
GENERAL ELECTRIC

COMPUTERS

CPB-1074

DATANET-30
Communication

Assembly Program

DATANET-30

COMMUNICATION

ASSEMBLY PROGRAM

(COMMA)

Program Number
CDD30F2.001
CDD30F2.002

OCTOBER 11965

GENERAL fl ELECTRIC
COMPUTER DEPARTMENT

PREFACE

This manual is provided by General Electric Computer Department
for the programmers and operators of DATANET-30 Communications
Processing Systems. The manual describes the DATANET-30
Communication Assembly Program (COMMA) and is organized in two
parts so that Part I can be used as a teaching aid and there-
after as a reference manual. It is recommended that a programmer have a
working knowledge of the DATANET-30 system as described in the
Pf\.TANET-30 Reference Manual, CPB-1019. Part II is directed to the
more experienced programmer.

A glossary is included for readers who are not familiar with assemblers
for data communications and symbolic programming.

Comments concerning this manual should be addressed to Technical
Publications, General Electric Computer Department, P. O. Box 2 561
Phoenix, Arizona, 85001.

© 1965 by General Electric Company

[ID§fiY&~~lJCJ ~@--------------

TABLE OF CONTENTS

PART I

1.

2.

DESCRIPTION OF THE PROGRAM

General
Program Sequence

Analyzer Phase
Object Phase
Reports Phase

ASSEMBLY IANGUAGE
Programming Form

Sequence Field
Control Field
Repeat Field
Reference Symbol Field
Modifier Field
Op (Operation) Code Field
Operand Field
Remarks Field

Card Format
Pseudo-Instructions

Data-Generating Instructions
Control Instructions
Alphabetical Listing

Detected Coding Errors
Addressing Locations in Memory

Direct Address
Relative Address
Indirect Address
Indexed Address

Address Modification
Addressing Common Data
Addressing Channel Tables
Addressing Program Banks
Changing Program Banks

1

1
3
3
3
3

5
5
5
7
7
8

10
12
12
12
13
13
13
15
17
74
77
77
77
78
78
80
80
80
80
81

@&lr£~~lrc::J ~®--------------
-iii-

3. ASSEMBLY OPERATIONS

COMMA Control Cards
Assembly Control Card
OLD Format Control Card
NEW Format Control Card

System Configuration
Initial Assembly
Update Assembly

Changing
Deleting
Adding

Console Insert Switches
Console Messages

PART II

4. CONSTRUCTING A COIL

Function of COIL
Linkage Between COMMA and COIL

Area Available to COIL
COIL Files
Status Returns

Nonexistent Files
Opening a File
Closing a File
COMMA Subroutines Available to COIL
Calling Subroutines from File

GLOSSARY OF DATA COMMUNICATION TERMS

INDEX

ILLUSTRATIONS
Figure

1. Diagram of the Assembly

Sample Programming Form
Source Card Format

2.
3.

4.
5.

6.

7.

Sequence of Update Source Deck

Update Procedure Flow Diagram

COIL Memory Map

COIL Files

83

83
83
84
84
85
85
86
87
87
89
90
91

93

93
94
94
94

101
103
103
104
104
106

107

111

4

6

13
86

88

95

96

[ID£1J£~~1Yc=J ~@-------------
- iv -

D E S C R I P T I 0 N

GENERAL

PART I

0 F THE PROGRAM

The DATANET~30 Connnunications Processor is a single-address,
stored-program, special-purpose digital computer operating in
straight binary but processing both alphanumeric (BCD or Baudot)
and binary information. It can operate as a self-contained,
free-standing terminal system; or it can become a part of a GE-
600, -400, or -200 Series Information Processing System, sharing
those peripherals with which the data processing systems are
compatible.

With such a wide variety of peripheral configurations available,
it is not practical to establish a standard peripheral configu
ration for an assembly program. Therefore, the DATANET-30
Cormnunication Assembly Program (COMMA) never directly addresses
a peripheral. Instead, it works with "files" in place of
peripherals. Working with files, COMMA branches to predeter
mined memory locations which serve as assembly links to subrou
tines in the COMMA Input/Output Links (COIL). Constructed of
"plug-in" subprograms, COIL permits changes to be made in
peripheral configurations simply by changing these subprograms.

COMMA translates symbolic codes and instruction mnemonics used
by the programmer into a ready-to-execute object program. The
source program can be assembled into an object program from a
punch card deck, perforated tape, magnetic tape (operating
system tape) or from assemblies with remote terminals, such as
Teletype equipment.

Since COMMA works with input and output (I/0) peripherals
through predefined subroutines, a variety of peripheral inputs
and outputs are provided. For example, when the assembler needs
a new source document, it branches to a particular linkage point
in COIL. When COIL returns to the assembler, the assembler
expects an 80-column BCD record at a given memory location. It
is immaterial whether the record--source docurnent--came from an
on-line card reader; from a magnetic tape written by a satellite
computer system; from another computer over a high-speed trans
mission line or through a computer interface unit; from a dual
access disc storage unit (DSU) where it was placed by another

* DATANET is a registered trademark of General Electric Company.

ID&u&~~v~~®--------------
- 1 -

computer; from Teletype; or from a perforated tape reader. Nor
does it matter whether the record was always in BCD code or
originated in some other code and was converted by COIL. The
record may originally have been either in 80 columns or in a
condensed record, spread and blank-filled by COIL.

Specialized COIL subprograms are provided with COMMA; however,
specifications for writing a COIL subprogram are included in
this manual (Chapter 4), so that users may modify or write their
own. Not all COIL subprograms will make use of the full power
of the assembler. For example, automatic updates of source pro
grams or subroutine calls from library are not really practical
unless one has access to bulk storage devices such as magnetic
tapes or DSU. A basic assembly requires a minimum of one input
device and one output device (capable of handling both BCD and
binary data). The DATANET-30 can assemble with only a DSU,
provided there is a way to get the source program on and the
object listing off the DSU. (This can be accomplished by a
conventional computer which shares the DSU with the DATANET-30.)

Object programs can be obtained from source programs written in
either of two formats, old or new. Old format (described in
DATANET-30 General Assembly Program, CPB-1180, is recognized by
COMMA and translated to new format for processing. Object pro
grams obtained in either format can be combined, assembled, or
reassembled to operate a DATANET-30 system.

@£~&~~~~~@--------------------------------
- 2 -

PROGRAM SEQUENCE

An assembly for communication processing differs from batched
data processing in its required real-time operations concept.
In batched data processing, assemblies are frequently required;
and the terms "read a card" or "print a line" are completely
dependent upon the source program memory utilization for exten
sive blocking or buffering of records and for obtaining peak
efficiency from the peripherals. A DATANET-30 system is most
often used in situations where the same program (or program set)
runs day in and day out and an assembly is required infrequently.

COMMA performs only such tasks as formatting, packing and unpack
ing records, and all work independent of the I/O devices. COIL
must contain the routines to perform all of the functions depend
ent upon the I/0 devices. COIL, therefore, must include not only
the provisions for reading and writing all records but also all
error checks (and associated recovery procedures), end-of-file
and end-of-tape checks, labeling, etc.

COMMA processes the source program in 80-column (punch card)
format in two passes (three assembly phases) to obtain an object
program. Figure 1 shows the assembly program's data flow. Inputs
and outputs (files) are shown simply as boxes in the diagram,
because they may come from any peripheral.

Analyzer Phase

During the analyzer phase, the instructions of the source program
(possibly a merger of several files) are analyzed to generate the
symbol tables and a work file. The work file contains the source
card image and control words, and it serves as an input to the
object phase.

Object Phase

The object phase reads the work file, completes the assembly's
operations, and generates an object file and object listing file.
All information required by the reports phase is left in memory,
so that no additional pass of the work file is necessary.

Reports Phase

The reports phase sorts and lists the symbol table and generates
the closing reports.

@&u&~~uc:J ~@--------------
- 3 -

--
SOURCE
PROGRAM

~']

COMMA
COIL

OLD WORK lsuBROU TINE
FILE L FI LE

\7_ T------ ,
___ v_

A~~~~-Q
~,/

_N_E_W-~ORK l
FILE

OBJECT
PROGRAM

FILE

OBJECT
LISTING

FILE -;,
REPORTS-~
PHASE

SYMBOL
TABLE
FILE

~'7

SYMBOL
TABLE
FILE

Figure 1. Diagram of the Assembly

[ID£lf&~[glf c::J ~@-------___.,,,........ ________ _
- l~ ...

ASSEMBLY LANGUAGE

The source program for COMMA is written using pseudo-instruc
tions, reference addresses, and mnemonics of operations to be
performed. The cards punched for each line of the programmer's
coding sheet become the source program card deck used in the
translator phase of CO:MMA. (Refer to the DATANET-30 Reference
Manual for the mnemonics of operations to be performed.)

PROGRAMMING FORM

DATANET-30 COMMA programming form (CK-198), shown in Figure 2,
can be used for source programs--new format. The form repre
sents an 80-column card into which each line entry is punched.

In the paragraphs following, the field headings on the program
ming form are described according to their usage. Columns 9 and
22 are not used by the assembler for coding purposes.

Sequence Field (Columns 1-5)

To ensure proper sequence for the input of the source program,
the programmer assigns sequence numbers in columns 1-5 of his
programming form. During program assembly, the sequence of
numbers is usually ignored; however, the assembler can be
instructed to check the source cards for proper ascending
sequence by issuing an SEQ pseudo-instruction.

Sequence numbers may be restarted as often as necessary. Some
subroutines frequently contain their own sequence numbers, thus
necessitating a restart of the sequence check for each new sub
routine. If sequence checking is requested, the assembler flags
any source card whose sequence number is not greater than that
of the preceding card. All nonnumeric characters in the
Sequence field are treated as zeros by the assembler. Sequence
numbers become most important in maintaining work files (see
"Update Assembly,n p .. 86), because they function as the
identification key in updating or changing files without
requiring complete reassembly of the file records.

~&u&~~uc:J ~©---------------
- 5 -

l§J
~ c.=n
~
~
m
c.=n
0
~
(§)

l'rj
I-'•

~
Ii
CD

N
•

CJ)

~
"'O
J--l
CD

~
Ii

O'\ I 0
OQ
Ii

~
I-'• ::s

OQ

l'rj
0

~

GENERALfj ElECTRIC DATANET-30 COMMUNICATION ASSEMBLY PRO~RAM
PROGRAMMER

f<
<

SEQUENCE l c I ~

1J2j3'41sjs[1ja
' I I I I I I

L-1.

..L_l__J_L I_ .L__i_

I I I I I I I

[I I I I I I

...1.

I I I I I I I

: : : : 11 :

I I I I I

I I I I I I

: : : : 11 '.
CK 198 (4/65)

]PROGRAM r:rE I PAGE OF I
REFERENCE OP REMARKS OR CONTINUATION OF OPERAND

M1 CODE OPERAND I I I I I I I I I • I I I •

5 I 6 1 7 I 8 I 9 t 10 t 11 I 12 I 13 I 14 I 1~ I 16 I 11 I 18 t 19 I

I I I I I I I I I I I I I
I I I I I I I i I

I I I i I
_.__.__J._J_,__.__._+-+-L....L--+-+_.__.__.__J_.l__,_-'-_.__.__.__l-f---'----'---!-_._-'-'--'---'-----'---'--'-~J........1-4----'-_._~_.__1-JL....L----1...-L_J__J._-!--L...l-!--'-_._-1--'--L...l---'-----'---'-'~j~

_.__.__L..J_,__.__._+-+-L....L--+-+_.__.__.__J-.1__,__.__.__.__.__l-f---'----'--'-_._-'-J--l---'-----'---'--'--'-.l........l-l-----'--'-~-'--1-JL....l----1..._.L_._-'--'--L...l---'--'-_.__J_-'--L...1---'-----'---'-....L-'-LJ_J_l_
I I

I I I I I I I

I I I I I

I I I I I I

I I I I 1 I I

I I I I I I I

I I I I I I I

I I I I I I l

I I I I l I I

I I I I I l I

I I I I I I I

I I I I I I I

I I I I I I I

I I I I I I I

I I I I I I I

I I I I I I I

...LL.L ...L...L.....l

I I I 1 I I I

I I I I I I I

I I I I I I I

I I I I I I I

I I I I I I I

I I I I I I I

I I I I 1 1--1.

I I I I I I I

_l_t_j__.l_: I I I _J._ I i I I '1 I '---{ 1
--'--'---+-41---L---'---'--'--'---1-J---'----'--'--'--+--'----''-4----'--'-4--_._J._Jf---1--'--4--_._-'----t-JL....L-+--'--'-~-'--~---'--'--+---'- L-} L .. L.µL...{-_l._L. I I I I -I- ..

J....-L.--f---l----'---L.....L......l........L.....L.....L----'---L....1--'--+---'----'--f---lL...J.._-l-l--'--+--'----'--+-J........L_+---L--L--l---'--ll-4-...1........L..-+--1---l-j~ .. L~ ~ ' _y _ . .'---4---u _J_LJ -LI
__.___.___t---t---'-___.__._-'--'---L-J---'----'--'--'--+-~----'--'-4--'--'--+-'----'--4----'-----'----+--J---L~----'--+-~__.___._-+-'--_ L~ __LI~ 4 ' 1 I 1 1 I u __ ,_

--'---'--l--+--'--'---'--'--.L....l...._L....L.....JL...l--l-f-1.-1.-f_L_l_--+--L-.L--+-.....L.....L-+-1-...L.....t--'--'--.J-..L.-L-l-.L....L._1-LJL-4-J. _ 1--l _L_Lf-i--4 J ~-~1--i ~
___.__,_-+--i_..._L.....L......l........L.....L.....1.----'---L....!--'--l-__.___.._--+--'L...J.._-l---L---'--l--'--'-l-..__._-!--L---'---!----'---J'--l--'---'--+---1----'---J>--L...J-~ _I_!_--{~ t_{-L.L. ~-L-L fJ
_.__.--+--f---L--'---'----L.--'----JL........L...--'---1--'--'--1---'---'---l---'---'---+--'---'--'----'---'--'--..L......l....--'--'---'---L-l--'----'--J.--'---!----L--'----l---L-Lf. u I I I : J----+-1-1-i- LLh

I I I I I I I I 1-.L.L....L: I
I I I I f-i
LL..L.J _.L_.LLLLi ~

.-'--L..J'---'--'--'--'--'--J-.1--+-'---'-~-'--L....l'---'-----'--l-....L-'--1--JL....L-+---'-_1._+--L....1--l----'---'---l--'-~l-1---1.-'-U. l__L_.1._J -1 __ J-i_ij _J_L ..L
I i f I _ j I

~~L-J~_.__.__.__.___L-J~---'--'-~-'---J._Jl---L-'--+--'--'----t-J---'-----'---'-_._-'-J._J~----'---'-~-'-~f---1~~, .. LI .. ~-,- 1.J ~~~1~-}-

--'--'-'---'--'--'-...l........L--'-...L.....L-J--'-'---l---'-'--l-..L.....L..-J-..L.....L..-l-.L.L-l-L...L--i--JL-L-1-L-L--i--JL-L.+-J'--.L.+-J_l ~.....Ll.~_l_L~--1~-.L.l-l-,

_l___L

...L..1

_l___L

_L_l.

_l___L I I I I I I I I I I I I ' I i I I I I I I I I

_l___L

I I -T I
I .L.i_i_ I I _LL_ I _ I I . I I I

..L..l
I I ---. I

I I I I I I I I I I I I I I I I I I I i I I I I I i I I I I I I I I i I

...L..l I I I I I I I I I I I I I I I I ! I I ! I I l I I I I I l I I l I I l I I l I I l I I : I I I I I l 1 I t I I

...L..l I I I I I I I ' I I I I I I I I ! I I ! I I I I I ! I I ! I I I I I i I I ! I I I I I I I I I I I I I I : I I

..L..l I I I I I I I I i I I I i i I I : : : : : : : : : : : : : I : I I I I I I I ' I I I I I I I I I I I I I I I I 1-' I I I I I I I I I
I I I I I I I I I I I I I I I ' I ...L..1

..L.l.

..L.l.

....LJ. I I I I . I I I I II - '1~111111111111 : : : : : : : : : : : I : : ! : : ! : : ! '. : ! : '. ! : : I I I II I I I I I I I I I I II I I I I I I I I I ...L...L

Control Field (Column 6)

The Control field is used by the assembler to identify an
operation to be performed according to the following codes:

C--Identifies a card as being an assembly control card,
(see Chapter 3).

D--Identifies a deletion card. If console switch 17 is
down, COMMA deletes this card from the object program.
This code provides the user with the ability to delete
coding inserted for debug purposes.

*--Identifies a card as being a message with information
in columns 7-80 to be printed on the object program
listing.

%--Identifies a card as being a message and causes the
printer to slew 2 lines, print the message_from columns
7-80, then slew 2 lines to the next print line. The
% sign and sequence number of the instruction are
inhibited from printing. This option is normally used
to print title lines on the object program listing.

Any code in column 6 other than one of those listed above causes
the assembler to indicate a C in the Flag field on the object
listing, denoting an error.

Repeat Field (Columns 7-8)

The Repeat field is used by the assembler to generate identical
units (words) for the instruction which follows. The field may
be numeric (blank to 99) or symbolic.

If a symbol is used in the Repeat field, it is limited to two
alphabetic characters and must be predefined by an EQU (Equal)
or EQO (Equal Octal) equating the symbol to its numeric value.
Failure to predefine a Repeat field symbol properly results in
an error condition that is not correctable without reassembly.
The assembler is not able to repeat for a symbol not previously
defined.

If a numeric value is shown in this field it causes the assembler
to repeat the instruction contained on the line for the indicated
number of times. For example, to preset a 68-word block of
memory to zero, the DEC 0 instruction would have 67 in the Repeat
field, as shown below:

Q)£1J£~~1Jc:J ~@--------------
- 7 -

Memory Loe. Instruction Sequence Repeat Symbol Opr Operand

6000 000000 4840 67 TI DEC 0
6001 000000
6002 000000

s ~ \

6103 000000
6104 4850

To enter messages in BCD or Teletype codes, the Repeat field
tells how many computer words are required for the message.
For example, to enter the message OUT OF STOCK, the ALF pseudo
instruction would have a 4 in the Repeat field:

Memory Loe. Instruction Sequence Repeat Symbol Opr Operand

5000 466463 3220 4 ALF OUT OF STOC
5001 604626
5002 606263
5003 462342
5004 3221

If the Repeat field is blank on a message-type pseudo-instruction,
the assembler assumes a one-word (three-character) message.

Reference Symbol Field (Columns 10-17)

The Reference Symbol field is used to assign symbols to instruc
tions, data, or pseudo-instruction constants. The symbol repre
sents the relative memory location in which the data will be
located when the program is loaded for execution. Reference
symbols in COMMA are of two types, defined and redefinable.

0 Defined Symbols. The following rules govern the construction
and use of defined symbols:

1. Symbols can vary from one to eight characters in length
and be any combination of alphanumeric and special char
acters, except plus, minus, or conuna.

2. Symbols must contain at least one nonnumeric character
(A-Z or special character except plus, minus, or conuna).

[ID&lf&~~lrc:J ~®--------------
- 8 -

3. Symbols may start at any point within the field. Leading
or imbedded blanks are deleted by the assembler as it
analyzes the Reference Symbol field.

4. Symbols of seven or fewer characters may be prefixed by
the assembler program. (See PFX pseudo-instruction.)

5. A symbol must be defined only once within a source program.
More than one such definition results in an error (code M)
indication by the assembler each time the symbol is used.

o Redefinable Symbols. Symbols consisting exclusively of pound
signs (#) are reserved for special usage. These symbols are
never entered into the assembler symbol table but are kept in
a separate table by the assembler. Redefinable symbols can be
a set of as many as eight pound signs, and any number in a set
may be reused as often as desired in a backward direction.
Each time the symbol is reused, it takes a new value.

Any time a redefinable symbol is named in an Operand field, it
equals the last value assigned to that symbol and cannot be
equated to other values. Redefinable symbols cannot be forced
to odd or even locations and are illegal as operands with some
pseudo-instructions.

The main purpose for redefinable symbols is to reduce the
demand on the symbol table of the assembler and to reduce the
probability of symbol conflict between subroutines and program
segments.

ID£lr£~~lrc::J ~@--------------
- 9 -

Example: Redefinable symbois used in lieu of the asterisk
in tight loops.

REFERENCE

SYMBOL

OP

M CODE OPERAND

5 G 7 8 9

REMARKS c

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 30 39 40 41 42 43 44 45 46 47 48 49 50 51 52 5

M 0 VE I 1N PU 11 T 0 I UT Pl
INPUT I I I I

OU T PUT
I

CSR 6

EV ifo

Modifier Field (Column 18)

The Modifier field is used to tell the assembler to modify an
operation or address. The following codes are used:

A--To set the absolute address in the MIC pseudo
instruction.

D--To place this instruction in an even-numbered location.

I--To indicate more than one instruction or an innnediate
call option, as shown by the following examples:

a. The reference symbol refers to the first instruction
only and generates the three instructions separated
by slashes.

Symbol Modifier Opr 02erand

MOVE I PIC O/LDDIN/STD0UT

[Q)£lr£~~1Jc=J ~@--------------
- 10 -

b. If the instruction is an SBR, it means the subroutine
is to be called immediately (immediate-call option).

Symbol Modifier Opr Operand

SPREAD I SBR BUFRD

M--To indicate multiple or maximum operands, as shown in the
following examples:

a. The assembler will generate one instruction (multiple)
for each operand on the card. The operands must be
separated from each other by slashes.

Symbol Modifier QQr Operand

M BRS FILL/MOVE/READ/END

b. The assembler will choose the higher of two addresses
(maximum) of each operand on the card. The operands
must be separated from each other by commas. The
selection of maximum addresses can be used only with
BSS, EQO, EQU, LOC, or ORG pseudo-instructions.

Symbol Modifier Opr Operand

M ORG END1+1,END2+1

0--To indicate that the symbols in the Operand field are not
to be prefixed.

s--To indicate that the reference symbols are not to be prefixed.

/--To indicate that the reference symbol on this card is to be
ignored. This code can be used to label the rows in a table
for documentation.

X--To indicate an MAC instruction with a partial operand or to
indicate that the operand will be provided at a later time.

)£1J&~~uc:J~©-------------
- 11 -

Op (Operation) Code Field (Columns 19-21)

The mnemonics of the operation or pseudo-operation are specified
in the Operation Code field. These mnemonics indicate the opera
tion to be performed. A blank or an illegal code in this field
is flagged with 0 in the object program listing, and the instruc
tion is replaced with a Halt (008) instruction.

Operand Field (Columns 23~34)

The Operand f~eld is in free-floating format and terminated by
a blank or, if indirect addressing is used, by a comma. Imbedded
blanks are not permitted between elements in an expression; how
ever, blanks are accepted in alphanumeric data-generating pseudo
operations.

An operand may start anywhere between columns 23 and 30, inclusive,
and may extend to the end of the line (column 80).

Double asterisks can be used in the Operand field to indicate a
"blank operand ok" when the operands are to be set at execution
time.

Remarks Field (Columns 35-80)

Remarks may start anywhere after the operand. The only requirement
is that there be at least one blank bet1veen the Operand and RemarkE
fields. Remarks should start in the same column throughout the
program for neatness of documentation on the object program.

Lines containing only remarks can be obtained on the object pro
gram listing by placing an asterisk in the Control field and
writing the information to be documented in columns 7- to 80. Note
that columns 9 and 22 are not used for coding purposes; however,
they are used on remarks cards.

@&lr&u~H~lYc::J ~@ --------------
- 12 -

CARD FORMAT

The format for the source card is sho"Wn in Figure 3.

SEQ. ~ R SYMBOL fM OP OPERAND REMARKS
0 0 0 0 0 0 0 0 000000000 0 0 0 0 0000000000000 OOOOOOOOOOODDDDDDDDODOOOOOODODODOOOOOqoooooooo
I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 18 19 20 21 22 23 24 25 26 21 28 29 JO 31 •2 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 51 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 17 78 79 80

11111 111 111111111 1111 1111111111111 11

2 2 2 2 2 2 2 2 22222222Z 2 2 2 2 2222222222222 22

3 3 3 3 3 3 3 3 333333333 3 3 3 3 3333333333333 J. 3 3 3

4 4 4 4 4 4 4 4 444444444 4 4 4 4 4444444444444 44

5 5 5 5 5 5 5 5 5~5555555 5 5 5 5 5555555555555 55

6 6 6 6 ~ 6 6 6 66666666~ +66 6666666666666 66666666~6666666666666666666666666666666666606

77 77 ~ 7 77 1111111q 717 7 7 77.77777777777 7 7 7 7 7 7 7 7 7 7 ; 7 7 77 7 77 7 7 7 7 77 77 7 7 7 7 7 7 77 7 7 77 77 7 7 7 7 7 7

8 8 8 8 ~ 8 8 8 88888888~ 818 8 8 8888888888888 88

9 9 9 9 ~ 9 9 9 9999999H ~,~ ;0 ;I 9999999999999 9999999999999999999999999D99999999999999999999
1 2 J 4 51 6 7 B q 1011121Jl415161 22 n 21 2s 26 21 2a 29 30 31 22 31 J.1 11 1r. :;; 16 39 40 41 42 43 41 45 4r. 47 4B 49 50 s1 52 53 54 55 li6 51 ~a se 6C 61 62 63 64 65 FG 67 &8 69 10 11 12 7J 14 1s 76 11 18 79 so

Figure 3. Source Card Format

PSEUDO-INSTRUCTIONS

Pseudo-instructions are not executed by the DATANET-30 but are
used by COMMA to generate constants, control the assembly pro
gram, and provide information on the object listing. The COMMA
pse"l.1do-instructions are listed below under their classifications-
data-generating and control--showing the type of function each
performs. The instructions are then described in detail in
alphabetic order by their mnemonics.

Data-Generating Instructions

Data-generating instructions are those which generate constants,
messages, tables, or addresses.

~&lf&~~lf CJ~@---------------
- 13-

o Constants. Each of the following instructions generates
data from the information shown in the Operand field of the
instruction and stores it in a memory location:

DEC Generates one binary word from decimal data.
DDC Generates two binary words from decimal data.
LNK Generates a two-word linkage address.
MAC Generates and defines a macro-instruction.
MIC Generates and defines a micro~instruction.
OCT Assembles one binary word from octal notation.

o Messages. Each of the following instructions generates a
single data word or group of data words as shown in the
Operand field of the instruction and stores the data in
consecutive memory locations:

ALF Assembles three alphanumeric characters per word.
NAL Assembles three alphanumeri.c characters per word

(2's complement)o
TSL Defines Teletype code--left justified--three

characters per word.
T5R Defines Teletype code--right justified--three

characters per word.

o Tables. Processing communication messages usually require
extensive use of tables. The following instructions help
to minimize the work of constructing tables:

APO Adds previous operands to the value in a table.
CDC Constructs constants from CDN's.
CDN Defines elements of a CDC.
FDN Defines a field for MFC.
MFC Defines multiple field constants.
SAP Stops adding previous operands started by APO.

o Address. Accessing locations outside the current memory bank
and indexing any instruction is accomplished only through
indirect addressing. Indirect addressing may be done with no
indexing or with indexing by either the A-, B-, or C-register.
The indication of indexing and the indirect address as an
absolute binary number are contained in one word, which may be
set up by one of the following pseudo-operations:

-~.~~-·~-----------------------

INA Indirect addresses using the A-register.
INB Indirect addresses using the B-register.
INC Indirect addresses using the C-register.
IND Indirect addressing.

Control Instructions

Control instructions provide information to the ~internal
operations of the assembly program. They do not become a part
of the assembled program but tell the assembler how to assign
memory, how to use peripherals during assembly, how to document
the object program listing, and how to control the assembly
program.

o Memory Allocation. Each of the following instructions tells
the assembler how to assign memory locations in the object
program;

BSS Reserves memory blocks.
EQO Equates a symbol to an octal memory address.
EQU Equates a symbol to a decimal memory address.
EVN Advances memory allocation register (MAR) to

next even address.
INH Inhibits movement of a symbol by a double-length

reference.
LDC Resets MAR from an octal number.
ODD Advances MAR to next odd address.
ORG Resets MAR from a decimal number.

o Documentation. Each of the following instructions assists a
progrannner in documenting his program:

EJT Slews listing to next page.
LST Resumes printer listing (after NLS).
NLS Stops printer listing.
SEQ Calls for sequence checking.
TDC Prints table of contents.
TTL Prints title line on each page.

ID£1r£~~1r~~®--------------
15-

• Program. Each of the following instructions tells the
assembler how to control the operation of the object
program:

DMP Dumps the symbol table.
EMD Terminates a macro-definition (MAC).
END Terminates assembly.
LDS Reads symbol table.
NEW Switches assembler to new format.
OCR Writes object file label record.
OLD Switches ass.embler to old format.
PFX Prefixes symbols with a character to make them

unique.
SBR Calls subroutine from a library file.
TCD Transfers program control for execution.

• Peripheral. Unless otherwise instructed, the assembler builds
object programs in card format, with an origin address, word
count, and hash total on each card. However high-speed
storage peripherals are available and are instructed by the
following pseudo-instructions:

DLT
DSA
WOD

Deletes information in updating file procedures.
Addresses a DSU.
Output of the object program is generated in

64-word records with control words.

@&11£~~11~ ~®--------------
- 16 -

Alphabetical Listing

ALPHANUMERIC

ALF

The ALF instruction causes alphanumeric constants of a message
to be entered into the object program. The characters in the
message are converted to BCD and placed in memory locations
determined by the assembly prograin.

The message must start in column 23 of the Operand field and
may continue as far as necessary, through and including column
79. This provides 57 columns (19 three-character words) of
message on one card. The number of three-character words in the
message must be indicated in the Repeat field. If the Repeat
field is blank, the assembler assumes that the message is only
one 3-character word.

Example: The message PLANT CODE NOT IN TABLE may be entered
in the object or assembled program by using the ALF
instruction.

E-<
~

SEQUENCE C ~ OPERAND
OP

Ill a:

4 5 6 7 8 9 10

2 1 2 8

2 1 3

I I I I I._

5 6 7 8

2 1 3 0

Note that a space is indicated by leaving the column blank.

The example appears in memory as follows:

Memory
Location Seguence Instruction Repeat Opr Operand
01505 1212 474321' 8 ALF PIANT CODE

IN TABLE
01506 456360
01507 234624
01510 256045

9

NOT

]£u&~~u~~®--------------

Memory
Location Sequence Instruction Repeat Opr Operand

01511 466360
01512 314560
01513 632122
01514 432560
01515 1213 002130 OCT 2130

Example: To set information starting at an even-numbered
location, use the Modifier field. Set six blanks
in memory.

f....
~

SEQUENCE C ~
[IJ
a:

REFERENCE

SYMBOL

OP

U CODE OPERJ

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

1 2 1 7 2

If the next available memory location is 01505, the example
appears in memory as follows:

Memory
Location Sequence

01506
01507

1217

Instruction Repeat Mod. Opr Operand

606060
606060

2 D ALF

[ID!A\1J/A\~[g1f c:J ~®--------------
- 18 -

ADD PREVIOUS OPERAND

APO

The APO instruction is used to create tables which have a start
ing value and are to be incremented by the values following the
APO instruction. An SAP must be used at the end of the table to
stop adding previous operands.

Example: A table of DSU addresses is to start at 076000 and
be incremented by 20, 40, and 20.

£-o
<l: OP

SEGUENCE C ~
REFERENCE

SYMBOL M CODE OPERAND

"T -
1 I 2 3

1-ii? 0

11 0

1 2 0

1 3 0
0

15 0

Line 110
Line 120
Line 130
Line 140
Line 150

w
a:

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

OCT 76000

AP 0

0 CT 2 0

0 CT

0 CT 2 0
SAP

Add previous operand (76000)
Generates 76020
Generates 76060
Generates 76100
Stop

w&u&~~vc:J ~®--------------
-19 -

BLOCK STARTED BY SYMBOL

BSS

A BSS instruction causes the assembly program to increase the
memory allocation register (MAR) by the number in the Operand
field. This instruction is used to reserve a block of memory
locations in the object program. The Operand field may be
decimal or symbolic. If symbolic, the symbol must be prede
fined: if decimal, the operand is converted to binary by the
assembly program before use. The BSS instruction can be used
as often as needed. A negative decimal operand can be used to
reduce the MAR, in effect equating a block of memory to another
block already defined.

Example:

I-<
c(

SEQUENCE C ~
w
0::

REFERENCE

SYMBOL

OP

M OODE OPERAND

: I 2 3 4 s 6 1 a 9 1 o 11 12 13 14 15 1 s 11 1 a 19 20 21 22 23 24 25 26 21 2a 29 30 31 32 33 34

4 2 2 ORG 144
4 2 3
42 4 ·PR I NT BS S 4 0
4 2 5 I ND EX BS S -3

Line 422 Beginning location. MAR set of 14410 •
Line 423 MAR increased by 28. CRD is equated to 14410,or 2208·

Line 424 MAR increased by 40. PRINT is equated to 172J.o, or 254E
Line 425 MAR decreased by 3. INDEX is equated to 21210,or 324E

MAR is set at 20910,or 3218.

@&v&~~11~~©--------------
- 20-

A D in the Modifier field forces MAR to start the block at the
next even-numbered location.

Example:

f-<
~

SEQUCNC[; C ~
w

REFERENCE OP

SYMBOL M CODE OPERAND

I a: (- ~-;-r;~ s - ·6--+--1------s4-s _._1_0-~1-1 --1 ~2 .--1 3~14~1-s~1-s~1-1 .._1-la ..._1 9------2 0-.---21_2_2-+-2-3..-2~4 .--2----.s .--2 s------21--..2_a ___ 2_9 3-o ...---3-1 ...---3-2 .--3 3------34-+
. --l-· --~--i~-"'--+-+-__.____.___..__.___.___.__..__~~~----------_..__.__....._...___..__..____,.___.._

ORG 1 0 2 4

- .. L_L__i_ _...___t--t-'--f--+_,.,._..~D~__.___~_.____.__+--+-=-L.=....1---+--+-...............____.___._~_.___.__...__...__..___..__.

PRINT

MAR would reserve the first 57 words, 2000g to 2032g;for CRD; and
PRINT would normally start at location 2033g. But, because D is
in the Modifier field, the assembler would force the starting
address to the first even-numbered location, 2034g, increasing
MAR by 58.

Two operands can be used with the BSS instruction when an M is
used in the Modifier field. The assembler selects the operand
with the largest value.

Example:

EIJENCT REFERENCE

SYMBOL

OP
M CODE OPERAND

F
i ' ~' 3 i 4 I 5 . 6) 8 9 10 11 12 13 14 15 16 17 : ~ ~ ~ 22 : ~ : 2: 27 28 29 JO 31 32 33 34

...L..~~;-;--'--t-11---'--'--·....J...-L-.L..-L--'--+-+--'--.l.~f--l--L--L-1...----'-__..L____..l.__..J.__J_...L_..1..__J

- l. L --1 . ~--~....._...__.....___.~__.___.____.___.__--'--~-'--~.1.-.1--_1----L__J_---'-___J__J__J___J___J_-1-..L....J

NOW and IATER having previously been defined as 4 and 10,
respectively, the assembler reserves 10 words.

@&v&~~vc:J ~©--------------
- 21 -

CONDITIONAL CONSTANT

CDC

The CDC instruction is used to generate constants or words in a
constant table. It constructs words from conditions stated in
associated CDN instructions. The operand can be octal and/or
symbolic. CDN and CDC are used to construct tables in which the
value assumed by each element of the table is dependent on
certain conditions. These conditions are given names and are
defined with a CDN instruction.

A CDC instruction is similar to an OCT, with the following
exceptions:

1. All symbols used should be defined by a CDN instruction.
2. All constant elements are octal.
3. All elements are ORed together.

Special tables can be packed to contain only a few conditions
(perhaps only two), each item defined by a CDN instruction. A
word or constant is then generated by a related CDC instruction.
For example, assume that a tape input/output routine requires a
word in the file parameter list as follows:

Bits 1-3
4
5
6
7
8
9

Tape unit number
Rewind on first call
Wait on rewind
Wait for end-of-file indication at close
Rewind at close
Input file
Binary tape

The tape routine would contain the following CDN and CDC
instructions.

[ID£1J&~~lf c:J ~®--------------
- 22 -

The CDC instruction for the file parameter list specifies to
read a binary tape on unit 6, rewind on first call, and rewind
on close. The symbol on the CDN instruction is entered into the
assembler symbol table along with the bit configuration described
and tells the assembler what bits to turn on when the symbol is
called for later in some other operation. The CDC instruction
generates words or constants for the table

Sometimes certain conditions in a table can be combined under
still another name (symbol) to reduce repetition. For instance,
in the above example assume that several words in the file para
meter list require a READTAPE+BINARY configuration. Rather than
repeat READTAPE+BINARY over and over, this bit combination can be
lumped together under still another symbol to reduce the repeti
tion. A CDN instruction would read as follows:

Symbol Operand

COMBO CDN 600 (Combined 400 and 200)

A CDN is not restricted to use with just YES/NO (single-bit)
conditions. For example, assume that bits 3-1 are to be used to
indicate color. CDN could be used as follows:

ITT&lr&~~lrc::J ~@---------------
- 23 -

Symbol Opr Operand

RED CDN 0
GREEN CDN 1
BLUE CDN 2
YELLOW CDN 3
PURPLE CDN 4
BIA CK CDN 5

It is not really necessary to define a condition which repre
sents zeros in the field; however, it is possible and assists
in documentation. In the example, if no colors were specified,
the result would be RED, so it is not necessary to define RED;
but calling for RED in an operand gives more positive
documentation.

[IDfu1Jfu~(g1Jc::J ~©--------------
-24 -

CONDITION DEFINITION

CDN

The CDN instruction is used to construct a special kind of
packed table, one in which each item can represent one of only
a few conditions. It is used with the conditional constant
(CDC) instruction to describe the bit configuration to be pre
sented by the name (symbol). The instruction does not generate
data but tells the assembly what bits to turn on when the
symbol is called by some other pseudo-instruction later in the
program. The operand must be octal, and the instruction must
have a name in the symbol field.

Examples for the use of the CDN instruction are included in
those for CDC.

@rolJro~~lJc=J ~®--------------
- 25 -

DECIMAL

DEC

The DEC instruction places the binary equivalent of a decimal
constant in the object program. The constant is assigned a
memory location determined by the assembly program. The operand
portion of the constant can be symbolic or decimal. If symbolic,
at least one character nrust be used other than 0-9, plus, or minus.

If no sign is present, the number is assumed to be positive. A
minus sign, specifying a negative number, results in the 2's com
plement of the nurnber being placed in memory. Leading zeros are
ignored and the number right justified.

Example(positive numbers):

OP
M CODE OPERAND

APPEARS IN
MEMORY,

5 I 6 I 7

:is 11 1a 19 20 21 22 23 24 25 26 21 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

D EC 5 0 0 0 0 0 51

DEC 7373 8 2200121

Example (negative nurnbers):

OP
M CODE OPERAND

I I
I I I I I

APPEARS IN
MEMORY I

5 I 6 I 7

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

DEC -1 777777 1
...___.__.-+;

~~P c - 1 9 7 7 7 7 5 5
1

DEC - 5 7 7 717 7 31

E C - 3 3 7 7 717 3 7 I

DEC -73738 557766

@rolJro~~lJc::J ~@---------------
- 26-

Example (symbolic notation): A decimal constant can be
expressed in the Operand field as a symbol or as
sums and/or differences of symbols or numbers.
These symbols may represent memory cells or be
defined by an EQU or EQO.

SEQUENCE c

E-<
<t:
w
0..
w

REFERENCE

SYMBOL
M

OP

CODE OPERAND

0::
t-1--y----.-..-+-4--..::.--l--t----.r-..--...---,--~-.-,-~r-l-r-.--t--t--.,--r-r-r-.--r--r-r-i;-r--r--""t

~ 1 J~ 3 4 5 6 7 8 9 10 11 12 13 1_4 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

-1. I
DEC SYN TX

SY NT X E U 14 3

Example: Set a 12-word block in memory to 1 (uses the
Repeat field option).

REFCHENCC
REMARKS OR CONTINUATION OF OPE

SYMBOL M CODC OPEHANf1 APPEARS I~ MEMORY • I I I LOCA,TION •
5 I 6 1 7 I s I 9 I 10 I 11 I 12 I 13 I

.__.._~...L-+-+--'-...L~J._J.~_l_l_LJ ...L J. i J. ...l.. i J. J. J. i _j_ ...L o_J_ o J.o l oJ. <1_ 1
1

J. J. l i i
1

...Li _J_ _J_ ...L ...L l1i1i4l4J. J. l
_[L ...L _[_I _l L _[_ _l _l_ ...L J. _[_ J. _L _j_ ~ I ili ...L _l_ I ...l.. _[_ _l__j_ J. _j_ _J_ _j_ l J.L I ...L ...l.. I

__J_

__J_

iID&Tf &~~Tf c::J ~@---------------
-27 -

DOUBIE-LENGTH DECIMAL

DDC

DDC, like DEC, is used to enter a decimal constant in the object
program. This constant is assigned two sequential memory loca
tions, starting with the first even-numbered location available.
The allowable number range on a DDC is -34,359,738,367 to
+34,359,738,367.

Example:

OP

M CODE OPERAND
1st Word
Evrn iLor. I 7

2nd WorJEMARKs oR

8
0dd Loe 1

T 9 I 10

lb 1i 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 5

DD c 12 o ooo 00 1 000 1014

D C 7 8 6 4 0 0 0 0 11 1 0 0 0 I 0 0 0 1

D D C - 2 4 7 7 71 7 7 71 I 7 7 7 I 7 5 01

ml&u&~~1Fc::J ~® ----------------
- 28-

DELETE

DLT

The DLT instruction causes card images to be deleted from master
files when updating existing current files. If a DLT is used in
any program other than an update procedure, it will be ignored by
the assembler.

As an instruction in an update procedure program, a DLT deletes
either a single card (record) or a block of cards (records) as
identified by their sequence number (first five characters of a
record). If only one record is to be deleted, the Operand field
is left blank; and the sequence number of the item to be deleted
is shown in the Sequence field. If a block of cards is to be
deleted, the Operand field must show the sequence number of the
last item to be deleted.

Example (for a single-record delete):

Sequence Symbol Opr Operand

1115 DLT

Example (for a block delete):

Sequence Symbol Opr Operand

1115 DLT 1139

w&u£~~v~~©---------------------------------
- 29 -

DUMP SYMBOL TABLES

DMP

The DMP instruction causes the assembler to dump every symbol
between the parameter addresses shown in the Operand field.
The operand may be either decimal or symbolic. If decimal, the
operand is converted to binary; if symbolic, the operand must be
predefined.

Exam12le: Dump all symbols whose addresses .are in the common
data bank.

Symbol Opr Operand

DUMP1Fl DMP 0,512

Example: Dump all symbols whose addresses fall between the
addresses assigned to the two symbols ·HERE and
THERE.

Symbol Opr Operand

DUMP1F2 DMP HERE,THERE

The DMP instruction does not dump symbols defined by CDN
instructions or symbols which have been modified.

All other symbols are dumped (including prefixed symbols)
together with their address and control bits. The first six
columns of the Symbol field are written on each record of
the symbol table file for identification.

LID&u£~~1J~~@-------------
- 30 -

DISC STORAGE ADDRESS

DSA

The DSA pseudo-instruction allows the assembler to set a beginning
and ending address (range) in the DSU address table to be used in
accessing the COIL files during phase 2 of the assembly. (See
"COIL Files, p. 96.)

When several files are stored as disc storage records, the
assembler must be given the addresses of the files in order to
access them when called upon by the source program. The addresses
can vary from one assembly to another, and the DSA pseudo-instruc
tion enables the programmer to specify the addresses to be used.

The programmer specifies on the DSA the file number in the Repeat
field and the octal code configuration for the beginning and end
ing frame address (CW3 of the PRF instruction) in the Operand
field. The two addresses must be separated by a comma.

Example:

Repeat Symbol Mod. Operand

3 DSA 104450,176240

More than one assembly file may be required in the assembly, in
which case an M in the Modifier field tells the assembler to
continue analyzing pairs of addresses (separated by slashes) until
it finds a pair not terminated by a slash in the Operand field.
Each time a slash is detected, the assembler adds 1 to the file
number shown in the Repeat field. If the assembly file numbers
are not in consecutive sequence in their assignment of numbers,
they cannot be specified on the same DSA instruction but will
require separate DSA's.

Example:

Repeat Mod. Operand

3 M DSA 104450,176240/442006,544264

0&1r&~~1J~ :fil@--------------
- 31 -

The addresses shown in the Operand field must show the starting
address and the ending address. The two addresses are separated
from each other by a comma and/or one or more blanks. Addresses
may be either octal or symbolic. If symbolic, they must be pre
viously defined by a CDN command.

If a DSU is used for COIL file 9, it is not necessary to provide
addresses with a DSA, because the assembler automatically uses
the addresses assigned to COIL file 0.

- 32 -

EJECT PRINTER PAPER

EJT

The EJT instruction causes the printer to slew to the top of the
next page after printing the line causing the slew.

Normally, the assembly program prints 54 lin2s per page and then
ejects to the top of the next page. When the EJT instruction is
encountered, the line is printed, the line count is reset, and
the paper is irrnnediately slewed to the top (first printing line)
of the next page.

~&u&~~v~~®---------------~---------------
- 33 -

END OF MACRO DEFINITION

EMD

The EMD instruction causes the assembly program to terminate
the macro-definition.

@&u&~~uCJ~@-------------
-34 -

END OF PROGRAM

END

The END instruction causes the assembly program to generate an
instruction transferring control to the location specified in
the Operand field upon execution of the object program. The
operand may be decimal or symbolic. If decimal, the operand
is converted to binary; if symbolic, the symbol must be
predefined.

The END instruction signifies an end of program and termination
of the assembly. This instruction may be used only once in a
source program and must be the last instruction to be executed
by the program. If no END instruction is used, an error comment
results, and the assembler terminates the program by an end-of
deck condition.

fili&u&~~vc:J ~®-----------------
- 35 -

EQUALS OCTAL

EQO

The EQO instruction equates a new symbol to a memory location
or to an old symbol already known to the assembly program. The
operand (octal or symbolic) indicates the specific memory loca
tion to be used. The instruction does not affect the MAR; thus,
it may be used as often as necessary and at any point within the
source program without disturbing the memory assignment sequence.
If the operand is symbolic, the symbol must be predefined.
Leading zeros in the Operand field are ignored.

Example:

Symbol Mod. Operand

1. CRD2
2. AREA
3. SAME

Line 1
Line 2

Line 3

M

EQO
EQO
EQO

400
PRINT
00512,START

Symbol CRD2 address is assigned to octal location 400.
Symbol AREA address is assigned to a predefined location
called PRINT.

Leading zeros are ignored; symbol SAME address is
assigned to octal location 512 or to START, whichever
is greater.

Multiple operands may also be used with EQO to select the larger
of two operands, if preceded by an M in the Modifier field.

@&u&~~u~~@--~---------------------------
- 36 -

EQUALS DECIMAL

EQU

The EQU instruction is identical with EQO, except that the
Operand field must be decimal or symbolic.

Example:

Symbol Operand

CRD2 EQU 256

Symbol CRD2 address is assigned to decimal location 256 (octal
400). MAR is not affected.

Multiple operands may also be used with EQU to select the larger
of two operands if preceded by an M in the Modifier field.

w&u&~~v~~©-------------------------------
- 37 -

EVEN LOCATION

EVN

The EVN instruction causes the symbol named in the Operand field
to be forced to an even-numbered location in memory and must
precede the instruction defining the symbol. The MAR is increased
by 1 or 2, dependent upon its status.

Example:

Symbol

MASTER
EVN
DEC

Operand

MASTER
0

EVN forces MASTER symbol to be assigned to the next even-numbered
location in memory.

w&uro~~u~~@--------------------~---------------
-38 -

FIELD DEFINITION

FDN

The FDN instruction does not generate data; it is used to describe
one of the parameters to be placed in a table by an associated
MFC instruction. An FDN tells the assembly program how to inter
pret data on following MFC instructions and where to put that data.

Fields of a table are numbered from 1-31 inclusive, written in the
Repeat field on the coding sheet. (The FDN instruction cannot be
used to generate repeated instructions such as DEC and OCT.) The
parameter-type literals in columns 10-12 tell how the field should
be interpreted. The Operand field must contain the number of the
leftmost bit position to be occupied by the field (bit 18 on the
first coding line in the following example), followed by a comma
or a space, followed by the rightmost bit position (bit 14 on the
first coding line).

Example: For a table consisting of one word per Teletype
station and each station requiring four fields of
data, one FDN instruction is made for each field.

REFERENCE

SYMBOL

OP

M CODE OPERAND

,-- Defined as
• l 5 6 7 ~ 9 l 0 11 12 13 14 1 5 16 17 1 B 19 20 21 22 23 24 25 26 27 28 29 30 31 3
-~-~-"--'---'--'--'---L-..-'-~-'--L-i~-+.-'--'--+--t-.L-.1~__,_--4-__.__._-A.-...._

FD N 18 1 4 -Line number -.l-·-+--+-&..-1,. --"""'~~.L--JL-......L---L---1--4--+-=:...i.=.....i...;:;...;.4---1~~.L..L...--'---'--......__...___..____._

.-L-+-J--.J.~2 . .J--l~T~S~L_J__,_.L-L_._-1-_._F~D__._N-+-~l_._2~~7_._-'-'.__._-L-~---call-directing

3 A L F E D N 6 code (CDC)
___L_~~~--+'~-'--1---'--'--~--+-'--1--'--+-+-~--'-__,__.__.__._~~"'

4 S y M F D N 13 1 3 ID code
L~~-f-._._._~_.__.L..-J-_._-4-+-'--"--+--+-'"-L-L-L-_..___._.._~~~Line type (full

or half)

mi&uL~?J~=rr CJ~©--------------------
- 39 -

INDIRECT ADDRESS INDEXED BY A-REGISTER

INA

The INA instruction is used to generate a constant which is a
memory address. When used as an indirect address, the contents
of the A-register are added to the address portion of the
instruction.

Example:

Memory
Location Instruction Symbol Opr Operand

00177 130000 Bl INA MEMSIZE-KSYM-KSYM
00200 134000 B2 INA MEMSIZE-KSYM
00201 100201 XARDFN INA ·k

MEMSIZE CDN 40000
KSYM EQO 4000

llil&u&~~vCJ ~© ------------------
-40 -

INDIRECT ADDRESS INDEXED BY B-REGISTER

INB

The INB instruction is identical with INA, except that the
B-register is used as an index register.

Example:

Memory
Location

00411

Instruction Symbol Opr Operand

200411 XBRFDN INB *

~u&~~uc::J~®-------------
- 41 -

INDIRECT ADDRESS INDEXED BY C-REGISTER

INC

The INC instruction is identical with INA, except that the
C-register is used as an index register.

Example:

Memory
Location

00473

Instruction Symbol Opr Operand

300473 XCRFDN INC *

@&lf&~~v~ ~®-------------
- 42 -

INDIRECT ADDRESS

IND

The IND instruction is used to generate a constant that is a
memory address. The operand may be a number, a symbol, or a
sum-and-difference expression. If numeric, it is assumed to
be a decimal number and is converted to binary. If symbolic,
the address of the symbol is used.

Memory Address Instruction Symbol Opr Operand

05304 MNEMONIC
2 (

05547 LAS TOP

os26oo 000243 IND LASTOP-

2 (2
MNEMONIC

02234 002234 IND CHANGE

ID&u~~~u~~®--------------------------------------
- 43-

INHIBIT

INH

The INH instruction inhibits the assembly's freedom to move a
symbol. Whenever the assembly finds a symbol in the operand of
a double-length instruction (for example, LDD, BRS) the assembly
usually forces that symbol to the next available even location.
When the programmer does not want the symbol to be placed in an
even location, he places that symbol in the Operand field of the
INH instruction.

Example:

Symbol Opr Operand

PRINT LOC 1000
INH XYZ
LDD XYZ

XYZ LDC

Symbol XYZ will be at memory location lOOlg, not forced to the
next even location.

@&u£~[g1J~~®-------------

LOAD SYMBOL TABLE

LDS

The LDS instruction causes the assembler to load every symbol
into memory addresses for the parameters shown in the Operand
field. The operands may be either numeric or symbolic. If
symbolic, the symbol must have been previously defined.

The assembler accepts only those records from the file whose
identification matches that on the LDS card. The first six
columns of the Symbol field must contain the identification
written on each record of the symbol table file (see DMP).

If prefixing is in effect when the LDS card is executed, symbols
loaded from the symbol table file are prefixed.

Symbols should not be called from the file if they have been
previously referenced. In this case, they will be set up as
multidefined symbols on the object program listing.

i&u&~~uc:J ~®-------------------
-45 -

SUBROUTINE LINK

LNK

The LNK instruction generates two words; the first is zero, and
the second is the address specified in the Operand field. The
constant is assigned two sequential memory locations, starting
with the first even-numbered location available.

Example: A subroutine, whose calling name will be READ,
starts at location READl, (1000s).

Symbol Operand

READ LNK READl

Appears in Memory

Location Instruction

01442
01443

000000
001000

Unless told to do otherwise, the assembler forces the LNK
pseudo-instruction to an even location. Note that a DDC
pseudo-instruction would accomplish the same thing.

Example: A subroutine identical to the one above.

Symbol Operand

READ DDC READl

[IDrolJ&~~vCJ ~@--------------
- 46 -

LOCATION IN OCTAL

LOC

The LOC instruction performs the same functions as an ORG;
however, the contents of the Operand field must be an octal
number or be symbolic. The assembly program ignores leading
zeros. The MAR is reset in the same way as with an ORG pseudo
instruction.

Example:

Opr Operand

LOC 1000

Multiple operands may also be used with the LOC instruction to
select the larger of two arguments, if preceeded by an M in the
Modifier field.

~l~u&?J~lYCJ ~© ----------------------
- 47-

LIST

LST

If the object program has been inhibited from listing by an
NLS (No List) instruction, listing can be resumed with an LST
instruction.

w&u&~~v~~@------------------------------------
- 48 -

MACRO PROGRAMMING

MAC

The MAC pseudo-instruction provides macro capability to COMMA
and is useful to a programmer where defined macros are needed.
The MAC instruction saves the programmer from having to write
in-hand codes repetitively. The operands can be provided at
definition time or calling time or both. Each MAC instruction
requires two basic elements:

1. Defining the macro (definition time)
2. Calling the macro (calling time)

DEFINING A MACRO. There are three basic parts to a macro
definition, as follows:

1. Header: MAC--one card
2. Body: one or more instruction cards
3. End: EMD--one card

All cards following the header are considered to be part of the
definition until the EMD card appears.

Header. The Symbol field of a MAC instruction must contain the
name by which the programmer will call the macro later. The
symbol can be any valid 3-character alphabetic or alphanumeric
configuration in columns 10-12, providing it is not the same as
any machine instruction; pseudo-instruction; or shift, circulate,
or subtract macro-instruction.

Body. Instructions within the body of the definition cannot be
labeled with ordinary symbols. They can, however, be redefinable.
Using redefinable symbols requires caution, since the symbol must
be redefined each time the macro is called.

Macro-definitions can contain any machine instruction and the
following pseudo-instructions:

CDC
DEC
DDC
INA
INB

INC
IND
LNK
OCT

I·Lt~L~1J~uc:J ~©---------------------
- 49 -

No other pseudo-instructions· are permitted, nor are- shift,
circulate, or subtract macro-instructions.

One MAC cannot call on another MAC.

Each instruction within the definition may contain a complete
operand, a partial operand, or no operand:

o If the complete operand is provided at definition time,
the Modifier field should be left blank.

o If only a partial operand is provided at definition
time, the partial operand should be written normally
and the Modifier field should show an X.

o If no operand is provided at definition time, the Modifier
field should show an X, and the operand must contain a
double asterisk. The double asterisk denotes "blank
operand ok."

End. Definition time is terminated by the pseudo-instruction
EMD (denoting end-of-macro-definition time). No other para
meters are needed on the EMD card.

CALLING A MACRO. A macro is called with the symbol assigned
to it in the macro definition. The Operand field must contain
an operand for each X shown in the Modifier field during
definition time, and each operand must be in the same sequence.
Each operand must be terminated by a comma or a blank, depending
on whether or not indirect addressing is desired. Operands must
be separated by not more than eight blanks.

Example: The following is a subroutine call which can be
replaced by a macro:

OP REMARKS OH CONTINUATION OF OPERAND

CODE OPERAND

The calling sequence is to be defined as a macro, with parameters t
be provided at call time. First, the macro must be defined as follo

[ID£1J£~~1YCJ ~®---------------
- 50 -

REFERENCE OP

SYMBOi. M CODE OPERAND

10 11 12 13 14 15 1 6 17 1 B 19 20 21 22 2 3 24 25 26 27 28 29 30 31 32 33 34

PC K AC I I I I

BR s P.A C K

x I,N 1A ·k .. k

x IN B ·k ,.,

DEC .. k •k

EM D

Now call on the macro to pack 32 words from INPUT to OUTPUT:

OP
ODE 0PERP..tJL'• I

· 5 I s
t .'U 11 11 23 14 25 1612118 29 ·;oo 31 J1 33 34 35 36 37 38 _J!j 4G

BC K Ir Ni Ei_ U, T, _.tl.9_ U T P U T , 3 2 _L_l_

I I I

Or 20 words can be moved from CARD+7 to HDLTITLE:

OP
M CODE OPERAND

5 6 7

l i 8 1 g 20 21 22 23 24 25 26 27 28 29 30 J 1 32 33 34 35 36 37 38 39 40 41 4:i

T 1 PC K CARD+7 'HD LTITLE ,20 1
- - :.i I
.+-.+-.L--~f-+__.__.__._~--L-~__.__.__.___._~--~~-' I I I

Macro-definitions are stored in the symbol table of the assembler,
reducing the total number of symbols permitted. A moderate number
of macros does not seriously affect the number of symbols permitted,
because the definitions are stored as binary control words and not
as card images.

ffi;'A\1f:~,~[!el7c:JZ<{Q\--------------------
,S, L'""c.. l.J l.r..i J\; \..£ LJ cQ} ~

-51 -

MULTIFIELD CONSTANT

MFC

The MFC instruction permits packing several fields into one word
of memory by converting, shifting, and ORing the information
shown by its related FDN instruction. The parameters are listed
in the Operand field in field number sequence as specified by
the FDN. Field 1 must appear as the first parameter, then field
2, etc. The parameters (fields) are separated from each other
by commas or up to eight spaces, as desired. The last parameter
must be followed by a blank.

Example 1: The FDN instruction previously defined field 1
to be a line number; field 2, a call directing
code; field 3, an ID code; and field 4, a line
type.

Opr Operand

MFC 17,C,K,FULL
MFC 3,Y,5,HALF
MFC 21,2,A,HALF

Example 2: To extend the example used above, suppose that
each station requires another word containing
three parameters--for example, transmitter start
code, line number for alternate routing, and CDC
for alternate routing. Instead of putting this
control word into a separate column, the program
mer may desire to put both words for each station
together. Thus, two sets of field definitions
are needed. The second set can be defined by
simply using other field numbers_, as shown below.

Field definitions for first word, each station:

Repeat Symbol Opr Operand

1 DEC FDN 18,14 Line number
2 TSL FDN 12,7 CDC, Primary routing
3 ALF FDN 6,1 Computer ID code
4 SYM FDN 13,13 Line type

w&u&~~u~~©----------------~---------------
- 52 -

Field definitions for second word, each station:

Repeat Symbol Opr Operand

5 T5L FDN 12,7 Transmitter stop code
6 DEC FDN 5,1 Line number, alternate route
7 T5L FDN 18,13 CDC, alternate route

The programmer may now use either set of field definitions.
Obviously, some way is needed to specify on each MFC card which
set of field definitions to use. If the set to be used starts
with field 1, no indication is needed; the assembler automatically
starts with field 1. If the set to be used starts with some other
field number, the programmer must place the number of the first
field in the set into the Repeat field (MFC cards cannot be
repeated). Below is an extension of example 2, in which every
station has two words adjacent to each other in the table:

5

5

MFC
MFC
MFC
MFC

17,C,K,FULL
L,3 ,U
3,Y,S,FULL
B,13,T

CHICAGO

NEW YORK

Note that there is nothing in the FDN cards which tells the
assembler that fields 1-4 constitute one set and fields 5-7
another. It is the number of parameters on the MFC card which
determines the size of this set.

The programmer may err and provide a field too big to fit into
the number of bits specified on the FDN cards. In the example
above, only 5 bits are provided for line number. If the pro
grammer calls for a line number greater than 31 (largest possible
in 5 bits) the assembler chops off all high-order bits in the
oversize number and flags the word as an error.

An MFC instruction cannot be modified for multiple operands
(Modifier field, column 18). If Mis used, the result is a bad
assembiy and the error is not flagged.

)&u&~~v~~©----------------
- 53 -

MICRO PROGRAMMING

MIC

The MIC instruction is used to set the operation bits of the
assembled instruction to any desired configuration. The operands
can be decimal or symbolic. The first operand forms a TTbaseTT
with which the second operand is combined. The first operand may
be an octal number or a numeric/symbolic sum-and-difference
expression. If it is an expression, the elements are ORed together
The first operand must be followed by a space, a comma, or both.
A comma in this position does not cause indirect addressing.

The second operand is an address which is calculated as a unit and
then ORed together with the base described by the first operand.
The second operand may be a decimal number, a symbol, or a sum
and-difference expression. If the second operand is an expression,
the elements are added. If the second operand is terminated by a
comma, it causes indirect addressing.

After the second operand has been calculated, if the Modifier
field contains an A (denoting an absolute address), the address
will be in absolute binary. If, however, the Modifier field is
blank, the address will be converted to a relative address
(program-bank, common-data-bank, or channel table) and will then
be ORed with the base provided.

Example: Construct a word containing bits 17 and 18 and the
address READ+l8.

Opr Operand

MIC 600000,READ+l8

Example: Construct a word containing bits 17 and 18 and the
address READ+l8 in absolute binary form.

M Q:QE__ Operand

A MIC 600000,READ+l8

[ID£u&~~v~~®--------------
- 54-

NEGATIVE ALPHANUMERIC

NAL

The NAL instruction is used to enter the 2's complement of an
alphanumeri~ constant in the object program. The characters
in the message are converted and placed in memory locations
determined by the assembly program. The message must start in
column 23 of the Operand field and may continue as far as neces
sary, through and including column 79. The number of 3-character
words in the message must be indicated in the Repeat field. If
the Repeat field is blank, the assembly assumes that the message
is only one 3-character word.

This instruction is used to generate constants in tables where
an ADD command will be used for a three-way compare.

Example: The 2's complement of codes Al4, AB2, and ABF are to
be placed in the object program.

Repeat Operand

3 NAL Al4AB2ABF

- 55 -

NEW FORMAT

NEW

The NEW pseudo-instruction is a format control card and causes
the assembler to switch from old format to new. It must be the
last card of the old-format group of data cards and be punched
NEW in columns 8-10 (Operation Code field of old format). See
Chapter 3.

[IDrolJ&~~vc:J ~® --------------
- 56 -

NO LIST

NLS

The NLS instruction stops listing of the object program. To
resume listing, an LST instruction must be issued.

~u£~~uc::J~©-------------
- 57 -

OBJECT CONTROL RECORD

OCR

The OCR instruction is used to create identifying label records
on the object program (file 7). OCR causes th2 operand of the
instruction to be written on the object program file, assisting
the user in locating a particular program in an operating system.
There is no limit to the number of labels a programmer can make
to a file. Each label, however, must start with a TCD instruc
tion. Both special labels and standard labels can be generated
as shown in the following examples.

Example 1 (standard labels): In the following example a
standard label is generated for the operand. An S

Symbol

s

Example 2

Symbol

E

in column 10 of the Symbol field causes the assembler
to generate a standard four-word label--three BCD
words and the address of the operand in the fourth
word.

Opr Operand Appears in Memory

TCD
OCR PHOENIX 473046 PHO

254531 ENI
676060 Xl616
003500 Operand address

(special labels): To write a special label, the
programmer lists consecutive OCR's containing what
ever information he desires. An E in column 10 of
the Symbol field is required for the last OCR to
show the end of the label.

Opr Operand Appears in Memory

TCD START
OCR 707000 707000
OCR 002000 002000 Location to go to
OCR 212223 212223 Label ABC
OCR 242526 242526 Label DEF

IDJ&Tr&~~v~ :fil®-------------
- 58 -

OCTAL

OCT

The OCT instruction enters octal constants in the object
program. The octal number specified in the Operand field may
be numeric, symbolic, or a sum-and-difference expression of
numerics and/or symbols. Octal constants are used primarily
for establishing particular bit configurations in memory.
When a numeric operand is used, the number is interpreted by
the assembler as octal and must not contain any digits greater
than 7. All octal numbers are right justified by the assembler.
Leading zeros in the Operand field are ignored and, therefore,
need not be supplied. A leading minus in the operand sets the
sign bit of the constant to 1.

Example: Set OCT 77 in location READl.

Symbol Operand Appears in memory

READl OCT 77 000077

Example: To set various octal instructions in sequential
locations, use the Modifier field to indicate
multiple operands.

Sequence Symbol Operand

1932 M OCT 17/21/13/200

Appears in
Location
01001
01002
01003
01004

memory
Instruction
000017
000021
000013
000200

&u&~~v~~©---------------------------------
- 59 -

ODD LOCATION

ODD

The ODD instruction causes the symbol named in the Operand field
to be forced to an odd-numbered location in memory and must precede
the instruction defining the symbol. The MAR is increased by 1 or
2, dependent upon the status of MAR.

Example:

Symbol

PRINT
ODD
DEC

Operand

PRINT
10

ODD forces PRINT to be assigned to next odd-numbered location
in memory.

[ID£1J&~~1JCJ ~@--------------
- 60 -

OLD FORMAT

OLD

The OLD pseudo-instruction is a format control card and causes
the assembler to switch from new format to old. It must be the
first card of an old-format group of data cards and be punched
OLD in columns 19-20. (See Chapter 3.)

Al'".A' ~~~~VCJ Z2~ --------------------
,.'\..., u 1....-..J~'--L!::J Li ®~

- 61 -

ORIGIN

ORG

The ORG instruction controls the initial memory assignment per
formed by the assembly program. When an ORG instruction is
encountered, the assembly program uses the contents of the Operand
field to reset an internal counter in the assembly program referre
to as the "memory allocation register" (MAR). Normally, the MAR
is increased by 1 for each instruction encountered.

If no ORG is included, the assembly of the program automatically
begins at location 00000. Any number of ORG instructions can be
used in one assembly.

If the operand of the ORG instruction is decimal, it is converted
to binary by the program before being used. If the operand is
symbolic, the symbol must be predefined before being used. A
symbol is defined by placing its name in the Reference Symbol
field (columns 10-17) once, and only once, in a given program.
The assembly ignores all fields but the Operand field on an ORG
instruction.

Example:

Symbol Opr Operand

1. ORG 1024
2. NEXTCARD TRA S,Z
3. BOD NEXTCARD
4. LDZ CHANGEMEM

Line 1 Assembly of object program starts at location 20003
(102410). MAR is set to location 20003·

Line 2 MAR is increased by 1
Line 3 MAR is increased by 1
Line 4 MAR is increased by 1

An M in the Modifier field instructs the assembler to choose the
higher of two addresses. For example, suppose two overlays use
the same memory area and both ref er to a table which must be kept
in memory at all times. The table is to be placed at the end of
the longest overlay, but it is not known which overlay is the
longest. A name can then be assigned to the last location in each
overlay, such as ENDl and END2. Now the programmer can origin the
table as follows:

~&u£~~u~~@----------------~~----------------~
- 62 -

Mod. Operand

M ORG END1+1,END2+1

An asterisk operand can also be used, since one can choose the
highest of any number of addresses. For example, see the coding
below for a program segment that is to be started at A, B, C, or
409610 , whichever is highest.

Mod.

M
M
M

ORG
ORG
ORG

Operand

A,B
·k ,c
*,4096

1~1f£~~1Jc:J ~®----------------
- 63 -

PREFIX

PFX

The PFX instruction is used to make all symbols within a program
segment uniquely different from symbols used in other segments.
When the assembler encounters a PFX instruction, it automatically
attaches the character shown in column 10 of the Reference Symbol
field to the front of all symbols which follow on the coding
sheet until it is replaced by another PFX instruction. Prefix
characters are not given in these instances:

1. Symbols containing eight characters.
2. Redefinable symbols (#).
3. Symbols in the Reference Symbol or Operand fields which

contain an S or 0 in the Modifier field.

Prefixing may be started, stopped, or changed as often as desired.
Prefixing is stopped by any PFX instruction containing either a
zero or a blank in column 10.

@ruu&~~uCJ ~©-------------
- 64 -

STOP ADDING PREVIOUS OPERAND

SAP

The SAP pseudo instruction is used with APO to stop adding
previous operands.

1£u&~~1f ~ ~©-----------------
- 65-

SUBROUTINE CALL

SBR

Subroutines are called from a library file with an SBR instruc
tion. The Reference Symbol field of the SBR instruction must
contain the identification data (label), left-justified, for the
subroutine. The symbol for the label must exactly match the
label on the library file, character by character; for the
assembler does only a double-word compare, with no analysis of
characters.

The assembler adds the request for a subroutine to its request
list but does not immediately call the subroutine from the
library. A maximum of 15 subroutines may be requested at any
one time. When the assembler reaches the END instruction of
the source program, it calls all requested subroutines which
have not yet been called and assembles them at the end of the
program.

If it is necessary to call a subroutine before the end of the
source program, the immediate-call option (I in the Modifier
field) causes the assembler to call all subroutines from the
request list table. Calling in subroutines indiscriminately
during a program causes the subroutine library file to pass
from the beginning every time a request for immediate call
is given.

Each time a request exercising the immediate-call option is
given, the request list table is cleared; and 15 more subroutines
may be requested through the table.

©ruv&~~v~ ~©--------------
- 66 -

RESET SEQUENCE COUNTER

SEQ

The SEQ instruction causes the sequence counter of the assembler
to be reset to zero and the sequence nt.nnbers of the source pro
gram to be checked. The SEQ pseudo-instruction may be used as
of ten as desired in a source program, and each time it is used
the sequence counter is reset to zero. SEQ is most useful when
each subroutine of a program contains its own set of sequence
numbers.

m&uro~~~~~@-----------------------------------
- 67 -

TELETYPE LEFT-JUSTIFIED

TSL

The TSL instruction stores three characters per word of a
Teletype five-level code message, left-justified (with start
bit). The number of 3-character words in the message must be
indicated in the Repeat field to a limit of 19 words. If the
Repeat field is blank, the assembler assumes the message is
only one 3-character word. ·

Example:

REFERENCE

SYMBOL

OP
M CODE OPERAND

5 6 7 8

6 l 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 ~

I

TSL YOU ARE NOW 0
1

N
1

1I
1

N
1

TIE
1

R
1

CIE
1

P
1

TI 8
I I I I

@~Li&~~~~~@--------------------------------
- 68-

TELETYPE RIGHT-JUSTIFIED

T5R

The T5R instruction stores three characters per word of a Tele
type five-level code message, right-justified (no start bit).
The three high-order bits of the word are zero. The number of
3-character words in the message must be indicated in the Repeat
field to a limit of 19 words. If the Repeat field is blank,
the assembler assumes the message is only one 3-character word.

Example:

REFERENCE

SYMBOL

OP
M CODE OPERAND

5 6 7

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 4

7 T 5 R RE SE ND MSG N 0 S EV E1N
I I

.J.-4---JL-4-+~-'--L-~~,___.-+-+--'--'--t-+-...___,___.__.__,_~_.__._..._..__.--.~~~-1 I I ~I__._ ___ _,_

l&u&?J~uc:J ~@-----------------
- 69-

TRANSFER CONTROL

TCD

The TCD instruction generates a command which causes a program
loader to transfer to the location specified in the Operand field.
It is used only when a prograrmner desires to execute a segment of
the program before loading is complete and should be the last
instruction of a program segment. When the program is loaded for
execution, the TCD directs the assembler to the starting location
of the program to be executed. The TCD should not be used in
place of an END instruction for the end of a source program,
because the assembler looks for additional source program instruc
tions following a TCD.

The operand of a TCD instruction may be decimal or symbolic. If
decimal, the operand is converted to binary; if symbolic, the
symbol must be predefined. A TCD instruction may be used as
often as necessary in a source program, since it does not affect
the MAR.

[ID&V&~~v~~@--------------
- 70-

TABLE OF CONTENTS

TOC

The TOC pseudo-instruction provides a means of obtaining a contents
listing of sections of the source program. Columns 22-78 should
be used for descriptive information of the portion of the program
where the TOC is used. This information is printed at the end
of the object listing with the page number where the TOC was
located in the listing. The contents listing can be detached and
placed in front of the assembly listing as a table of contents.

Both a TOC and a TTL pseudo-instruction can be used for each
section. They differ in that a TTL card does not appear in the
table of contents, but TOC data (columns 22-78) appears at the
end of the listing.

The number of TOC cards permitted depends upon the number of
symbols used by the program, since the assembler stores the TOC
information in the unused space in the symbol table area after
all symbols are stored. Any TOC card which cannot be stored is
ignored by the assembler.

~u£~~uc::J~©--------------
- 71 -

TITLE

TTL

The TTL instruction causes the information shown in columns
22-78 to be printed at the top of each page. It is not necessary
for a title instruction to be the first instruction of a program.

All printed pages of the object program listing are printed with
the contents of the title instruction. The contents of the first
title instruction are changed only when another title instruction
is encountered by the assembler. Any number of title instruction
lines may be used in a source program.

[Q)rulJ&~(glJc::J ~®-------------
- 72 -

WRITE OBJECT PROGRAM

WOD

The WOD instruction causes the assembler to build the object
program in 64-word records, with a record origin, word count,
and hash total on each record for storage on either a DSU or
magnetic tape subsystem.

ITru~~~~~@--
- 73-

DETECTED CODING ERRORS

As an aid to the progrannner, the assembly program detects
certain types of coding errors. Since the source program deck
may contain cards punched in both old format (Program Library
No. CD225Fl.001) and new format (Program Library No. CD030F2.001
the following list of error codes applies to errors in both for
mats, except where otherwise specified:

A--Error or suspected error in the operand address. One of
the following has occured:

1. An Operand field is blank in a coding line normally
requiring an address.

2. An entry is in the Operand field of a coding line
which normally should be blank.

3. The numeric value of the operand does not meet the
requirement of the coding line in which it was used.

In any instance, the value of the operand address is
logically ORed into the instruction.

Examples:

1.

2.

3.

Machine Memory
Address Instruct. Sequence Symbol Operand

02000A 010000
\

Error code:

02331A 000000

\
Error code:

02110A 000000

\ Error code:

1234 ADD·

The blank Operand field is a
possible error. (The address
may be added later in the
program.)

1524 EJT 17

The Operand field should be
blank.

1324 OCT 28

The operand should be octal anc
not decimal.

@&lT&~~lTc:J ~©-------------
-74 -

B--Ba.cked-up allocation register. The assembler MAR was
backed up (reset to a lower number than it currently
contained) by an ORG or LOC instruction. This may not
be an error but is flagged as a potential error.

Example:

Memory
Address

04030

Machine
Instruct. Sequence

100200 01234

Symbol Opr Operand

BRU SPREE

02000B 002000 01235 ORG 1024

\
Error code: MAR has been backed up.

C--Control field illegal. The Control field or Modifier
field has been used illegally.

E--Message words exceeded. More words were specified on a
message coding line than can fit on one card (19 three
character words).

F--Symbol table full. The assembly symbol table was full.
The symbol is omitted from the symbol table, having the
same effect as an undefined symbol. (See error code U.)

L--Illegal Reference Symbol field. A Reference Symbol field
error, such as the use of an illegal character or an all
nurneric symbol, has occurred.

M--Multidefined symbol. Either the Reference Symbol field
or the Operand field contains a symbolic name which
appears in the Reference Symbol field of two or more
different instruction coding lines. If the error detected
was in the Reference Symbol field, the assembler will
assign to that symbol the present setting of the MAR. If
the error detected was in the Operand field, the value
assigned to the symbol the last time it appeared will be
used as the operand address in the assembled instruction.

0--Illegal mnemonic operation. The mnemonic is unknown to
the assembler. The program generates a 00 octal (HLT)
operation code as a substitute.

~lJ&~~l]CJ~@--------------
- 75 -

S--Size error. An error occurred in the size of DEC, DDC, or
OCT; or a number was too large to fit the indicated field
size.

T--Error or suspected error in X-field. (Applies to old-formai
coding only.) The X-field contains an entry in an instruc·
tion which does not access memory, or it contains any
character other than X or a blank.

U--Undefined symbol. A symbolic name appears in the Operand
field which does not appear in the Reference Symbol field
of any instruction. The address assigned to this symbol
is 0000.

Q--Source card out of sequence. If sequencing of source
cards is requested (an optional provision of the object
program), this error character indicates the source card
is out of sequence.

$--Channel table usage. Either the specified· address was not
modulo 16 or not less than 8192 or both.

-(minus)--Skipped memory location. COMMA skipped a memory location
because something was forced to an even location. This
is not necessarily an error but is flagged as a potential
error.

/--Assembler error. Indicates a work file record was lost.

P--Peripheral error. An unrecoverable peripheral error
(such as parity error) was detected on this or a preceding
line. Each pe~ipheral error is flagged on only one line
of the listing, even though the error may pertain to a
record containing data for more than one line (such as a
blocked record or the object program, which contains
several instructions). It is not possible to tell where
the error occurred--that is, whether on the source file,
on the work file, or elsewhere.

@&1J&~~1Jc::J ~©--------------
- 76 -

ADDRESSING LOCATIONS IN MEMORY

COMMA provides the facility for assigning symbolic or binary
addresses to locations in memory. The location of an instruction
in memory can be designated by a reference symbol. An instruc
tion with a symbolic address does not have a definite location in
memory until assembly of the object program; however, an instruc
tion does have a relative location designated by the reference
symbol. Addresses can be referenced to some starting point or be
indexed (modified by the contents of an index register) in any of
the ways discussed in the following paragraphs.

Direct Address

A direct address indicates the location where the referenced
operand can be found or stored within a program bank.

Example:

Memory Instruction Sequence Symbol Opr Operand

00200 00374 AMT EQU 128
(This instruction equates the symbol AMT to location 12810 .)

01472 400200 01030 LDA AMT
(This instruction assigns the operand the value of the symbol
address--location 12810·)

Relative Address

A relative address indicates a value which must be added to the
base address to find the referenced address.

Example:

Memory Instruction Sequence Symbol Opr Operand

00200 00374 AMT EQU 128

01472 400205 01030 LDA AMT+5
(This instruction equates the operand to the symbol address

Plus 5.)

,~u~~~u~ ~@------------------
- 77-

Indirect Address

The DATANET-30 provides indirect addressing. This mode of
addressing refers an instruction to another memory location for
its final reference address.

Example:

Memory Instruction Sequence Symbol Opr Operand

00200 00374 AMT EQU 128

01074 345472 01421 ADO AMTA,
(This instruction refers the DATANET-30 to location 1472
for its operand.)

01472 000200 01930 AMTA IND· AMT
(This instruction furnishes its operand (AMT) to replace

AMTA in LDA AMTA.)

The machine instruction at memory location 1074 would normally
read 341472; but, because the symbol in the operand is followed
by a comma, indirect addressing is generated and bit position
12 is set to 1. When the instruction is executed, a 1 will be
added (ADO) to the contents at memory location 200 in the common
data bank.

Indexed Address

An indexed address is an indirect address in which the contents
of a register are added to the reference address to obtain the
final reference address.

Example:

Memory Instruction Sequence Symbol Opr Operand

00200 00374 AMT EQU 128

01074 345472 01421 ADO AMTA,
(This instruction refers the DATANET-30 to location 1472 for
its operand.)

01472 100200 01930 AMTA INA AMT
(This instruction furnishes its operand (AMT) plus the con
tents of register A to replace AMTA in LDA AMTA.)

@&V&~~v~~@-------------------------------
-78 -

The current contents of register A is added to the base address
AMT (00200) to obtain the final reference address. If register
A contains 120, then the final reference address will be 200 +
120, or 320.

Note that the only difference in indirect addressing and indexed
addressing is in the reference to IND, INA, INB, or INC.

@&u&~~uc::J ~®--------------
- 79 -

ADDRESS MODIFICATION

Instructions assigned to common data or channel tables (program
bank 1) can be addressed either in a direct or indirect mode
from any location in memory. However, those instructions assigned
to program banks 2 through 8 can only be addressed from another
location in the same program bank or indirectly from one program
bank to another.

Addressing Connnon Data

All instructions that refer to an address in the common data bank
are assigned mode 2 by COMMA, as a part of the instruction address

Example: Load the A-register with contents of TAX stored
in location 2010 •

Machine Instruction .QQ1: Operand

402024 LDA TAX

Locations in the common data bank 0000 to 051110 are addressed
as 20008 to 27778 •

Addressing Channel Tables

Symbols starting with a $ sign denote channel tables and are
assigned mode 3 by COMMA, as a.part of the instruction address.

Example: Load A-register with scan word 1 stored in
location 3 210 •

Machine Instruction Opr Operand

403002 LDA $SW3

Addressing Program Banks

All instructions that refer to an address within the 1024 memory
locations of a program bank are assigned mode 0 by COMMA as a
part of the instruction address.

Example: Originate program at location 102410 ; reference to
constant stored at location 115910·

@ruuro~~uc=J ~®-------------
- BO-

Location Instruction Opr Operand

002000 ORG 1024
02000 400207 LDA CHNGEMEM

Example: Originate program at location 1024~0 ; reference
to constant stored at location 307 10 •

Location Instruction Opr Operand

002000 ORG 1024
·k 02000 A 400000 LDA FLXPT

An error tag A with an address 0000 appears, because FLXPT is
stored in a location in another program bank. Each program
bank has upper and lower limits in which direct addressing
may be used.

Changing Program Banks

When it is necessary to go from one program bank to another., a
branch instruction nrust be given in the indirect mode (mode 4).
When a program approachs the upper limit of a program bank, the
P-counter contains the address of the first instruction in the
next program bank; and, upon execution of the instruction in the
last location, the next program bank is addressed. If a branch
instruction is in the last location, the program branches to the
corresponding address in the next program bank.

Example: The following constants are stored in program
banks 2 and 3.

Location Symbol

02050 FIRST (Program bank 2)
03107 SECOND (Program bank 2)
04670 THIRD (Program bank 3)
05740 FOURTH (Program bank 3)

The program is to originate in location 102410 for the following
operations.

&u&~[guCJ~®-------------
- 81-

Location Instruction Opr Operand

002000 ORG 1024
02000 400050 LDA FIRST
02001 520107 AAM SECOND

·k 02002 A 500000 STA THIRD
* 02003 A 400000 LDA FOURTH

Errors are tagged A as address error, because they.exceed the
program bank in which the program originated. The program
properly coded would be:

Location Instruction Symbol Opr Operand

002000 ORG 1024
02000 004670 1fo IND 1HIRD
02001 005740 1Nfo IND FOURTH
02002 400050 LDA FIRST
02003 521107 AAM SECOND
02004 504000 STA 1fo'
02005 404001 LDA 1Nfo,

Instructions 1fo and 1Nfo are executed indirectly.

[ID§flr&~~lrc:J ~@-------------
- 82 -

3. A S S E M B L Y 0 P E R A T I 0 N S

COMMA is a three-phase.assembler, operating in conjunction with
specialized COIL subprograms related to the peripheral configura
tion specified by the user. Each COMMA/COIL program routine is
described in the DATANET-30 Progrannning Routines Manual. This
chapter describes· the operations of only the COMMA assembler.

COMMA CONTROL CARDS

Control cards are used by COMMA to establish the format and
optional assembly operations to be performed.

Assembly Control Card

The assembly control card is optional.
be the first card in the source deck.
the deck, the assembler will halt.

If it is used, it must
If it appears later in

COIL may require that some other card--such as a DSA--be the
first card of the source deck. If so, all control information
required on the control card is placed in columns not used by
the DSA. In this fashion the control card information may be
placed on the same card with other pseudo-operations. Control
information is specified as follows:

Column Set to

6 c

10 {:

Operation to be performed

Identifies the card as a control record.
Old master file will be updated and a new
master file created.

Old master file will be updated and a new
master file created and resequenced.

Resequencing during initial assembly.

Columns 12-17 are available for a date, which is printed on the
title line of every page of the objec·'- program listing. If a
date is used, the assembler inserts a slash between the second
and third characters and between the fourth and fifth characters.
Thus, 070464 becomes 07/04/64.

%u&~~v~~@-------------
- 83-

OLD Format Control Card

COMMA assumes the source program to be in new format. However,
old format can be used. (See "Program Form" in DATANET-30
General Assembly Program, CPB-1180.) This feature allows source
programs written and assembled on a GE-200 Series central pro
cessor to be incl_uded in the source file, provided the format is
identified by a control card.

All source media data cards following the OlD format control card
are interpreted by COMMA according to the pseudo-instructions
provided by the DATANET-30 General Assembly Program. Any data
coded with a NEW format pseudo-instruction are flagged on the
object program listing with an O, denoting an illegal mnemonic
operation.

The mnemonic operation code OLD must be punched in columns 19-21,
and any remarks that appear in columns 35-80 are printed on the
object listing preceding the group of instructions in old format.
All of the pseudo-instructions in the old format work in COMMA,
except as follows:

• *+* prints before it ejects, rather than after.
• Double decimal numbers which extend onto a second card do

not assemble properly in COMMA. Double decimal numbers
exceeding 8 digits must be entered in new format.

e COMMA does not scale decimal or.double numbers.
• The Z-option has been replaced by the MIC (new format)

instruction.

NEW Format Control Card

The source program can switch back and forth between old and new
format as often as necessary, provided the assembler is advised
of the switch. In order to switch from old to new format, the
assembler is advised by a NEW format control card following the old
format group of instructions so that it procedes the first
instruction in new format. The mnemonic operation code NEW must
be punched in columns 8-10, and any remarks must start in
column 31.

[ID£1J&~~lrc:J ~@-------------
- 84 -

SYSTEM CONFIGURATION

COMMA operates with an 8k memory. However, it adjusts itself
to a 16k memory.

INITIAL ASSEMBLY

During an initial assembly COIL, COMMA, and the source program
are processed to obtain a work file and an object program file.
Each instruction of the source media is written in the source
card image on the work file and sequence-numbered as directed
by the user's source program. COMMA assumes all source media
to be in new format unless specifically instructed by an OLD
format control card. COMMA operates as follows:

1. A loader routine is used to read COIL initially into
memory. After COIL is read, the loader transfers
control to COIL.

2. COIL reads phase 1 (analyzer) of COMMA.

3. After phase 1 has been read, COIL turns control over to
COMMA.

4. COMMA requests COIL to read the first source program
card. COIL then formats and stores the card image in
a buff er area shared by both COMMA and COIL and returns
control to COMMA.

5. COMMA analyzes the first source data image to determine
the following:

If the first card is an assembly control card, COMMA
sets flags for the option specified.

If the first card is not an assembly control card,
COMMA assumes an initial assembly for new format with
no updating or resequencing.

6. COMMA assembles the record for COIL and transfers control
to COIL to write the record on the master work file.

7. COMMA analyzes and assembles each source record and
transfers control to COIL for each instruction to be
written onto the master work file.

D&u&~~tr~~@--------------
- 85 -

8. When COMMA detects an END instruction and after it has
been written by COIL, COMMA transfers control back to
COIL to read phase 2 (object).

9. After phase 2 is read into memory, COIL transfers control
to COMMA to execute phase 2.

10. During phase 2, COMMA requests COIL to read each record
from the master work file. After assembling each record
into a machine-coded instruction for COIL, COMMA requests
COIL to write the object program file.

11. COIL reads phase 3 (reports), and COMMA sorts the symbol
table for COIL to print or store on a peripheral.

UPDATE ASSEMBLY

During an update assembly COIL, COMMA, and a source program are
processed to obtain a new master work file, with or without new
sequence numbers, and an updated object program. An update
assembly provides the user with the ability to change, delete,
or add to previous assemblies, thus eliminating reassembly time.
The sequence number of the instruction (record) on the master work
file is used as the key for updating and creating a new master
work file. Figure 4 shows the required sequence of an update
source deck.

END CARD

SOURCE

(
ASSEMBLY
CONTROL

OLD FORMAT

OR

Figure 4. Sequence of Update Source Deck

@ruuru~~u~~®--------------
- 86-

An assembly control card must be the first card of the source
update deck. The source program deck can consist of instruc
tions to add new instructions to the object program, to delete
instructions from the object program, or to change existing
instructions in the object program. The deck mustterminate
with an END card.

During an update assembly, NEW and OLD format cards are not
required, because COMMA determines the format of the card and
processes it correctly.

The old master work file will already have an END card (from a
previous assembly). However, of the two, the one with the
lower sequence number will terminate the assembly.

A simplified flow diagram of the update procedure is shown in
Figure 5.

Changing

Replacing an existing record in the work file with a new one
requires only a new record with the sequence.number of the old
instruction. For example, an old record with sequence number
1115 can be corrected as follows:

Old record
New record

Sequence

1115
1115

CDC
CDC

Operand

200l+REOPEN+INFILE
2002+RWDOPEN+WAIT+INFILE

Zeros as sequence number are not valid to records being changed.

Deleting

To remove an existing record from a work file, a Delete (DLT)
instruction containing the sequence number of the old record is
used. For example, to delete a single record with sequence
number 1115, the operand of the DLT must be blank, as shown below.

Sequence

1115

Opr

DLT

Operand

@&u&~~uc:J :fil@--------------
- 87 -

DELIVER
OLD MASTER

TO ASSEMBLER

+

IS SOURCE CARD
IN MEMORY?

YES

IS OLD MASTER
FILE. 2 IN MEMORY?

YES

DELIVER NEW
SOURCE CARD
TO ASSEMBLER

NO

NO

ASSIGN NEW
SEQ.NO.-IF

READ SOURCE RE UESTED
CARD

WRITE NEW

READ OLD MASTER WORK

MASTER FILE-0

OP = DLT?
NO ERASE OLD

...--~--.ai MASTER
._ ____ ..,.,. FILE 2

YES

YES

ERASE OLD
MASTER

SET BLOCK
DELETE

READ OLD
MASTER

_N_O_~ ENTIRE BLOCK
DELETED?

NO

YES

Figure 5. Update Procedure Flow Diagram

DELIVER
CHANGE SOURC
CARD TO
ASSEMBLER

[ID/A\lr&~~lrc::J ~® ---------------
- 88 -

If more than one or an entire block of records is to be
deleted, it is only necessary to make one DLT and show the
ending sequence number in the Operand field. For example,
the coding to delete a block of instructions beginning at
1115 and ending at 1139 is as follows:

Sequence Operand

1115 DLT 1139

Subroutines cannot be deleted by deleting only the SBR instruc
t ion. An SBR pseudo-instruction is converted to "remarks" by
the assembler and appears in the work file as a message for the
object program listing. To delete a subroutine or group of
subroutines, a DLT pseudo-instruction must be used to delete
the block of sequence numbers.

Adding

When new records are to be inserted in the work file, the new
record must contain a sequence number greater than the last
record before the insertion and less than the first record
after the insertion. The assembler, when it assigns sequence
numbers to the work file, assigns only the first four digits
divisible by ten, so there is always an opportunity to assign
sequence numbers for insertion.

There is no limit to the number of records that can be inserted
between two records, because any number of new records can have
the same sequence number. For instance, if fifty records are
required, all fifty records can have the same sequence number.
The assembler compares sequence numbers during the translator
phase; therefore, as long as every new record sequence number is
less than that of the next old record, the new records are
inserted.

w&u&~~v~~®----------------------------------
- 89 -

CONSOLE INSERT SWITCHES

The console insert switches provide the operator with the
ability to select manually the optional operations to be per
formed by COMMA and its related COIL subprogram. Each switch
represents a bit of a DATANET-30 word affecting COMMA as
follows:

Control Switch Position

18 center

17 center

down

16 down

15

Sign switch. A general-purpose
switch used by COIL to recover
from a peripheral error.

Toggling this switch during an
assembly results in program
continuation. The console buzzer
will buzz, notifying the operator
that further assembly operations
may result in errors.

COMMA will ignore D in column 6
(Control field) in all source
program cards.

COMMA will delete all source
program cards with D in column
6 (Control field).

COMMA will pause before executing
phase 1 or before loading phase 2
of the assembly program. As soon
as the assembler is loaded into
memory, it will interrogate switcl
16; if it is on, the assembler
will wait for it to be turned off
before proceeding. When phase 1
is finished, the assembler will
once again interrogate switch 16
before calling for the loading of
the next phase.

This switch is not used by the
assembler.

[ID£1J£~~1JCJ ~@-------------
- 90-

14 down

13 down

12 down

11 down

10 down

9-1

CONSOLE MESSAGES

COMMA pauses before executing
phase 2, or before loading
phase 3.

COMMA repeats the execution of
phase 2 before loading phase 3,
or repeats phase 3.

COMMA pausesbefore reading or
writing the next record. This
enables the operator to stop
the assembler without losing
data when the assembler is
working in a real-time environment.

COMMA suppresses generation of the
object program listing file during
phase 2.

COMMA suppresses generation of the
object file during phase 2.

These switches are assigned
specific operations by COIL and
are set according to the opera
tions to be performed.

Messages conveyed by the register contents displayed by lights
on the console are as follows.

Display Contents

A-register 7770003

0007773

Interpretation

Assembly stopped because of error
condition shown in the B-register.

Assembly stopped because of condition
shown in the B-register.

~&lr&~~v~~®--------------
- 91-

Display Contents

B-register 0000778

0077008

7777778

any other
number

C-register 1778

any other
number

Interpretation

Control card present but not first
card in source deck.

No DSA record was provided for this
file;

or
A file assigned to a DSU requires more
space on the DSA record (card).

End of job.

Assembler pausing as requested by
setting of insert control switch.

Assembler caused the stop.

COIL caused the stop according to the
displayed file number.

[ID&\IJ&\~[g!Jt=J ~® --------------
- 92 -

PART II

4. C 0 N S T R U C T I N G A C 0 I L

The technique of using subprograms for all input and output
operations permits a wide variety of peripheral configurations
and easy adaptations to various operating systems associated
with the DATANET-30. When designing records without knowing
the nature of the storage medium, full utilization of the stor
age capacity of the device probably cannot be achieved; however,
this is off set by the flexibility and control made available
through the concept of subprograms such as COIL.

A user can write his own COIL, or he can modify an existing COIL
program. (The General Electric Computer Department provides
specialized COIL programs with the COMMA assembler.)

FUNCTION OF COIL

COIL replaces the routines and subroutines normally required by
the main program to read data in from or write data out to
peripherals. The work of handling data is divided between COIL
and COMMA. All work dependent upon the input/output device is
assigned to COIL. These functions include:

Reading records
Writing records
Error-checking and associated recovery procedures
End-of-tape and end-of-file checking
Labeling (record ID)
Fencing
Blocking and deblocking

All work independent of the input/output devices is assigned to
the assembler. These functions include the following:

Formatting records
Packing records
Unpacking records
Modifying and analyzing records, except in those cases

where code conversion (such as from Teletype) is
required or when space-suppression or other condensing
is desired.

u&u&~~~~~@---------------------------------------
- 93 -

LINKAGE BETWEEN COMMA AND COIL

COMMA turns control over to COIL by branching to predetermined
memory locations linking to subroutines in COIL. These con
nections are made through a linkage table which must be pro
vided in COIL at specific locations in the common data bank.

Area Available to COIL

Areas in the common data bank and the channel tables are shared
by both COMMA and COIL, and some areas are reserved exclusively
for COIL. The locations reserved exclusively for COIL are
shown in the shaded areas in Figure 6. Octal locations 2000 to
3777 are also reserved for COIL.

COMMA provides parameters for the read or write operation to
COIL in the A, B, and/or C registers. COIL, in turn, accesses
one of its input files, delivering a logical record to the
assembler at the location specified by one of the parameters;
or COIL takes a logical record from a specified location and
writes it on one of its own output files.

COIL Files

COMMA assigns specific numbers to each of the files used by
COIL. This number serves as a key to address or close a file,
log errors, and keep track of chaining or linkage addresses
(as when using a DSU). The numbers assigned by COMMA, their
symbolic name, linkage address, and number of words are shown
in Fip,;ure 7.

When constructing a COIL program, the prograrrnner must equate
(EQO) the linkage address. A description of each file follows.

@&uru~~u~~®--------------
- 94 -

~
9
~
~
rn
9

D
~
(§)

~I

t'rj
t-J•

~
<D

O"\ .
(')
0
H
t-1
~
<D s
0
ti

'-<
~
r:u

"'d

00100 20 40 12
COMMA/COIL LINKAGE* bl/

200 / / /

ica--~~-~-~~-~~--~~CONSTANTS, LINKAGES~~~~~~~~~~~~~~~~~~~-oi

4001-------+------+--------+-------+-----1--~---+---~--t------i
SOURCE CARD ~8l)~FILE S (32+R),---t~>!<l------=----I I CONSTANTS

600 ~. FILE 7 (OBJECT PROGRAM, 64+R) I
k,r--___ __:.1__ I I ~--==t=:::~-=-=~--~--+-----+-----. I TEMP=$TEMP (64)------~d---:FILE 0 (WORK,32) _.,_ I I FILE 3 (LIBRARY 27+$

1000 / 'i ... ~ ... :~~w .6~i._LI/S-~.1,~~ _4/.·?)~/7._ ~·.·· ___ /j-. _/7 _ ~!~r~~~~ $-~~--:-
3

-+(3_1_) ___ -t--

/ .·· / // / / / / / / /
1200 ./ / , // . · · / / / ,/ /,, // I

:/ / /7-;//'."'·-:-· / ,., /,....._ , / <-/· / ,::..., .. -· --·~--- -~-----J------1
// ' - / / /~// /// / $TABLES (64)------

/ / -/ /// ~///> /><//</ CODEI CONVERSION LBLES1-----;-l ____ --bl
1400

/ / / .. ·· /,,.:: /·-- FiL (I ~, I Pj_
,..,.·· / ~/ .· .. /·/ ,///,/ .· ··/.//_.////,• / E 2 MASTER,32+R)~.. SBR LIST (30 I DI

1600 v // // // / / / I I r- - , ·· . PR-OUT (3
SOURCE FILE (27+R S TITLE (36)--~

/ /
/

I LIST

2600 !O TITLE .CONSTANTS _J_ ______ l~-_ ----- __ _l f4-- HOID TITLE . -~ .. ·~·--·--·-··-· 1-.... --··-·-·--·-·

* COMMALCOIL LINKAGE
LOCATION LOCATION LOCATION

10 FILL 30 SUBRTN 50 ENDJOB
12 PAUSE 32 DUMPSYM 52 CUTOFF
14 MOVE 34 READSYM 54
16 36 PRINT 56
20 CLOSE 40 OBJECT 134 PPAUSE
22 SOURCE 42 LOAD
24 WRITE 44 READ
26 MASTER 46

! LINK I

I OCTAL
NO. l SYMBOL .LOC.

;
I

24 0 ! WRITE
I
t

i I 1 I SOURCE 22 ! I I :
i

2 . MASTER l 26
I

:

3 i SUBRTN
:

30
I

4
'

DUMPSYM : 32

I
!

5 READSY'l\'1 ! 34
I I

I I

I 6 I PRINT I
36 I i

I i I
7

I OBJECT I 40 I ; j

l I

i I
8 LOAD 42

9 READ 44

** V = VARIABLE

TITLE TYPE'

MASTER WORK OUTPUT

iSOURCE FROG INPUT
I
I
l

!OLD MASTER I INPUT 1

JsuBR.LIBRARY I INPUT
I

!DUMP SYMBOL ! OUTPUT
TABLE I

I

LOAD SYMBOL I INPUT
TABLE ~

OBJECT PROGRAM OUTPUT
LISTING

OBJECT PROGRAM OUTPUT

LOAD ASSEMBLER INPUT

READ WORK FILE INPUT

Figure 7. COIL Files

I

NO.OF
MODE WORDS

BIN 32

BCD 27

BIN 32

BCD 27

BIN 32

BIN 32

BCD v·k·k

BIN v·k*

BIN I v-A-A
l

..

BIN ! 32
I

I/O
AREA

0700

1600

1500

0700

0700

0440

0600

0400

0400

0700

@&u&~~lrCJ ~®---------------
- 96 -

o File 0 - Master Work. The master work file (WRITE) is
created during the translator phase and serves as an input
to the assembly phase. It becomes the old master work file
(file 2) during updating and reassembly procedures. This
is the most frequently used file, since it contains at
least one logical record for every card in the source pro
gram and can contain one or more overflow records for each
instruction generating one or more instructions. It pro
vides an image of each assembled instruction and is used
instead of a complete new source program for reassembly,
changing or altering an existing assembly, and creating new
files. Because it is used frequently, it should be put on
one of the high-speed peripherals, such as a DSU or magnetic
tape subsystem.

Each logical record of file 0 contains 32 words. The records
are of two types, as follows:

1. The main record. An image of the source card is in the
first 27 words. The last five words contain binary con
trol information.

2~ The overflow record. This record contains 32 words of
binary control information.

The last word of each logical record must contain the follow
ing information:

Bit

18

17

16

15-1

Set

1
0

1
0

1
0

Means

Main record.
Overflow record.

Last record generated by the source card.
One or more overflow records follow this
record.

Old format source card.
New format source card.

Five-digit sequence number assigned to each
record by the assembler.

Since each logical record contains 32 words, two logical
records will completely fill a DSU record, leaving no space
for a chaining address. COIL can use some of the last 15

)&u£~~uCJ~@-------------
- 97 -

bits of the last word if chaining is necessary, providing
the sequence number is replaced before the work file is
reread. The sequence number is used each time the file is
read, serving as a protection against lost records.

• File 1 - Source Program. The source program file (SOURCE)
is the source program written by the user. The file can
come from any peripheral as long as each instruction is in
80-column BCD format. The file is used as an input to the
translator phase.

The source program file is not one of the larger files;
however, it is of fairly high volume. If buffering and/or
blocking is feasible with the peripheral device used or if
adequate memory is available, the programmer may consider
having COIL include buffering or blocking. The file con
sists only of changes when file 0 needs to be updated;
therefore, the speed of the input peripheral need not be
given much consideration by the programmer.

As a safety factor, COIL operations should detect an end
of-file condition to protect the program if the source pro
gram is not followed by an END instruction. In such cases,
COIL flags the end-of-file condition to the assembler, and
the assembler terminates the first pass and continues with
subsequent passes. If COIL does not detect an end-of-file
condition, the program halts in a "not-ready" condition.

o File 2 - Old Master. The old master work file (MASTER) is
simply the master work file (file 0) from a previous assembly.
It is used as one of the inputs for a reassembly or an update
routine.

e File 3 - Subroutine Library. The subroutine library file
(SUBRTN) is a multifile group of routines and subroutines,
each recorded as physical records on either magnetic tape
or the DSU. It can be a high-volume and high-frequency
file, depending upon the programs being processed by the
DATANET-30 system.

The subroutine library file can be recorded in any mode
(binary or BCD) and can be blocked and/or buffered according
to the amount of memory available. Each physical record

@rolJ&~~u~ ~®--------.. -----
- 98 -

(routine or subroutine) must be identified with an infor
mation data (ID) label as its first logical record and
must terminate with an END record.

The ID label must contain the following information:

Col 1-3
Col 4-6

Col 7-12

+-+
Blank if the subroutine is in new format. If
the record is in old format, it must read OLD.
Any six-character code for the ID configuration.

The last logical record must contain the following:

Col 1-3 +-+
Col 4-6 END

Subroutines are called from file 3 with the Subroutine Call
(SBR) instruction from the assembler's request list table.
The subroutines can be called intermittently (with I in the
Modifier field, exercising the irnmediate-call option) or at
the end of the source program.

When subroutines are called, the assembler counts the nu~ber
of subroutines found. If not all subroutines have been
found upon reaching the end-of-file condition on the sub
routine library, the assembler prints a warning on the listing
but does not indicate which subroutines are missing. The sub
routines are called from the assembler's request list table. in
the sequence in which they appear in the subroutine library,
regardless of the requested sequence. If the subroutines are
to be assembled in a different sequence, the irnmediate-call
option must be used to force calling the later subroutines
first.

Once a subroutine is called, it becomes a part of the work
file (file 0). Since the work file becomes an input to later
assemblies, the assembler converts the SBR and irnmediate
call option request to a remarks line and does not execute
the irnmediate-call option.

The logical records may be 80-coltnnn card images, or they can
be truncated to reduce file space. If they are truncated,
COIL must blank-fill the unused part of a 32-word record before
delivering it to the assembler.

Drouro~~u~~@--------------
-99-

• File 4 - Symbol Table Dump.· The symbol table dump file
(DUMPSYM) is created as the result of a Dump Symbol Table
(DMP) pseudo-instruction. The file is low volume; there
fore, little is gained from buffering or blocking.

The first two words of each logical record contain the identif i
cation (symbol) from the DMP instruction. The third word con
tains the assembly sequence number (columns 1-6) assigned by the
assembler. The fourth word contains a word count of the record.
The remaining 28 words are divided into seven groups of four
words each. Each group of four words contains a symbol, its
associated memory address, and its control bits.

This file is called by other assemblies and is addressed as
file 5 (load symbol table).

e File 5 - Load Symbol Table. The load symbol table file (READSYM
is used when file 4 is to be reread into memory. A Load Symbol
Table (LDS) pseudo-instruction causes the assembler to read
into memory the symbol record as shown in the Operand field of
the instruction.

o File 6 - Object Listing. The object listing file (PRINT)
contains variable-length logical records to record each line
of the listing. If the file is to be stored on magnetic tape,
both buffering and blocking are recommended. Blocking is
worthwhile for saving time on the DATANET-30 processor. How
ever, if the printer is being used, the media-conversion
routine will be printer bound; so blocking is of little value.

The assembler branches to COIL with the parameters in the B
and C registers. The B-register contains the number (maximum
39) of words in the line for the listing. COIL uses this
number to set whatever end-of-line indicator is needed by the
device doing the printing. The C-register contains the slewing
control, coded as follows:

0
1
2

Print, single-spaced.
Print, double-spaced.
Slew to top of page, then print, double-spaced.

[ID£1J£~~1J~ ~®-------------
-100-

e File 7 - Object Program. The object program file (OBJECT)
can be stored either in card format (81 columns, 40-word
logical records) or in DSU format (64-word logical records),
depending upon the storage medium chosen. The assembler
branches to COIL with the record size in the B-register.

The object program file is a low-volume file; therefore, it
need not be buffered or blocked.

When the object program file is to be written on a DSU, a
WOD instruction is used. Each record has 64 words, with a
starting address for the words that follow.

o File 8 - Load Assembler. The load assembler file (LOAD) is
a part of COIL and is the loader for the assembly program.
The loader must be assigned to the input area assigned to
COIL, and it can use any of the buffers used by other files.
The loader must not clear memory nor be in upper memory, since
COMMA uses upper memory for the symbol tables and must leave
the tables intact during the assembly phases.

o File 9 - Read Work File. The read work file (READ) is the
work file 0 which was created as an output file during the
translator phase. During the assembly phase, file 0 becomes
an input (file 9).

If magnetic tape is used for the file, COIL must include a
mark and rewind for the CLOSE routine of file 0 and a CLOSE
routine for file 9 to rewind and set a closed flag. On only
the first call for file 9, COIL should wait for rewinding,
thus eliminating addressing a rewinding tape, even if the file
is called upon more than once.

Status Returns

After a read or write operation COIL must return any status
condition to COMMA in the A-register.

ID£u&~~u 0~©--------------
- 101 -

• Input Status Returns. After a record is delivered to (read
into) the assembler, COIL must return with one of the follow
ing status codes in the A-register.

Code

000000

OOOxxx

777777

Meaning

Normal record, no unrecoverable error.

Unrecoverable error. Before returning to the
assembler, COIL must make appropriate attempts
to reread the record. If COIL determines that
it cannot recover from the error, it should
place the file number in the C-register, add 1
to $ERRORS table, and then return with the
status code in the A-register.

End of file. This status does not deliver a
record. It is given only if the assembler
calls for a record after the last record has
been delivered. Do not confuse an end-of-file
with an end-of-reel condition on multireel
tape files. If multireel files are used,
COIL must determine for itself whether more
reels are needed.

The assembler tests the A-register before proceeding with the
next operation in the program. The assembler continues and
flags the corresponding output record. At the end of the run,
the assembler lists the number of errors on each file.

COIL can be constructed to inform the operator of errors. It
can load a register with an error code (including file code),
turn on the buzzer, and wait· for the operator to acknowledge
the error (see PAUSE subroutine, p. 107). A message code may
be logged if Teletype, typewriter, or printer is available.

• Output Status Returns. After a record is obtained (written)
from the assembler, COIL must return with one of the follow
ing status codes in the A-register.

[ID&lf&~[glf c:J ~@--------------
- 102 -

Code

000000

OOOxxx

Meaning

Normal record, no unrecoverable error.

Unrecoverable error. Before returning to the
assembler, COIL should place the file number
in the C-register and add 1 to $ERRORS.
Whether or not assembly should continue after
an output error is up to the author of COIL,
and the decision should depend upon the file.
For example, an error in the object listing,
~ile 6) can probably be ignored. An error in
the object program (file 7) is more serious
and may call for rerun.

As in the case of input files, COIL can be constructed to inform
the operator of errors and let him take appropriate action.

NONEXISTENT FILES

Some COIL programs will not provide for all allowable files,
because either the application on the DATANET-30 does not require
their use or the number of peripherals is limited. The assembler,
however, will not know that the file does not exist; and, if the
program calls for a nonexistent file, the assembler will request
a read (or write) of COIL.

COIL must provide linkage for every file. It should place the
file number in the C-register, add 1 to $ERRORS, and return to
the assembler. For example, if the request is for an input file,
the return should be an end-of-file return. If the request is
for an output file, there should be a normal return. $ERRORS must
be equated (EQO) to 11603.

OPENING A FILE

Since COMMA does not call for opening an assembly file, COIL
must include all opening operations of its first call. The
opening subroutines must include the following:

o Rewinding or positioning.
o Wait for rewinding or positioning.
o Initialization of buffering, when buffering is required.
o Setting a switch so that future calls on the assembly file

will bypass the opening routine.

&11&~~11~~@--------------
- 103 -

If magnetic tape subsystems are being used by the system, it
is desirable to have COIL rewind all tapes on the first call
for file 1 (even if the source program is not on tape) to
minimize waiting time for rewinding tape. Files used frequently
will probably not need to be rewound the first time they are
opened by the opening procedure; however, they should be rewound
on closing. The opening routine must include waiting for rewind
each time the files are called upon.

CLOSING A FILE

COMMA calls for the closing of every file, both input and output.
It may close an input file before an end-of-file record is
reached. For example, it can close file 3 (subroutine library)
as soon as it has found all requested subroutines.

When a file is on magnetic tape, the closing procedure for COIL
should include only rewinding for input files or tape marking
and rewinding for output files. Files not on magnetic tape do
not require a closing routine.

When there is only one subroutine linkage for closing all files,
the assembler enters the CLOSE routine (location 208) with the
file number in the C-register.

COMMA SUBROUTINES AVAILABLE TO COIL

The assembler contains several subroutines available to COIL.
These subroutines do not save registers, but they do save memory
space and can be used by COIL whenever necessary. They are as
follows:

MOVE The MOVE subroutine (location 148) moves a specified
number of words from one area to another. It uses
the A-register as an index and the B-register for
moving. MOVE must be equated (EQO) to 148 •

LID£1J£~~1JCJ ~@-------------
- 104 -

FILL

PAUSE

Code as follows:
Opr Operand

BRS MOVE
INA Address from which data is to

be moved.
INA Address to which data is to be

moved.
DEC Number of words to be moved.

Example: Move 12 words from temporary to permanent
storage.

Opr Operand

BRS MOVE
INA TEMP
INA OUTPERM
DEC 12

The FILL subroutine (location 108) fills a specified
number of consecutive words with a specified constant.
The A-register is used as an index and the B-register
for moving. FILL must be equated (EQO) to 108 •

Code as follows:
Opr Operand

BRS FILL
INA Address of area to be filled.
ALF Constant to be used.
DEC Number of words to be filled-

Example: Fill 30 words at output with zeros.

BRS FILL
INA OUTPUT
ALF 000
DEC 30

The PAUSE subroutine (location 12s) waits for console
switch 18 to be toggled; it turns off the buzzer but
does not turn it on. PAUSE must be equated (EQO) to
123.

Code as follows:
Opr Operand

BRS PAUSE

rID&lT&~~lTc=J ~@---------------
- 105 -

PPAUSE The PPAUSE subroutine (location 1348) waits before
reading or writing the next record when console
switch 12 is set. PPAUSE must be equated (EQO) to
1348.

Code as follows:
Opr Operand

BRS PPAUSE

CALLING SUBROUTINES FROM FILE

When subroutines are called from the subroutine library file
by the source program (SBR pseudo-instruction), the subroutine
address is set in the request table of the assembler for recall
at the end of the object program. Each time the request table
is accessed to process an address, the file is passed from the
beginning; and the subroutines are transferred in the sequence
in which they appear in the file, regardless of the sequence
of request. The assembler keeps a count of the number of sub
routines requested and located. If a subroutine is requested
and not found before the end-of-file record, the assembler
prints a warning on the object program listing but does not
indicate the missing subroutine.

@&v&~~vc:J ~®-------------
- 106 -

GLOSSARY 0 F DAT A

C 0 M M U N I C A T I 0 N T E R M S

For readers not familiar with data communications, assemblers,
and symbolic progranuning, the following definitions will be
useful.

ALPHANUMERIC

BUFFER

CHANNEL

CODE
CONVERSION

COMMAND

DATA
COMMUNICATION

ELEMENT

Capable of representing the alphabet as well as
the decimal digits 0-9 and (usually) a group of
miscellaneous symbols.

An internal portion of a data processing system
serving as intermediary storage between two storage
or data handling systems with different access
times or formats--usually to connect an input or
output device with the main or internal high-speed
storage.

(1) A path along which information, particularly
a series of digits or characters, may flow. (2)
One or more parallel tracks treated as a unit.
(3) A path for electrical connnunication. (4) A
band of frequencies used for communication.

A process for changing the bit groupings for char
acters in one code into the corresponding char
acter bit groupings for a second code.

(1) An electronic pulse, signal, or set of signals
to start, stop, or continue some operation. (2) The
portion of an instruction word which specifies the
operation to be performed.

The transmission of information to and from data
processing equipment. This includes assembly,
sequencing, routing, and selection of such infor
mation as is generated at independent remote points
of data origination and the distribution of the
processed information to remote output terminals
or other data processing equipment.

A specific item of information appearing in a
set of data.

1£1J£~~1Yc::J ~@---------------
- 107 -

EXPRESSION

FILES

FILES, SCRATCH

FLAG

INPUT/OUTPUT

LITERALS

LOADER
PROGRAM

MACHINE
INSTRUCTION

MACRO
INSTRUCTION

MICRO
INSTRUCTION

MNEMONIC
INSTRUCTION

MULTIPROGRAM
MING

Any symbol representing a variable or a group of
symbols representing a group of variables pos
sibly combined by symbols representing operators
in accordance with a set of definitions and rules.

A group of related records pertaining to a cap
tioned subject, stored on one of the storage
mediums for rapid retrieval to the DATANET-30
system.

A group of records, stored temporarily on one of
the storage mediums.

An indicator used to tell some later part of a
program that some condition occurred earlier.

A general term for the equipment and the data
involved in a communication system.

The quantities or messages which will be present
in the machine and available as data for the pro
gram and which, usually, are not subject to change
with time.

Synonymous with TTloading routine.TT A routine
which, once it is itself in memory (storage),
is able to bring other information into storage.

An instruction actually used by the computer
system to perform an operation.

The assembly program recognizes the mnemonics for
macro-instructions and automatically generates
and inserts into the object program the necessary
series of instructions for performing a specific
operation.

A small, single, short add, shift, or delete
type of command.

A notation used in writing programs to represent
the actual machine instruction.

A technique for handling numerous routines or
programs simultaneously by means of an inter
weaving process.

@&lr&~~lrc=J ~@-------------
- 108 -

OBJECT PROGRAM

PSEUDO
INSTRUCTION

PARITI
CHECK

SATELLITE

SOURCE
PROGRAM

SOURCE
PROGRAM DECK

START BIT

SYMBOLIC
NOTATION

The result obtained after the source program
has been processed by the assembly program to
translate the instructions on the coding sheet
into machine instruction form.

A group of characters having the same general
form as a machine instruction but never executed
by the computer system as an actual instruction.
Pseudo-instructions are used to control the
assembly process, generate constants, and annotate
the object program listing.

A stnmnation check in which the binary digits in a
character or word are added, modulo 2, and the sum
checked against a single, previously computed
parity digit: for example, a check which tests
whether the number of l's in a word is odd or even.

Off-line computer system operating independently
of or in interdependence with a main system.

A program written in a language designed for ease
of expression by humans of a class of problems or
procedures--for example, a symbolic or algebraic
language.

The results obtained after punching all the
instructions on a coding sheet onto punch cards
and retained in the order as written on the
coding sheet.

Synonymous with "start element." The first
element of a character in certain serial trans
missions, used to permit synchronization.

The designation (name) given a location in memory
instead of the actual memory location. An instruc
tion to a computer must specify the location of
data as well as the operation it is to perform.
In symbolic progrannning, the actual location of
a word in memory is always referred to by a name
or symbol. The symbol is usually chosen to have
a meaning in relation to the memory location.

ru1rru~~lrc:J ~©-------------
- 109 -

SYMBOLS A substitute or representation of characteristics,
relationships, or transformations of ideas or
things. In the actual writing of a program, the
use of symbols to designate memory location and
mnemonics to designate the operation allows the
prograrrnner to list the desired operations in a
more easily understood language.

@&~&~~~~~@------------------------------
- 110 -

I N D E X

This index lists subjects alphabetically by subject name and
by significant words in subject matter headings and titles of
figures and tables.

To locate a subject, look in the index for the subject itself
and for significant words related to that subject. The page
number for each listed subject appears at the right of the
line. When entries are truncated to the left of the signifi
cant word, the truncated words appear to the right of the
line, following an asterisk.

Subject

UPDATE - ADDING 89
DIRECT ADDRESS 77

REIATIVE ADDRESS 77
INDIRECT ADDRESS 78

INDEXED ADDRESS 78
ADDRESS - INSTRUCTIONS 14
ADDRESS MODIFICATION 80
ADDRESSING CHANNEL TABLES 80
ADDRESSING COMMON DATA 80
ADDRESSING LOCATIONS IN MEMORY 77
ADDRESSING PROGRAM BANKS 80

INSTRUCTIONS - ALF 17
MEMORY ALLOCATION - INSTRUCTIONS 15

ANALYZER PHASE 3
INSTRUCTIONS - APO 19

AREAS AVAIIABLE TO COIL 96
FILE-8 - LOAD ASSEMBLER 103

FIGURE-1 DIAGRAM OF THE ASSE:MBLY 4
INITIAL ASSEMBLY 85

UPDATE ASSEMBLY 86
ASSEMBLY CONTROL CARD 83
ASSEMBLY IANGUAGE 5
ASSEMBLY OPERATIONS 83

AREAS AVAIIABLE TO COIL 96
COMMA SUBROUTINES AVAIIABLE TO COIL 106

ADDRESSING PROGRAM BANKS 80
CHANGING PROGRAM BANKS 81

INSTRUCTIONS - BSS 20

u&u&~~~~~®-----------------------------------
- 111 -

Subject

CALLING SUBROUTINES FROM FILE
ASSEMBLY CONTROL CARD

OLD FORMAT CONTROL CARD
NEW FORMAT CONTROL CARD

CARD FORMAT
FIGURE-3 SOURCE CARD FORMAT

COMMA CONTROL CARDS
INSTRUCTIONS - CDC
INSTRUCTIONS - CDN

UPDATE - CHANGING
CHANGING PROGRAM BANKS

ADDRESSING CHANNEL TABLES
CLOSING A FILE

DETECTED CODING ERRORS
SUBROUTINES AVAIIABLE TO COIL * COMMA

BETWEEN COMMA AND COIL * LINKAGE
CONSTRUCTING A COIL

FUNCTION OF COIL
AREAS AVAIIABLE TO COIL

COIL FILES
FIGURE-7 COIL FILES

COIL INPUT FILES
FIGURE-6 COIL MEMORY MAP

LINKAGE BETWEEN COMMA AND COIL
COMMA CONTROL CARDS
COMMA SUBROUTINES AVAIIABLE 'IO

ADDRESSING COMMON DATA
GLOSSARY OF DATA COMMUNICATION TERMS

SYSTEM CONFIGURATION
CONSOLE INSERT SWITCHES
CONSOLE MESSAGES
CONSTANTS - INSTRUCTIONS
CONSTRUCTING A COIL

ASSEMBLY CONTROL CARD
OLD FORMAT CONTROL CARD
NEW FORMAT CONTROL CARD

COMMA CONTROL CARD
CONTROL FIELD
CONIROL - INSTRUCTIONS

108
83
84
84
13
13
83
22
25
87
81
80

106
74

106
96
95
95
96
96
98
98
97
96
83

COIL 106
80

109
85
90
91
14
95
83
84
84
83

7
15

ADDRESSING COMMON DATA 80
GLOSSARY OF DATA COMMUNICATION TERMS 109

DATA GENERATING INSTRUCTIONS 13
INSTRUCTIONS - DDC 28
INSTRUCTIONS - DEC 26

SEQUENCE OF UPDATE SOURCE DECK * FIGURE-4 86

[Q)/A\lf&~~lf~~@-------------
- 112 -

Subject

DEFINED SYMBOLS
DEFINING A MACRO

UPDATE - DELETING
GENERAL DESCRIPTION OF THE PROGRAM

DETECTED CODING ERRORS
FIGURE-1 DIAGRAM OF THE ASSEMBLY

DIRECT ADDRESS
INSTRUCTIONS - DLT
INSTRUCTIONS - DMP

DOCUMENTATION - INSTRUCTIONS
INSTRUCTIONS - DSA

FILE-4 - SYMBOL TABLE DUMP

INSTRUCTIONS - EJT
INSTRUCTIONS - E:MD
INSTRUCTIONS - END
INSTRUCTIONS - EQO
INSTRUCTIONS - EQU

DETECTED CODING ERRORS
INSTRUCTIONS - EVN

INSTRUCTIONS - FDN
SEQUENCE FIELD

CONTROL FIELD
REPEAT FIELD

REFERENCE SYMBOL FIELD
MODIFIER FIELD

OP CODE FIELD
OPERAND FIELD
REMARKS FIELD

CLOSING A FILE
CALLING SUBROUTINES FROM FILE

FILE-0 - MASTER WORK FILE
OPENING A FILE

FILE-9 - READ WORK FILE
FILE-0 - MASTER WORK FILE
FILE-1 -
FILE-2
FILE-3
FILE-4 -
FILE-5
FILE-6
FILE-7
FILE-8
FILE-9

SOURCE PROGRAM
OLD MASTER
SUBROUTINE LIBRARY
SYMBOL TABLE DUMP
LOAD SYMBOL TABLE
OBJECT LISTING
OBJECT PROGRAM
LOAD ASSEMBLER
READ WORK FILE

8
49
87

1
74

4
77
29
30
15
31
86

33
34
35
36
37
74
38

39
5
7
7
8

10
12
12
12

106
108

99
105
103

99
100
100
100
102
102
102
103
103
103

D£1l£~~1lc=J~®--------------
- 113 -

Subject

COIL INPUT FILES
COIL FILES

NONEXISTENT FILES
FILL SUBROUTINE

FIGURE-7 COIL FILES
UPDATE PROCEDURE FLOW CHART * FIGURE-5

PROGRAMMING FORM
SAMPLE PROGRAMMING FORM * FIGURE-2

CARD FORMAT
FIGURE-3 SOURCE CARD FORMAT

OLD FORMAT CONTROL CARD
NEW FORMAT CONTROL CARD

FUNCTION OF COIL

98
96

105
107

98
88

5
6

13
13
84
84
95

GENERAL DESCRIPTION OF THE PROGRAM 1
DATA GENERATING INSTRUCTION 13

GLOSSARY OF DATA COMMUNICATION TERMS 109

INSTRUCTIONS - INA
INSTRUCTIONS - INB
INSTRUCTIONS - INC
INSTRUCTIONS - IND

INDEXED ADDRESS
INDIRECT ADDRESS

INSTRUCTIONS - INH
INITIAL ASSEMBLY

COIL INPUT FILES
INPUT STATUS RETURNS

CONSOLE INSERT SWITCHES
DATA GENERATING INSTRUCTIONS

CONSTANTS - INSTRUCTIONS
MESSAGES - INSTRUCTIONS

TABLES INSTRUCTIONS
ADDRESS INSTRUCTIONS
CONTROL INSTRUCTIONS

MEMORY ALLOCATION INSTRUCTIONS
DOCUMENTATION INSTRUCTIONS

PROGRAM INSTRUCTIONS
PERIPHERAL INSTRUCTIONS

PSEUDO INSTRUCTIONS
INSTRUCTIONS - ALF
INSTRUCTIONS - APO
INSTRUCTIONS - BSS
INSTRUCTIONS - CDC
INSTRUCTIONS - CDN
INSTRUCTIONS - DDC
INSTRUCTIONS - DEC

40
41
42
43
78
78
44
85
98

104
90
13
14
14
14
14
15
15
15
16
16
13
17
19
20
22
25
28
26

[ID£1Jru~(g1Jo ~®--------------
- 114 -

Subject

INSTRUCTIONS - DLT 29
INSTRUCTIONS - DMP 30
INSTRUCTIONS - DSA 31
INSTRUCTIONS - EJT 33
INSTRUCTIONS - EMD 34
INSTRUCTIONS - END 35
INSTRUCTIONS - EQO 36
INSTRUCTIONS - EQU 37
INSTRUCTIONS - EVN 38
INSTRUCTIONS - FDN 39
INSTRUCTIONS - INA 40
INSTRUCTIONS - INB 41
INSTRUCTIONS - INC 42
INSTRUCTIONS - IND 43
INSTRUCTIONS - INH 44
INSTRUCTIONS - LDS 45
INSTRUCTIONS - LNK 46
INSTRUCTIONS - LOC 47
INSTRUCTIONS - LST 48
INSTRUCTIONS - MAC 49
INSTRUCTIONS - MFC 52
INSTRUCTIONS - MIC 54
INSTRUCTIONS - NAL 55
INSTRUCTIONS - NEW 56
INSTRUCTIONS - NLS 57
INSTRUCTIONS - OCR 58
INSTRUCTIONS - OCT 59
INSTRUCTIONS - ODD 60
INSTRUCTIONS - OLD 61
INSTRUCTIONS - ORG 62
INSTRUCTIONS - PFX 64
INSTRUCTIONS - SAP 65
INSTRUCTIONS - SBR 66
INSTRUCTIONS - SEQ 67
INSTRUCTIONS - T5L 68
INSTRUCTIONS - T5R 69
INSTRUCTIONS - TCD 70
INSTRUCTIONS - TOC 71
INSTRUCTIONS - TTL 72
INSTRUCTIONS - WOD 73

ASSEMBLY IANGUAGE 5
INSTRUCTIONS - LDS 45

FILE-3 - SUBROUTINE LIBRARY 100
LINKAGE BETWEEN COMMA AND COIL 96

FILE-6 - OBJECT LISTING 102

)muro~~u~~@-----------_-1-15-_-------------------

Subject

INSTRUCTIONS - LNK 46
FILE-8 - LOAD ASSEMBLER 103
FILE-5 - LOAD SYMBOL TABLE 102

INSTRUCTIONS - LOC 47
ADDRESSING LOCATIONS IN MEMORY 77

INSTRUCTIONS - LST 48

INSTRUCTIONS - MAC 49
DEFINING A MACRO 49

FIGURE-6 COIL MEMORY MAP 97
FILE-2 - OLD MASTER 100

FILE-0 - MASTER WORK FILE 99
ADDRESSING LOCATIONS IN MEMORY 77

MEMORY ALLOCATION - INSTRUCTIONS 15
FIGURE-6 COIL MEMORY MAP 97

CONSOLE MESSAGES 91
MESSAGES - INSTRUCTIONS 14

INSTRUCTIONS - MFC 52
INSTRUCTIONS - MIC 54

ADDRESS MODIFICATION 80
MODIFIER FIELD 10
MOVE SUBROUTINE · 106

INSTRUCTIONS - NAL 55
INSTRUCTIONS - NEW 56

NEW FORMAT CONTROL CARD 84
INSTRUCTIONS - NLS 57

NONEXISTENT FILES 105

FILE-6 - OBJECT LISTING 102
OBJECT PHASE 3

FILE-7 - OBJECT PROGRAM 103
INSTRUCTIONS - OCR 58
INSTRUCTIONS - OCT 59
INSTRUCTIONS - ODD 60
INSTRUCTIONS - OLD 61

01.D FORMAT CONTROL CARD 84
FILE-2 - 01.D MASTER 100

OP CODE FIELD 12
OPENING A FILE 105
OPERAND FIELD 12

ASSEMBLY OPERATIONS 83
INSTRUCTIONS ~ ORG 62

OUTPUT STATUS RETURNS 104

@&vru~~lf c:J ~®-------------
- 116 -

Subject

PAUSE SUBROUTINE
PERIPHERAL - INSTRUCTIONS

INSTRUCTIONS - PFX
ANALYZER PHASE

OBJECT PHASE
REPORTS PHASE

PPAUSE SUBROUTINE
FIGURE-5 UPDATE PROCEDURE FLOW CHART

DESCRIPTION OF THE PROGRAM ·k GENERAL
FILE-7 - OBJECT PROGRAM
FILE-1 - SOURCE PROGRAM

CHANGING PROGRAM BANKS
ADDRESSING PROGRAM BANKS

PROGRAM - INSTRUCTIONS
PROGRAM SEQUENCE
PROGRAMMING FORM

FIGURE-2 SAMPLE PROGRAMMING FORM
PSEUDO-INSTRUCTIONS

107
16
64

3
3
3

108
88

1
103
100

81
80
16

3
5
6

13

FILE-9 - READ WORK FILE 103
REDEFINED SYMBOLS 9
REFERENCE SYMBOL FIELD 8
REIATIVE ADDRESS 77
REMARKS FIELD 12
REPEAT FIELD 7
REPORTS PHASE 3

FIGURE-2 SAMPLE PROGRAMMING FORM 6
INSTRUCTIONS - SAP 65
INSTRUCTIONS - SBR 66
INSTRUCTIONS - SEQ 67

PROGRAM SEQUENCE 3
SEQUENCE FIELD 5

FIGURE-4 SEQUENCE OF UPDATE SOURCE DECK 86
FIGURE-3 SOURCE CARD FORMAT 13

SEQUENCE OF UPDATE SOURCE DECK * FIGURE-4 86
FILE-1- SOURCE PROGRAM 100

INPUT STATUS RETURNS 104
OUTPUT STATUS RETURNS 104

STATUS RETURNS 103
FILL SUBROUTINE 107

PPAUSE SUBROUTINE 108
PAUSE SUBROUTINE 107

MOVE SUBROUTINE 106
FILE-3 - SUBROUTINE LIBRARY 100

ID&u&~~u~~@--------------
- 117 -

Subject

COMMA SUBROUTINES AVAILABLE TO COIL 106
CALLING SUBROUTINES FROM FILE 108

CONSOLE INSERT SWITCHES 90
REFERENCE SYMBOL FIELD 8

FILE 5 - LOAD SYMBOL TABLE 102
FILE-4 - SYMBOL TABLE DUMP 102

DEFINED SYMBOLS 8
REDEFINED SYMBOLS 9

SYSTEM CONFIGURATION 85

INSTRUCTIONS - T5L
INSTRUCTIONS - T5R

FILE-5 - LOAD SYMBOL TABLE
FILE-4 - SYMBOL TABLE DUMP

ADDRESSING CHANNEL TABLES
TABLES - INSTRUCTIONS

INSTRUCTIONS - TCD
OF DATA COMMUNICATION TERMS * GLOSSARY

INSTRUCTIONS - TOC
INSTRUCTIONS - TTL

UPDATE ASSEMBLY
UPDATE - ADDING
UPDATE - CHANGING
UPDATE - DELETING

FIGURE-5 UPDATE PROCEDURE FLOW CHART
FIGURE-4 SEQUENCE OF UPDATE SOURCE DECK

INSTRUCTIONS - WOD
FILE-0 - MASTER WORK FILE

FILE-9 - READ WORK FILE

68
69

102
102

80
14
70

109
71
72

86
89
87
87
88
86

73
99

103

[ID&lf&~~lf CJ~@-------------
- 118 -

'R-ogress Is Our Mosf lmpomnf Proelvcf

GENERAL. ELECTRIC
COMPUTER DEPARTMENT • PHOENIX, ARIZONA

UTHO U.S.A.

