
GENERAL ELECTRIC
COMPUTERS

CPB-1204A

GE-115
User's Guide

ADVANCE INFORMATION

GENERAL. ELECTRIC

GE-115

USER'S GUIDE

REFERENCE MANUAL

November 1965

GENERAL- ELECTRIC
COMPUTER DEPARTMENT

PREFACE

This manual is a user's guide and reference manual for the GE-115 Information Processing
System.

An assembly language is provided which allows for program statements in simple mnemonic and
symbolic phrases. All translation to the GE-115 internal system language is performed by
the assembler. The GE-115 system is described in terms of the assembly language.

A knowledge of general programming principles is helpful; no knowledge of other assembler
languages or systems is required.

Terminology is according to the International Federation for Information Processing and the
International Computation Centre (IFIP/ICC) Vocabulary of Information Processing.

Comments on this publication may be addressed to Technical Publications, Computer Department,
General Electric Company, P. O. Box 2961, Phoenix, Arizona, 85002.

@ 1965 By General Electric Company

(500 3-67)

@ ~ o ~ ~@ ____________________ u s.;;.;.;ER;...;;'s;....;;G;;.;;;.;UI;,,;;,;;;DE

CONTENTS

INTRODUCTION

SECTION A - GENERAL INFORMATION

PART I - GE-115 SYSTEM INFORMATION

THE CENTRAL PROCESSOR

Store

INFORMATION IN STORE

PACKED DATA

THE FORMAT OF THE INTERNAL INSTRUCTION

Figure A-3 : Internal Configuration of the GE-115
Instruction Set

THE PARTS OF THE INTERNAL INSTRUCTION

The 0 peration

Operation Complement

Length

Data within the Instruction

Conditions for Jumps

0 peration Differentiators

Input/Output Unit References

Addresses of 0 perands

PART II - GE-115 ASSEMBLY LANGUAGE INFORMATION

THE SYMBOLS OF THE GE-115 ASSEMBLY LANGUAGE

Figure A-4 : The GE-115 Character Set

Reserved Symbols

Figure A-5 : Symbols reserved by the GE-115
Assembler

Control Characters

WRITING STATEMENTS IN THE GE-115 ASSEMBLY LANGUAGE

THE PROGRAMMING FORM

Identification

Page Number

Line Number

Name

0 peration Code

Operand Specifications

Types of 0 perands

Methods of Specifying Operands

Figure A-7: The GE-115 Assembler Mistake Codes

REFERENCING DATA FIELDS IN THE GE-115 ASSEMBLY
LANGUAGE

Pages

3

3

3

7

9

10

11

12

12

12

12

13

14

15

15

16

17

18

19

20

21

22

23

23

23

25

25

25

26

27

27

27

34

36

USER Is GUIDE @~o~~~------------

iii

SECTION B - GE-115 ASSEMBLY LANGUAGE INSTRUCTIONS

PART I - PRIMARY INSTRUCTIONS

ARITHMETIC INSTRUCTIONS

Add Decimal (AD)

Subtract Decimal (SD)

Add Binary (AB)

Subtract Binary (SB)

DATA MOVEMENT AND COMPARISON INSTRUCTIONS

Move immediate to store (MVI)

Move complete octets (MVC)

Move right quartets (MVQ)

Pack right quartets into octets (PK)

Unpack octets into right quartets (UPK)

Compare immediate to store (CMI)

Compare comp I ete octets (CMC)

Compare right quartets (CMQ)

Search to the right (SR)

Search to the left (SL)

LOGIC INSTRUCTIONS

'AND' on complete octets (NC)

'OR' on complete octets (OC)

Exclusive 'OR' on complete octets (XC)

JUMP INSTRUCTIONS

Jump on Condition (JC)

Figure B-2 : Indicator settings tested by conditional jumps

Jump if Greater (JG)

Jump if Equa I (JE)

Jump if Greater or Equa I (JG E)

Jump Less (JL)

Jump Not Equal (JN E)

Jump Less or Equal (JLE)

Jump Unconditiona I (JU)

No Jump (NO J)

Figure B-3 : Table of conditional Jumps

Jump if Switch 1 set (JS 1)

Jump if Switch 2 set (JS2)

Jump and return (JRT)

EDIT INSTRUCTIONS

Edit (EDT) ,

Translate octets (TR)

Pages

41

43

48

51

54

59

62

65

67

69

71

74

76

78

80

83

85

88

90

91

92

93

95

97

100

101

101

101

l 01

101

101

102

103

104

105

105

107

108

109

114

@j ~
0
~~[ID ____________________ us_ER_'s_c_u_rnE

SYSTEM ACTION INSTRUCTIONS

Halt system operation (H LT)

No operation (NO P2}

Turn alert light on (LON}

Turn alert light off (LOFF}

Inhibit single stop (INS}

Enable sing le stop (ENS}

INPUT/OUTPUT INSTRUCTIONS

Call peripheral (PER) Data Transfer

Call peripheral (PER} Peripheral Status Test

Call peripheral (PER} Peripheral Unit Control

PART II - DIRECTIVE INSTRUCTIONS

DEFINITION STATEMENTS

Define store area (OS}

Define constant (DC} Character Constant

Define constant (DC} Hexadecimal Constant

Define constant (DC} Address Constant

Define peripheral instruction (DP} Data Transfer

Define peripheral instruction (DP} Peripheral Status Test

Define peripheral instruction (DP} Peripheral Unit Control

THE ASSEMBLER PROGRAM CONTROL INSTRUCTIONS

Start program assembly (STRT}

End of program (END}

Origin assignment (ORG}

ASSEMBLY LISTING FORMAT INSTRUCTIONS

Comment(*}

Eject present page (EJEC}

Line feed (LF)

SECTION C - GE-115 ARITHMETIC SUBROUTINES

Add decimal, signed (YADS}

Subtract decimal, signed (YSDS}

Multiplication, decimal, unsigned, fast (Y MULF)

Division, decimal, unsigned, fast (YDIVF)

117

118

119

120

121

122

123

124

129

135

137

139

141

143

146

148

150

152

154

155

156

157

159

160

162

163

164

165

167

172

174

176

178

@j ~
0
~ ~ &) ____________________ us..-ER ' s.._c u.....,.rnE

v

APPENDICES

A - TABLES

Figure 1 : TABLE OF CARD AND PRINTER CHARACTER
RE PRES EN TATIO N

Figure 2: TABLE OF GE-115 OPERATIONS BY
HEXADECIMAL REPRESENTATION

Figure 3: TABLE OF GE-115 OPERATIONS BY
MNEMONIC EXPRESSION

Figure 4: .GE-115 INSTRUCTIONS REFERENCE CHART

B - ASS EM BLI NG A GE-115 PRO GRAM

PROGRAMMERS CHECK LIST

Figure J : DECK SET-UP FOR ASSEMBLY

C - BINARY NOTATION

D - HEXADECIMAL TO DECIMAL CONVERSION CHART

184

187

189

191

197

198

197

203

207

@ ~ 0 ~~till ____________________ u_sE_R'_s Gu_IDE

vi

INTRODUCTION

The GE-115 is a small scale electronic information processing system designed to serve a wide
variety of user needs.

• As a card processing system, the GE-115 may be used to perform all the
tasks carried out by a punched card tabulation installation.

• As a remote terminal, the GE-115 may be used in conjunction with a large
scale information processing system as a data receiving and transmitting
station.

• As an information processing system, the GE-115 may be programmed for
applications in all fields. It is particularly suited to the processing of
data for such appiications as tabulations, inventories, record keeping and
file updating.

This manual describes the GE-115 information processing system with card input and output
only. It may serve any of the functions listed above.

Programs for the GE-115 are written in a simple symbolic language which is easy to learn and
to use. No special skill, other than a knowledge of the application to be performed, is required
to use the GE-115 system effectively.

@ ~
0

~ ~@ ____________________ u_sE_R'_s _Gu_rnE

vii

SECTION A

GENERAl INFORMATION

@(Eo~~~---------USE_R'SG_UIDE
-1-

PART I

The GE-115 Information Processing System consists of a central processor and associated

auxi I iary store and input/output units. The minimum system configuration is shown below.

Printer
Central

Processor

Punch

Reader

Ill!!!!![THE c E NTRA L PR oc ES s 0 R]ll!lll!l!l!lllll!l!l!lll!lllll!llllllll!llllllllllllilllllllll!lllll!llllll!ll!ll!llll!llllll!llllllllllllllllllillllll!i{ill!llllllllilillll!lll!lil!l!lllli!lllli!llilllililllililllilllllilillllllli!i!l!l!l!!!I
The central processor is comprised of the following units:

Store

Store Control Un it

Arithmetic Control Unit

Peripheral Control Unit

• Store

The store unit is an array of magnetic· cores providing storage for instructions and data. A

module of store contains 4096 store locations. The user may have one or two modules, that

is 4096 or 8192 store locations. Information 1n the store is represented by the values of

bits. Each bit is a binary digit and may have a value of 0 or 1.

NOTE: It is expected that the reader be fa mi I iar with the binary number system. If

not, he should read Appendix C. before proceeding further in th is manual.

@ ~
0

~ ~@ ____________________ u_sE_R'_s_cu_r_nE

-3-

Eight bits make up the basic un.it of reference in the GE-115 system. This unit is

called the OCTET. An address is used to designate each octet. The octet is the smallest

addressable unit in store. Store is convent io na I ly represented ·as strings of addressable

octets with the addresses increasing from left to right as shown in the figure below:

0064 0065 0066 0067 Addresses

_J __ l __ o_c_t_e_t ______ o_c_t_e_t_...___o_c_t_e_t_.....&. __ o_c_t_e_t_ I ~f Strings of octets

Associated with each 8-bit octet is a ninth bit used by the system for parity checking.

This bit does not enter into programmed operations and data values. It is used by the

system to monitor its own functioning. Ea.ch time an octet is placed in store odd parity is

autom2tically generated and stored with the octet; that is, if the number of 1-bits is even,

the parity bit is set to 1. Thus all octets in store have an odd 1-bit count. This odd count

is tested and if the number of 1-bits is even, a parity alert is generated and the system

ha Its ope rat ion.

There are two special locations in the store, 0254 and 0255. These locations form a field

referenced in the GE-115 Assembly Language with the name LOC. The field is used

by several instructions to store an address (See "Store Control Unit 11 below). T~e significance

of the address stored in 0254 and 0255 is fully explained in the descriptions of the instructions

which use these locations.

These are the only special purpose locations; there are no predefined input/output areas.

• Store Control Unit

The store control unit fetches, interprets, and controls the execution of the operations

specified by the inskJcl .. "~:. An externa I control panel is available to provide for

manual intervention and display of internal status.

Within the store control unit, a location counter controls the sequence of program

instructions. ·During program execution, the location counter ho.Ids the address of the next

sequential instruction in the store·. When the sequence of the stored program is altered by

any of the jump instructions, the new program address is entered in the location counter.

The address in the location counter is displayed by lights on the control panel.

@~CJ~~ iID ____________________ u_sE_R_'s_G_UI_DE

-4-

• Arithmetic Control Unit

The arithmetic control unit controls the execution of decimal and binary arithmetic

ope rat ions, logic ope rat ions, and comparisons.

Two 1-bit indicators reflect the results of the arithmetic, logic, and comparison

operations. Jump instructions test the values in these indicators to allow alteration of

program sequence. The two indicators are the Underflow/Overflow (UF /OF) Indicator,

and the Zero/Non-Zero (ZE/N Z) Indicator.

The indicators can be set to 0 or 1 •

o Peripheral Control Unit

The flow of data and instructions between the store and the input/output units is

controlled by the peripheral control unit. This unit contains two channels able to

operate with time-sharing of the store.

The two channels, in turn, control four Connectors for communication with the

peripheral u·nits, as shown in Figure A-1.

@(E
0

~ ~ ~ ____________________ u_sE_R_' s_G_ur_DE

-5-

Channel 2

Controller 1

Line Printer
Connected to
Channel 2

2

Controller 2

Card Reader
Conn, ·d to
Either
Channel
(Channel
Selected by
Program
Control)

2

Channel l

4

3

G E-100 Standard Interface •

S·ingle
Peripheral
Unit with
Controller
or Multiple
Peripheral
Un its with
Controllers

* DATANET
- 10

~ingle
Peripheral
Un it and
Controller

~eg. Trademark of the General Electric Company

Figure A-1

or

@ ~ 0 ~ ~ ~ ____________________ u_sE_R_'s_G_UI_DE

-6-

~mm1tc 1 NF 0 R MAT 10 N , N s T 0 RE 11@11111:111:11m1m1mim111111111m1m111mmm1mm1mmmmm1mm1111111111111111111111~!lml!l!lml!lllml!lll!l!lllm:
Information in store may be data or may be programmed instructions.

Information is placed in the store as binary digits, or bits.

On the following pages the formats of information in store are discussed.

Octet

Eight binary digits make up the basic unit of reference in the GE-115

System. This unit is called an OCTET.

Information Processing

Each octet has its own address. An octet is the sma I lest addressable unit in the store.

The eight bit positions of the octet are referred to as 0-7, from right to left.

Bit position

Binary digits

76543210

0 l 0 0 l l 1 1

octet

The octet may be used to represent one character. Each bit of the octet may have a value of 0 or 1.

There are 2
8

possible ordered combinations of binary digits in an octet, giving 256 possible internal

character representations. The binary digit configuration in the example above is used internally in

the GE-115 .;ystem to represent a question mark(?) character.

Quartet

The eight bits of an octet may be considered as two groups of four bits. Each group of four bits is

called a QUARTET. Four bits give a set of 2
4

possible ordered combinations of 0 or 1, permitting

values from 0 to 15 to be expressed.

Bit position

Binary digits

Decimal equivalent
of the quartet value

7654 3210

0 l 0 0 l l

4 15

Left Right
quartet quartet

Octet

The decimal equivalent of the value of the left quartet of the 8-bit configuration for the question

mark {?) character is 4 {four) and the decimal equivalent of the value of the right quartet is 15

(fifteen). These values are more easily represented by the HEXADECIMAL (base 16) number

system.

@ ~ 0 ~ ~ iW---------------------u_sE_R_'s_G_UI_DE
-7-

Hexadecimal Representation of the Contents of an Octet

The hexadecima I number system is to the base 16. The dig its used in the hexadecima I system

are:

0123456789ABCDEF.

The digits represent the values 0 to 15, that is, A is used to represent l 0, B to represent 11, etc.

Each octet can be represented by two hexadecimal digits.

Bit position

Binary dig its

Hexadecimal
value

7654 3210

0100 111

4 F

Left Rig ht
quartet quartet

Octet

The hexadecimal representation of the 8-bit configuration for the question mark character is

4F. For convenience, the interna I octet bit patterns are usually represented as two hexa

dec ima 1 digits.

The pattern of the left quartet (of the left hexadecimal digit) is the zone. The pattern of the

zone is identical for certain sets of characters. For example, when numeric quantities are to

be represented internally using the decimal numerals 0-9, rather than their binary equivalents,

all decimal digits have the value 4 (0100) in the zone position. The hexadecimal representa

tion of the octet configurations for the decimal numerals 0 to 9 are 40 to 49. One octet

contains one decimal digit. The right quartet contains the numeric value and the left the

character zone.

The figure below shows the binary and hexadecimal configurations of the decimal numeral 2.

Note that one octet is used to express one dee ima I digit or character.

B it position

Binary digits

Hexadecima I
value

7654 3210

0 l 0 0 0 0 l 0

4 2

Left Right
qua rtet quartet

Octet

@j [D 0 0 ~ ___________________ _,:U~SE~R....:;:'S~G~UI~DE
-8-

111mm11c p Ac KE 0 0 AT A J!11@m1111111111m1~11111111111111111111111111111111111@11111111111111111111111111111111m111111111111111m1111111m11111mm11111m111m111111i1111111111111111111111mmm11m1mmm
Within the GE-115 system the right quartets are sometimes considered independently. To

fac i I itate man ipu lat ion of right quartets (usua I ly where left quartets are the same), data may be

placed into octets in packed form.

To pack or condense data the I ike pattern in the zones of a pair of octets is omitted and the two

right quartets are placed in a single octet.

Thus, if the machine recognizes

0 l 0 0 l 0 0 l

as a decimal 9, and

0100 I 1000

as a dee imal 8, a packed octe.t containing both 8 and 9 appears as

1000, 1001

The operations of the GE-115 system provide for condensing information· in this way and

expanding it again. Some operations are provided to process data in the condensed form.

It is possible to condense information with unlike zones, but the pattern must be known in order

to expand the data to its original form. For example,

A 2

0 l 0 l 0001 0 1 0 0 0 0 1 0

in condensed form wou Id appear

0001 I 0010

When this octet is expanded, the result would be

1 xx xx ooo 1 xx xx oo 1 o

The left quartet patterns in the receiving field must be properly set by the programmer

according to the intended use of the unpacked field.

@j ~
0
~ ~ ~ ____________________ us...-.ER-..;' s;...· c ur nE

-9-

!!!!!!!!!!'.. THE FORMAT OF TH E I N TE R NA L I NS TR UC TIO N . ~jj///j/j/jjjj//ll/////j/jjjjj/jjj///j/jj////W/!j)j//j//////////////j////////)//j///i///jjj/////j/j//)j/j//j/////j!lf /i!!/!/////i/1!1//j//1!1//

An instruction is a statement specifying an operation to be carried out by the GE-115 system.

It contains an operation code, any required constants, and references to any data fields used. The

length of an instruction depends upon the operation specified, and requires two, four, or six-octets

instore. Instructions can be divided into three groups according to the length of the instruction.

The possible components of an instruction and resulting lengths are shown in Figure A-2.

~ength in
Octets

6

2

0
. Operation

perat1on i....
F-oomplement

Address Address

'.fllll!l!l!l!!llll!lllll!lll!!l!ll!l!l!l!lll!llll!l!lll l!lllllll!llllf!llllfllllll!llllllll!l!ll!!lllllllflll!I !l!l!lllll!l!!!l!ll!l!llllll!l!l!l!l!l!lll!lllllllllll!I

lliliill·lllll'lllliililUlllllliiii·iiiiiillllilrn
11

:

1111111111111

One
Octet

One
Octet

Two
Octets

Figure A-2

Two
Octets

Figure A-3 shows the GE-115 assembly language instructions and the format of each. Note

that the operation portion of an instruction requires one octet. The operation complement portion of

an instruction requires one octet. Each operand address requires two octets.

Figure A-3 also shows the internal hexadecimal configuration for each operation and in

some cases, the interna I configuration of the operation complement. These codes are given

here for the programmer's inforrr:t;;tion. A I though familiarity with these codes may be usefu I

in identifying operations in an object language program listing, a know ledge of them is not

required of the programmer using the GE-115 system.

It is strongly recommended that programs be written so that lheir logic is not dependent upon the

internal instruction c~des for operations.

@ ~
0
~ ~ ~ ____________________ us_ER_'s_c_ur_DE

-10-

M
n INTERNAL MACHINE INSTRUCTION CODE e

m
0

Operation Operation
Operand Address n. Operand Address I Complement c

AB F E ALPHA Address BET A Address
AD A L (ot) L (e)
SB F

j SD B
CMQ 9 V'I V'I

MVQ ' 8 0 0
0::: 0:::

CMC D 5 L (°') w w
N N

MVC

I
2

NC 4 >- >-
0::: 0:::

oc 6 <(<(
i z z xc 7 L (~) iii iii

UPK 8
PK A L (o<)

SL B

.I SR 9
TR c
EDT E

'
CMI 9 5 Binary Val OCTET ADDRESS I

I
MV! l 2 Binary Val OCTET ADDRESS I

I
I

PER E I
I

JRT 4 I F. 0 GAMMA ADDRESS I
I

JC 3

I
I

0 I
I

I

• I
I
I • > all values possible l
I • I
I

• I
I

F~
I
I

JE
I

2 V'I I

0 I

JG 1 I

°' I

JGE 3 w I

N I
I

JL c I

>- I
JLE E I

°' I
JNE D <(I

I

JU F z I
iii I

NOJ • 0
I
I
I

JSl l 8 I
I

JS2 4 I
~ • I

HLT 0 A 0 0 I

NOP2 7 0 I ENS 2 1
INS 2 I

I

LOFF E I

I
LON 8 I

'
t st 2nd 3rd & 4th 5th & 6th

OCTET OCTET OCTETS OCTETS

Figure A-3: INTERNAL CONFIGURATION OF THE GE-115 INSTRUCTION SET

@ ~ o ~ ~ lW--------------------u_s~ER.-..'s_c ur_.DE

-11-

:1111111m!l THE PART s 0 F TH E I N TERN AL I N s TR u c T I 0 N 2111111@1m11111111111111m11mm1llllmllllllllllllllll!lllllll!l!lll!l!lllll!llW!@lWl!lll!lllilllllilllllllillW!llllllllll!l!l!!ilil!I
The internal instruction must have an operation and an operation complement specified. It may

also have one or two addresses of operands. A complete explanation of each of the internal

instruct ion parts is given be low.

The Operation

Each instruction uses one octet to define the operation to be performed. The octet contains the

binary pattern translated by the assembler from the mnemonic ope rat ion specified in the Assembly

Language instruction. This binary pattern is by convention represented by a pair of hexadecimal

digits. For example, the mnemonic AD is translated by the assembler to a pattern which is

expressed in hexadecimal as FA.

Source language

A Object language

Operation Complement

The second octet is used in severe I different ways according to the type of operation specified in

the instruction statement. In all cases the second octet complements the first. It may:

• Define the length of data fie Ids

• Contain an immediate data item

• Define the conditions required for a jump

• Differentiate between operations having the same value in the first octet

• Conte in the number of an input/output unit being used

Length

Some of the GE-115 system operations may treat data fields which are more than one octet

in length. There are no field defining marks in store; the length of an operation is controlled by

the length (or lengths) specified in the operation complement.

In instructions requiring two lengths for two data fields, each quartet of the operation complement

specifies one length. The left quartet is the length of the first field; the right is the length of the

second field. Since four bits are used for each length, the value in the quartet may range from

0000 to 11 11 (0- 15).

In instructions requiring that only one length be specified, the full octet of the operation

complement field is used to define the length. The value for eight bits may range from 0 to 255.

(ffi ~ o ~ ~[ID ___________________ _..u sE R ' s cu-.-r--.nE

-12-

In all operations which process variable length fields, the lengths really processed are one more

than the lengths indicated in the operation complement. In the assembly language statement, the

programmer specifies the length really processed. When two lengths must be specified these lengths

may be from 01 to 16. When one length must be specified the length may be from 001 to 256. The

assembler translates the lengths specified as shown in the examples below. In the first example

below the Add Decimal (AD) instruction causes one decimal digit in the BETA field to be added

to the decimal data 14 digits long in the ALPHA field.

AD ALPHA {14), BETA {OJ)

~~
Source language

I F I A I D I 0 I Operand addresses l Object language

Octet 1 Octet 2

The Move Complete Octets (MVC) instruction shown below causes 256 octets to be moved from

BETA to ALPHA.

I MVC I ALPHA {256) I BET A

'---. VJ
I D I 2 I F I F I Operand addresses f

Octet 1 Octet 2

Source language

Object language

Length specification is a minimum of one octet. A zero length in the operation complement of the

assembled instruction operates as 1 •

Data Within the Instruction

Some operations use data contained within the instruction itself. This data is referred to as

"immediate" data. In those instructions using immediate data, the operation complement f~eld

contains one data item. The assembler translates the data item from its source language represen

tation and places it in the second octet of the object instruction. The conventions for representing

the immediate data item in the assembly language instruction are treated fully in the descriptions

of the particular instructions using immediate data, and in the section, 11 WRITI NG INSTRUCTION

STATEMENTS IN THE GE-115 ASSEMBLY LANGUAGE".

One example of an instruction using immediate data is the Compare lmmediat~ 'to Store (CMI)

instruction. In the example below, the field ALPHA is compared to the internal representation

of a $.

@ ~ 0 ~ ~ ~ --------------------u...,.sE_R'_s _Gu_rn_E

-13-

This representation is 1010 1011 (in hexQdecimal, AB). The source and object language

representation of the CMI instruction is:

I cM1 I c·i·, ALPHA

[2~8
Source language

Octet

Object language

Octet 2

NOTE : Instructions using immediate data also reference a

data item in store (ALPHA in the example above).

The assumed length of the referenced data is one

octet; there is no length specified in the assembled

instruction.

C.Ond itions for Jumps

In another group of instructions, the operation complement is used to define a condition

reflected by the state of the indicators. The indicators are set during ex~cution of several of

the GE-115 system operations. Instructions are provided to test the indicators and to act

upon the indicated condition. The test written in the source language statement is translated

by the assembler and inserted in the operation complement. In the example below, the Jump

on Condition (JC) instruction causes the indicators to be tested for a condition which ~an be

represented by the hexadecimal digits 1 80 1
• The hexadecimal digits are translated and placed

in the operation complement of the assembled instruction.

JC I ,x•ao•, ALPHA

'C?i7-, 0 -\,

Source language

Object language

Octet l Octet 2

@j [~> 0 0 [ID ___________________ _...u sE R' s_...GU...._I DE

-14-

Operation Differentiators

There are several special purpose instructions in which different mnemonic codes are translated

into the same configuration in the first octet. The operation complement, in these cases, serves

to differentiate between these operations, as shown be low by the pair of instructions, Turn ALERT

Light On (LON) and Turn ALERT light Off (LOFF).

Source language

0 Object language

Source language

0 Object language

Input/Output Un it References

Input/output units, since they are auxiliary to the central processor, are called peripheral units.

For input/ output instructions, the second octet contains the ·number of the periphera I unit to be

used by the instruction. In the example below, for the Peripheral instruction (PER), hexadecima_I

3 F may be any input/output device, depending upon the peripheral configuration of the particular

GE-115 ~~em.

I PER x•af •, ALPHA Source language

F Object language

@ ~ 0 0 0 ~ _____________________ us ER_' __ s,GU_ID_E

' -15-

Addresses of Operands

An address (within the object language representation of an instruction) is contained in two

octets. An address is the binary address of the octet where operation begins. When the size of

the store is 8192 octets addresses go from 0000 to 8191. Therefore, within the two octets which

an address occupies in the internal instruction, the three leftmost bits of the first octet are always

zero.

An ope rat ion referencing only one data fie Id requires two octets for the address of the operand

and a total of four octets for the entire instruction. If there are two data field operands, the

instruction requires 6 octets. In the example below, the Add Dec ima I (AD) operates on two

operands. The operation begins in the ALPHA field at the octet with the address

00000011 11110001 and in the BETA field at the octet with the address 00000010 11010101.

AD ALP HA (06) I BET A (06) Source language

~'-----)
F

1
A Is

1
s F Object language

@ ~ 0 ~ ~@ -------------------~U=SE-.R'-..S .-GU;o,;;;,;ID-.-E

-16-

PART II.

An assembly language is a set of symbols and rules for writing statements to be performed by a

computer. An assembly language statement is written in a format which is more convenient

and easier to remember than the format for the internal instruction which the computer recognizes

as an executable statement. Instead of writing the numeric values for operation codes, operand

lengths, data constants, and addresses, the programmer uses assembly language rn_struction

statements.

The GE-115 Assembly Language enables the programmer to write i411.tructions and to

specify a II the required program parameters with meaningful and easily remembered codes.

The GE-115 Assembly Language provides the followl11g features:

• Operations are specified with easy to remember alphabetic mnemonics (e.g., AD for

decimal addition, PER for a peripheral unit instr,uction).

• Data constants may be written in various forms (hexadecimal numbers, alphanumeric

characters, and special symbols as+, - $ 1 etc.).

• Cross references between instructions and references to data fields may be accomplished

with meaningful names chosen by the programm4!r without concern for the actual location

in store of instructions and data.

Primary instructions written in the GE-115 Assembly Language are translated by the

GE-115 assembler into the object language instructions acceptable for execution by the

GE-115 System •. Primary instructions specify the program steps, ope.ration by operation.

Directive instructions written in the GE-115 Assembly Language ar~ .directions from the

programmer to the GE-115 Assembler. Data defined in Directives will be included in

the object language program. Other Directives define the assignment of store addresses and

procedures for printing the assembly listing.

@ ~ o ~ ~ lW ____________________ u_sE_R_'s_G_ur_nE

-17-

In this section, the symbols of the GE-115 Assembly Language are described and the rules

for writi'ng instructions in the language are given. Also, the relationship between data field

references and the assembled addresses used in object language instructions is explained. This

relationship is quite unusual. In most assembly languages, a symbolic name used as an operand

specification references an address.

In the GE-115

data fields.

Assembly Language, symbolic names used as operand specifications reference

illlillliiill!l[T HE s y MB 0 Ls 0 F T H E GE- 115 Ass EM BL y LAN G UA G E)\\\\\\\\\\\\\.\\\\ll\\\\\\\\\l\\\l\\\\\\l\\\\\lll\\\\lll\\\\mll\lll\lllllll@mmmmmm
The GE-115 Information Processing System recognizes the standard graphic character set

defined in Figure A-4, page 19 • There are 64 graphic characters. Each number, letter or

symbol in this set has a unique binary value represented internally by the eight binary digits of one

octet. The internal representations of the graphic character set are only a part of the set of 256

possible binory configurations of octets.

The GE-115 System Assembler allows for the definition of data by symbolic characters, by

hexadecimal digits, and by decimal digits. Binary digit patterns that are to be used for special

purposes by a program must be submitted to the assembler under one of the above representations.

The assembler does not recognize binary literals as data. Thus, when a programmer wishes to

specify a data item with the internal configuration of 0010 0001, he may specify the hexadecimal

configuration 21.

Although rt is not possible to avoid specific coding of the non-graphic characters when they are

required, the user is strongly advised not to construct programs in which the logic is contingent

upon the internal codes of the graphic character set. Do not refer to the.hexadecimal configura

tion of a graphic character when it is possible to use a reference to the character itself.

USER'S GUIDE

-18-

Binary Graphic
Hexadecimal

Binary Graphic
Hexadecimal

Config. Character Config. Character

01000000 0 40 10100000 t AO
0001 1 41 0001 J Al

0010 2 42 0010 K A2

0011 3 43 0011 L A3

0100 4 44 0100 M A4

0101 5 45 0101 N A5

0110 6 46 0110 0 A6

0111 7 47 0111 p A7

1000 8 48 1000 Q A8

1001 9 49 1001 R A9

1010 [4A 1010 - AA

l 011 II 4B 1011 $ AB

1100 @ 4C 1100 * AC

1101 : 40 1101) AD

1110 > .4E 1110 i AE

1111 ? 4F 11 1 l ' (apos- AF
trophe)

01010000 (blank) 50 l 0110000 + BO

0001 A 51 0001 I Bl

0010 B 52 0010 s B2

0011 c 53 0011 T B3

0100 D 54 0100 u B4

0101 E 55 010 v B5

0110 F 56 0110 w B6

0111 G 57 0111 x B7

1000 H 58 1000 y BS

1001 I 59 1001 z B9

1010 & 5A 1010 +- BA

l 011 . 5B 1011 , (comma) BB

1100] 5C 1100 % BC

1101 (50 1101 = BD

1110 < 5E 1110 II BE

1111 " 5F 1111 I BF

Figure A-4: THE· GE-115 GRAPHIC CHARACTER SET

@ ~
0
~ ~ ~ ____________________ u_sE_R_'s_c_ur_oE

-19-

The set of graphic characters are not only used for data definition in the GAMMA 115 Assembly

Language.

All may be present in the coding of an assembly language program. Most of the characters in

the set may be used freely. Some are reserved for special purpose. The group of symbols

reserved by the assembler are

' I () + *

These symbols must not be used by the programmer in naming data fields or instructions.

(They may be used for data definition). This set of symbols is described below and in Figure

A-5.

RESERVED SYMBOLS

Apostrophe (')

Two apostrophes are used as data field delimiters, one to the left and one to the right of the

data being specified.

Comma(,)

A comma is used to separate operand specifications when more than one operand is specified.

Parentheses ()

Parentheses are used to contain length definition when the specification of a length accompanies

a field reference. Parentheses may also contain an address reference.

Arithmeti_:_ Signs(+-)

Arithmetic Signs (+or-) are used to modify a symbolic operand specification. The sign is

followed by a decimal increment or decrement.

Asterisk (*)

The asterisk symbol is used in two ways.

An asterisk used for operand specifications indicates that the address of the specified operand

is relative to the left octet address of the instruction in which the asterisk appears.

When an asterisk is used as an operation, it indicates that the operand specifications field

contains a comment to be printed during assembly.

@~o~~@---U-SE_R'_s_Gu_
1

ID_E
-20-

Figure A-5: SYMBOLS RESERVED BY THE GE-115 ASSEMBLER

SYMBOL USE

I Field delimiter

I Operand specification separator

() Length specification or address definition

+ Increment specification

- Decrement specification

* As an operand specification : indicates store
assignment.

As an operation : indicates a comment

ALPHABETIC SYMBOLS

In addition to the above symbols, there are several alphabetic characters used by the GE-115

Assembler (A, C ,X, L, R,.S, D, Y). The programmer may use any of these letters in naming fields;

however, it is recommended that he not use the letter Y to begin the name of subroutines, data

fields, or instructions because system subroutine names begin with Y. A new system subroutine

could have the same name which a programmer has defined in his program.

A

The letter A is used in a constant definition instruction to indicate an address constant.

c
The letter C in the operand specification field of an instruction indicates that the data item

which follows the C, bounded by apostrophes, is a single member of the graphic set;(i .e.,
0-9, A-Z, or a symbol).

C in a constant definition instruction indicates that one or more members of the graphic character

set are being used to define constant data.

(ill~ 0 ~ ~@ --------------------..;;,U.;.;;;SE;,;.;.R'..;.S..;.GU,;.;;;I.;;;.;;;.DE

-21-

x
The letter X appearing in the operand specification field of an instruction indicates that the data

item bounded by apostrophes is represented by a pair of hexadecimal digits; i.e., the quartet

configuration represented by each of the digits is one of those shown below :

0000 = 0 l 000 = 8

0001 = l l 001 = 9

0010 = 2 1010 =A

0011 = 3 1011 = B

0100 = 4 1100 = c
0101 = 5 1101 = D

0110 = 6 1110 = E

0111 = 7 1111 = F

X in a constant definition instruction indicates that one or more pairs of hexadecimal digits are

being used to define constant data.

L

L precedes the definition of length in a store definition or constant definition instruction.

R

An R in the operand specification field of an ORG instruction sets the value in the store

assignment counter to the next higher mu I ti pie of 256. The store assignment counter is a part

of the assembler and is used for assigning addresses to instructions and data.

S, D

The letters 5 and D are used in the line Feed (LF) as line spacers. S requests a sing le skip.

D requests a double skip.

y

In GE-115 system software, rhe letter Y has been used as the first letter of the subroutine

names.

CONTROL CHARACTERS

There are three special purpose hexadecimal control characters used by the Edit (EDT) instruction

to format data : 20, 21, 22. They are used in the editing mask to control data positioning. These

three numbers do not correspond to any of the characters in the graphic set and must be represented

in assembly language statements by pairs of hexadecimal digits.

@ ~ 0 ~ ~@ ____________________ u_sE_R'_s_Gu_I_DE

-22-

m1111111i:. w R IT IN G s TATEM EN Ts I N THE GR- l15 Ass EM B Ly LAN Gu AGE ::1111111111111111111rmim~m!!!W!!l!!!!!llWll!!!!l!lllll!lllllllllillllllllll
Programs for the GE-115 Information Processing System are written in the GE-115 Assembly

Language on the Programming form shown in Figure A-6.

The parts of this form and the rules for their use are described below. If the programmer does not

follow these rules, the GE-115 assembler will print mistake indications on the listings which

are produced during assembly. A list of the possible mistake indications and their meaning is

presented in Figure A-7 GE- ll5 ASSEMBLER MISTAKE CO DES. The notations appearing

in parentheses throughout the text refer to the mistakes described in this table.

THE PROGRAMMING FORM

1. IDENTIFICATION (Columns 1-4)

Enter a 4-digit field to identify the program. Any alphanumeric combination may be

used.

This field is for program identification; therefore, it is suggested that a meaningful code

be chosen. In the example below, BILL was chosen to identify a billing program.

PROGRAM
I DEN Tl FICA TION
1 B I L L

4
B L L N G P R 0 G R A M

PAGE LINE
ND N• NAME OPERATION OPERANDS

32 33 34 3!5 345 40 41 42 4!5 445 47

0 5

0

Sequences of numbers or letters might be chosen for a set of programs which are related.

A set of three programs which tabulate test scores might be identified by SCRl, SCR2,

ond SCR3.

The numbers 0000 to l 000 are used for identification of system programs and should be

avoided. If the identification field on any instruction is not the same as that of the

first, the instruction is marked (S) by the assembler. The System Program Loader verifies

(at execution time) thot all cards of a program have the same identification field.

@ ~ D ~ ~ iID ____________________ ...;U;.;;.;SE~R--' S,_;;G;.;.,;UI;;.;;.;;-DE

-23-

@?)
[f1J1]

0

c::::::J
c::::::J

@ru

* I

c:::
CJ)

trl
~
CJ)

c:i
c:::
H
t;j
trl

1-rj
I-'•

(IQ
~
Ii
(I)

::i>-
I

Q'\

""d

~
CjJ

~ z
CjJ

1-rj

0

~

0
~
I
w
CN
(II

11

11

GE-115 INFORMATION PROCESSING SYSTEM

GENERAL fl ELECTRIC ASSEMBLY LANGUAGE

PROGRAMMING FORM

PROGRAM PROGRAMMER
IDENTIFICATION

PAGE L~~E NAME OPERATION I I OPERANDS NO

~ 34 31! 315 40 '11 _42 - 41! 46 47

0 5l.

'1 0l..

_l _5_
_ _____L_j ___ _______l____J________l_ l _ ______i ___ _______L________L________________l_________ ___ _____L______j_

2 D_ ..L
... . ..

.l.

1 _5_ ..L ..L

3 0 _j_ ... -..Ll. .l.

3 5 .l. ..L
...

4 0 .. .l.
T ' 4 5l. ..L ..L .l. .J.

5 0 t:::::
5 5 ..

.J..
... + + .l. .J..

::{ 6 0 ...
T .J.. .l.. .J.. .l.

t::::: T

6 5
.l. .l.l.

7 0 ..
.J..

7 5
L________l______ __ ___L_______L_ - _______L__i_

~
8 5

1 r·1 1· 1 9 : 0 : : : : : >< : : : /!:!:: : : : : : : : : : : : : : : :
9 5

I : I : : : : kJ : : : i... 1 : : : : : : : : : : : : : : : :

..L

PAGE __ OF __

74

..L

.J..

.J..

.J..

.l.

DATE ---

EXTERNAL
IDEN Tl Fl CATION

71! 80

::::::;::::::;::::::;:::::::::::::::.:::::::
::::::::::::::-::::::::::::::::::::::::·:·:
·.·.·.·.·.·::i.:.:.:.:.:..·:·~·.·.· .
::
·.·.·;•.·.·.·,·.·.·.·.·.·.t.1.·.·.·,· · .

::::::;::::::;::::::;::::::::::::::;::::::
: ::: : :; : : : : : : ::::: : ;}~: ~ :~: ~: ~= ~~ :: : : :
::
... •J-• • •.• ••

: : :: : :; : : : :: :i:::::: ~=: ::: : :;: ~=::: ;: : : : : :
::
·······.....t..._~-·-·-·1•_•_•...._1_•••

::

~jiFI:::::;:,::1::.:~E
·:·:·:i:·:·:·:·:·:·:·;·:·:·:r:·:·:·~·:·:·:

.::::::;::::::;:::::j:::::::::::::~::::::

::::::~:::].::]::::r::t:::,
::·
··~·~...l.!.......!.···••••h••

·::
·~···· r·••1•••\•••

::::::~::::::~:&:~:~:~;:::::::::::::
:::::::;::::::;::::::~::::::~::::::;::::::
:::
···-:..:i..····.·.·.·.·.· .. ·.·.·.;.·.·.·.·.·.·.

::::::::~:-::::::::::::::~:::::::.:-:-:-:·:·
·.·.·~._:-:-:-~·:·:·:L····-~.·.·.·

: : : : : ; :::: :::;::: :·::::: :: : : : : : : : : : : : : : : : : : :
o o • ~- o O • o .j. o ~ ~:__.:__.· o_"ti" •

0
0 o 0 ~ 0 • 0 O G.

I : I : : : : hd : : : hd :
::::::~:::::::;:~i:::::;::::::;::::::
::::::}:::;::::::;::::::::::::::;::::::

2. PAGE NUMBER (Columns 32-33)

Enter a page number at the top of each page of the coding sheets. Repeat the page

number on each statement when punching.

Page numbers must be in ascending order (S). The collating sequence shown in Figure I,

Appendix A, cannot be used to position non-numeric characters as sequence references.

Page and I ine numbers (see be low for I ine number description) are used to order program

instruction statements; they do not enter into the assembled program. It is not necessary

to have a new page number for each programming sheet, nor is it necessary to use the same

number for an entire sheet, as long as on each instruction the combined page and line

number {taken as a 4-d ig it dee ima I number) is higher than the .one before.

3. LINE NUMBER (Columns 34-35)

Enter a 2-digit decimal number for each line of coding. The numbers must be (within

any page) in an ascending sequence (S). It is advisable that lines be given numbers

which are mu It iples of 5 so that changes and corrections may be inserted without making

resequencing necessary. In the following example, the I in es are numbered with mu It iples

of 5. If the programmer wishes to insert two n·ew instruct ions between 15 and 20 he may

number the new instruct ions 16 and 17.

Inserts 16 and 17 could be written on free lines at the bottom of the coding sheet and placed

between 15 and 20 after they are punched.

The collating sequence shown in Figure 1, Appendix A, may not be used to position

non-numeric characters. line numbers are used to order the instructions of the program;

the program sequence depends on card order in the source deck. The numbers are

examined but not translated by the assembler.

4. NAME (Columns 36-40)

Names are used for cross-reference between program statements. The name of a fie Id is

defined by its appearance in the name field. The name will be equated to the actual

(lli ~ o ~ ~@ _____________________ u_s_ER_' s_c_ur_DE

-25-

location assigned by the assembler to the statement.

Enter a name to identify the first operation in the program.

Begin the name in column 36. Leave unused columns to the right of the name blank.

Leave the name field blank if no reference to the statement is required. Column 41 must

be blank •

.<\ nwximurr .'.')f five characters is allowed (N). A name must begin with a letter (N).

Succeeding characters may be alphabetic or numeric; no spec ia I symbols may be used (N).

A name may appear in the name field of an APS statement only once

in a program. When the same name is assigned to more than one

statement, the name will appear in a multiple reference table which

will be listed preceding the object program list. The location

assigned to the first occurrence of the name is used for all references

to the name.

System subroutine names begin with a Y. It is therefore advisable to avoid the letter Y

as an initial character of a name in order to prevent duplication.

5. OPERATION CODE (Columns 42-45)

The operation code specifies the system action defined by the statement.

Enter the mnemonic for the ope rat ion 1 starting in column 42. Leave unused columns to

the right blank. Cck "' 1 . .t, must be blank.

The mnemonic expression must be one of those I isted in Figure 3, Appendix A.

@ ~
0
~ ~@ ____________________ u_s_ER_' s_c_m_DE

-26-

6. OPERAND SPEC IF ICAT 10 NS (Columns 47-74)

An operand is the item which is operated upon by an instruction.

For example, if the number 24 is added to 92, the data items 24 and 92 are the operands.

If 24 is contained in a field named (See above fo~ naming} BET A, the instruction statement

which specifies the add it ion operation uses the symbolic name BET A to specify that operand.

Instructions in the GE-115 Assembly Language may specify one, two, or no

operands depending upon the operation to be performed. The methods for specifying

operands vary according to the kind of operand and the 'operation being specified.

When an operand is to be specified, enter the operand specification beginning in

column 47. Two operand specifications "'!ust be separated by a comma (F). No blank

may appear between column 47 and the end of the operand specifications (except as data

definition (F,I). If an instruction does not require an operand, I
leave the operand specification field of the instruction blank.

Severa I types of operands may be specified by an instruct ion. The types of operand and

the methods for specifying such operands are described below.

Types of Operands may be:

• Data Fields

Data operated upon by an instruction may be elsewhere in the store, or data used

by an instruction may be contained within the instruction itself. The latter type

of data item is referred to in this manual as an "immediate operand" to distinguish

it from data not contained with in the instruct ion.

• Instruct ions

The location of another instruction is specified as an operand when the operation

may cause an interruption in the sequence of instructions executed. The location

specified is the location of the instruction to which control is transferred when

the sequence of instructions is interrupted. (See jump instructiOns, page 95)

• Hardware Items

Operands such as input/output units, peripheral status conditions, overflow/

underflow and zero/non-zero indicator test conditions, may be specified.

Methods of Specifying Operands are:

• Symbolic Names of Fields

An instruction or a data field (which is not an immediate operand) may be specified

@ ~
0

~ ~ ~ ____________________ u_sE_'R_'s_c_ur_oE

-27-

with the symbolic name of the field in which it is contained. The name must be

defined (U). A symbolic name must conform to the format for names (I). In the

following example the data field ALPHA is compared to a Z using the Compare

Immediate to Store (CMI) instruction.

• Symbolic Names for Fields with Increments or Decrements

A symbolic name may be modified by a 3-digit decimal increment or decrement.

If a programmer wishes to reference -a location vJi ich has not been named,· he may

refer to it using the name of a location near it. For example, if ALPHA is the

name of a data fie Id of five octets and the programmer wishes to reference the

third octet of ALPHA with a Compare Immediate to Store (CMI) instruction, he

writes ALPHA + 002. If the programmer wishes to reference the octet to the left

of ALPHA with the CMI instruction, ALPHA ... 001 is written.

ALPHA-001 ALPHA

i

t
ALPHA+ 002

The programmer writes an instruction using the symbolic name of the ALPHA

field with an increment or decrement as follows:

@ ~ c ~~[ID -------------------~US;;.;:,;ER~'S~GU~IDE
-28-

An increment or decrement must be three dee ima I dig its (F, I). The symbols

+and - are the only symbols of modification accepted by the assembler (F).

• The Asterisk (*) Symbol

The asterisk symbol (*) may be used as an operand. This symbol always references

the first octet of the instruction in which it appears as an operand. The * symbol

must be followed by an increment or decrement. When the * is used without an

increment or dee rement, it is a mistake (I).

The use of the * as an operand is not recommended. Meaningful names are

always easier to understand. Also mistakes can easily occur when programs are

changed. For example, if another instruction were to be inserted 'in the following

set of inst.ructions, the programmer would have to change the * -014 operand

specification because the instruct ion named LOOP wou Id no longer be 14 octets

before the Jump Unconditional (JU) instruction.

The instruction on line 20 should be written:

• Absolute Addresses

Operands may be specified with absolute location addresses. For example, if the

programmer wishes to direct the assembler to set its store location assignment

counter to 1256, one might code:

I

@j ~ 0 ~ ~@ _____________________ us_ER_'s_· G_u_IDE

-29-

An absolute source language address used as an operand specifier must be written

as a 4-digit dee imai number o= 0 I). There cannot be an increment or decremen!·

associated with an abso~uhe address (F).

The programmer is advosed. to avoid the use of absolute address references. Names

are more me_aningful. The possibility of errors when a program is modified is very

great when absolute address references have been used.

• Data Fields and Lensths

Operations which act upon variable length fields require a definition of the leng~h

of the fie Id.

If t-he length is that of a named data field, the length need not be specified. In

a 11 other cases where a variable length ope rat ion is to be performed, length is the

number of octets or quartets used in the ope rat ion.

The length is v.·ritten as a dee imal number enclosed in parentheses immediately to

the right of the data fie Id specification. Some ope rat ions require that the length

be specified as a 2-digit decimal number. Others require that the length be

spec if ied as a 3-d ig it decima I number. When the number specified is not an

acceptable number or it is not expressed in the correct number of digits, it is a

mistake (F, I).

An example of a specified length written as three digits is:

An example of a specified length written as two digits is:

Cffi ~ 0 ~ ~@ -----=~--------------US~ER.,,...'_s _cu __ IDE

-30-

Note that although only four octets enter into the last example, the number is

expressed in two digits. It is written 04, not 4.

In instructions which operate on variable length fields, the length~ always be

specified (F) if the operand is referenced with either the * or an absolute address.

• Immediate Data Items

Immediate data items may appear in the operand specification port ion of the

source language instruction. The data item becomes a part of the object language

instruction. The assembler, when it translates 'the instruction, places the· data

item in the operation-complement octet.

There are three ways in which immediate data may be specified. Immediate data

may be coded as a character, a hexadec ima I number, or a dee imal number.

A sing le symbol preceded by C and enclosed in a pair of apostrophes signifies an

immediate data item which is a character. The character must be one of those

shown in Figure A-4, page \9 (F,1).

A pair of hexadec ima I numbers preceded by X and enclosed in a pair of

apostrophes signifies an immediate data item which is any va I id hexadec ima I

configuration up to 'FF'. The user should refer to "SYMBOLS OF THE GE-115

ASSEMBLY LANGUAGE", Figure A-4. The hexadecimal numbers and their

binary, dee ima I, and character equivalents may be found in Figure I, Append ix

I

A (I). It is recommended th.at the programmer use the C notation (see above) I

USER'S GUIDE

-31-

I

for any character in the graphic character set instead of the hexadec ima I

configuration.

A 3-d ig it d ec ima I number with a value from 000 to 255 may be used to specify an

immediate data item. No field definers are used (F, I).

• Conditions of the Indicators

Indicators are tested by the Jump on Condition instructions. The test conditions

of the indicators may be specified in three ways. The condition may be written as

a 2-d ig it hexadec ima I number, a sing le character / or a 3-d ig it dee ima I number.

The methods for coding the test conditions are the same as for immediate data

items (see above). It is recommended that in Jump on Condition instructions, the

X 1 1 form with two hexadecimal digits be used to specify conditions.

• Input/Output Units and Status

These two operand specification types should be specified with a pair of

hexadecimal digits. The rules for coding these are the same as for the X' 1 form

for specifying immediate data iterns (see above).

• Comments

The programmer may write a comment fol lowing the last operand specification. A

comment must be separated from the last operand by a blank. If the user has

USER Is GUI DE

-32-

place<l an asterisk in the operation code, a comment may

begin in column 47. Comments for one of the examples

used above might be wri_tten as shown below to provide

explanation and reada!1ility in a program assembly listing.

NAME OPERAHJN OPERANDS

~-"-"+=---__;_;;+'-"~--'-+---+-'-----·-···--------T-E_S_T __ F_O_R ___ -:a-_

1,F FOUN

A,D DA E S S F 0 A, _._. _ _.___..__
S,EARCH AND

@J [E o ~ ~@ --------------------~US~ER~' S~G~U~IDE
-33-

Figure A-7: GE-115 ASSEMBLER MISTAKE CO DES

Code Letter Genera I Cause Assembler Action

A mistake has been made in the format The statement is marked"with an

F
of the operand fie Id specification. on the assembler listing.

An unexpected configuration has been
encountered by the assembler; e.g. a The program is not assembled.
blank where a comma should appear.

Examples of mistakes that are marked with F:

• Data Fie Id Reference

An absolute address is written in more than 4 digits.

An address increment or decrement is written in more than 3 digits.

A character other than +or - appears between a data field name and increment or
decrement.

F

An immediate data item expressed in the C' ' notation is more than a single character
in length.

An immediate data item expressed in the x· I notation is more than 2 digits in length.

• Length

A left parenthesis is omitted.

An absolute address is written without a length specification.

A length is written for an operand which has an implicit length of l.

Three digits are used to specify a length which should be expressed in 2 digits.

Code Letter Genera I Cause Assembler Action

I
A mistake has been made in the content The statement is marked with an
of the operand fie Id specification. on the assembler I ist ing.

The program is not assembled.

Examples of mistakes that are marked with an I:

• Data Fie Id Reference

A data field name begins with some symbol other than a letter.

A spec ia I system sym :. ;s used in a data name.

A data fie Id name is expressed in more than 5 letters.

An address increment is written in fewer than 3 digits.

A data item is written where a data name shou Id appear.

A data item expressed in the C 1
' notation is written without one of the apostrophe

signs.

A data item is written without either C or X notation.

A character other than one of the hexadecimal digits appears in the expression of a
data item in the x· I form.

• Length

A two dig it length is written with a value greater than 16.

A three dig it length is written with a value greater than 256.

The right parenthesis is not written after the length specification.

I

@ ~
0
~ ~@ ____________________ us_ER_'s_c_ur_DE

-34-

Figure A-7: - GE-115 ASSEMBLER MISTAKE CODES (cont'd)

-·
Code Letter Genera I Couse

_,
Assembler Action

L
An incorrect length is associated with a data The statement is marked with an L
field. on the assembler listing.

Assembiy continues .

Mistakes marked with an L:

The address orig in defined on an OR G card is less than the upper I im it of the area used
by the system loader.

The program cannot be executed by a system of the size defined on the STRT card.

An implicit length exceeds 16. NOTE: The assembler places a value in the length
field and continues. This value is generated by translation. Therefore, the value
inserted differs according to the configuration of the store.

Code Letter Genera I Cause Assembler Action

M

N

0

p

s

u

The same name is written for more than one source
instruct ion .

The name of a field is longer than 5 characters.

The name of a field contains a non-alphanumeric
character .

The name begins with a non-alphabetic character-.

The operation code field is blank.

The operation code contains some expression

The name will appear in a
multiple reference table
which will be listed
preceding the object list.
The store location assigned to the
first occurence of the name is used
throughout the assembly for all
references.

The statement is marked with an N
on the assembler I isting.

The program is not assembled.

The statement is marked with an 0
on the assembler listing.

other than one of the qssembly language mnemonic The program is not assembled.
codes .

When an ope rat ion code was encountered for
location assignment, the store assignment counter
was set to an odd octet value'~

The program identification on an instruction is
different from the identification on the STRT
instruction .

Page numbers are not In ascending sequence.

Line numbers are not in ascending sequence .

A name which appears in the operand field of an
instruction cannot be matched with a name in
the list of named fields.

The statement is marked with a P
on the assembler listing. The
location is rounded up to an even
octet boundary .

The assembly continues.

The statement is marked with an S
on the assembler I isting .

The assembly continues .

The statement is marked with an U
on the assembler I isting.

The operand is assigned a location

of 0000 and an assumed length
of 00. The assembly continues.

I

@[E 0 ~ ~ ~ -----------------------'U-..SE--R...;.' s..-GU......,..IDE

-35-

!ill!mm: REFERENCING DATA FIELDS IN THE GE-115. . ASSEMBLY LANGUAGE :!!l!l!ll!ll!l!!!l!l!l!l!l!l!l!!l!!l!l!W
The programmer who has not already programmed using the GE-115 '· Assembly Language should

read th is sect ion very carefu 1 ly. Th is section exp la ins the relationship between the reference to a

data fie Id in the 1 GE-115 Assembly Language and the address translated by the assembler.

Each octet in the store has a unique address. An address in a GE-115 system instruction can

reference any octet ind ividua I ly, giving access for processing or control. The function of

addressing is shown by the following diagram:

Instruction with
an Address

Addressed
Location

In an instruct ion in the GE-115 System Assembler Language, an operand specification may be.

a symbo I ic name or an actua I reference to a particular location.

Specification of operands with symbo I ic names can be of three types:

l. A name assigned to a field (data or instruction) by the programmer; or,

2. A name (as in l) modified by a 3-d ig it dee ima I increment or decrement; or,

3. An * (signifying the first octet of the instruction in which it appears), modified by a

3-digit decimal increment or decrement.

NOTE: An * must have an increment or decrement; it cannot appear alone.

Symbo I ic names used as operand specifications are translated into actual addresses at assembly

time. The actua I address is the binary address of the particular octet referenced' bx the operation.

Actua I addresses used for operand specification are 4-dig it dee ima I numbers which reference

exp I ic it locations. The assembler converts the dee ima I address specified by the programmer to its

binary equivalent and inserts this into the object language instruction.

When writing in the GE-115 Assembly Language, the programmer must be aware of the

re lat ion ship between a fie Id reference written in a source language instruct ion statement and the

address which the· assembler places in the object language instruct ion.

@j ~a~ ~[ID --------------------...:;;.U;;.;,;SE~R'.:;:,.S ~GU~IDE
-36-

When an instruction is translated by the assembler, the operation mnemonic is translated and

placed in the first octet of the object language instruction; the operation complement

{immediate data, lengths, indicator test conditions, peripheral units, etc.) is placed in the

second octet; the address of one operand is placed in the third and fourth octets, and, if there

is a second operand, a second address is placed in the fifth and sixth octets.

Any data field orie octet in length can be referenced with the address of the octet it occupies.

When an operand which is one octet in length is referenced by a symbolic name in a source

language instruction statement, the address for the octet is placed in the object language

instruction. In the following example, the field ALPHA {defined elsewhere in the program as a

one octet field) is compared to a dollar sign. The symbolic name used as an op~rand spec ifica

tion is translated into the address of the ALPHA octet.

Data fields which occupy more than one octet may be though!' of as having a left-octet address

and a right-octet address. When a data field vJiich is rriore than one octet in length is

referenced in an instruct ion statement, the assembler may place either the left-octet address

or the right-octet address of the data fie Id in the object language instruction. The address

which is translated for any symbolic name depends upon the operation specified.

When a symbolically named field longer than one octet is referenced as an operand and the

operand can only be one octet iri length, the left-octet address of the field is placed in the

object language instruction (the leftmost octet is the one which is operated upon).

@[E 0 ~ ~ iID _____________________ us_ER_'s_G_u_IDE

-37-

If the field ALPHA referenced by the Compare Immediate to Store (CMI) instruction in the

example above is defined as a field of four octets, the assembler places the address of the

leftmost octet of ALPHA in the third and fourth octets of the object language instruction which

is produced.

When a symbolically named field is referenced as an operand and the operand may have a

length greater than one octet, the address placed in the object language instruction depends

upon the orientation of the operation.

Some of the GE-115 system operations which treat variable length fields process data from left

to right. For example, the Move Complete Octets (MVC) begins by moving the leftmost

octet. The MVC operation continues moving octets until the rightmost octet of the specified

fie Id has been moved.

When an operand is to be processed from left to right, the left-octet address of the symbolically

referenced field is placed by the assembler in the object language instruction.

Some of the GE-115 system operations which treat variable length fields process data from

right to left. For example, the Add Binary (AB) begins addition at the rightmost octet of the

two fields being summed. The operation continues to the left until the summation of the fields

is completed.

When an operand is to be processed from right to le1t, the right-octet address of the

symbolically referenced field is placed in the object language instruction.

Wherever possible, the programmer should use symbolic names for operand specifications.

When the programmer references fields which have been symbolically named, he does not

have to be concerned with the translation of the addresses of a data field.

@ ~ 0 ~ ~@ _____________________ us_ER_'s_G_UI_DE

-38-

The assembler build's a· table of the names defined in a program. The length of the data field or

instruction which the name references, along with both the left-octet address and the right-octet

address, are contained in this table. The assembler translates a symbolic name to the appropriate

address by using th is table.

When an operand is specified with a symbolic name and an increment or decrement, the

increment or decrement is applied to the left-octet or right-octet address translated.

When ALPHA has been defined as a field of four octets, the symbolic reference ALPHA + 002

in the instruction above will cause the assembler to use the address of the third octet in the

ALPHA field. The CMI instruction can reference a one-octet operand; ALPHA becomes the

left-octet address of ALPHA and the address translated for ALPHA + 002 is two octets to the

right of this address.

ALPHA-field

In the MVQ Instruction the Address of
ALPHA+ 003

+
octet octet octet octet octet octet octet

t
In the CM I Instruct ion the Address of

ALPHA+ 002

When the operation proceeds from right to left, increment; or decrements with a symbolic

operand specification are applied to the address of the rightmost octet of the data field. Thus,

the symbolic address ALPHA+ 003 in the instruction:

where ALPHA has been defined as a field of four octets (see diagram above) will cause the

assembler to use the address of the octet three locations to the right of the rightmost octet of

ALPHA.

@ ~
0
~ ~ ~ _____________________ u;.....sE_R_' s G;..;..UI~DE

-39-

The programmer shou·ld note that ff he uses source language actua I addresses to specify operands,

he must be sure that the address specified is the appropriate address according to the orientation

of the operation. It is strongly recommended that the programmer use symbolic field references

rather than specific addresses.

@ ~ 0 ~ ~ lW _____________________ us_ER_'s_G_u_IDE

-40-

SECTION B

GE-115

ASSEMBLY lAN&UAGE

INSTRUCTIONS

@~o~~@--------us_ER'S_GUIDE
-41-

PART I

lll11111/l111[~:~;i::1;:::i::;:::::i::i;:;!;:i:i::;::::::::::ii::]llll'1/i,.,',,,/I:
Primary instructions specify machine-executable operations. Primary instructions are written as

symbolic statements and translated by the GE-115 Assembler. The assembler produces one

machine instruction for each Primary instruction.

Primary instructions are written according to the rules presented in SECTION A, PART II,

"WRITING STATEMENTS IN THE GE-115 ASSEMBLY LANGUAGE". The programmer

should review these rules before using 'the information presented in this section. He should also

be familiar with the relationship between a Primary instruction and its machine instruction

counterpart (discussed in SECTION A, PART I, "INTERNAL INSTRUCTION FORMAT").

All the Primary instructions of the GE-115 system are described in this section. The

descriptions of the Primary instructions are grouped according to similarities of the operation,

as listed below:

ARITHMETIC - Instructions which perform addition or subtraction on binary or decimal

data fields:

Add Decimal

Subtract Dec ima I

Add Binary

Subtract Binary

AD

S D

AB

S B

DATA MOVEMENT AND COMPARISON - :nstructions which perform non-arithmetic

manipulations or comparisons of data fields:

Move Immediate Octet

Move Complete Octets

Move Right 'Quartets

Pack Right Quartets into Octets

Unpack Octets into Right Quartets

Compare Immediate Octet to Store

Compere Complete Octets

Compare Right Quartets

Search to the Right

Search to the Left

MV I

MVC

MVQ

p K

UPK

CM I

CMC

CMQ

S R

S L

@ ~ 0 ~ ~@ ______________________ us--.ER-..'-..s,GU....,.ID--.E

-43-

LOG IC - Instructions which perform 'and' and 'or' log ica I operations:

And on Complete Octets

Or on Complete Octets

Exe lusive Or on Complete Octets

NC

oc
xc

JUMP - Instructions which can be used to interrupt the sequential operation of the program:

Jump on Condition Jc

Jump if Greater JG

Jump if Equa I J E

Jump if Greater or Equa I JGE

Jump if Less J L

Jump if Not Equal JN E

Jump if Less or Equal J L E

Jump Uncond itiona I J u

No Jump NOJ

Jump if Switch 1 Set J s 1

Jump if Switch 2 Set J s 2

Jump and Return J RT

EDIT - Instructions which prepare data for system use and output readability:

Edit

Translate

E D T

TR

SYSTEM ACTION - Instructions which do not treat data but allow for manual intervention:

Halt System Operation

No Operation

Turn Alert Light On

Turn Alert Light Off

lnh ibit Sing le Stop

Enable Single Stop

H LT

NOP 2

LON

LO FF

INS

ENS

INPUT/OUTPUT - Instructions which execute read/write operations and test the status of

the peripheral units:

Data Transfer

Periphera I Status Tests

Peripheral Unit Control

P ER

P E R

P ER

@j ~ 0 ~ ~@ -------------------_,;;u sE--.,R'..-.s ,....cu--.rn-.-E
-44-

A uniform format, as shown below, is used to explain each of the Primary instructions. For easy

reference, each instruction is begun on a new page. Whenever an instruction requires more than

one page for description, the mnemonic appears in the upper outside corner of each page.

Mnemonic
in upper
outside
corner

What the
operation
does

Figure B-1: A SAMPLE PAGE

CMI

COMPARE IMMEDIATE TO STORE

CMI

Form of the instruction
using this operation

.immediate_ ALPHA
operand '

CMI

The immediate data item in the CMI instruction is compared to a single octet ALPHA field.

INDICATORS AFFECTED

NOTES:

UF/OF
0
I
I

ZE/NZ
I
0
1

Comparison
ALPHA <immediate data item
ALPHA =immediate data item
ALPHA >Immediate data item

• Neither the ALPHA field octet nor the immediate data item is affected by the camporhan

operation.

• The UF/OF and.ZE/NZ indicators record the results af the comparison.

PROGRAMMING PRACTICES :

The CMI may be used to verify the configuration of on octet in the store.

A Jump on Condition instruction is used to test the result of the comparison.

EXAMPLES:

1) Comparison of an octet In ALPHA with an immediate octet, ALPHA less than the Immediate
octet,

~-' 4 • ,. •o•• 2 •.•111' '

0-S ·:- I ;-: I I p A

ALPHA

BEFORE OPERATION

AFTER OPERATION NOT AFFECTED

-45-

IMMEDIATE OCTET

INSTRUCTION

NOT AFFECTED

INDICATORS

A< 8

'Sl'<'St'

Mnemonic

Examples
using this
operation

USER I s GUIDE

In the descriptions of the Primary instructions, certain conventions have been used. These

conventions are explained below.

"' Conventions of notation in the general examples of instruction formats have been used.

These are:

name

op

ALPHA

BETA

SIGMA

(nn)

(nnn)

The use of 11 name 11 written in lower case indicates that a name is optiona I and

where used must follow the rules for naming instructions.

The use of 11 op 11 written in lower case indicates that the operation is any one of

a given set of operation mnemonics.

The symbolic name ALPHA is used to refer to the first of two operands or, where

there is only one operand, the sing le operand.

Where ALPHA is written, the programmer r.10y write:

1) a symbolic na111e, with optional increment or decrement,

2) an asterisk, with a required increment or decrement,

3) an actua! addres~.

The symbolic name BETA is used to refer to the second operand in instructions

requiring two operands. BET A may be written in any of the ways I isted above

for ALPHA.

The symbolic name SIGMA is the name of the instruction to which control may

be transferred by a Jump instruction. SIG MA may be written in any of the ways

listed above for ALPHA.

The use of 11 n 11 written in lower case indicates that where the operation may

process variable length fields, length is specified with two or three decimal

digits. When a symbolic name is used and the length of the operation is the

length associated with the definition of the name, length need not be specified

in the instruction.

immediate The use of the words "immediate operand" written in lower case indicates that

operand any of the three methods for specifying immediate operands may be used. Refer

to the rules in 11 WRITI NG STATEMENTS IN THE GE-115 ASSEMBLY

LANGUAGE", for the three ways in which an immediate data item may be

specified. One of these must be used.

@ ~ 0 ~ ~@ -------------------_..U-..SE--.R'..-.S....,GU.....,ID--.E

-46-

condition The use of "condition" written in lower case indicates that in the Jump on

Condition (JC) instruction, a condition must be specified. It may be written in

any of the ways in which an immediate data item is written.

u The letter U is used to refer to a peripheral unit. It may be specified in any of

the ways in which an immediate data item is written. The use of the hexa-

dec ima I notation is recommended.

• Conventions of notation for showing data in store in the EXAMPLES portion of the descriptions

vary according to the type of data being represented.

Data may be represented as characters,

or as pairs of hexadecimal digits,

or in binary form.

0101 0001 0101 0010 0101 0011 0100 1000 0100 1001

Where only right quartets are involved, right hexadecimal dig its (usually dee ima I values) are

shown and left quartets are shaded.

@ ~ 0 ~~[ID ____________________ _..us..,..E-..R'.._S,GU....,.ID--.E

-47-

ij00!!l . AR ITH MET IC IN s:r RU CT I 0 N S. Jlml!lll!lilllll!lllll!ll!!lll!ll!lllllllll!l!lll!ll!!lmll~l!!!l!lllll!lll!lll!!!l!l!!lmmm11mm1m11111m1m1m1mmm1mmmmmmmm1m1m111m111mmmmmm1m1m11

The GE-115 adds and subtracts in both the decimal mode and the binary mode.

All C'!rithm~tic operations treat the data fields as unsigned quantities.

Both decimal and binary operations have the following general characteristics :

• Data fields may be from 1to16 octets in length. The length of each field is used in the

operation.

e Operation length is governed· by the length of the data field which receives the result ••

• Data fie Ids are referenced at the right ; the data vafoe is assumed positioned to the right

in the fie Id.

e Operation is right to left.

e The UF /0 F (Underflow /Overflow) indicator is set to 1 when a carry is generated out of

the result field. The result replaces the first data field.

e The ZE/N Z (Zero/Non-Zero) indicator records whether the value of the result field

is zero or non-zero at the end of the operation.

Decimal and Binary operations are different in the following characteristics

Ouartets/Octets

e Decimal operations process only the right quartets of the data field.

e> Binary operations process full octets.

FORM OF DATA

~ Decimal operations are designed for use with decimal quantities and process data as

uns~gned quantities to the base 10. No check is made prior to processing to determine

whel·her the fields to be operated upon do contain decimal configurations in the right

quartets.

Binary operations are designed for use with binary quantities and are used in the GE-115

Information Processing System primarily for address modification. Binary operations treat

data as unsigned numeric quantities to the base 2.

OVERFLOW AND UNDERFLOW IN ARITHMETIC OPERATIONS

In both modes of addition, it is possible to generate an overflow. When the result field contains

fewer digit places than are required to represent the sum, an overflow (or carry) occurs. The

sum Ts not fully represented in the result field in such cases and is referred to in the discussions

which follow as being in overflow form.

@j (E
0
~ ~ ~ ___________________ _...u ... sE--.R'-..s ..-Gu rn....,E

-48-

In both modes of subtraction, it is possible to subtract a larger quantity from a smaller. In this

case the opposite of the overflow condition is present. The condition is called underflow.

The difference which occurs when a larger number is subtracted from a smaller is represented in

what is defined as complement form, i.e., represented as subtracted from a power of the base

of the number system being used.

For example, 6 and 4 are mutual complements jn the decimal system.

6

+4

10

4

+6

10

10

- 6

4

10

- 4

6

So, too, are 60 and 40. However, 60 and 40 are expressed as multi pies of 10 and require

the square of 10 as a reference value for obtaining the complement.

60

+ 40

100

40

+ 60

100

100

- 60

40

100

- 40

60

In the use of the arithmetic operations for the GE-115 the differences which are computed

when a larger quantity is subtracted from a sma lier are in complement form. They must be sub

tracted from the applicable power of the base used in order to obtain the true difference. The

true difference also may be obtained by subtracting an underflow resu It from a fie Id of zeros

equal in length to the underflow result. For example, to obtain the complement of a result of

40 in a 2 digit fie Id the subtraction appears :

00

- 40

60

Results which cause neither overflow or underflow are referred to in the descriptions of the

arithmetic iristructions which follow as being in true form.

@ffi> ~ ~@ ---------------------"U;,,,;;,;;SE--.R--.' S..-GU...,..I--.DE

-49-

The format of the arithmetic instruction is

@ffio~~~--------------------~--------~----------U~SE~R'~S~GU~ID~E
-so-

ADD DECIMAL AD

AD ALP HA (nn), BET A (nn)

The unsigned sum of the right quartets of the ALPHA field and the right quartets of the BETA field

replaces the righ~ quartets of the ALPHA field. Operation is right to left, through the length of

the ALPHA field (01 - 16 octets).

INDICATORS AFFECTED

UF/OF ZE/NZ

NOTES:

0

0

0

0

No overflow; result is zero.

No overflow; result is non-zero.

Overflow; result is zero.

Overflow; result is non-zero.

• Operation is serial, octet by octet, from right to left, through the ALPHA and BETA fields.

• Operation is terminated when the ALPHA field has been processed. If the fields are of

equal length, all right quartets of BETA are added to all right quartets of ALPHA.

If the length of the BET A field is greater than the length of the ALPHA field, the excess

right quartets in the left of the BETA field do not enter into the addition.

If the length of the BET A field is less than the length of the ALPHA field, zero right

quartets are added to the excess quartets in the left of the ALPHA field.

Whenever the generated sum of two quartets is ten or greater, it is reduced by 10 and a

carry is propagated to the next quartet sum.

• A 1 in the UF /OF indicator at the end of the operation indicates that the ALP HA field is

not long enough to contain the result and a carry out of the sum field has been developed.

• A 0 in the UF /OF indicator at the end of the operation indicates that the sum is contained

in the ALPHA field.

• The ZE/NZ indicator is set to 0 if the result is zero, and to 1 if the result is non-zero.

AD

@~o~~@------~------~-----------------------~U~SE~R'-S~GU~I~DE
-51-

AD

• The left quartets in both fields are unaffected by the operation.

• The ALPHA field right quartets are replaced by the sum.

• The BETA field right quartets are unaffected unless some part of the ALPHA field lies

in the,BETA field.

The presence of a non-decimal configuration in any right quartet of either field does not

alter the above sequence of operations.

PROGRAMMING PRACTICES :

The AD is designed for use with decimal data. No check is made of the configuration of the

right quartets prior to the operation. It is not recommended that the programmer use the AD

operation to process data that is not decimal.

The programmer shou Id define the ALPHA fie Id long enough to contain the sum.

When the relative magnitudes are not known , the UF/OF indicator should be tested by a

Jump on Condition (JC) instruction to determine whether overflow has occurred.

EXAMPLES :

1) Addition without Overflow.

ALPHA has a defined length of 3 octets.

BETA has a defined length of 3 octets.

ALPHA

BEFORE OPERATION 1:} 1 p~ 2 p~ 31
0 •I ••I • •d

AFTER OPERATION !~~~~~ 5 I~~> f (91 .. ,
NOT AFFECTED

BETA
INDICATORS

UF/oF ZE/Nz

RESULT
CONTAINED IN

ALPHA

RESULT NON-ZERO

@ ~ 0 ~ ~@ ____________________ u_sE_R'_S_GU_I_DE

-52-

2) Addition with overflow.

BEFORE OPERATION

AFTER OPERATION

ALPHA

f\sf>l{ 2b[1 I
.({o~\ol\is({1j

3) Addition with overflow and zero resu It.

ALPHA has a defined length of 3 octets

BETA

w: 0 W= 4 1:} 5 j
• •1 •) ••I

NOT AFFECTED

INDICATORS

UF/oF ZE/Nz

OVERFLOW:
RESULT NOT

CONTAINED IN
ALPHA

RESULT NON-ZERO

BETA has a defined length of 4 octets, but only 3 enter the operation,
because the length of the operation is the length of ALPHA.

ALPHA

r
BEFORE OPERATION H[oj{ sl{ op~oj . ..,

AFTER OPERATION [@filo!~\ot\oj

BETA

v~ sp~ 4F~ol~{oj .. , .. , ·.·,

NOT AFFECTED

INDICATORS

RESULT
NOT CONTAINED

IN ALPHA

RESULT IN
ALPHA IS ZERO

When the length of the BETA field is greater than the length of the
ALPHA fie Id the extra digits of the BET A field do not enter into the sum.

AD

USER Is GUIDE

-53-

SD

SUBTRACT DECIMAL

SD ALP HA (nn), BET A (nn)

The unsigned difference of the right quartets of the ALPHA field and the right quartets of

the BETA field replaces the right quartets of the ALPHA field. Operation is right to left,

through the length of the ALPHA fie Id (01-16 octets).

IN DICA '.ORS AFFECTED

UF/OF ZE/NZ

SD

0

0

0 Does not occur when decimal values are used.

Underflow - a larger number subtracted from a smaller;

result is non-zero.

0 No underflow ; result is zero.

No underflow; result is non-zero.

NOTES :

• Operation is serial, octet by octet, through the ALPHA and BETA fields.

• Operation is terminated when the ALPHA field has been processed. If the fields a,e

of equa! length, all right quartets of the BETA field are subtracted from all right

quartets of the ALPHA field

If the length of the BETA field is greater than the length of the ALPHA field, the

excess right quartets in the left of the BET A fie Id do not enter i·nto the subtraction.

If the length of the BETA field is less than the length of the ALPHA field, zero right

quartets are subtracted from the excess right quartets in the left of the ALPHA field.

• Subtraction is performed by addition. The BETA field right quartet bits are inverted

and added to the bits of the ALPHA fie Id right quartets.

The UF /OF indicator is set to 1 prior to the operation to develop a carry into the

first sum.

Whenever a sum which is generated for a quartet exceeds 15 (a fu 11 quartet of l 1s),

the U F /0 F indicator is set to 1 to develop a carry into the next right quarte·t sum.

When no carry occurs, the sum is increased by 10. No carry is propagated from this

second sum.

• A 1 in the UF /OF indicator at the end of the operation indicates that the difference

is represented in true form in the ALPHA field.

@ ~ 0 ~ ~ ~ -------------------__,U....,SE....,.R'..-.S....,GU-..ID..-.E

-54-

• A 0 in the UF /0 F indicator at the end of the operation indicates that the difference is

represented in underflow form in the ALPHA field. (Underflow occurs when a larger number

is subtracted from a sma 1 ler number.)

• The ZE/N Z indicator is set to 0 if the resu It is zero ; it is set to 1 if the resu It is non-zero.

• The left quartets in both fields are unaffected by the operation.

• The ALPHA field right quartets are replaced by the difference.

• The BETA field right quartets are unaffected unless some part of the ALPHA field lies in

the BETA field.

• The presence of a non-decimal configuration in any of the right quartets of the operand

fields does not alter the above sequence of operations.

PROGRAMMING PRACTICES

The SD operation is designed for use with decimal data. No check is made of the configuration

of the right quartets prior to the operation. It is not recommended that the programmer use the

SD instruction with data that is not decimal.

When the relative magnitudes of the quantities to be subtracted are not known, the UF/OF

indicator shou Id be interrogated to determine whether underflow has occurred.

When the difference is represented in underflow form a second subtraction is required to compute

the true difference. The underflow resu It is subtracted from a field of zero. No test is required

after the second subtraction because the resu It is known.

EXAMPLES :

1) Subtraction of a smaller number from a larger.

so]

@J ~ o ~ ~ lW ____________________ u_s~ER_'s_c_ur_DE
-55-

ALPHA has a defined length of 4 octets.

BETA has a defined length of 5 octets, but only 4 are used, because the length of the operation is

determined by the length of the ALPHA field.

IEl"ORE OPERATIOH

AFTER Ol'ERATIOH

ALPHA

!e({3(\sftgl
[{o(9({ 4t 31 NOT AFFECTED

INDICATORS

UF/oF ZE/Nz

TRUE
DIFFERENCE

IN ALPHA

RESUL T-NON·ZERO

When the length of the BET A field is greater than the length of the ALP HA field, the extra digits

in the left of the BET A field do not enter. into the operation.

2) Subtraction of a larger number from a smaller.

ALPHA has a defined length of 4 octets.

BET A has a defined length of 5 octets, but only 4 enter the operation, because the length of the

operation is the length of the A LP HA field.

llP'OltE Ol'ERA TIOH

ALl'HA

(is((f~{4i9l

k aft ·iili 5E 31

l!SETA

NOT AFFECTED

INDICATORS

UF/oF ZE/NZ

RESULT
NOT IN TRUE

FORM

RESULT NON-ZERO

@ ~ 0 0 0 ~ ____________________ us..-ER.;....;,' s_G-..UI_DE

-56-

3) Subtraction of a result not in true form from a field of zeros to obtain the true difference.

To obtain a true result in this case, the length of the two fields should be equal.

If ALPHA is longer than BETA, the excess digits in the left of the ALPHA field will contain

erroneous values. The indicators need not be tested in this case, as the result is known.

ALPHA has a defined length of 4 octets.

BETA has a defined length of 4 octets.

ALPHA

BEFORE Oll'ERATION 0 0 0
I I I

AFTER OPERATION 0 4
I I

BETA

0
I a ~ I ~I ~

7 NOT AFFECTED

Note that a result not in true form may be added to a positive number to produce:

1) a true sum, in which case the UF/OF indicator is 1 after the AD operation,

INDICATORS

TRUE
DIFFERENCE
OBTAINED

2) a result not in true form in which case the UF/OF indicator is 0 after the AD operation

(See Add Dec ima I).

@~a~~ iID --------------------US_ER_'s_· G_UI_DE

-57-

4) Subtraction of zero from zero.

ALPHA has a defined length of 7 octets.

BET A has a defined length of 5 octets.

ALPHA

BEFORE OPERATION

AFTER OPERATION

(t al{ abl4~~\aJ~f a\fja!~\ al

k\aj~{al~/aM~Ja({ a[{ a(\ al

-58-

BETA
INDICATORS

UF/oF 'zE;Nz

RESULT
IN TRUE FORM

NOT AFFECTED

RESULT ZERO

USER'S GUIDE

A'DD BINARY AB

AB ALP HA (nn), BET A (nn)

The unsigned sum of the octets of the ALPHA field and octets of the BETA field replaces the

octets of the ALPHA field. Operation is right to left, through the length of the ALPHA field

(01 - 16 octets).

INDICATORS AFFECTED

UF/OF

0
0
1
1

NOTES:

ZE/NZ

0
1
0
1

No overflow; result is zero.
No overflow; result is non-zero.
Overflow; result is zero.
Overflow; result is non-zero.

• Operation is serial, octet by octet, from right to left, through the ALPHA and BETA fields.

• Operation is terminated when the ALPHA field has been processed. If the fields are of

equal length, all octets of the BETA field are added to all octets of the ALPHA field.

If the length of the BETA field is greater than the length of the ALP HA field, the excess

octets in the left of the BETA field do not enter into the addition.

If the length of the BET A field is less than the length of the ALPHA .field, zero octets are

added to the excess octets in the left of the ALPHA field.

• The ALPHA field is replaced by the sum.

• The BETA field is unaffected unless some part of.the ALPHA field lies in the BETA field.

• A 1 in the UF /OF indicator at the end of the operation indicates that the ALP HA field is

not long enough to contain the result und a carry out of the sum field has been developed.

• A 0 in the UF /OF indicator at the end of the operation indicates that the sum is contained

in the ALPHA field.

• The ZE/NZ indicator is set to 0 if the result is zero, and to 1 if the result is non-zero.

@j ~ 0 ~ ~ ~ --------------------U~SE;;;;.;R;,..;;'S....;;G;.;.;UI~DE
-59-

AB

PROGRAMMING PRACTICES:

Unless the relative magnitudes of the quantities being added are known, the indicator should be

tested to determine whether overflow has occurred. A Jump on Condition (JC) instruction is used

to test the indicators.

The AB may be used to perform address modification. Care must be taken to avoid generating an

address outside store limits. Addresses use the rightmost 13 bits of the 16 bits in the 2 octet

address field of an instruction. The bits to the left can be affected by an overflow without an

indication of overflow out of the octet .being processed. When an address is used by the GE-

115 system, the leftmost three bits of the address are not used. Thus, a value of 4096 in a store

of 4096 positions references location O. This is a valid reference and there is no immediate

indication of error. Program results are unpredictable in such cases.

EXAMPLES:

I) Binary addition without overflow.

ALPHA has a defined length of three octets.

BETA has a defined length of three octets, but only two are used.

ALPHA BETA
INDICATORS

UF/oF ZE/Nz

BEFORE OPERATION l2.FJ0.1{F.Fj l9
1
8IF

1
Fl1.1j

RESULT

13.0!0.1 !1.oj
-CONTAIN ED IN

f. FTER OPERATION NOT AFFECTED ALPHA

RESULT NON-ZERO

@ffia~~~--u_s_ER_'s_G_ur_DE
-60-

2) Binary addition with overflow and zero result.

OPERANDS

PHA1BETA(02)

ALPHA has a defined length of 3 octets.

BETA has a defined length of three octets, but only two are used.

ALPHA BETA

BEFORE OPERATION

AFTER OPERATION NOT AFFECTED

3) Address modification.

OPERANDS

INSTR(02) PLUS3

INDICATORS

UF/oF ZE/Nz

0

OVERFLOW:
RESULT NOT

CONTAINED IN
ALPHA

RESULT FIELD
IS ZERO

INSTR is an AD instruction of 6 octets referencing 2 data fields. It is desired to modify the

address specified for the BETA field of INSTR, in order to execute it again referencing the

modified address, to sum the elements of field BETA. BETA is made up of 50 three-digit decimal

numbers stored sequentially in the field.

PLUS 3 is a defined constant with a length of 1 octet, having the hexadecimal value 03.

INSTR PLUS 3

BEFORE OPERATION

AFTER OPERATION NOT AFFECTED

INDICATORS

NO OVERFLOW :
RESULT

CONTAIN ED IN
ALPHA

RESULT NON-ZERO

AB

@[E 0 ~ ~ tID ____________________ us_ER_'s_· G_u_IDE

-61-

SB

SUBTRACT BINARY SB

SB ALP HA (nn), BET A (nn)

The unsigned difference of the octets of the ALPHA field and the octets of the BETA field replaces

the octets of the ALPHA field. Operation is right to left, octet by octet, through the length of

the ALPHA field (0 l - 16 octets).

INDICATORS AFFECTED

UF/OF ZE/NZ

NOTES:

0
l
l

l
0
l

Underflow; result is non-zero.
No underflow; result is zero.
No underflow; result is non-zero.

• Operation is serial, octet by octet, from right to left through the ALPHA and BETA fields.

• Operation is terminated when the ALPHA field has been processed.

If the fields are of equal length, all octets of the BETA field are subtracted from all octets

of the ALPHA field.

If the length of the BETA field is greater than the length of the ALPHA field, the excess

octets in the left of the BETA field do not enter into the subtraction.

If the length of the BETA field is less than the length of the ALPHA field, zero octets are

subtracted from the excess octets in the left of the ALPHA f!e Id.

• The ALPHA fie Id is replaced by the difference.

• The BETA field is unaffected unless some part of the ALPHA field lies in the BETA field .

. • Subtraction is carried out by the addition of the complement of the BETA field octet to the

ALPHA fie Id octet.

The UF /OF indicator is set to l prior to the first addition to develop a carry into the first sum.

• A l in the UF/OF indicator at the end of the operation indicates that the difference is

represented in the ALP HA field in true form.

• A 0 in the UF/OF indicator at the end of the operation indicates that the difference is

represented in the ALPHA field in underflow form.

• The ZE/NZ indicator is set to 0 if the result is zero and to l if the result is non-zero.

@ ~ 0 ~ ~ @--------------------U-SE_R_'s_G_ur_DE
-62-

PROGRAMMING PRACTICES:

Unless the relative magnitudes of the quantities being subtracted are known, the indicator should

be tested to determine whether underflow has occurred. When underflow has occurred a second

subtraction is necessary to recover the true difference. The complemented difference in the

ALPHA field must be subtracted from a field of equal length and zero value. No test is

necessary after the second subtraction because the result is known. A Jump on Condition (JC)

instruction is used to test the indicators.

The SB may be used to perform address modification. Care must be taken to avoid generating an

address outside store limits. Addresses use the ri.ghtmost 13 bits of the 16 bits in the 2-octet

address field of an instruction. The bits to the left of the 13 used can be affected by an

underflow. When an address is used by the GE-115 system, the leftmost three bits of the

address are not used. Thus, a value of 4096 in a store of 4096 positions references location O.

Th is is a va I id reference and there is no immediate indication of error. Program resu Its are

unpredictable in such cases.

EXAMPLES:

1) Subtraction of a smaller number from a larger.

OPERANDS

3) , B E T . A (0 3 L. _.__,__~.___._...___.___._....___..

ALPHA BETA
IN DI CATO RS

OPERATION I UF/oF ZE/Nz

BEFORE I F
1

E!o.cjs,Aj B1.sjs,4j

AFTER OPERATION :

TRUE

!s.sjs,s!G.si DIFFERENJ:E IN
NOT AFFECTED ALPHA

RESULT NON-ZERO

SB

@~ 0 ~~~---------------------------------------u_s_ER_'s_G_ur_DE
-63-

SB

2) Subtraction of a larger number from a smaller.

ALPHA

BEFORE OPERATION

AFTER OPERATION

OPERANDS

'BETA(03

BETA

NOT AFFECTED

INDICATORS

RESULT IN
UNDERFLOW

FORM

RESULT NON-ZERO

3) Subtraction of a result in underflow form from a field of zeros to obtain a true difference.

~fE L~E NAME
32 3334 3 36

0 3 0 5

l 0

I 5

2 0

BEFORE OPERATION

AFTER OPERATION

OPERANDS

BET A, (0.3

"· ! .. PHA BETA

··---------·-------------

NOT AFFECTED

INDICATORS

INDICATOR

RESULT KNOWN

@~o~~~--u_sE_R_'s_c_ur_DE
-64-

l!l!l!l!l!I@[DAT A M 0 v EM ENT AND c 0 Mp A RI s 0 N IN s TR UC TI 0 N s]~!!!!!!l!l!!!l!!!l!l!!l!l!l!l!l!ll!m111m11mmmmmmml!l!l!l!l!l!l!!!!!l!l!!!!!l!!!!l!l!l!l!l!!!l!l!I

The GE-115 Information Processing System performs two types of data manipulation

operations. The operations performed are data movement and comparison.

All data movement operations have the following general characteristics:

• Items from one data field are moved into another.

• The configuration of the field is ignored for the purpose of movement; all moves operate

on any val id store configuration.

• The first data field is replaced by the second.

All comparison operations have the following general characteristics:

• Data items from two fields are compared.

• The results of the comparison are recorded in the indicators. The Search to the Right and

the Search fo the Left instructions use only the ZE/NZ to record results. The (emaining

comparisons use both the UF /OF and the ZE/N Z indicators.

• The compared fields are not altered by the comparison.

The operations described in this section treat data fields under one of the three following

specifications:

Full octets in both fields.

Right quartets in both field~

Full octets in one field, right qur.utets in the other.

Operations which process octets have the following general characteristics:

• Data fields may be from l to 256 octets in length. A single length is used; this is the

length of the first data field.

• Operation length is governed by the length of the first data field referenced.

• Data fields are referenced at the left; operation is left to right. There is a single

exception to this rule - the SL (Search to the Left).

@~ 0 ~~~--u_sE_R_'s_Gu_r_w
-65-

The formats of the octet data movement and comparison instructions are

OPERANDS

, .AL PH A

Operations which treat only right quartets have the following general characteristics

• Data fields may be from 1 to 16 octets in length. The length of each data field is used.

• The length of the operation is governed by the length of the first data field referenced.

• Data fields are referenced at the right; operation is right to left.

The format of the right quartet data movement and comparison instructions is

Two special purpose data movement operations treat the data as octets in one field and as right

quartets in the other. These operations condense or expand data in the store.

These operations have the following general characteristics:

• A single length is used. This is the length of the field treated as full octets.

• The length of the operation is governed by the length of the data field which is treated in

octet units.

• Data fie Ids a re referenced at the left.

• The first data field is replaced by the result.

The format of the octet/quartet data movement and comparison instructions is

@ ~ 0 0 0 [ID ____________________ u_sE_R_'s_G_UI_DE

-66-

M v I I

MOVE IMMEDIATE OCTET TO STORE MVI

MVI immediate ALPHA
operand '

The immediate data item in the MVI instruction is placed in the store. A sing le octet ALPHA

field is replaced by the data item.

INDICATORS AFFECTED

none

PROGRAMMING PRA~TICE:

The MVI may be used in con junction with the Move Complete Octets (MVC) instruction for

a character fill. To accomplish this, the programmer writes an MVI to insert the fill character

into the leftmost octet of the field he wishes to fill. He then follows the MVI with an MVC

which treats the field as a pair of overlapping fields. (See the MVC, page 69).

EXAMPLES:

l) Movement of a graphic character to store.

ALPHA INSER
INDICATORS

I I I ~\ti P=~=l=::::::t
UF/oF ZE/Nz

BEFORE OPERATION 0 2 6 . 5 0 $:•.vu.;.·.· I I

AFTER OPERATION I $ I 2 6 . I 5 0 NOT AFFECTED NOT AFFECTED
I

@ ~
0

~ ~ lW ____________________ u_sE_R'_s_cu_r_nE

-67-

2) A hexadec ima I value moved to an instruction complement.

OPERANDS

00 TEST1+001

TEST l is an instruction and has a length of 4 octets.

BEFORE OPERATION

AFTER OPERATION

TEST 1

14.312.0(2,313.41

14.3!0.0!2.313.41

-68-

MOVIM

1nq 0 0W=~q~:}~:1
• •• I •=i•• •),••

NOT AFFECTED

INDICATORS

UF/oF ZE/Nz

NOT AFFECTED

USER Is GUIDE

MOVE COMPLETE OCTETS MVC

MVC ALPHA (nnn), BETA

Full octets from the BETA field are placed in the ALPHA field. Movement is left to right through

the common length of the fie Ids (001-256 octets).

INDICATORS AFFECTED

none

NOTES:

• Operation is seria I, octet by octet, from left to right through the ALPHA and BETA fie Ids.

• The BETA field replaces the ALPHA field.

• BETA field octets are unaffected unless some part of the ALPHA field lies in the BETA field.

PROGRAMMING PRACTICES :

The MVC may be used to assemble a data field for output•

MVC

A field may be fi I led with a single character configuration by the use of the MVC. To accomp I ish

this the programmer defines the ALPHA and BETA fields as overlapping. The ALPHA field begins

in the octet to the immediate right of the first BETA octet.

EXAMPLES :

1) Data movement from one field to another.

@ ~ o ~ ~ lID _____________________ u_sE_R'_s_Gu_r_DE

-69-

ALPHA has a defiJ1ed length of 3 octets; 2 octets are replaced.

ALPHA BETA
INDICATORS

BEFORE OPERATION Lil 5 I~ 2 5 0 0
UF/oF ZE/Nz

AFTER OPERATION I $ I 2 5 NOT AFFECTED NOT AFFECTED

2) The use of the MVC instruction for a numeric character fill in this case, setting a field to

decimal zeros.

ALPHA is a 6 octet field.

BEFORE OPERATION

AFTER MVI

AFTER MVC

ALPHA

!s.s!s.1 \4.2js,AI F. Ff4.sl

14.oi s.1 !4.2\s.Aj F
1
F \4.sj

1
4 .OF .~.CG.OF .OG. 0

1

-7 0-

IMMEDIATE OCTET
INDICATORS

UF/oF ZE/Nz

NOT AFFECTED

NOT AFFECTED

NOT AFFECTED

USER'S GUIDE

IMVQ

MOVE RIGHT QUARTETS MVQ

MVQ ALPHA (nn), BETA

Right quartets from the BET A field are placed in right quartets of the ALPHA field. Movement is

right to left through the length of the ALPHA field (Ol-16 octets).

I ND ICATORS AFFECTED

UF/OF ZE/N Z

NOTES:

0

0

0 The ALPHA result field contains zero in all right quartets.

At least one right quartet in the ALPHA field is non-zero.

• Operation is serial, quartet by quartet, from right to left through the ALPHA and BETA

fie Ids.

• Only the right quartets of the fields are processed. Left quartets in both fields are

unaffected.

• The ope rat ion is terminated when the ALPHA fie Id has been processed.

If the fields are of equal length, all right quartets of the ALPHA field are replaced by all

right quartets from the BETA field.

If the length of the BETA field is greater than the length of the ALPHA field, the right

quartets of the ALPHA field are all replaced. Excess right quartets in the left of the BETA

field are not moved.

If the length of the BETA field is less than the length of the ALPHA field, the excess right

quartets in the left of the ALPHA field are replaced with zerc..s.

• The BETA field right quartets are unaffected unless some part of the ALPHA field lies in

the BETA field.

• The UF /OF indicator is set to zero prior to the MVQ operation and is unaffected by the

operation.

• The ZE/NZ indicator records the presenc~ of an a I I-zero or a non-zero resu It in the

ALPHA field.

@ ~ 0 ~~[ID --------------------...;;U~SE;;;.;.R'...:.S..;.G,;.:UI;,;,;;.DE

-71-

PROGRAMMING PRACTICES:

The MVQ may be used to place zeros in the right quartets of a field used for decimal operations.

To accomplish this the programmer may use a single octet BETA field with a right quartet of zero.

The length of the ALPHA field governs the length of the operation. The sing le quartet is moved

from the BETA field to the ALPHA field and the remaining ALPHA field right quartets are zero

filled.

If the MVQ follows an instruction which records a result in the UF/OF indicator, the setting should

be tested or saved prior to the MVQ. (See the Jump on Condition, JC, instruction on page 97 for

a method of saving indicator settings for subsequent test).

A field may be checked for zero when it is moved by means of the MVQ. To accomplish this the

programmer tests the ZE/NZ indicator with a Jump on Condition instruction.

EXAMPLES:

1) Use of the MVQ to move data to a field with the desired left quartet configurations.

ALPHA has a defined length of 5 octets.

BET A has a defined length of 3 octets.

ALPHA field right quartets not filled from the BETA field are filled with right quartets zeros.,

ALPHA BETA
INDICATORS

BEFORE OPERATION

AFTER OPERATION NOT AFFECTED

@ ~ 0 ~ ~@ ____________________;.u.;;..;;sE~R'..;;;..s....;;.Gu.;..:;;;r.;;.;;;.DE
-72-

2) A fie Id used for dee ima I ope rat ions may be reset to zero between operations by means of the

MVQ to transmit right quartet zeros. To accomplish this the programmer uses a sing le octet BET A

fie Id. The right quartet of the BET A fie Id octet must be zero.

ALPHA has a defined length of 5 octets.

ALPHA BETA
INDICATORS

BEFORE OPERATION [3i:At~lsJ~:aW~ ·.·. ·.· .. ·.· ;.·.; ····i
UF/oF ZE/Nz

AFTER OPERATION NOT AFFECTED

@~a~~~---u_s_ER_'s_G_ur_DE
-73-

PACK RIGHT QUARTETS INTO OCTETS PK

PK ALPHA (nnn), BET A

Right quartets of two BETA field octets are packed into a single octet in the ALPHA field. Packing

is left to right in both fields through the length of the ALPHA field (001-256 octets).

INDICATORS AFFECTED

none

NOTES:

• Operation is serial, from left to right, through the ALPHA field.

• Two right quartets of the BETA field are packed into each octet in the ALPHA field as shown

below.

• The result replaces the octets of the ALPHA field.

• The left quartets of the BETA field are not moved.

• The BETA field is not .;:ff,:c:~rd unless some part of the ALPHA field lies in the BETA field.

PROGRAMMING PRACTICE:

The PK operation may be used to condense data in the store after input and prior to output or

arithmetic use. This enables the programmer to economize the use of the store by halving the length

of the field that is retained. The Unpack (UPK) instruction is used to recreate the field for its

intended use.

@ ~ 0 ~~[ID ____________________ u_sE_R_'s_G_UI_DE

-74-

EXAMPLES:

1) Decimal data packed·for retention in store.

ALPHA BETA
INDICATORS

UF/oF ZE/Nz

BEFORE OPERATION

NOT AFFECTED
AFTER OPERATION NOT AFFECTED

2) The use of the PK instruction to condense an input record.

If the left quartet values are known, it is possible to pack non decimal data and reconstruct it

later. In the following example, it is assumed that the programmer knows that the first four

BETA characters are letters between A and I and that the last four are decimal digits.

ALPHA BETA
INDICATORS

BEFORE OPERATION 15.ol 5.o(5,ol 5.ol
AF EI 6 3 2 8

15. 115.615.515.914.614.314.214.sl
UF loF ZE/Nz

Known to be olphobetic Known to be numeric

NOT AFFECTED
NOT AFFECTED

AFTER OPERATION

@~
0

O O ~ ____________________ us_ER_'s_G_ur_DE

-75-

UN PACK OCTETS INTO RIGHT QUARTETS UPK

UPK ALPHA (nnn),BETA

Octets from the BETA field are unpacked into the right quartets of two octets in the ALPHA field.

Unpacking is left to right in both fields, through the length of the BETA field (001-256 octets).

INDICATORS AFFECTED

none

NOTES:

• Operation is seria I, from left to right, through the BETA field.

• Each octet of the BET A field ls unpacked into two right quartets in the ALPHA fie Id as

shown below.

• The operation is terminated when the BETA field has been unpacked.

• The right quartets of the ALPHA field are replaced by the result.

• The left quartets of the ALPHA field do not enter into the operation unless some part of the

ALPHA field lies in the BETA field.

• The BET A fie Id is not affected unless some pa rt of the ALPHA field I ies i'n the BET A fie Id.

PROGRAMMING PRACTICE :

The UPK is used to recreate a field which has been condensed for retention in store. If the data is

unpacked for output, the unpacking should be done into a field which has been preset with the

required left quartet configuration. When data is unpacked into a work area for use with operations

@ ~ 0 ~ ~ ~ _____________________ us_ER_'s_G..._U_IDE

-76-

which do not ut i I ize the left quartet no presetting is necessary.

Note : The operation is governed by the length of the BETA field, but the length is written with

the ALPHA field operand specification.

EXAMPLE :

Data un.packed from a save area into a field preset for decimal output.

BEFORE OPERATION

AFTER OPERATION

ALPHA

/ 14.ol4.el4.c(4.sl4.214.1j/

l 14.714.214.314.414.814.91 /

BETA

NOT AFFECTED

INDICATORS

UF/oF ZE/Nz

NOT AFFECTED

UPK

@ ~ c O O ~ _____________________ us_ER_'s_c_u_IDE

-77-

COMPARE I MME DIA TE TO ST ORE

CMI immediate
operand

CMI

ALPHA

The immediate data item in the C Ml instruction is compared to a sing le octet ALPHA fie Id.

INDICATORS AFFECTED

UF/OF ZE/NZ

0 1

0

NOTES:

Comparison

ALPHA< immediate data item

ALPHA= immediate data item

ALPHA> immediate data item

• Neither the ALPHA field octet nor the immediate data item is affected by the comparison

operation.

• The UF /OF and ZE/NZ indicators record the resu Its of the comparison.

PROGRAMMING PRACTICES :

The CMI may be used to verify the configuration of on octet in the store.

A Jump on Condition instruction is used to test the resu It of the comparison.

EXAMPLES:

1) Comparison of an octet in ALPHA with an immediate octet, ALPHA less than the immediate

octet.

ALPHA

BEFOkf OPERATION

AFTER OPERATION NOT AFFECTED

IMMEDIATE OCTET

INSTRUCTION

NOT AFFECTED

INDICATORS

UF/oF ZE/Nz

A < B
"51" < "52"

@ ~ 0 ~ ~ ~ ____________________ us_ER_'s_G_UI_DE

-78-

CM I

2) Comparison of an octet in ALPHA with an immediate octet, octets equal.

ALPHA IMMEDIATE OCTET
INDICATORS

UF/oF ZE/Nz

BEFORE OPERATION

AFTER OPERATION NOT AFFECTED NOT AFFECTED B B

3) Comparison of an octet in ALPHA with an immediate octet, ALPHA greater than the immediate

octet.

ALPHA IMMEDIATE O~TET
INDICATORS

BEFORE OPERATION A
I e I~ I o

UF/oF ZE/Nz

AFTER OPERATION NOT AFFECTED NOT AFFECTED C > B

@ ~ [J ~ ~ ~ ___________________ __..us--.E-..R'..._S -...GU_IDE

-79-

CMC

COMPARE COMPLETE OCTETS CMC

CMC ALPHA (nnn), BETA

Full octets of the ALPHA field are compared to full octets of the BETA field. Comparison is from

left to right, through the common length of the fields (001-256 octets).

INDICATORS AFFECTED

NOTES

UF/OF ZE/NZ

0

0

Comparison

ALPHA< BETA

ALPHA ==BETA

ALPHA> BETA

• Operation is serial, octet by octet, from left to right through the ALPHA and BETA fields.

• The operation is terminated by the recognition of the first inequality. If the contents of the

fields are equal, the comparison continues through the common length of the ALPHA and

BETA fields.

• The ALPHA and BETA fields are unaffected by the comparison operatiOh.

• The UF/OF and ZE/N Z indicators record the result of the comparison.

PROGRAMMING PRATICES:

The CMC may be used as an alternate to the CMQ for comparing fields of equal length in which

the left quartets are known to be equal and the right quartets determine the difference. Unless the

contents of the compared fields are identical, processing is confined to fewer octets when the C MC

is used rather than the CMQ thus giving a faster operation.

A Jump on Condition instruction is used to test the result of the comparison.

@ ~ 0 ~ ~ ~ --------------------.;;,.;US;.;;;,;ER~'S;...;G;;;.;;;.UI;;.;;,:DE
-80-

EXAMP~ES :

1) Comparison of twc::> fields, the first less than the second.

ALPHA has a defined length of 6 octets.

BETA has a defined length of 2 octets, but the defined length of BETA is .ftot used in the operation.

Operation terminates when the first inequa I ity is encountered.

ALPHA

BEFORE OPERATION

AFTER OPERATION NOT AFFECTED

2) Comparison of two equal fields.

ALPHA has a defined length of 4 octets.

ALPHA

BEFORE OPERATION JI 2 H N 0

AFTER OPERATION NOT AFFECTED

BETA

NOT AFFECTED

BETA

NOT AFFECTED

INDICATORS

UF/oF ZE/Nz

ALPHA < BETA

INDICATORS

UF/oF ZE/Nz

ALPHA= BETA

@ ~ 0 ~ ~ ~ ---------------------U-SE_R_'S_G_UI_DE
-81-

L5 MC

3) Comparison of two fields, the first greater than the second.

ALPHA has a defined length of 32 octets, but operation is terminated when the first inequality is

encounte.-ed.

The defined length of BETA is not used in the operation.

ALPHA BETA
INDICATORS

UF/oF ZE/Nz

BEFORE OPERATION

AFTER OPERATION NOT AFFECTED NOT AFFECTED ALPHA BETA

@ffi> ~~[ID ____________________ us_ER_'_s _cu_IDE

-82-

COMPARE RIGHT QUARTETS CMQ

CMQ ALPHA (nn), BETA (nn)

Right quartets of the ALPHA field are compared to right quartets of the BETA field. Comparison

is right to left, through the length of the ALPHA field (01 - 16 octets).

INDICATORS AFFECTED

UF/OF ZE/NZ Compared Fields

0 1 ALPHA < BETA
1 0 ALPHA BETA
1 1 ALPHA > BETA

NOTES:

• Operation is serial, quartet by quartet, from right to left.

• Only the right quartets of the fields are processed.

If the fields are of equal length, all quartets in both fields are compared.

If the length of the BETA field is greater than the length of the ALPHA field, the excess

quartets in the left of the BETA field do not enter the comparison.

If the length of the BETA fie Id is less than the length of the ALPHA field, the excess

quartets in the left of the ALPHA field are compared to zero quartets.

• The ALPHA and BET A fields are unaffected by the comparison operation.

• The UF /OF and ZE/NZ indicators record the resu It of the comparison.

PROGRAMMING PRACTICES:

The CMQ may be used to compare fields in which only the right quartets are meaningful at the

time of comparison. For example, data unpacked into a work area in which left quartet values

are not the same, can be compared with the CMQ operation. The programmer should be certain

that no mistakes are caused by treating the data as right quartets only.

A Jump on Condition (JC) instruction is used to test the result of the comparison.

@ ~
0
~ ~ ~ ____________________ u_s_ER_'s_G_ur_nE

-83-

Note : The CMC operation (see page 80) may be a more efficient operation for comparison

than the CM Q if the left quartets of the fields to be compared are the same.

EXAMPLES :

l) Comparison of right quartets in two data fields

BEFORE OPERATION

AFTER OPERATION

ALPHA has a defined length of 5 octets, but 4 are specified.

BET A has a defined length of 4 octets.

ALPHA BETA
INDICATORS

UF/oF ZE/Nz

NOT AFFECTED NOT AFFECTED ALPHA < BETA

2) Comparison of right quartets in two data fie Ids

BEFORE OPERATION

AFTER OPERATION

ALPHA has a defined length of 5 octets.

BETA has a defined length of 7 octets, but only 5 enter the operation,
because the operative length is the length of the ALPHA fie Id.

ALPHA BETA
INDICATORS

UF/oF ZE/Nz

NOT AFFECTED NOT AFFECTED ALPHA = BETA (05)

@ ~ 0 ~~[ID ____________________ us_ER_'s_G_U_IDE

-84-

SEARCH TO THE RIGHT SR

SR ALPHA (nnn), BET A

The ALPHA field is searched for an octet equal to the single BETA field octet. Search is from

left to right through the ALPHA fie Id (001 - 256 octets).

INDICATORS AFFECTED

UF/OF ZE/NZ Search Resu It

0 Search Failed
1 Match Found

NOTES:

• Operation is serial, octet by octet, from left to right in the ALPHA field. The BETA field

is a single octet.

• The operaticn is terminated when the BETA field data item has been found in the ALPHA

field,

If the BETA field item is not present in the ALPHA field, the operation is terminated when

all the ALPHA field octets have been examined.

• When the search is terminated, LOC (store octets 0254-0255) contains the location of the

octet to the immediate right of the last ALPHA octet examined.

If the BETA field item was found in the ALPHA field, the store location in LOC is that of

the octet to the right of the matched data item.

If the BETA field item was not found in the ALPHA field, the store location in LOC is that

of the octet to the right of the last ALPHA field octet examined, i.e., the location of the

octet to the immediate right of the last octet in the ALPHA field.

• The UF/OF indicotor is preset to 1 by the SR and is not affected by the operation •

. • The ZE/NZ indicator records the result of the search.

PROGRAMMING PRACTICES:

The ZE/NZ indicator must be interrogated by a Jump on Condition instruction to test the result

of the search.

@~CJ~~ [ID _____________________ us_ER_'s_G...,..u_IDE

-85-

SR

The address in LOC must be decremented by l to reference a matched item in the ALPHA field.

When the SR operation follows an operation which sets the UF/OF indicator and the setting is used

by the program, the programmer should use or save the UF/OF setting prior to the SR (See the Jump

on Condition on page 97 for a method of saving indicator settings for a subsequent test).

EXAMPLES:

l} Search, character found.

The character sought is the letter C.

ALPHA BETA
INDICATORS

ctrnm UF/oF ZE/Nz

BEFORE OPERATION A B c I ~1 .

AFTER OPERATION NOT AFFECTED NOT AFFECTED CHARACTER FOUND

After the operation LOC contains the address of the ALPHA octet to the immediate right of the

matching character (location of D}.

@[~> 0 0 [ID--------------------us_ER_'_s G_u_IDE
-86-

2) Search, character not found

ALPHA has a- defined length of 7 octets

The character sought is an asterisk (*)

ALPHA

BEFORE OPERATION x 0

AFTER OPERATION NOT AFFECTED

BETA

NOT AFFECTED

INDICATORS

UF/oF ZE/Nz

0

CHARACTER
NOT FOUND

After the operation LOC contains the address of the octet to the right of the rightmost octet in

ALPHA

s R I

@j ~
0
~~[ID ____________________ u_s_ER_'s_G_ur_DE

-87-

S L

SEARCH TO THE LEFT SL

SL ALPHA (non), BETA

The ALPHA field is searched for an octet equal to the single BETA field octet. Search is from

right to left through the ALPHA field (001 - 256 octets).

INDICATORS AFFECTED

NOTES:

UF/OF ZE/NZ

0
1

Search Result

Search Failed
Match Found

• Operation is serial, octet by octet, from right to left in the ALPHA field. The BETA field

is a sing le octet,

• The operation is terminated when the BETA field data item has been found in the ALPHA

field.

If the BETA field item is not present in the ALPHA field, the operation is terminated when

all the ALPHA field octets have been examined.

• When the search is terminated, LOC (store octets 0254-0255) contains the location of the

octet to the immediate left of the last ALPHA octet examined.

If the BETA field item was found in the ALPHA field, the store location in LOC is that

of the octet to the left of the matched data item.

If the BETA field item was not found in the ALPHA field, the store location in LOC is

that the octet to the left of the last ALPHA field data item examined.

• The UF /OF indicator is preset to 1 by the SL and is not affected by the operation.

• The ZE/N Z indicator records the resu It of the search.

PROGRAMMING PRACTICES :

The ZE/N Z indicator must be interrogated by a Jump on Condition instruction to test the resu It

of the search.

@~a~~~ _____________________ u __ sE R' s....,,GU...,ID--.E

-88-

The address in LOC must be incremented by 1 to reference a matched item in the ALPHA field.

When the SL operation follows an operation which sets the UF/OF indicator and the setting is

used by the program, the pro.grammer shou Id use or save the UF /OF setting prior to the SL (See

the Jump on Condition instruction on page 97 for a method of saving indicator settings for a

subsequent test).

NOTE: The SL is the only one of the complete octet comparison instructions which operates

from right to left.

EXAMPLES:

1) Search, character found.

ALPHA has a defined length of 7 octets.

The character s·ought is a period (.).

ALPHA BETA

BEFORE OPERATION I.~ I ~ 2 • 19 8

AFTER OPERATION NOT AFFECTED NOT AFFECTED

INDICATORS

UF/oF ZE/Nz

CHARACTER FOUND

After the operation LOC contains the address of the octet to the immediate left of the matching

character (location of 2).

2) Search, character not found.

BEFORE OPERATION

AFTER OPERATION

ALPHA hns a defined length of 7 octets.

The character sought is a blank.

ALPHA SETA

2 31 . 14 5 f> I

NOT AFFECTED NOT A.FFECTED

INDICATORS

CHARACTER
NOT FOUND

After the operation LOC contains the address of the octet to the immediate left of the leftmost

octet of the ALPHA field.

@(E 0 ~ ~ ~ -------------------___,;;;u.--sE-.,R '.-s au rn-.-E
-89-

111111ii11[Lo G I c IN s TR uc TI o N s 1m1mmmm1mm@11111111@mi11111m111111111111J1J1JJ1111J111111111J111J111J111:11J11J111J1:11111111111mJ1J1J11JJ11111111J1JJJJlm111JJ1rn11JJ11111m1i1111mm1mmm11m11m11111m1m11mm

The GE-115 Information Processing System generates logical sums and products of data

fields. Data treated by the logic operations is used by the system as bit patterns rather than

numeric quantities or symbolic representations.

The logic operations have the following general characteristics:

• Data from two fields is matched and combined.

• Data fields may be from l to 256 octets in length. The length of the first data field

is used.

• Operation length is governed by the length of the first data field reference.

• Data fields are referenced at the left; operation is left to right.

• The first data field is replaced by the result.

• Complete octets are processed.

The format of the logic instructions is:

@~o~~~--------------------------------------~U~SE~R·~s~GU~ID~E
-90-

'AND' ON COMPLETE OCTETS NC

NC ALPHA (nnn), BETA

Octets in the BETA field are examined, bit by bit. Each zero bit in the BETA field is effectively

transmitted to the corresponding bit position in the ALPHA field. Transmission is left to right

through the common length of the fields (001 - 256 octets).~

INDICATORS AFFECTED

none

NOTES :

• Operation is serial, octet by octet, from left to right, through the ALPHA and BETA fields.

• One bits in the BETA field do not affect the ALPHA field.

• The ALPHA field is replaced by the resu It.

• The BETA field is unaffected unless some part of the ALPHA field lies in the BETA field.

EXAMPLE :

The NC instruction used to zero the three bits in the left of an octet.

ALPHA BETA
INDICATORS

BEFORE OPERATION 11.0.1.1,1.1,0.11
UF/oF ZE/Nz

AFTER OPERATION NOT AFFECTED NOT AFFECTED

NC

@3 ~ 0 ~ ~@ -------------------___...U..._SE_R'_._S _GU_ID_E

-91-

oc

10R 1 ON COMPLETE OCTETS OC

OC ALPHA(nnn), BETA

Octets in the BETA field are examined, bit by bit. Each one bit in the BETA field is effectively

transmitted to the corresponding bit position in the ALPHA field. Transmission is left to right

through the common length of.the fields (001 - 256 octets).

INDICATORS AFFECTED

none

NOTES :

e 0 peration is serial, octet by octet, from left to right, through the ALPHA and BETA fields.

• Zero bits in the BETA field do not affect the ALPHA field.

• The ALPHA field is replaced by the result.

• The BETA field is unaffected unless some part of the ALPHA field lies in the BETA field.

EXAMPLE :

A logica I 'or' of two three octet data field.

ALPHA BETA
INDICATORS

AFTER OPERATION IS NOT AFFECTED NOT AFFECTED

@~aOO~---------------------------------------u_sE_R'_s_Gu_rnE
-92-

EXCLUSIVE 1 0R 1 ON COMPLETE OCTETS

XC ALPHA(nnn), BETA

Octets in the BETA field are examined, bit by bit. Each one bit in the BETA field inverts the

corresponding bit in the ALPHA field. Operation is left to right through the common length of

the fields (001 - 256 octets).

IN D!CATORS AFFECTED

UF/OF ZE/NZ
l 0
1 1

NOTES:

The resultant ALPHA field is all zero.
At least one bit in the resultant ALPHA field is
non-zero.

xc

• Operation is serial, octet by octet, from left to right, through the ALPHA and BETA fields.

• Zero bits in the BETA field do not affect the ALPHA field.

• The ALPHA field is replaced by the result field.

• The BETA field is unaffected unless some part of the ALPHA field lies in the BETA field.

• The UF /OF indicator is set to 1 and is not affected by the operation; the ZE/N Z indicator

records the value of the ALPHA result.

PROGRAMMING PRACTICES:

When the XC instruction follows an operation which records results in the indicators, care must

be taken to preserve or use the information provided by the indicator settings, if it is required

for program operation.

The XC instruction may be used to alter the mode of operation of the Jump on Condition (JC)

operations. These instructions use the operation complement of the internal instruction format

to differentiate conditions to be tested as directives for operation. A single BETA field octet

can be set up containing a pattern which alters one of the test patterns and changes the JC

action.

xc

@[0 ~ ~ ~ _____________________ uoiiioiiiisE R'.-..S,GU-ID_E

-93-

xc

EXAMPLE :

An XC instruction used to alter an operation complement.

OPERANDS

WTCH+001 BET A
1

OPERATION COMPLEMENT
(SWITCH + 001) BETA

INDICATORS

UF/oF ZE/Nz

BEFORE OPERATION [1,1111110101010\ \ 1
1

1
1
1

1
1

1
0,a10,a\

AFTER Fl RST lo 0
1
0

1
0

1
00

1
0 oj NOT AFFECTED RESULT ZERO

x c

AFTER SECOND I 1, 1
1
1

1
1 10 1

0
1
o. oj NOT AFFECTED x c RESULT NON ZERO

@~oOO~---------------------------------------u_sE_R'_s_Gu_rnE
-94-

mmmmc Ju Mp IN s TR u c Tl 0 N s 111mmmmmmm1mm1111111111111m11mmmm1mmmm1mmmmmmmmm1m1m11111mmmm1mmmmmmm11mmmmmmmm1mmmmmmmm1mmmmmmmmm

The GE-115 Information Processing System acts upon instructions in the sequence of their

locations in the store. The system may be directed by the jump instructions to alter that

sequence.

There are two types of jump instructions. One type interrogates the condition indicators and

directs the system to interrupt sequent ia I ope rat ion when a test condition is present. The second

type does not use the test indicators.

The jump instructions which test the indicators are called conditional jumps. They have the

following general characteristics:

• The immediate operand in the internal instruction (second octet of the operation in the

~-,;ore) specifies a condition pattern for testing the indicators.

• The second operand in the internal instruction refers to an instruction in the store to which

control is given if the test condition is met.

Operation continues in sequence when the condition tested is not present.

The conditional jump instructions are divided into two groups, on the basis of instruction

specification. The first group has an imp I ied first operand. The assembler translates the mnemonic

for the operation into an operation code and the required operation complement to perform the test

specified in that mnemonic. The second group requires an explicit first operand specification to

set up the pattern which tests a condition.

The condition a I jump instruct ions which do not require an exp I ic it immediate operand specific at ion

have the following format:

Figure B-3 I ists the cond itiona I jump instruct ions, showing conditions tested and mnemonic

expressions used.

USER'S GUIDE

--95-

The conditional jump instructions which require an explicit immediate operand have the

following format:

Figure B-2 shows the configurations of the immediate operands required to interrogate the

~estable conditions. It is recommended that the hexadecimal notation be used in specifying

immediate operands.

There are three jump instructions which do not test the indicators. Two of these test an external

condition, a switch setting. The jump is taken when the tested switch is on.

The third is a special purpose jump instruction which always alters the program sequence. In

addition, this operation, the Jump and Return (JRT) places the address of the next sequential

operation into LOC (store octets 0254-0255). This provides a means of returning to the operation

which follows the jump instruction.

The jump instructions which do not test the indicators have the same format as the conditional

jump instructions for which the test pattern is implied by the mnemonic expression.

@~oOO~---------------------------------------u_sE_R'_s_cu_rnE
-96-

JUMP ON CONDITION JC

JC condition, SIGMA

The condition specified in the operation is tested. If the condition is present, the program jumps

to the instruction at the SIGMA location.

INDICATORS AFFECTED

none

NOTES:

• Conditional jump instructions test the status of the UF/OF and ZE/NZ indicators which

record the results of internal op·erations and peripheral operations.

• There are four possible patterns which may be present in the indicators:

pattern l
pattern 2
pattern 3
pattern 4

UF/OF
0
0
1
l

ZE/NZ
0
1
0
1

• The conditional jump operation may test for any of these patterns singly, or, it may test

for combinations of these patterns.

• Each of the four bits in the left quartet of the operation complement in the internal format

of the JC instruction corresponds to a pattern. If a bit is al, the pattern to which the bit

corresponds is tested; if the bit is a 0, the pattern is not tested.

• The bits in positions 4-7 of the operation complement and the pattern to which each

corresponds are shown in the figure below. Note that the right quartet (bit positions 0-3)

is a I ways zero,

Bit position

pattern

pattern 2

pattern 3

pattern 4

76543210

I 0 0 010 0 0 0

0100_1_0000

0 0 I OJ_ 0 0 0 0

0001.0000

Operation Complement

JC

@~c~~~--us_E_R'_s_Gu_IDE
-97-

JC

In the last figure only one pattern is specified for each operation complement shown.

When two bits of the left quartets are one, two condition patterns are tested. Any

combination of the patterns may be tested. If one of the specified patterns is present

in the indicators the condition is met and the jump is taken.

• The jump instructions do not alter the indicators they test.

PROGRAMMING PRACTICES:

Conditional jumps provide the only means of testing the indicators set during program execution.

Jumps should be placed immediately after the operations that set the indicators for testing, or

the condition should be saved for subsequent testing.

It is recommended that the condition patterns be specified in the hexadecimal notation.

Figure B-2 lists the patterns for the tests and the hexadecimal configuration of each. Note

that the hexadecimal number 00 specifies that none of the four possible patterns be tested and the

hexadecimal number FO specifies that all patterns be tested. A Jump on Condition instruction

in which the hexadecimal pattern is 00 is the No Jump (See page 103) and the Jump on. Condition

in which the condition specified is FO is the Jump Unconditional (See page 102).

EXAMPLES:

1) The indicators cannot be accessed by the program. The settings recorded may be saved

by a sequence such as that shown below. When the jump is taken to the instruction at SAVE

the pattern which specified that jump is moved for a subsequent check.

OPERANDS

OVERFLOW
OVERFLOW

@ ~ o ~ ~ fW -----------------------us~ER-..' s c--.u__.rnE
-98-

2) When the presence of a given condition is used to di~ect program operation subsequent to

operations which alter the indicators, it is not necessary to retain the indicator pattern. When

the condition is recognized a subsequent jump can be preset to act on the results of the test.

~ 9 s ·.·xxx .·.xxx . ..

@~CJ~~&) _____________________ us_ER_'s_G_u_IDE

-99-

(" J c

OPERATION COMPLEMENT INDICATORS

HEX BINARY UF/OF ZE/NZ

0 0 0000 0000 R A
1 0001 1 1

2 0010 1 0

3 0011 l either
0 or l

4 0100 0 1

5 0101 either
1 0 or 1

0 l
6 0110

1 0

0 1

7 0111 1 0
1 1

8 1000 0 0

0 0
9 1001

1 1

A 1010
either
0 or l 0

0 0
B

I

1011 l 0
1 1

c 1100 0
either
0 or 1

0 0
D 1101 0 1

l 1
0 0

E 1110 0 1
1 0

F l 111 all possibilities

' ' 1

Figure B-2: INDICATOR SETTINGS TESTED BY CONDITIONAL JUMPS

@ ~ [J ~ ~ ~ ______________________ us;.,;;;;ER--.'._S .;..;;.GU-.-IDE

-100-

JC
EXTENDED

JUMP IF GREATER JG
JUMP IF EQUAL JE
JUMP IF GREATER OR EQUAL JGE
JUMP IF LESS JL
JUMP IF NOT EQUAL JNE
JUMP IF LESS OR EQUAL JLE

op SIGMA

The ~ondition specified in the operation is tested. If the condition is met, the program jumps to

the operation at the SIG MA location.

INDICATORS AFFECTED

none

NOTE:

• The jump instructions do not alter the indicators they test.

PROGRAMMING PRACTICE:

The comparative conditional jump instructions are translated by the assembler into both the

operation code and the operation complement which specifies the pattern for the condition or

conditions to be tested. A test pattern may not be specified in the instruction statement.

EXAMPLE:

A Jump if Not Equal used to test the result of a comparison.

If the ALPHA and BETA fields are not equal, control jumps to the operation at the SIGMA address.

If the ALPHA and BETA fields are equa I, the program continues in sequence.

@j ~CJ~~ iID---------------------us_ER_'S_G_U_IDE
-101-

JUMP UNCONDITIONAL JU

JU SIGMA

The program jumps to the operation located at the SIG MA field address.

INDICATORS AFFECTED

none

NOTES:

• The JU is a conditional jump which specifies all conditions.

PROGRAMMING PRACTICE:

The JU is used when a transfer of contra I is to be made that is independent of the status of the

indicators o

EXAMPLE:

The program jumps to the sequence which beg ins at SUM.

@] ~ o ~ ~@ ____________________ u_sE_R_'s_G_ur_nE

-102-

N OJ

NO JUMP NOJ

NOJ SIGMA

Control continues in sequence; no test pattern is specified.

INDICATORS AFFECTED

none

PROGRAMMING PRACTICE:

The NOJ may be changed to an effective jump by changing the configuration of the immediate

operand. To accomplish this, the program mer may use a log ica I operation or an octet move.

(See the XC on page 93 for a method of altering the test pattern in the jump instruction). The

NOJ - JU instructions can function as alternating sequence controls.

EXAMPLE:

The program continues; the AD following the NOJ is the next instruction executed.

@[0 n ~ ~ --------------------U-SE_R_'S_G_UI_DE

-103-

Figure B-3 . TABLE OF CONDITIONAL JUMPS

Operation
Mnemonic Complement Conditions indicated when a jump occurs

(hexadec ima I)

NOJ 00 No Jump occurs

JU FO Jump always occurs

·-!--

After a CMQ, CMC, or CMI, a jump occurs if:

JG 10 ALP HA> BETA; ALPHA> immediate operand

JE 20 ALPHA = BETA; ALPHA= immediate operand

JGE 30 ALP HA ?:' BET A; A LP HA ?:' immediate operand

JL co ALP HA < BET A; ALP HA < immediate operand

JNE DO ALP HA f. BET A; ALP HA i- immediate operand

JLE EO ALPHA~ BETA; ALPHA :::; immediate operand

JC 10 Condition present after peripheral status test

End of operation after data transfer on channel 1

Character found after SR or SL

JC 20 Condition not present after peripheral status test

End of operation on length, after data transfer
on channel 1

ALPHA= O; after SD, SB, or XC

JC co Result in underflow form after SD or SB

JC 30 Overflow after AD or AB

JC AO ALPHA= O; after AD or AB

JC 80 ALPHA= O; after MVQ

@ ~
0

~ ~@ _____________________ u_sE_R'_s_Gu_r_DE

-104-

JUMP IF SWITCH SET

JUMP IF SWITCH 2 SET

JSl

JS2
SIGMA

JS1
JS2

JSl

JS2'

The st~tus of the specified switch is interrogated. If the switch is set, program control jumps to

the SIGW.A field operation. If the switch is not set-, the program continues in sequence.

INDl<;:ATORS AFFECTED

none

NOTE:

• The settings of the switches are not altered by the test. Switches are not under program

contro I and must be set and reset externa I ly.

PROGRAMMING PRACTICE:

Switch 1 and Switch 2 may be tested internally as a means of making certain that external

ope rat ions have been carried out. An operator may be instructed to set a switch to indicate that

an input file has been placed in the reader, or that cards have been set up for punching, or some

other required action has been taken and the switch set to indicate the completion of the request.

The program, after testing the switch by means of the jump, may reset the jump pattern to make

the test ineffective. Messages should be included in the program for printing whenever operator

intervention is required. Operator intervention should be restricted to the necessary minimum.

@T~ o 0 0 ~- ---------------~-~--u_sE_R_'s_G_ur_nE
-105-

IJsTl
LJ...llJ

EXAMPLE:

The JSl sets up an effective program halt. When Switch 1 is off t.he program goes on to execute

the MVC.

@ ~
0
~~[ID _____________________ u_sE_R'_s_cu_r_DE

~106-

JRT

JUMP AND RETURN JRT

JRT SIGMA

The store location of the operation which follows the JRT is placed in LOC (store octets

0254-0255). Control is transferred to the operation which beg ins at the SIG MA field location.

INDICATORS AFFECTED

none

PROGRAMMING PRACTICE:

The JRT is used for subroutine entry. The contents of LOC must be moved to a jump instruction

to effect a return to the sequence from which the subroutine was entered.

EXAMPLE:

The JRT used to jump to a subroutine named TOT. The first instruction in the TOT subroutine

moves the return address from LO C to the jump instruction named BACK.

fPt-GE LINE NAME pPERATION OPERANDS
N• N•

32 33 @_4 ~36 40 41~ ~ 46~7 74

5 0 0 s ~:· * I":·· COMP UTE TOTAL
1 0 .. J R T r.:- TOT
1 s ·:· J ..
2 0 ..
2 s ..

i..--""~ ~ :;.;......_ - ~ - -_...._... - -

@[o Q Q ~ _____________________ u_sE_R'_s_Gu_r_oE

-107-

l!lll@!l!I(ED IT INSTRUCT ION S Jli!ii1li::1i:iiil:i1i:!iliiii:i:!jj:11:1:iiii::iiiiiililil::llilililliiiiililliliiiiiiiif:liililiiiiii:iliiiiiiiiiiiiilililililililliiiiiiiiiiliiiiiliiiliiii!i!llilii!l!li!lllllliiiliiiiiiiiiii!iliiiijliliiiiiili1iiil!l!l!liiiii!

Data fields generated by programs in the GE-115 Information Processing System may be

edited for output. Sue h operations as zero-suppression, character insertion, and field-spacing,

may be performed. Editing simplifies the preparation of readable tabular listings, invoice sheets,

and other printed reports.

Input data also may be edited. Editing of input data consists of preparing it for internal use by

the GE-115 system. The varied internal codes recognized by other computers can be

rranslated into the GE-115 internal code. Data and programs prepared by other systems

can be translated for processing.

The editing instruclions have the following general characteristics:

" A data fie Id is operated upon by the use of a mask or tab le.

• Only the first data field length is used in the instruction.

e The length of the operation is governed by the length of the first data field.

o The operative length of the second dato field is a function of the configuration of the

first qata field.

e Operation is from left to right in both fields.

• The first operand field is replaced by the result field.

The editing instructions have the following format:

OPERANDS

PHA(nnn)1BETA

@ ~ 0 ~ ~ lW --------------------...;;U;.;.;SE;;.;;;.R..:;,'S...;;:G~UI;.;;,;;:DE
-108-

EDT

EDIT EDT

EDT ALPHA (n n n) , BET A

Octets from the ALPHA field are used as control characters to edit the information in the BETA

field. Zero-suppression, character insertion, and spacing of fields are specified by the

configuration of the ALPHA field. Editing proceeds from left to right. The length of the

operation is determined by the length of the ALPHA field (001 to 256 octets). The ALPHA

field contains the edited data at the end of the EDT operation.

INDICATORS AFFECTED

UF/OF

NOTES:

ZE/NZ

0 Operation ended in the zero-suppression mode.

Operation ended in the non-zero-suppression mode.

• ALPHA is the control field for the EDT operation. The configuration of the ALPHA field

determines the format of the edited field.

• The length of the BETA field used in the EDT operation is a function of the configuration

of the ALPHA control field.

• The ALPHA field contains the edited data at the end of the EDT operation.

• Operation proceeds from left to right.

• Three types of edit control operations may be specified in the ALPHA control field.

Each type of control operation is represented by a particular hexadecimal octet

configuration in the ALPHA field. These are 120 1
,

121 1 and 122 1
•

• The ALPHA field can contain, as well as the three types of hexadecimal control

characters, any of the characters from the graphic set. The character in the leftmost

octet of the ALPHA field serves as a 11 fill 11 character; that is, it may be used to replace

any subsequent ALP HA octet that is not replaced from BET A.

• There are two modes of the editing operation: zero-suppression and non-zero-suppression.

• The action of the hexadecimal control characters in the ALPHA field is affected by the

mode of operation at the time that they are encountered.

• The presence of the fill character and any other of the characters (non-control

characters) in the edited fie Id is determined by the mode of the operation when a

particular octet is processed.

@~o~~~--u_s_ER_'s_G_ur_DE
-109-

• Operation always begins in the zero-suppression mode. Non-zero-suppression 'begins'

when a BETA octet is found to have a non-zero right quartet or when the ALPHA field

octet contains the control configuration '21'.

• The first octet of the ALPHA field remdins unchanged by the operation. The operation is

in the zero-suppression mode and does not change. The character in the first octet of the

ALPHA field will be used as the·"fill" character in the remainder of the EDT operation.

• In the ZERO-SUPPRESSION MODE, the ALPHA octet causes the EDT operation to

proceed in the fol lowing ways:

120 1

When the 120 1 is encountered in the ALPHA field, a check is made of the current BETA

field octet to be edited.

If the BETA field has a non-zero right quartet, the BETA field octet is placed in the

ALP HA field. Zero-suppression is terminated.

If the BETA field octet has a zero right quartet, the first character of the ALPHA field

(the 11 fill 11 character) is placed in the ALPHA field octet. Zero-suppression continues.

121 1

The operative octet in the ALPHA field is replaced with the operative octet from the

BETA fiel.d. Zero-suppression is terminated.

1 22 1

The operative octet in the ALPHA field is replaced by the first octet in the ALPHA field

(the "fill" character). The BETA field is not involved. Zero-suppression continueso

Any other character

The operative octet in the ALPHA field is replaced by the first octet in the ALPHA field

(the 11 fill 11 character). The BETA field is not involved. Zero-suppression continues.

• In the NON-ZERO-SUPPRESSION MODE, the ALPHA octet causes the EDT operation

to proceed as follows:

120 1 and 121'

The operative octet in the ALPHA field is replaced by the operative BETA field octet.

The non-zero-suppression mode continues.

'22'

The operative octet in the ALPHA field is replaced by the "fill" character. The

zero-suppression mode is restored.

Any other character

The operative octet in the ALPHA field is unchanged. BETA is not involved. The

non-zero-suppression mode continues.

@ ~
0

~ ~@ _____________________ u_sE __ R....,'s_c_m_DE

-llO-

• The UF /OF indicator is sef' to 1 at the beg inning of the EDT operation and is unaffected

by the operation.

• A 0 in the ZE/N Z at the end of the operation i-nd icates that the edit ended in the zero

suppression mode.

• A 1 in the ZE/NZ at the end of the operation indicates that the edit ended in the non

zero-suppression mode.

Figure B-4 shows the possible elements of the ALPHA field before and after the EDT operation,

as determined by the mode of the operation and the contents of the BET A octet.

PROGRAMMING P RA CTI C ES:

The first octet of the ALPHA field is used in the edited field as a fill character. When no BETA

octet is transferred to the ALPHA octet, the fill character maintains the spacing. In general

use, this character is the blank (X 150 1
).

The ALPHA field is destroyed in the editing process; the BETA field (with editing) replaces the

ALPHA field. The edit format which is in the ALPHA field must be preserved in another area of

the store if it is to be used more than once in execution of the program. It is suggested that the

edit format be defined in a DC (Define Constant) and moved to a work area where editing may

be performed. The program print area can be utilized in this way to receive Hrst the ALPHA

edit format and then the BET A field prepared for printing.

The length of the BET A field processed depends upon the ALPHA field configuration. Care must

be taken to define the format configuration to fit the data field length as well as the data

configuration.

When the last operative ALPHA mask octet is the 120 1 and it is encountered in the zero-suppress

mode, the mode of termination of the operation is not predetermined by the ALPHA field; the

BETA field oct"0t determines the mode in which the edit ends. If the right quartet of the last

BETA octet is zero, the zero-suppression mode continues. If the right quartet of the last

operative BETA octet is non-zero, the zero-suppression mode is terminated.

NOTE: The only BET A octets suppressed by the EDT instruction are those read in

the zero-suppression mode in the presence of a 120 1
• All others enter

the ALP HA field.

@~ 0 ~ ~ ~ ____________________ u;;.;;;.s;;;,;ER:....;;:'s;...;;G;.;;;.;ur~nE

-111-

EDT

Figure B-4 ALPHA OCTETS AND THE RESULT OF THE EDT OPERATION IN EACH MODE.

BETA
OCTET
ENTERS
OPERATION

BETA
OCTET
DOES NOT
ENTER
OPERATION

r

<

>

-<

\,_

OCTET IN THE
ALPHA FIELD

HEXADECIMAL
120 1

(BETA RIGHT
QUARTET= O)

HEXADECIMAL
120 1

(BETA RIGHT
QUARTET~ 0

HEXADECIMAL
121 1

HEXADECIMAL
122 1

ANY OF
GRAPHIC
CHARACTER

SET

MODE WHEN ALPHA CHARACTER ENCOUNTERED

ZERO SUPPRESS N 0 N SU PPR ES S

MODE ALPHA ALPHA MODE
BECOMES OCTET BECOMES OCTET

BECOMES BECOMES

NOT FILL

CHAN GED CHARACTER

NON BETA NOT BETA

SUPPRESS OCTET CHANGED OCTET

NON BETA
SUPPRESS OCTET

NOT Fl LL ZERO Fl LL
CHANGED CHARACTER SUPPRESS CHARACTER

NOT FILL NOT NOT
CHANGED CHARACTER CHANGED REPLACED

@j ~ 0 ~ ~ ~ --------------------,.:;:.:US;:,;:;:;ER~'~S ~GU~ID~E

-112-

EXAMPLE:

Editing of a data field for printing.

ALPHA
BEFORE

OPERATION

BETA
BEFORE

OPERATION

ALPHA
AFTER

OPt:RATION

PRINTED
RESULT

OPERANDS

pH A (0 1 3) , B E TIA

2 0 2 1 .,.

((~
/ w a ~:r a W aw 1 W a r~~ a Hi~ s I 7 ... , ·.·.·. ·.·.·, ·.·.·· ·.·.·, ·.·.. ..,

0. 0 1 0 °/. E

NOTE: BETA is not affected by operation.

EDT

INDICATORS

UF/ OF ZE/Nz

OPERATION
ENDED IN
NON-ZE~

SUPPRESSION
MODE

@ ~ o ~ ~ lID ____________________ u_s_ER_'s_G_ur_DE

-113-

T R

TRANSLATE OCTETS TR

TR ALPHA (nnn), BETA

Each octet of the ALPHA field is used to generate an effective address for locating an octet in the

BETA field. The referenced BETA field octet replaces the ALPHA field octet. Operation is left

to right through the length of the ALPHA field (001 - 256 octets).

INDICATORS AFFECTED

none

NOTES:

• The left octet of the address translated by the assembler for the BETA field reference is used

as a "basic" address. The value present in the right octet of the address is ignored.

(The BETA field is assumed to begin at an address which is a multiple of 256).

• Each octet of the ALPHA field is used serially as an increment to the "basic" BETA address.

Each address formed by the "basic" BETA address and the ALPHA octet is used to reference a

BETA field octet. This BETA field octet replaces the ALPHA octet used to form the ref

erencing address.

• Any octet configuration may appear in either field.

• The length of the BET A field used in the operation is a function of the maximum range of the

va I ues any ALP HA field octet may assume.

PROGRAMMING PRACTICES:

The TR instruction is designed to facilitate translation from one character set to another.

Translation is accomplished by defining the translation table (i.e., the set of desired configurations

for data) in the BETA field in terms of the data to be translated in the ALPHA field. The operation

replaces each of the octets in the ALPHA field by an octet from the table in the BETA field. Each

ALPHA field octet becomes the locator of a position in the table. The BETA field table must be

prepared so that the translated configuration is placed in the relative location generated by using

the ALPHA octet itself as an increment to the "basic" BETA address.

@ ~
0
~~[ID ____________________ us_ER_'s_c_u1_nE

-114-

TR

The values of the ALP HA fi.eld octet may range from 0 to 255. Therefore, the BET A field may

require a maxim um of 256 octets. The actual positions in the BET A field which are used by the TR

operation are dependent on the possible ALP HA field values. If fewer than 256 d iffereot ALP HA

field octet configurations may occur, only part of a set of 256 locations may be needed for the

BETA field to translate ALPHA field values. The necessary BETA field locations may be contained

within a range less than 256 octets, or the necessary locations may be scattered over the complete

range of 256 octets. If it is known that the BET A field positions do not utilize parts of the ful I

range of 256 octets, the remaining octets, outside the range required for the BET A field, may be

used to contain other data.

When the BET A field begins at a multiple of 256, the Origin ·Assignment (ORG) instruction with

an R in the operand specification field is used. The ORG instruction is followed by the necessary
~

Define Constant (DC) instructions, or, if the BET A field is to be read into the store, a Define Store

Area (DS) instruction.

EXAMPLE:

Translation of UNIVAC 1004 code image data which has been read into the GAMMA 115

from cards.

@ ~
0

~~[ID _____________________ us_ER_'s_G_ur_nE

-115-

I
t-'
t-'
(j'\

~
m

D
c::::=::i

c::::=::i

@JU

c::
(/)
tzj

~
(/)

G)
c::
H

~

ALPHA
BEFORE

OPERATION

BETA
BEFORE

OPERATION

ALPHA
AFTER

OPERATION

BETA
AFTER

OPERATION
NOT AFFECTED

HEXADECIMAL CONFIGURATION OF
1 2 3 ~JOHN I> SMITH IN UNIVAC 1004
6 BIT CODE READ INTO t:.E-'-''ti":
IN PACKED MODE AS PAIRS OF HEX DIGITS

+BS +B6

[Js
1
2 j 8

1
31 /

HEXADECIMAL CONFIGURATION OF
OCTETS OF UNIVAC 1004-TO

"'c:11s-TRANSLATION TABLE
ACCESSED BY INSTRUCTION

HEXADECIMAL CONFIGURATION
FOR 1 2 3 I:> JOHN JS SMITH IN

GE-115 INTERNAL CODE

BET A ADDRESSES RELA Tl VE
TO FIRST BETA OCTET ARE
GIVEN IN HEXADECIMAL TO
SHOW RELATIONSHIP BETWEEN
ALPHA CONTENTS AND BETA
ADDRESS ACCESSED

0

im[sys r EM Ac ii o N IN s TR u c T 10 N s]1rnrn111mmmmmmmmm1m1mmm1mmmmmm1m1rn1mmmm111m1111111111111mmmmmmmmmmmmmmm1m111mm11m1mmmmmmmm:

The GE-115 Information Processing System operates upon data according to the instructions

in the stored program. Some of the instructions can, however, direct system action which does not

affect data in the store. These instructions set external indications and alter the status of system

operation. The system action instructions have the following format:

Note that the format of the System Action Instruction does not include specification of an

operand.

@(E
0
~ ~ ~ _____________________ u_sE __ R_'s_c_ur_nE

-117-

H LT

HALT SYSTEM OPERATION HU

HLT

System operation is terminated.

INDICATORS AFFECTED

none

NOTE:

• The system stops operation when the HLT is encountered. When the START button on the

con so le is depressed, the program execution restarts at the next sequent ia I ope rat ion.

PROGRAMMING PRACTICE:

The HLT may be used to separate a program into logical sections for checking. A HLT can be

placed at the end of each logical section to stop program execution and allow expected results

to be checked before they are used by subsequent section·s. The programmer can generate

programmed halts (See the Jump on Switch 1 (JSl) instruction on page 105 for a method of

generating effective halts) for the same use. It is recommended that programmed halts be used

rather than the HLT instruction. Messages should be included in the program and printed for the

operator whenever operator action is required. Explicit instructions should be prepared for the

operator describing the act ion to be taken. It is recommended that operator intervention be

minimized.

@ffi 0 ~~[ID ____________________ us_ER_..' S.._' G....,UI_DE

-118-

N 0 OPERATION NOP2

NOP2

The system continues in sequence. No system operation is specified.

INDICATORS AFFECTED

none

NOTE:

• The NOP2 effects the advance of the store location counter by 2 octets •

PROGRAMMING PRACTICE :

A N 0 P2 may be used to overlay an instruction that is no longer needed for program operation •

The N OP2 uses two octets ins tore. Therefore a series of N 0 P2 operations is needed to replace

instructions of four or six octets.

EXAMPLE

A N OP2 used to overlay an AD instruction. OVR is the name of a N OP2

instruction moved to the instruction named SUM.

@ ~ 0 ~ ~ ~ ____________________ u_sE_R_'s_G_UI_DE

-119-

TURN ALERT LIGHT ON LON

LON

The ALERT I ight on the console is turned on.

INDICATORS AFFECTED

none

NOTE:

• The LON turns on an external signal light. The system·continues in sequential operatL..on.

PROGRAMMING PRACTICE:

The LON may be used, along with the Turn ALERT Light Off (LOFF) instruction, to indicate some

required operator action. The need for the operator action may be signalled by the LON. A test

should be made whenever possible to determine whether the required action has been carried out.

Explicit instructions should be prepared for the operator describing the action to be taken.

Messages shou Id be included in the program and printed to inform the operator of the required

action. When the action has been completed the LOFF can be used to turn off the I ight. It is

recommended that operator interven_tion be minimized.(See the Turn ALERT Light Off (LOFF)

instruction on page 121).

EXAMPLE:

The ALERT light is turned on.

@ ~ o ~ ~@ -------------------~U~SE~R'.:.:.,S ~GU~ID~E
-120-

LO FF

TURN ALERT LIGHT OFF LOFF

LOFF

The ALERT I ight on the coriso le is turned off.

INDICATORS AFFECTED

none

NOTE:

• The LOFF instruction turns off an external signal light. The system continues in sequential

ope rat ion.

PROGRAMMING PRACTICE:

The LOFF may be used with the Turn ALERT Light On (LON) instruct ion to signa I the need for

operator intervention (See the LON instruction on page 120).

EXAMPLE:

The ALERT I ight is turned off.

OPERANDS

1 0

I 5

2 0

@ ~ 0 ~ ~@ ___________________ u __ sE.-..R'-...S,GU ID--.E

-121-

INHIBIT SINGLE STOP

INS

The SING LE STOP switch on the control console is disabled.

IN DI CA TORS AFFECTED

none

NOTE:

• The INS places the system in a continuous operation state and prevents interruption of

the program by the use of the SING LE STOP switch.

PROGRAMMING PRACTICE:

The I NS may be used with the Enable Sing le Stop (ENS) instruction to perform a check of a

program segment. (See the ENS instruction on page 123).

EXAMPLE:

The SING LE STOP switch is disabled.

INS

@~o~~@---------------------------------------~U~SE~R~'S~GU~I~OO
-122-

ENS

ENABLE SINGLE STOP ENS

ENS

The SINGLE STOP switch on the control console is enabled.

I ND ICATORS AFFECTED

none

NOTES:

e The ENS operation allows the system to be operated step-by-step, using the SINGLE STOP

switch. One instruction is executed each time the switch is set. The switch remains

operative unti I an I NS instruct ion is encountered.

PROGRAMMING PRACTICE:

The ENS may be used with the Inhibit Single Stop (INS) instruction to perform a check of a program

segment. ENS allows the operator to stop execution of the program after each instruction has been

executed. When the segment has been checked, the system is returned to normal, continuous

operation by the INS. Whenever operator intervention is required, explicit instructions should be

prepared describing the action to be taken. Messages should be included in the program and printed

to inform the operator what action is required. It is recommended that operator intervention be

minimized.

EXAMPLE:

The SINGLE STOP switch is enabled.

@ ~ 0 ~ ~@ _______________________ u __ sE R' s _GU_ID_E

-123-

I

The Primary instructions previously discussed process data in the GE-115 lnformati on Proces-

sing system. The instructions discussed in this section provide the means of bringing data into the

system for processing and for printing or punching the results of that processing.

The system discussed is the card system. All input and output operations are described in terms of

card input and card or prinier output. Input/output operation charts included in this section con

tain references to oper~tions and functions which apply to other forms of input and output. These

other forms are not treated here. However, the chart information is included f~r amplification of

the materials that will be released as the system is developed.

Data may be brought into the GE-115 system in a number of forms. Hollerith card codes and

several special card codes (with hardware adaptation and/or software translation) may be read and

punched. Card code formats can be specified under programmed control •. Card formats may us~ one

column to represent the contE:nts of an octet or they may use two columns where interna I configu

rations are to be expressed in the external media in two parts. Sixty-four graphic characters may

be used for printing the results of program action.

The input/ output operations for the GE-115 may be programmed to make optimum use of the

system. The input/output operations, such as card reading and printing, require access to the cen

tral processor during their execution. Card punching, on the other hand, requires the action 6f the

central processor during the time of preparation of the output which can be punched from an inter

mediate retention area without further central processor action.

For those operations which require data transfer during their execution, an optimizing use of the

central processor is possible. The central processor can receive or supply data at a faster rate

than the input/output (peripheral) units. This means that the central processor is free during part

of the execution time required by the instruction. This free time may be utilized in the GE-

115 by a method of input/output operation cal led time sharing.

Time sharing is accomplished by the provision of two types of input/output operation.

The first type is called a presetting operation. A preset may be given for input or output operations.

A presetting instruction defines an operation completely, giving the unit, channel, data area, and

length of operation. The operation code requests preparation of the channel mechanism only, not

initiation of the operation.

The second type of input/output operation is the execute. An execute operation may be given for

input or output. An execute instruction contains the required channel, unit, data area, and

-~·

@j ~ 0 ~~[ID -------------------__.:;:.:US~ER~'~S ~GU~IDE
-124-

length. The operation code requests that the operation be initiated when the instruction is proces

sed. To accomplish time sharing, an input execute instruction must follow an output "preset"

instruction. The instructions must be given on separate channels of communication. An execute

input instruction which follows a preset output instruction causes the output instruction to be

initiated as well. The input and the output unit share the time of access to the central processor.

"
The procedure for time sharing is :

1. An output preset operation, utilizing channel 2, is given.

2. An input execute operation, uti I iz ing channel 1, is given.

The ca pa bi I ities of the GE-115 allow for even further optimization of the input/output ope-

rations. The punch equipment utilizes an intermediate area for data retention. This makes it pos

sible to have three input/output operations taking place; two on a time sharing basis and the third

simultaneously with whichever of the other two is operative at any time. To use the punch in con

junctiori with the reader and printer, it is necessary that the punch be utilized through connector

2 'Vhen the punch operation is to take place in conjuction with a time sharing read and write

operation sequence, the punch instruction must precede the output preset instruction for channel 2.

Time sharing is directed toward the optimal use of the central processor during input/output opera

tions. There is another consideration of timing in the use of peripheral units that may be specified

by program control as well. This refers to the optimum utilization of a given peripheral unit. In this

purpose, input/output operations may be specified as wait or immediate instructions.

Immediate operations are requests for some peripheral unit action to take place when the instruc

tion is given. Wait operations imply an interrogation of the status of the peripheral unit referenced.

If the unit is occupied, i.e., engaged in some operation previously requested, the instruction is

not carried out when it is given. When the prior operation is completed, the wait operation takes

place.

It must be noted that it is not meaningful to use immediate operations in al~ possible sequences

of input/output operation. Instructions are executed by the GE-115 in the order in which they

are placed in the store. Operatic;>n is sequential. An operation which utilizes the central processor

must be completed before another can be interpreted. Therefore, an immediate input/output opera

tion which follows a data transfer operation is not, in any case, interpreted until the data transfer

is completed.

In some instances, a meaningful sequence of operations may utilize the immediate instruction for

peripheral unit control. For example, an instruction to select a card stacker might be given in

@~o~~@----~~~-------------------------------U~SE~R'_s_GU~I~DE
..,125-

the immediate mode following an instruction to reset card read error. On the other hand, an

instruction to select a card stacker given in the immediate mode following a card read operation

would not be a meaningful sequence.

There are three types of operation which make reference to the input/output units. They are

Data Transfer Operations

Periphera I Status Test 0 perations

Peripheral Unit Control Operations

All three types of operation are performed by means of a single input/output initiating inst.ruction,

the Cal I Peripheral (PER) instruction.

The format of the PER instruction is

where

U specifies a peripheral unit (see figure B-5),

and

DELTA is the name of a data field which contains the operation specification. The content

of the DELTA field determines the operation actually performed by the specified unit. The

DELTA field may have one of three different basic configurations depending on the type of

operation described. There is a special data definition instruction, the Define Peripheral

(DP) instruction, for use in setting up the DELTA fields.

The format and content on the DELTA field vary with the operation being performed. There are

two possible lengths. The DELTA field is :

6 octets long for the Dato Transfer oparations,

2 octets long for Status Test operations, and

2 octets long for Unit Control operations.

Input/output instructions have the following general characteristics

• The PER instruction initiate an input/output operation using a specified unit.

• A data field complete the operation definition and always contains the operation

specification.

@ ~
0
~ ~@ ___________________ _..u_sE_R_...' s cu.....,r......,DE

-126-

and the channel request. A define Peripheral (DP) Directive is used to set up the data field.

Data Transfer Operations

Data transfer operations have the fol lowing genera I characteristics :

e The data field operand which amplifies the operation is six octets in length.

• The first two octets of the data field operand contain an instruction specification.

e The second two octets of the data field operand contain the length of the data field which

participates in the transfer.

The length of a print operation is governed by the print line length of the printer model used.

The length of a read or punch operation is governed by card length, i.e., 80 columns for

a card.

e The fifth and sixth octets of the data field operand specify the location of the first octet

in the store which participates in the data movement.

e Data fields for transfer are referenced at the left. Data is transmitted and received serialy,

octet by octet, from left to right. (Reference is made in the input/output configuration to

the use of descending addresses. This usage does not apply in the present context.)

e Indicators are set to record the results of conditi-ons such as end of input and transmission

error.

Peripheral Status Tests

The peripheral status test operations have the following general characteristics

e The data field operand in a 2-octet field specifying the operation and the condition.

e A condition recorded during the use of a specified peripheral unit is tested.

e Indicators are set to record the results of the test.

Peripheral Unit Control

The peripheral unit control operations have the following _general characteristics :

e The data field operand is a 2-octet field which specifies the operation and the mode of

execution.

e A peripheral unit is instructed to perform some operation that does not directly involve

data transmission, e.g., eject present printer page.

HEXADECIMAL
UNIT

CONFIGURATION

00 CARD PUNCH

80 CARD READER

co PRINTER

Unit numbers given should be verified for use with the GE-115 system being programmed.

Figure B-5 UN IT NUMBERS

ms~ 0 ~ ~ ~ -------------------_....,us E-..R'.._S,GU......,ID--.E

-127-

The GE-115 system provides prepared input/output programs which may be used with other

programs. These prepared programs may be incorporated, according to conventions of use which

depend on the program used, into other programs written for operation on the GE-115. The

input/output programs are written for defined periphera I unit configurations. The programmer is

advised to secure the input/output programs which may be used with the configuration of the

GE-115 system he is using.

@~o~~@-------------------~---------------------U~SE~R'~S~GU~ID~E
-128-

PER
DATA

TRANSFER

CALL PERIPHERAL PER

Data Transfer

PER U, DELTA

The unit specified in the PER instruction is selected to perform the data transfer operation defined

in the DELTA field. Data is received or transmitted serially, octet by octet, from left to right

through the specified fie Id length.

INDICATORS AFFECTED

UF/OF ZE/NZ

0 Operation terminated under the specified count control.

An end of input signa I was received.

INPUT/OUTPUT TRANSMISSION INDICATORS

Channel l Parity

0

NOTES :

Channel 2 Parity

0

• The DELTA field first octet specifies:

Channel

9 irection of transfer - input or output

Data format - packed or unpacked

Transmission valid

Transmission parity error detected

Time sharing status - set for time share preset, or an execute

Operation mode - wait or immediate

Data reference direction - ascending or descending locations

(See Figure B-7}

• The DELTA field second octet specifies the operation requested, as shown in Figure B-6,

below:

@j ~ o 0 ~ ~ _____________________ us_ER_'s_G_u_IDE

-129-

PER
DATA

TRANSFER

Figure B-6 :OPERATION REQUEST CODE

Hexadec ima I Configuration Operation Requested

40 Read cards

42 Print or Punch

• The DELTA field third and fourth octets specify the length of the data field which participates

in the data transfer operation.

• The DELTA field fifth and sixth octets specify the location of the first octet in the store which

participates in the data transfer operation.

• Data transfer operations may time share the central porcessor. A pair of input/ouput opera

tions designed to effect time sharing is given as follows :

l. An output preset operation is specified, using channel 2.

2. An input execute instruction is specified, using channel l. When the channel l operation

is initiated 1 the channel 2 operation is initiated as well. The input/output data transfer

operation is completed when the longer of the two requests is completed.

• Data is read or written from_ left to rig hr (ascending locations) by the card and printer opera

tions.

• Cards may be read in packed or unpacked form.

Unpacked form is standard Hollerith card code. Each column generates an octet as shown

below :

@ ~
0
~ ~@ ____________________ us~ER__,;' s__,;G_.ur...._.DE

-130-

PER
DATA

TRANSFER

Packed form is used to generate a single octet from two columns.

Only t 1·a right quartet of the standard internal configuration of the card column enters the

store locations used.

• When an input/output operation, either presetting or execute, is given on channel 2, the

channel 2 transfer parity. error indicator is set to O.

• When an input/output operation is given on channel l, the channel l transfer parity error

indicator is set to O.

• At the end of a data transfer operation on channel l, LOC (store octets 0254 and 0255) con

tains the location of the octet to the right of the last octet which participated in the data

transfer.

• Data transfer operation which use channel 2 must reference a data field which has an

address that is a multiple of 256 plus 2, i.e., of the form 256m+2. The contents of the two

left most octets are used to control the operation, which is here assumed to be print only.

(The length of the field printed is, as noted, dependent upon the physical characteristics of

the printer model, and is not given here).

• Locations which participate in an output data transfer operation are unaltered by the

operation. The two print control octets to the left of the field to be printed are, however,

altered by the operation.

• The ZE/NZ indicator is used to record the cause of the termination of an input data transfer

operation. An input data transfer operation may be terminated when a field of the specified

length has been filled or when the end of the input has been detected.

A 0 in the ZE/N Z indicator at the end of an input data transfer operation indicates that the

operation terminated when a field of the requested length was transferred.

A l in the ZE/N Z indicator at the end of an input data transfer operation indicates that an

end of input signa I was received.

@J ~
0

~ ~ ~ ____________________ u_s_ER_'s_G_ur_DE

-131-

PER
DATA

TRANSFER

• A l in the.applicable channel parity error indicator at the end of operation on either channel

indicates that a parity error was detected during the transfer of the data.

PROGRAMMING PRACTICES :

Parity error indicators are reset prior to the initiation of input/output data transfer operations and

should be tested after each operation. A peripheral status test operation followed by a conditional

jump tests for parity error.

A full print line is always printed. The programmer should, therefore, make certain that any

unused positions are c I eared before printing takes place.

The card punch buffer is cleared after punching so a partial card may be punched without the

requirement that blanks be supplied for the unused columns.

The output area for channel 2 must be defined as 256m+2. An Origin Assignment (ORG) instruc

tion with an operand specification of R can be used to define the print area. (See the 0 RG

Directive, page 160).

EXAMPLE

Time Sharing Sequence

A output print operation is given in the preset mode, followed by an input read cards operation in

the execute mode. Specification of preset or execute mode is made in the first octet of the DELTA

field referenced by the instruction, as shown. After completion of both operations, tests are made

for transmission errors as wel I as for end of cards and paper.

@ ~ 0 0 0 ~ -------------------____;U;.;;,SE:R;...:;:'S~G~UI~DE
-132-

@f2)
[fiJ1J

a
c::=:i

c::=:i

@YU

PAGE I LINE
N• NAME OPERATION OPERANDS

~ ~ 40141 142 451 46 147 74

1

1

2

2

3

3

4

4

5 - -::;:-*
0 * -
5 * -

ili 5 E

0

R I E ' s I T 1:{~ D I p

X , E ,_c_ , I:;:;:~ D , P
:::::h
·u.::

SIB 1 f 1 A1Q .• • D ,_S_

0 :=:=:"'* -
5 :::::4*

$ I I ~
0

s Ip: R: I : ~
0
-

:·:·:-to, R ,Ji

T (~:1 DI s
::::~.

c::::
Cf.)

tr.I
~
Cf.)

G1
c:::
H
t::I
tr.I

6

7

7
~I~:::::~
5

8 0

8 5

9 0
9 5

9 . 6

9 . 7

9_J_8

9..L.9 .J..

...2.1:::::~ DI p

1 8to_. p

···~ p I E...L...ft.
·:;:;J p ...i.._f__._B_

..• p , ..f...i_B_

::JJ I c I I

*
.•• P...1..E IR

.... J ,_c_

* .J..

Q,! • .!.T. f1 U1T1 IT I I I M1 EI 1S1H1A1R1E1

T1 IF IQ I BI 1C11:!1A1~1N1E1L1 I 2 I I I I

·.·.·.11 N1 P1U1I

R1E1~1E I:1 p

:·:·:;IE X1E1C1!..! TIE I IE IQ I BI 1Cil::! 1A1N1N 1E L1 I 1 I I I I I I

; j x I " 14121
,

P 1R 1 l1N1T 1+1010121 (1011 1 3161) I , ' I 5 1 91
I ::::::. x

::::::1_x

::::::1_1,,_ ·.·.·. ·.·.·. ·.·.·.

'
,

..L...Q.

--!...-

o.~

' I~ I
' I 41 QI

,
., 1 R1E 1A1D1

.J..

• • • I s I __E_i_I_ u I p I I p 1 _R I I I N I T A.R.E.A

:·:·:·l__B._
::::::1 L , 1
·.·.·. ·.·.·. ···.

2.s,s.+.21 --1

3 ,_8_

--1

:-:~:;i ' , ' ,
·:·:·:I x . c I Q I I • I x I I 4 I 4 I I • ' T I E
"•"•"•I ' ' -r
:::::tlCt I Ci_O_L__L. I f>_, R. E's' T --1

:::::~ ' ,-------, • .. • x I I 8 I 0 , I i,1E1X1E1C1 .J..

.J..

S1T1

S 1 T,

I I I I I I I

..J. ~

--1 ..J.

I

N.E~E ,0 .J..

...J...--+

1C1H1A1~1~1 E1L1 I 21

1C1H1A1N1N1 E1L 1 I 1

I

I

.J..

J:::::j x I ' I c I 0 I , I • I T I E I s I T I 2 T1E S.T1 1P1R1I N1T1 1E1R1R101R
l ------, ' ,

.... ·J x I I 1 I 0 I I • I E I R I R I 0 I R T,OL 1E,R.R101R1 1R101U1T1 I 1N,E
7

:·:·:i N . 0 . I w I R I I I I I E I I E I R J R ' 0 I R

:::::tx_L' . a . o . ' . . . T • E • s 1 T 1 1 1 T 1 E 1 s . T • , R , E , A • o ...i._LR,R,O.R
:::::j ' . , -, x ' I 1 1 0 I _ _J___.._ I E___.__R__, _R L 0 I ft_,___, T10 I I E ' R I R I 0 I R R~.T. I ,N,E
: • : ;; ~ --,-----;r

·:·:·l N I Q I I R I E I A I D I I E I R I R I 0 I R ..J. ·.·.· :·:·: .J.. ...I.. ..L......L ..J. ...I.. --1

-t

~o,,
~~m
~>:.ti
lJ

I
VJ
+'
I

@2)
m

D
c:::=J

c:::=J

@iJ

c:::
Cf.)
t::j

:;i:
en

g
H

~

Figure B-7: PERMISSIBLE CONFIGURATIONS OF THE FIRST OCTET IN A DATA TRANSFER INSTRUCTION

HEX
INPUT OUTPUT ASC. DESC. PACKED UNPACKED EXECUTE PRESET. WAIT IMMED.

CHANNEL
VALUE ADDR. ADDR. DATA DATA INST. INST. 1

00 x x x x x x
04 x x x x x x
10 x x x x x x
11 x x x x x
14 x x x x x x
15 x x x x x
19 x x x x x
20 x X* x x x x
24 x X* x x x x
30 x X* x x x x
34 x X* x x x x
40 x x x x x x
44 x x x x x x
50 x x x x x x
51 x x x x x
54 x x x x x x
55 x x x x x
59 x x x x x
60 x x x x x x
70 x x x x x x
74 x x x x x x
SD x x x x x

*for use with magnetic document readers only·

CHANNEL
2

x

x
x

x

x
x

x

--l
;o
)>O~

~~m
~)>,.,

;o

CALL PERIPHERAL

Peripheral Status Test

PER U, DELTA

The status of the peripheral unit specified in the PER instruction is tested according to the

specification given in the DEL TA field.

IN DI CA TORS AFFECTED

UF/OF

NOTES :

ZE/NZ

0 Test condition not present

Test condition present

• The DEL TA field first octet specifies the operation and the channel to be used

(See Figure B-8)

• The DELTA field second octet specifies the condition which is to be tested

(See Fi;-i ,re B-9)

PROGRAMMING PRACTICE :

A Jump on Condition (JC) instruction must be used to interrogate the indicator set in

response to the status test operation.

EXAMPLE

A test is made for the end of a printer page. DEL TA contains the operation specification.

PER

PER
STATUS

TEST

@ ~ 0 ~~[ID --------------------U_S_ER_'S_G_UI_DE

-135-

PER
STATUS

TEST

Figure B-8 MODE AND CHANNEL SPECIFICATION FOR STATUS TEST INSTRUCTIONS

lst
Specification

Octet

co Wait unti I the periphera I is free; use channel l

Cl Wait unti I the periphera I is free; use channel 2

C4 Execute immediately on channel l

C5 Execute immediately on channel 2

Figure B-9 STATUS TEST SPECIFICATIONS

2nd
Condition tested

Octet

01 Controller ready

03 Error in transmission

05 End of cards

05 End of Page

12 Hopper Empty
r<

12 End of Paper

14 Out-of-Service

lE Stocker Full

42 Data Transfer Error Channel 2

~44 OR, of any of the preceding tests applicable to a given peripheral unit

10 Cards ready to feed

2E OR, of

End-of-Service

End-of-Medium

End-of-File

Error in transmission

@] ~
0
~ ~ ~ ____________________ u_sE_R_'s_G_ur_DE

-136-

CALL PERIPHERAL PER

Peripheral Unit Control

PER U, DELTA

The peripheral unit specified in the PER instruction is selected to perform the control operation

specified by the DEL TA field.

INDICATORS AFFECTED

UF/OF
l

NOTES:

ZE/NZ
0 set prior to operation

• The DELTA fie Id first octet specifies the mode of operation and the channel to be used.

(See Figure B-10)

• The DELTA field second octet specifies the control operation to be performed. (See

Figure B-11)

• The UF /OF indicator is made l and the ZE/N Z ind tcator is made 0 prior to operation o

Neither is affected by the operation.

PROGRAMMING PRACTICES:

If the status of the UF/OF and/or ZE/NZ indicator is meaningful, it should be saved or utilized

prior to the periphera I unit control operation.

The peripheral unit control operation may be used to reset some error conditions detected by the

peripheral status operation, namely, a read or punch error indication.

Spacing of the printer pages may be performed using Peripheral Unit Control PER instructions.

The operations affect the spacing of the printer page according to a format controlled by the

position of punches in a paper tape loop inserted in the printer.

PER
UNIT

CONTROL

The spacing operation performed by the selection of a given carriage control tape channel should

be checked against the information provided with the printer which is used.

The Bypass operation, referred to in Figure B-11, is not discussed. Information about its use

will be given in future documents.

@ ~
0
~ ~ tID ____________________ us_ER_'s_G_ur_DE

-137-

PER
UNIT

CONTROL

The Feed cards operation is utilized with some card reader modelso Information provided with the

equipment should be checked.

Figure B-10 :CHANNEL SELECTION FOR PERIPHERAL. CONTROL

l st
octet Spee ification

80 Use channel l; wait until the peripheral unit is free

81 Use channel 2; wait until the peripheral unit is free

84 Use channel 1; execute immediately

85 Use channel 2; execute immediately

Figure B-11: P.ERIPHERAL OPERATIONS FOR UNIT CONTROL

2nd
octet Action Requested

OA Sing le Space

oc Feed Card

47 Reset Error

48 Select Stacker

51 Vertica I Paper Throw, channel 1

l 52 Vertical Paper Throw, channel 2 printer carriage control paper
tape loop

57 Vertical Throw, channel 7

59 Double Space

AO Switch on Bypass

Al Switch off Bypass

EXAMPLE :

A read error is reset on the card. DELTA con ta ins the operation specification.

NAME PE RATION OPERANDS
45 46 7

:-: x 's o ' x ' 4 1 '

@[g 0 ~ ~@ --------------------...;.U.;;..;;SE~R'..;..S...;;.GU.;..;;.I~DE
-138-

PART II

Directive instructions specify action to be taken by the assembler rather than by the system.

Directive instructions are not translated into executable machine language instructions; they

provide parameters for use by the assembler in setting up data fields and give direction for

assembler action and program loading.

Directive instructions are written in the same format as the Primary instructions, according to the

rules presented in SECTION A, PART II, "WRITING STATEMENTS IN THE GE-115

ASS EMBLY LANGUAGE". There are additiona I conventions used in specifying the operand

fields of the definition Directive instructions. These are explained in the description of the

Directives, below.

All the Directives of the GE-115 Assembly Language are described in this section. The

Directive instructions are grouped according to similarities of assembler action as ·shown below:

DEFINITION - Instructions which direct the assembler to allocate store areas and define data:

Define Store Area D S

Define Constant DC

Define Peripheral Field DP

PROGRAM CONTROL - Instructions which direct operations of the assembler that affect the

assembled program:

Start Program

End Program

Origin Assignment

STRT

END

ORG

@ ~
0

~ ~@ ____________________ u_sE_R_'s_cu_r_oE

-139-

ASS EMBLY LIS Tl NG FORMAT - Instruction which direct operations of the assembler that affect

the format of the listing produced by ihe o$$embler during assembly of the p;og;cm:

Comment

Eject Present

Line Feed

*

EJEC

LF

The format shown in Figure B-1 in the introduction to the Primary Instructions is used also

to explain each of the Directive instructions. The conventions of notation described in the

discussion of the Primary instructions apply to the Directives as well. There is an additional

notation used in the descriptions of the definition instructions, as shown below :

~dd

(nnnn)

constant

d.escriptor

operation

The use of 11 d 11
, written in lower case indicates that a three digit duplication

factor is written wi.th a field definition.

The use of 11 n 11
, written in lower case is used for field lenght. A four digit lenght

may be specified in the DP Directive.

The use of the word 11 constant 11 written in lower case indicates that character,

hexadecimal, or address constants may be defined. The ways of writing the

constants are explained in the description for each of the instructions for defining

constants.

The use of the word 11 descriptor 11 written in lower case indicates that an octet is

defined which specifies the characteristics of a peripheral operation. The

descriptor may be written in any of the ways an immediate data item is written.

(See WRITING STATEMENTS IN THE GE-115 ASS EMBLY LANGUAGE).

It is recommended that the hexadecimal representation be used.

The use of the word 11 operation 11 written in lower case indicates that an octet is

defined specifying a type of peripheral operation. The operation may be written

in any of the ways an immediate data item is written. It is recommended that the

hexadec i ma I representation be used.

@~a~~~ --------~----------_..;;U..;;.;;SE;;.;;.;.R'...;;;.S...;;.GU,;,,;;;I~DE
-140-

Definition statements direct the assembler to allocate store area to data fields and to generate

constant values to be inc.orporated into the assembled program. Names may be associated with

data fields to permit field references in the source program. Every named data field must be

defined by a definition statement. The assembler uses the information contained in the definition

statements (name, length, ·area reservation) to translate field references and assign locations to

data and constants. Defined constants are included as data in the assembled program.

Definition statements are operative only at assembly time. At execution time they are present

only in the form of defined constants and data fields. If they are placed between executable

instructions, the system wi 11 encounter them in the course of sequential instruction execution and

will attempt to interpret data as instructions. Program results are unpredictable in such cases.

If definition statements are included between executable instructions they must be preceded by

an unconditional jump to the next instruction to be executed. It is strongly recommended that

the programmer avoid th is waste of store area and operating time by placing a 11 data and constant

fields outside the sequence ~f (i.e., before or after) executable instructions.

The Define Store Area (DS) instruction has the following characteristics:

• A field length is specified in the instruction. Duplication factors may specify that store

area is to be reserved,for 1 to 256 fields. Each field has the length specified.

• The name of the fie Id is associated with a length. The field name and length are saved

for use in translating primary instructions.

The Define Constant (DC) and the Define Peripheral Field (DP) instructions have the fol lowing

characteristics:

• A sing le fie Id may be specified; no dup I icat ion factor is used.

• The operand specification field of the source language instruction contains constant data

which is translated by the assembler into the internal configuration of the data and which

is inc I uded in the assemb1ed program.

• The name of the i; :".'id is associated with a length. The field name and length are saved for

use in translating the primary instructions.

The definition instructions differ in the way length is specified in each:'

• The Define Store Area instruct ion requires length specification; the length defined may be

from 1 to 256 octets. A duplication factor may be used.

• The Define Constant instruction requires a length specification; the length of a data

constant may be from 1 to 10 octets. No duplication factor may be specified.

• The Define Peripheral Field has an implied length which is either 2 or 6 octets. Neither

length nor duplication factor may be specified.

@ ~ 0 ~~[ID _____________________ us_ER_'s_G_u_IDE

-141-

Length is specified by an Land three decimal digits. If a duplication factor is specified it is

written before the Land is a three digit decimal number.

The format cf the store definition

The formats of the data definition instructions (DC and DP) are:

and:

OPERANDS

A L P H A (n n n n)

(fU IE: n n rs USER Is GUIDE
@~ 0 Uu~------------------------------------R-ev-.-J-u-ly_l_9-66

-142-

DEFINE STORE AREA DS

DS ddd L nnn

The assembler is directed to reserve f~om 0 to 256 fields in the store. The length of each field

may be from 1 to 256 octets.

NOTES:

• The assembler reserves the requested number of contiguous fields in the store. Each

field is given the length specified.

• The assembler advances the store location counter by (ddd) x {nnn) octets.·

• When no explicit number of fields is requested, a single field is reserved.

• When the number of fields requested is explicitly 000, the as·sembler does not alter

the store location assignment counter. No area is reserved. However, the name

and length of the field are saved for translation of field references.

• When a name is written with a DS instruction which requests store area for more than

one field, the name is associated with the first field reserved. The length associated
~-----_.._,,.,...,~,,-,.,. ___ ,.__ .. -" ,,..._-~ .. ,,,, ,~·~--,,.,.. _, .,,

with the name is. nnn.

PROGRAMMING PRACTICE:

The DS is used to name and reserve data areas in the store. Data may be generated by the

program and placed in the res.erved areas, or may be read into the areas allocated.

The DS with a duplication factor of 000 may be used to name a major field which contains

named subfields. To accomplish this, the programmer g-ives a name and a dup!ication factor.

of 000 to the major data field. The named subfields are assigned duplication factors of at

least 001. The major field name is associated with a length but does not cause store to be

reserved. The subfield definitions each cause a name and length to be associated with a

reserved store area. The total store area reserved by all subfields should be equal in length

to the length specified for the major field they constitute.

The DS with a duplication factor of 000 may be used to assign several data areas at the same

po int because no store area reservation takes place.

DS

@ ~
0

~ ~ iID ____________________ u_sE_R'_s_Gu_r_oE

-143-

DS

EXAMPLES:

1) Assigning a left octet address, a right octet address and a length to a named field.

OPERANDS

L 0 1-6--

The assembler assigns a left octet address, a Ieng th and a right octet address to the name, ALPHA.

The store location assignment counter is increased by 16 octets.

2) Use of the duplication factor to reserve store area.

P~fELWE NAME OPERANDS

32 3334_~3~3~6~~~-'-'i =-~~-'-l.-.-l-~~~~~~~~~~~~~~~~~~~~~~~~~-1
020 s BETA

1 0

1 5

The assembler assigns a left octet address, a right octet address and a length of two octets

to BETA. The duplication factor causes the store assignment counter to be increased by

050 x 002 = 1 00 octets.

-144-

USER'S GUIDE

3) Use of a duplication factor of 000 to define subfields within a field.

NAME 1 and NAME 2 are subfields of the field NAME.

The assembler assigns two addresses and a length of 16 octets to NAME but reserves no store

area.

The assembler assigns two addresses and a length of 8 octets to NAME l and reserves 8 octets

of store for the field.

The left octet address of NAME and NAME 1 are the same.

The assembler also assigns two addresses and a length of 8 octets to NAME 2, and reserves

store area.

The right octet address of NAME 2 is the same as the right octet address of NAME.

The three definition statements cause the store assignment counter to be increased by

0 + 8 + 8 = 16 octets.

DS

@(g a 0 0 lID --------------------u_sE_R_'s_cu_r_oE
-145-

DC

I

DEFINE CONSTANT DC

Character Constant

DC CL Onn 1
•

The assembler is instructed to trqnslate the specified character constapt contained within the pair

of apostrophes. If the DC instruction is named, the length (001 to o1-o characters become 1 to 10
~~~,,._...,., •. ,.,,,., • .,.,,,~r-:'7'·,1'··-'* ~~r~""'~'lr~~~.a;:~"""""""'""'·':'. 

octets) and store addresses are saved for translating symboli~ references to the constant field. 

NOTES: 

• The assembler translates the specified constant into the interna I format used by the system. 

• Each graphic character is translated into a full octet. 

• When the length specification exceeds the number of characters written in the operand 

specification, the assembler fills the field with blanks to produce a field of the specified 

I e ngt h • B la~~~ ar~_elQ.<:. .. ~!;LqLtha . .rlgJu __ oLtb.e"e.~p I ic i_t ~~~L<:!.!:11 • 
~...,.-~~'""' 

• When the length is less than the number of characters written it is a mistake (See Figure 

A-7,· GE-115 ASSEMBLER MISTAKE CODES). 

PROGRAMMING PRACTICES: 

The character constant definition may be used to prepare both numeric values which serve in 

arithmetic (dee imal) operations and alphanumeric fields for printing. 

Note: The first digit of the length must be zero; a maximum of 10 octets may 

be specified. 

@ ~ n ~ ~ ~ -------------------......:.U:.::SE:::..,R'.;..S .;:,;GU;;.:,;ID~E 
-146-



EXAMPLES : 

1) Using the DC to define a character constant. 

The assembler assigns a left octet address, a right octet address and a length of 9 octets to 

ITEM and generates for placement in the field the internal representation of the defined constant. 

As the specified length (9 octets) is greater than the explicit le~1g h (6 characters), 3 blanks will 

be inserted in the fie Id to the right of the explicit constant. 

2) Assigning a name to a defined constant longer than l 0 octets. 

OPERANDS 

L020 
10'TECHNI 
10'ASSIS 

The assembler assigns a left octet address, a right octet address and a length of 20 octets to DEPT 

and generates for placement in the field the internal representation of the two defined constants, 

reserving 20 octets of store area for the defined constants. 

3) Special case DC statement 'for use of the apostrophe. 

DC 

I 

@[E 0 0 0 [ID ____________________ u.._s ..... ER .... 'S-....G....,UI..._.DE 

-147-



DC 

DEFINE CONSTANT 

Hexadecimal Constant 

DC XLO nn 1 

The assembler is instructed to translate the specified hexadecimal characters contained within 

the pair of apostrophes. If the DC instruction is named, the length (001 to 010 digit pairs 

become 1 to 10 octets) and 
1

store addresses are saved for translating symbo I ic references to the 

constant field. 

NOTES: 

• The assembler translates the specified constant into the internal format used by the 

system. 

• When the length specified exceeds the number of digit pairs, the assembler creates 

(~II octet zeros in the left of the defined field for each pair omitted. 

• When the length specified is less than the number of digit pairs written; it is a 

mistake. (See Figure A-7, GE-115 ASSEMBLER MISTAKE CODES). 

PROGRAMMING PRACTICE 

DC 

The hexadecimal constant definition may be used to prepare translating tables or editing masks. 

(See TR, page 114 , and EDT, page l 09). Codes which cannot be read as graphic characters 

may be placed in the store as hexadecimal digit pairs. 

Note : The first digit of the length specification must be zero. A maximum of 10 octets may 

be specified. 

@ ~ o ~ ~ tID ____________________ us_ER_'s_G_ur_nE 

-148-



DC 

EXAMPLE: 

Use of the DC Hexadecimal Constant to define on editing mask. 

The assembler is directed to assign addresses and a length of 9 octets to MASK, and to generate 

and store in the 9 reserved octets the internal representation of the defined hexadec ima I constant. 

The special characters of the editing mask do not have graphic representations : therefore they must 

be defined as hexadecimal constants. 

@~ 
0 
~ ~ ~ ____________________ us_ER_is_G_ur_nE 

-149-



DC 

I 

DEFINE CONSTANT DC 

Address Constant 

DC ALOOn (ALPHA) 

The assembler is instructed to translate the specified address reference contained within the pair of 

parentheses. If the DC instruction is named, the length (001 or 002 octets) and location of the 

constant in the store are saved for translating references to the constant field. 

NOTES: 

• Translation of an address constant depends upon the way the address is specified. The 

address specified may be written in any of the formats used for operand addresses. 

A symbo I ic n~~fieJc!.,..QJ" i!!J.!!J:!S:J:}o!l,.J,~-t!.S!~~2s, th~ l~ft octet address of the fie Id. 

Any increment or decrement is computed from that address. 

An absolute address (never given an increment or decrement), written as four decimal digits, 

is translated as the internal equivalent of the number. 

• When the program is loaded, the translated address is placed in the specified number of 

octets. Addresses require two octets. When only one octet is specified, the rightmost of 

the pair generated is used in the DC field. 

PROGRAMMING PRACTICES: 

The address constant may be used to set up a value to reset an address modifie"d during program 

execution. 

Note: The first two digits of the length specification must be zero ; a maximum of 2 octets 

may be ~pecified. 

@[E CJ 0 0 [ID ___________________ ___...us..._ER .... ' s...,.G........,UI-.--DE 

-150-



EXAMPLES: 

l) BET A is defined as an address constant of two octets: 

The assembler assigns a field of two octets to the name BET A and stores in the field the interna I 

representation of the defined address constant. 

INTERNAL 
REPRESENTATION 

HEXADECIMAL 
EQUIVALENT 

BETA 

!oooo 0001 \1109 ,ooool 
0 c 0 

2) BET A is defined as an address constant of one octet: 

OPERANDS 

ALPHA+ 

The assembler assigns a field of one octet to the name BETA and stores in the field the internal 

representation of the low-order octet of the generated address. 

ALPHA has been defined as a 4 octet field, stored in locations 0510-0513. 

INTERNAL 
REPRESENTATION 

HEXADECIMAL 
EQUIVALENT 

BETA 

·11111 11111 
F F 

DC 

@(E 
0 
~~[ID _____________________ u_s_ER_'s_G_ur_nE 

-151-



DEFINE PERIPHERAL INSTRUCTION 

Data Transfer 

DELTA DP descriptor, operation, ALPHA (nnnn) 

The assembler is directed to set up a 6-octet field for reference by a do.a transfer Call 

Peripheral (PER) instruction. 

NOTES: 

• The first octet specifies : 

Channel 

Direction of transfer-input or output 

Data Format - packed or unpacked 

Time sharing status - preset or execute 

Operation mode - immediate or wait 

Data Reference direction - right to left or left to right 

• The second octet specifies the operation 

• The third and fourth octets specify the length of the data field which participates in 

the transfer operation. 

• The fifth and sixth octets specify the location of the first octet in the store which 

participates in the data transfer operation. 

PROGRAMMING PRACTICES : 

The hexadecimal configuration of the first octet is given in Figure B-7 of the second octet in 

Figure B-6 GAny of the forms for specifying an immediate operand may be used, but it is recom

mended that the hexadecimal configurations shown in the table be given in the standard hexa

dec ima I specification format. 

DP 

In ALPHA field reference indicates the location of the first octet that is to receive data or of the 

location of the first octet to be transmitted. ALPHA may be written in any of the standard address 

reference forms. If a length is specified, four digits are used to write field length. 

@3 [E 0 0 0 lID -------------------~US~ER~'~S ~GU~IDE 
-152-



EXAMPLE : 

The assembler is instructed to set up a data field for a card read 

operation. A card is to be read into the field ALPHA. Assume ALPHA 

to be located at store location 0830. 

OPERANDS 

O' X'40' ALPHA(0064 

The assembler assigns a field of six octets to the name DELTA and stores in the field the internal 

representation of the defined peripheral constant. 

INTERNAL 
REPRESENTATION 

HEXADECIMAL 
EQUIVALENT 

Jooo\ooo(f)1oopoo0J000~0000J01oqoooopooqoo1ajoo1\111ol 

1 0 4 0 0 0 4 0 0 3 \.. )\ ___ __ 
------......,..-------- "' 

3 E 
) 

Length= 64 Location Alpha 

DP 

I 

@fC: 0 n n ~ --------------------u_s_ER_.1s....,G...._UI_DE 
~ ~ U U ~ Rev. July 1966 

-153-



d· 

DP 

DEFINE PERIPHERAL INSTRUCTION 

Periphera I Status Test 

DELTA DP descriptor , operation 

The assembler is directed to set up a two octet field for reference by a peripheral unit control 

operation. (See PER, page 135) 

NOTES : 

• The first octet specifies the mode operation and the channel to be used o 

• The second octet specifies the condition to be tested. 

PROGRAMMING PRACTICES : 

DP 

The hexadecimal configuration for the first octet is given in Figure B-8 , and the hexadecimal 

configuration for the second octet is given in Figure B-9 o Any of the forms for specifying an 

immediate operand may be used, but it is recommended that the hexadecimal configurations shown 

in the table be given in the standard hexadecimal specification format. 

EXAMPLE 

The assembler is instructed to set up for an instruction to test end of a printer page. 

INTERNAL 
REPRESENTATION 

HEXADECIMAL 
EQUIVALENT 

OPERANDS 

.J._ ____ _. _...__ _ _.J. ___ +~ ~_J.._ 

DELTA 

~ 100 I 0000 lo 00~-10 ~] 

c 0 0 5 

The assembler assigns a field of two octets to the name DELTA and stores in the field the internal 

representation of the defined peripheral constant. 

@ ~ 0 ~ ~@ --------------------...:;U;.:;;,.:SI~rn_,:;;.'S~G~UI-.,:;::DE 
-154-



DEFINE PERIPHERAL INSTRUCTION 

Peripheral Unit Control 

DELTA DP descriptor, operation 

The assembler·is directed to set up a two octet field for reference by a peripheral unit control 

operation o (See PER, page 135) 

NOTES: 

• The first octet specifies the mode of operation and the channel to be used o 

• The second octet specifies the action to be taken. 

PROGRAMMING PRACTICES : 

The hexadecimal configuration for the first octet is given in Figure B-10, and the hexadecimal 

configuration for the second octet is given in Figure B-11. Any of the forms for specifying an 

immediate operand may be used, but it is recommended that the hexadecimal configurations 

shown in the table be given in the standard hexadecimal specification format. 

EXAMPLE : 

The assembler is instructed to set up a field for an instruction to double space on a print page o 

OPERANDS 

x " 5 9, 

The assembler assigns a field of two octets to the name DELTA and stores in the field the internal 

representation of the defined periphera I constant• 

INTERNAL 
REPRESENTATION 

HEXADECIMAL 
EQUIVALENT 

DELTA 

j1000
1
0001jo101

1
1001! 

8 5 9 

The assembler assigns a field of two octets to the name DEL TA and stores in the field the internal 

representation of the defined peripheral constant. 

DP 

DP 

@ ~ [J ~ ~ ~ _____________________ us_ER_'s_G_U_IDE 

-155-



immil TH E Ass EM BL ER PR o G f( AM co N TR o L I N s TR u c Tl o N s Jli111m1rnmmmm1~rnmm1m11m1mmmmm~1mmmmmmm111mmmm1mmmmm11m1111111m1111 

The GE-115 Assembler accepts directives for the placement of the assembled program and 

for the specification of the first instruction to be executed. The assembler program control 

statements make it possible to specify some of the location assignments for the assembled 

programs as wel I. 

Assembler program control instructions are processed as the source program is assembled and 

affect the assembled program. One of the control Directive operations, the Start Program 

Assembly (STRT) instruction, includes the specification of the peripheral controller to be used 

by the assembler in preparing output cards. 

The assembler program control instructions have the same general formot as the other 

Directive instructions and the Primary instructions. The name field is not used because the 

Directive instructions are operative only at assembly time and. may not be cross-referenced by 

assembled program instructions at execution time. 

One of the formats of the control instructions, shown below, introduces a new notation in the 

operand fie Id as follows: 

cc 

used to indicate that a one-digit numeric code specifying the size of the store 

must be written, 

used to indicate that a numeric two-dig it specification for an input/ output 

control I er must be written. 

-156-



I STRT I 

START PROGRAM ASSEMBLY STRT 

STRT dddd,s,cc 

The assembler is directed to start assembling the program at the store location specified by dddd. 

The program is assembled for a store of the size. indicated bys. The cc value specifies the 

peripheral controller used by the assembler to punch cards produced during assembly. 

NOTES: 

• The first octet in the store used by the assembler for assigning locations to the program is 

the octet specified by the value of dddd. 

• The store size available for the assembled program is assumed to be that indicated by the 

code value s. 

• The punch instruction used by the assembler is executed through controller cc. 

PROGRAMMING PRACTICES: 

The STRT card must be the first card in the program being assembled. An error halt occurs when 

any other card is read as the first card of a source program. 

The address for program assignment must be expressed in four decimal digits and may not specify 

a value below the limit of the store area required by the system loader and subroutines, as 

shown below: 

SYSTEM LOADER LIMIT 

Punched 
Cards 0448 
Only 

Paper Tape 0512 

@~aQQ~-----------------------------------------u~sE_R'_s_Gu_rn_E 
-157-



STRT 

The value of s indicates a store size by a code. The values for the store sizes used are shown 

below: 

STORE SIZE s 

4096 l 

8192 2 

The connectors that may be used for punch attachment and the code values are shown below: 

CONNECTOR cc 

3 00 

4 64 

EXAMPLE: 

The assembler is directed to assemble a program for a store size of 8192 octets. Assembly 

begins at location 0448. The punch unit is specified as attached to connector 3. 

@3 ~ 0 0 0 lID --------------------.-,;US....,ER-....'-..S -..GU~ID;;mE 
-158-



END 

END OF PROGRAM END 

END SIGMA 

The assembler is given the indication that the last card of the source program has been read. 

When the assembled program is loaded at execution time, the END card causes the instruction 

specified by SIGMA to be the first instruction executed. 

NOTES: 

• The END card must be present. When no END card is present, the assembler attempts to 

read cards seeking the END card. An end-of-file condition occurs on the card reader. 

• SIGMA may be a symbolic or an actual address. 

PROGRAMMING PRACTICES: 

The END card terminates source program reading by the assembler, wherever it appears. 

The SIGMA field operand specification must refer to the first instruction to be executed in the 

assembled program. 

The instruction referenced need not be physically the first executable instruction in the 

program. It is logically the first instruction, i.e., the first operation to be performed. 

EXAMPLE: 

The instruction named BEGIN is the first instruction to be executed in the assembled program. 

@j ~ c 0 0 ~ ___________________ ___,us--.ER-...'-..s ~Gu __ ID~E 

-159-



ORG 

I 

I 

ORIGIN ASSIGNMENT ORG 

ORG dddd 

* +nnn 

* -nnn 

R 

The assembler' is directed to use the value specified in the operand field of the ORG as a store 

assignment value. 

NOTES: 

• The assembler program maintains a location counter for store assignment. Store 

addresses are assigned sequentia I ly. When the 0 RG is encountered, the assembler 

resets the store assignment counter to the value specified by the ORG instruction. 

• R as an operand ca uses the assembler to reset the store assignment counter to the next 

higher octet location which is a multiple of 256 octets. When the R operand is 

encountered by the assembler at a point at which the store assignment counter contains 

a value that is a multiple of 256 octets, no resetting takes place. 

• The portion of the program following the ORG is.assigned store locations sequentially 

from the specified octet unless another 0 RG is encountered. 

PROGRAMMING PRACTICES: 

An ORG with an absolute address operand may be used to define data fields at desired points 

in the store. 

The ORG with the operand R is used to set up fields for use with the Transla~e (TR} instruction 

and for input/output on channel 2. 

The ORG with the asterisk and an increment or decrement may ~e used to 

modify the store assignment counter with respect to its current value. 

The absolute address assignment allows for defining different data areas at the same fixed store 

address. Different names can be used with Define Store Area instructions at the same acfual 

address. However, the use of absolute values is not recommended. The DS instruction with a 

z.ero duplication factor can be used without the ORG instruction to effect the assignment of 

several fields to the same area (See DS, page 143). 

@ ~ D ~~!ID -------------------~US~ER~'S:.:,_G~U~IDE 
Rev. July 1966 -160-



EXAMPLES: 

1) The assembler is directed to reset the value in the store assignment counter to 0512. 

OPERANDS 

2 

I 5 

2 0 ·. 
2 5 

2) The assembler is directed to reset the value in the store assignment counter to the next 

higher multiple of 256. 

3) The assembler is directed to advance the value in the store ,assignment counter by 126. 

-161-

ORG 

USER I s GUIDE 



The GE-115 Assembler allows for control of the format of the program listing. The listing 

format statements provide a means for the programmer to specify both spacing on c:t page and the 

points at which a new page shou Id beg in. Text commentary is accepted for insertion into the 

listing of the program. 

The assembly listing format instructions are operative only at the time the listing is printed. 

They allow for improved readability through formatting. Comments shou Id be freely used as 

aids to documentation. 

Assembly listing format instructions are written in the same genera I format as the other directive 

instructions and the primary instructions. The use of a name fie Id in an assembly listing format 

instruction is meaningless because the instructions are not present in the translated program at 

execution time. 

The format of the assembly listing format instructions is shown be low 

@~ o ~ ~ @-------------------~U~SE~R'.:i!..S ~GU~ID~E 
-162-



COMMENT * 

Text 

The asterisk ( *) directs the assembler to print the text in the operand specification field. 

NOTE: 

• The assembler inserts the text into the program listing. The card sequence determines the 

position of the comment. The assembled program is not affected by the comment instruction. 

PROGRAMMING PRACTICES : 

Column 46 must be blank. Any comment used must not begin to the left of column 47. 

Comments shou Id be used to head program sections and to describe the process performed by ~ach. 

The text field of the Comment instruction may contain any of the print characters. B Ian ks may 

be used to imp rove readab i Ii ty. 

The comment card may be used to continue a comment which begins in the operand field of an 

instruction. This should be done to avoid the use of cryptic comments on instructions. Comments 

are an important form of documentation. 

EXAMPLE : 

The comments will be printed within the assembly listing. 

OPERANDS 

MAY BE NSERTEO AT 

PROGRAM 

* 

@[E 0 ~~[ID ----------------------U--SE_...R'.-..S .....,GU ..... ID--.E 

-163-



EJECT PRESENT PAGE 

EJEC 

The assembler is directed to advance the paper on which the listing is being printed'. An 

advance to the top of the next page is requested. 

NOTE: 

EJEC 

• The present print page is advanced. Printing continues at the top of the next page. 

PROGRAMMING PRACTICE: 

The EJEC is used to improve the readability and format of the assembly listing. 

Logically separate routines should begin on new page. 

EXAMPLE: 

The assembler listing continues at the top of the following page. 

@j ~ 0 0 0 ~ --------------------~US~ER~'~S ~GU~ID~E 
-164-



LINE FEED 

LF s 
D 

l 

2 

7 

The assembler is directed to advance the paper on which the listing is being printed. The 

operand symbol specifies the spacing requested. 

NOTES : 

• The next lir.e printed is spaced according to the LF request. 

• Standard spacing continues after that line is printed. 

PROGRAMMING PRACTICES : 

The LF is used to improve listing readability. 

Spacing that may be requested is shown below 

EXAMPLE : 

S Skip one line 

D Skip two lines 

Spacing as indicated by 
channel l control tape punch 

2 Spacing as indicated by 
channel 2 control tape punch 

7 Spacing as indicated by 
channel 7 control tape punch 

The assembler listing page is advanced two lines before the comment is printed. 

L F 

LF 

@ ~ 
0 

~ ~@ ____________________ us_ER_' s_c __ ur_DE 

-165-





SECTION C 

GE-115 

ARITHMETIC SUBROUTINES 

@~o~~@---------USE_R'S_GUIDE 

-16 7-





A subroutine is an independent sequence of programmed instructions which performs a standard 

information processing task for a main program. A subroutine program is designed to function in a 

manner that is independent of the program which utilizes the process. Data is supplied according 

to the subroutine requirements. The results of the subroutine operation are placed in a pre-defined 

area for use by the main program. A subroutine may be utilized repeatedly. All necessary 

resetting of store areas used is done within the subroutine itself. 

A subroutine must provide an entry point for use by the main program, referred to as the calling 

program. This allows the calling program to jump to the subroutine. A subroutine which performs 

a number of related functions, such as addition and subtraction, may have more than one entry 

point to permit direct reference to each of the functions. 

There must be, as well, a mechanism by which control can be returned to the calling program. In 

the GE-115 , a single instruction is used to effect entry and to prepare for return. The Jump 

and Return (JRT) instruction makes the entry to the subroutine and places the location of the next 

sequential operation after the JRT instruction in LOC (store octets 0254 - 0255). 

The flexibility of the GE-115 assembler allows the programmer to use a meaningful mnemonic 

in the place of the JRT when writing subroutine calls. The mnemonic SUB is used. 

Each subroutine uses the contents of LOC to return to the operation following the entry. 

Data to be acted upon by the subroutines is placed in standard pre-defined areas in the store. The 

locations used are described in the individual subroutine descriptions. 

The general format of the entry to a subroutine is: 

SIGMA is the name of the subroutine being used. 

@ ~ 0 ~ ~ ~ ____________________ us_ER_'s_G_UI_DE 

-169-



Each of the myriad applications that may make use of information processing systems has its own set 

of standard procedures. Any standard procedure may be programmed as a subroutine. One area of 

general application, which may be included in more specific tasks, is that of arithmetic calculation. 

This section discusses four arithmetic subroutines prepared for use with the GE-115 system. 

The arithmetic ·subroutines described in this section process decimal data. Data is treated in 

one 'of two ways : as unsigned values or as signed numeric quantities. 

Data wh.ich is treated as signed data n1ust be placed in the input area with an associated sign. It 

should be noted that signs used by the subro~tines do not correspond to the internal configurations 

for the graphic characters+ and-. Signs are recognized in the subroutines according to the 

configuration of the left quartet of the applicable sign octet. The negative sign is an A (1010); 

the positive sign is a 4 (0100). The manner in which the signs are treated is described in the 

discussions of the individual subroutines. 

Subroutines make reference to pre-defined areas in which data is expected to be placed. It is 

recommended that the areas used by a subroutine ·be defined and given meaningful names by' the 

calling program. This can be accomplished by using the DS instruction to associate names with 

the locations used by the subroutines. Any fields used, of course, must be defined in the octets 

used by the subroutines. The ORG Directive instruction with an absolute address can be used to 

place the data areas in the store octets referenced by the subroutines. 

This might be done for the addition subroutine , YADS, for example by means of the sequence of 

instructions shown below: 

PAGE LINE NAME pPERATION OPERANDS 
N' N' 

132 33 ~- 3_§36 40 41 ~2 45 46147 7~ 

06 0 5 <· 0 R G !":-· 102 0 4 
1 0 ADND ::: D S ·:- 0 0 1 L 0 1 6 ADDEND 
I 5 :;. 0 R G :-: 0 2 3 3 
2 0 ADS IN ::; D S -:· 0 0 1 L Q_ 0 1 s I GN OF ADDEND 
2 5 AUG SN -:· D.S :-: 0 0 1 L 0 0 1 s I GN 0 F ·AUGEND 
3 0 :=:·o R G ·:· 0 2 3 6 
3 5 AUG _liD :8 D S ::: 0 0 1 L 0 1 6 AUGE ND 
4 0 ::: * ::: THE SUM R E P LACES THE ADDEND 
4 5 .;:: 0 R G ::: 0 2 0 4 
5 0 SUM :·:· D S ·:· 0 0 1 L 0 1 6 
5 5 :;:; 0 R G ::: 0 2 3 3 

:::10.0 1 
--L-t--

6 0 SUMSN ·:· D S L 0 0 1 

~- -~~ ~ ~ 

(ffi ~ [J ~ ~ ~ ___________________ __.....us.;;,;,ER-.,;' S....;G....,UI...--DE 

-170-



A similar sequence could be used to position data for use with any of the other subroutines. Severa I 

subroutines use the same areas for input and output. Therefore, it might be convenient to use 

common names such as TERM 1, TERM 2, and RES LT, to avoid ind iv id ua I definitions I ike SUM, 

D IFF, PROD, etc., for the same area. 

It should be noted that the use of an absolute origin within the system software area causes the 

assembler to print an L on the assembler listing. The mistake indication does not prevent assembly. 

@ ~ 
0 
~ ~ tID ____________________ u_sE_R_'s_c_ur_DE 

-171-



ADD DECIMAL, SIGNED YADS 

SUB YADS 

YADS forms the signed sum of two signed quantities. Prior to the subroutine call, the addend must 

be placed in store octets 0204 through 0219 (16 octets) and the augend must be placed in store 

octets 0236 through 0251 (16 octets). The sign of the addend must be in octet 0233; the sign of 

the augend must be in octet 0234. The sum replaces the addend. 

INDICATORS AFFECTED 

UF/OF ZE/NZ 

0 The sum is zero. 

The sum is non-zero. 

NOTES: 

• The addend, augend and sum are each assumed to be 16 octets in length. 

• YADS may use either the AD or the SD operation to generate the sum. YADS and YSDS 

are entries to a sing le subroutine. 

• Signs are examined prior to the operation. The right quartets of the sign octets are made 

zero before the signs are checked. Each sign octet is then checked against a value of AO 

(the negative sign configuration). If a sign is not AO, it is assumed positive. The 

subroutine sets any sign octet that does not contain AO to a value of 40 (the positive sign 

configuration). 

• The status of the UF/OF indicator depends on the signs of the terms and their relative 

magnitudes and does not necessarily reflect the result of the addition. 

If the terms have the same sign, UF/OF = 0 indicates no overflow, and _UF/OF = l 

indicates overflow. 

If the terms have different signs, UF /OF = 0 indicates that the augend is greater in 

absolute value than the addend, and UF/OF = l indicates that the augend is smaller than 

or equal to the addend in absolute value. 

• The addend is always replaced by the sum. If the signs of the terms are different and the 

augend is greater in absolute value than· the addend, the sum is generated in the augend 

field and moved to the addend field prior to return. 

• Quantities are assumed to be decimal. No check is made of the right quartets of the terms 

to be added. 

@ ~ 
0 
~ ~@ ______________ 

1 

______ u_sE_R'.._s ....,GU._.ID ...... E 

-172-



PROGRAMMING PRACTICE: 

It is recommended that standard, named fields be defined in the manner described in the introduction 

to this section. An alternate method for setting up the quantities for processing by the subroutine is 

shown below: 

The order of the move operations shown above is immaterial. The length of the moves is shown as 

the maximum field length to ensure that right quartet zeros are inserted in the left of the addend 

and augend fields whenever the terms used do not occupy the full field allowed • .The subroutine 

always treats a pair of 16 octet fields. 

@~o~~~-------------------------------------------u_sE_R_'s_G_UI_DE 
-17 3-



PROGRAMMING PRACTICE: 

It is recommended that standard, named fields be defined in the manner described in the introduction 

to th is section. An alternate method for setting up the quantities for processing by the subroutine is 

shown below: 

OPERANDS 

1 6 ) ADDND nn MOVE 
( 1 6 ) AUGN (nn TERMS 

SADND SIGN 
SAUG 

The order of the move operations shown above is immateria I. The length of the moves is shown as 

the maximum field length to ensure that right quartet zeros are inserted in the left of the addend 

and augend fields whenever the terms used do not occupy the full field allowed. The subroutine 

always treats a pair of 16 octet fields. 

@~o~~~-----------------------------------------u_sE_R_'s_G_ur_nE 
-174-



• The subtrahend is always replaced by the difference. If the signs are the same and the 

minuend is greater than the subtrahend in absolute value, the difference is generated in the 

minuend field and moved to the subtrahend field. 

• Quantities are assumed to be decimal in the right quartets. No check is made of the right 

quartets of the fields which are processed. 

PROGRAMMING PRACTICE: 

It is recommended that standard, named fields be defined in the manner described in the 

intToduction to this section. An alternate method for setting up the quantities for processing by 

the subroutine is shown below: 

OPERANDS 
74 

1 6 ' S U B T R n n 
16 1MINUN 
00 )1SSUB OF SUBT 
00 )1SMIN OF Ml NU 

The order of the move operations shown above is immaterial. The length of the moves is shown as 

the maximum field length to ensure that right quartet zeros are inserted in the left of the subtrahend 

and minuend fields whenever the terms used do not occupy the full field allowed. The subroutine 

always treats a pair of 16 octet fields. 

@j ffi> ~ ~ ~ ____________________ u_sE_R_'s_G_UI_DE 

-17 5-



MULTIPLICATION,. DECIMAL, UNSIGNED, FAST YMULF 

SUB YMULF 

YMULF forms the unsigned product of two unsigned quantities. Prior to the subroutine call, the 

multiplier must be placed in store octets 0204 through 0219 (16 octets), and the multiplicand in 

store octets 0238 through 0251 (14 octets). A fie Id of fewer than 16 octets may be specified for 

the multiplier. An asterisk inserted to the left of the most significant digit in the multiplier field 

acts as a field delimiter. The product is formed in store octets 0205 through 0234 (30 octets). 

,·~ D!C1--; f ORS AFFECTED 

UF/OF 

NOTES : 

ZE/NZ 

0 Always set 

• The multiplier is assumed to be 16 octets in length , unless an asterisk is present in the 

multiplier field. All octets to the right of the astedsk are treated as port of the multiplier 

fie Id. 

• The multiplicand is assumed to be 14 octets in length. A zero right quartet must be placed 

in the octet to the left, store location 0237. 

• The product is placed partially in the octets which contained the multiplier; the multiplicand 

is unaffected by the subroutine operation. 

• Multiplication is performed by use of the AD operation. 

• The UF/OF and ZE/NZ indicators do not reflect the result of the operation. 

• The terms which enter into the multiplication are assumed to be decimal in the right quartet. 

No check is made. 

PROGRAMMING PRACTICES: 

It is recommended that standard, named fie Ids be defined in the manner described in the introduction 

to this section. An alternate method for setting up the quantities for processing by the subroutine is 

shown be low : 

@ ~ 
0 
~~[ID ____________________ us_ER_'s_G_ur_DE 

-176-



OPERANDS 

,MUPLR(nn) MOVE 
,MUCND( 14) TEAMS ANO 

nn PLACE ASTERISK 
CALL MULTI PLY 

The length of the fields should be given as 16 for the multiplier, when no asterisk is used, as 

we II, and 15 for the multiplicand to ensure that high order left quartet zeros are inserted. The 

subroutine treats a fie Id of 16 octets for the multiplier, unless the asterisk is present, and a 14 

octet multiplicand field. The high order zero quartet in the 15 octet multiplicand field is assumed 

zero. 

@~a 0 0 [ID --------------------U-SE_R_'S_G_UI_DE 

-177-



DIVISION, DECrMAL, UNSIGNED, FAST YDIVF 

SUB YDIVF 

YDIVF forms the unsigned quotient of two unsigned quantities. Prior to the subroutine call, the 

dividend must be placed in store octets 0204 through 0219 (16 octets) and the divisor must be 

placed in store octets 0238through 0251 (14 octets). A field of fewer than 16 octets may be 

specified for the dividend. An asterisk inserted to the left of the most significant digit in the 

dividend field acts as a field delimiter. The quotient is formed in store octets 0219 thr~ugh 0234 

(16 octets). The remainder is left in store octets 0238 through 0251 (14 octets). 

INDICATORS AFFECTED 

UF/OF ZE/NZ 

NOTES: 

0 

0 

0 The quotient is zero. 

The quotient is non-zero. 

• The dividend is assumed to be 16 octets in length, unless an asterisk is present in the 

dividend field. All octets to the right of the asterisk are treated as part of the dividend 

field. 

• The divisor is assumed to be 14 octets in length. A zero right quartet must be placed in the 

octet to the left of the most significant digit in the divisor, store location 0237. 

• The quotient is placed partially in the octets which contained the dividend; the divisor is 

replaced by the remainder. 

• Division is performed by means of the SD operation. 

• The UF /OF indicator a I ways con ta ins a zero at the end of the subroutine operation. 

• A 0 in the ZE/N Z indicator at the exit from the subroutine indicates that the quotient is 

zero; a l in the ZE/NZ indicator at the exit from the subroutine indicates that the quotient 

is non-zero. 

• The terms which enter into the division are assumed to be decimal in the right quartet. No 

check is made. 

• Division by zero causes an endless series of subtractions. No check is made of the divisor 

before the subtraction is attempted. 

@ ~ o 0 0 ~ -------------------~US~ER~',:;:,..S ~GU~ID~E 
-178-



PROGRAMMING PRACTICES: 

It is recommended that standard, named fields be defined in the manner described in the 

introduction to this section. An alternate method for setting up the quantities for.processing by 

the subroutine is shown below: 

0 PER AN 0 S 

' 0 I V 0 ( n n ) 
,OIVR(14) 

The div id end field i:. a.ss-u"1ed to be fewer than 16 octets in length. The length of the move is 

written as 16 octets to ensure that a. -high order right quartet zero is inserted. The divisor, 14 

digits in length, is moved into o 1 5-octet field to place a high order right quartet zero. No 

asterisk is used when the dividend occupies the full field. 

A check for a zero divisor may be performed by means of a conditional jump following the MVQ 

instruction used to position the divisor in the subroutine area. 

@[E 0 ~ ~ ~ _____________________ us_ER_'s_G_UI_DE 

-179-





SECTION D 

APPENDICES 

@~o~ ~[ID---------USE_R'S _GUIDE 

-181-





APPENDIX A 

@~a 0 o~ ---------------U-SER_'S_GU_IDE 

-183-



Figure 1 : TABLE OF CARD AND PRINTER CHARACTER REPRESENTATIONS IN THE GE-115 

INFORMATION PROCESSING SYSTEM 

CARD 
BINARY CODE PRINTER 

HEXADECIMAL BINARY 
CODE CHARACTER ORDER 

0 01000000 0 40 1 

1 01000001 l 4 1 2 

2 0 1 0 0 0 0 1 0 2 4 2 3 

3 01000011 3 4 3 4 

4 0 1 0 0 0 1 0 0 4 44 5 

5 0 1 0 0 0 l 0 1 5 4 5 6 

6 01000110 6 46 7 

7 01000111 7 4 7 8 

8 0 1 0 0 1 0 0 0 8 4 8 9 

9 0 1 0 0 1 0 0 1 9 49 10 

2-8 0 1 0 0 1 0 1 0 [ 4A 11 

3-8 0 l 0 0 l 0 l 1 # 4 B 12 

·4-8 01001100 e 4C 13 

5-8 0 l 0 0 1 1 0 1 : (colon) 4 D 14 

6-8 01001110 > 4 E 15 

7-8 01001111 ? 4 F 16 

0 1 0 l 0 0 0 0 1) or - 5 0 17 

12-1 0 l 0 1 0 0 0 1 A 5 l 18 

12-2 0 l 0 1 0 0 1 0 B 5 2 19 

12-3 01010011 c 5. 3 20 

12-4 0 l 0 l 0 l 0 0 D 5 4 21 

12-5 0 1 0 1 0 1 0 1 E 5 5 22 

12-6 0 1 0 l 0 1 l 0 F 5 6 23 

12-7 0 1 0 1 0 1 1 1 G 5 7 24 

12-8 01011000 H 5 8 25 

12-9 01011001 I 59 26 

12 01011010 & 5A 27 

12-3-8 01011011 • (period) 5 B 28 

12-4-8 0 l 0 l 1 l 0 0 ] 5C 29 

12-5-8 01011101 ( 5 D 30 

12-6-8 0 l 0 l 1 1 l 0 < 5 E 31 
-

12-7-8 01011111 "' 5 F 32 

@~a~~~--------------------------------------------------U-SE_R'_S_GU_IDE 
-184-



Figure l : TABLE OF CARD AND PRINTER CHARACTER REPRESENTATIONS IN THE GE-115 

INFORMATION PROCESSING SYSTEM 

CARD 
BINARY CODE 

PRINTER 
HEXADECIMAL BINARY 

CODE CHARACTER ORDER 

11-0 l 0 l 0 0 0 0 0 t AO 33 

11-1 l 0 l 0 0 0 0 l J Al 34 

11-2 l 0 l 0 0 0 l 0 K A 2 35 

11-3 l 0 l 0 0 0 l l L A3 36 

11-4 l 0 l 0 0 l 0 0 M A4 37 

11-5 l 0 l 0 0 l 0 l N A5 38 

11-6 l 0 l 0 0 l l 0 0 A6 39 

11-7 l 0 l 0 0 l l l p A 7 40 

11-8 l 0 l 0 l 0 0 0 Q AB 41 

11-9 l 0 l 0 l 0 0 l R A9 42 

11 l 0 l 0 l 0 l 0 -(w in~s or) AA 43 
yp en 

11-3-8 l 0 l 0 l 0 l l $ A B 44 

11-4-8 1 0 l 0 l 100 * AC 45 

11-5-8 l 0 l 0 1 l 0 1 ) AD 46 

11-6-8 l 0 l 0 l l l 0 ; A E 47 

11-7-8 1 0 l 0 1 l l 1 1 (apostrophe) A F 48 

12-0 l 0 l l 0 0 0 0 + B 0 49 

0-1 l 0 1 l 0 0 0 l I B l 50 

0-2 1 0 l l 0 0 l 0 s B 2 51 

0-3 1 0 l l 0 0 l l T B 3 52 

0-4 l 0 l 1 0 1 o.o u B 4 53 

0-5 1 0 l 1 0 1 0 1 v B 5 54 

0-6 l 0 l l 0 l l 0 w B 6 55 

0-7 l 0 l l 0 l l 1 x B 7 56 

0-8 l 0 l 1 1000 y B 8 57 

0-9 l 0 l l l 0 0 l z B 9 58 

0-2-8 l 0 l 1 1 0 l 0 - B A 59 

0-3-8 l 0 l l l 0 l 1 (comma) B B 60 

0-4-8 l 0 l l l 100 % B c 61 

0-5-8 l 0 l l 1 l 0 l = B D 62 

0-6-8 1 0 l l l l l 0 II B E 63 

0-7-8 l 0 l l l l l l t B F 64 

@~CJ~~@ ____________________ us_ER_'_s _Gu_IDE 

-185-



Figure 2 : TABLE 0 F 

HEXADECIMAL 
REPRESENTATION 

Operation 
Code 

02 

l 
07 
OA 
41 

• 43 

i 
53 

92 
95 
9E 
D2 
D4 
D5 
06 
D7 
D8 
D9 
DA 
DB 
DC 
DE 
F8 
F9 
FA 
FB 
FE 
FF 

0 peration 
Complement 

10 
20 
80 
EO 
00 
00 

Ff 
00 
10 
20 
30 
40 
50 
60 
70 
80 
90 
AO 
BO 
co 
DO 
EO 
FO 
40 
80 

octet 

+. unit 
one length 

j 
two rths 

GE-115 OPERATIONS BY HEXADECIMAL REPRESENTATION 

MNEMONIC 
EXPRESSION 

*ENS 
*INS 
*LON 
* LOFF 
* NOP2 
* HLT 
* JRT 
*SUB 
* NOJ 
*JG 
* J E 
* JGE 

* JL 
* JNE 

>- JC 

* JLE j 
*JU 

JS2 
JSl 
MVI 
CMI 
PER 
MVC 
NC 
CMC 
oc 
xc 
UPK 
SR 
PK 
SL 
TR 
EDT 
MVQ 
CMQ 
AD 
SD 
AB 
SB 

SYSTEM 
ACTION 

Enabl~ Single Stop 
Inhibit Single Stop 
T urn A I e rt L i g ht 0 n 
T urn A I e rt Li g ht 0 ff 
No Operation 
Halt System Operation 
Jump and Return 
Subroutine Ca 11 
No Jump 
Jump if Greater 
Jump if Equa I 
Jump if Greater or Equal 

>- Jump on 
· Condition 

Jump if Less 
Jump if Not Equal 
Jump if Less or Equal J 
Jump Uncond itiona I 
Jump on Switch 2 
Jump on Switch 1 
Move Immediate to Store 
Compare Immediate to Store 
Ca II Periphera I 
Move Complete Octets 
And on Complete Octets 
Compare Complete Octets 
Or on Com.plete Octets 
Exclusive Or on Complete Octets 
Unpack Octets into Right Quartets 
Search to the Right 
Pack Right Quar.tets into Octets 
Search to the Left 
Translate 
Edit 
Move Right Quartets 
Compare Right Quartets 
Add Decimal 
Subtract Decimal 
Add Binary 
Subtract Binary 

*Indicates a mnemonic expression which is translated into the operation code and the 
operation complement. 

@ ~ c Il O@ _____________________ us_ER_'s_G_u_IDE 

-186-



Figure 3: TABLE OF GE-115 OPERATIONS BY MNEMONIC EXPRESSION 

MNEMONIC 
ACTION 

HEXADECIMAL 
Page 

EXPRESSION RE PRES EN TA TION* 

AB Add Binary FE 59 
AD Add Decimal FA 51 
CMC Compare Complete Octets D5 80 
CMI Compare Immediate to Store 95 78 
CMQ Compare Right Quartets F9 83 
ENS Enable Sin~le Stop 02 10 123 
EDT Edit DE 109 
HLT Ha It System Operation QA 00 118 
INS Inhibit Single Stop 02 20 122 
JC Jump on Condition 43 97 
JE Jump if Equal 20 101 
JG Jump if Greater 10 101 
JGE Jump if Greater or Equal 30 101 
JL Jump if Less co 101 
JLE Jump if Less or Equal EO 101 
JNE Jump if Not Equal DO 101 
JRT Jump and Return 41 FO 107 
JSl Jump on Switch 1 53 80 105 
JS2 Jump on Switch 2 40 105 
JU Jump Unconditional 43 FO 102 
LOFF Turn Alert light Off 02 EO 121 
LON Turn Alert Light On 02 80 120 
MVI Move Immediate Octet 92 67 
MVC Move Complete Octets D2 69 
MVQ Move Right Quartets F8 71 
NC And on Complete Octets D4 91 
NOP2 No Operation 07 00 119 
NOJ No Jump 43 00 103 
oc Or on Complete Octets D6 92 
PER Call Peripheral 9E 129 
PK Pack Right Quartets into Octets DA 74 
SB Subtract Binary FF 62 
SD Subtract Decimal FB 54 
SL Search to the Left DB 88 
SR Search to the Right D9 85 
SUB Subroutine Call 41 FO 169 
TR Trans late Octets DC 114 
UPK Unpack Octets into Right Quartets D8 76 
xc Exclusive Or on Complete Octets D7 93 

j 

* The operation complement is given where it is translated from the mnemonic expression. 

@~ 0 ~ ~ ~ ____________________ us_ER_'s_G_u_IDE 

-187-



Figure 4 GE-ll5 INSTRUCTION REFERENCE CHART 

t~ OPERATION 
OP COMP FIELDS INDICATORS 2 ... CODES 

... r: NOTES "'., -= _J Symbol. hexa. Left Right Alpha Beta UF/OF ZE/NZ 

AD FA A + B = 

) 
0 no 0 
overflow result = 0 AD, AB, SD,SB,MVQ,CMQ and SL 

< < 1 1 the only GE-AB FE I I- ... overflow 
are 115 operations 

a.. w _l_ 
result F 0 

_J co that process data from right to left. 
<~ 

SD FB '° .... ;:o- A - B = 0 All the others data from ......... o~ ) underflow " 
process 

0 

~ 
2 ~ _g 1 left to right. 

SB FF .. true form ·8 'o 
-;8 I 

...t:: T The operation whose mnemonics end MVQ F 8 "' A --;- B 0 " "' r: r: ., by "D11 and ''Q'' treat the right ., 
_J T 

_J 0 A<B 0 A=B only. CMQ F 9 A : B quartets 
1 A~B 1 Ai'B J. + 

XC D7 A [+] B 1 
0 result= 0 

Common 1 result F 0 exclusive "or" 
_l_ 
T 

"' oc D6 Length - 1 A {+) B Unchanged logical ''or 1
' 

1-- + IU 
of ALPHA 

1-- NC D 4 A [X] B " logical ''and'' 
u _l_ 

0 
and BETA 

MVC D2 A - B " The common length is the one defined 
l (000 to 255) in symbolic language for ALPHA. 

"' CMC D 5 A : B 0 A < B 0 A=B 
1 A > B 1 Ai'B , 

Length - 1 normal ~ 2x(length of BETA)= 
UPK DB of BETA 

form condensed Unchanged 1 2 I -·number of unpacked quartets. 
(000 to 255) Left quartets remain unchanged. 

PK DA condensed normal " 
~ 2 x (length of ALPHA) = 

form number of BETA octets. : 

TR DC 
area tu be table " Table origin +ALPHA value = 

Length - 1 translated origin address of translated octet. 

if match found If search failed 
SR D9 of ALPHA character 0 

area not found octet + 1 last• searched + 1 
1 1 address - 1 address - 1 

SL DB (000 
searched sought 

found to 255) is stored in LOC. 

EDT DE 
mask + area 

1 
0 Z sup. 

See special chart in EDT. result edited 1 non Z sup. 

MVI 92 
single Unchanged 

ALPHA octet replaced by immediate 

Immediate octet octet. 

octet 
0< A imm. 0 A= imm. ALPHA compared immediate 

CMI 95 II octet to 
1 >A imm. 1 AF imm. octet. .,, J 

.... Condition for Unchanged See special chart. 
IU JC 4 3 Jump Address .... 
u F 0 " Stores return address in LOC and 

JRT 4 1 jumped jumps to SIGMA. 
0 ·-

J s 1 53 80 for SW. l to " The operation co111ple111ent defines 

"' JS2 40 for SW. 2 the switch. 

PER 9E 
peripheral 

Delta See special chart 
For data transfer the two leftmost octets 

unit number must contain the data length - 1 

HLT OA 00 Unchanged Brings the program to a holt. To 
continue press "START". 

NOP2 07 II " No operation. 

"' .... ENS 0 2 1 0 
II Allows a program halt by means of 

IU the "SINGLE-STOP" switch. 

.... 
I.I INS " 20 " Disables the "SINGLE-STOP" switch. 
0 

"' LON II 80 
II lights the "ALERT" light 

on the console panel. 

LOFF II E 0 " Shuts the "ALE RT" light off 'on 
the console panel. 

USER'S GUIDE 

-188-



I 
I-' 
00 
\D 

~ 
m 

0 

c:::J 
c:::J 

@j1] 

d 
Cf.l 
J:Tj 
:;:c:I 

Cf.l 

Q 
d 
H 
Cl 
trj 

OPERATION 

AD I SB * 

SD I SB 

CMI, CMC, CMQ * 

MVQ 

xc 

SL, SR 

EDT 

PER 
Status Test 

Data Transfer 

Control 

UF/OF 
0 

ZE/NZ 
0 

ALPHA= 0 
No Overflow 

~1·.1~1l.:ll::'.!i.l·:::1!:i:il,~:i:11~~,'=,:.:,1::1: 
:::::::::::::::::::::::::::::::::::::::::::::::::::::::: 

UF/OF 
0 

ZE/NZ 
l 

ALPHA I 0 
No Overflow 

ALPHA< 0 
In Underflow 
Form 

ALPHA< BETA 
or Char. 

UF/OF 
l 

ZE/NZ 
0 

ALPHA= 0 
With Overflow 

ALPHA= 0 

ALPHA= BETA 
or Char. 

UF/OF 
l 

ZE/NZ 
1 

ALPHA I 0 
With Overflow 

ALPHA> 0 

ALPHA> BETA 
or Char. 

ALPHA= 0 ALPHA I 0 :::::::1I:::i:::m::t::::::1I:1m::::::1:::@::::III:::::1t::::: 
::::::::::::::::::::::::::::::::::::::::::::::::::::::::1:::::::::::::::i~:::::::::::::::::::::::::::::::~::::j ALPHA = 0 

1:1:r:::::::::::::1:·:1:::1:1:1:::::1:::::!·!~:1:::1:·:1::,:=:·:1::.::::::1:1:=:::i:::.:::.:1:=::~1::::::::::i ~ :~ r~ ~~~rd . 

i'ij:·1111:.::11:i1:1·1·11:.1·1,i.l:liiili[ii.j .. i.ilii!!ii!!!ii.::11111i1:1::11=1.111:1:1·1.··:111::'·,::.·1 

:::::::::::::::t::::::::::::::::::::::::::::::::::::,1::::m::::::::::::::::::::::::=::::::::::::::::::::: 

t::m:ttIItt:rrt:1:I:t::t:tittittm 

End in Zero
Suppression Mode 

Condition 
Pre~ent 

End on length 

.:::·:.:·:1:::.:1:::::1:1:=:::::1:1:::·:::::::,:::1:1:::·~:.:·:1:::.:::::1:.:::i:::::,:::::i:i:::1::::::::::::::: 1 A I ways 

ALPHA I 0 

Character 
Found 

End in Non
Zero Suppression 
Mode 

Condition 
Not Present 

End of Input File 

,::,:::::::::::1:::·::1:::::::::.:1:::::::=:.:=:::1::.·::::: 

* The operands are Treated As Unsigned 

Figure 5: INDICATOR SETTINGS 

t'-

·-·~ 

;~~ 

)"<-

-·~·~ 

("''., 

-,.,_.. """"'_v' 





APPENDIX B 

@ ~ 0 ~ ~ lID _______________ us_ER'_s _GuI_DE 

-191-



APPENDIX B 

ASSEMBLING A PROGRAM 

PROGRAMMER PREPARATION 

Prior to submitting a program for assembly, the programmer should obtain a listing of the source 

cards. This listing should be checked against the "PROGRAMMER'S CHECK L_IST" (See Figure 1). 

Corrections that are required·should be noted on the listing and a corrected deck prepared. 

When the source program cards are correct, the deck for assembly should be prepared as shown 

below: 

i 
J 

1 

1 r 
"""'"""" 

STRT ~ 

~ 

SU 
t--' 

END 

BROUTINES 

PRO GR AMS 

CONSTANT S; STORE DEFINITIONS* 

* Shown as a block in the beginning of the deck to indicate that constant definitions should not 

appear within the program instruc~ion sequence. 

ASSEMBLER ACTION 

The action of the assembler in translating the source program is divided into three parts: 

PART l - Source card format scan and content verification, source program listing, control 

and ai!ocation of addresses, 

PART 2 - Source program translation, 

PART 3 - Listing of the source program and translated formats, production of object program 

cards. 

@~a~~ lID _____________________ u_sE_R'_s_cu_r_nE 

-192-



PART 1 carries out the following operations: 

• Reads and verifies the format and contents of the source program cards. 

• Prints the source program statements, followed by error indications, if required. 

• Builds an address table for names occurring in the source program, and punches a table of 

names and locations. 

PART 2 carries out program translation in one or more stages, depending on the size of the name 

table. The following two cases are differentiated: 

Case 

100 or fewer names (4096 octets of store) 

600 .or fewer names (8192 octets of store) 

Case 2 

More than 100 names (4096 octets of store) 

More than 600 names (8192 octeh of store) 

In case 1, PART 2: 

• Reads the name table and stores all of it.. Repunches the name table. 

• Reads the source program cards and translates them completely. 

• Punches out cards containing the source program and the assembled :')rogram. 

In case 2, PART 2: 

• Reads the name table and stores 100 (or 600) elements of the name table. 

• Repunches the name table, with an identifying flag on the cards for which information is 

placed in store. 

• Reads the source program cards and translates all references to names for which information 

is retained in store. 

• Punches out cards containing the source program and the partially translated program. 

• Repeats the above operations until the source program is completely translated. 

PART 3 carries out the fol lowing operations: 

• 
• 

Prints the I istings of the source program and the translated format of the program • 

Punches out the object program • 

@J (E 
0 
~~[ID ____________________ u_sE_R_' s_G_ur_oE 

-193-



AFTER ASSEMBLY 

When an error-free assembly is obtained, the assembler listing becomes the primary documentation 

for the program. Coding sheets, source card lists and any assembler lists with mistake indications 

are no longer valuable. All notes and corrections should be made on the most recent assembler 

listing to keep program documentation current. 

The source program deck should be kept current as well. Whenever a change or correction is 

noted, the source card should be prepared and inserted in the program deck. The same procedures, 

of listing and checking the source cards, should be followed for re-assembly as for a first assembly. 

Figure 1 : PROGRAMMER'S CHECK LIST 

1. Are the cards in the correct sequence? 

2. Is the format of the STRT card correct? 

3. Are any names repeated? 

4. Does the first instruction to be executed have a name? 

5. Does each name used as an operand fie Id specification match a name used in a name 

field? 

6. Are any names in the name field unused? Why? 

7. Are operand specifications separated by commas? 

8. Are lengths enclosed in parentheses? 

9. Are lengths correctly specified according to the data fields which enter the operations? 

10. Are increments and decrements to data fie Id references correctly computed? 

11. Does data format agree with the expected format for the instructions which process it? 

12. Are definition statements entirely separate from the sequence of executable 

instructions? Are there jumps around any included data or store definitions? 

13. Are there any internal code or system dependencies? Why? 

14. Are logical sections of the program separated for checking? 

15. Are there test output operations inc I uded? 

16. Are required operator messages included? Are they c I ear? Is operator intervention 

rea I ly required? 

17. Are all indicator tests properly placed? 

18. Are input/output operations tested for error? end of file? 

19. Are there sufficient comments? 

20. 

21. 

Are a 11 subroutines present? 

Is the END card correct? 

@ ~ 
0 
~ ~@ ____________________ u_sE_R'_s_cu_r_nE 

-194-



APPENDIX c 

@~a~~~ _____________ u_SER_'s_GuI_DE 

-195-



APPENDIX C 

BINARY NOTATION 

Digital computers store information in the form of on-or-off conditions of electronic devices such 

as vacuum tubes, transistors, or magnetic cores. The fact that each of these devices can record 

only two states or conditions naturally gives rise to binary notation for expressing the values. In 

binary notation two values (O or 1) may be expressed by each digit, just as in decimal notation 

ten digit values (Oto 9) are possible. 

Binary notation uses the base 2 just as standard decimal notation uses the base ten. That is, if 

115 in decimal notation means 

the same value expressed in binary as 1110011 means 

6 5 4 3 2 1 0 
lx2 +lx2 +lx2 +Ox2 +Ox2 +lx2 +lx2. 

Thus, 

i i i 00 i i 2 = 11 51 0 • 

The binary equivalents of the digits 0 to 9 using 4 binary digits are: 

Decimal Binary 

0 0000 
1 0001 
2 0010 
3 0011 
4 0100 
5 0101 
6 0110 
7 0111 
8 1000 
9 l 001 

Binary addition and subtraction are performed as shown below 

0 0 10 11 

+O + l +O + l + 1 + l 

0 10 11 100 

0 0 10 11 

- 0 - 1 - 0 - l - 1 - 1 

0 - 1 0 10 

@ ~ 
0 
~ ~ lID ____________________ u_sE_R_' s_c_ur_DE 

-196-



0011 (=3) l 01110 (=46) 

+ 0011 (=3) + 10100 (=20) 

carries 
0110 (=6) 1000010 (=66) 

carries 

Borrows Borrows 
11010 (=26) 10110101 (=181) 

- 01100 (=12) - 01101100 (=108) 

01110 (=14) 01001001 (= 73) 

Decimal values are not always translated into pure binary when stored in or operated upon by a 

computer. Frequently, a fixed number of bits is used to express each decimal digit. If four bits 

are used for each digiJ·, the value 115 can be represented as 

bit pattern 

decimal value 

DIGIT 

0001 

DIGIT 2 

0001 

DIGIT 3 

0101 

5 

Four bits permit values from 0 to 15 to be expressed. While these 16 distinct values are more than 

enough to express the 10 decimal digits, they are not sufficient to give distinct representation to 

eoc h alphabetic character. The GE-115 Information Processing System uses eight bits, wh ic:h 

have 28 or 256 possible configurations, to represent the l 0 digits, 26 letters, and other characters, 

os wel I os pure binary values from 0 to 255. 

@~oOO~---------------------------------------__;u~sE~R'~s~Gu~r~nE 
-197-





APPENDIX D 

@j~o 0 0 ~ _____________ u_SER_'s_GuI_DE 

-199-



00 
01 
02 
03 

04 
05 
06 
07 

08 
09 
OA 
OB 

oc 
OD 
OE 
OF 

10 
11 
12 
13 

14 
15 
16 
17 

18 
19 
lA 
1 B 

lC 
lD 
1 E 
1 F 

APPENDIX D 

HEXADECIMAL-TO-DECIMAL CONVERSION CHART 

The table in this appendix may be used for conversion of hexadecimal to decimal numbers, 
and vice versa, in the following ranges: 

Hexadec ima I Decimal 

000 .... FFF 0000 .... 4095 

For numbers outside these ranges, add hexadec ima I l 000 or dee ima I 4096 to the table figures. 

0 2 3 4 5 6 7 8 9 A B c D E F 

0000 0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014 0015 
0016 0017 0018 0019 0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 0030 0031 
0032 0033 0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047 
0048 0049 0050 0051 0052 0053 0054 0055 0056 0057 0058 0059 0060 0061 0062 0063 

0064 0065 0066 0067 0068 0069 0070 0071 0072 0073 0074 0075 0076 0077 0078 0079 
0080 0081 0082 0083 0084 0085 0086 0087 0088 0089 0090 0091 0092 0093 0094 0095 
0096 0097 0098 0099 0100 0101 0102 0103 0104 0105 0106 0107 0108 0109 0110 0111 
0112 0113 0114 0115 0116 0117 0118 0119 0120 0121 0122 0123 0124 0125 0126 0127 

0128 0129 0130 0131 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143 
0144 0145 0146 0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159 
0160 0161 0162 0163 0164 0165 0166 0167 0168 0169 0170 0171 0172 0173 0174 0175 
0176 0177 0178 0179 0180 0181 0182 0183 0184 0185 0186 0187 0188 0189 0190 0191 

0192 0193 0194 0195 0196 0197 0198 0199 0200 0201 0202 0203 0204 0205 0206 0207 
0208 0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0219 0220 0221 0222 0223 
0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238 0239 
0240 0241 0242 0243 0244 0245 0246 0247 0248 0249 0250 0251 0252 0253 0254 0255 

0256 0257 0258 0259 0260 0261 0262 0263 0264 0265 0266 0267 0268 0269 0270 0271 
0272 0273 0274 0275 0276 0277 0278 0279 0280 0281 0282 0283 0284 0285 0286 0287 
0288 0289 0290 0291 0292 0293 0294 0295 0296 0297 0298 0299 0300 0301 0302 0303 
0304 0305 0306 0307 0308 0309 0310 0311 0312 0313 0314 0315 0316 0317 0318 0319 

0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 0330 0331 0332 0333 0334 0335 
0336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0350 0351 
0352 0353 0354 0355 0356 0357 0358 0359 0360 0361 0362 0363 0364 0365 0366 0367 
0368 0369 0370 0371 0372 0373 0374 0375 0376 0377 0378 0379 0380 0381 0382 0383 

0384 0385 0386 0387 0388 0389 0390 0391 0392 0393 0394 0395 0396 0397 0398 0399 
0400 0401 0402 0403 0404 0405 0406 0407 0408 0409 0410 0411 0412 0413 0414 0415 
0416 0417 0418 0419 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0430 0431 
0432 0433 0434 0435 0436 0437 0438 0439 0440 0441 0442 0443 0444 0445 Q4-46 0447 

0448 0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0460 0461 0462 0463 
0464 0465 0466 0467 0468 0469 0470 0471 0472 0473 0474 0475 0476 0477 0478 0479 
0480 0481 0482 0483 0484 0485 0486 0487 0488 0489 0490 0491 0492 0493 0494 0495 
0496 0497 0498 0499 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 0510 0511 

@~o~~~-----------------------------------------u_sE_R'_s_Gu_r_DE 
-200-



0 2 3 4 5 6 7 8 9 A B c D E F 

20 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527 
21 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543 
22 0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559 
23 0560 0561 0562 0563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575 

24 0576 0577 0578 0579 0580 0581 0582 0583 0584 0585 0586 0587 0588 0589 0590 0591 
25 0592 0593 0594 0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607 
26 0608 0609 0610 0611 0612 0613 0614 0615 0616 0617 0618 0619 0620 0621 0622 0623 
27 0624 0625 0626 0627 0628 0629 0630 0631 0632 0633 0634 0635 0636 0637 0638 0639 

28 0640 0641 0642 0643 0644 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655 
29 0656 0657 0658 0659 0660 0661 0662 0663 0664 0665 0666 0667 0668 0669 0670 0671 
2A 0672 0673 0674 0675 0676 0677 0678 0679 0680 0681 0682 0683 0684 0685 0686 0687 
2B 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703 

2C 0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719 
2D 0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735 
2E 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0750 0751 
2F 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767 

30 0768 0769 0770 0771 0772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783 
31 0784 0785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799 
32 0800 0801 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815 
33 0816 0817 0818 0819 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831 

34 0832 0833 0834 0835 0836 0837 0838 0839 0840 0841 0842 0843 0844 0845 0846 0847 
35 0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0860 0861 0862 0863 
36 0864 0865 0866 0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 C879 
37 0880 0881 0882 0883 0884 0885 0886 0887 0888 0889 0890 0891 0892 0893 0894 0895 

38 0896 0897 0898 0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911 
39 0912 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927 
3A 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943 
3B 0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959 

3C 0960 0961 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 0974 0975 
3D 0976 0977 0978 0979 0980 0981 0982 0983 0984 0985 0986 0987 0988 0989 0990 0991 
3E 0992 0993 0994 0995 0996 0997 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007 
3F 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 

40 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 
41 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 
42 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 
43 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 

44 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 110 l 110'2 1103 
45 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 
46 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 
47 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 

48 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 
49 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 11 81 1182 1183 
4A 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 
4B 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 

4C 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 
4D 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 
4E 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 
4F 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 

@j~o~ ~@ USER Is GUIDE 

-201-



0 2 3 4 5 6 7 8 9 A B c 0 E F 

50 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 
Sl 1296 1297 1298 1299 1300 1301 1302 1303 1304 130S 1306 1307'1308 1309 1310 131 l 
S2 1312 1313 1314 l31S 1316 1317 1318 1319 1320 1321 1322 1323 

1

1324 132S 1326 1327 
53 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 

54 1344 134S 1346 1347 1348 1349 1350 1351 13S2 1353 1354 l35S 1356 1357 13S8 13S9 
55 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 
56 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 
57 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 

58 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 14.21 1422 1423 
S9 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 
SA 1440 1441 1442 1443 1444 144S 1446 1447 1448 1449 1450 14Sl 14S2 14S3 1454 14S5 
58 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 146.8 1469 1470 1471 

SC 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 
50 1488 1489 1490 1491 1492 1493 1494 149S 1496 1497 1498 1499 1500 lSOl 1S02 1S03 
5E 1504 1505 1506 1507 1S08 1S09 1510 1511 1512 1513 1514 1515 1S16 1517 1S18 1519 
5F 1S20 1521 1S22 1S23 1S24 152S 1S26 1S27 1S28 1529 1S30 1S31 1S32 1S33 1S34 1S3S 

60 1S36 1S37 1S38 1S39 1S40 1S41 1S42 1543 1544 1S4S 1S46 1547 1S48 1S49 lS50 1S51 
61 1552 1SS3 1SS4 lSSS 1SS6 15S7 1SS8 1SS9 1S60 1S61 1S62 lS63 1S64 1S6S l S66 1S67 
62 1568 1S69 1S70 1571 1S72 JS73 1S74 1S7S 1S76 1S77 1S78 1S79 1S80 1S81 1S82 1S83 
63 1S84 1S8S l S86 1S87 1588 1S89 1590 1591 1592 1593 1594 1595 1S96 1S97 1598 1599 

64 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 
6S 1616 1617 1618 1619 1620 1621 1622 1623 1624 162S 1626 1627 1628 1629 1630 1631 
66 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647' 
67 1648 1649 16SO 1651 1652 16S3 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 

68 1664 166S 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 
69 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 
6A 1696 1697 1698 1699 1700 1701 1702 1703 1704 170S 1706 1707 1708 1709 1710 1711 
6B 1712 1713 1714 171S 1716 1717 1718 1719 1720 1721 1722 1723 1724 172S 1726 1727 

6C 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 
60 1744 l 74S 1746 1747 1748 1749 1750 l 7Sl 1752 1753 l 7S4 l 7SS 1756 l 7S7 1758 17S9 
6E 1760 1761 1762 1763 1764 l 76S 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 
6F 1776 1777 1778 1779 1780 1781 1782 1783 1784 l 78S 1786 1787 1788 1789 1790 1791 

70 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 
71 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 
72 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 
73 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 

74 1856 1857 1858 l 8S9 1860 1861 1862 1863 1864 186S 1866 1867 1868 1869 1870 1871 
75 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 
76 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 
77 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 

78 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 
79 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 
7A 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 
78 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 

7C 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 
70 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 
7E 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 

7F 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 

@J~o~~@ 
USER I s GUI DE 

-202-



0 2 3 4 5 6 7 8 9 A B c D E F 

80 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 
81 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 
82 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 
83 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 

84 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 
85 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 
86 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 
87 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 

88 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 
89 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 
BA 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 
BB 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 223r 223a 2239 

BC 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 
SD 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 
SE 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 
SF 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 

90 .. 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 
91 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 
92 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 
93 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 

94 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 
95 2384" 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 
96 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 
97 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 

98 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 
99 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 
9A 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 
9B 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 

9C 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 
9D 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 
9E 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 
9F 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 

AO 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 
Al 2576 2577 2678 2679 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 
A2 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 
A3 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 

A4 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 
AS 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 
A6 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 
A7 2672 2673 2()74 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 

AB 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 
A9 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 
AA 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 
AB 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 

AC 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 
AD 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 
AE 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 279T 2798 2799 
AF 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 

@(Eo~~@ 
USER I s GUIDE 

-203-



0 2 3 4 5 6 7 8 9 A B c D E F 

BO 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 
Bl 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 
B2 · 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 
B3 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2·874 2875 2876 2877 2878 2879 

B4 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 
B5 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 ~907 2908 2909 2910 2911 
B6 2912 2913 2914 2915 2916 2917 2818 2919 2920 2921 2922 .2923 2924 2925 2926 2927 
B7 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 

BS 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 
B9 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 
BA. 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 
BB 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 

BC 3000 3009' 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 
BD 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 
BE 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 
BF 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 

co 3072 3073 3074 3075 3076 3077 3078 3079 3080 308i 3082 3083 3084 3085 3086 3087 
Cl 3088 3089 3090 309.l 3092 3093 3094 3095 3096 3097 3098 3099 3100 3l01 3102 3103 
C2 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 
C3 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 

C4 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 
C5 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 
C6 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 
C7 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 

ca 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 
C9 3216 3217 3218 3219 3220 3221 3222 32·23 3224 3225 3226 3227 3228 3229 3230 3231 
CA 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 
CB 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 

cc 3264 3265 3266 3267 3268 3269 3270 3271 3272 3·273 3274 3275 3276 3277 3278 3279 
CD 3280 3281 3282 3283 3284 3285 3286 3287 3288 3~89 3290 3291 3292 3293 3294 3295 
CE 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 
CF 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 

DO 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 
Dl 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358. 3359 
D2 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371. 3372 3373 3374 3375 
D3 3379 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 

D4 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 
D5 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 
D6 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 
D7 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 

D8 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 
D9 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 
DA 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 
DB 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 

DC 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535. 
DD 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 
DE 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 
DF 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 

@~o~~@ USER Is GUIDE 

-204-



0 2 3 4 5 6 7 8 9 A B c D E F 

EO 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 
El 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 
f 2 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 
f 3 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 

f 4 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 
E5 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 
E6 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 
E7 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 

EB 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 
E9 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 
EA 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 
EB 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 

EC 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 
ED 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 
EE 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 
EF 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 

FO 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 
Fl 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 
F2 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 
F3 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 

F4 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 
F5 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 
F6 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 
F7 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 

F8 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 
F9 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 
FA 4000 4001 4002 4003 4004 4005" 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 
FB 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 

FC 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 
FD 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 
FE 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 
FF 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 

@ ~ 0 0 0 ~ ____________________ u __ sE ...... R'--.s .... GU-.-I--.DE 

-205-





INDEX 

@~a~~~---------------------------------U~SE~R·~s~GU~I~ 
x 



INDEX 

ABSOLUTE ADDRESS 

ACTUAL ADDRESS, see ABSOLUTE ADDRESS 

ADD BINARY (AB) 

ADD DECIMAL (AD) 

ADDRESS 

ADDRESS CONSTANT DEFINITION 

ADDRESS MODIFICATION 

ALPHABETIC SYMBOLS 

'AND' ON COMPLETE OCTETS 

ARITHMETIC CONTROL UNIT 

ARITHMETIC INSTRUCTIONS 

ASCENDING ADDRESS 

ASSEMBLER 

ASSEMBLER PROGRAM CONTROL INSTRUCTIONS 

ASSEMBLY LANGUAGE 

ASSEMBLY LISTING 

ASTERISK 

BINARY DI GIT 

BINARY UTERALS 

BINARY OPERATIONS 

BIT 

CALL PERIPHERAL (INSTRUCTION) 

CARD READER 

CARRY 

CENTRAL PROCESSOR 

CHANNEL 

CHARACTER, see also GRAPHIC CHARACTER 

CHARACTER CONSTANT DEFINITION 

COMMENT 

PAGE 

29 I 30 I 32 

29 I 30 I 32 

59 - 61 

51 - 53 

37 

150 

60, 63 

21- I 22 

91 

3 I 5 

48 - 50 

131 I 134 

13 I 18 I 34 I 36 I 37 

156 

10, 12, 13, 17, 18 
23 

33, 35 

20, 29, 32, 36 

3, 7; 18 

18 

59 - 64 

3, 4, 7 

15 I 129 

6 

48, 54, 62 

3 

5, 6 

7 

146 

32, 33, 163 

@[ 0 ~ ~ ~ ______________________ us....,ER-..'-..S ....,Gu_rD __ E 

X-1 



COMPARE COMPLETE OCTETS 

COMPARE IMMEDIATE TO STORE 

COMPARE RIGHT QUARTETS 

COMPLEMENT 

CONNECTOR 

CONSTANT 

IN DEX (contd.) 

CONSTANT DEFINITION, see DEFINE CONSTANT 

CONTROL CHARACTER 

DATA FIELD 

DATA FORMAT 

DATA MOVEMENT AND COMPARISON INSTRUCTIONS 

DATANET 

DECIMAL OPERATIONS, see ARITHMETIC INSTRUCTIONS 

DECREMENT 

DESCENDING ADDRESS 

DEFINE CONSTANT ADDRESS 

DEFINE CONSTANT CHARACTER 

DEFINE CONSTANT HEXADECIMAL 

DEFINE CONSTANT PERIPHERAL FIELD 

DEFINE STORE AREA 

DEFINITION STATEMENTS 

DIRECTIVE INSTRUCTION 

EDIT 

EDITING 

EDITING MASK 

EDIT INSTRUCTIONS 

ENABLE SINGLE STOP 

EXCLUSIVE 1 0R 1 ON COMPLETE OCTETS 

EXPLICIT LENGTH, see SPECIFIED LENGTH 

EXTERNAL CONTROL PANEL 

FIELD 

PAGE 

80 - 82 

78 - 79 

301 83 - 84 

49 

5 I 6 

10 I 17 

150, 146, 148, 
152 - 155 

22 I 109 

10 

7 I 8 1 9 

65 - 66 

6 

48 - 50 

29 I 30 I 39 

134 

150 

146 

148 

152 - 155 

143 

141 

17 I 139 

109 - 113 

22, 109 - 113 

22 

1oe 
123 

93 - 94 

12-13,30-31 

4 

12, 13, 18, 28, 
30,34-40 

@ ~ o ~~[ID --------------------~us~E~R·~s ~GU~ID~E 
X-2 



Fl LL CHARACTER 

FORMAT CONTROL CHARACTER 

GRAPHIC CHARACTER 

GRAPHIC SET 

HALT SYSTEM OPERATION 

HARDWARE ITEMS 

INDEX (contd.) 

HEXADECIMAL CONSTANT DEFINITION 

HEXADECIMAL NOTATION 

IDENTIFICATION 

IMM!DIATE DATA 

IMMEDIATE OPERAND 

IMPLICIT LENGTH SPECIFICATION 

INCREMENT 

INDICATOR 

INHIBIT SING LE STOP 

IN PUT/OUTPUT 

INSTRUCTION 

INTERFACE 

INTERNAL INSTRUCTION FORMAT 

IN VERSION (BIT) 

JUMP AND RETURN 

JUMP IF EQUAL 

JUMP IF GREATER 

JUMP IF GREATER OR EQUAL 

JUMP IF LESS 

JUMP IF LESS OR RQUAL 

JUMP IF NOT EQUAL 

JUMP IF SWITCH 1 SET 

JUMP IF SWITCH 2 SET 

JUMP INSTRUCTIONS 

JUMP ON CONDITION 

JUMP ON SWITCH 1, see JUMP IF SWITCH l SET 

JUMP ON SWITCH 2, see JUMP IF SWITCH 2 SET 

JUMP UNCO\I DITIONAL 

PAGE 

109 

109 

18 I 19 I 20 

18 I 21, 22 

118 

27 

148 

7, 8, 10, 13, 18, 
19 I 22 

23 

12, 13, 31, 32 

46 

30 

29 I 30 I 39 

14, 32 

122 

12, 15, 32 

7, 10, 1.1 

6 

10 - 16 

54 

107 

29 I 33 

101 

101 

101 

101 

101 

105 

105 

95 - 96 

97 

105 

105 

29, 33, 102 

@ ~ 0 ~ ~[ID ---------------------__...US-.-E ..... R'.-..S .....,GU..,_ID--.E 

X-3 



LEFT OCTET ADDRESS 

LEFT QUARTET 

LENGTH 

LINE FEED 

LINE NUMBER 

LINE PRINTER 

LOC 

LOCATION COUNTER 

LOGIC INSTRUCTIONS 

MIS.TAKE CODES 

MNEMONIC 

MODE: 
DECIMAL 
BINARY 

INDEX (contd.) 

NON-ZERO SUPPRESSION 
PACKED 
UN PACKED 
ZERO SUPPRESSION 

MOVE COMPLETE OCTETS 

MOVE IMMEDIATE TO STORE 

MOVE RIGHT QUARTETS 

NAME 

N 0 JUMP 

NON ZERO SUPPRESSION, see ZERO SUPPRESSION lvlci: · 

NO OPERATION 

OBJECT LANGUAGE 

OCTET 

OPERAND 

OPERAND ADDRESS 

OPERAND SPECIFICATION FIELD 

OPERATION 

OPERATION CODE 

OPERATION COMPLEMENT 

ORIGIN ASSIGNMENT 
10R 1 ON COMPLETE OCTETS 

PAGE 

37 I 38 

7 I 8, 9 

30 I 34.1 35 

22 

25 

6 

4 I 26 I 84 - 89 

4 

90 

23 I 34 I 35 

12, 17, 26, 37 

48 
48 
110 
131 
130 
110 

69 - 70 

67 

71 - 73 

25, 28, 30, 34, 
35 I 38 

103 

109 - 113 

119 

13, 15, 16, 17, 
18, 36 

7, 8 

27 

11, 12, 16 

27 I 35 

10, 11, 12 

10 I 17 I 26 I 35 

11, 12, 13, 32 

22, 29 

92 

@ ~ 0 ~ ~ ~ ---------------------U;..-SE--R'_..S...-GU.-.....I.._DE 

X-4 



INDEX (contd.) 

OVERFLOW 

PACK RIGHT QUARTETS INTO OCTETS 

PACKED DATA 

PACKED MO-D-E 

PAGE NUMBER 

PARITY 

PARITY ALERT 

PERIPHERAL CONTROL INSTRUCTION 

PERIPHERAL STATUS SPECIFICATIONS 

PERIPHERAL STATUS TEST 

PRIMARY INSTRUCTIONS 

PROGRAM 

PROGRAMMING FORM 

QUARTET 

RESERVED SYMBOLS 

RIGHT OCTET ADDRESS 

RIGHT QUARTET 

SEARCH TO THE LEFT 

SEARCH TO THE RIGHT 

SIGN 

SOURCE LANGUAGE INSTRUCTION, see SOURCE LAN GAUGE 
STATEMENT 

SOURCE LANGUAGE PROGRAM 

SOURCE LANGUAGE STATEMENT 

SPECIFIED LENGTH 

STATEMENT 

STORE 

STORE ASSIGNMENT COUNTER, see STORE LOCATION ASSIGN
MENT COUNTER 

STORE CD NTROL UNIT 

STORE LOCATION ASSIGNMENT COUNTER 

SUBROUTINE 

SUBROUTINE CALL 

SUBTRACT BINARY 

SUBTRACT DECIMAL 

PAGE 

48 - 49 

74 - 75 

9' 74 - 75 

131 

25 

4 

4 

137 

136 

135 

17' 43 

17 

23, 24 

7 

20' 21 

37' 38 

7, 8, 9 

88 - 89 

85 - 87 

170 

31 

13, 15, 16 

31 

12- 13, 30-
31 

10, 34 

3, 4 

22, 29' 160 

3, 4 

22' 29' 160 

22, 26' 169 

169 

62 - 64 

54 - 58 

@3 ~ 0 ~ ~ ~ _____________________ us_ER_'S_G_U_IDE 

X-5 



SYSTEM ACTION INSTRUCTIONS 

SYSTEM PROGRAM LOADER 

SYSTEM SYMBOL 

TRANSLATE 

TRANSLATION 

TRUE DIFFERENCE 

TRUE FORM 

TURN ,~LERT LIGHT OFF 

TURN ALERT LIGHT ON 

UNDERFLOW 

IN DEX (contd.) 

UN DER FLOW /OVERFLOW IN DI CA TOR 

UNPACK OCTETS INTO RIGHT QUARTETS 

UNPACKED DATA 

UN PACK ED MO DE 

ZERO/NON-ZERO INDICATOR 

ZERO SUPPRESSION MODE 

ZONE 

PAGE 

116 

23 

18 

114 

115 

49 

49 

121 

120 

48 - 49 

5 

76 - 77 

77 

130 

5 

109 - 113 

8 

@j ~ 
0 
~ ~ tID ____________________ u_sE_R_'s_G_ur_DE 

X-6 



~gress Is Ovr Mosf lmporlt1nf Protlvc.f' 

GENERAL. ELECTRIC 
INFORMATION SYSTEMS DIVISION 

UTHO U.S.A. 


