
GENERlL ELECTRIC
COMPUTERS

6E-625/635 JOVIAL

USER'S INFORMATION

PRELIMINARY

March 1967

G E - 625 / 635 J 0 V I A L

USE R T SIN FOR MAT ION

The data, analyses, programs, or other material con
tained or .used herein is preliminary information
relating to programming and computer applications
and is supplied to interested persons without repre
sentation or warranty as to its content, accuracy,
or freedom from defects or errors. The General
Electric Company therefore assumes no responsibility
and shall not be liable for damages arising from the
supply or use of such data, analyses, programs, or
other material contained herein.

March 1967

GENERAL fJ ELECTRIC
INFORMATION SYSTEMS DIVISION

© 1967 by General Electric Company

PREFACE

This publication is an interim document \vhich contains informa

tion on how to use the GE-625/635 JOVIAL compiler under the

control of the GECOS operating system. It provides the infor

mation necessary to set up a deck for compilation and sub

sequently to execute the compiled program. An extended

explanation of each error message produced by the compiler is

included, although this is needed in only a few cases.

For a concise description of the J3 JOVIAL language implemented

on the GE-625/635 computer, the user should refer to JOVIAL

Compiler Programming Reference Manual, CPB-120l. Additional

helpful information can be found in GE-625/635 General Loader,

CPB-1008 and GE-625/635 Programming Reference Manual, CPB-1004.

This, when combined with the user information contained here

and a working knowledge of the GECOS operating system, should

enable an experienced programmer to write and debug JOV~L

programs on the GE-625/635.

Chapter 1 discusses the three phases of the JOVIAL compiler

and gives information concerning error detection and debugging.

Chapter 2 describes the processes and procedures involved in

a JOVIAL compilation. The appendixes provide supplemental
information.

Suggestions and criticisms relative to form, content, purpose,
or use of this manual are invited. Comments may be sent on the

Document Review Sheet,in 1;he back of this manual or may be

addressed directly to Engineering Publications Standards, B-90,

Computer Equipment Department, General Electric Company,

13430 North Black Canyon Highway, Phoenix, Arizona 85029.

CONTENTS
Page

1. THE JOVIAL SYSTEM 1

The Compiler 1

Phas e One 1

Phase Two 1

Phase Three 2

Error Detection 2

Object Code Debug 3

2. JOVIAL COMPILATION 4

Input 4

Control Information 4

Source Language 5

Deck Identification 5

Output 6

Listings 9.......... 6

Bi nary Output 8

APPENDIXES

APPENDIX A. JOVIAL COMPILATION ERROR MESSAGES 10

APPENDIX B. OBJECT CODE DEBUG OPTION 22

APPENDIX C. COMPOOL....... 23

APPENDIX D. DIRECT CODE•................ 27

APPENDIX E. RESTRICTIONS 30

APPENDIX F. FILE STATUSES AND I/O FUNCTION CODES 31

iii

Figure

1.

2.

3.

4.

5.

6.

ILLUSTRATIONS

Source Language Listing

Object Code Listing

Usage Error Example

Syntax Error Example•.

COMPOOL Generation Deck Setup

COMPOOL. Use

iv

Page

7

9

11

12

25

26

I. THE JOVIAL SYSTEM

THE COMPILER

The GE-625/635 JOVIAL compiler comprises three programs,

which are called phases. Each phase operates on the entire

JOVIAL program to be compiled and then passes its accrued

information on to the next phase, either by leaving this

accumulated data in common storage, if space requirements

permit, or by leaving portions in common storage and using

I/O devices for the remainder.

Phase One

In phase one, each complete JOVIAL statement is processed

through that phase before the next statement is examined.

Phase one converts the JOVIAL statement to a form called

Polish notation, which is derived from the syntax or gram

matical rules of the language. Each statement remains in

this type of notation through the rest of the compilation
process. It is this Polish notation which can be temporarily

stored on I/O devices between phases. The data descriptions

and actual preset data remain in store* from phase to phase.

Phase Two

Phase two takes each statement, now in Polish, and processes

it along with contiguous statements that constitute a logical

set. This phase processes by blocks of code rather than by

.single statements. This allows certain optimization of code

across statements, which the programmer may recognize upon

examining the machine code produced. The information necessary

to produce binary code is passed from phase two to phase three.

Again, if necessary, temporary I/O storage may be utilized.

'kln conformity with the IFIP/ICC vocabulary, the device

formerly called "memory" is now called "store."

-1-

Phase Three

Phase three, in essence, is the assembly portion of the compiler.

It converts the output from phase two into machine code

instructions for printing and into a binary card image file

for immediate or later execution or both.

In accordance with system requirements, the compiler will

accept one program for compilation for each $JOVIAL card input

to the GECOS system. The input is in the form of JOVIAL

statements on cards and the output is an optional binary deck

for later execution, and an optional binary file for immediate

execution, and optional listings are produced for the source

input and the machine code output. This information is described

in detail in subsequent sections.

ERROR DETECTION

All phases of compilation have error detection. Syntactical

errors and semantic errors are noted by error messages. The

compiler error detection is related to the programmer by terse

statements. If an error is found during phase one, the error

message follows the JOVIAL statement. Errors found during

phase two cause error messages to be grouped at the end of the

source listing. All error messages have JOVIAL statement numbers

associated with them, and those detected in phase one have an

arrow pointing to the column of input data that the compiler

interprets as the cause of the error.

Also associated with the error message in phase one is a number

giving the approximate character position within the statement

where the error was detected. This number is used to determine

the line position within a multicard statement. The arrow and

character count may not always be accurate because of the tree

or branch method of determining the syntax of a statement, but

when considered with the error message, they are sufficient to

locate the error. These error messages are described in Appen

dix A.

-2-

OBJECT CODE DEBUG

By specifying the proper option on the $JOVIAL card, a programmer
may have the compiler build DEBUG SYMBOL TABLE cards. This

information is, in turn, used by the system loader to provide
debug information at execution time. This option is discussed
fully in Appendix B.

-3-

2. JOVIAL COMPILATION

INPUT

Control Information

The compiler control parameters are input by the GECOS system

control card used to initiate a JOVIAL compilation. Any of

the following parameters may be present or absent from the

control card. Parameters must start in column 16, be separated

by commas, and may appear in any order. When a parameter is

omitted, the predetermined value of the pair of values is

assumed. The underlined parameter for each pair in the follow
ing list is the one assumed.

DECK Produce a binary deck for later execution
NDECK Do not produce the deck

LSTIN Produce a iisting of the source program
NLSTIN Do not produce the listing

LSTOU Produce a binary symbolic (GMAP) listing of the
compiled program

NLSTOU Do not produce the listing

'COMDK Produce a compressed source deck from the input deck
NCOMDK Do not produce the deck

DEBUG Produce a DEBUG SYMBOL TABLE for optional use by the
system loader at execution time

NDEBUG Do not produce the table

The following is an example of a JOVIAL control card. The

assumed values in this case are DECK, LSTIN, and NDEBUG.

-4-

Source Language

Card Format. The JOVIAL source card has a free-field format

from column 1 to 72. Columns 73 to 80 are reserved for deck

identification and sequencing and are listed by the compiler.

Column 72 of one card and column 1 of the next card are con

sidered to be contiguous. No source card may have a $ in

column 1. Direct code formats are shown in Appendix D.

Progra@ Format. The first statement in a JOVIAL program must

be a START. The last statement must be a TERM$.

Deck Identification

Immediately pre~e~~~g the START card in the user's deck,

there must be an identification card. The compiler uses this

card to create a SYMDEF to be used by GELOAD. There are

three types of source input to the compiler: a program, a

procedure, and data to generate a COMPOOL. (See Appendix C.)

The format of the identification card for each of these is

described below.

Columns 1 to 6 contain PROGRM. Columns 8 to 13 may be

'blank or may contain a name of six characters or less, left

justified, to be used as the SYMDEF. If no name is present,

a SYMDEF of six periods is created.

Procedure

Columns 1 to 6 contain PROCED. No other identification

is necessary. The name of the procedure is used as the

SYMDEF.

-5-

COMPOOL Generation

Columns 1 to 6 contain GENCOM.

OUTPUT

Listings

There are three kinds of printer listings:

Source Language Listing. The source language listing consists

of one-line-per-card replication of the JOVIAL input deck.

(See Figure 1.)

Each line of source output has a number at the left-hand

margin. This is the statement number of the last statement

begun on that line. Statement numbering begins with zero for

the START card. There also is a number at the right margin

of the listing. This is a one for one input card count for

altering purposes.

Object Code Listing. There is an object code listing that

corresponds to the output of the compiler. (See Figure 2.)

The object code listing resembles an assembly program listing,

and the following fields are located from left to right on the
page.

(1) Store location. This is relative to a base address

of 0 since this is a relocatable binary deck.

(2) Octal representation of binary (12 digits).

(3) Octal representation of relocatable bits.

-6-

0238 SRIO. IF HH $ 0203
0240 BEGIN TTCAP = TTCAP+TCAP $ 0204
0242 CaMP = CC(B) $ YES(B) = 1 $ 0205
0246 PRNT $ CAP = 0 $ TCAP = 0 $ HH = 0 $ 0206

I 0247 GOTO SR2 $ 0207
'-J 0248 END 0208 I

Figure 1. Source Language Listing

(4) Label field. This mayor may not exist. If there

is a label, it will be the original JOVIAL label'

or a generated label of the form nG where n is an

integer.

(5) Machine operation mnemonic.

(6) Operand(s).

(7) Source statement line number.

Error Messages. Compiler error messages are of two general

types, syntactical (construction) errors and semantic (usage)

errors. The syntactical errors are detected during the first

phase of compilation. Semantic errors are found during sub

sequent phases of compilation. Appendix A contains a descrip

tion of JOVIAL syntactical and semantic errors. As previously
described, syntactical errors detected in phase one are noted

by error messages that will be printed below the incorrect

statement. Errors that cannot be detected at the exact time

of occurrence (for example, BEGIN and END out of phase) will

be noted when they become apparent. Even when critical errors

occur in a program being compiled, the compiler will attempt

to continue compilation.

Binary Output

If execution is specified, the compiler produces a binary

card image file for execution immediately after compilation.

If a binary deck is requested by the $JOVIAL control card,
binary cards are produced. In either case, the deck structure

produced is identical to that produced by a GMAP assembly

described in the GE-625/635 General Loader manual under the

heading "Relocatable Deck Descript~on."

-8-

i', 1 2 3 4 5 6 7

000241 002671 4500 00 010 8G STZ A 000110
I 000242 002671 7220 00 010 11G LDLX2 A 000110
~ 000243 1005 BSS 0 000112
I

000243 000000 2350 03 000 A4 LDA O,DU 000112
000244 102045 0750 03 010 ADA INP+1,DU 000112

* The seven fields are labeled only to make this exhibit more meaningful.

Figure 2. Object Code Listing

APPENDIX A

JOVIAL COMPILATION ERROR MESSAGES

If, because of an error, a JOVIAL statement is not compiled,

binary code to call the GECOS system is inserted and flagged with
an E in the binary listing. (See Figure 3.)

Syntactical errors are detected in phase one and are noted

by error messages which are printed below the JOVIAL state~

ment in error. (Refer to Figure 4.) In the example there

is no END for the TABLE declaration. The compiler discovers

this upon encountering the symbol DEFINE in statement 6.

The arrow indicates the point of discovery, as does the

error character count 000000. In this particular occurrence
there is no effect on the compilation, since the compiler
assumes that the TABLE declaration is finished, which it is.

The following list contains all current JOVIAL compilation

error messages and their meanings and action.

Statement Meaning and Action

ALLOCATED MEMORY IS EXHAUSTED

ALLOCATION TROUBLE

-10-

The compiler needs more

storage and it is not avail

able. Compilation is

terminated.

The data being compiled are

allocated inconsistently in

an OVERLAY statement.

Erroneous data allocation
may result.

I
j-1
j-1

I

0211
0212 .
0213
0214

~"";'~ERR7,~"STA

"k-kERR"k"kSTA
"k"kERR-k"kSTA
,':,', ERR i',,', STA
";'",-kERR -;'",-kSTA
-k"kERR~''''''kSTA

001255
001256

E 001257
E 001260

001261
001262

BEGIN WS9 = WS9 + RANGE $
WS10 = WS10 + 1 $

WS11 = (RANGEi''''10) /RAD-. 4999 $
FREA($WS11$)=FREA($WS11$)+1 $

0086
0089
0158
0214
0214
0283

Source Listing Excerpt

TOO FEW SUBSCRIPTS
TOO FEW SUBSCRIPTS
PRECLUDED BY CONTEXT
NOT TABLE ITEM
NOT TABLE ITEM
NOT TABLE ITEM

Semantic Errors Found in Phase Two

216000 4350 03 000 UFA 216000,DU
021367 7560 00 010 STQ WS11
206502 2360 00 000 LDQ 206502
000010 0010 00 000 Iv1ME 10
006400 4310 03 000 FLD 6400,DU
021350 5650 00 010 FDV RANGE

Machine Code Generated

Figure 3. Usage Error Example

0196
0197
0198
0199

000213
000213
000214
000214
000215
000215

0002 TABLE TABA V 5 P $ GE080220 0021
0003 BEGIN ITEM TAA A 10 S 5 $ GE080230 0022
0003 BEGIN 1.0AS 2.0A5 3.00A5 4.0A5 END GE080240 0023
0004 ITEM TAB A 20 S 5 $ GE080250 0024
0004 BEGIN 1084.80A5 1084.89A5 END GE080260 0025
0005 ITEM TAC A 10 S 5 $ GE080270 0026

E 0005 BEGIN -8.0A5 END GE080280 0027
~
N 0006 DEFIN4 IFEITHER "IFEITH" $ GE080290 0028
I 000000

i'~;'~ ERR -;':;'\ STA 0006 MISSING END

Figure 4. Syntax Error Example

Statement

ALREADY ACTIVE

ARRAY EXCEEDS REASONABLE SIZE

BAD STATUS RELATIONSHIP

BAD XEC NAME

CIRCULAR DEF

-13-

Meaning and Action

The FOR statement being

compiled is using a loop

variable that has already
been activated by a prior

FOR. The fact is ignored,

but it may result in

erroneous code.

The space required for

ARRAY is greater than
24,00010 , No space is

allocated.

The status constant being

compared to this status

variable is not one of the

previously declared legal

values. The statement is
not compiled.

The XEC parameter is not a

procedure call or a zero.
The statement is not

compiled.

The expression being compiled

contains a redefinition (by

the DEFINE declaration)

which is improperly

constructed. The statement

using this definition is not

c;:ompiled.

Statement ------

COMPILER ABORT. SEND DUMP TO
GENERAL ELECTRIC

COMPOOL NOT MOUNTED

CONFLICTING USE

CONST OVFLO

EXIT BUFFER HAS OVERFLOWED

. FIELD TOO BIG

-14-

Meaning and Action

There is a logic error in
the compiler.

A COMPOOL list has been

encountered, but no COMPOOL

input tape was mounted.

COMPOOL list is not compiled.

The variable being compiled

is being used in an improper

context. The statement is

not compiled.

The exponent part of the

constant being compiled is
28 larger than 10 . The

exponent is set to zero.

The compiler has used up the

allocated buffer area for its
recursive calls.' Compilation
is terminated .

An item has been declared

too large for its type.

The declaration is not

compiled.

Statement

FILE NAME REQUIRED

ILLEGAL CHARACTER

ILLEGAL CONVERSION

ILLEGAL DATA LENGTH PARAMETER

ILLEGAL FOR COMPOUND

-15-

Meaning and Action

An I/O request has been
found without a file name
in the parameter reserved
for it. The I/O statement

is not compiled.

A character input from the
source deck is illegal. It

is ignored.

In the assignment or exchange

statement being compiled, the

data types are incompatible;

that is, no implied conversion

is possible. The statement

is not compiled.

The parameter defining the

length of the data in the

I/O transfer is illegal.
)

The statement is not compiled.

An IF statement followed

immediately by an END, which

is not associated with a FOR,

is an illegal construction.

The IF statement is not

compiled.

Statement

ILLEGAL PRIMITIVE

ILLEGAL STATUS ASSIGNMENT

ILLEGAL TEST

INCONSISTENTLY DECLARED

JUNK PROGRAM

LOOP CONTROL

-16-

Meaning and Action

A name beginning with a prime

character has been encountered,
but it is not among the allow
able primitives. The state

ment is not compiled.

The status constant being

assigned to this status

variable is not one of the
previously defined legal
values. The statement is
not compiled.

The TEST statement is

attempting to test a loop

variable that is not active.

The TEST statement is not
compiled.

The data being compiled are

improperly declared. The

declaration is not compiled.

A combination of errors so

extensive that the compilation

cannot continue has been detected. ,
compilation te~~inates

Multiple three-factor FOR

statements are used in

parallel. Erroneous code may
be generated.

Statement

MISSING ASTERISK

MISSING BEGIN

MISSING DOLLAR

MISSING END

MISSING SLASH

MISSING START

-17-

Meaning and Action

The asterisk C*) is omitted

from the exponentiation

brackets. It is assumed.

There is an absence of a
BEGIN in a PROC declaration.

The BEGIN is assumed.

The dollar sign ($) is missing

from a subscript bracket or a

statement terminator. It is

assumed.

In processing a statement in

which an END is required, the

compiler has encountered a

symbol that is not syntacti

cally correct and that is not
an END. Or, the end of a

program was reached with a count

of begins greater than the count

of ends. The effect on compilation

depends on the particular occurr
ence.

The slash (/) is omitted
from the absolute value

brackets. It is assumed.

The START card does not

appear first in the JOVIAL

program deck. It is assumed

Statement

MUL DEF

MULTI STA ERROR

MULTIPLE UNARIES

NAME NOT IN COMPOOL

NESTED PROC

NO PATTERN TABLE

-18-

Meaning and Action

The statement name currently

being used has not been defined

more than once in this program.

Erroneous references to this

label result.

This is a combination of

errors in contiguous state

ments. The statements are
not compiled.

Multiple arithmetic or Boolean
unary operators (-, +, NOT)

occur in an expression. The

expression is evaluated as
it stands.

A COMPOOL list contains a

name that is not in COMPOOL.

The name is ignored.

The PROC statement being

compiled is in the scope of

another procedure declaration.

The PROC statement is not
compiled.

No pattern table was declared

for this table, which was

declared as LIKE. The LIKE

declaration is not compiled.

Statement

NO PROC FOR RETURN

NOT TABLE ITEM

PRECLUDED BY CONTEXT·

PRESET CONST ERROR

SUPERFLUOUS END

-19-

Meaning and Action

A RETURN statement appears
outside the scope of a

procedure declaration. The
RETURN statement is not

compiled.

A name is subscripted that

is not declared in a tabl~.

The statement is not

compiled.

A comparison of the usage

of this variable or constant

and its type indicates an
inconsistency. The state

ment is not compiled.

Something other than a legal

constant is in PRESET LIST or

there is a missing END.

Remaining preseb constants

are invalid.

There is an extra END or

missing BEGIN in the program.

This can be an indication of

possible serious trouble.

The effect on the compilation

depends on the particular

occurrence.

Statement

SYNTAX

TWO FEW ARGS

TOO FEW SUBSCRIPTS

TOO MANY ARGS

TOO MANY SUBSCRPTS

-20-

Meaning and Action

An error is detected in the

construction of the state

ment currently being compiled.

The statement is not compiled.

The BIT or BYTE modifier

being compiled does not have

any defining parameters.

The statement is not compiled.

The subscripted item being

compiled has fewer subscripts

than were contained in its
original definition. The

statement is not compiled.

The BIT or BYTE modifier

being compiled has more than

two defining parameters.

The statement is not compiled.

The subscripted item being

compiled has more subscripts

than were contained in its

original definition. The

statement is not compiled.

Statement

UNDEF

WORK BUFF HAS OVERFLOWED

$ IN COMMENT

Meaning and Action

The statement name currently
being used has not been

defined in this program.
Erroneous transfers may

result.

The compiler has used up the

allocated working area.

Compilation is terminated.

A $ sign was encountered

while processing a comment.
Everything up to the $ is

considered a comment, and the

symbol after the $ is con
sidered the beginning of a

new statement.

-21-

APPENDIX B

OBJECT CODE DEBUG OPTION

The JOVIAL compiler generates a complete Debug Symbol Table

when the debug option is specified on the $JOVIAL card. The

user then may reference this information at load time. If

he chooses to do so. LOADER DEBUG control cards must be included

in his deck. These control cards are specified in the GE 625/635

General Loader manual.

There is not a one-to-one correspondence between the types of
data used in the JOVIAL language and the types of data expected

by the loader. The following lists give the data types that

appear on the .SYMT. cards for JOVIAL declared data.

JOVIAL

Boolean

Integer Double

Floating

Integer Single

Status

Fixed Single

Fixed Double

Hollerith

Transmission

Statement Labels

Procedure Names

. SYMT.

Logical

Double Precision

Real

Integer

Integer

Octal

Octal

Octal

Octal

Instruction

Instruction

The loader does not accept symbols in excess of six characters.
The compiler uses the first six characters of a name to meet

this requirement.

-22-

INTRODUCTION

APPENDIX C

COMPOOL

The COMPOOL concept used for the JOVIAL compiler for the
GE-635 is that of an auxiliary data declaration source. This
appendix describes its preparation and use. The COMPOOL
consists of JOVIAL declarations adhering to all the rules that

apply to those declarations in the language. The COMPOOL can

be used to control the environment of a system of programs and
it also can serve as a basis for test design by using the
preset feature to initialize inputs.

COMPOOL PREPARATION

Legality Checking

The data to be used to construct the COMPOOL are first passed

through phase one of the compiler as a JOVIAL program in order
to error-check it. All the rules which apply to other data

declarations of a JOVIAL program apply to COMPOOL data. The
only difference is that the identification card, which always
precedes the START statement, contains GENCOM in columns 1 to
6. If no errors are detected, the COMPOOL generated program

is called into store to create the COMPOOL file. If there are

errors, the run is terminated at the end of phase one and a
source listing is made, showing any detected errors. The

same error messages applicable to a JOVIAL program's declara
tions are valid for COMPOOL data. The deck set up is shown

in Figure 5.

-23-

COMPOOL Generation

After normal error checking by phase one is complete, the
COMPOOL generator is loaded. This program operates on the

JOVIAL input cards as they are given to the compiler. It

creates a directory of names of the data in the COMPOOL and

the number of card image records of each unique set of data.

A TABLE includes all the items declared in that table. This

directory is a record that precedes the actual data on the

COMPOOL file. The COMPOOL file then consists of a directory

of data names, each of which must be 12 BCD characters or less,
followed by the card images of the JOVIAL data.

COMPOOL USE

To use the COMPOOL declared data, a programmer uses a COMPOOL
statement followed by the list of names from the COMPOOL that
he wishes compiled into his program. These names are bracketed

with BEGIN and END. This COMPOOL statement must appear in the

JOVIAL program prior to the use of the data in a JOVIAL state
ment or a declaration requiring a pattern table from the

COMPOOL. Figure 6 gives a sample portion of a program using

this feature.

In this example, all of the items in table ALPHA are compiled

into the user's program. Table items are never requested by

name; only tables, simple items, and arrays are so requested.

The programmer must request to the operating system that the

COMPOOL file be mounted prior to a compilation requiring data
from 'tnat COMPOOL.

-24-

$SNUMB
$IDENT
$JOVIAL

$LIMITS
$ DATA S~'~ .-

$INCODE IBMF

GENCOM
START

DATA DECLARATIONS

TERM$
$END JOB

Figure 5. COMPOOL Generation Deck Setup

-25-

START "PROGRAM ATT

ITEM HOL 120 H' $
COMPOOL

BEGIN
ALPHA BETA AA
ARRAYONE BOOL

END

TABLE ALPHA1 L $
IF BOOL $

BEGIN
TEST1$
TEST2$

END

Figure 6. COMPOOL Use

-26-

APPENDIX D

DIRECT CODE

INTRODUCTION

The DIRECT statement in the JOVIAL language serves to define
a set of operations which must be expressed in machine
oriented language. This language consists of legal GMAP codes.

Each line of machine code is considered a symbol; thus, ASSIGN

statements and DIRECT or JOVIAL brackets must not appear on

lines containing machine code instructions. Direct code may

address locations designated by names defined in JOVIAL. A

label of a direct code instruction becomes a defined statement

name as though defined on a JOVIAL statement. A statement

name prefixed to the DIRECT bracket is considered to designate
the first executable instruction within the DIRECT JOVIAL

brackets. Index registers used within DIRECT JOVIAL brackets
should be saved and restored within those brackets.

INSTRUCTION REPERTOIRE

The legal machine codes for use in DIRECT code ar~ operation

codes listed in Appendix B of the GE 625/635 Programming
Reference Manual with the following inclusions: SXLn and

LXLn. In addition, the following two directives (pseudo codes)

are allowed: ZERO and SYMREF.

INSTRUCTION FORMAT

The machine code instructions within the DIRECT code must

adhere'to the following format:

Columns 1-6 label field

-27-

The label must be a legal GMAP label (that is, at least one

alpha) containing no characters other than periods, alphabetic

characters, or numerals.

Column 7 eVen-odd field

The letter E causes the instruction to be given an even

address, and the letter 0 causes the instruction to be given
an odd address. A blank causes no significance to be given

to addressing in terms of even or odd. Any other character'

is considered illegal.

Columns 8-15 operation field

Instruction mnemonic begins in column 8.

Columns 16-72 location and comment field

This field has three subfields: subfield 1, subfield 2, and
subfield 3.

0 Subfield 1 may contain an operand.
0 Subfield 2 may contain an operand or a rn,odifier.

0 Subfield 3 may contain comments.

0 Subfield 1 and subfield 2 are separated by a comma,

and subfield 2 and subfield 3 are separated by a

blank.

An operand may be a JOVIAL name or label or a legal DIRECT

machine code label or a constant of the form d, where d is a

pure numeric decimal, or a constant of the form = 0 dd, where

dd is an octal number. Modifier is a legal GMAP modifier

(such as DU). Any blank encountered in columns 16-72 termi

nates subfield 2 and causes the re~aining columns to be con

sidered as comments.

-28-

Decimal increments or decrements are allowed in subfield 1 and
subfield 2. Either subfield may contain an asterisk which is
translated as the address of the instruction of which this

operand field is a part.

Special consideration is given to the instructions STCA and
STCQ: subfield 2 must contain two octal characters whose bit

configuration represent the character positions of the data

referenced in subfield 1 which will be stored.

-29-

APPENDIX E

RESTRICTIONS

The following are language variations in GE-625/635 JOVIAL:

DUAL items are excluded

STRING items are excluded

Medium table packing is treated like dense table packing

The J3X I/O are implemented

GE-625/635 GMAP assembly code (excluding all MACRO instructions)

is the only legal type of direct code

To conform with the conventions of .GECOS, a $ must not appear

in column I of an input card

To conform with the conventions of GELOAD, procedure names for

which SYMREFS must be generated must not exceed six characters.

-30-

APPENDIX F

FILE STATUSES AND I/O FUNCTION CODES

The GE-625/635 JOVIAL compiler will implement the J3X I/O as
defined in JOVIAL Programming Reference Manual. Although file
declarations, IN statements, OUT statements and IOn statements
are completely described in that manual, file statuses and
function codes for file manipulation and data transmission are
not listed; therefore, they are included here.

STATUSES

File status values which can be returned to an operating

program are:

Numeric Value

a
1

2

3

4

5

Interpretation

Normal termination after I/O
Null

Segment Mark (Reading only - a

one-character record other than
octal 17 was encountered)
End-of-Fi1e (A one-character

record of octal 17 was encountered,
or file has been closed by an
OUT statement)

Buffer-length error (Input area

smaller than logical record)
Parity error

-31-

FUNCTION CODES

IN Statements

For IN statements of the form IN (FCN, filename) $, FCN may
be anyone of the following values:

Numeric Value

1

2

4

5

6

OUT Statements

Interpretation

Open Input file
Close Input file
Close Input with rewind

Release Input reel
Close Input and open output

For OUT statements of the form, OUT (FCN, filename) $, FCN
may be:

Numeric Value

1

2

3

4

Date Transmission Requests

Open
Close
Close
Force

Interpretation

Output file
Output file
Output with rewind
Output End-of-Reel

For data transmission request of the form IOn (FCN, filename,
XEC, beginning address, length) $, FCN may be:

Numeric Value Interpretation

o Read logical record

-32-

Numerical Value

1

3

4

5

6

7

Device Manipulation Request

Interpretation

Read segment (up to next one

character record not octal 17-
Transmit data to store).
Transmit print image

Write logical record

Punch binary record
Punch BCD record

Write segment mark (one-character

record, not octal 17, 75, 76,
or 77)

For a device manipulation request of the form, IOn (FCN,

filename, XEC) $, FCN may be:

Numeric Value

8

9

10

11

12

Interpretation

Move forward one logical record

Move forward past segment mark

(or end-of-file mark)

Move backward one logical record
Move backward over segment mark
Rewind

-33-

Q)
c

Ol
C
o

«1

Q)
(/)

ro
Q)

n.

DOCUMENT REVIEW SHEET

TITLE: GE-625/635 JOVIAL User's Information

CPS #: ~(;...n_o_n_e....;;) __

FROM:

Name:

Position:

Address:

Comments concerning this publication are solicited for use in improving future
editions. Please provide any recommended additions, deletions, corrections, or
other information you deem necessary for improving this manual. The following
space is provided for your comments.

CO~ffiNTS: __ ___

NO POSTAGE NECESSARY IF MAILED IN U.S.A.
Fold on two lines shown on reverse

side, staple, and mail.

FOLD

BUSINESS REPLY MAIL
NO POSTAOE STAM .. NECESSARY I,. MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY

GENERAL ELECTRIC COMPANY
COMPUTER EQUIPMENT DEPARTMENT

13430 NORTH BLACK CANYON HIGHWAY

PHOENIX, ARIZONA - 85029

ATTENTION: ENGINEERING PUBLICATIONS STANDARDS B-90

FOLD

FIRST CLASS

PERMIT, No. 4332

PHOENIX, ARIZONA

.......

Progress Is Ovr Most Imporlqnt Proo'v(;f

GENERAL. ELECTRIC
INFORMATION SYSTEMS DIVISION

LITHO U.S.A.

GENERAL ELECTRIC

COMPUTERS

XCPB-120l

GfE~625/635

JO"~Al COMPILER
PROGRAMMING REFERENCE MANUAL

ADVANCE ~NFORMATION

GENERAL. ELECTRIC

GE-625/635

JOVIAL COMPILER
PROGRAMMING REFERENCE MANUAL

The data, analyses, programs, or other material contained
or used herein is preliminary infonnation relating to pro
gramming and computer applications and is supplied to
interested persons without representation or warranty as to
its content, accuracy, or freedom from defects or errors.
The General Electric Company therefore assumes no re
sponsibility and shall not be liable for damages arising
from the supply or use of such data, analyses, programs,
or other material contained herein.

October 1965

GENERALe ELECTRIC
COMPUTER DEPARTMENT

@ 1965 by General Electric Company

@~o(ID®® ~~[ffi~~~ _______________ JO_VI_AL

T ABLE OF CONTENTS

Page

1. INTRODUCTION 1

A. Background 1

B. Computer-Oriented Features 2

C. Construction and Meanir~ .•...................... 3

II. SIGNS, VALUES, AND SYMBOLS 7

A. Signs...................................... 7

B. Delimiters 8

C. Values 10

D. Constants 13

E. Name sand Indexe s • • . . . • . . • 16

F. Symbols and Spacing. 18

ill. VARIABLES, FUNCTIONS, AND FORMULAS 21

A. Variables 21

B. Special Variable s ~ • . . . • 23

C. Func tions . 25

D. Special Functions•.. 27

E. Numeric Formulas • 28

F. Boolean Formulas . 32

G. Literal and Status Formulas•................. 36

IV. SIMPLE STATEMENTS•....•......... 37

A. Assignment Statements 37

JOVIAL

- iii-

TABLE OF CONTENTS
(Continued)

B. Exchange Statements

C. Entry Operations ...•.•.......••..••.•..•....

D. Goto Statements•........••••..•••.•.•.

E. Procedure Statements ..•...••••••.•••.••••.•••

F. stop Statements .•....•••.......•..•.••.••...•

G. Compound Statements . • • . • . . . • . • • • •

V. COMPLEX STATEMENTS•...••..•••.•.•...

A. If Statements•....•.•.•••••••••••.•.•.•
"

B. Ifeither Statements ..•.•........•.•.•...••..•.

C. For statements • . • • • • • • • .

D. Te st Statements••....••..••.••..........

VI. DA T A DE CLARA TIONS . . • . . • . • • • • • .

A. Item De scriptions ..••.•........•.••..•.....•.

B. Simple Item Declarations••.•••••.•••...••

C. Mode Declarations•.....••............

D. Array Declarations•...••.•..••••.....

E. Independent Overlay Declarations .•••••••...•...•.

F. Ordinary Table Declarations

G. Specified Table Declarations

H. Like Table. Declarations

VII. PROCESS DECLARATIONS

A. Switch Declarations

B. Close Declarations

Page
40

41

43

44

45

46

49

49

50

51

56

57

57

60

61

63

66

67

70

72

73

73

76
JOVIAL

TABLE OF CONTENTS
(Continued)

C. Return Statements

~

77

D. Procedure Declarations•.............. 78

VIII. PROGRAMS • • . . . • • 81

A. Programs.................................... 81

B. Scope of Definitions 82

C. Define Declarations 84

IX. FILE OPERATIONS • .. 85

A. File Dec larations and status•.•............... 85

B. In and Out Statements 87

C. Ion Statements. • • • . . • . . • . . • 88

D. Wait Statements • • . . • • . .. 90

X. DffiECT OPERATIONS 91

A. Direct statements ...••.••.•...•...•......•..... 91

B. Assign Statements • • • 92

INDEX OF CONSTRUCTIONS•..•...•.••.•.• 93

LIST OF EXHIBITS

Page

1. Encoding of Signs•.•............. 12

2. Scope of Names•... ' ...•.....•..•.•....•...... 83

~~ c(W@@ ~~[ffi~ ~~ ______________ ---.;J;..;;.OV.;...:;;IA~L
- v-

I. INTRODUCTION

A. Background

The purpose of this text is to provide the trained JOVIAL program

mer with a complete, rigorous, and concise manual to be used as a ref

erence in answering specific questions about the construction and mean

ing of elements of JOVIAL programs.

This manual is organized topically, proceeding from the most prim

itive to the most complex elements of the language, with 110 and direct

operations treated at the end. Each topic is divided into two parts--con

struction and meaning.

Construction is indicated via a concise format described in sub

section 1. C. Meaning is covered via brief prose descriptions in terms

of basic computer characteristics, other elements, or combinations of

simpler elements.

Each page is annotated in the lower outside corner as to the topic

covered, so that the programmer may "flip through" easily to a given

topic.

An index of constructions is provided, referencing the page on

which each construction is defined.

JOVIAL
1]j(~:a(W@@ ~~[ffi~[E~ -------------_ 1 _

B. Computer-Oriented Features

JOVIAL is not entirely a computer-independent programming lan

guage. Certain feature s of the language depend for their interpretation

on features of the machine for which programs are to be written. These

features are summarized below for the GE-635 object machine:

1. Internal storage: fixed-length word, binary

2. Word size: 36 bits

3. Storage capacity: up to 256K words, using an 18-bit

address

4. Fixed-point arithmetic: two's complement; 36-bit signed

full word; 72-bit signed double word is programmed

5. Floating-point arithmetic: two's complement; 8-bit signed

exrad, 28 - bit signed signicand

6. Character representation: 6-bit encoding (see Exhibit 1,

p. 14)

7. External storage: magnetic tapes, discs, card reader and

punch, and printer

~~ 0 ffi)®@ ~~[ffi ~ ~~ __________________ J OV,;:;;,;;IAL ___

- 2 -

C. Construction and Meaning

The remainde r of this text is pre sented in a particular format with

each element of the language being described first as to the form of its

construction and second as to its interpretation.

The method chosen for displaying the construction of the elements

can best be described by example:

1. The construction

numeral: 0 I 1 I 21 31 41 51 61 7 I 81 9

means that the element we chose to call a numeral is con

structed as either a 0 or a 1 or a 2 J etc. The sep

arates alternative constructions. Any of the alternatives

yields a correct construction of the element numeral.

2. The construction

sign: I letter II Inumerall I Imark I
means that the element which we chose to call a sign is con

structed of either an element called a letter or an element

called a numeral or an element called a mark. Thus a sign

may be constructed as an A JaB J a 0, a 1 J a + J

an =, etc. The box around the name of the element differen

tiates it froI? actual character s forming part of a construction.

3. The construction

decimal number: I number I. I number III number I. I .
I number I

means that the element we chose to call a decimal number is

constructed in anyone of the following ways:

a. of a number element followed by a . followed by a

number element

b. of a number element followed by a .

c. of a • followed by a number element

Any number of consecutively written elements and/ or actual

characters can define the construction of another element.

~]j~ c ®®® ~~ [ffi ~ [E ~ ____________ .-.LT.LDL.rnuJ.a.LAT __ .

- 3 -

4. The construction

number: I numeral I { Inumerall J

means that the element we chose to call a number is con

structed of a numeral followed by zero or more numerals.

The brackets enclose the part of the construction which may

either be absent entirely or Inayappear anynuInber of tiInes

consecutively.

For example, the construction

subscript list: I subscript I I, I subscript II
Ineans that the element we chose to call a subscript list is

constructed of one or Inore subscripts separated by COInmas.

5. We also could have defined the constructions in example 4 as

number: I numeral I I I nUInberl1 numeral I
subscript list: I subscript II I subscript list I ' I subscript I

using recursive constructions. This has generallybeen avoided

in the text for reasons of clarity, except that occasionally an

element being defined will appear in the definition of some one

of its parts. This is unavoidable in, for example, a variable

being part of a numeric formula and a nUIneric formula being

part of a variable (i. e., as a subscript); this Inerely indicates

that subscripts can include subscripted variables.

6. Using several of these concepts, we have the construction

octal nUInber: 0 (I octal numeral I f I octal numeral I f)
which means that the element we chose to call an octal

number is constructed of an 0 followed by a

by one or more octal numer als followed by a) .

followed

When an element is used in a construction but has not been defined

in the preceding text, a reference is given to the subsection in which it

is defined.

The method chosen for describing the meanings of the constructed

elements is straightforward prose text. However, certain words and

phrases used should be defined more fully:

1. Implicit Means that the object being discussed does

not appear in the written program but is

understood to exist, either actually or for

purposes of explanation.

2.

3.

4.

5.

6.

7.

8.

9.

Explicit

Effectively
(the effect of)

Quantity

Entity

Value

Actual
value

Type of
value

Invoke

Must

Not defined

Means that the object being discussed does

or is to appear in the written program.

Means that the operations being discussed

are understood to take place implicitly.

This particularly refers to phrases like

"replaced during execution," where such

replacement doe s not actually take place

but is understood to take place.

Means an entity containing a value.

Means some actual part of the object pro

gram which has an identity of its own, such

as an instruction, a set of bits allocated

to an item, and so forth.

Means the value yielded by a quantity or

by operations on other values.

Means the value without nonsignificant

high-order zeros.

Means the category of value concerned,

whether the value represents an integer

value, a truth value, etc.

Means to call into effect a set of operations;

usually this means to "call" a subroutine.

Means in most contexts that if the rule is

not followed the results of the specified

operations· are not defined.

Means that the results of the operations in

volved should be considered spurious and

are not guaranteed to be meaningful.

@j[Ec ®®® ~[E[ffi ~ ~~ _____________ ..,;;;;;,,;JOV __ IAL=-=a.-

5 -

10. Precision Means the location of the binary point

relative to the right end of the computer

representation of the value concerned:

a positive precision indicates that the

binary point is located to the left; a·

negative precision, to the right. Thus,

the numbers:

77.77
8

with a precision of +3 means a

value of 77.70
8

and a computer

representation of 777

77.77
8

with a precision of 0 means a

value of 77.00
8

and a computer

representation of 77

77.77
8

with a precision of -3 means a

value of 70.00
8

and a computer

representation of 7

@~a®®® ~~[ffi~~~ _____________ ~JOV~IAL~
- 6 -

II. SIGNS, VALUES, AND SYMBOLS

A. Signs

1. Construction

sign: I letter I I I numeral III mark I

letter: A I B I C I DIE I FIG I H I I I J I K I LIM I N I 0 I pi Q I R I

SITlulVIWIXlylZ

numeral: 0111 21 31 41 51 61 71 81 9

mark: + I -I ~:~ I / I = \ • I ' I ' I (I) I $\ 41=

2. Meaning

The alphabet of which JOVIAL symbols are constructed con

sists of 48 signs. These signs do not have individual meanings, but are

used to form symbols. Other signs not already in the alphabet may be

included as additional marks. Such signs would be those permitted by

the hardware of the computer. The 41= mark is the explicit denotation

(in this document) of a single blank space.

@j[Eo(ID®@ ~~[ffi~~~ _____________ ~J~oy TAI~1

- 7 -

B. Delimiters

I. Construction

delimiter: I operator 11\ modifier I I [separator \ II bracket I I
I declarator I II descriptor I

operator: I arithmetic operatorl II relational operator I
I logical operator I 1\ sequential operator I
I peripheral operator I I 'ASSIGN

arithmetic operator: + I -I ::~ I / I *::~

relational operator: 'EQ I'NQ I'GR I' LS I'GQ I' LQ

logical operator: 'AND I 'OR I 'NOT

sequential operator: 'IF I'IFEITH I'ORIF I 'FOR I 'TEST I
'GOTOI'RETURNI'sTOP

peripheral operator: INI OUTI 10 Inumber II WAIT

modifier: 'BITI'BYTEI'NENTI'ENTRyl'ENTI'ABsl

'CHARI 'MANTI 'NWDSENI'ODDI 'ALL

separator: ·1, 1=1 ==1 $1· ··1 #=

bracket: (1)1 ($1 $)1 (/11)1 (*1 ::~)I "I'BEGINI'ENDI

'DIRECT I 'JOVIAL I 'START\ 'TERM

declarator: 'ITEMI'MODE\'ARRAyl'TABLEI'OVERLAY\

'SWITCH\ 'CLOSE\'PROcl'FILEI 'DEFINE

descriptor: I type descriptorl II sign descriptor I
I rounding descriptorl I I preset descriptor I
I length descriptor II I structure descriptorl

I packing descriptor I I I pattern descriptor I
type descriptor: II A I FI B I HI TI S

@j~a®@@ ~~IRi~~~ ______________ JOV_I_AL_

- 8 -

sign descriptor: S I u

rounding descriptor: R

preset descriptor: P

length descriptor: V I R

structur e de scriptor: Sip

packing descriptor: N I MID

pattern descriptor: L

2. Meaning

Delimiters have fixed meanings that are described later in

the text. All delimiters shown above constructed with a leading prime,

except for '.', may also be constructed without the leading prime. These

delimiters will be shown elsewhere in the text without the leading prime.

(lli~ 0 ®@® ~~ [ffi ~ ~~ __ -------------"'oIII,IO"'"""VToAiiWIAI,"-

- 9 -

C. Values--Meaning

There are four primary types of values in JOVIAL: numeric,

Boolean, literal, and status. Numeric values may further be categor

ized into integer, fixed, and floating values. Literal values may further

be categorized into Hollerith and transmis sion value s.

Integer values are integer numbers carried in fixed-point format in

one or two words with zero precision. Their unsigned magnitude, m,

must be

71
2 -' 1 2: m 2: 0

Fixed values are decimal numbers carried in fixed-point format, in

one or two words. A fixed value has a given precision, p, that determines

its computer representation.

The unsigned magnitude, m , of a fixed value must be such that

271 _ 1 ~ [m . 2P] ~ 2 -71 - 1 or

where the brackets indicate truncation of any fractional value.

Floating values are decimal numbers carried in floating point for

mat in one word. Their unsigned magnitude, m, must be confined to

the following range:

m = 0

The computer representation of floating values has a precision of 27 bits

(i. e., about 8 significant digits).

Boolean values are the truth values, true and false, carried as a

single bit.

Literal values are computer representations of strings of signs.

One or more signs (i. e., bytes) may be included in the string. Hollerith

JOVIAL

- 10-

values employ one type of six-bit encoding for the signs, and transmis

sion values employ another. Literal values are carried in as many words

as necessary to hold the packed strings. Exhibit 1 displays the six-bit

encoding for both types of literal values.

Status values are members of ordered sets of unsigned integer val

ues. Such a set may contain one or more members. The first member

of a set is the value 0; the second, l; the third, 2; and so forth. There

may be up to 271 members, and the values are carried as integer val

ues although referenced sym.bolically.

]j~c®@® ~~[ffi~~~ _____________;.JOV~IAL~
- 11-

~
M

o
(§R)
§
§

@'l2)
(fU1]

2EJ
c::::=J

(fU1]
@'l2)

~I

'-t

~
~

Hollerith Encoding Transmission Encoding

Second Octal Digit Second Octal Digit

o z 3 4 5 6 7 o z 3 4 5

o 0 1 Z 3 4 5 6 7 o % T 1 [J &(1)

8 9 [" @ : > ? C D E F G H

&(1) A B C D E F G K L M N 0 p z ...
00'0

z ...
00'0

H I &: J (< \ S T U V W X
0 3
~

is 3
~

u u

T J K L M N 0 p (- + < = > 0 4 ... 0 4 ..
III III

Q R - $ * (; I

* (~ 1
,.

:
~ 5 ~ 5

6 + / S T U V W X 6 0 1 Z 3 4 5

X Z - % = " ~ , 8 9 V ; / 7 7
-- - --

Note: (1).a. indicates a blank space.

EXHIBIT 1 - ENCODING OF SIGNS

6 7

A B

I J

Q R

Y Z

s $

, ~

6 7

..... -
--

D. Constants

1. Construction

constant: I numeric constant I II Boolean constant II
I literal constant II I status constant I

numeric constant: I integer constant III fixed constant I
I floating constant I

integer constant: I number I E I number II I number I
I octal number I

fixed constant: I decimal number I E I scale I A I precision II
I decimal number I A I precision I

floating constant: I decimal number I E I scale II
I decimal number I

decimal number: I number I. I number III number I· I
. I number I

scale: + I number I I - I number I \ I number I
precision: + I number II -I number III number I
number: I numeral III numeral II
octal number: 0 (I octal numeral III octal numeral I ~)

octal numeral: 011 I 2\ 31 41 51 617
Boolean constant: 0 \1\ FALSE I TRUE

literal constant: I Hollerith constanYJ \1 transmis sion constant I

Hollerith constant: [ilumber I H (I sign I f I sign II) I
I octal number I

transmission constant: I number I T (I sign III sign II) I
I octal number I

~~a®®® ~~[ffi~~~ __________________ ~TQJl..l.VT~AT__.
- 13-

status constant: V (I identifier I) I V (I letter I)
identifier: I letter I I part of identifier III part of identifierl ,

part of identifier: I letter III numeral I I 'petter I I
, I numeral I

2. Meaning

Integer constants are explicit representations of unsigned

integer values. The elements E I number I are interpreted as meaning

mEn = m· IOn

where m is the fir st number and n is the number following the E.

Fixed constants are explicit representations of unsigned, fixed

values. The elements E Iscale I are interpreted as meaning

mEs = m· lOS

where In is the decimal number and s is the scale. The elements

A I precision I establish the precision of the constant.

Floating constants are explicit representations of unsigned float-

ing values. The elements E I scale I are interpreted as in fixed constants.

Boolean constants are explicit representations of Boolean values;

o is taken to mean false and 1 to mean true.

Hollerith constants are explicit representations of Hollerith val

ues. The signs enclosed in parentheses are the signs represented. The

number preceding the H must be an exact count of these signs. An

octal number used as a Hollerith constant must specify 24 or less octal

numerals which compose proper Hollerith signs.

Transmission constants are explicit representations of transmis

sion values. The signs enclosed in parentheses are the signs repre

sented. The number preceding the T must be an exact count of the

@~ o(ID@@ ~~(ffiD~~ _____________a,IOV T.,Q,I,jAT,~

- 14-

signs. An octal number used as a transmission constant must specify

24 or less octal numerals which compose proper transmission signs.

Status constants are explicit, though symbolic, representations

of status values. Each value in a set of status values (see subsection

VI.A, Item De scriptions) is denoted by a unique identifier or letter,

whose correspondence to the unsigned integer value is obtained by dec

laration and context.

Each of the above type of constant must be written to represent a

value within the limitations of its type as specified in the last subsection.

~[Ec®@@ ~~[ffi~~~ ______________ JO_VI_AL_

- 15-

E. Names and Indexes

1. Construction

name: Iset namel I I goto name I
set name: Idata name' I 'procedure name' I I file name I
data name: I simple item namel I I array namel I Itable namel

I -table item name I
goto name: I statement namel I I switch name I II close namel

switch name: I index switch name I I I item switch name I I
I file switch name I

simple item name: I identifier I
array name: I identifier I
table name: I identifier I
table item name: [identifier I
procedure name: I identifier I
file name: I identifier I
statement name: I identifier!.

index switch name: I identifier I
item switch name: I identifier I
file switch name: I identifier I
close name: I identifier I
index: lletterl

2. Meaning

Names serve to identify the entities of a program environ

ment: simple items, arrays, tables, table items, procedures, files,

statements, switches, and close routines.

@~D(ID®@ ~~OO~~~ ____________ .-I.ITQ~UTooIiWoIAT_
- 16-

No identifier used for a name may be constructed identically to

any delimiter (GOTO, IN, LQ) or constant (TRUE, FALSE). Procedure

names must not contain more than six characters.

For purposes of reference by machine codes, names are associ-

ated with entities of the object program as noted below:

a. Simple item name- -fir st word of simple item

b. Array name--first word in array

c. Table name--first word in table, excluding "nent word"

d. Table item name--first word in which first instance

of table item occur s

e. Procedure name - -first executable instruction in

procedure

f. File name - -fir st word of corr e sponding status value

g. Statement name - -fir st executable instruction of

statement

h. Switch name- -fir st executable instruction of switch

routine

i. Clos e name - -fir st executable instruction of clos e

routine

Indexes serve to identify mem.ber s of an implicit set of integer

valued quantities, which are primarily applied in controlling iteration of

JOVIAL operations.

The scope of the definition of names and indexes is described in

subsection VIlLB, Scope of Definitions.

- 17-

F. Symbols and Spacing

1. Construction

symbol: I delimiter I I I constant II rnarn--eJ I I index I I
I comment I II device code III machine code II
I defined identifier III accumulator designation I

comment: "f I part of comment II "
part of comment: I comment sign I I I [C"O'illment sign I
comment sign: I letter I I [Eumeralll + I -I ~:~ I / I = I . I , I (I

) I ($1 $) I #=

logical file code: see subsection IX.A, File Declarations

and Status

machine code: see subsection X.A, Direct Statements

defined identifier: see subsection VIlLC, Define Declarations

accumulator designation: see subsection IX.B, Assign

Statements

2. Meaning

Symbols are the words and punctuation from which JOVIAL

programs are constructed. A symbol cannot contain any embedded

spaces except where explicitly permitted; spaces are only explicitly

permitted as a separator and within literal constants, comments, and

machine codes.

Where a space may be required between symbols, it will be shown

explicitly in the remainder of the text. Where it is shown, it is required

only if the following sign is a letter, numeral, prime, or decimal point.

Otherwise, any number of spaces mayor may not appear arbitrarilybe

tween symbols.

JOYIAL

- 18-

A comment may appear in place of any such arbitrary space within

a program, except between the identifier and the following II in a de

fine declaration. The effect of a comment is exactly that of an arbitrary

space.

~(E c ®®@ ~~[ffi ~ ~~ ___________________ J_Q....,Vr AI_,

- 19 -

(

III. V ARlABLES, FUNCTIONS, AND FORMULAS

A. Variables

1. Construction

variable: §§eric variablel I I Boolean variable I

I literal variable I I I status variable I
numeric variable: I integer variablel I I floating variable I

I fixed variable I
integer variable: I basic variable I I I index II [bit variable I

I nent variable III char variable

floating variable: I basic variable I

fixed variable: I basic variable I I [ffiant variable I
Boolean variable: I basic variable I I IOdd variable I
literal variable: 'Hollerith variable I I Itransmission variable

Hollerith variable: 'basic variable I I Ibyte variable I

transmission variable: I basic variable I I byte variable I
status variable: 'basic variable I

basic variable: 'simple variable I I ~cripted variable I
simple variable: I simple item name]

subscripted variable: I array nam~ ($\ subscript list 1$)

[§§le item name I ($ ~script 1$)

subscript list: I subscript I I ' I subscript I

subscript: I numeric formula I
bit, byte, nent, char, mant, and odd variables: see next

subsection, Special Variables

numeric formula: see subsectionIII.E, Numeric Formulas

~[E c®@@ ~~[ffi~ ~~ ________________ J_OV_IAL_

- 21 -

2. Meaning

A variable serves to identify a quantity which may be used

in formulas and elsewhere to yield a value, and whose value may be

changed by as signrnent and other statements.

The type of value a s signable to a particular basic variable is de

fined in the declaration for the simple item name, array name, or table

item name; the type of value as signable to a particular nonbasic (i. e. ,

special) variable is indicated by its construction (see next subsection).

Integer variables yield and are assigned only integer values; fixed var

iables' fixed values; floating variables, floating values; Boolean vari

ables, Boolean values; Hollerith variables, Hollerith values; trans

mission variables, transmission values; and status variables, status

values. A subscripted variable identifies a quantity which is either an

instance of a table item or an element of an array. The value of a sub

script to a table item name designates the specific instance of the item

desired, where 0 designates the first instance; 1, the second; 2, the

third; and so forth.

The values of the subscripts to an array name designate the spe

cific element of the array desired, where the first subscript from the

left des ignate s the specific r ow in which the element appear s; the sec-

0nd' the specific column; the third, the specific matrix; and so forth.

A 0 value yielded by a subscript designates the first set of elements in

that dimension; a 1 value, the second set; and so forth.

If the value yielded by a subscript is not an integer value, it is

truncated to an integer value. That value must then be no less than

zero nor greater than the declared length of the table or the declared

size of the corresponding array dimension.

The value of any variable is undefined until a value is explicitly as

signed (e. g., by "preset," by assignment statement, by procedure, etc.).

An index is implicitly declared as I 18 S.

- 22 -

JOVIAL

B. Special Variables

I. Construction

bit variable: BIT ($1 bit designation 1$) (I basic variable I
bit designation: I fir st bit I ' I number of bits I I \ fir st bit I
fir st bit: I numeric formula \

number of bits: I numeric formula I

byte variable: BYTE ($\ byte designation I $)

(\ basic variable \)

byte designation: I fir st byte I ' I number of bytes I II fir st byte I
fir st byte: I numeric formula I

number of bytes: I nUITleric formula I

nent variable: NENT (I table designation I)
table designation: I table name II 1 table item name I
char variable: CHAR (I basic variable I)
mant variable: MANT (\ basic variable I)

odd variable: ODD (I basic variable I) ODD (I index I)

2. Meaning

The bit variable serves to identify a segment of the bit string

comprising the basic variable as the bit variable. The basic variable

may be of any type. The bit designation specifies the first bit in the seg

ment, and if more than one contiguous bit is in the segment, the number

of the bits.

The bits in the basic variable are numbered consecutively from left

to right beginning with zero. The fir st bit is designated using this num

ber. The designated bits must form a subset of the bit string of the basic

variable. The values of the numeric formulas, if not integer values, are

truncated to integer values and must be no les s than zero. The value of

the bit variable is considered to be an unsigned integer value.

~[E o(ID@@ ~~ffii~~~ ________________ J_OV_IAL_

-23-

The byte variable serves to identify a segment of the byte string

making up the basic variable as the byte variable. The basic variable

must be of a literal type. The byte designation specifies the included

bytes in a manner completely analogous to bit designation for bit vari

ables. ·The value of the byte variable is considered to be the same type

as the basic variable.

The nent variable serves to identify the nent word of a variable

length table as the nent variable. The table designated is the one named

or the one containing the named table item. The value of the nent vari

able is considered to be an unsigned integer value, whose magnitude

must not exceed that of the declared maximum number of entries for the

designated table.

The char variable serves to identify the exrad of the basic variable.

Thus, the basic variable must be a floating variable. The value of the

char variable is considered to be an integer value between -127 and

+127, inclusive; i. e., implicitly declared as I 8 S.

Themant variable serves to identifythe signicand of the basic var

iable. Thus, the basic variable must be a floating variable. The value

of the mant variable is considered to be a fixed value less than or equ~l

to 1 - 227 and greater than or equal to -2 -2 , and has a precision of

i. e., implicitly declared as A 28 S 27.

The odd variable serves to identify the least significant bit of the

basic variable. The basic variable must be a numeric variable. Fixed

and floating variables are treated as though their bit pattern constituted

an integer variable. The value of the odd variable is false if the bit is a

0, and the value is true if the bit is a 1.

- 24-
JOYIAL

C. Functions

1 . Construction

function: I numeric function I I I Boolean function I
lliteral function II I status function I

numeric function: I integer function I II fixed function II
I floating function III ab s function I

integer function: I basic function I I nent function II
Inwdsen function I

fixed function: I basic function I
floa ting function: I ba s ic function I
Boolean function: I basic function I
literal function: I Hollerith function II I transmission function I
Holler ith function: I bas ic function I
transmis sion function: I basic function I
status function: I basic function I
basic function: I procedure namel I actual input parameter list I)
abs, nent, and nwdsen functions: see next subsection,

Special Functions

actual input parameter list: see subsection IV.E, Procedure

Statements

2. Meaning

A function serves to invoke the execution of a procedure which

yields a value that may be used in formulas. The value of a basic function

results from the execution of the set of operations defined by the proce-

dure declaration with the same procedure name. The value of a nonbasic

JOVIAL

- 25-

(special) function results from the execution of certain implicit sets of

operations (see next subsection).

The type of value yielded by a basic function is defined in the dec

laration for the simple item within the procedure which has the same

name as the procedure; the type,of value yielded by a special function is

indicated by its construction.

The construction and meaning of actual input parameter lists are

given in subsection IV.E, Procedure Statements.

The value of a liter al function must not exceed 12 bytes.

- 26-

TillTTA!

D. Special Functions

1. Construction

abs function: ABS (I numeric formula/

nent function: NENT (I table designation I)
nwdsen function: NWDSEN (I table designation J)

2. Meaning

The abs function serves to identify the value of the unsigned

magnitude of the numeric formula. The value of the abs function is con

sidered to be of the same type as the value yielded by the numeric formula.

The nent function serves to identify the value of the nent word of the

designated rigid-length table. The value of the nent function is considered

to be an unsigned integer value.

The nwdsen function serves to identify a value that is equal to the

number of computer words occupied by an entry of the designated table.

The value of the nwdsen function is considered to be an unsigned integer

value.

~[E c ®®@ ~~[ffi~ [E~ ________________ J_OV_IAL_

- 27-

E. Numeric Formulas

1. Construction

numeric formula: I term I f \add operatorl Iterm I

add operator: + I -

term: I factor I f I multiply operatorl Ifactor I

multiply operator: ~:~ I /

factor: I secondary I f lexponentl J

exponent: ~:~~:~ Isecondary II (~:~ Inumeric formula I ~:~)

secondary: f I add operator I J I primary I
primary: I numeric constant II I numeric variable I

Inumeric function II (I numeric formula I)
(/ I numeric formula I /)

2. Meaning

A numeric formula serves to identify a set of operations for

computing a numeric value. The value is obtained by executing the indi

cated operations on the values specified within the numeric formula.

The value of numeric constants, variables, and functions has been

described in other subsections. The value of a numeric formula enclosed

in parentheses is simply the value of the enclosed numeric formula.

The value of a numeric formula enclosed in the brackets (/ /) can

be interpreted as:

(In/) = ABS(n)

where n is a numeric formula.

The value of a complex secondary is interpreted as:

... oop .•. = ... Oo(Oop) ...

where 0 is an add operator and p is a primary.

~[E c ®®® ~[E[ffi~ ~~ ______________ ~JQ~VI AL~
- 28-

The value of a complex factor is interpreted as:

where s is a secondary and n is a numeric formula.

The value of a complex term is interpreted as:

... fofof. .. = ••. (fof)of. ..

where f is a factor and 0 is a multiply operator.

The value of a complex numeric formula is interpreted as:

... totot. .. = ••. (tot)ot ...

where t is a term and 0 is an add operator.

Unary or binary addition and subtraction are indicated by + and -

multiplication and division by ~:~ and / , and exponentiation by ~~~:~ .

The constructions given in this subsection also indicate the order

in which the operations are carried out. Thus,

a. A primary is evaluated before any secondary of which

it is a part is evaluated.

b. A secondary is evaluated before any factor of which it

is a part is evaluated.

c. A factor is evaluated before any term of which it is a

part is evaluated.

d. A term is evaluated before any numeric formula of

which it is a part is evaluated.

No other ordering of operations is implied by the foregoing con

structions aside from that given in the interpretations above.

Thus, if a function occurring in a numeric formula has side ef

fects involving other quantities in the formula (such as changing the

value of some variable), the value of the formula is not defined.

JOyIAl.

The type and precision of the value yielded by a numeric formula

is determined by the type and precision of the values of the constituent

constants, variables, and functions. This detern1.ination is made ac

cording to the following rules:

a. If the value of any constituent is a floating value, the

result will be a floating value.

b. If not item a, but any constituent is a double-word

fixed value, the result will be a double-word fixed

value; its precision will be that of the least precise

fixed constituent after increasing the precision of

any single-word fixed constituent by 35 places.

c. If not a or b, but any constituent is a double-word

integer value and any other constituent is a single

word fixed value, the result will be a double-word

fixed value; its precision will be that of the least

precise fixed constituent.

d. If not a, b, or c, but any constituent is a single

word fixed value, the result will be a single-word

fixed value; its precision will be that of the least

precise fixed constituent.

e. If not a, b, c, or d, all constituents are integer

values, and the result is an integer value--double

word if any constituent is double-word and single

word otherwise.

Note that a 36-bit unsigned value is considered a double-word value in

numeric formulas.

All constituents are converted to the type and precision deter

mined for the result, and all operations are performed in that type and

precision. Lea st significant bits lost due to conver sian are truncated;

any added are zero valued.

If the actual magnitude of the result exceeds 35 bits (for single

word fixed or integer re suIts) or 71 bits (for double -word fixed or inte

ger results), the result is not defined.

]j~ c (ID(Q)@ ~~[ffi ~ ~~ ______________ JO,;;;",;.,VI __ AL ___

- 30-

Certain operations on particular values are not defined. These

are as follows:

alb
a~:~~:~b

a~:~~:~b

where b = 0
where a = 0
where a < 0 and b is not an integer value

- 31-

F. Boolean Formulas

1. Construction

Boolean formula: I Boolean term II #=OR#= [BD"Olean term II
Boolean term: I Boolean secondary I { #=AND#

IBoolean secondary II

Boolean secondary: f #=NOT#= llBoolean primary I
Boolean primary: I Boolean constant III Boolean variable I

IBoolean function I I (I Boolean formula I) II relation I

relation: I numeric relation II I literal relation II

I status relation II I entry relation II I file status relation I
numeric relation: I numeric formula I #= Irelational operator I #=

I numeric formula I f =#= I relational operator I #=

Inumeric formula II
literal relation: I literal formula I #= I relational operator I #=

I literal formula 11=#= Irelational operator I #=

I literal formula II
status relation: I status variable 1#= Irelational operatorl =#=

I status formula I

file status relation: see subsection IX.A, File Declarations

and Status

entry relation: see subsection IV.C, Entry Operations

literal and status formula: see next subsection, Literal

and Status Formulas

- 32-

2. Meaning

A Boolean formula serves to identify a set of operations for

computing a truth value. The value is obtained by executing the indi

cated operations on the values specified within the Boolean formula.

The value of Boolean constants, variables, and functions has been

described in other subsections. The value of a Boolean formula in pa

rentheses is siITlply the value of the enclosed Boolean forITlula.

The value of a complex Boolean primary is interpreted as:

where n is a nUITleric (or literal) formula and 0 is a relational

operator.

The value of a complex Boolean secondary is interpreted as:

... NOT NOT p ... = ... NOT (NOT p} ...

where p is a Boolean priITlary.

The value of a complex Boolean term is interpreted as:

... sAND sAND s ... = ... (s AND s) AND s ...

where s is a Boolean secondary.

The value of a complex Boolean forITlula is interpreted as:

... t OR t OR t. .. = ... (t OR t) OR t ...

where t is a Boolean terITl.

The Boolean formula t OR t , where t is a Boolean terITl, yields

the value false if both t's are false, and otherwise yields the value true.

The Boolean term sAND s , where s is a Boolean secondary, yields

the value true if both s's are true, and otherwise yields the value false:

The Boolean secondary NOT p , where p is a Boolean priITlary, yields

the value true if p is false, and the value false if p is true.

The meaning of the relational operator s is as follows:

~[E 0 ®@@ ~~[ffi ~ [E~ ________________ JO_iV_IAL_

- 33-

EQ Equal to

NQ Not equal to

GR Greater than

LS Less than

GQ Gr eater than or equal to

LQ Less than or equal to

The constructions given in this subsection also indicate the order

in which the operations are carried out. Thus:

a. A numeric formula is evaluated before any Boolean

primary of which it is a part is evaluated.

b. A Boolean primary is evaluated before any Boolean

secondary of which it is a part is evaluated.

c. A Boolean secondary is evaluated before any Boolean

term of which it is a part is evaluated.

d. A Boolean term is evaluated before any Boolean for

mula of which it is a part is evaluated.

No other ordering of operations is implied by the foregoing con

structions, aside from that given in the interpretations above.

Thus, if a function occurring in a Boolean formula has side ef

fects involving other quantities in the formula, the value of the Boolean

formula is not defined. Furthermore, only enough operations are eval

uated to establish the truth value of the formula.

The value resulting from the evaluation of a relation is determined

by comparing the two values involved. These comparisons are made in

the following manner:

a. For numeric formulas: algebraically.

b. For literal formulas: by considering both values as un

signed integer values of unlimited magnitude. If the

values are of unequal size, the shorter is considered

to be prefixed with enough of the following signs to

match the size of the longer value:

(1) Hollerith formula: prefix Hollerith blanks.

(2) Transmission formula: prefix transmission

blanks.

~[E o(ID®@ ~~[ffi~ ~~ ______________ ..:;;:.J.:;;.:..OV.:.:.:;IAL~
- 34-

The re sult of a comparison between lite ral value s of

different types is not defined. Comparison of two octal

numbers is made algebraically.

c. For status variables and formulas: by numerically com

paring the unsigned integer values which each represents.

The status formula must yield a value representing an

unsigned integer value which is a value also represent

able by the status variable.

JOVIAL

- 35-

G. Literal and Status Formulas

1. Construction

literal formula: I Holler ith formula III transmis sion formula I
Hollerith formula: I Hollerith constant II I Hollerith variable I I

I Hollerith function I
transmis sion formula: I transmis sion constant II

I transmission variable III transmission function I
status formula: I status constant I II status variable I I

I status function

2. Meaning

A literal formula serves to identify a literal value. A status

formula serves to identify a status value. A status constant has meaning

only if it appear s in context with a variable for which it is a declar ed

value. Such context may be provided in a status relation, status assign

ment statement, or item switch declaration.

- 36-

IV. SIMPLE STA TEMENTS

A. As signment Statements

1 . Construction

assignment statement: I numeric as signment statement I
I Boolean as signment statement II
I literal as signment statement I I
I status as slgnment statement I
I entry assignment statement I

numeric assignment statement: I numeric variable I =

Inumeric formula I $

Boolean as signment statement: I Boolean variable I =

IBoolean formula 1$
literal as signment stateITlent: I literal variable I =

lliteral forITlula I $

status as signment stateITlent: status variable I =

I status formula I $

entry assignment stateITlent: see subsection IV.C, Entry

Operations

2. Meaning

An as signITlent stateITlent serves to specify the assignITlent

of a value to a variable.

The type, precision, and/ or structure of the value ITla y be altered

upon being as signed to the variable according to the following rule s:

a. For numeric assignlnent statements:

(1) A floating value assigned to a floating variable

remains unaltered.

~~ o@@@ ~[E[ffi ~ ~~ _________________ J_OV_IA_L

- 37-

(2) A fixed or integer value assigned to a floating

variable will be converted to a floating value

with the precision of a floating value.

(3) A floating value as signed to a fixed or integer

variable will be converted to a fixed or integer

value, re spectively, with the precision of the

variable.

(4) A fixed or integer value as signed to a fixed or

integer variable will be converted to the pr e

cision of the variable.

(5) Least significant bits lost due to a change in the

precision of a value are truncated or rounded as

indicated by the declaration pertaining to the

variable.

(6) Least significant bits added due to such a change

are zero valued.

(7) The magnitude of the actual value must not ex

ceed the maximum permitted by the declaration

pertaining to the variable.

(8) A negative value must not be assigned to a vari

able declared to be unsigned.

b. For literal values:

(1) A literal value assigned to a literal variable

which is shorter than the size of the value will

cause the exces s bytes to be truncated from the

left end of the value.

(2) A literal value assigned to a literal variable

which is longer than the size of the value will

cause sufficient byte s to be pr efixed to the value

to match the size of the variable. If the vari

able is Hollerith, Hollerith blanks will be pre

fixed; if the variable is transmis sion, trans

mission blanks will be prefixed.

~~ c(ID@® ~~[ffi~~~ _____________;J;;;..;;;.:OV~IAL=_
-38-

(3) A literal value must not be assigned to a literal

variable of a different type.

c. For status values: The value assigned ITlust represent

an unsigned integer value which is also a value repre

s entable by the variable.

~[E c ®@@ ~~[ffi ~ [E~ _____________ ___.J OV.=-IALa.....-

-l}-

B. Exchange Statements

1. Construction

exchange statement: I numeric exchange statement II
IBoolean exchange statement I
lliteral exchange statement I I
Istatus exchange statement II I entry exchange statement I

numeric exchange statement: I numeric variable 1==

Inum.eric variable I $

Boolean exchange statement: I Boolean variable 1==

IBoolean variable 1$

literal exchange statement: I literal variable 1==

lliteral variable I $

status exchange statement: I status variable 1==

I status variable I $

entry exchange statement: see next subsection, Entry

Operations

2. Meaning

An exchange statement serves to specify the assignment of

the value of two variables to each other.

The effect of an exchange statement may be expressed in terms of

simpler statements. The exchange statement a == b$ has the effect of

being replaced during execution by

t = a$
a = b$
b = t$

where a and b are variables and t is an implicit variable of the same

type and structure as a.

~[E o(ID®@ ~~~~ ~~ ______________ ~JQ"""'yI~AL'__
- 40-

C. Entry Operations

1. Construction

entry relation: I entry variable I =#=EQ=#= I entry formula I
I entry variable I =#=NQ=#= I entry formula I

entry assignment statement: entry variable I =

I entry formula I $

entry exchange statement: entry variable I ==

I entry variable \ $

entry formula: I entry variable I I 0

entry variable: ENTRY (I table designation 1($ \ subscript\ $)) I

ENT (\ table designation I ($\ subscript I $))

2. Meaning

An entry variable (which is not otherwise considered a vari

able) serves to identify the agglomerated bit string derived by consider

ing an entire entry of the designated table as a single quantity. The

structure of the quantity is obviously dependent on the structure and re

lationships of the individual table items comprising an entry. The spe

cific entry designated in the table is the one whose items are associated

with the value of the sub s cr ipt.

An entry formula (which is not otherwise considered a formula)

serves to identify the agglomerated value specified by an entry variable,

or else a single zero bit.

The value resulting from the evaluation of an entry relation (true

or fals e) is determined by comparing the value of the entry variable and

the value of the entry formula, considering each value to be an unsigned

integer value of unlimited magnitude.

The assignment of the value of an entry formula to an entry varia

ble is made by considering the value to be an unsigned integer value and

JOVIAL

- 41-

the variable to be an unsigned integer variable, except that if the

magnitude of the actual value exceeds the maximum indicated by the

entry variable, excess bits are truncated from the left of the value.

The effect of an entry exchange statement may be expressed in

terms of entry assignment statements in a m.anner analogous to the ex

pression of other exchange statements in terms of other assignment

statements.

'~(E c(ID®@ ~[g[ffi~[g~ _____________ T OV_TAT __

D. Goto Statements

1. Construction

goto statement: GOTO=#= I sequence designation I
sequence designation: I statement name I I I close name I

I index switch namel ($ Inumeric formulal $) I
[tern switch name I I I item switch name I
($ I subscript list I $) I I file switch namel

2. Meaning

A goto statement serves to specify an interruption in the

normal sequence in which operations are executed (i. e., the sequence

in which they ar e written).

When a statement name follows the GOTO, the statement with

that name prefixed to it is the next statement to be executed. When a

close name follows the GOTO, the goto statement invokes the execution

of the close declaration which defines that name (see subsection VII.B,

Close Declarations). When a switch name follows the GOTO, the goto

statement invoke s the execution of the switch declar ation which define s

that name (see subsection VILA, Switch Declarations).

JOVIAL

- 43-

E. Procedure Statements

1 . Construction

procedure statement: I procedure name I
(I actual parameter list I) $ I 'procedure name' $

actual parameter list: I actual input parameter list,

lactual output parameter list,

actual input parameter list: I actual input parameter I
I ' 'actual input parameter I II #

actual output parameter list: = I actual output parameter I
I ' [actUal output parameter I J I =11=

actual input parameter: I formula I I I array name I
Itable name II I close name I .

actual output parameter: I variable I II array name II
I table name I I I statement name I .

formula: I numeric formula II I Boolean formula II
'literal formula I I status formula I

2. Meaning

A procedure statement serves to invoke the execution of the

procedure declaration which defines that name (see subsection VII.D,

Procedure Declarations).

An actual input parameter must not be a status constant.

- 44-

F. Stop Statements

1. Construction

stop statement: STOP $

2. Meaning

A stop statement serves to specify the operational end of a

program.

JOVIAL

- 45-

G. Compound Statements

1. Construction

compound statement: BEGIN#= I sentence list I END#=

Idir ect statement I

sentence list: II sentence I J Istatement I f I sentence I J

sentence: I statement II I declaration I

statement: I simple statement II I complex statement I

simple statement: I assignment statement II

lexchange statement II I goto statement I \
Iprocedure statement III stop statement II

Icompound statement I II name I • I simple statement II

Itest statement 1\1 return statement III in statement I

lout statement II I ion statement II I wait statement I

complex statement: I if statement I I I ifeither statement I I
Ifor statement I I I name I· I complex statement I

declaration: I data declaration I II process declaration I
Ifile declaration I II define declaration I

data declaration: I simple item declaration II

Imode declaration III array declaration II

Itable declaration I II independent overlay declaration I

table declaration: I ordinary table declaration I I

I specified table declaration III like table declaration I
process declaration: I switch declaration III close declaration I

Iprocedure declaration III program declaration I

switch declaration: I index switch declaration II

~~_ switch declaration III file switch declaration I

-46 -

2. Meaning

A compound statement serves to specify a set of statements

to be employed as a simple statement. At least one statement must be

included within a compound statement; any number of declarations also

may be included, but no special significance is attached to the fact that

they are included. A direct statement is considered a compound statement.

The appearance of a name prefixed to a simple or complex state

ment serves to define the name as a statement name, and the following

statement as the entity to which the name refers.

A statement name defined within a for statement must not be ref

erenced from outside that for statement.

m~ a(W@@ ~~[ffi~~~ ______________ J_OV_IAL_

- 47-

v. COMPLEX STATEMENTS

A. If Statements

1. Construction

if statement: I if clause II simple statement I
if clause: IF# IBoolean formula 1$

2. Meaning

An if statement serves to specify the conditional execution of

a simple statement.

The effect of an if statement is as follows: if the value of the

Boolean formula is true, the simple statement is executed; if the value

of the Boolean formula is false, the simple statement is ignored. The

next statement in sequence following the if statement is then executed.

~~ o@@@ ~~[ffi~ ~~ ________________ JOV_I_AL_

- 49-

B. Ifeither Statements

1 . Construction

ifeither statement: I ifeither clausel Isimple statement!

I or if clause! Isimple statementl { I orif clause I
I simple statement I I END =If

ifeither clause: IFEITH# I Boolean formula! $

orif clause: { I name 1.1 ORIF# I Boolean formula 1$

2. Meaning

The ifeither statement serves to specify the conditional ex

ecution of one of several simple statements.

The effect of an ifeither statement may be defined in terms of sim

pler statements. The statement

IFEITH bO$ sO
n1. ORIF b1$ sl
n2. ORIF b2$ s2

........ END

where bO, bi , and b2 are Boolean formulas, sO, sl, and s2 are

simple statements, and nl and n2 are statement names, has the ef

fect of being replaced during execution by

IF bO$ BEGIN sO GOTO nn$ END
nl. IF bl$ BEGIN sl GOTO nn$ END
n2. IF b2$ BEGIN s2 GOTO nn$ END

nn.

where nn is the (pos sibly implicit) name of the statement following the

ifeither statement.

'~~ c@@@ ~~[ffi~~~ _______________ ...;;;.J OV IAL;;;;,.

-50 -

(
\

C. For Statements

1 . Construction

for statement: lone-factor for statement I I
I two-factor for statement II/three-factor for statemeniJ

one -factor for statement: lone-factor for clause I
I lone-factor for clause I J ISimple statement I

two-factor for statement: Ilincomplete for clause I J

I two-factor for clause I {'incomplete for clause 1\

I subordinate statement I
three-factor for statement: {'one-factor for clausel J

I complete for clause I ('incomPlete for clause I J

I sub or dinate statement I
incomplete for clause: lone-factor for clause I

Itwo-factor for clause I

complete for clause: I three-factor for clause I I all clause I
one-factor for clause: r Inamel. ~ FOR=!/= I index 1=

linitial value I $

two-factor for clause: II name I .\ FOR=I/= I index 1=
'initial value I, Istep value I $

three-factor for clause: (I name 1·\ FOR=I/= I indexl =

linitial value I, I step value I , I terminal valuel $

all clause: r 'name'.J FOR=!/= lindex I = ALL

(I table de signation I) $

initial value: 'numeric formulal

~~ clli)@@ ~~[ffi~~~ ________________ ...::!.JO~V~IA~L
- 51-

step value: I numeric formula

terminal value: I numeric formula

subordinate statement: I simple statement I \ I for compound I
for compound: BEGIN=#: I sentence list III name I ·1

I if clause I END#:

2. Meaning

A for statement serves to specify the iterative execution of

a simple statement.

The effect of a for statement may be defined in terms of sim

pler statements. In the following discussion, nO, ni , n2, etc., are

statement names; vO, vl , v2, etc., are indexes; fO, £1 , f2, etc.,

are initial values (numeric formulas); iO, il, i2, etc., are step val

ues (numeric formulas); to, tl , t2, etc., are terminal values (nu

meric formulas); s is a simple statement; and ss is a subordinate

statement.

The one-factor for statement

FOR vO = fO$
nl. FOR vI = £1$
n2. FOR v2 = f2$

has the effect of being replaced during execution by

vO = fO$
nl. vI = £1$
n2. v2 = f2$

s

In other words, the indexes are assigned initial values in the order of

their appearance in for clauses, and the simple statement executed once.

']j~ c~®® ~~[ffi~ ~~ ______________ ~J~Oy.L..l.1IALw.t_
- 52-

The two-factor for statement

FOR va = fa, iO$
n 1. FOR vI = £1 $
n2. FOR v2 = f2, i2$
n3. FOR v3 = f3$

ss

has the effect of being replaced during execution by

va = fO$
n1. vI = £1$
n2. v2 = f2$
n3. v3 = f3$

nm. ss
. .

v2 = v2 + i2$
va = vO + iO$

GOTO nm$

where nm is the (possibly implicit) name of the subordinate statement.

In other words, the indexes are assigned initial values in the order

of their appearance in for clause s; the subordinate statement is executed;

indexe s appearing in two-factor for clause s are increased by their step

values (possibly negative) in reverse order of their appearance in for

clauses; and the latter two operations are performed iteratively.

The three -factor for statement

FOR vO = fO$
n 1. FOR v 1 = £1, i1, t1 $
n2. FOR v2 = f2$
n3. FOR v3 = f3, i3$

ss

has the effect of being replaced during execution by

~[E c ®@@ ~[E[ffi ~ [E~ ______________ -----:;J~OV~IAL~
- 53-

vO = fO$
nl. vI = fl$
n2. v2 = f2$
n3. v3 = f3$

nm. IF i1 GR 0 AND vI GR tl
OR il LS 0 AND vI LS tI$
GOTO nn$

nne

ss

v3 = v3 + i3$
vI = vI + i1$

GOTO nrn$

where nm is an implicit statement name and nn is the (possibly implicit)

name of the statement following the for statement.

In other words, the indexes are assigned initial values in the order

of their appearance in for clauses; the index of the three-factor for clause

is examined to see if it has exceeded the current terminal value (exceed

ing meaning in the dir ection of the curr ent sign of the step value); the

subordinate statement is executed; indexes appearing in two- and three

factor for clauses are increased by their step values' (possibly negative)

in reverse order of their appearance in for clauses; and the latter three

operations are performed iteratively until the above test is met. If the

test is met before the fir st execution of the subordinate statement, the

statement is not executed at all.

The all clause

FOR v = ALL(a)$

where a is a table designation and v is an index, has the effect of being

replaced during execution by

FOR v = 0, 1, NENT(a) - 1$

Thus, the all clause may be considered a special form of a three-factor

for clause.

~[E c ®@@ ~[E[ffi 0 [E~ _______________ -.:;J~OV~IAL~
- 54-

The for compound

BEGIN sl nl. IF bl$ END

where sl is a sentence list, has the effect of being replaced during ex

ecution by

BEGIN
s1

nl. IF NOT (bl)$ GOTO nn$
END

where nn is the (possibly implicit) name of the statement following the

for statement.

The programmer should note that maximum optimization of two

and three-factor clauses is obtained only if the step and terminal values

are both numeric formulas containing only numeric constants.

More than one three -factor for clause may actually appear in a

thr ee-factor for statement, but those other than the fir st are cons idered

to be stripped of their terminal value and, in effect, to be two-factor for

clauses.

All statement names in a for statement, except those prefixed to

the fir st for cIa us e, are cons ider ed to be within the for statement as far

as their scope is concerned (see subsection VIILB, Scope of Definitions).

~ [E 0 ®@@ ~~[ffi ~ ~~ ________________ ...:;:J~OV:..;:;IAL~
- 55-

D. Te st Statements

1. Construction

test statement: TEST $ I TEST4/: I index I $

2. Meaning

A test statement serves to specify an interruption in the

normal sequence of operations within a for statement. The test state

ment must only appear within a two- or three-factor for statement.

The effect of a test statement which does not designate an index

is that of a goto statement whose successor is the fir st implicit state

ment (executed by the innermost for statement containing the test state

ment) that increments an index.

The effect of a test statement which does designate an index is

that of a goto statement whose succes sor is the implicit statement (ex

ecuted by a for statement containing the test statement) that incre

ments that index; if the index was defined in a one-factor for clause,

the successor is the implicit statement which follows the point at which

an implicit incrementing statement would have appeared if that index

were defined in a two- or three-factor for clause.

~~ c(ID(Q)@ ~~[ffi~~~ _______________wJ~QV~IAL~
- 56-

VI. DATA DECLARATIONS

A. Item. Descriptions

1. Construction

item. description: I num.eric item. description I \

'Boolean item. description II I literal item. descriptijii] \

Istatus item. description I
num.eric item. description: I integer item. description I \

lfixed item. description I \ I floating item description I
integer item description: 1#= ~ #= I signing I #- I rounding 1#=

Irange I \ A#= I size 1#= , signing I #= I rounding I #= I range I
fixed item description: A=#= I size 1#= I signing 1=#= I precision I #=

Irounding 1=#= , range I
floating item description: F#= I rounding I =#= I range I
Boolean item description: B

literal item. description: I Hollerith item description I
Itransmission item description I

Hollerith item description: H=#= I size I
transm.ission item description: T#= I size I

status item. description: S#= Isize I =#= I status constant list II
S#= I status constant list I

status constant list: I status constant I #= I status constant I
size: 'number I

signing: S I u

rounding: R I #=

range: I numeric constant I ... I num.eric constant II #=

~~ D ®@@ ~~[ffi~ ~~ _______________ ~J~OV....:!IAL!!!..
- 57-

2. Meaning

Item descriptions are a part of data declarations which specify

various characteristic s of the quantities declar ed.

The integer item description serves to define a quantity which may

contain only integer values. The size specifies the number of bits of

which the quantity is composed, from 1 to 71 (if unsigned) or from 1

to 72 (if signed). The signing, if an S, specifies that the high-order bit.

is to repre sent the sign of the quantity; if aU, all bits ar e used for the

magnitude and the quantity is considered an unsigned (i. e., implicitly pos

itive) quantity. The rounding, if an R, specifies that any value assigned

to it is to be rounded if the precision of the value exceeds that of the quan

tity; if no R is present, such a value will be truncated. The range, if

present, specifies the minimum and maximum magnitude of any value

which may be assigned to the quantity; however, the range is not used by

the compile~.

The fixed item description serves to define a quantity which may

contain only fixed values. The size, signing, rounding, and range are as

noted above for integer quantities. The precision specifies the position

of the binary point relative to the low-order bit of the quantity; if the pre

cision is positive, it specifies the number of positions to the left, and if

negative, the number to the right.

The floating item description serves to define a quantity which may

contain only floating values. Rounding and range are as noted for integer

quantities. The implied size is one word.

The Boolean item description serves to define a quantity which may

contain only Boolean values. The implied size is one bit.

The Hollerith item description serves to define a quantity which may

contain only Hollerith values. The size specifies the number of six-bit

bytes of which the quantity is composed.

']J~ o(ID@@ ~~[ffi~~~ _______________ ~JO:.l.."l,VI~AL
- 58-

The transmis sion item description serves to define a quantity which

may contain only transmission values. The size specifies the number of

six-bit bytes of which the quantity is composed.

The status item description serves to define a quantity which may

contain only status values. The status constant list specifies some or all

of the value s of the quantity. The fir st status constant written will r epr e

sent the unsigned integer value 0; the second, 1; the third, l; and so

forth. The size, if given, specifies the number of bits of which the quan

tity is composed; in this case, the number of status constants written

must not exceed Zn, where n is the size given. If the size is not given,

it will be determined as n by In-l < m ~ In , where m is the number

of written status constants. The size of a status quantity must not exceed

71 bits.

JOVIAL

- 59-

B. SiInple IteIn Declarations

1. Construction

siInple iteIn description: ITEM#: InaIne I #:

liteIn description I $ I ITEM#: I naIne I#:

liteIn description I #:P:/I= I preset value I $

ITEM=I/= I naIne 1#= Ipreset value 1$

preset value: 'signed nUIneric constant II 'Boolean constant II
'literal constant II I status constant I

signed nUIneric constant: + I nUIneric constant I
- I nUIneric constant III nUIneric constant I

2. Meaning

The siInple iteIn declaration serves to define a quantity as a

siInple iteIn with the given naIne and characteristics.

The preset value specifies the initial value of the quantity. The ef

fect of specifying a preset value is that of an as signInent stateInent

v = c$

written iInInediately after the declaration, where v is the siInple iteIn

naIne and c is the preset value.

If no iteIn description is given, the quantity is specified to be of the

saIne type as the preset value, and of the size required to hold the value.

The quantity is signed if a + or - is shown and unsigned otherwise; is

unrounded; and if fixed, has a precision equal to that of the preset value.

Also, the preset value Inust not be a status constant nor a Boolean 0 or 1

if no iteIn description is given.

A sim.ple iteIn declaration m.ust precede the first reference to the

s im.ple item..

~[E c(W@@ ~~[ffi ~ ~~ _______________ .-..;J;....;;..OV;..;;.;;IAL~
- 60-

C. Mode Declarations

1. Construction

mode declaration: MODE#= I item description I $ I MODE#=

I pr e s et value I $ I MODE#= I item des cription \ #=P#=

\preset value 1$

2. Meaning

The mode declaration serves to define otherwise undefined

quantities as simple items with given characteristic s.

A mode declaration defines a name which appears in a main pro

gran1. (a program excluding its procedures) used as a simple iteIn name

only if:

a. It has not been declared previously in the Inain program

in a simple item, array, table, file, or procedure

decla ration;

b. It is not defined in the COMPOOL as a siInple item,

array, table, or table item;

c. The first appearance of the naIne follows the appear

ance of this mode declaration; and

d. No other Inode declaration in the main prograIn or in

any procedure appears between this mode declaration

and the first appearance of the naIne.

A Inode declaration defines a name which appears in a procedure

used as a simple item name only if:

a. It has not been declared previously in the main progran1.

or in this procedure in a simple item, array, table,

file, mode, or procedure declaration;

b. It is not defined in the COMPOOL as a simple item,

array, table, or table item;

c. The first appearance of the name follows the appear

ance of this mode declaration; and

- 61-

JOVIAL

d. No other mode declaration in the main program or in

any procedure appears between this mode declaration

and the first appearance of the name.

When a name appears in the above-described context (except that

no mode declaration precedes its first appearance), an implicit mode

declaration of the form

MODE I 36 S$

is assumed to exist as the first sentence in the program.

Preset values are treated as specified for simple item declarations.

- 62-

D. Array Declarations

1. Construction

array declaration: ARRA y=IF I name I =IF [diInension listl =IF

I iteITl descriptionl $ I ARRA Y=IF I naITlel =IF

I diITlension listl =IF I iteITl descriptiollj $ I preset descriptionl

dimension list: I diITlension I I =IF I diITlensionl }

dimension: I nUITlberl

preset description: BEGIN4f ryr-;set listl END4f

preset list: I [preset descriptionl 4f } I II preset value I =IF I
2. Meaning

The array declaration serves to define an n-diITlensional

arrangeITlent of quantities, each quantity with the given name and

char acteristic s.

The dimensionality of the array is specified by the dimension list.

The number of diITlensions in the array is the nUITlber of dimensions

written. The size of each diITlension is given as the nUITlber written for

each dimension. This number ITlust be nonzero. Thus, the array is

rectangular. The arrangement of quantities in the array can be illus

trated by the following exaITlple.

0, 0, 2 0, 1, 2 0, 2, 2

1,2, 2
0, 0, 1 0, 1, 1 0, 2, 1

2, 2, 2
1, 2, 1

0, 0, 0 0, 1, 0 0, 2, 0
2, 2, 1

1, 0, 0 1, 1, 0 1, 2, 0

2, 0, 0 2, 1, 0 2, 2, 0

where the list of nUITlbers in a cell (i,j,k) represents the values of sub

scripts in the sub sc ript list of a variable naming this three -diITlensional

-53-
JOVIAL

array. The row number is indicated by i, the column number by

j, and the matrix nUITlber by k. Each of the dimensions has a size

of three. Note that the first element in a dimension is numbered

zero. The illustration may be extended in the obvious maImer for

any other array. Any number and size of dimensions (except zero)

is permissible.

Arrays are stored column by column in internal storage, e.g.,

(0,0,0), (1,0,0), (2,0,0), (0,1,0), (1,1,0), ... , (2,2,0), (0,0,1),

(1, 0, 1), . . . , (1, 2, 2), (2, 2, 2).

The preset description, if present, specifies initial values for

quantities in the array. To determine the correspondence between in

dividual quantities and preset values, consider the following example

for the three-dimensional array illustrated above:

BEGIN BEGIN BEGIN 0,0,0 0,1, ° 0,2,0 END

BEGIN 1,0,0 1, 1, ° 1, 2, ° END

BEGIN 2,0,0 2,1, ° 2,2,0 END END

BEGIN BEGIN 0, 0, 1 0, 1, 1 0,2, 1 END

BEGIN 1, 0, 1 1, 1, 1 1,2, 1 END

BEGIN 2, 0, 1 2, 1, 1 2,2, 1 END END

BEGIN BEGIN 0,0,2 0,1,2 0,2,2 END

BEGIN 1,0,2 1, 1, 2 1,2,2 END

BEGIN 2,0,2 2,1, 2 2,2,2 END END END

In this example the preset values have been replaced by the

subscript list for the corresponding quantity. Written preset values

are paired with the quantities indicated from left to right within in

nermost BEGIN END brackets, and each preset value is assigned

to its paired quantity in the manner specified for simple items. Not

all quantities need to have paired values; values may be missing

from the right within innermost BEGIN END brackets. However,

all brackets necessary to indicate the dimensions of the array must

be present.

-61-
lOVIAl.

The correspondence illustrated above may be extended for ar

rays with more than three dimensions, and for arrays with two dimen

sions. For one-dimensional arrays, the single BEGIN END brackets

enclose all preset values even though in this case they each corres

pond to elements of different rows.

The array declaration must precede the first reference to the

array.

~[E a(ID@@ ~[E[ffi~ [E~ _______________ ~JO:;:.:.V~IAL~
- 65-

E. Independent Overlay Declarations

1. Construction

independent overlay declaration: OVERLA Y#

I independent data sequence list I $

independent data sequence list: I independent data sequence I
I = I independent data sequence II

independent data sequence: I independent datal

I ' I independent data I
independent data: I simple item name I II array name I

I table name]

2.- Meaning

The independent overlay declaration serves to specify se

quences in which simple items, arrays, and tables are to be arranged

in internal storage; to specify overlaying of such sequences.

Within an independent data sequence, independent data are as

signed to sequential addresses in the order written. Within an inde

pendent data sequence list, each independent data sequence begins at

the same addres s.

A name must not appear more than once in a given independent

overlay declaration, but may appear in more than one such declaration

if the effect is logically consistent. For overlay purposes, a simple

item begins with the first word containing it, an array begins with the

fir st word containing it, and a table begins with its nent word. The

meaning of values assigned to overlaid data (whether by assignment

statements, preset values, etc.) may be determined only by the pro

grammer, and it is his responsibility to avoid inconsistencies.

~~ o(W@@ ~~[ffi~ ~~ __________________ JO V __ IAL~

- 66-

F. Ordinary Table Declarations

1. Construction

ordinary table declaration: TABLE=#= [naming I =#= I length I =#=

I structure I =!F I packing I $ lordinary entry description \

naming: I name II =#=

length: V=#= I number I I R=#= I number I
structure: sip I =#=

packing: D\ MI N\ =#=

ordinary entry description: BEGIN=/I= I ordinary entry declaration!

I I ordinary entry declar ation I I END=IF

ordinary entry declaration: I ordinary table item declaration!

Idependent overlay declaration I
ordinary table item declaration: ITEM=/I= I name 1=#=

litem description \$ \ ITEM=#= Iname! =#= litem description \ $

BEGIN=/I= f Ipreset value 1=#= 1 END=#=

dependent overlay declaration: OVERLA Y=/I=

I dependent data sequence list \ $

dependent data sequence list: I dependent data sequence

I = I dependent data sequence I J

dependent data sequence: table item name I I ' I table item name I

2. Meaning

The ordinary table declaration serves to define a two

dimensional arrangement of quantities. In a serial table, all quantities

in a column are defined as a single entry and all quantities in a row are

defined as instances of a table item. In a parallel table, the reverse is

true.

~[E 0 ®@@ ~[E[ffi ~ ~~ --____________ --:J.JJOV~I~AL

Thus, a table item is a vector of quantities each with the same

name and characteristics, and an entry is composed of one instance of

each item.

An ordinary table declaration defines a table in which the compiler,

not the programmer, specifies the exact positioning of each quantity within

an entry. The table mayor may not be named.

The table may be of variable or rigid length, the former indicated

by V and the latter by R. A rigid table has a fixed number of entries

given by the number following the R. A variable table has a variable

number of entries, with the maximum number of entries given by the

number following the V. Both kinds of tables are prefixed in storage

with a word which in a rigid table yields a value equal to the fixed num

be r of entrie s, and which in a variable table yields or is as signed a value

equal to the current number of entries. This word is the nent word.

The table is structured in serial or in parallel, the former indi

cated by S and the latter by P. If no structure is specified, parallel

is assumed. Tables, like arrays, are stored "column by column"; thus,

serial tables are stored "entry after entry" and parallel tables are stored

"all instances of a table item after all instances of a table item." (An

exception to the latter is that each word will be stored as a column for

multiword items.) Variable tables must be structured in serial.

The table items making up an entry mayor may not be "packed. II

If an N or no packing is specified, each table item is stored beginning

in a different word. If an M or D is specified, the table items are

stored in order to minimize unused bits. If further knowledge of the exact

allocation of table items within an entry is required, the programmer is

advised to use the specified table declaration.

The ordinary entry description specifies the composition of an entry

in te rms of its table items, via ordinary entry declarations.

The ordinary table item declaration defines a table item as a set of

quantities each with given name and characteristics. The preset val

ues, if given, specify initial values for these quantities. The first

value is assigned to the first instance of the table item; the second value,

- 68-

,JOVIAL

to the second instance; and so forth, in the manner specified for simple

items. Not all instances need corresponding preset values.

The dependent overlay declaration specifies sequences in which the

table items are arranged within an entry, and specifies overlaying of

such sequences. If N or no packing is specified for the table, the table

items appearing in a given dependent data sequence are arranged in the

order written; and within a given dependent data sequence list, each de

pendent data sequence begins at the same addres s for a given entry. If

M or D packing is specified for the table, the effect is to begin de

pendent data sequences within a given dependent data sequence list at

the same address for a given entry; the order within a dependent data

sequence is not defined.

A table item name must not appear more than once in a given de

pendent overlay declaration, but may appear in more than one such dec

laration if the effect is logically consistent. A table item must appear

in an ordinary table item declaration befor e it rna y appear in adependent

overlay declaration.

The meaning of values as signed to overlaid table items (whether by

assignment statements, preset values, etc.) maybe determined onlyby the

programmer, and it is his responsibility to avoid logical inconsistencies.

The table declaration must precede the first reference to the table

or table items.

,JOVIAL

- 69 -

G. Specified Table Declarations

1. Construction

specified table declaration: TABLE#= I naming I =If: I length I =If:

Istructure 1=#= Iwidth I $1 specified entry description I

width: I number I
specified entry description: BEGIN#=

Ispecified table item declaration I
f I specified table item declaration I I END#:

specified table item declaration: ITEM#= I name I #=

litem description 1#= I position I $ I ITEM#= I name 1#=

litem description I #= I position I $ BEGIN#:

(I preset value I #: I END#:

position: I word I #= I bit I #: lpacking I
word: I number I
bit: I number I

2. Meaning

The specified table declaration serves to define a two

dimensional arrangement of quantities similar to that defined by the

ordinary table declaration. In the specified table declaration the pro

grammer, not the compiler, specifies the exact positioning of each

quantity within an entry.

The naming, length, and structure of a specified table are as

noted for ordinary tables in the preceding subsection. The width spe

cifies the number of words in an entry; this is the actual width of an

entry regardless of the positioning of individual table items.

The specified entry description specifies the composition of an

entry in terms of its table items and gives the exact position of each table

- 70-

item within the entry. Dependent overlay declarations are not a part of

the specified entry description, since the programmer may accomplish

such positioning explicitly.

The specified table item declaration defines a table item as a set

of quantities, each with given name and characteristics. The preset

values are specified as noted for ordinary table item declarations in the

preceding sub section.

The position given in the specified table item declaration specifies

the word of the entry and the bit of the word in which the table item be

gins. The fir st word of an entry is indicated by 0; the second, by 1; and

so forth. The fir st bit of a word is indicated by 0; the second, by 1; and

so forth. (Table items with a size les s than or equal to 36 bits must not

be positioned in more than one word; and those with a size greater than

36 bits, but less than or equal to 72 bits, must not be positioned in more

than two words, etc.) If the packing is given, it is not used by the com

piler but may be used by the programmer to describe the situation re

sulting from his positioning of the item.

If the table is of serial structure, it is permis sible to position

table items beyond the end of the entry (as specified by the width). This

will cause the position of such a table item to extend into the next entry,

ther eby over la ying the initial table items of the next entry. Such a table

item, however, is referenced as if it were a part of the current entry.

- 71-

JOVIAL

H. Like Table Declarations

1. Construction

like table declaration: TABLE#: Iname I #: pength I #: I structure I
#= I packing 1#= L $ I TABLE#: Iname I #: I structure I #=

Ipacking I #= L $

2. Meaning

The like table declaration serves to define a table which is

like a previously declared table (ordinary or specified). The previously

declared table (the pattern table) may be declared at any 'point earlier in

the program where table s may be declared,

The name of the like table must be identical to the name of the

pattern ~able except for a suffixed letter or numeral. The table defined

by the like table declaration is then identical in composition to the pat

tern table except that any length, structure, or packing specified in the

like table declaration overrides that given in the pattern table declara

tion, and except that no preset values are assigned to the like table.

The names of the table items in the like table are identical to

the names of the table items in the pattern table except that the letter

or numer al noted above is suffixed to each table item name.

~~ c ®@@ ~~[ffi~ [E~ ______________ J OV....;;;-.;IAL ___

-72 -

VII. PROCESS DECLARATIONS

A. Switch Declarations

1. Construction

index switch declaration: SWITCH# I name I = (lindex switch list I) $

index switch list: I index switch element If, I index switch element I I
index switch element: I sequence de signation II =#=

item switch declaration: SWITCH# I name I (I switch item I)
(I item switch list I) $

switch item: I simple item name II I array name II I table item name I
item switch list: I item switch element It, I item switch element I
item switch element: I pre set value 1= I sequence designation I
file switch declaration: see subsection IX. A, File Declarations

and Status

2. Meaning

A switch declaration serves to define a set of operations which

may be invoked from various points in the program by goto statements.

The effect of an index switch declaration may be defined in terms of sim

pler statements. The declaration

SWITCH x = (, el, ,e2, e3,)$

where x is an index switch name and el , e2 , and e3 are sequence des

ignations, when invoked by the statement

GOTO x(n)$

~[E o(W@@ ~[E[ffi ~ ~~ _______________ -w.J~OV IALw...

- 73-

where n is a numeric formula, has the effect of replacing the goto state

ment during execution by the compound statement

BEGIN
IF f{n) EQ 0$ GOTO e$
IF f{n) EQ 1$ GOTO el$
IF f{n) EQ 2$ GOTO e$
IF f{n) EQ 3$ GOTO e2$
IF f{n) EQ 4$ GOTO e3$
IF f{n) EQ 5$ GOTO e$

END

where f is a procedure name that designates an implicit function yield

ing the integer value of the actual parameter (by truncation if neces sary),

and e is the (pos sibly implicit) name of the statement following the orig

inal goto statement.

In other words, the value of the numeric formula selects one of the

switch elements according to the position of the element on the list. A

value of 0 selects the fir st element; 1, the second; and so forth. When

an element is mis sing, the goto statement has no effect. The value must

be one which corresponds to a position in the list.

The effect of an item switch declaration can be defined in terms of

simpler statements. The declaration

SWITCH x{y) = (vO = eO, vI = el, v2 = e2)$

where x is an item switch name; y is a simple item name; vO, vI,

and v2 are preset values; and eO , el , and e2 are sequence designa

tions, when invoked by the statement

GOTO x$

has the effect of replacing the goto statement during execution by the

compound statement

~~ cffi)®@ ~~[ffi~~~ _______________ ~JO~~I~AL
- 74-

BEGIN
IF y EQ vO$ GOTO eO$
IF y EQ vl$ GOTO el$
IF y EQ v2$ GOTO e2$

END

If y is an array name or a table item name and the switch is invoked by

the statement

GOTO x(n)$

where n is a subscript (for a table item) or a subscript list (for an

array), the replacement is

BEGIN

END

IF y(n) EQ vO$ GOTO eO$
IF y(n) EQ vl$ GOTO el$
IF y(n) EQ v2$ GOTO e2$

In other words, the value of the quantity y selects one of the se

quence designators according to a match with the corresponding preset

value. If the value of the quantity does not match any of the preset val

ues, the goto statement has no effect.

In either the item or index switch declaration, sequence designa

tions which reference other switch designations are understood to cause

further effective replacements as required.

A switch declaration defined within a for statement must not be

invoked by a goto statement outside that for statement.

~~ c (ID@@ ~~[ffi ~ ~~ ________________ -w...lI,I0w-VT AT-.,

- 75-

B. Close Declarations

1 . Construction

close declaration: CLOSE=I/= I name 1$ BEGIN=I/= lsentence list I
END=I/=

2. Meaning

A close declaration serves to define a set of operations that

may be invoked from various points in the program by goto statements.

The effect of a close declaration, when invoked by a goto statement, is

to replace the goto statement during execution by the sentence list given

in the close declaration, enclosed in its BEGIN END brackets.

Close declarations must be placed in a program so that they may

only be reached by the invoking goto statements. No close declaration

may contain a statement which directly or indirectly invokes it (i. e., no

recursion).

A close declaration defined within a for statement must not be in

voked by a goto statement outside that for statement, nor by a goto

statement in a procedure not containing that close declaration.

~~ offi)@@ ~~[ffiO~~ __________________ JO-..:;~I~AL

-76 -

C. Return Statements

1. Construction

return statement: RETURN $

Z. Meaning

The return statement must only appear within the sentence

list of a clos e declaration or a procedure declaration. The effect of a

return statement is to designate the statement following the invoking

goto statement (for a close declaration) as the next statement to be ex

ecuted, or to de s ignate a particular implicit statement (for a pr ocedur e

declaration) as the next statement to be executed (see the next subsection).

JOVIAL

-n-

D. Procedure Declarations

1. Construction

procedure declaration: \ procedure heading I\declaration list I

I procedure body I
procedure heading: PROC# Iname I (\ formal parameter list \)

$ I PROC# I name 1$

formal parameter list: I formal input parameter list I
Iformal output parameter list I

formal input par ameter list: I formal input par ameter I
(, I formal input parameter I) I #

formal output parameter list: = I formal output parameter I
(,l formal output parameter I II #

formal input parameter: I simple item name II I array name 11

I table name II I close name I·

formal output parameter: I simple item name Illarray name 1\

I table name III statement name I·
declaration list: t I declaration I I
procedure body: BEGIN# I sentence list IEND#

2. Meaning

A procedure declaration serves to define a set of operations

that may be invoked from various points in a program by procedure state

ments or functions.

The effect of a procedure declaration can be defined in terms of

simpler statements. The declaration

PROC p(fl, f2, f3, f4. = f5, f6, f7, f8.)$ d
BEGIN sEND

~[E c ®®® ~~[ffi ~ ~~ JOVIAl.

- 78-

where p is a procedure naIlle; f1 and f5 are siIllple iteIll
naIlles; f2 and f6 are array naIlles; f3 and f7 are table
naIlles; f4 is a close naIlle; f8 is a stateIllent naIlle; d is a
declaration list including declarations for fl, f2, f3, f5,
f6, and f7 ; and s is a sentence list

when invoked by the procedure stateIllent

p(al, a2, a3, a4. = a5, a6, a7, a8.)$

where al is a forIllula, a5 is a variable, a2 and a6 are
array naIlles, a3 and a7 are table naIlles, a4 is a close
naIlle, and a8 is a stateIllent naIlle

has the effect of replacing the procedure stateIllent during execution by

the cOIllpound stateIllent

BEGIN

f8.

x.
END

d
fl = al$
OVERLA y f2 = a2$
OVERLA y f3 = a3$
OVERLA y f6 = a6$
OVERLA Y f7 = a7$
s
GOTO x$
CLOSE f4$ BEGIN GOTO a4$ END
a5 = f5$
GOTO a8$
as = f5$

where x is the iIllplicit naIlle of the stateIllent which any re
turn stateIllent in s is understood to reference. Any sub
script list in a5 is under stood to be evaluated before such
r eplaceIllent take s effect.

In other words, the following operations are perforIlled when a pro

cedure declaration is invoked by a procedure stateIllent:

a. SiIllple iteIll forIllal input paraIlleters are assigned the

values of corresponding forIllula actual input paraIlleter s.

b. Array and table forIllal paraIlleters are considered to be over

laid with corresponding array and table actual paraIlleters.

~[E a(W®@ ~~[ffi~~~ _____________ ~Joy~TA~I.
-79 -

c. Close and statement name forITlal parameter s are con

sidered to be identical with corresponding close and

stateITlent name actual par aITleter s.

d. The subscripts (if any) of variable actual output paraITl

eter s ar e evaluated.

e. The procedure body is executed.

f. Variable actual output paraITleter s are as signed the

values of corre sponding s iITlple iteITl formal output pa

r aITleter s. This operation is perforITled only if the

procedure body is exited via a return stateITlent, by

norITlal statement sequencing, or via a formal output

parameter that is a stateITlent name.

Thus, each formal parameter must correspond to an actual param-

eter (and vice versa) by their position in the parameter lists as follows:

a. Formal input simple items to actual input formulas.

b. Formaloutput simple items to actual output variables.

c. Formal table s to actual table s.

d. Formal arrays to actual arrays.

e. Formal close names to actual close names.

£. Formal statement names to actual statement names.

In addition, the declaration list must contain declarations for all

formal simple item, array, and table names. The declaration list and

procedure body of a procedure declaration must not contain any proce

dure declaration. The procedure body must not contain a statement which

directly or indirectly invokes this procedure declaration (i. e., no

recursion).

The effect of a procedure declaration when invoked by a function is

similar to when it is invoked by a procedure statement, except that the

declaration list must include a simple item declaration for the proce

dure name, and the simple item must be as signed a value within the pro

cedure; that value is then the value of the function that invoked the pro

cedure declaration.

Procedure declarations must be placed in a program such that they

may be reached only by the invoking procedure statement or function.

- 80-

JOVIAL

VIII. PROGRAMS

A. Programs

1. Construction

program: START=#= I sentence list I TERM=#= I statement name I $ I
START=#= I sentence list I TERM $

2. Meaning

A program serves to define a set of operations that may be

invoked by the operating system. If a statement name is given, it desig

nates the first statement in the program to be executed. If a statement

name is not given, the first statement to be executed is the first sequen

tial statement in the program. In either case, the first statement exe

cuted is not one which is within any declaration.

Within restrictions given elsewhere in this text (i. e., under direct

statements), the sign string comprising a program may be written with

no regard for any particular line format, except that no $ may appear

in the fir st column of a line.

JOYIAL

- 81-

B. Scope of Definitions - -Meaning

Names are characterized by the scope of their definition. Scope

of definition refer s to the part of the program for which the name is con

sidered to be defined and hence may be referenced or invoked.

There are three basic kinds of scope--local, global, and system.

A name with local scope is defined over the procedure in which it is de

clared. A name with global scope is defined over the main program (the

program excluding its procedures) in which it is declared, as well as

over any procedures in which it is not locally defined. A name with sys

tern scope (defined in the COMPOOL or library) is defined over all main

programs in which it is not defined globally, as well as over any pro

cedures in which it is neither globally nor locally defined.

The scope of a name is determined from the point in the program

at which it is declared, not at any point at which it may be referenced

or invoked.

Two identically constructed names are considered to be different

names if they are declared in different categories. The two categories

are goto names and set names (see subsection ILE, Names and Indexes).

Hence, even if their scopes coincide, no confusion can arise. Otherwise,

the scope of two or more identically constructed names must not coincide.

Exhibit 2 summarizes the methods bywhich names maybe declared

and the scope they are consequently given.

Indexes, like names, are also characterized by their scope of

definition. The scope of an index includes the for statement which con

tains the for clause in which the index appear s to the left of the =. This

scope includes other for statements contained in that for statement but

doe s not include procedure declarations contained in that for statement.

In particular, the scope of an index begins with the above-described

appearance in a for clause and, thus, may be referenced in the step- and

terminal-value formulas of that clause as well as in subsequent for clause

formulas.

As with names, the scope of two or more identically constructed

indexes must not coincide. By the very concept of scope, reference to

a name or index from outside its scope is not defined.

- 82-

ex>
~

~2J
M

o

<§2) EXHIBIT 2 - SCOPE OF NAMES
©
©
@'l2)
m
a§
c:=::J

m
@'l2)

Lt

~
H

~

Name

Statement name

Swi tch name

Close name

Simple item
name

Array name

Table name

Table item name

File name

Procedure name

Local Scope
(defined in procedure by)

Prefixing to a statement(1)
or appear ing a s formal
output par ameter

Switch declar ation (1)

Close declaration{l) or
appearing as formal input
parameter

Simple item declaration (2)
or mode declaration(3)

Array declaration(2)

Table declaration(2)

Table declar ation (2)

File declaration(2)

Global Scope
(defined in main program by)

Prefixing to a statement{l)

Switch declar ation (1)

Close declaration(1)

Simple item declaration(2)
or mode declaration(4)

Array declaration(2)

Table declaration(2)

Table declaration(2)

File declar ation (2)

Procedure declaration

System Scope
(defined in)

COMPOOL

COMPOOL

COMPOOL

COMPOOL

Library

Notes: (1) If defined within a for statement, the name must not be referenced from outside the
innermost for statement containing the definition.

(2) Definition must precede the first reference to the name.

(3) If not defined in main program by earlier declaration, nor in COMPOOL, then de
fined at first appearance by last previous mode declaration.

(4) If not defined inmain program or this procedure by earlier declaration (including
mode), nor in COMPOOL, then defined at first appearance by last previous mode
declaration.

C. Define Declarations

1. Construction

define declaration: DEFINE#: I defined identifier I
11 II symbol I #: I " $

defined identifier: I identifier

2. Meaning

Notwithstanding the remainder of the language, the define dec

laration serves to define an identifier that may stand in place of the string

of symbols, given within the If brackets, anywhere in the program.

The string of symbols must not include a comment nor a " bracket.

Any identifier (constructed identically to a defined identifier) that appears

within a symbol (e. g., within a status constant or comment) is not consid

ered to be that defined identifier. Wherever else a defined identifier ap

pears in a program (within its scope) it is considered to be replaced by

the string of symbols defined for it before the remainder of the program

is examined.

The scope of a defined identifier extends from its define declaration

to the next (if any) define declaration in which that defined identifier is

again defined.

Thus, for instance, the appearance of the defined identifier, among

the symbols of another define declaration written within its scope, leads

to the replacement of the defined identifier at that appearance before that

other define declaration is effected.

JOVIAL

- 84-

IX. FILE OPERATIONS

A. File Declarations and Status

1. Construction

file declaration: FILE=#= I name I =#= t Istatus constantl =#= I
I device code I $

logical file code: R I number I
file status relation: [i£le name I =#= I relational operator I =#=

I status formula I
file switch declaration: SWITCH=#= I name I (I file name I) =

(I file switch list I) $

file switch list: I file switch element I t I I file switch element I 1

file switch element: I status constant I = I sequence designation I

2. Meaning

A file declaration serves to define (possibly a segment of)

a given external storage device as a file in which value s may be stored

and/ or from which values may be retrieved. There are currently six

types of such devices - -magnetic tape, drum, disc, card reader and

punch, and printer. The logical file code specifies the particular device

in which the file resides.

As sociated with each logical file is a set of conditions, any of

which may arise during operations involving these files. To permit

reference to these conditions in a program, the file declaration may in

clude a list of status constants, each of which designates a type of con

dition. The correspondence between status constants and conditions is

made through the order in which the status constants are listed in the

file declaration. In this context, the file name is treated similar to

status items. The first status constant represents an unsigned integer

value of 0; the second, 1; the third, 2; and so forth.

~[E c®@@ ~~rni~ ~~ ______________ ---.;;JO __ VI~AL

-85-

Logical file conditions may be tested for through the file status

relation, which is regarded exactly as a status relation. The file switch

declaration is regarded exactly as an item switch declaration, where the

switch item is the file name again treated as a status item.

The file declaration must precede the first reference to the file.

m~ c(W©@ ~~[ffi~~~ ________________ J...;...;.OV.;;;;.;;;;:IAL

- 86-

B. In and Out StatelTIents

1. Construction

in statelTIent: IN (I function code I , [1ile nalTIe I) $

out statelTIent: OUT (I function code I ' I file nalTIe I) $

function code: I nUlTIber I

2. Meaning

Values stored in files are organized within a file in seg

lTIents, which are groups of records. A record is the set of values re

corded as the result of the execution of a single ion statelTIent.

The out statelTIent specifies a file by nalTIe to which values will be

or have been translTIitted. It designates via the function code whether

to open or to close the file.

The in statelTIent specifies a file by nalTIe frolTI which values will

be or have been translTIitted. It designates via the function code whether

to open or to close the file.

A file which is currently open lTIay send or receive values. A file

which is currently closed is prohibited frolTI sending or receiving values.

- 87-

JOVIAL

C. Ion Statements

1. Construction

ion statement: 10 I number I (Imanipulation list I) $ I·
10 I number I (I transmission listl) $

manipulation list: Ifunction code I , I file name\ ,

I terminal action I I I function code I, I file name\

transmission list: I function codel ' I file name I '
I terminal action I , I storage list I

storage list: I first wordl ' I number of words I
[fir st word I

terminal action: I procedure namel I 0

first word: Isimple item namel II array namel II table namel

I table namel ($ I subscriptl $) I NENT (Itable namel)

number of words: I numeric formulal

2. Meaning

Ion statements either manipulate external storage devices,

or transmit values to or from files on those devices. The number fol

lowing 10 in an ion statement must not exceed four nurn.er als and must

be unique to each ion statement in a program.

If the ion statement is to designate device manipulation, it must

include a manipulation list; if it is to designate value transmission, it

must include a transmission list.

The terminal action, if a procedure name, must designate a pa

rameterless procedure that will be invoked when the operation started

by the ion statement reaches completion. The procedure will then be

invoked as though a procedure statement naming that procedure were

written at the point in the program reached when the operation is

JOVIAL

- 88 -

completed. If the terminal action is zero or absent, no procedure will

be invoked.

The first word specifies the address in internal storage of the first

value to be transmitted. The number of words specifies the number of

words or entries to be transmitted, and must yield a nonnegative integer

value. Only the following combinations are defined:

Number NENT Used With Used With
First of Words Entries Word Serial Parallel
Word Words Transmitted Transmitted Transmitted Structure Structure

Simple Item n > 0 n
Name

Array n > 0 n
Name

Table Absent
Declared

No Yes Yes
Name Number

Table n> 0 n No Yes No
Name

Table Name n> 0 n No Yes No
($subscript$)

NENT (table Absent Yes Yes Yes
name) or 0

NENT (table n'> 0 n Yes Yes No
name)

Function codes in ion statements are defined in the operating system.

- 89-

JOVIAL

D. Wait Statements

1. Construction

wait statement: WAIT (10 I number I) $

2. Meaning

The wait statement causes further sequencing of operations

to be delayed until the operation begun by the ion statement with the same

number has been completed.

]j~c®®@ ~~[ffi~~~ ______________ JO VIAL_

- 90-

X. DIRECT OPERATIONS

A. Direct Statements

1 . Construction

direct statement: DIRECT# t I direct codel =#= I JOVIAL=#=

direct code: Imachine codel I II name I . I I as sign statement 1
machine code: see R-73lA, GE-635 JOVIAL Compiler De-

sign Document (Supplement)

assign statement: see next subsection, Assign Statements

2. Meaning

The direct statement serves to define a set of operations that

may be expressed in machine-oriented language. This language must

consist entirely of certain legal GE-635 machine codes.

Each machine code is considered a symbol, and the entire line (or

set of lines) on which it is written is considered part of the symbol. Thus,

assign statements and DIRECT JOVIAL brackets must not appear on

lines containing machine codes. Machine codes may address locations

designated by names defined in JOVIAL. The interpretation of such is

given in subsection ILE, Names and Indexes.

A label of a machine code, if also constructed as a legal machine

code label and a legal JOVIAL statement name, becomes a defined state

ment name as though defined on a JOVIAL statement.

A statement name prefixed to the DIRECT bracket of a direct

statement is considered to designate the fir st executable instruction

within the DIRECT JOVIAL brackets.

Index register s used in direct statements should be saved on en

trance and restored on exit from sequences of machine codes.

~[E c @®@ ~~[ffi ~ ~~ _______________ ---w.oJQWo.I.V~TA~I.
- 91-

B. As sign Statements

l. Construction

assign statement: ASSIGN=I/= laccumulator designation I =

Ibasic variable I $ I ASSIGN=I/= I basic variable I =

I accumulator designation I $

accumulator des ignation: A (I precision I) I A ()

2. Meaning

In the first construction the assign statement serves to as

sign the value of the basic variable to the machine accumulator; in the

second construction it serves to assign the value held in the machine ac

cumulator to the basic variable.

The precision, or its absence, specifies the characteristics of the

machine accumulator (for that statement only) in the manner of a simple

item, as follows:

Type of Equivalent Item Description
Precision, p Basic Variable of Accumulator

p =# 0 numeric A 72 S p

p = 0 numeric I 72 S

p = 0 Boolean B

p = 0 Hollerith H 12

p = 0 transmis sion T 12

p = 0 status S 71 .

p absent numeric F

The effect of the as sign statement, so de sc rib ed, is equivalent to

an as signment statement.

',]j~c®®® ~~[ffi~~~ ______________ J_OVI_AL

-92 -

INDEX OF CONSTRUCTIONS

A

Abs function, 31

Accumulator designation, 121

Actual input parameter, 53

Actual input paramete r list, 53

Actual output parameter, 53

Actual output parameter list, 53

Actual parameter list, 53

Add operator, 33

All clause, 63

Arithmetic operator, 11

Array declaration, 79

Array name, 21

Assign statement, 121

Assignment statement, 43

B

Basic function, 29

Basic variable, 25

Bit, 89

Bit designation, 27

Bit variable, 27

Boolean assignment statement, 43

Boolean constant, 17

Boolean exchange statement, 47

Boolean formula, 37

Boolean function, 29

Boolean item de sc ription, 71

Boolean primary, 37

Boolean secondary, 37

Boolean te rm, 37

-00-

Boolean variable, 25

Bracket, 11

Byte designation, 27

Byte variable, 27

C

Char variable, 27

Close declaration, 97

Close name, 21

Comment, 23

Comment sign, 23

Complete for clause, 63

Complex statement, 57

Compound statement, 57

Constant, 17

D

Data declaration, 57

Data name, 21

Decimal number, 17

Declaration, 57

Declaration list, 101

Declarator, 11

Define declaration, 109

Defined identifier, 109

Delimiter, 11

Dependent data sequence, 85

Dependent data sequence list, 85

Dependent overlay declaration, 85

De sc riptor, 11

Dimension, 79

JOVIAL

INDEX OF CONSTRUCTIONS
(Continued)

Dimension list, 79

Direct code, 119

Direct statement, 119

E

Entry assignment statement, 49

Entry exchange statement, 49

Entry formula, 49

Entry relation, 49

Entry variable, 49

Exchange statement, 47

Exponent, 33

F

Factor, 33

File declaration, III

File name, 21

File status relation, III

File switch declaration,

File switch element,

File switch list, III

File switch name,

First bit, 27

First byte, 27

First word, 115

Fixed constant, 17

Fixed function, 29

21

III

III

Fixed item desc ription, 71

Fixed variable, 25

Floating constant, 17

Floating function, 29

Floating item description, 71

Floating variable, 25

For compound, 64

For statement, 63

Formal input parameter, 101

Formal input parameter list, 101

Formal output parameter, 101

Formal output parameter list, 101

Formal parameter list, 101

Formula, 53

Function, 29

Function code, 113

G

Goto name, 21

Goto statement, 51

H

Hollerith constant, 17

Hollerith item description, 71

Hollerith formula, 41

Hollerith function, 29

Hollerith variable, 25

Identifier, 18

If claus e, 59

I

If statement, 59

Ifeither clause, 61

Ifeither statement, 61

In statement, 113

Incomplete for clause, 63

']J~C®®® ~~[ffi~~~ ______________ ..lII.J~Oy~IAL~
-94 -

INDEX OF CONSTRUCTIONS
(Continued)

Independent data, 83

Independent data sequence, 83

Independent data sequence list, 83

Independent overlay declaration, 83

Index, 21

Index switch declaration, 93

Index switch eleITlent, 93

Index switch list, 93

Index switch naITle, 21

Initial value, 63

Integer constant, 17

Intege r function, 29

Intege r iteITl de sc ription, 71

Intege r variable, 25

Ion stateITlent, 115

IteITl de scription, 71

IteITl switch declaration, 93

IteITl switch eleITlent, 93

IteITl switch list, 93

IteITl switch naITle, 21

L

Length, 85

Length desc riptor, 12

Letter, 9

Like table declaration, 91

Literal as sign.rn.ent stateITlent, 43

Literal constant, 17

Lite ral exchange stateITlent, 47

Literal forITlula, 41

Lite ral function, 29

Lite ra1 i tern de scription, 71

Lite ral relation, 37

Literal variable, 25

Logical file code, III

Logical operator, 11

M

Machine code, 119

Manipulation list, 115

Mant variable, 27

Mark, 9

Mode declaration, 77

Modifie r, 11

Multiply operator, 33

N

NaITle, 21

NaITling, 85

N ent function,

Nent variable,

31

27

NUITlber, 17

NUITlbe r of bits,

Number of bytes,

27

27

NUITlbe r of wo rds, 115

Numeral, 9

Nume ric as signITlent stateITlent, 43

Numeric constant, 17

Numeric exchange statement, 47

NUITleric fo rITlula , 33

Numeric function, 29

NUITleric iteITl de sc ription, 71

~[E c@®@ ~[E[ffi~~~ ______________ ~JO~VIAL~
- 95 -

INDEX OF CONSTRUCTIONS
(Continued)

Numeric relation, 37

Numeric variable, 25

Nwdsen function, 31

o

Octal number, 17

Octal numeral, 17

Odd variable, 27

One-factor for clause, 63

One-factor for statement, 63

Operator, 11

Ordinary entry declaration, 85

Ordinary entry' description, 85

Ordinary table declaration, 85

Ordinary table item declaration, 85

Orif clause, 61

Out statement, 113

P

Packing, 85

Packing descriptor, 12

Part of comment, 23

Part of identifier, 18

Pattern descriptor, 12

Peripheral operator, 11

Position, 89

Precision, 17

Preset description, 79

Preset descriptor, 12

Preset list, 79

Preset value, 75

Primary, 33

Procedure body, 101

Procedure declaration, 101

Procedure heading, 101

Procedure name, 21

Procedure statement, 53

Process declaration, 57

Program, 105

Range, 71

Relation, 37

R

Relational operator, 11

Return statement, 99

Rounding, 7 1

Rounding descriptor, 12

S

Scale, 17

Secondary, 33

Sector, 115

Sentence, 57

Sentence list, 57

Separator, 11

Sequence designation, 51

Sequential operator, 11

Set name, 21

Sign, 9

Sign descriptor, 12

Signed numeric constant, 75

Signing, 71

- 96-

INDEX OF CONSTRUCTIONS
(Continued)

Simple item desc ription, 75

Simple item name, 21

Simple statement, 57

Simple variable, 25

Size, 71

Specified entry description, 89

Specified table declaration, 89

Specified table item declaration, 89

Statement, 57

Statement name, 21

Status as signment statement,

Status constant, 18

Status constant list, 71

Status exchange statement,

Status formula, 41

Status function, 29

Status item description,

Status relation, 37

Status variable, 25

Step value, 64

Stop statement, 55

Storage list, 115

Structure, 85

71

Structure de sc riptor, 12

Subordinate statement, 64

Subsc ript, 25

Subscript list, 25

Subscripted variable, 25

Switch declaration, 57

Switch item, 93

47

43

-97 -

Switch name, 21

Symbol, 23

T

Table declaration, 57

Table designation, 27

Table item name, 21

Table name, 21

Term, 33

Terminal action,

Terminal value,

Test statement,

115

64

69
Three-factor for clause, 63

Three-factor for statement, 63

Transmission constant, 17

Transmission formula, 41

Transmission function, 29

Transmission item description, 71

Transmis sion list, 115

Transmission variable, 25

Two-factor for clause, 63

Two-factor for statement, 63

Type descriptor, 11

v

Variable, 25

W

Wait statement, 117

Width, 89

Word, 89

(1)
c

0)
c
o

(\j

~
::J
c.J

DOCUMENT REVIEW SHEET

TITLE: GE-625/635 Jovial Compiler Reference Manual

CPS #: XCPB-1201

Name:

Position:

Address:

CHECK ONE:

o
o
D

Additional information would be helpful on following subjects.

Errors indicated and pages where errors occur.

Usefulness of manual could be improved as noted.

My comments are: _________________________________ _

FOLD

BUSINESS REPLY MAIL
NO POSTAGIE STAMP NIECIESSARY I .. MAILIED IN THIE UNITIED STATIES

POSTAGE WILL BE PAID BY

GENERAL ELECTRIC COMPUTER DEPARTMENT

13430 NORTH BLACK CANYON HIGHWAY

PHOENIX, ARIZONA - 85001

ATTENTION: Program Documentation
Systems and Processors Operation

FOLD

FIRST CLASS

PERMIT, No. 4332

PHOENIX, ARIZONA

Progress Is Ovr Most Imporfc1nt 'Prot/vef

GENERAL _ ELECTRIC
Computer Department • Phoenix, Arizona

GENERAL ELECTRIC

COMPUTERS,

f'·-~-· .

\

GE-625/635
JOVIAL COM PI LER

ADVANCE INFORMATION

(:

GENERAL. ELECTRIC
l~~~ ____________________ ~

XCPB-1187 /

GE-625/635

JOVIAL COMPILER

SYSTEM DESCRIPTION

The data, analyses, programs, or other material contained
or used herein is preliminary information relating to pro
gramming and computer applications and is supplied to
interested persons without representation or warranty as to
its content, accuracy, or freedom from defects or errors.
The General Electric Company therefore assumes no re
sponsibility and shall not be liable for damages arising
from the supply or use of such data, analyses, programs,
or other material contained herein.

November 1965

COMPUTER DEPARTMENT

PREFACE

This advance information manual is provided by General Electric Computer Department
for the user and operator of the GE-625/635 JOVIAL compiler.

This manual describes the external characteristics and general internal characteristics
of JOVIAL. Descriptive material falls into two general categories: (1) description of
the compiler system environment - - of compiler inputs and outputs, interfaces, operat
ing procedures, and restrictions; and (2) description of the compiler system's perform
ance of its job - - of the methods used and the functional components of the compiler.

Comments concerning this publication should be addressed to Programming Documenta
tion, General Electric Computer Department, P. O. Drawer 2961, Phoenix, Arizona, 85002.

@1965 by General Electric Company

T ABLE OF CONTENTS

Page

1. INTRODUCTION 1

2. COMPILER INPUTS AND OUTPUTS 4

Input 4
Control Information 4
Source Language 4

Output 6
Compiler Listings 6

Binary Output 7
Numeric Values 7

3. OPERATING PROCEDURES 8

4. RESTRICTIONS 10

JOVIAL Language Restrictions 10
JOVIAL Source Program Size Restrictions 10

5. DIRECT CODE 11

Instruction Repertoire 11
Instruction Format 11

6. OBJECT CODE INPUT/OUTPUT llvlPLEMENTATION 13

Input/Output Requests 13
File Control 13
Input/Output Status Checking 14

7. COMPILER INTERFACES 15

GECOS 15
Compool 15
Memory Requirements 16
Subroutine Library 16

8. COMPILER FUNCTIONS 17

Parse Function 17
Affirm Function 17
Influence Function 18

- iii -

Interlude Function
Diagnose Function
Finalize Function
Standardize Function
Generate Function
Assemble Function

APPENDICES

A Compool Description

B Obj ect Code Debug

C Compiler Error Messages

ILLUSTRATIONS

Figure

1 OVERALL RELATIONSIDP OF COMPILER SECTIONS

2 OPERATING ENVIRONMENT FOR THE JOVIAL COMPILER

Page
18
18
18
19
19
19

20

23

24

2-3

9

@~c®®® ~~[ffi~~~ -------------
-iv

1. INTRODUCTION

The JOVIAL programming language was developed, beginning in early 1958, as a
language suitable for military command and control applications. It is largely
computer independent and is amenable to handling real-time problems as well as
a wide variety of data forms. Based on ALGOL with extensions to match command
and control obj ectives, JOVIAL has been offiCially adopted by both the Army and
Navy as their standard programming language for command and control systems.
The Air Force, although without "official" sanction, has made such extensive use of
JOVIAL that it could be considered their "defacto" standard.

The GE-625/635 JOVIAL Compiler will process a carefully selected subset of
the J3 version of JOVIAL. The compiler is syntax-controlled and operates according
to the logic discussed in the following paragraphs. Several key items will first be
defined.

The terms "syntax" and "syntax-controlled" are basic to this method of compilation.
Syntax is the set of grammatical rules of construction of the JOVIAL language by which
the entire logic of the compiler is built up; hence, the description, "syntax controlled. "
Parsing is the actual decoding of a JOVIAL statement and the discovery of its structure
by using the JOVIAL syntax. The result of parSing a statement in the GE-625/635
JOVIAL compiler is a "Polish notation" representation of its basic components. Polish
notation is merely a convenient logical format in which to hold the statement for input
to the succeeding phases of the compiler.

Information that is generated or accumulated during compilation is kept in specialized
tables called rolls. The most important characteristic of a roll is its ability to change
size dynamically. During compilation, a roll continually changes size between fixed
limits; if necessary, these fixed limits can also be changed dynamically. A synonym
for a roll is "push-down, pop-up table." Since the roll is the heart of information
storage in the compiler, POP's (program operators) are the basic tools of compiler
processing logic. A POP is an instruction that, when interpreted, causes some compiler
function to be performed. Although each individual POP function is small, the complete
repertoire of POP's supplies all elementary compilation functions required to build the
compiling logic.

The various phases of the compiler operate at four different levels of detail. From the
largest to the smallest these are: the program, block, statement, and element levels.
A program is an entire JOVIAL program. A block is a section of code between two trans
fer targets. A statement is a complete JOVIAL statement. An element is an independent
subexpression within a JOVIAL statement.

The compiler consists of eight logical functions or sections -- Parse, Affirm, Influence,
Diagnose, Finalize, Standardize, Generate, and Assemble -- plus a special Interlude
phase. Each of these compiler sections is discussed in detail in Chapter 9; the overall
relationship of these compiler sections to one another is shown in Figure 1.

The compiler, its storage, and its support sy stem will require an allocation of at least
24, 000 words of core storage and a minimum of five storage devices. If additional core
storage is available at compile time, the compiler will use it.

- 1 -

.. :,TA:S DATA rtOLLS
.. ~;:: WO:',:C:D OVZR.
:::. C .• T"A::- BITS ARE
:::-';COO;:;D "'.:'m r---
E·:'O~~i.GZ :S
Ai..LOC ... :-i=:D

)ATA
::'ESCRIPTION

1-------------4>I.-,OLLS. E. C ••
m. CONSTAN
ROLLS

FIGURE 1 - OVERALL RELATIONSHIP OF COMPILER SECTIONS (Part 1)

- 2

/ -,- J

V

Df:;-.;. CJ::5Ci\;VrrON
i'OL-!:). 1::. G •• !D.
CONSTAN', ROLLS

FIGURE 1 (continued) OVERALL RELATIONSHIP OF COMPILER SECTIONS (Part 2)

- 3

2. COMPILER INPUTS AND OUTPUTS

INPUT

C antral Information

The JOVIAL compiler control parameters are input via the GE-625/635 General
Comprehensive Operating Supervisor (GECOS) system control card used to initiate
a JOVIAL compilation. This card has the following format:

where the possible parametric values, Pl-P5 are:

DECK
NOLISTIN

NOBUG
COMDK
LISTOUT

Produce a binary output file for punching.
Do not produce a listing of source deck with error
indications.
Do not include obj ect code debug.
Produce a compressed file from the input deck.
Produce a listing of binary and symbolic output.

Any of these parameters may be present on or absent from the control card and any
parameter may appear in any column, separated from the others by commas. If a
parameter is omitted, the predetermined value assumed is the negative of that para
meter.

An example of a JOVIAL control card is the following:

Source Language

Card Format

The JOVIAL source card is a free-field format in columns 1 to 72.
Columns 73 to 80 are reserved for deck identification and sequencing, and are ignored
by the compiler.

Program Format

The first card in a JOVIAL program must be a START card. The last card must be a
TERM.$ card.

@[EcCW®® ~[g[ffi~[g~ -------------
- 4 -

All data must be declared before being used in the JOVIAL pr·ogram.

To adhere to GECOS specifications, a $ must never appear in column 1 of a source
card.

Input Mode

Any symbolic storage medium may be used to contain a JOVIAL source deck, provided
that medium is acceptable to GECOS.

A number of programs may be stacked for input for one compilation under one
$ JOVIAL control card, in which case the parameters on the $ JOVIAL card apply to
all programs in the stack and no $ EXECUTE card is allowed for the run.

Deck Identification

Immediately preceding the START card in the user's deck, there must be an identifi
cation card. The compiler uses this card to create a SYMDEF to be used by GELOAD o

There are three types of source input to the compiler: a program. (PROGRM), a pro
cedure (1?ROCED), and data to generate a Compool (GENCOM). The format of the
identification card for each of these is described below.

Program

Columns 1-6 contain PROGRM. Columns 8-13 may be blank or contain a name, left
justified to be used as the SYMDEF. If no name is present a SYMDEF of six periods
is created.

Procedure

Columns 1-6 contain PROCED. No other identification is necessary. The name of the
procedure is used as the SYMDE F.

Compool Generation

Columns 1-6 contain GENCOM. Columns 8-13 must contain, left-justified, the name of
this Compool. A Compool is a communications pool established by the programmer and
used by the compiler during subsequent program compilation. It is a data dictionary
containing descriptions and absolute storage locations of items, tables, and other elements
of the language that are used in common by the various programs. It should be noted that
the compiler can generate a Compool, or extract data from an established Compool
during a normal compilation. It cannot generate a Compool and compile a JOVIAL program
during the same activity.

- 5 -

OUTPUT

Compiler Listings

Source Language Listing

The source listing consists of a one-statement-per-line replication of the JOVIAL
input deck.

Each line of the listing has a number at the left margin. This line number is used
later in object code debugging printouts and in the object code listing as a method of
correlating obj ect code and debugging output with source language statements.

In addition to the line number, the sequential card occurrence upon which this
statement began will appear at the right margin of the listing. This number is for
use with the ALTER feature in GEFRC.

The following example shows three input cards first as they appear in a JOVIAL
deck and then as they appear on the source listing. They are the 369th, 370th, and
371st cards in the deck:

Card No.

369
370
371

602
603
604

605
606
607
608
609
610

BEGIN

BEGIN

END
END

Input Card Contents

FAAB. FOR C = 0, 1, NENT(FIFI) - 1$ BEGIN.IF FINAL(C) EQ
HOLD AND FIRST(C) EQ DFIRST(C)$ BEGIN TEMPS(O) = C$
TEMPS(1) = TEMPS(1) + 1$ GOTO FBAA$ END END

Source Listing

FOR C = 0, 1, NENT(FIFI) - 1 $ 369
369

IF FINAL(C) EQ HOLD AND FIRST(C)
EQ DFIRST(C)$ 369

370
TEMPS(O) = CS 370
TEMPS(1) = TEMPS(1) + 1$ 370
GOTO FBAA$ 371

371
371

Error messages that pertain to a specific statement follow the statement in the listing,
and an error pointer appears directly below the erroneous part of the statement. Error
messages are further described in Appendix C.

@~o®®® ~~[ffi~~~ -------------
- 6 -

Obj ect C ode Listing

In addition to the source language listing, there is an object code listing that
corresponds to the output of the compiler. The object code listing resembles an
assembly program listing. Specifically, the following fields exist from left to right
on the page.

Error Messages

o Core location -- is relative to a base address of 0
since this is a relocatable binary deck.

o Label field - - mayor may not exist. If there is a
label, it is the original JOVIAL label or a generated
label of the form Gxxxxx where x is an integer.

o Machine operation mnemonic.
o Operand(s) - - conventions are the same as those that

apply to labels.
o Source statement line number.
o Octal representation of binary.
o Octal representation of relocatable bits.

Compiler error messages are of two general types: syntactical (construction) errors
and semantic (usage) errors. The syntactical errors are detected during the first
phase of compilation and are retained on the error roll for later printout. Semantic
errors are found during subsequent phases of compilation. Appendix C contains a
preliminary discussion of JOVIAL syntactical and semantic errors. As previously de
scribed under compiler listings, all errors which refer to an individual statement are
printed below the erroneous part of the statement. Errors which cannot be detected
at the exact time of occurrence - - that is, the BEGIN and END out of phase - - are noted
when they become apparent.

The compiler suppresses the EXECUTE indicator to the operating system when a
semantic error is encountered in the obj ect code. Unless 200 or more errors of any
kind are discovered, compilation continues to conclusion.

BINARY OUTPUT

On request, the compiler produces a relocatable binary file for the program just
compiled. This file is in the column binary format and contains the information
sufficient for loading by GELOAD as specified in the Relocatable Deck Description
section of the GE-625/635 General Loader manual (CPB-I008).

NUMERIC VALUES

Numeric values may be integer, fixed-point, or floating-point. Integer and fixed-point
values may be carried in one or two words as necessary to conform to their declared
size. Floating-point values are carried in one computer word.

@~o®®® ~~[ffi~~~ -------------
- 7 -

3. OPERATING PROCEDURES

During checkout the GE-625/635 JOVIAL compiler is treated as an object program and
is initiated by a $ EXECUTE card. After checkout the compiler operates as a system
program under the control of GECOS and is initiated by a $ JOVIAL card.

When the compiler is operated as a system program, the following system control card
configuration is a minimum requirement:

$ ENDJOB

The inclusion of a $ EXECUTE card during a compilation run causes a bit to be set
in the switch word. By examining this bit, the compiler determines whether or not a
B*file is to be created. B* contains $ OBJECT followed by $ DKEND for Compool
generation runs and for a noncompiling source deck.

Figure 2 illustrates the compiler's operating environment.

@~D®®@ ®~[R1~~® -------------
- 8 -

: ~
B::'JA.i,"[.

/;-'\
"'0~~~)

JOVlP .. L
CO:vi?J:LER

FIGURE 2 - OPERATING ENVIRONMENT FOR THE JOVIAL COMPILER

@j~o(ID@@ ~~[ffiO~~ -------------
- 9 -

4. RESTRICTIONS

JOVIAL LANGUAGE RESTRICTIONS

The following are language variations in GE-625/635 JOVIAL:

- DUAL items are excluded

- STRING items are excluded

- Medium table packing is treated like dense table packing

- The J3X I/O are implemented

- GE-625/635 GMAP assembly code (excluding all MACRO instructions) is the only
legal type of direct code

- To conform with the conventions of GECOS, a $ must not appear in column 1 of an
input card

- To conform with the conventions of GELOAD, procedure names must not be more
than six characters

JOVIAL SOURCE PROGRAM SIZE RESTRICTIONS

The JOVIAL object program will always be compiled in a size that will operate within
the same core allocation made to the compiler. Thus, if the compiler has allocated
to it 24,000 words of core storage, it will compile a JOVIAL program whose expansion
will occupy not more than 24, 000 words of storage. For larger core allocations, all
compiler rolls are dynamically allocated such that there is no wasted space and no need
to penalize one program in favor of another.

A linear equation expresses the allocation of core in terms of compiler rolls:

C1I + C2 D + ... CnL = Available Roll Memory

where Cl , C 2' ... ,Cn are coefficients representing such things as roll group size and I,
D, and L are the number of entries in a particular roll.

- 10-

5. DIRECT CODE

The DIRECT statement in the JOVIAL language serves to define a set of operations
which may be expressed in machine-oriented language. This language consists of
GE-625/635 GMAP codes as defined below. Each line of machine code is considered
a symbol, thus, comments, ASSIGN statements, and DIRECT or JOVIAL brackets
must not appear on lines containing machine code instructions. Direct code may
address locations designated by names defined in JOVIAL. A label of a direct code
instruction, if constructed as a legal JOVIAL statement name becomes a defined state
ment name as though defined on a JOVIAL statement. A statement name prefixed to
the DIRECT bracket is considered to designate the first executable instruction within
the DIRECT JOVIAL brackets. Index registers used within DIRECT JOVIAL brackets
should be saved and restored within those brackets.

INSTRUCTION REPERTOIRE

The GE-625/635 coding for use in DIRECT code are the instruction mnemonics listed
in Appendix B of the GE 625/635 Programming Reference Manual (CPB-1004) with the
following exceptions: LREG, SREG, STBA, and STBQ. In addition, . the following
pseudo codes are allowed: ZERO, SYMREF.

INSTRUCTION FORMAT

The machine code instructions within the DIRECT code must adhere to the following
format:

Columns 1-6 label field

The label must be a legal GMAP label containing no special characters. If this label is
to be referenced from a JOVIAL statement, the label must also adhere to legal JOVIAL
label criteria.

Column 7 even-odd field

An E causes the instruction to be given an even address and an 0 causes the instruction
to be given an odd address. A blank causes no significance to be given to addressing in
terms of even or odd.

Columns 8-15 operation field

Instruction mnemonic begins in column 8.

Columns 16-72 location and comment field

This field has three subfields: subfield 1, subfield 2, and subfield 3.

• Subfield 1 may contain an operand.

• Subfield 2 may contain an operand or a modifier.

• Subfield 3 may contain comments.

• Subfield 1 and subfield 2 are separated by a comma: and
subfield 2 and subfield 3 are separated by a blank.

An operand may be a JOVIAL name or label or a legal DIRECT machine code label or a
constant of the form d where d is a pure numeric decimal, or a constant of the form =
o dd where dd is an octal number. Modifier is a legal GMAP modifier, i. e., DU. Any
blank encountered in columns 16-72 terminates subfield 1 and subfield 2 and causes the
remaining columns to be considered as comments.

Decimal increments or decrements are allowed in subfield 1 and subfield 2.

Either subfield may contain an asterisk which is translated as the address of the in
struction of which this operand field is a part.

Special consideration is given to the instructions STCA and STCQ in the following manner.
Subfield 2 must contain two octal characters whose bit configuration represent the
character positions of the data referenced in subfield 1 which are stored.

@~D®®® ~~[ffiD~~ -~-----------
-12 -

6. OBJECT CODE INPUT/OUTPUT IMPLEMENTATION

INPUT/OUTPUT REQUESTS

The J3X JOVIAL I/O requests have the form:

where

IOn(FCN, FILENAME, XEC, DATANAME, PARAMETER) $

FCN
FILENAME
EXC

DATANAME
PARAMETER
IOn

= code of operation to be performed
= internally declared name of this file
= name of a parameterless procedure

to be executed upon completion of the
I/O request

= name of data storage area
= number of elements in data storage area
= where n, a number of four digits or less,

is the unique name of this particular re
quest.

This information is processed by the compiler and used to generate a calling sequence
to a subroutine called in at obj ect program run time. This subroutine then causes
the I/O request to be operated. The calling sequence to this subroutine has the follow
ing elements included:

FILE CONTROL

FCN
FILE number

DATA address
PARAMETER
FILE STATUS

WORD

= numeric code of operation to be performed
= number associated with the FILENAME

by a JOVIAL FILE declaration
= address of DATANAME
= number of words of data storage

= address of a location in which to store
status information about this I/O request

The J3X JOVIAL I/O file control requests have the following form:

where

IN (FCN, FILENAME)
OUT (FCN, FILENAME)

FCN

FILENAME

= code of the operation, i. e., close or open,
to be performed

= internally declared name of this file

This information is processed by the compiler and used to generate a calling sequence
to a subroutine called in at obj ect program run time. This subroutine then does the
bookkeeping needed to perform the file control and also causes any device movement
necessary, i. e., rew'ind. The calling sequence to this subroutine includes the follow
ing elements:

FCN
FILE number

INPUT/OUTPUT STATUS CHECKING

= numeric code of operation to be performed
= number associated with the FILENAME

by a JOVIAL FILE declaration

The JOVIAL FILE declaration includes a list of allowable status constants for the
named file. The interfacing routine that causes the I/O request to be performed
stores the status of the device into a status word upon completion of the I/O request.
Upon encountering a status check request, a status constant corresponding to that
particular request is compared to the defined bit configuration in the status word of
the given file, thus providing the desired check. (The I/O status codes were not
available at the time of printing of this manual.)

-14 -

7. COMPILER INTERFACES

GECOS

The JOVIAL compiler operates as a system program under the control of GECOS.
All control cards necessary to the operation of G ECOS are used, including a $ JOVIAL
card that Signals the initiation of a JOVIAL compilation to GECOS. The compiler is in
a binary relocatable format acceptable to GELOAD for loading into memory from a disc
storage device known to GECOS.

At execution, the compiler obtains its control information from the switch word set up
by GECOS from data on the $ JOVIAL control card.

All input and output requests from the compiler are processed by GEFRC using
specifically formatted calling sequences rather than MACRO instructions.

The output of the compiler is in a relocatable binary format suitable for loading by
GELOAD and contains specifically formatted calling sequences for I/O operations.

GECOS and JOVIAL requirements combine to utilize nine files during compilation.
These are given below with their GECOS designators:

COIvIPOOL

File

Source input
Alter deck
Binary output to punch
Binary output to operate
Compool
Comdeck
Source listing and assembly listing
Utility work file
Utility work file

GECOS file code

S *
A*
P *
B *
L*
K*
P*
* 1
* 2

The GE-635 Compool is an optional input to the JOVIAL compiler. It provides a diction
ary of system data and program variables. Upon encountering data not defined in the
program, but included in the Compool available to the compiler, the definition of that
data and any preset values aSSigned to it in the Compool are added to the compiler rolls
as if it were internally declared. In actuality, there may be many Compools, but only
one may be used with a given compilation.

The user specifies the option of a Compool by requesting the Compool file to be included

-15 -

in the configuration for compilation. The compiler then proceeds, based on the in
formation in the file control block that tells whether the Compool file is present or
absent.

The Compool format and the type of information that can be contained in the Compool
are described in Appendix A.

The prograln that generates and assembles a Compool is a portion of the compiler with
slight modifications. The compiler initiates a Compool generation upon encountering
control information after normal loading.

MEMORY REQUIREMENTS

The JOVIAL compiler has the capability to adapt to various memory allocations of
24, 000 words or more. Dynamic allocation of roll storage up to the limits specified
at compile time makes this possible.

SUBROUTINE LIBRARY

The compiler has the capability to generate linkage between obj ect code and the
FORTRAN library. All calls to procedures that may be present in an obj ect program
or on a library file generate a fixed-format calling sequence compatible with the exist
ing FORTRAN library.

- 16-

8. COMPILER FUNCTIONS

There are nine maj or functions in the GE -625/635 JOVIAL compiler. The
first compilation function, Parse, reduces the JOVIAL source statement input to a
Polish notation form. Each succeeding function operates on this Polish representa
tion of the program as described in the following paragraphs.

The Polish notation encoded statements are generally taken from the input roll of a
function (the output roll of a previous function) and put on the work roll. There they
are operated on by the function and then placed on an output roll. The input roll of
each function is generally called the Under (function) roll and the output roll is
generally called the After (function) roll. For example, the input to the Finalize
function is on the After Diagnose (or Under Finalize) roll and the output of the Finalize
function is on the After Finalize (or Under Standardize) roll.

All compiler functions process at least one JOVIAL statement before passing control to
another function. Some functions process a whole block at one time. And one function
--Assemble -- processes the program in its entirety.

PARSE FUNCTION

The Parse function constitutes the initial phase of the GE-625/635 JOVIAL compiler.
It accepts JOVIAL source language input from a storage device via the input roll (Under
Parse roll) and outputs the elements of each statement onto the After Parse roll. Its
function is to analyze a statement; determine its type and syntactical correctness; re
move any unneeded content, e. g., blanks, comments, etc; and reduce the statement to
a Polish notation representation.

The Parse function processes one JOVIAL statement and then transfers control to the
Affirm Function.

AFFIRM FUNCTION

The Affirm function is responsible for the further processing of a statement on the
After Parse roll, now called the Under Affirm roll. The constant and variable operands
that appear on the Under Affirm roll in literal form are removed and placed on data
description rolls, such as the Constant and Identifier rolls. In addition, Affirm adds
descriptive information concerning the occurrence and type of these operands to the
data description rolls. On the After Affirm roll, the literal operands are replaced by
pointers to the data description rolls.

The Affirm function processes one JOVIAL statement and then transfers control to the
Influence function.

@j~o®@@ ~~[ffi~~~ -------------
-17 -

INFLUENCE FUNCTION

The Under Influence roll provides one statement to the Influence function. Influence
will analyze the statement in order to provide contextual information concerning
operand traits. When Influence has completed a statement, it will put it on the out
put roll where it can be spilled onto magnetic tape if required.

The Influence function processes one JOVIAL statement and returns control to Parse,
unless it is the end of the source program. If it is the end of the program, the
Interlude function is called.

INTERLUDE FUNCTION

The purpose of the Interlude function is to perform needed processing of the data de
scription rolls. Specifically, the traits that were previously generated for Identifiers
are encoded to simplify subsequent processing. Also, data storage is partially
allocated for each data entry, e. g., Constant storage + 53.

The Interlude function transfers control to the Diagnose function.

DIAGNOSE FUNCTION

The source program listing is generated and output during the Diagnose function. The
Diagnose function has two main sections: Type and Convert.

1 . Type Section

The Type section attaches type information to each operator and operand and
detects any remaining source language errors. It uses trait information
supplied by the previous functions to accomplish this task.

2. Convert Section

The Convert section determines where arithmetic conversions are required in
the object code and inserts the conversion drivers on the After Diagnose roll.

The Diagnose function processes one JOVIAL statement and transfers control to the
Finalize function.

FINALIZE FUNCTION

The finalize function is a key function of the JOVIAL compiler. It prepares the JOVIAL
program for object code generation. That is, it rearranges, optimizes, and computes
additional information to facilitate code generation. The Finalize function consists of
three main sections: Analysis, Unnest, and Collapse.

-18 -

1. Analysis Section

The Analysis section computes information concerning the type of an ex
pression - for example, the fact that an expression is linear or nonlinear,
constant or variable -- which will be important to the Generate function.
This information is added to the existing Polish notation code.

2. Unnest Section

The Unnest section takes expressions that must be computed and retained in
temporary storage and locates them for proper code generation, that is, in
front of other expressions of which they are a part.

3. Collapse Section

The Collapse section recognizes duplicate expressions and replaces repeated
occurrences with a reference to the initial expressions.

The Finalize function processes one JOVIAL statement and then transfers control back
to the Diagnose function, unless it is the end of a block. If it is the end of a block, the
transfer is to the Standardize function.

STANDARDIZE FUNCTION

The Standardize function processes an entire block at one time. It puts the results of
the Collapse section of the Finalize function in standard Polish notation form and sets
up the proper references to generate labels and temporary storage.

When the block is processed, the Standardize function transfers control to the Generate
function.

GENERATE FUNCTION

The Generate function translates Polish notation code into GE-625/635 machine code.
The Generate function is the first function in the compilation process in which the
machine-independent Polish notation code is replaced by a machine-dependent code. The
output roll from the Generate function can be spilled onto an intermediate file if required o

The Generate function processes an entire block of the program at one time. If this is
the last block of the program, control is passed on to the Assemble function; otherwise,
control is transferred back to the Diagnose function.

ASSEMBLE FUNCTION

The Assemble function is similar to the second pass of a normal GE-625/635 assembly
program. It turns the entire program into a relocatable binary output. In addition, the
Assemble function outputs the obj ect code listing and the memory storage map.

- 19-

APPENDIX A

COMPOOL DESCRIPTION

COMPOOL CONTENT

The JOVIAL Compool may contain any of the following types of information.

Program Descriptions

1 . Program name
2. Program length

Table Descriptions

1. Table name
2. Variable or rigid length indicator
3. Number of entries
4. Parallel or serial structure indicator
5. Number of words per entry

Item Descriptions

1. Item name
2. Table name (if this item is in a table)
3. Item type

A- Fixed-point
B-Boolean
I- Integer
F - Floating-point
H - Hollerith
T-Standard Transmission
S-Status

4. Number of bits or bytes
5. Signed or unsigned (if applicable)
6. Number of fractional bits (A type only)
7. Word number within entry (for items within completely defined tables)
8 0 Initial bit position within the word (for items within completely defined tables)
9. Location of status constants in the status constant area (S type only)
10. Number of status constants associated with this item (S type only)

Status Constants

Status constants corresponding to all items or arrays declared as S type.

- 20 -

Array Descriptions

1 . Array name
2. Array type (A, B, I, F, H, T, S as defined in 3 of Item Descriptions)
3. Number of dimensions
4. Size of each dimension
5. Signed or unsigned (if applicable)
6. Number of fractional bits (A type only)
7. Location of status constants in the status constant area (S type only)
8. Number of status constants associated with this array (S type only)

FORMAT

Compool Format

The C ompool consists of a set of rolls like those that result from a normal compila
tion. The number and order of the rolls is a function of what is required by the com
piler to express data and program declarations.

Compool File Format

The Compool file is one binary record containing the information generated by a
Compool generation run.

OPERATING PROCEDURES

The operation of making a Compool file is initiated in the same manner as that for a
JOVIAL compilation.

Input

The first card input to the JOVIAL compiler during a Compool generation run has
GENCOM in columns 1 to 6. This signals the compiler to generate a Compool rather
than to compile a program. Following the GENCOM card is the environment definition
cards, whose content is described in the Compool Contents paragraph above. A TERMS$
card terminates the input deck.

The format of the Compool definition cards is identical to that of their counterpart,
JOVIAL declarations.

Output

The normal output of a Compool generation run is (1) a binary file containing the
Compaol, and (2) a file for listing its contents.

- 21 -

Method

The Compool generation run is adapted from the first two phases of the JOVIAL
compiler. Modifications are made to remove Wlneeded capabilities. The basic
logic is that of the compiler.

Usage

The JOVIAL compiler is the ultimate user of the Compool information. Upon de
termining that a Compool file is present, the compiler takes data from that file, as
it is referenced by the object program, and adds the data to the proper rolls.

The order of data reference for the compiler is local, global, and then Compool.

@~o®®@ ~[g[ffi~[g~ -------------
-22 -

APPENDIX B

OBJECT CODE DEBUG

At the programmer's option, the JOVIAL compiler automatically includes debugging
aids in the program being compiled. No control information is required from the
programmer other than to specify the inclusion or exclusion of debugging (see Control
Information under the Input paragraph of Chapter 2).

The compiler analyzes the source program as it is being compiled to determine the
importance of variables, to recognize loops, and to understand the general flow of the
program. Using this information it inserts code to provide for:

1. Dumps of key variables -- e. g., FOR variables, assignment
variables, I/O variables -- as they change.

2. A program trace, which is a list of program transfers

3. A listing of procedure entrances and exits.

All debug information starts with the name of the program. The main program is
signified by an asterisk. Each statement trace starts with the compiler-assigned
statement number followed by a slash mark. In an assignment statement, this is
followed by the variable name (subscripted if necessary) and the value assigned to
it. For the FOR statements, the value of the induction variable is given for each iter
ation.

Tracing automatically terminates after each statement has been executed n times, where
n is a system parameter. The format is (1) line number, (2) OFF, (3) the number of
statements executed prior to termination, and (4) the number of statements executed
during the trace-off mode. Automatic traCing resumes when statements which have not
been previously executed n times are encountered.

IF, IFEITH, and SWITCH statements are followed by the values of their expressions.
The final debug information supplied under post-mortem consists of the results of the
last three executions of each statement. The format is (1) line number, (2) number of
times the statement was executed, and (3) the last three values. Statements not execut
ed three times show values in accordance with the number of executions.

- 23 -

APPENDIX C

COMPILER ERROR MESSAGES

The general form of the JOVIAL compiler error messages is described under the
Output paragraph in Chapter 2. Each message is self -explanatory; that is, there
are no error numbers that must be looked up in a supplementary error list.

Some types of errors that may be detected and corresponding error messages that
are printed follow.

1. ALPHA ($A, B)
. ~

Syntax Error

= TWODARRAY (A)$
t

Too Few Subscripts

2. BETA = 1. 25A2 + 3H(XYZ)$
l'

Arithmetic Type Required

3. IF ALPHA t BETA$

Syntax Error

@~c(ID®® ~~[ffiO~~ -------------
- 24-

'Progress /s Ollr Mosf Impor/emf Prot/lief

GENERAL _ ELECTRIC
Computer Department • Phoenix, Arizona

