GENERAL ELECTRIC

COMPUTERS

GE-625/635
ALGOL

ADVANCE INFORMATION

GENERAL D ELECTRIC

GE-625/635
ALGOL

The data, analyses, programs, or other material contained
or used herein is preliminary information relating to pro-
gramming and computer applications and is supplied to
interested persons without representation or warranty asto
its content, accuracy, or freedom from defects or errors.
The General Electric Company therefore assumes no re-
sponsibility and shall not be liable for damages arising
from the supply or use of such data, analyses, programs,
or other material contained herein.

March 1966

GENERAL @D ELECTRIC

INFORMATION SYSTEMS DIVISION

@ 1966 by General Electric Company

GUIDE TO THE EFFECTIVE USE
OF THIS MANUAL

This manual describes the ALGOL language as defined for use in preparing

programs for the General Electric 625/635 computer system. Thus, the
instruction forms, procedures, rules, etc. are those which are accept-

able to the ALGOL compiler prepared for that computer system.

This is a reference manual for programmers. It is not intended to be
a primer or introductory exposition on how to write computer programs
in general or on the ALGOL language in particular. It may be used to
learn the language; however, this would presuppose that the user is

familiar with the basic machine and language-independent principles of

computer programming.

Chapter I provides a definition and discussion of ALGOL. This
includes a presentation of techniques and a detailed description

of a sample ALGOL program.
Chapter II contains definitions of the elements of ALGOL.

Chapters III, IV, V, VI, and VII describe the various ALGOL

statements and declarations.

Certain conventions have been used in preparing this manual's text.
The ALGOL language itself has been differentiated from its descriptive
prose by the use of two type styles. Thus, ALGOL appears in manifold

while the prose appears in italics.

- iii -

ALGOL is characterized by having relatively few distinct instructions*
(statementsband declarations) in comparison with other compiler
languages (e.g., FORTRAN). The power of the language derives from its
great flexibiiity in allowing many variations of each instruction

form.

Traditionally, ALGOL manuals have dwelled upon the generalized forms

of each instruction in the language repertoire after having presented
definitions of terms, concepts, etc., The various derivable forms of
the instructions which the user needs to implement an application were
learned by inference in the remaining test, and through examples. Much

was learned '"on the computer'.

This manual overcomes the problem of providing insight into the
variations possible with each instruction. It presents each as a
series of variations proceeding from the simplest to the most complex
forms, thus providing the user with a wider insight into its utili-

zation possibilities.

Each variation is presented as though it were a separate and distinct
instruction in the ALGOL language. Each set of such variations is
proceeded by a title page containing the generally accepted name
attached to the forms included. Finally, each instruction (or variation)

starts on a new page and is appropriately labelled on an upper corner.

It is of interest to note that Chapter III contains the list of

instructions discussed in the text.

*The word instruction has been avoided in the remainder of this manual.
This has been done because it conflicts with the notion of statement

and declaration as used in ALGOL.

- iv -

These do not have generally accepted ALGOL names since, as discussed
earlier, they are variations derived from those which do. The list
contains the form of each instruction to be encountered in the text

as well as a reference to the page on which it can be found.

-v-

PREFACE

GUIDE TO THE EFFECTIVE USE OF THIS MANUAL

I.

IT.

IIT.

IV.

TABLE OF CONTENTS

INTRODUCTION , . .

A.

c.

DEFINITION AND STRUCTURE OF

Definition,
Structure , ., . .
Basic Symbols ., . . .
Statement Types .
Declaration Types . .

HOW TO WRITE AN ALGOL PROGRAM
Form of an ALGOL Program

.

THE ALGOL

.

Writing Rules and Techniques.

Punctuation

Comments, . . . « + .

EXAMPLE OF AN ALGOL PROGRAM .

DEFINITIONS.,

.

.

STATEMENT AND DECLARATION FORMS. .

STATEMENTS . . « . . .

A.

B.

ASSIGNMENT STATEMENTS

CONDITIONAL STATEMENTS

. DUMMY STATEMENT , ., .

'"FOR' STATEMENTS ., .
'GO TO' STATEMENTS,

PROCEDURE STATEMENT .

- wvii -

LANGUAGE,

.

~

N O W W

o)

11
12
13

14

19

32

38

39

49

62

64

74
81

VI.

VII

DECLARATIONS,

A.
B.
C'

D.

TABLE OF CONTENTS

'"ARRAY' DECLARATIONS.

'"PROCEDURE' DECLARATIONS. . -

'SWITCH' DECLARATION.

TYPE DECLARATIONS

COMPOUND STATEMENTS AND BLOCKS. .

INPUT/OUTPUT. - .

A.

LAYOUT PROCEDURES

BAD DATA. .
FORMAT. . .
FORMAT n. .
HEND. . . .
HLIM. . . .
NO DATA . .
TABULATION,
VEND. . . .
VLIM, . . .

.

DATA TRANSMISSION

INLIST. . .
INPUT n . .
OUTLIST . .
OUTPUT n. .

. . . . o .

(econtd)

INPUT/OUTPUT CONTROL PROCEDURES . . .

POSITION. .
SYSPARAM, .,

b4

. L] o o . .

- viii -

87
88
93
111
1156
120
125

128
130
132
148
151
153
154
156
158
160

163
164
166
168
170

172
173
174

TABLE OF CONTENTS (contd)

D. PRIMITIVE PROCEDURES. + v ¢ v v ¢ ¢ o o« o o o o o« o o« o 177

INSYMBOL. « v o v e v v v v e e e e e e e e e e e . . 178
LENGTH. & v v e v e v e e e e e e e e e e e e .. 180
N = 7 ¥
OUTSYMBOL + « v v v o e e e e e e e e e e e e e e v . . 183
STRING ELEMENT. © & & v v v v e e e oo e e e e v v . 184
TYPE. v v v e e e e e e e e e e e e e e e .. 185

E. LIST PROCEDURE. . v v « ¢ o o « o o o« o o o« o o o« o o« . 186

APPENDIX 1 Reserved Identifiers. . . « « « « o o« o« o « o o o o . 189
APPENDIX 2 Mathematical Functions. . « « o o o o o o o o o o o . 191
APPENDIX 3 Detailed Explanation of INLIST and OUTLIST. 193

APPENDIX 4 Procedures for Preparing ALGOL Programs for
Compilation and Execution . . . « v« v « « o « « « . . 207

APPENDIX 6 Bastic Symbols with Equivalent Internal Integer
Values. . v v v v v v v v v e e e e e e e e e e e .. 211

INDEX. ¢ o o o v o o o o o o o o o o o o s o o o s o o o o o o « o 218

- ix -

I. INTRODUCTION

A. DEFINITION AND STRUCTURE OF THE ALGOL LANGUAGE

Definition
ALGOL is .an acronym for ALGOrithmic Language. The word "algorithm,'
as used here, implies ALGOL's unique capability as a tool for

expressing problem solutions as efficient and precise procedures.
ALGOL is a language in which computer programs may be written.

ALGOL is a set of symbols and a set of rules. Associated with these
are a set of definitions which are peculiar to a description of the
language, its form and use.

There is a computer program associated with the ALGOL language.
This program is called the "ALGOL compiler.'" All programs written
in the ALGOL language must be processed by the ALGOL compiler prior
to their execution as object programs.

Preparing a problem solution using the ALGOL language thus implies
understanding the form and use of the language repertoire described
in this manual. In addition, an ALGOL compiler for translation of
the source coding (i.e., the ALGOL program produced by the user of
the language) into machine coding (i.e., the language of the computer
itself) must be available.

This manual does not discuss the ALGOL compiler as prepared for the
General Electric 625/635. This 18 documented in other manuals.

There is, however, a procedure which must be followed by the programmer
in preparing an ALGOL program for processing by the ALGOL compiler,
This includes organization of the source program, the preparation of
control records for achieving various compiler options, etc.

Appendix 4 of this manual presents this procedure.

Structure

The structure of ALGOL is distinect from the structure of programs
written in the ALGOL language. This section discusses the former
while Section I B, How To Write An ALGOL Program, discusses the
latter.

ALGOL is composed of statements and declarations.

Statements are used to specify operations to be performed by the

computer in solving a problem.

Declarations provide the ALGOL compiler with information needed to
define and link together various elements of the computer program
during processing. In addition, the existence of declarations within
the language facilitates the definition of program parameters.

The statements and declarations are composed of symbols. Note that
some ALGOL symbole might conventionally be termed '"character strings';
however, the definition of a symbol in ALGOL does not imply a single
character. Also, certain symbols are enclosed in apostrophes.

These apostrophes are a part of the symbol and must always appear
when the symbol 18 used.

Basic Symbols
a) ‘Zetters -ABCDEFGHIJKLMNOPQRSTUVWXYZ

letters are used for forming identifiers and strings.

b) digite - 0123456789
digits are used for forming numbers, identifiers and strings.

e) logical values - 'TRUE' 'FALSE'

d) arithmetic operatore

symbol definition
+ addition
- subtraction
® ‘ multiplication
/ division
% divieion
4 exponentiation

e) relational operators

symbol definition*
'St | less than (<)
Q' legs than or equal to (Z)
'EQ!' equal to (=)
'GQ' greater than or equal to (2)
"GR! ' greater than (>)
'NQ' not equal to (#)

f) logical operators

symbol definition*
TEQV! equivalent (=)
'IMP! implies ()
'OR' or (M)

TAND' and (V)

'NOT' negation (M)

g) punctuation - the following symbols have definite functions in
the ALGOL language

* The symbols showm in thie column are not available to the user
for coding. They are included to show the mathematical meaning
of the corresponding ALGOL symbol.

symbol

definition

period

comma

colon

semicolon

left parenthesis
right parenthesis
left bracket :}
right bracket

left string quote
right string quote :}
apostrophé

arrow

blank space

use

decimal point in numbers
separator for items in a list
separator for statement label
separator for statements

enclose parameter lists; indicate

expression evaluation

enclose subseripts

enclose strings

indicate exponent
assignment operator

space within strings

Note: Significant blanks are denoted by ¥ in the text of this manual.

h) ALGOL words - these words have a fixed meaning in the ALGOL

language

' ARRAY'!
'"BEGIN'
'BOOLEAN'
'CODE"

' COMMENT'
lDO|
'ELSE'
'END'
'"EXTENDED REAL'
'FOR'
'GOTO"!

IF

' INTEGER'

"LABEL'
'"NONLOCAL'
IOWNI
'"PROCEDURE'
'REAL'
'RENAME'
'STEP!
'STRING'
'SWITCH'
'THEN'
'UNTIL'
'VALUE'
'"WHILE'

There are six types of statements available in ALGOL. Their names

and a brief deseription of their functions follow:

Name

Assignment

Conditional

'"FOR!

'6OTO!

Procedure

Statement Types

Functions

To perform calculations
and to assign a value to
a variable or a group of
variables

To control the execution
of individual statements

or groups of etatements

To satisfy a programming
protocol (described later)
but it in itself performs

no operation

To iterate a sequence of

statements
To transfer control
To call a previously defined

sequence of statements

(e.g., a subroutine)

There are four types of declarations available in ALGOL. Their

names and a brief description of their functions follow:

Name
'ARRAY!

'PROCEDURE'

'SWITCH!

Type

Declaration Types

Functions
To define an array, specify

its dimensions and its type

To define a subset of the

computer program (e.g., a

" subroutine)

To specify control parameters
which govern the sequence of

program execution

To specify the kind of value
which a variable is to

represent

There aré many rules of protocol in writing an ALGOL statement or

declaration. The major part of this manual discusses these.

The ALGOL language is structured in such a way as to impose rules

of combining statements and segregating these as programs or

subprograms in their own right.

These concepts are presented in

the section entitled, "COMPOUND STATEMENTS AND BLOCKS,"

ALGOL does not contain statements which allow direct control of
the input/output process. Thus, no statements or declarations
exist for reading from or writing on external devices (e.g.,
READ, WRITE, etc., in FORTRAN). To accomplish the usual input/
output operations, procedures are provided which may be "ecalled"
by the user as subroutines. These procedures are described in
detail in the section entitled, "INPUT/OUTPUT."

HOW TO WRITE AN ALGOL PROGRAM

The writing of any computer program presupposes an understanding
of the problem to be solved and the selection of a programming
language. Assuming these conditions to be satisfied, the bewaing
considerations are presented as a guide in the writing of ALGOL

programs.

Form of an ALGOL Program

ALGOL programs are divided into logical sections called blocks.
The entire program is also a block and must be enclosed within
the symbols 'BEGIN' and 'END'. A block may contain any number
of sub-blocks within it.

Variables, arrays, procedures and switches which are used in a
block are defined in declarations at the beginning of the block.
These declarations are followed by the statements of the block.
Any statement of a block may in itself be a block (i.e. it must
have block format as described in Section VI) and thus blocks

may be nested to any depth.

All ALGOL statements may be labelled with one or more statement
labels, i.e. simple statements, compound statements and blocks
may be labelled.

Execution of an ALGOL program starts with the first statement
and continues successively from statement to statement. However,
certain statements in the language have the power to change the

sequence of statement execution.

Execution of the program is terminated when control reaches the

'END' symbol of the outermost block of the program.

The following diagram is given to suggest visually the structure
of a typical (though arbitrary) ALGOL program. Each bracket
denoted by['BEGIN' represents a block.

'END'
The blocks are composed of declarations and statements (as dis-

cussed above). The declarations must precede the statements.

"BEGIN'
X

—— '"BEGIN'

x declarations

*_ 'END'

; statements

o e e e

.

[_'END'

.

—'END'

Note that this diagram represents an ALGOL program with three
block levels and four blocks.

- 10 -

Writing Rules and Techniques

The ALGOL program may be written on coding forms designed
specifically to handle the language.

Columms 1-72 of the coding form may be used for ALGOL state-
ments and declarations.

The ALGOL code may appear anywhere within these columns.

The coding may appear in a completely free form. That is,
any number of statements and/or declarations may appear on

a single line.

A single statement or declaration may occupy as many lines

as 1s desired.

Blanks may be used freely throughout the ALGOL code to improve
the readability of the text. The only place in ALGOL in which
blanks are significant is in strings. In all other instances

they are disregarded by the compiler.

Since the line format of ALGOL programs is very flexible it
18 suggested that statement levels be indented on a new line

to improve ease of reading and understanding a program.

Thus each new 'BEGIN' symbol may be indented at a new margin,
and the 'END' corresponding to the 'BEGIN' may be placed at
the same margin. Also, since statements may contain other
statements, each lower statement level may be indented. When
a higher level is resumed later on, statements for that level
may be placed at the proper level margin (see form of the
example given in Section I. C.).

- 11 -

It must be noted that these are merely suggestions which may
be incorporated in order to make the program structure easy
to follow. However, line indenting will in no way affect

program execution.

Punctuation
When writing ALGOL statements and declarations there are two

important rules of punctuation which must be employed.

Rule 1. The symbol ; is used between statements and between
declarations. However, the semi-colon may be omitted
after the last simple statement of a compound state-
ment or block. The symbol 'END' serves as a state-
ment separator in this case.

Examples
1. A«2; 'GOTO' Z

2. 'BEGIN' 'INTEGER' A; 'REAL' B;
A<5.3; B<7.2 ‘END' '

Rule 2. The symbol : is used to separate a statement Llabel from
a statement.
Examples
1. L: A<B+C; P: 'GOTO' R

2. T: '"BEGIN' I«I+l; J«J+1 'END'

- 12 -

Comments
If it is desired to place comments within the text of an ALGOL
program, it may be done as follows:
To insert a comment between statements or declarations,
or at the beginning of a compound statement or a block,
the comment must be enclosed within the symbols 'COMMENT'
and ;
Examples
1. A<B; 'COMMENT' COMPUTING C; C<A

2. 'BEGIN' 'COMMENT' COMPUTING C;
A<B; C<A 'END'

To place a comment after a compound statement or a block
(i.e., after the symbol 'END') the symbol 'COMMENT' s
not necessary. A semi-colon must be used after the text
if an 'END' or 'ELSE' symbol does not appear.
Examples
1. 'BEGIN' A«B; C+«A 'END'

COMPUTING D;

D«C

2. 'IF' A 'LS' B 'THEN'
'BEGIN' A<B; C<A 'END'
COMPUTING C D IF A LS B
TELSE' B<A

Study of the examples provided with the detailed descriptions
of the ALGOL statements and declarations in Chapters IV and V
should aid in the understanding of how ALGOL statements are
formed, punctuated, etc.

- 13 -

EXAMPLE OF AN ALGOL PROGRAM
This section contains a sample ALGOL Program.

The purpose of the program is to merge two sets of numbers. The
two sets are contained in locations a(l), a(2),...,a(i)y..., a(n)
and b(1), b(2)y...yb(F)s...,b(m). The numbers in each set are
assumed to be arranged in inecreasing order. The merged set is

contained in locations c(1), c(8)y.v.s c(k)yeu. .

The program operates as follows. The elements of arrays a and b
are compared. At each comparison, the smaller element is put into
the result array c¢. When the end of either array a or b is reached,
any remaining elements in the other array are put into the result

array.

Symbols used in the program:

th
o
Q

~

Description

Identifier of input array
Identifier of input array
Identifier of output array
Subscript bound for array A
Subseript bound for array B
Subscript bound for array C
Subseript for array A
Subscript for array B
Subseript for array C
Controlled variable of 'FOR'

statement

"UN%'\I%E%Q&J&F

A listing of the program follows. The program is assumed to be a
block contained in a larger block wherein the value of N, M and R

are assigned, and wherein P is defined.

- 14 -

SI

Program

'BEGIN' 'ARRAY' A[1:N], B[1:M], C[1:R]; 'INTEGER' I, J, K;
[«J<K<1;
START: 'IF' I 'GR' N 'THEN'
'BEGIN' P<0; Q: C[K+P]<«B[J+P]; P<P+1; 'IF' P 'LQ' M~J 'THEN' 'GO TO' Q 'END'
'ELSE' 'IF' J 'GR' M 'THEN! ’
'BEGIN' P<0; S: C[K+P]<A[I+P]; P<P+1; 'IF' P 'LQ' N-I 'THEN' 'GO TO' S 'END'
'ELSE' 'BEGIN' ‘
© VIF' A[I] '6Q' B[J] 'THEN!
'BEGIN' C[K]<B[J]; J<J+1 'END'
'ELSE! 'BEGIN' C[K]«A[I]; I<I+1 'END';
K<K+1; 'GO TO' START
TEND'
'END!

A line by line description of this program appears on the following pages.

Line

100
110
120
130
140
150
160
170
180 -
190
200
210
220

Line
100

110

120

130

140

150

160

Description
Contains 'BEGIN' for the block, and declarations of

variables used.

Contains an assignment statement which sets I, J and
K to the value 1.

Contains statement label "START" and the beginning
of a conditional statement which extends to line 210.
The 'IF' clause checks whether all of the elements of

array A have been compared.

Contains the true branch of the 'IF' clause of line
120. The true branch is a compound statement which
moves the remaining elements, if any, of array B to

array C.

Contains the start of the false branch of the 'IF!'
clause of line 120. The false branch extends to line
210. The 'IF' clause in this line checks whether all
of the elements of array B have been compared.

Contains the true branch of the 'IF' clause of line
140. The true branch is a compound statement which

moves the remaining elements of array A to array C.

Contains the start of the false branch of the 'IF'
clause of line 140. The false branch is a compound
statement enclosed within 'BEGIN' and 'END' and extends
to line 210. '

- 16 -

Line

170

180

190

200

210

220

Contains an 'IF' clause which compares elements of

arrays A and B.

Contains the true branch of the 'IF' clause of line
170. The true branch is a compound statement which
moves an element of array B to array C and then updates

the B array subscript, J.

Contains the false branch of the 'IF' clause of line
170. The false branch is a compound statement which
moves an element of array A to array C and then updates
the A array subseript, I.

Contains an assigmment statement to update the C array
subseript, K, and a 'GOTO' statement to transfer control
to the statement labelled "START."

Contains 'END' for the compound statement starting on
line 160,

Contains 'END' for the block starting on line 100.

The struecture of the conditional statement of the program is shown

in Figure 1.

If the condition of line 120 is true, the true branch, line 130,
i8 taken and subsequent control goes to line 210, i.e. the false
branch is skipped. If the condition of line 120 is false, control
goes to the false branch, line 140.

=17 -

If the condition of line 140 is true, the true branch, line 150,
is taken and subsequent control goes to line 210, Z.e. the false
branch is skipped. If the condition of line 140 is false, control
goes to the false branch, line 160.

If the condition of line 170 is true, the true branch, line 180,
18 taken and subsequent control goes to line 210, i.e.. the false
branch is skipped. If the condition of line 170 is false, control
goes to the false branch, line 190,

START: 'IF' . . . 'THEN! 120
' 130
'ELSEY— 'IF' . . . 'THEN' . 140
| 150

'ELSE'— 'IF' ., . . 'THEN' 160-170
180
'ELSE' — 190
200

| L L 210

Figure 1. Outline of Conditional Statement

- 18 -

II. 'DEFINITIONS

- 19 -

1. identifier: A name given to a variable; an array, a label,
a switch, a procedure. The name may be composed
of any number of letters and digits. However,

the name must begin with a letter.

Example:
A, BETA, M12, T12C7, TOTALAMOUNT

Blanks are not considered significant in ALGOL
except in strings, and they may be used freely
within identifiers.

- Example:
AB LE s considered the same identifier as
ABLE or ABL E.

Two different quantities may not have the same
identifier unless they appear in different
blocks. (See the section COMPOUND STATEMENTS
AND BLOCKS for clarification.) Certain ident-
ifiers are reserved for standard procedures

by the ALGOL compiler. (See the ligt of

reserved identifiers in Appendix 1.)
2. number: - Integer, real number, extended real number.

3. 1integer: - A whole number written without a decimal point
' consisting of 1 to 11 decimal digits. The range

of an integer n is:

- 20 -

3. 1integer:

4,

(contd)

real number:

_235 <n < 235 -7

The precision is to 10 decimal digits.

Positive integers may have no sign or may
be preceded by a plus sign. Negative integers

must be preceded by a minus sign.

Example:
0,-452,+7586421,33

A series of from 1 to 9 decimal digits written
with or without a decimal point, If the decimal

point appears it must not be the last character.

An exponent part may be added to specify the
integral power of 10 to which the number must
be raised. The exponent part is separated from
the digits by an apostrophe ('). The exponent

may also appear alone.

The range of a real number n is:

L6127 < < 9177

The precision is to 8 decimal digits. Positive
real numbers do not require a sign. However,
a plus sign is permitted. Negative real numbers

require a minus sign.

Example:
15.7, -.0045, +25,0, 1.7'-3, 5'3

- 21 -

o,

6.

extended

real number:

string:

A series of from 1 to 19 decimal digits written
with or without a decimal point. If the decimal
point appears i1t may not be the last character.

An exponent part may be added to specify the
integral power of 10 to which the number must

be raised.
The exponent part may also appear alone.

The range of an extended real number is:

L8187 <y < 4127

The precision is to 18 decimal digits.

Positive extended real numbers do not require
a sign. However a plus sign is permitted.

Negative extended real numbers require a minus

sign.

Example:
135982.7834, 21,762'-19

A sequence of basic symbols enclosed in the
left and right string quotes (" and \); or
a sequence of basic symbols and strings

enclosed in the string quotes.

Strings may be used as actual parameters of
procedures.

- 22 -

6. string: Examples of strings:

(contd) "A B C\
" A B " CDE\FG\
7. variable: A quantity referred to by a name (the variable

identifier) whose value may be changed.

The kind of quantity a variable may represent
18 determined by a type declaration and may be
either integer, real, extended real or Boolean.

Example:
X, ABC, YZ5N,
THIS IS A VARIABLE

8. subscripted A subscripted variable has the form a[bl,bg,...,bn]
variable: where a 18 an array identifier and bZ’bZ""’bn

are arithmetic expressions.

The number of subscripts n must be the same as

the number of dimensions declared for a.

Each subseript bi acts like a variable of type
"INTEGER' and the evaluation of the subscript
18 understood to be equivalent to an assignment
to this integer variable.

- 23 -

8'

9.

subscﬁpted
variable:
(eontd)

aimple
arithmetie
expression:

Evaluation of subscripts within a subseript
list proceeds from left to right. The value
of the subsecripted variable is defined only
if the value of each subseript expression is
within the subseript bounds of the array.

Example: _
AB[1,3], BOY['IF' B 'EQ' C 'THEN' 1 'ELSE' 2]

A sequence of numbers, variables, subscripted
variables or funetion calls separated by arith-
metic operators and parentheses, which represents

a rule for computing a numerical value.

Rules:

1. All quantities used in an arithmetic expres-
sion must be of type real, extended real or
integer,

2. For operators +, - or *, the result of calcu-
lation will be integer if both operands are
integer; real if both operands are real; and
extended real for all other cases.

3. There are 2 operators which denote division
/ and %. Both are defined for all combina-
tions of real, extended real and integer
‘quantities, however,

a) [/ will give a result of type real only
tf both operands are reaql. In all other
cases the result will be of type extended
real.

- 24 -

9. simple

arithmetic

expression:

(contd)

b)

% will give the same results as /

except that the value will always be

integral. The result is truncated

not rounded to an integer, i.e.

5% 3 =1,

Exponentiation -

a) atbte is equivalent to (a

b)

c)

b)c.

The types of the base and the exponent

may be any combination of real, extended

real, and integer.

If the exponent is an integer, the result

is as follows:

exp base result

>0 all same type as base

=0 #0 same type as base

=0 =0 operation is undefined

<0 #0 real i1f base is real,
otherwise extended real

<0 =(operation is undefined

d) If exponent is real or extended real

the result is as follows:

- 25 -

90

simple

arithmetic

expression:

(eontd)

exp base , result
>0 real 1f base is real,
=0 >0 otherwise extended
<0 real
>0 =0 real i1f base is real,

otherwise extended

real
<0 =0 operation is undefined
>0
=0 <0 operation is undefined
<0

Hierarchy of operators -

1. expomentiation *+

2. multiplication & division * / %

3. addition & substraction + -

Expressions inside parentheses are evaluated
first.

Evaluation proceeds basically from left to
right within the hierarchy and within
parentheses, Function calls and parenthe-
sized quantities are evaluated from left
to right.

- 26 -

10.

11.

12'

'IF' elause
arithmetice

expression:

arithmetic
expression:

simple
Boolean

expression:

'IF' a 'THEN' b 'ELSE' e, where a 18 a Boolean
expression, b is a simple arithmetic expression,
and ¢ is either a simple arithmetic expression

or an 'IF' clause arithmetic expression.

The 'IF' clause arithemetic expression causes
one of several arithmetic expressions to be
evaluated on the basis of the value of Boolean

expresstons.

The expression to be evaluated is selected as

follows:

a) The Boolean expressions are evaluated one
by one in sequence from left to right until
one having a value 'TRUE' Zs found.

b) The value of the 'IF' clause arithmetic ex-
pression i8 the value of the first simple
arithmetic expression following this Boolean

expression.

Either a gimple arithmetic expression or an 'IF'
clause arithmetic expression.

A sequence of variables, subscripted varigbles,
funetion calls and relations possibly separated
by logical operators and parentheses, which

represents a rule for computing a logiecal value

(i.e. "TRUE' or 'FALSE!).

- 27 -

12. simple Rules:

Boolean
expression: 1.
(contd)

2'

Variables and funetions used with the
logical operators must be declared to be
of type Boolean. .

A relation is composed of two arithmetic
expressions separated by a relational
operator.

Example:
A-B%C 'EQ' Z}Y

A relation has a value of 'TRUE' if the rela-
tion 18 sattisfied otherwise it has a value
of 'FALSE'.

The logical operators are defined as follows:

a) 'NOT' a is true or false if a ie false
or true, respectively.

b) a 'AND' b is true if both a and b are
true, otherwise it is false. '

e) a 'OR' b is false if both a and b are

false, otherwise it igs true.

d) a 'IMP' b is false if a is true and b
is false, otherwise it is true.

e) a 'EQV' b is true if either both a and

b are true or both are false, otherwise

it 18 false.

- 28 -

12, esimple 5. The hierarchy of operations in evaluating

Boolean a Boolean expression is as follows:
expression:
(eontd) 1. arithmetic operators - sqme order as

for arithmetic expressions
2. relational operators
3. logical operators

6. The hierarchy of logical operators is:

1. 'NOT!
2. 'AND!
3. 'OR'
4. 'IMp!
5. 'EQV!

7. Expressions inside parentheses are evaluated

first.

13. 'IF' clause 'IF' a 'THEN' b 'ELSE' ¢, where b is a simple
Boolean Boolean expression and a and ¢ are either simple
expression: Boolean expressions or 'IF' clause Boolean

expressions.

The 'IF' clause Boolean expression is evaluated
in the same way as an 'IF' clause arithmetic ex-

pression.

- 29 -

14, Boolean Either a simple Boolean expression or an 'IF'

_expression: clause Boolean expression.
15. expression: Either an arithmetic expression or a Boolean
expression.
16. statement An identifier placed before a statement.
label:

A statement label must be followed by a colon
to separate the label from the statement.

A statement may have more than one label, each
one followed by a colon.

Statement labels are used so that a statement

may be reférenced.
Examples:
1) AB: A<B;
2) AC: 'BEGIN' A«<C 'END!'
3) AD: '"BEGIN' AE: A<E 'END'
4) AF: AG: AH: A«H;

17. switch swlal, where sw represents a switch identifier

designator: and a represents an arithmetic expression.

- 30 -

18.

19.

20.

eonditional
designator:

designational
expression:

simple statement:

A clause of the form 'IF' b 'THEN' ¢ 'ELSE' d,
where b represents a Boolean expression, c

may be either a statement label, a switch
designator, or a conditional designator enclosed
within parentheses, and d may be either a state-
ment label, a switch designator, or a conditional
designator (which need not be enclosed within

parentheses).

A statement label, a switeh designator, or a

conditional designator.

A statement which is not a compound statement
or a block.

Examples:
assignment
eonditional
dummy
'FOR!

'GO TO'

proceduxre

- 31 -

III. STATEMENT AND DECLARATION FORMS

- 32 -

STATEMENT AND DECLARATION FORMS

A. ASSIGNMENT STATEMENTS

Name

Assignment, simple

Assignment, 'IF'

clause

Assignment, two

'IF' elauses

Assignment, n

'IF' clauses

Form Page
a1+a2+...+an+e 40
1IE!? ! ! ' 1 43
a1+a2+...+an+ IF bl THEN e, ELSE e,
1 1 1 1 ot Tt 1 1
a1+a2+...+an+ IF bl THEN 61 ELSE' 'IF 45
1 1 1 t
b2 THEN e2 ELSE es
1] 1]] | B |]
a1+a2+...+am+'IF bZ THEN el ELSE IF 47
b2 'THEN! e, 'ELSE' ... 'IF' bn 'THEN! e,
]]
ELSE €01

B. CONDITIONAL STATEMENTS

Name

Conditional, simple

Conditional, 'ELSE!'

Conditional, two
'IF' elauses

Conditional, two
'IF' clauses, 'ELSE'

Conditional, n 'IF!'

clauses

Form Page

"IF' b '"THEN' s 50
52
'IF' b 'THEN' 84 'ELSE' Sy
1 1 ! ! ! 11 ! 1 ! 54
IF bl THEN 84 ELSE' 'IF b2 THEN 8y
'IF! b1 '"THEN' 8, 'ELSE' 'IF! b2 'THEN' 8 56
'ELSE" 83
'IF! b1 'THEN' 84 'ELSE' 'IF' b2 'THEN' 8y 58
'ELSE' ... '"IF' b '"THEN' s 'ELSE' 'IF!
n-1 n-1

b_ 'THEN' s
n n

- 33 -

B. CONDITIONAL STATEMENTS (contd)

Name

Conditional,n 'IF'

clauses, ‘ELSE'

C. DUMMY STATEMENT

Name

Dummy

D. 'FOR' STATEMENTS

Name

'FOR', expression

'FOR', 'STEP' clause

'FOR', '"WHILE' clause

'"FOR', general

E. 'GO TO' STATEMENTS

Name
'GO TO', label

'GO TO', switeh
designator

'GO TO', conditional
designator

Form Page
'IF! bz '"THEN' 8, 'ELSE' 'IF!' b2 "THEN! 8y 60
1 1 1 1]] 1 1]
ELSE' ... 'IF qﬁl nEN 8, 1 ELSE' s,

Form nge
(null form) . 63

Form nge
'FOR! v«e 'DO' s 65
'FOR! ve, 'STEP! ey YUNTIL! ey 'DOY s 67
'FOR! v<«e 'WHILE' b 'DO' s 70
'FOR' V380 e 005, 'DO! s 72

Foxrm Page
'60 TO' a 75
'O TO' sw [al 76
'GO TO' 'IF' b 'THEN! dz 'ELSE! d2 78

- 34 -

F. PROCEDURE STATEMENT

Name

Procedure statement

G. 'ARRAY' DECLARATIONS

Name
'ARRAY!

TARRAY', 'OWN'

name (al t a

Form

t...

9 t an)

Form

typg 'ARRAY ' AysQgsesns,

'OWN' type 'ARRAY' a;,dg,...,a,

H. 'PROCEDURE' DECLARATIONS

Name
'"PROCEDURE' declaration,

simple

'"PROCEDURE' declaration,

specification part

'"PROCEDURE' declaration,
value and specification

part
'PROCEDURE' declaration,

function definition

'PROCEDURE' declaration,
separately compiled

Form
'"PROCEDURE! name (al t a, t ...

t an); s

'PROCEDURE! name (al t a, t ...

list; sp list;...; sp list; s

t an); sp

'"PROCEDURE' name (a1 t ag, t ..
'"WALUE' 1ist; sp list; sp list;...; sp

. t an);
list; s
type 'PROCEDURE' name (al ta,t..

'"WALUE' Iist; sp list; so list;...; -

sp list; s

n

"CODE' 'BEGIN' d ;dy;...;d, "END'

- 35 -

. tal;

92

97

100

104

108

I. 'SWITCH' DECLARATION

Name

Form Page
"SWITCH! 'SWITCH' swd ,dys...,d, ‘ 112
J. TYPE DECLARATIONS

Name Form Page
Type type Vg5 VgseeenV, 116
Type, 'OWN' 'OWN' type VisVgseves?,, 118

- 36 -

The description of each statement and declaration in the ALGOL language
is presented in the following section. Each starts on a new page with

the format of its descriptive material given as shown below:

deseriptive name

PURPOSE:
(A brief statement of the purpose of the statement

or declaration)

FORM:
(Form of the statement or declaration)
(Definition of Symbols

used in the Form line)

RULES:
(A 1ist of rules governing the correct usage of the
statement or declaration; includes restrictions,

suggestions, ete.)

EXAMPLES :
(4 list of examples illustrating the use of the state-

ment or declaration)

- 37 -

I
V. STATEMENTS

- 38 -

Assignment Statements

- 39 -

PURPOSE:

FORM:

RULES:

Assignment,

(‘4.771‘)‘\7 el

L= VlllL/ e
To perform numerical calculations; to perform Boolean opera-
tions; to assign a value to one or more variables or procedure
identifiers in a single statement.

A A 5€e o « €A
172 n ©

ApsQgseeesi variable, subscripted
variable or procedure
identifier

e: arithmetic or Boolean

expression

This statement causes expression "e" to be evaluated and the
result to be assigned to ApsQgsevesd. (Note: there need be
only one variable, e.g., a1+e).

The character "<" gsignifies assignment of the value of the

expression to the variables.

The process of assignment is as follows:

a. Subscripts, if any, occurring in the variables are evaluated
from left to right.

b. The expression "e! is evaluated.

e. The value of the expression is assigned to all the vari-
ables ApsGgsees @, from right to left across the left
side as follows: The value of e is assigned to a , the
value of a, 18 assigned to a, s ete. Finally, the

value of a, 18 assigned to a.

- 40 -

simple (contd)

4. The types of the variables must be as follows:
a. The types may be all Boolean. In this case, the expres-
ston "e" must be Boolean.
b. The types may be real, extended real or integer. In
this case, the expression "e' must be arithmetiec.

c. Boolean types may not be mixed with the other types.

5. When "e" is an arithmetic expression and its type and the
type of variable a, is different, the value of "e" is changed
to the type specified by a, before it is assigned to a,.
(See Definitions for forms of integers, real numbers and

extended real numbers.)

6. In the case in which "e" is real or extended real and a, 18
an integer, "e" is operated upon by the function ENTIER (e+.5).
The result of ENTIER is the largest integer not greater than

the value of the argument. This value is then assigned to a,.

7. When the type of a and a:_; is different, the value of a;,

18 changed before it is assigned to a; ;-

8. The case of an a, being a procedure identifier is only used
in defining functions. (See 'PROCEDURE' declaration, function

definition.)

EXAMPLES :
In these examples, A, B, C, and D identify 'REAL' type variables.
R and S identify 'INTEGER' type variables, and W identifies a
'"BOOLEAN' type variable.
1. A<B+C The value of B + C is
assigned to A.

- 41 -

A<D+B+C

A«R<«3.,9

R«A«3.9

J«l;
S[J]«u<2

W<A 'GR' B

- 42 -

Assignment,

eimple (econtd)
tmple (eontd,

The value of B + C is
assigned to A and D.

4 is assigned to R and A.

3.9 is assigned to A and
4 is assigned to R.

First, 1 is assigned to J.
Then 2 is assigned to J
and S[1].

If the value of A is greater
than the value of B, W 18
assigned the value 'TRUE'
otherwise, W is assigned

the value 'FALSE'.

YIF' clause

PURPOSE: To permit a choice to be made as to which of two expressions
18 to be evaluated, based on the value of a Boolean expression;
to assign the value of the evaluated expression to one or more

variables or procedure identifiers.

. 1 1 T |] 1 1
FORM: Ayt . 4a « IF' b "THEN e, ELSE e,

ApsQgseeesyl variable, subscripted
variable or procedure
identifier

b: Boolean expression
arithmetic or Boolean

expression

RULES :

1. Subscripts, if any, occurring in the vartables Ayslgseessly
are evaluated from left to right.

2. The Boolean expression '"b" ig evaluated.

3. If the value of b i8 'TRUE' expression e; i8 evaluated; if
'FALSE' e, i6 evaluated.

4. After e; or e, 18 evaluated, this statement operates as a
sitmple assignment statement with the evaluated expression.

EXAMPLES :
1. P<«'IF' Q 'LS' 10.0 'THEN' R If @<10, P receives the
'ELSE' S + 17.5 value of R, otherwise S
+17.5.

- 43 -

2. AeB<«C«'IF' D 'THEN' E
'OR' F 'ELSE' G 'AND' H

- L4l -

Assignment,
'IF' clause (contd)

If D is true, the value of E
'OR' F is assigned to 4, B
and C. Otherwise, the value
of G '"AND' H is assigned.

'IF' elauses

PURPOSE: To permit a choice to be made as to which of three expressions
is to be evaluated, based on the values of two Boolean expres-
sions; to assign the value of the evaluated expression to one

or more vartables or procedure identifiers.

FORM: a.+«a +...+an+'IF' bl "THEN' e_ 'ELSE' 'IF' b

172 1 2
'"THEN' e, 'ELSE' e

2 3

Apslgsenes@yi vartable, subscripted
) variable or procedure
identifier
bl,bz: Boolean expression
e1:€g:€5° arithmetic or Boolean

expression

RULES:

1., Subscripts, if any, occurring in the variables A3y enssQy,

are evaluated from left to right.
2. The Boolean expression "b," is evaluated.

3. If bl i8 true, e, i8 evaluated; if bl 18 false, b2 i8 evaluated.

1

4. If b2 i8 true, e, 18 evaluated; if b2 18 false, ez ie evaluated.

5. After an expression is evaluated thie statement operates as
a simple assignment statement with the evaluated expression.

- 45 -

Assignment, two

'IF' elauses (contd)

EXAMPLES ;
1. Re'IF' T '"THEN' B-6.2 'ELSE' If T is true R is assigned
'IF' U 'THEN' C-7 'ELSE' D%3.5 the value of B-6.2. If T
is false and U is true,
C-7 is assigned to R. Other-
wise, D%3.5 is assigned to R.

- 4p -

PURPOSE:

FORM:

RULES :

Assigniment, n
'IF' elauses

To permit a choice to be made as to which of a number of
expressions 18 to be evaluated, based on the value of
Boolean expressions; to assign the value of the evaluated
expresgion to one or more variables or procedure identifiers.

1 t 1 1 1 t 1)
A tdge. . ta IF bl THEN e, ELSE IF

b, '"THEN' e, 'ELSE' .., "IF' b 'THEN' ¢ 'ELSE' e
2 2 n n

n+l

ApsQgseeesyl variable, subscripted
variable or procedure
identifier

bisbgsesi b :

1° n° Boolean expression

€15€ps+ves€y 1! arithmetic or Boolean

expression

Subseripts, if any, occurring in the variables G ,Gg,...,d,
are evaluated from left to right.

The Boolean expressions bl’bZ""’bn are evaluated from left
to right until one i8 found which has a value of 'TRUE'.

If bi 18 found to be true, then e; 18 evaluated.

If all the Boolean expressions are false, €,i1 will be
evaluated.

After step 3 or 4 above, this statement operates as a simple
assignment statement with the evaluated expression.

- 47 -

EXAMPLE :

C+D[l,2,2] +

'"THEN'
'ELSE'
'ELSE!

5

'ELSE'

'IF' B 'OR' E

'IF' T '"THEN' 7.5

'IF' A 'LS' C 'THEN' G

L

- 48§ -

Assifriment, n
YIF' elauses (contd)

C and D [4,2,2] may be
assigned the following
values: § if either B or
E is true; 7.5 if T is
true; the value of G if
the value of A is less
than the value of C; the
value of L if none of the

above conditions are true.

Conditional Statements

- 49 -

PURPOSE:

FORM:

RULES:

Conditional,
simple

To permit a statement to be executed or skipped depending

on the value of a Boolean expression.
'IF' b 'THEN' s

b: Boolean expression

s: statement

Statement s may be any one of the following:
a. assignment statement

b. 'GO TO' statement

e. dummy statement

d. 'FOR' statement

e. procedure statement

f. compound statement

g. Dblock

Statement s may have a label.

If the Boolean expression has a value of 'TRUE', statement s
18 executed. If s does not explicitly specify its successor
the statement following will be executed next.

If the Boolean expression has a value of 'FALSE', statement

8 is skipped and the following statement will be executed
next.

- 50 -

EXAMPLES :
1. 'IF' A 'GR' B 'THEN' D«E¥F

2. 'IF' L 'THEN' 'BEGIN' P<P+3;
R«17.5-T; L<«'FALSE' 'END';
'60 TO' S9

- 51 -

Conditional,
simple (contd)

If the value of A is greater
than the value of B, then

the value of E*F is assigned
to D. Otherwise, the assign-
ment statement is skipped
and the statement following

1t 18 executed.

If L is true the compound
statement enclosed between
"BEGIN' and 'END' will be
executed; followed by 'GO TO'
S9; 1f L is false only'GO TO!'
89 will be executed.

Conditional,

Qs o~ @

PURPOSE: To permit a choice to be made as to which one of two specified
statements 18 to be executed. The decision 18 based on the

value of a Boolean expression.

FORM: 'IF' b 'THEN' 84 'ELSE' s

2
b: Boolean expression

81589¢ statement

RULES:
1. The statements 84 and s, may be any one of the following:

a. assignment statement

b. 'GO TO' statement

e. procedure statement

d. dummy statement

e. compound statement

block

2. Statement s, may also be a 'FOR' statement.
8. Statements s, and s, may be labelled.

4. If the Boolean empression has a value of 'TRUE', statement s,
i8 executed. If 84 does not explicitly specify its successor,
then the statement following the conditional statement is

executed next, i.e. s, is skipped.

2
5. If the Boolean expression has a value of 'FALSE', statement
8, i8 executed. If 8g does not explicitly specify its successor
the statement following the conditional statement is executed

next.

- 52 -

Conditional,
'ELSE' (eontd)

EXAMPLES:
1. 'IF' A 'LS' B '"THEN' If A is less than B
T«T+1 'ELSE' B<«B+l; T«T+1 18 executed, followed
'60 TO' L1 by '60 TO' L1, If A is
' greater than or equal to B,
B«B+1 is executed, followed
by 'GO TO' LI.
2. 'IF' R 'AND' S 'THEN' 'GO TO' If the expression is true,
BOB 'ELSE' JOE: M«N+P; 'GO TO' eontrol is transferred to
BOB the statement labelled BOB;

if false, the statement
labelled JOE is executed
and then control goes to
the statement labelled BOB.

- 53 -

PURPQSE:

FORM:

RULES:

Conditional, two

'IF' elauses

To permit a choice to be made as to which of two statements

18 to be executed or whether neither is to be executed,

depending on the values of two Boolean expressions.

'IF? bl '"THEN' s, 'ELSE' 'IF! b2 'THEN' s

1 2

bl,bz: Boolean expression
815858 statement -

Statements s, and 8, may be any one of the following:

a.
b.
e.
d.

e.

£

asstignment statement
'GO TO' statement
dummy statement
procedure statement

compound statement
block

Statement s, may also be a '"FOR' statement.

Statements e, and 8, may be labelled.

1

If b; has a value of 'TRUE', statement s, is executed., If
8, does not explicitly specify its successor, the statement

following the conditional statement is executed next.

If b; has a value of 'FALSE', b, is evaluated.

- 54 -

Conditional, two

'IF' eclauses (contd)

6. If b2 has a value of 'TRUE', statement 8,y is executed. If
8g does not explicitly specify its successor, the statement
following the conditional statement is executed next.

7. If b2 has a value of 'FALSE', then 8 is skipped and the
statement following the complete conditional statement is
executed next.

EXAMPLE':

'IF' A 'EQ' B 'THEN' MODE (C,D) If A=B, procedure MODE is

'ELSE' 'IF' A 'GR' B 'THEN' MEAN executed, followed by R<«D*F,

(T,D); R«D¥F If A#B but A>B, then proce-

dure MEAN is executed followed
by ReD*F. If A<B,then only
R«D*F is executed.

- 55 -

PURPOSE :

FORM:

RULES :

Conditional, two 'IF!'

clauses, 'ELSE!

To permit a choice to be made as to which of three statements
18 to be executed depending upon the value of two Boolean
expressions.

'IF! bl '"THEN' s, 'ELSE' 'IF! b2 'THEN' s, 'ELSE' s

1 2 3
b,,b,: Boolean expression
815895831 statement .

Statements &,,8,, and 8z may be any one of the following:
a. assignment statement

b. 'GO TO' statement

e. dummy statement

procedure statement

compound statement
block

< oA

Statement s may also be a 'FOR' statement.

Statements 8,8, and &5 may be labelled.

If by has a value of 'TRUE', statement s, is executed. If
s, does not explicitly specify ite successor, the statement

following the conditional statement is executed next.

If bz i8 false, b2 is evaluated.

- 56 -

Conditional, two 'IF!
" clauses, 'ELSE' (eontd)

6. If b2 has a value of 'TRUE', statement 8y 18 executed. If 8,
does not explicitly specify its successor, the statement

following the conditional statement is executed next.

7. If b, has a value of 'FALSE', statement 83 i8 executed. If 53
does not explicitly speecify its successor, the statement
following the conditional statement is executed next.

EXAMPLE ;
'IF' L 'THEN' 'GO TO' BOY 'ELSE' If L is trueycontrol goes to
'IF'" R '"GR' S 'THEN' 'BEGIN' the statement labelled BOY;
A<A+1; CALC (F,10) 'END' 'ELSE! if L is falsey,R is compared
'GO TO' CAT; R<«R+1 to S; if R>S,the compound

statement is executed followed
by R<R+1. If R<S,control

goes to the statement labelled
CAT,

- 57 -

Conditional, n

'IF' clauses

PURPOSE: To permit a choice to be made among a number of statements

FORM:

RULES:

as which one should be executed, or whether none is to be
executed, depending upon the value of Boolean expressions.

2 2

'IF' b '"THEN' g YELSE' 'IF' b 'THEN' &
n-1 n-1 n n

'IF! b1 '"THEN! 81 'ELSE' 'IF' b, 'THEN' s, 'ELSE' ...

bl,bg,...,bn: Boolean expression
81389500058, ¢ atatement

Each statement 31;82,...,8n may be any one of the following:
a. assignment statement

b, 'GO TO' statement

e. dummy statement

d. procedure statement

e. compound statement
f- block

Statement 8,, may be a 'FOR' statement.

Statements 81,82,...,8n may be. labelled.
The Boolean expressions are evaluated in the order bl,bz,...,
until one having a value of 'TRUE' is found. If b, is true,
statement s, is executed. If statement 8, does not explicitly
specify its successor, the statement following the conditional

statement is executed next.
If none of the Boolean expressions is true, the statement

following the complete conditional statement is executed

next.

- 58 -

TN

EXAMPLE:
'"IF' M 'THEN' A<A+l 'ELSE'
'"IF' N 'THEN' 'GO TO' Rl 'ELSE'
'IF' P 'THEN' |
'FOR' 1«1 'STEP' 1 'UNTIL' 10 'DO!
A[I] <I; LM 'OR' P

- 59 -~

Conditional, n

YIF'! elauses (contd)

If M is true, the value of
A is increased by 1. If M
18 false and N is true, then
'GO TO' RI1 is executed. If
M and N are false and P is
true, the 'FOR' statement
i8 executed. If M, N and P
are all false, the statement
L«M 'OR' P is executed.

Conditional, n 'IF'

clauses, 'ELSE'

PURPOSE: To permit a choice to be made among a number of statements
as to which one should be executed depending upon the value

of Boolean expressions.

FORM: 'IF! b1 "THEN' 8, 'ELSE' 'IF! b2 '"THEN! 89 'ELSE' ...
'IF' b '"THEN' s 'ELSE' s
n-1 n-1 n
bl,bz,...,bn_l: Boolean expression

815895 ¢ 0587 statement

RULES :

1. Each statement 8158950458, MaY be any one of the following:
a. assignment statement
b. 'GO TO' statement
e. dummy statement
d. procedure statement
e. compound statement
f. block

2. Statement 8, may be a 'FOR' statement.

3. Statements 813895+ +,8, may be labelled.

4. The Boolean expressions are evaluated in the order bl,bg,...,
until one having a value of 'TRUE' is found. If bi 18 true,
statement s, i8 executed. If statement 5, does not explicitly

specify its successor, the statement following the complete

conditional statement is executed next,

- 60 -

Conditional, n 'IF'
clauses, 'ELSE' (contd)

If none of the Boolean expressions is true, statement 5,

wtll be executed.

If it does not explicitly specify its

successor, the statement following the conditional state-

ment 1s executed next.

'"IF' A 'THEN!

B 'THEN'
C 'THEN!

Lel+1 ;

D 'THEN'

I«I+1 'ELSE'
J«J+1 'ELSE'
K«K+1 'ELSE'
'GO TO' BAD

- 61 -

If A is true, the value of
I is increased by one. If
A is false and B is true,
the value of J is increased
by one. If A and B are false
and C is true, the value of
K is inereased by one. If
A, B and C are false, the
value of L is increased by
one. If D is true then

'GO TO' BAD is executed.
Otherwise, the statement

following it is executed.

Dummy Statement

-62 -

Dummy

PURPOSE: To place a label at a particular point in the program.

FORM: (null form)

RULES:

1. This statement causes no operation.

EXAMPLES : ,
1. COUNT:; COUNT is the label of a
dummy statement.
2. B3: ; ABC: B3 is the label of a
E«E+1 dummy statement.
3. 'BEGIN'...; TOY is the label of a
TOY: 'END' dummy statement.

- 63 -

'FOR! Statements

- 64 -

'FOR', expression

PURPOSE: To permit a statement to be executed for a specified value
of a eontrolled variable.

FORM: '"FOR' v+e 'DO' s
v: vartable or subscripted
variable
e: arithmetic expression
g8: statement
RULES:

1. Variable v is called the controlled variable of the 'FOR'

statement.
2. e represents a value which is assigned to v.

3. GStatement s may be a simple statement, a compound statement

or a block.

4. The 'FOR' statement causes the expression e to be evaluated

and its value assigned to v. Then statement s is executed.

5. After statement s is executed with v having the value of e,
the 'FOR' statement has been executed. If s does not explicitly
specify its successor, the statement following the 'FOR' state-

ment 18 executed next.

6. After execution of the 'FOR' statement, the value of v is

undefined.

- 65 -

EXAMPLES :

1.

'FOR', expression (econtd)

If control is transferred from the 'FOR' statement by a

statement (within statement s), the value of v is available.

A 'GO TO' statement outside the 'FOR' statement may not refer
to a label within the 'FOR' statement.

'FOR' J«I 'DO' A[J]+0.0

'FOR' R«2¥BOY+ 2 'DPO’
'BEGIN' T«T+1; B[R]+-C[R]
'END'

- 66 -

This statemeht eauses zero
to be assigned to location
AlIl.

This statement results in
~-C[2*% BOY+ 2) assigned to
B[2*BOY+ 2]. Also, the
value of T is increased

by one.

PURPOSE':

FORM:

RULES:
1.
2‘
30
4‘
5.

'FOR', 'STEP'

elause

To permit a statement to be executed repeatedly for a
specified initial value, increment and final value of a

controlled variable.
'FOR! v+el 'STEP! e2 YUNTIL! 83 'DO!Y s

v: variable or subscripted
variable
e1s€ps€5: arithmetic expression
g: 8tatement

Variable v is called the controlled variable of the 'FOR'
statement.

e, represents the initial value for v; e, s the increment of

1
vy e, is the final value for v.

3
Statement s may be a simple statement, a compound statement

or a block.

The first step in the operation of the 'FOR' statement is that
v is assigned the value of e,.

Statement s may be executed a number of times as follows:

a. A test is made to see if the value of v is beyond the
bound specified by e;. If it is, statement & will not
be executed. The statement after s is executed next

and the value of v is undefined.

- 67 -

'FOR', 'STEP!

elause (econtd)

b, If v is within the bound, statement s is executed.

e. If s does not explicitly specify its successor, the
value e, 18 then added to v (i.e. v+v+ez). If the
value of e, 18 positive,this will have the effect of
inereasing v. If the value of e, 18 negative, v will

be reduced. The process is then repeated at step a.

6. If control is transferred from the 'FOR' statement by a
statement (within statement g), the value of v is available.

7. The value of the controlled variable, the increment and the
final value may be changed by statement s. Therefore, they
are evaluated every time reference is made to them.

8. A 'GO TO' statement outside a 'FOR' statement may not refer
to a label within the 'FOR' statement.

EXAMPLES :
1. 'FOR' I«l 'STEP' 1 'UNTIL' These statements cause
10 'DO' A[I]<B[I] B[1] to B[10] to be
assigned to A[1] to A[10].
2., 'FOR' K<«9 'STEP' -2 '"UNTIL' These statements cause
5 'DO' X[K]+K+t2 81 to be assigned to X[9],

49 to be assigned to X[7],
and 25 to be assigned to
x[s].

- 68 -

'FOR' L«l 'STEP' 1 'UNTIL' 5
'DO' 'BEGIN'

'FOR' A[L]+«6 'STEP' 1 'UNTIL'
10 'DO' B[A[L],L]+L

TEND'

- 69 -

'FOR', 'STEP'
elause (contd)

The order of assignments
caused by these statements
18 as followa:

6 to 10 is assigned to A[I]
as 1 is assigned to B[6,1]
to B[10,1],

6 to 10 is assigned to A[2]
as 2 is assigned to B[6, 2]

to B[10,2], ete.
Finally,
6 to 10 is assigned to A[5]
as 5 is assigned to B[6,5]
to B[10,5].

PURPOSE:

FORM:

RULES:

'FOR!, 'WHILE'

elause

To permit a statement to be executed repeabedly for assigned
values of a controlled variable with repetition controlled
by the value of a Boolean expression.

'FOR' v<«e 'WHILE' b 'DO' s

v: variable or subscripted
variable

e: arithmetic expression

b: Boolean expression

8: s8tatement

Variable v is called the controlled variable of the 'FOR!

statement.

Statement s may be a eimple statement, a compound statement

or a block.

This statement causes statement s to be executed repeatedly

as long as the value of the Boolean expression b is true.

Thie statement operates as follows:

a. e is evaluated and its value i8 assigned to v.

b. The Boolean expression b is evaluated.

e. If b is true, statement s is executed. If s does not
explicitly specify its successor, the process is repeated
at step a.

d. If b is false, statement 8 is not executed and the state-
ment following statement s is executed next. The value

of v ie undefined in this case.

- 70 -

'FOR', 'WHILE'

elause (contd)

5. If control is transferred from the 'FOR' statement by a 'GO TO'
statement (within statement s), the value of v is available.

6. The values of either e or b may be changed by statement s.

7. A 'GO TO' statement outside a 'FOR' statement may not refer
to a label within the 'FOR' statement.

EXAMPLE:
J<1; These statements cause 1
'FOR' I<«J 'WHILE' I 'LS' 10 'DO' to 9 to be assigned to A[1]
'BEGIN' to A[9].
All]l«I;
Jed+l
lENDY

- 71 -

1
'FOR'

general

PURPOSE: To permit a statement to be executed repeatedly for various

conditions governing a contrclled variable.
FORM: ‘Hm'umpa?“.ﬂn'm's

v: variable or subscripted
- variable _
algaz,...,an: arithmetic expression,
'STEP' clause, or
'"WHILE' clause

s: statement

RULES:;

1. Variable v is called the controlled variable of the 'FOR'

statement.

ApsQgyenes@, may be any combination of arithmetic expressions,
'STEP' clauses, or 'WHILE' clauses.

3. s may be a simple statement, a compound statement or a block.
4. If a; 18 an arithmetic expression, a 'STEP' clause or a

'"WHILE' clause, the 'FOR' statement operates as previously

described. The order of operation is A 3Qgsneesdye

- 72 -

EXAMPLE:

'FOR' X«3, 2 'STEP' 1 'UNTIL' 5,
70, 60, A 'WHILE' Z, 80 'DO'
PCXD

- 73 -

!FOR!
general (contd)

First, 3 is assigned to X

and procedure P(X) is executed.

Then the 'STEP' clause causes
the following action: 2 is
assigned to X and P(X) is
executed. X 1s stepped by

1 three times causing it to
assume the values 3, 4 and 5.
P(X) is executed after each
step of X. Next, X is assigned
the value 70, and P(X) is

executed.

Then X is assigned the value
60, and P(X) is executed.

The 'WHILE' clause causes

the value of A to be assigned
to X. If 7 is true, P(X) is
executed. This is repeated
until Z becomes false. (The
values of A and Z may be
changed by execution of P(X)).

Finally, 80 is assigned to X
and P(X) is executed.

'GO TO' Statements

- 74 -

PURPOSE:
FORM:
RULES:
1-
2.
3.
4.
EXAMPLES :
1.
2.

'Go TO',
label

To interrupt the normal sequence of statement execution by

defining explicitly the successor of the current statement.

'GO TO!' a

a: statement label

The statement 'GO TO' a causes control to go to the statement

with Llabel a.

A 'GO TO' statement outside a 'FOR' statement may not refer
to a label within the 'FOR' statement.

A 'GO TO' statement outside a block may not refer to a label

within that block.

A 'GO TO' statement outside a compound statement may refer
to label within that compound statement.

'GO TO' BOY

GO TO' T12; MI5: A<A+l;
'IF' L 'THEN'
T12: A<B+C¥F 'END'

- 75 -

'BEGIN' C<DXE+2;

This statement causes con-
trol to go to a statement
labelled BOY.

The 'GO TO' statement causes
econtrol to go to a statement

within a compound statement.

160 TO!
switeh designator

PURPOSE: To interrupt the normal sequence of statement execution by
eausing control to be transferred to one of a number of
possible statements depending on the value of an arithmetic

expression.,

FORM: 'GO TO' sw [a]

sw: switeh identifier

a: arithmetic expression

RULES:

1. The switch identifier "sw'" must have been defined by a switch

declaration in the current block or in an enclosing block.

2. The form sw [a] is called a switch designator.

3. The next statement to be executed is the one whose label is

referenced through the switch declaration defining "sw'.

4. This 'GO TO' statement operates as follows:

a. The expression denoted by a is evaluated. From this
value an integer k is established where k is the result
of the function ENTIER (a +.5). That is, the largest
integer not greater than the value of the argument,
t.e., if a is 3.7, k=4.

b. k specifies which element in the list of the switch
declaration will be referenced, i.e., the leftmost

element is numbered 1; the next is 2, ete.

- 76 -

6O TO',
switch designator (contd)

e. If k is not within the range 1 to n (where n is the

number of elements in the gwitch designator), control

goes to the next statement in normal sequence.

5. A 'GO TO' statement outside a 'FOR' statement may not refer
to a label within that 'FOR' statement.

6. A 'GO TO' statement outside a block may not refer to a label

within that block.

7. A 'GO TO' statement outside a compound statement may refer to

a label within that compound statement.

EXAMPLE:
'BEGIN!
'SWITCH' AB«PB, QB;
'SWITCH' AC<PC, QC, AB[XI;
'G0 TO' AB[TI;

'GO TO' AC[Y];

'END!

- 77 -

If T has the value 1 when
the 'O TO' for switch AB
18 executed, control goes
to the statement labelled
PB. If T has the value 2,
control goes to the state-
ment labelled QB. If T

has any other value, con-
trol goes to the statement
following the 'GO TO' state-
When the 'GO TO' for

switeh AC is executed, control

ment.

will go to statements labelled
PC or QC if Y has the value one
| If Y has
the value three, then execution
18 equivalent to 'GO TO' AB[X].
If Y has any other value, con-
trol goes to the next sequential

or two, respectively.

statement.

'GO TO',

eonditional designator

PURPOSE: To interrupt the normal sequence of statement execution by
causing control to be transferred to one of a number of
possible statements; the statement chosen will depend on

the value of a Boolean expression.

FORM : 'O TO' 'IF' b 'THEN' d] "ELSE' d2

b: Boolean expression

d;sdy: designational expression

RULES :

1. A designation expression (d,,d,) is any one of the following:
a. Statement label
b. Switch destignator. This has the form swlal, where sw
represents a switch identifier and a represents an

artthmetic expression.

o

Conditional designator. This has the form

"IF' b 'THEN' ¢ 'ELSE' d

where b represents a Boolean expression;

c may be either a statement label, a switch designator,
or a conditional designator enclosed within
parentheses;

d may be either a statement label, a switch designator,
or a conditional designator (not necessarily enclosed

within parentheses).
2. This statement operates as follows:

a. The Boolean expression b is evaluated;

b. - If b is true, control is transferred as specified by dﬁ;

- 78 -

"GO TO',

conditional designator (contd)

e¢. If the Boolean expression b is false, control is transferred

as specified by dz.

3. A '60 TO' statement outside a 'FOR' statement may not refer to
a label within that 'FOR' statement.

4. A 'GO TO' statement outside a compound statement may refer to a

label within that compound statement.

EXAMPLES :
I. 'O TO' '"IF' A 'THEN' B 'ELSE'
C[I]

2. 'GO TO' 'IF' BA 'THEN' LA 'ELSE'
'IF' BB 'THEN' LB 'ELSE' LC

-79 -

If the Boolean expression A
is true, control goes to the
statement labelled B. Other-
wise, control goes to the
statement referenced by the
Ith item in the switch
declaration defining C.

If the Boolean expression BA

i8 true, control goes to the
statement labelled LA. If
expression BA is false and
Boolean expression BB is true,
control goes to the statement
labelled [B. If both expres-
sions BA and BB are false, con-
trol goes to the statement
labelled LC. (Note: d, in this
case is a statement label while

d, 18 a conditional designator.)

160 TO!,
conditional designator (contd)

3. 'O TO' 'IF' BA 'THEN' ('IF' BB If both BA and BB are true,
'THEN' LB 'ELSE' LC) 'ELSE' LA control goes to the statement
labelled LB. If BA is true
and BB is false, control goes
to the statement labelled LC.
If BA is false, control goes
to the statement labelled LA.
(Note: dl ig8 a conditional
designator and, therefore,

must be enclosed in parentheses.)

- 80 -

Procedure Statement

- 81 -

PURPOSE: To call for the execution of a procedure defined by a
'"PROCEDURE' declaration.

FORM: (1) name
(2) mname (a1 t a, t ... t an)

name: procedure identifier
AysQgsees@)? actual parameter

t: separator

RULES:

1. A procedure statement may have no parameters as shown in
FORM (1), |

2. When there are parameters (FORM (2)), each separator t may be
etther "," or '")b:(" where b ie only descriptive, ©. e., it
may be used as comments to describe actual parameters. b has

no operational significance.
3. The procedure identifier must appear in a procedure declaration.

4. The number of actual parameters must be the same as the number
of formal parameters in the procedure declaration. However,
the method of parameter separation need not be the same in a
procedure statement and the corresponding declaration. That
ts, where a comma was used in a procedure statemengvthe form

"b:C" may be used in the declaration and vice versa.

- 82 -

Procedure statement (contd)

The actual parameters may be any one of the following:
arithmetic expression

Boolean expression

string

array identifier

switeh identifier

procedure identifier

LI T

designational expression

The correspondence between the actual parameters of the proce-
dure statement and the formal parcmeters of the procedure
declaration is by their appearance in the respective parameter
lists. The two sets of parameters must have the same number

of items.

The execution of a procedure statement is as follows:

a. The formal parameters which appear in a value list of the
procedure declaration are replaced by the values of the
corresponding actual parameters.

b. These actual parameters are evaluated from left to right
according to their appearance in the parameter list.

e. Formal parameters which are not part of a value list are
replaced throughout the procedure by the corresponding
actual parameters.

d. If the identifier of an actual parameter and an identifier
already in the procedure are the same, adjustments will
automatically be made to the latter so that no conflicts
oceur.

e. After the procedure has been modified as above, it is

executed.

- 83 =

10.

11.

EXAMPLES :
1.

- 7Y

SR AU R R | VAP R
rroceaure svaveneril (cortidl

If an actual parameter is a string, it may only be used in
a procedure written in non-ALGOL code. In an ALGOL procedure,
a string may appear only as an actual parameter for a further

procedure call.

An actual parameter corresponding to a formal parameter which
appears on the left side of an assignment statement in the

procedure must be a variable or a subscripted variable.

If a formal parameter is an array identifier, the corresponding
actual parameter must also be an array identifier of the same

dimension.

A switeh identifier or string may not be an actual parameter
corresponding to a formal parameter which is called by value.
A procedure identifier may not be used as a value parameter

unless it designates a function with no arguments.

HIGHVAL (Z, P#(P+1)/2 , V, DD The procedure which this
statement calls is defined in
the section 'PROCEDURE'
declaration, simple. In
this procedure statement 7
denotes the number of elements.
The value of the largest
element of 7 will be found in
V after the procedure call,
and I will contain the value of
the subscript of the largest

element.

- 84 -

2. SQUAREROOT (A+2+B4+2, .000001, C)

3. TOT (X, A, 1, N, 1/A%(CA+1)

4. SUM«ADD (A, I, N) FUNCTION:
(1/A%CA+1)D

- 85 -

Procedure statement (contd)

The procedure which this
statement calls is defined
in the section 'PROCEDURE!'
declaration, specification
part. After this procedure
statement is executed, C
wtll contain the square root
of A2+B2 with an accuracy of

.000001.

The procedufe which this
statement calls is defined
in the section 'PROCEDURE'
declaration, value and
specification part. This
procedure statement will
result in the following

computation:
- N
X =1 1/A(A+1)
=1

The procedure which this
statement calls is defined
in the section 'PROCEDURE'
declaration, function defini-
tion. This function ecall
will result in the summation
of example 3 in ADD and in |
SUM. The symbol FUNCTION <is
used as text and has no

operational significance.

5.

SUMADDCP, Q, N¥(N+1),
ADDCQ, 1,N, P/Q))

- 86 -

Procedure statement (contd)

This statement results in

the value of the following
ecomputation placed in ADD

and in SUM:

N(W+1) W
b L P/Q
P=Q =1

This is an example of a
recursive procedure call.

N

V. DECLARATIONS

- 87 -

'ARRAY' Declarations

- 88 -

PURPOSE :

FORM:

RULES:

' ARRAY '

To specify array identifiers, dimensions, bounds of subscripts

and array types.

1 1
type 'ARRAY ApsQgs+ees@,
type: type word

AysAgsees@ i array specifier

The type word may be any one of the following:
a. ' INTEGER'

b. 'REAL?

c. 'EXTENDED REAL'

d. 'BOOLEAN'

Type is optional, If it is not used, 'REAL' is assumed.
The type is assigned to each array tdentifier in the

declaration.

An array specifier may be either of the form b or blec], where
b represents an array identifier and ¢ represents a dimension
épecifier. A dimension specifier has the form dl: el,dZ: CPIRRE
d : e, where each di and e. may be an arithmetic expression.

n
n is the number of dimensions. di and e, represent the lower

‘and upper subscript bounds of dimension i, respectively. The

value of a lower bound may not exceed the value of an upper

bound.

- 89 -

EXAMPLES:
1.

® A a

YARRAY! (eontd)

If an array identifier does not have a dimension specifier,
the next dimension specifier is assigned. That is, the form
bz’bZ""’bm [dz: e d d : en] is8 equivalent to the

57 €gseeesd,
form bl [dl: e d d : en], b2 [dl: ess d,.: e2,...,d :

77 Cgarready 2 n n
cen bm [dl: ez,dZ: eZ,...,dn: en].

Lower and upper bounds will be evaluated from left to right.
The bounds can only depend on variables and procedures which
have been defined in a block enclosing the block for which

the array declaration is valid. Consequently, in the outermost
block of a program, only array declarations with constant

bounds may be used.
The bounds will be evaluated each time the block is entered.
Every array used in a progranm must appear in an array declaration.

An array identifier may not appear with subscripts whose values
do not lie within the bounds specified by the array declaration.

'ARRAY' A[1:10] The array A is one-dimensional
and has a lower subscript
bound of 1 and an upper sub-
seript bound of 10. A is
assumed to be of 'REAL' type.

- 90 -

2.

3.

'ARRAY' A,B [1:10,1:20]

'INTEGER' 'ARRAY' A[P:Q],

B [1:2%P, 3:5, 1:5]

- 91 -

'ARRAY! (contd)

Arrays A and B are two
dimensional and have sub-
seript bounds 1 and 10 and
1 ond 20. The arrays are
assumed to be 'REAL' type.

The array A is of 'INTEGER'
type and has subscript bounds
P and Q. B is of 'INTEGER'
type and is three dimensional.
The bounds of the dimensions
and 1 and 2*P, 3 and 5, and

1 and 5 respectively.

TARRAY',
Iole

PURPOSE: To specify array identifieré, dimensions, bounds of subscripts
and array types; also to specify the condition of arrays upon
re-entry into a block.

FORM: "OWN' type 'ARRAY!' Agslgseers@,

type: type word
A7sQgyeesQ,: array specifier

RULES :

1. The array specifiers hay be in any of the forms permissible
for the array declaration.

2. All the Rules which pertain to array declarations are valid
for the 'OWN' array declaration except:
a. On re-entry into the block in which the 'OWN' array
declaration appears the array elements will have their
previous values.

b. The subscript bounds must be integer constants.

3. When exit is made from the block (by 'END' or by a 'GO TO!
statement), the identifiers are inaccessible even though

their values have been saved.

EXAMPLE: :
'OWN' 'BOOLEAN' 'ARRAY' The array BA is three dimen-
BA[1:20, 5:15, 1:10] sional and is of 'BOOLEAN'

type. The bounds of the
dimensions are 1 and 20,
5 and 15, and 1 and 10,
respectively.

- 92 -

'PROCEDURE' Declarations

- 93 _

PURPOSE:

FORM:

RULES :

simple

To define a statement or series of statements as being asso-
etated with a procedure identifier; to provide a means by
which a procedure may be executed any number of times in the
course of a program although the steps of the procedure appear

only once.

1) 'PROCEDURE'! name; s

2) 'PROCEDURE' name (al_ ta, t ... t an); s

2
name: procedure identifier

AysBgseeesdy? formal parameter

t: separator

s: statement

A procedure declaration may have no parameters as shown in
FORM (1),

When there are parameters (FORM (2)), each separator t may be
etther "," or ")b:(" where b represents any sequence of
letters. The function of b is only descriptive, t.e., it may

be used as comments to deseribe actual parameters. b has no

operational significance.

The formal parameters may be any of the following:
a. variable

b. array identifier

e. switch identifier

d. label

e. procedure identifier

- g4 -

'"PROCEDURE' declarations
simple (contd)

The formal parameters usually appear somewhere in statement s.
They will be replaced by or assigned the values of the actual
parameters of the particular procedure statement which ealls

the procedure.

Statement s may be
a. a simple statement
b. a compound statement

e. a bloeck

Identifiers which are not formal parameters may appear in s if

either of the following conditions exists:

a. & ts in the form of a block and the identifiers are declared
at the beginning of this block.

b. the identifiers are declared in the block in which the

procedure declaration appears.

Statement s always acts like a block insofar as the scope of
its identifiers is concerned, i.e., a label appearing in s is

not defined outside the procedure declaration.

The procedure specified may be executed anywhere in the block
in which the declaration appears by writing a procedure state-
ment containing the procedure identifier and the actual para-

meters, 1f any.

- 95 -

EXAMPLE:
"PROCEDURE' HIGHVAL (A,N) ANS:(X,Y);
"BEGIN!
X<A[1]; Y<1;
'FOR' I+2'STEP' 1. 'UNTIL' N 'DQ!
'IF' A[I] 'GR' X 'THEN'
"BEGIN'
X«A[1]; Y<I
'END!
"END!

"PROCEDURE' declaration,
simple (contd)

This procedure determines
the largest element of an
array. Input formal
parameters are: array
identifier A and number N
of elements. Output formal
parameters are: value X of
largest element and value Y
of subscript of largest
element. The symbol ANS

is used as text and has no

operational significance.

- 96 -

PURPOSE:

FORM:

RULES:

'"PROCEDURE' declaration,

specification part

To define a statement or series of statements as being asso-
ciated with a procedure identifier; to provide a means by
which a procedure may be executed any number of times in the
course of a program although the steps of the procedure appear
only once; to specify the kinds of quantities actual parameters

may represent.

'PROCEDURE! name (dl t a, t ... t an)

sp list; sp list;...; sp list; s

name: procedure identifier
Aps@gseeesQ formal parameter
t: separator
sp: specifier
list: formal parameters
separated by commas

s: statement

Each separator t may be either "," or mb:(t where b represents
any sequence of letters. The function of b is only descriptive,
t.e., 1t may be used as comments to describe actual parameters,

b has no operational significance.

The formal parameters may be any of the following:
a. vartable

b. array identifier

e. label

d. switeh identifier

procedure identifier

- 97 -

"PROCEDURE! deelaration,
specification part (eontd)

8. The formal parameters usually appear somewhere in statement s.
They are replaced at the time of execution by the actual
parameters of the procedure statement.

4. The specifiers may be any of the following:

'ARRAY! '"INTEGER' 'ARRAY'
'"BOOLEAN! : 'INTEGER' 'PROCEDURE'
"BOOLEAN' 'ARRAY! "LABEL'
"BOOLEAN' "'PROCEDURE ! 'PROCEDURE
'EXTENDED REAL' . "REAL'
'EXTENDED REAL' 'ARRAY' '"REAL' 'ARRAY'
'EXTENDED REAL' 'PROCEDURE' '"REAL' '"PROCEDURE'
'INTEGER' : 'STRING'

'SWITCH!'

5. The specifiers indicate for the parameters in their "list!
what form the corresponding actual parameters should take.
(Note: 'INTEGER', 'REAL', and 'EXTENDED REAL' may be used
interchangeably and the proper transformations will take
place automatically.)

6. A formal parameter may appear in no more than one "list."
However, a formal parameter need not appear in a "list,"
except for switches which must be specified.

7. Statement s may be

a. a simple statement
b. a compound statement
e. a block

- 98 -

'PROCEDURE' declaration,
specification part (contd)

8. Identifiers which are not formal parameters may appear in
s 1f either of the following conditions exists:
a. s is a block and the identifiers are declared at the
beginning of this block.
b. the identifiers are declared in the block in which the

procedure declaration appears.

9. Statement s always acts like a block insofar as the scope of
its identifiers is concerned, <.e., a label appearing in s

18 not defined outside the procedure declaration.

10. The procedure specified may be executed anywhere in the block
in which the declaration appears by writing a procedure state-

ment containing the procedure identifier and the actual

parameters.
EXAMPLE :
'"PROCEDURE' SQUAREROOT (X, E,S); This procedure computes
'REAL' X, E, S; the square root. Input
'BEGIN' 'REAL' SA; formal parameters are:
'IF' X 'LS' 0 '"THEN' number X whose square root
'BEGIN' S«-1; 'GO TO' B 'END'; 18 wanted and accuracy E.
SA<l; Output formal parameter is
A: S<(SA+X/SA)/2; square root S5 of X.
"IF' ABS(SA-S) 'GR' E 'THEN'
'BEGIN' SA«S; 'GO TO' A 'END';
B: 'END'

- 99 -

value and specification

art
PURPOSE: To define a statement or series of statzments as being asso-
eiated with a procedure identifier; to provide a means by
which a procedure may be executed any number of times in
the course of a program although the steps of the procedure
appear only once; to specify which formal parameters are
replaced by the value of the corresponding actual parameters;
to specify the kinds of quantities actual parameters may
represent,
FORM: . '"PROCEDURE' name (a; t ag ¢t ... t a)
'"VALUE' Tist;
.8p list; sp list;...; sp list; s
name: procedure identifier
AysBgsenesQ)? formal parameter
t: separator
sp: specifier
s: statement
list: formal parameters sepa-
rated by commas
RULES:
1. Each separator t may be either "," or Mb:(" where b repre-

sents any sequence of letters. The function of b is only
deseriptive, i.e., it may be used as comments to describe

actual parameters. b has no operational significance.

- 100 -

'"PROCEDURE' declaration,
value and specification
part (contd)

The formal parameters may be any of the following:

a. variable

b. array identifier

e. label

d. switch identifier

e. procedure identifier

The formal parameters usually appear somewhere in statement s.
They are replaced at the time the proceudre is called upon by

the actual parameters of the procedure statement.

However those formal parameters which are listed in the 'VALUE'
part of the declaration are assigned the current values of

the corresponding actual parameters before statement s is
executed. The order of assignment is from left to right
according to the order of appearance in the formal parameter
list.

The specifier may be any of the following:

'ARRAY ! 'INTEGER' 'ARRAY!
'BOOLEAN! 'INTEGER' PROCEDURE'
"BOOLEAN' 'ARRAY! 'LABEL'
"BOOLEAN' 'PROCEDURE' 'PROCEDURE!
'"EXTENDED REAL' 'REAL'
'"EXTENDED REAL' 'ARRAY! 'REAL' 'ARRAY!
'"EXTENDED REAL' 'PROCEDURE' 'REAL' 'PROCEDURE'
' INTEGER! 'STRING'

'SWITCH'

The specifiers indicate, for the parameters in their list what
form the corresponding actual parameters should take. (Note:
'INTEGER', 'REAL' and 'EXTENDED REAL' may be used interchangeably

and the proper transformations will be made automatically.)

- 101 -

10.

11,

12.

' PROCEDURE!
vatue and specification
part (contd)
A formal parameter may appear in no more than one specification
ltst. However, a formal parameter need not appear in a list,

except for switches which must be speéified.

A formal parameter appearing im the 'VALUE' list must also

appear in one of the specification lists.

Statement s may be:
a. a simple statement
b. a compound statement

c. a block

Identifiers which are not formal parameters may appear in s

if either of the following conditions exists:

a. 8 is a block and the identifiers are declared at the
beginning of this block.

b. the identifiers are declared in the block in which the

procedure declaration appears.
Statement s always acts like a block insofar as the scope of
its identifiers is concerned, t.e., a label appearing in s is

not defined outside the procedure declaration.

The procedure specified may be executed anywhere in the block

in which the declaration appears by writing a procedure state-
ment containing the procedure identifier and the actual para-

meters.

- 102 -

EXAMPLE':

'"PROCEDURE' TOT(T,K,L,M,UD;

'"VALUE' L,M; 'INTEGER' L,M;

"BEGIN'
T«0;
'"FOR' K<L 'STEP' 1 'UNTIL' M 'DO'
T«T+U

"END'

- 103 -

'PROCEDURE' declaration,

value and specification

part (contd)

This procedure computes the
sum of values of a function
U between the limits of
summation L and M. The
funetion U may depend on
the swmation index K. The
sum is generated in formal

parameter T.

PURPOSE:

FORM:

RULES:

1.

'"PROCEDURE' declaration,

funetion definition

To define a statement or series of statements associated with

a specific procedure identifier as being a function; to pro-

vide a means by which the appearance of the procedure identi-

fier will cause the function to be performed and a value to .

be given to the identifier although the steps of the function

appear only once.

(1)
(2)
(3)

(4)

type 'PROCEDURE' name; s

type 'PROCEDURE' name (al ta,
type 'PROCEDURE' name (al ta,
sp list; sp list;...; sp list;
type 'PROCEDURE! name (a; t a, t ... t a);
'"VALUE' Zist;

sp list; sp list;...; sp list; s

ot alss

R an);

S+ O o o

type: type word
name: procedure identifier
al,az,...,an: formal parameter
t: separator
sp: specifier
s: statement
list: formal parameters

separated by commas

A procedure declaration may have no parameters as shown in

FORM (1).

- 104 -

'"PROCEDURE' declaration,

function definition (eontd)

When there are parameters (FORM (2), (3), (4)), each separator
t may be either "," or ")b:(" where b represents any sequence
of letters. The function of b is only deseriptive, Z.e., it
may be used as comments to describe actual parameters. b has

no operational significance.

The type word may be any of the following:

a. 'INTEGER'

b. '"BOOLEAN'

e. 'REAL'

d. 'EXTENDED REAL'

The type word identifies the type of the procedure identifier.

At some point in the procedure body, i.e., in statement s, the
procedure identifier must appear on the left side of an assign-
ment statement. When this statement is executed, the function
receives a value, and i1t is this value which is used when the
procedure identifier appears in an expression. The function
receives a value according to the type specified by the type
word,

The procedure identifier may appear on the left side of any
number of assignment statements. It is the last one to be

executed from which the funetion receéives its value.

The formal parameters may be any of the following:
a. variable |

b. array identifier

e. label

d. switch identifier

procedure identifier

- 105 -

10.

11,

12,

18.

'"PROCEDURE' declaration,
function definition (contd)

The formal parameters usually appear in statement s. They
are replaced at the time the procedure is called upon by the

actual parameters of the function call.

There may or may not be a 'VALUE' declaration in a function
definition. If there is, the rules which apply are the same

for all procedure declarations.

The specifiers which may be included, and the rules which apply

are the same for all procedure declarations.

Statement s may be
a. a simple statement

b. a compound statement
e. a block

Identifiers which are not formal parameters may appear in s if

either of the following conditions exists:

a. 8 is a block and the identifiers are declared at the begin-
ning of this block.

b. the identifiers are declared in the block in which the

procedure declaration appears.

Statement s always acts like a block insofar as the scope of
its identifiers is concerned, i.e., a label appearing in s

is not defined outside the procedure declaration.

The function which this declaration defines may be executed
anywhere in the block in which this declaration appears by
writing in an arithemetic or Boolean expression the procedure

tdentifier and the actual parameters, if any.

- 106 -

EXAMPLES :
1'

'REAL' 'PROCEDURE' ADDCK, L,M,U);
"BEGIN' 'REAL' W;
W<0;
'FOR' K<L 'STEP!
M 'DO!
WewW+U;
ADD+W
'END!

1 'UNTIL!

'"INTEGER' 'PROCEDURE' FACT(XD;

'IF' X 'EQ' 1 'THEN' FACT<«1 'ELSE'

FACT<+X* FACT(X-1)

- 107 -

FACT<«2* FACT(1).

"PROCEDURE " dec Ltaration,

funetion definition (econtd)

This function computes the
sum of values of a function
U between the limits of
summation L and M. The
function U may depend on
the summation index K.

Upon exit from the function,
the sum is contained in ADD
which is of type 'REAL'.

This is an example of a
recursive procedure declara-
tion. Execution of FACT(2)
causes FACT(1) to be executed
because of the statement
Then FACT
will have the value 2*1.
Execution of FACT(3) causes
FACT to have the value 3%*2%*1,
If this procedure is called
n times, FACT will have the

value n factorial.

PURPOSE:

FORM:

RULES:

'"PROCEDURE' declaration,
separately compiled

To provide a technique for communicating with separately

- compiled procedures.

(1) 'CODE'
1 t ot 1 . . o t '
(2) 'CODE' 'BEGIN dy3dgse..5d, "END

dl,dz,...,dn: code declaration

FORM (1) or FORM (2) above are to be used in a procedure
declaration in place of statement s when it is desired to

write a procedure outside an ALGOL program. The procedure

may be written either as a separately compiled ALGOL program

or as a procedure compiled in some other language (e.g., GMAP).

Each di may have any one of the beZowing forms:

a.

'OWN' type 'ARRAY! Azslgseees@,

where type and A3y enesdy have the same meaning as
deseribed under Array declaration, 'OWN'. This code
declaration declares 'OWN' arrays whose storage will

be reserved in the declaring program but whose identifiérs
will be valid only in the separately compiled procedure.
"OWN' type VisVgssees?,
where type and v,,v,,...,v, have the same meaning as
described under Type declaration, 'OWN'. This code
declaration declares 'OWN' variables whose storage will

be reserved with the declaring program but whose identifiers

will be valid only in the separately compiled procedure.

- 108 -

'"PROCEDURE' declaration,

geparately compiled (contd)
e. "NONLOCAL' A3 Bgsenesdy,
where AysQgseses @, MaY be any of the following:
1) variable
2) procedure identifier
3) array identifier
4) switch identifier
"6) label
This code declaration makes the specified identifiers
‘of the declaring procedure available to the separately
eompiled procedure.

The procedure identifier of a separately compiled procedure
and all the identifiers specified in a, b and ¢ above must
be unique in 6 characters. (4 character is either a letter
or q digit.)

For all procedures defined as 'CODE', a SYMREF will be
produced in the declaring program.

SYMDEFS will be produced for all 'OWN' variables and arrays.
In the case of an 'OWN' variable, the SYMDEF will point to
the storage location for the variable; in the case of an 'OAN'
array it will point to the first word of the alpha vector

for the array.

There will be a SYMDEF associated with each entry in a

'NONLOCAL' Zist.

a. For a procedure identifier, the SYMDEF will point to the
entry loecation of the procedure.

b. For a switeh identifier, the SYMDEF will point to the
entry location for the body of code which evaluates the
switeh.

- 109 -

'PROCEDURE ! declaration,
separately compiled (contd)

e. For a variable identifier, the SYMDEF will define either
the absolute location or the stack relative location of
the variable, depending on whether the variable 18 non-
procedural or procedural.

d. For a label, the SYMDEF will point to the Zocatzon of the
label.

e. ~For an array identifier, the SYMDEF will point to the
first word in the alpha vector for the array. The pointer
'will be absolute or stack relative, depending on the
point of definition of the array.

The user of a 'CODE' procedure is completely responsible for
proper manipulation of the stack pointer, for setting of the
avatlable space pointer, and for correct usage of the various
ALGOL constructs made available to him.

Details regarding Rules 4-7 may be found in ALGOL SSI.

It is possible to remap the internal name of a separately

eompiled procedure into a different set of 6 or fewer characters
which will be used as ite SYMREF. This is accomplished with

the ALGOL word 'RENAME' followed by a string containing the
desired external name. This construct follows the jbrmdl
parameter list and precedes the word 'CODE'. The 'RENAME'

string may consist of any combination of 6 or fewer characters
and/or decimal points.

Example: 'PROCEDURE' INPUT 0 (a, string); 'RENAME''.AOIPT\; 'CODE'

- 110 -

'SWITCH' Declaration

- 111 -

"SWITCH' (contd)

When a 'GO TO' statement involving a switeh designator is
encountered in the program, the subseript of the switch
designator is given an integral value. It is this value

which determines which element of the list is referenced.

If the list item referenced is a conditional designator the
'IF' clauses are evaluated until a designational expression
involving only a label or a switch designator is reached.

If the list element referenced is a label, it specifies

directly the next statement to be executed.

If the element is a switch designator, it in turn references
another 'SWITCH' declaration. The subscript of the switch
designator is evaluated to locate the correct list element
of the new 'SWITCH' declaration.

This process may be repeated throﬁgh any number of 'SWITCH!
declarations until reference is made directly to a statement
label.

Each time an element in the list of a "SWITCH' declaration

i8 referenced, any expressions the element may contain are

re-evaluated.

- 113 -

"SWITCH' (oontd)

EXAMPLE :
'SWITCH' BA<PA, 'IF' S 'THEN' This switech may be called
PB 'ELSE' PC, AC[X] by a statement such as 'GO TO'

BA[D] which operates as
follows: If D has the value
1, operation is equivalent to
operation of 'GO TO' P4,
where PA i8 a statement
label. If D has the value
2, operation is equivalent
to operation of 'GO TO' 'IF!
S 'THEN' PB 'ELSE' PC, where
S 18 a Boolean expression
and PB and PC are statement
labels. If D has the value
3, operation is equivalent
to operation of 'GO TO' AC[X]
- where AC is a switch ident-
ifier and X 18 an arithmetic V
expression. If D has any
other value, the statement
following the 'GO TO' is

executed next.

- 114 -

Type Declarations

- 115 =~

Type

PURPOSE: To specify which variables represent integer, real, extended
real or Boolean quantities.

FORM: tYpe VsVpseeesl,
type: type word
VysVgsenes?, s vartable

RULES :

1. The type word may be one of the following:
'REAL', 'EXTENDED REAL', 'INTEGER', or 'BOOLEAN'. The type
word specifies the type of the variables VisVgseeestye

2. Each variable used in a program must be declared in a type

declaration.

8. No variable may appear in more than one type declaration in
a single block.

4. The type declaration is valid only for the block in which the
declaration appears. Outside this block the identifiers may
be used for other purposes.

5. The type declaration is valid for any blocks contained within
the block containing the type declaration. However, variables
may be redeclared in sub-blocks, in which case the previous

declaration is superceded.
6. ~ When exit is made from a block (by 'END' or by a 'GO TO'

statement) all identifiers which were declared for the block
are undefined.

- 116 -

EXAMPLE:

Type (contd)

'"BEGIN' 'INTEGER' P,Q; 'INTEGER' 'ARRAY' S[1:5];

"END?

P<3; Q«2;

'BEGIN' 'REAL' P,R;
ReQ;
P<1;
S[1]<P;
S[2]+Q;
S[3]+R

'END';

S[u4]+P;

S[51<Q

- 117 -

These statements assign .
the numbers 1,2,2,3,2 in
this order to elements of

the array S.

PURPOSE :

FORM:

RULES:

Type, 'OWN'

To specify which variables represent integer, real, extended
real, or Boolean quantities; to provide a means for retaining .

previous values of certain variables upon re-entry into a
block.

'OWN! type VisVgsesasVy
type: type word
Vs VgseeesV s variable

The type word may be one of the following:
"REAL', 'EXTENDED REAL', 'INTEGER', or''BOOLEAN'. The type

word specifies the type of the variables 01,02,...,vn.

Each variable used in a program must appear in a type declara-
tion.

No variable may appear in more than one type declaration in
a single block.

Only variables whose values are to be preserved for possible
re-entry into a block should be specified by an 'OWN' type
declaration. All other variables should be declared in a

regular type declaration.
The variable identifiers declared in any type declaration are

defined only for the block in which they appear. Outside the
block the identifiers may be used for other purposes.

- 118 -

EXAMPLE :

E:

Type, 'OWN' (aontd)

When an exit is made from a block (by 'END' or by a 'GO TO'
statement) the identifiers are inaccessible although their

values have been saved.

A<b;
'BEGIN' "REAL' C; 'OWN' 'REAL' D;
'IF' A 'EQ' 6 'THEN'
'BEGIN'
C<7;
D<8;
A<9;
'GO TO' E
'END';
A«D-2
'END’';
'IF' A TNQ' 6 'THEN' 'GO TO'

- 119 -

B

During the first execution
of block B, 7 is assigned to
C, 8 is assigned to D and 9
is assigned to A. Execution
of the conditional statement
labelled E causes block B

to be executed again. During
this execution, A is set to

6 because theAprevious value
of 'OWN' variable D is saved.
However, variable C could
not be used in this way
because not being 'OWN', its

value 18 not saved.

VI. COMPQUND STATEMENIS AND BLQCKS

- 120 -

PURPOSE:

FORM:

RULES:

EXAMPLES:
1.

Compound statement

To permit a series of statements to be joined together in

such a way as to act as a unit.

'BEGIN' §15895.4458, 'END!

8,580y e+458
P2

: statement

A compound statement may have a label and may contain any

number of statements (Si).

Each statement 815895+ ++58, May be
a. a simple statement

b. a compound statement

e. a block

Each statement may have a label.

A 'GO TO' statement may transfer control to a statement

within a compound statement.

I[«1;
T: "IF" I 'LQ' 10 'THEN!'
'BEGIN'
AlTI]<«I;
I«I+1;
'O TO' T
'END!

- 121 -

These statements assign

the numbers one to ten to
elements of the array A.
This example contains a
compound statement as the
true branch of a conditional

statement.

2. 'FOR' I+l 'STEP!'

'"BEGIN'
'"FOR' J<«1

'STEP!
'BEGIN'
'"IF' I 'EQ' J 'THEN'

'UNTIL' 10

'BEGIN!

Compound statement (contd)

1 'UNTIL' 10 'DO!'

B[I,J]«1l; 'GO TO' S

'END';

B[I,J]«0;

S: 'END!
TEND!

- 122 -

These statements generate
a ten by ten unit matrix
in the array B. FEach 'FOR!'
statement has a compound
statement as 1its object.
Also, the true branch of
the 'IF' statement is a

eompound statement.

Block

PURPOSE: To permit statements and declarations to be grouped together
in such a way as to be independent of other parts of a
program. This permits labels and identifiers to be used in

different sections of a program without conflicts.
FORM: 'BEGIN' d&;dz;...;d%;sl;sg;...;sm 'END"

dl’d2”"’dﬁ: declaration

81589500058, 0 statement

RULES:

1. A block may have a label, and may contain any number of

declarations and statements.

2. Each statement 8158050058, may be

a. a simple statement
b. a compound statement
e. a block

3. Each statement may have a label.

4. When a block is entered through 'BEGIN', the identifiers which
are declared for the block are newly defined and lose any

significance they may have had prior to entry.

5. All labels within a block are local to the block and may not
be referred to from outside.

- 123 -

Block (eontd)

6. When exit s made from a block, all identifiers which were
declared for the block are undefined and may be used for
other purposes, ineluding those declared as 'OWN'.,

7. If a declaration is prefaced with 'OWN', the idéntifiers so
defined will retain their previous values upon re-entry into
the block. If 'OWN' <g not specified, the values will be
lost when exit is made from the block and will be undefined

upon re-entry.

8. All identifiers used in a program must be declared in one of
the blocks comprising the program. No identifier may be

declared more than once in a single block.

9. If blocks are nested, a statemsnt label has meaning only in

the smallest block containing that statement.

EXAMPLE: _
'BEGIN' 'REAL' X,Y; 'ARRAY' A[1l:5]; These statements assign the
Xel; Y<«2; numbers 3,2,2,1,2 in this
'BEGIN' 'REAL' X,Z; order to elements of the
Z+Y; array A.
X<3;
Al1]<X;
Al2]+Y;
A[3]+Z

'END';

ALL]X;

A[5]+Y

'END'

- 124 -

VII. INPUT/OUTPUT

- 125 -

INPUT/OUTPUT

The ALGOL language itself provides no imput/output statements. However,
the ALGOL compiler for the General Electric 625/635 contains within it
a number of procedures which handle the I/0. All a programmer need do
18 to call the existing procedures using an ALGOL procédure statement,
and through the procedure parameters, transmit the information required

for the input and/or output process.

The procedure identifiers used by ALGOL are reserved and act as though
declared in a block enclosing the program. If a programmer redeclares
one of these identifiers in his program his declaration supersedes the
standard definition. The procedures provided are listed below:

A. Procedures pertaining to the layout of the I/0 information
on the external device:
BAD DATA
FORMAT
FORMAT 7 (n=0,1,2,...,9)
HEND
HLIM
NO DATA
TABULATION
VEND
VLIM

B. Procedures dealing with the actual transmission of data:

INLIST
INPUT n (n=0,1,2,...,9)
OUTLIST
OUTPUT n (n=0,1,2,...,9)

- 126 -

C. Procedures allowing finer control over the input and output
procesgses:
POSITION
SYSPARAM

D. Primitive procedures:
INSYMBOL
LENGTH
" NAME
OUTSYMBOL
STRING ELEMENT
TYPE

Each procedure is discussed in detail on the following pages, and the

foxm of the procedure call is given.

In addition, the user of these procedures needs to provide a list of
the data items which are to be transmitted; This list is specified in
a user declared procedure called a list procedure.- The identifier for
this procedure is not reserved by ALGOL, and thus any valid identifier
may be chosen. The list procedure is discussed following the ALGOL

procedures.

- 127 -

Layout Procedures

The procedures to be described in this section deal with the
appearance of the data on an input or output device. ALl of
the procedures describe a printed page. However the concepts

may be generalized to include any extermal device.

Listed below are the physical characteristics of the I/0 devices.
The number of characters per line is referred to as P. The

number of lines per page is referred to as P’

!

Device (charieters) (zizgg)
Line Printer 120 55

Card Reader (binary) 160 no limit
Card Reader (decimal) 80 no limit
Card Punch (binary) 160 no limit
Card Punch (decimal) 80 no limit
Magnetic Tape, Disk, 120 no limit

Drum

These device characteristics may be changed where applicable
(e.g., number of characters per line for magnetic tape may be
changed) by using the procedure SYSPARAM described in part C

of this section.

The layout procedures are used to describe non-standard operations
which are to take place during input and output. The procedures
need not be called, in which case certain standard operations
(deseribed with each procedure) will be in effect. The technique

for using the layout procedures is as follows:

- 128 -

Layout Procedures (contd)

The programmer declares a set-up procedure containing any or all

of the eight layout procedures (FORMAT, HLIM, VLIM, HEND, VEND,

NO DATA, TABULATION, BAD DATA). At some point in the program

there is a call to an I/0 transmission procedure which has as one
of its parameters the procedure identifier of this set-up procedure.
At the time the I/0 procedure is called it causes the set-up
procedure to be executed thus establishing the non-standard opera-
tions. Each time a new I/0 transmission ig called, the standard
layout operations will be resumed until changed by a new set-up
procedure.

- 129 -

BAD DATA

PURPOSE: To indicate the procedure which is to be called when a request
i8 made for an item to be transmitted, and the item is incom- .
patible with the format character.

FORM: BAD DATA (p)

p: procedure identifier

RULES :
1. This procedure applies only to input.

2. If a translated format (anything but I,R,E or L) is used and
the referenced field is not compatible, control will be trans-

ferred to procedure p.

3. If BAD DATA ig not used and the condition deseribed in Rule 2
arises, control will be transferred to the end of the program
as though a dummy label had been placed just before the final
'END'.)

EXAMPLES ;
1. BAD DATA (CHECK)D The procedure CHECK is
used when incorrect data

appears on the input device.

- 130 -

BAD DATA (contd)

'BEGIN'

'"PROCEDURE' REDO; OUTLIST (6,LAY,LIST);

BAD DATA (REDOD;... When an incompatibility

'END' oceurs, control goes to
procedure REDO which outputs

an error message.

- 131 -

PURPOSE:

FORM;

RULES :

FORMAT
To describe the form in which data appears on the input
device or is to appear on the output device.
FORMAT (string)

string: a string with a

special form

The format string is composed of a series of items separated

by commas.

The string is interpreted from left to right in conjunction
with a list of data items which are to be transmitted.

These data items usually appear in a separate procedure called
a list procedure.

An item in the format string may describe a number, a string,
or a Boolean quantity, or it may simply cause a title to be
written or page alignment to take place.

The following rules describe the various kinds of format items.

Number formats

a. Integers
1) This format item consists of a series of Z's, a series
of D's,. or a series of Z's followed by D's each corre-
sponding to a digit position of the number, and an

optional sign.

- 132 -

2)

3)

4)

5)

FORMAT (contd)

The letter D is used to indicate a digit which is
always to be printed.

(ex. 385 when written with format DDDD will appear
externally as 0385.)

The letter Z is used to indicate that the correspond-
ing digit is to be suppressed if it is a leading zero.
In this case, a zero digit will be replaced by a blank
space when all the digits to its left are zeros.

(ex. 21 when written with format ZI1Z will appear
externally as P21.)

A series of Z's or D's may be written in a shorthand
notation as follows: nZ or nD (where n is an integer)
is equivalent to ZZZ...Z or DDD...D (n times).

(ex. 3Z and ZIZ are equivalent. 4D and DDDD are
equivalent.)

An optional sign may precede or follow the Z's and

D's of a number format.

If no sign appears, the number is assumed to be positive.
Note: If a negative number is output with no sign
position, the first digit position will print as ¥,4,B,
..., I representing the digits 0,1,1,...,9 respectively.
If a plus sign appears, the correct sign of the number
appears on the external medium.

If a minus sign appears, positive numbers will be
unsigned and negative numbers will have a minus sign

on the external medium.

- 133 -

6)

7)

8)

FORMAT (contd)

If a preceding sign is to appear externally with
a number which has had leading zeros suppressed, the.
sign will be placed immediately to the left of the

first non-zero digit.

The total number of positions which an integer
oceupies on the external medium is the sum of

the Z's and D's (plus one if the optional sign
appears). If the field width is insufficient to
hold the complete number, the high order digits
are transmitted and the leftmost digit position
will be *,J,K,...,R according as the actual digit
i8 0,1,2,...,9. If, in addition to the above
condition, the field is also unsigned and the number
18 negative, the leftmost position will be +,/,5,T,
. «., 2 representing the digits is 0,1,2,...,9

respectively.

Examples of integer formats:

If +ZIDDD is used with 2176, it appears as PB+2176.
If -ZZZDD is used with 3, it appears as PBPPO3.
If -DDDD is used with -45, it appears as -0045.
If 711 is used with 0, it appears as PPY.

If ZZD is used with 0, it appears as PBO.

If 2Z4D+ is used with 390, it appears as PP0390+.

b. Decimal Numbers

1)

This format item consists of Z's and/or D's each
eorresponding to a digit position, a period (.)
or the letter V to indicate the position of the

decimal point, and an optional sign.

- 134 -

2)

3)

4)

5)

6)

FORMAT (contd)

The letter Z has the same function it did for
integers and it may appear only to the left of
the decimal point.

The letter D may appear on both sides of the point

and has the same function as for integers.

If a . is used to indicate the decimal point posi-
tion, it will appear on the external medium in that
position. If the letter V is used it merely indicates
where the decimal point should be, but no space is

used on the external medium.

The sign part functions as it did for integers.

The total number of positions which a decimal number
occupies on the external medium is the sum of the
Z's and D's plus one for the sign, plus one if the
point is indicated by a . in the format. If the

field width is insufficient to hold the complete

number the high order digits are transmitted and

the leftmost digit position will be 4,J,K,...,R
aceording as the actual digit is 0,1,8,...,9. If,

in addition, the field is unsigned and the number

i8 negative, the leftmost position will be +,/,5,T,
«++s 2 representing the digits 0,1,2,...,9, respectively.

- 135 -

FORMAT (contd)

7) Examples of decimal numbers:
If ZZDD.DD is used with 146,776, it appears as P146.78.
If -3D.D is used with 1.2, it appears as P001.2.
>If +32.3D s used with .0048 it appears as BB¥+. 004,
If -ZZDVD is used with -142.78, it appears as -1428.
If ZZuD.DD- is used with -3394.7, it appears as
B¥3394. 70-,
If ZID is used with 29,756, it appears as P30.
If .3D- is used with -.0254, it appears as .026-,

Decimal Numbers with Exponent

1) This format item ie the same as that for a decimal
number with the addition of an exponent part to
indicate the power of ten to which the number must
be raised to give the true decimal number.

2) The exponent part consists of an apostrophe (') to
separate it from the decimal number followed by an

optional sign, a series of Z's and/or a series of D's.

3) The ' will appear on the external medium in the
proper position to separate the decimal number and
its exponent.

~4) The rules for the exponent part are the same as those

for integers.

5) A number using this format will appear externally
with its leading digit not zero. The exponent is
adjusted accordingly. If the number is zero the

exponent is also set to zero.

- 136 -

FORMAT (contd)

6) If a nonzero number has a zero exponent which is
specified by Z's the ' and the exponent sign are

also suppressed.

7) The total nwnber of positions needed on the external
medium is the sum of all the Z's and D's plus one
for the sign, plus one for the exponent sign, plus
one for the ' plus one for the decimal point (if

. 18 specified).

8) FExamples of deeimal numbers with exponents:

If 3D.DD'+DD Zs used with 3075.2, it appears as
307.52'+01.

If D.DD'-ZZ is used with 7.1, it appears as 7.10PBY.

If ZID'+ZD is used with .021758, it appears as
218'¥-4.

If DD'ZZ is used with 35.649, it appears as 36BPK,

If .3D'+2D s used with 917.2, it appears as .917'+03.

If .DD'-ZZZ is used with .000312, it appears as
.31'BpB-3.

Octal Numbers

1) The form of this item is n0Q or 00...0 (n times) where
n is an integer which specifies the number of digits
in the octal field.

2) For output if n<l2, the leftmost n digits will be
transmitted; if n>12, 12 digits will be transmitted

followed by n-12 blanks.

3) For input if n<l2, the next n characters are trans-
mitted; 1f n>12, the next 12 characters are transmitted.

- 137 -

- FORMAT (contd)

4) Examples of octal numbers:
If 50+is used with 447521767511 on output, it appears.
as 44752,
If 140 is used with 712342165134 on output, it appears
as 712342165134pF.
If 150 is used with 754162314321744 on input, it
appears as 754162314321 internally.

Truncation for Number Formats

a.

The integer or decimal number formats described above may
be followed by the letter T to indicate that the output
should be truncated instead of rounded. Rounding occurs

when truncation is not specified.

Examples of truncation:

If -2Z3D.2DT is used with -12,719, it appears as PP-012.71.

If 3ZDT+ is used with 145.6, it appears as P145+.
If -Z.DT'+ZZ is used with .012537, it appears as ¥1.2'p-2.

Insertions in Number Formats

a.

All of the number formats may have either blanks or strings
inserted anywhere within the format item. The insertion

will appear on the external medium.

A blank is denoted by the letter B. If more than one blank
is desired it may be expressed by a series of B's or by

the shorthand notation nB (n is an integer specifying the
number of blanks.) 3B is equivalent to BBB.

A string which is to be inserted must be enclosed in string
quotes (i.e. "string\). If the string is to be repeated

it may appear as n''string\ where n is an integer specifying
the number of times the string is to appear. The informa-
tion in the string (not including the outermost quotes) is

ingerted in the corresponding place in the number.

- 138 -

FORMAT (contd)

d. Examples of insertions:

If D2B3D is used with 3972, it appears as 3PpI72.

If "ANS=\U4D Zs used with 271, it appears as ANS=0271.

If "INTEGERPPART\-4ZVB"FRACTION\B2D Zs used with -195.7634,
it appears as INTEGERYPARTP-195HBFRACTIONE76.

If 2ZB2D.DBT'+DD is used with 44865.5, it appeare as

, 44¥86. 58 '+01.

If "OCTALY\50 7is used with 112233445566, it appears as

OCTALK11223.

9. Numbers for Input

a. Numbers which are input using the above format codes
should, in general, appear the same as those which are
output.

b. However, there are fewer restrictions on the form of
input numbers.

1) Leading zeros may appear even if 1's are used in the
format code. Leading blanks may appear even if D's
are used.

- 2) If insertion strings or blanks are used in the
format code the corresponding number of characters

on the input device are skipped.

3) If a sign is specified at the left in the format
code it may appear in any Z or D positions on the
input device as long as it is to the left of the
first digit. If the sign is specified at the

right, it must appear exactly where it is indicated.

- 139 -

FORMAT (contd)

10. String Format

a. This format item is used to output string quantities.
It may not be used for inmput. Alpha format must be

used instead.

b. The form of this item is nS or SS...S (n times), where
n is an integer which indicates the number of symbols
in the string.

1) If the actual string is longer than the number of
S's indicated, only the leftmost symbols are trans-
mitted.

2) If the string is shorter, blank symbols are added
to the right of the string.

3) Examples of string format:
If S is used with "A\, it appears as A.
If 6S <s used with "TOTALS\, it appears as TOTALS.
If SSS is used with "ABC\, it appears as ABC.
If 4S is used with "PROGRAM\, it appears as PROG.
If 55 is used with "CAT\, it appears as CATEY

11. Insertions in String Format

a. Blanks or strings may be inserted in the S format.
b. The rules are the same as described for number formats.
c. Examples:

If B3SBB2S Zs used with "12345\, it appears as P123Pp4s.
If 2S"=\3SB <s used with "TIANS\, it appears as TI1=ANSK.

- 140 -

12.

13.

FORMAT (econtd)

Alpha Format

a.

This format item is used to transmit ALGOL basic symbols.
(see INTRODUCTION for a list of basic symbols.)

1) The form of this item is the letter A.

2) The appearance of the letter A as a format item
causes transmission of a single symbol from or to

the data item specified in the list procedure.
3) The symbol will be stored as an integer.

It may be desired to work with symbols transmitted by
the A format. Therefore, a function is provided which
makes any ALGOL symbol type 'INTEGER' and causes the
symbol to have the same value as if it had been read

in using Alpha format.

The function is called EQUIV. Its argument must be an
ALGOL basic symbol enclosed in string quotes, t.e.,
EQUIV('"'BEGIN'\D.

Example:

If A format is used to read an "*" into variable ALG the
statement 'IF' ALG 'EQ' EQUIV ('"¥\) 'THEN' 'GO TO' GOOD
will check that "*" was in fact the symbol which was read

in.

Boolean Format

a.

This format item is used to tramnsmit Boolean quantities.

The item may consist of the letter P or the letter F.

-l -

FORMAT (contd)

e. If P is used and the quantity is true, the number 1 is

transmitted; 1f false, 0 is transmitted.

d. If F is used and the quantity is true the word 'TRUE'
transmitted; if false the word 'FALSE' is transmitted.

e. Input must be in the form specified in e¢. and d.

14. Insexrtions in Boolean Format

a. Blanks or strings may be inserted in the Boolean format.

b. The rules are the same as described for number formats

and for strings.

e. Examples:
If BBPB 7s used with a Boolean variable whose value is
'"TRUE', <t appears as PY1Y.
If "THEPRELATIONFIS\BF <s used with a Boolean variable
whose value is 'FALSE', <t appéar’s as THEPRELATIONPISY'FALSE'.

15, Standard Format

a. A number may be transmitted for input or output without

specifying in a format item the exact form the number is
to take. The number appears on the I/0 device in "standard

format. "

b. If the letter N appears as a format item, it specifies
that a number with standard format is to be transmitted.

e. Standard format for imput may be defined as follows:
1) Any number of digits in any of the forms which are
acceptable to integer or decimal number formats may

be input.

- 142 -

e.

FORMAT (eontd)

2) The number must be terminated by an illegal character,
i.e., one not normally permitted in a number, or by
k blanks where k is a system parameter initially set
~at one. k may be changed by calling the system proce-
dure SYSPARAM (described in Section C.).

If standard format is invoked, and the first line referenced
contains any legal character for a number (i.e., digit,

sign, deeimal point or apostrophe) the right hand margin

will terminate the number. If, however, the first line
contains only nonlegal number characters, the subsequent

lines will be searched until a legal number character is

found. At this point the right hand margin is not significant,
and only an illegal character or k blanks will terminate

the numbenr,

Standard format for output will appear as though the
decimal number format -.16D'+DD had been invoked.

Standard format will be assumed if the end of a format
string is reached while there are data items in the list
procedure still to be transmitted. In this case all the
remaining quantities will be transmitted with standard

format.

If a list of variables is to be terminated but either

1) no reference is made to a FORMAT procedure, or

2) the format call has the form FORMAT ("'\)

the items will be transmitted according to standard format.

- 143 -

16.

17.

FORMAT (contd)

Untranslated Format

Q.

If a quantity is to be transmitted using the internal
machine notation, a format item may consist simply of

an'l an R an E or an L.

The letter to be used is determined as follows:
I for integers,

R for real numbers,

E for extended real numbers,

L for Boolean quantities.

Quantities which are written out using this format must

be read in using the same format.

Aligrnment Marks

a.

These are single characters which cause specific page
operations to occur.

The operations are:

/ go to next line

t go to new page

J go to next tabulation position.

Alignment marks may appear as part of any format item.

If they appear at the left of the item the actions take
place before the format operation. If they appear at the
right, they take place afterwards, i.e., [3S+ causes a
skip to a new line before the string is transmitted and

a skip to a new page after.

- 14k -

18.

FORMAT (eontd)

Alignment marks may also appear as separate format items

stmply by enclosing them in commas.

Any number of alignment marks may appear in succession,
and this causes the specified action to be repeated as
many times as it is indicated, i.e., +t4 causes a page

to be terminated and two pages to be skipped. Also any
mark may be preceded by an integer n, where n indicates
the number of times the action is to be done, 1.e., 4J
causes a skip to the fourth tab position and is equivalent
to JJJdd.

Title Format

a.

This format item is used when it is desired to cause page
alignment and/or the output of imnsertion strings without
transmitting any ALGOL quantities.

This item consists entirely of insertions and alignment

marks and refers to no data items.

On input this item causes characters to be skipped corre-
sponding to the insertion strings and causes the desired

alignment operations to be performed.

On output the insertion strings are transmitted and the

alignment operations are performed.

Examples of title format:

AMSUMMARY\// indicate a new page, an insertion, a line

to be terminated and a line to be skipped.
/V"AMT\J'"'GROSS\JU"'NET\// indicates a new line, an insertion,
a tab, an insertion, a tab, an insertion, a line to be

skipped.

- 145 -

19.

a0,

EXAMPLES:
1 .

2.

FORMAT (contd)

All the format items listed above constitute a format string.

Any format item or any group of format items can be repeated

any number of times by enclosing in parentheses those items

to be repeated and preceding the parentheses by an integer

n indicating the number of repetitions desired, i.e., 3(2Z.D)

causes 3 decimal numbers to be transmitted. If no integer

precedes the parentheses an infinite number of repetitions

18 indicated.

FORMAT("'4D., 2D, 2Z, /P,
"ISPTHEBANS\ +, A\)

FORMAT("7S,2(5Z.D'+ZZ,F),2J\)

- 146 -

This format string transmits

a decimal number and an
integer on one line; on the
next line is a Boolean quantity
specified by a 0 or a 1
followed by an insertion.

Then a skip is made to a

new page and an ALGOL symbol

18 transmitted.

A seven symbol string is
transmitted followed by a
decimal number, a Boolean
quantity, a deecimal number,
a Boolean quantity. Then

two tabulations occur.

3.

FORMAT("'(ZZ.BDT-, BBB+ZZD)\)

- 147 -

FORMAT (contd)

A decimal number and an
integer are transmitted
an indeterminate number
of times, i.e., until the
list of data items is ex-
hausted.

PURPOSE:

FORM:

RULES :

FORMAT »

To describe the form in which data appears on the input
device or is to appear on the output device; to permit
certain elements of the format string to be variable and
to have their values calculated at the time the FORMAT

procedure is called.
FORMAT n(string, xl,xg,...,xn)

n: 1integer
string: string with a
special form

L1sLgseess® & eXPLESSTION

n may be 0,1,2,...,9. This value indicates the number of
x's which appear following the format string.
(Note: The form FORMAT (string) as discussed previously

is simply a special case of this format call in which n=0.)

The form of the string is the same as that discussed for
the procedure call FORMAT (string), with certain additional

features.
The string may contain the letter X in various format items.

The values of the xi's which follow the format string will
replace each X when the FORMAT procedure is called.

- 148 -

FORMAT n (econtd)

4., The letter X may appear in the format string as follows:

a.

c.

In a Number Foymat:
Any Z or D may be preceded by the letter X to indicate

a variable number of repetitions of the Z or D.

Examples:
XZXD - variable integer size
ZZ.XD - variable number of decimal places

.DDD'XD - variable exponent size

In an Insertion:

The letter B may be preceded by an X to indicate a vari-
able number of blank spaces on output or a variable number
of ignored positions on input.

Example:

2ZXB3D.D

In a String Format:

The letter S may be preceded by the letter X to indicate
a vartable number of symbols in the string.

Examples:

XS

BXSB4S

With an Alignment Mark:

t,/ or J may be preceded by the letter X to indicate a
variable number of times the specified alignment action
i8 to be taken.

Examples:

XJDD.DD - variable number of tabulations

'3S2BX/ - variable number of lines to be skipped

- 149 -

FORMAT n (contd)

5. The X's may be used at most 9 times in a single format string.
The integer n in the format call indicates the number of X's
which appear in the string.

6. The L13Tgseses, in the format call represent the integral
values to be assigned to the X's in the string. Lp5&Lgsenesly
must be positive. oy i1s assigned to the first X which appears;
xq to the second, ete.

EXAMPLE:
FORMAT 3 (''ZzXD.D,XBXS\,2,A-5,B) The decimal number will be

transmitted as though it
had been written as ZZ2D.D.
A-5 blanks will precede
the string which will con-

tain B symbols.,

- 150 -

PURPOSE:

FORM:

RULES :

HEND

To specify the procedures which are to be called when the
end of a line is reached during input or output; to permit
special action to be taken depending on what situation

causes the end-of-line condition to occur.
HEND (p1,p2,p3)

pl,p2,p3: procedure identifier

pl is the name of the procedure to be called when a "/"
appears in the format call. This indicates that a new line
18 to begin and is considered the normal case.

p2 is the name of the procedure to be called when a group
of characters is to be transmitted or a tabulation is
specified which would pass the right margin of the current
line as specified by HLIM.

p3 is the name of the procedure to be called when a group
of characters is to be transmitted or a tabulation is
specified which would pass the physical end of the line

due to the characteristics of the I/0 device being used,

but would not pass the right margin as set by HLIM,

Note: This physical end is specified by standard limits set
within the system or a control card to the system, and may
be altered by procedure SYSPARAM,

- 151 -

HEND (contd)

4. If it is desired to take no special action when the end

of a line is reached this procedure call may be omitted.

5. If action is desired for some but not all of the conditions,
dummy procedure names may be used for those requiring no
action.

EXAMPLES :

1. HEND (NORM,OVER,END) a "/" in the format call
causes control to go to
Procedure NORM; if the
right margin is reached
eontrol goes to OVER; if
the physical end-of-line
18 reached control goes
to END.

2. 'BEGIN'...'PROCEDURE' DUMMY;;... Since Procedure DUMMY
.. .HEND (DUMMY, FIN,NEXT);...'END' contains no statements,
no spectal action will
be taken when a "/"
appears in the format
ecall.

- 152 -

HLIM

PURPOSE: To specify the left and right margins of the input or
output lines.

FORM: HLIM (left, right)

left, right: arithmetic expression

RULES:
1. The first parameter specifies the left margin.
2. The second parameter specifies the right margin.
3. There is a restriction that 1 < left < right.

4, If this procedure call is not givensthe left margin is set

to one and the right margin is set to infinity.

EXAMPLES :
1. HLIM (5,50) Left margin is 5, right
margin is 50.
2, HLIM (U-4,K) Left margin is value of

J-4, right is value of K.

- 153 -

NO DATA

PURPOSE: To indicate the procedure which is to be called when a
request is made for data on an input device but no more

data remains.
FORM: NO DATA (p)

p: procedure identifier

RULES:
1. This procedure call applies only to input.

2. If input data is requested by a data transmission proce-
dure when no data remains on the input device, control

will be transferred to procedure p.

8. If NO DATA is not used and the condition deseribed in
Rule 2 arises, control will be transferred to the end of
the program as though a dummy label had been placed just
before the final 'END'.

EXAMPLES :
1. NO DATA (EOF) The procedure EOF is
used when no data exists

on the input device.

- 154 -

'BEGIN'

'PROCEDURE' LAST; 'GOTO' FIND;

NO DATA (LAST);...
"END'

- 155 -

NO DATA (contd)

When no data is found on
the input device, control
goes to procedure LAST
which sends control to
the statement labelled
FIND.

TABULATION

PURPOSE: To set the width of the tabulation field of the I/0 device;
to permit the skipping of a fixed number of positions when-

ever the alignment mark J appears in a format call.

FORM: TABULATION (a)

a: arithmetic expression

RULES :

1. '"g" specifies the number of characters of the foreign
medium which constitute the tabulation field.

2. If the left margin is at position X, the tab positions for
a line are:
X, X+a, X+2a, X+3a, ... , X+ka
The last tab position occurs before or at the same point
as the right margin as specified by HLIM, or at the physical

end of the line, whichever is smallexr.

3. When a "J" appears in a format call, the I/0 device is
spaced to the next tab position.

4. If this procedure call is not given the tabulation spacing

18 one.

- 156 -

EXAMPLES :
1.

2.

TABULATION (15D

TABULATION (A+2-B*C)

- 157 -

TABULATION (contd)

A new tab position ocecurs .

every 16 spaces.

The value of 42-8c
determines the tab

spacing.

PURPOSE:

FORM:

RULES :

VEND

To specify the procedures which are to be called when the
end of a page is reached during input or output; to permit
special action to be taken depending on what situation

causes the end-of-page condition to occur.
VEND (p1,p2,p3)

pl,p2,p3: procedure identifier

pl is the name of the procedure to be called when a "+"
appears in the format call. This indicates that the subse-
quent information is to appear on a new page, and is con-

sidered the normal case.

p2 is the name of the procedure to be called when a group
of characters is to be transmitted which would appear on
the line after the one specified by VLIM as the bottom
margin.

p3 is the name of the procedure to be called when a group
of characters is to be transmitted which would pass the
physical end of the page due to the characteristics of the
I/0 device being used, but would not pass the bottom
margin set by VLIM. Note: This physical end is specified
by standard limits set within the system or a control card
to the system, and may be altered by procedure SYSPARAM.

- 158 -

VEND (contd)

4, If it is desired to take no special action when the end of

a page i8 reached this procedure call may be omitted.

5. If action is desired for some but not all of the conditions,

dummy procedure names may be used for those requiring no

action.

EXAMPLES :
1. VEND (NEW,PAGE 1, PAGE 2)

2. 'BEGIN'...'PROCEDURE' EMPTY;;...

...VEND (OK, FIX,EMPTY);...'END'

- 159 -

Control goes to procedure

NEW when a "t" appears in

the format call; to PAGE 1
when the bottom margin is

reached and to PAGE 2 when
the physical end of the

page is reached.

No action is taken if an
attempt is made to write
beyond the end of the page.

PURPOSE:

FORM:

RULES:

EXAMPLES :
1.

VLIM

To set the vertical layout of a page; to specify how many

lines on a page are to be used.
VLIM (top, ‘bottom)

top, bottom: arithmetic expression

The top line of the page has a value of 1, the second,
2, eta.

The first parameter indicates the first line to be used for

transmission.
The second parameter indicates the last line to be used.
There is a restriction that 1 < top < bottom.

If this procedure call is not given, the first line is set

to one and the last line is set to infinity.

VLIM (10,50) ' Data transmission starts
on line 10 and ends on
line §50.

- 160 -

2'

VLIM (1, TOTAL)

- 161 -

VLIM (contd)

Data transmission starts

~on the first line of a
page, and ends on the line

specified by the value of
TOTAL.

Examples of Layout Procedures:
1. 'PROCEDURE' SET;
"BEGIN'
FORMAT (''3D.2D\);
'IF' A 'EQ' B+2 'THEN'
"BEGIN'
FORMAT ("'ZZZ\);
TABULATION (5)
'END';

VLIM C('IF' A 'EQ" B42 'THEN' 5

'ELSE' 10,50)
'END!

2. 'PROCEDURE' LAYOUT ;
'"BEGIN'

FORMAT(''+,100(ZZD.D, BBD.D'DD),

/ \J;
HLIM(5,60);
HEND(GOOD,OVER, OVER)

TEND';

"PROCEDURE' GOOD; HLIM(5,60);
'"PROCEDURE' OVER; HLIM(15,60)

- 162 -

If A=32 the second format
eall will override the
first, a TAB of 5 will be
set and the vertical margins
will be (5,50). If 4#8° the
first format will be in
effect the TAB will be 1
and the vertiecal margins
will be (10,50).

Whenever line overflow occurs
procedure OVER will change

the horizontal margins.

When the "/!" in the format
call is reached, procedure
GOOD will restore the original

margins.

Data Transmission Procedures

These procedures handle the actual transmission of data for input
and output.

In calling these procedures it is necessary to specify the I/0
device which is to be used for the transmission. For the GE
625/635 operating system a GECOS file control card is required to

indicate the devices to be used.

Files used by ALGOL are restricted to the numeric file codes 014,
to 40,,. 05 18 the standard input file and 06, the standard output
file. These two files do not requive file control ecards in order
to be used. Unless redefined, file 05 indicates GECOS file I*;06

indicates GECOS file P*. Error messages will thus be written on 06.

The point in a program at which the actual I/0 procedure is called
18 when the transmission of data occurs. Layout procedures, if any,
and a list procedure, if any, will be called by the internal I/0
procedures.

- 163 -

PURPOSE:
FORM:
RULES :
1.
2.
3.
40
EXAMPLES :
1.

INLIST

To indicate that data is to be transmitted for input;
to specify the input device, the set-up procedure and the

list procedure.
INLIST (al,ag,ag)

a,:
1
Ay, A gt ‘procedure identifier

arithmetic expression

a, i8 the file number from the GECOS file card which indicates

the specific input device to be used.

| a, is the name of the set-up procedure containing the layout

procedure calls.

ag s the name of the list procedure which contains the data

1tems to be transmitted.

When INLIST is executed, it first calls the layout procedures,
then transfers back and forth to the list procedure while the
actual input is taking place. See Appendix 3 for a detailed
explanation of INLIST.

INLIST (05, ABC, INPT) This statement causes input
to take place on I/0 device
5 according to the layout
procedures in procedure ABC
and according to the list

procedure INPT.

- 164 -

2. 'BEGIN' 'PROCEDURE' START;

'BEGIN'
FORMAT(''+,A,D.D'DD/, ZDD,P\);
VLIM(2,50)

'END';...

'"PROCEDURE' LIST (OK);

'BEGIN'

OKCALPHA); OK(BOY); OKCCOUNT);

OK(BOOLD

- 'END';...
INLIST (7,START,LIST);...
'"END!

- 165 -

INLIST (contd)

This program transmits a
symbol into ALPHA, a real
number into BOY, an integer
into COUNT and a 0 or 1
into BOOL.

PURPOSE:
FORM:
RULES :
1
2 .
3 []
4.
5 .

INPUT 7

To indicate that data is to be transmitted for input;
to provide for data input without using layout procedures
or a list procedure.

INPUT # (a, string, €15€0s 40 ey en)

n: 1integer
a: arithmetic expression
string: format string
€159 0 00581 variable or subscripted

n
variable

. a is the file number from the GECOS file card which indicates

the input device to be used.

The format string is in the same form as the format call

FORMAT (string), Z.e., no X's are allowed in the string.

€15€9s-05€, are the actual data items to be transmitted

according to the format string given.

n may have the value 0,1,2,...,9 and indicates the number of
data items.

The equivalent of this procedure call in terms of INLIST

18 as follows:

- 166 -

INPUT n (contd)

'BEGIN' 'PROCEDURE' LAYOUT; FORMAT (string);
'"PROCEDURE' LIST CITEM);
'"BEGIN' ITEM (e,); ITEM (eg)ieee;
ITEM (e)
n
'END';
INLIST (a,LAYOUT,LIST)
'END!

6. When the only layout procedure required is FORMAT and when
there are nine or fewer items to be transmitted, this simpler
input call may be used instead of INLIST.

EXAMPLES:
1. INPUT 6 (05, "(ZD.D)#\, This transmits 6 values
' A[1], A[2], A[3], A[4], A[5]1, A[6])according to the repeated
format ZD.D
2. INPUT 2 C07,"P,F\, B[1], B[2]D This transmite 1 or 0 into
B, and 'TRUE' or 'FALSE'
into B,.

- 167 -

PURPOSE:
FORM:
RULES :
1.
2.
3.
4.

OUTLIST

To indicate that data is to be transmitted for output;
to specify the output device, the set-up procedure and
the list procedure.

OUTLIST (al,ag,a)

3
a: arithmetic expression

Ags Ayt procedure identifier

a, 18 the file number from the GECOS file card which indicates
the specific output device to be used.

a, is the name of the set-up procedure containing the Llayout

procedure calls,

az is the name of the list procedure which contains the data

1tems to be transmitted.

When OUTLIST is executed, it first calls the layout procedures
then transfers back and forth to the list procedure while the
actual output is taking place. See‘Appendix 3 for a detailed
explanation of OUTLIST.

- 168 -

EXAMPLES:

1, OUTLIST (10,PAGE,LIST)

2. 'BEGIN' 'PROCEDURE' SET;

FORMAT(''3D.D,BZZD, 2B3S/\);

'PROCEDURE' OUT (A);

'BEGIN!

ACTOTALD; ACINTEGER) ; AC''ANS\)D

'END'; ...

OUTLIST(6,SET,0UT);...

'END'

- 169 -

OUTLIST (contd)

This statement causes

output to take place on

I/0 device 10 according

to the layout procedures
in procedure PAGE and
according to the list

procedure LIST.

This program causes the
values of the two variables
TOTAL and INTEGER and the
string ANS to be written

out on device 6,

OUTPUT n

PURPOSE: To tidicate that data is to be transmitted for output;
to provide for data output without using layout procedures
or a list procedure.

FORM: OUTPUT n (a,string, €15€9s 1 nns en)

n: <integer
a: arithmetic expression
string: format string
€75€0s e ves,l arithmetic expression,
Boolean expression or

string

RULES:

1. a is the file number from the GECOS file card which indicates
the output device to be used.

2. The format string is in the same form as the format call
FORMAT (stringl), i.e., no X's are allowed in the string.

3. €1:€9544 4,8, are the actual data items to be transmitted
according to the format string given.

4. n may have the value 0,1,...,9 and indicates the number of
data items. '

- 170 -

OUTPUT n (contd)

5. The equivalent of this procedure call in terms of OUTLIST
18 as follows:

"BEGIN' 'PROCEDURE' LAYOUT; FORMAT (string);
'"PROCEDURE' LIST (ITEM);
'BEGIN' ITEM (e); ITEM (ey);...;
ITEM (e)
'END';
OUTLIST (a, LAYOUT,LIST)
'END'

6. When the only layout procedure required is FORMAT and when
there are nine or fewer items to be transmitted, this
simpler output call may be used instead of OUTLIST.

EXAMPLES :
1. OUTPUT 3 (06,'3(2ZD.DD)\,A,B,C) This statement will cause
3 values of A, B and C to
be transmitted to device

6 according to the format

given.
2. OUTPUT 5 (09,"2(D.D'ZZ), 35, This statement will cause
2BSS, I\, X42-3,Y+42-3,'""TOT\, 2 decimal numbers, 2 strings
AL\, COWNT) and an internal notation

integer to be transmitted.

- 171 -

C. Input/Output Control Procedures

These procedures access system parameters and allow some control

over the positioning of the I/0 devices.

- 172 -

PURPOSE:

FORM:

RULES:

EXAMPLE:

POSITION

To position the specified file to the indicated page and line.
POSITION (el,eg,es)

€1s€9,85° arithmetic expression

e, represents the file from the GECOS file card.
e, is the page number.

ez 18 the line number.

This procedure may be used in conjunction with SYSPARAM to

record information on a file and later make reference to it.
At a particular point in a program, a call on SYSPARAM can
be used to record the current position on a file. At a
later time, if it is desired to return to that point in the
file a call on POSITION giving the relevant page and line

numbers for parameters e, and ez will reposition the file to

2
the desired point. Note: Backpositioning on a unit record
device is undefined; however, such positioning is meaningful
for a wnit record logical device which is assigned to a

magnetic tape (other than SYSOUT).

POSITIONCH,A-5,B) ' Device 4 will be spaced so

that it is prepared to access
the line specified by the value
of B on the page specified by
the value of A-5.

- 173 -

SYSPARAM

PURPOSE: To gain access to certain system parameters so that they

may be modified.
FORM: SYSPARAM (al,az,ag)

A5Gy arithmetic expression

ag: integer variable

RULES:

1. The system parameters which may be changed or read out are:
a. The character, line and page pointers (p, p' and p'")
respectively.
b. The "standard format'" constant determining the number
| of spaces between items (k).
e. The physical end of line (P) and the physical end of
page (P') which are characteristic of the I/0 decive.

2. ay is the file number from the GECOS file card specifying
the I/0 device concerned.

3. a, may have a value of 1,2,...,11. '
a. If the value of a, i¢ 1,3,5,7,9 or 11, the value of the
system parameter in question is assigned to variable az.
b. If the value of a, i8 2,4,6,8 or 10, the value of ag

becomes the new value of the system parameter.

- 174 -

4.

C.

SYSPARAM * (contd)

The action i8 as follows:

if a, =1, agp if a, = 3, pta,
if a, = 3, a3+p' - if a, = 4, p’+a3
if a, = &, az<P if a, = 6, Ptag
if a, = 7y a3+P' if a, = 8, P’*—ag
if a, = 9, a3+k 'Lf a, =10, 7<<—a3

if a, =11, ag«p"

p and p' represent actual positions on the I/0 device which are

to be changed when a

a.

2=2anda2=4.

If ag =2, p 18 tested to see if p<az. If it 18, blanks

are inserted until p = a If p2az a skip to the next

3
line is performed, p is set equal to 0, and blanks are

inserted until p = az.
If a, = 4, p' is tested to see if p'<a3. If it s, lines

are advanced until p' = az. If p'3a3, a skip is made
to a new page, p' is set equal to 0, and lines are

advanced until p' = az.

a, =6 and a, = 8 change the physical limits of the I/0 device

(P and P') where this is possible (Z.e., magnetic tape block

length may be changed and unit record devices may have physical

limits reduced, but not extended beyond the standard limits).

If the limits cannot be changed and these actions are specified,

the statement acts like a dummy statement.

- 175 -

SYSPARAM (contd)

6. a, may also have a value of 21 or 22
a. If the value of a, is 21, the file denoted by a, 18 defined
as an input file.
b. If the value of a, is 22, the file denoted by a, is defined
as an output file.
e. If the value of a, ig 21 or 22, the value of ag i8 not
significant.

7. The condition which requires a, = 21 or 22 only arises when the

intended first action on a pariicular file uses a primitive
procedure or procedure SYSPARAM. If this is the case, the system
does not know the nature of the file and thus a call to SYSPARAM
with a, = 21 or 22 would serve to define the file. e.g., If
the first action with respect to file 6 is to read out the value
of p by a call to SYSPARAM such as

SYSPARAMC06, 1, CHAR)
this call would have to be preceded by a call to SYSPARAM

defining 06 as an output file as follows:

SYSPARAM(06,22,0)
EXAMPLES :

1. SYSPARAM (8, 3,LINENOD On device 8 the value of the
line pointer is assigned
to variable LINENO.

2. SYSPARAM (5,10,3) For device 5 the value of

k is changed to 3, Z.e., 3
or more blanks must follow
a number in standard format.

- 176 -

Primitive Procedures

These procedures are included in the ALGOL language to allow the
other Input/Output procedures to be written in ALGOL.

They are available for use by the programmer but are not intended
to be general purpose routines.

- 177 -

INSYMBOL

PURPOSE: To associate specific ALGOL symbols with specific integers;
to read in a basic symbol from an external device as an

integexr,
FORM: INSYMBOL (e, s, v)

e: arithmetic expression
(called by value)
s: string

v: integer variable

1. The basic symbole contained in the string "s" are given

integer values.

2. The symbols are assigned from left to right to the positive

integers 1,2,3, ete.

3. This procedure acts as follows:

a. It reads in the next symbol from the input device.

b. If it is a basic symbol which appears in the string "s',
the variable v will be assigned the integer value
associated with this symbol.

e. If it is a basic symbol which does not appear in the
string "s", v will receive a value of 0.

d. If the input symbol is not an ALGOL basic symbol, v will

receive a value of minus one.

- 178 -

INSYMBOL (eontd)
If there is no more data on the input device, v will
recetve a value of minus two.
If the string "s" is null, i.e., INSYMBOL (e, ™\ ,v),

v witll receive the standard system value for the basic
symbol. (See Appendix 5).

- 179 -

LENGTH

PURPOSE: To calculate the length of a given string.
FORM: LENGTH (s)

s: string

RULES :
1. The result of this procedure is an integer.

2. It is equal to the number of basic symbols in the string "s"

not including the outermost pair of string quotes.

- 180 -

NAME

PURPOSE: To permit the saving or "remembering" of labels and procedure
identifiers.

FORM: NAME (vl,vz,a,p)

VsVgt integer variable
a: statement label

p: procedure identifier

RULES:

1. If v, has a value of 1, the integer associated with a is
assigned to Vo |

2. If v, has a value of 3, the~integer associated with p is
assigned to V.
3. If v, has a value of 2, control will be transferred to the
label whose value 18 the same as that of Ve
(Note: v,
a previous NAME statement.)

must have been assigned the value of a label by
If v, = 0 the program will be terminated.

4. If v, has a value of 4, control will be transferred to the
procedure whose identifier has the same value as Vg
(Note: v, must have been assigned the value of a procedure
identifier by a previous NAME statement.)
If vy = 0 the procedure will be a cummy procedure.

- 181 -

NAME (eontd)

The association of specific integers with labels and
procedure identifiers holds only in the block in which the
labels or identifiers are declared, i.e., the rules of

scope for ALGOL block structure are obeyed.

- 182 -

OUTSYMBOL

PURPOSE: To associate ALGOL basic symbols with specific integers;
to write out a basic symbol on an external device from

an internally stored integer.

FORM: OUTSYMBOL (e, &, e,)
e15€9! arithmetic expression
(ealled by value)
s: string
RULES:

1. The basic symbols in the string "s" are given integer values.

2. The positive integers 1,2,3, etc. are assigned to the symbols
from left to right; leftmost = 1, next = 2, ete.

3. This procedure acts as follows:

a. It evaluates e, and determines the integer which is

elosest to thii value.

b. If the value has an equivalent in string "s", the basic
symbol corresponding to this value will be written on
the output device.

e. If the value has no equivalent in string '"s" by being
outside the bounds of the string, or if it is8 not a
basic symbol, the symbol ¥ will be written on the output
device. |

d. If the string "s" is null, <.e., OUTSYMBOL (el,"\,éz),_
the standard system values are used to determine the
basic symbol which will be written on the output device.
(See Appendix 5.) "

- 183 -

STRING ELEMENT
PURPOSE: To enable the scanning of a given string (actual or formal)
in a machine independent manner.
FORM: STRING ELEMENT (8,,v,,8,,0,)
§7589¢ string
vl,vg:. variable
RULES:

1, Variable vy determines which symbol of 84 18 referenced, t.e.,
if v, = 1 it is the leftmost symbol; if v, = 2 the next, ete.

2. Once the symbol is chosen, its associated integer is assigned
to variable Ve :
(Note: the associated integer is determined by encoding string

8§, as vas done with the string in the procedure INSYMBOL.)

- 184 -

TYPE

PURPOSE: To determine the type of a number which is to be written
out in standard format.

FORM: TYPE (vl,v)

2

v variable

Uy variable or string

RULES :

1. If v, i8 a string, v, is set equal to 4.

1

2. If vy 18 a variable, v, 18 assigned a different value

depending on the type gf v, as follows:
a. If v,y s 'INTEGER', vy
b. If v,y is 'REAL', v *2.
e. If v, is 'BOOLEAN', v,<3.

d. If v, 18 'EXTENDED REAL', vi+8.

<1,

- 185 -

E. List Procedure
This procedure is written by the programmer to be used with the
I/0 procedures provided by ALGOL.

- 186 -

List procédure

PURPOSE: To list a sequence of quantities to be transmitted for input
or output; this list is used in conjunction with the format
items of a FORMAT call.

FORM: 'PROCEDURE' name (ident); s

name: procedure identifier
ident: identifier
s: simple statement,
eompound statement or
block

RULES:

1. The formal parameter "ident" appears in the body of the list
procedure as a procedure identifier.

2. Each item to be transmitted for input or output appears in the
procedure body as the parameter for procedure ident.
Example:
'PROCEDURE! A(X); 'BEGIN' X(M); X(N); XCP) 'END'

M, N and P are transmitted.

3. When the list procedure is called by a data transmission proce-
dure (INLIST or OUTLIST), an internal system procedure (INITEM
or OUTITEM) will be the actual parameter corresponding to the
formal parameter "ident," and thus will be substituted for
"ident" in the list procedure body.

- 187 -

List procédure (contd)

4. Execution of the list procedure causes the internal system
procedure (INITEM or OUTITEM) to be executed. INITEM or
OUTITEM has as its parameter the item to be transmitted.

5. This parameter may be an arithmetic expression, Boolean
expression or a string for output. However, the parameter

may be only a variable or subscripted variable for input.

6. The item is called by name by the intermal system procedure

and its value is transmitted for input or output.

7. The sequence of statements in the list procedure body deter-
mines the sequence in which the items are transmitted for

input or output.

8. All ALGOL statements are permissible in a list procedure

ineluding a call to one or more of the layout procedures.

EXAMPLES :

1. 'PROCEDURE' LIST (NAMED; The identifier NAME is
'BEGIN' NAME(XD; NAME (Y43%Z); replaced by a system proce-
NAME ("'"TOTAL\) 'END' dure name when the list

procedure is called. X,Y43%*Z
and "TOTAL\ are parameters

to this system procedure and
their values will be trans-
mitted.

2. 'PROCEDURE' MANY (ITEM); The items to be transmitted
'FOR' I<«1 'STEP' 1 'UNTIL' are AI’BZ’AZ’BZ"""AJO’BIO'

10 'DO' 'BEGIN' ITEM CA[I]D;
ITEM (B[I]) 'END!

- 188 -

APPENDIX 1

- 189 -

RESERVED IDENTIFIERS

The following list enumerates reserved identifiers. These identify

funetions and procedures which are available without explicit declara-
tions. These functions and procedures are assumed to be declared in a
block external to the program. However, a programmer may redeclare a

reserved identifier, in which case the reserved meaning is superseded.

The reserved identifiers are as follows:

ABS ~ HLIM : OUTPUT 2
ARCTAN INLIST OUTPUT 3
BAD DATA INPUT 0 OUTPUT 4
CoS INPUT 1 OUTPUT 5
ENTIER INPUT 2 OUTPUT 6
EQUIV INPUT 3 OUTPUT 7
EXP INPUT 4 OUTPUT 8
FORMAT INPUT 5 OUTPUT 9
FORMAT 0 INPUT 6 OUTSYMBOL
FORMAT 1 INPUT 7 POSITION
FORMAT 2 INPUT 8 SIGN
FORMAT 3 INPUT 9 SIN
FORMAT 4 INSYMBOL SQRT
FORMAT 5 LENGTH STRINGELEMENT
FORMAT 6 LN SYSPARAM
FORMAT 7 NAME TABULATION
FORMAT 8 NO DATA TYPE
FORMAT 9 OUTLIST VEND
HEND OUTPUT 0 VLIM
OUTPUT 1

- 190 -

" APPENDIX 2

- 191 -

MATHEMATICAL FUNCTIONS

Form Description

ABS(e) absolute value of the expression e
ARCTANCe) prineipal value of the arctangent of e
cos(e)d cosine of e

ENTIER(Ce) the integral part of e

EXPCe) exponential function of e

LNCe) ‘ . natural logarithm of e

SIGNCe) sign of e (+1 if e>0, 0 if e = 0, -1 if e<o)
SINCe) sine of e

SQRTCe) square root of e

These functions are available without explicit declarations. They are
assumed to be declared in a block external to the program. However,

a programmer may redeclare a mathematical funection identifier, in which
case the standard meaning is superseded.

These functions accept parameters of types 'REAL', 'EXTENDED REAL' and
'INTEGER'. They all yield values of type 'EXTENDED REAL', except for

ENTIERCe) and SIGN(e) which yield values of type 'INTEGER'.

The parameters of these functions are treated as 'VALUE' parameters.

- 192 -

"APPENDIX 3

- 193 -

. DETAILED EXPLANATION OF INLIST

Let us assume:
INLIST has been called.

1,

Lines 1,2,...,p' of the current page have been read.

Characters 1,2..,p of the current line (line p' + 1) have

been read.

At the beginning of the program p = p' = 0,

Symbols P and P' denote line size and page size respectively.

There are eight hidden variables H1, H2,...H8 which correspond

to the eight layout procedures as follows:

H1
H2
H3
H4
H5
H6
H7
H8

FORMAT

H LIM

V LIM

H END

V END
TABULATION
NO DATA .
BAD DATA

The left margin of H LIM <s L.
The right margin of H LIM <s R.
The top margin of V LIM s L'.
The bottom margin of V LIM <s R'.

- 194 -

STEP 1. (Initialization)
The hidden variables are set to standard values:
H1 18 set to the "standard" format.
H2 18 set so that L = 1, R = o,
H3 18 set so that L' = 1, R' = =,
H4 is set so that the three parameters are all effectively equal
to the dummy procedure defined as follows: 'PROCEDURE' DUMMY; ;.
H5 is set so that the three parameters are all effectively
| equal to the dummy procedure; DUMMY,
H6 1s set so that TAB = 1.
H? is set to terminate the program in case the data ends.
H8 is set to terminate the program if an unacceptable character

18 received for format translation.

STEP 2. (Layout)

The layout procedure is called; this may change some of the variables

H1, H2, H3, H4, H5, H6, H7, H8. Sét T to 'FALSE'. (T is a Boolean vari-
able used to control the sequencing of data with respect to title formats;
T = 'TRUE' means a value has been requested of the procedure which has

not yet been input.)

STEP 3. (Communication with List Procedure)

The next format item of the fovmat string is examined. (Note: after
the format string is exhausted, "standard" format is used from then on
until the end of the procedure. In particular, if the format string

18 "\, standard format is used throughout.) Now <if the next format item
is a title format, that is, requires no data item, we proceed directly
to Step 4. If T = 'TRUE', proceed to Step 4. Otherwise, the list
procedure, is activated. This is done the first time by calling the

list procedure, using as actual parameter a procedure named IN ITEM.

- 195 -

This is done on all subsequent times by mérely returning from the proce-
dure IN ITEM which will cause the list procedure to be continued from the
latest IN ITEM call. (Note: the identifier IN ITEM has scope local to

IN LIST so a programmer may not call this procedure dirvectly.) After the
list procedure has been activated in this way, it will either terminate

or will call the procedure IN ITEM. 1In the former case, the input process
is completed; in the latter case, T is set to 'TRUE'. Then any assignments
to hidden variables that the list procedure may have invoked will cause
adjustment to the variables H1, H2, H3, H4, H5, H6, H7, H8, (which are
local to IN ITEM). We then continue at Step 4.

STEP 4. (Alignment Marks)
If the next format item includes alignment marks at its left, remove them
from the format and execute process A (a subroutine below) for each "/,

process B for each "+", and process C for each "J'".

STEP 5. (Get within Margins)

Execute process G to ensure proper page and line qlignment.

STEP 6. (Prmatting for Input)
Take the next item from the format string.

NOTES:

In unusual cases, the list procedure or an overflow procedure may have

called the descriptive procedure FORMAT thereby changing the format
string. In such cases, the new format string is examined from the
beginning; and it is conceivable that the format items examined in

Steps 3, 4, and 6 might be three different formats. But at this point
the current format item is effectively removed from the format string
and copied elsewhere so that the format string itself, possibly changed
by further calls of FORMAT, Will not be interrogated until the next
occurrence of Step 8.

- 196 -

Alignment marks at the left of the format item are ignored. If the
format item is not composed only of alignment marks and insertions, the
value of T is examined. If T = 'FALSE', undefined action takes place
(the programmer has substituted a nontitle format for a title format

in an overflow procedure, and this is not allowed). Otherwise, T is
set to 'FALSE'. If the format item is "A" or "N'", set s = 1 and go

to Step 7; otherwise, the number of characters, s, needed to input the
format item for the present medium is determined, and it is assumed that
the same number of character positions will be used in the input medium
for this item.

STEP 7. (Check for Overflow)

If the present item uses "N" format, the character positions p + 1,

p+ 2,... are examined until either a proper termination of the number
has been found, or position min (R,P) has been reached with no sign,
digit, decimal point, or "'" encountered. In the former case, set s to
the number of character positions occupied by the number, including
preceding and embedded blanks and the termmination character, and then

go to Step 9; in the latter case, go to Step 8 with p = min (R,P).

If the present item uses "A" format, the character position p + 1 is
examined, if it contains "y", set p = min (R,P) and go to Step 8,
otherwise input characters starting from position p + 1 until a basic
symbol has been input. Set s to the number of characters denoting the
basic symbol and go to Step 9. Finally, if neither "N" nor "A" format
18 used, go to Step 8 or Step 9 according as p + s > min (R,P) or not.

- 197 -

STEP 8, (Processing of Overflow)

Perform process H (p + s). Then proceed as follows:
"§" format: Input characters until either finding a number followed
by a proper termination (go to Step 9) or until reaching position
min (R,P). In the latter case, a partial number may have been
examined; repeat Step 8 until a number properly terminated has been
input. In the former case, set s to the number of positions occupied
by that portion of the number lying to the right of p, ineluding

embedded blanks and the termination character, then go to Step 9.

"A" format: Input characters as with "N" format until a basic
symbol has been input. (This basic symbol necessarily takes several

character positions on the medium.)

Other: Ifp +s <Randp + 8 < P, go to Step 9; otherwise input
k = min (R,P) - p characters, set p = min (R,P), decrease s by k,
and repeat this step.

STEP 9. (Finish the Item)

If neither "A" nor "N" format is being used, input s characters. Determine
the value of the item that was input here, or Steps 7 and 8 in case of

"AM or "N" format, using the rules of format. Assign this value to the

actual parameter of IN ITEM unless a title format was specified. Increase
p by s.

Any alignment marks at the right of the format item now cause activation
of process A for each "/", process B for each "+", and process C for each
"J", Returm to Step 3.

- 198 -

PROCESS A. ("/" Operation)

Check page alignment with process F, then execute process D and call
procedure pl of H END, '

PROCESS B, ("+" Operation)
If p > 0y execute process D and call procedure pl of H END. Then execute
process E and call procedure pl of V- END,

PROCESS ¢. ("J" Operation)

Check page and line alignment with process G. Then let k = ((p - L + 1)%
TAB + 1) x TAB + L - 1 (the next "tab" setting for p), where TAB is the
"tab" spacing for this channel. If k > min (R,P), perform process H(Kk);

otherwise skip over character positions until p = k.

PROCESS D. (New Line)

Skip the input medium to the next "line," set p

0, and set p' =p' + 1.

PROCESS E. (New Page)
Skip the input medium to the next 'page," and set p = 0.

PROCESS F. (Page Alignment)

If p' + 1 < L', execute process D until p' = L' - 1.

If p' + 1 > R', execute process E, call procedure p2 of V END and repeat
process F,

If p' + 1 > P!, execute process E, call procedure p3 of V END and repeat
process F.

This process must terminate because 1 < L' <R'"and 1 < L' <P'. If a
prugrammer chooses a value of L' > p!', L' ig set equal to 1.

- 199 -

PROCESS G. (Page and Line Aligrment)

Execute process F. Then,

If p+ 1 <L, skip over character positions until p + 1 = L.

If p+1>Rorp+ 1 >P, perform process H (p + 1).

This process must terminate because 1 <L < Rand 1 <L <P. If a
programmer chooses a value of L > P, L is set equal to 1.

PROCESS H(k). (Line Overflow)
Perform process D. If k > R, call procedure p2 of H END; otherwise

call p8. Then perform process G to ensure page and line alignment.

Note: Upon return from any of the overflow procedures, and assignments

to hidden variables that have been made by calls on descriptive procedures
will cause adjustment to the corresponding variables H1, H2, H3, H4, HS5,
H6, H7, H8.

EXAMPLE;

Notice that the programmer has the ability to determine the presence of

absence of data on a card when using standard format, because of the

way overflow is defiﬁed. The following program, for example, will count
the number n of data items on a single input card and will read them into
Al1l, Al2]1,...,A[n]. (Assume wunit 5 i8 a card reader.)

'"PROCEDURE' LAY; H END (EXIT, EXIT, EXIT);
'"PROCEDURE' LIST CITEM); ITEM CA[N+11);
'"PROCEDURE' EXIT; 'GO TO' L2;

N<0; LI: INLIST (5, LAY, LIST);

N<N + 1; 'GO TO' LI;

L2:;

- 200 -

" 'DETAILED EXPLANATION OF OUTLIST

Let us assume:

1.

2.

OUTLIST has been called.
Lines 1,2,...,p' of the current page have been completed.

Characters 1,2,...,p of the current line (line p' + 1) have
been completed.

At the beginning of the program p = p' = 0.

Symbols P and P' denote the line size and page size respec-
tively.

There are eight hidden variables H1,H2,...,H8 which correspond
to the eight layout procedures as follows:

H1 - FORMAT

H2 - H LIM

H3 - V LIM

H4 - H END

H5 - V END

'H6 - TABULATION
H? - NO DATA

H8 - BAD DATA

The left margin of H LIM Zge L.
The right margin of H LIM g R.
The top margin of V LIM s L'.
The bottom margin of V LIM ig R'.

- 201 -

STEP 1. (initialization)
The hidden variables are set to the following standard values:
H1 is set to the '"'standard" format.
H2 is set so that L = 1, R = =,
H3 is set so that L' = 1, R' = o=,
H4 is set so that the three parameters are all effectively equal
to the dummy procedure defined as follows: 'PROCEDURE' DUMMY;;.
H5 is set so that the three parameters are all effectively equal
to the dummy procedure, DUMMY.
HE is set so that TAB = 1.

STEP 2. (Set-Up)

The set-up procedure is cqlled; this may change some of the variables
H1, H2, H3, H4, H5, H6. Set T to 'FALSE'. (T is a Boolean variable
used to control the sequencing of data with respect to title formate;
T = '"TRUE' means a value has been transmitted to the procedure which
has not yet been output.)

STEP 3. (Communication with List Procedure)

The next format item of the formt string is examined. (Note: gfter

the format string is exhausted, "standard" format is used from then

on until the end of the procedure. In particular, if the format string
is "\, standard format is used throughout.) Now if the next format item
is a title format, that is, requires no data item, we proceed directly
to Step 4. If T = 'TRUE' proceed to Step 4. Otherwise, the list proce-. =
dure is activated; this is done the first time by calling the list
procedure, using as actual parameter a procedure named OUT ITEM; this is
done on subsequent times by merely returning from the procedure OUT ITEM,
which will cause the list procedure to be continued from the latest

OUT ITEM call.

- 202 -

(Note: the identifier OUT ITEM has scope local to OUT LIST, so a
programmer may not call this procedure dirvectly.) After the list
procedure has been activated in this way, it will either terminate
or will call the procedure OUT ITEM. In the former case, the output
process ig completed; in the latter case, T is8 set to 'TRUE' and any
assignments to hidden variables that the list procedure may have
invoked will cause adjustment to the variables H1, H2, H3, H4, H5, HE
(which are local to OUT ITEM) and we then continue to Step 4.

STEP 4. (Alignment Marks)
If the next format item includes alignment marks at its left remove them
from the fovmat and execute process A (a subroutine below) for each "[",

process B for each "4", and process C for each "J'.

STEP 5. (Get Within Margins)

Execute process G to ensure proper page and line alignment.

STEP 6. (Formatting the Output)
Take. the next item from the format string.

NOTES:

In unusual cases, the list procedure or an overflow procedure may have

called the descriptive procedure FORMAT, thereby changing the format
string. In such cases, the new format string is examined from the
beginning, and it is conceivable that the format items examined in
Steps 3, 4, 6 might be three different formats. But at this point the
current format item ie effectively removed from the format string and
ecpied elsewhere, so that the format string itself, possibly changed
by further calls of FORMAT, will not be interrogated until the next
oceurrence of Step 3.

- 203 -

Alignment marks at the left of the format item are ignored. If the
format item is not composed only of alignment marks and insertions,

the value of T i8 examined., If T = 'FALSE', undefined action takes
place (the programmer has substituted a nontitle format for a title
format in an overflow procedure, and this is not allowed). Otherwise,
the output item is evaluated and T 18 set to 'FALSE'. Now the rules
of format are applied, and the characters X Xgeo ok, which represent the
formatted output on the external medium are determined. (Note that
the number of characters, 8, may depend on the value being output,
using "A" or "S" format, as well as on the output medium.)

STEP 7.. (Check for Overflow)

If p+8 <Randp + 8 < P, where s i8 the size of the item as deter-
mined in Step 6, the item will fit on thie line, so go on to Step 3.
Otherwise, if the present item uses "A" format, output a special symbol
""" which 18 recognizably not a basic symbol; this is dome to ensure

the input will be inverse to output. Go to Step 8.

STEP 8. (Processing of Overflow)

Perform process H (p + 8). Then, if p+8 <Randp + 8 < P, go to
Step 9; otherwise let k = min (R,P) - p. Output X;X,...X;, set p = min
(R,P) and then let X_X
repeat Step 8.

Kok 4= Xpg Xipgr+oXge Decrease 8 by k and

STEP 9. (Finish the Item)
Output X Xgo.. X, and inerease p by s. Any alignment marks at the right
of the format item now cause activation of process A for each "/",

process B for each "t", and process C for each "J". Return to Step 8.

_ 204 -

PROCESS A. ("/" Operation)
Check page alignment with process F, then execute process D and call
procedure pl of HEND.

PROCESS B. ("+" Operation)
If p > 0, execute process D and call procedure pl of HEND. Then execute
process E and call procedure pl of VEND.

PROCESS C. ("J" Operation)

Check page and line alignment with process G. Then let k = ((p-I+1) %
TAB + 1) x TAB + L - 1 (the next "tab" setting for p), where TAB is the
"tab" spacing for this channel. If k > min (R,P), perform process H(k);
otherwise effectively insert blanks until p = k.

PROCESS D. (New Line)
Skip the output medium to the next "line," set p = 0, and set p' =p' + 1.

PROCESS E. (New Page)
Skip the output medium to the next "page," and set p' = 0.

PROCESS F. (Page Alignment)

If p' +1 < L' execute process D until p' = L' - 1. Ifp'+ 1 >R,
.tecute process E, call procedure p2 of V END, and repeat process F.
If p' + 1 > P!, execute process E, call procedure p3 of V END and
repeat process F.

This process must terminate because 1 < L' <R'and 1 <[¢ P'. If a
p ogrammer chooses a value of L' > P', L' is set equal to 1.

- 205 -

PROCESS G. (Page and Line Alignment)

Execute process F. Then if p + 1 < L, effectively output blank spaces
until p + 1 = L,

Ifp+1>Rorp+ 1>P, perform process H (p + 1).

This process must terminate because 1 < L < Rand 1 <L < P. If a

programmer chooses a value of L > P, L 18 set equal to 1.

PROCESS H(k). (Line Overflow) :
Perform process D. If k > R, call procedure p2 of H END; otherwise,
eall procedure p3 of H END. Then perform process G to ensure page and

line alignment. Note: upon return from any of the overflow procedures,
any assignments to hidden variables that have been made by calls on
deseriptive procedures will cause adjustment to the corresponding
variables H1, H2, H3, H4, HS5, H6.

- 206 -

APPENDIX 4

- 207 -

PROCEDURES FOR PREPARING ALGOL PROGRAMS
FOR COMPILATION AND EXECUTION

An ALGOL compilation will consist of either a block or a procedure
declaration. In the first case what is produced is a free-standing
program which may call external procedures but which is assumed to
operate otherwise as a free-standing program. In the second case
the result is a separately compiled procedure which may be called
by another program.

In either case, the program is keypunched and submitted to the
6256/35 computer following a control card of the form:
col. 1 . 8 16
S ALGOL OPTIONS

where the following options are allowed

LSTIN An input iisting will be furnished

NLSTIN No imput listing will be furnished

DECK A binary program deck will be output

NDECK No binary program deck will be output

COMDK A comdeck of the source program will be output

NCOMDK No comdeck of the source program will be produced

where the underlined options are assumed in the absence of information

to the contrary.

For the case in which a procedure is being compiled by itself, it is
possible to redefine the procedure name for purposes of external refer-
ence. This is accomplished by using the ALGOL word 'RENAME' followed

by a string of six or fewer characters which defines the desired external
name or SYMDEF. The rename string may consist only of alphabetics,
numerics and the decimal point. This construct, if used, must immediately

follow the formal parameter list.

EXAMPLE:
col. 1 8 16
$ ALGOL ~ OPTIONS
'"PROCEDURE' INPUT 0Cunit, string); 'RENAME' " AOIPT ;
'"VALUE' unit; 'INTEGER' wnit;
'BEGIN!

The above example defines the begimning of the job deck for a proce-
dure, INPUT 0, being compiled by itself. Within this procedure all
references to itself, as in recursive ealls or passage as an actual
parameter, would be to INPUT 0. The symbolie for a SYMREF in any
other program desiring to reference this procedure would have to be
JAOIPT,

To run an ALGOL execution activity the following deck setup is required:

$ OPTION ALGOL, options
{: binary decks or ALGOL compilations
as defined above
EXECUTE

$
{:$ FFILE :}
$ < Physical device assignment >

The $ OPTION card with option ALGOL is required for every execution
activity containing at least one deck produced by the ALGOL compiler.
It must be the first card of the execution activity. Other options,

as desired, may be used on this card but ALGOL is required.

The $ FFILE and < Physical device assignment > cards are enclosed in
braces to indicate they may or may not be required for a particular
activity. Cards of the form $ TAPE, DISC, PRINTER (as desiribed in

the GECOS manual) define physical devices which are to be associated
with files referenced in the ALGOL program through calls on the input
output data transmission procedures. A card of this type is required
for every referenced file other than 05 and 06 and {rput files produced
with the $ DATA card.

- 209 -

The § FFILE card, as described in the GECOS manual, provides fine control
over the characteristies of each logical field. With respect to an
ALGOL activity, the option DSTCOD should be considered. It is of the
form:

DSTCOD/XXX

where XXX may be any of the following:
Mnemonie Device
PRNTR Line Printer
BCRDR Card Reader (Binary)
DCRDR Card Reader (Decimal)
BCPNCH Card Punch (Binary)
DCPNCH Card Punch (Decimal)
MTAPE Magnetic Tape
DISC Disk
DRUM - Drum

The destination code subfield (DSTCOD) defines the type of logical device
which is to be associated with a file, independent of the physical device
on which the file may reside. In this way the system limits, i.e., P
and P' for a file are defined. For example, to produce a listing file
which must be saved on tape for future reference a $ TAPE card would
provide the physical assignment and § FFILE nn, DSTCOD/PRNTR would define
the output as destined for a line printer. In the absence of the FFILE
card or the DSTCOD subfield the logical device will be assumed the same
as the physical device.

- 210 -

" APPENDIX 6

- 211 -

SYMBOL

WONOWUVMIEIEWNRHRONXXEIELCANAOO TVTOZIIrRL—=IOTMMOO @D

BASIC SYMBOLS WITH EQUIVALENT INTERNAL INTEGER VALUES

VALUE

32
33
34
36
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
o4
56
56
57

0

WDV UGN o

509
510
1656
167
168
169
170
171
160
161
162

- 212 '-

SYMBOL
"GQ"

'GR'
lNQt
'EQV'
'IMP!
IORI
'AND'
'NOT!

LX)

Dt =\ M\ e

-

= 4

'ARRAY !
'BEGIN'
'BOOLEAN'
'CODE'

' COMMENT
IDO!
'ELSE'
'END!
'EXTENDED REAL'
'"FOR!

'GOo TO!
|IFI
'INTEGER'
"LABEL'
"NONLOCAL'
TOWN'?
'PROCEDURE!
'REAL'
'RENAME'!
'STEP!
'STRING'
'SWITCH!
'"THEN!
TUNTIL!
'"VALUE'
'"WHILE'

VALUE
1638
164
159
154
156
156
157
158
511
172
178
176
152
174
153
173
182
183
510
144
181
134
128
138
140
180
148
151
175
131
143
142
149
132
138
141
129
135
130
184
145
139
136
150
146
137
147

- INDEX

- 213 -

Arithmetic expression 24, 27 . "NONLOCAL'

Arithmetic operators 4, 24, 25, 26, 29 TOWN'

'ARRAY' 89, 92 Primitive procedures
'"ARRAY' declaration 7, 88 '"PROCEDURE' declaration
Array identifier 20 - - Procedure identifier
Assignment statement .6, 39 Procedure statement
Baste symbols 3, 178, 183 Punctuation

'BEGIN!' 9, 10, 121, 1238 Real number

Block 9, 10, 125 Relation operators
'BOOLEAN' 89, 116 . ' RENAME '

Boolean expression 27, 29, 30) statement

'CODE' 108 'STEP' clause
Comments 13 String

Compound statement 121 . :

Conditional designator 31, 78, 112 'SWITCH!'

Conditional statement 6, 49 'SWITCH' declaration
Data transmission procedure 126, 163 Switch designator

Declaration 3 :
Designational expression 31, 112 'THEN!
'DO' 65, 67, 70, 72

Dummy statement 6, 62 : .
'ELSE' 43, 45, 47, 52, 54, 56, 58, 60, 78 VUNTIL'

92, 118, 124

20, 82, 94

21, 89, 116
4, 27, 28, 29

Subscripted variable 23, 24, 27

30, 76, 78, 11:
20, 76, 112

43, 45, 47, 50, 52, 54,
56, 58, 60, 78

Type declaration

Switeh identifier

23, 24, 27, 116

'ENDY 9, 10, 121, 123 : "VALUE!
Extended real number 22, 89, 116 Variable
'FOR' statement 6, 64 '"WHILE' elause

Formats for I/O 132
numbers 132, 149
integer 132
decimal 134
decimgl with exponent 136
oetal 137
insertions 138, 140, 142, 149
strings 140, 149
alpha 141
Boolean 141
standard format 142
untranslated 144
alignment marks 144, 149
titles . 145
Funetion definition 104
'GO TO' statement 6, 74
identifier 20, 123
'IF' clause 27, 29, 43, 45, 47, 50, 52, 54,
56, 58, 60, 78
I/0 control procedures 127, 172
I/0 devices, physical characteristics 128, 174
Integer 20, 89, 116
Labels 30, 75, 63, 78, 112, 123,
Layout procedures 126, 128, 162
List procedure 127, 186
Logical operators 4, 27, 28, 29
Logical values &, 27

- 214 -

LITHO U.S.A.

Progress /s Ovr Most Important Prodvct

GENERAL @B ELECTRIC

INFORMATION SYSTEMS DIVISION

«
ey

