ENERAL ELECTRIC

6
COMPUTERS

GE-115
User's Guide

ADVANCE INFORMATION

GENERAL @B ELECTRIC

CCCCCCCCC

GE-115
USER'S GUIDE

REFERENCE MANUAL

November 1265

GENERAL @ ELECTRIC

COMPUTER DEPARTMENT

PREFACE

This manual is a user’s guide and reference manual for the GE-115 Information Processing
System.

An assembly language is provided which allows for program statements in simple mnemonic and
symbolic phrases, All translation to the GE-115 internal system language is performed by
the assembler. The GE-115 system is described in terms of the assembly language,

A knowledge of general programming principles is helpful; no knowledge of other assembler
languages or systems is required.

Terminology is according to the International Federation for Information Processing and the
International Computation Centre (IFIP/ICC) Vocabulary of Information Processing,

Comments on this publication may be addressed to Technical Publications, Computer Department,
General Electric Company, P, O, Box 2961, Phoenix, Arizona, 85002,

@ 1965 By General Electric Company

(500 3-67)

@ EDH U5 USER'S_GUIDE

CONTENTS

INTRODUCTION
SECTION A - GENERAL INFORMATION
PART I - GE-113 SYSTEM INFORMATION
THE CENTRAL PROCESSOR
Store
INFORMATION IN STORE
PACKED DATA
THE FORMAT OF THE INTERNAL INSTRUCTION

Figure A-3 : Internal Configuration of the GE-115
Instruction Set

THE PARTS OF THE INTERNAL INSTRUCTION
The Operation
Operation Complement
Length
Data within the Instruction
Conditions for Jumps
Operation Differentiators
Input/Output Unit References
Addresses of Operands

PART Il = GE-115 ASSEMBLY LANGUAGE INFORMATION
THE SYMBOLS OF THE GE-115 ASSEMBLY LANGUAGE
Figure A-4 : The GE-115 Character Set
Reserved Symbols

Figure A-5 : Symbols reserved by the GE-115
Assembler

Control Characters
WRITING STATEMENTS IN THE GE-115 ASSEMBLY LANGUAGE
THE PROGRAMMING FORM
Identification
Page Number
Line Number
Name
Operation Code
Operand Specifications
Types of Operands
Methods of Specifying Operands
Figure A-7 : The GE-115 Assembler Mistake Codes

REFERENCING DATA FIELDS IN THE GE-115 ASSEMBLY
LANGUAGE

Pages

O WV N W W w -

12
12
i2
12
13
14
15
15
16

17
18
19
20

21

22
23
23
23
25
25
25
26
27
27
27
34

36

USER'S GUIDE

GE-119

iidi

SECTION B - GE-115 ASSEMBLY LANGUAGE INSTRUCTIONS
PART | - PRIMARY INSTRUCTIONS

ARITHMETIC INSTRUCTIONS
Add Decimal (AD)
Subtract Decimal (SD)
Add Binary (AB)
Subtract Binary (SB)
DATA MOVEMENT AND COMPARISON INSTRUCTIONS
Move immediate to store (MVI)
Move complete octets (MVC)
Move right quartets (MV Q)
Pack right quartets into octets (PK)
Unpack octets into right quartets (UPK)
Compare immediate to siore (CMI)
Compare complete octets (CMC)
Compare right quartets (CM Q)
Search to the right (SR)
Search to the left (SL)
LOGIC INSTRUCTIONS
'AND' on complete octets (NC)
'OR' on complete octets (OC)
Exclusive 'OR' on complete octets (XC)
JUMP INSTRUCTIONS
Jump on Condition (JC)

Figure B-2 : Indicator settings tested by conditional jumps

Jump if Greater (JG)
Jump if Equal (JE)
Jump if Greater or Equal (JGE)
Jump Less (JL)
Jump Not Equal (JNE)
Jump Less or Equal (JLE)
Jump Unconditional (JU)
No Jump (NOJ)
Figure B-3 : Table of conditional Jumps
Jump if Switch 1 set (JS1)
Jump if Switch 2 set (JS2)
Jump and return (JRT)
EDIT INSTRUCTIONS
Edit (EDT)
Translate octets (TR)

Pages
41

43
48
51
54
59
62
65
67
69
71
74
76
78
80
83
85
88
90
91
92
93
95
97
100
101
101
101
101
101
101
102
103
104
105
105
107
108
109
114

USER'S GUIDE

GE-118

SYSTEM ACTION INSTRUCTIONS 17

Halt system operation (HLT) 118

No operation (NOP2) : 119
Turn alert light on (LON) 120
Turn alert light off (LOFF) 121
Inhibit single stop (INS) 122
Enable single stop (ENS) 123
INPUT/OUTPUT INSTRUCTIONS 124
Call peripheral (PER) Data Transfer 129
Call peripheral (PER) Peripheral Status Test 135
Call peripheral (PER) Peripheral Unit Control 137
PART Il - DIRECTIVE INSTRUCTIONS 139
DEFINITION STATEMENTS 141
Define store area (DS) 143
Define constant (DC) Character Constant 146
Define constant (DC) Hexadecimal Constant 148
Define constant (DC) Address Constant 150
Define peripheral instruction (DP) Data Transfer 152
Define peripheral instruction (DP) Peripheral Status Test 154
Define peripheral instruction (DP) Peripheral Unit Control 155
THE ASSEMBLER PROGRAM CONTROL INSTRUCTIONS - 156
Start program assembly (STRT) 157

End of program (EN D) 159
Origin assignment (ORG) 160
ASSEMBLY LISTING FORMAT INSTRUCTIONS 162
Comment (®) 163
Eject present page (EJEC) 164
Line feed (LF) 165
SECTION C - GE-115 ARITHMETIC SUBROUTINES 167
Add decimal, signed (YADS) 172
Subtract decimal, signed (YSDS) 174
Multiplication, decimal, unsigned, fast (YMULF) 176
Division, decimal, unsigned, fast (YDIVF) 178

@EUH [l 5 USER'S GUIDE

APPENDICES

A - TABLES

Figure 1 : TABLE OF CARD AND PRINTER CHARACTER

REPRESENTATION 184
Figure 2 : TABLE OF GE-115 OPERATIONS BY
HEXADECIMAL REPRESENTATION 187
Figure 3 : TABLE OF GE-115 OPERATIONS BY
MNEMONIC EXPRESSION 189
Figure 4 ;: - GE-115 INSTRUCTIONS REFERENCE CHART 191
B - ASSEMBLING A GE-115 PROGRAM 197
PROGRAMMERS CHECK LIST 198
Figure 1 : DECK SET-UP FOR ASSEMBLY 197
C - BINARY NOTATION 203
D - HEXADECIMAL TO DECIMAL CONVERSION CHART 207

@l Eou H5 USER'S GULDE

vi

INTRODUCTION

The GE-115 is a small scale electronic information processing system designed to serve a wide
variety of user needs.

] As a card processing system, the GE-115 may be used to perform all the
tasks carried out by a punched card tabulation installation.

(] As a remote terminal, the GE-115 may be used in conjunction with a large
scale information processing system as a data receiving and transmitting
station.

® As an information processing system, the GE-115 may be programmed for

applications in all fields. It is particularly suited to the processing of
data for such applications as tabulations, inventories, record keeping and
file updating.

This manual describes the GE-115 information processing system with card input and output
only. It may serve any of the functions listed above.

Programs for the GE-115 are written in a simple symbolic language which is easy to learn and
to use. No special skill, other than a knowledge of the application to be performed, is required
to use the GE-115 system effectively.

USER'S GUIDE

BE-105

vii

BE-118

SECTION A

GENERAL INFORMATION

USER'S GUIDE

PART |

GE-115 SYSTEM INFORMATION

The GE-115 Information Processing System consists of a central processor and associated

auxiliary store and input/output units. The minimum system configuration is shown below.

Central

Printer Processor Reader

Punch

THE CENTRAL PROCESSOR

The central processor is comprised of the following units

Store

Store Control Unit
Arithmetic Control Unit
Peripheral Control Unit

4 Store ,
The store unit is an array of magnetic cores providing storage for instructions and data. A
module of store contains 4096 store locations, The user may have one or two modules, that
is 4096 or 8192 store locations., Information in the store is represented by the values of

bits. Each bit is a binary digit and may have a valve of O or 1.

NOTE: It is expected that the reader be familiar with the binary number system. If

not, he should read Appendix C. before proceeding further in this manual,

USER'S GUIDE

GE-10%

Eight bits make up the basic unit of reference in the GE-115 system, This unit is
called the OCTET., An address is used to designate each octet, The octet is the smallest
addressable unit in store, Store is conventionally represented as strings of addressable

octets with the addresses increasing from left to right as shown in the figure below:

0064 0065 0066 0067 Addresses

j octet octet octet octet ? Strings of octets

Associated with each 8-bit octet is a ninth bit used by the system for parity checking.

This bit does not enter into programmed operations and data values. It is used by the

system to monitor its own functioning, Each time an octet is placed in store odd parity is
automgtically generated and stored with the octet; that is, if the number of 1-bits is even,
the parity bit is set to 1. Thus all octets in store have an odd 1-bit count. This odd count
is tested and if the number of 1-bits is even, a parity alert is generated and the system

halts operation.

There are two special locations in the store, 0254 and 0255, These locations form a field

referenced in the GE-115 Assembly Language with the name LOC, The field is used

by several instructions to store an address (See "Store Control Unit" below). The significance
of the address stored in 0254 and 0255 is fully explained in the descriptions of the instructions

which use these locations.

These are the only special purpose locations; there are no predefined input/output areas.

° Store Control Unit
The store control unit fetches, interprets, and controls the execution of the operations
specified by the instvucti~»:, An external control panel is available to provide for

manual intervention and display of internal status.

Within the store control unit, a location counter controls the sequence of program
instructions. During program execution, the location counter holds the address of the next
sequential instruction in the store, When the sequence of the stored program is altered by
any of the jump instructions, the new program address is entered in the location counter.

*The address in the location counter is displayed by lights on the control panel.

@ En U l]@ ‘ USER'S GUIDE

. Arithmetic Control Unit
The arithmetic control unit controls the execution of decimal and binary arithmetic

operations, logic operations, and comparisons.

Two 1=bit indicators reflect the results of the arithmetic, logic, and comparison
operations. Jump instructions test the values in these indicators to allow alteration of
program sequence, The two indicators are the Underflow/Overflow (UF/OF) Indicator,
and the Zero/Non=Zero (ZE/NZ) Indicator.

The indicators can be set fo O or 1,

® Peripheral Control Unit
The flow of data and instructions between the store and the input/output units is
controlled by the peripheral control unit. This unit contains two channels able to

operate with time=sharing of the store.

The two channels, in turn, control four Connectors for communication with the

peripheral units, as shown in Figure A-1,

USER'S GUILDE

GE-109

Channel 2 Channel 1
2 2 4
O O o
1 7 3
Controller 1 Controller 2
Connector 1 Coﬁnecfor 2 Connector 3 Connector 4

GE-100 Standard Interface ,

or
% DATANET
Line Printer Card Reader Single - 10
Connected to Conn. ixd to Peripheral
Channel 2 Either Unit with
Channel Controller
(Channel or Multiple S
Selected by Peripheral singie
. . Peripheral
Program Units with .
Unit and
Control) Controllers
Controller

}Reg. Trademark of the General Electric Company

Figure A-1

| @E” U U@ | ‘ USER'S GULDE

INFORMATION IN STORE

Information in store may be data or may be programmed instructions.

Information is placed in the store as binary digits, or bits.

On the following pages the formats of information in store are discussed.

Octet

Eight binary digits make up the basic unit of reference in the GE-115 Information Processing

System. This unit is called an OCTET.

Each octet has its own address. An octet is the smallest addressable unit in the store.

The eight bit positions of the octet are referred to as 0-7, from right to left.

Bit position 76543210
Binary digits [o1o001111]
octet

The octet may be used to represent one character. Each bit of the octet may have a value of O or 1.
There are 28 possible ordered combinations of binary digits in an octet, giving 256 possible internal
character representations, The binary digit configuration in the example above is used internally in

the GE-115 system to represent a question mark (?) character.

Quartet
The eight bits of an octet may be considered as two groups of four bits, Each group of four bits is
called a QUARTET. Four bits give a set of 24 possible ordered combinations of 0 or 1, permitting

values from O to 15 to be expressed.

Bit position 7654 3210
Binary digits o100, 1111}
Decimal equivalent 4 15
of the quartet value
Left Right
quartet | quartet
Octet

The decimal equivalent of the value of the left quartet of the 8-bit configuration for the question
mark (?) character is 4 (four) and the decimal equivalent of the value of the right quartet is 15
(fifteen). These values are more easily represented by the HEXADECIMAL (base 16) number

system.

@ E o [I l] 5 USER'S GUIDE

Hexadecimal Representation of the Contents of an Octet

The hexadecimal number system is to the base 16, The digits used in the hexadecimal system

are:

0123456789ABCDEF,

The digits represent the values 0 to 15, that is, A is used to represent 10, B to represent 11, eic.

Each octet can be represented by two hexadecimal digits.

Bit position 7654 3210
Binary digits [0100,1111]
Hexadecimal 4 F
value
Left Right
quartet quartet
Octet

The hexadecimal representation of the 8-bit configuration for the question mark character is
4F. For convenience, the internal octet bit patterns are usually represented as two hexa-

decimal digits.

The pattern of the left quartet (of the left hexadecimal digit) is the zone, The pattern of the
zone is identical for certain sets of characters. For example, when numeric quantities are to
be represented internally using the decimal numerals 0-9, rather than their binary equivalents,
all decimal digits have the value 4 (0100) in the zone position. The hexadecimal representa-
tion of the octet configurations for the decimal numerals 0 to 9 are 40 to 49. One octet
contains one decimal digit, The right quartet contains the numeric value and the left the

character zone,

The figure below shows the binary and hexadecimal configurations of the decimal numeral 2,

Note that one octet is used to express one decimal digit or character,

Bit position 7654 3210
Binary digits 0100|0010
Hexadecimal 4 2
value
Left Right
quartet quartet
Octet

@ [E ° ﬂ U 5 , USER'S GUIDE

(PACKED DATA)
Within the GE=-115 system the right quartets are sometimes considered independently. To

facilitate manipulation of right quartets (usually where left quartets are the same), data may. be

placed into octets in packed form.,

To pack or condense data the like pattern in the zones of a pair of octets is omitted and the two

right quartets are placed in a single octet.

Thus, if the machine recognizes

0100 | 1001

as a decimal 9, and

0100 | 1000

as a decimal 8, a packed octet containing both 8 and 9 appears as

1000|1001

The operations of the GE-115 system provide for condensing information in this way and

expanding it again. Some operations are provided to process data in the condensed form,

It is possible to condense information with unlike zones, but the pattern must be known in order

to expand the data to its original form. For example,

A 2

0101'0001 0100100170

in condensed form would appear

0001 [0010

When this octet is expanded, the result would be

XxXXx | 0001 {|xxxx] 0010

The left quartet patterns in the receiving field must be properly set by the programmer

according to the intended use of the unpacked field.

@ EU U I] 5 v USER'S GUIDE

THE FORMAT OF THE INTERNAL INSTRUCTION

An instruction is a statement specifying an operation to be carried out by the GE-115 system,

It contains an operation code, any required constants, and references to any data fields used. The
length of an instruction depends upon the operation specified, and requires two, four, or six-octets
instore. Instructions can be divided into three groups according to the length of the instruction.

The possible components of an instruction and resulting lengths are shown in Figure A-2,

L:)r;g::t:n Operation C;::-;:t::nn t Address Address
6
4
2
One One - Two Two
Octet Octet Octets Octets
Figure A-2

Figure A-3 shows the GE-115 assembly language instructions and the format of each. Note
that the operation portion of an instruction requires one octet. The operation complement portion of

an instruction requires one octet, Each operand address requires two octets,

Figure A-3 also shows the internal hexadecimal configuration for each operation and in
some cases, the internal configuration of the operation complement. These codes are given
here for the programmer's information. Although familiarity with these codes may be useful

in identifying operations in an object language program listing, a knowledge of them is not

required of the programmer using the GE-115 system.

It is strongly recommended that programs be written so that their logic is not dependent upon the

internal instruction codes for operations.

@ E o [l U 5 USER'S GUIDE

-10-

INTERNAL

MACHINE INSTRUCTION CODE

Operation

Operation
Complement

Operand Address

Operand Address

L(et) L(B)

L(o)

L(B)

L)

BINARY ZEROS

ALPHA Address

BINARY ZEROS

BETA Address

JE

JGE
JL
JLE
JNE
Ju

‘NOJ

Jsi
Js2

H——o

W—MNDNOIMOOVE>ONCTLNMNGVOOOT T D>M

Binary Val
Binary Val

0

all

values

BINARY ZEROS

GAMMA ADDRESS

possible

OCTET ADDRESS
OCTET ADDRESS

HLT
NOP2
ENS
INS
LOFF
LON

NN e

f—— ————- O p+—n

OMN=—=0CI+DOMODMOW=NTO OGO 6O

GE-118

1st
OCTET

2nd
OCTET

3rd & 4th
OCTETS

5th & 6th
OCTETS

Figure A-3 : INTERNAL CONFIGURATION OF THE

GE-115

INSTRUCTION SET

USER'S GUIDE

-11-

" THE PARTS OF THE INTERNAL INSTRUCTION

The internal instruction must have an operation and an operation complement specified. It may

also have one or two addresses of operands. A complete explanation of each of the internal

instruction parts is given below.

The Operation

Each instruction uses one octet to define the operation to be performed, The octet contains the
binary pattern translated by the assembler from the mnemonic operation specified in the Assembly
Language instruction. This binary pattern is by convention represented by a pair of hexadecimal
digits. For example, the mnemonic AD is translated by the assembler to a pattern which is

expressed in hexadecimal as FA,

AD Source language

FlA Object language

Operation Complement

The second octet is used in several different ways according to the type of operation specified in

the instruction statement. In all cases the second octet complements the first., It may:

° Define the length of data fields

. Contain an immediate data item

° Define the conditions required for a jump

) Differentiate between operations having the same value in the first octet
° Contain the number of an input/output unit being used

Length

Some of the GE-115 system operations may treat data fields which are more than one octet
in length. There are no field defining marks in store; the length of an operafion is controlled by

the length (or lengths) specified in the operation complement.,

In instructions requiring two lengths for two data fields, each quartet of the operation complement
specifies one length, The left quartet is the length of the first field; the right is the length of the
second field. Since four bits are used for each length, the value in the quartet may range from
0000 to 1111 (0-15),

In instructions requiring that only one length be specified, the full octet of the operation

complement field is used to define the length. The value for eight bits may range from 0 to 255,

@ ED U U 5 : USER'S GUIDE

-12-

In all operations which process variable length fields, the lengths really processed are one more
than the lengths indicated in the operation complement. In the assembly language statement, the
programmer specifies the length really processed. When two lengths must be specified these lengths
may be from 01 to 16. When one length must be specified the length may be from 001 to 256. The
assembler translates the lengths specified as shown in the examples below. In the first example
below the Add Decimal (AD) instruction causes one decimal digit in the BETA field to be added

to the decimal data 14 digits long in the ALPHA field.

I AD | ALPHA (14), BETA (01) Source language

F | A|lD | 0 | Operand addresses {} Object language

Octet 1 Octet 2

The Move Complete Octets (MVC) instruction shown below causes 256 octets to be moved from
BETA to ALPHA.

[MVCI ALPHA (256), BETA Source language
D | 2 |F | F |Operand addresses)} Object language

Octet 1 Octet 2

Length specification is @ minimum of one octet. A zero length in the operation complement of the

assembled instruction operates as 1,

Data Within the Instruction

Some operations use data contained within the instruction itself, This data is referred to as
"immediate" data. In those instructions using immediate data, the operation complement field
contains one data item, The assembler translates the data item from its source language rei:oresen-
tation and places it in the second octet of the object instruction. The conventions for representing
the immediate data item in the assembly language instruction are treated fully in the descriptions
of the particular instructions using immediate data, and in the section, "WRITING INSTRUCTION
STATEMENTS IN THE GE-115 ASSEMBLY LANGUAGE".

One example of an instruction using immediate data is the Compare Immediate to Store (CMI)
instruction. In the example below, the field ALPHA is compared to the internal representation

ofa$.

@ IE:\ U [I 5 USER'S GUIDE

-13-

This representation is 1010 1011 (in hexadecimal, AB), The source and object language

representation of the CMI instruction is:

| CMI l C'$', ALPHA Source language
9 15 A | B ; Object language
Octet 1 Octet 2

NOTE : Instructions using immediate data also reference a
data item in store (ALPHA in the example above).
The assumed length of the referenced data is one
octet; there is no length specified in the assembled

instruction.

Conditions for Jumps

In another group of instructions, the operation complement is used to define a condition
reflected by the state of the indicators. The indicators are set during execution of several of
the GE-115 system operations. Instructions are provided to test the indicators and to act
upon the indicated condition. The test written in the source language statement is translated
by the assembler and inserted in the operation complement, In the example below, the Jump
on Condition (JC) instruction causes the indicators to be tested for a condition which can be
represented by the hexadecimal digits '80'. The hexadecimal digits are translated and placed

in the operation complement of the assembled instruction,

| JC ‘*X'BO', ALPHA Source language
4 | 3|8 | 0 X\ Object language
Octet 1~ Octet 2

@ Em U [I 5') . USER'S GUIDE

-14-

Operation Differentiators
There are several special purpose instructions in which different mnemonic codes are translated

into the same configuration in the first octet. The operation complement, in these cases, serves

to differentiate between these operations, as shown below by the pair of instructions, Turn ALERT

Light On (LON) and Turn ALERT Light Off (LOFF).

LON Source language

0 | 2|8 | 0 Object language
LOFF Source language
0 l 2 |E lO Object language

Input/Output Unit References
Input/output units, since they are auxiliary to the central processor, are called peripheral units.

For input/output instructions, the second octet contains the number of the peripheral unit to be
used by the instruction. In the example below, for the Peripheral instruction (PER), hexadecimal

3 F may be any input/output device, depending upon the peripheral configuration of the particular

GE-115 system,

I PER I X'3F', ALPHA Source language
9 ! E|3 1 F Object language

USER'S GUIDE

GE-108

-15-

Addresses of Operands

An address (within the object language representation of an instruction) is contained in two
octets, An address is the binary address of the octet where operation begins, When the size of
the store is 8192 octets addresses go from 0000 to 8191, Therefore, within the two octets which
an address occupies in the internal instruction, the three leftmost bits of the first octet are always

zZero,

An operation referencing only one data field requires two octets for the address of the operand

and a total of four octets for the entire instruction. If there are two data field operands, the
instruction requires 6 octets. In the example below, the Add Decimal (AD) operates on two
operands. The operation begins in the ALPHA field at the octet with the address

00000011 11110001 and in the BETA field at the octet with the address 00000010 11010101,

| AD I ALPHA (06), BETA (06) Source language

FIA 5]5 0,3 F

| 5 Object language

@En” U5 USER'S GUIDE

-16-

PART II.

GE-115 ASSEMBLY LANGUAGE INFORMATION

An assembly language is a set of symbols and rules for writing statements to be performed by a
computer, An assembly language statement is written in a format which is more convenient

and easier to remember than the format for the internal instruction which the computer recognizes
as an executable statement, Instead of writing the numeric values for operation codes, operand
lengths, data constants, and addresses, the programmer uses assembly language instruction

statements,

The GE-115 Assembly Language enables the programmer to write instructions and to

specify all the required program parameters with meaningful and easily remembered codes.
The GE-115 Assembly Language provides the following features:

° Operations are specified with easy to remember alphabetic mnemonics (e.g., AD for

decimal addition, PER for a peripheral unit instryction).

° Data constants may be written in various forms (hexadecimal numbers, alphanumeric

characters, and special symbols as +, - $' etc.).
) Cross references between instructions and references to data fieldsmay be accomplished
with meaningful names chosen by the programmer without concern for the actual location

in store of instructions and data.

Primary instructions written in the GE-115 Assembly Language are translated by the

GE-115 assembler into the object language instructions acceptable for execution by the
GE-115 System. Primary instructions specify the program steps, operation by operation.
Directive instructions written in the GE-115 Assembly Language are directions from the

programmer to the GE-115 Assembler. Data defined in Directives will be included in
the object language program. Other Directives define the ass‘ignmenl' of store addresses and

procedures for printing the assembly listing.

@] IEDI] U5 USER'S GUIDE

-17-

In this section, the symbols of the GE-115 Assembly Language are described and the rules
for writifg instructions in the language are given. Also, the relationship between data field
references and the assembled addresses used in object language instructions is explained. This
relationship is quite unusual. In most assembly languages, a symbolic name used as an operand
specification references an address.

In the GE-115 Assembly Language, symbolic names used as operand specifications reference
data fields.

THE SYMBOLS OF THE GE-115 ASSEMBLY LANGUAGE

The GE-115 Information Processing System recognizes the standard graphic character set
defined in Figure A~4, page 19 . There are 64 graphic characters. Each number, letter or
symbol in this set has a unique binary value represented internally by the eight binary digits of one
ociet, The internal representations of the graphic character set are only a part of the set of 256

possible binory configurations of octets.

The GE-115 System Assembler allows for the definition of data by symbolic characters, by
hexadecimal digits, and by decimal digits. Binary digit patterns that are to be used for special
purposes by a program must be submitted to the assembler under one of the above representations.
The assembler does not recognize binary literals as data. Thus, when a programmer wishes to
specify a data item with the internal configuration of 0010 0001, he may specify the hexadecimal

configuration 21,

Although it is not possible to avoid specific coding of the non-graphic characters when they are
required, the user is strongly advised not to construct programs in which the logic is contingent
upon the internal codes of the graphic character set. Do not refer to the hexadecimal configura-

tion of a graphic character when it is possible to use a reference to the character itself.

@ ED U U5 USER'S GUIDE

-18-

GE-118

Caret? | Chanpnie | Hexadecimal | S8y | DIPNE | Hexadecimal
01000000 0 40 10100000 4 A0
0001 1 41 0001 J Al
0010 2 42 0010 K A2
0011 3 43 0011 L A3
0100 4 44 0100 M A4
0101 5 45 0101 N A5
0110 6 46 0110 o A6
0111 7 47 0111 P A7
1000 8 48 1000 Q A8
1001 9 49 1001 R A9
1010 t 4A 1010 - AA
1011 # 4B 1011 $ AB
1100 @ 4C 1100 * AC
1101 : 4D 1101) AD
1110 > 4E 1110 ; AE
1111 ? 4F 1111 ' (apos- AF
trophe)
01010000 (blank) 50 10110000 + BO
0001 A 51 0001 / B1
0010 B 52 0010 s B2
0011 c 53 0011 T B3
0100 D 54 0100 U B4
0101 E 55 010 v B5
o110 F 56 0110 w B6
o111 G 57 0111 X B7
1000 H 58 1000 Y B8
1001 | 59 1001 z B9
1010 & 5A 1010 -« BA
1011 . 58 1011 , (comma) BB
1100] 5C 1100 % BC
1101 (5D 1101 = BD
110 < 5E 1110 u BE
1 ~ 5F n ! BF
Figure A-4: THE ' GE-115 GRAPHIC CHARACTER SET

USER'S GUIDE

-19-

The set of graphic characters are not only used for data definition in the GAMMA 115 Assembly
Language.

All may be present in the coding of an assembly language program. Most of the characters in

the set may be used freely. Some are reserved for special purpose. The group of symbols

reserved by the assembler are
O N

These symbols must not be used by the programmer in naming data fields or instructions.

(They may be used for data definition). This set of symbols is described below and in Figure

A-5.

RESERVED SYMBOLS
Apostrophe (')

Two apostrophes are used as data field delimiters, one to the left and one to the right of the

data being specified.

Comma (,)

A comma is used to separate operand specifications when more than one operand is specified.

Parentheses ()
Parentheses are used to contain length definition when the specification of a length accompanies

a field reference. Parentheses may also contain an address reference.

Arithmetic Signs (+ -)

Arithmetic Signs (+ or -) are used to modify a symbolic operand specification. The sign is

followed by a decimal increment or decrement.

Asterisk ()

The asterisk symbol is used in two ways.

An asterisk used for operand specifications indicates that the address of the specified operand

is relative to the left octet address of the instruction in which the asterisk appears.

When an asterisk is used as an operation, it indicates that the operand specifications field

contains a comment to be printed during assembly,

@EUH U 5 USER'S GUIDE

~-20-

Figure A-5: SYMBOLS RESERVED BY THE GE-115 ASSEMBLER

SYMBOL USE

! Field delimiter

P Operand specification separator

() : Length specification or address definition

+ Increment specification

- Decrement specification

* As an operand specificdﬁon z indicates store
assignment,

As an operation : indicates a comment

ALPHABETIC SYMBOLS

In addition to the above symbols, there are several alphabetic characters used by the GE-115
Assembler (A,C,X,L,R,S,D,Y), The programmer may use any of these letters in naming fields;
however, it is recommended that he not use the letter Y to begin the name of subroutines, data
fields, or instructions because system subroutine names begin with Y. A new system subroutine

could have the same name which a programmer has defined in his program.

A

The letter A is used in a constant definition instruction to indicate an address constant.

C
The letter C in the operand specification field of an instruction indicates that the data item
which follows the C, bounded by apostrophes, is a single member of the graphic set;(i.e.,

0-9, A-Z, or a symbol).

C in a constant definition instruction indicates that one or more members of the graphic character

set are being used to define constant data.

@ E a [I U 5 USER'S GUIDE

-21-

X

The letter X appearing in the operand specification field of an instruction indicates that the data
item bounded by apostrophes is represented by a pair of hexadecimal digits ; i.e., the quartet

configuration represented by each of the digits is one of those shown below :

0000 =0 1000 = 8
0001 =1 1001 =9
0010 =2 1010 = A
0011 =3 1011 =8
0100 =4 1100 =C
0101 =5 1101 =D
0110 =6 1110 =E
o111 =7 1M1t =F

X in a constant definition instruction indicates that one or more pairs of hexadecimal digits are

being used to define constant data.

L

L precedes the definition of length in a store definition or constant definition instruction.

R
An R in the operand specification field of an ORG instruction sets the value in the store
assignment counter to the next higher multiple of 256. The store assignment counter is a part

of the assembler and is used for assigning addresses to instructions and data.

s, D
The letters S and D are used in the Line Feed (LF) as line spacers. S requests a single skip.

D requests a double skip.
A

In GE-115 system software, rise letter Y has been used as the first letter of the subroutine

names.

CONTROL CHARACTERS

There are three special purpose hexadecimal control characters used by the Edit (EDT) instruction
to format data : 20, 21, 22, They are used in the editing mask to control data positioning. These
three numbers do not correspond to any of the characters in the graphic set and must be represented

in assembly language statements by pairs of hexadecimal digits.

@ED ﬂ U5 USER'S GUIDE

-22-

WRITING STATEMENTS IN THE GE-115 ASSEMBLY LANGUAGE

Programs for the GE-115 Information Processing System are written in the GE-115 Assembly

Language on the Programming form shown in Figure A-6.

The parts of this form and the rules for their use are described below. If the programmer does not
follow these rules, the GE-115 assembler will print mistake indications on the listings which
are produced during assembly. A [ist of the possible mistake indications and their meaning is
presented in Figure A-7 GE-115 ASSEMBLER MISTAKE CODES. The notations appearing

in parentheses throughout the t ext refer to the mistakes described in this table.

THE PROGRAMMING FORM

1. IDENTIFICATION (Columns 1-4)
Enter a 4=digit field to identify the program. Any alphanumeric combination may be

used.,

This field is for program identification; therefore, it is suggested that a meaningful code

be chosen. In the example below, BILL was chosen to identify a billing program.

PROGRAM PROG
IDENTIFICATION
'B 1, L. 'YB I L LI NG PROGRAM
PASE | LiNE NAME OPERATION OPERANDS)
32 33]34 3s)3s 42 A5 e
i o) 5 1 I i " P " 1 1 1 1 W S | 1 i 1 1 1 1;‘:7 Iy \
] lo " I 'y Ny A e s 1 I - - ; i i L 1 3] 1 A A ; 1 (
1 5 358 i 2 55 " L N " A s s A i U S Ly i]

Sequences of numbers or letters might be chosen for a set of programs which are related,
A set of three programs which tabulate test scores might be identified by SCR1, SCR2,
and SCR3.

The numbers 0000 to 1000 are used for identification of system programs and should be
avoided. If the identification field on any instruction is not the same as that of the
first, the instruction is marked (S) by the assembler. The System Program Loader verifies

(at execution time) that all cards of a program have the same identification field.

@ IED ” ﬂ5 USER'S GUIDE

-23-~

_-|7Z..

Gl0-39

J4aI09 s, ¥dsn

WI0d HNIWWVIO0¥d 9-V 2an81g

(seT-210)

GE-115 - INFORMATION PROCESSING SYSTEM
GEN“AL@“E”NC ASSEMBLY LANGUAGE

PROGRAMMING FORM

PAGE . OF
PROGRAM PROGRAMMER DATE
IDENTIFICATION -
1 4
PAGE | LI
SE | LINE OPERATION OP ERANDS
32 33134 35| 36 42 45
i 0 I5 1 1 1 i 1 1 1 1 1 L 1 i : 1 e I 1 e 1 1 i A : —
A |o 4) 1 " " -t n : 1 TR T i i 1 L 1 L L L — "
1 5 i 1 AL e i 4 1 1 1 1 1 1 % L 1 1 1 1 1 1 1 1 , A1
lo A i 1 L 1 1 1 1 1 1 1 1 { A 1 1 1 L 1 L 1 i 'l -
1 5 1 i 1 i 1 A 1 1 1 i i i 4' 1 1 i il A 1 A i 1 ‘I A
3 L o 1 I 1 1 1 A i 1 L 1 i H J’ A 1 L 1 A R VN | ‘L L
3 1 5 1 1 1 L. i 1 4 1 1 I 1 i 4 1 1 1 i 1 1 L i 1 1 1
— '
4 i 0 1 L 2l i 1 s L i i 1 1 1 : 4 i i ; i e 1 1 R T : .
4.5] SR P S S S S O SO VU SO S ST S
5 1 0 1 1 1 1 1 A i i 1 1 1 1 :7 i 1 A S 1 1 L 1 + A
5I 5 1 I A 1 i 1 1 1 1 1 =7 1 1 1 1 - 1 i o S— 4% e
6 s 0 2 s s) L s L L f L FI f n f s 1 1) s " L + T
6] 5 1 1 1 - 1 A 1 L 1 1 1 1 e 1 i 4 1 L i 1 i E— ¢ L
7,00 L e R S S S S SR .
L T
7,5) R P S S S PR S S S ;.
8 s 0 i I S— A A < 2 i 1 1 1 1 _} 1 s - 4 L 1 1 A i JI; k.
8 i 5 1 1 1 1 1 L i 1 i 1 1 1 ‘; 1 1 1 NI A 1 —_—r 1 "; —L
9 1 0 1 i I e 1 1 1 1 - i - 1 i 1 1 1 1 1 1 1 1 1 i 1
+ '
9.5] R A S S S - .
T T
1 1 i AL i 1 1 1 1 - 1 1‘7 A 1 A A 1 1 i 1 + —
X . R T .
+ }
L 1 i — 1 A 1 1 1 1 i 1. 4 1 1 1 1 i A ol 4 1 4 1 1 A
+ }
" L "y i b, - - 1 - i I — " o I 5 I - - e v A I . L e i

2. PAGE NUMBER (Columns 32-33)
Enter a page number at the top of each page of the coding sheets. Repeat the page

number on each statement when punching.

Page numbers must be in ascending order (S). The collating sequence shown in Figure |,

Appendix A, cannot be used to position non-numeric characters as sequence references,
pp ’ p q

Page and line numbers (see below for line number description) are used to order program
instruction statements; they do not enter into the assembled program. It is not necessary

to have a new page number for each programming sheet, nor is it necessary to use the same
number for an entire sheet, as long as on each instruction the combined page and line

number (taken as a 4-digit decimal number) is higher than the one before.

3. LINE NUMBER (Columns 34~35)
Enter a 2-digit decimal number for each line of coding. The numbers must be (within
any page) in an ascending sequence (S). It is advisable that lines be given numbers
which are multiples of 5 so that changes and corrections may be inserted without making
resequencing necessary. In the following example, the lines are numbered with multiples
of 5. If the programmer wishes to insert two new instructions between 15 and 20 he may

number the new instructions 16 and 17,

ASE LINE NAME D PERATION OPERANDS
2 3 4_ 3938 404 12 454 AT 7
0.3

0.5 i < o8

RN
wiejuwmio

Inserts 16 and 17 could be written on free lines at the bottom of the coding sheet and placed

between 15 and 20 after they are punched.

The collating sequence shown in Figure 1, Appendix A, may not be used to position
non=numeric characters. Line numbers are used to order the instructions of the program;
the program sequence depends on card order in the source deck. The numbers are

examined but not translated by the assembier,

4, NAME (Columns 36-40)
Names are used for cross-reference between program statements. The name of a field is

defined by its appearance in the name field. The name will be equated to the actual

@EDU U5 ’ USER'S GUTDE

-25-

location assigned by the assembler to the statement,

Enter a name to identify the first operation in the program.

Begin the name in column 36. Leave unused columns to the right of the name blank,

Leave the name field blank if no reference to the statement is required, Column 41 must

be blank.

A maximur of {ive characters is allowed (N), A name must begin with a letter (N).

Succeeding characters may be alphabetic or numeric; no special symbols may be used (N).

A name may appear in the name field of an APS statement only once

in a program. When the same name is assigned to more than one
statement, the name will appear in a multiple reference table which
will be listed preceding the object program list. The location
assigned to the first occurrence of the name is used for all references

to the name.

System subroutine names begin with a Y. It is therefore advisable to avoid the letter Y

as an initial character of a name in order to prevent duplication.,

5. OPERATION CODE (Columns 42-45)

The operation code specifies the system action defined by the statement,

Enter the mnemonic for the operation, starting in column 42, Leave unused columns to

the right blank., CTele w44 muyst be blank.
PASE LINE NAME OPERATION OPERANDS
2 33]34 3536 . 4004 1|42 454 46T 7 4]
03Jo.s[paT.A3dDS, B - .

B.E.G 1 N iC M, |

olwnio

1
1 X R KN 55 I . X

20lL00p, {4ap. _El1 e e
2 =]A.B B8 .

3]

(,.
|

The mnemonic expression must be one of those listed in Figure 3, Appendix A.

@ En H B 5 . USER'S GUIDE

-26-

6. OPERAND SPECIFICATIONS (Columns 47-74)
An operand is the item which is operated upon by an instruction.
For example, if the number 24 is added to 92, the data items 24 and 92 are the operands.
If 24 is contained in o field named (See above for naming) BETA, the instruction statement
which specifies the addition operation uses the symbolic name BETA to specify that operand.
Instructions in the GE-115 Assembly Language may specify one, two, or no
operands depending upon the operation to be performed. The methods for specifying

operands vary according to the kind of operand and the operation being specified,

When an operand is to be specified, enter the operand specification beginning in
column 47, Two operand specifications must be separated by a comma (F). No blank

may appear between column 47 and the end of the operand specifications (except as data
definition (F,I). If an instruction does not require an operand, |

leave the operand specification field of the instruction blank.

Several types of operands may be specified by an instruction. The types of operand and

the methods for specifying such operands are described below.,

Types of Operands may be:

° Data Fields
Data operated upon by an instruction may be elsewhere in the store, or data used
by an instruction may be contained within the instruction itself. The latter type
of data item is referred to in this manual as an "immediate operand" to distinguish

it from data not contained within the instruction.

. Instructions
The location of another instruction is specified as an operand when the operation
may cause an interruption in the sequence of instructions executed. The location
specified is the location of the instruction to which control is transferred when

the sequence of instructions is interrupted. (See jump instructions, page 95)
4 Hardware ltems
Operands such as input/output units, peripheral status conditions, overflow/

underflow and zero/non-zero indicator test conditions, may be specified.

Methods of Specifying Operands are:

° Symbolic Names of Fields

An instruction or a data field (which is not an immediate operand) may be specified

USER'S GUIDE

GE-109

-27-

with the symbolic name of the field in which it is contained. The name must be
defined (U), A symbolic name must conform to the format for names (1), In the
following example the data field ALPHA is compared to a Z using the Compare

Immediate to Store (CM!) instruction,

ASEILINE] NaME PERATION OPERANDS

2 3 4_ 3536 40J4 142 ATl 407 7

1,405 . FfcM1 Fic z7 S ALPHA - A
oy, oLk . 8 N PPN
‘ 5 -y -y & & P T S - P SR W'Y - " _—e
201, , . A A R s
2 As s A e 2 A e e - -y

. Symbolic Names for Fields with Increments or Decrements

A symbolic name may be modified by a 3-digit decimal increment or decrement.
If a programmer wishes to reference a location which has not been named, he may
refer to it using the name of a location near it, For example, if ALPHA is the
name of a data field of five octets and the programmer wishes to reference the
third octet of ALPHA with a Compare Immediate to Store (CMI) instruction, he
writes ALPHA + 002, If the programmer wishes to reference the octet to the left
of ALPHA with the CMI instruction, ALPHA=0Q01 is written,

ALPHA-001 ALPHA

A
r N\

octet | octet octet | octet | octet | octet | octet | octet

!

ALPHA + 002

The programmer writes an instruction using the symbolic name of the ALPHA

field with an increment or decrement as follows:

OPERANDS

s ALPHA+.002 .

74

AGEILINEL NaME PERATION OPERANDS . ‘
4 3 6 4004 142 AACMT7 74
5

2 JCM |, PIC " 8" PHA-001

@ En ” ”5 A USER'S GUIDE

-28-

GE-108

An increment or decrement must be three decimal digits (F,1). The symbols

+and - are the only symbols of modification accepted by the assembler (F).

The Asterisk (%) Symbol

The asterisk symbol (%) may be used as an operand. This symbol always references
the first octet of the instruction in which it appears as an operand. The % symbol
must be followed by an increment or decrement. When the % is used without an
increment or decrement, it is a mistake (I).

The use of the % as an operand is not recommended. Meaningful names are
always easier to understand. Also mistakes can easily occur when programs are
changed. For example, if another instruction were to be inserted in the following
set of instructions, the programmer would have to change the % =014 operand
specification because the instruction named LOOP would no longer be 14 octets

before the Jump Unconditional (JU) instruction.

ACE|LINEl NaMmE PERATION OPERANDS

32 3 4 3 6 4084 1|2 4&4647 74

o4lo slLoopP [kcmi EIC $, F1E LD, . e -
1,0 L B E 4T.HRU . , . R
20 . Elau qe-0Qr14)
2. 51T HRU X, X, X : R R N

s

NI [~
»iO jn

THRU.

Absolute Addresses .
Operands may be specified with absclute location addresses. For example, if the
programmer wishes to direct the assembler to set its store location assignment

counter to 1256, one might code:

ASEILINE] NaMmE . [PPERATION OPERANDS
2 3334336 40§43 12 4s5j4aei7 74
Q.5)e s . F1ORG, 11,256 . R e
1.0) R . -
~

USER'S GUIDE

-29-

An absolute source langucge address used as an operand specifier must be written
as a 4-digit decimal number (F,1). There cannot be an increment or decrement

associated with an absolute address (F).

The programmer is advised to avoid the use of absolute address references. Names
are more meaningful, The possibility of errors when a program is modified is very

great when absolute address references have been used.

. Data Fields and Lengths

Operations which act upon variable length fields require a definition of the length

of the field.

If the length is that of a named data field, the length need not be specified. In
all other cases where a variable length operation is to be performed, length is the

number of octets or quartets used in the operation,

The length is v.ritten as a decimal number enclosed in parentheses immediately to
the right of the data field specification. Some operations require that the length
be specified as a 2-digit decimal number. Others require that the length be
specified as a 3-digit decimal number. When the number specified is not an
acceptable number or it is not expressed in the correct number of digits, it is a

mistake (F,1).

An example of a specified length written as three digits is:

QEE LINE NAME DPERATION OPERANDS
32 3334 3936 4044 1|2 Asfasp7 7 44
QAIO.SI MVvC EIALPHA(O0OS5) ,BETA |, | R

An example of a specified length written as two digits is:

Pﬁg;EleEI NAME DPERATION OPERANDS
32 3334 3536 £l CM X 45{ashr 7 4
Q.4]0,5 24CMQ '3{ALPHA(Q4);BETA(Q4) , .
1.0 N 5% . o . e i
-l*. ’ + +

@ ED H U 5 USER'S GUIDE

-30-

Note that although only four octets enter into the last example, the number is

expressed in two digits. It is written 04, not 4,

In instructions which operate on variable length fields, the length must always be

specified (F) if the operand is referenced with either the % or an absolute address.

) Immediate Data Items
Immediate data items may appear in the operand specification portion of the
source language instruction. The data item becomes a part of the object language
instruction. The assembler, when it translates the instruction, places the data

item in the operation-complement octet.

There are three ways in which immediate data may be specified. Immediate data

may be coded as a character, a hexadecimal number, or a decimal number.

A single symbol preceded by C and enclosed in a pair of apostrophes signifies an
immediate data item which is a character. The character must be one of those

shown in Figure A-4, page 19 (F,1).

ASEILINE] NaMmE DPERATION OPERANDS
2 3334 3936 4004142 45§ AGMT 74
05J0 SITEST F3CM I EIC "A' L ALPHA .
1 o] | T . I8
e D e I e i e

A pair of hexadecimal numbers preceded by X and enclosed in a pair of
apostrophes signifies an immediate data item which is any valid hexadecimal
configuration up to 'FF', The user should refer to "SYMBOLS OF THE GE-115
ASSEMBLY LANGUAGE", Figure A=4, The hexadecimal numbers and their
binary, decimal, and character equivalents may be found in Figure I, Appendix

A (I). It is recommended that the programmer use the C notation (see above) i

U

@ [-' ° H [I 5 USER'S GUIDE

-371-

i

for any character in the graphic chardcter set instead of the hexadecimal

configuration.

PQSQE Lmﬁ NAME OPERATION OPERANDS
o7 33fsassjas a0]a 2 asfasp7 74

05le slT.EST Flemi FiIx* 217 AL PHA,

A 3-digit decimal number with a value from 000 to 255 may be used to specify an

immediate data item. No field definers are used (F,1).

ACEILINE NAME OPERATION OPERANDS
32 24154 3936 4044 1ja2 asfaej? 74
Q.5]o S]T.EST, LJCM 1 0. 81 , AL PHA, . . N : N

° Conditions of the Indicators

Indicators are tested by the Jump on Condition instructions, The test conditions
of the indicators may be specified in three ways. The condition may be written as
a 2-digit hexadecimal number, a single character, or a 3-digit decimal number.
The methods for coding the test conditions are the same as for immediate data
items (see above). It is recommended that in Jump on Condition instructions, the

X' ' form with two hexadecimal digits be used to specify conditions.

. Input/Output Units and Status
These two operand specification types should be specified with a pair of
hexadecimal digits. The rules for coding these are the same as for the X' ' form

for specifying immediate data items (see above).

. Comments
The programmer may write a comment following the last operand specification., A

comment must be separated from the last operand by a blank. If the user has

H LL:I USER'S GUIDE
W)

Ge-]

-32-

GE-118

placed an asterisk in the operation code, a comment may

begin in column 47.

Comments for one of the examples

used above might be written as shown below to provide

explanation and readability in a program assembly listing.

PAGEILINEY yamE OPERATION OPERANDS b

32 33p 33436 4041 142 asyaelar .

040 slLoor. Elcmi c.’ $.- , FI1ELD TEST FOR A 3§
1,0 CblJE JTHRU, . I, F,_FOUND, THRU, ,
LS 2]aB “JL0.0P . B I.N1 1.F, NOT , I NCRMT,
0 % P B :“ ADDRESS FOR,
2.5 B B S E.ARCH, AND,]
3.0 .U :4L.0.0.P CONT I NUE e
3 5] * N . e
LICH 1= & “* SEGMENT, 2 ** |
« SITHRU FJL oN_E S,I.GNAL, . OPERATOR

T - »_~\\<:H"—_\\H——"——‘\\-—/’—-\\ﬁ==ﬂ”—“\\<

USER'S GUIDE

~33-

Figure A-7:

GE-115 . ASSEMBLER MISTAKE CODES

Code Letter

General Cause

Assembler Action

encountered
blank where

A mistake has been made in the format
F of the operand field specification.

An unexpected configuration has been

by the assembler; e.g. a
a comma should appear.

The statement is marked with an F
on the assembler listing.

The program is not assembled.

Examples of mistakes that are marked with F:

. Data Field Reference

An absolute address is written in more than 4 digits.

An address increment or decrement is written in more than 3 digits.

A character other than + or - appears between a data field name and increment or

decrement,

An immediate data item expressed in the C'

in length.

An immediate data item expressed in the X'

° Length

A left parenthesis is omitted.

notation is more than a single character

' notation is more than 2 digits in length.

An absolute address is written without a length specification.

A length is written for an operand which has an implicit length of 1,

Three digits are used to specify a length which shouid be expressed in 2 digits.

Code Letter

General Cause

Assembler Action

A mistake has been made in the content
of the operand field specification.

The statement is marked with an |
on the assembler listing.

The program is not assembled.

Examples of mistakes that are marked with an I:

° Data Field Reference

A data field name begins with some symbol other than a letter.

A special system sym: 3’

s used in a data name.,

A data field name is expressed in more than 5 letters.

An address increment is written in fewer than 3 digits.

A data item is written where a data name should appear.

A data item expressed
signs.,

in the C' ' notation is written without one of the apostrophe

A data item is written without either C or X notation.

A character other than one of the hexadecimal digits appears in the expression of a

data item in the X' !

° Length

form,

A two digit length is written with a value greater than 16.

A three digit length is written with a value greater than 256.

The right parenthesis is not written after the length specification.

USER'S GUIDE

GE-118

-34-

Figure A-7:. GE-115 ASSEMBLER MISTAKE CODES (cont'd)

Code Letter Geéneral Cause Assembler Action
‘An incorrect length is associated with a data The statement is marked with an L
I- field. ' ’ ' - on the assembler listing.
Assembly continves ,

. Mistakes marked with an L:

The address origin defined on an ORG card is less than the upper limit of the area used
by the system loader.

The program cannot be executed by a system of the size defined on the STRT card.

An implicit length exceeds 16, NOTE: The assembler places a value in the length
field and continues. This value is generated by translation. Therefore, the value
inserted differs according to the configuration of the store.

Code Letter General Cause Assembler Action

The name will appear in a
. : multiple reference table
nstruction . which will be listed

M preceding the object list.

The same name is written for more than one source

The store location assigned to the
first occurence of the name is used
throughout the assembly for all
references.

The name of a field is longer than 5 characters. |[The statement is marked with an N

. . . t bler listing .
The name of a field contains a non~alphanumeric on the assembler listing
character |, The program is not assembled.

The name begins with a non-alphabetic character.

The operation code field is blank . The statement is marked with an O
. . . h bler listing .

The operation code contains some expression on the assem er listing

" |other than one of the gssembly language mnemonic| The program is not assembled .
codes .
When an operation code was encountered for The statement is marked with a P
location assignment, the store assignment counter |on the assembler listing. The

" |was set to an odd octet value, location is rounded up to an even

octet boundary .

The assembly continues.

The program identification on an instruction is The statement is marked with an S
different from the identification on the STRT on the assembler listing .
instruction , .

S The assembly continues .
Page numbers are not in ascending sequence.

| Line numbers are not in ascending sequence .

A name which appears in the operand field of an |The statement is marked with an U
instruction cannot be matched with a name in on the assembler listing.

U the list of named fields .

The operand is assigned a location
of 0000 and an assumed length
of 00, The assembly continves.

@ EDU U5 USER'S GUIDIE

-35-

REFERENCING DATA FIELDS IN THE GE-115.. . ASSEMBLY LANGUAGE
The programmer who has not already programmed using the GE-115 ' Assembly Language should

read this section very carefully. This section explains the relationship between the reference to a

data field in the ' GE-115 Assembly Language and the address translated by the assembler.

Each octef in the store has a unique address. An address ina GE-115 system instruction can
reference any octet individually, giving access for processing or control. The function of

addressing is shown by the following diagram:

Instruction with
an Address

address
designates

er
location

Addressed
Location

In an instruction in the GE-115 System Assembler Language, an operand specification may be
a symbolic name or an actual reference to a particular location.
Specification of operands with symbolic names can be of three types:

1. A name assigned to a field (data or instruction) by the programmer; or,

2. A name (as in 1) modified by a 3-digit decimal increment or decrement; or,

3. An x (signifying the first octet of the instruction in which it appears), modified by a

3-digit decimal increment or decrement.

NOTE: An % must have an increment or decrement; it cannot appear alone,

Symbolic names used as operand specifications are translated into actual addresses at assembly

time. The actual address is the binary address of the particular octet referenced by the operation.

Actual addresses used for operand specification are 4-digit decimal numbers which reference
explicit locations. The assembler converts the decimal address specified by the programmer to its

binary equivalent and inserts this into the object language instruction.

When writing in the GE-115 Assembly Language, the programmer must be aware of the
relationship between a field reference written in a source language instruction statement and the

address which the assembler places in the object language instruction.

@ En U U 5 USER'S GUIDE

-36-

When an instruction is translated by the assembler, the operation mnemonic is translated and
placed in the first octet of the object Iavnguage instruction; the operation complement
(immediate data, lengths, indicator test conditions, peripheral units, etc.) is placed in the
second octet; the address of one operand is placed in the third and fourth octets, and, if there

is a second operand, a second address is placed in the fifth and sixth octets,

Any data field one octet in length can be referenced with the address of the octet it occupies,
When an operand which is one octet in length is referenced by a symbolic name in a source
language instruction statement, the address for the octet is placed in the object language
instruction, In the following example, the field ALPHA (defined elsewhere in the program as a
one octet field) is compared to a dollar sign. The symbolic name used as an operand specifica=

tion is translated into the address of the ALPHA octet.

ASE h’gE NAME PERATION OPERANDS
2 3 4_ 3936 4014 142 A5 46 M7 7
0,1]0.5 o kdeMmi Bdc "8 T L AL PHA , -
1.0 N 3 I3
l 5 1 ¥ v ol A 1 A 1 i N ST
2 0 : . 1 i i 2 . . A L n n 1 A
2 5 :.: L . 3. " 3 4;. 4 N 4 e
™ T T g

Data fields which occupy more than one octet may be thought of as having a left=octet address
and a right-octet address. When a data field which is more than one octet in length is
referenced in an instruction statement, the assembler may place either the left=octet address
or the right-cctet address of the data field in the object language instruction. The address

which is translated for any symbolic name depends upon the operation specified.

When a symbolically named field longer than one octet is referenced as an operand and the
operand can only be one octet in length, the left=octet address of the field is placed in the

object language instruction (the leftmost octet is the one which is operated upon).

467

OPERANDS

74

PERATION
412 49
=4CM |

FQ,,GEI'-mil NAME
32 33J34 3536 40
Iy—ikﬁ/

bjc. . $. ' L AL PHA
>

USER'S GUIDE

GE-119

-37-

If the field ALPHA referenced by the Compare Immediate to Store (CMI) instruction in the
example above is defined as a field of four octets, the assembler places the address of the
leftmost octet of ALPHA in the third and fourth octets of the object language instruction which

is produced,

When a symbolically named field is referenced as an operand and the operand may have a
length greater than one octet, the address placed in the object language instruction depends

upon the orientation of the operation.

Some of the GE-115 system operations which treat variable length fields process data from left

to right. For example, the Move Complete Octets (MVC) begins by moving the leftmost
octet, The MVC operation continues moving octets until the rightmost octet of the specified

field has been moved.

When an operand is to be processed from left to right, the left~octet address of the symbolically

referenced field is placed by the assembler in the object language instruction.

ASE L;}gfl NAME DPERATION OPERANDS
2 394 3936 40f4 102 AS]46 U7 74
0.2o.s fdmv.e FIJALPHA , BETA

[

Some of the GE-115 system operations which treat variable length fields process data from
right to left. For example, the Add Binary (AB) begins addition at the rightmost octet of the
two fields being summed. The operation continues to the left until the summation of the fields

is completed.

When an operand is to be processed from right to left, the right-octet address of the

symbolically referenced field is placed in the object language instruction,

Wherever possible, the programmer should use symbolic names for operand specifications.
When the programmer references fields which have been symbolically named, he does not

have to be concerned with the translation of the addresses of a data field.

@Eﬂ I:I l] 5 USER'S GUIDE

-38-

The assembler builds o table of the names defined in a program. The length of the data field or
instruction which the name references, along with both the left=octet address and the right-octet
address, are contained in this table. The assembier translates a symbolic name to the appropriate

address by using this table.

When an operand is specified with a symbolic name and an increment or decrement, the

increment or decrement is applied to the left~octet or right-octet address translated.,

OPERATION OPERANDS
467 74
Fjc’ $’ ,ALPHA+002 . . s
‘-—-WK/_I/-\

When ALPHA has been defined as a field of four octets, the symbolic reference ALPHA + 002
in the instruction above will cause the assembler to use the address of the third octet in the
ALPHA field, The CMI instruction can reference a one-octet operand; ALPHA becomes the
left-octet address of ALPHA and the address translated for ALPHA + 002 is two octets to the
right of this address.

In the MVQ Instruction the Address of
ALPHf\L—field ALPHA + 003

§ octet | octet | octet | octet | octet | octet | octet j

!

In the CMI Instruction the Address of
ALPHA + 002

When the operaticn proceeds from right to left, increments or decrements with a symbolic
operand specification are applied to the address of the rightmost octet of the data field. Thus,

the symbolic address ALPHA + 003 in the instruction:

OPERANDS

ETA .

74

where ALPHA has been defined as a field of four octets (see diagram above) will cause the
assembler to use the address of the octet three locations to the right of the rightmost octet of
ALPHA,

@] EDU U@ USER'S GUIDE

-39-

The programmer should note that if he uses source language actual addresses to specify operands,
he must be sure that the address specified is the appropriate address according to the orientation
of the operation. It is strongly recommended that the programmer use symbolic field references

rather than specific addresses.

@ ED D [] 5 USER'S GUIDE

-40-

SECTION B

GE-115

ASSEMBLY LANGUAGE

INSTRUCTIONS

GE-118

PART |

PRIMARY INSTRUCTIONS

Primary instructions specify machine-executable operations. Primary instructions are written as

symbolic statements and translated by the GE-115 Assembler, The assembler produces one

machine instruction for each Primary instruction.

Primary instructions are written according to the rules presented in SECTION A, PART II,
"WRITING STATEMENTS IN THE GE-115 ASSEMBLY LANGUAGE", The programmer
should review these rules before using the information presented in this section. He should also
be familiar with the relationship between a Primary instruction and its machine instruction
counterpart (discussed in SECTION A, PART [, "INTERNAL INSTRUCTION FORMAT").

All the Primary instructions of the GE-115 system are described in this section. The
descriptions of the Primary instructions are grouped according to similarities of the operation,

as listed below:

ARITHMETIC = Instructions which perform addition or subtraction on binary or decimal

data fields:
Add Decimal AD
Subtract Decimal SD
Add Binary AB
Subtract Binary SB

DATA MOVEMENT AND COMPARISON - instructions which perform non-arithmetic

manipulations or comparisons of data fields:

Move Immediate Gctet MV |
Move Complete Octets MV C
Move Right ‘Quartets MVQ
Pack Right Quartets into Octets P K

Unpack Octets into Right Quartets UPK
Compare Immediate Octet to Store CM I

Compcre Complete Octets CMC
Compare Right Quartets CcMQ
Search to the Right SR
Search to the Left S L

USER'S GUIDE

GE-119

-43-

LOGIC - Instructions which perform 'and' and 'or' logical operations:

And on Complete Octets NC
Or on Complete Octets ocC
Exclusive Or on Complete Octefs XC

JUMP - Instructions which can be used to interrupt the sequential operation of the program:

EDIT - Instructions which prepare data for system use and output readability:

Jump on Condition JC
Jump if Greater JG
Jump if Equal JE
Jump if Greater or Equal JGE
Jump if Less JL
Jump if Not Equal JNE
Jump if Less or Equal JLE
Jump Unconditional Ju
No Jump NO J
Jump if Switch 1 Set J s
Jump if Switch 2 Set JSs2
Jump and Return JRT

Edit EDT
Translate TR

SYSTEM ACTION = Instructions which do not treat data but allow for manual intervention:

GE-118

Halt System Operation HLT
No Operation NOP?2
Turn Alert Light On LON
Turn Alert Light Off LOFF
Inhibit Single Stop INS
Enable Single Stop ENS

INPUT/OUTPUT - Instructions which execute read/write operations and test the status of

the peripheral units:

Data Transfer PER
Peripheral Status Tests PER
Peripheral Unit Control PER

USER'S GUIDE

—bty-

A uniform format, as shown below, is used to explain each of the Primary instructions, For easy

reference, each instruction is begun on a new page. Whenever an instruction requires more than -

one page for description, the mnemonic appears in the upper outside corner of each page.

Mnemonic
in upper
outside

Figure B-1: A SAMPLE PAGE

Form of the instruction
using this operation
Pl

corner

g

What the
operation
does

(

Indicators

Q

Expanded
Description

of the operation
(if required)

C

Hints for
programming
with this
operation

Q

- CMI

COMPARE IMMEDIATE TO STORE

N

immediofe_’ ALPHA

cmi operand

3 The immediate data item in the CMI instruction is compared to a single octet ALPHA field.

INDICATORS AFFECTED
UF/OF ZE/NZ

- 0 1
1]
1 1

Comparison
ALPHA <immediate data item
ALPHA =immediate data item
ALPHA >immediate data item

NOTES :

Ve

Y The UF/OF and ZE/NZ indicators record the results of the comparison.

Neither the ALPHA field octet nor the immediate data item is affected by the comparison

operation.

PROGRAMMING PRACTICES :

The CMI may be used to verify the configuration of an octet in the store.

/

A Jump on Condition instruction is used to test the result of the comparison.

EXAMPLES:
1) Comparison of an octet in ALPHA with an immediate octet, ALPHA less thon the immediate
octet,
Pacel el wane "[OPERANDS
2 N4 veEe 404 ‘l2 Lh Ol X 74
0.4]0.s et Fjc B’ ,ALPHA m
—
ALPHA IMMEDIATE OCTEY INDICATORS
INSTRUCTION
UF/or ZE/Nz
wo oo | [a[alele] [
0 [
a<®
AFTER OPERATION NOT AFFECTED NOT AFFECTED r<ony

L T —, T T T T]

Mnemonic

Examples
using this

operation

_/

USER'S GUIDE

“45-

In the descriptions of the Primary instructions, certain conventions have been used. These

conventions are explained below.

@ Conventions of notation in the general examples of instruction formats have been used.
These are:
name The use of "name" written in lower case indicates that a name is optional and

where used must follow the rules for naming instructions.

op The use of "op" written in lower case indicates that the operation is any one of

a given set of operation mnemonics.,

ALPHA The symbolic name ALPHA is used to refer to the first of two operands or, where
there is only one operand, the single operand.

Where ALPHA is written, the programmer nay write:

1) a symbolic name, with optional increment or decrement,
2) an asterisk, with a required increment or decrement,

3) an actual address.

BETA The symbolic name BETA is used to refer to the second operand in instructions
requiring two operands. BETA may be written in any of the ways listed above

for ALPHA.,

SIGMA The symbolic name SIGMA is the name of the instruction to which control may

be transferred by a Jump instruction. SIGMA may be written in any of the ways
listed above for ALPHA,

(nn) The use of "n" written in lower case indicates that where the operation may

(nnn) process variable length fields, length is specified with two or three decimal
digits. When a symbolic name is used and the length of the operation is the
length associated with the definition of the name, length need not be specified
in the instruction.

immediate The use of the words "immediate operand" written in lower case indicates that

operand any of the three methods for specifying immediate operands may be used. Refer
to the rules in "WRITING STATEMENTS IN THE GE-115 ASSEMBLY
LANGUAGE", for the three ways in which an immediate data item may be

specified. One of these must be used.

@ EU U U5 | USER'S GUIDE

46~

condition The use of "condition" written in lower case indicates that in the Jump on
Condition (JC) instruction, a condition must be specified. It may be written in

any of the ways in which an immediate data item is written.
U The letter U is used to refer to a peripheral unit. It may be specified in any of
the ways in which an immediate data item is written. The use of the hexa-

decimal notation is recommended.

) Conventions of notation for showing data in store in the EXAMPLES portion of the descriptions

vary according to the type of data being represented.

Data may be represented as characters,

}ABCSQ
I |

or as pairs of hexadecimal digits,

é 51]5 2|5 3|4 8|4 9 §

or in binary form.

0101|0001 O1O1JOO1O O1O1LOO11 0100|1000 O100|1001 é

Where only right quartets are involved, right hexadecimal digits (usually decimal values) are

shown and left quartets are shaded.

@EDU U5 USER'S GUILDE

47 -

(- ARITHMETIC INSTRUCTIONS.

The GE-115 adds and subtracts in both the decimal mode and the binary mode.

All arithmetic operations treat the data fields as unsigned quantities.

Both decimal and binary operations have the following general characteristics :

® Data fields may be from 1 to 16 octets in length. The length of each field is used in the
operation.

® Operation length is governed-by the length of the data field which receives the result. .

® Data fields are referenced at the right ; the data value is assumed positioned to the right
in the field.

) Operation is right to left.

6 The UF/OF (Underflow/Overflow) indicator is set to 1 when a carry is generated out of

the result field. The result replaces the first data field.
© The ZE/NZ (Zero/Non-Zero) indicator records whether the value of the result field

is zero or non-zero at the end of the operation.

Decimal and Binary operations are different in the following characteristics :

Quartets/Octets
e Decimal operations process only the right quartets of the data field.
® Binary operations process full octets.

FORM OF DATA

® Decimal operations are designed for use with decimal quantities and process data as
unsigned quantities to the base 10. No check is made prior to processing to determine
whether the fields to be operated upon do contain decimal configurations in the right

qucrtets.

@ Binary operations are designed for use with binary quantities and are used in the GE-115
Information Processing System primarily for address modification. Binary operations treat

data as unsigned numeric quantities to the base 2.

OVERFLOW AND UNDERFLOW IN ARITHMETIC OPERATIONS

In both modes of addition, it is possible to generate an overflow. When the result field contains
fewer digit places than are required to represent the sum, an overflow (or carry) occurs. The
sum isnot fully représenfed in the result field in such cases and is referred to in the discussions

which follow as being in overflow form.

@ ED l] U5 USER'S_GULDE

-48-

In both modes of subtraction, it is possible to subtract a larger quantity from a smaller. In this
case the opposite of the overflow condition is present. The condition is called underflow.

The difference which occurs when a larger number is subtracted from a smaller is represented in
what is defined as complement form, i.e., represented as subtracted from a power of the base
of the number system being used.

For example, 6 and 4 are mutual complements in the decimal system.

4 10 10
+4 +6 - 6 - 4

10 10 4 6

So, too, are 60 and 40. However, 60 and 40 are expressed as multiples of 10 and require

the square of 10 as a reference value for obtaining the complement.

60 40 100 100

+40 +60 - 60 - 40
100 100 40 60
In the use of the arithmetic operations for the GE-115 the differences which are computed

when a larger quantity is subtracted from a smaller are in complement form. They must be sub-
tracted from the applicable power of the base used in order to obtain the true difference. The
true difference also may be obtained by subtracting an underflow result from a field of zeros

equal in length to the underflow result. For example, to obtain the complement of a result of

40 in a 2 digit field the subtraction appears :

00
- 40

60

Results which cause neither overflow or underflow are referred to in the descriptions of the

arithmetic instructions which follow as being in true form.

USER'S GUIDE

GE-118

-49-

The format of the arithmetic instruction is :

AGEILINE] NAME PERATION OPERANDS

32 33§34 336 4ofa 12 aslschy 74

0,10 .5}n.ame. }do.p AL PHA , BETA . N .
L S =5 8 e — .
15 . s N " PR e N
2,0 X - . P ot) A
2,5 88 —t . N . -

@Ea [] “5 USER'S GUIDE

-50-

AD

ADD DECIMAL AD

AD ALPHA (nn),BETA (nn)

The unsigned sum of the right quartets of the ALPHA field and the right quartets of the BETA field
replaces the right quartets of the ALPHA field. Operation is right to left, through the length of
the ALPHA field (01 = 16 octets).

INDICATORS AFFECTED
UF/OF ZE/NZ

0 0 No overflow; result is zero.

0 1 No overflow; result is non-zero.,

1 0 Overflow; result is zero.

1 1 Overflow;_resulf is non-zero.
NOTES:
' Operation is serial, octet by octet, from right to left, through the ALPHA and BETA fields.
. Operation is terminated when the ALPHA field has been processed. If the fields are of

equal length, all right quartets of BETA are added to all right quartets of ALPHA,
If the length of the BETA field is greater than the length of the ALPHA field, the excess
right quartets in the left of the BETA field do not enter into the addition.
If the length of the BETA field is less than the length of the ALPHA field, zero right
quartets are added to the excess quartets in the left of the ALPHA field.
Whenever the generated sum of two quartets is ten or greater, it is reduced by 10 and a
carry is propagated to the next quartet sum.

. A 1 in the UF/OF indicator at the end of the operation indicates that the ALPHA field is

not long enough to contain the result and a carry out of the sum field has been developed.

. A 0 in the UF/OF indicator at the end of the operation indicates that the sum is contained
in the ALPHA field,
° The ZE/NZ indicator is set to O if the result is zero, and to 1 if the result is non-zero.

@ [E. ° l] ” 5 . USER'S_GUIDE

-51-

AD

. The left quartets in both fields are unaffected by the operation.

° The ALPHA field right quartets are replaced by the sum.

. The BETA field right quartets are unaffected unless some part of the ALPHA field lies

in the BETA field.

The presence of a non-decimal configuration in any right quartet of either field does not

alter the above sequence of operations.

PROGRAMMIN G PRACTICES :

The AD is designed for use with decimal data. No check is made of the configuration of the

right quartets prior to the operation. It is not recommended that the programmer use the AD

operation to process data that is not decimal.

The programmer should define the ALPHA field long enough to contain the sum.

When the relative magnitudes are not known , the UF/OF indicator should be tested by a

Jump on Condition (JC) instruction to determine whether overflow has occurred.

EXAMPLES :

1) Addition without Overflow.

PAGEILINE] NaAME PERATION OPERANDS

32 33134 _ 35136 40 4.(2 45{4647 74

0,105 —F{ap_ F{ALPHALBETA . . ., . . . N
] 0 - .': PR— .:. S— - s .
] 5 PR SRS S :': i — VR SN W S L A 1
2 o —_— 1 A W >l .:' . — n A 1 s 1 " .
2,5 o I B . s . N

P T U Ol T N e S

ALPHA has o defined length of 3 octets.
BETA has a defined length of 3 octets.

BETA

BEFORE OPERATION

AFTER OPERATION

NOT AFFECTED

INDICATORS
UF/0r ZE/Nz

0 1
RESULT
CONTAINED IN
ALPHA

RESULT NON-ZERO

USER'S GUIDE

GE-108

-52-

AD

2) Addition with overflow.

Fﬁ_ﬁiltmfl NAME PERATION OPERANDS
32 3 l; € 40:'(2 ASACIT 74
0.,2j0 5§ | | =JA.D b-JALPHA(O4) ,BETA(03), . L
10 R o A
(5 * - - > — —
2.0) e e R
e S
VWV\

ALPHA BETA
INDICATORS

UF/OF ZE/NZ

BEFORE OPERATION 1 1

OVERFLOW :
RESULT NOT

NOT AFFECTED CONTAINED IN

AFTER OPERATION ALPHA

RESULT NON-ZERO

3) Addition with overflow and zero result.

ﬁg:E mEI NAME PERATION) OPERANDS
2 33343536 40§41 82 4514647 74
|0,3°.5 .~ A D JALPHA SBETA ., ., N
I R 2 N =) . .
l 5 - ‘: . i —_— i . ‘A) .
2.0 | . N X L L X R N
2. 50 5 A 5 L)) L N L

ALPHA has a defined length of 3 octets

BETA has a defined length of 4 octets, but only 3 enter the operation,
because the length of the operation is the length of ALPHA,
ALPHA BETA

AFTER OPERATION

INDICATORS

UF/or ZE/NzZ
i o

RESULT
NOT CONTAINED

NOT AFFECTED IN ALPHA

RESULT IN
ALPHA IS ZERO

When the length of the BETA field is greater than the length of the
ALPHA field the extra digits of the BETA field do not enter into the sum.

@Eaﬂ H@ USER'S_GUIDE

-53-

SD

SUBTRACT DECIMAL $D

SD ALPHA (nn), BETA (nn)

The unsigned difference of the right quartets of the ALPHA field and the right quartets of
the BETA field replaces the right quartets of the ALPHA field. Operation is right to left,
through the length of the ALPHA field (01-16 octets).

INDICATORS AFFECTED
UF/OF ZE/NZ
0 0 Does not occur when decimal values are used.
0 i Underflow - a larger number subtracted from a smaller ;
result is non-zero.
1 0 No underflow ; result is zero.

1 1 No underflow ; result is non-zero.

NOTES :

. Operation is serial, octet by octet, through the ALPHA and BETA fields.

° Operation is terminated when the ALPHA field has been processed. If the fields aie
of equa! length, all right quartets of the BETA field are subtracted from all right
quartets of the ALPHA field
If the length of the BETA field is greater than the length of the ALPHA field, the
excess right quartets in the left of the BETA field do not enter into the subtraction.
If the length of the BETA field is less than the length of the ALPHA field, zero right
quartets are subtracted from the excess right quartets in the left of the ALPHA field.

. Subtraction is performed by addition. The BETA field right quartet bits are inverted
and added to the bits of the ALPHA field right quartets.

The UF/OF indicator is set to 1 prior to the operation to develop a carry into the
first sum.

Whenever a sum which is generated for a quartet exceeds 15 (a full quartet of 1's),
the UF/OF indicator is set to 1 to develop a carry into the next right quartet sum.
When no carry occurs, the sum is increased by 10. No carry is propagated from this
second sum.

° A 1 in the UF/OF indicator at the end of the operation indicates that the difference

is represented in true form in the ALPHA field.

@Euﬂ ”5 USER'S GUIDE

-54-

. A 0 in the UF/OF indicator at the end of the operaticn indicates that the difference is

represented in underflow form in the ALPHA field. (Underflow occurs when a larger number

is subtracted from a smaller number.)

. The ZE/NZ indicator is set to O if the result is zero ; it is set to 1 if the result is non-zero.

° The left quartets in both fields are unaffected by the operation.
° The ALPHA field right quartets are replaced by the difference.

° The BETA field right quartets are unaffected unless some part of the ALPHA field lies in

the BETA field.

° The presence of a non-decimal configuration in any of the right quartets of the operand

fields does not alter the above sequence of operations.

PROGRAMMING PRACTICES

The SD operation is designed for use with decimal data. No check is made of the configuration

of the right quartets prior to the operation. It is not recommended that the programmer use the

SD instruction with data that is not decimal.

When the relative magnitudes of the quantities to be subtracted are not known, the UF/OF

indicator should be interrogated to determine whether underflow has occurred.

When the difference is represented in underflow form a second subtraction is required to compute

the true difference. The underflow result is subtracted from a field of zero. No test is required

after the second subtraction because the result is known.

EXAMPLES :

1) Subtraction of a smaller number from a larger.

FQSEI'-mEl NAME PERATION OPERANDS
s2 3sfs4_agfss a0]a 1}z as|ssher 74
Q1405 3S.D bJALPHA,BETA N " —
1.0 . 5 R . N
l 5 1 Y e .:‘ " :.: 4 ") PRt 4
2 0 1 - e — ' A - "
2 5 i e 1 n) e) 2 s

USER'S GUIDE

-55-

SD

ALPHA has a defined length of 4 octets.
BETA has a defined length of 5 octets, but only 4 are used, because the length of the operation is

determined by the length of the ALPHA field.

BEFORE OPERATION

AFTER OPERATION

NOT AFFECTED

INDICATORS
UF/gr ZE/nNz
1 1
TRUE
DIFFERENCE

IN ALPHA

RESUL T NON-ZERO

When the length of the BETA field is greater than the length of the ALPHA field, the extra digits
in the left of the BETA field do not enter into the operation.

2) Subtraction of a larger number from a smaller.

: 2
%NA“E A, :Enmo‘n £ OPERANDS]
0.2p.° ISD.__ FIALPHA,BETA — —

P L

P S G R |

NNE™
wiciw|o

. +

ALPHA has a defined length of 4 octets.
BETA has a defined length of 5 octets, but only 4 enter the operation, because the length of the

operation is the length of the ALPHA field.

ALPHA

BEFORE OPERATION

AFTER OPERATION

LI

NOT AFFECTED

INDICATORS
UF/oF ZE/Nz

0 1
RESULT
NOT IN TRUE
FORM

RESULT NON-ZERO

USER'S GUIDE

GE-108

SD

3) Subtraction of a result not in true form from a field of zeros to obtain the true difference.

ASEILNE] NaME PERATION OPERANDS

32 33434 336 40j4 12 - A 467 74

Q3jo.51 E4SD pJA L PHA ., BETA — —
1.8 P 5 R . - .
1,5 . 83 . R s M
2,0 I . = - A R . ; .
2,5 5 . s —— . -

N ST e ST

To obtain a true result in this case, the length of the two fields should be equal.

If ALPHA is longer than BETA, the excess digits in the left of the ALPHA field will contain

erroneous values. The-indicators need not be tested in this case, as the result is known.

ALPHA has a defined length of 4 octets.

BETA has a defined length of 4 octets.

BEFORE OPERATION

AFTER OPERATION

Note that a result not in true form may be added to a positive number to produce :

ALPHA

BETA

[1lofe] 7]

(oo]s]s]

NOT AFFECTED

INDICATORS
UF/0r ZE/yNz
0 1
TRUE

DIFFERENCE
OBTAINED

1) a true sum, in which case the UF/OF indicator is 1 after the AD operation,

2) a result not in true form in which case the UF/OF indicator is O after the AD operation
(See Add Decimal).

GE-118

USER'S GUIDE

_57-

S D

4) Subtraction of zero from zero.

AGEJLINE] NaME PERATION OPERANDS
2 3 4_3 6 4004 142 ABf g0 74
0.4]0.5 ::3S.D PJALLLPHA »BETA . —
1.0 | i -)
l 5 . " A i i i S e
2.0 . —t . A .
215 e T WIS R S S WY SHN S R S

ALPHA has a defined length of 7 octets.
BETA has a defined length of § octets.

PHA BETA
AL INDICATORS

|
UF/oE ZE/NZ
1 0

BEFORE OPERATION

RESULT
IN TRUE FORM

AFTER OPERATION NOT AFFECTED

RESULT ZERO

@ ED I] [] 5 USER'S GUIDE

-58-

AB

ADD BINARY ' AB

AB ALPHA (nn),BETA (nn)

The unsigned sum of the octets -of the ALPHA field and octets of the BETA field replaces the
octets of the ALPHA field. Operation is right to left, through the length of the ALPHA field
(01 - 16 octets).

INDICATORS AFFECTED
UF/OF ZE/NZ

0 0 No overflow; result is zero.

0 1 No overflow; result is non-zero.
1 0 Overflow; result is zero.

1 1 Overflow; result is non-zero.

NOTES:
. Operation is serial, octet by octet, from right to left, through the ALPHA and BETA fields.
° Operation is terminated when the ALPHA field has been processed. If the fields are of
equal length, all octets of the BETA field are added to all octets of the ALPHA field.
If the length of the BETA field is greater than the length of the ALPHA field, the excess
octets in the left of the BETA field do not enter into the addition.
If the length of the BETA field is less than the length of the ALPHA field, zero octets are
added to the excess octets in the-left of the ALPHA field.
° The ALPHA field is replaced by the sum.
° The BETA field is unaffected unless some part of the ALPHA field lies in the BETA field.
'S A 1 in the UF/OF indicator at the end of the operation indicates that the ALPHA field is

not long enough to contain the result und a carry out of the sum field has been developed.

° A 0 in the UF/OF indicator at the end of the operation indicates that the sum is contained
in the ALPHA field.
° The ZE/NZ indicator is set to 0 if the result is zero, and to 1 if the result is non-zero.

@ ED [I U 5 USER'S GUIDE

-59-

AB

PROGRAMMING PRACTICES:
Unless the relative magnitudes of the quantities being added are known, the indicator should be
tested to determine whether overflow has occurred. A Jump on Condition (JC) instruction is used

to test the indicators.

The AB may be used to perform address modification. Care must be taken to avoid generating an
address outside store limits. Addresses use the rightmost 13 bits of the 16 bits in the 2 octet
address field of an instruction. The bits to the left can be affected by an overflow without an
indication of overflow out of the octet.being processed. When an address is used by the GE-
115 system, the leftmost three bits of the address are not used. Thus, a value of 4096 in a store
of 4096 positions references location 0. This is a valid reference and there is no immediate

indication of error. Program results are unpredictable in such cases.

EXAMPLES:

1) Binary addition without overflow.

AGE h'jEI NAME J trenmon i OPERANDS
32_3 4 3 6 4004 1|42 ASR 467 74
O.1}0 .5 . ={A.B b JALPHA, BETA(02) . R
) D 5) = - . R
15 N = 88 e N
2 0 - : T TR S S Y Y — A A L ") I " e
2 5 e s e + e I A 3 TR —_— TR . i + A,
i\<:""‘\‘=*”—‘\\tt—’—-\~==”——\N<

ALPHA has a defined length of three octets.
BETA has a defined length of three octets, but only two are used.

BETA
ALPHA INDICATORS

UF/or ZE/nz

e I % COa 00 S A

RESULT

CONTAINED IN
AFTER OPERATION mmm NOT AFFECTED ALFHA

RESULT NON-ZERO

@E” l] U5 USER'S GUIDE

-60-

AB

2) Binary addition with overflow and zero result.

PAGE Lhﬂ NAME DPERATION OPERANDS
32 3334 23936 40ja1 42 4514687 74
0,2{0,5 .. FHAB blALLPHA, BETA(,02,) . s
1.0 A 3 . - —
1.5 .k I j e) ,
2.0 \ - o . ‘ . . .
2,5 B 28 . s A .
o —— — e

ALPHA has a defined length of 3 octets,
BETA has a defined length of three octets, but only two are used.

INDICATORS

UF/or ZE/Nz

ALPHA BETA
1 0
OVERFLOW :

BEFORE OPERATION m
RESULT NOT
CONTAINED IN
AFTER OPERATION NOT AFFECTED ALPHA

RESULT FIELD

1S ZERO
3) Address modification.
AGE ‘-;,N:j_ NAME PERATION OPERANDS
32 3 4 _ 3936 4084182 45] 467 7 4
03fos {aB__ FlINSTR(02),PLUS3 . .
) I = .
vs N . .
2.0 . il 55 . .
2.5] o
~

INSTR is an AD instruction of 6 octets referencing 2 data fields. It is desired to modify the
address specified for the BETA field of INSTR, in order to execute it again referencing the
modified address, to sum the elements of field BETA, BETA is made up of 50 three-digit decimal
numbers stored sequentially in the field.

PLUS 3 is a defined constant with a length of 1 octet, having the hexadecimal value 03.

INSTR PLUS 3 INDICATORS

Oé) Field Alsha Beta
Co tleng’hs Ad ress” Address UF/gr ZE/yNz

olr el o

NO OVERFLOW :
RESULT

CONTAINED IN
4{0 A[O 1 NOT AFFECTED ALPHA
i e

RESULT NON-ZERO

s e 2o

BEFORE OPERATION f EE‘

AFTER OPERATION {

@ED ” I:I 5 : . USER'S GUIDE

-61-

SB

SUBTRACT BINARY SB

SB ALPHA (nn),BETA (nn)

The unsigned difference of the octets of the ALPHA field and the octets of the BETA field replaces
the octets of the ALPHA field. Operation is right to left, octet by octet, through the length of
the ALPHA field (01 -~ 16 octets).

INDICATORS AFFECTED

UF/OF ZE/NZ

0 1 Underflow; result is non-zero.
1 0 No underflow; result is zero.
1 1 No underflow; result is non-zero.

NOTES:

Operation is»sericl, octet by octet, from right to left through the ALPHA and BETA fields.
Operation is terminated when the ALPHA field has been processed.

If the fields are of equal length, all octets of the BETA field are subtracted from all octets
of the ALPHA field.

If the length of the BETA field is greater than the length of the ALPHA field, the excess
octets in the left of the BETA field do not enter into the subtraction.

If the length of the BETA field is less than the length of the ALPHA field, zero octets are
subtracted from the excess octets in the left of the ALPHA field.

The ALPHA field is replaced by the difference.

The BETA field is unaffected unless some part of the ALPHA field lies in the BETA field.
Subtraction is carried out by the addition of the complement of the BETA field octet to the
ALPHA field octet. '

The UF/OF indicator is set to 1 prior to the first addition to develop a carry into the first sum.
A 1 in the UF/OF indicator at the end of the operation indicates that the difference is
represented in the ALPHA field in true form,

A 0 in the UF/OF indicator at the end of the operation indicates that the difference is
represented in the ALPHA field in underflow form.

The ZE/NZ indicator is set to O if the result is zero and to 1 if the result is non-zero.

@ Eu U ﬂ 5 USER'S GUIDE

-62-

SB

PROGRAMMING PRACTICES:

Unless the relative magnitudes of the quantities being subtracted are known, the indicator should
be tested to determine whether underflow has occurred. When underflow has occurred o second
subtraction is necessary to recover the true difference. The complemented difference in the
ALPHA field must be subtracted from a field of equal length and zero value. No test is
necessary after the second subtraction because the result is known. A Jump on Condition (JC)
instruction is used to test the indicators,

The SB may be used to perform address modification. Care must be taken to avoid generating an
address outside store limits. Addresses use the rightmost 13 bits of the 16 bits in the 2-octet
address field of an instruction. The bits to the left of the 13 used can be affected by an
underflow. When an address is used by the GE-115 system, the leftmost three bits of the
address are not used. Thus, a value of 4096 in a store of 4096 positions references location O.
‘This is a valid reference and there is no immediate indication of error. Program results are

unpredictable in such cases. ,

EXAMPLES:

1) Subtraction of a smaller number from a larger.

ASEI-INE] Name OPERATION OPERANDS
32 3334 3536 40f4 142 4504647 74
01]o s 7{s.B JA LLPHA (O3) BETA(D3), —
1.0 3] I .
l 5 ..: i I A M1
20 . B . : . R . N P
2.5 58 : . N .
ALPHA BETA
- INDICATORS
UF/or ZE/nz
BEFORE OPERATION m 76 1 1
- .TRUE
DIFFERENCE IN
AFTER OPERATION | mmm NOT AFFECTED ALPHA
L RESULT NON-ZERO

@Enﬂ Ugj USER'S GUIDE

-63-

SB

2) Subtraction of a larger number from a smaller.

AGEILINER NaME EPERATION OPERANDS
32 33fs4_agss aofarkz asjash7 74}
L2°§ fsB__ FJALPHA{O3), BETA(O3]. .
1.0
3] I A 55 I . ‘ T o
20 . . . -:~ T o o
2.5 ‘ 0 — — _ ‘

ALPHA BETA
INDICATORS

UF/oF ZE/nz

et I el
: 0 1

RESULT IN

- UNDERFLOW
AFTER OPERATION 9 A NOT AFFECTED FORM

RESULT NON-ZERO

3) Subtraction of a result in underflow form from a field of zeros to obtain a true difference.

ASE LLN_E;!I. NAME DPERATION OPERANDS _
32 33[34 3936 40 ‘4.!‘2 458467 7 4
EE%S . 14sB_ FJALPHA(031,BETA03) .

1.0 XN s

15

2.0

25

“LPHA BETA

INDICATORS

UF/gr ZE/NzZ

BEFORE OPERATION mmm mm
0 i
INDICATOR
AFTER OPERATION mmm NOT AFFECTED RESULT KNOWN

USER'S GUIDE

GE-118

64~

DATA MOVEMENT AND COMPARISON INSTRUCTIONS

The GE-115 Information Processing System performs two types of data manipulation

operations. The operations performed are data movement and comparison.

All data movement operations have the following general characteristics:

. ltems from one data field are moved into another. ’

° The configuration of the field is ignored for the purpose of movement; all moves operate
on any valid store configuration.

) The first data field is replaced by the second.

All comparison operations have the following general characteristics:

e Data items from two fields are compared.

. The results of the comparison are recorded in the indicators. The Search to the Right and
the Search to the Left instructions use only the ZE/NZ to record results. The remaining
comparisons use both the UF/OF and the ZE/NZ indicators.

. The compared fields are not altered by the comparison.

The operations described in this section treat data fields under one of the three following

specifications:

Full octets in both fields.,
Right quartets in both fields4

Full octets in one field, right quartets in the other.

Operations which process octets have the following general characteristics:

. Data fields may be from 1 to 256 octets in length. A single length is used; this is the
length of the first data field.

. Operation length is governed by the length of the first data field referenced.

° Data fields are referenced at the left; operation is left to right. There is a single

exception to this rule - the SL (Search to the Left).

@Eu U n5 USER'S GUIDE

-65-

The formats of the octet data movement and comparison instructions are :

H

AGE|LINET NaMe PERATION OPERANDS
32 33134 3936 40)4 142 45]4647 74

0110, 5{n.ame, }:1o.p pJALPHA(nnn) > BETA
1.0 S . ——
1.5 3 B8

.

1 . PR

PASE LmE NAME PERATION OPERANDS
32 3313 35§36 40]4 142 4514687

74
0,210 5In,am,e, [:Jo.p k] [immediate }
1ol kT BT operand , ALPHA
15 o 88 L e . ,
L~ N T T T SN

Operations which treat only right quartets have the following general characteristics :
° Data fields may be from 1 to 16 octets in length. The length of each data field is used.
. The length of the operation is governed by the length of the first data field referenced. .

. Data fields are referenced at the right ; operation is right to left.

The format of the right quartet data movement and comparison instructions is :

PAGEILINED NAME PPERATION OPERANDS

32 33134 3536 40]4 112 45146187 74

03}0.5In.ame, fdo.p e JALPHA(n,n) »BETAI(nA)
1.0 S . .

V5| 13t I B :

s

(3]

e P —

"—*~‘_,—"*~\u_——"-“-—"‘-_,——';*~

Two special purpose data movement operations treat the data as octets in one field and as right
quartets in the other. These operations condense or expand data in the store.

These operations have the following general characteristics :

° A single length is used. This is the length of the field treated as full octets.

° The length of the operation is governed by the length of the data field which is treated in
octet units.

° Data fields are referenced at the left.

. The first data field is replaced by the result.

The format of the octet/quartet data movement and comparison instructions is :

PﬁsEltm‘Ez[NAME PERATION OPERANDS
32 3 4 3536 4084 182 458467 74
0.4]9.5|n.ame. [lop - IALPHA(nnn).,BETA . B | . .

1.0 B3 o))

15 s 88) L

@ED U U 5 USER'S GUIDE

-66-

MV

MOVE IMMEDIATE OCTET TO STORE MVI
MVI mmediafe,ALPHA
operand

The immediate data item in the MV! instruction is placed in the store. A single octet ALPHA
field is replaced by the data item.

INDICATORS AFFECTED

none

PROGRAMMING PRACTICE:

The MVI may be used in conjunction with the Move Complete Octets (MVC) instruction for

a character fill, To accomplish this, the programmer writes an MVI to insert the fill character
into the leftmost octet of the field he wishes to fill. He then follows the MV with an MVC
which treats the field as a pair of overlapping fields. (See the MVC, page 69).

EXAMPLES:

1) Movement of a graphic character to store.

ATEILINEY Name OPERATION OPERANDS
32 33134 3 36 40]4 1}42 AS] 46 M7 74
O1fo sP NSERfFMV. T _Flc” §”7 _ ALPHA, . NN
vof ke B - . . .
‘ 5 n n ‘\ i - 1 1 L
2,0 N R N s .
2 5 4. A 1 1 1. e i) i
ALPHA INSER
INDICATORS
UF/0F ZE/nz
BEFORE OPERATION | o I 2
.)
AFTER OPERATION I $1 211 | 6 | . |5 (;] NOT AFFECTED NOT AFFECTED
A 1 1 1 1 A 1

@ E° [I ﬂ5 USER'S GUIDE

-67 -

MVI

2) A hexadecimal value moved to an instruction complement.

AGE Lhuq' NAME l_EPERATION OPERANDS

2 33134 3WI6 4034 142 4B AT . 74

0.2lo siMo V. IMEEIMV 1 FIX" 00" [TEST1.+001, ., | :
108 N 55 S . . N . .
7 N 2 IR B8) . e
2olTEsTAEsC EiX" 207 S 1GMA | TN
2.5] . o 58 . L . . e

e T T T S NG

TEST 1 is an instruction and has a length of 4 octets.

TEST 1 MOVIM INDICATORS

UF/or ZE/nz
swore oaren | [
AFTER OPERATION 2 3 NOT AFFECTED NOT AFFECTED

@Eu U ﬂ5 USER'S GUIDE

-68-

MVC

MOVE COMPLETE OCTETS MVC

MVC ALPHA (nnn),BETA

Full octets from the BETA field are placed in the ALPHA field. Movement is left to right through
the common length of the fields (001-256 octets).

INDICATORS AFFECTED

none

NOTES :

'y Operation is serial, octet by octet, from left to right through the ALPHA and BETA fields.
° The BETA field replaces the ALPHA field.

. BETA field octets are unaffected unless some part of the ALPHA field lies in the BETA field.

PROGRAMMING PRACTICES :

The MVC may be used to assemble a data field for output.

A field may be filled with a single character configuration by the use of the MVC. To accomplish
this the programmer defines the ALPHA and BETA fields as overlapping. The ALPHA field begins
in the octet to the immediate right of the first BETA octet.

EXAMPLES :

1) Data movement from one field to another.

AGEL' NAME PERATION OPERANDS
323 43 6 4182 454467 7 4
0105 Mvc AL PHA+001(002) ,BETA .

T T ™. T T T N

@ EE‘ [I [I 5 USER'S GUIDE

-69-

"MVC

ALPHA has o defined length of 3 octets ; 2 octets are replaced.

ALPHA BETA

INDICATORS

UF/0p ZE/Nz
BEFORE OPERATION $ ° nn
AFTER OPERATION nﬂ NOT AFFECTED NOT AFFECTED

2) The use of the MVC instruction for a numeric character fill ; in this case, setting a field to

decimal zeros.

Fﬁ?EIL;}jE NAME “.FPERATION OPERANDS
32 33134 3536 40]4 182 4514647 7 4
o205, Myl BiIx” 407 AL PHA PRESET .ZERO. |
o] . Edmvee kAL PHA+001.(005) , AL PHA
T T T e T T
ALPHA is a 6 octet field.
ALPHA IMMEDIATE OCTET
INDICATORS
UF/or ZE/nz
BEFORE OPERATION l59|51‘4 ZlSALF F}4 Sl
AFTER MVI |4 0’5 1 !4 2[5 AIF F l4 5| NOT AFFECTED

NOT AFFECTED

AFTER MVC ‘4 (o]0 0i40i40i4 0|4 [0} NOT AFFECTED
i 1 1 i 1 L

@] EUH U5 » USER'S GUIDE

-70-

MVQ

MOVE RIGHT QUARTETS MVQ

MVQ ALPHA (nn), BETA

Right quartets from the BETA field are placed in right quartets of the ALPHA field. Movement is
right to left through the length of the ALPHA field (01-16 octets),

INDICATORS AFFECTED

UF/OF ZE/NZ
0 0 The ALPHA result field contains zero in all right quartets.
0 1 At least one right quartet in the ALPHA field is non-zero.

NOTES:

Operation is serial, quartet by quartet, from right to left through the ALPHA and BETA

fields.
Only the right quartets of the fields are processed. Left quartets in both fields are

unaffected.

The operation is terminated when the ALPHA field has been processed.

If the fields are of equal length, all right quartets of the ALPHA field are replaced by all
right quartets from the BETA field.

If the length of the BETA field is greater than the length of the ALPHA field, the right
quartets of the ALPHA field are all replaced. Excess right quartets in the left of the BETA

field are not moved.

If the length of the BETA field is less than the length of the ALPHA field, the excess right
quartets in the left of the ALPHA field are replaced with zercs.

The BETA field right quartets are unaffected unless some part of the ALPHA field lies in
the BETA field.

The UF/OF indicator is set to zero prior to the MVQ operation and is unaffected by the
operation.

The ZE/NZ indicator records the presence of an all-zero or a non-zero result in the

ALPHA field.

@ ED H ﬂ 5 USER'S GUIDE

71~

MVQ

PRO GRAMMING PRACTICES:

The MVQ may be used to place zeros in the right quartets of a field used for decimal operations,
To accomplish this the programmer may use a single octet BETA field with a right quartet of zero.
The length of the ALPHA field governs the length of the operation. The single quartet is moved
from the BETA field to the ALPHA field and the remaining ALPHA field right quartets are zero
filled.

If the MVQ follows an instruction which records a result in the UF/OF indicator, the setting should
be tested or saved prior to the MVQ. (See the Jump on Condition, JC, instruction on page 97 for

a method of saving indicator settings for subsequent test).

A field may be checked for zero when it is moved by means of the MVQ. To accomplish this the

programmer tests the ZE/NZ indicator with a Jump on Condition instruction.

EXAMPLES:
1) Use of the MVQ to move data to a field with the desired left quartet configurations,

QPERANDS
b7 74

JAL. PHA, BETA . . . N

ALPHA has a defined length of 5 octets,
BETA has a defined length of 3 octets,
ALPHA field right quartets not filled from the BETA field are filled with right quartets zeros,.

PH BETA
ALPHA INDICATORS

UF/gr ZE/N2

BEFORE OPERATION

0 1

AFTER OPERATION NOT AFFECTED

@ ED n U5 USER'S GUIDE

-72-

MYQ

2) A field used for decimal operations may be reset to zero between operations by means of the
MVQ to transmit right quartet zeros. To accomplish this the programmer uses a single octet BETA
field, The right quartet of the BETA field octet must be zero.

OPERANDS
4617 74

FJAL PHA, BETA-.002 (0.1,

I~ N~

ALPHA has a defined length of 5 octets,

ALPHA BETA
INDICATORS
AOBIRaN cosscomm ot UF/oFr ZE/nz
BEFORE OPERATION }§3‘33A[:48 -5’8}2}{9]
S e, o os. *e%]

0 0

AFTER OPERATION

NOT AFFECTED

@EUU ﬂ 5 USER'S GUIDE

-73-

PK

PACK RIGHT QUARTETS INTO OCTETS : PK

PK ALPHA (nnn), BETA

Right quartets of two BETA field octets are packed info a single octet in the ALPHA field. Packing
is left to right in both fields through the length of the ALPHA field (001-256 octets).

INDICATORS AFFECTED

none
NOTES:
° Operation is serial, from left to right, through the ALPHA field.
. Two right quartets of the BETA field are packed into each octet in the ALPHA field as shown
below.
9
. The result replaces the octets of the ALPHA field.
. The left quartets of the BETA field are not moved,

) The BETA field is not zifz:ted unless some part of the ALPHA field lies in the BETA field.

PROGRAMMING PRACTICE:

The PK operation may be used to condense data in the store after input and prior to output or
arithmetic use. This enables the programmer to economize the use of the store by halving the length
of the field that is retained. The Unpack (UPK) instruction is used to recreate the field for its

intended use.

@Ea U |]5 . USER'S GUIDE

.

PK

EXAMPLES ;
1) Decimal data packed-for retention in store.

ﬁ?ELhﬂ NAME | [pPERATION OPERANDS
32 3 4 3 36 4004 1|42 AB)46 M7 74
01]0s ELK ' JALPHA (004, BETA | .
ALPHA BETA
INDICATORS
UF/gF ZE/Nz
P1P9P1P2P3P4P844

P1Pﬂ@ﬂ54

e

BEFORE OPERATION
NOT AFFECTED

AFTER OPERATION mm NOT AFFECTED

2) The use of the PK instruction to condense an input record.
If the left quartet values are known, it is possible to pack non decimal data and reconstruct it

later. In the following example, it is assumed that the programmer knows that the first four

BETA characters are letters between A and | and that the last four are decimal digits.

AGE Lh’;‘; NAME I bPERATION L OPERANDS
2 3 4 3 6 4014 142 45146 M7 74
020 s 188 f‘fALPHA(OO4)rBETA . RN
ALPHA BETA
INDICATORS
A_F_E 1 6 3 2 8 UF/or ZE/Ngz
BEFORE OPERATION ‘5 Ors 0{5 o]s 0] l;is 6]5 SE 9]4 6J4 3‘4 2'4 gl
1 e i 1 Il i i 1 - 1 1 1
Known to be alphabetic Known to be numeric
AFTER OPERATION mmmm NOT AFFECTED NOT AFFECTED

USER'S GUIDE

BE-005

UPK

UNPACK OCTETS INTO RIGHT QUARTETS UPK

UPK ALPHA (nnn),BETA

Octets from the BETA field are unpacked into the right quartets of two octets in the ALPHA field.
Unpacking is left to right in both fields, through the length of the BETA field (001-256 octets).

INDICATORS AFFECTED

none

NOTES :
'y Operation is serial, from left to right, through the BETA field.
P Each octet of the BETA field {s unpacked into two right quartets in the ALPHA field as

shown below.

12355|5

° The operation is terminated when the BETA field has been unpacked.
° The right quartets of the ALPHA field are replaced by the result.

. The left quartets of the ALPHA field do not enter into the operation unless some part of the
ALPHA field lies in the BETA field. '
° The BETA field is not affected unless some part of the ALPHA field lies in the BETA field.

PROGRAMMING PRACTICE :

The UPK is used to recreate a field which has been condensed for retention in store. If the data is

unpacked for output, the unpacking should be done into a field which has been preset with the

required left quartet configuration.When data is unpacked into a work area for use with operations

@ [E':' I] I] 5 . USER'S GUIDE

-76-

UPK

which do not utilize the left quartet no presetting is necessary.

Note : The operation is governed by the length of the BETA field, but the length is written with
the ALPHA field operand specification.

EXAMPLE :

Data unpacked from a save area into a field preset for decimal output.

OPERANDS

ALPHA BETA
INDICATORS
UF/of ZE/N2
BEFORE OPERATION f [4 0‘4 8|4 Cl4 514 2[4 IH m
AFTER OPERATION ﬂ4 7I4 2]4 3{4 4{4 sl4 QB NOT AFFECTED NOT AFFECTED

@EU” U5 USER'S GUIDE

-77-

CMI

COMPARE IMMEDIATE TO STORE CMI

CMI immediate , ALPHA
operand

The immediate data item in the CMI instruction is compared to a single octet ALPHA field.

INDICATORS AFFECTED

UF/OF ZE/NZ Comparison
0 1 ALPHA<immediate data item
1 0 ALPHA=immediate data item
1 1 ALPHA> immediate data item
NOTES :
) Neither the ALPHA field octet nor the immediate data item is affected by the comparison
operation.

° The UF/OF and ZE/NZ indicators record the results of the comparison.

PROGRAMMING PRACTICES :

The CMI may be used to verify the configuration of an octet in the store.

A Jump on Condition instruction is used to test the result of the comparison.

EXAMPLES:

1) Comparison of an octet in ALPHA with an immediate octet, ALPHA less than the immediate
octet.

PERATION OPERANDS
4 142 4sfa67 74
cjCm 1 Eic” B’ L ALPHA | . -
NN, T T ST N

. ALPHA IMMEDIATE OCTET
INDICATORS
INSTRUCTION
UF/oF ZE/nz
oo | [a]e]cle) [Le R
0 1
AFTER OPERATION NOT AFFECTED NOT AFFECTED A < B
ngn < 1S

@ED I] l] 5 ‘ ' USER'S GUIDE

-78-

2) Comparison of an octet in ALPHA with an immediate octet, octets equal.

CMI

OPERANDS

)
ASEILINE] NaME PERATION|
2 s3kss sdbe 40)a 12 asjashy
M:.:C' B -

ALPHA

,ALPHA$00.]

IMMEDIATE OCTET

BEFORE OPERATION

AFTER OPERATION

(alsfclol e Bl

NOT AFFECTED

NOT AFFECTED

INDICATORS

UF/or ZE/Nz

3) Comparison of an octet in ALPHA with an immediate octet, ALPHA greater than the immediate

octet.

OPERANDS

74

ALPHA+00?2

ASEILINE] NaME PERATION

2 3 4 3 6 4034182 45) 4687
0.3Jo,s . em Flc "’
M .

ALPHA

IMMEDIATE OCTET

BEFORE OPERATION

AFTER OPERATION

[alefc]o]

NOT AFFECTED

NOT AFFECTED

GIEQINIES

INDICATORS

UF/OF ZE/NzZ

USER'S GUIDE

-79-

cCMC

COMPARE COMPLETE OCTETS CMC

CMC ALPHA (nnn), BETA
Full octets of the ALPHA field are compared to full octets of the BETA field. Comparison is from

left to right, through the common length of the fields (001~256 octets).

INDICATORS AFFECTED
UF/OF ZE/NZ Comparison

0 1 ALPHA <BETA
1 0 ALPHA =BETA
1 1 ALPHA > BETA

NOTES

. Operation is serial, octet by octet, from left to right through the ALPHA and BETA fields.

° The operation is terminated by the recognition of the first inequality. If the contents of the
fields are equal, the comparison continues through the common length of the ALPHA and
BETA fields.

) The ALPHA and BETA fields are unaffected by the comparison operation.

° The UF/OF and ZE/NZ indicators record the result of the comparison.

PROGRAMMING PRATICES :

The CMC may be used as an alternate to the CMQ for comparing fields of equal length in which
the left quartets are known to be equal and the right quartets determine the difference. Unless the
contents of the compared fields are identical, processing is confined to fewer octets when the C MC

is used rather than the CMQ thus giving a faster operation.

A Jump on Condition instruction is used to test the result of the comparison.

@ [En U U5 | USER'S GUIDE

-80~

EXAMPLES :

1) Comparison of two fields, the first less than the second.

cMC

OPERANDS

ALPHA has a defined length of 6 octets:

BETA has a defined length of 2 octets, but the defined length of BETA is mot used in the operation
Operation terminates when the first inequality is encountered.

ALPHA

BETA

BEFORE OPERATION

AFTER OPERATION

-

| 18.2]5,2|5.°

s 7aale1]] ([o 2o 2]ns

57|asla1] |

NOT AFFECTED

NOT AFFECTED

INDICATORS
UF/or ZE/Nz
0 1

ALPHA < BETA

2) Comparison of two equal fields.

PERATION
412 45 46

OPERANDS

7
Zemc FlALPHA,BETA

74

ASEILINEL NAME
32 3 ‘3_ 8 40,
0,205

= N

N T T N N

ALPHA has a defined length of 4 octets.

ALPHA

BETA

BEFORE OPERATION

AFTER OPERATION

BRRR

Yzln]v]o]

NOT AFFECTED

NOT AFFECTED

GE-118

INDICATORS
UF/0r ZE/Nz
1 0

ALPHA = BETA

USER'S GUIDE

-81-

CMC

3) Comparison of two fields, the first greater than the second.

OPERATION
b2 4514687

OPERANDS

74)

CMC, PFIJALPHABETA

ASEILINEL NaAME
32 3 4 3536 40]4a1
0.3Jo.s| , | 8

\/’—W\N\

ALPHA has a defined length of 32 octets, but operation is terminated when the first inequality is

encountetred.

The defined length of BETA is not used in the operation.

ALPHA

BETA

BEFORE OPERATION

AFTER OPERATION

NOT AFFECTED

—

| Bl

NOT AFFECTED

INDICATORS

UF/0r ZE/Nz

1 1

ALPHA BETA

USER'S GUIDE

GE-009

-82-

cCMQ

COMPARE RIGHT QUARTETS cMQ

CMQ ALPHA (nn), BETA (nn)

Right quartets of the ALPHA field are compared to right quartets of the BETA field. Comparison
is right to left, through the length of the ALPHA field (01 - 16 octets).

INDICATORS AFFECTED
' UF/OF ZE/NZ Compared Fields

0 1 ALPHA < BETA

1 0 ALPHA = BETA

1 1 ALPHA > BETA
NOTES:
. Operation is serial, quartet by quartet, from right to left.
° Only the right quartets of the fields are processed.

If the fields are of equal length, all quartets in both fields are compared.
If the length of the BETA field is greater than the length of the ALPHA field, the excess
quartets in the left of the BETA field do not enter the comparison.
If the length of the BETA field is less than the length of the ALPHA field, the excess
quartets in the left of the ALPHA field are compared to zero quartets,

e The ALPHA and BETA fields are unaffected by the comparison operation.

° The UF/OF and ZE/NZ indicators record the result of the comparison.

PRO GRAMMING PRACTICES:

The CMQ may be used to compare fields in which only the right quartets are meaningful at the

time of comparison. For example, data unpacked into a work area in which left quartet values
are not the same, can be compared with the CMQ opercfion; The programmer should be certain

that no mistakes are caused by treating the data as right quartets only.

A Jump on Condition (JC) instruction is used to test the result of the comparison.

@ En [I U 5 USER'S GUIDE

-83-

cCMQ

Note : The CMC operation (see page 80) may be a more efficient operation for comparison

than the CMQ if the left quartets of the fields to be compared are the same.

EXAMPLES :
1) Comparison of right quartets in two data fields

Q,GE'-;‘EEI NAME | FPERATION OPERANDS
32 3 4 3 36 4041 M2 450467 74
Io,1|o,5 -jcma PkilaALPHA (O4).»BETA .

ALPHA has a defined length of 5 octets, but 4 are specified.

BETA has a defined length of 4 octets.

ALPHA BETA
INDICATORS

REE
0 1

ALPHA < BETA

BEFORE OPERATION

AFTER OPERATION NOT AFFECTED NOT AFFECTED

2) Comparison of right quartets in two data fields

ASEILINE] NaME | [pPERATION OPERANDS
32 33034 3536 a0j4a1ja2 asfacpu7 i} 74
0,2}0 .5 ~JICMQ FIAL PHA »BETA . X Gy

’

ALPHA has a defined length of 5 octets.

BETA has a defined length of 7 octets, but only 5 enter the operation,
because the operative length is the length of the ALPHA field.

LPH BETA
A A INDICATORS

UF/oF ZE/Nz

BEFORE OPERATION

1 0

AFTER OPERATION NOT AFFECTED NOT AFFECTED ALPHA = BETA (05)

USER'S GUIDE

GE-105

SR

SEARCH TO THE RIGHT SR

SR ALPHA (nnn), BETA

The ALPHA field is searched for an octet equal to the single BETA field octet. Search is from
left to right through the ALPHA field (001 - 256 octets).

INDICATORS AFFECTED
UF/OF ZE/NZ Search Result

1 0 Search Failed
1 1 Match Found

NOTES:
. Operation is serial, octet by octet, from left to right in the ALPHA field. The BETA field

is a single octet.

. The operaticn is terminated when the BETA field data item has been found in the ALPHA
field,
If the BETA field item is not present in the ALPHA field, the operation is terminated when
all the ALPHA field octets have been examined.

° When the search is terminated, LOC (store octets 0254~0255) contains the location of the
octet to the immediate right of the last ALPHA octet examined. ‘
If the BETA field item was found in the ALPHA field, the store location in LOC is that of
the octet to the right of the matched data item.
If the BETA field item was not found in the ALPHA field, the store location in LOC is that
of the octet to the right of the last ALPHA field octet examined, i.e., the location of the
octet to the immediate right of the last octet in the ALPHA field.

] The UF/OF indicator is preset to 1 by the SR and is not affected by the operation.

) The ZE/NZ indicator records the result of the search.

PROGRAMMING PRACTICES: '
The ZE/NZ indicator must be interrogated by a Jump on Condition instruction to test the result

of the search.

USER'S GUIDE

BE-(5

SR

The address in LOC must be decremented by 1 to reference a matched item in the ALPHA field.

When the SR operation follows an operation which sets the UF/OF indicator and the setting is used
by the program, the programmer should use or save the UF/OF setting prior to the SR (See the Jump

on Condition on page 97 for a method of saving indicator settings for a subsequent test).

EXAMPLES:

1) Search, character found.

ASEI-INE NAME OPERATION OPERANDS
32 3 L3 3 6 40j4 142 4314647 . 74
(O] LI ~u . kISR AL PHALOO4) , BETA | .
o P . RR . e .
' 5 . ':. ok : n) S 1 L
2,0 R 2 4. N L .
2,5 - - . S N S N R
AR & t
ST TN T T e e

The character sought is the letter C.

ALPHA BETA

INDICATORS
UF/or ZE/N2
BEFORE OPERATION “nn
1 1

AFTER OPERATION NOT AFFECTED NOT AFFECTED CHARACTER FOUND

After the operation LOC contains the address of the ALPHA octet to the immediate right of the

matching character (location of D).

@',ED l] u5 USER'S GUIDE

-86-

SR

2) Search, character not found

AGE gfil NAME PERATION OPERANDS
33§34 _3436 40]4 the2 asjasu7 74
lo.z 0.5 l‘-;-’ SR FJALPHA,BETA+001, . . . | —
1 o] . N 52 N 8 : . \
1.5] 5 I 88 . .] N
2.0 N "
2.5] e

ALPHA has o defined length of 7 octets

The character sought is an asterisk (%)

ALPHA BETA
INDICATORS
UF/oF ZE/Nz
BEFORE OPERATION [X 0 I 1 l 5] / [(o L(E I nn
1 0
AFTER OPERATION NOT AFFECTED NOT AFFECTED CHARACTER
NOT FOUND

After the operation LOC contains the address of the octet to the right of the rightmost octet in
ALPHA

@Eu [] Ugj USER'S GUIDE

-87-

SL

SEARCH TO THE LEFT SL

SL ALPHA (nnn), BETA

The ALPHA field is searched for an octet equal to the single BETA field octet, Search is from
right to Igft through the ALPHA fielld (001 - 256 octets).

INDICATORS AFFECTED

UF/OF ZE/NZ Search Result
1 0 Search Failed
1 1 Match Found
NOTES:
. Operation is serial, octet by octet, from right to left in the ALPHA field, The BETA field
is a single octet,
'y The operation is terminated when the BETA field data item has been found in the ALPHA
field.

If the BETA field item is not present in the ALPHA field, the operation is terminated when
all the ALPHA field octets have been examined.

° When the search is terminated, LOC (store octets 0254-0255) contains the location of the
octet to the immediate left of the last ALPHA octet examined.
If the BETA field item was found in the ALPHA field, the store location in LOC is that
of the octet to the left of the matched data item.
If the BETA field item was not found in the ALPHA field, the store location in LOC is
that the octet to the left of the last ALPHA field data item examined.

. The UF/OF indicator is preset to 1 by the SL and is not affected by the operation.

™ The ZE/NZ indicator records the result of the search.

PROGRAMMING PRACTICES :

The ZE/NZ indicator must be interrogated by a Jump on Condition instruction to test the result

of the search.

BE-115 s

-88-

SL

The address in LOC must be incremented by 1 to reference a matched item in the ALPHA field,

When the SL operation follows an operation which sets the UF/OF indicator and the setting is
used by the program, the programmer should use or save the UF/OF setting prior to the SL (See

the Jump on Condition instruction on page 97 for a method of saving indicator settings for a

subsequent test),

NOTE: The SL is the only one of the complete octet comparison instructions which operates

from right to left.

EXAMPLES:

1) Search, character found.

FQEEF;}E{E NAME PERATION OPERANDS

32 3 4_ 3 8 ‘0:! 2 45‘6L7 74

X} CIE -dS.L b JAL PHA(005),BETA+001,
—‘.~‘-_-"

ALPHA has a defined length of 7 octets.

The character sought is a period (.).

ALPHA BETA
INDICATORS
1 UF/oF ZE/Nz
BEFORE OPERATION I‘BT$‘ 112] . IS[SJ gﬁn%
k. U i A n 4 A
. 1 1
AFTER OPERATION NOT AFFECTED NOT AFFECTED CHARACTER FOUND

After the operation LOC contains the address of the octet to the immediate left of the matching

character (location of 2).

2) Search, character not found.

Q?E "‘EEI NAME | FPERATION OPERANDS

2 3. ‘3_ 6 4084 142 A5 A6 KT 74
0,2]0 5 e . IS e JA L. PHA» BETA .
N_‘”W\/\/—\

ALPHA has a defined length of 7 octets.

The character sought is a blank.

ALPHA BETA
INDICATORS
UF/oF 2E/Nz
oerore orennnon | [0 122 [o]8] [3[7]4)
1 A L L 1 L i 1 0
] . CHARACTER
AFTER OPERATION NOT AFFECTED NOT AFFECTED NCT FOUND

After the operation LOC contains the address of the octet to the immediate left of the leftmost
octet of the ALPHA field.

@ ED U [I 5 USER'S GUIDE

-89~

LOGIC INSTRUCTIONS

The GE-115 Information Processing System generates logical sums and products of data
fields. Data treated by the logic operations is used by the system as bit patterns rather than

numeric quantities or symbolic representations.

The logic operations have the following general characteristics:

° Data from two fields is matched and combined.

° Data fields may be from 1 to 256 octets in length. The length of the first data field
is used.

. Operation length is governed by the length of the first data field reference.

. Data fields are referenced at the left; operation is left to right.

. The first data field is replaced by the resuli.

® Complete octets are processed.

The format of the logic instructions is:

Fﬁ?EILmE NAME PERATION OPERANDS
32 33fs4_3536 40)4 12 as{a6u7 7
0.1]0,5]n,ame, |Jo.p "JALPHA(nnn) ,BETA .
rof 0 YT - L .
G))) T . N
2.0 . N e
2.5] e .
VV—W\

@ ED ” ”5 USER'S GUIDE

-90-

NC

'AND' ON COMPLETE OCTETS NC

NC ALPHA (nnn), BETA
Octets in the BETA field are examined, bit by bit, Each zero bit in the BETA field is effectively

transmitted to the corresponding bit position in the ALPHA field. Transmission is left to right
through the common length of the fields (001 - 256 octets)..

INDICATORS AFFECTED

none
NOTES :

° Operation is serial, octet by octet, from left to right, through the ALPHA and BETA fields.
° One bits in the BETA field do not affect the ALPHA field,

° The ALPHA field is replaced by the result.

° The BETA field is unaffected unless some part of the ALPHA field lies in the BETA field.
EXAMPLE :

The NC instruction used to zero the three bits in the left of an octet.

PAGEILINE NAME PERATION OPERANDS
32 3 4 3 6 40J4a 142 451467 74
0.1]0.s — Finc JALPHA(OO1),BETA . . R
ALPHA BETA
INDICATORS

UF/or ZE/nz

BEFORE OPERATION 1011,1101 coo0O0Ot1,1111
AFTER OPERATION 00011101 NOT AFFECTED NOT AFFECTED

@ ED l] U 5 USER'S GUIDE

-91-

oc

'OR* ON COMPLETE OCTETS ocC

OC ALPHA(nnn),BETA
Octets in the BETA field are examined, bit by bit. Each one bit in the BETA field is effectively

transmitted fo the corresponding bit position in the ALPHA field. Transmission is left to right
through the common length of -the fields (001 - 256 octets).

INDICATORS AFFECTED

none

NOTES :

° Operation is serial, octet by octet, from left to right, through the ALPHA and BETA fields.

. Zero bits in the BETA field do not affect the ALPHA field.,

° The ALPHA field is replaced by the result.

. The BETA field is unaffected unless some part of the ALPHA field lies in the BETA field.
EXAMPLE :

A logical 'or' of two three octet data field.

1n

ASE :}gEI NAME PERATION OPERANDS
2 3334 39436 . ..A0gac e Ao 467 . 74
Q.1]9,5 40, C A LPHA(O0O03) ,BETA, | R

ALPHA BETA
INDICATORS

UF‘gp ZE#yz

BEFORE OPERATION |0100l0100|5101 0110]0101 OOOOJ |0101 0011l1010|1010|010010001l
1 i 1

AFTER OPERATION [0101 0114111111 1110]0101 oooq 1S NOT AFFECTED NOT AFFECTED
. i i

@)E" U [] 5 USER'S GUIDE

-99-

XC

EXCLUSIVE 'OR' ON COMPLETE OCTETS XC

XC ALPHA(nnn),BETA

Octets in the BETA field are examined, bit by bit. Each one bit in the BETA field inverts the
corresponding bit in the ALPHA field. Operation is left to right through the common length of
the fields (001 - 256 octets).

INDICATORS AFFECTED

UF/OF ZE/NZ
1 0 The resultant ALPHA field is all zero.
1 1 At least one bit in the resultant ALPHA field is
non-zero.

NOTES :

. Operation is serial, octet by octet, from left to right, through the ALPHA and BETA fields.

° Zero bits in the BETA field do not affect the ALPHA field.

° The ALPHA field is replaced by the result field.

° The BETA field is unaffected unless some part of the ALPHA field lies in the BETA field.

. The UF/OF indicator is set to 1 and is not affected by the operation; the ZE/NZ indicator
records the value of the ALPHA result.

PRO GRAMMING PRACTICES :
When the XC instruction follows an operation which records results in the indicators, care must
be taken to preserve or use the information provided by the indicator settings, if it is required

for program operation.

The XC instruction may be used to alter the mode of operation of the Jump on Condition (JC)
operations. These instructions use the operation complement of the internal instruction format
to differentiate conditions to be tested as directives for operation. A single BETA field octet
can be set up containing a pattern which alters one of the test patterns and changes the JC

action,

@ IE o ” [I 5 USER'S GUIDE

-93-

XcC

EXAMPLE :

An XC instruction used to alter an operation complement,

PQEEILHjj NAME bPERATION OPERANDS
32 33134 3936 4Cf41ja2 4544647 74]
0.1]0 s xc | FIswTCH+001.,BETA .

10 5 %

15]) 1 28 ‘, L "

2.0 N 2 b) L - -

2 sSISWT.CHEIJ U s IGMA L L \ e
A »

OPERATION COMPLEMENT

(SWITCH + 001) BETA
INDICATORS

UF/oF ZE/Nz

BEFORE OPERATION ‘1 11 1;00 00 11110000
’ 1 0
AFTE? CFIRST 00000000 NOT AFFECTED RESULT ZERO

AFTERXSCECOND 11110000 NOT AFFECTED

PR DN RESULT NON ZERO

@ IE o l] U 5 USER'S GUIDE

94~

JUMP INSTRUCTIONS

The GE-115 Information Processing System acts upon instructions in the sequence of their
locations in the store. The system may be directed by the jump instructions to alter that

sequence.

There are two types of jump instructions. One type interrogates the condition indicators and
directs the system to interrupt sequential operation when a test condition is present. The second

type does not use the test indicators.

The jump instructions which test the indicators are called conditional jumps. They have the

following general characteristics:

. The immediate operand in the internal instruction (second octet of the operation in the
siore) specifies a condition pattern for testing the indicators.

. The second operand in the internal instruction refers to an instruction in the store to which
control is given if the test condition is met,

Operation continues in sequence when the condition tested is not present,

The conditional jump instructions are divided into two groups, on the basis of instruction
specification. The first group has an implied first operand. The assembler translates the mnemonic
for the operation into an operation code and the required operation complement to perform the test
specified in that mnemonic. The second group requires an explicit first operand specification to

set up the pattern which tests a condition.

The conditional jump instructions which do not require an explicit immediate operand specification

have the following format:

AGE[LINEL NaME PERATION OPERANDS J
32 3 4 3 6 406} 2 450467 7
0,5J0,5In.ame. }Jo.p IS 1. GMA N . e

10 L - i 3)) T]

] 5 L :‘: ‘ L e i i = n 1) e

) - . L .)

2 5] o0 T T T : T

“\#VWV\

Figure B=3 lists the conditional jump instructions, showing conditions tested and mnemonic

expressions used,

USER'S GUIDE

BE-119

‘_95-

The conditional jump instructions which require an explicit immediate operand have the

following format:

PACEILINEY NaAME "IoPERATION OPERANDS
32 3334_3 36 4014142 45|46 7 74
0.6}0 5|n.ame. }:l4.C b} condition 5 S | GMA X . ,

i

NN__
wlo[anlo
L

Figure B=2 shows the configurations of the immediate operands required to interrogate the
testable conditions. It is recommended that the hexadecimal notation be used in specifying

immediate operands.

There are three jump instructions which do not test the indicators. Two of these test an external

condition, a switch setting. The jump is taken when the tested switch is on.

The third is a special purpose jump instruction which always alters the program sequence. In
addition, this operation, the Jump and Return (JRT) places the address of the next sequential
operation into LOC (store octets 0254-0255). This provides a means of returning to the operation

which follows the jump instruction.

The jump instructions which do not test the indicators have the same format as the conditional

jump instructions for which the test pattern is implied by the mnemonic expression.

@EDH [‘5 ‘ USER'S GUIDE

-96-

JC

JUMP ON CONDITION Jc

JC condition, SIGMA

The condition specified in the operation is tested. If the condition is present, the program jumps

to the instruction at the SIGMA location.

INDICATORS AFFECTED

none

NOTES:

° Conditional jump instructions test the status of the UF/OF and ZE/NZ indicators which
record the results of internal operations and peripheral operations.,

° There are four possible patterns which may be present in the indicators:

UF/OF ZE/NZ
pattern 1 0 0
pattern 2 0 1
pattern 3 1 0
pattern 4 1 1

. The conditional jump operation may test for any of these patterns singly, or, it may test
for combinations of these patterns.

o Each of the four bits in the left quartet of the operation complement in the internal format
of the JC instruction corresponds to a pattern. If a bit isa 1, the pattern to which the bit
corresponds is tested; if the bit is a 0, the pattern is not tested.

° The bits in positions 4-7 of the operation complement and the pattern to which each

corresponds are shown in the figure below. Note that the right quartet (bit positions 0-3)

is always zero,

Bit position 76543210
pattern 1 10000000
pattern 2 01000000
pattern 3 00100000
pattern 4 00010000

Operation Complement

USER'S GUIDE

GE-118

-97-

JC

In the last figure only one pattern is specified for each operation complement shown.
When two bits of the left quartets are one, two condition patterns are tested. Any
combination of the patterns may be tested. If one of the specified patterns is present
in the indicators the condition is met and the jump is taken.

] The jump instructions do not alter the indicators they test,

PROGRAMMING PRACTICES:

Conditional jumps provide the only means of testing the indicators set during program execution.
Jumps should be placed immediately after the operations that set the indicators for testing, or
the condition should be saved for subsequent testing .

It is recommended that the condition patterns be specified in the hexadecimal notation.

Figure B-2 [lisfs the patterns for the tests and the hexadecimal configuration of each. Note

that the hexadecimal number 00 specifies that none of the four possible patterns be tested and the
hexadecimal number FO specifies that all patterns be tested. A Jump on Condition instruction

in which the hexadecimal pattern is 00 is the No Jump (See page 103) and the Jump on. Condition
in which the condition specified is FO is the Jump Unconditional (See page 102),

EXAMPLES:
1) The indicators cannot be accessed by the program. The settings recorded may be saved
by a sequence such as that shown below. When the jump is taken to the instruction at SAVE

the pattern which specified that jump is moved for a subsequent check.

PQQEILH:EEL NAME D PERATION OPERANDS
32 33134 35§36 4041482 450467 74
6,405 g bl UMP_ 1 F, OVERFLOW | R
1OJTES T, EJJC X307 ,SAVE . .
s MV BiIX7co’ [0FTST+001, NO ,OVERFLOW
2.0 % JCOMPARE, RESETS .THE OVERFLOW
2 5|CONT, [IX.C ALPHA(00O03) , BETA, .)
|~ '
o
1
1
2
2

[NRISEES
w|olvm

@EDH U5 - USER'S GUIDE

-98-

JC

2) When the presence of a given condition is used to direct program operation subsequent to
operations which alter the indicators, it is not necessary to retain the indicator pattern. When

the condition is recognized a subsequent jump can be preset to act on the results of the test,

ﬁ?j‘-'hﬁj NAME F‘PERATION OPERANDS
32 3. 4_3 36 4004 a2 454647 7
0,210 5 MVl FIX7 FO? SWTCH+00.1, | i ,
1ol o, kdJe ENX”307 [NO , . N
sl o My BEIX7 007 SWTCH+001, .
2 0INO, ., Idx.x.x Eix.x.x K] o O
L - P ~—— S 7 N
s olsWT CHEJJ U, EIARND, e
9.5] . ahox o x Fifxox x o .
»

@ ED I] [I5 USER'S GUIDE

-99-

JC

GE-108

OPERATION COMPLEMENT INDICATORS
HEX BINARY UF/OF ZE/NZ
0 0000 0000
1 0001 1 1
2 0010 1 0
} either
3 0011 1 0or |
4 0100 0 1
5 0101 gither 1
0 1
0110 k
6 1 0
0 1
7 o111 1 0
1 1
8 1000 0 0
0 0
9 0
1001 : 1
ith
A 1010 oort 0
0 0
B 1011 1 0
1 1
either
c 1100 0 0ot
0 0
D 1101 Q 1
1 1
0 0
E 1110 0 1
1 0
F 1 all possibilities
| |
Figure B-2 ! INDICATOR SETTINGS TESTED BY CO NDITIONAL JUMPS

USER'S GUIDE

-100-

JC

EXTENDED

JUMP IF GREATER JG

JUMP [IF EQUAL JE

JUMP IF GREATER OR EQUAL JGE

JUMP IF LESS JL

JUMP IF NOT EQUAL JNE

JUMP IF LESS OR EQUAL JLE
op SIGMA

The condition specified in the operation is tested. If the condition is met, the program jumps to

the opera\fion at the SIGMA location.,

INDICATORS AFFECTED

none

NOTE:

. The jump instructions do not alter the indicators they test.

PROGRAMMING PRACTICE:
The comparative conditional jump instructions are translated by the assembler into both the
operation code and the operation complement which specifies the pattern for the condition or

conditions to be tested. A test pattern may not be specified in the instruction statement.

EXAMPLE:

A Jump if Not Equal used to test the result of a comparison.

FQ,GEIL;QE NAME J"EERATION OPERANDS
2 3 L] 40j4 1|42 AS 467 74
0.1 R {CMC EIA L A» BETA . , ,

. — s i A

“JJNE

If the ALPHA and BETA fields are not equal, control jumps to the operation at the SIGMA address.
If the ALPHA and BETA fields are equal, the program continuves in sequence.

@ EC‘ [] ”5 ' USER'S GUIDE

-101-

Ju

JUMP UNCONDITIONAL Ju

JU SIGMA

The program jumps to the operation located at the SIGMA field address,

INDICATORS AFFECTED

none

NOTES:

. The JU is a conditional jump which specifies all conditions.

PROGRAMMING PRACTICE:
The JU is used when a transfer of control is to be made that is independent of the status of the

indicators.

EXAMPLE: ’
The program jumps to the sequence which begins at SUM,

ﬁ?ELkoE NAME PERATION OPERANDS
32 _33}34 38036 of4a1ja2 asjask7 7
2605 10U Flsum . , —

@]ED U U 5 USER'S GUIDE

-102-

NOJ

NO JUuMP NOJ

NOJ SIGMA

Control continues in sequence; no test pattern is specified.

INDICATORS AFFECTED

none

PROGRAMMING PRACTICE:

The NOJ may be changed to an effective jump by changing the configuration of the immediate
operand. To accomplish this, the programmer may use a logical operation or an octet move.
(See the XC on page 93 for a method of altering the test pattern in the jump instruction), The

NOJ - JU instructions can function as alternating sequence controls.

EXAMPLE:

The program continues; the AD following the NOJ is the next instruction executed.

5 NG I FEN '
1.0 .. |JAD AL . ’) ' i
N N T T ST TN

ASE Lmﬁ NAME PERATION OPERANDS
32 33I34_3 6 40, # 2 asjasp7 74
2.1)0 -]

@ED U ”5 ‘ USER'S GUIDE

-103-

Figure B-3. TABLE OF CONDITIONAL JUMPS

Operation
Mnemonic Complement Conditions indicated when a jump occurs
(hexadecimal)

NOJ 00 No Jump occurs

JuU FO Jump always occurs

After a CMQ, CMC, or CMI, a jump occurs if:

JG 10 ALPHA = BETA; ALPHA = immediate operand
JE 20 ALPHA = BETA; ALPHA = immediate operand
JGE 30 ALPHA > BETA; ALPHA Z immediate operand
JL co ALPHA < BETA; ALPHA < immediate operand
JNE DO ALPHA # BETA; ALPHA # immediate operand
JLE EO ALPHA < BETA; ALPHA < immediate operand
JC 10 Condition present after peripheral status test

End of operation after data transfer on channel 1
Character found after SR or SL
JC 20 Condition not present after peripheral status test

End of operation on length, after data transfer
on channel 1

ALPHA = O; after SD, SB, or XC

JC Cco Result in underflow form after SD or SB
Jc 30 g Overflow after AD or AB

JC AQ ALPHA = O; after AD or AB

JC 80 ALPHA = 0; after MVQ

@Eun ﬂ5 _ USER'S GUIDE

-104-

JS1

JS2
JUMP IF SWITCH 1 SET JSt
JUMP IF SWITCH 2 SET Jsz

JS1
SIGMA
Js2

The status of the specified switch is interrogated. If the switch is set, program control jumps to

the SIGMA field operation. If the switch is not set, the program continues in sequence.

INDICATORS AFFECTED

none

NOTE:
° The settings of the switches are not altered by the test. Switches are not under program

control and must be set and reset externally.

PRO GRAMMING PRACTICE:

Switch 1 and Switch 2 may be tested internally as a means of making certain that external
operations have been carried out. An operator may be instructed to set a switch to indicate that
an input file has been placed in the reader, or that cards have been set up for punching, or some
other required action has been taken and the switch set to indicate the completion of the request.
The program, after testing the switch by means of the jump, may reset the jump pattern to make
the test ineffective. Messages should be included in the program for printing whenever operator

- intervention is required. Operator intervention should be restricted to the necessary minimum.

USER'S GUIDE

GE-109

-105-

JS1
JS2
EXAMPLE:
The JST1 sets up an effective program halt, When Switch 1 is off the program goes on to execute
the MVC,
PACEILINE] Name OPERAT;ON OPERANDS
32 3334 _3 36 40j4a1ja2 45] 467 7 49
o2l sl . FA s FdwaaT .
1 9IN.O.5. T.PEMV.C_FIJA L PHA , B.ETA .
[N NN 1= MR 2 . N . \
2.0 R 8) . ‘ .
2.5 % I B8 L . e
- : .
5.5] . .. O RG E4 050 ORG, AT _KNOWN - ADD
oWA 1. T, [JJ RT (AP RTRT . ,PRNT OPER MESG .
cslacTufdusa FJACTUL , WA, ;T . T.I L _.ACT,I.ON,
LALE T e NV SNOS TP . .COMP.L.ETE .

@ IE” |:| H5 USER'S GUIDE

~-106-

JUMP AND RETURN

JRT SIGMA

The store location of the operation which follows the JRT is placed in LOC (store octets

0254-0255). Control is transferred to the operation which begins at the SIGMA field location.

INDICATORS AFFECTED

none

PROGRAMMING PRACTICE:

The JRT is used for subroutine entry. The contents of LOC must be moved to a jump instruction

to effect a return to the sequence from which the subroutine was entered.

EXAMPLE:

JRT

JRT

The JRT used to jump to a subroutine named TOT. The first instruction in the TOT subroutine

moves the return address from LOC to the jump instruction named BACK,

AGEJLINE Pl OPERAND
82“93 F_OJS_S NAME 4041 E)Z ERATIOANS 4617 s 74
5.0]0,5 T b-]COMP UTE, . TOTAL , : s
1,0 -JuRT ETOT ;)
15 . R . 5 N N L L N
2.0] B3 8 . ,
2.5 N o 88] . K R
— K —WW\
i
or o Py e N ,
6.5 B % . e .
7,0 T* FJTOTAL SUBROUTINE,
7,5]1T.OT, | :~:n£|vc - |[BACK+002(002),L0C, SET. RETURN
8.0 N % N N L L N
8.5] i 32 KT = I B]] . L
5,0|BACK, |F1JU »§0000, RETURN, 70 CALLER .

USER'S GUIDE

GE-108

-107-

EDIT INSTRUCTIONS)

Data fields generated by programs in the GE-115 Information Processing System may be
edited for output. Such operations as zero-suppression, character insertion, and field=-spacing,
may be performed. Editing simplifies the preparation of readable tabular listings, invoice sheets,
and other printed reports.

Input data also may be edited. Editing of input data consists of preparing it for internal use by
the GE-115 system. The varied internal codes recognized by other computers can be
translated into the GE-115 internal code. Data and programs prepared by other systems

can be translated for processing.

The editing instructions have the following general characteristics:

@ A daic field is operated upon by the use of a mask or table.

® Only the first data field lehgth is used in the instruction.

° The length of the operation is governed by the length of the first data field.

° The operative length of the second data field is a function of the configuration of the

first data field,
® Operation is from left to right in both fields.
° The first operand field is replaced by the result field.

The editing instructions have the following format:

ASEILINEL NaME PERATION OPERANDS
92 33|34 3936 40f4 1ja2 AS5|46 K7 7 4]
0O.1]o,5 2o p JALPHA (nnn), » BETA . ,
1.0 . o +
l 5 .:‘ :‘: e I i Y 1 N 1
2 5 L :.: 2 WU TS 4 n "
. e “WW\

@ EDU U 5 USEE‘('S GUIDE

-108-

EDIT

EDT

EDT

EDT ALPHA (nnn),BETA

Octets from the ALPHA field are used as control characters to edit the information in the BETA

field.

Zero-suppression, character insertion, and spacing of fields are specified by the

configuration of the ALPHA field. Editing proceeds from left to right. The length of the
operation is determined by the length of the ALPHA field (001 to 256 octets). The ALPHA
field contains the edited data at the end of the EDT operation.

INDICATORS AFFECTED

UF/OF ZE/NZ
1 0 Operation ended in the zero-suppression mode.

1 1 Operation ended in the non-zero-suppression mode.

NOTES:

ALPHA is the control field for the EDT operation. The configuration of the ALPHA field
determines the format of the edited field.

The length of the BETA field used in the EDT operation is a function of the configuration
of the ALPHA control field.

The ALPHA field contains the edited data at the end of the EDT operation.

Operation proceeds from left to right.

Three types of edit control operafions may be specified in the ALPHA control field.
Each type of control operation is represented by a particular hexadecimal octet
configuration in the ALPHA field, These are '20', '21' and '22',

The ALPHA field can contain, as well as the three types of hexadecimal control

‘characters, any of the characters from the graphic set. The character in the leftmost

octet of the ALPHA field serves as a "fill" character; that is, it may be used to replace
any subsequent ALPHA octet that is not replaced from BETA,

There are two modes of the editing operation: zero~suppression and non-zero-suppression.
The action of the hexadecimal control characters in the ALPHA field is affected by the
mode of operation at the time that they are encountered.

The presence of the fill character and any other of the characters (non-control
characters) in the edited field is determined by the mode of the operation when a

particular octet is processed.

@E”Hﬂ5 ’ - USER'S GUIDE

-109-~

EDT

Operation always begins in the zero-suppression mode. Non-zero-suppression 'begins’
when a BETA octet is found to have a non-zero right quartet or when the ALPHA field
octet contains the control configuration '21',

The first octet of the ALPHA field remdins unchanged by the operation. The operation is
in the zero-suppression mode and does not change. The character in the first octet of the

ALPHA field will be used as the -"fill" character in the remainder of the EDT operation.

In the ZERO-SUPPRESSION MODE, the ALPHA octet causes the EDT operation to

proceed in the following ways:

1201
When the '20' is encountered in the ALPHA field, a check is made of the current BETA
field octet to be edited.

If the BETA field has a non-zero right quartet, the BETA field octet is placed in the
ALPHA field. Zero-suppression is terminated.

If the BETA field octet has a zero right quartet, the first character of the ALPHA field

(the "fill" character) is placed in the ALPHA field octet. Zero-suppression continues.

2

The operative octet in the ALPHA field is replaced with the operative octet from the

BETA field. Zero-suppression is terminated.

122

The operative octet in the ALPHA field is replaced by the first octet in the ALPHA field

(the "fill" character). The BETA field is not involved. Zero-suppression continues.

Any other character

The operative octet in the ALPHA field is replaced by the first octet in the ALPHA field

(the "fill" character). The BETA field is not involved. Zero~-suppression continues.

In the NON-ZERO-SUPPRESSION MODE, the ALPHA octet causes the EDT operation
to proceed as follows:

'20' and '21'

The operative octet in the ALPHA field is replaced by the operative BETA field octet.
The non-zero-suppression mode continues.

l22l

The operative octet in the ALPHA field is replaced by the "fill" character. The

zero-suppression mode is restored,

Any other character

The operative octet in the ALPHA field is unchanged. BETA is not involved. The

non-zero~-suppression mode continues.

@ EU [l ”5 USER'S GUIDE

-110-

EDT

° The UF/OF indicator is set to 1 at the beginning of the EDT operation and is unaffected
by the operation. ‘

. A 0 in the ZE/NZ at the end of the operation indicates that the edit ended in the zero-
suppression mode.

° A 1 in the ZE/NZ at the end of the operation indicates that the edit ended in the non-

zero-suppression mode.

Figure B-4 shows the possible elements of the ALPHA field before and after the EDT operation,

as determined by the mode of the operation and the contents of the BETA octet.

PROGRAMMING PRACTICES:
The first octet of the ALPHA field is used in the edited field as a fill character. When no BETA
octet is transferred to the ALPHA octet, the fill character maintains the spacing. In general

use, this character is the blank (X'50'),

The ALPHA field is destroyed in the editing process; the BETA field (with editing) replaces the
ALPHA field. The edit format which is in the ALPHA field must be preserved in another area of
the store if it is to be used more than once in execution of the program. It is suggested that the
edit format be defined in a DC (Define Constant) and moved to a work area where editing may
be performed. The program print area can be utilized in this way to receive first the ALPHA

edit format and then the BETA field prepared for printing.

The length of the BETA field processed depends upon the ALPHA field configuration. Care must
be taken to define the format configuration to fit the data field length as well as the data

configuration,

When the last operative ALPHA mask octet is the '20' and it is encountered in the zero-suppress
mode, the mode of termination of the operation is not predetermined by the ALPHA field; the
BETA field octet determines the mode in which the edit ends. If the right quartet of the last
BETA octet is zero, the zero-suppression mode continues. If the right quartet of the last

operative BETA octet is non-zero, the zero-suppression mode is terminated.

NOTE: The only BETA octets suppressed by the EDT instruction are those read in
the zero-suppression mode in the presence of a '20'. All others enter

the ALPHA field.

@] ED U n@ v USER'S GUIDE

-111-

EDT

Figure B-4 ALPHA OCTETS AND THE RESULT OF THE EDT OPERATION IN EACH MODE,

MODE WHEN ALPHA CHARACTER ENCOUNTERED
OCTET IN THE ZERO SUPPRESS NON SUPPRESS
ALPHA FIELD |\ ok ALPHA MO DE ALPHA
BECOMES | OCTET BECOMES | OCTET
BECOMES BECOMES
/
HEXADECIMAL
120! NOT FILL
(BETA RIGHT CHAN GED | CHARACTER
QUARTET = 0)
BETA HEXADECIMAL
ENTERS (BETA RIGHT SUPPRESS OCTET CHANGED OCTET
OPERATION QUARTET #0
HEXADECIMAL] NON BETA
121 SUPPRESS OCTET
N
e
HEXADECIMAL| NOT FILL ZERO FILL
BETA 122! CHANGED | CHARACTER | SUPPRESS |CHARACTER
OCTET
DOES NOT ¢
OPERATION | | ANY OF
GRAPHIC NOT FILL NOT NOT
CHARACTER | CHANGED | CHARACTER | CHANGED |REPLACED
SET
.

@ [Eg ” ”5 USER'S GUIDE

-112-

EDT

EXAMPLE:
Editing of a data field for printing.

ACE Lg{,‘,EI NAME JOPERATION OPERANDS
2 33j34 336 4084 1h2 asja67 74
0.1]0 .5 JEDT e JALPHA(013),BETA
1.0 RS) o o N 4 N
1.5 - T N L - T
2.0 B R A o
25 . L . . L
INDICATORS
EpL s ﬂs 012 o[z 1| [z 0[2 2]20'2 1] Y2 lz 2]2 o!37 20 UF/oF ZE/Nz
OPERATION s 4 .
1 1
OPERATION
ENDED IN
BETA PRI ST SN S SN NON-ZERO
oPERIREN / F’O[OE"’OE"’I ! ;$;|0[:§;0E:§J:L5 L/ SUPPRESSION
MODE

ALTER le o[so[o, o[. ’4 ols o]4 1|4 o] % |5 o]s 5[5 oTs 5]/
OPERATION L \ N 1 N i N N L 2 1 1 1

PRINTED 0.0 10 % E
RESULT

NOTE: BETA is not affected by operation.

@ ED U D@ USER'S GUIDE

-113-

TR

TRANSLATE OCTETS TR

TR ALPHA (nnn), BETA

Each octet of the ALPHA field is used to generate an effective address for locating an octet in the
BETA field. The referenced BETA field octet replaces the ALPHA field octet. Operation is left
to right through the tength of the ALPHA field (001 - 256 octets).

INDICATORS AFFECTED

none

NOTES:

. The left octet of the address translated by the assembler for the BETA field reference is used
as a "basic" address. The value present in the right octet of the address is ignored.
(The BETA field is assumed to begin at an address which is a multiple of 256).

° Each octet of the ALPHA field is used serially as an increment to the "basic" BETA address.
Each address formed by the "basic" BETA address and the ALPHA octet is used to reference a
BETA field octet. This BETA field octet replaces the ALPHA octet used to form the ref-
erencing address.

. Any octet configuration may appear in either field.

. The length of the BETA field used in the operation is a function of the maximum range of the

values any ALPHA field octet may assume.

PROGRAMMING PRACTICES:

The TR instruction is designed to facilitate translation from one character set to another.

Translation is accomplished by defining the translation table (i.e., the set of desired configurations
for data) in the BETA field in terms of the data to be translated in the ALPHA field. The operation
replaces each of the octets in the ALPHA field by an octet from the table in the BETA field. Each
ALPHA field octet becomes the locator of a position in the table. The BETA field table must be
prepared so that the translated configuration is placed in the relative location generated by using

the ALPHA octet itself as an increment to the "basic" BETA address.

@ E” I] U 5 USER'S GUIDE

-114-

TR

The values of the ALPHA field octet may range from O to 255. Therefore, the BETA field may
require a maximum of 256 octets. The actual positions in the BETA field which are used by the TR
operation are dependent on the possible ALPHA field values. If fewer than 256 differeqt ALPHA
field octet configurations may occur, only part of a set of 256 locations may be needed for the
BETA field to translate ALPHA field values. The necessary BETA field locations may be contained
within a range less than 256 octets, or the necessary locations may be scattered over the complete
range of 256 octets. If it is known that the BETA field positions do not utilize parts of the full
range of 256 octets, the remaining octets, outside the range required for the BETA field, may be

used to contain other data.

When the BETA field begins at a multiple of 256, the Origin-Assignment (ORG) instruction with
an R in the operand specification field is used. The ORG instruction is followed by the necessary
Define Constant (DC) instructions, or, if the BETA field is to be read into the store, a Define Store

Area (DS) instruction.

EXAMPLE :
Translation of UNIVAC 1004 code image data which has been read into the GAMMA 115

from cards,

,PQEEILmEl NAME tPERATlON OPERANDS
32_ 33434 3936 40, .4" 2 45467 7 4§
01]o s =4T.R P JALPHA , BETA e R .
1.0 il 35 (- ’
l|5 e i i .
- : —— . .
= - A e

@ IE':' I] U5 USER'S GUIDE

- -115-

-911-

Gl0-39

JAIND S, ¥ISA

d1

ALPHA
LPHA
FORE ! 4 4
OPERATION

4 5|4 6 40(A4IA 9|5 BIA 8[4 O‘B SIA 7[5 ClB 6]5 BJ_/

HEXADECIMAL CONFIGURATION OF

12315 JOHN K SMITH IN UNIVAC 1004

6 BIT CODE READ INTO Te&=ss 9™

IN PACKED MODE AS PAIRS OF HEX DIGITS

sttt [5.0[// T 11«2 3/ To oo o /f Tor [J{Tr e[m.e

+B5 _ +B6
HEXADECIMAL CONFIGURATION OF
B 2|B 3 OCTETS OF UNIVAC 1004- TO -
. &E15-TRANSLATION TABLE

) L

~/

42,43]5 OIA 1IA GIB SIA 5|5 OlB Z'A 4!5 QlB 3[5 8

/

ALPHA
ALPHA
AFTER 4 1
OPERATION)
BETA
AFTER
OPERATION

NOT AFFECTED

ACCESSED BY INSTRUCTION

HEXADECIMAL CONFIGURATION BETA ADDRESSES RELATIVE
FOR 123K JOHN B SMITH IN TO FIRST BETA OCTET ARE
G€-115 INTERNAL CODE GIVEN IN HEXADECIMAL TO

SHOW RELATIONSHIP BETWEEN
ALPHA CONTENTS AND BETA
ADDRESS ACCESSED

SYSTEM ACTION INSTRUCTIONS

The GE-115 Information Processing System operates upon data according to the instructions
in the stored program. Some of the instructions can, however, direct system action which does not
affect data in the store. These instructions set external indications and alter the status of system

operation. The system action instructions have the following format :

ASEILINEL NaME PERATION OPERANDS

2 3 4 3 56 4004 1 42 454647 . 74
2,6§0,5 <Jo.p b -
M_/ - =

TN ST S e

Note that the format of the System Action Instruction does not include specification of an

operand.

USER'S GUIDE

GE-118

-117-

HLT

HALT SYSTEM OPERATION] HLT

HLT

System operation is terminated.

INDICATORS AFFECTED

none

NOTE:
. The system stops operation when the HLT is encountered. When the START button on the

console is depressed, the program execution restarts at the next sequential operation,

PRO GRAMMING PRACTICE:

The HLT may be used to separate a program into logical sections for checking. A HLT can be
placed at the end of each logical section to stop program execution and allow expected results
to be checked before they are used by subsequent sections. The programmer can generate
programmed halts (See the Jump on Switch 1 (JS1) instruction on page 105 for a method of
generating effective halts) for the same use. It is recommended that programmed halts be used
rather than the HLT instruction. Messages should be included in the program and printed for the
operator whenever operator action is required. Explicit instructions should be prepared for the
operator describing the action to be taken. It is recommended that operator intervention be

minimized.

PQHGE LmE NAME OPERATION OPERANDS
32 33|34 35136 40]4 B2 4s5ia6a7 7 4
0.1}0,5 cdH LT, B . A "

@ ED U [I 5 USER'S GUIDE

-118-

NOP2

NO OPERATION NOP2

NOP2

The system continues in sequence. No system operation is specified.

INDICATORS AFFECTED

none
NOTE :
° The NOP2 effects the advance of the store location counter by 2 octets.

PROGRAMMING PRACTICE :
A NOP2 may be used to overlay an instruction that is no longer needed for program operation .
The NOP2 uses two octets instore. Therefore a series of NOP2 operations is needed to replace

instructions of four or six octets.

EXAMPLE :
A NOP2 used to overlay an AD instruction. OVR is the name of a NOP2

instruction moved to the instruction named SUM,

Pﬁs;Elej. NAME DPERATION OPERANDS
32 33J34_3936 4084 ' 42 451467 7
1,0]0,5]s.uMm =JA.D AL PHA BETA . s
LCH B 5% KN HX* 307 JOVFL) e
15 X) . (e L
20]l I] i]] L L
2 5] % D) 88] . .] N
:] - '
8,5 ™ oo, of —L
9.0] . 38 O b INEED 3 __NOPS, FOR 6 ,0OCTETS
9.5 “MvCc BEISuUM(002.), ,0VR, N
%MVC {s.UM+002(004,) ,SUM e
P S I I T T i

@ED n [I 5‘) » USER'S GUIDE

-119-

LON

TURN ALERT LIGHT ON LON

LON

The ALERT light on the console is turned on.

INDICATORS AFFECTED

none

NOTE:

° The LON turns on an external signal light. The system-continues in sequential operation.

PRO GRAMMING PRACTICE:

The LON may be used, along with the Turn ALERT Light Off (LOFF) instruction, to indicate some
required operator action. The need for the operator action may be signalled by the LON., A test
should be made whenever possible to determine whether the required action has been carried out.
Explicit instructions should be prepared for the operator describing the action to be taken.
Messages should be included in the program and printed to inform the operator of the required
action. When the action has been completed the LOFF can be used to turn off the light. It is
recommended that operator intervention be minimized.(See the Turn ALERT Light Off (LOFF)

instruction on page 121),

EXAMPLE:
The ALERT light is turned on.

ASEILINE]l NamE OPERATION OPERANDS
32 33134 3536 40)4 asja6p7 74§

2
2.6[0.5 =L ON, P
1,0 3

A 3%

: N

@ Eu H ”5 ___USPR'S GUIDE

-120-

LOFF

TURN ALERT LIGHT OFF LOFF

LOFF

The ALERT light on the console is turned off.

INDICATORS AFFECTED

none

NOTE:
° The LOFF instruction turns off an external signal light. The system continues insequential

operation,

PROGRAMMING PRACTICE:
The LOFF may be used with the Turn ALERT Light On (LON) instruction to signal the need for

operator intervention (See the LON instruction on page 120),

EXAMPLE:
The ALERT light is turned off.

Pﬁ?EILmj NAME PERATION OPERANDS
32 3334 3936 40f4 182 4sfaela7 74
2,640,5 =]L O F Fpu . L
1.0 B8 I . L '
1.5 88] L ')
2.0 I - B) . o .))
2.5 88) L
™ TN e i e e

@ EDU U5 USER'S GUIDE

-121-

INS

INHIBIT SINGLE STOP INS

INS

The SINGLE STOP switch on the control console is disabled.

INDICATORS AFFECTED

none

NOTE:
° The INS places the system in a continuous operation state and prevents interruption of

the program by the use of the SINGLE STOP switch.

PROGRAMMING PRACTICE:
The INS may be used with the Enable Single Stop (ENS) instruction to perform a check of o
program segment. (See the ENS instruction on page 123),

EXAMPLE:
The SINGLE STOP switch is disabled.

NAME PERATION OPERANDS
[40)41le2 asash7 74}
) 28

JINS F- . e

N ez>

3
IR
-lelR, T
L "2z
ou.*am

@l IE o B ﬂ 5 USER'S_GUIDE

-122-

ENS

ENABLE SINGLE STOP ENS

ENS

The SINGLE STOP switch on the control console is énobled.

INDICATORS AFFECTED

none

NOTES:
° The ENS operation allows the system to be operated step-by-step, using thé SINGLE STOP
switch. One instruction is executed each time the switch is set., The switch remains

operative until an INS instruction is encountered.

PRO GRAMMING PRACTICE:

The ENS may be used with the Inhibit Single Stop (INS) instruction to perform a check of a program
segment. ENS allows the operator to stop execution of the program after each instruction has been
executed. When the segment has been checked, the system is returned to normal, continuous
operation by the INS. Whenever operator intervention is required, explicit instructions should be
prepared describing the action to be taken. Messages should be included in the program and printed
to inform the operator what action is required. It is recommended that operator intervention be

minimized.

EXAMPLE:

The SINGLE STOP switch is enabled.

PAGE LINE NAME OPERATION OPERANDS i
32 33ja4_ 3536 . 46j4 12 as{asp7 7 4}
0.3}0.5 . JEN.S E o s —

D e N I

@ED H n 5 USER'S GUIDE

-123-

INPUT/OUTPUT INSTRUCT!ONS)

The Primary instructions previously discussed process data in the GE-115 Information Proces-
sing system. The instructions discussed in this section provide the means of bringing data into the

system for processing and for printing or punching the results of that processing.

The system discussed is the card system. All input and output operations are described in terms of
card input and card or prinier output. Input/output operation charts included in this section con-
tain references to operdfions and functions which apply to other forms of input and output. These
other forms are not treated here. However, the chart information is included for amplification of

the materials that will be released as the system is developed.

Data may be brought into the GE-115 system in a number of forms. Hollerith card codes and
several special card codes (with hardware adaptation anci/or software translation) may be read and
punched. Card code formats can be specified under programmed control. .Card formats may use one
column to represent the contents of an octet or they may use two columns where internal configu-
rations are to be expressed in the external media in two parts. Sixty-four graphic characters may

be used for printing the results of program action.

The input/output operations for the GE-115 may be programmed to make optimum use of the

system. The input/output operations, such as card reading and printing, require access to the cen-
tral processor during their execution. Card punching, on the other hand, requires the action of the
central processor during the time of preparation of the output which can be punched from an inter-

mediate retention area without further central processor action.

For those operations which require data transfer during their execution, an optimizing use of the
central processor is possible. The central processor can receive or supply data at a faster rate
than the input/output (peripheral) units. This means that the central processor is free during part
of the execution time required by the instruction. This free time may be utilized in the GE-

115 by a method of input/output operation called time sharing.

Time sharing is accomplished by the provision of two types of input/output operation.

The first type is called a presetting operation, A preset may be given for input or output operations.
A presetting instruction defines an operation completely, giving the unit, channel, data area, and
length of operation., The operation code requests preparation of the channel mechanism only, not

initiation of the operation.

The second type of input/output operation is the execute, An execute operation may be given for

input or output. An execute instruction contains the required channel, unit, data area, and

@ ED l] H5 : USER'S GUIDE

-124-

length. The operation code requesis that the operation be initiated when the instruction is proces-
sed. To accomplish time sharing, an input execute instruction must follow an output "preset"
instruction. The instructions must be given on separate channels of communication. An execute
input instruction which follows a preset output instruction causes the output instruction to be

initiated as well. The input and the output unit share the time of access to the c\enfrcl processor.

The procedure for time sharing is :

1. An output preset operation, utilizing channel 2, is given.

2. An input execute operation, utilizing channel 1, is given.

The capabilities of the GE-115 allow for even further optimization of the input/output ope-
rations. The punch equipment utilizes an intermediate area for data retention. This makes it pos-
sible to have three input/output operations taking place; two on a time sharing basis and the third
simultaneously with whichever of the other two is operative at any time. To use the punch in con-
junction with the reader and printer, it is necessary that the punch be utilized through connector

‘¥hen the punch operation is to take place in conjuction with a time sharing read and write

operation sequence, the punch instruction must precede the output preset instruction for channel 2.

Time sharing is directed toward the optimal use of the cenfral processor during input/output opera-
tions. There is another consideration of timing in the use of peripheral units that may be specified
by program control as well. This refers to the optimum utilization of a given peripheral unit.ln this

purpose, input/output operations may be specified as wait or immediate instructions.

Immediate operations are requests for some peripheral unit action to take place when the instruc-

tion is given. Wait operations imply an interrogation of the status of the peripheral unit referenced.

If the unit is occupied, i.e., engaged in some operation previously requested, the instruction is
not carried out when it is given. When the prior operation is completed, the wait operation takes

place.

It must be noted that it is not meaningful to use immediate operations in all possible sequences

of input/output operation. Instructions are executed by the GE-115 in the order in which they
are placed in the store. Operation is sequential. An operation which utilizes the central processor
must be completed before another can be interpreted. Therefore, an immediate input/output opera~-

tion which follows a data transfer operation is not, in any case, interpreted until the data transfer

is completed.

In some instances, a meaningful sequence of operations may utilize the immediate instruction for

peripheral unit control. For example, an instruction to select a card stacker might be given in

@EDU ”5 USER'S GUIDE

-125-

the immediate mode following an instruction to reset card read error. On the other hand, an
instruction to select a card stacker given in the immediate mode following a card read operation

would not be a meaningful sequence.

There are three types of operation which make reference to the input/output units. They are :
Data Transfer Operations

Peripheral Status Test Operations

Peripheral Unit Control Operations

All three types of operation are performed by means of a single input/output initiating instruction,

the Call Peripheral (PER) instruction.

The format of the PER instruction is :

F'QEE '-mE NAME JOPERATION OPERANDS
32 33 34_3 36 40)4 - pal 45§46M7 7 4]
0.3}0;5 “{PER_ U ,DELTA

. 5 . N

NN [|~
wmioiwn|o
F

where
U specifies a peripheral unit (see figure B-5),
and
DELTA is the name of a data field which contains the operation specification. The content
of the DELTA field determines the operation actually performed by the specified unit. The
DELTA field may have one of three different basic configurations depending on the type of
operation described. There is a special data definition instruction, the Define Peripheral

(DP) instruction, for use in setting up the DELTA fields.

The format and content on the DELTA field vary with the operation being performed. There are

two possible lengths. The DELTA field is :
6 octets long for the Data Transfer oparations,
2 octets long for Status Test operations, and

2 octets long for Unit Control operations.

Input/output instructions have the following general characteristics :

. The PER instruction initiate an input/output operation using a specified unit.
. A data field complete the operation definition and always contains the operation
specificafion.

@ ED U U5 USER'S GUIDE

-126-

GE-108

and the channel request. A define Peripheral (DP) Directive is used to set up the data field,

Data Transfer Operations

Data transfer operations have the following general characteristics :

° The data field operand which amplifies the operation is six octets in length,
. The first two octets of the data field operand contain an instruction specification.
° The second two octets of the data field operand contain the length of the data field which

participates in the transfer.

The length of a print operation is governed by the print line length of the printer model used.
The length of a read or punch operation is governed by card length, i.e., 80 columns for

a card,

o The fifth and sixth octets of the data field operand specify the location of the first octet
in the store which participates in the data movement,

) Data fields for transfer are referenced at the left, Data is transmitted and received serialy,
octet by octet, from left to right. (Reference is made in the input/output configuration to
the use of descending addresses. This usage does not apply in the present context.)

° Indicators are set to record the results of conditions such as end of input and transmission

error.

Peripheral Status Tests

The peripheral status test operations have the following general characteristics :

) The data field operand in a 2-octet field specifying the operation and the condition.
° A condition recorded during the use of a specified peripheral unit is tested.
. Indicators are set to record the results of the test.

Peripheral Unit Control

The peripheral unit control operations have the following general characteristics :

. The data field operand is a 2-octet field which specifies the operation and the mode of
execution.

. A peripheral unit is instructed to perform some operation that does not directly involve

data transmission, e.g., eject present printer page.

HEXADECIMAL
CONFIGURATION UNIT
00 CARD PUNCH
80 CARD READER
co PRIN TER

Unit numbers given should be verified for use with the GE-115 system being programmed.

Figure B-5 UNIT NUMBERS

USER'S GUIDE

-127-

The GE-115 system provides prepared input/output programs which may be used with other
programs. These prepared programs may be incorporated, according to conventions of use which
depend on the program used, into other programs written for operation on the GE-115. The
input/output programs are written for defined peripheral unit configurations. The programmer is

advised to secure the input/output programs which may be used with the configuration of the

GE-115 system he is using.

USER'S GUIDE

GIEHIES

-128-

PER

DATA
TRANSFER

CALL PERIPHERAL PER
Data Transfer

PER U, DELTA

The unit specified in the PER instruction is selected to perform the data transfer operation defined
in the DELTA field. Data is received or transmitted serially, octet by octet, from left to right

through the specified field length.

INDICATORS AFFECTED
UF/OF ZE/NZ
1 0 Operation terminated under the specified count control.

1 1 An end of input signal was received.

INPUT/OUTPUT TRANSMISSION INDICATORS

Channel 1 Parity Channel 2 Parity

0 0 Transmission valid

1 1 Transmission parity error detected
NOTES :

. The DELTA field first octet specifies :
Channel
I?irection of transfer - input or output
Data format - packed or unpacked
Time sharing status - set for time share preset, or an execute
Operation mode - wait or immediate
Data reference direction - ascending or descending locations
(See Figure 8-7) A
° The DELTAfield second octet specifies the operation requested, as shown in Figure B -6,

below :

@ E o n H 5 A USER'S GUIDE

-129-

Figure B-6 : OPERATION REQUEST CODE

Hexadecimal Configuration Operation Requested
40 Read cards
42 Print or Punch

° The DELTA field third and fourth octets specify the length of the data field which participates

in the data transfer operation.

. The DELTA field fifth and sixth octets specify the location of the first octet in the store which

participates in the data transfer operation.,

° Data transfer operations may time share the central porcessor. A pair of input/ouput opera-
tions designed to effect time sharing is given as follows :
1. An output preset operation is specified, using channel 2.
2. An input execute instruction is specified, using channel 1, When the channel 1 operation
is initiated, the channel 2 operation is initiated as well. The input/output data transfer

operation is completed when the longer of the two requests is completed.

° Data is read or written from left to right (ascending locations) by the card and printer opera-
tions.
. Cards may be read in packed or unpacked form.

Unpacked form is standard Hollerith card code. Each column generates an octet as shown

below :

@ E o ” n 5 / USER'S GUIDE

-130-

PER

DATA
TRANSFER
Packed form is used to generate a single octet from two columns.
813lC|4
100010011 1010[0100
Only tte right quartet of the standard internal configuration of the card column enters the
store locutions used.
® When an input/output operation, either presetting or execute, is given on channel 2, the
channel 2 transfer parity error indicator is set to O.
° When an input/output operation is given on channel 1, the channel 1 transfer parity error
indicator is set to 0.
° At the end of a data transfer operation on channel 1, LOC (store octets 0254 and 0255) con-

tains the location of the octet to the right of the last octet which participated in the data

transfer.

° Data transfer operation which use channel 2 must reference a data field which has an
address that is a multiple of 256 plus 2, i.e., of the form 256m+2., The contents of the two
left most octets are used to control the operation, which is here assumed to be print only.
(The length of the field printed is, as noted, dependent upon the physical characteristics of

the printer model, and is not given here).

. Locations which participate in an output data transfer operation are unaltered by the
operation. The two print control octets to the left of the field to be printed are, however,

altered by the operation.

° The ZE/NZ indicator is used to record the cause of the termination of an input data transfer
operation. An input data transfer operation may be terminated when a field of the specified
length has been filled or when the end of the input has been detected.

A 0 in the ZE/NZ indicator at the end of an input data transfer operation indicates that the

operation terminated when a field of the requested length was transferred .

A 1 inthe ZE/NZ indicator at the end of an input data transfer operation indicates that an

end of input signal was received.

@ IED I] ﬂ 5 USER'S GUIDE

-131-

PR

ATA
TRANSFER

. A 1 in the applicable channel parity error indicator at the end of operation on either channel

indicates that a parity error was detected during the transfer of the data.

PROGRAMMING PRACTICES :
Parity error indicators are reset prior to the initiation of input/output data transfer operations and
should be tested after each operation. A peripheral status test operation followed by a conditional

jump tests for parity error.

A full print line is always printed. The programmer should, therefore, make certain that any

unused positions are cleared before printing takes place.

The card punch buffer is cleared after punching so a partial card may be punched without the

requirement that blanks be supplied for the unused columns.

The output area for channel 2 must be defined as 256m+2, An Origin Assignment (ORG) instruc-
tion with an operand specification of R can be used to define the print area. (See the ORG

Directive, page 160),

EXAMPLE

Time Sharing Sequence

A output print operation is given in the preset mode, followed by an input read cards operation in
the execute mode. Specification of preset or execute mode is made in the first octet of the DELTA
field referenced by the instruction, as shown. After completion of both operations, tests are made

for transmission errors as well as for end of cards and paper.

. @ Ec n 05 USER'S GUIDE

-132-

-€€T-

Gl0-39

JAIND S, ¥9dsn

NAME OPERATION
40

OPERANDS

74

PAGE | LINE
Ne Ne
2 33]as 35136

41 J42 451 46 147

1 e , oy T, P YT, T, I, ME, S HARE, | ., . ,
L I, F.OR, CHANWNEL, 2, , + { + .
P JI.E, F.OR, CHANNE L, 1., 4 4 o o

R.E.S,T

,;,;X.‘.4.2,;L,.

P.R, 1, NT.,+,0,0,2,(,0,1,3,6,),

E

X, E.C,

~ ’
L, X, 4.0 .,

ROEVAD, o 0 v 0 oy

e P S S SO
B.E.A.D, e e S S
i 1 A A 1 i I . 1 1 i) i % 1 1 1 A 1 1 1 A1 1 : 1 I 1
e ,U0.P PR I,NT, A/REA, NEEDED, . . |
N 2056, 4,20
P.R.IN.T e ; T ; R
e T O S S

T,

E,.$.T.,2

X 44"

TlElelTL 1C|H|A|NINIE|L| 121 L

r.e.s. 7.1

X, a4

T.E,S, T, .C.HANNEL, 1, |

., P.REST, |

S
0
3
0
S
0
S
0
.S
0
5
0
S
0
5
0
S
0
5

Voo V]]vlvjolo|vlv]|la|c|lnwln|a|lalw|lwININ]I=|~]O

S S S S S R
N oy EVXVENC e
e ' 4T, E,$, 7,2, ,T,E,S.T, PR, I, NT, E,R,RO,R
— ., E.R,ROR, T, O L E,RR.O.R,_,ROUT I.NE
; : R.|.T.E. _E.R.RONR, ., [.

3 N 4. T. €8, 7,1, ,T,E,S. T, R E.AD, ERR.,0 R,

A I .,.E. RROR, 7,0, ,ERROR, ROUT.I.NE

81 A.D, (ELRROR, . . o . . v v v v vy

M S S S S R S S S

[H3dsnval]

id

viva

~gT-

Gl0-319

IAIND S,9Isn

Figure B-7: PERMISSIBLE CONFIGURATIONS OF THE FIRST OCTET IN A DATA TRANSFER INSTRUCTION

A8 || meur ourrurl| tsc 1 ptsc, Jlrackzol unsackeo [l exceute | maser Ty aweo CANEL CHARNL
00 X X X X X X

04 X X X X X X

10 X X X X X X

1 X X X X X X
14 X X X X X X

15 X X X X X X
19 X X X X X X
20 X X* X X X X

24 X X* X X X X

30 X X X X X X

34 X Xx X X X X

40 X X X X X X

44 X X X X X X

50 X X X X X X

51 X X X X X X
54 X X X X X X

55 X X X X X X
59 X X X X X X
60 X X X X X X

70 X X X X X X

74 X X X X X X

5D X X X X X X

* for use with magnetic document readers only -

STATUS
TEST

CALL PERIPHERAL PER
Peripheral Status Test
PER U, DELTA

The status of the peripheral unit specified in the PER instruction is tested according to the

specification given in the DELTA field.

INDICATORS AFFECTED

UF/OF ZE/NZ
! 0 Test condition not present
1 1 Test condition present

NOTES :

o The DELTA field first octet specifies the operation and the channel to be used
(See Figure B-8)

. The DELTA field second octet specifies the condition which is to be tested
(See Fin .re B-9) ‘

PROGRAMMING PRACTICE :
A Jump on Condition (JC) instruction must be used to interrogate the indicator set in

response to the status test operation.

EXAMPLE

A test is made for the end of o printer page. DELTA contains the operation specification.

AGE Lm_js_ NAME J—BPERATIONJ' OPERANDS
2 3 4_3 6 40014 1|42 AS AT 74
0,2]o s|D.E.L.T A}::]D.P Xt Cc1r X067
10 § :.:‘: . sl
vsl L Bl
2,0 B IR % I e
2.5 ~{PER _FIXYCO’ DELTA et
I T T e ™

@ ED U U 5 USER'S GUIDE

-135-

PER

STATUS
TEST

Figure B-8 MODE AND CHANNEL SPECIFICATION FOR STATUS TEST INSTRUCTIONS

Ist Specification

Octet

Cco Wait until the peripheral is free; use channel 1
C1 Wait until the peripheral is free; use channel 2
Cc4 Execute immediately oﬁ channel 1

C5 Execute immediately on channel 2

Figure B-9 STATUS TEST SPECIFICATIONS

2nd Condition tested
Octet
01 Controller ready
03 Error in transmission
05 End of cards
05 End of Page
12 Hopper Empty
12 End of Paper
14 Out-of~Service
1E Stacker Full
42 Data Transfer Error Channel 2 A
44 OR, of any of the preceding tests applicable to a given peripheral unit
10 Cards ready to feed
2E OR, of
End-of-Service
End-of-Medium
End-of-~File
Error in transmission

GE-108

USER'S GUIDE

-136-

CALL PERIPHERAL PER

Peripheral Unit Control

PER U, DELTA

The peripheral unit specified in the PER instruction is selected to perform the control operation

specified by the DELTA field.

INDICATORS AFFECTED
UF/OF ZE/NZ

1 0 set prior to operation
NOTES:
° The DELTA field first octet specifies themode of operation and the channel to be used,
(See Figure B-10)
° The DELTA field second octet specifies the control operation to be performed. (See

Figure B-11)
° The UF/OF indicator is made 1 and the ZE/NZ indicator is made O prior to operation.

Neither is affected by the operation.

PROGRAMMING PRACTICES:
If the status of the UF/OF and/or ZE/NZ indicator is meaningful, it should be saved or utilized

prior to the peripheral unit control operation.

The peripheral unif control operation may be used to reset some error conditions detected by the

peripheral status operation, namely, a read or punch error indication.

Spacing of the printer pages may be performed using Peripheral Unit Control PER instructions.
The operations affect the spacing of the printer page accord ing to a format controlled by the

position of punches in a paper tape loop inserted in the printer.

The spacing operation performed by the selection of a given carriage control tape channel should

be checked against the information provided with the printer which is used.

The Bypass operation, referred to in Figure B-11, is not discussed. Information about its use

will be given in future documents,

@ E o U ” 5 USER'S GUIDE

-137-

UNIT
CONTROL

The Feed cards operation is utilized with some card reader models. Information provided with the

equipment should be checked.

Figure B-10 :CHANNEL SELECTION FOR PERIPHERAL. CONTROL

1st

octef Specification

80 Use channel 1; wait until the peripheral unit is free
81 Use channel 2; wait until the peripheral unit is free
84 Use channel 1; execute immediately

85 Use channel 2; execute immediately

Figure B-11 ; PERIPHERAL OPERATIONS FOR UNIT CONTROL

2nd
octet Action Requested

0A Single Space

0oC Feed Card

47 Reset Error

48 Select Stacker

51 Vertical Paper Throw, channel 1

52 Vertical Paper Throw, channe! 2 printer carriage control paper

tape loop

57 Vertical Throw, channel 7

59 Double Space

A0 Switch on Bypass

Al Switch off Bypass

EXAMPLE :

A read error is reset on the card. DELTA contains the operation specification,

ﬁnGELhaEl NAME tpERAnoN OPERANDS
2 3 4_3 & 40§84 1]42 45846847 74
0,1j0 sIDE L T A:ID. P X' 80’ ., x'v47"

] I 32 : ; T T

15) { o o o N -

2 0 &8 ‘A e .] - l =

25 JPER }X 807 . DELTA . . .

@ Ec H U5 USER'S GUIDE

-138-

PART I

DIRECTIVE INSTRUCTIONS

Directive instructions specify action to be taken by the assembler rather than by the system.
Directive instructions are not translated into executable machine language instructions; they
provide parameters for use by the assembler in setting up data fields and give direction for

assembler action and program loading.

Directive instructions are written in the same format as the Primary instructions, according to the
rules presented in SECTION A, PART II, "WRITING STATEMENTS IN THE GE-115
ASSEMBLY LANGUAGE", There are additional conventions used in specifying the operand
fields of the definition Directive instructions. These are explained in the description of the

Directives, below.

All the Directives of the GE-115 Assembly Language are described in this section. The

Directive instructions are grouped according to similarities of assembler action as shown below:

DEFINITION = Instructions which direct the assembler to allocate store areas and define data:

Define Store Area DS
Define Constant DC
Define Peripheral Field DP

PROGRAM CONTROL - Instructions which direct operations of the assembler that affect the

assembled program:

Start Program STRT
End Program END
Origin Assignment ORG

USER'S GUIDE

GE-109

-139-

ASSEMBLY LISTING FORMAT - Instruction which direct operations of the assembler that affect

P ooy iy £
[

the formai of the iisting produced by ihe assemblei during assembly of the program :
Comment *
Eject Present EJEC
Line Feed LF

The format shown in Figure B-1 in the introduction to the Primary Instructions is used also
to explain each of the Directive instructions. The conventions of notation described in the
discussion of the Primary instructions apply to the Directives as well. There is an additional

notation used in the descriptions of the definition instructions, as shown below :

4dd The use of "d", written in lower case indicates that a three digit duplication
factor is written with a field definition.

(nnnn) The use of "n", written in lower case is used for field lenght. A four digit |e;19ht
may be specified in the DP Directive.

constant The use of the word "constant™ written in lower case indicates that character,
hexadecimal, or address constants may be defined. The ways of writing the
constants are explained in the description for each of the instructions for defining
constants.

descriptor The use of the word "descriptor" written in lower case indicates that an octet is
defined which specifies the characteristics of a peripheral operation. The
descriptor may be written in any of the ways an immediate data item is written.
(See WRITING STATEMENTS IN THE GE-115 ASSEMBLY LANGUAGE).
It is recommended that the hexadecimal representation be used.

operation The use of the word "operation" written in lower case indicates that an octet is
defined specifying a type of peripheral operation. The operation may be written
in any of the ways an immediate data item is written. It is recommended that the

hexadecimal representation be used.

@Eu [] ” 5 — USER'S GUIDE

-140-

DEFINITION STATEMENTS

Definition statements direct the assembler to allocate store area to data fields and to generate
constant values to be incorporated into the assembled program. Names may be associated with
data fields to permit field references in the source program. Every named data field must be
defined by a definition statement. The assembler uses the information contained in the definition
statements (name, length, ‘area reservation) to translate field references and assign locations to

data and constants, Defined constants are included as data in the assembled program.

Definition statements are operative only at assembly time. At execution time they are present
only in the form of defined constants and data fields. If they are placed between executable
instructions, the system will encounter them in the course of sequential instruction execution and
will attempt to interpret data as instructions. Program results are unpredictable in such cases.

If definition statements are included between executable instructions they must be preceded by
an unconditional jump to the next instruction to be executed. It is strongly recommended that
the programmer avoid this waste of store area and operating time by placing all data and constant

fields outside the sequence of (i.e., before or after) executable instructions.

The Define Store Area (DS) instruction has the following characteristics:

. A field length is specified in the instruction. Duplication factors may specify that store
area is to be reserved-for 1 to 256 fields. Each field has the length specified.

° The name of the field is associated with a length. The field name and length are saved

for use in translating primary instructions,

The Define Constant (DC) and the Define Peripheral Field (DP) instructions have the following

characteristics:

° A single field may be specified; no duplication factor is uséd.

° The operand specification field of the so’urce‘language instruction contains constant data
which is translated by the assembler into the internal configuration of the data and which
is included in the assembled program.

. The name of the iield is associated with a length., The field name and length are saved for

use in translating the primary instructions,

The definition instructions differ in the way length is specified in each:

. The Define Store Area instruction requires length specification; the length defined may be
from 1 to 256 octets. A duplication factor may be used.

) The Define Constant instruction requires a length specification; the length of a data
constant may be from 1 to 10 octets. No duplication factor may be specified.

'y The Define Peripheral Field has an implied length which is either 2 or 6 octets. Neither

length nor duplication factor may be specified.

@ lEu [I n5 ' USER'S GUIDE

-141-

Length is specified by an L and three decimal digits. If a duplication factor is specified it is

written before the L and is a three digit decimal number,

instruction (DS is:
ﬁ?EleE NAME DPERATION OPERANDS
32 3334 3936 40412 asjack7 74
0.5]0.5In.ame. }[2IDS FildddL nnn , e
1.0 . L N X
i5 " 5 I — P ' i) -
2 0 e n d n .:. L e L 2 i 1 1 1 n I n 1 A A
2 51 B .

The formats of the data definition instructions (DC and DP) are:

PACEI-INE NAME OPERATION OPERANDS
32’5 34 3 6 40 v‘ﬂ! 42 A5t 467 . 7 4]
0,5]0 . slname [IDC fA Lnnn(pnnn). bigary elg!;u ivalent
tofname. EDC, ECLnnn const.ant . alphanumeric
' S5name. LPC X ILnnn. constant . hexadec,imal
2.0 - 9) . . L
2 5] | 5 B .
" W"VWV\

and:

ASEILINEL NaME PERATION OPERANDS
2 23)34 3M36 401412 A5 4647 74
Q.5)

0 5in.ame, [-I1D P bl descriptor_ operation ALPHA(nnnn) |

1.0 B) i i 7 . T

' 5{n.a.me. [-ID.P '] descriptor . operation L ,

240 A A i :.: i .:. 4 ‘l. 1 " 1 P “ e s 4 . " I i) 1 1

2,50 | 88 NN N : . . . N -
"Wwy—\

GE-108— ' v, Juty 1566

-142-

DS

DEFINE STORE AREA DS

DS ddd L nnn

The assembler is directed to reserve from 0 to 256 fields in the store. The leﬁgfh of each field

may be from 1 to 256 octets.

NOTES:
. The assembler reserves the requested number of contiguous fields in the store. Each

field is given the length specified.

. The assembler advances the store location counferiby (ddd) x (nnn) octets.-
. When no explicit number of fields is requested, a single field is reserved.
. When the number of fields requested is explicitly 000, the assembler does not alter

the store location assignment counter. No area is reserved. However, the name-
and length of the field are saved for translation of field references.
° When a name is written with a DS instruction which requests store area for more than

one field, the name is associated with the first field reserved. The length associated

with the name is.nnn. -
L

PROGRAMMING PRACTICE:

The DS is used to name and reserve data areas in the store, Data may be generated by the
program and placed in the reserved areas, or may be read into the areas allocated.

The DS with a duplication factor of 000 may be used to name a major field which contains
named subfields. To accomplish this, the programmer gives a name and a duplication factor
of 000 to the major data field., The named subfields are assigned duplication factors of at
least ‘001 . The major field name is associated with a length but does not cause store to be
reserved. The subfield definitions each cause a name and length to be associated with a
reserved store area. The total store area reserved by all subfields should be equal in length
to the length specified for the major field they constitute,

The DS with a duplication factor of 000 may be used to assign several data areas at the same

point because no store area reservation takes place.

USER'S GUIDE

BE-115

-143-

DS

EXAMPLES:

1) Assigning a left octet address, a right octet address and a length to a named field.

PASEILINE] NaMmE OPERATION OPERANDS
32 33)34_ 3 36 40]4 |2 4514647 7 4§
lo,lolsALPHAi:?DS -]LO. 16 . ,
1.0 BS - L L) T
15 . 88 -) t - + .
2.0 IR) . j - . .
2 5 :': L " a I 1 1 T— 4 "
e —— —aT S

The assembler assigns a left octet address, a length and a right octet address to the name, ALPHA,

The store location assignment counter is increased by 16 octets.

2) Use of the duplication factor to reserve store area.

Pﬁ?‘fl'-mj NAME PERATION OPERANDS

32 3334_3 36 404142 45046447 7 4]

02[0 s|BET.A [0S F|0B0L 002") ———
1o | 3 o j) L ﬁ
15]) o .
2.0] , ,, . N
25| . - T T) .,

WW\

The assembler assigns a left octet address, a right octet address and a length of two octets
to BETA, The duplication factor causes the store assignment counter to be increased by

050 x 002 = 100 octets.

@Ec [| [] 5 USER'S GUIDE

- 144~

DS

3) Use of a duplication factor of 000 to define subfields within a field.

ﬁEELL,_Es[NAME DPERATION OPERANDS N
32 3 4 3536 4044142 AslasM7
03[0 sINEME [0S kJoooLO016 _ - .
t 0INAME 153D S| jLO00O8 . - \ e
1 sINAME 2}3D.S 2JL 008 : . s N-—
2 0] I B) . . e s
2.5 N . NN
N T e SN

NAME 1 and NAME 2 are subfields of the field NAME.

The assembler assigns two addresses and a length of 16 octets to NAME but reserves no store
area. ‘ _

The assembler assigns two addresses and a length of 8 octets to NAME 1 and reserves 8 octets
of store for the field.

The left octet address of NAME and NAME 1 are the same.

The assembler also assigns two addresses and a length of 8 octets to NAME 2, and reserves
store area.'

The right octet address of NAME 2 is the same as the right octet address of NAME.

The three definition statemeénts cause the store assignment counter to be increased by

0+ 8+ 8=16 octets.

@E“U [l 5 USER'S GULDE

-145-

DC

DEFINE CONSTANT DC
Character Constant

I bC CLOm',......}

The assembler is instructed to translate the specified character constapt contained within the pair

of apostrophes. If the DC instruction is named, the length (001 to OqO characters become 110 10
e SRR SN S N bl

R o o

octets) and store addresses are saved for translating symbolic references to the constant field.

NOTES:

-Q The assembler translates the specified constant into the internal format used by the system.
) Each graphic character is translated into a full octet.

° When the length specification exceeds the number of characters written in the operand

specification, the assembler fills the field with blanks to produce a field of the specified
length. Blanks are placed. at.the right of the.explicit constant.
. When the length is less than the number of characters written it is a mistake (See Figure

A-7,. GE-115 ASSEMBLER MISTAKE CODES).

PRO GRAMMING PRACTICES:
The character constant definition may be used to prepare both numeric values which serve in
arithmetic (decimal) operations and alphanumeric fields for printing.

Note: The first digit of the length must be zero; a maximum of 10 octets may

be specified.

@ E ° u !] "Ll% : USER'S GUIDE

-146-

EXAMPLES :
1) Using the DC to define a character

constant.

AGE LuEl NAME I EPER“'ONVL OPERANDS
3 4 {] 4004 182 A48 M7 74
otfo sh TEM FFioc Filciloooe'e§1..25" : N
1.0 - 8%] %] .
s T 23 . T)
2.0 N N = . .
2.5 N N

The assembler assigns a left octet address, a right octet address and a length of 9 octets to

DC

ITEM and generates for placement in the field the internal representation of the defined constant.

As the specified length (9 octets) is greater than the explicit leng. h (6 characters), 3 blanks will

be inserted in the field to the right of

the explicit constant.

2) Assigning a name to a defined constant longer than 10 octets.

FﬁfEle_i “NAME PERATION OPERANDS
2 3 4_3 6 4004 182 A4 7 7 4
0,2]0 SID EP.T 4D, S 10001020 S —
0 . tdpc FlcL 010 ' TECHNICAL?, , .
150 . 3D, C Jc. L0100, ASS IS TANCE', R
2.0 83] L I N
2.5 i . R e
TN et s S N

The assembler assigns a left octet address, a right octet address and a length of 20 octets to DEPT

and generates for placement in the field the internal representation of the two defined constants,

reserving 20 octets of store area for the defined constants.

3) Special case DC statement

‘for use of the apostrophe.

ASEILINED NaME J“t:enmo‘N b OPERANDS)
IQ 3 OTsJ’AP QSTEADC, . FICL 002 ' ' ' Tse. o0f"C" type DG stmt]
1 oJAP OSTEIDC, EIXL. 002 "TAF " hex i i
Vs 1 B8 N N
2,0 . 83 33) L N))
2.5 K . -) T ~ V X
SN I T i W R

USER'S GUIDE

BE-105

-147-

DC

DEFINE CONSTANT DC
Hexadecimal Constant

DC XLOnn' .eeeas'

The assembler is instructed to translate the specified hexadecimal characters contained within
the pair of apostrophes, If the DC instruction is named, the length (001 to 010 digit pairs

¥
become 1 to 10 octets) and store addresses are saved for translating symbolic references to the

constant field.

NOTES:

. The assembler franslates the specified constant into the internal format used by the
system,

. When the length specified exceeds the number of digit pairs, the osysemb‘ler creates

full octet zeros in the left of the defined field for each pair omitted.
. When the length specified is less than the number of digit pairs written, it is a
mistake. (See Figure A-7, GE-115 ASSEMBLER MISTAKE CODES).

PROGRAMMING PRACTICE
The hexadecimal constant definition may be used to prepare translating tables or editing masks.
(See TR, page 114 , and EDT, page 109). Codes which cannot be read as graphic characters

may be placed in the store as hexadecimal digit pairs.

Note : The first digit of the length specification must be zero. A maximum of 10 octets may

be specified.

@ [ED I] ”5 ‘ ' ' USE.R'S GUIDE

-148-

DC

EXAMPLE:

Use of the DC Hexadecimal Constant to define on editing mask.

Q,GE Lh“jf NAME l EPERATION GPERANDS
2 33§34 3 6 40]a1@2 48§46 7 74]
0 1Jo sIMAS K [:ID.C X L0009’ 50,2088B202021582020" .
1.0 XN ot
] I . RN RN
20 i 14 . -y a2 1 i 1 A Aed
2 5 A — 1 A 1 s n N i i
i T R T O g W

The assembler is directed to assign addresses and a length of 9 octets to MASK, and to generate
and store in the 9 reserved octets the internal representation of the defined hexadecimal constant.
The special characters of the editing mask do not have graphic representations : therefore they must

be defined as hexadecimal constants.

@IED ” []5 - USER'S GUIDE

-149-

DC

DEFINE CONSTANT DC
Address Constant

DC ALOOn (ALPHA)

The assembler is instructed to transiate the specified address reference contained within the pair of
parentheses. If the DC instruction is named, the length (001 or 002 octets) and location of the

constant in the store are saved for translating references to the constant field.

NOTES:
D) Translation of an address constant depends upon the way the address is specified. The
address specified may be written in any of the formats used for operand addresses.

A symbolic name of a field or instruction is translated as the laff.actet address of the field.

Any increment or decrement is computed from that address,

An absolute address (never given an increment or decrement), written as four decimal digits,
is translated as the internal equivalent of the number.

. When the program is loaded, the translated address is placed in the specified number of
octets, Addresses require two octets. When only one octet is specified, the rightmost of

the pair generated is used in the DC field.

PROGRAMMING PRACTICES:
The address constant may be used to set up a value to reset an address modified during program

execution.

Note: The first two digits of the length specification must be zero ; a maximum of 2 octets

may be specified.

@IEU n U5 ’ . USER'S GUIDE

-150-

DC

EXAMPLES:

1) BETA is defined as an address constant of two octets:

AGE[LINET Name. PERATION| OPERANDS]
2 3 4 3 36 4034 12 450467 7 4
0.3

o s|BETA [4D.C_ FJAL 00210448 , .

- R .

wljotwlioln

[

The assembler assigns a field of two octets to the name BETA and stores in the field the internal

representation of the defined address constant.

BETA
INTERNAL 0000 0001|1100 0000
REPRESENTATION 1 L
HEXADECIMAL] 1 c 0
EQUIVALENT

2) BETA is defined as an address constant of one octet:

AGE ,',ﬂ NAME upsamon OPERANDS
32 3334 3IWSE 400412 L L Jd 74
0.2Jo.sl8 ET.A [:DC AL 001 LALPHA+001.). s
) I & - e
[E 8) . N
2.0 e . . e
2 S L L A L " n + A R —
VVW\

The assembler assigns a field of one octet to the name BETA and stores in the field the internal

representation of the low-order octet of the generated address.

* ALPHA has been defined as a 4 octet field, stored in locations 0510-0513.

BETA
INTERNAL 1111 1111
REPRESENTATION
HEXADECIMAL F F
EQUIVALENT

USER'S GUIDE

GE-118

-151-

DP

DEFINE PERIPHERAL INSTRUCTION DP
Data Transfer

DELTA DP descriptor, operation, ALPHA (nnnn)

The assembler is directed to set up a 6-octet field for reference by a da.a transfer Call

Peripheral (PER) instruction.

NOTES :

. The first octet specifies :
Channel
Direction of transfer-input or output
Data Format - packed or unpacked
Time sharing status - preset or execute
Operation mode - immediate or wait

Data Reference direction - right to left or left to right

. The second octet specifies the operation

. The third and fourth octets specify the length of the data field which participates in
the transfer operation.

. The fifth and sixth octets specify the location of the first octet in the store which

participates in the data transfer operation.

PROGRAMMING PRACTICES :

The hexadecimal configuration of the first octet is given in Figure B-7 of the second octet in
Figure B-6 .Any of the forms for specifying an immediate operand may be used, but it is recom=
mended that the hexadecimal configurations shown in the table be given in the standard hexa-

decimal specification format.

In ALPHA field reference indicates the location of the first octet that is to receive data or of the
location of the first octet to be transmitted . ALPHA may be written in any of the standard address

reference forms. If a length is specified, four digits are used to write field length.

@ IED [] H 5 | USER'S GUIDE

-152-

EXAMPLE .

DP

The assembler is instructed to set up a data field for a card read
Assume ALPHA

operation.

A card is to be read into the field ALPHA.

to be located at store location 0830.

0.1

AGEJLINE
NS | Ne

32 33§34
0 4

loPERATION OPERANDS

45146447

74

12
.E. D P .zl:

X‘10’.X‘40’gALPH,A(0064). s

o “ " " P .

NN ==

3
5
0
5
[
5

The assembler assigns a field of six octets to the name DELTA and stores in the field the internal

representation of the defined peripheral constant.

INTERNAL
REPRESENTATION

HEXADECIMAL
EQUIVALENT

00010000010000000000000001010000000000001 100111110

1 04 0 0 0 4 o0 O 3 3 E
\ N — N —/
Length = 64 Location Alpha

USER'S GUIDE

GE-118

-153-

Rev. July 1966

DP

DEFINE PERIPHERAL INSTRUCTION DP
Peripheral Status Test

DELTA DP descriptor , operation

The assembler is directed to set up a two octet field for reference by a peripheral unit control

operation. (See PER, page 135)

NOTES :
' The first octet specifies the mode operation and the channel to be used.
. The second octet specifies the condition to be tested.

PROGRAMMING PRACTICES :

The hexadecimal configuration for the first octet is given in Figure B-8 , and the hexadecimal
configuration for the second octet is given in Figure B=9 . Any of the forms for specifying an
immediate operand may be used, but it is recommended that the hexadecimal configurations shown

in the table be given in the standard hexadecimal specification format.

EXAMPLE

The assembler is instructed to set up for an instruction to test end of o printer page.

PﬁgE l'r’wg [PERATION OPERANDS
32 33-4 5 _avjack aslachy o _ e 74)
0.3]0.%] op, _FBIX co -, X 064
! u ": ':. T
! '5 ':: + :': — — A 'y — L
2.0 U W ‘:. NI b e R e e SR S—
2.2 5 e]
/ e
DELTA
INTERNAL
REPRESENTATION 1 1OOLOOOO OOOO£1O 1
HEXADECIMAL 5
EQUIVALENT c 0 0

The assembler assigns a field of two octets to the name DELTA and stores in the field the internal

representation of the defined peripheral constant.

GE-D05

-154-

DP

DEFINE PERIPHERAL INSTRUCTION Dp
Peripheral Unit Control

DELTA DP descriptor, operation

The assembler-is directed to set up a two octet field for reference by a peripheral unit control

operation, (See PER, page 135)

NOTES :
. The first octet specifies the mode of operation and the channel to be used.
° The second octet specifies the action to be taken.

PROGRAMMING PRACTICES :

The hexadecimal configuration for the first octet is given in Figure B=10, and the hexadecimal
configuration for the second octet is given in Figure B-11, Any of the forms for specifying an
immediate operand may be used, but it is recommended that the hexadecimal configurations

shown in the table be given in the standard hexadecimal specification format.

EXAMPLE :

The assembler is instructed to set up a field for an instruction to double space on a print page.

AGEILINEl NAME PERATION QP ERANDS
Ne | Ne I I t d
192 3. 435136 4014 142 45| 4647

0.2 D.E.L.T.ALD. P wx 81" X597

"

wio|lwmlo|n

NI [~ [~ [

The assembler assigns a field of fwo octets to the name DELTA and stores in the field the internal

representation of the defined peripheral constant.

DELTA
INTERNAL
REPRESENTATION 100010001 010111001
8 1 5 9
HEXADECIMAL
EQUIVALENT

The assembler assigns a field of two octets to the name DELTA and stores in the field the internal

representation of the defined peripheral constant.

[[%‘EDU H5 USER'S GUIDE

-155-

”CTHE ASSEMBLER PROGRAM CONTROL INSTRUCTIONS

The GE-115 Assembler accepts directives for the placement of the assembled program and
for the specification of the first instruction to be executed. The assembler program control
statements make it possible to specify some of the location assignments for the assembled

programs as well.

Assembler program control instructions are processed as the source program is assembled and
affect the assembled program. One of the control Directive operations, the Start Program
Assembly (STRT) instruction, includes the specification of the peripheral controller to be used

by the assembler in preparing output cards.

The assembler program control instructions have the same general format as the other
Directive instructions and the Primary instructions. The name field is not used because the
Directive instructions are operative only at assembly time and may not be cross-referenced by

assembled program instructions at execution time.

One of the formats of the control instructions, shown below, introduces a new notation in the

operand field as follows:

s - used fo indicate that a one-digit numeric code specifying the size of the store

must be written,

cc used to indicate that a numeric two-digit specification for an input/output

controller must be written.

PAGE Lhﬂ NAME PERATION OPERANDS
32 33134 35436 4004 142 a5446m7 7 4§
0.7]0,5 o, p JAL P HA , , .
1.0 , 52 N 2 . L .
1.5 n . o R) N
2.0 & I .]]] L
2.5 -) .,] A o
AGE Li!L NAME ‘I-E’ERATION OPERANDS
2 33§54 336 4004 182 45| 467 74
o3lesf ., EAsSTRTEIdddd , s, cc. . e
1,0 R B] o .
15 = 32 N X . N
20 X R 4 L X T N M
2 5] 5 B3 . L] .]
. ™ — T S

@ E o U ” 5 USER'S GUIDE

-156-

STRT

START PROGRAM ASSEMBLY STRT

STRT dddd,s,cc

The assembler is directed to start assembling the program at the store location specified by dddd.
The program is assembled for a store of the size indicated by s. The cc value specifies the

peripheral controller used by the assembler to punch cards produced during assembly.

NOTES:

° The first octet in the store used by the assembler for assigning locations to the program is
the octet specified by-the valve of dddd.

° The store size available for the assembled program is assumed to be that indicated by the

code value s.

' The punch instruction used by the assembler is executed through controller cc.

PROGRAMMING PRACTICES:
The STRT card must be the first card in the program being assembled. An error halt occurs when

any other card is read as the first card of a source program.

The address for program assignment must be expressed in four decimal digits and may not specify

a value below the limit of the store area required by the system loader and subroutines, as

shown below:

SYSTEM LOADER LIMIT
Punched
Cards ‘ 0448
Only
Paper Tape 0512

@Ecn []5 USER'S GUIDE

-157-

STRT

The value of s indicates a store size by a code. The values for the store sizes used are shown
below:

STORE SIZE s
4096 1
8192 2

The connectors that may be used for punch attachment and the code values are shown below:

CONNECTOR cc

3 00
4 64
EXAMPLE:
AGE Lqu NAME DPERATION OPERANDS
2 3 ‘_3 6 4014 142 4584607 74
0.1j0.5 kLA‘E‘STRT‘:'ZO448;2)OO . —
"W\/v\

The assembler is directed to assemble a program for a store size of 8192 octets. Assembly

begins at location 0448, The punch unit is specified as attached to connector 3.

@ E a U ﬂ 5 USER'S GUIDE

-158-

END OF PROGRAM END

END SIGMA

The assembler is given the indication that the last card of the source program has been read.
When the assembled program is loaded at execution time, the END card causes the instruction

specified by SIGMA to be the first instruction executed.

NOTES:
° The END card must be present. When no END card is present, the assembler attempts to
read cards seeking the END card. An end-of-file condition occurs on the card reader.

° SIGMA may be a symbolic or an actual address.

PROGRAMMING PRACTICES:

The END card terminates source program reading by the assembler, wherever it appears.

The SIGMA field operand specification must refer to the first instruction to be executed in the

assemblied program.)
The instruction referenced need not be physically the first executable instruction in the

program. It is logically the first instruction, i.e., the first operation to be performed.

EXAMPLE:

The instruction named BEGIN is the first instruction to be executed in the assembled program.

ASEIMINE] NamME PERATION OPERANDS
32 3 4 336 AOF4 142 ABFACMTY 74
QWW“:' E.N D w\w

@IED ” u5 USER'S _GUIDE

-159-

ORG

ORIGIN ASSIGNMENT ORG

ORG dddd
I ' * 4nnn
* -nnn

R

The assembler is directed to use the value specified in the operand field of the ORG as a store

assignment value,

NOTES:

. The assembler program maintains a location counter for store assignment. Store
addresses are assigned sequentially. When the ORG is encountered, the assembler
resets the store assignment counter to the value specified by the ORG instruction.

° R as an operand causes the assembler to reset the store assignment counter to the next
higher octet location which is amultiple of 256 octets. When the R operand is
encountered by the assembler at a point at which the store assignment counter contains
a value that is a multiple of 256 octets, no resetting takes place.

. The portion of the program following the ORG is.assigned store locations sequentially

from the specified octet unless another ORG is encountered.

PROGRAMMING PRACTICES:
An ORG with an absolute address operand may be used to define data fields at desired points

" in the store.

The ORG with the cperand R is used to set up fields for use with the Translate (TR) instruction

and for input/output on channei 2,

The ORG with the asterisk and an increment or decrement may be used to

modify the store assignment counter with respect to its current value.

The absolute address assignment allows for defining different data areas at the same fixed store
address. Differenf names can be used with Define Store Area instructions at the same acfual
address. However, the use of absolute values is not recommended. The DS instruction with a
zero duplication factor can be used without the ORG instruction to effect the assignment of

several fields to the same area (See DS, page 143).

@ Elm U I] 5 USER'S GUIDE

-160- Rev. July 1966

ORG

EXAMPLES:

1) The assembler is directed to reset the value in the store assignment counter to 0512,

Pﬁ‘?E LINE NAME OPERATION OPERANDS
32 33j34_3%36 40fa1h2 asjasky 74
0.1]0.5 ~}:ORG _E:O51.2 , R -

1.0 R 53 B . ,

‘ 5 5 n L i

2,0 X R A . NN —

2 5 :': e 1 e A e L

e ™ T T ST N

2) The assembler is directed to reset the value in the store assignment counter to the next

higher multiple of 256,

QEEILgJﬂ NAME PERATION OPERANDS
32 3 4 3 6 404 1|2 45§46 K7 7
o205 . . Fjorc FIR -
10] =) .))
I 5 L :.: Te i L A n X 3 L i
2.0 2 . . —
2.5 B8 . T ' T
#‘ - T

3) The assembler is directed to advance the value in the store assignment counter by 126,

Pﬁﬁthﬂ NAME PERATION OPERANDS

32 33343436 40]41ju2 asjacp7 74

0.3]o.5 JORG EJ*+126 \ . s L
1.0 N 33 R | . N
15] T T
2 0 4 s i i . A 2 A 1 1 n
2 s s n A 1 . e . . 'y L

N T et e

@En U I]5 USER'S_GUIDE

-161-

ASSEMBLY LISTING FORMAT INSTRUCTIONS

The GE-115 Assembler allows for control of the format of the program listing. The listing
format statements provide a means for the programmer to specify both spacing on a page and the
points at which a new page should begin. Text commentary is accepted for insertion into the

listing of the program.

The assembly listing format instructions are operative only at the time the listing is printed.
They allow for improved readability through formatting. Comments should be freely used as

aids to documentation.

Assembly listing format instructions are written in the same general format as the other directive
instructions and the primary instructions. The use of a name field in an assembly listing format
instruction is meaningless because the instructions are not present in the translated program at

execution time.

The format of the assembly listing format instructions is shown below :

ASEILINEL NaAME PERmONJ OPERANDS
2 3 A_3 3 4014 1|42 A 467 7 4]
0. 1]0,5 N +40.p & N .

¥

@ ED I] U 5 USER'S GUIDE

-162-

COMMENT *

Text

The asterisk (%) directs the assembler to print the text in the operand specification field.

NOTE : .
. The assembler inserts the text into the program listing. The card sequence determines the

position of the comment. The assembled program is not affected by the comment instruction.

PROGRAMMING PRACTICES :

Column 46 must be blank. Any comment used must not begin to the left of column 47.
Comments should be used to head program sections and to describe the process performed by each.

The text field of the Comment instruction may contain any of the print characters. Blanks may

be used to improve readability.

The comment card may be used to continue a comment which begins in the operand field of an
instruction. This should be done to avoid the use of cryptic comments on instructions. Comments

are an important form of documentation.

EXAMPLE :

The comments will be printed within the assembly listing.

ACEILINEL NAME | EPenmon OPERANDS
3 4_3 6 4014182 Al 467 7
0.1]0.s 5% 0 b . R
voy o g JCOMMENTS MAY BE . INSERTED AT
L] R o . . \ , N —
2,0 Sl ~JANY POINT I N A PROGRAM .
25 . * XX] L K \ K .

@ED U U 5 USER'S_GUIDE

-163-

EJEC

EJECT PRESENT PAGE EJEC

EJEC

The assembler is directed to advance the paper on which the listing is being printed. An

advance to the top of the next page is requested.

NOTE:

. The present print page is advanced. Printing continues atf the top of the next page.

PROGRAMMING PRACTICE:

The EJEC is used to improve the readability and format of the assembly listing.

Logically separate routines should begin on new page.

EXAMPLE:

AGE '-;{;51 NAME | tPERATION OPERANDS
32 33134 _3 36 4004142 4544647 7 4
|0.1 os] — Fde JECkY . .
1.0 R 55 JTOP OF PAGE, 2 .
1 5) o T :
2 o L 4 4 I i 4 I n
2 5 1 1 1 I . s n A i "
N T S ST NG

The assembler listing continues at the top of the following page.

@IED I] []5 USER'S GUIDE

-164-

LF

LINE FEED LF

LF

The assembler is directed to advance the paper on which the listing is being printed. The

operand symbol specifies the spacing requested.

NOTES :
° The next lire printed is spaced according to the LF request.
. Standard spacing continues after that line is printed.

PRO GRAMMING PRACTICES :

The LF is used to improve listing readability.

Spacing that may be requested is shown below :

S Skip one line
D Skip two lines
1 Spacing as indicated by

channel 1 control tape punch

2 Spacing as indicated by
channel 2 control tape punch

7 Spacing as indicated by
channel 7 control tape punch

EXAMPLE .

The assembler listing page is advanced two lines before the comment is printed.

PAGE|-INE NAME PERATION OPERANDS
32 3 4 3936 404 12 4504687 74

0.1]0 .5 L 383 - —
x "ICOMMENT

10

| A

@ ED H U 5 USER'S GUIDE

-165-

SECTION C

GE-115

ARITHMETIC SUBROUTINES

GE-108

-167-

GE-115 SUBROUTINES

A subroutine is an independent sequence of programmed instructions which performs a standard
information processing task for a main program. A subroutine program is designed to function in a
manner that is independent of the program which utilizes the process.. Data is supplied according
to the subroutine requirements. The results of the subroutine operation are placed in a pre-defined
area for use by ‘the main program. A subroutine may be utilized repeatedly. All necessary

resetting of store areas used is done within the subroutine itself,

A subroutine must provide an entry point for use by the main program, referred to as the calling
program. This allows the calling program to jump to the subroutine. A subroutine which performs
a number of related functions, such as addition and subtraction, may have more than one entry

point to permit direct reference to each of the functions.

There must be, as well, a mechanism by which control can be returned to the calling program. In
the GE-115 , a single instruction is used to effect entry and to prepare for return. The Jump
and Return (JRT) instruction makes the entry to the subroutine and places the location of the next

sequential operation after the JRT instruction in LOC (store octets 0254 - 0255).

The flexibility of the GE-115 assembler allows the programmer to use a meaningful mnemonic

in the place of the JRT when writing subroutine calls, The mnemonic SUB is used.
Each subroutine uses the contents of LOC to return to the operation following the entry.

Data to be acted upon by the subroutines is placed in standard pre-defined areas in the store. The

locations used are described in the individual subroutine descriptions.

The general format of the entry to a subroutine is:

ASEI-INE] Name PERATION OPERANDS
2 4 _ 3536 40ja 142 45146 7
0, :

4S.U.B PIS I.GMA S .

SIGMA is the name of the subroutine being used.

@ Euﬂ [l 5 USER'.S GUIDE

-169-

Each of the myriad applications that may make use of information processing systems has its own set
of standard procedures. Any standard procedure may be programmed as a subroutine. One area of

general application, which may be included in more specific tasks, is that of arithmetic calculation.

This section discusses four arithmetic subroutines prepared for use with the GE-115 system.

The arithmetic subroutines described in this section process decimal data. Data is treated in

one of two ways : as unsigned values or as signed numeric quantities.

Data which is treated as signed data must be placed in the input area with an associated sign. |t
should be noted that signs used by the subroutines do not correspond to the internal configurations
for the graphic characters + and -. Signs are recognized in the subroutines according to the
configuration of the left quartet of the applicable sign octet. The negative sign is an A (1010);
the positive sign is a 4 (0100). The manner in which the signs are treated is described in the:

discussions of the individual subroutines.

Subroutines make reference to pre~defined areas in which data is expected to be placed. It is
recommended that the areas used by a subroutine be defined and given meaningful names by’ the
calling program. This can be accomplished by using the DS instruction to associate names with
the locations used by the subroutines. Any fields used, of course, must be defined in the octets
used by the subroutines. The ORG Directive instruction with an absolute address can be used to

place the data areas in the store octets referenced by the subroutines.

This might be done for the addition subroutine , YADS, for example by means of the sequence of

instructions shown below:

QEELmEI NAME thERATION OPERANDS
32 33)34 35136 40p4 182 45p46 7 74
o] I -lorG Fio204 . ,
1.0 1D.S. 0011016 ADDEND i
1,5 J0.R.G 410,233 . et R "
2,0 1D.S {0.0.1.L 0,01 S I.GN OF, ADDEND .
2,5 4D.S 2J0.0.1.L . 0,0.1 S 1.GN OF -AUGEND, |, L]
3.0 {0.R.G, }:10.2,3,6 — . . N , .
3.5 4Ds, . 1100,1.L0.1.6 AUGEND s R .
4.0 * . THE SuM REPLACES ., THE, ,ADDEND
4.5 OR.G, [:10,2,0.4 N - R L ,
5.0 ips. . }0.01.L,0.1.6 e e s
5.5 “orG. kdo.2.33 e,
6 0 DS, , £40,0,1,L 00,1, | . N L,

@I En [I l] 5 USER'S GUIDE

~-170-

A similar sequence could be used to position data for use with any of the other subroutines. Several
subroutines use the same areas for input and output. Therefore, it might be convenient to use
common names such as TERM 1, TERM 2, and RESLT, to avoid individual definitions like SUM,
DIFF, PROD, etc., for the same area.

It should be noted that the use of an absolute origin within the system software area causes the

assembler to print an L on the assembler listing. The mistake indication does not prevent assembly .

@ ED I] ”5 USER'S GUIDE

-171-

ADD DECIMAL, SIGNED YADS

SUB YADS

YADS forms the signed sum of two signed quantities. Prior to the subroutine call, the addend must
be placed in store octets 0204 through 0219 (16 octets) and the augend must be placed in store
octets 0236 through 0251 (16 octets). The sign of the addend must be in octet 0233; the sign of
the augend must be in octet 0234, The sum replaces the addend.

INDICATORS AFFECTED
UF/OF ZE/NZ

- 0 The sum is zero.
- 1 The sum is non-zero.
NCTES:
. The addend, augend and sum are each assumed to be 16 octets in length.
. YADS may use either the AD or the SD operation to generate the sum. YADS and YSDS

are entries to a single subroutine.

° Signs are examined prior to the operation. The right quartets of the sign octets are made
zero before the signs are checked. Each sign octet is then checked against a value of AO
(the negative ’sign configuration). If a sign is not AO, it is assumed positive. The
subroutine sets any sign octet that does not contain AO to a value of 40 (the positive sign
configuration).

° The status of the UF/OF indicator depends on the signs of the terms and their relative
magnitudes and does not necessarily reflect the result of the addition.

If the terms have the same sign, UF/OF = 0 indicates no overflow, and UF/0F = 1
indicates overflow.

If the terms have different signs, UF/OF = 0 indicates that the augend is greater in
absolute value than the addend, and UF/OF = 1 indicates that the augend is smaller than
or equol\ to the addend in absolute value.

. The addend is always replaced by the sum. If the signs of the terms are different and the
augend is greater in absolute value than the addend, the sum is generated in the augend
field and moved to the addend field prior to return.

. Quantities are assumed to be decimal. No check is made of the right quartets of the terms

to be added.

@En U U5 _ USER'S GUIDE

-172-

PROGRAMMING PRACTICE:

It is recommended that standard, named fields be defined in the manner described in the introduction

to this section. An alternate method for setting up the quantities for processing by the subroutine is

shown below:

AGEJLINE OPERAN
3'2‘033 4N_°g_J§s NAME 40 AthERATIOr‘sl 4607 ¢ oS 7
o.]o 5] Mvo Pio219 (16) ,ADDND{nn) MOVE, , .
1,0 “Imva Fo2651 (16)., AUGND (nn,), . TERMS
15 Imve tJo233(001.).,SADND ., , . SIGN .
2,0 dmv.c f]0o2.34 (001.),,SAUG, , ., .. .
2.5 “Is.uB fivAaps, . . N—
: N T e ST N

The order of the move operations shown above is immaterial. The length of the moves is shown as
the maximum field length to ensure that right quartet zeros are inserted in the left of the addend

and augend fields whenever the terms used do not occupy the full field allowed. The subroutine

always treats a pair of 16 octet fields.

@EU[I []5 USER'S GUIDE

-173-

PROGRAMMING PRACTICE:
It is recommended that standard, named fields be defined in the manner descriBed in the introduction

to this section. An alternate method for setting up the quantities for processing by the subroutine is

shown below:

FQOGE'LL,‘EJE NAME PERATION OPERANDS

2 3 4 3 3 4084 1 M2 4546%7 74

Q.1]0.5} M vao, k02,19 (,1,6,),, ADDND, (nn) MOVE, , .,
1,0 . Imvo ko251 (16,), AUGND {nn,) . TERMS
1,5 R jMVC 10,233 {(00.1.).,, SADND, . , St GN, s
2,0 -jMv.C 0234 (001.),,SAUG ., ., N
2,5 =is.U. B [IYADS , s . RN

T N WIS

The order of the move operations shown above is immaterial. The length of the moves is shown as
the maximum field length to ensure that right quartet zeros are inserted in the left of the addend
and augend fields whenever the terms used do not occupy the full field allowed. The subroutine

always treats a pair of 16 octet fields.

@Emﬂ ”5 USER'S GUIDE

=174~

° The subtrahend is always replaced by the difference. If the signs are the same and the

minuend is greater than the subtrahend in absolute value, the difference is generated in the

minuend field and moved to the subtrahend field.

) Quantities are assumed to be decimal in the right quartets. No check is made of the right

quartets of the fields which are processed.

PROGRAMMING PRACTICE:

It is recommended that standard, named fields be defined in the manner described in the

introduction to this section. An alternate method for setting up the quantities for processing by

the subroutine is shown below:

OPERANDS

h7 7 4}
-]0.2.19 (,16,),»SUBTR (.n,n,)
0251 (16). sMINUNI(nnN,),
20,23 3 (001)sSSUB_SIGN OF SUBT,
240234 (00,1), »SMIN S IGN OF MINU
{ysps CALL

The order of the move operations shown above is immaterial. The length of the moves is shown as

the maximum field length to ensure that right quartet zeros are inserted in the left of the subtrahend

and minuend fields whenever the terms used do not occupy the full field allowed. The subroutine

always treats a pair of 16 octet fields.

USER'S GUIDE

GE-109

-175-

MULTIPLICATION, DECIMAL, UNSIGNED, FAST YMULF

SUB YMULF

YMULF forms the unsigned product of two unsigned quantities. Prior to the subroutine call, the
multiplier must be placed in store octets 0204 through 0219 (16 octets), and the multiplicand in
store octets 0238 through 0251 (14 octets). A field of fewer than 16 octets may be specified for
the multiplier. An asterisk inserted to the left of the most significant digit in the multiplier field

acts as a field delimiter. The product is formed in store octets 0205 through 0234 (30 octets).

ADICATORS AFFECTED
UF/OF ZE/NZ
1 0 Always set

NOTES :

° The multiplier is assumed to be 16 octets in length , unless an asterisk is present in the
multiplier field. All octets to the right of the asterisk are treated as part of the multiplier
field.

° The multiplicand is assumed to be 14 octets in length. A zero right quartet must be placed
in the octet to the left, store location 0237,

° The product is placed partially in the octets which contained the multiplier ; the multiplicand
is unaffected by the subroutine operation.

. Multiplication is performed by use of the AD operation.

° The UF/OF and ZE/NZ indicators do not reflect the result of the operation.

° The terms which enter into the multiplication are assumed to be decimal in the right quartet.

No check is made.

PROGRAMMING PRACTICES :
It is recommended that standard, named fields be defined in the manner described in the introduction
to this section. An alternate method for setting up the quantities for processing by the subroutine is

shown below :

@E” U ”5 : v USER'S GUIDE

-176-

OPERANDS

M7 74

10219 (16.) sMUPLR (. n,n MOVE,'

1'0251(15))MUCNDV(14L_ TERMS AND

JCA % ”2902nn PLACE ASTERISK L

AYMULF CALL MULT I PLY, L
W

The length of the fields should be given as 16 for the multiplier, when no asterisk is used, as
well, and 15 for the multiplicand to ensure that high order left quartet zeros are inserted. The
subroutine treats a field of 16 octets for the multiplier, unless the asterisk is present, and a 14

octet multiplicand field. The high order zero quartet in the 15 octet multiplicand field is assumed
zero.

@EGU I] 5 USER'S GUIDE

-177-

GE-118

DIVISION, DECIMAL, UNSIGNED, FAST YDIVF

SUB YDIVF

YDIVF forms the unsigned quotient of two unsigned quantities. Prior to the subroutine call, the
dividend must be pylaced in store octets 0204 through 0219 (16 octets) and the divisor must be
pléced in store octets 0238 through 0251 (14 octets). A field of fewer than 16 octets may be
specified for the dividend. An asterisk inserted to the left of the most significant digit in the
dividend field acts as a field delimiter. The quotient is formed in store octets 0219 through 0234
(16 octets). The remainder is left in store octets 0238 through 0251 (14 octets).

INDICATORS AFFECTED
UF/OF ZE/NZ

0 0 The quotient is zero.
0 1 The quotient is non-zero.
NOTES:
° The dividend is assumed to be 16 octets in length, unless an asterisk is present in the

dividend field. All octets to the right of the asterisk are treated as part of the dividend
field.

° The divisor is assumed to be 14 octets in length. A zero right quartet must be placed in the
octet to the left of the most significant digit in the divisor, store location 0237.

. The quotient is placed partially in the octets which contained the dividend; the divisor is

replaced by the remainder.

. Division is performed by means of the SD operation.
° The UF/OF indicator always contains a zero at the end of the subroutine operation.
. A 0 in the ZE/NZ indicator at the exit from the subroutine indicates that the quotient is

zero; a 1 in the ZE/NZ indicator at the exit from the subroutine indicates that the quotient
is non=zero,

. The terms which enter into the division are assumed to be decimal in the right quartet. No
check is made.

. Division by zero causes an endless series of subtractions. No check is made of the divisor

before the subtraction is attempted.

USER'S GUIDE

-178-

PROGRAMMING PRACTICES:
It is recommended that standard, named fields be defined in the manner described in the

introduction to this section. An alternate method for setting up the quantities for processing by

the subroutine is shown below:

ASE ﬂ NAME PERATION OPERANDS
FEEE -THRY 13 4084 the2 4njash7 7 4
O.1]0.5 . dMvV.Q k10219 (16).,01VD(nn.) N
vol ., ... kdMVA EH0261 (15),DIVR(1.4) , . .
vsyp L, kM BIC %’ , 0200, L, L L .
2,0 LS. U.B JYD 'V F NN .
2.5 R X 5% N N ., e N

The dividend field is assumed to be fewer than 16 octets in length. The length of the move is
written as 16 octets to ensure that a high order right quartet zero is inserted. The divisor, 14
digits in length, is moved into o '5-octet field to place a high order right quartet zero. No .

asterisk is used when the dividend occupies the full field.

A check for a zero divisor may be performed by means of a conditional jump following the MVQ

instruction used to position the divisor in the subroutine area.

USER'S GUIDE

GE-00

-179-

SECTION D

APPENDICES

GE-118

-181-

APPENDIX A

-183-

@I [Ec’ [I l] 5 USER'S _GUIDE

Figure 1 : TABLE OF CARD AND PRINTER CHARACTER REPRESENTATIONS IN THE GE-115
INFORMATION PROCESSING SYSTEM

ggRD% BINARY CODE CE’XFJCE&R HEXADECIMAL B Rory
0 01000000 0 40 1
1 01000001 1 41 2
2 01000010 2 42 3
3 01000011 3 43 4
4 01000100 4 44 5
5 0100010 5 45 6
6 01000110 6 46 7
7 01000111 7 47 8
8 01001000 8 48 9
9 01001001 9 49 10
2-8 01001010 C 4A 1
3-8 01001011 # 48 12
4-8 01001100 e 4C 13
5-8 01001107 : (colon) 4D 14
6-8 01001110 > 4E 15
7-8 01001111 ? 4F 16
01010000 % or _ 50 17
12-1 0101000 A 51 18
12-2 01010010 B 52 19
12-3 01010011 c 53 20
12-4 01010100 D 54 21
12-5 0101010 E 55 22
12-6 01010110 F 56 23
12-7 01010111 G 57 24
12-8 01011000 H 58 25
12-9 01011001 | 59 26
12 01011010 & 5A 27
12-3-8 01611011 . (period) 58 28
12-4-8 01011100] 5¢C 29
12-5-8 01011101 (5D 30
12-6-8 01011110 < 5E 31
12-7-8 01011111 N 5F 32

USER'S GUIDE

GE-108

-184-

Figure 1 : TABLE OF CARD AND PRINTER CHARACTER REPRESENTATIONS IN THE GE-115
INFORMATION PROCESSING SYSTEM
gégz BINARY CODE Chapi HEXADECIMAL %’;S‘ERJ
11-0 10100000 } AO 33
11-1 10100001 J Al 34
11-2 10100010 K A2 35
11-3 10100011 L A3 36
11-4 10100100 M A4 37
11-5 10100101 N A5 38
11-6 10100110 o Ab 39
1-7 10100111 P A7 40
11-8 10101000 Q A8 41
11-9 10101001 R A9 42
11 10101010 ~(minys or A A 43
11-3-8 10101011 (Wyp;:en) A B 44
11-4-8 10101100 * AC 45
11-5-8 10101101) AD 46
11-6-8 10101110 ; AE 47
11-7-8 10101111 "(apostrophe) AF 48
12-0 10110000 + B O 49
0-1 10110001 / B 1 50
0-2 10110010 S B 2 51
0-3 10110011 T B3 52
0-4 10110100 U B 4 53
0-5 10110101 v B 5 54
0-6 10110110 w B 6 55
0-7 10110111 X B 7 56
0-8 10111000 Y B 8 57
0-9 101110071 z B 9 58
0-2-8 10111010 -— B A 59
0-3-8 10111011 (comma) B B 60
0-4-8 10111100 % B C 61
0-5-8 10111101 = B D 62
0-6-8 10111110 " B E 63
0-7-8 10111111 1 B F 64

USER'S GUIDE

GE-008

-185-

Figure 2: TABLE OF GE-115 OPERATIONS BY HEXADECIMAL REPRESENTATION
HEXADECIMAL MNEMONIC SYSTEM
REPRESENTATION EXPRESSION ACTION
Operation Operation
Code Complement
10 *ENS Enable Single Stop
20 * INS Inhibit Single Stop
80 *LON Turn Alert Light On
EQ * LOFF Turn Alert Light Off
00 *NOP2 No Operation
00 *HLT Halt System Operation
FO * JRT Jump and Return
{ +SUB Subroutine Call
00 *NOJ) No Jump R
10 *JG Jump if Greater
20 *JE Jump if Equal
30 * JGE Jump if Greater or Equal
40
50
60
70 Jump on
80 L IC - Condition
20
A0
BO
co *JL Jump if Less
Do *INE Jump if Not Equal
EO *JLE Jump if Less or Equal
FO *JUu) Jump Unconditional p,
40 Js2 Jump on Switch 2
80 Jsi Jump on Switch 1
octet MVi Move Immediate to Store
CMI Compare Immediate to Store
unit PER Call Peripheral
one length MvC Move Complete Octets
NC And on Complete Octets
CcMC Compare Complete Octets
OocC Or on Complete Octets
XC Exclusive Or on Complete Octets
upPK Unpack Octets into Right Quartets
SR Search to the Right
PK Pack Right Quartets into Octets
SL Search to the Left
TR Translate
v EDT Edit
two lengths MVQ Move Right Quartets
CMQ Compare Right Quartets
AD Add Decimal
sD Subtract Decimal
AB Add Binary
¥ SB Subtract Binary

* Indicates a mnemonic expression which is translated into the operation code and the
operation complement.

GE-118

USER'S GUIDE

-186-

Figure 3 : TABLE OF GE-115 OPERATIONS BY MNEMONIC EXPRESSION

MNEMONIC ACTION HEXADECIMAL Page
EXPRESSION REPRESENTATION*
AB Add Binary FE 59
AD Add Decimal FA 51
CMC Compare Complete Octets D5 80
CMI Compare Immediate to Store 95 78
cMQ Compare Right Quartets F9 83
ENS Enable Single Stop 02 10 123
EDT Edit) DE 109
HLT Halt System Operation 0A 00 118
INS Inhibit Single Stop 02 20 122
JC - Jump on Condition 43 97
JE Jump if Equal 20 101
JG Jump if Greater 10 101
JGE Jump if Greater or Equal 30 101
JL Jump if Less co 101
JLE Jump if Less or Equal EO 101
JNE Jump if Not Equal DO 101
JRT Jump and Return 41 FO 107
JS1 Jump on Switch 1 53 80 105
Js2 Jump on Switch 2 40 105
Ju Jump Unconditional 43 FO 102
LOFF Turn Alert Light Off 02 EO 121
LON Turn Alert Light On 02 80 120
MVI Move Immediate Octet 92 67
MVC Move Complete Octets D2 69
MVQ Move Right Quartets F8 71
NC And on Complete Octets D4 21
NOP2 No Operation 07 00 119
NOJ No Jump 43 00 103
ocC Or on Complete Octets Dé 92
PER Call Peripheral 9E 129
PK Pack Right Quartets into Octets DA 74
SB Subtract Binary FF 62.
SD Subtract Decimal FB 54
SL Search to the Left DB 88
SR Search to the Right D9 85
sus Subroutine Call 41 FO 169
TR Translate Octets DC 114
UPK Unpack Octets into Right Quartets D8 76
XC Exclusive Or on Complete Octets D7 93
b

* The operation complement is given where it is translated from the mnemonic expression.

USER'S GUIDE

GE-119

-187-

GE-108

Figure 4 : GE-115 INSTRUCTION REFERENCE CHART
gl OPERATION | op comp FIELDS INDICATORS
£ NOTES
< Symbol. |hexa.| Left | Right | Alpha Beta UF/OF ZE/NZ
AD FA A+ B = 0 no
<) overflow result =0 AD, AB, SD, $B, MVQ, CMQ and SL
< 1 - .
AB FE E E overflow result £ 0 are the only GE 115 operations
2 b that process data from right to left.
SD FB o= - § A -8B = All the others process data from
° ° underflow "
_ 2 -9 1 left to right.
SB FF Lo . true form
LS =< +— ; i
MVQ E8 £ XK A B 0 o The operation whose mnemonics end
H o — by "D'' and ''Q'' treat the right
] 0 A<B 0 A=8
CM F9 quartets only.
¢ A B 1A>B | 1A#%B 4 4
0 result =0
XC D7 . e
Common A [+ B 1 1result 0 exclusive ''or
: ocC Dé Length - 1 A (+) B Unchanged logical "or'"
1
W L
- NC D4 of ALPHA A [x] B " logical "'and"
. and BETA + -
Mvc D2 A R B The common length is the one defined
o| cmc |bs (000 10 255) A _r 8 0A<B| 0OA=B in symbolic language for ALPHA.
3 1A>B | 1 A#B 4
Length -1 2% (length of BETA) =
UPK |D8 of BETA n?;:"’:l condensed Unchanged ﬁ*number of unpacked quartets.
(000 to 255) Left quartets remain unchanged.
normal " 2 X (length of ALPHA) =
PK DA condensed form ... number of BETA octets.
TR bC area tu be table " Table origin + ALPHA volue =
Length - 1 translated | origin address of transloted octet.
0 if match found If search failed
SR D9 of ALPHA area character not found octet +1 last searched + 1
hed N 1 1 address — 1 address -1
{ searche sought
SL DB (000 to 255) found is stored in LOC.
EDT [DE m:::u“+ e(:;;:d 1 ('I) fo:u;'sup. See special chart in ED T.
single ' ALPHA octet replaced by immediate
MV 92 Immediate octet Unchanged octet.
CMI 95 octet " 0<A imm. {0 A = imm. ALPHA octet compared to immediate
1>A imm. |1 A #imm. | octet.
“n
- L. .
Condition for Unchanged See special chart.
)n: ic 43 Jump Address
v i " Stores return address in LOC and
° JRT 41 FO jumped jumps to SIGMA.
451 53 80 for sw. 1 fo " The operation complement defines
~ Js2 40 for sw. 2 the switch,
eripheral . For data transfer the two leftmost octets
PER 9E u:it ’:mmber Delta See special chart must contain the dato length - 1
Brings the program to a hdlt. To
HLT |O0A 00 Unchanged continue press ''START".
NOP2 |07 " " No operation.
wv
- “ Allows a program halt by means of
" ENS 02 10 the "SINGLE-STOP' switch.
-
v INS " 20 " Disables the '"SINGLE-STOP'' switch.
o
" " Lights the "ALERT'" light
o LON 80 ong the console panel. ¢
" o Shuts the "ALERT' light off on
LOFF EO the console panel.
oo

USER'S GUIDE

-68T-

G11-39

q4AIAD S, ¥Isn

UF/OF ZE/NZ

UF/OF ZE/NZ

UF/OF ZE/NZ

UF/OF ZE/NZ

OPERATION 0 0 0 1 1 0 1 1
ALPHA =0 ALPHA #0 ALPHA =0 ALPHA #0

AD, SB ¥ No Overflow No Overflow With Overflow With Overflow
ALPHA L0

sD, sB in Underflow ALPHA =0 ALPHA >0
Form

CMI, CMC, CMQ *t ALPHA < BETA ALPHA = BETA ALPHA > BETA
or Char. or Char. or Char.

MVQ ALPHA £ 0

XC ALPHA =0 ALPHA #0
Character Character

SL, SR Not Found . Found
End in Zero=- End in Non~-

EDT : ,
Suppression Mode Zero Suppression

Mode
PER

Status Test

Condition
Present

Condition
Not Present

Data Transfer

End on Length

End of Input File

Control

Always

* The operands are Treated As Unsigned

Figure 5 : INDICATOR SETTINGS

GE-109

APPENDIX B

USER'S GUIDE

-191-

APPENDIX B

ASSEMBLING A PROGRAM

PROGRAMMER PREPARATION
Prior to submitting a program for assembly, the programmer should obtain a listing of the source
cards. This listing should be checked against the "PROGRAMMER'S CHECK LIST" (See Figure 1),

Corrections that are required-should be noted on the listing and a corrected deck prepared.

When the source program cards are correct, the deck for assembly should be prepared as shown

below:

* Shown as a block in the beginning of the deck to indicate that constant definitions should not

appedr within the program instruction sequence.

ASSEMBLER ACTION

The action of the assembler in translating the source program is divided into three parts:

PART 1 - Source card format scan and content verification, source program listing, control
and ailocation of addresses, '

PART 2 - Source program translation,

PART 3 - Listing of the source progrdm and translated formats, production of object program

cards.

@ E o [l ” 5 USER'S GUIDE

-192-

PART 1 carries out the following operations:

° Reads and verifies the format and contents of the source program cards.
° Prints the source program statements, followed by error indications, if required.
° Builds an address table for names occurring in the source program, and punches a table of

names and locations.

PART 2 carries out program translation in one or more stages, depending on the size of the name

table. The following two cases are differentiated:

Case |
100 or fewer names (4096 octets of store)

600 or fewer names (8192 octets of store)

Case 2
More than 100 names (4096 octets of store)
More than 600 names (8192 octets of store)

In case 1, PART 2:

. Reads the name table and stores all of it.. Repunches the name table.
° Reads the source program cards and translates them completely.
° Punches out cards containing the source program and the assembled program.

In case 2, PART 2:

° Reads the name table and stores 100 (or 600) elements of the name table.

. Repunches the name table, with an identifying flag on the cards for which information is
placed in store.

° Reads the source program cards and translates all references to names for which information
is retained in store.

. Punches out cards containing the source program and the partially translated program.

° Repeats the above operations until the source program is completely translated.

PART 3 carries out the following operations:
° Prints the listings of the source program and the translated format of the program.

. Punches out the object program.

@ED [] l] 5 : USER'S GUIDE

-193-

AFTER ASSEMBLY

When an error-free assembly is obtained, the assembler listing becomes the primary documentation
for the program. Coding sheets, source card lists and any assembler lists with mistake indications
are no longer valuable. All notes and corrections should be made on the most recent assembler

listing to keep program documentation current.
The source program deck should be kept current as well. Whenever a change or correction is

noted, the source card should be prepared and inserted in the program deck. The same procedures,

of listing and checking the source cards, should be followed for re-assembly as for a first assembly.

Figure 1 : PROGRAMMER'S CHECK LIST

1. Are the cards in the correct sequence?

2, Is the format of the STRT card correct?

3. Are any names repeated?

4. Does the first instruction to be executed have a name?

5. Does each name used as an operand field specification match a name used in a name
field?

6. Are any names in the name field unused? Why?
7. Are operand specifications separated by commas?
8. Are lengths enclosed in parentheses?

9. Are lengths correctly specified according to the data fields which enter the operations?

10. Are increments and decrements to data field references correctly computed?
1. Does data format agree with the expected format for the instructions which process it?
12. Are definition statements entirely separate from the sequence of executable

instructions? Are there jumps around any included data or store definitions?

13. Are there any internal code or system dependencies? Why?

14, Are logical sections of the program separated for checking?
15, Are there test output operations included?
16. Are required operator messages included? Are they clear? Is operator intervention

really required?
17. Are all indicator tests properly placed?

18. Are input/output operations tested for error? end of file?

19. Are there sufficient comments?
20, Are all subroutines present?
21. Is the END card correct?

@ Em U 05 USER'S GUIDE

-194-

APPENDIX C

@Eu U ” 5 USER'S GUIDE

~195-

APPENDIX C

BINARY NOTATION

Digital cémpufers store information in the form of on-or~off conditions of electronic devices such
as vacuum tubes, transistors, or magnetic cores. The fact that each of these devices can record
only two states or conditions naturally gives rise to binary notation for expressing the values. In
binary notation two values (0 or 1) may be expressed by each digit, just as in decimal notation

ten digit values (0 to 9) are possible.

Binary notation uses the base 2 just as standard decimal notation uses the base ten. That is, if

115 in decimal notation means

1x10%+1x 10" +5x 10°

the same value expressed in binary as 1110011 means

1x26 0

F1x2P+1x2tv0x2Pv0x22+1x2" +1x2°,

Thus,

ii'iOO'iiz = 11510.

The binary equivalents of the digits 0 to 9 using 4 binary digits are:

Decimal Binary

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001
Binary addition and subtraction are performed as shown below :
0 0 1 1 10 11
¥0 #1030 #1 #1041
0 1 1 10 il 100
0 0 1 1 10 11
=0 -t -0 -1 -1 -1
0 -1 1 0 1 10

@ Eu ” [] 5 USER'S GUIDE

-196-

0011 (=3) 101110 (=46)

+ 0011 (=3) + 10100 (=20)

. 0110 (=6) 1000010 (=66) .
carries carries
Borrows Borrows

11010 (=26) 10110101 (=181)
- 01100 (=12) - 01101100 (=108)
01110 (=14) 01001001 (= 73)

Decimal values are not always translated into pure binary when stored in or operated upon by a
computer. Frequently, a fixed number of bits is used to express each decimal digit. If four bits

are ysed for each digit, the value 115 can be represented as

DIGIT 1 DIGIT 2 DIGIT 3
bit pattern 000t 0001 0101
decimal value 1 1 5

Four bits permit values from 0 to 15 to be expressed. While these 16 distinct values are more than
enough to express the 10 decimal digits, they are not sufficient to give distinct representation to

each alphabetic character. The GE-115 Information Processing System uses eight bits, which
have 28 or 256 possible configurations, to represent the 10 digits, 26 letters, and other characters,

as well as pure binary values from 0 to 255.

@EDH [I 5‘) USER'S GUIDE

-197-

APPENDIX D

@ En ﬂ U5 USER'S GUIDE

-199-

00
01
02
03

04
05
06
07

08
09
0A
0B

e
0D
OE
OF

10
11
12
13

14
15
16
17

18

1A
1B

1C
1D
1E
1F

GE-008

APPENDIX D

HEXADECIMAL -TO - DECIMAL CONVERSION CHART

The table in this appendix may be used for conversion of hexadecimal to decimal numbers,

and vice versa, in the following ranges :

Hexadecimal Decimal

000....FFF 0000....4095

For numbers outside these ranges, add hexadecimal 1000 or decimal 4096 to the

0000 0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012
0016 0017 0018 0019 0020 0021 0022 0023 0024 0025 0026 0027 0028
0032 0033 0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044
0048 0049 0050 0051 0052 0053 0054 0055 0056 0057 0058 0059 0060

0064 0065 0066 0067 0068 0069 0070 0071 0072 0073 0074 0075 0076
0080 0081 0082 0083 0084 0085 0086 0087 0088 0089 0090 0091 0092
0096 0097 0098 0099 0100 0101 0102 0103 0104 0105 0106 0107 0108
0112 0113 0114 0115 0116 0117 0118 0119 0120 0121 0122 0123 0124

0128 0129 0130 0131 0132 0133 0134 0135 0136 0137 0138 0139 0140
0144 0145 0146 0147 0148 0149 0150 0151 0152 0153 0154 0155 0156
0160 0161 0162 0163 0164 0165 0166 0167 0168 0169 0170 0171 0172
0176 0177 0178 0179 0180 0181 0182 0183 0184 0185 0186 0187 0188

0192 0193 0194 0195 0196 0197 0198 0199 0200 0201 0202 0203 0204
0208 0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0219 0220
0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236
0240 0241 0242 0243 0244 0245 0246 0247 0248 0249 0250 0251 0252

0256 0257 0258 0259 0260 0261 0262 0263 0264 0265 0266 0267 0268
0272 0273 0274 0275 0276 0277 0278 0279 0280 0281 0282 0283 0284
0288 0289 0290 0291 0292 0293 0294 0295 0296 0297 0298 0299 0300
0304 0305 0306 0307 0308 0309 0310 0311 0312 0313 0314 0315 0316

0320 0321 0322 0322 $324 0325 0326 0327 0328 0329 0330 0331 0332
0336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348
0352 0353 0354 0355 0356 0357 0358 0359 0360 0361 0362 0363 03464
0368 0369 0370 0371 0372 0373 0374 0375 0376 0377 0378 0379 0380

0384 0385 0386 0387 0388 0389 0390 0391 0392 0393 0394 0395 0396
0400 0401 0402 0403 0404 0405 0406 0407 0408 0409 0410 0411 0412
0416 0417 0418 0419 0420 0421 0422 0423 0424 0425 0426 0427 0428
0432 0433 0434 0435 0436 0437 0438 0439 0440 0441 0442 0443 0444

0448 0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0460
0464 0465 0466 0467 0468 0469 0470 0471 0472 0473 0474 0475 0476
0480 0481 0482 0483 0484 0485 0486 0487 0488 0489 0490 0491 0492
0496 0497 0498 0499 0500 0501 0502 0503 0504 0505 0506 0507 0508

table figures.

0013
0029
0045
0061

0077
0093
0109
0125

0141
0157
0173
0189

0205
0221

0237
0253

0269
0285
0301
0317

0333
0349
0365
0381

0397
0413
0429
0445

0461
0477
0493
0509

0014
0030
0046
0062

0078
0094
0110
0126

0142
0158
0174
0190

0206
0222
0238
0254

0270
0286
0302
0318

0334
0350
0366
0382

0398
0414
0430
0446

0462
0478
0494
0510

0015
0031
0047
0063

0079
0095
0111
0127

0143
0159
0175
0191

0207
0223
0239
0255

0271
0287
0303
0319

0335
0351
0367
0383

0399
0415
0431
0447

0463
0479
0495
0511

USER'S GUIDE

-200-

20 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527
21 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543
22 0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559
23 0560 0561 0562 0563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575

24 0576 0577 0578 0579 0580 0581 0582 0583 0584 0585 0586 0587 0588 0589 0590 0591
25 0592 0593 0594 0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607
26 0608 0609 0610 0611 0612 0613 0614 0615 0616 0617 0618 0619 0620 0621 0622 0623
27 0624 0625 0626 0627 0628 0629 0630 0631 0632 0633 0634 0635 0636 0637 0638 0639

28 0640 0641 0642 0643 0644 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655
29 0656 0657 0658 0659 0660 0661 0662 0663 0664 0665 0666 0667 0668 0669 0670 0671
2A 0672 0673 0674 0675 0676 0677 0678 0679 0680 0681 0682 0683 0684 0685 0686 0687
2B 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703

2C 0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719
2D 0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735
2E 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0750 0751
2F 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767

30 0768 0769 0770 0771 0772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783
31 0784 0785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799
32 0800 0801 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815
33 0816 0817 0818 0819 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831

34 0832 0833 0834 0835 0836 0837 0838 0839 0840 0841 0842 0843 0844 0845 0846 0847
35 0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0860 0861 0862 0863
36 0864 0865 08466 0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 (€879
37 0880 0881 0882 0883 0884 0885 0886 0887 0888 0889 0890 0891 0892 0893 0894 0895

38 0896 0897 0898 0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911
39 0912 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927
3A 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943
3B 0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959

3C 0960 0961 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 0974 0975
3D 0976 0977 0978 0979 0980 0981 0982 0983 0984 0985 0986 0987 0988 0989 0990 0991
3E 0992 0993 0994 0995 0996 0997 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007
3F 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023

40 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
41 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
42 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
43 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087

44 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
45 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
46 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
47 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151

48 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
49 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
4A 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
4B 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215

4C 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
4D 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
4E 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1255 1260 1261 1262 1263
AF 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279

@Eg [] U 5') USER'S GUIDE

-201-

50

52
53

54
55
56
57

58

5A
5B

5C
5D
5E
5F

60
61
62
63

64
65
66
67

68
69
6A
6B

6C
6D
6E
6F

GE-109

1280
12946
1312
1328

1344
1360
1376
1392

1408
1424
1440
1456

1472
1488
1504
1520

1536
1552
1568
1584

1600
1616
1632
1648

1664
15680
1696
1712

1728
1744
1760
1776

1792
1808
1824
1840

1856
1872
1888
1904

1920
1936
1952
1968

1984
2000
2016
2032

1281
1297
1313
1329

1345
1361
1377
1393

1409
1425
1441
1457

1473
1489
1505
1521

1537
1553
1569
1585

16061
1617
1633
1649

1665
1681
1697
1713

1729
1745
1761
1777

1793
1809
1825
1841

1857
1873
1889
1905

1921
1937
1953
1969

1985
2001
2017
2033

1282
1298
1314
1330

1346
1362
1378
1394

1410
1426
1442
1458

1474
1490
1506
1522

1538
1554
1570
1586

1602
1618
1634
1650

1666
1682
1698
1714

1730
1746
1762
1778

1794
1810
1826
1842

1858
1874
1890
1906

1922
1938
1954
1970

1986
2002
2018
2034

1283
1299
1315
1331

1347
1363
1379
1395

1411
1427
1443
1459

1475
1491
1507
1523

1539
1555
1571
1587

1603
1619
1635
1651

1667
1683
1699
1715

1731

1747
1763
1779

1795
1811
1827
1843

1859
1875
1891
1907

1923
1939
1955
1971

1987
2003
2019
2035

1284
1300
1316
1332

1348
1364
1380
1396

1412
1428
1444
1460

1476
1492
1508
1524

1540
1556
1572
1588

1604
1620
1636
1652

1668
1684
1700
1716

1732
1748
1764
1780

1796
1812
1828
1844

1860
1876
1892
1908

1924

1940
1956
1972

1988
2004
2020
2036

1285
1301
1317
1333

1349
1365
1381

1397

1413
1429
1445
1461

1477
1493
1509
1525

1541
1557
1573
1589

1605
1621
1637
1653

1669
1685
1701
1717

1733
1749
1765
1781

1797
1813
1829
1845

1861
1877
1893
1909

1925
1941
1957
1973

1989
2005
2021
2037

1286
1302
1318
1334

1350
1366
1382
1398

1414
1430
1446
1462

1478
1494
1510
1526

1542
1558
1574
1590

1606
1622
1638
1654

1670
1686
1702
1718

1734
1750
1766
1782

1798
1814
1830
1846

1862
1878
1894
1910

1926
1942
1958
1974

1990
2006
2022
2038

1287
1303
1319
1335

1351
1367
1383
1399

1415
1431
1447
1463

1479
1495
1511
1527

1543
1559
1575
1591

1607
1623
1639
1655

1671
1687
1703
1719

1735
1751
1767
1783

1799
1815
1831
1847

1863
1879
1895
1911

1927
1943
1959
1975

1991
2007
2023
2039

1288
1304
1320
1336

1352
1368
1384
1400

1416
1432
1448
1464

1480
1496
1512
1528

1544
1560
1576
1592

1608
1624
1640
1656

1672
1688
1704
1720

1736
1752
1768
1784

1800
1816
1832
1848

1864
1880
1896
1912

1928
1944
1960
1976

1992
2008
2024
2040

1289
1305
1321
1337

1353
1369
1385
1401

1417
1433
1449
1465

1481
1497
1513
1529

1545
1561
1577
1593

1609
1625
1641
1657

1673
1689
1705
1721

1737
1753
1769
1785

1801
1817
1833
1849

1865
1881
1897
1913

1929
1945
1961
1977

1993
2009
2025
2041

1290
1306
1322
1338

1354
1370
1386
1402

1418
1434
1450
1466

1482
1498
1514
1530

1546
1562
1578
1594

1610
1626
1642
1658

1674
1690
1706
1722

1738
1754
1770
1786

1802
1818
1834
1850

1866
1882
1898
1914

1930
1946
1962
1978

1994
2010
2026
2042

1291
1307
1323
1339

1355
1371
1387
1403

1419
1435
1451
1467

1483
1499
1515
1531

1547
1563
1579
1595

1611
1627
1643
1659

1675
1691
1707
1723

1739
1755
1771
1787

1803
1819
1835
1851

1867
1883
1899
1915

1931
1947
1963
1979

1995
2011
2027
2043

1292
1308
1324

1340

1356
1372
1388
1404

1420
1436
1452
1468

1484
1500
1516
1532

1548
1564
1580
1596

1612
1628
1644
1660

1676
1692
1708
1724

1740
1756
1772
1788

1804
1820
1836
1852

1868
1884
1900
1916

1932
1948
1964
1980

1996
2012
2028
2044

1293
1309
1325
1341

1357
1373
1389
1405

1421
1437
1453
1469

1485
1501
1517
1533

1549
1565
1581
1597

1613
1629
1645
1661

1677
1693
1709
1725

1741

1757
1773
1789

1805
1821
1837
1853

1869
1885
1901
1917

1933
1949
1965
1981

1997
2013
2029
2045

1294
1310
1326
1342

1358
1374
1390
1406

1422
1438
1454
1470

1486
1502
1518
1534

1550
1566
1582
1598

1614
1630
1646
1662

1678
1694
1710
1726

1742
1758
1774
1790

1806
1822
1838
1854

1870
1886
1902
1918

1934
1950
1966
1982

1998
2014
2030
2046

1295
1311
1327
1343

1359
1375
1391
1407

1423
1439
1455
1471

1487
1503
1519
1535

1551
1567
1583
1599

1615
1631

1647
1663

1679
1695
1711
1727

1743
1759
1775
1791

1807
1823
1839
1855

1871
1887
1903
1919

1935
1951
1967
1983

1999
2015
2031
2047

USER'S GUIDE

-202-

80 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
81 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
82 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
83 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111

84 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
85 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
86 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
87 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175

88 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
89 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
8A 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
8B 2224 2225 2226 2227 2228 2229 2230 223% 2232 2233 2234 2235 2236 2237° 2238 2239

8C 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
8D 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
8E 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
8F 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303

90" 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
91 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
92 2336 2337 2338. 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
93 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367

94 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
95 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
96 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
97 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431

98 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
99 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
9A 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
9B 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495

9C 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
9D 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
9E 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
9F 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559

AO 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
Al 2576 2577 2678 2679 2580 2581 2582 2583 2584 2585 2586 2587 2588 258% 2590 2591
A2 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
A3 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623

A4 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
A5 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
A6 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
A7 2672 2673 2874 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687

A8 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
A9 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
AA 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
AB 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751

AC 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
AD 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
AE 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
AF 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815

@ED H Ug) USER'S _GUIDE

-203-

BO 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
B1 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
B2 . 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
B3 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879

B4 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
BS 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
B6 2912 2913 2914 2915 2916 2917 2818 2919 2920 2921 2922 2923 2924 2925 2926 2927
B7 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943

B8 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
B9 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
BA 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
BB 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007

BC 2005 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
BD 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
BE 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
BF 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071

CO 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
Cl 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
C2 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
C3 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135

C4 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
C5 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
Cé 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
C7 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199

C8 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
C9 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
CA 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
CB 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263

CC 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
CD 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
CE 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
CF 3312 3313 3314 3315 33]6 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327

DO 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
D1 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358.3359
D2 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
D3 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391

D4 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
D5 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
D6 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
D7 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455

D8 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
D9 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
DA 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
D8 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519

DC 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
DD 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
DE 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
DF 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583

@ Eu l] ”5 USER'S_GUIDE

-204-

EO 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
E1 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
E2 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
E3 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647

E4 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
E5 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
E6 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
E7 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711

E8 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
E9 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
EA 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
EB 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775

EC 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
ED 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
EE 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
EF 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839

FO 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
F1 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 386% 3870 3871
F2 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
F3 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903

F4 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
F5 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
F6 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
F7 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967

F8 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
F9 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
FA 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
FB 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031

FC 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
FD 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
FE 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
FF 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095

@ E° [I ”5 USER'S_GUIDE

-205-

INDEX

@ Ea U I] 5 USER'S GUIDE

INDEX

PAGE
ABSOLUTE ADDRESS 29, 30, 32
ACTUAL ADDRESS, see ABSOLUTE ADDRESS 29, 30, 32
ADD BINARY (AB) 59 - 61
ADD DECIMAL (AD) 51 -53
ADDRESS 37
ADDRESS CONSTANT DEFINITION 150
ADDRESS MODIFICATION 60, 63
ALPHABETIC SYMBOLS 2}, 22
'AND' ON COMPLETE OCTETS 21
ARITHMETIC CONTROL UNIT 3,5
ARITHMETIC INSTRUCTIONS 48 - 50
ASCENDING ADDRESS 131, 134

ASSEMBLER .
ASSEMBLER PROGRAM CONTROL INSTRUCTIONS
ASSEMBLY LANGUAGE

13, 18, 34, 36, 37
156

10, 12, 13, 17, 18
23

ASSEMBLY LISTING 33, 35
ASTERISK 20, 29, 32, 36
BINARY DIGIT 3,7,18
BINARY LITERALS 18

BINARY OPERATIONS 59 - 64

BIT 3,4,7
CALL PERIPHERAL (INSTRUCTION) 15, 129
CARD READER 6

CARRY 48, 54, 62
CENTRAL PROCESSOR 3
CHANNEL 5,6
CHARACTER, see also GRAPHIC CHARACTER 7
CHARACTER CONSTANT DEFINITION 146
COMMENT ‘ 32, 33, 163

USER'S GUIDE

GE-108

INDEX (contd.)

PAGE
COMPARE COMPLETE OCTETS 80 - 82
COMPARE IMMEDIATE TO STORE 78 - 79
COMPARE RIGHT QUARTETS 30, 83 - 84
COMPLEMENT 49
CONNECTOR 5,6
CONSTANT 10, 17
CONSTANT DEFINITION, see’ DEFINE CONSTANT 150, 146, 148,

152 - 155

CONTROL CHARACTER 22, 109
DATA FIELD 10
DATA FORMAT 7,8,9
DATA MOVEMENT AND COMPARISON INSTRUCTIONS 65 - 66
DATANET 6
DECIMAL OPERATIONS, see ARITHMETIC. INSTRUCTIONS 48 - 50
DECREMENT 29, 30, 39
DESCENDING ADDRESS 134
DEFINE CONSTANT ADDRESS 150
DEFINE CONSTANT CHARACTER 146
DEFINE CONSTANT HEXADECIMAL 148
DEFINE CONSTANT PERIPHERAL FIELD 152 - 155
DEFINE STORE AREA 143
DEFINITION STATEMENTS 141
DIRECTIVE INSTRUCTION 17, 139
EDIT 109 - 113
EDITING 22, 109 - 113
EDITING MASK 22
EDIT INSTRUCTIONS 108
ENABLE SINGLE STOP 123
EXCLUSIVE 'OR* ON COMPLETE OCTETS 93 - 94

EXPLICIT LENGTH, see SPECIFIED LENGTH
EXTERNAL CONTROL PANEL
FIELD

12 - 13, 30 - 31
4

12, 13, 18, 28,
30, 34 - 40

@ [Eu “ H 5 USER'S GUIDE

INDEX (contd.)

PAGE

FILL CHARACTER ' 109
FORMAT CO NTROL CHARACTER 109
GRAPHIC CHARACTER 18, 19, 20
GRAPHIC SET 18, 21, 22
HALT SYSTEM OPERATION 118
HARDWARE ITEMS 27
HEXADECIMAL CONSTANT DEFINITION 148
HEXADECIMAL NOTATION 7,8,10, 13, 18,

19, 22
IDENTIFICATION 23
IMMEDIATE DATA 12, 13, 31, 32
IMMEDIATE OPERAND 46
IMPLICIT LENGTH SPECIFICATION 30
INCREMENT 29, 30, 39
INDICATOR 14, 32
INHIBIT SINGLE STOP 122
INPUT/OUTPUT 12, 15, 32
INSTRUCTION 7,10, 11
INTERFACE 6
INTERNAL INSTRUCTION FORMAT 10 - 16
INVERSION (BIT) 54
JUMP AND RETURN 107
JUMP IF EQUAL 29, 33
JUMP IF GREATER 101
JUMP IF GREATER OR EQUAL 101
JUMP IF LESS 101
JUMP IF LESS OR RQUAL 101
JUMP IF NOT EQUAL 101
JUMP IF SWITCH 1 SET 105
JUMP IF SWITCH 2 SET 105
JUMP INSTRUCTIONSS 95 - 96
JUMP ON CONDITION 97
JUMP ON SWITCH 1, see JUMP IF SWITCH 1 SET 105
JUMP ON SWITCH 2, see JUMP IF SWITCH 2 SET 105
JUMP UNCON DITIONAL 29, 33, 102

@ E a ﬂ ” 5 v USER'S_GUIDE

INDEX

LEFT OCTET ADDRESS
LEFT QUARTET
LENGTH

LINE FEED

LINE NUMBER

LINE PRINTER

LOC

LOCATION COUNTER
LOGIC INSTRUCTIONS
MISTAKE CODES
MNEMONIC

MODE:
DECIMAL
BINARY
NON-ZERO SUPPRESSION
PACKED
UNPACKED
ZERO SUPPRESSION

MOVE COMPLETE OCTETS
MOVE IMMEDIATE TO STORE
MOVE RIGHT QUARTETS
NAME

NO JUMP

NON ZERO SUPPRESSION, see ZERO SUPPRESSION ML .-

NO OPERATION
OBJECT LANGUAGE

OCTET

OPERAND

OPERAND ADDRESS

OPERAND SPECIFICATION FIELD
OPERATION

OPERATION CODE

OPERATION COMPLEMENT
ORIGIN ASSIGNMENT

'OR' ON COMPLETE OCTETS

(contd.)

PAGE
37, 38
7,8,9
30, 34, 35
22
25
6
4,26, 84 - 89
4
90
23, 34, 35
12, 17, 26, 37

48
48
110
131
130
110

69 - 70
67
71 - 73

25, 28, 30, 34,
35, 38

103
109 - 113
119

13, 15, 16, 17,
18, 36

7,8
27

11,12, 16
27, 35

10, 11, 12

10, 17, 26, 35
11, 12, 13, 32
22, 29

92

USER'S GUIDE

GIEI]

INDEX (contd.)
PAGE
OVERFLOW 48 - 49
PACK RIGHT QUARTETS INTO OCTETS 74 - 75
PACKED DATA 9,74 -75
PACKED MODE 131
PAGE NUMBER 25
PARITY 4
PARITY ALERT 4
PERIPHERAL CONTROL INSTRUCTION 137
PERIPHERAL STATUS SPECIFICATIONS 136
PERIPHERAL STATUS TEST 135
PRIMARY INSTRUCTIONS 17, 43
PROGRAM 17
PROGRAMMING FORM 23, 24
QUARTET 7
RESERVED SYMBOLS 20, 21
RIGHT OCTET ADDRESS 37, 38
RIGHT QUARTET 7,8,9
SEARCH TO THE LEFT 88 - 89
SEARCH TO THE RIGHT 85 - 87
SIGN 170
SOURCE LANGUAGE INSTRUCTION, see SOURCE LANGAUGE
STATEMENT 31
SOURCE LANGUAGE PROGRAM 13, 15, 16
SOURCE LANGUAGE STATEMENT 31
SPECIFIED LENGTH 12 - 13, 30 -
31
STATEMENT 10, 34
STORE 3,4
STORE ASSIGNMENT COUNTER, see STORE LOCATION ASSIGN-
MENT COUNTER 22, 29, 160
STORE GO NTROL UNIT 3,4
STORE LOCATION ASSIGNMENT COUNTER 22, 29, 160
SUBROUTINE 22, 26, 169
SUBROUTINE CALL 169
SUBTRACT BINARY 62 - 64
SUBTRACT DECIMAL 54 - 58

@E“ﬂ [I5 USER'S GUIDE

INDEX (contd.)

PAGE
SYSTEM ACTION INSTRUCTIONS 116
SYSTEM PROGRAM LOADER 23
SYSTEM SYMBOL 18
TRANSLATE 114
TRANSLATION 15
TRUE DIFFERENCE 49
TRUE FORM 49
TURN ALERT LIGHT OFF 121
TURN ALERT LIGHT ON 120
UNDERFLOW 48 - 49
UNDERFLOW /OVERFLOW INDICATOR : 5
UNPACK OCTETS INTO RIGHT QUARTETS 76 - 77
UNPACKED DATA 77
UNPACKED MODE 130
ZERO/NON-ZERO INDICATOR 5
ZERO SUPPRESSION MODE 109 - 113
ZONE 8

-

@ E ° [I U 5 USER'S GUIDE

Progress /s Ovr Most Important Prodluct

GENERAL @B ELECTRIC

INFORMATION SYSTEMS DIVISION

UTHO US.A.

EXY

