
GE-625/635
ecoBOL

CP B- 1007 F

~ Information
\.W Systems

Information Systems
Equipment

CP8·1007F

GE-625/635
COBOL

REFERENCE MANUAL

September 1964

Rev. Apri I 1969

INFORMATION SYSTEMS

GENERAL. ELECTRIC

PREFACE

This reference manual was prepared to allow GE-625 and GE-635 users, with
programmers experienced in COBOL programming principles, to program in the
COBOL System environment. It is written as a reference manual and contains
general information on the concepts for the organization of a COBOL program,
the elements of the language, the rules for combining these elements into
meaningful instructions, and the methods for preparing data for use in a
COBOL program. In addition, this manual specifies in detail the exact forms
which the programmer must follow in writing instructions in the COBOL
language for the GE-625 and the GE-635.

A compiler is being prepared to accept the COBOL-61 Extended source programs
described in this manual. The Department of Defense specifications for
COBOL-61 Extended are closely followed in COBOL for the GE-625 and the
GE-635. The portions of COBOL-61 Extended not included in this manual are
not available at this time.

This edition of the COBOL Reference Manual, dated April 1969, supersedes
the previous edition, dated January, 1967, and includes the following
Technical Information Bulletins (TIB's) issued for the previous edition,
CPB-1007E: TIB 600-185, TIB 600-216, TIB 600-235, and TIB 600-236.

Suggestions and criticisms relative to form, content, purpose, or use of
this manual are invited. Corrnnents may be sent on the Document Review Sheet
in the back of this manual or may be addressed directly to General Electric
Company, Information Systems Equipment Division, C-77, 13430 North Black
Canyon Highway, Phoenix, Arizona, 85029.

G) 1964, 1965, 1967, 1969 by General Electric Company

(2M 8·69)

@~a@@@ ~~(ffi0~~----------------c~OB~OL

TABLE OF CONTENTS

Page

I. ACKNOWLEDGEMENT • • • • . . I-1

II. GENERAL DESCRIPTION OF "COBOL"•. II-1

III. REFERENCE FORMAT

GENERAL DESCRIPTION
SEQUENCE NlJMBERS .. .
IDENTIFICATION DIVISION ...•.............•....................
ENVIRONMENT D IVI SI ON .. .
DATA DIVISION• ~•......•..................
PROCEDURE DIVISION .. .

IV. NOTATION U~ED IN VERB AND ENTRY FORMATS IN THIS REPORT

III-1
III-1
III-1
III-2
III-3
III-4

BRACES . IV-1
BRACKETS • . • • . . . • . . . • • • . • • • • . . • . . • • . • . • . • • . . . • . • • . • . • . • . • IV-1
REQUIRED WORDS • . . • • • • • • . . . • • IV-1
OPTIONAL WORDS . IV-1
LOWER CASE WORDS . IV-1
CONNECTIVES . . . • . IV-1
PERIOD . IV-1

V. CHARACTERS AND WORDS

COMPLETE CHARACTER SET
CHARACTERS USED FOR WORDS ••.••••••••••••••.•••••••••..••.••••
DEFINITION OF WORDS•...•••..•....•.•........••......•...
TYPES OF WORDS .. .

Nouns .. .
Data-Names
Condition-Names .. .
Procedure-Names ·
Literals
Numeric Literal ...•.
Figurative Constants
Special Register ·
Verbs .. .
Reserved Words
Qualifiers
Subscripts

DISTINCTION BETWEEN SUBSCRIPTS AND QUALIFIERS
Series Connectives

COMPLETE LIST OF RESERVED WORDS

iii

V-1
V-1
V-1
V-2
V-2
V-2
V-2
V-3
V-3
V-3
V-4
V-6
V-6
V-6
V-7
V-8

V-10
V-10
V-11

'VI. DATA DIVISION

GENERAL DESCRIPTION .. .
ORGANIZATION
FILE DESCRIPTION ENTRY
ENTRY FORMATS .. .

General Notes
Specific Formats .. .
File Description Complete Entry
BLOCK Size .. .

COPY
DATA RECORDS .. .

FILE Size
LABEL RECORDS .. .

RECORD Size
RECORDING MODE•.......................................
REPORT(S) .. .
SEQUENCED .. .
VALUE .. .
RECORD DESCRIPTION

Concept of Levels
Concept of a Computer Indepen~ent Detailed

Data Description
Derivation of External and Interna: Formats
Algebraic Signs .. .
Item Alignment and Spacing on Fixed Word

Length Computers
Report Editing .. .

ENTRY FORMATS•.................
General Notes
Specific Formats .. .

RECORD DESCRIPTION
Complete Entry Skeleton

CLASS .. .
COPY

Data-name
Editing Clauses

JUSTIFIED .. .
Level Number .. .

OCCURS .. .
PICTURE .. .
POINT LOCATION
RANGE .. .
REDEFINES .. .
RENAMES· .. ,
SIGN
SIZE
SYNCHRONIZED
USAGE .. .

iv

Page

VI-1
VI-1
VI-2
VI-3
VI-3
VI·-3
VI-4
VI-6
VI-7
VI-8
VI-9

VI-10
VI-11
VI-12
VI-13
VI-14
VI-15
VI-16
VI-17

VI-19
VI-19
VI-19

VI-19
VI-20
VI-20
VI-20
VI-20
VI-21
VI-21
VI-22
VI-24
VI-25
VI-26
VI-28
VI-29
VI-30
VI-31
VI-38
VI-39
VI-40
VI-41
VI-42
VI-43
VI-44
VI-45

VALUE
Specific Entry for a Condition-name

REPORT WRITER•.........
GENERAL DESCRIPTION

Report Section
Report Name Description Entry
Report Group Description Entry

DEFINITIONS
LINE COUNTER .. .
PAGE COUNTER .. .
ENTRY FORMATS

General Notes
Specific Formats . ,
RD Entry ,

CODE .. .
CONTROL(S)
COPY .. .
PAGE LIMIT(S) .. .

Report Group Entries
CLASS
COLUMN NUMBER
COPY .. .
DATA-NAME
EDITING CI..AUSES
GROUP INDICATE .. .
JUSTIFIED
LEVEL NUMBER ,
LINE NUMBER
NEXT GROUP .. .
PICTURE .. .
POINT LOCATION ,,
SIZE .. .
SOURCE-SUM-VALUE .. .
SOURCE .. .
SUM ... ,
VALUE
TYPE .. .
USAGE
SlJMMARY
FILE SECTION

Sp.ecification and Handling of Labels
WORKING STORAGE SECTION

Organization .. .
Non-Contiguous Working Storage
Working Storage Records
Initial Values
Condition-Names

v

Page

VI-47
VI-48
VI-50
VI-50
VI-50
VI-50
VI-51
VI-51
VI-53
VI-54
VI-54
VI-54
VI-54
VI-55
VI-56
VI-57
VI-58
VI-59
VI-61
VI-63
VI-64
VI-65
VI-66
VI-67
VI-68
VI-69
VI-70
VI-71
VI-72
VI-73
VI-74
VI-74
VI-75
VI-75
VI-75
VI-76
VI-77
VI-82
VI-83
VI-83
VI-83
VI-86
VI-86
VI-86
VI-87
VI-87
VI-87

CONSTANT SECTION .. .
Organization .. .
Non-Contiguous Constant Section
Constant Records
VALUE of Constants
Condition-Names
Table of Constants

VII. PROCEDURE DIVISION

GENERAL DESCRIPTION
RULES OF PROCEDURE FORMATION
STATEMENTS .. .

Imperative Statements
Conditional Statements
Compiler Directing Statements

SENTENCES
Imp era ti ve Sentences
Conditional Sentences
Compiler Directing Sentences

SENTENCE PUNCTUATION
Verb Formats .. ~
Sentence Formats

SENTENCE EXECUTION
Imperative Sentences
Conditional Sentences
Compiler Directing Sentences

CONTROL RELATIONSHIP BETWEEN PROCEDURES
CONDITIONALS .. .
GENERAL DESCRIPTION
CONDITIONS .. .

Simple Conditions
Standard Collating Sequence
Commercial Collating Sequence
Compound Conditions
Abbreviations .. .

FORMING COMPOUND CONDITIONS
DECLARATIVES .. .
COMPILER DIRECTING DECLARATIVES
FORMULA.S .. .

Basic Operators
VERBS
SPECIFIC VERB FORMATS
ACCEPT .. .
ADD
ALTER ···· ... ········

vi

Page

VI-88
VI-88
VI-88
VI-89
VI-89
VI-89
VI-89

VII-1
VII-1
VII-1
VII-1
VII-1
VII-2
VII-2
VII-2
VII-2
VII-2
VII-3
VII-3
VII-3
VII-3
VII-4
VII-4
VII-4
VII-4
VII-5
VII-5
VII-5
VII-5
VII-7
VII-8

\" II-10
VII-12
VII-17
VII-17
VII-18
VII-18
VII-18
VII-20
VII-20
VII-21
VII-22
VII-24

CALL .••
CLOSE
COMPUTE
COPY • •
DISPLAY
DIVIDE • • ·
ENTER
EXAMINE
EXIT · · • ·
GENERATE
GO · · · · • ·
INITIATE ·
MOVE . ·
MULTIPLY . .
NOTE ...
OPEN ..
PERFORM
READ ...
RELEASE
RETURN
SORT · · ·
STOP · ·
SUBTRACT ·
TERMINATE
USE
WRITE

.

VIII. ENVIRONMENT DIVISION

GENERAL DESCRIPTION

.

STRUCTURE • · • • · · · • • • ·
CONFIGURATION SECTION • • • · • • · ·
SOURCE-COMPUTER • • · • · · · · • ·
OBJECT-COMPUTER • · · • • ·
SPECIAL-NAMES · · · · • • • • ·
INPUT-OUTPUT SECTION · · • · ·
FILE CONTROL •
I-0-CONTROL • • • • · • • • •

IX. IDENTIFICATION DIVISION

GENERAL DESCRIPTION
ORGANIZATION • ·
PROGRAM-ID • · ·
DATE-COMPILED

vii

Page

VII-24 .1
VII-ZS
VII-28

VII-28.l
VII-29
VII-30
VII-31
VII-38
VII-40
VII-41
VII-43
VII-44
VII-45
VII-48
VII-49
VII-50
VII-51
VII-58
VII-60
VII-61
VII-62
VII-65
VII-66
VII-67
VII-68
VII-70

VIII-1
VIII-1
VIII-2
VIII-2
VIII-3
VIII-4
VIII-5
VIII-5
VIII-7

IX-1
IX-1
IX-2
IX-3

X. SOURCE-PROGRAM SEGMENTATION

INTRODUCTION •
SEGMENTS • • • •
SECTIONS • • •
DA.TA FILE COMMUNICATIONS • • • • •
WORKING-STORAGE COMMUNICATIONS • .
CONSTANT COMMUNICATION • . .
PROCEDURAL COMMUNICATIONS
DATA COMPATIBILITY • . • .
EXAMPLE OF MULTI-SEGMENT JOB

APPENDIXES

COMPUTATIONAL ITEM FORMATS . • • • . • .
COBOL FILE FORMATS . • . • • • . • . • .
PROCESSING NONLABELED MULTIPLE REEL FILES
PROCESSING STRANGER FILES VIA COBOL .
COBOL EFFICIENCY TECHNIQUES . • • .
COBOL REPORT WRITER OBJECT MODEL
COBOL COMPILATIONS . . . • • .
SQUEEZE CODING IN COBOL SORTS • . •

. . . .
A.
B.
c.
D.
E.
F.
G.
H.
I. OPTIONAL COMPIL~TION OF STATEMENTS IN GE-625/635

COBOL SOURCE PROGRAMS . • • . . •
J.
K.

L.
M.
N.
o.
P.
Q.

INDEX

USE OF THE COBOL SORT FEATURE • • • • • • • • • .
OPTIMIZING THE COMPILATION PROCESS FOR GE-625/635

COBOL SOURCE PROGRAMS . . • . . . • .
USE OF WRITE VERB FOR LISTING FILES . •
REPORT WRITER PRE ANv POST-SLEW CALCULATION .
REPORT WRITER TABLE CAPACITY
COBOL EXAMPLES •
COBOL SOURCE PROGR~M ORDER
USE OF A LIBRARY FOR COPY • .

viii

• •

X-1
X-2
X-2
X-2
X-3
X-4
X-4
X-6
X-7

A-1
B-1
C-1
D-1
E-1
F-1
G-1
H-1

I-1
J-1

K-1
L-1
M-1
N-1
0-1
P-1
Q-1

Page I-1

I. ACKNOWLEDGEMENT

This publication is based on the COBOL System developed in 1959 by a corrnnittee
composed of government users and computer manufacturers. The organizations
participating in the original development were:

Air Materiel Corrnnand, United States Air Force
Bureau of Standards, Department of Corrnnerce
David Taylor Model Basin, Bureau of Ships, U. S. Navy
Electronic Data Processing Division, Minneapolis-Honeywell Regulator Co.
Burroughs Corporation
International Business Machines Corporation
Radio Corporation of America
Sylvania Electric Products, Inc.
Univac Division of Sperry-Rand Corporation

In addition to the organizations listed above, the following other organizations
participated in the work of the Maintenance Group:

Allstate Insurance Company
Bendix Corporation, Computer Division
Control Data Corporation
DuPont Company
General Electric Company
General Motors Corporation
Lockheed Aircraft Corporation
National Cash Register Company
Philco Corporation
Royal McBee Corporation
Standard Oil Company (N.J.)
United States Steel Corporation

This manual is the result of contributions made by all of the above mentioned
organizations. No warranty, expressed or implied, is made by any contributor
or by the committee as tc the ac.curacy and functioning of the progranuning
system and language, Moreover, no responsibility is assumed by any contri
butor, or by the committee, in connection therewith.

It is reasonable to assume that a number of improvements and additions will
be made to COBOL. Every effort will be made to insure that the improvements
and corrections will be made in an orderly fashion, with due recognition of
existing users' investments in programming. However, this protection can be
positively assured only by individual implementors.

Procedures have been established for the maintenance of COBOL. Inquiries
concerning the procedures and the methods for proposing changes should be
directed to the Executive Committee of the Conference on Data Systems
Languages.

COBOL

Page I-2

The authors and copyright holders of the copyrighted material used herein:
FLOW-MATIC (Trade-Mark of Sperry-Rand Corporation), Programming for the
UNIVAC ® I and II, Data Automation Sys tern © 1958, 19 59, Sperry-Rand
Curporation: IBM CommerciaY Translator, Form No. F28-8013, copyrighted 1959
by IBM, FACT, DSI 27A5260-2760, copyrighted 1960 by Minneapolis-Honeywell,
have specifically author~zed the use of this material, in whole or in part,
i11 the COBOL specifications. Such authorization extends to the reproduction
a11d use of COBOL specifications in programming manuals and similar publications.

Any organization interested in reproducing the COBOL report and initial speci
fications in whole or in part, using ideas taken from this report or utilizing
this report as the basis for an instruction manual or any other purpose is free
to do so. However, all such. organizations are requested to reproduce this
section as part of the introduction to the document. Those using a short'
passage, as in a book review, are requested to mention COBOL in acknowledge
ment of the source, but need not quote this entire section.

@~o(ID(Q)@ ~~[ffiO~~-----------co_so......,.L

Page II-1

II. GENERAL DESCRIPTION OF COBOL

COBOL is the preferred language for use within Department of Defense agencies
and associated contractors for the programming of business data processing
applications. The COBOL language was developed by a group of computer users
and manufacturers and first documentation distributed in April, 1960. Since
its initial distribution, it has undergone a number of changes instigated by
manufacturer experience with COBOL implementation and user experience with
COBOL programming for computers of all sizes and configurations. These im
provements are embodied in the current version of the language termed COBOL-61
Extended.

From a computer user's standpoint, standard computer compiler languages:

1. provide a quick means of program implementation;
2. reduce costs of converting from the computer of one manufacturer

to those of another;
3. reduce time and effort required for retraining of prograrmners;
4. guarantee at least some measure of standard documentation in the

case that format documentation is not irmnediately forthcoming;
5. provide an effective way of taking immediate advantage of hardware

and compiler improvements.

The COBOL System is composed of two elements - the source program written in
COBOL, and the compiler which translates this source program into an object
program capable of running on a computer. This report, in general, considers
only the source program and does not consider the second element (the compiler)
directly. However, the specifications of a language obviously determine, to
a large extent, the boundaries of a compiler. Therefore, the compiler is
mentioned in certain cases to facilitate the explanation of the language.

A source program is used to specify the solution of a business dataprocess
ing problem. The four elements of this specification are:

1. The identification of the program.
2. The description of the equipment being used in the processing.
3. The description of the data being processed.
4. The set of procedures which determine how the data is to be processed.

The COBOL System has a separate division within the source program for each of
these elements. The names of these divisions are:

IDENTIFICATION
ENVIRONMENT
DATA
PROCEDURE

@~c(ID@©) ~~000~~-----------C_OB_OL

Page II-2

The purpose of the IDENTIFICATION DIVISION is to identify the Source Program
and outputs of a compilation. In addition, the user may include the date
that the program was written, the date that the compilation was accomplished
and any other information which is desired.

The ENVIRONMENT DIVISION is that part of the source program which specifies
the equipment being used. It contains descriptions of the computers to be
used both for compiling the source program and for running the object program.
Memory size, number of tape units, etc., are among many items that may be
mentioned for a particular computer. Those aspects of a file which relate
directly to hardware are described here. Because this division deals entirely
with the specifications of the equipment being used, it is largely computer
dependent.

The DATA DIVISION uses file and record descriptions to describe the files of
data that the object program is to manipulate or create, and the individual
logical records which comprise these files. The characteristics or properties
of the data are described in relation to a Standard Data Format rather than an
equipment oriented format. Therefore, this division is to a large extent com
puter-independent. While compatibility among computers cannot, in general,
be absolutely assured, careful planning in the data layout will permit the same
data descriptions, with minor modification, to apply to more than one computer.

The PROCEDURE DIVISION specifies the steps that the user wishes the computer to
follow. These steps are expressed in terms of meaningful English words, state
ments, sentences, and paragraphs. This aspect of the overall system is often
referred to as the "program"; in reality, it is only part of the total speci
fication of the problem solution (that is, the program), and is insufficient,
by itself, to describe the entire problem. This is true because repeated
references must be made - either explicitly or implicitly - to information
appearing in the other divisions. This division,more than any other, allows
the user to express his thoughts in meaningful English. Concepts of verbs to
denote actions, and sentences to describe procedures, are basic, as is the use
of conditional statements to provide alternative paths of action.

Tqe PROCEDURE DIVISION is essentially computer independent. The amount of
inter-computer compatibility throughout the COBOL System varies with the divi
sion, and the users' effort expended to obtain this goal. In the PROCEDURE
DIVISION, virtually no effort is needed to maintain compatibility among com
puters. In the DATA DIVISION, some care must be taken to minimize the loss
of object program efficiency. In the ENVIRONMENT DIVISION, almost all infor
mation is computer-dependent and therefore, the compatibility is based on ease
of understanding rather than direct transference. The IDENTIFICATION DIVISION,
like the PROCEDURE DIVISION, should require virtually no effort to maintain
compatibility.

COBOL

Page III-1

III. REFERENCE FORMAT

GENERAL DESCRIPTION

The purpose of the Reference Format is to provide a standard way of writing
COBOL programs. Throughout this chapter, definitions of the proper Reference
Format of each part of a COBOL source program are given in terms of lines and
character positions (or columns) on an input/output medium. The standard
method of representing sentences, paragraphs, sections, and divisions will be
shown. The basic principle behind the particular formats chosen is to allow
the maximum amount of flexibility for individual tastes while still using one
basic form.

There are four parts to the Reference Format, the IDENTIFICATION DIVISION, the
ENVIRONMENT DIVISION, the DATA DIVISION, and the PROCEDURE DIVISION. These
divisions must appear in the Reference Format in the order specified above.

SEQUENCE NUMBERS

In order to facilitate corrections and changes, sequence numbers may be used.
A sequence number consists of six (6) digits. It corresponds to a line on a
coding form or listing.

IDENTIFICATION DIVISION

The IDENTIFICATION DIVISION provides a means to identify or label a COBOL
source program. The only information required in this division is the PROGRAM
ID paragraph. Other information follows a standard format, but its inclusion
is optional. Thus, the division may be composed of from one to seven paragraphs.
The PROGRAM-ID paragraph must always appear as the first paragraph. Thereafter,
any or all of the following fixed-name paragraphs may appear.

The

AUTHOR
DATE-WRITTEN
SECURITY
INSTALLATION
DATE-COMPILED
REMARKS

IDENTIFICATION

Col. 1-6
Seq. tfa

' 6~

DIVISION reference format is:

7 Col. 8-11 Col. 12-72

I Name Position Text Area

LE 4 61~

Col. 73-80
Program !dent.

The name of the division, and the names of the paragraphs within it, start in
Column 8. The first line of this division contains its name, followed by a
period, i.e.,

IDENTIFICATION DIVISION.

Page III-2

The text of each paragraph may start anywhere on the same line as the para
graph name, or on the next line, starting in Column 12. Any paragraph which
occupies more than one line may be continued by starting in Column 12 on the
next line. Any Program Identification may be placed in Column 73 through 80.

Any word or numeric literal can be split over two lines by placing a hyphen
in Column 7 on the second line. In this case, any number of spaces may be
left at the end of the first line following the first part of the split word
or numeric literal, as they are ignored. Any non-numeric literal can also
be split over two lines by placing a hyphen in Column 7 of the second line;
but, in this case, any spaces appearing at the end of the first line are con
SI"dered to be part of the literal. The continuation of the non-numeric literal
on the second line must be innnediately preceded by a quotation mark. The
quotation mark can be any place at or to the right of the left-most allowable
column (which is Column 12 except in indented lines in the DATA DIVISION).
Any spaces which precede the continuation quotation mark are not considered
part of the literal. The character * may be used in Column 7 to identify a
line of connnents. This allows remarks to be inserted at convenient places
anywhere in the program. Such formats are recognized in all divisions of the
program; however it is not reconnnended to place them between a sentence or
entry which extends over several lines. If the * in Column 7 is immediately
followed by the word EJECT in Columns 8-12, a special interpretation is made
when the lines are listed, i.e. to slew a page after this line is encountered.
If EJECT is not present in Columns 8-12, then the contents of Columns 8-72
have no effect except to be printed on the Reference Listing. A sample format
for this division is as follows:

1 678
000100
000200
000300
000600
001100
001200*

IDENTIFICATION DIVISION.
PROGRAM-IDo PAYROL o

AlJrHOR. JOHN DOEo
DATE-WRITTEN" SEPTEMBER 5
REMARKS.

1968

001300 INPur FROM RUN 4 AND COLLATION WITH RUN 2 our
001400- Pur TO RUN 60 THIS PROGRAM PROCESSES SALARI
001500- ED EMPLOYEES ONLYo
001600*E.:fECT

ENVIRONMENT DIVISION

The reference format for the ENVIRONMENT DIVISION is the same as that of the
IDENTIFICATION DIVISIONo In addition to fixed paragraph names, there are also
fixed section names. The name of the sections and paragraphs within it start

@~a(ID@® ®~000~®-------------_..;C_...OB......,.OL

Page III-3

in Column 8. The first line of the division consists of its name, followed
by a period, i.eo,

ENVIRONMENT DIVISIONo

Each section name, like the division name appears as a single entry on a line
by itselfo

The rules for continuation of sentences and the splitting of words or literals
over two lines are the same as those in the IDENTIFICATION DIVISION.

The SPECIAL-NAMES and the FILE-CONTROL paragraphs are each composed of several
sentences, whereas the other paragraphs are each composed of one sentence only.
The following is an example of a possible ENVIRONMENT DIVISION format:

1 678
000100 ENVIRONMENT DIVISION.
000200 CONFIGURATION SECTION.
000300 SOURCE-COMPlITERo Computer-nameoo•
000400 OBJECT-COMPlITER. Computer-name •• o
001100 SPECIAL-NAMES. Hardware-name •••
001200 INPlIT-OlITPlIT SECTION.
001300 FILE-CONTROL. SELECT file-name-1
001400 SELECT file-name-2 ••• SELECT file-name-3
001500 I-0-CONTROLo SAME ••o
001600*EJECT

DATA DIVISION

The basic unit in the DATA DIVISION is an entryo Each entry begins with a
level number, followed by the name of a data item and a sequence of indepen
dent clauses describing the itemo Each clause (except the last) may be term
inated by a semicolon, followed by a space.

The user may choose whether to left-justify successive entries or indent them
according to level number. If he chooses to indent all successive levels
according to level number, he is restricted by the physical medium to a limited
number of levels, but he obtains the advantage of displaying graphically the
hierarchical structure of the data. The user may indent some levels and not
otherso The entries in the Reference Listing will be indented only if the
input was indented. Under no circumstances does indentation affect the magni
tude of a level numbero

In the following examples, the six digit sequence number is represented by
xxxxxx, and NN represents a two character level number. In a source program,
single digit level numbers (eogo, 1 through 9) are written either as a space
followed by a digit or as a zero followed by a digit.

@~a@@@ ~~[ffi~~~---------------c_oB_OL

Page III-4

The format for the DATA DIVISION, using indentation, is:

1 6 8 12
xxxxxx NN data•name-1 oo• •••

xxxxxx NN data-name-2 •o•
xxxxxx NN data-name-3

The format for the DATA DIVISION, using no indentation, is:

xxxxxx NN data-name-1
xxxxxx NN data-name-2
xxxxxx NN data-name-3

72

The first line, regardless of which form is used, consists of,

DATA DIVISION.

The sequence number appears at the left as in the format for the IDENTIFICA
TION DIVISIONo The first level number starts in Column 8. If a single entry
requires more than one line, the left margin for each line is the same, name
ly, the position under the first letter of the data-name associated with that
entryo The rules for the splitting of words or literals over two lines and
the use of * in Column 7 are the same as those in the IDENTIFICATION DIVISION.
Column-7 may also be used to control optional compilation of entries by the
debug level indicator (digits 0-9). A SPECIAL-NAMES sentence controls the
effect of this indicator (see VIII-4). The absence of such control implies
that the line has no effect except for printing on the Reference Listing.
When the debug use is made of Column 7 for a line, no continuation by hyphen
is possible on the next line.

When level numbers are to be indented, the reconnnended indentation is four
(4) spaces to the right of the starting position of the previous level number.
One or more spaces must be left between the level number and the following
wordo The word following the level number must begin at or to the right of
Column 12.

An example of the DATA DIVISION Reference Format is on the next page.

@~a(ID@® ~~ma~~--------------~C~OB~OL

1 678
000010 DATA DIVISION.
000020 FILE SECTION.
000100 FD MASTER-PAYROLL; LABEL RECORDS ARE
000200 STANDARD; DATA RECORDS ARE MASTER-
000300- PAY; SEQUENCED ON BADGE-NUMBER.
000400 01 MASTER-PAY; SIZE IS 180.
000600 02 BADGE-NUMBER; SIZE IS 12 CH
000700- ARACTERS; PICTURE IS
000800 AAAXXX999999o
000900 02 DATE; SIZE IS 6 CHARACTERS;
001000 CLASS IS NUMERICo
001100 03 MONTH; SIZE IS 2 DIGITS.
001200 03 DAY; SIZE IS 2 CHARACTERS.
001300 03 YEAR; SIZE IS 2 CHARACTERS.
001400 02 GROSS-PAY; SIZE IS 6 CHARAC
001500- TERS; PICTURE IS 0999V99.
001600*FJECT

PROCEDURE DIVISION

Page III-5

The reference format for the PROCEDURE DIVISION is the same as that of the
IDENTIFICATION DIVISION.

The first line of the division consists of its name followed by a period,
starting in Column 8, as follows:

PROCEDURE DIVISION.

If a section has been designated, the section-name starts in Column 8, followed
by a space, the word SECTION, a period and a space.

A paragraph consists of one or more successive sentences, the first of which
must be preceded by a paragraph-name. The name starts in Column 8, and is
followed innnediately by a period and a spaceo The first sentence of the
paragraph may begin anywhere on the same line as the paragraph-name, or in
Column 12 on the next line. A new paragraph is determined by the appearance
of another paragraph-name. Note that a paragraph may consist of only a
single sentence in some cases. With the exception of DECLARATIVE sentences,
every sente~ce must be part of a paragraph.

Any sentence which occupies more than one line may be continued by starting in
Column 12 on the next line. If a word or literal must be split over two lines,
this will be indicated by placing a hyphen in Column 7 of the second line.
Other rules applicable to the splitting of words and literals are the same as
those for the IDENTIFICATION DIVISION. If the user prefers not to split a
word or literal, he may start the word or literal on the next lineo The use of
* in Column 7 for connnents or *EJECT for page slewing are the same as those for
the IDENTIFICATION DIVISION.

@~a@@HID ~~lRW~~-------------____.c......,oB......,..oL

Page III-6

Additionally, Column 7 may contain any of the digits 0•9 (debug indicator)
which control optional compilation of lines by means of a sentence in the
SPECIAL-NAMES paragraph (see VIII-4). Unless such a SPECIAL-NAMES entry is
present, all such lines are ignored except for printing on the Reference
Listing. However, when this use is made of Column 7 on a line, the use of
Column 7 for continuation is not available.

When present, Declaratives form the first part of the PROCEDURE DIVISION,
as stated in Chapter VII. The group of Declaratives must be preceded by the
key word DECLARATIVES and a period, and must be followed by the key words,
END DECLARATIVES and a periodo These key words must begin in Column 8 of
the Reference Format.

@~a(ID©J©J ~~lm~~~--------------__.;;.C~OBO,;;.,;;.L

Page IV-1

IV. NOTATION USED IN VERB AND ENTRY FORMATS IN THIS REPORT

BRACES

When words or ptrases are enclosed in braces {), a choice of one of the
entries must be made.

BRACKETS

Words or phrases enclosed in square brackets [] represent options. The
entry may be included in the sta.tement if the option is desired; it_ should
otherwise be omitted.

REQUIRED WORDS

Upper case words which are underlined are required whenever the statement or
phrase in which they appear is used; they must appear in the source-program
exactly as shown in the format illustration, except of course for the under
line.

OPTIONAL WORDS

Upper case words which are not underlined are optional, and may be included
in the source-program for the sake of readability, or else omitted. If they
are used, they must appear in the source-program exactly as shown in the
format illustrationo They do not affect the result of the compilationo

LOWER CASE WORDS

Lower case words are generic terms, indicating the type of word (such as a
data-name or a procedure-name or a literal) which must be supplied in that
format position by the programmer.

CONNECTIVES

When two or more phrases or lower case words are written in a series, commas
are shown as connectives. Wherever a comma is shown in the formats.. except in
a subscript, it may be omitted or replaced by either "AND", ", AND", ''OR",
", OR"o A comma must always be followed by at least one space (unless it is
the last character of a line). Successive words on a line must be separated
by at least one space, but as many spaces as desired may be used for this
purpose.

PERIOD

When a period is shown in a format, it ~ appear in the same position when~
ever the statement is used in the source-program. A period must always be
followed by at least one space (unless it is the last character of a line).

@(E a(ID(Q)@ ~~[ffi~~~------------CO_BO_L

Page V-1

V. CHARACTERS AND WORDS

COMPLETE CHARACTER SET

The complete COBOL character set consists of the following 51 characters:

o, 1, ••• ' 9
A, B, ••• , Z
blank or space
+ plus sign
- minus sign or hyphen
* asterisk
I stroke (virgule or slash)
= equal sign
$ dollar sign
, comma
• period or decimal point
, semicolon
" quotation mark
(left parenthesis
) right parenthesis
> "greater than" symbol
< "less than" symbol

CHARACTERS USED FOR WORDS

The character set for words consists of the following 37 characters:

0, 1, •••• 9
A, B, •••• Z

(hyphen or minus)

Note particularly, that "blank" or "space" is not an allowable character for
a word, but is used to separate words. Where a "blank" or "space" is employed,
more than one may be used, except for the restrictions in the Reference Format.
Groups of characters selected from the 37 characters are called "words".

DEFINITION OF WORDS

A word is composed of a combination of.not more than 30 characters chosen from
the following set of 37 characters:

0 - 9
A - Z

(hyphen)

A word is ended by a space, or by either a period, right parenthesis, connna,
or semicolon, followed by a space. A word may not begin or end with a hyphen.

The use of punctuation characters in connection with words is as follows:
I

A period, connna, and semicolon, when used, must always innnediately
follow a word, but they, in turn, must be followed by a space. A
left parenthesis must not be followed immediately by a space, and a
right parenthesis must not be immediately preceded by a space.

Page V-2

A beginning quotation mark must not be followed by a space, or an ending
quotation mark preceded by a space, unless the spaces are desired in the
literalo

TYPES OF WORDS

Nouns

A noun is a single word which is one of the following:

data-name
condition-name
procedure-name
literal
figurative constant
special register name
special names (mnemonic-names)

A noun may contain hyphens for readability purposes. For example:

quantity-on-hand
stock-number

are legitimate nouns, whereas,

stocknumber-

is not, since a word must not end with a hyphen.

DATA-NAMES

A data-name is a word containing at most 30 characters and with at least one
alphabetic charactero It identifies data specified in the data description,
or the area which contains the data referencedo

Condition-Names

A condition-name is the name assigned to a specific value, set of values, or
range of values, within the complete set of values that a data-name may assume.
The data-name itself is called a conditional variable.

For example, consider a conditional variable called TITLE. If the condition
names ANALYST, PROGRAMMER, and CODER are assigned the values 1, 2, and 3
respectively, the conditional statement:

IF CODER

would generate a test of the value of the conditional variable TITLE against
the value "3".

@~a@@® ~~ooa~~--------------...,j;C.;;.;;OB..._OL

Page V-3

Procedure-Names

A procedure-name is either a paragraph-name or a section-name. Procedure
names permit one procedure to refer to others. A procedure-name may be com
posed solely of numeric characters. However, two numeric procedure-names
are equivalent if and only if they are composed of the same number of numeric
digits and have the same numeric valueo Thus, 0023 is !}£.!: equivalent to 23.

Literals

A literal is an item of data whose value is implied by the set of characters
comprising the literal. Every literal belongs to one of two types, non
numeric and numeric, and the way in which the value is implied depends on the
typeo The two types are distinguished in the program by the fact that non
numeric literals must be bounded by quotation marks and numeric literals must
noto

A non-numeric literal is defined as a string of any allowable characters
(excluding the quotation mark), bounded by quotation marks. The value of a
non-numeric literal is the string of characters itself, excluding the quota
tion markso Any spaces enclosed in the quotation marks are part of the non
numeric literal and therefore part of the value. At most 132 characters may
appear in a non-numeric literal.

If every character in a non-numeric literal is either one of the letters, A
through Z, or is a space, the non-numeric literal has CLASS ALPHABETIC. All
other non-numeric literals have CLASS ALPHANUMERIC.

Numeric Literal

A numeric literal is defined as a string of characters chosen from the num
erals 0 through 9, the plus(+), the minus(-), and the decimal point. The
value of a numeric literal is the algebraic quantity represented by the charac
ters in the numeric literalo

Every numeric literal has CLASS NUMERICo Detailed rules for the formation of
numeric literals are:

1. A numeric literal must contain at most one sign character and/or one
decimal point.

2. The literal must contain at least one digito
3. The sign in the literal must appear as the left-most character of

the literal. If the literal is unsigned, the literal is considered
to be positiveo

4. The decimal point may appear anywhere within the literal except as
the right-most character of the literal, and is treated as an implied
decimal point. If the literal contains no decimal point, the literal
is considered to be an integer.

@~a®@® ®~000~®--------------_...C.--OB......_OL

Page V-4

If a literal conforms to the rules for formation of numeric literals, but it
is enclosed in quotation marks, it is considered as a non-numeric literal
and will be treated as such by the compiler. In other words;

-125.65 is~ the same as "-125.65''·

Examples of non-numeric literals are:

1. "EXAMINE CLOCK NUMBER"
2. "PAGE 144 MISSING"
3. "-125.65"

Examples of numeric literals are:

1. 1506 798
2. -12572.6
3. +256.75
4. 1435.89

A NUMERIC literal rna.y have a leadi.ng sign, or no sign. There may be "i."
integer digits and "f" fracti'Jnal digits where i + f is less than 19. A
decimal point may appear in the literal.

Figurative Constants

Certain constants have been assigned fixed data-names. These col'.':sta:".l.ts with
the fixed data-names are called "figurative constants." These data-r.ames,
when used as figurative constants, must not be bounded by quotation markso
If these data-names were bounded by quotation marks they would be c0~sidered
as non-numeric literals. The singular and plural form of figurative <;::n~

stants are equivalent, and may be used interchangeably. The fixed data-names
and their meanings are as follows:

{~) ZEROS
ZEROES

(
SPACE)
SPACES

(
UPPER-BOUND)
UPPER-BOUNDS

(
LOWER-BOUND }
LOWER-BOUNDS

Represents the value O, or one or more
occurrences of the character 0, deper..ding
on the context.

Represents one or more blanks or spaces.

Represents one or more of the character Z,
which is conventionally used as a high delimiter
in processing data.

Represents one or more of the charar.ter O,
whi~h is cocventionally used as a low delimiter
in prc~essing data.

COBOL

(
HIGH-VALUE }
HIGH-VALUES

{LOW-VALUE }
_:LOW-VALUES

{ouoTE)
_?UOTES

ALL Literal

Page V-5

Represents one or more of the character
which has the highest value in the computer's
collating sequence.

Represents one or more of the character 0,
which has the lowest value in the computer's
collating sequence.

Represents one or more of the character "
The word QUOTE can not be used in place of a
quotation mark in the Source Program to bound
a non-numeric literal. Thus QUOTE ABC QUOTE
is incorre~t as a way of stating the non
numeric literal "ABC".

Represents one or more of the string "literal".
This string must be either a non-numeric literal,
or a figurative constant other than "ALL Literal".
When a figurative constant is used, the word ALL
is redundant and is used for readability only.

The SIZE of a figurative constant is determined by the compiler from context
according to the following rules:

1. When a figurative constant is associated with another data item, the
string of characters specified by the figurative constant is repeated
on the right until its size is equal to the size in characters of the
associated data item.

2. When a figurative constant appears in a DISPLAY, EXAMINE or STOP
statement, the length of the string is one character. ALL literal
may not be used with DISPIAY~ EXAMINE or STOP.

EXAMPLES:

1. MOVE ALL "4" TO COUNT-FIELD, where COUNT-FIELD has been described as
having 6 characters, results in 444444.

2. MOVE ALL "NO-OP" TO EMPTY-AREA, where EMPTY-AREA has been described
as having 12 characters, results in NO-OPNO-OPNO.

3. From the statement MOVE SPACES TO TITLE-BOUNDARY, the compiler will
create coding which puts as many space characters into the item
TITLE-BOUNDARY as room allows.

4. DISPLAY QUOTE, "NAME", QUOTE results in "NAME".

5. MOVE QUOTE TO AREA-A, where AREA-A has been described as having 5
characters, res.ults in """""

Page V-6

Special Register

TALLY

TALLY is the name of a special register whose size is equivalent to a five
decimal digit integer. Its primary use is to hold information produced by the
EXAMINE verb. It may also be used, however to hold information produced else
where in a program anywhere the format allows an elementary integral data item.

The description of TALLY is implicitly:
77 TALLY; SIZE IS 5 COMPtrrATIONAL-1 DIGITS.

Mnemonic-Names

A mnemonic-name is a special external-name formulated according to the rules for
data-names. They are associated with special I/O functions and do not have data
descriptions in the Data Division. They are defined in the Special-Names sentence
of the Environment Division.

Verbs

A verb is a single word which appears in the PROCEDURE DIVISION, and designates
an action:

ADD, MOVE, GO, etc.

Reserved Words

Reserved words are used for syntactical purposes and may not appear as user
defined nouns or verbs. There are three types:

1. Connectives

Connectives are words used to:
a. Denote the presence of a qualifier: OF, IN.
ho Form compound conditionals: AND, OR, AND NOT, OR NOT; these are

called logical connectives.

2. Optional Words

Optional words have been defined and used to improve the readability
of the language. Within each format upper case words which are not
underlined are designated as optional. The presence or absence of
each optional word within the format for which it is shown does not
alter the compiler's translation. However, misspelling of an optional
word or its replacement by another word of any kind is not allowed.

3. Key Words

Key words are of three types:
a. Verbs: ADD, READ, ENTER, etc.
b. Required words, appearing in formats in various divisions of the

language, needed to complete the meaning of certain verbs or
entries: TO, OMITTED, MEMORY, etc.

c. Words not shown in any format, but which have a specific functional
meaning: NEGATIVE, SECTION, TALLY, etc.

@~a®@® ~~ooa~~--------------...;;,C.;.;;;.OB~OL

Page V-7

Qualifiers

Every name used in a COBOL source program must be unique, either because no
other name has the identical spelling, or because the name exists within a
hierarchy of names (in the DATA or PROCEDURE DIVISION), such that the name
can be made unique by mentioning one or more of the higher levels of the
hierarchy. The higher level names are called qualifiers when used in this
way, and the process is called qualifi.cation. Enough qualification must be
mentioned to make the name unique, but it is not necessary to mention all
levels of the hierarchy unless they are needed to make the name unique. A
file-name is the highest level qualifier available for a data-name. A
section-name is the highest and the only qualifier available for a paragraph
name. Thus, file-names and section names must be unique in themselves and
cannot be qualified. Regardless of the available qualification, no name can
be used both as a data-name and as a procedure-name.

Qualification in COBOL is performed by appending one or more prepositional
phrases, using IN or OFo The choice between IN or OF is based on readability,
because they are logically equivalento Nouns must appear in ascending order
of hierarchy with either of the words IN or OF aeparating themo The quali
fiers are considered part of the name. Thus, whenever a data item or pro
cedure paragraph is referenced: any necessary qualifiers must be written as
part of the nameo

Consider two records called MASTER and NEW-MASTER, with the following partial
data descriptions (see Chapter VI for detailed Record Descriptions):

1 MASTER o •• o o

2 CURRENT-DATE.oo
3 MONTH •• o
3 DAYoeo
3 YEARo ••

2 LAST-TRANSACTION-DATEaoo
3 MONTH •• o

3 DAY •• o

3 YEAR. o.

1 NEW-MASTER ••.• o
2 CURRENT-DATE •• o

3 MONTHo ••
3 DAYo ••
3 YEAR •••

2 LAST-TRANSACTION-DATE •••
3 MONTH •••
3 DAY. o o

J YF.AReoo

The MONTH contained in CURRENT-DATE of NEW-MASTER must be referred to as:

MONTH {~) CURRENT-DATE {~) NEW-MASTER

while the DAY of the LAST-TRANSACTION-DATE of the MASTER record must be
ref erred to as

DAY {~) LAST-TRANSACTION-DATE {~:) MASTER

Note that it is permissible to use IN or OF interchangeablyo

The following rules must be obeyed in using qualifications:

1. A qualifier must be of a higher level and within the same hierarchy
as the name it is qualifying.

COBOL

Page V-8

2. The same name may not appear at two levels in a hierarchy so that
it would appear to qualify itself.

3. If a data-name or condition-name is assigned to more than one data
item in a program, it must be qualified in all references to it in
the PROCEDURE DIVISION and the ENVIRONMENT DIVISION, and in all
references to it in defining clauses except REDEFINES in the DATA
DIVISION.

4. Any data-name requiring qualification, must be qualified every time
it is referenced, iee., the absence of qualification is not considered
qualificationo

5. A paragraph-name must not be duplicated within the same sectiono A
paragraph-name can only be qualified by a section-name. When it is,
the word SECTION must not appear. A paragraph-name need not be quali
fied when referred to from within the same SECTION. Subscripts and
conditional variables, as well as procedure and data-names, may be
made unique by qualification where necessary or desirable.

6. A data-name cannot be subscripted when it is being used as a qualifier.

7. A name can be qualified even though it does not need qualification.
The use of more names for qualification than are actually required
for uniqueness is permitted. If there is more than one combination
of qualifiers which ensure uniqueness, then any set can be usedo

8. The name of a conditional variable can be used as a qualifier for
any of its condition-names.

Subscripts

The technique of subscripting is most commonly used for table-handli.:1g functions.
The ability to reference individual elements (of a table or list) which have
not been assigned indi.vidual data-names is provided by using subscripts; the
ability to reference the entire table or list is provided by using the name of
the table or list.

A subscript is an integer whose value determines which element is being referred
to within a table (or list) of like elements. The subscript may be repre-_
sented either by a literal which is an integer (e.g., 25), or by a data .. name
(e.g., AGE) which is a numeric elementary data item whose data description must
not include any character positions to the right of the assumed decir!1al poinL

When the subscript is represented by a data-name, the data~name rnuEt he de
scribed by a Record Description entry in the DATA DIVISION. In both cases,
i.e., whether the subscript is represented by a literal or a data-name, the
subscript is enclosed in parentheses, and appears immediately after the terminal
space of the name of the element referenced, e.g., RATE (AGE) or RATE (25).

@~ a(ID@® ~~(ffi~[g~-----------C_OB_OL

Page V-9

Tables are often defined so that more than one level of subscripting· is
required to locate an element within them. A maximum of three levels of
subscripting is permitted by COBOL. Multilevel subscripts are always
written from left to right in the order: major, intermediate, minor. In
this case, the subscripts are shown in a single pair of parentheses, and
separated by commas. For example:

RATE (REGION, STATE, CITY)
RATE (3, STATE, CITY)
RATE (3, 5, 6)

All of the above would reference a particular rate in a three-dimensional
table of rates.

A subscript value of "l" denotes the first el~ment of a list, a value of "2",
the second element, etc. A subscript of (1,2) denotes the second element
within the first repeated element of the table. A table with its main element
appearing 10 times, its intermediate eleme·nt appearing 5 times within each of
the major elements, and the minor element appeering 3 times within each of the
intermediate elements, is considered a three-dimensional table. The last
element of such a table is referenced by the use of the subscript (10,5 ,3.).

No element of a table or list may be referenced without a subscript. However,
the entire table may be referenced, provided the table has been given a unique
name. Reference to a data-name within a table or list must include all sub
scripts upon which the data-name is dependent. Use of .more than, or less than,
the correct number of subscripts is considered an erroro Some examples of the
writing of subscripts are:

MOVE RATE (AGE) TO LISTING.
IF HEIGHT (10) IS GREATER THAN ••.•••
MULTIPLY PRICE (STOCK-NO) BY INVENTORY (STOCK-NO) •
EXAMINE CLASS {REGION} REPIACING ••••••
MOVE RATE-TABLE TO OUTPUT-AREA •• ,

If references to a conditional variable require subscripting, then references
to its condition-names also require subscripting.

If a data item is repeated (i.e., involves the OCCURS clause at its own or
higher level} then the name of this item must be subscripted whenever it is
referenced. Furthermore, a data-name can only be subscripted if the data item
is repeated.

Regardless of the above rules, a data-name must not be subscripted under any
of the following conditions:

1. Where the data-name is being used as a subscript.
2. Where the data-name is being used as a qualifier.
3. When the data-name appears in the defining clauses in the DATA

DIVISION.

@~ c(ID@@ ~~rma~~-----------CO_BO_L

Page V-10

DISTINCTION BETWEEN SUBSCRIPTS AND QUALIFIERS

There is a distinct difference between qualification and subscripting.
Qualification is necessary when the same data-name is used for several
different items of data; subscripting is necessary when some of the elements
of a table or list have not been assigned individual nameso

In subscripting a data-name the following rules (which have already been
specified above) are significant:

1. The qualifiers are considered part of the data-name.
2. A data~name being used as a qualifier cannot be subscripted.
3. Qualification not logically required for uniqueness is permitted.

As a result of these rules there are several correct ways of expressing the
subscripted data-nameso For example, if a data item named A occurs 5 times
and contains a data item named B which occurs 4 times in each A, and each B,
in turn, contains a data item C which occurs twice in each B, then the follow
ing expressions are all correct refere~ces to the last C, i.eo, to the 2nd C
in the 4th B in the 5th A:

C IN B IN A (5,4,2)
C IN B (5,4,2)
CINA (5,4,2)
c (5,4,2)

The first three of these are examples of unnecessary, although permissible,
qualifications assuming that C and B only occur in this hierarchyo However,
if the name C is used elsewhere, then the qualification must be usedo Note
that the following forms of expression are incorrect:

C (5~4,2) IN B IN A
C (2) IN B (4) IN A (5)
C (4,2) IN A (5)
C (2) IN B (5,4)

Series Connectives

When two or more nouns are written in a series, words or characters may be
used as connectives between the nouns. The use of such connectives in a
series of nouns is optional, unless the nouns represent conditions and require
logical connectivesQ The connectives which·may be used are:

AND

, OR
.AND
OR

Page V-1

COMPLETE LIST OF RESERVED WORDS

The words shown are part of the COBOL System. Users must avoid using these
words for data- or procedure-names.

ABOUT
ACCEPT
ACCESS
ACTUAL
ADD
ADDRESS
ADVANCING
AFTER
ALL
ALPHABETIC
ALPHANUMERIC
ALTER
ALTERNATE
AN
AND
APPLY
ARE
AREA(S)
ASCENDING
ASSIGN
AT
AUTHOR·

BCD
BEFORE
BEGINNING
BEGINNING-FILE-LABEL
BEGINNING-TAPE-LABEL
BINARY
BIT(S)
BLANK(S)
BLOCK
BLOCK-COUNT
BY

CALL
CARD(S)
CF
CH
CHARACTER(S)
CHECK
CLASS
CLOCK-UNITS
CLOSE
COBOL
CODE
COLLATE
COLUMN

COMMA
COMMERCIAL
COMMON
COMP
COMP-1
COMP-2
COMP-3
COMPILE
COMPUTATIONAL
COMPUTATIONAL-n
COMPUTE
CONSTANT
CONFIGURATION
CONSOLE
CONTAINS
CONTROL(S)
COPY
CORR
CORRESPONDING
CURRENCY
DATA
DATE-COMPILED
DATE-WRITTEN
DE
DEBUG
DECIMAL
DECIMAL-POINT
DECLARATIVES
DEFINE
DEFINITIONS
DENSITY
DEPENDING
DESCENDING
DETAIL
DIGIT(S)
DISPLAY
DISPLAY-n
DIVIDE
DIVIDED
DIVISION
DOLLAR
DOWN

ELECT
ELSE
END

ENDING
ENDING-FILE-LABEL
ENDING-TAPE· LABEL
END-OF-FILE
END-OF-TAPE
ENTER
ENTRY
ENVIRONMENT
EQUAL(S)
ERROR(S)
EVERY
EXAMINE
EXCEEDS
EXIT
EXPONENTIATED

FD
FILE
FILE-CONTROL
FILE-LIMIT(S)
FILE-SERIAL-NUMBER
FILLER
FILLING
FINAL
FIRST
FLOAT
FOOTING
FOR
FORMAT
FROM

GE-625
GE-635
GEIN
GELAPS
GENERATE
GETIME
GIVING
GMAP
GO
GREATER
GROUP

HASHED
HEADING
HIGH
HIGH-VALUE(S)

@~a@@® ~~ma~~-------------....;;C~OB~OL

Page V-12

I-0-CONTROL
ID
IDENTIFICATION
IF
IN
INCLUDE
INDEX
INDEXED
INDICATE
INITIAL
INITIATE
INPUT
INPUT-OUTPUT
INSTALLATION
INTO
IS

JUST
JUSTIFIED

KEY

LABEL
LABEL-DAY
LABEL-IDENTIFIER
LABEL-YEAR
LAST
LEADING
LEAVING
LEFT
LESS
LEVEL
LIBRARY
LIMIT{S)
LINE(S)
LINE-COUNTER.
LINKAGE
LISTING
LOCATION
LOCK
LOW
LOW-VALUE(S)
LOWER- BOUND (S)

MAGNETIC
MEMORY
MEMORY-DUMP
MEMORY-DUMP-KEY
MINUS
MODE
MODULES
MOVE
MULTIPLE

MULTIPLIED
MULTIPLY

NEGATIVE
NEXT
NO
NO-MEMORY-DUMP
NOT
NOTE
NUMBER
NUMERIC

OBJECT-COMPUTER
OBJECT-PROGRAM
OCCURS
OF
OFF
OH
OMITTED
ON
ONLY
OPEN
OPTIONAL
OPTIONS
OR
OTHERWISE
OUTPUT
ov
OVERFLOW
OVERLAY

PAGE
PAGE- COUNTER
PERFORM
PF
PH
PHASE!
PIC
PICTURE
PLACE(S)
PLUS
POINT
PO PUP
POSITION
POSITIVE
PREPARED
PRIORITY
PROCEDURE
PROCEED
PROCESS
PROCESSING
PROGRAM
PROGRAM-ID
PROTECT
PROTECTION

PUNCH
PURGE-DATE

QUOTE
RANDOM
RANGE
RD
READ
READER
RECORD(S)
RECORD-COUNT
RECORDING
REDEFINES
REEL
REEL-NUMBER
REEL-SERIAL-NUMBER
RELEASE
REMARKS
RENAMES.
RENAMING
REPLACING
REPORT(S)
REPORTING
RERUN
RESET
RESERVE
RETENTION-PERIOD
RETURN
REVERSED
REWIND
RF
ItH
RIGHT
ROUNDED
RUN

SAME
SD
SEARCH
SECTION
SECURITY
SEGMENT-LIMIT
SELECT
SELECTED
SENTENCE
SENTINEL
SEQUENCED
SEQUENTIAL
SERIAL
SET
SIGN
SIGNED
SIZE
SORT

COBOL

SOURCE
SOURCE-COMPUTER
SPACE(S)
SPACE-SAVING
SPECIAL-NAMES
SPEED
STANDARD
STATEMENTS
STATUS
STORAGE
STOP
SUBTRACT
SUM
SUPERVISOR
SUPPRESS
SWITCH
SYMBOL
SYNC
SYNCHRONIZED
SYS OUT

TALLY
TALLYING
TAPE
TERMINATE
TEST-PATTERN
TIME-SAVING
TIMES
THAN
THEN
THROUGH } Equivalent
THRU
TIME(S)
TO
TOP
TYPE
TYPEWRITER(S)

UNEQUAL
UP
UPPER-BOUND(S)
UNIT(S)
UNTIL
UPON
USAGE
USE
USING

VLR
VALUE(S)
VARYING

WHEN
WITH
WORDS
WORKING-STORAGE
WRITE

ZERO
ZEROES
ZEROS

Page V-13

COBOJ
@(Eo(ID@@ ~(E[ffi0(E~-------------

Page VI-1

VI. DATA DIVISION

GENERAL DESCRIPTION

Data to be processed falls into three categories:

1. That which is contained in files and enters or leaves the internal
memory of the computer from a specified area or areas.

2. That which is developed internally and placed into intermediate or
working storage, or placed into specific formats for output reporting
purposes.

3. Constants which are defined by the user. (Figurative constants and
literals used in procedure statements are not listed in the DATA
DIVISION.)

The approach taken in defining file information is to distinguish between the
physical aspects of the file (the File Description) and the conceptual
characteristics of the data contained therein (the Record Description).

Physical aspects are defined as:

1. The mode in which the file is recorded.

2. The grouping of logical records within the physical limitations of
the file medium.

3. The means by which the file can be identified.

The conceptual characteristics are the explicit definitions of each logical
entity within the file itself.

For purposes of processing, the contents of a file are divided into logical
records. By definition, a logical record is any consecutive set of information.
For example: in an Inventory Transaction File, a logical record could be
defined as a single transaction, or as all consecutive transactions which
pertain to the same stock item. It is important to note that several logical
records may occupy a physical record.

The concept of a logical record is not restricted to file data, but is carried
over into the definition of working storages and constants. Thus, working
storages and constants may be grouped into logical records and defined by a
series of Record Description entries.

ORGANIZATION

The DATA DIVISION is subdivided according to types of data. It consists of a
FILE Section, a WORKING-STORAGE Section, a CONSTANT Section, and a REPORT
Section, wri~ten in that order.

@~o®@® ~~00~~~ -----------C,;.,,;,;OB;,,,,;.;;-OL

Page VI-2

The FILE Section contains File Descriptions, Sort-file Descriptions, and
Record Descriptions for both label and data records in· files, and for data
records in sort-files. Label records and data records are defined in the same
manner; however, because the input/output system of the object program must
perform special operations on label records, fixed names have been assigned
to certain label records items on which such operations must be performed.
All Record Description entries pertaining to label records and data records
of a file must immediately follow the File Description sentence. The File
and Sort-file Description entries represent the highest level of organization
in the FILE Section.

FILE DESCRIPTION ENTRY

A File Description entry contains information pertaining to the physical
aspects of a file. In general, it may include the following:

1. The manner in which the data is recorded on the file.

2 .. The size of the logical and physical recordso

3. The names and values of the label records contained in the file.

4 .. The names of the data records which comprise the file o

5. The keys on which the data records have been sequenced.

The listing of data and label record names in a File Description entry serves
as a cross reference between the file and records in the file.

A Sort-file Description can be considered to be a particular type of File
Description. A file is a set of records, coming in from or going out to an
external medium such as magnetic tape, which has certain label conventions
and which has certain rules of physical blocking. The records of a file are
assumed to be processed one at a time.

A Sort-file is a name for the set of records to be sorted by a SORT statement.
Records are brought into this set by being RELEASED to the sort-file during
the INPUT PROCEDURE specified by the SORT statement. At the conclusion of
the INPUT PROCEDURE, the set of records which have been RELEASED to the sort
file constitute the whole sort-file. There are no label procedures which the
user can control, and the rules for blocking and internal storage are peculiar
to the SORT verbo The SORT verb rearranges the entire set of records in the
sort-file according to the keys specified in the SORT statemer.t. Each of the
sorted records can be made available, in order, by being RETURNed from the
sort-file during the output procedures specified by the SORT statement.

The RELEASE and RETURN statements imply nothing with respect to buffers,
blocks, or reels. The sort-file created by the execution of RELEASE state
ments can only be SORTed and its records can only be obtained by being
RETURNed from the sort-file during the OUTPUT PROCEDURE. The sort~file cannot
be OPENed or CLOSEd or used in any other wayo

In a Sort-file Description, only information about the size and number of data
records can be given.

COBOL

Page VI-3

ENTRY FORMATS

General Notes

A File (Sort-file) Description entry consists of a level indicator, a file
(sort-file) name, and a series of independent clauses which define the physi
cal and logical characteristics of the file (sort-file). The mnemonic level
indicator FD (SD) is used to identify the start of a File (Sort-file) Descri
ption entry. In this manner the File (Sort-file) Description entries are
distinguished from those associated with a Record Description.

Specific Formats

The individual clause formats are arranged in an alphabetic order.

Page VI-4

File Description Complete Entry

FUNCTION: To furnish information concerning the physical structure,
identification and record types of a file.

Option 1:

FD file-name COPY library-name.

Option 2:

FD file-name

Option 3:

[; RECORDING MODE IS {BINARY) ({HIGH) DENSITY]
~ LOW

[; FILE CONTAINS ABOUT integer-1 RECORDS]

[; BLOCK CONTAINS [integer-2 IQ] integer-3 { ~~~~~ERS)

[; RECORD CONTAINS [integer-4 TO] integer-5 CHARACTERS]

LABEL {RECORDS ARE) {STANDARD)
RECORD IS OMITTED

[; VALUE OF data-name-1 IS literal [,data-name- 2 IS •.•]]

(RECORD IS "'\} DATA RECORDS ARE}

REPORT IS data-name-3
REPORTS ARE)

[, data-name- 4 ...]

{
RECORD IS) {; REPORT IS \

DATA RECORDS ARE • • • ; REPORTS AREJ

[; SEQUENCED ON data-name-5 [, data-name •6 ...]

SD file-name COPY library-name.

Option 4:

SD file-name [; E.!.1! CONTAINS ABOUT integer-1 RECORDS]

(; RECORD CONTAINS (integer-2 TO] integer-3 CHARACTERS]

{ RECORD IS)
DATA RECORDS ARE data-name-1 [, data-name-2 ...]

Page VI-5

1. The level indicator FD or SD identifies the beginning of the file or
sort description respectively and precedes the file-name. (See Chapter
III.)

2. The clauses which follow the name of the file are optional in many
caseso For further details, see the individual explanations for
each clause.

3. Those entries which require more than a single line are continued
on subsequent lines with the same left margin for each lineo That
is, with each subsequent line starting under the first letter in the
file-name. (See the Reference Format for the DATA DIVISION, Chapter
III.)

4. If the level indicator SD is used, the file-name must be the name
associated with a sort-file. The file-name can appear in the PRO
CEDURE DIVISION (other than as a qualifier) only in SORT and RETURN
statementso The file-name must never appear in a READ, WRITE, USE,
OPEN or CLOSE statement.

5. When the level indicator is SD and more than one record is present
for the Sort File, the first record determines the "dominant record
size" parameter for the Sort (see GE-625/635 SORT/MERGE, CPB-1005).
For further information on sort record descriptions see Chapter VII.

@~a(ID@@ ~~000~~--------------c_oB_OL

Page VI-6

BLOCK Size

FUNCTION:

Notes:

To specify the size of a physical record (or block).

(

CHARACTERS)
(; BLOCK CONTAINS (integer-2 TO) integer-3 RECORDS

RECORD

1. This clause may be omitted when the file is assigned to magnetic
tape and has the standard physical record size (320 computer words).

2. Whether the block size is stated in terms of characters or records:

a. Each logical record begins in a new computer word.
b. No logical record may be longer than a physical record,
c. Each physical record contains an integral number of logical

records.

3. When the CHARACTERS option is used, the physical record size is
specified in terms of the number of standard characters contained
within the physical record, regardless of the types of characters
used to represent the items within the physical record.

4. If only integer-3
physical record.
they refer to the
respectively. In
mentation only.

is shown then it represents the exact size of the
If integer-2 and integer-3 are both shown, then
minimum and maximum size of the physical record
that case, integer-2 is understood to be docu-

5. The word CHARACTERS within the BLOCK clause is an optional word.
Whenever the key word RECORD(S) is not specifically written in the
BLOCK clause, integer-2 and integer-3 represent CHARACTERS. The
RECORD(s) option must not be used for a file for which REPORT(S)
are specified.

6. When the RECORDS option is used with variable-length records, the
BLOCK size is equal to the maximum record size, in computer words,
multiplied by the number of records plus 1.

@[g o(ID(Q)(O) ~~(ffiU~~------------co_BO_L

FUNCTION:

Page VI-7

To obtain a file description entry or sort file description
entry from the COBOL library.

{ FSDD) data-name COPY library-name.

Notes:

1. COPY is used when the COBOL library contains the File Description
entry or the Sort File Description entry.

2. During compilation, the COPY clause is replaced by the sequence
of clauses that follows the level indicator (FD or SD) and file
name within the library-name entry.

3. File code must be .L for COBOL library.

@~a®@@ ~~[ffiO~~ ________________ col

Page VI-8

DATA RECORDS

FUNCTION: To cross reference the description of data records with their
associated file.

Notes:

DATA {RECORD IS) data-na1J1e-6 , [data-name-7 •••]
RECORDS ARE..

1. Either this clause or the REPORT clause is required in every File
Description entry.

2. The presence of more than one data-name indicates that the file
contains more than one type of data record. If record sizes
(in words) are unequal, the file is assigned the Variable-Length
Record format, and RECORDING MODE must be BINARY (explicitly or
implicitly). The records may be of differing sizes, formats, etc.
The order in which they are listed is not significant except for
sort files (see note S, below).

3. Conceptually, all data records within a file share the same area.
This is in no way altered by the presence of more than one type of
data record within the file.

4. Both data-name-6 and data-name-7 must have 01 level numbers.:
Subscripting of these data-names is not permitted, and qualification
is not necessary since they are implicitly q~alified by the file
name of this entry.

5. For a sort-file with more than one data record described, the first
record mentioned in the DATA RECORDS clause is assumed to be the
dominant type; its size is considered to be the most prevalent in
the sort-file. Sort optimization is based upon this assumption, so
a careful choice will favor object-program efficiency.

Page VI-9

FILE Size

FUNCTION: To indicate the approximate number of logical records in a file.

(; .fl!! CONTAINS ABOUT integer-1 RECORDS

Notes:

1. This optional clause may be used for documentation.

Page VI-10

LABEL RECORDS

FUNCTION:

Notes:

To cross reference the descriptions of label records with their
associated file.

LABEL {RECORDS ARE) {STANDARD)
-- RECORD IS OMITTED

1. This clause is required for all files. When a file contains no
labels, the word OMITTED must be used.

2. The following four types of label records may appear on the tapes
associated with a file. Since the type of label is significant, the
fixed record-names shown in capital letters have been assigned:

a. A BEGINNING-TAPE-LABEL which appears at the beginning of each
tape and which precedes all other information, and contains
information about the tape.

b. A BEGINNING-FILE-LABEL which appears only once in a file, and
precedes the first data record in the file. This label con
tains information about the file.

c. An ENDING-TAPE-LABEL which immediately follows the last valid
data or label record on the tape. The label must appear
befo~e the physical end of the tape is encountered. This
label may contain information about the tape.

d. An ENDING-FILE-LABEL which appears only once in a file and
which immediately ~:)1lows the last data record on the last
reel of a file, anc: may contain information about the file.

3. The formats of STANDARD label records are understood by the com
piler, and need not be described in the source-program. All
other types of labels must be defined as data rather than label
records. All such records must be listed in the"DATA RECORDS"
clause rather than in the ''LABEL RECORDS" clause.

4. On a Multifile tape, either all files must be labeled (LABEL
RECORDS ARE STANDARD), or else none may be labeled (LABEL RECORDS
ARE OMITTED).

Page VI-11

RECORD Size

FUNCTION: To specify the size of data records.

[; RECORD CONTAINS (integer-4 IQ] integer-5 CHARACTERS]

Notes:

1. The size of each data record is completely defined within the Record
Description entries; therefore this clause is never required.

2. Integer-5 may not be used by itself unless all the data records in
the file have the same size. In this case integer-5 represents the
exact number of characters in .the data record. If integer-4 and
integer-5 are both shown, they refer to the minimum number of
characters in the smallest size of data record and the maximum
number of characters in the largest size data record, respectively.

3. The size is specified in terms of the number of standard characters
contained within the logical record, regardless of the types of
characters used to represent the items within the logical record.
The size of the records are determined according to the rules for
determining the size of a group item.

Page VI-12

RECORDING MODE

FUNCTION: To specify the format of data on external media.

[RECORDI!'«; MODE IS {~NARY} [{ ~"{;H} DENSITY)]

Notes:

1. This clause is interpreted only for magnetic tape fileso If it
is omitted on a tape file, the recording mode is understood to be
BINARY HIGH DENSITY.

2. The HIGH or LOW DENSITY option may be used for documentation
purposes only if the file is assigned to other than magnetic tape.

3. If data-names within the file have USAGE COMPUTATIONAL~n] and/
or DISPIAY-2, the RECORDING MODE must be BINARYo The same rule
applies to any file containing REPORT[S].

@~a@@@ ~~(RiQ~~--------------....:C.:,:OB:.:::.OL

REPORT(S)

FUNCTION:

Page VI-13

To cross reference the description of Report Description
entries with their associated File Description entry.

{
REPORT IS)
REPORTS ARE data-name-6 [, data-name-7 •••]

Notes:

1. This clause is required in the File Description entry if the file
is an output report file.

2. The presence of more than one data-name indicates that the file
contains more than one report. These reports may be of differing
sizes, differing formats, etc. The order in which they are listed
is not significant.

3. Each data-name listed in the FD entry must have a RD (Report
Description) entry in the Report Section.

Page VI-14

SEQUENCED

FUNCTION: To indicate the keys on which data records are sequenced.

[; SEQUENCED ON data-name-8 [, data-name-9 •••]

Notes:

1. This optional clause may be used for documentation, and does not
result in object-program action. It does not result in an auto
matic sequence check.

2. Data-name-8 represents the major key, data-name-9 represents the
next highest key, etc.

3. The data-names should be qualified when necessary, but subscripting
is not permitted.

@~a®@® ~~rma~~-----------CO_BO_L

Page VI-15

VALUE

FUNCTION: To specify the actual value of items which appear in label
records.

[VALUE .QE_ data-name-3 IS literal-1 [, data-name-4 IS literal-2]]

Notes:

1. Data-name-3 and data-name-4 can only be the fixed label item
names IDENTIFICATION and RETENTION-PERIOD. Either or both may
be given.

2. If IDENTIFICATION is specified, the action in the object-program
depends upon the use of the file. For an input file, the object
program' s label check routine verifies thit the value of the
IDENTIFICATION in beginning labels of the file is equal to the
given literal. For an output file, the literal is implicitly
moved to IDENTIFICATION before a beginning label is written. The
literal associated with IDENTIFICATION must be a non-numeric
literal of no more than 12 characters.

3. RETENTION-PERIOD has no significance for input files. For an
output file, the given literal is implicitly moved to RETENTION
PERIOD before a beginning label is written. The literal associated
with RETENTION-PERIOD must be a positive integer not exceeding
999. The value 999 signifies permanent retention.

If a tape to ·be used for output has a RETENTION-PERIOD given in its
beginning label, the object-program's output routine checks that
value against the current date to assure that the RETENTION
PERIOD has expired before it begins writing new data on the tape.

@~c®©XID ~~rma~~-----------C_OBO_L

Page VI-16

RECORD DESCRIPTION

A Detailed Data Description consists of a set of entries. Each entry defines
the characteristics of a particular unit of data. With minor exceptions,
each entry is capable of completely defining a unit of data. Because the
COBOL Detailed Data Descriptions involve a hierarchical structure, the con
tents of an entry may vary considerably, depending upon whether or not it is
followed by subordinate entries.

In defining the lowest level or subdivision of data, the following information
may be required:

1. A level number whicn shows the relationship between this and other
units of data.

2o A data-name.

3. The SIZE in terms of the number of Standard Data Format characters.

4. The dominant USAGE of the data.

5. The number of consecutive occurrences (OCCURS) of elements in a
table or list.

6. The RANGE of values which the data may assume.

7. The CLASS or type of data - i.e., ALPHABETIC, NUMERIC or
ALPHANUMERIC.

8. The presence of an operational .§!Qli.

9. Location of an actual or an assumed radix point.

10. Location of editing symbols such as dollar signs and commas.

11. Justification and synchronization of the data. (JUSTIFIED,
SYNCHRONIZED.)

12. Special editing requirements such as zero suppression and check
protection.

13. Initial VALUE of a working-storage item or fixed VALUE of a
cons tan to

An entry which defines a unit of data must not be contradicted by a sub~

ordinate entry. Thus, once the CLASS is defined, it applies to all sub
ordinate entries and need not be re-specified in the subordinate entries.
However, when CLASS is defined as ALPHANUMERIC, subordinate entries may
particularize the class by specifying ALPHABETIC or NUMERIC. If the CLASS
has been defined as either ALPHABETIC or NUMERIC, however, subordinate
entries may not change the CLASS.

page VI-17

Concept of Levels

A level concept is inherent in the structure of a logical record. It arises
in a natural way from the need to specify subdivisions of a record for the
purpose of data reference. Once a subdivision has been specified, it may
be further subdivided to permit more detailed data referencing. For example,
a weekly TIME-CARD record might be divided into four major items: NAME,
EMPLOYEE-NUMBER, DATE and HOURS, with more specific information on DATE and
NAME as follows:

NAME

TIME-CARD
EMPLOYEE-NUMBER

DATE

HOURS

{

LAST-NAME
FIRST-INITIAL
MIDDLE-INITIAL

{EMPLOYEE-NUMBER

{

MONTH
DAY
YEAR

{HOURS

The most basic subdivisio~of a record, that is, those not further sub
divided, are called elementary items; consequently, a record is said to con
sist of a sequence of elementary items, or the record itself may be an elem
entary item.

Often it is desirable to reference a set of elementary items - particularly
with the MOVE verb. For this reason, elementary items may be combined into
groups, each group consisting of a sequence of one or more elementary items.
Groups, in turn, may be combined into groups of two or more groups, etc. The
term "item", in future discussions, denotes either an elementary item or a
group.

A system of level numoersis employed in COBOL to show the organization of
elementary items and groups. Level numbers start at 01 for records, since
records are the most inclusive groups possible. Less inclusive groups are
assigned higher (not necessarily successive) level numbers not greater in
value than 49. (NOTE: There are "special" level numbers, 66, 77, and 88,
discussed below, which are exceptions to this rule.) Separate entries are
written in the source program for each level.

Using the TIME-CARD example above, a skeleton source program listing, show
ing the use of level numbers to indicate the hierarchical structure of the
data, might appear as follows:

01 TIME-CARD
04 NAME

6 LAST-NAME
06 FIRST-INITIAL
06 MIDDLE-INITIAL

04 EMPLOYEE-NUMBER
04 DATE
05 MONTH

5 DAY
05 YEAR
04 HOURS

COBOL

Page VI-18

For the sake of simplicity, only the level number and data-name of each
entry have been giv~n in the above example. A complete description would,
of course, have inciuded information on SIZE, CLASS, USAGE, etc.

A group includes all groups and elementary items described under it until a
level number less than or equal to the level number of that group is en
countered. Thus, iu the above example, HOURS is not a part of the group
called DATE. MONTH, DAY and YEAR are a part of the group called DATE, because
they are described immediately under it and have a higher level number.

It should be noted that an elementary item may belong to more than one group.
In the previous example, the elementary item called YEAR belongs to the group
called DATE, and also to the group called TIME-CARD. A more detailed illustra
tion of this point is given in the following example:

01 ABLE
03 BAKER

04 CHARLIE
04 DOG

03 EASY
04 FOX

03 GEORGE
08 HOW

09 IVY

Elementary item IVY belongs to groups HOW, GEORGE and ABLE. FOX belongs to
groups EASY and ABLE, while CHARLIE and DOG belong to BAKER and ABLE.

The level number of an entry (elementary item or group) inunediately following
the last elementary item of a previous group, must be that of one of the
groups to which that elementary item belongs. Application of this rule to the
previous example restricts the level number of EASY to ~ither 1 or 3, since
these are the level numbers of the groups containing DOG. Specifically, EASY
may not have the level number 2. That is, the following example is incorrect:

01 ABLE
03 BAKER

04 CHARLIE
04 DOG

02 EASY

Three types of data exist for which there is no true concept of level; namely,
independent constants and working-storage items, and names introduced by a
RENAMES clause.

Independent constants and independent working storage items which bear no
relationship to one another and which are not further subdivided are assigned
the special level number 77.

Entries which specify condition-names are assigned the special level number
88.

Data-names introduced by a RENAMES clause for the purpose of renaming or
regrouping elementary items are assigned the special level number 66.

COBOL

Page VI-19

Concept of a Computer Independent Detailed Data Description

For a description to be computer independent, it is necessary for the sub
ject of the description to be computer independent. A description of the
format in which data is carried on a particular external medium (External
Format), or within a particular computer (Internal Format), is applicable
only to a limited range of compatible equipment. Therefore, the character
istics of properties of the data are described in relation to a Standard
Data Format rather than an equipment oriented format. This Standard Data
Format is oriented to general data processing applications.

The Standard Data Format uses the decimal system to represent numbers
regardless of the radix used by the computer.

The Standard Data Format describes non-numeric elementary items using
characters which are alphabetic or alphanumeric. In general, a complete
detailed description will be wrlt:ten for elementary items only, since the
characteristics of a group item are dependent upon the characteristics of
the elementary items contained within it.

Derivation of External and Internal Format

External and Internal Formats of a data item are affected by character
istics of the item, the characteristics of the computer equipment, and the
processing of the item throughout the system. Since the equipment is des
cribed in the File Description and ENVIRONMENT DIVISION, the detailed data
description must provide the description of the data and its processing
throughout the system. This allows a format to be selected by a user which
will take advantage of the features of his computer.

Algebraic Signs

Algebraic signs are used for two purposes: to show whether the value of an
item involved in an operation is positive or negative (i.e., an operational
sign), or to identify the value of an item as positive or negative on an
edited report for external use (i.e., a display sign.)

Display signs are not oriented to the equipment. Several alternative
methods are provided for displaying the sign of an item (see PICTURE); it
should be noted that these signs are not operational signs and will not
generally be treated as the sign of the item when the item is used as a
source in an operation.

Item Alignment and Spacing on Fixed Word Length Computers

Fixed word length computers can operate more efficiently on items which
conform to the fixed structure of the computer word.

Items which may be subscripted are often aligned to computer words for more
efficient handling. Another factor is the position which the item would

COBOL

Page VI-20

normally occupy (e.g., would the item be located in two words rather than
one). Items which occupy separate computer words are defined as SYNCHRONIZED.
A SYNCHRONIZED item is assumed to be introduced and carried in that form.
Conversion to that form occurs only during the execution of a procedure
(other than READ or WRITE) which stores data in the item.

Report Editing

Various forms of special editing are provided for the preparation of reports.
In general, this editing will be performed only on elementary items and will
be given special consideration only when the item is receiving data, not
when it is being used as a source (i.e., items will !!f?! be de-edited).

ENTRY FORMATS

General Notes

A Record Description consists of a set of entries. Each record description
entry, itself, consists of a level number, data-name, and a series of indepen
dent clauses.

Specific Formats

The individual clause formats are arranged in an alphabetic order, but the
"Complete Entry Skeleton" shows tlE clauses appearing in the recommended
order.

Page VI-21

RECORD DESCRIPTION

Complete Entry Skeleton

FUNCTION: To specify the characteristics of a particular item of data.

Option 1:

level-number data-name (REDEFINES •••]; COPY

Option 2:

1da ta -name)
level-number\FILLER [;REDEFINES •••] [; SIZE ..•] [;USAGE ..•]

(;OCCURS •••] [; SIGNED ••.] (; SYNCHRONIZED ••.] [;POINT •.•]

(; CLASS ••.] (;PICTURE •••] (; JUSTIFIED ••.] [; RANGE ...]

[; editing clauses •••] [;VALUE •.•]

Option 3:

66 data-name-1 RENAMES data-name-2 [THRU data-name-3] •

Option 4:

Notes:

88 Condi'tion-name {VALUE IS)
VALUES ARE . • •

1. For a detailed explanation of the Reference Format used in the
DATA DIVISION, see Chapter III.

2o Those clauses which begin with SIGNED, SYNCHRONIZED, POINT,
PICTURE, JUSTIFIED, and RANGE, as well as the editing clauses,
must not be specified except at the elementary item level.

3. The clauses may be written in any order with one exception.
REDEFINES, when used, should innnediately follow the data-name.

4o All semicolons are optional in the Record Description entry.

5. Detailed discussion of each of the options is found on succeeding
pages.

@~ a(ID(O)(Q) ~~[ffi0~~-----------co ao..__L

Page VI-22

CLASS

FUNCTION: To indicate the type of data being described.

NUMERIC]
{

ALPHABETIC }

[; CLASS IS ~llANUMERIC

Notes:

1. AN is an acceptable abbreviation for ALPHANUMERIC.

2. The CLASS clause can be written at any level. If the CLASS
clause is written at a group level, it applies to each elementary
item in the group. The CLASS of an item cannot contradict the
CIASS of a group to which the item belongs. ALPHABETIC or
NUMERIC items within an ALPHANUMERIC group are not considered
contradictory.

3.. NUMERIC describes data composed of the characters 0-9 with or
without an operational sign. If there is no sign associated with
a NUMERIC item, the item is considered positive. If the item is
NUMERIC and no assumed decimal point is indicated, the item is
considered to be an integer.

4. ALPHABETIC describes data which contains any combination of the
twenty-six (26) letters of the English alphabet and the space.
No other characters can be used.

5. ALPHANUMERIC describes data which may contain any allowable
character in the object computer's character set, including
alphabetics and numerics. Thus, data which is ALPHABETIC or
NUMERIC is also ALPHANUMERIC.

6. If both PICTURE and CLASS are given, the class of characters
shown in PICTURE must not contradict the CLASS clause of an
elementary item, or of a group to which the item belongs.

7. If the CLASS of an elementary item cannot be determined from
any clause in the item's Record Description or from the Record
Description of any group to which the item belongs, the CLASS of
the item is assumed to be ALPHANUMERIC.

8. An item's CLASS may be implied by various other clauses. If a
combination of such clauses appears, either within an entry or
between an entry and a group which contains it, they must not
contradict each othero

Page VI-23

a. The CLASS is NUMERIC if any of the following clauses appears:

CLASS NUMERIC
USAGE COMPUTATIONAL
USAGE COMPUTATIONAL-n
SIZE integer NUMERIC
SIZE integer COMPUTATIONAL
SIZE integer CCMPUTATIONAL-n
SIGNED
PICTURE containing no characters other than O's, g's, P's,

s' v.

b. The CLASS is ALPHABETIC if any of the following clauses appears:

CLASS ALPHABETIC
SIZE integer ALPHABETIC
PICTURE containing only A's or a combination of A's and B's.

c. The CLASS is ALPHANUMERIC if any- of the fol.lowing clauses
appears:

CLASS ALPHANUMERIC (or AN)
SI~E integer ALPHANUMERIC (or AN)
PICTURE contain~ng X
PICTURE containing 9 as well as either A or B
PICTURE containing both A and zero (0).
PICTURE containing A, *, $, connna (,), decimal

-, +, CR, or DB.
point (.),

Page VI-24

FUNCTION:

Notes:

To duplicate within this record a description found previously
in the source program or contained in a library.

level-number date-name-1 COPY data-name-2 [FROM LIBRARY] .

1. The duplication process replaces the COPY clauses by the clauses
(if any) that follow the data-name in the data-name-2 entry. The
duplication process then inserts following the data-name-1 entry
all record description entries that are subordinate to the data
name-2 entry, that is, up to but excluding the appearance of an
entry whose level-number is equal to or less than the level-number
of the data-name-2 entry, or whose level-number is 66.

If there are items subordinate to data-name-1, it is the user's
responsibility to insure that the resulting hierarchical structure
is correct. If the level-number of data-name-1 is 77, data-name-2
must be an elementary item. During the duplica.tion process the
level-numbers of all the inserted entries, except those whose
level-number is 66 or 88, are adjusted by an amount equal to the
difference between the level-numbers of data-name-1 and data-name-2.
An error will be indicated by the compiler if this adjustment
process gives rise to a level-number that exceeds 49.

2. If the level-numbers of data-name-1 and data-name-2 are both 1,
any level 66 entries associated with the data-name-2 record
description are inserted by the duplication process.

3. When the information to be duplicated is in the library, the
additional clause FROM LIBRARY must be included. If the FROM
LIBRARY option is used, the name of the level 1 entry in the
library must be included in the qualification of data-name-2
unless data-name-2 is itself a level 1 entry. This is required
even if the level 1 name is not necessary to make the reference
unique.

4. A COPY clause can appear in the data-name-2 entry or in an entry
that is subordinate to data-name-2 only if the FROM LIBRARY
option appears with that clause.

5. Data-name-2 may be qualified but not subscripted.

@~a@@@ ~~000~~ --------------_...C....,.OB~OL

Page VI-25

Data-name

FUNCTION: To specify the name of the data item being described, or to
specify an unused portion of the logical record.

Notes:

r data-name} l FILLER

1. A data-name or the key word FILLER must be the first word follow
ing the level-number in each Record Description entry and must
not be qualified or subscripted.

2. Qualification of a data-name can be provided through higher
level data-names and file-names. Thus a data-name need not be
unique within or between Record Descriptions provided a higher
level data-name or a file-name can be used for qualification.

3. The key word FILLER may be used only to name an unreferenced
elementary item in a record. Under no circumstances may a
FILLER item be referred to directly.

4. A FILLER item must not have level-number 77.

COBOL

Page VI-26

Editing Clauses

FUNCTION: To permit suppression of non-significant zeroes and conunas, to
permit floating dollar signs or check protection, and to permit
the blanking of an item when its value is zero.

(; CHECK PROTECT ~
ERO SUPPRESS }

[LEAVING integer (:t!~:s}]] (BLANK WHEN ZERO]
FLOAT DOLLAR .§!Qli

Notes:

1. The editing clauses can be specified only at the elementary item
level.

2. The rules for editing, as shown in the MOVE verb, specify that
data items are moved in conformity with the Record Description
of the receiving item.

3. The three options, ZERO SUPPRESS, CHECK PROTECT, and FLOAT DOLLAR
SIGN, all permit suppression of leading zeros and commas. If
the LEAVING option is not employed, suppression will stop as soon
as either a non-zero digit or the decimal point (actual or assumed)
is encountered. Specifically:

a. When ZERO SUPPRESS is specified, leading zeros and commas
will be replaced by spaces.

b. When CHECK PROTECT is specified, leading zeros and commas
will be replaced by asterisks.

c. When FLOAT DOLLAR SIGN is specified, the rightmost character
suppressed will be replaced by a dollar sign, and all other
characters which are suppressed will be replaced by spaces.

4. The LEAVING option may be employed to stop suppression before the
decimal point (actual or assumed) is encountered. When used,
suppression stops (leaving "integer" positions to the left of the
real or assumed decimal point) unless stopped sooner by the rules
specified in Note 2. The "integ.er" position is a count of the
number of characters, starting immediately at the left of the
actual or assumed decimal point.

S. When the BLANK WHEN ZERO option is used, the item will contain
nothing but spaces if the value of the item is zero. Thus, all
other editing requirements, such as ZERO SUPPRESS, CHECK PROTECT,
etc., will be overridden.

@~ c(ID@® ~~000~~-----------C_OB_OL

Page VI-27

6. Whjm any of these clauses are used, the item is assumed to be
ALlPHANUMERIC because the $, *, and~are alphanumeric.

7. More comprehensive editing features are available in the PICTURE
clause. When any of the above options are used the format of the
item is assumed to contain editing symbols.

B. If both a PICTURE and editing clauses are present for an entry,
the PICTURE takes precedence.

@~c®@® ~~[ffi~~~-----------CO_BO_L

Page VI-28

JUSTIFIED

FUNCTION: To specify non-standard positioning of a data item.

[; [JUSTIFIEI!l RIGHT J
1JUST j

Notes:
1. The JUSTIFIED clause may appear only in ~lementary entries. It must

not be specified for an item with any of the following properties:

a. CLASS NUMERIC {explicitly or implicitly);

b. USAGE other than DISPLAY; or

c. Actual or assumed decimal point specified.

2. When an item's storage area receives data as the result of an
arithmetic or data movement procedure, the standard rules for
positioning the value within the receiving area are as follows:

a. If the receiving item is NUMERIC, the value is aligned by
decimal point, with zero fill (or truncation) on either end, as
required.

b. If the receiving item is an edited item with an actual or implied
decimal point, the value is aligned by decimal point, with fill
or truncation on either end, as required.

c. If the receiving item is ALPHABETIC or ALPHANUMERIC (with no
·decimal point), the value is left-justified with space fill
{or truncation) on the right.

3. JUSTIFIED RIGHT may be used to reverse the standard rule described
in note 2.c., above. JUSTIFIED RIGHT causes the value to be right
justified with space fill (or truncation) on the left.

4. JUST is an abbreviation for JUSTIFIED.

@~ a(ID(ID(ID ~~(ffi~(E~---------~COB,;;_..,;.OL

Page VI-29

Level Number

FUNCTION:

Notes:

To show the hierarchy of data within a logical record. To
identify entries for condition-names, independent constants
and working storage items, and RENAMES entries.

level-number

1. A level-number is required as the first element in each Record
Description entry.

2. A level-number may have values of 1-49, and 66, 77, and 88.

3. The level-number 1 signals the first entry in each Record
Description. This corresponds to the logical record on which
the READ and WRITE verbs operate.

4. Special level numbers have been assigned to certain entries
where there is no real concept of level:

a. Level number 66 is assigned to identify RENAMES entries,
and may only be used in Option 3 of the Record Description
forrna t.

b. Level number 77 is assigned to identify independent con
stants and independent working storage items.

c. Level ntnnber 88 is assigned to entries which define con
dition-names associated with a conditional variable, and
may only be used with Option 4 of the Record Description
format.

t'age VI-30

OCCURS

FUNCTION: To define tables of repeated items.

LJ OCCURS [integer-1 TO]integer-2 TIMES [DEPENDING ON data-name-1~

Notes:

1. This optional clause is used· in defining tables of data items.
References to table items require subscripts as described in Chapter 5.

2. This clause must not appear in entries with level number 1, 66, 77,
or 88.

3. This clause is required when the data item either might not exist
or might occur more than once. When OCCURS is not specified, one
occurrence is assumed.

4. If integer-1 is not specified, integer-2 represents the exact number
of occurrences. Integer-2 must not in any case be zero.

5. When the number of occurrences may vary, integer-1 specifies the
minimum number of occurrences, and integer-2 specifies the maximum.
Integer-1 may be zero to indicate that the data might not exist.
Unless the DEPENDING option is also specified, the integer-1 option
is regarded as documentation only. DEPENDING must not be specified
unless integer-1 is specified.

6. The DEPENDING option is used to indicate that the number of occur
rences is equal to the value of data-name-1. This value must be
not less than integer-1 nor greater than integer-2. GE-600 Series
COBOL requires data-name-1 to have USAGE COMPUTATIONAL-!; it must
appear in the record to which the current Record Description entry
pertains, and· it must precede the variable port ton of t·he record.
Because of this rule, the data-name-1 entry must precede the
OCCURS ..• DEPENDING entry itself.

7. If data-name-1 specifies fewer than integer-2 items, the significant
items are understood to appear in successive positions at the
beginning of the table; unused positions at the end of the table are
called "table residue". Contents of the residue area are unpre
dictable.

COBOL

Page VI-30.1

8. The user should be aware that the results of OCCURS •.• DEPENDING
generally differ from one machine line to another. In GE-600 Series
COBOL, the results are as follows:

a. The DEPENDING option has no effect except in the FILE SECTION.

b. In the FILE SECTION, OCCURS ••. DEPENDING results in suppress
ing of table residue on the peripheral storage medium, as
described below. This option also automatically causes the
compiler to APPLY a PROCESS AREA to the file, whether or not
the user specifies PROCESS AREA in the I-0-CONTROL paragraph.

c. When a WRITE references a record containing one or more
OCCURS •.. DEPENDING items, the object-program examines the
output record for opportunities for residue suppression.
Such an opportunity is rejected unless two or more machine
words can be suppressed. In the latter case, suppression
proceeds on a machine word basis; the whole-word portion of
the residue of each table is replaced by a single control word.
If the residue of a table amounted to ten whole words, only
one control word would appear instead in the output medium;
the net saving would be nine words, in this case. Each variable
length table in the record presents an opportunity for residue
suppression. Actual suppression takes place in an implicit
move from the PROCESS AREA to the output buffer.

d. When a READ references a file containing records described
with OCCURS ••. DEPENDING, the object-program implicitly moves
the record from the input buffer to the PROCESS AREA,
expanding it to the format it had in memory prior to residue
suppression.

e. When OCCURS .•• DEPENDING is used with any record of a file,
there are several effects on the data format:

• The Variable Length Record (VLR) format is automatically
applied.

• In addition to any residue suppression control words needed,
each record in the peripheral medium begins with a control
word required for reconstruction.

• The RECORDING MODE must be BINARY (explicitly or implicitly).

9. Data-name-1 may be qualified, but it must not be subscripted.

~~ a~(ID(ID $~000~~---------~C.:.::,OBO;::::,:.L

Page VI-30.2

10. A group item is said to have "variable length" if any item
subordinate to it is described with the integer-1 option of
OCCURS. Such an item is restricted in the following ways:

a. It cannot be subordinate to an OCCURS item.

b. It cannot be REDEFINED, or be subordinate to an item which
is REDEFINED.

c. It cannot appear in a redefinition.

11. It is important to be aware that OCCURS does not imply
SYNCHRONIZED. In the interest of object-program efficiency,
consideration should be given to making table items explicitly
SYNCHRONIZED.

12. A table item may be a conditional variable. The condition-name
entries follow the conditional variable, as usual, and do not
contain OCCURS clauses. Any references to such condition-names
require subscripts.

13. The total size of the table is the product of the repeated item's
size times the number of items in the table. The size given in a
particular entry, however, refers to a single occurrence, not to
the product of the size of a single occurrence times the number
of occurrences.

14. If an item is described with this clause, its data-name must be
subscripted in all references. If it is a group item, then each
data-name belonging to the group must be subscripted whenever it
is referenced. The data description clauses associated with an
item whose description includes an OCCURS clause, apply to each
repetition of the item being described.

15. Whenever possible, data items used as subscripts should have
USAGE COMPUTATIONAL-1, to enhance object-program efficiency.

PICTURE

FUNCTION:

Notes:

Page VI-31

To show a detailed picture of the Standard Data Format of an
elementary item, the general characteristics of the item, and
special report editing.

[PICTURE} . [; \._fil IS character string]

1. A PICTURE clause can be specified only at the elementary it'em level.
(See Note 1 of the SIZE clause.)

2. PIC is an abbreviation for PICTURE.

3. A character string consists of any allowable combination of the
characters and symbols described below.

4. The maximum number of characters or symbols allowed in a PICTURE
character string is 30.

5. If the CLASS is given as ALPHANUMERIC in the same entry with a
PICTURE, the CLASS remains ALPHANUMERIC regardless of the string
of characters in the PICTURE. If the CLASS is given as ALPHABETIC
or NUMERIC in the same entry with a PICTURE or at a higher level,
the CLASS represented by the string of characters in the PICTURE
must be the same as the explicit CLASS. If the CLASS given, implicitly
or explicitly, is ALPHANUMERIC at a group level and is not stated in
a subordinate level, the PICTURE, when used, determines the CLASS of
the subordinate entry according to the rules given below.

6. The allowable characters (or symbols) which may appear in a character
string are defined and described below according to the CLASS definition
of the data item being described by the PICTURE clause and according to
the associated MOVE category of the data item. (See CLASS clause and
MOVE verb.)

a. NUMERIC characters (See CLASS, Note ·3)
N-numeric (See MOVE, Note 2)

9 indicates that the character position contains a NUMERIC
character.

S indi'cates the presence of an operational sign· (see SIGNED)
which is not counted in the SIZE of the data item. The
PICTURE of a CLASS IS NUMERIC data item can possess only
one operational sign and if specified, "S" must be written
as the left-most character of the PICTURE.

(IB~a(ID@® ~~000~~----------c_OBO_L

Page VI-32

V indicates an assumed decimal point which does not occupy
a character position and is not counted in the SIZE of
the data item. The PICTURE of a data item cannot contain
more than one assumed decimal point.

p indicates an assumed decimal scaling position and is used
to specify the location of an assumed decimal point when
the point is not within the number that appears in the
data item. The scaling position character "P" is not
counted in the SIZE of the data item. Scaling position
characters are counted in determining the maximum number
of digit positions (18) allowed in computations. (P cannot
be used with COMPUTATIONAL [-n] items.) The scaling position
character "P'' can appear only to the left or right as a
continuous string of "P" with a PICTURE description; since
the scaling position character "P" implies an assumed decimal
point (to the left of "P"s if "P"s are left-most PICTURE
characters and to the right of "P"s if "P"s are right-most
PICTURE characters), the assumed decimal point symbol "V" is
considered redundant as either the left-most or right-most
character within such a PICTURE description.

0 indicates the insertion character zero and is counted in
the SIZE of the data item. If data is moved to a data
item whose PICTURE description contains the insertion
character "0", the m.nneric data is. aligned by decimal
point within the receiving character positions~ independently
of the insertion characters. The insertion characters are
placed in the receiving data ~tern regardless of the nature
of the sending data item. If data whose PICTURE descrip~
tion contains the insertion character "0" is moved to
another data item, each data item character position is
considered in the sending data item as part of the value
for decimal point alignment purposes.

b. ALPHABETIC characters (See CL~SS, Note 4)
AB - alphabetic (See MOVE. Note 2)

A indicates that the character position contains an
ALPHABETIC character (letter or space).

B indicates the insertion character space (blank) and is
counted in the SIZE of the data item. If data is moved
to a data item whose PICTURE description contains the in
sertion character "B", the alphabetic data is left justi
fied within the receiving character positions independently
of the insertion characters. The insertion characters are
placed in the receiving data item regardless of the nature
of the sending data item. If data whose PICTURE descrip
tion contains the insertion character ''B" is moved to
another data item, each data item character position in the
sending data item is considered as part of the data item
during the move operation.

COBOL

Page VI-33

c. ALPHANUMERIC characters (See CLASS, Note 5)

1) AN - alphanumeric (See MOVE, Note 2)

X indicates the character position contains any allowable
character in the computer's character set. If a data
item PICTURE consists entirely of any combination of X,
A and 9, other than all A's or all 9's, the PICTURE is
considered and treated as if the entire PICTURE consist
of all X's.

J,K J and K have special uses in some COBOL compilers. GE
COBOL accepts J and K as fully equivalent to X. Howeve
the understood initial VALUE of a WORKING-STORAGE item
SPACES if the PICTURE contains J and .no explicit VALUE
clause is given. This feature simplifies conversion
from certain other machine lines, and is not meant as
a general substitute for VALUE SPACES.

2) AE - Alphanumeric edited (See MOVE, Note 2)

3)

A PICTURE description containing at least one of the
insertion characters "B" or "O" and at least one of the
character "X" or a PICTURE description containing at
least one of the insertion character "0" and at least
one of the characters "X" or "A" is considered an alpha
numeric edited data item.

NE - numeric edited (See MOVE, Note 2)
Numeric edited implies:

a) the data item being described is ALPHANUMERIC.
b) the data item being described is a numeric edited

data item.
c) the data item can only receive data which is

numeric in content.
d) the maximum number of digit positions that may be

represented is 18.

9, V, and P have been defined under NUMERIC characters
above. 0 and B are repeated in definition here to in
dicate special editing cause and effect.

indicate the insertion characters connna, space (blank)
and zero respectively; each insertion character is
counted in the SIZE of the data item but does not
represent a numeric character position. The presence
of zero suppression or replacement of zeroes by
spaces (Z) and check protection (*) indicate that
suppression of leading insertion characters also takes
place with associated space or asterisk replacement.

The floating characters, floating dollar ($$), float
ing plus (+i-), and floating minus (--), "float
through" the insertion characters, i.e., if the most

Page VI-34

significant digit is innnediately to the right of an
insertion character, the floating replacement char
acter replaces the insertion character .

. indicates the actual decimal point and is a special
insertion character. The data item being edited is
aligned by decimal point and the actual decimal point
appears in the indicated character position. The
actual decimal point, unlike the assumed decimal
point (V), is counted in the SIZE of the data item.
A data item cannot contain more than one assumed or
actual decimal point, i.e., the symbols "V" and"."
are mutually exclusive within a PICTURE description.
A PICTURE description must not terminate with the
symbol ".", unless immediately followed by one of
the punctuation characters, semicolon, or period.

+)indicates the editing sign control characters. As
- fixed insertion characters, the "+" and "-" symbols

CR can be used only at the beginning or at the end of a
DB PICTURE; "CR" and "DB" can be used only at the extreme

right end of a PICTURE and represent two character
positions when counted in the SIZE of the data item.
When the fixed insertion characters "+" or "-" are
used at the beginning, they must be the left-most
character in the PICTURE. As floating characters,
the "+" and "-" characters are written from the
extreme left to represent each leading numeric charac
ter position into which the editing sign may be
floated. A single editing sign will be placed in the
least significant position shown by the character "+"
or "-" in the PICTURE description (including the in
sertion characters ",", "B" or "O") innnediately pre
ceding the first non-zero digit in the data or the
decimal point "V" or".", whichever is encountered
first. One exception is that if all data character
positions in the PICTURE contain the floating charac
ters "+" or"-", then the entire data item will con
sist of spaces when the value of the data item is zero.
A floating "+" or "-" may appear to the right of a
decimal point in a PICTURE only if all character
positions are represented by "+" or "-"s. The data
item must contain at least one more editing sign
character position than the maximum number of signi
ficant digits in the associated source data item.
Editing signs are counted in the SIZE of the data item.
Depending on the value of the data item associated with
the PICTURE, the display character signs outlined in the
following table are produced. "+", "-", "CR" and "DB"
a;re all mutually exclusiveu

@J~ o®@® ~~(ffi~ ~~ --------------~CilllOBlll!OL

PICTURE Sign

+

CR
DB

Page VI-34ol

Display Representation
Data Item Positive-Data Item Negatj

+
Space
Spaces (2)
Spaces (2)

CR
DB

Page VI-35

Z indicates the standard zero suppression and replace
ment of zeroes by spaces character. The character
"Z" represents each leading numeric character posi-
tion which is to be replaced by a space for each un
wanted left-hand zero. Replacement of zeroes by
spaces terminates with the character (including the
insertion characters ",", ''B" and "0") immediately
preceding the first non-zero digit in the data, or the
decimal point ''V" or ". ", whichever is encountered
first. One exception is that if all data character
positions in the PICTURE contain the replacement charac
ter "Z", then the entire data item will consist of
spaces when the value of the data item is zero. A "Z"
may appear to the right of a decimal point in a PICTURE
only if all numeric character positions are represented
by "Z"s. The replacement of zeroes by spaces (character
"Z") is counted in the SIZE of the data item.

* indicates the asterisk replacement character and desig
nates each leading numeric character position which is
to be replaced by an asterisk for each unwanted left
hand zero. Asterisk replacement terminates with the
character (including the insertion characters ",", "B",
and ''0") immediately preceding the first non-zero digit
or the decimal point ''V'' or ". ", whichever is encountered
first. One exception is that if all numeric character
positions in the PICTURE contain the replacement charac
ter asterisk (*) then the entire data item will consist
of asterisks when the value of the data item is zero,
except that the decimal point (.) will be retained and
printed.

An "*" may appear to the right of a decimal point in a
PICTURE only if. all numeric character positions are
represented by "*"s. The asterisk is counted in the
SIZE of the data item.

$ indicates the dollar sign character. As a· fixed
insertion character, the dollar sign may appear only
once in a PICTURE. As a floating character, the dollar
sign is written from the extreme left to represent each
leading numeric character into which the dollar sign
may be floated. A single dollar sign will be placed
in the least significant position shown by the character
"$'' in the PICTURE (including the insertion characters
",", "B", and "0") immediately preceding t;he first non
zero digit in the data, or the decima 1 point "V'' or ". ",
whichever is encountered first. One exception is that
if all the numeric character positions in the PICTURE
contain the floating character "$", then the entire data
item will consist of spaces when the value of the data
item is zero. The data item must contain at least one
more dollar sign character position than the maximum

Page VI-36

number of significant digits in the associated source
data item. A "$" may appear to the right of a decimal
point in a PICTURE only if all numeric positions are
represented by "$"s. The dollar sign is counted in the
SIZE of a data item.

4) FE - floating point numeric edited
A special editing option is provided for items with USAGE
DISPLAY-1 explicitly specified. Such an item is considered
an edited floating point item. This option is not a stand
ard COBOL feature. The PICTURE of a DISPLAY-1 item must
conform to the following format:

9.9(n)E 99

The first character must be +or -, the report sign for the
mantissa. The next characters represent the desired number
of digits in the mantissa; .!l. must be a one or two-digit
integer from 1 to 17. The Eis required; and represents
an E insertion character which is counted in the item's
size. The remaining characters must be + or - (the report
sign for the exponent) and two 9's representing the exponent
itself. Leading and/or trailing B's may be appended to the
above format if needed.

7. Miscellaneous Notes

a) A PICTURE must consist of at least one of the following characters:

A X 9 * Z J K

or at least a pair of one of the following characters:

+ $ (indicating floating characters).

b) Only one type of floating replacement character, i.e.,"$","+",
"-", "*", or "Z" can be used within a giyen PICTURE description.
The replacement characters "*" or "Z" may be preceded by a fixed
"$"; "$" (fixed or floating), 11 Z" or "*" may be used with a fixed
"+" or "O" . A PICTURE character "9" can never appear to the left
of a floating or a replacement character.

c) An integer which is enclosed in parentheses following the symbols
"A" " " "X" "9" "P" "Z" "*" "B" "$" "O" "+" or"-" ''' ' ' ' ' ' ' ' ' ' indicates the number of consecutive occurrences of the symbol.
(e.g., P(l0)9(2) and P(l0)99 and PPPPPPPPPP99 are all equivalent.)
Note that the following symbols may appear only once in a given
PICTURE, "S" , "V" , " • " , "CR" and "DB" •

@j~a(ID©)@ ~~rmo~~---------CO __ BO_L

Page VI-37

d) If editing clauses are used in conjunction with a PICTURE
clause, the two sets of clauses must not be contradictory.
The editing clause, CHECK PROTECTION, and the PICTURE
character "*" are mutually exclusive with the editing
clause BLANK WHEN ZERO.

e) Editing takes place in the object program in the more
connnon usages when any of the following events occur:

• A MOVE statement with an edited numeric
receiving item and an elementary numeric
sending item is executed.

• An arithmetic verb statement with an
edited numeric receiving item is executed.

• A report group containing an edited numeric
receiving item is presented. (The item's
description may specify either a SOURCE
clause, entailing a numeric elementary
source item, or a SUM clause.)

@~a®@@ ®~lm~~®--------------_...c oB......_OL

Page VI-38

POINT LOCATION

FUNCTION: To define an assumed decimal point or binary point.

[; POINT LOCATION IS { ~~T} integer {
PLACES}
BITS J

Notes:

1. This optional clause may appear only in elementary entries.

2. The decimal point location is normally defined via PICTURE, but
an assumed decimal point may be specified via the PLACES option
of the POINT clause. If both are specified, they must agree.

3. The POINT clause indicates the position of an assumed decimal
point only, never an actual decimal point. Actual decimal points
can only be specified via PICTURE.

4. When the PLACES option is used, the assumed decimal point is integer
decimal places to the LEFT or RIGHT of the least-significant
position of the item. PLACES is implied when neither PLACES nor
BITS is specified.

So When the BITS option is used it has no effect, but may be used
for documentation onlyo

60 If USAGE is COMPUTATIONAL~n], the point location must not be
RIGHT and integer must not exceed the item's size.

@[E a(ID@@ ~ [E [ffiQ(E~--------------__;C:..:.:OB:.:..;OL

Page VI-39

RANGE

FUNCTION: To specify the potential range of the value of an item.

Notes:

[; RANGE IS literal-I.!!!!!! literal-2]

1. This optional clause may be used for documentation.

2. For NUMERIC items literal-1 and literal-2 represent the
respective minimum and maximum values of the item. Literal-2
must not contain more digits than are specified in the SIZE
clause.

3. For non-NUMERIC items, each character of literal-I and literal-2
represents the respective minimum and maximum values of the
corresponding character position in the item.

4. RANGE can be written only at the elementary item level.

5. Literal-I and literal-2 may be Figurative Constants.

Page VI-40

REDEFINES

FUNCTION: To allow the same computer storage area to certain different
data items.

Notes:

level-number data-name-1 [; REDEFINES data-name-2]

1. The REDEFINES clause, when used, must immediately follow
data-name -1.

2. The level-numbers of data-name-1 and data-name-2 must be
identical.

3. Redefinition starts at data-name-2 and ends when a level-number
less than or equal to that of data-name-2 is encountered.

4. When the level-number of data-name-2 is other than 1, it must
specify a storage ~rea of the same size as data-name-1.

5. The entries giving the new description of the storage must
immediately follow the entries describing the area being re
defined. Thus multiple redefinitions of an area must be
"chained", rather than all of them being related to the
original definitiono A special consideration for redefinition
of SYNCHRONIZED items is discussed in the notes under the
SYNCHRONIZED clause.

6. This clause must not be used in level 1 entries in the FILE
SECTION. Implicit redefinition is provided by the DATA RECORDS
clause in the File Description entry.

7. Data-name-2 never needs to be qualified.

8. The Record Description entry for data-name-2 may not contain an
OCCURS clause, nor may data-name-2 be subordinate to an entry
which contains an OCCURS clause.

9. The entries giving the new description of the storage area must
not contain any VALUE clauses, except in condition-name entries.

RENAMES

FUNCTION:

Page VI-41

To permit alternative, possibly overlapping, groupings of
elementary items.

66 data-name-1 RENAMES data-name-2 [~ data-name-3]

Notes:

1. One or more RENAMES entries can be written for items or
groups within a logical record.

2. All RENAMES entries associated with a given logical record must
innnediately follow its last record description entry.

3. Data-name-2 and data-name-3 must be names of elementary items
or groups of elementary items in the associated logical record,
and cannot be the same data-name. A 66 level entry cannot re
name another 66 level entry nor can it rename a 77, 88, or 01
entry.

4. When data-name-3 is specified, data-name-1 is a group item which
includes all elementary items starting with data-name-2 (if
data-name-2 is an elementary item) or the first elementary item
in data-name-2, and concluding with data-name-3 (if data-name-3
is an elementary item) or the last elementary item in data-name-3
(if data-name-3 is a group item).

5o When data-name-3 is not specified, data-name-2 can be either a group
or an elementary item; when data-name-2 is a group item, data-name-1
is treated as a group item, and when data-name-2 is an elementary item,
data-name-1 is treated as an elementary item.

6. Data-name-2 must precede data-name-3 in the record description.

7. Data-name-3 cannot be contained within data-name-2.

8. Data-name-1 cannot be used as a qualifier, and can be qualified
only by the names of the level 1 or FD entrieso Neither data
name-2 nor data-name-3 may have an OCCURS clause in its record
description entry nor be subordinate to an item that has an
OCCURS clause in its record description entry.

9. Data-names must be unique.

@~a(ID@@ ®~fRi0~®--------------~co=BOI

Page Vl-42

FUNCTION: To specify the presence of a standard operational sign in
an elementary item.

Notes:

(; SIGNED]

1. An item whose description specifies an operational sign must
be NUMERIC. The.refore, its CLASS need r.ot be specified.

2. SIGNED indicates the use of a standard operational sign.
(This may also be indicated by the use of an "S" in the
PICTURE.) A standard operational sign is not considered in
determining the SIZE.

3. An item which contains any editing symbols other than 0 cannot
have an operational sign.

4. This clause can be used only at the elementary item level.

Page VI-43

filM

FUNCTION: To specify the size of an item, in
standard data format characters.

terms of the number of

Notes:

[; SIZE IS integer (cHARACTER[sJ~ J
'l_DIGIT(s] ')

1. The size of an item must be specified at the elementary item
level by means of a SIZE clause or a PICTURE. A PICTURE and
a SIZE clause need not both be given. If both are given, they
must agree. Use of the SIZE clause at any level other than t.he
elementary item level is optional. If SIZE is specified at a
group level, the SIZE of the group is the sum of the sizes (as
determined from SIZE or PICTURE) of the elementary items com
prising the group.

2. Integer represents the exact number of characters excluding
operational symbols.

3. Any of the key words of the USAGE and/or CLASS clauses can be
inserted between integer and the word CHARACTERS (or DIGITS)
in the SIZE clause format. If this is done, separate USAGE
and/or CLASS clauses must not be written. For example, note
the following:

02 PAGE; SIZE IS 7 NUMERIC COMPUTATIONAL DIGITS; VALUE IS
0000342.

Page VI-44

SYNCHRONIZED

FUNCTION: To specify positioning of an elementary icem with a
computer word or words.

Notes:

(;~HRONIZED} { ~~~~TJ

1. This clause indicates that the COBOL Processor, in creating the
Internal Format of this item, must place the item in the m1n1-
mum number of computer words which can contain the item, with
no part of any other item sharing those words.

2. The computer word, or words, containing the SYNCHRONIZED item
may also have to contain some unused character positions in
order to fill the computer word, or words. When SYNCHRONIZED
LEFT is specified, the~e unused character positions (if any)
will occupy the least significant portion of the (last) word.
When SYNCHRONIZED RIGHT is specified, the unused positions (if
any) will occupy the most significant portion of the (first)
word. It is improper to attempt to describe the unused charac
ter positions with FILLER items.

3. All unused character positio~s resulting from the SYNCHRONIZED
clause appear in the external format.

4. Whenever a SYNCHRONIZED item is referenced in the source program,
the original size of the item, as shown in the SIZE or PICTURE
clause, and excluding any embedded unused character positions,
is used in determining any action which depends on size, such as
justification ~r truncation. It is important to observe, however,
that the REDEFINES clause leads to a redefinition of a memory ~'
not simply of the data items occupying the area. If SYNCHRONIZED
clauses resulted in unused character positions in the original
definition of the area, other than to the left of the first item
bGing r8d8finGd, th8 n8w d8finition must account for all such
character positions. If the first item in the original definition
is SYNCHRONIZED RIGHT, the area being redefined begins in the left
most character of the first word allocated to the original item. If
the last item of the original definition is SYNCHRONIZED LEFT, the
area being redefined extends to the rightmost character of the last
word allocated to the original item.

5. When SYNCHRONIZED is specified for an item within the scope of an.
OCCURS clause, each occurrence of the item will be SYNCHRONIZED.

6. Items whose USAGES are COMPUTATIONAL are automatically SYNCHRONIZED.

7. The SYNCHRONIZED clause may be used only for elementary items.

8. SYNC is an abbreviation for SYNCHRONIZED.

Page VI-45
USAGE

FUNCTION: To specify the dominant use of a data item.

[; USAGE IS

COMPUTATIONAL
COMP
COMPUTATIONAL-1
COMP-1
COMPUTATIONAL-2
COMP-2
COMPUTATIONAL-3
COMP-3

J

Notes:

DISPLAY
DISPLA.Y-1
DISPLAY-2

lo This optional clause may be written at any levelo If the
USAGE of an item is not specified, it is assumed to be
DISPLAY.

2. COMP is an abbreviation for COMPUTATIONAL.
COMP-n is an abbreviation for COMPUTATIONAL-n.

3. The optional suffixes on the words COMPUTATIONAL (-1,-2,-3)
and DISPIAY (-1,-2) are used when special internal data formats
are required. The non-suffixed usages are pref erred. If USAGE is
specified at a group level, it applies to all of the subordinate
elementary items, and they must not have contradicting usages
(this includes being differently suffixed). When no special distinc
tion is made, any discussion in this manual of COMPUTATIONAL or
DISPLAY items applies equally to suffixed and non-suffixed usages.

4o A COMPUTATIONAL (or COMPUTATIONAL-n) is stored as a SYNCHRONIZED
binary number and must be NUMERIC. Its CLASS therefore need not be
specified, and. its description must conform to the rules for
NUMERIC itemso A group item described as COMPUTATIONAL or
COMPUTATIONAL-n cannot itself be used in computations; instead, the
specified USAGE applies individually to each subordinate elementary
itemo The COMPUTATIONAL-3 USAGE is intended for use only to
achieve compatibility with non-COBOL programs.

So An item's external format (as it is stored in a peripheral medium)
and its internal format (as it is stored in the computer memory) are
always the same. However, the USAGE clause permits a choice of
several optional formats, and the item's description must conform to
the rules of the pertinent formato

Page VI-46

COMPUTATIONAL signifies decimal precision binary. If the item's
description places it into one of the categories in the following
table, it is stored as a single length number; otherwise it is
double length.

Single length decimal precision numbers
Noo of integral digits No. of fractional digits

1-8
0-5
0-3

0

0
1-3
4-5
6-8

COMPUTATIONAL-I signifies binary integer. The item must have only
integral digits. If it has 1-8 digits, it is stored as a single
length number; if it has 9-18 digits, it is double length.

COMPUTATIONAL-2 signifies floating point binary. If the mantissa has
1-8 digits of decimal significance, it is stored as a single length
number; if it has 9-18 digits, it is double lengtho

COMPUTATIONAL-3 signifies single length fixed point binary integer.
The item may have at most 10 integral digits.

DISPLAY signifies standard data formato

DISPLAY-I signifies edited floating pointo The item's CLASS is implicitly
ALPHANUMERIC.

DISPLAY-2 signifies Connnercial Collating Sequence. Each character of a
DISPLAY-2 item is represented in the computer system in a special way,
so that the result of a comparison of two DISPLAY-2 items conforms to
the Connnercial Collating Sequence rather than to the machine's standard
collating sequence. A DISPLAY-2 item must have ALPHANUMERIC or
ALPHABETIC CLASS. It is against COBOL rules to compare a DISPLAY-n
item with any item having a different USAGE. DISPLAY-2 items are
sensible only within the computer system; such an item must be
explicitly moved to/from a DISPLAY item if it is to appear on the
punched cards, a printer listing, or similar external media. This
function cannot be accomplished by REDEFINES.

@~a(ID@@ ~~ooo~~-------------__...C...._OB__,...01

Page VI-47

VALUE

FUNCTION: To define the value of constants, the initial value of
working-storage items, or the values associated with a
condition-name.

Notes:

Option 1:

(; VALUE IS literal]

Option 2·

[; {VALUE IS } literal-1 (THRU literal-2] (, literal-3
VALUES ARE

[THRU literal-4 ..•]]

1. If the entry is not a condition-name entry, the interpretation
of the VALUE clause depends upon the Data Division Section in
which the entry is described.

a. The VALUE clause has no effect in the FILE SECTION, but may
be used for documentation only.

b. For Working Storage and Constant Storages the item will con
tain the specified VALUE at the start of the object-program.

2. Option 2 can be used only in connection with condition-names.
When the THRU option is used, literal-1 must be less than
literal-2, literal-3 must be less than literal-4, etc.

3. A figurative constant may be substituted in the format above
wherever a literal is specified.

4. The VALUE clause must not be stated in a Record Description
entry which contains an OCCURS clause, or in an entry which is
subordinate to an entry containing an OCCURS clause. This rule
does not apply to condition-name entries. A similar rule
applies to the context of a REDEFINES clause.

5. If the VALUE clause is used in an entry at the group level, the
literal must be a figurative constant or a non-numeric literal,
and the group area will be initialized without consideration for
the individual elementary or group items contained within this
group. VALUE cannot be stated at the subordinate levels within
the group, nor can VALUE be specified for a group containing
items requiring separate handling due to synchronization,
USAGE, etc.

@j~c(ID@@ ~~rmo~~-----------C_OB_OL

Page VI:..48

6. The VALUE clause must not conflict with other clauses in the
Data Description of the item or in the Data Description within
the hierarchy of the item. The following rules apply:

a. If the item is NUMERIC (explicitly or implicitly), all
literals in the VALUE clause must be numeric literals; if the
item is ALPHABETIC or ALPHANUMERIC, all literals must be non
numeric.

b. All non-numeric literals in a VALUE clause must have no more
characters than the SIZE (explicitly or implicitly) in the
Data Description of ·the item indicates.

c. All numeric literals. in· a VALUE clause of an item must have
a value which ~s within the range of values indicated by
the SIZE, RANGE, or PICTURE clauses, e.g., fo~ PICTURE PPP99
the literal must be within the range .00000-.00099.

7. When VALUE is not specified, the initial contents of the working
storage are~s may be unpredictable.

8. The VALUE clause cannot be used for items whose USAGE is
DISPLAY-2. DISPLAY-2 items cannot be conditional variables.

Specific Entry for a Condition-name

Each condition-name requires a separate entry with level number 88. This
entry contains the name of the condition and the value, values, or range of
values associated with the condition-name. The condition-name entries for
a particular conditional variable must follow the entry describing the item
with which the condition-name is associated. ·A condition-name can be
associated with any elementary or group item, except the following:

1. Another condition-name.

2. A level 66 item.

3. A group containing items requiring separate handling due to
synchronization, usage, and so forth.

More specifically, some of the possible ways of writing condition-names
entries are:

nn data-name

88 condition-name-1 VALUE IS literal-1.
88 condition-name-2 VALUES ARE literal-2, literal-3.
88 condition-name-3 VALUES ARE literal-4 AND literal-5 .AND ••• ,
88 condition-name-4 VALUES ARE literal-6 THRU literal-7.

COBOL

As an example:

03 GRADE SIZE IS 2 CHARACTERS.

88 PRIMARY VALUE IS 1.
88 SECOND VALUE IS 2.

88 GRADE-SCHOOL VALUES ARE 1 THRU 6.
88 JUNIOR-HIGH VALUES ARE 7 THRU 9.
88 HIGH-SCHOOL VALUES ARE 10 THRU 12.
88 GRADE-ERROR VALUES ARE O, AND 13 THRU 99.

Page VI-49

@j~ a(ID(Q)(Q) ~~000~~-----------C_OB_OL

Page VI-50

REPORT WRITER

GENERAL DESCRIPTION

A report represents a pictorial organization of data. To present a report,
the physical aspects of the report format must be differentiated from the
conceptual characteristics of the data to be included in the report. In
defining the physical aspects of the report format, consideration must be
given to the width and length of the report medium, to individual page
structure, to the type of hardware device on which the report is finally
written. Structure controls are established to insure the report format
is maintained.

To define the conceptual characteristics of the data, i.e., the logical
organization of the report itself, the concept of level structure is used.
Each report may be divided into respective report groups, which, in turn,
are subdivided into a sequence of items. Level structure permits the pro
granmter to refer to an entire report-name, a major report-group, a minor
report-group, an elementary item within a report-group, etc.

To create the report, the approach taken is to define the types of report
groups that must be considered in presenting data in a formal manner.
Types may be defined as heading groups, footing groups, control groups or
detail print groups. A report group describes a set of data that is to be
considered as an individual unit, irrespective of its physical format
structure. The unit may be the presentation of a data record, a ~et of
constant report headings, or a series of variable control totals. The
description of the report group is a separate entity. The report group
may extend over several actual lines of a page arid may be of any type
described above which is necessary to produce the desired output report
format.

Report Section

The Report Section contains two elements: the description of the overall
structure of the report and the description of the report-group, including
the description of the elementary items within each report-group.

Each description consists of a level indicator, a data-name, if required,
and a series of independent clauses which are terminated by a period. The
contents of the descriptions depend on certain clauses which are optional
and therefore dependent on the requirements of the usero

Report Name Description Entry

This entry contains the information pertaining to the overall format of
the report and is indicated by the level indicator RDo The characteristics
of the report page are outlined and provided with limits by describing the
number of physical lines per page and the limits for presenting specified

Page VI-51

headings, footings, details within a page structure. Data items which act
as control factors during presentation of the report are specified in the
RD entry. Each report associated with an output file description must be
defined by an RD entry.

Report Group Description Entry

A report group may be a set of data made up of, several print lines with
many data items or the report group may consist of one print line with one
data item. Report-groups may exist within report groups -- all or each
capable of reference by a GENERATE or USE statement in the Procedure Divi
sion. A description of a set of data becomes a report group by the presence
of a level number and a TYPE description. The level number gives the depth
of the group and the TYPE describes the purpose of the report group presen
tation. If report groups exist within report groups, they must all have
the same TYPE description. Including.a data-name with this entry permits
the group to be referred to by a GENERATE or a USE statement in the Pro
cedure Division. At object program time, report groups are created as a
result of Report Writer GENERATE statements in the Procedure Division.

This entry defines the characteristics for a report group, whether a
series of lines, a line, or an elementary item. The placement of an item
in relation to the entire report group, the hierarchy of a particular
report group within a report group, the format description of all items
and any control factors associated with the group are all defined in the
entry. The system of level numbers is employed here to indicate elementary
items and group items of data within the range 01 to 49.

Pictorially to the programmer, a report group is a line,or a series of lines,
initially consisting of all SPACES; its length is determined by the compiler
based on environmental specifications. Within the framework of a report,
the order of report groups specified is not significant. Within the frame
work of the report group, the programmer describes the presented elements
consecutively from left to right and then from top to bottom. The descrip
tion of a report group, analogous to the Data Record, consists of a set
of entries defining the characteristics of the included elements. However,
in the report group, SPACES are assumed except where a specific entry is
indicated for presentation, whereas in the data rec0rd, every character
position must be defined.

DEFINITIONS

The following terms are defined according to their meaning in the Report
Writer language.

REPORT

PAGE

a formal presentation of a printed set of data.

a vertical division of a report representing a ·physical
separation of continuous report data; the separationmay
be based on internal reporting requirements and/or ex
ternal characteristics of the reporting medium.

@~o(ID(Q)@ ~~ooa~~------------C_OB_OL

Page VI-52

FORMAT

LINE

COLUMN

REPORT-GROUP

PRINT GROUP

DATA-NAME

GROUP-ITEM

ELEMENTARY ITEM

CONTROL HIERARCHY

CONTROL BREAK

CONTROL GROUP

a specific arrangement of a set of data within the
structure of a page and/or report.

a horizontal division of a page representing one row
of characters.

a specific position within the line.

an integral set of related data within a report.

equivalent to a report group in the Report Section.

a name designating a group of data or an elementary
item of data in the Data Division.

an item within a report group containing subordinate
items; the report group itself is a group item.

an item within a report group containing no sub
ordinate items.

a designated order of specific elements of information:
within the order, any change in the value of the
designated elements produces a control break.

a term describing the recognition of a change in the
value of a data item designated as an element in the
CONTROL hierarchy. The change is noted as a difference
in the value of a source data item between the execu
tion of the previous GENERATE and the execution of the
present GENERATE. A control break sets in motion the
automatic report writer function of producing special
CONTROL footing and/or CONTROL heading report groups
associated with the data item in which the change
occurred.

an integral set of related data in a report specifi
cally associated with a data item in the CONTROL
hierarchy. The entire set of CONTROL HEADING report
group(s), CONTROL FOOTING report-group(s) and associ
ated DETAIL report-group(s) comprise the control
group for a given CONTROL data-name. Within the
CONTROL hierarchy, lower level CONTROL HEADING.report
group(s) and CONTROL FOOTING report group(s) are
implicitly included in a higher level control group.

@~ a(ID(ID@ ~~(ffi~~~----------C_OB_OL

COUNTER

PAGE BREAK

LINE-COUNTER

Page VI-53

a device into which numerical units of information
can be added or subtracted dependent on the arith
metic operation and/or operational sign of the
information.

the event of advancing to a new page during the
presentation of a report.

LINE-COUNTER is the fixed data-name for a counter automatically supplied
by the Report Writer.

LINE-COUNTER is used by the Report Writer to automatically generate PAGE/
OVERFLOW HEADING and/or PAGE/OVERFLOW FOOTING report groups.

LINE-COUNTER may be referred to by Procedure Division statements. Since
more than one Report Name Description Entry may exist in the Report Section,
the user must qualify LINE-COUNTER by the data-name of the report in the
Procedure Division when necessary.

Since the LINE-COUNTER is used in conjunction with the PACE LIMIT(S) clause
for test and control purposes within the Report Writer, the user must be
careful not to change the LINE-COUNTER by Procedure Division statements.
Changing the LINE-COUNTER may cause PAGE format control to become unpre
dictable in the Report Writer.

LINE-COUNTER is automatically set, reset, tested, incremented, etc., by
the Report Writer based on control specifications in the PAGE LIMIT(S)
clause and values specified in the LINE NUMBER and NEXT GROUP clauses.

LINE-COUNTER is automatically set to zero initially by the Report Writer;
likewise, LINE-COUNTER is automatically reset to zero whenever a page
break occurs.

If a relative LINE NUMBER or relative NEXT GROUP indication exceeds a
PAGE LIMIT specification during object time, a page break occurs.

The value of LINE-COUNTER during any Procedure Division test statement
represents the last LINE NUMBER printed on from the previous generated
report group or represents the last LINE NUMBER skipped from a previous
NEXT GROUP specification.

@[Eg(ID@@ ~~ffiin~~-----------CO_BO_L

Page VI-54

PAGE-COUNTER

PAGE-COUNTER is automatically generated by the Report Writer to be used
as a SOURCE data item in order to present consecutive page numbers within
a report group.

PAGf-COUNTER is tbi! fixed data-name for a counter automatically supplied
by the Report Writer if PAGE-COUNTER is given as a SOURCE data name in a
report group description entry. One PAGE-COUNTER is supplied for each
report described in the Report Section.

If PAGE-COUNTER is given as the SOURCE of more than one data item, the
number of NUMERIC characters indicated by the SIZE or PICTURE clause must
be identical. The PICTURE clause must indicate sufficient NUMERIC charac
ter positions to prevent overflow.

PAGE-COUNTER may be referred to by Procedure Division statements. Since
more than one Report Name Description Entry may exist in the Report Section,
the user must qualify PAGE-COUNTER by the data-name of the report in the
Procedure Division when necessary.

PAGE-COUNTER is initially one (1). If a starting value for PAGE-COUNTER
other than one desired, the programmer may reset PAGE-COUNTER by a
Procedure Division statement.

PAGE-COUNTER is automatically incremented by one (1) each time a page
break is recognized by the Report Writer, after the production of any
PAGE or OVERFLOW FOOTING report group but before production of any PAGE
or OVERFLOW HEADING report group.

ENTRY FORMATS

General Notf.:s

Report Section entries consist of a level indicator and a series of inde
pendent clauses. The mnemonic level indicator RD is used to identify the
start of a Report Name Description Entry and distinguishes this entry from
those describing a Report Group Description Entry.

Specific Formats

The Report Writer clause formats are arranged in an alphabetic order in
this section for both the Complete Entry Skelet·on and the individual
clause function descriptions.

Page VI-55

RD Entry

Complete Entry Skeleton

FUNCTION: To furnish information concerning the physical structure
and overall characteristics of a report.

Option 1:

RD data-name-1 [WITH CODE mnemonic-name] ~ library name.

Option 2:

Notes:

RD data-name-1 (WITH CODE mnemonic-name] (; CONTROL(S] ..]

[; ~ LIMIT(S] .•]

1. The RD level indicator identifies the beginning of a Report
Name Description and precedes the data-name. Data-name-1
must be unique.

2. The RD entry is terminated by a period.

@~a(@@@ ~~fffiO ~~-------------C-.-OB~OL

Page VI-56

CODE

FUNCTION: To affix a unique character, identifying this report, to
each report-group GENERATEd in the report.

Notes:

[WITH~ mnemonic-name]

1. Mnemonic-name must be identified with a unique character in the
SPECIAL-NAMES paragraph of the ENVIRONMENT DIVISION. (It is
the user's responsibility to assure unique character assignment
if several reports are produced in the program.)

2. As the RD Complete Entry format shows, the CODE clause, when
used, must follow inunediately after the report name (data-name-1).

@~al@@@ ~~rn10~~------------CO_BO_L

Page VI-57

CONTROL(S)

FUNCTION: To indicate the data-name(s) which specify the control

Notes:

CONTROL IS ~
hierarch} for this report.

[; CONTROLS ARE [FINAL] [,data-name-1] [,data-name-2 ..] [,data-name-1

1. The CONTROL(S) clause is required when CONTROL HEADING and/or
CONTROL FOOTING report groups are specified.

2. The data-names indicating the control break items are listed in
order from major to minor; FINAL is the highest CONTROL, data-name-:
is the major CONTROL, data-name-2 is the intermediate CONTROL,
data-name-n is the minor CONTROL.

3. FINAL is a fixed data-name indicating the highest CONTROL for
this report. CONTROL FOOTING TYPE report groups which require
presenting only once on conclusion of the report are associated
with the CONTROL hierarchy FINAL and are produced when TERMINATE
is executed.

4. The data-name(s) specified in the CONTROL(S) clause are referred
to by the TYPE clause in the.Report Group Description Entry.

5. The data-names other than FINAL must be defined in the File or
Working-Storage Section of the Data Division.

@~ c(ID(Q)@ ~[Effi1~[E~-----------C_OB_OL

Page VI-58

FUNCTION: To obtain a data-name description entry from the COBOL
library.

Notes:

RD data-name-1 [WITH CODE nmenonic-name] COPY library-name.

1. The data-name replaces the library data-name in the library
name entry when the COPY clause is compiled; all of the des
criptive clauses in the library entry are included as part of
the data-name-1 description entry except the CODE clause.

@~ a(ID{Q)@ ~~[R10 ~~-----------__..C.....,..OB..._OL

Page VI-59

FUNCTION: To indicate the specific line control to be maintained
within the presentation of a PAGE.

[; PAGE (~i~iis 1!RE} integer-1 (~s}
(, HEADING integer-2] (,FIRST DETAIL integer-3]

(, LAST DETAIL integer-4] (,FOOTING integer-5)]

Notes:

1. The PAGE LIMIT(S) clause is required when PAGE format must be
controlled by the Report Writer. The PAGE LIMIT(S) clause may
be omitted when no association is desired between report group(s)
and the physical format of an output PAGE, e.g., a report con
sisting solely of TYPE DETAIL report groups which are printed
on the final reporting medium continuously.

2. PAGE LIMIT integer-1 LINES is required to specify the depth
of the report PAGE; the depth of the report PAGE may or may not
be equal to the physical perforated continuous form often
associated in a report with the page length.

3. Integer-2 through integer-5 each must either be less than or
equal to integer-1.

4. If absolute line spacing is indicated for all the report group(s),
none of the integer-2 through integer-5 controls need to be
specified.

5. If relative spacing is indicated for individual report group
entries, one or more of the above LIMIT(S) must be defined,
dependent on TYPE of report group(s) within the report, in
order for the Report Writer to maintain control of PAGE format.

6. The PAGE LIMITS options are defined as follows:

HEADING integer-2: the first line number of the first HEADING
print group. No print group will start preceding integer-2.

FIRST DETAIL integer-3: the first line number of the first
normal print group, i.e., body; no DETAIL or CONTROL print
group will start before integer-3.

LAST DETAIL integer-4: the last line number of the last normal
print group, i.e., body; no DETAIL or CONTROL HEADING will
extend beyond integer-4.

COBOL

Page VI-60

FOOTING integer-5: the last line number of the last CONTROL
FOOTING print group; no CONTROL FOOTING print group will
start before integer-3 nor extend beyond integer-5.
TYPE PAGE FOOTING or TYPE OVERFLOW FOOTING print groups
will follow integer-5.

7. If reither integer-4 nor integer-5 is specified, both are con
sidered to be equivalent to integer-1 value.

8. The following chart pictorially represents PAGE format as
specified by all PAGE LIMIT(S) options:

integer-2

REPORT
HEADING/
FOOTING

integer-3 J_
integer-4
integer-5
integer-1

PAGE/
OVERFLOW
HEADING

DETAIL &
CONTROL
HEADING

CONTROL
FOOTING

PAGE/
OVERFLOW
FOOTING

9. Absolute LINE NUMBER or absolute NEXT GROUP spacing, must be
consistent with controls specified in the PAGE LIMIT(S) clause.

10. Only one PAGE LIMIT(S) clause may be specified per Report Name
Description Entry.

@[E o ®®® ~[E[ffi a (E~----------___...C---.OB--....OL

Page VI-61

Report Group Entries

Complete Entry Skeleton

FUNCTION: To specify the characteristics of a particular report group
and the individual items within a report group.

Option 1:

nn [data-name-1] COPY data-name-2 [FROM LIBRARY].

Option 2:

nn [data-name-1 J [; CLASS ••. J [; LINE NUMBER •• • l [; NEXT GROUP ••• J

[; S IZE • • •] [; TYPE • • • •]

Option 3:

nn [data-name-1] [;CLASS •••] [;COLUMN NUMBER •.][; editing clauses]

[; GROUP INDICATE] [; JUSTIFIED •••] [; LINE NUMBER •.•]

[;PICTURE •••][; POINT LOCATION] [; SIZE •••] [RESET •••]

{

; SOURCE •• }
; .sYHi ••
; VALUE •••

[; USAGE •••]

Notes:

1. Option 2 is used to indicate a report group; the report group extends
from this entry to an equal or higher level entry.

2. Option 3 is used to indicate an elementary or group item within a
report group. If a report group consists of only one elementary
entry, Option 3 may include the TYPE and NEXT GROUP clause in order
to specify the report group and elementary item in the same entry.

3. In Option 2 or 3, to refer to the report group by a GENERATE or USE
statement in the Procedure Division requires the presence of a
data-name-1, together with the TYPE and level number.

@~a®@® ~~000~~----------COB_OI:_,

Page VI-62

4. If LINE NUMBER is not given in the level 01 entry, it must
be given at a subordinate group level prior to the first
elementary item within the report group. If LINE NUMBER is
specified for a report group, the entire report group is
presented on the specified LINE NUMBER. If LINE NUMBER is
specified for a group item, it applies to all subordinate
items, and no lower level LINE NUMBER clause is permitted.
The following general rules apply for use of the LINE NUMBER
and NEXT GROUP clauses:

a. A line definition must start with a LINE NUMBER clause
whether any pre-slewing is pesired or not. "LINE NUMBER
IS PLUS integer" actually results in integer minus 1 lines
of pre-slewing. Therefore, "LINE NUMBER IS PLUS l" results
in no pre-slewing. "LINE NUMBER IS PLUS O" may be specified
to document the intention to accomplish overprinting.

b. Post-slewing must be specified by the NEXT GROUP clause.
"NEXT GROUP IS PLUS integer" actually results in integer
lines of post-slewing. "NEXT GROUP IS PLUS O" in connection
with "LINE NUMBER IS PLUS O" on the following line causes
overprinting to occur. "NEXT GROUP IS PLUS O" is the only
way to accomplish overprinting.

c. When a report group is to consist of multiple lines,
each line specification must conform with the rules
given in note 4a, and the entries defining all of the
lines must be subordinate to the overall report group
entry.

5. NEXT GROUP, when specified, refers to spacing conditions
following the last line of the report group and the next
report group described at a level number equal to or less
than the report group level number at which NEXT GROUP is
written.

6. In Option 3, level-number, either PICTURE or SIZE and either
SOURCE, SUM, or VALUE are required clauses in an elementary
entry. The presence of a SOURCE SELECTED clause at a group
level indicates a SOURCE is not required at the elementary
level. The absence of a COLUMN NUMBER clause in an elementary
SOURCE IS entry indicates PICTURE or SIZE is not required in
that entry.

CLASS

FUNCTION: To indicate the type of data being described.

[; CLASS IS

ALPHABETIC
NUMERIC
ALPHANUMERIC
AN

Notes:

Page VI-63

See the notes under CLASS in the Record Description entries.

Page VI-64

COLUMN NUMBER

FUNCTICN: To indicate the absolute COLUMN NUMBER on the printed
page of the left-most character of the elementary item.

Notes:

[; COLUMN NUMBER IS integer-I]

1. COLUMN NUMBER may be given only at the elementary level within
a report group.

2. COLUMN NlJMBER indicates that this elementary item is presented
in the output report group; if COLUMN NUMBER is not indicated,
the elementary item though included in the specifications for
the report group for control purposes is suppressed when the
report group is produced at object time.

3. Within a report group and a particular LINE NUMBER specification,
COLUMN NUMBER entries must be indicated from left to right.

COPY

FUNCTION:

Page VI-65

To duplicate within this report group a description found
elsewhere in the source program or contained in a library.

[data-name-1] COPY data-name-2 [FROM LIBRARY] .

Notes:

See the notes under COPY in the Record Description entries.

Page VI-66

DATA-NAME

FUNCTION: To specify a name for the data item being described.

[data -name - 1]

Notes for Report Section:

1. If data-name is specified in a level-number entry, the data
name must be the first word following the level-number and
must not be qualified or subscripted.

2. Qualification of a data-name can be provided through higher
level data-names. Thus, a data-name need not be unique within
or between Record Descriptions or Report Group Descriptions
provided a higher level name can be used for qualification.

3. Data-name-1 must be given in the following cases:

a. When the data-name represents a report group to be refe.rred
to by a GENERATE or a USE statement in the Procedure
Division.

b. When reference is to be made to the SUM counter in the
Procedure Division or Report Section.

c. When the SELECTED option is included with the SOURCE clause
at a higher level to indicate at this lower level the
SOURCE data-name(s) which are to be used as elementary items.

4. Since data-name-1 cannot be referred to by the user, except as
noted above, and is not meaningful to the Report Writer function
in any other case, including data-name-1 with every level number
entry is not necessary.

Page VI-67

EDITING CLAUSES

FUNCTION: To permit suppression of non-significant zeroes and commas,
to permit floating dollar signs or check protection, and to
permit the blanking of an item when its value is zero.

[
; {~~~gK S~i~~:~~ } (LEAVING integer PIACES ~ (BIANK WHEN ZERO]

FLOAT DOLLAR SIGN JJ
Notes:

See the notes under Editing Clauses in the Record Description
entries.

@~ a(ID@@ ~~ooa~~-----------CO_B_OL

Page VI-68

GROUP INDICATE

FUNCTION: To indicate that this elementary item is to be produced
only on the first occurrence of the item after any CONTROL
or PAGE break.

Notes:

[; GROUP INDICATE]

1. GROUP INDICATE must only be given at the elementary level within
a TYPE DETAIL report group.

2. An elementary item is not only GROUP INDICATEd in the first
DETAIL report group after a CONTROL break, but is also GROUP
INDICATEd in the first DETAIL report group of a new PAGE even
though a CONTROL break did not occur.

@~ a(@(Q)@ ~~ffiia~~-----------CO_BO_L

JUSTIFIED

FUNCTION:

Page VI-69

To specify non-standard positioning of a data item when less
than the maximum number of characters may be present.

[; [JusTIFIED} RIGHT

~
Notes:

See the notes under JUSTIFIED in the Record Description entries.

@~a(ID@@ ~~rffiU~®------------c_oB_oL

Page VI-70

LEVEL-NUMBER

FUNCTION: To show the hierarchy of items within a report group.

level-number (1 to 49)

Notes for Report Sectidn Only:

1. A level number is required as the first element in each Report
Group Description Entry.

2. Level Numbers must start at 01 for report groups, since report
gra.ips are the most inclusive groups possible. Less inclusive
report groups or elements of report groups are assigned higher
(not necessarily successive) level numbers not greater in value
t·han 49.

3. The combination of a level number and a TYPE clause· identifies
a report group entry; this entry may be one print line or several
print lines dependent on format structure within the report group
entry.

4. The level number indicates the depth of the particular report
group to be GENERATEd as output; TYPE indicates the time for
generation of this report group.

5. The elementary level number(s) within a report group indicate
the elementary item(s) with accompanying PICTURE or SIZE,
either SOURCE, SUM or VALUE, and its horizontal position within
the report group, if specified, i.e, COLUMN NUMBER.

Page VI-71

LINE NUMBER

FUNCTION: To indicate the absolute or relative LINE NUMBER of this entry
in reference to the PAGE or the previous entry.

Notes:

[; LINE NUMBER IS c~~~;g~~~;ger-3}]
NEXT PAGE

1. Integer-2 indicates an absolute LINE NUMBER which sets the LINE
COUNTER to this value for printing the item in this· entry and
following entries within the report group until a different
value for the LINE-COUNTER is specified.

2. Integer-3 indicates a relative LINE NUMBER which increments the
LINE-COUNTER for printing the item in this entry and following
entries within the report group until a different value for the
LINE-COUNTER is specified.

3. Integer-2 must be within the range specified by the PAGE LIMITS
clause in the Report Name Description Entry.

4. LINE NUMBER must be given for each indicated report group
according to the rules given under Report Group Complete
Entry Skeleton.

5. If LINE NUMBER is specified for a report group, the entire
report group is presented on the specified LINE NUMBER. If
LINE NUMBER is specified for a group item, it applies to all
subordinate items, and no lower level LINE NUMBER clause is
permitted.

6. If NEXT PAGE is specified, this entry will occur on the next
page.

@~a(ID@@ ~(g[Ri~~~ _______________ co_BOJ

Page VI-72

NEXT GROUP

FUNCTION:

(; NEXT

Notes:

To indicate the spacing to follow the last line of the
report group.

GROUP IS {integ:r-4 }
PLUS i.nteger-5
NEXT PAGE

1. Integer-4 .cannot exceed the maximum number of lines specified per
report PAGE.

2. Integer-4 indicates an absolute LINE NUMBER which sets the LINE
COUNTER to this value after producing the last line of the current
report group.

3. Integer-5 indicates a relative LINE NUMBER which increments the
LINE-COUNTER by the integer-5 value. Integer-5 represents the
number of lines skipped following the last line cf the current
report group. Further spacing is specified by the LINE NUMBER
clause of the next report group produced.

4. NEXT PAGE indicates an automatic skip to the NEXT PAGE following
the generation of the last line of the current report group.
Appropriate TYPE PAGE/OVERFLOW HEADINGs and TYPE PAGE/OVERFLOW
FOOTINGs will be produced as specified when NEXT PAGE is given.
The skip to NEXT PAGE after generation of a control footing
report group becomes automatic only if the report group is the
highest level of control footing to be printed for that control
break.

5. The NEXT GROUP clause may appear in conjunction with a TYPE clause.

COBOL

Page VI-73

PICTURE

FUNCTION: To indicate a detailed format of an elementary item, the
general characteristics of the item and special editing
features for printing.

{ ~ (

any allowable combination of the characters an)
PICTURE IS symbols described in the PICTURE clause under
.f!f Record Description entries

Notes:

See the notes under PICTURE in the Record Description entries.

@~ o®@© ~rnooa~~--------------C_.-..;;;;OB~OL

Page VI-74

POINT LOCATION

Notes:

See the notes under POINT in the Record Description entries.

FUNCTION: To specify the size of the item in terms of the Standard
Data Format characters.

[; SIZE IS integ_er-2
{

CHARACTERS}-]
DIGITS

Notes:

See Notes under SIZE in the Record Description entries.

~

FUNCTION:

Page VI-74.1

The RESET clause indicates the CONTROL data-name that causes the SUM counter
in the elementary item entry to be reset to zero on a CONTROL break.

RESET ON (~~~name-l}
Notes:

1. Data-name-1 must be one of the data-names described in the CONTROL
clause in the Report Description entry. Data-name-1 must be a higher
level CONTROL data-name than the CONTROL data-name associated with
the CONTROL FOOTING report group in which the SUM and RESET clauses
appear.

2 The RESET clause may only be used in conjunction with a SUM clause at
the elementary level.

3. After presentation of the TYPE CONTROL FOOTING report group, the
counters associated with the report group are reset automatically
to zero unless an explicit RESET clause is given specifying reset
based on a higher level control than the associated control for the
report group.

4. The RESET clause may be used for progressive totaling of data-names
where subtotals of data-names may be desired without automatic re
setting upon producing the report group.

@~a(ID@@ ®~[ffi~[g®-----------C_OB_OL

Page VI-75

SOURCE-SUM-VALUE

FUNCTION: To define the source of this report item.

{

; SOURCE IS [SELECTED] data-name-1}
; .filll:! data-name-2 [UPON data-name-3]
; VALUE IS literal-I

1. Data-name-1, 2, indicate items in either the File, Working-Storage
or Constant Section, or is the name of a SUM counter in the Report
Section.

2. SOURCE (without SELECTED), SUM and VALUE can only be given at the
elementary level. SOURCE IS SELECTED can only be given at a group
level.

SOURCE

3. This clause indicates a data-name item which is to be used as the
SOURCE for this report item. The item is presented according to
the PICTURE or SIZE clause in the associated elementary report group
entry.

4. When the SELECTED option is given, data-name-1 represents a group
item. Data-name-1 may be qualified but not subscripted. No
subordinate groups may have a SELECTED clause. The data-name(s)
described at the elementary level in the source group then become
SOURCE data-name entries in the associated report group. The
SELECTED elementary level data-name(s) must be unique data-name(s).
They may be subscripted.

5. The elementary level items within data-name-1 are matched against
the data-name(s) specified at the elementary level within the report
group. Matching data-name(s) are SELECTED as SOURCE item entries
to be included and presented within the report group, according to
the PICTURE or CLASS and SIZE specifications given with the data-name
in the report group entry.

SUM (See the notes under the ~verb.)

6. A SUM clause may only appear in a TYPE CONTROL FOOTING report group.

@~a(ID@@ ®~000~~---------COB_OL

Page VI-76

7. If a SUM counter needs to be referred to by a Procedure Division
statement or Report Section entry, a data-name must be specified
with the SUM clause entry. The data-name then represents a sum
mation counter automatically generated by the Report Writer to
total the operand specified immediately following SUM. If a
summation counter is never referred to, the counter need not be
named explicitly by a data-name entry.

8. Whether the SUM clause names the summation counter or not, the
Report Writer generates an appropriate NUMERIC storage item based
on the numeric characters to be presented within the associated
PICTURE or SIZE clause.

9. Each data-name-2 item being summed, must appear as a SOURCE item
in a TYPE DETAIL report group in the current Report Description
or must be names of SUM counters in a TYPE CONTROL report group
at an equal or lower position in the control hierarchy. Although
the item(s) must be explicitly written in a TYPE DETAIL report
group, they may actually be suppressed at presentation time. In
this manner, direct association without ambiguity can be made from
the current data available by a GENERATE statement to the data items
to be presented within the REPORT Section.

10. Data-name-2 may be subscripted for selective summation and must
be qualified to make the named item unique.

11. If higher level report groups are indicated in the CONTROL hier
archy, counter updating procedures commonly called "rolling counters
forward," take place prior to the reset operation.

12. Updating is automatic between adjacent level TYPE CONTROL FOOTING
report groups. The summation of data items is accomplished
explicitly or implicitly at every TYPE CONTROL FOOTING level in
order for this automatic procedure to function; e.g., if a minor
SUM CONTROL of a data item is not desired for presentation but
the intermediate and major SUM CONTROLS are, the minor SUM
specification may be omitted with the Report Writer automatically
generating an appropriate summation counter for the updating function.

Page VI-76.1

13. The UPON data-name-3 option is required to obtain selective summation
for a particular data item which is named as a SOURCE item in two or
more TYPE DETAIL report groups.• Data-name-3 must be the name of a
TYPE DETAIL report group. Data-name-2 must be a SOURCE data-item in
data-name-3. If the UPON data-name-3 option is not used, date-name-2
is added to the SUM counter at each execution of a GENERATE statement.
This statement generates a TYPE DETAIL report group that contains the
SUM operand at the elementary level.

VALUE

14. Literal-1 may be NUMERIC, ALPHANUMERIC, ALPHABETIC or a figurative
constant.

@~a(ID@@ ~~ooa~~-----------COB_OL

Page VI-77

FUNCTION: To specify the circumstances under which this report group
is to be presented.

{REPORT HEADING)
-.RH

{:~GE HEADING)

{~~ERFLOW HEADING)

' CONTROL HEAD ING)
CH {data-name-~ FINAL J

TYPE IS
{DETAIL)

DE .

{
data -name-~
FINAL)

Notes:

CONTROL FOOTING)
CF .

OVERFLOW FOOTING·)
ov

{:~GE FOOTING _)

{;PORT FOOTING)

1. REPORT HEADING or RH indicates a report group that is produced
only once at the initiation of a report. There may be only one
01 level report group of this TYPE in a report.

2. PAGE HEADING or PH indicates a report group that is produced at
the beginning of each page according to PAGE and OVERFLOW
condition rules as specified in Note 18. There may be only one
01 level report group of this TYPE in a report.

3- OVERFLOW HEADING or OH indicates a report group that is produced
at the beginning of a page following an OVERFLOW condition accord
ing to PAGE and OVERFLOW rules as specified in Note 18. There
may be only one 01 level report group of this TYPE in a report.

4. CONTROL HEADING or CH indicates a report group that is produced
at the beginning of a control group for a designated data-name
or in the case of FINAL is produced once at the initiation of a
report before the first control group. There may be only one 01
level report group of this TYPE for each CONTROL data-name and
for FINAL specified in a report.

Page VI-78

5. DETAIL or DE indicates a report group that may be referenced by
GENERATE statements in the Procedure Division. Each DETAIL
report group must have a data-name. If the report group TYPE is
other than DETAIL, the Procedure Division statement, GENERATE
data-name, directs the report writer to produce the named report
group.

6. CONTROL FOOTING or.CF indicates a report group that is produced at
the end of a control group for a designated data-name or is pro
duced once at the termination of a report ending a FINAL control
group. There may be only one 01 level report group of this TYPE
for each CONTROL data-name and for FINAL specified in a report.

7. OVERFLOW FOO+ING or OV indicates a report group that is produced
at the bottom of a page following an OVERFLOW condition according
to PAGE and OVERFLOW rules as specified in Note 18. There may be
only one 01 level report group of this TYPE in a report.

8. PAGE FOOTING or PF indicates a report group that is produced at
the bottom of each page according to PAGE and OVERFLOW condition
rules as specified in Note 18. There may be only one 01 level
report group of this TYPE in a report.

9. REPORT FOOTING or RF indicates a report group that is produced
only once at the termination of a report. There may be only one
01 level report group of this TYPE in a report.

10. Data-name-n, as well as FINAL, must be one of the data-name(s)
described in the CONTROL{S) clause in the Report Name Description
Entry.

11. A FINAL TYPE CONTROL break may be designated only once for
CONTROL HEADING and/or CONTROL FOOTING withi..n a particular report.

12. Nothing will precede a REPORT HF.A.DING and nothing will follow a
REPORT FOOTING within a report.

13. The HEADING and/or FOOTING report groups occur in the following
Report Writer sequence, if all exist for a given report:

REPORT HEADING (one occurrence only first page)
PAGE HEADING or OVERFLOW HEADING

CONTROL HEADING
DETAILS
CONTROL FOOTING

PAGE FOOTING or OVERFLOW FOOTING
REPORT FOOTING (one occurrence only last page)

Page VI-79

14. CONTROL HEADING report groups are presented in tl'E following
hierarchical arrangement:

FINAL CONTROL HEADING
MAJOR CONTROL HEADING

MINOR CONTROL HEADING

CONTROL FOOTING report groups are presented in the following
hierarchical arrangement:

MINOR CONTROL FOOTING

MAJOR CONTROL FOOTING
FINAL CONTROL FOOTING

15. CONTROL HEADING report groups appear with the current values of
any indicated SOURCE data items before the DETAIL report groups
of the CONTROL group are produced. CONTROL FOOTING report
groups appear with the previous values of any indicated CONTROL
data-name items just after the DETAIL report groups of that
CONTROL group have been produced. These report groups appear
whenever a CONTROL break is noted. LINE NUMBER determines the
absolute or relative position of the CONTROL report groups
exclusive of the other HEADING and FOOTING report groups.

16. The concept of the OVERFLOW condition in a Report Writer is based
on the logical definition of a page format relative to the presen
tation of a complete central group. For purposes of the OVER
FLOW condition, a complete control group depends on the change of
a data item value within a designated order of specific data
items. If the change is a MINOR cm trol group break, the complete
control group includes the HEADING, DETAIL and FOOTING report
groups associated with the MINOR CONTROL specification. If the
change is a MAJOR control group break, the complete control groups
includes the HEADING, DETAIL and FOOTING report groups associated
with the MINOR, INTERMEDIATE, and MAJOR CONTROL specifications,
etc. Thus, during process time, if a page format does not allow
a complete control group to be presented within the definition of
the page, an OVERFLOW condition is Slid to exist from the last
DETAIL report group printed in the control group on one page to
the first report group printed in the control group on the next
page. Between the "points" of "from and to" described above,
OVERFLOW FOOTING and OVERFLOW HEADING report groups may be
produced, if specified. If a complete control group, as described
above, and none of the next control group can be presented within
the definition of the page, a PAGE condition is said to exist
from the last DETAIL report group and therefore, PAGE FOOTING and
PAGE HEADING report groups are produced, if specified.

@~ c(ID@@ ~~lffiO~~-----------c_oB_OL

Page VI-80

17. PAGE HEADING and OVERFLOW HEADING, and PAGE FOOTING and OVERFLOW
FOOTING, if specified in a report, are mutually exclusive for any
one page. The absence of a TYPE OVERFLOW HEADING indicates that
TYPE PAGE HEADING report group(s), if specified, are produced at
the beginning of each page regardless of the condition that
prompted the new pagee Likewise, the absence of a TYPE OVERFLOW
FOOTING indicates that TYPE PAGE FOOTING report group(s), if
specified, are produced at the bottom of each page regardless of
the condition that ended the current page.

18. In order to recognize the OVERFLOW condition within the Report
Writer the PAGE LIMITS clause must be given including the I.AST
DETAIL option. If both TYPE PAGE HEADING and OVERFLOW HEADING
and/or TYPE PAGE FOOTING and OVERFLOW FOOTING report group(s)
are specified in the same report and if the LINE-COUNTER will
exceed the LAST DETAIL limit for generation of the current report
group, the following rules apply:

a. Without the PAGE LIMITS FOOTING option, if the current
DETAIL report group is ,not the first DETAIL report group
of a new CONTROL group, an OVERFLOW condition exists
from this position on the page to the position on the
next page where the FIRST DETAIL report group can be
presentedo If the current DETAIL report group is the
first DETAIL report group cf a new CONTROL group, a
PAGE condition exists.

b. With the PAGE LIMITS FOOTING option, if the current
report group is a TYPE DETAIL report group, an OVER-
FLOW condition exists as stated in a. above. If the
current report group is a CONTROL FOOTING report group,
the test is made to determine if the LINE-COUNTER will
exceed the FOOTING limit for generation of the complete
CONTROL FOOTING report group. If all the report group(s)
associated with this CONTROL break can be produced within
the limit specified, a PAGE condition exists following
the CONTROL FOOTING report group. If all the report
group(s) associated with this CONTROL break cannot be
produced within the limit specified, an OVERFLOW condition
exists which means the TYPE CONTROL FOOTING report group(s)
are produced on the following pageo

c. Without the PAGE LIMITS LAST DETAIL option, an OVERFLOW
condition cannot exist within the Report Writer. Therefore,
with or without the PAGE LIMITS FOOTING option, TYPE PAGE
FOOTINGS, as differentiated from TYPE OVERFLOW FOOTINGS
described in Note 18, are the only report groups that are
produced, if specified, after TYPE DETAIL and TYPE CONTROL
report groups on a page. The absence of both LAST DETAIL
and FOOTING options invalidates the presence of either
OVERFLOW or PAGE FOOTING report groups.

@~ a(ID@@ ~~rma~~-----------CO_BO_L

Page VI-81

d. The careful programmer by setting proper PAGE LIMITS can
effectively control the format within a page using all the
TYPE report groups available. Omitting the FOOTING option
indicates the Report Writer always functions as described
in a. above. However, for the programmer who desires to
produce all control footing report group(s) on one page if
a CONTROL break does occur, the Report Writer is able to
function as described in b. above.

e. The rules stated in Note 17 above apply regardless of the
conditions that may be recognized by the Report Writer as
described in Note 18.

19. The TYPE clause must occur at the 01 level.

@~a@@@ ~~mm~~ _____________ c_oB

Page VI- 82

USAGE

FUNCTI~~: USAGE T:S s{i~;;;;~: }~inant use of a data item.

Notes:

See the notes under USAGE in the Record Description Entries. The
only allowable USAGEs for report items are DISPLAY and DISPIAY-1.

Page VI-83

SUMMARY

FILE SECTION

The FILE SECTION contains a section header, File Description entries and
Record Description entries for label records. Some of the information
about the file may be in the COBOL library and therefore may not appear
explicitly in the FILE Section. The order of information is as follows:

FILE SECTION.
FD file-name ...
01 label-name •..

01 record-name ...

FD file-name ...

SD file-name ...

Specifications and Handling of Labels

The COBOL System provides for the automatic handling of four types of
labels - beginning and ending, file and tape. The notes for the LABEL
RECORDS clause in the File Description entry contain an indication of the
relative position of these labels on the tape(s) associated with a file.

A label record is a logical record containing the labeling information
about a tape or file. There are many different types of label records,
but some of these are fairly standard. In order to have common recogni
tion of these records, fixed names have been assigned. The label records
with fixed names are:

BEGINNING-TAPE-LABEL
BEGINNING-FILE-LABEL
ENDING-FILE-LABEL
ENDING-TAPE-LABEL

A Record Description must be available for each label record employed.
Record Descriptions for label records are prepared in the same manner
as those prepared for data records; however, since the input/output
system must perform special operations on certain items within the label
record, fixed names have been ass1gned to those label items which have
particular significance.

For purposes of discussion, label items are classified as follows:

1. Those which must contain unique values depending on the
particular file involved, such as the name and number of
the file.

@~ a(ID@@ ~~[ffi~~~-----------CO_BO_L

Page VI- 84

2. Those which have a general meaning in the processing of files,
such as record count, tape number, etc.

3. Those having special functions which are not handled automati
cally.

An item which must have a unique value depending on the particular file
is handled in the following manner:

1. In preparing the Record Description entry, any name may be
assigned to the item. Since the value of the item is a vari
able, it is not shown.

2. In preparing the File Description entry, the name of the item
and the value which it must contain is listed in the VALUE
clause.

3. In processing an input file, an equality test is made between
the contents of the label item, and the corresponding value
specified in the file description.

4. In processing an output file, the value specified in the file
description is entered in the label item of the beginning file.

The standard GE-600 Series BEGINNING-TAPE-LABEL and BEGINNING-FILE-LABEL
have identical formats:

01 BEGINNING-TAPE-LABEL; SIZE 84 DISPLAY CHARACTERS.
02 LABEL-IDENTIFIER; PICTURE X(l2) VALUE

IS "GE 600 BTL ".
02 INSTALLATION; PICTURE X(6).
02 REEL-SERIAL-NUMBER; PICTURE B9(5).
02 FILE-SERIAL-NUMBER; PICTURE B9(5).
02 REEL-NUMBER; PICTURE BB9999; RANGE

IS " 0001" THRU " 9999".
02 DATE-WRITTEN; SIZE 6.

03 LABEL-YEAR: PICTURE B99.
03 LABEL-DAY: PICTURE 999; RANGE IS 001

THRU 365.
02 FILLER; PICTURE XXX; VALUE SPACES.
02 RETENTION-PERIOD; PICTURE 999;

RANGE IS 001 THRU 999.
02 IDENTIFICATION; PICTURE X(l2).
02 FILLER; SIZE 24 AN CHARACTERS.
66 ID RENAMES IDENTIFICATION.

The standard GE-600 Series ENDING-TAPE-LABEL and ENDING-FILE-LABEL
also have identical formats:

01 ENDING-TAPE-LABEL; SIZE 84.
02 SENTINEL; PICTURE X(6).

88 END-OF-TAPE; VALUE IS ·11 EOR "
88 END-OF-FILE; VALUE IS " EOF "

02 BLOCK-COUNT; PICTURE 9(6).
02 FILLER; SIZE IS 72 AN CHARACTERS.

Page VI-85

Except when RECORDING MODE IS BCD, BLOCK-COUNT has USAGE COMPUTATIONAL-1.
For BCD files, it is DISPI.AY, as is implicitly shown above.

The FILLER items at the end of each of the above formats may be replaced
by descriptions of additional data items to be included in the label re
cords. Such additional items, if present, must be processed in USE pro
cedures. Unless such items are included, the STANDARD label descriptions
are implicitly described by the LABEL RECORDS ARE STANDARD clause, and
consequently STANDARD labels need not be described, even if their contents
are referenced in USE procedures.

Label record contents may be accessed only by USE procedures, and only one
label record is available when USE procedures are executed. Standard
label item data-names need never be qualified in procedural references.

If explicit label record descriptions are specified, the standard contents
must be described exactly as shown above, with respect to data-names,
PICTUREs, and position. The overall size of each label record must be 84
characters. Departures from these rules can lead to unpredictable results.
VALUE clauses do not result in automatic MOVEs of the specified literals
to output labels. All standard label items are automatically handled by
the input/output routines; an option is provided for specifying the lit
erals to be used with IDENTIFICATION and RETENTION-PERIOD via the FD
VALUE clause.

Because label record formats are generally not the same for different
computer lines, a program with explicit label record descriptions must
usually be modified if it is to be compiled on any computer line other
than that for which it was originally programmed. Not all fixed label·
item data-names can be used with all compilers, but the fixed label record
names themselves are usually available, in addition to the following fixed
data-names:

IDENTIFICATION
REEL-NUMBER
DATE-WRITTEN
BLOCK-COUNT
SENTINEL
END-OF-TAPE
END-OF-FILE

If label record descriptions are explicitly given for a file, they must
precede the descriptions of logical data records. Standard label record
names must never be mentioned in a DATA RECORD[S] clause.

Page VI-86

WORKING-STORAGE SECTION

Working Storage is that part of computer memory set aside for intermedi
ate processing of data. The difference between WORKING-STORAGE and FILE
storage is that the former deals with computer memory requirements for
the storage of intermediate data results whereas the latter deals with
the computer memory requirements for the storage of each record of the
file.

Organization

Whereas the FILE SECTION is composed of File Description entries and
Record Description entries, the WORKING-STORAGE SECTION is composed
only of Record Description entries. The WORKING-STORAGE SECTION begins
with a section-header and a period, followed by Record Description entries
for non-contiguous working storage items, and then by Record Description
entries for working storage records, in that order. The skeletal format
for WORKING-STORAGE SECTION is as follows:

woruzn:.c S'fORAGE SECTION.
77 d:.i ta-name-1

88 condition-name-1

77 data-name-n
01 data-name-2

02 data-name-3

66 data-name-m RENAMES data-name-3
01 data-name-4

02 data-name-5
03 data-name-n

88 condition-name-2

Non-Contiguous Working-Storage

Items in working storage which bear no relationship to one another need
not be grouped into records, provided they do not need to be further sub
divided. Such items are called non-contiguous items. Each of these
items is defined in a separate Record Description entry which begins with
the special level number 77.

The following Record Description clauses are required in each level 77
entry:

1. level-number
2. data-name
3. SIZE (when PICTURE is not specified).

Page VI-l

The OCCURS and REDEFINES clauses are not meaningful in level 77 entries and
will cause an error at compilation time if used. Other Record Description
clauses are optional and can be used to complete the description of the item,
if necessaryo

Working-Storage Records

Data elements in working storage which bear a definite relationship to one
another must be grouped into records according to the rules for formation
of Record Descriptions. All clauses which are used in normal input or
output Record Descriptions can be used in a WORKING-STORAGE Record Descrip
tion, including REDEFINES, OCCURS, and COPY. Each working storage record
name (01 level) must be unique since it cannot be qualified by a file-name
or section-name. Subordinate data-names need not be unique if they can be
made unique by qualification.

Initial Values

The initial value of any item in the WORKING-STORAGE SECTION may be
specified by using the VALUE clause of the Record Description. If VALUE
is not specified the initial values may be unpredictable. VALUE can be
specified o~ly in terms of homogeneous characters (i.eo, characters having
the same USAGE)o VALUE, therefore, cannot be specified in a group item
which contains elementary items having different USAGEs. All the rules
for the expression of literals and figurative constants apply. The size
of a literal used to specify an initial value can be equal to or less than
the size specified in the SIZE clause (or PICTURE) of the associated data
entry, but it cannot be greater. When the size is less, normal rules for
a MOVE of a literal apply.

For example:

1. 77 PAGE-1; SIZE IS 7 NUMERIC COMPUTATIONAL CHARACTERS
VALUE IS 0000342. (Legal)

2. 04 PAGE-NO; SIZE 4; CLASS NUMERIC; VALUE IS 5. (Legal)
3 o 02 ADDRESS-1; SIZE 5: CLASS AN VALUE IS "XY1245Z". (Illegal)
4o 03 GROUPING; SIZE 9; CLASS NUMERIC; VALUE IS ZEROS. (Legal)

In example 2, the CLASS is NUMERICo Therefore, the value of the item will
be right justified with zero fill and will be stored as 0005.

Condition-Names

Any working storage item may constitute a conditional variable with which
one or more condition-names may be associated. Entries defining condition
names must inmediately follow the item to which they relate. Both the
conditional variable entry and the associated condition-name entries may
contain VALUE clauses. (See VALUE clause for examples.)

@(Ea@(ID(Q) ~~rma~~--------------~CO;.;;.;;BC

Page VI-88

CONSTANT SECTION

The concept of literals and figuratives enables the user to specify the
value of a constant by writing its actual value (or a figurative represen
tation of that value). It is often desirable to name this value and then
refer to it by its name. For example:

6%(.06) may be named as INTEREST-RATE and then referred to by its
name (INTEREST-RATE) instead of its value (.06).

Constant Storage is computer memory area which is set aside to save named
constants for use in a given program.

Organization

The CONSTANT SECTION is organized in exactly the same way as the WORKING
STORAGE SECTIONj beginning with a section header, followed by Record·
Description entries for non-contiguous constants, and then by· Record
Description entries, in that order. The skeletal format for the CONSTANT
SECTION is as follows:

CONSTANT SECTION.
77 data -name -1

77 data-name-n
01 c:!a ta -name -2

02 data-name-3

01 data-name-4
02 data-name-5

03 data-name-6

Non-Contiguous Constant Storage

Constants which bear no relationship to one another need not be grouped
into records provided they do not need to be further subdivided. Such items
are called non-contiguous constants. Each of these constants is defined
in a separate Record Description entry which begins with the special level
number 77.

The following Record Description clauses are required in each level 77
entry:

1. level number
2. data-name
3. SIZE (when PICTURE is not given)
4. VALUE

@~ a(ID(Q)@ ~~000~~----------...-.CO-.-BO--.L

Page VI-89

The OCCURS and REDEFINES clauses are not meaningful for level 77 ~ntries
and will cause an error at compilation time if used. Other Record Des
cription clauses are optional and can be used to complete the description
of the constant when necessary.

Constant Records

Named constants in CONSTANT SECTION which bear a definite relationship to
one another must be grouped into records according to the rules for forma
tion of Record Descriptions. All Record Description clauses can be used
in a Constant Record Description, including REDEFINES, OCCURS, and COPY.
Each CONSTANT SECTION record-name (01 level) must be unique since it cannot
be qualified by a file-nam~ or section-name. Subordinate data-names need
not be unique if they can be made unique by qualification.

VALUE of Constants

In the definition of constants, the VALUE clause is required. VALUE cannot
be specified in a group entry which contains items having different USAGEs.
All the rules for the expression of literals and figurative constants
apply. The size of a literal used to specify the value of a constant can
be equal to or less than the specified size of the item, but it cannot be
greater.

Condition-Names

Since a constant can have only one value, there can be no associated con
dition-names. The use of a condition-name entry {level 88) in the CONSTANT
SECTION is, therefore, illegal and will constitute an error in the source
program.

Table of Constants

Tables of constants to be referenced by means of subscripting are ·defined
in one of the following ways:

1. The table may be described as a record by a set of contiguous
Record Description entries each of which specifies the VALUE of
an element, or part of an element, of the table. In defining
the record and its elements, any Record Description clause
(i.e., SIZE, USAGE, PICTURE, editing information, etc.) may be
used to complete the definition where required. This form is
required when the elements of .the table require separate handling
due to S~NCHRONIZation, USAGE, etc. The structure of the table
is then shown by use of the REDEFINES entry and its associated
subordinate entries.

2. When the elements of the table do not require separate handling,
the VALUE of the entire table may be given in the entry defining
the entire table. The lower level entries will show the hierar
chical structure of the table.

@(Ea(@@@ ~~ooa~~-----------C..._...OBO..._L

Page VII-1

VII. PROCEDURE DIVISION

GENERAL DESCRIPTION

The PROCEDURE DIVISION contains the procedures needed to solve a given
problem. These procedures are written as sentences, combined to form
paragraphs, which in turn may be combined to form sections.

RULES OF PROCEDURE FORMATION

COBOL procedures are expressed in a manner similar (but not identical) to
normal English prose. The basic unit of procedure formation is a sentence
or a group of successive. sentences. A procedure is a paragraph, or a group
of successive paragraphs, or a section, or a group of successive sections
within the PROCEDURE DIVISION.

STATEMENTS

There are three types of statements: imperative statements, conditional
statements, and compiler directing statements.

Imperative Statements

An imperative statement consists of either a verb (excluding compiler direct
ing verbs) and its operands, or a sequence of imperative statements.

Conditional Statements

A conditional statement is defined to be one of the four following forms:

{
Statement-1 } /QTHERWISE) (Statement-2 }

IF condition NEXT SENTENCE l ELSE NEXT SENTENCE

2. Any arithmetic verb; ON SIZE ERROR any imperative statement.

{
READ } 3. RETURN file-name RECORD [INTO data-name][; AT END any imperative

statement J
4. Any imperative statement not containing a GO or STOP RUN statement

followed by a conditional statement of the form 1, 2, or 3.

The "any arithmetic verb" in form 2 is any of the verbs ADD, SUBTRACT,
r-0.JLTIPLY, DIVIDE or COMPUTE. Form 3 is considered conditional whether or
not the AT END clause is explicitly written, since it must be applied to
the READ statement either implicitly or explicitly.

Statement-1 or statement-2 can be either imperative or conditional; and if
conditional can, in turn, contain conditional statements in arbitrary depth.
If statement-1 or statement-2 is conditional, then the conditions within the
conditional statement are considered to be "nested."

@~a®@@ ~~rRrn~~-------~----c_os_oL

Page VII-2

Compiler Directing Statements

A compiler directing statement consists of a compiler directing verb and
its operands.

SENTENCES

A sentence consists of a sequence of one or more statements, the last of
which is terminated by a period. The statements comprising the sentence
must be either (a) one Compiler Directing Statement, or (b) an Imperative
or Conditional Statement, syntactically correct according to the above
rules.

A sentence which is composed of a Compiler Directing Statement_is called~
"Compiler Directing Sentence." A sentence which is composed of an Impera
tive or a Conditional Statement is called a "Procedural Sentence."

Imperative Sentences

An imperative statement terminated by a period is an imperative sentence.

EXAMPLE MOVE A TO B.
MOVE A TO B; ADD C TO D.

An imperative sentence can contain either a GO statement or a STOP RUN
statement, which (if present) must be the last statement in the sentence.

EXAMPLE~ MOVE A TO B; ADD C TO D THEN GO TO START.

Conditional Sentences

A conditional statement terminated by a period is a conditional sentence.

EXAMPLE:

IF X EQUALS Y THEN MOVE A TO B; OTHERWISE MOVE C TO D.

IF X EQUALS Y MOVE A TO B; IF W EQUALS T ADD A TO B;
OTHERWISE NEXT SENTENCE; OTHERWISE MOVE C TO D.

MOVE Y TO A; OPEN OUTPUT ERROR-FILE; ADD X TO Y;
ON SIZE ERROR ADD Y TO Z; DISPLAY "OVERFLOW ON Y" o

READ ERROR-RECORD; AT END GO TO CLOSING-ROUTINE.

If the phrase "OTHERWISE NEXT SENTENCE" innnediately precedes the period,
then the phrase "OTHERWISE NEXT SENTENCE" may be eliminated. This rule may
then be applied again to the resulting sentence.

Compiler Directing Sentences

A compiler directing statement terminated with a period is a compiler
directing sentence.

Page VII-3

EXAMPLE: USE AFTER ERROR PROCEDURE ON MASTER-FILE.

SENTENCE PUNCTUATION

Verb Formats

Punctuation rules for individual verbs are as shown in verb formats and in
Chapters IV and V.

Sentence Formats

The following rules apply to the punctuation of sentences:

1. A sentence is terminated by a period.

2. A separator is a word o~ character used for the purpose of enhanc
ing readability. Use of a separator is optional.

3. The allowable separators are:

THEN

4. These separators must not be followed iIIllllediately by another such
separator.

S. Separators may be used in the following places:

a. Between statements.

b. In a conditional statement:

Between the condition and statement-!

Between statement-! and OTHERWISE.

SENTENCE EXECUTION

For the following discussion, by "execution of a sentence or a statement
within a sentence" is meant "execution of an object program compiled from
a sentence, or from a statement within a sentence which has been written
in COBOL." By "transfer of control" is meant "transfer of control in the
object program by transferring (GOing) from one place (control point) to
another place (control point) out of the written sequence." By "passing
of control" is meant "passing of control in the object program by passing
from one place (control point) to the next place (control point) in the
written sequence."

Whenever a GO statement is encountered during the execution of a sentence
or statement, there will be an unconditional transfer of control to the
first procedu:ral sentence of the paragraph or section referenced by the GO
statement.

@~c®@® ~~ooa~~-----------CO_BO_L

Page VII-4

Imperative Sentences

An imperative sentence is executed in its entirety and control is passed to
the next procedural sentence.

Conditional Sentences

. . (statement-! } {OTHERWISE) {statement-2)
IF condition NEXT SENTENCE ELSE \:.NEXT SENTENCE

In the conditional sentence above, the condition is an expression which is
true or false" If the condition is true, then statement-1 is executed and
control is transferred to the next sentence. If the condition is false,
statement-2 is executed and then control is passed to the next sentence.

If statement-! is conditional, then the conditional statement should be the
last (or only) statement comprising statement-I. For example, the condi
tional sentence would then have the form:

IF condition-I imperative-statement-! IF condition-2 statement-3
OTHERWISE statement-4 OTHERWISE statement-2

If condition-1 is true imperative-statement-I is executed, then if condi
tion-2 is true statement-3 is executed and control is transferred to the
next sentence. If condition-2 is false then statement-4 is executed and
control is transferred to the next sentence. If condition-I is false
statement-2 is executed and control is passed to the next sentence.

Statement-3 can in turn be either imperative or conditional, and if condi
tional can in turn contain conditional statements in arbitrary depth. In
an identical manner statement-4 can be either imperative or conditional,
as can statement-2.

The execution of the phrase "OTHERWISE NEXT SENTENCE" causes a transfer of
control to the next sentence as written, except when it appears in the last
sentence of a procedure being PERFORMed, in which case control is passed to
the return mechanism.

Compiler Directing Sentences

Compiler Directing Sentences direct a COBOL processor to take action at
compilation time, rather than specifying action to be taken by the object
program,

CONTROL RELATIONSHIP BETWEEN PROCEDURES

In COBOL, Imperative and Conditional sentences describe the procedure that
is to be accomplished. The sentences are written successively, according
to the rules of the Reference Format (Chapter III) to establish the sequence
in which the object-program is to execute the procedure.

Page VII-5

In executing procedures, control is transferred only to the beginning of a
paragraph. Control is passed to a sentence within a paragraph only from
the sentence written immediately preceding it. If a procedure is named,
control can be passed to it from the sentence irmnediately preceding it, or
can be transferred to it from any sentence which contains a GO TO or PERFORM
followed by the name of the procedure to which control is to be transferred.

CONDITIONALS

GENERAL DESCRIPTION

Conditional procedures are one of the keystones in describing data process
ing problems. COBOL makes available to the programmer several means of
expressing conditional situations.

COBOL conditionals generally involve the key word IF followed by the condi
tions to be examined followed by the operations to be performed. Depending
upon the truth or falsity of the conditions different sets of operations
are to be performed.

CONDITIONS

Simple Conditions

A simple condition is one of three types of tests. These tests and the
acceptable formats for stating them are described below. (The word IF
is not part of the conditional, but is shown in the formats of this section
tc improve readability.)

1. Relation Tests

A relation test involves a comparison of two operands; either of these
two operands can be a data-name, a literal, or a formula. The co~pari

son of two literals is not permitted. Throughout the remainder of the
discussion the word "item" means either a data item or a literal.
Comparison of NUMERIC items is permitted regardless of their individual
USAGEs. All other comparisons require that the USAGE of the items
being compar~d be the same.

a. Comparison of NUMERIC Items

For NUMERIC items, a comparison results in the determination that
the value of one of the items is LESS THAN, EQUAL TO, or GREATER
THAN the other.

The comparison of NUMERIC items is based on the respective values
of the items considered purely as algebraic values. The item
length, in terms of the number of digits, is not itself signifi
cant. Zero is considered to represent a unique value regardless of
the length, sign or implied decimal point location of an item.

Page VII-6

b. Comparison of non-NUMERIC Items

For two non-NUMERIC items, or one NUMERIC (excluding the opera
tional sign) and one non-NUMERIC item, a comparison results in the
determination that one of the items is LESS THAN, EQUAL TO, or
GREATER THAN the other with respect to an ordered character set.
Except when USAGE of the items is DISPLAY-2, the character set
order is determined by the Standard Collating Sequence. The order
for DISPLAY-2 items is determined by the Connnercial Collating
Sequence. Literals cannot be compared to DISPLAY-2 items.

If the items are of equal SIZE, comparison proceeds by comparing
characters in corresponding character positions starting from the
high order end and continuing until either a pair of unequal charac
ters is encountered or the low order end of the item is reached,
whichever c.omes first. The items are determined to be EQUAL when
the low order end is reached.

The first encountered pair of unequal characters is compared for
relative location in the ordered character set. The item which
contains that character which is positioned higher in the ordered
sequence is determined to be the GREATER item.

If the items are of unequal SIZE, comparison proceeds as described
above. If this process exhausts the characters of the item of
lesser SIZE, then the item of lesser SIZE is LESS THAN the item
of larger SIZE unless the remainder of the item of larger SIZE
consists solely of spaces, in which case the two items are EQUAL.

The format for full relation tests is:

~
data-name-;

IF literal-1
formula-1

~~I ·=

IS lliQfl GREATER THAN
IS lliQfl LESS THAN
IS (filITJ EQUAL TO
IS UNEQUAL IQ
EQUALS
EXCEEDS

{

data-name-2}
literal-2
formula-2

The word EXCEEDS is equivalent to IS GREATER THAN. The
phrase IS UNEQUAL TO is equivalent to IS NOT EQUAL TO.

In the preceding format, the actual choice from data-name-1, literal-1,
and formula-1 is called the subject. The choice from data-name-2,
literal-2, and formula-2 is called the object. The subject and the
object cannot both be literals.

Page VII-7

STANDARD COLLATING SEQUENCE

i< QJ ~ QJ i< QJ ~ QJ
H "O ct! "O M "O ct! "O

"O QJ "O 0 •.-1 0 "O QJ "O 0 •.-1 0
H +J MU uu "O M +J HU OU "O
ct! CJ ct! M QJ ct! 0 ct! M QJ

"O ct! "O ~ QJ ~ ..c:
S: M s: ct! ~ ~ 0 "O
ct! ct! ct! .j.J S: H

"O ct! "O ~ QJ ~ ..c:
S: H s: ct! ~ ~ 0 "O
ct! ct! ct! .j.J S: H

+J.,.C: .j.J 0 0 0 if J ~u Cf.) 0 t) 0
.j.J ,.c: .j.J (.) 0 (.) ~J Cf.> u Cf.> 0 t.:> 0

0 00 60 0

"'
40 35 11-0

1 01 61 1 J 41 36 11-1
2 02 62 2 K 42 37 11-2
3 03 63 3 L 43 40 11-3
4 04 64 4 M 44 41 11-4
s OS 6S s N 45 42 11-S
6 06 66 6 0 46 43 11-6
7 07 67 7 p 47 44 11-7
8. 10 70 8 Q 50 45 11-8
9 11 71 9 R 51 46 11-9

12 16 2-8 - S2 10 11
1; 13 17 3-8 $ 53 06 11-3-8
@ 14 22 4-8 * 54 07 11-4-8
: lS 72 S-8) 55 03 11-5-8

> 16 20 6-8 ; 56 76 11-6-8
Ignore 17 73 7-8 or?
space 20 00 blank

A 21 24 12-1

' 57 21 :11-7-8
+ 60 23 12-0
I 61 11 0-1

B. 22 2S 12-2 s 62 50 0-2
c 23 26 12-3 T 63 51 0-3
D 24 27 12-4 u 64 52 0-4
E 25 30 12-5 v 65 53 0-5
F 26 31 12-6 w 66 54 0-6
G 27 32 12-7 x 67 5S 0-7
H 30 33 12-8 y 70 S6 0-8
I 31 34 12-9 z 71 57 0-9
& 32 OS 12 ~ 72 47 0-2-8

33 01 12-3-8 '
73 12 0-3-8

J 34 02 12-4-8 % 74 13 0-4-8
(3S 15 12-5-8 = 75 14 0-5-8

~ 36 74 12-6-8
37 75 12-7-8

,,
76 04 0-6-8

! 77 77 0-7-8

*Except for the control characters with standard octal codes 17 and
77, the GE 600-Line printer characters are the same as the graphic
symbols in this table.

@~a(ID@@ ~~ooa~~-------------CO--..BOiiioiiiii.L

Page VII-8

COMMERCIAL COLLATING SEQUENCE

~-

........ ...-1 Q) Q)

lil !..I lil 't:) 't:)

·-' Q) ·...I 0 't:) 0
u .u CJ u ~ u '"O ~
I-; u !..I co ..--l Q) Q)
Q) co QJ

't:) C"CI ..c:: '"O .j.J

8 !..I 8 C"CI i:: .j.J u ~ i::
:::: ct! 8 .j.J •.-1 - ,.... e eJ i:: C"CI 0 _. 0 u ~u ~
uu u 0 CJ) 0 Pot

.-I .-I Q) Q)

co~ co 't:) 't:)

•.-1 Q) •.-1 0 '"O 0
eJ .j.J eJ u ~ u "O ~
~ eJ ~ ..--l co Q) Q)
QJ co QJ co "O co ..c:: '"O .j.J

e ~ ~ .j.J
i:: .j.J CJ ~ i:: e co co eJ i:: co ·.-1

0 ..c: 0 eJ ~o ~u ~
t) t) t) 0 Pot

Space 00 20 blank Space L 40 43 11- 3 L
01 33 12-3-8 . M 41 44 11- 4 M

) or .tI 02 34 12-4-8] N 42 45 11- 5 N
03 55 11-5-8) 0 43 46 11- 6 0
04 76 0-6-8 " p 44 47 11- 7 p

05 32 12 & Q 45 50 11- 8 Q

$ 06 53 11-3-8 $ R 46 51 11- 9 R

* 07 54 11-4-8 * :/: 47 72 o- 2-8 +-

- 10 52 11 - s 50 62 0- 2 s
I 11 61 0-1 I T 51 63 o- 3 T

'
12 73 0-3-8 '

u 52 64 o- 4 u
(or % 13 74 0-4-8 % v 53 65 o- 5 v

14 75 0-5-8 = w 54 66 o- 6 w
15 35 12-5-8 (x 55 67 o- 7 x
16 12 2-8 [y 56 70 0- 8 y

1t or = 17 13 3-8 11 z 57 71 0- 9 z
20 16 6-8 > 0 60 00 0 0

I or @ 21 57 11-7-8 I 1 61 01 1 1
22 14 4-8 @ 2 62 02 2 2

& 23 60 12-0 + 3 63 03 3 3
4 64 04 4 4

A 24 21 12-1 A 5 65 05 5 5
B 25 22 12-2 B 6 66 06 6 6
c 26 23 12-3 c 7 67 07 7 7
D 27 24 12-4 D 8 70 10 8 8
E 30 25 12-5 E 9 71 11 9 9

F 31 26 12-6 F 72 15 5-8 :

G 32 27 12-7 G 73 17 7-8 ?

H 33 30 12-8 H 74 36 12-6-8 <
I 34 31 12-9 I 75 37 12-7-8 " 5 35 40 11-0 76 56 11-6-8 ;
J 36 41 11-1 J 77 77 0-7-8 I

K 37 42 11-2 K

Page VII-9

An alternative way of stating a comparison of the value zero with a formula,
or with an item whose CLASS is determined to be NUMERIC by a Record Description
entry, or NUMERIC by a class test at object time, is provided by the following

form: {POSITIYE}
IF {data -nam~ IS [NOT] NEGATIYE

formula J · - ZERO

An item or formula is POSITIVE only if its value is greater than zero. An
item or formula whose value is zero is NOT POSITIVE. An item or formula is
NEGATIVE only if its value is less than zero. An item or formula whose
value is zero is NOT NEGATIVE. In COBOL, the value zero is considered
neither positive nor negative.

2. CLASS Test

The NUMERIC test may be used to check the validity of the contents of a
NUMERIC DISPLAY item (SIGNED or not). In such a test, the contents of the
item will be tested for conformity with the definition of the CLASS.

3. Conditional variable Test

A conditional variable test is one in which an item is tested to determine
whether or not one of the values associated with a condition-name is
present.

The format for a conditional variable test is:

ll. [NOT] condition-name

If the condition-name is associated with a range or ranges of values
(i.e., the"VALUES ARE" clause contains at least one "literal-I THRU
literal-2" phrase) then the condition represented by the condition
name is true if, for any of the associated range of values, the con
ditional variable is not less than literal-1 and not greater than
literal-2.

Page VII-9.1

4. Switch Status Tests

In the SPECIAL-NAMES paragraph of the ENVIRONMENT DIVISION, the pro
granmier may associate a condition-name with the "on" or "off" status
of a software switch. (The switch is "on" when its value is 1, ''off"
when its value is zero.)

The status of such a switch may then be tested via a statement using
the following format:

1I C!!QIJ condition-name

Results of this test are determined by the following table:

SPECIAL-NAMES SWITCH TEST

STATEMENT STATUS IF Condition-name IF NOT Condition-name

... ON STATUS off False True

IS condition-name on True False

.•. OFF STATUS off True False

IS condition-name on False True

(W[g a (Bl@@ ~~[ffi ~ ~~ -· ------------.:C.:..:::OB;.:,::.OL

Page VII-10

Compound Conditions

Simple conditions can be combined with logical operators according to specified
rules to form compound conditions.

The most general form of a compound condition is:

Compound-condition =

simple-condition-1 (~D) simple-condition-2 (~D} simple-condition-n

Here each simple condition can be either a relation test, a CLASS test, or
a conditional variable testo

Parentheses may be used to indicate grouping as specified below. The
following are illustration of compound conditions.

EXAMPLES:

AGE IS LESS THAN MAX-AGE AND AGE IS GREATER THAN 20

AGE IS GREATER THAN 25 OR MARRIED

STOCK-ON-HAND IS LESS THAN DEMAND OR STK-SUPPLY IS
GREATER THAN DEMAND PLUS INVENTORY

A IS EQUAL TO B AND C IS NOT EQUAL TO D OR E IS UNEQUAL
TO F AND G IS POSITIVE OR H IS LESS THAN I * J

STK-ACCT IS GREATER THAN 72 AND (STK-NUMBER IS LESS l'HAN
100 OR STK-NUMBER EQUALS 76290)

Note that it is not necessary to use the same logical connective throughout.

Letting A and B represent simple conditions, the following table
defines the interpretation of AND, OR, and NOT in compound conditions:

A B Not A A AND B A OR B

True True False True True
False True True False True
True False False False True
False False True False False

Thus, if A is TRUE and B is FALSE, then the expression A AND B is FALSE,
while the expression A OR B is TRUE.

A compound condition is a sequence of simple conditions in which one or
two words AND and OR appear between the conditions. The words AND and
OR are called logical connectives when used in this sense. The word NOT
is used preceding a left parenthesis, or preceding a simple condition
which does not itself contain a NOT.

@~a@@@ ~~[ffiO~~-------------__.c...._.oB.....,.OL

Page VII-1

The rules for determining the logical value (true or false) of a compound
condition are as follows:

1. If AND is the only logical connective used, then the
compound condition is true if and only if each of the
simple conditions is true.

2o If OR is the only logical connective used, then the compound
condition is true if and only if one or more of the simple
conditions is true.

3. If both AND or OR appear, then there are two cases to consider,
depending on whether or not parentheses are used.

a. Parentheses can be used to indicate grouping. They must
always be paired, as in algebra, and the expressions within
the parentheses will be evaluated first. The precedence of
nested parenthetical expressions is the same as normal
algebrao That is, the innermost parenthetical expressions
are evaluated first.

b. If parentheses are not used, then the conditions are grouped
first according to AND, proceeding from left to right, and
then by OR, proceeding from left to right.

4o When NOT preceeds a parenthesized condition, it reverses the logical
value of the parenthesized condition; that is, NOT (condition) is
true when (condition) is false. For example, NOT (A AND B) is true
if either A or B is false. Thus, NOT (A AND B) is equivalent to

EXAMPLES:

NOT A ORB, and is true when A and Bare not both true (i.eo, when
either is false or both are false). Similarly, NOT (A ORB) is
equivalent to NOT A AND NOT B, and is true only when A and B are
both false.

1. To evaluate Cl AND (C2 OR NOT (C3 OR C4)), use the first
part of rule 3 and successively reduce this by substituting as
follows:

Let CS equal "C3 OR C4" resulting in Cl AND (C2 OR NOT CS)

Let C6 equal "C2 OR NOT CS" resulting in Cl and C6

This can be evaluated by the table shown above.

2. To evaluate Cl OR C2 AND C3, use the second part of rule 3 and
reduce this to Cl OR (C2 AND C3), which can now be reduced as
in Example 1.

3. To evaluate Cl AND C2 OR NOT C3 AND C4, group first by AND
from left to right, resulting in:

(Cl AND C2) OR (NOT C3 AND C4)

which now can be evaluated as in the first exampleo

@~a®@® ~~rma~~----------------C......,OB_OL

Page VII-12

4. To evaluate Cl AND C2 AND C3 OR C4 OR CS AND C6 AND C7 OR CB,
group from the left by AND to produce:

((Cl AND C2) AND C3) OR C4 OR ((CS AND C6) AND C7) OR CB

which can now be evaluated as in Example 1.

Abbreviations

Only conditions involving full relation tests have three terms (a subject,
a relation, and an object). In order to simplify writing long expressions,
COBOL allows the omission of some of these terms in certain forms of compound
conditions. To simplify the narrative, the following representation is
used in the remainder of the discussion in this section:

operand-i represents {~~~:~:~~~-i\
formula-i J

The general form of a compound condition containing only full relation tests
(hereafter called a relational compound condition) is:

C) {ANO RD:) ll:. operand-1 Relation-1 operand-2 J

(Relation-2) operand-4 {A:}
operand-3

operand-nl

c Relation-n) operand-n2

Of the five examples given earlier in this section, only the first, third,
and fifth nre of this form.

Abbreviatior, 1:

When a relational compound condition has the same term immediately
each relation, then only the first of these terms need be written.

IF operand-le Relation-1) operand-2 {~} c Relation-2

operand-3 {~K Relation"} .. {:°?(Operand-n)

preceding
Thus:

)

is interpreted as if operand-1 had appeared immediately preceding each

(Relation-n)

This form of abbreviation is applicable independently of the presence or
absence of parentheses.

Page VII-13

Referring back to the first example, the example could also be written as:

IF AGE IS LESS THAN MAX-AGE AND GREATER THAN 20

As another illustration of this abbreviation, note that

IF A EQUALS B OR EQUALS C AND IS GREATER THAN D

is an abbreviation for

IF A EQUALS B OR A EQUALS C AND A IS GREATER THAN D

which is equivalent to

IF A EQUALS B OR (A EQUALS C AND A IS GREATER THAN D)

Abbreviation 2:

The second type of abbreviation allowed is in the case where both the
subject and the relation are corrnnon. In this case, then only the first
occurrence of the subject and the relation are written. Thus:

IF operand-1 (Relation) operand-2 {~/ opecand-3

(~} operand-n

is equivalent to

IF operana-1(Relation) operand-2 (:n) operand-I~ Relation

(~} {:D} operand-3 operand-le Relation~ operand-n

This form of abbreviation is applicable independently of the presence or
absence of parentheses.

As an illustration of this form, note that the expression

IF A = B OR C AND D

is equivalent to

IF A = B OR A = C AND A = D

which is in turn equivalent to:

IF A = B OR (A = C A.i."'ID A = D).

@~c(B)(Q)(O) ~~mu~~-----------CO_BO_L

)

Page VII-14

Abbreviation 3:

The third type of abbreviation allowed is the case where the subject, the
relation, and the logical connector are all identical. In this case, only
the first occurrence of the subject and relation are written, and all objects
but the last are written as a series. They can - but need not - be preceded
by commas. The logical connector is written only once and appears immedi
ately preceding the last object. Thus:

IF operand-1 (Relation) operand-2, operand-3, .••. ~D}

operand-n

is equivalent to Abbreviation 2 with all commas replaced by whichever of the
connectors AND or OR, was used. No parenthesescan be used in this abbrevia
tion except those used in formulas and/or to denote subscripts.

As an illustration, note that the expression

IF X = 2, Y OR Z

is equivalent to

IF X = 2 OR X = Y OR X = Z

which is easily evaluated.

Abbreyiation 4:

The fourth abbreviation is more general, and actually includes Abbreviations
1 and 2 as special cases. The fourth abbreviation applies to any sequence of
full relation tests in a single sentence, regardless of what verbs, key words,
or other types of tests appear between them. (This abbreviation specifically
excludes and does not apply to the alternative form of comparing the value
of an item or formula with zero. The data-name or formula and one of the
words POSITIVE, NEGATIVE, or ZERO must always be written.) This form of
abbreviation applies regardless whether or not parentheses are used.

A full relation test can have three types of omissions. In the first type,
the subject can be omitted. In the second type, both the subject and the
relation can be omittea~ In the third type, both the subject and the object
(but not the relation) are· 'Omitted. In all cases, the compiler takes the
missing terms from the nearest preceding full relation test which explicitly
states all three terms. The first relation test in a sentence must have all
terms explicitly stated. The value of the implied subject and/or object is
one which exists at object time when the test involving the implied subject
and/or object is made.

~~a@©)(O) ~~[ffi~~~----------C-OBO.......,.I..

Page VII-15

The foilowing examples show an abbreviated form followed by its equivalent
expansion:

1. IF A= BAND C EXCEEDS DOR= B
IF A = B AND C EXCEEDS D OR C = B

2. IF A = B MOVE X TO Y; OTHERWISE IF GREATER THAN C THEN ADD M TO N.
IF A = B MOVE X TO Y; OTHERWISE IF A IS GREATER THAN C THEN ADD M
TO N.

3. IF A = B MOVE X TO Y; OTHERWISE IF GREATER, MOVE M TO N ELSE
MOVE P TO Q.
IF A = B MOVE X TO Y; OTHERWISE IF A IS GREATER THAN B MOVE M
TO N ELSE MOVE P TO Q.

4. IF A = B OR IS GREATER THAN B THEN MOVE C TO A; IF GREATER THAN B
THEN ADD B TO A.
IF A = B OR A IS GREATER THAN B THEN MOVE C TO A; IF A IS GREATER
THAN B THEN ADD B TO A.

5. IF A EXCEEDS B OR EQUALS BAND X EQUALS Y THEN IF GREATER THAN B
MOVE C TO D.
IF A EXCEEDS B OR (A EQUALS B AND X EQUALS Y) THEN IF X IS GREATER
THAN B MOVE C TO D.

6 . IF A EQUALS B AND X IS GREATER THAN Y THEN ADD C TO D; IF EQUAL
MOVE C TO D.
IF A EQUALS B AND X ·IS GREATER THAN Y THEN ADD C TO D; IF X EQUALS
Y MOVE C TO D.

7. IF A EQUALS BAND (CORD AND E IS GREATER THAN Y) OR LESS THAN Z
MOVE M TO N.
IF (A EQUALS B AND (A EQUALS C OR (A EQUALS D AND E IS GREATER
THAN Y))) ORE IS ~S THAN Z MOVE M TO N.

Page VII-16

Table of Legal Symbol Pairs Involving Conditions and Logical Connectiyes

SECOND SYMBOL

c QR AND NOT ()

c - p p - - p

FIRST OR p - - p p -
SYMBOL AND p - - p p -

NOT P* - - - p -
(p - - p p -
) - p p - - p

"P" indicates that the pair is permissible, and "-" indicates that
the pair is not permissible. Thus, the pair "OR NOT" is permissible,
while the pair "NOT OR" is not permissible.

*Permissible only if the condition itself does not contain a NOT.

Page VII-17

FORMING COMPOUND CONDITIONS

Conditional expressions may contain data-names, formulas, literals, arith
metic operators, relations of equality and relative magnitude and the logical
operators NOT, AND and OR. Sub-expressions may be contained in parentheses
as required.

If either a condition-name (such as MARRIED) or a relation (such as PAY IS
GREATER THAN 2 * X - Y) or a test is designated by the symbol Cl, the
following rules may be stated concerning the formation of compound conditions
involving Cl, NOT, AND and OR.

The Condition

Cl

Not Cl

Cl and C2

Cl OR C2

NOT (Cl AND C2)

NOT (Cl OR C2)

Is True If

Cl is true

Cl is false

Both Cl and C2 are true

Either Cl is true, C2 is true,
or both are true

"NOT Cl OR NOT C2" is true

"NOT Cl AND NOT C2" is true

The conditional expression "Cl OR C2 AND C3" is identical with "Cl OR
(C2 AND C3)" but is not the same as "'(Cl OR C2) AND C3." In other words,
compound conditions are grouped first according to AND and subsequently
by OR. However, the programmer's use of parentheses will affect the
order of grouping.

DECLARATIVES

Declaratives consist of compiler-directing sentences and the associated
procedures. If present, declaratives must be grouped together at the
beginning of the PROCEDURE DIVISION: the group of declaratives must be
preceded by the key word. DECLARATIVES, and ttnlSt be followed by the key
words, END DECLARATIVES.

Page VII-18

COMPILER DIRECTING DECLARATIVES

A USE DECLARATIVE is used to specify procedures which are to supplement the
standard procedures provided by the Input/Output system. The USE sentence
immediately follows a section-name sentence, specifying the conditions under
which the section is to be executed. Only PERFORM statements may reference
all or part of a USE section. Within a USE procedure there must be no
reference to the main body of the PROCEDURE DIVISION.

The format for the USE DECLARATIVE is:

section-name SECTION. USE --------.

Paragraph-name. First procedure statement ...

Complete rules for writing the formats for USE are stated under the USE
verb.

FORMULAS

A formula is an algebraic expression consisting of a combination of data-
names and/or literals (representing items on which arithmetic may be performed)
and arithmetic operators.

Basic Operators

There are five arithmetic operators which may be used in formulas. They
may be expressed by characters (or symbols), in which case they must be
surrounded by spaces, or by English equivalents. The following operators
are available:

Operation Character English Equivalent

(Addition) +

(Subtraction) MINUS

(Multiplication) * MULTIPLIED BY or TIMES

(Division) I DIVIDED BY

(Exponentiation) ** EXPONENTIATED BY

The rules for forming algebraic expressions assume the existence of a
precedence table for the arithmetic operators which, unless parenthesizing
is used to modify the hierarchy, determines the sequence in which the
arithmetic operations in a formula will be executed.

COBOL

Understood precedence, from high to low, is:

Unary - (logical NOT)
Exponentiation
Multiplication and Division
Addition and Subtraction

Page VII-li

Parentheses may be used to override understood precedence. When the sequence
of execution is not specified by parentheses, the order of execution of
consecutive operations of the same hierarchical level is from left to right.
Thus, expressions ordinarily considered to be ambiguous, such as A/B*C and
A/B/C, are permitted in COBOL. They are interpreted as if they were written
(A/B)*C and (A/B)/C, respectively.

c
A formula containing a double exponentiation (AB), cannot be written in the
form (A**B**C); it must be written either (A**B)**C or A**(B**C), whichever
is intended.

An item or literal being exponentiated must not have a negative value. If
data-item to be exponentiated can assume a negative value, a test (IF •••
NEGATIVE) should be arranged to bypass the exponentiation in case the value
is negativeo

FORMATION OF SYMBOL PAIRS

SECOND _RtM.Bu.

VARIABLE *,/, Unary ()
**...s.+...L- -

VARIABLE - p - - p

FIRST
SYMBOL *,/,**,+,- p - p p -

Unary - P* - - p -
(p - p p -
) - p - - p

* Permissible only if the variable is not a literalo

A formula may never begin or end with an arithmetic operator except that
a formula can begin with either of the symbols, +, -, or their English
equivalents. In every formula there must be the same number of right
parentheses as left parentheses.

@~a(ffi@@ ~~[R1~~~----------------C..;;.;;mOB--..OL

Page VII-20

VERBS

LISTED BY CATEGORIES

Arithmetic

Input-Output

Procedure Branching

Data Movement

Ending

Compiler Directing Verbs

Compiler Directing Declaratives

Report Writer Verbs

SORT Verbs

SPECIFIC VERB FORMATS

{

ADD
SUBTRACT
MULTIPLY
DIVIDE
COMPUTE
ACCEPT
READ
WRITE
OPEN
CLOSE
DISPLAY

{

GO
ALTER
PERFORM

{
MOVE
EXAMINE

{STOP

{~~ ENTER
EXIT
NOTE

{USE

{

GENERATE
INITIATE
TERMINATE

{

RELEASE
RETURN
SORT

The specific verb formats, together with a detailed discussion of the
restrictions and limitations associated with each, appear on the
following pages, in alphabetic sequence.

Page VII-21

ACCEPT

FUNCTION: To receive low volume data from special sources.

ACCEPT data-name [FROM mnemonic-name]

Notes:

1. The ACCEPT verb may be used to obtain input data from any of the
following sources:

• GEIN (i.e., data cards supplied at object-time via a$ DATA
control card on which the file-code I* is punched). (See the
GECOS manual.)

• Switches (a special software feature provided by GECOS).

• GETIME (a GECOS feature which emits the current date and time,
in a standard format, upon request).

• GELAPS (a GECOS feature which emits the current elapsed
running time, in a standard format, upon request).

• The console typewriter keyboard.

When the FROM option is not used, the input source is assumed to be
GEIN. The FROM option must be specified for any other input source,
and the mnemonic-name must then be a user-supplied word associated
with an input data source by a statement in the SPECIAL-NAMES para
graph of the ENVIRONMENT DIVISION. Specific conventions for the
various ACCEPT sources are given in notes 2 through 6 below.

2. If no mnemonic-name is specified, ACCEPT obtains data from GEIN.
Data-name must then be a DISPLAY item of no more than 80 characters
in size. The input item is assumed to occupy the leftmost character
positions of the card. No automatic format check or conversion is
provided, so it is recommended that the user employ IF tests to
assure that the input card contents satisfy the description of
data-name. Similarly no automatic end-of-file provision is avail
able, so the user must provide his own test for end-of-file if the
volume of GEIN data can vary. When the end-of-file condition occurs,
ACCEPT obtains an implicit blank card; subsequently executed ACCEPT
statements then continue to obtain blank cards. A test for ALL
SPACES may thus suffice for end-of-file recognition, provided blank
cards are not otherwise expected.

3. If a mnemonic-name associated with switches is specified, ACCEPT
causes the value of data-name to be set to 1 if the switch is "on",
or set to 0 (zero) if the switch is "off". Data-name must be a
WORKING-STORAGE item whose description is equivalent to the following:

77 data-name; PICTURE 9; COMPUTATIONAL-1.

~~a(ID@@ ~(E[ffi~(E~ ----------------C~O~BOJ

Page VII-21

4. If a mnemonic-name associated with GETIME is specified, ACCEPT
causes data-name to receive the current date and time values. Time
resolution is in units of 1/64 millisecond. Data-name must be a
WORKING-STORAGE i.tem whose description is equivalent to the
following:

01 data-name •
02 MONTH; PICTURE 99.
02 DAY; PICTURE 99.
02 YEAR; PICTURE 99.
02 TIME; PICTURE 9(8); COMPUTATIONAL-I.

5. If a mnemonic-na~e associated with GELAPS is specified, ACCEPT
causes data-name to receive the elapsed running time charged thus
far to the requesting program. Time resolution is in .units of
1/64 millisecond. Data-name must be a WORKING-STORAGE item whose
description is equivalent to the following:

77 data-name; PICTURE 9(8) ; COMPUTATIONAL-I.

60 If a mnemonic-name associated with the typewriter keyboard is
specified, ACCEPT causes data-name to receive whatever value the
operator types. Data-name must be a DISPLAY item of no more than
54 characters in sizeo No automatic format check is provided, so
it is reconnnended that the user employ IF tests to assure that the
type-in satisfies the description of data-nameo A special provision
for this use of ACCEPT is available via SPECIAL-NAMES and the
DISPLAY verb. In SPECIAL-NAMES, the user may associate a mnemonic
name with the CONSOLE. A DISPLAY UPON (as it were) CONSOLE causes
the displayed message to be saved until a subsequent ACCEPT references
the console typewriter. The DISPLAY statement may appear
anywhere in the program, as long as it is executed prior to the
ACCEPT. An appropriate DISPLAY statement of this kind should
always be used, to inform the operator what is expected of him.

Typewriter input/output is strongly discouraged except in extra
ordinary circumstances.

7. Note that a mnemonic-name does llQ.t have a data description in the
Data Division but is defined only under SPECIAL~NAMES.

@~a(ID@@ ~~000~~--------------c_oB_oL

Page VII-22

ADD

FUNCTION: To add two or more numeric data items and set the value of an
item equal to the results.

Option 1:

ADD {!!~:=~!~!-}
data-name-n (ROUNDED

Option 2:

['

J [;

{!~:=~!~!-}] {frvIN~
ON SIZE ERROR any imperative statement]

ADD (cORRESPONDINGl. data-name-1 TO data-name-2 [ROUNDED]
\:CORR J

Notes:

1. In Option 1, the data-names used must refer only to elementary
items. If GIVING is used, data-name-n is not used as an operand;
hence, its format may contain editing symbols. In all other
cases, the data-names used must refer to NUMERIC items only.

2. An error will be indicated at compilation time if the data
description of any item used as an operand of any arithmetic
verb (addends, subtrahends, multipliers, etc.) specifies the
presence of editing symbols. Operational signs and implied
decimal points are not considered editing symbols.

3. The maximum size of any operand (literal or data-name) is 18
decimal digits. An error will be indicated at compilation time
if the data description of a data item used as an operand
specifies a size in excess of 18 digits or a literal used as
an operand contains more than 18 digits.

4. In Option 1, if no GIVING clause is used, whether or not the TO
clause is used, the values of data-name-1 or literal-1 through
data-name-n will be added together, and the sum will be stored as
the value of data-narne-n.

5. If the GIVING option is used, the sum of the values of the operands
preceding the GIVING will be stored as the new value of data-name-n.

6. The Internal Formats of operands referred to in an ADD statement
may differ among each other. Any necessary format transformation
or decimal point alignment is automatically supplied throughout
the calculation.

7. If the number of decimal places in a calculated result (sum) is
greater than the number of decimal places associated with the
resultant-data-name, truncation will occur, unless the ROUNDED
option appears.

COBOL

Page VII-2'.

Truncation is always in accordance with the size associated with
the resultant data-nameo When the ROUNDED option is specified,
it causes the least significant digit of the new value of the
resultant-data-name to have its value increased by 1 whenever
the most significant digit of the excess is greater than or equal
to 5o

The following examples illustrate the effect of the ROUNDED option:

Calculated PICTURE Of Value
Result Resultant Item Stored

3.14 ·S9V9 3.1
3.15 S9V9 3.2

-3.14 S9V9 -3.1
-3.15 S9V9 -3.2

8. Whenever the magnitude of the calculated result exceeds the
largest magnitude that can be contained in the resultant data
name, a size error condition arises. In the event of a size
error condition, one of two possibilities will occur, depending
on whether or not the ON SIZE ERROR option has been specifiedo
The testing for the size error condition occurs only when the
ON SIZE ERROR option has been specified.

a. In the event that ON SIZE ERROR is not specified and size
error conditions arise, the value of the resultant-data
name may be unpredictable.

b. If the ON SIZE ERROR option has been specified and size
error conditions arise, then the value of the resultant
data-name will not be altered. Instead, the imperative
statement associated with the ON SIZE ERROR option will
be executed.

9o An ADD statement must refer to at least two addends.

lOo Option 2 leads to several separate addition operations. Rules
for the CORRESPONDING option for ADD are equivalent to those
for MOVE, except that only numeric elementary items may
correspond.

11. CORR is an abbreviation for CORRESPONDING.

@~a@@® ~~000~~-----------------C-.-OB......,_OL

Page VII-24

ALTER

FUNCTION: To modify the destination of a GO statement.

ALTER procedure-name-! TO PROCEED TO procedure-name-2

(procedure-name-3 TO PROCEED TO procedure-name-4 ..•

Notes:

Procedure-name-1, procedure-name-3, ... ,are names of paragraphs
which each contain a single sentence consisting of only a GO state
ment as defined under Option 1 of the GO verb.

@J~ a(ID(ID@ ~~lffiO~~-----------~co=BO::;.::.L

FUNCTION:

Page VII-24.1

To permit transfer of control to a separately compiled subprogram or
entry point within a subprogram, with a standard return mechanism pro
vided. (The generated coding employs the CALL macro of GMAP.)

CALL routine-name [USING data-name-1

Notes:

[! data-name-2 ·ll
The following conventions govern the use of CALL.

1. If the subprogram being called is an independently compiled
COBOL program, routine-name must be its PROGRAM-ID.

2. If the routine-name being called is an entry-name (explicit)
in an independently compiled COBOL program, the entry-name must be
one specified somewhere in the called subprogram using the ENTRY
POINT statement.

3. If the subprogram being called has been developed via another
language, routine-name must be the subprogram's identification
or entry-name according to the pertinent language's rules.

4. If routine-name is a paragraph-name or section-name within the
current source program, CALL has exactly the same effect as
"PERFORM routine-name" (without THRU or any other PERFORM
option).

5. The implied entry point of a subprogram written in COBOL is the
first non-DECLARATIVE procedural statement. This entry point is
produced automatically by the compiler. The implied exit point
follows immediately after the last procedure statement in the
source program and is also produced automatically. It is the
effective exit point when a subprogram is called by its PROGRAM-ID.

@~a®@® ®[g[ffi~[g®----------CO_BOL

Page VII-24.2

6. Any object-program produced by the COBOL compiler can be called
as a subprogram from other object-programs. COBOL object-programs
may also have multiple entry points which can be called and executed
from other object-programs. Normally, such subprograms should not
contain STOP RUN. The subprogram or entry point procedures should
be written to allow control to eventually pass to an appropriate
exit point. An EXIT paragraph must be used if a subprogram has
alternative routes to the exit point. At least one EXIT entry-
name must be specified for each ENTRY POINT statement in a sub
program.

7. A called subprogram may CALL other COBOL subprograms by implied
entry point or by entry-names specified within the other subprograms.
No subprogram may CALL its own PROGRAM-ID nor entry-names within
itself. Entry point procedures may CALL entry-names .in other sub
programs but extreme care should be used to avoid a CALL into a
subprogram which has any previous active CALL still current.

8. The USING clause is utilized to specify an argument list for the
subprogram being called. The USING arguments are not valid when
a CALL references a COBOL subprogram by its PROGRAM-ID. They
are valid when referencing explicit entry points within a COBOL
subprogram. The user must assure that the order and descriptions
of the arguments conform to the called subprogram's requirements.
At most, ten arguments may be specified.

9. The USING clause specifies "input" and "output" arguments to the
called subprogram. USING data-names must reference Working
Storage or Constant Section items or items in files for which a
PROCESS AREA is specified. A USING argument may be a file-name,
in which case the object-program argument will be a File Control
Block pointer. File-names are not valid arguments when calling
a COBOL subprogram; they are restricted to called subprograms
developed in another language.

10. USING data-names must not be subscripted.

11. The user must assure that the number of USING arguments specified
in a CALL to an ENTRY POINT corresponds exactly with the number
of USING and GIVING arguments specified for its ENTRY POINT and
that the data descriptions for each pair of the corresponding
arguments are identical.

@J(Ea(ID@(ID ~(E[Ri~[E~---------------co_BO_L

Page VII-25

FUNCTION: To terminate the processing of input and output reels and files.

Option 1:

file-name-1 [WITH { .@. REWIND} J
LOCK [, f ile-name-2 .. J

Option 2:

[!llill [WITH { ~gC~IND)] J
Notes:

file-name-1

1. For the purpose of showing the effects of the various CLOSE
options, all input and output files are divided into the
following categories:

a. Non-tape; a file whose input or output medium is such that
the concepts of rewinding and reels have no meaning.

b. Partial-reel; a file which is entirely contained on a reel
requiring the MULTIPLE FILE TAPE CONTAINS clause in the
1-0-CONTROL paragraph of the ENVIRONMENT DIVISION.

c. Single-reel; a file which is entirely contained on one reel
and is the only file on that reel.

d. Multiple-reel; a file which may be contained on more than
one reel, and the number of reels might possibly be greater
than the number of tape units assigned.

2. The results of executing each CLOSE option for each type of file
are summarized in the following table. The definitions of symbols
in the table immediately follow the table. Where the definition
depends on whether the file is an input or an-output file,
alternate definitions are given; otherwise, the one definition
applies to both input and output files.

~ non- partial- single- multiple-
c tape reel reel reel

CLOSE F F,W F,W F,W,N

CLOSE WITH LOCK F,L F,W,L F,W,L F,W,L,N

CLOSE WITH NO REWIND x F,C F,C F,C,N

CLOSE REEL x x x R,K

Page VII-26

(C) (No rewind of current reel.) The current reel is left in its
current position.

(F) (Standard CLOSE file.)

Input files: If the file is positioned at the end of the file, and
there is an ending label record, the ending label record is checked,
the data area is released, and the standard closing conventions are
performed. If the file is positioned at the end of the file, and
there is no ending label record, the data area is released and the
standard closing conventions are performed, but no ending label
checking is performed. An input file is considered to be positioned
at the end of ·the file if an explicit or implicit AT END exit has
been executed and no CLOSE statement has been executed.

Output files: If an ending label record has been described for the
file, it is constructed and written on the output medium, the data
area is released, and the standard closing conventions are performed.
If no ending label record has been described for the file, the data
area is released and the standard closing conventions are performed.

(L) (Standard file lock.) An appropriate technique is supplied to
insure that this file cannot be OPENed again in this object
program. If an attempt is made to OPEN the file, an error indi
cation will 6ccur.

(K) (Standard Re_el Lock.) This current reel is rewound with hardware
interlock.

(N) (Previous reels unaffected)

Input files: All reels in the file prior to the current reel are
processed according to the standard tape swap procedure regardless
of the CLOSE file option, except those reels controlled by a prior
CLOSE REEL statement. If the current reel is not the last reel in
the file, the reels in the file following the current reel are not
processed in any way.

Output files: All reels in the file prior to the current reel are
processed according to the standard tape swap procedure regardless
of the CLOSE file option, except those reels controlled by a prior
CLOSE REEL statement.

(R) (Standard CLOSE REEL.)

Input Files: The standard end of reel operations described under
READ are performed, except that no ending label checking or any
USE procedures related to ending label checking is performed.

Output files: The standard end of reel operations described under
WRITE are performed.

@~ c(ID(Q)@ ~~fffi~ ~~-----------CO_BO_L

Page VII-27

(W) (Rewind) Rewind the current reel.

(X) (Illegal) This is an illegal combination of a CLOSE option and a
file type and the results at Object Time are unpredictable.

3. All files which have been OPENed must be CLOSEd prior to the
execution of a STOP RUN statement. No automatic CLOSEing
takes place.

4. If the file has been specified as OPTIONAL (see the FILE-CONTROL
paragraph of the ENVIRONMENT DIVISION), the standard end of file
processing is not performed whenever this file is not present.

Page VII-28

COMPUTE

Function: To assign to a data item the value of a numeric data item,
literal, or formula.

COMPUTE

{

FROM l
E~UA1sf

Notes:

data-name-1

{

data-name-2}
literal-1
formula

[ROUNDED]

ON SIZE ERROR any imperative
st_atement]

1. Literal-1 rrrust be a numeric literal. The data-names used
must refer only to elementary items. Data-name-1 is not used
as an operand; hence, its format may contain editing symbols.
In all other cases, the data-names used must refer to NUMERIC
items only.

2. The data-name-2 and literal-1 options provide an alternative
method in COBOL for setting the value of data-name-1 equal
to the value of data-name-2 or literal-1.

3. The formula option permits the use of any meaningful combination
of data-names (which must satisfy the general rules specified
for data-names used in the simple arithmetics), numeric literals,
and arithmetic operators, parenthesized as required.

4. The ON SIZE ERROR option applies only to the final result and
does not apply to any of the intermediate results.

5. All rules regarding the ON SIZE ERROR, the ROUNDED option, the
size of operands, truncation and the editing of results, which
are specified for the simple arithmetics, apply also to the
COMPUTE verb.

6. The words FROM and EQUALS are equivalent to each other and to
the symbol"=". They may be used interchangeably and the choice
is generally made for readability.

FUNCTION:

Notes:

Page VII-28.1

The COPY statement incorporates procedures from a library into the
source program.

paragraph-name. library-name.

1. The duplication process replaces the COPY statement by the procedure
statements that follow the paragraph-name specified as the library
name. The duplication process will insert all procedural statements
following the library-name, up to but excluding the next paragraph
name.

2. No other statement or clause may appear in the same entry as the COPY
statement.

3. When the COPY statement is used, the COPY and the statements associated
with library-name (paragraph to be copied) will appear on the output
listing.

4. The COPY statement should not be used to duplicate section-names.

5. All paragraph-names associated with a COPY statement must begin in
column 8 of the source card.

6. The text contained on the lib:rary must not contain any COPY statements.

7. Information associated with building a library file can be found in
Appendix Q.

@j~a(ID@® ~~ [fil~~®-----------COB_OL

Page VII-29

DISPLAY

FUNCTION: To transmit low volume data to a special output.

DISPLAY
{

literal-1 } [, {literal-2 l
data·name-1 data-name·2[

[UPON mnemonic-name]

Notes:

1. The DISPLAY verb may be used to transmit output data to any of
the following destinations:

a. SYSOUT (a low-volume printed report file which is automati
cally printed by GECOS).

b. Switches (a special software feature provided by GECOS).

c. The console typewriter (two distinct options are provided-
TYPEWRITER and CONSOLE) .

When the UPON option is not used, the output destination is
assumed to be SYSOUT. The UPON option must be specified for any
other output destination, and the mnemonic-name then must be a
user-supplied word associated with an output destination by a
statement in the SPECIAL-NAMES paragraph of the ENVIRONMENT
DIVISION. Specific conventions for the various DISPLAY destina
tions are given in notes 2 through 6 below.

2. If no mnemonic-name is specified, DISPLAY transmits data ~o
SYSOUT. A single printed line results from each DISPLAY statement.
A printer line must not exceed 132 character positions. Additional
rules are given in Notes 6 and 7.

3. If a mnemonic-name associated with switches is specified,
only a single operand (data-name, literal, or the figurative
constant ZERO) may be given. If the value of the operand is 1, the
switch will be set "on"; if the value is 0 (zero), the switch will
be set "off". If a literal is used, it must be an integer with
value 1 or 0. If a data-name is specified, it must be a
COMPUTATIONAL-I item in WORlCING-STORAGE; with its size not exceed
ing 8 digits, the following description is recoumended:

77 data-name; PICTURE 9; COMPUTATIONAL-I.

If the value of the item exceeds 1, the value modulo 2 determines
the switch setting.

COBOL

Page VII•29.l

4. If a mnemonic-name associated with the TYPEWRITER is specified,
DISPLAY causes a single line to be typed, with no keyboard
response expected. A typewriter line must not exceed 72
character positions. Additional rules are given in Note 6.
Typewriter output is strongly discouraged except in extra
ordinary circumstances.

5. If a mnemonic-name associated with the CONSOLE is specified,
DISPLAY causes a single line to be readied for typing, but
not immediately typed. ·Instead, the line is saved until a
subsequent ACCEPT statement is executed, at which time the
line is typed. This use of DISPLAY is specifically designed
to supplement ACCEPT, so that an explanatory typeout can
immediately precede a keyboard input request. The ACCEPT
and DISPLAY statements need not appear together in the source
program, provided the DISPLAY is executed first. Should no
ACCEPT statement be executed after the DISPLAY, the output
line is not typed. Two DISPLAY statements of this kind with
no intervening ACCEPT would result in suppression of the first
line. A typewriter line must not exceed 72 character positions.
Additional rules are given in Note 6.

6. The following rules apply to all DISPLAY statements transmitting
data to SYSOUT or the typewriter:

a. When the DISPLAY consists of multiple operands, the data
comprising the first operand is displayed as the first
set of characters, the data comprising the second operand
as the second set, etc. Operands are not automatically
separated by spaces.

b. DISPLAY data begins in the first character position of a
line, subject to the effects of horizontal and vertical
tabulation control characters embedded in the data. If
the user employs such characters, he must assure that the
line-length limits given above are not exceeded.

c. Data-name-1, data-name-2, etc. must have DISPLAY or DISPLAY-I
USAGEs. The literals may be figurative constants, in which
case their size is understood to be one character. ALL has
no significance here.

7. The use of DISPLAY statements transmitting data to SYSOUT in a multi·
segment environment (see Chapter X) must be carefully planned to avoj
possible overlay of the COBOL subroutine ".COSYS" which controls outr
for SYSOUT displays. One way is to use DISPLAY in a main segment whj
will never be overlaid, whether or not its actual execution in such c
segment is desired.

COBC

Page VIl-30

DIVIDE

FUNCTION: To divide one numerical data-item into another and set the
value of an item equal to the result.

DIVIDE {data-name·l} INTO

Notes:

literal-1 -----

{
data-name-2 (GIVING data-name-3]} (ROUNDED]
literal-2 GIVING data-name-3

[; ON!!!! ERROR any imperative statement]

1. The data-names used must refer only to elementary items. If
GIVING is used, data-name-3 is not used as an operand; hence,
its format may contain editing symbols. In all other cases,
the data-names used must refer to NUMERIC items only.

2. All rules specified under the ADD verb regarding the size of
operands, presence of editing symbols in operands, the ON SIZE
ERROR option, the ROUNDED option, the GIVING option, truncation,
and the editing of results, apply to the DIVIDE verb.

3. When GIVING is not used, the initial value of data-name-1 or
literal-1 will be divided into the initial value of data-name-2.
The value of the dividend will be replaced by the value of the
quotient resulting from the operation. Note that a literal
must not be used as ~ dividend.

•+. Division by zero constitutes a special type of ''size error".
P10gram control may be provided through the use of a test for
zt:ro prior to attempting division. If the "zero test" type of
program control is not provided, the rul~s specified under the
AUD verb with respect to the ON SIZE ERROR option apply.

Page VII-31

ENTER

FUNCTION: To permit the inclusion in the source-program of statements which
are not defined in the COBOL language.

Option 1:

{ TIME-SAVING }
ENTER SPACE-SAVING

Option 2:

MODE.

[paragraph-name. J ENTER GMAP.

~ } GMAP coding

ENTER COBOL.

Option 3:

[paragraph-name.] ENTER DEFINITIONS.

SYMBOL literal-1 ~Q~ALs}
[SYMBOL literal-2 eQ~ALS}

_ENTER COBOL.

Option 4:

[~IAL CHARACTER OF] data-name-1
{

[SIZE OF] ~

~OCEDURE procedure-name-1

[[INITIAL CHARACTER OF] data-name-2\
\.PROCEDURE procedure-name-2 j • · .].

[paragraph-name.] ENTER ~INKAGE MODE.

[CALL routine-name [USING data-name-1 [, data-name-2 •..]]]

[ENTRY POINT IS entry-name [[USING data-name-1 [, data-name-2 ... JJ
[GIVING data-nall)e-3 [, data-name-4 ...]JJ]

[~ procedure-name]

CALL .}
[~NTRY . . .] .

PO PUP

ENTER COBOL.

The Notes are given separately for each of the above Options. Although many
COBOL compilers permit use of ENTER, the user should be aware that ENTER
specitications generally differ completely from one computer line to another.
ENTER statements in a source-program must consequently be changed before the
program can be compiled on a computer line other than that for which the
source-program was originally prepared.

@~a(ID@@ ~~[ffi~(E~---------------:C.:::OB.:=..OL

Page VII-32

j TIME-SAVING l
ENTER lSPACE-SAVING(MODE.

Notes:

1. Under some circumstances, the compiler is capable of producing
two alternative sets of object-program instructions for a given
procedural statement, the TIME-SAVING version requiring more
space but less execution time than the SPACE-SAVING version.
(Generally speaking, such alternatives are available in the
compiler only when the trade-off exceeds two-for-one in both
categories.) This ENTER verb option permits the user to take
advantage of such possible alternatives on the basis of his
knowledge of the relative level of activity of various parts
of the program.

2. The normal mode is TIME-SAVING. The SPACE-SAVING mode applies
to all statements following ENTER SPACE-SAVING until ENTER
TIME-SAVING is encountered, at which point the compiler resumes
the normal TIME-SAVING mode.

3. A given set of procedural statements does not necessarily entail
any for which the TIME-SAVING or SPACE-SAVING mode options are
significant. In such procedures, the mode ENTERed has no effect
on the object-program.

Page VII-33

[paragraph-name.] ENTER GMAP.

~ } GMAP coding --

ENTER COBOL.

Notes:

1. The GMAP coding following an ENTER GMAP statement must be
terminated by an ENTER COBOL statement which begins on a new
line. The ENTER COBOL statement cannot have a paragraph-name.
The lines intervening between the ENTER GMAP and ENTER COBOL
statements must consist of GMAP coding.

2. A special format is used for the GMAP statements; it is in effect
the standard GMAP format shifted six places to the right.

Columns

1-6
7-12
13
14-19
20-21
22-72
73-80

Interpretation

COBOL sequence number
Location field
Even/odd subfield
Operation field
Blank
Variable field
Program identification

Information to the right of column 72 is not interpreted as part
of the variable field. As in ordinary GMAP coding, comments must
be separated from variable field information by at least one blank.

3. GMAP symbols defined in the location field must not conflict with
reserved system symbols (consult the GMAP manual for a listing of
reserved symbols). They must follow the GMAP rules for symbol
formulation. Symbols reserved for compiler use which must not be
defined in the location field of GMAP statements include:

a.

b.

c.

e.

Symbols in the form LNNNNN, where "L" is any letter
and "NNNNN'' is any string of 5 digits.

Symbols having as their left-most two characters any
file-code specified in the Environment Division.

Symbols of the form VfcEOF, where ''fc'' is any file-code
specified in the Environment Division.

The PROGRAM-ID defined in the Identification Divisiono

The symbol ENTER.

@J~o®@@ ~~ [pa~~~--------------_.:;C:.:;:;OB~OI

Page VII-34

f) Symbols having as their left-most two characters
either ".C" or "C.''.

g) Any 6-character symbol with the first character
numeric.

4. COBOL data-names and procedure-names are not directly accessible
to GMAP coding; a special provision (see ENTER DEFINITIONS)
permits GMAP symbols to be applied to COBOL procedures and data
items. The "locsym" of each GEFRC File Control Block (see the
GEFRC manual) is the two-character file-code assigned to the file
in a SELECT sentence in the ENVIRONMENT DIVISION followed by the
characters "FICB ". For a file with explicit or implicit PROCESS
AREA, the beginning location of the PROCESS AREA has the symbol
fcRECD where ''fc" is the file-code assigned. For any other file,
a "current record location" pointer is available (provided the file
is OPEN) in the address field (bits 0-17) of the File .Control Block
word with symbol "fc'' (file-code assigned). Data must be addressed
relatively to the current record location pointer for such a file.

5. All GMAP rules must be observed in the GMAP coding. Use of
pseudo-operations which alter the location counter is discouraged;
unless greater care is taken, such pseudo-operations can lead to
unpredictable results at object-time. Their use should presuppose
a thorough understanding by the programmer of the location counter
conventions followed by the COBOL compiler in generated coding.

@~a(ID@@ ~~(Ri0~~--------------~c~OB~OL

ENTER DEFINITIONS.

{
EQU=ALS} SYMBOL literal.-1

[;SYMBOL]
ENTER COBOL.

Notes:

Page VII-35

~[SIZE OF] 1
[INITIAL CHARACTER OFJ data-name

PROCEDURE procedure-name

1. Literal-1 must be a non-numeric literal, consisting of one to six
characters which satisfy the GMAP rules for symbol formation.

2. Data-·name must be defined in the Data Division in a Record Description
entry. It may be qualified, but not subscripted. Procedure-name must
be de~f ined in the Procedure Division as a paragraph-name or section
name. It may be qualified (if it is a paragraph-name). A COBOL rule
prohibits use of the same name for both data and procedures.

3. A SYMBOL statement which references a data-name or a procedure-name
only causes the compiler to equate the given GMAP symbol (literal-1)
to the first memory location of the specified data area or procedural
instructions.

4. A SYMBOL statement which references a data-name using the INITIAL
option causes the compiler to equate the symbol to an appropriate
numbe~r (O, 1, ... , 5) indicating the first character position occupied
by the data item within the (first) computer word. The left-most
position is indicated by 0, the right-most by 5.

5. A STI>'IBOL statement which references a data-name using the SIZE option
causE!S the compiler to equate the symbol to an appropriate number
which indicates the number of BCD character positions required to
contain the data-name.

@~a(ID@@ $)~ [ffi0~$)------~---co_BOL

Page VII-36

ENTER LINKAGE MODE.

CALL routine-name [USING data-name-1 [, data-name-2 •••]]

ENTRY POINT IS entry-name

[[~ data-name-1 [, data-name-2 • • J J •

[GIVING data-name-3 [, data-name-4 ••. JJJ

POPUP procedure-name

Notes:

1. CALL permits transfer of control to a sep~rately compiled subprogram
or entry point within a subprogram with a standard return mechanism
provided. (The generated coding employs the CALL macro of GMAP.)
The following conventions govern the use of CALL.

a) If the subprogram being called is an independently compiled
COBOL program, routine-name must be its PROGRAM-ID.

b) If the routine-name being called is an explicit entry-name in an
independently compiled COBOL subprogram, the entry-name must be
one specified in an ENTRY POINT statement in the independent
subprogram.

c) If the subprogram being called has been developed via another
·language, routine-name must be the subprogram's identification
or entry-name according to the pertinent language's rules.

d) If routine-name is a paragraph-name or section-name within the
current source-program, CALL has exactly the same effect as
"PERFORM routine-name" (without THRU or any other PER"FORM
option).

e) The implied entry point (PROGRAM-ID) of a subprogram written in
COBOL is the first non-DECLARATIVE procedural statement. This
entry point is produced automatically by the compiler. The
implied exit point follws immediately after the last procedural
statement in the source program and is also produced automatically.
It is. the effective exit point when a subprogram is called by its
PROGRAM-ID.

Page VII-36 .1

f) Any object-program produced by the COBOL compiler can be called
as a subprogram from other object-programs. COBOL object-programs
may also have multiple entry points which can be called and
executed from other object-programs. Normally, such subprograms
should not contain STOP RUN. The subprogram or entry point
procedures should be written to allow control to eventually
pass to an appropriate exit point. An EXIT paragraph must be
used if a subprogram has alternative routes to the exit point.
At least one EXIT entry-name must be specified for each explicit
entry-name in a subprogram.

g} A called subprogram may CALL other COBOL subprograms by implied
entry point or by entry-names specified within the other sub
programs. No subprogram may CALL its own PROGRAM-ID nor entry
names within itself. Entry point procedures may CALL entry
names in other subprograms; however, extreme care should be used
to avoid a CALL into a subprogram which has any previous active
CALL still current.

h} The USING clause is utilized to specify an argument list for
the subprogram being called. The USING arguments are not valid
when a CALL references a COBOL subprogram by its PROGRAM-ID.
They are valid when referencing explicit entry points within a
COBOL subprogram. The user must assure that the order and des
criptions of the arguments conform to the called subprogram's
requirements. At most, ten arguments may be specified.

i) The USING clause specifies "input" and "output" arguments to the
called subprogram. USING data-names must reference Working
Storage or Constant Section items, or items in files for which
a PROCESS AREA is specified. A USING argument may be a file
name, in which case the object-program argument will be a File
Control Block pointer. File-names are not valid arguments when
calling a COBOL subprogram; they are restricted to called sub
programs developed in another language.

j) USING data-names must not be subscripted.

k) The user must assure that the number of USING arguments specified
in a CALL to an explicit entry-name corresponds exactly with the
number of USING and GIVING arguments specified in its ENTRY POINT
statement and that the data descriptions for each corresponding
argument are identical.

@(Ea@@@ ~(E[ffi~(E~--------------C_OBO_L

Page VII-36.2

2. ENTRY POINT provides a way to define entry points into a subprogram
other than the implied entry point (the PROGRAM-ID) which is the
first non-DECLARATIVE procedural statement.

The following conventions govern the use of ENTRY POINT.

a) The entry-name specified must not contain more than six characters,
with at least the first two characters a letter, and the remaining
characters letters, and/or digits. It must not be the same as
the PROGRAM-ID.

b) An ENTRY POINT statement can be used any place in the Procedure
Division except under DECLARATIVES.

c) There must be no path of program flow to an ENTRY POINT statement
within the program containing the ENTRY POINT statement. Hence,
the statement should not have a paragraph-name.

d) An ENTRY POINT statement can only be referenced by calls from
external subprograms. It must not be referenced by a CALL from
within the subprogram in which it resides.

e) The user may specify as many ENTRY POINTS as desired for a par
ticular subprogram.

f) For each ENTRY POINT statement there must be at least one EXIT
entry-name statement to provide the exit point for any CALL
which references the entry-name.

g) The USING clause is used to specify an input argument list for an
ENTRY POINT. The USING data-names specified must be level 77 or
01 items specified in the Working-Storage or Constant Section.
When a CALL references an ENTRY POINT with USING arguments, the
compiler generates word moves for each argument, using the in
direct address specified in the CALL as a sending field and the
corresponding data-name from the USING argument list of the ENTRY
POINT as a receiving field. The user must assure that the des
criptions of the corresponding arguments are identical. Procedural
statements following a particular ENTRY POINT will not be executed
until all USING argument moves are complete.

@j~o(ID@@ ~~(ffiO~~--------------CO_BO_L

Page VII-36.

h) The GIVING clause is used to specify an output argument list for
an ENTRY POINT. The GIVING data-names specified must be level 77
or 01 items specified in the Working-Storage or Constant Section.
When a CALL references an ENTRY POINT with GIVING arguments, the
compiler generates word moves for each argument, which will be
executed on an EXIT entry-name for the referenced ENTRY POINT.

The GIVING moves use the corresponding indirect address specified
in the CALL as a receiving field and the corresponding data-
name from the GIVING argument list for the 'ENTRY POINT as a
sending field.

i) The user must assure a one-to-one correspondence between the CALL
USING arguments and the ENTRY POINT USING/GIVING arguments. The
data formats for the corresponding arguments must be identical.

j) USING/GIVING data-names must not be subscripted.

k) An entry-name must not be used in a $ ENTRY control card.

@~a®@@ ~~[ffi0~~--------------co_BO_L

Page VII-:

3. POPUP permits extended use of PERFORM statements. Each PERFORM
executed causes an exit link to enter a push-down stack which services
all PERFORMs. The stack is so arranged that only the last PERFORM
executed can engage its exit mechanism, if control passes to any other
exit mechanism; even if a relevant PERFORM is active, the exit mech
anism simply passes control to the next statement in the written
sequence. When the exit mechanism of the last executed PERFORM is
reached, it automatically removes its exit link and pops up the stack
before returning control. This stack structure permits recursive
PERFORMs, nested PERFORMs with crossing ranges, and multiple active
PERFORMs with a common exit point. (Use of such extenqed capabilities,
of course, requires that the user supply his own MOVEs as necessary
to avoid unintended overlaying of data with new values.) A push-down
stack approach inherently requires that all pop-ups must eventually
occur in an orderly way. This means that control must eventually
reach the exit mechanism of any active PERFORM; and for nested
PERFORMs control must pass to the exit mechanisms in the logical
order "innermost to outermost." POPUP permits this inherent problem
to be overcome. When the progrannner plans the control sequence in
such a way that not all exit mechanisms will be operated in the re
quired order, he must employ POPUP to remove the unused exit links
from the stack. The simplest example of such a situation is a GO
transferring control outside of a PERFORM range without a subsequent
return to the range. The following rules apply to POPUP:

a) Procedure-name must be the name of the last paragraph or section
in the range of a currently active PERFORM. This rule is
extremely important.

b) POPUP removes from the stack all exit links up to and including
that associated with the exit mechanism following the "procedure
name" paragraph or section. POPUP does not return control for
any exit link; it merely passes control to the statement follow~
ing it in the written sequence after its action on the stack.

c) If control permanently leaves a PERFORM range, the memory area
allocated for the stack will gradually fill to overflow as the
PERFORM is repeatedly executed unless POPUP is used. Stack over
flow derails the object-program.

d) If an active PERFORM's exit mechanism is deliberately bypassed,
prior PERFORMs which are still active cannot have their exit
mechanisms return control unless POPUP is used.

e) POPUP must not reference an entry-name specified by the ENTRY
POINT statement.

@(Ea@@@ ~(E[ffiQ(E~--------------co_BO_L

Page VII- 38

EXAMINE

FUNCTION: To replace and/or count the number of occurrences of a given
character in a data item.

Option 1:
UNTIL FIRST}

EXAMINE data-name TALLYING ALL literal-1
LEADING

[REPLACING BY literal-2]

Option 2:

EXAMINE data-name REPLACING {~;;DING } literal-3 BY literal-4

Notes:

[UNTIL] FIRST

1. The description, appearing in the DATA DIVISION, of the data-name
used in an EXAMINE statement must be such that USAGE is DISPLAY
(explicitly or implicitly). Each literal used in an EXAMINE
statement must consist of a single character belonging to a CLASS
consistent with that of data-name.

2. Examination proceeds as follows:

a) For items whose CI.ASS is not NUMERIC, examinaticn starts at
the left-most character and proceeds t.o the right. Each
character in the item specified by the data-name is examined
in turn. Any reference to the first character means the left
most oneo

b) If an item referenced by the EXAMINE verb is NUMERIC, it
must consist of numeric characters and may possess an opera
tional sign. Examination starts at the left-most character
(excluding the sign) and proceeds to the right. Each charac
ter is examined in turn. Regardless of where the sign is
physically located, it is completely ignored by the EXAMINE
verb. Any reference to the first character means the left
most numeric character.

3. The TALLYING option creates an integral count which replaces tlE
value of a special register called TALLYo The count represents
the number of:

a. Occurrences of literal-1 when the ALL option is used.
b. Occurrences of literal-1 prior to encountering a character

other than literal-1 when the LEADING option is used.

c. Characters not equal to literal-1 encountered before the
first occurrence of literal-1 when the UNTIL FIRST option
is used.

@~a(ID(O)@ ~[g[ffi0~~-----------C--.OB_OL

Page VII-39

4. When either of the REPLACING options are used (iGe., with or
without TALLYING) the replacement rules are as follows, subject
to the rules in Note 2:

a) When the ALL option is used, then literal-2 (or literal-4)
is substituted for each occurrence of literal-1 (or literal-3).

b) When the LEADING option is used, the substitution of literal-2
(or literal-4) terminates as soon as a character other than
literal-1 (or literal-3) or the right-hand boundary of the
data item is encountered.

c) When the UNTIL FIRST option is used, the substitution of
literal-2 (or literal-4) terminates as soon as literal-! (or
literal-3) or the right-hand boundary of the data item is
encountered.

d) When the FIRST option is used, the first occurrence of
literal-3 is replaced by literal-4.

@~a(ID(ID(ID ~~000~~--------------...,;;;,C.;;;.;;;,OB~OL

Page VII-40

EXIT

FUNCTION: To define the exit point for a series of procedures or the logical
end of a called program.

paragraph-name. EXIT
[{

PROGRAM } J
entry-name .

Notes:

1. EXIT must be preceded by a paragraph-name and be the only sentence
in the paragraph.

2. EXIT without the PROGRAM or entry-name options is used in conjunction
with procedures referenced either by the PERFORM, SORT, or USE verb.
If such a procedure has only a single control path to the exit point,
EXIT is not needed. If the procedure has alternative paths to the
exit point, an EXIT paragraph should be employed, and the various
paths should then GO to the EXIT paragraph.

3. The PERFORM verb and the SORT verb's INPUT and OUTPUT PROCEDURE clauses
require procedure-names referenced in the following way:

•.• procedure-name-1 [THRU procedure-name-2]

The end of procedure-name-2 is the "exit point" if the THRU option is
used; otherwise the end of procedure-name-! is the exit point. The
presence of intervening EXIT paragraphs does not affect this rule.
If an EXIT paragraph is needed, the user must take care to place it
at the proper exit point.

The following example illustrates the use of an EXIT paragraph:

1. PERFORM 6. NOTE CONTROL RETURNS TO 2.

2. MOVE ...
3. GO TO 6. NOTE CONTROL WILL PASS THROUGH THE EXIT PARAGRAPH TO 9.

4. ADD

6. SECTION.

7. MOVE ...
IF ... NEXT SENTENCE; ELSE GO TO 8.
COMPUTE

8. EXIT.

9. SECTION.

@~o(ID@(ID ~~(Ri~~~--------------.....;:C:.;;,;:OB~OL

Page VII-40.1

4o If control reaches an EXIT statement without the PROGRAM or entry-name
option and no associated PERFORM,SORT, or USE statement is active or if
control reaches an EXIT PROGRAM statement and no CALL statement is active,
control falls thru the EXIT point to the first sentence of the next
paragraph.

5. If control reaches an EXIT PROGRAM statement while the subprogram is
being executed as the result of a CALL statement, control returns to
the point in the calling program immediately following the CALL state
ment.

6. The EXIT PROGRAM or entry-name statement must not be used in the
DECLARATIVES.

7. The EXIT entry-name option defines an exit point for a specific entry
name which is given in the associated ENTRY POINT statement. The
entry-name must be defined by the ENTRY POINT statement in the same
subprogram as the EXIT entry-name.

8. The user can specify more than one exit point for any given ENTRY POINT,
but there must be at least one EXIT entry-name for each ENTRY POINT
specified.

9. If control reaches an EXIT entry-name statement, a check is made to
determine if the entry point corresponds to the current exit point.
If they correspond, it provides an exit whereby the GIVING fields
specified for the ENTRY POINT are moved, all registers restored, and
control returns to the point immediately following the CALL statement
for the given entry-name. If the EXIT does not correspond to the
entry-name, control will pass through the EXIT entry-name statement to
the first sentence of the next paragraph.

10. The user must insure when using an EXIT PROGRAM statement that no
PERFORM is currently active in any subprogram at the time the EXIT
PROGRAM statement may be encountered.

~(ga(ID(O)(O) ~~[Ri~(g~---------------co_BO_L

Page VII-41

GENERATE

FUNCTICN: To present a report entry based on PROCEDURE DIVISION
control.

Notes:

GENERATE data-name-1

1. If data-name-1 represents the name of a TYPE DETAIL report
group, GENERATE does all the relevant automatic operations
and produces an actual output DETAIL report group. (Detail
reporting.)

2. If data-name-1 is the name of an RD entry, GENERATE does all
the relevant automatic operations and updates the FOOTING report
group(s) within the report without producing an actual DETAIL
report group associated with the report. Thus it increments
(decrements) all SUM counters associated with the report descri
ption. (Summary reporting.) If the report includes more than
one TYPE DETAIL report group, all SUM counters are incremented
each time such a GENERATE is executed.

3. GENERATE, produces the following automatic operations (as needed):

a) Steps and tests the LINE-COUNTER and/or PAGE-COUNTER to
produce appropriate PAGE or OVERFLOW FOOTING and/or PAGE or
OVERFLOW HEADING report groups.

b) Recognizes any specified CONTROL breaks to produce approp
riate CONTROL FOOTING and/or CONTROL HEADING report groups.

c) Accumulates into the SUM counters all specified data-name(s).
Resets the SUM counters on an associated CONTROL break.
Performs an updating procedure between CONTROL break levels
for each set of SUM counters.

d) Executes any specified routines defined by USE before
generation of the associated report group(s).

4. During the execution of the first GENERATE statement referring
to a report or to a DETAIL report group within a report, all
CONTROL HEADING report groups specified for the report are
produced in the order major ... minor, immediately followed by
any DETAIL report group specified in the statement. If a data
name control break is recognized at the time of execution of a
GENERATE statement (other than the first that is executed for
a report), all CONTROL FOOTING report groups specified for the
report are produced from the minor report group up to and in
cluding the report group specified for the data-name which

Page VII-42

caused the control break. The CONTROL HEADING report group(s)
specified for the report, from the report-group specified for
the data-name which caused the control break down to the minor
report group, are then produced in that order. The DETAIL
report group specified in the GENERATE statement is then pro
duced.

5. When data is moved to a report group it is edited according to
the rules described under the MOVE verb.

Page VII-4:

GO

FUNCTION: To depart from the normal sequence of procedures.

Option 1:

GO TO (procedure-name-1]

Option 2:

Notes:

GO TO procedure-name-1, procedure-name-2,[procedure-name-3 ...]

DEPENDING ON data-name

1. If a GO statement is to be ALTERed, then:

a) The GO statement must itself have a paragraph-name, and must
have the option 1 format.

b) The paragraph in which the GO statement is included must
consist solely of the GO statement.

If procedure-·name-1 is omitted, an error stop will occur at
object time unless the GO statement is ALTERed before its first
execution.

2. In option 2, the data-name must have a positive integral value.
The branch will be to the 1st, 2nd, ... ,nth procedure-name, as
the value of data-name is 1, 2, ..• , n. If the value of data
name is anything other than the integers 1, 2, •.. , n then no
transfer is executed and control passes to the next statement
in the normal sequence for execution.

@j(ga(ID@@ ~~[ffiO~~-----------co_so_L

Page VII-44

INITIATE

FUNCTION: To INITIATE the presentation of a repor~

INITIATE { data-name-1 [data-name-2 ••. J }
ALL

Notes:

1. INITIATE sets to zero all entries associated with this report
which contain SUM clauses; the controls for all the TYPE
report groups which are associated with this report are set
up in their respective order.

2. The PAGE-COUNTER, if specified, is initially set to 1. If
a different starting value for PAGE-COUNTER other than 1 is
desired, the progranuner may reset the COUNTER.

3. The LINE-COUNTER, if specified, is automatically set to zero
before the INITIATE process.

4. The data-names must be defined by RD entries in the Report
Section of the program.

5. A report can be reinitiated after it has been terminated.

6. If ALL is specified, all reports defined in the Report Section
of the Data Division are initiated.

7. INITIATE does not open the file with which the report is
associated. An OPEN statement for the file must be executed
before the INITIATE statement.

@J~a(ID©J@ ~~ooa~~-------------____,;C;.;.,;OB;.;;.,;;;.OL

Page VII-45

FUNCTION: To transfer data to one or more data areas, in accordance
with the rules of editing.

Notes:

rr ;sPONDING~J L\.; j data-name-1 TO data-name-2 [, data-name-3 ••

literal

1. Additional rece1v1ng areas may be given following data-name-2.
The data designated by the literal or data-name-1 will be moved
first to data-name-2, then to data-name-3, etc. The notes
referencing data-name-2 al~o apply to the other receiving areas.

2. Notes 2 through 4 refer to a MOVE without the CORRESPONDING option.

a) Any MOVE in which the sending and receiving items are both
elementary items is an elementary MOVE.

In the following discussion PICTURE is used for clarity;
however, every elementary item belongs to one of the cate
gories listed below whether or not the PICTURE is used in
its description:

N - Numeric - The item has CLASS NUMERIC. This includes
any item whose PICTURE consists solely of characters
from the set 9S V P and O.

NE - Numeric Edited - The item has at least one of the
following:

(1) An editing clause (e.g., FLOAT DOLIAR SIGN, BLANK
WHEN ZERO).

(2) A PICTURE containing any of the numeric editing
characters Z * $, • + - CR and DB.

(3) A PICTURE containing at least one of the insertion
character B, and not containing any A's or X's.

AE - Alphanumeric Edited - An item whose PICTURE contains at
least one of the insertion character B, and at least
one X.

AN - Alphanumeric - The item has CLASS ALPHANUMERIC, but
is neither Numeric Edited nor Alphanumeric Edited.

Page VII-46

AB - Alphabetic - The item has CLASS ALPHABETIC. Any item
whose PICTURE consists entirely of A's and B's is
considered ALPHABETIC. (There must be at least one A.)

Numeric literals belong to the category N, and non-numeric
literals belong to the category AN.

b) The following rules apply to an elementary MOVE between the
categories defined above~

(1) It is illegal to MOVE an NE, AE, or AB item to an N
or NE item.

(2) It is illegal to MOVE an N or an NE item to an AB item.

(3) It is illegal to MOVE an N item whose implicit decimal
point is not iIIllllediately to the right of the least
significant digit to an AN or AE item.

(4) A literal cannot be moved to a DISPLAY-2 item. A DISPLAY-2
item can be moved only to a DISPLAY or DISPLAY-2 item. When
a DISPLAY-2 item is a receiving item, the sending item must
have DISPLAY or DISPLAY-2 USAGE.

(5) It is illegal to move a literal to a smaller field.

(6) All other elementary moves are legal and are performed
according to the rules given in Note 3.

3. The following rules apply to legal elementary moves:

a) When an AE, AN, or AB item is a receiving item, justification and
any necessary space-filling takes place as defined under the
JUSTIFIED clause. If the SIZE of the sending item is greater
than the SIZE of the receiving item, the excess characters are
truncated after the receiving item is filled.

b) When an N or NE item is a receiving item, alignment by decimal
point and any necessary zero-filling takes place as defined under
the JUSTIFIED clause, except where zeroes are placed because of
editing requirements. If the receiving item has no operational
sign, the absolute value of the sending item is used. If the
sending item has more digits to the left and/or right of the
decimal point than the receiving item can contain, the excess
digits are truncated. If the sending item contains any non-
numeric characters, the results at object time may be unpredictable.

c) Whenever any excess characters are to be truncated, a warning will
will be given during compilation.

d) Any necessary conversion of data from one form of internal
representation to another (binary to decimal, numeric mode to
al.phanumeric mode, etc o) will take place during the MOVE, along
with any specified editing in the receiving item such as suppress
zeros with blanks, insert a dollar sign, connnas, a decimal point,etc.

@~a(ID@@ ~[E[ffi0[E~---------------C-OB_OL

Page VII-47

4. Any MOVE that is not an elementa~y MOVE is treated exactly as if it were
an AN to AN elementary MOVE, except that there will be no conversion of
data from one form of internal representation to another.

5. If the CORRESPONDING option is used, selected items within data-name-1
are moved, with any required editing, to selected areas within data-name-2.
Items are selected by matching the data-names of items defined within
data-name-1 with like data-names of areas defined within data-name-2,
according to the following rules:

a) At least one of the items must be an elementary item.

b) The respective data-names are the same including all qualifications
up to but not including data-name-1 and data-name-2.

Each CORRESPONDlNG source item is moved in conformity with the des
cription of the receiving area. The results are the same as if the
user had referenced each pair of CORRESPONDING data-names in separate
MOVE statements.

6. In determining which data-names are CORRESPONDING to each other, any
data-names which are subordinate to data-name-1 or data-name-2 and
which have REDEFlNES clauses are ignored, as well as any data-names
which are subordinate to the subordinate data-names with REDEFINES
clauses.

Note that this restriction does not preclude data-name-1 or data-name-2
themselves from having REDEFINES clauses or from being subordinate to
data-names with REDEFINES clauses.

In the execution of "MOVE CORRESPONDING ABLE TO BAKER," where the
respective data descriptions are as follows:

03 ABLE
04 p
04 Q
04 R REDEFINES Q
05 s

03 BAKER
04 p
04 Q
04 R
05 s

P and Q will be moved, but R will not be moved (it is a REDEFINES),
nor will S be moved (it is subordinate to a REDEFINES); similarly,
if the REDEFINES had been in BAKER.

7. If the CORRESPONDING option is used, no items in the group referenced
can contain an OCCURS clause.

8. When a MOVE CORRESPONDING references a group which contains RENA:MES
entries, these entries are not considered in the matching of items.

9. A MOVE CORRESPONDING must not reference items having level numbers 66,
77, or 88.

10. CORR is an abbreviation for CORRESPONDING.

@~a(ID(ID(ID ~(E[ffi~~~---------------c_oB_OL

Page VII-48

MULTIPLY

FUNCTION: To multiply numeric data items and set the value of an item
equal to the results.

Notes:

{
data-name-1} {data-name-2 [GIVING data-name-3]} MULTIPLY BY literal-1 ~ literal-2 GIVING data-name-3

[ROUNDED] [; ON SIZE ERROR any imperative statement]

1. The data-names used must refer only to elementary items. If
GIVING is used, data-narne-3 is not used as an operand; hence,
its format may contain editing symbols. In all other cases,
the data-names used must refer to NUMERIC items only.

2. All rules specified under the ADD verb regarding the size of
operands, presence of editing symbols in operands, the ON
SIZE option, the ROUNDED option, the GIVING option, truncation,
and the editing of results, apply to the MULTIPLY verbo

3. When GIVING is not used, the initial value of data-name-1 or
literal-1 will be multiplied by the initial value of data-name-2.
The value of the multiplier will be replaced by the product
resulting from operation" Note that a literal must not be used
as a multiplier.

Page VII-49

NOTE

FUNCTION: To. allow the programmer to write explanatory statements in
the PROCEDURE DIVISION of his program.

Notes:

NOTE ...

1. Following the word NOTE may appear any combination of the
characters from the COBOL character set, provided the COBOL
rules for punctuation and word and literal formation are
observed.

2. If a NOTE sentence is the first sentence of a paragraph, the
en.tire paragraph is considered to be connnentary. Proper
format rules for paragraph structure must be observed.

3. If NOTE is not the first word of a paragraph, the connnentary
ends with a period followed by a space.

4. NOTEs are produced on the compiler listing, but do not affect
the object program.

5. The word NOTE can only appear as the first word of a sentence.

@J~a(ID(Q)(O) ~~rn~a~~----------C_OB_,__OL

Page VII-50

OPEN

FUNCTION: To initiate the processing of fileso Performs checking or
writing of labels, and other input/output functions.

OPEN

Notes:

(INPUT}
_;OUTPUT

file-name-1 [WITH NO REWIND] [, file-name-2

[WITH NO REWIND] •••] [{ ~~~~T} file-name-3 [WITH NO REWIND]

[, file-name-4 [WITH NO REWIND •••]]

1. At least one file must be named when the OPEN verb is used.

2. The verb OPEN must be applied to all files, and must be executed
prior to the first READ or WRITE for a file.

3o A second OPEN of a file cannot be executed prior to the execution
of a CLOSE of the file.

4. The OPEN does not obtain or release the first data record. A READ
or WRITE, respectively, must be executed to obtain or release the
first data record. Data cannot be moved to the record area, nor
can the record area be tested or referenced in any way until after
the first READ on the specified file. Unless there is an APPLY
PROCESS AREA for an optional file, no reference to the record area
should be made if the file is not presento

5. The user's beginning label subroutine will be executed if one is
specified by the USE verb.

60 If an input file has been designated as optional in the File-Control
paragraph of the Environment Division, the object program will cause
an interrogation for the presence or absence of this file to occur.
If the file is not present, the file will not be opened, an indi
cation of the absence of the file will occur, and an ''end-of-file"
signal will be sent to the input/output control system of the
object programo Thus, when the first READ for this file is encountered,
the "end-of-file'' path for this statement will be taken.

@(Ea@@® ~(E(ffi0(E~--------------__..:;,C~OB~OL

PERFORM

FUNCTION:

Option 1:

Page VII-51

To depart from the normal sequence of procedures in order
to execute a procedure a specified number of times, or
until a condition is satisfied, and then return to the
normal sequence.

PERFORM procedure-name-1 [THRU procedure-name-2]

Option 2:

{
data -name -1} PERFORM procedure-name-1 [THRU procedure-name-2] .

1
TIMES integer-

Option 3:

PERFORM procedure-name-1 [I!IB!I procedure-name-2] UNTIL condition-1

Option 4:

PERFORM procedure-name-1 [THRU procedure-name-2] VARYING

data-name-2 FROM {d~~ame-3} BY Jci~ta-name-4}
~~ l1teral-l ~ "literal-2

UNTIL condition-1

Option 5:

PERFORM procedure-name-1 [THRU procedure-name-2] VARYING

b · l FROM {data -name-sl BY {data -name -6}-
s u sen.pt-name- -- integer-2 r - integer-3

UNTIL condition-2

AFTER subscript-name-2 FROM

~FTER subscript-name-3 Efill:!

{
data -name -7} . 4 BY integer- -

{~ata-name-~ ll integer-6 r

}la ta-name-~
\:nteger-5 f
UNTIL condition-3

{~ata-name-10\.. . J
integer-7 f
UNTIL condition-4

COBOL

Page VII- 52

Notes:

1. The range of a PERFORM start'S with the first executable state
ment in procedure-name-1 and continues in logical seguence
through the last executable statement of:

a) procedure-name-2 if specified, or
b) procedure-name-1 if procedure-name-2 is not specified.

If procedure-name-1 is a USE procedure, procedure-name-2 must
not be specified.

2. The first statemen·t of procedure-name-1 is the point to which
sequence control is sent by PERFORM. The return mechanism is
automatically inserted as follows:

a) If procedure-name-1 is a paragraph-name, anlprocedure-name-2
is not specified, -- after th~ last statement of the procedur~
name-1 paragraph.

b) If procedure-name-1 is a section-name, and procedure-name-2
is not specified,-- after the last statement of the last
paragraph of the procedure-name-1 section.

c) If procedure-name-2 is specified and is a paragraph-name,
after the last statement of the procedure-name-2 paragraph.

d) If procedure-name-2 is specified and is a section-name,
after the last statement of the last paragraph of the
procedure-name-2 section.

The"last sentence" PERFORMed in all of the above cases must
allow control to pass to the return mechanism. There is no
necessary relation between procedure-name-1 and procedure-name-2
except that a sequence beginning at procedure-name-1 must proceed
through the last sentence of procedure-name-2. In particular,
GO's and PERFORM's may occur between procedure-name-1 and. the
end of procedure-name-2, provided control eventually passes to
the return mechanism. If it is desired to have two or more
logical paths to the return mechanism, then procedure-name-2
must be a paragraph consisting of the verb EXIT to which these
paths must lead.

3. In all cases, after the completion of a PERFORM, a bypass is
automatically created around the return mechanism which had
been inserted after the "last statement." Therefore, when no
related PERFORM is in progress, sequence control will pass
through a "last statement," to the following statement as if no
PERFORM had existed.

Page VII-53

4. The PERFORM mechanism for options 1 through 4 operates as
follows with note 3 above applying to all options:

a) Option 1 is a simple PERFORM. A return to the statement
following the PERFORM is inserted after the "last statement"
as defined in note 2, and sequence control is sent to
procedure-name-1.

b) Option 2 is the TIMES option. The specified number of times
must be a positive integer, and may be zeroo The PERFORM
mechanism sets up a counter and tests it against the specified
value before each jump to procedure-name-!. The return
mechanism after the ''last statement" steps the counter and
then sends control to the test. Thetest cycles control to
procedure-narne-1 the specified number of times, and after the
last time sends control to the statement following the PERFORM.

c) Option 3 is the UNTIL option. This option is the same as the
TIMES option, except that an evaluation of a condition takes
the place of counting and testing against a specified integer.
The condition may be any simple or compound condition, that
is, the condition may involve relations and testso When the
condition is satisfied, i.e., true, control is transferred
to the next statement after the PERFORM statement. If the
condition is true when the PERFORM is entered, no jump to
procedure-name-! takes place, and control is transferred to
the next statement after the PERFORM statement.

d) Option 4 is the VARYING data-name option. The VARYING
option is assumed to be arithmetic and all the arithmetic
rules apply. This option is used when it is desired to
increase or decrease the value of any item while the execu-
tion of a procedure or a series of procedures is being accomplish-
ed. Only one item can be varied per PERFORM statement using
this option. The PERFORM mechanism sets the value of data-name-2
equal to its starting value (the FROM), then evaluates the
condition (the UNTIL) for truth or falsity. If the condition
is true at this point, then no execution of ptocedure-name-1
through procedure-name-2 takes place. Instead, control is
transferred to the next statement after the PERFORM statement.
If the condition is false, then procedure-name-1 through
procedure-name-2 are executed once. The mechanism then aug
ments the value of data-name-2 by the specified increment or
decrement (the BY) and again evaluates the condition (the UNTIL)
for truth or falsity. The cycle continues until the condition
is determined to be true, at which point control is transfer-
red to the next statement after the PERFORM statement. Literal-1
and literal-2 must be numeric literals, but need not necessarily
be integral. A diagram for this mechanism follows"

@~ a(ID(O)@ ~~[ffi~~~------------CO_BO_L

Page VII-54

ENT NCE

Set data-name-2 equal
to initial value (FROM)

Condition-1

Execute procedure-name-1
[THRU procedure-name-2]

Augment data-name-2 with
its BY value

It should be noted that after the last execution of the
PERFORM range, data-name-2 will be augmented one more
time before control passes to the Exit of the PERFORM
statement.

e) Option 5 is the VARYING subscript-name option. This·
option is used when it is desired to augment the value of
one or more subscripts in a nested fashion while the
execution of a procedure or a series of procedures is being
accomplished. A maximum of three subscripts can be varied
per PERFORM statement using this option. When only one sub
script is being varied, the mechanism is exactly the same
as that of the VARYING data-name-2 option (Option 4). When
two subscripts are varied, the value of subscript-name-2
goes through a complete cycle (FROM, BY, UNTIL) each time
that subscript-name-1 is augmented with its BY value. The
PERFORM is completed as soon as condition-2 is found to be
true. When three subscripts are varied the value of sub
script-name-3 goes through a complete cycle (FROM, BY,
UNTIL) each time that subscript-name-2 is augmented with
its BY value. Further, subscript-name-2 goes through a
complete cycle (FROM, BY, UNTIL) each time that subscript
name-1 is augmented by its BY value. The PERFORM is com
pleted as soon as condition-2 is found to be true. Regard
less of the number of subscripts being varied, as soon as
condition-2 is found to be true, control is transferred to
the next statement after the PERFORM statement. The FROM
value must be a positive, non-zero integer. The BY value
must be a non-zero integer. Subscript-name-1, subscript
name-2, and subscript-name-3 must never reference the same
item (i:e., they must not be alternative names for the same
data item). Diagrams for this mechanism follows.

Page VII-55

TWO SUBSCRIPTS

ENT NCE

Set subscript-name-1 and subscript-name-2
to initial values

condition-2 true
1--~~~~---Exit

condition-3 true

Execute procedure-name-1
[THRU procedure-name-2]

Augment subscript-name-2
with its BY value

Set subscript-name-2 to
its initial value (FROM)

Augment subscript-name-1
with its BY value

@3~ D (ID@@ ~(g[ffi 0 [g~------------CO.......,B.....,...OL

Page VII-56

THREE SUBSCRIPTS

ENT~NCE

Set subscript-name-1, subscript-name-2,
subscript-name-3 to initial values (FROM)

I

condition-2
true

~Exit

. false

condition-3
true

_.. ..
l: false

condition-4 true

• -
false

,, • • Execute Set Set
procedure-name-1 subscript-name-3 subscript-name-2

[THRU procedure-name-2] to its initial to its initial
value (FROM) value (FROM)

t: 1

Augment Augment Augment
L.it subscript-name-3 subscript-name-2 subscript-name-1 ...

with its BY with its BY with its BY
value value value

]

It should be noted that after the last execution of the PERFORM range
subscript-name-2 and subscript-name-3 will each be set to their respective
initial value (FROM) while subscript-name-1 will be augmented one more
time before control passes to the Exit of the PERFORM statement.

5. In general, procedure-name-1 should not be the next statement
after the PERFORM. If it is, the result will be that the loop
will be executed one more time than was probably intended,
because after the PERFORM is satisfied control would go to
procedure-name-1 in the normal continuation of the sequence.

Page VII-57

6. If a sequence of statements referenced by a PERFORM includes
another PERFORM statement, the sequence associated with the
included PERFORM must itself either be totally included in,
or totally excluded from, the logical sequence referenced by
the first PERFORM.

For example, the following illustratims are correct.

x PERFORM a THRU m x PERFORM a THRU m

a a

d PERFORM f THRU j d PERFORM f THRU j

f h

j m

m f

j

The following illustration is incorrect:

x PERFORM a THRU m

a---------
d PERFORM f THRU j

:==-~]·
j _______ _

The sequence of procedures associated with a PERFORM statement
may overlap or intersect the sequence associated with another
PERFORM provided that neither sequence includes the PERFORM
statement associated with the other sequence.

For example;
Correct Incorrect

x PERFORM a THRU m x PERFORM a THRU m

a - a

f d PERFORM f THRU j

m f

j m

d PERFORM f THRU j j

@J~ c(@(ID@ ~~rnrn~~-----------CO_BO_L

Page VII-58

FUNCTION: To make available the next logical record from an input
file and to allow performance of a specified imperative
statement when end-of-file is detected.

Notes:

READ file-name RECORD [INTO data-name] [;AT !liQ any imperative

statement]

1. An OPEN statement for the file must be executed prior to the
execution of the first READ for that file.

2. When a file consists of more than one type of logical record,
these records automatically share the same storage area. This
is equivalent to saying that there exists an implicit redefinition
of the area, and only the information which is present in the
current record is accessible.

3. No reference can be made by any verb in the PROCEDURE DIVISION
to information which is not actually present in the current
record. If such a reference is made the results in the object
program are unpredictable.

4. The INTO data-name option may only be used when the input file
contains just one type of record. The data-name must be the
name of a working storage or output record area. If the format
of the data-name differs from that of the input record, moving
will be performed according to the rules specified for the
MOVE verb without the CORRESPONDING option. When the INTO data
name option is used, the "file-name RECORD'' is still available
in the input record area.

5. Every READ statement m,Jst have an END of file opti0n, either
implicitly or explicitly. On the next execution of a READ
statement for the file .~ the last record in the file has been
made available, "any imperative statement" is executed. If the
user does not write END, the compiler will examine all other
READ statements for the same file. If the word END appears
once and only once for a given file, the compiler will append
this and its associated imperative-statement-! to each READ
statement for that file which has no explicit END of file option.
If more than one, but not all READs for the same file contain the
word END in their formats, the compiler will indicate an error
during compilation.

(W~a(B)(Q)(ID ~[E[ffi0[E~-----------co_so_L

Page VII-5

6. If an OPTIONAL file is not present, the imperative statement
will be executed on the first READ. The standard end-of-file
procedures will not be performed. (See the OPEN and USE verbs,
and the FILE-CONTROL paragraph in the ENVIRONMENT DIVISION.)

7. After execution of the imperative statement, an attempt to
perform a READ without the execution of a CLOSE and a subsequent
OPEN for that file would normally constitute an error in the
object program. However, in special cases it may be desirable to
READ a second reel of an unlabeled multiple reel file. (See
Processing Nonlabeled Multiple Reel Files.)

8. If an end of reel is recognized during execution of a READ state
ment, the following operations are carried out:

a) The standard ending reel label procedure and the user's
ending reel label procedure (if specified by the USE verb).
The order of execution of these two procedures is specified
by the USE verb.

b) A tape swap. (This includes rewinding the exhausted reel
and placing it in standby status.)

c) The standard beginning reel label procedure and the user's
beginning reel label procedure (if specified by the USE
verb). The order of execution of these two procedures is
specified by the USE verb.

d) The first data record on the new reel is made available.

@~a@@@ ®~000~®---------------c_oB_o1

Page VII-60

RELEASE

FUNCTION: To transfer records to the initial phase of a SORT operation.

Notes:

RELEASE record name [FROM data-name]

1. RELEASE can only be used within an INPUT PROCEDURE a·ssociated
with a SORT statement for a file whose DATA RECORDS clause
contains record-name. Any other use of a RELEASE statement
will lead to unpredictable results.

2. Record-name must be named in the DATA RECORDS clause of its
associated sort-file.

3. Data-name must be the name of a working storage or an input
record area. If the format of data-name differs from that of
the record-name, moving will take place according to the rules
specified for the MOVE verb without the CORRESPONDING option.
The information in the record area is no longer available, but
the information in data-name area is available. It is illegal
to use the same name for both data-name and record-name.

4. After the RELEASE is executed, record-name is no longer avail
able.

5. The execution of a RELEASE statanent causes record-name (after
data-name has been MOVEd :o it in the FROM option) to be
transferred to the initial phase of a SORT. When control
passes from the INPUT PROCEDURE the file consists of all those
records which were placed in it by the execution of RELEASE
statements. No OPEN, CLOSE, READ, WRITE, or USE statements
may be given for the sort-file.

@~a(ID@@ ~~(ffi0~~----------co_so_L

Page VII-61

RETURN

FUNCTION: To obtain sorted records from the final phase of a SORT
operation.

Notes:

RETURN file-name RECORD [INTO data-name] [; AT END any imperative

statement]

1. File-name must be a sort-file with a sort-file· description in
the DATA DIVISION.

2. RETURN can only be used within an OUTPUT PROCEDURE associated
with a SORT statement for file-name. Any other use of a RETURN
statement will lead to unpredictable results at object time.

3. The execution of the RETURN statement causes the next record in
sorted order (according to the keys listed in the SORT statement)
to be made available for processing in the records area associated
with the sort file. No OPEN, READ, WRITE, CLOSE or USE state
ments may be given for the sort-file.

4. The INTO data-name option may only be used when the input file
contains just one type of record. The dat~-name must be the
name of a working storage or output record area. If the format
of the data-name differs from that of the input record, moving
will be performed according to the rules specified for the MOVE
verb without the CORRESPONDING option. When the INTO data-name
option is used, the "file-name RECORD" is still available in
the input record area.

5. Every RETURN statement must have an END of file option, either
explicitly or implicitly. If the user does not write END, the
conpiler will examine all other RETURN statements within this
OUTPUT PROCEDURE. If the word END appears once and only once,
the compiler will append this and its associated imperative
statement-1 to each RETURN statement. If more than one, but
not all RETURN statements within this OUTPUT PROCEDURE contain
the word END, an error will be indicated during compilation.

6. After execution of "any imperative statement" no RETURN state
ment may be executed within the current OUTPUT PROCEDURE. The
results of such an error will be unpredictable.

@~a(@©)@ ~(E[ffifl~~-----------CO_BO_L

Page VII-62

FUNCTION: To create a sort-file by executing input procedures or by trans
ferring records from another file, to sort the records in the
sort-file on a set of specified keys, and in the final phase of
the sort operation, to make available each record from the sort
file, in sorted order, to some output procedures or to an output
file.

SORT file-name-1 ON { f~~~~D°~G} KEY data-name-1 [, data-name-2 •.. J

Notes:

[. ON {DESCENDING:l
' ASCEND ING j KEY •.. J

{
INPUT PROCEDURE IS section-name-I [THRU section-name-2 Jl
USING f ile-name-2

1J

{
OUTPUT PROCEDURE IS section-name-3 [THRU section-name-4]}
GIVING file-name-3

1. File-name-1 must have a Sort-file Description in the DATA DIVISION.

2. The data-name KEYs are listed from left to right in the SORT statement
in order of significance without regard to how they are divided into
KEY clauses. In the format data-name-1 is the major key, data-name-2
is the next most significant key. Key data-names must not be subscripted.

a) When an ASCENDING clause is used, the sorted sequence will be
from lowest value of key to highest value according to the
rules given under Simple Conditions.

b) When a DESCENDING clause is used,the sorted sequence will be
from highest value of key to lowest value according to the
rules given under Simple Conditions.

3. Every record which is listed in the DATA RECORDS clause of the Sort-file
must contain within its Record Description the KEY items data-name-1,
data-name-2, etc., and each of the KEY items must have the same relative
position and the same description in every one of the records. When
more than one record is present, the first record determines the
"dominant record size" parameter for the sort. ·(See GE-625/635 SORT/MERGE,
CPB-1005.)

4. If an INPUT PROCEDURE is specified, control is passed to the INPUT
PROCEDURE before file-name-1 is sequenced by the SORT statement. The
compiler inserts a return mechanism at the end of the last Section in
the INPUT PROCEDURE and when control passes from the last statement in
the INPUT PROCEDURE, the records which have been RELEASED to file-name-1
will be sorted.

@~a(ID@@ ~~[ffi~~~---------------co_Bo_L

Page VII-63

5. The INPUT PROCEDURE must consist of one or more Sections which
must be written consecutively, and do not form a part of any
OUTPUT PROCEDURE. The INPUT PROCEDURE must include at least one
RELEASE statement in order to transfer records to the sort-file.
Control must not be passed to the INPUT PROCEDURE except when
a related SORT statement is being executedo The INPUT PROCEDURE
can include any procedures needed to select, create or modify
records. There are three restrictions on the procedural state
ments within the INPUT PROCEDURE~

a) The INPUT PROCEDURE must not contain any SORT statements.

b) The INPUT PROCEDURE must not contain any transfers of control
to points outside the INPUT PROCEDURE: i.e., ALTER, GO and
PERFORM statements in the INPUT PROCEDURE are not pennitted
to refer to procedure-names outside the INPUT PROCEDURE.

c) The remainder of the PROCEDURE DIVISION must not contain any
transfers of control to points inside the INPUT PROCEDURE
i.e., ALTER, GO and PERFORM statements in the remainder of
the PROCEDURE DIVISION are ntt permitted to refer to procedure
names within the INPUT PROCEDURE.

6. If the USING file-name-2 option is specified, this implies that
all the records in file-name-2 are transferred automatically to
file-name-1. At the time of execution of the SORT statement,
file-name-2 must not be OPEN. The SORT statement will automatically
perform the necessary OPEN, READ, and CLOSE functions for file-name-2.
File-name-2 must have a file-description, not a sort-file descrip-
tion in the DATA DIVISION. The DATA RECORDS of file-name-2 and their
descriptions must be identical to those of file-name-1. USE procedures
cannot be applied to file-name-2 during the Sort.

7. If an OUTPUT PROCEDURE is specified, control passes to it after
file-name-1 has been sequenced by the SORT statement. The com
piler inserts a return mechanism at the end of the last Section
in the OUTPUT PROCEDURE and when control passes from the last
statement in the OUTPUT PROCEDURE, the return mechanism will pro
vide for termination of the sort and then will send control to the
next statement after the SORT statement. Before entering it can
select the next record in sorted order when requested. The
RETURN statements in the OUTPUT PROCEDURE are the requests for
the next record.

@~c(ID@@ ~[E(ffi~~~-----------CO_BO_L

Page VII-64

8. The OUTrUT PROCEDURE mus t con.sis t of one or more Sections which
must be written consecutively, and do not form a part of any
INPUT PROCEDURE. The OUTPUT PROCEDURE must include a·t least
one RETURN statement in order to make sorted records available
for processing. Control must not be passed to the OUTPUT
PROCEDURE except when a related SORT statement is being executed.
The OUTPUT PROCEDURE can consist of any procedures needed to
select, modify or copy the records which are being RETURNed one
at a time in sorted order, from the sort-file. There are three
restrictions on the procedural statements within the OUTPUT
PROCEDURE:

a) The OUTPUT PROCEDUR&must not contain any SORT statements.

b) The OUTPUT PROCEDURE must not contain any transfers of
control to points outside the OUTPUT PROCEDURE: i.e., ALTER,
GO and PERFORM stat~ments in the OUTPUT PROCEDURE are not
permitted to refer to procedure-names outside the OUTPUT
PROCEDURE.

c) The remainder of the PROCEDURE DIVISION must not contain
any transfers of control to points inside the OUTPUT
PROCEDURE: i.e., ALTER, GO and PERFORM statements in the
remainder of the PROCEDURE DIVISION are not permitted to
refer to procedure-names within the OUTPUT PROCEDURE.

9. If the GIVING option has been used, this means that all the
sorted records in file-name-1 are automatically transferred to
f ile-name-3 as the implied output procedure for this SORT
statement. At the time of execution of the SORT statement
file-name-3 must not be OPEN. File-name-3 is automatically
OPENed before transferring the records and a CLOSE f ile-name-3
is executed automati.cally after the last record in the sort-
fi le is RETURNed. File-name-3 must have a File Description,
not a Sort-file Description, in the DATA DIVISION. The DATA
RECORDS of file-name-3 and their descriptions must be identical
to those of file-name-1. USE procedures cannot be applied to
file-name-3 during a sort.

@~a(ID(Q)@ ~~[ffiO~~-----------co_so_L

Page VII-65

FUNCTION: To halt the object program either permanently or temporarily.

STOP {!~era~
Notes:

1. If the word RUN is used, then the standard ending procedure is
instituted.

2. The literal will be presented on a consol2 typewriter when the
STOP literal option is used. The literal must satisfy the rules
for operands stated in the notes under the DISPLAY verb. Use of
this option is strongly discouraged, except in extraordinary
circumstances. Under no circumstances shlluld it be used to terminate
execution of a program.

COBOL

Page VII-66

SUBTRACT

FUNCTION: To subtract one, or the sum of two or more, numeric data
items from an item, and set the value of an item equal to
the results.

Option 1:

SUBTRACT {!~~=~:!:!-1} [• {!~~=~:!:!-2} • • • J ~
{

literal-n GIVING data-name-m)
data-name-n [GIVING data-name-m] [ROUNDED]

[; ON~ ERROR any imperative statement]

Option 2:

SUBTRACT~ORRESPONDIN<l\data-name-1
~]

FROM data-name-2 [ROUNDED]

Notes:

1. In option 1, the data-names used must refer only to elementary
items. If GIVING is used, data-name-n is not used as an operand;
hence, its format may contain editing symbols. In all other
cases, the data-names used must refer to NUMERIC items only.

2. All rules specified under the ADD verb with respect to the size
of operands, presence of editing symbols in operands, the ON
SIZE ERROR option, the ROUNDED option, the GIVING option,
truncation, and the editing of results and the CORRESPONDING
option apply to the SUBTRACT verbo

3. When the GIVING option is not used, a literal may not be
specified as the minuend.

4. When dealing with multiple subtrahends, the effect of the sub
traction will be as if the subtrahends were first surrnned, and
the sum was then subtracted from the minuend.

5. CORR is an abbreviation for CORRESPONDING.

@~a(ID@@ ~~000~~--------------C_...OB.....,OL

Page VII-67

TERMINATE

FUNCTION: To TERMINATE the processing of a report.

Notes:

TERMINATE f
data-name-1 [, data-name-2 ...]}
ALL

1. TERMINATE produces all the CONTROL FOOTINGs associated with this
report as if a CONTROL break had just occurred at the highest
level, i.e., FINAL CONTROL break, and completes the Report
Writer functions for the named reports.

2. Appropriate PAGE and OVERFLOW HEADING and/or FOOTING report
groups are prepared in their respective order for the report
description.

3. Each data-name given in a TERMINATE must be defined by an RD
entry in the Data Division.

4. A second TERMIW.TE for a particular report cannot be executed.

5. If ALL is specified, all reports defined in the Report Section
of the Data Division which were INITIATEd are TERMINATEd.

6. TERMINATE does not close the file with which the report is
associated. A CLOSE statement for the file must be executed
after the TERMINATE statement has been executed.

COBOL

Page VII-68

FUNCTION:

Option 1:

To specify procedures for any computer I/0 error and label
handling which are in additio~ to the standard procedures
supplied by the input/output system; and to specify
PROCEDURE DIVISION statements which are executed just before
a named report group in the REPORT SECTION, DATA DIVISION,
is presented.

USE AFTER STANDARD ERROR PROCEDURE ON {file-name)
~~ (INPUT

Option 2:

USE {BEFORE) STANDARD
- .AFTER {

BEGINNING}
ENDING

{

file-name}
LABEL PROCEDURE ON INPUT .

OUTPUT

Option 3:

USE BEFORE REPORTING data-name-1.

Notes:

1. A USE sentence, when present, must immediately follow a Section
header in the DECLARATIVES. The remainder of the Section must
consist of one or more procedural paragraphs which define the
procedures to be used.

2. The designated procedures will be executed by the input/output
system at the appropriate time, that is:

a) After completing the standard I/O error routine. (This
applies only to Option 1.)

b) Before or after a beginning or ending input label check
procedure is accomplished. (Applies only to Option 2.)

c) Before a beginning or ending output label is created.
(Applies only to Option 2.)

d) After a beginning or ending output label is created, but
not written on tape. (Applies only to Option 2.)

3. When Option 2 is used:

a) If the file-name option is used, the File Description entry
for file-name must not specify LABEL RECORDS ARE OMITTED.

COBOL

Page VII-69

b) If the INPUT (or OUTPUT) option is used, the procedures
will not be executed for any INPUT (or OUTPUT) file whose
File Description specifies LABEL RECORDS ARE OMITTED.

c) If BEGINNING or ENDING is not included, the designated
procedures will be executed for both beginning and ending
labels.

d) The designated procedures will be executed for both REEL
and FILE labels.

4. In Option 3, the designated procedures are executed by the
object program just before the named report group is produced,
regardless of page, overflow, and/or control break associations
with report groups. A report group cannot be referenced by
more than one USE statement. Data-name-1 must be a non-detail
item.

5. No Report Writer verb (GENERATE, INITIATE, or TERMINATE),
input/output verb (OPEN, READ, WRITE, or CLOSE), or SORT
verb (SORT, RETURN, or RELEASE) may be written in Use
procedures. A USE section may contain PERFORM statements
referencing other USE procedures, but it may not contain
any other references to procedures outside itself.

6. Option 2, Beginning Label Procedures must not contain any
DISPIAY, DISPLAY SYSOUT, or ACCEPT GEIN statementso

5~ 0 (ID@@ ~~[Pd~~~--------_______ c_oB_OL

Page VII-70

WRITE

FUNCTION: To release a logical record for an output file.

Notes:

1. After the WRITE is executed, record-name is no longer available.

2. Data-name-1 must be the name of a working storage or an input
record area. If the format of data-name-1 differs from that of
the record-name, moving will take place according to the rules
specified for the MOVE verb without the CORRESPONDING.option.
The information in the record-name area is no longer available,
but the information in data-name-1 area is available. It is
illegal for record-name and data-name-1 to be the same name.

3. No reference can be made by any verb in the PROCEDURE DIVISION
to information which is not actually present in the current
record. If such reference is made, the results in the object
program are unpredictable.

4. An OPEN statement must be executed prior to executing the first
WRITE for a file.

S. After recognition of the end of reel, the WRITE performs the
following operations:

a) The standard ending reel label subrouting and the user's
ending reel label subroutine (if specified by the USE verb).
The order of execution of these two subroutines is speci
fied by the USE verb.

b) A tape swap. (This includes rewinding the completed reel
and placing it in standby status.)

c) The standard beginning reel label subroutine and the user's
beginning reel label procedure (if specified by the USE
verb). The order of execution of these two subroutines is
specified by the USE verb.

6. The ADVANCING option provides control of the vertical positioning
of each record (line) on the printed page. For printed. output,
vertical format control must be provided for each line, either
through this option or through one of the other methods defined
for GE-625/635 Series COBOL; otherwise, the output format will

COBOl

Page VII-71

definitely fail to meet printer requirements, and the printout will
be unsatisfactory. In the ADVANCING option, the following rules
apply:

a. When data-name-2 is specified, it must be a non-negative
COMPUTATIONAL-1 item whose size does not exceed 8 digits.
When the WRITE statement is executed, the value 0f data-name-2
will determine the number of lines the listing is advanced.

b. When integer is specified, it must be non-negative. Its value
will determine the number of lines the listing is advanced.

c. TOP causes the listing to be advanced to top of page.

d. The ADVANCING option may be used only when FOR LISTING has been
specified in the SELECT sentence in the ENVIRONMENT DIVISION.
It cannot be used for a file described with OCCURS ... DEPENDING.
System Standard Format should generally be specified for a file
to which WRITE ... ADVANCING is applied.

~a®@® ~~[ffi~~~ --------------~CO~BO~L

Page VIII-1

VIII. ENVIRONMENT DIVISION

GENERAL DESCRIPTION

The ENVIRONMENl'DIVISION is used to specify the aspects of the program which
realte to the physical characteristics of the computer. It consists of
two sections - CONFIGURATION and INPUT-OUTPUT.

The CONFIGURATION SECTION provides the overall description of the computer.
It consists of three paragraphs. The SOURCE-COMPUTER paragraph describes
the computer on which the COBOL compiler is to be run. The OBJECT-COMPUTER
paragraph describes the computer on which the object-program is to be run.
The SPECIAL-NAMES paragraph associates mnemonic-names with report codes and
special system features.

The INPUT-OUTPUT SECTION provides information needed for efficient object
program transmission and handling of data between the external media and the
computer memory. This section consists of two paragraphs. The FILE-CONTROL
paragraph associates each file with an external medium. The I-0 CONTROL
paragraph specifies rerun options, special input/output techniques, and files
which appear on multiple file tapes.

STRUCTURE

The following illustration shows the fixed section and paragraph names of the
ENVIRONMENT DIVISION in the order in which they must appear in the source
program. A section or paragraph may optionally be omitted if it is not needed.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. GE-635 •••

OBJECT-COMPUTER. GE-635 ...

SPECIAL-NAMES.
INPUT-OUTfUT SECTION.
FILE-CONTROL. SELECT

I-0-CONTROL. APPLY ...

Page VIII-2

CONFIGURATION SECTION.
SOURCE-COMPUTER.

FUNCTION: To describe the computer upon which the program is to be
compiled.

Notes:

Option 1:

SOURCE-COMPUTER. COPY library-call.

Option 2:

SOURCE-COMPUTER. f GE-625}
l GE-635

[, MEMORY SIZE integer-1 WORDS]

[, [integer-2] hardware-name-1 [, [integer-3) hardware•name-2 ..)).

1. The configuration may include more equipment than is actually
needed 1 by the compiler.

2. Integer-2 (if present) specifies the number of units of hardware
name-1; similarly for integer-3, etc.

3. Hardware-names must be taken from the following list of reserved
words:

MAGNETIC TAPE UNIT(S)
Q!!£ STORAGE UNIT(S)
DRUM STORAGE UNIT(S)
HIGH SPEED PRINTER(S)
.QMQ PUNCH(ES)
.QMQ READER(S)
INPUT-OUTPUT TYPEWRITER(S)

OBJECT-COMPUTER.

FUNCTION: To describe the computer upon which the object-program is
to be executed.

Option 1:

OBJECT-COMPUTER. COPY library-call.

Option 2:

OBJECT· COMPUTER. {s;E-625)
~GE-635

[, MEMORY ~IZE integer-I~]

Page VIII-

[, [integer-2] hardware-name-1 [, [integer-3] hardware-name-2 •..]]·

Notes:

1. The configuration may include more equipment than is actually
needed by the object-program.

2~ Integer-2, if present, specifies the number of units of hardware
name-1; similarly for integer-3, etc.

3. Hardware-names must be taken from the following list of reserved
words:

SPECIAL-NAMES.

MAGNETIC TAPE UNIT(S)
QI§Q STO~UNIT(S)
!IBYli STORAGE UNIT (S)
HIGH SPEED PRINTER(S)
CARD PUNCH(ES)
CARD READER(S)
INPUT-OUTPUT TYPEWRITER(S)

FUNCTION: To associate mnemonic-names (external-names) with report-codes
or special system features.

Option 1:

SPECIAL-NAMES. literal-1 !2, mnemonic-name-I

[, literal-2 !.§. mnemonic-name-2 •.• J.

@~a(ID©)©) ~~00~~~-------------~C~OB~OL

Page VIII-4

Option 2:

SPECIAL-NAMES. special-name-1 IS mnemonic-name-1

r, special-name-2 !.li mnemonic-name-2 .••].

Option 3:

SPECIAL-NAMES. SWITCH integer-1 [!.§.mnemonic-name-I]

Option 4:

[,ON STATUS IS condition-name-1]

[, Qf!' STATUS IS condition-name-2]

[, SWITCH integer-2 •..].

SPECIAL-NAMESo ~ integer-!

Option 5:

1.§. data-name-1 [~ data-name-2]
[,BLOCK • . • J.

SPECIAL-NAMES. [COLLATE COMMERCIAL] [,DECIMAL-POINT IS COMM.A]
[, CURRENCY SIGN!§. literal].

Option 6:

SPECIAL-NAMES.

PROCESS ALL DEBUG STATEMENTS. --
Option 7:

SPECIAL-NAMES"

PROCESS LEVEL integer-I [.!.!!!!! integer-2]

DEBUG STATEMENTS.

Option 8:

SPECIAL-NAMES.

COMPILE PHASE! ONLY WITH SOURCE ERRORSo

@~o(ID@@ ~(gffiW~~-------------___,;c;.;;.;oB~OL

Page VIII-4.1

Option 9:

SPECIAL-NAMES.

ELECT SORT OPTIONS field-1, field-2, field-3, field-4, field-5,
field-6, field-7, field-8, field-9, field-10, field-11, field-12,
FOR file-name-1 [, file-name-2 ••••].

Notes:

1. This paragraph may be omitted when its provisions are not used
in the source-program.

2. Option 1 is used to define report-codes, for use via the CODE clause
in RD entries in the Report Section of the Data Division. Each
literal must be a single-character non-numeric literal whose value
is a letter (A,--Z) or a digit (0,--9)o

3. Option 2 is used to associate mnemonic-names with GETIME, GELAPS,
or the input-output TYPEWRITER or CONSOLE. GETIME is a GECOS feature
which supplies current date and time upon requesto (See the GECOS
manual.) GELAPS is a GECOS feature which supplies elapsed time charged
thus far to the requesting program. The special-names in option 2 can
only be GEIN, SYSOUT, GETIME, GELAPS TYPEWRITER, or CONSOLE. A mnemonic
name associated with GEIN, GETIME, or GELAPS can be referenced only in
ACCEPT statementso A mnemonic-name associated with the TYPEWRITER or
CONSOLE can only be referenced by ACCEPT or DISPLAY statements. A
mnemonic-name associated with SYSOUT can be referenced only in DISPLAY
statements. For a detailed explanation of the use of these features, see
the notes under ACCEPT and DISPLAY in Chapter VII.

4. Option 3 is used to associate mnemonic-names with switches and/or to
associate condition-names with specific switch settings. Each integer
must be in the range O, 1, -35. An ON condition-name corresponds to
a switch value of 1, while an OFF condition-name corresponds to a
switch value of O. Switches 0-5 and 18-35 may be used for counnunication
between activities. Switches 12-17 are reserved for the operating
system. Switches 6-11 are reset at the start of each activity, on
the basis of the ON option of the $EXECUTE card (see the GECOS manual).
Each of switches 6-11 is set ''off" at that time unless the $EXECUTE
card causes it to be set "on,'' according to the following table:

$EXECUTE
card parameter

ONl
ON2
ON3
ON4
ON5
ON6

results in ''on"
setting for switch

6
7
8
9

10
11

IB~a(ID@@ ®~[ffiO~®---------------....:C;.;.;;;;OB~OL

Page VIII-4.2

The mnemonic-names associated with switches may be referenced only
in ACCEPT and DISPLAY statements. Condition-names may be referenced
only in conditions appearing in IF or PERFORM statements. In
Option 3, at ~east one of the optional phrases must be used with
each switch specifiedo

The switches are software feature provided by GECOS, not actual
hardware switches.

5o Option 4 is used to cause WORKING-STORAGE or CONSTANT SECTION
storage areas to be allocated in the form of labeled storage
blocks, for purposes of source-program segmentation. (See Chapter
X.) The contents of a labeled storage block are accessible to each
source-program segment in which the block is described.

Integer-I must be a 1- or 2-digit integer, which serves as a unique
label for the storage block.

Data-name-1 must be a level 01 or 77 item in WORKING-STORAGE or
CONSTANT SECTIONo Data-name-2 must be a level 01 or 77 item in the
same section. Data-name-2 must appear later than data-name-1 in the
source-program.

BLOCK statements must appear in the same order as the items they
refer to.

6. Each mnemonic-name must be a unique word originated by the user,
satisfying the rules for data-name formation but not given a
description in the Data Division.

7. In Option 5, the respective clauses have the following significance:

a. COLLATE COMMERCIAL causes a special provision to be made for
comparisons in the object-program. When Alphanumeric items
are compared, the result is based on the connnercial collating
sequence (p. VII-8) instead of the standard collating sequence
of the machineo This provision applies to SORT keys as well
as to conditional statements.

b. DECIMAL-POINT IS COMMA causes the function of the connna and
the period to be exchanged in PICTURE and in numeric literals.
Rules for PICTURE formation and numeric literal formation
change accordingly. (This COBOL feature acconnnodates con
ventional notation for various European currencies.)

c. The CURRENCY SIGN clause permits an arbitrary single character
to replace the dollar sign in PICTURE and in object-program
editing. The literal must be a single-character non-numeric
literal, and must not be any of the following PICTURE characters:

0-9
A, B, C, D, J, K, L, P, R, S, V, X, or Z
*, +, - , , , or connna (,)

@~a(ID@@ ~~lm~~~--------------~C~OB~OL

Page VIII-4.3

8. Options 6 and 7 relate only to special statements in the source
program identified by one of the digits 0 through 9 in Column 7.
The use or omission of either of these options has no effect what
ever on standard source statements with a blank, hyphen or asterisk
in Column 7. However, do not attempt continuation to the next line
(hyphen in Column 7) of an optional COMPILE statement. A detailed
description of this special compiler feature is provided in Appendix
I.

9. Option 6 is used to request compilation of all source statements
identified by any one of the digits 0 through 9 in Column 7.

10. In Option 7 one of two selections may be made:

a. If only integer-1 is specified, then those source statements
with the ''integer-!" identifier in Column 7 will be compiledo

b. If integer-! THRU integer-2 is specified, all source statements
with an identifier in Column 7 within the range of "integer-!
THRU integer-211 inclusive will be compiled.

11. If neither Option 6 nor Option 7 is specified, then all source
statements identified by any one of the digits 0 through 9 in
Column 7 will be unconditionally bypassed during compilation.

12. Option 8 is used to optimize the compilation process by eliminating
the output of an assembly listing and object program, in the event
of source program errors being encountered. A detailed description
of this special feature is provided in Appendix K.

13. When Option 8 is not selected, an assembly listing and object program
are produced unconditionally.

14. Option 9 is used to modify the standard functions of the Sort
program for the specified COBOL files which are described using an
SD file description. Twelve options are provided corresponding to
the ELECT Macro as described for the free-standing Sort system. The
programmer must preserve the order of the fields according to their
numbers as presented below. When the ELECT option is used, all fields
must be specified according to field description or as a null field.
If file-name-2 is specified, it wili receive the same options as
file-name-1. There must be no more than one ELECT for any given
sort-file.

a. Field-I: Output Order Control

This parameter may be used to establish a tie-breaking
convention for Sort key comparisons. Acceptable values
are:

0 The output order of equal key data
records will be indeterminateo

~~a@@® ®~000~®--------------__.:C~OB~OL

Page VIII-4.4

1 The original input order of the data
will be used as the basis for breaking
ties between equal keys.
Selection will be made on the basis of
original input sequence.

b. Field-2: Error Journal Control

This parameter overrides the standard journalization
option in case of input or output errors. Acceptable
values are:

O,N
or
null

T

D

A

1

2

3

Retain full journalization capabilities.
(See the Sort Manual for description.)

Journalize error and then terminate pro
cessing through the GEBORT routine of
GECOS.

Do not journalize errors but continue
processing. Although there is no journal•
ization, an error occurrence message is
placed on the execution report (SYSOUT).

Do not journalize errors. After placing an
error occurrence message on the execution
report, terminate processing through the
GEBORT routine of GECOS.

Journalize errors. If the error occurred
while reading the original input, continue
processing. If the error occurred while
reading a collation file, terminate processing
through the GEBORT routine of GECOS.

Journalize errors. If the error occurred
while reading the original input, continue
processing. If the error was block serial
number error while reading a collation file,
terminate processing through the GEBORT
routine of GECOS.

Journalize errors. If the error was a block
serial number error while reading the
original input, terminate processing through
the GEBORT routine of GECOSo If any error
occurred while reading a colla~ion file,
terminate processing through the GEBORT
routine of GECOS.

@(Ea@@® ~(E(ffi~(E~-----------------.:::C:.:;::OB~OL

4

Page VIII-4.5

Journalize errors. If the error was
a block serial number error while reading
either the original input or a collation
file, terminate processing through the
GEBORT routine of GECOS.

The latter four options allow the user to discriminate
between original input errors and collation file errors.
They also allow different recovery options for general
read errors and block serial number errors. This
differentiation may be required because the journalization
of a block serial error cannot contain the text of the
missing block. If such an error occurs on a collation file,
it is impossible to determine what records were dropped.

Co Field-3: Checkpoint Control

This parameter controls the taking of checkpoint records
during a Sort or Merge process. Acceptable values are:

0
or
null

1

Do not take checkpoint records.

Take checkpoint records. During the Sort
process, checkpoints are written on
whichever file is the current output file
unless a RERUN ON file-name clause has
been specified for the sort-f ileo

d. Field-4: Logical Record Memory Assignment

This parameter forces the first word of a data record
into an even or odd memory location during a sorting
process. This option is normally used to optimize
comparison coding for double precision keys. Acceptable
parameter values are:

0
or
null

1

2

The placement of logical records in
memory is indeterminateo

Tile first word of every record being
sorted is placed in an odd memory location.

The first word of every record being
sorted will be placed in an even memory
location.

@~a(ID(Q)(Q) ®~ffii~~®---------------c_oB_OL

Page VIII-4.6

e. Field-5: Borrow Tapes Control

The use of this parameter allows the dynamic allocation
of free tape handlers to a Sort process at execution time.
Such tapes are used for collation files in addition to the
tapes allocated by $ TAPE or $ NTAPE cards. Acceptable
parameter values are:

0
or
null

n

The Sort process does not borrow tape for collation
files.

The n represents a numeric value from 1 to 13.
The Sort process borrows up to n tapes for collation
files during execution. Borrowed tapes are released
following the final collation pass.

f. Field-6: Input Device Positioning Control

This field allows the user to specify handling of the input file
while opening and closing the file. The user is responsible for
selecting appropriate dispo~ition codes on file control cards.
Acceptable values are as follows:

OPEN CLOSE
Rewind Rewind Lock

0 or Null Yes Yes No
1 Yes Yes Yes
2 Yes No No
3 Yes Yes No
5 No Yes Yes
6 No No No
7 No Yes No

@~ a(ID@@ ~ [g(ffi~(E~----------------CO-..BO...._L

Page VIII-4.7

g. Field-7: Output File Collation Control

This parameter controls the use of the output file as a collation
file during a sorting process. Normally, the output file is so
used. However, if the output file is not a tape device, this
parameter must be used to inhibit its use as a collation file.
Acceptable values are:

0
or
null

1

Use the output file as a collation working file.

Do not use the output file as a collation working
file.

h. Field-8: Output Device Positioning Control

This field allows the user to specify special handling of the
output file while opening and closing the file. The user is
responsible for selecting appropriate disposition codes on file
control cards. Acceptable values are the same as those for Field-6.

Note that use of the values 5, 6, or 7 will prevent collation
upon the output file. If one of these values is used and Field-7
is not 1, then this option will override Field-7 and an error
message will be produced.

i) Field-9: Borrow Memory Control

The use of this parameter allows the dynamic allocation of free
memory to a Sort process at execution time. The free memory area
is used for control tables and buffers in addition to the area
allocated by the $ LIMITS card.

(ill~ a(B)@(ID ~ ~ [ffi ~ ~ ~--------------_..;;C~OB;.;;,=.OL

Page VIII-4.8

The use of this parameter is meaningful only in a
LOWLOAD environment. Acceptable parameter values are:

0
or
null

n

No memory is borrowed for the Sort process.

The n represents a numeric value of 1 to
262,144 memory locations. The Sort process
borrows n words of memory (or any available
portion of n) at execution time. Memory
is borrowed in 1024 word modules. All
borrowed memory is released to the operating
system following the final collation phaseo

j. Field-10: No Option Currently Implemented

This field must be indicated as a null field if sub
sequent parameters are usedo

k. Field-11: Multiple-reel File Control (Optional)

This parameter forces automatic reel switching for unlabeled
input files. If used, reel switching is forced at end-of
reel for both Sort and Merge input fileso The end-of-
input can be indicated only through operator intervention
at reel switching time. Acceptable parameters are:

0
or
null

1

Assume normal processing.

Assume input is on multireel unlabeled files.

lo Field-12: Collation Phase Statistic Control

This parameter may be used to request collation file
utilization accounting from a sorting process. The
statistics include record counts, block counts, and
string distributions. Acceptable parameter values are:

0
or
null

1

Do not print statisticso

Print collation statistics.

15. A Special-Names paragraph may consist of a combination of statements
shown in Options 1, 2, 3, 4, 5, 8, 9, and either Option·6 or 7o

@J~a(ID@® ~~(ffi~~~--------------~C~OB~OL

Page VIII-5

INPUT-OUTPUT SECTION.
FILE-CONTROL. .

FUNCTION:

Option 1:

To identify each file referenced in the program, assigning a
file-code to each.

FILE-CONTROL. SELECT [OPTIONAL] [OVERLAY] file-name-1 [RENAMING file-name-2]

ASSIGN TO f ile-code-1 [{CARDS ~EL}] FOR _LISTING
MULTIPLE

[~SERVE finteger-1} ALTERNATE rAREA J
~NO ~REAS [FOR BLANK COMMON J J . [SELECT •••

.option 2:

FILE-CONTROL. SELECT file-name-1 ASSIGN TO file-code-1 [, file-code-2 ..]·

[SELECT... .]

Notes:

1. As the above format shows, each file is selected in a separate sentence.
SELECT sentences of the formats shown in Options 1 and 2 may be freely
mixed in the FILE-CONTROL paragraph. The clauses must appear in the
order shown in the respective formats.

2. Each file referenced in the program must be selected exactly once in
the FILE-CONTROL paragraph. The name of each selected file must be
unique within the program.

3. If the RENAMING option is used, the compiler automatically applies the
data description of file-name-2 to file-name-1. This includes the
File Description entry and the associated Record Descriptions. The
SELECT statement for file-name-2 must not in turn contain the RENAMING
option; furthermore, file-name-2 must not have a sort-file description.
Since RENAMING implicitly supplies the description of file-name-1, the
latter must not be explicitly described in the DATA DIVISION. RENAMING
does not imply SAME AREA (see I-0-CONTROL).

4. If the RENAMING option is not used, file-name-1 must be described in
the DATA DIVISION File Section.

5. The SELECT sentence format shown in Option 1 must be used to SELECT
all files other than sort-files (whose data descriptions begin with
SD entries). The Option 2 format must be used to SELECT all sort
files.

@ ~ a(ID@@ ~ ~ [ffi~~ ~--------------......;C;.;.;;OB;.;.;;.OL

Page VIII-6

6. An input file which will not necessarily be present every time the
object-program is run must be designated OPTIONAL in its SELECT
sentence.

7. The OVERLAY option is provided to allow connnon files in an overlay
segmented environment to be opened in an overlay segment and left
open to be referenced by subsequent overlays when operating from
a production library. This option must be specified in the SELECT
statement of all overlay segments which influence the connnon file
except the segment which contains the OPEN statement for the file.
Any file specified as an OVERLAY file will not generate a normal
File Control Block. Instead, the "Locsym" for the file will be
positioned within the correct Labeled Connnon using BSS pseudo-ops.

It is imperative that all file properties, including any.RERUN
clauses, be identical for files using this feature.

8. Each file-code must be a two-character word consisting of two letters
(A, ••• , Z) or a letter and a digit (0, ... , 9). Each file-code must
be unique with respect to other file-codes specified in the program.

·The File Control Block and the buffers for each file are assigned to
Labeled Connnon storage using the file code as the Labeled Conunon name.
Thus, it is possible to establish conunon files simply by assigning the
same file code to the file in each segment or overlay segment which
references the file. COBOL reserved words must not be used as file
codes. At execution time, an object-program is submitted to GECOS
with "file cards" specifying the peripheral device for each file.
The file-code in the file card must be the same as that assigned in
the source-program. GECOS associates each of the object-program's
files with its peripheral device by matching the file-codes. (For
further information refer to the GECOS manual.)

9. Files originating on punched cards or destined for cards or printer
must be. so specified in the Option 1 SELECT statement format.
Failure to designate such files properly may lead .to unpredictable
data format errors at object time. A file intended FOR CARDS or
FOR LISTING should have System Standard Format applied in the
I-0-CONTROL paragraph.

@~a®@® ~rnooorn~-------------__..;;c;;.;;;.:;os~oL

Page VIII-6.1

10. All tapes employed by a sort procedure for a sort-file are called
"collation tapes." A sort-file must be assigned one or more file-codes.
The sort procedure will utilize the tape units associated with the
assigned file-codes. In addition, the sort procedure requests from
GECOS as many UTILITY TAPES as can be allocated to it at object-time,
up to a maximum of sixteen tapes (counting each file-code specified as
one collation tape). The sort procedure requires at least 3 collation
tapes at object time, but additional tapes result in improved execution
speed. If the GIVING option is specified in the relevant SORT statement,
the file-code of the GIVING file is understood to be available to the
sort procedure as a collation tape. The SORT/MERGE manual should be
consulted for further information on user control of collation tape
allocation.

11. The RESERVE clause allows the user to modify the number of input/output
buffers allocated by the compiler. The standard storage assignment for
a program is two buffer areas, which is implied if RESERVE is not
specified. If the RESERVE clause is specified with the integer option,
two buffer areas are allocated. The RESERVE clause specified with the

. NO option results in a single buffer area being allocated to the file.

12. All integers must be positive.

13. The BLANK COMMON option provides the user a means to override the
automatic assignment of any buffer areas for a file to Labeled Common
storage. If this option is used, the buffer area for the file will be
assigned to Blank Common storage. This can be useful when attempting
to load large object programs with a limited amount of memory available.
In this case, the Blank Common area can be shared with the loader by
using the $ LIMITS card which indicates the amount of Blank Common
storage to be shared. If the LOWLOAD option is used, then the
maximum size of Blank Common must be specified on the $ LOWLOAD card.
The octal length of Blank Common is generated on the preface page of
each GMAP assembly.

The BLANK COMMON option can be specified for independent programs without
creating problemso However, caution should be exercised when applying this
feature to segments operating in a multi-segment environment in which files
using this option may be common to another segment. If a file connnon to twc
or more segments needs to be assigned to Blank Connnon sto~age, the file must
be assigned in each segment where it is common, and each segment must be re·
compiled. Furthermore, an identical ordering of files (by SELECT statementf
in each segment is necessary if more than one file is involved.

~~a(ID(ID(ID ~~rma~~--------------~C~OB~OL

Page VIII-7

I-0-CONTROL"

FUNCTION: To specify special input/output techniques, files which
share the same memory areas, multiple file tapes, and
rerun points.

Notes:

I-0-CONTROL (APPLY~ AREA ON file-!'lame-1 [, file-name-2 .••]]

[; APPLY BLOCK SERIAL NUMBER ON file -name -3 [, file -name -4 ...]]

[; APPLY {SYSTEM STANDARD} FORMAT ON
VLR

file-name-5 [, file-name-6 ... 1]

[; RERUN [ON file-name-7~ EVERY integer-1 RECORDS OF file-name-8]

[; RERUN •.•][; SAME [RECORD] AREA FOR file-name-9, file-name-10

[, file-name-11 ...]J [; SAME ..• l

[;MULTIPLE FILE TAPE CONTAINS file-name-12)POSITION integer-2J

[, file-name-13 [POSITION integer-3] .. JJ [;MULTIPLE ...].

1. This paragraph may be omitted when none of its options is desired.

2. APPLY PROCESS AREA causes a special input/output method to be
used on the specified files. In addition to the normal buffer(s),
the compiler allocates a logical record area to each file. On
an input file, each logical record is implicitly moved to the
fixed PROCESS AREA for processing when it is read. On an output
file, each logical record is developed in the fixed PROCESS AREA,
and implicitly moved to the buffer when it is written. The
standard input/output method (for other than PROCESS AREA files)
is to process each logical record right in the buffer area.
The APPLY PROCESS AREA option can be used to increase object
program efficiency on blocked or buffered files with heavy proces
sing activity.

3. APPLY BLOCK SERIAL NUMBER causes a special input/output error
control feature to be used or the specified files. Each physical
block has incorporated in it a serial number, which is checked
by the input routine when the file is read (in this or another
program). If a file has block serial numbers, it must be
mentioned in this APPLY clause in all programs that reference it.
The use or omission of this option has no effect on sort-files,
which always have block serial numbers.

@~a®@© ~~rn10~~-----------C_OB.......,.OL

Page VIII-7 .1

4. The APPLY SYSTEM STANDARD or VLR FORMAT ON statement allows the
user to assume explicit control over the data format of a file,
provided the description of the file in the Data Division is
consistent with the specified format. System Standard Format
implies:

a) Block serial numbers are to be applied;

b) VLR format is to be applied (see below);

c) Recording mode must be binary high density, (this
mode is always assumed when the RECORDING MODE clause
is omitted);

d) Overall data block sizes must not exceed 320 words, or
1920 characters: (the compiler assumes the desired block
size is 320 words when the BLOCK CONTAINS clause is
omitted); and

e) Label records must be standard (COBOL rules require this
option to be stated explicitly in the FD entry in the
Data Division).

VLR (Variable Length Record) format implies that each logical
record will be immediately preceded in the buffer by a record
control word, which contains the record size, in words, and other
control information. Record control words are retained in the
external medium except on punch cards and printer listingso VLR
format requires binary recording mode. Various other options can
cause the compiler to apply VLR format implicitly; the APPLY VLR
option may be used explicitly when VLR format is desired but would
not be implied by other options specified for the file.

5. The RERUN option causes checkpoint memory dumps to be written. If
"ON file-name-7" is specified, the output device allocated to
file-name-7 receives the checkpoint dump; otherwise the output
device allocated to f ile-name-8 receives the checkpoint dumpo If
the ON option is used, f ile-name-8 may be either an input or an
output file. Integer-I must not exceed 250,000. It is the user's
responsibility to keep the output device in a suitable status to
receive the checkpoint dump (ioe., opened as an output file) at
every point in the program where a READ or WRITE references
f ile-name-8.

When specified for a sort-file, the RERUN option indicate-a that
checkpoints are to be taken during the Sort, In this case integer-1
is ignored. The Sort determines when checkpoints have meaning
and should be taken. The ELECT SORT OPTIONS under SPECIAL-NAMES
can also be used to specify that checkpoints are to be taken during
a Sort.

COBO

Page VIII-8

6. The files mentioned in a SAME clause share memory areas. If
the RECORD option is used, the PROCESS AREA feature is automatic
ally applied to the files mentioned, and they share only the
fixed PROCESS AREA. If several files with the SAME RECORD AREA
are open concurrently, the logical record of only one of the
files can exist in the record area at one time. If the RECORD
option is not used, the files share the same buffer area(s).
The user must assure that no conflict results from having two
or more SAME AREA files open concurrently; the results of such
a conflict are unpredictable. A given file may be mentioned
in only one SAME clause; several SAME clauses may be used if
desired. A sort-file must not be mentioned in a SAME clause.

7. The MULTIPLE FILE option is required if two or more files share
the same reel of tape. Of the files on such a tape, only those
referenced elsewhere in the source-program need be specified.
If all file-names on the tape are listed consecutively, POSITION
may be omitted. If any file in the sequence is not listed, the
POSITION relative to the beginning of the tape must be given.
The file-name of a sort-file must not appear in a MULTIPLE FILE
clause. Either all labels must be present or else all labels
must be omitted for the files on a MULTIPLE FILE tape. Each
MULTIPLE FILE clause describes one MULTIPLE FILE tape. There
can be any number of MULTIPLE FILE input or output tapes;
however, all files listed for each tape must be contained on a
single reel. OPTIONAL files are not permitted on MULTIPLE FILE
tapes. Note that files on a MULTIPLE FILE tape cannot be open
concurrently.

Page IX-1

IX. IDENTIFICATION DIVISION

GENERAL DESCRIPTION

The purpose of the IDENTIFICATION DIVISION is to identify the Source
Program and outputs of a compilation. In addition, the user may include
the date that the program was written, the date that the compilation of
the Source Program was accomplished, and any other information which is
desired.

ORGANIZATION

Fixed paragraph names are used as keys in this division. They identify the
type of information contained in the.paragraph.

The name of the program must be given in the first paragraph. This paragraph
is named PROGRAM-ID. Other paragraphs which may be included in this division
are:

AUTHOR.
INSTALLATION.
DATE-WRITTEN.
DATE-COMPILED.
SECURITY.
REMARKS.

Page IX-2

PROGRAM-ID

FUNCTION: To give the name by which a program is identified.

Notes:

PROGRAM-ID. program-name.

1. The progran-name is a word and must conform with the rules
for a word. It must consist of one to six characters, with at
least one letter and the remaining characters letters and/or
digits.

2. The program-name should be used to identify the Source Program,
the Object Program, and all listings pertaining to a particular
program.

@~ D ®®® ~~00 0 ~~----------~CO-.;:;,;BO-=-L

Page IX-:

DATE-COMPILED

FUNCTION: To provide the compilation date in the IDENTIFICATION DIVISION.

[DATE-COMPILED. any sentence .J
Notes:

1. The paragraph-name DATE-COMPILED causes the current date to be inserted
during program compilation. If a DATE-COMPILED paragraph is present,
it is replaced during compilation with a paragraph of the form:

DATE-COMPILED. current-date

@~a@@® ~~rma~~----------------C--OB_OI

Page X-

X. SOURCE-PROGRAM SEGMENTATION

INTRODUCTION

The objectives of the source-program segmentation provisions discussed below
are:

1. To permit practical separation of a data-processing program into
distinct functional modules ("segments").

2. To permit the segments to be developed as separate COBOL source-programs
which are compiled separately and may be debugged separately.

3. To permit linking of the segments of a program by the object-program
loader.

4. To permit the functional modules ("segments") to overlay other modules
when called into memory in order to execute large programs within a
limited amount of memory.

Four distinct conununication problems arise in segmenting data processing programs
The first is conununication ot information contained in the data file buffers and
housekeeping information which is conunon between two or more segments. The secon
is connnunication of working storage data connnon to two or more segments. The
third is communication of constant storage data conunon to two or more segments.
The fourth is communication of procedural control. Other problems arise when
a data processing problem is segmented to function in an overlay environment.
One problem that must be considered when operating in an overlay environment
is how to control files which are conunon to the two or more segments. There
should be a conununication ability which allows loading of an overlay segment
which restores any conunon areas to their initial states or allows them to remain
in their current states.

As a special feature, the GE-635 COBOL compiler provides solutions to all four
communications problems, as described below. It should be understood that source
program segmentation (as specified for GE-635 COBOL which utilizes the source
program segmentation features) must generally be rearranged into a unitied,
non-segmented form if it is to be subsequently compiled on a different computer
line. Such rearrangement is not necessary for non-segmented GE-635 COBOL
source-programs.

@~a(ID@® ~~[R10~~-------------..;;.;CO;.;;.;;.BO

Page X-2

SEGMENTS

Segments are subprograms which are compiled and tested independently and
subsequently loaded together and executed as a total program. Thus, a user
may decide to break up a large complex program into several parts or segments,
write each one as a separate source program, and compile and test each segment
independently; thereby overlapping programming and checkout time. Another use
of segments is to facilitate the writing of common subroutines (installation
oriented) in source language to be compiled as independent segments.

SECTIONS

Sections consist of a section header followed by one or more successive
paragraphs. They generally contain a common function which is executed from
more than one place in a program. The.programmer is free to partition a
program into sections as he chooses. A section ends immediately before the
next section-name or at the end of the Procedure Division or, in the Declaratives
Section of the Procedure Division, at the key words END DECIARATIVES.

The GE-635 COBOL compiler does not provide segmentation of COBOL procedural
sections. as specified by COBOL-65 standards. However, it is possible to
functionally organize a group of 600 COBOL segments to operate in the same
manner as segmentation of COBOL-65 procedural statements, with the exception
that there is no way to call a segment and have it made available in its
last-used state.

A discussion of the four communication methods is described below:

DATA FILE COMMUNICATIONS

The GE-635 COBOL compiler automatically places the file control blocks and
all buffers for each file named in the File Section into Labeled Common storage.
The name of the Labeled Common storage area is assigned using the two-character
file code specified in the ASSIGN clause for the file. At load time, the
loader will allocate all Labeled Common storage areas having the same name to
the same area of memory. Therefore, if a file is referenced by two or more
segments, it must be described identically in the Data and Environment Division
of all source programs referencing it. There may be times when it is desired
to allocate the file buffers to Blank Common storage rather than to Labeled
Common storage. This can be accomplished by using the FOR BIANK COMMON clause
specified in the FILE-CONTROL paragraph. This can be very useful if it is
desired to allow the loader to share the buffer areas of the file at load time,
to decrease the memory requirements for job allocation. For details on loading
Blank Common versus Labeled Common, refer to the manual GE-625/635 General
Loader, CPB-1008.

@~a(ID@® ®~000~®--------------~C~OB~OL

Page X

A report can be referenced only from within the segment in which it is described
If several reports going to a single file are to be generated in separate segmen
each report must be specified in the segment which contains the relevant Report
Writer verbs, and may be omitted from segments not containing relevant Report
Writer verbs. The complete file description, excluding unreferenced report
descriptions, must appear identically in each reporting segment.

Files sharing the SAME AREA or SAME RECORD AREA must all be described in any
segment referencing any of them. Files which are connnon to two or more segments
may be defined to share buffer areas with other files which are connnon to the
same segments. However, when indicating this, the SAME AREA clause must be
identical for all segments which share the common files,

USE procedures are linked to one Input/Output file (File Control Block) at the
time a file is opened. If applicable USE procedures have been specified within
the segment opening the file, they are engaged; any other USE procedures specifiE
for the same common file are not meaningful at this time. Therefore, USE pro
cedures for a specific file should be present only in segments in which the file
is opened. To place USE procedures in other segments which share the common
file wastes memory space. When a file is connnon to more than one segment, it
is permissable to reference the file from any of the segments in which it is
common. However, if not all READ or RETURN verbs referencing a file appear in
the same- segment, then each such verb referencing the file must have an explicit
AT END procedure.

WORKING-STORAGE COMMUNICATIONS

When designing a system to be modular to facilitate development and checkout,
it is not unconnnon to want to define particular items or records in Working
Storage such that they are conunon to all segments when the segments are operating
together. However, it is also necessary that storage be assigned such that each
segment can be developed independent of other segments. GE-635 COBOL provides
a feature which allows the user to define Working-Storage items to be assigned
to Labeled Connnon storage in as many segments as desired. Items not explicitly
allocated to Labeled Conunon storage are allocated space in the segment itself.
Working-Storage items may be assigned to Labeled Conunon storage via the BLOCK
clause option of the SPECIAL-NAMES paragraph. Any data item which is a level
01 or 77 may be assigned to Labeled Common storage. Labeled Common storage
areas can be made equivalent simply by specifying the same label-name for
corresponding BLOCK clauses in segments.

When segments reference Working-Storage items which are common to other segments,
it is advisable to define the area in each segment using identical names and data
descriptions. Each segment must contain a BLOCK statement which identifies the
Labeled Common area using the same label-name. It is permissible to assign
initial values for items which are described in labeled storage areas. The user
should be aware that the loader re-establishes the labeled storage area when a
segment is loaded. Therefore, when loading a production run which is segmented,
the last segment which defines the labeled conunon area, using initial values,
will determine the values of the items when the program begins execution.

@~a(ID©J©J ~~rma~~--------------..;;.;co;.;;.;;.;so1

Page X-4

CONSTANT COMMUNICATION

The Constant Section consists of many items containing initial values and which
are likely connnon to many segments when a large data processing problem is designed
using the modular concept. GE-635 COBOL allows any level 01 or 77 item defined
in the Constant Section to be assigned to Labeled Connnon storage. The user can
assign the entire Constant Section into one labeled storage, area by using the
THRU option of the BLOCK clause in the SPECIAL-NAMES paragraph. When defining
constants for a connnon storage area the descriptions for all items should be
identical in each segment.

A source program may include as many BLOCK clauses as are needed. The total
number of file codes and BLOCK labels must not exceed 63 for a given segment.

PROCEDURAL COMMUNICATIONS

COBOL requires a PROGRAM-ID to be specified for each source program. In 600
COBOL the PROGRAM-ID must be one to six characters in size and it must be
comprised of letters and/or digits, including at least one letter.

The compiler uses the PROGRAM-ID for the implied entry symbol for identification
of the COBOL object-program. The implied entry point for a source program is
the first procedural statement following the END DECLARATIVES statement if
declaratives are used, or the first statement of the Procedure Division if
declaratives are not used. The entry symbol (the PROGRAM-ID) is made a global
symbol which allows referencing by calls from other segments.

Each 600 COBOL object-program has the basic structure of a single-entry closed
subroutine. This is true even through any number of entry points may be defined
within each segment. The compiler automatically generates the entry linkage
coding at the entry point (the PROGRAM-ID),and the implied exit linkage coding
is generated at the end of the last procedural statement of the program. Coding
is generated at each entry point and exit which will save and restore all index
registers when an entry is called as a closed subroutine. Inter-conununication
between 600 COBOL object-program segments does not require index register integrity
to be maintained. The Save and Restore index register feature is implemented in
600 COBOL to allow connnunication between COBOL segments and non-COBOL segments
when operating in a segmented environment. If a segment.has only one entry point
(the implied entry) and it is to be executed as a closed subroutine by another
segment, the.program should be arranged so as to "fall through" to the exit
linkage at the appropriate time. An EXIT paragraph may be used for this purpose
if necessary.

@~a(ID©J©J ~~ooa~~--------------...;;:;C~OB.;;.:;:,.OL

Page X-.

CALL Verb

The CALL verb provides a way to transfer control to a separately compiled
subprogram or entry point within a subprogram, with a standard return mechanism
provided. An independently compiled COBOL program may be called as a closed
subroutine by a CALL using the PROGRAM-ID which names the segment. If it is
desired to execute only a portion of a subprogram from another subprogram, the
CALL should reference one of the entry-names defined in an ENTRY POINT statement.
A COBOL CALL can reference non-COBOL subprograms provided that the called name
has been established as a global symbol within the called segment.

For each CALL statement, USING arguments can be specified to provide address
pointers to data which is to be used by the entry-name being called. The
USING arguments are not meaningful if the CALL references the PROGRAM-ID of
a 600 COBOL subprogram. The arguments provide indirect pointers to "input"
and "output" data fields when a CALL references an entry-name which is defined
using the ENTRY POINT Statement and has USING and GIVING arguments included.
Data-names specified as USING arguments must be level 77 or 01 items defined
in the Working-Storage or Constant Section of the subprogram in which the CALL
is defined.

The number of USING arguments specified with a CALL statement must correspond
exactly with the number of USING and GIVING arguments defined for the entry-name
which the CALL references. The data description for each pair of corresponding
arguments must be identical when a CALL references a COBOL subprogram. If the
CALL references a non-COBOL subprogram the data descriptions should provide a
data format which is compatible with the called subprogram.

ENTRY POINT

600 COBOL provides the ENTRY POINT feature for the definition of entry points in
addition to the implied entry point. It is possible to organize a program such
that paragraphs, sections, or combinations of paragraphs and sections can be
called and executed from other segments. Each entry-name must be unique and
must not contain more than six characters with at least the first two characters
being letters and the remaining characters defined as letters and/or digits.
An ENTRY POINT can be used any place in the Procedure Division except in the
Declarative Section. Entry-names can be referenced only through calls from other
segments. They must not be referenced by a CALL from within the segment in which
they reside. The compiler generates one 9-word save area in each segment for the
preservation of index registers and indicators. Therefore, a segment which has
been called may itself contain CALL statements. However, a called segment or
entry point must not contain a CALL statement that directly or indirectly calls
the calling program.

@~a(ID@@ ~~000~~-------------____,;;C;;.;;.;;OB~OL

Page X-6

EXIT Verb

The compiler provides an EXIT entry-name option which defines an unconditional
exit for a given entry-name. Each entry-name (explicit) in a segment must have
at least one exit defined using the EXIT entry-name statement. Multiple exits
may be defined for an entry-name if necessary. If control reaches an EXIT
entry-name statement, the linkage control stack is checked to determine if the
current EXIT corresponds to the called entry-name. If the EXIT corresponds to
the entry-name, the EXIT causes control to return to the calling program
inunediately following the CALL statement. If it does not correspond to the
entry-name, control passes through the exit point to the first sentence of the
next paragraph. An entry-name with its associated EXIT and/or EXITS can be
nested within other entry-names and their associated EXITS. ENTRY POINTS and
EXITS may be placed such that they extend across other entry-names and/or exits.
Since the same push-down stack is used for entry-names as is used· in performing
paragraphs, extreme care should be given to provide the orderly push-down and
popping-up of the control stack when performing paragraphs within coding for an
entry-name. The EXIT PROGRAM option is implemented to provide an unconditional
exit from a segment when operating under the control of a CALL statement. This
feature causes control to return to the point in the calling program inunediately
following the CALL statement. If control reaches an EXIT PROGRAM statement and
no CALL statement is active, control passes through the EXIT point to the first
sentence of the next paragraph.

DATA COMPATIBILITY

600 COBOL provides excellent facilities for the processing of conunon data between
COBOL segments. The fact that all files are assigned to Labeled Conunon storage
and the ability to assign any or all items in working storage to Labeled Conunon
provides complete flexibility for referencing conunon data when only 600 COBOL
segments are involved. An additional feature is provided to allow the conununication
of data between non-COBOL segments and COBOL entry points, other than the implied
entry, by means of arguments.

USING and GIVING arguments may be specified with the ENTRY POINT statement. Any
USING arguments associated with an entry-name reference items within the segment
which function as receiving fields for the move of input arguments which take
place when the entry-name is called from another segment. The compiler assumes
the external format of the item is compatible with the COBOL description specified
for the item in the Data Division. The user must assure that the order and
descriptions of the arguments conform to the calling programs USING argument
list. No more than 10 USING and GIVING arguments may be defined with an ENTRY
POINT statement. USING argument data-names must reference level 77 or 01 items
defined in the Working-Storage or Constant Sections. The procedural statements
following an ENTRY POINT statement are not executed until individual moves of
the USING argument list are complete.

@~a(ID@@ ®~lffiU~®-------------___.c_..oB~OL

Page X-j

The GIVING arguments used with an entry-name reference items in the Working
Storage or Constant Section which function as sending fields for moves of
output arguments which take place when an EXIT entry-name is recognized. The
compiler assumes the desired external format is compatible with the COBOL
descriptions specified for the item. GIVING argument data-names must reference
level 77 or 01 items defined in the Working-Storage or Constant Sections.
Control is not returned to a calling program when a valid EXIT is detected
until individual moves of the GIVING argument list is completed. The GIVING
moves use the corresponding argument address associated with the controlling
CALL statement from the calling program as a receiving field. The user must
assure a one-to-one correspondence between the Call-USING arguments and the
ENTRY PO-INT USING/GIVING arguments.

Item format descriptions within 600 COBOL which may be compatible with external
formats of non-COBOL segments are DISPLAY, COMPUTATIONAL-!, COMPUTATIONAL-2,
and COMPUTATIONAL-3. The COMPUTATIONAL format of 600 COBOL should not be used
to describe USING or GIVING items. If it is desired to maintain a high degree
of decimal precision during computations involving the USING data-names, the
appropriate conversion can be accomplished by a move of the item to a field
defined appropriately as COMPUTATIONALo

EXAMPLE OF MULTI-SEGMENT JOB

An example of a three-segment COBOL job is given on the next page. The example
supposes that the main segment (PROGRAM-ID is MAIN) has already been compiled
and that two other segments must be recompiled along with an execution activity
of the three segments. Since the loader would give control to the first primary
SYMDEF encountered in the deck setup, it is necessary in this example to use a
$ ENTRY card in order to force control to be given to the main segment. COBOL
conventions provide a primary SYMDEF for this purpose. It is a six-character
symbol in which the first two characters are always "C." and the remaining
four characters are taken from the f!!.!! four characters of the PROGRAM-ID.

@~a(ID@@ ~rnoo~~~-------------~C~OB~OL

Page X-8

Example Deck Setup For Multi-Segment Compile And Go.

$ COBOL

$!DENT

Any required user files
and data

$ ENDJOB

$ EXECUTE

Required for loader to
give control to "MAIN"
COBOL segment

ENTRY C.MAIN

$ COBOL

SOURCE DEC
(PROGRAM-ID
= ASEGMI.)

BINARY
DECK

(PROGRAM-ID
= MAIN.)

SOURCE DECK
(PROGRAM-ID
=BSEGMI'.)

~~----------Any other control cards needed
for compilation

@~a(ID©)©) ~~[ffiO~~---------c_oB_OL

APPENDIX A
COBOL COMPUTATIONAL ITEM FORMATS

This appendix provides detailed information on the machine formats for
COMPUTATIONAL[-n] items. The COMPUTATIONAL (without suffix) USAGE is recom
mended for general use. The other options for the USAGE clause may be
employed for special purposes.

The functions of the various COMPUTATIONAL options are given below:

COMPUTATIONAL - Results in the decimal precision format. This is the
preferred USAGE for items referenced in calculations.

COMPUTATIONAL-! - Results in the fixed point binary integer format.
This USAGE is well suited to items having only integral values,
and is the preferred USAGE for items used as subscripts or
referenced in DEPENDING options.

COMPUTATIONAL-2 - Results in the floating point binary format. This
USAGE is agpropriate for items whose absolute values may potentially
exceed 101 or be less than 10-18; it is also useful for data
communications with non-COBOL programs.

COMPUTATIONAL-3 - Results in the single precision fixed point binary
integer format. This USAGE should be employed only for data
connnunications with other non-COBOL programs; even then
COMPUTATIONAL-! or COMPUTATIONAL-2 should be used instead if the
application permits.

@~a@@@ ~~[ffi~[E~--------~-------c_oB_or
-A-1-

Representation Of Fractional Values

The most important feature of the COMPUTATIONAL USAGE is a special provision
for the fractional part of an item. For a COMPUTATIONAL item, the fractional
part and integral part are jointly represented as a binary integer, which
corresponds exactly to the conceptual decimal value of the item. For a
COMPUTATIONAL-2 item, however, the fractional part of the value is represented
as a pure binary fraction of a limited (finite) number of bits. (Both
COMPUTATIONAL-! and COMPUTATIONAL-3 items are integers, and therefore have
no fractional parts.)

Generally speaking, a decimal fraction of a given number of digits cannot be
represented exactly by a binary fraction of any finite number of bits. Consider
for example, the value 1/5, which is represented in decimal notation as 0.2.
Trying to represent it by a 4-bit binary fraction, one obtains (.0011)2 or
3/16; with 8 bits, one obtains (.00110011)2 or 51/256. In fact, the exact
value must be written as

(0.2)10 = (0.0011)2

which means that the bit pattern 0011 in the binary expansion keeps repeating
indefinitely. If the decimal value 0.2 is coverted.to a binary expansion of,
say, 71 bits, and then converted back, the 1-digit result would be 0.1, quite
different from 0.2. (The 4-digit result would be 0.1999, which is almost-but
not quite-equal to 0.2.) If computations were involved instead of only coversions,
the imprecision in the decimal result could be much greater.

Various adjustments can be made to binary fractional values to make exact decimal
results highly probable. The sure way, however, is to use binary integer notation
to represent all values, whether integral or functional. A consequence of doing
so is that multiplication or division of an operand by a power of ten is sometimes
necessary in the course of a computation. COMPUTATIONAL items indeed do use
binary integer multiplications or divisions by powers of ten. (The formats and
conventions governing COMPUTATIONAL items are fully described on the following
page.)

@(E a(ID@@ ~ (E (ffiQ(E~----------------=-c..:.=.oB.:..=.OL
-A-2-

In most commercial data processing applications, particularly where
dollars and cents are involved, a high degree of decimal precision is
expectedo It is for this reason that COMPUTATIONAL and COMPUTATIONAL-1
usages are recommended over COMPU'l'ATIONAL-2 and COMPUTATIONAL-3.

COMPUTATIONAL Items

The basic machine format for COMPUTATIONAL items is the standard floating
point binary format (single or double precision):

Single Precision
(one word)

Double Precision
(two words)

0 1
I

SI
I

j+E

0 1
I s,
I

,._E

7 8 9 35

Is: , M-----..

:' 8 9

Is!
... 1

The decimal precision format utilizes the above format in a special way.
The exponent (E) indicates how many bits of significant information are
present in the mantissa (M)o Bits to the right of the point indicated by the
exponent are not significant; the.se bits are normally all zero.

The sign (S) of the exponent is no:rmally nonnegative. The sign (S) of the
mantissa is the algebraic sign of the COMPUTATIONAL item.

The value stored in the mantissa fa a binary integer, obtained as follows:
If the item1s data description specifies fractional places, the mantissa
is stored as if the value had been multiplied by a sufficiently high power
of 10 to make the value an integer.. (The power of ten is called the ''span
multiplier.'') Thus 3.142 would be stored as 3142, as if it had been
multiplied by 103. (The actual value in memory, expressed in octal notation
would be 030610600000.)

@J~a(ID@@ ~~oom~~--------------~co~B<
-A-3-

In general, if an item's PICTURE is 9(p)V9(q), a suitable span
multiplier is lOq or any higher power of 10. If the span multiplier
actually chosen is 10s {withs 2 q), thesis called the "span number."
The "span" of a Decimal Precision number is defined as the number of
fractional digits permitted for an item in view of its span multiplier.
Referring to the above example, 3.142 would be assigned "Span 3",
allowing 3 fractional digits.

The significance of the conventions just described is that a binary
fraction or mixed number "eguivalent" to the decimal value could in
general only be approximate, not exact, but the span multiplier
permits the value stored to be exact in the Decimal Precision format.

The compiler of course chooses the span multiplier for each
COMPUTATIONAL item, and supplies appropriate coding to align the
operands and results in all computations. A "span conversion" is
sometimes required for this purpose; that means multiplication or
division by a suitable power of 10 (always with a positive exponent).
General rules for COMPUTATIONAL item alignment are as follows:

1. If a MOVE statement, or an addition or subtraction functio~
involves operands with the same span number, they are properly
aligned without span conversion. Otherwise one or more span
conversions will be necessary.

2. The span number of a product equals the sum of the span
numbers of the operands, so span conversion via division is
usually necessary in order to cause proper alignment of the
result.

3. The span number of a quotient equals the difference of the
span number of the dividend and that of the divisor, so span
conversion via multiplication is usually necessary in order
to cause proper alignment of the result.

Because of the first rule above, it is desirable to have summands in
the same span, to avoid span conversions. Here another Decimal
Precision format convention becomes important: Since a given item's
span number can in principle be any number equal to or greater than
the number of fractional places in the item's description, items
with widely different PIC'IVREs can often be assigned the same span.

@[~a@@@ ~~[ffi~[E~ _________________ co_B_OL

_A-4 -

For example, Span 3 in single word precision can permit 0 to 3
fractional places and 0 to 5 integral places. In double word
precision, Span 3 can permit 0 to 3 fractional places and 6 to 15
integral places. Since items with no more than 3 fractional places
are extremely common in commercial data processing applications, it
is clearly desirable to assign Span 3 to items whenever possible,
even if they have only 1 or 2 fractional places, to optimize their
formats for addition and subtraction. This reasoning leads naturally
to the concept of 11 preferred" spans.

Certain spans, each of which is applicable to a wide range of
PICTURES, are "preferred," in the sense that an item is always
assigned to a preferred span if its PIC'IURE permits. Furthermore
an order of preference is applied: thus an item which could be
assigned either to the span which is "preferred #1" or to that which
is "preferred #2" would be assigned to the former. When the span
has been assigned, it can be determined whether the item's PICTURE
requires single or double precision, with single precision chosen
whenever possible. The following tables fully describe the rules
for span and precision assignments:

Single Precision Items

Integral Fractional Span
Places Places Number Comment

1-8 0 0 Preferred #1
0-5 1-3 3 Preferred #2
0-3 4-5 5 Preferred #3

0 8 8 Preferred #4

~~a(ID@@ ~~[ffi~~~ ______________ co_Bc
- A-5-

Double Precision Items

Integral Fractional Span
Places Places Number Comment

9-18 0 0 Preferred #1
16-17 1 1

16 2 2
6-15 1-3 3 Preferred #2

14 4 4
4-13 4-5 5 Preferred #3

11-12 6 6
11 7 7

1-10 8] 8 Preferred #4
0-10 6-7
7-9 ,9 9
7-8 10 10

7 11 11
0-6 9-12 12 Preferred #5
4-5 13 13

4 14 14
0-3 13-15 15 Preferred #6
1-2 16 16

1 17 17
0 16-18 18 Preferred #7

For optimal results, it is recommended that the items in a program
occur mostly in Span 0 and Span 3, and that single precision be used
whenever possible. As the tables show, most practical PICTURES
specifying eight or fewer digits will result in single precision
formats. Referring to the tables, the user can force the choice of
a given span and precision by supplying an appropriate PICTURE.

The following examples illustrate the results of various span
combinations:

1. Suppose A has PICTURE 9V99 and B has PICTURE 9(5)V9(3), and
their sum must be computed. The tables show that both are
single precision Span 3 items, so no span conversion is
necessary.

COB OJ
@3~ c(ID@@ ~(g[ffi~ ~~ --------------------

-A-6-

2. Suppose C has PICTURE 9(6) and D has PICTURE 9(6)V99.
Then C is a single precision Span 0 item and D is a double
precision Span 3 item. If their sum is desired, a span
conversion will be necessary. If their product, however,
is to be a double precision Span 3 number, no span conversj
is required for the multiplication.

3. Suppose E has PICTURE 9(3)V9(3) and F has PICTURE 9(10)V9{3
Then both are assigned Span 3, but E is single precision
and F double. They may be added without conversion to prod
a Span 3 sum. Suppose, however, the product is to be store
in a Span 3 item. The product of two Span 3 numbers is a
Span 6 number. Therefore, a span conversion from Span 6 to
Span 3 must follow the multiplicatio~. Specifically, the
Span 6 product must be divided by 10 • If a Span 3 quotien
is desired, division of two Span 3 numbers results in a Spa
quoti1nt which must be converted to a Span 3 via multiplica
by 10 •

The use of machine floating point format for COMPUTATIONAL items
permits many operand alignment steps to occur automatically via
floating point hardware, thus saving space and time in the object
program. Another advantage is that single and double precision
operands can be mixed arbitrarily in a floating point computation
without the need for progranuned conversions. A computation proceed:
in double precision only when at least one of the operands is a do~
precision item.

Still another important advantage of using floating point format is
that in a computation involving several arithmetic operations
(resulting from a complicated COBOL formula, for example), the hard-
ware retains extra significant information in each intermediate ste1
so that the conceptual 18-digit limit on operands may sometimes be
meaningfully exceeded on intermediate results. The overall signific
however, never exceeds 21 digits (so that the result of multiplying
two 18-digit numbers, for example, cannot be 36 digits even in an
intermediate result). The 18-digit limit always applies to stored
values.

~~c(ID@® ~~mm~~ _______________ c_oB

- A-7-

COMPUTATIONAL-1 Items

The basic machine format for COMPUTATIONAL-! items is single or
double precision Fixed Point Binary Integer format:

Single Precision
(one word)

Double Precision
(two words)

0 1
I

S'

35

" radix point

~0 ___ 1~~--~-----~ ~------------------------~7~1

j ___ s'--'z.,--------'l
radix point

Although it is stored as a binary number, a COMPUTATIONAL-1 item's
value is exactly equivalent to the conceptual decimal value of the
item. This is true because COMPUTATIONAL-! items are restricted to
integral values: every decimal integer has an exact equivalent in a
binary integer.

The following table provides the precision assignment rules for
COMPUTATIONAL-1 items:

Number
of Di its

1-8
9-18

Precision

Single
Double

For efficiency, COMPUTATIONAL-1 items should have 8 or fewer digits
whenever the application permits.

COMPUTATIONAL-2 Items

The basic machine format for COMPUTATIONAL-2 items is the single or
double precision Floating Point Binary format:

@J[E c(ID@@ ~[E[Ri~[E~ --------------C_OBO_L
-A-8 -

0 1 7 8 9 35

Single Precision I I s
I

(one word) SI I
I I

1.-E •I M

0 1 7 8 9

~
71

Double Precision I I s
I

(two words)
s, I

I I

,..._E ·I M

The mantissa of a COMPUTATIONAL-2 item is a pure binary fraction and
consequently is not necessarily exactly equivalent to the item's conceptual
decimal value. The equivalence may be sufficiently close, however, for
practical purposes.

The COMPUTATIONAL-2 USAGE is especially effective for the operands in an
elaborate formula. Should an operand value or an intermediate or final
result exceed 1018 in absolute value, or be less than lo-18 in absolute
value, only the floating point binary format provides enough significance
to yield meaningful answers.

The following table provides the precision assignment rules for COMPUTATIONAL-2
items:

Number of digits
In PICTURE

COMPUTATIONAL-3 Items

1-8
9-18

Precision

Single
Double

The basic machine format for COMPUTATIONAL-3 items is single precision fixed
point binary integer format:

Single Precision
(one word)

0 1

I
S I

I

35

Rad1xl point

A COMPUTATIONAL-3 item is stored in the same format as a COMPUTATIONAL-! item
because both usages are restricted to integral values only. However, a
COMPUTATIONAL-3 item may contain a 10 digit integral value. This usage is
intended to permit data communications with programs creating binary integer
values which are single precision but are larger than 8 integral digits.

@~o®@® ~~[ffi~(E~--------------~CO~BO~L
-A-9-

COMPUTATIONAL-4
(Double Precision-

two words)

0 1

s
71

A
embedded radix point

Sometimes a program coded in assembly language requires the Fixed Point
Binary format for an item. COMPUTATIONAL-3 and COMPUTATIONAL-4
USAGES are intended only to permit data communications with such a
program. The reasons are discussed under Representation of Fractional
Values, above.

When a Fixed Point Binary mixed number must be used, it is usually
best to place the assumed (embedded) radix point as far to the left
as possible, to allow as much room as possible for the binary
fractional part. This means, of course, that the integral part ·Should
be allotted as few bits as the PICTURE allows. An item formatted in
this way is said to have "minimum binary scale." (The "binary scale"
is the number of integral bits in the item's format, in view of the
assumed radix point position.)

The BITS option of the POINT LOCATION clause may be used to specify
the exact position of the assumed radix point. In this option,
one specifies the desired number of fractional bit positions, counting
from the right end of the item. In terms of the COBOL clause format,
which is

POINT LOCATION IS LEFT integer BITS

the following relationships determine the item's binary scale:

Single Precision: binary scale = 35 - integer.

Double Precision: binary scale = 71 - integer.

Unless the BITS option is specified, a standard binary scale is
assumed by the compiler, as determined by the following table. The
cross-hatched areas are inapplicable, since COMPUTATIONAL-3 items
may have at most 10 digits specified, while COMPUTATIONAL-4 items may
have up to 18 digits.

@j~o(ID(Q)@ ~~00~~~ ---------------C._OB-.OL

- A-10-

I

ITTn1
0

(§2)
<§
§

<?§2)
m
§§)
c::::::::J

m
~

>
I

......

r

n
0
D:I

Number of
Decimal Integer
Places in PICTURE

0
1
2
3
4
5
6
7
a
9

10

11
12
13
14
15
16
17
18

Minimum Binary Scale

Standard Binary
Scale

COMPUTATIONAL-3 ICOMPUTATIONAL-4

1 1
4 4
7 7

10 10
14 14
17 17
20 20
24 24
27 27
30 30
34 34

37
40
44
47
50
54
57
60

POINT LOCATION
Equivalent (BITS LEFT)

OMPUTATIONAL-3 bOMPUTATIONAL-4

34 70
31 67
28 64
25 61
21 57
18 54
15 51
11 47

8 44
5 41
1 37

-. ~- ·' ., 34 '',t ·,,.., '\. .. ;. ' ., '·
. " " " ' ·-. ').. ' . 31 / '"' ~ ·,.'•,.'• .

' ... "' . ' ... > ,"i., ".. ', 27
/(.._ '"' ' - · ... '

24

<:'::><;~:>:... . 21
17 , . :'.:'- / ·, .. <'>x... . 14 .. · ,,.··· ·"'> .. · . ~,. ~.'/,"' •. :··.
11 / . /> ' / . . .

/ ,, . ,•.,,

APPENDIX B

COBOL FILE FORMATS

This appendix presents a discussion of the GE-600 Series COBOL program
interpretations of the COBOL statements relating to data file formats and
processing methods.

INTRODUCTION

Many COBOL statements relate to data file formats and processing methods. This
appendix presents detailed information on the interpretations GE-600 Series
COBOL places upon such statements. Sort-files are not included in the discussion;
much of what is presented here does not apply to sort-files.

The Environment Division statements pertaining to files appear in the Input
Output Section:

FILE-CONTROL. SELECT [OPTIONAL] [OVERLAY] f ile-name-1 [RENAMING f ile-nami

[
FOR {CARDS }] LISTING

MULTIPLE REEL

ASSIGN TO file-code-1

[, RESERVE {~O l} ALTERNATE AREA [FOR BIANK COMMON]. integer- [SELECT... .]

I-0-CONTROL. [APPLY PROCESS AREA ON file-name-1 [, file-name-2 ... JJ

[;APPLY BLOCK SERIAL NUMBER ON file-narne-3 [, file-narne-4 ... JJ

[; APPLY {SYSTEM STANDARD} FORMAT .QN_
VLR

file-name-5 [, file-name-6 ..• J]

[RERUN [ON file-name-7] EVERY integer-1 RECORDS OF file-name-8]

[; _SAME [~CORD] AREA FOR file-name-9, file-name-10

[, file-name-11 •.. JJ

[POSITION integer-2J

[; MULTIPLE FILE TAPE CONTAINS file-name-12

[, file-name-13 [?OSITION integer-3] .. J].

@~a(~®® ~~oom~~--------------------C-OB_OL

-B-1-

The Data Division statements pertaining to files appear in the
File Section:

FD file-name [; RECORDING MODE IS (~ARY) [(~;H) DENSITY]]

(; FILE CONTAINS ABOUT integer-1 RECORDS]

[; BLOCK CONTAINS [integer-2 TO] integer-3 (RECORDS) J
CHARACTERS

[1 RECORD CONTAINS (integer-4 TO] integer-5 CHARACTERS]

LABEL { RECORDS ARE) { STANDARD)
RECORD IS OMITTED

(; VALUE OF data-name-1 IS literal

DATA { RECORD IS)
RECORDS ARE

[, data-name-2 IS . .]]

data-name-3, data-name-4 ... J
(

'.· REPORT IS)
I REPORTS ARE

{
RECORD IS) { REPORT IS }

~ RECORDS ARE ••• ; REPORTS ARE •••

(; SEQUENCED ON data-name- 5 [, data-name-6 ...] J.
Of the above clauses, FILE CONTAINS, RECORD CONTAIN~, and SEQUENCED
have no effect on file formats or processing, but may be used to
provide valuable documentation about the file.

EXTERNAL FORMAT CONSIDERATIONS

A file's "external format" is its manner of representation in a
peripheral storage medium.

Certain general considerations pertain to the overall file:

1. The actual peripheral medium;

2. The multiple file option (applicable only to magnetic
tape files);

3. Recording mode (which on magnetic tape may be binary or
BCD, with high or low density);

@~a@@@ ~~[ffi~~~ _______________ co_Bo L
_B-2 _

4. Presence or absence of standard label records.

Other considerations pertain to the contents of each data block (physical
record) of the file:

1. Presence or absence of block serial number.

2. Blocking factor (number of logical records per block) or block
size (number of data characters or computer words per block).

3. Logical record format--FLR (fixed-length records) or VLR
(variable-length records).

Logical Record Format

In GE-625/635 COBOL, each logical record in a file begins in the first
character position of a ~omputer word. For example, a logical record con
sisting of a single 21-character elementary item would be stored as follows:

d d d d d d first word

d d d d d d

d d d d d d

d d d x x x last word

In this example, the character positions represented by ~ contain data, while
those represented by ~ are unused. Unused positions resulting from this
convention, as well as those resulting from USAGE or from SYNCHRONIZED items,
appear as shown both in the computer memory and on the peripheral storage
medium.

When all of the logical records of a file require the same number of computer
words, the FLR format may be used. In the FLR format, the uniform record size
is shown from the detailed record description. In a block of several FLR
records, the successive records are adjacent to each other, with no intervening
control information. A FLR block comprised of records similar to that shown
above would appear as follows:

d d d d d d

d d d d d d first record

d d d d d d

d d d x x x

d d d d d d

d d d d d d second record

d d d d d d

d d d x x x

--
-- etc. ---- -

co:
_B-3 _

If the data records in a file may have different sizes(in computer
words), the VLR format is required. Typical circumstances requiring
VLR format are:

1. Two or more data records of unequal sizes (in computer
words) have been described for the file. In this case,
the size of each record type is fixed, but the record
size may vary from one record to the next.

2. The OCCURS ... DEPENDING option appears in the description
of one or more of the data records of the file. The
size of an OCCURS ... DEPENDING table varies from one
record to the next, causing the overall record size to
vary, even if only one data record type has been
specified for the file.

3. The file is to receive one or more reports generated
via Report Writer.

4. The file is to have System Standard format (see
System Standard Format, below) .

On the peripheral medium (and in the input/output buffers in memory),
each logical record in a VLR file is immediately preceded by a
"record control word". The record control word is supplied and
interpreted automatically by the input/output housekeeping routines,
and is not accessible to the object-program. The record control
word occupies one computer word, and has the following format:

bit
0 1718

er)
zero

2324
medium

code

2930
bit

35
report

code

The record control word is not considered to be a part of the logical
record, and therefore the record size subfield does not count the
control word itself.

The medium code is determined as follows:

2 FOR CARDS is specified in the SELECT sentence for
the file.

3 Either this record is a report line generated via
Report Writer, or FOR LISTING is specified in the
SELECT sentence, or both.

@j(E c@@® ~~[ffi~ ~~ ______________ c_OB_OL

-B-4-

0 The medium code is zero except in the circumstances just stated.

The report code is normally zero. Via Report Writer, however, the user may
control the contents of this subfield. He might wish to produce, say, four
reports on the same output file, for later printing. The report code
specification requires two steps:

1. In SPECIAL-NAMES, specific one-character code values must be
associated with mnemonic names.

SPECIAL-NAMES. 11 111 IS CODE-1,
II 2" Is co DE-2 ' "3 II Is co DE- 3 '
114" IS CODE-4.

The code values may be any letter or digit, expressed as a
non-numeric literal. The codes and mnemonic-names shown here
are illustrative only.

2. In each RD entry in the Report Section, the optional CODE clause
must be utilized when report codes are to be employed.

RD LEJ:x:;ER WITH CODE CODE-1 ..•.

RD COST-DISTRIBUTION WITH CODE CODE-2 ..•.

etc.

The report codes enable the media conversion program to select from its many
input records those which belong to the report currently being printed.

In a block of VLR records, only the record control word intervenes between
the successive recordso A VLR block beginning with a 12-character record
followed by a 60-character record would appear as follows:

binary 3 1 0

d

d

binary 5 l 0

d

d

d

d

d

binary number l 0

--
--
--.__

- B-5-

0 0

d

d

0 0

d

d

d

d

d

0 0

) RCW for first record

first record
(2 words)

RCW for second record

second record
(S words)

RCW for third record

etc.

Recording mode must be binary for any file utilizing VLR format.

Block Size

GE-625/635 COBOL files using magnetic tape, disc, or drum are normally
"blocked"; that is, each physical record on the peripheral medium is comp
rised of several logical records. Blocking enhances peripheral device per
formance in two ways: It saves peripheral operating time, and it saves space
on the peripheral medium.

On magnetic tape, both savings result from fewer inter-record gaps. To
process a given number of successive logical records, fewer starts and stops
are needed, since a single physical read or write accounts for several logical
records. Less time is spent traversing inter-record gaps. Since inter-record
gaps are less frequent, they occupy a smaller percentage of the total length of
the tape, so that a reel of tape can hold many more logical records. Very
significant savings in both time and tape space result from blocking; when the
file volume is large, savings are measured in numbers of reels.

On disc or drum, the time savings result primarily from fewer positioning
actions on the rotating medium. The space savings result from the fact that
actual physical record sizes on the magnetic media are fixed (at 320 words),
so part of the device's storage capacity is wasted whenever a shorter physical
record size is employed.

Block size is specified in COBOL via the BLOCK CONTAINS clause.
cases must be considered:

-B-6 -

Six possible

COBOL

OE_tional use of BLOCK CONTAINS FLR file VLR file

clause omitted case 1 case 4

BLOCK CONTAINS ... inte_g_er-3 RF.r.CJRlJS case 2 case 5

BLOCK CONTAINS ••• inte_g_er-3 CHARACTERS case 3 case 6

The following discussion presents GE-600 Series COBOL block size
conventions, in terms of the number of computer words per block.
The FLR formulas given here yield "net" block size, not reflecting
block serial numbers. If block serial numbers are applied, the
block size exceeds the "net" block size by one word7 the user must
allow for the extra word in planning his use of BLOCK CONTAINS.

FLR Files (cases 1-3)

1. BLOCK CONTAINS clause omitted--the overall block size
will not exceed 320 words. Net block size is (the
largest multiple of the record size not exceeding
320* words). If a FLR file has 30-word records, net
block size (with BLOCK CONTAINS omitted) would be
300 words.

*319 words if block serial numbers a:re applied.

2. BLOCK CONTAINS ••• integer-3 RECORDS--the net block size
is [integer-3 times the record size). In the example
given for case 1, the same result would be obtained
by BLOCK CONTAINS 10 RECORDS.

3. BLOCK CONTAINS ... integer-3 CHARACTERS--the block size
will be as close to (integer-3 T 6Jwords as possible.
The net block size is f the largest multiple of the
record size not exceeding (integer-3 ~ 6)). In the
example given for case 1, the same result would be
obtained by BLOCK CONTAINS 1800 CHARACTERS. Integer-3
should be exactly (6 times the overall record size in
words times the desired blocking factor), plus 6 if
block serial numbers are applied.

VLR files (cases 4-6)

4. BLOCK CONTAINS clause omitted--the maximum block size
is 320 words (including block serial number, if applied).
The actual block size will vary from one block to the
next. In each output block, successive records are

j~ c®@® ~[E[ffi ~ [€~ ---------------C......,.OB....,.O:
-B-7 -

space is insufficient to hold another record; the current block is then
physically written out and a new block is begun. The physical block ends
with the last word of the last record. If record sizes are 200 words and
70 words, respectively, a block might appear as follows:

binary 200 l 0

d

--d

binary 70 I 0

d -
d

0 0

d -
-

d

0 0

d

- d

RCW for first record

.} 200 words
of data

RCW for second record

}

70 words
of data

The actual block size in this example is thus [l + 200] + [1 + 70] = 272 words.

5. BLOCK CONTAINS ... integer-3 RECORDS--the maximum net block size is [(maximum
record size in words+ 1) times integer-3]. The increment of 1 to maximum
record size allows for record control words. This convention allows at least
integer-3 records per block; but the blocks are still built up as described
for case 4. If not all records in a block are of the maximum size, more than
integer-3 records may be included.

If the file has two record types, with sizes (in words) 5 and 75, respectively,
and BLOCK CONTAINS 2 RECORDS, maximum block size is 2 x [75 + l] = 152; the
block might, however contain as many as 25 of the small records.

6. BLOCK CONTAINS ... integer-3 CHARACTERS--the maximum block size is [the largest
integer not exceeding (integer-3 ; 6)], including block serial number, if
applied. Integer-3 should be a multiple of 6. Blocking conventions proceed
as described for case 4.

The block size must be large enough to contain the file's largest logical record.
When System Standard format is intended, the block size must not exceed 320 words,
including the block serial number (see below). The compiler actually allocates
sufficient buffer space to any System Standard format file to accommodate 320
word blocks. When System Standard format is not intended, however, magnetic tape
files may have any desired block size not exceeding 4095 words.

@~ c(W@@ ~[E[ffi ~ [E~ ______________ _....CO BO

-B-8 -

Block Serial Number

The GE-600 Series System Standard format requires block serial
numbers. In addition, block serial numbers may optionally be used
on files which do not employ System Standard format, provided
recording mode is binary.

When applied to a file, block serial numbers use the first computer
word of each physical block of data. This word has the following
format:

bit
0 1 18

bit
3

words
er)

The block serial number subfield contains the sequential number of
this physical block within the current reel of this file (the ·
current reel consideration pertains only to magnetic tape files).

The block size subfield contains the actual size of this block,
excluding the block serial number control word.itself.

Recording mode must be binary for any file to which block serial
numbers are applied.

COBOL procedural statements cannot access the block serial number
control word.

Specification and Handling of Labels

COBOL provides for the automatic handling of four types of labels -
beginning and ending, file and tape. The notes for the LABEL RECORD
clause in the File Description entry contain an indication of the
relative position of these labels on the tape(s) associated with a
file.

A label record is a logical record containing the labeling informati
about a tape or file. In order to have common recognition of these
records, fixed names have been assigned to the four standard label
record typesi

BEGINNING-TAPE-LABEL
BEGINNING-FILE-LABEL
ENDING-FILE-LABEL
ENDING-TAPE-LABEL

ill~
0

(ID@@ ~~[ffi~ ~~ ______________ c_m
_B-9 _

The standard GE-625/635 Series BEGINNING-TAPE-LABEL and BEGINNING-FILE-LABEL have
identical formats:

01 BEGINNING-TAPE-LABEL; SIZE 84 DISPLAY CHARACTERS.
02 LABEL-IDENTIFIER; PICTURE X(l2) VALUE

IS "GE 600 BTL".
02 INSTALLATION; PICTURE X(6).
02 REEL-SERIAL-NUMBER; PICTURE B9(5).
02 FILE-SERIAL-NUMBER; PICTURE B9(5).
02 REEL-NUMBER; PICTURE BB9999; RANGE

IS "0001'' THRU "9999".
02 DATE-WRITTEN; SIZE 6.

03 LABEL-YEAR; PICTURE B99.
03 LABEL-DAY; PICTURE 999; RANGE IS 001

THRU 365.
02 FILLER; PICTURE BBB.
02 RETENTION-PERIOD; PICTURE 999;

RANGE IS 001 THRU 999.
02 IDENTIFICATION; PICTURE X(l2).
02 FILLER; SIZE 24 AN CHARACTERS.
66 ID RENAMES IDENTIFICATION.

The items within beginning labels have the following significance:

1. INSTALLATION is constant information for each user installation.
This item is supplied automatically in output labels, but is ignored
by input label checking routines.

2. REEL-SERIAL-NUMBER is the serial number of the physical tape reel.
This number is also recorded externally on the reel itse·lf. This
item is supplied automatically in output labels.

3. FILE-SERIAL-NUMBER is the serial number of the first reel of the
file. On the first reel, therefore, the values of FILE-SERIAL
NUMBER and REEL-SERIAL-NUMBER are identical. This item is supplied
automatically in output labels. On input it is checked against an
expected value unless an object-time option to bypass the check is
exercised (see File Control Cards, below).

4. REEL-NUMBER is the number of the reel within the file. The first
reel is number 0001, the second is 0002, etc. This item is
automatically supplied in output labels and checked on input.

@~c(ID@@ ~~ffi1~~~ --------------_..C.-..OB.-OL
_B-lCL..

5. DATE-WRITTEN is the day-of-year on which the object
program has been executed to produce this file. This
item is automatically supplied in output labels, but
is ignored on input.

6. RETENTION-PERIOD is the number of days the file is to
be retained. This item is ignored on input, but is
processed in two distinct phases on each output file:

a. Every tape upon which a labeled output file
is to be written is expected to have a prior
label, which may be either a blank reel
label or a beginning label on which the
RETENTION-PERIOD has expired (current date
minus DATE-WRITTEN exceeds RETENTION-PERIOD).
These conditions are checked, and operator
action is requested if they are not met.
(See the GEFRC manual.)

b. If the user has specified a value for the
RETENTION-PERIOD via the FD VALUE clause,
this value is automatically supplied in the
new output label, which replaces the prior
beginning label on the output tape.

7. IDENTIFICATION is the literal name given to the file
for external identification. On input, this item is
automatically checked against the value specified
via the FD VALUE clause; on output, the value specified
in that clause is automatically supplied in the output
label. If the VALUE OF IDENTIFICATION is not specified,
these automatic procedures are bypassed.

The standard GE-600 Series ENDING-TAPE-LABEL and ENDING-FILE-LABEL
also have identical formats:

01 ENDING-TAPE-LABEL; SIZE 84.
02 SENTINEL; PICTURE X{6).

88 END-OF-TAPEi VALUE IS II EOR II

88 END-OF-FILE; VALUE IS II EOF II

02 BLOCK-COUNTi PICTURE 9(6).
02 FILLERi SIZE IS 72 AN CHARACTERS.

Except when RECORDING MODE IS BCD, BLOCK-COUNT has USAGE COMPUTATIONJ
For BCD files, it is DISPLAY, as is implicitly shown above. BLOCK
COUNT is automatically supplied in output labels, and is checked on
input labels against the computed block count.

The EOR value of SENTINEL causes an automatic tape swap on input,
while the EOF value signals end of file.

@~ affi)(Q)@ ~~[ffi~ ~~ --------------C,,__OB
-B-11-

Production of an ENDING-TAPE-LABEL on output is caused automatically
when an end-of-tape foil is encountered. It may also be caused by
a CLOSE REEL procedural statement. Production of this label is
automatically followed by a tape swap. A CLOSE statement (without
the REEL option) causes an ENDING-FILE-LABEL to be produced, along
with any other CLOSE actions specified.

The FILLER items at the end of each of the above formats may be
replaced by descriptions of additional data items to be included
in the label records. Such additional items, if present, must be
processed in USE procedures. Unless such items are included, the
standard label descriptions are implicitly described by the LABEL
RECORDS ARE STANDARD clause, and consequently standard labels need
not be described, even if their contents are referenced in USE
procedures.

When explicit label record descriptions are specified, the standard
contents must be described exactly as shown above, with respect to
data-names, PICTURES, and position. The overall size of each label
record must be 84 characters. Departures from these rules can lead
to unpredictable results. If label record descriptions are ex
plicitly given for a file, their descriptions must precede the
descriptions of logical data records. Standard label record names
mu.st never be mentioned in a DATA RECORD[s]clause.

VALUE clauses within label record descriptions do not ~esult in
automatic MOVEs of the specified literals tq output labels. All
standard items within standard labels are automatically handled
by the input/output routines1 an option is provided for specifying
the literals to be used with IDENTIFICATION and RETENTION-PERIOD
via the FD VALUE clause.

If non-standard label formats are to be used in ~ file, then LABEL
RECORDS ARE OMITTED must be specified, and the label records must
be described as data records. ·Explicit procedures must then account
for all label processing. Because of the complexities involved,
use of non-standard ~ecords is impractical, and should be avoided
if possible. (A compromise is sometimes possible--with USE BEFORE
procedures the programmer may be able to tr.ansform non-standard
input labels to standard format before the automatic checking. takes
place1 and with USE AFTER procedures he may be able to transform
standard output labels to non-standard format before they a.re
written to the peripheral medium.}

A file with standard labels has the following overall format:

1. Beginning of medium indicator (Load Point reflective
foil on magnetic tape)

@~ a(ID@@ ~~(ffiQ~~ ----------------c~oBir.¥.illOI
- B•l2-

2. BEGINNING-FILE-LABEL (or BEGINNING-TAPE-LABEL if this
is not the first reel of the file)

3. End-of-file mark (octal 17 character)

4. Data blocks

5. End-of-file mark (octal 17 character)

6. ENDING-FILE-LABEL (or ENDING-TAPE-LABEL if this is--not
the last reel of the file)

7. End-of-file mark (octal 17 character)

On a multiple reel file, every reel except the last has an ENDING
TAPE-LABEL, while the last has an ENDING-FILE-LABEL. Similarly,
every reel but the first has a BEGINNING-TAPE-LABEL, while the
first has a BEGINNING-FILE-LABEL.

If LABEL RECORDS ARE OMITTED on an output file, each output tape
is terminated with an end-of-file mark when the end-of-tape foil
is detected, and a tape swap occurs.

If LABEL RECORDS ARE OMITTED on an input file, a special action
occurs in GE-600 Series COBOL object-programs when an end-of-file
mark is detected, since the standard means of recognizing logical
end-of-file is not available. (Unless the file is a single-reel
file, the user must determine via explicit procedures which reel
terminates the file). When an end-of-file mark is detected, the
appropriate AT END procedure is executed. If a subsequent READ
occurs, a tape swap takes place and the first record of the next
reel is obtained: otherwise, if the reel just ended is the last
in the file, the file should be CLOSEd.

Label record contents may be accessed only by USE procedures, and
only one label record is available when USE procedures are executed
Standard label item data-names need never be qualified in procedura:
references.

Because label record formats are generally not the same for differe1
computer lines, a program with explicit label record descriptions
must usually be modified if it is to be compiled on any computer
line other than that for which it was originally programmed. Not
all fixed label item data-names can be used with all compilers, but
the fixed label record names themselves are usually available, in
addition to the following fixed data-names:

lli~ c (ID@@ ~~[ffi ~ ~~ _____ ...B ___

13

___________ c_oB~

IDENTIFICATION
REEL-NUMBER
DATE-WRITTEN
BLOCK-COUNT
SENTINEL
END-OF-TAPE
END-OF-FILE

Although any file may be described as having standard labels, label
records actually appear only on magnetic tape. The label checking
and building provisions described above therefore actually occur
only in processing magnetic tape files (including those intended
for media conversion). Similarly, label-type USE procedures are
executed only on magnetic ta~e files.

Recording Mode

The standard recording mode for GE-600 Series files is BINARY HIGH
DENSITY. This mode is required for files having System Standard
format. BINARY HIGH DENSITY is therefore the understood mode when
the optional RECORDING MODE clause is omitted.

Internally in the GE-600 Series computer systems, all data values
are represented by either binary numbers or by binary-coded internal
"characters". For example, the letter A is repres~nted internally
by the six-bit binary code 010001. Use of the term "binary": in
describing the recording mode reflects the fact that in that mode
the peripheral medium represents the data with.exactly the same
binary bit configuration as in the computer memory. Any data which
can be stored in memory can be written to and retrieved from a
peripheral in the same configuration via binary mode. This is not
true of BCD mode. BCD mode permits only binary coded charact.ers,
not binary numberst The character with internal binary code 001010,
whose graphic is" " (left bracket), cannot be represented in BCD
mode on magnetic tape.

GE-600 Series computer systems provide BCD mode for special
compatibility purposes. Of the 64 possible binary-coded characters,
a certain subset has wide usage for data processing applications in
many machine lines. Included are the letters, the space character,
the digits, and certain editing characters. These characters are
represented by different binary codes on various machine lines, but
their representation on BCD tape is standardized. For example, a
space or blank has binary code 110000 in some machines, but has
binary code 010000 in GE-600 Series computers. If a space character
is written to magnetic tape in BCD mode on such a "stranger" machine,
it will be read as a space character by the GE-600 Series computer.

@~c@@@ ~~[ffi~~~ _______________ co_BOI

- B-14-

Space character } Space character} Space character in
in 11 stranger 11 computer __.on BCD tape _. GE-600 Series ComputeI

110000 _____ .. _ 010000
--------~·- 010000

The BCD and LOW DENSITY options need never be specified except for
magnetic tape files, and are recommended only for compatibility
purposes on magnetic tape. If the actual peripheral device in use
is a printer or a card reader or punch, the input/output routines
in the object-program automatically use the density appropriate to
the device. If a file is intended for cards or printer via media
conversion (either input or output), the recording mode u~ilized
should be BINARY HIGH DENSITY.

Provided recording mode is BINARY, each record in the file may
contain an arbitrary mixture of binary (COMPUTATIONAL or COMPU
TATIONAL-n) and BCD or character-oriented information. Only BCD
information may appear in BCD mode.

Many options in GE-600 Series COBOL require BINARY recording mode
on the file affected:

1. System Standard format
2. VLR format
3. FOR CARDS or LISTING
4. Block serial numbers
5 . REPORT[S]
6. OCCURS ... DEPENDING
7. USAGE COMPUTATIONAL or COMPUTATIONAL-n
8. USAGE DISPLAY-2.

Multiple File Tapes

The MULTIPLE FILE option applies only to rnagne_tic tapes. It permit
two or more files to appear successively on the same physical reel
of tape.

For COBOL object-programs, all files of a multiple file tape must
actually be present. The tape is automatically positioned to the
proper point each time a file is OPENed (as either INPUT or OUTPUT)
Positioning is based on counting the number of logical files inter
vening between the desired file and the beginning of the tape, not
on a label search. A file in POSITION 5 thus must be preceded on
the tape by four prior files.

On an output tape, files must actually be written in the order in
which they are to.appear on the tape. For example, the POSITION 4

~~c®@@ ~~[ffi~~·~ --------------~CO~BO
B-1.5

file cannot be written before the POSITION 2 file. However, the
successive files may be produced by distinct object-programs. On
an input tape, files may be processed in any order.

Two files on a multiple file tape cannot be OPEN concurrently. When
an output file in a given POSITION has been OPENed, any files which
might have previously existed in later POSITIONS are unavailable.

All of the files on a multiple file tape must have the same recording
mode.

Either all of the files on a multiple file tape must be labeled, or
else none may be. Labeled and un-labeled files cannot be mixed on
such a tape.

When the files are labeled, the overall tape layout is as follows:

1. Beginning of tape indicator (Load Point reflective foil)

2. BEGINNING-FILE-LABEL

3. End-of-file mark

4. Data blocks

5. End-of-file mark

6. ENDING-FILE-LABEL

7. End-of-file mark

8. BEGINNING-FILE-LABEL

9. End-of-file mark

10. Data blocks

11. End-of-file mark

12. ENDING-FILE-LABEL

13. End-of-file mark
\

etc.

first
(logical)
file

second
(logical)

file

When the files are not labeled, the overall tape layout is as
follows:

, @~ o(ID@@ ~~[ffi~ ~~ ---------------..;;.;;CO.:;..;;;.:BOJ
-B-16-

1. Beginning of tape indicator

2. Data blocks } first file
3. End-of-file mark

4. Data blocks } second file
5. End-of-file mark

etc.

COBOL rules require that all of the files on a multiple file tape
must actually fit on one physical reel of tape.

The Peripheral Medium

GE-600 Series COBOL files can use drum, disc, magnetic tape, printez
card reader, or card punch. (Files on drum and disc must be serialJ
accessed via COBOL.}

Because their high speed is much better matched to the central
processor's ability, the preferred media for object-program access
are drum, disc, and magnetic tape. Although the printer, card
reader, and card punch can be accessed directly by object-programs,
it is preferable to employ media conversion, so that a file con
ceptually intended for cards or listing nevertheless uses a high
speed peripheral when the object-program is executed. Standard
media conversion programs provided as part of the GE-600 Series
software system are small programs, requiring a minimum amount of
memory and processor time; and they contain special provisions to
obtain the highest possible operating speeds from the low speed
peripherals.

In GE-600 Series COBOL, the source-program ASSIGNs each file to a
symbolic file-code, not to a specific peripheral device. The actual
device is specified separately via control cards when the object
program is scheduled for execution. A substantial degree of device
independence is possible1 provided the System Standard format is
used, a file can be assigned different storage media from one
execution of the object-program to the next. The following ex
aggerated example illustrates the flexibility a daily report file
can have:

1. On Monday, the file is assigned to an on-line printer.

2. On Tuesday, the file is assigned to mass storage, and a
subsequent media conversion to printer is scheduled.

~~a@@@ ~~[ffi~ ~~ -------B--17 ___________ co_BC

3. On Wednesday, the file is assigned to magnetic tape, and again
a subsequent media conversion is scheduled.

4o On Thursday, the file is assigned to SYSOUT, so that subsequent
media conversion is automatically scheduled.

If a file is intended for printer or a card device, the COBOL prograrmner
can think of the file largely in terms of the intended device, despite the
fact that a media conversion to or from tape or mass storage will probably
be desired. He should specify FOR CARDS or LISTING in the SELECT sentence;
and he should employ the System Standard format.

Certain data description options are not suitable for card or printer files;
examples are COMPUTATIONAL (or COMPUTATIONAL-n) or DISPLAY-2 USAGES.

Use of standard label records is the preferred practice for all magnetic
tape files, including those intended for cards or listing.

File Control Cards

Each COBOL file must be mentioned in a SELECT sentence in the FILE-CONTROL
paragraph. In the SELECT sentence the file is assigned to a two-character
symbolic file-code. When the object-program is scheduled for execution,
each file-code must be associated with a peripheral device via a GECOS file
control card; there will thus be one such card for each file selected except
for optional files. (Sort-files are excluded from this rule.)

The file control cards are fully described in the GECOS manual. Those which
apply to COBOL files are:

$ DATA
$ SYS OUT
$ DISC
$ DRUM
$ PRINT
$ TAPE
$ READ
$ PUNCH

When used with' COBOL object-programs, each file control card must contain
the file code to which the file is assigned. All cards other than $ DATA
and $ SYSOUT require additional parameters to provide further information
about the peripheral medium and the mode of processing.

@~ a(ID(Q)@ ~~ 000~~-------------.._.;;C;.;.;OB~OL
B-18

Files intended for $DATA and $SYSOUT must have System Standard
format. Other files entering or leaving the system via bulk media
conversion normally utilize magnetic tape as the intermediate
medium, and consequently require $TAPE cards. Any file with block
size exceeding 320 words must utilize magnetic tape.

Each file must of course be processed in a manner consistent with
the peripheral device's nature. Those intended for $SYSOUT, $PRINT
or $PUNCH must be output; those intended for $DATA or $READ must be
input. Provided $TAPE or $DISC or $DRUM is used, a file may be
processed as either input or output, and, after being closed, may
be re-opened as either input or output, regardless how it was
previously processed. This capability is particularly useful when
a "scratch" file is needed within a program--the file may be
processed as output, then reOPENed and processed as input within
the same program.

When a $TAPE control card is used, it must contain the FILE-SERIAL
NUMBER (see Specification and Handling of Labels, above). Sometime
the value of this label item cannot be known in advance. In such a
case, the special value 99999 can be punched; this value causes the
automatic FILE-SERIAL-NUMBER check to be bypassed.

System Standard Format

To permit a substantial degree of peripheral device independence,
a System Standard format has been defined for GE-600 Series data
files. A file with the System Standard format has the following
properties:

1. Data blocks may vary in length up to but not over 320
words, including block serial numbers.

2. Block serial numbers are applied.

3. Recording mode is binary high density.

4. VLR format is applied.

5. Label records are standard.

For convenience, GE-600 Series COBOL permits the user to specify
APPLY SYSTEM STANDARD FORMAT in the I-0-CONTROL paragraph. When
this APPLY clause is used: the BLOCK CONTAINS and RECORDING MODE
clauses may be omitted, and it is unnecessary to APPLY VLR or
BLOCK SERIAL. The LABEL RECORDS clause, however, must appear in
every FD entry in the FILE SECTION, according to COBOL rules.

:~~a@@@ ~~mi~~~ ------B--1-9 __________ c_OBC

As an alternative to specifying APPLY SYSTEM STANDARD, the user may obtain the
System Standard format by an appropriate combination of other descriptive clauses.
He would still omit BLOCK CONTAINS and RECORDING MODE, but must APPLY BLOCK
SERIAL. If the file is such that FLR format would normally be applied automatic
ally, System Standard format nevertheless requires VLR, which may be specified
explicity via APPLY VLR (see Logical Record Format, which appears earlier in this
paper).

Magnetic tape files may depart in any respect from the System Standard format.
For example, a large master file which is definitely planned for magnetic tape
might employ block sizes larger than 320 words. A block size 3 times this large
(960 words), for example, would increase a tape's capacity by about 20%.

System Standard format must be used when device independence is intended.
System Standard format must be used for all serially accessed files in mass
storage. Particularly important for serial files in mass storage are the 320
word block limit, block serial numbers, and VLR format. (Binary high density
is the only applicable recording mode, and label records--although conceptually
standard--do not actually appear in mass storage.) System Standard format must
be used for files intended for SYSOUT.

An additional significance of System Standard format is that the "standard"
properties are generally assumed unless contrary options are specified. In
most GE-625/635 Series software, the user may omit the relevant file parameters in
the description of a System Standard file. In GE-625/635 Series COBOL, for
example, the standard block size and recording mode are assumed when the BLOCK
CONTAINS and RECORDING MODE clauses are omitted. System Standard format thus
provides a convenient shorthand method for describing GE-625/635 Series files.

Summary of File Property Relationships

The following charts summarize the relationships of the various options for
COBOL files.

-B-20-

COBOL

specified
property

FOR CARDS

conflicts with

FOR LISTING
BLOCK SERIAL
SYSTEM STANDARD
VLR
MULTIPLE FILE
RECORDING MODE omitted
BINARY HIGH DENSITY
BINARY LOW DENSITY
BCD (either density)
BLOCK clause omitted

x
x

x
xx xx

x xx
x
x

x x x
x

x x
x x

x x x
x x x x x x x

x x
BLOCK ... RECORDS x x * * *
BLOCK ... CHARACTERS x x
LABEL ..• STANDARD x
LABEL •.• OMITTED x x x
VALUE OF label item x
single DATA RECORD x
several]ATA RECORDS.size x * x
REPORT[S x x *
REPORT (sJ and DATA CiCORD (SJ x x *
USAGE not DISPLA.Y -1] x x x
OCCURS ••. DEPENDING x x x *

* Use of the CHARACTERS option is preferred when record sizes
are not uniform.

xx

x x
x x

x x

*

x
x

~~ c®@® ~~[ffi ~ ~~ ---------------__.C_OBC
-s-21-

" rll
'"O

>c ""' 0 QJ
E-t ~ '"O
H 0
Cl) 0 QJ u
~ '"O N '"O

""'
('I"') 0 § '° tU . N u

~ '"O .._, •r-f <
es ~ § '"O ~ H tU QJ ~ ~ H .µ N •r-f <

µ:i III Cl) •r-1 '"O
Cl) Cl)

~ ""'
Cl)

~ s QJ Cl)

~ QJ ,.!:I:: .µ µ:i

property u < .µ 0 '"O i:: u
0 ~ ~ z rll 0

""'
•r-1 ~ H s H H ~ r-1 "' ""' r:x:i ~ r:x:i U) r:x:i u r:i.. r:i..

APPLY PROCESS AREA x
FOR CARDS x x x x
FOR LISTING x x x x
BLOCK SERIAL x
SYSTEM STANDARD x x
VLR x
MULTIPLE FILE
RECORDING MODE omitted x
BINARY HIGH DENSITY x
BINARY LOW DENSITY
BCD (either density)
BLOCK clause omitted x
BLOCK •• -. RECORDS
BLOCK ••• CHARACTERS
LABEL.o.STANDARD
LABEL ••• OMITTED
VALUE OF label item
SAME RECORD AREA x
single DATA RECORD *
several DATA RECORDS, sizes :f x
REPORT[SJ x x
REPORT[SJ and DATA RECORD[SJ x x x
USAGE not DISPLA.Y[-1]
OCCURS.o.DEPENDING x
USAGE COMPUTATIONAL[-n] requiring x

double-word precision

* Implied in the absence of other overriding properties.

@~a(ID@@ ~~ooa~~-------------~C~OB~OL

B-22

Cll
't1
J..f

!
~

0
N
M

...:i >t VI < (1) E-t <
H 'O H E-t (1)
~ 0 Cll Cll N

requires ~ El z . ·r-4
Cll ~ Cll

>t ~ .
~ ~ ...:i ~
(.) ~ ::I:: ~ (.)

property 0 ~ ~ t!> tll 0
...:i ...:i H H ::s ...:i
tll ~ :> r:Q ::I:: r:Q

FOR CARDS x x
FOR LISTING x x
BLOCK SERIAL x
SYSTEM STANDARD x x x x x
VLR x
MULTIPLE FILE
RECORDING MODE omitted
BINARY HIGH DENSITY
BI.NARY LOW DENSITY
BCD (either density) x
BLOCK clause omitted
BLOCK ... RECORDS
BLOCK ... CHARACTERS
LABEL ... STANDARD
LABEL .•. OMITTED
VALUE OF label item x
single DATA RECORD
several DATA RECORDS, sizes*" x x
REPORT (s] x x
REPORT (s) and DATA RECORD [s'] x x
USAGE not DISPLAY(-1 x
OCCURS ..• DEPENDING x x

COBO I
~~ a(ID@@ ~~[ffi~ ~~ ------B--2-3-----------

INTERNAL FORMAT CONSIDERATIONS

Methods of internal data representation differ considerably between
various computer lines. A given application, however, can usually
be accomplished by the machines in most computer lines. COBOL data
descriptions are therefore expressed in terms of a "standard data
format", which is oriented to the problem or application rather than
to a particular machine line.

Each item is described as if it consists of a string of contiguous
data characters. Each character, whether it is a letter, a decimal
digit, or a punctuation or editing character, conceptually occupies
a single position. The "size" of an item is the number of conceptual
characters comprising the item. Within any succession of related
items, each conceptually follows immediately after its predecessor.
(A logical record is the largest consecutive set of related infor-
mation.)

The standard data format is closely related to the internal data
representation employed by GE-600 Series COBOL object-programs.
Within the computer system, data storage is organized into 36-bit
words. Each word is subdivided into six 6-bit character positions.
Every character position can store the binary-coded representation
of one data character.

When USAGE is DISPLAY or DISPLAY-1, an elementary item's conceptual
size (in standard data format characters) is the same as the number
of character positions the item occupies in storage.

The 6-bit binary coding scheme allows 64 combinations of bit values,
so that 64 characters may be represented by unique binary codes. A
specific graphic symbol has been assigned to each of the 64 unique
binary codes, yielding the standard GE-600 Series character set.
When the problem requires the conceptual value of a character to be,
say, dollar sign ($), the actual representation of that character
within the computer system is the standard binary code for dollar
sign, which is 101011. The relationship of standard graphic symbols
with conceptual character values is made concrete by the printer,
which prints the standard graphic for each binary coded internal
character. (Certain codes reserved for printer control are excluded.)

For DISPLAY and DISPLAY-1 items, the standard binary code is used
within the computer system to represent each data character, except
in the case of SIGNED NUMERIC items (including any DISPLA.Y items
whose PICTUREs contain the S symbol). If the value of such an item
is non-negative, the data characters employ the standard binary codes.
If the value is negative, the sign is expressed by a special variation

@~ 0 ®@@ ~[E[ffi ~ ~~ ---------------C_OB_OI
-B-24-

in the binary code of the least significant digit; specifically, all bits
except the 26 bit have the usual values, but the 2s bit is set to 1. (This
convention corresponds to the punched card convention of no overpunch on
non-negative values, with an "eleven" overpunch over the low-order digit
of a negative value.)

The only respect in which the internal representation of DISPLAY-2 items
differs from that of DISPLAY items is that a special 6-bit binary code is
used for each DISPLAY-2 character, not the standard code.

Three special COBOL features cause departures from the normal close relation
ship of standard data format and actual internal data representation:

1. SYNCHRONIZED, which can only be specified for an elementary item,
usually results in fill characters preceding and/or following the
item. Thus the internal formats of groups containing a SYNCHRONIZED
item are affected, although the item itself is not af.fectedo
SYNCHRONIZED is the means in COBOL for relating elementary items
to computer words, to enhance processing efficiency.

2. COMPUTATIONAL (or COMPUTATIONAL-n} causes any item with such a
USAGE to be represented as a 1-word or 2-word binary numbero A
COMPUTATIONAL[-n] item is oriented to computer words, so that fill
characters will intervene unless the item just preceding a
COMPUTATIONAL[-n] item terminates in the last character position
of the word. Furthermore, a two-word ("double-precision"}
COMPUTATIONAL[-n] item must begin an even number of words from
the first word of the record which contains it, so that an
additional full word of fill characters may sometimes be supplied by
the compiler to meet this requiremento

3. OCCURSoooDEPENDING causes a special format to be used for storing
affected files on peripheral media.

The internal format of each overall data record may differ from the conceptual
format in certain respects. Each record actually occupies an integral number
of computer words, so fill characters may be required in the last position of
the last word. Furthermore, there may be other character fill within the
internal format of a record as well as word filler if required by "2." above.

@~a@@@ ~~[ffi~~~-----------------co.-.-.BO.....,_L

B-25

A given record description results in the same internal format, whether the
record appears in the File, Working-Storage, or Constant Section.

External Versus Internal .Formats

In COBOL, the data representation within the computer memory is called the
"internal format", while the data representation on peripheral media is
called the "external format".

A special external format is used for records in a file when OCCURS ••• DE
PENDING has been specified in the record descriptions. Otherwise, the
external format on disc, drum, or a magnetic tape recorded in binary mode
is exactly the same as the internal format.

On BCD tape, the formats are the same except that the 6-bit binary codes
representing the data characters are generally different from the codes
used in memory.

On printer listings, the conceptual formats are of course realized in the
printed graphics, and external and internal formats are equivalent except
for two differences--each line must terminate with non-printing slew-control
characters, and horizontal tabulations of up to 120 character positions can
be sunnnarized in a single pair of characters in memory.

External and internal formats are equivalent for punched cards.

Result of SYNCHRONIZED Clause

A SYNCHRONIZED item monopolizes the smallest number of consecutive whole
words that can contain it.

SYNCHRONIZED RIGHT causes the item to be oriented in such a way that its
last character occupies the last position of the final word. Unless the
item's size is a multiple of six characters, fill characters precede the
first data character of the item in the unused positions of the first word,
as the following examples illustrate:

03

03

03

Ite~'s Description

A; SIZE 2;
SYNCHRONIZED RIGHTo

B; SIZE 6;
SYNCHRONIZED RIGHTo

C; SIZE 7;
SYNCHRONIZED RIGHT.

Resulting Orientation

B,B,B,B,B,B

(Internal
And
External)

@~a®@® ~~000~~--------------__.;;;.,CO~BO;;;;..=.L

B-26

SYNCHRONIZED LEFT causes the item to be oriented in such a way tha1
its first character occupies the first position of the initial wore
Unless the item's size is a multiple of six characters, fill charac
ters follow the last data character of the item in the unused po
sitions of the last word, as the following examples illustrate:

Item's Descri tion Resulting Orientation

03 D; SIZE 2; ~, nl+-f i]-1,-+I
SYNCHRONIZED LEFT.

IE 1E 8 E 1 E 1E.!rJ
(Internal

03 E; SIZE 61 And
SYNCHRONIZED LEFT. External)

03 F; SIZE 7; IF~ FF~ SYNCHRONIZED LEFT. F. fi~l

Because SYNCHRONIZED items never share the words they occupy with
other items, fill characters may be required in the word preceding
the first word of a SYNCHRONIZED item, as the following example
illustrates:

Item's Descri tion Resultin Orientation

01 G. H
02 H; SIZE 8. H
02 I; SIZE 1. ... (Internal
02 J; SIZE 3; And

SYNCHRONIZED RIGHT. External)
02 K; SIZE 4.
02 L; SIZE 1..
02 MJ SIZE 6;

SYNCHRONIZED LEFT.

It is very important to understand that the fill characters just
discussed are implied by the combination of the item's size and
the SYNCHRONIZED clause. The fill character positions cannot be
described (except in a roundabout way via REDEFINES) .. An attempt
to specify such fill characters via FILLER will lead to undesired
consequences, as the following example illustrates&

Item's Description ~~~~~~~~----~~~-+-~_R_esulting Orientation

01 P.
02 Q; SIZE 8.
02 R; SIZE 1.
02 FILLER; SIZE
02 S; SIZE 3;

SYNCHRONIZED

6.

RIGHT.

(Internal
And
External)

HE a®@@ ~~00~~~ ________________ c_oB_OI

-B-27-

To minimize the amount of leading fill resulting from SYNCHRONIZED items,
grouping such items together within a record description is reconnnended
(provided circumstances permit such an arrangement), rather than scattering
SYNCHRONIZED items about among non-SYNCHRONIZED items.

The fill characters resulting from SYNCHRONIZED appear in both the internal
and external record formats.

Result of COMPUTATIONAL Usages

A special type of word-synchronization is applied to COMPUTATIONAL[-n] items.
As for DISPLAY[-n] items which are SYNCHRONIZED, each COMPUTATIONAL[-n] item
monopolizes the computer word or words which contain it, so that fill charac
ters may be required to complete the word preceding a COMPUTATIONAL[-n] item.
Unlike DISPLAY[-n] items, however, COMPITrATIONAL[-n] items fully occupy the
word or words which contain them.

COMPUTATIONAL[-n] items occupying one word are:

1. COMPUTATIONAL items in one of the following categories:

Number of
Integral Digits

1-8
0-5
0-3
0

Number Of
Fractional Digits

0
1-3
4-5
6-8

2. COMPUTATIONAL-I or COMPUTATIONAL-2 items with no more than 8
digits specified in their descriptions.

3. COMPUTATIONAL-3 items.

COMPUTATIONAL[-n] items occupying two words are:

1. COMPUTATIONAL items not in one of the above categories.

2. COMPUTATIONAL-! or COMPUTATIONAL-2 items with more than 8 digits
specified in their descriptiono

A one-word COMPUTATIONAL[-n] item may occupy any word of a record. A two
word COMPUTATIONAL[-n] item, however, must begin an even number of words
from the beginning of the record which contains it. A word of fill may
be supplied for such a two-word item to enforce this convention, as the
following example illustrates.

@ ~ a(ID@@ ®~rm~~ ®--------------...;;;C..;.,;;OB~OL
B-28

01
02

02

Item's Description

Ao
B; PICTURE 99V99;
COMPUTATIONAL.
C; PICTURE 9{10)V99;
COMPUTATIONAL.

Resulting Orientation

B _.
~ fill
c~

c~

•B
•

•C
•c

(Internal
And
External)

Because of the convention just described, it is reconnnended that two-word
COMPUTATIONAL[-n] items be grouped together within a record description when
circumstances permit, and that all COMPUTATIONAL[-n] items be grouped with
SYNCHRONIZED items.

COMPUTATIONAL[-n] items are not stored in a manner related to the character
position subdivisions of a computer word. Instead, such items are stored as
follows:

1. COMPUTATIONAL and COMPUTATIONAL-2 items utilize the GE-600 Series
binary floating point format.

2. COMPUTATIONAL-1 items are stored as one-word or two-word binary
integers.

3. COMPUTATIONAL-3 items are stored as one-word fixed point binary
integer numbers.

Since a COMPUTATIONAL[-n] item as stored has no character orientation, it does
not make sense to attempt to manipulate it as if it were comprised of characters
Thus, the storage area may be redefined for some distinct purpose, but not, for
example, to give separate access to the integral and fractional parts of a
COMPUTATIONAL item. For similar reasons, a group MOVE involving COMPUTATIONAL[
items should normally entail only sending and receiving groups with similar
descriptions; MOVE CORRESPONDING may be used otherwise. COBOL rules do not
require adherence to the suggestions given in this paragraph, but it is the
user's responsibility to assure that his application of a group MOVE or REDEFINE
makes senseo (The compiler produces warning connnents to draw attention to
certain types of suspicious cases.)

Result Of OCCURS.o.DEPENDING

In GE-600 Series COBOL, a special external format is utilized for

@~a(ID@@ ®~000~®---------------c_oB_OL
B-29

files in which the OCCURS ... DEPENDING option is used in the record
description entries. Each table described by OCCURS •.• DEPENDING
is considered to vary in length (that is, in the number of consec
utive significant items the table contains). In its internal for
mat, such a table is allocated a storage area of size sufficient
~o hold the maximum number of occurrences. The storage area inter
vening between the last significant table item and the end of the
table is called the "table residue". A variable-length table thus
presents an opportunity for suppression of the table residue in an
output record at WRITE time; and the record must be returned to the
standard internal format at READ time.

If OCCURS ... DEPENDING appears in any. record description of a file,
the compiler automatically applies a PROCESS AREA to the file. Each
record appears in the PROCESS AREA in the standard internal format
whenever the object-program has access to it. WRITE causes each
suppression opportunity to be evaluated; if two or more whole words
can be suppressed, .the opportunity is accepted, while otherwise it
is refused. Residue suppression thus proceeds on a multiple-whole
word basis. Each residue area suppressed is replaced by a control
word in the external format. In addition, every record in such a
file, whether or not it contains a variable-length table, begins
with a special control word in its external format.

Consider a data record described as follows:

01 SAMPLE-RECORD.
02 FIXED-PORTION.

03 MISCELLANEOUS; PICTURE X(20).
03 ENTRY-COUNT; SIZE 2 COMPUTATIONAL-!.
03 OTHER-DATA; PICTURE X(l6).

02 VARIABLE-LENGTH-TABLE.
03 ENTRY; PICTURE X(4); OCCURS 1 TO

15 TIMES DEPENDING ON
ENTRY COUNT.

02 MORE-FIXED; PICTURE X(20).

@~ c (ID@@ ~~[ffi ~ ~~ ______________ co_BO.-,;..L

-B-30-

The following illustration shows the relationship of the internal
and external formats of SAMPLE-RECORD when the value of ENTRY-COUN~
happens to be seven:

Internal Format
for

SAMPLE-RECORD

MISCELLANEOUS

implied fill

ENTRY-COUNT:7

VLR
control
word

residue Sll£Pre~sed
OTHER-DATA ~atica1ty--~."""

,___ _ __, RITE time "'* too------
ENTRY (1)
through
ENTRY (7)

MORE-FIXED

(hatched area
represents
table residue)

internal format
restored ,.,,... ______ ______...,,.,,..

automatically
at READ time

External Format

previous
records

19

cuntrol word

0

MISCELLANEOUS

J

i. llirl fill

ENTRY-COUNT:7

OTHER-DATA

ENTRY (1)
through
ENTRY (7)

control word

MORE-FIXED

Subsequent

COBC

FILE STORAGE AREAS

In the object-program, a "buffer area" must be available for each file.
The buffer area size exceeds the maximum overall block size by one word.
Two buffers are automatically assigned to each file selected in the
source-program.

Just one buffer area may be allocated to any file via the RESERVE NO
ALTERNATE AREA option in the SELECT sentence. If only a single buffer
is employed, input or output operations for the file cannot proceed
concurrently with execution of the object-program. During input/output
operations on such a file, control is therefore passed to the operating
system, to allow other active object-programs to utilize the central
processor. If an alternate buffer is reserved, however, the object
program can continue processing data in the current buffer concurrently
with the execution of input/output operations involving the alternate buffer.
Alternating buffers can therefore contribute to object-program efficiency,
particularly on large-volume files. Decisions as to which files to buffer
and which not should be based upon such considerations as file volume and
effective use of memory within a multi-programming environment.

GE-600 Series COBOL provides a special optional file processing method
in the form of the PROCESS AREA option. A PROCESS AREA is a memory
area outside the buffers, large enough to hold the file's largest logical
recordo When a file using a PROCESS AREA is input, each logical record
is implicitly moved to the PROCESS AREA from the input buffer when the
READ statement is executed, and all other procedures reference the record
in the PROCESS AREA. When such a file is output, each logical record is
implicitly moved from the PROCESS AREA to the output buffer when the
WRITE statement is executed, and all other procedures similarly reference
the record in the PROCESS AREAo

A PROCESS AREA may be applied whether one or two buffer areas are allocat
edo Several source-language options cause the compiler to apply a PROCESS
AREA:

1. APPLY PROCESS AREA
2o FOR LISTING/FOR CARDS
3. OCCURS.o.DEPENDING
4o SAME RECORD AREA (see below)
5. Both REPORT[SJ and DATA RECORD[SJ (the data records

utilize the PROCESS AREA).
6. Double precision COMPUTATIONAL[-n] items in record
7. Sort files

@~a(ID@@ ~~000~~-------------....;;C;.;;.;;,OB,;;.;;.OL

B-32

When no PROCESS AREA is applied (implicitly or explicitly), the
current data record is processed right in the buffer. Since record
origins in the buffer generally differ from one record to the next,
the record contents must be addressed relatively on the basis of
the current record origin. Extra housekeeping is involved in
processing such a record, because of the relative addressing requirec
With a PROCESS AREA applied, all record contents will occur in fixed
positions, so that relative addressing and consequent extra overhead
are not involved. For a file with heavy processing activity, saving~

in both time and space can result from applying a PROCESS AREA. It
should be noted, however, that WRITE FROM and READ INTO statements
are not efficient when applied with a PROCESS AREA.

PROCESS AREA also leads to more effective blocking on VLR output
files. When no PROCESS AREA is applied to such a file, each output
block is physically written as soon as the remaining buffer space is
insufficient to hold the largest record of the file; this means that
actual block sizes can run substantially smaller than the file's
maximum block size. When PROCESS AREA is applied, however, the
output block is physically written only when the remaining area is
too small for the current logical record. With PROCESS AREA,
therefore, one or more extra records can often be fit into an output
block.

A buffer area, or a pair of alternating buffer areas, can be shared
by two or more files via the SAME AREA clause. When this clause has
been specified, the compiler evaluates the maximum buffer requirement
of all of the files, and allocates adequate buffers to bhe first file
to handle any of the others. If only one buffer is to be used for
each file, a single buffer will be allocated; if two buffers are to
be used for any of the files, two buffers will be allocated, but the
single- or double-buffering for each file is still determined by the
individual file's RESERVE option.

SAME AREA is not a recommended method for avoiding moves on a master
file being updated by the object-program. Indeed, the result of
using SAME AREA on files which are to be OPEN concurrently may be
unpredictable unless procedures are carefully planned to avoid
conflicts.

A PROCESS AREA may be shared by two or more files via the SAME RECORD
AREA option. When this option is specified, the compiler allocates
to the first file a PROCESS AREA adequate in size for the largest
lo·5 ical record of all of the fil~s involved, and causes all of the
files to share this PROCESS AREA. (The PROCESS AREA is applied in
this case whether or not it has been explicitly specified.) SAME
RECORD AREA does not result in buffer sharing. SAME RECORD AREA is
recommended for minimizing moves on a master file being updated,
particularly if OCCURS ... DEPENDING is also used. When SAME RECORD

~c(W@(ID ~~[ffi~~~ _______________ co_BO_L

-B-33-

AREA is used for this purpose, procedures must make specia~ ar
rangements to avoid deleting input records when tns~rtions are
required.

A file may have one or two buffer areas in any obje,ct-program,
regardless how many it has in other object-programs. Similarly,
a file may participate in SAME AREA or SAME RECORD ~EA sharing in
an object-program without regard to whether or not ib is involved
in these options in other object-programs. Except when the file
description implies a PROCESS AREA, this option may al~o be exercised
or omitted independently in each object-program.

Provided the rules for segmentation are followed, the compiler arran9es
communications so that a single set of storage areas is allocated to
each file in a segmented program, and each subprogram references th~
same storage area at execution time.

@~c(ID@@ ~~00~~~ ______________ cm

APPENDIX C
PROCESSING NONLABELED MULTIPLE REEL FILES

According to the official COBOL rules, a file must not be READ after
an AT END return unless it has been CLOSED and reOPENed. It is not
possible for the compiler itself to detect violations of this rule,
so no such check is attempted. In fact, a special GEFRC feature
makes use of READ after AT END quite important in certain circumstances.

Consider a multiple reel file on which LABEL RECORDS ARE OMITTED.
When the object-program is executed, GEFRC will have no way to tell
from the tape contents which reel is the last. However, the user
can easily provide this function via COBOL procedures. He must first
arrange a special means of finding out how many reels to expect; a
suitable approach would be to ACCEPT from GEIN a parameter giving
the reel-count. The following example then illustrates how to achieve
proper tape swapping and "true" end-of-file detection:

A. READ file-name AT END GO TO EOF-CHECK.

EOF-CHECK. SUBTRACT 1 FROM REEL-COUNT;
ZERO GO TO A; ELSE CLOSE file-name
ROUTINE.

IF REEL-COUNT IS NOT
THEN GO TO ENDING-

When GEFRC reaches the physical end-of-file mark at the end of each
reel of the file it will take the AT END return for the active READ.
Execution of another READ then causes a tape swap, and obtains the
first data record from the next reel. Execution of the CLOSE, on
the other hand, entails standard nonlabeled file closeout conventions.

A nonlabeled tape is often terminated simply with a physical end-of
file mark. For a multiple reel file which is so constructed, the
technique outlined above is the only practical way to accomplish
tape swappingo If, however, each reel concluded with a special data
record whose value signalled end-of-reel, tape swapping could be
accomplished via the COBOL CLOSE REEL feature, used in connection
with suitable IF tests.

The user should understand that tape swapping via READ after AT END
is a special GE-625/635 Series feature provided by GEFRC, and may not
available on other computer lines.

~~c(ID@@ ~~[ffi~~~ _______________ c_OB<

-c-1-

APPENDIX D
PROCESSING STRANGER FILES VIA COBOL

INTRODUCTION

GE-600-Line software provides the general capability to process stranger
files in COBOL object-programs. A stranger file is one which for any
reason cannot be fully described to COBOL; possible reasons are:

1. The character set of the data as stored in the peripheral
medium does not coincide with character sets known to
GE-625/635 COBOL.

2. Data records are not arranged to occupy multiples of six
characters.

3. Binary fixed- or floating-point numbers were developed on a
computer system using signed-magnitude arithmetic or different
exponent sizes from GE-625/635 requirements.

4. Variable length records do not have record control words in
the format required by GEFRC; ~' variable length records
appear on a BCD-mode tape.

5. Bit-coded parameters exist in the file.

If a file has any of the first four properties listed above, it is
undoubtedly produced by or for a computer line other than the GE-625/635
computers. Files with any of these properties, or many others, are
accessible to COBOL object-programs via the techniques described in this
appendix.

Objectives

For the purposes of this appendix, it is assumed that "pure" COBOL is
to be emphasized; the ENTER verb is not to be the answer to stranger
file processing.

The techniques described must permit the COBOL-oriented applied progranuner
to proceed as if the stranger file were an ordinary GE-625/635 COBOL data
file.

Furthermore, the techniques must not entail user modifications to the
COBOL compiler or to GEFRCo

When stranger hardware, such as an off-line printer or a satellite
computer is to be an integrated part of an installation's machine
complement, the stranger file techniques must permit all object-programs
to utilize the stranger hardware automatically, without human concern or
intervention on a program-by-program basis.

11 ~ 0@@® ~~ffii~~~ ---------------C_...,OB.....,.01
-D-1-

TARGET FORMATS

The objectives imply that data formats seen by any COBOL object
prograrn must be standard GE-625/635 COBOL data formats. Format
translation must therefore occur between COBOL object-programs
and hardware reads and writes. The following requirements must
be satisfied:

1. On an input file, the COBOL object-program will request
one record at a time, using .GAGET and the standard calling
sequences. When control is ·returned to the object-program,
the record must be where the object-program expects to find
it, in the format expected by the object-program, regardless
how the record appeared in the stranger file.

2. On an output file, the COBOL object-program will present
one record at a time for output, using .GAPUT or .GAWTR
(and, if necessary, .GAPTS) with a standard calling
sequence. The record is in the GE-625/635 COBOL format
understood by the object-program and in a standard place,
regardless of how it is to appear in the stranger output
file. When control is returned to the object-program,
the record must have been so processed that the object
program is no longer concerned with it.

With these requirements understood, techniques for stranger file
processing via COBOL can be discussed.

FORMAT TRANSLATION PROVISIONS

Alternate Entry Symbols for GEFRC Modules

GEFRC provides dual global symbols (SYMDEF's) for many key entry
points:

Standard Symbol

OPEN
CLOSE
GET
PUT
PUTSZ
WT REC
IOEDIT
PRINT
PUNCH

Alternate Symbol

.GAOPE

.GACLS

.GAGET

.GAPUT

.GAPTS

.GAWTR

.GAEDI

.GAP RN

.GAPNC

The two symbols for each entry point are entirely equivalent. By
convention, however, COBOL object-programs will utilize the alternate
symbols (pref ix ".G") rather than the standard symbols.

@~a(ID@@ ~~[ffi~~~ -------------~CO~BO
-D-2-

Plug-in-Points

Each alternate symbol utilized by a COBOL object-program defines
a point at which a special subroutine may be inserted or "plugged
in" between the COBOL object-program and the GEFRC module which
the object-program "thinks" it is calling.
accomplished by using the appropriate GEFRC
the entry symbol or the special subroutine.
is present, it automatically intercepts all
to the GEFRC entry point in question.

This plug-in is
alternate symbol as
When such a subroutine

object-program calls

For example, consider the GET function of GEFRC, used for COBOL READ
statements. The object-time execution sequence may be readily
diagra1I111ed for various circumstances:

1. Normally, no special subroutine is present.

Object-program
------~ ... READ statement

GET function
of GEFRC

2. A simple format conversion subroutine supplied by the
user might require GET.

Object-program
-----191 READ statement 1-------11•

Special .GAGET
subroutine
supplied by

the user

~o(ID@@ ~~[ffiQ ~~ ______________ __..c.......,oB 01

-D -3-

3. A complicated stranger file format might require the
special .GAGET subroutine to use GEFRC services other
than GET; when the object-program "thinks" it is
calling GET via the alternate symbol .GAGET it does
not engage GET at all.

--------~•••Object-program 1--------11•

READ statement

Special .GAGET
subroutine

supplied by
'the user

Utilization of Plug-in Points

READ function
of GEFRC used
instead of GET

The special plug-in subroutine is developed via GMAP as a relocatable
binary subroutine, having as its entry symbol the appropriate GEFRC
alternate entry symbol.

At object-time, GELOAD will link the object-program to the special
subroutine instead of the GEFRC module intended by the compiler,
provided the special subroutine appears in one of the following
places:

1. With the object-program itself;

2. In a user library file of relocatable subroutines
(such a file must be specified to GELOAD via a
control card); or

3. In the system library in such a position that
GELOAD's library search will encounter the special
subroutine before encountering GEFRC modules.

Normally, of course, no special subroutine is present, and the
GEFRC module is directly engaged instead.

@J~c(ID@@ ~~00~~~ --------------C~OB~Ol
- D-4-

Provided the target format requirements discussed previously are
satisfied, the objectives specified in the introduction can be
fully realized. The last objective, fully integrating stranger
hardware into the COBOL object-program environment, is accomplished
by placing the special subroutine in the system library.

Since the user-supplied subroutine overrides only the alternate
entry symbol of a GEFRC module, the GEFRC module is still available
via its standard entry symbol.

APPLICATIONS

File Conversion to GE-625/635 Formats

The plug-in capability has particular interest for converting files
to GE-625/635 formats. Ideally, such a conversion would have the
following properties:

1. No special pass on the data would be required--conversion
would be a by-product of the first update cycle on the
GE-625/635 computer.

2. No special version of tre COBOL program would be required.

3. The COBOL-oriented applied progranuner should direct his
work to GE-625/635 formats, as if no conversion were
necessary.

These ideal properties are realized in the following steps:

1. Plan the appropriate GE-625/635 format for the file.

2. Develop the'pure" COBOL source-program as if its
files were in GE-625/635 format.

3. Develop via GMAP a relocatable binary subroutine,
with entry symbol .GAGET to do the ~ecord format
translation, record by record.

4. In the first GE-625/635 production cycle, submit the
special .GAGET subroutine with the object-program for
execution. Each time the object-program "thinks" it
calls .GAGET the call is intercepted by the subroutine,
and conversion proceeds, record by record. (If several
input files are involved, tests in the subroutine must
distinguish between them.)

5. Then discard the subroutine; its work is finished.

A proper GE-625/63? format file is thus produced in the first GE-625/
635 update cycle.

~~o(ID@@ ~~[ffi~~~ -------------~~O C
- D-5-

Stranger Peripherals

The information needed to translate record formats for stranger
peripherals is provided at the COBOL obj~ct-program interfaces
with GEFRC.

Consider, for example, a customer who wishes to do all bulk card
punching on a satellite computer. For reasons peculiar to the
stranger machine, the standard GE-625/635 Bulk Media Conversion
format cannot be utilized; records require "strange" control
parameter formats, and record sizes cannot be aligned with GE-625/
635 machine words.

A single special subroutine {symbol .GAWTR) is placed in the system
library. It intercepts all .GAWTR calls; if "card" medium-code is
specified in the calling sequence, it converts the record, wh~le
otherwise it simply passes the call on to WTREC. On card output
records, it edits in suitable control parameters, exchanges the
character set if necessary, and blocks the records in a form
acceptable to the satellite computer, probably using the GEFRC
WRITE function to deliver a full block at a time to magnetic tape.

Since the special .GAWTR subroutine is in the system library, it
is automatically used by every object-program. COBOL object-programs
are thus fully adapted to the (hypothetical) stranger satellite
computer for card output files.

For another example, using a special .GAWTR subroutine to commu
nicate with stranger printers, see T.I.B. number 600-3.

Recurrent Stranger Connnunications

Circumstances sometimes require that a certain file be produced
for a stranger computer in each production cycle, or that a stranger
file be accepted in each cycle. The technique utilized resembles
that for file conversions to GE-625/635 format, except that the con
version subroutine is permanently appended to the object-program.

Summary

The above discussion explores only some of the most obvious appli
cations for the plug-in capability. Such possibilities as random
file processing, or object-time adaptation of files planned for tape
to standard formats for linked mass storage files, are also intro
duced, presenting a spectrum whose scope will no doubt be explored
as the need arises.

@~a(ID@® ~~[ffi~~~ --------------~CO~BO~L
-D-6 -

APPENDIX E
COBOL EFFICIENCY TECHNIQUES

INTRODUCTION

The following discussion presents techniques for achieving efficient
GE-625/635 COBOL object-programs. Consideration is given to input/
output, data manipulation, and data description techniques.

Some of the reconnnendations lead to space-saving, some to time-saving,
and some to both. Each is flagged appropriately by (T), (S), or (T and
S) to indicate the type of saving expected.

INPUT/OUTPUT

1. APPLY PROCESS AREA can save a considerable number of generated
instructions if many statements refer to data items within a file.
The memory saving may exceed the storage required for the PROCESS
AREA. Especially important, however, may be the execution time
saving if the verbs referring to a file's contents are heavily
exercised. The implied MOVE between PROCESS AREA and buffer,
supplied by GEFRC, is quite efficient in execution time. PROCESS
AREA.is especially recommended for a file containing OCCURS items.
(T and S.)

2. The various files in a data processing program often fall naturally
into high-volume and low-volume categories. For such a program,
consider RESERVE ALTERNATE AREA for the high-volume files. This
option permits the object-program's processing to overlap with
input/output functions for such files. (T)

3. If two or more files will definitely not be open concurrently,
use SAME AREA to conserve storage. This option causes the specified
files to utilize the same buffer area(s). (S)

4. In a file maintenance program, consider SAME RECORD AREA for the
"throughput" or master file. This option causes an imp lied PROCESS
AREA to be applied to both the input and output versions of the file.
(T)

5. If a PROCESS AREA is definitely !!.Q.t wanted for a throughput file,
work on each record in the input buffer (where READ leaves it),
and then transmit it to output via WRITE FROM. This approach
simplifies insertion of new records. Such insertion requires
extra housekeeping when SAME RECORD AREA is used. (S)

6. Both READ INTO and WRITE FROM imply MOVEs within core storage.
Explicit or implicit PROCESS AREA also implies a MOVE on each
READ or WRITE. Therefore, avoid the combination of PROCESS AREA

- E-1-

with READ INTO or WRITE FROM. For example, the worst possible
inefficiency would result from having a PROCESS AREA for both the
input and output master files, and then using READ INTO a Working
Storage record area and WRITE FROM that area:

a. Because of the PROCESS AREA, the READ implies a MOVE from
buff er to PROCESS AREA.

b. The INTO option implies a MOVE from PROCESS AREA to Working
Storage (in this example).

c. The FROM option of WRITE implies a MOVE from Working-Storage
to the output file's PROCESS AREA (in this example).

d. Because of the PROCESS AREA, the WRITE implies a MOVE from
PROCESS AREA to output buffer.

Four MOVEs here have done the work of one~ (T and S)

DATA MANIPULATION

1. Avoid the CORRESPONDING option when a simple MOVE would suffice.
MOVE CORRESPONDING results in a series of MOVEs of individual
items; a simple MOVE is instead optimized for the group or record
as a whole. Never use MOVE CORRESPONDING for such purposes as
transmitting a master file record from the input buff er to the
output buffer. Use MOVE CORRESPONDING when it will in fact cause
selected items to be MOVEd, or when editing or format conversion
is needed on the respective items. (T and S)

2. Manipulate a group or record as a whole (whenever possible), rather
than manipulating its elementary items separately. This rule is
especially important for tables of data items--MOVE or clear a
table as a whole whenever possible. For example, technique a.
(below) is quite efficient, while b. is terribly inefficient:

a. MOVE SPACES TO TABLE.

b.
LOOP.

(T and S)

COMPUTE I • 1 .
MOVE SPACES TO TABLE-ITEM (I).
COMPUTE I • I + 1.
IF I NOT>TABLE-SIZE GO TO LOOP.

3. If a subscripted item is to be referred to more than once with the
same subscript value(s), consider MOVing it to a temporary Working
Storage area once for all. (T and S)

4. If a data item is to be used in several subscripts without a change
in value, either make it a COMPUTATIONAL-1 item or else MOVE it to
a temporary area in Working-Storage (described as COMPUTATIONAL-1)
and use the Working-Storage item in the subscripts. (T and S)

-E-2 -

5. For MOVEs, conditions, addition, and subtraction, give the items like
PICTUREs and USAGEs whenever possible. (T)

6. In the UNTIL option of PERFORM, use the simplest possible condition to
terminate the loop. If necessary, achieve such simplicity by preceding
the PERFORM with explicit MOVEs and COMPUTEs. If NUMERiC items are
involved in the condition, give them like PICTUREs and the same COMPUTATION
(-1 or -2) USAGE, not DISPLAY USAGE. (T)

7. Tend to utilize procedural literals, rather than Constant Section items
or constant values in Working-Storage. The compiler can optimize the
format and word-orientation of procedural literals, but must resort to
dynamic format conversions in the object-program if Constant or
Working-Storage items are not ideally aligned. (The user can, of course,
accomplish ideal alignment by using exceptional care in his data
description--but this practice is not recommended for ordinary constant
values. Use of Constant Section items when doing so will enhance the self
documentation or maintainability of the program; otherwise use procedural
literals.) (T)

8. Use GO ••• DEPENDING for decisions whenever possible. In any situation
for which GO •.. DEPENDING can be used, it yields considerably more
efficient object-coding than a succession of IF statements. (T and S)

DATA DESCRIPTIONS

1. Whenever possible, use COMPUTATIONAL(-n) USAGE for a NUMERIC item which
will be involved in formulas, arithmetic verb statements, or numeric
comparisons. External considerations sometimes dictate DISPLAY USAGE;
in such case, consider explicitly MOVing the item to a COMPUTATIONAL(-n)
Working-Storage area once for all processing. (Such a MOVE would of
course be inappropriate if only one procedural statement refers to the
item.) (T)

2. COMPUTATIONAL(-n) USAGEs should be employed in the following preferential
order:

a. Use COMPUTATIONAL-! if the item is an integer and is not
involved arithmetically with COMPUTATIONAL or COMPUTATIONAL-2
items. (T)

b. Use COMPUTATIONAL if the item is not an integer or if it plays
off with other COMPUTATIONAL items. Be sure to use COMPUTATIONAL
if precise fractional results are required. (T)

c. Use COMPUTATIONAL-2 if the advantages of binary floating point
are needed. (The main advantage is capacity for accurate repre
sentation of very large or very small numeric values.) Arithmeti~
coding for COMPUTATIONAL-2 items is highly efficient, but it does
not yield the exact decimal results needed in most commercial
applications. (T)

@~c(ID@@ ~(g[ffi~~~ __________ c_oBo L

-E-3 -

3. Specify COMPUTATIONAL-1 for an item which will be used as a subscript
or which will be a DEPENDING item in a GO statement or in an OCCURS
clause. This rule is especially important if the item will be mentioned
as a "subscript-name" in PERFORM ••• VARYING, or in any such loop. Again,
consider MOVing the item explicitly to a COMPUTATIONAL~l area in Working
Storage if other considerations dictate DISPLAY USAGE. (T)

4. For data items in Working-Storage which do not specifically require close
packing across computer words, specify SYNCHRONIZED. This rule is
especially important for repeated items in a table (OCCURS), and most
of all in any table which must be repeatedly searched. (T and S)

5. If a record contains COMPUTATIONAL(-n) and/or SYNCHRONIZED items, put
single-word items together and put double-word items together whenever
possible. Considerable storage economy can result; this rule is clearly
most important for records in a file. (S)

6. For COMPUTATIONAL(-n) items, make the PICTURE clause single-word
precision whenever it suffices, rather than double-word precision. (S)

7. If the end of a record does not coincide with the end of a word, implied
filler accounts for the unused character positions. Tend to specify
explicit FILLER for this purpose, rather than allowing implicit filler.
(In doing so, however, note that the result is specifically oriented to
the GE-625/635 computer word size.) (T)

8. Consider giving all records in a VLR file an odd word-length; in a FLR
file, even word-length. (T)

9. It is often necessary to organize peripheral files in a highly space
saving manner, even though time-saving during processing is also greatly
desired. In such a case, describe each record both in the File Section
and in Working-Storage. In the File Section, pack the data as closely
as possible, without regard to processing efficiency; in Working-Storage,
do exactly the opposite. Avoid PROCESS AREA (if possible) and avoid
READ INTO and WRITE FROM. Instead, READ each record, and, while it is
still in the input buffer, determine whether a transaction applies to
it (or, in general, whether it must become involved in detailed processing).
If detailed processing is needed, employ MOVE CORRESPONDING to unpack
either the entire record or the interesting group(s) within it to the
Working-Storage area and refer to the data there for all detailed
processing. Similarly, employ MOVE CORRESPONDING as appropriate to
construct (or reconstruct) the output record. Do a simple MOVE from
input buffer to output buffer if detailed processing is not required.
(T and S)

10. If reporting is done without Report Writer, use skeleton lines in Working
Storage, with constant information initialized via VALUE rather than via
MOVE statements in the Procedure Division. (T and S)

@~ c(ID@@ ~~[ffi~ ~~ ____________ co_BO_L

-E-4-

APPENDIX F
COBOL REPORT WRITER OBJECT MODEL

This Appendix presents schematic flowcharts of the object-program procedures
generated for a report. The flowcharts should answer most questions about
control key manipulation, USE BEFORE REPORTING, rollforward of totals, PAGE
LIMITS, and similar considerations. However, they omit logic related to rule
violation and recovery and omit detailed logic for establishment of PAGE
versus OVERFLCM condition, GROUP INDICATE, actual line editing, SUM
accumulation, etc.

The GENERATE flowchart reflects three control levels, an associated TYPE
CONTROL FOOTING, and TYPE CONTROL HEADING report group for each level. The
following definitions apply:

current

previous

current value of a CONTROL data name.

the value of a CONTROL data name at previous GENERATE
execution.

-F-1-

See
Page 4

DEFINED

No
No

Page break

GENERATE
(overall logic only)

SEE PAGE 6

Initial Page
procedure

IF CH FINAL
DEFINED

Move Current to
previous, all
control levels

Compare of Will all Set Set current to
current to pre- t---.+-.. r-ontrol footings-----•• control break ----••previous, major
vious major level thru major leve level to major level

'fit-on page?

No

Pagebreak

Will all et control
,___-l_+-._1control footings..,_-.-.+-....iiureak level to

Set current to
...... ___ ..,.previous, inter-

~~ru intermedia}e intermediate
level~fit-on-page?

mediate level

No

Pagebreak

Set control Set current to
.__.-+--llM break level to 1-----11M previous, minor

I minor leve 1

I
I
I
I

Pagebreak I
I

I I
L-------- --- - _ _J

Note: The area in the hatched rectangle is included on_ly if the
PAGE LIMITS FOOTING option is selected by the user.

-F-2-

Page 3

GENERATE (continued)

Reset control
data-name minor

to current

Reset control
data name
intermediate to

current

Reset control
data name major

to current

No

See Page 5
Will return to

TERMINATE

r __ _
GENERATE

detail•name
I
I
I
I

etail-name
report group

procedure

Minor level
control headin
report group
procedure

Set GROUP
INDICATE

to on

-- ------,
GENERATE

reportiname

I
I
I

See page 7 for outline
of report group procedures.

-F-3-

INITIATE
(overall logic only)

Slew to top of
page plus

HEADING integer

Set
PAGE-COUNTER

= 1

-F-4-

If PAGE LIMITS HEADING option
is selected by the user.

If SOURCE IS PAGE-COUNTER
appears within the
report specification.

TERMINATE
(overall logic only)

Set Control break
level to FINAL

GENERATE
procedure

CONTROL FOOT ING
(FINAL report)
group procedure

Slew to PAGE
LIMITS FOOTING

integer

report group
procedure

report group
procedure

-F-5-

See pages 2, 3

If a TYPE CONTROL FOOTING FINAL
report group is defined.

If FOOTING option and PF and
initial PF line not absolute.

If a TYPE PAGE FOOTING report
group is defined.

If a TYPE REPORT FOOTING
report group is defined.

Initial Page procedure
referred to on Page 4.

* On overflow condition,
OVERFLOW FOOTING is
substituted.

PAGE BREAK

Slew to PAGE
LIMITS FOOTING

integer

Slew to PAGE
LIMITS HEADING

integer

Add 1 to
PAGE-COUNTER

Slew to PAGE
LIMITS FIRST
DETAIL integer

Set
GROUP INDICATE

to on

-F-6-

**

If FOOTING option and PF and
initial PF line not absolute.

If a TYPE PAGE FOOTING report
group is defined.

If the PAGE LIMITS HEADING
option is selected by the user.

If SOURCE IS PAGE-COUNTER
appears within the report
specification.

If a TYPE PAGE HEADING
report group is defined.

If the PAGE LIMITS FIRST DETAIL
option is selected by the user.

If GROUP INDICATE is
specified.

** On overflow condition,
OVERFLOW HEADING is
substituted.

REPORT GROUP PROCEDURES
(in order of execution)

All functions are conditionally generated, based on report parameters.
The procedures are as follows:

1. Page limit testing (If at limit, Pagebreak is executed);

2. USE BEFORE REPORTING section;

3. Output of line printing and/or slew records, including GROUP
INDICATE when appropriate;

4. Accumulation of current detail or sum-counter values to sum
counters;

5. Reset sum-counters to zero if TYPE CF.

@~a(ID@@ ~~00~~~ ______________ c_oB(
-F-7 -

APPENDIX G
COBOL COMPILATIONS

Two features have been added to COBOL. These are described in the following
paragraphs:

AVAILABILITY OF COMPRESSED SOURCE DECKS

A compressed source deck (COMDK) may be requested in the $ COBOL control
card. This is done by use of COMDK as an option in the operand field of
the $ COBOL control card. The standard option, NCOMDK, is assumed when
COMDK is not used.

These two options are summarized as follows:

NCOMDK - No compressed deck of the source program will be prepared.

COMDK - A compressed deck of the source program will be prepared.

FASTER COMPILATIONS

Faster compilations are obtained for source decks which do not use either
the COPY clause in the Data Division or the file RENAMING clause in the
Environment Division.

It is necessary for all source decks which use the COPY clause or the file
RENAMING option to specify COPY as an option in the operand field of the
$ COBOL control card. The standard option, NCOPY, is assumed when COPY
is not specified.

The two options are as follows:

NCOPY - No COPY prepass is made on the source program.

COPY - A COPY prepass is made on the source program to process any
COPY clauses or file RENAMING clauses specified in the source
program.

For additional information on the use of the $ COBOL control card, see GE-625/635
Comprehensive Operating Supervisor, CPB-1195.

@~a@@@ ~~[ffiO~~-------------
-G-1-

APPENDIX H
SQUEEZE-CODING IN COBOL SORTS

The COBOL library subroutine .CSORT permits COBOL programs to use squeeze
coding routines. These are used for analysis and conditional record-deletion
of records when equal key values are encountered during sorting.

GENERAL DESCRIPTION

The label .CSRTE (in the library routine .CSORT) is a SYMDEF which permits
the address of a squeeze-code routine to be placed into .CSRTE+l5. The
address must go into the lower half of .CSRTE+l5 without disturQing the
contents of the upper half.

The coding used to enter the squeeze-code routine must be in GE-625/635
Macro Assembly Program (GMAP) language and must be executed before execution
of the SORT statement. The address of the squeeze-code routine (in .CSRTE+l5)
is left unchanged by the sort program. If this address is not changed by
the user, the same squeeze-code routine is used whenever a SORT statement
is executed.

Changing Squeeze-Code Routines

The selection of the squeeze-code routine can be changed by changing the
address in location .CSRTE+l5. This must be done between SORT executions-
after the completion of one SORT and before the execution of the next.

Discontinuing Squeeze Code Routines

Resetting the lower half of location .CSRTE+l5 to zero causes no further
squeeze-code routines to be executed. This "turning off" of the squeeze
must be done between sorts and not during execution.

SQUEEZE-CODE ROUTINES

The user must write his squeeze-code routines in the GMAP assembly language.
Index registers 6 and 7 must refer to the records having equal key values.
The routines must protect the contents of all registers for the sort program.
The conventions for deleting records are as described in the GE-625/635
Sort/Merge Program reference manual, CPB-1005.

~~a(ID@@ ~~ffirn~~ ______________ co_Bo:

-H-1-

EXTRA CODING REQUIRED

Extra coding required in the COBOL program consists of the following three
elements:

1. Coding in GMAP assembly language to set the squeeze-code address
into .CSRTE+l5.

2. Assembly language coding to change the address of the squeeze
code routine from one routine to another or to reset .CSRTE+l5
to zero.

3. Assembly language coding of the squeeze-code routine (s).

@~a(ID@@ ~~[ffi~~~ _______________ c_oB_Ol

-H-2-

GENERAL DESCRIPTION

APPENDIX I
OPTIONAL COMPILATION OF
STATEMENTS IN GE-625/635

COBOL SOURCE PROGRAMS

Standard source statements can be selectively compiled or bypassed at the
request of the progrannner.

The progranuner designates those statements which are to utilize this
capability by placing one of the digits 0-9 in Column 7 of the source
cards. The request to compile or bypass the statements on subsequent
compilation runs is then connnunicated to the compiler by means of an
entry in the SPECIAL-NAMES paragraph. {See Page VIII-4.)

FUNCTION

The optional compilation of specified source statements can be used
effectively in both the debug and production phases to improve overall
program flexibility.

Debug Phase

A considerable amount of checkout time and effort can be saved by using
standard COBOL source statements to trace program errors, rather than
using inconvenient octal core or tape dumps.

Special counters can be used to record· test information and the results
displayed on-lineo Intermediate results or the status of selected records
before and after processing can be written to SYSOUT or to a special test
fileo Literal values can be moved to data-items and logical sequences or
computational results checked. The actual sequence of program execution
can also be traced by placing DISPLAY statements at strategic pointso In
this way, most of the program checkout can be done at the source language
level. In addition, the DEBUG statements can be grouped, by means of a
connnon special identifier in Column 7, to provide various levels of detail
on successive checkout runs. When the checkout phase in completed, only
the SPECIAL-NAMES request card need be removed, leaving all of the test
statements in the source deck in an inactive statuso

Production Phase

Special purpose capabilities within a basic program can be written with
optional statements specifying the variations. In this way a single source
program configuration can be maintained and year-end, field-site or other
special-purpose routines activated by requesting compilation of the appro
priate statements as needed.

@~a@@® ®rnooarn~--------------c_oBo_L

I-1

METHOD OF IMPLEMENTATIOif

Column 7 Identifier

Column 7 of the source statement card is used to identify an entry which may
be conditionally compiled. Any of the digits 0 through 9 can be used for this
purpose but normally a single digit will be used to identify groups of state
ments used for different purposes.

SPECIAL-NAMES Paragraph Entry

To indicate to the compiler which of the specially identified (Column 7)
statements are to be compiled, one of the following options must be requested
in the SPECIAL-NAMES paragraph:

Option 6:

SPECIAL-NAMES.

PROCESS ALL DEBUG STATEMENTS.

Option 7:

SPECIAL-NAMES.

PROCESS LEVEL integer-I [THRU integer-2]

DEBUG STATEMENTS.

Notes:

1. Option 6 is used when all statements identified by 0-9 in
Column 7 are to be compiled.

2. Option 7 is used when it is desired to compile either a single
group of statements {identified by integer-I), or a range of
groups (identified by integer-I THRU integer-2).

3. If neither Option 6 nor Option 7 is selected, then all state
ments identified by a 0-9 in Column 7 will be unconditionally
bypassed during compilation.

GENERAL USAGE NOTES

L It should be clearly understood that this feature is unique to
GE-625/635 COBOL. Consequently, any program utilizing it may
have to be modified before being compiled on another computer
line.

2o This facility may be used freely in the Input-Output Section of
the Environment Division, Data or Procedure Divisions, except any
entry or statement with a COPY clause.

@~a@@® ~~000~®-------------__..C;.,,,;.;OB......._OL

I-2

3. Only source statements containing one of the digits 0-9 in
Column 7 are affected by this special clause. The use or
omission of the appropriate options in the SPECIAL-NAMES
paragraph has no affect on any source statement with a blank,
hyphen or asterisk in Column 7.

4. Do not attempt continuation of an optional compilation state
ment to a second line by means of a hyphen in Column 7.
These requirements are mutually exclusive.

@(Ealffi©J©J ~~rma~~-------------_,,,;;c~oB.;;.;;..01
I-3

APPENDIX-J

USE OF THE COBOL SORT FEATURE

SORT PROORAM ORGANIZATION

The Sort program
amounts of data,
internal memory.
sorting operation
following chart:

SORT

is organized to cope with potentially quite large
exceeding many times over the capacity of the computer's
It utilizes magnetic tapes for this purpose. The
proceeds in three stages, as illustrated in the

FIRST STAGE

Implicit Input Procedures
or

INPUT PROCEDURE

Routines to Establish
Initial Sequences

SECOND STAGE

Tape Operations

Leading Up to

Output Phase

THIRD STAGE

Routines to Establish
Final Sorted Sequence

Implicit Output Procedures
or

OUTPUT PROCEDURE

Input
Phase

Output
Phase

@J~a(ID@@ ~~(ffi~~~----------------=C..:..:OB:...:..:01:,..._
-J-1-

In the first stage, the Sort accepts all of the data records to be
sorted, rearranging them into sequences of as many records as memory
will allow. (Typically, the initial sequences contain about twice as
many records as can be held in available memory at once.) The initial
sequences, called ''strings," are distributed in a dynamically planned
fashion over the available work tapes (called "collation tapes").

In the second stage, a series of merging operations combine the initial
strings into longer strings, reducing the total number of strings out
standing. At the conclusion of this stage, merging has proceeded to
the point that each of the several collation tapes has one long string
of records.

In the third stage, a final merging operation combines the data into
one string consisting of the entire file, rearranged now into the
stipulated output order.

In the simplest application, the first stage of a Sort program reads
the input file from magnetic tape, building the initial strings as it
goes; and the third stage of the Sort writes the output file to magne
tic tape.

In a more complicated application, the user may optionally set aside
the normal reading function of the Sort and supply in its stead an
Input Procedure tailored to his own needs. The usual purpose of such
a procedure is to preprocess the data records, editing, and perhaps
dropping information not needed in the output file produced by the
Sort.

Similarly, the user may optionally set aside the normal writing func
tion of the Sort's third stage, supplying in its place an Output Pro
cedure adapted to his needs. The normal use of such a procedure is to
edit the data records and produce a report directly in the last stage
of the Sort, rather than letting the Sort produce an output file which
must become input to a subsequent reporting program. When it is
feasible, this use of an Output Procedure saves a complete pass of the
data through the computer.

RESULT OF EXECUTING A SORT STATEMENT

A close look at the sequence of events in the object program should
enhance an understanding of the COBOL rules. Consider an object pro
gram containing a SORT statement. After the object program has been
loaded, its execution begins with the first nondeclarative procedural
statement, as usual. The object program may then execute any sequence
of procedural statements leading up to the SORT statement. The SORT
statement immediately gives control to the Sort subprogram.

@~a@@® ~ ~ [ffi ~~ ~---------------:;.CO;.::..BO;;.::,L_
-J-2-

The Sort does its initial housekeeping; and, assuming an Input
Procedure has been specified, it transfers control to the Input
Procedure as soon as it is ready to start processing records. The
Input Procedure may now accomplish any necessary initialization,
after which it opens its input file and reads the first record.
When it has a record ready to enter the Sort, the Input Procedure
submits it to the Sort by executing a RELEASE statement. The Sort
then processes the record for positioning in one of the initial
sort-file strings, and returns control to the statement following
the RELEASE statement. The Input Procedure continues reading and
releasing until all the input records have been given to the Sort,
at which time the Input Procedure does its final operations including
closing its input file. The Input Procedure signals an end-of-input
condition to the Sort by allowing control to pass to the end of the
Input Procedure. The Sort then concludes the first stage of processing
and enters the second stage. A simple Input Procedure might thus be
organized as shown on the following page.

-J-3-

INPUT
PROCEDURE

OPEN
Input File

READ
Input File

Normal

Edit Record
and MOVE to
Sort-File

RELEASE
Sort-File

Record

AT END CLOSE
Input File

Exit

(Fall through the
bottom of Input
Procedure)

@(Ea@@® ~(E(ffi~(E~--------------....::C:::,::OB~OL~
-J-4-

The second stage of the Sort is a merging operation which has no
direct interface with the COBOL program. When its function has
been accomplished, the second stage passes control to the final
stageo

The final stage of the Sort does its initial housekeeping, up to
determining which record goes first in the final output sequence.
Assuming an Output Procedure has been specified, the Sort at this
point transfers control to the Output Procedure. The Output Pro
cedure may begin with any necessary initialization, including
opening its output file. It then obtains the first record in the
final sequence by executing a RETURN statemento When it has. pro
cessed and written or otherwise disposed of the first record, it
returns the next, and thus it continues returning records and pro
cessing them to output. The RETURN verb has the same AT END pro
vision as the READ verb's, so eventually the Sort makes a special
exit to the AT END procedure on the first RETURN statement executed
after the last data record has been returned. The Output Procedure
concludes its operations, closing its output file, and finally allows
control to pass to the end of the Output Procedure. Control then
returns to the Sort, which terminates its own procedures and returns
control to the source program statement following the SORT statement.
A simple Output Procedure might thus be organized as shown on the
following page.

@~affi)@@ ~~[ffi~~~---------------co_BO_L
-J-5-

OUTPUT
PROCEDURE

OPEN
Output File

RETURN Sort
Fi le Record

Normal

Edit Record
and MOVE to
Output File

WRITE
Output File

Record

AT END CLOSE
Output File

Exit

(Fall through the
bottom of Output
Procedure)

@~a(ID@@ ~~00~~~--------------::_:COB=O~L

In effect, the sequence of events just described applies also when
the USING or GIVING option is used, except that the Input or Output
Procedure becomes implicit, not specified in detail by the user or
generated by COBOL.

The user can, in principle, include several SORT statements in the
source program, even embedding them in loops. If several SORT state
ments are present, they are completely independent of each other.

FILES RELATED TO COBOL SORT VERB

A SORT statement may be resolved into the following four elements:

1. The Sort file-name is specified first. The only physical
realization of this 11 file11 is the set of collation tapes
used by the Sort.

2. The key data-names are then specified. (Keys are not further
considered here.)

3. Either an Input Procedure or a USING file-name must be speci
fied, to define the input data source for the Sort.

4. Either an Output Procedure or a GIVING file-name must be
specified, to define the output data destination for the
Sort.

The Input Source

If the USING option is specified, the input file must be described via
an FD. It must be assigned a unique file code in a SELECT sentence,
and must be represented by an appropriate $ FILE card when the object
program is executed.

If an Input Procedure is specified, the user assumes responsibility to
obtain input records for the Sort. Required source program. statements
and control information are accordingly governed by ordinary input file
requirements.

The input file code is not suitable for collation tape use.

@~a(ID(ID@ ~~(ffi~~~--------------~CO~BO=L-

The Output Destination

If the GIVING option is specified, the output file must be described
via an FD. It must be assigned a unique file code in a SELECT sen
tence, and must be represented by an appropriate $ FILE card when the
object program is executed.

If both USING and GIVING options are specified, they may refer to the
same file-name or to different file-names. In the special case in
which USING and GIVING refer to the same file-name, the Sort will not
use the GIVING file medium as a collation tape. Otherwise, the Sort
will indeed use the GIVING file medium as a collation tape, so the
actual output medium nrust then be magnetic tape.

If an Output Procedure is specified, the user assumes responsibility
to deliver the sorted data to output. Required source program state
ments and control information are accordingly governed by ordinary
output file requirements. If the actual output medium is magnetic
tape, the tape may be supplied to the Sort for use as a collation tape by
a method described below.

The Sort-File

The sort-file must be described via an SD. It must be assigned one
or more file codes in a SELECT sentence. Normally, only a single file
code will be specified. The first (or only) file code must be unique.

The programmer controls the disposition of collation tapes by his use
of file codes for the sort-file. The following presents several
alternative file code strategies, and assumes that the reader under
stands the $ TAPE and $ NTAPE control cards of GECOS.

A basic requirement is that the Sort must have at least three colla
tion tapes. Whichever file code strategy is chosen, this need must
be satisfied. Sources of collation tapes are as follows:

1. A $ NTAPE card specifying file code Sl may provide some or all
of the collation tapes. Depending upon how many tapes the
$ NTAPE card provides, file codes in the series Sl, S2, ·~·
will be implicitly available for the Sort. Because of their
special use for Sort, file codes in this series must not be
explicitly mentioned in any COBOL program which utilizes
Sort.

@j~a(ID@@ ®~(ffi~~®--------------...::.CO::::,BO.:,::L_
-J-8-

2. As described on the preceding page (see The Output Destina
tion) the GIVING option normally provides one collation
tape to the Sort when the GIVING option is specified.

3. Additional collation tapes may be provided via extra file
codes specified in the sort-file SELECT sentence.

It is recommended that the first (or only) file code mentioned in
the sort-file SELECT sentence ..!!.2!_ be represented by a $ TAPE card
when the object program is executed. Furthermore, the $ NTAPE card
approach is considered the standard means of providing collation tapes.

The typical file code strategy reconmended for a sort-file is there
fore to assign a single file code (thereby satisfying COBOL syntax
rules); to omit the $ TAPE card for that file code when the object
program is executed; and to supply instead a $ NTAFE card specifying
file code S 1.

Use of multiple file codes in the sort-file SELECT sentence may be
desired for various reasons:

1. If an Output Procedure produces a magnetic tape output file,
the file code assigned to that file should be the second
mentioned in the sort-file SELECT sentence (and the first
file code should definitely not be represented by a $ TAPE
card at execution time). This provision puts the tape at
the Sort's disposal throughout the collation activity, but
guarantees that the tape will be free by the time the Output
Procedure is engaged.

2. Perhaps one or more tape files are totally processed before
or after the Sort procedure, so that the tapes are indeed
available as scratch tapes throughout the Sort execution.
Listing their file codes in the sort-file SELECT sentence
leads to enhanced sorting efficiency. Such file codes would
also be mentioned in the SELECT sentences for the files to
which they are assigned.

3. If for some reason the $ NTAPE card is not desired, multiple
file codes in the sort-file SELECT sentence can be employed
to give the user full control over the allocation of collation
tapes via $ TAPE cards.

-J-9-

Provided the basic three collation tape requirement is somehow satis
fied, $ TAPE cards for the extra sort-file file codes may optionally
be omitted at execution time. If $ TAPE cards are provided, the Sort
definitely assumes such tapes are available for collation purposes.

The USING and GIVING file codes must not be mentioned in the SELECT
sentence for the sort-file.

When extra sort-file file codes are actually represented by $ TAPE
cards at execution time, each such file code counts as only one tape
toward the Sort's minimum three collation tape requirements, even if
the $ TAPE card calls for alternating tape handlers. Similarly, the
GIVING file code (when applicable) counts as only a single collation
tape.

Examples

The following example illustrates a basic SORT utilization.

ENVIRONMENT DIVISION.
FILE-CONTROL.

SELECT INPUT-FILE ASSIGN TO AB.
SELECT SORT-FILE ASSIGN TO CD.
SELECT OUTPUT-FILE ASSIGN TO EF.

DATA DIVISION.
FILE SECTION.
FD INPUT-FILE ...

01... Note that these files may have mul
tiple record types and sizes, provided
the sort-file and USING file have the

SD SORT-FILE .•.
01. ••

FD OUTPUT-FILE .• o

01. 0.

PROCEDURE DIVISION.
SORT-CALL. SORT SORT-FILE

GIVING OUTPUT-FILE.
STOP RUNo
END OF PROGRAM.

same records, the sort-file and GIVING
file have the same records, and key
descriptions and positions are equiva
lent for all record types.

ON ASCENDING KEY ••• USING INPUT-FILE

@j ~a@@® ® ~ lffiO~ ®--------------.....:.C.:.::OB.;,.;:OL;__

-J-10-

At execution time, the control cards should be as follows:

$
$
$
$
$

EXECUTE
LIMITS
TAPE
TAPE
NTAPE

AB,AlD,,,,INPUT-LABEL
EF,BlS,,,,OUTRJT-LABEL
Sl,C,24;

L-(2 or more tapes required
in this example)

Another important SORT utilization entails use of an Output Proce
dure to deliver a report (on any suitable device) rather than an
output tape as such.

ENVIRONMENT DIVISION.
FILE-CONTROL.

SELECT INPUT-FILE ASSIGN TO GH.
SELECT SORT-FILE ASSIGN TO IJ, KL.
SELECT REPORT-OUTPUT ASSIGN TO KL FOR LISTING.

DATA DIVIS ION.
FILE SECTION.
FD INPUT-FILE .••

01. .•

SD SORT-FILE .•.
01. ••

FD REPORT-OUTPUT; REPORT IS XYZ .•.

REPORT SECTION.
RD XYZ •.•

01 DETAIL-LINE; TYPE DE •••

@~a@@® ~ ~ (ffi ~~ ~-------------____;;C__;;;OB....;;;;OL;..._.
-J-11-

PROCEDURE DIVISION.
SORT-CALL SECTION.
DRIVER. SORT SORT-FILE ON ASCENDING KEY ••• USING INPUT-FILE

OUTPUT PROCEDURE IS EDITe STOP RUN.
EDIT SECTION.
STARTUP. OPEN REPORT-OUTPUT; INITIATE XYZ.
LOOP. RETURN SORT-FILE RECORD; AT END GO TO QUIT.

GENERATE DETAIL-LINE; GO TO LOOP.
QUIT. TERMINATE XYZ; CLOSE REPORT-OUTPUT.
END OF PROGRAM.

Because file code KL is used for the Output Procedure's output file
and also is mentioned in the sort-file SELECT sentence, it must be
associated with a magnetic tape at execution time. The control cards
should the ref ore be as follows (assuming Sort is to use only. three
collation tapes):

$
$
$
$
$

EXECUTE
LIMITS
TAPE
TAPE
NTAPE

GH,AlD,,,,INPUT-LABEL
KL,BlS,,,,ouTPUT-LABEL
s 1, c' 2

If KL were not mentioned in the sort-file SELECT sentence, its control
card could specify any suitable output medium, such as $ TAPE, $ DISC,
or $ SYSOUT. Except in the latter case the Sort activity would pre
sumably be followed by a Bulk Media Conversion activity to print the
report.

Reserved File Codes

Most file codes beginning with the character "S" have special meaning
to the Sort. (Such file codes include s1,s2, ..• ,SA,SB, ..• ,sz.) In
any COBOL program which utilizes the Sort, the file codes specified
in all SELECT sentences should therefore definitely begin with a charac
ter other than "S".

@~a®@® ~~(ffi~~~--------------~C~OB~OL:!_
-J-12-

APPENDIX-K

OPTIMIZING THE COMPILATION PROCESS

FOR GE-625/635 COBOL SOURCE PROGRAMS

GENERAL DESCRIPTION

An optional feature has been implemented in the COBOL compiler which
can reduce processing time by as much as 50% when compiling programs
containing source errors.

The entire compilation process can be logically divided into two broad
phases of activity.

1. In Phase-1, the source program is thoroughly analyzed to ensure
lexical, syntactic and semantic accuracy. It is simultaneously
being translated into an intermediate language suitable for further
processing.

2. In Phase-2, the intermediate language created in Phase-1 is con
verted to the appropriate machine language code and assembled into
an executable object program.

Since all of the compiler diagnostic functions, error message prepara
tion and cross-referenced source listing are completed in Phase-1, it
is normally wasteful to continue the compilation beyond Phase-1 when
source errors are detected. In most instances the object program pro
duced from an erroneous source program is quite useless.

This option is selected by means of a single entry in the SPECIAL-NAMES
paragraph. (See Pages VIII-4 and VIII-4.3.)

FUNCTION

Substantially reduce compilation time by eliminating redundant processing
when source program errors exist.

@~a@@@ ®~lffi~~®------------__:;:C:.::;;:;::OB.;;,;:;;:OL_
-K-1-

METHOD OF IMPLEMENTATION

Normal Procedure

The standard procedure adopted, when this option is not requested, is
to continue compilation through Phase-2 and produce an object program,
irrespective of any source errors encountered.

SPECIAL-NAMES Paragraph Entry

To utilize the optional feature, an entry must be made in the Special
Names paragraph as shown below:

OPTION 8:

SPEC !AL-NAMES •

COMPILE PHASEl ONLY WITH SOURCE ERRORS.

Usage Notes:

1. When this statement is used in the source program, the extent of
the compilation is determined by the presence or absence of source
errors.

2. The following action is taken by the compiler:

• If a source program error is detected, the compilation will
be terminated at the end of Phase-1 and no assembly listing
or object program will be produced.

• If no source errors exist, then a normal compilation through
assembly and executable object program will occur.

3. Only true error conditions will trigger the option. Warning and
Efficiency messages are not significant.

4. A saving of up to 50% of compile time can be achieved when this
feature is used for the initial compilation of new programs.
However, it may be used with all programs as a standard procedure
since it has no effect on compiler output if the source program is
error-free.

@~a®@® ~~(ffi~~~---------------=C:.=.:::OB:..=..:OL:.__
-K-2-

5. No USEFUL output is suppressed when this option is selected.
The source listing with cross-references and messages is always
produced.

6. This feature is unique to GE-625/635 COBOL. The statement would
therefore have to be removed before being compiled on another
computer line.

@~a(ID@@ ~~[Ri~~~---------------c_oB_OL

APPENDIX L

USE OF WRITE VERB FOR LISTING FILES

An implicit report code is generated when the WRITE ••• ADVANCING option
is used for a listing file. The report code selected is the second character
of the two character file code assigned to the file.

The use of a simple WRITE (no ADVANCING option), causes a report code of zero
to be created. If a program has a mixture of simple WRITE statements and
WRITE ••• ADVANCING statements, there may be two different report codes used.
This results in a segregation of listing outputo This segregation can be
avoided by assigning a file code which has a second character of zero.

EXAMPLE

SELECT • • • ASSIGN TO ZA FOR LISTING

Sl. WRITE record-name-1. (Report code is 0)

S2o WRITE record-name-2 ADVANCING ••• (Report code is A)

Assuming Sl is executed first, all output with a report
code of zero would be printed before the output with a
report code of A. If S2 were executed first, all output
with a report code of A would be printed before the output
with a report code of zero.

If the listing file was assigned a file code of ZO, there
would be no segregation of output.

Note that if more than one listing file is open, files codes unique in the
second character must be assigned to the files to avoid intermingled output.
In addition, only the WRITE ••• ADVANCING option should be used for all but
possibly one of the listing files. The exception would be for the one file
whose second character of the file code is ZERO. Simple WRITES could be
issued to this fileo

@~a(ID(ID(ID ~~(ffi~~~------------------=.C=OB..::..::01
-L-1-

APPENDIX M

REPORT WRITER PRE- AND POST-SLEW CALCULATION

The purpose of this appendix is to present, with examples, the algorithm
used by the COBOL Report Writer in making Pre- and Post-Slew calculations.

Pre-Slew

The basio algorithm is:

LINE PLUS N slews N-1 lines.

Therefore:

LINE PLUS O--...pre-slew 0 lines.
LINE PLUS 1---..pre-slew 0 lines.
LINE PLUS 2__.,pre-slew 1 line.
LINE PLUS 3--....pre-slew 2 lines.

Exception:

LINE PLUS 0 --.pre-slew 0 lines liQ! N-1 lines.

Post-Slew

The basic algorithm is:

NEXT GROUP PLUS M slews M lines.

Therefore:

NEXT GROUP PLUS O---.post-slew 0 lines.
NEXT GROUP PLUS 1---t>post-slew 1 lineo
NEXT GROUP PLUS 2---.post-slew 2 lines.
NEXT GROUP PLUS 3__.post-slew 3 lines.

Exception:

IF NEXT GROUP !!QI SPECIFIED.-........automatic post-slew 1 line.

@~a@@® ~~[Ri~~®----------------C.....,,OB......_.OL

M-1

Combinations of Pre- And Post-Slew

Thus:

LINE PLUS 0 ~pre-slew 0, post-slew 1
LINE PLUS 1 _.pre-slew 0, post-slew 1
LINE PLUS 2 -.pre-slew 1, post-slew 1
LINE PLUS 0

NEXT GROUP PLUS 0 ~pre-slew O, post-slew 0
LINE PLUS 1

NEXT GROUP PLUS 0 .. pre-slew o, post-slew 0
LINE PLUS 2

NEXT GROUP PLUS 0 .._,pre-slew 1, post-slew 0
LINE PLUS 1

NEXT GROUP PLUS 1 ... pre-slew 0, post-slew 1
LINE PLUS 2

NEXT GROUP PLUS 1 ~pre-slew 1, post-slew 1
LINE PLUS 1

NEXT GROUP PLUS 2 ~pre-slew o, post-slew 2
LINE PLUS 2

NEXT GROUP PLUS 2 ~pre-slew 1, post-slew 2

1. For normal single spacing of a report, a LINE PLUS 1 designa
tion is most often used. It actually gives a pre-slew of 0;
however, the implicity post-slew of 1 yields the desired
result.

2. For normal double spacing of a report, a LINE PLUS 2 gives
a pre-slew of 1 which when added to implicit post-slew of 1
from the previous line results in a double spaced report.

3. If line over-print is desired in the event a detail line must
must be split into 2 TYPE DETAIL Report Groups, this may easily
be accomplished by using a LINE PLUS 0 NEXT GROUP PLUS 0 on the
first TYPE DETAIL to be generated. The remainder of the detail
line generated by the second TYPE DETAIL would specify LINE
PLUS O. This would result in both TYPE DETAIL LINES being
printed on the same line.

@~o@@® ~~rn1m~~-------------~C~OB~OL

M-2

APPENDIX N

REPORT WRITER TABLE CAPACITY

INTRODUCTION

The purpose of this appendix is to provide the COBOL Report Writer user with
information concerning Report Table capacity. The Report Table is fixed length
within the COBOL Compiler and has no overflow capability.

Since large report group descriptions, normally TYPE DETAIL or CONTROL FOOTING,
occasionally overflow the Report Table capacity, this document is· intended as an
aid to the user in structuring his report g~oup descriptions to fit within the
Report Table capacity.

Report Group Entries

A report group entry is built for the 01 statement which contains the TYPE
clause. Only one such entry appears per report group. The entry varies from
a minimum of 8 words to a maximum of 11 words.

A basic 01 report group entry containing only a TYPE statement is built as an 8
word entryo For example:

01 DET-L TYPE DE.

This statement is built as an 8 word report group entry.

If a LINE or NEXT GROUP designation or a combination of both appear in the 01
report group statement, two additional words are required in the entry being
builto For example:

01 DET-X TYPE DE LINE PWS 1. .2!:
01 DET-Y TYPE DE NEXT GROUP PWS 2. ..Q!.

01 DET-Z TYPE DE LINE PLUS 1 NEXT GROUP PWS 2o

All of these statements build a 10 word entry.

If the report group is a CONTROL FOOTING, one additional word is required in
the entry being built which is used as a TOTAL SUM WORD COUNT. For example:

01 TYPE CF data-name LINE PWS 1 NEXT GROUP NEXT PAGE.

This statement is built as an 11 word entryo

@(E o(ID@@ ® (E (ffi 0 (E ®--------------___:;:C.:.:OB;..;.;;OL
N-1

Group Entries

In structuring a report group, the programmer may specify intervening group
levelso Each group statement at 02 level or below requires a group entry
which is nearly identical to the report group entry described above. It may
vary in size from 8 words minimum to 10 words maximum. For example, consider
the following structure:

01 CTL-X TYPE CF CNTRL NEXT GROUP NEXT PAGE.
02 LINE PLUS 1.

03 COLUMN 1 PICTURE Z(6) SUM data-name.
02 LINE PLUS 2.

03 • ' •

The 01 TYPE statement would build an entry 11 words in length since it has a
NEXT GROUP clause and is a TYPE CONTROL FOOTING. The 02 group statement builds
a 10 word entry inheriting most of its data from the report group entry and
adding the word of data to describe the line clause.

Source Entries

A source entry is built for each elementary statement containing a SOURCE IS
clauseo These entries can vary greatly in size, from a minimum entry of 24
words to a maximum entry of 71 words.

The most basic SOURCE statement is found in a detail report group. It does
not contain a COLUMN clause and is therefore not printed. It is required to
define a sum counter for a CONTROL FOOTING report group. For example:

02 SOURCE IS data-name.

This statement is built as a 24 word entryo

When the SOURCE statement contains subscripted items, the number of words
required increases rapidly. One data-name subscript adds 12 additional words
to the entry built. For example:

02 SOURCE IS data-name (data-name). 36 words

A single literal subscript requires 9 additional words. For example:

02 SOURCE IS data-name (literal). 33 words

@~o(ID@@ ~~(Ri~~~--------------___.:C~OB~OI
-N-2-

Each subsequent subscript in the same statement adds 11 words in the case
a data-name or 8 words in the case of a literal. For example:

02 SOURCE IS data-name (dn, dn-1). 47 words
02 SOURCE IS data-name (lit, lit-1). 41 words
02 SOURCE IS data-name (dn, lit). 44 words
02 SOURCE IS data-name (dn,dn-l,dn-2). 58 words
02 SOURCE IS data-name (lit,lit-l,lit-2). 49 words
02 SOURCE IS data-name (dn, dn -1, 1i t) • 55 words
02 SOURCE IS data-name (dn, lit, lit-1). 52 words

When a COLUMN clause is added, it designates a receiving field must be
provided in the source entry being built. The entry varies from 10 to 13
words in length depending on whether or not editing is required in the
receiving field. For example:

02 COUJMN 1 PICTURE 9(6) SOURCE IS data-name.

This would not require editing so the total entry built would be 24 words
plus 10 or 34 words. If the statement were:

02 COLUMN 1 PICTURE ZZZ,ZZ9.99 SOURCE IS data-nameo

Editing is required, thus the entry would require 24 words plus 13 or 37 words.

The largest possible entry would therefore be of the type:

02 COLUMN 1 PICTURE ZZ,999 SOURCE IS data-name (dn,dn-l,dn-2).

This would require 71 wordso

Sum Entries

A sum entry is built for each elementary statement containing a SUM clause.
Sum entries can vary in size from a minimum of 34 words to a maximum of 37 words.

The basic SUM statement is found in the TYPE CONTROL FOOTING report group and
usually is of the format:

02 CTL-X COLUMN 1 PICTURE ZZZ,ZZ9.99 SUM data-name.

or

02 COLUMN 1 PICTURE ZZZ,ZZ9.99 SUM data-name.

@~o(ID@@ ~~(ffi0~~---------------c_oB_OL
-N-3-

Either of the above statements will be built as an entry 37 words in length.

It is interesting to note that the addition of subscripts, either data-name
or literal does not increase the size of the entry to be built. Thus, the
statement:

02 COUJMN 1 PICTURE Z(6)o99. SUM data-name (dn,dn-l,dn-2).

requires the same number of words as

02 COLUMN 1 PICTURE 2(6).99 SUM data-name.

The variance between 34 and 37 word entries is due to receiving field editing
requirements and is described under COLUMN statement of SOURCE entry description.

Value Entries

A VALUE entry is built for each elementary item which contains a VALUE clause.
Since the VALUE clause expresses a literal which can range from a single
character to 132 characters in length, it follows that the entry built for a
VALUE clause varies in the same proportion. For example:

02 COUJMN 1 PICTURE X VALUE 11
- 1'.

represents a minimum entry and requires 26 words. On the other hand, the
statement:

02 COLUMN 1 SIZE 132 VALUE ''132 character literal---".

represents a maximum entry and requires a 48 word entry.

The following table indicates the entry size for the various literal sizes.

@(Ea(ID(ID(ID ~[E[ffi~[E~---------------....;;.C.;;;.::;,OB~OL
-N-4-

LITERAL SIZE (CHARACTERS)

EXCEPTIONS

1-2
3-8
9-14
15-20
21-26
27-32
33-38
39-44
45-50
51-56
57-62
63-68
69-74
75-80
81-86
87-92
93-98
99-104
105-110
111-116
117-122
123-128
129-132

VALUE ENTRY (WORDS)

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

Two possible exceptions may change the maximum entry sizes as indicated in this
discussion. Both are rather remote in usage but bear clarification.

1. If an elementary SOURCE, SUM or VALUE statement contains a LINE
clause as part of its description, the entry built is increased
by two words. For example:

02 LINE PWS 1 COLUMN 1 PICTURE X(6) SOURCE data-name o

This statement builds a source entry of 36 words as compared to 34
words if the LINE clause does not appear at the elementary level.

Sum and value entries reflect the same two word increase in size.

2. In the receiving field description designated by the COLUMN and
PICTURE clauses, if editing is required and the receiving field is
over 38 characters in length, one additional word is required. If
over 76 characters in length, two additional words are required.

@(Ea(ID@@ ~(E[ffi~~~--------------___.;;.CO.;;.:;.BO,;;.;;..L
-N-5-

CALCUIATION OF REPORT GROUP SIZE

The length of the variable entry portion of the Report Table in most cases
is 1650 words; however, in certain instances, it can be reduced to a
minimum of 1260 words.

This reduction occurs only when the following conditions exist:

a. The report description (RD) contains a large number of report
groups.

b. The larger report groups appear near or at the end of the report
description.

A rule of thumb to follow in report description organization is to place the
larger report groups at the beginning of the report description. In this
way, the maximum variable Report Table size of 1650 words will nearly always
be available.

@(Ea(ID(ID@ ®~ffiiD~®--------------__:.,co...;.;;.BO~L
-N-6-

The following example shows the calculation of report group size with
table capacity reduced to 1260 words because of one of the conditions
previously mentioned.

01 DETL-X TYPE DE.
02 LINE PIJJS 2.

03 COWMN 1 PICTURE Z(6)o99 SOURCE data-name (dn,dn-l,dn-2).
03 COWMN 15 PICTURE Z(6)o99 SOURCE data-name-1 (dn,dn-l,dn-2).
03 COLUMN 30 PICTURE Z(6).99 SOURCE data-name-2 (dn,dn-l,dn-2).
03 COLUMN 45 PICTURE Z(6)o99 SOURCE data-name-3 (dn,dn-l,dn-2).
03 COLUMN 60 PICTURE Z(6).99 SOURCE data-name-4 (dn,dn-l,dn-2).

02 LINE PWS 3.
03 COLUMN 1 PICTURE Z(6).99 SOURCE data-name-5 (dn,dn-l,dn-2)o
03 COLUMN 15 PICTURE Z(6).99 SOURCE data-name-6 (dn,dn-l,dn-2).
03 COLUMN 30 PICTURE Z(6).99 SOURCE data-name-7 (dn,dn-l,dn-2)o
03 COLUMN 45 PICTURE Z(6).99 SOURCE data-name-8 (dn,dn-l,dn-2).
03 COLUMN 60 PICTURE Z(6).99 SOURCE data-name-9 (dn,dn-l,dn-2).

02 LINE PUJS 4.
03 COLUMN 1 PICTURE Z(6).99 SOURCE data-name-10 (dn,dn-l,dn-2)o
03 COLUMN 15 PICTURE Z(6).99 SOURCE data-name-11 (dn,dn-l,dn-2).
03 COLUMN 30 PICTURE Z(6).99 SOURCE data-name-12 (dn,dn-l,dn-2)o
03 COLUMN 45 PICTURE Z(6)o99 SOURCE data-name-13 (dn,dn-l,dn-2).
03 COLUMN 60 PICTURE Z(6).99 SOURCE data-name-14 (dn, dn-1, dn-2) •

02 LINE PWS 5.
03 COLUMN 1 PICTURE Z(6)o99 SOURCE data-name-15 (dn,dn-l,dn-2).

• 03 COLUMN 15 PICTURE Z(6).99 SOURCE data-name-16 (dn,dn-l,dn-2).
03 COLUMN 30 PICTURE Z(6).99 SOURCE data-name-17 (dn,dn-l,dn-2).

8
10
71
71
71
71
71

10
71
71
71
71
71

10
71
71
71
71
71

10
71
71
71

At this point report group capacity is exceeded and the detail report group must
be subdivided into two detail report groups.

This can be accomplished by dividing the report group into two report groups of
the same type. In the case of the TYPE DETAIL report group, it requires insertion
of an "Ol DATA-NAME TYPE DE." statement and an additional GENERATE statement in
the Procedure Division. If the overflowed group is a CONTROL FOOTING, the
subdivision is a bit more complex. A dunnny CONTROL DATA-NAME with the same
PICTURE and USAGE as the original must be defined in WORKING STORAGE. Immediately
after each READ of the pertinent Input File, the field which comprises the
original CONTROL DATA-NAME must be moved to the dunnny CONTROL DATA-NAME in
WORKING STORAGE. The dummy CONTROL DATA-NAME becomes the CONTROL DATA-NAME for the
new 01 TYPE CF report group and is also inserted in the CONTROLS ARE clause of the
corresponding RD entry.

@~o(ID@@ ~~[ffiQ~~---------------c_oB_OL
-N-7-

For example, to subdivide the following TYPE CF report group:

RD REPORT X CONTROLS ARE FINAL, DNl, DN2.
01 TYPE CF DNl.

02 • • •

A dummy CONTROL DATA-NAME with the same PICTURE and USAGE as the original must
be defined in WORKING STORAGE:

77 DNlA PICTURE 9(6).

After each READ of the pertinent Input File containing CONTROL DATA-NAME DNl,
the new value of DNl must be moved to DNlA before the corresponding GENERAGE
statement for the REPORT being produced:

READ INPUT-FILE AT END GO TO
MOVE DNl TO DNlA.
GENERATE DETAIL-!.

The report group subdivided would be:

RD REPORT X CONTROLS ARE FINAL, DNlA, DNl, DN2.
01 TYPE CF DNl.

02

02
01 TYPE CF DNlA.

02 • • •

The control break for DNl and DNlA will occur at the same time. The CONTROL
FOOTING report groups are presented from minor to major; therefore, the report
group with DNl will be produced before the report group with DNlA. The order
may be adjusted as required by the program needs.

@~a@@@ ~~[RiO~~----------------c_oB_OL.
-N-8-

APPENDIX 0

COBOL EXAMPLES

This appendix is intended to serve as a guide for some connnon usages
of GE-625/635 COBOLo Many subjects are not included here if in particular
they have been the subject of another appendix. The reader is referred to
the following appendixes:

Ao Computational Item Formats

Bo (c. File Formats and Processing
Do
Eo Efficiency Techniques

H. {Use of COBOL SORT
J.

This appendix includes sample verb results and sample programso

Sample Verb Results

The effect on sample data is illustrated here for two common verbs. The
first example applies to Numeric Edited MOVE results and is given in
tabular form for various Pictures. The second example shows the effect
on various data items when a Conditional Relational (simple IF) Test is
applied.

~ 1968 by General Electric Company

@(ga(ID@@ ~lli(ffi0lli~--------------..... co_....Bo1

0-1

Numeric Edited MOVE Examples

Sending Item Receiving Item

PICTURE VALUE PICTURE Resulting Value

9 (5) 45678 $ZZ,ZZ9a99 $45,678.00
9 (3) V99 456 .. 78 $ZZ,ZZ9.99 $ 456.78
9 (3)V99 000a67 $ZZ,ZZ9a99 $ 0.67
9(3)V99 000a04 $ZZ,ZZZ.99 $.04
9 (5) 00000 $ZZ,ZZZ.ZZ
V9(5) .12345 $ZZ,ZZ9.99 $ 0.12
9 (5) 12345 $-;b'~' -;~9. 99 $12,345.00
9 (5) 67890 $$$,$$9.99 $67,890a00
9 (3) V99 678090 $$$,$$9.99 $678.90
9 (5) 00000 $$$,$$9.99 $0.00
V9(5) 0 6 7890 $$$,$$9.99 $0.67

S9 (5) V -56789. -ZZZZ9.99 -56789000
S9 (5) +56789 -ZZZZ9.99 56789000
S9 (5) -56789 +ZZZZ9.99 -56789.00
S9 (5) +56789 +ZZZZ9~99 +56789.00
S99V9 (3) -56.789 ------.99 -56.78
S9 (5) -0056 7 ZZZZZ.99- 567.00-
S9 (5) -56789 $$$$$$.99CR $56789.00CR
S9 (5) +56789 $$$$$$.99CR $56789 .00

@~a®@® ~~ooa~~--------------~c~oB;:;;.!;..01
0-2

Conditional Relation Test Examples

Item A Item B Relation

PICTURE l VALUE PICTURE I VALUE

Numeric Items

9 (6) V9 1.2 9V9 6.5 A< B
9 (6) V99 1.33 9V999 1.330 A = B

S9V9999 -0.025 S99V99999 -00.064 A> B
99 00 V999 .ooo A = B

Nonnumeric Items of Equal Size

99.9 OL2 99.9 12.4 A< B
+999.9 +003.l +999o9 +o03.0 A> B

X(4) ABCD X(4) TAXY A< B
X(4) 0123 X(4) +001 A< B
X(4) (24) X(4))01(A< B
X(4) A1B2 X(4) AlB2 A= B

Nonnumeric Items of Unequal Size

$999.99 $123.45 $99.9 $12.6 A< B
X(5) ABCDE X(3) ABC A> B
X(5) ABC6.6. X(3) ABC A = B
X(5) ABC DE X(3) FCE A< B
X(2) 6D. X(4) 0100 A> B

Standard Collating Sequence ____ _

@~a(ID@@ ®~00~~®-------------_.....C...._.OB..__OL
0-3

Sample Programs

Two sample programs are shown here for general illustrative purposes. The
first program (REPRT) is intended to be a guide to the use of the Report
Writer in COBOLo It produces one report with three actual control breaks,
which is shown as a two-page sample output. By referring to the various
report groups in the program, the effect on the output report may be
readily seen (including the various line slewing controls). Notice also
that a dummy control footing is used to force the final control break to
the next pageo The Procedure Division illustrates the minimum necessary
statements to produce the same report from input data coming from cards.

@~a@@® $3~00~~®--------------...;.C.;.;;OB.;,.;;;.OL

0-4

000010
000020
000030
000040
000050
000060
000070
000080
000090
000100
000110
000120
000130
000140
000150
000160
000170
000180
000190
000200
000210
000220
000230
000240
000250
000260
000270
000280
000290
000300
000310
000320
000330
000340
000350
000360
000370
000380

. 000390
000400
000410
000420
000430
000440
000450
000460
000470
000480
000490
000500
000510
000520
000530

IDENTIFICATION·DIVISION.
PROGRAM-ID• REPRT.
REMARKS. THIS EXAMPLE PRODUCES AN OUTPUT REPORT VIA

REPORT WRITER• THE REPORT CONSISTS OF ONE
BASIC DETAIL LINE WITH 3 CONTROL BREAKS--ONE
OF WHICH IS A FINAL CONTROL BREAK·

ENVIRONMENT DIVISION•
CONFIGURATION SECTION•
SPECIAL-NAMES.

"An IS COOE-1'
INPUT-OUTPUT SECTION•
FILE-CONTROL.

SELECT INPUT-FILE
SELECT OUTPUT-FILE-1

I-O-CONTROL•
DATA DIVISION.
FILE SECTION.
FD INPUT-FILE

ASSIGN TO AA FOR CARDS.
ASSIGN TO BB FOR LISTING•

LABEL RECORDS ARE STANDARD
DATA RECORD IS CARD-INPUT.

01 CARD-INPUT.
02 C-IN·

04 CONTROL-FIELD•
08 CONTROL-1
08 CONTROL-2
08 CONTROL-3

04 FILLER
04 ITEM-VOLUMN
04 COST
04 TITLES

FD 0UTPUT-FILE-1

PICTURE 9•
PICTURE 9•
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE

x<o>.
9(6).
9(10)V99.
X(50).

.. ABEL RECORDS ARE STANDARD
REPORT IS REPORT-!.

WORKING-STORAGE SECTION•
01 CARO-IN-WS •

04 CONTROL-FIELD
04 FILLER
04 ITEM-VOLUMN
04 COST
04 TITLES

REPORT SECTION.
RD REPORT-1

PIC 999•
PIC X(6).
PIC 9(6).
PIC 9<1C>V99 •
PIC X<SO).

WITH CODE CODE-1• PAGE LIMIT IS 55 LINES
CONTROLS ARE FINAL• CONTROL-3, CONTROL-!• CONTROL-2.

01 REPORT-HEADING-!• TYPE REPORT HEADING•
03 LINE 02.
05 COLUMN 56 PICTURE xc20> VALUE " REPORT HEADING ft

01 PAGE-HEADING• TYPE PAGE HEADING•
03 LINE 03.
05 COLUMN 56 PICTURE X(20) VALUE " PAGE HEADING "
05 COLUMN 117 PICTURE XC5J VALUE "PAGE"•
05 COLUMN 122 PICTURE Z9 SOURCE IS PAGE-COUNTER.

01 DETAIL-LINE-1 TYPE DETAIL LINE PLUS 1 NEXT GROUP PLUS le

0-5

000550 02 SOURCE SELECTED CARD--INP.UT.
000560* NOTE--NO QUALIFICATION IS NECESSARY ON SOURCE ITEMS
000570 03 COLUMN 7 PICTURE xxx SOURCE TS CONTROL-FJELD•

X(50> SOURCE IS TITLES. 000580 03 COLUMN 54 PICTURE
000590 03 COLUMN 105 PICTURE zzz-Zz9 SOURCE TS ITEM-VOLUMN.
000600 03 COLUMN 115 PICTURE S*•***•***•**9•99 SOURCE IS COST•
000610 01 CONTROL-HEADING-lr TYPE CONTROL HEADING CONTROL-le
000620 03 LINE PLUS 01,
000630 05 OLUMN 2 p T E X(20T L E -,,- ONfROL- E C IC UR VA U C 1 H AD ING " .
000640 05 COLUMN 50 PICTURE X<21) VALUE n--ITEM DESCRIPTION--"•
000650 01 CONTROL-FOOTING-1• TYPE CONTROL FOOTING CONTROL-le
000660 02 LINE PLUS lr NEXT GROUP PLUS 2.
000670 03 COLUMN 25 PICTURE XC17) VALUE nVOLUME SUB-TOTAL="•
000680 03 COLUMN 42 PICTURE ZZZZZZ9 SUM ITEM-VOLUMN OF C-IN•
000690 02 LINE PLUS o, NEXT GROUP PLUS 2•
000700 03 COLUMN 2 PICTURE X<27> VALUE " ENO OF CONTROL-1 FOOTING"•
000710 01 CONTROL-HEAOING-2• TYPE CONTROL HEADING CONTROL-2.
000720 03 LINE PLUS 01•
000730 05 COLUMN 2 PICTORE xc20> VALUE TT· CONTROL-2 HEADING u •
000740 01 CONTROL-FOOTING-2• TYPE CONTROL FOOTING CONTROL-2.
000750 02 LINE PLUS 2.
000760 03 COLUMN 25 PICTURE XClS> VALUE "COST SUB-TOTAL="•
000770 03 COLUMN 40 PICTURE $*1***•***•**9•99 SUM COST OF c~IN•
000780 02 LINE PLUS 2• NEXT GROUP PLUS 2. ______ _
000790 03 COLUMN 2 PICTURE X(27) VALUE n ~NO OF CONTROL-2 ~OOTING"•
000800* NOTE--THIS IS A DUMMY CF TO FORCE FINAL CONTROL BREAK TO
000810* NEXT PAGE
000820 01 CONTROL-FOOTING-3 TYPE CONTROL FOOTING CONTROL-3•
000830 LINE PLUS l• NEXT GROUP NEXT PAGE.
000840 02 COLUMN 1 PICTURE X VALUE SPACE•
0 0 0 8 5 0 01 c ONTR OL-HE AD ING-FI NA L, T YPE,:---c-,:,o-:-:N-=T=-Ro-=--;L-H-=E=--A=-o.....,I N,-;-G=----=Fc=I-c--:-N--cAL,--.-----
000860 03 LINE PLUS 2.
000870 05 COLUMN 2 PICTURE X(20) VALUE n FINAL HEADING " •
000880 05 COLUMN 107 PICTURE XC22) VALUE '~OL. COST"•
000890 01 CONTROL-FOOTING-FINAL TYPE CONTROL FOOTING FINAL•
000900 02 LINE PLUS 3.
000910 03 COLUMN 93 PICTURE X(10) VALUE nfOTAL VOL•" •
000920 03 COLUMN 115 PICTURE XC10) VALUE "TOTAL COST" •
000930 02 LINE PLUS 2.
000940 03 COLUMN 93 PICTURE zzzzz99 SUM ITEM-VOLUMN OF C•IN.
000950 03 COLUMN 115 PICTURE 5*'***•***'**9•99 SUM COST OF C-IN•
000960 02 bINE PLUS 2• NEXT GROUP PLUS 3~
000970 03 COLUMN 2 PICTURE X<27) YALUE "END OF FINAL FOOTING"•
000980 01 PAGE-FOOTING, TYPE PAGE FOOTING.
000990 03 LINE PLUS 2.
001000 05 COLUMN 56 PICTURE X(20) VALUE " PAGE FOOTING "
OOlOlO Ol REPORT-FOOTING• TYPE REPORT FOOTING.
001020 03 LINE 54.
001030 05 COLUMN 56 PICTURE xc20> VALUE " REPORT FOOTING tt

0010~0 PROCEDURE DIVISION•
0010~0 AA10. OPEN INPUT INPUT-FILE, OUTPUT OUTPUT-FILE-1•
00107'0 BBlOe INITIATE REPORT•l•
001080 cc10. READ INPUT-FILE AT END GO TO EElO.

@)~a(ID(Q)(O) ~~{ffiO~~ _________ co~BoL

o ... a

001090 0010.
001100 0099.
001110 EElO.
001130 FFlO.
0011so zz99.

GENERATE DETAIL-LINE-1•
GO TO cc10.
TERMINATE REPORT-1.
CLOSE INPUT-FILE• OUTPUT-FILE-le

STOP RUN•

@J~a(6)(©@ ~~ooa~~----------_;;.CO;;,;;;BO~L

0-7

0
I

00

@)
[iinl

a
(§2)
(§}
(§)

(¥R)
ffi
aeJ
c:::::::::I

ffi
~

(')

0
o:I
0
~

f lNAL HEAUl~G
CONTROL-1 HEAUING
CONTROL-2 H~ADING

Ou
00

REPORT HEAD ltd:i
PAI.IE t1f:AD 1 f\u

-•JTtM D~SCRIPTION--

S~ALL MOTORS ~ # Ml2~50
FANS ... •HOO

COST SU8-TOTAL•i••••••*•*••46 1 ~b

FND OF CONTROL-2 •ovTJN~

VCl..l.rM~ Sll~·TOTAL-11 ii:60b8

END or CONTHOL-1 FO~TING

CONTROL·1 H~AUl~G
CONTROL-2 H~APING

11
11

·•lTtM DESCRIPTJON·-

LARGE ~O~TS ~ I ~XJ9
~~CHINE SCREWS ~ # SX1~

COST SU8•TOTAL•'**••••••••••0 1 '~

END OF CONTROL-2 FOOTJNG

VOLUMc SuB~TOTAL• 159000

ENU or CONTROL-1 FOOTING

CONTROL-1 HcAUI~G
CONTROL•2 HcADING

22
22

-~ITEM DtSCRIPTlON••

LARGE MOTOHS • # ML30
J~T ASSEMB~Y • # JL6~

COST SU&•TOTAL•i••••••b53,DUo,oo

END Of CONTROL-2 FCCTJN~

CONTROL-2 HEAOI~G
2J
23

PIP~R CUB PLAN~ • • PC100
J~T PLANc (4 MOTOR) • * iJ1~

COST SU~NTQTAL•i••••1,;1u,uuu,o~

ENU Of CO~TROL-2 fOUTlNG

VOLUME SUH•TOTAL• 27

END Of CONTROL-1 FOOTING

flA!iE F"OOTl~b

VOL,

100
25968

1000QO
!:19000

20
5

1
1

PAGE· 1

COST

S•••••••••••J9,50
, •••••••••••••• 98

S••!•••~··~••°- 1 ~9
t••••••••••••0.15

s••••••••1,ooo,oo
S••••••6501000 1 00

S•••••••10r000 1 00
s••••1,5oo,ooo,oo

0
I

'°

(92)
[iiil)

a
@R)
(§)
(§)

<?tR>
liiii1
&eJ
c:::::J

ffi
w

C')

0
b:I
0
t-t

PAGE HEAD I ~l.i

END OF FINAL FOOTl~G

pAllt: f'OOTlNll

kE:PORT Jo OOT l ~l.i

TOTAL VOL 1

185095

PAGE 2

TOTAL COST

S••••2 1 16J,047,02

The second sample program (UPDATE) illustrates a common type of business
application, namely, updating of a master file with insertions, deletions,
and modifications of file records. The problem definition is over
simplified for the purpose of an example and no claims are made as to
its error-free execution within this context. However, liberal use is
made of debug statements to follow the processing of input data and may
be helpful as a guide to their use for debugging programs. This program
may also be useful as a reference for the more common usages of I/O,
PERFORM, MOVE, and IF statements.

@~a@@® ~~000~®-------------____,;C~OB;.;..;;;;.OL
0-10

ooooou
ooono
000020
000030
000040
000050
000060
000071)
000080
000090
000100
000110
000120
000130
000140
000150
000160
000170
000180
000190
000200
000210
000220
000230
000240
000250
000260
000270
000280
000290

000300
00031\J
000320

IUENlIFIC~TION DIVISION•
PROGRAM-IO. UPDATE.
RfMARKS· THIS EXA~PLE UPDATES A MASTER FILE ANO

PRODUCES A COMPLETE LISTING OPTIONALLY BY
MEANS OF A CONTROL CARD. CHANGES TO A MASTER
~ILE ARE CARU INPUT ALONG WITH CERTAIN
CONTROL CARDS WHICH ALLOW:

1. INSERTIONS AFTER GIVEN SEQUENCE NUMBER
2· MODIFICATIONS OF DATA OR SEQUENCE NUMBERS ONLY
3. DELETES DATA FROM ONE SEQUENCE NUMBER TO ANOTHER AND

INSERTS FOLLOWING DATA CARDS·

CONTROL CARDS ARE ASSUMED TO BE SORTED BY SEQ.~ ON INPUT.
SEQUENCE NUMBERS NOT MODIFIED ARE LEFT UNCHANGED.

CONTROL-CARD FORMATS: COL! 7 19
LIS 999999 <LISTING REQUEST CARD WHERE

999999 DEFINES THE SEQ• ~
INSERTION INCREMENT>

*IN 999999 <INSERTS FOLLOWING CARDS
AFTER SEQ.~ 999999>

*MF NNNNNN TO MMMMMM
(MODIFIES CARD WITH SEQ.~ NNNNNN

WITH FOLLOWING CARD-IF PRESENT
AND CHANGES SEQ.~ TO MMMMMM)

*DE NNNNNN THRU MMMMMM

(DELETES CARDS FROM SEQ.~ NNNNNN
THRU MMMMMM AND REPLACES WITH ANY
FOLLOWING CARDS>

000330 ENVIRONMENT DIVISION.
000340 CONFIGURATION SECTIO~.

000350 SPECIAL-NAMES.
000366 ----- - - . SYSOUT IS TYPr GETIME IS GTME• GELAPS IS GLAPSr
000370 COMPILE PHASE! ONLY WITH ERRORS•
000380 PROCESS ALL DEBUG STATEMENTS.
000390*NOTE--ABOVE CLAUSE MAY BE VARIED OR REMOVED TO FACILITATE DEBUG
OOOijOO INPUT-OUTPUT SECTION.
000410 FILE-CONTROL •

. 000420-·-·---. SELECT CARD-FILE ASSIGN TO CD FOR CARDS.
000430 SELECT LIST-FILE ASSIGN TO LM FOR LISTING.
OOOij4Q SELECT OLD-MASTER ASSIGN TO OM.
000450 SELECT NEW-~ASTER ASSIGN TO NM.
oo6~~b- I-O-CONTROL.
000470 APPLY STANDARD ON OLD-MASTER• NEW-MASTER·

··-0004 8 a ·-airTA-bI" Is I ON.

000490 FILE SECTION.
000500 FD NEW-MASTER LABEL RECORDS STANDARD• DATA RECORD IS MAS-our.

@j~a(ID©)@ ~[E[ffi~[E~ __________ c_oB_OL

0-11

JJO:'lJ 01
oooc·,2J
00053U
OOOCJ4J FD

000 1150 01
000560
000'.:)70
000'.iBO Fu
OOC~9U 01

JOOfiOJ
000610
J0062l.J
000630
000640
00065L)
000660
000€170
000680
000h90 FD
00070Ll
000710 01
000720
000730
000740

000750 01
000760
000770
000780* *

;, 1~S-0UT.
02 \1lHlf PlCTIJRE X(74).
02 MSCQ PICTURE 9(6).
OLD-M~STfq LAHEL RECORDS ARE STANDARD, DATA RECORD IS MAS-IN.

MAS-I~•
02 !LINE
02 Vit:.Q
cno-~ ILL
CA:~o-c:q::c.

Cl2 C-GR·

PICTURE XC74).
PICLIRE 9(6) •

LABEL RECORDS STANOARU, DATA RECORD IS CARD-REC.

03 CLINE PICTURE XC74).
03 CS[G PICTURE 9(6).

02 C~ REDEFINES C-GR·
03 CARD-FLO PICTURE XC3) OCCURS 26 TIMES.
03 FILLER PICTURE Xx.

02 CS REDEFINES CR.
03 CON-FLO PICTURE 9(6) OCCURS 13 TIMES.
O~ FILLER PICTURE XX.

LIST-FILE LALlEL RECORDS ARE STANDARD• DATA RECORDS ARE
LIST-REC• DATE-REC.

LI ST-F EC.
02 L-FLO
C2 LSEQ
02 FILL

DATE-REC.

PICTURE XC74).
PICTU~E 9(6).
PICTURE XC4l.

02 INDENT PICTURE X(28).
02 D~TE PICTURE X<8>.

*

WORKING-STORAGE SECTION. 00079L)
000800
000810
000820
000830
000840
000850
000860
000870
000380
000890 77
000900 77
000910 77
000920 77
000930 77
000940 77
000950 01
000960
000970
000980
000990

77 OLD-MAS-IND PICTURE 9 VALUE o.
88 OLD-MAS-OPEN VALUE l•
83 OLD-~AS-CLOSED VALUE O·

77 LIST-ALL-IND PICTURE 9 VALUE o.
88 LIST-ON VALUl 1·
88 LIST-OFF VALUE O•

77 WRITE-IND PICTURE 9 VALUE o.
88 WqIT-ON VALUE l•
88 WRIT-OFF VALUE O•
DISPL~Y-ERR PICTURE XC6l.
CURRENT-SEQ PICTURE 9(6) VALUE O.
INCR PICTURE 9C6) VALUE l·
ex PICTURE 9(3) USAGE COMP-1.
TI~E-2 PICTURE 9(8) USAGE COMP-1.
ELAPSFD-TIM PICTURE ZZZ9.9999 •
CON-RF.C.
02 CRO-TYP.

03 C-TYP PIC X<l2) VALUE "
02 TYP-ARR REDEFINES CRQ-Typ.

* IN*MF*DETY.

03 CON-TYP PICTURE XXX OCCURS 4 TIMES.

0-12

001000 01
001010
001020
001030

INDA TE.
02 !DATE.

03 1"10
03 Of,

PICTURE 99.
PICTURE 99.

001040 03 YR PICTURE 99,
001050 02 TIME-1 PICTURE 9(8) USAGE COMP-1•
001060 01 OTDATE·
001070 02 OCATE.
001080 03 ~CT PICTURE 99.
001090 03 FILLER PICTURE x VALUE "-".
001100 03 DAY PICTURE 99.
001110 03 FILLER PICTURE x VALUE Tl-IT 0

001120 03 YRR PICTURE 99.
001130 PROCEDURE DIVISION.
001140*
001150 START-UP SECTION. ACCEPT INDATE FROM GTME.
001160 MOVE MO TO MOT. MOVE DA TO DAY· MOVE YR TO YRR.
001170 MOVE TIME-1 TO TIME-2.
001180 OPEN INPUT CARD-FILEr OLD-MASTER'
001190 OUTPUT NEW-MASTER' LIST-FILE•
001200 MOVE 1 TO OLD-MAS-IND.
001210 MOVE SPACES TO INDENT. MOVt: ODA TE TO DATE.
001220 WRITE DATE-REC BEFORE ADVANCING 2 LINES·
001230 MOVE SPACES TO FILL.
001240 PERFORM READ-CD.
001250 NOTE - THf FOLLOWING IS A LEVEL 1 DEBUG STATEMENT.

0012601 DIS-1. DISPLAY CARD-REC UPON Typ,
001270 IF CARD-FLO Cl> NOT = nus" GO TO CONTROL-CARD-TEST
ooi280 ELSE MOVE 1 To LIST-ALL-IND.
001290 IF CON-FLO (2) NOT = n n MOVE CON-FLO (2) TO !NCR.
001300 READ-co. READ CARD-FILE AT END GO To CLOSE-CARO.
001310 NOTE - THE FOLLOWING IS A LEVEL 2 DEBUG STATEMENT.
0013202 DIS-2. DISPLAY CARD-REC UPON Typ.
001330 CONTROL-CARD-TEST. MOVE 2 TO ex.

·acff34Ci--8R.:c. IF CARD-FLO <1> = CON-TYP CCX) GO To BRANCH·

ADD l TO ex IF ex < 5 Go TO sR-c.
MOVE CARO-FLO Cl) TO DISPLAY-ERR.

001350
001360
001370 DISPLAY n UNDEFINED CARD ", DISPLAY-ERR• UPON TYP.

001380 GO TO REAo-co.
001390 BRANCH. SUBTRACT 1 FROM ex.
001400 GO TO INS-RTN' MOO-RTNr DEL-RTN DEPENDING ON CX.
001410 STOP 11 DEAD END n •

001420*
001430 INS-RTN SECTION.

- lf01440-T!. -- IF' OLD-MAS-OPEN GO TO READ-OLD.
001450 OLD-MAS-ERR. ADD INCR' CON-FLD (2) GIVING CURRENT-SEQ•
001460 MOVE 1 TO WRITE-IND GO TO INSERT-CARO.
001470 READ-OLD. IF WRIT-ON MOVE 0 TO WRITE-IND GO TO TEST-OLD·

COBOL

0-13

001480 Rl~J JLO-MASTER AT END MOVE U TO OLD-MAS-IND GO TO Il•
001490 TlST-OLD. IF CON-FLD (2) < ISEG GO TO OLD-MAS-ERR.

001500 pr~FJR~ PASS-AND-~RITE $0 TO READ-OLD·
001510 I~SEPT-CAPJ. ~ERFOR~ READ-CD•
001520 NOTE - ThE FOLLOWING rs A LEVEL 2 OE~UG STATEMENT.
0015302 DISPLAY CARD-~~C UPON Typ.
00154U IF CtRJ-FLD Cl) = CON-TYP C2l OR CON-TYP (3) OR
001550 CON-TYP (4) GO TO CONTROL-CARD-TEST.
001~60 MCV~ CURRENT-SEQ TO MS~Q, LSEQ.

001~.70 'vl-LH,J. !ViCVE CLli~E TO MLINE• L-FLD·
001580 WRIT-2. WPITF ~AS-OUTr WRITE LIST-REC AFTER ADVANCING 1 LINE.
OOF·,9\J Et-.0-11',i• ADO ItJCR TO CUHRENT-SEQ GO TO HJSERT-CARO.
001600* * * * * * * * * * * * * * * * * • * * * * * * * * * * * * * * *
001610 'vlOD-RTN SFCTIO~.
00lh20 Ml. I~ OLD-MAS-OPEN GO TO TEST-READ·
001630 MOO-ER~. MOVE CON-FLD <2> TO DISPLAY-ERR·
001640 DISPLAY "RAD MODIFY CARD FOR n, DISPLAY-ERR UPON TYP.
001650 GO TO READ-CD·
001660 TEST-R~Ao. IF WRIT-ON MOVE 0 TO WRITE-IND GO To TEST-SEQ.
001670 RfAD OLD-MASTER AT END MOVE 0 TO OLD-MAS-IND GO TO Ml·
001680 TEST-SEQ, IF CON-FLD l2> NOT = !SEQ PERFORM PASS-AND-WRITE

001690

001695
001700
001710

GO TO TEST-READ•

MCVE CON-FLO (2) TO DISPLAY-ERR.
IF CON-FLO (4) NOT = " " MOllE CON-FLO (4) TO

MSEQ, LSEQ GO TO READ-NEXT-CARO
ELSE MOVE !SEQ TO MSEG• LSEQ.

READ-NEXT-CARO. REAQ CARD-FILE AT END PERFORM MOO-WARN
001720
001730
001740
001750 NOTE
0017603
001770
001780
001790
oornoo

GO TO CLOSE-CARD.
- THE FOLLOWING IS A LEVEL 3 DEBUG STATEMENT.

DISPLAY CARD-REC UPON Typ.
It CARD-FLO (1) = CON-TYP (2)

CON-TYP (4)
OR coN-TYP (3) OR
PERFORM MOO-WARN
GO TO CONTROL-CARD-TEST.

IF CSEQ NOT = II II MOVE CARD-REC To MAS-our. LIST-REC

001805 PERFORM WRIT-2
001810 ELSE PERFORM M-LIN THRU WRIT-2•
001820 G0 TC READ-CD•
001830*
001840 DEL-RTN SECTION.
001850 Dl· IF OLD-MAS-OPEN GO TO READ-TEST.

001860 DEL-ERR. MOVE CON-FLO <2> TO DISPLAY-ERR.

001870 DISPLAY "BAD DELETE CARD FOR "• DISPLAY-ERR• UPON TYP.
001880 MOVE 1 TO WRITE-IND Go TO REAU-CD·
001890 READ-TEST. IF wRIT-ON MOVE 0 To WRITE-IND GO TO SEQ-TEST.
001900 RfAD OLD-MASTER AT END MOVE 0 TO OLD-MAS-IND GO TO Dl•

@J~ D ®®® ~[E[ffi ~ lE~-----------CO_B_OL

0-14

001910 SEQ-TEST. IF C01·~-FLD (2) > !SEQ PERFORM PASS-ANO-WRITE
001920 GO TO READ-TEST.

00193u IF CON-FLO (2) < ISEQ GO TO DEL-ERR.

001940 PASS-N0-1~R !TE. READ OLD-MASTER AT ENO MOVE 0 TO OLD-MAS-IND
001950 GO TO OLD-MAS-ERR.
001960 IF CON-FLO (4) > ISEQ OR = ISEQ GO TO PASS-NO-WRITE

001970 ELSE MOVE 1 TO WRITE-IND MOVE CON-FLO <2> TO CURRENT-SEQ
001980 GO TO INSERT-CARD•
001990*
002000 PASS-AND-WRITE SECTION• MOVE MAS-IN TO MAS-OUT, LIST-REC•
002010 WRITE MAS-OUT IF LIST-OFF GO TO Pl•
002020 WRITE LIST-REC AFTER ADVANCING 1 LINE•
002030 Pl. MOVE ISEQ TO CURRENT-SEQ•
002040 NOTE - THIS IS EXIT.
002050* * * * * * * * * * * * * * * * * • * * * * * * * * * * * * * * *
002060 MOD-WARN SECTION•
002070 DISPLAY "NO rviooIFY CARD TEXT FOUND FOR I! DISPLAY-ERR•
002080 UPON TYP. MOVE ILINE TO MLINE• L-FLD.
002090 PERFORM WRIT-2.
002100 NOTE - THIS IS EXIT.
002110*
002120 CLOSE-CARD SECTION. CLOSE CARD-FILE IF OLD-MAS-CLOSED GO TO DONE.
002i3i:r-coPY-OLO. IF WRIT-ON MOVE 0 TO wRITE-IND GO TO c2.

002140

0021so c2.
002160 DONE.
ooa10
002180
002190
002200
002210
0022~---

002230
002246 END OF

READ OLD-MASTER AT END MOVE 0 TO OLD-MAS-IND GO TO DONE.

PERFORM PASS-AND-WRITE GO TO COPY-OLD•
CLOSE OLD-MASTER• NEW-MASTER• LIST-FILE.
ACCEPT INDATE FROM GTME•

COMPUTE ELAPSED-TIM ROUNDED : (TIME-1 - TIME-2> I 6~000•
DISPLAY "ELAP.CLOCK TIME<SEC>= "• ELAPSED-TIMr UPON TYP.
ACCEPT TIME-2 FROM GLAPS.
DIVIDE 64000 INTO TIME-2 GIVING ELAPSED-TIM.
DISPLAY 11 ELAP.PROC•TIME.(SEC> = "r -ELAPSED-TIMr UPON TYP•
STOP RUN•

PROGRAM•

0-15

DIVISION

IDENTIFICATION DIVISIONo

ENVIRONMENT DIVISIONo

DATA DIVISIONo

PROCEDURE DIVISION.

END PROGRAMo

APPENDIX P

COBOL SOURCE PROGRAM ORDER

SECTION

any order

CONFIGURATION SECTION.

INPUT-OUTPUT SECTION.

FILE SECTION.

any order

WORKING-STORAGE SECTION.

CONSTANT SECTION.

REPORT SECTION.

!:.DECLARATIVES.
(Use Sections)

D. END DECLARATIVES •
(All Other Procedures)

Paragraph

PROGRAM-ID.
AlrrHOR.
INSTALLATION.
DATE-WRITTEN.
DATE-COMPILED.
SECURITY.
REMARK.So

SOURCE-COMPlrrER.
OBJECT-COMPUTER.
SPECIAL-NAMES.

FILE-CONTROL.
I-0-CONTROL.

{
output files.
input files.

*

*
*

*

*

D.If used, both DECLARATIVES and END DECLARATIVES must be presento

~ 1968 by General Electric Company
@~a®@@ ~~000~~--------------_..C-...OB-.-OL

P-1

APPENDIX Q

USE OF A LIBRARY FOR COPY

COBOL source cards may be inserted into a program from the user library file
(.L) at compilation time by the use of either:

a. the Data Division clause

COPY ••.. FROM LIBRARY

b. the Procedure Division -·COPY verb

in a source program. By creation and use of a user library file lengthy
repetitions of file, report, and record descriptions from the Data Division
and paragraphs from the Procedure Division may be avoided in programs which use
common data or procedures.

Source Library Format

When creating a library, there are some important source format restrictions
that must be observed. They are:

1. All Data Division entries must be terminated with the
PROCEDURE DIVISION card.

2. No reserved words must be used other than in their
appropriate places, i.e.,

AUTHOR. RD JONES.

RD is a reserved word and its use causes unpredictable results •.

3. All Procedure Division paragraph-names~ start in Column 8.

4. No COPY verbs may appear in procedures on the library.

5. Names in the Data Division must !!Qt. be the same as paragraph-names
in the Procedure Division. For example, if the library contained:

FD MASTER-UPDATE •••

PROCEDURE DIVISION.
MASTER-UPDATE.

a COPY paragraph-name for MASTER-UPDATE might result in the
insertion of the FD entry in the Procedure Division.

@(Ea(ID@@ ~(E(ffi~(E~---------------...:..C_.:.OB-=-OL
-Q-1-

Deck Setups

Examples of deck setups for the creation and use of a library file are shown
below.

The 2 examples below may be combined into a 2-Activity Job in the order
1. followed by 2o

$ ENDJOB

COBOL
SOURCE OR
COMDEK

$ TAPE .L,XlD

$ COBOL COPY, • o

other control cards needed
compilation.

$!DENT
~ Note that COPY must be present on

$ COBOL cardo

2. Compilation using a library file

$ ENDJOB

SOURCE
OR LIBRARY

TAPE OT ,XlD

CONVER

$!DENT

lo Creating a library file (file code =

4 · See "Source Library Format"

.L)

@(Ea(ID@@ ~[E[ffi~[E~---------------c_oB_OL
-Q-2-

INDEX

This key-word index is formed by permuting titles, paragraph names, descriptive phases,
and figure titles, putting each key word in the index position in the center of the page. The
rest of the phrase appears on either side of the key word.

ABBREVIATIONS
ACCEPT
ACTUAL DECIMAL POINT
ADD
ADVANCING OPTION
AE - ALPHANUMERIC EDITED
ALGEBRAIC SIGNS

ITEM ALIGNMENT AND SPACING
ALPHABETIC
ALPHANUMERIC
ALPHANUMERIC CHARACTERS

AE - ALPHANUMERIC EDITED
ALTER

RESERVE ALTERNATE AREA
ALTERNATE ENTRY SYMBOLS FOR GEFRC MODULES
APPLY BLOCK SERIAL NUMBER
APPLY PROCESS AREA
APPLY PROCESS AREA
APPLY SYSTEM STANDARD OR VLR FORMAT ON STATE

PROCESS AREA
SAME AREA

APPLY PROCESS AREA
SAME AREA

PROCESS AREA
RESERVE ALTERNATE AREA

PROCESS AREA
APPLY PROCESS AREA

FILE STORAGE AREAS
CONSTANT SECTION STORAGE AREAS

ASCENDING CLAUSE
ASSIGNED FILE-CODES
ASSUMED DECIMAL SCALING POSITION
ASSUMED DECIMAL POINT
ASTERISK REPLACEMENT CHARACTER

BASIC OPERATORS
THE BCD AND LOW-DENSITY OPTIONS

BEGINNING-FILE-LABEL
STANDARD FLOATING-POINT BINARY FORMAT

MINIMUM BINARY SCALE
BITS OPTION
BLANK WHEN ZERO OPTION

APPLY BLOCK SERIAL NUMBER
BLOCK SERIAL NUMBER
BLOCK SIZE
BLOCK SIZE

INDEX-1

VII 12,13,14
VII 21

VI 34
VII 22
VII 70
VI 33
VI 19
VI 19
VI 22
VI 22
VI 33
VI 33

VII 24
E 1
D 2

VIII 7
E 1

VIII 7
VIII 7.1

E 1
B 33
E 1
E 1
B 1,33

E 1
B 1,33

VIII 7
B 32

VIII 4.1
VII 62

VIII 6
VI 32
VI 32
VI 35

VII 18
B 15
B 13
A 3
A 11

VI 38
VI 26

VIII 7
B 9

VI 6
B 6

COBOL

BRACES
BRACKETS

FINAL TYPE CONTROL BREAK
PAGE BREAK DEFINITION

CONTROL FOOTING OR CE
CONTROL HEADING OR CH

SPECIAL INSERTION CHARACTER
DOLLAR SIGN CHARACTER

ASTERISK REPLACEMENT CHARACTER
COMPLETE COBOL CHARACTER SET

EDITING SIGN CONTROL CHARACTERS
FIXED INSERTION CHARACTERS

ALPHANUMERIC CHARACTERS
CHECK PROTECT
CLASS
CLASS TEST

PICTURE CLAUSE
PLACES OPTION OF THE POINT CLAUSE

NAMES INTRODUCED BY A RENAMES CLAUSE
LINE-NUMBER CLAUSE

VALUE CLAUSE
RESULT OF SYNCHRONIZED CLAUSE

ASCENDING CLAUSE
SAME CLAUSE

DESCENDING CLAUSE
CURRENCY SIGN CLAUSE

EDITING CLAUSES
CLOSE

PROCESSING STRANGER FILES VIA COBOL
QUALIFICATION IN COBOL

COMPLETE COBOL CHARACTER SET
COBOL FILE FORMATS
CODE
COLLATE COMMERCIAL

COMMERCIAL COLLATING SEQUENCE
STANDARD COLLATING SEQUENCE

COLUMN DEFINITION
COLUMN NUMBER

DECIMAL-POINT IS COMMA
COLLATE COMMERCIAL

COMMERCIAL COLLATING SEQUENCE
RECURRENT STRANGER COMMUNICATIONS

DATA FILE COMMUNICATIONS
PROCEDURAL COMMUNICATIONS

WORKING-STORAGE COMMUNICATIONS
COMPARISON OF NUMERIC ITEMS
COMPARISON OF NON-NUMERIC ITEMS
COMPILER DIRECTING DECLARATIVES
COMPILER DIRECTING SENTENCES
COMPILER DIRECTING STATEMENTS
COMPLETE COBOL CHARACTER SET

FILE DESCRIPTION COMPLETE ENTRY
COMPLETE ENTRY SKELETON
COMPLETE LIST OF RESERVED WORDS

FORMING COMPOUND CONDITIONS
COMPOUND CONDITIONS
COMPUTATIONAL ITEM FORMATS
COMPUTATIONAL ITEMS
COMPUTATIONAL-1

USAGE COMPUTATIONAL-1
COMPUTATIONAL-1
COMPUTATIONAL-1 ITEMS
COMPUTATIONAL-2

IV
IV
VI 78
VI 53

VI 78
VI 77
VI 34
VI 35
VI 35
v 1

VI 34
VI 34
VI 33
VI 26
VI 22,63

VII 9
VI 27
VI 38
VI 18
VI 62
VI 87

B 26
VII 62

VIII 8
VII 62

VIII 4.2
VI 26,67

VII 25
D
v
v
B

VI
VIII
VII
VII

VI
VI

VIII
VIII

VII
D
x
x
x

1
7
1
1

56
4.2
8
7

52
64
4.2
4.2
8
6
1
3
2

VII 5
VII 6
VII 18
VII 2,4
VII 2

v 1
VI 4
VI 21
v 11

VII 17
VII 10

A 1
A 3
E 3

VI 30
A 1
A 8
E 3

@~a®@® ~[g[ffi~[g~ ________ __..c~OBOL

INDEX-2

COMPUTATIONAL-2
COMPUTATIONAL-2 ITEMS
COMPUTATIONAL-3

A
A
A

COMPUTATIONAL-3 AND COMPUTATIONAL-4 ITEMS A
COMPUTATIONAL-4 A
COMPUTATIONAL-4 DOUBLE PRECISION A

COMPUTATIONAL-3 AND COMPUTATIONAL-4 ITEMS A
RESULT OF COMPUTATIONAL USAGES B

COMPUTE VII
COMPUTER INDEPENDENT DETAILED DATA DESCRIPTION VI
CONCEPT OF LEVELS

OVERFLOW CONDITION
CONDITIONAL SENTENCES
CONDITIONAL STATEMENTS
CONDITIONAL VARIABLE TEST
CONDITIONALS

SPECIFIC ENTRY FOR A CONDITION-NAME
CONDITION-NAME
CONDITION-NAMES

COMPOUND CONDITIONS
FORMING COMPOUND CONDITIONS

CONDITIONS
CONFIGURATION SECTION
CONFIGURATION SECTION SOURCE-COMPUTER
CONNECTIVES
CONNECTIVES

SERIES CONNECTIVES
INTERNAL FORMAT CONSIDERATIONS
EXTERNAL FORMAT CONSIDERATIONS

SIZE OF A FIGURATIVE CONSTANT
CONSTANT RECORDS
CONSTANT SECTION

WORKING-STORAGE OR CONSTANT SECTION STORAGE AREAS
NON-CONTIGUOUS CONSTANT STORAGE

TABLE OF CONSTANTS
VALUE OF CONSTANTS

FIGURATIVE CONSTANTS
FINAL TYPE CONTROL BREAK

EDITING SIGN CONTROL CHARACTERS
MINOR, INTERMEDIATE, AND MAJOR CONTROL SPECIFICATIONS

FILE CONTROL CARDS
I-0 CONTROL

CONTROL BREAK DEFINITION
CONTROL FOOTING OR CE
CONTROL GROUP DEFINITION
CONTROL HEADING OR CH
CONTROL HEADING REPORT GROUPS
CONTROL HIERARCHY DEFINITION
CONTROL(S)

FILE CONVERSION TO GE-625/635 FORMATS
COPY
COPY
COPY
COPY
COUNTER DEFINITION
CURRENCY SIGN CLAUSE

COMPUTER INDEPENDENT DETAILED DATA DESCRIPTION
DATA DESCRIPTIONS
DATA DIVISION
DATA DIVISION GENERAL DESCRIPTION
DATA DIVISION ORGANIZATION
DATA FILE COMMUNICATIONS

STANDARD DATA FORMAT

INDEX-3

VI
VI

VII
VII
VII
VII

VI
v

VI
VII
VII
VII

VIII
VIII

IV
v
v
B
B
v

VI
VI

VIII
VI
VI
VI
v

VI
VI
VI

B
VIII

VI
VI
VI
VI
VI
VI
VI

D
VI
VI
VI
VI
VI

VIII

VI
E

III
VI
VI
x

VI

8
1
9
1

10
9

28
28
19
17
79

2,4
1
9
5

48
2

87
10
17

5
1
2
1
6

10
24

2
5

89
88
4.1

88
89
89

4
78

6
79
18
7

52
78
52
77
79
52
57

5
24
58
65

7
53
4.2

19
3
3
1
1
1

19

SIZE OF THE DATA ITEM
DATA MANIPULATION
DATA RECORDS
DATA-NAME
DATA-NAME
DATA-NAME DEFINITION
DATA-NAMES INTRODUCED BY A RENAMES CLAUSE
DATE-COMPILED
DATE-WRITTEN

DETAIL OR DE
ACTUAL DECIMAL POINT

ASSUMED DECIMAL SCALING POSITION
ASSUMED DECIMAL POINT

DECIMAL-POINT IS COMMA
DECLARATIVES

COMPILER DIRECTING DECLARATIVES
DECLARATIVES

REPORT WRITER DEFINITIONS
DEFINITION OF WORDS

ENTER DEFINITIONS
DEPENDING OPTION
DERIVATION OF EXTERNAL AND INTERNAL FORMAT
DESCENDING CLAUSE

RECORD DESCRIPTION
INDEPENDENT DETAILED DATA DESCRIPTION

RECORD DESCRIPTION
DATA DIVISION GENERAL DESCRIPTION

FILE DESCRIPTION COMPLETE ENTRY
REPORT-GROUP DESCRIPTION ENTRY

REPORT-NAME DESCRIPTION ENTRY
RECORD DESCRIPTION ENTRY

FILE DESCRIPTION ENTRY
DATA DESCRIPTIONS

WITHOUT THE PAGE-LIMITS LAST DETAIL OPTION
DETAIL OR DE

COMPUTER INDEPENDENT DETAILED DATA DESCRIPTION
COMPILER DIRECTING DECLARATIVES

DISPLAY
DISTINCTION BETWEEN SUBSCRIPTS AND QUALIFIER
DIVIDE

ENVIRONMENT DIVISION
PROCEDURE DIVISION

IDENTIFICATION DIVISION
IDENTIFICATION DIVISION

DATA DIVISION GENERAL DESCRIPTION
DATA DIVISION ORGANIZATION

FLOATING DOLLAR
FLOAT DOLLAR SIGN

DOLLAR SIGN CHARACTER
DOUBLE PRECISION ITEMS

NE - NUMERIC EDITED
AE - ALPHANUMERIC EDITED

FE - FLOATING POINT NUMERIC EDITED
REPORT EDITING

EDITING CLAUSES
EDITING CLAUSES
EDITING SIGN CONTROL CHARACTERS
ELEMENTARY ITEM DEFINITION
ELEMENTARY ITEMS
ENDING-TAPE-LABEL
ENTER
ENTER DEFINITIONS
ENTER LINKAGE MODE

VI 32
E 2

VI 8
VI 25,66
v 2

VI 52
VI 18
IX 3
B 11

VI 78
VI 34
VI 32
VI 32

VIII 4.2
VII 17
VII 18
III 5

VI 51,52,53
v 2

VII 35
VI 30
VI 19

VII 62
VI 21
VI 19
VI 16
VI 1
VI 4
VI 51
VI 50
v 8

VI 2
E 3

VI 80
VI 78
VI 19

VII 18
VII 29

v 10
VII 30

VIII 1
VII 1
II 2
IX 1
VI 1
VI 1
VI 33
VI 26
VI 35

A 6,10

VI 33
VI 33
VI 36
VI 20
VI 67
VI 26
VI 34
VI 52
VI 17

B 12
VII 31
VII 35
VII 36

@~c(ID@@ ~~[ffiO~~ _________ c_oBOL

INDEX-4

REPORT-GROUP ENTRIES
RD ENTRY

REPORT GROUP DESCRIPTION ENTRY
REPORT NAME DESCRIPTION ENTRY

FILE DESCRIPTION COMPLETE ENTRY
RECORD DESCRIPTION ENTRY

FILE DESCRIPTION ENTRY
SPECIFIC ENTRY FOR A CONDITION-NAME

ENTRY FORMATS
VERB AND ENTRY FORMATS
COMPLETE ENTRY SKELETON

ALTERNATE ENTRY SYMBOLS FOR GEFRC MODULES
ENTRY-COUNT
ENVIRONMENT DIVISION
ENVIRONMENT DIVISION
EXAMINE

SENTENCE EXECUTION
EXIT
EXIT PARAGRAPH

DERIVATION OF EXTERNAL AND INTERNAL FORMAT
EXTERNAL FORMAT CONSIDERATIONS
EXTERNAL VERSUS INTERNAL FORMATS

FE - FLOATING-POINT NUMERIC EDITED
SIZE OF A FIGURATIVE CONSTANT

FIGURATIVE CONSTANTS
MULTIPLE FILE

DATA FILE COMMUNICATIONS
FILE CONTROL CARDS
FILE CONVERSION TO GE-625/635 FORMATS
FILE DESCRIPTION COMPLETE ENTRY
FILE DESCRIPTION ENTRY

COBOL FILE FORMATS
MULTIPLE FILE OPTION

FILE SECTION
FILE SIZE
FILE STORAGE AREAS

MULTIPLE FILE TAPES
ASSIGNED FILE-CODES

INPUT-OUTPUT SECTION FILE-CONTROL
USING FILE-NAME-2 OPTION

FILE-SERIAL-NUMBER
NONLABELED MULTIPLE REEL FILES

PROCESSING STRANGER FILES VIA COBOL
KEY WORD FILLER

FILLER ITEMS
FINAL TYPE CONTROL BREAK
FIXED INSERTION CHARACTERS
FLOAT DOLLAR SIGN
FLOATING DOLLAR
FLOATING MINUS
FLOATING PLUS

STANDARD FLOATING POINT BINARY FORMAT
FE - FLOATING POINT NUMERIC EDITED

WITH THE PAGE LIMITS FOOTING OPTION
WITHOUT THE PAGE LIMITS FOOTING OPTION

EXTERNAL AND INTERNAL FORMAT
STANDARD DATA FORMAT

SYSTEM STANDARD FORMAT
FLOATING-POINT BINARY FORMAT

LOGICAL RECORD FORMAT
EXTERNAL FORMAT CONSIDERATIONS
INTERNAL FORMAT CONSIDERATIONS

FORMAT DEFINITION

INDEX-5

VI 61
VI 55
VI 51
VI 50
VI 4
v 8

VI 2
VI 48
VI 3,20,54
IV 1
VI 21

D 2
B 31

VIII 1
III 2
VII 38
VII 3
VII 40

x 3
VI 19

B 2
B 26

VI 36
v 5
v 4

VIII 8
x 1
B 18
D 5

VI 4
VI 2

B 1
B 15

VI 83
VI 6

B 32
B 15

VIII 6
VIII 5

VII 63
B 10
c 1
D 1

VI 25
VI 85
VI 78
VI 34
VI 26
VI 33
VI 33
VI 33

A 3
VI 36
VI 80
VI 80
VI 19
VI 19

B 4, 19
A 3
B 3
B 2
B 24

VI 52

SYSTEM STANDARD OR VLR FORMAT ON STATEMENT
RULES OF PROCEDURE FORMATION

VERB FORMATS
SENTENCE FORMATS

ENTRY FORMATS
VERB AND ENTRY FORMATS

SPECIFIC FORMATS
COMPUTATIONAL ITEM FORMATS

COBOL FILE FORMATS
TARGET FORMATS

EXTERNAL VERSUS INTERNAL FORMATS
FILE CONVERSION TO GE-625/635 FORMATS

FORMING COMPOUND CONDITIONS
FORMULAS

REPRESENTATION OF FRACTIONAL VALUES
FROM LIBRARY

ALTERNATE ENTRY SYMBOLS FOR GEFRC MODULES
FILE CONVERSION TO GE-625/635 FORMATS

GENERATE
GIVING OPTION
GO

RELATIVE NEXT GROUP
NEXT GROUP

GROUP INDICATE
GROUP-ITEM DEFINITION

CONTROL-HEADING REPORT GROUPS

SPECIFICATIONS AND HANDLING OF LABELS
SPECIFICATION AND HANDLING OF LABELS

IDENTIFICATION
PURPOSE OF THE IDENTIFICATION DIVISION

IDENTIFICATION DIVISION
IDENTIFICATION DIVISION
I-0 CONTROL
IMPERATIVE SENTENCES
IMPERATIVE STATEMENTS

COMPUTER INDEPENDENT DETAILED DATA DESCRIPTION
GROUP INDICATE

INITIAL VALUE OF ANY ITEM IN THE WORKING-STOR
INITIATE
INPUT PROCEDURE
INPUT-OUTPUT SECTION
INPUT-OUTPUT SECTION FILE-CONTROL

SPECIAL INSERTION CHARACTER
FIXED INSERTION CHARACTERS

INSTALLATION
MINOR, INTERMEDIATE, AND MAJOR CONTROL SPECIFICATION

DERIVATION OF EXTERNAL AND INTERNAL FORMAT
INTERNAL FORMAT CONSIDERATIONS

EXTERNAL VERSUS INTERNAL FORMATS
DATA-NAMES INTRODUCED BY A RENAMES CLAUSE

SIZE OF THE DATA ITEM
SYNCHRONIZED ITEM

ITEM ALIGNMENT AND SPACING
ELEMENTARY ITEM DEFINITION

COMPUTATIONAL ITEM FORMATS
INITIAL VALUE OF ANY ITEM IN THE WORKING-STORAGE

OCCURS •.• DEPENDING ITEMS
COMPARISON OF NUMERIC ITEMS

FILLER ITEMS
COMPARISON OF NON-NUMERIC ITEMS

ELEMENTARY ITEMS

INDEX-6

VIII 7 .1
VII 1
VII 3
VII 3

VI 3,20,54
IV 1
VI 20

A 1
B 1
D 2
B 26
D 5

VII 17
VII 18

A 2
VI 24

D 2
D 5

VII 41
VII 64
VII 43

VI 53
VI 62, 72
VI 68
VI 52
VI 79

VI 83
B 9

B 11
II 2
IX 1

III 1
VIII 7
VII 2,4
VII 1

VI 19
VI 68
VI 87

VII 44
VII 62

VIII 1
VIII 5

VI 77
VI 34

B 10
VI 79
VI 19

B 24
B 26

VI 18
VI 32
VI 20
VI 19
VI 52

A 1
VI 87
VI 30

VII 5
VI 85

VII 6
VI 17

COBOL

COMPUTATIONAL- I ITEMS
COMPUTATIONAL-3 AND -4 ITEMS

DOUBLE PRECISION ITEMS
COMPUTATIONAL ITEMS

COMPUTATIONAL-2 ITEMS

JUSTIFIED
JUSTIFIED RIGHT

KEY WORD FILLER
KEY WORDS

LABEL RECORDS
IF LABEL RECORDS ARE OMITTED

SPECIFICATIONS AND HANDLING OF LABELS
SPECIFICATION AND HANDLING OF LABELS

WITHOUT THE PAGE LIMITS LAST DETAIL OPTION
LEAVING OPTION

SYNCHRONIZED LEFT
VLR VARIABLE LENGTH RECORD

LEVEL NUMBER
LEVEL-NUMBER

CONCEPT OF LEVELS
FROM LIBRARY

LINE DEFINITION
RELATIVE LINE NUMBER

LINE-COUNTER
LINE NUMBER
LINE NUMBER CLAUSE

ENTER LINKAGE MODE
COMPLETE LIST OF RESERVED WORDS

NUMERIC LITERAL
LITERALS

POINT LOCATION
LOGICAL RECORD FORMAT
LOWER CASE WORDS

THE BCD AND LOW DENSITY OPTIONS

MINOR, INTERMEDIATE, AND MAJOR CONTROL SPECIFICATIONS
DATA MANIPULATION

PERFORM MECHANISM FOR OPTIONS 1 THROUGH 4
THE PERIPHERAL MEDIUM

MINIMUM BINARY SCALE
MINOR, INTERMEDIATE, AND MAJOR CONTROL

FLOATING MINUS
ENTER LINKAGE MODE

RECORDING MODE
ENTRY SYMBOLS FOR GEFRC MODULES

MOVE
MULTILEVEL SUBSCRIPTS
MULTIPLE FILE
MULTIPLE FILE OPTION
MULTIPLE FILE TAPES

PROCESSING NONLABELED MULTIPLE REEL FILES
MULTIPLY

NE - NUMERIC EDITED
RELATIVE NEXT GROUP

NEXT GROUP
NON-CONTIGUOUS CONSTANT STORAGE
NON-CONTIGUOUS WORKING-STORAGE

COMPARISON OF NON-NUMERIC ITEMS
PROCESSING NONLABELED MULTIPLE REEL FILES

INDEX-7

A
A
A
A
A

VI
VI

VI
v

VI
B

VI
B

VI
VI

B

VIII
VI
VI
VI
VI
VI
VI
VI
VI
VI

VII
v
v
v

VI
B

IV
B

VI
E

VII
B

A
SPECIFIC VI

VI
VII

VI
D

VII
v

VIII

8
9
6
3
8

69
28

25
6

10
13
83

9
80
26
27
7.1

29
70
17
24
52
53
53
71
62
36
11

3
3

38
3
1

15

79
2

53
17
11
79
33
36
12,30.1

2
45

9
8

B 15
B 15
c 1

VII 48

VI 33
VI 53
VI 62,72
VI 88
VI 86

VII 6
c 1

COBOL

NOTE
NOUNS

COLUMN NUMBER
RELATIVE LINE NUMBER

LEVEL NUMBER
BLOCK SERIAL NUMBER

NUMERIC
FE - FLOATING-POINT NUMERIC EDITED

NE - NUMERIC EDITED
COMPARISON OF NUMERIC ITEMS

NUMERIC LITERAL

OBJECT-COMPUTER
OCCURS

RESULT OF OCCURS ••• DEPENDING
OCCURS ••• DEPENDING ITEMS

OVERFLOW-HEADING OR OH
OPEN

BASIC OPERATORS
PAGE LIMITS LAST DETAIL OPTION

PAGE LIMITS FOOTING OPTION
PAGE LIMITS FOOTING OPTION

BITS OPTION
RENAMING OPTION

VARYING SUBSCRIPT-NAME OPTION
GIVING OPTION

RESERVE OPTION
USING FILE-NAME-2 OPTION

ADVANCING OPTION
LEAVING OPTION

BLANK WHEN ZERO OPTION
DEPENDING OPTION

MULTIPLE FILE OPTION
RERUN OPTION
UNTIL OPTION OF PERFORM

PLACES OPTION OF THE POINT CLAUSE
OPTIONAL WORDS
OPTIONAL WORDS

PAGE LIMITS OPTIONS
THE BCD AND LOW DENSITY OPTIONS

PERFORM MECHANISM FOR OPTIONS 1 THROUGH 4
OUTPUT PROCEDURE
OVERFLOW CONDITION
OVERFLOW FOOTING OR OV
OVERFLOW HEADING OR OH

PAGE BREAK DEFINITION
PAGE DEFINITION
PAGE COUNTER
PAGE FOOTING OR PF
PAGE HEADING OR PH

WITH THE PAGE LIMITS FOOTING OPTION
WITHOUT THE PAGE LIMITS FOOTING OPTION
WITHOUT THE PAGE LIMITS LAST DETAIL OPTION

PAGE LIMITS OPTIONS
EXIT PARAGRAPH

PERFORM
UNTIL OPTION OF PERFORM

PERFORM MECHANISM FOR
USE OF PERFORM STATEMENTS

PERIOD
THE PERIPHERAL MEDIUM

STRANGER PERIPHERALS
PAGE-FOOTING OR PF

INDEX-8

OPTIONS 1 THROUGH 4

VII 49
v 2

VI 64
VI 53
VI 29

B 9
VI 22
VI 36
VI 33

VII 5
v 3

VIII 3
VI 30

B 29
VI 30
VI 77

VII 50
VII 18

VI 80
VI 80
VI 80
VI 38

VIII 5
VII 54
VII 64

VIII 6
VII 63
VII 70

VI 26
VI 26
VI 30

B 15
VIII 7.1

E 3
VI 38
IV 1
v 6

VI 59
B 15

VII 53
VII 63

VI 79
VI 78
VI 77

VI 53
VI 51
VI 54
VI 78
VI 77
VI 80
VI 80
VI 80
VI 59
x 3

VII 51
E 3

VII 53
VII 37

IV 1
B 17
D 6

VI 77

PAGE-HEADING OR PH
PICTURE
PICTURE
PICTURE CLAUSE

UTILIZATION OF PLUG-IN POINTS
PLUG-IN-POINTS

FLOATING PLUS
POINT CLAUSE
POINT LOCATION
POINT LOCATION

UTILIZATION OF PLUG-IN POINTS
ASSUMED DECIMAL SCALING POSITION

COMPUTATIONAL-4 DOUBLE PRECISION
DOUBLE PRECISION ITEMS

PRINT GROUP DEFINITION
PROCEDURAL COMMUNICATIONS

INPUT PROCEDURE
OUTPUT PROCEDURE

PROCEDURE DIVISION
RULES OF PROCEDURE FORMATION

PROCEDURE DIVISION
PROCEDURE-NAME

APPLY PROCESS AREA
PROCESS AREA

APPLY PROCESS AREA
PROCESS AREA
PROCESS AREA
PROCESSING NONLABELED MULTIPLE REEL FILES
PROCESSING STRANGER FILES VIA COBOL
PROGRAM-ID
PROGRAM-ID

CHECK PROTECT
SENTENCE PUNCTUATION

PURPOSE OF THE IDENTIFICATION DIVISION

QUALIFICATION IN COBOL
BETWEEN SUBSCRIPTS AND QUALIFIERS

RANGE
RD ENTRY
READ
RECORD DESCRIPTION
RECORD DESCRIPTION
RECORD DESCRIPTION ENTRY
RECORD SIZE
RECORD SIZE
RECORDING MODE

VLR VARIABLE LENGTH RECORD
WORKING-STORAGE RECORDS

CONSTANT RECORDS
DATA RECORDS

LABEL RECORDS
LABEL RECORDS

RECURRENT STRANGER COMMUNICATIONS
REDEFINES

PROCESSING NONLABELED MULTIPLE REEL FILES
REEL-NUMBER
REEL-SERIAL-NUMBER
REFERENCE FORMAT
RELATION TESTS
RELATIVE LINE NUMBER
RELATIVE NEXT GROUP
RELEASE
RELEASE AND RETURN STATEMENTS

VI 78
VI 73
VI 31
VI 27

D 4
D 3

VI 33
VI 38
VI 38
VI 74

D 4
VI 32

A 10
A 6

VI 52
x 3

VII 62
VII 63
VII 1
VII 1
III 4

v 3
VIII 7

E 1
E 1
B 1
B 33
c 1
D 1
x 3

IX 2
VI 26

VII 3
II 2

v 7
v 10

VI 39
VI 55

VII 58
VI 16
VI 21
v 8

VI 11
VI 11
VI 12,30

VIII 7 .1
VI 87
VI 89
VI 8
VI 10
VI 10

D 6
VI 40
c 1
B 10
B 10

III 1
VII 5

VI 53
VI 53

VII 60
VI 2

@(Ea @(Q)@ ~(E(ffi O [E~ _________ _.;..co...;;.._BOL

INDEX-9

RENAMES
DATA-NAMES INTRODUCED BY A RENAMES CLAUSE

RENAMING OPTION
ASTERISK REPLACEMENT CHARACTER

REPORT
REPORT DEFINITION
REPORT EDITING

CONTROL-HEADING REPORT GROUPS
REPORT SECTION
REPORT FOOTING OR RF
REPORT-GROUP DEFINITION
REPORT GROUP DESCRIPTION ENTRY
REPORT GROUP ENTRIES
REPORT HEADING OR RH
REPORT NAME DESCRIPTION ENTRY
REPORTS%S
REPRESENTATION OF FRACTIONAL VALUES
REQUIRED WORDS
RERUN OPTI~ CAUSES
RESERVE ALTERNATE AREA
RESERVE OPTION
RESERVED WORDS

COMPLETE LIST OF RESERVED WORDS
RESULT OF COMPUTATIONAL USAGES
RESULT OF OCCURS ... DEPENDING
RESULT OF SYNCHRONIZED CLAUSE
RETENTION-PERIOD
RETURN

RELEASE AND RETURN STATEMENTS
REPORT FOOTING OR RF
REPORT HEADING OR RH

JUSTIFIED RIGHT
RULES OF PROCEDURE INFORMATION

SAME AREA
SAME AREA
SAME CLAUSE
SAMPLE-RECORD

MINIMUM BINARY SCALE
ASSUMED DECIMAL SCALING POSITION
WORKING-STORAGE SECTION

CONSTANT SECTION
FILE SECTION

REPORT SECTION
INPUT-OUTPUT SECTION

CONFIGURATION SECTION
INPUT-OUTPUT SECTION FILE-CONTROL

CONFIGURATION SECTION SOURCE-COMPUTER
WORKING-STORAGE OR CONSTANT SECTION STORAGE AREAS

SOURCE-PROGRAM SEGMENTATION
SELECT SENTENCES
SENTENCE EXECUTION
SENTENCE FORMATS
SENTENCE PUNCTUATION

COMPILER-DIRECTING SENTENCES
SENTENCES

CONDITIONAL SENTENCES
IMPERATIVE SENTENCES

SELECT SENTENCES
SEQUENCED

BLOCK SERIAL NUMBER
SERIES CONNECTIVES
SIGN

FLOAT DOLLAR SIGN

INDEX-10

VI 41
VI 18

VIII 5
VI 35
VI 50
VI 51
VI 20
VI 79
VI 50
VI 78
VI 52
VI 51
VI 61
VI 77
VI 50
VI 13

A 2
IV

VIII 7.1
E 1

VIII 6
v 6
v 11
B 28
B 29
B 26
B 11

VII 61
VI 2
VI 78
VI 77
VI 28

VII 1

B 33
E 1

VIII 8
B 31
A 11

VI 32
VI 86
VI 88
VI 83
VI 50

VIII 1
VIII 1
VIII 5
VIII 2
VIII 4.1

x 1
VIII 5

VII 3
VII 3
VII 3
VII 2,4
VII 2
VII 2,4
VII 2,4

VIII 5
VI 14

B 9
v 10

VI 42
VI 26

DOLLAR SIGN CHARACTER
EDITING SIGN CONTROL CHARACTERS

ALGEBRAIC SIGNS
SIZE

BLOCK SIZE
BLOCK SIZE

FILE SIZE
RECORD SIZE
RECORD SIZE

SIZE OF A FIGURATIVE CONSTANT
SIZE OF THE DATA ITEM

COMPLETE ENTRY SKELETON
SORT

THE SORT VERB
SORT-FILE

CONFIGURATION SECTION SOURCE-COMPUTER
SOURCE-PROGRAM SEGMENTATION
SOURCE-SUM-VALUE

ITEM ALIGNMENT AND SPACING
SPECIAL INSERTION CHARACTER
SPECIAL-NAMES
SPECIFIC ENTRY FOR A CONDITION-NAME
SPECIFIC FORMATS
SPECIFICATION AND HANDLING OF LABELS

INTERMEDIATE, AND MAJOR CONTROL SPECIFICATIONS
SPECIFICATIONS AND HANDLING OF LABELS
STANDARD COLLATING SEQUENCE
STANDARD DATA FORMAT
STANDARD FLOATING-POINT BINARY FORMAT

SYSTEM STANDARD FORMAT
SYSTEM STANDARD FORMAT

APPLY SYSTEM STANDARD OR VLR FORMAT ON STATEMENT
STANDARD ZERO SUPPRESSION

COMPILER DIRECTING STATEMENTS
CONDITIONAL STATEMENTS

IMPERATIVE STATEMENTS
USE OF PERFORM STATEMENTS

RELEASE AND RETURN STATEMENTS
SWITCH STATUS TESTS

STOP
NON-CONTIGUOUS CONSTANT STORAGE

CONSTANT SECTION STORAGE AREAS
FILE STORAGE AREAS

PROCESSING STRANGER FILES VIA COBOL
STRANGER PERIPHERALS
SUBSCRIPTING

VARYING SUBSCRIPT-NAME OPTION
MULTILEVEL SUBSCRIPTS

DISTINCTION BETWEEN SUBSCRIPTS AND QUALIFIERS
SUBTRACT

ZERO SUPPRESS
STANDARD ZERO SUPPRESSION

SWITCH STATUS TESTS
ALTERNATE ENTRY SYMBOLS FOR GEFRC MODULES

SYNCHRONIZED
SYNCHRONIZED

RESULT OF SYNCHRONIZED CLAUSE
SYNCHRONIZED ITEM
SYNCHRONIZED LEFT
SYNCHRONIZED RIGHT
SYSTEM STANDARD FORMAT
SYSTEM STANDARD FORMAT

APPLY SYSTEM STANDARD OR VLR FORMAT ON STATEMENT

INDEX-11

VI 35
VI 34
VI 19
VI 43,74

B 6
VI 6
VI 6
VI 11
VI 11
v 5

VI 32
VI 21

VII 62
VI 2
VI 2

VIII 2
x l

VI 75
VI 19
VI 34

VIII 4
VI 48
VI 20

B 9
VI 79
VI 83

VII 7
VI 19

A 3
B 4
B 19

VIII 7.1
VI 35

VII 2
VII l
VII 1
VII 37

VI 2
VII 9.1
VII 65

VI 88
VIII 4.1

B 32
D l
D 6
v 8

VII 54
v 9
v 10

VII 66
VI 26
VI 35

VII 9.1
D 2

VI 44
VI 30

B 26
VI 20

B 27
B 26
B 4
B 19

VIII 7 .1

TABLE OF CONSTANTS
TALLY

UTILITY TAPES
MULTIPLE FILE TAPES

TARGET FORMATS
TERMINATE

CLASS TEST
CONDITIONAL VARIABLE TEST

SWITCH STATUS TESTS
RELATION TESTS

TYPE

UNTIL OPTION OF PERFORM
USAGE
USAGE
USAGE COMPUTATIONAL-1
USE
USE OF PERFORM STATEMENTS
USING FILE-NAME-2 OPTION
UTILITY TAPES
UTILIZATION OF PLUG-IN POINTS

VALUE
VALUE
VALUE
VALUE CLAUSE

INITIAL VALUE OF ANY ITEM IN THE WORKING-STORAGE
VALUE OF CONSTANTS

PRESENTATION OF FRACTIONAL VALUES
CONDITIONAL VARIABLE TEST

VARYING SUBSCRIPT-NAME OPTION
THE SORT VERB

VERB AND ENTRY FORMATS
VERB FORMATS
VERBS
VERBS

PROCESSING STRANGER FILES VIA COBOL
APPLY SYSTEM STANDARD OR VLR FORMAT ON STATEMENT

VLR VARIABLE LENGTH RECORD

WITHOUT THE PAGE LIMITS FOOTING OPTION
WITHOUT THE PAGE LIMITS LAST DETAIL OPTION

KEY WORD FILLER
REQUIRED WORDS
OPTIONAL WORDS

LOWER-CASE WORDS
DEFINITION OF WORDS

RESERVED WORDS
OPTIONAL WORDS

KEY WORDS
COMPLETE LIST OF RESERVED WORDS

VALUE OF ANY ITEM IN THE WORKING-STORAGE
NON-CONTIGUOUS WORKING-STORAGE

WORKING-STORAGE CO:t1MUNICATIONS
WORKING-STORAGE OR CONSTANT SECTION STORAGE
WORKING-STORAGE RECORDS
WORKING-STORAGE SECTION
WRITE

BLANK WHEN ZERO OPTION
ZERO SUPPRESS

STANDARD ZERO SUPPRESSION

INDEX-12

VI 89
v 6

VIII 6
B 15
D 2

VII 67
VII 9
VII 9
VII 9.1
VII 5

VI 77

E 3
VI 82
VI 45
VI 30

VII 68
VII 37
VII 63

VIII 6
D 4

VI 76
VI 15
VI 47
VI 87
VI 87
VI 89

A 2
VII 9
VII 54

VI 2
IV 1

VII 3
VII 20

v 6
D 1

VIII 7.1
VIII 7.1

VI 80
VI 80
VI 25
IV 1
IV 1
IV 1
v 2
v 6
v 6
v 6
v 11

VI 87
VI 86
x 2

VIII 4.1
VI 87
VI 86

VII 70

VI 26
VI 26
VI 35

COBOL

DOCUMENT REVIEW SHEET

TITLE: ____ G_E_-_62_5_/_6_3_5 __ c_o_Bo_L __ R_e_f_e_r_e_n_ce __ M_a_n_u_a_l __________ __

c p I #: _ 10 0 1 F --

From:
Name: __________________________________ __

Position: ----------------

Address: -------------------------------

Comments concerning this publication are solicited for use in improving futur
editions. Please provide any recommended additions, deletions, corrections,
other information you deem necessary for improving this manual. The followin
space is provided for your comments.

• COMMENTS:
c:

..
c:
D ..
-::a
u ..
M
A.

NO POSTAGE NECESSARY IF MAILED IN U.S.A.
Fold on two lines shown on reverse

side, staple, and mail.

STAPL.E

FOLD

BUSINESS REPLY MAIL
NO P08TA•• 8TAMP Nl:C888Alt\' IP' MA1L8D IN TH8 UNITSD 8TAT88

POSTAGE WILL BE PAID BY

GENERAL ELECTRIC COMPANY

INFORMATION SYSTEMS EQUIPMENT DIVISION

13430 NORTH BLACK CANYON HIGHWAY

PHOENIX, ARIZONA 85029

ATTENTION: DOCUMENTATION LARGE SYSTEMS DEPARTMENT C-77

FOLD

STAPLE

FIRST CLASS

PERMIT, No. 4332

PHOENIX, ARIZONA

INFORMATION SYSTEMS

GENERAL fj ELECTRIC

UTHOU.&A.

