
THE COMPATIBLES/600

GE-600 Series
GELOAD

General Loader

~YSTEM
~UPPORT
~ NFORMATION

CPB-1127

ABSTRACT

This document describes the Compatibles/600 General
Loader. Divided into three phases, GELOAD reads and
generates a table from debug control cards, provides logic
for linking subprograms, and generates file control blocks
required by the user.

GENERAL. ELECTRIC

)

GELOAD

GENERAL LOADER

May 1965

GENERALe ELECTRIC
COMPUTER DEPARTMENT

@ 1965 by General Electric Company

INTRODUCTION 1

TABLE FORMATS 5

Load Table 5
Debug Table 6
FFILE Cards 9

PHASE 1 10

PHASE 2 14

PHASE 3 30

MAJOR SUBROUTINES COMMON TO ALL PHASES 36

MAJOR SUBROUTINES PHASE 1 38

MAJOR SUBROUTINES PHASE 2 39

EFFECT OF LOWLOAD OPTION 45

DEFINITION OF TERMS FREQUENTLY USED 47

MEMORY DIAGRAM FOR HIGHLOAD 48

MEMORY DIAGRAM FOR LOWLOAD 49

)

iii

INTRODUCTION

GELOAD is a general purpose loader with the ability to load

absolute or relocatable programs which may be considered in

three phases or overlays. Phase 1, which is optional, reads

and generates a table from debug control cards supplied with

the user's deck. This information will be used at object time,

to give snapshot printouts of specified locations within the

program during execution. Phase 2, the loader itself, provides

the logic for linking subprograms together, reserving storage

for data regions, calling in subroutines from established libraries,

and segmenting the relocatable program into loadable overlays.

Phase 3, also optional, generates the file control blocks required

by the user as specified on file control cards.

PHASE 1

1. Entered by reading loader control card: $ DUMP.

2. Read debug statement cards.

3. Encode information from cards and generate debug table.

4. Enter names of library subroutines used by debug in load

table.

PHASE 2

1. Read loader control cards and set conditions accordingly.

2. $ OBJECT card indicates a subprogram is to be loaded from

the R* input file.

-1-

a. Generate load table from preface cards.

b. Assign entry location, if not given.

c. Pick up and assign proper relocation to instructions

and data of object subprograms until $ DKEND card

is encountered.

d. Fill in debug tables, if applicable, with any references

within subprogram just loaded using special table

loaded as LABELED COMMON.

e. The debug reference table above will be' overlayed

by the next subprogram loaded.

f. Return to read next control card.

3. $ SOURCE card indicates a subprogram is to be loaded from

the B*

4. $ LINK

on a file for later chain overlay processing.

5. $ EXECUTE card signals GELOAD that no additional object

programs have been supplied by the user. If Phase 3 is

required, it will be called when this card is encountered.

6. Available libraries are searched for undefined subprograms.

7. All remaining undefined subprogram references are filled

in with MME GEBORT.

8. All GELOAD files are closed.'

-2 -

9. Unused allocated core is reset and released to GECOS.

\

10. Transfer to user's entry point.

PHASE 3

1. Read GECOS $ FILE cards and $ FFILE control cards .. i1rnl {:.'.,/:..... tr "
2. Build table of file codes and file control block parameters

from the cards.

3. Generate a file control block for:

a. Each file code mentioned in a FFILE card.

b. Each numeric file code from a GECOS file card which

is, less than 44.

c. 1* and p* files.

4. No file control blocks will be generated only if:

a. There are no FFILE control cards and all file codes

on GECOS file cards are nonnumeric.

b. The option NOFCB is requested in a $ OPTION control

card.

5. All file control blocks will be generated in the unused

memory (as specified by cell 31 of the user's fault vector)

at the completion of loading.

-3-

TABLE FORMAT - LOAD TABLE

• Location: Immediately follows GELOAD

o Type of Entries:

SYMDEFs:

L BCI 1,NAME

L+l ZERO X,Chain

where:

x =0 when NAME is undefined (SYMREF)

=L(NAME) when NAME has been defined

Chain =L(First reference to NAME). When all

references are filled in, this field is zero.

SYMREFs with addends: (NAME+4)
~-

L VFD 6/77,12/A,18/L(NAME in

Load Table)

L+l ZERO Addend L(Reference to NAME)

where:

A =1: Addend applied to lower 18 bits of word.

=0: Addend applied to upper 18 bits of word.

LABELED COMMON:

L BCI 1,NAME

L+l ZERO L(NAME)

L+2 VFD H6/$,12/0,18/(Size of LABELED

COMMON)

L+3 ZERO L(NAME)

-5-

TABLE FORMAT - DEBUG TABLE
_____ <.L.-.._.~~..::.:,;:':;""110-"" •.

o Location: Loaded in reverse order at current loading address

when $ DUMP card is encountered.

o Transfer vector

Depending on the control cards used, the subroutine DEBUG

and two optional subroutines DUMP and EXIT may be called

from the library file. A three-word transfer vector at the

beginning of the table provides linkage with the user's

program.

G Standard entries

Five standard entries are generated for each set of DEBUG

conditions.

L ZER¢ Tl,L(DRL)

L-l Replaced Instruction (Operation code only)

L-2 Bel

L-3 Bel

L-4 ZER¢

where:

1,NAME (Routine)

1,SYMB0L (Location for test of conditions)

0, addend (Applies to SYMBOL)

~k!J.
Tl points to beginning of next encoded set of conditions.

L(DRL) is location in user's program where return is to

be made after debug is complete and the replaced

instruction has been executed.

-6-

)

a IF clauses (3-word minimum; 5-word maximum entry)

IF clauses are encoded into the Debug Table in a variable format

depending upon the arrangement of variables, subscripts, constants

and null fields within the conditional description (set of

parentheses) of the clause. A control word (location L of the

table entry) contains bits further describing the type and content

of table entries L-l through L-4:

where the above codes imply the following memory contents:

Code Implies

A = ° Mode is fixed

A = 1 Mode is floating

C = ° Variable operator is add

C = 1 Variable operator is subtract

Kl ,K2 ,K3 = ° No
= 1 Yes
= 2 EXIT
= 3 DUMP

Code Location Before Program Loaded After Program Loaded

B = ° L 1

B = 1 L 1
L - 2

BCI 1, VARI

ZER0 O,subscript
BCI 1, VARI

ZER0 L(VARl),O

ZER0 O,subscript
ZER0 L(VARl) , °

(In. the following description, the location symbol "n" will be used

to illustrate the variable nature of this table entry, such that

for B = 0, n = L - 2 and for B = 1, n = L - 3)

D = 0 n BCI 1,VAR2 ZER0 L(VAR2) , °
D = 1 n ZER0 O,subscript ZER0 O,subscript

n - 1 BCI 1,VAR2 ZER0 'L(VAR2) ,0

D = 2 n DEC constant DEC constant

D = 3 second variable is null

@j[Eo(ID(Q)(Q) ~[E(ffi~~~----------
-7 -

• FOR clauses

L

L-l

L-2

VFD

ZER0

ZER0

06/76/30/0

Where n l , n 2 , n3 imply debug for count from n l to n2 in

increment of n3"

c Variable list

I" Single Cell (No subscript)

2 ..

3 ..

4 ..

L

L-l

Single

L

L-l

L-2

Array

L

L-l

L-2

Before pro~ram loaded

ZER0

BCl 1, VAR

;-
(V,::1 Cell (subscripted) (

ZER0 iI' i l

VFD 18/0,12/1,6/0

BCl 1,VAR

(' 1/ 11 0. ('(' r,
l r,.f~ \ ~.~ ~ 1'

ZER0 i 2 , i l

VFD 18/0 12/i3 ,6/0

BCl 1,VAR

, i :"
I .. '

After program loaded

VFD 18/L0C,12/-1,6/Type

BCl 1,VAR

! 'I - 1'/ ,t, C(-)I I"~ /,,/ ,·'U - \ I
i·""J/f.

'. '(. --r;

ZER0 iI' i l

VFD 18/L0C,12/1,6/Type

BCl 1, VAR

" .,'. (:- 'I
ZER0 i 2 , i l

VFD 18/L0C,12/i3 ,6/Type

BCr 1, VAR

Octal Dump /
l / , \ " \((d', 1 r " \ \ 'I '.. ,(' "',

: I V " Iii .' ()'" " I, 1 ("L j

L

L-l

L-2

ZER0 SUB 1, SUB 2

Bcr 1,NAME2

BCl 1,NAME l

ZER0 maximum loc"
minimum loc ..

VFD 18/0,12/1,6/16
r

DEC -1

Where:

il,i2 and i3 are integers specifying the variables from il to i2

in increments of i 3 "

SUBI and SUB2 are possible subscripts of symbols NAMEI and
. ...lr_~e:~!;';":'"·":':~f'"

NAME2 respectively ..

-8-

.. ,ti7i(J
{/

t ,

TABLE FORMAT - FFILE CARDS

L VFD

L+l VFD

L+2 VFD

L+3 VFD

L+4 VFD

L+5 VFD

L+6 VFD

L+ 7 VFD

Li-8 VFD

L+9 VFD

Notes:

l8/L(Next Segment),6/0,H12/File Code

l8/Retention Period,18/Bits to be set in L0WER

of L0CSYM

l8/Buff. Size,18/Bits to be set in L0WER of

L.0CSYM-5

l8/PREHED, 18/0

l8/P0SHED, 18/0

l8/PRETRL,18/0

l8/P0STRL,18/0

l8/ERRXIT, 18/0

l8/MIXLNG,18/FIXLNG

6/LU1,6/LU2, ... 6/LUn

1. The lower 18 bits of words L+l and L+2 are set only in the event of

corresponding fields on the FFILE cards. For example:

Bit 25 of L0CSYM-5 (Bit 25 of L+2) is set only if the

field MLTFIL is present on the FFILE card.

2. In word L+8, either the upper or the lower condition will be set

but not both. The upper 18 bits of the word is the location of

SYMDEF supplied as the name of the subroutine to handle mixed

length records. The lower 18 bits of the word is the length, in

number of words, of each record.

3. Word L+9 may be repeated as required to include all logical unit

numbers specified on the FFILE card. The LGU's are packed up to

six per word, with zeros filling in unfinished words.

4. Table is terminated by a word of zeros with the pointer in L

indicating it to be the next segment.

-9-

PHASE 1 CONTROL - DBG

1. Phase 1 is entered on reading $ DUMP control card.

2. Macro EDBGT is used to make entries into debug table.

Location of entry is in index 7 which is decremented and compared

with the load table address to check for overlap. Argument #1

is the entry.

3. Test LOWLOAD. If not requested, set current loading address in

index 7 and go to step 5,.

4. If LOWLOAD, set highest allocated core address (MXCR) in index 7

and lowest available address (MLDADD) in LDTCL to be used to

test for debug-table/program overlap.

5. Set flag indicating presence of debug statements.

6. Save beginning address of debug table for memory map printout.

(7. First cell of table is used as transfer vector for DEBUG

8.

9 •

subroutine from the library file. Two additional cells are also

reserved for possible extension of vector to include linkage

to subroutines DUMP and EXIT.'

Set transfer to beginning of debug transfer vector in symbolic

location TWO, for later s;':orage in cell(i~~'\\>f the ~ fl. I
G~:;v"lt. tywt-c·(;"" ~ ~

:.ll.e:et-~r (the DRL p'e'l"'l).

Get name of program being debugged from $ DUMP card.

-10-

)

.l (,'h.\".C
/

10. Read next card. If not DEBUG card, then error.

11. Skip one cell to be used as a pointer

(a) Address of next segment of table (upper)

(b) Address plus one of instruction when DRL is inserted (lower)

12. Save this table location as beginning of current segment.

13. Skip one cell in table for storage of operation code of

instruction where DRL is inserted.

14. Enter symbolic name of program.

15. Get symbol or statement number where debug is to take place

and enter it, with possible addend, in table.

16. Test characters for possible IF clause. If not go to step 24.

17. Test if IF clause is legal. If not, print message and reset

table entry address to overlap any entries pertaining to illegal

clause. Then go to step 36.

18. Set flag for IF clause.'

19. Enter control word (770000000000). See table format for

breakdown of bit codes.

20. Enter variable names and subscripts involved in IF clause.

21. Set appropriate bits in control word for conditionals, YES,

NO, DUMP, or EXIT.

-11-

22. If DUMP or EXIT is used, enter symbols in transfer vector. (See

step 7 above.) Later during loading these will be defined by

subroutines from the system library.

23. If statement contains another clause go to step 16, otherwise

go to step 29.

24. Test characters for possible FOR clause. If not, go to step 29.

25. Test if FOR clause is legal. If not, print error message and

reset entry address to overlay entries pertaining to this

statement. Then go to step 36.

26. Set flag for FOR clause.

27. Enter control word (760000000000).

28. Enter n2' nl and n3 in the next two cells respectively, then

go to step 16.

29. Test for left parenthesis as beginning of list. If not, this

is an error. Print message and skip to next debug statement

causing the deletion of the entire statement containing the

error.

30. Set flag for list.

31. Beginning of list entries is signaled by a" word of zeros in

table.

32. List is scanned and entries are made according to the table

format description defined earlier.

-12-

33. Final right parenthesis ends list.

34. One complete set of conditions has been encoded into the table.

35. Set pointer (upper 18 bits of word at step 11) to next unused

cell below table.

36. Read next control card.

37. Test card:

a.

b.

If $ DUMP card, go to step 9.
'QUI"?

If not $ card, go to step 11.
(\.

c. If other control cards, close table with word of zero.

38. If HIGHLOAD go to step 40.

39. For LOWLOAD, debug tables are generated at high end of allocated

core just as they would be for HIGHLOAD. They are then moved,
...:....

with their relative positions unchanged, to the low end of

JU,j (j') t1 1 t;.,.'(" . l' / Ii I '. /'
allocated core. V {'-l.A.} .f,I,);'\.. \"~ l'L-' ~t..,r)·\ W{~ ~.~~~!_~ e6·-·Y.l'1''\o\~.\.. .

40. Table is still stored in reverse order; that is, transfer vector

at high end and word of zeros signaling end of table at low end.

41. Enter the symbolic names, DEBUG, DUMP, and EXIT (the latter two

only if required in IF clause) in load table as SYMREFs with

reference pointers to the relative positions in the transfer

vector.

42. TRA instructions are inserted in place of the symbolic names

previously in the vector.

43. Load Phase 2.'

-13-

'PHASE 2 CONTROL

1. Save first unused core'location to be used in print of storage

2.,

3.

map.

",

\ \. \
Read loader 'control/card (subroutine RMCD).

'. /
~ " '~ I.," r \, :/

Isolate type field in card and compare with list of possible

type s.

4_ Transfer to subroutine associated with control card type.

Note: Controls for card types other than $ OBJECT are

described beginning at step 53.

5. $ OBJECT indicates one subprogram is to be loaded from the Rk

file using subroutine LOAD.

6. On entry to LOAD all necessary buffer references are set to

the file being loaded.

7. Read preface card using subroutine PCRD.

8. On return from PCRD, symbolic location CURF contains the

address of card image and LOADT4 is the tally on which individual

words are picked up.

9. Size of the load table is increased by four times the number

of entries on the preface card to handle the maximum possible

entries. The temporary reference table is located

immediately following load table for this subprogram.

-14-

10. An entry is taken from the preface card and tested for being

one of the following types. The table below indicates where

the control for each type is "described.

Type Step

SYMDEF 11

SYMREF 16

LABELED CJ0MM¢N 19

DEBUG SY~0L
TABLE C MM¢N 25

11. Enter SYMDEF symbol in load table with entry location in upper

18 bits of cell following symbol.

12. Enter pointer, to cell containing entry location, in temporary

reference table.

13. If this is first SYMDEF entry to load table, save as possible

entry point to program.

14. Increment counters for load table, reference table and preface

card entries.

15. If more entries on preface card go to step 10. Otherwise go

to step 27.

16. Enter SYMREF symbol in load table with a word of zeros in the

cell following symbol.

17. Enter pointer to cell containing zeros in temporary reference

table.

-15-

18. Increment preface card entry counter. If more entries, go to

step 10. Otherwise go to step 27.

19. Enter LABELED COMMON symbol in load table.

20. Enter beginning address of LABELED COMMON in upper 18 bits of

cell following symbol.

21. Two additional entries flag this as a LABELED COMMON entry.

22. Enter size of LABELED COMMON region in lower 18 bits and

$ as first character of next sequential cell of load table.

23. Fourth cell in this group of entries is same as second cell

(see step 20 above).

24. Enter pointer to cell following symbol in temporary reference

table. Then go to step 18.

25. No entries are made in load table for the debug symbol table.

26. For debug symbol table, enter pointer in temporary reference

table to cell containing location of the first unused cell

beyond the program and LABELED COMMON. This will ensure that

the symbol table is always loaded outside the area reserved

for instructions. The next subprogram to be loaded may then

overlay the debug symbol table. Go to step 18.

27. Get V-bit count from preface card and store in appropriate

shift command to be used later in special relocation.

28. Print storage map , if requested by user.

-16-

29. Move SYMREF and LABELED COMMON entries of the temporary

reference table to working area. For L OWL OAD , this area is

the top of available memory and for normal loading it is just

below the last allocated subprogram or LABELED COMMON region.

This is done to allow additional entries such as SYMREF's with

addends to be made in the load table during loading of the

subprogram.

30. Read binary program card using subroutine BCRD.

31. Set counters and storage constants from control word (word 1 of

binary card):

a. Relative loading address in X3

b. Tally word LOADT2 used to pull words from card image.

c. X6 and X7 to pick up relocation bits.

32. Load instruction or data word into Q-register.

33. Isolate relocation bits for this word.

34. Go to respective subroutine for relocation according to bit

pattern for upper and lower 18 bits of word being stored.

Note: The following subroutines are called for relocation

of the appropriate l8-bit segment of the word. The

main flow of description is continued with step 45.

35. Absolute entries (~y~e O~) are loaded directly into memory

after the address specified has been tested as being within

the limits of allocated core. Go to step 32.

-17 -

36. Normal relocation (Type 01) adds the relocation constant

to the respective lS bits and stores the word in its proper

core location with respect to the beginning of the subprogram

being loaded. Go to step 32.

37. BLANK COMMON relocation (Type 10) adds the relative beginning

address of the BLANK COMMON region to the respective lS bits

and stores the word in core with respect to the beginning

of the subprogram or data region. Go to step 32.

3S. Special relocation (Type 11) requires the use of the V-bit

shift which was set up in step 2S.

39. Bits 2 through V+l of the lS-bit segment of the word being

relocated are isolated to determine which entry in the

reference table will be used for this relocation.

40. Using pointer in reference table, determine if symbol referred

to has been defined. If so apply addend to entry location

associated with symbol and go to step 43.

41. The symbol is not defined and is being referred to with

addend or in the lower lS-bits of the word making reference.

This condition causes the following entry in load table.

VFD 6/77,12/LOW,lS/L(Symbol in load table)

ZERO Addend, L(cell making reference)

where: LOW=l Reference is in lower lS bits

LOW=Q Reference is in upper lS bits

-18-

)

42. The symbol is not defined and referred to directly in the

upper 18 bits of the word making reference. This condition

alters the original SYMREF entry in the load table (see step 16).

The contents of the lower bits of the cell following the symbol

(in the load table) replaces the upper bits of the word being

loaded. The location of the word being loaded is set in the

lower 18 bits of the load table entry. If several such entries

occur before the symbol is defined, a chain is formed which is

terminated by zeros in the upper of the first reference to the

symbol.

43. When both 18-bit card segments have been relocated, the word

is stored in memory relative to its subprogram origin.

44. Return to step 32 until all instructions or data words have

been loaded from the card image.

45. A $ DKEND control card signals the end of a subprogram deck.

Under certain conditions, a $ DKEND control card may contain

additional control information in its variable field.

Variable Control

CONTINUE

LODER:

Signifies a batch compile or more

than one subprogram to be loaded from

the B"k file before returning control

"to Rk. The current file is tested and

if this control card was not read from

BOk, the CONTINUE is ignored.

This is an ALGOL control which allows

for further processing of the load table

before additional subprograms are loaded.

@~c®@@ ~~[ffi~~~----------

-19-

46. When the entire subprogram and its LABELED COMMON regions

have been loaded, the presence of debug statement cards

with this job is tested. If none, return to step 2 to read

next monitor control card.

47. In Phase 1, a table was generated from the debug statement,

symbolic identifiers were stored in the table indicating

specifically where in the source program snapshot dumps were

to occur and what was to be dumped.

48. The debug statement table is searched for statements pertaining

to the subprogram just loaded.

49. The debug symbol table (if one was loaded with the.

subprogram is searched).

50. If no symbol table exists, the load table of SYMDEF and

LABELED COMMON entries is searched.

51. As defined, each of the symbols in the debug statement table

is replaced with an address. Operation codes of the instructions

at the locations where debug is to take place, are replaced

with the DRL instruction after testing the operation codes

against a table of codes which cannot be simulated by the DEBUG

program.

52. Variable and locations which are still undefined at the end

of the search are flagged with error messages. If only one

variable in a list is undefined, the DRL is removed from

the instruction and the operation code is replaced.

@~o®®® ~~[ffi~~~----------

-20-

Control Cards

Type Step Number

$ ENTRY 53

$ EQUATE 55

$ EXECUTE 56

$ LIBRARY 57

$ LINK 58

$ LyML¢AD 59

$ 0PTIyffl 62

$ RELCylli 63

$ S01JRCE 64

$ USE 66

$ N0tIB 70

At the conclusion of processing of each control card, control

returns to step 2.

~N1fI·
53. Ge t NAME of en try from "card .

1'\

54. If processing a link overlay, store symbol as a link entry;

otherwise store it as an entry to main program. Then return

to step 2.

55. a. Variable field of $ EQUATE card is scanned for first symbol.

b. If break character is not a /, control goes back to step 4.

c. The load table is searched for this symbol. If it is

yet undefined, a fatal error message is printed and

control goes back to step 2.

,
)

-21-

d. Test possible increment to symbol. An addend may be applied

to a symbol which has been defined.

e. Resume field scan for symbols to be defined.

f. Test each symbol for previous definition in the load table.

If previously defined, print nonfatal message and redefine.

g. If symbol being used as definition is that of BLANK COMMON

C .CMN.), the symbol being defined will be entered in the load

table as a LABELED COMMON region and given a defining address

within BLANK COMMON. The size of this region will be filled

in later.

h. Each set of equations is enclosed in slashes C/) and separated

by commas. The last set is terminated by a blank column.

Equation fields may not be continued on additional cards

but additional $ EQUATE cards may be used.

56. a. $ EXECUTE, a GECOS control card, signals the end of program

loading. All final housekeeping necessary ~or closing Phase 2

is begun.

b. Available libraries are searched for any routine yet undefined.

c. The storage map is printed.

d. The load table is searched for chained references and undefined

references. Chained references are completed in the CHN

subroutine.

-22 -

e. Remaining references to undefined SYMREFs are filled in

with:

where:

TSX7 .MSNG.

.MSNG. LDQ =3~Ll,DL

MME GEBJ'RT

AB,0RT C,00E

AB,0RT

The .MSNG. coding is placed in the next two available locations

following loading of the user's program.

(The user may include his own subroutine .MSNG. on his library

if a different procedure is preferred.)

f. If any fatal error messages have been printed, loading and

execution are deleted at this point.

g. The entry to the user's program is determined and given to the

setup subroutine (.SETU.). (The setup subroutine is optional

and may differ between user's of FORTRAN, COBOL, ALGOL, etc.)

The priority of entry is determined as:

(a) $ ENTRY card

(b) FORTRAN Standard Entry (......)

(c) First SYMDEF placed in load table from preface card.

h. If job was loaded under LOWLOAD control, the unused memory

above the program is cleared.

i. Place address of bounds of the unused memory in cell 31 of

the user fault vector.

j. Correct addresses in the user's debug table (if one exists)

relative to his own base zero.

-23-

k. Close B* and L* files.

1. Go to Phase 3 unless NOFCB option was requested, in which

case the Rk and p"k flIes are closed and entry is made into

the user's program via the setup subroutine.

57. a. Use GFLD subroutine to obtain library file codes from $ LIBRARY

card.

b. Enter file codes in table in order in which they appear on card.

c. L*, the system library, is a permanent entry in the table.

58. a. The $ LINK control card signals the end of the current link

and the beginning of a new one.

b. A link is concluded much the same as a separate program in

that libraries are searched and a storage map is printed.

c. $ LINK cards without origins (that is, first link and links

which are not overlays) are handled as follows:

(a) Enter link ID in load table with defining address.

(b) Print $ LINK card.

(c) Read next control card. If a $ DUMP card, load Phase 1;

if not, go to step 1, Phase 2.

d. $ LINK cards with origin fields are handled as follows:

(a) Enter link ID in load table w"ith defining address.

(b) Get origin ID and search load table for definition.

An undefined origin is an error.

(c) Test NOPAC option. If set as the third field on the

card, a flag is turned on so that the load table will

-24-

)

not be purged of references to SYMDEF's located within

the link being overlayed.

(d) Fill in chained references and undefined references

within the link being overlayed.

(e) Write links being overlayed on Hok file using MME GESAVE.

(f) If NOPAC option is not set, purge all SYMDEF~ and

references to SYMDEFs of the overlayed link from the

load table.

(g) The new load address (the new origin) is set to continue

loading. '

(h) Print $ LINK card.

(i) Read next control card. If $ DUMP card, load Phase 1;

otherwise go to step 1, Phase 2.

59. $ LOWLOAD card is used to initialize the loading address at

the lower end of allocated core.

60. When a decimal address is punched in the card, the initial

loading address is incremented by this amount. This is to

allow for BLANK COMMON.

61. All constants are initialized with respect to the lower memory

loading address. Then return to step 2.

@3~c(ID@@ ~~[ffi~~~ ----------
-25-

62. The following table lists cells affected by $ OPTION card.

Underlined options are assumed if no $ OPTION card is included

in the deck.

Option

MAP

N¢'MAP

C0NG0

SYMREF

NPSREF

L£}C0MN

I

N9)SETU

N0FCB

Cell in
Memory

MAP

MAP

ERXEQ

ERXEQ

XEQ

PREFF

PREFF

LLCMF

SETF

ALGF

Contents

Zero

Nonzero

Zero

Nonzero

Nonzero

Nonzero

Zero

Nonzero

Nonzero

Nonzero

Nonzero

-26-

Effect on Loading

Produce memory map

No memory map printed

Execute regardless of nonfatal

loading errors.

Execute only if no loading errors

No execution

allowed.

(Normal contents = 150)

Print SYMREF!s on loader map.

Do not print SYMREF!s.

Assign all LABELED COMMON below

BLANK COMMON

\
{ (',' Do not load the setup subroutine /~

from the system library. Enter

the user program d'irectly.

Do not call Phase 3 of GELOAD.

No file control blocks will be

generated by GELOAD.

Set LOWLOAD option, prepare

for the

options.

Option

FCB

F0RTRAN

C0B0L

Cell in
Memory

N0FCB

N0FCBF

N0FCBF

Contents

Zero

Zero

Nonzero

-27 ...

Effect on Loading

Call PHASE 3 of GELOAD and

generate file control blocks

according to the control cards _ . ___ ~~"' __ ""N"" __ ~_~ ____ ... __ , ___ _

Sets all standard loader options

for the FORTRAN user. These

include highload, FCB, and

the use of the standard setup

routine (.SETU.).

Sets all standard loader

options for the COBOL user.

These include LOWL OAD,
_r"' ___ , ... ,~,., ..

~!~B, and the use of the

COBOL setup routine (.CSETU).
-..,,;.;...,.--

63. Convert 'decimal number in $ RELCOM card and increment beginning

address of BLANK COMMON by this amount.

64. The $ SOURCE card will cause one subprogram to be loaded from

the B* file by the procedure in steps 6-52.

65. Deviation from the above procedure occurs only when loading

object subprograms generated by the TASMIN or G compilers. In

these cases it is possible to encounter a $ DKEND control card

with the word CONTINUE in the variable field. This would signal

GELOAD to load another subprogram from the B"i\- file. The

CONTINUE option is present only when more than one source -----subprogram is batch compiled and a single $ SOURCE card appears

on the Rk file.

66. $ USE causes symbolic names to be entered in the load table as

undefined SYMREFTs.

67. When a symbol in the variable field is terminat~d by either a

blank or a comma (break characters) it is entered in the next

available location of the load table followed by a cell of

zeros signifying it is an undefined SYMREF.

68. When a symbol is terminated by the slash (/) break character;

the symbol is a LABELED COMMON entry and the number following

the slash is converted as the size of the COMMON region.

69. A LABELED COMMON entry of the form:

$' USE NAME/nL/

implies that the LABELED COMMON NAME of size n, is to be

assigned in an area below BLANK COMMON or just above the

userTs fault vector. If any BLANK COMMON has already been

-28-

assigned, a nonfatal error message is printed, the field is

ignored and the next field is considered.

70. $ NOLIB causes no library search to be made during the loading.

In link jobs, a $ NOLIB card must be included with each link

for which a search is not to be made.

-29-

PHASE 3 CONTROL - GENERATE FILE CONTROL BLOCKS

1. Determine limits of user's memory still available after

loading program (cell 31).

2.

'\

Read file control card. {!!fEeos -t-/j'C) rFI(E
J H'''''(--.t . .A, .. l J'\j\Y"'? \"I~Ny,.,".. D,:>-.J} J l/\J '. li' . ,/ , ~ I , "

If card is not a file card (LIMITS, ENDJOB, etc.) print it and 3.

go to step 2.

4. Test type of file card.

a. GECOS--Only file code is saved in a table.

b. FFILE--All information on this card is pertinent to the

construction of the FCB.

c. ETC--Only applicable to FFILE and is considered an

error if it appears elsewhere.

5. The file codes are carried from the GECOS cards in BCD.

Each new code is compared with all other entries for duplication.

A nonfatal error message is printed when duplication exists.

Each of the possible fields on the FFILE card is encoded into

a respective position in a lO-word segment of the table

pertaining to this FFILE card. The format of each segment

of the table is as described earlier under Table Formats.

7. E~ch field is picked up from the card image by the GFLD

subroutine. The card is scanned until it is terminated by a

blank column or the end of the card. (column 72).

-30-

)

8. When a card is terminated, the next card is considered. If it

is an ETC card, the procedure in step 7 is continued; otherwise,

control goes to step 4.

9. The respective fields are handled as follows:

Field Action

STDLBL Set bit 24 in word L+2 of table segment.

NBUFFS

BUFSIZ

LGU

PREHED

POSHED

PRETRL

POSTRL

ERRXIT

Test format correct.

Convert number using CVT subroutine.

Shift bits into proper position.

OR bits into word L+2 of table segment.

Test format correct.

Convert size using CVT subroutine.

OR into upper of word L+2.

Test if field appeared previously (error).

Test format correct.

Initialize tally for storing logical unit numbers.

Convert numeric file code.

Convert unit numbers

Store in table segment.

Repeat until list is complete.

Test format correct.

Get SYMDEF using GFLD subroutine.

Search load table for SYMDEF.

Store definition in respec'tive location of table.

-31-

Field

MIXLNG

RETPER

MLTFIL

MODBCD

FIXLNG

NOSRLS

LODENS

IGNORE

---.. -.-~--

Action

Test format correct.

Test FIXLNG already set. If so, reset.

Get SYMDEF using GFLD subroutine

Search load table

Store definition in table.

Test format correct

Convert number

OR into upper 18 bits of word L+l

Set bit 25 in word L+2 of table

Set bit 21 in word L+l of table

Test format correct

Test MIXLNG already set. If so, reset.

Convert record length using CVT subroutine.

Store length in lower of 18 bits of word L+8 of tabl~

Set bit 23 of word L+2 of table.

Set bit 22 of word L+l of table.

Reinitialize beginning of table.

Search table of GECOS file codes for match.

If match exists, delete code in table.

Delete is accomplished by replacing code with 7777

If match is not found, print error message.

-32-

12. The logical unit table and all FCB's will be generated in the

user's unused memory and will be loaded in the same manner

as additional subroutines.

13. Area (22 words) is assigned for the logical unit table.

14. Test present tables (GECOS file codes and FFILE) to determine

which, if any, FCB's will be generated.

15. FeB's for FFILE file codes are generated ~~~~ ({fir:.;) /0- ~C> c:tJ'Lt; PC[S

--\~:(L (-····Pf L F C~t(-l tC~)
/.1.

16. The s.tandard FCB is assigned 22 words--20 words for the FCB

itself and 2 words working areafor system library usage.

17. The .table of GECOS file codes is searched for the current

code and if present, the code is deleted from the table.

18. Begin generating FCB, filling in options as stated on FFILE

card and encoded into table segment.

19. All options not expressed on FFILE card are assumed to be

standard options.

-3'3-

20. Logical units, are transferred into the logical unit table using

a tally modification.

The format of the logical unit table is:

VFD 18/FCB, 6/LU1, 6/LU2, 6/LU3

using as many cells as are required to assign all logical

unit numbers. FCB is the address of the L0CSYM.

"""-~-----------.-.... ~-.,-.,-, ...
21. When FCB's have been generated for all FFILE cards, the table

of GECOS file codes is checked for presence of numeric file

codes which are numerically less than 44.

22. Standard FCB's are generated for all numeric file codes less than

44 which appeared 9n GECOS file cards.

23. The file code is converted 'to binary and entered in the logical

unit table for this FCB.

24. Steps 22 and 23 are repeated until FCB's are generated for all

numeric file codes.

25. If to this point, FCB's have not been generated for P* and I*

files, they are generated now.

26. When no GECOS File Control cards and no FFILE cards are present

wi th the job, two standard FCB' s for P* and I?\- will be generated.,

If only GECOS File Control Cards are present, no FCB's are

generated. Control goes to step 29.

27. All necessary FCB's have been generated.

28. Calculate new limits of the unused memory and store them in

cell 31 of the user's fault vector.

-34-

29. Return to GELOAD COMMON to close Rk and P'k files.

30. Test if memory is to be released back to GECOS

~:SE:.:rlt!4/ r~::C~~
31. Transfer control

/
1 to user ',s program':-

, (

/

~:!-'--.- .. _-

)

@~c®@@ ~~[ffi~~~----------
-35-

. I
f

MAJ OR SUB ROUTINES COMMON TO ALL PHASES

FUNCTION

Read Monitor Card

Read BCD Card

Print BCD Card

Message Writer

CALLING SEQUENCE

L
L+l
L+2

L
L+l
L+2

TSXl RMCD
TRA (E¢F)

Normal

TSXl RBCD
TRA (E0F)

Normal

L TSXl PBCD
L+l Normal

L TSXl MWR-C0DE'" 2
L+l) See MACR0 expansion
L+n of the calling

sequence

-36-

REMARKS

Reads BCD card and

checks for $ in

column 1. Uses RBCD

subroutine.

Reads Card and checks

for BCD. If not, error

message is printed and

read continues until

BCD card is found.

Blank cards are ignored.

Writes one card image

from the Rk file on to

the p* file. Us~s

MWR subroutine.

Writes message on PI',.

Return and type code

are specified as part

of the macro.

)

FUNCTION

Get Field

Convert Fixed-Point
Numbers From Cards

Enter Symbol In
Load Table

CALLING SEQUENCE

L-l
L
L+l

L-l
L
L+l

L-l
L
L+l

L+2

LDA A,DU'
TSXl GFLD

Normal

LDA A,DU
TSXl CVT
Return with number
in CVTNM

LDA (Symbol)
TSXl ETBL
Return - In and
Defined
Return

-37-

REMARKS

A is a composite mask

of legal break charac-

terse Characters are

picked up using GCHR

and packed in FLD until

a break character is

found. The field is

in FLD and the break

character number is in

X2 upon return.

A is a composite mask

of legal break charac-

terse Numerics are

converted until a non-

numeric is encountered.

An illegal break

character will cause

an error message.

Uses SLTB to search

load table. If symbol

is already in table

and defined, return is

at L+l. If symbol is

already in table but

not defined, then

return is at L+2 with

FUNCTION CALLING SEQUENCE

MAJOR'SUBROUTINES OF PHASE 1

Get Character From
Card Image (Pass 1)

Read Debug Card

L TSXl GCHR
L+l Return

L TSXl RDCD
L+l Continuation Card

Return

L+2
L+3

$ Card Return
Nonnal Return

-38-

REMARKS

zero indicator on. If

symbol is not in table,

it is entered as un-

defined and the return

is at L+2 with 'zero

indicator off.

Loads one column from

a BCD card image and

isolatesit in the righ~

most character position

of the A-register.

Ignores blanks.

Reads card using RECD.

Dollar sign card may

be an error. Continua-

tion card has punch

in column 6. Tally is

set for scan of debug

statement.

MAJOR SUBROUTINES OF PHASE 2

FUNCTION CALLING SEQUENCE

Get Character From
Card Image (Pass 2)

New Limits

L
L+l

L
L+l

Load User's Libraries L
L+l

TSXl GCHR
Return

TSXl NLMT
Return

TSXl ELNK
Return

-39-

REMARKS

Loads one column from

a BCD card and right

adjusts it in the A-

register. Blanks are

included.

Calculates limits of

storage allocated to

this program or link

but unused by it. On

return, the A-register

has lowest unused cell

address in the upper

18 bits and highest

unused cell address in

the lower 18 bits.

Picks user library file

codes from list and

searches them in turn.

If user has not speci-

fied any libraries,

only the system librar~

L*, is searched.

FUNCTION

Print Storage
Summary

Define SYMREF

Missing Routine

Convert Octal For
Printout

Print Storage Map

CALLING SEQUENCE

L
L+I

L
L+I

L
L+I

L-I
L
L+I

L
L+I

TSXI PMAP
Return

TSXI CRN
Return

TSXI MRT
Return

I ,

LDQ (NUMBER)
TSXI CVOCT

Return

TSXI SMAP
Return

-40-

REMARKS

Prints amount and

bounds of storage used

for object program,

COMMON and debug tables.

Searches load table for

undefined SYMREF~.

Fills in chain

addresses if any exist.

Calls MRT to handle

missing routines.

Fills in address of

MME GEBORT subroutine

at all references to

missing routines.

Converts 6-digit octal

address for printing.

Converted number is

returned in the A-

register.

Prints names and

locations of entries

to the subroutine being

loaded. Also prints

names and locations of

LABELED COMMON Regions

and SYMREF's

(optional) .

FUNCTION

Search Load Table

Make Entry In
Load Table

Set Reference Table
Location

Search Symbol Table

CALLING SEQUENCE

L-l
L
L+l
L+2

L-l
L
L+l

L
L+l

L-l
L
L+l
L+2

LDA NAME
TSXl SLDT

Return (In)
Return (Not In)

LDAQ (ENTRY)
TSXl ENTB

Return

TSXl SREFT
Return

LDA NAME
TSXl SYTB

Return (Not In)
Return (In)

-41-

REMARKS

Searches load table

in 256-word blocks.

If return is to L+l,

index register 2

points to location in

load table.

Makes entry in next

two available locations

of load table. A fatal

error message is

printed when table

overlaps with user!s

program.

Gets size of reference

table ~rom preface card

and calculates a storage

location relative to load

table.

Uses logic of SLDT

(above) to search debug

symbol table. Q-

register contains loca-

tion of symbol when

return is to L+2.

FUNCTION

Load Absolute Card

Read Preface Card

Read Binary Card

Compute Checksum

CALLING SEQUENCE

L TRA ABS
(Return to read next
card)

L
L+l

L

L
L+l

TSXl PCRD
Return

TSXl BCRD

TSXl CKSUM
Return

-42-

REMARKS

Loads one absolute

binary card. Checksum

is calculated.

Card type is checked. t)'\·)

Appropriate messages

are printed if card is

not preface card. ABS

subroutine is entered

if card is absolute.

Tally words are

initialized for preface

cards.

Picks a card image

from buffer and checks

type. Illegal cards

cause message to be

printed. BCD cards

are checked for

$ DKEND, signaling end

of binary deck.

Zero checksums are

ignored. Message is

printed when checksum

on card does not com-

pare with that calcu

lated. Loading of

FUNCTION

Get Load Address

En ter SYMREF In
Load Table

CALLING SEQUENCE

L-l
L
L+l

L-l
L
L+l

LDA (Length)
TSXl GLD

Return

LDAQ
TSXl

(Entry)
SRF

Return'

-43-

REMARKS

card with illegal

checksum continues

unchanged.

Calculates new loading

address by applying the

length (A-regis tel) of

the subprogram or data

region to the current

load address. Tests

are made for the

possibility of overlap

with load table and top

of memory. Counters con

cerning the highest and

the lowest cells used are

maintained by GLD.

1. Makes normal entry

in load table:

BCI 1, NAME
ZERO 0, Pointer

2. If entry is a

LABELED COMMON

region instead of

SYMREF, two addi-

tional words are

entered:

FUNCTION

Enter Primary or
Secondary SYMDEF
In Load Table

CALLING SEQUENCE

L-l
L
L+l

LDAQ (Entry)
TSXl SETY

Return

-44-

REMARKS

VFD6#/$,12/0,18/(Length)
ZERO Loc, 0

3. Entry is made in

reference table pointing

to the second cell of

the load table entry.

1. Make standard entry in

load table:

BCI 1, NAME
ZERO Loc, 0

2. Make entry in reference

table pointing to the

second cell of the load

table entry.

EFFECT OF LOWLOAD OPTION

Cell or Control
Affected HIGHLOAD LOWLOAD

LDADD Contains loading address Same as HIGHLOAD except

Iv1LDADD

LLDADD

BLDADD

LWLD

of current subroutine address is calculated by

being loaded. Calculated adding length of previous

by subtracting length of subprogram to previous load

subprogram from previous address.

load address.

Contains address of

first cell above user's

allocated memory.

Contains address of

first unused cell below

subprogram being

loaded.

Contains address of

lowest cell used by

user's program.

(Not BLANK ,COMMON)

Contains zero.

-45-

Contains address of first

unused cell above subprogram

being loaded.

Contains address of first

unused cell above subprogram

being loaded (same as

MLDADD) .

Same as HIGHLOAD.

Contains base load address

for user's program. This

cell is used as a flag

signaling LOWLOAD option.

Cell or Control
Affected HIGHLOAD L OWL OAD

BASE Base address of user's Same as HIGHLOAD.

allocated memory.

MXCR Upper limit of user's Same as HIGHLOAD.

allocated memory.

Location of Stored downward
Reference Table

Stored downward beginning

(Relative to beginning at address
current sub-

at top of user's memory.

program) contained in LLDADD.

Location of Generated downward Generated as in HIGHLOAD
Debug Tables

from highest available and moved to a position

location in user's relative to user's lowest

allocated memory. loading address. (k\bove
"'

BLANK COMMON region.)

-46-

DEFINITIONS OF TERMS FREQUENTLY USED

Primary SYMDEF

Secondary SYMDEF -

SYMREF

LABELED COMMON

BLANK COMMON

Symbolic location in the user's subprogram

which denotes an entry point to the subprogram.

Symbolic location in the user's subprogram

to be referred to from outside the subprogram

but which is not necessarily an entry point.

Symbols referred to within the subprogram

which are defined externally as SYMDEFs in

other subprograms.

Common regions which are loaded with the

subroutines and referred to by name. Entries

are made in the load table to enable

referencing by any subprogram.

The COMMON region located just above the

user's fault vector at the low end of his

allocated memory. BLANK COMMON is referenced

by absolute addressing relative to the user's

base address register.

(.> i:"",~ ,-L. \
(6P\:,f-) J

MEMORY DIAGRAM FOR HIGHLOAD

Lowest Address Allocated To
.--, Loader

GELOAD Subroutines and Buffers
Common To All Phases

Phase I Phase 2 Phase 3

L _____________________________ ~ L L {) AD!)

Program 2

Program I

Debug Table (If Any)
.L-__ ~S~t~o~r~e~d~B~a~c~k~w~a~r~d~s~ ________ ~Highest

-48-

{

FCB option generates
File Control Blocks for
the job following loading
of all subprograms

Address of Allocated Memory.

i\\\ou\~ H\ +0 ~L:1VC ~u t,-, \-1-)
(If!, 1, (\-2,)

MEMORY DIAGRAM FOR LOWLOAD

Lowest Address Allocated To Loader

GELOAD Subroutine and Buffers
Common To All Phases

Phase 1 Phase 2

/ /'/ / '/~'/ '/ / /' // / / /

Load Tables

Phase 3

-----.---. _ .. $(' ~'i !j/:::--Plee-l~"T?>-h'---"~''''r-Lowest Address Allocated to User~
;--=--=-_ . ..:.:1::') c. ,j 1 .. .1 I'~' (. 'C' I I: .. n ~! t,,/ .--'- I f\ J I

De bug Ta15T-e-s---CTI-Arty-r---- S ,1 (J(' /.\(/1 () 17!

Stored Backwards
-- - - - - - - - - ~ .3 t.),i PP

Program 1

Program 2
I---____________ ~~- L-lJ.) t.. 0

File Control Blocks and
Buffers

Debug Tables Generated

{

FCB option generates File
Control Blocks for the job
following loading of all
subprograms .0>

Here and Moved to Current ,
__ --'-P-"'n..LJ,~"'_; ·~ r i·.I..LLI nn ___ .:..--_____ ---' Highest Address Allocated to User S"

S I In! C. A C 1i 1) I ~11 (/I))(C l:::.)

-49-

'Progress /s Ov~ Most Imporfilnf Proc/lIc.f

GENERAL. ELECTRIC
COMPUTER DEPARTMENT. PHOENIX, ARIZONA

