remaining 
16 bits with O. The conversion is done in one step with the Gray to Binary instruction. 

©®~~illu~WlU~~t ®@@ _____________________ _ 

V-3 



EXAMPLE 5: BINARY TO BINARY CODED DECIMAL (BCD) 

This example illustrates a method of converting a numbeJ' from binary to BCD. The example 
converts a number that is in the range of -106 + 1 to +10 -1, inclusive. 

01 

02 

O:i 

04 

05 

06 TAB 

LDX2 

LDA 

RPT 

BCD 

STQ 

DEC 

DEC 

0,DU Place zeros in X2 

x Load accumulator with value to be 
converted 

6, 1 Repeat 6 times, increment by 1 

TAB,2 Divide by TAB, TAB+ 1, etc. 

y Store converted number in Y 

800000,640000,512000,409600,327680, 

262144 

Steps 03 and 04 perform the conversion of the binary number in the accumulator to the Binary
Coded Decimal equivalent. Step 03 will repeat step 04 six times. It will also increment the 
contents of index register 2 by one after each execution. 

The BCD instruction, step 04, is designed to convert the magnitude of the contents of the 
accumulator to the Binary-Coded Decimal equivalent. The method employed is to effectively 
divide a constant into this number, place the result in bits 30-35 of the quotient register, and 
leave the remainder in the accumulator. The execution of the BCD instruction will then allow 
the user to convert a binary number to BCD, one digit at a time, with each digit coming from 
the high-order part of the number. The address of the BCD instruction refers to a constant 
to be used in the division, and a different constant would be needed for each digit. In the 
process of the conversion, the number in the accumulator is shifted left three positions. The 
C (Q)

0
_35 are shifted left 6 positions before the new digit is stored. 

In this example, the constants used for dividing are located at TAB, TAB + 1, TAB + 2, ..... , 
TAB+ 5. If the value in X were 0000005222418 , the quotient register would contain 
010703020107 8 at the completion of the repeat sequence. Step 05 stores the quotient register 
in Y. 

The table in Appendix A gives the conversion constants to be used with the binary to BCD 
instruction. Each vertical column represents the set of constants to be used depending on the 
initial value of the binary number to be converted to its decimal equivalent. The instruction 
is executed once per digit, using the constant appropriate to the conversion step with each 
execution. 

An alternate use of the table for conversion involves the use of the constants in the row cor
responding to conversion step 1. If after each conversion, the contents of the accumulator 
are shifted right 3 positions, the constants in the conversion step 1 row may be used one at a 
time in order of decreasing value until the conversion is complete. 

V-4 



EXAMPLE 6: BCD ADDITION 

This example illustrates the addition of two words containing BCD integers. The example 
limits the result to 999999. Add the BCD numbers in locations A and B and store the result 
;~ 0 
..Ll.l \....I. 

01 

02 

03 

04 

05 

06 

07 

08 

09 

Line 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

LDA 

ADLA 
A T"\.T A 

1"\.LJL.f"\. 

STA 

ANA 

ERSA 

ARL 

NEG 

ASA 

v 

00 
01 
02 
03 
04 
05 
06 
07 
10 
11 
12 
13 
14 
15 
16 
17 
20 
21 
22 
--

A 

B Compute A + B 

=0666666666666 Add octal 66 to each digit to force 
carries 

c 
=0606060606060 Extract octal 60 from each non

carry 

C Subtract octal 60 from each non
carry 

3 Subtract octal 

06 from each 

C Non-carry 

ADDITIONAL RESULTS 

w x 

66 60 
67 60 
70 60 
71 60 
72 60 
73 60 
75 60 
75 60 
76 60 
77 60 
00 00 
01 00 
02 00 
03 00 
04 00 
05 00 
06 00 
07 00 
10 00 
11 00 

y 

6 
7 

10 
11 
12 
13 
14 
15 
16 
17 

0 
1 
2 
3 
4 
5 
6 
7 

10 
11 

z 
,----------------, 

00 
01 
02 
03 
04 
05 
06 
07 
10 
11 
00 
01 
02 
03 
04 
05 
06 
07 
10 
11 

Step 01 places the number in A into the accumulator. 

Step 02 adds the number in B to the accumulator, Column V in the table, following, shows the 
possible results for any digit. It should be noted that there are 19 possible results, indicated 
by lines 0-18. 

©©~[?illuuw[L~~ ti®®® ____________________ _ 

V-5 



Step 03 forces any carries into the units position of the next digit. Lines 10-18 of Column V 
contain the sums that will carry into the next digit. Column W contains the 20 possible results 
for each digit position. The additional possibility (line 19) arises from the fact that there can 
be a carry of one into a digit. 

Step 04 stores the intermediate result in C. 

Step 05 extracts an octal 60 from each non-carry digit. The results are indicated in column X. 
The digits that did not force a carry (lines 0-9) result in an octal 60, the digits that had a carry 
into the next digit (lines 10-18) result in 00. 

Step 06 performs an EXCLUSIVE OR of the contents of the accumulator with the contents of C. 
This in effect subtracts octal 60 from each digit that did not have a carry (1ines 0-9). The 
results are indicated in column Y. 

Step 07 shifts the octal 60's to the right three places. 

Step 08 negates the contents of the accumulator. 

Step 09 is an add to storage the contents of the accumulator to the contents of C. This in effect 
subtracts a 06 from each digit that did not have a carry, the results of which are indicated in 
Column Z. 

EXAMPLE 7: BCD SUBTRACTION 

The BCD number in B is subtracted from the BCD number in A and the result is stored in C. 
The contents of A must be equal to or greater than the contents of B. 

01 LDA A 

02 SELA B Compute A-B 

03 STA c 
04 ANA =0606060606060 Extract octal 60 from each 

borrow 

05 ERSA c Subtract octal 60 from each 
borrow 

06 ARL 3 l Subtract octal 
07 NEG 06 from each 

08 ASA c Borrow 

©@~[pffiu~rn~~~t®®®-------------

V-6 



SUBTRACTION RESULTS 

Line w x y z 

0 11 0 11 11 

1 10 0 10 10 
<) (\1"7 0 07 07 ,;.. VI 

3 06 0 06 06 
4 05 0 05 05 
5 05 0 04 04 
0 V0 v 

{)<) ("\':) 
Vu Vu 

7 06 0 02 02 
8 01 0 01 01 
9 00 0 00 00 

10 77 60 17 11 
11 76 60 16 10 
12 75 60 15 07 
13 74 60 14 06 
14 73 60 13 05 
15 72 60 12 04 
16 71 60 11 03 
17 70 60 10 02 
18 67 60 7 01 
19 66 60 6 00 

Step 01 loads the accumulator with the contents of A, 

Step 02 subtracts the contents of B from the accumulator. The possible results for each digit 
are indicated in Column W of the table that is included with this example. 

Step 03 stores the intermediate result in C. 

Step 04 extracts an octal 60 from each digit that required a borrow. This will leave an octal 
60 in each digit position where there was a borrow. The possible results of this instruction 
are indicated in Column X, lines 0-19 (10-19 refer to those which result in octal 60). 

Step 05, an EXCLUSIVE OR to storage, in effect subtracts the octal 60's in the accumulator 
from the corresponding digit in C. The possible results for each digit are displayed in Column Y. 

Step 06 shifts the octal 60's in the accumulator right three places. 

Step 07 negates the contents of the accumulator. 

Step 08, an add to storage, is in effect a subtraction of 06 from each digit that required a 
borrow, the result being placed in C. Column Z of the table reflects the possible results for 
each digit. 

©©~~illuuwoJ~~J®®®---------------------

V-7 



EXAMPLE 8: FIXED-POINT INTEGER TO FLOATING-POINT 
CONVERSION 

The integer to be converted is in location M 

TOV 1, IC Reset overflow indicator 

LDA M Load integer in A reg. 

LDQ ,DL Clear Q reg. 

LDE =35B25, DU Set exponent to 35 

FNO Normalize 

The Floating Normalize instruction completes the conversion by shifting the AQ left while 
adjusting the exponent until C (AQ1) = 1. 

For example, if the contents of M = 0000000000028 = +2 10 , then the contents of the floating 
poin~register (EAQ) will be E = +2 10 , AQ = 2000000000000000000000008 = +O. 12 or EAQ = +2. 

EXAMPLE 9: CHARACTER TRANSLITERATION 

This illustrates a method of transliterating each character of a card image that has been 
punched in the FORTRAN Character Set to the octal value of the corresponding character in 
the General Electric Standard Character Set. There are 48 characters in the FORTRAN Set 
and 64 characters in the General Electric Standard Character Set. Each character that is 
punched invalidly (not a standard punch combination in the FORTRAN Set) is converted to a 
blank. The card is stored in the first 80 character positions of block location IMAGE. 

The table, TABLE, is 64 locations long. The character in each location is a General Electric 
standard character that corresponds to a FOR TRAN character in the following manner. The 
relative location of a particular character to the start of the table is equal to the binary value 
of the corresponding FORTRAN character. For example, an A punched in the FORTRAN 
Character Set has the octal value 21=17 10. The relative location 17 to TABLE contains an A 
in the General Electric Standard Character Set. A 3-8 punch in the FORTRAN Set represents 
an =character. The 3-8 punch would be read as an octal 13 (11 10). The relative location 
11 to TABLE contains an octal 75 (see line 21) which represents the =character in the General 
Electric Standard Character Set. 

Note: Character transliteration is normally handled by the M-605 software package. 

01 LDA TALLYl Initialize TALLY word 

02 STA TALLY2 

03 LOOP LDA TALLY2, CI Pick up character to be trans -
lite rated 

04 LDQ TABLE,AL Load QR with transliterated 
character 

©@~[?ffilJ~OO[lJ~~I®®®-------------

V-8 



05 

06 

07 

08 

09 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

~u 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

Ti\..LLYl 

TALLY2 

IMAGE 

TABLE 

STQ 

TTF 

TALLY 

ZERO 

BSS 

OCT 

OCT 

OCT 

OCT 

OCT 

OCT 

OCT 

OCT 

OCT 

OCT 

OCT 

OCT 

OCT 

OCT 

OCT 

OCT 

OCT 

OCT 

OCT 

OCT 

OCT 

OCT 

OCT 

OCT 

OCT 

OCT 

OCT 

OCT 

OCT 

TALLY2,SC 

LOOP 

IMAGE; 80, 0 

14 

0 

1 

2 

3 

4 

5 

6 

7 

10 

11 

20 

75 

57 

20 

20 

20 

20 

21 

22 

23 

24 

25 

26 

27 

30 

31 

60 

33 

55 

V-9 

Store back on card image 

If tally has not run out, continue 
LOOP 

3-8 Punch = in FOR TRAN set 

4-8 Punch ' in FORTRAN set 

12 punch + in FORTRAN set 

12-3-8 punch . in FORTRAN set 

12-4-8 punch) in FORTRAN set 



39 OCT 20 

40 OCT 20 

41 OCT 20 

42 OCT 20 
A<) OCT ;1 1 
<±t.) "X.L 

44 OCT 42 

45 OCT 43 

46 OCT 44 

47 OCT 45 

48 OCT 46 

49 OCT 47 

50 OCT 50 

51 OCT 51 

52 OCT 52 11 punch - in FORTRAN set 

53 OCT 53 11-3-8 punch $ in FORTRAN set 

54 OCT 54 11-4-8 punch * in FOR TRAN set 

55 OCT 20 

56 OCT 20 

57 OCT 20 

58 OCT 20 

59 OCT 61 0-1 punch / in FORTRAN set 

60 OCT 62 

61 OCT 63 

62 OCT 64 

63 OCT 65 

64 OCT 66 

65 OCT 67 

66 OCT 70 

67 OCT 71 

68 OCT 20 

69 OCT 73 0-3-8 punch , in FORTRAN set 

70 OCT 35 0-4-8 punch ( in FORTRAN set 

71 OCT 20 

72 OCT 20 

73 OCT 20 

©@~[?ill1J~[fil[L[~~I®®®-------------

V-10 



Steps 01 and 02 initialize the indirect word TALLY2. 

Step 03 picks up the character to be transliterated by referencing the word TALLY2 with the 
Character from Indirect (CI) modifier. This will place the character specified by bits 33-35 
of TALLY2 from a location specified by bits 0-17 of TALLY2 into the accumulator, bits 
29-35. Bits 0-28 of the accumulator will be set to zero. 

Step 04 picks up the corresponding Generai Eiectric standard character fron1 the address 
TABLE modified by the contents of accumulator, bits 18-35. 

Step 05 places the transliterated character back in the card image where it was originally 
picked up. The Sequence Character (SC) modifier increments the character specified in bits 
33-35 of the word TALLY2. 

Each time the character position becomes greater than 5, it is reset to zero; and the address 
specified in bits 0-17 of TALLY2 is incremented by one. The tally in bits 18-29 of the same 
word is decremented by 1 with each SC reference. Whenever a tally reaches zero, the Tally 
Runout Indicator is set ON. 

Step 06 tests the Tally Runout Indicator. If it is OFF, the program transfers to LOOP; if not, 
the next sequentb11 instruction is taken. 

EXAMPLE 10: TABLE LOOKUP 

This example illustrates a method of searching an unordered table for a value equal to the 
value in the accumulator. Prior to entering the routine given below, the user must load the 
accumulator with the search argument, load the quotient register with the size of the table to 
be searched (the size should be scaled at binary point 25), and initialize index register 1 with 
the first location of the table to be searched. The user enters the routine by executing a 
transfer and set index register 2 (TSX2) to the symbolic location TLU (see step 05, below). 
Return from the routine is to the instruction following the TSX2. The Zero Indicator will tell 
the user whether or not a match has occurred. Zero Indicator ON indicates a match; Zero 
Indicator OFF indicates no match. If a match was made, the contents of index register 1 will 
be W locations (W being the increment specified in the RPTX command, step 15) higher than 
the location of the equal argument. 

01 * CALLING SEQUENCE IS: 

02 * LDA ITEM Search item 

03 * LDQ SIZE Number of table entries---at B25. 

04 * LDXl FffiST,DU Location of first search word in table 
(\ r:: * 'T'l;;!V') TLU Call table lookup subroutine vu .LU..l~.(.j 

06 * TZE FOUND Transfer if search item is in table, or 

07 * TNZ ABSENT Transfer if search item is not in table 

08 * 

©@rDJ[pffilJ~ffi(lJ~~I®®®-------------

V-11 



09 * IF IN TABLE, C(Xl)-W WILL BE THE LOCATION OF THE LAST WORD. 

10 * OTHERWISE, C(Xl)-W WILL BE THE LOCATION OF THE LAST SEARCH 

11 * WORD IN THE TABLE. W IS THE NUMBER OF WORDS PER ENTRY. 

12 TLU EAXO 64,QL Pickup size (MOD 256) and TZE-BIT 

13 SBLQ 1 ()')Li nT Size = Size-1. ..&...V~ ..&.. ' .l...J.LJ 

14 TMI '2 Exit if size was 0--empty table 

15 TLUl RPTX ,W Note that 0 represents 256 (MOD 256) 

16 CMPA '1 Perform table lookup 

17 'T''7V <) Exit if search item is in table .J.. LJ.J..:.J '.:.. 

18 SBLQ 1,DU Size = Size-256 

19 TPL TLUl Continue table lookup if more entries 

20 TRA '2 Exit--Search item is not in table 

Steps 01-11 are comment cards. 

Step 12 places the contents of the lower half (bits 18-35) of the quotient register plus 64, in 
index register 0. The number 64, in effect, sets the TZE terminate repeat condition on. The 
instruction also places the last 8 bits of the size of the table in index register 0, bits 0-7. 
Thus if the size of the table is a multiple of 256 words, zeros will be loaded into bits 0-7 of 
index register 1. Zeros in those bit positions will cause the repeat to execute 256 times. If, 
however, the size of the table to be searched is of the form 256n+m, where n > 0, and 
0 < m < 256, the m would be placed in bits 0-7 of index register O. This wiliCause the repeat 
instruction to be executed a maximum of m times on the first pass through. 

Step 13 subtracts 1024 from the quotient register. This, in effect, subtracts 1 from the size 
of the table to be searched. The subtracting of 1 becomes meaningful in two places: (1) it 
provides a test to be sure the table is not zero words long (see step 14) and (2) if the table is 
a multiple of 256 words long, it effectively subtracts 1 from bits 0-17 (a look-ahead to steps 
18 and 19 points out the importance of this). 

Step 14 causes the routine to return to the main program if the size of the table was zero. 

Step 15, an RPTX, executes step 16 a number of times equal to the contents of index register 0, 
bits 0-7, at the start of the instruction execution. Each time step 16 is executed, the contents 
of the accumulator (the search argument) are compared with the contents of the location 
specified by index register 1. At the same time, index register 1 is incremented by W as is 
specified in the repeat instruction; and the contents of index register 0, bits 0-7, are decre
mented by 1. The repeat sequence terminates when the compare causes the Zero Indicator to 
be set or when bits 0-7 of index register 0 are set to zero. 

Step 17 tests the Zero Indicator and returns to the main program if it is set. It should be noted 
that index register 1 will be set W locations higher than when the equal argument was found 
because of the sequence of events described above. 

©@~[pfil1J~rn~~~1®®®-------------

V-12 



If the Zero Indicator was not set by step 16, then step 18 will be executed. This 
instruction subtracts 1 from bits 0-17 of the quotient register. In effect, this is subtracting 
256 from the size of the table. The size of the table can be expressed in the form 256n+m. 
If m=O and n=l, then the contents of the quotient register would also go zero at this point. 
This is because step 13 would have caused a borrmv of l from n \Vhen m equals zero. Further 
inspection of these instructions will reveal that positive values of n and m, other than those 
expressed above, '.vill only cause the routine to loop until the contents of the quotient register 
are reduced to a negative value. 

Step 19 transfers control to step 15 if the contents of quotient register remained positive. n 
the quotient register became negative, step 20 is executed and the routine returns to the main 
program. 

It should be noted that when control is transferred back to step 15, index register 0, bits 0-7, 
contains zeros (causes the repeat to be executed a maximum of 256 times); and index register 1 
contains the address of the next location in the table that is to be searched. 

V-13 





APPENDIX A 

BINARY TO BCD CONVERSION 

©©~~filu~rn~~~t®®®-----------------------------------





L / L / / / / / / / _/ 

I 
8 x 109 

s ' rn
8 I s " rn' 8 x 106 

8 x 105 
8 x 104 

8 x 103 
8 

? 
8 x10

1 LJ x 10-

9 
x 108 ? - 9 

8
2 

x 105 ') s- s- X 10 I I 8- X 106 
8

2 
x 104 s2 

x 103 8 
2 

x 102 
8

2 
x 101 8-

83 x 10 7 
83 x 106 83 x 105 83 x 104 

83 x 103 s3 x 10 2 
83 x 101 83 

84 x 106 
8

4 
x 105 8

4 
x 10

4 
8

4 
x 103 84 x 102 

84 x 101 84 

I 

85 x 105 85 x 104 85 x 103 85 x 10
2 

85 x 10
1 85 

86 x 104 
86 x 103 8

6 
x 10

2 
8

6 
x 101 86 

8 7 x 103 s7 
x 102 

8 
7 

x 10
1 8 7 

88 x 10 2 
88 x 10 1 88 

89 x 10 1 89 

10 810 

The values in the above table arc the conversion constants to be used \Vith the Binary to BCD 
instruction. Each vertical column represents the set ot constants to be used depending on the 
initial value of the binary number to be converted to its decimal equivalent. The instruction is 
executed once per digit using the constant appropriate to the conversion step with each execution. 

An alternate use of the table for conversion involves the use of the constants in the row corres
ponding to conversion step 1. If, after each conversion, the contents of the Accumulator are 
shifted right three places, the constants in the conversion step one row may be used one at a 
time in order of decreasing value until the conversion is complete. 

Refer to page V-4 for a programming example of this conversion. 

©®~lrillVUW~~~c®®®----------------

A-1 





APPENDIX B 

GRAY CODE TO 

BINARY CONVERSION 

{;:\. {,;\ nn Rn c:;-?n fO) n r;::::i~ I'> I~ r.;-, r.;-, 

l0ll!J~tJlrill U U~lsl5~&'1 ~®®------------------





The instruction GTB (gray to binary) will convert the gray code into the binary equivalent shown 
below: 

Gray Code Binary Egui valent Decimal Eguivalent 

0 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 1 1 

0 0 1 1 0 0 1 0 2 

0 0 1 0 0 0 1 1 3 

0 1 1 0 0 1 0 0 4 

0 1 1 1 0 1 0 1 5 

0 1 0 1 0 1 1 0 6 

0 1 0 0 0 1 1 1 7 

1 1 0 0 1 0 0 0 8 

1 1 0 1 1 0 0 1 9 

1 1 1 1 1 0 1 0 10 

1 1 1 0 1 0 1 1 11 

1 0 1 0 1 1 0 0 12 

1 n 1 () l 1" 
1-0 

l 0 0 1 1 1 0 14 

1 0 0 0 1 1 1 1 15 

Codes of up to 36 bits in length can be accommodated. 

Gray code is a cyclic binary code in which only one bit at a time changes as the total number 
increases or decreases. Analog to digital angular shaft encoders often employ Gray code 
devices. This technique results in less errors for angular digital read-outs. The GTB instruc
tion thus facilitates the real-time data processing of radar angle data and other devices that use 
Gray code encoders. 

The Gray to binary conversion is defined by the following algorithm, where R. and S. denote the 
contents of bit positions i of the A Register before and after the conversion: 1 1 

S R 
0 0 

S
1
. (R. AND S. 

1
) OR (R. AND S. 1) for i = 1, 2, 3 ..•. 35 

I I- 1 I-

Refer to page V-3 for a programming example of this conversion. 

©©~l?ffiuurn~~~; ®®®--------------------

B-1 





APPENDIX C 

M-605 STANDARD 

CHARACTER SET 

©©~~muurn~~~t®®®---------------





Standard 1' 

Character 
Q~+ 
U't,..,1,.- I 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
[ 
# 
@ 
: 
> 
'? 

f\-lnnl-\ 

A 
n 

c 
D 
E 
F 
G 
H 
I 
& 

J 
( 
< 
\ 

GE-Internal 
Machine 

00 0000 
00 0001 
00 0010 
00 0011 
00 0100 
00 0101 
00 0110 
00 0111 
00 1000 
00 1001 
00 1010 
00 1011 
00 1100 
00 1101 
00 1110 
00 1111 
1\1 f\{\I\(\ 

01 0001 
I\ 1 11111 II 

01 0011 
01 0100 
01 0101 
01 0110 
01 0111 
01 1000 
01 1001 
01 1010 
01 1011 
01 1100 
01 1101 
01 1110 
01 1111 

M-605 STANDARD CHARACTER SET 

Hollerith 
Octal Card 

'1'1 Standard 1' GE-Internal 
Character Machine 

II Set I Code Code Code 

00 0 T 10 0000 
01 1 J 10 0001 
02 2 K 10 0010 
03 3 L 10 0011 
04 4 M 10 0100 
05 5 N 10 0101 
06 6 0 10 0110 
07 7 p 10 0111 
10 8 Q 10 1000 
11 9 R 10 1001 
12 2-8 - 10 1010 
13 3-8 $ 10 1011 
14 4-8 * 10 1100 
15 5-8 ) 10 1101 
16 6-8 ~ 10 1110 
17 /-S 10 1111 
•)Ii / l I , ·- l \ 

" ' ' { ~ { ~ { ~ : . 
\ ,_Jit_t..t.l!~/ 

21 12-1 I 11 0001 

-- - - -

I 

_....._ _....._ \j v _....._ '~ 

23 12-3 T 11 0011 
21 12-4 u 11 0100 
25 12-5 v 11 0101 
26 12-6 w 11 0110 
27 12-7 x 11 0111 
30 12-8 y 11 1000 
31 12-9 z 11 1001 
32 12 4--- 11 1010 
33 12-3-8 

' 
11 1011 

34 12-4-8 (" 11 1100 ( 

33 12-5-8 - 11 1101 
36 12-6-8 " 11 1110 
37 12-7-8 ' 11 1111 

C-1 

Octal 

40 
41 
42 
43 
44 
45 
46 
47 
50 
51 
52 
63 
54 
- -o:J 
56 
- -
.)/ 

·-·· 
fi 1 

~-

63 
64 
65 
66 
67 
70 
71 
72 
73 
74 
75 
76 
77 

Hollerith 
Card 
Code 

11-0 
11-1 
11-2 
11-3 
11-4 
11-:'J 
11-6 
11-7 
11-8 
11-9 
11 
11-3-8 
11-4-8 
11-5-8 
11-6-8 
11-/-'-1 
1 : .. - v 

()-1 

v -
0-3 
0-4 
0-;) 
0-6 
0-7 
0-8 
0-9 
0-2-8 
0-3-8 
0-4-8 
0-5-8 
0-6-8 
0-7-8 





APPENDIX D 

PSEUDO-OPERATIONS 

BY FUNCTIONAL CLASS 

WITH PAGE REFERENCES 

©©~l?mvurn~~~1®®®--------------





T"\C1T:"'TT~rt. rt.Tl!.'T> A 'T"Trt.l\T 
ro£.i uuv-vr D.1.\.rl. i .iv.L~ 

MNEMONIC 

rirt.l\T'T"DflT DC'VTTT\fl nnvD A'T'Tf\l\TQ 
vV.L~ J. .l.\.V.LJ r UD UJ.JV-'-.J.L .LJ.1.\..0. .I. .l.'-.J.L•U 

r..rHn A TT rt.l\T !rt.DD ur... .11"\..L.Li V.L'li/ vr J.' 

EJECT 
LIST ON/OFF 
REM 

* 
LBL 
PCC ON/OFF 
REF ON/OFF 
PMC ON/OFF 
TTL 
TTLS 
INHIB ON/OFF 
ABS 
FUL 
TCD 
PUNCH ON/OFF 
DC ARD 
f,'l\TT\ 
1. ... 1'\.L)' 

USE 
BEGIN 
ORG 
LOC 

PSEUDO-OPERATIONS 

FUNCTION 

(Detail output listing) 
(Restore output listing) 
(Control output listing) 
(Remarks) 
(* in column one -- remarks) 
(Label) 
(Print control cards) 
(References) 
(Print MACRO expansion) 
(Title) 
(Subtitle) 
(Inhibit interrupts) 
(Output absolute text) 
(Output fill binary text) 
(Punch transfer card) 
(Control card output) 
(Punch BCD Card) 
(End of ~sscmbly) 

(Use multiple location counters) 
(Origin of a location counter) 
(Origin set by programmer) 
(Location of output text) 

SYMBOL DEFINING PSEUDO-OPERATIONS 

EQU 
FEQU 
BOOL 
SET 
MIN 
MAX 
HEAD 
SYMDEF 
SYMREF 
OPD 
OPSYN 

(Equal to) 
(FOR TRAN - Equal to) 
(Boolean) 
(Symbol redefinition) 
(Minimum) 
(Maximum) 
(Headin~) 
(Symbol definition) 
(Symbol reference) 
(Operation definition) 
(Operation synonym) 

DATA GENERATING PSEUDO-OPERATIONS 

OCT 
DEC 
BCI 
VFD 
DUP 

(Octal) 
(Decimal) 
(Binary Coded Decimal Information) 
(Variable field definition) 
(Duplicate cards) 

PAGE 
NUl\TBER 

IV-24 
25 
25 
26 
26 
26 
27 
28 
28 
29 
29 
30 
30 
31 
31 
32 

33 
34 
34 
35 

36 
36 
37 
37 
38 
38 
38 
40 
41 
42 
43 

43 
43 
47 
48 
50 

©@~[pill uu Wll.J~~ Ii®®®-------------------------

D-1 



PSEUDO-OPERATION 
MNEMONIC 

PSEUDO-OPERATIONS 

FUNCTION 

STORAGE ALLOCATION PSEUDO-OPERATIONS 

BSS 
BFS 
BLOCK 
LIT 

(Block started by symbol) 
(Block followed by symbol) 
(Block common) 
(Literal Pool Origin) 

CONDITIONAL PSEUDO-OPERATIONS 

INE 
IFE 
IFL 
IFG 

SPECIAL WORD FORMATS 

ARG 

NONOP 
NULL 
ZERO 

MAXSZ 

(If not equal) 
(If equal) 
(If less than) 
(If greater than) 

(Argument -- generate zero operation 
code computer word) 

(Undefined Operation) 
(Null) 
(Generate one word with two specified 
18-bit fields) 

(Maximum size of assembly) 

ADDRESS TALLY PSEUDO-OPERATIONS 

TALLY (Tally -- ID, DI, SC, and CI variations) 
TALLYB (Tally -- SC and CI for 9-bit characters) 
TALLYD (Tally and Delta) 
TALLYC (Tally and Continue) 

REPEAT INSTRUCTION CODING FORMATS 

RPT 
RPTX 
RPD 
RPDX 
RPDA 
RPDB 
RPL 
RPLX 

MACRO PSEUDO-OPERATIONS 

MACRO 
ENDM 
CRSM ON/OFF 
IDRP 
ORGSCM 
DELM 
PUNM 
LODM 

(Repeat) 
(Repeat using index register zero) 
(Repeat Double) 
(Repeat Double using index register zero) 
(Repeat Double using first instruction only) 
(Repeat Double using second instruction only) 
(Repeat Link) 
(Repeat Link using index register zero) 

(Begin MACRO prototype) 
(End MACRO prototype) 
(Create symbols) 
(Indefinite repeat) 
(Origin Created Symbols) 
(Delete MACRO) 
(Punch MACRO) 
(Load System MACRO's) 

PAGE 
NUMBER 

IV-51 
51 
52 
52 

53 
53 
54 
54 

55 

55 
55 
55 

56 

56 
56 
56 
56 

57 
57 
57 
57 
58 
57 
58 
58 

65 
65 
72 
72 
72 
74 
74 
75 

©@~[pfil1J~ffi[L~~t®®®-------------

D-2 



PSEUDO-OPERATION 
l'vINEMONIC 

PSEUDO-OPERATIONS 

FUNCTION 

PROGRAM LINKAGE PSEUDO-OPERATIONS (SPECIAL SYSTEM MACROS) 

CALL 
SAVE 
RETURN 
ERLK 

(Call -- subroutines) 
(Save -- return linkage data) 
(Return -- from subroutines) 
(Error Linkage -- between subroutines) 

PAGE 
NUMBER 

IV-58 
60 
62 
63 

©©~~mu~rn~~~t®®®---------------

D-3 





APPENDIX E 

CONVERSION TABLE OF 

OCTAL-DECIMAL 

INTEGERS AND FRACTIONS 





0000 l 0000 
to I to 

0777 I 0511 
(Octol) (Decimal) 

Octa! Decimal 
10000 - 4096 
20000 - 8192 
30000 - 12288 
40000 - 16384 
50000 - 20430 
60000 - 24576 
70000 - 28672 

1000 I to 
1777 

(Octal) 

0512 
to 

1023 
(Decimal) 

OCTAL-DECIMAL INTEGER CONVERSION TABLE 

0 4 6 1 I 
~~-+-~~~~~~~~~~~~~~ 

I~~~~ I ~g~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~ I 
I 00:2010016 0017 0018 0019 0020 0021 0022 0023 I 

II ~~~~ II~~;; ~~;~ ~~;~ ~~;~ ~~;~ ~~i; ~~~~ ~~~! i 
0050 0040 0041 0042 0043 0044 0045 0046 0047 i 

j 0060 I 0048 ~~:~ OOJO ~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ; 

I :::: I:::: 0065 :::: 0067 0068 0069 :::: :::: 
I 011 o 10012 0013 0074 0015 0016 0011 0018 0019 

1

'0120,'0080 0081 0082 0083 0084 0085 0086 0087 
0130 0088 0089 0090 0091 0092 0093 0094 0095 
0140 I 0096 0091 0093 0099 0100 0101 0102 0103 

·015ojo104 0105 0106 0101 0108 0109 0110 0111 
0160,0112 01\3 0114 0115 0116 0117 0118 0119 
0170 0120 0121 0122 0123 0124 0125 01:.i~ 0127 

0200 I 0128 0129 0130 0131 0132 0133 0134 0135 
0210 0136 0137 0138 0139 0140 0141 0142 0143 

I 0220 I 0144 0145 0146 0147 0148 0149 0150 0151 
i 0230. 0152 0153 0154 0155 0156 0157 0158 0159 
0240 i' 0160 0161 0162 0163 0164 0165 0166 0167 
0250 0168 0169 0170 0171 0172 0173 0174 0175 
0260 10116 0111 0118 0119 0180 0181 0182 0183 
0210 I 0184 0185 0186 0181 0188 0189 0190 0191 

0300 I 0192 0193 0194 0195 0196 0197 0198 0199 I, 

0310 0200 0201 0202 0203 0204 0205 0206 0207 
0320~0208 0209 0210 0211 0212 0213 0214 0215. 

10330,0216 0217 0218 0219 0220 0221 0222 0223 
0340 0224 022~, 0226 0227 0228 0229 0230 02'.ll 

I 
0350 I 0232 0233 0234 0235 0236 0237 0238 0239 I 

0360 0240 0241 0242 0243 0244 0245 0246 0247 I 

1 0'.l70 i 0248 024~ 0250 02S! 02S? f1?S~ O?S4 O?SS' 

1000 0512 0513 
1010 0520 0521 
I 020 I 0528 0529 
1030' 0536 0537 
1040: 0544 0545 
I 050 I 0552 0553 
1060 0560 0561 
1070 0568 0569 

0514 
0522 
0530 
0538 
0546 
0554 
0562 
0570 

0515 
0523 
0531 
0539 
0547 
0555 
0563 
0571 

0516 
0524 
0532 
0540 
0548 
0556 
0564 
0572 

1100 0576 
1110 0584 
1120 0592 
1130 0600 
1140 0608 
1150 0616 
1160 0624 
1110 I 0632 

1200 I o64o 
1210 0648 
1220 0656 
1230 0664 
1240 0672 
1250 0680 
1260 0688 

l 
1270 I 0696 

1300 0704 
1310 0712 
1320 0720 
1330 0728 
1340 0736 
1350 0744 
1360 0752 
1370 0760 

0577 0578 0579 0580 
0585 0586 0587 0588 
0593 0594 0595 0596 
060 I 0602 0603 0604 
0609 0610 0611 0612 
0617 0618 0619 0620 
0625 0626 0627 0628 
0633 0634 0635 0636 

0641 0642 0643 0644 
0649 0650 0651 0652 
0657 0658 0659 0660 
0665 0666 0667 0668 
0673 0674 0675 0676 
0681 0682 0683 0684 
0689 0690 0691 0692 
0697 0696 0699 0700 

0705 0706 0707 0708 
0713 0714 0715 0716 
0721 0722 0723 0724 
0729 0730 0731 0732 
07 37 07 38 07 39 0740 
0745 0746 0747 0748 
0753 0754 0755 0756 
0761 0762 0763 0764 

0517 
0525 
0533 
0541 
0549 
0557 
051>5 
0573 

0581 
0589 
0597 
0605 
0613 
0621 
0629 
0637 

0645 
0653 
0661 
0669 
0677 
0685 
0693 
0701 

0709 
0717 
0725 
0733 
0741 
0749 
0757 
0765 

0518 
0526 
0534 
OS42 
0550 
0558 
0556 
0574 

0582 
0590 
0598 
0606 
0614 
0622 
0530 
0638 

0646 
0654 
0662 
0670 
0678 
0686 
0694 
0702 

0710 
0718 
0726 
0734 
0742 
0750 
0758 
0766 

E-1 

0519 
0527 
0535 
0543 
0551 
0559 
0567 
0575 

0583 
0591 
0599 
0607 
0615 
0623 
0631 
0639 

06471 
0655' 
0663 
0671 
0679 
0687 
0695 

07031 

0711 
0719 
0727 
0735 
0743 
0751 
0759 
0767 

Io 

I 0400 I 0256 
I n.:11n.n.,i;.:1 

I ~~~~ i ~~i~ I U't.JU u.:ou 

I 
0440 0288 
04 50 0296 

i 0460 0304 

I::~: ~:~~ 
I 0510 0328 

I 
0520 0336 

I 
0530 0344 

I 0540 0352 
I 0550 o36o 
I 0560 0368 
I 0510 0316 
i 

0257 0258 0259 0260 0261 0262 
0265 0266 0267 0258 0259 f'l')"7n 

0273 0274 0275 0276 0277 0278 
0281 0282 0283 0284 0285 0286 
0289 0290 0291 0292 0293 0294 
0297 0298 0299 0300 0301 0302 
0305 0306 0307 0308 0309 03 l 0 
UJl..> UJl"t 031J 0316 0317 0318 

0321 0322 0323 0324 0325 0326 
0329 0330 0331 0332 0333 0334 
0337 0338 0339 0340 0341 0342 
0345 0346 0347 0348 0349 0350 
0353 0354 0355 0356 0357 0358 
0361 0362 0363 0364 0365 0366 
0369 0370 0371 0372 037 3 0374 
0377 0378 0379 0380 0381 0382 

i 0600 
I 0610 

I 
0620 
0630 

I

. 0640 
0650 
0660 

i 0670 
I 

0384 0385 0386 0387 
0392 0393 0394 0395 
0400 0401 0402 0403 
0408 0409 0410 0411 
0416 0417 0418 0419 
0424 0425 0426 0427 
0432 0433 0434 0435 
0440 0441 0442 0443 

0388 
0396 
0404 
0412 
0420 
0428 
0436 
0444 

0389 
0397 
0405 
0413 
0421 
0429 
0437 
0445 

0390 
0398 
0406 
0414 
0422 
0430 
0438 
0446 

02631 

~m1 
U<:OI I 

02951 
0303 

~~~ ! i 

::::I
0335 I
03431
0351
0359
0367 I

0375
0383

0391
0399
0407
0415
0423.
0431
0439
0447

I

0700 0448
0710 0456

i 0720 0464
0730 0472
0740 0480

I 0150 I 0488
0760. 0496

0449 0450 0451 0452 0453 0454 0455
0457 0458 0459 0460 0461 0462 0463
0465 0466 0467 0468 0459 0470 0471
0473 0474 047J 0476 0477 0478 0479 I
0481 0482 0483 0484 048') 0486 0487 i

0489 0490 0491 0492 0493 0494 0495 i
0497 0498 0499 0500 0501 0502 0503 .

0

1400 I 0768
1410 0776
1420 0784
1430 0792
1440 0800
1450 0808
1460 0816

. 1470 0824

0769
0777
0785
0793
0801
0809
0817
0825

0770
0778
0786
0794
0802
0810
0818
0826

0771
0779
0787
0795
0803
0811
0819
0827

0772
0780
0788
0796
0804
0812
0820
0828

0773
0781
0789
0797
0805
0813
0821
0829

0774
0782
0790
0798
0806
0814
0822
0830

7 I

0775
0783
0791
0799
0807
0815
0823
0831

1500 0832 0833 0834 0835 0836 0837 0838 0839
1510 0840 0841 0842 G843 0844 0845 0846 0847
1520 0848 0849 0850 0851 0852 0853 0854 0855
1530 0856 0857 0858 0859 0860 0861 0862 0863
1540 0864 0865 0866 0867 0868 0869 0870 0871
1550 0872 0873 0874 0875 0876 0877 0878 0879
1560 0880 0881 0882 0883 0884 0885 0886 0887
1570 0888 0889 0890 0891 0892 0893 089~ 0895

1600 0896 0897 0898 0899 0900 0901 0902 0903
1610 0904 0905 0906 0907 0908 0909 0910 0911
1620 0912 0913 0914 0915 0916 0917 0918 0919
1630 0920 0921 0922 0923 0924 0925 0926 0927
1640 0928 0929 0930 0931 0932 0933 0934 0935
165010936 0937 0938 0939 0940 0941 0942 0943
1660 0944 0945 0946 0947 0948 0949 0950 0951

I : ::: I:::: :::: :::: :::: :::: :::: :::: ::::I
1710 0968 0969 0970 0971 0972 0973 0974 0975
1720 0976 0977 0978 0979 0980 0981 0982 0983
1730 0984 0985 0986 0987 0988 0989 0990 0991
1740 0992 0993 0994 0995 0996 0997 0998 0999
1750 lOGO 1001 1002 1003 1004 1005 1006 1007
1760 1008 1009 1010 1011 1012 1013 1014 1015
1770 1016 1017 1018 1019 1020 1021 1022 1023

OCTAL-DECIMAL INTEGER CONVERSION TABLE (Cont.)

i 0

I 2000 · 1024 1025 1026 1027 1028 1029 1030 10311
! 2010: 1032 1033 1034 1035 1036 1037 1038 1039
12020: 1040 1041 1042 1043 1044 1045 1046 1047
: 2030 i 1048 1049 1050 10:il 1052 •vvJ J.vJ"> 1.UJ..; I

. 2040 1056 1057 1058 1059 1060 1061 1062 1063
12050 ! 1064 1065 1066 1067 1068 1069 1070 1071
i 2060 11072 1073 1074 1075 1076 1077 1078 1079
I 2070 I 1080 1081 1082 1083 1084 1085 1086 1087
, I

2100 1088 1089 1090 1091 1092 1093 1094 1095
2110

1

109G 1u~1 1098 1099 1100 11
"

1 11
"'l 11031

2120 1104 1105 1106 1107 1108 1109 1110 111 1

~~~~ ~g~ ~~:: ~~~~ ~g; !!!~ !!!~ ~~~~ Hi~I 
'2150 1128 
l 2160 1136 
2170 1144 

I I 

: 2200 ! 1152 
2210 ! 1160 
2220 1168 
2230 1176 
2240; 1184 

12250, 1192 
I 2260 1200 
12270 ! 1208 
1

2300 1216 
2310 1224 
2320 1232 
2330 1240 
2340 1248 
2350 1256 
2360 1264 
2370 1272 

13000 
1
1536 

3010.·1544 
3020 1552 
3030 1560 
3040 1568 
3050 . 1576 
3060 I 1584 
3070 . 1592 

3100 i 1600 
3110 I 1608 

I 11 ?() 1616 
13130 1624 

I
HH m~ 
3170 1656 

13200i1664 
3210 1672 

13220 1680 

1

3230 1688 
3240 1696 
3250 1704 

.1

326011712 
3270 1720 

I i 
: 3300 '1728 
3310 1736 
3320 1744 
3330 1752 
3340 1760 

13350 1768 
13360 1776 1
3370 1784 

1129 1130 1131 1132 1133 1134 1135 
1137 1138 1139 1140 1141 1142 1143 
1145 1146 1147 1148 1149 1150 1151 

1153 1154 1155 1156 1157 1158 
1161 1162 1163 1164 1165 1166 
1169 1170 1171 1172 1173 1174 
1177 1178 1179 1180 1181 1182 
1185 1186 1187 1188 1189 1190 
1193 1194 1195 1196 1197 1198 
1201 1202 1203 1204 1205 1206 
1209 1210 1211 1212 1213 1214 

1159 
1167 

11751 
1183 
11911 
11991. 
1207 
1215 

1217 1218 1219 1220 1221 1222 
1225 1226 1227 1228 1229 1230 
1233 1234 1235 1236 1237 1238 
1241 1242 1243 1244 1245 1246 
1249 1250 1251 1252 1253 1254 
1257 1258 1259 1260 1261 1262 
1265 1266 1267 1268 1269 1270 
1273 1274 1275 1276 1277 1278 

1223 
1231 
1239 
1247 
1255 
1263' 
1271 i 
127~ 

1537 l'i38 1540 
1545 1546 1547 1548 
1553 1554 1555 1556 
1561 1562 1563 1564 
1569 1570 1571 1572 
1577 1578 1579 1580 
1585 1586 1587 1588 
159 3 1 594 159 5 1 596 

1601 1602 1603 1604 
1609 1610 1611 1612 
1617 1618 1619 1620 
1625 1626 1627 1628 
1633 1634 1635 1636 
1641 1642 1643 1644 
1649 1650 1651 1652 
1657 1658 1659 1660 

1665 1666 1667 1668 
1673 1674 1675 1676 
1681 1682 1683 1684 
1689 1690 1691 1692 
1697 1698 1699 1700 
1705 1706 1707 1708 
1713 1714 1715 1716 
1721 1722 1723 1724 

1541 
1549 
1557 
1565 
1573 
1581 
1589 
1597 

1605 
1613 
1621 
1629 
1637 
1645 
1653 
1661 

1669 
1677 
1685 
1693 
1701 
1709 
1717 
1725 

! ~~~ ! ~~~I 
1566 1567 
1574 1575 
1582 1583 
1590 1591 
1598 1599 

1606 1607 
1614 1615 
1622 1623 
1630 1631 
1638 1639 
1646 1647 
1654 1655 
1662 1663 

1670 167111 
1678 1679, 
1686 1687 j 
1694 1695 1 

1702 17031 
1710 1711 
1718 1719 
1726 1727 

1729 1730 1731 1732 1733 1734 1735, 
1737 1738 1739 1740 1741 1742 17431 
1745 1746 1747 1748 1749 1750 1751 • 
1753 1754 1755 1756 1757 1758 1759 
1761 1762 1763 1764 1765 1766 1767 
1769 1770 1771 1772 1773 1774 1775 
1777 1778 1779 1780 1781 1782 1783 
I 7 8 5 1 7 86 1 -_1 8_7_1_7_88 __ 1 7_8_9_1_79_0_1_7_9_1 . 

1281 1282 1283 1284 1285 1286 1287 
1289 1290 1291 1292 1293 1294 1295 
1297 1298 1299 1300 1301 1302 13031 

2440 ~;i; i~g i~i~ i~i~ i~i~ g{~ i~i~ gi~1 
2450 1320 1321 1322 1323 1324 1325 1326 1327 
2460 1328 1329 1330 1331 1332 1333 1334 1335 
2470 1336 1337 1338 1339 1340 1341 1342 1343 

2500 1344 1345 1346 1347 1348 1349 1350 
'1h1rl 1352 1353 1354 1355 1356 135? 1358 
2520 1360 1361 1362 1363 1364 1365 1366 
2530 1368 1369 1370 1371 1372 1373 1374 
%Ar\ 1375 1377 1378 1379 1380 1381 1382 
2550 1384 1385 1386 1387 1388 1389 1390 

'2560 1392 1393 1394 1395 1396 1397 1398 
2570 1400 1401 1402 1403 1404 1405 1406 

1351 
1359 

13671 

~ ~~5i 
i39i I 
1399 
1407 

2600. 1408 1409 1410 1411 1412 1413 1414 1415 
I 2610 1416 1417 1418 1419 1420 1421 1422 1423 
2620 1424 1425 1426 1427 1428 1429 1430 1431 
2630 1432 1433 1434 1435 1436 1437 1438 1439 
2640 1440 1441 1442 1443 1444 1445 1446 1447 

'2650 1448 1449 1450 1451 1452 1453 1454 1455 
! 2660 1456 1457 1458 1459 1460 1461 1462 1463 
! 2670 1464 1465 1466 1467 1468 1469 1470 1471 
I 

'2700. 1472 

I 2710 •. 1480 
2720 1488 
2730 1496 
2740 1504 
2750 1512 
2760 1520 
2770 1528 

1473 
1481 
1489 
1497 
1505 
1513 
1521 
1529 

1474 
1482 
1490 
1498 
1506 
1514 
1522 
1530 

1475 
1483 
1491 
1499 
1507 
1515 
1523 
1531 

1476 
1484 
1492 
1500 
1508 
1516 
1524 
1532 

1477 
1485 
1493 
1501 
1509 
1517 
1525 
1533 

1478 
1486 
1494 
1502 
1510 
1518 
1526 
1534 

1479 
1487 
1495 
1503 
1511 
1519 
1527 
1535 

~--1 --2--~--4 ---5---6---~ 

r-- --t----·- -------- ----- ---· - - --- ___ __J 

13400! 1192 1193 1794 1195 1796 1797 1798 1799/ 

I

. 3410 .' 1800 1801 1802 1803 1804 180:1 1806 1807 
3420 1808 1809 1810 1811 1812 1813 1814 1815 
3430 1816 1817 1818 1819 1820 1821 1822 1823 
3440 1824 1825 1826 1827 1828 1829 1830 1831 
3450. 1832 1833 1834 1835 1836 1837 1838 1839 

I 346011840 1841 1842 1843 1844 1845 1846 1847 
i 3470 1848 1849 1850 1851 1852 1853 1854 1855 

13500 ·1

1

1856 1857 1858 1859 1860 1861 1862 18'631 
13510 1864 1865 1866 1867 1868 1869 1870 1871 
3:)20 1872 1873 1874 1875 1876 1877 1878 1879 
3530 1880 1881 1882 1883 1884 1885 1886 1887 
3540 1888 1889 1890 1891 1892 1893 1894 1895 
3550 1896 1897 1898 1899 1900 1901 1902 1903 
3560 1904 1905 1906 1907 1908 1909 1910 1911 
3570 1912 1913 1914 1915 1916 1917 1918 1919 

,;~~~ ~m ~~~~ :~;~ :~;~ :~;~ :~;~ :~;~ :~;~1 
j362o I 1936 1937 1938 1939 1940 1941 1942 19431 
'3630: 1944 1945 1946 1947 1948 1949 1950 1951 / 
:364011952 1953 1954 1955 1956 1957 1958 19591 
: 3650 I 1960 1961 1962 1963 1964 1965 1966 1967 
,3660•1968 1969 1970 1971 1972 1973 1974 19751 
I 3670 ! 1976 1977 1978 1979 1980 1981 1982 1983 

1 3700!1984 1985 1986 1987 1988 1989 1990 IQQll 

13710i 1992 1993 1994 1995 1996 1997 1998 1999 11 
. 3720 i 2000 2001 2002 2003 2004 2005 2006 2007 
/3730/2008 2009 2010 2011 2012 2013 2014 2015 

1
374012016 2017 2018 2019 2020 2021 2022 20231 
3750 2024 2025 2026 2027 2028 2029 2030 2031 

i 3760 1 2032 20l3 2034 2035 2036 2037 2038 2039 I 

l1_770\ 204o 2041 2042 2043 2044 2_04_5_2_0_46_ 20471 

2000 I 1024 
to to 

2777 1535 
(Octal) I (Decimal) 

Octal Decimal 
10000 - .4096 
20000 - 8192 
30000 - 12288 
40000 - 16384 
50000 - 20480 
60000 - 24576 
70000 - 28672 

3000 
to 

3777 
(Octal) 1

1536 
ta 

2047 
(Decimal) 

©@~[pffiu~OOQJ~~t®®®-------------

E-2 



4~00 I 204s 
10 I tu 

4777_ - 25_59 .. 
(Octal) I (Uec1mol) 

Octal Decimal 
,"nnn AnOL 
IUVVV • .,.v,u 

20000 - 8192 
30000 - 12288 
40000 - 16384 
50000 - 20480 
60000 - 24576 
70000 - 28672 

5000 I 2560 
to to 

5777 3071 
(Octol) (Decimal) 

OCTAL-DECIMAL INTEGER CONVERSION TABLE (Cont.) 

I o 

1
400012048 
4010 2056 

1
402012064 

I 
!~~~II ~~~~ 
4050 2088 

1

4060·1' 2Q96 

::::1 :::: 
4110 2120 
4120 2128 
4130 2136 
4140 2144 
4150 2152 
4160 2160 
4170 2168 

6 

2049 2050 2051 2052 2053 2054 
2057 2058 2059 2060 2061 2062 
2065 2066 2067 2068 2069 2070 
2073 2074 2075 2076 2077 2078 
2081 2082 2083 2084 2085 2086 
2089 2090 2091 2092 2093 2094 
2097 2098 2099 2tOO 2101 2102 
2105 2106 2107 2108 2109 2110 

2113 2114 2115 2116 2117 2118 
2121 2122 2123 2124 2125 2126 
2129 2130 2131 2132 2133 2134 
2137 2138 2139 2140 2141 2142 
2145 2146 2147 2148 2149 2150 
2153 2154 2155 2156 2157 2158 
2161 2162 2163 2164 2165 2166 
2169 2170 2171 2172 2173 2174 

20551 
2063 
20711 

igJi1 
20951 
2103: 
2111 I 

21191 
21271 
2135 
2143 
2151 
2159 
2167 
2175 

4200 2176 2177 2178 2179 2180 2181 2182 21831 
4210 2184 2185 2186 2187 2188 2189 2190 2191 
4220 2192 2193 2194 2195 2196 2197 2198 21991 

·~~~~I ~~~i ~~~~ ~~!~ ~~!! ~~!i ~~[~ ~~!~ ~~!~·11 
4260 2224 2225 2226 2227 2228 2229 2230 2231 
4270 2232 2233 2234 2235 2236 2237 2238 2239 

4300 2240 2241 2242 2243 2244 2245 2246 22471 
4310 2248 2249 2250 2251 2252 2253 2254 22s5 II 

4320 2256 2257 2258 2259 2260 2261 2262 2263 
4330 I 2264 2265 2266 2267 2268 2269 2270 2271 I 

4340: 2272 2273 2274 2275 2276 2277 2278 2279 

1:~~~1 ;~~~ m! ~~~~ ~~~~ ~~~; ;;~~ ;;~~ ~;~;1 
i437Qi 2296 2297 2298 2299 2300 2301 2302 2303· 

~l 
5000 2560 2561 2562 2563 2564 2565 2566 2567 
5010 2568 2569 2570 2571 2572 2573 2574 2575 
5020 2576 2577 2578 2579 2580 2581 2582 2583 
5030 2584 2585 2586 2587 2588 2589 2590 2591 
5040 2592 2593 2594 2595 2596 2597 2598 2599 
5050 2600 2601 2602 2603 2604 2605 2606 2607 
5060 2608 2609 2610 2611 2612 2613 2614 2615 
5070 2616 2617 2618 2619 2620 2621 2622 2623 

5100 2624 2625 2626 2627 2628 2629 2630 2631 
5110 2632 2633 2634 2635 2636 2637 2638 2639 
5120 2640 2641 2642 2643 2644 2645 2646 2647 
5130 2648 2649 2650 2651 2652 2653 2654 2655 
5140 2656 2657 2658 2659 2660 2661 2662 2663 
5150 2664 2665 2666 2667 2668 2669 2670 2671 
5160 2672 2673 2674 2675 2676 2677 2678 2679 
5170 2680 2681 2682 2683 2684 2685 2686 2687 

5200 2688 2689 2690 2691 2692 2693 2694 2695 
5210 2696 2697 2698 2699 2700 2701 2702 2703 
5220 2704 2705 2706 2707 2708 2709 2710 2711 
5230 2712 2713 2714 2715 2716 2717 2718 2719 
5240 2720 2721 2722 2723 2724 2725 2726 2727 
5250 2728 2729 2730 2731 2732 2733 2734 2735 
5260 2736 2737 2738 2739 2740 2741 2742 2743 

15270 2744 2745 2746 2747 2748 2749 2750 27511 

5300 2752 2753 2754 2755 2756 2757 2758 2759 
5310 2760 2761 2762 2763 2764 2765 2766 2767 
5320 2768 2769 2770 2771 2772 2773 2774 2775 
5330 2776 2777 2778 2779 2780 2781 2782 2783 
5340 2784 2785 2786 2787 2788 2789 2790 2791 
5350 2792 2793 2794 2795 2796 2797 2798 2799 
5360 2800 2801 2802 2803 2804 2805 2806 2807 
5370 2808 2809 2810 2811 2812 2813 2814 2815 

E-3 

I 0 2 
I 

440012304 2305 2306 2307 2308 
4410 2312 2313 2314 2315 2316 

1442012320 2321 2322 2323 2324 
4430 2328 2329 2330 2331 2332 

1444012336 2337 2338 2339 2340 
4450 2344 2345 2346 2347 2348 
44fl0 2352 2353 2354 2355 2356 

i447ol 2360 2361 2362 2363 2364 

1450012368 2369 2370 2371 2372 

14510 2376 
2377 2378 2379 2380 

4520 2384 2385 2386 2387 2388 
4530 2392 2393 2394 2395 2396 
4540 2400 2401 2402 2403 2404 
4550 2408 2409 2410 2411 2412 
4560 2416 2417 2418 2419 2420 
4570 2424 2425 2426 2427 2428 

4600 2432 2433 2434 2435 2436 
4610 2440 2441 2442 2443 2444 
4620 2448 2449 2450 2451 2452 
4630 2456 2457 2458 2459 2460 
4640 2464 2465 2466 2467 2468 
4650 2472 2473 2474 2475 2476 
4660 2480 2481 2482 2483 2184 
4670 2488 2489 2490 2491 2492 

4700 2496 2497 2498 2499 2500 
4710 2504 2505 2506 2507 2508 

14720 2512 2513 2514 2515 2516 
!4730 2520 2521 2522 2523 2524 
4740: 2:128 2529 2:130 2531 2532 
4750 1 2536 2537 2538 25:5~ ~J4U 

4760 I 2544 2545 2Q46 2547 2548 
4/IU ZJJZ t:J:JJ ~:i:i4 t:i:i:i 2'i:i6 

0 

5400 2816 2817 2818 2819 2820 
5410 2824 2825 2826 2827 2828 
5420 2832 2833 2834 2835 2836 
5430 2840 2841 2842 2843 2844 
5440 2848 2849 2850 2851 2852 
5450 2856 2857 2858 2859 2860 
5460 2864 2865 2866 2867 2868 
5470 2872 2873 2874 2875 2876 

550012880 2881 2882 2883 2884 
5510 2888 2889 2890 2891 2892 

1552012896 2897 2898 2899 2900 
5530 2904 2905 2906 2907 2908 

l'"T" 
2913 2914 2915 2916 

5550 2920 2921 2922 2923 2924 
5560 2928 2929 2930 2931 2932 
5570 2936 2937 2938 2939 2940 

560012944 2945 2946 2947 2948 
5610 2952 2953 2954 2955 2956 
562012960 2961 2962 2963 2964 
5630 2968 2969 2970 2971 2972 
5640 2976 2977 2978 2979 2980 
5650 2984 2985 2986 2987 2988 
5660 2992 2993 2994 2995 2996 
5670 3000 3001 3002 3003 3004 

15700 3008 3009 3010 3011 3012 
5710 3016 3017 3018 3019 3020 
5720 3024 3025 3026 3027 3028 
5730 3032 3033 3034 3035 3036 
5740 3040 3041 3042 3043 3044 
5750 3048 3049 3050 3051 3052 
5760 3056 3057 3058 3059 3060 
5770 3064 3065 3066 3067 3068 

6 7 I 
I 
l 

2309 2310 23111 
2317 2318 2319 
232:) 2:!26 23271 
2333 2334 2335 
2341 2342 23431 
2349 2350 2351 
2357 2358 2359 
2365 2366 23671 

2373 2374 23751 
2381 2382 2383 
2389 2390 2391 
2397 2398 2399 
2405 2406 2407 
2413 2414 2415 
2421 2422 2423 
2429 2430 2431 

2437 2438 2439 
2445 2446 2447 
2453 2454 2455 
2461 2462 2463 
2469 2470 2471. 
2477 2478 2479 
2485 2486 2487 
2493 2494 2495 

2501 2502 2503 
2509 2510 2511 
2517 2518 2519 
2525 2526 2527 
2:133 2:134 2535 
2J41 2J42 2~43 

2549 2550 2551 
~J;) i ~:i::Hl .<::i:i:i 

6 

2821 2822 2823 
2829 2830 2831 
2837 2838 2839 
2845 2846 2847 
2853 2854 2855 
2861 2862 2863 
2869 2870 2871 
2877 2878 2879 

2885 2886 2887 
2893 2894 2895 
2901 2902 2903 
2909 2910 2911 
2917 2918 2919 
2925 2926 2927 
2933 2934 2935 
2941 2942 2943 

2949 2950 2951 
2957 2958 2959 
2965 2966 2967 
2973 2974 2975 
2981 2982 2983 
2989 2990 2991 
2997 2998 2999 
3005 3006 ::;;I 3013 3014 
3021 3022 3023 
3029 3030 3031 
3037 3038 3039 
3045 3046 3047 
3053 3054 3055 
3061 3062 3063 
3069 3070 3071 



OCT AL-DECIMAL INTEGER CONVERSION TABLE (Cont.) 

6000 
6010 
6020 

16030 
16040 

1

6050 
6060 

1

6070 

6100 
15110 

1

'6120 
6130 

1

5140 
6150 
6160 
6170 

3072 3073 3074 3075 3076 3077 3078 30791 
3080 3081 3082 3083 3084 3085 3086 3087 
3088 3089 3090 3091 3092 309 3 3094 3095 
3096 3097 3098 3099 3100 3101 3102 3103 
3104 3105 3106 3107 3108 3109 3110 ~111 I 

3112 3113 3114 3115 3116 3117 3118 31i91 
3120 3121 3122 3123 3124 3125 3126 3127 
3128 3129 3130 3131 3132 3133 3134 31351 

3136 3137 3138 3139 3140 3141 3142 31431 
3144 ')'fA~ 3145 3147 3148 3149 3150 31511 
3152 3153 3154 3155 3156 3157 3158 31591' 
3160 3161 3162 3163 3164 3165 3166 '3167 
3168 3159 'l'f'7n ~t"'7t 3172 
3176 3177 3178 3179 3180 3181 3182 3183, 
3184 3185 3186 3187 3188 3189 3190 31911 
3192 3193 3194 3195 3196 3197 3198 3199

1 

6200 3200 3201 3202 3203 3204 3205 3206 3207 
6210 3208 3209 3210 3211 3212 3213 3214 3215

1 

6220 3216 3217 3218 3219 3220 3221 3222 3223 
6230 3224 3225 3226 3227 3228 3229 3230 3231 
6240 3232 3233 3234 3235 3236 3237 3238 3239 
6250 3240 3241 3242 3243 3244 3245 3246 3247 
6260 3248 3249 3250 3251 3252 3253 3254 3255 
6270 3256 3257 3258 3259 3260 3261 3262 3263 

16300 3264 3265 3266 3267 3268 3269 3270 3271 
6310 3272 3273 3271! 3275 3276 3277 3278 3279 
6320 3280 3281 3282 3283 3284 3285 3286 3287 
6330. 3288 3289 3290 3291 3292 3293 3294 3295 
6340 3296 3297 3298 3299 3300 3301 3302 3303 
6350 3304 3305 3306 3307 3308 3309 3310 3311 
6360 3312 3313 3314 3315 3316 3317 3318 3319 
6370 3320 3321 3322 3323 3324 3325 3326 3327 

0 1 2 3 4 5 6 7 

7000 3584 3585 3586 3587 3588 3589 3590 3591 

7010 3592 3593 3594 3595 3596 3597 3598 3599 

7020 3600 3601 3602 3603 3604 3605 3606 3607 

7030 3608 3609 3610 3611 3612 3613 3614 3615 

7040 3616 3617 3618 3619 3620 3621 3622 3623 

7050 3624 3625 3626 3627 3628 3629 3630 3631 

7060 3632 3633 3634 3635 3636 3637 3638 3639 

7070 3640 3641 3642 3643 3644 3645 3646 3647 

7100 3648 3649 3650 3651 3652 3653 3654 3655 

7110 3656 3657 3658 3659 3660 3661 3662 3663 

7120 3664 3665 3666 3667 3668 3669 3670 3671 

7130 3672 3673 3674 3675 3676 3677 3678 3679 

7140 3680 3681 3682 3683 3684 3685 3686 3687 

7150 3688 3689 3690 3691 3692 3693 3694 3695 

7160 3696 3697 3698 3699 3700 3701 3702 3703 

7170 3704 3705 3706 3707 3708 3709 3710 3711 

720013712 3713 3714 3715 3716 3717 3718 37191 
7210 3720 3721 3722 3723 3724 3725 3726 3727 

7220 3728 3729 3730 3731 3732 3733 3734 3735, 
7230 3736 3737 3738 3739 3740 3741 3742 3743 

7240 3744 3745 3746 3747 3748 3749 3750 3751 

7250 3752 3753 3754 3755 3756 3757 3758 3759 

7260 3760 3761 3762 3763 3764 3765 3766 3767 

7270 3768 3769 3770 3771 3772 3773 3774 3775 

7300 3776 3777 3778 3779 3780 3781 3782 37831 7310 3784 37·85 3786 3787 3788 3789 3790 3791 
7320 3792 3793 3794 3795 3796 3797 3798 3799 
7330 3800 3801 3802 3803 3804 3805 3806 3807 
7340 38-08 3809 3810 3811 3812 3813 3814 3815 
7350 3816 3817 3818 3819 3820 3821 3822 3823 
7360 3824 3825 3826 3827 3828 3829 3830 3831 
7370 3832 3833 3834 3835 3836 3837 3838 3839 

0 

6400 3328 
6410, 3336 
6420 3344 
6430. 3352 
6440 I 3360 

645013368 
6460 3376 
6470 3384 

650013392 
6510 i 3400 

1

65201' 3408 
I 6530, 3416 
6540 ! 3424 

i 6550 i 3432 
I 6560: 3440 
6570 ! 3448 

! 6600 i 3456 
6610 3464 

i 6620 3472 
16630 3480 
i 6640 3488 
I 6650 3496 

1

6660 3504 
66701 3512 

' I 

6700 3520 

1

16710 3528 
6720 3536 
6730 3544 
6740 3552 
6750 3560 
6760 3568 
6770 3576 

0 

r 7400 3840 
7410 3848 
7420 3856 
7430 3864 
7440 3872 
7450 3880 
7460 3888 
7470 3896 

7500 3904 
7510 3912 

I 7520 I 3920 
7530 3928 
7540 3936 
7550 3944 
7560 3952 
7570 3960 

1
7600 I'"' 7610 3976 

I 7620 3984 
7630 3992 
7640 4000 
7650 4008 
7660 4016 
7670 4024 

7700 4032 
7710 4040 
7720 4048 
7730 4056 
7740 4064 
7750 4072 
7760 4080 
7770 4088 

3329 3330 3331 3332 3333 3334 
3337 3338 3339 3340 3341 3342 
3345 3346 3347 3348 3349 3350 
3353 3354 3355 3356 3357 3358 
3361 3362 3363 3364 3365 3366 
3369 3370 3371 3372 3373 3374 
3377 3378 3379 3380 3381 3382 
3385 3386 3387 3388 3389 3390 

3393 3394 3395 3396 3397 3398 
3401 3402 3103 3404 3405 3406 
3409 3410 3411 3412 3413 3414 
3417 3418 3419 3420 3421 3422 
3425 3426 3427 3428 3129 3430 
3433 3434 3435 3436 3437 3438 
3441 3442 3443 3444 3445 3446 
344'9 3450 3451 3452 3453 3454 

3335 
3343 
3351 
3359.1 
3367 

33751 
3383 
3391 I 

33991 
34071 

3415 j' 

3423 

;:;~I 
344. 71 
34': 5 

3457 3458 3459 3460 3461 3462 3463 
3465 3466 3467 3468 3469 3470 3471 
3473 3474 3475 3476 3477 3478 3479 
3481 3482 3483 3484 3485 3486 3487 
3489 3490 3491 3492 3493 3494 3495 
3497 3498 3499 3500 3501 3502 3503 
3505 3506 3507 3508 3509 3510 3511 
3513 3514 3515 3516 3517 3518 3519 

3521 3522 3523 3524 3525 3526 352iil 3529 3530 3531 3532 3533 3534 3535 
3537 3538 3539 3540 3541 3542 3543 
3545 3546 3547 3548 3549 3550 3551 
3553 3554 3555 3556 3557 3558 3559 
3561 3562 3563 3564 3565 3566 3567 
3569 3570 3571 3572 357 3 3574 3575 
3577 3578 3579 3580 3581 3582 3583 
--------------

1 2 3 4 5 6 7 

3841 3842 3843 3844 3845 3846 3847 
3849 3850 3851 3852 3853 3854 3855 
3857 3858 3859 3860 3861 3862 3863 
3865 3866 3867 3868 3869 3870 3871 
3873 3874 3875 3876 3877 3878 3879 
3881 3882 3883 3884 3885 3886 3887 
3889 3890 3891 3892 3893 3894 3895 
3897 3898 3899 3900 3901 3902 3903 

3905 3906 3907 3908 3909 3910 3911 
3913 3914 3915 3916 3917 3918 3919 
3921 3922 3923 3924 3925 3926 3927 
3929 3930 3931 3932 3933 3934 3935 
3937 3938 3939 3940 3941 3942 3943 
3945 3946 3947 3948 3949 3950 3951 
3953 3954 3955 3956 3957 3958 3959 
3961 3962 3963 3964 3965 3966 3967 

3969 3970 3971 3972 3973 3974 3975 
3977 3978 3979 3980 398t 3982 3983 
3985 3986 3987 3988 3989 3990 3991 
3993 3994 3995 3996 3997 3998 3999 
4001 4002 4003 4004 4005 4006 4007 
4009 4010 4011 4012 4013 4014 4015 
4017 4018 4019 4020 4021 4022 4023 
4025 4026 4027 4028 4029 4030 4031 

4033 4034 40;$5 4036 4037 4038 4039 
4041 4042 4043 4044 4045 4046 4047 
4049 4050 4051 4052 4053 4054 4055 
4057 4058 4059 4060 4061 4062 4063 
4065 4066 4067 4068 4069 4070 4071 
4073 4074 4075 4076 4077 4078 4079 
4081 4082 4083 4084 4085 4086 4087 
4089 4090 4091 4092 4093 4094 4095 

E-4 

6000 I 3072 
to to 

6777 3583 
(Octal) i (Decimal) 

Octal Decimal 
10000 - 4096 
20000 - 8192 
30000 - 12288 
40000 - 16384 
50000 - 20480 
60000 - 24576 
70000 - 28672 

7000 I 3584 
to to 

7777 4095 
(Octal) (Decimal) 



I 

locTAL 

• 000 

.002 

.003 
• 004 
.005 
.006 
.007 

.010 
,011 
.012 
• 013 
.O:t4 
.015 
,016 
,017 

.020 

.021 
• 022 
.023 
.024 
,025 
.026 
.027 

.030 
,031 
,032 
. 033 
. 031 
,035 
. 036 

,040 
.041 

042 
• 043 
.044 
,045 
• 046 
.047 

• 050 
• 051 
.052 
.053 
. 054 
.055 
.056 
• 057 

• 060 
• 061 
• 062 
• 063 
,064 
. 065 
• 066 
.067 

• 070 
. 071 
. 072 
. 073 
.074 
. 075 
. 076 
. 077 

OCTAL-DECIMAL FRACTION CONVERSION TABLE 

DEC. 

• 000000 
. 001953 
• 003906 
• 005859 
.007812 
. 009765 
• 011718 
• 013671 

• 015625 
• 017578 
• 019531 
• 021484 
• 023437 
,025390 
• 027343 
• 029296 

.031250 
• 033203 
• 035156 
• 037109 
,039062 
.041015 
,042968 
• 044921 

• 046875 
• 048828 
• 050781 
• 052734 
. 051687 
• 056640 
. 058593 

• 062500 
• 064453 
066406 

• 068359 
.070312 
• 072265 
• 074218 
: 076171 
,078125 
• 080078 
.082031 
.083984 
• 085937 
• 087890 
. 089843 
• 091796 

• 093750 
• 095703 
• 097656 
• 099609 
• 101562 
• 103515 
.105468 
• 107421 

• 109375 
. 111328 
• 113281 
, 115234 
.117187 
.119140 
• 121093 
• 123046 

OCTAL 

.100 
1n1 

• .LU.L 

, 102 
.103 
.104 
.105 
.106 
. 107 

.110 
• 111 
.112 
.113 
, 114 
.115 
.116 
.117 

.120 

.121 

.122 

.123 

.124 

.125 

.126 

.127 

.130 
• 131 
• 132 
• 133 
. !34 
.135 
• 13E 
• .i....,,, 

• 140 
: 141 

14" M 

.143 

.144 

. 145 
• 146 
.147 

.150 
• 151 
.152 
• 153 
. 154 
. 155 
• 156 
• 157 

• 160 
• 161 
, 162 
• i63-
.164 
, 165 
• 166 
.167 

• 170 
• 171 
.172 
. 173 
. 174 
. 175 
. 176 
• 177 

DEC. 

• 125000 
1'lCOC:'l 

• .L""UJ""''-' 

.128906 

. 130859 
• 132812 
. 134765 
.136718 
.138671 

. 140625 

. 142578 

. 144531 

.146484 

. 148437 
• 150390 
.152343 
• 154296 

.156250 
• 158203 
• 160156 
• 162109 
. 164062 
• 166015 
. 167968 
. 169921 

• 171875 
. 173828 
.175781 
. 177734 
. 179•387 

. 181640 

. ! 83593 
• ..L0v ... rzv 

. 187500 
• 189453 

191406 
• 193359 
• 195312 
. 197265 
. 199218 
. 201171 

. 203125 

. 205078 

. 207031 

. 208984 
• 210937 
• 212890 
• 214843 
• 216796 

• 218750 
. 220703 
. 222656 
. 224609 
• 226562 
. 228515 
. 230468 
. 232421 

. 234375 

. 236328 

. 238281 

. 240234 

. 242187 
• 244140 
• 246093 
. 248046 

OCTAL DEC. OCTAL 

. 200 • 250000 . 300 
<>n1 . 251::>53 ""' • "'V.&. .uv.j,. 

.202 • 253906 .302 

.203 • 255859 . 303 
• 204 . 257812 . 304 
. 205 . 259765 . 305 
.206 . 261718 . 306 
.207 • 263671 . 307 

• 210 • 265625 . 310 
.211 .. 267578 . 311 
• 212 • 269531 . 312 
• 213 • 271484' • 313 
• 214 • 273437 . 314 
.215 . 275390 . 315 
• 216 • 277343 • 316 
.217 • 279296 .317 

• 220 • 281250 • 320 
. 221 . 283203 . 321 
.222 . 285156 . 322 
.223 • 287109 .323 
.224 . 289062 .324 
• 225 • 291015 .425 
• 226 •. 292968 .326 
. 227 . 294921 .327 

.230 . 296875 .330 

.231 . 298828 .331 

.232 . 300781 . 332 

. 233 . 302734 . 333 
234 . 304131<7 . 33·! 

·.235 • 306640 . 335 
. 236 . 311859'.' . 33'2· 

. .J:C~-jv 

. 240 . 312500 . 340 

. 241 . 314453 • 341 

. - - 316406 -

.243 . 318359 ,343 

. 244 • 320312 . 344 

. 245 • 322265 .345 

.246 • 324218 .346 

. 247 . 326171 • 347 

• 250 . 328125 . 350 
.251 • 330078 • 351 
. 252 • 332031 • 3~2 
. 253 . 333984 . 353 
. 254 . 335937 . 354 
.255 . 337890 . 355 
• 256 . 339843 . 35.6 
. 257 . 341796 

I 

.357 

.260 . 343750 . 360 

.261 . 345703 .361 

.262 ; 347656 ,362 

.263 . 349609 . 363 

.264 • 351562 . 364 

.265 . 353515 .365 

.266 . 355468 . 366 

. 267 • 357421 . 367 

. 270 . 359375 . 370 

. 271 . 361328 .371 

I 
• 272 . 363281 

I 
. 372 

. 273 . 365234 . 373 

. 274 367187 374 

. 275 • 369140 .375 

. 276 . 371093 .376 

.277 . 373046 . 377 

DEC . 

• 375000 
• 37G~53 

. 378906 
• 380859 
. 382812 
.384765 
. 386718 
• 388671 

. 390625 
• 392578 
. 394531 
• 396484 
. 398437 
. 400390 
. 402343 
.404296 

. 406250 

. 408203 

.410156 

. 412109 

. 414062 

.416015 

. 417968 

. 419921 

. 421875 

. 423828 

. 426781 

. 427734 

. 42Qi;R7 

. 431640 

. ·133593 

• 437500 
• 439453 
441106 

.443359 

.445312 

.447265 

.449218 
• 451171 

• 453125 
• 455078 
. 457031 
• 458984 
. 460937 
. 462890 
.464843 
. 466796 

I 

. 468750 

. 470703 

. 472656 

.474609 

. 476562 

. 478515 

. 480468 

. 482421 

. 484375 
• 486328 
.488281 

I 
. 490234 
,492187 
. 494140 I 
. 496093 
. 498046 

©@~[pffi!J~ill~~~ I®®®--------------------------

E-5 



OCTAL-DECIMAL FRACTION CONVERSION TABLE (Cont.) 

I OCTAL--DE~·~;TAL 
I . 000000 . 000000 . 000100 
1 . 000001 . 000003 . 000101 

. 000002 . 000007 . 000102 

. 000003 . 000011 I . 000103 
• 000004 
. 000005 
.000006 
. 000007 

. 000010 

. 000011 

. 000012 

. 000013 
• 000014 
. 000015 
• 000016 
. 000017 

. 000020 

. 000021 

. 000022 
• 000023 
. 000024 
• 000025 
. 000026 
.000027 

• 000030 
. 000031 
. 000032 
• 000033 
• 000034 
. 000035 
• 000036 
• 000037 

. 000040 
• 000041 
. 000042 
. 000043 
. 000044 
. 000045 
. 000046 
• 000047 

. 000050 

. 000051 

. 000052 

. 000053 
• 000054 
• 000055 
.000056 
• 000057 

• 000060 
• 000061 
• 000062 
• 000063 
. 000064 
• 000065 
. 000066 
• 000067 

• 000070 
• 000071 
• 000072 
• 000073 
• 000074 
. 000075 
• 000076 
• 000077 

. 000015 

. 000019 

. 000022 

. 000026 

. 000030 

. 000034 

. 00003!.l 

. 000041 

.000045 

. 000049 
• 000053 
. 000057 

. 000061 

. 000064 
• 000068 
• 000072 
. 000076 
. 000080 
. 000083 
. 000087 

. 000091 
• 000095 
. 000099 
• 000102 
.000106 
• 000110 
• 000114 
• 000118 

. 000122 
• 000125 
. 000129 
. 000133 
. 000137 
. 000141 
. 000144 
. 000148 

. 000152 

.000156 

. 000160 

. 000164 

. 000167 

. 000171 

. 000175 

. 000179 

• 000183 
. 000186 
• 000190 
• 000194 
. 000198 
. 000202 
• 000205 
• 000209 

• 000213 
.000217 
. 000221 
• 000225 
• 000228 
.000232 
• 000236 
. 000240 

.000104 

. 000105 

. 000106 
• 000107 

• 000110 
• 000111 
• 000112 
• 000113 
• 000114 
• 000115 
• 000116 
. 000117 

• 000120 
. 000121 
• 000122 
. 000123 
• 000124 
• 000125 
• 000126 
• 000127 

. 000130 

. 000131 
• 000132 
• 000133 
• 000134 
• 000135 
. 000136 
• 000137 

. 000140 

. 000141 
• 000142 
. 000143 
. 000144 
. 000145 
. 000146 
. 000147 

. 000150 
• 000151 
. 000152 
. 000153 
• 000154 
• 000155 
• 000156 
• 000157 

• 000160 
• 000161 
• 000162 
• 000163 
. 000164 
• 000165 
• 000166 
• 000167 

• 000170 
• 000171 
• 000172 
• 000173 
• 000174 
• 000175 
• 000176 
• 000177 

DEC. 

. 000244 
• 000247 
. 000251 
. 000255 
. 000259 
• 000263 
• 000267 
• 000270 

. 000274 
• 000278 
. 000282 
. 000286 
. 000289 
. 000293 
. 000297 
• 000301 

• 000305 
• 000308 
• 000312 
• 000316 
• 000320 
• 000324 
• 000328 
. 000331 

• 000335 
• 000339 
• 000343 
.000347 
• 000350 
.000354 
• 000358 
• 000362 

• 000366 
• 000370 
. 000373 
. 000377 
. 000381 
. 000385 
. 000389 
. 000392 

• 000396 
. 000400 
. 000404 
. 000408 
• 000411 
. 000415 
. 000419 
• 000423 

• 000427 
• 000431 
• 000434 
• 000438 
.000442 
• 000446 
. 000450 
. 000453 

. 000457 

. 000461 
• 000465 
• 000469 
• 000473 
• 000476 
. 000480 
. 000484 

E-6 

OCTAL 

. 000200 
• 000201 
• 000202 
. 000203 
• 000204 
. 000205 
. 000206 
. 000207 

• 000210 
• 000211 
• 0002i2 
.000213 
. 000214 
• 000215 
. 000216 
.000217 

. 000220 

. 000221 

. 000222 
• 000223 
• 000224 
• 000225 
• 000226 
. 000227 

. 000230 
• 000231 
. 000232 
• 000233 
• 000234 
• 000235 
• 000236 
• 000237 

. 000240 
• 000241 
• 000242 
• 000243 
• 000244 
. 000245 
.000246 
• 000247 

.000250 

. 000251 

. 000252 

. 000253 
• 000254 
• 000255 
. 000256 
• 000257 

• 000260 
• 000261 
• 000262 
• 000263 
• 000264 
• 000265 
. 0002u6 
• 000267 

. 000270 
• 000271 
• 000272 
• 000273 
• 000274 
• 000275 
• 000276 
• 000277 

DEC. 

. 000488 

. 000492 

. 000495 

. 000499 

. 000503 

. 000507 

. 000511 

. 000514 

• 000518 
• 000522 
• 000526 
• 000530 
. 000534 
. 000537 
. 000541 
. 000545 

. 000549 

. 000553 

. 000556 

. 000560 
• 000564 
. 000568 
• 000572 
. 000576 

. 000579 

. 000583 
• 000587 
. 000591 
• 000595 
• 000598 
• 000602 
• 000606 

. 000610 

. 000614 

. 000617 

. 000621 
• 000625 
. 000629 
• 000633 
• 000637 

• 000640 
. 000644 
• 000648 
. 000652 
. 000656 
• 000659 
. 000663 
• 000667 

• 000671 
• 000675 
• 000679 
. 000682 
. 000686 
. 000690 
. 000694 
. 000698 

• 000701 
. 000705 
. 000709 
. 000713 
• 000717 
• 000720 
• 000724 
. 000728 

OCTAL 

• 000300 
• 000301 
• 000302 
• 000303 
. 000304 
• 000305 
. 000306 
. 000307 

• 000310 
. 000311 
. 000312 
. 000313 
. 000314 
• 000315 
. 000316 
• 000317 

• 000320 
• 000321 
• 000322 
. 000323 
• 000324 
. 000325 
. 000326 
. 000327 

. 000330 

. 000331 
• 000332 
• 000333 
• 000334 
• 000335 
• 000336 
• 000337 

• 000340 
• 000341 
• 000342 
• 000343 
• 000344 
. 000345 
. 000346 
• 000347 

• 000350 
. 000351 
. 000352 
. 000353 
. 000354 
• 000355 
. 000356 
• 000357 

• 000360 
. 000361 
• 000362 
. 000363 
. 000364 
. 000365 
• 000366 
• 000367 

• 000370 
. 000371 
• 000372 
. 000373 
• 000374 
• 000375 
. 000376 
• 000377 

DEC. 

. 000732 

. 000736 

. 000740 
• 000743 
. 000747 
• 000751 
. 000755 
. 000759 

• 000762 
• 000766 
. 000770 
. 000774 
. 000778 
. 000782 
. 000785 
• 000789 

. 000793 
• 000797 
• 000801 
. 000805 
. 000808 
• 000812 
• 000816 
. 000820 

• 000823 
. 000827 
. 000831 
. 000835 
• 000839 
. 000843 
. 000846 
• 000850 

. 000854 
• 000858 
• 000862 
. 000865 
• 000869 
. 000873 
• 000877 
. 000881 

• 000885 
. 000888 
• 000892 
. 000896 
• 000900 
.000904 
. 000907 
• 000911 

• 000915 
• 000919 
• 000923 
• 000926 
. 000930 
. 000934 
. 000938 
. 000942 

. 000946 
• 000949 
• 000953 
. 000957 
• 000961 
• 000965 
• 000968 
. 000972 



OCT AL-DECIMAL FRACTION CONVERSION TABLE (Cont.) 

OCTAL DEC. OCTAL DEC. OCTAL DEC. OCTAL DEC. 

• 000400 • 000976 • 000500 • 001220 • 000600 • 001464 I • 000700 . 001708 I .vvv,.v.L • VVV'10U • VVVJV.L 
n.n'fl"ll"IA 

• VVVVV.L • VV.L"tUO • GGGiOl . OOiilZ f I • VV.L£.W"'% 

I 
.000402 • 000984 

I 
. 000502 . 001228 . 000602 • 001472 

I 
• 000702 • 001716 I • 000403 • 000988 . 000503 • 001232 • 000603 • 001476 • 000703 .001720 

I • 000404 . 000991 I • 000504 • 001235 • 000604 • 001480 
I 

• 000704 • 001724 I . 000405 . 000995 • 000505 • 00123~ . 000605 . 001483 . 000705 . 001728 

I 
• 000406 • 000999 

I 
• 000506 .001243 • 000606 • 001487 

I 
• 000706 • 001731 

I • 000407 • 001003 • 000507 . 001247 • 000607 . 001491 .000707 • 001735 

I • 000410 • 001007 I . 000510 ,001251 • 000610 • 001495 I • 000710 .001739 I 
. 000411 • 001010 

I 
• 000511 • 001255 • 000611 . 001499 

I 
• 000711 . 001743 

• 000412 • 001014 • 000512 • 001258 • 000612 • 001502 • 000712 .001747 
• 000413 • 001018 I • 000513 • 001262 • 000613 • 001506 I • 000713 • 001750 
• 000414 . 001022 I . 000514 . 001266 • 000614 • 001510 • 000714 • 001754 
• 000415 • 001026 • 000515 • 001270 • 000615 • 001514 • 000715 • 001758 
• 000416 • 001029 • 000516 • 001274 • 000616 • 001518 . 000716 • 001762 
• 000417 • 001033 • 000517 • 001277 .000617 • 001522 • 000717 • 001766 

• 000420 • 001037 . 000520 • 001281 . 000620 • 001525 . 000720 . 001770 
• 000421 • 001041 • 000521 • 001285 . 000621 • 001529 • 000721 • 001773 
.000422 • 001045 . 000522 • 001289 . 000622 • 001533 . 000722 . 001777 
. 000423 • 001049 • 000523 • 001293 . 000623 • 001537 . 000723 • 001781 
• 000424 • 001052 • 000524 • 001296 • 000624 • 001541 • 000724 • 001785 
. 000425 . 001056 • 000525 • 001300 • 000625 • 001544 . 000725 . 001789 
• 000426 • 001060 • 000526 . 001304 . 000626 • 001548 . 000726 • 001792 
• 000427 . 001064 • 000527 • 001308 . 000627 • 001552 • 000727 • 001796 

• 000430 • 001068 • 000530 .001312 . 000630 . 001556 • 000730 • 001800 
• 000431 • 001071 • 000531 • 001316 . 000631 • 001560 . 000731 . 001804 
• 000432 • 001075 • 000532 . 001319 . 000632 . 001564 . 000732 • 001808 
• 000433 • 001079 . 000533 . 001323 . 000633 . 001567 • 000733 • 001811 
• 000434 • 001083 . 000534 • 001327 ! • 000634 . 001571 • 000734 . 001815 
. 000435 . 001087 . 000535 . 001331 . 000635 .001575 . 000735 . 001819 
. 000436 . 001091 . 000536 . 001335 . 000636 .001579 . 00073t) . 001823 
• 000437 . 001094 • 000537 . 001338 • 000637 • 001583 • 000737 • 001827 

. 000440 . IJ0109'3 . 000540 . 001342 . ()f\0641) . f\1)15'36 . 000740 . 001S31 
" ....... { ~ . 

• ..... v ...... v- •"';,,,...,._;-:1 ... 
~ " . ,., ' ,-

• ..;.vv-i:-i ..... • v..., ... ..;·1v • ,,;._;vV't..._ o VV.LV.JV 0 VVV I """"l:..L • vv..1..0u-x 

• 000442 • 001106 • 000542 • 001350 • 000642 . 001594 • 000742 • 001838 
• 000443 • 001110 • 000543 • 001354 • 000643 • 001598 • 000743 • 001842 
. 000444 • 001113 - 000544 - 001358 • 000644 . 001602 • 000744 • 001846 
• 000445 • 001117 • 000545 • 001361 . 000645 • 001605 • 000745 • 001850 
• 000446 • 001121 • 000546 • 001365 • 000646 • 001609 • 000746 • 001853 
. 000447 • 001125 • 000547 • 001369 . 000647 • 001613 • 000747 . 001857 

• 000450 • 001129 • 000550 • 001373 . 000650 • 001617 • 000750 • 001861 
• 000451 • 001132 . 000551 . 001377 . 600651 • 001621 • 000751 • 001865 
• 000452 • 001136 • 000552 • 001380 . 000652 • 001625 . 000752 • 001869 

• 000453 • 001140 .000553 • 001384 • 000653 • 001628 • 000753 • 001873 
• 000454 • 001144 • 000554 • 001388 • 000654 • 001632 • 000754 . 001876 
• 000455 • 001148 • 000555 • 001392 • 000655 • 001636 • 000755 • 001880 
• 000456 • 001152 • 000556 • 001396 • 00{)656 • 001640 • 000756 • 001884 
• 000457 • 001155 • 000557 • 001399 • 000657 • 001644 • 000757 • 001888 

• 000460 • 001159 • 000560 • 001403 . 000660 .001647 • 000760 • 001892 
• 000461 • 001163 • 000561 • 001407 • 000661 • 001651 • 000761 • 001895 
,000462 • 001167 • 000562 • 001411 • 000662 • 001655 • 000762 • 001899 
• 000463 • 001171 • 000563 • 001415 • 000663 • 001659 • 000763 • 001903 
• 000464 • 001174 • 000~64 • 001419 • 000664 • 001663 • 000764 • 001907 

.000465 • 001178 • 000565 • 001422 • 000665 . 001667 • 000765 • 001911 
• 000466 • 001182 • 000566 • 001426 • 000666 • 001670 • 000766 • 001914-

• 000467 • 001186 • 000567 • 001430 . 000667 • 001674 • 000767 • 001918 

• 000470 • 001190 • 000570 • 001434 • 000670 . 001678 • 000770 • 001922 
• 000471 • 001194 • 000571 • 001438 . 000671 • 001682 • 0()0771 • 001926 
• 000472 • 001197 • 000572 • 001441 . 000672 • 001686 • 000772 . 001930 

• 000473 .001201 • 000573 • 001445 • 000673 • 001689 . 000773 • 001934 
• 000474 • 001205 • 000574 • 001449 • 000674 • 001693 • 0007i4 • 001937 

• 000475 • 001209 • 000575 • 001453 • 000675 • 001697 • 000775 • 001941 
.000476 • 001213 . 000576 • 001457 . 000676 . 0017.Dl . 000776 . 001945 

• 000477 • 001216 • 000577 • 001461 • 000677 • 001705 • 000777 . 001949 

©@~[pffiVmmL~~t®®®---------------

E-7 





APPENDIX F 

TABLE OF POWERS OF TWO 

AND BINARY-DECIMAL 

EQUIVALENTS 





TABLE OF POWERS OF 2 

2n 
u 

2-n 

1 ("\ 1 ("\ 
.I. v ..a..v 

2 1 0.5 
4 2 0.25 
8 3 0.125 

16 4 0.062 5 
32 5 0.031 25 
64 6 0.015 625 

128 7 0.007 812 5 
256 8 0.003 906 25 
512 9 0.001 953 125 

1 024 10 0.000 976 562 5 
2 048 11 0.000 488 281 25 
4 096 12 0.000 244 140 625 

8 192 13 0.000 122 070 312 5 
16 384 14 0.000 061 035 156 25 
32 76"8 15 0.000 030 517 578 125 

65 530 10 0.000 015 258 788 Oo2 5 
131 072 17 0.000 007 629 394 531 25 
2o2 144 lb U.UUU UUj bl<± tl'<Ji ~tlu t.JG;) 

524 288 19 0.000 001 907 348 632 812 5 
1 048 576 20 0.000 000 953 674 316 406 25 
2 097 152 21 0.000 000 476 837 158 203 125 

4 194 304 22 0.000 000 238 418 579 101 562 5 
8 388 608 23 0.000 000 119 209 289 550 781 25 

16 777 216 24 0.000 000 059 604 644 775 390 625 

33 554 432 25 0.000 000 029 802 322 387 695 312 5 
67 108 864 26 0.000 000 014 901 161 193 847 656 25 

134 217 728 27 0.000 000 007 450 580 596 923 828 125 

268 435 456 28 0.000 000 003 725 290 298 461 914 062 5 
536 870 912 29 0.000 000 001 862 645 149 230 957 031 25 

1 073 741 824 30 0.000 000 000 931 322 574 615 478 515 625 

2 147 483 648 31 0.000 000 000 465 661 287 307 739 257 812 5 
4 294 967 296 32 0.000 000 000 232 830 643 653 869 628 906 25 
8 589 934 592 33 0.000 000 000 116 415 321 826 934 814 453 125 

17179869184 34 0.000 000 000 058 207 660 913 467 407 226 562 5 
34 359 738 368 35 0.000 000 000 029 103 830 456 733 703 613 281 25 
68 719 476 736 36 0.000 000 000 014 551 915 228 366 851 806 640 625 

137 438 953 472 37 0.000 000 000 007 275 957 614 183 425 903 320 312 5 
274 877 906 944 38 0.000 000 000 003 637 978 807 091 712 951 660 156 25 
549 755 813 888 39 0.000 000 000 001 818 989 403 545 856 475 830 078 125 

1 099 511 627 776 40 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5 

F-1 



BINARY AND DECIMAL EQUIVALENTS 

Number 
Maximum Decimal 

Integral Value 
of Number 

Decimal of 
~.faxLT-u...rn Decimal Fractional Value 

Digits Bits 

. 5 

.75 
7 3 .875 

15 l 4 .9375 
31t---- t- -5--: 96875 
63 6 .984375 

127 2 7 .992 187 5 
2ss1 ~-8-~~9609375 

This chart provides the information nee -
essary to determine: 

511 9 .998046875 
1 023 3 __ l_Q_ _ _.:_9~_Q_2l__42_I2._ 
2 047,___ 11 .999 511 718 75 

a. 

4 09 5 12 . 999 755 859 375 
8 191 13 .999 877 929 687 5 

16 383 - ~ - _l!_ _ __:J~ ~8~6..!._843_l~ 
32 767 15 . 999 969 482 421 875 b. 
65 535 16 . 999 984 741 210 937 5 

131071 5 17 - .99999237060546875 
TIZI43 --- -rs- ~ff996Ts53oz134 375 

524 287 19 . 999 998 092 651 367 187 5 
l 048 575 6 20 - .999 999 046 325 683 593 75 
zo9715i ~ -- -21 ~9999523162841796875 

c. 

4 194 303 22 . 999 999 761 581 420 898 437 5 
8388607 23 .99999988079071044921875 

16 777 215 7 24 .999 999 940 395 355 244 609 375 
33 554431-T-- - t-- 25- -:9°999999101976776Tz3o46875 
67 l 08 863 2 6 . 999 999 985 098 838 806 152 343 7 5 

134217727 8 27 .999999992549419403076171875 
268435455' - - - -28 + .999999996 274 109 To1s3soa59n5 
536 870 911 29 . 999 999 998 137 354 850 769 042 968 75 

The number of bits needed to 
represent a given decimal 
number. Use columns one and 
three or four and three. 

The number of bits needed to 
rP.present a given number of 
decimal digits (all nines). 
Use columns two and three. 

The maximum decimal value 
represented by a given 
number of bits, use columns 
one and three or three and 
four. 

l 013 741 823 9 _2~-+-. .22_9__'.L9J_9J..2.~8_E?..._!22__3~521 484.11L 
z141 48364~--- 31 .999 999 999 534 338 112 692 260 742 187 5 
4 294 967 295 32 .999 999 999 767 169 356 346 130 371 093 75 
8 S89 934 ,591 33 . 999 999 999 883 584 678 173 065 185 546 875 

17 179 869 183 10 34 - .999 999 999 941 792 339 086 532 592 773 437 5 
34 359 73836r - - ~ 35 -:999999999970 896 l69s43Z66296 386 71875 
68 719 476 735 36 .999 999 999 985 448 034 771 633 148 193 359 375 

137 438 953 471 11 37 .999 999 999 992 724 042 385 816 574 096 679 687 5 
z148179Q6943t- - - -33-+_999999999 996 3620zl19z908287 04833984375 
549 7:;5 813 887 39 .999 999 999 998 181 010 596 454 143 524 169 921 875 

l 099 511621115 12 _ _!o_ ._:999 999-1JU9~02..Q_5~298EL£7_!_162 084 960..1 .. -3? .. ..i. 
Zi.99-023255 551- - 41 .999 999 999 999 545 252 649 113 535 881 042 480 468 75 
4 398 046 511 103 42 . 999 999 999 999 772 626 324 556 767 940 521 240 234 375 
1:1 796 093 022 207 43 . 999 999 999 999 886 313 162 278 383 970 260 620 117 187 5 

3
11

5 
5
1

9
84

2 
3
1

7
8

2
6 

0
04

8
4
8 

4
83

::-:-15
1 
_12.._~ __!4__-+-=999~2.._2~999 943J..?U8..!_ll.2..!1_! 985_!l0_1.1Q_Q~5ll?.i. 

45 . 999 999 999 999 971 578 290 569 595 992 565 155 029 296 875 
70 368 744 177 663 46 . 999 999 999 999 985 789 145 284 797 996 282 577 514 648 437 5 

.!!_0 2.n...!8..!_322_ 327 ~ ...!.! _ ..._ i1. -1 _:.j9.J_999 999 .TI.9_1.9~894 572~U9§....29_§_1..i! ~LJ!U,_324 Q8 .... n .. 
281 474 976 710 655 48 

©©~~muuwuJ~~1®®®-------------

F-2 



APPENDIX G 

M-605 INSTRUCTION MNEMONICS 

WITH ALLOWABLE ADDRESS 

MODIFICATIONS 

lo) II IC;' (Q? 11 I~ I nj r~ I 
~lbLS~Ju ~\.u ~~-----------------





Mnemonic Modifications Allowed Mnemonic Modifications Allowed 

ADA All DFAD All except DU, DL, CI, SC 
ADAQ All except DU, D L, CI, SC DFCMG All except DU, DL, CI, SC 
ADE All except CI, SC DFCMP All except DU, DL, CI, SC 
ADL All except CI, SC DFDI All except DU, DL, CI, SC 
ADLA All DFDV All except DU, DL, CI, SC 
ADLAQ All except DU, DL, CI, SC DFLD All except DU, DL, CI, SC 
ADLQ All DFMP All except DU, DL, CI, SC 
ADLXn All except CI, SC DFSB All except DU, DL, CI, SC 
ADQ All DFST All except DU, DL, CI, SC 
ADXn All except CI, SC DIS No effect on operation 
ALR All except DU, DL, CI, SC DIV All 
ALS All except DU, DL, CI, SC DRL No effect on operation 
ANA All DUFA All except DU, DL, CI, SC 
ANAQ All except DU, DL, CI, SC DUFM All except DU, D L, CI, SC 
ANQ All DUFS All except DU, D L, CI, SC 
ANSA All except DU, DL, CI, SC DVF All 
ANSQ All except DU, DL, CI, SC 
ANSXn All except DU, DL, CI, SC EAA All except DU, DL 
ANXn All except CI, SC EAQ All except DU, DL 
AOS All except DU, DL, CI, SC EAXn All except DU, DL 
ARL All except DU, DL, CI, SC ERA All 
ARS All except DU, DL, CI, SC ERAQ All except DU, DL, CI, SC 
ASA All except DU, DL, CI, SC ERQ All 
ASQ All except DU, DL, CI, SC ERSA All except DU, DL, CI, SC 
ASXn Ali except DU, DL, Cl, SC ERSQ All except DU, DL, CI, SC 
,\\"\rC,\ ,\11 FRSXn All except DtT, nT CI, SC --, 
AWC~ All .ER.An Ail except Cl, 6C 

BCD All except CI, SC FAD All except CI, SC 
FCMG All except CI, SC 

CANA All FCMP All except CI, SC 
CANAQ All except DU, DL, CI, SC FDI All except CI, SC 
CANQ All FDV All except CI, SC 
CANXn All except CI, SC FLD All except CI, SC 
CIOC All except DU, DL, CI, SC FMP All except CI, SC 
CMG All FNEG No effect on operation 
CMK All FNO No effect on operation 
CMPA All FSB All except CI, SC 
CMPAQ All except DU, DL, CI, SC FST All except DU, D L, CI, SC 
CMPQ All FSZN All except CI, SC 
CMPXn All except CI, SC 
CNAA All GTE No effect on operation 
CNAAQ All except DU, DL, CI, SC 
CNAQ All LEAR All except CI, SC 
CNAXn All except CI, SC LCA All 
CWL All LCAQ All except DU, D L, CI, SC 

LCQ AU 
LCXn All except CI, SC 
LDA All 
LDAQ All except DU, D L, CI, SC 
LDE All except CI, SC 

G-1 



Mnemonic Modifications Allowed Mnemonic Modifications Allowed 

LDI All except CI, SC SBXn All except CI, SC 
LDLXn All except CI, SC SMCM All except DU, DL, CI, SC 
LDT All except CI, SC SMFP All except DU, DL, CI, SC 
LDQ All SMIC All except DU, DL, CI, SC 
LDXn All except CI, SC SREG All except DU, DL, CI, SC 
LLR All except DU, DL, CI, SC SSA All except DU, DL, CI, SC 
LLS All except DU, DL, CI, SC SSQ All except DU, DL, CI, SC 
LREG All except DU, DL, CI, SC SSXn All except DU, DL, CI, SC 
LRL All except DU, DL, CI, SC STA All except DU, DL 
LRS All except DU, DL, CI, SC STAQ All except DU, DL, CI, SC 

STBA None 
MME No effect on ope ration STBQ None 
MPF All except CI, SC ST Cl All except DU, DL, CI, SC 
MPY All except CI, SC STC2 All except DU, DL, CI, SC 

STCA None 
NEG No effect on operation STCQ None 
NEGL No effect on operation STE All except DU, DL, CI, SC 
NOP All (See notes under instruction) STI All except DU, DL, CI, SC 

STLXn All except DU, DL, CI, SC 
ORA All STQ All except DU, DL 
ORAQ All except DU, DL, CI, SC STT All except DU, DL, CI, SC 
ORQ All STXn All except DU, DL, CI, SC 
ORSA All except DU, DL, CI, SC STZ All except DU, DL, CI, SC 
ORSQ All except DU, DL, CI, SC SWCA All 
ORSXn All except DU, DL, CI, SC SWCQ All 
ORXn All except CI, SC SZN All 

QLR All except DU, DL, CI, SC TEO All except DU, DL, CI, SC 
QLS All except DU, DL, CI, SC TEU All except DU, DL, CI, SC 
QRL All except DU, DL, CI, SC TMI All except DU, DL, CI, SC 
QRS All except DU, DL, CI, SC TNC All except DU, DL, CI, SC 

TNZ All except DU, DL, CI, SC 
RET All except DU, DL, CI, SC TOV All except DU, DL, CI, SC 
RMCM All except DU, DL, CI, SC TPL All except DU, DL, CI, SC 
RMFP All except DU, DL, CI, SC TRA All except DU, DL, CI, SC 
RPD None TSS All except DU, DL, CI, SC 
RPL None TSXn All except DU, DL, CI, SC 
RPT None TTF All except DU, DL, CI, SC 

TZE All except DU, DL, CI, SC 
SBA All 
SBAQ All except DU, DL, CI, SC UFA All except CI, SC 
SBAR All except DU, DL, CI, SC UFM All except CI, SC 
SBLA All UFS All except CI, SC 
SBLAQ All except DU, DL, CI, SC 
SBLQ All XEC All except DU, DL, CI, SC 
SBLXn All except CI, SC XED All except DU, DL, CI, SC 
SBQ All 

©@~[pfill[~ffi[L~@I®®®-------------

G-2 



APPENDIX H 

M-605 INSTRUCTION MNEMONICS 

CORRELATED WITH THEIR 

OPERATION CODES 

©@~[pfiluurn~~~t®®®----------------





000 

000 
020 ADLXO 
040 ASXO 
060 ADXO 

100 CMPXO 
120 SBLXO 
140 ssxo 
160 SBXO 

200 CNAXO 
220 LDXO 
240 </JRSXO 
260 ¢RXO 

300 CANXO 
320 LCXO 
340 ANS XO 
360 ANXO 

400 
420 
440 STT.XO 
41ifl 

f-·-------·---·-· -·- -·-
lU-'L 
RPT 

600 TZE 
620 EAXO 
1)40 ERSXO 
660 ERXO 

700 TSXO 
720 LDLXO 
740 STXO 
760 

000 

M-605 INSTRUCTION MNEMONICS 
CORRELATED WITH 

THEIR OPERATION CODES 

M-605 Mnemonics and Operation Codes 
GENERAL@ ELECTRIC 

l RADiu GUiDANCE uPERATiON 

001 002 003 004 005 006 007 010 011 012 013 014 015 016 017 

MME DRL N</JP CidC 
ADLXl ADLX2 ADLX3 ADLX4 ADLX5 ADLX6 ADLX7 ADL ADLA ADLQ ADLAQ 
ASXl ASX2 ASX3 ASX4 ASX5 ASX6 ASX7 Ac/JS ASA ASQ 
ADXl ADX2 ADX3 ADX4 ADX5 ADX6 ADX7 AWCA AWCQ LREG ADA ADQ ADAQ 

CMPXl CMPX2 CMPX3 CMPX4 CMPX5 CMPX6 CMPX7 CWL CMPA CMPQ CMPAQ 
SBLXl SBLX2 SBLX3 SBLX4 SBLX5 SBLX6 SBLX7 SBLA SBLQ SBLAQ 
SSXl SSX2 SSX3 SSX4 SSX5 SSX6 SSX7 SSA SSQ 
SBXl SBX2 SBX3 SBX4 SBX5 SBX6 SBX7 S\VCA SWCQ SBA SBQ SBAQ 

CNAXl CNAX2 CNAX3 CNAX4 CNAX5 CNAX6 CNAX7 CMK CNAA CNAQ CNAAQ 
LDXl LDX2 LDX3 LDX4 LDX5 LDX6 LDX7 LBAR Rl\TCM SZN LDA LDQ LDAQ 
</JRSXl </JRSX2 c!JRSX3 <bRSX4 ¢RSX5 ¢RSX6 c!JRSX7 </>RSA </JRSQ 
¢RX1 ¢RX2 <'JRX3 <'JRX4 <'JRX5 <'JRX6 <'JRX7 oRA <!JRQ 6RAQ 

CANXl CANX2 CANX3 CANX4 CANX5 CANX6 CA"NX7 CANA CANQ CANAQ 
LCXl LCX2 LCX3 LCX4 LCX5 LCX6 LCX7 LCA LCQ LCAQ 
ANSXl ANSX2 ANSX3 ANSX4 ANSX5 ANSX6 ANSX7 ANSA ANSQ 
ANXl ANX2 ANX3 ANX4 ANX5 ANX6 ANX7 ANA ANQ ANAQ 

MPF MPY CMG LDE ADE 
L'Fl\I DUFl\I FCl\IG DFCl\IG FSZN FLD DFLD lTA TffFA 
STLXl STLX2 STT.X:1 STT.X4 STLX~ STLXl1 STLX7 ST/'. S'llll Sl\JFP STl FST '-'TF llFST I 
Fi\JP ll F\IP F ",Jl !H"All I 

------ ------------ --------------------------·--------------·----·-----.,., 
ul'. L'\ l· lJ t L -.\ll~ 

FDI DFDI NEG NEGL l"FS Dl'FS 

I 

TNZ TNC TRC TMI TPL TTF TEO TEl" DIS Tc!JV 
EAXl EAX2 EAX3 EAX4 EAX5 EAX6 EAX7 RET Rl\IFP LDI EAA EAQ LDT 
EHSXl EHSX2 ERSX:l ERSX4 ERSX5 ERSX6 ERSX7 ERSA ERSQ 
ERXl ERX2 ERX3 ERX4 ERX5 ERX6 ERX7 ERA ERQ ERAQ 

TSXl TSX2 TSX3 TSX4 TSX5 TSX6 TSX7 TRA TSS XEC XED 
LDLXl LDLX2 LDLX3 LDLX4 LDLX5 LDLX6 LDLX7 ARS QRS LRS ALS QLS LLS 
STXl STX2 STX3 STX4 STX5 STX6 STX7 STC2 STCA STCQ SREG STI STA STQ STAQ 

ARL QRL LRL GTB ALR QLR LLR 

001 002 003 004 005 006 007 010 011 012 013 014 01'1 Olfl 017 

H-1 





,,,....-:-\ ,/;:--, r-1 n 

!,~ 1~1 lj\~ij , 

APPENDIX I 

M-605 MNEMONICS 

IN ALPHABETICAL ORDER 

WITH PAGE REFERENCES 

I : ~ i ll'1 f ~,i 
'V\~!~----------------





Mnemonic: Page: Mnemonic: Page: Mnemonic: Page: Mnemonic: Page: 

ADA IIl-23 DFAD IIl-96 LCXn III-6 SBQ III-30 
ADAQ 85 T"'\.T",,"'l\tr,.., .. £\0 T T"\ A 3 cnv .... 31 ur v1nu J.VO .LJJ...Jr1 U.LJ..L~lJ. 

ADE 55 DFCMP 107 LDAQ 83 SMCM 80 
ADL 28 DFDI i04 LDE 55 SMFP 81 
ADLA nr> T"\ T.'T"\"1: T 1 {\') T T\T 4 C!l\ll"T r" '7 '7 .::.u l.../£1...IV ..LULi .LJJ...J ..l U.l.l'..1..1.V' I I 

ADLAQ 85 DFLD 93 LDT 76 SREG 10 
ADLQ 26 T""\T""'l\trT"'\ .. £\ {\ T T"\r\ •) cc A 31 ur iv1r .1.VV .LJ.LJ"i 

._, uuri 

ADLXn 27 DFSB 98 LDLXn 4 SSQ 32 
ADQ 23 DFST 94 LDXn 3 SSXn 32 
ADXn 24 DIS 62 LLR 22 STA 9 
ALR 21 DIV 38 LLS 20 STAQ 84 
ALS 19 DRL 67 LREG 5 STBA 12 
ANA 41 DUFA 96 LRL 21 STBQ 13 
ANAQ 87 DUFM 100 LRS 19 ST Cl 16 
ANQ 41 DUFS 98 STC2 17 
ANSA 42 DVF 39. MME 66 STCA 10 
ANSQ 42 MPF 37 STCQ 11 
ANSXn 42 EAA 7 MPY 36 STE 55 
ANXn 41 EAQ 7 STI 14 
AOS 29 EAXn 8 NEG 40 STLXn 9 
ARL 20 ERA 45 NEGL 40 STQ 9 
ARS 18 ERAQ 89 NOP 62 STT 15 
ASA 24 ERQ 45 STXn 9 
~~Cl 25 ERSA 46 ORA 1:1 STZ Fi '"'x{ 

ASXn 25 ERSQ 46 ORAQ 88 SWCA 34 
~ i:·pro ~ 0'"' ERSX:: H~ ORQ ,-i ·~ Q~Vf""() ~~ 

... "i l'' ......... .I.~ 

AWCQ 28 ERXn 45 ORSA 44 SZN 52 
ORSQ 44 

BCD 63 FAD 95 ORSXn 44 TEO 60 
FCMG 107 ORXn 43 TEU 61 

CANA 53 FCMP 106 TMI 59 
CANAQ 91 FDI 102 QLR 22 TNC 60 
CANQ 53 FDV 101 QLS 20 TNZ 59 
CANXn 53 FLD 93 QRL 21 TOV 60 
CIOC 82 FMP 99 QRS 18 TPL 59 
CMG 51 FNEG 105 TRA 57 
CMK 52 FNO 56 RET 58 TRC 60 
CMPA 47 FSB 97 RMCM 78 TSS 57 
CMPAQ 90 FST 94 RMFP 79 TSXn 57 
CMPQ 48 FSZN 108 RPD 73 TTF 61 
CMPXn 49 RPL 70 TZE 59 
CNAA 54 GTB 64 RPT 68 
CNAAQ 92 UFA 95 
CNAQ 54 LBAR 76 SBA 30 UFM 99 
CNAXn 54 LCA 5 SBAQ 86 UFS 97 
CWL 50 LCAQ 83 SBAR 15 

LCQ 6 SBLA 33 XEC 64 
SBLAQ 86 XED 65 
SBLQ 33 
SBLXn 34 

©©~~illvurn~~~!®®®--------------------~------~---

I-1 





APPENDIX J 

M-605 INSTRUCTIONS 

LISTED BY 

FUNCTIONAL CLASS 

WITH PAGE REFERENCES 

AND TIMING 

(rD rm r~n IDi r;r1-r n ro2 n 1~ 0? /! ~ rn1 1n1 
~~~u ~\IJlll~~!~~u ~~~~~~~~~~~~~~~~~~~~~ 


M-605
TIMING

DATA MOVEMENT Reference
2 µsec 1 µsec (Page)

Load

LDA on!'.: T --...l A 3.6 2.8 TTT ')
.::;00 LVCLU n. J_J_J_-<J

LDQ 236 Load Q 3.6 2.8 3
LDAQ 237 Load AQ *3. 9 ~ 1 ()tl

v • ..L OL>

LDXn 22n Load Xn 3.6 2.8 3
LDLXn 72n Load Xn from Lower 3.6 2.8 4
LREG 073 Load Registers 10.0 8.0 5
LCA 335 Load Complement A 3.6 2.8 5
LCQ 336 Load Complement Q 3.6 2.8 6
LCAQ 337 Load Complement AQ *3.9 3.1 83
LCXn 32n Load Complement Xn 3.6 2.8 6

EAA 635 Effective Address to A 2.2 2.0 7
EAQ 636 Effective Address to Q 2.2 2.0 7
EAXn 62n Effective Address to Xn 2.2 2.0 8

LDI 634 Load Indicator Register 3.6 2.8 4

Store

STA 755 Store A 3.2 2.6 9
~·TY'I M'*":_('! Store Q 3.2 ~.~ 9 "--' ..i.. ""'-(

STAQ 757 Store AQ *4. 5 3.7 84
STXn 74n Store Xn 3.2 2.6 9
STLXn 44n Store Xn in Lower 3.2 2.6 9
SREG 753 Store Register 12.0 10.0 10
STCA 751 Store Character of A (6 Bit) 3.2 2.6 10
STCQ 752 Store Character of Q (6 Bit) 3.2 2.6 11
STBA 551 Store Character of A (9 Bit) 3.2 2.6 12
STBQ 552 Store Character of Q (9 Bit) 3.2 2.6 13
STI 754 Store Indicator Register 3.8 3.2 14
STT 454 Store Timer Register 3.2 2.6 15
SBAR 550 Store Base Address Register 3.2 2.6 15
STZ 450 Store Zero 3.2 2.6 15
ST Cl 554 Store Instruction Counter plus 1 3.8 3.2 16
STC2 750 Store Instruction Counter plus 2 3.8 3.2 17

Shift

ARS 731 A Right Shift 3.6 3.6 18
QRS 732 Q Right Shift 3.6 3.6 18
LRS 733 Long Right Shift 3.6 3.6 19

ALS 735 A Left Shift 3.6 3.6 19
QLS 736 Q Left Shift 3.6 3.6 20
LLS 737 Long Left Shift 3.6 3.6 20

* Performed by macro-operation or hardware option. Timing listed is for optional hardware
operation.

©@~[f illu~W[U~IB J ®®®

J-1

M-605
TIMING

DATA MOVEMENT Reference
2 µsec 1 µsec (Page)

Shift

ARL 771 A Right Logic 3.6 3.6 111-20
QRL 772 Q Right Logic 3.6 3.6 21
LRL 773 Long Right Logic 3.6 3.6 21

ALR 775 A Left Rotate 3.6 3.6 21
QLR 776 Q Left Rotate 3.6 3.6 22
LLR 777 Long Left Rotate 3.6 3.6 22

FIXED-POINT ARITHMETIC

Addition

ADA 075 Add to A 3.6 2.8 23
ADQ 076 Add to Q 3.6 2.8 23
ADAQ 077 Add to AQ *3.9 3.1 85
ADXn 06n Add to Xn 3.6 2.8 24

ASA 055 Add Stored to A 4.5 3.5 24
ASQ 056 Add Stored to Q 4.5 3.5 25
ASXn 04n Add Stored to Xn 4.5 3.5 25

ADLA 035 Add Logic to A 3.6 2.8 26
ADLQ 036 Add Logic to Q 3.6 2.8 26
ADLAQ 037 Add Logic to AQ *3. 9 3.1 85
ADLXn 02n Add Logic to Xn 3.6 2.8 27

AWCA 071 Add with Carry to A 3.6 2.8 27
AWCQ 072 Add with Carry to Q 3.6 2.8 28

ADL 033 Add Low to AQ 3.6 2.8 28

AOS 054 Add One to Storage 4.5 3.5 29

Subtraction

SBA 175 Subtract from A 3.6 2.8 30
SBQ 176 Subtract from Q 3.6 2.8 30
SBAQ 177 Subtract from AQ *3. 9 3.1 86
SBXn 16n Subtract from Xn 3.6 2.8 31

SSA 155 Subtract Stored from A 4.5 3.5 31
SSQ 156 Subtract Stored from Q 4.5 3.5 32
SSXn 14n Subtract Stored from Xn 4.5 3.5 32

* Performed by macro-operation or hardware option. Timing listed is for optional hardware
operation.

©@~[f illlY~ill~~~ I®®®

J-2

M-605
TIMING

FIXED-POINT ARITHMETIC Reference
2 µsec 1 µsec (Page)

Subtraction

SBLA 135 Subtract Logic from A 3.6 2.8 III-33
SDLQ 136 Subtract Logic from Q 3.6 2.8 33
SBLAQ 137 Subtract T ,ogic from AQ *3. 9 3.1 R fl
C"TI T 'V"~ 1 <)~ c ... h+,,..- ,...+ T r"\rY".;,... .f-vt""l"'V'i V""' 3.6 2.8 31 OLJD~U .L.:..11 Ul.UJl,,.l. cl.vi,, .L..JV0 .l.v .I. .I. VJ.J.J. ..l~J.J.

SWCA 171 Subtract with Carry from A 3.6 2.8 34
SWCQ 172 Subtract with Carry from Q 3.6 2.8 35

Multiplication

MPY 402 Multiply Integer 10.5 10.0 36
MPF 401 Multiply Fraction 10.5 10.0 37

Division

DIV 506 Divide Integer 18.0 17.5 III-38
DVF 507 Divide Fraction 18.0 17.5 39

~PP'MP

NEG 531 Negate A 2.2 2.0 40
NEGL 433 Negate Long 2.2 2.0 40

BOOLEAN OPERATIONS

AND

ANA 375 AND to A 3.6 2.8 41
ANQ 376 AND to Q 3.6 2.8 41
ANAQ 377 AND to AQ *3.9 3.1 87
ANXn 36n AND to Xn 3.6 2.8 41

ANSA 355 AND to Storage A 4.5 3.5 42
ANSQ 356 AND to Storage Q 4.5 3.5 42
ANSXn 34n AND to Storage Xn 4.5 3.5 42

OR

ORA 275 OR to A 3.6 2.8 43
ORQ 276 OR to Q 3.6 2.8 43
ORAQ 277 OR to AQ *3. 9 3.1 88
ORXn 26n OR to Xn 3.6 2.8 43

* Performed by macro-operation or hardware option. Timing listed is for optional hardware
operation.

©@~[pffiuurn~~~ ti®®® _________________________ _

J-3

BOOLEAN OPERATIONS

OR

ORSA 255
ORSQ 256
ORSXn 24n

OR to Storage A
OR to Storage Q
OR to Storage Xn

EXCLUSIVE OR

ERA 675
ERQ 676
ERAQ 677
ERXn 66n

ERSA 655
ERSQ 656
ERSXn 64n

COMPARISON

Compare

CMPA 115
CMPQ 116
CMPAQ 117
CMPXn lOn

CWL 111
CMG 405
SZN 234
CMK 211

EXCLUSIVE OR to A
EXCLUSIVE OR to Q
EXCLUSIVE OR to AQ
EXCLUSIVE OR to Xn

EXCLUSIVE OR to Storage A
EXCLUSIVE OR to Storage Q
EXCLUSIVE OR to Storage Xn

Compare with A
Compare with Q
Compare with AQ
Compare with Xn

Compare with Limits
Compare Magnitude
Set Zero and Negative Indicators from Memory
Compare Masked

Comparative AND

CANA 315
CANQ 316
CANAQ 317
CANXn 30n

Comparative AND with A
Comparative AND with Q
Comparative AND with AQ
Comparative AND with Xn

Comparative NOT A~TD

CNAA 215
CNAQ 216
CNAAQ 217
CNAXn 20n

Comparative NOT AND with A
Comparative NOT AND with Q
Comparative NOT AND with AQ
Comparative NOT AND with Xn

M-605
TIMING

Reference
2 µsec 1 µsec (Page)

4.5
4.5
4.5

3.6
3.6

*3.9
3.6

4.5
4.5
4.5

3.6
3.6

*3. 9
3.6

3.8
3.6
3.6
3.8

3.6
3.6

*3. 9
3.6

3.6
3.6

*3. 9
3.6

3.5
3.5
3.5

2.8
2.8
3.1
2.8

3.5
3.5
3.5

2.8
2.8
3.1
2.8

3.4
2.8
2.8
3.4

2.8
2.8
3.1
2.8

2.8
2.8
3.1
2.8

III-44
44
44

45
45
89
45

46
46
46

47
48
90
49

50
51
52
52

53
53
91
53

54
54
92
54

* Performed by macro-operation or hardware option. Timing listed is for optional hardware
operation.

J-4

M-605
TIMING

FLOATING POINT Reference
2 µsec 1 µsec (Page)

Load

FLD 431 k'ln<:>Hnrr T .n<:>rl *3.8 3.3 III-93
...L. .L'\.Jt...t.\l~.1..LE:J ~'-'L.4''-"-

DFLD 433 Double-Precision Floating Load *4.1 3.6 93

LDE A 1 1 Load Exponent Register 3.6 2.8 55
-:1:.L.L

Store

FST 455 Floating Store *3. 2 2.6 94

DFST 457 Double-Precision Floating Store *4.5 3.7 94

STE 456 Store Exponent Register 3.2 2.6 55

Addition

FAD 475 Floating Add *6.5 6.2 95
UFA 435 Unnormalized Floating Add *6. 5 6.2 95
DFAD 477 Double-Precision Floating Add *6.8 6.5 96
DUFA 437 Double-Precision Unnormalized Floating Add *6.8 6.5 96
ADE 415 Add to Exponent Register 3.6 2.8 55

.;:.._1htr'.'l ct i nr-

FSB 575 Floating Subtract *6.5 6.2 97
UFS 535 Unnormalized Floating Subtract *6.5 6.2 97
DFSB 577 Double-Precision Floating Subtract *6.8 6.5 98
DUFS 537 Double-Precision Unnormalized Floating Subtract *6.8 6.5 98

Multiplication

FMP 461 Floating Multiply *10. 0 9.4 99
UFM 421 Unnormalized Floating Multiply *10. 0 9.4 99
DFMP 463 Double-Precision Floating Multiply *10.3 9.7 100
DUFM 423 Double-Precision Unnormalized Floating Multiply *10.3 9.7 100

Division

FDV 565 Floating Divide *19.2 18.7 101
FDI 525 Floating Divide Inverted *19. 2 18.7 102
DFDV 567 Double-Precision Floating Divide *19.5 19.0 103
DFDI 527 Double-Precision Floating Divide Inverted *19.5 19.0 104

* Performed by macro-operation or hardware option. Timing listed is for optional hardware
operation.

©@~[rilllT~OO~d~~ ti®®®-------------------------

J-5

FLOATING POINT

Negate, Normalize

FNEG
FNO

Compare

513 Floating Negate
573 Floating Normalize

FCMP 515
FCMG 425
DFCMP 517
DFCMG 427
FSZN 430

Floating Compare
Floating Compare Magnitude
Double-Precision Floating Compare
Double-Precision Floating Compare Magnitude
Floating Set Zero and Negative Indicators from Memory

TRANSFER OF CONTROL

Transfer

TRA
TSXn
TSS
RET

710 Transfer Unconditionally
7 On Transfer and Set Xn
715 Transfer and Set Slave Mode
630 Return

Conditional Transfer

TZE 600 Transfer on Zero
TNZ 601 Transfer on Not Zero

TMI 604 Transfer on Minus
TPL 605 Transfer on Plus

TRC 603 Transfer on Carry
TNC 602 Transfer on No Carry

TOV 617 Transfer on Overflow
TEO 614 Transfer on Exponent Overflow
TEU 615 Tran sf er on Exponent Underflow

TTF 607 Transfer on Tally-Runout Indicator OFF

MISCELLANEOUS OPERATIONS

NOP 011 No Operation

_D_IS ___ 6_16 Delay Until Interrupt Signal

M-605
TIMING

Reference
2 µsec 1 µsec (Page)

*6.5
6.5

*6.5
*6.5
*6.8
*6.8
*3.8

2.0
2.0
2.0
4.0

2.0
2.0

2.0
2.0

2.0
2.0

2.0
2.0
2.0

2.0

2.0

2.0

6.2
6.2

6.2
6.2
6.5
6.5
3.3

1. 9
1. 9
1. 9
3.6

1. 9
1. 9

1. 9
1. 9

1. 9
1. 9

1. 9
1. 9
1. 9

1. 9

1. 6

1. 9

III-105
56

106
107
107
108
108

57
57
57
58

59
59

59
59

60
60

60
60
61

61

62

62

* Performed by macro-operation or hardware option. Timing listed is for optional hardware
operation.

©@~[pffil[~[_g_j[lJ~~I®®®-------------

J-6

MISCELLANEOUS OPERATIONS

BCD
GTB

XEC
XED
1\11\IIE
DRL

RPT
RPD
RPL

505
774

716
717
001
002

520
560
500

Binary to Binary-Coded-Decimal
Gray to Binary

Execute
Execute Double
M!lQtPr MonP F.ntrv
-·-~~w-- -·---- ---w-J
Derail

Repeat
Repeat Double
Repeat Link

MASTER MODE OPERATIONS

LBAR
LDT

Sl\TIC

RMCM
RMFP

SMCM
SMFP

CIOC

230 Load Base Address Register
63 7 Load Timer Register

451 Set "'.\1emory Controller Interrupt Cells

233 Read Memory Controller Mask Registers
633 Read Memory File Protect Register

553 Set Memory Controller Mask Registers
453 Set Memory File Protect Register

015 Connect I/O Channel

M-605
TIMING

2 µsec

6.8
9.8

2.0
2.0
2.0
2.0

2.0
2.0
2.0

3.6
3.6

3.2

3.9
3.9

4.5
4.5

3.6

1 µsec

6.5
9.5

1. 9
1. 9
1. 9
1. 9

1. 9
1. 9
1. 9

2.8
2.8

2.6

3.1
3.1

3.7
3.7

2.6

An explanation of instruction execution timing is given in paragraph 5, page II-36.

Model 60
Reference

(Page)

III-63
64

64
65
66
67

68
73
70

76
76

77

78
79

80
81

82

* Performed by macro-operation or hardware option. Timing listed is for optional hardware
operation.

©©~[pffiu~rn~~~ (1 ®®®-------------------------

J-7

~gress Is Our Mosf lmpor1'1nf P,otlud

GENERAL. EL~CTRIC
RADIO GUIDANCE OPERATION • SYRACUSE, N. Y.

RG0-157

