

GE-115 User's Guide

ADVANCE INFORMATION

CP 8-1204A

GE-115 USER'S GUIDE

REFERENCE MANUAL

November 1965

COMPUTER DEPARTMENT

PREFACE

This manual is a user's guide and reference manual for the GE-115 Information Processing System.

An assembly language is provided which allows for program statements in simple mnemonic and symbolic phrases. All translation to the GE-115 internal system language is performed by the assembler. The GE-115 system is described in terms of the assembly language.

A knowledge of general programming principles is helpful; no knowledge of other assembler languages or systems is required.

Terminology is according to the International Federation for Information Processing and the International Computation Centre (IFIP/ICC) Vocabulary of Information Processing.

Comments on this publication may be addressed to Technical Publications, Computer Department, General Electric Company, P. O. Box 2961, Phoenix, Arizona, 85002.

C 1965 By General Electric Company (500 3-67)

GE-115 ----

USER'S GUIDE

${\tt CONTENTS}$

	INTRODUCTION	Pages
	SECTION A - GENERAL INFORMATION	
PARTI-	GE-115 SYSTEM INFORMATION	1
	THE CENTRAL PROCESSOR	3
	Store	3
	INFORMATION IN STORE	3
	PACKED DATA	7
	THE FORMAT OF THE INTERNAL INSTRUCTION	9
		10
	Figure A-3 : Internal Configuration of the GE-115 Instruction Set	11
	THE PARTS OF THE INTERNAL INSTRUCTION	12
	The Operation	12
	Operation Complement	12
	Length	12
	Data within the Instruction	13
	Conditions for Jumps	14
	Operation Differentiators	15
	Input/Output Unit References	15
	Addresses of Operands	16
PART II -	GE-115 ASSEMBLY LANGUAGE INFORMATION	17
	THE SYMBOLS OF THE GE-115 ASSEMBLY LANGUAGE	18
	Figure A-4 : The $GE-115$ Character Set	19
	Reserved Symbols	20
	Figure A-5 : Symbols reserved by the GE-115 Assembler	21
	Control Characters	22
	WRITING STATEMENTS IN THE GE-115 ASSEMBLY LANGUAGE	23
	THE PROGRAMMING FORM	23
	Identification	23
	Page Number	25
	Line Number	25
	Name	25
	Operation Code	26
	Operand Specifications	27
	Types of Operands	27
	Methods of Specifying Operands	27
	Figure A-7 : The GE-115 Assembler Mistake Codes	34
	REFERENCING DATA FIELDS IN THE $GE-115$ assembly language	36

USER'S GUIDE

	Pages
SECTION B - GE-115 ASSEMBLY LANGUAGE INSTRUCTIONS	41
PART I - PRIMARY INSTRUCTIONS	43
ARITHMETIC INSTRUCTIONS	48
Add Decimal (AD)	51
Subtract Decimal (SD)	54
Add Binary (AB)	59
Subtract Binary (SB)	62
DATA MOVEMENT AND COMPARISON INSTRUCTIONS	65
Move immediate to store (MVI)	67
Move complete octets (MVC)	69
Move right quartets (MVQ)	71
Pack right quartets into octets (PK)	74
Unpack octets into right quartets (UPK)	76
Compare immediate to store (CM1)	78
Compare complete octets (CMC)	80
Compare right quartets (CMQ)	83
Search to the right (SR)	85
Search to the left (SL)	88
LOGIC INSTRUCTIONS	90
'AND' on complete octets (NC)	91
'OR' on complete octets (OC)	92
Exclusive 'OR' on complete octets (XC)	93
JUMP INSTRUCTIONS	95
Jump on Condition (JC)	97
Figure B-2 : Indicator settings tested by conditional jumps	100
Jump if Greater (JG)	101
Jump if Equal (JE)	101
Jump if Greater or Equal (JGE)	101
Jump Less (JL)	101
Jump Not Equal (JNE)	101
Jump Less or Equal (JLE)	101
Jump Unconditional (JU)	102
No Jump (NOJ)	103
Figure B-3 : Table of conditional Jumps	104
Jump if Switch 1 set (JS1)	105
Jump if Switch 2 set (JS2)	105
Jump and return (JRT)	107
EDIT INSTRUCTIONS	108
Edit (EDT)	109
Translate octets (TR)	114

SYSTEM ACTION INSTRUCTIONS	117
Halt system operation (HLT)	118
No operation (NOP2)	119
Turn alert light on (LON)	120
Turn alert light off (LOFF)	121
Inhibit single stop (INS)	122
Enable single stop (ENS)	123
INPUT/OUTPUT INSTRUCTIONS	124
Call peripheral (PER) Data Transfer	129
Call peripheral (PER) Peripheral Status Test	135
Call peripheral (PER) Peripheral Unit Control	137
PART II - DIRECTIVE INSTRUCTIONS	139
DEFINITION STATEMENTS	141
Define store area (DS)	143
Define constant (DC) Character Constant	146
Define constant (DC) Hexadecimal Constant	148
Define constant (DC) Address Constant	150
Define peripheral instruction (DP) Data Transfer	152
Define peripheral instruction (DP) Peripheral Status Test	154
Define peripheral instruction (DP) Peripheral Unit Control	155
THE ASSEMBLER PROGRAM CONTROL INSTRUCTIONS	156
Start program assembly (STRT)	157
End of program (END)	159
Origin assignment (ORG)	160
ASSEMBLY LISTING FORMAT INSTRUCTIONS	162
Comment (*)	163
Eject present page (EJEC)	164
Line feed (LF)	165
SECTION C - GE-115 ARITHMETIC SUBROUTINES	167
Add decimal, signed (YADS)	172
Subtract decimal, signed (YSDS)	174
Multiplication, decimal, unsigned, fast (YMULF)	176
Division, decimal, unsigned, fast (YDIVF)	178

GE-115-

APPENDICES

•

A - TABLES

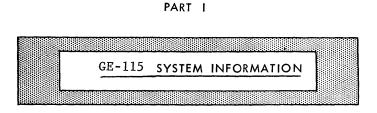
Figure 1 : TABLE OF CARD AND PRINTER CHARACTER REPRESENTATION	184
Figure 2 : TABLE OF GE-115 OPERATIONS BY HEXADECIMAL REPRESEN TATION	187
Figure 3 : TABLE OF GE-115 OPERATIONS BY MNEMONIC EXPRESSION	189
Figure 4 : GE-115 INSTRUCTIONS REFERENCE CHART	191
B - ASSEMBLING A GE-115 PROGRAM	197
PROGRAMMERS CHECK LIST	198
Figure 1 : DECK SET-UP FOR ASSEMBLY	197
C - BINARY NOTATION	203
D - HEXADECIMAL TO DECIMAL CONVERSION CHART	207

INTRODUCTION

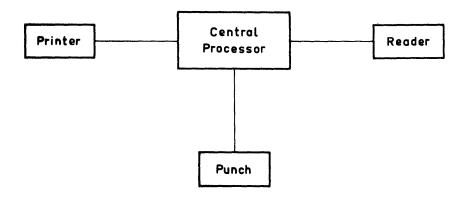
The GE-115 is a small scale electronic information processing system designed to serve a wide variety of user needs.

- As a card processing system, the GE-115 may be used to perform all the tasks carried out by a punched card tabulation installation.
- As a remote terminal, the GE-115 may be used in conjunction with a large scale information processing system as a data receiving and transmitting station.
- As an information processing system, the GE-115 may be programmed for applications in all fields. It is particularly suited to the processing of data for such applications as tabulations, inventories, record keeping and file updating.

This manual describes the GE-115 information processing system with card input and output only. It may serve any of the functions listed above.


Programs for the GE-115 are written in a simple symbolic language which is easy to learn and to use. No special skill, other than a knowledge of the application to be performed, is required to use the GE-115 system effectively.

USER'S GUIDE


SECTION A

GENERAL INFORMATION

USER'S GUIDE

The GE-115 Information Processing System consists of a central processor and associated auxiliary store and input/output units. The minimum system configuration is shown below.

(THE CENTRAL PROCESSOR)

The central processor is comprised of the following units:

Store

Store Control Unit Arithmetic Control Unit Peripheral Control Unit

Store

The store unit is an array of magnetic cores providing storage for instructions and data. A module of store contains 4096 store locations. The user may have one or two modules, that is 4096 or 8192 store locations. Information in the store is represented by the values of bits. Each bit is a binary digit and may have a value of 0 or 1.

NOTE: It is expected that the reader be familiar with the binary number system. If not, he should read Appendix C. before proceeding further in this manual. Eight bits make up the basic unit of reference in the GE-115 system. This unit is called the OCTET. An address is used to designate each octet. The octet is the smallest addressable unit in store. Store is conventionally represented as strings of addressable octets with the addresses increasing from left to right as shown in the figure below:

	0064	0065	0066	0067	Addresses
Z	octet	octet	octet	octet	Strings of octets

Associated with each 8-bit octet is a ninth bit used by the system for parity checking. This bit does not enter into programmed operations and data values. It is used by the system to monitor its own functioning. Each time an octet is placed in store odd parity is automatically generated and stored with the octet; that is, if the number of 1-bits is even, the parity bit is set to 1. Thus all octets in store have an odd 1-bit count. This odd count is tested and if the number of 1-bits is even, a parity alert is generated and the system halts operation.

There are two special locations in the store, 0254 and 0255. These locations form a field referenced in the GE-115 Assembly Language with the name LOC. The field is used by several instructions to store an address (See "Store Control Unit" below). The significance of the address stored in 0254 and 0255 is fully explained in the descriptions of the instructions which use these locations.

These are the only special purpose locations; there are no predefined input/output areas.

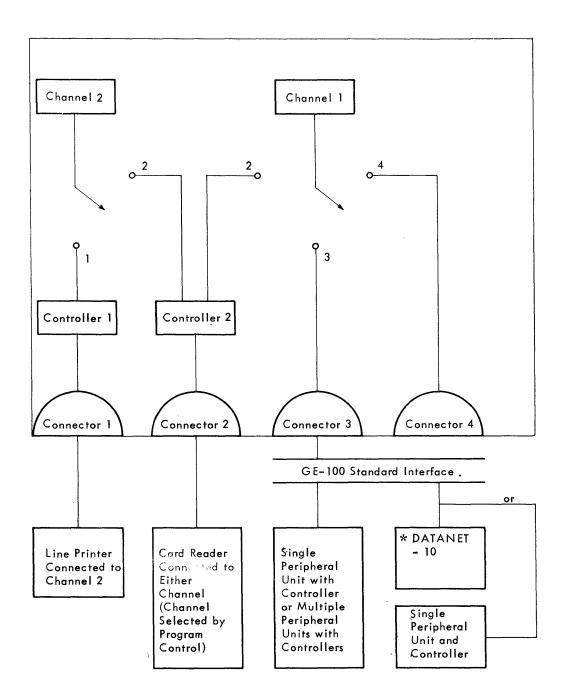
Store Control Unit

The store control unit fetches, interprets, and controls the execution of the operations specified by the instructions. An external control panel is available to provide for manual intervention and display of internal status.

Within the store control unit, a location counter controls the sequence of program instructions. During program execution, the location counter holds the address of the next sequential instruction in the store. When the sequence of the stored program is altered by any of the jump instructions, the new program address is entered in the location counter. The address in the location counter is displayed by lights on the control panel.

• Arithmetic Control Unit

The arithmetic control unit controls the execution of decimal and binary arithmetic operations, logic operations, and comparisons.


Two 1-bit indicators reflect the results of the arithmetic, logic, and comparison operations. Jump instructions test the values in these indicators to allow alteration of program sequence. The two indicators are the Underflow/Overflow (UF/OF) Indicator, and the Zero/Non-Zero (ZE/NZ) Indicator.

The indicators can be set to 0 or 1.

Peripheral Control Unit

The flow of data and instructions between the store and the input/output units is controlled by the peripheral control unit. This unit contains two channels able to operate with time-sharing of the store.

The two channels, in turn, control four Connectors for communication with the peripheral units, as shown in Figure A-1.

* Reg. Trademark of the General Electric Company

(INFORMATION IN STORE)

Information in store may be data or may be programmed instructions. Information is placed in the store as binary digits, or bits.

On the following pages the formats of information in store are discussed.

Octet

Eight binary digits make up the basic unit of reference in the GE-115 Information Processing System. This unit is called an OCTET.

Each octet has its own address. An octet is the smallest addressable unit in the store. The eight bit positions of the octet are referred to as 0-7, from right to left.

Bit position	76543210
Binary digits	01001111
	octet

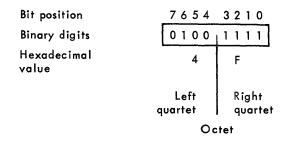
The octet may be used to represent one character. Each bit of the octet may have a value of 0 or 1. There are 2⁸ possible ordered combinations of binary digits in an octet, giving 256 possible internal character representations. The binary digit configuration in the example above is used internally in the GE-115 system to represent a question mark (?) character.

Quartet

The eight bits of an octet may be considered as two groups of four bits. Each group of four bits is called a QUARTET. Four bits give a set of 2^4 possible ordered combinations of 0 or 1, permitting values from 0 to 15 to be expressed.

Bit position	7654	3210	
Binary digits	0100	1111	
Decimal equivalent of the quartet value	4	15	
	Left quartet	Right quartet	
	Octet		

The decimal equivalent of the value of the left quartet of the 8-bit configuration for the question mark (?) character is 4 (four) and the decimal equivalent of the value of the right quartet is 15 (fifteen). These values are more easily represented by the HEXADECIMAL (base 16) number system.


Hexadecimal Representation of the Contents of an Octet

The hexadecimal number system is to the base 16. The digits used in the hexadecimal system are:

0123456789ABCDEF.

The digits represent the values 0 to 15, that is, A is used to represent 10, B to represent 11, etc.

Each octet can be represented by two hexadecimal digits.

The hexadecimal representation of the 8-bit configuration for the question mark character is 4F. For convenience, the internal octet bit patterns are usually represented as two hexadecimal digits.

The pattern of the left quartet (of the left hexadecimal digit) is the zone. The pattern of the zone is identical for certain sets of characters. For example, when numeric quantities are to be represented internally using the decimal numerals 0-9, rather than their binary equivalents, all decimal digits have the value 4 (0100) in the zone position. The hexadecimal representation of the octet configurations for the decimal numerals 0 to 9 are 40 to 49. One octet contains one decimal digit. The right quartet contains the numeric value and the left the character zone.

The figure below shows the binary and hexadecimal configurations of the decimal numeral 2. Note that one octet is used to express one decimal digit or character.

	Octet	
	Left quartet	Right quartet
Hexadecimal value	4	2
Binary digits	0100	0010
Bit position	7654	3210

GE-115

(PACKED DATA)

Within the GE-115 system the right quartets are sometimes considered independently. To facilitate manipulation of right quartets (usually where left quartets are the same), data may be placed into octets in packed form.

To pack or condense data the like pattern in the zones of a pair of octets is omitted and the two right quartets are placed in a single octet.

Thus, if the machine recognizes

0100	1001
------	------

as a decimal 9, and

as a decimal 8, a packed octet containing both 8 and 9 appears as

The operations of the GE-115 system provide for condensing information in this way and expanding it again. Some operations are provided to process data in the condensed form.

It is possible to condense information with unlike zones, but the pattern must be known in order to expand the data to its original form. For example,

in condensed form would appear

When this octet is expanded, the result would be

×××× 0001 ×××× 0010

The left quartet patterns in the receiving field must be properly set by the programmer according to the intended use of the unpacked field.

THE FORMAT OF THE INTERNAL INSTRUCTION

An instruction is a statement specifying an operation to be carried out by the GE-115 system. It contains an operation code, any required constants, and references to any data fields used. The length of an instruction depends upon the operation specified, and requires two, four, or six-octets instore. Instructions can be divided into three groups according to the length of the instruction. The possible components of an instruction and resulting lengths are shown in Figure A-2.

Length in Octets	Operation	Operation Complement	Address	Address
6				
4				
2				
	One Octet	One Octet	Two Octets	Two Octets

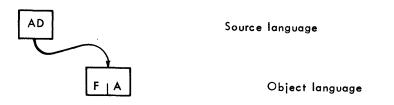
Figure A-2

Figure A-3 shows the GE-115 assembly language instructions and the format of each. Note that the operation portion of an instruction requires one octet. The operation complement portion of an instruction requires one octet. Each operand address requires two octets.

Figure A-3 also shows the internal hexadecimal configuration for each operation and in some cases, the internal configuration of the operation complement. These codes are given here for the programmer's information. Although familiarity with these codes may be useful in identifying operations in an object language program listing, a knowledge of them is not required of the programmer using the GE-115 system.

It is strongly recommended that programs be written so that their logic is <u>not</u> dependent upon the internal instruction codes for operations.

M n _e	INTERNAL MACHINE INSTRUCTION CODE					
M "e _m o"ic	Operation	Operation Complement	Operand Address Operand Address			
AB AD SB SD CMQ CMC CMC CMC NC OC XC VPK SL SR TR EDT	F A F B 9 8 5 2 4 6 7 8 A B 9 C E	L(α) L(β) L(α) L(α) L(β)	ALPHA Address BETA Address BINARY ZEROS BINARY ZEROS			
C MI MVI PER JRT JC JC JE JGE JL JLE JU JUJ JS1 JS2	9 5 2 E 4 I 3	Binary Val Binary Val F 0 0 • • • • • • • • • • • • • • • • • •	OCTET ADDRESS OCTET ADDRESS GAMMA ADDRESS			
HLT NOP2 ENS INS LOFF LON	0 A 7 2 	0 0 0 1 2 E 8				
	l st OCTET	2nd OCTET	3rd & 4th 5th & 6th OCTETS OCTETS			


Figure A-3 : INTERNAL CONFIGURATION OF THE GE-115 INSTRUCTION SET

THE PARTS OF THE INTERNAL INSTRUCTION

The internal instruction must have an operation and an operation complement specified. It may also have one or two addresses of operands. A complete explanation of each of the internal instruction parts is given below.

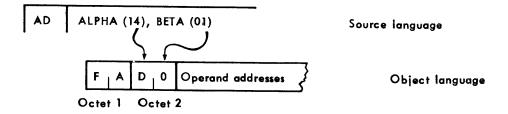
The Operation

Each instruction uses one octet to define the operation to be performed. The octet contains the binary pattern translated by the assembler from the mnemonic operation specified in the Assembly Language instruction. This binary pattern is by convention represented by a pair of hexadecimal digits. For example, the mnemonic AD is translated by the assembler to a pattern which is expressed in hexadecimal as FA.

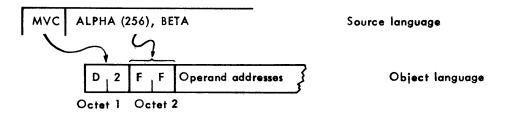
Operation Complement

The second octet is used in several different ways according to the type of operation specified in the instruction statement. In all cases the second octet complements the first. It may:

- Define the length of data fields
- Contain an immediate data item
- Define the conditions required for a jump
- Differentiate between operations having the same value in the first octet
- Contain the number of an input/output unit being used


Length

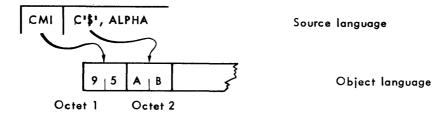
Some of the GE-115 system operations may treat data fields which are more than one octet in length. There are no field defining marks in store; the length of an operation is controlled by the length (or lengths) specified in the operation complement.


In instructions requiring two lengths for two data fields, each quartet of the operation complement specifies one length. The left quartet is the length of the first field; the right is the length of the second field. Since four bits are used for each length, the value in the quartet may range from 0000 to 1111 (0-15).

In instructions requiring that only one length be specified, the full octet of the operation complement field is used to define the length. The value for eight bits may range from 0 to 255.

In all operations which process variable length fields, the lengths really processed are one more than the lengths indicated in the operation complement. In the assembly language statement, the programmer specifies the length really processed. When two lengths must be specified these lengths may be from 01 to 16. When one length must be specified the length may be from 001 to 256. The assembler translates the lengths specified as shown in the examples below. In the first example below the Add Decimal (AD) instruction causes one decimal digit in the BETA field to be added to the decimal data 14 digits long in the ALPHA field.

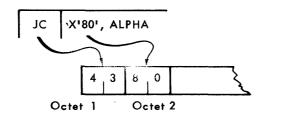
The Move Complete Octets (MVC) instruction shown below causes 256 octets to be moved from BETA to ALPHA.


Length specification is a minimum of one octet. A zero length in the operation complement of the assembled instruction operates as 1.

Data Within the Instruction

Some operations use data contained within the instruction itself. This data is referred to as "immediate" data. In those instructions using immediate data, the operation complement field contains one data item. The assembler translates the data item from its source language representation and places it in the second octet of the object instruction. The conventions for representing the immediate data item in the assembly language instruction are treated fully in the descriptions of the particular instructions using immediate data, and in the section, "WRITING INSTRUCTION STATEMENTS IN THE GE-115 ASSEMBLY LANGUAGE".

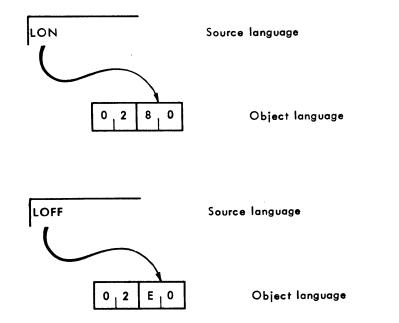
One example of an instruction using immediate data is the Compare Immediate to Store (CMI) instruction. In the example below, the field ALPHA is compared to the internal representation of a \$.


This representation is 1010 1011 (in hexadecimal, AB). The source and object language representation of the CMI instruction is:

NOTE : Instructions using immediate data also reference a data item in store (ALPHA in the example above). The assumed length of the referenced data is one octet; there is no length specified in the assembled instruction.

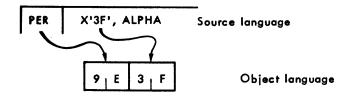
Conditions for Jumps

In another group of instructions, the operation complement is used to define a condition reflected by the state of the indicators. The indicators are set during execution of several of the GE-115 system operations. Instructions are provided to test the indicators and to act upon the indicated condition. The test written in the source language statement is translated by the assembler and inserted in the operation complement. In the example below, the Jump on Condition (JC) instruction causes the indicators to be tested for a condition which can be represented by the hexadecimal digits '80'. The hexadecimal digits are translated and placed in the operation complement of the assembled instruction.



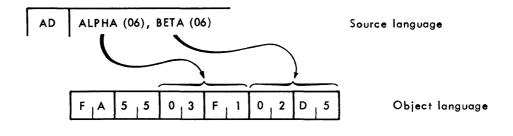
Source language

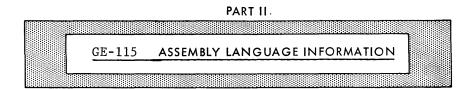
Object language


Operation Differentiators

There are several special purpose instructions in which different mnemonic codes are translated into the same configuration in the first octet. The operation complement, in these cases, serves to differentiate between these operations, as shown below by the pair of instructions, Turn ALERT Light On (LON) and Turn ALERT Light Off (LOFF).

Input/Output Unit References


Input/output units, since they are auxiliary to the central processor, are called peripheral units. For input/output instructions, the second octet contains the number of the peripheral unit to be used by the instruction. In the example below, for the Peripheral instruction (PER), hexadecimal 3 F may be any input/output device, depending upon the peripheral configuration of the particular GE-115 system.



Addresses of Operands

An address (within the object language representation of an instruction) is contained in two octets. An address is the binary address of the octet where operation begins. When the size of the store is 8192 octets addresses go from 0000 to 8191. Therefore, within the two octets which an address occupies in the internal instruction, the three leftmost bits of the first octet are always zero.

An operation referencing only one data field requires two octets for the address of the operand and a total of four octets for the entire instruction. If there are two data field operands, the instruction requires 6 octets. In the example below, the Add Decimal (AD) operates on two operands. The operation begins in the ALPHA field at the octet with the address 00000011 11110001 and in the BETA field at the octet with the address 00000010 11010101.

An assembly language is a set of symbols and rules for writing statements to be performed by a computer. An assembly language statement is written in a format which is more convenient and easier to remember than the format for the internal instruction which the computer recognizes as an executable statement. Instead of writing the numeric values for operation codes, operand lengths, data constants, and addresses, the programmer uses assembly language instruction statements.

The GE-115 Assembly Language enables the programmer to write instructions and to specify all the required program parameters with meaningful and easily remembered codes.

The GE-115 Assembly Language provides the following features:

- Operations are specified with easy to remember alphabetic mnemonics (e.g., AD for decimal addition, PER for a peripheral unit instruction).
- Data constants may be written in various forms (hexadecimal numbers, alphanumeric characters, and special symbols as +, \$' etc.).
- Cross references between instructions and references to data fields may be accomplished with meaningful names chosen by the programmer without concern for the actual location in store of instructions and data.

Primary instructions written in the GE-115Assembly Language are translated by theGE-115assembler into the object language instructions acceptable for execution by theGE-115System. Primary instructions specify the program steps, operation by operation.

Directive instructions written in the GE-115 Assembly Language are directions from the programmer to the GE-115 Assembler. Data defined in Directives will be included in the object language program. Other Directives define the assignment of store addresses and procedures for printing the assembly listing.

GE-115

In this section, the symbols of the GE-115 Assembly Language are described and the rules for writing instructions in the language are given. Also, the relationship between data field references and the assembled addresses used in object language instructions is explained. This relationship is quite unusual. In most assembly languages, a symbolic name used as an operand specification references an address.

In the GE-115 Assembly Language, symbolic names used as operand specifications reference data fields.

THE SYMBOLS OF THE GE-115 ASSEMBLY LANGUAGE

The GE-115 Information Processing System recognizes the standard graphic character set defined in Figure A-4, page 19. There are 64 graphic characters. Each number, letter or symbol in this set has a unique binary value represented internally by the eight binary digits of one octet. The internal representations of the graphic character set are only a part of the set of 256 possible binary configurations of octets.

The GE-115 System Assembler allows for the definition of data by symbolic characters, by hexadecimal digits, and by decimal digits. Binary digit patterns that are to be used for special purposes by a program must be submitted to the assembler under one of the above representations. The assembler does not recognize binary literals as data. Thus, when a programmer wishes to specify a data item with the internal configuration of 0010 0001, he may specify the hexadecimal configuration 21.

Although it is not possible to avoid specific coding of the non-graphic characters when they are required, the user is strongly advised not to construct programs in which the logic is contingent upon the internal codes of the graphic character set. Do not refer to the hexadecimal configuration of a graphic character when it is possible to use a reference to the character itself.

GE-115

Binary Config.	Graphic Character	Hexadecimal	Binary Config.	Graphic Character	Hexadecimal
01000000	0	40	10100000	Ą	A0
0001	1	41	0001	ſ	Al
0010	2	42	0010	к	A2
0011	3	43	0011	L	A3
0100	4	44	0100	м	A4
0101	5	45	0101	Ν	A5
0110	6	46	0110	0	A6
0111	7	47	0111	Р	A7
1000	8	48	1000	Q	A8
1001	9	49	1001	R	A9
1010	C	4A	1010	-	AA
1011	#	4 B	1011	\$	AB
1100	Q	4C	1100	*	AC
1101	:	4 D	1101)	AD
1110	>	.4E	1110	;	AE
1111	?	4F	1111	' (apos- trophe	AF e)
01010000	(blank)	50	10110000	+	BO
0001	А	51	0001	/	B1
0010	В	52	0010	S	B2
0011	С	53	0011	т	B3
0100	D	54	0100	U	B4
0101	E	55	010	V	B5
0110	F	56	0110	W	B6
0111	G	57	0111	х	B7
1000	н	58	1000	Y	B8
1001	I	59	1001	Z	B9
1010	&	5A	1010	<	BA
1011	•	5 B	1011	, (comm	a) BB
1100]	5C	1100	%	вС
1101	(5D	1101	=	BD
1110	<	5E	1110	u	BE
1111	<u> </u>	5F	1111	!	BF

Figure A-4: THE GE-115 GRAPHIC CHARACTER SET

The set of graphic characters are not only used for data definition in the GAMMA 115 Assembly Language.

All may be present in the coding of an assembly language program. Most of the characters in the set may be used freely. Some are reserved for special purpose. The group of symbols reserved by the assembler are

, '() + - *

These symbols must not be used by the programmer in naming data fields or instructions. (They may be used for data definition). This set of symbols is described below and in Figure A-5.

RESERVED SYMBOLS

Apostrophe (')

Two apostrophes are used as data field delimiters, one to the left and one to the right of the data being specified.

Comma (,)

A comma is used to separate operand specifications when more than one operand is specified.

Parentheses ()

Parentheses are used to contain length definition when the specification of a length accompanies a field reference. Parentheses may also contain an address reference.

Arithmetic Signs (+ -)

Arithmetic Signs (+ or -) are used to modify a symbolic operand specification. The sign is followed by a decimal increment or decrement.

Asterisk (*)

The asterisk symbol is used in two ways.

An asterisk used for operand specifications indicates that the address of the specified operand is relative to the left octet address of the instruction in which the asterisk appears.

When an asterisk is used as an operation, it indicates that the operand specifications field contains a comment to be printed during assembly.

Figure A-5: SYMBOLS RESERVED BY THE GE-115 ASSEMBLER

SYMBOL	USE
I	Field delimiter
,	Operand specification separator
()	Length specification or address definition
+	Increment specification
-	Decrement specification
*	As an operand specification : indicates store assignment.
	As an operation : indicates a comment

ALPHABETIC SYMBOLS

In addition to the above symbols, there are several alphabetic characters used by the GE-115 Assembler (A,C,X,L,R,S,D,Y). The programmer may use any of these letters in naming fields; however, it is recommended that he not use the letter Y to begin the name of subroutines, data fields, or instructions because system subroutine names begin with Y. A new system subroutine could have the same name which a programmer has defined in his program.

<u>A</u>

The letter A is used in a constant definition instruction to indicate an address constant.

<u>C</u>

The letter C in the operand specification field of an instruction indicates that the data item which follows the C, bounded by apostrophes, is a single member of the graphic set;(i.e., 0-9, A-Z, or a symbol).

C in a constant definition instruction indicates that one or more members of the graphic character set are being used to define constant data.

X

The letter X appearing in the operand specification field of an instruction indicates that the data item bounded by apostrophes is represented by a pair of hexadecimal digits ; i.e., the quartet configuration represented by each of the digits is one of those shown below :

0000 = 0	1000 = 8
0001 = 1	1001 = 9
0010 = 2	1010 = A
0011 = 3	1011 = B
0100 = 4	1100 = C
0101 = 5	1101 = D
0110 = 6	1110 = E
0111 = 7	1111 = F

 ${\sf X}$ in a constant definition instruction indicates that one or more pairs of hexadecimal digits are being used to define constant data.

L

L precedes the definition of length in a store definition or constant definition instruction.

<u>R</u>____

An R in the operand specification field of an ORG instruction sets the value in the store assignment counter to the next higher multiple of 256. The store assignment counter is a part of the assembler and is used for assigning addresses to instructions and data.

S, D

The letters S and D are used in the Line Feed (LF) as line spacers. S requests a single skip. D requests a double skip.

<u>Y</u>

In GE-115 system software, the letter Y has been used as the first letter of the subroutine names.

CONTROL CHARACTERS

There are three special purpose hexadecimal control characters used by the Edit (EDT) instruction to format data : 20, 21, 22. They are used in the editing mask to control data positioning. These three numbers do not correspond to any of the characters in the graphic set and must be represented in assembly language statements by pairs of hexadecimal digits.

WRITING STATEMENTS IN THE GE-115 ASSEMBLY LANGUAGE

Programs for the GE-115 Information Processing System are written in the GE-115 Assembly Language on the Programming form shown in Figure A-6.

The parts of this form and the rules for their use are described below. If the programmer does not follow these rules, the GE-115 assembler will print mistake indications on the listings which are produced during assembly. A list of the possible mistake indications and their meaning is presented in Figure A-7 GE-115 ASSEMBLER MISTAKE CODES. The notations appearing in parentheses throughout the text refer to the mistakes described in this table.

THE PROGRAMMING FORM

1. IDENTIFICATION (Columns 1-4)

Enter a 4-digit field to identify the program. Any alphanumeric combination may be used.

This field is for program identification; therefore, it is suggested that a meaningful code be chosen. In the example below, BILL was chosen to identify a billing program.

	·	-									- 1	PRO	GRA	M					 	 				 	P	ROG
IDENTIF	ICATIO	N																								
¹ B	נננל	Ľ	В	I	L	L	I	Ν	G		Ρ	R	0	G	R	Α	М	_	 					 		
PAGE №	LINE №	Τ		N	AM E	E			6	DPE	RATI	ON												OPE	RAN	DS
32 33	34 . 3	5 30	5				40	41	42			45	46	47					 	 				 		
	0,5		1												1		1		 	 L			L	 		
	1,0															,	1			 	1		1	 		
	1.5	Т								1												1			-	
	\sim	L	/			~		2			-			<hr/>	-				-					/	\sim	

Sequences of numbers or letters might be chosen for a set of programs which are related. A set of three programs which tabulate test scores might be identified by SCR1, SCR2, and SCR3.

The numbers 0000 to 1000 are used for identification of system programs and should be avoided. If the identification field on any instruction is not the same as that of the first, the instruction is marked (S) by the assembler. The System Program Loader verifies (at execution time) that all cards of a program have the same identification field.

G E N	ERAL	🕃 ELECTRI	C			GE-115 - INFORMATION PROCESSING SYSTEM ASSEMBLY LANGUAGE						
						PROGRAMMING FORM						
				PPC	GRAM -		PAGE OF					
IDENTIF	ICATION											
1	4					, »						
PAGE	LINE		-11				EXTERNAL					
1	Nº - 34 35 36	NAME	40 41	OPERATION 42 45 4	6 47	OPERANDS	EXTERNAL IDENTIFICATIO					
	0,5		- -									
	1.0											
	1,5	··· ··· ··· ··· ··· ··· ··· ··· ··· ··										
	2,0					······································						
	2 5											
	3,0											
	3 5											
	4,0											
	4 5					······································						
	5,0	·····										
	5 5											
	6,0											
	6 5											
	7,0											
	7 5											
	8 0											
	8 5											
	9 0											
	9,5	<u> </u>										
		1										
						and the second sec						

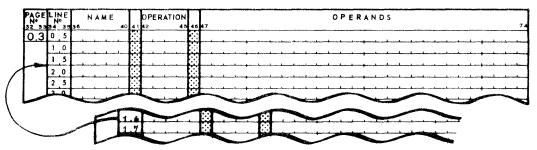
USER'S GUIDE

-24-

.

GE-115.

2. PAGE NUMBER (Columns 32-33)


Enter a page number at the top of each page of the coding sheets. Repeat the page number on each statement when punching.

Page numbers must be in ascending order (S). The collating sequence shown in Figure I, Appendix A, cannot be used to position non-numeric characters as sequence references.

Page and line numbers (see below for line number description) are used to order program instruction statements; they do not enter into the assembled program. It is not necessary to have a new page number for each programming sheet, nor is it necessary to use the same number for an entire sheet, as long as on each instruction the combined page and line number (taken as a 4-digit decimal number) is higher than the one before.

3. LINE NUMBER (Columns 34-35)

Enter a 2-digit decimal number for each line of coding. The numbers must be (within any page) in an ascending sequence (S). It is advisable that lines be given numbers which are multiples of 5 so that changes and corrections may be inserted without making resequencing necessary. In the following example, the lines are numbered with multiples of 5. If the programmer wishes to insert two new instructions between 15 and 20 he may number the new instructions 16 and 17.

Inserts 16 and 17 could be written on free lines at the bottom of the coding sheet and placed between 15 and 20 after they are punched.

The collating sequence shown in Figure 1, Appendix A, may not be used to position non-numeric characters. Line numbers are used to order the instructions of the program; the program sequence depends on card order in the source deck. The numbers are examined but not translated by the assembler.

4. NAME (Columns 36-40)

Names are used for cross-reference between program statements. The name of a field is defined by its appearance in the name field. The name will be equated to the actual

location assigned by the assembler to the statement.

Enter a name to identify the first operation in the program.

Begin the name in column 36. Leave unused columns to the right of the name blank. Leave the name field blank if no reference to the statement is required. Column 41 must be blank.

A maximum of five characters is allowed (N). A name must begin with a letter (N). Succeeding characters may be alphabetic or numeric; no special symbols may be used (N).

A name may appear in the name field of an APS statement only once in a program. When the same name is assigned to more than one statement, the name will appear in a multiple reference table which will be listed preceding the object program list. The location assigned to the first occurrence of the name is used for all references to the name.

System subroutine names begin with a Y. It is therefore advisable to avoid the letter Y as an initial character of a name in order to prevent duplication.

5. OPERATION CODE (Columns 42-45)

The operation code specifies the system action defined by the statement.

Enter the mnemonic for the operation, starting in column 42. Leave unused columns to the right blank. Column 46 must be blank.

PAGELINE NAME	OPERATION	OPERANDS	
32 33 34 35 36 40	4142 45	4647	74
0,30,5D,A,T,A,3	DS	XI	
1.0 B.E.G.I.N	СМІ		
1 5	JC		_
2 0 L O, O, P	A D		
2 5	AB		
		う う う う う	

The mnemonic expression must be one of those listed in Figure 3, Appendix A.

6. OPERAND SPECIFICATIONS (Columns 47-74)

An operand is the item which is operated upon by an instruction.

For example, if the number 24 is added to 92, the data items 24 and 92 are the operands. If 24 is contained in a field named (See above for naming) BETA, the instruction statement which specifies the addition operation uses the symbolic name BETA to specify that operand. Instructions in the GE-115 Assembly Language may specify one, two, or no operands depending upon the operation to be performed. The methods for specifying operands vary according to the kind of operand and the operation being specified.

When an operand is to be specified, enter the operand specification beginning in column 47. Two operand specifications must be separated by a comma (F). No blank may appear between column 47 and the end of the operand specifications (except as data definition (F,I). If an instruction does not require an operand, leave the operand specification field of the instruction blank.

Several types of operands may be specified by an instruction. The types of operand and the methods for specifying such operands are described below.

Types of Operands may be:

Data Fields

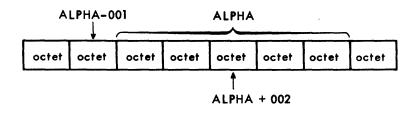
Data operated upon by an instruction may be elsewhere in the store, or data used by an instruction may be contained within the instruction itself. The latter type of data item is referred to in this manual as an "immediate operand" to distinguish it from data not contained within the instruction.

Instructions

The location of another instruction is specified as an operand when the operation may cause an interruption in the sequence of instructions executed. The location specified is the location of the instruction to which control is transferred when the sequence of instructions is interrupted. (See jump instructions, page 95)

Hardware Items

Operands such as input/output units, peripheral status conditions, overflow/ underflow and zero/non-zero indicator test conditions, may be specified.


Methods of Specifying Operands are:

Symbolic Names of Fields
 An instruction or a data field (which is not an immediate operand) may be specified

with the symbolic name of the field in which it is contained. The name must be defined (U). A symbolic name must conform to the format for names (I). In the following example the data field ALPHA is compared to a Z using the Compare Immediate to Store (CMI) instruction.

PAGE Nº 32 33	ΪŇ	NE 35		NA	ME		41		10N 454	16	OPERANDS
1.4	0	5						C.M.			C.'.Z.', A.L.P.H.A.
	1	0									
	Γ	5	Γ.		,						······································
	2	0									· · · · · · · · · · · · · · · · · · ·
	2	5								3	
_	2	4				-	Ŀ		E	2	

Symbolic Names for Fields with Increments or Decrements A symbolic name may be modified by a 3-digit decimal increment or decrement. If a programmer wishes to reference a location which has not been named, he may refer to it using the name of a location near it. For example, if ALPHA is the name of a data field of five octets and the programmer wishes to reference the third octet of ALPHA with a Compare Immediate to Store (CMI) instruction, he writes ALPHA + 002. If the programmer wishes to reference the left of ALPHA with the CMI instruction, ALPHA-001 is written.

The programmer writes an instruction using the symbolic name of the ALPHA field with an increment or decrement as follows:

An increment or decrement must be three decimal digits (F, I). The symbols + and - are the only symbols of modification accepted by the assembler (F).

The Asterisk (+) Symbol

The asterisk symbol (\star) may be used as an operand. This symbol always references the first octet of the instruction in which it appears as an operand. The \star symbol must be followed by an increment or decrement. When the \star is used without an increment or decrement, it is a mistake (I).

The use of the * as an operand is not recommended. Meaningful names are always easier to understand. Also mistakes can easily occur when programs are changed. For example, if another instruction were to be inserted in the following set of instructions, the programmer would have to change the * -014 operand specification because the instruction named LOOP would no longer be 14 octets before the Jump Unconditional (JU) instruction.

PAGELINE NAME Nº 3334 3536 40	OPERATION	0 P E R A N D S 17 74
0.4 0.5 L.O.O.P.	 C.M.I	<u>C.′.\$.′., F.I.E.L.D.</u> T.H.R.U.
		\sim

				-	$\sim \sim \sim \sim \sim$	
Γ	2 0		J.U		*0.1.4	Ĺ
1	2 5	T.H.R.U.	 X, X, X,			
	2.0			-	$\sim \sim \sim \sim \sim$	

The instruction on line 20 should be written:

Absolute Addresses

Operands may be specified with absolute location addresses. For example, if the programmer wishes to direct the assembler to set its store location assignment counter to 1256, one might code:

PAGE Nº 32 33	L IN E Nº 34 35	NAME 36	0 4 1	DPERATION		5 A 7		OPERANDS 7
0.5	0 5		T	O.R.G.	Γ	1	2.5	6
	1 .0				Γ	1		· · · · · · · · · · · · · · · · · · ·
					-	-		$\sim \sim \sim \sim$

An absolute source language address used as an operand specifier must be written as a 4-digit decimal number (F, I). There cannot be an increment or decrement associated with an absolute address (F).

The programmer is advised to avoid the use of absolute address references. Names are more meaningful. The possibility of errors when a program is modified is very great when absolute address references have been used.

Data Fields and Lengths

Operations which act upon variable length fields require a definition of the length of the field.

If the length is that of a named data field, the length need not be specified. In all other cases where a variable length operation is to be performed, length is the number of octets or quartets used in the operation.

The length is written as a decimal number enclosed in parentheses immediately to the right of the data field specification. Some operations require that the length be specified as a 2-digit decimal number. Others require that the length be specified as a 3-digit decimal number. When the number specified is not an acceptable number or it is not expressed in the correct number of digits, it is a mistake (F, I).

An example of a specified length written as three digits is:

An example of a specified length written as two digits is:

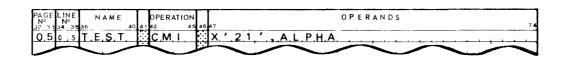
PAGELINE NAME Nº Nº 32 33 34 35 36 40	OPERATION 4142 45	OPERANDS	74
0,40,5	Смо	ALPHA (04), BETA (04)	٦
1.0			
		$\sim \sim \sim \sim$	J

USER'S GUIDE

Note that although only four octets enter into the last example, the number is expressed in two digits. It is written 04, not 4.

In instructions which operate on variable length fields, the length <u>must</u> always be specified (F) if the operand is referenced with either the ***** or an absolute address.

Immediate Data Items


Immediate data items may appear in the operand specification portion of the source language instruction. The data item becomes a part of the object language instruction. The assembler, when it translates the instruction, places the data item in the operation-complement octet.

There are three ways in which immediate data may be specified. Immediate data may be coded as a character, a hexadecimal number, or a decimal number.

A single symbol preceded by C and enclosed in a pair of apostrophes signifies an immediate data item which is a character. The character must be one of those shown in Figure A-4, page 19 (F,1).

A pair of hexadecimal numbers preceded by X and enclosed in a pair of apostrophes signifies an immediate data item which is any valid hexadecimal configuration up to 'FF'. The user should refer to "SYMBOLS OF THE GE-115 ASSEMBLY LANGUAGE", Figure A-4. The hexadecimal numbers and their binary, decimal, and character equivalents may be found in Figure I, Appendix A (I). It is recommended that the programmer use the C notation (see above) for any character in the graphic character set instead of the hexadecimal configuration.

A 3-digit decimal number with a value from 000 to 255 may be used to specify an immediate data item. No field definers are used (F, I).

Conditions of the Indicators

Indicators are tested by the Jump on Condition instructions. The test conditions of the indicators may be specified in three ways. The condition may be written as a 2-digit hexadecimal number, a single character, or a 3-digit decimal number. The methods for coding the test conditions are the same as for immediate data items (see above). It is recommended that in Jump on Condition instructions, the X' ' form with two hexadecimal digits be used to specify conditions.

Input/Output Units and Status

These two operand specification types should be specified with a pair of hexadecimal digits. The rules for coding these are the same as for the X' ' form for specifying immediate data items (see above).

Comments

The programmer may write a comment following the last operand specification. A comment must be separated from the last operand by a blank. If the user has

placed an asterisk in the operation code, a comment may begin in column 47. Comments for one of the examples used above might be written as shown below to provide explanation and readability in a program assembly listing.

PAGE LINE NAME Nº 32 33 34 35 36 40		OPERATION	46	0 P E R A N D S 74
0,40,5 L,0,0 P		C.M. I.		C, '\$, ', FIELD, TEST, FOR A. \$
1.0	E	J E		T,H,R,U, I,F,FO,U,N,D,,T,H,R,U,
1.5	Ŀ	A B		LOOP, BIN1 IF NOT, INCRMT
2.0	L	*		ADDRESS FOR
2.5	Ľ	*		S.E.A.R.C.H. A.N.D.
3 0	Γ.	J.U.		LOOP CONTINUE
3 5	Ľ	*		······································
4 0	L	*		* * SEGMENT 2 * *
4 .5 T.H.R.U.		LON.		SIGNAL OPERATOR
	1		1	

USER'S GUIDE

Figure A-7 :	GE-115	ASSEMBLER MISTAKE CODES
--------------	--------	-------------------------

Code Letter	General Cause	Assembler Action
F	A mistake has been made in the format of the operand field specification.	The statement is marked`with an F on the assembler listing.
F	An unexpected configuration has been encountered by the assembler; e.g. a blank where a comma should appear.	The program is not assembled.

Examples of mistakes that are marked with F:

Data Field Reference

An absolute address is written in more than 4 digits.

An address increment or decrement is written in more than 3 digits.

A character other than $+ \mbox{ or } -$ appears between a data field name and increment or decrement.

An immediate data item expressed in the C' ' notation is more than a single character in length.

An immediate data item expressed in the X' ' notation is more than 2 digits in length.

Length

A left parenthesis is omitted.

An absolute address is written without a length specification.

A length is written for an operand which has an implicit length of 1.

Three digits are used to specify a length which should be expressed in 2 digits.

Code Letter	General Cause	Assembler Action
	A mistake has been made in the content of the operand field specification.	The statement is marked with an l on the assembler listing. The program is not assembled.

Examples of mistakes that are marked with an I:

Data Field Reference

A data field name begins with some symbol other than a letter.

A special system symbol is used in a data name.

A data field name is expressed in more than 5 letters.

An address increment is written in fewer than 3 digits.

A data item is written where a data name should appear.

A data item expressed in the C' ' notation is written without one of the apostrophe signs.

A data item is written without either C or X notation.

A character other than one of the hexadecimal digits appears in the expression of a data item in the X^\prime ' form.

Length

A two digit length is written with a value greater than 16.

A three digit length is written with a value greater than 256.

The right parenthesis is not written after the length specification.

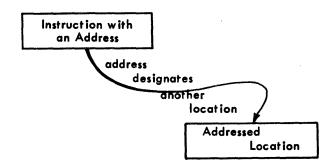
Code Letter	Géneral Cause	Assembler Action
	An incorrect length is associated with a data field.	The statement is marked with an L on the assembler listing . Assembly continues .

Mistakes marked with an L:

The address origin defined on an ORG card is less than the upper limit of the area used by the system loader.

The program cannot be executed by a system of the size defined on the STRT card.

An implicit length exceeds 16. NOTE: The assembler places a value in the length field and continues. This value is generated by translation. Therefore, the value inserted differs according to the configuration of the store.


Code Letter	General Cause	Assembler Action
М	The same name is written for more than one source instruction .	The name will appear in a multiple reference table which will be listed preceding the object list. The store location assigned to the first occurence of the name is used throughout the assembly for all references.
N	The name of a field is longer than 5 characters. The name of a field contains a non-alphanumeric character . The name begins with a non-alphabetic character.	The statement is marked with an N on the assembler listing . The program is not assembled.
0	The operation code field is blank . The operation code contains some expression other than one of the assembly language mnemonic codes .	The statement is marked with an O on the assembler listing . The program is not assembled .
Р	When an operation code was encountered for location assignment, the store assignment counter was set to an odd octet value	The statement is marked with a P on the assembler listing. The location is rounded up to an even octet boundary. The assembly continues.
S	The program identification on an instruction is different from the identification on the STRT instruction . Page numbers are not in ascending sequence . Line numbers are not in ascending sequence .	The statement is marked with an S on the assembler listing . The assembly continues .
U	A name which appears in the operand field of an instruction cannot be matched with a name in the list of named fields.	The statement is marked with an U on the assembler listing. The operand is assigned a location of 0000 and an assumed length of 00. The assembly continues.

USER'S GUIDE

(REFERENCING DATA FIELDS IN THE GE-115.... ASSEMBLY LANGUAGE)

The programmer who has not already programmed using the $GE-115^{\circ\circ}$ Assembly Language should read this section very carefully. This section explains the relationship between the reference to a data field in the GE-115 Assembly Language and the address translated by the assembler.

Each octet in the store has a unique address. An address in a GE-115 system instruction can reference any octet individually, giving access for processing or control. The function of addressing is shown by the following diagram:

In an instruction in the GE-115 System Assembler Language, an operand specification may be a symbolic name or an actual reference to a particular location.

Specification of operands with symbolic names can be of three types:

- 1. A name assigned to a field (data or instruction) by the programmer; or,
- 2. A name (as in 1) modified by a 3-digit decimal increment or decrement; or,
- An * (signifying the first octet of the instruction in which it appears), modified by a
 3-digit decimal increment or decrement.

NOTE: An * must have an increment or decrement; it cannot appear alone.

Symbolic names used as operand specifications are translated into actual addresses at assembly time. The actual address is the binary address of the particular octet referenced by the operation.

Actual addresses used for operand specification are 4-digit decimal numbers which reference explicit locations. The assembler converts the decimal address specified by the programmer to its binary equivalent and inserts this into the object language instruction.

When writing in the GE-115 Assembly Language, the programmer must be aware of the relationship between a field reference written in a source language instruction statement and the address which the assembler places in the object language instruction.

When an instruction is translated by the assembler, the operation mnemonic is translated and placed in the first octet of the object language instruction; the operation complement (immediate data, lengths, indicator test conditions, peripheral units, etc.) is placed in the second octet; the address of one operand is placed in the third and fourth octets, and, if there is a second operand, a second address is placed in the fifth and sixth octets.

Any data field one octet in length can be referenced with the address of the octet it occupies. When an operand which is one octet in length is referenced by a symbolic name in a source language instruction statement, the address for the octet is placed in the object language instruction. In the following example, the field ALPHA (defined elsewhere in the program as a one octet field) is compared to a dollar sign. The symbolic name used as an operand specification is translated into the address of the ALPHA octet.

PAGE № 32 33	ΓŃ	N E	1	NAME			OPERATION		OPERANDS	
32 33 0,1	0	5	36		40		C.M.I		ыл С. ′. \$. ′ А. L. P. H. А	· · · ·
	1	0			-					
	1	5		·····				Ľ		
	2	0						Ŀ.		
	2	_5	1		-		· · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
	-	0	-			-		سنعا		

Data fields which occupy more than one octet may be thought of as having a left-octet address and a right-octet address. When a data field which is more than one octet in length is referenced in an instruction statement, the assembler may place either the left-octet address or the right-octet address of the data field in the object language instruction. The address which is translated for any symbolic name depends upon the operation specified.

When a symbolically named field longer than one octet is referenced as an operand and the operand can only be one octet in length, the left-octet address of the field is placed in the object language instruction (the leftmost octet is the one which is operated upon).

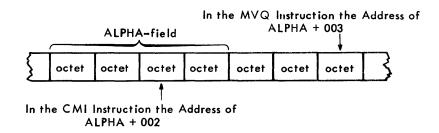
If the field ALPHA referenced by the Compare Immediate to Store (CMI) instruction in the example above is defined as a field of four octets, the assembler places the address of the leftmost octet of ALPHA in the third and fourth octets of the object language instruction which is produced.

When a symbolically named field is referenced as an operand and the operand may have a length greater than one octet, the address placed in the object language instruction depends upon the orientation of the operation.

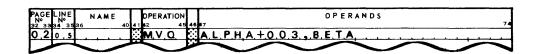
Some of the GE-115 system operations which treat variable length fields process data from left to right. For example, the Move Complete Octets (MVC) begins by moving the leftmost octet. The MVC operation continues moving octets until the rightmost octet of the specified field has been moved.

When an operand is to be processed from left to right, the left-octet address of the symbolically referenced field is placed by the assembler in the object language instruction.

Some of the GE-115 system operations which treat variable length fields process data from right to left. For example, the Add Binary (AB) begins addition at the rightmost octet of the two fields being summed. The operation continues to the left until the summation of the fields is completed.


When an operand is to be processed from right to left, the right-octet address of the symbolically referenced field is placed in the object language instruction.

Wherever possible, the programmer should use symbolic names for operand specifications. When the programmer references fields which have been symbolically named, he does not have to be concerned with the translation of the addresses of a data field. The assembler build's a table of the names defined in a program. The length of the data field or instruction which the name references, along with both the left-octet address and the right-octet address, are contained in this table. The assembler translates a symbolic name to the appropriate address by using this table.


When an operand is specified with a symbolic name and an increment or decrement, the increment or decrement is applied to the left-octet or right-octet address translated.

When ALPHA has been defined as a field of four octets, the symbolic reference ALPHA + 002 in the instruction above will cause the assembler to use the address of the third octet in the ALPHA field. The CMI instruction can reference a one-octet operand; ALPHA becomes the left-octet address of ALPHA and the address translated for ALPHA + 002 is two octets to the right of this address.

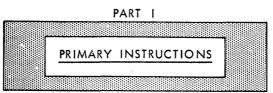
When the operation proceeds from right to left, increments or decrements with a symbolic operand specification are applied to the address of the rightmost octet of the data field. Thus, the symbolic address ALPHA + 003 in the instruction:

where ALPHA has been defined as a field of four octets (see diagram above) will cause the assembler to use the address of the octet three locations to the right of the rightmost octet of ALPHA.

The programmer should note that if he uses source language actual addresses to specify operands, he must be sure that the address specified is the appropriate address according to the orientation of the operation. It is strongly recommended that the programmer use symbolic field references rather than specific addresses.

SECTION B

GE-115


ASSEMBLY LANGUAGE

INSTRUCTIONS

GE-115 -----

USER'S GUIDE

.

Primary instructions specify machine-executable operations. Primary instructions are written as symbolic statements and translated by the GE-115 Assembler. The assembler produces one machine instruction for each Primary instruction.

Primary instructions are written according to the rules presented in SECTION A, PART II, "WRITING STATEMENTS IN THE GE-115 ASSEMBLY LANGUAGE". The programmer should review these rules before using the information presented in this section. He should also be familiar with the relationship between a Primary instruction and its machine instruction counterpart (discussed in SECTION A, PART I, "INTERNAL INSTRUCTION FORMAT").

All the Primary instructions of the GE-115 system are described in this section. The descriptions of the Primary instructions are grouped according to similarities of the operation, as listed below:

ARITHMETIC - Instructions which perform addition or subtraction on binary or decimal data fields:

Add Decimal	A D
Subtract Decimal	S D
Add Binary	ΑB
Subtract Binary	SB

DATA MOVEMENT AND COMPARISON - instructions which perform non-arithmetic manipulations or comparisons of data fields:

Move Immediate Octet	MVI
Move Complete Octets	м∨с
Move Right 'Quartets	MVQ
Pack Right Quartets into Octets	ΡK
Unpack Octets into Right Quartets	UPK
Compare Immediate Octet to Store	смі
Compare Complete Octets	смс
Compare Right Quartets	СMQ
Search to the Right	SR
Search to the Left	SL

LOGIC - Instructions which perform 'and' and 'or' logical operations:

And on Complete Octets	NC
Or on Complete Octets	οс
Exclusive Or on Complete Octets	хс

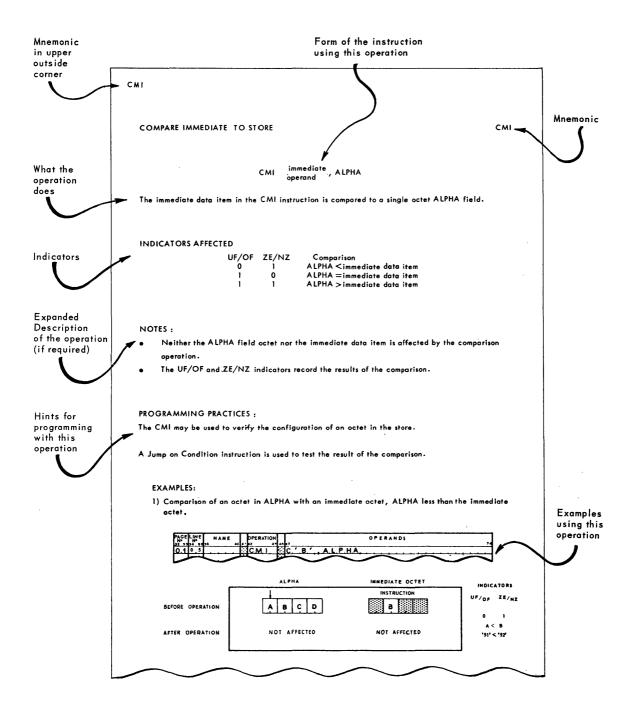
JUMP - Instructions which can be used to interrupt the sequential operation of the program:

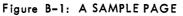
Jump on Condition	ЪС
Jump if Greater	٦G
Jump if Equal	JE
Jump if Greater or Equal	JGE
Jump if Less	JΓ
Jump if Not Equal	J N E
Jump if Less or Equal	JLE
Jump Unconditional	JU
No Jump	ΝΟЈ
Jump if Switch 1 Set	J S 1
Jump if Switch 2 Set	J S 2
Jump and Return	JRT

EDIT - Instructions which prepare data for system use and output readability:

Edit	EDT
Translate	TR

SYSTEM ACTION - Instructions which do not treat data but allow for manual intervention:

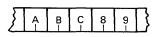

Halt System Operation	нцт
No Operation	NOP2
Turn Alert Light On	LON
Turn Alert Light Off	LOFF
Inhibit Single Stop	INS
Enable Single Stop	ENS


INPUT/OUTPUT - Instructions which execute read/write operations and test the status of the peripheral units:

Data Transfer	PER
Peripheral Status Tests	PER
Peripheral Unit Control	PER

ł

A uniform format, as shown below, is used to explain each of the Primary instructions. For easy reference, each instruction is begun on a new page. Whenever an instruction requires more than one page for description, the mnemonic appears in the upper outside corner of each page.



In the descriptions of the Primary instructions, certain conventions have been used. These conventions are explained below.

- Conventions of notation in the general examples of instruction formats have been used. These are:
 - name The use of "name" written in lower case indicates that a name is optional and where used must follow the rules for naming instructions.
 - op The use of "op" written in lower case indicates that the operation is any one of a given set of operation mnemonics.
 - ALPHA The symbolic name ALPHA is used to refer to the first of two operands or, where there is only one operand, the single operand. Where ALPHA is written, the programmer may write:
 - 1) a symbolic name, with optional increment or decrement,
 - 2) an asterisk, with a required increment or decrement,
 - 3) an actual address.
 - BETA The symbolic name BETA is used to refer to the second operand in instructions requiring two operands. BETA may be written in any of the ways listed above for ALPHA.
 - SIGMA The symbolic name SIGMA is the name of the instruction to which control may be transferred by a Jump instruction. SIGMA may be written in any of the ways listed above for ALPHA.
 - (nn) The use of "n" written in lower case indicates that where the operation may
 (nnn) process variable length fields, length is specified with two or three decimal digits. When a symbolic name is used and the length of the operation is the length associated with the definition of the name, length need not be specified in the instruction.
 - immediate The use of the words "immediate operand" written in lower case indicates that operand any of the three methods for specifying immediate operands may be used. Refer to the rules in "WRITING STATEMENTS IN THE GE-115 ASSEMBLY LANGUAGE", for the three ways in which an immediate data item may be specified. One of these must be used.

- condition The use of "condition" written in lower case indicates that in the Jump on Condition (JC) instruction, a condition must be specified. It may be written in any of the ways in which an immediate data item is written.
- U The letter U is used to refer to a peripheral unit. It may be specified in any of the ways in which an immediate data item is written. The use of the hexadecimal notation is recommended.
- Conventions of notation for showing data in store in the EXAMPLES portion of the descriptions vary according to the type of data being represented.

Data may be represented as characters,

or as pairs of hexadecimal digits,

or in binary form.

0101 0001 0101 0010 0101 0011 0100 1000 0100 1001

Where only right quartets are involved, right hexadecimal digits (usually decimal values) are shown and left quartets are shaded.

2 3 8	9
-------	---

The GE-115 adds and subtracts in both the decimal mode and the binary mode. All arithmetic operations treat the data fields as unsigned quantities.

Both decimal and binary operations have the following general characteristics :

- Data fields may be from 1 to 16 octets in length. The length of each field is used in the operation.
- Operation length is governed by the length of the data field which receives the result. .
- Data fields are referenced at the right; the data value is assumed positioned to the right in the field.
- Operation is right to left.
- The UF/OF (Underflow/Overflow) indicator is set to 1 when a carry is generated out of the result field. The result replaces the first data field.
- The ZE/NZ (Zero/Non-Zero) indicator records whether the value of the result field is zero or non-zero at the end of the operation.

Decimal and Binary operations are different in the following characteristics :

- Quartets/Octets
- Decimal operations process only the right quartets of the data field.
- Binary operations process full octets.

FORM OF DATA

- Decimal operations are designed for use with decimal quantities and process data as unsigned quantities to the base 10. No check is made prior to processing to determine whether the fields to be operated upon do contain decimal configurations in the right quartets.
- Binary operations are designed for use with binary quantities and are used in the GE-115
 Information Processing System primarily for address modification. Binary operations treat
 data as unsigned numeric quantities to the base 2.

OVERFLOW AND UNDERFLOW IN ARITHMETIC OPERATIONS

In both modes of addition, it is possible to generate an overflow. When the result field contains fewer digit places than are required to represent the sum, an overflow (or carry) occurs. The sum is not fully represented in the result field in such cases and is referred to in the discussions which follow as being in overflow form.

In both modes of subtraction, it is possible to subtract a larger quantity from a smaller. In this case the opposite of the overflow condition is present. The condition is called underflow. The difference which occurs when a larger number is subtracted from a smaller is represented in what is defined as complement form, i.e., represented as subtracted from a power of the base of the number system being used.

For example, 6 and 4 are mutual complements in the decimal system.

4	10	10
+ 6	- 6	- 4
10	4	6
	+ 6 	+6 - 6

So, too, are 60 and 40. However, 60 and 40 are expressed as multiples of 10 and require the square of 10 as a reference value for obtaining the complement.

60	40	100	100
+ 40	+ 60 - 60		- 40
100	100	40	60

In the use of the arithmetic operations for the GE-115 the differences which are computed when a larger quantity is subtracted from a smaller are in complement form. They must be subtracted from the applicable power of the base used in order to obtain the true difference. The true difference also may be obtained by subtracting an underflow result from a field of zeros equal in length to the underflow result. For example, to obtain the complement of a result of 40 in a 2 digit field the subtraction appears :

Results which cause neither overflow or underflow are referred to in the descriptions of the arithmetic instructions which follow as being in true form.

GE-115 —

The format of the arithmetic instruction is :

PAGELINE NAME Nº Nº 32 33334 33336 40	OPERATION 41.42 45.46	O P E R A N D S	74
0,10,5 n,a,m,e,	ор.	A.L.P.H.A., B.E.T.A.	
1 0	×		
1 5			
2.0	88	· · · · · · · · · · · · · · · · · · ·	
2 5			
			~

AD ALPHA (nn), BETA (nn)

The unsigned sum of the right quartets of the ALPHA field and the right quartets of the BETA field replaces the right quartets of the ALPHA field. Operation is right to left, through the length of the ALPHA field (01 - 16 octets).

INDICATORS AFFECTED

UF/OF	ZE/NZ	
0	0	No overflow; result is zero.
0	1	No overflow; result is non-zero.
1	0	Overflow; result is zero.
1	1	Overflow; result is non-zero.

NOTES:

GE-115

- Operation is serial, octet by octet, from right to left, through the ALPHA and BETA fields.
- Operation is terminated when the ALPHA field has been processed. If the fields are of equal length, all right quartets of BETA are added to all right quartets of ALPHA. If the length of the BETA field is greater than the length of the ALPHA field, the excess right quartets in the left of the BETA field do not enter into the addition. If the length of the BETA field is less than the length of the ALPHA field, zero right quartets are added to the excess quartets in the left of the ALPHA field. Whenever the generated sum of two quartets is ten or greater, it is reduced by 10 and a carry is propagated to the next quartet sum.
- A 1 in the UF/OF indicator at the end of the operation indicates that the ALPHA field is not long enough to contain the result and a carry out of the sum field has been developed.
- A 0 in the UF/OF indicator at the end of the operation indicates that the sum is contained in the ALPHA field.
- The ZE/NZ indicator is set to 0 if the result is zero, and to 1 if the result is non-zero.

- The left quartets in both fields are unaffected by the operation.
- The ALPHA field right quartets are replaced by the sum.
- The BETA field right quartets are unaffected unless some part of the ALPHA field lies in the BETA field.

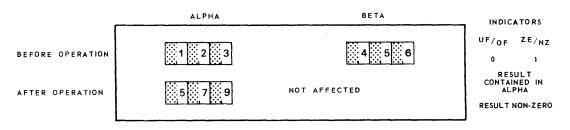
The presence of a non-decimal configuration in any right quartet of either field does not alter the above sequence of operations.

PROGRAMMING PRACTICES :

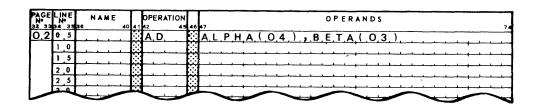
The AD is designed for use with decimal data. No check is made of the configuration of the right quartets prior to the operation. It is not recommended that the programmer use the AD operation to process data that is not decimal.

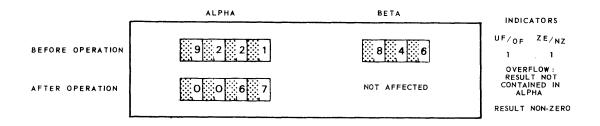
The programmer should define the ALPHA field long enough to contain the sum.

When the relative magnitudes are not known, the UF/OF indicator should be tested by a Jump on Condition (JC) instruction to determine whether overflow has occurred.


EXAMPLES :

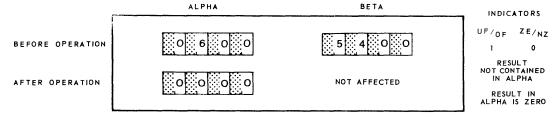
1) Addition without Overflow.


PAGELINE NAME	OPERATION	O P E R A N D S	
32 3334 3536 40	4142 45 46	47	74
O 1 0 5	AD	ALPHA, BETA	
1,0	*		
1,5	*		
2,0			
2 5		· · · · · · · · · · · · · · · · · · ·	


ALPHA has a defined length of 3 octets.

BETA has a defined length of 3 octets.

2) Addition with overflow.



3) Addition with overflow and zero result.

PAGE Nº 32 33	LINE № 34 35	NAME 36 40	4 1	DPERATION	OPERANDS 47 74
0,3	0 5		Γ.	A,D	ALPHA, BETA
	1 0				
i	1 5				
	2 0				
	2 5				
_	20		L.		

ALPHA has a defined length of 3 octets

BETA has a defined length of 4 octets, but only 3 enter the operation, because the length of the operation is the length of ALPHA.

When the length of the BETA field is greater than the length of the ALPHA field the extra digits of the BETA field do not enter into the sum.

SD ALPHA (nn), BETA (nn)

The unsigned difference of the right quartets of the ALPHA field and the right quartets of the BETA field replaces the right quartets of the ALPHA field. Operation is right to left, through the length of the ALPHA field (01-16 octets).

INDICATORS AFFECTED

UF/OF	ZE/NZ	
0	0	Does not occur when decimal values are used.
0	1	Underflow - a larger number subtracted from a smaller ;
		result is non-zero.
1	Ø	No underflow ; result is zero.
1	1	No underflow ; result is non-zero.

NOTES :

- Operation is serial, octet by octet, through the ALPHA and BETA fields.
- Operation is terminated when the ALPHA field has been processed. If the fields are of equal length, all right quartets of the BETA field are subtracted from all right quartets of the ALPHA field

If the length of the BETA field is greater than the length of the ALPHA field, the excess right quartets in the left of the BETA field do not enter into the subtraction. If the length of the BETA field is less than the length of the ALPHA field, zero right quartets are subtracted from the excess right quartets in the left of the ALPHA field.

• Subtraction is performed by addition. The BETA field right quartet bits are inverted and added to the bits of the ALPHA field right quartets.

The UF/OF indicator is set to 1 prior to the operation to develop a carry into the first sum.

Whenever a sum which is generated for a quartet exceeds 15 (a full quartet of 1's), the UF/OF indicator is set to 1 to develop a carry into the next right quartet sum. When no carry occurs, the sum is increased by 10. No carry is propagated from this second sum.

• A 1 in the UF/OF indicator at the end of the operation indicates that the difference is represented in true form in the ALPHA field.

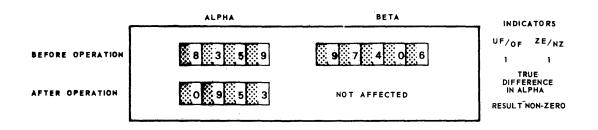
- A 0 in the UF/OF indicator at the end of the operation indicates that the difference is represented in underflow form in the ALPHA field. (Underflow occurs when a larger number is subtracted from a smaller number.)
- The ZE/NZ indicator is set to 0 if the result is zero ; it is set to 1 if the result is non-zero.
- The left quartets in both fields are unaffected by the operation.
- The ALPHA field right quartets are replaced by the difference.
- The BETA field right quartets are unaffected unless some part of the ALPHA field lies in the BETA field.
- The presence of a non-decimal configuration in any of the right quartets of the operand fields does not alter the above sequence of operations.

PROGRAMMING PRACTICES

The SD operation is designed for use with decimal data. No check is made of the configuration of the right quartets prior to the operation. It is not recommended that the programmer use the SD instruction with data that is not decimal.

When the relative magnitudes of the quantities to be subtracted are not known, the UF/OF indicator should be interrogated to determine whether underflow has occurred.

When the difference is represented in underflow form a second subtraction is required to compute the true difference. The underflow result is subtracted from a field of zero. No test is required after the second subtraction because the result is known.

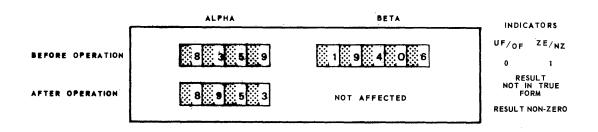

EXAMPLES :

1) Subtraction of a smaller number from a larger.

PAGELINE NAME № № 32 3334 3536 40	OPERATION	5 46	OPERANDS 17
0,10,5	S.D.		
1.0			
1.5			
2.0			
2 5			
Leel .			

ALPHA has a defined length of 4 octets.

BETA has a defined length of 5 octets, but only 4 are used, because the length of the operation is determined by the length of the ALPHA field.

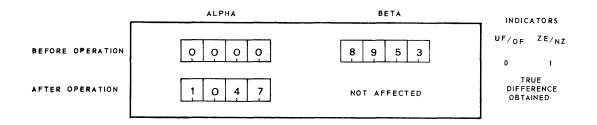

When the length of the BETA field is greater than the length of the ALPHA field, the extra digits in the left of the BETA field do not enter into the operation.

2) Subtraction of a larger number from a smaller.

AGE N.	L H	E	NAME	40 4	DPERATION	4.	OP ERANDS	74
0.2	0	5			S.D.		A.L.P.H.A., B.E.T.A.	
	1	0						
	1	5					· · · · · · · · · · · · · · · · · · ·	
	2	0		. E	3	Ľ		
1 1	2	5		. [:		Ŀ		4
	4	~				للغف	$\sim \sim \sim \sim$	-

ALPHA has a defined length of 4 octets.

BETA has a defined length of 5 octets, but only 4 enter the operation, because the length of the operation is the length of the ALPHA field.


1

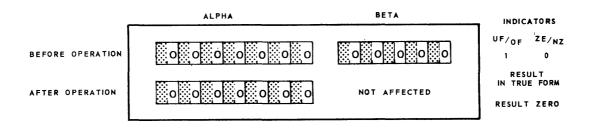
3) Subtraction of a result not in true form from a field of zeros to obtain the true difference.

PAGE Nº 32 33	LH N	NE 38	NAM	40 4			ATIC)N 454	6	17										0	ΡE	R /	N	5					7
0.3	0	5			1	5. D		÷		A.	L.	P.	H.	A.	•.	Β,	Ε.	Γ.Α	۸.								 		
	1	0		 ÷	8																							 	
	Γ	5		 E	T	,		Τ	Т																				
	2	0		 ŀ	3			Ē	Т																				
	2	5			T	,			Т									,									 		
_	2	4		1	L			E	7	_	-				-	-	-			-	-	-			_	-		_	-

To obtain a true result in this case, the length of the two fields should be equal. If ALPHA is longer than BETA, the excess digits in the left of the ALPHA field will contain erroneous values. The indicators need not be tested in this case, as the result is known.

ALPHA has a defined length of 4 octets. BETA has a defined length of 4 octets.

Note that a result not in true form may be added to a positive number to produce :


- 1) a true sum, in which case the UF/OF indicator is 1 after the AD operation,
- 2) a result not in true form in which case the UF/OF indicator is 0 after the AD operation (See Add Decimal).

SD

4) Subtraction of zero from zero.

PAGE	L	ŅΕ		N A M	E	T	OPERATIO		O P E R A N D S
82 33	34	38	36		4	04	142	45 40	47
0,4	0	5					S,D		A.L.P.H.A., B.E.T.A.
	1	0							
	I	5							
	2	0							
	2	5							
	2	Þ			_	Ŀ			

ALPHA has a defined length of 7 octets. BETA has a defined length of 5 octets.

AB ALPHA (nn), BETA (nn)

The unsigned sum of the octets of the ALPHA field and octets of the BETA field replaces the octets of the ALPHA field. Operation is right to left, through the length of the ALPHA field (01 - 16 octets).

INDICATORS AFFECTED

UF/OF	ZE/NZ	
0	0	No overflow; result is zero.
0	1	No overflow; result is non-zero.
1	0	Overflow; result is zero.
1	1	Overflow; result is non-zero.

NOTES:

- Operation is serial, octet by octet, from right to left, through the ALPHA and BETA fields.
- Operation is terminated when the ALPHA field has been processed. If the fields are of equal length, all octets of the BETA field are added to all octets of the ALPHA field. If the length of the BETA field is greater than the length of the ALPHA field, the excess octets in the left of the BETA field do not enter into the addition. If the length of the BETA field is less than the length of the ALPHA field, zero octets are added to the excess octets in the left of the ALPHA field.
- The ALPHA field is replaced by the sum.
- The BETA field is unaffected unless some part of the ALPHA field lies in the BETA field.
- A 1 in the UF/OF indicator at the end of the operation indicates that the ALPHA field is not long enough to contain the result and a carry out of the sum field has been developed.
- A 0 in the UF/OF indicator at the end of the operation indicates that the sum is contained in the ALPHA field.
- The ZE/NZ indicator is set to 0 if the result is zero, and to 1 if the result is non-zero.

AB

PROGRAMMING PRACTICES:

Unless the relative magnitudes of the quantities being added are known, the indicator should be tested to determine whether overflow has occurred. A Jump on Condition (JC) instruction is used to test the indicators.

The AB may be used to perform address modification. Care must be taken to avoid generating an address outside store limits. Addresses use the rightmost 13 bits of the 16 bits in the 2 octet address field of an instruction. The bits to the left can be affected by an overflow without an indication of overflow out of the octet being processed. When an address is used by the GE-115 system, the leftmost three bits of the address are not used. Thus, a value of 4096 in a store of 4096 positions references location 0. This is a valid reference and there is no immediate indication of error. Program results are unpredictable in such cases.

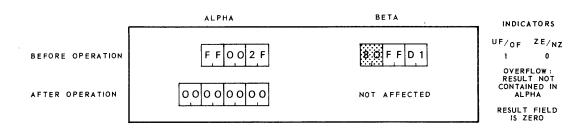

EXAMPLES:

1) Binary addition without overflow.

PAG	E		ΫE	Γ	NA	ME			OPERATION	1											0 P	'E	R /	A I	٩D	s							
32 3	3	34	3	э6			40	41	42 4	5 46	47																						74
0,1	I	0	5						Α, Β,	Γ	A	. L.	P.H	A.	. ,	B	E	Τ.	A.	()	D .:	2)							 			
	T	1	0							Τ.																				 			
[[1	5																														
	[2	0				4																							 			
	E	2	5		44																									 			
	1	2	4			-				سنغله		-				~	-			_	-	-	-				-	_	-	 	-	_	_

ALPHA has a defined length of three octets.

BETA has a defined length of three octets, but only two are used.

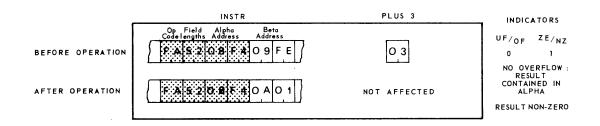


2) Binary addition with overflow and zero result.

PAGE LINE NAME Nº Nº 32 3334 3536 40	OPERATION 4142 45 46	OPERANDS	74
O,2 0,5	АВ	A, L, P, H, A, J, B, E, T, A, (, O, 2,)	
1.0			
1 5			
2 0	88		
2 5			

ALPHA has a defined length of 3 octets.

BETA has a defined length of three octets, but only two are used.


3) Address modification.

GE-115.

PAGE Nº 32 33	۱N	N E 1⁰ 31	NAM		. ₄	0F	ERA	TION	46	47	,										O F	Ρ	R /	A N	D	s								74
0,3	0	5			E	A	, B,			I	,N	I, S	Т	R	. (0	2		٠.	Ρ.	L,	U.	S.	3							 k .		h h	
	1	0																																_
	1	5			E					I																					 			
	2	0																								_								
	2	5			÷				Ŀ	L				•													••				 		·	b
	2	4		-	نىل <i>ـ</i>	-		-	سنط	-		-		_		_	-	-		-		-	-	-		_		_	-	-	 -	-	-	-

INSTR is an AD instruction of 6 octets referencing 2 data fields. It is desired to modify the address specified for the BETA field of INSTR, in order to execute it again referencing the modified address, to sum the elements of field BETA. BETA is made up of 50 three-digit decimal numbers stored sequentially in the field.

PLUS 3 is a defined constant with a length of 1 octet, having the hexadecimal value 03.

SUBTRACT BINARY

SB ALPHA (nn), BETA (nn)

The unsigned difference of the octets of the ALPHA field and the octets of the BETA field replaces the octets of the ALPHA field. Operation is right to left, octet by octet, through the length of the ALPHA field (01 - 16 octets).

INDICATORS AFFECTED

UF/OF	ZE/NZ	
0	1	Underflow; result is non-zero.
1	0	No underflow; result is zero.
1	1	No underflow; result is non-zero.

NOTES:

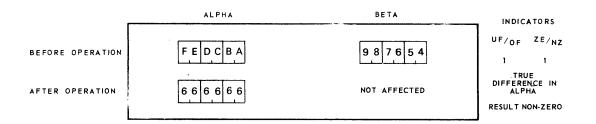
- Operation is serial, octet by octet, from right to left through the ALPHA and BETA fields.
- Operation is terminated when the ALPHA field has been processed.
 - If the fields are of equal length, all octets of the BETA field are subtracted from all octets of the ALPHA field.
 - If the length of the BETA field is greater than the length of the ALPHA field, the excess octets in the left of the BETA field do not enter into the subtraction.
 - If the length of the BETA field is less than the length of the ALPHA field, zero octets are subtracted from the excess octets in the left of the ALPHA field.
- The ALPHA field is replaced by the difference.
- The BETA field is unaffected unless some part of the ALPHA field lies in the BETA field.
- Subtraction is carried out by the addition of the complement of the BETA field octet to the ALPHA field octet.

The UF/OF indicator is set to 1 prior to the first addition to develop a carry into the first sum.

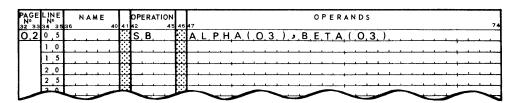
- A 1 in the UF/OF indicator at the end of the operation indicates that the difference is represented in the ALPHA field in true form.
- A 0 in the UF/OF indicator at the end of the operation indicates that the difference is represented in the ALPHA field in underflow form.
- The ZE/NZ indicator is set to 0 if the result is zero and to 1 if the result is non-zero.

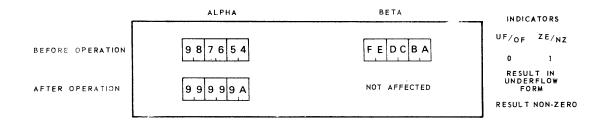
PROGRAMMING PRACTICES:

Unless the relative magnitudes of the quantities being subtracted are known, the indicator should be tested to determine whether underflow has occurred. When underflow has occurred a second subtraction is necessary to recover the true difference. The complemented difference in the ALPHA field must be subtracted from a field of equal length and zero value. No test is necessary after the second subtraction because the result is known. A Jump on Condition (JC) instruction is used to test the indicators.

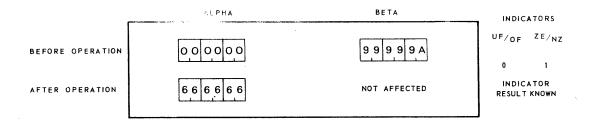

· . . .

The SB may be used to perform address modification. Care must be taken to avoid generating an address outside store limits. Addresses use the rightmost 13 bits of the 16 bits in the 2-octet address field of an instruction. The bits to the left of the 13 used can be affected by an underflow. When an address is used by the GE-115 system, the leftmost three bits of the address are not used. Thus, a value of 4096 in a store of 4096 positions references location 0. This is a valid reference and there is no immediate indication of error. Program results are unpredictable in such cases.


EXAMPLES:


1) Subtraction of a smaller number from a larger.

PAGE N⁰	Lï	ΝE	1	N A	ME		I.	D F	PER/	TIO	N			OPERANDS																						
2 33	34	38	36			40	4	42			454	16	47																							
0,1	0	, 5						IS	, B ,		Ŀ		A	L	P	H	A	. (.0	3)		В	E.	Τ.	Α.	((0,	3,)	١.						
	1	0						Ŧ			T																		1.							
	1	, 5						1			Т																									•
	2	0						1							,															•						
	2	5						1	, ,		T			_							,								,							
	2	0	T			-	Ŀ	1			F:		_	_			-	-	-	-				-	_	_				-	-		 	-	_	_


2) Subtraction of a larger number from a smaller.

3) Subtraction of a result in underflow form from a field of zeros to obtain a true difference.

PAGE Nº 32 33	Ľ	₩E	536	N	AM	E	40		0P 42	ER	ATI	0N 45	46	.,												0	Ρ	E F	R A	NC	s						7
0.3	0	5	30						ŝ	, B				Á	L	F	۲.	1,7	Α.	ĺ.	0	3)	و	B	E	T	F	٩.	(, 0)), 3	;)			 	 	
	1	,0							1																												4
	1	5	Г																													,				 	
	2	.0	Г						T																,							,				 	
	2	5	Τ							,							,			,																 	
_	2	0					-	Ŀ,							-					-	-	1				_	_		-			-	_	-		_	_

SB

The GE-115 Information Processing System performs two types of data manipulation operations. The operations performed are data movement and comparison.

All data movement operations have the following general characteristics:

- Items from one data field are moved into another.
- The configuration of the field is ignored for the purpose of movement; all moves operate on any valid store configuration.
- The first data field is replaced by the second.

All comparison operations have the following general characteristics:

- Data items from two fields are compared.
- The results of the comparison are recorded in the indicators. The Search to the Right and the Search to the Left instructions use only the ZE/NZ to record results. The remaining comparisons use both the UF/OF and the ZE/NZ indicators.
- The compared fields are not altered by the comparison.

The operations described in this section treat data fields under one of the three following specifications:

Full octets in both fields. Right quartets in both fields. Full octets in one field, right quartets in the other.

Operations which process octets have the following general characteristics:

- Data fields may be from 1 to 256 octets in length. A single length is used; this is the length of the first data field.
- Operation length is governed by the length of the first data field referenced.
- Data fields are referenced at the left; operation is left to right. There is a single exception to this rule the SL (Search to the Left).

The formats of the octet data movement and comparison instructions are :

PAGE Nº 32 33	LINE № 34 31	NAME 36 40	OPERATION		OPERANDS 7	74
0,1	0 5	n,a,m,e,	o, p,		A.L.P.H.A.(.n.n.n.)., B.E.T.A.	
	1 0 1 5		<u> </u>	ŀ		-
			 \leq		$\sim \sim \sim \sim \sim$	

PAGE LINE Nº Nº 32 3334 35	NAME 36 40	OPERATION		47		OPERANDS	7,
0,20,5	n,a,m,e,	0.p.			(immediate)		
1 0				Γ	operand	ALPHA	
1 5	1		Γ	Γ			
		 $\overline{}$		-	\sim	\sim	

Operations which treat only right quartets have the following general characteristics :

- Data fields may be from 1 to 16 octets in length. The length of each data field is used.
- The length of the operation is governed by the length of the first data field referenced.
- Data fields are referenced at the right ; operation is right to left.

The format of the right quartet data movement and comparison instructions is :

32 33 34		36 .	4 0	1	5 46	OPERANDS 47	7
0,30	5	n,a,m,e,		0.p.		A,L,P,H,A,(,n,n,),,B,E,T,A,(,n,n,),	
1	0	h h h					
1	5				L		

Two special purpose data movement operations treat the data as octets in one field and as right quartets in the other. These operations condense or expand data in the store.

These operations have the following general characteristics :

- A single length is used. This is the length of the field treated as full octets.
- The length of the operation is governed by the length of the data field which is treated in octet units.
- Data fields are referenced at the left.
- The first data field is replaced by the result.

The format of the octet/quartet data movement and comparison instructions is :

PAGE Nº 32 3	E I 3	L N 34	NE 3	53		N	A M	E	40	41		ER	AT	101	5 4	6	17													O F	ΡE	R	A	N	D S		 	 						74
0,4	I	0	5	I	n.	a	m	e			0	. p	•		E	Ι	A	L	P	ŀ	١,	Α.	(n	, n	. n	1).	, ,	Β.	Ε.	T	1	٩.			 	 			+			
	ł	1	0	1				ı	<u> </u>						L	1			•	-					_								+				 	 			, ,		L	4
1	ł	1	_5	ł			L	L		-	L	•			ŧ.	4		· · · ·			+					. .							+			.	 <u> </u>	 			+	<u>ـــــ</u>		щ
		-	-		-	-	-	-				-	<u>ـــ</u>							-		-				-	-	-	-				-	-	-	_		-	-	_				-

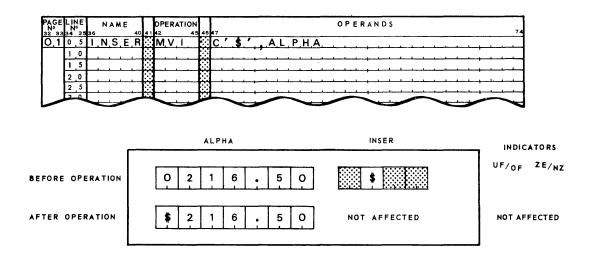
MOVE IMMEDIATE OCTET TO STORE

MVI

MVI immediate,ALPHA

The immediate data item in the MVI instruction is placed in the store. A single octet ALPHA field is replaced by the data item.

INDICATORS AFFECTED


none

PROGRAMMING PRACTICE:

The MVI may be used in conjunction with the Move Complete Octets (MVC) instruction for a character fill. To accomplish this, the programmer writes an MVI to insert the fill character into the leftmost octet of the field he wishes to fill. He then follows the MVI with an MVC which treats the field as a pair of overlapping fields. (See the MVC, page 69).

EXAMPLES:

1) Movement of a graphic character to store.

USER'S GUIDE

2) A hexadecimal value moved to an instruction complement.

PAGE № 32 33	L N 34		36	N A	ME	40		0P	ER,	TIO	N 154	6	17										O P	ΕF	R A	ND	S								7
0,2	0	5	M.	0.	V,	I,N		М	V	Ŧ,	E		Х.'		0	0	1	 T.	E.	S.	Τ.	1.	+.0	D.C	D, 1										
	1	0					E		5			Τ																· · ·		1					
	1	5					Г		T		Т	Т																							
	2	.0	T.	Ε.	S,	Γ.1		J	C		Τ	Т	Χ.		2.	0	1	S,	1	G,	M.	A.											;		
	2	5						Ι				3						 																ž	
	2	4			_	-	Ŀ				نل	1	-	-				-	-	_			-	-	-				-	~		-	_	~	_

TEST 1 is an instruction and has a length of 4 octets.

MOVE COMPLETE OCTETS

MVC ALPHA (nnn), BETA

Full octets from the BETA field are placed in the ALPHA field. Movement is left to right through the common length of the fields (001-256 octets).

INDICATORS AFFECTED

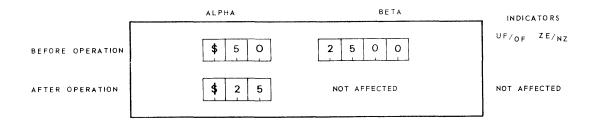
NOTES :

- Operation is serial, octet by octet, from left to right through the ALPHA and BETA fields.
- The BETA field replaces the ALPHA field.
- BETA field octets are unaffected unless some part of the ALPHA field lies in the BETA field.

PROGRAMMING PRACTICES :

The MVC may be used to assemble a data field for output.

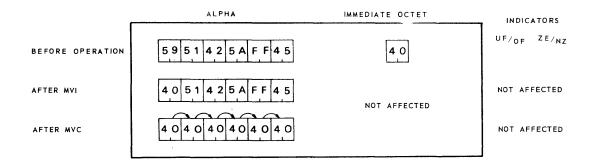
A field may be filled with a single character configuration by the use of the MVC. To accomplish this the programmer defines the ALPHA and BETA fields as overlapping. The ALPHA field begins in the octet to the immediate right of the first BETA octet.


EXAMPLES :

1) Data movement from one field to another.

MVC

ALPHA has a defined length of 3 octets; 2 octets are replaced.



2) The use of the MVC instruction for a numeric character fill; in this case, setting a field to decimal zeros.

PAGE № 32 33	LIN Nº 34	Е 35	N A M E	40	4 1	0P 12	ER	AT	10N 45	46	47											01	ΡE	R,	A N	DS	S		_						.4
0,2	0	5				M	. V	. 1		E	Ix		.4	0			. A	L	. P	H	A.		P.	R.	E	S,	E	Τ.		Ζ.	E.	R.C	Ο,		
	1	0				M	.v	. C			A	L	. P	H	A	+	0	0	, 1	(0	0	5.)		Α.	L	Ρ,	H.	A.				 - 1	
	-	-					-	_	_		-			_	_	-		-			_	-	-		-	_	_					_	_		

ALPHA is a 6 octet field.

.

GE-115-

MOVE RIGHT QUARTETS

MVQ ALPHA (nn), BETA

Right quartets from the BETA field are placed in right quartets of the ALPHA field. Movement is right to left through the length of the ALPHA field (01-16 octets).

INDICATORS AFFECTED

UF/OF	ZE/N Z	
0	0	The ALPHA result field contains zero in all right quartets.
0	1	At least one right quartet in the ALPHA field is non-zero.

NOTES:

- Operation is serial, quartet by quartet, from right to left through the ALPHA and BETA fields.
- Only the right quartets of the fields are processed. Left quartets in both fields are unaffected.
- The operation is terminated when the ALPHA field has been processed.

If the fields are of equal length, all right quartets of the ALPHA field are replaced by all right quartets from the BETA field.

If the length of the BETA field is greater than the length of the ALPHA field, the right quartets of the ALPHA field are all replaced. Excess right quartets in the left of the BETA field are not moved.

If the length of the BETA field is less than the length of the ALPHA field, the excess right quartets in the left of the ALPHA field are replaced with zercs.

- The BETA field right quartets are unaffected unless some part of the ALPHA field lies in the BETA field.
- The UF/OF indicator is set to zero prior to the MVQ operation and is unaffected by the operation.
- The ZE/NZ indicator records the presence of an all-zero or a non-zero result in the ALPHA field.

MVQ

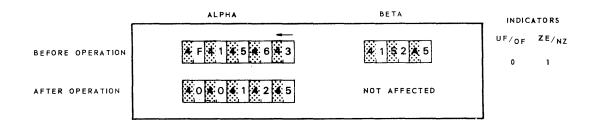
PROGRAMMING PRACTICES:

The MVQ may be used to place zeros in the right quartets of a field used for decimal operations. To accomplish this the programmer may use a single octet BETA field with a right quartet of zero. The length of the ALPHA field governs the length of the operation. The single quartet is moved from the BETA field to the ALPHA field and the remaining ALPHA field right quartets are zero filled.

If the MVQ follows an instruction which records a result in the UF/OF indicator, the setting should be tested or saved prior to the MVQ. (See the Jump on Condition, JC, instruction on page 97 for a method of saving indicator settings for subsequent test).

A field may be checked for zero when it is moved by means of the MVQ. To accomplish this the programmer tests the ZE/NZ indicator with a Jump on Condition instruction.

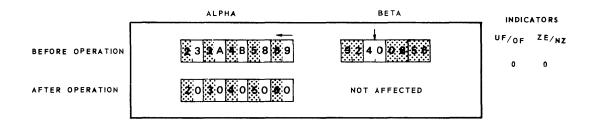
EXAMPLES:


1) Use of the MVQ to move data to a field with the desired left quartet configurations.

PAGELINE NAME 32 3334 3536 40	DPERATION	0 P E R A N D S 74
0.10.5	M.V.O.	ALPHA, BETA

ALPHA has a defined length of 5 octets.

BETA has a defined length of 3 octets.


ALPHA field right quartets not filled from the BETA field are filled with right quartets zeros.

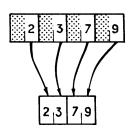
2) A field used for decimal operations may be reset to zero between operations by means of the MVQ to transmit right quartet zeros. To accomplish this the programmer uses a single octet BETA field. The right quartet of the BETA field octet must be zero.

PAGELINE NAME Nº 12 3334_3536 44	OPERATION	O P E R A N D S
0,20,5	MVO	ALPHA, BETA-0.0.2. (.0.1.)
		$\sim \sim \sim \sim \sim \sim$

ALPHA has a defined length of 5 octets.

PACK RIGHT QUARTETS INTO OCTETS

PK ALPHA (nnn), BETA


Right quartets of two BETA field octets are packed into a single octet in the ALPHA field. Packing is left to right in both fields through the length of the ALPHA field (001-256 octets).

INDICATORS AFFECTED

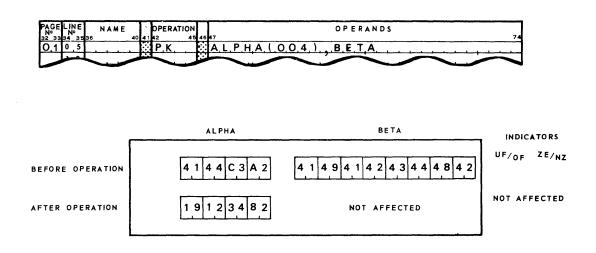
none

NOTES:

- Operation is serial, from left to right, through the ALPHA field.
- Two right quartets of the BETA field are packed into each octet in the ALPHA field as shown below.

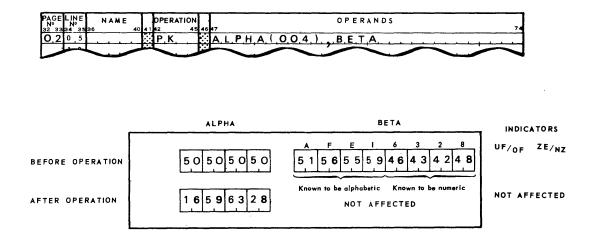
- The result replaces the octets of the ALPHA field.
- The left quartets of the BETA field are not moved.
- The BETA field is not affected unless some part of the ALPHA field lies in the BETA field.

PROGRAMMING PRACTICE:


The PK operation may be used to condense data in the store after input and prior to output or arithmetic use. This enables the programmer to economize the use of the store by halving the length of the field that is retained. The Unpack (UPK) instruction is used to recreate the field for its intended use.

PΚ

ΡK


EXAMPLES :

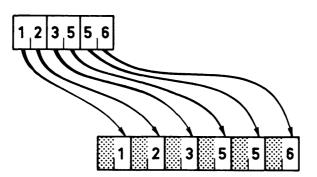
1) Decimal data packed for retention in store.

2) The use of the PK instruction to condense an input record.

If the left quartet values are known, it is possible to pack non decimal data and reconstruct it later. In the following example, it is assumed that the programmer knows that the first four BETA characters are letters between A and I and that the last four are decimal digits.

UNPACK OCTETS INTO RIGHT QUARTETS

UPK ALPHA (nnn), BETA


Octets from the BETA field are unpacked into the right quartets of two octets in the ALPHA field. Unpacking is left to right in both fields, through the length of the BETA field (001-256 octets).

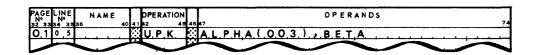
INDICATORS AFFECTED

none

NOTES :

- Operation is serial, from left to right, through the BETA field.
- Each octet of the BETA field is unpacked into two right quartets in the ALPHA field as shown below.

- The operation is terminated when the BETA field has been unpacked.
- The right quartets of the ALPHA field are replaced by the result.
- The left quartets of the ALPHA field do not enter into the operation unless some part of the ALPHA field lies in the BETA field.
- The BETA field is not affected unless some part of the ALPHA field lies in the BETA field.


PROGRAMMING PRACTICE :

The UPK is used to recreate a field which has been condensed for retention in store. If the data is unpacked for output, the unpacking should be done into a field which has been preset with the required left quartet configuration. When data is unpacked into a work area for use with operations which do not utilize the left quartet no presetting is necessary.

Note : The operation is governed by the length of the BETA field, but the length is written with the ALPHA field operand specification.

EXAMPLE :

Data unpacked from a save area into a field preset for decimal output.

	ALPHA	BETA	INDICATORS
BEFORE OPERATION	404B4C454241	723489	UF/OF ZE/NZ
AFTER OPERATION	474243444849	NOT AFFECTED	NOT AFFECTED

COMPARE IMMEDIATE TO STORE

CMI immediate , ALPHA operand

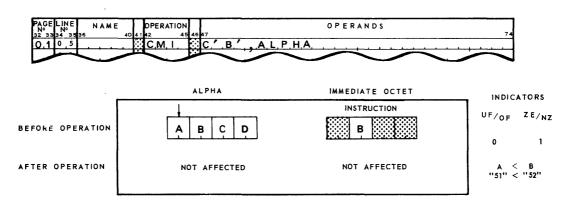
The immediate data item in the CMI instruction is compared to a single octet ALPHA field.

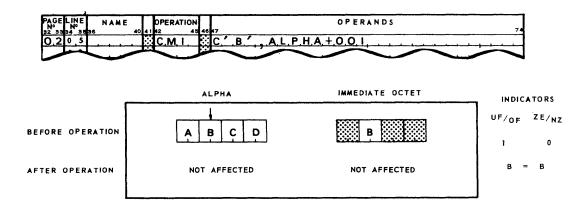
INDICATORS AFFECTED

UF/OF	ZE/N Z	Comparison
0	. 1	ALPHA <immediate data="" item<="" td=""></immediate>
1	0	ALPHA=immediate data item
1	1	A LPHA> immediate data item

NOTES :

- Neither the ALPHA field octet nor the immediate data item is affected by the comparison operation.
- The UF/OF and ZE/NZ indicators record the results of the comparison.


PROGRAMMING PRACTICES :


The CMI may be used to verify the configuration of an octet in the store.

A Jump on Condition instruction is used to test the result of the comparison.

EXAMPLES:

1) Comparison of an octet in ALPHA with an immediate octet, ALPHA less than the immediate octet.

2) Comparison of an octet in ALPHA with an immediate octet, octets equal.

3) Comparison of an octet in ALPHA with an immediate octet, ALPHA greater than the immediate octet.

	ALPHA	IMMEDIATE OCTET	INDICATORS
BEFORE OPERATION	A B C D	в	UF/ _{OF} ZE/ _{NZ} 1 1
AFTER OPERATION	NOT AFFECTED	NOT AFFECTED	С > В

COMPARE COMPLETE OCTETS

CMC ALPHA (nnn), BETA

Full octets of the ALPHA field are compared to full octets of the BETA field. Comparison is from left to right, through the common length of the fields (001-256 octets).

INDICATORS AFFECTED

UF/OF	ZE/N Z	Comparison
0	1	ALPHA < BETA
1	0	ALPHA = BETA
1	1	ALPHA > BETA

NOTES

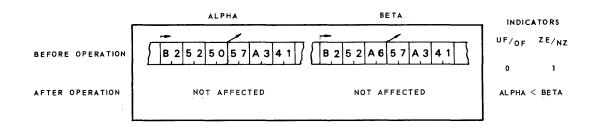
- Operation is serial, octet by octet, from left to right through the ALPHA and BETA fields.
- The operation is terminated by the recognition of the first inequality. If the contents of the fields are equal, the comparison continues through the common length of the ALPHA and BETA fields.
- The ALPHA and BETA fields are unaffected by the comparison operation.
- The UF/OF and ZE/NZ indicators record the result of the comparison.

PROGRAMMING PRATICES :

The CMC may be used as an alternate to the CMQ for comparing fields of equal length in which the left quartets are known to be equal and the right quartets determine the difference. Unless the contents of the compared fields are identical, processing is confined to fewer octets when the CMC is used rather than the CMQ thus giving a faster operation.

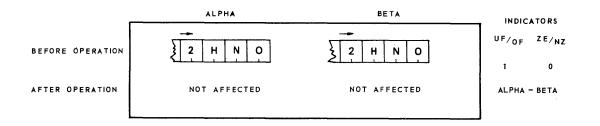
A Jump on Condition instruction is used to test the result of the comparison.

CMC


EXAMPLES :

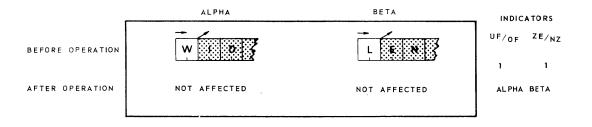
1) Comparison of two fields, the first less than the second.

ALPHA has a defined length of 6 octets.


BETA has a defined length of 2 octets, but the defined length of BETA is not used in the operation. Operation terminates when the first inequality is encountered.

2) Comparison of two equal fields.

ALPHA has a defined length of 4 octets.



3) Comparison of two fields, the first greater than the second.

PAGE № 32 33	LINE № 34 35	N A M E 36	40 41	OPERATION		OPERANDS 47 7 7
0.3	0 5			C,M,C,		ALPHA, BETA
			and the second second		ن ن	$\sim \sim \sim \sim$

ALPHA has a defined length of 32 octets, but operation is terminated when the first inequality is encountered.

The defined length of BETA is not used in the operation.

СМQ

COMPARE RIGHT QUARTETS

CMQ ALPHA (nn), BETA (nn)

Right quartets of the ALPHA field are compared to right quartets of the BETA field. Comparison is right to left, through the length of the ALPHA field (01 – 16 octets).

INDICATORS AFFECTED

UF/OF	ZE/NZ	Compared Fields
0	1	ALPHA < BETA
1	0	ALPHA = BETA
1	1	ALPHA > BETA

NOTES:

- Operation is serial, quartet by quartet, from right to left.
- Only the right quartets of the fields are processed. If the fields are of equal length, all quartets in both fields are compared. If the length of the BETA field is greater than the length of the ALPHA field, the excess quartets in the left of the BETA field do not enter the comparison.

If the length of the BETA field is less than the length of the ALPHA field, the excess quartets in the left of the ALPHA field are compared to zero quartets.

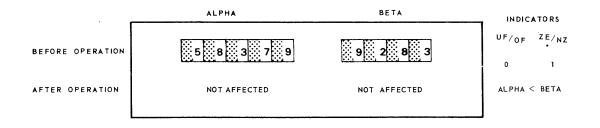
- The ALPHA and BETA fields are unaffected by the comparison operation.
- The UF/OF and ZE/NZ indicators record the result of the comparison.

PROGRAMMING PRACTICES:

The CMQ may be used to compare fields in which only the right quartets are meaningful at the time of comparison. For example, data unpacked into a work area in which left quartet values are not the same, can be compared with the CMQ operation. The programmer should be certain that no mistakes are caused by treating the data as right quartets only.

A Jump on Condition (JC) instruction is used to test the result of the comparison.

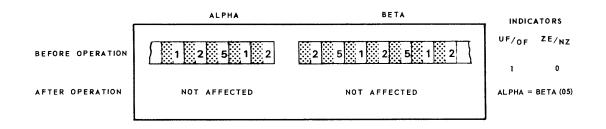
CMQ


Note : The CMC operation (see page 80) may be a more efficient operation for comparison than the CMQ if the left quartets of the fields to be compared are the same.

EXAMPLES :

1) Comparison of right quartets in two data fields

ALPHA has a defined length of 5 octets, but 4 are specified. BETA has a defined length of 4 octets.



2) Comparison of right quartets in two data fields

ALPHA has a defined length of 5 octets.

BETA has a defined length of 7 octets, but only 5 enter the operation, because the operative length is the length of the ALPHA field.

SR

SEARCH TO THE RIGHT

SR ALPHA (nnn), BETA

The ALPHA field is searched for an octet equal to the single BETA field octet. Search is from left to right through the ALPHA field (001 - 256 octets).

INDICATORS AFFECTED

UF/OF	ZE/NZ	Search Result
1	0	Search Failed
1	1	Match Found

NOTES:

- Operation is serial, octet by octet, from left to right in the ALPHA field. The BETA field is a single octet.
- The operation is terminated when the BETA field data item has been found in the ALPHA field,

If the BETA field item is not present in the ALPHA field, the operation is terminated when all the ALPHA field octets have been examined.

• When the search is terminated, LOC (store octets 0254-0255) contains the location of the octet to the immediate right of the last ALPHA octet examined.

If the BETA field item was found in the ALPHA field, the store location in LOC is that of the octet to the right of the matched data item.

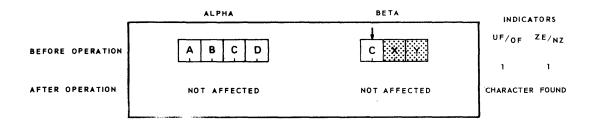
If the BETA field item was not found in the ALPHA field, the store location in LOC is that of the octet to the right of the last ALPHA field octet examined, i.e., the location of the octet to the immediate right of the last octet in the ALPHA field.

- The UF/OF indicator is preset to 1 by the SR and is not affected by the operation.
- The ZE/NZ indicator records the result of the search.

PROGRAMMING PRACTICES:

The ZE/NZ indicator must be interrogated by a Jump on Condition instruction to test the result of the search.

The address in LOC must be decremented by 1 to reference a matched item in the ALPHA field.

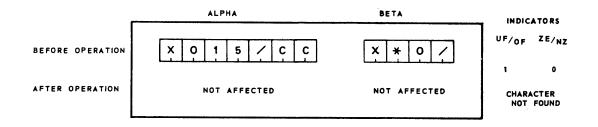

When the SR operation follows an operation which sets the UF/OF indicator and the setting is used by the program, the programmer should use or save the UF/OF setting prior to the SR (See the Jump on Condition on page 97 for a method of saving indicator settings for a subsequent test).

EXAMPLES:

1) Search, character found.

74
1

The character sought is the letter C.


After the operation LOC contains the address of the ALPHA octet to the immediate right of the matching character (location of D).

2) Search, character not found

PAGE Nº 32 33	Ŀ	ŅE		NA	ME	40		DPE			I	-									0	PE	RA	ND	S						7
0,2	34 0	5	36					Ís i	٦.	45 4		Á.L	P	H	.A	,	Β.	Ê.	T./	٩.+	0	0.	1.						 		
	1	0	E								Ι																		 		
	1	5	Ι.							. 8										•									 		
	2	0																											 		
	2	5								. 8																			 		
-	د	Þ			_	-	L.			ظ	-		7				-	-				-	-			-	-	-	 ÷	-	-

ALPHA has a defined length of 7 octets

The character sought is an asterisk (*)

After the operation LOC contains the address of the octet to the right of the rightmost octet in ALPHA

,

SL ALPHA (nnn), BETA

The ALPHA field is searched for an octet equal to the single BETA field octet. Search is from right to left through the ALPHA field (001 - 256 octets).

INDICATORS AFFECTED

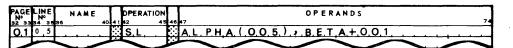
UF/OF	ZE/NZ	Search Result
1	0	Search Failed
1	1	Match Found

NOTES:

- Operation is serial, octet by octet, from right to left in the ALPHA field. The BETA field is a single octet.
- The operation is terminated when the BETA field data item has been found in the ALPHA field.
 - If the BETA field item is not present in the ALPHA field, the operation is terminated when all the ALPHA field octets have been examined.
- When the search is terminated, LOC (store octets 0254-0255) contains the location of the octet to the immediate left of the last ALPHA octet examined.
 - If the BETA field item was found in the ALPHA field, the store location in LOC is that of the octet to the left of the matched data item.
 - If the BETA field item was not found in the ALPHA field, the store location in LOC is that the octet to the left of the last ALPHA field data item examined.
- The UF/OF indicator is preset to 1 by the SL and is not affected by the operation.
- The ZE/NZ indicator records the result of the search.

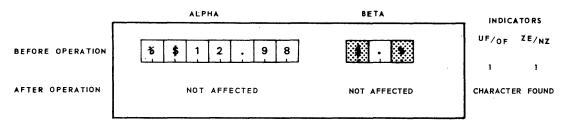
PROGRAMMING PRACTICES :

The ZE/NZ indicator must be interrogated by a Jump on Condition instruction to test the result of the search.

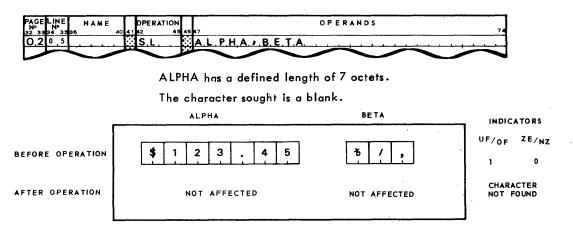

The address in LOC must be incremented by 1 to reference a matched item in the ALPHA field.

When the SL operation follows an operation which sets the UF/OF indicator and the setting is used by the program, the programmer should use or save the UF/OF setting prior to the SL (See the Jump on Condition instruction on page 97 for a method of saving indicator settings for a subsequent test).

NOTE: The SL is the only one of the complete octet comparison instructions which operates from right to left.


EXAMPLES:

1) Search, character found.


ALPHA has a defined length of 7 octets.

The character sought is a period (.).

After the operation LOC contains the address of the octet to the immediate left of the matching character (location of 2).

2) Search, character not found.

After the operation LOC contains the address of the octet to the immediate left of the leftmost octet of the ALPHA field.

The GE-115 Information Processing System generates logical sums and products of data fields. Data treated by the logic operations is used by the system as bit patterns rather than numeric quantities or symbolic representations.

The logic operations have the following general characteristics:

- Data from two fields is matched and combined.
- Data fields may be from 1 to 256 octets in length. The length of the first data field is used.
- Operation length is governed by the length of the first data field reference.
- Data fields are referenced at the left; operation is left to right.
- The first data field is replaced by the result.
- Complete octets are processed.

The format of the logic instructions is:

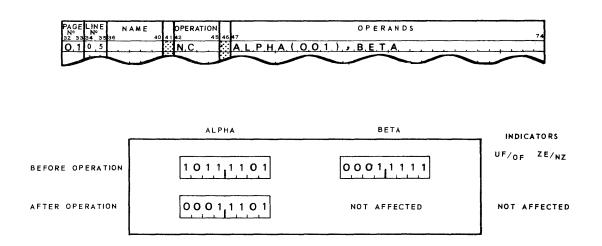
PAGE Nº 32 33	I N			N A	M				DP	ERA				_	_											0	PE	R	A N	D	5							-
³² ³³	3 4 0	35 5		a,	m,		40		0	p,	 45		1	<u>, 1</u>	Ĺ,	Ρ	H	A	. (_ n	. r	n . I	n,),	3,	Β.	E	Т	A			 						
	1	0						-					Ι					+														 			 	+	•	
ĺ	브	5					1		_		 						_	•			~					,						 			 		•	
	2	0				.	-	-			 	-	L				م ــــ	•							4						J	 .		i .	 	+		· · · ·
	1	° 4	•		k			-	-		 		Ł				_	•	-					.	4	-		_			<u> </u>	 	-		 	+	•	.

'AND' ON COMPLETE OCTETS

NC ALPHA (nnn), BETA

Octets in the BETA field are examined, bit by bit. Each zero bit in the BETA field is effectively transmitted to the corresponding bit position in the ALPHA field. Transmission is left to right through the common length of the fields (001 - 256 octets)...

INDICATORS AFFECTED


none

NOTES :

- Operation is serial, octet by octet, from left to right, through the ALPHA and BETA fields.
- One bits in the BETA field do not affect the ALPHA field.
- The ALPHA field is replaced by the result.
- The BETA field is unaffected unless some part of the ALPHA field lies in the BETA field.

EXAMPLE :

The NC instruction used to zero the three bits in the left of an octet.

NC

'OR' ON COMPLETE OCTETS

OC ALPHA(nnn), BETA

Octets in the BETA field are examined, bit by bit. Each one bit in the BETA field is effectively transmitted to the corresponding bit position in the ALPHA field. Transmission is left to right through the common length of the fields (001 - 256 octets).

IN DICATORS AFFECTED


none

NOTES :

- Operation is serial, octet by octet, from left to right, through the ALPHA and BETA fields.
- Zero bits in the BETA field do not affect the ALPHA field.
- The ALPHA field is replaced by the result.
- The BETA field is unaffected unless some part of the ALPHA field lies in the BETA field.

EXAMPLE :

A logical 'or' of two three octet data field.

	ALPHA	BETA	INDICATORS
BEFORE OPERATION	0100 0100 0101 0110 0101 0000	0101 0011 1010 1010 0100 0001	UF′ _{OF} ^{ZE≁} NZ
AFTER OPERATION	0101 0111 1111 1110 0101 0001	IS NOT AFFECTED	NOT AFFECTED

XC

EXCLUSIVE 'OR' ON COMPLETE OCTETS

XC ALPHA(nnn), BETA

Octets in the BETA field are examined, bit by bit. Each one bit in the BETA field inverts the corresponding bit in the ALPHA field. Operation is left to right through the common length of the fields (001 - 256 octets).

INDICATORS AFFECTED

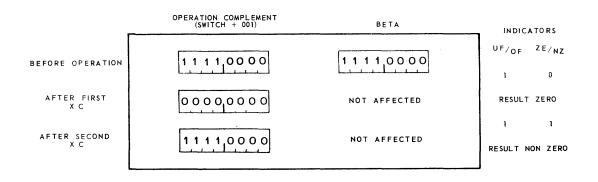
ZE/NZ
0
1

The resultant ALPHA field is all zero. At least one bit in the resultant ALPHA field is non-zero.

NOTES :

- Operation is serial, octet by octet, from left to right, through the ALPHA and BETA fields.
- Zero bits in the BETA field do not affect the ALPHA field.
- The ALPHA field is replaced by the result field.
- The BETA field is unaffected unless some part of the ALPHA field lies in the BETA field.
- The UF/OF indicator is set to 1 and is not affected by the operation; the ZE/NZ indicator records the value of the ALPHA result.

PROGRAMMING PRACTICES :


When the XC instruction follows an operation which records results in the indicators, care must be taken to preserve or use the information provided by the indicator settings, if it is required for program operation.

The XC instruction may be used to alter the mode of operation of the Jump on Condition (JC) operations. These instructions use the operation complement of the internal instruction format to differentiate conditions to be tested as directives for operation. A single BETA field octet can be set up containing a pattern which alters one of the test patterns and changes the JC action.

EXAMPLE :

An XC instruction used to alter an operation complement.

PAGE № 32 33	N			AME	40		OPI	RAT	10N 45	46	47										O P	Р Е	RA	ND	S						74
0,1	0	5	50				X,	С.				W,	T.	С.	H.	+.	0,	0, '	ر ا	B	Ε.	T.	Α.						 		
	1	0					1																						 ·		
	1	5				L															.					4			 		_ 1
	2	0		i i)			L			+									+-				.	44	 		
	2	5	S.W	.T.C	<u>. H</u>	L	J.	Ų,			s	1.	G.	M,	A	I					ıı		+						 · · · •		
	2	4			_		5		_	-	_		-		_		-	-	-			-	-	-	-		-	-	 ÷	\sim	-

JUMP INSTRUCTIONS

The GE-115 Information Processing System acts upon instructions in the sequence of their locations in the store. The system may be directed by the jump instructions to alter that sequence.

There are two types of jump instructions. One type interrogates the condition indicators and directs the system to interrupt sequential operation when a test condition is present. The second type does not use the test indicators.

The jump instructions which test the indicators are called conditional jumps. They have the following general characteristics:

- The immediate operand in the internal instruction (second octet of the operation in the giore) specifies a condition pattern for testing the indicators.
- The second operand in the internal instruction refers to an instruction in the store to which control is given if the test condition is met.

Operation continues in sequence when the condition tested is not present.

The conditional jump instructions are divided into two groups, on the basis of instruction specification. The first group has an implied first operand. The assembler translates the mnemonic for the operation into an operation code and the required operation complement to perform the test specified in that mnemonic. The second group requires an explicit first operand specification to set up the pattern which tests a condition.

The conditional jump instructions which do not require an explicit immediate operand specification have the following format:

PAGELINE NAME Nº Nº 32 3334 3536 40	OPERATION	O P E R A N D S 47 7.
0,50,5n,a,m,e,	ор 🖸	SIGMA
1 0		
1 5		i i ''''''''''''''''''''''''''''''''''
2,0		· · · · · · · · · · · · · · · · · · ·
2 5		

Figure B-3 lists the conditional jump instructions, showing conditions tested and mnemonic expressions used.

The conditional jump instructions which require an explicit immediate operand have the following format:

PAGE LINE Nº Nº 32 3334 353	NAME	OPERATION	OPERANDS 74
0.010.5	n,a,m,e,	J.C.	condition , S I G M A
10			· · · · · · · · · · · · · · · · · · ·
2,0			<u></u>
2 5			

Figure B-2 shows the configurations of the immediate operands required to interrogate the testable conditions. It is recommended that the hexadecimal notation be used in specifying immediate operands.

There are three jump instructions which do not test the indicators. Two of these test an external condition, a switch setting. The jump is taken when the tested switch is on.

The third is a special purpose jump instruction which always alters the program sequence. In addition, this operation, the Jump and Return (JRT) places the address of the next sequential operation into LOC (store octets 0254-0255). This provides a means of returning to the operation which follows the jump instruction.

The jump instructions which do not test the indicators have the same format as the conditional jump instructions for which the test pattern is implied by the mnemonic expression.

JUMP ON CONDITION

JC condition, SIGMA

The condition specified in the operation is tested. If the condition is present, the program jumps to the instruction at the SIGMA location.

INDICATORS AFFECTED

none

NOTES:

- Conditional jump instructions test the status of the UF/OF and ZE/NZ indicators which record the results of internal operations and peripheral operations.
- There are four possible patterns which may be present in the indicators:

	UF/OF	ZE/NZ
pattern 1	0	0
pattern 2	0	1
pattern 3	1	0
pattern 4	1	1

- The conditional jump operation may test for any of these patterns singly, or, it may test for combinations of these patterns.
- Each of the four bits in the left quartet of the operation complement in the internal format of the JC instruction corresponds to a pattern. If a bit is a 1, the pattern to which the bit corresponds is tested; if the bit is a 0, the pattern is not tested.
- The bits in positions 4-7 of the operation complement and the pattern to which each corresponds are shown in the figure below. Note that the right quartet (bit positions 0-3) is always zero.

Bit position

osition	76543210
pattern l	1000,0000
pattern 2	01000000
pattern 3	0010,0000
pattern 4	00010000

Operation Complement

In the last figure only one pattern is specified for each operation complement shown. When two bits of the left quartets are one, two condition patterns are tested. Any combination of the patterns may be tested. If one of the specified patterns is present in the indicators the condition is met and the jump is taken.

The jump instructions do not alter the indicators they test.

PROGRAMMING PRACTICES:

Conditional jumps provide the only means of testing the indicators set during program execution. Jumps should be placed immediately after the operations that set the indicators for testing, or the condition should be saved for subsequent testing.

It is recommended that the condition patterns be specified in the hexadecimal notation. Figure B-2 lists the patterns for the tests and the hexadecimal configuration of each. Note that the hexadecimal number 00 specifies that none of the four possible patterns be tested and the hexadecimal number F0 specifies that all patterns be tested. A Jump on Condition instruction in which the hexadecimal pattern is 00 is the No Jump (See page 103) and the Jump on Condition in which the condition specified is F0 is the Jump Unconditional (See page 102).

EXAMPLES:

JC

1) The indicators cannot be accessed by the program. The settings recorded may be saved by a sequence such as that shown below. When the jump is taken to the instruction at SAVE the pattern which specified that jump is moved for a subsequent check.

PAGE Nº	E	IN E	1		Ν	٨N	ΛE		Γ		PER	AT	ION												C	Ρ	ER	AI	N D :	s								
32 33	34	3	53	36				40	41	42			45	46	47											········												/4
6,4	0					_			L	Ľ					J	L	J.M	I P		. I	F.		0	V E	F	<u></u> F	L	<u>.</u> C	W									
	Ŀ	<u>,</u> ٥		Τ.	Ε	S	, T			1.	L C				Х	, ,	, 3	0	1		S,	Α,	V,	Ε,														
	1	5								N	İ, V			[.	Х		,C	0			0	F,	Τ.	S,1	1,4	r,0	0,0) 1		N,	Ο,	0	V.	E J	R,F	L	0)	Ν,
	2	.0								×					С	.0	M	P	A	Ŕ	Ε.		R,	E,S	S_E	. T	្ល		, T`	Η,	Ê,	0	V.	E,I	R F	L.	0)	N,
	2	5		C,	0	N	Ţ			\mathbf{b}	C, C				Α	L	P	, H	A	Ú	0,	0.	3.)	Ē	3, E	T	A					-					
	2	0	1	_			-	_	بنعل	L	_		-	-	_	-			_		<u> </u>	-	_		-	_	-	-		_		-	-		_	-	-	-

6.5	0	2					$\sim\sim\sim\sim\sim$
	1	0	S, A, V, E,		M,V,C		0 F T S T + 0 0 1 , T E S T + 0 0 1
1	1	5				[
	2	0				Е	
	2	5					
	2	٩		<u></u>		سل	

7.0	0,5								_		\sim
	1 0	O, F, T, S, T		C.M.I		x'.00	1	I.N.D.	 		
[1 5								 	 	
[2_0							1	 	 	
[2 5								 	 	4
	2 0		-		سل			\sim	-		

GE-115.

2) When the presence of a given condition is used to direct program operation subsequent to operations which alter the indicators, it is not necessary to retain the indicator pattern. When the condition is recognized a subsequent jump can be preset to act on the results of the test.

PAGE № 32 33	L N 34	NЕ 35		NAME	40			RA	TION 45	46	47									0	ΡĘ	R.	A N	D S		 		 	7
0,2	0	5					M,	V.	1		X	/	F	0		 S.	W,1	Γ.Ο), H	+	0	0	1					 	
	1	0					J.	C,			X	/	.3	0		 N,	0									 			
	1	5					M	V.	I.	Γ	X	/	0	0	/	S	W, 1	Γ.Ο	; H	.+.	0	0	1					 A	
	2	.0	N,C	D			Χ.	Χ.	x.		x	<u>, x</u>	, x			 		,								 		 	
	-	-				•••		-			_	-	-		_	-	-	-			-		-	_	/		-		

8.5		T		-		\sim		\frown
9.0	S,W,T,C,H		J.U.		RND			1
9 5			X, X, X,	Ŀ	x x _		· · · · · · · · · · · · · · · · · · ·	1
		<u></u>		سل		\sim		

.

С	PERATI	ON COMPL	EMENT	INDIC	ATORS
Н	EX	BIN	ARY	UF/OF	ZE/NZ
0	0	0000	0000		
1		0001		1	1
2		0010		1	0
3		0011		1	either 0 or 1
4		0100		0	1
5		0101		either 0 or 1	1
6		0110		0	1 0
7		0111		0 1 1	1 0 1
8		1000		0	0
9		1001		0	0
A		1010		either 0 or 1	0
В		1011		0 1 1	0
с		1100		0	either 0 or 1
D		1101		0 0 1	0
E		1110		0 0 1	0 1 0
F		1111			ibilities

Figure B-2 : INDICATOR SETTINGS TESTED BY CONDITIONAL JUMPS

JLE JDE JCE JC JC

JUMP	IF	GREATER	
JUMP	IF	EQUAL	
JUMP	IF	GREATER OR EQUAL	
JUMP	IF	LESS	
JUMP	IF	NOT EQUAL	
JUMP	IF	LESS OR EQUAL	

op SIGMA

The condition specified in the operation is tested. If the condition is met, the program jumps to the operation at the SIGMA location.

INDICATORS AFFECTED

none

NOTE:

• The jump instructions do not alter the indicators they test.

PROGRAMMING PRACTICE:

The comparative conditional jump instructions are translated by the assembler into both the operation code and the operation complement which specifies the pattern for the condition or conditions to be tested. A test pattern may not be specified in the instruction statement.

EXAMPLE:

A Jump if Not Equal used to test the result of a comparison.

PAGE Nº 32 33	LI			NA	ME			OPE	RAT														0 P	E	RA	N D	s							
0 1	34 0	<u>3</u>	36			40	-		AC	45		ĥ	1	5	,	1 4	<u> </u>		F	.т	Δ									 				
1.	1	0		·····•				J	N.E			s				N A				-	-0-	4	4	-	+			- -	هــ ـ ـ ه	 		• •		
1	1	5										F															÷			 	- 4	•+		
	2	0												_						-									· · · ·	 				
	2	5														+	_												••	 		<u> </u>		
		4			-		-		<u> </u>		-	-	_	-				-		-		-			-	-			-	-		Ĺ,	_	

If the ALPHA and BETA fields are not equal, control jumps to the operation at the SIGMA address. If the ALPHA and BETA fields are equal, the program continues in sequence.

JUMP UNCONDITIONAL

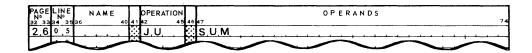
JU SIGMA

The program jumps to the operation located at the SIGMA field address.

INDICATORS AFFECTED

none

NOTES:


• The JU is a conditional jump which specifies all conditions.

PROGRAMMING PRACTICE:

The JU is used when a transfer of control is to be made that is independent of the status of the indicators.

EXAMPLE:

The program jumps to the sequence which begins at SUM.

JU

NO JUMP

NOJ

NOJ SIGMA

Control continues in sequence; no test pattern is specified.

INDICATORS AFFECTED

none

PROGRAMMING PRACTICE:

The NOJ may be changed to an effective jump by changing the configuration of the immediate operand. To accomplish this, the programmer may use a logical operation or an octet move. (See the XC on page 93 for a method of altering the test pattern in the jump instruction). The NOJ – JU instructions can function as alternating sequence controls.

EXAMPLE:

The program continues; the AD following the NOJ is the next instruction executed.

PA 132	GE 33	LINE Nº 34 35	36	NAME	40	4 1	0P 42	ER	ATI	0N 45	5 40	47	,						0	PE	R	N D	s				 	74
2	. 1	0 5			. 1		N	0	. J			E	1	V.	D													
Γ		1 0					A	D			Γ	A		L.	PHA	 BE	Е, Т	,A.	i					_	 		 	
L									_	_								_	/				_			_	-	

Figure B-3 . TABLE OF CONDITIONAL JUMPS

Mnemonic	Operation Complement (hexadecimal)	Conditions indicated when a jump occurs
ИОЈ	00	No Jump occurs
JU	FO	Jump always occurs
		After a CMQ, CMC, or CMI, a jump occurs if:
JG	10	ALPHA > BETA; ALPHA > immediate operand
JE	20	ALPHA = BETA; ALPHA = immediate operand
JGE	30	ALPHA ≥ BETA; ALPHA ≥ immediate operand
JL	C0	ALPHA $<$ BETA; ALPHA $<$ immediate operand
JNE	D0	ALPHA ≠ BETA; ALPHA ≠ immediate operand
JLE	EO	ALPHA \leqslant BETA; ALPHA \leqslant immediate operand
JC	10	Condition present after peripheral status test
		End of operation after data transfer on channel 1
		Character found after SR or SL
JC	20	Condition not present after peripheral status test
		End of operation on length, after data transfer on channel 1
		ALPHA = 0; after SD, SB, or XC
JC	C0	Result in underflow form after SD or SB
JC	30 ,	Overflow after AD or AB
JC	A0	ALPHA = 0; after AD or AB
JC	80	ALPHA = 0; after MVQ

JS2

JS

JUMP	IF	SWITCH 1 SE	1 SL T
JUMP	IF	SWITCH 2 SE	T JS2

JS1 SIGMA JS2

The status of the specified switch is interrogated. If the switch is set, program control jumps to the SIGMA field operation. If the switch is not set, the program continues in sequence.

INDICATORS AFFECTED

none

NOTE:

• The settings of the switches are not altered by the test. Switches are not under program control and must be set and reset externally.

PROGRAMMING PRACTICE:

Switch 1 and Switch 2 may be tested internally as a means of making certain that external operations have been carried out. An operator may be instructed to set a switch to indicate that an input file has been placed in the reader, or that cards have been set up for punching, or some other required action has been taken and the switch set to indicate the completion of the request. The program, after testing the switch by means of the jump, may reset the jump pattern to make the test ineffective. Messages should be included in the program for printing whenever operator intervention is required. Operator intervention should be restricted to the necessary minimum.

EXAMPLE:

The JS1 sets up an effective program halt. When Switch 1 is off the program goes on to execute the MVC.

PAGELINE NAME Nº Nº NAME 32 3334 3536 40	4 1	OPERATION	46	47	OPERANDS 74
0,20,5		J.S.1.		W.A.I.T.	
1.0 N.O.S.T.P		M V C		ALPHA, BETA	
1,5		. (
2,0	L				
2 5					L_L_L_A_book_A_A_A_A_A_A_A_A_A_A_A_A_A_A_A_A_A_A_
	 .		-		\sim
\sim			_	\sim	$ \frown \frown \frown \frown $
5.0	Ļ.		_		
5.5	Ŀ	the second se	Ŀ.		<u>, O.R.G. A.T. K.N.O.W.N. A.D.D</u>
6,0 W.A. I.T.	Ŀ	J.R.T.		P.R.T.R.T.	<u>, P.R.N.T.</u> , O.P.E.R. <u>M.E.S.G.</u>
6 . 5 A.C.T.U.L	Ŀ	J, S, 1		A.C.T.U.L.	W.A. I.TT. I.LA.C.T. I.O.N.
7.0		J.U.		NOSTP	COMPLETE
			-		\sim

JUMP AND RETURN

JRT SIGMA

The store location of the operation which follows the JRT is placed in LOC (store octets 0254-0255). Control is transferred to the operation which begins at the SIGMA field location.

INDICATORS AFFECTED

none

PROGRAMMING PRACTICE:

The JRT is used for subroutine entry. The contents of LOC must be moved to a jump instruction to effect a return to the sequence from which the subroutine was entered.

EXAMPLE:

The JRT used to jump to a subroutine named TOT. The first instruction in the TOT subroutine moves the return address from LOC to the jump instruction named BACK.

PAGELINE NAME № № NAME 32 3334 3536 40	OPERATION 4142 4546	OPERANDS 74
5,00,5	· *	COMPUTE TOTAL
1.0	J.R.T.	ТОТ
1 5	×1	
2.0		· · · · · · · · · · · · · · · · · · ·
2 5		

4 5		11			
7,0		1:11	F	-	TOTAL SUBROUTINE
7,5	Т,О,Т,	. In	IV,C		TOTAL SUBROUTINE. BACK+0.0.2.(.0.0.2.),LOC.S.E.T.R.E.T.U.
8.0			Se		· · · · · · · · · · · · · · · · · · ·
8 5			L		
9.0	B,A,C,K,		J.U.		<u>0,0,0,0, R,E,T,U,R,N, T,0, C,A,L,L,E,R, , , , , , , , , , , , , , , , , , </u>

USER'S GUIDE

EDIT INSTRUCTIONS

Data fields generated by programs in the GE-115 Information Processing System may be edited for output. Such operations as zero-suppression, character insertion, and field-spacing, may be performed. Editing simplifies the preparation of readable tabular listings, invoice sheets, and other printed reports.

Input data also may be edited. Editing of input data consists of preparing it for internal use by the GE-115 system. The varied internal codes recognized by other computers can be translated into the GE-115 internal code. Data and programs prepared by other systems can be translated for processing.

The editing instructions have the following general characteristics:

- A data field is operated upon by the use of a mask or table.
- Only the first data field length is used in the instruction.
- The length of the operation is governed by the length of the first data field.
- The operative length of the second data field is a function of the configuration of the first data field.
- Operation is from left to right in both fields.
- The first operand field is replaced by the result field.

The editing instructions have the following format:

PAGI N⁰ 32 3	- N			AM				RAT		46											0	ΡE	R A	NE) S						
0,1	334	35 5	36		40	4!	0	p,	4:			L	P	н	A	(n,	n,	ı,)	, ,	B	E.	Τ.	A,							
	1	0						· · ·																							
	1	5											,																	 	
	2	0								Ŀ																				 ۰.	
	2	5									L																•		 	 	
_	- ول	ي م			-	يعتمل				سيل	-	~				-	_	-			-	_	-			_	-	~	 	 -	

EDT ALPHA (nnn), BETA

Octets from the ALPHA field are used as control characters to edit the information in the BETA field. Zero-suppression, character insertion, and spacing of fields are specified by the configuration of the ALPHA field. Editing proceeds from left to right. The length of the operation is determined by the length of the ALPHA field (001 to 256 octets). The ALPHA field contains the edited data at the end of the EDT operation.

INDICATORS AFFECTED

UF/OF	ZE/NZ	
1	0	Operation ended in the zero-suppression mode.
1	1	Operation ended in the non-zero-suppression mode.

NOTES:

- ALPHA is the control field for the EDT operation. The configuration of the ALPHA field determines the format of the edited field.
- The length of the BETA field used in the EDT operation is a function of the configuration of the ALPHA control field.
- The ALPHA field contains the edited data at the end of the EDT operation.
- Operation proceeds from left to right.
- Three types of edit control operations may be specified in the ALPHA control field. Each type of control operation is represented by a particular hexadecimal octet configuration in the ALPHA field. These are '20', '21' and '22'.
- The ALPHA field can contain, as well as the three types of hexadecimal control characters, any of the characters from the graphic set. The character in the leftmost octet of the ALPHA field serves as a "fill" character; that is, it may be used to replace any subsequent ALPHA octet that is not replaced from BETA.
- There are two modes of the editing operation: zero-suppression and non-zero-suppression.
- The action of the hexadecimal control characters in the ALPHA field is affected by the mode of operation at the time that they are encountered.
- The presence of the fill character and any other of the characters (non-control characters) in the edited field is determined by the mode of the operation when a particular octet is processed.

- Operation always begins in the zero-suppression mode. Non-zero-suppression 'begins' when a BETA octet is found to have a non-zero right quartet or when the ALPHA field octet contains the control configuration '21'.
- The first octet of the ALPHA field remains unchanged by the operation. The operation is in the zero-suppression mode and does not change. The character in the first octet of the ALPHA field will be used as the "fill" character in the remainder of the EDT operation.
- In the ZERO-SUPPRESSION MODE, the ALPHA octet causes the EDT operation to proceed in the following ways:

'20'

When the '20' is encountered in the ALPHA field, a check is made of the current BETA field octet to be edited.

If the BETA field has a non-zero right quartet, the BETA field octet is placed in the ALPHA field. Zero-suppression is terminated.

If the BETA field octet has a zero right quartet, the first character of the ALPHA field (the "fill" character) is placed in the ALPHA field octet. Zero-suppression continues.

'21'

The operative octet in the ALPHA field is replaced with the operative octet from the BETA field. Zero-suppression is terminated.

'22'

The operative octet in the ALPHA field is replaced by the first octet in the ALPHA field (the "fill" character). The BETA field is not involved. Zero-suppression continues.

Any other character

The operative octet in the ALPHA field is replaced by the first octet in the ALPHA field (the "fill" character). The BETA field is not involved. Zero-suppression continues.

 In the NON-ZERO-SUPPRESSION MODE, the ALPHA octet causes the EDT operation to proceed as follows:

'20' and '21'

The operative octet in the ALPHA field is replaced by the operative BETA field octet. The non-zero-suppression mode continues.

<u>'22'</u>

The operative octet in the ALPHA field is replaced by the "fill" character. The zero-suppression mode is restored.

Any other character

The operative octet in the ALPHA field is unchanged. BETA is not involved. The non-zero-suppression mode continues.

- The UF/OF indicator is set to 1 at the beginning of the EDT operation and is unaffected by the operation.
- A 0 in the ZE/NZ at the end of the operation indicates that the edit ended in the zerosuppression mode.
- A 1 in the ZE/NZ at the end of the operation indicates that the edit ended in the nonzero-suppression mode.

Figure B-4 shows the possible elements of the ALPHA field before and after the EDT operation, as determined by the mode of the operation and the contents of the BETA octet.

PROGRAMMING PRACTICES:

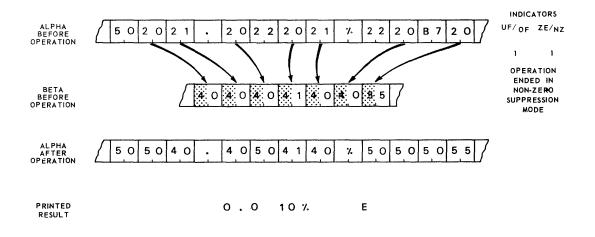
The first octet of the ALPHA field is used in the edited field as a fill character. When no BETA octet is transferred to the ALPHA octet, the fill character maintains the spacing. In general use, this character is the blank (X'50').

The ALPHA field is destroyed in the editing process; the BETA field (with editing) replaces the ALPHA field. The edit format which is in the ALPHA field must be preserved in another area of the store if it is to be used more than once in execution of the program. It is suggested that the edit format be defined in a DC (Define Constant) and moved to a work area where editing may be performed. The program print area can be utilized in this way to receive first the ALPHA edit format and then the BETA field prepared for printing.

The length of the BETA field processed depends upon the ALPHA field configuration. Care must be taken to define the format configuration to fit the data field length as well as the data configuration.

When the last operative ALPHA mask octet is the '20' and it is encountered in the zero-suppress mode, the mode of termination of the operation is not predetermined by the ALPHA field; the BETA field octet determines the mode in which the edit ends. If the right quartet of the last BETA octet is zero, the zero-suppression mode continues. If the right quartet of the last operative BETA octet is non-zero, the zero-suppression mode is terminated.

NOTE: The only BETA octets suppressed by the EDT instruction are those read in the zero-suppression mode in the presence of a '20'. All others enter the ALPHA field. Figure B-4 ALPHA OCTETS AND THE RESULT OF THE EDT OPERATION IN EACH MODE.


		MODE WHE	N ALPHA CHA	RACTER ENCO	DUNTERED
	OCTET IN THE	ZERO S	UPPR E SS	NON SU	JPPRESS
	ALPHA FIELD	MODE BECOMES	ALPHA OCTET BECOMES	MODE BECOMES	ALPHA OCTET BECOMES
	HEXADECIMAL '20' (BETA RIGHT QUARTET = 0)	NOT CHAN GE D	FILL CHARACTER		
BETA OCTET ENTERS OPERATION	HEXADECIMAL '20' (BETA RIGHT QUARTET ≠ 0	NON SUPPRESS	BETA OCTET	NOT Changed	BETA OCTET
	HEXADECIMAL '21'	NON SUPPRESS	BETA OCTET		
BETA OCTET DOES NOT	HEXADECIMAL '22'	NOT CHANGED	FILL CHARACTER	ZERO SUPPRESS	FILL CHARACTER
ENTER OPERATION	ANY OF GRAPHIC CHARACTER SET	NOT Changed	FILL CHARACTER	NOT CHANGED	NOT REPLACED

•

EXAMPLE:

Editing of a data field for printing.

-
-

NOTE: BETA is not affected by operation.

TRANSLATE OCTETS

TR ALPHA (nnn), BETA

Each octet of the ALPHA field is used to generate an effective address for locating an octet in the BETA field. The referenced BETA field octet replaces the ALPHA field octet. Operation is left to right through the length of the ALPHA field (001 - 256 octets).

INDICATORS AFFECTED

none

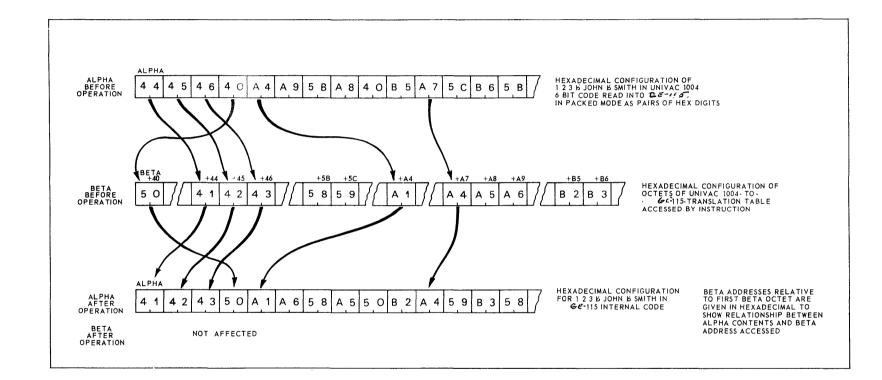
NOTES:

- The left octet of the address translated by the assembler for the BETA field reference is used as a "basic" address. The value present in the right octet of the address is ignored. (The BETA field is assumed to begin at an address which is a multiple of 256).
- Each octet of the ALPHA field is used serially as an increment to the "basic" BETA address. Each address formed by the "basic" BETA address and the ALPHA octet is used to reference a BETA field octet. This BETA field octet replaces the ALPHA octet used to form the referencing address.
- Any octet configuration may appear in either field.
- The length of the BETA field used in the operation is a function of the maximum range of the values any ALPHA field octet may assume.

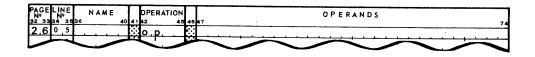
PROGRAMMING PRACTICES:

The TR instruction is designed to facilitate translation from one character set to another.

Translation is accomplished by defining the translation table (i.e., the set of desired configurations for data) in the BETA field in terms of the data to be translated in the ALPHA field. The operation replaces each of the octets in the ALPHA field by an octet from the table in the BETA field. Each ALPHA field octet becomes the locator of a position in the table. The BETA field table must be prepared so that the translated configuration is placed in the relative location generated by using the ALPHA octet itself as an increment to the "basic" BETA address. The values of the ALPHA field octet may range from 0 to 255. Therefore, the BETA field may require a maximum of 256 octets. The actual positions in the BETA field which are used by the TR operation are dependent on the possible ALPHA field values. If fewer than 256 different ALPHA field octet configurations may occur, only part of a set of 256 locations may be needed for the BETA field to translate ALPHA field values. The necessary BETA field locations may be contained within a range less than 256 octets, or the necessary locations may be scattered over the complete range of 256 octets. If it is known that the BETA field positions do not utilize parts of the full range of 256 octets, the remaining octets, outside the range required for the BETA field, may be used to contain other data.


When the BETA field begins at a multiple of 256, the Origin Assignment (ORG) instruction with an R in the operand specification field is used. The ORG instruction is followed by the necessary Define Constant (DC) instructions, or, if the BETA field is to be read into the store, a Define Store Area (DS) instruction.

EXAMPLE :


Translation of UNIVAC 1004 code image data which has been read into the GAMMA 115 from cards.

I Nº	L II N	уЕ 35	 E 40		OPERATI 42	0N 45	46	OPERANDS
0,1	0	5			T,R			ALPHA, BETA
	1	0						
	[ī	5				E		
	2	0	 		4			
	2	5				Ι		· · · · · · · · · · · · · · · · · · ·
	12	P		÷			-	

The GE-115 Information Processing System operates upon data according to the instructions in the stored program. Some of the instructions can, however, direct system action which does not affect data in the store. These instructions set external indications and alter the status of system operation. The system action instructions have the following format:

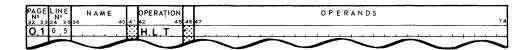
Note that the format of the System Action Instruction does not include specification of an operand.

HLT

HLT

System operation is terminated.

INDICATORS AFFECTED


none

NOTE:

• The system stops operation when the HLT is encountered. When the START button on the console is depressed, the program execution restarts at the next sequential operation.

PROGRAMMING PRACTICE:

The HLT may be used to separate a program into logical sections for checking. A HLT can be placed at the end of each logical section to stop program execution and allow expected results to be checked before they are used by subsequent sections. The programmer can generate programmed halts (See the Jump on Switch 1 (JS1) instruction on page 105 for a method of generating effective halts) for the same use. It is recommended that programmed halts be used rather than the HLT instruction. Messages should be included in the program and printed for the operator whenever operator action is required. Explicit instructions should be prepared for the minimized.

NO OPERATION

NOP2

NOP2

The system continues in sequence. No system operation is specified.

INDICATORS AFFECTED

none

NOTE :

• The NOP2 effects the advance of the store location counter by 2 octets.

PROGRAMMING PRACTICE :

A NOP2 may be used to overlay an instruction that is no longer needed for program operation. The NOP2 uses two octets instore. Therefore a series of NOP2 operations is needed to replace instructions of four or six octets.

EXAMPLE :

A NOP2 used to overlay an AD instruction. OVR is the name of a NOP2 instruction moved to the instruction named SUM.

PAGE № 32 33	L1 N	NE 3E	36		A٨	١E		4			RA	5 4	64	7												0 P	E	RA	N	D S								74
1,0	0	5	S	.U	M				A	۱. C).	E		A.	L	P	H	A		В	5 E		Γ./	Α.														
	1	0							J	. (2,	 E		X.	`	3	0	,		C) \	1	F.I	L,														
	1	5							:	1		Т																			 							
	2	0]	2																					 . 1			 				
1	2	5							1)		 E										.	-+-								 			 	-			
	2	۹.				_	-	ي ا	L	J		 غل	-	-	-	_			-	-	-	_			_	-	-	~			 ~	-	-		-	_	-	

\checkmark	8.5			-			_	-	-	-	-			-	-	-			>	_		\sim
Γ	9,0		*		N	EEI	5	3	.N.	0, P	S.	F	0	R		3	0	C.	Τ.	E,	T S	
1 [9 5		M, V, C		S	U.M.	<u>[</u> 0,	0,2).	.0), V .	R,						i				
			M,V,C,		S	U.M	F 0.	0,2	. (.	<u>Ó,O</u>	.4)	S	υ,	M,		1					
																	_ _					
				ننار	-		-			-	-			-	-			_		-	-	~

TURN ALERT LIGHT ON

LON

LON

The ALERT light on the console is turned on.

INDICATORS AFFECTED

none

NOTE:

• The LON turns on an external signal light. The system continues in sequential operation.

PROGRAMMING PRACTICE:

The LON may be used, along with the Turn ALERT Light Off (LOFF) instruction, to indicate some required operator action. The need for the operator action may be signalled by the LON. A test should be made whenever possible to determine whether the required action has been carried out. Explicit instructions should be prepared for the operator describing the action to be taken. Messages should be included in the program and printed to inform the operator of the required action. When the action has been completed the LOFF can be used to turn off the light. It is recommended that operator intervention be minimized. (See the Turn ALERT Light Off (LOFF) instruction on page 121).

EXAMPLE:

The ALERT light is turned on.

PAGE N⁰	LIN	ΥE	NAME			OPE	R	TIO	N		OPERANDS	
32 33	34	35	36	40		42			45	46	7	74
2.6	0	5				L	0	N.	F			
	1	0							Ŧ			
					-		_		3	2	$\sim \sim \sim \sim$	

TURN ALERT LIGHT OFF

LOFF

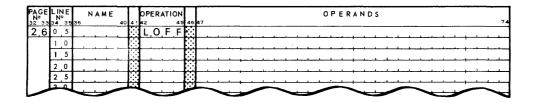
LOFF

The ALERT light on the console is turned off.

INDICATORS AFFECTED

none

NOTE:


• The LOFF instruction turns off an external signal light. The system continues in sequential operation.

PROGRAMMING PRACTICE:

The LOFF may be used with the Turn ALERT Light On (LON) instruction to signal the need for operator intervention (See the LON instruction on page 120).

EXAMPLE:

The ALERT light is turned off.

INS

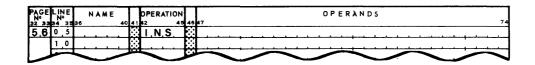
INHIBIT SINGLE STOP

INS

The SINGLE STOP switch on the control console is disabled.

INDICATORS AFFECTED

none


NOTE:

• The INS places the system in a continuous operation state and prevents interruption of the program by the use of the SINGLE STOP switch.

PROGRAMMING PRACTICE:

The INS may be used with the Enable Single Stop (ENS) instruction to perform a check of a program segment. (See the ENS instruction on page 123).

EXAMPLE: The SINGLE STOP switch is disabled.

GE-115-

USER'S GUIDE

INS

ENABLE SINGLE STOP

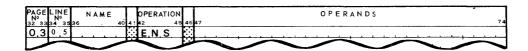
ENS

ENS

The SINGLE STOP switch on the control console is enabled.

INDICATORS AFFECTED

NOTES:


• The ENS operation allows the system to be operated step-by-step, using the SINGLE STOP switch. One instruction is executed each time the switch is set. The switch remains operative until an INS instruction is encountered.

PROGRAMMING PRACTICE:

The ENS may be used with the Inhibit Single Stop (INS) instruction to perform a check of a program segment. ENS allows the operator to stop execution of the program after each instruction has been executed. When the segment has been checked, the system is returned to normal, continuous operation by the INS. Whenever operator intervention is required, explicit instructions should be prepared describing the action to be taken. Messages should be included in the program and printed to inform the operator what action is required. It is recommended that operator intervention be minimized.

EXAMPLE:

The SINGLE STOP switch is enabled.

INPUT/OUTPUT INSTRUCTIONS

GE-115

The Primary instructions previously discussed process data in the GE-115 Information Processing system. The instructions discussed in this section provide the means of bringing data into the system for processing and for printing or punching the results of that processing.

The system discussed is the card system. All input and output operations are described in terms of card input and card or printer output. Input/output operation charts included in this section contain references to operations and functions which apply to other forms of input and output. These other forms are not treated here. However, the chart information is included for amplification of the materials that will be released as the system is developed.

Data may be brought into the GE-115 system in a number of forms. Hollerith card codes and several special card codes (with hardware adaptation and/or software translation) may be read and punched. Card code formats can be specified under programmed control. Card formats may use one column to represent the contents of an octet or they may use two columns where internal configurations are to be expressed in the external media in two parts. Sixty-four graphic characters may be used for printing the results of program action.

The input/output operations for the GE-115 may be programmed to make optimum use of the system. The input/output operations, such as card reading and printing, require access to the central processor during their execution. Card punching, on the other hand, requires the action of the central processor during the time of preparation of the output which can be punched from an intermediate retention area without further central processor action.

For those operations which require data transfer during their execution, an optimizing use of the central processor is possible. The central processor can receive or supply data at a faster rate than the input/output (peripheral) units. This means that the central processor is free during part of the execution time required by the instruction. This free time may be utilized in the GE-115 by a method of input/output operation called time sharing.

Time sharing is accomplished by the provision of two types of input/output operation. The first type is called a presetting operation. A preset may be given for input or output operations. A presetting instruction defines an operation completely, giving the unit, channel, data area, and length of operation. The operation code requests preparation of the channel mechanism only, not initiation of the operation.

The second type of input/output operation is the execute. An execute operation may be given for input or output. An execute instruction contains the required channel, unit, data area, and

length. The operation code requests that the operation be initiated when the instruction is processed. To accomplish time sharing, an input execute instruction must follow an output "preset" instruction. The instructions must be given on separate channels of communication. An execute input instruction which follows a preset output instruction causes the output instruction to be initiated as well. The input and the output unit share the time of access to the central processor.

The procedure for time sharing is :

- 1. An output preset operation, utilizing channel 2, is given.
- 2. An input execute operation, utilizing channel 1, is given.

The capabilities of the GE-115 allow for even further optimization of the input/output operations. The punch equipment utilizes an intermediate area for data retention. This makes it possible to have three input/output operations taking place; two on a time sharing basis and the third simultaneously with whichever of the other two is operative at any time. To use the punch in conjunction with the reader and printer, it is necessary that the punch be utilized through connector 2. When the punch operation is to take place in conjuction with a time sharing read and write operation sequence, the punch instruction must precede the output preset instruction for channel 2.

Time sharing is directed toward the optimal use of the central processor during input/output operations. There is another consideration of timing in the use of peripheral units that may be specified by program control as well. This refers to the optimum utilization of a given peripheral unit. In this purpose, input/output operations may be specified as wait or immediate instructions.

Immediate operations are requests for some peripheral unit action to take place when the instruction is given. Wait operations imply an interrogation of the status of the peripheral unit referenced. If the unit is occupied, i.e., engaged in some operation previously requested, the instruction is not carried out when it is given. When the prior operation is completed, the wait operation takes place.

It must be noted that it is not meaningful to use immediate operations in all possible sequences of input/output operation. Instructions are executed by the GE-115 in the order in which they are placed in the store. Operation is sequential. An operation which utilizes the central processor must be completed before another can be interpreted. Therefore, an immediate input/output operation which follows a data transfer operation is not, in any case, interpreted until the data transfer is completed.

In some instances, a meaningful sequence of operations may utilize the immediate instruction for peripheral unit control. For example, an instruction to select a card stacker might be given in

the immediate mode following an instruction to reset card read error. On the other hand, an instruction to select a card stacker given in the immediate mode following a card read operation would not be a meaningful sequence.

There are three types of operation which make reference to the input/output units. They are : Data Transfer Operations Peripheral Status Test Operations Peripheral Unit Control Operations

All three types of operation are performed by means of a single input/output initiating instruction, the Call Peripheral (PER) instruction.

The format of the PER instruction is :

PAGE N⁰	LIN	٩E		Ν	A M	Ε			٥F	PE R	ATIC												01	ΡE	R,	ΔN	D S							-
32 33	34	35	536				40	4.	F			45	46	47								 	 					 			 			/4
0,3	0	5							<u>1</u> P	E	. <u>R</u> .			U.		D	E.	L	Τ.	A											 			
	11	0	Γ					ŀ	1			Ę																						
	1	5	Г									E													+							+		
1	2	0	Γ						Ŀ			7																						
	2	5							1			T							,				 								 			
	2	0					-					E	-	-	-				-	-	~	 	-	-	-				-	_		_	-	

where

U specifies a peripheral unit (see figure B-5),

and

DELTA is the name of a data field which contains the operation specification. The content of the DELTA field determines the operation actually performed by the specified unit. The DELTA field may have one of three different basic configurations depending on the type of operation described. There is a special data definition instruction, the Define Peripheral (DP) instruction, for use in setting up the DELTA fields.

The format and content on the DELTA field vary with the operation being performed. There are two possible lengths. The DELTA field is :

6 octets long for the Data Transfer oparations,

2 octets long for Status Test operations, and

2 octets long for Unit Control operations.

Input/output instructions have the following general characteristics :

- The PER instruction initiate an input/output operation using a specified unit.
- A data field complete the operation definition and always contains the operation specification.

and the channel request. A define Peripheral (DP) Directive is used to set up the data field.

Data Transfer Operations

Data transfer operations have the following general characteristics :

- The data field operand which amplifies the operation is six octets in length.
- The first two octets of the data field operand contain an instruction specification.
- The second two octets of the data field operand contain the length of the data field which participates in the transfer.

The length of a print operation is governed by the print line length of the printer model used. The length of a read or punch operation is governed by card length, i.e., 80 columns for a card.

- The fifth and sixth octets of the data field operand specify the location of the first octet in the store which participates in the data movement.
- Data fields for transfer are referenced at the left. Data is transmitted and received serialy, octet by octet, from left to right. (Reference is made in the input/output configuration to the use of descending addresses. This usage does not apply in the present context.)
- Indicators are set to record the results of conditions such as end of input and transmission error.

Peripheral Status Tests

The peripheral status test operations have the following general characteristics :

- The data field operand in a 2-octet field specifying the operation and the condition.
- A condition recorded during the use of a specified peripheral unit is tested.
- Indicators are set to record the results of the test.

Peripheral Unit Control

The peripheral unit control operations have the following general characteristics :

- The data field operand is a 2-octet field which specifies the operation and the mode of execution.
- A peripheral unit is instructed to perform some operation that does not directly involve data transmission, e.g., eject present printer page.

HEXADECIMAL CONFIGURATION	UNIT
00	CARD PUNCH
80	CARD READER
CO	PRINTER

Unit numbers given should be verified for use with the GE-115 system being programmed.

The GE-115 system provides prepared input/output programs which may be used with other programs. These prepared programs may be incorporated, according to conventions of use which depend on the program used, into other programs written for operation on the GE-115. The input/output programs are written for defined peripheral unit configurations. The programmer is advised to secure the input/output programs which may be used with the configuration of the GE-115 system he is using.

PER

CALL PERIPHERAL

Data Transfer

PER U, DELTA

The unit specified in the PER instruction is selected to perform the data transfer operation defined in the DELTA field. Data is received or transmitted serially, octet by octet, from left to right through the specified field length.

INDICATORS AFFECTED

UF/OF	ZE/NZ	
1	0	Operation terminated under the specified count control.
1	1	An end of input signal was received.

INPUT/OUTPUT TRANSMISSION INDICATORS

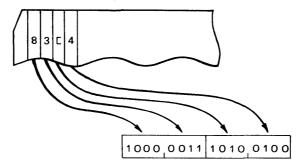
Channel 1 Parity	Channel 2 Parity	
0	0	Transmission valid
1	1	Transmission parity error detected

NOTES :

GE-115-

The DELTA field first octet specifies :

Channel


- Direction of transfer input or output
- Data format packed or unpacked
- Time sharing status set for time share preset, or an execute
- Operation mode wait or immediate
- Data reference direction ascending or descending locations
- (See Figure B-7)
- The DELTA field second octet specifies the operation requested, as shown in Figure B-6, below :

Hexadecimal Configuration	Operation Requested
40	Read cards
42	Print or Punch

- The DELTA field third and fourth octets specify the length of the data field which participates in the data transfer operation.
- The DELTA field fifth and sixth octets specify the location of the first octet in the store which participates in the data transfer operation.
- Data transfer operations may time share the central porcessor. A pair of input/ouput operations designed to effect time sharing is given as follows :
 - 1. An output preset operation is specified, using channel 2.
 - 2. An input execute instruction is specified, using channel 1. When the channel 1 operation is initiated, the channel 2 operation is initiated as well. The input/output data transfer operation is completed when the longer of the two requests is completed.
- Data is read or written from left to right (ascending locations) by the card and printer operations.
- Cards may be read in packed or unpacked form.
 Unpacked form is standard Hollerith card code. Each column generates an octet as shown below :

Packed form is used to generate a single octet from two columns.

Only the right quartet of the standard internal configuration of the card column enters the store locations used.

- When an input/output operation, either presetting or execute, is given on channel 2, the channel 2 transfer parity error indicator is set to 0.
- When an input/output operation is given on channel 1, the channel 1 transfer parity error indicator is set to 0.
- At the end of a data transfer operation on channel 1, LOC (store octets 0254 and 0255) contains the location of the octet to the right of the last octet which participated in the data transfer.
- Data transfer operation which use channel 2 must reference a data field which has an address that is a multiple of 256 plus 2, i.e., of the form 256m+2. The contents of the two left most octets are used to control the operation, which is here assumed to be print only. (The length of the field printed is, as noted, dependent upon the physical characteristics of the printer model, and is not given here).
- Locations which participate in an output data transfer operation are unaltered by the operation. The two print control octets to the left of the field to be printed are, however, altered by the operation.
- The ZE/NZ indicator is used to record the cause of the termination of an input data transfer operation. An input data transfer operation may be terminated when a field of the specified length has been filled or when the end of the input has been detected.
 A 0 in the ZE/NZ indicator at the end of an input data transfer operation indicates that the operation terminated when a field of the requested length was transferred.

A 1 in the ZE/NZ indicator at the end of an input data transfer operation indicates that an end of input signal was received.

• A 1 in the applicable channel parity error indicator at the end of operation on either channel indicates that a parity error was detected during the transfer of the data.

PROGRAMMING PRACTICES :

Parity error indicators are reset prior to the initiation of input/output data transfer operations and should be tested after each operation. A peripheral status test operation followed by a conditional jump tests for parity error.

A full print line is always printed. The programmer should, therefore, make certain that any unused positions are cleared before printing takes place.

The card punch buffer is cleared after punching so a partial card may be punched without the requirement that blanks be supplied for the unused columns.

The output area for channel 2 must be defined as 256m+2. An Origin Assignment (ORG) instruction with an operand specification of R can be used to define the print area. (See the ORG Directive, page 160).

EXAMPLE

Time Sharing Sequence

A output print operation is given in the preset mode, followed by an input read cards operation in the execute mode. Specification of preset or execute mode is made in the first octet of the DELTA field referenced by the instruction, as shown. After completion of both operations, tests are made for transmission errors as well as for end of cards and paper.

କ୍ର
ලා
\mathcal{O}^{u}

PAGE Nº 2 33	LINE Nº 34 35	NAME 36 40	41	0 P E R A T I O N 42 45	46	O P E R A N D S
0,1	0 5	· · ·		*		I, N, P, U, T, , O, U, T, P, U, T, , T, I, M, E, , S, H, A, R, E, , , , ,
	1 0			*		P,R,E,S,E,T, ,F,O,R, ,C,H,A,N,N,E,L, ,2, , , , ,
	1 5			*		E, X, E, C, U, T, E, , F, O, R, , C, H, A, N, N, E, L, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
	2_0	P.R.E.S.T		D, P, ,		X, 5,9, , X, 4,2, , P,R, I, N, T, +, 0, 0, 2, (,0,1,3,6,)
	2 5	E,X,E,C,		<u>D</u> , P,		X, 1,0, , X, 4,0, , R,E,A,D,
	3 0			-*		
	3 5	R.E.A.D.		D,S, ,		
	4 0			*		
	4 5	1 1		**		SIEITI U.P. P.R.I.N.T. AREA. N.E.E.D.E.D.
	5 0	<u>+</u> ++		0 . R . G .		R, , , , 2, 5, 6, +, 2, , , , , , , , , , , , , , , , ,
	5 5	P.R. I.N.T		D.S.		
	6 0			* 		
	6 5	T . E . S . T . 2		<u>D, P, ,</u>		X, C, I, , X, 4, 4, , T, E, S, T, C, H, A, N, N, E, L, 2,
	7 0	T.E.S.T.1		D.P.		X, C,O, ,,X, 4,4,4, T,E,S,T, C,H,A,N,N,E,L, 1
	7 5			P.E.R.		X, C,O, P,R,E,S,T, , , , , , , , , , , , , , , , , ,
	80 85	····		P,E,R,		X, 8,0, , E, X, E, C, , , , , , , , , , , , , , , , ,
	8 5 9 0	f 1 _ 1	ŀ	P, E, R,		X, C,O, , T,E,S,T,2, ,T,E,S,T, ,P,R,I,N,T, ,E,R,R,O
	9 0	<u> </u>	÷	<u>J.C.</u>	÷	X, <u>1,0, , E, R, R, O, R, T, O, E, R, R, O, R, R, O, U, T, I, N</u>
	<u> </u>		÷		÷	
	9.6	<u> - + - + - + - + - + - + - + - + - + - </u>		P. E. R.		X, <u>8,0, , T, E, S, T, 1, T E, S, T, R, E, A, D, E, R, R, O, R</u>
	9 7 9 8	·····		<u>J.C.</u>		X, <u>1,0, , E, R, R, O, R, T, O, E, R, R, O, R, R, O, U, T, I, N</u>
	9,8 9,9	╊ <u>┶</u> <u>┶</u>				N,O, ,R,E,A,D, ,E,R,R,O,R, , , , , , , , , , , , , , , ,
	7.7				••••	<u>Ⅰ↓_↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓</u>

Figure B-7: PERMISSIBLE CONFIGURATIONS OF THE FIRST OCTET IN A DATA TRANSFER INSTRUCTION

HEX VALUE	INPUT	OUTPUT	ASC. ADDR.	DESC. ADDR.	PACKED DATA	UNPACKED DATA	EXECUTE INST.	PRESET. INST.	WAIT	IMMED.	CHANNEL 1	CHANNEL 2
00	x		x		х		×		×		X	
04	x		x		х		x			х	x	
10	x		×			x	x		X		x	
11	x		x			x	x		x			х
14	x		x			х	x			x	х	
15	х		x			x	X ·			х		х
19	x		x			x		x	X			х
20	x			X*	х		x		X	Í	х	
24	х			X*	x		x			х	х	
30	х			X*		x	х		x		х	
34	х			X*		х	x			x	х	
40		x	x		х		x		X		х	
44		х	x		x		x			х	х	
50		x	x			х	x		x		x	
51		х	х			х	x		X			x
54		х	х			х	X			x	х	
55		·х	х			х	x			x		x
59		х	х			х		X	X			x
60		х		х	x		x		X		х	
70		х		х		х	x		x		х	
74		х		х		x	x			х	x	
5D		х	х			х		X		x		х

* for use with magnetic document readers only

USER'S GUIDE

PER

Peripheral Status Test

PER U, DELTA

The status of the peripheral unit specified in the PER instruction is tested according to the specification given in the DELTA field.

INDICATORS AFFECTED

UF/OF	ZE/NZ	
1	0	Test condition not present
1	1	Test condition present

NOTES :

- The DELTA field first octet specifies the operation and the channel to be used (See Figure B-8)
- The DELTA field second octet specifies the condition which is to be tested (See Figure B-9)

PROGRAMMING PRACTICE :

A Jump on Condition (JC) instruction must be used to interrogate the indicator set in response to the status test operation.

EXAMPLE

A test is made for the end of a printer page. DELTA contains the operation specification.

I Nº	PAGELINE NAME OPERATION № N°E NAME OPERATION 32 3334 3536 404142 454647									47	O P E RANDS														74														
0,2	0	5	D.	Ε.	L.	Τ.	A		D,	P.		E		X	•	C	. 1				Χ.	1	0	.5	1	÷						 							
	1	0								(•									 		- 4		
	1	5								Ľ		E				4								•							 	 							
	2	0																						1							 	 			 				
	2	5							P	Ε,	R.	Ŀ		Х		C	. C)			D,	Ε,	L	.T	A	1			-+-			 		4	 				
	2	4				-	-			-		ظر	-			-				-	-	-	_				-		-	-	 -	-	-	-	 -	/	-	-	-

Figure B-8 MODE AND CHANNEL SPECIFICATION FOR STATUS TEST INSTRUCTIONS

lst Octet	Specification
C0	Wait until the peripheral is free; use channel 1
CI	Wait until the peripheral is free; use channel 2
C4	Execute immediately on channel 1
C5	Execute immediately on channel 2

Figure B-9 STATUS TEST SPECIFICATIONS

2nd Octet	Condition tested
01	Controller ready
03	Error in transmission
05	End of cards
05	End of Page
12	Hopper Empty
12	End of Paper
14	Out-of-Service
1E	Stacker Full
42	Data Transfer Error Channel 2
44	OR, of any of the preceding tests applicable to a given peripheral unit
10	Cards ready to feed
2E	OR, of
	End-of-Service
	End-of-Medium
	End-of-File
	Error in transmission

PER

CALL PERIPHERAL

Peripheral Unit Control

PER U, DELTA

The peripheral unit specified in the PER instruction is selected to perform the control operation specified by the DELTA field.

INDICATORS AFFECTED

UF/OF ZE/NZ 1 0 set prior to operation

NOTES:

- The DELTA field first octet specifies themode of operation and the channel to be used. (See Figure B-10)
- The DELTA field second octet specifies the control operation to be performed. (See Figure B-11)
- The UF/OF indicator is made 1 and the ZE/NZ indicator is made 0 prior to operation. Neither is affected by the operation.

PROGRAMMING PRACTICES:

If the status of the UF/OF and/or ZE/NZ indicator is meaningful, it should be saved or utilized prior to the peripheral unit control operation.

The peripheral unit control operation may be used to reset some error conditions detected by the peripheral status operation, namely, a read or punch error indication.

Spacing of the printer pages may be performed using Peripheral Unit Control PER instructions. The operations affect the spacing of the printer page according to a format controlled by the position of punches in a paper tape loop inserted in the printer.

The spacing operation performed by the selection of a given carriage control tape channel should be checked against the information provided with the printer which is used.

The Bypass operation, referred to in Figure B-11, is not discussed. Information about its use will be given in future documents.

The Feed cards operation is utilized with some card reader models. Information provided with the equipment should be checked.

Figure B-10 : CHANNEL SELECTION FOR PERIPHERAL CONTROL

lst octet	Specification
80	Use channel 1; wait until the peripheral unit is free
81	Use channel 2; wait until the peripheral unit is free
84	Use channel 1; execute immediately
85	Use channel 2; execute immediately

Figure B-11 : PERIPHERAL OPERATIONS FOR UNIT CONTROL

2nd octet	Action Requested	
0A	Single Space	
0C	Feed Card	
47	Reset Error	
48	Select Stacker	
51	Vertical Paper Throw, channel 1	
52	Vertical Paper Throw, channel 2	printer carriage control paper
57	Vertical Throw, channel 7	tape loop
59	Double Space	
A0	Switch on Bypass	
Al	Switch off Bypass	

EXAMPLE :

A read error is reset on the card. DELTA contains the operation specification.

₽AGE № 32 33	LIN № 34 3	536	NAME	10 4		ERATION	5 46	OPERANDS
0,1	0 5	D	, E. L. T.	AT:	D	, P		X'80' X'47'
	1,0			Ŀ	:]	\$	Γ	and the second s
	1 5					\$	[]	
	2.0		<u> </u>			6		
	2 5			Ŀ	P	ER	L	X 80 DELTA
	2_0	4		نطيم	~		سل	

PART II

Directive instructions specify action to be taken by the assembler rather than by the system. Directive instructions are not translated into executable machine language instructions; they provide parameters for use by the assembler in setting up data fields and give direction for assembler action and program loading.

Directive instructions are written in the same format as the Primary instructions, according to the rules presented in SECTION A, PART II, "WRITING STATEMENTS IN THE GE-115 ASSEMBLY LANGUAGE". There are additional conventions used in specifying the operand fields of the definition Directive instructions. These are explained in the description of the Directives, below.

All the Directives of the GE-115 Assembly Language are described in this section. The Directive instructions are grouped according to similarities of assembler action as shown below:

DEFINITION - Instructions which direct the assembler to allocate store areas and define data:

Define Store Area	D S
Define Constant	DC
Define Peripheral Field	DP

PROGRAM CONTROL - Instructions which direct operations of the assembler that affect the assembled program:

Start Program	STRT
End Program	END
Origin Assignment	ORG

ASSEMBLY LISTING FORMAT - Instruction which direct operations of the assembler that affect the format of the listing produced by the assembler during assembly of the program :

Comment	×
Eject Present	EJEC
Line Feed	LF

The format shown in Figure B-1 in the introduction to the Primary Instructions is used also to explain each of the Directive instructions. The conventions of notation described in the discussion of the Primary instructions apply to the Directives as well. There is an additional notation used in the descriptions of the definition instructions, as shown below :

bbb	The use of "d", written in lower case indicates that a three digit duplication
	factor is written with a field definition.
(nnnn)	The use of "n", written in lower case is used for field lenght. A four digit lenght
	may be specified in the DP Directive.
constant	The use of the word "constant" written in lower case indicates that character,
	hexadecimal, or address constants may be defined. The ways of writing the
	constants are explained in the description for each of the instructions for defining
	constants.
descriptor	The use of the word "descriptor" written in lower case indicates that an octet is
	defined which specifies the characteristics of a peripheral operation. The
	descriptor may be written in any of the ways an immediate data item is written.
	(See WRITING STATEMENTS IN THE GE-115 ASSEMBLY LANGUAGE).
	It is recommended that the hexadecimal representation be used.
operation	The use of the word "operation" written in lower case indicates that an octet is
	defined specifying a type of peripheral operation. The operation may be written
	in any of the ways an immediate data item is written. It is recommended that the
	hexadecimal representation be used.

Definition statements direct the assembler to allocate store area to data fields and to generate constant values to be incorporated into the assembled program. Names may be associated with data fields to permit field references in the source program. Every named data field must be defined by a definition statement. The assembler uses the information contained in the definition statements (name, length, area reservation) to translate field references and assign locations to data and constants. Defined constants are included as data in the assembled program.

Definition statements are operative only at assembly time. At execution time they are present only in the form of defined constants and data fields. If they are placed between executable instructions, the system will encounter them in the course of sequential instruction execution and will attempt to interpret data as instructions. Program results are unpredictable in such cases. If definition statements are included between executable instructions they must be preceded by an unconditional jump to the next instruction to be executed. It is strongly recommended that the programmer avoid this waste of store area and operating time by placing all data and constant fields outside the sequence of (i.e., before or after) executable instructions.

The Define Store Area (DS) instruction has the following characteristics:

- A field length is specified in the instruction. Duplication factors may specify that store area is to be reserved for 1 to 256 fields. Each field has the length specified.
- The name of the field is associated with a length. The field name and length are saved for use in translating primary instructions.

The Define Constant (DC) and the Define Peripheral Field (DP) instructions have the following characteristics:

- A single field may be specified; no duplication factor is used.
- The operand specification field of the source language instruction contains constant data which is translated by the assembler into the internal configuration of the data and which is included in the assembled program.
- The name of the field is associated with a length. The field name and length are saved for use in translating the primary instructions.

The definition instructions differ in the way length is specified in each:

- The Define Store Area instruction requires length specification; the length defined may be from 1 to 256 octets. A duplication factor may be used.
- The Define Constant instruction requires a length specification; the length of a data constant may be from 1 to 10 octets. No duplication factor may be specified.
- The Define Peripheral Field has an implied length which is either 2 or 6 octets. Neither length nor duplication factor may be specified.

USER'S GUIDE

Length is specified by an L and three decimal digits. If a duplication factor is specified it is written before the L and is a three digit decimal number.

The format of the store definition instruction (DS) is:

PAGELINE NAME № № 1536 40	OPERATION		O P E R A N D S	74
0,50,5 <mark>n,a,m,e</mark> ,	D S		d.d.d.L.n.n.n.	
1 0	 · · · · 6	-		·
2 0				<u> </u>
2 5	 			

The formats of the data definition instructions (DC and DP) are:

PAGE Nº 32 33	N	0	NAME	4 1	DPERATION	46	0 P E R A N D S	74
0,5	0	5	n, a, m, e,		DC F		A <u>Lnnn(nnnn)</u> b inar y equivaler	1.t
	1	0	name		DC		<u>CLnnn constant alphanumer</u>	ic
	7	5	n.am.e.		DC.E		XLnnn constant hexadecima	11
1	2	0		Ŀ			· · · · · · · · · · · · · · · · · · ·	
	2	5	1				and and a stand of the stand of	
	2	-		<u></u>		-		

and:

a she in the second
PAGELINE NAME	OPERATION 4142 45 46	O P E R A N D S
<u>32 3334 35</u> 36 40 0,5 0,5 n,a,m,e,	41 42 45 46	descriptor, operation, A.L.P.H.A.(_n.n.n.n.)
1,0 1,5 n, a,m, e,	D.P.	descriptor operation
2.0		

DS

DEFINE STORE AREA

DS ddd L nnn

The assembler is directed to reserve from 0 to 256 fields in the store. The length of each field may be from 1 to 256 octets.

NOTES:

GE-115

- The assembler reserves the requested number of contiguous fields in the store. Each field is given the length specified.
- The assembler advances the store location counter by (ddd) x (nnn) octets.
- When no explicit number of fields is requested, a single field is reserved.
- When the number of fields requested is explicitly 000, the assembler does not alter the store location assignment counter. No area is reserved. However, the name and length of the field are saved for translation of field references.
- When a name is written with a DS instruction which requests store area for more than one field, the name is associated with the first field reserved. The length associated with the name is nnn.

PROGRAMMING PRACTICE:

The DS is used to name and reserve data areas in the store. Data may be generated by the program and placed in the reserved areas, or may be read into the areas allocated. The DS with a duplication factor of 000 may be used to name a major field which contains named subfields. To accomplish this, the programmer gives a name and a duplication factor of 000 to the major data field. The named subfields are assigned duplication factors of at least 001. The major field name is associated with a length but does not cause store to be reserved. The subfield definitions each cause a name and length to be associated with a reserved store area. The total store area reserved by all subfields should be equal in length to the length specified for the major field they constitute.

The DS with a duplication factor of 000 may be used to assign several data areas at the same point because no store area reservation takes place.

EXAMPLES:

1) Assigning a left octet address, a right octet address and a length to a named field.

AGELINE NAME		OPERATION		O P E R A N D S
2 3 3 3 4 3 5 3 6 40	4 '	42 4	5 46	47 7.
0,1 0,5 A, L, P, H, A		D, S		LO16
1.0				
1 5				
2 0		1		
2 5		1		
Leel .	<u>بن</u>		خل	

The assembler assigns a left octet address, a length and a right octet address to the name, ALPHA. The store location assignment counter is increased by 16 octets.

2) Use of the duplication factor to reserve store area.

PAGE LINE Nº Nº 32 3334 3	NAME 536 40	OPERATION	46	OPERANDS 7
0,20,5	BETA	DS		0 5 0 L 0 0 2
1_0				
1 5	1			a the second
2_0				· · · · · · · · · · · · · · · · · · ·
2 5				

The assembler assigns a left octet address, a right octet address and a length of two octets to BETA. The duplication factor causes the store assignment counter to be increased by $050 \times 002 = 100$ octets.

USER'S GUIDE

3) Use of a duplication factor of 000 to define subfields within a field.

E Nº	ΕI	N	0	Γ		N.	4 4	١E		1			ΡEF	TA															0	P	ER	AN	٩D	s		-						
32 3	33	34	3:	э	3					40	41	42	_		4	5	46	47										 	_													74
0	3	0	5	٩	1,7	4	M	Ē) S			Τ		0	Ö	Ū,C) (0	1	6				,						,							
		1	0	Ir	١, ١	Α.	M	Ē		1		D	5			T		L	0	Ç) 8	3													 							
L	-[1	5	Ir	١.	A,	M	E		2) S	5		T		L	0	C) 8	3					÷	 										 				
Γ		2	0	·		_,		,	· .																													 			•	
	E	2	5													ľ		_				_						e -							 •			 				
	کر	2	٥,	L		_		-	_	-	÷	5	_			J	-	-	-						_	-	_			-	-	-		•	-	-	_	 	-	_	~	

NAME 1 and NAME 2 are subfields of the field NAME.

The assembler assigns two addresses and a length of 16 octets to NAME but reserves no store area.

The assembler assigns two addresses and a length of 8 octets to NAME 1 and reserves 8 octets of store for the field.

The left octet address of NAME and NAME 1 are the same.

The assembler also assigns two addresses and a length of 8 octets to NAME 2, and reserves store area.

The right octet address of NAME 2 is the same as the right octet address of NAME.

The three definition statements cause the store assignment counter to be increased by 0 + 8 + 8 = 16 octets.

Character Constant

DC CL 0nn'....'

The assembler is instructed to translate the specified character constant contained within the pair of apostrophes. If the DC instruction is named, the length (001 to 010 characters become 1 to 10 octets) and store addresses are saved for translating symbolic references to the constant field.

NOTES:

- The assembler translates the specified constant into the internal format used by the system.
- Each graphic character is translated into a full octet.
- When the length specification exceeds the number of characters written in the operand specification, the assembler fills the field with <u>blanks</u> to produce a field of the specified length. Blanks are placed at the right of the explicit constant.
- When the length is less than the number of characters written it is a mistake (See Figure A-7, GE-115 ASSEMBLER MISTAKE CODES).

PROGRAMMING PRACTICES:

The character constant definition may be used to prepare both numeric values which serve in arithmetic (decimal) operations and alphanumeric fields for printing.

Note: The first digit of the length must be zero; a maximum of 10 octets may be specified.

.

EXAMPLES :

1) Using the DC to define a character constant.

PAG	ε	L II	E		NA	ME			OPERA		Ι	O P E R A N D S
0.	1	0	5	1	Τ.	E.N	1		D.C.	454		L009, C\$ 1.25
	Τ	1	0			· .		Γ	I]	······································
	I	1	5				4.				T	· · · · · · · · · · · · · · · · · · ·
	[2	0									
	I	2	5								Г	
		2	Þ				-	Ŀ		E		

The assembler assigns a left octet address, a right octet address and a length of 9 octets to ITEM and generates for placement in the field the internal representation of the defined constant. As the specified length (9 octets) is greater than the explicit length (6 characters), 3 blanks will be inserted in the field to the right of the explicit constant.

2) Assigning a name to a defined constant longer than 10 octets.

PAGE	L	IN E		Ň	AN	E	Τ	k	OPE	RA	TION		OPERANDS
Nº 32 33	b i	i a	36				40 4	1	2		4	40	16 4 7 7
0,2	0	5	D	E	.Ρ	Τ.	E		D,	S.		E	0.0.0L020
	1	្រ					ŀ	81	D, (C,			CLOIO 'TECHNICAL'
	1	5	Ŀ				E		Ď. (С,		Γ.	C. L.O. 1. O. ', A. S. S. I, S. T. A. N. C. E.'
	2	0						8			•	E	
	2	5							•				3
_	1	-	1			-			_			1	

The assembler assigns a left octet address, a right octet address and a length of 20 octets to DEPT and generates for placement in the field the internal representation of the two defined constants, reserving 20 octets of store area for the defined constants.

3) Special case DC statement for use of the apostrophe.

PAGE Nº 32 3	LIN Nº	E 3 0		M E 40	4 1	DPERATION	OPERANDS	74
0.3	0	5	AP (AP (OST OST	-	D.C.	CL002''' Use of"C" XI 002 'AF' bexade cimal	type DC stmt
	1	5						
	2	5				·····		

DEFINE CONSTANT

Hexadecimal Constant

DC XL0 nn ''

The assembler is instructed to translate the specified hexadecimal characters contained within the pair of apostrophes. If the DC instruction is named, the length (001 to 010 digit pairs become 1 to 10 octets) and store addresses are saved for translating symbolic references to the constant field.

NOTES:

- The assembler translates the specified constant into the internal format used by the system.
- When the length specified exceeds the number of digit pairs, the assembler creates full octet zeros in the left of the defined field for each pair omitted.
- When the length specified is less than the number of digit pairs written, it is a mistake. (See Figure A-7, GE-115 ASSEMBLER MISTAKE CODES).

PROGRAMMING PRACTICE

The hexadecimal constant definition may be used to prepare translating tables or editing masks. (See TR, page 114, and EDT, page 109). Codes which cannot be read as graphic characters may be placed in the store as hexadecimal digit pairs.

Note : The first digit of the length specification must be zero. A maximum of 10 octets may be specified.

USER'S GUIDE

EXAMPLE:

Use of the DC Hexadecimal Constant to define on editing mask.

PAGE Nº 32 33	ΙŇ	NE ∜° ∋!	36	N	AN	ΑE	40	4		PER	ATI	ON 45		47												C I	ε	R	A N	D	s											74
0,1	0	5	M	A	S	K		E	1	C, C				X	L	0	C) 9) '	5	C);2	2 (5	B	B	2	0	2	0	2	1	5	B	2	0	2	0	<i>.</i>			_
1	1	0						Ŀ																								,										
	1	5																																								
1	2	0						Ľ																																		
1	2	5																																								
	2	4		L		~	-	L.	L	_	. .		-		-	_		-		-	-	-	_		_	-	-	-	-	_			-	-	-			-	_	-	-	
				-	-						-						-							-													-					

The assembler is directed to assign addresses and a length of 9 octets to MASK, and to generate and store in the 9 reserved octets the internal representation of the defined hexadecimal constant. The special characters of the editing mask do not have graphic representations : therefore they must be defined as hexadecimal constants.

Address Constant

DC AL00n (ALPHA)

The assembler is instructed to translate the specified address reference contained within the pair of parentheses. If the DC instruction is named, the length (001 or 002 octets) and location of the constant in the store are saved for translating references to the constant field.

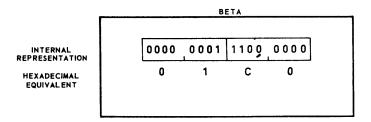
NOTES:

- Translation of an address constant depends upon the way the address is specified. The
 address specified may be written in any of the formats used for operand addresses.
 A symbolic name of a field or instruction is translated as the left octet address of the field.
 Any increment or decrement is computed from that address.
 - An absolute address (never given an increment or decrement), written as four decimal digits, is translated as the internal equivalent of the number.
- When the program is loaded, the translated address is placed in the specified number of octets. Addresses require two octets. When only one octet is specified, the rightmost of the pair generated is used in the DC field.

PROGRAMMING PRACTICES:

The address constant may be used to set up a value to reset an address modified during program execution.

Note: The first two digits of the length specification must be zero; a maximum of 2 octets may be specified.

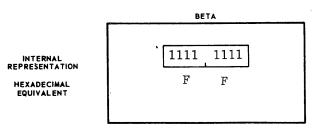

USER'S GUIDE

EXAMPLES:

1) BETA is defined as an address constant of two octets:

PAGE Nº 32 33	LINE Nº 34 3	536	NAME 40	4	OPERATION		OPERANDS	74
0.3	0,5	В	E.T.A.	E	D.C.		A.L.O.O. 2. (.O.4.4.8.).	
	1,0							
	1 5			L				
	2 0						and the stand of the	
	2 5		••					
	20	\mathbf{L}		<u> </u>		-		\sim

The assembler assigns a field of two octets to the name BETA and stores in the field the internal representation of the defined address constant.



2) BETA is defined as an address constant of one octet:

PAGE № 32 33		NE B		N.	AM		40		OPERAT	LION 45		O P E R A N D S	74
0,2	0	5	Β.	Ε,	Τ.	A,			D.C.			A.L.O.O.1. (.A.L.P.H.A.+.O.O.1.)	
	1	0											
	1	5							L				
	2	0										· · · · · · · · · · · · · · · · · · ·	
	2	5										······································	-
	2	4			_		-	-	<u> </u>	~	-		

The assembler assigns a field of one octet to the name BETA and stores in the field the internal representation of the low-order octet of the generated address.

ALPHA has been defined as a 4 octet field, stored in locations 0510-0513.

DEFINE PERIPHERAL INSTRUCTION

Data Transfer

DELTA DP descriptor, operation, ALPHA (nnnn)

The assembler is directed to set up a 6-octet field for reference by a da.a transfer Call Peripheral (PER) instruction.

NOTES :

• The first octet specifies :

- The second octet specifies the operation
- The third and fourth octets specify the length of the data field which participates in the transfer operation.
- The fifth and sixth octets specify the location of the first octet in the store which participates in the data transfer operation.

PROGRAMMING PRACTICES :

The hexadecimal configuration of the first octet is given in Figure B-7 of the second octet in Figure B-6. Any of the forms for specifying an immediate operand may be used, but it is recommended that the hexadecimal configurations shown in the table be given in the standard hexadecimal specification format.

In ALPHA field reference indicates the location of the first octet that is to receive data or of the location of the first octet to be transmitted. ALPHA may be written in any of the standard address reference forms. If a length is specified, four digits are used to write field length.

GE-115.

USER'S GUIDE

DP

EXAMPLE :

GE-115

The assembler is instructed to set up a data field for a card read operation. A card is to be read into the field ALPHA. Assume ALPHA to be located at store location 0830.

PAGE Nº 32 33	L 34	INE Nº	36	N A	ME	40		OPERA	TION 45		47								0	ΡE	R A	ND	s						74
0,1	0	5	D	El	. T.	Ă		D,P			X.	1	1.0			X.*	.4	0,		.A.	L,F	.н.	Α.	((0.0	6.4	1)		
	1	0	L											÷				L											
	1	5		<u> </u>	- I A	1								-+	<u> </u>			·		<u> </u>								·	
	2	0	┣	.		-		. <u> </u>		-				·•	·						+		_	-	~	<u>ــــــ</u>		L	
	2	5		b b	·		_				_	.		+			<u>.</u>	L					·			م ما			
			-					-					-	-			-					-	-			-			4

The assembler assigns a field of six octets to the name DELTA and stores in the field the internal representation of the defined peripheral constant.

INTERNAL REPRESENTATION	000100000100000000000000000000000000000
HEXADECIMAL	1 0 4 0 0 0 4 0 0 3 3 E
EQUIVALENT	Length = 64 Location Alpha

DEFINE PERIPHERAL INSTRUCTION

Peripheral Status Test

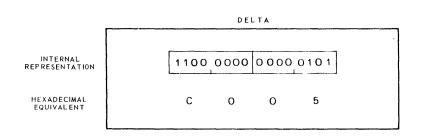
DELTA DP descriptor , operation

The assembler is directed to set up a two octet field for reference by a peripheral unit control operation. (See PER, page 135)

NOTES :

- The first octet specifies the mode operation and the channel to be used.
- The second octet specifies the condition to be tested.

PROGRAMMING PRACTICES :


The hexadecimal configuration for the first octet is given in Figure B-8, and the hexadecimal configuration for the second octet is given in Figure B-9. Any of the forms for specifying an immediate operand may be used, but it is recommended that the hexadecimal configurations shown in the table be given in the standard hexadecimal specification format.

EXAMPLE

GE-115.

The assembler is instructed to set up for an instruction to test end of a printer page.

The assembler assigns a field of two octets to the name DELTA and stores in the field the internal representation of the defined peripheral constant.

DP

DEFINE PERIPHERAL INSTRUCTION

Peripheral Unit Control

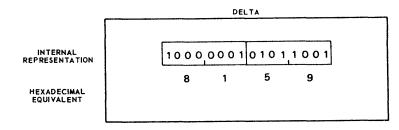
DELTA DP descriptor, operation

The assembler is directed to set up a two octet field for reference by a peripheral unit control operation. (See PER, page 135)

NOTES :


- The first octet specifies the mode of operation and the channel to be used.
- The second octet specifies the action to be taken.

PROGRAMMING PRACTICES :


The hexadecimal configuration for the first octet is given in Figure B-10, and the hexadecimal configuration for the second octet is given in Figure B-11. Any of the forms for specifying an immediate operand may be used, but it is recommended that the hexadecimal configurations shown in the table be given in the standard hexadecimal specification format.

EXAMPLE :

The assembler is instructed to set up a field for an instruction to double space on a print page.

The assembler assigns a field of two octets to the name DELTA and stores in the field the internal representation of the defined peripheral constant.

The assembler assigns a field of two octets to the name DELTA and stores in the field the internal representation of the defined peripheral constant.

DP

The GE-115 Assembler accepts directives for the placement of the assembled program and for the specification of the first instruction to be executed. The assembler program control statements make it possible to specify some of the location assignments for the assembled programs as well.

Assembler program control instructions are processed as the source program is assembled and affect the assembled program. One of the control Directive operations, the Start Program Assembly (STRT) instruction, includes the specification of the peripheral controller to be used by the assembler in preparing output cards.

The assembler program control instructions have the same general format as the other Directive instructions and the Primary instructions. The name field is not used because the Directive instructions are operative only at assembly time and may not be cross-referenced by assembled program instructions at execution time.

One of the formats of the control instructions, shown below, introduces a new notation in the operand field as follows:

s used to indicate that a one-digit numeric code specifying the size of the store must be written,

cc used to indicate that a numeric two-digit specification for an input/output controller must be written.

PAGE № 32 33	L	IN Nº	E		N/	M		Τ			ER	AT	ION		Τ												1	O P	, E	R,	A N	D	s								_
32 33	34		35	36			4	10	41	42			45	5 4	5 H	7											 							 		~~~~	 	 			
0.7	0		5							0	p			Ε.	:)/	Α.	L	P	۱, H	1./	۹.						 -											 			
	1	. (0					T							Ţ											,				÷								 			
	Γ		5					Τ						ł.	1																							 			_
ł	2	. (0					ŀ						Γ	Ι												_								_		 	 			
	2		5					ŀ						Ε													 										 	 			
	G	-	Γ				-							÷	1	-	-				_	_	-	-	_		_	-	-	-	_				-	-		 _	_	-	_

PAGE Nº 32 33	LI			1 A M		T	þF	ER/														0	PI	ER	A N	D	5						
32 33	34.	35	36		4	10 4	12			45	46	_										 									 	 	
0,3	0	5					IS	. T	. R.	ΤĽ		d	d	d	_d		, s	5. a	., C	; (2,											i.	
	1	0														.,																	
	ī	5				T	1									+															 		
	2	0					1								- k																 		
	2	5			· ·		1																	,									
	2	0				J.				-		_	_			-		-	-	_		 _	-	-	_			-	-	_		_	_

START PROGRAM ASSEMBLY

STRT dddd,s,cc

The assembler is directed to start assembling the program at the store location specified by ddd. The program is assembled for a store of the size indicated by s. The cc value specifies the peripheral controller used by the assembler to punch cards produced during assembly.

NOTES:

- The first octet in the store used by the assembler for assigning locations to the program is the octet specified by the value of dddd.
- The store size available for the assembled program is assumed to be that indicated by the code value s.
- The punch instruction used by the assembler is executed through controller cc.

PROGRAMMING PRACTICES:

The STRT card must be the first card in the program being assembled. An error halt occurs when any other card is read as the first card of a source program.

The address for program assignment must be expressed in four decimal digits and may not specify a value below the limit of the store area required by the system loader and subroutines, as shown below:

SYSTEM	LOADER LIMIT
Punched Cards Only	0448
Paper Tape	0512

STRT

The value of s indicates a store size by a code. The values for the store sizes used are shown below:

STORE SIZE	s
4096	1
8192	2

The connectors that may be used for punch attachment and the code values are shown below:

CONNECTOR	cc
3	00
4	64

EXAMPLE:

PAGELINE NAME Nº 32 33934 3536 4041	OPERATION 42 45 46 47	OPERANDS	.4
0,10,5	S.T.R.T. 0.4.4	8,,2,,0,0]

The assembler is directed to assemble a program for a store size of 8192 octets. Assembly begins at location 0448. The punch unit is specified as attached to connector 3.

END OF PROGRAM

END SIGMA

The assembler is given the indication that the last card of the source program has been read. When the assembled program is loaded at execution time, the END card causes the instruction specified by SIGMA to be the first instruction executed.

NOTES:

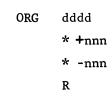
- The END card must be present. When no END card is present, the assembler attempts to read cards seeking the END card. An end-of-file condition occurs on the card reader.
- SIGMA may be a symbolic or an actual address.

PROGRAMMING PRACTICES:

The END card terminates source program reading by the assembler, wherever it appears.

The SIGMA field operand specification must refer to the first instruction to be executed in the assembled program.

The instruction referenced need not be physically the first executable instruction in the program. It is logically the first instruction, i.e., the first operation to be performed.


EXAMPLE:

The instruction named BEGIN is the first instruction to be executed in the assembled program.

PAGE Nº 32 33	LINE Nº 34 3536	NAME	10 4 1	OPERATIO)N 45		OP E R A N D S	7
0.1	0 5			E.N.D.	E	11	3.E.G.I.N.	
							$\sim \sim \sim \sim$	

ÔRG

ORIGIN ASSIGNMENT

The assembler is directed to use the value specified in the operand field of the ORG as a store assignment value.

NOTES:

- The assembler program maintains a location counter for store assignment. Store addresses are assigned sequentially. When the ORG is encountered, the assembler resets the store assignment counter to the value specified by the ORG instruction.
- R as an operand causes the assembler to reset the store assignment counter to the next higher octet location which is a multiple of 256 octets. When the R operand is encountered by the assembler at a point at which the store assignment counter contains a value that is a multiple of 256 octets, no resetting takes place.
- The portion of the program following the ORG is assigned store locations sequentially from the specified octet unless another ORG is encountered.

PROGRAMMING PRACTICES:

An ORG with an absolute address operand may be used to define data fields at desired points in the store.

The ORG with the operand R is used to set up fields for use with the Translate (TR) instruction and for input/output on channel 2.

The ORG with the asterisk and an increment or decrement may be used to modify the store assignment counter with respect to its current value.

The absolute address assignment allows for defining different data areas at the same fixed store address. Different names can be used with Define Store Area instructions at the same actual address. However, the use of absolute values is not recommended. The DS instruction with a zero duplication factor can be used without the ORG instruction to effect the assignment of several fields to the same area (See DS, page 143).

ORG

EXAMPLES:

1) The assembler is directed to reset the value in the store assignment counter to 0512.

PAGE Nº 32 33	L1 N	NE 3		NAM	40			RA	TION	46	47					 			0	ΡE	R	A N I	DS						74
0,1	0	5			 ŀ		0,	R.(G.	E		5	,1	2		 													
	1	,0			 į					Ľ						 	 										 		
	1	5			 											 								 					
	2	0			 ŀ						L			+		 <u> </u>	 							 س	d.		 		
1 1	2	5	L .		 Ŀ		i			L	L		.	· •	+	 L	 							 			 		
	2	4			-	-	-	.	_	-	-		-	4	_		-	-				-		_		-	 -	-	-

2) The assembler is directed to reset the value in the store assignment counter to the next higher multiple of 256.

PAGELINE NAME	Γ	OPERATION	1	O P E R A N D S
32 3334 3536 40	41	42 4	5 46	47
0,20,5		O, R, G		R
1.0		1		
1,5			Τ	
2.0		I		
2 5				· · · · · · · · · · · · · · · · · · ·
			-	

3) The assembler is directed to advance the value in the store assignment counter by 126.

PAGELINE NAME № № 32 3334 3536 40	OPERATION 4142 45 46	O P E R A N D S
0,30,5	ORG	* + 1 2 6
1 0	×	
1 5		
2 0		
2 5		warment of the test of the standard of the standard standard standards and standards and standards and standards
		$\sim \sim \sim \sim \sim$

,

/

ASSEMBLY LISTING FORMAT INSTRUCTIONS

The GE-115 Assembler allows for control of the format of the program listing. The listing format statements provide a means for the programmer to specify both spacing on a page and the points at which a new page should begin. Text commentary is accepted for insertion into the listing of the program.

The assembly listing format instructions are operative only at the time the listing is printed. They allow for improved readability through formatting. Comments should be freely used as aids to documentation.

Assembly listing format instructions are written in the same general format as the other directive instructions and the primary instructions. The use of a name field in an assembly listing format instruction is meaningless because the instructions are not present in the translated program at execution time.

The format of the assembly listing format instructions is shown below :

PAGE Nº 32 33		NE 85	36	NAME	40	1		46	OPERANDS 47	74
0.1	0	5			 		0, p			
	1	0								
	1	5			A					a la contra
	2	0				Ŀ		Ľ.,		
	2	5						Ŀ		
	2	4		-		-		سنعا		

Text

¥

The asterisk (*) directs the assembler to print the text in the operand specification field.

NOTE :

• The assembler inserts the text into the program listing. The card sequence determines the position of the comment. The assembled program is not affected by the comment instruction.

PROGRAMMING PRACTICES :

Column 46 must be blank. Any comment used must not begin to the left of column 47.

Comments should be used to head program sections and to describe the process performed by each.

The text field of the Comment instruction may contain any of the print characters. Blanks may be used to improve readability.

The comment card may be used to continue a comment which begins in the operand field of an instruction. This should be done to avoid the use of cryptic comments on instructions. Comments are an important form of documentation.

EXAMPLE :

The comments will be printed within the assembly listing.

PAGE Nº	L	ĮΕ	NAME		þ	PERATION		Т													0	P	ER	AN	I D	s									
32 33	34	353	6	40	\$ 1 \$	2 41	54	6 4	7			_																							
0,1	0	5				*	E	Τ																											
	1	0		. k		*	Τ	T	C.	0	N	I.N	1 6		N,	Τ.	S		Ņ	I, A	Y.Y		B	E		. 1	N,	S	E	R	T	E	D		A. T.
	1	5				*	Ε													,															
	2	0		. :		*		T	A,	Ν	, Y		F	>	0	1	N	Τ.		, 1	N	1	A		P	R	,0	,G	R	A	M				
	2	5				*	Г	Τ																											
í _	2	P			Ŧ		Ŀ	T		1					-		-				-	-	/	_				-	1	_				-	-

EJECT PRESENT PAGE

EJEC

The assembler is directed to advance the paper on which the listing is being printed. An advance to the top of the next page is requested.

NOTE:

• The present print page is advanced. Printing continues at the top of the next page.

PROGRAMMING PRACTICE:

The EJEC is used to improve the readability and format of the assembly listing. Logically separate routines should begin on new page.

EXAMPLE:

PAGELINE NAME № 92 33934 35936 40	OPERATION	0 P E R A N D S	74
0,1 0,5	E, J, E, C	X	
1,0	*	TOPOF PAGE 2	
1 5	8		
2,0		· · · · · · · · · · · · · · · · · · ·	
2 5			
			-

The assembler listing continues at the top of the following page.

EJEC

LF

LF S D 1 2 7

The assembler is directed to advance the paper on which the listing is being printed. The operand symbol specifies the spacing requested.

NOTES :

- The next line printed is spaced according to the LF request.
- Standard spacing continues after that line is printed.

PROGRAMMING PRACTICES :

The LF is used to improve listing readability.

Spacing that may be requested is shown below :

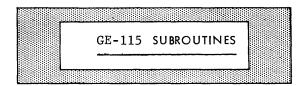
S	Skip one line
D	Skip two lines
1	Spacing as indicated by channel 1 control tape punch
2	Spacing as indicated by channel 2 control tape punch
7	Spacing as indicated by channel 7 control tape punch

EXAMPLE :

The assembler listing page is advanced two lines before the comment is printed.

SECTION C

GE-115


ARITHMETIC SUBROUTINES

GE-115 -----

USER'S GUIDE

• ~ · · ·

p-

A subroutine is an independent sequence of programmed instructions which performs a standard information processing task for a main program. A subroutine program is designed to function in a manner that is independent of the program which utilizes the process. Data is supplied according to the subroutine requirements. The results of the subroutine operation are placed in a pre-defined area for use by the main program. A subroutine may be utilized repeatedly. All necessary resetting of store areas used is done within the subroutine itself.

A subroutine must provide an entry point for use by the main program, referred to as the calling program. This allows the calling program to jump to the subroutine. A subroutine which performs a number of related functions, such as addition and subtraction, may have more than one entry point to permit direct reference to each of the functions.

There must be, as well, a mechanism by which control can be returned to the calling program. In the GE-115 , a single instruction is used to effect entry and to prepare for return. The Jump and Return (JRT) instruction makes the entry to the subroutine and places the location of the next sequential operation after the JRT instruction in LOC (store octets 0254 - 0255).

The flexibility of the GE-115 assembler allows the programmer to use a meaningful mnemonic in the place of the JRT when writing subroutine calls. The mnemonic SUB is used.

Each subroutine uses the contents of LOC to return to the operation following the entry.

Data to be acted upon by the subroutines is placed in standard pre-defined areas in the store. The locations used are described in the individual subroutine descriptions.

PAGELINE NAME № № 32 3334 3536 40	OPERATION 4142 4546	OPERANDS 7
0,1 0,5	SUB	S.I.G.M.A.
1,0	8 8	
1,5		
2.0		
2,5		

The general format of the entry to a subroutine is:

SIGMA is the name of the subroutine being used.

Each of the myriad applications that may make use of information processing systems has its own set of standard procedures. Any standard procedure may be programmed as a subroutine. One area of general application, which may be included in more specific tasks, is that of arithmetic calculation.

This section discusses four arithmetic subroutines prepared for use with the GE-115 system.

The arithmetic subroutines described in this section process decimal data. Data is treated in one of two ways : as unsigned values or as signed numeric quantities.

Data which is treated as signed data must be placed in the input area with an associated sign. It should be noted that signs used by the subroutines do not correspond to the internal configurations for the graphic characters + and -. Signs are recognized in the subroutines according to the configuration of the left quartet of the applicable sign octet. The negative sign is an A (1010); the positive sign is a 4 (0100). The manner in which the signs are treated is described in the discussions of the individual subroutines.

Subroutines make reference to pre-defined areas in which data is expected to be placed. It is recommended that the areas used by a subroutine be defined and given meaningful names by the calling program. This can be accomplished by using the DS instruction to associate names with the locations used by the subroutines. Any fields used, of course, must be defined in the octets used by the subroutines. The ORG Directive instruction with an absolute address can be used to place the data areas in the store octets referenced by the subroutines.

This might be done for the addition subroutine , YADS, for example by means of the sequence of instructions shown below:

PAGE № 32 33	LINE № 34 35	NAME 36 40	41	OPERATION	46	OPERANDS 74
0,6	0 5			O.R.G.		0.2.0.4
	1_0	A. D. N. D.		D.S.		0.0.1.L.0.1.6, A.D.D.E.N.D.
	1 5	- to dealer d		O,R.G		0.2.3.3
1	2_0	A, D, S, I, N		D,S,		0.0.1 L 0.0.1
1 1	2 5	A,U,G,S,N		D.S.		0.0.1 L 0.0.1
	3.0			O.R.G.		0.2.3.6
1	3 5	A,U,G,N,D		D,S,		0,0,1,L,0,1,6, , ,A,U,G,E,N,D, , , , , , , , , , , , , , , , , ,
	4 ,0			*		T.H.E., S.U.M., R.E.P.L.A.C.E.S., T.H.E., A.D.D.E.N.D.
	4 5			O.R.G.		0,2,0,4
	5 0	S.U.M.		D.S		0,0,1,L,0,1,6, , , , , , , , , , , , , , , , , ,
	5 5		Ŀ	O, R, G,		0,2,3,3
	6 0	S.U.M.S.N		D.S. ,		<u>0,0,1,L,0,0,1,,,,,,,,,,,,,,,,,,,,,,,,,,</u>
				\sim	-	$\sim \sim \sim \sim$

A similar sequence could be used to position data for use with any of the other subroutines. Several subroutines use the same areas for input and output. Therefore, it might be convenient to use common names such as TERM 1, TERM 2, and RESLT, to avoid individual definitions like SUM, DIFF, PROD, etc., for the same area.

It should be noted that the use of an absolute origin within the system software area causes the assembler to print an L on the assembler listing. The mistake indication does not prevent assembly.

SUB YADS

YADS forms the signed sum of two signed quantities. Prior to the subroutine call, the addend must be placed in store octets 0204 through 0219 (16 octets) and the augend must be placed in store octets 0236 through 0251 (16 octets). The sign of the addend must be in octet 0233; the sign of the augend must be in octet 0234. The sum replaces the addend.

INDICATORS AFFECTED

UF/OF	ZE/NZ	
-	0	The sum is zero.
-	1	The sum is non-zero.

NOTES:

- The addend, augend and sum are each assumed to be 16 octets in length.
- YADS may use either the AD or the SD operation to generate the sum. YADS and YSDS are entries to a single subroutine.
- Signs are examined prior to the operation. The right quartets of the sign octets are made zero before the signs are checked. Each sign octet is then checked against a value of A0 (the negative sign configuration). If a sign is not A0, it is assumed positive. The subroutine sets any sign octet that does not contain A0 to a value of 40 (the positive sign configuration).
- The status of the UF/OF indicator depends on the signs of the terms and their relative magnitudes and does not necessarily reflect the result of the addition.
 If the terms have the same sign, UF/OF = 0 indicates no overflow, and UF/OF = 1 indicates overflow.
 If the terms have different signs, UF/OF = 0 indicates that the augend is greater in
 - absolute value than the addend, and UF/OF = 1 indicates that the augend is smaller than or equal to the addend in absolute value.
- The addend is always replaced by the sum. If the signs of the terms are different and the augend is greater in absolute value than the addend, the sum is generated in the augend field and moved to the addend field prior to return.
- Quantities are assumed to be decimal. No check is made of the right quartets of the terms to be added.

PROGRAMMING PRACTICE:

It is recommended that standard, named fields be defined in the manner described in the introduction to this section. An alternate method for setting up the quantities for processing by the subroutine is shown below:

PAGE № 32 33	L II N 34		36	NAME	E 40	OPERATION	46	O P E R A N D S	74
0,1	0	5				M, V, Q,		0.2.1.9.(.1.6.), A.D.D.N.D.(.n.n.), MO.V.E.	
	1	0				 M,V,Q		0.2.5.1 (1.6.), AUGND (n.n.), TERMS	
	1	5				мvс		0.2.3.3 (0.0.1.), S.A.D.N.D	
	2	0				M,V,C		0.2.3.4 (.0.0.1.), S.A.U.G.	
1	2	5				<u>S.U.B.</u>		Y.A.D.S.	
	12	4			_		-	$\sim \sim \sim \sim$	

The order of the move operations shown above is immaterial. The length of the moves is shown as the maximum field length to ensure that right quartet zeros are inserted in the left of the addend and augend fields whenever the terms used do not occupy the full field allowed. The subroutine always treats a pair of 16 octet fields.

PROGRAMMING PRACTICE:

It is recommended that standard, named fields be defined in the manner described in the introduction to this section. An alternate method for setting up the quantities for processing by the subroutine is shown below:

PAGELINE NAME № № NAME 32 3394 3536 40	0 P E R A N D S 4 : 42 45 46 47	74
Q,10,5	M.V.Q. 💮 O.2.1.9.(1.6.), A.D.D.N.D.(.n.n.), M.O.V.E.	
1,0	MVQ 0251 (16), AUGND (nn), TERMS	
1.5	MVC 0233 (001), SADND SIGN	
2.0	M.V.C. 0.2,3,4 (001), S.A.U.G	
2,5	S,U,B X,A,D,S	

The order of the move operations shown above is immaterial. The length of the moves is shown as the maximum field length to ensure that right quartet zeros are inserted in the left of the addend and augend fields whenever the terms used do not occupy the full field allowed. The subroutine always treats a pair of 16 octet fields.

- The subtrahend is always replaced by the difference. If the signs are the same and the minuend is greater than the subtrahend in absolute value, the difference is generated in the minuend field and moved to the subtrahend field.
- Quantities are assumed to be decimal in the right quartets. No check is made of the right quartets of the fields which are processed.

PROGRAMMING PRACTICE:

It is recommended that standard, named fields be defined in the manner described in the introduction to this section. An alternate method for setting up the quantities for processing by the subroutine is shown below:

PAGELINE NAME № № 32 3334 3536 40	DPERATION 41 42 45 46 47	OPERANDS 7
0,10,5		S,U,B,T,R,(,n,n,),,
1 0	MVQ 0251(16),	M.I.N.U.N.(,n,n,),
1 5	MVC 0233(001)	SSUB SIGN OF SUBT
2.0	MVC 0.2.3.4 (00.1.)	, S.M.I.N. S.I.G.N. O.F. M.I.N.U.
2.5	SUB YSDS	

The order of the move operations shown above is immaterial. The length of the moves is shown as the maximum field length to ensure that right quartet zeros are inserted in the left of the subtrahend and minuend fields whenever the terms used do not occupy the full field allowed. The subroutine always treats a pair of 16 octet fields.

SUB YMULF

YMULF forms the unsigned product of two unsigned quantities. Prior to the subroutine call, the multiplier must be placed in store octets 0204 through 0219 (16 octets), and the multiplicand in store octets 0238 through 0251 (14 octets). A field of fewer than 16 octets may be specified for the multiplier. An asterisk inserted to the left of the most significant digit in the multiplier field acts as a field delimiter. The product is formed in store octets 0205 through 0234 (30 octets).

NDICATORS AFFECTED

UF/O	F ZE/NZ	
1	0	Always set

NOTES :

- The multiplier is assumed to be 16 octets in length , unless an asterisk is present in the multiplier field. All octets to the right of the asterisk are treated as part of the multiplier field.
- The multiplicand is assumed to be 14 octets in length. A zero right quartet must be placed in the octet to the left, store location 0237.
- The product is placed partially in the octets which contained the multiplier; the multiplicand is unaffected by the subroutine operation.
- Multiplication is performed by use of the AD operation.
- The UF/OF and ZE/NZ indicators do not reflect the result of the operation.
- The terms which enter into the multiplication are assumed to be decimal in the right quartet. No check is made.

PROGRAMMING PRACTICES :

It is recommended that standard, named fields be defined in the manner described in the introduction to this section. An alternate method for setting up the quantities for processing by the subroutine is shown below :

PAGELINE NAME N° N° NAME 32 33 34 35 36 40	OPERATION 4142 4546	OPERANDS 47	74
0,1 0,5	MVQ	0,2,1,9,(1,6,),,MU,P,L,R,(,n,n,),,M,O,V,E,,,,,	
1 0	MVQ .	0251(15), MUCND(14), TERMS A	N D
1.5	MVI	C 🖌 🕊 🕨 O 2 n n PLACE ASTERISK	
2.0	SUB	YMULF, CALL MULTIPLY,	
2 5		· · · · · · · · · · · · · · · · · · ·	

The length of the fields should be given as 16 for the multiplier, when no asterisk is used, as well, and 15 for the multiplicand to ensure that high order left quartet zeros are inserted. The subroutine treats a field of 16 octets for the multiplier, unless the asterisk is present, and a 14 octet multiplicand field. The high order zero quartet in the 15 octet multiplicand field is assumed zero.

÷

 \leq

SUB YDIVF

YDIVF forms the unsigned quotient of two unsigned quantities. Prior to the subroutine call, the dividend must be placed in store octets 0204 through 0219 (16 octets) and the divisor must be placed in store octets 0238 through 0251 (14 octets). A field of fewer than 16 octets may be specified for the dividend. An asterisk inserted to the left of the most significant digit in the dividend field acts as a field delimiter. The quotient is formed in store octets 0219 through 0234 (16 octets). The remainder is left in store octets 0238 through 0251 (14 octets).

INDICATORS AFFECTED

UF/OF	ZE/NZ	-
0	0	The quotient is zero.
0	1	The quotient is non-zero.

NOTES:

- The dividend is assumed to be 16 octets in length, unless an asterisk is present in the dividend field. All octets to the right of the asterisk are treated as part of the dividend field.
- The divisor is assumed to be 14 octets in length. A zero right quartet must be placed in the octet to the left of the most significant digit in the divisor, store location 0237.
- The quotient is placed partially in the octets which contained the dividend; the divisor is replaced by the remainder.
- Division is performed by means of the SD operation.
- The UF/OF indicator always contains a zero at the end of the subroutine operation.
- A 0 in the ZE/NZ indicator at the exit from the subroutine indicates that the quotient is zero; a 1 in the ZE/NZ indicator at the exit from the subroutine indicates that the quotient is non-zero.
- The terms which enter into the division are assumed to be decimal in the right quartet. No check is made.
- Division by zero causes an endless series of subtractions. No check is made of the divisor before the subtraction is attempted.

PROGRAMMING PRACTICES:

It is recommended that standard, named fields be defined in the manner described in the introduction to this section. An alternate method for setting up the quantities for processing by the subroutine is shown below:

PAG	E	IN E	NAM	E 40		OPE	ERA	TION	5 41	I	,												C) P	E	RA	٩N	DS	5									
0.1	10	5				ÍM.	V.	0	F	f	<u>)</u>	2	1	9	(1.1	6)	, ,	D).	1	/,1	D . I		n,	n.)									
	1	0				M	V.	0	Γ	1)	2	5	1			1	5.)	, ,	D		1	1.1		(1.	4	Ì.							-		
	1	5				M,	٧.	Ι.	Ε	1	2		*			, (2.3	2	n	, n																		
	2	2_0				S.	U,	B.	L	L	٢.	D.	1	V.	F		_	_								_											1	
	2	5			Ŀ				Ŀ	L				<u>ــــــــــــــــــــــــــــــــــــ</u>	+		_			·	•													<u>_</u>				<u> </u>
_	ىر	4		-	-				-	-	-	-	_			_	-	-	-				_	-	-	-				-	_	-	.		1.4	-	_	-

The dividend field is assumed to be fewer than 16 octets in length. The length of the move is written as 16 octets to ensure that a high order right quartet zero is inserted. The divisor, 14 digits in length, is moved into a ¹⁵-octet field to place a high order right quartet zero. No asterisk is used when the dividend occupies the full field.

A check for a zero divisor may be performed by means of a conditional jump following the MVQ instruction used to position the divisor in the subroutine area.

SECTION D

APPENDICES

APPENDIX A

CARD CODE	BINARY CODE	PRINTER CHARACTER	HEXADECIMAL	BINARY ORDER
0	01000000	0	4 0	1
1	01000001	1	41	2
2	01000010	2	4 2	3
3	01000011	3	4 3	4
4	01000100	4	4 4	5
5	01000101	5	4 5	6
6	01000110	6	46	7
7	01000111	7.	4 7	8
8	01001000	8	4 8	9
9	01001001	9	49	10
2-8	01001010	L E	4 A	
3-8	01001011	#	4 B	12
4-8	01001100	Ċ	4 C	13
5-8	01001101	: (colon)	4 D	14
6-8	01001110	>	4 E	15
7-8	01001111	?	4 F	16
	01010000	tor_	50	17
12-1	01010001	A	51	18
12-2	01010010	В	5 2	19
12-3	01010011	с	5. 3	20
12-4	01010100	D	54	21
12-5	01010101	E	5 5	22
12-6	01010110	F	56	23
12-7	01010111	G	57	24
12-8	01011000	н	58	25
12-9	01011001	I	59	26
12	01011010	&	5 A	27
12-3-8	01011011	.(period)	5 B	28
12-4-8	01011100]	5 C	29
12-5-8	01011101	(5 D	30
12-6-8	01011110	<	5 E	31
12-7-8	01011111	\sim	5 F	32

Figure 1 : TABLE OF CARD AND PRINTER CHARACTER REPRESENTATIONS IN THE GE-115 INFORMATION PROCESSING SYSTEM

GE-115-----

CARD CODE	BINARY CODE	PRINTER CHARACTER	HEXADECIMAL	BINARY ORDER
11-0	10100000	1	A 0	33
11-1	10100001	L	A 1	34
11-2	10100010	κ	A 2	35
11-3	10100011	L	A 3	36
11-4	10100100	M	A 4	37
11-5	10100101	N	A 5	38
11-6	10100110	0	A 6	39
11-7	10100111	Р	A 7	40
11-8	10101000	Q	A 8	41
11-9	10101001	R	A 9	42
11	10101010	-(minus or hyphen)	AA	43
11-3-8	10101011	s s	A B	44
11-4-8	10101100	*	AC	45
11-5-8	10101101)	A D	46
11-6-8	10101110	;	AE	47
11-7-8	10101111	'(apostrophe)	A F	48
12-0	10110000	+	ВО	49
0-1	10110001	1	B 1	50
0-2	10110010	s	B 2	51
0-3	10110011	т	В З	52
0-4	10110100	U	В 4	53
0-5	10110101	v	В 5	54
0-6	10110110	w	В 6	55
0-7	10110111	x	B 7	56
0-8	10111000	Y	B 8	57
0-9	10111001	z	B 9	58
0-2-8	10111010		BA	59
0-3-8	10111011	(comma)	ВВ	60
0-4-8	10111100	%	ВС	61
0-5-8	10111101	=	ВD	62
0-6-8	10111110	11	ВЕ	63
0-7-8	10111111	!	ΒF	64

Figure 1 : TABLE OF CARD AND PRINTER CHARACTER REPRESENTATIONS IN THE GE-115 INFORMATION PROCESSING SYSTEM

Figure 2: TABLE OF GE-115 OPERATIONS BY HEXADECIMAL REPRESENTATION

	DECIMAL NTATION	MNEMONIC EXPRESSION	SYSTEM ACTION
Operation Code	Operation Complement		
02 ↓ 07 0A 41 ↓ 43	10 20 80 E0 00 F0 ↓ 00 10 20 30 40 50 60	* ENS * INS * LON * LOFF * NOP2 * HLT * JRT * SUB * NOJ * JG * JE * JGE	Enable Single Stop Inhibit Single Stop Turn Alert Light On Turn Alert Light Off No Operation Halt System Operation Jump and Return Subroutine Call No Jump Jump if Greater Jump if Greater Jump if Greater or Equal
▼ 53 92 95 9E D2 D4 D5 D6 D7 D8 D9 DA D8 D9 DA D8 D9 F8 F9 FA F8 F9 FA FF	70 80 90 A0 B0 C0 D0 E0 F0 40 80 octet viit one length two lengths	* JL * JNE * JNE * JU JS2 JS1 MVI CMI PER MVC NC CMC OC XC UPK SR PK SL TR EDT MVQ CMQ AD SD AB SB	Jump if Less Jump if Not Equal Jump if Not Equal Jump if Less or Equal Jump Unconditional Jump on Switch 2 Jump on Switch 1 Move Immediate to Store Call Peripheral Move Complete Octets Call Peripheral Move Complete Octets Compare Complete Octets Compare Complete Octets Compare Complete Octets Exclusive Or on Complete Octets Unpack Octets into Right Quartets Search to the Right Pack Right Quartets into Octets Search to the Left Translate Edit Move Right Quartets Compare Right Quartets Add Decimal Subtract Decimal Add Binary Subtract Binary

* Indicates a mnemonic expression which is translated into the operation code and the operation complement.

Figure 3 : TABLE OF GE-115 OPERATIONS BY MNEMONIC EXPRESSION

MNEMONIC EXPRESSION	ACTION	HEXADECIMAL REPRESENTATION*	Pag
AB	Add Binary	FE	'59
AD	Add Decimal	FA	51
CMC	Compare Complete Octets	D5	80
CMI	Compare Immediate to Store	95	78
CMQ	Compare Right Quartets	F9	83
ENS	Enable Single Stop	02 10	123
EDT	Edit	DE	109
HLT	Halt System Operation	0A 00	118
INS	Inhibit Single Stop	02 20	122
JC	Jump on Condition	43	97
JE	Jump if Equal	1 20	101
JG	Jump if Greater	10	101
JGE	Jump if Greater or Equal	30	101
JL	Jump if Less	CO	101
JLE	Jump if Less or Equal	EO	101
JNE	Jump if Not Equal	D0	101
JRT	Jump and Return	41 F0	107
JS1	Jump on Switch 1	53 80	107
JS2	Jump on Switch 2	53 80 40	105
JU JU	•	40 43 F0	103
LOFF	Jump Unconditional	43 FO 02 EO	102
LON	Turn Alert Light Off Turn Alert Light On	02 80	121
MVI	Move Immediate Octet	02 80 92	67
MVC		92 D2	67 69
MVQ	Move Complete Octets	F8	• ·
NC	Move Right Quartets		71
NOP2	And on Complete Octets	D4	91
	No Operation	07 00	119
OC NOJ	No Jump	43 00	103
	Or on Complete Octets	D6	92
PER	Call Peripheral	9E	129
PK	Pack Right Quartets into Octets	DA	74
SB	Subtract Binary	FF	62
SD	Subtract Decimal	FB	54
SL	Search to the Left	DB	88
SR	Search to the Right	D9	85
SUB	Subroutine Call	41 F0	169
TR	Translate Octets	DC	114
UPK	Unpack Octets into Right Quartets	D8	76
хс	Exclusive Or on Complete Octets	D7	93

* The operation complement is given where it is translated from the mnemonic expression.

Figure 4 : GE-115 INSTRUCTION REFERENCE CHART

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Instruct. Length	OPERAT CODE		0P C		FIEL	- 0 3	INDIC		N	ΟΤΕΣ
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ٽ ۽	Symbol.	hexa.	Left	Right	Alpha	Beta	UF/OF	ZE/NZ		
NVQFS $\frac{1}{10}$ <		A D	FA			A +	B =)			AD, AB, SD, SB,	MVQ, CMQ and
NC NC<		A B	FE	ГРНА	ЗЕТА			1 overflow	1 result≠0		
NC NC<		SD	FΒ	of A 16)	of 16)	A	B =		13	All the others	-
CMQ F9 A : B 1 A > B 1 A > B 1 A > B 1 A > B 1 A > B 1 A > B 1 A > B 1 A > B 1 A > B 1 A > B 1 A > B 1 A > B 1 A > B 1 A > B 1 B = 1 <th1 b="1</th"> 1 B = 1 1</th1>		SB	FF	- ⁴				1 '		lett to right.	
CMQ F9 A s B 1 A > B 1 A > B 1 A > B 1 A > B 1 A > B 1 A > B 1 A > B 1 A > B 1 A > B 1 A > B 1 A > B 1 A > B 1 A > B 1 A > B 1 B > Cluster 0 result = 0 result > 0 result > 0 1 B > Cluster 1 B > Cluster <th1 b=""> Cluster <th1 b=""> Cluster 1 B</th1></th1>		MVQ	F8	angth (ength ((A	— В	0	11	• • • •	
A.C. D.7 Common A. [1] B I I result #0 exclusive "or" 0.C. D.6 Length - 1 A. (+) B Unchanged logical "or" N.C. D.4 ef ALPHA A. (+) B Unchanged logical "or" N.C. D.4 ef ALPHA A. (+) B Unchanged logical "or" N.C. D.2 and BETA A. + B " Isopical "or" N.V.C. D.2 and BETA A. + B " The common length is the one din symbolic language for ALPHA N.V.C. D.8 Length - 1 of BETA normal form " The common length is the one din symbolic language for ALPHA VPK D.8 Length - 1 of BETA normal form " 2x(length of BETA 's Common or formal form T.R. D.2 Length - 1 normal form area to be toble " Table origin + ALPHA volue = address of translated a ceta: S.R. D.9 of ALPHA area to be toble sought If motifound for sothe BETA ceta S.L. D.B (000 to 255)		CMQ	F9	Ľ		A :	В				•
NC D Description A (1) D Onchanged Toglob Orgical Orgical NVC D2 and BETA A (X) B '' Iogical<''and''		хс	D 7	Com	mon	A [+] B	1		exclusive ''or''	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		oc	D 6	Lengt	h - 1	A (+) B	Unch	anged	logical ''or''	
\circ MVCD 2and BETAA - BThe common length is the one d \circ CMCD 5(000 to 255)A : B $0 A < B$ $0 A = B$ in symbolic language for ALPHA $V K$ D 8Length -1 of BETA (000 to 255)normal formcondensed $0 A < B$ $0 A = B$ $1 A \neq B$ $V K$ D 8Length -1 of BETA (000 to 255)normal formcondensedUnchanged $2 \times (length of BETA)$ $1 A \neq B$ $2 \times (length of BETA)$ $2 \times (length of ALPHA)V KD 8Length -1condensednormalform2 \times (length of BETA)2 \times (length of ALPHA)S RD 9of ALPHAareasearchedcondensed1 B B C = 1 B B C = 1 B B C = 1 B B C = 1 B$	ΤE	NC	D 4	of AL	PHA	A [×	:] B	· · · · · · · · · · · · · · · · · · ·	1	logical ''and''	
S CMC D 5 A : B O A < B I A < B I A < B I A < B I A < B UPK D 8 Length - 1 (000 to 255) normal form condensed form Unchanged 2x(length of ALPHA unber of puncked qual Left quarters remain unchanged, unchanged PK D A condensed (000 to 255) normal form normal form unchanged unchanged TR D C Length - 1 condensed translated normal form unchanged unchanged S R D 9 of ALPHA area searched character edited 0 not found 1 1 D oot found 1 If match found 1 If match found 1 If search f ooter + 1 last searched S L D B (000 to 255) searched edited 1 0 Z sup. 1 non Z sup. No Z sup. See special chart in E D T. MVI 9 2 Immediate octet octet 0 cotet Unchanged unchanged J C 4 3 Condition for JUPA Address Unchanged More sepcial chart. J S 1 5 3 80 for sw. 1 J S 2 To To Unchanged The operation complement define the switch. V U J S 1 5 3 80 for sw. 2 J G 7 To Unchanged Unchanged Stores return address in LOC a sores '		MVC	D 2	and B	BETA	A -	H		1	The common len	gth is the one do
UPK D8 Length - 1 of BETA (000 to 255) normal form condensed form unchanged 2×(length of BETA) : unber of unpacked question 2×(length of ALPHA) FR DC Length - 1 area to be translated normal form Table origin + ALPHA volue = address of translated origin SR D9 of ALPHA area character translated 1 0 not found 1 If match found 0 If match found address of translated octet. SL DB (000 to 255) searched sought area edited 1 0 Z sup. 1 non Z sup. See special chart in ED T. MV1 92 Immediate octet ocitet 1 0 Z sup. 1 non Z sup. See special chart in ED T. JC 43 Condition for Jump jumped 0 A = imm. 1 A # imm. ALPHA octet compared to imme octet. JRT 41 F O jumped it Vicharged The operation complement definit the switch. JS1 53 80 for sw. 1 d0 for sw. 2 to HLT 0A 00 Unchanged HLT 0A 00 <td>Ŷ</td> <td>СМС</td> <td>D 5</td> <td>(000) to</td> <td>255) _.</td> <td>A :</td> <td>B</td> <td>0 A < B 1 A > B</td> <td></td> <td>in symbolic lang</td> <td>uage for ALPHA</td>	Ŷ	СМС	D 5	(00 0) to	255) _.	A :	B	0 A < B 1 A > B		in symbolic lang	uage for ALPHA
PK DA		UPK	D 8	of B	ETA		condensed			1 2 1 numb	er of unpacked qu
TR DC Length - 1 area to be translated origin toble origin Table origin + ALPHA value = address of translated octet. SR D9 of ALPHA area character searched sought 1 0 in found 1 is stored in LOC. SL DB (000 to 255) searched sought 1 0 octet + 1 list stored in LOC. EDT DE mask + area edited 1 0 Z sup. 1 non Z sup. 2 non Z sup. 1 non Z sup. 2 non Z sup. 1 non		РК	DA			condensed		· ·	•	2×(I	ength of ALPHA)
S R D 9 of ALPHA area character 1 0 16 match found If match found If search 4 S L D B (000 to 255) searched sought 1 0 not found 1 octet + 1 last searched EDT DE mask + orea orea 1 0 Z sup. See special chart in E D T. MVI 9.2 Immediate octet '' 0 ALPHA octet replaced by imme octet. JC 4.3 Condition for Jump Address Uncharged ALPHA octet compared to imme octet. JC 4.3 Condition for Jump Address Uncharged See special chart. JS.1 5.3 80 for sw. 1 to '' '' JS.2 5.3 80 for sw. 2 to '' '' HLT 0.4 0.0 '' '' See special chart Stores return address in LOC a Wu y.2 1.5 5.3 80 for sw. 2 to '' '' JS.2 5.3 80 for sw. 2 to '' '' See special chart PER 9.2 peripheral unit number Delta See special chart See special chart		TR	DC	l engi	h . 1		table		1		
SL DB (000 to 255) searched sought 1 1 address - 1 address - 1 EDT DE mosk + result area edited 1 0 Z sup. 1 non Z sup. See special chart in EDT. MV1 92 Immediate octet octet Unchanged ALPHA octet replaced by imme octet. JC 43 Condition for Jump Address Unchanged See special chart. JRT 41 FO jumped " Stores return address in LOC a iumps to SIGMA. JS1 53 80 for sw. 1 40 for sw. 2 to " PER 9E peripheral unit number Delta See special chart HLT 0A 00 Unchanged For data transfer the two leftmost inst contain the data length - 1 NOP2 07 " No operation. INS 02 10 Allows a program halt by mean the "SINGLE-STOP" switch. NOP2 10 Lights the "ALERT" light off NOP 80 Lights the "ALERT" light off		S R	D 9			area	character				
EDT DE mask + result area edited 1 0 Z sup. 1 non Z sup. See special chart in E D T. MV1 92 Immediate octet single octet Unchanged ALPHA octet replaced by imme octet. CM1 95 octet 0 A = imm. 1 > A imm. ALPHA octet replaced by imme octet. JC 43 Condition for Jump Address Unchanged ALPHA octet compared to imme octet. JRT 41 F O jumped The operation complement defini- the switch. JS1 53 80 for sw. 1 40 for sw. 2 to The operation complement defini- the switch. PER 9 E peripheral unit number Delta See special chart For data transfer the two leftmost must contain the data length - 1 NOP2 0.7 No operation. NOP2 0.7 No operation. NOP2 0.7 INS 2.0 NOP2 1.0		S L	DB	(000 +	255)	searched	sought	1	1	address - 1	address
EDT DE result edited 1 1 non Z sup. See special chart in EDT. MV1 92 Immediate octet single octet Unchanged ALPHA octet replaced by imme octet. CM1 95 octet '' 0 < A imm. 1 A ≠ imm.					233)	mask +	greg				
MV1 9 2 Immediate octet octet octet CMI 9 5 octet " 0 < A imm. 1 > A imm. 0 A = imm. 1 A ≠ imm. ALPHA octet compared to imme octet. JC 4 3 Condition for Jump Address Unchanged See special chart. JRT 4 1 F O jumped " Stores return address in L O C an jumps to SIGMA. JS1 5 3 80 for sw. 1 40 for sw. 2 to " The operation complement define the switch. PER 9 E peripheral unit number Delta See special chart For data transfer the two leftmost must contain the data length - 1 MLT 0 A 0 0 Unchanged Brings the program to a halt. continue press "START". NOP2 07 " " Allows a program halt by mean the "SINGLE-STOP" switch. NN P2 10 " Allows a program halt by mean the "SINGLE-STOP" switch. No 80 " " Lights the "ALERT" light off		EDT	DE			result		 	1 non Z sup.		
CMI 95 U < A imm. I > A imm. U A = imm. I A ≠ imm. I A ≠ imm. ALPHA octet compared to imme octet. JC 43 Condition for Jump Address Unchanged See special chart. JRT 41 FO jumped Stores return address in LOC and iumps to SIGMA. JS1 53 80 for sw. 1 40 for sw. 2 to The operation complement define the switch. PER 9 E peripheral unit number Delta See special chart For data transfer the two leftmost must contain the data length - 1 HLT 0 A 0 0 Unchanged Brings the program to a holt. continue press ''START''. NOP2 07 Allows a program holt by mean the ''SINGLE-STOP'' switch. INS 20 Disables the ''SINGLE-STOP'' switch. NOPE 80		MVI	92					Unch	anged		
JC 43 Condition for Jump Address Unchanged See special chart. JRT 41 FO jumped Stores return address in LOC an jumps to SIGMA. JS1 53 80 for sw. 1 40 for sw. 2 to The operation complement define the switch. PER 9E peripheral unit number Delta See special chart For data transfer the two leftmost must contain the data length - 1 MLT 0A 00 Unchanged Brings the program to a halt. continue press ''START''. NOP2 07 No operation. INS 20 NON 80 NO 20 NO 20 No 20 No 20 No 20 No No	S	CMI	95	001	er						ompared to imme
U JRT 41 FO jumped " Stores return address in LOC and jumps to SIGMA. JS1 53 80 for sw. 1 to " The operation complement definition the switch. PER 9E peripheral unit number Delta See special chart For data transfer the two leftmost must contain the data length - 1 HLT 0A 00 Unchanged Brings the program to a halt. continue press "START". NOP2 07 " " No operation. W NO 2 10 " Allows a program halt by mean the "SINGLE-STOP" switch. No No " Bights the "ALERT" light on the console panel. Shuts the "ALERT" light off	ЕT	٦C	43			Address		Unch	anged		
Y JS2 S 40 for sw. 2 the switch. PER 9E peripheral unit number Delta See special chart For data transfer the two leftmost must contain the data length - 1 HLT 0A 00 Unchanged Brings the program to a halt. continue press "START". NOP2 07 " " No operation. HLT 0.2 10 " Allows a program halt by mean the "SINGLE-STOP" switch. NNS " 20 " Disables the "SINGLE-STOP" switch. NON " 80 " " LON " 80 " Shuts the "ALERT" light off	υ	JRT	41	FC)	jumped			,		
PER 9E unit number Delta See special chart must contain the data length - 1 HLT 0A 00 Unchanged Brings the program to a halt. continue press "START". NOP2 07 " " No operation. HLT 0A 00 " No operation. NOP2 07 " " No operation. HLT 0.2 10 " Allows a program halt by mean the "SINGLE-STOP" switch. U INS " 20 " Disables the "SINGLE-STOP" switch. NON " 80 " Lights the "ALERT" light on the console panel.	+		53			to			•		omplement defin
NOP2 0.7 NOP2 0.7 ENS 0.2 1.0 INS Allows a program halt by mean the "SINGLE-STOP" switch. Disables the "SINGLE-STOP" switch. LON LON LOEE		PER	9 E			Delta		See spec	ial chart		
NOF2 07 ENS 0.2 INS '' 20 '' Allows a program halt by mean the ''SINGLE-STOP'' switch. Disables the ''SINGLE-STOP'' switch. N LON B0 '' LON '' B0 '' LOEE '' Shuts the ''ALERT'' light off		нгт	0 A	0	0			Unch	anged	Brings the prog continue press	ram to a halt. ''START''.
ENS 0.2 1.0 " Allows a program half by mean the "SINGLE-STOP" switch. U INS " 2.0 " Disables the "SINGLE-STOP" switch. N LON " 8.0 " Lights the "ALERT" light on the console panel. N LOEE " Shuts the "ALERT" light off		NOP2	07		•			1		No operation.	
U INS " 20 " Disables the "SINGLE-STOP" so N LON " 80 " Lights the "ALERT" light on the console panel. N LOEE " Shuts the "ALERT" light off	н	ENS	0 2	1	0					Allows a progra the ''SINGLE-ST	m hait by mean 'OP'' switch.
N LON '' 80 '' LOEE '' & LERT'' light LOEE '' E0 '' Shuts the ''ALERT'' light off	U	INS		2	0					Disables the ''S	INGLE-STOP'' sv
		LON		8	0					Lights the ''A on the console	LERT'' light panel.
		LOFF		ε	0						

OPERATION	UF/OF ZE/NZ 0 0	UF/OF ZE/NZ 0 1	UF/OF ZE/NZ 1 0	UF/OF ZE/NZ 1 1
AD, SB *	ALPHA = 0 No Overflow	ALPHA ≠ 0 No Overflow	ALPHA = 0 With Overflow	ALPHA ≠ 0 With Overflow
SD, SB		ALPHA < 0 In Underflow Form	ALPHA = 0	ALPHA > 0
СМІ, СМС, СМQ	*	ALPHA < BETA or Char.	ALPHA = BETA or Char.	ALPHA > BETA or Char.
MVQ	ALPHA = 0	ALPHA ≠ 0		
xc			ALPHA = 0	ALPHA ≠ 0
SL, SR			Character Not Found	Character Found
EDT			End in Zero- Suppression Mode	End in Non- Zero Suppression Mode
PER Status Test			Condition Present	Condition Not Present
Data Transfer			End on Length	End of Input File
Control			Always	

· ...

 f_{Δ}

55

- 6.

1

117 C.

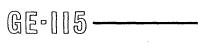
· 4244.

.

* a wear

S. E.

* The operands are Treated As Unsigned

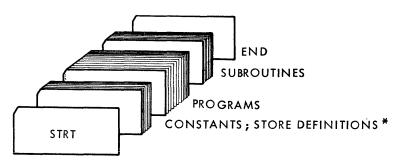

Figure 5 : INDICATOR SETTINGS

·

. .

APPENDIX B

、


APPENDIX B

ASSEMBLING A PROGRAM

PROGRAMMER PREPARATION

Prior to submitting a program for assembly, the programmer should obtain a listing of the source cards. This listing should be checked against the "PROGRAMMER'S CHECK LIST" (See Figure 1). Corrections that are required should be noted on the listing and a corrected deck prepared.

When the source program cards are correct, the deck for assembly should be prepared as shown below:

* Shown as a block in the beginning of the deck to indicate that constant definitions should not appear within the program instruction sequence.

ASSEMBLER ACTION

GE-115-

The action of the assembler in translating the source program is divided into three parts:

- PART 1 Source card format scan and content verification, source program listing, control and allocation of addresses,
- PART 2 Source program translation,
- PART 3 Listing of the source program and translated formats, production of object program cards.

PART 1 carries out the following operations:

- Reads and verifies the format and contents of the source program cards.
- Prints the source program statements, followed by error indications, if required.
- Builds an address table for names occurring in the source program, and punches a table of names and locations.

PART 2 carries out program translation in one or more stages, depending on the size of the name table. The following two cases are differentiated:

Case 1

100 or fewer names (4096 octets of store) 600 or fewer names (8192 octets of store)

Case 2

More than 100 names (4096 octets of store) More than 600 names (8192 octets of store)

In case 1, PART 2:

- Reads the name table and stores all of it. Repunches the name table.
- Reads the source program cards and translates them completely.
- Punches out cards containing the source program and the assembled program.

In case 2, PART 2:

- Reads the name table and stores 100 (or 600) elements of the name table.
- Repunches the name table, with an identifying flag on the cards for which information is placed in store.
- Reads the source program cards and translates all references to names for which information is retained in store.
- Punches out cards containing the source program and the partially translated program.
- Repeats the above operations until the source program is completely translated.

PART 3 carries out the following operations:

- Prints the listings of the source program and the translated format of the program.
- Punches out the object program.

AFTER ASSEMBLY

When an error-free assembly is obtained, the assembler listing becomes the primary documentation for the program. Coding sheets, source card lists and any assembler lists with mistake indications are no longer valuable. All notes and corrections should be made on the most recent assembler listing to keep program documentation current.

The source program deck should be kept current as well. Whenever a change or correction is noted, the source card should be prepared and inserted in the program deck. The same procedures, of listing and checking the source cards, should be followed for re-assembly as for a first assembly.

Figure 1 : PROGRAMMER'S CHECK LIST

- 1. Are the cards in the correct sequence?
- 2. Is the format of the STRT card correct?
- 3. Are any names repeated?
- 4. Does the first instruction to be executed have a name?
- 5. Does each name used as an operand field specification match a name used in a name field?
- 6. Are any names in the name field unused? Why?
- 7. Are operand specifications separated by commas?
- 8. Are lengths enclosed in parentheses?
- 9. Are lengths correctly specified according to the data fields which enter the operations?
- 10. Are increments and decrements to data field references correctly computed?
- 11. Does data format agree with the expected format for the instructions which process it?
- 12. Are definition statements entirely separate from the sequence of executable
- instructions? Are there jumps around any included data or store definitions?
- 13. Are there any internal code or system dependencies? Why?
- 14. Are logical sections of the program separated for checking?
- 15. Are there test output operations included?
- 16. Are required operator messages included? Are they clear? Is operator intervention really required?
- 17. Are all indicator tests properly placed?
- 18. Are input/output operations tested for error? end of file?
- 19. Are there sufficient comments?
- 20. Are all subroutines present?
- 21. Is the END card correct?

APPENDIX C

,

APPENDIX C

BINARY NOTATION

Digital computers store information in the form of on-or-off conditions of electronic devices such as vacuum tubes, transistors, or magnetic cores. The fact that each of these devices can record only two states or conditions naturally gives rise to binary notation for expressing the values. In binary notation two values (0 or 1) may be expressed by each digit, just as in decimal notation ten digit values (0 to 9) are possible.

Binary notation uses the base 2 just as standard decimal notation uses the base ten. That is, if 115 in decimal notation means

$$1 \times 10^{2} + 1 \times 10^{1} + 5 \times 10^{0}$$

the same value expressed in binary as 1110011 means

$$1 \times 2^{6} + 1 \times 2^{5} + 1 \times 2^{4} + 0 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0}$$

Thus,

$$1110011_2 = 115_{10}$$

The binary equivalents of the digits 0 to 9 using 4 binary digits are:

Decimal	Binary
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

Binary addition and subtraction are performed as shown below :

0	0	1	1	10	11
+ 0	+ 1	+ 0	<u>+ 1</u>	+ 1	<u>+ 1</u>
0	1	1	10	11	100
0	0	1	1	10	11
- 0	<u>- 1</u>	- 0	<u>- 1</u>	<u>- 1</u>	<u>- 1</u>
0	- 1	1	0	1	10

0011 (=3)	101110 (=46)
+ 0011 (=3)	+ 10100 (=20)
carries 0110 (=6)	1000010 (=66) carries
Borrows	Borrows
11010 (=26)	10110101 (=181)
- 01100 (=12)	<u>- 01101100 (=108)</u>
01110 (=14)	01001001 (= 73)

Decimal values are not always translated into pure binary when stored in or operated upon by a computer. Frequently, a fixed number of bits is used to express each decimal digit. If four bits are used for each digit, the value 115 can be represented as

	DIGIT	1	DIGIT 2	DIGIT 3
bit pattern	0001		0001	0101
decimal value	1		1	5

Four bits permit values from 0 to 15 to be expressed. While these 16 distinct values are more than enough to express the 10 decimal digits, they are not sufficient to give distinct representation to each alphabetic character. The GE-115 Information Processing System uses eight bits, which have 2⁸ or 256 possible configurations, to represent the 10 digits, 26 letters, and other characters, as well as pure binary values from 0 to 255.

•

.

APPENDIX D

~

APPENDIX D

HEXADECIMAL -TO - DECIMAL CONVERSION CHART

The table in this appendix may be used for conversion of hexadecimal to decimal numbers, and vice versa, in the following ranges :

Hexadecimal	Decimal
000FFF	00004095

For numbers outside these ranges, add hexadecimal 1000 or decimal 4096 to the table figures.

	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Ε	F
00 01 02 03	0016 0032	0017 0033	0002 0018 0034 0050	0019 0035	0020 0036	0021 0037	0022 0038	0023 0039	0024 0040	0025 0041	0026 0042	0027 0043	0028 0044	0029 0045	0030 0046	0031
04 05 06 07	0080 0096	0081 0097	0066 0082 0098 0114	0083 0099	0084 0100	0085 0101	0086 0102	0087 0103	0088 0104	0089 0105	0090 0106	0091 0107	0092 0108	0093 0109	0094 0110	0095 0111
08 09 0A 0B	0144 0160	0145 0161	0130 0146 0162 0178	0147 0163	0148 0164	0149 0165	0150 0166	0151 0167	0152 0168	0153 0169	0154 0170	0155 0171	0156 0172	0157 0173	0158 0174	0159 0175
0C 0D 0E 0F	0208 0224	0209 0225	0194 0210 0226 0242	0211 0227	0212 0228	0213 0229	0214 0230	0215 0231	0216 0232	0217 0233	0218 0234	0219 0235	0220 0236	0221 0237	0222 0238	0223 0239
10 11 12 13	0272 0288	0273 0289	0258 0274 0290 0306	0275 0291	0276 0292	0277 0293	0278 0294	0279 0295	0280 0296	0281 0297	0282 0298	0283 0299	0284 0300	0285 0301	0286 0302	0287 0303
14 15 16 17	0336 0352	0337 0353	0322 0338 0354 0370	0339 0355	0340 0356	0341 0357	0342 0358	0343 0359	0344 0360	0345 0361	0346 0362	0347 0363	0348 0364	0349 0365	0350 0366	0351 0367
18 19 1A 1B	0400 0416	0401 0417	0386 0402 0418 0434	0403 0419	0404 0420	0405 0421	0406 0422	0407 0423	0408 0424	0409 0425	0410 0426	0411 0427	0412 0428	0413 0429	0414 0430	0415 0431
1C 1D 1E 1F	0464 0480	0465 0481	0450 0466 0482 0498	0467 0483	0468 0484	0469 0485	0470 0486	0471 0487	0472 0488	0473 0489	0474 0490	0475 0491	0476 0492	0477 0493	0478 0494	0479 0495

	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
20 21 22 23	0528 0544	0513 0529 0545 0561	0530 0546	0531 0547	0532 0548	0533 0549	0534 0550	0535 0551	0536 0552	0537 0553	0538 0554	0539 0555	0540 0556	0541 0557	0542 0558	0543 0559
24 25 26 27	5 0592 5 0608	0577 0593 0609 0625	0594 0610	0595 0611	0596 0612	0597 0613	0598 0614	0599 0615	0600 0616	0601 0617	0602 0618	0603 0619	0604 0620	0605 0621	0606 0622	0607 0623
28 29 27 28	0656 0672	0641 0657 0673 0689	0658 0674	0659 0675	0660 0676	0661 0677	0662 0678	0663 0679	0664 0680	0665 0681	0666 0682	0667 0683	0668 0684	0669 0685	0670 0686	0671 0687
20 21 28 28	0720 07 36	0705 0721 0737 0753	0722 0738	0723 0739	0724 0740	0725 0741	0726 0742	0727 0743	0728 0744	0729 0745	0730 0746	0731 0747	0732 0748	0733 0749	0734 0750	0735 0751
30 31 32 33	0784 0800	0769 0785 0801 0817	0786 0802	0787 0803	0788 0804	0789 0805	0790 0806	0791 0807	0792 0808	0793 0809	0794 0810	0795 0811	0796 0812	0797 0813	0798 0814	0799 0815
34 35 36 37	5 0848 5 0864	0833 0849 0865 0881	0850 0866	0851 0867	0852 0868	0853 0869	0854 0870	0855 0871	0856 0872	0857 0873	0858 0874	0859 0875	0860 0876	0861 0877	0862 0878	0863 C879
38 39 34 38	0912 0928	0897 0913 0929 0945	0914 0930	0915 0931	0916 0932	0917 0933	0918 0934	0919 0935	0920 0936	0921 0937	0922 0938	0923 0939	0924 0940	0925 0941	0926 0942	0927 0943
30 31 35 35	0976 0992	0961 0977 0993 1009	0978 0994	0979 0995	0980 0996	0981 0997	0982 0998	0983 0999	0984 1000	0985 1001	0986 1002	0987 1003	0988 1004	0989 1005	0990 1006	0991 1007
40 41 42 43	1040 1056	1025 1041 1057 1073	1042 1058	1043 1059	1044 1060	1045 1061	1046 1062	1047 1063	1048 1064	1049 1065	1050 1066	1051 1 067	1052 1 06 8	1053 1 06 9	1054 1070	1055 1071
44 45 46 47	1104 1120	1089 1105 1121 1137	1106 1122	1107 1123	1108 1124	1109 1125	1110 1126	1111 1127	1112 1128	1113 1129	1114 1130	1115 1131	1116 1132	1117 1133	1118 1134	1119
48 49 4A 4B	1168	1153 1169 1185 1201	1170 1186	1171 1187	1172 1188	1173 1189	1174 1190	1175 1191	11 <i>7</i> 6 1192	1177 1193	1178 1194	11 <i>7</i> 9 1195	1180 1196	1181 1197	1182 1198	1183 1199
40 40 4E 4F) 1232 1248	1217 1233 1249 1265	1 234 1250	1235 1251	1236 1252	1 237 1253	1238 1254	1239 1255	1240 1256	1241 1257	1242 1258	1243 1259	1244 1260	1245 1261	1246 1262	1247 1263

	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Ε	F
50 51 52 53	131 2	1313	1298 1314	1299 1315	1300 1316	1301 1317	1302 1318	1303 1319	1304 1320	1305 1321	1306 1322	1 29 1 1 30 7 1 3 2 3 1 3 3 9	1308 1324	1309	1294 1310 1326 1342	1311 1327
54 55 56 57	1360 13 76	1361 1377	1362 1378	1363 1379	1364 1380	1365 1381	1366 1382	1367 1383	1368 1384	1369 1385	1370 1386	1355 1371 1387 1403	1372 1388	1389	1358 1374 1390 1406	1359 1375 1391 1407
58 59 5A 5B	1424 1440	1409 1425 1441 1457	1426 1442	1427 1443	1 428 1444	1429 1445	1430 1446	1431 1447	1432 1448	1433 1449	1434 1450		14 36 1452	1437 1453	1438 1454	1423 1439 1455 1471
5C 5D 5E 5F	1488 1504	1505	1506	1491 1507	1 492 1508	1509	1494 1510	1495 1511	1496 1512	1497 1513	1498 1514	1483 1499 1515 1531	1500 1516	1501 1517		1519
60 61 62 63	155 2 1568	1553 1569	1554 1570	1555 1571	155 6 15 72	1557 1573	1558 1574	1559 1575	1560 1576	1561 1577	1562 1578	1547 1563 1579 1595	1564 1580	1565 1581	1566 1582	· • • ·
64 65 66 67		1633	1618	1619 1635	1620 1636	1621 163⁄7	1622 1638	1623 1639	1624 1640	1625 1641	1626 1642	1611 1627 1643 1659	1628 164 4	1629	1630	1631 1647
68 69 6A 6B	1680 1696	1697	1682 1698	1683 1699	1684 1 <i>7</i> 00	1685 1701	1686 1702	1687 1703	1688 1 7 04	1689 1705	1690 1706	1675 1691 1 <i>7</i> 07 1723	1692 1 <i>7</i> 08	1693 1709		1695 1711
6C 6D 6E 6F	1760	1761	1762	1763	1748 1764	1733 1749 1765 1781	1750 1766	1751 1767	1752 1768	1 <i>7</i> 53 1 <i>7</i> 69	1754 1770	1739 1755 1771 1787	1756 1772	1773		
70 71 72 73	1808 1824	1809 1825	1810 1826	1811 1 827	1812 1828	1813 1829	1814 1830	1815 1831	1816 1832	1817 1833	1818 1834	1803 1819 1835 1851	1820 1836	1821 1837	1822 1838	1823 1839
74 75 76 77	1872 1888	1873 1889	1874 1890	1875 1891	1876 1892	1877 1893	1878 1894	1879 1895	1880 1896	1881 1897	1882 1898	1867 1883 1899 1915	1884 1900	1885 1901	1886 1902	
78 79 7A 7B	1936 1952	1937 1953	1938 1954	1939 1955	1940 1956	1941 1957	1942 1958	1943 1959	1944 1960	1945 1961	1946 1962	1931 1947 1963 1979	1948 1964	1949 1965	1950 1966	1951 1967
7C 7D 7E 7F	1984 2000 2016 2032	2001 2017	2002 2018	2003 2019	2004 2020	2021	2006 2022	2007 2023	2008 2024	2009 2025	2010 2026	1995 2011 2027 2043	2012 2028	2013 2029	2014 2030	2015

GE-115 -----

	0	1	2	3	4	5	6	7	8	9	A	В	С	D	E	F
80 81 82 83	2064 2080	2065 2081	2066 2082	2067 2083	2068 2084	2069 2085	2070 2086	2071 2087	2072 2088	2073 2089	2074 2090	2075 2091	2076 2092	2061 2077 2093 2109	2078 2094	2095
84 85 86 87	2128 2144	2129 2145	2130 2146	2131 2147	2132 2148	2133 2149	2134 2150	2135 2151	2136 2152	2137 2153	2138 2154	2139 2155	2140 2156	2125 2141 2157 2173	2142 2158	2143 2159
88 89 8A 8B	2192 2208	2193 2209	2194 2210	2195 2211	2196 2212	2197 2213	2198 2214	2199 2215	2200 2216	2201 2217	2202 2218	2203 2219	2204 2220	2189 2205 2221 2237	2206 2222	2207 2223
8C 8D 8E 8F	2256 2272	2257 2273	2258 2274	2259 2275	2260 2276	2261 2277	2262 2278	2263 2279	2264 2280	2265 2281	2266 2282	2267 2283	2268 2284	2253 2269 2285 2301	2270 2286	2271 2 2 87
90 [°] 91 92 93	2320 2336	2321 2337	2322 2338	2323 2339	2324 2340	2325 2341	2326 2342	2327 2343	2328 2344	2329 2345	2330 2346	2331 2347	2332 2348	2317 2333 2349 2365	2334 2350	233 5 2351
94 95 96 97	2384 2400	2385 2401	2386 2402	2387 2403	2388 2404	2389 240 5	2390 2406	2391 2407	2392 240 8	2393 2409	2394 2410	2395 2411	2396 2412	2381 2397 241 3 2429	2398 2414	2399 2415
98 99 9A 9B	2448 2464	2449 2465	2450 2466	2451 2467	2452 2468	2453 2469	2454 2470	2455 2471	2456 2472	2457 2473	2458 2474	2459 2475	2460 2476	2445 2461 2477 2493	2462 2478	2463 2479
9C 9D 9E 9F	2512 2528	2513 2529	2514 2530	2515 2531	2516 2532	2517 2533	2518 2534	2519 2535	2520 2536	2521 2537	2522 2538	2523 2539	2524 2540	2509 2525 2541 2557	2526 2542	2527 2543
A0 A1 A2 A3	2576 2592	2577 2593	2678 2594	2679 2595	2580 2596	2581 2597	2582 2598	2583 2599	2584 2600	2585 2601	2586 2602	2587 2603	2588 2604	2573 2589 2605 2621	2590 2606	2591 2607
A4 A5 A6 A7	2640 2656	2641 2657	2642 2658	2643 2659	2644 2660	2645 2661	2646 2662	2647 2663	2648 2664	2649 2665	2650 2666	2651 2667	2652 2668	2637 2653 2669 2685	2654 2670	2655 267 1
A8 A9 A A AB	2704 2720	2705 2721	2706 2722	2707 2723	2708 2724	2709 2725	2710 2726	2711 2727	2712 2728	27 13 2729	2714 2730	2715 2731	2716 2732	2701 2717 2733 2749	2718 2734	2719 2735
AC AD AE AF	2768 2784	2769 2785	2770 2786	277 1 2787	2772 2788	2773 2789	2774 2790	2775 2791	2776 2792	2777 2793	2778 2794	2779 2795	2780 2796	2765 2781 2797 2813	2782 2798	2783 2799

GE-115 -----

	0	1	2	3	4	5	6	7	8	9	А	В	с	D	E	F
B0 B1 B2 B3	2832	2817 2833 2849 2865	2834 2850	2835 2851	2836 2852	2837 2853	2838 2854	2839 2855	2840 2856	2841 2857	2842 2858	2843 2859	2844 2860	2845 286 1	2846 2862	2847 2863
B4 B5 B6 B7	2896 2912	2881 2897 2913 2929	2898 2914	2899 2915	2900 2916	2901 2917	2902 2818	2903 2919	2904 2920	2905 2921	2906 2922	2907 2923	2908 2924	2909 2925	2910 2926	2911 2927
88 89 84 88	2960 2976	2945 2961 2977 2993	2962 2978	2963 2979	2964 2980	2965 2981	2966 2982	2967 2983	2968 2984	2969 2985	2970 2986	2971 2987	2972 2988	297 3 2989	2974 2 99 0	2975 2 9 91
BC B戸 BE BF	3024 3040	3009 3025 3041 3057	3026 3042	3027 3043	3028 3044	3029 3045	3030 3046	3031 3047	3032 3048	3033 3049	3034 3050	3035 305 1	3036 3052	3037 3053	3038 3054	3039 3055
	1 3088 2 31 04	3073 3089 3105 3121	3090 3106	3091 3107	3092 3108	3093 3109	3094 3110	3095 3111	3096 3112	3097 3113	3098 3114	3099 3115	3100 3116	3101 3117	3102 3118	3103 3119
	5 31 <i>5</i> 2 6 3168	3137 3153 3169 3185	3154 3170	3155 3171	3156 3172	3157 3173	3158 3174	3159 3175	3160 3176	3161 3177	3162 3178	3163 3179	3164 3180	3165 3181	3182	3167 3183
	7 3216 A 323 2	3201 3217 3233 3249	3218 3234	3219 3235	3220 3236	3221 3237	3222 3238	3223 3239	3224 3240	3225 3241	3226 3242	3227 3243	3228 3244	3229 3245	3230 3246	3231 3247
	D 3280 E 3296	3265 3281 3297 3313	3282 3298	3283 3299	3284 3300	3285 3301	3286 3302	3287 3303	3288 3304	3289 3305	3290 3306	3291 3307	3292 3308	3293 3309	3294 3310	3295 3311
D(D) D)	1 3344 2 3360	3329 3345 3361 3377	3346 3362	3347 3363	3348 3364	3349 3365	3350 3366	3351 3367	3352 3368	3353 3369	3354 3370	3355 3371	3356 3372	3357 3373	3358 3374	. 3359 3375
D4 D3 D6 D7	5 3408 5 3424	3393 3409 3425 3441	3410 3426	3411 3427	3412 3428	3413 3429	3414 3430	3415 3431	3416 3432	3417 3433	3418 3434	3419 3435	3420 3436	3421 3437	3422 3438	3423 3439
D D D D	9 3472 A 3488	3457 3473 3489 3505	3474 3490	3475 3491	3476 3492	3477 3493	3478 3494	3479 3495	3480 3496	3481 3497	3482 3498	3483 3499	3484 3500	3485 3501	3486 3502	3487 3503
D D D D	D 3536 E 3552	3521 3537 3553 3569	3538 3554	3539 3555	3540 3556	3541 3557	3542 3558	3543 3559	3544 3560	3545 3561	3546 3562	3547 3563	3548 3564	3549 3565	3550 3566	3551 3567

GE-115 -----

	0	1	2	3	4	5	6	7	8	9	А	В	с	D	Е	F
E0 E1 E2 E3	3600 3616	3601 3617	3602 3618	3603 3619	3604 3620	3605 3621	3606 3622	3607 3623	3592 3608 3624 3640	3609 3625	3610 3626	3611 3627	3612 3628	3613 3629	3614 3630	3615 3631
E4 E5 E6 E7	3664 3680	3665 3681	3666 3682	3667 3683	3668 3684	3669 3685	3670 3686	3671 3687	3656 3672 3688 3704	3673 3689	3674 3690	3675 3691	3676 3692	3677 3693	3694	3679 3695
E8 E9 EA EB	3728 3744 3760	3729 3745 3761	3730 3746 3762	3731 3747 3763	3732 3748 3764	3733 3749 3765	3734 3750 3766	3735 3751 3767	3720 3736 3752 3768	3737 3753 3769	3738 3754 3770	3739 3755 3771	3740 3756 3772	3741 3757 3773	3742 3758 3774	3743 3759 3775
EC ED EE EF	3792 3808	3793 3809	3794 3810	3795 3811	3796 3812	3797 3813	3798 3814	3799 3815	3784 3800 3816 3832	3801 3817	3802 3818	3803 3819	3804 3820	3805 3821	3806 3822	3807 3823
F0 F1 F2 F3	3856 3872	3857 3873	3858 3874	3859 3875	3860 3876	3861 3877	3862 3878	3863 3879	3848 3864 3880 3896	3865 3881	386 6 3882	3867 3883	3868 3884	38 69 3885	3870 3886	3871 3887
F4 F5 F6 F7	3920 3936 3952	3921 3937 3953	3922 3938 3954	3923 3939 3955	3924 3940 3956	3925 3941 3957	3926 3942 3958	3927 3943 3959	3912 3928 3944 3960	3929 3945 3961	3930 3946 3962	3931 3947 3963	3932 3948 3964	3933 3949 3965	3934 3950 3966	3935 3951 3967
F8 F9 FA FB	3984 4000 4016	3985 4001 4017	3986 4002 4018	3987 4003 4019	3988 4004 4020	3989 4005 [.] 4021	3990 4006 4022	3991 4007 4023	3976 3992 4008 4024	3993 4009 4025	3994 4010 4026	3995 4011 4027	3996 4012 4028	3997 4013 4029	3998 4014 4030	3999 401 <i>5</i> 4031
FC FD FE FF	4048 4064	4049 4065	4050 4066	4051 4067	4052 4068	4053 4069	4054 4070	4055 4071	4040 4056 4072 4088	4057 4073	4058 4074	4059 4075	4060 4076	4061 4077	4062 4078	4063 4079

GE-115-

INDEX

INDEX	
-------	--

	PAGE
ABSOLUTE ADDRESS	29, 30, 32
ACTUAL ADDRESS, see ABSOLUTE ADDRESS	29, 30, 32
ADD BINARY (AB)	59 - 61
ADD DECIMAL (AD)	51 - 53
ADDRESS	37
ADDRESS CONSTANT DEFINITION	150
ADDRESS MODIFICATION	60,63
ALPHABETIC SYMBOLS	21, 22
'AND' ON COMPLETE OCTETS	91
ARITHMETIC CONTROL UNIT	3,5
ARITHMETIC INSTRUCTIONS	48 - 50
ASCENDING ADDRESS	131, 134
ASSEMBLER	13, 18, 34, 36, 37
ASSEMBLER PROGRAM CONTROL INSTRUCTIONS	156
ASSEMBLY LANGUAGE	10, 12, 13, 17, 18 23
ASSEMBLY LISTING	33, 35
ASTERISK	20, 29, 32, 36
BINARY DIGIT	3,7,18
BINARY LITERALS	18
BINARY OPERATIONS	59 - 64
BIT	3,4,7
CALL PERIPHERAL (INSTRUCTION)	15, 129
CARD READER	6
CARRY	48, 54, 62
CENTRAL PROCESSOR	3
CHANNEL	5,6
CHARACTER, see also GRAPHIC CHARACTER	7
CHARACTER CONSTANT DEFINITION	146
COMMENT	32, 33, 163

	PAGE
COMPARE COMPLETE OCTETS	80 - 82
COMPARE IMMEDIATE TO STORE	78 - 79
COMPARE RIGHT QUARTETS	30, 83 - 84
COMPLEMENT	49
CONNECTOR	5,6
CONSTANT	10,17
CONSTANT DEFINITION, see DEFINE CONSTANT	150, 146, 148, 152 - 155
CONTROL CHARACTER	22, 109
DATA FIELD	10
DATA FORMAT	7,8,9
DATA MOVEMENT AND COMPARISON INSTRUCTIONS	65 - 66
DATANET	6
DECIMAL OPERATIONS, see ARITHMETIC INSTRUCTIONS	48 - 50
DECREMENT	29,30,39
DESCENDING ADDRESS	134
DEFINE CONSTANT ADDRESS	150
DEFINE CONSTANT CHARACTER	146
DEFINE CONSTANT HEXADECIMAL	148
DEFINE CONSTANT PERIPHERAL FIELD	152 - 155
DEFINE STORE AREA	143
DEFINITION STATEMENTS	141
DIRECTIVE INSTRUCTION	17, 139
EDIT	109 - 113
EDITING	22, 109 - 113
EDITING MASK	22
EDIT INSTRUCTIONS	108
ENABLE SINGLE STOP	123
EXCLUSIVE 'OR' ON COMPLETE OCTETS	93 - 94
EXPLICIT LENGTH, see SPECIFIED LENGTH	12 - 13, 30 - 31
EXTERNAL CONTROL PANEL	4
FIELD	12, 13, 18, 28, 30, 34 - 40

INDEX (contd.)

	PAGE
FILL CHARACTER	109
FORMAT CONTROL CHARACTER	109
GRAPHIC CHARACTER	18, 19, 20
GRAPHIC SET	18, 21, 22
HALT SYSTEM OPERATION	118
HARDWARE ITEMS	27
HEXADECIMAL CONSTANT DEFINITION	148
HEXADECIMAL NOTATION	7, 8, 10, 13, 18, 19, 22
IDENTIFICATION	23
IMMEDIATE DATA	12, 13, 31, 32
IMMEDIATE OPERAND	46
IMPLICIT LENGTH SPECIFICATION	30
INCREMENT	29,30,39
INDICATOR	14, 32
INHIBIT SINGLE STOP	122
INPUT/OUTPUT	12, 15, 32
INSTRUCTION	7,10,11
INTERFACE	6
INTERNAL INSTRUCTION FORMAT	10 - 16
INVERSION (BIT)	54
JUMP AND RETURN	107
JUMP IF EQUAL	29,33
JUMP IF GREATER	101
JUMP IF GREATER OR EQUAL	101
JUMP IF LESS	101
JUMP IF LESS OR RQUAL	101
JUMP IF NOT EQUAL	101
JUMP IF SWITCH 1 SET	105
JUMP IF SWITCH 2 SET	105
JUMP INSTRUCTIONS	95 - 96
JUMP ON CONDITION	97
JUMP ON SWITCH 1, see JUMP IF SWITCH 1 SET	105
JUMP ON SWITCH 2, see JUMP IF SWITCH 2 SET	105
JUMP UNCON DITIONAL	29, 33, 102

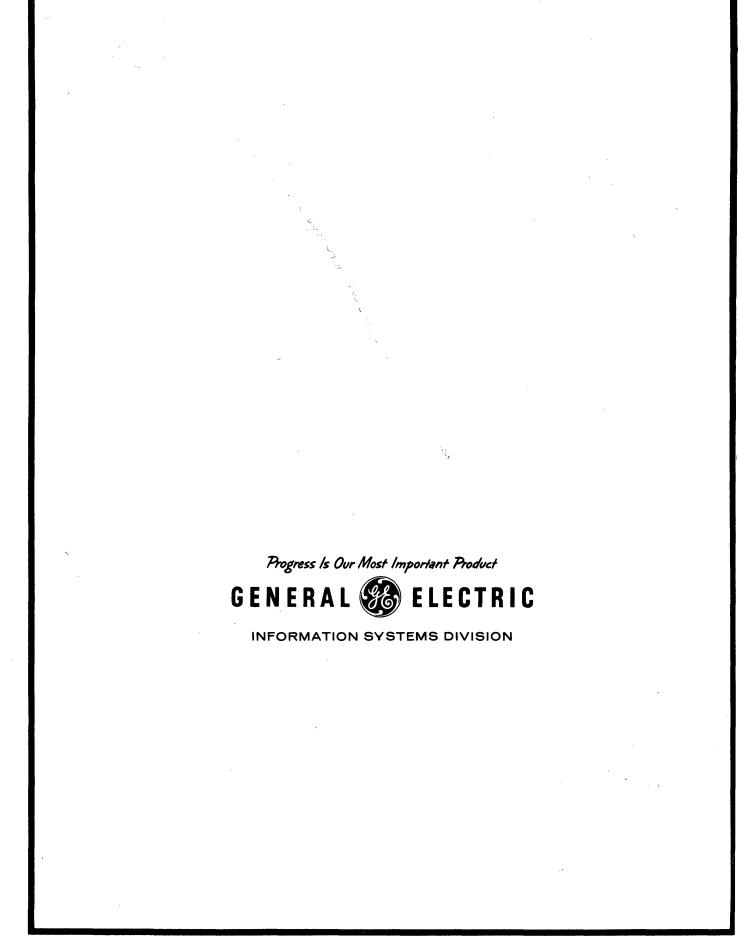
INDEX (contd.)

INDEX	(contd.)
	(

		PAGE
LEFT OCTE	T ADDRESS	37, 38
LEFT QUAR	RTET	7,8,9
LEN GTH		30, 34, 35
LINE FEED		22
LINE NUM	BER	25
LINE PRIN	TER	6
LOC		4, 26, 84 - 89
LOCATION	N COUNTER	4
LOGIC IN	STRUCTIONS	90
MISTAKE C	CODES	23, 34, 35
MNEMON	IC	12, 17, 26, 37
MODE:		
	DECIMAL BINARY	48 48
	NON-ZERO SUPPRESSION	110
	PACKED	131
	UN PACKED ZERO SUPPRESSION	130 110
MOVECO	MPLETE OCTETS	69 - 70
	AEDIATE TO STORE	67
	HT QUARTETS	71 - 73
NAME		25, 28, 30, 34,
		35, 38
NO JUMP		103
NON ZERO	O SUPPRESSION , see ZERO SUPPRESSION $ MC _{2}^{1/2}$	109 - 113
NO OPERA	TION	119
OBJECT LA	NGUAGE	13, 15, 16, 17, 18, 36
OCTET		7,8
OPERAND		27
OPERAND	ADDRESS	11, 12, 16
OPERAND	SPECIFICATION FIELD	27, 35
OPERATIO	N	10, 11, 12
OPERATIO	N CODE	10, 17, 26, 35
OPERATIO	N COMPLEMENT	11, 12, 13, 32
ORIGIN A	SSIGNMENT	22, 29
'OR' ON C	COMPLETE OCTETS	92

	PAGE
OVERFLOW	48 - 49
PACK RIGHT QUARTETS INTO OCTETS	74 - 75
PACKED DATA	9, 74 - 75
PACKED MODE	131
PAGE NUMBER	25
PARITY	4
PARITY ALERT	4
PERIPHERAL CONTROL INSTRUCTION	137
PERIPHERAL STATUS SPECIFICATIONS	136
PERIPHERAL STATUS TEST	135
PRIMARY INSTRUCTIONS	17,43
PROGRAM	17, 45
PROGRAMMING FORM	23, 24
QUARTET	7
RESERVED SYMBOLS	20, 21
RIGHT OCTET ADDRESS	37, 38
RIGHT QUARTET	7,8,9
SEARCH TO THE LEFT	88 - 89
SEARCH TO THE RIGHT	85 - 87
SIGN	170
SOURCE LANGUAGE INSTRUCTION, see SOURCE LANG	AUGE
STATEMENT	31
SOURCE LANGUAGE PROGRAM	13, 15, 16
SOURCE LANGUAGE STATEMENT	31
SPECIFIED LENGTH	12 - 13, 30 - 31
STATEMENT	10, 34
STORE	3,4
STORE ASSIGNMENT COUNTER, see STORE LOCATION A MENT COUNTER	ASSIGN- 22, 29, 160
STORE CONTROL UNIT	3,4
STORE LOCATION ASSIGNMENT COUNTER	22, 29, 160
SUBROUTINE	22, 26, 169
SUBROUTINE CALL	169
SUBTRACT BINARY	62 - 64
SUBTRACT DECIMAL	54 - 58

٠,


INDEX (contd.)	l	ND	EΧ	(contd.)
----------------	---	----	----	---------	---

	PAGE
SYSTEM ACTION INSTRUCTIONS	116
SYSTEM PROGRAM LOADER	23
SYSTEM SYMBOL	18
TRANSLATE	114
TRANSLATION	115
TRUE DIFFERENCE	49
TRUE FORM	49
TURN ALERT LIGHT OFF	121
TURN ALERT LIGHT ON	120
UNDERFLOW	48 - 49
UNDERFLOW/OVERFLOW INDICATOR	5
UNPACK OCTETS INTO RIGHT QUARTETS	76 - 77
UNPACKED DATA	77
UNPACKED MODE	130
ZERO/NON-ZERO INDICATOR	5
ZERO SUPPRESSION MODE	109 - 113
ZONE	8

•

.

/

litho U.S.A. 84.1