
THE COMPATIBLES/600

-r-r· .2. (~ i · c).) I

·-. •···•··-· • I 1'.~. --{_,1)

Fortran IV
GE-600 Series
Input I Output

Library

~YSTEM
~UP~T
~ NFORMATION

CPB-tt37

ABSTRACT

This manual describes the implementation
d'etails of the FORTRAN IV Input/Output
Routines available for use with all configurations
of the COMPATIBLES/600.

GENERAL. ELECTRIC

: (8/66)

-...-·--···"" DATE ---
GENERAL. ELECTRIC GE-600 SERIES Oct. 1968
INFORMATION SYSTEMS DIVISION NO.

COMPUTER EQUIPMENT DEPARTMENl" TECHNICAL INFORMATION BULLETIN
600-223

SUBJECT: REF,

Changes to FXEM and FSLEW CPB-1137

The FXEM and FSLEW revisions contained in this TIB include features
implemented in GECOS-III System Development Letter 1. The LHSF writeup
was issued December 1965 as TIB 600-60. It is reissued here as change
pages for convenience, since in its earlier form it was not part of the
manual.

Replace old pages in GE-625/635 FORTRAN IV Input/Output Library System
Support Information, CPB-1137, with attached new pages as follows:

Remove

iii/iv
31-34

35/36
43/44

45/46

Replace

iii/ iv
31-34

35/36
43/44

45/46

Insert

34.1-34.5

44.1-44.3

Vertical bars in the margins of these new pages indicate changes or
additions to the existing text. This new information will be included in
the next edition of the manual.

Place this sheet in the front of your manual to show that the contents
of this TIB have been incorporated.

TIBs that currently apply to CPB-1137 are:

600-60 (superseded by this TIB)
600-96
600-183
600-223

CE 133 (8/66)

....
DATE

G ErJ E RA L • E LE CTR I C GIE-600 SERIES March 1968
NO. INFORMATION SYSTEMS DIVISION

COMPUTER EQUIPMENT DEPARTMENT f ECHNICAL INFORMATION RULLETIN 600-183
SUBJECT! Revisions to the FORTRAN IV Binary I/O REF'.

Interface Routine CPB-1137

~lease remove the following pages from your GE-625/635 FORTRAN IV
Input/Output Library SSI manual and replace them with the attached
revised pages of the same number. This TIB includes new features
implemented in Systems Development Letter 12.

iii/iv ~/
9/1~-z.,r/~;:..-
23/24
33/34

In addition, insert the following attached pages which are new:

24.1/blank
34.1/34. 2
45/46
47/blank

It is suggested that you add this page to the front of your manual
to show that this TIB has been entered and that the following TIB's
are now in effect:

TIB Disposition

TIB 600-60
TIB 600-96
TIB 600-183

This information will be incorporated into the next addition of
the manual.

---···
DATE

IEi\URAL f) ELECTRIC GE~600 SERIES April 1966

COMPUTER DEPARTMENT
NO.

TECHNICAL INFORMATION BULLETIN 600-96
JECT1 REF.

Corrections to GE-625/635 FORTRAN IV 1/0 Library CPB-1137

INSTRUCTIONS

The attached pages replace pages 43 and 44 of the GE-625/635 FORTRAN IV //
Input/Output Library SSI, CPB-1137.

TIB DISPOSITION

The revised pages will appear in the next edition of GE-625/635 FORTRAN IV
Input/ Output Library SSI, CPB...; 1137.

/"'""",..

GENERAL e ELECTRIC
DATE

GE~600 SERIES Dec. 1965

SUBJECT:

COMPUTER DEPARTMENT
NO.

TECHNICAL INFORMATION BULLETIN 600-60

Restart of a Link Job From H* Tape (FORTRAN IV Input/ REF.

Out_Qut Library) CPB-1137

The attached pages describe in detail the procedures used in
reloading a saved H* tape file, which has been created by a
previous run. (Procedures used to create an H* file are described
in GE-625/635 General Loader, CPB-1008. To load the subs~quent -
links, use the LLINK or LINK subroutine as describeg/in the GE-625/635
FORTRAN IV In ut/Out ut Librar , CPB-1137 •. .) The attached pages should
be inserted in the GE-625 6 5 FORTRAN IV-,In ut Out ut Librar ,
CPB-1137.

Subsequent issues of CPB-1137 will include this information.

'-. '·, .

T.l.B. NO: 600-60 SH_2_ of SH_.

.LHSF - .LHSNF -- RESTART OF LINK JOB FROM H* TAPE

I. PURPOSE

To reload a program from an H* file (tape) which was generated
in a previous GELOAD activity. The H* file was generated
by having a $ TAPE H·k control card (see GE-625/635 General Loade·
CPB-1008) at execution time.

II. METHOD

The H* file generated by GELOAD contains a link identified
as //////which is the main or common subprogram of the job.
If the FCB option was in effect during loading (generation
of H* file), a second link identified as /////1 containing
all file control blocks generated by GELOAD will also be
present on H*. This subroutine searches the H* file for
these identifiers (/////1 is optional), restores them, and
enters the main subprogram at the entry location specified
during the GELOAD activity.

III. USAGE

1. This program is called directly from the subroutine library
and requires no other subprograms.

2. The entire job could be set up as follows:

$ SNUMB
$ IDENT
$ USE .LHSF
$ ENTRY • LHSF

i
EXECUTE
LIMITS
TAPE H·k, ••••
DATA AB {Optional)

$ ENDJOB
-;.--,'d•EOF

If the NOFCB option was in effect when GELOAD generated
the H* file, an entry card of the form:

$ ENTRY • LHSNF

must replace the card following the $ USE card.

"" . ~

, NO: 600-60 SH_3 _ of SH_3_

IV. RESTRICTIONS

1. A $ LOWLOAD card (see CPB-1008) must be included if the
H* file was generated under this option.

2. The same memory limits must be requested as were when the
H* file was generated.

3. Use of one of the set up subroutines must have been made
when the H* file was generated. Entry to the main link is
made through those subroutines for purposes of initial
ization of fault vectors.

~ .. •.,, "' ..

GE-600 SERIES

FORTRAN IV INPUT/ OUTPUT

LIBRARY

May 1965

GENERALfj ELECTRIC
\

COMPUTER DEPARTMENT

© 1965 by General Electric Company

Program No. Page

INTRODUCTION 1

DEBUG--Object Time Debug Processor El. 001 3

DUMP--Memory Dump El.002 5

EXIT--Job Termination El.003 7

FBIO--Short List Binary I/O Interface El.004 8

FBST--Backspace Record El.005 9

FCLOSE--File Closing El.006 11

FEFT--Rewind and End File Processor El. 007 12

FEOF--End-of-File Processor El.008 13

FlDO--Double Precision Powers of Ten El.009 14

FLGEOF--Initialization of End-of-File Processing El.010 15

FLGERR--Initialization of Data Error Processing El. 011 16

FOPEN--File Opening El. 012 17

DVCHK--Exponent Overflow and Divide Check Tests El.013 · 20

FRWB--Binary I/O Interface El.014 21

FRWD--BCD I/O Interface by Format Control El.015 23

FSIO--Short List BCD I/O Interface El.016 25

FSLIO--Short List I/O Processor El.017 26

SLITE--Sense Light Simulator El.018 27

SSWTCH--Sense Switch Test El.019 28

FVFI--NAMELIST Input El. 020 29

iii

Program No. Page

FVFO--NAMELIST and Debug Output El. 021 31

FXEM--Execution Error Monitor El. 022. 32

LINK--Restore Links During Execution El. 023 36

STORE--Access Half of a Double Precision or
Complex Word El. 024 38

SETBUF- -Define a Buffer(s) for a Specified File
Control Block El. 025 39

SETFCB--Define File Control Block El. 026 40

SETLGT--Define Logical File Table El. 027 41

SETUP--Pre-Execution Initializer El. 028 42

FSLEW--Carriage Control Simulator El. 029 44

I LHSF--Restore Link - H* El. 030 44.3

FINC--BCD Internal Conversion Interface El. 031 46

@~0 ®~~ ~~~~~~~~~~~~~F~Oll~~~~
~ \g}~ ~ I/O LIBRARY

iv Rev. October 1968

INTRODUCTION

Individuals interested in details of the FORTRAN Input/Output subprograms
will find the following description of their general mode of operation useful.
It is assumed that the reader is familiar with the manner in which the General
Loader (GELOAD) processes the GECOS and FFILE file control cards.

The Input/Output library is dependent upon the fact that execution has
started with the initialization subprogram . SETU. for one of its functions is
to initialize fault vector cell 258 to contain the address of the "logical file-
file control block" table. The user can also accomplish this initialization
by calling SETLGT in the case where he has created his own table. The
library also depends upon the limits of unused memory being expressed in
fault vector cell 37 8 (always done by GE LOAD).

A call to any I/O library subprogram from the FORTRAN language con
tains, as one of the arguments, the logical file expressed as an integer. This
integer is placed in character position 5 of cell . FBAD. (defined in subprogram
FOPEN) by the called I/O subprogram. The called subprogram then calls
FOPEN which searches the "logical file--file control block" table defined below:

1. Fault vector cell 258 is of the form:

ZERO TAB,O

2. The actual table has the form:

ZERO ENDTAB, 0

TAB VFD 18/FCB1,6/LGU1,6/LGU2,6/LGU3

VFD 18/FCB2,6/LGU4,6/LGU5,6/LGU6

ZERO 0,0

ENDTAB ZERO 0,0

where:

TAB-1 contains the address of the last available location in the
table

-1-

FCB1 contains the address of cell LOCSYM of file control
block 1

LGU1,LGU2,LGU3 are the FORTRAN logical files which
reference file control block 1. Missing files
are filled in with zero.

If more than three logical files reference the same file control block, the
FCB1 pointer and the additional logical files may occur at any other place
in the table.

There are as many entries in the table as needed to express the vario:is
file control blocks and logical files referencing them. After the last
entry in the table, zeros fill out the table.

FOPEN places the address of the file control block for the referenced
file in bits 0-18 of cell . FBAD., but does not destroy the logical file~in bits
30-35 of that cell. FOPEN then proceeds to open the file and return.'--··--··-·--

The subprogram which initiated the call to FOPEN now has the information
necessary to p·Brform calls to the proper GEFRC subprograms. In the case
of an output file, bits 30-35 of cell . FBAD. are used as the report code of the
output record. Thus, if many logical files are connected to SYSOUT, they will
be separated automatically at printing time according to the file code originally
specified in the FORTRAN calling sequence.

:).:.lt 0.--~::tA.,.e f..er c.!'1,. ..

J kt • U /\/ 0 n-v •

-.2-

1

'

DEBUG--OBJECT TIME DEBUG PROCESSOR

I. PURPOSE

To decide whether or not to produce debug output based on

the contents of the IF and FOR clauses.

II. METHOD

DEBUG assumes the General Loader (GELOAD) has placed a

debug table in memory. DEBUG is entered by a DRL instruction.

The location of the DRL instruction is checked to

see if it was inserted by GELOAD (a legal debug request),

or if it was originally present in the interrupted program.

If it was a debug request, the IF and FOR clauses are

examined in the order in which they were specified. If

they are satisfied, DEBUG writes information describing the

particular interrupt it is interpreting. It then calls FVFO

for the list output, using the NAMELIST table supplied in

the debug table by GELOAD. The instruction replaced by

the DRL instruction is then executed and control is

returned to the next instruction in the interrupted program.

If the DRL instruction was not inserted by GELOAD, it is ignored

and control is returned to the interrupted program. For a more

detailed description of the DEBUG feature consult the GE-635

General Loader Reference Manual, CPB-1008.

III. USAGE

1. Calling Sequence--entered by a DRL instruction.

2. DEBUG uses 285 memory locations.

3. No error conditions.

-3~

IV. RESTRICTIONS

The subprograms FRWD, FOPEN, and FVFO must be in memory.

·-4-

DUMP--MEMORY DUMP

I. PURPOSE

To dump all or designated areas of memory in a selected

format.

II. METHOD

An appropriate NAMELIST table is created using the

parameters specified in the calling sequence. DUMP

calls FVFO for the actual NAMELIST output processing. The

panel is dumped followed by the blocks of memory requested.

If DUMP was called, execution is terminated by a call to

EXIT. If PDUMP was called, the panel is restored and

control is returned to the calling program.

III. USAGE

1. Calling Sequence - CALL D~~ (A1, B1, F1, ... ,An, Bn, Fn)

~~L ~~~_]> (A1 , B1 , F1 , ... ,An, Bn, Fn)

where Ai and Bi are arguments that indicate the

limits of memory to be dumped. Either A or B may

represent the upper or lower limits.

Fi is an integer indicating the dump format desired:

F· = 0].
octal

F. = 1
].

integer

F·]. = 2 real

-5-

F· = 3
1. double precision

F· 1. = 4 complex

F· 1. = 5 logical

If the last Fi is omitted, it is assumed to be zero.

If no arguments are given, all of memory is dumped

in octal.

2. DUMP uses 160 memory locations.

IV. RESTRICTIONS

The subprograms EXIT and FVFO must be in memory.

-6-

EXIT--JOB TERMINATION

I. PURPOSE

To purge all buffers and terminate current activity.

II. METHOD

EXIT transforms the logical file table created by the

General Loader (GELOAD) into a file designator word list

for closing_all files. It calls CLOSE which purges the

buffers and writes an end of file on an output file and

notes the closing of an input file. Execution is terminated

by a MME GEFINI.

III. USAGE

1. Calling Sequence - CALL EXIT

or CALL .FEXIT

EXIT and.FEXIT are equivalent.

2. EXIT uses 30 memory locations.

3. No error conditions.

IV. RESTRICTIONS

The subprogram_ CLOSE must be in memory.

EXIT exists in the library as a subset of FOPEN.

-7-

FBIO--SHORT LIST BINARY I/O INTERFACE

I. PURPOSE

To call FSLIO for short list binary I/O.

II. METHOD

FBIO consists of four calling sequences for FSLIO.

III. USAGE

1. Calling Sequence - CALL .FBLOo(A,M) for single-precision

binary output,

CALL .FBDO.(A,M) for double-precision

binary output,

CALL .FBLI.(A,M) for single-precision

binary input,

CALL .FBDio(A,M) for double-precision

binary input,

where A = location of array, and M = location of number

of elements.

2. FBIO uses 20 memory locations.

3. No e.rror conditions.

IV. RESTRICTIONS

The subprograms FRWB and FSLIO must be in memory.

-8-

FBST--BACKSPACE RECORD

I. PURPOSE

To backspace one logical record on a file.

II. METHOD

The buffer for the file is inspected and the /"'h"_,,,.~ tw---dw;:t--lif.)/\..~ ~

number of 1 ogic a_l , ~~~~~~-~-- ~n- .1::1:'.e. ... ~':'!:E.e.r._ --~-~ . ~ ~~: ~"'.'e_d} The \ ~_,,c/.,.,._~ i:;"
po-~t;~t;·-~f--th~ buffer ~-~_2:~~!LOI_l _ _!:_i!§_J:!J~.-~__f _ _?-~~--~J ,h_,,t~ ('~~ ~11
\ output file pe-fil.; is physically backspaced and the '1 /J ~d "'""' /,-,,'--IC""'

buffer re-initialized. If the original number of logical JJ!W'""'v-·'k),j IV--5-~

records in the buffer was·N, N-1 logical records are

skipped by successive calls to GET. By using this

technique, which always involves physical backspacing,

FBST remains more independent of the General File and

Record Control program (GEFRC).

III. USAGE

1. Calling Sequence - CALL .FBST.(N)

where N is the logical file to be backspaced.

2. FBST uses 240 memory locations.

3. The error conditions are:

~t o.,.,~<f:k<-i... ~i _

(.).)0"'1.-(.. 1-t ~"''"""' 1{;,
-il-.z N "'·1\L-A)~ - Jf hm.1

~~tac; ,·y~ ~1c:t::;,((;/t:i.

f& ;.., cf..,, A '"" ~,a.vf
~}" ~ iryll-'\.....t ,{ r..,., ~. ~~t .

I -f-

FXEM error #47 if logical file requested was connected

either to SYSOUT or to a physical device other than
------~·-- -;-·~~ .. ~::,.~~~~

magnetic tape. FXEM terminates execution.

@3~ 0 ®®® ~~[ffi ~ ~~ -----------I-jg-Ri-~-~-i~
-9-

Rev. March 1968

FXEM error #49 if an ~rron~ous end of file appears.

FXEM terminates execution.

IV. RESTRICTIONS

1. The subprograms GET, BSREC, EXIT, FOPEN, and FXEM

must be in memory.

2. If more than one logical file refers to the same physical

file, a request to backspace the physical file results

in pointing to the last previous logical record,

regardless of the logical file to which it is connected.

-10-

(

FCLOSE--FILE CLOSING

I. PURPOSE

To close a file and release the buffer assigned to that file.

The buffer is released only if it is standard size (320 words).

II. METHOD

FCLOSE opens the file in its previous mode and calls the

General File and Record Control (GEFRC) subprogram CLOSE to

close the file without rewind. FCLOSE examines and

releases any buffers of standard size assigned to the file.

It places their memory address in a table of available

buffers (location .FBFTB in the FOPEN subprogram) for

possible reassignment to a newly opened file.

III. USAGE

1. Calling Sequence - CALL FCLOSE(U)

where U is the logical file number.

2. FCLOSE uses 47 memory locations.

IV. RESTRICTIONS

1. If more than one logical file refers to one physical

file, the physical file must be closed using FCLOSE

only once.

2. The subprograms CLOSE and FOPEN must be in memory.

-11-

FEFT--REWIND AND ENDFILE PROCESSOR

I. PURPOSE

To rewind input or output files or write an end of file

on output files.

II. METHOD

FEFT records the desired rewind or write end-of-file

option in a file designator word. FEFT calls

subprogram CLOSE which writes an end of file (if the file

designated is an output fil~ followed by a rewind ~f

requested).

III. USAGE

1. Calling Sequences - CALL .FEFT.(N) compiled for the

FORTRAN statement ENDFILE N

CALL .FRWT.(N) compiled for the

FORTRAN statement REWIND N

where N is the logical file desired.

2. FEFT uses 70 memory locations.

3. The error condition is:

FXEM error #35 if there is an attempt to rewind or

write end of file on files I* or P*. Execution is

continued with normal return to caller.

IVo RESTRICTIONS

The subprograms FOPEN, OPEN, CLOSE, FXEM must be in memory.

-12-

FEOF--END-OF-FILE PROCESSOR

I., PURPOSE

To write an end-of-file message and either terminate

execution or return to the calling program.

II. METHOD

If a library subroutine detects an end of file on an

input file, it calls FEOF. FEOF places the file label in

a message and calls FXEM to print the message. FEOF

either terminates execution, or if the user has provided·

for end-of-file condition by having previously called

FLGEOF for the current file, FEOF returns to the calling

program indicating an end of file was encountered.

III. USAGE

1. Calling Sequence - CALL .FEOF.

It is assumed that the address of the proper file control

block is in the FOPEN subprogram cell .FBAD.

2. FEOF uses 35 words.

3. FXEM error #34 is always used to write the end-of-file

message.

IV. RESTRICTIONS

The subprograms FOPEN and FXEM must be in memory.

-13-

FlDO--DOUBLE PRECISION POWERS OF TEN

I. PURPOSE

To store a table of double-precision powers of ten for

quick reference by all decimal radix conversion routines.

II. METHOD

.FlDO. + 2*n is the location of DEC l.ODn = ion, for

n = -3 8, -3 7 , ••• , -1 , O , 1 , ••• , 3 7, 3 8.

III. USAGE

1. .FlDO. is the only SYMDEF symbol.

2. FlDO uses 156 memory locations.

3. No error conditions; no executable instructions.

IV. RESTRICTIONS

None.

-14-

FLGEOF--INITIALIZATION OF END-OF-FILE PROCESSING

I.. PURPOSE

To provide a signal to FEOF requesting a return to the

calling subprogram if an end-of-file condition occurs ..

II.. METHOD

The address of the variable to be used for end-of-file

processing is placed in word -15 of the file control

block.. The value of the variable is set to zero .. c~ll1PrL. .UPiUtE)

III.. USAGE

IV ..

1 .. Calling Sequence - CALL FLGEOF (U,V)

where U is the logical file number

V is the address of variable used to indicate

an end-of-file condition. C(lf)-=- j_ tA1l~t1v ~Df ,;;,cr(/11-u-\.~./
! !..··

2 .. FLGEOF uses 18 memory locations ..
at ./ll.t··'~ r \I-: ~·c~ ;• i,__,_,JJ

RESTRICTIONS

1. If more than one logical file refers to one physical

file, the same variable must be used for all logical

files referring to that physical file ..

2.. The subprogram FOPEN must be in memory ..

00 Clll-L IE'f.-1 T -15-

/'\
I

/

FLGERR--INITIALIZATION OF DATA ERROR PROCESSING

I. PURPOSE

To provide a variable for indicating the occurrence

of erroneous data.1
?)

I

II. METHOD

FLGERR places the address of the variable in word -16

of the file control block. The value of the variable is

set to zero.

III. USAGE

1. Calling Sequence - CALL FLGERR (U,V)

where U is the logical file number

V is the address of the variable used to indicate

an input data error.

2. FLGERR uses 18 memory locations.

IV. RESTRICTIONS

1. If more than one logical file refers to one physical

file, the same variable must be used for all logical

files referring to that physical file.

2. The subprogram FOPEN must be in memory.

-16-

FOPEN--FILE OPENING

I. PURPOSE

To select and assure that the physical file associated with

the desired logical file is open.

II. METHOD

FOPEN is divided into three phases:

1. Locating the physical file,

2. Assigning buffers to the file,

3. Assuring the file is open~

FOPEN examines the logical file table for a logical file

identical to the one in cell .FBAD. If one is

found, FOPEN places the address of the file control block

associated with that logical file in cell .FBAD. The

file control block is examined to determine if buffers

are required that have not been previously assigned.

If buffer assignment is necessary, the table .FBFTB is

examined to see if any buffers have been released that

were previously assigned to another file; these are used

first. If none exist, the buffers are assigned from the

available unused memory. The file control block is again

examined to see if the file is open. If it is not open,

the General File and Record Control (GEFRC) subprogram

OPEN is called for the proper file control block.

Control is returned to the calling program.

-17-

III. USAGE

1. Calling Sequences-

a. CALL ~FGTFB to obtain the address of the file

control block in the address field of cell .FBAD.

only.

b. CALL .FOPEN (S) to obtain the information described

in CALL .FGTFB and to assure that the logical file

is open.

S indicates the mode in which the file is to be

opened:

S = -1 Open the file in its previous mode.

S = odd Open the file as output.

S = even Open the file as input.

In both calling sequences it is assumed that upon entry

to FOPEN the logical file referenced is contained in
,-· { b~b so---~~) ·---·1
)character position 5 hf cell .FBAD.
'-. .•.. · /~,,)

c. The table of standard length reusable buffers
--~. ___.-::--

(i~ 1'1 words) is defined as .FBFTB. -------~

d. An equivalent entry to .FOPEN is .FXOP. which is

used by the FXEM subprogram to prevent destroying

the calling sequences in case of recursive entry.

2. FOPEN uses 210 memory locations.

3. The error conditions are:

FXEM error #37 if the logical file requested is not

present in the logical unit table; FXEM terminates

execution.

-18-

FXEM error #38 if there is not enough memory available

for buffer assignment; FXEM terminates execution.

FXEM error #56 if there is an attempt to read file

P* (SYSOUT); FXEM terminates execution.

FXEM error #54 if there is an attempt to write on

file I* (SYSIN) ; FXEM terminates execution.

Abort code Q2 if no logical file table exists.

Abort code Q3 if logical file 06 does not exist in

the logical unit table; a message from FXEM

cannot be written.

IV. RESTRICTIONS

The subprograms OPEN, SETIN, SETOUT, and FXEM must be in

memory.

-19-

DVCHK--EXPONENT OVERFLOW AND DIVIDE CHECK TESTS

I. PURPOSE

To test the General Comprehensive Operating Supervisor

(GECOS) Fault Status Word for a previous exponent register

overflow or divide check.

II. METHOD

DVCHKtests the required bit in the Fault Status Word, and

sets an integer variable to 1 if ON, or 2 if OFF. DVCHK

always exits with the required bit turned OFF. (zero).

III. USAGE

1. C~lling Sequence - CALL DVCHK(J) for divide check,
CALL OVERFL(J) for exponent register

overflow, -

where J = location of integer variable.

2. DVCHK uses 20 memory locations.

3. No error conditions.

IV. RESTRICTIONS

DVCHK assumes normal GECOS recovery for exponent register overflow

and divide check.

-20-

FRWB--BINARY I/O INTERFACE

I. PURPOSE

To process binary I/O lists, using standard General File and

Record Control (GEFRC) variable-length records.

II. METHOD

FRWB groups binary logical records into physical records of

the size specified in the file control block. If the size· of

the logical record exceeds the physical buffer size, or if there

is insufficient space remaining in the physical buffer for the

logical record, the logical record is partitioned into segments

spanning as many physical records as required.

The record control word for each segment of the logical record

contains a media code 3. The last segment is followed by a 1-word

record whose record control word contains a media code 1. All

logical records which are completely contained within a physical

record have a media code 1 in the record control word.

III. USAGE

1. Calling Sequence - CALL .FRDB.(ARG) compiled for READ (n),

CALL .FWRB.(ARG) compiled for WRITE (n),

CALL .FRLR.(ARG) compiled for end-of-

input list,

CALL .FWLR.(ARG) compiled for end-of-

output list,

TSXI .FBDT.

STAQ address, tag

TSXl .FBLT.

STA address, tag

21

}
for double-precision
input list items,

) for all other input
list items,

FORTRAN IV

I/O LIBRARY
Rev. March 1968

I

3~0-
1

\,\,"'fl(},,

;t-~·tr'.'-

LDAQ address, tag } for double-precision
TSXl .FBDT. output list items,

LDA address, tag } for all other output
TSXl .FBLT. list items,

where ARG = location of DEC n.

2. FRWB uses 239 memory locations.

3. The error conditions are:

FXEM Error #34 - illegal end-of-file mark.

FRWB calls FEOF for error recovery.

If an end-of-file other than 178 , 758 , or 768 is detected,

the activity will be aborted (CB-Abort) unless an error

return has been provided.

FXEM Error #40 - list exceeds logical record length.

All remaining list items are set to zero.

IV. RESTRICTIONS

The subprograms FEOF, FXEM, FOPEN, GET, and WTREC must be in

memory.

22 Rev. March 1968

FRWD--BCD I/O INTERFACE BY FORMAT CONTROL

I. PURPOSE

To process a list for BCD I/O or for internal conversion, in

parallel with a FORMAT statement, using standard General File

and Record Control (GEFRC) variable-length records.

II. METHOD

Each list item corresponds to a FORMAT specification. Each

BCD record is a card image (80 columns) or a print line

image (up to 132 columns, including carriage control).
~~- ~Doc--,tztttj,;)'1· L~~~~~~'IU>.e

III. USAGE

1. Calling Sequence - CALL .FRDD. (ARG,LF) compiled for

READ (n,f),

CALL .FWRD. (ARG,LF) compiled for

WRIT~ (n,f),

CALL .FRCD.(ARG,LF) compiled for

READ f, [n=41] (rV ~ t<-lz c.r-lr._

CALL • FPRN o (ARG, LF) compiled for

PRINT f, [n=42]

CALL • FPUN. (ARG, LF) compiled for

PUNCH f, [n=43]

CALL .FRTN. compiled for end-of-

input list,

CALL .FFIL. compiled for end-of

output list,

-23- Rev. March 1968

2.

TSXl • FCNV. }
for double-precision input list items,

STAQ address, tag

TSXl .FCNV. }
for all other input list items,

STA address, tag

LDAQ address, tag}
for double-precision output list items,

TSXl .FCNV.

LDA address, tag }
for all other output list items,

TSXl .FCNV. . .

where ARG = location of ARG XX,

XX = location of DEC n,

and LF = location of FORMAT statement f.

Calling sequences for internal conversion.

a)

where:

Binary-to-decimal conversion

CALL .BDCNV(BUF,FORM,WDA,LINES)

LDAQ (data)}
for double precision items

TSXl .FCNV.

LDA (data)} .
for single precision items

TSXl .FCNV.

CALL .FFIL. for end of output list

BUF location of a buffer in which to store the
resulting BCD record

FORM location of the format controlling the
conversion

WDA location of an array in which to store the
number of words in each of the resulting
lines.

LINES location in which to store the number of
lines.

-24-

FORTRAN IV

I/O LIBRARY

Rev. March 1968

(

b) Decimal-to-binary conversion

CALL .DBCNV(BUF,FORM,WDA,LINES)

TSXl . FCNV.}
for double precision items

STAQ (data)

TSXl . FCNV.}
for single precision items

STA (data)

CALL .FRTN. for end of input list

where:

BUFF location of the BCD record to be converted

FORM location of the format controlling the
conversion

. WDA location of an array containing the number
of words in each line in the BCD record

LINES location containing the number of lines

3. FRWD uses 1146 memory locations.

4. The error conditions are:

FXEM Error #31 - illegal FORMAT statement.
1

FORMAT scan procedes as for end of FORMAT.

FXEM Error #32 - illegal character in data or bad format.

Data scan treats illegal character as zero.

FXEM Error #34 - illegal end 'of file mark.

FRWD calls FEOF for error recovery.

FXEM Error #57 - illegal character for L conversion.

Data scan treats illegal character as space.

IV. RESTRICTIONS

The subprograms FlDO, FEOF, .FOPEN, FSLEW, FXEM, GET,

and WTREC must be in memory.

@~a®@@ ~~~~~~~~~~~~~~~~!-~-~-:-~-:
Rev. March 1968

24.1

FSIO--SHORT LIST BCD I/O INTERFACE

I. PURPOSE

To call FSLIO for short list BCD I/O.

II. METHOD

FSIO consists of four calling sequences for FSLIO.

III" USAGE

1. Calling Sequence -CALL • F S LO • (A , M) for single-precision

BCD output,

CALL .FSDO. (A ,M) for double-precision

BCD output,

CALL .FSLI a (A ,M) for single-precision

BCD input,

CALL • FSDI a (A ,M) for double-precision

BCD input,

where A = location of array, and M = location of number

of elements.

2. FSIO uses 20 memory locations.

3. No error conditions.

IV. RESTRICTIONS

The subprograms FRWD and FSLIO must be in memory.

-25-

FSLIO--SHORT LIST I/O PROCESSOR

I. PURPOSE

To provide list processing for a nonsubscripted array,

in conjunction with subprogram FBIO or FSIO.

II. METHOD

FSLIO initializes the I/O loop, and processes the entire

array, starting with the first element.

III. USAGE

1. The calling sequence stores C(X2) in.FSLII and

points C(X2) to a three-word parameter vector. The

first two words, an even-odd pair, specify the I/O

calling skeleton for the loop. The third word specifies

the precision (1 or 2) and the state (0 for output,

1 for input) in 18-bit fields.

Calling Sequence -
Output

E STX2 .FSLII
TSX2 .FSLIO,I

E LDr ·k .. k ,2
TSXl c
ZERO p,O

Single precision:
Double precision:

c = • FCNV., • FBDT.,

r =

r =

or

Input

E STX2
TSX2

E TSXl
STr
ZERO

A and p = 1.
AQ and p = 2.

• FBLT ••

2. FSLIO uses 24 memory locations.

3. No error conditions.

IV. RESTRICTIONS

.FSLII

.FSLIO,I
c

p,l

FSLIO restores C(X2) = C~FSLII)o-17 and exits to the caller

of FBIO and FSIO. Furthermore, FSLIO uses the input

parameters of FBIO or FSIO .

. -26-

SLITE--SENSE LIGHT SIMUIATOR

I. PURPOSE

To simulate the setting and testing of sense lights.

II. METHOD

Bits 1-35 of .FLITE correspond to Sense Lights 1-35,

respectively, with 0 denoting OFF and 1 denoting ON.

III. USAGE

1. Calling Sequence -CALL SLITE(ZERO) to clear Sense

Lights 1-3 5,

where ZERO =
I =

and J =

CALL SLITE(I) to turn ON Sense

Light i,

CALL SLITET(I,J) to test and turn

OFF Sense Light i,

location of integer o,
location of integer i,

location of an integer variable to be set

to 1 if Sense Light i was ON, or 2 if it

was OFF.

Note that.FLITE is a SYMDEF symbol.

2. SLITE uses 56 memory locations.

3. The error condition is:

FXEM Error #51 if i is not 0-35, or if i is 0 in SLITET.

Sense Light i is ignored if setting, or is declared

OFF if testing.

IV. RESTRICTIONS
The subprogram FXEM must be in memory.

-27-·

SSWTCH--SENSE SWITCH TEST

I. PURPOSE

To test the General Comprehensive Operating Supervisor

(GECOS)switch word for the status of a sense switch.

II. METHOD

Bits 6-11 of the GECOS switch word correspond to Sense

Switches 1-6, respectively, with 0 denoting OFF anj 1

denoting ON.

III. USAGE

1. Calling Sequence - CALL SSWTCH(I,J) to test Sense

Switch i,

where I = location of integer i

J = location of an integer variable to be set

to 1 if Sense Switch i is ON, or 2 if it is OFF.

2. SSWTCH uses 42 memory locations.

3. The error condition is:

FXEM Error #53 if i is not 1-6.

Then Sense Switch i is declared to be OFF.

IVo RESTRICTIONS

The subprogram FXEM must be in memory.

-28-

FVFI--NAMELIST INPUT

I. PURPOSE

To process NAMELIST input using the General File and Record

Control (GEFRC) variable-length records.

II. METHOD

FVFI scans the input file for the proper NAMELIST name.

When the name is found, FVFI scans the record for

variables, confirms that the variables are included in

the NAMELIST, and stores the input value according to

the type specified in the NAMELIST tabl~.
r

III. USAGE

1. Calling Sequence - CALL .FVFio(ARG,LF)

where ARG = location of ARG XX

XX = location of DEC n (logical unit)

LF = location of NAMELIST table

2. FVFI uses 670 memory locations.

3. In the error conditions described below, execution is

continued only if the user has previously initialized

FLGERR, which causes a normal return when bad data

is encountered.

FXEM Error # 42 illegal heading card.

FVFI continues as for end of data.

FXEM Error # 43 - illegal variable name•

FVFI continues as for end of data.

-29-

---·---

FXEM Error # 44 - illegal subscript or array

size exceeded.

FVFI continues as for end of data.

FXEM Error #45 - illegal character after right

parenthesis.

Data scan ·~LS.$llJn~.$ __ G . .QffiJna bet~~-~right_parenthesis
~--~·

and next character.

FXEM Error #46 - illegal character in data.

Data scan treats illegal character as zero.

FXEM Error #48 - illegal logical constant.

Data scan treats illegal constant.as .FALSE.

FXEM Error #52 - illegal Hollerith field.

FVFI continues as for end of data.

IV. RESTRICTIONS

The subprograms FlDO, FEOF, FOPEN, FXEM, and GET must

be in memory.

(

-30-

FVFO--NAMELIST AND DEBUG OUTPUT

I. PURPOSE

To process NAMELIST, DEBUG, DUMP, and PDUMP output, using

standard General File and Record Control (GEFRC) variable

length. records.

II. METHOD

FVFO scans a NAMELIST table, and prints the current value

of each NAMELIST variable in the format specified by its

entry in the NAMELIST table.

III., USAGE

1. Calling Sequence - CALL .FVFO.(ARG,LF) for NAMELIST

output,

CALL .FVDO.,(ARG,LF) for DEBUG, DUMP,

PDUMP output,

where ARG = location of ARG XX

xx = location of DEC n (logical unit)

LF = location of NAMELIST table.

2. FVFO uses 510 words.

3. No error conditions.

IV. RESTRICTIONS

The subprograms FlDO, FOPEN, FXEM, and WTREC must be in

memory.

-31-

FXEM -- EXECUTION ERROR MONITOR

I. PURPOSE

1. To print a trace of subroutine calls.

2. To print execution error messages.

3. To terminate execution with a Q6 abort or do one of the following:

Continue with execution of the program

Transfer to an alternate error routine

4. To allow the user to determine if an error has been processed by

FXEM.

II. METHOD

1. Error linkage for tracing calls is generated by the General Macro

Assembler (GMAP). Tracing stops when the address of the CALL

instruction in the error linkage word is zero, or when the number of

traces exceeds a given constant.

The error trace prints in reverse order. It includes the name of each

calling routine, identifying number of the CALL instruction, absolute

location of the CALL instruction, and the calling arguments (up to 5).

2. The functions of this routine are optional. The options are controlled

by the following switch word pairs:

. FXSWl--termination

. FXSW2 - - message printing

. FXSW3--alternate error returns

Each of the bits 1-71 in a switch word pair corresponds to an error code.

3. Special processing applies to error code 55. When this error is

encountered, the following message is written:

ILLEGAL VALUE FOR COMPUTED GO TO AT ID NUMBER XXXXX

@~o@@@ ~~~~~~~~~~~~~ro~~~~~
I/O LIBRARY

32 Rev. October 1968

4. The error code is always stored in the location FXCODE in FXEM.

Since this is a SYMDEF, it may be accessed by a FORTRAN or GMAP

program.

5. The error code is also stored indirectly through a pointer defined in

FXEM. This pointer may be set by calls to ANYERR. If this pointer

has been initializ.ed to contain the address of a variable in the user's

program via a call to ANYERR, the variable will also contain the

error code, ~pr_e_§sed as an integer, upon return to the calling
~

subprogram.

6. FXOPT is an entry to . FXEM. which, for a given error code, sets the

corresponding bits in. FXSWl, . FXSW2, and. FXSW3 to the low-order

bit of the second, third, and fourth arguments. (See "Usage, " item 5.)

The first argument is the error code. When a call is made to . FXEM. ,

the error code is used to shift each switch word pair and set the options

accordingly.

7. FXALT stores the location of its argument in location FXALTl in . FXEM.

(See "Usage, " item 6.) If the alternate error return option is used,

index register 1 and the indicator register are restored; and a transfer

is made to FXALTl indirect. Thus, if the alternate return is a sub-

program, the RETURN statement transfers to the location following the

call to . FXEM. If no alternate has been supplied, a Q5 abort occurs.

33

FORTRAN IV

I/O LIBRARY
Rev. October 1968

8. A divide check, an overflow, or an underflow transfers to. FXEM. via

the program fault vector. (For a description of the fault vector, see

GE-625/635 Comprehensive Operating Supervisor (GECOS-III), CPB-1518,

pp. 151-53, or for GECOS-II see GE-625/635 Comprehensive Operating

Supervisor, CPB-1195, pp. 131-33. See also "SETUP," p. 42 in this

manual.) . FXEM. writes the erro~ message and loads the proper values

into the EAQ-registers. The normal return is RET 6 (divide check) or

RET 8 (overflow and underflow). If an alternate return is requested, the

indicators and index register 1 are loaded from the fault vector, so that

a RETURN statement in the alternate routine will transfer to the location

immediately following the one that generated the fault.

9. FXEM is the entry provided for error conditions detected by the user's

program. Error codes 61-66 ate reserved for users. The statement

CALL FXEM (NCODE, MSG, N)

prints an error trace and N words of the message in the array MSG.

MSG must be an array containing Hollerith information. If either MSG

or N is omitted or is zero, no message is printed. If N is greater than

20 words, only 20 words are printed.

34

FORTRAN IV

I/O LIBRARY
Rev. October 1968

III. USAGE

1. Calling Sequence - CALL . FXEM. (X, Y)

Where X = Address of error description controls

Y = Address of tally word which is used to indicate card

column found in error. Y is optional and is used only

if a card image is to be printed.

2. Instruction Sequence at X

X ZEROA,B

ZERO C,D

ZERO E, F

A= Address of card image to be printed (or zero when card image is

not to be printed).

B = Error code expressed as an integer (n) in the range l~n~71

C =Address of message 1.

D =Word count of message 1.

E = Address of message 2.

I "t--, a.J.Lri.aj'"~l ·'-'·t(. --,A. ._.:r-·
F = Word count of message 2. (µ.rlJlf---' J -_ ... 1~,.r-.·· .. -c, ... -\µ,ff (.,.t.>· (

- 1Jc:\.. ' .. ;v-c.(t.""''' - . ,,.,...,, .. ,.,,, . ,I\ J -: ... -t....--
X ;-:(µ P'V" •];•) ~ -·~"V<'". ' '.-. I.:. ' •

3. CALL ANYERR (V) -- ~,yv 0~~,,,,,...~ ~_,rv~,\) 1'(/·.-rt evv- 1I'-l' .. t
1

ii· ~ ;VV-· 1

The statement CALL ANYERR (V)--where Vis a vari~ble into which
-~tl~, .' -

the error code is to be stored for the user--sets the pointer in FXEM /'- .

and initializes V at zero. The value of V changes to contain the error

code of detected errors if FXEM is called.

£ p;:t;;.D\~.,,1 ctt.-llo .l~ /}r\J \1lr.;):1,: /~l-{.t/ /'\ r cLtL,.. ,~e I/ [:.-.. (,., ,, c.. t -(7{ v / "'" fi ~ • . -(. ~-' .(_, ,.i.... ,. I))·£--'\.t).

(cJL. ,1.1'1.J\,,·t_ ~1r"'l~-· ,1~....... v-.... &:;.,o 1,..-~--tt:~ ~.1i ' ,..;v c00 - v 1 ./ cv--··, 1 1 \
"" \ I\··~\- r {" . L) ('-~"-CV--0 VY\. r 1\U . , I

34.1

FORTRAN IV

I/O LIBRARY
Rev. October 1968

I\
·--::f:

4. Switch Word Pairs

. FXSWl (termination)--Figure 1 shows the standard bit settings and

the names of the routines that use the corresponding error codes. The

meaning of the bit settings is as follows:

1 Continue execution

0 Terminate with a Q6 abort

Termination may be overridden by the corresponding bit of . FXSW3

(see below) .

. FXSW2 (message printing and trace)--The meaning of the bit settings

is as follows: .

_ 1 Suppress printing

0 Print
This pair is initialized to zero. Settings may be changed by program

call to FXOPT .

. FXSW3 (alternate error return)--The meaning of the bit settings is

as follows:

1 Use alternate error return (overrides termination option
set in. FXSWl)

0 Use normal return

This pair is initialized to zero. Settings may be changed by program

call to FXOPT.

5. CALL FXOPT (NC ODE, Il, I2, 13)

FXOPT is an entry to . FXEM which may be called to alter the standard

switch word settings. In the statement CALL FXOPT (NCODE, Il, I2, 13),

NCODE is an error code; and Il, I2, and 13 provide ~he settings for the

corresponding bits in the three switch word pairs. ·~' _ ,f ';:• ";.}-:

\. I···· ·" .J •.. , ..
Examples: t_ ,, , 1·" t>

1. CALL FXOPT (32, 0, 1, 0) Error code 32

2.

3.

CALL FXOPT (32, 1, 0, 0)

CALL FXOPT (32, 0, 0, 1)

denotes an illegal
character in input
data.

Example 1 causes a Q6 abort when the error 9ccur~, and no, message

I n I . (. !,' ;· \.. { ,,; -~ , { ' """" . ·. ' ~.,

, · '· L~5~.t 1:~;~v' .
\. ' ((... ~·

-/ b",t··l····:;i"'.:!., .. 1'.,.r •. · .. 1 .. 't,,tl. i';.
I;. ··,~.~~:'11!"'t,,,.,

~')
',:,

.,. ;~, I

Jy._".,.,"[
tC•.1 <.:i ·• ,.-.., ?.:"·. c .. ,

'''i'. f;' \ 1'.\' \'.I '
-'•) i~ t I·.

@~0®®® ~~~O~~~~~~~~~~~~r-:-~-=-AA-:
34.2 Rev. October 1968

I) I :~.·

1
.. -·J < t I

I- \' ·' ·"

..) , .·
(, .' \ . ~·

. FXSWl . FXSWl + 1

Bit Position/ Routine Bit Position/ Routine
Error Code Using Code Setting Error Code Using Code Setting

36 (Not Used) 0
1 .'·XPl 1 37 EXIT 0
2 XPl 1 38 .OPEN. 0
3 XP2 1 39 (Not Used) 0
4 XP2 1 40 FRWB l
5 XP3 1 41 (Not Used) 0
6 XP3 1 42 FVFI 1
7 XP3 1 43 FVFI 1
8 FXPF 1 44 FVFI 1
9 FLOG 1 45 FVFI 1

10 FLOG 1 46 FVFI 1
11 FATN 1 47 FBST 0
12 FSCN 1 48 FVFI 1
13 FSQ]l 1 49 FBST 0
14 FDXl 1 50 (Not Used) 0
15 FDXl 1 51 SLITE 1
16 FDX2 1 52 FVFI 1
17 FDX2 1 53 SSWTCH 1
18 FDX2 1 54 EXIT 0
19 FDXP 1 55 FXEM 0
20 FDLG 1 56 EXIT 0
21 FDLG 1 57 FRWD 1
22 FDSQ 1 58 (Not Used) 0
23 FDSC 1 59 (Not Used) 0
24 FDAT 1 60 (Not Used) 0
25 FCAS 1 61 0
26 FCXP 1 62 0
27 FCXP 1 63 User 0
28 FCLG 1 64 Codes 0
29 FCSC 1 65 0
30 FCSC 1 66 0
31 FRWD 1 67 EUNDER 1
32 FRWD 1 68 OVER 1
33 (Not Used) 0 69 EOVER 1
34 FEOF 1 70 FXDVCK 1
35 FEFI 1 71 FLDVCK 1

J

Figure 1. . FXSWl, Switch Word Pair Controlling Termination Option

@~o@@@~~~~~~~~~~~~~~~~-~-~-=-M-:
34.3 Rev. October 1968

or trace is printed.

Example 2 causes execution to continue after message and trace are

printed.

Example 3 indicates that return is to an alternate error routine after

trace and message are printed, since the alternate return option takes

precedence over termination.

6. CALL FXALT (SR)

FXALT is an entry to . FXEM which may be called to set the alternate

error return location. The statement CALL FXALT (SR) communicates

to FXEM the name, SR, of the alternate error routine. An EXTERNAL

SR must be included in the calling routine. If the alternate return

option for an error code is indicated but no call to FXALT has been

made, a Q5 abort follows when the error occurs. A RETURN statement

in the alternate routine continues execution at the instruction immediately

following the one where the error occurred.

The statement CALL FXALT ($N) designates statement Nin the calling

program as the alternate error return.

~: If the same error also occurs in the alternate error routine, an

interminable loop results.

7. Overflows and Divide Check

The fault processor processes divide check, overflow, exponent overflow,

and exponent underflow faults. A message is output on file 06 stating

the type of fault and the memory location at which the fault occurred.

Execution continues in the normal manner, although the EAQ-registers

may have been reset as depicted in the following table.

34.4

FORTRAN IV

I/O LIBRARY
Rev. October 1968

FAULT EAQ-REGISTERS

Exponent overflow Largest floating-point value

Divide check (FP) Largest floating-point value

Exponent underflow Floating-point zero

Overflow (1) No change

Divide check (1) No change

To have another value returned in the EAQ-registers after a divide

check, CALL FXDVCK (R,M) should be executed prior to the occurrence

of the fault. The statement causes the value of R to be returned in the

EA Q-registers after a real divide check and the value of M to be returned

in the Q-register after an integer divide check. The first argument

must be double precision .. The second argument may be omitted.

8. CALL FXEM (NCODE, MSG, N)

A FORTRAN-callable entry has been added to FXEM so that it may be

called when the program detects an error condition.

The statement CALL FXEM (NCODE, MSG, N) causes the printing of

(1) an error trace and (2) the Hollerith message contained on the MSG

array. The number of words N to be printed must be within the limits

0 <N ~ 20. If only the first argument is given, only the trace is printed.

9. User Error Codes

Error codes 61 - 66 are reserved for programmer usage.

@~o®@® ~~~~~~~~~~~~~F~Oll~~~~
I/O LIBRARY

Rev. October 1968

IV. RESTRICTIONS

1. When the error code is greater than the maximum value

specified for error codes, the message ERROR CODE

XX GREATER THAN MAX is written and execution is

terminated.

2. When Y =Address of Tally Word, the address portion

of Y-1 must contain the word count of the card image.

3. The subprograms FOPEN, WTREC, and EXIT must be in

memory.

-35-

LINK--RESTORE LINKS DURING EXECUTION

Io PURPOSE

To restore the Link specified in the calling sequence to the

exact position it had at load timeo The procedure to follow

after restoring the Link depends on the entry used:

LINK Restore the Link and transfer to its entry point

as specified at load timeo

LLINK - Restore the Link and return to the statement or

instruction following the CALL to this subroutine.

If DEBUG is requested at load time in any or all of the Links,

these subroutines join together the respective Debug

Tables enabling the user to take snap dumps of any

links in memory at the time of his request.

IIo METHOD

LINK assumes the General Loader has generated a file

(file code H*) containing the user vs pro'grarn segmented into

Links as specified by $ LINK control cards.

'Both entries to this subroutine use the GERSTR function of the

General Comprehension Operating Supervisor (GECOS). After

restoring a Link, tests are made to determine if the Link

contained a Debug Table. If so, the address of this table is

chained to existing tables. If none exists in memory at this

time, the address is placed in the DRL cell (cell 13 of the

Fault Vector). Debug Tables, corresponding to Links which are

overlayed in the process, are deleted from the chain.

-36.~v ·

Illa USAGE

l~ Calling Sequence CALL LINK (LINKID)

CALL LLINK (LINK ID)

~here LINKID is the location of the Link Identifier

specified as a literalo

2a LINK uses 70 memory locations.

3. No error conditions.

!Vo RESTRICTIONS

An H* file generated by GESAVE must be present containing

the Links.

-37-

STORE- -ACCESS HALF OF A DOUBLE·. PRECISION OR COMPLEX WORD

I. PURPOSE

To provide a method of accessing only half of a double-

precision or complex number.

II. METHOD

A call is generated by SIFT for PART or STORE if a variable

or element of an array was referenced in FORTRAN II without

an I or D in column one. At execution time, PART will

return with the address of the proper half and STORE will

store the desired value in the desired part of the double

precision or complex number.

III. Usage

1. Calling Sequence- X =PART (Y, Y(I), 10)

CALL STORE (Y, Y(I), 10, T)

·The first three parameters are the same.

First parameter = array name

Second parameter = array element, <!:~~._part of)
- (--Jo w .)

double precision or complex

Third parameter = array size

The fourth parameter for STORE is the value to be stored

in the second parameter.

2. STORE uses 30 memory locations.

3. No error conditions.

IV. Restrictions

None

-38-

SETBUF--DEFINE A BUFFER(S) FOR A SPECIFIED FILE CONTROL BLOCK

I. PURPOSE

To allow the user to assign space in memory for use as an

input/output buffer.

II. METHOD

III.

Subprogram SETBUF searches the logical file table for the

specified file and its associated file control block. It

then attaches the buffers defined to the file control

block. No check is made to verify that buffers are of

sufficient size; this is the users responsibility.

USAGE

1. Calling Sequence - CALL SETBUF (I ,A)

or CALL SETBUF (I ,A,B)

where I is the logical file designator

A is the location of the first buffer

B is the location of the second buffer if necessary

2. SETBUF uses 28 memory locations.

IV. RESTRICTIONS

The subprogram FOPEN must be in memory.

The size of the total buffer must be one location greater

than the area to be used for actual storage of records.

Therefore, a standard size b~~ is 321 words long.

-39-

SETFCB--DEFINE FILE CONTROL BLOCK

I. PURPOSE

To allow the user to define a file control block for

use by the FORTRAN I/O library subprograms.

IL METHOD

The subprogram SETFCB searches the previously defined logical

file table for an open space to insert the reference to

the file control block. It accepts the file control block

address and appends character positions 3, 4, 5 to

the various logical file codes referring to this file

control block. It makes as many entries as necessary in

the "logical file - file control block" table.

III. USAGE

1. Calling Sequence - CALL SETFCB (A, I, J, .••)

where

A is the location of LOCSYM in the user created

file control block.

I, J, ••• are the logical files that refer to this

file control block.

2. SETFCB uses 62 memory locations.

3. The error conditions are:

Abort code Q2 if no logical file table exists.

Abort code Ql if there is no space available in the

logical file table for inserting desired file control block.

IV. RESTRICTIONS

None.

-40-

SETLGT--DEFINE LOGICAL FILE TABLE

I. PURPOSE

To allow the user to define a logical unit table for

use by the FORTRAN I/O library subprograms.

II. METHOD

The subprogram SETLGT accepts the array specified by the

user as the logical unit table. It changes its first

location to be a pointer to the last usable position of

the array and places the address of the array +l in fault

vector location 25 8 •

III. USAGE

1. Calling Sequence - CALL SETLGT (A,I)

where

A is the location of the logical unit table to

be used.

I is the number of cells in the table A.

2. SETLGT uses 14 memory locations.

IV. RESTRICTIONS

SETLGT must be called before any Input/Output is requested.

SETLGT is called only when the user wishes to suppress the

logical file table generated by GELOAD and place the table

in his own portion of memory. The user should use the

NOFCB option on the $OPI'ION GELOAD control card.

-41-

SETUP--PRE-EXECUTION INITIALIZER

I. PURPOSE

To perform installation standard procedures prior to

execution of the user program.

IL METHOD

SETUP clears unused memory, sets it to either the constant

specified in the $OPTION GELOAD control card or to zeros

if the constant is not defined. SETUP places the address

of the "logical file - file control block" table in

fault vector location 25 8 0 In a link job with debug

requested in link O, it places a transfer to the debug

table in fault vector location 15s. It places the entry

point and a bit indicating a low-load job in fault vector

location 248 • It then calls the subprogram .FLTPR to ini

tialize for fault processing. Currently there is a

secondary SYMDEF .FLTPR imbedded in subprogram FXEM to

satisfy this SYMREF in a FORTRAN execution. This

routine places transfers to fault processing routines in

fault vector locations 78 and 118 • These are also imbedded

in subprogram FXEM. There also exists on the library a

separate subprogram with SYMDEF .FLTPR which places returns

in fault vector locations 7g and llg to ignore faults. This

subprogram w.ill be used if the job uses no FORTRAN library

subprograms •. Either .FLTPR returns to SETUP which zeros out

-42-

all index registers and performs a TSXl to the real entry

point of the user's program. The SETUP subprogram is

written in such a way that it can be easily changed by

an installation to perform their own desired fault

processing, accounting techniques, etc.

III. USAGE

1. SETUP is entered by GELOAD only; the entry point is

defined as .SETU. • GELOAD asstnnes a five position

storage block from cell .SETU.-1 to cell .SETU.-5

inclusive.

Cell

.SETU.-5

.SETU.-4

.SETU.-3

.SETU.-2

.SETU.-1

Definition

upper half contains lowest address of memory

used by program and LABELED COMMON region

lower half contains highest address of memory

used in BLANK COMMON region

logical unit table pointer in address field

upper half lowest cell used by program

lower half 1= 0 = address of pointer to

debug subroutine in link 0

memory reset constant

upper half entry point address

lower half f 0 indicates low-load job

2. SETUP uses 40 memory locations.

3. No error conditions.

IV. RESTRICTIONS

If the user requires initialization of the cells specified

in SETUP, he must either use this subprogram or supply

his own subprogram to perform the initialization.

FORTRAN IV

I/O LIBRARY

43

FSLEW--CARRIAGE CONTROL SIMULATOR

I. PURPOSE

To format FORTRAN-generated print lines for the General Electric

carriage-positioning-after-printing printer (PRT201).

II. METHOD

FSLEW is called by the FORTRAN I/ 0 routine FRWD, BCD I/ 0 Interface

by Format Control (seep. 23). Control is passed to FSLEW after each

print line has been prepared according to the format specification.

Recognized carriage control characters are 0, 1, +, and;b. FSLEW looks

to see if the first character of the prepared print line is one of these

characters.

If the first character is not a recognized carriage control character,

FSLEW assumes the normal case: single space carriage positioning (b).

It therefore appends one word of single space slew information to the

current print line.

If the first character of the prepared print line is a recognized carriage

control character, FSLEW proceeds as follows:

@~c®@@ ~~~~~~~~~~~~~roll~~~~
I/O LIBRARY

44 Rev. October 1968

,:6 - Single Space - This is the normal case, as explained above.

The procedure is the same.

+ - Space Suppress - The single space slew information that was

appended to the previous print line is replaced by space suppress

slew information.

Note: For space suppression control, two conditions

are assumed: (1) that the last record written on the

current file is the line on which overprinting is desired

and (2) that this line is currently in the buffer (so that

its slew information can be changed). Both conditions

must be satisfied for proper operation.

1 - Eject Before Printing - A 1-word print line (that is, a 1-word

record) consisting of slew-to-top-of-page information is generated.

This causes a slew to top of page to follow immediately after the

single space resulting from the information appended to the previous

line.

0 - Double Space - A 1-word print line (that is, a 1-word record)

consisting of single space slew information is generated. This

information and the single space information appended to the previous

print line result in a double space operation.

Besides taking the actions described above for the recognized carriage

control characters, FSLEW sets any such character to a blank~), if it

is not already a blank.

@~a®@@ ~~~O~~~~~~~~~roll~~~n
I/O LIBRARY

44.1 Rev. October 1968

The NOSLEW option on the $ FFILE card causes bit 23 of FCB word -6

to be set to 1.

FSLEW recognizes this option and changes the output files written by

FSLEW as follows:

1. The addition of a slew word at the end of a data record is inhibited.

2. The generation of 1-word print lines containing only slew

information is inhibited.

3. The substitution of a blank character for the carriage control

character (first character of data record) is inhibited.

4. A media code of zero is stored in the record control word

in place of media code 3.

5. The "blank line" records generated by consecutive slashes in

FORMAT statements are represented by 1-word records

consisting only of blanks. (In the absence of the NOSLEW

option, consecutive slashes in FORMAT statements cause

1-word records containing slew characters for single-line

slews to be generated.)

Ill. USAGE

1. Calling Sequence - CALL . FSLEW (PL) where PL is the location

of the print line. It is assumed that location . FBAD. in subprogram

FOPEN contains the address of the file control block for the output

file, and that word +1 of the file control block contains the size of

the print line.

2. FSLEW uses 66 memory locations.

IV. RESTRICTIONS

The subprograms WTREC, FXEM, and FOPEN must be in memory.

@~o®@@ ~~~o~~~~~~~~~FOO~T~~IV
I/O LIBRARY

44.2 Rev. October 1968

LHSF--RESTORE LINK - H*

I. PURPOSE

To reload a program from an H* file (tape) which was generated in a

previous GELOAD activity. The H* file was generated by having a

$TAPE H* control card (see GE-625/635 General Loader, CPB-1008)

at execution time.

II. METHOD

The H* file generated by GELOAD contains a link identified as//////

which is the main or common subprogram of the job. If the FCB option

was in effect during loading (generation of H* file), a second link identified

as /I/ I/ 1 containing all file control blocks generated by GE LOAD will

also be present on H*. This subroutine searches the H* file for these

identifiers (/I I I /1 is optional), restores them, and enters the main

subprogram at the entry location specified during the GE LOAD activity.

III. USAGE

1. This program is called directly from the subroutine library and

requires no other subprograms.

2. The entire job could be set up as follows:

$ SNUMB

$!DENT

$USE . LHSF

$ ENTRY . LHSF

$EXECUTE

$ LIMITS

$TAPE

$DATA

$ ENDJOB

***EOF

H*,

AB (Optional)

If the NOFCB option was in effect when GELOAD generated the H* file,

an entry card of the form:

$ ENTRY . LHSNF

must replace the card following the $ USE card.

@~a®@@ $~~~~$~~~~~~~F0ll~~~~
I/O LIBRARY

44.3 Rev. October 1968

IV. RESTRICTIONS

1. A$ LOWLOAD card (see CPB-1008) must be included if the H* file

was generated under this option.

2. The same memory limits must be requested as were in effect when

the H* file was generated.

3. One of the setup subroutines must have been used when the H* file

was generated. Entry to the main link is made through those subroutines

for purposes of initialization of fault vectors.

45

FORTRAN IV

I/O LIBRARY
Rev. October 1968

FINC BCD INTERNAL CONVERSION INTERFACE

I. PURPOSE

To provide the interface with .BDCNV or .DBCNV for the

internal conversion of an array.

II. METHOD

.FINC sets up and executes the required calling sequences.

III. USAGE

1. Calling sequences

a) Binary-to-decimal conversion

where:

CALL FOCNVS(LIST,N,BUF,FORM,WDA,LINES)

for an array of single precision numbers

CALL FOCNVD(LIST,N,BUF,FORM,WDA,LINES)

for an array of double precision numbers

LIST

N

BUF

FORM

location of the array to be converted

number of words in the array

location of a buffer in which to store
the resulting BCD record

location of the format controlling
conversion

WDA location of an array in which to
store the number of words in each
of the resulting lines

LINES location in which to store the number
of lines.

@~0®@@ ~~~O~~~~~~~~~~~~r-~-~-:-~-:
46 Add. March 1968

b) Decimal-to-binary conversion

where:

CALL FICNVS(LIST,N,BUF,FORM,WDA,LINES)

for an array of single precision items

CALL FICNVD(LIST,N,BUF,FORM,WDA,LINES)

for an array of double precision items

LIST

N

BUF

FORM

location of an array in which to
store the binary numbers

number of fields to be converted

location of the input array contain
ing the BCD record

location of the format controlling
conversion

WDA location of an array containing the
number of words in each line of the
BCD record.

LINES location containing the number of
lines in the BCD record.

2. FINC uses 73 memory locations

3. No error conditions

IV. RESTRICTIONS

The subprogram FRWD must be in memory.

@j(E 0 (ID(Q)(Q) ~~rfi) 0 ~~ --------F-ORT--RAN~IV
@) lffi @) I/O LIBRARY

47 Add. March 1968

Progress Is O(/~ Most lmporlanf Protlvcf

GENERAL fj ELECTRIC
COMPUTER DEPARTMENT • PHOENIX, ARIZONA

