
TECHNOLOGY INCORPORATED

XENIXTM
SYSTEM
TEXT
PROCESSING

VOLUME 3

CONTENTS

1.0 INTRODUCTION...................................... 1-1

2.0 USING THE TEXT EDITORS ED AND SED................. 2-1
2 • 1 ED... 2 - 4

2.1.1

2.1.2
2.1.3

A Summary of Commands and Line
Numbers 2-4
More Advanced Editing Techniques
Editing Scripts 2-30

2-6

2 • 2 SED............................."................. 2 - 31
2.2.1
2.2.2
2.2.3

2.2.4
2.2.5
2.2.6

Overall Operation 2-31
Command-line Flags 2-32
Order of Application of Editing Commands

2-32
Pattern-space 2-33
Addresses 2-33
Functions 2-34

3.0 PATTERN RECOGNITION AND FILE COMPARISON
UTILITIES. 3-1

3 • 1 G RE P ••••••••••• .• 3 - 2
3 • 2 AWK. • 3- 5
3 • 3 D I FF•••.•.........•.......•.•.. 3-16
3 • 4 D I FF 3 •• 3-18
3 • 5 C OMM •••••.••.••.••.••••••••••••.•••..••••••••.• 3-19
3 • 6 SPELL .•...••••••••. " • • • • . . • • . • . • • • • . • • . . 3- 20

4.0 TEXT FORMATTING AND DOCUMENT PREPARATION......... 4-1
4. 1 FORMATTING PACKAGES.............................. 4- 2
4.2 SUPPORTING TOOLS................................. 4-3
4.3 HINTS FOR PREPARING DOCUMENTS.................... 4-4
4 .4 A NOTE ABOUT THE PAPERS.......................... 4- 5

4.4.1 Using the -ms Macros with Troff and
Nroff

4.4.2 A Guide to Preparing Documents with
-ms

4.4.3 NROFF/TROFF User's Manual
4.4.4 A TROFF Tutorial
4.4.5 Tbl- A Program to Format Tables
4.4.6 Typesetting Mathematics- User's

Guide
4.4.7 Some Applications of Inverted

Indexes
5.0 COMMAND REFERENCE................................ 5-1

- i -

4.3 HINTS FOR PREPARING DOCUMENTS.................... 4-4
4.4 A NOTE ABOUT THE PAPERS.......................... 4 5

4.4.1 Using the -ms Macros with Troff and
Nroff

4.4.2 A Guide to Preparing Documents with
-ms

4.4.3 NROFF/TROFF User's Manual
4.4.4 A TROFF Tutorial
4.4.5 Tbl- A Program to Format Tables
4.4.6 Typesetting Mathematics- User's

Guide
4.4.7 Some Applications of Inverted

Indexes

- ii -

CHAPTER 1

INTRODUCTION

Users involved in text processing applications like typing
memos, writing technical reports, and preparing
documentation, will soon discover that their pr1mar~
interface with the computer is through the editors, the
various pattern recognition and file comparison utilities,
and the text formatting packages. Programmers also make
extensive use of the editors and other utilities described
in this volume for writing and revising code. Therefore, it
is extremely important that all users learn as much as
possible about the tools available to them on the XENIX
system, and practice using the various commands and
functions. The more understanding the user has of which
functions work best in which situations and the more
dexterity the user developes in using particular commands,
the more powerful the editors and related tools become.

This volume contains an introduction to the XENIX text
editors, ed and sed. For a more detailed tutorial material
concerning the XENIX text editors, read the appropriate
sections in The Programmer'~ Introduction.

Also introduced in this volume are some tools which prove
extremely useful in the process of preparing documents, when
it is necessary to locate repeated elements in a single file
or group of files to make a consistent set of changes, or to
compare and contrast two or more files in order to identify
the differences between them. Because several of these
programs may be used interchangeably, knowing which one will
do the job at hand most efficiently is a large part of
understanding their use. These programs streamline
complicated editing command procedures, locate variations
among several versions of text, and can deal with large
numbers of text files at once.

~ members of the grep family, grep, egrep, and fgrep.

$ awk.

~ diff and diff3.

$ comm.

$ spell.

1-1

XENIX Text Processing

The XENIX system also offers two text formatting packages
which simplify the production of technical reports,
memoranda, formal papers, and documentation, nroff and troff
designed to produce output for the lineprinter and
typesetter, respectively. -Ms, a canned package of
formatting requests which is much simpler to use than nroff
and troff, is described in detail. Some supporting programs
that aid in document preparation, including eqn which
integrates mathematical symbols and equations into the text
of a document, tbl which provides an analogous service for
preparing tabular material, and, refer which prepares
bibliographic citations from a data base, are also discussed
in this volume.

1-2

CHAPTER 2

USING THE TEXT EDITORS ED AND SED

Most users of a computer system rely heavily on text editors
in doing their work, whether it be writing programs or
preparing data. For those users involved in text processing
applications, for typing memos, writing technical reports,
or preparing documentation, the. various editing functions
may be their primary interface with the computer. Therefore,
it is extremely important that the text processing user
learn as much as possible about the editing tools available
on the system, and practice using the various commands and
functions. The more understanding the user has of which
functions work best in which !ituations and the more
dexterity the user developes in using particular commands,
the more powerful the editors and related tools become. For
a more detailed introduction to text editing with XENIX,
read the appropriate sections in The Programmer'~
Introduction.

XENIX offers two text editors, ed, an interactive line
editor, and sed, a non-interactive context editor. Although
in many respects the capabilities of these two editors
overlap, the user will soon find that ed is more appropriate
to on-the-spot entry, deletion and simple modification of
text. Sed is more appropriate when uniform changes must be
made ·in large files or groups of file, or when the sequence
of editing commands needed to make the changes becomes
complex.

Because sed is derived from ed, however, the . two editors
share some characteristics. In particular, they recognize
the same class of regular expressions. A regular expression
specifies a set of strings of characters to be matched by a
pattern found in the text, sometimes referred to as a
context address. In practical terms, these are the patterns
the user asks the editor to search and substitute when
changes in text are required. These regular expressions
include:

1. An ordinary character
below) is a regular
character.

(not one of those discussed
expression, and matches that

2. A circumflex 'AI at the beginning of a regular
expression matches the null character at the beginning
of a line.

2-1

XENIX Text Processing

3. A dollar-sign '$1 at the end of a regular expression
matches the null character at the end of a line.

4. The characters
character, but
pattern ~pace.

'\n'
not

match an
the newline

imbedded newline
at the end of the

5. A period '.1 matches any character except the terminal
newline of the pattern space.

6. A regular expression followed by an asterisk '*'
matches any number (including 0) of adjacent
occurrences of the regular expression it follows.

7. A string of characters in square brackets '[]'
matches any character in the string, and no others'.
If, however, the first character of the string is
circumflex 'A" the regular expression matches any
character except the characters in the string and the
terminal newline of the pattern space.

B. A concatenation of regular expressions is a regular
expression which matches the concatenation of strings
matched by the components of the regular expression.

9. A regular expression between the sequences '\(1 and
'\)' is identical in effect to the unadorned regular
expression, but has side-effects which are described
under the s command below and specification 10)
immediately below.

10. The expression '\d' means the same string of
characters matched by an expression enclosed in '\(1
and '\) I earlier in the same pattern. Here d is a
single digit; the string specified is that beginning
with the dth occurrence of '\{' counting from the
left. For example, the expression 'A\(.*\)\ll matches
a line beginning with two ~epeated occurrences of the
same string.

11. The null
'II') is
compiled.

regular expression
equivalent to the

standing alone (e.g.,
last regular expression

To use one of the special characters (A $ • * [] \ I) as a
literal (to match an occurrence of itself in the input),
precede the special character by a backslash '\1.

For a context address to 'match' the input requires that the
whole pattern within the address match some portion of the
pattern space. The use of these pattern matches for

2-2

XENIX Text ~~oce~sing

specific applications within ed and sed are discussed in
detail for each editor.

2-3

XENIX Text Processing

2.1 ED

Ed is one of the text editors on the XENIX system, used
primarily to create and modify text interactively, whether
it is a document, a program, or data for a program. The
most frequently used commands are summarized here, followed
by a discussio.n of editing techniques especially useful in
text processing applications.

2.1.1 A Summary of Commands and Line Numbers

The general form of
preceded by one or
r. and w, followed
allowed per line,
command (except for

ed commands is the command name, perhaps
two line numbers, and, in the case of e,
by a filename. Only one command is
but a p command may follow any other

e, r, w, and q).

a Append, that is, add lines to the buffer (at line dot,
unless a different line is specified). Appending
continues until a period is is typed on a new line.
The value of dot is set to the last line appended.

c Change the specified lines to the new text which
follows. The new lines are terminated by a period on a
newline, as with a. If no lines are specified, replace
line dot. Dot is set to last line changed.

d Delete the lines specified. If none are specified,
delete line dot. Dot is set to the first unde1eted
line, unless $ is deleted, in which case dot is set to
$.

e Edit new file. Any previous contents of the buffer are
thrown away, so issue a w beforehand.

f Print remembered filename. If a name follows f, then
the remembered name is set to it.

g The command

i

g/---/commands

will execute the commands on those lines that contain
which can be any context search expression.

Insert lines before specified line (or
single period is typed on a new line.
the last line inserted.

2-4

dot) until a
Dot is set to

XENI~ Text Processing

m Move lines specified to after the line named after m.
Dot is set to the last line moved.

p Print specified lines. If none are specified, print
line the line specified by dot. A single line number
is equivalent to the line-numberp command. A single
<RETURN> prints .+!,the next line.

q Quit ed. Wipes out all text in buffer if given twice
in a row without a w command.

r Read a file into buffer (at end unless specified
elsewhere.) Dot is set to the last line read.

s The command

s/stringl/string2/

substitutes the characters stringl into string2 in the
specified lines. If no lines are specified, the
substitution takes place only on the line specified by
dot. Dot is set to the last line in which a
substitution took place, which means that if no
substitution takes place, dot remains unchanged s
changes only the first occurrence of stringl on a line;
to change all of them, type a 9 after the final slash.

v The command

v/---/commands

executes commands on those lines that do not contain

w Write out buffer onto a file. Dot remains unchanged.

.- Print value of dot.
value of $.)

The line

!command-line

(Anequalsignbyitself prints the

causes command-line to be executed as a XENIX command.

/string/ Context search~ Search for next line which
contains this string of' characters. Print it. Dot is
set to the line where string was found. Search starts
at .+1 , wraps around from $ to 1, and continues to
dot, if necessary.

2-5

XENIX Text Processing

?string? Context search in reverse direction.
search at .-1 , scan to 1, wrap around to $.

2.1.2 More Advanced Editing Techniques

Start

There are often several alternative procedures for
accomplishing the same editing task, with varying degrees of
efficiency. This section provides explanations and examples
of how to use ed to edit with less effort and greater speed.

Topics covered include

$ Special characters in search and substitute commands

$ Line addressing

$ Global commands

$ Line moving

$ Line copying

2.1.2.1 Special Characters
characters which facilitate
ed.

There are several special
searching and substitution in

The List command '1' Ed provides two commands for printing
the contents of lines. One of these is p, in combinations
like

l,$p

to print all the lines in the file, or

s/abc/def/p

to change 'abc' to 'deft on the current line. Less familiar
is the list command 1 (the letter '1'), which gives slightly
more information than p. In particular, 1 makes visible
characters that are normally invisible, such as tabs and
backspaces. 1 prints each tab as ~ and each backspace as ~,
in a line which contains these characters. This makes it
much easier to correct typing mistakes when extra spaces are
adjacent to tabs, or backspaces are followed by a space.

The 1 command also 'folds' long lines, by printing any line
that exceeds 72 characters on multiple lines; each printed
line except the last is terminated by a backslash \, to

2-6

XENIX Text Processing

indicate that it was folded. This overcomes the limitation
of your terminal screen width.

Occasionally, the 1 command will print in a line a string of
numbers preceded by a backslash, such as \07 or \16, making
visible characters that normally do not print, like form
feed or vertical tab or bell, usually typed in error. These
combinations are a single character with special meanings on
some terminals.

The Substitute Command's' The substitute command s is the
command for changing the contents of individual lines,
probably the most complicated and powerful of ed commands.
The most straightforward example is the trailing 9 after a
substitute command. with

s/this/that/

and

s/this/that/g

the first one replaces the first 'this' on the line with
'that'. If there is more than one 'this' on the line, the
second form with the trailing 9 changes all' of them.

Either form of the s command can be followed by p or 1 to
'print' or 'list' the contents of the line:

s/this/that/p
s/this/that/l
s/this/that/gp
s/this/that/gl

are all slight variations.

Of course, any s command can be preceded by one or two 'line
numbers' to specify that the substitution is to take place
on a group of lines. Thus

l,$s/mispell/misspell/

changes the first occurrence of 'mispell' to 'misspell' in
each line of the file. But

l,$s/mispell/misspell/g

changes every occurrence in each line.

2-7

XENIX Text Processing

If a p or 1 is added to the end of any of these substitute
commands, only the last line that got changed will be
printed, not all the lines.

The Undo Command 'u' If a substitution in a line is
incorrect, The <undo' command u will 'undo' the last
substitution: the last line that was substituted can be
restored to its previous state by typing the command

u

The Metacharacter '.' Certain characters have special
meanings when they occur in the left side of a substitute
command, or in a search for a particular line. These
special characters, are called 'metacharacters.'

The first one is the period '.'. On the left side of a
substitute command, or in a search with / •.. /, '.' stands
for any single character. Thus the search

/x.y/

finds any line where 'x' and 'y' occur separated by a single
character, as in

x+y
x-y
x y
xzy

and so on.

Since '.' matches any single character, it can be used to
delete or substitute special characters printed by 1. If a
line printed with the 1 command, appears as

th\07is

which represents the bell character,

s/\07//

will not delete it. Retyping the entire line is inefficient.
The metacharacter '.', used in the following way

s/th.is/this/

will do the job. The " matches whatever character is
between the 'h' and the ~i'.

2-8

XENIX Text Processing

Since '.' matches any character, the command

s/./,/

converts the first character on a line into a comma
does not correct the punctuation.

, '. , , it

Like other special characters in ed,
meanings, depending on its context.
three:

the '.' has several
This line demonstrates

.s/././

The first period is the current ,line number, which is called
'dot'. The second '.' is a metacharacter that matches any
single character on that line. The third '~, is the literal
period. On the right side of a substitution, '.' is not
special.

The Backslash '\' Sometimes a period is really required.
To convert the line

Now is the time.

into

Now is the time?

use the backslash '\'. A backslash turns off any special
meaning that the next character might have~ in particular,
'\.' converts the '.' from a 'match anything' into a period,
so It can replace the period in

Now is the time.

like this:

s/\./?/

The pair of characters '\.' is considered by ed to be a
single real period.

The backslash can also be used when searching for lines that
contain a special character. The following example looks
for a line that contains

.DE
at the start of a line.

The search

2-9

XENIX Text Processing

I.DEI

isn't adequate, for it will find lines like

JME
FME
MME

because the' , matches each of the letters 'A'.
search

I\.DEI
x •.•

will result in lines that contain '.DE'.

But the

The backslash can also be used to turn off special meanings
for characters other than " For example, consider
finding a line that contains a backslash. The search

1\1

won't work, because the '\' isn't a literal backslash, but
instead means that the second 'I' no longer delimits the
search. By preceding a backslash with another one, a
literal backslash can be searched. Thus 1\\1 does work.
Search for a forward slash 'I' with

1\11

The backslash turns off the special meaning of the
immediately following 'I' so that it doesn't terminate the
1 ... 1 construction prematurely.

As an exercise, find two substitute commands each of which
will convert the line

\x\.\y

into the line

\x\y

Here are several solutions; verify that each works as
advertised.

s/\\\.11
s/x •• /xl
s/ •• y/yl

2-10

XENIX Text Prbc~ssing

Any character can delimit the pieces of an s command: there
is nothing sacred about slashes. (slashes are necessary for
context searching.) For instance, in a line that contains a
lot of slashes already, like

Ilexec Ilsys.fort.go II etc •••

a colon can be used as the delimiter; to delete all the
slashes, type

s: I: :g

Second, if '#' and '@' are the character erase and line kill
characters, it is necessary to type \# and \@, whether in ed
or any other program.

When adding text with a or i or c, backslash is not special;
use only the backsla~hes actually required.

The Circumflex 'A, The circumflex 'A, stands for the
beginning of the line. For example, searching for a line
that begins with 'the', the command

Ithel

will probably locate several lines that contain 'the' in any
position. With

IAthel

the context is specified.

The other use of 'At is to insert something at the beginning
of a line:

SiAl I

places a space at the beginning of the current line.

Metacharacters can be combined. To search for a line that
contains only the characters

.PP

the command

IA\.PP$I

can be used.

2-11

XENIX Text Processing

The Star '*' It is
between x and y
like this:

possible to replace all the spaces
with a single space in a line that looks

text x y text

where text stands for lots of text, and
indeterminate number of spaces between
without retyping the whole line.

there
the

are some
x and the y

The metacharacter '*' following any character stands for any
number of consecutive occurrences of that character. To
refer to all the spaces at once, use

six *y/x y/

The construction' *' means 'as many spaces as possible'.
Thus 'x *y' means 'an x, as many spaces as possible, then a
y' •

The star can be used with any other ch~racter.

original example was instead

text x--------y text

If the

then all '_I signs can be replaced by a single space with
the command

s/x-*y/x y/

To change

Now is the time for all good men

into

Now is the time.

use '.*' to eat up everything after the 'for':

s/ for.*/./

The star '*' should be used very carefully. Note especially
that 'as many as possible' occurrences can mean zero. if a
line contains

xy text x y text

and we said

2-12

XENIX Text Processing

six *y/x y/

the first 'xy' matches this pattern, for it consists of an
'x', zero spaces, and a 'y'. The result is that the
substitute acts on the first 'xY', and does not touch the
later one that actually contains some intervening spaces.

To avoid this, specify a pattern like

/x *y/

which creates 'an x, a space, then as many more spaces as
possible, then a y', in other words, one or more spaces.

The other startling behavior of '*' is again related to the
fact that zero is a legitimate number of occurrences of
something followed by a star. The command

s/x*/y/g

when applied to the line

abcdef

produces

yaybycydyeyfy

which is almost certainly not what was intended. The reason
for this behavior is that zero is a legal number of matches,
and there are no XiS at the beginn~ng of the line (so that
gets converted into a 'y'), nor between the 'a' and the 'b'
(so that gets converted into a 'y'), and so on. To avoid
zero matches, write

s/xx*/y/g

'xx*' is one or more XiS.

Brackets '[]' In deleting any numbers that appear at the
beginning of all lines of a file, it is possible to use a
series of commands like

and so on, but this is a lengthy process if the numbers are
at all long. To remove all the digits on one pass, use the
brackets [and].

2-13

XENIX Text Processing

The construction

[0123456789]

matches any single digit the whole thing is called a
'character class'. The pattern '[01~3456789]*' matches zero
or more digits· (an entire number), so

1,$s/~[0123456789]*//

deletes all digits from the beginning of all lines.

Any characters appears within a character class, with no
special characters inside the brackets; even the backslash
doesn't have a special meaning. To search for special
characters, for example, try

Within [•••], the '[I is not special. To get a ']' into a
character class, make it the first character.

The digits can be abbreviated as [0-9]; similarly, [a-z]
stands for the lower case letters, and [A-Z] for upper case.

Also a class that means 'none of the following characters'.
can be specified using a '~':

stands for 'any character except a digit'. To find a first
line that doesn't begin with a tab or space use:

/~ [~(space) (tab)] /

Within a character class, the circumflex has a special
meaning only if it occurs at the beginning.

The Ampersand '&' The ampersand '&' is used primarily to
save typing. To change

Now is the time

to

Now is the best time

without repeating the word 'the'; the ampersand '&' can be
used. On the right side of a substitute, the ampersand
means 'whatever was just matched'. In

2-14

XENIX Text Processing

s/the/& best/

the '&' will stand for 'the'. This can save typing and
potential errors in complicated text. For example, to
parenthesize a line, regardless of its length, type:

s/.*/(&)/

The ampersand can occur more than once on the right side:

s/the/& best and & worst/

makes

Now is the best and the worst time

and

s/.*/&? &11/

converts the original line into

Now is the time? Now is the time!!

To get a literal ampersand, the backslash is used to turn
off the special meaning. For example,

s/ampersand/\&/

converts the word into the symbol. Notice that '&' is not
special on the left side of a substitute, only on the right
side.

Substituting Newlines Ed provides a facility for splitting
a single line into two or more shorter lines by substituting
in a newline. As the simplest example, suppos~ a line has
gotten unmanageably long because of editing. If it looks
like

text xy text

it can be broken between the 'x' and the 'y' like this:

s/xy/x\
y/

This is actually a single command, although it is typed on
two lines. Since '\' turns off special meanings, a '\' at
the end of a line makes the newline there no longer special.

2-15

XENIX Text Processing

A single line can be made into several lines with this same
mechanism. For example, consider underlining the word
'very' in a long line by splitting 'very' onto a separate
line, and preceding it by the formatting command '.I':

text a very big text

The command

sl very 1\
.I\
very\
I

converts the line into four shorter lines, preceding the
word 'very' by the line '.I', and eliminating the spaces
around the 'very', all at the same time,

When a newline is substituted in a string, dot is left
pointing at the last line created.

Joining Lines Lines may also be joined together, but this
is done with the j command instead of s. Given the lines

Now is
the time

and supposing that dot is set to the first of them, then the
command

j

joins them together. No blanks are added, because a blank
was included at the beginning of the second l~ne.

All by itself, a j command joins the lines signified by dot
and dot + 1, but any contiguous set of lines can be joined.
Just specify the starting and ending line numbers. For
example,

l,$jp

joins all the lines into one big one and prints it.

2-16

XENIX Text Processing

Rearranging a Line with \(••• \) '&' stands for whatever
is matched by the left side of an s command. It is possible
to specify which parts of a line need to be matched in order
to rearrange them. If a file consists of names in the form

Smith, A. B.
Jones, C.

and so on, to get the initials to precede the name, as in

A. B. Smith
C. Jones

'tag' the pieces of the pattern (in this case, the last
name, and the initials), and then rearrange the pieces. On
the left side of a substitution, if part of the ~attern is
enclosed between \(and \), whatever matched that part is
remembered, and available for use on the ri~ht side. On the
right side, the symbol '\1' refers to whatever matched the
first \(... \) pair, '\2' to the second \(.•. \), and so on.

The command

1 , $ s / A \ ([A ,] * \), * \ (. * \) /\ 2 \ 1 /

although hard to read, does the job. The first \(... \)
matches the last name, which is any string up to the comma~
this is referred to on the right slde with '\1'. The second
\(.•• \) is whatever follows the comma and any spaces, and is
referred to as '\2'.

Any editing sequence this complicated should be used with
the global commands 9 and v to print exactly those lines
which were affected by the substitute command, and verify
that each case is correct.

2.1.2.2 Line Addressing in the Editor It is important to
understand how line addressing works in ed, in order to be
able to specify which lines will be affected by editing
commands. Constructions like

l,$s/x/y/

specify a change on all lines. Using a single newline or
return to print the next line, with

/thing/

will find a line that contain~ 'thing'.

2-17

XENIX Text Processing

?thing?

can be used to scan backwards for the previous occurrence of
'thing', a useful feature if the item is above the current
line. The slash and question mark are the only characters
which delimit a context search, although essentially any
character can be used in a substitute command.

Address Arithmetic The next step is to combine the line
numbers like '.', '$', '/ •.• /' and '?.?' with '+' and '_I
Thus

$-1

is a command to print the next to last line of the current
file (that is, one line before line '$'). For example,

$-S,$p

prints the last six six lines of a file.

As another example,

.-3,.+3p

prints from three lines before the current
lines after, to provide some context.
omitted:

.-3,.3p

is identical in meaning.

line
The

to
'+'

three
can be

Using '_I and '+' as line numbers by themselves saves typing
effort. Move back up one line in the fil~ for each minus
sign:

moves up three lines, as does '-3'.

Since '_I is shorter than '.-1', constructions like

-,.s/bad/good/

are useful. This changes 'bad' to 'good' on the previous
line and on the current line.

'+' and '_I can be used in combination with searches using
'/ ••• /' and '?.?', and with '$'. The search

2-18

XENIX Text Processing

/thing/--

finds the line containing 'thing', and positions the current
line two lines before it.

Repeated Searches Suppose the search

/horrible thing/

finds the wrong horrible thing, and it is necessary to
repeat the search. Instead of retyping the search, use

//

as shorthand for 'the previous thing that was searched for'.
This can be repeated as many times as necessary. In
addition

??

searches for the same thing, but in the reverse direction.

'II' can be used as the left side of a substitute command,
to mean 'the most recent pattern'.

/horrible thing/
••. ed prints line with 'horrible thing'

s//good/p

To go backwards and change a line, use

??s//good/

Of course, the '&' on the right hand side of a substitute
can still be used to stand for whatever got matched:

//s//& &/p

finds the next occurrence of whatever was searched last,
replaces it by two copies of itself, then prints the line
just to verify that it worked.

Default Line Numbers and the Value of Dot To speed up
editing know what lines will be affected by a command if no
lines are specified, and what the current line will be when
a command finishes.

A search command like

2-19

XENIX Text Processing

/thing/

makes the current line the next line that contains 'thing'.
Then no address is required with commands like s to make a
substitution on that line, or p to print it, or 1 to list
it, or d to delete it, or a to append text after it, or c to
change it, or ·i to insert text before it.

If the search was unsuccessful the position remains
unchanged. This is also true if the current position was
the only occurence of thing'. The same rules hold for
searches that use '?.?'.

The delete command d leaves dot pointing at the line that
followed the last deleted line. When line '$' gets deleted,
however, dot points at the new line '$'.

The line-changing commands a, c and i by default all affect
the current line: if no line number is specified, a appends
text after the current line, c changes the current line, and
i inserts text before the current line.

a, c, and i point at the last line entered when appending,
changing or inserting is over. For example,

a
text
botch (minor error)

s/botch/correct/ (fix botched line)
a
more text

works without specifying any line number for "the substitute
command or the second append command, as will

a
text
horrible botch (major error)

c (replace entire line)
fixed up line

The r command will read a file into the text being edited,
either at the end if no address is given, or after the
specified line. In either case, dot points at the last line
read in. Remember that

Or

2-20

XENIX Text Processing

will read a file in at the beginning of the text. Oa or Ii
can be used to start adding text at the beginning.

The w command writes out the entire file. one line number
preceding a command, writes that line. A command preceded
by two line numbers, writes that range of lines. The w
command does not change dot: the current line remains the
same, regardless of what lines are written.

Since the w command is so easy to use,
periodically while editing in case
disasterous errors.

it should be used
of system crashes or

with the s command, the rule is that the current position is
the last line changed; if there are no changes, then the
position is unchanged.

To illustrate, Suppose that there are three lines in the
buffer, and the line given by dot is the middle one:

xl
x2
x3

Then the command

-,+s/x/y/p

prints the third line, which is the last one changed. But
if the three lines had been

xl
y2
y3

and the same command had been issued ,while dot pointed at
the second line, then the result would be to change and
print only the first line, and that is where dot would be
set.

Semicolon'i' Searches with '1 ... 1' and '?.?' start at
the current line and move forward or backward respectively
until they either find the pattern or get back to the
current line. If this is not what is wanted, as in this
example:

2-21

XENIX Text Processing

ab

bc

Starting at line 1,

/a/,/b/p

does not print all the lines from the 'ab' to the 'bc'
inclusive. Both searches (for 'a' and for 'b l

) start from
the same poin~nd both find the line that contains 'able
The result is a single line. Worse, if there had been a
line with a 'b' in it before the 'abe line, then the print
command would be in error, since the second line number
would be less than the first, and it is illegal to try to
print lines in reverse order. This is because the comma
separator for line numbers doesn't set dot as each address
is processed; each search starts from the same place.

In ed, the semicolon ';' can be used just like comma, with
the single difference that use of a semicolon forces dot to
be set at that point as the line numbers are being
evaluated. In effect, the semicolon 'moves' dot. Thus in
the example above, the command

/a/;/b/p

prints the range of lines from 'ab' to 'be', ·because after
the 'a' is found, dot is set to that line, and then 'b' is
searched for, starting beyond that line.

This property is useful if searching for the
occurrence of 'thing'. Instead of

/thing/
//

second

which prints the first occurrence as well as the second, use

/thing/;//

This finds the first occurrence of 'thing', sets dot to that
line, then finds the second and prints only that.

2-22

XENIX Text Processing

Closely related is searching for the second
occurrence of something, as in

?something?:??

previous

To find the first occurrence of something in a file,
starting at an arbitrary place within the file, it is not
sufficient to use

li/thing/

because this fails if 'thing' occurs on line 1. But it is
possible to use

O:/thing/

for this starts the search at line 1.

Interrupting the Editor If the interrupt, delete, rubout,
or break keys are used while ed is executing a command, the
file is restored as much as possible to what it was before
the command began. Naturally, some changes are irrevocable:
an interrupted read or write to a file or substitutions or
deletions will be stopp~d in some unpredictable state in the
middle. Dot mayor may not be changed. Printing is more
clear cut. Dot is not changed until the printing is done.

2.1.2.3 Global Commands The global commands g and v are
used to perform one or more editing commands on all lines
that either contain (g) or don't contain (v) a specified
pattern.

As the simplest example, the command

g/XENIX/p

prints all lines that contain the word 'XENIXI. The pattern
that goes between the slashes can be anything that could be
used in a line search or in a substitute command; exactly
the same rules and limitations apply.

As another example, then,

prints all the formatting commands in a file (lines that
begin with '.1).

2-23

XENIX Text Processing

The v command is identical to g, except that it operates on
those line that do not contain an occurrence of the pattern.
Mnemonically, the '~can be thought of as part of the word
inverse.

For example

prints all the lines that don't begin with
actual text lines.

, , . the

The command that follows 9 or v can be anything. For
example, the following command deletes all lines that begin
with '.':

This command deletes all empty lines:

Probably the most useful command that can follow a global is
the substitute command; it can be make a change and print
each affected line for verification. For example, the word
'Xenix' could be changed to 'XENIX' globally, and
simultaneouly verified with

g/Xenix/s//XENIX/gp

Notice that '//' in the substitute command means 'the
previous pattern', in this case, 'Xenix'. The p command is
done on each line that matches the pattern, not just those
on which a substitution took place.

The global command operates by making two passes over the
file. On the first pass, all lines that match the pattern
are marked. On the second pass, each marked line is
examined, in turn, and dot is set to that line, and the
command executed. This means that it is possible for the
command that follows a 9 or v to use addresses, set dot, and
so on, quite freely.

prints the line that follows each '.P' command.
that '+' means 'one line past dot' and

g/topic/?A\.H?l

searches for each line that contains 'topic',

2-24

Remember

scans

XENIX Text Processing

backwards until it finds a line that begins '.H' (a heading)
and prints the line that follows that, thus showing the
headings under which 'topic' is mentioned. Finally,

prints all the lines that lie between lines beginning with
'.EQ' and '.EN' formatting commands.

The 9 and v commands can also be preceded by line numbers,
in which case the lines searched are only those in the range
specified.

Multi-line Global Commands It is possible to do more than
one command under the control of a global command, although
the syntax may be awkward. As an example, suppose the task
is to change ~x, to 'y' and 'a' to 'b' on all lines that
contain 'thing'. Then

g/thing/s/x/y/\
s/a/b/

is sufficient. The '\' signals the 9 command that the set
of commands continues on the next line; it terminates on the
first line that does not end with '\'. A substitute command
cannot be used to insert a newline within a g command.

The command

g/x/s//y/\
s/a/b/

does not work as expected. The remembered pattern is the
last pattern actually executed, so sometimes it will be 'x'
(as expected), and sometimes it will be 'a' (not expected).
It must be spelled out, like this:

g/x/s/x/y/\
s/a/b/

It is also possible to execute a, c and i commands under a
global command; as with other multiline constructions, all
that is needed is to add a '\' at the end of each line
except the last. Thus, to add a '.nf' and '.sp' command
before each '.EQ' line, type:

g/'"'\.EQ/i\
.nf\
.sp

2-25

XENIX Text Processing

There is no need for a final line containing a '.' to
terminate the i command, unless there are further commands
being done under the global.

2.1.2.4 Cut and Paste with the Editor Sometimes the best
approach to doing cut and paste work with files is to use
the familiar XENIX commands for copying, changing file
names, removing files, and putting two or more files
together. Often, however, it is necessary to manipulate
parts of files, individual lines, or groups of lines. Ed
offer several techniques for doing this work conveniently.

Filenames rand ware the two essential commands for 'read'
and 'write.' There is also the 'edit' command e. Within ed,
the command

e newfile

allows the user to change current working files. It has the
same effect as using the q command, then reentering ed with
a new file name, except that if a pattern is remembered,
then a command like II will still work.

The command

ed file

remembers the name of the file, and any subsequent e, r or w
commands that don't contain a filename will refer to this
remembered file. Thus,

ed filel
(editing)

w (writes back in filel)
e file2 (edit new file, without leaving editor)

(editing on file2)
w (writes back on file2)

(and so on) does a series of edits on various files without
ever leaving ed and without typing the name of any file more
than once. This is extremely useful for making changes in
several files at once.

The f command without a file name will give the name of the
remembered file; the name of the remembered file name can
also be changed with f: a useful sequence is

2-26

ed precious
f junk
(editing)

which gets a copy
guarantee that a
original.

XENIX Text Processing

of a precious file,
careless w command

then
won't

uses f to
clobber the

Inserting One File into Another To insert the file called
'table' in a file called 'memo' just after the reference to
Table 1, edit 'memo', find 'Table 1', and add the file
'table' right there:

ed memo
/Table 1/
Table 1 shows that •.• [response from ~]
.r table

The critical line is the last one. The command asks for the
file to be read in right after line dot. An r command
without any address adds lines at the end, so it is the same
as Sr.

writing out Part of a File It is also possible to write out
part of the file being edited. For example, to split out
into a separate file the table from the previous example, so
it can be formatted and tested separately:

.TS
[lots of stuff]
.TE

which is the way a table is set up for the tbl program. To
isolate the table in a separate file called 'table', first
find the start of the table (the '.TS' line) ,then write out
that part:

/~\.TS/
.TS red prints the line it found]
.,/~\.TE/w table

or it can be done all at once with

The w command can write out a group of lines, instead of the
whole file, or even a single line.

2-27

XENIX Text Processing

Moving Lines Around Sometimes it is useful to move a
paragraph from its present position in a paper to the end.
One possibility is to write the paragraph onto a temporary
file, delete it from its current position, then read in the
temporary file at the end. Assuming that the current line
is the '.PI command that begins the paragraph, this is the
sequence of commands:

.,/~\.P/-w temp

.,//-d
$r temp

That is, from the current line ('.I) until one line before
the next '.P' ('/~\.P/-I) write onto 'temp'. Then delete
the same lines. Finally, read 'temp' at the end.

An easier way to do this is to use the move command m that
ed provides to perform the whole set of operations at once,
without any temporary file.

The m command is like many other ed commands in that it
takes up to two line numbers in front that tell what lines
are to be affected. It is also followed by a line number
that tells where the lines are to go. Thus

linel, line2 m line3

moves all the lines between linel and line2 after line3.
Naturally, any of linel, etc., can be patterns between
slashes, $ signs, or other ways to specify lines.

If the current line is the first line of the paragraph, then

.,/~\.P/-m$

will append the paragraph to the end of the file.

Another frequently used operation is reversing the order of
two adjacent lines by moving the first one to after the
second. Positioned at the first of the two lines, use

m+

It moves line dot to after one line after line dot.
Positioned on the second line,

m--

does the interchange.

2-28

XENIX Text Processing

The m command is more efficient than writing, deleting and
re-reading.

Marks Ed provides a facility for marking a line with a
particular name, so that it can be referenced by name,
regardless of its actual line number. This can be handy for
keeping track of lines as they move. The mark command is k;
the command

kx

marks the current line with the name 'x'. If a line number
precedes the k, that line is marked. (The mark name must be
a single lower case letter.) The marked line has the address

'x

Marks are most useful for moving things around. Find the
first line of the block to be moved, and mark it with:

, a.

Then find the last line and mark it with

'b.

positioned at the place where the, lines are to be inserted
use

'a, 'bm.

Only one line can have a particular mark name associated
with it at any given time.

Copying Lines ed provides a command called t (for
'transfer') for making a copy of a group of one or more
lines at any point. This is often easier than writing and
reading.

The t command is identical to the m command, except that
instead of moving lines it simply duplicates them at the
place named. Thus

l,t

duplicates the entire contents being edited. A more common
use for t is to create a series of lines that differ only
slightly. For example:

2-29

a

t.
s/x/y/
t.
s/y/z/

XENIX Text Processing

x ••••••••• (long line)

(make a copy)
(change it a bit)
(make third copy)
(change it a Obit)

The Temporary Escape 'I' Sometimes it is convenient to be
able to temporarily escape from the editor to do some other
XENIX command without leaving the editor. The 'escape'
command '1' provides a way to do this.

!cornrnand

suspends the current editing state, and the XENIX command is
executed. When the command finishes, ed prints another 1;
at that point editing can be resumed. any XENIX command can
be executed in this way, including another ed.

2.1.3 Editing Scripts

Ed they can also be used to accomplish a complicated set of
editing operations on a group of files using a 'script'
(i.e. a file that contains a sequence of operations can be
written and applied to each file in turn.) Editing scripts
can often be used as an alternative to the programs
introduced in the next chapter.

For example, to change every 'Xenix' to 'XENIX' and every
'Unix' to 'UNIX' in a large number of files, put into the
file script the lines

g/Xenix/s//XENIX/g
g/Unix/s//UNIX/g
w
q

Now use the commands

ed filel <script
ed file2 <script

This causes ed to take its commands from the prepared
script. By using the XENIX shell command interpreter, a set
of files can be cycled through automatically, with varying
degrees of ease, if the job is planned in advance.

2-30

XENIX Text Processing

2.2 USING SED

Sed is a non-interactive context editor designed to be
especially useful in three cases:

1. To edit files too large for comfortable interactive
editing.

2. To edit any size file when the sequence of editing
commands is too complicated to be comfortably typed in
interactive mode.

3. To perform multiple 'global' editing
efficiently in one pass through the input.

functions

Since only a few lines of the input reside in core at one
time, and no temporary files are used, the effective size of
file that can be edited is limited only by the requirement
that the input and output fit simultaneously into available
secondary storage. Complicated editing scripts can be
created separately and given to sed as a command file. For
complex edits, this saves considerable typing, and its
attendant errors. Sed running from a command file is much
more efficient than an interactive editor like ed, even if
driven by a pre-written script.

On the other hand, sed lacks relative addressing due to
line-at-a-time operation, and the user gets no immediate
verification that the command has altered the text in the
way the user intended.

Although sed is a lineal descendant of ed, considerable
changes have been made between ed and sed, because of the
differences between interactive and non-interactive
operation. The most striking family resemblance between the
two editors is in the class of regular expressions they
recognize; the code for matching patterns is copied almost
verbatim from the code for ed.

2.2.1 Overall Operation

Sed by default copies the standard input to the standard
output, perhaps performing one or more editing commands on
each line before writing it to the output. This behavior
may be modified by flags on the command line;

The general format of an editing command is:

[addressl, address2] [function] [arguments]

2-31

XENIX Text Processing

One or both addresses may be omitted; the format of
addresses is given below. Any number of blanks or tabs may
separate the addresses from the function, which must be
present. the available commands are discussed below. The
arguments may be required or optional, according to which
function is given, as discussed for each individual
function. Tab characters and spaces at the beginning of
lines are igno"red.

2.2.2 Command-line Flags

Three flags are recognized on the command line:

-n: tells sed not
specified
functions;

to
by

copy all lines,
E func t ions or

but only those
E flags after s

-e: tells sed to take the next argument as an editing
command;

-f: tells Sed to take the next argument as a file name; the
file should contain editing commands, one to a
line.

2.2.3 Order of Application of Editing Commands

Before any input file is opened and editing begins, all the
editing commands are compiled into a form which will be
efficient during the execution phase, when the commands are
actually applied to lines of the input file. The commands
are compiled in the order in which they are encountered;
this is generally the order in which they will be attempted
at execution time. The commands are applied one at a time;
the input to each command is the output of all preceding
commands.

The default linear order of application of editing commands
can be changed by the flow-of-control commands, t and b.
Even when the order of application is changed by these
commands, it is still true that the input line to any
command is the output of any previously applied command.

2-32

XENIX Text Processing

2.2.4 Pattern-space

The range of pattern matches is called the pattern space.
Ordinarily, the pattern space is one line of the input text,
but more than one line can be read into the pattern space by
using the N command.

Examples Examples are
Except where otherwise
following input text:

scattered throughout the text.
noted, the examples all assume the

In Xanadu did Kubla Khan
A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless se~.

as in this example. The command

2q

will quit after copying the first two lines of the input.
The output will be:

In Xanadu did Kubla Khan
A stately pleasure dome decree:

2.2.5 Addresses

The following rules apply to addressing in sed.

2.2.5.1 Selecting lines for Addressing Lines in the input
file(s) to which editing commands are to be applied can be
selected by addresses, which may be either line numbers or
context addresses. The application of a group of commands
can be controlled by one address (or address-pair) by
grouping the commands with curly braces ('{ }') ..

2.2.5.2 Line-number Addresses A line number is a decimal
integer. As each line is read from the input, a line-number
counter is incremented; a line-number address matches
(selects) the input line which causes the internal counter
to equal the address line-number. The counter runs
cumulatively through multiple input files; it is not reset
when a new input file is opened. A special case is the
character $, which matches the last line of the last input
file.

2-33

XENIX Text Processing

2.2.5.3 Context Addresses A context address is a
'regular expression' enclosed in slashes ('I'). The regular
expressions recognized by sed are the same as those
recognized by ed, and are listed in the preceding section.
As in the case of ed, for a context address to 'match' the
input, the whole pattern within the address must match some
portion of the. pattern space.

2.2.5.4 Number of Addresses The commands which follow
can have 0, 1, or 2 addresses. Under each command the
maximum number of allowed addresses is given. If a command
has no addresses, it is applied to every line in the input.
If a command has one address, it is applied to all lines
which match that address. If a command has two addresses,
it is applied to the first line which matches the first
address, and to all subsequent lines until (and including)
the first subsequent line which matches the second address.
Then an attempt is made on subsequent lines to again match
the first address, qnd the process is repeated. Two
addresses are separated by a comma. Here are some examples:

lanl
lan.*anl
I~anl

matches lines 1,
line 1

3, 4 in our sample text

1.1
1\.1

matches
matches
matches
matches

no lines
all lines
line 5

Ir*anl matches lines 1,3,
I\(an\).*\l/matches line 1

2.2.6 Functions

4 (number = zero!)

All functions are named by a single character. In the
following summary, the maximum number of allowable addresses
is given enclosed in parentheses, then the single character
function name, possible arguments enclosed in angles « »,
an expanded English translation of the single-character
name, and finally a description of what each function does.
The angles around the arguments are not part of the
argument, and should not be typed in--actual editing
commands.

2.2.6.1 Whole-line Oriented Functions

$ (2)d -- delete lines

The d function deletes from the file (does not write to
the output) all those lines matched by its address(es).

2-34

XENIX Text Processing

It also has the side effect that no further commands
are attempted on the corpse of a deleted line; as soon
as the d function is executed, a new line is read from
the input, and the list of editing commands is re­
started from the beginning on the new line.

$ (2)n -- next line The n function reads the next line
from the input, replacing the current line. The
current line is written to the output if it should be.
The list of editing commands is continued following the
n command.

$ (l)a\ <text> -- append lines

The ~ function causes the argument <text> to be written
to the output after the line matched by its address.
The ~ command is inherently multi-line; a must appear
at the end or ~ line, and <text> may contain any number
of lines. To preserve the one-command-to-a-line
fiction, the interior newlines must be hidden by a
backslash character ('\') immediately preceding the
newline. The <text> argument is terminated by the
first unhidden newline (the first one not immediately
preceded by backslash).

Once an a function is successfully executed, <text>
will be-written to the output regardless of what later
commands do to the line which triggered it. The
triggering line may be deleted entirely; <text> will
still be written to the output.

The <text> is not scanned for address. matches, and no
editing commands are attempted on it. It does not
cause any change in the line-number counter.

$ (l)i\ <text> -- insert lines

The i function behaves identically to the ~ function,
except that <text> is written to the output before the
matched line. All other comments about the a function
apply to the i function as well.

t'J> (2)c\ <text> change lines

The c function deletes the lines selected by its
address(es), and replaces them with the lines in
<text>. Like a and i, c must be followed by a newline
hidden by a backslash; and interior new lines in <text>
must be hidden by backslashes.

2-35

XENIX Text Processing

The £ command may have two addresses, and therefore
select a range of lines. If it does, all the lines in
the range are deleted, but only one copy of <text> is
written to the output, not one copy per line deleted.
As with a and i, <text> is not scanned for address
matches,- and -no editing commands are attempted on it.
It does not change the line-number counter.

After a line has been deleted by a c function, no
further commands are attempted on it.

If text is appended after a line by a or r functions,
and the line is subsequently changed~ the text inserted
by the c function will be placed before the text of the
a or r functions.

Note: within the text put in the output by these functions,
leading blanks and tabs will disappear, as always in sed
commands. To get leading blanks and tabs into the output,
precede the first desired blank or tab by a backslash; the
backslash will not appear in the output.

For example, the list of editing commands:

n
a\
XXXX
d

applied to our standard input, produces:

In Xanadu did Kubhla Khan
XXXX
Where Alph, the sacred river, ran
XXXX
Down to a sunless sea.

In this particular case, the same effect would be produced
by either of the two following command lists:

n
i\
xxxx
d

n
c\
XXXX

2-36

XENIX Text Processing

2.2.6.2 Substitute Function One very important function
changes parts of lines selected by a context search within
the line.

(2)s<pattern><replacement><flags> -- substitute

The s function replaces part of a line (selected by
<pattern» with <replacement>. It can best be read:

Substitute for <pattern>, <replacement>

The <pattern> argument contains a pattern, exactly like the
patterns in addresses. The only difference between
<pattern> and a context address is that the context address
must be delimited by slash ('/1) characters; <pattern> may
be delimited by any character other than space or newline.
By default, only the first atring matched by <pattern> i~
replaced, but see the ~ flag below.

The <replacement> argument begins immediately after the
second delimiting character of <pattern>, and· must be
followed immediately by another instance of the delimiting
character. (Thus there are exactly three instances of the
delimiting character.) The <replacement> is not a pattern,
and the characters which are special in patterns do not have
special meaning in <replacement>. Instead, other characters
are special:

$ & is replaced by the string matched by <pattern>

$ \d (where d is a single dig it) is replaced by the dth
substring matched by parts of <pattern> enclosed in
'\ (, and '\) , . If nested substrings occur in
<pattern>, the dth is determined by counting opening
delimiters ('\('):-

As in patterns, special characters may be made literal
by preceding them wi th backslash ('\') ..

The <flags> argument may contain the following flags:

g -- substitute <replacement> for all (non-overlapping)
instances of <pattern> in the line. After a
successful substitution, the scan for the next
instance of <pattern> begins just after the end of
the inserted characters; characters put into the
line from <replacement> are not rescanned.

p -- print the line if a successful replacement was done.
The E flag causes the line to be written to the
output if and only if a substitution was actually

2-37

XENIX Text Processing

made by the s function. Notice that if several s
functions, each followed by a £ flag, successfully
substitute in the same input line, multiple copies
of the line will be written to the output: one for
each successful substitution.

w <filename> -- write the line to a file if a successful
replacement was done. The w flag causes lines
which are actually substituted by the s function
to be written to a file named by <filename>. If
<filename> exists before Sed is run, it is
overwritten; if not, it is created.

A single space must separate ~ and <filename>.

The possibilities of multiple, somewhat different
copies of one input line being written are the
same as for £.

A maximum of 10
mentioned after
below), combined.

different file
w flags and w

names may be
functions (see

Here are some examples. The following command, applied to
our standard input,

s/to/by/w changes

produces, on the standard output:

In Xanadu did Kubhla Khan
A ·stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless by man
Down by a sunless sea.

and, on the file 'changes':

Through caverns measureless by man
Down by a sunless sea.

If the nocopy option is in effect, the command:

s/[.,;?:]/*P&*/gp

produces:

A stately pleasure dome decree*P:*
Where Alph*P,* the sacred river*P,* ran
Down to a sunless sea*P.*

2-38

XENIX TextPro~essing

Finally, to illustrate the effect of the ~ flag, the
command:

/X/s/an/AN/p

produces (assuming nocopy mode) :

In XANadu did Kubhla Khan

and the command:

/X/s/an/AN/gp

produces:

In XANadu did Kubhla KhAN

2.2.6.3 Input-output Functions

(2)p -- print

The print function writes the addressed lines to
the standard output file. They are written at the
time the E function is encountered, regardless of
what succeeding editing commands may do to the
lines.

(2)w <filename> -- write on <filename>

The write function writes the addressed lines to
the file named by <filename>. If the file
previously existed, it is overwritten; if not, it
is created. The lines are written exactly as they
exist when the write function is encountered for
each line, regardless of what subsequent editing
commands may do to them.

Exactly one space must separate the
<filename>.

w and

A maximum of ten different files may be mentioned
in write functions and ~ flags after s functions,
combined.

(l)r <filename> -- read the contents of a file

The read function reads the contents of
<filename>, and appends them after the line
matched by the address. The file is read and
appended regardless of what subsequent editing

2-39

XENIX Text Processing

commands do to the line which matched its address.
If r and a functions are executed on the same
line~ the text from the a functions and the r
functions is written to the output in the order
that the functions are executed.

Exactly one space must separate the rand
<filename>. If a file mentioned by a r function
cannot be opened, it is considered a null file,
not an error, and no diagnostic is given.

NOTE: Since there is a limit to the number of files that can
be opened simultaneously, care should be taken that no more
than ten files be mentioned in w functions or flags; that
number is reduced by one if-any r functions are pres~nt.
(Only one read file is open at one tIme.)

Here are some examples. Assume that the file 'notel' has
the following contents:

Note: Kubla Khan (more properly Kublai Khan;
1216-1294) was the grandson and most eminent
successor of Genghiz (Chingiz) Khan, and
founder of the Mongol dynasty in China.

Then the following command:

/Kubla/r notel

produces:

In Xanadu did Kubla Khan
Note: Kubla Khan (more properly Kublai Khan;
1216-1294) was the grandson and most eminent
successor of Genghiz (Chingiz) Khan, and
founder of the Mongol dynasty in China.

A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.

2.2.6.4 Multiple Input-line Functions Three functions,
all spelled with capital letters, deal specially with
pattern spaces containing imbedded newlines; they are
intended principally to provide pattern matches across lines
in the input.

(2)N -- Next line

2-40

XENIX Text Process'ing

The next input line is appended to the current
line in the pattern space; the two input lines are
separated by an imbedded newline~ Pattern matches
may extend across the' imbedded newline (s) •

(2)D -- Delete first part of the pattern space

Delete up to and including the first newline
character in the current pattern space. If the
pattern space becomes empty (the only newline was
the terminal newline), read another line from the
input. In any case, begin the list of editing
commands again f~om its beginning.

(2)P -- Print first part of the pattern space

Print up to and including the first newline in the
pattern space.

The P and D functions are
counterparts if there
pattern space.

equivalent to
are no imbedded

their lower-case
newlines in the

2.2.6.5 Hold and Get Functions These functions save and
retrieve part of the input for possible later use:

1. (2) h--hold pattern space

The h functions copies the
space into a hold area
contents of the hold area).

2. (2)H -- Hold pattern space

contents of
(destroying

the pattern
the previous

The H function appends the contehts of the pattern
space to the contents of the hold area; the former and
new contents are separated by a newline~

3. (2) g -- get contents of hold area

The ~ function copies the contents of the hold area
into the pattern space (destroying the previous
contents of the pattern space).

4. (2) G -- Get contents of hold area

The ~ function appends the contents of the hold area
to the contents of the pattern space; the former and
new contents are separated by a newline.

2-41

XENIX Text Processing

5. (2)x -- exchange

The exchange command interchanges the contents of the
pattern space and the hold area.

For example, the commands

lh
lsi did.*//
Ix
G
s/\n/ :/

applied to our standard example, produce:

In Xanadu did Kubla Khan :In Xanadu
A stately pleasure dome decree: :In Xanadu
Where Alph, the sacred river, ran :In Xanadu
Through caverns measureless to man :1n Xanadu
Down to a sunless sea. :1n Xanadu

2.2.6.6 Flow-of-Control Functions These functions do no
editing on the input lines, but control the application of
functions to the lines selected by the address part.

(2)! -- Don't

The Don't command causes the next command (written
on the -same line), to be applied to all and only
those input lines not selected by the adress part.

(2){ -- Grouping

The grouping command '{I causes the next set of
commands to be applied (or not applied) as a block
to the input lines selected by the addresses of
the grouping command. The first of the commands
under control of the grouping may appear on the
same line as the '{I or on the next line.

The group of commands is terminated by a matching
,}, standing on a line by itself.

Groups can be nested.

(0) :<label> -- place a label

The label function marks a place in the list of
editing commands which may be referred to by ~ and
t functions. The <label> may be any sequence of

2-42

XENIX Text Processing

eight or fewer characters; if two different colon
functions have identical labels, a compile time
diagnostic will be generated, and no execution
attempted.

(2)b<label> -- branch to label

The branch function causes the sequence of
editing commands being applied to the current
inptlt line to be restarted immediately after the
place where a colon function with the same <label>
was encountered. If no colon function with the
same label can be found after all the editing
commands have been compiled, a compile time
diagnostic is produced, and no execution is
attempted. A b function with no <label> is taken
to be a branch to the end of the list of editing
commands; whatever should be done with the current
input line is done, and another input line is
read; the list of editing commands is restarted
from the beginning on the new line.

(2)t<label> -- test substitutions

2.2.6.7

The t function tests whether any successful
substItutions have been made on the current input
line; if so, it branches to <label>; if not, it
does nothing. The flag which indicates that a
successful substitution has been executed is reset
by:

1. reading a new input line, or

2. executing a t function.

Miscellaneous Functions

$ (1)= -- equals

The = function writes to the standard output the line
number of the line matched by its address.

$ (l)q -- quit

The g function causes the current line to be written to
the output (if it should be), any appended or read text
to be written, and execution to be terminated.

2-43

CHAPTER 3

PATTERN RECOGNITION AND FILE COMPARISON UTILITIES

When preparing documents, it is often necessary to find a
string repeated in a file or group of files, in order to
make a consistent set of changes, or to compare and contrast
two or more files in order to identify the differences
between them. In this section, some tools provided by XENIX
to accomplish these tasks are compared. Although several of
these programs may be used interchangeably, knowing which
one will do the job at hand most efficiently is a large part
of understanding their use. if the job is planned in
advance.

In this chapter more possibilites are introduced for
streamlining complicated editing command procedures, and
dealing with large numbers of files at once. Grep, the
first and simplest of these tools, merely prints all lines
which match a single specified pattern. A variant of grep,
egrep, searches for more generalized patterns. Fgrep
searches for a set of keywords with a particularly fast
algorithm. Grep and its variations are considered in detail
here, along with awk, a program which offers some special
features, including the capacity to deal with numerics,
logical relations, and variables. In addition, awk allows
for searching particular fields within lines.

Both grep and awk have as their basis the same principle of
pattern recognition as ed and sed. In each case, a file is
searched for the occurrence of a given pattern-- a character
or group of characters, a word or word string-- generating a
list of contexts where the pattern appears. Grep, and the
related commands, egrep and fgrep, are introduced below,
followed by a discu5sion of awk, a programming language for
carrying out a wide range of complex text manipulation
functions.

Also discussed here are three additional programs, comm,
diff, and diff3, which compare two or more files and output
those lines which are different. In text processing
applications these programs can be extremely useful for
locating variations between several versions of text. The
last tool introduced in this chapter is spell; spell allows
the user to locate spelling and typographic errors quickly
in large quantities of text. Chapter! contains a detailed
summary of the options associated with each of these
programs.

3-1

XENIX Text Processing

3.1 GREP

It is often necessary to find all occurences 'of some word or
pattern in a set of files. The patterns being searched are
the same "regular expressions" recognized by the editors, ed
and sed. Grep stands for

g/re/p

and does exactly this; it searches and prints every line in
a set of files that contains the specified regular
expression. Thus,

grep 'thing' filel file2 file3

finds 'thing' wherever it occurs in any of the files
'filel', 'file2', etc. Grep also indicates the file in
which the line was found, so that it can be edited later.
By using grep as a filter, a command that reads and
transforms input, grep can be combined with another shell
procedure to become a powerful editing tool. The use of grep
in shell procedures is discussed at length in The
Programmert~ Introduction.

The commands grep, egrep, and fgrep search a file for a
specified pattern. They are expressed in the following form:

grep
[option]
expression [file

egrep
[option] •..
[expression
[file] ...

fgrep
[option] •..
[strings]
[file]

Commands of the grep family search the input files (standard
input default) for lines matching a pattern. Normally, each
line found is copied to the standard output; unless the -h
flag is used, the file name is shown if there is more than
one input file.

There are two other members of the grep family, fgrep and
egrep. Grep patterns are limited regular expressions in the
style of ed, it uses a compact nondeterministic algorithm.
Egrep patterns are full regular expressions; it uses a fast

3-2

XENIX Text Processing

deterministic algorithm that sometimes needs exponential
space. Fgrep patterns are fixed strings; grep is fast and
compact.

The following options are recognized:

-v

-c

-1

-n

-b

-h

-y

-e

-f

-x

All lines but those matching are printed.

Only a count of matching lines is printed.

The names of files with matching lines are listed
(once) separated by newlines.

Each line is preceded by its line number in the
file.

Each line is preceded by the block number on which
it was found. This is sometimes useful in
locating disk block numbers by context. No output
is produced, only status.

Do not print filename headers with output lines.

Alphabetic letters in the pattern will match
letters of either case in the input grep and fgrep
only) •

Same as a simple expression argument, but useful
when the expression begins with a -.

The regular expression egrep or string list fgrep
is taken from the file.

(Exact) lines matched in their entirety are
printed (fgrep only) •

Care should be taken when using the characters $ * [A I ? '
" () and \ in the expression as they are also meaningful to
the shell. It is safest to enclose the entire expression
argument in single quotes' '.

Fgrep searches for lines that contain one of the (newline­
separated) strings.

Egrep accepts extended regular expressions. In the
following description 'character' excludes newline:

1. A \ followed by a single character matches that
character. The character A

3-3

XENIX Text Processing

2. ($) matches the beginning (end) of a line.

3. A. matches any character.

4. A single character not otherwise endowed with special
meaning matches that character.

5. A string enclosed in brackets [1 matches any single
character from the string. Ranges of ASCII character
codes may be abbreviated as in 'a-zO-9'. A] may
occur only as the first character of the string. A
literal - must be placed where it can't be mistaken as
a range indicator.

6. A regular expression followed by * (+, ?) matches a
sequence of 0 or more (lor more, 0 or 1) matches of
the regular expression.

7. Two regular expressions concatenated match a match of
the first followed by a match of the second.

8. Two regular expressions separated by I or newline
match either a match for the first or a matdh for the
second.

9. A regular expression enclosed in parentheses matches a
match for the regular expression.

The order of precedence of operators at the same parenthesis
level is [] then? then concatenation then "I" and newline.

3-4

XENIX Text Processing

3.2 AWK: A Pattern Scanning and Processing Language

Awk is a programming language designed to make many common
information retrieval and t~xt"manipulation tasks easy to
state and to perform. The basic operation of awk is to
search input lines consecutively for a match of any patterns
which the user has specified. For each pattern, an action
can be specified; this action will be performed on each line
that matches the pattern.

In awk the patterns may be more general than in grep, and
the actions allowed are more involved than merely printing
the matching line. For example, the awk program

{print $3, $2}

prints the third and second columns of a table in that
order. The program

$2 /AIBlc/

prints all input lines with an A, B, or C in the second
field. The program

$1 1= prev { print; prev = $1 }

prints all lines in which the first field is different from
the previous first field.

3.2.1 Usage

The command

awk program [files]

executes the awk commands in the string program on the set
of named files, or on the standard input if there are no
files. The statements can also be placed in a file pfile,
and executed by the command

awk -f pfile [files)

3.2.2 Program Structure

An awk program is a sequence of statements of the form:

3-5

XENIX Text Processing

pattern { act~on I
pattern { actlon

Each line of input is matched against each of the patterns
in turn. For each pattern that matches, the associated
action is executed. When all the patterns have been tested,
the next line is fetched and the matching starts over.

Either the pattern or the action may be left out, but not
both. If there is no action for a pattern, the matching
line is simply copied to the output. (Thus a line which
matches several patterns can be printed several times.) If
there is no pattern for an action, then the action is
performed for every input line. A line which matches no
pattern is ignored.

Since patterns and actions are both optional, actions must
be enclosed in braces to distinguish them from patterns.

3.2.3 Records and Fields

Awk input is divided into "records" terminated by a record
separator. The default record separator is a newline, so by
default awk processes its input a line at a time. The
number of the current record is available in a variable
named NR.

Each input record is considered to be divided into
"fields." Fields are normally separated by white
space-blanks or tabs-but the input field separator may be
changed, as described below. Fields are referred to as $1,
$2, and so forth, where $1 is the first field, and $0 is the
whole input record itself. Fields may be assigned to. The
number of fields in the current record is available in a
variable named NF.

The variables FS and RS refer to the input field and record
separators; they maY- be changed at any time to "any single
character. The optional command-line argument -Fc may also
be used to set FS to the character c. -

If the record separator is empty, an empty input line is
taken as the record separator, and blanks, tabs and newlines
are treated as field separators.

The variable FILENAME contains the name of the current input
file.

3-6

XENIX Text Processing

3.2.4 Printing

An action may have no pattern, in which case the action is
executed for all lines. The simplest action is to print
some or all of a record; this is accomplished by the awk
command print. This program prints each record, thus
copying the input to the output intact. More useful is to
print a field or fields from each record. For instance,

print $2, $1

prints the first two fields in reverse order. Items
separated by a comma in the print statement will be
separated by the current output field separator when output.
Items not separated by commas will be concatenated, so

print $1 $2

runs the first and second fields together.

The predefined variables NF and NR can be used; for example

{ print NR, NF, $0 }

prints each record preceded by the record number and the
number of fields.

Output may be diverted to multiple files; the program

{ print $1 >"fool"; print $2 >"fo02" }

writes the first field, $1, on the file fool, and the second
field on file fo02. The» notation can also be used:

print $1 »"foo"

appends the output to the file foo. (In each case, the
output files are created if necessary.) The file name can be
a variable or a field as well as a constant; for example,

print $1 >$2

uses the contents of field 2 as a file name.

Naturally there is a limit on the number of output files;
currently it is 10.

Similarly, output can be piped into another process; for
instance,

3-7

XENIX Text Processing

print I "mail bwk"

mails the output to bwk.

The variables OFS and DRS may be used to change the current
output field separator and output record separator. The
output record separator is appended to the output of the
print statement.

Awk also provides the
formatting:

printf statement for output

printf format expr, expr,

formats the expressions in the list
specification in format and prints them.

printf "%8.2f %lOld\n", $1, $2

according to
For example,

the

prints $l as a floating point number 8 digits wide, with two
after the decimal point, and $~ as a lO-digit long decimal
number, followed by a newline. No output separators are
produced automatically; you must add them yourself, as in
this example. The version of printf is identical to that
used with C2

3.2.5 Patterns

A pattern in front of an action acts as a selector that
determines whether the action is to be executed. A variety
of expressions may be used as patterns: regular expressions,
arithmetic relational expressions, string-valued
expressions, and arbitrary boolean combinations of these.

3.2.6 BEGIN and END

The special pattern BEGIN matches the beginning of the
input, before the first record is read. The pattern END
matches the end of the input, after the last record has been
processed. BEGIN and END thus provide a way to gain control
before and after processing, for initialization and wrapup.

As an example, the field separator can be set to a colon by

BEGIN {FS = ":" }
••. rest of program ••.

Or the input lines may be counted by

3-8

XENIX Text Processing

END {print NR }

If BEGIN is present, it must be the first pattern: END must
be the last if used.

3.2.7 Regular Expressions

The simplest regular expression is a literal string of
characters enclosed in slashes, like

/smith/

This is actually a complete awk program which will print all
lines which contain any occurrence of the name "smith".
If a line contains "smith" as part of a larger word, it
will also be printed, as in

blacksmithing

Awk regular expressions include the regular expression forms
found in the XENIX text editor ed and grep (without back­
referencing) • In addition, awk allows parentheses for
grouping, I for alternatives, + for "one or more' I, and?
for "zero or one", all as in lex. Character classes may
be abbreviated: [a-zA-ZO-9] is the set of all letters and
digits. As an example; the-awk program

/[Aa]hol [Ww]einbergerl [Kk]ernighan/

will print all lines which contain any of the names "Aho,"
"Weinberger'I or "Kernighan," whether capitalized or not.

Regular expressions (with the extensions listed above) must
be enclosed in slashes, just as in ed and sed. Within a
regular expression, blanks and the regular expression
metacharacters are significant. To turn of the magic
meaning of one of the regular expression characters, precede
it with a backslash. An example is the pattern

. /\/.*\//

which matches any string of characters enclosed in slashes.

One can also specify that any field or variable matches a
regular expression (or does not match it) with the operators

and !. The program

$1 /[jJ]ohn/

prints all lines where the first field matches "john" or

3-9

XENIX.Text Processing

"John." Notice that this
"St. Johnsbury", and so on.
[~]ohn, use

will also match "Johnson",
To restrict it to exactly

The caret A refers to the beginning of a line or field; the
dollar sign $ refers to the end.

3.2.8 Relational Expressions

An awk pattern can be a relational expression involving the
usual relational operators <, <=, ==, !=, >=, and >. An
example is

$2 > $1 + 100

which selects lines where the second field is at least 100
greater than the first field. Similarly,

NF % 2 == a

prints lines with an even number of fields.

In relational tests, if neither operand is numeric, a string
comparison is made; otherwise it is numeric. Thus,

$1 >= "s"

selects lines that begin with an s, t, u, etc. In the
absence of any other information, -fields are treated as
strings, so the program

$1 > $2

will perform a string comparison.

3.2.9 Combinations of Patterns

A pattern can be any boolean combination of patterns, using
the operators II (or), && (and), and! (not). For example,

$1 >= "s" && $1 < "ttl && $1 != "smith"

selects lines where the first field begins with "~Sf', but
is not "smith". && and I I guarantee that their operands
will be evaluated from left to right; evaluation stops as
soon as the truth or falsehood is determined.

3-10

XENIX Text Processing

3.2.10 Pattern Ranges

The "pattern" that selects an action may also consist of
two patterns separated by a comma, as in

patl, pat2 { ... }

In this case, the action is performed for each line between
an occurrence of patl and the next occurrence of pat2
(inclusive). For example,

/start/, /stop/

prints all lines between start and stop, while

NR == 100, NR == 200 { .•• }

does the action for lines 100 through 200 of the input.

3.2.11 Actions

An awk action is a sequence of action statements terminated
by newlines or semicolons. These action statements can be
used to do a variety of bookkeeping and string manipulating
tasks.

3.2.12 Built-in Functions

Awk provides a "length" function to compute the length of
a string of characters. This program prints each record,
preceded by its length:

{print length, SO}

length by itself is a "pseudo-variable" which yields the
length of the current record; length (argument) is a function
which yields the length of its argument, as in the
equivalent

{print length($O), SO}

The argument may be any expression.

Awk also provides the arithmetic functions sgrt, log, exp,
and int, for square root, base e logarithm, exponential, and
integer part of their respective arguments.

The name of
argument or

one of these built-in
parentheses, stands for

3-;1.1

functions,
the value

without
of the

XENIX Text Processing

function on the whole record. The program

length < 10 I I length > 20

prints lines whose length is less than 10 or greater than
20. The function substr(s, m, n) produces the substring of
s that begins at position m ('Origin 1) and is at most n
characters long. If n is emitted, the substring goes to the
end of s. The function index(sl, s2) returns the position
where the string s2 occurs in sl, or zero if it does not.

The function sprintf(f, el, e2, •..) produces the value of
the expressions el, e2, etc., in the printf format specified
by f. Thus, for-example,

x = sprintf("%8.2f %lOld", $1, $2)

sets x to the string produced by formatting th~ values of $!
and $2.

3.2.13 Variables, Expressions, and Assignments

Awk variables take on numeric
values according to context.

x = 1

(floating point)
For example, in

x is clearly a number, while in

x = "smith"

or string

it is clearly a string. Strings are converted to numbers
and vice versa whenever context demands it. For instance,

x = "3" + "4"

assigns 7 to x. Strings which cannot be interpreted as
numbers in a numerical context will generally have numeric
value zero, but it is unwise to count on this behavior.

By default, variables (other than built-ins) are initialized
to the null string, which has numerical value zero; this
eliminates the need for most BEGIN sections. For example,
the sums of the first two fields can be computed by

END

Arithmetic
arithmetic

{ sl += $1; s2 += $1 }
{ print sl, s2 }

is done
operators

internally
are +,

3-12

in floating point.
*, I, and % (mod).

The
The C

XENIX Text Processing

increment ++ and decrement -- operators are also available,
and so are the assignment operators +=, -=, *=, /=, and %=.
These operators may all be used in expressions.

3.2.14 Field Variables

Fields in awk share essentially all of the properties of
variables they may be used in arithmetic or string
operations,-and may be assigned to. Thus one can replace
the first field with a sequence number like this:

{ $1 = NR; print }

or accumulate two fields into a third, like this:

{ $1 = $2 + $3; print $0 }

or assign a string to a field:

{ if ($3 > 1000)
$3 = "too big"

}
print

which replaces the third field by "too big" when it is,
and in any case prints the record.

Field references may be numerical expressions, as in

{ print $i, $(i+l), $(i+n) }

Whether a field is deemed numeric or string depends on
context; in ambiguous cases like

if ($1 == $2) . . .
fields are treated as strings.

Each input line is
necessary. It is
string into fields:

split into fields automatically as
also possible to split any variable or

n = split(s, array, sep)

splits the the string ~ into array[!], .•. , array[~]. The
number of elements found is returned. If the ~ argument
is provided, it is used as the field separator; otherwise FS
is used as the separator.

3-13

XENIX Tex·t Processing

3.2.15 String Concatenation

Strings may be concatenated. For example

leng th ($1 $ 2 $ 3)

returns the length of the first three fields. Or in a print
statement,

print $1 " is " $2

prints the two fields separated by" is I I Variables and
numeric expressions may also appear in concatenations.

3.2.16 Arrays

Array elements are not declared; they spring into existence
by being mentioned. Subscripts may have any non-null value,
including non-numeric strings. As an example of a
conventional numeric subscript, the statement

x[NR] = $0

assigns the current input record to the NR-th element of the
array x. In fact, it is possible in principle (though
perhaps-slow) to process the entire input in a random order
with the awk program

END
{ x [NR] = $0 }
{ .•. program •.• }

The first action merely records each input line in the array
x.

Array elements may be named by non-numeric values, which
gives awk a capability rather like the associative memory of
Snobol tables. Suppose the input contains fields with
values like apple, orange, etc. Then the program

/apple/ { x["apple"]++ }
/orange/ { x["orange"]++ }
END { print x[flapple"], x["orange"] }

increments counts for the named array elements, and prints
them at the end of the input.

Any expression can be used as a subscript i,n an array
reference. Thus

3-14

XENIX Text Processing

x[$l] = $2

uses the first field of a record (as a string) to index the
array ~.

Suppose each line of input contains two fields, a name and a
non-zero value. Names may berepeated~ the task is to print
a list of each unique name followed by the sum of all the
values for that name. This can be done with the program

{ amount[$l] += $2 }
{ for (name in amount) END

print name, amount [name] }

To sort the output, replace the last line by

print name, amount [name] I "sort"

3.2.17 Flow-of-Control Statements

Awk provides the basic flow-of-control statements if-else,
while, for, and statement grouping with braces, as in c.
The if -statement was previously introduced without
description. The condition in parentheses is evaluated; if
it is true, the statement following the if is done. The
else part is optional.

The while statement is exactly like that of C. For example,
to print all input fields one per line,

i .= 1
while (i <= NF) {

print $i
++i

}

The for statement is also exactly that of C:

for (i = 1; i < = NF; i + +)
print $i

does the same job as the while statement above.

There is an alternate form of the for statement which is
suited for accessing the elements o~n associative array:

for (i in array)
statement

does statement with i set in turn to each element of array.

3-15

XENIX Text Processing

The elements are accessed in an apparently random order.
Chaos will ensue if i is'altered l or if any new elements are
accessed during the loop.

The expression in the condition part of an if, while or for
can include relational operators like' <, <=-,->, >=, == ("is
equal to' '), and 1= ("not equal to' I): regular expression
matches with the match operators and 1 : the logical
operators I I, &&, and !; and of course parentheses for
grouping.

The break statement causes an immediate exit from an
enclosing while or for; the continue statement causes the
next iteration to begin:-

The statement next causes awk to skip immediately to the
next record and begin scanning the patterns from the top.
The statement exit causes, the program to behave as if the
end of the input had occurred.

Comments may be placed in awk programs: they begin with the
character # and end with the end of the line, as in

print x, y # this is a ~omment

3.3 OIFF

oiff is a program to compare two files, using the form:

diff [-efbh] filel file2

Diff ,tells what lines must be changed in two files to bring
them into agreement. If filel (file2) is '_I, the standard
input is used. If filel (file2) is a directory; then a file
in that directory whose file-name is the same as the file­
name of file2 (filel) is used. The normal output contains
lines of these forms:

nl a n3,n4
nl,n2d n3
nl,n2 c n3,n4

These lines-resemble ed commands to convert filel into
file2. The numbers after the letters pertain to file2. In
fact, by exchanging 'a' for 'd l and reading backward one may
ascertain equally how to convert file2 into filel. As in
ed, identical pairs where nl = n2 or n3 = n4 are abbreviated
as a single number.

3-16

XENIX Text Processing

Following each of these lines come all the lines that are
affected in the first file flagged by '<I, then all the
lines that are affected in the second file flagged by'>'.

The -b option causes trailing blanks (spaces and tabs) to be
ignored and ot~er strings of blanks to compare equal.

The -e option produces a script of a, c and d commands for
the editor ed, which will recreate file2 from filel. The-f
option produces a similar script, not useful with ed, in the
opposite order. In connection with -e, the folloWIng shell
program may help maintain multiple versions of a file. Only
an ancestral file ($1) and a chain of version-to-version ed
scripts ($2,$3, ••.) made by diff need be on hand. A 'latest
version' appears on the standard output. (shift; cat $*;
echo 'l,$p') I ed - $1

Except in rare circumstances, diff finds
sufficient set of file differences:---

a smallest

Option -h does a fast, half-hearted job. It works only when
changed stretches are short and well separated, but does
work on files of unlimited length. Options -e and -f are
unavailable with -h.

3-17

XENIX Text Prpcessing

3.4 DIFF3

diff3 is a program for 3-way differential file comparison,
stated in the form:

diff3 [-ex3] filel file2 file3

Diff3 compares three versions of a file, and publishes
disagreeing ranges of text flagged with these codes:

all three files differ

====1
filel is different

====2
file2 is different

====3
file3 is different

The type of change suffered in converting a given range of a
given file to some other is indicated.in one of these ways:

f : nl a
Text is to be appended after line number
nl
in file
f,
where
f
= 1, 2, or 3.

f : nl , n2 c
Text is to be
changed in the range line
nl
to line
n2.
IT
nl

n2,
the range may be abbreviated to
nl.

The original contents of the range follows immediately after
a c indication. When the contents of two files are
identical, the contents of the lower-numbered file is
suppressed.

3-18

XENIX Text Processing

Under the -e option, diff3 publishes a script for the editor
ed that will incorporate into filel all changes between
file2 and file3, i.e. the changes that normally would be
flagged ==== and ~=~=3. Option -x (-3) produces a script to
incorporate only changes flagged ---- (====3). The
following command will apply the resulting script to
'filel'.

(cat script; echo 'l,$pl) I ed - file1

3.5 COMM

Corom selects or reject lines common to two sorted files. It
is expressed in the form:

comm [-[123]] filel fi1e2

Corom reads filel and file2, which should be ordered in ASCII
collating sequence, and produces a three column output:
lines only in filel; lines only in file2; and lines in both
files. The filename '_I means the standard input.

Flags 1, 2, or 3 suppress printing of the corresponding
column. Thus comm -12 prints only the lines common to the
two files; corom -23 prints only lines in the first file but
not in the second; comm -123 is a no-oPe

3-19

XENIX Text Processing

3.6 SPELL

Spell collects words from the specified files, and looks
them up in a spelling list. Words that neither occur among
nor are derivable (by applying inflections, prefixes or
suffixes) from words in the spelling list are printed on the
standard output. If no files are named, words are collected
from the standard input. spell is used with the following
format:

spell [option] •• [file] .••

/usr/src/cmd/spell/spellin [list]

/usr/src/cmd/spell/spellout [-d] list

Spell ignores most troff, tbl and eqn constructions. Under
the -v option, all words not literally in the spelling list
are printed, and plausible derivations from spelling list
words are indicated. Under the -b option, British spelling
is checked. Besides preferring centre, colour, speciality,
travelled, etc., this option insists upon -ise in words like
standardise, Fowler and the OED to---the contrary
notwithstanding. Under the -x option, every plausible stem
is printed with '=' for each word.

The spelling list is based on many sources, and while more
haphazard than an ordinary dictionary, is also more
effective in respect to proper names and popular technical
words. Coverage of the specialized vocabularies of biology,
medicine and chemistry is light. Pertinent auxiliary files
may be specified by name arguments, indicated below with
their default settings. Copies of all output are
accumulated in the history file. The stop list filters out
misspellings (e.g. thier=thy-y+ier) that would otherwise
pass.

Two routines help maintain the hash lists used by spell.
Both expect a list of words, one per line, from the standard
input. Spellin adds the words on the standard input to the
preexisting list and places a new list on the standard
output. If no list is specified, the new list is created
from scratch. --spellout looks up each word in the standard
input and prints on the standard output those that are
missing.

3-20

CHAPTER 4

TEXT FORMATTING AND DOCUMENT PREPARATION

In addition to the text editors, and pattern recognition and
file comparison programs that simplify the work of creating
and modifying files for text processing, the XENIX system
offers text formatting packages which simplify the
production of technical reports, memoranda, formal papers,
and documentation, as well as several specialized programs
for specifying the final output of tables, mathematical
equations, and bibliographic references.

There are two major formatting programs available with
XENIX. These programs produce a text with justified right
margins, automatic page numbering and titling, automatic
hyphenation, and many special features. nroff is designed
to produce output on terminals and line-printers. troff
(pronounced "tee-roff") instead drives a phototypesetter,
which produces very high quality output on photographic
paper. This document is itself an example of troff output.

4-1

XENIX Text Processing

4.1 FORMATTING PACKAGES

The basic idea of nroff and
interspersed with "formatting
detail how the final output., is to
include commands that specify
running titles.

troff is that text is
commands" that specify in

look. . 'Typically, these
line length, spacing, and

Because nroff and troff are relatively hard to learn to use
effectively, several "packages" of canned formatting
requests compatible with nroff and troff have been designed
to allow the user to specify paragraphs, running titles,
footnotes, multi-column output, and so on, with less effort
and without having to learn nroff and troff. In this
chapter, the "manuscript" package known as -ms is
described in detail. To actually produce a document in
standard format using -ms, use the command

troff -ms files ..•

for the typesetter, and

nroff -ms files

for a terminal. The -IDS argument tells troff and nroff to
use the manuscript package of formatting requests.

4-2

XENIX Text Processing

4.2 SUPPORTING TOOLS

In addition to the basic formatters, there are also some
supporting programs that aid in document preparation. For
example, eqn integrates mathematical symbols and equations
into the text of a document. The program tbl provides an
analogous serv~ce for preparing tabular material; it does
all the computations necessary to align complicated columns
with elements of varying widths. Finally, refer prepares
bibliographic citations from a data base, in whatever style
is defined by the formatting package. It looks after all
the details of numbering references in sequence, filling in
page and volume numbers, getting the author's initials and
the journal name right, and so on.

4-3

XENIX Text Processing

4.3 HINTS FOR PREPARING DOCUMENTS

Most documents go through several revisions before they are
finally finished~ some simple measures will make the work of
chang ing them considerably .easier. Since most people change
documents by rewriting phrases ,and adding~de~eting or
rearranging sentences, subsequent editing of text will be
simpler if each sentence starts ,on a new line, and if each
line is short, and breaks at a natural place, such as after
a comma or semicolon.

Documents should be broken down into individual files of
reasonable size, perhaps ten to fifteen thousand characters.
Operations on larger files are considerably slower, and the
accidental loss of a small file is less catastrophic than a
large one. The files should be spli t at natural boundar ie's
in the document, and named with conventions that allow them
to be processed in groups.

One of the advantages of formatting packages like -ms is
that they allow formatting decisions to be delayed until the
document is printed or typeset. If a document is typed
initially with generalized formatting commands like .PP,
they can be defined appropriately, as necessary, either with
a canned package like -ms, or with user-defined nroff and
traff commands. If the text has been entered in some
systematic way, it is easier to revise.

4-4

XENIX Text Processing

4.4 A NOTE ABOUT THE PAPERS

What follows is a group of independent papers about -ms, the
formatting packages nroff and troff, and some of the
specialized formatting programs, including tbl, eqn, and
refer. Keep in mind that although these papers were written
about UNIX, the operating system from which XENIXis
derived, all references to UNIX are equally applicable to
XENIX. These papers were written largely by the authors of
the programs, using the tools they describe quite
extensively. Hence the papers are in themselves excellent
examples of the final output of text formatted with these
programs.

4-5

Typing Documents on the UNIX System:
Using the - ms Macros with Troff and Nroff

M. E. Lesk

Bell Laboratories
Murray.Hill, New Jersey 07974

ABSTRACT

This document describes a set of easy-to-use macros for preparing docu­
ments on the UNIX system. Documents may be produced on either the photo­
typesetter or a on a computer terminal, without changing the input.

The macros provide facilities for paragraphs, sections (optionally with
automatic numbering), page titles, footnotes, equations, tables, two-column
format, and cover pages for papers.

This memo includes, as an appendix, the text of the "Guide to Preparing
Documents with -ms" which contains additional examples of features of
-ms.

This manual is a revision of, and replaces, UTyping Documents on
UNIX," dated November 22, 1974.

November 13, 1978

4-6

Typing Documents on the UNIX System:
Using the - ms Macros with Troff and N roff

M. E. Lesk

Bell Laboratories
Murray Hill, New Jersey 07974

Introduction. This memorandum describes a package of commands to produce papers
using the {,off arid nroff formatting programs on the UNIX system. As with other roff-derived
programs, text is prepared interspersed with formatting commands. However, this package,
which itself is written in {roffcommands, provides higher-level commands than those provided
with the basic troffprogram. The commands available in this package are listed in Appendix A.

Text. Type normally, except that instead of indenting for paragraphs, place a line reading
~~ .PP" before each paragraph. This will produce indenting and extra space.

Alternatively, the command .LP that was used here will produce a left-aligned (block) para­
graph. The paragraph spacing can be changed: see below under HRegisters."

Beginning. For a document with a paper-type cover sheet, the input should start "as f~­
lows:

[optional overall format .RP - see below1
.TL
Title of document (one or more lines)
.AU
Author(s) (may also be several lines)
.AI
Author's institution (s)
.AB
Abstract~ to be placed on the cover sheet of a paper.
Line length is 5/6 of normal~ use .11 here to change .
. AE (abstract end)
text ... (begins with .PP, which see)

To omit some of the standard headings (e.g. no abstract, or no at,lthor's institution) just omit
the corresponding fields and command lines. The word ABSTRACT can be suppressed by writing
".AB no" for ".AB". Several interspersed .AU and .AI lines can be used for multiple authors.
The headings are not compulsory: beginning with a .PP command is perfectly OK and will just
start printing an ordinary paragraph. Warning: You can't just begin a document with a line of
text. Some -ms command must precede any text input. When in doubt, use .LP to get
proper initialization, although any of the commands .PP, .LP, .TL, .SH, .NH is good enough.
Figure 1 shows the legal arrangement of commands at the start of a document.

Cover Sheets and First Pages. The first line of a document signals the general format of
the first page. In particular, if it is ".RP" a cover sheet with title and abstract is prepared. The
default format is useful for scanning drafts.

In general - ms is arranged so that only one form of a document need be stored, contain­
ing all information~ the first command gives the format, and unnecessary items for that format
are ignored.

Warning: don't put extraneous material between the .TL and .AE commands. Processing
of the titling items is special, and other data placed in them may not behave as you expect.
Don't forget that some - ms command must precede any input text.

4-7

Page headings. The - ms macros, by default. will print 1.1 page heading containing a page
number (if greater than I), A default page footer is provided only in nroff, where the date is
used. The user can make minor adjustments to the page headings/footings by redefining the
strings LH. CH. and RH which are the left. center and right portions of the page headings,
respecti vely: and the strings LF:- CF, and RF. which are the left, center and right portions of
the page footer. For more complex formats. the user can redefine the macros PT and BT,
which are invoked respectively at the 'top and bottom of each page. The margins (taken from
registers H M and FM for the top and bottom margin respecti vely) are normally I inch ~ the page
header/footer are in the middle of that space. The user who redefines these macros should be
careful not to change parameters such as point size or font without resetting them to default
values.

Multi-column formats. If you place
the command" .2C'· in your document, the
document will be printed in double column
format beginning at that point. This feature
is not laO useful in computer terminal out­
put. bUl is often desirable on the typesetter.
The command H.IC" will go back to one­
col umn format and also skip to a new page.
The ".2C" command is actually a special
case of the command

.MC [column width [gutter width]]

which makes multiple columns with the
specified column and gutter width: as many
col umns as will fit across the page are used.
Thus triple, quadruple column pages can
be printed. \Vhenever the number of
columns is changed (except going from full
width to some larger number of columns) a
new' page is started.

Headings. To produce a special head­
ing, there are two commands. If you type

.NH
type section heading here
may be several lines

you \I,.'ill get automatically numbered section
headings (1. 2. 3), in boldface. For
example,

.NH
Care and Feeding of Department Heads

produces

1. Care and Feeding of Department Heads

Alternatively,

.SH
Care and Feeding of Directors

will print the heading with no number
added:

Care and Feeding of Directors

Every section heading, of either type,
should be followed by a paragraph beginning
with .PP or .LP, indicating the end of the
heading. Headings may contain more than
one line of text.

The .NH command also supports more
complex numbering schemes. If a' numeri­
cal argument is given, it is taken to be a
"level" number and an appropriate sub­
section number is generated. Larger level
n urn bers indicate deeper sub-sections, as in
this example:

.NH
Erie-Lackawanna
.NH 2
Morris and Essex Division
.NH 3
Gladstone Branch
.~H 3
Montclair Branch
.NH 2
Boonton Line

generates:

2. Erie-Lackawanna

2.1. 1\1orris and Essex Di vision

2.) ,l. Gladstone Branch

2.] .2, 1\1ontclair Branch

2.2, Boonton Line

An explicit ".NH 0" will reset the
numbering of level 1 to one, as here:

.NH 0
Penn Central

1. Penn Central

4-8

Indented paragraphs. (Paragraphs
with hanging numbers, e.g. references.) The
sequence

.IP [1]
Text for first paragraph, typed
normally for as long as you would
like on as many lines as needed.
.IP [2]
Text for second paragraph, ...

produces

[1] Text for first paragraph, typed nor­
mally for as long as you would like on
as many lines as needed.

[2] Text for second paragraph, ...

A series of indented paragraphs may be fol­
lowed by an ordinary paragraph beginning
with .PP or .LP, depending on whether you
wish indenting or not. The command .LP
was used here.

More sophisticated uses of .IP are also
possible. If the label is omitted, for exam­
ple, a plain block indent is produced.

.IP
This material will
just be turned into a
block indent suitable for quotations or
such matter.
.LP

will produce

This material will just be turned into a
block indent suitable for quotations or
such matter.

If a non-standard amount of indenting is
required, it may be specified after the label
(in character positions) and will remain in
effect until the next .PP or .LP. Thus, the
general form of the .IP command contains
two additional fields: the label and the
indenting length. For example,

.IP first: 9
Notice the longer label. requiring larger
indenting for these paragraphs.
.IP second:

. And so forth.
.LP

produces this:

4-9

first: Notice the longer label, reqUlflng
larger indenting for these para-
graphs.

second: And so forth .

It is also possible to produce multi pie nested
indents~ the command .RS indicates that the
next .IP starts from the current indentation
level. Each .RE will eat up one level of
indenting so you should balance . RS and
.RE commands. The .RS command should
be thought of as Hmove right" and the .RE
command as Hmove left". As an example

.IP 1.
Bell Laboratories
.RS
.IP 1.1
Murray Hill
.IP 1.2
Holmdel
.IP 1.3
Whippany
.RS
.IP1.3.1
Madison
.RE
.IP 1.4
Chester
.RE
.LP

will result in

1. Bell Laboratories

1.1 Murray Hill

1.2 Holmdel

1.3 Whippany

1.3.1 Madison

1.4 Chester

All of these variations on .LP leave the right
margin untouched. Sometimes, for pur­
poses such as setting off a quotation, a para­
graph indented on both right and left is
required.

A single paragraph like this is
obtained by preceding it with
.QP. More complicated material
(several paragraphs) should be
bracketed with .QS and .QE.

Emphasis. To get italics (on the typesetter)
or underlining (on the terminal) say

. I
as much text as you want
can be typed here
.R

as was done for These three words. The .R
command restores the normal (usually
Roman) font. If only one word is to be ital­
icized, it may be just given on the line with
the .I command,

.1 word

and in this case no .R is needed to restore
the previous font. Boldface can be pro­
duced by

.B
Text to be set in boldface
goes here
.R

and also will be underlined on the terminal
or line printer. As with .1. a single word can
be placed in boldface by placing it on the
same line as the .B command.

A few size changes can be specified
similarly with the commands .LG (make
larger), .SM (make smaller). and . NL
(return to normal size). The size change is
two points: the commands may be repeated
for increased eflCl'l (here one . NL canceled two
.SM commands).

If actual underlining as opposed to ital­
icizing is required on the typesetter, the
command

.UL word

will underline a word. There is no way to
underline multiple words on the typesetter.

Footnotes. Material placed between
lines with the commands .FS (footnote) and
.FE (footnote end) will be collected,
remem bered, and finally placed at the bot­
tom of the current page·. By default. foot­
notes are 11112th the length of normal text.
but this can be changed using the FL regis­
ter (see below).

Displays and Tables. To prepare
displays of lines, such as tables, in which the
lines should not be re-arranged, enclose
them in the commands .DS and .OE

• Like this.

.DS
table lines, like the
examples here, are placed
"between .DS and .DE
.DE

By default, lines between .DS and .DE are
indented and left-adjusted. You can also
center lines, or retain the left margin. Lines
bracketed by .DS C and .DE commands are
centered (and not re-arranged L lines brack­
eted by .DS Land .DE are left-adjusted, not
indented, and not re-arranged. A plain . OS
is equivalent to .DS L which indents and
left-adjusts. Thus,

whereas

these lines were preceded
by .DS C and followed by

a .DE command:

these lines were preceded
by .DS L and followed by
a .DE command.

Note that .DS C centers each line: there is a
variant .DS B that makes the display into a
left-adjusted block of text, and then centers
that entire block. Normally a display is kept
together, on one page. If you wish to have
a long display which may be split across page
boundaries, use .CD, .LD, or .10 in place of
the commands .DS C, .DS L, or .DS I
respectively. An extra argument to the .DS
I or .DS command is taken as an amount to
indent. Note: it is tempting to assume that
. OS R will right adjust lines, but it doesn't
work.

Boxing words or lines. To draw rec­
tangular boxes around words the command

.BX word

will print Iword I as shown. The boxes will
not be neat' on a terminal, and this should
not be used as a substitute for italics.

Longer pieces of text may be boxed by
enclosing them with .Bl and .B2:

.Bl
text. ..
.B2

as has been done here.

Keeping blocks together. If you wish
to keep a table or other block of lines
together on a page, there are Hkeep -

4-10

release" commands. If a block of lines pre­
ceded by .KS and followed by .KE does not
fit on the remainder of the current page, it
will begin on a new page. Lines bracketed
by .DS and .DE commands are automatically
kept together this way. There is also a
"keep floating" command: if the block to be
kept together is preceded by .KF instead of
. KS and does not fit on the current page, it
will be moved down through the text until
the top of the next page. Thus, no large
blank space will be introduced in the docu­
ment.

Nro.f!1Trojf commands. Among the
useful commands from the basic formatting
programs are the following. They all work
with both typesetter and computer terminal
output:

. bp - begin new page.

. br - "break", stop running text
from line to line.

.sp n - insert n blank lines.

.na - don't adjust right margins.

Date. By default, documents produced
on computer terminals have the date at the
bottom of each page~ documents produced
on the typesetter don't. To force the date,
say ".DA". To force no date, say ·'.NO".

,To lie about the date, say" .OA July 4,
\1776" which puts the specified date at the
bottom of each page. The command

.NO May 8, 1945

in ".RP" format places the specified date on
the cover sheet and nowhere else. Place
this line before the ti tIe.

Signature line. You can obta.in a sig­
nature line by placing the command .SG in
the document. The authors' names will be
output in place of the .SG line. An argu­
ment to .SG is used as a typing identification
line, and placed after the signatures. The
.SG command is ignored in released paper
format.

Registers. Certain of the registers
used by - ms can be altered to change
default settings. They should be ·changed
with .nr commands, as with

. nr PS 9

to make the default point size 9 point. If
the effect is needed immediately, the normal

4-11

{roff command should be used in addition to
changing the number register.

Register Defines Takes Default
effect

PS point size next para. 10
VS line spacing next para. 12 pts
LL line length next para. 6"
LT title length next para. 6"
PO para. spacing next para . 0.3 VS
PI para. indent next para. 5 ens
FL footnote length next FS 11112Ll
CW column width next 2C 7115 LL
GW intercolumn gap next 2C 1115 LL
PO page offset next page 26/27"
HM top margin next page I"
FM bottom margin next page 1"

You may also alter the strings LH, CH, and
RH which are the left, center, and right
headings respectively~ and similarly LF. CF.
and RF which are strings in the page footer.
The page n um ber on output is, taken from
register PN, to permit changing its output
style. For more complicated headers and
footers the macros PT and BT can be
redefined, as explained earlier.

Accents. To simplify typing certain
foreign words, strings representing common
accent marks are de fined. They precede the
letter over which the mark is to appear.
Here are the strings:

Input Output Input Output
\ *'e e *-a a
\ ... ·e e \ *Ce

v
e

*:u u \ *,c C
*Ae e

Use. After your document is prepared
and stored on a file, you can print it on a
terminal with the command*

nroff -ms/ile

and you can print it on the typesetter with
the command

trofl - ms/ile

(many options are possible). In each case.
if your document is stored in several files,
just list all the filenames where we have
used" file". If equations or tables are used,
eqn and/or fbi must be in voked as prepro­
cessors .

• If ,2e was used. pipe the IIfolloutput through
col: make the first line of the input ",pi
lusr/btn/col."

References and further study. If you
have to do Greek or mathematics, see. eqn
[1 J for equation setting. To aid eqn users, .
- ms provides definitions of .EQ and .EN
which normally center the equation and set
it off slightly. An argument on .EQ is taken
to be an equation number and placed in the
right margin near the equation. In addition,
there are three special arguments to EQ: the
letters C, 1, and L indicate centered
(default), indented, and left adjusted equa­
tions, respectively. If there is both a format
argument and an equation number, give the
format argument first, as in

.EQ L 0.3a)

for a left-adjusted equation numbered
0.3a) .

Similarly, the macros .IS and .TE are
defined to separate tables (see [2]) from text
with a little space. A very long table with a
heading may be broken across pages by
beginning it with .IS H instead of .IS, and
placing the line .TH in the table data after
the heading. If the table has no heading
repeated from page to page, just use the
ordinary .TS and .TE macros.

To learn more about troffsee [3] for a
general introduction, and [4 J for the full
details (experts only). Information on
related UNIX commands is in {5]. For jobs
that do not seem well-adapted to -ms, con­
sider other macro packages. It is often far
easier to write a specific macro pac:kages for
such tasks as imitating particular journals
than to try to adapt - ms.

Acknowledgment. Many thanks are
due to Brian Kernighan for his help in the
design and implementation of this package,
and for his assistance in preparing this
manual.

References

[11 B. W. Kernighan and L. L. Cherry,
TypeseTting Mathematics - Users Guide
(2nd edilion). Bell Laboratories Com­
puting Science Report no. 17.

[2] M. E. Lesk, Tbl - A Program to For ...
mat Tables. Bell Laboratories Comput­
ing Science Report no. 45.

4-12

[3] B. V(Kernighan, A TrofJ Turonal. Bell
Laboratories, 1976.

(4] 1. F. Ossanna, NrofflTrofJ Reference
Manual, Bell Laboratories Computing
Science Report no. 51. -

[5] K. Thompson and D. M. Ritchie,
UNIX Programmer's Manual, Bell
Laboratories, 1978.

Appendix A
List of Commands

IC Return to single column format. LG Increase type size.
2C Start double column format. LP Left aligned block paragraph.
AB Begin abstract.
AE End abstract.
AI Specify author's institution.
AU Specify author. ND Change or cancel date.
B Begin boldface. NH Specify numbered heading.
DA Provide the date on each page. NL Return to normal type size.
DE End display. PP Begin paragraph.
OS Start display (also CD, LO, 10),
EN End equation. R Return to reguler font (usually Roman).
EQ Begin equation. RE End one level of relative indenting.
FE End footnote. RP Use released paper format.
FS Begin footnote. RS Relative indent increased one level.

SG Insert signature line.
Begin italics. SH Specify section heading.

SM Change to smaller type size.
IP Begin indented paragraph. TL Specify title.
KE Release keep.
KF Begin floating keep. UL Underline one word.
KS Start keep.

Register Names

The following register names are used by - ms internally. Independent use of these
names in one's own macros may produce incorrect output. Note that no lower case letters are
used in any - ms internal name.

Number registers used in - ms
OW GW HM IQ LL NA OJ PO T. TV

#T EF HI HT IR LT NC PO PQ TB VS
IT FL H3 IK KI MM NF PF PX TO YE
AV FM H4 1M LI MN NS PI RO TN YY
CW FP H5 IP LE MO 01 PN ST TQ ZN

String registers used in - ms
A5 CB OW EZ I KF MR RI RT TL
AB CC OY FA II KQ NO R2 SO TM
AE CO El FE 12 KS NH R3 SI TQ
AI CF E2 FJ 13 LB NL R4 S2 TS
AU CH E3 FK 14 LD NP R5 SG TT
B CM E4 FN 15 LG 00 RC SH UL

IC BG CS E5 FO ID LP OK RE SM WB
2C BT CT EE FQ IE ME PP RF SN WH
Al C 0 EL FS 1M MF PT RH SY WT
A2 CI DA EM FV IP MH PY RP TA XD
A3 C2 DE EN FY IZ MN QF RQ TE XF
A4 CA DS EQ HO KE MO R RS TH XK

4-13


~~~ 
1 
AU 

1 
AI 

I 
\ I: .. 
AB 

I 
AE 
I 
1-.. 

NH,SH 

~~'-----------J 

PP .. LP 

J 
text ... 

Figure 1 

4-14 





A Guide to Preparing 
Documents with -ms 

M. E. Lesk 

Bell Laboratories August 1978 

This guide gives some simple examples of do­
cument preparation on Bell Labs computers, 
emphasizing the use of the -ms macro pack­
age. It enormously abbreviates information in 
1. Typing Documents on UNIX and GCOS, by 

M. E. Lesk: 
2. Typesetting Mathematics - User's Guide, 

by B. W. Kernighan and L. L. Cherry: and 
3. Tbl - A Program to Format Tables, by M. 

E. Lesk. 
These memos are all included in the UNIX 
Programmer's Manual, Volume 2. The new 
user should also have A TUlOrial Introduction to 
the UNIX Text Editor, by B. W. Kernighan. 

For more detailed information, read Advanced 
Editing on UNIX and A TrofJ TulOrial, by B. W. 
Kernighan, and (for experts) NrofJlTrofJ Refer­
ence Manual by J. F. Ossanna. I nformation on 
related commands is found (for UNIX users) in 
UNIX for Beginners by B. W. Kernighan "nd 
the UNIX Programmer's Manual by K. Thomp­
son and D. M. Ritchie. 

Contents 

A TM .... 
A released paper ..... . 
An internal memo, and headings 
Lists. displays, and footnotes .. 
Indents, keeps, and double column 
Equations and registers 
Tables and usage ........... . 

2 
3 
4 
5 
6 
7 
8 

Throughout the examples, input is shown in 
th is Helvetica sa ns serif font 

while the resulting output is shown in 
this Times Roman font. 

UNIX Document no. 1111 

Commands for a TM 

.TM 1978-5b3 99999 99999-11 

.ND April 1, 1976 

.TL 
The Role of the Allen Wrench in Modern 
Electronics 
.AU "MH 2G-111" 2345 
J. Q. Pencilpusher 
.AU "MH 1 K-222" 5432 
X. Y. Hardwired 
.AI 
.MH 
.OK 
Tools 
Design 
.AS 
This abstract should be short enough to 
fit on a single page cover sheet. 
It must attract the reader into sending for 
the complete memorandum. 
.AE 
.CS 10 2 12 5 6 7 
.NH 
Introduction. 
.PP 
Now the first paragraph of actual text ... 

Last line of text. 
.SG MH-1234-JQP/XYH-unix 
.NH 
References ... 

Commands nOI needed in a particular formal are ig­
nored. 

@ Bell Laboratories Cover Sheet for TM 

TIl/I IIIlnrmaflol1 1\ 1m ('mli/oIN'1 of 8('/1 Laborarortel. (GEl 13 "-J) 

Tille- The Role of the Allen Wrench 
in Modern Electronics 

Dale-April 1, 1976 : 
I 

Olhcr Keyv .. ord~- Tools 
Design 

TM- 1978-5b3 

I AUlhor Localion Exl. Charging Case- 99999 
: J. Q. Pencilpusher MH 2G-111 2345 Filing C<lse- 99999a 
! X. Y. Hardwired MH 1K-222 5432 

i 

4-16. 

ABSTRACT 

ThIS abstract should be short enough 10 

fit on a smgle page cover sheet. It must 
attract the reader into sendmg for the com­
plete memorandum. 

Pages Text 10 Other 2 TOlal 12 

No. Figures 5 No. Tables 6 No Refs. 7 

SEE REVERSE SIDE FOR DISTRIBUTION LIST 



A Released Paper with Mathematics 

.EO 
delim $$ 
.EN 
.RP 

.. , (as for a T\-O 

.CS 10 2 12 5 6 7 

.NH 
Introduction 
.PP 
The solution to the torque handle equation 
.EO (1) . 
sum from 0 to inf F ( x sub i ) == G ( x ) 
. EN 
is found with the transformation $ x == rho over 
theta $ where $ rho == G prime (x) $ and Stheta$ 
is derived ... 

The Role of the Allen Wrench 
in Modern Electronics 

1. Q. Pel/cr!pusher 

X. r. Hardwired 

Bell laboratories 
\1urray Hill. New Jersey 07974 

ABSTRACT 

This abstract should be short eno~gh to fil on a 
single page cover sheet. It must altracl the 
reader into sending for the complete memoran­
dum. 

. i April I. 1976 
i 

I 

The Role of the Allen Wrench 
in Modern Electronics 

1. Q. PellClI/lIIsher 

X. Y. Hardwired 

Bell Laboratories 
Murray Hill. New Jersey 07974 

1. Introduction 
The ,)olution to the torque handle equation 

"" 
LFC'(,)-G(x) (I) 

() 

is round with the transformation x-t where p-G'(x) and 

n is derived rrom well-known princIples. 

4-17 

An Internal Memorandum 

.IM 

.ND January 24, 1956 

.TL 
The 1956 Consent Decree 
.AU 
Able, Baker & 
Charley, Attys . 
. PP 
Plaintiff, United States of America, having filed 
its complaint herein on January 14, 1949; the 
defendants having appeared and filed their 
answer to such complaint denying the 
substantive allegations thereof; and the parties, 
by their attorneys, ... 

@ 
Bell Laboratories 

SuhJect: The 1956 Consent Decree J~lle January 24, 1956 

from: A ble. Baker & 
. Charley. Attys. 

Plaintiff. United States of America. having filed its com­
plaint herein on January 14. 1949: the defendants having 
appeared and flied their answer to '5uch complaint denYing 
the substantive allegations thereof: and the parties. by their 
attorneys. having severally consented to the entry of this 
Final Judgment without trial or adjudication of any issues 
of fact or law herein and without this Final Judgment con­
stituting any evidence or admi')sion by any party in respect 
of any such issues: 

Now. therefore before any testimony has been taken 
herein. and without trial or adjudic:llion of ,Iny issue of fact 
or law herein. and upon the consent of all parties hereto. it 
is hereby 

Ordered. ddjudged <tnd decreed as rollows: 

I. [S herman Act] 
This Court has juric;diction of the subject matter herein 

and of all the parties hereto. The complaint states a claim 
upon which relief may be granted against each of the 
defendants under Sections I. 2 and 3 of the Act or 
Congress of July 2. 1890. entitled "An act to protect trade 
and commerce against unlawful restraints and monopo­
lies." commonly known as Ihe Sherman Act. as amended. 

II. [Definitions) 
For the purposes of this Final Judgment: 

(a) "Western" "ihall mean the defendant Western Elec­
tric Company. Incorporated. 

Other formats rossible hrecify before .TU are: .MR 
("memo for record") .. MF ( .. memo for tile") .. EG 
("engineer's notes") and .TR (Comruting Science 
Tech. Repon), 

.NH 
Introduction. -
.PP 
text text text 

1. Introduction 
text text text 

Headings 

.SH 
Appendix I 
.PP 
text text text 

Appendix I 
text text text 



A Simple List 

.IP 1. 
J. Pencilpusher and X. Hardwired. 
• 1 

A New Kind of Set Screw. 
.R 
Proc. IEEE 
.B 75 
(1976). 23-255 . 
. IP 2. 
H. Nails and R. Irons. 
.1 
Fasteners for Printed Circuit Boards. 
. R 
Proc. ASME 
. B 23 
(1974). 23-24. 
.LP (terminates list) 

1. J. Pencilpusher and X. Hardwired, A Nel\' Kind 
01 S('{ Screk'. Proc. IEEE 75 (1976), 23-255. 

2. H. Nails and R. Irons, Fasteners lor Prlllled Clr­
elllf Boards. Proc. ASME 23 (1974). 23-24. 

Displays 

text text text text text text 
.DS 
and now 
for something 
completely different 
.DE 
text text text text text text 

hoboken harrison newark roseville avenue grove 
street east orange brick church orange highland ave­
nue mountain station south orange maplewood 
millburn short hills summit new providence 

and now 
for something 
completely different 

murray hill berkeley heights gillette stirling milling­
ton lyons basking ridge bernardsville far hills 
peapack gladstone 

Options: .DS L: left-adjust: .DS C: line-by-line 
center: .DS B: make block, then center. 

Footnotes 

Among the most important occupants 
of the workbench are the long-nosed pliers. 
Without these basic tools· 
.FS 
• As first shown by Tiger & Leopard 
(1975). 
.FE 
few assemblies could be completed. They may 
lack the popular appeal of the sledgehammer 

A fnong the most important occupants of the work­
bench are the long-nosed pliers, Without these basic 
tools· fev. assem blies cou ld be completed They 
may lack the popular appeal of the sledgehammer 

• As first shown by Tiger & Leopard (1975). 

4-18 

Multiple Indents 

This is ordinary text to point out 
the margins of the page . 
. IP 1 . 
First level item 
.RS 
.IP a) 
Second level. 
.IP b) 
Continued here with another second 
level item. but somewhat longer . 
. RE 
.IP 2 . 
Return to previous value of the 
indenting at this pOint. 
.IP 3 . 
Another 
line. 

This is ordinary text to point out the margins of the 
page. 
1. First level item 

a) Second level. 
b) Continued here With another second level 

item, but somewhat longer. 
2. Return to previous value of the indenllng at thiS 

point. 
3. A nother line. 

Keeps 

Lines bracketed b~ the following commands are kept 
together. and will appear entirely on one pag.e: 

.KS not moved .KF may float 

.KE through text .KE in text 

Double Column 

.TL 
The Declaration of Independence 
.2C 
.PP 
When in the course of human events, it becomes 
necessary for one people to dissolve the 
political bonds which have connected them with 
another, andto assume among the powers of the 
earth the separate and equal station to which 
the laws of Nature and of Nature's God entitle 
them, a decent respec~ to the opinions of 

The Declaration of Independence 

When in the course of 
human events. it be­
comes necessary for one 
people to dissolve the 
political bonds which 
have connected them 
with another, and to as­
sume among the powers 
of the earth the separate 
and equal station to 
which the laws of Nature 
and of Nature's God en,­
title them, a decent 
respect to the opinions 
of mankind requires that 

they should declare the 
causes which impel them 
to the separation. 

We hold these truths 
to be self-evident. that 
all men are created 
equal. that they are en­
dowed by their creator 
with certain unalienable 
TIghts, that among these 
are life, liberty, and the 
pursuit of happiness. 
That to secure these 
rights, governments are 
instituted among men. 



Equations 

A disPlayed equation is marked 
with an equation number at the right margin 
by adding an argument to the EQ line: 
EO (1.3) 

x sup 2 over a sup 2 --- sqrt (p z sup 2 +qz~rl 
.EN 

:\ dispiayed equation is marked with an equation 
number dt the right margin by adding an argument 
to the EO line: , 

.'( - /' . . -, :01" I':-T'q: ..... , ( I.J) 
a-

.EQ I (2.2a) 
bold V bar sub o1U - - -left [ pile (a above b above 
c I right J + left [ matrix ( col I A(11) above. 
above. I col r. above. above .1 col Labove. 
above A(33) : I right J cdot left ( pile I alpha 
above beta above gamma I right J 
.EN 

- ,. [aj' [A (11). . j. [aj v. b..... . . . {3 
c: . . A ()J) Y 

( 2.2a) 

.EO L 
F hat ( chi) - mark - - I del V i sup 2 
.EN 
.EO L 
lineup =- [left ( [partial vI over [partial xl right) 
I sup 2 -+- (left ( [partial vI over [partial y I right 
) I sup 2 ------ lalT bda - > inf 
.EN 

FI'() -1V'V!2 

S a dot S. S b dotdot$. $ xi tilde times y vec$: 

(with delim 55 on. see panel)), 

See also the equations in [he second [able. panel 8. 

Some Registers You Can Change 

Line length 
.nr LL 7i 

Title length 
.nr LT 7i 

Poin t .;;ize 
.nr PS 9 

Vertical )pacing 
nr VS 11 

Column width 
nr CW )i 

Intercolumn .;;pacing 
.nr GW .5i 

\1argins - head ,Ind foot 
.nr HM .75i 
.nr F:v1 .75i 

P:lrJgraph indent 
.nr PI 2n 

Paragraph spacing 
.nr PO 0 

Page offset 
.nr PO 0.5i 

Page heading 
.ds CH Appendix 

(center> 
.ds RH 7-25-76 

( right) 
.ds LH Private 

( left) 

Page footer 
ds CF Draft 
.ds LF 
.ds RF similar 

Page numbers 
.nr'Yn3 

4-19 

Tables 

\ .~ Indicates d tab) .TS 
allbox; 
c s s 
c c C 
n n n. 
AT& T Common Stock 
Year (t Price (t Dividend 
1971ll41-S4~$2.60 
2-:~41·541.!>2.70 

I .-\ T &T Common StOck! 

i Year: Price i Dividend I 
11971 ! ... 1-54 I S2.60 

/ 2: -l1·54 I 2.70 

1 3'-l6.55/ 2.87 

3 G) 46·SS CO 2.87 
4 G) 40·53 (j) 3.24 

r -l 40·53 I 3.24 

I 5-l5·521 3AO 
I 6 51-591 .95-5 (!> 4S·S2 (j) 3.40 

6(j)51·S9G).9S- • (first quarter only) 

.TE 
• (first quarter only) 

The meanings of the key-letter) describing the align­
ment of each entry Jre: 

C ~enter n numerical 
right-adjust a 'iubcolumn 
left-ddjust s spanned 

The global table options Jre center. expand. box. 
doublebox. a/lbox. tab (x) Jnd linesize (n). 

.TS (with delim 5S on. see panel 3) 
doublebox. center; 
c c 
II. 
Name Ij) Oefinition 
.sp 
Gamma 11) SGAMMA (z) == int sub 0 sup int \ 

t sup (z·11 e sup -t dt$ 

/ 

Sine f!) $sin (x) =- 1 over 2i ( e sup ix - e sup -ix )$ 
Error:f) S roman ert (z) :oz 2 over sqrt pi \ 

int sub 0 sup z e sup [.t sup 21 dt$ 
Sessel 1')$ J sub 0 (z) - 1 over pi '. 

int sub 0 sup pi cos ( z sin theta) d theta S 
Zeta I!) $ zeta (s) = \ 

sum from k = 1 to inf k sup -s ._( Re·s > 1)5 
.TE 

I Name 

i I Gamma 

: Sine 

I Error 

I Bessel 
I 

I Zeta 

Definition 

Usage 

DOl.:umen[s With Just text: 
trolf oms ti les 

With equations only: 
eqn files Ilroff oms 

With tables only: 
tbl tiles i troff ·ms 

With both tables and equations: 
tbl nlesleqnltrotf oms 

The above generales ST.-\RE output on Geos: replace 
-st with -ph t'l)r typesetter output. 



Introduction 

NROFF/TROFF ·User's Manual 

Joseph F. Ossanna 

Bell Laboratories 
Murray Hill, New Jersey 07974 

NROFF and TROFF are text processors under the PDP-II UNIX Time-Sharing System) that format text 
for typewriter-like terminals and for a Graphic Systems phototypesetter, respectively. They accept lines 
of text interspersed with lines of format control information and format the text into a printable, 
paginated document having a user-designed style. NROFF and TROFF offer unusual freedom in docu­
ment styling, including: arbitrary style headers and footers~ arbitrary style footnotes~ multiple automatic 
sequence numbering for paragraphs, sections, etc~ multiple column output~ dynamic font and point-size 
controL arbitrary horizontal and vertical local motions at any point~ and a family of automatic overstrik­
ing, bracket construction, and line drawing functions. 

NROFF and TROFF are highly compatible with each other and it is almost always possible to prepare 
input acceptable to both. Conditional input is provided that enables the user to embed input expressly 
destined for either program. NROFF can prepare output directly for a variety of terminal types and is 
capable of utilizing the full resolution of each terminal. 

Usage 

The general form of invoking NRQFF (or TROFF) at UNIX command level is 

n roff options files (or troff options files) 

where options represents any of a number of option arguments and files represents the list of files con­
taining the document to be formatted. An argument consisting of a single minus (-) is taken to be a 
file name corresponding to the standard input. If no file names are given input is taken from the stan­
dard input. The options, which may appear in any order so long as they appear before the files, are: 

Option Effect 

-olist Print only pages whose page numbers appear in list, which consists of comma­
separated numbers and number ranges. A number range has the form N-M and 
means pages N through M; a initial - N means from the beginning to page N; and 
a final N - means from N to the .end .. 

-nN Number first generated page N. 

-sN Stop every N pages. NROFF will halt prior to every N pages (default N-= 1) to 
allow paper loading or changing, and will resume upon receipt of a newline. 
TROFF will stop the phototypesetter every N pages, produce a trailer to allow 
changing cassettes, and will resume after the phototypesetter START button is 
pressed. 

- m name Prepends the macro file /usr/lib/tmac. name to the input files. 

- raN Register a. (one-character) is set to N. 

- i Read standard input after the input files are exhausted. 

-q Invoke the simultaneous input-output mode of the rd request. 

4-20 



NROFF Only 

-T name Specifies the name of the output terminal type. Currently defined names are 37 
for the (default) Model 37 Teletype~, tn300 fW- the GE TermiNet 300 (or any ter­
minal without half-line capabilities), 300S for the DASI-300S, 300 for the DASI-
300, and 450 for the DASI-450 (Diablo Hyterm). 

- e Produce equally-spaced words in adjusted lines, using full terminal resolution. 

TROFF Only 

- t Direct output to the standard output instead of the phototypesetter. 

- f Refrain from feeding out paper and stopping phototypesetter at the end of the run. 

- w Wait until phototypesetter is available, if currently busy. 

- b TROFF will report whether the phototypesetter is busy or available. No text pro-
cessing is done. 

- a Send a printable (ASCII) approximation of the results to the standard output. 

- pN Print all characters in point size N while retaining all prescribed spacings and 
motions, to reduce phototypesetter elasped time, 

-g Prepare output for the Murray Hill Computation Center phototypesetter and direct 
it to the standard output. 

Each option is invoked as a separate argument; for example, 

nrotf -04,8-}0 -T 300S -mabc filel file2 

requests formatting of pages 4, 8, 9, and 10 of a document contained in the files named file] and file2, 
specifies the output terminal as a DASI-.300S, and invokes the macro package abc. 

Various pre- and post-processors are available for use with NROFF and TROFF. These include -the 
equation preprocessors NEQN and EQN2 (for NROFF and· TROFF respectively), and the table­
construction preprocessor TBl3. A rev-erse-line postprocessor COL 4 is available for multiple-column 
NROFF output on terminals without reverse-line ability~ COL expects the Model 37 Teletype escape 
sequences that NROFF produces by default. TK4 is a 37 Teletype simulator postprocessor for printing 
NROFF output on a Tektronix 4014. TCAT4 is phototypesetter-simulator postprocessor for TROFF that 
produces an approximation of phototypesetter output on a Tektronix 4014. For example, in 

lbl' files I eqn I troft' - t options I teat 

the first I indicates the piping of TBl's output to EQN's input; the second the piping of EQN's output to 
TROFF's input~ and the third indicates the piping of TROFF's output to TCAT. GCAT4 can be used to 
send TROFF (-g) output to the Murray Hill Computation Center. 

The remainder of this manual consists of: a Summary and Index~ a Reference Manual keyed to the 
index~ and a set of Tutorial Examples. Another tutorial is [5]. 

Joseph F. Ossanna 

References 

[1 J K. Thompson, D. M. Ritchie, UNIX Programmer's Manual, Sixth Edition (May 1975>-

[2J B. W. Kernighan, L. L. Cherry, Typesetting Mathematics - User's Guide (Second Edition), Bell Laboratories 
internal memorandum. 

[3] M. E. Lesk, Tbl - A Program to Format Tables, Bell laboratories internal memorandum. 

[4] Internal on-line documentation, on UNIX. 

[5J B. W. Kernighan, A TROFF Tutorial, Bell Laboratories internal memorandum. 

4-21 



SUMMARY AND INDEX 

/fNo Request 
Form 

Initial 
Value- Argument Notes# Explanation 

1. General Explanation 

2. Font and Character Size Control 

.p5 ±N 

.S5 N 

.cs FNM 

.bd F N 

.bd S F N 

.ft F 

.fp N F 

10 point 
12/36 em 
off 
off 
off 
Roman 
R,I,B,S 

3. Page Control 

.pl ± N 11 in 

.bp ±N N=1 

.pn ±N N=1 

.po ± N O~ 26/27 in 

.ne N 

.mk R 

.rt ±N 
none 
none 

previous 
ignored 

previous 
ignored 

11 in 

ignored 
previous 
N=1 V 
internal 
internal 

E 
E 
P 
p 

P 
E 

v 
B;,v 

v 
D,v 
D 
D,v 

Point size~ also \5 ± N.t 
Space-character size set to N/36 em. t 
Constant character space (width) mode (font F). t 
Embolden font F by N-1 units. t 
Embolden Special Font when current font is Ft 
Change to font F'" x, xx, or 1-4. Also \fx, \f(xx, \f N. 
Font named F mounted on physical position 1 ~ N~ 4. 

Page length. 
Eject current page~ next page number N. 
Next page number N. 
Page offset. 
Need N vertical space (V - vertical spacing). 
Mark current vertical place in register R. 
Return (upward only) to marked vertical place. 

4. Text Filling, Adjusting, and Centering 

. br B Break . 

. fi fill 

.nf fiJI 

.ad c adj,both adjust 

.na adjust 

.ce N off N=l 

5. Vertical Spacing 

. vs N· 1/6inJ 2pts previous 

.Is N N= 1 previous 

.sp N N=l V 

. sv N N=1 V 

. os 

.ns 

.rs 
space 

6. Line Length and Indenting 

. 11 ± N 6.S in previous 

.in ± N N=O previous 

. ti ± N ignored 

B,E 
B,E 
E 
E 
B,E 

E,p 
E 
B,v 
v 

D 
D 

Fill output lines . 
No filling or adjusting of output lines. 
Adjust output lines with mode c. 
No output line adjusting. 
Center following N input text lines. 

Vertical base line spacing ( V) . 

Output N-1 Vs after each text output line. 
Space vertical distance N in either direction. 
Save vertical distance N . 
Output saved vertical distance . 
Turn no-space mode on. 
Restore spacing~ turn no~space mode off. 

E,m Line length . 
B,E,m Indent. 
B,E,m Temporary indent. 

7. Macros, Strings, Diversion, and Position Traps 

.de xx yy .xv-=.. Define or redefine macro xx; end at call of yy. 

.am xx yy .yy=.. Append to a macro, 

.ds xx string - ignored Define a string xx containing string . 

. as xx string - ignored Append string to string xx, 

·Values separated by";" are for NROFF and TROFF respectively. 

#Notes are explained at the end of this Summary and Index 

tNo effect in NROFF. 

fThe use of" • " as control character (instead of ",") suppresses the break function. 

4-22 



/fNo R.equest 
Form 

Initial 
Value Argument Notes Explanation 

.rm :ex 

.rn :ex yy 

.di xx 

.da xx 

. wh N xx 

.ch xx N 

.dt N xx 

.it N xx 

.em xx none 

8. Number Registers 

.nr R ±N ll1 

.af R e 

. rr R 
arabic 

ignored 
ignored 
end 
end 

off 
off 
none 

9. Tabs, Leaders, and Fields 

.ta Nt ... O.8~ O.Sin none 

.tc e none none 

.Ic e none 

. fc a b off off 

D 
D 
v 
v 
D,v 
E 

u 

E,m 
E 
E 

R..!movc request. macro, o~ string. 
Rename request, macro, or string xx to yy. 
Divert output to macro xx. 
Divert and append to :ex. 
Set location trap~ negative is w.r.t. page bottom . 
Change trap location. 
Set a diversion trap. . 
Set an input-line count trap. 
End macro is :ex. 

Define and set number register R~ auto-increment by M 
Assign format to register R (c=l, i, I, a, A). 
Remove register R . 

Tab settings: left type, unless t =R (right), C (centered). 
Tab repetition character. 
Leader repetition character. 
Set field delimiter a and pad character b . 

10. Input and Output Conventions and Character Translations 

. ec c \ 

.eo on 

. lg N -; on 

.ulN off 

.cu N off 

. uf F Italic 

. cc e 

. c2 c 

\ 

on 
N=l 
N=-I 
Italic 

Set escape character . 
Turn off escape character mechanism. 
Ligature mode on if N>O . 

E Underline (italicize in TROFF) N input lines. 
E Continuous underline in NROFF; like ul in TROFF. 

Underline font set to F (to be switched to by ul) . 
E Set control character to c . 
E Set nobreak control character to e . 

.tr abed.... none 0 Translate a to b. etc. on output. 

11. Local Horizontal and Vertical Motions, and the Width Function 

12. Overstrike, Bracket, Line-drawing, and Zero-width Functions 

13. Hyphenation . 

. nh hyphenate E 

. hy N hyphenate hyphenate E 

. hc c \% \% E 

. hw word1... ignored 

14. Three Part Titles . 

. tl 'left' center' right' 

.pc e % 

. It ± N 6.5 in 
off 
previous 

15. Output Line Numbering . 

. nm ± N M S I off 

.nn N N=l 

16. Conditional Acceptance of Input 

.if e anything 

E,m 

E 
E 

No hyphenation . 
Hyphenate; N = mode . 
Hyphenation indicator character c. 
Exception words . 

Three part ti tie. 
Page number character. 
Length of title . 

Number mode on or off, set parameters. 
0.0 not number next N lines. 

If condition c true, accept anything as input, 
for multi-line use \(£lnything\}. 

4-23 



/fNo Request 
Form 

Initial 
Value Argument Notes Explanation 

.if ! c anything 

. if N anything 

. if ! N anything 

.if 'string1' string2' anything 

.if ! 'string]' string2' anything 

. ie c anything 

. el anything 

17. Environment Switching. 

.ev N N=O previous 

u 
u 

u 

18. Insertions from the Standard Input 

. rd prompt prompt --BEL-

. ex 

19. Input/Output File Switching 

.so filename 

. nx filename 

. pi program 

20. Miscellaneous 

.mc eN 

end-of-file 

E,m 

If condition c false, accept anything . 
If expression N > 0, accept anything . 
If expression N ~. 0, accept anything . 
If string 1 identical to string2, accept anything. 
If string 1 not identical to string2, accept anything. 
Ifportion of if-else~ all above forms (like if) . 
Else portion of if-else . 

Environment switched (push down). 

Read insertion . 
Exit from NROFF/TROFF . 

Switch source file (push down). 
Next file . 
Pipe ou tpu t to program (NROFF only) . 

Set margin character c and separation N. 
.tm string 
. ig yy 

off 
newline 
.yy== .. 
all 

Print string on terminal (UNIX standard message output). 
Ignore till call of yy . 

.pm t Print macro names and sizes~ 

.f] B 
if t present, print only total of sizes. 
Flush output buffer. 

21. Output and Error Messages 

Notes-

B Request normally causes a break. 
D Mode or relevant parameters associated with current diversion level. 
E Relevant parameters are a part of the current environment. 
0 Must stay in effect until logical output. 
p Mode must be still or again in effect at the time of physical output. 

v,p,m,u Default scale indicator~ if not specified, scale indicators are ignored. 

Alphabetical Request and Section Number Cross Reference 

ad 4 ee 10 ds 7 fe 9 ie 16 II 6 nh 13 pi 19 rn '7 
af 8 ee 4 dl 7 fi 4 if 16 Is 5 nm 15 pi 3 rr 8 
am 7 ch 7 ec 10 n 20 ig 20 It 14 nn 15 pm 20 rs 5 
as 7 cs 2 el 16 fp 2 in 6 me 20 nr 8 pn 3 n 3 
bd 2 cu 10 em 7 fl 2 it 7 mk 3 ns 5 po 3 so 19 
bp 3 da 7 eo 10 he 13 Ie 9 na 4 nx 19 ps 2 sp 5 
br 4 de 7 ev 17 hw 13 Ig 10 ne 3 os 5 rd 18 ss 2 
c2 10 di 7 ex 18 hy 13 Ii 10 nf 4 pc 14 rm 7 sv 5 

4-24 

la 9 vs 5 
Ie 9 wh 7 
Ii 6 
II 14 
1m 20 
tr 10 
uf 10 
ul 10 



Escape Sequences for Characters, Indicators, and Functions 

Section Escape 
Reference Sequence 

10.1 \ \ 
10.1 \e 

2.1 \' 
2.1 \. 
2.1 \-
7 \. 

11.1 \(space) 
11.1 \0 
11.1 \1 
11.1 \A 
4.1 \& 

10.6 \! 
10.7 \" 
7.3 \$N 

13 \% 
2.1 \(xx 
7 . 1 \ • x, \. (xx 
9.1 \a 

12.3 \b' abc .. : 
4.2 \c 

11.1 \d 
2.2 \fx,\((xx,\fN 

11.1 \h' N' 
11.3 \kx 
12.4 \l'Nc' 
12.4 \L' Nc' 
8 \nx,\n(xx 

12.1 \o'abc .. : 
4.1 \p 

11.1 \r 
2.3 \sN, \s ± N 
9.1 \t 

11.1 \u 
11.1 \v'N' 
11.2 \ w' string' 
5.2 \x' N' 

12.2 \zc 
16 \{ 
16 \} 
10.7 \ (newline) 

\X 

Meaning 

\ (to prevent or delay the interpretation of \) 
Prin table version of the current escape character. 
, (acute accent) ~ equivalent to \ (aa 
, (grave accent) ~ equivalent to \ (ga 
- Minus sign in the current font 
Period (dot) (see de) 
Unpaddable space-size space character 
Digit width space 
1/6 em narrow space character (zero width in NROFF) 
1/12 em half-narrow space character (zero width in NROFF) 
Non-printing, zero width character 
Transparent line indicator 
Beginning of comment 
Interpolate argument 1 ~ N~ 9 
Default optional hyphenation character 
Character named xx 
Interpolate string x or xx 
Non-interpreted leader character 
Bracket building function 
Interrupt text processing 
Forward (down) 1/2 em vertical motion 0/2 line in NROFF) 
Change to font named x or xx, or position N 
Local horizont.al motion~ move right N (negative left) 
Mark horizontal input place in register x 
Horizontal line drawing function (optionally with c) 
Vertical line drawing function (optionally with c) 
Interpolate number register x or xx 
Overstrike characters a, b, c, ... 
Break and spread, output line 
Reverse 1 em vertical motion (reverse line in NROFF) 
Point-size change function 
Non-interpreted horizontal tab 
Reverse (up) 1/2 em vertical motion 0/2 line in NROFF) 
Local vertical motion~ move down N (negative up) 
Interpolate width of string 
Extra line-space function (negative be/ore, positive after) 
Print c with zero width (without spacing) 
Begin conditional input 
End conditional input 
Concealed (ignored) newline 
X, any character not listed above 

The escape sequences \\, \., \", \$, \., \a, \n, \t, and \(newline) are interpreted in copy mode (§7.2). 

4-25 



Predefined General Number Registers 

Section Register 
Reference Name 

3 % 
11.2 ct 
7.4 dl 
7.4 dn 

dw 
dy 

11.3 hp 
15 In 

mo 
4.1 nl 

11.2 sb 
11.2 st 

yr 

Description 

Current page number. 
Character type (set by width function). 
Width (maximum) of last completed diversion. 
Height (vertical size) of last completed diversion. 
Current day of the week 0-7). 
Current day of the month 0-31). 
Current horizontal place on input line. 
Output line number. 
Current month 0-12). 
Vertical position of last printed text base-line. 
Depth of string below base line (generated by width function). 
Height of string above base line (generated by width function). 

. Last two digits of current year. 

Predefined Read-Only Number Registers 

Section Register 
Reference Name 

7.3 .$ 
. A 

11.1 . H 
. T 

11.1 . V 
5.2 .a 

. c 
7.4 . d 
2.2 . f 
4 . h 
6 .i 
6 .I 
4 .n 
3 .0 

3 .p 
2.3 .s 
7.5 .t 
4.1 .u 
5.1 .V 

11.2 .W 

.x 

.y 
7.4 .Z 

Description 

Number of arguments available at the current macro level. 
Set to 1 in TROFF, if -a option used~ always 1 in NROFF . 
A vailable horizontal resolution in basic units . 
Set to lin NROFF, if - T option used~ always 0 in TROFF . 
A vailable vertical resolution in basic units . 
Post-line extra line-space most recently utilized using \x' N'. 
Number of lines read from current input file . 
Current vertical place in current diversion~ equal to nl, if no diversion . 
Current font as physical quadrant (1-4) . 
Text base-line high-water mark on current page or diversion . 
Current indent. 
Current line length. 
Length of text portion on previous output line. 
Current page offset. 
Current page length. 
Current point size. 
Distance to the next trap. 
Equal to 1 in fill mode and 0 in nofill mode. 
Current vertical line spacing. 
Width of previous character. 
Reserved version-dependent register. 
Reserved version-dependent register. 
Name of current diversion. 

4-26. 



REFERENCE MANUAL 

1. General Explanstion 

1.1. Form of input. Input consists of text lines, which are destined to be printed, interspersed with control 
lines, which set parameters or otherwise control subsequent processing. Control lines begin with a con­
trol character- normally . (period) or • (acute accent) - followed by a one or two character name that 
specifies a basic request or the substitution of a user-defined macro in place of the control line. The 
control character • suppresses the break function - the forced output of a partially filled line-caused by 
certain requests. The control character may be separated from the request/macro name by white space 
(spaces and/or tabs) for esthetic reasons. Names must be followed by either space or newline. Control 
lines with unrecognized names are ignored. 

Various special functions may be introduced anywhere in the input by means of an escape character, 
normally \. For example, the function \nR causes the interpolation of the contents of the number regis­
ter R in place of the function~ here R is either a single character name as in \nx, or left-parenthesis­
introduced, two-character name as in \n (xx. 

1.2. Formatter and device resolution. TROFF internally uses 432 units/inch, corresponding to the Graphic 
Systems phototypesetter which has a horizontal resolution of 1/432 inch and a vertical resolution of 
1/144 inch. NROFF internally uses 240 units/inch, corresponding to the least common multiple of the 
horizontal and vertical resolutions. of various typewriter-like output devices. TROFF rounds 
horizontal/vertical numerical parameter input to the actual horizontal/vertical resolution of the Graphic 
Systems typesetter. NROFF similarly rounds numeriCal input to the actual resolution of the output dev­
ice indicated by the - T option (default Model 37 Teletype). 

1.3. Numerical parameter input. Both NROFF andTROFF accept numerical input with the appended scale 
indicators shown in the following table, wpere S is the current type size in points, V is the current verti­
cal line spacing in basic units, and C is a nominal character width in basic units. 

Scale Number of basic units 
Indicator Meaning TROFF NROFF 

i Inch 432 240 
e Centimeter 432x50/127 240x50/127 
P Pica =- 1/6 inch 72 240/6 
m Em =- S points 6xS C 
n En ::III Em/2 3xS C, same as Em 
p Point == 1/72 inch 6 240/72 
u Basic unit 1 1 
v Vertical line space V V 

none Default, see below 

In NROFF, both the em and the en are taken to be equal to the C, which is output-device dependent~ 
common values are 1/10 and 1/12 inch. Actual character widths in NROFF need not be all the same 
and constructed characters such as - > (-) are often extra wide. The default scaling is ems for the 
horizontally-oriented requests and functions II, in, ti, ta, It, po, me, \h, and \l~ Vs for the vertically­
oriented requests and functions pI, wh, ch, dt, sp, sv, ne, rt, \ v, \x, and \L~ p for the vs request~ and 
u for the requests nr, if, and ie. All other requests ignore any scale indicators. When a number regis­
ter containing an already appropriately scaled number is interpolated to provide numerical input, the 
unit scale indicator u may need to be appended to prevent an additional inappropriate default scaling. 

4-27 



The number, N, may be specified in decimal-fraction form but the parameter finally stored is rounded 
to an integer number of basic units. 

- The absolute position indicator I may be prepended to a number N to generate the distance to the vertical 
or horizontal plate N. For vertically-oriented requests and functions, I N becomes the distance in basic 
units from the current vertical place on the page or in a diversion (§7.4) to the the vertical place N. For 
all other requests and functions, I N becomes the distance from the current horizontal place on the input 
line to the horizontal place N. For example, 

.sp 13.2c 

will space in the required direction to 3.2 centimeters from the top of the page. 

1.4. Numerical expressions. Wherever numerical input is expected an expression involving parentheses, 
the arithmetic operators +, -, I, ., % (mod), and the logical operators <, >, <-, >-, - (or --), 
& (and), : (or) may be used. Except where controlled by parentheses, evaluation of expressions is 
left-to-right~ there is no operator precedence. In the case of certain requests, an initial + or - is 
stripped and interpreted as an increment or decrement indicator respectively. In the presence of default 
scaling, the desired scale indicator must be attached to every number in an expression for which the 
desired and default scaling differ. For example, if the number register x contains 2 and the current 
point size is 10, then 

.11 (4.25i+\nxP+3)/2u 

will set the line length to 1/2 the sum of 4.25 inches + 2 picas + 30 points. 

1.5. Notation. Numerical parameters are indicated in this manual in two ways. ± N means that the 
argument may take the forms N, + N, or - N and that the corresponding effect is to set the affected 
parameter to N, to increment it by N, or to decrement it by N respectively. Plain N means that an ini­
tial algebraic sign is not an increment indicator, but merely the sign of N. Generally, unreasonable 
numerical input is either ignored or truncated to a reasonable value. For example, most requests 
expect to set parameters to non-negative values~ exceptions are sp, wh, ch, nr, and if. The requests 
ps, ft, po, VS, Is, 11, in, and It restore the previous parameter value in the absence of an argument. 

Single character arguments are indicated by single -lower case letters and oneltwo character arguments 
are indicated by a pair of lower case letters. Character string arguments are indicated by multi-character 
mnemonics. 

2. Font and Character Size Control 

2.1. Character set. The TROFF character set consists of the Graphics Systems Commercial II character 
set plus a Special Mathematical Font character set-each having] 02 characters. These character sets 
are shown in the attached Table I. All ASCII characters are included, with some on the Special Font. 
With three exceptions, the ASCII characters are input as themselves, and non-ASCII characters are input 
in the form \ Lxx where xx is a two-character name given in the attached Table II. The three ASCII 
exceptions are mapped as follows: 

ASCII Input Printed by TROFF 
Character Name Character Name 

acute accent 
, 

close quote 
grave accent 

, 
open quote 

- minus - hyphen 

The characters ., " and - may be input by \', \ " and \ - respectively or by their names (Table II). 
The ASCII characters @, #, ", ., " <, >, \, {, }, -, .. , and exist only on the Special Font and are 
printed as a I-em space if that Font is not mounted. 

NROFF understands the entire TROFF character set, but can in general print only ASCII characters, 
additional characters as may be available on the output device, such characters as may be able to be 
constructed by overstriking or other combination, and those that can reasonably be mapped into other 
printable characters. The exact behavior is determined by a driving table prepared for each device. The 

4-26 



characters " " and .... print as themselves. 

2.2. Fonts. The default mounted fonts are Times Roman (R), Times Italic (I), Times Bold (B), and 
the Special Mathematical Font (5) on physical typesetter positions 1, 2, 3, and 4 respectively. These 
fonts are used in this document. The current font, initially Roman, may be changed (among the 
mounted fonts) by use of the ft request, or by imbedding at any desired point either \fx, \f(xx, or \fN 
where x and xx are the name of a mounted font and N is a numerical font position. It is not necessary 
to change to the Special font~ characters on that font are automatically handled. A request for a named 
but not-mounted font is ignored. TROFF can be informed that any particular font is mounted by use of 
the fp request. The list of known fonts is installation dependent. In the subsequent discussion of 
font-related requests, F represents either a one/two-character font name or the numerical font position, 
1-4. The current font is available (as numerical position) in the read-only number register .r. 
~ROFF understands font control and normally underlines Italic characters (see § 10.5). 

2.3. Character size. Character point sizes available on the Graphic Systems typesetter are 6, 7, 8, 9, 10, 
11, 12, 14, 16, 18, 20, 22, 24, 28, and 36. This is a range of 1/12 inch to 1/2 inch. The ps request is 
used to change or restore the point size. Alternatively the point size may be changed between any two 
characters by imbedding a \sN at the desired point to set the size to N, or a \s ± N (1 ~ N~ 9) to 
increment/decrem.ent the size by N~ \sO restores the previous size. Requested point size values that are 
between two valid sizes yield the larger of the two. The current size is available in the .s register. 
N ROFF ignores type size control. 

Request 
Form 

.ps ±N 

.ss N 

Initial 
Value 

10 point 

12/36 em 

.csFNM off 

.bd F N off 

lINo 
Argument Notes· Explanation 

previous E 

ignored E 

p 

p 

Point size set to ± N. Alternatively imbed \s Nor \s ± N. 
Any positive size value may be requested~ if invalid, the 
next larger valid size will result, with a maximum of 36. 
A paired sequence + N, - N will work because the previ­
ous requested value is also remembered. Ignored in 
NROFF. 

Space-character size is set to N/ 36 ems. This size is the 
minimum word spacing in adjusted text. Ignored in 
NROFF. 

Constant character space (width) mode is set on for font 
F (if mounted)~ the width of every character will be 
taken to be N/36 ems. If M is absent, the em is that of 
the character's point size~ if M is given, the em is M­
points. All affected characters are centered in this space, 
including those with an actual width larger than this 
space. Special Font characters occurring while the 
current font is F are also so treated. If N is absent, the 
mode is turned off. The mode must be still or again in 
effect when the characters are physically printed. Ignored 
in NROFF. 

The characters in font F will be artificially emboldened by 
printing each one twice, separated by N-I basic units. A 
reasonable value for N is 3 when the character size is in 
the vicinity of 10 points. If N is missing the embolden 
mode is turned off. The column heads above were 
printed with .bd I 3. The mode must be still or again in 
effect when the characters are physically printed. Ignored 
in NROFF. 

·~otes are explained at the end of the Summary and Index above. 

4-29 



.bd S F N off 

.ft FRoman previous 

.fp N F R,I,B,S ignored 

3. Page control 

P 

E 

The characters in the Special Font will be emboldened 
whenever the current font is F This manual was printed 
with .bd S B 3. The mode must be still or again in effect 
when the characters are physically printed. 

Font changed to F Alternatively, imbed \r F The font 
name P is reserved to mean the previous font. 

Font position. This is a statement that a font named F is 
mounted on position N (} -4). It is a fatal error if F is 
not known. The phototypesetter has four fonts physically 
mounted. Each font consists of a film strip which can be 
mounted on a numbered quadrant of a wheel. The 
default mounting sequence assumed by TROFF is R, L B. 
and S on positions 1, 2, 3 and 4. 

Top and bottom margins are not automatically provided; it is conventional to define two macros and to 
set traps for them at vertical positions 0 (top) and - N (N from the bottom). See §7. and Tutorial 
Examples §T2. A pseudo-page transition onto the first page occurs either when the first break occurs or 
when the first non-diverted text processing occurs. Arrangements for a trap to occur at the top of the 
first page must be completed before this transition. In the following, references to the current diversion 
(§7.4) mean that the mechanism being described works during both ordinary and diverted output (the 
former considered as the top diversion level). 

The useable page width on the Graphic Systems phototypesetter is about 7.54 inches, beginning about 
1/27 inch from the left edge of the 8 inch wide, continuous roll paper. The physical limitations on 
NROFF output are output-device dependent. 

Request Initial If No 
Form Value Argument 

.pl ± N 11 in 11 in 

.bp ±N N-l 

.pn ±N N-l ignored 

.po ±N 0; 26/27 int previous 

.ne N N-I V 

Notes Explanation 

v Page length set to ± N. The internal limitation is about 
75 inches in TROFF and about 136 inches in NROFF. 

D,v 

The current page length is available in the .p register. 

Begin page. The current page is ejected and a new page 
is begun. If ± N is given, the new page number will be 
± N. Also see request os. 

Page number. The next page (when it occurs) will have 
the page number ± N. A pn must occur before the ini­
tial pseudo-page transition to effect the page number of 
the first page. The current page num ber is in the % 
register. 

Page offset. The current left margin is set to ± N. The 
TROFF initial value provides about 1 inch of paper mar­
gin including the physical typesetter margin of 1/27 inch. 
In TROFF the maximum ()jne-Iength) + (page-offset) is 
about 7.54 inches. See §6. The current page offset is 
available in the .0 register. 

Need N vertical space. ·If the distance, D, to the next 
trap position (see §7.5) is less than N, a forward vertical 
space of size D occurs, which will spring the trap. If 
there are no remaining traps on the page, D is the 

-The use of" • " as control character (instead of ".") suppresses the break function. 

tValues separated by";" are for NROFF and TROFF respectively. 

4-30 



.mk R none internal D 

.rt ±N none internal D,v 

4. Text Filling, Adjusting, and Centering 

distance to the bottom of the page. If D < V, another 
line could still be au (Pllt and spring the trap. In a di ver­
sion, D is the distance to the diversion trap, if any, or is 
very large. 

Mark thl.! curren! ver!ical place in an internal register 
(both associated with the current diversion ;eveI), or in 
register R, if given. See rt request. 

Return upward only to a marked vertical place in the 
current diversion. If ± N (w.r. t. current place) is given, 
the place is ± N from the top of the page or diversion or, 
if N is absent, to a place marked by a previous mk. Note 
that the sp request (~5.3) may be used in all cases 
instead of rt by spacifig to the absolute place stored in a 
explicit register; e. g. using the sequence .mk R ." 
.sp I\n Ru. 

4.1. Filling and adjusting. Normally, words are collected from input text lines and assembled into a out­
put text line until some word doesn't fit. An attempt is then made the hyphenate the word in effort to 
assemble a part of it into the output line. The spaces between the words on the output line are then 
increased to spread out the line to the current line length minus any current indent. A word is any string 
of characters delimited by the space character or the beginning/end or the input line. Any adjacent pair 
of words that must be kept together (neither split across output lines nor spread apart in the adjustment 
process) can be tied together by separating them with the lmpaddable space character "\ II (backs lash­
space). The adjusted word spacings are uniform in TROFF and the minimum interword spacing can be 
controlled with the ss request (§2). In NROFF, they are normally nonuniform because of quantization 
to character-size spaces; however, the command line option -e causes uniform spacing with full output 
device resolution. Filling, adjustment, and hyphenation (§13) can all be prevented or controlled. The 
text length on the last line output is available in the .n register, and text base-line position on the page 
for this line is in the nl register. The text base-line high-water mark (lowest place) on the curre:1t page 
is in the .h register. 

An input text line ending with., ?, or ! is taken to be the end of a sentence, and an addi tional space 
character is automatically provided during filling. Multiple inter-word space characters found in the 
input are retained, except for trailing spaces~ initial spaces also cause a break. 

When filling is in effect, a \p may be imbedded or attached to a word to cause a break at the end of the 
word and have the resulting output line spread alit to flll the current line length. 

A text input line that happens to begin with a control character can be made to not look like a control 
line by prefacing it with the non-printing, zero-width filler character \&. Still ~lOother way is to specify 
output translation of some convenient character into the control character using tr (§lO.5L 

4.2. Interrupted text. The copying of a input line in no}711 (non-fll)) mode can be interrupted by terminat­
ing the partial line with a \c. The next encountered input text line wil! be considered to be a continua­
tion of the same line of input text. Similarly, a word within .flied text may be interrupted by terminat­
ing the word (and line) with \c~ the next encountered text will be taken as a continuation of the inter­
rupted word. If the intervening control lines cause a break, any partial line will be forced out along 
wi th any partial word. 

Request Initial If l!0 
Form Value Argument 

.br 

Notes 

B 

Explanation 

Break. The filling of the line currently being collected is 
stopped and the line is output without adjustment. Text 
lines beginning with space characters and empty text 
lines (blank !il1~'» :!.Lc· calJse J br:~ak. 

4-31 



.fi fill on B,E 

.nf fill on B,E 

.ad c adj,both adjust E 

.na adjust E 

.ce N off N=l B,E 

5. Vertical Spacing 

Fill subsequent_output lines. The register .u is 1 in fill 
mode and ° in nofill mode. 

Nofil!. Subsequent output lines are neither filled nor 
adjusted. Input text lines are copied directly to output 
lines without regard for the current line length. 

Line adjustment is begun. If fill mode is not on, adjust­
ment will be deferred until fill mode is back on. If the 
type indicator c is present, the adjustment type is 
changed as shown in the following table. 

Indicator Adjust Type 
I adjust left margin only 
r adjust right margin only 
c center 

b or n adjust both margins 
absent unchanged 

Noadjust. Adjustment is turned off: the right margin will 
be ragged. The adjuStment type for ad is not changed. 
Output line filling still occurs if fill mode is on. 

Center the next N input text lines within the current 
(line-length minus indent)' If N= 0, any residual count 
is cleared. A break occurs after each of the N input 
lines. If the inpu t line is too long. it will be left adjusted. 

5.1. Base-line spacing. The vertical spacing {vj between the base-lines of successive output lines can be 
set using the vs request with a resolution of 1/144 inch == 1/2 point in TROFF, and to the output device 
resolution in NROFF. V must be large enough to accommodate the character sizes on the affected out­
put lines. For the common type sizes (9-12 points), usual typesetting practice is to set V to 2 points 
greater than the point size: TROFF default is 10-point type on a 12-point spacing (as in this document). 
The current V is available in the. v register. Multiple- V line separation (e. g. double spacing) may be 
requested with Is. 

5.2. Extra line-space. If a word contains a vertica!ly tall construct requiring the output line containing it 
to have extra vertical space before and/or after it, the extra-line-space function \x' N' can be imbedded 
in or attached to that word. In this and other functions having a pair of delimiters around their parame­
ter (here ~ ), the delimiter choice is arbitrary, except that it can't look like the continuation of a number 
expression for N. If N is negative, the output line containing the word will be preceded by N extra 
vertical space; if N is positive, the outpu t line containing the word will be followed by N extra vertical 
space. If successive requests for extra space apply to the same line, the maximum values are used. 
The most recently utilized post-line extra line-space is available in the .8 register. 

5.3. Blocks 0/ vertical spacE. A block of vertical space is ordinarily requested using sp, which honors the 
no-space mode and which does not space past a trap. A contiguous block of vertical space may be 
reserved using sv. 

Request 
Form 

.vs N 

.Is N 

lIND Initial 
Value Argument Notes Explanation 

1/6in; 12pts previous E,p 

N= 1 previous E 

Set vertical base-line spacing size V. Transient extra 
vertical space available with \x' N' (see above). 

Line spacing set to ± N. N-l Vs (blank lines) are 
appended to each output text line. Appended blank lines 
are omitted, if the text or previous appended blank line 

4-32 



.sp N N=zl V 

.sv N N=lV 

.os 

.ns space 

.rs space 

Blank text line. 

6. Line Length and Indenting 

a,v 

v 

o 

D 

B 

reached a trap position. 

Space vertically in either direction. If N is negative, the 
motion is backward (upward) and is limited to the dis­
tance to the top of the page. Forward (downward) 
motion is truncated to the distance to the nearest trap. If 
the no-space mode is on, no spacing occurs (see ns, and 
rs below). 

Save a contiguous vertical block of size N. If the dis­
tance to the next trap is greater than N, N vertical space 
is output. No-space mode has no effect. If this distance 
is less than N, no vertical space is immediately output, 
but N is remembered for later output (see os). Subse­
quent sv requests will overwrite any still remembered N. 

Output saved vertical space. No-space mode has no 
effect. Used to finally output a block of vertical space 
requested by an earlier sv request. 

No-space mode turned on. When on, the no-space mode 
inhibits sp requests and bp requests without a next page 
number. The no-space mode is turned off when a line of 
output occurs, or with rs. 

Restore spacing. The no-space mode is turned off. 

Causes a break and output of a blank line exactly like 
sp 1. 

The maximum line length for fill mode may be set with II. The indent may be set with in~ an indent 
applicable to only the next output line may be set with ti. The line length includes indent space but not 
page offset space. The line-length minus the indent is the basis for centering with ceo The effect of II. 
in, or ti is delayed, if a partially collected line exists, until after that line is output. In fill mode the 
length of text on an output line is less than or equal to the line length minus the indent. The current 
line length and indent are available in registers .1 and .i respectively. The length of three-part titles pro­
duced by tl (see §14) is independently set by It. 

Request' Initial If No 
Form Value Argument Notes Explanation 

.11 ±N 6.5 in 

.in ±N N=O 

.ti ±N 

previous 

previous 

ignored 

E,m Line length is set to ± N. In TROFF the maximum 
(line-length) + (page-offset) is about 7.54 inches. 

B,E,m Indent is set to ± N. The indent is prepended to each 
output line. 

B,E,m Temporary indent. The next output text line will be 
indented a distance ± N with respect to the current 
indent. The resulting total indent may not be negative. 
The current indent is not changed. 

7. Macros, Strings, Diversion, and Position Traps 

7.1. Macros and strings. A macro is a named set of arbitrary lines that may be invoked by name or with 
a trap. A string is a named string of characters, not including a newline character, that may be interpo­
lated by name at any point. Request, macro, and string names share the same name list. Macro 3,nd 
string names may be one or two characters long and may usurp previously defined request, macro. or 
string names. Any of these entities may be renamed with rn or removed with rm. Macros are created 
by de and di, and appended to by am and da~ di and da cause normal output to be stored in a macro. 
Strings are created by ds and appended to by as. A macro is invoked in the same way as a request; a 

4-33 



control line beginning .xx will interpolate the contents of macro xx. The remainder of the line may 
contain up to nine arguments. The strings x and xx are interpolated at any desired point with \-x and 
\-(xx respectively. String references and macro invocations may be nested. 

7.2. Copy mode input interpretation. During the definition and extension of strings and macros (not by 
diversion) the input is read in copy mode. The input is copied without interpretation except that: 

• The contents of number registers indicated by \n are interpolated. 
• Strings indicated by \ - are interpolated. 
• Arguments indicated by \$ are interpolated. 
• Concealed newlines indicated by \ (newline) are eliminated. 
• Comments indicated by \" are eliminated. 
• \t and \a are interpreted as ASCII horizontal tab and SOH respectively (§9). 
• \ \ is interpreted as \. 
• \. is interpreted as ".". 

These interpretations can be suppressed by prepending a \. For example, since \ \ maps into a \, \ \n 
will copy as \n which will be interpreted as a number register indicator when the macro or string is 
reread. 

7.3. Arguments. When a macro is invoked by name, the remainder of the line is taken to 'contain up to 
nine arguments. The argument separator is the space character, and arguments may be surrounded by 
double-quotes to permit imbedded space characters. Pairs of double-quotes may be imbedded in 
double-quoted arguments to represent a single double-quote. If the desired arguments won 'tfit on a 
line, a concealed newline may be used to continue on the next line. 

When a macro is invoked the input level is pushed down and any arguments available at the previous 
level become unavailable until the macro is completely read and the previous level is restored. A 
macro's own arguments can be interpolated at any point within the macro with \SN, which interpolates 
the Nth argument (I ~ N ~ 9). If an invoked argument doesn't exist, a null string results. For exam­
ple, the macro xx may be defined by 

.de xx \ "begin definition 
Today is \\$1 the \\$2. 

\ "end definition 

and called by 

.xx Monday 14th 

to produce the text 

Today is Monday the 14th. 

Note that the \$ was concealed in the definition with a prepended \. The number of currently available 
arguments is in the .$ register. 

No arguments are available at the top (non-macro) level in this implementation. Because string 
referencing is implemented as a input-level push down, no arguments are avai1able from within a string. 
No arguments are available within a trap-invoked macro. 

Arguments are copied in copy mode onto a stack where they are available for reference. The mechan­
ism does not allow an argument to contain a direct reference to a long string (interpolated at copy time) 
and it is advisable to conceal string references (with an extra \) to delay interpolation until argumen t 
reference time. 

7.4. Diversions. Processed output may be diverted into a macro for purposes such as footnote processing 
(see Tutorial §TS) or determining the horizontal and vertical size of some text for conditional changing 
of pages or columns. A single diversion trap may be set at a specified vertical position. The number 
registers dn and dl respectively contain the vertical and horizontal size of the most recently ended 
diversion. Processed text that is diverted into a macro retains the vertical size of each of its lines when 
reread in nofill mode regardless of the current V Constant-spaced (cs) or emboldened (bd) text that is 
diverted can be reread correctly only if these modes are again or still in effect at reread time. One way 

4-34 



to do this is to imbed in the diversion the appropriate cs or bd requests with the transparent mechanism 
described in § 1 0.6. 

Diversions may be nested and certain parameters and registers are associated with the current diversion 
level (the top non-diversion level may be thought of as the Oth diversion level). These are the diver­
sion trap and associated macro, no-space. mode, the internally-saved marked place (see mk and rt), the 
current vertical place Cd register), the current high-water text base-line (,h register), and the current 
diversion name Cz register). 

7.5. Traps. Three types of trap mechanisms are available - page traps, a diversion trap, and an input­
line-count trap. M~cro-invocation traps may be planted using wh at any page .position including the top. 
This trap position may be changed using ch. Trap positions at or below the bottom of the page have no 
effect unless or until moved to within the page or rendered effective by an increase in page length. 
Two traps may be planted at the same position only by first planting them at different positions and 
then moving one of the traps~ the first planted trap will conceal the second unless and until the first one 
is moved (see Tutorial Examples §TS). If the first one is moved back, it again conceals the second 
trap. The macro associated with a page trap is automatically invoked when a line of text is output 
whose vertical size reaches or sweeps past the trap position. Reaching the bottom of a page springs the 
top-of-page trap, if any, provided there is a next page. The distance to the next trap position is avai 1-
able in the .t register~ if there are no traps between the current position and the bottom of the page, the 
distance returned is the distance to the page bottom. 

A macro-invocation trap effective in the current diversion may be planted using dt. The.t register 
works in a diversion~ if there is no subsequent trap a large distance is returned. For a description of 
input-line-count traps, see it below. 

Request Initial 1/ No 
Form Value Argument 

.de xx yy 

. am xx yy 

.ds xx string -

. as xx string -

.rm xx 

.rn xx yy 

.di xx 

.yy== .• 

. yy=- •• 

ignored 

ignored 

ignored 

ignored 

end 

Notes Explanation 

D 

Define or redefine the macro xx. The contents of the 
macro begin on the next input line. Input lines are 
copied in copy mode until the definition is terminated by a 
line beginning with .yy, whereupon the macro yy is 
called. In the absence of yy, the definition is terminated 
by a line beginning with " .. ". A macro may contain de 
requests provided the terminating macros differ or the 
contained definition terminator is concealed. " .. " can be 
concealed as \ \ .. which will copy as \ .. and be reread as 

Append to macro (append version of de) . 

Define a string xx containing string. Any initial double­
quote in string is stripped off to permit initial blanks. 

Append string to string x., (append version of ds). 

Remove request, macro, or string. The name xx is 
removed from the name list and any related storage 
space is freed. Subsequent references will have no effect. 

Rename request, macro, or string xx to yy. If yyexists, it 
is first removed. 

Divert output to macro xx. Normal text processing 
occurs during diversion except that page offsetting is not 
done. The diversion ends when the request di or da is 
encountered without an argument~ extraneous requests 
of this type should not appear when nested diversions are 
being used. 

4-35 



.da xx 

.wh N xx 

.eh xx N 

.dt N xx 

.it N xx 

.em xx none 

8. Number Registers 

end 

off 

off 

none 

D 

v 

v 

D,v 

E 

Divert, appending to xx (append version of dO. 

Install a trap to invoke xx at page position N; a negative N 
will be interpreted with respect to the page bottom. Any 
macro previously plan ted at N is replaced by xx. A zero 
N refers to the top of a page. In the absence of xx, the 
first found trap at N, if any, is removed. 

Change the trap position for macro xx to be N. In the 
absence of N, the trap, if any, is removed. 

Install a diversion trap at position N in the current diver­
sion to invoke macro xx. Another dt will redefine the 
diversion trap. If no arguments are given, the diversion 
trap is removed. 

Set an input-line-count trap to invoke the macro xx after 
N lines of text input have been read (control or request 
!ines don't count). The text may be in-line text or text 
interpolated by'inline or trap-invoked macros. 

The macro xx will be invoked when all inpu~ has ended. 
The effect is the same as if the contents of xx had been 
at the end of the last file processed. 

A variety of parameters are available to the user as predefined, named number registers (see Summary 
and Index, page 7). In addition, the user may define his own named registers. Register names are one 
or two characters long and do not conflict with request, macro, or string names. Except for certain 
predefined read-only registers, a number register can be read, written, automatically incremented or 
decremented, and interpolated into the input in a variety of formats. One common use of user-defined 
registers is to automatically number sections, paragraphs, lines, etc. A number register may be used 
any time numerical input is expected or desired and may be used in numerical expressions (§ 1.4). 

Number registers are created and modified using nr, which specifies the name, numerical value, and 
the auto-increment size. Registers are also modified, jf accessed with an auto-incrementing sequence. 
If the registers x and xx both contain N and have the auto-increment size M, the following access 
sequences have the effect shown: 

Effect on Value 
Sequence Register Interpolated 

\nx none N 
\n(xx none N 
\n+x x incremented by M N+M 
\n-x x decremented by M N-M 
\n + (xx xx incremented by M N+M 
\n- (xx xx decremented by Xl N-M 

When interpolated, a number register is converted to decimal (default), decimal with leading zeros, 
lower-case Roman, upper-case Roman, lower-case sequential alphabetic, or upper-case sequential alpha­
betic according to the format specified by af. 

Request 
Form 

Initial 
Value 

.nr R ±N M 

/fNo 
Argument Notes Explanation 

u The number register R is assigned the value ± N with 
respect to the' previous value, if any. The increment for 
auto-incrementing is set to M. 

4-36 



.af R c arabic 

.rr R ignored 

9. Tabs, Leaders, and Fields 

Assign format c to register R. The available formats are: 

Numbering 
Format Sequence 

1 0,1,2,3,4,5, ... 
001 000,001,002, 00 3,004, 005, ... 

i O,i,ii,iii,iv,v, ... 
I O,I,II,III,IV, V, ... 
a O,a, b,c, ... ,z,aa,ab, ... ,zz,aaa, ... 
A O,A,B.C, ... ,Z,AA,AB, ... ,ZZ,AAA, ... 

An arabic formal having N digits specifies a field width of 
N digits (example 2 above), The read-only registers and 
the width function (§ 11.2) are always arabic. 

Remove register R. If many registers are being created 
dynamically, it may become necessary to remove no 
longer used registers to recapture internal storage space 
for newer registers. 

9.1. Tabs and leaders. The ASCII horizontal tab character and the ASCII SOH (hereafter known as the 
leader character) can both be used to generate either horizontal motion or a string bf repeated charac­
ters. The length of the generated entity is governed by internal tab stops specifiable with tao The 
default difference is that tabs generate motion and leaders generate a string of periods; te and Ie offer 
the choice of repeated character or motion. There are three types of internal tab stops -left adjusti ng, 
right adjusting, and centering. lIT the following table: D is the distance from the current position on the 
input line (where a tab or leader was found) to the next tab stop; next-string consists of the input charac­
ters following the tab (or leader) up to the next tab (or leaded or end of line; and W is the width of 
next-string. 

Tab Length of motion or Location of 
type. repeated characters next-string 

Left D Following D 
Right D-W Right adjusted within D 

Centered D-W/2 Centered on right end of D 

The length of generated motion is allowed to be negative, but that of a repeated character string cannot 
be. Repeated character strings contain an integer number of characters, and any residual distance is 
prepended as motion. Tabs or leaders found after the last tab stop are ignored, but may be used as 
next-string terminators. 

Tabs and leaders are not interpreted in copy mode. \t and \a always generate a non-interpreted tab and 
leader respectively, and are equivalent to actual tabs and leaders in copy mode. 

9.2. Fields. A field is contained between a pair of field delimiter characters, and consists of sub-strings 
separated by padding indicator characters, The field length is the distance on the input line from the 
position where the field begins to the next tab stop. The difference between the total length of all the 
sub-strings and the field length is incorporated as horizontal padding space that is di vided among the 
indicated padding places. The incorporated padding is allowed to be negative. For example, if the field 
delimiter is # and the padaing indicator is ", #" xxx" right # specifies a right-adjusted string with the 
string xxx centered in the remaining space. 



Request 
Form 

.ta Nt ... 

.te c 

.Ie c 

.fe a b 

Initial 
Value 

0.8; O.Sin 

none 

off 

If No 
Argument Notes Explanatio" 

none E,m Set tab stops and types. t-=R, right adjusting: t==C, 
centering; t absent, ieft adjusting. TROFF tab stops are 
preset every O.Sin.~ NROFF every O.8in. The stop values 
are separated by spaces, and a valur preceded by + is 
treated as an increment to the previous stop value. 

none E The tab repetition character becomes c, or is removed 
specifying motion. 

none E The leader repetition character becomes c, or is removed 
specifying motion. 

off The field delimiter is set to a; the padding indicator is set 
to the space character or to b, if given. In the absence of 
arguments the field mechanism is turned off. 

10. Input and Output Conyentions and Character Translations 

10.I.Input character translations. Ways of inputting the graphic character set were discussed in §2.1. 
The ASCII control characters horizontal tab (§9.1), SOH (§9.1), and backspace (§10.3) are discussed 
elsewhere. The newline delimits input lines. In addition, STX, ETX, ENQ, ACK, and BEL are accepted, 
and may be used as delimiters or translated into a graphic with tr (§10.5)' All others are ignored. 

The escape character \ introduces escape sequences.-causes the following character to mean another 
character, or to indicate some function. A complete list of such sequences is given in the Summary 
and Index on page 6. \ should not be confused with the ASCII control character ESC of the same name. 
The escape character \ can be input with the sequence \ \. The escape character can be changed with 
ee, and all that has been said about the default \ becomes true for the new escape character. \e can be 
used to print whatever the current escape character is. If necessary or convenient, the escape mechan­
ism may be turned off with eo, and restored with ee. 

Request Initial If No 
Form Value Argument Notes Explanation 

.ee c \ 

.eo on 

\ Set escape character to \, or to c, if given. 

Turn escape mechanism off. 

10.2. Ligatures. Five ligatures are available in the current TROFF character set - fl, fl, H, ffi, and m. 
They may be input (even in NROFF) by \ (fi, \ (fl, \ (ff, \ (Fi, and \ (FJ respectively. The ligature mode 
is normally on in TROFF, and automatically invokes ligatures during input.' 

Request Initial If No 
Form Value Argument Notes Explanation 

.lg N off~ on on Ligature mode is turned on if N is absent or non-zero, 
and turned off if N==O. If N-'2, only the two-character 
ligatures are automatically invoked. Ligature mode is 
inhibited for request, macro, string, register, or file 
names, and in copy mode. No effect in NROFF. 

10.3. Backspacing, underlining, overstriking, etc. Unless in copy mode, the ASCII backspace character is 
replaced by a backward horizontal motion having the width of the space character. Underlining as a 
form of line-drawing is discussed in §12.4. A generalized overstriking function is described in §12.1. 

NROFF automatically underlines characters in the underline font, specifiable with uf, normally that on 
font position 2 (normally Times Italic, see §2.2). In addition to ft and \f F, the underline font may be 
selected by ul and cu. Underlining is restricted to an output-device-dependent subset of reasonable 
characters. 

4-38 



Request 
Form 

.ul N 

.eu N 

.uf F 

Initial 
Value 

off 

off 

Italic 

II No 
Argument Notes Explanation 

N=l 

N=l 

Italic 

E 

E 

Underline in NROFF (italicize in TROFF) the next N 
input text lines. Actually, switch to underline font, saving 
the current font for later restoration~ other font changes 
within the span of a ul will take effect, but the restora­
tion will undo the last change. Output generated by tl 
(§14) is affected by the font change, but does not decre­
ment N. If N> 1, there is the risk that a trap interpo­
lated macro may provide text lines within the span~ 

environment switching can prevent this. 

A variant of ul that causes every characte r to be under­
lined in NROFF. Identical to ul in TROFF. 

Underline font set to F In NROFF, F may not be on 
position 1 (initially Times Roman). 

10.4. Control characters. Both the control character . and the no-break control character ' may be 
changed, if desired. Such a change must be compatible with the design of any macros used in the span 
of the change, and particularly of any trap-invoked macros. 

Request Initial U No 
Form Value Argument Notes Explanation 

.ee c 

.e2 c 

E 

E 

The basic control character is set to c, or reset to ".". 

The nobreak control character is set to c, or reset to "'''. 

1 0.5. Output translation. One character can be made a stand-in for another character using tr. All text 
processing (e. g. character comparisons) takes place with the input (stand-in) character which appears to 
have the width of the final character. The graphic translation occurs at the moment of output (includ­
ing diversion). 

Request I" itia I 
Form Value 

. tr abed.... none 

UNo 
Argument Notes Explanation 

o Translate a into b, c into d, etc. If an odd number of 
characters is given, the last one will be mapped into the 
space character. To be consistent, a particular translation 
must stay in effect from input to output time. 

10.6. Transparent throughput. An input line beginning with a \! is read in copy mode and transparently 
output (without the initial \!)~ the text processor is otherwise unaware of the line's presence. This 
mechanism may be used to pass control information to a post-processor or to imbed control lines in a 
macro created by a diversion. 

10.7. Comments and concealed newlines. An uncomfortably long input line that must stay one line (e. g. 
a string definition, or nofilled text) can be split into many physical lines by ending all but the last one 
with the escape \. The sequence \ (neWline) is always ignored-except in a comment. Comments may 
be imbedded at the end of any line by prefacing them with \". The newline at the end of a comment 
cannot be concealed. A line beginning with \" will appear as a blank line and behave like .sp 1~ a com­
ment can be on a line by itself by beginning the line with .\". 

11. Loeal Horizontal and Vertical Motions, and the Width Function 

11.1. Local Motions. The functions \ v' N' and \h' N' can be used for local vertical and horizontal motion 
respectively. The distance N may be negative~ the positive directions are rightward and downward. A 
local motion is one contained within a line. To avoid unexpected vertical dislocations, it is necessary 
that the net vertical local motion within a word in filled text and otherwise within a line balance to zero. 
The above and certain other escape sequences providing local motion are summarized in the following 
table. 

)+-39 



Vertical Effect in Horizontal Effect in 
Local Motion TROFF NROFF Local Motion TROFF NROFF 

\v'N' Move distance N \h' N' Move distance N 
\(space) Unpaddable space-size space 

\u 112 em up 112 line up \0 Digit-size space 
\d V2 em down 1/2 line down 
\r 1 em up 1 line up \1 1/6 em space ignored 

\A 1/12 em space ignored 

As an example, [2 could be generated by the sequence [\s-2\v'-0.4m'2\v'0.4m'\s+2~ it should be 
noted in this example that the 0.4 em vertical motions are at the smaller size. 

11.2. Width Function. The width function \w'string' generates the numerical width of string (in basic 
units). Size and font changes may be safely imbedded in string, and will not affect the current environ­
ment. For example, .ti - \ w'l. 'u could be used to temporarily indent leftward a distance equal to the 
size of the string "l. ". 

The width function also sets three number registers. The registers st and sb are set respectively to the 
highest and lowest extent of string relative to the baseline; then, for example, the total height of the 
string is \n (stu - \n {sbu. In TROFF the number register ct is set to a value between 0 and 3: 0 means 
that all of the characters in string were short lower case characters without descenders (like e) ~ 1 means 
that at least one character has a descender (like y); 2 means that at least one character is tall (like H) ~ 
and 3 means that both tall characters and characters with descenders are present. 

11.3. Mark horizontal place. The escape sequence \kx will cause the current horizontal position in the 
input line to be stored in register x. As an example, the construction \kx word\h' I\nxu + 2u' word will 
embolden word by backing up to almost its beginning and overprinting it, resulting in word. 

12. Overstrike, Bracket, Line-drawing, and Zero-width Functions 

12.1. Overstriking. A utomatically centered overstriking of up to nine characters is provided by the over­
strike function \0' string'. The characters in string overprinted with centers aligned~ the total width is 
that of the widest character. string should not contain local vertical motion. As examples, \o'e\" pro­
duces e, and \0'\ (mo\ (sl' produces ~. 

12.2. Zero-width characters. The function \zc will output c without spacing over it, and can be used to 
produce left-aligned overstruck combinations. As examples, \z\ (ci\ (pI will produce e, and 
\ (br\z\ (rn \ (ul\ (br will produce the smallest possible constructed box O. . 
12.3. Large Brackets. The Special Mathematical Fon~ contains a number of bracket construction pieces 
( ( II J ~ ~ It J r 1 ) that can be combined into various bracket styles. The function \b'string' may be used 
to pile up vertically the characters in string (the first character on top and the last at the bottom) ~ the 
characters are vertically separated by 1 em and the total pile is centered 1/2 em above the current base-

line (V2 line in NROFF). For example, \b'\Oc\Of'E\I\b'\(rc\(rf'\x' -0.5m'.\x'0.5m' produces [EJ. 

12.4. Line drawing. The function \ I' Nc' will draw a string of repeated c's towards the right for a dis­
tance N. (\1 is \ (lower case L). If c looks like a continuation of an expression for N, it may insulated 
from N with a \&. If c is not specified, the _ (baseline rule) is used (underline character in NROFF). If 
N is negative, a backward horizontal motion of size N is made be/ore drawing the string. Any space 
resulting from N / (size of c) having a remainder is put at the beginning (Jeft end) of the string. In the 
case of characters that are designed to be connected such as baseline-rule _, underrule _, and root­
en -, the remainder space is covered by over-lapping. If N is less than the width of c, a single c is cen­
tered on a distance N. As an example, a macro to underscore a string can be written 

.de us 
\ \51 \ 1 ' 10\ (uJ' 

4-40 



or one to draw a box around a string 

.de bx 
\ (b r \ 1 \ \ S 1 \ 1 \ (b r \ 1 ' I 0 \ (rn '\ 1 ' I 0 \ ( u I ' 

such that 

.ul "underlined words" 

and 

. bx "words in a box" 

yield underlined words and lwords in a box I. 

The function \L' Nc' will draw a vertical line consisting of the (optional) character c stacked vertically 
apart 1 em (1 line in NROFF), with the first two characters overlapped, if necessary, to form a continu­
ous line. The default character is the box rule I (\ (br) ~ the other suitable character is the bold vertical I 
(\ (bv). The line is begun without any initial motion relative to the current base line. A positive N 
specifies a line drawn downward and a negative N specifies a line drawn upward. After the line is drawn 
no compensating motions are made~ the instantaneous baseline is at the end of the line. 

The horizontal and vertical line drawing functions may be used in combination to prpduce large boxes. 

I
The zero-width box-rule and the 112-em wide underrule were designed to form corners when using I-em 
vertical spacings. For example the macro 

.de eb 

.sp -1 \ "compensate for next automatic base-line spacing 

.nf \ "avoid possibly overflowing word buffer 
\h' - .5n'\L'I\ \nau -1 '\1'\ \n (.Iu + In\(ul'\L' -1\ \nau + 1 '\I'IOu - .5n\ (ul' \"draw box 
.n 

wiIl draw a box around some text whose beginning vertical place was saved in number register a (e. g. 
usin .mk a) as done for this ara ra h. 

13. Hyphenation. 

The automatic hyphenation may be switched off and on. When switched on with hy, several variants 
may be set. A hyphenation indicator character may be imbedded in a word to specify desired hyphena­
tion points, or may be prepended to suppress hyphenation. In addition, the user may specify a smaIl 
exception word list. 

Only words that consist of a central alphabetic string surrounded by (usually nulI) non-alphabetic 
strings are considered candidates for automatic hyphenation. Words' that were input containing hyphens 
(minus), em-dashes (\ (em), or hyphenation indicator characters-such as mother-in-law-are always 
subject to splitting after those characters, whether or not automatic hyphenation is on or off. 

Request Initial If No 
Form Value Argument Notes Explanation 

hyphenate .nh 

.hyN on,N=l on,N=1 

.hc c \% \% 

.hw word] ... ignored 

E 

E 

E 

Automatic hyphenation is turned off. 

Automatic hyphenation is turned on for N ~ 1, or off for 
N = O. If N = 2, last lines (ones that will cause a trap) 
are not hyphenated. For N::II. 4 and 8, the last and first 
two characters respectively of a word are not split off. 
These values are additive~ i. e. N= 14 will invoke all 
three restrictions. 

Hyphenation indicator cha;acter is set to c or to the 
default \%. The indicator does not appear in the output. 

Specify hyphenation points in words with imbedded 
minus signs. Versions of a word with terminal s are 



14. Three Part Titles. 

implied~ i. e. dig-it implies dig-its. This list is exam­
ined initially and after each suffix stripping. The space 
available is small-about 128 characters. 

The titling function tl provides for automatic placement of three fields at the left, center, and right of a 
line with a title-length specifiable with It. tl may be used anywhere, and is independent of the normal 
text collecting process. A common use is in header and footer macros. 

Request Initial /f No 
Form Value Argument Notes Explanation 

.tI 'left' center' right' 

.pc c % off 

.It ± N 6.5 in previous 

15. Output Line Numbering. 

E,m 

The strings left, center, and right a-re respectively left­
adjusted, centered, and right-adjusted in the current 
title-length. Any of the strings may be empty, and over­
lapping is permitted. If the page-number character (ini­
tially %) is found within any of the fields it is replaced by 
the current page number having the format assigned to 
register %. Any character may be used as the string de l­
imiter. 

The page number character is set to c, or removed. The 
page-number register remains %. 

Length of title set to ± N. The line-length and the title­
length are independent. Indents do not apply to titles; 
page-offsets do. 

Automatic sequence numbering of output lines may be requested with nm. When in effect, a 
three-digit, arabic number plus a digit-space is prepended to output text lines. The text lines are 

3 thus offset by four digit-spaces, and otherwise retain their line length; a reduction in line length 
may be desired to keep the right margin aligned with an earlier margin. Blank lines, other vertical 
spaces, and lines generated by tl are not numbered. Numbering can be temporarily suspended with 

6 nn, or with an .nm followed by a later .nm +0. In addition, a line number indent I, and the 
number-text separation S may be specified in digit-spaces. Further, it can be specified that only 
those line numbers that are multiples of some number M are to be printed (the others will appear 

9 as blank number fields). 

Request 
Form 

Initial 
Value 

.nm ±N M S I 

.nn N 

/fNo 
Argument Notes Explanation 

off E 

N==l E 

Line number mode. If ± Nis given, line numbering is 
turned on, and the next output line numbered is num­
bered ± N. Default values are M::& 1, S== 1, and 1==0. 
Parameters corresponding to missing arguments are 
unaffected; a non-numeric argument is considered miss­
ing. In the absence of all arguments, numbering is 
turned off; the next line number is preserved for possible 
further use in number register In. 

The next N text output lines are not numbered. 

As an example, the paragraph portions of this section are numbered with M -- 3: .nm I 3 was 
placed at the beginning; .nm was placed at the end of the first paragraph; and .nm + 0 was placed 

12 in front of this paragraph; and .nm finally placed at the end. Line lengths were also changed (by 

\w'OOOO'u) to keep the right side aligned. Another example is .nm +5 5 x 3 which turns on 
numbering with the line number of the next line to be 5 greater than the last numbered line, with 

15 M == 5, with spacing S untouched, and with the indent I set to 3. 

4-42 



16. Conditional Acceptance of Input 

In the following, c is a one-character, built-in condition name, ! signifies not, N is a numerical expres­
sion, string] and string2 are strings delimited by any non-blank, non-numeric character not in the 
strings, and anything represents what is conditionally accepted. 

Request Initial If No 
Form Value Argument Notes Explanation 

.if c anything 

. if ! c anything 

. if N anything 

. if ! N anything 

.if 'string]' string2' anything 

. if ! ' string]' string2' anything 

. ie c anything 

. el anything 

u 

u 

u 

The built-in condition names are: 

Condition 
Name 

0 

e 
t 
n 

If condition c true, accept anything as input~ in multi-line 
case use \ {anything\}. 

If condi tion c false, accept anything . 

If expression N > 0, accept anything . 

If expression N ~ 0, accept anything . 

If string 1 identical to string2. accept anything. 

If string1 not identical to string2. accept anything . 

If portion of if-else~ all above forms (ljke if) . 

Else portion of if-else . 

True If 
Current page number is odd 
Current page number is even 
Formatter is TROFF 
Formatter is NROFF 

If the condition c is true, or if the number N is greater than zero, or if the strings compare identically 
(including motions and character size and font>, anything is accepted as input. If a ! precedes the condi­
tion, number, or string comparison, the sense of the acceptance is reversed. 

Any spaces between the condition and the beginning of anything are skipped over. The anything can be 
either a single input line (text, macro, or whatever) or a number of input lines. In the multi-line case, 
the first line must begin with a left delimiter \{ and the last line must end with a right delimiter \}. 

The request ie (if-else) is identical to if except that the acceptance state is remembered. A subsequent 
and matching el (else) request then uses the reverse sense of that state. ie - el pairs may be nested. 

Some examples are: 

.if e .tl ' Even Page %'" 

which outputs a title if the page number is even; and 

.ie \n%>1 \{\ 
'sp 0.5i 
.tt ' Page %'" 
'sp 11.2i \} 
.et .sp 12.5i 

which treats page 1 differently from other pages. 

17. Environment Switching. 

A number of the parameters that control the text processing are gathered together into an environmenT, 
which can be switched by the user. The environment parameters are those associated with requests 
noting E in their Notes column; in addition, partially collected lines and words are in the environment. 
Everything else is global~ exam pies are page-oriented parameters, diversion-oriented parameters, 

4-43 



nu m ber registers, and macro and string definitions. All environments are initialized with default 
parameter values. 

Request Initial 1/ No 
Form Value Argument Notes Explanation 

.el' N N=O previous 

18. Insertions from the Standard Input 

Environment switched to environment 0 ~ N~ 2. Switch­
ing is done in push-down fashion so that restoring a pre­
vious environment must be done with .ev rather than 
specific reference. 

The input can be temporarily switched to the system standard input with rd, which will switch back 
when two newlines in a row are found (the extra blank line is not used). This mechanism is intended 
for insertions in form-letter-like documentation. On UNIX, the standard input can be the user's key­
board, a pipe, or a file. 

Request 
Form 

.rd prompt 

.ex 

Initial 
Value 

I/No 
Argument Notes Explanation 

prompt -=BEL - Read insertion from the standard input until two new­
lines in a row are found. If the standa'rd input is the 
user's keyboard, prompt (or a BEL) is written onto the 
user's terminal. rd behaves like a macro, and arguments 
may be placed after prompt. 

Exit from NROFF/TROFF. Text processing is terminated 
exactly as if all input had ended. 

If insertions are to be taken from, the terminal keyboard while output is being printed on the terminal, 
the command line option - q will turn off the echoing of keyboard input and prompt only with BEL. 
The regular input and insertion input cannot simultaneously come from the standard input. 

As an example, mUltiple copies of a form letter may be prepared by entering the insertions for all the 
copies in one file to be used as the standard input, and causing the file containing the letter to reinvoke 
itself using nx (§19) ~ the process would ultimately be ended by an ex in the insertion file. 

19. Input/Output File Switching 

Request Initial 1/ No 
Form Value Argument Notes Explanation 

.so filename 

.nx filename 

.pi program 

20. Miscellaneous 

Request 
Form 

.mc eN 

Initial 
Value 

end-of-file 

If No 

Switch source file. The top input (file reading) level is 
switched to filename. The effect of an 50 encountered in 
a macro is not felt until the input level returns to the file 
level. When the new file ends, input is again taken from 
the original file. so's may be nested. 

Next file is filename. The current file is considered 
ended, and the input is immedi~tely switched to filename. 

Pipe output to program (NROFF only). This request 
must occur before any printing occurs. No arguments are 
transmitted to program. 

Argument Notes Explanation 

off E,m Specifies that a margin character c appear a distance N to 
the right of the right margin after each non-empty text 
line (except those produced by tI). If the output line is 
tOo-long (as can happen in nofill mode) the character will 

4-44 



NROFF/TROFF User's Manual 
October 11, 1976 

.tm string newline 

.ig yy .yy== •• 

.pm t all 

.n 

21. Output and Error Messages. 

B 

be appended to the line. If N is not given, the previous 
N is used~ the initial N is 0.2 inches in NROFF and 1 em 
in TROFF. The margin character used with this para­
graph was a 12-point box-rule. 

After skipping initial blanks, string -(rest of the line) is 
read in copy mode and written on the user's terminal. 

Ignore input lines. ig behaves exactly like de (§7) except 
that the input is discarded. The input is read in copy 
mode, and any auto-incremented registers will be 
affected. 

Print macros. The names and sizes of all of the defined 
macros and strings are printed on the user's terminal; if t 
is given, only the total of the sizes is printed. The sizes 
is given in blocks of 128 characters. 

Flush output buffer. Used in interactive debugging to 
force output. 

The output from tm, pm, and the prompt from rd, as well as various error messages are written onto 
UNIX's standard message output. The latter is different from the standard output, where NROFF format­
ted output goes. By default, both are written onto the user's terminal, but they can be inqependently 
redirected. 

Various error conditions may occur during the operation of NROFF and TROFF. Certain less serious 
errors having only local impact do not cause processing to terminate. Two examples are word overflow, 
caused by a word that is too large to fit into the word buffer (in fill mode), and line overflow, caused by 
an output line that grew too large to fit in the line buffer~ in both cases, a message is printed, the 
offending excess is discarded, and the affected word or line is marked at the point of truncation with a * 
in NROFF and a ,. in TROFF. The philosophy is to continue processing, if possible, on the grounds 
that output useful for debugging may be produced. If a serious error occurs, processing terminates, and 
an appropriate message is printed. Examples are the inability to create, read, or write files, and the 
exceeding of certain internal limits that make future output unlikely to be useful. 

4-45 



TUTORIAL EXAMPLES 

Tl. Introduction 

Although NROFF and TROFF have by design a 
syntax reminiscent of earlier text processors· 
with the intent of easing their use, it is almost 
always necessary to prepare at least a small set of 
macro definitions to describe most documents. 
Such common formatting needs as page margins 
and footnotes are deliberately not built into 
NROFF and TROFF. Instead, the macro and 
string definition, number register, diversion, 
environment switching, page-position trap, and 
conditional input mechanisms provide the basis 
for user-defined implementations. 

The examples to be discussed are intended to be 
useful and somewhat realistic, but won't neces­
sarily cover all relevant contingencies. Explicit 
numerical parameters are used in the examples to 
make them easier to read and to illustrate typical 
values. In many cases, number registers would 
really be used to reduce the number of places 
where numerical information is kept, and to con­
centrate conditional parameter initialization like 
that which depends on whether TROFF or NROFF 
is being used. 

T2. Page Margins 

As discussed in §3, header and footer macros are 
usually defined to describe the top and bottom 
page margin areas respectively. A trap is planted 
at page position 0 for the header, and at -N (N 
from the page bottom) for the footer. The sim­
plest such definitions might be 

.de hd \"define header 
'sp Ii 

.de (0 

'bp 

.wh 0 hd 

.wh -lifo 

\"end definition 
\ "define footer 

\ "end definition 

which provide blank 1 inch top and bottom mar­
gins. The header will occur on the first page, 
only if the definition and trap exist prior to the 

*For example: P. A. Crisman, Ed., The Compatihie Time­
Sharing System. MIT Press, 1965, Section AH9.01 (Descrip­
tion of RUNOFF program on MIT's CTSS system). 

initial pseudo-page transition (§3). In fill mode, 
the output line that springs the footer trap was 
typically forced out because some part or whole 
word didn'1 fit on it. If anything in the footer 
and header that follows causes a break, that word 
or part word will be forced out. In this and other 
examples, requests like bp and sp that normally 
cause breaks are invoked using the no-break con­
trol character ' to avoid this. When the 
header/footer design contains material requiring 
independent text processing, the environment 
may be switched, avoiding most interaction with 
the running text. 

A more realistic example would be 

.de hd \ "header 

.ift .tl '\(rn"\(rn' \"troffcut mark 
· if \ \n % > 1 \ {\ 
'sp 10.5i-l \"tl base at O.Si 
.t1 ., - % -" \ "centered page number 
.ps \ "restore size 
.ft \ "rest'ore font 
• vs \} \ "restore vs 
'sp 11.0i. \"space to 1.0i 
.ns \ "turn on no .. space mode 

.de fo \ "footer 

.ps 10 \ "set footer/header size 

.ft R \ "set font 
• vs 12p \ "set base-line spacing 
.if\\n%=l \{\ 
'sp 1\\n(.pu-O.Si-l Vtl base O.Si up 
.tl" - % -~. \} \"first page number 
'bp 

.wh 0 hd 

.wh -lifo 

which sets the size, font, and base-line spacing 
for the header/footer material, and ultimately 
restores them. The material in this case is a page 
num ber at the bottom of the first page and at the 
top Of the remaining pages. If TROFF is used. a 
cUI mark is drawn in the form of root-en's at each 
margin. The sp's refer to absolute positions to 
avoid dependence on the base-line spacing. 
Another reason for this in the footer is that the 
footer is invoked by printing a line whose vertical 
spacing swept past the trap position by possibly as 

4~46 



much as the base-line spacing. The no-space 
mode is turned on at the end of hd to render 
ineffective accidental occurrences of sp at the top 
of the running text. 

The above method of restoring size, font, etc. 
presupposes that such requests (that set previous 
value) are not used in the running text. A better 
scheme is save and restore both the current and 
previous values as .shown for size in the follow­
ing: 

. de fo 

.nr sl \ \n (.S \ "current size 

.ps 

.nr s2 \ \n (.S 

. ---

.de hd 

. ---

.ps \ \n (s2 

.ps \ \n (sl 

\ "previous size 
\ "rest of footer 

\ "header stuff 
\ "restore previous size 
\"restore current size 

Page numbers may be printed in the bottom mar­
gin by a separate macro triggered during the 
footer's page ejection: 

.de bn \ "bottom number 

.tl .. - % -" \ "centered page number 

. wh -O.Si -1 v bn \ "tl base O.Si up 

T3. Paragraphs and Headings 

The housekeeping associated with starting a new 
paragraph should be collected in a paragraph 
macro that, for example, does the desired 
pre paragraph spacing, forces the correct font, 
size, base-line spacing, and indent, checks that 
enough space remains for more than one line, and 
requests a temporary indent. 

. de pg \ "paragraph 

.br \"break 

.Ct R \ "Corce font, 

.ps 10 \"size, 

.vs 12p \"spacing, 

.in 0 \ "and indent 

.sp 0.4 \ "prespace 

.ne 1 + \ \n (. Vu \ "want more than 1 line 
.. ti O.2i \ "temp inden.t 

The first break in pg will force out any previous 
partial lines, and must occur before the vs. The 
forcing of font, etc. is p~rtly a defense against 
prior error and partly to permit things like sec­
tion heading macros to set parameters only once. 

4-47 

The prespacing parameter is suitable for TROFF~ 
a larger space, at least as big as the output device 
vertical resolution, would be more suitable in 
NROFF. The choice of remaining space to test 
for in the ne is the smallest amount greater than 
one line (the . V is the available vertical resolu­
tion) . 

A macro to automatically number section head­
ings might look like: 

.de sc \ "section 
\ "Coree Cont, etc . 

.sp 0.4 \ "prespace 

.ne 2.4+\\n(.Vu \"want 2.4+ lines 

.n 
\\n+5. 

.nr 5 0 1 

The usage is .sc, followed by the section heading 
text, followed by .pg. The ne test value includes 
one line of heading, 0.4 line in the. following pg, 
and one line of the paragraph text. A word con­
sisting of the next section number and a period is 
produced to begin the heading line. The format 
of the number may be set by af (§8). 

Another common form is the labeled, indented 
paragraph, where the label protrudes left into the 
indent space . 

.de Ip 

.pg 

.in O.Si 

.ta O.2i O.Si 

.li 0 
\t\ \$1 \t\c 

\ "labeled paragraph 

\ "paragraph indent 
\ "label, paragraph 

\"flow into paragraph 

The intended usage is ".lp labe/"; label will begin 
at 0.2 inch, and cannot exceed a length of 
0.3 inch without intruding into the p~ragraph . 
The label could be right adjusted against 0.4 inch 
by setting the tabs instead with . ta O.4iR O.Si. 
The last line of Ip ends with \c so that it will 
become a part of the first line of the text that fol­
lows . 

T4. Multiple Column Output 

The production of multiple column pages 
requires the footer macro to decide whether it 
was invoked by other tha:1 the last column, so 
that it will begin a new column rather than pro­
duce the bottom margin. The header can initial· 
ize a column register that the footer will incre­
ment and test. The following is arranged for two 
columns, but is easily modified for more. 



.de hd 

.nr cI 0 1 

.mk 

\"header 

\ "init column count 
\" mark top of text 

.de fo \ "footer 

.ie \ \n + (cl < 2 \ {\ 

.po +3.4i \"next column: 3.1 +0.3 

.rt \"back to mark 

.ns \} \" no-space mode 

.el \ {\ 

.po \\nMu \"restore left margin 

'bp \} 

.11 3.1i \"column width 

.nr 1\1 \ \ n (.0 \" saye left margin 

Typically a portion of the top of the first page 
contains full width text~ the request for the nar­
rower line length, as well as another .mk would 
be made where the two column output was to 
begin. 

T5. Footnote Processing 

The footnote mechanism to be described is used 
by imbedding the footnotes in the input text at 
the point of reference, demarcated by an initial 
.fn and a terminal .ef: 

.fn 
FOOl170lf 'f.\·' and cOl11rollll1es ... 

.ef 

In the following, footnotes are processed in a 
separate environment and diverted for later 
printing in the space immediately prior to the 
bottom margin. There is provision for the case 
where the last collected footnote doesn't com­
pletely fit in the available space. 

.de hd \ "header 

.nr x 0 1 \"init footnote count 

.nr y O-\\nb \"current footer place 

.ch fo -\ \nbu \"reset footer trap 

. if \ \ n (dn . fz \" leftover footnote 

.de fo 

.nr dn 0 

.if\\nx\(\ 

\ "footer 
\ "zero last dhersion size 

.e\" 1 \ "expand footnotes in e\'1 

. nf \" retain vertical size 

.FN \"footnotes 

.rm FN \ "delete it 

.if "\ \ n ('z" fy" .di \" end overflo\\ dh'ersion 

.nr x 0 \ "disable fx 

4-48 

.e'· \} \"pop enyironment 

'bp 

.de fx \" proces~ footnote oyerflow 

.if \ \nx .di fy \"divert overflow 

.de fn \ "start footnote 

.da FN \"dh'ert (append) footnote 

.el' 1 \ "in en"ironment 1 

.if \ \n + x = 1 .fs \ "if first. include separator 

.fi \ "fill mode 

.de ef \" end footnote 

.br \"finish output 

.nr z \ \n <.,' \" save spacing 

.el' \" pop e\" 

.di \" end dhersion 

.nr y -\\n(dn \"new footer position. 

. if \ \ n x = 1 . n r ~' - (\ \ n (. \' - \ \ n z)- \ 
\ "uncertainty correction 

.ch fo\\nyu \"y is negative 

.if (\\n(nl+],'» (\\nCp+\\ny) \ 

.ch fo \\n(nlu+1\- \"it didn't fit 

.de fs 
\1' Ii' 
.br 

\"separator 
\" 1 inch rule 

.de fz \" get lefto"-er footnote 

.fn 

.nf \ .. retain vertical size 

.h' \" where fx put it 

.ef 

.nr b 1.0i \ "bottom margin size 

. wh 0 hd \" header trap 

.wh 12i fo \"footer trap. temp position 

.wh -\\nbu ex \"ex at footer position 

.ch fo - \ \nbu \"conceal fx with fo 

The header hd initializes a footnote count regis­
ter x, and sets both the current footer trap posi­
tion register ~' and the footer trap itself to a nom­
inal position specified in register b_ In addition, 
if the register dn indicates a leftover footnote, fz 
is invoked to reprocess it. The footnote start 
macro fn begins a diversion (append) in environ­
ment 1, and increments the count x: if the count 
is one, the footnote separator fs is interpolated . 
The separator is kept in a separate macro to per­
mit user redefinition. The footnote end macro ef 
restores the previous environment and ends the 
diversion after saving the spacing size in register 
z. y is then decremented by the size of the 



footnote, available in dn~ then on the first foot~ 

note, y is further decremented by the difference 
in vertical base~line spacings of the two environ~ 
ments, to prevent the late triggering the footer 
trap from causing the last line of the combined 
footnotes to overflow. The footer trap is then set 
to the lower (on the page) of y or the current 
page position (nl) plus one line, to allow for 
printing the reference line. If indicated by x, the 
footer fo rereads the footnotes from FN in nofill 
mode in environment 1, and deletes FN. If the 
footnotes were too large to fit, the macro fx will 
be trap~invoked to redivert the overflow into fy, 
and the register dn wtll later indicate to the 
header whether fy is empty. Both fo and fx are 
planted in the nominal footer trap position in an 
order that causes fx to be concealed unless the fo 
trap is moved. The footer then terminates the 
overflow diversion, if necessary, and zeros x to 
disable fx, because the uncertainty correction 
together with a not-too-Iate triggering of the 
footer can result in the footnote rereading finish­
ing before reaching the fx trap. 

A good exercise for the student is to combine 
the multiple-column and footnote mechanisms. 

T6. The Last Page 

After the last input file has ended, NROFF and 
TROFF invoke the end macro (§7), if any, and 
when it finishes, eject the remainder of the page. 
During the eject, any traps encountered are pro­
cessed normally. A t the end of this last page, 
processing terminates unless a partial line, word, 
or partial word remains. If it is desired that 
another page be started, the end-macro 

.de en 
\c 
'bp 

.em en 

\ -end-macro 

will deposit a null partial word, and effect 
another last page. 



Table I 

Font Style Exampl,es 

The following fonts are printed in 12-point, with a vertical spacing of 14-point, and with non­
alphanumeric characters separated by l/.a em space. The Special Mathematical Font was specially 
prepared for Bell Laboratories by Graphic Systems, Inc. of Hudson, New Hampshire. The Times 
Roman, Italic, and Bold are among the many standard fonts available from that company. 

Times Roman 

abcdefghijklmnopqrstuvwxyz 
ABCDEFGHIJKLMNOPQRSTUVWXYZ 
1234567890 
! $ % & ( ) , , * + - . , / : ~ = ? [ ] I 
• 0 - - _ 1/4 1/2 3/4 fi f1 it ffi mot ' ¢ ® © 

Tilnes I!alic 

a bcde.!Rhoiik In1110pq rs!uvwxyz 
A BCDEFGHIJKLMNOPQRSTUVWXYZ 
J 234567890 
.' $ % & ( ) , , * + - .. / : " = ? [ 11 
• 0 - - _ '14 '/.., ·Y4.n.lf fffli If! 0 t I ( ® © 

Times Bold 

a bcdefgh ij kl m nopqrstuvwxyz 
ABCDEFGHIJKLMNOPQRSTUV\\'XYZ 
1234567890 
! $ IVII & ( ) , , * + - . , / : ; = ? ( J I 
• 0 - - _ 1/4 1/2 3/4 fi fl ff ffifH 0 t ' ¢ ® ([ 

Special Mathematical Font 

,,'\A _'_/< > {}#@+_=* 
a~y8Es~OLKA~v~orrp~~Tv¢X~W 
r~e/\=nLy<t>'I' n 
.J- ~ ~ = - = ~ - - r ! x -7 ± U n C ::> k d 00 a 
§ \1.., J 0: 0 E t.---@ I O(llJ{ H lJ f11 

4-50 



Table II 

Input Naming Conventions for " ',and 
and for Non-ASCII Special Characters 

N on-ASCII characters and minus on the standard fonts. 

Input Character Input Character 
Char Name Name Char Name Name 

close quote fi \(fi fi 
open quote fl \ (fl fl 

\(em 3/4 Em dash ff \(tf ff 
hyphen or ffi \(Fi ffi 

\(hy hyphen ft1 \(FI ft1 
\- current font minus \(de degree 

• \(bu bullet t \(dg dagger 
0 \(sq square \(fm foot mark 

\(ru rule ¢ \(ct cent sign 
1/4 \(14 1/4 ~ \(rg registered 
112 \(12 1/2 ~ \(co copyright 
3f4 \(34 3/4 

Non-ASCII characters and', " _, +, -, -, and • on the special font. 

The ASCII characters @, #, ", " ., <, >, \, {, }, -, ", and _ exist only on the special font and are 
printed as a l·em space if that font is not mounted. The following characters exist only on the special 
font except for the upper case Greek letter names followed by t which are mapped into upper case 
English letters in whatever font is mounted on font position one (default Times Roman). The special 
math plus, minus, and equals are provided to insulate the appearance of equations from the choice of 
standard fonts. 

Input Character Input Character 
Char Name Name Char Name Name 

+ \ (pi math plus K \(*k kappa 
\(mj math minus ~ \ (*1 lambda 
\ (eq math equals J1. \(*m mu 

• \( .. math star 1I \(*n nu 
§ \(sc section ~ \(*c xi 

\faa acute accent 0 \(*0 omicron 
\(ga grave accent rr \(*p pi 
\ (ul underrule p \(·r rho 

/ \ (sl slash (matching backs lash) 0- \(*s sigma 
a \(*a alpha f) \ (ts terminal sigma 
f3 \ (*b beta j \ (*t tau 
y \(*g gamma u \ (*u upsilon 
8 \ (*d delta (/) \(*f phi 
E \(*e epsilon X \ (*x chi , \(*z zeta I/J \e.q psi 
T'J \(*y eta w \(,"w omega 
() \<*h theta A V*A Alphat 

\ (*j iota B \<*B Betat 

4-51 



Input Character Input Character 
Char Name Name Char Name Name 

r V*G Gamma I \ (br box vertical rule 

A \(*0 Delta * \(dd . double dagger 

E V*E Epsilont ... \(rh right hand 

Z \(*Z Zetat .... \(Ih left hand 

H \(.y Etat @) \(bs Bell System logo 

e \(·H Theta I \(or or 

I \ (·1 lotat 0 \ (ci circle 

K \(·K Kappat f \ (It . 
\ 

left top of big curly bracket 

A \(·L Lambda l \(Ib left bottom 

M V·M Mut 1 \ (rt right top 

N \(·N Nut J \ (rb right bot 

- \(·C Xi ~ \Ok left center of big curly bracket 

0 \(·0 Omicront l \(rk right center of big curly bracket 

n \ (.p Pi I \(bv bold vertical 

P \(·R Rhot l \ (If left floor {left bottom of big 

1: \(·S Sigma square bracket) 

T V-T Taut J \ (rf right floor (right bottom) 
y \(*U Upsilon r \(Ie left ceiling (left top) 

<I> V-F Phi 1 \(re right ceiling (right top) 

X \(*X Chit 
'I' \(-Q Psi 
n \(-W Omega 

.J \ (sr square root 
\(rn root en extender 

~ \(>-= >-
~ \«_ <:II: 
- \ (= .. identically equal 

- V-a=:: approx -
\(ap approximates 

-;e. \0 -= not equal 
\(-> right arrow 
V<- left arrow 
\(ua uparrow 
\(da down arrow 

x \(mu multiply 
\(di divide 

± \(+- plus-minus 
U \(cu cup (union) 
n \(ca cap (intersection) 
C \(sb subset of 
~ \(sp superset of 
k \(ib improper su bset 
;d \(ip improper superset 
00 \(if infinity 
a \(pd partial derivative 
\l \(gr gradient 
..., \(no not 

J \ (is integral sign 
ex: \ (pt proportional to 
0 \(es empty set .. ' 
E \(mo member of 

4-52 



Options 

-h 

-z 

Old Requests 

.ad c 

. so name 

~ew Request 

.ab text 

.fz F N 

Summary of Changes to N/TROFF Since October 1976 Manual 

(Nroff only) Output tabs used during horizontal spacing to speed output as well as 
reduce Ol,ltput byte count. Device tab settings assumed to be every 8 nominal character 
widths. The default settings of input (logical) tabs is also initialized to every 8 nominal 
character widths. 

Efficiently suppresses formatted output. Only message output will occur (from "tm"s 
and diagnostics). 

The adjustment type indicator "c" may now also be a number previously obtained from 
the".j" register (see below). 

The contents of file "name" will be interpolated at the point the "so" is encountered . 
Previously. the interpolation was done upon return to the file-reading input level. 

Prints "text" on the message output and terminates without further processing. If "text" 
is missing, "User Abort." is printed. Does not cause a break. The output buffer is 
flushed. 

forces [ont "F" to be in si~e N. N may have the form N, + N, or -N. For example, 
.fz 3 -2 

will cause an implicit \5-2 every time font 3 is entered, and a corresponding \s + 2 when 
it is left. Special font characters occurring during the reign of font F will have the same 
size modification. If special characters are to be treated differently, 

.fz S F N 
may be used to specify the size treatment of special characters during font F. For 
example . 

.fz 3 -3 

.fz S 3 -0 
will cause automatic reduction of font 3 by 3 points while the special characters would 
not be affected. Any ~~ Jp" request specifying a font on some position must precede 
".fl" requests relating to that position. 

~ew Predefined Number Registers. 

.k 

.J 

. P 

. L 

c. 

Read-only. Contains the horizontal size of the text portion (without indent) of the 
current partially collected output line, if any, in the current environment. 

Read-only. Anum ber representing the current adjustment mode and type. Can be 
saved and later given to. the "ad" request to restore a previous mode. 

Read-only .. 1 if the current page is being printed, and zero otherwise . 

Read-only. Contains the current line-spacing parameter ("Is") . 

General register access to the input line-number in the current input file. Contains the 
same value as the re:,1d-only ".c" register. 

4-53 



ATROFF Tutorial 

Brian W. Kernighan 

Bell Laboratories 
Murray Hill, New Jersey 07974 

ABSTRACT 

trofl' is a text-formatting program for driving the Graphic Systems photo­
typesetter on the UNIxt and Geos operating systems. This device is capable of 
producing high quality text~ this paper is 'an example of trofl' output. 

The phototypesetter itself normally runs with four fonts, containing 
roman, italic and bold letters (as on this page), a full greek alphabet, and a sub­
stantial number of special characters and mathematical symbols. Characters can 
be printed in a range of sizes, and placed anywhere on the page. 

trofl' ailows the user full control over fonts, sizes, and character positions, 
as well as the usual features of a formatter -right-margin justification, 
automatic hyphenation, page titling and numbering, and so on. It also provides 
macros, arithmetic variables and operations, and conditional testing, for compli­
cated formatting tasks. 

This document is an introduction to the most basic use of trofl'. It 
presents just enough information to enable the user to do simple formatting 
tasks like making viewgraphs, and to make incremental changes to existing 
packages of trofl' commands. In most respects, the UNIX formatter nrofl' is 
identical to trofl', so this document also serves as a tutorial on nroff. 

August 4, 1978 

tUN IX IS a Trademark of Bell Laboratories. 

4-54 



A TROFF Tutorial 

Brian W. Kernighan 

Bell Laboratories 
Murray Hill, New Jersey 07974 

1. Introduction 

troff [1] is a text-formatting program, writ­
ten by 1. F. Ossanna, for producing high-quality~ 
printed output from the phototypesetter on the 
UNIX and GeOS operating systems. This docu­
ment is an example of troff output. 

The single most important rule of using 
troff is not to use it directly, but through some 
intermediary. In many ways, troff resembles an 
assembly language - a remarkably powerful and 
flexible one - but nonetheless such that many 
operations must be specified at a level of detail 
and in a form that is too hard for most people to 
use effectively. 

For two special applications, there are pro· 
grams that provide an interface to trotl' for the 
majority of users. eqn [2] provides an easy to 
learn language for typesetting mathematics; the 
eqn user need know no troft' whatsoever to 
typeset mathematics. tbl [3] provides the same 
convenience for producing tables of arbitrary 
complexity. 

For producing straight text (which may 
well contain mathematics or tables), there are a 
number of 'macro packages' that define format­
ting rules and operations for specific styles of 
documents, and reduce the amount of direct 
contact with troff. In particular, the' - ms' [4] 
and PWB/MM [5] packages for Bell Labs inter­
nal memoranda and external papers provide most 
of the facilities needed for a wide range of docu­
ment preparation. (This memo was prepared 
with '-ms'') There are also packages for view­
graphs, for simulating the older roff formatters 
on UNIX and GeOS, and for other specialapplica­
tions. Typically you will find these packages 
easier to use than troff once you get beyond the 
most trivial operations; you should always con­
sider them first. 

In the few cases where existing packages 
don't do the whole job, the solution is lIot to 
write an entirely new set of troff instructions 
from scratch, but to make small changes to adapt 
packages that already exist. 

4-55 

In accordance with this philosophy of let­
ting someone else do the work, the part of troff 
described here is only a small part of the whole, 
although it tries to concentrate on the more use­
ful pans. In any case, there is no attempt to be 
complete. Rather, the emphasis is on showing 
how to do simple things, and how to make incre­
mental changes to what already exists. The con­
tents of the remaining sections are: 

2. Point sizes and line spacing 
3. Fonts and special characters 
4. Indents and line length 
5. Tabs 
6. Local motions: Drawing lines and charac~ers 
7. Strings 
8. Introduction to macros 
9. Titles, pages and numbering 

10. Number registers and arithmetic 
11. Macros with arguments 
12. Conditionals 
13. Environments 
14. Diversions 

Appendix: Typesetter character set 

The trofT described here is the (-language ver­
sion running on UNIX at Murray Hill, as docu­
mented in [11. 

To use troff you have to prepare not only 
the actual text you want printed, but some infor­
mation that tells how you want it printed. 
(Readers who use rofT will find the approach 
familiar.) For troff the text and the formatting 
information are often intertwined quite inti­
mately. Most commands to troff are placed on a 
line separate from the text itself, beginning with 
a period (one command per line). For example, 

Some text. 
.ps 14 
Some more text. 

will change the 'point size', that is, the size of 
the letters being printed, to '14 point' (one point 
is 1172 inch) like this: 



Some text. Some more text. 
Occasionally, though, something special 

occurs in the middle of a line - to produce 

Area == -rr,2 

you have to type 

Area = \(*p\nr\fR\l\s8\u2\d\sO 

(which we will explain shortly L The backslash 
character \ is used to introduce troff commands 
and special characters within a line of text. 

2. Point Sizes; Line Spacing 

As mentioned above, the command .ps 
sets the point size. One point is 1172 inch, so 
6-point characters are at most 1112 inch high, 
and 36-point characters are Ih inch. There are 15 
point sizes, listed below. 

o POlnl. Pdd m) t>ox wllh fi~c dozen liquor JU~~ 

7 point: Pilck 1Tl~ box with five dozen liquor jugs. 
8 point: Pack my box with five dozen liquor jugs. 
9 point: Pack my box with five dozen liquor jugs. 
10 point: Pack my box with five dozen liquor 
11 point: Pack my box with five dozen 
12 point: Pack my box with five dozen 
14 point: Pack my box with five 

16 point 18 point 20 point 

22 24 28 36 
If the number after .ps is not one of these 

legal sizes, it is rounded up to the next valid 
value, with a maximum of 36. If no number fol­
lows .ps, troff reverts to the previous size, what­
ever it was. troff begins with point size ) 0, 
which is usually fine. This document is in 9 
point. 

The point size can also be changed in the 
middle of a line or even a word with the in-line 
command \s. To produce 

UNIX runs on a PDP-11/45 

type 

\s8UNIX\s 1 0 runs on a \s8PDP-\sl 0 11/45 

As above, \s should be followed by a legal point 
size, except that \sO causes the size to revert to 
its previous value. Notice that \s1011 can be 
understood correctly as 'size 10. followed by an 
11', if the size is legal, but not otherwise. Be 
cautious with similar constructions. 

Relative size changes are also legal and 
useful: 

4-56 

\s-2UNIX\s+2 

temporarily decrea5.es the size, whatever it is, by 
two points, then reSlore~ it. Relative size 
changes have the advantage that the size 
difference is independent of the starting size of 
the document. The amount of the relative 
change is restricted to a single digit. 

The other parameter that determines wha t 
the type looks like is the spacing between itnes, 
which is set independently of the point size. 
Vertical spacing is measured from the bottom of 
one line to .the bottom of the next. The com­
mand to control vertical spacing is .vs. For run­
ning text, it is usually best to set the vertical 
spacing about 200;(, bigger than the character size. 
For example, so far in this document, we have 
used "9 on II ", that is, 

.ps 9 

.vs 11 p , 

If we changed to 

.ps 9 

.vs 9p 

the running text would look like this. After a 
few lines, you will agree it looks a little cramped. 
The right vertical spacing is partly a matter of 
taste, depending on how much text you want to 
squeeze into a given space, and partly a matter 
of traditional printing style. By default, troff 
uses lOon 12. 

Point size and vertical spacing 
make a substantial difference in the 
amount of text per square inch. 
This is 12 on 14. 

POInl ~I/~ and \CrlILJI \PJlln~ 1ll~~C J ~utlslanllJI dltlcrcn(c In 

Ihc JnHlur,1 ,.I 101 per ~qU.Hl· In": h,r c\Jn1pk. 10 on 12 U\CS Jt>(Jut 

l"ll.;' ;I, mud, o;pJ(t J~ 7 (In ~ 11\" 1\ (1 on 7. ,,·111(1\ I~ l',cn smaller II 
p .. d,\ J l(Jt Illor,· "'ord' p.:r hnl·. tlUI \IIU (In go blind lT~lIl~ 10 rCJd II 

When used withoul arguments .. ps and .vs 
revert to the previous. size and vertical spacing 
respectively. 

The command .sp is used to gel extra vert­
ical space. Unadorned, it gives you one extra 
blank line (one .VS, whatever that has been set 
toL Typically, that's more or less than you 
want, so .sp can be followed by information 
about how much space you want -

.sp 2i 

means 'two inches of vertical space'. 

.sp 2p 

means 'two points of vertical space'; and 

.sp 2 

means 'two vertical spaces' - two of whatever 



,vs is set to (this can also be made explicit with 
.sp 2v)~ troir also understands decimal fractions 
in most places. so 

.sp l.5i 

is a space of 1.5 inches. These same scale fac­
tors can be used after. vs to define line spacing, 
and in fact after most commands that deal with 
physical dimensions. 

It should be noted that all size numbers 
are converted internally to 'machine units', 
which are 1/432 inch (1/6 point>, For most pur­
poses, this is enough resolution that you don't 
have to worry about the accuracy of the 
representation. The situation is not quite so 
good vertically, where resolution is 11144 inch 
(l /2 po i n 1> . 

3. Fonts and Special Characters 

troir and the typesetter allow four different 
fonts at anyone time. Normally three fonts 
(Times roman, italic and bold) and one collec­
tion of special characters are permanen tly 
mounted. 

abcdefghijklmnopqrstuvwxyz 0123456789 
ABCDEFGHIJKLMNOPQRSTUVWXYZ 
abcdefghljklmnopqrsn/vwxy:: 0123456789 
ABe D£FG HI J K Li'vl NOPQRSTU V W x YZ 
abcdefghijklmnopqrstuvwxyz 0123456789 
ABCDEFGHIJKLMNOPQRSTUVWXYZ 

The greek, mathematical symbols and miscellany 
of the special font are listed in Appendix A. 

troir prints in roman unless told otherwise. 
To switch into bold, use the .ft command 

.ftB 

and for italics, 

.ft I 

To return to roman, use .ft R~ to return to the 
previous font. whatever it was, use either .ft P or 
just .ft. The 'underline' command 

.ul 

causes the nex.t input line to print in italics. .ul 
can be followed by a count to indicate that more 
than one line is to be italicized. 

Fonts can also be changed within a line or 
word with the in-line command \f: 

boldface text 

is produced by 

\fBbold\flface\ffi text 

If you want to do this so the previous font, 
whatever it was. is left undisturbed, insert extra 
\fP commands, like this: 

4-57 

\fBbold\fP\flface\fP\fR text\fP 

Because only the immediately previous font is 
remembered, you have to restore the previous 
font after each change or you can lose it. The 
same is true of .ps and .vs when used without an 
argument. 

There are other fonts available besides the 
standard set, although you can still use only four 
at any given time. The command Jp tells troir 
what fonts are physically mounted on the 
typesetter: 

Jp 3 H 

says that the Helvetica font is mounted on posi­
tion 3. (For a complete list of fonts and what 
they look like, see the troff manuat.) Appropriate 
Jp commands should appear at the beginning of 
your document if you do not use the standard 
fonts. 

It is possible to make a document rela­
tively independent of the actual fonts used to 
print it by using font numbers instead of names; 
for example, \f3 and JC) mean 'whatever font 
is mounted at position 3', and thus work for any 
setting. Normal settings are roman font on 1, 
italic on 2, bold on 3, and special on 4. 

There is also a way to get 'synthetic' bold 
fonts by overstriking letters with a slight offset. 
Look at the .bd command in [11. 

Special characters have four-character 
names beginning with \ (, and they may be 
inserted anywhere. For example, 

1/4 + 112 = 3/4 

is produced by 

\(14 + \02 = \04 

In particular, greek letters are all of the form 
\(.-, where - is an upper or lower case roman 
letter reminiscent of the greek. Thus to get 

t(exx{3) - 00 

in bare troft' we have to type 

That line is unscrambled as follows: 

\(·s t 
( ( 

\(·a ex 
\<mu x 
\ {*b {3 
) ) 

\(-> 
Vir 00 

A complete list of these special names occurs in 
Appendix A. 



In eqn [2] the same effect can be achieved 
with the input 

SIGMA ( alpha times beta) - > inf 

which is less concise, but clearer to the unini­
tiated. 

Notice that each four-character name is a 
single character as far as trofl' is concerned - the 
'translate' command 

. tr \(mi\(em 

is perfectly clear, meaning 

. tr --

that is, to translate - into-. 

Some characters are automatically 
translated into others: grave and acute ' 
accents (apostrophes) become open and close 
single quotes '-'; the combination of " ... " is gen-
erally preferable to the double quotes " ... ". Simi-
larly a typed minus sign becomes a hyphen -. To 
print an explicit - sign, use \-. To get a 
backslash printed, use \e. 

4. Indents and Line Lengths 

trofl' starts with a line length of 6.5 inches, 
too wide for 81hxll paper. To reset the line 
length, use the .n command, as in 

.11 6i 

As with .sp, the actual length can be specified in 
several ways; inches are probably the most intui­
tive. 

The maximum line length provided by the 
typesetter is 7.5 inches, by the way. To use the 
full width, you will have to reset the default phy­
sicalleft margin ("page offset"), which is nor­
mally slightly less than one inch from the left 
edge of the paper. This is done by the .po com­
mand. 

.po 0 

sets the offset as far to the left as it will go. 

The indent command .in causes the left 
margin to be indented by some specified amount 
from the page offset. If we use .in to move the 
left margin in, and .Il to move the right margin 
to the left, we can make offset blocks of text: 

.in O.3i 

.11 -O.3i 
text to be set into a brock 
.11 +O.3i 
.in -O.3i 

will create a block that looks like this: 

4-58 

Pater noster qui est in caelis 
sanctificetur nomen tuum; adveniat 
regnum tuum; fiat voluntas tua, sicut 
in caelo, et in terra.... Amen. 

Notice the use of '+' and '-' to specify the 
amount of change. These change the previous 
setting by the specified amount, rather than just 
overriding it. The distinction is quite important: 
.It + 1 i makes lines one inch longer; .11 1 i makes 
them one inch long . 

With .in, .11 and .po, the previous value is 
used if no argument is specified . 

To indent a single line, use the 'temporary 
indent' command .ti. For example, all paragraphs 
in this memo effectively begin with the com­
mand 

.ti 3 

Three of what? The default unit for .6, as for 
most horizontally oriented commands UL .in, 
.po), is ems; an em is roughly the width of the 
letter 'm' in the current point size. (Precisely. a 
em in size p is p points.) Alth~ugh inches are 
usually clearer than ems to people who don't set 
type for a living, ems have a place: they are a 
measure of size that is proportional to the 
current point size. If you want to make text that 
keeps its proportions regardless of point size, you 
should use ems for all dimensions. Ems can be 
specified as scale factors directly, as in .ti 2.5m. 

Lines can also be indented negatively if the 
indent is already positive: 

.ti -OJi 

causes the next line to be moved back three 
tenths of an inch. Thus to make a decorative 
initial capital~ we indent the whole paragraph, 
then move the letter 'P' back with a .ti com­
mand: 

P
ater noster· qui est in caelis 
sanctificetur nomen tuum; ad­
veniat regnum tuum; fiat volun­

tas tua, sicut in caelo, et in terra. 
Amen. 

Of course, there is also so'me trickery to make 
the 'P' bigger (just a '\s36P\sO'), and to move it 
down from its normal position (see the section 
on local motions). 

5. Tabs 

Tabs (the ASCII 'horizontal tab' character) 
can be used to produce output in columns, or to 
set the horizontal position of output. Typically 
tabs are used only in unfilled text. Tab stops are 
set by' default every half inch from the current 
indent, but can be changed by the .ta command. 
To set stops every inch. for example, 



.ta Ii 2i 3i 4i 5i 6i 

Unfortunately the stops are left-justified 
only (as on a typewriter), so lining UP columns 
of right-justified numbers can be painful. If you 
have many numbers, or if you need more com­
plicated table layout, don't use troff directly~ use 
the tbl program described in (3]. 

For a handful of numeric columns, you 
can do it this way: Precede every number by 
enough blanks to make it line up when typed. 

.nf 

.ta Ii 2i 3i 
1 tab 2 tab 3 

40 tab 50 tab 60 
700 tab 800 tab 900 
.fi 

Then change each leading blank into the string 
\0. This is a character that does not print, but 
that has the same width as a digit. When 
printed, this will produce 

1 
40 

700 

2 
50 

800 

3 
60 

900 

It is also possible to fill up tabbed-over 
space with some character other than blanks by 
setting the 'tab replacement charac'ter' with the 
. tc command: 

.ta 1.5i 2.Si 

. tc \ (ru (\ (ru is "_It) 
Name tab Age lab 

produces 
Name _______ - Age ........ - __ _ 

To reset the tab replacement character to a 
blank, use. tc with no argument. (Lines can also 
be drawn with the \1 command, described in Sec­
tion 6'> 

troff also provides a very general mechan­
ism called 'fields' for setting up complicated 
columns. (This is used by thl). We will not go 
into it in this paper. 

6. Local Motions: Drawing lines and charac-
ters 

Remember 'Area == 1I"r2, and the big 'P' 
in the Paternoster. How are they done? troff 
provides a host of commands for placing charac­
ters of any size at any place. You can use them 
to draw special characters or to tune your output 
for a particular appearance. Most of these com­
mands are straightforward, but messy to read 
and tough to type correctly. 

If you won't use eqn, subscripts and super­
scripts are most easily done with the half-line 

4~59 

local motions \u and \d. To go back up the page 
half a point-size, insert a \u at the desired place~ 
to go down, insert a \d. (\u and \d should always 
be used in pairs, as explained below.) Thus 

Area = \(·pr\u2\d 

produces 

Area = 1I"r2 

To make the '2' smaller, bracket it with 
\s- 2 ... \50. Since \u and \d refer to the current 
point size, be sure to put them either both inside 
or both outside the siz.e changes, or you will get 
an unbalanced vertical motion. 

Sometimes the space given by \u and \d 
isn't the right amount. The \v command can be 
used to request an arbitrary amount of vertical 
motion. The in-line command 

\v'(amount)' 

c',!Uses motion up or down the page by the 
amount specified in '(amount)'. For example, to 
move the 'P' down, we used 

.in +0.6i (move paragraph tn) 

.11 -O.3i (shorten lines) 

.ti -0.3i (move P back) 
\ v'2'\s36P\sO\ v' - 2' ater noster qui est 
in caelis '" 

A minus sign causes upward motion. while no 
sign or a plus sign means down the page. Thus 
\ v' - 2' causes an upward vertical motion of two 
line spaces. 

There are many other ways to specify the 
amount of motion -

\v'D.li' 
\v'3p' 
\v' -D.Sm' 

and so on are all legal. Notice that the scale 
specifier i or p or m goes inside the quotes. Any 
character can be used in place of the quotes; this 
is also true of all other troff commands described 
in this section. 

Since troff does not take within-the-line 
vertical motions into account when figuring out 
where it is on the page, output lines can have 
unexpected positions if the left and right ends 
aren't at the same vertical position. Thus \ v. 
like \u and \d. should always balance upward 
vertical motion in a line with the same amount 
in the downward direction. 

Arbitrary horizontal motions are also avail­
able - \h is quite analogous to \ v, except that 
the default scale factor is ems instead of line 
spaces. As an example. 

\h' -O.li' 



causes a backwards motion of a tenth of an inch. 
As a practical matter, consider printing the 
mathematical symbol' > > '. The default spacing 
is too wide, so eqn replaces this by 

> \h' -0.3m'> 

to produce ». 
Frequently \h is used with the 'width func­

tion' \w to generate mOl ions equal to the width 
of some character string. The construction 

\w'thing' 

is a number equal to the width of 'thing' in 
machine units (1/432 inch). All trofl' computa­
tions are ultimately done in these units. To 
move horizontally the width of an 'x', we can 
say 

\h'\v/x'u' 

As we mentioned above, the default scale factor 
for all horizontal dimensions is m, ems, so here 
we must have the u for machine units, or the 
motion produced will be far too large. trofl' is 
quite happy with the nested quotes, by the way, 
so long as you don't leave any out. 

As a live example of this kind of construc­
tion, all of the command names in the text. like 
.sp, were done by overstriking with a sligh t 
offset. The commands for .sp are 

.sp\h' - \ w'.sp'u'\h'l u'.sp 

Thai is. put out '.sp', move left by the width of 
'.sp', move right 1 unit, and print '.sp' again. 
(Of course there is a way to avoid typing that 
much input for each command name, which we 
will discuss in Section 11,) 

There are also several special-purpose trofl' 
commands for local motion. We have already 
seen \0, which is an unpaddable white space of 
the same width as a digit. 'Unpaddable' means 
that it will never be widened or splil across a line 
by line justification and filling. There is also 
\ (blank), which is an unpaddable character the 
width of a space, \1. which is half that width, \-, 
which is one quarter of the width of a space, and 
\&, which has zero width. (This last one is use­
ful, for example, in entering a text line which 
would otherwise begin with a '.'J 

The command \0, used like 

\0' set of characters' 

causes (up to 9) characters to be overstruck. cen­
tered on the widest. This is nice for accents, as 
in 

syst\o"e\ (ga"me t\o"e\ (aa"l\o"e\ (aa"phonique 

which makes 

4-60 

sysleme telephonique 

The accents are \(ga and \(aa, or \' and \'; 
remember tha I each is jusl one character to trofl'. 

You can make your own overstrikes with 
another special convention, \z, the zero-motion 
command. \zx suppresses the normal horizontal 
motion after printing the single character x, so 
another character can be laid on top of it. 
Although sizes can be changed within \0, il 
centers the characters on the widest, and there 
can be no horizontal ,or vertical motions, so \z 
may be the only way to get what you want: 

is produced by 

.sp 2 
\s8\z\(sq\s14\z\(sq\s22\z\(sq\s36\(sq 

The .sp is needed to leave room for the result. 

As another example, an eXira-heavy semi­
colon that looks like 

; instead of ~ or ~ 

can be constructed with a big comma and a big 
period above it: 

\s + 6\z,\ v' -0.25m'.\ v'0.25m'\sO 

·0.25m· is an empirical constant. 

A more ornate overstrike is given by the 
brackefing function \b, which piles up characters 
vertically, centered on the current baseline. 
Thus we can get big brackets, constructing them 
with piled-up smaller pieces: 

II x Jj 
by typing in only this: 

.sp 
\b\ (It\ Uk\ (Ib' \b\ (lc\ (If' x \b'\ (rc\(rr' \b\ (rt\ (rk\ (rb' 

trofl' also provides a convenient facility for 
drawing horizontal and vertical lines of arbitrary 
length with arbitrary characters. \1'1 j' draws a 
line one inch long, like this: _-____ _ 
The length can be followed by the character to 
use if the _ isn' I appropriate; \J'0.5i.' draws a 
half-inch line of dots: ............... The construc-
tion \L is entirely analogous, except that it draws 
a vertical line instead of horizontal. 

7. Strings 

Obviously if a paper contains a large 
number of occurrences of an acute accent over a 
letter 'e', typing \o"e\'" for each e would be a 



great nuisance. 

Fortunately, trofl' provides a way in which 
you can store an arbitrary collection of text in a 
'string', and thereafter use the string name as a 
shorthand for its contents. Strings are one of 
several troff mechanisms whose judicious use 
lets you type a document with less effort and 
organize it so that extensive format changes can 
be made with few editing changes. 

A reference to a string is replaced by what­
ever text the string was defined as. Strings are 
defined with the command .ds. The line 

.ds e \o"e\'" 

defines the string e to have the value \o"e\'" 

String names may be either one or two 
characters long, and are referred to by \·x for 
one character names or \.(xy for two character 
names. Thus to get telephone, given the 
definition of the string e as above, we can say 
t\ "'el\ "'ephone. 

If a string must begin with blanks, define it 
as 

. ds xx " text 

The double quote signals the beginning of the 
definition. There is no trailing .quote~ the end of 
the line terminates the string. 

A string may actually be several lines long; 
if trofl' encounters a \ at the end of any line, it is 
thrown away and the next line added to the 
current one. So you can make a long string sim­
ply by ending each line but the last with a 
backslash: 

.ds xx this \ 
is a very \ 
long string 

Strings may be defined in terms of other 
strings, or even in terms of themselves; we will 
discuss some of these possibilities later. 

8. I ntroduction to Macros 

Before we can go much further in trofl', we 
need to learn a bit about the macro facility, In 
its simplest form, a macro is just a shorthand 
notation quite similar to a string. Suppose we 
want every paragraph to start in exactly the same 
way - with a space and a temporary indent of 
two ems: 

.sp 

.ti +2m 

Then to save typing, we would like to collapse 
these into one shorthand line, a trofl' 'command' 
like 

4-61 

.PP 

that would be treated by trofl' exactly as 

.sp 

.ti +2m 

.PP is called a macro. The way we tell trofl' what 

.PP means is to define it with the .de command: 

.de PP 

.sp 

.ti +2m 

The first line names the macro (we used '.PP' 
for 'paragraph', and upper case so it wouldn't 
conflict with any name that trofl' might already 
know about). The last line .. marks the end of 
the definition. In between is the text, which is 
simply inserted whenever trofl' sees the 'com­
mand' or macro call 

.PP 

A macro can contain any mixture of text and 
formatting commands. 

The definition of .PP has to precede its 
first use~ undefined macros are simply ignored . 
Names are restricted to one or two characters. 

Using macros for commonly occurring 
sequences of commands is critically important. 
Not only does it save typing, but it makes later 
changes much easier. Suppose we decide that 
the paragraph indent is too small, the vertical 
space is much too big, and roman font should be 
forced. Instead of changing the whole docu­
ment, we need only change the definition of .PP 
to something like 

.de PP 

.sp 2p 

.ti +3m 

.ftR 

\" paragraph macro 

and the change takes effect everywhere we used 
.PP. 

\" is a troft' command that causes the rest 
of the line to be ignored. We use it here to add 
comments to the macro definition (a wise idea 
once definitions get complicated). 

As another example of macros, consider 
these two which start and end a block of offset, 
unfilled text, like most of the examples in this 
paper: 



.de BS 

.sp 

.nf 

.in +0.3i 

.de BE 

. sp 

.fi 

.in -0.3i 

\" start indented block 

\" end indented block 

Now we can surround text like 

Copy to 
John Doe 
Richard Roberts 
Stanley Smith 

by the commands .BS and .BE, and it will come 
out as it did above. Notice that we indented by 
.in +0.3i instead of .in O.3i. This way we can 
nest our uses of .BS and BE to get blocks within 
blocks. 

If later on we decide that the indent should 
be O.Si, then it is only necessary to change the 
definitions of .BS and .BE, not the whole paper. 

9. Titles, Pages and Numbering 

This is an area where things get tougher, 
because nothing is done for you automatically. 
Of necessity, some of this section is a cookbook, 
to be copied literally until you get some' experi­
ence. 

Suppose you want a title at the top of each 
page, saying just 

----left top center top right toP----

In roff, one can say 

.he 'left top'center top'right top' 

.fa 'left bottom'center bottom'right bottom' 

to get headers and footers automatically on every 
page. Alas, this doesn't work in troff, a serious 
hardship for the novice. I nstead you have to do 
a lot of specification. 

You have to say what the actual title is 
(easy); when to print it (easy enough); and what 
to do at and around the title line (harder), Tak­
ing these in reverse order, first we define a 
macro .NP (for 'new page') to process titles and 
the like at the end of one page and the beginning 
of the next: 

.de NP 
'bp 
'sp O.Si 
.tl 'left top'center top'right top' 
'sp 0.3i 

To make sure we're at the top of a page, we 

4-62 

issue a 'begin page' command 'bp, which causes 
a skip to top-of-page (we'll explain the' shortly), 
Then we space down half an inch, print the title 
(the use of .tt should be self explanatory; later 
we will discuss parameterizing the titles), space 
another 0.3 inches, and we're done . 

To ask for .NP at the bottom of each page, 
we have to say something like 'when the text is 
within an inch of the bottom of the page, start 
the processing for a new page.' This is done with 
a 'when' command .wh: 

.wh -Ii NP 

(No • .' is used before NP; this is simply the 
name of a macro, not a macro call.) The minus 
sign means 'measure up from the boltom of the 
page', so '-1 i' means 'one inch from the bot­
tom'. 

The .wh command appears in the input 
outside the definition of .NP; typically the input 
would be 

.de NP 

.wh -Ii NP 

Now what happens? As text is actually 
being output, troff keeps track of its vertical 
position on the page, and after a line is printed 
within one inch from the bottom, the .NP macro 
is activated. (In the jargon, the .wh command 
sets a (rap at the specified place, which is 
'sprung' when that point is passed,) .NP causes a 
skip to the top of the next page (that's what the 
'bp was for), then prints the title with the 
appropriate margins. 

Why 'bp and 'sp instead of .bp and .sp? 
The answer is that .sp and .bp, like several other 
commands, cause a break to take place. That is, 
all the input text collected but not yet printed is 
flushed out as soon as possible, and the next 
input line is guaranteed to start a new line of 
output. If we had used .sp or .bp in the .NP 
macro, this would cause a break in the middle of 
the current output line when a new page is 
started. The effect would be to print the left­
over part of that line at the top of the page, fol­
lowed by the next input line on a new output 
line. This is nor what we want. Using' instead 
of . for a command tells troff that no break is to 
take place - the output line currently being 
filled should no! be forced out before the space 
or new page. 

The list of commands that cause a break is 
short and natural: 

.bp .br .ce .fi .nf .sp .in .ti 

All others cause no break, regardless of whether 



you use a . or a '. If you really need a break, add 
a .br command at the appropriate place. 

One other thing to beware of - if you're 
changing fonts or point sizes a lot, you may find 
that if you cross a page boundary in an unex­
pected font or size, your titles come out in that 
size and font instead of what you intended. 
Furthermore, the length of a title is independent 
of the current line length,so titles will come out 
at the default length of 6.5 inches unless you 
change it, which is done with the .It command. 

There are several ways to fix the problems 
of point sizes and fonts in titles. For the sim­
plest applications, we can change .NP to set the 
proper size and font for the title, then restore 
the previous values, like this: 

.de NP 
'bp 
'sp 0.5i 
.ft R \" set title font to roman 
.ps 10 \" and size to 10 point 
. It 6i \" and length to 6 inches 
. tl 'left' cen ter' righ t' 
.ps \" revert to previous size 
.ft P \" and to previous font 
'sp 0.3i 

This version of .NP does not work if the 
fields in the .tl command contain size or font 
changes. To cope with that requires trolrs 
'environment' mechanism, which we will discuss 
in Section 13. 

To get a footer at the bottom of a page, 
you can modify .NP so it does some processing 
before the 'bp command, or split the job into a 
footer macro invoked at the bottom margin and 
a header macro invoked at the top of the page. 
These variations are left as exercises. 

Output page numbers are computed 
automatically as each page is produced (starting 
at 1), but no numbers are printed unless you ask 
for them explicitly. To get page numbers 
printed, include the character % in the .tl line at 
the position where you want the number to 
appear. For example 

. tl"-%-" 

centers the page number inside hyphens, as on 
this page. You can set the page number at any 
time with either .bp n, which. immediately starts 
a new page numbered n, or with .pn n, which 
sets· the page number for the next page but 
doesn't cause a skip to the new page. Again, 
. bp +n sets the page number to n more than its 
current value~ .bp means .bp + 1. 

4-63 

10. Number Registers and Arithmetic 

troff has a facility for doing arithmetic, and 
for defining and using variables with numeric 
values, called number regIsters. Number regis­
ters, like strings and macros, can be useful in 
setting up a document so it is easy to change 
later. And of course they serve for any sort of 
arithmetic computation. 

Like strings, number registers have one or 
two character names. They are set by the .nr 
command, and are referenced anywhere by \nx 
(one character name) or \n(xy (two character 
name). 

There are quite a few pre-defined number 
registers maintained by troff, among them % for 
the current page number; nl for the current ver:· 
ical position on the Pllge: dy, rna and yr for the 
current day, month and year: and .s and .f for 
the current size and font. (The font is a number 
from 1 to 4.) Any of these can be used in com­
putations like any other register, but' some, like 
.s and J, cannot be changed with .nr . 

As an example of the use of number regis­
ters, in the - ms macro package [41. most 
significant parameters are defined in terms of the 
values of a handful of number registers. These 
include the point size for text, the vertical spac­
ing, and the line and title lengths. To set the 
point size and vertical spacing for the following 
paragraphs, for example, a user may say 

.nr PS 9 

.nr VS 11 

The paragraph macro .PP is defined (roughly) as 
follows: 

.de PP 

.ps \\ n (PS 

.vs \\n(VSp 

.ftR 

.sp O.5v 

.ti +3m 

\" reset size 
\" spacing 
\" font 
\" half a line 

This sets the font to Roman and the point size 
and line spacing to whatever values are stored in 
the number registers PS and VS. 

Why are there two backslashes? This is 
the eternal problem of how to quote a quote . 
When troff originally reads the macro definition, 
it peels off one backslash to see what's coming 
next. To ensure that another is left in th~ 

definition when the macro is lISI!d. we have to 
put in two backslashes in the detlnition. If only 
one backslash is used, point size and vertical 
spacing will be frozen at the time the macro is 
defined, not when it is used . 

Protecting by an extra layer of backslashes 



is only needed for \n, \., \$ (which we -haven't 
come to yet), and \ itself. Things like \s, \L \h, 
\v, and so on do not need an extra backslash, 
since they are converted by trofl' to an internal 
code immediately upon being seen. 

Arithmetic expressions can appear any­
where that a number is expected. As a trivial 
example, 

.or PS \\n(PS-2 

decrements PS by 2. Expressions can use the 
arithmetic operators +, -, ., I, %1 (mod), the 
relational operators >, >==, <, <==, =, and 
'= (not equal), and parentheses. 

A \though the arithmetic we have done so 
far has been straightforward, more complicated 
things are somewhat tricky. First, number regis­
ters hold only integers. troff arithmetic uses 
truncating integer division, just like Fortran. 
Second. in the absence of parentheses, evalua­
tion is done left-to-right without any operator 
precedence (including relational operators). 
Thus 

7·-4+3113 

becomes' -1 '. Number registers can occur any­
where in an expression, and so can scale indica­
tors like p, i, m, and so on (but no spaces). 
Although integer division causes truncation, each 
number and its scale indicator is converted to 
machine units (1/432 inch) before any arithmetic 
is done, so 1 i/2u evaluates to O.Si correctly. 

The scale indicator u often has to appear 
when you wouldn't expect it - in particu lar, 
when arithmetic is being done in a context that 
implies horizontal or vertical dimensions. For 
example, 

.11 7/2i 

would seem obvious enough - 3'h inches. 
Sorry. Remember that the default units for hor­
izontal parameters like .11 are ems. That's really 
'7 ems / 2 inches', and when translated into 
machine units, it becomes zero. How about 

.11 7i/2 

Sorry, still no good - the '2' is '2 ems', so 
'7i/2' is small, although not zero. You must use 

. 11 7i/2u 

So again, a safe rule is to attach a scale indicator 
to every number, even constants. 

For arithmetic done within a .m command. 
there is no implication of horizontal or vertical 
dimension, so the default units are 'units', and 
7i12 and 7i/2u mean the same thing. Thus 

4-64 

.nr II 7i12 

.11 \\n(lIu 

does just what you want, so long as you don't 
forget the u on the .11 command. 

11. Macros with arguments 

The next step is to define macros that can 
change from one use to the next according to 
parameters supplied as arguments. To make this 
work, we need two things: first, when we define 
the macro, we have to indicate that some parts 
of it will be provided as arguments when the 
macro is called. Then when the macro is called 
we have to provide actual arguments to be 
plugged into the definition. 

Let us illustrate by defining a macro .SM 
that will print its argument two points smaller 
than the surrounding text. That is, the macro 
call 

.SM TROFF 

will produce TROFF. 

The definition of .SM is 

.de SM 
\s- 2\ \$1\s + 2 

\\'ithin a macro definition, the symbol \ \$n 
refers to the mh argument that the macro was 
called with. Thus \\$1 is the string to be placed 
in a smaller point size when .SM is called. 

As a slightly more complicated version, the 
following definition of .SM permits optional 
second and third arguments tha t will be printed 
in the normal size: 

.de SM 
\ \$3\s- 2\ \$1\s + 2\ \$2 

Arguments not provioed when the macro is 
called are treated as empty, so 

.SM TROFF ), 

produces TROFF), while 

.SM TROFF ). ( 

produces (TROFF). It is convenient to reverse 
the order of arguments because trailtng pu nctua­
tion is much more common than leading . 

By the way, the number of arguments that 
a macro was called with is available in number 
register .$. 

The following macro .BD is the one used 
to make the 'bold roman' we have been using 
for troff command names in text. It combines 
horizontal motions, width computations, and 
argument rearrangement. 



.de BD . 
\&\ \S3\fl\ \51 \h' -\ w,\ \SI'u + 1 u'\ \Sl\fP\ \$2 

The \h and \w commands need no extra 
backstash, as we discussed above. The \& is 
there in case the argument begins with a period. 

Two backslashes are needed with the \ \Sn 
commands, though, to protect one of them when 
the macro is being defined. Perhaps a second 
example will make this clearer. Consider a 
macro called .SH which produces section head­
ings rather like those in this paper, with the sec­
tions numbered automatically, and the title in 
bold in a smaller size. The use is 

.SH "Section title ..... 

(If the argument to a macro is to contain blanks, 
then it must be surrounded by double quotes, 
unlike a string, where only one leading quote is 
permitted.) 

Here is the definition of the .SH macro: 

.nr SH 0 

. de SH 

.sp 0.3i 

\" initialize section number 

.ft B 

.nr SH \\n(SH+l 

.ps \\n(PS-l 
\\n(SH. \\$1 
.ps \\n(PS 
.sp 0.3i 
.ft R 

\" increment number 
\" decrease PS 
\" number. t'itle 
\" restore PS 

The section number is kept in number register 
SH, which is incremented each time just before it 
is used. (A number register may have the same 
name as a macro without conflict but a string 
may not.) 

We used \\n(SH instead of \n(SH and 
\ \n(PS instead of \n(PS. If we had used \n(SH, 
we would get the value of the register at the time 
the macro was defined. not at the time it was 
used. If that's what you want, fine, but not here. 
Similarly, by using \ \n (PS, we get the point size 
at the time the macro is called. 

As an example that does not involve 
numbers, recall our .NP macro which had a 

.tl'left'center'right' 

We could make these into parameters by using 
instead 

so the title comes from three strings called L T, 
eT and RT. If these are empty, then the title 
will be a blank line. Normally CT would be set 

with something like 

.ds CT - % -

to give just the page number between hyphens 
(as on the top of this page), but a user could 
supply private definitions for any of the strings. 

12. Conditionals 

Suppose we want the .SH macro to leave 
two extra inches of space just before section 1, 
but nowhere else. The cleanest way to do that is 
to test inside the .SH macro whether the section 
number is 1, and add some space if it is. The.if 
command provides the conditional test that we 
can add just before the heading line is output: 

.if\\n(SH-l .sp 2i \" first )e", •• v • on'" 

The condition after the .if can Dt! any 
arithmetic or logical expression. If the condition 
is logically true, or arithmetically greater than 
zero, the rest of the line is treated. as if it were 
text - here a command. If the condition is 
false, or zero or negative, the rest of the line is 
skipped . 

It is possible to do more than one com­
mand if a condition is true. Suppose several 
operations are to be done before section 1. One 
possibility is to define a macro .S 1 and invoke it 
if we are about to do section 1 (as determined by 
an .if>. 

.de SI 
-.- processing for section 1 -.-

.de SH 

.if\\n(SH-l.Sl 

An alternate way is to use the extended 
form of the .if, like this: 

.if\\n(SH-l \{--- processing 
for section 1 ----\} 

The braces \ ( and \) must occur in the positions 
shown or you will gel unexpected extra lines in 
your output. trotf also provides an 'if-else' con­
struction, which we will not go into here. 

A condition can be negated by preceding it 
with !; we get the same effect as above (but less 
clearly) by using 

.if !\\n(SH> 1 .51 

There are a handful of other conditions 
that can be tested with .if. For example, is ;the 
current page even or odd? 



.if e .tl "even page title" 

.if c .tl "odd page title" 

gives facing pages different titles when used 
inside an appropriate new page macro. 

Two other conditions are t and n, which 
tell you whether the formatter is troff or nroff. 

.if t troff stuff .. . 

.if n nroff stuff .. . 

Finally, string comparisons may be made 
in an .if: 

.if 'stringl'string2' stuff 

does 'stuff' if sTrIng) is the same as slrIng2. The 
character separating the strings can be anything 
rt::as '>::c that is not contained in either string. 
The Sll ~:.::, themselves can reference strings with 
\*, arguments with \$, and so on. 

13. Environments 

As we mentioned, there is a potential 
problem when going across a page boundary: 
parameters like size and font for a page title may 
well be different from those in effect in the text 
when the page boundary occurs. troff provides a 
very general way to deal with this and similar 
situations. There are three 'environments', each 
of which has independently settable versions of 
many of the parameters associated with process­
ing, including size, font, line and title lengths, 
fill/notill mode, tab stops, and even partially col­
lected lines. Thus the titling problem may be 
readily solved by processing the main text in one 
environ men t and titles in a separate one with its 
own suitable parameters. 

The command .ev n shifts to environment 
n: n must be 0, 1 or 2. The command .ev with 
no argument returns to the previous environ­
ment. Environment names are maintained in a 
stack, so calls for different environments may be 
nested and unwound consistently. 

Suppose we say that the main text is pro­
cessed in environment 0, which is where troff 
begins by default. Then we can modify the new 
page macro .NP to process titles in environment 
1 like this: 

.de NP 

.ev 1 

.It 6i 

.ft R 

.ps 10 

\" shift to new environmen t 
\" set parameters here 

... any other processing '" 

.ev \" return to previous environment 

It is also possible to initialize the parameters for 
an environment outside the .NP macro, but the 

version shown. keeps all the processing in one 
place and is thus easier to understand and 
change. 

14. Diversions 

There are numerous occasions in page lay­
out when it is necessary to store some text for a 
period of time without actually printing it. Foot­
notes are the most obvious example; the text of 
the footnote usually appears in the input well 
before the place on the page where it is to be 
printed is reached. In fact, the place where it is 
output normally depends on how big it is, which 
implies that there must be a way to process the 
footnote at least enough to decide its size 
without printing it. 

trofl' provides a mechanism called a diver­
sion for doing this processing. A ny part of the 
output may be diverted into a macro instead of 
being printed, and then at some convenient time 
the macro may be put back into the input.· 

The command .di xy begins a diversion -
all subsequent output is collected into the macro 
xy until the command .di with no arguments is 
encountered. This terminates the diversion. 
The processed text is available at any time 
thereafter, simply by giving the command 

.xy 

The vertical size of the last finished diversion is 
contained in the built-in nu mber register dn. 

As a simple example, suppose we want to 
implement a 'keep-release' operation, so that 
text between the commands .KS and .KE will not 
be split across a page boundary (as for a figure or 
table>. Clearly, when a .KS is encountered, we 
have to begin diverting the output so we can find 
out how big it is. Then when a .KE is seen, we 
decide whether the diverted text will fit on the 
current page, and print it either there if it fits, or 
at the top of the next page if it doesn't. So: 

.de KS 

.br 

.ev 1 

.fi 

.di XX 

\ .. start keep 
\" start fresh line 
\" collect in new environment 
\" make it filled .text 
\" collect in XX 

.de KE \" end keep 

.br \" get last partial line 

.di \" end diversion 

.if\\n(dn> ==\\nCt .bp \" bp if doesn't fit 

.nf \" bring it back in no-fill 

.XX \" text 

.ev \" return to normal environment 

Recall that number register nl is the current 

4-66 



position on the output page. Since output was 
being diverted. this remains at its value when the 
diversion started. dn is the amount of text in 
the diversion: .t (another built-in register> is the 
distance to the next trap. which we assume is at 
the bottom margin of the page. If the diversion 
is large enough to go past the trap. the .if is 
satisfied. and a .bp is issued. In either case. the 
diverted output is then brought back with .XX. It 
is essential to bring it back in no-fill mode so 
troff will do no further processing on it. 

This is not the most general keep-release. / 
nor is it robust in the face of all conceivable 
inputs. but it would require more space than we 
have here to write it in full generality. This sec­
tion is not intended to teach everything about 
diversions. but to sketch out enough that you 
can read existing macro packages with some 
comprehension. 

Ack now ledgemen ts 

I am deeply indebted to 1. F. Ossanna. the 
author of troff. for his repeated patient explana­
tions of fine points. and for his continuing wil­
lingness to adapt troff to make other uses easier. 
I am also grateful to Jim Blinn, Ted Dolotta, 
Doug Mcilroy, Mike Lesk and Joel Sturman for 
helpful comments on this paper. 

References 

[11 1. F. Ossanna, NROFFITROFF User's 
Manual, Bell Laboratories Computing Sci-
ence Technical Report 54, 1976. . 

[21 B. W. Kernighan, A System for Type.seftlf1!( 
,WarhemallCs - User's Glilde (Second Ed/­
lion), Bell Laboratories Computing Science 
Technical Report 17, 1977. 

[31 M. E. Lesk, TBL - A Program ro Formar 
Tables, Bell Laboratories Computing Sci­
ence Technical Report 49, 1976. 

[4] M. E. Lesk, Typln!( Documents on UNIX, 
Bell Laboratories, 1978. 

[5J 1. R. Mashey and D. W. Smith, PWBI,W,W 
...... ProRrammer's Workbench Memorandum 
lvtacros, Bell Laboratories internal 
memorandum. 

4-67 



Appendix A: Phototypesetter Character Set 

These characters exist in roman, italic. and bold. To get the one on the left, type the four-character 
name on the right. 

tf \ (tf fi \{fi fl \(0 ffi \{Fi m \(FI 
\. (ru \(em '/4 \04 '/2 \{12 ~/4 \ 04 

~, \ko 
Q \(de t \(dg \{fm C \ <Ct 

~ \(rg • \ (bu 0 \(sq \(hy 
(In bold, \ (sq is -.) 

The following are special-font characters: 

+ \ (pi \(mi x \(mu \(di 
\(eq - \(-= ~ \(> -= ~ \« -= 

;zt \{!:a: ± \( +- \(no / \ (51 

\(ap :::: \ (--= a: \(pt \7 \(gr 
\ (-> \ «- \(ua 1 \(da 

J \ (is a \(pd QO \ (if J \(sr 
C \ (sb :::J \(sp u \<Cu n \ (ca 
~ \ (ib ;? \ (ip E \(mo 0 \(es 

\(aa \(ga 0 \ (ci @ \(bs 
§ \(sc i \ (dd -- \ (Ih -- \(rh 
( \ (It 1 \ (rt \(Ic \ (rc 

l \ (Ib J \(rb \ (If \ {rf 
{ \Ok ~ \(rk \(bv ~ \ (ts 

I \(br \(or \ (ul \(rn 
\{ .. 

These four characters also have two-character names. The' is the apostrophe on terminals: the' is the 
other quote mark. 

\' \ ' \- \-

These characters exist only on the special font, but they do not have four-character names: 

< > \ # @ 

For greek, precede the roman letter by \ {. to get the corresponding greek: for example. \ {·a is Q. 

a b g d e z y h i kim nco p r stu f x q W 

Q ~ Y 5 E , ~ 9 L K A ~ v f 0 n PUT V ~ X ~ w 

ABGDEZYHIKLMNCOPRSTUFXQW 
ABrAEZH0IKAMN:::Onp!TY<l>X'I'O 

4-68 





Tbl Ai Program to Format Tables 

M. E. Lesk 

Bell Laboratories 
Murray Hill, New Jersey 07974 

ABSTRACT 

Tbl is a document formatting preprocessor for 1roff or nro.ff which makes 
even fairly complex tables easy to specify and enter. It is available on the PDP-

11 UNIX· system and on Honeywell 6000 Geos. Tables are made up of columns 
which may be independently centered, right-adjusted, left-adjusted, or aligned 
by decimal points. Headings may be placed over single columns or groups of 
columns. A table entry may contain equations, or may consist of several rows 
of text. Horizontal or vertical lines may be drawn as desired in the table, and 
any table or element may be enclosed in a box. For example: 

1970 Federal Budget Transfers 
(in billions of dollars) 

State 
Taxes Money 

Net 
collected speJ1.( 

New York 22.91 21.35 -1.56 
New Jersey 8.33 6.96 -1.37 
Connecticut 4.12 3.10 -1.02 
Maine 0.74 0.67 -0.07 
California 22.29 22.42 +0.13 
New Mexico 0.70 1.49 +0.79 
Georgia 3.30 4.28 +0.98 
Mississippi 1.15 2.32 + 1.17 
Texas 9.33 11.13 + 1.80 

January 16, 1979 

• UNIX is a Trademjirk/Service Mark of the Bell System 

4-70 



Introduction. 

Tbl - A Program to Format Tables 

M. E. Lesk 

Bell Laboratories 
Murray Hill, New Jersey 07974 

Tbl turns a simple description of a table into a fro/f or I7rofl (11 program {list of com­
mands} that prints the table. Tbl may be used on the PDP· I I U:'4IX [2] system and on the 
Honeywell 6000 Geos system. It attempts to isolate a portion of a job that it can successfully 
handle and leave the remainder for other programs. Thus fbi may be used with the equation 
formatting program eqn [3] or various layout macro packages [4,5,6]. but does not duplicate 
their functions. 

This memorandum is divided into two parts. First we give the rules for preparing fbi 
input: then some examples are shown. The description of rules is precise but technical, and the 
beginning user may prefer to read the examples first, as they show some common table 
arrangements. A section explaining how to invoke fbi precedes the examples. To avoid repeti­
tion, henceforth read frp/fas "froffor I1ro/J." 

The input to fbi is text for a document, with tables preceded by a ".TS" (table start) 
command and followed by a H. TE." (tuble end) command. Tbl processes the tables. generating 
frp/f formatting commands, and leaves the remainder of the text unchanged. The H. TS" and 
" . TE" lines are copied, too. so that frpfl page layout macros (such as the m~mo formatting 
macros [41) can use these lines to delimit and place tables as they see fit. In particular, any 
arguments on the" . TS" or " • TE" lines are copied but otherwise ignored, and may be used by 
document layout macro commands. 

The format of the input is as f)llows: 

text 
.TS 
fable 
.TE 
text 
.TS 
fable 
.TE 
text 

where the format of each table is as follows: 

.TS 
OPflOf75 ; 

lormat . 
data 
.TE 

Each table is independent, and must contain formatting information followed by the data to be 
entered in the table. The formatting information, which describes the individual columns and 
rows of die table, may be prec~ded by a few options that affect the entire table. A detailed 
description of tables is given in the next section. 

4-71 



Input commands. 

As indicated above, a table contains, first, global option:, then a format section describing 
the layout of the table entries, and then the data to be printed. The format and data are always 
required, but not the options. The various parts of the table are entered as follows: . 

1) OPTIONS. There may be a single line of options affecting the whole table. If present, this 
line must follow the . TS line immediately and must contain a list of option names 
separated by spaces, tabs, or commas, and must be terminated by a semicolon. The 
allowable options are: 

center - center the table (default is left-adjust)~ 

expand 

box 

allbox 

- make the table as wide as the current line length; 

- enclose the table in a box; 

- enclose each item in the table in a box; 

doublebox - enclose the table intwo boxes; 

tab (x) -use x instead of tab to separate data items. 

Jinesize (n) - set Jines or rules (e.g. from box) in n point type; 

delim (xy) - recognize x and y as the eqn delimiters. 

The fbI program tries to keep boxed tables on one page by issuing appropriate "need" 
(. ne) commands. These requests are calculated from the num'ber of lines in the tables, 
and if there are spacing commands embedded in the input, these requests may be inaccu­
rate; use normal frqifprocedures, such as keep-release macros, in that case. The user who 
must have a mUlti-page boxed table should use macros designed for this purpose, as 
explained below under ·Usage.' 

2) FORM AT. The format section of the table specifies the layout of the columns. Each line 
in this section corresponds to one line of the table (except that the last line corresponds to 
all following lines up to the next . T &, if any - see below), and each line contains a key­
letter for each column of the table. It is good practice to separate the key letters for each 
column by spaces or tabs. Each key-letter is one of the following: 

L or I to indicate a left-adjusted column entry; 

R or r to indicate a right-adjusted column entry; 

C or c to indicate a centered column entry; 

Nor n to indicate a numerical column entry, to be aligned with other numerical 
entries so that the units digits of numbers line up; 

A or a to indicate an alphabetic subcolumn; all correspondin!! entries are aligned on 
the left, and positioned so that the widest is centered within the column (see 
example on page 12); 

S or s to indicate a spanned heading, i.e. to indicate that the entry from the previous 
column continues across this column (not allowed for the first column, obvi­
ously); or 

to indicate a vertically spanned heading, i.e. to indicate that the entry from the 
previous row continues down through this row. (Not allowed for the first row 
of the table, obviously). 

When numerical alignment is specified, a location for the decimal point is sought. The 
rightmost dot (.) adjacent to a digit is used as a decimal point; if there is no dot adjoining 
a digit, the rightmost digit is used as a units digit; if no alignment is indicated, the item is 
centered in the column. However, the special non-printing character string \& may be 
used to override unconditionally dots and digits, or to align alphabetic data~ this string 
lines up where a dot normally WOUld, and then disappears from the final output. In the 
example below, the items shown at the left will be aligned (in a numerical column) as 

4-72 



shown on the right: 

13 
4.2 
26.4.12 
abc 
abc\& 
43\&3.22 
749.12 

13 
4.2 

26.4.12 
abc 

abc 
433.22 

749.12 

Note: If numerical data are used in the same column with wider L or r type table entries, 
the widest number is centered relative to the wider L or r items (L is used instead of I for 
readability~ they have the same meaning as key-letters). Alignment within the numerical 
items is preserved. This is similar to the behavior of a type data, as explained above. 
However, alphabetic subcolumns (requested by the a key-letter) are always slightly 
indented relative to L items~ if necessary, the column width is increased to force this. 
This is not true for n type entries. 

Warning: the n and a items should not be used in the same column. 

For readability, the key-letters descri bing each column should be separated 'by spaces. 
The end of the format section is indicated by a period. The layout of the key-letters in 
the format section resembles the layout of the actual data in the table. Thus a simple for­
mat might appear as: 

c S s 
Inn. "-

which specifies a table of three columns. The first line of the table contains a heading cen­
tered across all three columns~ each remaining line contains a left-adjusted item in the 
first column followed by two columns of numerical data. A sample table in this format 
might be: 

Overall title 
Item-a 34.22 9.1 
Item-b 12.65 .02 
Items: c,d,e 23 5.8 
Total 69.87 14.92 

There are some additional features of th~ key-letter system: 

Horizontal lines - A key-letter may be replaced by '_' (underscore) to indicate a hor­
izontal line in place of the corresponding 'column entry, or by '=' to indicate a dou­
ble horizontal line. If an adjacent column contains a horizontal line, or if there are 
vertical lines adjoining this column, this horizontal line is extended to meet the 
nearby lines. If any data entry is provided for this column, it is ignored and a warn­
ing message is printed. 

Vertical lines - A vertical bar may be placed between column key-letters. This will 
cause a vertical line between the corresponding columns of the table. A vertical bar 
to the left of the first key-letter or to the right of the last one produces a line at the 
edge of -the table. If two vertical bars appear between key-letters, a double vertical 
line is drawn. 

Space be/ween columns - A number may follow the key-letter. This indicates the 
amount of separation between this column and the next column. The number nor­
mally specifies the separation in ens (one en is about the width of the letter 'n')" If 
the "expand" option is used, then these numbers are multiplied by a constant such 
that the table is as wide as-the current line length. The default column separation 

• More precisely. an en is a number of points (1 point - 1172 inch) equal to half the current type size, 

4,-73 



number is 3. If the separation is changed the worst case (largest space requested) 
governs. 

Verlical spanning - Normally, vertically spanned items extending over several rows of 
the table are centered in their vertical range. If a key-letter is followed by t or T, 
any corresponding vertically spanned item will begin at the top line of its range. 

Font changes - A key-letter may be followed by a string containing a font name or 
number preceded by the letter for F. This indicates that the corresponding column 
should be in a different font from the default font (usually Roman). All font names 
are one or two Jetters~ a one-letter font name should be separated from whatever 
follows by a space or tab. The single letters B, b, I, and i are shorter synonyms for 
fB and fl. Font change commands given with the table entries override these 
specifications. 

POII/t size changes - A key-letter may be followed by the letter p or P and a number to 
indicate the point size of the corresponding table entries. The number may be a 
signed digit, in which case it is taken as an increment or decrement from the current 
point size. If both a point size and a column separation value are given, one or 
more blanks must separate them. 

Verlical spacing changes - A key-letter may be followed by the letter \' or \' and a 
number to indicate the vertical line spacing to be used within a multi-line 
corresponding table entry. The number may be a signed digit, in which ·case it is 
taken as an increment or decrement from the current vertical spacing. A column 
separation value must be separated by blanks or some other specification from a 
vertical spacing request. This request has no effect unless the corresponding table 
entry is a text block (see below). . 

Column H:id,h lI7dicaliol1 - A key.;letter may be followed by the letter w or \\1 and a width 
value in parentheses. This width is used as a minimum column width. If the largest 
element in the column is not as wide. as the width value given after the w, the larg­
est element is assumed to be that wide. If the largest element in the column is 
wider than the specified value, its width is used. The width is also used as a default 
line length for included text blocks. Normal troff units can be used to scale the 
width value~ if none are used, the default is ens. If the width specification is a unit­
less integer the parentheses may be omitted. If the width value is changed in a 
column, the las, one given controls. 

Equal Width columns - A key-letter may be followed by the letter e or E to indicate 
equal width columns. All columns whose key-letters are followed by e or E are 
made the same width. This permits the user to get a group of regularly spaced 
columns. 

Note: The order of the above features is immaterial~ they need not be separated by 
spaces, except as indicated above to avoid ambiguities involving point size and font 
changes. Thus a numerical column entry in italic font and 12 point type with a 
minimum width of 2.5 inches and separated by 6 ens from the next column could be 
specified as 

np12w(2.5DfI 6 

Allernatlve nOlalion - Instead of listing the format of successive lines of a table on con­
secutive lines of the format section, successive line formats may be given on the 
same line, separated by commas, so that the format for the example above might 
ha ve been wri tten: 

c s s, Inn. 
Default - Column descriptors missing from the end of a format line are assumed to be 

L. The longest line in the format section, however, defines the number of columns 
in the table~ extra columns in the data are ignored silently. 

4-74 



3) DATA. The data for the table are typed after the format. Normally, each table line is 
typed as one line of data. Very long input lines can be broken: any line whose last charac­
ter is \ is combined with the following line (and the \ vanishes). The data for different 
columns (the table entries) are separated by tabs, or by whatever character has been 
specified in the option (abs option. There are a few special cases: 

Trojf commands within tables - An input line beginning with a '.' followed by anything 
but a number is assumed to be a command to trojfand is passed through unchanged, 
retaining its position in the table. So, for example, space within a table may be pro­
duced by H .sp" commands in the data. 

Full width horizontal lines - An input line containing only the character (underscore) 
or = (equal sign) is taken to bea single or double line, respectively: extending the 
full width of the table. 

Single column horizonta/lines - An input table entry containing only the character _ or = 
is taken to be a single or double line extending the full width of the column. Such 
lines are extended to meet horizontal or vertical lines adjoining this column. To 
obtain these characters explicitly in a column, either precede them by \& or follow 
them by a space before the usual tab or newline. 

Shorf horizonta/lines - An input table entry containing only the string \ is taken to be a 
single line as wide as the contents of the column. It is not extended to meet adjoin­
ing lines. 

Repeated characters - An input table entry containing only a string of the form \ R'( 
where x is any character is replaced by repetitions of the character x as wide as the 
data in the column. The sequence of x's is not extended to meet adjoining 
columns. 

Vertically spanned items - An input table entry containing only the character string \" 
indicates that the table entry immediately above spans downward over this row. It is 
equivalent to a table format key-letter of ,A'. 

Text blocks - In order to include a block of text as a table entry, precede it by T{ and 
follow it by T}. Thus the sequence 

•.. T{ . 
block Qf 
text 
T} ... 

is the way to enter, as a single entry in the table, something that cannot con­
veniently be typed as a simple string between tabs. Note that the T} end delimiter 
must begin a line~ additional columns of data may follow after a tab on the same 
line. See the example on page 10 for an illustration of included text blocks in a 
table. If more than twenty or thirty text blocks are used in a table, various limits in 
the (roff program are likely to be exceeded. producing diagnostics such as 'too many 
string/macro names' or 'too many number registers.' 

Text blocks are pulled out from the table, processed separately by trolf. and replaced 
in the table as a solid block. If no line length is specified in the block of' (ext itself, 
or in the table format, the defa'ult is to use Lx C / (N + 1) where L is the current line 
length, C is the number of table columns spanned by the text, and N is the total 
number of columns in the table. The other parameters (point size, font, etc.) used 
in setting the block of (ex( are those in effect at the beginning of the table (including 
the effect of the ~:. TS" macro) and any table format specifications of size, spacing 
and font, using the p, v and f modifiers to the column key-letters. Commands 
within the text block itself are also recognized, of course. However, (rolf commands 
within the table data but not wi thin the text block do not affect that block. 

4-75 



Warnings: - Although any number of lines may be present in a table, only the first 200 
lines are used in calculating the widths of the various columns. A mUlti-page table, 
of course, may be arranged a~ :se'veral single-page tables if this proves to be a prob­
lem. Other difficulties with formatting may arise because, in the calculation of 
column widths all table entries are assumed to be in the font and size being used 
when the". TS" command was encountered, except for font and size changes indi­
cated (a) in the table format section and (b) within the table data (as in the entry 
\s + 3\ndata\fP\sO). Therefore, although arbitrary Iroffrequests may be sprinkled in 
a table, care must be taken to avoid confusing the width calculations~ use requests 
such as '.ps' with care. 

4) ADDITIONAL COMMAND LINES. If the format of a table must be changed after many simi­
lar lines, as with sub-headings or summarizations, the" .T&" (table continue) command 
can be used to change column parameters. The outline of such a table input is: 

.TS 
options; 
(ormaT • 
data 

.T& 
format. 
data 
.T& 
format. 
data 
.TE 

as in the examples on pages] 0 and 12. Using this procedure, each table line can be close 
to its corresponding format line. 

J,Varning: it is n01 possible to change the number of columns, the space between columns, 
the global options such as box. or the selection of columns to be made equal width. 

Usage. 

On UNIX, tbl can be run on a simple table with the command 

tbl input-file I troff 

but for more complicated use, where there are several input files, and they contain equations 
and ms memorandum layout commands as well as tables, the normal command would be 

tbl file-1 file-2 ... I eqn I troff -ms 

and, of course, the usual options may be used on the froff and eqn commands. The usage for 
nrofJ is similar to that for frQff, but only TELETYPE([< Model 37 and Di'ablo-mechanism (DASI or 
GSI) terminals can print boxed tables directly. 

For the convenience of users employing line printers without adequate driving tables or 
post-filters, there is a special - TX command line option to tbl which produces output that does 
not have fractional line motions in it. The only other command line options recognized by fbI 
are - ms and - mm which are turned into commands to fetch the corresponding macro files~ 
usually it is more convenient to place these arguments on the froff part of the command line, 
but they are accepted by fbI as well. 

Note that when eqn and tbl are used together on the same file tbl should be used first. If 
there are no equations within tables, either order works, but it is usually faster to run fbI first, 
since eqn normally produces a larger expansion of the input than fbi. However, if there are 
equations within tables (using the delim mec~anism in eqn), tbl must be first or the output will 
be scrambled. Users must also beware of using equations in n-style columns: this is nearly 

4-76 



always wrong, since (bl attempts to split numerical format items into two parts and this is not 
possible with equations. The user can defend against this by giving the delim{xx) table option; 
this prevents splitting of numerical columns within the delimiters. For example, if the eqn del­
imiters are $$, giving delim($$) a numerical column such as "1245 $+- 16$" will be divided 
after 1245, not after 16. 

Tbl limits tables to twenty columns; however, use of more than 16 numerical columns 
may fail because of limits in troff, producing the ~too many number registers' message. Tro./f 
number registers used by fbi must be avoided by the user within tables: these include two-digit 
names from 31 to 99, and names of the forms #x. x+. x I, "X, and X-, where X is any lower 
case letter. The names ##, #-, and #" are also used in certain circumstances. To conserve 
number register names, the nand a formats share a register; hence the restriction above that 
they may not be used in the same column. 

For aid in writing layout macros, fbi defines a number register TW which is the table 
width~ it is defined by the time that the H. TE" macro is invoked and may be used in the 
expansion of that macro. More importantly, to assist in laying out mUlti-page boxed tables the 
macro T# is defined to produce the bottom lines and side lines of a boxed table, and then 
invoked at its end. By use of this macro in the page footer a multi-page table can be boxed. In 
particular, the ms macros can be used to print a multi-page boxed table with a repeated heading 
by giving the argument H to the H • TS" macro. If the table start macro is written ' 

.TS H 
a line of the form 

.TH 
must be given in the table after any table heading (or at the start if none). Material up to the 
". TH" is placed at the top of each page of table; the remaining lines in the table are placed on 
several pages as required. Note that this is not a feature of fbI. but of the ms layout macros. 

Examples. 
Here are some examples illustrating features of fbI. The symbol CD in the input 

represents a tab character. 

Input: 

.TS 
box; 
c c c 
I I l. 
Language (j) Authors (j) Runs on 

Fortran (j) Many (j) Almost anything 
PLll (j) IBM CD 360/370 
C (j) BTL (j) 11145,H6000,370 
BLISS CD Carnegie-Mellon CD PDP-10, 11 
IDS (j) Honeywell CD H6000 

, Pascal (j) Stanford (j) 370 
.TE 

4-77 

Output: . 

Language 

Fortran 
PLIl 
C 
BLISS 
IDS 
Pascal 

Authors Runs on 

Many Almost anything 
IBM 360/370 
BTL lI/45,H6000.370 
Carnegie- Mellon PDP-lO,l1 
Honeywell H6000 
Stanford 370 



Input: 

.TS 
allbox~ 

c s s 
c c c 
n n n. 
AT&T Common Stock 
Year <D Price <D Di vidend 
1971 <D41-54(D$2.60 
2 <D41-54 cr>2. 70 
3 (D 46- 5 5 cr> 2 .87 
4 (D40-53 cr> 3 .24 
5 cr>45-52 cr>3.40 
6(1)51-59cr> .95· 
.TE 
• (first quarter on ly) 

Input: 

.TS 
box~ 

c s s 
clclc 
1III n. 
Major New York Bridges 

Bridge cr> Designer cr> Length 

-
Brooklyn cr> 1. A. Roebling cr> 1595 
Manhattan (1) G. Lindenthal <D 1470 
Williamsburg <D L. L. Buck cr> 1600 

Queensborough cr> Palmer & <D 1182 
<D Hornbostel 

cr>cr>1380 
Triborough (DO. H. Ammann (D_ 
cr> (I) 383 

Bronx Whitestone <DO. H. Ammann (j) 2300 
Throgs Neck (1)0. H. Ammann (i) 1800 

-

Output: 

AT&T Common Stock 
Year Price Dividend 
1971 4} .. 54 $2.60 

2 41-54 2.70 
3 46-55 2.87 
4 40-53 3.24 
5 45-52 3.40 
6 51-59 .95'" 

'" (first quarter only) 

Output: 

Major New York Bridges 
Bridge Designer 

Brooklyn . J. A. Roebling 
Manhattan G. Lindenthal 
Williamsburg L. L. Buck 
Queensborough Palmer & 

Hornbostel 

Triborough O. H. Ammann 

Bronx Whitestone O. H. Ammann 
Throgs Neck O. H. Ammann 
George Washington O. H. Ammann 

George Washington cr>O. H. Ammann cr> 3500 
.TE 

4-78 

Length 
1595 
1470 
1600 
1182 

1380 

383 
2300 
1800 
3500 

I 



Input: 

.TS 
c c 
np-2! n ! . 
(1) Stack 
(1)_ 
1 <l) 46 
(1)_ 
2 (1) 23 
<l)_ 
3<l)15 
<l)_ 
4<l)6.5 
(1)_ 
5(1)2.1 
CV_ 
.TE 

Input: 

.TS 
box; 
LLL 
LL 
L L ILS 
LL_ 
L L L. 
january <l) february <l) march 
april <l) may 
june <i'july (1) Months 
august CV september 
october <i' november CVdecember 
.TE 

Output: 

Stack 
1 46 
2 23 
3 15 
4 6.5 
5 2.1 

Output: 

january february march 
april may I · 
june july Months 
august september 
october november december 

4-79 



, Output: Input: 

.TS 
box~ 

Composition of Foods 

ern s s s. 
Composition of Foods 

-
.T& 
e I c s s 
c I c s s 
e I c I c I c. 
Food <D Percent by Weight 
\ A <D 
\A <DProtein <DFat <DCarbo­
\ A (I) \ A <D \ A (l) hydrate 

-
.T& 
I I n I n In. 
Apples (l) .4 (l) .5 (i) 13 .0 
Halibut (1) 18.4 (1) 5.2 (1) . 
Lima beans (1) 7 . 5 (1) .8 (1) 22.0 
Milk (1)3.3 (1)4.0(1)5.0 
Mushrooms (1) 3.5 (1) .4 (1)6.0 
Rye bread (1)9.0 (l).6 CD 52.7 
.TE 

Input: 

.TS 
allbox: 
cn s s 
c cw (I j) cw (I j) 
Ip9 Ip9 Ip9. 
New York Area Rocks 
Era <D Formation <D Age (years) 
Precambrian (l) Reading Prong (l) > 1 billion 
Paleozoic (1) Manhattan Prong (l) 400 million 
Mesozoic (f)T{ 
.na 
Newark Basin, incl. 
Stockton, Lockatong, and Brunswick 
formations: also Watchungs 
and Palisades. 
T} (1) 200 million 
Cenozoic (l) Coastal Plain (l) T{ 
On Long Island 30,000 years~ 
Cretaceous sediments redeposited 
by recent glaciation . 
. ad 
T} 
.TE 

Food 

Apples 
Halibut 
Lima beans 
Milk 
Mushrooms 
Rye bread 

Output: 

Era 
Precambrian 

Paleozoic 

Mesozoic 

Cenozoic 

4-80 

Percent by Weight 

Protein 
Carbo-

Fat hydrate 
.4 .5 13.0 

18.4 5.2 ... 
7.5 .8 22.0 
3.3 4.0 5.0 
3.5 .4 6.0 
9.0 .6 52.7 

New York Area Rocks 
Formation Age (years) 

Reading Prong > I billion 

Manhattan Prong 400 million 

Newark Basin, 200 million 
incl. Stockton, 
Lockatong, Clnd 
Brunswick for-
mutions; also 
Watchungs und 
PalisCldes, 

Coastal Plain On Long Islund 
30,000 yeurs: 
Cretaceous sedi-
ments redepo-
sited by recen t 
glaciution. 



Input: 

.EQ 
delim $$ 
.EN 

.TS 
doublebox~ 

c c 
II. 
Name <D Definition 
·sp 
.vs +2p 

Output: 

Name Definition 

Gamma 

Sine . 

Error 

Bessel 
00 

Zeta ,(s)=:I:k-5 (Res>!) 
k-I 

Gamma (i) SG AMMA (z) == int sub 0 sup inr t sup {z-ll e sup -t dt$ 
Sine (i) $sin (x) :II lover 2i ( e sup ix - e sup -ix ) $ 
Error (j) $ roman err (z) ::a 2 over sqrt pi int sub 0 sup z e sup {-t sup 21 dtS 
Bessel (i)$ J sub 0 (z) == lover pi int sub 0 sup pi cos ( z sin theta) d theta $ 
Zeta (i) $ zeta (s) == sum from k == 1 to inr k sup -s -- ( Re -s > 1) $ 
. vs -2p 
.TE 

Input: 

.TS 

Output: 

Readability of Text 
box, tabC:)~ 
cb s s s s 
cp-2 s s s s 
cllclclclc 
c II c I c I c I c 

Lin~ Width and Leading for t a-Point Type 

r211 n21 n21 n21 n. 
Readability of Text 
Line Width and Leading for IO-Point Type 

Line: Set: I-Point: 2-Point : 4-Point 
Width: Solid: Leading: Leading: Leading 

9 Pi ca : \ -9 .3 : \ -6.0 : \ -5 .3 : \ -7 . 1 
14 Pica: \-4.5: \-0.6: \-0.3: \-1. 7 
19 Pica:\-5.0:\-5.1: 0.0:\-2.0 
31 Pica:\-3.7:\-3.8:\-2.4:\-3.6 
43 Pica:\-9.1 :\-9.0:\-5.9:\-8.8 
.TE 

Line 
Width 
9 Pica 

14 Pica 
19 Pica 
3.1 Pica 
43 Pica 

4-81 

Set 
Solid 
-9.3 
-4.5 
-5.0 
-3.7 
-9.1 

I-Point 2-Point 4-Point 
Leading Leading Leading 

-6.0 -5.3 -7.1 
-0.6 -0.3 -1.7 
-5.1 0.0 -2.0 
-3.8 -2.4 -3.6 
-9.0 -5.9 -8.8 



Input: 

.TS 
c s 
cip-2 s 
In 
an. 
Some London Transport Statistics 
(Year 1964) 
Railway route miles G) 244 
Tube G)66 
Su b-surface (i) 22 
Surface G) 156 
.sp .5 
.T& 
I r 
a r. 
Passenger traffic \- railway 
Journeys (i) 674 million 
A verage length (1) 4.55 miles 
Passenger milesG)3,066 million 
.T& 
I r 
ar. 
Passenger traffic \- road 
Journeys (i) 2,252 million 
Average length G) 2.26 miles 
Passenger miles G) 5,094 million 
.T& 
In 
an. 
.sp .5 
Vehicles G) 12,521 
Railway motor cars G) 2,905 
Railway trailer cars (i) 1,269 
Total railway(1)4,174 
Omnibuses (i) 8)47 
.T& 
In 
an . 
. sp .5 
Staff(i) 73,739 
Administrative, etc. (1) 5,582 
Civil engineering (i) 5, 134 
Electrical eng. (i)1,714 
Mech. eng. \- railway (i) 4,31 0 
Mech. eng. \- road (i)9,152 
Railway operations G) 8,930 
Road operations (1)35,946 
Other (i) 2.971 
.TE 

4-82 

Output: 

Some London Transport Statistics 
(Year 1(64) 

Railway route miles 
Tube 
Sub-surface 
Surface 

Passenger traffic - railway 
Journeys 
A verage length 
Passenger miles 

Passenger traffic - road 
Journeys 
A verage length 
Passenger miles 

Vehicles 
Railway motor cars 
Railway trailer cars 
,Total railway 
Omnibuses 

Staff 
Administrative, etc. 
Civil engineering 
Electrical eng. 
Mech. eng. - railway 
Mech. eng. '- road 
Railway operations 
Road operations 
Other 

244 
66 
22 

156 

674 million 
4.55 miles 

3,066 million 

2,252 million 
2.26 miles 

5,094 million 

12,521 
2,905 
1,269 
4.174 
8,347 

73,739 
5,582 
5,134 
1, 714 
4,310 
9,152 
8,930 

35,946 
2,971 



Input: 

.ps 8 

. vs lOp 

.TS 
center box~ 
c s s 
ci s s 
c c c 
IB In. 
New Jersey Representatives 
(Democrats) 
.sp .S 
Name cr> Office address cr> Phone 
.sp .S 
James 1. Florio (i) 23 S. White Horse Pike, Somerdale 08083 cr> 609·627·8222 
William 1. Hughes cr> 2920 Atlantic Ave., Atlantic City 0840 I (j) 609·34S·4844 
James 1. Howardcr>801 Bangs Ave., Asbury Park 07712<D201·774~1600 
Frank Thompson, Jr. <l) 10 Rutgers Pl., Trenton 08618<1l609-599·1619 
Andrew Maguire <D lIS W. Passaic St., Rochell~ Park 07662 cr>20 1·843·0240 
Robert A. Roecr>U.S.P.O., 194 Ward St., Paterson 075l0cr>201·S23-5152 
Henry Helstoski cr> 666 Paterson Ave., East Rutherford 07073 cr> 201-939·9090 
Peter W. Rodino, 1r. cr>Suite 143SA, 970 Broad St., Newark 07102cr>201·645-3213 
Joseph G. Minish cr> 308 Main St., Orange 07050 <D 201-645·6363 
Helen S. Meyner <D 32 Bridge St., Lambertville 08530 <D 609-397 ·1830 
Dominick V. Daniels <D 895 Bergen Ave., Jersey City 07306 cr> 201-659-7700 
Edward 1. Patten <DNatl. Bank Bldg., Perth Amboy 08861 <D201-826-4610 
.sp .S 
.T& 
ci s s 
IB In. 
(Republicans) 
.SPi .5v 
Millicent Fenwick <D 41 N. Bridge St., Somerville 08876 <I> 201-722-8200 
Edwin B. Forsythe<D301 Mill St., Moorestown 080571)609-235-6622 
Matthew 1. Rinaldo cr> 1961 Morris Ave., Union 07083 cr> 20 1-687·4235 
.TE 
.ps 10 
. vs 12p 

4-83 



Output: 

I 
I 
I Name 

! James J. Florio 
William J. Hughes 
James J. Howard 
Frank Thompson. Jr. 
Andrew Maguire 
Robert A. Roe 
Henr~ Helstoski 
Peter W. Rodino. Jr. 
Joseph G. Minish 
Helen S. Me~ner 
Dominick \'. Daniels 
Ed", ard J. Patten 

'Y1i II icen! Fenwick 
Edwin B. Forsythe 
Marthe'" J. Rinaldo 

New Jersey Representatives 
(U('l1Iocra IS) 

Office address 

23 S White Horse Pike. Somerdale 0~083 
2920 AtlantIC Ave .• Atlantic City 08401 
801 Bangs Ave .. Asbury Park 07712 
10 Rutgers PI.. Trenton 08618 
lIS W. Passaic St., Rochelle Park 07662 
U.S.P.O .. 194 Ward 51.. Paterson 07510 
666 Paterson Ave., East Rutherford 07073 
Suite 1435A, 970 Broad St.. Newark 07102 
308 Main 51.. Orange 07050 
32 Bridge SI.. Lambertville 08530 
895 Bergen Ave., Jersey City 07306 
Nutl. B<.Ink Bldg., Perth Amboy 08861 

(Republicans) 

41 N. Bridge St.. Somerville 08876 
301 Mill St., Moorestown 08057 
1961 Morris Ave., Union 97083 

Phone 

609·627·8222 
609·345-4844 
201·774·1600 
609·599·1619 
201·843·0240 
201·523·5152 
201·939·9090 
201·645·3213 
201·645·6363 
609-397-1830 
201-659- 7700 
201-826-4610 

20) -722-8200 
609-235-6622 
201-687·4235 

This is a paragraph of normal text placed here only to indicate where the left and right margins 
are. In this way the reader can judge the appearance of centered tables or expanded tables, and 
observe how such tables are formatted. 

Input: 

.TS 
expand: 
c s s s 
c c c c 
I Inn. 
Bell Labs Locations 
Name (l) Address CD Area Code (l) Phone 
Holmdel (l) Holmdel, N. 1. 07733 (1; 201 (i) 949-3000 
Murray HillCVMurray Hill, N. J. 07974(l)201(l)S82-6377 
Whippany (l) Whippany, N. J. 07981 (i) 20 1 (i) 386-3000 
Indian Hill (i)Naperville, Illinois 60540CI)312 (i)690-2000 
.TE 

Output: 

Name 
Holmdel 
Murray Hill 
Whippany 
Indian Hill 

Bell Labs Locations 
Address 

Holmdel, N. J. 07733 
Murray Hill, N. J. 07974 
Whippany, N. J. 07981 
Naperville, Illinois 60540 

4-84 

Area Code 
201 
201 
201 
312 

Phone 
949-3000 
582-6377 
386-3000 
690-2000 



Input: 

.TS 
box: 
cb s s s 
c I c I c s 
Itiw(Ij) lltw(2i) Ilp81Iw(l.6i)p8. 
Some Interesting Places 

Name(i) Description (i) Practical Information 

II 
American Museum of Natural History 
TI(i)TI 
The collections fill 11.5 acres (Michelin) or 25 acres (MTA) 
of exhibition halls on four floors. There is a full-sized replica 
of a blue whale and the world's largest star sapphire (stolen in 1964). 
TI CD Hours CD 10-5. ex. Sun 11·5. Wed. to 9 
\ '<l) \ '<l) Location <l) T ( 
Central Park West & 79th St. 
TI 
\ '<l) \" CD Adm ission CD Donation: 51 .00 asked 
\'<l)\'<l)Subway<l)AA to 81st St. 
I.' (i) \ • CD Telephone CD 212,873-4225 

Bronx Zoo<l)TI 
About a mile long and. 6 mile wide. this is the largest zoo in America. 
A lion eats 18 pounds 
of meat a day while i.l sea lion eats 15 pounds of fish. 
TI CD Hours <l) T I 
10·4;30 winter. to 5:00 summer 
TI 
\" (i) '.. CD Location (i) T ( 
185th St. & Southern Blvd. the Bronx. 
Tl 
\·<l)\'CDAdmission<l)SI.00. but Tu.We.Th free 
\-CD\·<l)SubwayCD2. 5 to East Tremont Ave. 
\ • <l) \ • <l) Telephone <l) 212·933·1759 

Brooklyn ~ useum (i) T I 
Five floors of galleries contain American and ancient art. 
There are American period rooms and architectural ornaments saved 
from wret,;kers. such as a classical figure from Pennsylvania Station. 
TI<l)Hours<l)Wed-Sat. 10-5. Sun 12-5 
\. <l) \ • <l) Location <l) TI 
Eastern Parkway & Washington Ave •. Brooklyn. 
TI 
\. CD \. CD Admission <l) Free 
\. CD \. CD Subway CD 2.3 to Eastern Parkway. 
\. CD \ • CD Telephone <l) 212-638·5000 

1"/ 
New- York Historical Society 
TICDT/ 
All the original paintings for Audubon's 
,I 
Birds of America 
.R 
are here. as are exhibits of American decorative arts. New York history. 
Hudson River school paintings. carriages. and glass paperweights, 
II <l) Hours CDTI 
Tues-Fri & Sun. 1-5: Sat 10·5 
TI 
\'Il) \ - (i) Location CD T I 
Central Park West & 77th St. 
TI 
\" (i) \ • (f) Ad mission (i) Free 
\ "(f)'."CDSubwaytXlAA to 81st St. 
\." CD \ "CD Telephone IJ) 212-873-3400 
,TE 

/ 



Output: 

• 

I Some Interesting Places 

I Name Descri pt ion Practical Information 

I AmeneGn Alusf- i The collections fill 11.5 acres Hours 10-5. ex. SL'n ) 1-5. Wed. to 9 
lim or l'\I'aIl/raI I (Michelin) or 25 acres (MT A) Location Central Park West & 79th St 

His/olY I of exhibition halls on four Admission Donation: S 1.00 asked 

floors. There is a full-sized re- Subway AA to 81st 51. 
plicCJ of a blue whale and the Telephone 212-873-4225 
world's largest star sapphire . (stolen in 19641 . 

BrOllx Zoo About a mile long and .6 mile Hours 10-4.30 winter. to 5:00 summer 
wide, this is the largest zoo in Location 185th SI. & Southern Blvd. the 

America. A lion eats 18 Bronx. 

pounds of meat a day while a Admission SI.OO. but Tu.We.Th free 

seu lion eats 15 pounds of fish. Subway 2. 5 10 East Tremont Ave. 

Telephone 212-933-1759 

Brookzvll Musfum Five floors of galleries contain Hours Wed-Sat. 10-5. Sun 12-5 
I American and ancient art. LocatIon Eastern Parkway & Washington 

There are American period Ave .. Brooklyn. 

rooms and architectural orna- AdmiSSIon Free 

ments saved from wreckers, Subway 2.3 to Easlern Parkway 

such as u classical figure from Telephone 212-638-5000 

I Pennsylvania Station. 
Ne\A.·- York H'SlOr- I All the original paintings for Hours Tues-Fri & Sun. 1-5: Sat 10-5 

ieal SOc/f/y 
I 

Audubon's B"'ds o(Amcrica are LocJtlon Central Park West & 77th SI. 

here. as are exhibits of Ameri- Admission Free 

i can decorative arts. New York Subway AA to 81st S1. 

history. Hudson River school Telerhone 
I 

212-873-3400 

paintings. carriages. and glass 
paperweights. ! 

Ack now ledgmen t s. 

Many thanks are due to J. C. Blinn. who has done a large amount of testing and assisted 
with the design of the program. He has also written many of the more intelligible sentences in 
this document and helped edit all of it. All phototypesetting programs on UNIX are dependent 
on the work of the late J. F. Ossanna. whose assis1fjncewith this program in particular had been 
most helpful. This program is patterned on a table formatter originally written by J. F. Gimpel. 
The assistance of T. A. Dololta. B. v.'. Kernighan. and J. N. Sturman is gratefully ack­
nowledged. 

References. 

[1 J 1. F. Ossanna. A'ROFFITROFF User" lv/a II 110 I. Computing Science Technical Report No. 54. 
Bell Laboratories, 1976. 

[2] K. Thompson and D. M. Ritchie. "The UI\'IX Time-Sharing System." Comm. ACM. ]7. 
pp. 365-75 (]974). 

[3] B. W. Kernighan and L. L. Cherry .• , A System for Typesetting Mathematics." Comm. 
A C M. ) 8. p p. 1 5 ] - 57 (1 975 ), 

[4] M. E. Lesk, TYfJlII.f,{ DnClIl11fll/.\ nil UVH. UNIX Programmer's Manual, Volume 2. 

4-86 

I 



[5] M. E. Lesk and B. W. Kernighan, Compurer Typesetting 0/ Technical Journals on UNIX. Proc. 
AFIPS NCC, vol. 46, pp. 879-888 (1977). 

[6] J. R. Mashey and D. W. Smith, '4Documentation Tools and Techniques," Proc. 2nd Inf. 
Con!. on So/iware Engineering. pp. 177-181 (October, 1976). 

List of Tbl Command Characters and Words 

Command Meaning Sec/ion 
aA Alphabetic subcolumn 2 
aJlbox Draw box around all items 1 
bB Boldface item 2 
box Draw box around table I 
cC Centered column 2 
center Center table in page I 
doublebox Doubled box around table 1 
e E Equal width columns 2 
expand Make table full line width 1 
f F Font change 2 
i I Italic item 2 
IL Left adjusted column 2 
nN Numerical column 2 
nnn Column separation 2 
p P Point size change 2 
r R Right adjusted column 2 
s S Spanned item 2 
t T Vertical spanning at top 2 
tab (x) Change data separator character 1 
T{ T} Text block 3 
v V Vertical spacing change 2 
wW Minimum width value 2 
.xx Included rrq,ifcommand 3 

I Vertical line 2 

II Double vertical line 2 
Vertical span 2 

\ .... Vertical span 3 
= Double horizontal line 2.3 

Horizontal line 2,3 

\- Short horizontal line 3 
\Rx Repeat character 3 



Typesetting Mathematics - User's Guide (Second Edition) 

Brian W. Kernighan and Lorinda L. Cherry 

Bell Laboratories 
Murray Hill, New Jersey 07974 

ABSTRACT 

This is the user's guide for a system for typesetting mathematics, using the photo­
typesetters on the UNlxt and Geos operating systems. 

Mathematical expressions are described in a language designed to be easy to use by people 
who know neither mathematics nor typesetting. Enough of the language to set in-line expres­
sions like lim (tan x)S1n 2x = 1 or display equations like 

x-.,,/2 

G ( [5 /.. z "] S _J. / k G{z) = eln :J = exp L -k- == TI e J.-

"~I "~I 

[ 
SfZ2 ][ . S2:

2 
51z

4 
] 

= 1+S lz+-
2
-!-+ . .. 1+-

2
-+ 22·2! + . .. . .. 

S~I S~2 " S "1 

=L L '" Z'" 
1 "I k I! 2 J.. 2k 2! J.. 

III~O "I'" 2' .... klll~O m "'k l11 ! 
/..1-+2J.. 2-t- . . +111"/11-'" 

can be learned in an hour or so. 

The language interfaces directly with the phototypesetting language TROFF, so mathemati­
cal expressions can be embedded in the running text of a manuscript, and the entire document 
produced in one process. This user's guide is an example of its output. 

The same language may be used with the UNIX formatter NROFF to set mathematical 
expressions on DASJ and GSI terminals and Model 37 teletypes. 

August 15, 1978 

tUNIX is a Trademark of Bell Laboratories. 

4-88 



Typesetting Ma~hematics -- User's Guide (Second Edition) 

Brian W. Kernighan and Lonnda L. Cherry 

Bell Laboratories 
Murray Hill, New Jersey 07974 

l. Introduction 

EQN is a program for typesetting 
mathematics on the Graphics Systems pho­
totypesetters on UNIX and GCOS. The EQN 
language was designed to be easy to use by 
people who know neither mathematics nor 
typesetting. Thus EQN knows relatively little 
about mathematics. In particular, 
mathematical symbols like +, x, 
parentheses, and so on have no special 
meanings. EQN is quite happy to set garbage 
(but it will look good). 

EQN works as a preprocessor for the 
typesetter formatter, TROFF[ll, so the nor­
mal mode of operation is to prepare a docu­
ment with both mathematics and ordinary 
text interspersed, and let EQN set the 
mathematics while TROFF does the body of 
the text. 

On UNIX, EQN will also produce 
mathematics on DASI and GSI terminals and 
on Model 37 teletypes. The input is identi­
cal. but you have to use the programs NEQN 
and NROFF instead of EQN and TROFF. Of 
course, some things won't look as good 
because terminals don't provide the variety 
of characters, sizes and fonts that a 
typesetter does, but the output is usually 
adequate for proofreading. 

To use EQN on UNIX, 

eqn files I troff 

GCOS use is discussed in section 26. 

2. Displayed Equations 

To tell EQN where a mathematical 
expression begins and ends, we mark it with 
lines beginning .EQ and .EN. Thus if you 
type the lines 

.EQ 
x=y+z 
.EN 

your output will look like 

x=y+z 

The .EQ and .EN are copied through 
untouched~ they are not otherwise processed 
by EQN. This means that you have to take 
care of things like centering. numbering, 
and so on yourself. The most comn.on way 
is to use the TROFF and ~ROFF macro pack­
age package '-ms' developed by M. E. 
Lesk [31, which allows you to center, indent, 
left-justify and number equations. 

With the '-ms' package, equations are 
centered by default. To left-justify an equa­
tion, use .EQ L instead of .EQ. To indent it, 
use .EQ I. Any of these can be followed by 
an arbitrary 'equation number' which will be 
placed at the right margin. For example, 
the input 

.EQ I (3.1a) 
x = f(y/2) + y/2 
.EN 

produces the output 

x=/(y/2) + y/2 (3.1 a) 

There is also a shorthand notation so 
in-line expressions like rr,2 can be entered 
withoutEQ and .E:--I. We will talk about it in 
section 19. 

3. I nput spaces 

Spaces and newlineswithin an expres­
sion are thrown away by EQN. (Normal text 
is left absolutely alone.) Thus between .EQ 
and EN, 

x=y+z 

4-89 



and 

x = y + z 

and 

x = y 

+z 

and so on all produce the same output 

x=y+z 

You should use spaces and newlines freely 
to make your input equations readable and 
easy to edit. In particular, very long lines 
are a bad idea, since they are often hard to 
fix if you make a mistake. 

4. Output spaces 

To force extra spaces into the output. 
use a tilde" -" for each space you want: 

x· z=-y. +-z 

gives 

x=y+z 

You can also use a circumflex ""'''., which 
gives a space half the width of a tilde. It is 
mainly useful for fine-tuning. Tabs may 
also be used to position pieces of an expres­
sion, but the tab stops must be set by TROFF 
commands. 

5. Symbols, Special Names, Greek 

EQN knows some mathematical sym­
bols, some mathematical names, and the 
Greek alphabet. For example, 

x = 2 pi int sin ( omega t)dt 

produces 

X=27T J sin (w r) dl 

Here the spaces in the input are necessary 
to tell EQN that into pi. sin and omega are 
separate entities that should get special 
treatment. The sin. digit 2, and parentheses 
are set in roman type instead of italic~ pi and 
omega are made Greek; and in! becomes the 
integral sign. 

When in doubt, leave spaces around 
separate parts of the input. A very common 
error is to type J{pi) without leaving spaces 
on both sides of the pi. As a result, EQN 
does not recognize pi as a special word, and 
it appears as f (pi) instead of f ('Tr). 

4-90 

A complete list of EQN names appears 
in section 23. Knowledgeable users can also 
use TROFF four-character names for any­
thing EQN doesn't know about, like \ (bs for 
the Bell System sign @. 

6. Spaces, Again 

The only way EQN can deduce that 
some sequence of letters might be special is 
if that sequence is separated from the letters 
on either side of it. This can be done by 
surrounding a special word by ordinary 
spaces (or tabs or newlines), as we did in 
the previous section. 

You can also make special words stand 
out by surrounding them with tildes or 
circu mflexes: 

x· =-2-pi-inCsin - (-omega-t-)· dt 

is much the same as the last example, 
except that the tildes not only separate the 
magic words like sin. omega, and so on, but 
also add extra spaces, one space per tilde: 

x ... 2 7T J sin ( WI) dr 

Special words can also be separated by 
braces { } and double quotes " ... ", which 
have special meanings that we will see soon. 

7. Subscripts and Superscripts 

Subscripts and superscripts are 
obtained with the words sub and sup. 

x sup 2 + Y sub k 

gives 

x 2
+y" 

EQN takes care of all . the size changes and 
vertical motions needed to make the output 
look right. The words sub and sup must be 
surrounded by spaces~ x sub2 will give you 
xsub2 instead of X2. Furthermore, don't 
forget to leave a space (or a tilde, etc.) to 
mark the end of a subscript or superscript. 
A common error is to say something like 

y = (x sup 2) + 1 

which causes 

Y-=(X 2)+1 

instead of the intended 

y-=(x2)+ 1 



Subscripted subscripts and super­
scripted superscripts also work: 

x sub i sub 1 

is 

A subscript and superscript on the same 
thing are printed one· above the other if the 
subscript comes first: 

x sub i sup 2 

is 

Other than this special case, sub and 
sup group to the right, so x sup y sub z 
means x Y

:, not x Y :, 

8. Braces for Grouping 

Normally, the end of a subscript or 
superscript is marked simply by a blank (or 
tab or tilde, etc,) What if the subscript or 
superscript is something that has to be typed 
with blanks in it? In that case, you can use 
the braces { and} to mark the beginning and 
end of the subscript or superscript: 

e sup {i omega tl 
is 

e'Wf 

Rule: Braces can a/ways be used to force 
EQN to treat somethi ng as a unit, or just to 
make your intent perfectly clear. Thus: 

x sub {j sub 11 sup 2 

is 

with braces, but 

x sub i sub 1 sup 2 

is 

which is rather different. 

Braces can occur within braces if 
necessary: 

e sup {i pi sup (rho + I)} 

is 

4-91 

The general rule is that anywhere you could 
use some single thing like x, you can use an 
arbitrarily complicated thing if you enclose it 
in braces. EQN will look after all the details 
of positioning it and making it the right size. 

In all cases,make sure you have the 
right number of braces. Leaving one out or 
adding an extra will cause EQN to complain 
bitterly. 

Occasionally you will have to print 
braces. To do this, enclose them in double 
quotes, like fI{fI. Quoting is discussed in 
more detail in section 14. 

9. Fractions 

To make a fraction. use the word over: 

a + b over 2c = 1 

gives 

a+b=1 
2c 

The line is made the right length and posi­
tioned automatically. Braces can be used to 
make clear what goes over what: 

{alpha + beta} over (sin (x) I 
is 

a+{3 
sin (x) 

What happens when there is both an over 
and a SLIp in the same expression? I n such 
an apparently ambiguous case, EQN does the 
sup before the over, so 

-b sup 2 over pi 
2 

-b 2 
is -- instead of - b TT The rules which 

1T 

decide which operation is done first in cases 
like this are summarized in section 23. 
When in doubt, however, use braces to 
make clear what goes with what. 

10. Square Roots 

To draw a square root. use sqrt: 

sqrt a+b + lover sqrt {ax sup 2 +bx+cl 

is 



Warning - square roots of tall quantities 
look lousy, because a root-sign big enough 
to cover the quantity is too dark and heavy: 

sqrt {a sup 2 over b sub 2} 

is 

Big square roots are generally better written 
as something to the power 112: 

(a 2/b 2)lh 

which is 

(a sup 2 /b sub 2 ) sup half 

11. Summation, I ntegral, Etc. 

12. Size and Font Changes 

By default, equations are set in 10-
point type (the same size as this guide), 
with standard mathematical conventions to 
determine what characters are in roman and 
what in italic. Although EQN makes a vali­
ant attempt to use esthetically pleasing sizes 
and fonts, it is not perfect. To change sizes 
and fonts, use size n and roman. italic, bold 
and jato Like sub and sup. size and font 
changes affect only the thing that follows 
them, and revert to the normal situation at 
the end of it. Thus 

bold x y 

is 

xy 

Summations, integrals, and similar and 
constructions are easy: 

sum from i -=0 to (j == inf} x sup i 

produces 

Notice that we used braces to indicate where 
the upper part i==oo begins and ends. No 
braces were necessary for the lower part 
;==0, because it contained no blanks. The 
braces will never hurt, and if the from and to 

parts contain any blanks, you must use 
braces around them. 

The from and to parts are both 
optional, but if both are used, they have to 
occur in that order. 

Other useful characters can replace the 
sum in our example: 

int prod union inter 

become, respectively, 

J II u n 
Since the thing before the from can be any­
thing, even something in braces, jrom-to can 
often be used in unexpected ways: 

lim from {n - > inf} x sub n ===0 

is 

4-92 

gives 

size 14 bold x II:: y + 
size 14 {alpha + beta} 

x==y+cx+{J 
As always, you can use braces if you want to 
affect something more complicated than a 
single letter. For example, you can change 
the size of an entire equation by 

size 12 { ... } 

Legal sizes which may follow size are 
6,7,8,9,10,11,12,14,16, 18,20,22,24, 
28, 36. You can also change the size by a 
given amount~ for example, you can say 
size +2 to make the size two points bigger, 
or size - 3 to make it three points smaller. 
This has the advantage that you don't have 
to know what the current size is. 

If you are using fonts other than 
roman, italic and bold, you can say JOn! X 
where X is a one character TROFF name or 
number for the font. Since EQN is tuned for 
roman, italic and bold, other fonts may not 
give quite as good an appearance. 

The jar operation takes the current 
font and widens it by overstriking: jat grad is 
\l and jat {x sub ,j is Xi. 

If an entire document is to be in a 
non-standard size or font, it is a severe nui­
sance to have to write out a size and font 
change for each equation. Accordingly, you 
can set a "global" size or font which 



thereafter affects all equations. At the 
beginning of any equation, you might say. 
for instance. 

.EQ 
gsize 16 
gfont R 

.EN 

to set the size to 16 and the fOlit to roman 
thereafter. In place of R, you can use any 
of the TROFF font names. The size after 
gS/:e can be a relative change with + or -. 

Generally. gsi::e and g/ont will appear at 
the qeginning of a document but they can 
also appear thoughout a document: the glo­
bal font and size can be changed as often as 
needed. For example. in a footnote; you 
will typically want the size of equations to 
match the size of the footnote text. which is 
two, points smaller than the main text. 
Don't forget to reset the global size at the 
end of the footnote. 

13. Diacritical Marks 

To get funny marks on top of letters. 
there are several words: 

x dot x 
x dotdot x 
x hat x 
x tilde x 
x vec x 
x dyad x 
x bar x 
x under ;S 

The diacritical mark is placed at the right 
height. The bar and under are made the 
right length for the entire construct, as in 
x+y+:; other marks are centered. 

14. Quoted Text 

Any input entirely within quotes 
(" ... ") is not subject to any of the font 
changes and spacing adjustments normally 
done by the equation setter. This provides a 
way to do your own spacing and adjusting if 
needed: 

;Like thiS one. in which we have J few random 
expressions II~ x, and ;r2 The sizes for these 

were set by the command gSI;e -1. 

4-93 

italic "sin(x)" + sin (x) 

is 

sin (x) +sin{x) 

Quotes are also used to get braces and 
other EQN keywords printed: 

"{ size alpha }" 

is 

{ size alpha} 

and 

roman "{ size alpha I" 
is 

( size alpha I 

The construction "" is often used as a 
place-holder when grammatically EQN needs 
something, but you don't actually want any­
thing in your output. For example, to make 
2He, you can't just type sup 2 roman He 
because a sup has to be a superscript on 
something. Thus you must say 

.," sup 2 roman He 

To get a literal quote use "\"". TROFF 

characters like \ (bs can appear unquuted. 
but more complicated things like horizontal 
and vertical motions with \ hand \ v should 
always be quoted. (If you 've never heard of 
\ hand \ v. ignore this section.) 

15. Lining Up Equations 

Sometimes it's necessary to line up a 
series of equations at some horizon tal posi­
tion, often at an equals sign. This is done 
with two operations called mark and lineup. 

The word mark may appear once at 
any place in an equation. It remembers the 
horizontal position where it appeared. Suc­
cessive equations can contain one 
occurrence of the word lineup. The place 
where lineup appears is made to line up with 
the place marked by the previous mark if at 
all possible. Thus, for example. you can say 



.EQ I 
x+y mark = Z 

.EN 

. EQ I 
x lineup = 
.EN 

to produce 

x+y=z 

x=l 

For reasons too complicated to talk about, 
when you use EQN and ~-ms', use either 
.EQ I or .EQ L. mark and lineup don't work 
with centered equations. Also bear in mind 
that mark doesn't look ahead~ 

x mark = 1 

x +y lineup =z 

isn't going to work, because there isn't 
room for the x+y part after the mark 
remembers where the x is. 

16. Big Brackets, Etc. 

To get big brackets [L braces {}, 
parentheses (), and bars II around things, 
use the lefl and right commands: 

left { a over b + 1 right} 
- = - left ( cover d right) 
+ left [ e right] 

is 

The resulting brackets are made big enough 
to cover whatever they enclose. Other char­
acters can be used besides these, but the are 
not likely to look very good. One exception 
is the floor and ceiling characters: 

left floor x over y right floor 
< = left ceiling a over b right ceiling 

produces 

Several warnings about brackets are in 
order. First, braces are typically bigger than 
brackets and parentheses, because they are 
made up of three, five, seven, etc" pieces, 
while brackets can be made up of two, 

three, etc. Second, big left and right 
parentheses often look poor, because the 
character set is poorly designed . 

The right part may be omitted: a "left 
something" need not have a corresponding 
Hright something". If the right part is omit­
ted, put braces around the thing you want 
the left bracket to encompass. Otherwise, 
the resulting brackets may be too large. 

If you want to omit the left part, things 
are more complicated, because technically 
you can't have a right without a correspond­
ing left. Instead you have to say 

left "" ..... right) 

for example. The lef' "" means a "left noth­
ing". This satisfies the rules without hurt­
ing your output. 

17. Piles 

There is a general facility for making 
vertical piles of things~ it comes in several 
flavors. For example: 

A -=- left r 
pile { a above b above c } 
-- pile I x above y above z } 

right] 

will make 

A = [~ fl 
The elements of the pile (there can be as 
many as you wand are centered one above 
another, at the right height for 'most pur­
poses. The keyword above is used to 
separate the pieces~ braces are used around 
the entire list. The elements of a pile can 
be as complicated as needed, even contain­
ing more piles. 

Three other forms of pile exist: /pile 
makes a pile with the elements left-justified: 
rpile makes a right-justified 'pile~ and cpile 
makes a centered pile, just like pile. The 
vertical spacing between the pieces is some­
what larger for 1-, r- and cpiles than it is for 
ordinary piles. 

roman sign (x)- =­
left { 

4-94 

lpile {1 above 0 above -1 } 
-- Ipile 
(irx>o above irx=O above irx<O} 



makes 

1 if x>O 
sign(x):::a 0 if x=O 

-1 if x<O 

Notice the left brace without a matching 
right one. 

18. Matrices 

It is also possible to make matrices. 
For example, to make a neat array like 

you have. to type 

matrix { 

XI x 2 

, 
YI Y-

ccol { x sub i above y sub i I 
ccol { x sup 2 above y sup 2 I 

} 

This produces a matrix with two centered 
columns. The elements of the columns are 
then listed just as for a pile, each element 
separated by the word above. You can also 
use Icol or rcol to left or right adjust 
columns. Each column can be separately 
adjusted, and there can be as many columns 
as you like. 

The reason for using a matrix instead 
of two adjacent piles, by the way, is that if 
the elements of the piles don't all have the 
same height, they won't line up properly. A 
matrix forces them to line up, because it 
looks at the entire structure before deciding 
what spacing to use. 

A word of warning about matrices ..;.,. 
each column must have the same number of 
elements in if. The world will end if you get 
this wrong. 

19. Shorthand for In-line Equations 

In a mathematical document, it is 
necessary to follow mathematical conven­
tions not just in display equations, but also 
in the body of the text, for example by mak­
ing variable names like x italic. Although 
this could be done by surrounding the 
appropriate parts withEQ and EN, the con­
tinual repetition of .EQ and .EN is a nuisance. 
Furthermore, with '-ms', .EO and .eN imply 
a displayed equation. 

EON provides a shorthand for short in­
line expressions. You can define two char­
acters to mark the left and right ends of an 
in-line equation, and then type expressions 
right in the middle of text lines. To set 
both the left and right characters to dollar 
signs, for example, add to the beginning of 
your document the three lines 

.EQ 
delim S5 
.EN 

Having done this, you can then say things 
like 

Let Salpha sub is be the primary 
variable, and let SbetaS be zero. 
Then we can show that Sx sub 15 is 
S> =05. 

This works as you might expect - spaces, 
newlines, and so on are significant in the 
text, but not in the equation part itself. 
Multiple equations can occur in a single 
input line. 

Enoug h room is left before and after a 
line that contains in-line expressions that 

II 

something like IXI does not interfere with 
. :",,1 

the lines surrounding it. 

To turn off the delimiters, 

.EQ 
delim off 
.EN 

Warning: don't use braces, tildes, 
circumflexes, or double quotes as delimiters 
- chaos will result. 

20. Definitions 

EQN provides a facility so you can give 
a frequently-used string of characters a 
name, and thereafter just type the name 
instead of the whole string. For example, if 
the sequence 

x sub i sub 1 + Y sub i sub 1 

appears repeatedly throughout a paper, you 
can save re-typing it each time by defining it 
like this: 

define xy 'x sub i sub 1 + Y sub i sub l' 

This makes .xy a shorthand for whatever 
characters occur between the single quotes 
in the definition. You can use any character 



instead of quote to mark the ends of the 
definition. so long as it doesn't appear inside 
the definition. 

Now you can use ,X)I like this: 

.EQ 
f(x) == xy ... 
.EN 

and so on. Each occurrence of .xy will 
expand into what it was defined as. Be care~ 
ful to leave spaces or their equivalent 
around the name when you actually use it, 
so EON wi II be able to identify it as special. 

There are several things to watch out 
for. First, although definitions can use pre­
vious definitions, as in 

. EQ 
define xi . x sub i ' 
define xi 1 . xi sub 1 ' 
.EN 

don't define something in lerms of itself A 
favorite error is to say 

define X . roman X . 

This is a guaranteed disaster, since X IS now 
defined in terms of itself. If you say 

define X . roman "X" , 

however, the quotes protect the second X, 
and everything works fine. 

EQN keywords can be redefined. You 
can make / mean over by saying 

define / ' over ' 

or redefine over as / with 

define over ' / . 

If you need different things to print on 
a terminal and on the typesetter, it is some~ 
times worth defining a symbol differently in 
NEON and EON. This can be done with 
ndefine and tdefine. A definition made with 
ndefine only takes effect if you are running 
NEON; if you use tde.fine, the definition only 
applies for EON. Names defined with plain 
define apply to both EON and NEON. 

21. Local Motions 

Although EON tries to get most things 
at the right place on the paper, it isn't per~ 
fect, and occasionally you will need to tune 
the output to make it just right. Small extra 

4-96 

horizontal spaces can be obtained with tilde 
and circumflex. You can also say back nand 
fwd n to move small amounts horizontally. 
n is how far to move in 1/1 ~O's of an em­
(an em is about the width of the letter 'm'.) 
Thus back 50 moves back about half the 
width of an m. Similarly you can move 
things up or down with up n and down n. As 
with sub or sup, the local motions affect the 
next thing in the input, and this can be 
something arbitrarily complicated if it is 
enclosed in braces. 

22. A Large Example 

Here is the complete source for the 
three display equations in the abstract of this 
guide . 

.EO I 
G(z)~mark -" e sup lin - G(z} I 
--- exp left ( 
sum from k> o:::} Is sub k z sup k) over k right) 
- == - prod from k> "'"' 1 e sup IS sub k z sup k /k I 
.EN 
.EO I 
lineup I: left ( } + S sub} z + 
I S sub I sup 2 z sup 2 lover 21 + ... right) 
left ( I + I S su b 2 z sup 2 lover 2 
+ I S sub 2 sup 2 z sup 4 lover I 2 sup 2 cdot 21 I 
+ ... right) ... 
.EN 
.EO I 
lineup 0::: sum from m> -0 left ( 
sum from 
pile I k sub I ,k sub 2 .... , k sub m >-0 
above 
k sub I + 2k sub 2 + ... + mk sub m -= m] 
! S sub I sup Ik sub}) lover II sup k sub I k sub } ~ I -
I S sub 2 sup Ik sub 2) lover 12 sup k sub 2 k sub 2 ~ I " 

I S sub m sup Ik sub ml lover 1m sur k sub m k sub mil 
right ) z sup m 
.EN 

23. Keywords, Precedences, Etc. 

If you don't use braces, EON will do 
operations in the order shpwn in this list. 

dyad vee under bar Tilde hat dOl dOTdol 
fv..'d back down up 
fat roman iTalic bold size 
sub sup sqrt over 
from TO 

These operations group to the left: 

over sqrr left right 

All others group to the right. 



Digits, parentheses, brackets, punctua­
tion marks, and these mathematical words 
are converted to Roman font when encoun­
tered: 

sin cos tan sinh cosh tanh arc 
max min lim log In exp 
Re 1m and if for del 

These character sequences are recognized 
and translated as shown. 

>= 
<= 

,= 
+­
-> 
<-
« 
» 
inf 
partial 
half 
prime 
approx 
nothing 
cdot 
times 
del 

. grad 

sum 

int 

prod 
union 
inter 

To obtain 

± 

« 
» 
00 

a 
'h 

x 

I 
J 
IT 
u 
n 

Greek letters, simply 
them out in whatever case you want: 

DELTA L\ iota 
GAMMA r kappa K 

LAMBDA,\ lambda A 
OMEGA n mu J.L 
PHI <t> nu II 

PI n omega w 
PSI 'v omicron () 

SIGMA r. phi cb 
THETA 8 pi rr 
UPSILON Y psi 1/1 
XI - rho p 
alpha ex sigma (j 

spell 

4-97 

beta f3 tau j 

chi X theta fJ 
delta 0 upsilon v 
epsilon E xi g 
eta T/ zeta ~ 
gamma y 

These are all the words known to EQN 
(except for characters with names), together 
with the section where they are discussed. 

above 17, 18 Ipile 17 
back 21 mark 15 
bar 13 matrix 18 
bold 12 ndefine 20 
ccol 18 over 9 
col 18 pile 17 
cpile 17 rcol 18 
define 20 right 16 
delim 19 roman 12 
dot 13 rpile 17 
dotdot 13 size 12 
down 21 sqrt 10 
dyad 13 sub 7 
fat 12 sup 7 
font 12 tdefine 20 
from 1 1 tilde 13 
fwd 21 to 11 
gront 12 under 13 
gsize 12 up 21 
hat 13 vec 13 
italic 12 , 4,6 
Ieol 18 I} 8 
left 16 8, 14 
lineup 15 

24. Troubleshooting 

If you make a mistake in an equation. 
like leaving out a brace (very common) or 
having one too many (very common) or 
having a sup with nothing before it (com­
man), EQN will tell you with the message 

syntax error between lines x and y .. file = 

where x and yare approximately the lines 
between which the trouble occurred. and :: i~ 
the name of the file in question. The line 
numbers are approximate - look nearby as 
well. There are also self-explanatory mes­
sages that arise if you leave out a quote or 
try to run E~ on a non-existent file. 

If you want to check a document 
before actually printing it (on UNIX only), 



eqn files >/dev/null 

will throwaway the output but print the 
messages. 

If you use something like dollar signs 
as delimiters, it is easy to leave one out. 
This causes very strange troubles. The pro­
gram checkeq (on GCOS, use .kheckeq 
instead) checks for misplaced or missing 
dollar signs and similar troubles. 

In-line equations can only be so big 
because of an internal buffer in TROFF. If 
you get a message "word overflow", you 
have exceeded this limit. If you print the 
equation as a displayed equation this mes­
sage will usually go away. The message 
"line overflow" indicates you have 
exceeded an even bigger buffer. The only 
cure for this is to break the equation into 
two separate ones. 

On a related topic, EON does not break 
equations by itself - you must split long 
equations up across multiple lines by your­
self, marking each by a separate .EO '" .EN 
sequence. EO~ does warn about equ.ations 
that are too long to fit on one line. 

25. Use on UNIX 

To print a document that contains 
mathematics on the UNIX typesetter, 

eqn files I troff 

If there are any TROFF options, they go after 
the TROFF part of the command. For exam­
ple, 

eqn files' troff -ms 

To run the same document on the GCOS 

typesetter, use 

eqn files' troff -g (other options) I gcat 

A compatible version of EON can be 
used on devices like teletypes and DASI and 
GSI terminals which have half-line forward 
and reverse capabilities. To print equations 
on a Model 37 teletype, for example, use 

neqn files I nroff 

The language for equations recognized by 
NEON is identical to that of EON. although of 
course the output is more restricted. 

To use a GSI or DASI terminal as the 
output device, 

neqn files I nroff - T x 

where x is the terminal type you are using, 
such as 300 or 300S. 

EON and NEON can be used with the 
TBL program [2) for setting tables that con­
tain mathematics. Use TBL before (N]EON, 
like this: 

tbl files I eqn I troff 
tbl files I neqn I nroff 

26. Acknowledgments 

We are deeply indebted to J. F. 
Ossanna, the author of TROFF, for his wil­
lingness to extend TROFF to make our task 
easier, and for his continuous assistance 
during the development and evolution of 
EON. We are also grateful to A. V. Aha for 
advice on language design, to S. C. Johnson 
for assistance with the Y ACC compiler­
compiler, and to all the EQN users who have 
made helpful suggestions and criticisms. 

References 

[IJ 1. F. Ossanna, "NROFF/TROFF User's 
Manual", Bell Laboratories Computing 
Science Technical Report #54, 1976. 

[2) M. E. Lesk, "Typing Documents on 
UNIX", Bell Laboratories, 1976. 

[3) M. E. Lesk, "TBL - A Program for 
Setting Tables", Bell Laboratories 
Computing Science Technical Report 
#49, 1976. 

4-98 





Some Applications of Inverted Indexes on the UNIX System 

1. Introduction. 

M. E. Lesk 

Bell Laboratories 
Murray Hill, New Jersey 07974 

The UNIXt system has many utilities (e.g. grep, awk, lex, egrep, fgrep, ... ) to search through 
files of text, but most of them are based on a linear scan through the entire file, using some 
deterministic automaton. This memorandum discusses a program which uses inverted indexes} 
and can thus be used on much larger data bases. 

As with any indexing system, of course, there are some disadvantages~ once an index is 
made, the files that have been indexed can not be changed without remaking the index. Thus 
applications are restrictea to those making many searches of relatively stable data. Further­
more, these programs depend on hashing, and can only search for exact matches of whole key­
words. It is not possible to look for arithmetic or logical expressions (e.g. Udate greater than 
1970") or for regular expression searching such as that in lex.2 

Currently there are two uses of this software, the refer preprocessor to format references, 
and the lookall command to search through all text files on the UNIX system. 

The remaining sections of this memorandum discuss the searching programs and their 
uses. Section 2 explains the operation of the searching algorithm and describes the data col­
lected for use with the loo~all command. The more important application, refer has a user's 
description in section 3. Section 4 goes into more detail on reference files for the benefit of 
those who wish to add references to data bases or write new troff macros for use with refer. The 
options to make refer collect identical citations, or otherwise relocate and adjust references, are 
described in section 5. The UNIX manual sections for refer, lookall, and associated commands 
are attached as appendices. 

2. Searching. 

The indexing and searching process is divided into two phases, each made of two parts. 
These are shown below. 

A. Construct the index. 

(1) Find keys - turn the input files into a sequence of tags and keys, where each tag 
identifies a distinct item in the input and the keys for each such item are the strings 
under which it is to be indexed. 

(2) Hash and sort - prepare a set of inverted indexes from which, given a set of keys, 
the appropriate item tags can be found quickly. 

B. Retrieve an item in response to a query. 

tUNIX is a Trademark of Bell Laboratories. 

1. D. Knuth, The Art of Computer Programming: Vol. 3. Sorting and Searching. Addison-Wesley, Reading, Mass. 
(977). See section 6.5. 

2. M. E. Lesk, "Lex - A Lexical Analyzer Generator," Compo Sci. Tech. Rep. No. 39, Bell Laboratories, Mur­
ray Hill, New Jersey (D). 

4-100 



(3) Search - Given some keys, look through the files prepared by the hashing and sort­
ing facility and derive the appropriate tags. 

(4) Deliver - Given the tags, find the original items. This completes the searching pro-
cess. 

The first phase, making the index, is presumably done relatively infrequently. It should, of 
course, be done whenever the data being indexed change. In contrast, the second phase, 
retrieving items, is presumably done often, and must be rapid. 

An effort is made to separate code which depends on the data being handled from code 
which depends on the searching procedure. The search algorithm is involved only in steps (2) 
and (3), while knowledge of the actual data files is needed only by steps (1) and (4). Thus it is 
easy to adapt to d'ifferent data files or different search algorithms. 

To start with, it is necessary to have some way of selecting or generating keys from input 
files. For dealing with files that are basically English, we have a· key-making program which 
automatically selects words and passes them to the hashing and sorting program (step 2). The 
format used has one line for each input item, arranged as follows: 

name:start,length (tab) key 1 key2 key3 .. , 

where name is the file name, slarf is the starting byte number, and length is the number of 
bytes in the entry. 

These lines are the only input used to make the index. The first field (the file name, byte 
position, and byte count) is the tag of the item and can be used to retrieve it quickly. Nor­
mally, an item is either a whole file or a section of a file delimited by blank lines. After the 
tab, the second field contains the keys. The keys, if selected by the automatic program, are any 
alphanumeric strings which are not among the 100 most frequent words in English and which 
are not entirely numeric (except for four-digit numbers beginning 19, which are accepted as 
dates>. Keys are truncated to six characters and con verted to lower case. Some selection is 

needed if the original items are ver lrge. VIe normally just take the first n keys, with n less 
than 100 or so; this replaces any attempt at intelligent selection. One file in our system is a 
complete English dictionary; it would presumably be retrieved for all queries. 

To generate an inverted index to the list of record tags and keys, the keys are hashed and 
sorted to produce an index. What is wanted, ideally, is a series of lists showing the tags associ­
ated with each key. To condense this, what is actually produced is a list showing the tags asso­
ciated with each hash code, and thus with some set of keys. To speed up access and further 
save space, a set of three or possibly four files is produced. These files are: 

File Contents 
entry Pointers to posting file 

for each hash code 
posting Lists of tag pointers for 

each hash code 
lag Tags for each item 
key Keys for each item 

( optional) 

The posting file comprises the real data: it contains a sequence of lists of items posted under 
each hash code. To speed up searching, the entry file is an array of pointers into the posting 
file, one per potential hash code. Furthermore, the items in the lists in the posting file are not 
referred to by their complete tag, but just by an address in the tag file, which gives the com­
plete tags. The key file is optional and contains a copy of the keys Llsed in the indexing. 

The searching process starts with a query, containing several keys. The goal is to obtain 
all items which were indexed under these keys. The query keys are hashed, and the pointers in 
the entry file used to access the lists in the posting file. These lists are addresses in the tag file 
of documents posted under the hash codes derived from the query. The common items from 

4-101 



all lists are determined; this must include the items indexed by every key, but may also contain 
some items which are false drops, since items referenced by the correct hash codes need not 
actually have contained the correct keys. Normally, if there are several keys in the query, there 
are not likely to be many false drops in the final combined list even though each hash code is 
somewhat ambiguous. The actual tags are then obtained from the tag file, and to guard against 
the possibility that an item has false-dropped on some hash code in the query, the original 
items are normally obtained from the delivery program (4) and the query keys checked against 
them by string comparison. 

Usually, therefore, the check for bad drops is made against the original file. However, if 
the key derivation procedure is complex, it may be preferable to check against the keys fed to 
program (2), In this case the optional key file which contains the keys associated with each 
item is generated, and the item tag is supplemented by a string 

~start, length 

which indicates the starting byte number in the key file and the length of the string of keys for 
each item. This file is not usually necessary with the present key-selection program, since the 
keys always appear in the original document. 

There is also an option (-en) for coordination level searching. This retrieves items which 
match all but n of the query keys. The items are retrieved in the order of the number of keys 
that they match. Of course, n must be less than the number of query keys (nothing is 
retrieved unless it matches at least one key). 

As an example, consider one set of 4377 references, comprising 660,000 bytes. This 
included 51,000 keys, of which 5,900 were distinct keys. The hash table is kept full to save 
space (at the expense of time) ~ 995 of 997 possible hash codes were used. The total set of 
index files (no key file) included 171,000 bytes, about 26% of the original file size. It took 8 
minutes of processor time to hash, sort, and write the index. To search for a single query with 
the resulting index took 1.9 seconds' of processor time, while to find the same paper with a 
sequential linear search using grep (reading all of the tags and keys) took 12.3 seconds of pro­
cessor time. 

We have also used this software to index all of the English stored on our UNIX system. 
This is the index searched by the lookall command. On a typical day there were 29,000 files in 
our user file system, containing about 152,000,000 bytes. Of these 5,300 files, containing 
32,000,000 bytes (about 21 %) were English text. The total number of 'words' (determined 
mechanically) was 5,100,000. Of these 227,000 were selected as keys~ 19,000 were distinct, 
hashing to 4,900 (of 5,000 possible) different hash codes. The resulting inverted file indexes 
used 845,000 bytes, or about 2.6% of the size of the original files. The particularly small 
indexes are caused by the fact that keys are taken from only the first 50 non-common words of 
some very long input files. 

Even this large lookall index can be searched quickly. For example, to find this document 
by looking for the keys Hlesk inverted indexes" required 1.7 seconds of processor time and sys­
tem time. By comparison, just to search the 800,000 byte dictionary (smaller than even the 
inverted indexes, let alone the 32,000,000 bytes of text files) with grep takes 29 seconds of pro­
cessor time. The lookall program is thus useful when looking for a document which you 
believe is stored on-line, but do not know where. For example, many memos from the Com­
puting Science Research Center are in its UNIX file system, but it is often difficult to guess 
where a particular memo might be (it might have several authors, each with many directories, 
and have been worked on by a secretary with yet more directories). Instructions for the use of 
the lookall command are given in the manual section, shown in the appendix to this memoran· 
dum. 

The only indexes maintained routinely are those of publication lists and all English files. 
To make other indexes, the programs for making keys, sorting them, searching the indexes, 
and delivering answers must be used. Since they are usually invoked as parts of higher-level 
commands, they are not in the default command directory, but are available to any user in the 

4-102 



directory /usr/liblrejer. Three programs are of interest: mkey, which isolates keys from input 
files; inv, which makes an index from a set of keys~ and hunt, which searches the index and 
delivers the items. Note that the two parts of the retrieval phase are combined into one pro­
gram, to avoid the excessive system work and delay which would result from running these as 
separate processes. 

These three commands have a large number of options to adapt to different kinds of 
input. The user not interested in the detailed description that now follows may skip to section 
3, which describes the rejer program, a packaged-up version of these tools specifically oriented 
towards formatting references. 

Make Keys. The program mkey is the key-making program corresponding to step (1) in 
phase A. Normally, it reads its input from the file names given as arguments, and if there are 
no arguments it reads from the standard input. It assumes that blank lines in the input delimit 
separate items, for each of which a different line of keys.should be generated. The lines of 
keys are written on the standard output. Keys are any alphanumeric string in the input not 
among the most frequent words in English and not entirely numeric (except that all-numeric 
strings are acceptable if they are between 1900 and 1999). In the output, keys are translated to 
lower case, and truncated to six characters in length~ any associated punctuation is removed. 
The following flag arguments are recognized by mkey: 

-c name Name of file of common words~ default is /usr/lib/eign. 
-f name Read a list of files from name and take each as an input argu-

ment. 
- i chars Ignore all lines which begin with '%' followed by any character 

in chars. 
- kn Use at most n keys per input item. 
-In Ignore items shoner than n letters long. 
- n m Ignore as a key any word in the first m words of the list of 

common English words. The default is 100. 
-s Remove the labels (file:start,length) from the output; just give 

the keys. Used when searching rather than indexing. 
- w Each whole file is a separate item; blank lines in files are 

irrelevant. 

The normal arguments for indexing references are the defaults, which are -c /usr/lib/eign, 
-n}OO, and -13. For searching, the -s option is also needed. When the big lookall index of 
all English files is run, the options are - w, -k50, and - f (fi/e/istJ. When running on textual 
input, the mkey program processes about 1000 English words per processor second. Unless the 
- k option is used (and the input files are long enough for it to take effect) the output of mkey 
is comparable in size to its input. 

Hash and invert. The inv program computes the hash codes and writes the inverted files. 
It reads the output of mkey and writes the set of files described earlier in this section. It 
expects one argument, which is used as the base name for the three (or four) files to be writ­
ten. Assuming an argument of Index (the default) the entry file is named Index.ia, the posting 
file Index.ib, the tag file Index.ic \ and the key file (if present) Index.id. The inv program recog­
nizes the following options: 

- a Append the new keys to a previous set of inverted files, making 
new files if there is no old set using the same base name. 

-d Write the optional key file. This is needed when you can not 
check for false drops by looking for the keys in the original 
inputs, i.e. when the key derivation procedure is complicated 
and the output keys are not words from the input files. 

- h n The hash table size is n (default 997) ~ n should be prime. 
Making n bigger saves search time and spends disk space. 

4-103 



- ilul name Take input from file name, instead of the standard input; if u is 
present name is unlinked when the sort is started. Using this 
option permits the sort scratch space to overlap the disk space 
used for input keys., . 

-n Make a completely new set of inverted files, ignoring previous 
files. 

-p Pipe into the sort program, rather than writing a temporary 
input file. This saves disk space and spends processor time. 

-v Verbose mode; print a summary of the number of keys which 
finished indexing. 

About half the time used in inv is in the contained sort. Assuming the sort is roughly 
linear, however, a guess at the total timing for inv is 250 keys per second. The space used is 
usually of more importance: the entry file uses four bytes per possible hash (note the - h 
option), and the tag file around 15-20 bytes per item indexed. Roughly, the posting file con­
tains one item for each key instance and one item for each possible hash code; the items are 
two bytes long if the tag file is less than 65336 bytes long, and the items are four bytes wide if 
the tag file is greater than 65536 bytes long. To minimize storage, the hash tables should be 
over-full; for most of the files indexed in this way, there is no other real choice, since the entry 
file must fit in memory. 

Searching and Retrieving. The hunt program retrieves items from an index: It com­
bines, as mentioned above, the two parts of phase (B): search and delivery. The reason why it 
is efficient to combine delivery and search is partly to avoid starting unnecessary processes, and 
partly because the delivery operation must be a part of the search operation in any case. 
Because of the hashing, the search part takes place in two stages: first items are retrieved which 
have the right hash codes associated with them, and then the actual items are inspected to 
c\etermine false drops, i.e. to determine if anything with the right hash codes doesn't really 
have the right keys. Since the original item is retrieved to check on false drops, it is efficient to 
present it immediately, rather than only giving the tag as output and later retrieving the item 
again. If there were a separate key file, this argument would not apply, but separate key files 
are not common. 

Input to hunt is taken from the standard input, one query per line. Each query should be 
in mkey -s output format; all lower case, no punctuation. The hunt program takes one argu­
ment which specifies the base name of the index files to be searched. Only one set of index 
files can be searched at a time, although many text files may be indexed as a group, of course. 
If one of the text files has been changed since the index, that file is searched with /grep,· this 
may occasionally slow down the searching, and care should be taken to avoid having many out 
of date files. The following option arguments are recognized by hunt: 

-a 
-en 

-F(yndJ 

-g 

-I string 
-I n 

-0 string 

Give all output; ignore checking for false drops .. 
Coordination level n; retrieve items with not more than n 
terms of the input missing~ default CO, implying that each 
search term must be in the output items. 
"- Fy" gives the text of all the items found~ "- Fn" 
suppresses them. "- F d" where d is an integer gives the text 
of the first d items. The default is - Fy. 
Do not use /grep to search files changed since the index was 
made; print an error comment instead. 
Take string as input, instead of reading the standard input. 
The maximum length of internal lists of candidate items is n; 
default 1000. 
Put text output (H - Fy") in STring; of use only when invoked 
from another program. 

4-104 



- p Print hash code frequencies~ mostly for use in optimizing hash 
table sizes. 

-T(yndl I'-Ty" gives the tags of the items found~ I'-Tn" suppresses 
them. \4 - T d" where d is an integer gives the first d tags. The 
default is - Tn. 

-t string Put tag output (I' - Ty") in string; of use only when invoked 
from another program. 

The timing of hunt is complex. Normally the hash table is overfull, so that there will be 
many false drops on any single term~ but a multi-term query will have few false drops on all 
terms. Thus if a query is underspecified (one search term) many potential items will be exam­
ined and discarded as false drops, wasting time. If the query is overspecified (a dozen search 
terms) many keys will be examined only to verify that the single item under consideration has 
that key posted. The variation of search time with number of keys is shown in the table below. 
Queries of varying length were constructed to retrieve a particular document from the file of 
references. In the sequence to the left, search ~erms were chosen so as to select the desired 
paper as quickly as possible. In the sequence on the right, terms were chosen inefficiently, so 
that the query did not uniquely select the desired document until four keys had been used. 
The same document was the target in each case, and the final set of eight keys are also identi­
cal~ the differences at five, six and seven keys are produced by measurement error, not by the 
slightly different key lists. 

Efficient Keys Inefficient Keys 
No. keys Total drops Retrieved Search time No. keys Total drops Retrieved Search time 

(incl. false) Documents (seconds) (incl. false) Documents (seconds) 

1 15 3 1.27 1 68 55 5.96 
2 1 1 0.11 2 29 29 2.72 
3 1 1 0.14 3 8 8 0.95 
4 1 1 0.17 4 1 1 0.18 
5 1 1 0.19 5 1 1 0.21 
6 1 1 0.23 6 1 1 0.22 
7 1 1 0.27 7 1 1 0.26 
8 1 1 0.29 8 1 1 0.29 

As would be expected, the optimal search is achieved when the query just specifies the answer; 
however, overspecification is quite cheap. Roughly, the time required by hunt can be approxi­
mated as 30 milliseconds per search key plus 75 milliseconds per dropped document (whether it 
is a false drop or a real answer). In general, overspecification can be recommended~ it protects 
the user against additions to the data base which turn previously uniquely-answered queries into 
ambiguous queries. 

The careful reader will have noted an enormous discrepancy between these times and the 
earlier quoted time of around 1.9 seconds for a search. The times here are purely for the 
search and retrieval: they are measured by running many searches through a single invocation 
of the hunt program alone. Usually, the UNIX command processor (the shell) must start both 
the mkey and hunt processes for each query, and arrange for the output of mkey to be fed to 
the hunt program. This adds a fixed overhead of about l.7 seconds of processor time to any 
single search. Furthermore, remember that all these times are processor times: on a typical 
morning on our PDP 11/70 system, with about one dozen people logged on, to obtain 1 second 
of processor time for the search program took between 2 and 12 seconds of real time, with a 
median of 3.9 seconds and a mean of 4.8 seconds. Thus, although the work involved in a sin­
gle search may be only 200 milliseconds, after you add the 1.7 seconds of startup processor 
time and then assume a 4: 1 elapsed/processor time ratio, it will be 8 seconds before any 
response is prin ted. 

4-105 



3. Seiettir.r: !:lild Formntiiil~ P.eh:!('nc.:es for TLOFF 

The rna.ior ~ji'pJicc.tiorl of lh\.., i"etricval So~twCire is rekr. which is a (rnt! preprocessor like 
eqn. 3 II scans Its inpu! JooJ:irig Ie.; ile71!S 0: the form 

. [ 
im precise citJ lIOf: 

. ) 

where an imprecise citatioil is mereiy a string of words found in the relevant bibliographic cita­
tion. This is transla~ed into a prcperly formatted reference. If the imprecise citation does not 
correctly identify (1 single paper (either selecting no papers or too many) a message is given. 
The data base of citations searched may be tailored to each system, and individual users may 
specify their own citatiorl files. On our system, the default data base is accumulated from the 
publication lists of the members of our organization. plus about half a dozen personal bibliogra­
phies that were collected. The present total is about 4300 citations, but this increases steadily. 
Even now, the data base covers a large fraction of local citations. 

For example. the reference for the eqn paper above was specified as 

preprocessor like 
.I eqn . 
. [ 
kernighan cherry acm ] 975 
.] 
It scans its input looking for items 

This paper was itself printed using refer. The above input text was processed by refer as well as 
fbi and (ro}1 by the command 

refer memo~til(' r lbl I lroff - inS 

and the reference was automatically translated into a correct citation to the ACM paper on 
mathematical typesetting. 

The procedure to use to place a reference in a paper using feft'r is as follows. First, use 
the lookbih command to check that the paper is in the data base and to find out what keys are 
necessary to retrieve It. This is done by typing lookbib and then typing some potential queries 
until a suitable query is found. For example. had one started to find the eqn paper shown 
above by presenting the query 

$ lookbib 
kernighan cherr} 
(EOT) 

lookbib would have found ~everol items: experimentation 'Would quickly have shown that the 
query given abo\'e is adequate. Over~pecifying the query is of course harmless: it is even desir­
able, since it decre?ses the risk that a document added to the publication data bas~ in the future 
will be retrieved in addition to the intended document. The extra time taken by even a grossly 
overspecified query is quite small. A particularly careful reader may have noticed that "aem" 
does not appear in the printed citation: we have supplemented some of the data base items with 
extra keywords, such as commnn abbreviations fl)r journals or other sources, to aid in search­
ing. 

If the reference is in the data base, the query that retrieved it can be inserted in the text. 
between.! a;;o .1 brackets ir it is nOt in the data base, it can be typed into a private file of 

3 B \l, I~::rr·:~h:.lr. ,md L L Ch:!rq. ':" ~YSlen, for TYres(lttng \1athematlcs," Comm. Ano( Comp Mach. 18, 
rrl~l-j:-: (!\1a,ch 10')1 

4-106 



references, using the format discliSed in the next section, and then the .- p option used to 
search this private file. Such a command might read (jf the private references are called myfile) 

refer - p myfile document I tbl I eqn I troff - ms ... 

where {bl and/or eqn could be omitted if not needed. The use of the -ms macros4 or some 
other macro package, however, is essential. Refer only generates the data for the references~ 
exact formatting 'is done by some macro package, and if none is supplied the references will not 
be printed. 

By default, the references are numbered sequentially, and the -ms macros format refer­
ences as footnotes at the bottom of the page. This memorandum is an example of that style. 
Other possibilities are discussed in section 5 below. 

4. Reference Fires. 

A reference file is a set of bibliographic references usable with refer. It can be indexed 
using the software described in' s~.~tiQn 2 for fast searching. What refer does is to read the 
input document stream, looking fOr imprecise citation references. It then searches through 
reference files to find the full citations'- and inserts them into the document. The format of the 
full citation is arranged to make it convenient for a macro package, such as the -ms macros, to 
format the reference for printing. Since the format of the final reference is determined by the 
desired style of output, which is determined by the macros used, refer avoids forcing any kind 
of reference appearance. All it does is define a set of string registers which contaih the basic 
information about the reference~ and provide a macro call which is expanded by the macro 
package to format the reference. It is the responsibility of the final macro package to see that 
the reference is actually printed~ if no macros are used, and the output of refer fed untranslated 
to {roff, nothing at all will be printed. 

The strings defined by refer are taken directly from the files of references, which are in 
the following format. The references should be separated by blank lines. Each reference is a 
sequence of lines beginning with % and followed by a key-letter. The remainder of that line, 
and successive lines until the next line beginning with %, contain the information specified by 
the key-letter. In general, refer does not interpret the information, but merely pre3ents it to 
the macro package for final formatting. A user with a separate macro package, for example, can 
add new key-letters or use the existing ones for other purposes without bothering refer. 

The meaning of the key-letters given below, in particular, is that assigned by the -ms 
macros. Not all information, obviously, is used with each citation. For example, if a document 
is both an internal memorandum and a journal article, the macros ignore the memorandum ver­
sion and cite only the journal article. Some kinds of information are not used at all in printing 
the reference~ if a user does not like finding refer'ences by specifying title or author keywords, 
and prefers to add specific keywords to ~he ci'tation, a field is available which is searched but not 
printed (K). 

The key letters currently recognized by refer and -ms, with the kind of information 
implied, are: 

4. M. E. Lesk. TYPInJ; Documents on UNIX and ceos: The oms .".,facf05 /or Troff, Bell Laboratories internal 
memorandum (1977). 

4-107 



Key Information specified 
A Author's name 
B Title of book containing item 
C City of publication 
D Date 
E Editor of book containing item 
G Government (NTIS) ordering number 
I Issuer (publisher) 
J Journal name 
K Keys (for searching) 
L Label 
M Memorandum label 

For example, a sample reference could be typed as: 

%T Bounds on the Complexity of the Maximal 
Common Subsequence Problem 
O/OZ ctrl27 
%A A. V. Aho 
%A D. S. Hirschberg 
%A J. D. Ullman 
%J 1. ACM 
%V 23 
%N 1 
%P 1-12 
%M abcd-78 
%D Jan. 1976 

Key Information specified 
N Issue number 
a Other information 
P Page (s) of article 
R Technical report reference 
T Title 
V Volume number 

X or 
Y or 
Z Information not used by refer 

Order is irrelevant, except that authors are shown in the' order given. The output of refer is a 
stream of string definitions, one for each of the fields of each reference, as shown below . 

.1-

.ds [A authors' names ... 

. ds [T title ... 

. ds [J journal ... 

. ] [ type-number 

The refer program, in general, does not concern itself with the significance of the strings. The 
different fields are treated identically by refer, except that the X, Y and Z fields are ignored 
(see the - i option of mkey) in indexing and searching. All refer does is select the appropriate 
citation, based on the keys. The macro package must arrange the strings so as to produce an 
appropriately formatted citation. In this process, it uses the convention that the 'T' field is the 
title, the '1' field the journal, and so forth. 

The refer program does arrange the citation to simplify the macro package's job, however. 
The special macro .J- precedes the string definitions and Cle special macro.) (follows. These 
are changed from the input. ( and .J so that running the same file through -refer again is harm­
less. The .1- macro can be used by the macro package to initialize. The.) ( macro, which 
should be used to print the reference, is given an argument type-number to indicate the kind of 
reference, as follows: 

4-108 



Value 
1 
2 
3 
4 
5 
o 

Kind of reference 
Journal article 
Book 
Article within book 
Technical report 
Bell Labs technical memorandum 
Other 

The type is determined by the presence or absence of particular fields in the citation (a journal 
article must have a • r field, a book must have an 'I' field, and so forth). To a small extent, 
this violates the above rule that refer does not concern itself with the contents of the citation~ 
however, the clas~ification of the citation in Iroff macros would require a relatively expensive 
and obscure program. Any macro writer may, of course, preserve consistency by ignoring the 
argument to the .J [ macro. 

The reference is flagged in the text with the sequence 

\* ([.number\* (.] 

where number is the footnote number. The strings I. and. J should be used by the macro 
package to format the reference flag in the text. These strings can be replaced for a particular 
footnote, as described in section 5. The footnote number (or other signal) is available to the 
reference macro .J [ as the string register [F. To simplify dealing with a text reference that 
occurs at the end of a sentence, refer treats a reference which follows a period in a special way. 
The period is removed, and the reference is preceded by a call for the string <. and followed 
by a call for the string>. For example, if a reference follows "end." it will appear as 

end\*( <.\*(['number\*(.J\*(>. 

where number is the footnote number. The macro package should turn either the string >. or 
<. into a period and delete the other one. This permits the output to have either the form 
"end [31 1." or "end. 31" as the macro package wishes. Note that in one case the period pre­
cedes the number and in the other it follows the number. 

In some cases users wish to suspend the searching, and merely use the reference macro 
formatting. That is, the user doesn't want to provide a search key between. ( and .1 brackets, 
but merely the reference lines for the appropriate document. Alternatively, the user can wish 
to add a few fields to those in the reference as in the standard file, or override some fields. 
Altering or replacing fields, or supplying whole references, is easily done by inserting lines 
beginning with %~ any such line is taken as direct input to the reference processor rather than 
keys to be searched. Thus 

. [ 
key 1 key2 key 3 ... 
%Q New format item 
%R Override report name 
. ] 

makes the indicates changes to the result of searching for the keys. All of the search keys must 
be given before the first % line. 

If no search keys are provided, an entire citation can be provided in-line in the text. For 
example, if the eqn paper citation were to be inserted in this way, rather than by searching for 
it in the data base, the input would read 

4-109 



preprocessor like 
.I eqn . 
. r 
%A B. W. Kernighan 
%A L. L. Cherry 
%T A System for Typesetting Mathematics 
%J Comm. ACM 
%V 18 
%N 3 
%P 151-157 
%D March 1975 
.1 
It scans its input looking for items 

This would produce a citation of the same appearance as that resulting from the file search. 

As shown. fields are normally turned into troff strings. Sometimes users would rather 
have them defined as macros. so that other troff commands can be placed into the data. When 
this is necessary, simply double the control character % in the data. Thus the input 

. [ 
%V 23 
%%M 
Bell Laboratories, 
Murray Hill, N.J. 07974 
.1 . 

is processed by refer into 

.ds [V 23 

.de [M 
Bell Laboratories, 
Murray Hill, N.J. 07974 

The information after %%M is defined as a macro to be invoked by .(M while the information 
after %V is turned into a string to be invoked by \*«V. At present -ms expects all informa­
tion as strings. 

5. Collecting References and other Refer Options 

Normally, the combination of refer and -ms formats output as troff footnotes which are 
consecutively numbered and placed at the bottom of the page. However, options exist to place 
the references at the end~ to arrange references alphabetically by senior author~ and to indicate 
references by strings in the text of the form [Name1975a] rather than by number. Whenever 
references are not placed at the bottom of a page identical references are coaJesced. 

For example, the - e option to refer specifies that references are to be collected~ in this 
case they are output whenever the sequence 

. [ 
SLIST$ 
. ] 

is encountered. Thus, to place references at the end of a paper, the user would run refer with 
the -e option and place the above SLISTS commands after the last line of the text. Refer will 
then move all the references to that point. To aid in formatting the collected references, refer 
writes the references preceded by the line 

4-110 



.)< 

and followed by the line 

.1> 

to invoke special macros before and after the references. 

Another possible option to refer is the - s option to specify sorting of references. The 
default, of course, is to list references in the order presented. The -s option implies the -e 
option, and thus requires a 

· [ 
SLIST$ 
· J 

entry to call out the reference list. The - s option may be followed by a string of letters, 
numbers, and' +' signs indicating how the references are to be sorted. The sort is done using 
the fields whose key-letters are in the string as sorting keys; the numbers indicate how many of 
the fields are to be considered, with' +' taken as a large number. Thus the default is - sAD 
meaning "Sort on senior author, then date." To sort on all authors and then title, specify 
-sA +T. And to sort on two authors and then the journal, write -sA2J. 

Other options to refer change the signal or label inserted in the text for each reference. 
Normally these are just sequential numbers, and their exact placement (within brackets, as 
superscripts, etc.) is determined by the macro package. The -I option replaces reference 
numbers by strings composed of the senior author's last name, the date, and a disambiguating 
letter. If a number follows the I as in -13 only that many letters of the last name are used in 
the label string. To abbreviate the date as well the form -Im,n shortens the last name to the 
first m letters and the date to the last n digits. For example, the option -13,2 would refer to 
the eqn paper (reference 3) by the signal Ker75a, since it is the first cited reference by Ker­
nighan in 1975. 

A user wishing to specify particular labels for a private bibliography may use the - k 
option. Specifying - kx causes the field x to be used as a label. The default is L. If this field 
ends in -, that character is replaced by a sequence letter; otherwise the field is used exactly as 
given. 

If none of the refer-produced signals are desired, the - b option entirely suppresses 
automatic text signals. 

If the user wishes to override the -ms treatment of the reference signal (which is nor­
mally to enclose the number in brackets in nroff and make it a superscript in troff) this can be 
done easily. If the lines .1 or .J contain anything following these characters, the remainders of 
these lines are used to surround the reference signal, instead of the default. Thus, for exam­
ple, to say "See reference (2)." and avoid ,"See reference. 2" the input might appear 

See reference 
· [ ( 
imprecise citation '" 
· D. 

Note that bianks are significant in this construction. If a permanent change is desired in the 
style of reference signals, however, it is probably easier to redefine the strings r. and.J (which 
are used to bracket each <;ignaJ) than to change each citation. 

Although normally refer limits itself to retrieving the data for the reference, and leaves to 
a macro package the job of arranging that data as required by the local format, there are two 
special options for rearrangements that can not be done by macro packages~ The -c option 
p-uts fields into all upper case (CAPS-SMALL CAPS in troff output). The key-letters indicated 
what information is to be translated to upper case follow the c, so that -cAJ means that 
authors' names and journals are to be in caps. The - a option writes the names of authors last 

4-111 



name first, that is A. D. Hall, Jr. is written as Hall, A. D. Jr. The citation form of the Journal 
of the A CM, for example, would require both -cA and - a options. This produces authors' 
names in the style KERNIGHAN, B. W. AND CHERR y, L. L. for the previous example. The - a 
option may be followed by a number to indicate how many author names should be reversed; 
- al (without any -c option) would produce Kernighan, B. W. and L. L. Cherry, for example. 

Finally, there is also the previously-mentioned - p option to let the user specify a p~ivate 
file of references to be searched before the public files. Note that refer does not insist on a pre­
viously made index for these files. If a file is named which contains reference data but is not 
indexed, it will be searched (more slowly) by refer using fgrep. In this way it is easy for users to 
keep small files of new references, which can later be added to the public data bases. 

4-112 





CHAPTER 5 

COMMAND REFERENCE 

Included in this chapter are the XENIX Programmer'~ Manual 
manual pages for commands discussed in this manual. They 
have been included here for completeness. 

5-1 



INTRO(l) XENIX Text Processing INTRO{l) 

N~E 

intro - introduction to commands 

DESCRIPTION 
This section describes publicly accessible commands in 
alphabetic order. Certain distinctions of purpose are made 
in the headings: 

(1) Commands of general utility. 

(lC) Commands for communication with other systems. 

(lG) Commands used primarily for graphics and computer-aided 
design. 

(1M) Commands used primarily for system maintenance. 

The word 'local' at the foot of a page means that the com­
mand is not intended for general distribution. 

SEE ALSO 
DIAGNOSTICS 

Section (6) for computer games. 

How to ~ started, in the Introduction. 

DIAGNOSTICS 
Upon termination each command returns two bytes of status, 
one supplied by the system giving the cause for termination, 
and (in the case of 'normal' termination) one supplied by 
the program, see wait and exit(2). The former byte is 0 for 
normal terminatio~he latter is customarily 0 for success­
ful execution, nonzero to indicate troubles such as errone­
ous parameters, bad or inaccessible data, or other inability 
to cope with the task at hand. It is called variously 'exit 
code', 'exit status' or 'return code', and is described only 
where special conventions are involved. 

5-2 



AWK(I) XENIX Text Processing AWK (I) 

NAME 
awk - pattern scanning and processing language 

SYNTAX 
awk [ -F£ [ prog [ file ] 

DESCRIPTION 
Awk scans each input file for lines that match any of a set 
of patterns specified-rn-~. With each pattern in ~ 
there can be an associated action that will be performed 
when a line of a file matches the pattern. The set of pat­
terns may appear literally as ~, or in a file specified 
as -f file. 

Files are read in order; if there are no files, the standard 
input is read. The file name '_I means the standard input. 
Each line is matched against the pattern portion of ·every 
pattern-action statement; the associated action is pe~formed 
for each matched pattern. 

An input line is made up of fields separated by white space. 
(This default can be changed by using FS, vide infra.) The 
fields are denoted $1, $2, •.. ; $0 refers~the entire 
line. 

A pattern-action statement has the form 

pattern { action } 

A missing { action} means print the line; a missing pattern 
always matches. 

An action is a sequence of statemAnts. A statement can be 
one of the following: 

if ( conditional ) statement [ else statement 
while ( conditional) statement 
for (expression conditional; expression ) statement 
break 
continue 
{ [ statement] .•. } 
variable = expression 
print [ expression-list] [ >expression 
printf format [ , expression-list] [ >expression 
next # skip remaining patterns on this input line 
exit # skip the rest of the input 

Statements are terminated by semicolons, newlines or right 
braces. An empty expression-list stands for the whole line. 
Expressions take on string or numeric values as appropriate, 
and are built using the operators +, -, *, I, %, and con­
catenation (indicated by a blank). The C operators ++, 

5-3 



AWK(l) XENIX Text Processing AWK(l) 

+=, -=, *=, /=, and %= are also available in expressions. 
Variables may be scalars, array elements (denoted x[i]) or 
fields. Variables are initialized to the null string. 
Array subscripts may be any string, not necessarily numeric; 
this allows for a form of associative memory. String con­
stants are quoted " .•• ". 

The print statement prints its arguments on the standard 
output (or on a file if >file is present), separated by the 
current output field separator, and terminated by the output 
record separator. The printf statement formats its expres­
sion list according to the format (see printf(3). 

The built-in function length returns the length of its argu­
ment taken as a string, or of the whole line if no argument. 
There are also built-in functions exp, log, sqrt, and int. 
The last truncates its argument to an integer. 
substr(s, m, n) returns the n-character substring oe s that 
begins at posItion m. The function -
sprintf(fmt, expr, expr, ••. ) formats the expressions 
according to the printf(3) format given by fmt and returns 
the resulting string. 

Patterns are arbitrary Boolean combinations (!, I I, &&, and 
parentheses) of regular expressions and relational expres­
sions. Regular expressions must be surrounded by slashes 
and are as in egrep. Isolated regular expressions in a pat­
tern apply to the entire fine. Regular expressions may also 
occur in relational expressions. 

A pattern may consist of two patterns separated by a comma; 
in this case, the action is performed for all lines between 
an occurrence of the first pattern and the next occurrence 
of the second. 

A relational expression is one of the following: 

expression matchop regular-expression 
expression relop expression 

where a relop is any of the six relational operators in C, 
and a matchop is either - (for contains) or !~ (for does not 
contain). A conditional is an arithmetic expression, a 
relational expression, ora Boolean combination of these. 

The special patterns BEGIN and END may be used to capture 
control before the first input line is read and after the 
last. BEGIN must be the first pattern, END the last. 

A single character c may be used to separate the fields by 
starting the program with 

5-4 



AWK(l) XENIX Text Processing AWK (1) 

BEGIN { FS = "e" } 

or by using the -F£ option. 

Other variable names with special meanings include NF, the 
number of fields in the current record; NR, the ordinal 
number of the current record; FILENAME, the name of the 
current input file; OFS, the output field separator (default 
blank); ORS, the output record separator (default newline); 
and OFMT, the output format for numbers (default "%.6g"). 

EXAMPLES 
Print lines longer than 72 characters: 

length > 72 

Print first two fields in opposite order: 

{ print $2, $1 } 

Add up first column, print sum and average:' 

END 1 
s += $1 } 
print "sum is", s, " average is", s/NR } 

Print fields in reverse order: 

{ for (i = NF; i > 0; --i) print $i } 

Print all lines between start/stop pairs: 

/start/, /stop/ 

Print all lines whose first field is different from previous 
one: 

$1 != prev { print; prev = $1 } 

SEE ALSO 

NOTES 

lex (1) , sed(l) 
A. V. Aho, B. W. Kernighan, P. J. Weinberger, Awk - a pat­
tern scanning and processing language 

There are no explicit conversions between numbers and 
strings. To force an expression to be treated as ~ number 
add 0 to it: to force it to be treated as a string ccncate r

-

ate "" to it. 

5-5 



COL (1) XENIX Text Processing COL (1) 

NAME 
col - filter reverse line feeds 

SYNTAX 
col [-bfx] 

DESCRIPTION 
Col reads the standard input and writes the standard output. 
~performs the line overlays implied by reverse line feeds 
(ESC-7 in ASCII) and by forward and reverse half line feeds 
(ESC-9 and ESC-B). Col is particularly useful for filtering 
multicolumn output made with the '.rt' command of nroff and 
output resulting from use of the tbl(l) preprocessor. 

Although col accepts half line motions in its input, it nor­
mally does-not emit them on output. Instead, text that 
would appear between lines is moved to the next lower full 
line boundary. This treatment can be suppressed by the -f 
(fine) option; in this case the output from col may contain 
forward half line feeds (ESC-9), but will still never con­
tain either kind of reverse line motion. 

If the -b option is given, col assumes that the output dev­
ice in use is not capable of backspacing. In this case, if 
several characters are to appear in the same place, only the 
last one read will be taken. 

The control characters SO (ASCII code 017), and SI (016) are 
assumed to start and end text in an alternate character set. 
The character set (primary or alternate) associated with 
each printing character read is remembered; on output, SO 
and SI characters are generated where necessary to maintain 
the correct treatment of each character. 

Col normally converts white space to tabs to shorten print­
lng time. If the -x option is given, this conversion is 
suppressed. 

All control characters are removed from the input except 
space, backspace, tab, return, newline, ESC (033) followed 
by one of 789, SI, SO, and~VT (013). This last character is 
an alternate form of full reverse line feed, for compatibil­
ity with some other hardware conventions. All other non­
printing characters are ignored. 

SEE ALSO 

NOTES 

troff(l), tbl(l), greek(l) 

Can't back up more than 128 lines. 
No more than 800 characters, including backspaces, on a 
line. 

5-6 



COMM (1) XENIX Text Processing COMM(l) 

NAME 
comm - select or reject lines common to two sorted files 

SYNTAX 
corom [ - [ 123 ] ] filel file2 

DESCRIPTION 
Comm reads filel and file2, which should be ordered in ASCII 
collating sequence, and produces a three column output: 
lines only in filel; lines only in fi1e2; and lines in both 
files. The filename '_I means the standard input. 

Flags 1, 2, or 3 suppress printing of the corresponding 
column. Thus comm -12 prints only the lines common to the 
two files; comm -23 prints only lines in the first file but 
not in the second; comm -123 is a no-oPe 

SEE ALSO 
cmp ( 1), d iff ( 1), un iq ( l) 

5-7 



CTAGS (1) XENIX Text Processing CTAGS (1) 

NAME 
ctags - create a tags file 

SYNTAX 
ctags [ -u ] [-v] -w] [-x] name ••• 

DESCRIPTION 
Ctags makes a tags file for ~(l) from the specified C, Pas­
cal and Fortran sources. A tags file gives the locations of 
specified objects (in this case functions) in a group of 
files. Each line of the tags file contains the function 
name, the file in which it is defined, and a scanning pat­
tern used to find the function definition. These are given 
in separate fields on the line, separated by blanks or tabs. 
Using the tags file, ex can quickly find these function 
definitions. 

If the -x flag is given, ctags produces a list of function 
names, the line number and file name on which each is 
defined, as well as the text of that line and prints this on 
the standard output. This is a simple index which can be 
printed out as an off-line readable function index. 

If the -v flag is given, an index of the form expected by 
vgrind(l) is produced on the standard output. This listing 
contains the function name, file name, and page number 
(assuming 64 line pages). Since the output will be sorted 
into lexicographic order, it may be desired to run the out­
put through sort -f. Sample use: 

ctags -v files I sort -f > index 
vgrind -x index 

Files whose name ends in .c or .h are assumed to be C source 
files and are searched for C roGtine and macro definitions. 
Others are first examined to see if they contain any Pascal 
.or Fortran routine definitions; if not, they are processed 
again looking for C definitions. 

Other options are: 

-w suppressing warning diagnostics. 

-u causing the specified files to be updated in tags, that 
is, all references to them are deleted, and the new 
values are appended to the file. (Beware: th is option 
is implemented in a way which is rather slow; it is 
usually faster to simply rebuild the tags file.) 

The tag main is treated specially in C programs. The tag 
formed is created by prepending M to the name of the file, 
with a trailing .c removed, if any, and leading pathname 
components also removed. This makes use of ctags practical 

5-8 



CTAGS (I) XENIX Text Processing CTAGS (1) 

in directories with more than one program. 

FILES 
tags output tags file 

SEE ALSO 
ex ( 1), vi ( l) 

AUTHOR 

NOTES 

Ken Arnold; FORTRAN added by Jim Kleckner; Bill Joy added 
Pascal and -x, replacing cxref. 

Recognition of functions, subroutines and procedures for 
FORTRAN and Pascal is don'e is a very simpleminded way. No 
attempt is made to deal with block structure; if you have 
two Pascal procedures in different blocks with the same name 
you lose. 

The method of deciding whether to look for C or Pascal and 
FORTRAN functions is a hack. 

5-9 



DEROFF(I) XENIX Text Processing DEROFF(I) 

NAME 
deroff - remove nroff, troff, tbl and eqn constructs 

SYNTAX 
deroff [ -w ] file ••• 

DESCRIPTION 
Deroff reads each file in sequence and removes all nroff and 
troff command lines, backslash constructions, macro defini­
tions, eqn constructs (between '.EQ' and '.EN' lines or 
between delimiters), and table descriptions and writes the 
remainder on the standard output. Deroff follows chains of 
included files ('.so' and '.nx' commands); if a file has 
already been included, a '.50' is ignored and a '.nx' ter­
minates execution. If no input file is given, deroff reads 
from the standard input file. 

If the -w flag is given, the output is a word list, one 
'word' (string of letters, digits, and apostrophes, begin­
ning with a letter; apostrophes are removed) per line, and 
all other characters ignored. Otherwise, the output follows 
the original, with the deletions mentioned above. 

SEE ALSO 

NOTES 

troff (1), eqn (1), tbl (1) 

Deroff is not a complete troff interpreter, 50 it can be 
confused by subtle constructs. Most errors result in too 
much rather than too little output. 

5-10 



DIFF(l) XENIX Text Processing DIFF(l) 

NAME 
diff - differential file comparator 

SYNTAX 
diff -efbh ] filel file2 

DESCRIPTION 
Diff tells what lines must be changed in two files to bring 
them into agreement. If filel (file2) is '-', the standard 
input is used. If filel (file2) is a directory, then a file 
in that directory whose file-name is the same as the file­
name of file2 (filel) is used. The normal output contains 
lines of these forms: 

nl a n3,n4 
nl,niCI n3 
nl,n2 c n3,,!!! 

These lines resemble ed commands to convert filel into' 
file2. The numbers after the letters pertain to file2. In 
fact, by exchanging 'a' for 'd' and reading backward one may 
ascertain equally how to convert file2 into filel. As in 
ed, identical pairs where nl = n2 or n3 = n4 are abbreviated 
as a single number. --

Following each of these lines come all the lines that are 
affected in the first file flagged by '<', then all the 
lines that are affected in the second file flagged by'>'. 

The -b option causes trailing blanks (spaces and tabs) to be 
ignored and other strings of blanks to compare equal. 

The -e option produces a script of ~, ~ and ~ commands for 
the editor ed, which will recreate file2 from filel. The-f 
option prodUCes a similar script, not useful with ed, in the 
opposite order. In connection with -e, the following shell 
program may help maintain multiple versions of a file. Only 
an ancestral file ($1) and a chain of version-to-version ed 
scripts ($2,$3, •.. ) made by diff need be on hand. A 'latest 
version' appears on the standard output. 

(shift; cat $*; echo 'l,$p') I ed - $1 

Except in rare circumstances, diff finds a smallest suffi­
cient set of file differences.----

Option -h does a fast, half-hearted job. It works only when 
changed stretches are short and well separated, but does 
work on files of unlimited length. Options -e and -f are 
unavailable with -h. 

5-11 



DIFF(l) XENIX Text Processing DIFF(l) 

FILES 
/tmp/d????? 
/usr/lib/diffh for -h 

SEE ALSO 
cmp(l), comm(l), ed(l) 

DIAGNOSTICS 

NOTES 

Exit status is 0 for no differences, 1 for some, 2 for trou­
ble. 

Editing scripts produced under the -e or -£ option are naive 
about creating lines consisting of a single ' , 

5-12 



DIFF3(1) XENIX Text Processing DIFF3(1} 

NAME 
diff3 3-way differential file comparison 

SYNTAX 
diff3 -ex3 ] filel file2 file3 

DESCRIPTION 
Diff3 compares three versions of a file, and publishes 
disagreeing ranges of text flagged with these codes: 

all three files differ 

====1 filel is different 

====2 file2 is different 

====3 file3 is different 

The type of change suffered in converting a given range of a 
given file to some other is indicated in one of these ways: 

f nl a 

f nl , n2 c 

Text is to be appended after line number nl 
in file f' where f = 1, 2, or 3. 

Text is to be changed in the range line nl 
to line n2. If nl = 02, the range may be 
abbreviated to n~ --

The original contents of the range follows immediately after 
a c indication. When the contents of two files are identi­
cal, the contents of the lower-numbered file is suppressed. 

Under the -e option, diff3 publishes a script for the editor 
ed that will incorporate into filel all changes between 
fIle2 and file3, i.e. the changes that normally would be 
flagged ==== and ~=~=3. Option -x (-3) produces a script to 
incorporate only changes flagged ==== (====3). The follow­
ing command will apply the resulting script to 'filel'. 

(cat script; echo' l,$p') I ed - filel 

FILES 
/tmp/d3????? 
/usr/lib/diff3 

SEE ALSO 

NOTES 

diff{l) 

Text lines that consist of a single '.' will defeat -e. 
Files longer than 64K bytes won't work. 

5-13 



ED(l) XENIX Text Processing ED(l) 

NAME 
ed - text editor 

SYNTAX 
ed [ - [ -x ] [name ] 

DESCRIPTION 
Ed is the standard text editor. 

If a name argument is given, ed simulates an e command (see 
below,-on the named file; tha~is to say, the-file is read 
into ed's buffer so that it can be edited. If -x is 
present,-an x command is simulated first to handle an 
encrypted file. The optional - suppresses the printing of 
character counts by ~, £, and ~ commands. 

Ed operates on a copy of any file it is editing: changes 
made in the copy have no effect on the file until a w 
(write) command is given. The copy of the text being edited 
resides in a temporary file called the buffer. 

Commands to ed have a simple and regular structure: zero or 
more addresses followed by a single character command, pos­
sibly followed by parameters to the command. These 
addresses specify one or more lines in the buffer. Missing 
addresses are supplied by default. 

In general, only one command may appear on a line. Certain 
commands allow the addition of text to the buffer. While ed 
is accepting text, it is said to be in input mode. In this 
mode, no commands are recognized: all input is merely col­
lected. Input mode is left by typing a period '.' alone at 
the beginning of a line. 

Ed supports a limited form of regular expression notation. 
A regular expression specifies a set of strings of charac­
ters. A member of this set of strings is said to be matched 
by the regular expression. In the following specification 
for regular expressions the word 'character' means any char-
acter but newline. . 

1. Any character except ~ special character matches 
itself. Special characters are the regular expression 
delimiter plus \[. and sometimes A*$. 

2. A. matches any character. 

3. A \ followed by any character except a digit or () 
matches that character. 

4. A nonempty string ~ bracketed [~] (or [A~]) matches any 
character in (or not in) s. In ~, \ has no special 

5-14 



ED(l) XENIX Text Processing ED(l) 

meaning, and] may only appear as the first letter. A 
substring a-b, with a and b in ascending ASCII order, 
stands for-the inclusive range of ASCII characters. 

5. A regular expression of form 1-4 followed by * matches 
a sequence of 0 or more matches of the regular expres­
sion. 

6. A regular expression, x, of form 1-8, bracketed \(~\) 
matches what x matches~ 

7. A \ followed by a digit n matches a copy of the string 
that the bracketed regular expression beginning with 
the ~th \( matched. 

8. A regular expression of form 1-8, ~, followed by a reg­
ular expression of form 1-7, y matches a match· for x 
followed by a match for y, with the ~ match being as 
long as possible while still permitting a y match. 

9. A regular expression of form 1-8 preceded by A (or fol­
lowed by $), is constrained to matches that begin at 
the left (or end at the right) end of a line. 

10. A regular expression of form 1-9 picks out the longest 
among the leftmost matches in a line. 

11. An empty regular expression stands for a copy of the 
last regular expression encountered. 

Regular expressions are used in addresses to specify lines 
and in one command (see s below) to specify a portion of a 
line which is to be replaced. If it is desired to use one 
of the regular expression metacharacters as an ordinary 
character, that character may be preceded by '\'. This also 
applies to the character bounding the regular expression 
(often '/') and to '\' itself. 

To understand addressing in ed it is necessary to know that 
at any time there is a current line. Generally speaking, the 
current line is the last line affected by a command; how­
ever, the exact effect on the current line is discussed 
under the description of the command. Addresses are con­
structed as follows. 

1. The character 
, , . addresses the current line. 

2. The character '$' addresses the last line of the 
buffer. 

3. A decimal number n addresses the ~-th line of the 
buffer. 

5-15 



ED(l) XENIX Text Processing ED(l) 

4. 'IXI addresses the line marked with the name x, which 
must be a lower-case letter. Lines are marked with the 
k command described below. 

5. A regular expression enclosed in slashes '/1 addresses 
the line found by searching forward from the current 
line and stopping at the first line containing a string 
that matches the regular expression. If necessary the 
search wraps around to the beginning of the buffer. 

6. A regular expression enclosed in queries '?I addresses 
the line found by searching backward from the current 
line and stopping at the first line containing a string 
that matches the regular expression. If necessary the 
search wraps around to the end of the buffer. 

7. An address followed by a plus sign '+1 or a minus sign 
'_I followed by a decimal number specifies that address 
plus (resp. minus) the indicated number of lines. The 
plus sign may be omitted. 

8. If an address begins with '+1 or '_I the addition or 
subtraction is taken with respect to the current line; 
e.g. '-5' is understood to mean '.-5'. 

9. If an address ends with '+' or '_I, then 1 is added 
(resp. subtracted). As a consequence of this rule and 
rule 8, the address '_I refers to the line before the 
current line. Moreover, trailing '+' and '-, charac­
ters have cumulative effect, so ' __ I refers to the 
current line less 2. 

10. To maintain compatibility with earlier versions of the 
editor, the character 'AI in addresses is equivalent to 
'_I 

Commands may require zero, one, or two addresses. Commands 
which require no addresses regard the presence of an address 
as an error. Commands which accept one or two addresses 
assume default addresses when insufficient are given. If 
more addresses are given than such a command requires, the 
last one or two (depending on what is accepted) are used. 

Addresses are separated from each other typically by a comma 
',I. They may also be separated by a semicolon ';1. In 
this case the current line '.1 is set to the previous 
address before the next address is interpreted. This 
feature can be used to determine the starting line for for­
ward and backward searches ('/', '?'). The second address 
of any two-address sequence must correspond to a line fol­
lowing the line corresponding to the first address. 

5-16 



ED (1) XENIX Text Processing ED(I) 

In the following list of ed commands, the default addresses 
are shown in parentheses.-The parentheses are not part of 
the address, but are used to show that the given addresses 
are the default. 

As mentioned, it is generally illegal for more than one com­
mand to appear on a line. However, most commands may be 
suffixed by 'pi or by '1', in which case the current line is 
either printed or listed respectively in the way discussed 
below. 

( • ) a 
<text> 

The append command reads the given text and appends it 
after the addressed line. '.' is left on the last line 
input, if there were any, otherwise at the addressed 
line. Address '0' is legal for this command;· text is 
placed at the beginning of the buffer. 

(., .)c 
<text> 

The change command deletes the addressed lines, then 
accepts input text which replaces these lines. "is 
left at the last line input; if there were none, it is 
left at the line preceding the deleted lines. 

(., .)d 
The delete command deletes the addressed lines from the 
buffer. The line originally after the last line 
deleted becomes the current line; if the lines deleted 
were originally at the end, the new last line becomes 
the current line. 

e filename 
The edit command causes the entire contents of the 
buffer to be deleted, and then the named file to be 
read in. '.' is set to the last line of the buffer. 
The number of characters read is typed. 'filename' is 
remembered for possible use as a default file name in a 
subsequent r or w command. If 'filename' is missing, 
the remembered name is used. 

E filename 
This command is the same as ~, except that no diagnos­
tic results when no w has been given since the last 
buffer alteration. 

f filename 
The filename command prints the currently remembered 
file name. If 'filename' is given, the currently 

5-17 



ED(l) XENIX Text Processing ED(l) 

remembered file name is changed to 'filename'. 

(l,$)g/regular expression/command list 

( . ) i 

In the global command, the first step is to mark every 
line which matches the given regular expression. Then 
for every such line, the given command list is executed 
with '.' initially set to that line. A single command 
or the first of multiple commands appears on the same 
line with the global command. All lines of a multi­
line list except the last line must be ended with '\'. 
A, i, and c commands and associated input are permit­
ted~ the ':, terminating input mode may be omitted if 
it would be on the last line of the command list. The 
commands ~ and yare not permitted in the command list. 

<text> 

This command inserts the given text before the 
addressed line. '.' is left at the last line input, 
or, if there were none, at the line before the 
addressed line. This command differs from the a com­
mand only in the placement of the text. 

(., .+l)j 
This command joins the addressed lines into a single 
line; intermediate newlines simply disappear. "is 
left at the resulting line. 

( • ) kx 
The mark command marks the addressed line with name x, 
which must be a lower-case letter. The address form­
"x' then addresses this line. 

(., .)1 
The list command prints the addressed lines in an unam­
biguous way: non-graphic characters are printed in 
two-digit octal, and long lines are folded. The! com­
mand may be placed on the same line after any non-i/o 
command. 

( ., .) m~ 
The move command repositions the addressed lines after 
the line addressed by a. The last of the moved lines 
becomes the current line. 

(., .)p 
The print command prints the addressed lines. '.' is 
left at the last line printed. The E command may be 
placed on the same line after any non-i/o command. 

5-18 



ED(l) XENIX Text Processing ED(l) 

(., .)P 
This command is a synonym for £. 

q The quit command causes ed to exit. No automatic write 
of a file is done. 

Q This command is the same as g, except that no diagnos­
tic results when no w has been given since the last 
buffer alteration. 

($)r filename 
The read command reads in the given file after the 
addressed line. If no file name is given, the remem­
bered file name, if any, is used (see e and f com­
mands). The file name is remembered if there was no 
remembered file name a gl 
r and causes the file to be read at the beginning of 
the buffer. If the read is successful, the number of 
c h a r act e r s rea dis ty pe d . ' .' i s 1 eft at th e I as t 1 i n e 
read in from the file • 

• , .)s/regular expression/replacement/ or, 
., .)s/regular expression/replacement/g 

The substitute command searches each addressed line for 
an occurrence of the specified regular expression. On 
each line in which a match is found, all matched 
strings are replaced by the replacement specified, if 
the global replacement indicator 'g' appears after the 
command. If the global indicator does not appear, only 
the first occurrence of the matched string is replaced. 
It is an error for the substitution to fail on all 
addressed lines. Any character other than space or 
new-line may be used instead of 'I' to delimit the reg­
ular expression and the replacement. '.' is left at 
the last line substituted. 

An ampersand '&' appearing in the replacement is 
replaced by the string matching the regular expression. 
The special meaning of '&' in this context may be 
suppressed by preceding it by '\'. The characters '\n' 
where n is a digit, are replaced by the text matched~y 
the n-th regular subexpression enclosed between '\(' 
and ~\) '. When nested, parenthesized subexpressions 
are present, n is determined by counting occurrences of 
'\(' starting-from the left. 

Lines may be split by substituting new-line characters 
into them. The new-line in the replacement string must 
be escaped by preceding it by '\'. 

( ., .) ta 
ThIs command acts just like the m command, except that 

5-19 



ED (1) XENIX Text Processing ED(l) 

a copy of the addressed lines is placed after address a 
(which may be 0). '.1 is left on the last line of the­
copy. 

(., .)u 
The undo command restores the preceding contents of the 
current line, which must be the last line in which a 
substitution was made. 

(1, $)v/regular expression/command list 
This command is the same as the global command ~ except 
that the command list is executed ~ with '.' initially 
set to every line except those matching the regular 
expression. 

(1, $)w filename 
The write command writes the addressed lines onto the 
given file. If the file does not exist, it is 'created 
mode 666 (readable and writable by everyone). The file 
name is remembered if there was no remembered file name 
already. If no file name is given, the remembered file 
name, if any, is used (see e and f commands). '.' is 
unchanged. If the command Is successful, the number of 
characters written is printed. 

(l,$)W filename 
This command is the same as w, except that the 
addressed lines are appended-to the file. 

x A key string is demanded from the standard input. 
Later r, e and w commands will encrypt and decrypt the 
text wIth-this key by the algorithm of crypt(l). An 
explicitly empty key turns off encryption. 

($)= The line number of the addressed line is typed. "is 
unchanged by this command. 

!<shell command> 
The remainder of the line after the '1' is sent to 
sh(l) to be interpreted as a command. "is 
unchanged. ' 

( • +1) <newline> 
An address alone on a line causes the addressed line to 
be printed. A blank line alone is equivalent to 
'.+lp'; it is useful for stepping through text. 

If an interrupt signal (ASCII DEL) is sent, ed prints a '?I 
and returns to its command level. 

Some size limitations: 512 characters per line, 256 charac­
ters per global command list, 64 characters per file name, 

5-20 



ED(l) XENIX Text Processing ED(l) 

and l28K characters in the temporary file. The limit on the 
number of lines depends on the amount of core: each line 
takes I word. 

When reading a file, ed discards ASCII NUL characters and 
all characters after the last newline. It refuses to read 
files containing non-ASCII characters. 

FILES 
/tmp/e* 
ed.hup: work is saved here if terminal hangs up 

SEE ALSO 
B. W. Kernighan, A Tutorial Introduction to the ED Text Edi­
tor 
~W. Kernighan, Advanced editing on UNIX 
sed(l), crypt(l) 

DIAGNOSTICS 

NOTES 

'?name' for inaccessible file; '?' for errors in commands; 
'?TMP' for temporary file overflow. 

To protect against throwing away valuable work, a g or ~ 
command is considered to be in error, unless a w has 
occurred since the last buffer change. A second g or ~ will 
be obeyed regardless. 

The I command mishandles DEL. 
A ! command cannot be subject to a ~ command. 
Because 0 is an illegal address for a w command, it is not 
possible to create an empty file with ed. de1im $$ 

5-21 



EQN(l) XENIX Text Processing EQN (1) 

NAME 
eqn, neqn, checkeq typeset mathematics 

SYNTAX 
eqn [ -dxy] [-pn ] [-sn ] [-fn ] [ file ] ••• 
checkeq [ file ] ••• 

DESCRIPTION 
Eqn is a troff(l) preprocessor for typesetting mathematics 
on a Graphic Systems phototypesetter, neqn on terminals. 
Usage is almost always 

eqn file ••• I troff 
neqn file ••• I nroff 

If no files are specified, these programs reads from the 
standard input. A line beginning with '.EQ' marks the start 
of an equation; the end of an equation is marked by a line 
beginning with '.EN'. Neither of these lines is altered, so 
they may be defined in macro packages to get centering, 
numbering, etc. It is also possible to set two characters 
as 'delimiters'; subsequent text between delimiters is also 
treated as eqn input. Delimiters may be set to characters x 
and ~ with the command-line argument -d~ or (more commonly) 
with 'delim ~' between .EQ and .EN. The left and right 
delimiters may be identical. Delimiters are turned off by 
'delim off'. All text that is neither between delimiters 
nor between .EQ and .EN is passed through untouched. 

The program checkeq reports missing or unbalanced delimiters 
and .EQ/.EN pairs. 

Tokens within eqn are separated by spaces, tabs, newlines, 
braces, double quotes, tildes or circumflexes. Braces {} 
are used for grouping; generally speaking, anywhere a single 
character like x could appear, a complicated construction 
enclosed in braces may be used instead. Tilde - represents 
a full space in the output, circumflex ~ half as much. 

SEE ALSO 

NOTES 

t r 0 f f ( I), t b I ( 1), m s ( 7), eq n c h a r ( 7 ) 
B. W. Kernighan and L. L. Cherry, Typesetting Mathematics­
User's Guide 
J. F.-Ossanna, NROFF/TROFF User's Manual 

To embolden digits, parens, etc., it is necessary to quote 
them, as in 'bold "12.3"'. 

5-22 



EX{UCB) XENIX Text Processing EX (UCB) 

NAME 
ex - text editor 

SYNTAX 
ex [ - [ -v] [- t tag ] [- r ] [ + 1 i neno ] name ..• 

DESCRIPTION 
Ex is the root of a family of editors: edit, ex and vi. Ex 
is a superset of ed, with the most notable extension~eing a 
display editing facility. Display based editing is the 
focus of vi. 

If you have not used ed, or are a casual user, you will find 
that the editor edit is convenient for you. It avoids some 
of the complexities of ex used mostly by systems programmers 
and persons very familiar with ed. 

If you have a CRT terminal, you may wish to use a display 
based editor; in this case see vi{UCB), which is a command 
which focuses on the display editing portion of ex. 

DOCUMENTATION 
For edit and ex see the Ex/edit command summary - Version 
2.0. The document Edit: A tutorial provides a comprehensive 
Introduction to edit assuming no previous knowledge of com­
puters or the UNIX system. 

The Ex Reference Manual - Version 2.0 is a comprehensive and 
complete manual for the command mode features of ex, but you 
cannot learn to use the editor by reading it. Foran intro­
duction to more advanced forms of editing using the command 
mode of ex see the editing documents written by Brian Ker­
nighan for the editor ed; the material in the introductory 
and advanced documents-Works also with ex. 

An Introduction to Display Editing with Vi introduces the 
display editor vr-and provides reference material on vi. The 
Vi Quick Reference card summarizes the commands of vi-rn a 
useful, functional way, and is useful with the IntrOduction. 

FOR ED USERS 
If you have used ed you will find that ex has a number of 
new features useful on CRT terminals. Intelligent terminals 
and high speed terminals are very pleasant to use with vi. 
Generally, the editor uses far more of the capabilities of 
terminals than ed does, and uses the terminal capability 
data base termcap{UCB) and the type of the terminal you are 
using from the variable TERM in the environment to determine 
how to drive your terminal efficiently. The editor makes 
use of features such as insert and delete character and line 
in its visual command (which can be abbreviated vi) and 
which is the central mode of editing when using vi(UCB). 

5-23 



EX (UCB) XENIX Text Processing EX (UCB) 

There is also an interline editing open (0) command which 
works on all terminals. 

Ex contains a number of new features for easily viewing the 
text of the file. The z command gives easy access to win­
dows of text. Hitting AD causes the editor to scroll a 
half-window of text and is more useful for quickly stepping 
through a file than just hitting return. Of course, the 
screen or"iented visual mode gives constant access to editing 
context. 

Ex gives you more help when you make mistakes. The undo (u) 
command allows you to reverse any single change which goes 
astray. Ex gives you a lot of feedback, normally printing 
changed lInes, and indicates when more than a few lines are 
affected by a command so that it is easy to detect when a 
command has affected more lines than it should have. 

The editor also normally prevents overwriting existing files 
unless you edited them 50 that you don't accidentally 
clobber with a write a file other than the one you are edit­
ing. If the system (or editor) crashes, or you accidentally 
hang up the phone, you can use the editor recover command to 
retrieve your work. This will get you back to within a few 
lines of where you left off. 

Ex has several features for dealing with more than one file 
at a time. You can give it a list of files on the command 
line and use the next (n) command to deal with each in turn. 
The next command can also be given a list of file names, or 
a pattern as used by the phell to specify a new set of files 
to be dealt with. In general, filenames in the editor may 
be formed with full shell metasyntax. The metacharacter '%' 
is also available in forming filenames and is replaced by 
the name of the current file. For editing large groups of 
related files you can use ex's tag command to quickly locate 
functions and other important-points in any of the files. 
This is useful when working on a large program when you want 
to quickly find the definition of a particular function. 
The command ctags(UCB) builds a tags file or a group of C 
programs. 

For moving text between files and within a file the editor 
has a group of buffers, named a through z. You can place 
text in these named buffers and carry it-over when you edit 
another file. 

There is a command & in ex which repeats the last substitute 
command. In addition there is a confirmed substitute com­
mand. You give a range of substitutions to be done and the 
editor interactively asks whether each substitution is 
desired. 

5-24 



EX(UCB) XENIX Text Processing EX (UCB) 

You can use the substitute command in ex to systematically 
convert the case of letters between upper and lower case. 
It is possible to ignore case of letters in searches and 
substitutions. Ex also allows regular expressions which 
match words to be-constructed. This is convenient, for 
example, in searching for the word "edit" if your document 
also contains the word "editor." 

Ex has a set of options which you can set to tailor it to 
your liking. One option which is very useful is the autoin­
dent option which allows the editor to automatically supply 
leading white space to align text. You can then use the AD 
key as a backtab and space and tab forward to align new code 
easily. 

Miscellaneous new useful features include an intelligent 
join (j) command which supplies white space between joined 
lines automatically, commands < and> which shift groups of 
lines, and the ability to filter portions of the buffer 
through commands such as sort. 

FILES 
/usr/lib/ex2.0strings 
/usr/lib/ex2.0recover 
/usr/lib/ex2.0preserve 
/etc/termcap 
-/.exrc 
/tmp/Exnnnnn 
/tmp/Rxnnnnn 
/usr/preserve 

error messages 
recover command 
preserve command 

describes capabilities of terminals 
editor startup file 
editor temporary 
named buffer temporary 
preservation directory 

SEE ALSO 
awk(l), ed(l), grep(l), sed(l), edit(UCB), grep(UCB), 
termcap(UCB), vi (UCB) 

AUTHOR 

NOTES 

William Joy 

The undo command causes all marks to be lost on lines 
changed and then restored if the marked lines were changed. 

Undo never clears the buffer modified condition. 

The z command prints a number of logical rather than physi­
cal lines. More than a screen full of output may result if 
long lines are present. 

File input/output errors don't print a name if the command 
line '_I option is used~ 

5-25 



EX (UCB) XENIX Text Processing EX (UCB) 

There is no easy way to do a single scan ignoring case. 

Because of the implementation of the arguments to next, only 
512 bytes of argument list are allowed there. 

The format of /etc/termcap and the large number of capabili­
ties of terminals used by the editor cause terminal type 
setup to be rather slow. 

The editor does not warn if text is placed in named buffers 
and not used before exiting the editor. 

Null characters are discarded in input files, and cannot 
appear in resultant files. 

5-26 



GREP (1) XENIX Text Processing GREP(l) 

NAME 
grep, egrep, fgrep - search a file for a pattern 

SYNTAX 
grep [ option ] ••. expression [ file ] ••. 

egrep option expression ] file 

fgrep option strings] [file] 

DESCRIPTION 
Commands of the ~ family search the input files (standard 
input default) for lines matching a pattern. Normally, each 
line found is copied to the standard output; unless the -h 
flag is used, the file name is shown if there is more than 
one input file. 

Grep patterns are limited regular expressions in the style 
of ed(l); it uses a compact nondeterministic algorithm. 
Egrep patterns are full regular expressions; it uses a fast 
deterministic algorithm that sometimes needs exponential 
space. Fgrep patterns are fixed strings; it is fast and 
compact. 

The following options are recognized. 

-y All lines but those matching are printed. 

-c Only a count of matching lines is printed. 

-1 The names of files with matching lines are listed 
(once) separated by newlines. 

-n Each line is preceded by its line number in the file. 

-b Each line is preceded by the block number on which it 
was found. This is sometimes useful in locating disk 
block numbers by context. 

-s No output is produced, only status. 

-h Do not print filename headers with output lines. 

-y Alphabetic letters in the pattern will match letters of 
either case in the input (~and fgrep only). 

-e expression 
Same as a simple expression argument, but useful when 
the expression begins with a -. 

-f file 
~e regular expression (egrep) or string list (fgrep) 

5-27 



GREP (1) XENIX Text Processing GREP (1) 

is taken from the file. 

-x (Exact) only lines matched in their entirety are 
printed (fgrep only). 

Care should be taken when using the characters $ * [ A I ? ' 
" ( ) and \ in the expression as they are also meaningful to 
the Shell. It is safest to enclose the entire expression 
argument .in single quotes ' '. 

Fgrep searches for lines that contain one of the (newline­
separated) strings. 

Egrep accepts extended regular expressions. In the follow­
ing description 'character' excludes newline: 

A \ followed by a single character matches that charac­
ter. 

The character A ($) matches the beginning (end) of a 
line. 

A • matches any character. 

A single character not otherwise endowed with special 
meaning matches that character. 

A string enclosed in brackets [] matches any single 
character from the string. Ranges of ASCII character 
codes may be abbreviated as in 'a-zO-9'. A] may occur 
only as the first character of the string. A literal -
must be placed where it can't be mistaken as a range 
indicator. 

A regular expression followed by * (+, ?) matches a 
sequence of 0 or more (lor more, 0 or 1) matches of 
the regular expression. 

Two regular expressions concatenated match a match of 
the first followed by a match of the second. 

Two regular expressions separated by I or newline match 
either a match for the first or a match for the second. 

A regular expression' enclosed in parentheses matches a 
match for the regular expression. 

The order of precedence of operators at the same parenthesis 
level is [] then *+? then concatenation then 1 and newline. 

SEE ALSO 
ed (1), sed (1), sh (1) 

5-28 



GREP (1) XENIX Text Processing GREP(l) 

DIAGNOSTICS 

NOTES 

Exit status is 0 if any matches are found, 1 if none, 2 for 
syntax errors or inaccessible files. 

Ideally there should be only one ~, but we don't know a 
single algorithm that spans a wide enough range of space­
time tradeoffs. 

Lines are limited to 256 characters; longer lines are trun­
cated. 

5-29 



HEAD (UCB) XENIX Text Processing HEAD (UCB) 

NAME 
head - give first few lines of a stream 

SYNTAX 
head [ -count ] file ••• 

DESCRIPTION 
This filter gives the first count lines of each of the 
specified files, or of the standard input. If count is 
omitted it defaults to 10. 

SEE ALSO 
tail(l) 

AUTHOR 
Bill Joy 

5-30 



PREP(I) XENIX Text Processing PREP(I) 

N~E 

prep - prepare text for statistical processing 

SYNTAX 
prep -dio] file ••• 

DESCRIPTION 
Prep reads each file in sequence and writes it on the stan­
dard output, one~rd' to a line. A word is a string of 
alphabetic characters and imbedded apostrophes, delimited by 
space or punctuation. Hyphented words are broken apart; 
hyphens at the end of lines are removed and the hyphenated 
parts are joined. Strings of digits are discarded. 

The following option letters may appear in any order: 

-d Print the word number (in the input stream) with each 
word. 

-i Take the next file as an 'ignore' file. These words 
will not appear ih the output. (They will be counted, 
for purposes of the -d count.) 

-0 Take the next file as an 'only' file. Only these words 
will appear in the output. (All other words will also 
be counted for the -d count.) 

-p Include punctuation marks (single nona1phanumeric char­
acters) as separate output lines. The punctuation 
marks are not counted for the -d count. 

Ignore and only files contain words, one per line. 

SEE ALSO 
deroff(l) 

5-31 



PTX (1) XENIX Text Processing PTX (1) 

NAME 
ptx - permuted index 

SYNTAX 
ptx [ option ] ••• [ input [ output ] 

DESCRIPTION 
Ptx generates a permuted index to file input on file output 
(standard- input and output default). It has three phases: 
the first does the permutation, generating one line for each 
keyword in an input line. The keyword is rotated to the 
front. The permuted file is then sorted. Finally, the 
sorted lines are rotated so the keyword comes at the middle 
of the page. Ptx produces output in the form: 

.xx "tail" "before keyword" "keyword and after" "head" 

where .xx may be an nroff or troff(l) macro for user~defined 
formatting. The before keyword and keyword and after fields 
incorporate as much of the line as will fit around the key­
word when it is printed at the middle of the page. Tail and 
head, at least one of which is an empty string "", are­
wrapped-around pieces small enough to fit in the unused 
space at the opposite end of the line. When original text 
must be discarded, 'It marks the spot. 

The following options can be applied: 

-f Fold upper and lower case letters for sorting. 

-t Prepare the output for the phototypesetter; the default 
line length is 100 characters. 

-w n Use the next argument, g, as the width of the output 
line. The default line length is 72 characters. 

-g n Use the next argument, g, as the number of characters 
to allow for each gap among the four parts of the line 
as finally printed. The default gap is 3 characters. 

-0 only 
Use as keywords only the words given in the only file. 

-i ignore 
Do not use as keywords any words given in the ignore 
file. If the -i and -0 options are missing, use 
lusr/lib/eign as the ignore file. 

-b break 
Use the characters in the break file to separate words. 
In any case, tab, newline, and space characters are 
always used as break characters. 

5-32 



PTX(l} XENIX Text Processing PTX(l} 

FILES 

NOTES 

-r Take any leading nonblank characters of each input line 
to be a reference identifier (as to a page or chapter) 
separate from the text of the line. Attach that iden­
tifier as a 5th field on each output line. 

The index for this manual was generated using ptx. 

/bin/sort 
/usr/lib/eign 

Line length counts do not account for overstriking or pro­
portional spacing. 

5-33 



PUBINDEX (1) XENIX Text Processing PUBINDEX (1) 

NAME 
pub index - make inverted bibliographic index 

SYNTAX 
pub index [ file ] ••• 

DESCRIPTION 

FILES 

Pubindex makes a hashed inverted index to the named files 
for use by refer(l). The files contain bibliographic refer­
ences separated by blank lines. A bibliographic reference 
is a set of lines that contain bibliographic information 
fields. Each field starts on a line beginning with a '%', 
followed by a key-letter, followed by a blank, and followed 
by the contents of the field, which continues until the next 
line starting with '%'. The most common key-letters and the 
corresponding fields are: 

A Author name 
B Title of book containing article referenced 
C City 
D Date 
d Alternate date 
E Editor of book containing article referenced 
G Government (CFSTI) order number 
I Issuer (publisher) 
J Journal 
K Other keywords to use in locating reference 
M Technical memorandum number 
N Issue number within volume 
a Other commentary to be printed at end of reference 
P Page numbers 
R Report number 
r Alternate report number 
T Title of article, book, etc. 
V Volume number 
X Commentary unused by pubindex 

Except for 'A', each field should only be given once. Only 
relevant fields should be supplied. An example is: 

%T 5-by-5 Palindromic Word Squares 
%A M. D. McIlroy 
%J Word Ways 
%V 9 
%P 199-202 
%D 1976 

~.ia, ~.ib, x.ic where x is the first argument. 

5-34 



PUBINDEX(l) 

SEE ALSO 
refer(l) 

XENIX Text Processing PUBINDEX (1) 

5-35 



REFER(I) XENIX Text Processing REFER (1) 

NAME 
refer, lookbib - find and insert literature references in 
documents 

SYNTAX 
refer option 

lookbib [ file 

DESCRIPTION 
Lookbib accepts keywords from the standard input and 
searches a bibliographic data base for references that con­
tain those keywords anywhere in title, author, journal name, 
etc. Matching references are printed on the standard out­
put. Blank lines are taken as delimiters between queries. 

Refer is a preprocessor for nroff or troff(l) that finds and 
formats references. The input files (standard input 
default) are copied to the standard output, except for lines 
between. [ and .] command lines, which are assumed to con­
tain keywords as for lookbib, and are replaced by informa­
tion from the bibliographic data base. The user may avoid 
the search, override fields from it, or add new fields. The 
reference data, from whatever source, are assigned to a set 
of troff strings. Macro packages such as ms(7) print the 
finished reference text from these strings-.- A flag is 
placed in the text at the point of reference; by default the 
references are indicated by numbers. 

The following options are available: 

-ar Reverse the first r author names (Jones, J. A. instead 
of J. A. Jones). If r is omitted all author names are 
reversed. 

-b Bare mode: do not put any flags in text (neither 
numbers nor labels). 

-cstring 
Capitalize (with CAPS SMALL CAPS) the fields whose 
key-letters are in string. 

-e Instead of leaving the references where encountered, 
accumulate them until a sequence of the form . [ 

$LIST$ . ] 
is encountered, and then write out all references col­
lected so far. Collapse references to the same 
source. 

-kx Instead of numbering references, use labels as 

5-36 



REFER(l) KENIK Text ~rocessing REFER(l) 

FILES 

specified in a reference data line beginning %~; by 
default x is L. 

-l~,~ Instead of numbering references, use labels made from 
the senior author's last name and the year of publica­
tion. Only the first m letters of the last name and 
the last n digits of the date are used. If either m 
or ,n is omitted the entire name or date respectively 
is used. 

-p Take the next argument as a file of references to be 
searched. The default file is searched last. 

~n Do not search the default file. 

-skeys 
Sort references by fields whose key-letters are in tne 
keys string; permute reference numbers in text, accord­
ingly. Implies -e. The key-letters in keys may be 
followed by a number to indicate how many such fields 
are used, with + taken as a very large number. The 
default is AD which sorts on the senior author and 
then date; to sort, for example, on all authors and 
then title use -sA+T. 

To use your own references, put them in the format described 
in ~ubindex(l) They can be searched more rapidly by running 
publndex(l) on them before using refer; failure to index 
results in a linear search. 

When refer is used with egn, neqn or tbl, refer should be 
first, to minimize the volume of data passed through pipes. 

/usr/dict/papers directory of default publication lists and 
indexes 
/usr/lib/refer directory of programs 

SEE ALSO 
troff(l) 

5-37 



REV(I) XENIX Text Processing REV(l) 

NAME 
rev - reverse lines of a file 

SYNTAX 
rev [ file ] ••• 

DESCRIPTION 
Rev copies the named files to the standard output, reversing 
the order of characters in every line. If no file is speci­
fied, the standard input is copied. 

5-38 



ROFF(I) XENIX Text Processing ROFF(I) 

NAME 
roff format text 

SYNTAX 
roff [ +!:!. 

nroff -ror 
troff -ror 

DESCRIPTION 

option 
option 

-8 ] [-h] file 

file 
file 

Roff formats text according to control lines embedded in the 
text in the given files. Encountering a nonexistent file 
terminates printing. Incoming inter-terminal messages are 
turned off during printing. The optional flag arguments 
mean: 
+n Start printing at the first page with number n. 
-n Stop printing at the first page numbered high~~ than n. 
-s Stop before each page (including the first) to allow 

paper manipulation; resume on receipt of an interrupt 
signal. 

-h Insert tabs in the output stream to replace spaces 
whenever appropriate. 

Input consists of intermixed text lines, which contain 
information to be formatted, and request lines, which con­
tain instructions about how to format it. Request lines 
begin with a distinguished control character, normally a 
period. 

Output lines may be filled as nearly as possible with words 
without regard to input lineation. Line breaks may be 
caused at specified places by certain commands, or by the 
appearance of an empty input line or an input line beginning 
wi th a space. 

The capabilities of roff are specified in the attached 
Request Summary. Numerical values are denoted there by n or 
+n, titles by t, and single characters by c. Numbers 
denoted +n may be signed + or -, in which case they signify 
relative changes to a quantity, otherwise they signify an 
absolute resetting. Missing n fields are ordinarily taken 
to be 1, missing t fields to be empty, and c fields to shut 
off the appropriate special interpretation. 

Running titles usually appear at top and bottom of every 
page. They are set by requests like 

.he 'partl'part2'part3' 

Partl is left justified, part2 is centered, and part3 is 
right justified on the page. Any % sign in a title is 
replaced by the current page number. Any nonblank may serve 

5-39 



ROFF(l) XENIX Text Processing ROFF(l) 

FILES 

NOTES 

as a quote. 

ASCII tab characters are replaced in the input by a replace­
ment character, normally a space, according to the column 
settings given by a .ta command. (See .tc for how to con­
vert this character on output.) 

Automatic hyphenation of filled output is done under control 
of .hy. When a word contains a designated hyphenation char­
acter, that character disappears from the output and hyphens 
can be introduced into the word at the marked places only. 

The -mr option of nroff or troff(l) simulates roff to the 
greatest extent possible. 

/usr/lib/suftab suffix hyphenation tables 
/tmp/rtm? temporary 

Roff is the simplest of the text formatting programs, and is 
utterly frozen. 

5-40 



ROFF{l) 

Request 
. ad yes 
• ar no 
.br yes 

.bl n 

.bp +n 

.cc c 

.ce n 

.de xx 

• ds yes 
. ef t 
· eh t 
. fi yes 
. fo no 
. hc c 
.he t 
. hx no 
.hy n 

· ig no 

· in +n 
. ix +n 
. li n 
. 11 +n 
. ls +n 
.ml n 

.m2 n 

.m3 n 

.m4 n 

.na yes 

.ne n 

.nn +n 

.nl no 

. n2 n 

. ni +n 
• nf yes 

XENIX Text Processing ROFF(l) 

REQUEST SUMMARY 

Break Initial Meaning 
yes Begin adjusting right margins . 
arabic Arabic page numbers • 

Causes a line break the filling of the current 
line is stopped. 

yes Insert of n blank lines, on new page if 

yes 

no 
yes 

no 

necessary. 
n=l Begin new page and number it n: no n means 
'+1' • 
c=. Control character becomes 'c'. 

Center the next n input lines, without fil­
ling. 

Define parameter less macro to be invoked by 
request' .xx' (definition ends on line beginning 
, .. ' ) . 

no Double space; same as '.ls 2'. 
no t= Even foot title becomes t . 
no t= Even head title becomes t. 
yes Begin filling output lines . 
t= All foot titles are t . 
no none Hyphenation character becomes 'ct . 
no t= All head titles are t. 

Title lines are suppressed . 
no n=l Hyphenation is done, if n=l: and is not done, 

if n=O. 

yes 
no 
no 
no 
yes 
no 

no 

no 

no 

no 
no 

no 
no 

no 

no 
no 

Ignore input lines through a line beginning with , 

Indent n spaces from left margin. 
Same as '.in' but without break . 
Literal, treat next n lines as text . 

n=65 Line length including indent is n characters . 
n=l Line spacing set to n lines per output line . 
n=2 Put n blank lines between the top of page and 
head title. 
n=2 n blank lines put between head title and 
beginning of text on page. 
n=l n blank lines put between end of text and 
foot title. 
n=3 n blank lines put between the foot title and 
the bottom of page. 
Stop adjusting the right margin. 

Begin new page, if n output lines cannot fit 
on present page. 

The next n output lines are not numbered. 
Add 5 to page offset: number lines in margin from 
1 on each page. 
no Add 5 to page offset: number lines from ni 
stop if n=O. 
n=O Line numbers are indented n • 
Stop filling output lines • 

5-41 



ROFF(l) 

.nx 

. of 

. oh 

file 
t 
t 

• pa +n 
. pl +n 
.po +n 

.ro 

. sk n 

.sp n 

no 

yes .ss 
. ta n n •• 

XEN~X Text Processing 

no 
Switch inp:~t to "'file'. 

t= Odd foot ·~itle becomes t • 
no t= Odd head title becomes t • 
yes n=l Same as .... bp' • 

ROFF(l) 

no 
no 

n=66 Total paper length taken to be n lines • 
n=O Page offset. All lines are preceded by n 
spaces. 

arabic Roman page numbers. 
no Produce n blank pages starting next page • 
yes Insert block of n blank lines, except at top 

of page. 
yes Single space output lines, equivalent to .... ls 1'. 

Pseudotab settings • 
.ta n n.. Pseudotab settings. Initial 
tab settings are columns 9 17 25 ••• 

. tc c no space Tab replacement character becomes "'c' • 

. ti +n yes 
• tr cdef .• 
.ul n no 

Temporarily indent next output line n spaces • 
no Translate c into d, e into f, etc • 

Underline the letters and numbers in the next 
n input lines. 

5-42 



SED (I) XENIX Text Processing SED (I) 

NAME 
sed - stream editor 

SYNTAX 
sed [ -n [ -e script] [-f sfile ] [ file] 

DESCRIPTION 
Sed copies the named files (standard input default) to the 
standard output, edited according to a script of commands. 
The -f option causes the script to be taken from file sfile; 
these options accumulate. If there is just one -e option 
and no -f's, the flag -e may be omitted. The -n option 
suppresses the default output. 

A script consists of editing commands, one per line, of the 
following form: 

[address [, address] ] function [arguments] 

In normal operation sed cyclically copies a line of input 
into a pattern space~nless there is something left after a 
'D' command), applies in sequence all commands whose 
addresses select that pattern space, and at the end of the 
script copies the pattern space to the standard output 
(except under -n) and deletes the pattern space. 

An address is either a decimal number that counts input 
lines cumulatively across files, a '$' that addresses the 
last line of input, or a context address, '/regular expres­
sion/', in the style of ed(I) modified thus: 

The escape sequence '\n' matches a newline embedded in 
the pattern space. 

A command line with no addresses selects every pattern 
space. 

A command line with one address selects each pattern space 
that matches the address. 

A command line with two addresses selects the inclusive 
range from the first pattern space that matches the first 
address through the next pattern space that matches the 
second. (If the second address is a number less than or 
equal to the line number first selected, only one line is 
selected.) Thereafter the process is repeated, looking again 
for the first address. 

Editing commands can be applied only to non-selected pattern 
spaces by use of the negation function '1' (below). 

5-43 



SED (1) XENIX Text Processing SED (1) 

In the following list of functions the maximum number of 
permissible addresses for each function is indicated in 
parentheses. 

An argument denoted text consists of one or more lines, all 
but the last of which end with '\1 to hide the newline. 
Backslashes in text are treated like backslashes in the 
replacement string of an 'Sl command, and may be used to 
protect initial blanks and tabs against the stripping that 
is done on every script line. 

An argument denoted rfile or wfile must terminate the com­
mand line and must be preceded by exactly one blank. Each 
wfile is created before processing begins. There can be at 
most 10 distinct wfile arguments. 

(l)a\ 
text 

Append. Place text on the output before reading the 
next input line-.---

(2)b label 

(2)c\ 
text 

Branch to the ':1 command bearing the label. If label 
is empty, branch to the end of the script. 

Change. Delete the pattern space. With 0 or 1 address 
or at the end of a 2~address range, place text on the 
output. Start the next cycle. 

(2)d Delete the pattern space. Start the next cycle. 

(2)0 Delete the initial segment of the pattern space through 
the first newline. Start the next cycle. 

(2)g Replace the contents of the pattern space by the con­
tents of the hold space. 

(2)G Append the contents of the hold space to the pattern 
space. 

(2)h Replace the contents of the hold space by the contents 
of the pattern space~ 

(2)H Append the contents of the pattern space to the hold 
space. 

(1) i \ 
text Insert. Place text on the standard output. 

(2)1 List the pattern space on the standard output in an 

5-44 



SED(l) XENIX Text Processing SED (1) 

unambiguous form. Non-printing characters are spelled 
in two digit ascii, and long lines are folded. 

(2)n Copy the pattern space to the standard output. Replace 
the pattern space with the next line of input. 

(2)N Append the next line of input to the pattern space with 
an embedded newline. (The current line number 
changes.) 

(2)p Print. Copy the pattern space to the standard output. 

(2}P Copy the initial segment of the pattern space through 
the first newline to the standard output. 

(l)q Quit. Branch to the end of the script. Do not start a 
new cycle. 

(2)r rfile 
Read the contents of rfile. Place them on the output 
before reading the next input line. 

(2)s/regular expression/replacement/flags 
Substitute the replacement string for instances of the 
regular expression in the pattern space. Any character 
may be used instead of 'I'. For a fuller description 
see ed(l). Flags is zero or more of 

g Global. Substitute for all nonoverlapping 
instances of the regular expression rather than 
just the first one. 

p Print the pattern space if a replacement was made. 

w wfile 

(2)t label 

Write. Append the pattern space to wfile if a 
replacement was made. 

Test. Branch to the ':' command bearing the label if 
any substitutions have been made since the most recent 
reading of an input line or execution ofa 'tee If 
label is empty, branch to the end of the script. 

(2}w wfile 
Write. Append the pattern space to wfile. 

(2}x Exchange the contents of the pattern and hold spaces. 

(2)y/stringl/string2/ 
Transform. Replace all occurrences of characters in 
stringl with the corresponding character in string2. 

5-45 



SED(l) XENIX Text Processing 

The lengths of stringl and string2 must be equal. 

(2)! function 

SED(l) 

Donlt. Apply the function (or group, if function is 
'{I) only to lines not selected by the addressees). 

(0): label 
This command does nothing; it bears a label for 'b' and 
't l commands to branch to. 

(1)= Place the current line number on the standard output as 
a line. 

(2){ Execute the following commands through a matching '}I 
only when the pattern space is selected. 

(0) An empty command is ignored. 

SEE ALSO 
ed(l), grep(l), awk{l) 

5-46 



SORT(l) XENIX Text Processing SORT (1) 

NAME 
sort - sort or merge files 

SYNTAX 
so r t [ -m u b d fin r t x] [+po s 1 [-po s 2 ] ] ... 
-T directory ] [ name ] 

DESCRIPTION 

[ -0 name ] 

Sort sorts lines of all the named files together and writes 
the result on the standard output. The name '_I means the 
standard input .. If no input files are named, the standard 
input is sorted. 

The default sort key is an entire line. Default ordering is 
lexicographic by bytes in machine collating sequence. The 
ordering is affected globally by the following options, one 
or more of which may appear. 

b Ignore leading blanks (spaces and tabs) in field com­
parisons. 

d 'Dictionary' order: only letters, digits and blanks are 
significant in comparisons. 

f Fold upper case letters onto lower case. 

i Ignore characters outside the ASCII range 040-0176 in 
nonnumeric comparisons. 

n An initial numeric string, consisting of optional 
blanks, optional minus 'sign, and zero or more dig its 
with optional decimal point, is sorted by arithmetic 
value. Option n implies option b. 

r Reverse the sense of comparisons. 

tx 'Tab character' separating fields is x. 

The notation +posl -pos2 restricts a sort key to a field 
beginning at posl and ending just before pos2. Posl and 
pos2 each have the form ~.g, optionally followed by o~e or 
more of the flags bdfinr, where m tells a number of flelds 
to skip from the beginning of the line and n tells a number 
of characters to skip further. If any flags are present 
they override all the global ordering options for this key. 
If the b option is in effect n is counted from the first 
nonblank in the field; b is attached independently to pos2. 
A missing .!l means .0; a missing -pos2 means the end of the 
line. Under the -tx option, fields are strings separated by 
X; otherwise fields-are nonempty nonblank strings separated 
by blanks. 

5-47 



SORT(l) XENIX Text Processing SORT(l) 

FILES 

When there are multiple sort keys, later keys are compared 
only after all earlier keys compare equal. Lines that oth­
erwise compare equal are ordered with all bytes significant. 

These option arguments are also understood: 

c Check that the input file is sorted according to the 
ordering rules; give no output unless the file is out 
of sort. 

rn Merge only, the input files are already sorted. 

o The next argument is the name of an output file to use 
instead of the standard output. This file may be the 
same as one of the inputs. 

T The next argument is the name of a directory in which 
temporary files should be made. 

u Suppress all but one in each set of equal lines. 
Ignored bytes and bytes outside keys do not participate 
in this comparison. 

Examples. Print in alphabetical order all the unique spel­
lings in a list of words. Capitalized words differ from 
uncapitalized. 

sort -u +Of +0 list 

Print the password file (passwd(5» sorted by user id number 
(the 3rd colon-separated field). 

sort -t: +2n /etc/passwd 

Print the first instance of each month in an already sorted 
file of (month day) entries. The options -urn with just one 
input file make the choice of a unique representative from a 
set of equal lines predictable. 

sort -urn +0 -1 dates 

/usr/tmp/stm*, /tmp/*: first and second tries for temporary 
files 

SEE ALSO 
uniq(l), comm(l), rev(l), join(l) 

DIAGNOSTICS 
Comments and exits with nonzero status for various trouble 
conditions and for disorder discovered under option -c. 

5-48 



SORT (1) XENIX Text Processing SORT (1) 

NOTES 
Very long lines are silently truncated. 

5-49 



SPELL(I} XENIX Text Processing SPELL(I) 

NAME 
spell, spellin, spellout - find spelling errors 

SYNTAX 
spell [ option ] ••• [ file ] ••• 

/usr/src/cmd/spell/spellin [ list ] 

/usr/src/cmd/spell/spellout [ -d ] list 

DESCRIPTION 
Spell collects words from the named documents, and looks 
them up in a spelling list. Words that neither occur among 
nor are derivable (by applying certain inflections, prefixes 
or suffixes) from words in the spelling list are printed on 
the standard output. If no files are named, words are col­
lected from the standard input. 

Spell ignores most troff, tbl and eqn(l) constructions. 

Under the -v option, all words not literally in the spelling 
list are printed, and plausible derivations from spelling 
list words are indicated. 

Under the -b option, British spelling is checked. Besides 
preferring centre, colour, speciality, travelled, etc., this 
option insists upon -ise in words like standardise, Fowler 
and the OED to the contrary notwithstanding. 

Under the -x option, every plausible stem is printed with 
'=' for each word. 

The spelling list is based on many sources, and while more 
haphazard than an ordinary dictionary, is also more effec­
tive in respect to proper names and popular technical words. 
Coverage of the specialized vocabularies of biology, medi­
cine and chemistry is light. 

Pertinent auxiliary files may be specified by name argu­
ments, indicated below with their default settings. Copies 
of all output are accumulated in the history file. The stop 
list filters out misspellings {e.g. thier=thy-y+ier} that 
would otherwise pass. 

Two routines help maintain the hash lists used by spell. 
Both expect a list of words, one per line, from the standard 
input. Spellin adds the words on the standard input to the 
preexisting list and places a new list on the standard out­
put. If no list is specified, the new list is created from 
scratch. speIIOut looks up each word in the standard input 
and prints on the standard output those that are missing 
from (or present on, with option -d) the hash list. 

5-50 



SPELL(I) XENIX Text~Processing SPELL(I) 

FILES 

NOTES 

D=/usr/dict/hlist[ab]: hashed spelling. lists, American & 
British 
S=/usr/dict/hstop: hashed stop list 
H=/usr/dict/spellhist: history file 
/usr/lib/spell 
deroff(l), sort(l), tee(l), sed(l) 

The spelling list's coverage is uneven~ new installations 
will probably wish to monitor the output for several months 
to gather local additions. 
British spelling was done by an American. 

5-51 



SPLIT(l) XENIX Text Processing SPLIT(l) 

NAME 
split - split a file into pieces 

SYNTAX 
split [ -!!,] [ file [ name] ] 

DESCRIPTION 
Split reads file and writes it in n-line pieces (default 
1000), as. many as necessary, onto a set of output files. 
The name of the first output file is name with aa appended, 
and so on lexicographically. If no output name is given, x 
is default. 

If no input file is given, or if - is given in its stead, 
then the standard input file is used. 

WARNING 
1000 lines is usually less than 19 pages. 
Lpr does not guarantee that it prints the files in the order 
given. 

SEE ALSO 
Ipr (I), wc (I) 

5-52 



TAIL(l) XENIX Text piocessing TAIL(l) 

NAME 
tail - deliver the last part of a file 

SYNTAX 
tail ±number [lbc] [ file] 

DESCRIPTION 
Tail copies the named file to the standard output beginning 
at a designated place. If no file is named, the standard 
input is used. 

Copying begins at distance +number from the beginning, or 
-number from the end of the input. Number is counted in 
units of lines, blocks or characters, according to the 
appended option 1, b or c. When no units are specified, 
counting is by lines. 

SEE ALSO 
dd(l) 

NOTES 
Tails relative to the end of the file are treasured up in a 
buffer, and thus are limited in length. Various kinds of 
anomalous behavior may happen with character special files. 

5-53 



TBL(l} XENIX Text Processing TBL(l) 

NAME 
tbl - format tables for nroff or troff 

SYNTAX 
tbl [ files·] .". 

DESCRIPTION 
Tbl is a preprocessor for formatting tables for nroff or 
trOff(l).- The input files are copied to the standard out­
put, except for lines between .TS and .TE command lines, 
which are assumed to describe tables and reformatted. 
Details are given in the reference manual. 

As an example, letting \t represent a tab (which should be 
typed as a genuine tab) the input 

.TS 
c s s 
c c s 
c c c 
1 n n. 
Household Population 
Town\tHouseholds 
\tNumber\tSize 
Bedminster\t789\t3.26 
Bernards Twp.\t3087\t3.74 
Bernardsville\t20l8\t3.30 
Bound Brook\t3425\t3.04 
Branchburg\tl644\t3.49 
Bridgewater\t7897\t3.8l 
Far Hil1s\t240\t3.l9 
.TE 

yields 

Household 
Town 

Bedminster 
Bernards Twp. 
Bernardsville 
Bound Brook 
Branchburg 
Bridgewater 
Far Hills 

Population 
Households 

Number Size 
789 3.26 

3087 3.74 
2018 3.30 
3425 3.04 
1644 3.49 
7897 3.81 

240 3.19 

If no arguments are given, tbl reads the standard input, so 
it may be used as a filter. When it is used with egn or 
negn the tbl command should be first, to minimize the volume 
of data passed through pipes. 

5-54 



TBL(l) 

SEE ALSO 
troff(l), eqn(l) 
M. E. Lesk, TBL. 

XENIX Text processing TBL(l) 

5-55 



TR(l) XENIX Text Processing TR(l) 

N~E 

tr - translate characters 

SYNTAX 
tr [ -cds stringl [ string2 ] ] 

DESCRIPTION 
Tr copies the standard input to the standard output with 
substitution or deletion of selected characters. Input 
characters found in stringl are mapped into the correspond­
ing characters of string2. When string2 is short it is pad­
ded to the length of stringl by duplicating its last charac­
ter. Any combination of the options -cds may be used: -c 
complements the set of characters in stringl with respect to 
the universe of characters whose ASCII codes are 01 through 
0377 octal; -d deletes all input characters in stringl; -s 
squeezes all strings of repeated output characters that are 
in string2 to single characters. 

In either string the notation ~-£ means a range of charac­
ters from a to b in increasing ASCII order. The character 
'\' followed by-I, 2 or 3 octal digits stands for the char­
acter whose ASCII code is given by those digits. A '\' fol­
lowed by any other character stands for that character. 

The following example creates a list of all the words in 
'filel' one per line in 'file2', where a word is taken to be 
a maximal string of alphabetics. The second string is 
quoted to protect '\' from the Shell. 012 is the ASCII code 
for newline. 

tr -cs A-Za-z '\012' <filel >file2 

SEE ALSO 

NOTES 

ed(l), ascii(7) 

Won't handle ASCII NUL in stringl or string2; always deletes 
NUL from input. 

5-56 



TROFF(l) XENIX Text Processing TROFF(l) 

NAME 
troff, nroff - text formatting and typesetting 

SYNTAX 
troff option [ file 

nroff option file 

DESCRIPTION 
Troff formats text in the named files for printing on a 
Graphic Systems C/A/T phototypesetteri nroff for 
typewriter-like devices. Their capabilities are described 
in the Nroff/Troff user'~ manual. 

If no file argument is present, the standard input is read. 
An argument consisting of a single minus (-) is taken to be 
a file name corresponding to the standard input. The 
options, which may appear in any order so long as they 
appear before the files, are: 

-olist Print only pages whose page numbers appear in the 
comma-separated list of numbers and ranges. A range 
N-M means pages N through Mi an initial -N means from 
the beginning to-page Ni and a final N- means from N 
to the end. -

-nN Number first generated page ~. 

-sN Stop every ~ pages. Nroff will halt prior to every ~ 
pages (default N=l) to allow paper loading or chang­
ing, and will resume upon receipt of a newline. 
Troff will stop the phototypesetter every N pages, 
produce a trailer to allow changing cassettes, and 
resume when the typesetter's start button is pressed. 

-mname Prepend the macro file /usr/lib/tmac/tmac.name to the 
input files. ----

-raN 

-i 

-q 

Set register ~ (one-character) to~. 

Read standard input after the input files are 
exhausted. 

Invoke the simultaneous input-output mode of the rd 
request. 

Nroff only 

-Tname Prepare output for specified terminal. Known names 
are 37 for the (default) Teletype Corporation Model 
37 terminal, tn300 for the GE TermiNet 300 (or any 
terminal without half-line capability), 300S for the 

5-57 



TROFF(I) XENIX Text Processing TROFF(l) 

FILES 

DASI-300S, 300 for the DASI-300, and 450 for the 
DASI-450 (Diablo Hyterm). 

-e Produce equally-spaced words in adjusted lines, using 
full terminal resolution. 

-h Use output tabs during horizontal spacing to speed 
output and reduce output ,character count. Tab set­
tings are assumed to be every 8 nominal character 
widths. 

Troff only 

-t Direct output to the standard output instead of the 
phototypesetter. 

-£ Refrain from feeding out paper and stopping photo­
typesetter at the end of the run. 

-w Wait until phototypesetter is available, if currently 
busy. 

-b Report whether the phototypesetter is busy or avail­
able. No text processing is done. 

-a Send a printable ASCII approximation of the results 
to the standard output. 

-pN Print all characters in point size ~ while retaining 
all prescribed spacings and motions, to reduce photo­
typesetter elasped time. 

-9 Prepare output for a GCOS phototypesetter and direct 
it to the standard output (see gcat(l». 

If the file /usr/adm/tracct is writable, troff keeps photo­
typesetter accounting records there. The integrity of that 
file may be secured by making troff a 'set user-id' program. 

/usr/lib/suftabl I I I I 
/tmp/ta* 111,1111 
/usr/lib/tmac/tmac.* 
/usr/lib/term/* 
/usr/lib/font/* 
/dev/catllllill 
/usr/adm/tracct 

suffix hyphenation tables 
temporary file 
standard macro files 
terminal driving tables for nroff 
font width tables for troff 
phototypesetter 
accounting statistics for /dev/cat 

SEE ALSO 
J. F. Ossanna, Nroff/Troff user's manual 
B. W. Kernighan, A TROFF Tutorral 
eqn (1), tbl (1) 

5-58 



TROFF(l) XENIX Text Processing 

col(l), tk(l) (nroff only) 
tc (1), gcat (1) (troff only) 

5-59 

TROFF(l) 



UNIQ(I) XENIX Text Processing UNIQ(l) 

NAME 
uniq - report repeated lines in a file 

SYNTAX 
uniq [ -ude [ +n J [-n ] ] [ input [ output ] ] 

DESCRIPTION 
Uniq reads the input file comparing adjacent lines. In the 
normal case, the second and succeeding copies of repeated 
lines are removed; the remainder is written on the output 
file. Note that repeated lines must be adjacent in order to 
be found; see sort(l). If the -u flag is used, just the 
lines that are not repeated in the original file are output. 
The -d option specifies that one copy of just the repeated 
lines is to be written. The normal mode output is the union 
of the -u and -d mode outputs. 

The -c option supersedes -u and -d and generates an' output 
report in default style but with each line preceded by a 
count of the number of times it occurred. 

The n arguments specify skipping an initial portion of each 
line-in the comparison: 

-n The first n fields together with any blanks before 
each are i~nored. A field is defined as a string of 
non-space, non-tab characters separated by tabs and 
spaces from its neighbors. 

+n The first n characters are ignored. Fields are 
skipped before characters. 

SEE ALSO 
sort(l), comm(l) 

5-60 



VI (UCB) XENIX Text Processing VI (UCB) 

NAME 
vi - screen oriented (visual) display editor based on ex 

SYNTAX 
vi [ -t tag ] [-r ] [+lineno ] name ••• 

DESCRIPTION 
Vi (visual) is a display oriented text editor based on 
ex(UCB). Ex and vi run the same code; it is possible to get 
to the command mode of ex from within vi and vice-versa. 

The Vi Quick Reference card and the Introduction to Display 
Editing with Vi provide full details on using vi. 

FILES 
See ex (UeB) . 

SEE ALSO 
ex (UCB) , vi (UCB) , "Vi Quick Reference" card,' "An Intro­
duction to Display Editing with Vi' '. 

NOTES 
Scans with / and? begin on the next line, skipping the 
remainder of the current line. 

Software tabs using AT work only immediately after the 
autoindent. 

Left and right shifts on intelligent terminals don't make 
use of insert and delete character operations in the termi­
nal. 

The wrapmargin option can be fooled since it looks at output 
columns when blanks are typed. If a long word passes 
through the margin and onto the next line without a break, 
then the line won't be broken. 

Insert/delete within a line can be slow if tabs are present 
on intelligent terminals, since the terminals need help in 
doing this correctly. 

Occasionally inverse video scrolls up into the file from a 
diagnostic on the last line. 

Saving text on deletes in the named buffers is somewhat 
inefficient. 

The source command does not work when executed as :source; 
there is no way to use the :append, :change, and :insert 
commands, since it is not possible to give more than one 
line of input to a escape. To use these on a :global you 
must Q to ex command mode, execute them, and then reenter 

5-61 



VI (UCB) XENIX Text Processing VI (UCB) 

the screen editor with vi or open. 

5-62 



We(l) XENIX Text Processing We(l) 

NAME 
wc - word count 

SYNTAX 
wc [ -lwc [ name 

DESCRIPTION 
Wc counts lines, words and characters in the named files, or 
in the standard input if no name appears. A word is a maxi­
mal string of characters delimited by spaces, tabs or new­
lines. 

If the optional argument is present, just the specified 
counts (lines, words or characters) are selected by the 
letters 1, w, or c. 

5-63 




