
GENERAL ELECTRIC
COMPUTERS

XCPS-I087

GE-625/635
ALGOL

ADVANCE INFORMATION

GENERAL. ELECTRIC

GE-625/635

ALGOL

The data, analyses, programs, or other material contained
or used herein is preliminary information relating to pro­
gramming and computer applications and is supplied to
interested persons without representation or warranty as to
its content, accuracy, or freedom from defects or errors.
The General Electric Company therefore assumes no re­
sponsibility and shall not be liable for damages arising
from the supply or use of such data, analyses, programs,
or other material contained herein.

March 1966

GENERAL _ ~LECTRIC
INFORMATION SYSTEMS DIVISION

o 1966 by General Electric Company

GUIDE TO THE EFFECTIVE USE

OF THIS MANUAL

This manual describes the ALGOL language as defined for use in preparing

programs for the General Electric 625/635 computer system. Thus, the

instruction forms, procedures, rules, etc. are those which are accept­

able to the ALGOL compiler prepared for that computer system.

This is a reference manual for programmers. It is not intended to be

a primer or introductory exposition on how to write computer programs

in general or on the ALGOL language in particular. It may be used to

learn the language; however, this would presuppose that the user is

familiar with the basic machine and language-independent principles of

computer programming.

Chapter I provides a definition and discussion of ALGOL. This

includes a presentation of techniques and a detailed description

of a sample ALGOL program.

Chapter II contains definitions of the elements of ALGOL.

Chapters III, IV, V, VI, and VII describe the various ALGOL

statements and declarations.

Certain conventions have been used in preparing this manual's text.

The ALGOL language itself has been differentiated from its descriptive

prose by the use of two type styles. Thus, ALGOL appears in manifold

while the prose appears in italics.

- iii -

ALGOL is characterized by having relatively few distinct instructions*

(statements and declarations) in comparison with other compiler

languages (e.g., FORTRAN). The power of the language derives from its

great flexibility in allowing many variations of each instruction

form.

Traditionally, ALGOL manuals have dwelled upon the generalized forms

of each instruction in the language repertoire after having presented

definitions of terms, concepts, etc. The various derivable forms of

the instructions which the user needs to implement an application were

learned by inference in the remaining test, and through examples. Much

was learned "on the computer".

This manual overcomes the problem of providing insight into the

variations possible with each instruction. It presents each as a

series of variations proceeding from the simplest to the most complex

forms, thus providing the user with a wider insight into its utili­

zation possibilities.

Each variation is presented as though it were a separate and distinct

instruction in the ALGOL language. Each set of such variations is

proceeded by a title page containing the generally accepted name

attached to the forms included. Finally, each instruction (or variation)

starts on a new page and is appropriately labelled on an upper corner.

It is of interest to note that Chapter III contains the list of

instructions discussed in the text.

*The word instruction has been avoided in the remainder of this manual.

This has been done because it conflicts with the notion of statement

and declaration as used in ALGOL.

- iv -

These do not have generally accepted ALGOL names since, as discussed

earlier, they are variations derived from those which do. The list

contains the form of each instruction to be encountered in the text

as well as a reference to the page on which it can be found.

- v -

TABLE OF CONTENTS

PREFACE

GUIDE TO THE EFFECTIVE USE OF THIS MANUAL

I. INTRODUCTION • · · · · · · · · · · · · .. · .. · · · · 1

A. DEFINITION AND STRUCTURE OF THE ALGOL LANGUAGE. · · · · 2

Defini tiona · · · · · · · · · · 2

Structure • · · · · · · 3

Basic Symbols • .. · · · 3

Statement TYpes • · · · · · 6

Declaration Types • 7

B. HOW TO WRITE AN ALGOL PROGRAM • · .. · · 9

Form of an ALGOL Program · · · · · · · · 9

Writing Rules and Techniques. · 11

Punctuation. · · · 12

Comments. · · 13

C. EXAMPLE OF AN ALGOL PROGRAM • · • · · 14

II. DEFINITIONS. · 19

III. STATEMENT AND DECLARATION FORMS. · · · · · · 32

IV. STATEMENTS • · · · · · · · 38

A. ASSIGNMENT STATEMENTS • · · · · 39

B. CONDITIONAL STATEMENTS · · · · 49

C. DUMMY STATEMENT • · · · · · · 62

D. ' FOR' STATEMENTS · · · · · ",. 64

E. 'GO TO' STATEMENTS. · · · · 74

F. PROCEDURE STATEMENT • · · · · · 81

- vii -

TABLE OF CONTENTS (contdJ

V. DECLARATIONS. • • • • • •

A. 'ARRAY' DECLARATIONS ••

B. 'PROCEDURE' DECLARATIONS.

C. 'SWITCH' DECLARATION.

D. TYPE DECLARATIONS • ••

VI. COMPOUND STATEMENTS AND BLOCKS.

VII. INPUT/OUTPUT. '. • • .'.

A.

B.

LAYOUT PROCEDURES •

BAD DATA. • • • • •

FORMAT ••

FORMAT n. • • . .

HEND •••

HLIM. • •

NO DATA.

TABULATION ••

VEND.

VLIM. • • • •

DATA TRANSMISSION PROCEDURES. •

INLIST ••••

INPUT n •

OUTLIST •

OUTPUT n.

C. INPUT/OUTPUT CONTROL PROCEDURES •

POSITION •• .. .
SYSPARAM. • • • • • • • • • • • • •

- viii -

87

88

93

111

115

120

125

128

130

132

148

151

153

154

156

158

160

163

164

166

168

170

172

173

174

TABLE OF CONTENTS (contdJ

D. PRIMITIVE PROCEDURES. . . . · · · 177

INSYMBOL. . · · · · . . . · 178

LENGTH. · · 180

N.AME. . · · 181

OUTSYMBOL · · · · 183

STRING ELEMENT. · · 184

TYPE. . · . . . · · · . . · . . . · · 185

E. LIST PROCEDURE. . · · 186

APPENDIX 1 Resewed Identifiers .• • . 189

APPENDIX 2 Mathematical FUnctions. • • · • 191

APPENDIX 3 Detailed Explanation of INLIST and OUTLIST •. 193

APPENDIX 4 Procedures for Preparing ALGOL Programs for

Compilation and Execution • • . • . • • . • • . • • • 207

APPENDIX 5 Basic Symbols with Equivalent Internal Integer

Values. • 211

INDEX. . . . • • 213

- ix -

I. INTRODUCTION

- 1 -

A. DEFINITION AND STRUCTURE OF THE ALGOL LANGUAGE

Definition

ALGOL is.an ac~onym fo~ ALGO~ithmic Language. The word '~lgorithm3"

as used here3 implies ALGOL's unique capability as a tool fo~

exp~es8ing p~oblem soZutions as efficient and precise procedures.

ALGOL is a language in which computer programs may be written.

ALGOL is a set of symbols and a set of rules. Associated with these

a~e a set of definitions which a~e peculiar to a description of the

language 3 its form and use.

There is a computer program associated with the ALGOL language.

This p~og~am is called the "ALGOL compiler." All programs written

~n the ALGOL language must be p~ocessed by the ALGOL compiler prior

to their execution as object programs.

Preparing a problem solution using the ALGOL language thus implies

understanding the form and use of the language repertoire described

in this manual. In addition3 an ALGOL compiler for translation of

the source coding (i.e. 3 the ALGOL program produced by the user of

the language) into machine coding (i.e. 3 the language of the computer

itself) must be available.

This manual does not discuss the ALGOL compile~ as prepared for the

General Electric 625/635. This is documented in other manuals.

There iS3 however3 a procedure which must be followed by the p~ogrammer

in preparing an ALGOL program for processing by the ALGOL compilep.

This includes organization of the source program3 the preparation of

control records for achieving various compiler options3 etc.

Appendix 4 of this manual presents this procedure.

- 2 -

Structure

The structure of ALGOL is distinct from the structure of programs

written in the ALGOL language. This section discusses the former

while Section I B~ How To Write An ALGOL Program~ discusses the
latter.

ALGOL is composed of statements and declarations.

Statements are used to specify operations to be performed by the

computer in solving a problem.

Declarations provide the ALGOL compiler with information needed to

define and link together various elements of the computer program

during processing. In addition~ the existence of declarations within

the language facilitates the definition of program parameters.

The statements and declarations are composed of symbols. Note that

some ALGOL symbols might conventionally be termed "character strings";

however~ the definition of a symbol in ALGOL does not imply a single

character. Also~ certain symbols are enclosed in apostrophes.

These apostrophes are a part of the symbol and must always appear

when the symbol is used.

Basic Symbols

a) Zetters - ABC 0 E F G H I J K L M N 0 P Q R STU V W X y Z

letters are used for forming identifiers and strings.

b) digits - 0 1 2 3 4 5 6 7 8 9

digits are used for forming numbers, identifiers and strings.

c) logical values - 'TRUE' 'FALSE'

- 3 -

d) arithmetic opepatops

symbol

+

"" ...

/

%

t

e) re Zationa l operators

symbol

'LS'

, LQ'

'EQ'
'GQ'
'GR'

'NQ'

f) logical operators

symbol

'EQV'
'IMP'
, OR'

'AND'

'NOT'

definition

addition

subtraction

multiplication

division

division

exponentiation

definition *
less than «)
less than or equal to (~)

equal to (=)

greater than or equal to (~)

greater than (»

not equal to (#)

defini tion *
equivalent (=)

implies (:))

or (II)

and (V)

negation (.,)

g) punctuation - the following $ymbols have definite functions in

the ALGOL language

* The symbols shown in this column are not available to the user

for coding. They are included to show the mathematical meaning

of the corresponding ALGOL symbol.

- 4 -

sy"mbol definition use

period deoimal point in numbers

) oorrona separator for items in a list

oolon separator for statement label

; semioolon separator for statements
(left parenthesis enolose parameter lists; indioate
) right parenthesis expression evaluation

[left braoket } enolose subsoripts
] right braoket

" left string quote } \ right string quote enolose strings

apostrophe indioate exponent

+ arrow assignment operator

blank spaoe spaoe within strings

Note: Signifioant blanks are denoted by ~ in the text of this manual.

h) ALGOL wordS - these words have a fixed meaning in the ALGOL

language

'ARRAY' 'LABEL'

'BEGIN' 'NOf\JLOCAL'

'BOOLEAN' 'OWN'

'CODE' 'PROCEDURE'

'COMMENT' 'REAL'
, 00' 'RENAME'

'ELSE' 'STEP'

'END' 'STRING'

'EXTENDED REAL' 'SWITCH'
, FOR' 'THEN'

'GOTO' 'UNTIL'
, IF' 'VALUE'

, INTEGER' 'WHILE'

- 5 -

There are six types of statements avai Zab'te in ALGOL. Their names

and a brief description of their functions fo't'low:

Name

Assignment

Conditiona'l

'FOR'

'GOTO'

Procedure

statement Types

- 6 -

Functions

To perfor.m ca'lcu'lations

and to assign a va'lue to

a variab'te or a group of

variab'les

To contro'l the execution

of individua'l statements

or groups of statements

To satisfy a programming

protoco'l (described 'later)

but it in itself performs

no operation

To iterate a sequence of

statements

To transfer control

To call a previously defined

sequence of statements

(e.g., a subroutine)

There are four types of declarations available in ALGOL. Their

names and a brief description of their functions follow:

Name

'ARRAY'

'PROCEDURE'

'SWITCH'

Type

Declaration TYpes

Functions

To define an array~ specify

its dimensions and its type

To define a subset of the

computer program (e.g.~ a

. subroutine)

To specify control parameters

which govern the sequence of

progr~ execution

To specify the kind of value

which a variable is to

represent

There are many rules of protocol in writing an ALGOL statement or

declaration. The major part of this manual discusses these.

The ALGOL language is structured in such a way as to impose rules

of combining statements and segregating these as programs or

subprograms in their own right. These concepts are presented in

the section entitled~ "COMPOUND STATEMENTS AND BLOCKS. "

. - 7 -

ALGOL does not contain statements which allow dipect contpol of

the input/output ppocess. Thus~ no statements op declapations

exist fop peading fpom op wpiting on extePnal devices (e.g.~

READ~ WRITE, etc.~ in FORTRAN). To accomplish the usual inpu~/

output opepations, ppocedupes ape ppovided which may be "caZ Zed"

by the usep as subpoutines. These ppocedupes are described in

detail in the section entitled~ "INPUT/OUTPUT."

- 8 -

B. HOW TO WRITE AN ALGOL PROGRAM .

The writing of any computer program presupposes an understanding

of the problem to be solved and the selection of a programming

language. Assuming these conditions to be satisfied~ the following

considerations are presented as a guide in the writing of ALGOL

programs.

Form of an ALGOL Program

ALGOL programs are divided into logical sections called blocks.

The entire program is also a block and must be enclosed within

the symbols 'BEGIN' and 'END'. A block may contain any number

of sub-blocks within it.

Variables~ arrays~ procedures and switches which are used in a

block are defined in declarations at the be~inning of the block.

These declarations are followed by the statements of the block.

Any statement of a block may in itself be a block (i.e. it must

have block format as described in Section VI) and thus blocks

may be nested to any depth.

All ALGOL statements may be labelled with one or more statement

labels~ i.e. simple statements~ compound statements and blocks

may be labelled.

Execution of an ALGOL program starts with the first statement

and continues successiveZy from statement to statement. However~

certain statements in the language have the power to change the

sequence of statement execution.

Execution of the program is terminated when control reaches the

'END' symbol of the outermost bZock of the program.

- 9 -

The following diagram is given to suggest visually the structure

of a typioal (though arbitra~) ALGOL program. Each bracket

denoted bY['BEGIN' represents a block.

'END'

The blocks are composed of declarations and statements (as' dis­

cussed above). The declarations must precede the statements.

'BEGIN'
x

'BEGIN'
x

· 'END'

'BEGIN'
x

'BEGIN' x

'END'

· 'END'

'END'

x declarations

• statements

Note that this diagram represents an ALGOL program with three

block levels and four blocks.

- 10 -

Writing Rules and Techniques

The ALGOL program may be written on coding forms designed

specifically to handle the language.

Columns 1-72 of the coding form may be used for ALGOL state­

ments and declarations.

The ALGOL code may appear anywhere within these columns.

The coding may appear in a completely free form. That iS3
any number of statements and/or declarations may 'appear on

a single line.

A single statement or declaration may occupy as many lines

as is desired.

Blanks may be used freely throughout the ALGOL code to improve

the readability of the text. The only place in ALGOL in which

blanks are significant is in strings. In all other instances

they are disregarded by the compiler.

since the line format of ALGOL programs is very flexible it

is suggested that statement levels be indented on a new line

to improve ease of reading and understanding a program.

Thus each new 'BEGIN' symbol may be indented at a new margin3

and the 'END' corresponding to the 'BEGIN' may be placed at

the same margin. Also3 since statements may contain other

statements 3 each lower statement level may be indented. When

a higher level is resumed later on3 statements for that level

may be placed at the proper level margin (see form of the

example given in Section I. C.).

- 11 -

It must be noted that these are merely suggestions which may

be incorporated in order to make the program structure easy

to follow. However~ line indenting will in no way affect

program execution.

Punctuation

When writing ALGOL statements and declarations there are two

important rules of punctuation which must be employed.

Rule 1. The symbol; is used between statements and between

declarations. However~ the semi-colon may be omitted

after the last simple statement of a compound state­

ment or block. The symbol 'END' serves as a state­

ment separator in this case.

Examples

1. A+2; 'GOTO' Z

2. 'BEGIN' 'INTEGER' A; 'REAL' B;

A+S.3; B+7.2 'END'

Rule 2. The symbol is used to separate a statement label from

a statement.

Examples

1. L: A+B+C; P: 'GOTO' R

2. T: 'BEGIN' 1+1+1; J+J+1 'END'

- 12 -

Comments

If it is desired to place comments within the text of an ALGOL

prog~am, it may be done as follows:

To inse~t a comment between statements or declarations,

or at the beginning of a compound statement or a block,

the comment must be enclosed within the symbols 'COMMENT'

~d· ,
Examples

1. A+Bj 'COMMENT' COMPUTING Cj C+A

2. 'BEGIN' 'COMMENT' COMPUTING Cj

A+Bj C+A 'END'

To place a comment after a compound statement or a block

(i.e., after the symbol 'END') the symbol 'COMMENT' is

not necessary. A semi-colon must be used after the text

if an 'END' or 'ELSE' symbol does not appea~.

Examples

1. 'BEGIN' A+B; C+A 'END'

COMPUTING OJ

~C

2. 'IF' A 'LS' B 'THEN'

'BEGIN' A+Bj C+A 'END'

COMPUTING C D IF A LS B

'ELSE' B+A

study of the examples provided with the detailed descriptions

of the ALGOL statements and declarations in Chapters IV and V

should aid in the understanding of how ALGOL statements are

formed, punctuated, etc.

- 13 -

C. EXAMPLE OF AN ALGOL PROGRAM

This section contains a sample ALGOL Program.

The purpose of the program is to merge two sets of numbers. Th'e

two sets are contained in locations a(l)~ a(2)~ ... 3a(i)~ ... 3 a(n)

and b(l)~ b(2)3 ... 3b(j)~ ... ~b(m). The numbers in each set are

assumed to be arranged in increasing order. The merged set is

contained in locations c(l)~ C(2)3 ... 3 c(k)~

The program ope~tes as follows. The elements of arrays £ and b

are compared. At each comparison~ the smaller element is put into

the result array £. When the end of either array £ or £ is reached3
any remaining elements in the other array are put into the result

array.

Sym~ol8 used in the program:

Symbol

A

B

C

N

M

R

I

J

K

P

Description

Identifier of input array

Identifier of input array

Identifier of output array

Subscript bound for array A

subscript bound for array B

Subscript bound for array C

Subscript for array A

Subscript for array B

Subscript for array C

Controlled variable of 'FOR'

statement

A listing of the program follows. The program is assumed to be a

block contained in a larger block wherein the value of N3 M and R

are assigned3 and wherein P is defined.

- 14 -

.....
V1

Program Line

'BEGIN' 'ARRAY' A[1:N], B[1:M], C[1:R]j 'INTEGER' I, J, Kj 100

I+J+K+1j 110

START: 'IF' I 'GR' N 'THEN' 120

'END'

'BEGIN' P+Oj Q: C[K+P]+B[J+P]j P+P+1; 'IF' P 'LQ' M-J 'THEN' 'GO TO' Q 'END' 130

'ELSE' 'IF' J 'GR' M 'THEN' 140

'BEGIN' P+O; S: C[K+P]+A[I+P]j P+P+1; 'IF' P 'LQ' N-I 'THEN' 'GO TO'S 'END' 150

'ELSE' 'BEGIN' 160

'IF' A[I] 'GQ' B[J] 'THEN' 170

'BEGIN' C[K]+B[J]; J+J+1 'END'

'ELSE' 'BEGIN' C[K]+A[I]; 1+1+1 'END'j

K+K+1; 'GO TO' START

'END'

180

190

200

210

220

A Zine by Zine desaription of this program appears on the foZZowing pages.

Line

100

110

120

130

140

150

160

Description

Contains 'BEGIN' for the block, and declarations of

variables used.

Contains an assignment statement which sets I, J and

K to the value 1.

Contains statement label '~TART" and the beginning

of a conditional statement which extends to line 210.

The 'IF' clause checks whether all of the elements of

array A have been compared.

Contains the true branch of the 'IF' clause of line

120. The true branch is a compound statement which

moves the remaining elements, if any, of array B to

array C.

Contains the start of the false branch of the 'IF'
clause of line 120. The false branch extends to line

210. The 'IF' clause in this line checks whether all

of the elements of array B have been compared.

Contains the true branch of the 'IF' clause Of line

140. The true branch is a compound statement which

moves the remaining elements of array A to array C.

Contains the start of the false branch of the 'IF'

clause of line 140. The false branch is a compound

statement enclosed within 'BEGIN' and 'END' and extends

to line 210.

- 16 -

Line

170

180

190

200

210

220

Contains an 'IF' clause which compares elements of

array s A and B.

Contains the true branch of the 'IF' clause of line

170. The true branch is a compound statement which

moves an element of array B to array C and then updates

the B array subscript, J.

Contains the false branch of the 'IF' clause of Zine

170. The false branch is a compound statement which

moves an element of array A to array C and then updates

the A array subscript, I.

Contains an assignment statement to update the C array

subscript, K, and a 'GOTO' statement to transfer control

to the statement labelled "START."

Contains 'END' for the compound statement starting on

line 160.

Contains 'END' for the block starting on line 100.

The strootu!'e of the conditional statement of the program is shown

in Figure 1.

If the condition of line 120 is true, the true branch, line 130,

is taken and subsequent control goes to line 210, i.e. the false

branch is skipped. If the condition of line 120 is false, control

goes to the false branch, line 140 •

. - 17 -

If the condition of line 140 is true3 the true branoh3 line 1503

is taken and subsequent oontrol goes to line 2103 i.e. the false

branch is skipped. If the condition of line 140 is false 3 control

goes to the false branoh3 line 160.

If the condition of line 170 is true3 the true branch3 line 1803

is taken and subsequent control goes to line 2103 i.e., the f~lse

branch is skipped. If the condition of line 170 is false 3 oontrol

goes to the false branoh3 line 190.

START: 'IF' 'THEN' 120

[130

'ELSE t - 'IF' 'THEN' .140

[150

'ELSE'- 'IF' • • • 'THEN' 160-170

[180

'ELSE'

[
190

200

210

Figure 1. Outline of Conditional Statement

- 18 -

II. DEFINITIONS

- 19 -

1. identifier:

2. number:

3. integer:

A name given to a variable~ an array, a label,

a switch~ a procedure. The name may be composed

of any number of letters and digits. However~

the name must begin with a letter.

Example:

A~ BETA~ M12~ T12C7~ TOTALAMOUNT

Blanks are not considered significant in ALGOL

except in strings, and they may be used f~eely

within identifiers.

Example:

AB LE is conside~ed the same identifier as

ABLE or ABL E.

Two di ffe~en t quanti ties may not have the same

identifier unless they appear in different

blocks. (See the section COMPOUND STATEMENTS

AND BLOCKS for clarification.) Ce~tain ident­

ifiers are reserved fo~ standa~d procedures

by the ALGOL compile~. (See the list of

reserved identifiers in Appendix 1.)

Integer, real number, extended real numbe~.

A whole number written without a decimal point

consisting of 1 to 11 decimal digits. The range

of an integer n is:

- 20 -

3. integer:

(contdJ

4. reaZ number:

35 35
-2 < n < 2 -1

The precision is to 10 decimal digits.

Positive integers may have no sign or may

be preceded by a plus sign. Negative integers

must be preceded by a minus sign.

Example:

0,-452,+7586421,33

A series of from 1 to 9 decimal digits written

with or without a decimal point. If the decimal

point appears it must not be the last character.

An exponent part may be adqed to specify the

integr'al power of 10 to which the nwnber' must

be raised. The exponent part is separated from

the digits by an apostrophe ('J. The exponent

may also appear alone.

The range of a real number' n is:

2127 2127
- < n <

The precision is to 8 decimal digits. Positive

real numbers do not require a sign. However,

a plus sign is per-mitted. Negative r'eal number's

require a minus sign.

Example:

15.7, -.0045, +25.0, 1.7'-3, 5'3

- 21 -

5. extended

real number:

6. string:

A series of from 1 to 19 decimal digits written

with or without a decimal point. If the decimal

point appears it may not be the last character.

An exponent part may be added to specify the

integral power of 10 to which the number must

be raised.

The exponent part may also appear alone.

The range of an extended real number is:

2127. 2127 - < n <

The precision is to 18 decimal digits.

positive extended real numbers do not require

a sign. However a plus sign is pe~itted.

Negative extended real numbers require a minus

sign.

Example:

135982.7834, 21.762'-19

A sequence of basic symbols enclosed in the

left and right string quotes (II and \); or

a sequence of basic symbols and strings

enclosed in the string quotes.

Strings may be used as actual parameters of

procedures.

- 22 -

6. string:
(contd)

7. variab le :

8. subscripted

variable:

Examples of strings:

"A B C \

" A B " CDE\ FG\

A quantity referred to by a name (the variable

identifier) whose value may be changed.

The kind of quantity a variable may represent

is dete~ined by a type declaration and may be

either integer, real, extended real or Boolean.

Example:

X" ABC" YZSN,
THIS IS A VARIABLE

A subscripted variable has the form a[b1,b2, ••• ,bn]

where a is an array identifier and b
1
,b

2
, ••• ,bn

are arithmetic expressions.

The nwnber of subscripts n must be the same as

the nwnber of dimensions declared for a.

Each subscript bi acts like a variable of type

'INTEGER' and the evaluation of the subscript

is understood to be equivalent to an assignment

to this integer variable.

- 23 -

8. sUbsonpted

variable:
(oontdJ .

9. simple

arithmetia
expression:

EValuation of subsaripts within a subsa~pt

list proaeedS from left to ~ght. The value
of the subsa~pted va~able is defined only

if the value of eaah subsa~pt expression is
within the sUbsaript boundS of the array.

Example:

AB[113]1 BOy[tIF' B 'EQ' C 'THEN' 1 'ELSE' 2]

A sequenae of number8~ va~ables~ subsaripted
variables or fUnation aaZls separated by arith­
metia operators and parentheses~ whiah represents

a pule for aomputing a numeriaal value.

Rules:

1. All quantities used in an arithmetia expres­
sion must be of type real, extended real or
integer.

2. For operators +, - or *~ the result of aalau­
lation will be integer if ooth operandS are

integer; real if both operandS are real; and
extended real for all otheia aases.

3. There are 2 operators whiah denote division

/ and %. Both are defined for al l aombina­
tions of real, extended real and integer

quantities~ however,

a) I will give a result of type real onZy
if both operandS are real. In all other

aases the resuZt wiZl be of type extended
real.

- 24 -

9. simple

arithmetic

expression:

(contdJ

bJ % will give the same results as /

except that the value will always be

integral. The result is truncated

not rounded to an integer~ i.e.

5 % ;) = 1.

4. Exponentiation-
b e aJ atbtc is equivalent to (a) .

bJ The types of the base and the exponent

may be any combination of real~ extended

real~ and integer.

cJ If the exponent is an integer~ the result

is as follows:

exp base result

>0 all same type as base

=0 :/0 same type as base

=0 =0 operation is undefined

<0 10 real if base is real~

otherwise extended real

<0 =0 operation is undefined

dJ If exponent is real or extended real

the result is as follows:

- 25 -

9. simple

arithmetio

expression:

(oontdJ

exp base result

>O} real if base is real,

=0 >0 otherwise extended

<0 real

>0 =0 real if base is real,

otherwise extended

real

s.0 =0 operation is undefined

>O}
=0 <0 operation is undefined

<0

5. Hierarchy of operators -

1. exponentiation t

2. multiplication & division * / %

3. addition & substraction + -

6. Expressions inside parentheses are evaluated

first.

7. Evaluation proceeds basically from left to

right within the hierarchy and within

parentheses. Function calls and parenthe­

sized quantities are evaluated from left

to right.

- 26 -

1 0 • ' IF' c laue e

arithmetic

expression:

11. arithmetic

expression:

12. simpZe

BooZean

expression:

'IF' a 'THEN' b 'ELSE' c, where a is a Boolean

expression, b is a simple arithmetic expression3

and c is either a simple arithmetic expression

or an 'IF' clause arithmetic expression.

The 'IF' clause arithemetic expression causes

one of several arithmetic expressions to be

evaluated on the basis of the value of Boolean

expressions.

The expression to be evaluated is selected as

follows:
a) The Boolean expressions are evaluated one

by one in sequence from left to right until

one having a value 'TRUE' is found.

bJ The value of the 'IF' clause arithmetic ex­

pression is the value of the first simple

arithmetic expression following this Boolean

expression.

Either a simple arithmetic expression or an 'IF'

clause arithmetic expression.

A sequence of 7)~iablea~ 81.ibea;ri:pted ?,)ariables~

funation aalZs and.relations possibly sepa~ated

by logiaaZ operators and parentheses, whiah

represents a rule for computing a logical value

(i.. e. 'TRUE' or 'FALSE' J.

- 27 -

12. simple

Boolean

expression:

Rules:

1. Variables and functions used with the

(contdJ logical operators must be declared to be

of type Boolean ..

2. A relation is composed of two arithmetic

expressions separated by a relational

operator.

Example:
A-B~~C 'EQ I Z~~y

3. A relation has a value of 'TRUE' if the rela­

tion is satisfied otherwise it has a value

of 'FALSE'.

4. The logical operators a~e defined as follows:

a) 'NOT' a is true or false if a is false

or true, respectively.

bJ a' AND' b is true if both a and bare

true, otherwise it is false.

oj a 'OR' b is false if both a and b aPe

false, otherwise "it is true.

d) a 'IMP' b is false if a is true and b

is false, otherwise it is trUe.

e) a 'EQV' b is true if either both a and

b are true or both aPe false, otherwise

it is false.

- 28 -

12. simple

Boolean

expression:

(contd)

1 3 • ' IF' claus e

BooZean

expression:

5. The hierarchy of operations in evaluating

a Boolean expression is as follows:

1. an thmetic operators - same order as

for arithmetic expressions

2. relational operators

3. logical operators

6. The hierarchy of logical operators is:

1. 'NOT'

2. 'AND'

3. 'OR'

4. 'IMP'

5. 'EQV'

7. Expressions inside parentheses are evaluated

first.

'IF' a 'THEN' b 'ELSE' c~ where b is a simple

Boolean expression and a and c are either simple

Boolean expressions or 'IF' clause Boolean

expressions.

The 'IF' clause Boolean expression is evaluated

in the same way as an 'IF' clause arithmetic ex­

pression.

- 29 -

14. Boolean

expression:

15. . expression:

16. statement

label:

17. switch

designator:

Either a simple Boolean expression or an 'IF'
clause Boolean expression.

Either an arithmetic expression or a Boolean

expression.

An identifier placed before a statement.

A statement label must be followed bY,a colon

to separate the label from the statement.

A statement may have more than one label~ each

one followed by a colon.

Statement labels are used so that a statement

may be referenced.

Examples:

1) AS: A+B;

2) AC: 'BEGIN' A+C 'END'

3) AD: 'BEGIN' AE: A+E 'END'

4) AF: AG: .AJi: A+Hi

sw[a]~ where sw represents a switch identifier

and a represents an arithmetic expression.

~ 30 -

18. conditionaZ

designator:

19. designationaZ

expression:

20. simpZe statement:

A cZause of the form 'IF' b 'THEN' c 'ELSE' d~

where b represents a BooZean expression, c

may be either a statement ZabeZ, a switch

designator, or a conditional designator enclosed

within parentheses, and d may be either a state­

ment label, a switch designator, or a conditional

designator (which need not be enclosed within

parentheses) •

A statement Zabel, a switch designator, or a

conditional designator.

A statement which is not a compound statement

or a block.

ExampZes:

assignment

condi tiona l

dwnmy

'FOR'

'GO TO'

procedure

- 31 -

III. STATEMENTANDDECLARATIONFORMS

- 32 -

STATEMENT AND DECLARATION FORMS

A. ASSIGNMENT STATEMENTS

Name

Assignment, simple

Assignment, 'IF'

clause

Assignment, two

'IF' clauses

Assignment, n

'IF' clauses

Form

a1+a2+···+an+e

a1+a2+ ... +an+' IF' b1 'THEN' e1' 'ELSE'. 'IF'

b2 'THEN' e
2

'ELSE' e 3

a1+a2+ ••. +am+'IF' b1 'THEN' e1 'ELSE' 'IF'

b2 'THEN' e2 'ELSE' •.• 'IF' bn 'THEN' en

I ELSE' e
n+1

B. CONDITIONAL STATEMENTS

Name

Conditional, simple

Conditional, 'ELSE'

Conditional, two

, IF' clauses

Conditional, two

'IF' clauses, 'ELSE'

Conditional, n 'IF'

clauses

Form

I IF' b ' TH EN' s

'IF' b 'THEN' sl 'ELSE' s2

'IF' b
1

'THEN' sl 'ELSE' 'IF' b2 'THEN' s2

'IF' b
1

'THEN' sl 'ELSE' 'IF' b
2

'THEN' s2

'ELSE's3

'IF' b
1

'THEN' sl 'ELSE' 'IF' b2 'THEN' s2

'ELSE' •.• 'IF' b 'THEN's 'ELSE' 'IF'
n-1 n-1

b 'THEN' s n n

- 33 -

Page
40

43

45

47

Page
50

52

54

56

58

B. CONDITIONAL STATEMENTS (contd)

Name

Conditional~ n 'IF'

alauses~ 'ELSE'

C. DUMMY STATEMENT

Name

Dwnmy

D. 'FOR' STATEMENTS

Name

'FOR'~ expression

'FOR'~ 'STEP' cZause

'FOR'~ 'WHILE' clause

'FOR'" general

E. 'GO TO' STATEMENTS

Name

'GO TO'" label

'GO TO' ~ switch

designator

'GO TO'" conditional

designator

Form

'IF' b1 'THEN' sl 'ELSE' 'IF' b2 'THEN' s2

'ELSE' .•• 'IF' b 1 'THEN's 'ELSE's
n- n-1 n

Form

(null form)

Form

'FOR' v+e '00' s

'FOR' v+e1 'STEP' e2 'UNTIL' e3 'DO's

'FOR' v+e 'WHILE' b 'DO's

Form

'GO TO' a

'GO TO' sw [a]

'GO TO' 'IF' b 'THEN' d 'ELSE' d 1 2

- 34 -

Page

60

~
63

~
65

67

70

72

Page
75

76

78

F. PROCEDURE STATEMENT

Name

Procedure statement

G. 'ARRAY' DECLARATIONS

Name

'ARRAY'

'ARRAY '3 'OWN'

Form

t a) n

type 'ARRAY' a13a2' •.• 3an

H. 'PROCEDURE' DECLARATIONS

Name Form

'PROCEDURE' declaration~ 'PROCEDURE' name (a l t a2 t ... tan); s

simple

'PROCEDURE' declaration~ 'PROCEDURE' name (a
l

t a2 t

specification part list; sp list; ... ; sp list; s

t a); sp n

Page

82

Page

89

92

Page

94

97

'PROCEDURE' declaration~ 'PROCEDURE' name (a l t a2 t ... tan); 100

value and specification 'VALUE' list; sp list; sp list; ... ; sp

part list; s

'PROCEDURE' declaration~ type 'PROCEDURE' name (al t a2 t ... tan); 104

function definition 'VALUE' list; sp list; so list; ... ;

sp list; s

'PROCEDURE' declaration~ 'CODE' 'BEGIN' dl ;d2; ... ;dn 'END'

separately compiled

- 35 -

108

I. 'SWITCH' DECLARATION

Name

'SWITCH'

J. TYPE DECLARATIONS

Name

Type

Type" 'OWN'

Fonrz

'SWITCH' sw+d
1
,d

2
, ••• ,dn

Form

type v1" v 2'·.·" Vn

- 36 -

Page

112

Page

116

118

The description of each statement and declaration in the ALGOL language

is presented in the following section. Each starts on a new page with

the fo~at of its descriptive material given as shown below:

descriptive name

PURPOSE:

FORM:

RULES:

(A brief statement of the purpose of the statement

or declaration)

(Form of the statement or declaration)

(Definition of Symbols

used in the For.m line)

(A list of rules governing the correct usage of the

statement or declaration; includes restrictions3

suggestions~ etc.)

EXAMPLES:

(A list of examples illustrating the use of the state­

ment or deolaration)

- 37 -

IV. ·STATEMENTS

- 38 -

Assignment Statements

- 39 -

Assignment,

PURPOSE: To perfoT-m nwnerical calculations; to perform Boolean opera­

tions; to assign a value to one or more variables or procedure

identifiers in a single statement.

RULES:

a1,a2, ... ,an: variable, subscripted

variable or procedure

identifier

e: arithmetic or Boolean

expression

1. Thi8 8tatement causes expression "e" to be evaluated and the

result to be assigned to a1,a2, .•. ,an. (Note: there need be

only one variable, e.g., a
l
+eJ.

2. The character "+" signifies assignment of the value of the

expression to the variables.

3. The process of aS8ignment is as follows:

a. Subscripts, if any, occurring in the variables are evaluated

from left to right.

b. The expression "e" is evaluated.

c. The value of the expression is assigned to all the vari­

able8 al ,a2, •.. ,an frGm right to le~ across the left

side as follows: The value of e is assigned to an' the

value of an is assigned to an_l , etc. Finally, the

value of a2 is assigned to al •

- 40 -

simp le (contd)

4. The types of the variables must be as follows:

a. The types may be all Boolean. In this case3 the expres­

sion "e" must be Boolean.

b. The types may be real3 extended real or integer. In

this case3 the expression "e" must be arithmetic.

c. Boolean types may not be mixed with the other types.

5. When "e" is an arithmetic expression and its type and the

type of variable a is different3 the value of "e" is changed n

6.

7.

8.

EXAMPLES:

to the type specified by a before it is assigned to a . n n
(See Definitions for forms of integers3 real numbers and

extended real numbers.)

In the case in which "e" is real or extended real and a is n
an integer~ "e 11 is operated upon by the function ENTl ER (e+. 5).

The result of ENTlER is the largest integer not greater than

the value of the argument. This value is then assigned to a . n

When the type of ai and ai _1 is different3 the value of ai3
is changed before it is assigned to ai _1.

The case of an a. being a procedure identifier is only used
't

in defining functions. (See 'PROCEDURE' decZaration3 function

de fini tion.)

In these exampZes~ A3 B3 C~ and D identify 'REAL' type variables.

Rand S identify 'INTEGER' type variables3 and W identifies a

'BOOLEAN' type variab le.

1. A+B+C

- 41 -

The value of B + C is

assigned to A.

2. A+[frB+C

3. A+R+3. 9

4. R+A+3.9

5. J+lj

5 [J]+J+2

6. W+A 'GR' B

- 42 -

Assignment,

simp Ze (c:ontd)

The value of B + C is

assigned to A and D.

4 is assigned to R and A.

3.9 is assigned to A and

4 is assigned to R.

Fipst, 1 is assigned to J.

Then 2 is assigned to J

and 8[1 J.

If the value of A is greater

than the value of B, W is

assigned the value 'TRUE'

otherwise, W is assigned

the value 'FALSE'.

'IF' clause

PURPOSE: To permit a choice to be made as to which of two expressions

FORM:

RULES:

is to be evaluated, based on the value of a Boolean expression;

to assign the value of the evaluated expression to one or more

variables or procedure identifiers.

a
1
,a

2
, ••• ,an: variable, subscripted

variable or prooedure

identifier

b: Boolean expression

e1,e2: arithmetio or Boolean

expression

1. Subsoripts, if any, oocurring in the variables a1,a2,·· ",an
are evaluated from le~ to right.

2. The Boolean expression ,~" is evaluated.

3. If the value of b is 'TRUE' expression e1 is evaluated; if

'FALSE' e2 is evaluated.

4. After e1 or e2 is evaluated, this statement operates as a
simple assignment statement with the evaluated expression.

EXAMPLES."

1 • p+' IF' Q 'LS' 10. Q ' THEN' R

, E LS E ' 5 + 1 7 • 5

- 43 -

If Q<10, P receives the

value of R, otherwise S

+ 17.5.

2. A+8+C+'IF' D 'THEN' E

'OR' F 'ELSE' G 'AND' H

- 44 -

Assignment,
'IF" (JZau.S8 {c on tdJ

If D is true, the vaZue of E

'OR' F is assigned to A, B

and C. Otherwise, the vaZue

of G 'AND' H is assigned.

, IF' cZauses

PURPOSE: To per.mit a choice to be made as to which of three expressions

is to be evaZuated, based on the values of two Boolean expres­

sions; to assign the vaZue of the evaluated expression to one

or more variabZes or procedure identifiers.

FORM:

RULES:

a1+a2+···+an+'IF' b1 'THEN' e1 'ELSE' 'IF' b2
'THEN' e2 'ELSE' e 3

a1,a2, ... ,an: variable, subscripted

variable or procedure

identifier

b1,b2: Boolean expression

e1,e2,e3: arithmetic or Boolean

expression

1. Subscripts, if any, ocaur~ng in the variabZes a1,a2, ... ,an
are evaluated from left to right.

2. The Boolean expression "b1" is evaluated.

3. If b1 is true, e1 is evaluated; if b1 is false, b2 is evaluated.

4. If b2 is true, e2 is evaluated; if b2 is false, e3 is evaluated.

5. A~er an expression is evaluated this statement operates as

a simple assignment statement with the evaluated expression.

- 45 -

EXAMPLES:

1. R+'IF' T 'THEN' B-6.2 'ELSE'

'IF' U 'THEN' C-7 'ELSE' 0%3.5

- 46 -

Assignment, two

'IF' clauses (contd)

If T is true R is assigned

the value of B-6.2. If T

is false and U is true,

C-7 is assigned to R. other­

wise, D%3.5 is assigned to R.

Aso~gnment.J n,

'IF' a'lauses

PURPOSE: To per.mit a ahoice to be made as to which of a number of

expressions is to be evaZuated~ based on the vaZue of

BooZean expressions; to assign the vaZue of the evaZuated

expression to one or more variables or procedure identifiers.

FORM: a1+a2+ ••• +am+'IF' b1 'THEN' e1 'ELSE' 'IF'

RULES:

1.

2.

3.

4.

b2 'THEN' e2 'ELSE' .•. 'IF' bn 'THEN' en 'ELSE' en+1

a1~ a2~ · · · ~am: variabZe~ subscripted
variabZe or procedure

identifier

b1~b2~···~bn: BooZean expression

e1~e2~ .•. ~en+1: arithmetic or BooZean
expression

Subscripts~ if any, occurring in the variabZes a1~a2~ ... ~an

are evaZuated f~m Zeft to right.

The BooZean expressions b1~b2.J ... ~bn are evaZuated from Zeft
to right untiZ one iB found which haB a vaZue of 'TRUE'.

If b. is found to be true, then e. is evaZuated.
~ ~

If aZZ the BooZean expressions are faZBe~ en+1 wiZZ be

evaluated.

5. A~er step 3 or 4 above, this statement operates as a simpZe

assignment statement with the evaZuated expression.

- 47 -

EXAMPLE:

C+O[4,2,2] + 'IF' B 'OR' E

'THEN' 5 'ELSE' 'IF' T 'THEN' 7.5

'ELSE' 'IF' A 'LS' C 'THEN' G

'ELSE' L

- 48 -

Assifnment~ n
, IF' cZau.ses . (contdl

C and D [4,2,2] may be

assigned the following

values: 5 if either B or

E is true; 7.5 if T is

true; the value of G if

the value of A is less

than the value of C; the

value of L if none of the
above conditions are true.

ConditionaZ Statements

- 49 -

Condi tiona Z~

simpZe

PURPOSE: To permit a statement to be executed or skipped depending

on the value of a Boolean expression.

FORM:

RULES:

1.

2.

'IF' b 'THEN' s

Statement s may be anyone

a. assignment statement

b. 'GO TO' statement

c. dwnmy statement

d. 'FOR' statement

e. proaedure statement

f· compound statement

g. bloak

b: Boolean expression

s: 'statement

of the foZlowing: '

statement s may have a labe l.

3. If the Boolean expression has a value of 'TRUE', statement s

is executed. If s does not explicitly specify its successor

the statement following wiZl be executed next.

4. If the Boolean expression has a value of 'FALSE', statement

s is skipped and the following statement will be executed

next.

- 50 -

EXAMPLES:

1. 'IF' A 'GR' B 'THEN' ~E::F

2. 'IF' L 'THEN' 'BEGIN' P+P+3j
R+17.5-T; L+'FALSE' 'END';
'GO TO' S9

- 51 -

Condi tionaZ,

simp Ze {C!ontdJ

If the vaZue of A is greater

than the vaZue of B, then

the vaZue of E*F is assigned

to D. Otherwise, the assign­

ment statement is skipped

and the statement foZZowing

it is exeouted.

If L is true the C!ompound

statement enoZosed between

'BEGIN' and 'END' wiZZ be

exeouted; foZZowed by 'GO TO'

39; if L is faZse onZy'GO TO'
39 wiZZ be exeouted.

Conditional~

'ELSE'

PURPOSE: To per.mit a choice to be made as to which one of two specified

statements is to be executed. The decision is based on the

vaZue of a BooZean expres~ion.

FORM:

RULES:

'IF' b 'THEN' s 'ELSE'
1

b: Boolean expression

s1~s2: statement

1. The statements s1 and s2 may be anyone of the following:

a. assignment statement

b. 'GO TO' statement

c. procedure statement

d. dummy statement

e. compound statement

f. block

2. Statement s2 may also be a 'FOR' statement.

3. Statements s1 and s2 may be labelled.

4. If the Boolean expression has a value of 'TRUEr~ statement s1

is executed. If s1 dOes not explicitly specify its successor~

then the statement following the conditional statement is

executed next~ i.e. s2 is skipped.

5. If the Boolean expression has a value of rFALSEr~ statement

s2 is executed. If s2 dOes not explicitly specify its successor

the statement following the conditional statement is executed

next.

- 52 -

EXAMPLES:

1 • ' IF' A 'LS' B ' TH EN '
T+T+l 'ELSE' B+B+1;

'GO TO' Ll

2. 'IF' R 'AND'S 'THEN' 'GO TO'

BOB 'ELSE' JOE: M+N+Pj 'GO TO'

BOB

- 53 -

Condi tiona Z,

'ELSE t ' Caontd)

If A is Ze88 than B

T+T+1 is executed, followed

by 'GO TO' L1. If A is

greater than or equal to B,

B+B+l is executed, followed

by 'GO TO' L1.

If the expression is true,

control is transferred to

the statement lab,elled BOB;

if false, the statement

labelled JOE is executed

and then control goes to

the statement labelled BOB.

ConditionaZ~ two

'IF' oZauses

PURPOSE: To pe~it a ahoioe to be made as to whiah of two statements

is to be exeauted or whether neither is to be exeauted~

depending on the vaZues of two BooZean expressions.

FORM:

RULES:

'IF' b1 'THEN' sl 'ELSE' 'IF' b2 'THEN' s2

b
1
,b

2
: BooZean expression

sl' s 2: statement·

1. Statements sl and s 2 may be anyone of the foZZourirtg:

a. assignment statement

b. 'GO TO' statement

a. dummy statement

d. procedure statement

e. aompound statement

f. bZock

2. Statement s2 may aZso be a 'FOR' statement.

3. Statements sl and s2 may be ZabeZZed.

4. If b1 has a vaZue of 'TRUE'" statement s 1 is exeouted. If

sl does not expZicitZy specify its suacessor, the statement

foZZowing the conditionaZ statement is exeouted next.

5. If b1 has a vaZue of 'FALSE'" b2 is evaZuated.

- 54 -

Conditional, two

'IF' olauses (oontdJ

6. If b2 has a value of 'TRUE', statement s2 is exeouted. If

s2 does not explioitly speoify its suooessor, the statement

following the conditional statement is exeouted next.

7. If b2 has a value of 'FALSE'~ then s2 is skipped and the

statement foZlowing the oomplete oonditional statement is

executed next.

EXAMPLE:

'IF' A 'EQ' B 'THEN' MODE CC~D)

'ELSE' 'IF' A 'GR' B 'THEN' MEAN
(T ~ D); R+D;~F

- 55 -

If A=B, procedure MODE is

executed, followed by R+D*P.

If AlB but A>B, then prooe­

dure MEAN is executed followed

by R+D*F. If A<B,then only

R+D*F is executed.

Conditional, two 'IF'
.., ,..._. Oc,auseB, 'I:.L::>I:.'

PURPOSE.' To permit a ahoiae to be made as to whiah of three statements

is to be exeauted depending upon the value of two Boolean

expressions.

FORM:

RULES:

'IF' b1 'THEN' sl 'ELSE' 'IF' b2 'THEN' s2 'ELSE' s3

. b 1'. b 2: Boo lean exp:f1ession

sl,s2,s3: statement

1 • Statemen ts sl' s 2' and s 3 may be any one of the fo l lowing:

a. assignment statement

b. 'GO TO' statement

a. dwrrmy statement

d. p:f1oaedure statement

e. aompound statement

f· bloak.

2. Statement s3 may also be a 'FOR' statement.

3. statements sl,s2 and s3 may be labelled.

4. If b1 has a value of 'TRUE', statement sl is exeauted. If

sl dOes not expliaitly speaify its BuaaeS80:f1, the statement

following the aonditional statement is exeouted next.

5. If b1 is false, b2 is evaluated.

- 56 -

ConditionaZ~ two 'IF'

clauses, 'ELSE' (contd)

6. If b2 has a value of tTRUEt~ statement s2 is executed. If s2

does not explicitly specify its successop~ the statement

following the conditionaZ statement is executed next.

7. If b2 has a value of tFALSEt~ statement s3 is executed. If s3

does not explicitly specify its successor~ the statement

following the conditional statement is executed next.

EXAMPLE:

'IF' L 'THEN' 'GO TO' BOY 'ELSE'

'IF' R 'GR' S 'THEN' 'BEGIN'

A+A+lj CALC (F,lO) 'END' 'ELSE'

'GO TO' CATj R+R+l

- 57 -

If L is true,control goes to

the statement Zabelled BOY;

if L is false,R is compared

to S; if R>S,the compound

statement is executed followed

by R+R+l. If R~SJcontrol

goes to the statement labelled

CAT.

Conditional,~ n

PURPOSE: To pe~it a choice to be made among a numbep of statements

as which one should be executed~ op whethep none is to be

executed~ depending upon the value of Boolean exppessions.

FORM:

RULES:

'IF' b 'THEN's 'ELSE' 'IF' b 'THEN's 'ELSE'
1 1 2 2

'IF' b 'THEN's 'ELSE" IF' b 'THEN's n-1 n-1 n n

b 1 ~ b 2' • · · , b n :

s 1 ~ s 2~ • • • ~ s n :

Boolean exppession

statement

1. Each statement sl s2~ .•. ~s may be anyone of the following:
" . n

a. assignment statement
b. 'GO TO' statement

c. dwrurty statement

d. ppoaedUpe statement

e. compound statement

f· block

2. Statement s may be a 'FOR' statement. n

4. The BooZean exppessions ape evaluated in the o~dep b1,b2, ••. ,

until one having a value of 'TRUE' is found. If bi is tpue,

statement s. is exeauted. If statement s. does not explicitZy
~ ~

specify its successop, the statement following the conditional

statement is executed next.

5. If none of the BooZean exppessions is tpue~ the statement

foZlowing the complete conditional statement is executed

next.

- 58 -

(

EXAMPLE:

'IF' M 'THEN' A+A+1 'ELSE'

'IF' N 'THEN' 'GO TO' R1 'ELSE'
, IF' P 'THEN'

'FOR' 1+1 'STEP' 1 'UNTIL' 10 'DO'

A [I] + 1'i L +M 'OR' P

- 59 -

Condi tiona Z" n

, IF' cZauses (contdJ

If M is true, the value of

A is increased by 1. If M

is false and N is true" then

'GO TO' R1 is executed. If

M and N are false and P is

true, the 'FOR' statement

is executed. If M, N and P

are aZl false, the statement

L+.M 'OR' P is executed.

Conditional, n 'IF'

alauses, 'ELSE'

PURPOSE: To per.mit a ahoiae to be made among a number of statements

as to which one should be exeauted depending upon the value

of Boolean exppessions.

FORM:

RULES:

'IF' b 'THEN's 'ELSE" IF' b 'THEN' s2 'ELSE' ••• 1 1 2
'IF' b 'THEN's 'ELSE's

n-1 n-1 n

b1~b2~ •.• ~bn_1: Boolean expression

sl~s2, •.. ~sn: statement

1. Eaah statement sl~s2, ... ,sn may be anyone of the following:

a. assignment statement

b. 'GO TO' statement

a. dummy statement

d. procedUre statement

e. aompound statement

f. block

2. Statement s may be a 'FOR' statement. n

4. The Boolean exppessions ape evaluated in the opder b1,b2, ... ,

until one having a value of 'TRUE' is found. If b. is tpue,
1.-

statement s. is exeauted. If statement s. does not explicitly
1.- 1.-

specify its successor, the statement following the complete

aonditional statement is exeauted next.

- 60 -

ConditionaZ., n 'IF'

oZa:uses, I ELSE' (oontd)

5. If none of the Boolean expressions is true, statement s n

EXAMPLE:

I IF'

'I F'
, IF'

will be exeouted. If it does not explioitly speoify its

suooessor, the statement following the oonditional state­

ment is exeouted next.

A 'THEN' 1+1+1 'ELSE' If A is true, the value of

B 'THEN' J+J+1 'ELSE' I is inoreased by one. If

C 'THEN' K+K+l 'ELSE' A is false and B is true,

L+L+1 ; the value of J is.inoreased

by one. If A and B are false

and C is true, the value of

K is inOl?eased by one. If

I IFf D 'THEN' 'GO TO' BAD

- 61 -

A, Band C are false, the

value of L is inoreased by

one. If D is true then

'GO TO' BAD is exeouted.

Otherwise~ the statement

following it is executed.

Durrmy statement

- 62 -

lJummy

PURPOSE: To place a label at a particular point in the program.

FORM: (null form)

RULES:

1. This statement causes no operation.

EXAMPLES:

1. COUNT:; COUNT is the label of a

dummy statement.

2. B3: j ABC: B3 is the label of a

E+E+l dummy statement.

3. 'BEGIN' ••• j TOY is the label of a

TOY: 'END' dummy statement.

- 63 -

'FOR' Statements

- 64 -

'FOR', expression

PURPOSE: To permit a statement to be executed for a specified value

of a controlled variable.

FORM: 'FOR' v+e 'DO's

RULES:

v: variable or subscripted

variable

e: arithmetic expression

8: statement

1. Variable v is called the controlled variable of the 'FOR'

statement.

2. e represents a value which is assigned to v.

3. statement s may be a simple statement, a compound statement

or a block.

4. The 'FOR' statement causes the expression e to be evaluated

and its value assigned to v. Then statement s is executed.

5. After statement s is executed with v having the value of e,

the 'FOR' statement has been executed. If s does not explicitly

specify its successor, the statement following the 'FOR' state­

ment is executed next.

6. After execution of the 'FOR' statement, the value of v is

undefined.

- 65 -

'FOR', expression (contd)

7. If control is transferred from the 'FOR' statement by a

statement (within statement s), the value of v is available.

8. A 'GO TO' statement outside the 'FOR' statement may not refer

to a label within the 'FOR' statement.

EXAMPLES:

1 . ' FOR' J+ I ' 00' A [J] +0 . 0

2. 'FOR' R+2~~BOY t 2 'DO'

'BEGIN' T+T+1; B[R]+-C[R]

'END'

- 66 -

This statement causes zero

to be assigned to location

A [I].

This statement results in

-C[2* BOYt 2] assigned to

B[2*BOYt 2]. Also, the

value of T is increased

by one.

r FOR r , , STEP'

clause

PURPOSE: To permit a statement to be executed repeatedly for a

specified initial value~ increment and final value of a

controlled variable.

FORM:

RULES:

'FOR' v+e
1

'STEP' e
2

'UNTIL' e
3

'DO's

v: variab le or subscripted

variable

e
1
,e2,e3

: arithmetic expression

8: statement

1. Variable v is called the controlled variable of the 'FOR'

statement.

2. e1 represents the initial value for v; e2 is the increment of

v; e
3

is the final value for v.

3. Statement s may be a simple statement, a compound statement

or a block.

4. The first step in the operation of the 'FOR' statement is that

v is assigned the value of e1 •

5. Statement s may be executed a number of times as follows:

a. A test is made to see if the value of v is beyond the

bound specified by e
3

• If it is, statement s will not

be executed. The statement after s is executed next

and the vaZue of v is undefined.

- 67 -

'FOR', 'STEP'
otause . (contd)

b. If V is within the bound3 statement s is exeauted.

c. If s does not explicitly specify its successor, the

value e2 is then added to v (i.e. v+v+e2J. If the

value of e2 is positive, this will have the effect of

increasing v. If the value of e
2

is negative, v will

be reduced. The process is then repeated at step a ..

6. If control is transferred fram the 'FOR' statement by a

statement (within statement s~ the value of V is available.

? The value of the controlled variable3 the increment ~nd the

final value may be changed by statement s. Therefore3 they

are evaluated eve~ time reference is made to them.

B. A 'GO TO' statement outside a 'FOR' statement may not refer

to a Zabel within the 'FOR' statement.

EXAMPLES:

1. 'FOR' 1+1 'STEP' 1 'UNTIL'

10 'DO' A [I] +8 [1]

2. 'FOR' K+9 'STEP' -2 'UNTIL'

5 '00' X[K]+Kt2

- 68 -

These statements cause

B[l] to B[10] to be

assigned to A[l] to A[10].

These statements cause

Bl to be assigned to X[9],

49 to be assigned to X[?]3

and 25 to be assigned to

X[5] •

3. 'FOR' L+1 'STEP' 1 'UNTIL' 5
, 00 ' , BEG IN'

'FOR' A[L]+6 'STEP' 1 'UNTIL'

10 'DO' B[A[L],L]+L

'END'

- 69 -

'FOR'., 'STEP'

clause (oontd)

The order of assignments

oaused by these statements

is as followa:

6 to 10 is assigned to A[l]

as 1 is assigned to B[631]

to B[1031]3

6 to 10 is assigned to A[2]

as 2 is assigned to B[632]

to B[10321., eto.

FinallY3

6 to 10 is assigned to A[5]

as 5 is assigned to B[63 5]

to B[1035].

, FOR t .t ' WH I LE '

cZause

PURPOSE: To pe~it a statement to be executed repeaCedly for assigned

values of a controlled variable with repetition controlled

by the value of a Boolean expression.

FORM:

RULES:

'FOR' v+e 'WHILE' b 'DO's

v: variable or subscripted

variable

e: arithmetic expression

b: Boolean expression

s: statement

1. Variable v is called the controlled variable of the 'FOR'
statement.

2. Statement s may be a simple statement .. a compound statement

or a block.

3. This statement causes statement s to be executed repeatedly

as long as the value of the Boolean expression b is true.

4. This statement operates aB followB:

a. e is evaluated and its value iB aSBigned to v.

b. The Boolean expresBion b is evaluated.

c. If b is true.. Btatement s i8 executed. If B does not

explicitly specify its successor.. the process is repeated

at step a.

d. If b is false .. statement s is not executed and the state­

ment following statement s is executed next. The value

of v is undefined in this caBe.

- 70 -

'FOR', 'WHILE'

aZause (aontd)

5. If controZ is transferred from the 'FOR' statement by a 'GO TO'

statement (within statement s), the vaZue of v is avaiZabZe.

6. The vaZues of either e or b may be ahanged by statement s.

7. A 'GO TO' statement outside a 'FOR' statement may not refer

to a ZabeZ within the 'FOR' statement.

EXAMPLE:

J~-I;

'FOR' I+J 'WHILE' I 'LS' 10 'DO'

'BEGIN'

A[I]+I;

J+J+l

'EN~'

- 71 -

These statements cause 1

to 9 to be assigned to A[l]

to A [9] .

'.-I"\n' . rv,,'

general

PURPOSE: To permit a statement to be executed repeatedly for various

conditions governing a controlled variable.

FORM:

RULES:

v: variable or subscripted

variable

a
1
,a

2
, ••• ,an: arithmetic expression,

'STEp t clause, or

'WHILE' clause

s: statement

1. Variable v is called the controlled variable of the 'FOR'

statement.

2. a1,a2, ... ,an may be any combination of arithmetic expressions,

'STEP' clauses, or 'WHILE' clauses.

3. s may be a simple statement, a compound statement or a block.

4. If ai is an arithmetic expression, a 'STEP' clause or a

'WHILE' clause, the 'FOR' statement operates as previously

described. The order of operation is a
1
,a

2
, ••• ,an.

- 72 -

EXAMPLE:

'FOR' X+3, 2 'STEP' 1 'UNTIL' 5,

70, 60, A 'WHILE' Z, 80 'DO'

P(X)

- 73 -

'FOR'
generat (oontd)

First, 3 is assigned to X

and prooedure P(X) is exeouted.

Then the 'STEP' olause oauses

the following aotion: 2 is

assigned to X and p(X) is

executed. X is stepped by

1 three times causing it to

assume the values 3, 4 and 5.

P(X) is exeouted ~fter eaoh

step of X. Next, X is assigned

the value 70, and p(X) is

executed.

Then X is assigned the vatue

60, and p{X) is executed.

The 'WHILE' clause causes

the vatue of A to be assigned

to X. If Z is true, p{X) is

exeouted. This is repeated

untiZ Z becomes false. (The

vaZues of A and Z may be

changed by execution of p{X)).

Finally, 80 is assigned to X

and PCX) is executed.

'GO TO' statements

- 74 -

'GO TO',

label

PURPOSE: To interrupt the normal sequence of statement execution by

defining explicitly the successor of the current statement.

FORM: 'GO TO' a

RULES:

a: statement label

1. The statement 'GO TO' a causes oontrol to go to the statement

with label a.

2. A 'GO TO' statement outside a 'FOR' statement may not refer

to a label within the 'FOR' statement.

3. A 'GO TO' statement outside a blook may not refer to a label

within that block.

4. A 'GO TO' statement outside a compound statement may refer

to label within that compound statement.

EXAMPLES:

1. 'GO TO' BOY

2. 'GO TO' T12; MIS: A+A+I;

'IF' L 'THEN' 'BEGIN' C+D~~Et2;

T12: A+B+O~F 'END'

- 75 -

This statement oauses con­

trol to go to a statement

labe l led BOY.

The 'GO TO' statement causes

oontrol to go to a statement

within a compound statement.

'GO TO'

switch designator

PURPOSE: To interrupt the normal sequence of statement execution by

causing control to be tmnsferraed to one of a number of

possible statements depending on the value of an arithmetic

expression.

FORM:

RULES:

'GO TO' sw [a]

sw: switch identifier

a: arithmetic expression

1. The switch identifier "sw" must have been defined by a switch

declaration in the current block or in an enclosing block.

2. The form sw [a] is called a switch designator.

3. The next statement to be executed is the one whose label is

referenced through the switch declaration defining "sw".

4. This 'GO TO' statement operates as follows:

a. The expression denoted by a is evaluated. From this

value an integer k is established where k is the result

of the function ENTlER (a+.5J. That is, the largest

integer not greater than the value of the argument,

i.e., if a is 3.7, k=4.

b. k specifies which element in the list of the switch

declaration will be referenced, i.e., the leftmost

eZement is numbered 1; the next is 2, etc.

- 76 -

'GO TO'.,

switch designator (contd)

c. If k is not within the range 1 to n {where n is the

number of elements in the switch designator}., control

goes to the next statement in normal sequence.

5. A 'GO TO' statement outside a 'FOR' statement may not refer

to a label within that 'FOR' statement.

6. A 'GO TO' statement outside a block may not refer to a label

within that block.

7. A 'GO TO' statement outside a compound statement may refer to

a label within that compound statement.

EXAMPLE:

'BEGIN'

'SWITCH' AB+PB, QB;

'SvJITCH' AC+PC, QC, AB[X];

'GO TO' AB [T] ;

'GO TO' AC [Y] ;

'END'

- 77 -

If T has the value 1 when

the 'GO TO' for switch AB

is executed., contro l goes

to the statement labelled

PB. If T has the value 2.,

control goes to the state-

ment labelled QB. If T

has any other value., con-

trol goes to the statement

following the 'GO TO' state­

ment. When the 'GO TO' for

switch AC is executed., control

will go to statements labelled

PC or QC if Y has the value one

or two., respectively. If Y has

the value three., then execution

is equivalent to 'GO TO' AB[X].

If Y has any other value., con­

trol goes to the next sequential

statement.

'GO TO' ~

oonditional designator

PURPOSE: To interrupt the normal sequence of statement execution by

causing control to be transfe·rred to one of a number of

possible statements; the statement chosen will depend on

the value of a Boolean expression.

FORM:

RULES:

'GO TO' 'IF' b 'THEN' d 'ELSE' d 1 2

b: Boolean express~on

dl~d2: designational expression

1. A designation expression (d1~d2) is anyone of the following:

a. Statement label

b. switch designator. This has the form sw[a]~ where sw

represents a switch identifier and a represents an

arithmetic expression.

c. Conditional designator. This has the form

'IF' b 'THEN' c 'ELSE' d

where b represents a Boolean expression;

c may be either a statement label~ a switch designator~

or a conditional designator enclosed within

parentheses;

d may be either a statement label~ a switch designator~

or a conditional designator (not necessarily enclosed

within parentheses).

2. This statement operates as follows:

a. The Boolean expression b is evaluated;

b. If b is true~ control is transferred as specified by d1;

- 78 -

'GO TO',

oonditional designator (oontd)

c. If the Boolean expression b is false, oontrol is transferred

as specified by d2.

3. A 'GO TO' statement outside a 'FOR' statement may not refer to

a label within that 'FOR' statement.

4. A 'GO TO' statement outside a oompound statement may refer to a

label within that oompound statement.

EXAMPLES:

1. 'GO TO' 'IF' A 'THEN' B 'ELSE'

C [I]

2. 'GO TO' 'IF' BA 'THEN' LA 'ELSE'

'IF' BB 'THEN' LB 'ELSE' LC

- 79 -

If the Boolean expression A

is true, oontrol goes to the

statement labelled B. Other­

wise, oontrol goes to the

statement referenced by the

Ith item in the switch

deolaration defining C.

If the Boolean expression BA

is true, oontrol goes to the

statement labelled LA. If

expression BA is false and

Boolean expression BB is true,

oontrol goes to the statement

labelled LB. If both expres­

sions BA and BE are false, con­

trol goes to the statement

labelled Le. (Note: d1 in this

case is a statement ZabeZ whi~e

d2 is a oonditional designator.)

3. 'GO TO' 'IF' BA 'THEN' ('IF' BB

'THEN' LB 'ELSE' LC) 'ELSE' LA

- 80 -

'GO TO'~
aonditionaZ designator (oontdJ

If both BA and BB are true"

aontroZ goes to the statement

ZabeZZed LB. If BA is true

and BB is faZse" contro Z goes

to the statement ZabeZZed Le.
If BA is faZse:l aontroZ goes

to the statement ZabeZZed LA.

(Note: d1 is a aonditionaZ

designator and" therefore"

must be enaZosed in parentheses.)

Pro~edure Statement

- 81 -

Procedure

PURPOSE: To call for the execution of a prooedure defined by a

'PROCEDURE' deolaration.

FORM:

RULES:

(1) name

(2) name (a1 t a2 t ... tan)

name: procedure identifier

a13a23 ... 3an: actual parameter

t: separator

1. A procedure statement may have no parameters as shown in

FORM (1).

2. When there are parameters (FORM (2))~ eaoh separator t may be

either "~" or ")b: (" where b is only descriptive~ i. e. ~ it

may be used as oomments to desoribe aotual parameters. b has

no operational significanoe.

3. The procedure identifier must appear in a prooedure deolaration.

4. The number of aotual parameters must be the same as the number

of formal parameters in the procedure deoZaration. However~

the method of parameter separation need not be the same in a

prooedure statement and the oorresponding deolaration. That

.is~ where a comma was used in a procedure statemen; the form

")b: ((f may be used in the deolaration and vioe versa.

- 82 -

Procedure statement (contdJ

5. The actual parameters may be anyone of the following:

a. arithmetic expression

b. Boolean expression

c. string

d. array identifier

e. switch identifier

f· procedure identifier

g. designational expression

6. The correspondence between the actual parameters of the proce­

dure statement and the fo~al parameters of the procedure

deolaration is by theil' appearance in the respective parameter

Zists. The two sets of parameters must have the same number

of items.

7. The execution of a procedure statement is as follows:

a. The formal parameters which appear in a value list of the

procedure declaration are replaced by the values of the

corresponding actual parameters.

b. These actual parameters are evaluated from left to ~~ght

according to their appearance in the parameter list.

c. Formal parameters which are not part of a value list are

replaced throughout the procedure by the corresponding

actual parameters.

d. If the identifier of an actual parameter and an identifier

already in the procedure are the same~ adjustments will

automatically be made to the latter so that no conflicts

occur.

e. After the procedure has been modified as above~ it is

executed.

- 83 -

T"I _____ .:J_. ___ _ -1.._.-1.. ____ ___ .1 / __ .. 1 :11

1:' l·Uc.::~UUl·~ Q t.-U t.-~fflen t.- (COrlT;GV

8. If an actuaZ parameter is a string~ it may onZy be used in

a procedure written in non-ALGOL code. In an ALGOL procedure~

a string may appear onZy as an actuaZ parameter for a further

procedure caZZ.

9. An actuaZ parameter corresponding to a formaZ parameter which

appears on ~he Zeft side of an assignment statement in the

procedure must be a variabZe or a subscripted variabZe.

10. If a formaZ parameter is an array identifier~ the corresponding

actuaZ parameter must aZso be an array identifier of the same

dimension.

11. A switch identifier or string may not be an actuaZ parameter

corresponding to a for.maZ parameter which is caZZed by vaZue.

A procedure identifier may not be used as a vaZue parameter

unZess it designates a function with no arguments.

EXAMPLES:
1. HIGHYAL ez, P:~(P+l)/2 , V, I)

- 84 -

The procedure which this

statement caZZs is defined in

the section 'PROCEDURE'

decZaration~ simpZe. In

this procedure statement z
denotes the number of eZements.

The vaZue of the Zargest

eZement of Z wiZZ be found in

V after the procedure caZZ~

and I wiZZ contain the vaZue of

the subscript of the Zargest

eZement.

P~cedure statement (contd)

2. SQUAREROOT eAt2+Bt2, .000001, C) The procedure which this

statement calls is defined

in the section 'PROCEDURE'

declaration, specification

part. After this procedure

statement is executed, C

will contain the square root

of A2+B2 with an accuracy of

.000001.

3. TOT ex, A, I, N, II A~:CA+1)

4. SLM+ADD (A, I, N) FUNCTION:

(1/A~ceA+1))

- 85 -

The procedure which this

statement calls is defined

in the section 'PROCEDURE'

declaration, value and

specification part. This

procedure statement will

result in the following

computation:

N
X := E l/A(A+l)

A=l

The procedure 'which this

statement calls is defined

in the section 'PROCEDURE'

declaration, function defini­

tion. This function call

will result in the summation

of example 3 in ADD and in

SUM. The symbol FUNCTiON is

used as text and has no

operationa l significance.

5. SlM+-ADD(P, Q, N~~(N+l),

ADD(Q,l,N,P/Q))

- 86 -

Procedure statement (contd)

This statement resuZts in

the value of the foZlowing

computation placed in ADD

and in SUM:

N(N+l)
E

P=Q

N
E P/Q

Q=l

This is an example of a

recursive procedure call.

(

v. DECLARATIONS

- 87 -

'ARRAY' Dealarations

- 88 -

'ARRAY'

PURPOSE: To speaify array identifiers3 dimensions3 bounds of subscripts

and array types.

RULES:

type: type word

a13a23 ... ~an: array specifier

1. The type word may be anyone of the following:

a. 'INTEGER'
b. 'REAL~

c. 'EXTENDED REAL'

d. 'BOOLEAN'

2. Type is optional. If it is not used~ 'REAL' is assumed.
The type is assigned to each array identifier in the

declaration.

3. An array specifier may be either of the fOlw b or b[c]3 where

b represents an array identifier and c represents a dimension

specifier. A dimension speaifier has the fo~ d1: e1~d2: e2~' .. ~

d : e ~ where eaah d. and e. may be an arithmetic expression. n n ~ ~

n is the number of dimensions. d. and e. represent the lower
~ ~

and upper subsaript bounds of dimension i3 respectively. The

value of a lower bound may not exceed the value of an upper

bound.

- 89 -

t ARRAY ~ (con td)

4. If an array identifiep does not have a dimension specifiep,

the next dimension specifiep is assigned. That is, the fo~

b1,b2,···,bm [d1: e1, d2: e2, ••• ,dn: en] is equivalent to the

form b1 [d1: e1, d1: e2,··.,dn: en]' b2 [d1 : e1, d2: e2,···,dn: en],

... bm [d1 : e1,d2: e2,···,dn: en]·

5. Lower and uppep boundS will be evaluated fpom left to Pight.

The bounds can only depend on vaPiab·7..es and procedupes which

have been defined in a block enclosing the block fop which

theapray declapation is valid. Consequently, in the outermost

block of a program, only arpay declapations with constant

boundS may be used.

6. The bounds will be evaluated each time the block is entered.

7. Every array used in a ppogpam must appear in an appay declapation.

8. An apray identifiep may not appeap with subsc"Pipts whose values

do not lie within the boundS specified by the appay declaration.

EXAMPLES:

1. 'ARRAY' A[1:10]

- 90 -

The arpay A is one-dimensional

and has a lowep subscPipt

bound of 1 and an upper sub­

scPipt bound of 10. A is

assumed to be of 'REAL' type.

2. 'ARRAY' A,B [1:10,1:20]

3. 'INTEGER' 'ARRAY' A[P:Q],
B [1:2~~P, 3:5, 1:5]

- 91 -

t ARRAY' (contd)

Arrays A and B are two

dimensional and have sub­

script bounds 1 and 10 and

1 and 20. The arrays are

assumed to be 'REAL' type.

The array A is of 'INTEGER'
type and has sUbscript bounds

P and Q. B is of 'INTEGER'

type and is three dimensional.

The bounds of the dimensions

and 1 and 2 *P3 3 and 53 and

1 and 5 respectively.

'ARRA.Y' ;

'OWN'

PURPOSE: To specifY array identifiers, dimensions, bounds of subscripts
and array types; atso to specify the condition of arrays upon

re-ent~ into a btock.

FORM:

RULES:

'OWN' type 'ARRAY' a a a l' 2'···' n

type: type word

a1,a
2

, ••• ,an: array speoifier

1. The array speaifiers may be in any of the forms permissib~e

for the array deotaration.

2. Att the Rutes which pertain to array deatarations are valid

for the 'OWN' array declaration except:

a. On re-entry into the bZock in whioh the 'OWN' array

declaration appears the array etements will have their

previous values.

b. The subscript bounds must be integer constants.

3. When exit is made from the bZock (by 'END' or by a 'GO TO'
statement), the identifiers are ·inaccessible even though

their values have been saved.

EXAMPLE:

'OWN' 'BOOLEAN' 'ARRAY'
BA[1:20, 5:15, 1:10]

- 92 -

The array BA is three dimen­

sional and is of 'BOOLEAN'
type. The bounds of the

dimensions are 1 and 20,

5 and 15, and 1 and 10,

respecti ve ly •

'PROCEDURE' Dea~a~ations

- 93 -

'PROCEDUP£' decZaration,

simp~e

PURPOSE: To define a statement or series of statements as being asso­

ciated with a procedure identifier; to provide a means by

whioh a procedure may be exeouted any number of times in the

oourse of a program although the steps of the procedure appear

only onoe.

FORM:

RULES:

1) 'PROCEDURE' name; s

2) 'PROCEDURE' name (a1 t a2 t ... tan); s

name: procedure identifier

a1~a23 ..• ,an: fo~al parameter

t: separator

s: statement

1. A procedure declaration may have no parameters as shown in

FORM (1).

2. When there are parameters (FORM (2))3 each separator t may be

either "," or ft)b: Ctl where b represents any sequence of

letters. 2~e function of b is only descriptive3 i.e.~ it may

__________ ke __ used_as __ cqrrorze?Jts __ Jq_des_crike_acJual_pa~Cll]f{tJ{:t:! __ s __ ._k}Jqs_n_=_o _____ _

operational significance.

3. The formal parameters may be any of the following:

a. variable

b. array identifier

c. switoh identifier

d. labe~

e. procedure identifier

- 94 -

'PROCEDURE' dec Zara tion,

simpZe (contd)

4. The for.mal parameters usually appear somewhere in statement s.

They will be replaced by or assigned the values of the actual

parameters of the particular procedure statement which calls

the procedure.

5. Statement s may be

a. a simple statement

b. a compound statement

c. a block.

6. Identifiers which are not for.mal parameters may appear in s if

either of the following conditions exists:

a. s is in the form of a block and the identifiers are declared

at the beginning of this block.

b. the identifiers are declared in the block in which the

procedure declaration appears.

7. Statement s always acts like a block insofar as the scope of

its identif,:ers is concerned~ i. e. ~ a label appearing in s is

not defined outside the procedure declaration.

8. The procedure specified may be executed anywhere in the block

in which the declaration appears by writing a procedure state­

ment containing the procedure identifier and the actual para­

meters~ if any.

- 95 -

EXAMPLE:

'PROCEDURE' decla~tion3

simp le (contdJ

'PROCEDURE' HIGHVAL CA,N) ANS:CX,Y); This procedure deter,mines

'BEGIN' the largest element of an

X+A[l]; Y+l; array. Input formal

'FOR' I+2'STEP' 1 'UNTIL' N 'DO' parameters are: array

'IF' A[I] 'GR' X 'THEN' identifier A and number N

'END'

'BEGIN' of elements. Output for,mal
X+A[I]; Y+I

'END'

- 96 -

parameters are: value X of

largest element and value Y

of SUbscript of largest

element. The symbol ANS

is used as text and has no

operational significance.

'PROCEDURE' declaration)

specification part

PURPOSE: To define a statement or series of statements as being asso­

ciated with a procedure identifier; to provide a means by

FORM:

RULES:

which a procedure may be executed any number of times in the

course of a program although the steps of the procedure appear

only once; to specify the kinds of quantities actual parameters

may represent.

'PROCEDURE' name (d1 t a2 t ... tan)

sp list; sp list; ... ; sp list; s

name:

a l' a 2' ... , an:
t:

sp:

list:

s:

procedure identifier

formal parameter

separator

specifiel1

formal parameters

separated by commas

statement

1. Each separator t may be either "7" or ")b:(" where b represents

any sequence of letters. The function of b is only descriptive,

i.e., it may be used as comments to describe actual parameters.

b has no operational significance.

2. The forma l parameters may be any of the following:

a. variable

b. array identifier

c. label

d. switch identifier

e. procedure identifier

- 97 -

iPROCEDUREi decZaration,

specification part (contdJ

3. The fOP.maZ parameters usuaZZy appear somewhere in statement s.

They are repZaced at the time of execution by the actuaZ

parameters of the procedure statement.

4. The specifiers may be any of the foZZowing:

'ARRAY' 'INTEGER' 'ARRAY'
'BOOLEAN'

'BOOLEAN' 'ARRAY'
'BOOLEftN' 'PROCEDURE'

'EXTENDED REAL'

'EXTENDED REAL' 'ARRAY'

'EXTENDED REAL' 'PROCEDURE'
, INTEGER'

'INTEGER' 'PROCEDURE'

'LABEL'

'PROCEDURE'

'REAL'

'REAL' 'ARRAY'

'REAL' 'PROCEDURE'

'STRING'

'SWITCH'

5. The specifiers indicate for the parameters in their "Zist~'

what foP.m the corresponding actuaZ parameters shouZd take.

(Note: 'INTEGER'~ 'REAL'~ and 'EXTENDED REAL' may be used

interch~~geabZy and the proper transfo~ations wiZZ take
pZaae automaticaZZy.J

6. A formaZ parameter may appear in no more than one "Zist."

However, a fOP.maZ parameter need not appear in a "Zist~"

except for switches which must be specified.

7. Statement s may be

a. a simpZe statement

b. a compound statement

c. a bZock

- 98 -

'PROCEDURE' declaration,

specification part (contd)

8. Identifiers which are not formal parameters may appear in

s if either of the following conditions exists:

a. s is a block and the identifiers are declared at the

beginning of this block.

b. the identifiers are declared in the block in which the

procedure declaration appears.

9. Statement s always acts like a block insofar as the scope of

its identifiers is concerned" i. e." a label appearing in s

is not defined outside the procedure declaration.

10. The procedure specified may be executed anywhere in the block

in which the declaration appears by writing a procedure state­

ment containing the procedure identifier and the actual

parameters.

EXAMPLE:

'PROCEDURE' SQUAREROOT (X~E,S);

'REAL' X, E, 5;

'BEGIN' 'REAL' SA;

'IF' X 'LS' 0 'THEN'

'BEGIN' 5+-1; 'GO TO' B 'END';
SA+1j

A: S+(SA+X/SA)/2j

'IF' ABS(SA-S) 'GR' E 'THEN'

'BEGIN' SA+S; 'GO TO' A 'END'j

B: 'END'

- 99 -

This procedure computes

the square root. Input

formal parameters are:

number X whose square root

is wanted and accuracy E.

Output formal parameter is

square root S of x.

value and speoifioation

part
PURPOSE: To define a statement or series of statements as being asso-

FORM:

RULES:

oiated with a prooedure identifier; to. provide a means by

whioh a prooedure may be executed any number of times in

the course of a program although the steps of the procedure

appear only onoe; to speoify whioh for.mal parameters are

replaoed by the value of the oorresponding aotual parameters;

to specify the kinds of quantities actual parameters may

represent.

'PROCEDURE' name (a l t a2 t ... tan)

'VALUE' list;

. sp list; Bp list; ••. ; sp list; s

name:

a 13 a 23 • • • 3 an:
t:

sp:

s:

list:

procedure identifier

for.mal parameter

separator

speaifier

statement

for.mal parameters ,sepa­

rated by commas

-------------------- --------- -------_.

1. Each separator t may be either "7" or ")b: C" where b repre­

sents any sequence of letters. The function of b is only

desoriptive3 i.e.~ it may be used as comments to describe

aotual parameters. b has no operational significanoe.

- 100 -

2. The

a.

b.

c.

d.

e.

formal parameters may

variable

array identifier

label

switch identifier

procedure identifier

be any

I PROCEDURE' declaration,

value and specification

part (contd)

of the following:

3. The formal parameters usually appear somewhere in statement s.

They are replaced at the time the proceudre is calZed upon by

the actual parameters of the procedure statement.

4. However those formal parameters which are listed in the 'VALUE'

part of the declaration are assigned the current values of

5.

the corresponding actual parameters before statement s is

executed. The order of assignment is from left to right

according to the order of appearance in the formal parameter

list.

The specifier may be any of the following:

'ARRAY' 'INTEGER' , ARRAY'

'BOOLE,A,N' 'INTEGER' PROCEDURE'

'BOOLE,A,N' 'ARRAY' 'LABEL'

'BOOLEAN' 'PROCEDURE' 'PROCEDURE'

'EXTENDED REAL' 'REAL'

'EXTENDED REAL' 'ARRAY' 'REAL' 'ARRAY'

'EXTENDED REAL' 'PROCEDURE' 'REAL' 'PROCEDURE'

'INTEGER' 'STRING'

'SWITCH'

6. The specifiers indicate, for the parameters in their lis~ what

form the corresponding actual parameters should take. (Note:

'INTEGER'~ 'REAL' and 'EXTENDED REAL' may be used interchangeably

and the proper transformations will be made automatically.)

- 101 -

va~ue and specification

parat ((Jon tdJ

7. A formal parameter may appear in no more than one specification

list. However3 a formal parameter need not appear in a list3

except for switches which must be specified.

8. A for.mal parameter appearing in the 'VALUE' list must also

appear in one of the specification lists.

9. statement s may be:

a. a simple statement

b. a compound statement

c. a block

10. Identifiers which are not formal parameters may appear in s

if either of the following conditions exists:

a. s is a block and the identifiers are declared at the

beginning of this block.

b. the identifiers are declared in the block in which the

procedure declaration appears.

11. statement s always acts like a block insofar as the scope of

its identifiers is aoncerned3 i. e. 3 a label appearing in 8 is

not defined outside the procedure dealaration.

12. The procedure ~ReaifJ~f!!d mgy_Jz§_ exeaute~@yw71fEfJL_i'Yl_the_li~p __ ak,------___ _

in which the declaration appears by writing a proaedure state-

ment aontaining the procedure identifier and the actual para­

meters.

- 102 -

EXAMPLE:

'PROCEDURE' TOT(T,K,L,M,U);

'VALUE' L,M; 'INTEGER' L,M;

'BEGIN'

T+O;

'FOR' K+L 'STEP' 1 'UNTIL' M 'DO'

T+T+U·

'END'

- 103 -

'PROCEDURE' declapation~

value and specification

papt (contd)

This ppocedupe computes the

sum of values of a function

U between the limits of

summation Land M. The

function U may depend on

the summation index K. The

sum is genepated in formal

parameter T.

'PROCEDURE' decZaration~

function definition

PURPOSE: To define a statement or series of statements associated with

a specific procedure identifier as being a function; to pro­

vide a means by which the appearance of the procedure identi­

fier wiZZ cause the funotion to be perfor.med and a vaZue to

be given to the identifier aZthough the steps of the function

appear onZy once.

FORM:

RULES:

(1)

(2)

(3)

(4)

type 'PROCEDURE' ncone; s

type 'PROCEDURE' ncone (a1 t a2 t ... t a). s n ~

type 'PROCEDURE' ncone (a1 t a2 t t a) 0 n ~

sp Zist; sp Zist; •.. ; sp Zist; s

type 'PROCEDURE' name (a 1 t a2 t ... t a)0 n ~

'VALUE' list;

sp Zist; sp Zist; ..• ; sp Zist; s

type: type word

ncone:

a1~a2~···3an:

t:

procedure identifier

formaZ parameter

separator

sp:

s:

Zist:

specifier

statement

forrnaZ parconeters

separated by commas

1. A procedure decZaration may have no parconeters as shown in

FORM (1).

- 104 -

'PROCEDURE' declaration,

function definition (contd)

2. When there are parameters (FORM (2)~ (3)~ (4)), each separator

t may be either "J" or ")b:(" where b represents any sequence

of letters. The function of b is only descriptive~ i.e.~ it

may be used as comments to describe actual parameters. b has

no operational significance.

3. The

a.

b.

c.

d.

Th9

type word may be any of the fo l lowing:

'INTEGER'

'BOOLEAN'

'REAL'

'EXTENDED REAL'

type word identifies the type of the procedure identifier.

4. At some point in the procedure body~ i.e. 3 in statement S3 the

procedure identifier must appear on the left side of an assign­

ment statement. When this statement is executed~ the function

receives a value3 and it is this value which is used when the

procedure identifier appears"in an expression. The function

receives a value according to the type specified by the type

word.

5. The procedure identifier may appear on the left side of any

number of assignment statements. It is the last one to be

executed from which the function receives its value.

6. The formal parameters may be any of the following:

a. variable

b. array identifier

c. label

d. switch identifier

e. procedure identifier

- 105 -

'PROCEDURE' deoZaration,

fUnotion definition (oontdJ

7. The fo~aZ parameters usuaZZy appear in statement s. They

are replaced at the time the procedure is oalled upon by the

aotual parameters of the funotion oall.

8. There mayor may not be a 'VALUE' deolaration in a funotion

definition. If there is, the rules whioh apply are the same

for all prooedure declarations.

9. The specifiers whioh may be included, and the rules whioh apply

are the same for all procedure deolarations.

10. Statement s may be

a. a simple statement

b. a compound statement

o. a block

11. Identifiers whioh are not fo~al parameters may appear in s if

either of the foZZowing conditions exi$ts:
a. s is a block and the identifiers are decZared at the begin-

ning of this block.

b. the identifiers are declared in the block in which the

prooedure declaration appears.

12. Statement s always acts like a block insofar as the scope of

its identifiers is concerned, i. e. -' a label appearing in s

is not defined outside the procedure declaration.

13. The function which this declaration defines may be executed

anywhere in the block in which this declaration appears by

writing in an arithemetic or Boolean expression the procedure

identifier and the actual parameters, if any.

- 106 -

EXAMPLES:

'PROCEDURE' declaration~

function definition (contd)

1. 'REAL' 'PROCEDURE' ADD(K~L~M~U)j This function computes the

sum of values of a function

U between the limits of

swnmation L and M. The

function U may depend on

the summation index K.

'BEGIN' 'REAL' Wi

W+Oi

'FOR' K+L 'STEP' 1 'UNTIL'

M 'DO'

vJ+W+Uj

ADD+W Upon exit from the function~

the sum is contained in ADD

which is of type 'REAL'.

'END'

2. 'INTEGER' 'PROCEDURE' FACT(X); This is an example of a

'IF' X 'EQ' 1 'THEN' FACT+l 'ELSE' recursive procedure declara-

FACT+X~~ FACT(X-l) tiona Execution of FACT(2)

causes FACT(l) to be executed

because of the statement

FACT+2* FACT(l). Then FACT

will have the value 2*1.

Execution of FACT(3) causes

FACT to have the value 3*2*1.

If this procedure is called

- 107 -

n times~ FACT will have the

value n factorial.

'PROCEDURE' deoZaration~

separateZy oompiZed

PURPOSE: To provide a teohnique for oommunioating with separateZy

compiZed procedures.

FORM:

RULES:

(1) 'CODE'

(2) 'CODE' 'BEGIN' d1;d2; ... ;dn 'END'

1. FORM (1) or FORM (2) above are to be used in a procedure

decZaration in pZaoe of statement s when it is desired to

write a procedure outside an ALGOL program. The procedure

may be written either as a separateZy compiZed ALGOL program

or as a procedure compiZed in some other Zanguage (e.g.~ GMAP).

2. Each di may have anyone of the following forms:

a. 'OWN' type 'ARRAY' a1~a2, ... ~an

where type and a1,a2~ ... ,an have the same meaning as

described under Array decla~tion~ 'OWN'. This code

declaration declares 'OWN' arrays whose storage will
be reserved in the declaring program but whose identifiers

will be valid only in the separately compiled procedure.

b. 'OWN' type v1'v2' ... ~vn
where type and v1,v2, ... ,vn have the same meaning as

described under Type declaration, 'OWN'. This code

declaration declares 'OWN' variables whose storage will

be reserved with the declaring program but whose identifiers

will be valid only in the separately compiled procedure.

- 108 -

'PROCEDURE' declaration,
. separate ly compi led (con td)

c. 'NONLOCAL' a1,a2, ••• ,an

where a1,a2, ••• ,an may be any of the following:

1) variable

2) procedure identifier

3) array identifier

4) switch identifier
. 5) label

This code declaration makes the specified identifiers

·of the declaring procedure available to the separately

compiled procedure.

3. The procedure identifier of a separately compiled procedure

and all the identifiers specified in a, band c above must

be unique in 8 characters. (A character is either a letter

01" a digit~)

·4. For' all procedures defined as 'CODE', a SYMREF will be

pr'oduaed in the declaring pr'ogr'am.

5. SYMDEFS will be pr'oduced for' all 'OWN' variables and arrays.

In the case of an 'OWN' variable, the SY.MDEF will point to

the stor'age location for' the variable; in the case of an 'OWN'
array it will point to the fir'st word of the alpha vector

for' the arr'ay.

8. There will be a SYMDEF associated with each entrv in a

'NONLOCAL' list.
a. For' a pr'ocedure identifier', the SYMDEF will point to the

entry location of the pr'ocedure.

b. For' a switch identifier', the SYMDEF will point to the

entry location for the bodY of code which evaluates the

switch.

- 109 -

'PROCEDURE' declaration~

separately compiled (aontd)

c. For a variable identifier~ the SYMDEF will define either

the absolute location or the staak relative location of

the variable~ depending on whether the variable is non­

procedural or procedural.

d. For a label~ the SYMDEF will point to the location of the

label.

e. . For an array identifier~ the SYMDEF will point to the

first word in the alpha vector for the array. The pointer

'will be absolute or staak relative~ depending on the

point of definition of the array.

7. The user of a 'CODE' procedure is aompletely responsible for

proper manipulation of the staak pointer~ for setting of the

available space pointer~ and for correct usage of the various

ALGOL constructs made available to him.

8. Details regarding Rules 4-7 may be found in ALGOL SSI.

9. It is possible to remap the internal name of a separately

compiled proaedure into a different set of 6 or fewer characters
'\

which will be used as its SYMREF. This is aacomplished with

the ALGOL word 'RENAME' foZlowed by a string aontaining the

desired external name. This construct follows the formal

parameter list and preaedes the word 'CODE'. The 'RENAME'

string may consist of any combination of 6 or fewer aharacters

and/or decimal points.
Example: 'PROCEDURE' INPUT 0 (a~ string); 'RENAME"'.AOIPT\i 'CODE'

- 110 -

'SWITCH' DeoZapation

- 111 -

rSWITCH' (aon-cdJ

4. When a 'GO TO' s·tatement involving a switch designator is

encountered in the program, the subscript of the switch

designator is given an integral value. It is this value

which dete~ines which element of the list is referenced.

5. If the list item referenced is a conditional designator the

'IF' clauses are evaluated until a designational expression

involving only a label or a switch designator is reached.

6. If the list element referenced is a labe~ it specifies

directly the next statement to be executed.

7. If the element is a switch designator, it in turn references

another 'SWITCH' declaration. The subscript of the switch

designator is evaluated to locate the correct list element

of the new 'SWITCH' declaration.

8. This process may be repeated through any number of 'SWITCH'

declarations until reference is made directly to a statement

labe l.

9. Each time an element in the list of a 'SWITCH' declaration

is referenced3 any expressions the element may contain are

re -eva luated.

- 113 -

EXAMPLE:

'SWITCH' BA+PA, 'IF'S 'THEN'
PB 'ELSE' PC, AC[X]

- 114 -

'SWITCH' (contd)

This switch may be caZZed

by a statement such as 'GO TO'

BA[D] which opepates as

foZZows: If D has the vaZue

1, ope~ation is equivaZent to

ope~ation of 'GO TO' PA,

whe~e PA is ·a statement

Zabel If D has the vaZue

2, ope~ation is equivaZent

to ope~ation of 'GO TO' 'IF'

S ' THEN' PB 'ELS E' PC, whe~e

S is a BooZean exp~ession

and PB and PC a~e statement

ZabeZs. If D has the vaZue

3, operation is equivaZent

to ope~ation of 'GO TO' AC[X]

where AC is a switch ident­

ifie~ and X is an an thmetic

exp~ession. If D has any

othe~ vaZue, the statement

foZZowing the 'GO TO' is

executed next.

TYpe DeaZarations

- 115 -

Type

PURPOSE: To speaify whiah variables represent integer" real" extended

reaZ or BooZean quantities.

FORM:

RULES:

type: type word

v1" v2"···" vn: variabZe

1. The type word may be one of the foZlowing:

'REAL'? 'EXTENDED REAL'? 'INTEGER', or 'BOOLEAN'. The type

word specifies the type of the variables v1"v2"·· ."vn.

2. Each variabZe used in a program must be declared in a type

declaration.

3. No variable may appear in more than one type declaration in

a single bZock.

4. The type declaration is valid onZy for the bZock in which the

declaration appears. Outside this block the identifiers may

be used for other purposes.

5. The type declaration is valid for any blocks contained within

the bZock containing the type declaration. However" variables

may be redeclared in sub-blocks" in which case the previous

declaration is superceded.

6. When exit is made f~m a block (by 'END' or by a 'GO TO'
Btatement) all identifiers which were declared for the block

are undefined.

- 116 -

Type (contdJ

EXAMPLE:

'BEGIN' 'INTEGER' P~Q; 'INTEGER' 'ARRAY' 5[1:5]j

P+3j Q+2j

'El'-JD'

'BEGIN' 'REAL' P~Rj

R+Qj

'END' ;
5[4]+P j

5[5]+Q

P+lj

5 [1]+P j

5 [2]+Qj

5 [3]+R

- 117 -

These statements assign

the nwnbers 132323 33 2 in

this order to elements of

the array S.

Type, 'OWN'

PURPOSE: To specify whiah variables peppesent integep3 peal~ extended

peal3 op Boolean quantities; to provide a means fop retaining

ppevious values of aeptain variables upon pe-entry into a

bloak.

FORM:

RULES:

type: type wopd

v1~v2~·· .~vn: variable

1. The type wopd may be one of the following:

'REAL', 'EXTENDED REAL', 'INTEGER', or~ 'BOOLEAN'. The type

wopd speaifies the type of the variables v13v2~ ... ~vn.

2. Eaah variable used in a ppogram must appear in a type dealapa­

tion.

3. No variable may appear in more than one type dealaration in

a singZe bloak.

4. Only variables whose values are to be preserved fop possible

pe-entry into a bloak should be speaified by an 'OWN' type

dealaration. All othep variables should be dealared in a

pegular type dealapation.

5. The variable identifiers dealared in any type dealaration are

defined only for the bloak in whiah they appear. Outside the

bloak the identifiers may be used fop othep purposes.

- 118 -

TYpo, 'OWN' (aontd)

6. When an exit is made from a block (by 'END' or by a 'GO TO'

statement) the identifiers are inaccessible although their

values have been saved.

EXAMPLE:

A+6j

B: 'BEGIN'

'END' j

E: 'IF' A

'REAL' c· , 'OWN' 'REAL'

'IF' A 'EQ' 6 'THEN'

'BEGIN'

C+7j

D+8j

A+9;

'GO TO' E

'END' ;

A+D-2

'NQ' 6 'THEN' 'GO TO' B

- 119 -

D· ,
During the first execution

of block B~ ? is assigned to

C~ 8 is assigned to D and 9

is assigned to A. Execution

of the conditional statement

labelled E causes block B

to be executed again. During

this exeaution~ A is set to

6 because the previous value

of 'OWN' variable D is saved.

However~ variable C could

not be used in this way

because not being 'OWN'~ its

value is not saved.

VI. COMPOUND STATEMENTS AND BLOCKS

- 120 -

Compo.und statement

PURPOSE: To per.mit a series of statements to be joined together in

such a way as to act as a unit.

FORM:

RULES:

s 13 S 23 • • • 3 S n: statement

1. A compound statement may have a label and may contain any

number of statements (s.).
1."

2. Each statement s13s23 ... 3sn may be

a. a simple statement

b. a compoWld statement

c. a block

3. Each statement may have a label.

4. A 'GO TO' statement may transfer control to a statement

within a compound statement.

EXAMPLES:

1. 1+1;

T: 'I F ' I 'LQ' 10 ' TH EN '

'BEGIN'

A[I]+1;

1+1+1;

'GO TO' T

, END'

- 121 -

These statements assign

the numbers one to ten to

elements of the array A.

This example contains a

compound statement as the

true branch of a conditional

statement.

2. 'FOR' 1+1 'STEP' 1 'UNTIL' 10 '00'

'BEGIN'

Compound statement (contd)

'FOR' J+1 'STEP' 1 'UNTIL' 10 'DO'

'BEGIN'

, IF' I 'EQ ' J 'THEN'

'BEGIN'

B[I,J]+l; 'GO TO'S

'END' ;
B [I, J]+O;

S: 'END'
'END'

- 122 -

These statements generate

a ten by ten unit matrix

in the array B. Each 'FOR'

statement has a compound

statement as its object.

Also, the true branch of

the 'IF' statement is a

compound statement.

BZoak

PURPOSE: To permit statements and deaZarations to be grouped together

in suah a way as to be independent of other parts of a

program. This per.mits ZabeZs and identifiers to be used in

different seations of a program without aonfZiats.

FORM:

RULES:

, BEG IN' d . d· . d . s . s· · s ' END ,. 1" 2"···" n" 1" 2"··· ~ m

d1~ d2,·· ., dn: deaZaration

s 1~ s 2' · · ., sm: statement

1. A bZoak may have a ZabeZ, and may aontain any number of

deaZarations and statements.

2. Eaah statement sl"s2, ... "sm may be

a. a simpZe statement

b. a aompound statement

a. a bZoak

3. Eaah statement may have a ZabeZ.

4. When a bZoak is entered through 'BEGIN', the identifiers whiah

are deaZared for the bZoak are newZy defined and 'lose any

signifiaanae they may have had prior to ent~.

5. AZZ ZabeZs within a bZoak are ZocaZ to the bZoak and may not

be referred to from outside.

- 123 -

Block (contdJ

6~ When ~~it is made from a bZock, all identifieps which wepe

decla~ed fop the block ape undefined and may be used fop

othep pu~oses, including those deolaped as 'OWN'.

7. If a declapation is p~efaced with 'OWN', the identifieps so

defined wiZZ retain theip ppevious values upon pe-enty.y into

the bZock. If 'OWN' is not specified, the values will be

lost when exit is made f~om the blook and will be undefined

upon ~e-entry.

8. All identifiers used in a program must be declared in one of

the blocks oomprising the ppogram. No identifier may be

deolared more than onoe in a single blook.

9. If blocks ape nested" a statern~nt label has meaning only in

the smallest block oontaining that statement.

EXAMPLE:

'BEGIN' 'REAL' X/Y; 'ARRAY' A[1:5];

X+l; Y+2;

'BEGIN' 'REAL' X/Z;

Z+Y;

'END' j

A[4]+X;

A[5]+Y

'END'

X+3j

A[l]+Xj

A[2]+Yj

A[3]+Z

- 124 -

These statements assign the

numbers 3,2,2,1,2 in this

order to elements of the

a~ray A.

VII. INPUT/OUTPUT

- 125 -

INPUT/OUTPUT

The ALGOL Zanguage itseZf ppovideB no input/output statements. Howevep~

the ALGOL compiZep fop the GeneraZ EZectPic 625/635 contains within it

a numbep of ppocedupes which handZe the I/O. AZZ a ppogpammep need do

is to caZZ the existing ppocedures using an ALGOL ppoaedure statement~

and thpough the ppocedupe papameteps, tpwtsmit the info~ation pequired

fop the input and/op output ppocess.

The pPOcedupe identifieps used by ALGOL are pesepved and act as though

decZaped in a bZock encZosing the progpam. If a ppogpammep pedeaZapes

one of these identifieps in his progpam his deaZaration supersedes th.e

standapd definition. The ppoaedures ppovided ape Zisted beZow:

A. ppocedupes pertaining to the Zayout of the I/O info~ation

on the extePnaZ deviae:

BAD DATA

FORMAT

FORMAT n

HEND

HLIM

NO DATA

TABULATION

VEND

VLIM

(n=O j 1" 2, .•• ,9)

B. ppocedupes deaZing with the aatuaZ tmnsmiss,ion of data:

INLIST

INPUT n

OUTLIST

OUTPUT n

- 126 -

(n=O, I" 2, ••• ,9)

(n=O, 1,2, ••• ,9)

c. ~oaedu~es allowing fine~ aont~ol ovep the input and output

ppoaesses:

POSITION
SYSPARAM

D. PPimitive proaedu~es:

INSYMBOL
LENGTH

NNv1E
OUTSYMBOL

STRING ELEMENT
TYPE

Eaah proaedure is disaussed in detail on the following pages, and the

form of the pl'Iooedure aall is given.

In addition, the usep of these ppoaedures needs to provide a list of

the data items whiah a~e to be t~ansmitted. This list is specified in

a use~ deala~ed procedure aalled a list p~ocedu~e.- The identifie~ fop

this proaedure is not ~ese~ved by ALGOL, and thus any valid identifie~

may be chosen. The list p~oaedu~e is disaussed following the ALGOL

p~oaedu~es.

- 127 -

A. Layout P~oaedu~es

The p~aedures to be desaribed in this seation deal with the

appearanae of the data on an input o~ output device. All of

the p~ocedu~es describe a printed page. Howeve~ the concepts

may be generalized to include any external device.

Listed·below a~e the physicaZ characteristics of the I/O devices.

The number of characters per line is refer~ed to as P. The

numbe~of lines pe~ page is referred to as P'.

P P'
Device (characte~s) (lines)

Line Printer 120 55

Ca~d Reader (binary) 160 no limit

Card Reader (decimal) 80 no limit

Card Punch (binary) 160 no limit

Card punch (decimal) 80 no limit

Magnetic Tape~ Disk~ 120 no limit

Drum

These device characteristics may be changed where applicable

(e.g.~ number of characters per line fo~ magnetic tape may be

changed) by using the p~cedure SYSPARAM described in part C

of this section.

The layout procedures are used to describe non-standard operations

which are to take place during input and output. The procedures

need not be aalled~ in which case certain standard operations

(described with each p~cedure) will be in effect. The technique

fo~ using the layout p~ocedures is as follows:

- 128 -

Layout Procedures (contd)

The programmer declares a set-up procedure containing any or all

of the eight layout procedures (FO~T, HLIM, VLIM, HEND, VEND,

NO DATA, TABULATION, BAD DATA). At some point in the program

there is a call to an I/O transmission procedure which has as one

of its parameters the procedure identifier of this set-up procedure.

At the' time the I/O procedure is called it causes the set-up

procedure to be executed thus establishing the non-standard opera­

tions . . Each time a new I/O transmission is called~ the standard

layout operations will be resumed until changed by a new set-up

procedure.

- 129 -

BAD DATA

PURPOSE: To indiaate the p~aedure whiah is to be aalled when a request

is made for an item to be transrrri tted, and the item is inaom-,

patible with the for,mat aharaater.

FORM:

RULES:

BAD DATA (p)

p: proaedure identifier

1. This proaedure applies only to input.

2. If a translated for.mat (anything but I,R,E or L) is used and

the referenaed field is not aompatible, aontrol will be trans­

ferred to proaedure p.

3. If BAD DATA is not used and the 'aondition desaribed in Rule 2

arises, aontrol will be transferred to the end of the program

as though a dwnmy Zabel had been plaaed just before the final
tEND t •

EXAMPLES:

1. BAD DATA (CHECK)

- 130 -

The p~aedure CHECK is

used when inaorreat data

appears on the input deviae.

BAD DATA (contd)

2. 'BEGIN'

'PROCEDURE' REDO; OUTLIST (6,LAY,LIST);

BAD DATA (REDO); ...

'END'

- 131 -

When an incompatihiZity

occurs, controZ goes to

procedure REDO which outputs

an error message.

FO~T

PURPOSE: To describe the form in which data appears on the input

device or is to appear on the output device.

FORM:

RULES:

FORMAT (string)

string: a string with a

special form

1. The format string is aomposed of a series of items separated

by commas.

2. The string is interpreted from left to right in conjunction

with a list of data items which are to be transmitted.

3. These data items usually appear in a separate procedure called

a list procedure.

4. An item in the format string may describe a number, a string,

or a Boolean quantity, or it may simply cause a title to be

written or page alignment to take place.

5. The following rules describe the various kinds of format items.

6. Number formats

a. Integers

1) This format item consists of a series of Z's, a series

of D's" or a series ofZ's followed by D's each corre­

sponding to a digit position of the number, and an

optional sign.

- 132 -

FORMAT (con td)

2) The letter D is used to indicate a digit which is

always to be printed.

(ex. 385 when written with fonmat DDDD will appear

externally as 0385.)

3) The letter l is used to indicate that the correspond­

ing digit is to be suppressed if it is a leading zero.

In this case, a zero digit will be replaced by a blank

space when all the digits to its left are zeros.

(ex. 21 when written with format III will appear

externally as ~21.)

4) A series of l's or D's may be written in a shorthand

notation as follows: nl or nD (where n is an integer)

is equivalent to lll .•. l or DDD ..• D (n times).

(ex. 3l and III are equivalent. 4D and DDDD are

equivalent.)

5) An optional sign may precede or follow the l's and

D's of a number format.

If no sign appears, the number is assumed to be positive.

Note: If a negative number is output with no sign

position, the first digit position will print as ~,A,B,

... ,I representing the digits 0,1,1, ... ,9 respectively.

If a plus sign appears, the correct sign of the number

appears on the external medium.

If a minus sign appears, positive numbers will be

unsigned and negative numbers will have a minus sign

on the external medium.

- 133 -

FO~T (aontd)

6) If a preaeding sign is to appear externally with

a number whiah has had leading zeros suppressed, the,

sign will be plaaed immediately to the left of the

first non-zero digit.

7) The total number of positions whiah'an integer

oaaupies on the external medium is the sum of

the Z's and D's (plus one if the optional sign

appears). If the field width is insuffiaient to

hold the aomplete number, the high order digits

are transmitted and the leftmost digit position

will be t,J,K, ... ,R aaaording as the aatual digit

is 0,1,$, ..• ,9. If, in addition to the above

aondition, the field is also unsigned and the number

is negative, the leftmost position will be +,/,S,T,

... ,Z representing the digits is 0,1,2, .•. ,9

respeatively.

8) Examples of integer formats:

If +ZZDDD is used with 2176, it appears as ~+2176.

If -ZZZDD is used with 3, it appears as ~~03.

If -DODD is used with -45, it appears as -0045.

If ZZZ is used with 0, it appears as ~~.

If ZZD is used with 0, it appears as ~~O.

If 2Z4D+ is used with 390, it appears as ~0390+.

b. Deaimal Numbers

1) This fo~at item aonsists of Z's and/or D's eaah

aorresponding to a digit position, a period (.)

or the letter V to indiaate the position of the

deaimal point, and an optional sign.

- 134 -

FORMAT (contd)

2) The letter Z has the same function it did for

integers and it may appear only to the left of

the decimal point.

3) The letter D may appear on both sides of the point

and has the same function as for integers.

4) If a . is used to indicate the decimal point posi­

tion~ it will appear on the external medium in that

position. If the letter V is used it merely indicates

where the decimal point should be~ but no space is

used on the external medium.

5) The sign part functions as it did for integers.

6) The total number of positions which a decimal number

occupies on the external medium is the sum of the

Z's and D's plus one for the sign~ plus one if the

point is indicated by a . in the format. If the

field width is insufficient to hold the complete

number the high order digits are transmitted and

the leftmost digit position will be t~J~K~ ••• "R

according as the actuaZ digit is O~1~2~ ••• ,,9. If"

in addition~ the field is unsigned and the number

is negative" the leftmost position will be +.J/~S.JT"

••• ,,2 representing the digits O,,1,,2.J ••• ,,9~ respectively.

- 135 -

FORMAT (contd)

7) Examples of decimal numbers:

If ZZDD.DD is used with 146.776~ it appears as ~146.78.

If -3D.D is used with 1.2~ it appears as ~001.2.

If +3Z.3D is used with .004~ it appears as ~+.004.

If -ZZDVO is used with -142.78~ it appears as -1428.

If ZZ4D.OD- is used with -3394.~ itO appears as

l!I63 394. 70-.

If ZZD is used with 29. 756~ it appears as 1'30.

If .30- is used with -.0254~ it appears as .025-.

c. Decimal Numbers with Exponent

1) This format item is the same as that for a decimal

number with the addition of an exponent part to

indicate the power of ten to which the number must

be raised to give the true decimal number.

2) The exponent part consists of an apostrophe (') to

separate it from the decimal number followed by an

optional sign~ a series of Z' s and/or a series of D's.

3) The' wi II appear on the external medium in the

proper position to separate the decimal number and

its exponent.

4) The rules for the exponent part are the same as those

for integers.

5) A number using this format will appear externally

with its leading digit not zero. The exponent is

adjusted accordingly. If the number is zero the

exponent is also set to zero.

- 136 -

FORMAT (contd)

6) If a nonzero number has a zero exponent which is

specified by ZIS the I and the exponent sign are

also suppressed.

7) The total number of positions needed on the external

medium is the sum of all the ZIS and DiS plus one

for the sign~ plus one for the exponent sign~ plus

one for the I plus one for the deoimal point (if

. is speoified).

8) Examples of decimal numbers with exponents:

If 3D.DD'+DD is used with 3075.2~ it appears as

307.52'+01.

If D.DD'-ZZ is used with 7.1~ it appears as 7.10~~~~.

If ZZD'+ZD is used with .021758~ it appears as

218'~-4.

If DD'ZZ is used with 35.649~ it appears as 36~~

If .3D'+2D is used with 917.2~ it appears as .917'+03.

If .DD'-ZZZ is used with .000312, it appears as

.31 '~-3.

d. Ootal Numbers

1) The form of this item is nO or 00 ..• 0 (n times) where

n is an integer whioh specifies the number of digits

in the ootal field.

2) For output if n<12~ the leftmost n digits will be

transmitted; if n>12~ 12 digits will be transmitted

followed by n-12 blanks.

3) For input if n<12~ th~ next n oharaoters are trans­

mitted; if n~12~ the next 12 oharaoters are transmitted.

- 137 -

FORMAT . (con td)

4} Examples of octal numbers:

If 50·is used with 447521767511 on output3 it appears.

as 44752 •

. If 140 is used with 712342165134 on output3 it appears

as 712342165134~.

If 150 is used with 754162314321744 on input3 it

appears as 754162314321 internally.

7. Truncation for Number Formats

a. The integer or decimal number for.mats desoribed above may

be followed by the letter T to indioate that the output

should be trunoated instead of rounded. Rounding ooours

when truncation is not specified.

b. Examples of truncation:

If -2Z3D.2DT is used with -12.7193 it appears as ~~-012.71.

If 3ZDT+ is used with 145.63 it appears as ~145+.

If -Z.DT'+ZZ is used with .0125373 it appears as ~1.2'~-2.

8. Insertions in number Formats

a. All of the number for.mats may have either blanks or strings

inserted anywhere within the format item. The insertion

wi l l appear on the external medium.

b. A blank is denoted by the letter B. If more than one blank

is desired it may be expressed by a series of B's or by

the shorthand notation nB (n is an integer specifying the

number of blanks.) 3B is equivalent to BBB.

o. A string whioh is to be inserted must be enolosed in string

quotes (i. e. "string\). If the string is to be repeated

it may appear as n"string\ where n is an integer specifying

the number of times the string is to appear. The informa­

tion in the string (not including the outermost quotes) is

inserted in the oorresponding place in the number.

- 138 -

FORMAT (aon td)

d. Examples of insertions:

If D2B3D is used with 39?2~ it appears as 3~»9?2.

If "ANS=\4D is used with 2?1~ it appears as ANS=02?1.

If "INTEGE~PART\-4ZVB"FRACTION\B2D is used with -195. ?634~

it appears as INTEGER~PART~-195~FRACTION»?6.

If 2ZB2D.DBT'+DD is used with 44865.5~ it appears as

44~86.5"#'+Ol.

If "OCTAW1\5 0 is used with 112233445566" it appears as

OCTAL~11223.

9. Nwnbers for Input

a. Numbers whiah are input using the above format aodes

should~ in ge'(leral" appear the same as those which are

output.

b. However" there are fewer restrictions on the form of

input numbers.

1) Leading zeros may appear "even if Z's are used in the

format aode. Leading blanks may appear even if D's

are used.

2) If insertion strings or blanks are used in the

format code the corresponding number of characters

on the input device are skipped.

3) If a sign is specified at the left in the format

code it may appear in any Z or D positions on the

input device as long as it is to the left of the

first digit. If the sign is specified at the

right" it must appear exactly where it is indicated.

- 139 -

FORMAT (con tdJ

10. String Format

a. This format item is used to output string quantities.

It may not be used for input. A lpha format must be

used instead.

b. The form of this item is n5 or 55 ••• 5 (n· times)3 where

n is an integer which indicates the number of symbols

in the string.

1) If the actual string is longer than .the number of

5 's indicated:J only the leftmost symbols are trans­

mitted.

2) If the s~ring is shorter3 blank symbols are added

to the right of the string.

3) Examp les of string format:

If 5 is used with '~\3 it appears as A.

If 65 is used with "TOTALS\:J it appears as TOTALS.

If 555 is used with "ABC\3 it appears as ABC.

If 45 is used with 'PROGRAM\3 it appears as PROG.

If 55 is used with "CAT\:J it appears as CAT"#"#

11. Insertions in String For.mat

a. Blanks or strings may be inserted in the 5 format.

b. The rules are the same as described for number formats.

c. Examp les :

If B35BB25 is used with "12345\:J it appears as "#123~"#45.

If 25"=\35B is used with "T1ANS\3 it appears as Tl=ANS"#.

- 140 -

FORMAT' ((JontdJ

12. Alpha Format

a. This format item is used to transmit ALGOL basic symbols •.

(see INTRODUCTION for a list of basic symbols.)

b. 1) The form of this item is the letter A.

2) The appearance of the letter A as a format item

causes transmission of a single symbol from or to

the data item specified in the list procedure.

3) The symbol will be stored as an integer.

c. It may be de~ired to work with symbols transmitted by

the A format. Therefore, a function is provided which

makes any ALGOL symbol type 'INTEGER' and causes the

symbol to have the same value as if it had been read

in using Alpha format.

d. The function is called EQUIV. Its argument must be an

ALGOL basic symbol enclosed in string quotes, i.e.,

EQUIV("'BEGIN'\).

e. Example:

If A format is used to read an m:" into variable ALG the

statement 'IF' ALG 'EQ' EQUIV ("::\) 'THEN' 'GO TO' GOOD

wi II check that m:" was in fact the symbo l which was read

in.

13. Boolean Format

a. This format item is used to transmit Boolean quantities.

b. The item may consist of the letter P or the letter F.

- 141 -

FORfv1A T (contd)

c. If P is used and the quantity is true3 the number 1 is

transmitted; if false 3 0 is transmitted.

d. If F is used and the quantity is true the word 'TRUE'

transmitted; if false the word 'FALSE' is transmitted.

e. Input must be in the form specified in c. and d.

14. Insertions in Boolean For,mat

a. Blanks or strings may be inserted in the Boolean format.

b. The ru les are the same as described for number formats

and for stri~gs.

c. Examp les :

If BBPB is used with a Boolean variable whose value is

'TRUE'7 it appears as ~1~.

If "THE~RELATIONP1IS\BF is used with a Boolean variable

whose value is 'FALSE'7 it appears as THE~RELATION~IS~'FALSE'.

15. Standard Format

a. A number may be transmitted for input or output without

specifying in a for,mat item the exact form the number is

to take. The number appears on the I/O device in "standard

fonnat."

b. If the letter N appears as a format item3 it specifies

that a number with standard for,mat is to be transmitted.

c. Standard format for input may be defined as follows:

1) Any number of digits in any of the forms which are

acceptable to integer or decimal number formats may

be input.

FORMAT (oontd)

2) The number must be te~inated by an illegal oharaoter~

i.e.~ one not normally permitted in a number~ or by

k blanks where k is a system parameter initially set

at one. k may be ohanged by oalling the system proce­

dure SYSPARAM (desoribed in Seotion C.).

d. If standard fo~at is invoked~ and the first line referenced

oontains any legal oharacter for a number (i.e.~ digit~

sign~ decimal point or apostrophe) the right hand margin

will terminate the number. If~ however~ the first line

oontains only nonlegal number oharaoters3 the subsequent

lines will be searohed until a legal number character is

found. At this point the right hand margin is not significant3

and only an illegal oharaoter or k blanks will te~inate

the number.

e. Standard format for output will appear as though the

deoimal number format -.160'+00 had been invoked.

f. Standard format wi II be assumed if the end of a format

string is reaohed while there are data items in the list

prooedure still to be transmitted. In this oase all the

remaining quantities will be transmitted with standard

format.

g. If a list of variables is to be terminat~d but either

1) no referenoe is made to a FORMAT procedure3 or

2) the format oall has the form FORMAT C"\)

the items will be transmitted aooording to standard format.

- 143 -

FORMAT (contd)

16. Untpanslated For,mat

a. If a quantity is to be tpansmitted using the internal

machine notation~ a format item may consist simply of

an I an R an E or an L.

b. The letter to be used is deter.mined as follows:

I for integers~

R for real numbers.,

E for extended real numbers~

L for Boolean quantities.

c. Quantities which are written out using this fo~at must

be read in *?ing the same format.

17. Alignment Marks

a. These are single characters which cause specific page

operations to occur.

The operations are:

/ go to next line

t go to new page

J go to next tabulation position.

b. Alignment marks may appear as part of any fo~at item.

If they appear at the left of the item the actions take

place before the format operation. If they appear at the

right~ they take place ~tepwa~ds~ i.e.~ /35t causes a

skip to a new line before the string is transmitted and

a skip to a new page after.

- 144 -

FORMAT {contdJ

c. Alignment marks may also appear as separate for.mat items

simply by enclosing them in commas.

d. Any number of alignment marks may appear in succession~

and this causes the specified action to be repeated as

many times as it is indicated~ i.e. 3 ttt" causes a page

to be ter.minated and two pages to be skipped. Also any

mark may be preceded by an intege~ n~ where n indicates

the number of times the action is to be done3 i.e.~ 4J

causes a skip to the fourth tab position and is equivalent

to JJJJ.

18. Title For.mat

a. This for.mat item is used when it is desired to cause page

alignment and/or the output of insertion strings without

transmitting any ALGOL quantities.

b. This item consists entirely of insertions and alignment

marks and refers to no data items".

c. On input this item causes characters to be skipped corre­

sponding to the insertion strings and causes the desired

alignment operations to be perfor.med.

d. On output the insertion strings are transmitted and the

alignment operations are perfor.med.

e. Examples of title for.mat:

t"SUMv1ARY\/ / indicate a new page3 an insertion~ a line

to be ter.minated and a line to be skipped.

/",Alv\T\JrrGROSS\J"NET\/ / indicates a new line3 an insertion3

a tab~ an insertion~ a tab~ an insertion~ a line to be

skipped.

- 145 -

FORMAT (contdJ

19. AZZ the format items Zisted above constitute a for.mat string.

20. Any for.mat item or any group of for.mat items can be repeated

any number of times by encZosing in parentheses those items

to be repeated and preceding the parentheses by an integer

EXAMPLES:

1.

n indicating the number of repetitions desired~ i.e. 3 3(2Z.D)

causes 3 decimaZ numbers to be transmitted. If no integer

precedes the parentheses an infinite number of repetitions

is indicated.

FORMAT("4D. 2D, 2Z, /P,

"IS¢,THE}1ANS\t,A\)

This format string transmits

a decimal number and an

integer on one line; on the

next line is a Boolean quantity

specified by a 0 or a 1

followed by an insertion.

Then a skip is made to a

new page and an ALGOL symbol

is transmitted.

2. FORMAT("7S,2(5Z.D'+ZZ,F),2J\) A seven symbol string is

transmitted followed by a

decimal number~ a Boolean

quantitY3 a decimal number~

a Boolean quantity. Then

two tabulations occur.

- 146 -

;). FORMAT("(ZZ. BOT -, BBB+ZZO)\)

- 147 -

FORMAT . ((Jon td)

A deoimal nwnber and an

integer are transmitted

an indeterminate nwnber

of times~ i.e.~ until the

list of data items is ex­

hausted.

FORMAT n

PURPOSE: To desoribe the fo~ in whioh data appeaps on the input

devioe op is to appeap on the output devioe; to pe~it

oertain elements of the fo~at string to be vaPiable and

to have theip values caloulated at the time the FO~T

ppooedure is oalled.

FORM:

RULES:

n: integer

string: string with a

special fo~

x1.:J x2"· •• .,xn : expression

1. n may be 0,1,2, .•. ,9. This value indioates the numbep of

x's whioh appeap following the for.mat string.

(Note: The fo~ FORMAT (string) as discussed ppeviously

is simpZy a speoial oase of this fo~at oall in whioh n=O.)

2. The form of the string is the same as that disoussed for

the prooedure oall FORMAT (string)., with oeptain additional

features.

3. The string may oontain the letter X in various fo~at items.

The values of the x.'s whioh follow the for.mat string will
1.-

peplaoe eaoh X when the FORMAT prooedure is oalled.

- 148 -

FO~T n (contd)

4. The letter X may appear in the fo~at string as follows:

a. In a Number For,mat:

Any Z or D may be preceded by the letter X to indicate

a variable number of repetitions of the Z or D.

Examples:

XZXD - variable integer size

ZZ.XD - variable number of decimal places

.DDD'XD - variable exponent size

b. In an Insertion:

The letter B may be preceded by an X to indicate a vari-"

able number of blank spaces on output or a variable number

of ignored positions on input.

Example:

2ZXB3D.D

c. In a String For,mat:

The letter 5 may be preceded by the letter X to indicate

a variable number of symbols in the string.

Examples:

XS

BXSB4S

d. With an Alignment Mark:

t,l or J may be preceded by the letter X to indicate a

variable number of times the specified alignment action

is to be taken.

Examples:

XJDD.DD - variable number of tabulations

3S2BXI - variable number of lines to be skipped

- 149 -

FORMAT n (contdJ

5. The X's may be used at most 9 times in, a single fo~at string.

The integer n in the for.mat call indicates the number of X's .

which appear in the string.

6. The x13x23 .•. 3xn in the for.mat call represent the integral

values to be assigned to the X's in the string. x13x23 ••. 3xn

must be positive. Xl is assigned to the first X which appeay1s;

x2 to the second3 etc.

EXAMPLE:

FORMAT 3 C"ZZXD. D,XBXS\, 2,A-5, B)

- 150 -

The decimal number will be

transmitted as though it

had been written as ZZ2D.D.

A-5 blanks will precede

the string which will con­

tain B symbols.

HEND

PURPOSE: To specify the procedures which are to be called when the

end of a line is reached during input or output; to pe~it

special action to be taken depending on what situation

causes the end-of-line condition to occur.

FORM:

RULES:

HEND (p1,p2,p3J

p1,p2,p3: procedure identifier

1. p1 is the name of the procedure to be called when a "/"

appears in the fo~at call. This indicates that a new line

is to begin and is considered the no~al case.

2. p2 is the name of the procedure to be called when a group

of characters is to be transmitted or a tabulation is

speaified which would pass the right margin of the current

line as specified by HLIM.

3. p3 is the, name of the procedure to be called when a group

of characters i8 to be transmitted O~ a tabuZation is

8pecified which would pass the physical end of the line

due to the aharacteristics of the I/O device being used,

but wouZd not pass the right margin as set by HLIM.

Note: This physical end is specified by standard limits set

within the system or a control card to the system, and may

be altered by procedure SYSPARAM.

- 151 -

HEND (contdJ

4. If it is desiped to take no special action when the end

of a line is peached this ppocedure call may be omitted.

5. If action is desiped fop some but not all of the conditions,

dummy ppocedupe names may be used for those pequiPing no

action.

EXAMPLES:

1. HEND (NORM,OVER,END)

2. 'BEGIN' ... 'PROCEDURE' DUMMY;; ..•

. .. HEND (DUMMY,FIN,NEXT); .•• 'END'

- 152 -

a "/" in the format call·

causes contpol to go to

ppocedure NORM; if the

Pight maPgin is peached

contpol goes to OVER; if

the physical end-of-line

is peached contpol goes

to END.

Since Procedure DUMMY

contains no statements,

no special action will

be taken when a "/"

appears in the formap

call.

HLIM

PURPOSE: To speaify the Zeft and right maT'gins of the input or

output 'lines.

FORM:

RULES:

HLIM (Zeft~ right)

Zeft~ right: arithmetic expT'ession

1. The fiT'st parameter speaifies the 'left margin.

2. The second paT'ameteT' speaifies the right maT'gin.

3. There is a T'estriction that 1 ~ Zeft ~ right.

4. If this proceduT'e caZZ is not givenJthe 'left maT'gin is set

to one and the right margin is set to infinity.

EXAMPLES:

1. HLIM (5" 50)

- 153 -

L,eft maragin is 53 right

margin is 50.

Left margin is vaZue of

J-4, right is vaZue of K.

NO DATA

PURPOSE: To indicate the procedure which is to be called when a

request is made for data on an input device but no more

data remains.

FORM:

RULES:

NO DATA (p)

p: procedure ~dentifier

1. This procedure call applies only to input.

2. If input data is requested by a data transmission proce­

dure when no data r~mains on the input device3 control

will be transferred to procedure p.

3. If NO DATA is not used and the condition described in

Rule 2 arises3 control will be transferred to the end of

the program as though a dwnmy labe l had been p laced just

before the final 'END'.

EXAMPLES:

1. NO DATA (EOF)

- 154 -

The procedure EOF is

used when no data exists

on the input device.

2. 'BEGIN'

'PROCEDURE' LASTj 'GOTO' FIND;

NO DATA (LAST); ...

'END'

- 155 -

NO DATA (contdJ

When no data is found on

the input devioe 3 control

goes to prooedure LAST

whioh sendS oontrol to

the statement labelled

PIND.

TABULATION

PURPOSE: To set the width of the tabulation field of the I/O device;

to pe~it the skipping of a fixed numbe~ of positions when­

ever the alignment mark J appears in a format call.

FORM:

RULES:

TABULATION (aJ

a: a~thmetic exp~ession

1. "a" specifies the number of cha~acters of the foreign

medium which constitute the tabulation field.

2. If the left margin is at position X, the tab positions for

a line are:

X, X+a, X+2a, X+3a, , X+ka

The last tab position ocau~s befo~e o~ at the same point

as the right margin as specified by HLIM, or at the physical

end of the line, whichever is smalle~.

3. fvhen a "J" appears in a format call, the I/O device is

spaced to the next tab position.

4. If this procedure call is not given the tabulation spacing

is one.

- 156 -

EXAMPLES:

1. TABULATION (15)

2. TABULATION (At2-B~:C)

- 157 -

TABULATION (oontd)

A new tab position ooours .

every 15 spaoes.

2 The value of A -Be

deter.mines the tab

spacing.

VEND

PURPOSE: To specify the procedu~es which a~e to be called when the

end of a page is reached during input or output; to permit

special action to be taken depending on what situation

causes the end-of-page condition to occur.

FORM:

RULES:

p13P23p3: procedul'e identifier

1. p1 is the name of the procedure to be cal led when a "t"
appears in the fo~at call. This indicates that the subse­

quent infonmation is to appear on a new page3 and is con­

sidered the no~al case.

2. p2 is the name of the procedure to be called when a group

of characters is to be transmitted which would appear on

the line after the one specified by VLIM as the bottom

margin.

3. p3 is the name of the procedure to be called when a group

of characters is to be transmitted which would pass the

physical end of the page due to the characteristics of the

I/O device being used, but would not pass the bottom

margin set by VLIM. Note: This physical end is specified

by standard limits set within the system or a control card

to the system, and may be altered by procedure SYSPARAM.

- 158 -

VEND (contdJ

4. If it is desiped to take no special action when the end of

a page is ~eached this p~ocedupe call may be omitted.

5. If action iB desiped fo~ Bome but not all of the conditions3

dummy ppocedu~e names may be used fo~ those ~equi~ng no

action.

EXAMPLES:

1. VEND (NEW?PAGE I? PAGE 2)

2. 'BEGIN' ..• 'PROCEDURE' EMPTY;; •..

.•• VEND (OK?FIX?EMPTY)j •.. 'END'

- 159 -

Contpol goes to p~ocedu~e

NEW when a "t" appea~s in

the format cal l; to PAGE 1

when the bottom ma~gin is

~eached and to PAGE 2 when

the physical end of the

page is ~eached.

No action is taken if an

attempt is made to w~te

beyond the end of the page.

VLIM

PURPOSE: To set the vertical layout of a page; to specify how many

lines on a page are to be used.

FORM:

RULES:

VLIM (top, -bottom)

top, bottom: arithmetic expression

1. The top line of the page has a value of 1, the second,

2" eta.

2. The first parameter indicates the first line to be used for

transmission.

3. The second parameter indicates the last line to be used.

4. There is a restriction that 1 ~ top < bottom.

5. If this procedure call is not given" the first line is set

to one and the last line is set to infinity.

EXAMPLES:

1. VLIM (10,50)

- 160 -

Data transmission starts

on line 10 and ends on

line 50.

2. VLIM (1., TOTAL)

- 161 -

VLIM (aontd)

Data transmission starts

on the first line of a

. page, and ends on the line

speaified by the value of

TOTAL.

EXamples of Layout Procedures:

1. 'PROCEDURE' SET;

2.

'BEGIN'

FORMAT ("30.20\);

'IF' A 'EQ' Bt2 'THEN'

'BEGIN'

FORMAT ("ZZZ \);

TABULATION (5)

'END' ;

VLIM ('IF' A 'EQ' Bt2 'THEN' 5

, E LS E ' 10., 50)

'END'

'PROCEDURE' LAYOUT;

'BEGIN'

FORMAT("t.,100(ZZD.D.,BBD.D'DD).,

/ \);

HLIM(5.,60);

HEND(GOOD.,OVER.,OVER)

'END' ;

'PROCEDURE' GOOD; HLIM(5.,60);

'PROCEDURE' OVER; HLIM(15.,60)

- 162 -

2 If A=B the second for.mat

call will override the

first, a TAB of 5 will be

set and the vertical margins

will be (5,50). If AIB2 the

first for.mat will be in

effect the TAB will be 1

and the vertical margins

will be (10,50).

Whenever line overflow occurs

procedure OVER will change

the horizontal margins.

When the "/" in the format

call is reached, procedure

GOOD will restore the 'original

margins.

B. Data Transmission Prooedures

These prooedures handle the actual transmission of data for input

and output.

In oalling these prooedures it is necessary to speoify the I/O

devioe whioh is to be used for the transmission. For the GE

625/635 operating system a GECOS file oontrol oard is required to

indioate the devioes to be used.

Files used by ALGOL are restrioted to the numerio file oodes 01 10
to 4010. 05 is the standard input file and 06, the standard output

file. These two files do not require file oontrol oards in order

to be used. Unless redefined, file 05 indioates GECOS file I*;06

indicates GECOS file P*. Error messages will thus be written on 06.

The point in a program at whioh the aotual I/O prooedure is oalled

is when the transmission of data ooours. Layout prooedures, if any,

and a list procedure, if any, will be oalled by the internal I/O

prooedures.

- 163 -

INLIST

PURPOSE: To indioate that data is to be transmitted fOl? input;

FORM:

RULES:

to specify the input devioe, the set-up p~ooedu~e and the

list p~ooed~e.

a1: a~ithmetio expression

a2,a3:p~ooedu~e identifie~

1. a1 is the fi le numbe~ f~om the GECOS fi le oa~d whioh indioates

the speoifio input devioe to be used.

2. a2 is the name of the set-up p~ooedure oontaining the layout

p~ooedure oa l ls .

J. aJ is the name of the list p~ooedure whioh oontains the data

items to be transmitted.

4. When INLIST is exeouted, it fi~st oalls the layout prooedures,

then transfers baok and forth to the list p~ocedure while the

actual input is taking plaoe. See Appendix 3 fo~ a detailed·

explanation of INLIST.

EXAMPLES:

1. INLIST (05, ABC, INPT)

- 164 -

This statement causes input

to take place on I/O devioe

5 aooording to the layout

p~ooedu~es in prooedu~e ABC

and aoco~ding to the list

p~ocedu~e INPT.

INLI ST ((Jontd)

2. 'BEGIN' 'PROCEDURE' START; This p~ogram transmits a

'BEGIN' symbol into ALPHA~ a ~eal

FORMAT("+,A,D.D'DD/,ZDD,P\); nwnber into BOY~ an- integer

VLIM(2,50) into COUNT and a 0 or 1

'END' j •••

'PROCEDURE' LIST (OK);

'BEGIN'
OK(ALPHA)j OK(BOY)j OK(COUNT);

OK(BOOL)

'END' j •••

INLIST (7,START,LIST)i .•.

'END'

- 165 -

into BaaL.

INPUT n

PURPOSE: To indioate that data is to be transmitted for input;

FORM:

RULES:

to provide for data input without using layout prooedUres

or a Zist prooedure.

n: integer

a: . arithmetio expression

string: format string

e1~e2~ •.• ~en: variable or subsoripted

variable

1. a is the fi le number from the GECOS fi le oard whioh indioates

the input devioe to be used.

2. The format string is in the same form as the format oall

FO~T (string)~ i.e.~ no'X's are allowed in the string.

3. e1~e2~ ... ~en are the aotual data items to be transmitted

aooording to the for.mat string given.

4. n may have the vaZue 0,1,2, .•• ,9 and indioates the number of

data items.

5. The equivalent of this prooedure oall in terms of INLIST

is as tol lows:

- 166 -

INPlIf n (()ontdJ

'BEGIN' 'PROCEDURE' LAYOUT; FORMAT (string);

'PROCEDURE' LIST (ITEM);

'END'

'BEGIN' ITEM (e
1
)j ITEM (e

2
)j ••• j

ITEM (e)
n

'END' ;

INLIST (a, LAYOUT, LIST)

6. When the only layout procedure required is FORMAT and when

there are nine or fewer items to be tranBmitted~ this simpler

input call may be used instead of INLIST.

EXAMPLES:

1. INPUT 6 (OS, "(ZD. D)t\~' This transmits 6 values

A[l], A[2], A[3], A[4], A[5], A[6])according to the repeated

fonnat ZD.D

2. INPUT 2 (07,"P,F\, B[l], B[2]) This transmits 1 or 0 into

Bl and 'TRUE' or 'FALSE'

into B2.

- 167 -

OUTLIST

PURPOSE: To indiaate that data is to be tpansmitted fop output;

to speaify the output deviae, the set-up proaedupe and

the list ppoaedure.

F~:

RULES:

a1: aPithmetia exppession

a
2
,a

3
: . ppoaedupe identifiep

1. a1 is the file numbep from the GECOS file aapd whiah indiaates

the speaifia output deviae to be used.

2. a2 is the name of the set-up ppoaedure aontaining the layout

ppoaedure calls.

3. a3 is the name of the list ppoaedupe whiah contains the data

items to be transmitted.

4. When OUTLIST is exeauted, it fipst aalls the layout ppoaedures

then transfers baak and fopth to the list ppoaedupe while the

aatual output is taking plaae. See Appendix 3 for a detailed

explanation of OUTLIST.

- 168 -

EXAMPLES:

1. OUTLIST (lO,PAGE,LIST)

2. 'BEGIN' 'PROCEDURE' SET;

FORMAT(" 3D. 0, BZZD, 2B3S/\);

'PROCEDURE' OUT (A);

'BEGIN'

A(TOTAL)jA(INTEGER)jA("ANS\)

'END' ; •••

OUTLIST(6,SET,OUT); •••

'END'

- 169 -

OUTLIST . (aontdJ

This statement aauses

output to take plaae on

I/O deviae 10 aaaopding

to the layout ppoaedures

in proaedupe PAGE and

aaaopding to the list

proaedupe LIST.

This progpam aauses the

values of the two vapiables

TOTAL and INTEGER and the

stPing ANS to be wPitten

out on device 6.

OUTPUT n

PURPOSE: To idicate that data is to be transmitted for output;

FORM:

RULES:

to provide for data output without using Zayout procedures

or a Zist procedure.

n: integer

a: arithmetic expression

string: format string

e1~e2, •.• ~en: ar-ithmetia expre8sion~
BooZean expression or

string

1. a is the file number f~om the GECOS file card which indicates

the output deviae to be used.

2. The fonnat string is in the same form as the format caZl

FO~AT (string)~ i.e.~ no X's a~e alZowed in the string.

3. e1,e2~ ... ,en are the actual data items to be transmitted
according to the format string given.

4. n may have the value 0,1, ... ,9 and indicates the number of

data items.

- 170 -

OUTPUT n (contd)

5. The equivalent of this procedure call in ter,ms of OUT LIST

is as follows:

'BEGIN' 'PROCEDURE' LAYOUT; FO~T (string);

'PROCEDURE' LIST (ITEM);

'END'

'BEGIN' ITEM (e
l
); ITEM (e

2
); ••• ;

ITEM (e) n
'END' ;

OUTLIST (a~LAYOUT~LIST)

6. When the on ly layout procedure required is FORMAT and when

there are nine or fewer items to be transmitted3 this

simpler output call may be used instead of OUTLIST.

EXAMPLES:

1. OUTPUT 3 (06~"3(2ZD.DD)\~A~B~C)

2. OUTPUT 5 (09~"2(D.DfZZ)~ 3S~

2BSS~ I\~ Xt2-3~ Yt2-3~ "TOT\~

II Al \ ~ COLNT)

- 171 -

This statement will cause

3 values of A3 Band C to

be transmitted to device

6 according to the fo~at

given.

This statement wil l cause

2 decimal numbers, 2 strings

and an internal notation

integer to be transmitted.

C. Input/Output Control Proaedures

These proaedures aaaess system parameters and allow some aont~l

over the positioning of the I/O deviaes.

- 172 -

POSITION

PURPOSE: To position the speaified file to the indicated page and line.

FORM:

RULES:

1. e1 represents the file from the GECOS file card.

2. e2 is the page number.

3. e3 is the line number.

4. This procedure may be used in conjunction with SYSPARAM to

record info~ation on a file and later make reference to it.

At a particular point in a program~ a call on SYSPARAM can

be used to record the current position on a file. At a

later time~ if it is desired to return to that point in the

file a call on POSITION giving the relevant page and line

numbers for parameters e2 and e 3 will reposition the file to

the desired point. Note: Backpositioning on a unit record

device is undefined; however~ such positioning is meaningful

for a unit record logical device which is assigned to a

magnetic tape (other than SYSOUT).

EXAMPLE:

POSITION(4,A-5,B)

- 173 -

Device 4 will be spaced so

that it is prepared to access

the line specified by the value

of B on the page specified by

the value of A-5.

SYSPARAM

PURPOSE: To gain access to certain system parameters so that they

may be modified.

FORM:

RULES:

a~ithmetic expression

integer variable

1. The system parameters which may be changed or read out are:

a. The character, line and page pointers (p, p I and p")

respectively.

b. The "standard format" constant determining the number

of spaces between items (k).

c. The physical end of line (P) and the physical end of

page (PI) which are characteristic of the I/O decive.

2. a1 is the file number from the GECOS file card specifying

the I/O device concerned.

3. a2 may have a value of 1,2, ..• ,11.

a. If the value of a2 is 1,3,5, 7,9 or 11, the value of the

system parameter in question is assigned to variable a3•

b. If the value of a2 is 2,4,6,8 or l~the value of a3
becomes the new value of the system parameter.

- 174 -

SYSPARAM" (contd)

c. The action is as follows:

if a2 = 1~ a;3+p if a2 = 2~ p+a;3

if a2 = ;3~ a;3+p , if a2 = 4~ p'+a;3

if a2 = 5~ a +P
;3 if a2 = 6~ P+-a;3

if a2 = 7~ a +P'
;3 if a2 = 8~ P'+a

;3

if a2 = 9~ a +k
;3 if a2 =10~ k+a;3

if a2 =11~ a;3-fP"

4. P and p' pepresent actual positions on the I/O device which a~e

to be changed when a2 = 2 and a2 = 4.

a. If a2 = 2~ P is tested to see if p<a;3. If it is~ blanks

ape inserted until p = a;30 If p~a;3j a skip to the next

line is pepformed~ p is set equal to O~ and blanks a~e

insepted until p = a;30

b. If a2 = 4~ p' is tested to see if p'<a;30 If it is~ lines

ape advanced un ti l p' = a:3" If p'?a;3~ a s kip is made

to a new page~ p' is set equal to o~ and lines ape

advanced until p' = a;30

50 a2 = 6 and a2 = 8 change the physical limits of the I/O device

(p and P') whe~e this is possible (ioeo~ magnetic tape block

'length may be changed and unit ~ecopd devices may have physical

limits peduced~ but not extended beyond the standa~d limits).

If the limits cannot be changed and these actions ape specified~

the statement acts like a dummy statement.

- 175 -

SYSPARAM (contdJ

6. a2 may also have a value of 21 or 22

a. If the value of a2 is 21, the file denoted by a1 is defined

as an input file.

b. If the value of a
2

is 22, the file denoted by a
1

is defined

as an output file.

c. If the value of a2 is 21 or 22, the value of a
3

is not

significant.

7. The condition which requires a
2

= 21 or 22 only arises when the

intended first action on a particular file uses a primitive

procedure or procedure SYSpARAM. If this is the case, the system

does not know the nature of the file and thus a call to SYSPARAM

with a2 = 21 or 22 would serve to define the file. e.g., If

EXAMPLES:

the first action with respect to file 6 is to read out the value

of p by a call to SYSPARAM such as

SYSPARAM(06,1,CHAR)

this call would have to be preceded by a call toSYSPARAM

defining 06 as an output file as follows:

SYSPARAM(06,22,0)

1. SYSPARAM (8,3,LINENO) On device 8 the value of the

line pointer is assigned

2. SYSPARAM (5,10,3)

- 176 -

to variable LINENO.

For device 5 the value of

k is changed to 3, i.e., 3

or more blanks must follow

a number in standard format.

D. Primitive 'Prooedures

These prooedures are inoZuded in the ALGOL Zanguage to aZZow the

other Input/Output prooedures to be written in ALGOL.

They are avaiZabZe for use by the programmer but are not intended

to be generaZ pu~ose routines.

- 177 -

I NSYMBOL

PURPOSE: To assooiate specifio ALGOL symbols with specifio integers;

to read in a basio symbol from an exte~al devioe as an

integer.

FORM:

RULES:

INSYMBOL (e, s, v)

e: arithmetio expression

. (oalled by value)

s: string

v: integer variable

1. The basio symbols oontained in the string "s" are given

integer values.

2. The symbols are assigned from left to right to the positive

integers 1~ 2~ 3, eto.

3. This prooedure aots as follows:

a. It reads in the next symbol from the input devioe.

b. If it is a basio symbol whioh a.ppears in the string "s"~

the variable v will be assigned the integer value

assooiated with this symbol.

o. If it is a basio symbol whioh does not appear in the

string "s", v will reoeive a value of o ..
d. If the input symbol is not an ALGOL basio symbol~ v will

reoeive a value of minus one.

- 178 -

I NSYMBOL (contdJ

e. If there is no more data on the input device~ v will

receive a value of minus two.

f. If the string "s" is null~ i.e.~ INSYMBOL (e~"\~v)~

v will receive the standard system value for the basic

symbol. (See Appendix 5).

- 179 -

LENGTH

PURPOSE: To caZauZate the Zength of a given string.

FORM: LENGTH (s)

RULES:

s: string

1. The resuZt of this prooedure is an integer.

2. It is equaZ to the number of basic symboZs in the string "s"

not incZuding the oute~ost pair of string quotes.

- 180 -

N.AME

PURPOSE: To permit the saving or "remembering" of labels and procedure

identifiers.

FORM:

RULES:

v1'v2: integer variable

a: statement label

p: procedure identifier

1. If v1 has a value of 1, the integer associated with a is

assigned to v2•

2. If v1 has a value of 3, the- integer associated with p is
assigned to v

2
•

3. If v1 has a value of 2, control will be transferred to the

label whose value is the same as that of v
2

•

(Note: v2 must have been assigned the value of a label by

a previous NAME statement.)

If v2 = 0 the program will be ter.minated.

4. If v1 has a value of 4, control will be transferred to the

procedure whose identifier has the same value as v2.

(Note: v
2

must have been assigned the value of a procedure

identifier by a previous N.AME statement.)

If v2 = 0 the procedure will be a ~Wnmy procedure.

- 181 -

NAME (contd)

5. The association of specific integers with labels and

procedure identifiers holds only in the block in which the

labels or identifiers are declared3 i.e' 3 the rules of

scope for ALGOL block structure are obeyed.

- 182 -

OUTSYMBOL

PURPOSE: To associate ALGOL basic symbols with specific integers;

to write out a basic symbol on an external device from

an internally stored integer.

RULES:

el~e2: arithmetic expression
(calZed by value)

s: string

1. The basic symbo ls in the string "s" are given integer values.

2. The positive integers 1~2,3, etc. are assigned to the symbols

from left to right; leftmost = 1, next = 2, etc.

3. This procedure acts as follows:

a. It evaluates e
2

and dete~ines the integer. which is

closest to this value.

b. If the value has an equivalent in string "s "., the basic

symbol corresponding to this value will be written on
the, output device.

c. If the value has no equivalent in string "s" by being

outside the bounds of the string., or if it is not a

basic symbo~ the symbol ~ will be written on the output

device.

d. If the string "8" is null, i.e., OUTSYMBOL Ce1,'" ,e2),.
the standard system values are used to dete~ine the

basic symbol which will be written on the output deVice.

(See Appendix 5.)

- 183 -

STRING ELEMENT

PURPOSE: To enabl.e -the scanning of a given string (actual. or formal.J

in a machine independent manner.

FORM:

RULES:

sl,s2: string

v1,v
2

: variabl.e

1. Variabl.e v1 determines which symbol. of s 1 is referenced, i. e.,

if v 1 = 1 it is the l.eftmost symbol.; if v1 = 2, the next, etc.

2. Once the symbol.· is chosen, its associated integer is assigned

to variab l.e v 2.

(Note: the associated integer is determined by encoding string

s2 as was done with the string in the procedure INSYMBOL.J

- 184 -

TYPE

PURPOSE: To dete~ine the type of a number whioh is to be written

out in standard format.

RULES:

Vi: variable

v2: variable or string

1. If v2 is a string, vi is set equal to 4.

2. If v2 is a variable, Vi is assigned a different value

depending on the type of v2 as follows:

a. If v 2 is 'INTEGER', vi-+-i.

b. If v 2 is 'REAL', vi +2.

o. If v2 is 'BOOLEAN', v1+3.

d. If v2 is 'EXTENDED REAL', vi+8.

- 185 -

E. List Procedure

This procedure is written by the programmer to be used with the

I/O procedures provided by ALGOL.

- 186 -

List praocedure

PURPOSE: To list a sequence of quantities to be transmitted for input

or output; this list is used in conjunction with the format

items of a FORMAT call.

FORM:

RULES:

'PROCEDURE' name (ident); s

name: praocedurae identifiera

ident: identifiera

s: simple statement,

compound statement ora

block

1. The formal parametera "ident" appears in the body of the list

procedurae as a procedurae identifier.

2. Each item to be traansmitted for input or output appears in the

praocedurae body as the parameter for procedure ident.

Example:

'PROCEDURE' A(X)j 'BEGIN' X(M)j X(N)j X(P) 'END'

M, Nand P are transmitted.

3. When the list praocedurae is called by a data traansmission praoce­

dure (INLIST or OUTLIST), an internal system procedure (INITEM

ora OUTITEM) will be the actual parametera coraraesponding to the

formal paraameter "ident," and thus will be substituted for

"ident" in the list praocedure body.

- 187 -

List prooedure (oontd)

4. Exeoution of the list prooedure oauses the internal system

prooedure (INITEM or OUTITEM) to be exeouted. INITEM or

OUTITEM has as its parameter the item to be transmitted.

5. This parameter may be an arithmetio expression~ Boolean

expression or a string for output. However~ the parameter

may be only a variable or subsoripted variable for input.

6. The item is oalled by name by the internal system prooedure

and its value is transmitted for input or output.

7. The sequenoe of statements in the list procedure body deter­

mines the sequence in whioh the items are transmitted for

input or output.

8. All ALGOL statements are per.missible in a list procedure

inolu~ng a call to one or more of the layout prooedures.

EXAMPLES:
,
1. 'PROCEDURE' LIST (NAME)j

'BEGIN' NAME(X); NAME (Y +3~~Z);

N.AME ("TOTAL\) 'END'

2. 'PROCEDURE' MANY (ITEM);

'FOR' 1+1 'STEP' 1 'UNTIL'

10 'DO' 'BEGIN' ITEM (A[I]);

ITEM (B[I]) 'END'

- 188 -

The identifier NAME is

replaoed by a system proce­

dure name when the list

pro(Jedure is (Jalled. X~ Y +3*Z

and "TOTAL \ are parameters

to this system pro(Jedure and

their values will be trans­

mitted.

The items to be transmitted

are Al,Bl,A2,B2, .•. ,Al0,Bl0.

APPENDIX 1

- 189 -

RESERVED IDENTIFIERS

The following list enumerates reserved identifiers. These identify

functions and prooedures whioh are available without explioit deolara­

tions. These functions and prooedures are assumed to be deolared in a

block external to the program. However, a programmer may redeclare a

reserved identifier, in which oase the reserved meaning is superseded.

The reserved identifiers are as follows:

ABS HLIM OUTPUT 2

ARCTAI\I INLIST OUTPUT 3

BAD DATA INPUT 0 OUTPUT 4

COS INPUT 1 OUTPUT 5

ENTlER INPUT 2 OUTPUT 6

EQUIV INPUT 3 OUTPUT 7

EXP INPUT 4 OUTPUT 8

FORMAT INPUT 5 OUTPUT 9

FORMAT 0 INPUT 6 OUTSYMBOL

FORMAT 1 INPUT 7 POSITION

FORMAT 2 INPUT 8 SIGN

FORMAT 3 INPUT 9 SIN

FORMAT 4 INSYMBOL SQRT

FORMAT 5 LENGTH STRINGELEMENT

FORMAT 6 LN SYSPARAM

FORMAT 7 N.AME TABULATION

FORMAT 8 NO DATA TYPE

FORtv1AT 9 OUTLIST VEND

HEND OUTPUT 0 VLIM

OUTPUT 1

- 190 -

. APPENDIX 2

- 191 -

Form

ABS(e)

ARCTAN(e)

COS (e)

ENTIER(e)

EXP(e)

LN(e)

SIGN(e)

SINCe)

SQRT(e)

MATHEMATICAL FUNCTIONS

Desaription

absolute value of the exp~ession e

prinaipal value of the a~atangent of e

aosine of e

the integ~al part of e

exponential funation of e

natural logarithm of e

sign of e (+1 if e>O, 0 if e = 0, -1 if e<o)

sine of e

square root of e

These funations ape available without expliait deala~ations. They a~e

assumed to bedealared in a bloak exte~al to the p~ogpam. Howeve~,

a prog~amme~ may pedealare a mathematiaal funation identifie~, in whiah

aase the standa~d meaning is supepseded.

These funations a()aept parameters of types 'REAL', 'EXTENDED REAL' and

'INTEGER'. They all yield values of type 'EXTENDED REAL', exaept fo~

ENTIER(e) and SIGN(e) whiah yield values of type 'INTEGER'.

The papameteps of these funations are t~eated as 'VALUE' papamete~s.

- 192 -

"APPENDIX 3

- 193 -

" "DETAILED "EXPLANATION "OF" INLIST

Let us asswne:

1. INLIST has been caZZed.

2. Lines 1~2~ ... ~p' of the current page have been read.

3. Characters 1~2 .. ~p of the ourrent Zine (Zine p' + 1) have

been read.

4. At the beginning of the program p = p' = o.

5. SymboZs P and P' denote Zine size and page size respectiveZy.

6. There are eight hidden variabZes H1~ H2, ••• HB which correspond

to the eight Zayout procedures as foZZows:

H1 - FORMAT

H2 - H LIM

H3 - V LIM

H4 - H END

H5 - V END

H6 - TABULATION

H7 - NO DATA

HB - BAD DATA

7. The Zeft margin of H LIM is L.

The right margin of H LIM is R.

The top margin of V LIM is L'.

The bottom margin of V LIM is R'.

- 194 -

STEP 1. (InitiaZization)

The hidden variabZes are set to standard vaZues:

H1 is set to the "standard" format.

H2 is set so that L = 1, R = 00.

H3 is set so that L' = 1, R' = 00.

H4 is set so that the three parameters are aZZ effectiveZy equal

to the dummy procedure defined as foZlows: 'PROCEDURE' DUMMY;;.
H5 is set so that the three parameters are all effectively

equal to the dummy procedure" DUVMY.

H6 is set so that TAB = 1.

H? is set to terminate the program in case the data ends.

HB is set to terminate the program if an unacceptabZe character

is received for format translation.

STEP 2. (Layout)

The layout procedure is called; this may change some of the variables

H1, H2, H3, H4, H5, H6, H?, HB. Set T to 'FALSE'. (T is a Boolean vari­

able used to control the sequencing of data with respect to title formats;

T = 'TRUE' means a value has been requested of the procedure which has

not yet been input.)

STEP 3. (Communication with List Procedure)

The next format item of the format string is examined. (Note: after

the format string is exhausted, "standard" format is used from then on

untiZ the end of the procedure. In particular, if the for.mat string

is If\, standard format is used throughout.) Now if the next format item

is a title format, that is, requires no data item, we proceed directly

to Step 4. If T = 'TRUE', proceed to Step 4. Otherwise, the list

procedure, is activated. This is done the first time by calling the

list procedure, using as actual parameter a procedure named IN ITEM.

- 195 -

This is done on all subsequent times by me~ely peturning f~om the proce­

dure IN ITEM which will cause the list p~ocedure to be continued from the

latest IN ITEM call. (Note: the identifie~ IN ITEM has scope local to

IN LIST so a p~ogpammep may not call this ppocedure dipectly.) Aftep the

list ppocedupe has been activated in this waY3 it will eithe~ terminate

o~ will call the procedure IN ITEM. In the for.mep case3 the input ppocess

is completed; in the lattep case3 T is set to 'TRUE'. Then any assignments

to hidden variables that the list procedure may have invoked will cause

adjustment to the variables H13 H23 H3, H4, H5, H6, H7, HB, (which a~e

local to IN ITEM). We then continue at Step 4.

STEP 4.· (Alignment Mapks)

If the next format item includes alignment mapks at its left, remove them

fpom the format and execute ppocess A (a sub~outine below) fo~ each "/",

process B for each "t", and p~ocess C fop each "J".

STEP 5. (Get within Ma~gins)

Execute ppocess G to ensure ppoper page and line alignment.

STEP 6. (lOrmatting for Input)

Take the next item fpom the format string.

NOTES:

In unusual cases, the list ppocedupe or an ovepflow ppocedupe may have

called the descpiptive ppocedure FORMAT the~eby changing the format

stping. In such cases3 the new format string is examined f~om the

beginning; and it is conceivable that the format items examined in

Steps 33 4, and 6 might be th~ee different formats. But at this point

the current for.mat item is effectively pemoved fpom the format string

and copied elsewhere so that the format string itself3 possibly changed

by further calls of FORMAT, will not be inte~~ogated until the next

occurrence of Step 3.

- 196 -

Alignment marks at the left of the fo~at item are ignored. If the

format item is not composed only of alignment marks and insertions~ the

value of T is examined. If T = 'FALSE', undefined action takes place

(the programmer has substituted a nontitle fo~at for a title fo~at

in an overflow procedure3 and this is not alZowed). Otherwise3 T is

set to 'FALSE'. If the format item is "A" or "N"~ set s = 1 and go

to Step 7; otherwise3 the number of characters3 s~ needed to input the

format item for the present medium is dete~ined~ and it is assumed that

the same number of character positions will be used in the input medium

for this item.

STEP 7. (Check for OVerflow)

If the present item uses "N" format~ the character positions p + 13

P + 23 ••• are examined until either a proper termination of the number

has been found~ or position min (R~P) has been reached with no sign~

digit3 decimal point3 or ,,,,, encountered. In the former case3 set s to

the number of character positions occupied by the number3 including

preceding and embedded blanks and the te~ination character, and then

go to Step 9; in the latter case3 go to Step 8 with p = min (R~P).

If the present item uses ,~" fo~at, the character position p + 1 is

examined~ if it contains "y" 3 set P = min (R3 P) and go to Step 83

otherwise input characters starting from position p + 1 until a basic

symbol has been input. Set s to the number of. aharacters denoting the

basic symbo l and go to Step 9. Finally ~ if nei ther "N" nor "A" format

is used3 go to Step 8 or Step 9 according as p + s > min (R3 P) or not.

- 197 -

STEP 8. (Proce8sing of OVerflow)

Perform proce88 H (p + 8). Then proceed a8 follow8:

"N" format: Input characters until- either finding. a number foZlowed
by a proper ter,mination (go to Step 9) or until reaching p08ition

min (R~P). In the latter ca8e, a partial number may have been

examined; repeat Step 8 until a number properly terminated has been

input. In the former ca8e, 8et 8 to the number of p08itions occupied

by that portion of the number ~ying to the right of p~ including

embedded blank8 and the ter,mination character, then go to Step 9.

"A" format: Input characters as with "N" format unti l a basic

symbol has been input. (Thi8 basic symbol necessarily takes several

character positions on the medium.)

Other: If P + s < R and p + s :s P, go to Step 9; otherwise input

k = min (R~P) - P characters, set p = min (RJPJ, decrease s by k,

and repeat this step.

STEP 9. (Finish the Item)

If neither "A" nor "N" format is being used~ input s characters. Determine

the value of the item that was input here~ or Steps 7 and 8 in case of

"A" or "N" forrrrzt, using the rules of format. Assign this value to the

actual parameter of IN ITEM unless a title format was specified. Increase

p by s.

Any alignment marks at the right of the format item now cause activation

of process A for each "/", process B for each "t"~ and process C for each

"J". Return to Step 3.

- 198 -

PROCESS A. ("/" Operation)

Check page aZignment with process F3 then execute process D and caZZ

procedure pl of H END.

PROCESS B. ("t" Operation)

If p > O,execute process D and caZZ procedure pl of H END. Then execute

process E and caZZ procedure pl of y. END.

PROCESS C. ("J" Operation)

Check page and Zine aZignment with process G. Then Zet k = ((p - L + 1) %

TAB + 1) x TAB + L - 1 (the next "tab" setting for p) 3 where TAB is the

"tab" spacing for this channeZ. If k > min (R3 P) 3 perform process H(k);

o"therw'ise skip over character positions unti Z p = k.

PROCESS D. (New Line)

Skip the input medium to the next "Zine3" set p = 03 and set p' = p' + 1.

PROCESS E. (New Page)

Skip the input medium to the next "page3" and set p = O.

PROCESS F. (Page AZignment)

If p' + 1 < L'3 execute process D untiZ p' = L' - 1.

If p' + 1 > R'3 execute process E3 caZZ procedure p2 of V END and repeat

process F.

Ii p' -{- 1 > P'" execute process E, call procedure p3 of V END and repeat

pY10cess F.

Th'is process must terminate because 1 ~ L' : R' and 1 ~ L' ~ P'. If a

[Jl'ugrarroner chooses a vaZue of L' > P'" i' is set equoJ tQ 1.

- 199 -

PROCESS G. (Page and Line Alignment)

Execute process F. Then~

If p + 1 < L~ skip over character positions until p + 1 = L.

If P + 1 > R or p + 1 > P~ perform process H (p + 1).

This process must terminate because 1 ~ L ~ R and 1 ~ L ~ P. If a

programmer chooses a value of L > P, L is set equal to 1.

PROCESS H(k). (Line Overflow)

Perform process D. If k > R~ call procedure p2 of H END; otheruJise

call p3. Then perfo~ process G to ensure page and line alignment.

Note: upon return from any of the overfZow procedures~ and assignments

to hidden variables that have been made by calls on descriptive procedures

will cause adjustment to the corresponding variables H1~ H2, H3~ H4, H5,

H6~ H'l~ HB.

EXAMPLE:

Notice that the programmer has the abi li ty to determine the presence of

absence of data on a card when using standard format~ because of the

way overflow is defined. The following program~ for example~ will count

the number n of data items on a single input card and will read them into

A [1],. A [2]~ ••• ~A [n]. (Asswne Wlit 5 is a card reader.)

'PROCEDURE' LAY; H END (EXIT, EXIT, EXIT);

'PROCEDURE' LIST (ITEM); ITEM (A[N+l]);

'PROCEDURE' EXIT; 'GO TO' L2;

N+O; LI: INLIST (5, LAY, LIST);

N+N + 1; 'GO TO' LI;

L2:;

- 200 -

, 'DETAILED 'EXPLANATION 'OF 'OUTLIST

Let us asswne:

1. OUTLIST has been called.

2. Lines 1~2~ ••. ~p' of the current page have been completed.

3. Characters 1~2~ ... ~p of the current line (line p' + 1) have

been completed.

4. At the beginning of the program p = p' = o.

5. Symbols P and P' denote the line size and page size respec­

tively.

6. There are eight hidden variable8'H1~H2~ ••. ~HB which correspond

to the eight layout procedures as follows:

H1 - FORMAT

H2 - H LIM

H3 - V LIM

H4 - H END

H5 - V END

'H6 - TABULATION

H7 - NO DATA

HB - BAD DATA

7. The left margin of H LIM i8 L.

The right margin of H LIM is R.

The top margin of V LIM is L'.

The bottom margin of V LIM i8 R'.

- 201 -

STEP 1. (initialization)

The hidden variables are set to the following standard values:

H1 is set to the "standard" format.

H2 is set so that L = 1, R = 00.

H3 is set so that L' = 1, R' = 00.

H4 is set so that the three paPameters are all effectively equal

to the dUmmy procedure defined as follows: 'PROCEDURE' DUMMYjj.

H5 is set so that the three paPameters are all effectively equal

to the dummy procedure, DUMMY.

H6 is set so that TAB = 1.

STEP 2.. (Set-Up)

The set-up procedure is called; this may chaf1,ge some of the variab les

H1, H2, H3, H4, H5, H6. Set T to 'FALSE'. (T is a Boolean variable

used to control the sequencing of data with respect to title formats;

T = 'TRUE' means a value has been transmitted to the procedure which

has not yet been output.)

STEP 3. (Communication with List Procedure)

The next fomat item of the fomt string is examined. (Note: a,fter

the format string is exhausted,· "standard" fomat is used fxaom then

on until the end of the procedure. In particuZaxa, if the fonnat string

is ''\, standard format is used throughout.) Now if the next format item

is a title fomat, that is, requires no data item, we prooeed di~ectly

to Step 4. If T = 'TRUE' prooeed to Step 4. Otherwise, the list proce-'

dure is activated; this is done the first time by calling the list

procedure, using as actual parameter a procedure named OUT ITEM; this is

done on subsequent times by merely returning from the procedure OUT ITEM,

which will cause the list procedure to be continued from the latest

OUT ITEM call.

- 202 -

(Note: the identifier OUT ITEM has scope local to OUT LIST, so a

programmer may not call this procedure directly.) After the lis't

procedure has been activated in this way, it will either te~inate

or will call the procedure OUT ITEM. In the former case, the output

process is completed; in the latter case, T is set to 'TRUE' and any

assignments to hidden variables that the list procedure may have

invoked will cause adJustment to the variables Hl, H2, H3, H4, H5, H6

(which are local to OUT ITEM) and w~ then continue to Step 4.

STEP 4. (Alignment Marks)

If the next fo~at item includes alignment marks at its left remove them

from the fo~at and execute process A (a subroutine below) for each I~I~

process B for each "t", and process C for each "J".

STEP 5. (Get within Margins)

Execute process G to ensure proper page and line alignment.

STEP 6. (Fo~atting the Output)

Take. the next item from the fo~at string.

NOTES:

In unusual cases, the list procedure or an overflow procedure may have

called the descriptive procedure FO~T, thereby changing the fo~at

string. In such cases, the new format string is examined from the

beginning, and it is conceivable that the format items examined in

Steps 3, 4, 6 might be three different fo~ats. But at this point the

current format item is effectively removed from the format string and

ccpied elsewhere, so that the fomat string itself, possibly changed

by further calls of FORMAT, will not be interrogated until the next

occurrence of Step 3.

- 203 -

AZignment maraks at the 'left of the fomat item arae ignoraed. If the

fo~at item is not composed onZy of aZignment maraks and inserations,

the vaZue of T is examined. If T = 'FALSE',' undefined action takes .

pZaae (the praograammera has substituted a nontitZe fo~at fora a titZe

fo~at in an overafZow praoaedurae, and this is not aZZowed). otherwise,

the output item is evaZuated and T is set to 'FALSE'. Now the puZes

of for,mat ape appZied, and the chapacteras X1X2 ••• Xs which raepraesent the

formatted output on the external, medium ape dete~ned. (Note that

the numbera of charaaateras, 8, may depend on the vaZue being output,

using "A" or "s" for,mat, as we'll, as on the output medium.)

STEP 7.. (Check fora OverafZow)

If p' + s :: R and p + s ~ P, where s is the size of the item as deter­

mined in Step 6, the item wi'll, fit on this 'line, so go on to Step 3.

Otherwise, if the praesent ·item uses "A" format, output a special, symbol,

"y" whiah is recognizably not a basic symbol; this is done to ensure

the input will be inverse to output. Go to Step 8.

STEP 8. (Processing of OverfZow)

Perfor,m proaess H (p + s). Then, if p + s ~ R and p + s :: P, go to

Step 9; otherwise let k = min (R,P) - p. Output X1X2 •• • Xl<! set p = min

(R,P) and then 'let X1X2 ••• Xs_k = Xk+l + Xk+2 ••• Xs• Decraease s by k and

repeat Step 8.

STEP 9. (~nish the Item)

Output X1X2 ••. Xs' and inaraease p by s. Any alignment maraks at the right

of the format item now cause aativation of praocess A fora each "I'~

praocess B for eaah "t", and praocess C fora eaah "J". Return to Step 8.

- 204 -

PROCESS A. ("/" Operation)

Check page aZignment with process F~ then exeaute process D and caZZ

procedure p1 of HEND.

PROCESS B. ("t" Operation)

If p > 0, execute process D and caZZ procedure p1 of HEND. Then execute

process E and call procedure p1 of VEND.

PROCESS C. ("J" Operation)

Check page and Zine alignment with process G. Then let k = ({p-L+1) %

TAB + 1) x TAB + L - 1 (the next "tab" setting for p), where TAB is the

"tab" spacing for this channel. If k ~ min (R,P)" perform process H(k);

otherwise effectively insert blanks untiZ p = k.

PROCESS D. (New Line)

Skip the output medium to the next "Zine," set p = 0, and set p' = p' + 1.

PROCESS E. (New Page)

Skip the output medium to the next "page~" and set p' = o.

PROCESS F. (Page Alignment)

If p' + 1 < L' execute process D untiZ p' = L' - 1. If p' + 1 > R',

,-xeau-t;e process E, call procedure p2 of V END, and repeat process F.

If p' + 1 > P'" execute process E, cal.l procedure p3 of V END and

repeat process F.

:I'his process must terminate because 1 :s L' ~ R' and 1 S L .$ P'. If a

p::JgrC1J1V71er chooses a value of L' > P'~ L' is set equal. to 1.

- 205 -

PROCESS G. (Page and Line Alignment)

Exeoute prooess F. Then if p + 1 < L, effeotively output blank spaces

until p + 1 = L.

If P + 1 > R or p + 1 > P, perform process H (p + 1).

This process 117U8t temzinate beoause 1 ~ L ~ R and 1 ~ L ~ P. If a

programmer chooses a value of L > P, L is set equal to 1.

PROCESS H(k). (Line OVerflow)

Perform process D. If k > R, call prooedure p2 of H END; otheruise,

call procedure p3 of H END. Then perform prooess G to ensure page and

line alignment. Note: upon return from any of the overflow procedures,

any assignments to hidden variables that have been made by calls on

descriptive prooedures will oause adJustment to the corresponding

variables H1, H2, H3, H4, H5, H6.

- 206 -

APPENDIX 4

- 207 -

PROCEDURES FOR PREPARING ALGOL PROGRAMS

FOR COMPILATION AND EXECUTION

An ALGOL corrpilation will consist of either a block or a procedure

declaration. In the fi2"st case what is produced is a free-standing

program which may call external procedures but which is assumed to

operate otherwise as c! frlee-standing program. In the second case

the result is a sepal·ately compiled procedure which may be called

by another program.

In either case., the pr1ogl'am is keypunched and submitted to the

625/35 corrputer following a control card of the form:

col. 1 8 16

$ ALGOL OPTIONS

where the following options are allowed

LSTIN An input l'isting will be furnished

NLSTIN No input l'isting wil l be furnished

DECK A binary program deck wi l l be output

NDECK No binary pl'ogram deck will be output

COMDK A comdeck of the source program wi l l be output

NCOMDK No comdeck of the source program will be produced

where the underlined options are assumed in the absence of information

to the contrlary.

For the case in which a pl·ocedure is being corrpiled by itself~ it is

possible to redefine the procedure name for purposes of external refer­

ence. This is accorrrplished by using the ALGOL word 'RENAME' followed

by a string of six Oyl fewel J character1s which defines the desired external

name Qr SYMDEF. The l'ename string may consist only of alphabetics~

nwnerics and the clec'imal point. This construct~ if used~ must irrnnediately

follow the formal pal"OJneter; l'ist.

- 208 -

EXAMPLE:

col. 1

$

8

ALGOL

16

OPTIONS

'PROCEDURE' INPUT 0(unit3 string) j 'RENAME' ".AO IPT ;

'VALUE' unit; 'INTEGER' unit;

'BEGIN'

The above example defines the beginning of the job deck for a proce­

dure3 INPUT O~ being compiled by itself. within this procedure all

references to itself3 as in recursive oalls or passage as an actual

parameter3 would be to INPUT O. The symbolic for a SYMREP in any

other program desiring to reference this procedure would have to be

. AOIPT.

To run an ALGOL execution activity the following deck setup is required:

OPTION ALGOL~ options

{
binary decks or ALGOL compilations

as defined above

EXECUTE

PPILE }
< Physical device assignment >

The $ OPTION card with option ALGOL is required for every exeaution

activity containing at least one deck produced by the ALGOL compiler.

It must be the first card of the execution aativity. Other options~

as desired3 may be used on this card but ALGOL is required.

The $ FFILE and < Physical device aBsignment > cards are enclosed in

braces to indicate they may or may not be required for a partiaular

activity. Cards of the form $ TAPE~ DISC~ PRINTER (as desiribed in

the GECOS manual) define physical devices which are to be assoaiated

UJi th fi lea, 'referenoed in the ALGOL program th:raough cal7,$ on the input

output data transmission procedures. A card of thia type i$ ~equired

for every re/ere'nced file other than 05 and 06 and j,nput fi'Zes produaed
with the $ DATA card.

- 209 -

The $ E'FILE card, as described in the GECOS manuaZ, provides fine contro Z

over the characteristics of each ZogicaZ field. with respect to an

ALGOL activity~ the option DSTCOD should be considered. It is of the

fom:

DSTCOD/XXX

where xxx may be any of the following:

Mnemonic Device

PRNTR Lin.e Printer

BCRDR Card Reader (Binary)

DCRDR Card Reader (Decimal)

BCPNCH Card PUnch (Binary)

DCPNCH Card Punch (DemmaZ)

MTAPE Magnetic Tape

DISC Disk

DRUM Drum

The destination code subfield (DSTCOD) defines the type of logical device

which is to be associated with a file~ independent of the physical device

on which the file may reside.

and P' for a file are defined.

In this way the system limits, i.e.~ P

For example~ to produce a listing file

which must be saved on tape for future reference a $ TAPE aard would

provide the physical assignment and $ FFILE nn, DSTCOD/~RNTR wouZd define
the output as destined for a line printer. In the absence of the FFILE

card or the DSTCOD subfield the logical device will be assumed the same

as the physical device.

- 210 -

'APPENDIX 5

- 211 -

BASIC SYMBOLS WITH EQUIVALENT INTERNAL INTEGER VALUES

SYMBOL VALUE SYMBOL VALUE
A 32 tGQ' 163
B 33 'GR' 164
C 34 'NQ' 159
D 35 'EQV' 154
E 36 ' IMP' 155
F 37 'OR' 156
G 38 ' AND' 157
H 39 'NOT' 158
I 40 511
J 41 , 172
I(42 178
L 43 ; 176
M 44 (152
N 45) 174
a 46 [153
P 47] 173
Q 48 " 182
R 49 \ 183
S 50 510
T 51 + 144
U 52 16 181
V 53 'ARRAY' 134
W 54 'BEGIN' 128
X 55 'BOOLEAN' 133
Y 56 'CODE' 140
Z 57 'COtv'MENT 180
0 0 ' DO' 148
1 1 'ELSE' 151
2 2 ' END' 175
3 3 'EXTENDED REAL' 131
4 4 'FOR' 143
5 5 'GO TO' 142
6 6 ' IF' 149
7 7 ' INTEGER' 132
8 8 'LABEL' 138
9 9 'NONLOCAL' 141

'TRUE' 509 'OWN' 129
'FALSE' 510 'PROCEDURE' 135

+ 165 'REAL' 130
167 ' REN.AME' 184

,~

168 'STEP' 145 ."
/ 169 'STRING' 139
% 170 'SWITCH ' 136
t 171 'THEN' 150

'LS' 160 'UNTI L' 146
'LQ' 161 'VALUE' 137
'EQ' 162 'WHILE' 147

- 212"-

INDEX

- 213 -

Apithmetia e~ppe$sion 24., '27
APithmetic operators 4., 24., 25., ~6" 29
'ARRAY' 89., 92
'ARRAY' dealaPation 7., 88
Array identifier 20
Assignment statement·6.,39
Basic symbols 3,178, 183
'BEGIN' 9., 10., 121" 123
Block 9~ 10-,125
'BOOLEAN' 89, 116
Boolean exp~ession 27., 29., 30
'CODE' 108
Corrunents 13
Compound statement 121
ConditionaZ designatop 31., 78,,' 112
Conditional statement 6., 49
Data transmission p~oceau~e 126., 163
Declaration 3
DesignationaZ expression 31, 112
, DO ' 65., 67., 70, 72
Dummy statement 6, 62
'ELSE' 43, 45, 47" 5 2 , 5 4.t 56,58" 6 0-, 78
'END' 9, 10., 121, 123
Extended peal number 22, 89, 116
'FOR' statement 6" 64
Formats fop I/O 132

numbers 132, 149
integer 132
deoimal 134
decimql with exponent 136
octaZ 137

inseptions 138., 140, 142., 149
strings 140, 149
alpha 141
Boolean 141
standard for.mat 142
untranslated 144
alignment marks 144., 149
titles 145

Function definition 104
'GO TO' statement 6., 74
identifier 20., 123
'IF' clause 27., 29., 43., 45., 47" 50, 52, 54,

56., 58., 60., 78
I/O control procedures 127., 172

'NONLOCAL' 109
'OWN' 92., 118., 124
FPimitive procedures 127., 177
'PROCEDURE' declaration 7., 93
Procedure identifier 20., 82., 94
ProcedUre statement 6., 81
PUnctuation 4., 12
Real number 21., 89., 116
ReZation operators 4., 27., 28., 29
'RENAME' 110
statement 3, 31
'STEP' clause 67, ·72
String 22, 84
Subscripted variable 23., 24., 27
'SWITCH' 112
'SWITCH' declaration 7, 111
Switch designatop 30, 76" 78, 11~
Switch identifiep 20., 76" 112
'THEN' 43" 45" 47" 50., 52., 54,

56., 58., 60., 78
TYpe declaration 7" 115
'LNTIL' 67, 72
'VALUE' 100
Variable 23., 24, 27" 116
'WHILE' clause 70" 72

I/O devices., physical chapacteristias 128, 174
Integep 20., 89., 116
Labels 30, 75., 63., 78, 112., 123.,
Layout procedures 126., 128" 162
,List procedure 127., 186
Logical operators 4., 2~ 28, 29
LogicaZ vaZues 3, 27

- 214 -

71-ogress /s Oflr Most /ml'orlqnf Prot/fief

GENERAL. ELECTRIC
" INFORMATION SYSTEMS DIVISION .)

LITHO U.S.A.

