
6809 DEVELOPMENT MANUAL

2302-5014-00

PRELIMINARY

February 1982

FutureData
5730 Buckingham Parkway
Culver City, CA 90230

REVISION HISTORY

Title

6809 Development Manual

RELATED PUBLICATIONS

UDOS Reference Manual

UDOS Programmer1s Guide

M6809 Cross ·Macro Assembler
Reference Manual

MC6809 Preliminary
Programming Manual

© FutureData, 1982

2302-5014-00

Number

2302-5014-00

2301-5002-01

2301-5006-00

2302-5018-00

2302-5029-00

Date

2/82

Notes

Prel iminary
Software Versions:
Assembler 1.0
Linker 5.2
Debugger 2.5

REVISION HISTORY 0-2

PREFACE

2302-5014-00

This manual describes the FutureData Assembler,
Linker, and Slave Emulator package, which runs on a
2300 Advanced Development System, and which is
intended for the development of programs by means
of the 6809 processor.

This is a reference manual, not a tutorial; it
assumes familiarity with the 2300 ADS, the standard
UDOS facilities, and the general concepts of at
least one assembly language.

Please note that a Documentation Reply Card is
inserted at the back of this manual. When you
complete and return it, you help us produce better
documentation for you.

A User Registration Card is included in the set
of manuals you receive with your FutureData
system. When you complete and return the User
Registration Card, you ensure that you will receive
all updates and new information for your
configuration.

For your convenience, a list of GenRad/DSD Service
Locations is appended to this manual.

PREFACE 0-3

CHAPTER 1

ASSEMBLER

The 6809 Assembler is both a programming language and a language processor
which runs under UDOS on FutureData I s Advanced Development System. The 6809
Assembler processor accepts as input a source program coded in the 6809
Assembler Language, processes it, and produces a relocatable object module and
an assembly listing with diagnostic messages.

Thi s chapter introduces. the 6809 Assembler and begins with a summary of its
main programming features. Subsequent sections provide general descriptions
of the assembly language and the fields which comprise a source program
statement. Detailed descriptions illustrate how to invoke the Assembler, and
how to specify Assembler options and files.

REFERENCES

Motorola's MC6809 Preliminary Programming Manual describes the processor in
detail; the assembly language is described in M6809 Cross Macro Assembler
Reference Manual -- M6809XASM(Dl} •

PROGRAMMING FEATURES

The 6809 Assembler provides the programmer with the following features:

• Program sectioning directives which allow flexible control of memory
allocation and addressability.

• Assembly control directives which permit repetitive and coriditional
assembly of a sequence of statements.

• A macro facility which allows a single calling statement to generate a
series of in-line instructions and also allows parameter substitution •

• A comprehensive set of expression operators which permits many kinds of
arithmetic.

2302-5014-00 ASSEMBLER 1-1

6809 ASSEMBLER LANQJA~

The 6809 Assembler Language consists of a set of commands and the rules for
constructing program statements. There are two classes of commands: mnemonic
representations of the Motorola 6809 microprocessor instructions and Assembler
directives.

The mnemonic instructions are not described in this manual; the microprocessor
manufacturer describes them in the MC6809 Preliminary Programming Manual
which must be used in conjunction with this manual.

A directive is a command to the Assembler that allows the programmer to assign
a program to certain areas in memory, define identifiers, define areas for
temporary data storage, place tables or other fixed data in memory, and manage
the memory resource. The Assembler's di rectives are described in thi s manual.

The Assembler accepts uppercase and lowercase characters as input. The
examples in this document are in uppercase for readability.

SOURCE STATEMENTS

A statement is the basic component of an Assembler Language source program.
Statements are entered one per line, must not exceed 80 characters, and are
composed of a label field, an operation field, an operand field, and a comment
field. There are two kinds of statements: instruction statements and
directive statements. Instruction statements are of the following form:

label: mnemonic operand ; comment

A mnemonic is required in an instruction statement. Depending on the specific
mnemonic used, the operand may be required, optional, or prohibited. The use
of a label or comment field is always optional.

Directive statements are similar in form:

name di rect ive operand ; comment

A directive is required in a directive statement. Depending on the specified
directive used, name and operand may be required, optional, or prohibited.
The command syntax descriptions use brackets to indicate optional labels and
operands. The use of a comment field is always optional.

The label field consists of either a label or a name. Note that the label in
an instruction statement is followed by a colon; the name in a directive
statement is not. A label associates a symbolic name with the location of an
instruction and can be used as an operand in a JMP or CALL instruction. A
label followed by a colon may exist on a blank line. The name in a directive
statement performs different functions depending upon the OTrective being
used; the user should not assume that name can be used as an operand in a JMP
or CALL instruction.

2302-5014-00 ASSEMBLER 1-2

The o~eration field consists of either a mnemonic instruction t a macro name t
or alrective which identifies the machine operation or Assembler function to
be performed. An operation field is required in every statement t except
comment lines. An operation field must be separated from the label field by
at least one space.

The operand field provides the information needed by the Assembler to perform
the designated operation. An operand field consists of one or more
identifiers t constants t or expressions separated by commas.

The comment field contains any information the programmer records. A comment
field must be separated from the operand field or the operation field by at
least one space t and must begin with a semicolon. The comment field is not
treated as text and its use does not affect the generation of code.

Fields must be separated by one or more spaces.

If an asterisk is in the first charactrer position on a line t the entire line
is treated as a comment. Comment statements are useful for documentation
requiring more space than is available in a comment field and for lengthy
descriptions such as a program function overview. A line that contains a
semicolon as the first non-space character is processed as a comment
statement. In a macro library filet comment statements which are not inside
macro definitions terminate Assembler processing of the file.

FO ASSEMBLER INPUT

The Assembler accepts Assembler Language source code from a main input file
and from a library file. Figure 1-1 illustrates a sample Assembler input
sequence.

Label Operation O~erand Comment

*
* Routine to copy a message
*
COPYM CSECT

PUBLIC
COPY: LOX

LOY
COPYl: LDA

STA
DEC
BEQ
LOX
LEAS
JMP
END

2302-5014-00

COP Y
6tS
4tS
tX+
t Y+
2tS
COPYl
tS
8tS
,X

Get source text pointer

Get a character
, Store it

Decrement count

Get return address
; Pop parameters t return

Return

Figure 1-1. Sample Assembler Input

ASSEMBLER 1-3

FD ASSEMBLER OUTPUT

Assembler generates an output file consisting of relocatable object code which
may be processed by the Linker. The Linker combines the file with other
relocatable files and assigns absolute memory addresses.

The Assembler may also print and display a program listing containing each
input line, the hexadecimal representation of the object code generated by
that line, and other information. A symbol cross-reference listing may be
appended to the output file.

Figure 1-2 illustrates a sample output from the Assembler. The first field
contains the hexadecimal address within the program segment; the second
contains the object output in hexadecimal.

Loc. Assembler Label Opcode Operand Comments
Counter Hex Code Field

*
* Rout i ne to co py a message
*

0000 COPYM CSECT Start CSECT COPYM
PUBLIC COPY

0000 AE66 COPY: LOX 6,S Get sou rce text pointer
0002 lOAE64 LOY 4,S
0005 A680 COPYl: LOA ,X+ Get a character
0007 A7AO STA , Y+ Store it
0009 6A62 DEC 2,S Decrement count
OOOB 27FF BEQ COPYl
0000 AEE4 LOX ,S Get return address
OOOF 3268 LEAS 8,S Pop parameters, return
0011 6E84 JMP ,X Return
0013 END

Figure 1-2. Sample Assembler Output

For each assembly, a symbol table listing is produced showing the memory
address of each public (p), each external reference (x), and unreferenced
symbol (u), local symbolic label name (no type character):

------------------------ 6809 Assembler V5.1 ======================== FutureData =======

COpy pOOOO COPYl 0005 COPYM pOOOO
No errors

2302-5014-00 ASSEMBLER 1-4

INVOKING ASSEMBLER

The Assembler is invoked by executing the following command:

JA

After a slight pause to facilitate the loading of the Assembler, a list of
options appears on the display screen.

ASSEMBLER OPTIONS

The screen in Figure 1-3 verifies a successful invocation of Assembler and
displays a list of options:

========= 6809 Assembler VS.1 ====================== FutureData =========
SPECIFY ASSEMBLER OPTIONS:

(l) - listing to the screen
(T) - Truncate lines
(E) - list errors only
(S) - Include symbol table

>
Figure 1-3. Option Menu

Options may be selected by typing the appropriate letters which are described
in Table 1-1.

Optioo

L

T

E

S

Table 1-1. Assembler Options

Description

Displays a program listing on the screen.

Truncate lines of the display to 80 characters and limit printer or
display listing of the DC directive to one line. If this option is
not specified, all lines generated by the DC directive will be
output one byte per line.

Displays only lines containing errors flagged by the Assembler.

Appends the table of symbolic address labels to the end of the
relocatable object file.

After zero or more options are selected, enter <RETURN>.

2302-5014-00 ASSEMBLER 1-5

SPECIFYING ASSEMBLER FILE NAMES

Following the entering of options, the Assembler generates a series of
prompts. The response to each prompt must meet the requirements listed in
Table 1-2.

Prompt

SOURCE FILE:

MACRO FILE:

OUTPUT FILE:

LIST ING FILE:

Table 1-2. Assembler File Prompts

Req u i rement

The file name entered must have an S attribute. This
input is required.

This input is optional; enter <RETURN> to bypass.

This input is optional; enter <RETURN> to bypass. Any
filename entered must have the R attribute (a new file
created by the Assembler is automatically be assigned
the R attribute).

This input is optional; enter <RETURN> to bypass. Any
filename entered must have the S attribute or none at
all.

Assembly begins after the programmer responds to the II LIST ING FILE: II prompt.
If the Assembler recognizes an error, the statement is diagnosed and object
code is not generated for that statement.

HALTING THE ASSEMBLY LISTING

While in the program listing phase, the user may halt the assembly listing at
any point by pressing the BREAK key. This is useful for viewing the Assembler
output as it scrolls on the display. The listing output may be resumed by
pressing the BREAK key again.

LANGUA~ ELEMENTS

Input to the Assembler consists of a sequence of characters that are combined
to form assembly-language elements. These language elements, which include
identifiers, constants, variables, labels, and expressions, comprise program
statements which in turn comprise a source program.

2302-5014-00 ASSEMBLER 1-6

IDE NT IF IERS

An identifier is a user-defined name which provides a convenient method of
identifying constants, variables, labels, and the names of macros, sections,
classes, and procedures. Uppercase and lowercase alphabetic characters,
numeric characters, and the dollar sign are combined to form identifiers.

An identifier must conform to the following rules:

1. It must begin with an alphabetic character. Although other FD
Assemblers permit a dollar sign as the first character of an
'identifier, this Assembler does not; the dollar sign in the first
character position is only used in hexadecimal constants.

2. It may consist of uppercase or lowercase alphabetic characters,
numeric characters, and the dollar sign. Other characters are not
permitted.

3. It consists of 1 or more characters; characters beyond the eighth are
ignored.

4. An identifier may not be an instruction mnemonic, a directive, an
expression operator, a register name, or other miscellaneous keyword.

The following identifiers are valid:

TEMP3 VALUE temp27 FOR2$A

The following identifiers are invalid:

30DAYS

SECT ION 1

SUB.2

Identifiers must begin with an alphabetic character.

Blanks are not allowed.

Periods are not allowed.

$27 Initial dollar sign not allowed.

The asterisk, by itself, is a special, predefined symbol which identifies the
value of the current location counter.

CONSTANTS

A constant is a self-defining language element which has no distinguishing
characteri st i cs other than its value. Six types of constants are accepted by
the Assembler: decimal, hexadecimal, octal, binary, character constant, and
string constant. All constants except string constants must be representable
in 32 bits, or an "** expression overflow **" error is reported. Constants
may have their high-order bits truncated when the value is used in an
instruction. This truncation does not cause an error to be reported.

2302-5014-00 ASSEMBLER 1-7

DECIMAL CONSTANTS

A decimal constant is a sequence of numerals ranging from "0" to "9",
optionally followed by a "0". The maximum allowed decimal constant is
42949672950. The following are valid decimal constants:

o 160 10 1677725

HEXADECIMAL CONSTANTS

A hexadecimal constant may consist of the numerals "0" to "9" and the letters
"A il to uF". Three formats are prov i ded for writing hexadecimal constants: the
Intel "H" suffix, the IBM "X" prefix, and the Motorola "$" prefix

THe Intel format requires that a hexadecimal constant begin with one of the
numerals "0" to "9" (an extra "0" must be prefixed if the hexadecimal number
begins with A through F.), and end with the "HII suffix. The following are
valid hexadecimal constants expressed in the Intel format:

OACEH OFFH 18H OFFFFFFFFFH

The IBM format requires that a hexadecimal constant be enclosed in
apostrophes, and that an "X" must prefix the first apostrophe. The following
are valid hexadecimal constants expressed in the IBM format:

X'O' X'18 1 X'ACE' XI FFFFFFFF'

The Motorola format requires that a hexadecimal constant be preceded by a
dollar sign. The following are valid hexadecimal constants expressed in the
Motorola format:

$0 $18 $ACE $FFFFFFFF

OCTAL CONSTANTS

An octal constant may consist of the numerals "0" to "7". Two formats are
provided for writing octal constants: the FutureOata "Q" suffix and the
Motorola "@" prefix

The following are valid octal numbers in the FutureOata suffix format:

377Q 777341Q

The following are valid octal numbers in the Rockwell prefix format:

@377 @777341

2302-5014-00 ASSEMBLER 1-8

BINARY CONSTANTS

An binary constant may consist of the numerals "0" to "1". Two formats are
provided for writing binary constants: the FutureData "B" suffix and the
Rockwell "%" prefix. A binary constant must be representable within 32 bits.
The maximum allowed binary constant is 1111111111111111111111111111111111B.
The following are valid binary constantsin the FutureData suffix format:

1101B 010B

The following are valid binary numbers in the Rockwell prefix format:

%1101 %010

CHARACTER CONSTANTS

A character constant is. a single printable ASCII character preceded by an
apostrophe. It has the value of the binary code which represents the
character; for example, 'A has the value 41H. A character constant is a
numeric constant and can appear with other numeric constants in expressions.
The" following are valid character constants:

'B

STRING CONSTANTS

I • , I@

A string constant is a sequence of printable ASCII characters enclosed in
apostrophes. A character string constant must not exceed 255 characters in
length. The following is a valid string constant:

'THIS IS A CHARACTER STRING CONSTANT '

Two characters, the apostrophe and the ampersand, must be represented in
special ways because of other uses of these characters. A apostrophe must be
written as two apostrophes in succession; for example:

I TWO' I S COMPLEMENT I

An ampersand must be written as four ampersands in succession; for example:

'OPERATING SYSTEM &&&& AND COMPILER '

2302-5014-00 ASSEMBLER 1-9

A null string constant is represented by two contiguous apostrophes, as
fo I lows:

••

String constants must not appear in an expression with numeric constants.

VARIABLES

Assembler recognizes three kinds of data items: constants, variables, and
labels. Variables identify data items that are manipulated; they form the
operands of arithmetic, logical, and data manipulating instructions. A
variable is a named entity possessing value and other attributes; the name is
used to denote the associated value. Variables have attributes which specify
at what offset within a specific section the variable is defined. A variable
is defined with a DB, OW, EXTRN, EQU or OS directive.

LABELS

A label is an identifier that names an instruction, data location, or
procedure in the object program; labels form the operands of calls and jumps.
Labels are declared using an identifier which may be immediately followed by a
colon. A label suffixed with a colon may stand alone on a line or may precede
an instruction mnemonic or directive.

EXPRESSIONS

An expression is formed from one or more operands combined with arithmetic,
relational, logical, shift, or byte-manipulation operators and may contain
parentheses as appropriate. Each individual operand in an expression is
called a parameter. A parameter may be a constant, identifier, variable,
label, or another expression enclosed in parentheses.

Numbers are represented in 32-bit two's-complement form. A positive number is
expressed in binary form and stored right-justified in the byte or word. If
the binary form is less than 32 bits long, leading zeros are supplied. If the
evaluation of an expression produces a value greater than that representable
in 16 bits, the low-order 16 bits are retained and the high-order bits are
ignored.

2302-5014-00 ASSEMBLER 1-10

EXPRESSION EVALUATION

Evaluation of an expression produces a single value which must be
representable within 32 bits. With two exceptions, every numeric parameter is
an arithmetic expression which must be absolute, as opposed to relocatable or
external. An absolute parameter is simply a constant; a relocatable parameter
is one whose value is a function of the position of the program in its memory
space; an external parameter is one whose value is filled in by the Linker.

The exceptions are parameters of the 11+11 and II_II operators. Using 11+11 and
II_II, relocatable and external parameters may be used together in expressions.

The following table gives the valid combinations of parameters and the type of
the resul t:

+ Operator

Ri ght Operand

Absolute Relocatable Externa 1

Absolute Absolute Relocatable External
L
E Relocatable Relocatable Inval id Invalid
F
T External External Invalid Inv ali d

- Operator

Ri ght Operand

Absolute Relocatable External

Absolute Absolute Inval id Invalid
L
E Relocatable Relocatable Absolute * Invalid
F
T External External Inval id Inv ali d

* Valid only if both relocatables are defined in the same section.

The following program gives examples of valid and invalid uses of the + and -
operators:

2302-5014-00 ASSEMBLER 1-11

T CSECT fi rst test CSECT
AI: EQU 2
A2: EQU 4

EXTRN El,E2
NOP

Rl: NOP
NOP

R2 NOP
I}l Al+A2 o abs + abs
[)I Al+R2 1 abs + rel
OW Al+E2 · 2 abs + ext ,

*
I}l Rl+A2 4 rel + abs
I}l Rl+R2 · 5 rel + rel **INVALID** ,

OW Rl+E2 · 6 rel + ext **INVALID** ,
*

OW El+A2 · 8 ext + abs ,
I}l El+A2 9 ext + rel **INVALID**

OW El+E2 A ext + rel **INVALID**

U CSECT new CSECT
NOP

R3: NOP
NOP

R4 NOP
OW AI-A2 · o abs - abs ,
[)I AI-R4 · 1 abs - rel ** INVALID** ,

OW AI-E2 2 abs - ext ** I NVALI 0**
*

[)I R3-A2 · 4 rel - abs ,
()J R4-R3 5 rel - rel (same CSECT)

OW R2-R3 · 5 rel - rel **INVALID** (di fferent ,
CSECT)

OW R3-E2 6 rel - ext ** INVALID**
*

I}l El-A2 8 ext - abs
OW El-R4 9 ext - rel **INVALID**

OW EI-E2 · A ext - ext **INVALID** ,

END

2302-5014-00 ASSEMBLER 1-12

An expression is evaluated according to the precedence levels of the
operators, as shown in Table 1-3, where 7 indicates the highest level of
precedence. The ~recedence level determines which of two successive
operations is per ormed first.

Expressions are evaluated as follows:

1. Evaluations are performed according to operator precedence. Those
with the highest precedence are performed first.

2. Parentheses may be used to control the order of evaluation.

3. Division always yields an integer result; any fractional portion is
truncated.

PARENTHESES WITHIN EXPRESSIONS

Multitermed expressions.frequently require the use of parentheses to control
the order of evaluation. Terms inside parentheses are reduced to a single
value before being combined with the other terms in the expression. For
example, in the expression

ALPHA*(BETA+5)

the term BETA+5 is evaluated first, and that result is multiplied by ALPHA.

Expressions may contain parenthesized terms within parenthesized terms. For
example:

DATA+(HRS/B-TIME*2*(JS+MT))+5

In the above example, evaluation begins with the innermost set of parentheses
and proceeds to the outermost set. The innermost expression, JS+MT, is
evaluated first. Parenthesized expressions may be nested to a maximum of 8
levels.

2302-5014-00 ASSEMBLER 1-13

Table 1-3. Expression Operators And Their Precedence Level s

Type of
Expression Operator Function

Arithmetic + Addition
Subt ract i on

* Multiplication
/ Div i sion
.MOD. Remainder

Negation

Relational = Equal
<> Not equal
> Greater than
>= Greater than or equal
< Less than
<= Less than or equal

Logical .NOT. Logical negation
.AND • Logical AND
• OR. Inclusive logical OR
.XOR. Exclusive logical OR

Shift .SHL. Shift left logical
.SHR. Shift right logical

Byte r High-byte isolation
Manipulation L) Low-byte isolation

B) Byte swapping

ARITHMETIC EXPRESSIONS

Arithmetic expressions are used to express a numeric computation, and
evaluation of the expression produces a numeric value. An arithmetic
expression consists of one or more operands with arithmetic operators and
parentheses.

Prece-
dence

5
5
6
6
6
5

4
4
4
4
4
4

3
2
1
1

6
6

7
7
7

In an arithmetic expression, two operands may not appear in succession; they
must be connected by an operator.

2302-5014-00 ASSEMBLER 1-14

Examples of aritllnetic expressions and their evaluations are illustrated in
Figure 1-4.

A*2 Multiplies the value of A by 2.

A.MOD.B Returns the remainder after A is divided by B.

Figure 1-4. Examples Of Arithmetic Expressions And Their Evaluations

RELATIONAL EXPRESSIONS

A relational expression is used to compare the values of two operands.
Evaluation of a relational expression produces a result with a value of either
IIOFFFFFFFFW if the operand sat i sfies the compari son, or 110 11 if the compari son
is not satisfied.

Relational operators may be used on numbers and character strings. Both
parameters of a relational expression must be of the same type.

Character string comparisons proceed character by character along the left and
right operand strings. If one character string is shorter than the other, the
shorter string is considered less than the longer string.

Relations are not defined on addresses.

Examples of relational expressions and their evaluations are illustrated in
Figure 1-5.

A(B

A-B<>7

Returns 1I0FFFFFFFFW, if the value of A is less than
that of B; otherwi se, returns 110 11 •

Returns 1I0FFFFFFFFW, if the val ue A-B is not equal
to 7; otherwise, returns 110 11 •

Figure 1-5. Examples Of Relational Expressions And Their Evaluations

LOGICAL EXPRESSIONS

A logical expression is used to express a logical computation. Evaluation of
a logical expression produces a result with a value of IITRUE II or IIFALSE II •

2302-5014-00 ASSEMBLER 1-15

Two logical operators can appear in succession, such as B.AND.(.NOT.A).

Figure 1-6 illustrates the evaluations of logical expressions.

A.OR.B

A.AND.B

liT RUE II , if either A or B meets the specification; otherwise,
II FALSE" •

"TRUE", if both A and B meet the specification; otherwise,
II FALSE ".

Figure 1-6. Examples Of Logical Expressions And Their Evaluations

SHIFT EXPRESSIONS

A shift expression is used to shift a number a specified number of bits to the
left or rlght.

The general form of the SHL operator is as follows:

e.SHL.n

The SHL operator shifts the e parameter n bits to the left. The left-most n
bits are lost. Zeros are shifted into vacated low-order bit positions. n may
be an expression.

The general form of the SHR operator is as follows:

e.SHR.n

The SHR operator shifts the e parameter n bits to the right. This is a
arithmetic right shift. The sign bit of the original e value is shifted into
vacated high-order bit positions.

Figure 1-7 illustrates shift expressions and their evaluations.

Assume that A is a one-byte parameter equal to 7 and that B is equal to 2:

A.SHL.B

A.SHR.B

2302-5014-00

The .SHL. operator shifts the binary equivalent of 7 two bits
to the left; 00000111 becomes 00011100.

The .SHR. operator shifts the binary equivalent of 7 two bits
to the right; 00000111 becomes 00000001.

Figure 1-7. Shift Expressions And Their Evaluations

ASSEMBLER 1 .. 16

BYTE MANIPULATION OPERATORS

Byte manipulation operators include H, L, and B.

H Operator

The H Operator accepts a Single, number-valued operand and returns the
high-order eight bits of the low-order 16 bits of the value. The general form
is as follows:

H{number)

For example, if ABC is equated to the value X' 2E35 1 , the HIGH operator
evaluates the following expression to X'2E':

H{ABC)

L Operator

The L operator accepts a Single, number-valued operand and returns its
low-order eight bits. The general form is as follows:

L{number)

For example, if ABC is equated to the value X' 2E35 1 , the L operator evaluates
the following expression to X' 35 1 :

L{ABC)

B Operator

The B operator accepts a Single, number-valued operand and returns a 16-bit
value with the high- and low-order 8-bits reversed. The high order 16 bits of
the 32-bit value are set to zero. The general form is as follows:

B{number)

For example, if ABC is equated to the value X'2E35 1 , the B operator evaluates
the following expression to X' 352E':

B{ABC)

EFFECTIVE ADDRESS SYNTAX

The allowed forms of memory-address operands which correspond to 6809
addressing modes are:

2302-5014-00 ASSEMBLER 1-17

1) Inherent

Several instructions have no addressing options at all, as in

MUL

2) Accumulator

Accumulator addressing refers to a 6809 accumulator, whose name is
written as an opcode suffix, as in

CLRA

3) Immedi ate

Immediate addressing refers to the location(s) following the
instruction opcode. The immediate value is written as an operand
preceded by a #~ as in

ADDD #1234

4) Absolute Addressing

Absolute addressing refers to a 16-bit address in the 6809 1 s address
space. There are three forms of such an address:

a) Direct

Direct addressing is a shorthand; it uses the direct page
register as the high-order byte of the address, so that only the
low-order byte need be included in the instruction. A direct
address is written as an operand preceded by a <, as in

LDD <LOC

b) Extended

2302- 50 14-00

Extended addressing uses a 16-bit address which is included in the
instruction, contained in the bytes following the opcode. An
extended reference is written as an operand preceded by a >, as in

LDB >LOC2

ASSEMBLER 1-18

c) Extended Indirect

Extended indirect addressing uses a 16-bit address which is
included in the instruction, contained in the bytes following the
opcode, as the address of the effective address. An extended
indirect reference is written as an operand enclosed in square
brackets, as in

ADDD [LOCA]

5) Regi ster

Register addressing refers to 6809 registers as the instruction's
operands, as in

TFR DP,A

6) Indexed

There are five indexable registers on the 6809: X, Y, U, S, and PC.
The indexed references generate an effective address in various ways,
combining the contents of an indexable register with instruction bytes
or other register contents.

The indexing options are:

- constant-offset
- accumulator offset
- auto-increment/decrement
- indirection

a) Constant-Offset Indexed

Constant-offset indexing uses an optional two's-complement
instruction offset with an indexable register to form the
effective address. Such an address is written as

LDA
LDB
LDA

,X
17,U
LABEL,PC

;offset = 0
;offset = 17

b) Constant-Offset Indexed Indirect

2302-5014-00

Constant-offset indexed indirect addressing uses an optional
two's-complement instruction offset with an indexable register to
form the address of the effective address. Such an address is
written as

ADDD
LDD

[,U]
[SAM ,PC]

;offset = 0
;offset = SAM

ASSEMBLER 1-19

c) Accumulator Indexed

Accumulator indexed addressing uses an accumulator with an
indexable register to form the effective address. The accumulator
content is treated as a two's complement value. Such an address
is written as

LOA D,Y

d) Accumulator Indexed Indirect

Accumulator indexed indirect addressing uses an accumulator with
an indexable register to form the address of the effective
address. The accumulator content is treated as a two's complement
value. Such an address is written as

LOA [0, Y]

e) Auto-Increment

Auto-increment addressing uses the content of the indexable
register as the effective address. After the memory access, the
register's content is incremented by one or two. Such an address
is written as

LOA
LOB

, Y++
,X+

f) Auto-Increment Indirect

j increment by 2
j increment by 1

Auto-increment indirect addressing uses the content of the
indexable register as the address of the effect ive address. After
the memory access, the register's content is incremented by one
or two. Such an address is written as

LOA
LOB

g) Auto-Decrement

[, Y++]
[,X+]

j increment by 2
jincrement by 1

Auto-decrement addressing uses the content of the indexable
register as the effective address. Before the memory access, the
register's content is decremented by one or two. Such an address
is written as

2302-5014-00

LOA
LOB

,--V
,-X

jdecrement by 2
jdecrement by 1

ASSEMBLE R 1-20

f) Auto-Decrement Indirect

Auto-decrement indirect addressing uses the content of the
indexable register as the address of the effective address.
Before the memory access, the register's content is incremented
by one or two. Such an address is written as

LOA
LOB

[,--V]
[,-X]

;decrement by 2
;decrement by 1

7) Relative

Short relative addressing adds to the PC the value of an instruction
byte to produce the effective address. The instruction byte is
treated as a two's-complement value. Such an address is written as

BRA TARGET

The assembler will automatically select short relative addressing for
backward references which are within 129 bytes; to force short
relative addressing for a forward reference, the address is written
with a < as

BRA <LABEL

8) Long Relative

Long relative addressing adds to the PC the value of an instruction
word to produce the effective address. The instruction word is
treated as a two's-complement value. Such an address is written as

LBRA TARGET

2302-5014-00 ASSEMBLER 1-21

TEMPORARY RESTRICTIONS ON DO, IF, DEFL, OEFG

The Assembler evaluates all expressions using 32-bit arithmetic and logical
operations. The current version of the Assembler, however, restricts the way
that expression operands of the DO, IF, DEFL, and DEFG directives are used.

Number values assigned to set symbols by DEFL and DEFG are stored by the
Assembler as the least-significant 16 bits of the value of the evaluated
expression. This can cause unexpected results unless special consideration is
given. For example, in the following sequence of statements:

ASYM DEFL 65537
JMP L&ASYM

the second statement will assemble as:

JMP LO0001

rather than the expected result of:

JMP L65537

Similarly, the actions of the IF and DO directives are determined by only the
least-significant 16 bits of their operand value. The following IF statement:

IF 1.EQ.65537

will be taken as true (the statements following the IF will be assembled
rather than skipped). The following DO sequence will assemble only 2 times:

DO 65538
•
•
•
ENDDO

2302-5014-00 ASSEMBLER 1-22

VARIABLE AND IDENTIFIER DEFINITION

A variable can represent an 8-, 16-, or 32-bit data item. An identifier can
represent an assigned value or the current assembly location. In addition, an
identifier may be made available to other modules. Table 1-4 lists the
variable and identifier defining directives and their functions.

Table 1-4. Variable And Identifier Defining Directives

Directive

DB

EQU

PUBLIC

EXTRN

NAME

2302-5014-00

Function

Defines a variable as type BYTE and initializes one or more
storage units.

Defines a variable as type WORD and initializes one or more
storage units.

Permanently assigns a value to an identifier.

Specifies which identifiers defined in the current module
are made available to other modules.

Specifies identifiers which are defined in other modules
but referenced in the current module.

Assigns a name to the object module generated by the assembly.

ASSEMBLER 1-23

DEFINING BYTE VARIABLES

The DB directive defines a variable as type BYTE and initializes one or more
storage units.

name
defined as

LABEL

[name][:]

expression

EXAMPLE

HUNDRED DB 100

OPERATION OPERAND

DB expression[, •••]

In an absolute or relocatable section, name is

the address of a variable of type BYTE.

Specifies any valid expression.

MSG: DB

DB

I MESSAGE I

Defines a byte with the value 100.

Defines a character string named MSG.

MSG

USAGE NOTES

I MESSAGE I ,13,10 Defines an ASCII character string named
MSG followed by ASCII CR and LF.

The DB directive allows the programmer to define 8-bit memory locations that
are initialized to specified values. This data may include messages, names,
lookup tables, minimum or maximum values, masking patterns, or any data
required by the program. Addresses are not valid operands of a DB directive.

A DB directive such as:

TEN DB 10

places the 8-bit value 10 in the next available memory location and assigns
that location the name TEN.

The DB directive may be used to define character strings that are stored byte
by byte as written, that is, left to right.

This directive may also be spelled ItFCB" for compatibility with the Motorola
directive which performs the same function.

Multiple operands of a DB directive are stored in successive memory
locations. Data are stored according to the following rules:

2302-5014-00 ASSEMBLER 1-24

1) ASCII character strings are stored one byte per character. A sequence
written as two consecutive apostrophes anywhere within the string1s
outer apostrophes is stored as a single apostrophe. A sequence
written as four ampersands is stored as one ampersand.

2) Defined or external number values are stored truncated to the least
Significant byte only.

3) The use of relocatable address operands to DB is not recommended
unless the H{expression) or L(expression) constructs are used.

4) The H(expression) or L(expression) constructs may be used to select
the most-significant or least-significant byte of 16-bit defined or
external numbers.

5) The use of a colon after a label is a matter of style and is optional.

2302-5014-00 ASSEMBLER 1-25

DEFINING WORD VARIABLES

The OW directive defines a variable as type WORD and initializes one or more
storage un its.

LABEL

[name][:]

name

expression

EXAMPLE

FEF: DW OFEH

NUMBER DW 1234H

REV DW B(1234H)

CHARS DW IABI

OFFAB DW AB

USA~ NOTES

OPERATION

(}J

OPERAND

expression[, •••]

In an absolute or relocatable section, name is defined
as the address of a variable of type WORD.

Specifies any valid expression.

Defines a word named FEF with a hexadecimal value
representing 254 decimal.

Defines a word named NUMBER and stores 34H in NUMBER
and 12H in NUMBER+1

Defines a word named REV and stores 12H in REV and
34H in REV+1.

Defines a word named CHARS and stores the ASCII
characters IABI in CHARS as 4241H.

Defines a word named OFFAB and stores the segment
relative (relocatable) offset of variable AB in OFFAB.

The OW directive allows the programmer to define 16-bit storage locations that
may be optionally initialized to specified values. This data may include
numbers, address offsets, or any data required by the program. If an address
is used as the operand of a OW directive, that address l relocatable offset
from the beginning of its containing section is stored.

This directive may also be spelled "RMB" for compatibility with the Motorola
directive which performs the same function.

2302-5014-00 ASSEMBLER 1-26

ASSIGNING A PERMANENT VALUE TO AN IDENTIFIER

The EQU directive assigns a permanent value to an identifier.

name

LABEL

name[:]

expression

EXAMPLE

HERE

LAST:

START

USAGE NOTES

EQU *

EQU 1000

EQU ST+1

OPERATION

EQU

OPERAND

expression

Specifies any valid identifier.

Specifies any expression that is valid as a single
operand of either a machine instruction or a data
definition directive, including forward references,
external symbols, expressions, addresses, address
expressions, and other EQUs.

Assigns the value of the current location counter to
the identifier HERE.

Assigns the value 1000 to the identifier LAST.

Assigns the value of ST+1 to the identifier START.

The EQU directive requires a label field since the function of the directive
is to define the meaning of the name in the label field. The symbol "name" is
assigned the value of expression by the Assembler. Whenever the symbol "name"
is encountered subsequently in the assembly, this value is used.

The name defined in an EQU directive may not be redefined.

2302-5014-00 ASSEMBLER 1-27

MAKING SYMBOLS AVAILABLE TO OTHER MODULES

The PUBLIC directive specifies which identifiers or labels defined in the
current module are made available to other modules.

LABEL

symbol

EXAMPLE

PUBLIC CNT

USAGE NOTES

OPERATION

PUBLIC

OPERAND

symbol [....]

Specifies a variable or label defined anywhere in
the current module. The following are not allowed in
a PUBLIC directive: the names of macros, macro
parameters, local symbols, DEFG and DEFL identifiers,
and identifiers equated to expressions that contain
externally defined terms or character strings longer
than two characters.

Specifies that the variable CNT be made available to
other modules.

Any identifier or label declared PUBLIC which is not defined in the current
module produces a diagnostic message.

2302-5014-00 ASSEMBLER 1-28

MAKING EXTERNAL S~BOLS AVAILABLE TO THE CURRENT MODULE

The EXTRN directive specifies which identifiers or labels defined in other
modules are used by the current module.

LABEL

symbol

EXAMPLE

EXTRN CNT,ALOOP

USAGE NOTES

OPERATION

EXTRN

OPERAND

symbo 1 [, •••]

Specifies an identifier or label defined in a module
other than the current module.

Identifies a variable eNT which ;s defined in
another module; CNT is made available for use
in the current module. Also identifies a label
named ALOOP which is defined in another mOdule.

The following example illustrates the use of the EXTRN directive:

SAM CSECT
EXTRN LNGTH

LDA LNGrH get string's length
MUt

END

2302-5014-00 ASSEMBLER 1-29

NAMING THE OBJECT MOOULE

The NAME directive assigns a name to the object module generated by the
assembly.

LABEL

module

EXAMPLE

NAME MOD13

USAGE NOTES

OPERATION

NAME

OPERAND

module

Specifies a valid identifier that is not greater than
8 characters.

Assigns the name MOD13 to the program module that
foll ows.

If used with the FD Linker, the NAME directive allows the programmer to
combine several different assembly modules into a single load module for
execution. The module name assigned with the NAME directive may be used to
control storage allocation and linking. This name is stored in the object
module and is not necessarily the same as the name of the file that contains
the module. The module name specified appears in the link map produced by the
FD Linker as the defining module name for sections and PUBLIC symbols and is
used in the SECU debugger environment to distinguish among similarly named
local symbols.

For compatibility with Motorola, the NAME directive may be spelled NAM.

2302-5014-00 ASSEMBLER 1-30

SECTIONING

The 6809 Assembler provides sectioning facilities to control the placement of
instructions and data in memory. thereby aiding in program structuring and
memory management.

Sectioning allows the definition of various named areas of instructions,
constant data. and variable data. A section is the smallest relocatable unit
of memory; every instruction and data item must lie within a section. Each
section defines a separate location counter. At least one section must be
declared per assembly module; there is no arbitrarily imposed limit, other
than over'all symbol table capacity. for the number of sections defined in an
assembly module.

Sections may be defined for read-only data, working-storage data, the stack,
the main program, shared (reentrant) subroutines, interrupt vectors, interrupt
routines, or other purposes. Code and data may be mixed in a section,
although this practice is not always advisable.

A section can be absolute or relocatable.

An absolute section is assembled, linked, and loaded at an absolute address
specified at assembly time. Absolute sections are useful for defining
instructions to be executed in the event of an interrupt, or other
hardware-dependent code or data.

A relocatable section is assembled such that its location in memory is
determined at a later time by the Linker. Most program sections are
relocatable.

Table 1-5 lists the sectioning directives and their functions.

Oi rect ive

ASECT

CSECT

2302-5014-00

Table 1-5. Sectioning Directives

Function

Specifies the beginning of an absolute section.

Specifies the beginning of a relocatable section.

ASSEMBLER 1-31

DEFINING AN ABSOLUTE SECTION

The ASECT directive specifies the beginning of an absolute section or
specifies assembly to an existing absolute section.

LABEL

EXAMPLE

ASECT
ORG 80H

USAGE NOTES

OPERATION

ASECT

OPERAND

Defines a new absolute section starting at 80H.

An absolute section begins with an ASECT directive and terminates with the
next ASECT, CSECT, or END directive.

By coding another ASECT directive, it is possible to assemble into a
previously defined absolute section after intervening relocatable sections.
When switching assembly to a previously-defined absolute section, assembly
resumes at the end of that absolute section.

Statements that generate object code must be preceded by an ASECT or CSECT
directive; there is no default section.

2302-5014-00 ASSEMBLER 1-32

DEFINING A RELOCATABLE SECTION

The CSECT directive specifies the beginning of a relocatable section or
specifies assembly to an existing relocatable section.

name

EXAMPLE

SEC5 CSECT
•

•
SEC6 CSECT

•
•
•

SEC5 CSECT
•

•
SEC6 CSECT

•
•

USA~ NOTES

LABEL

name

OPERATION

CSECT

OPERAND

Specifies a valid label, which is not greater than 15
characters, by which the section is to be known to the
Assembler and the Linker.

Defines a new relocatable section named SEC5.

Defines a new relocatable section named SEC6.

Switches assembly to relocatabl e sect ion SEC5,
which was previously defined.

Switches assembly to relocatable section SEC6,
which was previously defined.

A relocatable section begins with a CSECT directive and terminates with the
next ASECT, CSECT, or END directive.

Assembly of a newly defined relocatable section begins at offset zero.

By coding another CSECT directive containing the name of an existing
relocatable section, it is possible to assemble into a previously defined
relocatable section after intervening sections. When switching assembly to a
previously defined relocatable section, assembly resumes at the end of that
relocatable section.

Statements that generate object code must be preceded by an ASECT or CSECT
directive; there is no default section.

2302-5014-00 ASSEMBLER 1-33

LOCATION COUNTER

The location counter specifies the storage location to be assigned next. The
current location-counter value is available in an expression by using the
special symbol *. Table 1-6 lists the location counter directives and their
functions.

Table 1-6. Location Counter Directives

Directive Function

ORG

DS

Sets the location counter for the current section to a specified
value.

Adds a specified value to the current location counter to
reserve storage.

When a section is defined, the Assembler initializes that section's location
counter to zero.

2302-5014-00 ASSEMBLER 1-34

SETT ING THE LOCAT ION COUNTER

The ORG directive sets or resets the location counter for the section in which
it occurs and thereby .specifies the location at which subsequent statements
are assembled.

LABEL

expression

EXAMPLE

ORG 1000

ORG ADDRS

USAf£ NarES

OPERATION

ORG

OPERAND

expression

In an ASECT, specifies an absolute number, an
expression that can be evaluated to an absolute
number, or an address within the ASECT.

In a CSECT, specifies an absolute number (offset
within the current section), an expression that can
be evaluated to an absolute number, or an address
within the current section.

Forward and external references are not allowed.

Sets the location counter to offset 1000 •

. Sets the location counter to the value of ADDRS.

If an ORG directiVe is not the first statement of a section, assembly begins at
location zero, relative to the address at which the section is linked.

The expression operand of an ORG directive must not contain forward or
external references. If the expression-evaluates to an address, that address
must be defined within the current section.

2302-5014-00 ASSEMBLER 1-35

RESERVING STORAGE

The DS directive reserves and optionally names a memory area conSisting of a
specified number of bytes.

name

LABEL

[name]

expression

EXAMPLE

WORDS DS 20

SPACE DS TEN+5

USAGE NOTES

OPERATION

DS

OPERAND

expression

Specifies a valid identifier which names the memory
area.

Specifies an absolute number or an expression that can
be evaluated to an absolute number which represents
the number of contiguous bytes to be reserved.

Defines a memory area 20 bytes long and names it
WORDS.

Defines a memory area TEN+5 bytes long and names it
SPACE.

The value of expression specifies the number of contiguous memory bytes to be
reserved for data storage by advancing the location counter for the section in
which the DS directive occurs. The DS directive does not assemble any data
values into the reserved bytes.

If an identifier is used as the expression or a term of the expression, it
must be defined before the DS directive is encountered and may not be an
external or address-valued symbol. .

For compatibility with Motorola, the DS directive may be spelled RMB.

2302-5014-00 ASSEMBLER 1-36

ASSEMBLY CONTROL

Program assembly proceeds sequentially from one statement to the next unless
assembly control directives are used to alter the sequential order of assembly
or to terminate program assembly. Table 1-7 lists the program control
directives and their functions.

Directive

IF

ENDIF

ELSE IF

ELSE

EX IT IF

DO

NEXTDO

EXITDO

END

2302-5014-00

Table 1-7. Assembly Control Directives

Function

Identifies the beginning of a block of code which is
included or excluded at assembly time depending on the
logical value of an expression.

Identifies the end of an IF block.

Used in conjunction with an IF directive to test an
alternate condition within the current nesting level.

Used in conjunction with an IF directive to indicate
the last alternative within the current nesting level.

causes all statements preceding the closing ENDIF
directive in the current or specified IF block to be
ignored.

Identifies the beginning of a block of code which is
repetitively assembled zero or more times.

causes the Assembler to perform immediately the next
iteration of the current or named DO block.

Terminates processing of the statements within the
current or named 0.0 block.

Indicates the end of a source program.

ASSEMBLER 1-37

CONDITIONAL ASSEMBLY

The IF directive identifies the beginning of a block of code which is included
or excluded at assembly time depending on the logical value of a specified
expression.

LABEL

[name]

name

expression

EXAMPLE

DECIDE IF A=B

USAGE NOTES

OPERATION

IF

OPERAND

expression

Specifies a valid identifier which may only be used to
name an IF block for reference by an EXITIF directive.

Specifies a number-valued expression. Forward,
external, and address references are not permitted.

Identifies the beginning of a sequence of statements
which is included in the assembly if A equals B.

Programming problems often require the user to specify two or more courses of
action and a means of deciding which course to assemble. The IF and ENDIF
directives identify the beginning and end of a sequence of statements which is
or is not assembled depending on the value of a specified expression. The
following illustrates the simplest form of an IF block:

[IF block name] IF expression

• Statements to assemble if the expression is true •
•
ENDIF

If the expression contained in the operand field evaluates to a logical true
(a non-zero value), the statements between the IF and ENDIF directives are
assembled. If the expression evaluates to a logical false (a zero value),
the statements contained in the IF block are not assembled.

An ENDIF directive must end each IF block. For compatibility with Motorola,
the ENDIF directive may be spelled ENDC.

2302-5014-00 ASSEMBLER 1-38

IF blocks may be nested within other IF blocks, as follows:

[IF block name-I] IF expression-l
•

[IF block name-2] IF expression-2

•
ENDIF
•
•
•
ENDIF

IF blocks may be nested to any level.

The name assigned to an IF block may only be used in an EXITIF directive; it
may not be used in a call, a jump, or any other context.

2302-5014-00 ASSEMBLER 1-39

TESTING AN ALTERNATE CONDITION

The ELSE IF directive is used in conjunction with an IF directive to test an
alternate condition within the current nesting level.

LABEL

expression

EXAMPLE

ELSE IF A=B

USAf£ NOTES

OPERATION

ELSE IF

OPERAND

expression

Specifies a number-valued expression. Forward t

external t and address references are not permitted.

Defines the beginning of a sequence of statements
which is assembled if the expression in the preceding
IF directive is false and A equals B.

One or more ELSEIF directives may be used within an IF block. The following
illustrates the placement of ELSEIF directives within an IF block:

[IF block name] IF

•
ELSE IF
•
•

ELSEIF
•
•
•
ENDIF

expression-1
Statements to assemble if expression-1 is
true.

expression-2
Statements to assemble if expression-1 is
false and expression-2 is true.

expression-3
Statements to assemble if expression-1 and
expression-2 are false and expression-3 is
true.

If the expressions of the IF and preceding ELSEIF directives are false and the
current ELSEIF expression is true t the statements following the true
expression up to the next ELSEIF t ELSE t or ENDIF directive are assembled. If
the expressions of the IF and the preceding ELSEIF directives are false and
the current ELSEIF expression is also false t the statements following the
false expression up to the next ELSE 1F t ELSE t or ENDIF directive are not
assembled.

2302-5014-00 ASSEMBLER 1-40

TESTING THE LAST CONDITION

The ELSE directive is used in conjunction with an IF directive to indicate the
last alternative within the current nesting level.

LABEL

EXAMPLE

ELSE

USAG: NOTES

OPERATION

ELSE

OPERAND

Defines the beginning of a sequence of statements
which is assembled if the expression in the IF and
preceding ELSEIF directives are false.

The following illustrates the placement of an ELSE directive within an IF
block:

[IF block name] IF
•

•
ELSEIF

•

ELSE
•
•
•
ENDIF

expressi on-1
Statements to assemble if expression-1 is
true.

expression-2
Statements to assemble if expression-1 is
false and expression-2 is true.

Statements to assemble if all preceding
expressions are false.

If the expressions in the IF and preceding ELSEIF directives are false, the
statements following the ELSE directive up to the ENDIF directive are
assembled. If any of the expressions that precede the ELSE directive are
true, the statements following the ELSE directive up to the ENDIF directive
are not assembled.

2302-5014-00 ASSEMBLE R 1-41

EXITING AN IF BLOCK

The EXITIF directive causes all statements following it and preceding the
closing ENDIF directive in the current or specified IF block to be ignored.

LABEL

name

EXAMPLE

EX IT IF DEC IDE

USAGE NOTES

OPERATION

EX IT IF

OPERAND

[name]

Specifies the name of an outer IF block to be exited.
If not specified, the current IF block is exited.

Exits an IF block named DECIDE.

One or more EXITIF directives may be used within an IF block. The following
illustrates the placement of an EXITIF directive within an IF block:

name-1

[name-2]

IF
•
•
•
IF
•
•
•
EXITIF
ENDIF

•
ENDIF

expression-1

Statements to assemble if expression-1 is true.

expression-2

Statements to assemble if expression-2 is true.

name-1

Statements to assemble if expression-2 is false
and expressipn-1 is true.

If expression-1 and expression-2 are true, the EXITIF directive, which
terminates the name-1 IF block, is reached. If expression-2 is false, the
EXITIF directive is not reached and the statements between the two ENDIF
directives are assembled.

2302-5014-00 ASSEMBLER 1-42

REPETITIVE CONTROL

The DO directive initiates and controls repetitive assembly of the statements
following it up to the first ENDDO or EXITDO directive.

LABEL

[name]

name

expression

EXAMPLE

REPEAT DO 5

USAGE NOTES

OPERATION

DO

OPERAND

[expression]

Specifies a name for the DO block so that it may be
referenced by an EXITDO or NEXTDO directive.

Specifies an integer-valued expression which indicates
the number of times the DO block is to be repeated.
If expression is omitted, the DO block is repeated
until an EXITDO directive is assembled. Forward,
external, and address references are not permitted.

The group of statements following the DO directive up
to the first ENDDO or EXITDO are assembled five times.
The label REPEAT may be referenced by an EXITDO or
NEXTDO directive.

The following illustrates the simplest form of a DO block:

[DO block name] DO expression
•
• Statements to assemble repetitively.
•
ENDDO

An ENDDO directive must end each DO block.

The Assembler processes each DO block as follows:

1. Establishes an internal counter and defines its value as the value of
expression.

2. Evaluates the expression that represents the count.

2302-5014-00 ASSEMBLER 1-43

3. If the count is equal to zero, continues assembly with the statement
that follows the ENDDO directive.

4. If the count is greater than zero, processes the DO block as follows:

A. Decrements the internal counter by 1.

B. Assembles all statements encountered up to the first ENDDO or
NEXTDO directive.

C. Repeates steps 4A and 4B until the block has been processed the
number of times specified by the expression.

D. Terminates control of the DO block and resumes assembly at the
statement following the ENDDO directive.

The DO directive is especially useful for initializing a table. For example,
the following DO block initializes a table containing fifty 7-byte records:

DO
DB
OW
DC
ENDDO

50
23
ADDR
IABCD I

A DO block can be nested within other DO blocks or within an IF block. The
following illustrates a DO block nested within a DO block:

name DO expression
•
•
•
DO expression
•
•
•
ENDDO
•

•
ENDDO

When DO loops are nested, the inner DO block must be enclosed within the outer
DO block. Control can be transferred outside the DO block at any time by
means of an EXITDO, NEXTDO, or EXITIF directive.

2302-5014-00 ASSEMBLER 1-44

IMMEDIATE ITERATION

The NEXTDO directive causes the Assembler to perform immediately the next
iteration of the current DO block or a named DO block.

LABEL

name

EXAMPLE

NEXTDO LOOP3

USA«£ NOTES

OPERATION

NEXTDO

OPERAND

[name]

Specifies the name of the DO block to be immediately
iterated. If name is not specified, the current DO
block is repeated regardless of whether or not it has
a name.

The enclosing or current DO block named LOOP3 is
performed immediately.

One or more NEXTDO directives may be u~ed within a DO block. The NEXTDO
directive is useful only in a conditionally assembled piece of code. The
following illustrates the placement of a NEXTDO directive within an IF block
which is placed inside a DO block:

name-1

name-2

2302-5014-00

DO
•
•
•
DO
•
•
•
IF
NEXTDO
ENDIF
ENDDO
•
•
•
ENDDO

expression-1

expression-2

expression-3
name-1

ASSEMBLER 1-45

EXITING A DO BLOCK

The EXITDO directive causes the Assembler to terminate processing of the
statements within the current DO block or a named enclosing DO block.

LABEL

name

EXAMPLE

EX ITOO LOOP3

USAGE NOTES

OPERATION

EX IT DO

OPERAND

Lname]

Specifies the name of the DO block to be immediately
terminated. If name is not specified, the current DO
block is terminated regardless of whether or not it
has a name.

The enclosing or current DO block named LOOP3 is
terminated immediately. Assembly resumes following
the ENDOO statement which ends the DO block named
LOOP3.

One or more EXITOO directives may be used within a DO block. The EXITDO
directive is useful only in a conditionally assembled piece of code. The
following illustrates the placement of an EXITOO directive within an IF block
which is placed inside a DO block:

name-1

name-2

2302-5014-00

DO
•
•
•
DO
•

IF
EXITOO
ENOIF

•
ENOOO
•
•

· ENOOO

expression-1

expression-2 .

expression-3
name-1

ASSEMBLER 1-46

ENDING A SOURCE PROGRAM

The END directive terminates the assembly of the current source program.

LABEL

expression

EXAMPLE

END

END 3456

USAGE NOTES

OPERATION

END

OPERAND

[expression]

Specifies an entry point at which program execution
begins.

Terminates assembly of the current source program.

Terminates assembly of the current program and begins
execution at 3456.

An END directive is required in a source file, but is not permitted in a
library file. If a symbolic label name appears as an expression, it
automatically becomes global.

2302-5014-00 ASSEMBLER 1-47

MACRO FACILITY

The macro facility allows the programmer to name a sequence of statements t
called a macrOt and to code only that macro name whenever the sequence is
required in a source program. In addition, the programmer can define a macro
which names formal parameters that are replaced by actual parameter values
coded with the macro invocation.

During the first pass of assemb1Yt macros are expanded. Macro expansion is
enhanced by text substitution which allows strings t including the results of
string expresslons t to be substituted into the program text.

The use of macros produces shorter source programs and reduces actual coding
time. During debugging t a single change in the macro is reflected by the
Assembler every time the macro is invoked. Once the macro is debugged t an
error-free sequence is ensured every time the macro is invoked.

Macros may be defined in the main source program or in a library file. To
access a macro defined in a library filet the name of the library file must be
specified to the Assembler in response to the prompt "LIBRARY FILE: ". Failure
to enter a file name means that macros defined in a library file cannot be
accessed. If necessarYt a macro definition in a library file can be overriden
by a macro definition in the main source program, since the main source
program is assembled after the library file.

This chapter introduces the capabilities of the macro facility and illustrates
how to define a simple macrOt invoke a macrOt and pass parameters to a macro
from the statement that invokes the macro.

2302-5014-00 ASSEMBLER 1-48

TEXT SUBSTITUTION OPERATORS

The text sUbstitution operators of the Assembler allow character strings to be
substituted into the source program text. Text substitution is the means by
which formal parameters contained within macros are substituted with actual
parameter values; however, text substitution is available both inside and
outside of macros.

The following sections describe the general process of text substitution.

Simple Variable Substitution

Simple variable substitution is specified by preceding a variable name with an
ampersand. For example:

&SAMPLE

The ampersand directs the Assembler to substitute the previously defined
numerical or string value, defined by the variable SAMPLE, into the source
text. For example, in the following sequence of statements:

SAMPLE OEFG
LOA

'FOO'
&SAMPLE

the second statement assembles as:

LOA FOO

Variable Name Delimiter

The exclamation mark is used as variable name delimiter in text substitution.
If the above instruction were

LOB &SAMPLE001

the text substitution routine tries to use 'SAMPLE001' as the variable name to
be substituted. To prevent this situation, the variable name delimiter is
used as follows:

LOB &SAMPLE!OOl

Now, the variable name to be substituted is 'SAMPLE'.

2302-5014-00 ASSEMBLER 1-49

DEFINING A MACRO

The MACRO directive names a sequence of statements and optionally defines one
or more formal parameters which facilitate the passing of actual values into
the sequence of statements.

LABEL

name

name

formal

EXAMPLES

WORK MACRO

OPERATION

MACRO

OPERAND

[formal], •••

Specifies a valid label which names the sequence of
statements enclosed by MACRO and ENDM directives.

Specifies 1 to 64 names which are the formal
parameters of the macro.

Defines the beginning of a macro and assigns it
the name WORK.

PAY MACRO RATE ,HOURS Defines the beginning of a macro, aSSigns it the

USAf£ NOTES

name PAY, and specifies two formal parameters,
RATE and HOURS, which are assigned values from
the statement that invokes the macro.

The MACRO and ENDM directives identify the beginning and end of a sequence of
statements called a macro definition or a macro. For example, the following
defines a macro and assigns it the name WORK:

WORK MACRO

2302-5014-00

statement-l
statement-2
•
•
•
statement-n
ENDM

ASSEMBLER 1-50

After the macro is defined, the programmer need only code the name of the
macro in the operation field whenever the sequence of statements is required
in the source program. For example, the Simple statement

•
•
•
WORK
•
•
•

invokes the macro defined above and generates the sequence of statements
defined therein.

Macros may be defined in the source file before they are invoked, in a library
file, or both. A macro definition in the source file overrides a macro
defined in a library file if the names of both macros are identical.

Since it is more common to generate a sequence of similar rather than
identical statements, the statements contained within a macro may contain
formal-parameter names which are referenced and replaced by actual values. A
formal-parameter name must be specified in the operand field of a macro
directive in order to be referenced 1n the body of a macro. The formal
parameter name may be referenced within the body of a macro definition by a
statement containing the formal-parameter name preceded by an ampersand. When
a macro-invocation statement is encountered, the instructions contained within
the macro definition are assembled and the formal values specified in the
invocation statement are substituted for each ampersand and formal-parameter
name. For example, consider the following macro definition:

WORK MACRO HOORS

•
•
LOB &HOURS
•
•
•
ENOM

2302-5014-00 ASSEMBLER 1-51

The above macro defines a formal parameter named HOURS in the operand field of
the macro directive. The MOV instruction references HOURS, which is preceded
by an ampersand. During macro expansion, the characters appearing in the
operand field of the invoking statement are substituted everywhere in the
macro boQy where &HOURS appears. For example, the invocation

WORK OVT IME

results in the following expansion:

•

LDB OVT IME

The formal parameters behave like DEFL symbols; they are local to a specific
invocation of the macro. Up to 64 formal parameters may be specified in the
operand field of a macro directive and substitution may occur in the label
field, operation field, comment field, or any combination of these fields.
For example, consider the following macro definition:

SAVEA MACRO TYPE ,LOC
&TYPE &LOC
ENDM

The i nvocat ion

SAVEA STA,VAL

results in

STA VAL

The i nvocat ion

SAVEA LDB,STR

results in

LDB STR

Macro invocations may be nested or recursive.

2302-5014-00 ASSEMBLER 1-52

For compatibility with Motorola, the MACRO directive may be spelled MACR and
the EXITM directive may be spelled MEXIT.

~~RATING UNIQUE LABELS

A macro call may generate statements containing labels. For example, the
following definition is used to set the DE registers to the absolute value of
the AX register's content:

ABSD

ENDABSD

MACRO
TST
BP
NEG
EQU
ENDM

D
<ENDABSD
D
*

The first time ABSD is called, label ENDABSD is defined. Since ENDABSD has
been previously defined, a duplicate label definition error occurs the second
time ABSD is called. To avoid duplication, a unique label must be generated
each time the macro is called. The Assembler provides a special predefined
macro parameter (INDX), which is set to a unique five-digit numeric value each
time a macro is called. The macro ABSD may now be defined using INDX, as
shown here:

ABSD

AB&INDX

MACRO
TST
BP
NEG
EQU
ENDM

D
<AB&INDX
o
*

Assuming that this is the only macro defined and that there are exactly two
calls made, the first call defines the label ABOOOOl, and the second call
defines the label AB00002.

2302-5014-00 ASSEMBLER 1-53

EXIT ING A MACRO

The EXITM directive causes all statements following it and preceding the
closing ENDM directive in the current or specified macro to be ignored.

LABEL

name

EXAMPLE

EX ITM MYMACRO

USAGE NOTES

OPERATION

EXITM

OPERAND

[name]

Specifies the name of an outer macro to be exited. If
not specified, the current macro is exited.

Exits a macro named MYMACRO.

The EXITM directive may be used at any point within a macro to terminate
processing of the current invocation of the macro and any IF or DO blocks
currently active within the macro.

For compatibility with Motorola, the EXITM directive may be spelled MEXIT.

2302-5014-00 ASSEMBLER 1-54

ENDING A MACRO

The ENOM directive terminates a macro.

EXAMPLE

ENOM

USA~ NOTES

LABEL OPERATION

ENOM

Terminates the current macro.

OPERAND

An ENOM directive must end each macro. Assembly resumes following the ENOM
statement.

2302-5014-00 . ASSEMBLER 1-55

DEFINING LOCAL IDENTIFIERS

The DEFL di rective defines a temporary symbol whose val ue is known only within
the current level of macro expansion.

LABEL

name

name

name

expression

EXAMPLE

OPERATION OPERAND

DEFL expression

DEFL 'string'

Specifies any valid identifier or label.

Specifies an integer valued or character expression.
Forward, external, and address references are not
allowed.

COUNT DEFL 5 Specifies COUNT as an identifier whose value, 5, is
known only within the current level of macro
expansion.

REF DEFL 'CODE ' Specifies REF as an identifier whose value, the

USAGE NOTES

character string 'CODE ' , is known only within the
current level of macro expansion.

Local symbols are symbols whose value is known only within macro expansions at
the current level of macro expansion and at deeper levels that do not
themselves define that symbol locally. If a local symbol is defined locally
in a macro, that symbol is not availabl~ once the macro is exited. A local
symbol of the same name defined in another macro is considered a different
symbol.

2302-5014-00 ASSEMBLER 1-56

ASSIGNING A CHANGABLE VALUE TO AN IDENTIFIER

The OEFG directive assigns a changable value to an identifier.

LABEL

name[:]

name

OPERATION

OEFG

OPERAND

expression

Specifies any valid identifier.

expression Specifies any expression that is an absolute
expression. It may not be relocatable, but may
contain an expression involving the difference
between two relocatable variables in the same
section.

EXAMPLE

HERE OEFG *-SAM Assigns the value of the current location counter
minus the relocatable label SAM to the identifier
HERE.

LAST: DEFG 1000 Assigns the value 1000 to the identifier LAST.

START

USAf£ NOTES

OEFG labc l Assigns the string value labc l to the identifier
START.

LOA &START Refers to the above set-symbol. This is seen by the
Assembler as IILDA abc ll •

The OEFG directive requires a label field since the function of the directive
is to define the meaning of the name in the label field. The symbol IInamell is
assigned the value of expression by the Assembler. Whenever the symbol IInamell
is encountered subsequently in the assembly, preceded by an ampersand, this
value is used.

Unlike an EQUated value, the name defined in an DEFG directive may be
redefined.

For compatibilty with Motorola, the DEFG directive may be spelled SET.

2302-5014-00 ASSEMBLER 1-57

ASSIGNING THE LENGTH OF A STRING TO A SET SYMBOL

The LENGTH statement assigns the length of a string to a set symbol.

LABEL

name

name

string

EXAMPLE

OPERATION

LENGTH

OPERAND

'string'

Specifies any valid identifier or label.

Specifies any valid character string.

SLEN LENGTH 'THIS STRING' Speci.fies SLEN as an identifier whose
value is 11.

USA~ NOTES

If the set symbol has not been previously defined, a new local set symbol will
be defined.

2302-5014-00 ASSEMBLER 1-58

ASSIGNING PART OF A STRING TO A SET SYMBOL

The SUBSTR (substring) statement assigns part of a string to a set symbol.
The proper syntax is shown below:

LABEL

name

name

expa

expb

stri ng

OPERATION

SUBSTR

OPERAND

expa,expb,'string'

Specifies any valid identifier or label.

Defines the beginning character position of the
substring; the first character is position 1.

Defines the length of the substring. If expb is
zero, the substring will begin with the character
defined by expa and continue to the end of the string.

Specifies any valid character string.

EXAMPLE

ABC SUBSTR 4,8,'THIS STRING' Specifies ABC as an identifier whose
value is IS STR'.

USA~ NOTES

If the set symbol has not been previously defined, a new local set symbol will
be defined.

2302-5014-00 ASSEMBLER 1-59

LISTING CONTROL

The Assembler provides a set of listing control directives which allow the
programmer to control the content and appearance of the assembly listing.
Table 8 lists the listing control directives and their functions.

Table 1-8. Listing Control Directives

Directive Function

E~

PRINT

2302-5014-00

Causes the assembly to skip to the top of a new page.

Controls what is or is not printed in the assembly listing.

ASSEMBLER 1-60

SKIPPING TO THE TOP OF A PAGE

The EJE directive causes the assembly listing to skip to the top of a-new
page, and prints the current title.

EXAMPLE

EJE

USAGE NOTES

LABEL OPERATION

EJE

OPERAND

Causes the assembly listing to skip to the top of a
new page and to print a heading.

The EJE directive is used to improve the readability of an assembly listing.

The EJE directive does not print on the assembly listing.

For compatibility with Motorola, the EJE directive may be spelled PAGE.

2302-5014-00 ASSEMBLER 1-61

CONTROLLING WHAT IS PRINTED

The PRINT directive controls what is or is not printed in the assembly listing.

option

ON

OFF

GEN

ALL

EXAMPLE

PRINT ON

PRINT OFF

USA(£ NOTES

LABEL OPERATION

PRINT

OPERAND

option

Specifies one or more of the following:

Indicates printing of all subsequent source lines.

Suppresses the printing of all subsequent source lines
until a PRINT ON directive is encountered.

Li sts the source text of a macro expansion and the
generated object code.

Prints all source lines including lines skipped due to
conditional assembly directives and the conditional
assembly directives themselves. Location counter
values and object data for skipped lines are not
printed. Lines are printed after set symbol and macro
parameter substitutions have taken place. This option
affects printing and the display listing" identically.

Tells the Assembler to print all subsequent source
lines until a PRINT OFF directive is encountered.

Tells the Assembler to suppress printing of all
subsequent source lines until a PRINT ON directive is
encountered.

All PRINT di rective options are modal in nature; that is, once in effect they
remain in effect until a countermanding option in a PRINT command turns them
off.

2302-5014-00 ASSEMBLER 1-62

The ON and OFF Options

Use of the ON and OFF options provides a selective capability that enables or
disables the printing of a subset of statements contained in a program
section. Printing begins or ends with the statement immediately following the
PRINT directive that contains the ON or OFF option. For example, consider the
following:

XVZ CSECT
PRINT ON
statement A
PRINT OFF
statement B
PRINT ON
statement C
PRINT OFF
statement 0

The printed assembly listing for the above sequence is as follows:

statement A
statement C

If neither option is specified, the Assembler defaults to ON.

The ~N Option

The GEN option causes all source text and object code generated by macro
expansion to be printed.

2302-5014-00 ASSEMBLER 1-63

ASSEMBLER MESSAGES

The following is a complete list of the error and informational messages that
are generated by the FD Assembler.

** duplicate symbol **

Attempt to define a label or variable that was prev,iously defined. The
second definition is ignored ••

** error while writing object file **

Terminates Assembler processing.

** expression has more than 1 relocatable factor **

Expressions with relocatable or absolute terms.

** immediate value> 127 or < -128 **

The instruction allows only a signed 8-bit value. The high-order bit is
used as the sign. Respecify.

** invalid forward reference **

Attempt was made to reference a symbol that is not yet defined in this
assembly, for example:

A EQU B

where B is not yet defined.

** invalid label **

The specified label is mispelled or.not present in the current assembly.
The label of an ENDP must be previously defined in a PROC directive.

** invalid opcode **

The specified opcode is either mispelled or not allowed by the Assembler.

** invalid operand **

The specified operand is either mispelled or not previously defined in
this assembly. Possible invalid or inactive block name on EXITDO, EXITM,
EXITIF, or NEXTDO statement.

2302-5014-00 ASSEMBLER 1-64

** missing END **

An END statement must be the last statement in an assembly.

** more unprintable errors **

Occurs if there are more than 10 errors in one line.

** over 255 externals **

The symbol table allows a maximum of 255 external symbols. Terminates
Assembler processing.

** relative jump out of range **

The Assembler has computed the displacement to the destination label,
however, that displacement is too large to fit into a valid machine
instruction. Either an absolute jump must be used or the jump instruction
must be moved closer (usually within -128 to +128 bytes) to the target
label.

** relative jump to different section **

A relative jump to a label in a different section cannot be permitted
because the location of that section is not determined until link time,
and the Linker is unable to compute a relative displacement to be inserted
into this instruction.

** relative jump to external symbol **

A relative jump to an external symbol cannot be permitted because the
location of that external symbol is not determined until link time, and
the Linker is unable to compute a relative displacement to be inserted
into this instruction.

** symbol table overflow **

There is not sufficient space in memory for:

a. The macro definition table, which contains one entry for each
macro which has been defined in the current assembly and

b. The labels, DEFGs, and DEFLs which have been defined in the
current assembly.

The user must reduce the number of macro definitions, or labels, or
symbols used in the Assembly.

2302-5014-00 ASSEMBLER 1-65

** undefined symbol **

The user has forgotten to define a referenced variable, or the symbol was
mispelled.

** different symbol value in pass 2 **

The user has caused the value of the label in the preceding source line to
have a different value in pass 2 than it was assigned in pass 1.

** improper section nesting **

Every section must be fully enclosed in another section.

2302-5014-00 ASSEMBLER 1-66

LIST OF MACRO AND CONDITIONAL ASSEMBLER MESSAGES

** ELSE out of place **

** ENOOO out of place **

** ENDIF out of place **

** ENOM out of place **

** EXITM out of place **

** invalid macro parameter name **

** macro definition out of place **

** macro mesting exceeds 127 **

** missing ENOOO **

** missing ENOIF **

** miSSing ENOM **

** operand longer than 32 chars **

** undefined SET symbol **

2302-5014-00 ASSEMBLER 1-67

DIFFERENCES BETWEEN THE FUTUREDATA AND MOTOROLA ASSEMBLY LANGUAGES

1. The FutureData Assembler does not allow period or underscore characters in
labels; however Motorola only allows 6 character labels. The FutureData
Assembler does not generate an error when 6809 register names are used as
1 abe 1 s.

2. The two Assemblers use different spellings for some expression operators;
the different ones are summarized below:

act ion
spelling

exponent
inclusive or
excl usive or
logical and
shi ft 1 eft
arithmet ic
ri ght shi ft
shi ft right
rotate right
rotate left

FutureData
spelling

not available
.OR.
.XOR.
.AND.
.SHL.
.SHR.

not available
not available
not available

Motorola

!+
!X
! •
!<
not available

1>
!R
!L

3. The FutureData Assembler uses the & character as a text replacement
operator, which may be used inside or outside a macro. Motorola uses the
backslash character, which is not usable outside a macro.

4. The FutureData Assembler uses &INDX in a macro to generate unique labels;
Motorola uses the .nnnn notation.

2302-5014-00 ASSEMBLER 1-68

5. Here is the equivalence between the FutureData and Motorola directives:

Action FutureData Motorola

block store DO n BSZ n
zeros DB 0

ENDDO no equivalent
end assembly END END
end IF ENDIF ENDC
end of marcro ENDM ENDM
equate EQU EQU
programmer error no equivalent FAIL
define byte DB FCB
define word ()J FOB
define character DB 'abc' FCC 'abc' or FCC 3, abc
string
reserve space OS expr RMB expr
set DEFG SET
stri ng 1 ength LENGTH no equivalent
substring SUBSTR no equivalent
conditionals IF 'a=' b IFC 'a, I b

IF 'a<>'b IFNC
IF a=b IFEQ a,b
IF a>=b IFGE a,b
IF a>b IFGT a,b
IF a<=b IFLE a,b
IF a<b IFLT a,b
IF a<>b IFNE a,b

exit conditional EXITIF blkname no equivalent
else clause ELSE no equivalent
elseif ELSE IF no equiv al ent
iteration DO no equivalent
next iteration NEXTDO no equivalent
exit iteration EX ITDO b 1 k name no equivalent
marcro definition MACRO MACR
set local DEFL no equivalent
exit macro EXITM MEXIT
assign program name NAME stri ng NAM string
options PRINT xxx OPT opt1,opt2, •••
set location counter ORG expr ORG expr
top-of-form EJE PAGE
define reg. 1 ist no equival ent RE G 1 i st
set DP no equivalent SETDP expr
skip blank lines SPC expr SPC expr
title string no equivalent TTL string
public variable PUBLIC name no equivalent
external variable EXTRN name no equivalent

2302-5014-00 ASSEMBLER 1-69

CHAPTER 2

LINKER

INTRODUCTION

The Linker combines relocatable program sections (CSECTs) from Assembler- or
Compiler-generated relocatable file(s) to form a single executable absolute
object file. Address references between sections that were unresolved at
assembly or compile time are resolved, and sections are relocated for loading
at absolute addresses. In addition to relocatable sections, the Linker also
supports an absolute section, the special program section for which no
relocation is necessary.

LINKER INPUT

Assembler- or Compiler-generated relocatable object files may be used as input
to the Linker. These object files are distinguished by the "R" attribute.
Each relocatable object file may contain a maximum of eight relocatable
sections and one absolute section. If two or more input files contain the
same CSECT name, the Linker will either:

1) Ignore the second through nth definitions of that CSECT.

2) If the "append" mode is in effect, all CSECTs of the same name are
concatenated into a single memory area by the Linker.

If two or more input files contain the ASECT directive, memory allocations may
overlap. If CSECT directives are not used in an assembly, object code will be
placed in the ASECT.

In order to link symbolic name references in object files, the name must be
declared public (using the PUBLIC directive) during the assembly or
compilation of the module which defines the name and external (using the EXTRN
directive) in any modules which refer to the name. For further information on
public symbols, refer to sections later in this chapter.

LINKER OUTPUT

The executable absolute object file generated by the Linker may be loaded into
memory and executed by the Debugger. In addition, a memory map and reference
list may be displayed or printed.

2302-5014-00 LINKER 2-1

OPTIONS

Four Linker options are available to choose the desired type of input/output
operation. Upon initial entry to the Linker, these options are displayed on
the display screen. To select the desired options, type the appropriate
letters as listed in Table 2-1. Options may be selected in any order either
from the keyboard or from a command file.

Table 2-1. Linker Options

Option Function

D

S

L

A

2302-5014-00

DELETE UNSPECIFIED SECTIONS
Links only those sections which are specifically named in the
Linker commands and deletes all other sections. If D is not
selected, all sections from all input files will be linked, and
the name and length of each section in each input file will be
displayed. Sections named in input commands are positioned
in memory as requested. All unnamed sections are positioned
after the last named section.

INCLUDE SYMBOL TABLE
Writes symbol tables from all input files to the output file.
These tables, which relate public symbols to memory locations,
are necessary for symbolic debugging. A symbol table may be
placed in each relocatable object file by the Assembler or
Compiler.

LIST TABLES ON CRT
Displays the memory map and reference list.

APPEND DUPLICATE SECTIONS
The normal operation of. the Linker is to overlay multiple
occurrences of a section. The Linker provides information in
the link map when this occurs. This option forces all
occurrences of duplicate sections to be concatenated rather
than overlaid. This is particularly useful for compiler
generated assembly language programs, which may use section
names in this manner.

LINKER 2-2

Ca4MANDS

The Linker commands are entered to specify the following information:

1) the input file(s);

2) t he out put fi 1 e;

3) the listing file (if any);

4) section placement in memory;

5) lists of section names in the order desired;

6) program execution entry pOint.

2302-5014-00 LINKER 2-3

An example Linker display is shown in Figure 2-1. Options D and A were not
selected. The next <RETURN> will cause Linker processing to begin.

=========== Linker V5.2 ===================================== FutureData ======

SPECIFY LINKER OPTIONS:
(0) - DELETE UNSPECIFIED SECTIONS
(S) - INCLUDE SYMBOL TABLE
(L) - LIST TABLES ON CRT
(A) - APPEND DUPLICATE SECTIONS

>LS
Input file options: (select no more than one per file)
/G - Globals only in symbol table
/N - No symbol table at all
/R - Reference only file (no data/symbols)

Input file:
> 1: DEMO. R
Section
CODE
DATA
Input file:
>
Output file:
>l:DEMO
Li st i ng fil e
>P:
Linker input:
>HORG X' 1000'

...

Length
0010
OBB8

or device:

Figure 2-1. Example Linker Display

After the "Linker input:" prompt, the user may use the exclamation point
character "!" to insert commentary which is ignored by the Linker but aids the
user's memory/understanding. If the exclamation point is the first character
of the input line, the whole line is ignored by the Linker; an exclamation
point following an input command, on the same input line is treated by the
Linker as the end-of-line character.

2302-5014-00 LINKER 2-4

Each Linker command is defined below in the order of use.

Command

input file-spec
[input file-spec]

•

•

IR

IN

IG

<RETURN)

[output file-spec]

[1 i st ing fi 1 e-s pec]

[IORG absolute addr]

[sect-a][,sect-b]
[sect-c][,sect-d] •••

2302-5014-00

Explanation

After the Linker options have been entered, the
Linker will prompt: INPUT FILE. Type the desired
filename(s), one filename and <RETURN) per line •

The Linker also supports three switches after an
input file specification. The input files to the
Linker are relocatable modules generated from the
assemblers. They consist of text records,
relocation information, and symbol tables. There is
a symbol table for public symbols and one' for local
symbols. The three switches are used by the Linker
to control the manner in which the input, file is
processed.

Use the public symbol table of the file to resolve
references in other files, but do not include any
'object records for this file.

Do not include the symbol table of the file if the S
option was chosen from the Linker menu. This is
useful for creating smaller debugging modules that
can be used with the debuggers.

Similar to the IN switch in that it does not include
local symbol tables for the file, but it does include
the public symbol tables.

Press <RETURN> after the last input file-spec
has been entered.

The Linker prompts: Output file. Type the output
file specification and press <RETURN).

The Linker prompts: Listing file. Type the
listing file specification and press <RETURN).

The Linker prompts: Linker input. Specify the
absolute address of the first relocatable program
section in the list following the 10RG statement.

Enter a list of section names. The sections are
positioned in memory in the order named, starting at
the address in the preceding 10RG or ISEG statement.
If there is no preceding 10RG or ISEG directive, the
starting address is zero.

LINKER 2-5

Command

[#ORG absolute addr]
[sect-e]

[#SEG [long addr]]

[#END [entry pt name]]

Expl anati on

Additional starting addresses, each followed by a list
of sections, may be specified. The absolute address
is decimal, hexadecimal, binary, or octal constant as
described in Chapter 1. It is strongly recommended
that the ORG addresses start at small values and only
increase. This makes the memory map output much more
readable.

This command specifies a 32-bit hexadecimal segment
origin (similar to an ORG address but twice as long).
If the long address parameter is missing, the segment
origin defaults to the current load location
pointer. There may be up to 15 of these commands per
link. This directive is used in linking for execution
by mi croprocessors whi ch support more than 64K bytes
of address space.

Enter a #END statement to begin Linker processing.
entry point name is a public symbol specifying the
program entry point. (Section names are automatically
public.) If not specified, the program entry point
is set to the address of the first section. After
processing begins, press <BREAK) to halt Linker
processing and view display output. Press <BREAK)
again to continue. When processing is complete, the
Linker displays the message: Function completed.
Press <RETURN). To begin Linker operation again,
enter an input file-spec. To jump to another ADS
system program, enter a J command.

[[#DEF] [entry pt name] This command, followed by symbol definitions, allows
[public symbol = the user to define values for external symbols which
absolute addr][SEG#]] were not defined previously in some section but are

2302-5014-00

referenced in some section. The DEF command, when
used, must replace the #END command. The optional
section number is a single hexadecimal digit
separated by at least one blank from the address
fi e 1 d.

LINKER 2-6

LINKER SUB-COMMAND FILES

The user may invoke sub-command files within the Linker. If the input stream
starts with a "." at any point at which the Linker expects input, the
remainder of the string is taken as a file specification to be used as an
alternate input stream. A sub-command file is distinguished by the "S"
attribute. When the end of file marker is reached, the Linker returns to its
previous input stream. The sub-command file may be invoked while command file
processing is active and may be used any number of times. However,
sub-command files cannot be nested.

The example in Figure 2-1 is repeated in Figure 2-2, but in this case a
sub-command file, LINK.FILES, is used. The contents of the file are:

1: DEMO.R

1:DEMO
P:

Figure 2-2 gives the resulting Linker display when run with the sub-command
file. The line "Linker input:" is generated from the previous input stream,
either via the keyboard or a command file. The lines may not include the
command file commands such as nfor parameter substititution, Land K.

2302-5014-00 LINKER 2-7

=============Linker V5.2======================================FutureData=======

Specify Linker options:
(D) Delete unspecified sections
(S) Include symbol table
(L) List tables on CRT
(A) Append duplicate sections

>LS
Input file options: (select no more than one per file)
/G - Globals only in symbol table
/N - No symbol table at all
/R - Reference only file (no data/symbols)

Input file:
>.1:LINK.FILES
> 1: DEMO.R
Output file:
>1:DEMO
Listing file or device:
>P:
Linker input:
>HORG X' 1000'

MEMORY MAP OUTPUT

Figure 2-2. Example Linker Display
Sub-Command Files

HORG commands may cause an CSECT to overlap a previously specified CSECT or
the ASECT.

An example memory map display is shown in Figure 2-3. The memory map lists,
for each section:

1) Its start address in memory (if the HORG commands were entered with
their operands in ascending order, the listed memory locations will
also be in ascending order);

2) Its name;

3) The name of the file from which the section was taken;

4) Its length in hexadecimal.

2302-5014-00 LINKER 2-8

============ Linker V5.2 ==================================== FutureData ======

Addr

1000
159F
151C
15CC
19B9
1AOO
1020
2292
22F6
2CCO
0600
DBOO

Sect ion

PROGRAM
IOCODE
DEVICE
INCODE
KBCODE
TVCODE
NIO
STACK
010
LPCOOE
WADATA
CRT

File Length

SKELETON.R 059F
EXECBO. R 002B
DEVICE.R 0005
INPUTBO.R 03BD
KBBO.R 0077
TV80.R 0320
NETBO.R 0565
SKELETON.R 0064
DISKBO.R 09CA
LP80. R 0360
WORK.R 0200
TVBO.R 0100

============ Linker V5.2 ==================================== FutureData ======

File
SKELETON.R

Section
STACK
PROGRAM

Addr
2292
1000

Length
0064
059F

Figure 2-3. Example Memory Map Output

If a section was deleted (option D), its name will appear in the memory map
and the address wi 11 be fl agged with a "0". If an sect ion is overwritten by
another section, the overwritten section will be flagged with an "0" in the
memory map.

2302-5014-00 LINKER 2-9

============ Linker V5.2 ==================================== FutureOata ------------

Addr Section File Length

0080 INTER$ IN IT86. R 0034
0000-1 INIT$ INIT86.R 0027
0027-1 INIT$ RARIT86.R 0006 A
0020-1 INIT$ CRT86.R 0005 A
0032-1 INIT$ TERM86.R 0007 A
0039-1 RUNTIME MATH86.R 04C6
04FF-1 RUNT IME STRING86.R 0187 A
0686-1 RUNT IME SET86.R 0080 A
0706-1 RUNT IME LARIT86.R 015F A
0865-1 RUNTIME RARIT86.R 0674 A
OE09-1 RUNT IME MISC86.R 006B A
OF44-1 RUNTIME CRT86.R 005B A
0000-2 ROM$ TMP.R 0040
0040-2 ROM$ MATH86.R OOAO A
00FA-2 ROM$ SET86.R 0060 A
015A-2 ROM$ RARIT86.R 0004 A
015E-2 ROM$ PASCALIO. R 001A A
0178-2 ROM$ REALIO.R 0035 A
01AO-2 RAM$ INIT86.R 0038
01E5-2 RAM$ RARIT86.R 0046 A
0228-2 RAM$ PASCALIO.R 0002 A
0220-2 RAM$ CRT86.R 07D2 A
09FF-2 HEAP$ MISC86.R 0002
3FFE-2 STK$ MISC86.R 0000
0000-3 COOE$ TMP.R 010B
09A4-3 PASCALI 0 REALIO.R 02B1 A
010B-3 PASCALI 0 PASCALIO.R 0899

SEG Address
00 00000000
01 1F054FCA
02 COOOOOOO
03 041F047E

Figure 2-3a. Example Of Segmented Memory Map Output

Note: Every address in this output is followed by a hyphen and the segment
number in which it resides.

2302-5014-00 LINKER 2-10

REFERENCE LIST OUTPUT

An example Linker reference list display is shown in Figure 2-4. The
display lists, for each relocatable file specified in the .link:

1) It s fi 1 e name;

2) For each section loaded from that file~

a. Its section name;

b. Its starting address in hexadecimal;

c. Its length in hexadecimal.

3) For each public symbol in the section:

a. The symbolic name;

b. The memory address. corresponding to that name.

=========== Linker V5.2 ===================================== FutureData ======

File Section Addr Length
SKELETON.R STACK 2292 0064

PROGRAM 1000 059F

Publics
PROGRAM 1000 STACK 2292

File Section Addr Length
EXEC80.R IOCODE 159F 0028

Publics
IOCODE 159F IOEXEC 159F

File Section Addr Length
DEVICE.R DEVICE 157C 0005

Figure 2-4. Example Linker Reference List Display

2302-5014-00 LINKER 2-11

=========== Linker V5.2 ===================================== FutureOata ======
File Section Addr Length
INIT86.R INTER$ 0080-0 0034

INIT$ 0000-1 0027
RAM$ 01AD-2 0038

Publ ics
INIT$ 0000-0 INTER$ 0080-0 L$O 01AO-0 LASTATE 01E3-3
RAM$ 01AD-0

File Section Addr Length
TMP.R CODE$ 0000-3 010B

ROM$ 0000-2 0040

Publics
COOE$ 0000-0 M$$$$ 0000-0 PACON 0000-0 ROM$ 0000-0

File Section Addr Length
MATH86.R RUNTIME 0039-1 04C6

ROM$ 0040-2 OOAO

Publics
ARCTAN 03FC-C COS 0166-6 EXP 01A3-3 LN 0357-7
RUNTIME 0039-9 SIN 0066-6 SQRT 025A-A

File Section Addr Length
STRING86.R RUNTIME 04FF-1 0187

Publics
CMP$O 05C5-5 CMPS$ 05A4-4 PA2ST$ 063F-F PACON$ 04FF-F
SBSTR$ 0556-6 STR2P$ 0609-9 STR2ST$ 0663-3 STRCON$ 0529-9

File Section Addr Length
SET86.R RUNT IME 0686-1 0080

RCJt1$ 00FA-2 0060

Publics
FTBL$ OllA-A IN$Ol 060E-E SETBIT$ 0686-6 TBL$ o 13A-A
TTBL$ OOFA-A

File Section Addr Length
LARIT86.R RUNTIME 0706-1 015F

Publics
DDIV~ 0758-8 OMOO$ 0848-8 OMUL$ 0706-6

Figure 2-4a. Example Segmented Linker Reference List Display

2302-5014-00 LINKER 2-12

LIST OF MESSAGES

**DELETED SECTION REFERENCE IN (filename)

An section which is present in an input file, but is not included in the
output file, is needed to resolve address references.

(label) **DUPLICATE PUBLIC IN (filename)

The first occurrence of a public symbol is used for address references.
All additional definitions are flagged as errors.

NOT A RELOCATABLE FILE

The Linker input file was not created by the Assembler or Compiler or the
file's "R" attribute was changed with the Manager. Assign the "R"
attribute to the file.

PARM ERR ••• RESPECIFY

There is a syntax error in the Linker input or the specified section name
was not found.

**RELOCATION ERROR IN (filename) ,record # xxxxH

Relocation record number xxxx of the input file was not correctly built.
First, try to reassemble; else, notify your Service Representative.

**SEQUENCE ERROR IN (filename) ,record # xxxxH

The records in the named file are not in proper order. Reassemble or
recompile.

**SYMBOL TABLE NOT FOUND IN (filename)

The symbol table was not included when the program was assembled or
compiled. Reassemble or recompile, or simply ignore.

**TABLE OVERFLOW

The Linker needs more memory space.

(label) **UNRESOLVED REFERENCE IN (filename)

The external reference was not found in the public symbol table.

2302-5014-00 LINKER 2-13

**PUB REC LNG ERROR IN (filename) ,record # xxxxH

Public symbol record number xxxx of the input file was not correctly built.
First, try to reassemble; else, notify your Service Representative.

**REL REC LNG ERROR IN (filename) ,record # xxxxH

Relocation record number xxxx of the input file was not correctly built.
First, try to reassemble; else, notify your Service Representative.

**EXT REC LNG ERROR IN (filename) ,record # xxxxH

External symbol record number xxxx of the input file was not correctly
built. First, try to reassemble; else, notify your Service Representative.

**SYM REC LNG ERROR IN (filename) ,record # xxxxH

Record number xxxx of the input file was not correctly built.
First, try to reassemble; else, notify your Service Representative.

**REL REC LNG ZERO IN (filename) ,record # xxxxH

Relocation record number xxxx of the input file was not correctly built.
First, try to reassemble; else, notify your Service Representative.

2302-5014-00 LINKER 2-14

CHAPTER 3

DEBUGGING

INTRODUCTION

The 2300 Series Advanced Development System (ADS) is a software development
tool providing users with editing, compiling, assembling, and linking
capabilities. Files are maintained, bya File Manager and can be stored and
accessed on a variety of devices, including floppy disk, hard disk, printer,
and Memory Expansion Unit (MEU).

Once the software is developed, users must have a way to test the software on
the actual hardware it was designed for and still be able to make
modifications and corrections. The target system often does not have the
facilities to allow a user to perform those tests. Its input-output structure
may not be suited for gathering relevant statistics about the program.
Programmers must write time-consuming diagnostic programs into the main
program for debugging. These diagnostics may alter the behavior of a
real-time system enough so that it fails to perform when the diagnostics are
removed. The target system may have no facilities for isolating small
sections of code (through trace or breakpoint functions, for example) so that
their behavior may be examined. There must be some sort of interface between
the ADS and the target system to provide these facilities.

The Slave Emulator Unit is such an interface. It is a hardware device that
emulates or imitates the real-time aspects of the target system. It is
connected to the target system via a cQnnector that is exactly the same size,
with the same number of pins, as the target processor. Users simply remove
the target processor from its socket and substitute the Slave Emulator
connector.

The Slave Emulator is also connected to the ADS via an RS-232 serial port.
The ADS interprets user commands to the Slave Emulator and transmits simple
control instructions to the Slave Emulator for execution. The Slave Emulator
transmits raw data to the ADS for format and di spl ay. The ADS acts as a user
interface and a display station. The Slave Emulator acts as a control unit
for the target processor.

2302-5014-00 DEBUGGING 3-1

The Advanced Development System (ADS) coupled with the Slave Emulator Unit
provides a powerful system for developing and testing both hardware and
software in a microprocessor-based system. The Emulator is based around the
actual target processor to be imitated or emulated (for example, the 6809E
microprocessor), and a sophisticated control system is imposed over it to
provide the facilities required of a software development tool. Only the
processor is emulated, allowing the actual hardware of the target system to be
used during software development.

When users are ready to test or debug the software, they invoke the Slave
Emulator Debugger and its special features.

• The ADS/Slave Emulator combination provides a display which can be split
into multiple windows to allow viewing of different areas of memory
simultaneously in hex/ASCII or disassembled format (including user
labels), or Logic Analyzer trace data. Each window in the display can
track a microprocessor register.

• Standard debugging features include symbolic and arithmetic expression
evaluation.

• Flexible memory mapping capabilities partition the Emulator memory into
user-defined blocks for RAM and ROM simulation. The entire simulation
memory is available to the user. Blocks of simulation memory can be
write-protected for RAM and ROM simulation. Write-protection is provided
in multiples of 256 byte blocks. Mapping functions allow any 8K or 32K
block of simulation memory to be mapped anywhere within the
microprocessor's full address space, except when using 64K X 8-bit dynamic
simulation memory. This memory is designed to simulate memory throughout
the address space of typical 8-bit processors.

• 6809E processor interrupts can be invoked via the keyboard for target
system interrupt routine testing.

• Help displays are available with a single keystroke, to provide
explanations of functions, parameters, and syntax.

• There are four hardware breakpoints (program execution or data
breakpoints) with nesting and complex breaking conditions. Conditions
include memory address ranges, data values, a halt/snap mode, breakpoint
counts and four external lines for breakpoint qualification. The snapshot
mode displays the status of the CPU and memory contents at breakpoints by
momentarily halting the processor.

2302-5014-00 DEBUGGING 3-2

• Microprocessor control lines can be selectively enabled or disabled from
the target processor under user control. Programs may be executed at full
speed or single-stepped. Full-speed execution is a real-time operation up
to 2 MHz •

• Up to four Slave Emulators may be attached to one ADS, allowing the user
to emulate multiple target systems.

This chapter contains detailed descriptions of each 6809E Slave Emulator
command. Individual command descriptions identify additional features.

CRT DISPLAY

Five main elements form the CRT display:

LOGO LINE

There are two kinds of logo lines displayed: the Executive logo line and the
Debugger logo line. The Executive logo line appears as follows:

======= Emulator Executive VX.X ============================ GenRad DSD =====

x.x refers to the software version used. The Emulator Executive logo line is
processor-independent.

When the user switches to a particular Slave Emulator Debugger, the logo line
di splayed becomes processor-dependent and appears as follows:

======= XXXXX Emulator VX.X/ROM VX.X ======================= GenRad DSD =====
PROCESSOR

TYPE

For examp1 e:

SOFTWARE
VERSION

FIRMWAR;
VERSION

======= 6809E Emulator V2.4/ROM V2.4 ======================= GenRad DSD =====

If the software version is not compatible with the firmware version, the Slave
Emulator will not operate. Memory and register contents will not display any
data in most cases. Please refer to Table 3-1 to determine compatible
software and firmware for all released versions of the Slave Emulator.

2302-5014-00 DEBUGGING 3-3

Table 3-1. Software/Firmware Matches

SOFTWARE

V2.4

V2.3

V2.2

FIRMWARE

V2.4

V2.2

V2.1

The logo line disappears when the user enters the first keystroke.

COMMAND LINE

Commands are input on the top line of the screen. A blinking cursor indicates
the position of the next character to be input.

MESSAGE LINE

Target system state changes and certain error conditions are reported on the
message line, which is the line below the command line.

A new status message is displayed in double intensity, with no Emulator
identification. If there are Emulators daisy-chained together, the status
message is displayed in double intensity, if the status applies to the current
Emulator, or in reverse video if it applies to any other Emulator on the chain.

An old status message is displayed in normal intensity, with the message
centered and surrounded by asterisks. If there are Emulators daisy-chained
together, the message appears on the left side of the screen in normal
intensity, with Emulator identification.

REGISTERS AND STACK

The next portion of the display shows the current register contents and the
top eight words contained in the user stack.

2302-5014-00 DEBUGGING 3-4

MEMORY DATA

The remainder of the screen can be formatted in one to four separate data
windows. One of these windows is defined as "current". A line of reverse
video highlighting the current address line designates the current window.
Non-current windows display only one address, not the entire line, in reverse
video. Depressing <TAB> redefines the current window clockwise on the
display. Commands operating on the memory contents are executed at the
address indicated in the current window reverse video line.

Users may select any of eight screen maps (numbered 0-7) for viewing
simulation or target system memory. They represent combinations of one to
four independent windows. Refer to the SCreen map command for details.

Any window may be set to display either disassembled instructions or
hexadecimal and ASCII data. If the Slave Logic Analyzer is present, special
display modes may be selected to view bus data. See the WIndow mode command
for details.

Figure 3-1 shows these elements in a typical 6809E display. The command
line is indicated by the cursor. The remainder of the screen is divided into
two independent windows below the register data. Window A (top) displays a
disassembled program. This is also the current window, as indicated by the
window's long reverse video line. Window B (bottom) displays the contents of
memory in hexadecimal and ASCII representation. The current address in Window
B is indicated by the block in reverse video. The current Emulator status is
displayed on the message line, in this case, **** Halted ****.

2302-5014-00 DEBUGGING 3-5

========= 6809E Emulator V2.4 fROM 2.4 ================== GenRad DSD ==========

A B
D 0000
U 0000

Tracking PC
FFFF FF2000
0002 10
0003 OOCO
0005 0044
0007 0620
0009 BC28C9
OOOC 6711
OOOE 12

**** Halted ****
X 0000 Y 0000 DP 0000
S FFFF PC FFFF CC D7 EFIZVC

STU >2000

NEG <CO
NEG <44
ROR <20

,CMPX >28C9
ASR -OF,X
NOP

F F FF FF FF
FFEO FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FFFO FF FF FF FF FF FF FF FF FF FF FF FF FFFF FF FF
0000 20 00 10 00 CO 00 44 06 20 BC 28 C9 67 11 12 18
0010 2C 4C B9 70 OF 18 04 B8 03 84 37 19 2C 80 OE 90
0020 3F C4 OA FO D9 EC B2 8B 29 50 4F El 7D CE 71 68
0030 07 BO 8C IF 6A 02 OA 8F A9 OB 14 OA 92 69 13 8C
0040 16 FB 82 CA 60 24 5B AA 4D IF IE 72 Al 00 25 3F

, User Stk
+0 2000
+2 1000
+4 COOO
+6 4406

Hdwr Stk
+0 FF20
+2 0010
+4 OOCO
+6 0044

· · ·
•••••• D ••• (.g .. .
,l.P •••••• 7· r ··· ? ••••••)PO •• qh
•• •• j ••.•.••. i ..
••••• $[.M •• r •• %;

Figure 3-1. Typical 6809E CRT Display

2302-5014-00 DEBUGGING 3-6

HELP DISPLAYS

Help displays explain the operation of Slave Emulator commands. Entering <1>
or the <HELP> function key on a blank command 1 ine produces the general 1 i st
of commands shown in Figure 3-2. Please refer to Figure 3-7 to determine
the location of <HELP>, since the keycaps may not be marked.

Entering <1> or <HELP> on the command line after any individual command is
typed produces a help display explaining the specific operation of that
command.

switch display to emulator (0-8)
screen map (0-7) .
<tab> (assign new current window)
offset base addr =
address space
window mode
edit memory map (Target/Simulation)
store
set reg i ster
breakpoint (0-3)
reset breakpoint (0-3)
clear all breakpoints
qualify trace
mode
load flle
write
assign test memory address

display .
<down arrow> (move forward 1 line)
<up arrow> (move back 1 line)
<right arrow> (move forward 1 byte)
<left arrow> (move back 1 byte)
+ (move forward 1 page)
- (move back 1 page)
find
execute
<step>
restart

. halt
interrupt
enable control lines
check for empty PR(Jt1
program PROM
get data from PROM
verify data in PROM
1
jump to system component

Figure 3-2. List Of Connands Hel p Display

2302-5014-00 DE BUGG ING 3-7

COMMAND COMPLETION AND SYNTAX

GENERAL CONVENTIONS

The following general conventions apply to command input:.

1. All input can be entered in either upper- or lowercase. Case is
significant only when entering character strings for the "Store" and
"Find" commands.

2. Keywords are recognized automatically. When the user enters enough of a
keyword to uniquely identify it, the Slave Emulator software appends the
remaining text of that keyword to the user's input on the command line and
positions the cursor after the full text.

3. Keywords include the following:

Command names
Breakpoint and Logic Analyzer parameter names
Breakpoint and Logic Analyzer mode names
Target address space attributes
Interrupt type names and related keyword parameters
Target control line names

4. <TAB> or <CTRL-I> within command input indicates that a default value is
to be supplied. The software formats this default on the command line as
if the user had entered it and positions the cursor after the default
text. Individual commands may take additional action, such as asking for
confirmation. <TAB> is ignored where a default value is not meaningful.

5. The separators allowed between multiple fields within a single command are
<SPACE> and <,>. Spaces which precede any field are ignored.

6. Command input normally must be terminated by <RETURN> before the specified
action occurs. This termination may take the form of a response to a
confirmation request, so that in some cases "V" is also an appropriate
termination.

7. Whenever a command's action may be destructive in any way if an error is
entered in its text, that command must be confirmed before it is executed.

2302-5014-00 DEBUGGING 3-8

FILENAME SYNTAX

Filename syntax recognizes a unit specification field consisting of a device
type character followed by a unit number and delimited by a colon. Either the
device type or the unit number may be omitted, with the corresponding default
being "all device types" or "all units". The possible combinations are:

M:
M*:
Mn:

0:
0*:
On:

*. .
n:

P:

Access MEU (any installed units).
Access MEU (any installed units).
Access MEU units n, where n = 0-3.

Access 1 oca 1 floppy di sk (any i nsta 11 ed un it s).
Access local floppy disk (any installed units).
Access local floppy disk unit n, where n = 0-3.

Access any unit, either MEU or local floppy •
Access unit n, either MEU or local floppy, where n = 0-3.

Access local printer. (Not applicable for Load command.)

When a filename begins with "P:", the Slave Emulator software immediately asks
for confirmation. Other device types require that the user enter the filename
string which identifies the file in an MEU or floppy disk directory.

If the user enters more than one unit specification, the last one entered is
the one used. The user may not backspace over a unit specification once it
has been entered.

There are two ways to enter a filename. The user may type the ASCII string
for the filename, followed by <RETURN). This indicates that the filename is
precisely that string. Filename parsing checks to see if the file exists on
the selected set of devices, then asks for confirmation in one of the
following two ways:

1. If the file exists, the parsing routines prompt "[Old file]". If this
name exists on more than one device, a copy on the MEU takes precedence
over one on a floppy disk, and one on a low-numbered unit takes precedence
over one on a high-numbered unit.

2. If the file does not exist, the parsing routines prompt II[New file]".
They create the file on the unit with the most free space among the
selected devices, if the user gives confirmation.

The user may also type a string of characters corresponding to the beginning
of the filename, followed by a space. If this string matches the beginning of
precisely one filename in the selected devices's directories, filename parsing
completes the full filename on the command line and asks for confirmation with
the prompt "[Old file]". If the string matches no file, or multiple files,
filename parsing displays an appropriate message after the last input for
several seconds, then looks for further input.

2302-5014-00 DEBUGGING 3-9

<TAB> completes portions of a filename in the same way that <SPACE> completes
the entire filename. <TAB>-induced filename recognition is useful for names
of the form <field1>1."<field2>. For example, a directory contains the
following files:

MODULLSRC
MODULE.REL
MODULE.OBJ

If the user enters a string such as IIMOD" followed by <TAB), filename parsing
appends "ULE" and waits for further input, provided no other files begin with
"MOD". At this point, typing "SRC"<RETURN>, "S"<SPACE>, or "S"<TAB) selects
file "MODULE.SRC".

SLAVE EMULATOR COMMANDS

Slave Emulator commands.consist of English language verbs which may be
followed by operands. When the user enters enough characters of the verb to
uniquely identify it, the Slave Emulator Debugger completes it by appending
the remaining characters.

For example, enter the command:

SWitch display to emulator (0-8)

Only the letters SW must be entered to uniquely identify that command. The
command characters to be entered by the uSer are shown in uppercase. They are
shown throughout the manual in uppercase to distinguish between user input and
system-supplied input. These characters may be entered in either upper-or
lowercase. (See SEt dialog modes command for upper~and lowercase options).

Unless otherwise indicated, all commands must be followed by <RETURN> to be
entered. '

COMMAND LINE EDITING

<BACKSPACE) or <CTRL-H> may be used to delete one command line character at a
time. Only that part of the command entered by the operator may be deleted.
If a character has already been accepted and the command completed, the
character cannot be deleted. <CAN> must be used to cancel the current command.

2302-5014-00 DEBUGGING 3-10

THE SLAVE EMULATOR EXECUTIVE

The Slave Emulator Executive is the entry point for the Slave Emulation
system. To invoke the Slave Emulator Executive, enter the command

JS<RETURN>

on the command line. The display for the Slave Emulator Executive shown in
Figure 3-3 appears on the screen. The status of each Slave Emulator
attached to the ADS is displayed. When the Slave Emulator is reset, status is
as follows:

1. The target processor displays the message "Initializing", then
"Ha 1 ted".

2. The target system control lines are disabled.

3. The internal memory mapping specifies the entire physical address
space mapped to simulation memory.

4. Write access is allowed and simulation memory blocks are mapped to
consecutive block addresses starting at location O.

5. Four commands, SWitch Emulator, SEt Dialog Mode, SPecify screen write
options, and Display Comment, are now allowed, as illustrated in
Figure 3-3.

========= Emulator Executive V2.4 ======================== GenRad DSD

Emulator 1 6809Ev 1 Halted

Emulator Executive commands are:

Switch display to emulator (0-8)
Set dialog modes
Specify screen write options
;(display comment)

Figure 3-3. Slave Emulator Executive Display

2302-5014-00 DEBUGGING 3-11

Most of the individual commands in the Executive produces a help display when
<1> or <HELP> is entered. The Executive commands are described in the
foll owi ng paragraphs.

SET DIALOG MODES

Users can choose whether to allow upper-and lowercase or to convert all
alphabetic characters to uppercase with the SEt Dialog Modes command. The
user can also define <RETURN> to signify either YES or NO when the system
requires command confirmation. Most Slave Emulator commands require a
confirmation to execute.

Upper-and lowercase entry and <RETURN> to confirm means yes are the default
values for this command.

This command can only be accessed from the Slave Emulator Executive display.

This command sets modes to control dialog functions.

First select a mode, then specify the value for that mode.

-"k" selects keyboard input mode:

_"a" specifies IIkeyboard input allows lower case ll

-"fll specifies "keyboard input folds lower case ll : All
lower case characters will be folded into upper case.

_lIrll sel ects return-to-confi rm mode:

_"yll specifies "return to confirm means yes ll : Execute the
command or subcommand which pro"mpted "[Confirm]".

_lin" specifies "return to confirm means no": Abort the command or
subcommand which prompted II[Confirm]lI.

Figure 3-4. Set Dialog Modes Help Display

2302-5014-00 DEBUGGING 3-12

SWITCH DISPLAY TO EMULATOR (0-8)

This command transfers control from the Slave Emulator Executive to the
specified Slave Emulator Debugger and displays the state of the target system
on the screen. At this point all other Debugging commands are functional. To
return to the Emulator Executive, use the command IISWitch display to emulator
{0_8)1I, with "Oil as the Emulator number, or (RESET).

Please note that <RESET> resets all Slave Emulators attached to the ADS.

SPECIFY SCREEN WRITE OPTIONS

Users may write the current screen image into a file in UDOS source format.
The file is any output file and may reside on the MEU, local floppy, or local
printer.

The filename and the options for filtering special characters out of the data
in the screen image must be specified. If the file is being written to the
printer, the option IIprintable characters onlyll {P} is assumed, and no
filtering options are prompted for. Files written with either the IIprintable
characters only" or IIno attribute characters ll (N) filtering options can be
displayed with the UDOS Editor. The UDOS Manager can dump those files written
with the lIall characters included ll {A} option in hexadecimal format.

The command initializes the file so that the first screen image is written at
the beginning of the file. After the file has been initialized, using the
IIF111 function key appends the current screen image to the file. This key is
operational only if the user has completed the IIspecify screen write optionsll
command since last executing the Slave Emulator software.

2302-5014-00 DEBUGGING 3-13

This command specifies where and how to write a copy of the screen image in
response to function key Fl.

Respond to the "Filename: II prompt with the name of the file to write.

Respond to the "Filtering option" prompt with the 1st character of:

-Printable characters: Write bytes valued 20H-7FH, filter out special
FutureData characters and display attribute characters.

-No attribute characters: Write bytes valued 00H-7FH, filter out display
attribute characters.

-All characters: Write all bytes (OOH-FFH)

Writing to P: forces the filtering option to "Printable characters".

Figure 3-5. Specify Screen Write Options Help Display

;(DISPLAY COMMENT)

The Display Comment command allows users to make notations in command files.
A command code of "; II from the keyboard specifies that further input from the
keyboard or command file is to be echoed as usual, but the input is otherwise
ignored.

"; (di spl ay comment) II echoes up to 79 characters of commentary text on the
command line. This text is normally terminated by return.

Figure 3-6. Display Comment Help Display

2302-5014-00 DEBUGGING 3-14

START-UP PROCEDURE

The Slave Emulator requires the following ADS configuration:

1. The ADS must be a Z80-based system.
2. The ADS must contain 64K of memory in any configuration.
3. The ADS must have the UDOS boot PROM installed on the Z80 CPU. The boot

message must read "UDOS Bootstrap", V1.3 or later.
4. The ADS must have a local disk drive or MEU for Slave Emulator software.

The following is a suggested sequence of events for installation and
initiation of Slave Emulation. Information regarding hardware set-up is
detailed in the Slave Emulator Hardware Reference Manual {2302-5003-00}.

STEP 1 Remove the MPIO card from the ADS and strap it for Slave Emulator
operation. Strapping should be as follows:

2 3 4 6 7 8 11 12 6S

2 3 4 6 7 8 11 13 6S

Return the MPIO card to the ADS.

for standalone ADS

for Cluster Network ADS

STEP 2 Connect the supplied RS-232 cable from the Slave Emulator, Port 1, to
the ADS rear connector panel, Serial 1. If more than one Slave
Emulator is being installed on the same ADS, the Slave Emulators must
be daisy-chained as follows:

a. Port 2 of Slave Emulator 1 to Port 1 of Slave Emulator 2.

b. Port 2 of Slave Emulator 2 to Port 1 of Slave Emulator 3.

c. Port 2 of Slave Emulator 3 to Port 1 of Slave Emulator 4.

A maximum of four Slave Emulators may be attached to one ADS.

STEP 3 Connect the Emulator probe to the appropriate jacks on the rear panel
of the Slave Emulator. Note that the jacks are keyed to prevent
incorrect installation. Do not force the connection.

STEP 4 Insure that the Slave Emulator power switch is off. Connect the
power cord to the Slave Emulator.

STEP 5 Power up the ADS station and disk drive. Insert the Slave Emulator
system diskette into any drive. (The Slave Emulator software can be
read from any drive, as long as all necessary files are located on
the same diskette.)

2302-5014-00 DEBUGGING 3-15

STEP 6 Load the Slave Emulator Executive and Debugger by typing JS<RETURN).
The disk drive or the MEU accesses the program and overlays. The
display on the CRT should resemble the display below:

========= Emulator Executive V2.4 ======================== GenRad DSD =========

Emulator Executive commands are:

Switch display to emulator (0-8)
Set dialog modes
Specify screen write options
;(display comment)

STEP 7 Turn on the Slave Emulator power switch.

STEP 8 After power is applied, the drive containing the Slave Emulator
software will be accessed for several seconds, (or for a longer
period of time if daisy-chained Emulators are initializing
simultaneously), before the following display appears:

========= Emulator Executive V2.4 ======================== GenRad DSD =========

Emulator 1 6809Evl Initializing

Emulator Executive commands are:

Switch display to emulator (0-8)
Set dialog modes
Specify screen write options
;(display comment)

STEP 9 Key in SWl<RETURN> to display status for Emulator 1. The Emulator
Debugger screen should now be displayed. Refer to Figure 3-1 for a
sample screen display.

2302-5014-00 DEBUGGING 3-16

SLAVE EMULATOR SYSTEM FILES

The Slave Emulator system diskette contains the following files:

SLAVEM
(SENRCOM)
(SEHELP)
(SEAPDM)
(SESPDM)

(SYM1)

Resident portion of the Slave Emulator software.
Non-resident command routine.
Text of help displays.
Processor-dependent code and tables used by the ADS.
Processor-dependent code and tables used by the Slave
Emulator.
Symbol table for Emulator 1.

Note that there is only one symbol table file allocated (SYMl). If there are
Slave Emulators daisy-chained together (up to a maximum of four), additional
symbol table files, one for each Emulator, must be generated. Use the File
Manager to create a file (SYMn) for each Slave Emulator, where n is the Slave
Emulator number.

2302-5014-00 DEBUGGING 3-17

SAMPLE COMMAND SEQUENCE

The following is a sample command sequence to initiate the Slave Emulation
process:

JS Jump to the Slave Emulator Executive. This ·is the beginning of
Slave Emulator operation.

SWI Switch to emulator (in this case, Emulator 1).

SC Screen map selection. Provides a selection of eight screen maps
for vi ewi ng prog ram data.

WI Window mode command. Data may be displayed in any combination
of symbolic or hex format, and may be addressed as absolute or
offset. Slave Logic Analyzer displays are also set with this
command to display cycle or waveform data.

ED Edit memory map substitutes Slave Emulator memory for target
system memory, or assigns address ranges for Slave Emulator
simulation memory.

EN Enable control lines. This command displays available control
line names and allows the user to enable or disable control
signals generated by the target system.

L Load program. This command loads a file from the MEU or a local
floppy disk.

B Set breakpoint. Up to four hardware breakpoints may be set with
this command.

EX Execute the program.

ST Store the specified expres.sion or string beginning at the
current location.

H -Halt. Stop the target system and display the current register
values.

CL Clear all breakpoints.

W Write to the disk.

2302-5014-00 DEBUGGING 3-18

C(M1ANDS

Each command available on the 2302 Slave Emulator system is described in this
section of the manual. The commands are organized alphabetically. A complete
list of commands is contained in Table 3-2. Underlined uppercase letters
indicate required user input.

Table 3-2. Slave Emulator Debugger Commands

COMMAND

ADdress Space

ASsign Test Memory
Acfdress

!reakpoint (0-3)

CAll Command File

. CHeck for empty PROM

CLear all breakpoints

Qi spl ay

..i (Di spl ay comment)

EDit Memory Map

ENable Control Lines

2302-5014-00

FUNCTION

Not applicable to the 6809E processor.

Assign test memory to a fixed location in the
target address space.

Set a breakpoint.

Invoke a command file which functions as a
command subroutine.

Check for empty PROM.

Clear all breakpoints.

Position data in current window •

Allow user to insert comments in command files.

Specify configurations of simulation memory and
target address space.

Enable or disable control lines from target
system.

DEBUGGING 3-19

Table 3-2. (Continued)

COMMAND FUNCTION

EXecute

Find

Get data from PROM

Halt

..!,nter ru pt

Jump to
system component

Load

Mode

OFfset Base Addr

frog ram PROM

.,qual i fy trace

RESEt breakpoint(0-3)

2302-5014-00

Begin program execution at the location pointed
to by the program counter.

Search for data strings in memory.

Move data from PROM to simulation or target
memory.

Stop target processor •

Simulate an interrupt to the target processor.

Invoke an operating system component or a command
fi 1 e.

Load object file into simulation or target memory.

Allow user to specify modes for breakpoint and
Logic Analyzer operation.

Define display offset base address (effective only
when window mode is set for "0ffset Addresses".

Program a PROM.

Specify Logic Analyzer trace qualification.

Clear a single breakpoint.

DEBUGGING 3-20

Table 3-2. (Concluded)

COMMAND FUNCTION

RESTart

SCreen Map

SEt Dialog Modes

SEt Regi ster

SPecify Screen Write
1Jpt ions

STore

SWitch Display to
tmulator (0-8)

Transcribe Keystrokes

Verify data in PROM

WIndow Mode

WRite

2302-5014-00

Restart the target processor by asserting a
hardware reset.

Specify a screen map (number and configuration of
wi ndows).

Modify uppercase/lowercase, yes/no indicates
<RETURN> confirmation. May be used only within
the Slave Emulator Executive.

Modify register contents.

Write the current screen into a source file.

Store data into memory.

Activate individual Slave Emulator displays.

Causes Slave Emulator software to copy all
keystrokes into a source file suitable for later
use as a command file.

Compare PROM with simulation or target memory.

Set window mode to format in symbolic
(disassembled) or hexadecimal format, to display
cycle, waveform, or execution data, and to use
either offset or absolute addresses.

Write simulation or target memory contents to an
obj ect f i 1 e.

DEBUGGING 3-21

SPECIAL KEYS

<BACKSPACE>

<CAN>

<LOAD>

<RESET>

Table 3-3. Special Keys

PURPOSE

Edit the command line.

Cancel command or sub-command.

Return to the boot loader.

Reset both the ADS and the Slave Emulator system.

THE FOLLOWING KEYS ARE COMMANDS:

<TAB>

<RETURN>

<STEP>

<1>

Up, Down, Left,
Right Arrows

<+>,<->

<HELP>

F1 (function key)

2302-5014-00

Redefine the current window or supply default
parameters.

Update display to current status.

Execute program single step.

Produce help display.

Position data in current display window.

Position data in current display window.

Produce help display.

Write display function key; causes the current
screen imag.e to be appended to the file specified
in the last "Specify screen write options"
command.

Comment command; allows command files to supply
prompts to the user.

DEBUGGING 3-22

0--/ "

'" I
LOAD

I

ON

CAPS HELP RESET

OFF

F1 F2 BREAK

F3 F4 STEP

Figure 3-7. Special Keys

2302-5014-00 DEBUGGING 3-23

ASSIGN TEST MEMORY ADDRESS

ASsign test memory address = expr

FUNCTION:

This command allows users to force test memory to reside at a fixed location
of their choice in the target address space.

OPERATION:

The user must input the address at which he wishes test memory to reside and
<RETURN).

ASsign test memory address

ASsign test memory address expr

expr defines absolute start address for test memory

expr Expression formed with + or - operators, symbols and hex numbers

(symbol's have the form UHsymbol U)

Figure 3-8. Assign Test Memory Help Display

2302-5014-00 DEBUGGING 3-24

BREAKPOINT COMMAND

Breakpoint (0-3) n<RETURN>
n,

FUNCTION:

The Breakpoint command is used to both arm breakpoint n and to set its
parameters. Four hardware breakpoints (0-3) are available.

OPERATION:

n specifies the breakpoint to be armed or to have parameters set.

<RETURN> arms breakpoint n and sets its parameters to defaults:
instruction execution from current location of current window.
breakpoint, use the RESEt or CLear commands.

break on
To disarm the

II, II speci fies that breakpoint parameters are to be set or changed.
activates the following subcommands:

The II II ,

OPTION

Count = n

Address = <abs-addr>

Data =<data>

2302-5014-00

EXPLANATION

1<n<32,767. Breakpoint parameters must be
satTsfied n times before the breakpoint is
triggered. If the value entered is not in this
range, a message **Invalid count value**
flashes on the command line and aborts the
subcommand. The old count value is not altered.

<abs-addr> is any expression representing a
16-bit absolute address. If this expression is a
hexadecimal number, IIX II may be used in place of
individual hexadecimal digits to indicate that
any value matches.

Breakpoints may break on a value less than or
equal to, or greater than or equal to, the
specified value. Breaking on an address greater
than or equal to the specified value requires
that an even address be specified.

<data> is any expression representing a 16-bit
data value. If this expression is a hexadecimal
number, IIX II may be used in place of individual
hexadecimal digits to indicate that any value
matches.

DEBUGGING 3-25

OPTION

External lines = bin 4

I
Instruction/data = D

X

R
Read/write = W

X

M
Memory/1O = I

X

H
Halt/snap =

S

2302-5014-00

EXPLANATION

bin 4 (4 binary digits) is the status of the four
externa 1 probes. Xis used for "don' t care"
bits. The rightmost digit is line EO, the
leftmost digit is line E3.

I specifies break on instruction execution.
D speci fies break on data access.
X specifies "don't care".

R specifies break on read access.
W speci fies break on write access.
X speci fi es break on "don't care".

M specifi es break on memory address space access.
I speci fies break on I/O address space access.
X specifies 'don't care'.

H specifies that the target system be halted when
all breakpoint conditions are satisfied.

S specifies that the display be updated with the
target status when breakpoint conditions are
sat is fi ed and that t he target system resume
executing when the update is complete. The S
(snap) option stops the emulator from several
hundred microseconds to several milliseconds,
depending on the target system's clock rate and
other timing parameters, except when using scope
o with "Run after trace" mode set. Refer to
Qualify Trace command.

The Slave Emulator processes a "halt" regardless
of how short the interval is between snapshots.
If the user issues commands other than "halt"
while the interval between snapshots is extremely
short, these commands are queued for processi ng
AFTER the next halt command.

DEBUGGING 3-26

Break parameter:

breakpoint (0-3) n delim
count = dec

Breakpoint 1
Count = 1
Address = FFFF
Data = XXXX

n

address = [<= or >=] abs
data = data
external lines = bin4
instruction/data = I, D, or X
read/write = R, W, or X
memory/io = M, I, or X
halt/snap = H or S

External lines = XXXX
Instruction/data = I
Read/wri te = R
Memory/io = M
Halt/snap = H

delim , to edit parameters, other to set execution breakpoint
Breakpoint number: 0-3

dec
abs

Decimal repetition count: 1 to 32767

data
bin4

Expression or up to 6 hex digits, X for "donlt care" digit
Expression or up to 4 hex digits, X for "donlt care" digit
4 binary digits, X for "don1t care" digit

Figure 3-9. Breakpoint Help And Status Display

2302-5014-00 DEBUGGING 3-27

CALL COMMAND FILE

CAll command file(filename)

FUNCTION:

This command invokes a command file which functions as a command subroutine.
It does not require jumping to another system component.

OPERATION:

The Call Command File command first prompts for a filename, which the user
enters using the standard Slave Emulator filename dialog conventions. The
user is then prompted for parameters; entering only <RETURN) indicates that no
parameter values will be supplied to the command file. Otherwise, the input
is a sequence of strings separated by commas and terminated by <RETURN).

Call command file(filename)

This function invokes a command file without jumping out of the Slave Emulator
software.

Respond to the "call command file(filename)" prompt with the name of a UDOS
source file containing valid Slave Emulator command input.

Respond to the "Parameters" prompt with:

<RETURN) if the command file does not require parameters.

Text of parameters, terminated by <RETURN). Multiple parameters are
separated by commas.

Figure 3-10. Call Command File Help Display

2302-5014-00 DEBUGGING 3-28

CHECK FOR EMPTY PROM

CHeck for empty PROM

FUNCTION:

The CHeck command verifies that a PROM is completely erased.

OPERATION:

The command initially prompts for PROM type. The following PROM types are
valid: 2704, 2708, 2716, 2516, 2732, 2532, 2758. <TAB> defaults initially to
2716. If the PROM type is changed, the new value becomes the next default.

n
PROM length:

<TAB>

n is an expression that specifies the number of bytes to be programmed
beginning at the start of the PROM. n is a hexadecimal value.

<TAB> defaults to program the complete PROM.

n
Interleaving factor:

<RETURN>

n specifies the interleaving factor between bytes stored in memory.

Interleaving factor is not meaningful to the Check command. It is prompted
for consistency with dialog for the other PROM cOlnmands. <TAB> initially
defaults to 1. The last value set for any PROM command is the default value.

For further information, please refer to the EPROM PROGRAMMER USER'S MANUAL,
(2300-5035-00).

2302-5014-00 DE~UGGING 3-29

Check for empty PROM PROM type:

Check for empty PROM
PROM type: expr

TAB

Length expr
TAB

Inter 1 eav i ng factor expr

TAB

PROM chips supported:

Type of PROM chip
Default PROM type (initially 2716)

Length of data in PROM
Default length: Chip capacity

Offset between PROM bytes in target
memory

Default interleaving factor: 1

2704, 2708, 2758, 2716, 2516, 2732, 2532

expr Expression formed with + or - operators, symbols and hex numbers
(symbol s have the form U#symbol)

Figure 3-11. Check Command Help Display

2302-5014-00 DEBUGGING 3-30

CLEAR BREAKPOINTS COMMAND

CLear all breakpoints [Confirm]

FUNCTION:

This command clears all previously set breakpoints.

OPERATION:

The CLear command disarms all breakpoints. This command disables the hardware
breakpoints and initializes all breakpoint parameters to default values.
There is no help display for this command.

2302-5014-00 DEBUGGING 3-31

D ISPLA Y C(It1MAND

Di spl ay

FUNCTION:

The Display command selects the area of memory to be displayed in the current
window. addr may be an absolute hexadecimal address or one of the other forms
described below.

OPERATION:

Di spl ay #symbol
or

Display #module:symbol

symbol is defined in the original assembly language program. Display is
positioned to the address associated with that symbol. A "#" character
precedes the symbol name.

Symbols may also be qualified by module names by entering the command as
"#modul e: symbol ".

Display +expr

expr is evaluated as a 16-bit value and is added or subtracted to the current
display address. The value of expr is saved for subsequent Display + commands.

An expression consists of one or more terms separated by + or - signs. Each
term may be a hexadecimal value or a symbol ic reference.

Display @reg

reg is a register name as shown in the Slave Emulator display. This command
displays the address pointed to by the contents of the named register in the
current window. The address is formed from both the register contents and the
contents of the segment register normally associated with that register, if
any.

The display now tracks the contents of the register(s) specified. The message
"Tracking reg:reg is displayed in the top line of the window.

2302-5014-00 DEBUGGING 3-32

Display @sreg:reg

@sreg:reg defines a segment and an ordinary base register pair when the normal
defaults are not appropriate.

Display BReakpoint(0-3) n

Pos it ions current wi ndow to address specified by breakpoint n. If the
breakpoint address contains "don't care" bits, they are replaced by "0" bits.

Display

expr address = expr
+ expr address = current address + expr

expr address = current address - expr
Di spl ay @ reg address = contents of reg relocated by default

sreg
@ sreg: reg address = contents of reg relocated by sreg
@ sreg address = o relocated by sreg
Breakpoint n address = address of breakpoint n

Di spl ay +expr or -expr saves expr as page size for + or - commands

expr Expression formed with + or - operators, symbols and hex numbers
(symbol s have the form "#symbol")

reg Any register in the target processor
sreg Any register in the target processor used to specify

the base of a memory segment
n Breakpoint number: 0-3

Figure 3-12. Display Command Help Display

2302-5014-00 DEBUGGING 3-33

EDIT MEMORY MAP COMMAND

EDit memory map (Target/Simulation)

FUNCTION:

T

S
[Confirm]

The Edit Memory Map command allows the user to use all or part of a target
system's memory. It defines the emulation environment of the target processor
in terms of memory access behavior.

Simulation memory is used in place of target system memory for code generation
and testing in the early stages of a project while the hardware is being
developed. As hardware becomes available, Simulation memory can be replaced
with target system memory, or used as ROM or RAM simulation in the final
testing stages of a product.

The memory mapping facility determines whether to use simulation or target
memory. The target processor's address space can be divided into several
areas, each with different response attributes.

OPERATION:

Edit Target Memory

Initially, the entire address space of the target processor is mapped to
direct all memory accesses internally to the Slave Emulator, and to allow
write accesses. This is the default and reset condition for this command.

The Target (T) option controls the direction of memory accesses and the
attribute of specified areas of the target processor's address space. The
command prompts for several parameters and uses these to build a table of
descriptions of memory mapped areas. This table is sent to the Slave Emulator
for processing when the user completes the command.

2302-5014-00 DEBUGGING 3-34

Target Option Subcommands:

Block start: addr
[<RETURN>]

addr is the hexadecimal address of a block of Slave Emulator memory to be
assigned to the target system. This address is a multiple of X'100'.

If <RETURN> is entered instead of an address, the command is terminated. See
Figure 3-13 for the EDit memory map (Target)help display.

Block length: n

n is the hexadecimal length of the block of memory to be mapped. n must be in
multiples of 256 (X'100') bytes.

After the start and length of the block are entered, the command prompts for
the attributes of the block. These attributes describe where the memory
accesses are to be directed and the types of accesses allowed.

External/Simulation

E directs all memory accesses to the defined block to the target system.

S directs all memory accesses to the defined block to be internal to the Slave
Emulator and does not pass them to the target system.

The Write Allow/Prohibit attribute is the final prompt. It controls write
accesses to Simulation memory for ROM/PROM simulation. Setting the attribute
to Prohibit Write prevents writing to Simulation memory. This memory
protection feature is meant to work only in conjunction with Simulation
memory. No control over target system memory behavior is possible.

Allows/Prohibits write access

A allows a write to the defined block. P prohibits writes to the defined
block.

F1gure 3-14 shows the map summary displayed on the screen when using the
Target option.

2302-5014-00 DEBUGGING 3-35

Block start:

Target address space map selects attributes for blocks of target addresses.

Command dialog identifies a block by start address and length,
then assigns attributes to it.

Start address identifies block1s first byte, must be multiple of 256.
--Enter hexadecimal absolute address or <return> to quit.

Length identifies extent of block, must be multiple of 256.
--Enter length in hexadecimal.

Memory attribute (Simulation/External) selects simulation memory in SECU
or external memory in target system.

Write protect attribute (Allow/Prohibit) allows or prohibits
write accesses to this block.

Figure 3-13. Edit Memory Map (Target) Help Display

Block start:

Attributes: Simulation/External, Allow/Prohibit writes (IIEAII block not shown)
Start End Length Addr Start End Length Addr
0000 FFFF 10000 SA

Figure 3-14. Initial Edit Memory Map (Target) Display

2302-5014-00 DEBUGGING 3-36

Edit Simulation Memory

Upon initialization or reset, the Slave Emulator maps all installed Simulation
memory to contiguous addresses starting at location zero in the target
processor's address space.

The Edit Simulation Memory command is used to position physical blocks of
Simulation memory within the address space of the target processor. These
physical blocks are of fixed size, dependent upon the type of memory board
installed in the Slave Emulator. This command must be used with the Edit
Target Memory command to set up the emulation environment for the target
procesor. Care must be taken to first download any code to be executed from
this area before attributing it as "Write Prohibit", if the area is to be used
in ROM/PROM simulation. Code can not be downloaded into a write-protected
area of Simulation memory.

Edit Simulation Memory Subcommands:

Block number: n
[<RETURN>]

n is the block number which identifies each installed block of simulation
memory. Blocks are sequence-numbered.

<RETURN> terminates the command. See Figure 3-15 for the Edit Memory Map
(Simulation) help display.

Block start: addr
[<RETURN>]

addr is the absolute (target) address assigned to the first byte of this block
of simulation memory. addr must be a multiple of the block length. Blocks of
Simulation memory cannot be positioned so as to overlap each other. The
command dialog will refuse input that attempts to overlap blocks.

Entering <RETURN> without an address wiil unmap the block. Unmapping a block
of simulation memory prevents its use.

Figure 3-16 shows the map summary displayed on the screen when using the
simulation option command.

2302-5014-00 DEBUGGING 3-37

Block number:

Simulation memory map assigns target addresses to blocks of simulation memory.

Block number identifies each installed block of simulation memory
--Enter decimal integer to select a block, or <return> to quit.

Start address is target address at which block's first byte is mapped
--Enter hexadecimal absolute address, or <return> to unmap block.

Block start address must be multiple of block length and blocks cannot overlap.
This map does not affect whether target system accesses go to simulation
memory; only target address space map selects access to simulation memory.

Figure 3-15. Edit Memory Map (Simulation) Help Display

Block number:

Block = Start

00 00000
01 02000

Length

01FFF
03FFF

End

2000
2000

Block = Start

02 04000
03 06000

Length

05FFF
07FFf

Figure 3-16. 32K System Initial Edit Memory Map (Simulation) Display

End

2000
2000

2302-5014-00 DEBUGGING 3-38

ENABLE CONTROL LINES COMMAND

ENable control lines: X

FUNCTION:

The ENable control lines command determines to which target systemls control
lines the Slave Emulator will respond.

OPERATION:

X represents one of the following:

NONE
All
RESET
NMI
IRQ
FIRQ
HALT
TSC
elK

no lines active (default)
all lines active
reset line
non-maskable interrupt
interrupt request line
fast interrupt request line
halt line
tristate control line
clock

The user need only enter enough characters to uniquely identify the control'
1 ine. The system wi 11 complete the control 1 ine name. The II_II character in
front of the control line name disables that line or block of lines. II-AlllI
disables all lines. Reverse video indicates active lines. <RETURN>
terminates the command.

ENable control line

Enter name from list below to enable control line(s)
Enter -name from list below to disable control 1ine(s)
Enter RETURN to terminate command

2302-5014-00

none
all
reset
nmi
i rq
fi rq
halt
tsc
c1k

Figure 3-17. 6809E Enable Control Lines Display

DEBUGGING 3-39

EXECUTE COMMAND

EXecute

FUNCTION:

The EXecute command begins user program execution.

OPERATION:

The current contents of the Program Counter (PC), as shown in the Register
Display, determine the memory address at which execution begins.

Execution is halted by one of the following methods:

Encountering an active breakpoint.
Using the Halt command.
Using the Load command.
Using the STEP key.

EXecute [Confirm]

Execute causes the target system to resume execution.

Execution resumes at the address contain-ed in the target processor1s
program counter register, relocated by a segmentation register if appropriate.

Figure 3-18. Execute Command Help Display

2302-5014-00 DEBUGGING 3-40

FIND COMMAND

<data>[<data>]
Find 'string'

<TAB>

FUNCTION:

All forms of the Find command search memory for the occurrence of data or
strings.

OPERATION:

<data> is a 1- to 8-digit hexadecimal expression, but only the two low-order
digits are significant. Each data value corresponds to an 8-bit byte.
'string' is a series of.ASCII characters enclosed in single quotes (I). <TAB>
defaults to the operand of the last Find or STore Data command.

The Find command allows the user to enter only 16 bytes of data to the command
line. When the user enters the last byte that the command line can
accommodate, the Debugger supplies the byte string's delimiter.

2302-5014-00 DEBUGGING 3-41

Find

expr expr •••
Find lascii string'

<TAB)

expr expr ••• is a string of expressions representing byte values

lascii stringl may contain any ascii characters except its delimiter

<TAB) defaults to the operand of the last store or find command

III II

Find begins searching one byte after the current location in the current
window;
It searches to the end of:

--The target address space, if a window shows absolute addresses
--Windowls 64K segment, if window shows offset addresses

Figure 3-19. Find CQmmand Help Display

2302-5014-00 DEBUGGING 3-42

GET DATA FROM PROM COMMAND

Get data from PROM

FUNCTION:

The Get command loads the information contained in a PROM into the target
address space beginning at the current address of the current window. This
command may also be used to fill memory (memory is filled with FFFF's) if the
PROM programmer module is not connected.

OPERATION:

PROM type:

The following PROM types are valid: 2704, 2708, 2758, 2716, 2516, 2732,
2532. <TAB> initially defaults to 2716. The default is the last PROM type
entered.

n
PROM 1 en.gt h:

<TAB>

n specifies the length of data to be transferred from PROM. <TAB> defaults to
PROM size.

n
Interl eav ing factor:

<TAB>

n specifies the interleaving factor used to move bytes of PROM to memory in
the target address space. <TAB> initially defaults to 1. If n = 2,
sequential bytes may be programmed alte~nately in multiple PROMs.

For further information, please refer to the EPROM PROGRAMMER USER'S MANUAL
(2300-5035-00).

2302-5014-00 DEBUGGING 3-43

Get data from PROM PROM type:

Get data from PROM
PROM type:

Length

Interleaving factor

PROM chips supported:

expr
TAB

expr
TAB

expr

Type of PROM chi p
Default PROM type (initially 2716)

Length of data in PROM
Default length: Chip capacity

Offset between PROM bytes in target
memory

TAB Default interleaving factor: 1

2704, 2708, 2758, 2716, 2516, 2732, 253l

expr

** This command executes for several minutes for typical PROM types **

Expression formed with + or - operators, symbols and hex numbers
(symbols have the form "Hsymbol)

Figure 3-20. Get Data From PROM Help Display

2302-5014-00 DEBUGGING 3-44

HALT C(J4MAND

Ha 1 t [Con fi rm]

fUNCTION:

The Halt command suspends execution on the target processor.

OPERATION:

The Halt occurs when the command is confirmed with <RETURN>.

Ha It [Con fi rm]

Halt suspends execution on the target processor

figure 3-21. Halt Command Help Display

2302-5014-00 DEBUGGING 3-45

INTERRUPT COMMAND

Interrupt

FUNCTION:

The Interrupt command simulates an interrupt to the target system.

OPERATION:

Interrupts available on the 6809E Slave Emulator are:

NMI Non-maskable interrupt
FIRQ Fast interrupt request
IRQ Interrupt request
SW I Software interrupt
SWI2 Software interrupt 2
SWI3 Software interrupt 3

The interrupt is issued when <RETURN> is entered.

The user must enter only enough characters to uniquely identify the desired
interrupt. For this command, entry of the first character is sufficient.

Interrupt

NMI
FIRQ
IRQ
SWI
SWI2
SWI3

Figure 3-22. Interrupt Command Help Display

2302-5014-00 DEBUGGING 3-46

JUMP TO SYSTEM COMPONENT

J character(s)

FUNCTION:

"character(s)" is the first character or characters (up to a maximum of 10) of
a Z-attributed system file name. Entering "JS" loads the Slave Emulator
Executive from the bootstrap or from another system program, such as the
Manager or Editor.

OPERATION:

The Jump to System Component command loads an executable file (a Z-attributed
file) to the system. Examples of system component files are the Manager, the
Editor, the Linker, the Assembler, and the Slave Emulator Executive. Typing a
"J" plus the first letter of the system filename loads the file.

For further information, please refer to the UDOS REFERENCE MANUAL, Chapter
2, UDOS Overview (2301-5002).

2302-5014-00 DEBUGGING 3-47

LOAD FILE

Load file filename

FUNCTION:

The Load file command halts the target processor, if running, searches the
available storage devices for the specified filename, and loads the file into
the target processor address space.

OPERATION:

If the filename is not prefixed by a device type code or unit number, the
Slave Emulator software searches for the file first on the MEU, then on all
locally installed floppy disk drives, beginning with drive O.

The Load command issues the following prompt if the file being loaded is in
Linker I format:

addr
Load segment base addr =

<TAB)

addr specifies the 20-bit absolute start address of the 64K segment into which
to load the file.

<TAB) or <RETURN> defaults to 0 initially or to the previous base address.
This parameter does not relocate address references within the loader file.
Only the Linker performs relocation.

This command automatically distinguishes between Linker I and Linker II files
by the contents of the first record. Linker II files require entry of the
filename only. Information on segmentation and address space use is contained
within the object file itself. .

The Load command sets the CS and IP registers to the start address specified
by the Assembler/Linker or the Write command, whichever created that file. If
the filename specified exists on more than storage device and the user does
not explicitly specify a unit or drive number, the MEU and then the floppy
disk drives starting with unit 0 will be searched and the first occurrence of
that filename will be loaded.

If the specified filename is not found, the message **no such file** will be
briefly displayed and the system will await the next command.

2302-5014-00 DEBUGGING 3-48

Load fi 1 e

Load file filename loads the named file into the target address space.

Additional input for Linker I object fi les:

"address space = same as current window's [Confirm]" prompt appears if
the target processor supports multiple address spaces. Confirm to load into
the current window's address space, or abort and use "address space" command
to switch address spaces.

The "Load segment base address = expr" subcommand specifies the absolute base
address for a 64K segment which the file will be loaded into.
<TAB> defaults to last value used (0 initially).

filename
expr

Name of an object file
Expression formed with + or - operators, symbols and hex numbers
(symbol s have the form "#symbol")

Figure 3-23. Load File Help Display

2302-5014-00 DEBUGGING 3-49

MODE COMMAND

Mode parameter:

FUNCTION:

The Mode command controls the Slave Logic Analyzer and breakpoint operation.
This command's dialog is similar to that of the Breakpoint command and its
display appears as shown below when all modes are set to their initial
defaults.

OPERATION:

Typing the command automatically brings up the help display shown in Figure
3-24.

AND/OR breaks mode specifies how different breakpoints interact:

The "OR" setting indicates that all enabled breakpoints function independently.

The "AND" setting indicates that all enabled breakpoints function together.
Initially, only the lowest-numbered active breakpoint is armed; when its
conditions are satisfied, it arms the next higher-numbered breakpoint, rather
than causing an actual break. The break finally occurs when the
highest-numbered active breakpoint's conditions are satisfied.

Snapshot scope indicates how much data the Slave Emulator updates when the
target system reaches a snapshot breakpoint.

0: Nothi ng

1: Register Contents

2302-5014-00

The Slave Emulator does not interrupt the target
system and does not report register or memory
contents to the ADS. This is useful only when
the breakpoints are used to trigger the Logic
Analyzer while the target system is running in
full-speed emulation.

The Slave Emulator interrupts the target system
for about 10 milliseconds to examine the current
register contents and reports these to the ADS.

DEBUGGING 3-50

2: Register Contents
and

Memory Displayed

3: Snap All at Each
Break

The Slave Emulator interrupts the target system
for about 100 milliseconds to examine the current
register contents and check for altered data in
memory areas whose contents are buffered in the
ADS for the Debugger's display. Target processor
execution restarts as soon as it has fetched new
register and memory contents. If a previous set
of values is queued for transmission to the ADS,
but transmission has not started, the Slave
Emulator discards the earlier register or memory
contents and reports the most recent data.

The target processor remains halted until all
data reported by the snapshot has been
transmitted to the ADS and the ADS has completely
updated its display. This ensures that the
display always shows consistent snapshot data and
that each snapshot's results are displayed.
Target processor execution is suspended for a
period of time between 1/2 second to several
seconds during data transmission and display
updating.

In the display of current mode settings, this parameter appears as follows:

o (Snap nothing)
1 (Snap regs only)
2 (Snap regs & mem)
3 (Snap all)

Enable/Disable Analyzer enables or disables Logic Analyzer operation. In this
mode, reaching a breakpoint (either ORed or ANDed) supplies a Logic Analyzer
trace trigger. Execution continues until the number of qualified cycles
indicated by the trace qualifier's post-trigger delay have been traced.

When enabling the Logic Analyzer the Debugger issues the following information
message on the message line:

**** Analyzer enabled, break 3 disabled ****

When disabling the Logic Analyzer the Debugger issues the following
information message on the message line:

**** Analyzer disabled, break 3 enabled ****

The Slave Emulator hardware uses breakpoint 3 to specify the trace qualifier
when the Logic Analyzer is enabled.

2302-5014-00 DEBUGGING 3-51

Run/Pause after trace specifies whether or not the target processor is to
continue running while the Slave Emulator copies out the contents of the Logic
Analyzer's trace buffer. This applies only when the triggering breakpoint
speCi fi es the "snap" opt ion.

The Run setting allows the target processor to continue execution. If the
snapshot scope mode is 0 this causes Logic Analyzer trace updates with
absolutely no interruption of target system execution. Other settings of the
snapshot scope mode delay the target system by the times quoted above.

The penalty for this mode is that breakpoints and Logic Analyzer tracing must
remain disabled while the Slave Emulator copies the trace buffer, so that the
target system may miss breakpoints. The duration of this critical period will
be about 5-10 milliseconds.

The pause setting halts the target system while the Slave Emulator copies the
Logic Analyzer trace buffer. This ensures that breakpoints cannot be missed
and that all target system execution is traced, but it suspends target
execution for about 10 milliseconds more than the delay needed to satisfy the
breakpoint scope mode.

The Timer Units mode indicates what units the Logic Analyzer's event timer
uses. The event timer is active only when breakpoint 2 specifies a snapshot
and the following modes are in effect:

AND/OR breaks = A
Scope = 0 (snap nothing)
Enable/disable analyzer = E
Run/pause after trace = R

Under these conditions the event timer begins clocking real time or bus cycles
when the conditions for breakpoint 1 are satisfied, and stops when breakpoint
2 triggers the Logic Analyzer. Breakpoint 0 has no effect on the event timer.

The event timer uses a 24-bit counter in one of three modes:

Mi croseconds:

Nanoseconds:

Bus cycles:

Counter increments once per microsecond, elapsed interval
is reported to user in microseconds.

Counter increments once per 100 nanoseconds, elapsed
interval is reported to user in nanoseconds.

Counter increments once per target system bus cycle,
elapsed interval is reported to user as bus cycle count.

The elapsed time or bus cycle counts observed by the event timer are reported
in the ADS display's message area with the following message:

Running, elapsed time n units

2302-5014-00 DEBUGGING 3-52

In this message Inl is the decimal event timer value and I units I is
'nanoseconds', 'microseconds ' , or 'bus cycles ' •

"Default all mode parameters to initial values" sets all parameters to the
standard value in effect when the Slave Emulator is reset. These settings are:

AND/OR breaks = 0
Scope = 3 (Snap regs only)
Enable/disable analyzer = D
Run/pause after trace =P
Timer units = microseconds

The ADS requires the user to confirm in order to accomplish this mode change.

"Set all mode parameters for event timing" sets the parameters to the values
needed to activate the event timer, and sets the timer units parameter to
microseconds. The user must confirm by depressing <RETURN> or "Y" to
accomplish the mode change.

Mode parameter:

Mode

and/or breaks = A or 0
scope = scope
enable/disable analyzer = E or D
run/pause after trace = R or P
timer units = unit-code

IBreakPoint/lo9iC analyzer modes

I And/or breaks = 0
Scope = 3 (snap all at each break)
Enable/disable analyzer = D
Run/pause after trace = P
Timer units = microseconds

Default all mode parameters to inital values.
Set all mode parameters for event timing.

scope Scope of information updated at a snapshot breakpoint:
o = Nothing
1 = Register contents
2 = Register contents and memory being displayed
3 = Reg i sters and memory @ every snap

**Logic Analyzer trace is independent of snapshot breakpoint scope
unit-code Units used by event timer:

Microseconds
Nanoseconds (minimum resolution = 100 nanoseconds)
Bus cycles

Figure 3-24. Mode Command Help Display

2302-5014-00 DEBUGGING 3-53

OFFSET BASE ADDRESS COMMAND

OFfset base addr= expr

FUNCTION:

The Offset Base Address command assigns the specified value to the window's
absolute base address.

OPERATION:

When the window mode is set for offset addressing, all addresses are treated
as displacements from this base address with wraparound at 64K beyond the base
address.

expr is an expression, evaluated as a 16-bit absolute base address.

Addresses shown in the display window are relative to the offset specified
when window mode is 'offset addresses'. This function can be used to view a
particular relocatable program segment (RSEG) relative to its start address,
rather than relative to zero in memory. For example, if an RSEG is loaded at
location X'1420', the user can enter "OFfset base addr = 1420". Then, by
entering "Display 0", the current window shows location X'1420' absolute, but
identifies it as location X'O'. In this way, addresses displayed on the
screen will match the assembly listing.

OFfset base addr =

Offset base addr = expr

expr defines absolute start address of 64K segment to display
when window mode is set for offset addresses

expr Expression formed with + or - operators, symbols and hex numbers
(symbol s have the form "#symbol")

Figure 3-25. Offset Base Address Help Display

2302-5014-00 DEBUGGING 3-54

PROGRAM PROM COMMAND

Program PROM

FUNCTION:

The Program command begins the PROM programming process using data beginning
at the current address in the current window. <RETURN) continues the command.

OPERATION:

PROM type:

The following PROM types are valid: 2704, 2708, 2716, 2516, 2732, 2532,
2758. <TAB) initially defaults to 2716. The default PROM type is the last
PROM type set by any PROM command.

n
PROM 1 engt h:

<TAB)

n specifies the number of bytes to be programmed beginning at the start of the
PROM. <TAB) defaults to program the complete PROM.

n
Inter 1 eav i ng facto r:

<TAB)

n specifies the interleaving factor between bytes programmed from the target
address space into the PROM. For example, this factor allows alternate bytes
to be programmed into 8-bit PROMs to form 16-bit words. <TAB< initially
defaults to 1.

For further information, please refer to the EPROM PROGRAMMER USER'S MANUAL
(2300-5035-00).

2302-5014-00 DEBUGGING 3-55

Program PROM PROM type:

Program PROM
PROM type:

Length

Interleaving factor

PROM chips supported:

expr
TAB

expr
TAB

expr

Type of PROM chi p
Default PROM type (initially 2716)

Length of data in PROM
Default length: Chip capacity

Offset between PROM bytes in target
memory

TAB Default interleav ing factor: 1

2704, 2708, 2758, 2716, 2516, 2732, 2532

expr

** This command executes for several minutes for typical PROM types **

Expression formed with + or - operators, symbols and hex numbers
(symbol s have the form "#symbol)

Figure 3-26. Program PROM Help Display

2302-5014-00 DEBUGGING 3-56

QUALIFY TRACE

Qual i fy trace

FUNCTION:

The Qualify Trace command sets parameters to select bus cycles to be traced
when the Analyzer is enabled. These parameters are identical to those used
with breakpoints, but the meaning of a match condition is IItrace this cycle ll

rather than IIbreak execution ll • This command also sets the post-trigger delay,
which indicates how many bus cycles to trace after the triggering event occurs.

OPERATION:

Qualify trace functions exactly as the breakpoint command, except that the
parameters it sets are those of the Logic Analyzer's trace qualifiers
(Breakpoint 3). The following display appears on the screen when the command
is entered.

****Logic analyzer disabled ****

qual ify trace
post-trigger delay = dec
address = [<= or >=] abs
data = data
external lines = bin4
instruction/data = I, 0, or X
read/write = R, W, or X
memory/io = M, I, or X

Trace qual ifier
Post-trigger del ay = 1
Address = XXXX
Data = XX
External lines = XXXX
Instruction/data = X
Read/write = X
Memory /i 0 = X

dec Decimal bus cycle count: 1-255
abs Expression of up to 6 hex digits, X for IIdon't care ll digit.
data Expression of up to 4 hex digits, X for IIdon't care ll digit.
bin4 4 binary digits, X for IIdon't care ll digit.

Figure 3·27. Qualify Trace Help Display

2302-5014-00 DEBUGGING 3-57

Trace qualifier parameters are:

Post-trigger delay:

Address:

Data:

External lines:

Instruction/data:

I

D

x

Read/write:

R

W

X

2302-5014-00

Number of bus cycles to trace after a trigger
(after a breakpoint). This is a decimal number
1-255, with the default being 1.

Address pattern to trace. This is a hexadecimal
number in which IIX II in any digit indicates "don't
care ll • The number of digits in this number
depends on the width of the target processor's
address bus. The default is entirely "don't
care ll digits.

Data pattern to trace. This is a hexadecimal
number in which IIX" in any digit indicates IIdon't
care ll • The number of digits in this number
depends on the width of the target processor's
data bus. The default is entirely "don't care"
digits.

External line values to trace. This number
consists of four binary digits in which "X" in
any digit indicates "don't care". The default is
entirely "don't care" digits.

Trace only opcodeor instruction-fetch cycles.

Trace only data access cycles. Most processors
do not distinguish between operand fetches and
fetches for the second and subsequent bytes or
words of instructions.

Default; means trace both instruction fetches and
data accesses.

Trace only read cycles.

Trace only write cycles.

Trace both read and write cycles.

DEBUGGING 3-58

Memory/IO:

M

I

X

Trace only cycles which access memory.

Trace only cycles which access I/O ports.

Default; trace both memory and I/O accesses.

The trace qualifier enables tracing of all bus cycles when all of its
parameters have the default "don't care" setting.

For further information regarding the Slave Logic Analyzer, please refer to
the SLAVE LOGIC ANALYZER MANUAL (2302-5012).

2302-5014-00 DEBUGGING 3-59

RESET BREAKPOINT COMMAND

RESEt breakpoint (0-3) n

FUNCTION:

This command is used to reset a previously set breakpoint.

OPERATION:

This command disables the specified hardware breakpoint.

There is no help display for this command.

2302-5014-00 DEBUGGING 3-60

RESTART COMMAND

RESTart

FUNCTION:

The RESTart command issues a hardware reset to the Slave Emulator.

OPERATION:

The reset is issued when <RETURN> key is entered. The message "Runn i ng II is
displayed on the message line.

RESTart [Confirm]

Restart performs a hardware restart of the target system
by applying a reset control signal

Figure 3-28. Restart Command Help Display

2302-5014-00

.c--J

DEBUGGING 3-61

SCREEN MAP C(J4MAND

SCreen map(0-7) n

FUNCTION:

The Screen Map command maps up to four display windows onto the screen, with
windows assigned to quadrants of the display as shown below.

OPERATION:

Any of eight screen maps may be selected for viewing emulator memory. The
desired map number is specified by the letter n, as shown in the help display
(Figure 3-29). The default screen map is n = 2. Each window may display'
symbolic (disassembled), hexadecimal/ASCII memory data, or Logic Analyzer
trace data in any of three formats.

Logic Analyzer trace data can only appear in a window which spans the full
width of the screen. (See WIndow mode command). If the current window is the
incorrect size to support Logic Analyzer data, an error message stating "XXX
Requi res wide window" wi 11 be di spl ayed and the command aborted. Thi s error
message may be issued by both the Screen Map command and the Window Mode
command.

2302-5014-00 DEBUGGING 3-62

SCreen map (0-7)

Screen map n maps up to four display windows onto the screen, with windows
assigned to quadrants of the display as shown below.
Windows are labelled A-D.

A ~ A A B

B I-c I I
I I I

n = 0 n = 1 n = 2 n = 3

B I ~I *1 A A B I
A

C T C Del
I I I

n = 4 n = 5 n = 6 n = 7

Figure 3-29. Screen Map Help Display

2302-5014-00 DEBUGGING 3-63

SET REGISTER COMMAND

SEt register = <reg>

FUNCTION:

The SEt Register command sets the contents of the specified register to Idata l •

OPERATION:

<reg> may be any 6809E register name shown at the top of the Debugger
display. <data> is one to four hexadecimal digits; a symbol or an
expression. The number of significant bits depends upon the size of the
regi ster.

The SEt regi ster command al so all ows the user to change the the target
processor1s flag or condition code values as if these data were a register.

The 6809E emulator displays the target registers in the following formats:

========= 6809E Emulator V2.4 fROM 2.4 ================== GenRad DSD ==========

A B
D 0000
U 0000

2302-5014-00

**** Halted ****
X 0000 Y 0000 DP 0000
S FFFF PC FFFF CC 07 EFIZVC

Figure 3-30. 6809E Register Display

User Stk
+0 2000
+2 1000
+4 COOO
+6 4406

Hdwr Stk
+0 H20
+2 0010
+4 OOCO
+6 0044

DEBUGGING 3-64

SEt reg i ster

Set register reg = expr

reg Any register in the target processor
expr Expression formed with + or - operators, symbols and hex numbers

(symbol s have the form UHsymbol)

Figure 3-31. Set Register Help Display

2302-5014-00 DEBUGGING 3-65

ST ORE COMMAND

<data>[<data>] •••
STore <Istring l>

<TAB)

FUNCTION:

All forms of the STore command store data strings into memory.

OPERATION:

<data> is a 1- to 8-digit hexadecimal number (or symbol or expression). Only
the low 8 bits of this value are significant. <Istring l> is a series of ASCII
characters enclosed in single quotes (I). <TAB> defaults to the previous
<data> or <string> defined in the last Find or STore command.

The STore command does not allow the user to enter enough data to overflow the
command line. When the user enters the last byte the line can accommodate,
the Debugger supplies input of the byte string's delimiter. Confirmation is
requested before entering.

The STore operation begins placing the data or string into memory at the
current location in the current window.

Store
expr expr •••
lascii string'
TAB

expr expr ••• is a string of expressions representing byte values

'ascii string' may contain any ascii character except its delimiter, 11111,

and preemptive keystrokes, such as "?", <BACKSPACE>, <CAN), etc.

TAB defaults to the operand of the last store or find command

expr Expression formed with + or - operators, symbol s and hex numbers
(symbols have the form U#symbol ll)

Figure 3-32. Store Command Help Display

2302-5014-00 DEBUGGING 3-66

SWITCH DISPLAY TO EMULATOR (0-8)

SWitch display to emulator (0-8) n

FUNCTION:

The SWitch command switches from the Emulator Executive to the specified Slave
Emulator and displays its status on the screen.

OPERATION:

If n = 0, control is returned to the Slave Emulator Executive. If n = any
number from 1 to 8 inclusive, the specified Slave Emulator is switched to for
interrogation.

All communication links are always active. The SWitch command switches
control of the ADS display and keyboard to the process communicating with the
specified emulator. All emulators may be simultaneously running a user
program in the target system.

The control lines, memory maps and execution parameters are unaffected when
switching from one emulator to another. Figure 3-34 displays the status of
the Slave Emulator after using the SWitch command. The emulator status may be
anyone of the following:

Initializing
Halted
Running
Completed single step
Stopped @ breakpoint n
Stopped @ ANDed breakpoint
Running, snapshot @ breakpoint n
Running, snapshot @ ANDed brea~point
Bus timeout
Target system check

2302-5014-00 DEBUGGING 3-67

Switch display to emulator (0-8) n

n selects one of the attached emulators;
o returns control to the Emulator Executive

Figure 3-33. Switch Command Help Display

========= 6809E Emulator V2.4 fROM 2.4 ================== GenRad DSD ==========

A B
D 0000
U 0000

Tracking PC
FFFF FF2000
0002 10
0003 OOCO
0005 0044
0007 0620
0009 BC28C9
OOOC 6711
DaDE 12

**** Halted ****
X 0000 Y 0000 UP 0000
S FFFF PC FFFF CC D7 EFIZVC

STU >2000

NEG <CO
NEG <44
ROR <20
CMPX >28C9
ASR -OF,X
NOP

FFDO FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FFEO FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FFFO FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0000 20 00 10 00 CO 00 44 06 20 BC 28 C9 67 11 12 18
0010 2C 4C B9 70 OF 18 04 B8 03 84 37 19 2C 80 OE 90
0020 3F C4 OA Fa D9 EC B2 8B 29 50 4F E1 7D CE 71 68
0030 07 BO 8C IF 6A 02 OA 8F A9 DB 14 OA 92 69 13 8C
0040 16 FB 82 CA 60 24 5B AA 4D IF IE 72 Al 00 25 3F

User Stk
+0 2000
+2 1000
+4 CO 00
+6 4406

Hdwr Stk
+0 FF20
+2 0010
+4 OOCO
+6 0044

· · ·
•••••• O ••• (.g .. .
,L.p •••••• 7., •••
? ••••••)PO·I·qh
· . .. j •...••.. i ..
••••• $[.M •• r •• %;

Figure 3-34. Typical Display After Switch Command

2302-5014-00 DEBUGGING 3-68

TRANSCRIBE KEYSTROKES

Transcribe keystrokes to filename:

FUNCTION:

This command copies all keystrokes into a source file for later use as a
command fi 1 e.

OPERATION:

When the user enters and confirms his filename'selection, the ADS opens this
file for write access. The end of file pointer is set to show that the file
is empty.

The ADS then prompts:

Include prefix sequence? [Confirm]

If the user enters <RETURN> or "Y" to confirm this option, the ADS writes the
following text at the beginning of the file:

JS
I\L
SWIY

This is a standard prefix for command files to be invoked by a Jump command.
It implements the following three functions:

1. Jump to the Slave Emulator software. A side affect of this is that it
resets all emulators attached to the ADS.

2. Wait for the user to enter <RETURN>. This ensures that the next command
can operate properly if Emulator 1 is slow in resetting.

3. Switch to Emulator 1.

Command files to be invoked by the "Call command file" command would not use
thi s prefix.

Transcription of keystrokes begins when the dialog is complete. It ends when
the user enters <CTRL-E> or jumps to a different system component.

<CTRL-E> must be entered to ensure that the file 1s closed properly.

2302-5014-00 DEBUGGING 3-69

Transcribe keystrokes to filename:

This command initiates transcription of keystrokes to a UDOS source file,
which may be used later as a command file.

Respond to the "Transcribe keystrokes to filename: II prompt with the name of
the file to write.

Respond to the II Incl ude prefix sequence? [Confi rmJ" prompt with <RETURN> or
nv" to include the prefix sequence, II Nil or <CAN> to exclude it. This prefix
sequence, appears as foll ows in the transcri pt fil e:

JS
AL
SWI

This sequence is used in command files to initiate Slave Emulator operation.

Entering <CTRL-E> at any time terminates keystroke transcription and closes
. the transcri pt file.

Figure 3-35. Transcribe Keystrokes Help Display

2302-5014-00 DEBUGGING 3-70

VERIFY DATA IN PRCJt1 CCJt1MAND

Verify data in PROM

FUNCTION:

The Verify command compares the information contained in a PROM with that
beginning at the current address of the current window in the target address
space.

OPERATION:

PROM type:

The following PROM types are valid: 2704, 2708, 2716, 2516, 2732, 2532,
2758. <TAB> initially defaults to 2716. The default value is the last PROM
type entered for any PROM command.

n
PROM 1 engt h:

<TAB>

n specifies the number of bytes that were verified beginning at the start of
the PROM. <TAB> defaults to verify the complete PROM.

n
Interl eav ing factor:

<TAB)

n speci fi es the
address space.
multiple PROMs.
val ue entered.

interleaving factor between consecutive bytes in the target
If n = 2, sequential bytes may be programmed alternately in

<TAB) initially defaults to 1. The default value is the last

For further information, please refer to the EPROM PROGRAMMER USER'S MANUAL
(2300-5035-00).

2302-5014-00 DEBUGGING 3-71

Verify data in PROM PROM type:

Verify data in PROM
PROM type:

Length

Interleaving factor

PROM chips supported:

expr
TAB

expr
TAB

expr

Type of PROM chi p
Default PROM type (initially 2716)

Length of data in PROM
Default length: Chip capacity

Offset between PROM bytes in target
memory

TAB Default interleaving factor: 1

2704, 2708, 2758, 2716, 2516, 2732, 2532

expr Expression formed with + or - operators, symbols and hex numbers
(symbols have the form lI#symbol)

Figure 3-36. Verify Data in PROM Help Display

2302-5014-00 DEBUGGING 3-72

WINDOW MODE COMMAND

WIndow mode parameter

FUNCTION:

The Window Mode command specifies the type of display to be selected for
viewing emulator memory. Only the first letter of the mode is entered.

OPERAT ION:

The Window mode command affects the current window. The current window is
indicated by a reverse video line spanning the window at the current address.
Each window may be set individually by redefining the active window with the
TAB key.

Offset addressing, described in the help display below, does not apply to the
6809E Slave Emulator.

For further information regarding this command, please refer to the SLAVE
LOGIC ANALYZER MANUAL (2302-5012).

WIndow mode

Window mode command operands:

Symbol ic
Hex

Cycle data
Waveform
Execution

Absolute
Offset

Display memory data as disassembled symbolic instructions.
Display memory data as hexadecimal bytes and ASCII characters.

Display raw (minimally fo"rmatted) logic analyzer trace data.
Display signals as waveforms from logic analyzer trace data.
Display execution trace from logic analyzer trace data.

Use absolute addresses, referencing entire target address space.
Use 16-bit offset addresses, referencing a 64K segment
beginning at the window's offset base address.

** Absolute/offset mode applies to memory displays, not to Analyzer
traces.

Figure 3-37. Window Mode Help Display

2302-5014-00 DEBUGGING 3-73

WRITE CCJ4MAND

WRite from

FUNCTION:

The WRite command writes the contents of memory to an object file.

OPERATION:

addr is the first address relative to the segment base address from which to
begin writing. TAB defaults to O. The default address appears at the tab
position on the command line.

Prompts for:

write from

write to

addr

<TAB)

addr[,]

<TAB)

addr is the address expression relative to the segment base address at which
to end writing. <TAB) defaults to X'FFFF'. The default address appears at
the tab position on the command line.

"," continues Write from/to cycle if multiple memory areas are to be written
to 'one fi 1 e.

addr
start addr=

<TAB)

addr is the execution address expression of the file measured relative to the
segment base address. <TAB) defaults to the start address specified in the
last file loaded. The default address appears at the tab position on the
command line.

write into fi le: filename

If "[old file]" appears and is confirmed, the old file is overwritten. If
"[new file]" appears and is confirmed, the file is created and written.

2302-5014-00 DEBUGGING 3-74

WRite from

Write
address space

from

to

start addr =

into file

Address space name or <RETURN>
[requested only if target processor allows address
spaces]

expr Start address of block to write
TAB Default start address: 0

expr End address of block to write
TAB Default end address: highest target address

expr Executi on start address
TAB Default execution start addr from last file

loaded

filename Name of file to write

**Delimit end addr with "," to enter another block description

fil ename
expr

2302-5014-00

Name of an object file
Expression formed with + or - operators, symbols and hex numbers
(symbol s have the form "#symbol"

Figure 3-38. Write Command Help Display

DEBUGGING 3-75

SPECIAL KEYS

<BACKSPACE>

<CAN>

<LOAD>

<RESET>

<RETURN>

<TAB>

<STEP>

2302-5014-00

Deletes one character at a time from the command line.

Deletes the entry on the command line. Cancels the
current command or subcommand.

Returns control to the ADS terminal bootstrap. All
boot level commands are allowed at this point.

Resets both the hardware and the software for the ADS
and all Slave Emulators attached to it. Control of
the display and keyboard is returned to the Emulator
Executive.

Multiple functions including entering a command;
updating of the register, stack and memory displays to
show the present status of the specified emulator; in
some cases, terminating a command or a subcommand;
unmapping a block of memory. Refer to specific
commands for details.

Redefines the current display window when used as a
command. The current window is indicated by a reverse
video line across that window. All commands which
affect memory begin at the address in the reverse
video line of the current window.

<TAB> also supplies a default value in many commands
when used as an operand. <TAB> may be used in
conjunction with the Find or STore commands, the PROM
length subcommand and PROM type, PROM interleaving
factor, Load command filename, Load offset, WRite
block start addresses, WRite block end address, WRite
execution start pddress, WRite filename, break
parameters, etc. to invoke a default value. Refer to
these commands individually for specific instructions.

Executes one user program instruction at a time.
Execution begins at the address contained in the
program counter.

To allow the current window to track single step
program execution, the window must be set to track the
instruction pointer using the Display command.

DEBUGGING 3-76

<1>

<;>

F1

DISPLAY CONTROL KEYS

<l>

<. >

< ... >

< .. >

<+>

<->

2302-5014-00

Provides help displays to explain operation of Slave
Emulator commands. When entered on a blank command
line, a list of all available commands is displayed.
Any subsequent keystroke returns to the previous
display. Refer to Figure 3-2.

When <1> is entered following a command on the command
line, explanatory information specific to that command
is displayed. Completion of the command or subcommand
replaces the help display with an appropriate display.

The semicolon allows the user to put comments in the
command files. These are not executed, but merely
echoed to the display.

This is a special function key that appends the
current screen image to the file specified in the last
"Specify screen write options" command. It has no
effect if the user has not completed this command
since last jumping to the Slave Emulator software.

The up arrow backs up the current location of the
current window one instruction for a symbolic window
or one line for a hex window.

The down arrow advances the current location of the
current window one instruction for a symbolic window
or one line for a hex window.

The right arrow advances the current location of the
current window one byte.

The left arrow backs up the current location of the
current window one byte.

The plus character moves forward one page in memory.
Refer to the Display command for definition of page
size.

The minus character moves back one page in memory.

DEBUGGING 3-77

GenRad
DSD SERVICE LOCATIONS
UNITED STATES AND CANADA

CO 300 Baker Avenue
Concord, MA 01742
617/369-4400 or 617/646-7400
TWX: 710-347-1051

CHO 1083 East State Parkway
Schaumburg, IL 60195
312/843-5580
TWX: 910-291-1209

DEN 13132 St. Paul Drive
Thornton, CO 80241
303/457-9147 (Ans. Serv.)

DSD 5730 Buckingham Parkway
Culver City, CA 90230 (Factory)
213/641-7200; TWX: 910-328-7202

DTX 1121 Rockingham,
Suite 100, Richardson, TX 75080
214/234-3357; TWX: 910-867-4771

FLO 3751 Maguire Blvd
Suite 170, Orlando, FL 32803
305/894-4303; TWX: 810-850-0270

LAO 17631 Armstrong Avenue
P.O. Box 19500,Irvine, CA 92714
714/540-9830; TWX: 910-595-1762

NYO 22-08 Route 208
Fair Lawn, NJ 07410
201/797-8001 (NJ); 212/964-2722 (NY)
TWX: 710-988-2205

SFO 2855 Bowers Avenue,
Santa Clara, CA 95051
408/727-4400; TWX: 910-338-0291

WO 1701 Research Blvd,
Rockville, MD 20850
301/424-6224; TWX: 710-828-9783

GRC 307 Evans Avenue
Toronto, Ontario, Canada MaZ 1K2
416/252-3395; TELEX: 06-967624

Conn., Maine, Mass., N.H.,
R.1., VT.

IL., Iowa, Minn., Ohio, MO.,
N.D., S.D., KY., Ind., Mich.,
W.PA., Wis., Neb.

Colo., Mont., Wyoming,
N.M., Utah

Factory Field Support

Ark., Kan., LA.,
Tex., Okla.

Ala., GA., Fla., N.C.,
S.C., Tenn., Miss.

S.CA., Ariz.,
S.Nev.

Del., E.PA., N.J.,
N.Y.

N.CA., Idaho, N. Nev.,
Wash., Ore.

MD., VA., W.VA.,
D.C.

All Canada

SERVICE LOCATIONS
EUROPE

DENMARK Mr. Steen Schulstad Telephone: (01) 16 11 00
BLT Agenturer A/S Telex: 855-16279 BITEK DK
GL. Koge Landevej 55
DK-2500 Val by

SWEDEN Mr. Stig Svensson, General Mgr. Telephone: 760 861 20
Mr. Gosta Olsson, Sales Mgr. Telex: 854-11275
Lagercrantz Electronik AB, Box 48
S-194 21 Upplands Vasby

FINLAND Mr. Erik Hilden, Director Telephone: 009358/0882044
Oy El1ITIett Ab Telex: 857-22216
Meterorinkatu 3 C-D
02210 ESPOO 21, Finland

NORWAY Mr. T.S. Fjeldstad, Director Telephone: 16 22 10
Bergman Instrumentering AS Telex: 856-17271
P.O. Box 129 Veitvet
Sven Ofteda1s Vei 10
Oslo 5, Norway

NETHERLANDS Mr. Michael Houdijk Telephone: 070 996 j60
C.N. Rood BV Telex: 844-31238
Cort Van de Lindenstraat 11-13
2280 Rijskijk

FRANCE Mr. Alberto Franzetti, AMM Telephone: 945 91 13
6 Avenue Du General DeGau11e Telex: 842-698376
78150 Le Chesnay

SPAIN Mr. Francisco Herbada, General Mgr. Telephone: 619 41 08
Mr. Miguel Angel Ferrando, Sales Mgr. Telex: 831-22404
Hispano Electronica S.A •.
Po1igono Industrial Urtinsa
Apartado Correos 48
A1corcon, Madrid

SWITZERLAND Mr. Peter Mu1thanner, Sales Mgr. Telephone: 55 24 20
Mr. Ernst Schmid, General Mgr. Telex: 845-53638
Mr. Hans Wagenmakers
GenRad (Schweiz) AG
Drahzugstrasse 18, Postfach
8032 Zurich, Switzerland

AUSTRIA Mr. Gunther Graf Telephone: 02236/866310
Kontron Elektronik Telex: 847-79337
A-2345 Brunn A. Geb
Industriestrasse B13
Vienna, Austria

ITALY

GERMANY

ENGLAND

Mr. Germano Fanelli
Celdis Italiana
Cinisello Balsamo 20092
Via Flll Gracchi, 36

Mr. Guido Negele, President
KontronMesstechnik GMBH
Breslauer Strasse 2
0-8057 Eching
Munich, W. Germany

Mr. David Findl~
Kontron, Ltd.
Campfield Road
St. Albans ALl 5JG
England

Telephone: 612 00 41
Telex: 843-334883

Telephone: 089 3 1901 217
Telex: 841-522122

Telephone:
Telex:

	0-01
	0-02
	0-03
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	1-25
	1-26
	1-27
	1-28
	1-29
	1-30
	1-31
	1-32
	1-33
	1-34
	1-35
	1-36
	1-37
	1-38
	1-39
	1-40
	1-41
	1-42
	1-43
	1-44
	1-45
	1-46
	1-47
	1-48
	1-49
	1-50
	1-51
	1-52
	1-53
	1-54
	1-55
	1-56
	1-57
	1-58
	1-59
	1-60
	1-61
	1-62
	1-63
	1-64
	1-65
	1-66
	1-67
	1-68
	1-69
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	3-47
	3-48
	3-49
	3-50
	3-51
	3-52
	3-53
	3-54
	3-55
	3-56
	3-57
	3-58
	3-59
	3-60
	3-61
	3-62
	3-63
	3-64
	3-65
	3-66
	3-67
	3-68
	3-69
	3-70
	3-71
	3-72
	3-73
	3-74
	3-75
	3-76
	3-77
	A-01
	A-02
	A-03

