
P/N 202368
FORCE COMPUTERS Inc./GmbH

All Rights Reserved

This document shall not be duplicated, nor its contents used
for any purpose, unless express permission has been granted.

Copyright by FORCE COMPUTERS

SYS68K/CPU-40/41
User’s Manual

Edition No. 8
February 1997

INTRODUCTION

This page was intentionally left blank

i

TABLE OF CONTENTS

1. GENERAL INFORMATION . 1-1

1.1 Features of the CPU Board . 1-4

2. THE PROCESSOR . 2-1

2.1 The CPU 68040 . 2-1

2.2 The Shared RAM . 2-3
2.2.1 The DRM-01/4 . 2-3
2.2.2 The DRM-01/16 . 2-4
2.2.3 The SRM-01/4 . 2-5
2.2.4 The SRM-01/8 . 2-6

2.3 The System EPROM . 2-7

2.4 The Local SRAM . 2-7

2.5 The Local FLASH EPROM . 2-7

2.6 The Boot EPROM . 2-7

2.7 The FGA-002 . 2-8

2.8 The PI/T 68230 . 2-9
2.8.1 The I/O Configuration of PI/T1 . 2-10
2.8.2 The I/O Configuration of PI/T2 . 2-10

2.9 The Real Time Clock 72423 . 2-11

2.10 The DUSCC 68562 . 2-12
2.10.1 The I/O Configuration of DUSCC1 and DUSCC2 . 2-13

2.11 The EAGLE Modules . 2-15

2.12 The VMEbus Interface . 2-15

2.13 The Monitor of the CPU board . 2-17

2.14 Default Jumper Settings on the CPU Board . 2-18

3. SPECIFICATIONS OF THE CPU BOARD . 3-1

4. ORDERING INFORMATION . 4-1

5. HISTORY OF MANUAL REVISIONS . 5-1

ii

LIST OF FIGURES

Figure 1-1: Photo of the CPU Board . 1-2
Figure 1-2: Block Diagram of the CPU Board . 1-3
Figure 2-1: Location Diagram for All Jumperfields . 2-20
Figure 2-2: The Front Panel of the CPU Board . 2-21

LIST OF TABLES

Table 1-1: The Memory Map . 1-6
Table 1-2: The Base Addresses of the Local I/O Devices . 1-7

iii

This page was intentionally left blank

SECTION 1 INTRODUCTION

1-1

1. GENERAL INFORMATION

This CPU board is a high performance single board computer based on the 68040 microprocessor and the
VMEbus. The board incorporates a modular I/O subsystem which provides a high degree of flexibility for
a wide variety of applications. The CPU board can be used with or without an I/O subsystem, called an
"EAGLE" module.

The board is able to hold a RAM Module which can be DRAM (CPU-40) or SRAM (CPU-41) based.

The CPU-40/41 family design utilizes all of the features of the powerful FORCE Gate Array (FGA-002).
Among its features is a 32-bit DMA controller which supports local (shared) memory, VMEbus and I/O data
transfers for maximum performance, parallel real time operation and responsiveness.

The EAGLE modules are installed on the CPU board via the FLXi (FORCE Local eXpansion interface). This
provides a full 32-bit interface between the base board and the EAGLE module I/O subsystem, providing
a range of I/O options.

Four multiprotocol serial I/O channels, a parallel I/O channel and a Real Time Clock with on-board battery
backup are installed on the base board which, in combination with EAGLE modules, make the CPU board
a true single board computer system.

A broad range of operating systems and kernels is available for the CPU board. However, as with all
FORCE COMPUTERS' CPU cards, VMEPROM firmware is provided with the board at no extra cost.
VMEPROM is a Real Time Kernel and is installed on the CPU board in the two 16-bit wide EPROM sockets,
which results in a 32-bit wide System EPROM area. This ensures that the board is supplied ready to use.

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

1-2

Figure 1-1: Photo of the CPU Board

SECTION 1 INTRODUCTION

1-3

Figure 1-2: Block Diagram of the CPU Board

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

1-4

1.1 Features of the CPU 3Board

! 68040 microprocessor: 25.0 MHz on CPU-40B/41B/x

! 68040 microprocessor: 33.0 MHz on CPU-40D/41D/x

! Shared DRAM Module: 4 Mbyte DRAM with Burst Read/Write and Parity Generation and
Checking (DRM-01/4)

16 Mbyte DRAM with Burst Read/Write and Parity Generation and
Checking (DRM-01/16)

! Shared SRAM Module: 4 Mbyte SRAM with Burst Read/Write (SRM-01/4)

8 Mbyte SRAM with Burst Read/Write (SRM-01/8)

! 32-bit high speed DMA controller for data transfers to/from the shared RAM, VMEbus memory and
EAGLE modules; DMA controller is installed in the FGA-002.

! Two system EPROM devices supporting 40-pin devices. Access from the 68040 using a 32-bit data
path

! One boot EPROM for local booting, initialization of the I/O chips and configuration of the FGA-002

! 128 Kbyte SRAM with on-board battery backup

! 128 Kbyte FLASH EPROM

! FLXi interface for installation of one EAGLE module

! Four Serial I/O interfaces, configurable as RS232/RS422/RS485, available on the front panel

! 8-bit parallel interface with 4-bit handshake

! Two 24-bit timers with 5-bit prescaler

! One 8-bit timer

! Real Time Clock with calendar and on-board battery backup

! Full 32-bit VMEbus master/slave interface, supporting the following data transfer types:

A32, A24, A16 : D8, D16, D32 - Master
A32, A24 : D8, D16, D32 - Slave
UAT, RMW, ADO

! FORCE Message Broadcast (FMB), two channels

SECTION 1 INTRODUCTION

1-5

Features of the CPU Board (cont'd)

! Four-level VMEbus arbiter

! SYSCLK driver

! VMEbus interrupter (IR 1-7)

! VMEbus interrupt handler (IH 1-7)

! Support for ACFAIL* and SYSFAIL

! Bus timeout counters for local and VMEbus access (15 µsec)

! VMEPROM, Real Time Multitasking Kernel with monitor, file manager and debugger

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

1-6

The following table summarizes the memory map of the CPU board.

Table 1-1: The Memory Map

Start End
Address Address Type

00000000 003FFFFF Shared Memory (4 Mbyte)
00000000 007FFFFF Shared Memory (8 Mbyte) or
00000000 00FFFFFF Shared Memory (16 Mbyte)

00400000 F9FFFFFF VMEbus Addresses (4 Mbyte Shared Memory)
A32: D32, D24, D16, D8

00800000 F9FFFFFF VMEbus Addresses (8 Mbyte Shared Memory)
A32: D32, D24, D16, D8

01000000 F9FFFFFF VMEbus Addresses (16 Mbyte Shared Memory)
A32: D32, D24, D16, D8

FA000000 FAFFFFFF Message Broadcast Area

FB000000 FBFEFFFF VMEbus
A24: D32, D24, D16, D8

FBFF0000 FBFFFFFF VMEbus
A16: D32, D24, D16, D8

FC000000 FCFEFFFF VMEbus
A24: D16, D8

FCFF0000 FCFFFFFF VMEbus
A16: D16, D8

FD000000 FEFFFFFF Reserved

FF000000 FF7FFFFF SYSTEM EPROM

FF800000 FFBFFFFF Local I/O

FFC00000 FFC7FFFF LOCAL SRAM

FFC80000 FFCFFFFF Local FLASH EPROM

FFD00000 FFDFFFFF Registers of FGA-002

FFE00000 FFEFFFFF BOOT EPROM

FF803E00 FF803FFF VMEbus Arbiter

FFF00000 FFFFFFFF Reserved

SECTION 1 INTRODUCTION

1-7

This table gives a brief overview of the local I/O devices and the equivalent base address.

Table 1-2: The Base Addresses of the Local I/O Devices

BASE ADDRESS DEVICE

$FF803000 RTC 72423
$FF802000 DUSCC1 68562
$FF802200 DUSCC2 68562
$FF800C00 PI/T1 68230
$FF800E00 PI/T2 68230

SECTION 1 INTRODUCTION

2-1

2. THE PROCESSOR

2.1 The CPU 68040

The 68040 is a third generation full 32 bit enhanced microprocessor. The 68040 is upward object code
compatible with the 68030, 68020, 68010 and 68000 line of microprocessors.

The 68040 combines a central processing unit core, an instruction cache, a data cache, a memory
management unit, and an enhanced bus controller.

This virtual memory processor utilizes multiple, concurrent execution units and a highly integrated
architecture providing a high level of performance.

The 68040 processor combines a 68030 compatible integer unit, a 68881/68882 compatible floating point
unit (FPU), memory management units (MMUs), and a 4 Kbyte instruction and data cache. Cache
functionality is strengthened by the built-in on-chip bus snooping logic which instantly supports cache logic
during multimaster applications.

Instruction administration is routed through both the integer unit and FPU, which link to the fully independent
data and instruction memory units. Each memory unit consists of an MMU, an address translation cache
(ATC), a main cache, and a snoop controller.

The internal blocks are designed to operate in parallel, allowing instruction execution to be overlapped. In
addition, the internal caches, the on-chip memory management unit, and the enhanced bus controller
operate parallel to one another.

The 68040 contains an enhanced bus controller that supports both synchronous/ asynchronous bus cycles
and burst data transfers. It contains a nonmultiplexed address bus and data bus and supports 32 bits of
address and data.

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

2-2

Features of the 68040

! Nonmultiplexed 32 bit address and data buses

! 16 general purpose address and data registers (32 bit wide)

! 8 floating point data registers (80 bit wide)

! Two supervisor stack pointers (32 bit wide)

! 19 special purpose control registers

! 4 Kbyte instruction and 4 Kbyte data cache

! On-chip paged memory management unit

! Pipelined architecture with parallelism allowing accesses to internal caches, bus transfers, and
instruction execution in parallel

! Synchronous bus cycles and burst read and write data transfers

! Complete floating point support given to the 68882 FPCP subset and software emulation

! 68030 compatible

! Low latency bus accesses to reduce cache miss penalty

! Maximized throughput from the integer unit, FPU, MMU and bus controller

! 4 Gbyte direct addressing range

SECTION 1 INTRODUCTION

2-3

2.2 The Shared RAM

On this CPU board the shared RAM is placed on a module to allow the adaption of DRAM or SRAM to the
base board.

All signals which are needed to control the shared RAM are available on the RAM module connector.
Therefore RAM devices with different access times can also be used on this CPU board to take advantage
of the 68040 with higher frequency if it becomes available.

2.2.1 The DRM-01/4

The DRM-01/4 is a 4 Mbyte RAM module which is used on the CPU-40B/4.

Features of the DRM-01/4

! 4 Mbyte DRAM

! Burst READ and Burst WRITE capability

! Parity Generation and Checking

! Asynchronous refresh is provided every 14µs

! Accessible via VMEbus

The access address for the 68040 is $00000000 to $003FFFFF.

The access address for the VMEbus is programmable in 4 Kbyte steps through the FGA-002. The defined
memory range can be write protected in coordination with the address modifier codes. For example, in
supervisor mode the memory can be read and written, in user mode memory can only be read.

The DRAM module includes byte parity check for local and VMEbus accesses. If a parity error is detected
on a VMEbus cycle, a BERR is forced to the VMEbus informing the requestor that a parity error has
occurred. On local accesses, a Transfer Error Acknowledge (TEA) is forced to the processor if a parity
error was detected.

The following chart lists the required CPU clock cycles and wait states for accessing the shared RAM.

Board 68040 Clock No. of CPU Clock No. of CPU Clock No. of Wait No. of Wait
Type Frequency Cycles Counted Cycles for States for States for

From TS to TA Burst Cycles Normal Cycles Burst Cycles
for Normal Cycles

CPU-40/B 25 MHz 4 1 3 0

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

2-4

2.2.2 The DRM-01/16

The DRM-01/16 is a 16 Mbyte RAM module which is used on the CPU-40B/16.

Features of the DRM-01/16

! 16 Mbyte DRAM

! Burst READ and Burst WRITE capability

! Parity Generation and Checking

! Asynchronous refresh is provided every 14µs

! Accessible via VMEbus

The access address for the 68040 is $00000000 to $00FFFFFF.

The access address for the VMEbus is programmable in 4 Kbyte steps through the FGA-002. The defined
memory range can be write protected in coordination with the address modifier codes. For example, in
supervisor mode the memory can be read and written, in user mode memory can only be read.

The DRAM module includes byte parity check for local and VMEbus accesses. If a parity error is detected
on a VMEbus cycle, a BERR is forced to the VMEbus informing the requestor that a parity error has
occurred. On local accesses, a Transfer Error Acknowledge (TEA) is forced to the processor if a parity
error was detected.

The following chart lists the required CPU clock cycles and wait states for accessing the shared RAM.

Board 68040-B Clock No. of CPU Clock No. of CPU Clock No. of Wait No. of Wait
Type Frequency Cycles Counted Cycles for States for States for

From TS to TA Burst Cycles Normal Cycles Burst Cycles
for Normal

Cycles

CPU-40/B 25 MHz 4 1 3 0

SECTION 1 INTRODUCTION

2-5

2.2.3 The SRM-01/4

The SRM-01/4 is a 4 Mbyte RAM module which is used on the CPU-41B/4.

Features of the SRM-01/4

! 4 Mbyte SRAM

! Burst READ and Burst WRITE capability

! Battery Backup via VMEbus

! Accessible via VMEbus

The access address for the 68040 is $00000000 to $003FFFFF.

The access address for the VMEbus is programmable in 4 Kbyte steps through the FGA-002. The defined
memory range can be write protected in coordination with the address modifier codes. For example, in
supervisor mode the memory can be read and written, in user mode memory can only be read.

Parity check is not necessary for SRAM devices, because these components are protected against soft
errors owing alpha emission. The following chart lists the required CPU clock cycles and wait states for
accessing the shared RAM.

Board 68040 Clock No. of CPU Clock No. of CPU Clock No. of Wait No. of Wait
Type Frequency Cycles Counted Cycles for States for States for

From TS to TA Burst Cycles Normal Cycles Burst Cycles
for Normal Cycles

CPU-41/B 25 MHz 3 1 2 0

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

2-6

2.2.4 The SRM-01/8

The SRM-01/8 is an 8 Mbyte RAM module which is used on the CPU-41B/8.

Features of the SRM-01/8

! 8 Mbyte SRAM

! Burst READ and Burst WRITE capability

! Battery Backup via VMEbus

! Accessible via VMEbus

The access address for the 68040 is $00000000 to $007FFFFF.

The access address for the VMEbus is programmable in 4 Kbyte steps through the FGA-002. The defined
memory range can be write protected in coordination with the address modifier codes.

For example, in supervisor mode the memory can be read and written, in user mode memory can only be
read.

Parity check is not necessary for SRAM devices, because these components are protected against soft
errors owing alpha emission. The following chart lists the required CPU clock cycles and wait states for
accessing the shared RAM.

Board 68040 Clock No. of CPU Clock No. of CPU Clock No. of Wait No. of Wait
Type Frequency Cycles Counted Cycles for States for States for

From TS to TA Burst Cycles Normal Cycles Burst Cycles
for Normal

Cycles

CPU-41/B 25 MHz 3 1 2 0

SECTION 1 INTRODUCTION

2-7

2.3 The System EPROM

The CPU board offers two 40-pin EPROM sockets for the installation of two 16-bit wide EPROM devices.
The EPROMs present a full 32-bit data path to the processor enabling maximum performance. The
following devices are supported in the system EPROM area:

Supported Device Types in the System EPROM Area:

Organization Total Memory Capacity

 64K x 16 256 Kbytes
128K x 16 512 Kbytes
256K x 16 1 Mbyte
512K x 16 2 Mbytes

2.4 The Local SRAM

The CPU board contains a 128K * 8 bit SRAM. Battery backup is provided via the on-board battery or the
VMEbus +5VSTDBY line.

2.5 The Local FLASH EPROM

A 128 Kbyte FLASH EPROM is included on the base board of the CPU-40 which can be used as additional
data backup under conditions of power down for long periods. FLASH EPROM is ideal to hold details of
the board status, such as software revision or user data which is to be kept permanently.

2.6 The Boot EPROM

The CPU board contains, in addition to the two system EPROMs, a single boot EPROM to boot the local
microprocessor, initialize all I/O devices and program the board-dependent functions of the FGA-002. All
basic initialization of the I/O devices and the FGA-002 are made through the boot EPROM.

In addition, the boot EPROM contains user utility routines, which may be called out of the user's application
program. These routines provide easy software access to the functionality of the FGA-002 (DMA controller,
FORCE Message Broadcast, Interrupt Management, etc.).

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

2-8

2.7 The FGA-002

One of the main features on this CPU board is the FGA-002 Gate Array with 24,000 gates and 281 pins.
The FGA-002 controls the local bus and builds the VMEbus interface. It also includes a DMA controller,
a complete interrupt handler, message broadcast interface (FMB), timer functions, mailbox locations, and
a VMEbus interrupter. This gate array monitors the local bus, which in turn signifies that if any local I/O
device is to be accessed, the gate array overrules all control signals, used address signals, and data
signals.

The FGA-002 serves as a VMEbus manager. All VMEbus address and data lines are connected to the
gate array through the buffers. Additional functions such as the VMEbus interrupt handler are also installed
on the FGA-002. The on-chip DMA controller can access the local memory, VMEbus memory, and on-
board devices which are able to function in a DMA mode. The start address of the FGA-002 registers is
$FFD00000. All registers of the gate array and associated functions are described in detail in the FGA-002
Users Manual. On the following page you will find a list of features for the FGA-002.

Features of the FGA-002

! 32 bit DMA Controller

! 2 Message Broadcast Channels (FMB)

! 8 Mailbox Interrupt Channels

! One 8 bit timer

! Complete Interrupt Management for VMEbus interrupts, ACFAIL, SYSFAIL, Onboard Interrupts and
FGA-002 internal interrupts

! VMEbus interface including a single level arbiter

! Decoding logic for accesses to the Shared Memory of the CPU board

A complete functional description of the FGA-002 may be found in the FGA-002 Users Manual.

SECTION 1 INTRODUCTION

2-9

2.8 The PI/T 68230

The MC68230 Parallel Interface/Timer (PI/T) provides versatile double buffered parallel interfaces and an
operating system oriented timer for MC68000 systems. The parallel interfaces operate in unidirectional or
bidirectional modes, 8 or 16 bits wide. The PI/T timer contains a 24 bit wide counter and a 5 bit prescaler.

Features of the PI/T

! MC68000 Bus Compatible

! Port Modes Include: Bit I/O
Unidirectional 8 bit and 16 bit
Bidirectional 8 bit and 16 bit

! Selectable Handshaking Options

! 24 bit Programmable Timer

! Software Programmable Timer Modes

! Contains Interrupt Vector Generation Logic

! Separate Port and Timer Interrupt Service Requests

! Registers are Read/Write and Directly Addressable

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

2-10

2.8.1 The I/O Configuration of PI/T1

Port A is connected to the two 4 bit HEX rotary switches provided on the front panel for application
dependent settings.

Port B is used for programming the local base address for A24 accesses from the VMEbus.

Port C is used for port and timer interrupts and to control the RMC behavior of the board.

2.8.2 The I/O Configuration of PI/T2

Port A and the handshake lines are routed to a 24-pin header which allows the connection of a flat cable.
8 bits are connected to port A of the PI/T and can be used as inputs or outputs, with the remaining 4 bits
being connected to the handshake pins of the PI/T. This port can be used to establish a "Centronics type"
interface.

Port B allows the memory capacity of the Shared RAM to be read. Each CPU board of this type contains
three readable status bits describing the memory capacity. In addition, the CPU board type can be read
through the remaining 5 bits.

Port C grants the RAM type (DRAM/SRAM) burst and parity capability of the Shared RAM to be read.

A "Powerup Reset" can be initiated by software.

SECTION 1 INTRODUCTION

2-11

2.9 The Real Time Clock 72423

There is a Real Time Clock (RTC) 72423 installed on the CPU board. The CPU board contains a self
supportive battery to sustain the RTC during power down.

Features of the RTC

! Built-in quartz oscillator makes regulation unnecessary and allows easy design

! Direct bus compatibility (120 ns access time)

! Incorporated built-in time (hour, minute, second), and date (year, month, week, day) counters

! 12 hour and 24 hour clock switchover functions and automatic leap year setting

! Interrupt masking

! An error adjustment time function of 30 seconds

! READ, WRITE, HOLD, STOP, RESET, and CHIP SELECT inputs

! The C-MOS IC boasts low current consumption and features a backup function

! A 24-pin so package

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

2-12

2.10 The DUSCC 68562

The Dual Universal Serial Communications Controller (DUSCC) 68562 is installed to communicate with
terminals, computers, or other equipment.

The DUSCC is a single chip MOS-LSI communications device providing two independent, multiprotocol,
full duplex receiver/transmitter channels in a single package. Each channel consists of a receiver,
transmitter, 16-bit multifunction counter/timer, digital phaselocked loop (DPLL), parity/CRC generator and
checker, and associated control circuits.

Features of the DUSCC

! Dual full duplex synchronous/asynchronous receiver and transmitter

! Multiprotocol operation consisting of:

BOP: HDLC/ADCCP, SDLC, SDLC Loop, X.25 or X.75 link level
COP: BISYNC, DDCMP, X.21
ASYNC: 5-8 bit plus optional parity

! Programmable data encoding formats: NRZ, NRZI, FM0, FM1, Manchester

! 4 character receiver and transmitter FIFOs

! Individual programmable baud rate for each receiver and transmitter

! Digital phase locked loop

! User programmable counter/timer

! Programmable channel modes full/half duplex, auto echo, local loopback

! Modem control signals for each channel: RTS, CTS, DCD

! CTS and DCD programmable autoenables for Receiver (RX) and Transmitter (TX)

! Programmable interrupt on change of CTS or DCD

SECTION 1 INTRODUCTION

2-13

2.10.1 The I/O Configuration of DUSCC1 and DUSCC2

The four channels may be configured to function as a RS232 or RS422/RS485 compatible interface.
Termination resistors can be installed to adapt various cable lengths and reduce reflections upon the
selection of the RS422/RS485 compatible interface. The DUSCC can interrupt the local CPU at a specified
programmable IRQ level.

I/O Signals for DUSCC1:

The I/O signal assignment of channel 1 to 2 is listed as follows:

Signal Input Output 9 Pin Micro Description
D-Sub Connector

DCD X 1 Data Carrier Detect
RXD X 2 Receive Data
TXD X 3 Transmit Data
DTR X 4 Data Terminal Ready
GND 5 Signal GND
DSR X X 6 Data Set Ready
RTS X 7 Request to Send
CTS X 8 Clear to Send
GND 9 Signal GND

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

2-14

The I/O signals of channel 1 can be connected to the VME connector P2 in parallel to the 9-pin Micro D-Sub
connector as follows:

Signal Input Output VME Connector Description
P2

DCD X c29 Data Carrier Detect
RXD X c30 Receive Data
TXD X c31 Transmit Data
DTR X c32 Data Terminal Ready
DSR X X a29 Data Set Ready
RTS X a30 Request to Send
CTS X a31 Clear to Send
GND a32 Signal GND

NOTE

This is only possible if these VMEbus P2 lines are not used by an EAGLE module.

I/O Signals for DUSCC2:

The I/O signal assignment of channels 3 and 4 is listed as follows:

Signal Input Output 9 Pin Micro Description
D-Sub Connector

DCD X 1 Data Carrier Detect
RXD X 2 Receive Data
TXD X 3 Transmit Data
DTR X 4 Data Terminal Ready
GND 5 Signal GND
DSR X X 6 Data Set Ready
RTS X 7 Request to Send
CTS X 8 Clear to Send
GND 9 Signal GND

SECTION 1 INTRODUCTION

2-15

2.11 The EAGLE Modules

EAGLE modules are I/O subsystems designed not only to increase the functionality of the board but to add
the exact I/O features to fit the application requirement. EAGLE modules connect directly onto the FLXi
of the base board. FLXi and EAGLE modules will be a feature on future FORCE board generations to
ensure continued flexibility.

If your CPU board is assembled with an EAGLE module please refer to the "EAGLE Module" manual which
is shipped with this board and should be placed in Section 6 of this manual.

2.12 The VMEbus Interface

The CPU board has a full 32-bit VMEbus interface. The address modifier codes for A16, A24 and A32
addressing are fully supported in master mode. In slave mode, the address modifiers for A32 and A24 are
fully supported.

Read-Modify-Write cycles are fully supported to allow multiple CPU boards to be synchronized via the
shared RAM. The FGA-002 determines whether or not an access to the shared RAM is allowed and, if
allowed, controls the access cycle.

The CPU board provides an interrupt handler capability (IH 1-7) which can be enabled/disabled by
programming the FGA-002. The CPU board also provides an interrupter function which enables the board
to send interrupts to the VMEbus on seven programmable levels with a software-programmable vector.

The following bus release modes are supported:

RWD = Release When Done
ROR = Release On Request
RBCLR = Release On Bus Clear
RAT = Release After Timeout
REC = Release Every Cycle
ROACF = Release On ACFAIL*

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

2-16

Each of the listed modes is software programmable inside the gate array. The bus request level of the CPU
board is jumper or software selectable (BRO-3).

The DMA controller installed in the FGA-002 on the CPU board is able to access the VMEbus interface
independently from the microprocessor, enabling VMEbus communication to take place without impacting
the processing capabilities of the rest of the board for number crunching or servicing on-board I/O.

A four level arbiter with round robin and prioritized round robin arbitration modes, a power monitor, a
SYSRESET* generator, IACK* daisy chain driver and support for ACFAIL*, SYSFAIL* and SYSCLK
complete the VMEbus interface.

SECTION 1 INTRODUCTION

2-17

2.13 The Monitor of the CPU board

Every CPU board contains VMEPROM, a real time multitasking monitor debugger. It consists of a powerful
real time kernel, file manager and monitor/debugger with 68040 line assembler/disassembler.

The monitor/debugger includes all functions to control the real time kernel and file manager as well as all
tools required for program debugging such as breakpoints, tracing, memory display, memory modify and
host communication.

VMEPROM supports several memory and I/O boards on the VMEbus to take full advantage of the file
manager and kernel functions.

A built-in selftest checks all on-board devices and memory. This allows detection of any failures on the
board.

Memory initialization and test commands offer easy installation of global memory in the environment on the
local RAM and/or the VMEbus.

The one line assembler/disassembler is 68040 compatible and supports all 68040 commands in the original
mnemonic described in the MC 68040 User's Manual.

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

2-18

2.14 Default Jumper Settings on the CPU Board

The following are the default jumper settings and a location diagram displaying all jumpers.

Default Jumper Settings for the CPU

Jumperfield Description Default Schematics
Connection

B2 Reset Voltage Sensor --- SH4
B4

B20 Backup Supply for Local SRAM and --- SH4
RTC via +5VSTDBY B2

B1 Backup Supply for Local SRAM and 1-2 SH4
RTC via Bat 1 B2

Default Jumper Settings for System EPROMs and SRAM/EEPROM

Jumperfield Description Default Schematics
Connection

B11 System EPROM device select 1-6 SH5
A4

B16 FLASH EPROM write dis-/enable 1-2 SH4
C2

Default Jumper Settings for Serial I/O (RS232)

Jumperfield Description Default Schematics
Connection

B3 Connector 1, PD1 2-15 SH6
(DUSCC1 Port #1) 8-9 B2

B4 Connector 2, PD2 2-15 SH6
(DUSCC1 Port #2) 8-9 B3

B5 Connector 1, PD1 --- SH6
(DUSCC1 Port #1) C2

B6 Connector 2, PD2 --- SH6
(DUSCC Port #2) C3

B7 Connector 3, PD3 2-15 SH7
(DUSCC2 Port #3) 8-9 B2

B8 Connector 4, PD4 2-15 SH7
(DUSCC2 Port #4) 8-9 B3

B9 Connector 3, PD3 --- SH7
(DUSCC2 Port #3), PD3 C2

B10 Connector 4, PD4 --- SH7
(DUSCC Port #4), PD4 C3

SECTION 1 INTRODUCTION

2-19

Default Jumper Settings for VMEbus

Jumperfield Description Default Schematics
Connection

B19 Four level Arbiter Request Level 1-6 SH9
2-5 B4
3-4

B13 SYSCLK 1-8 SH10
SYSFAIL 2-7 C2
Receive VMEbus RESET 3-6
Drive VMEbus RESET 4-5

Default Jumper Settings for Test

Jumperfield Description Default Schematics
Connection

B17 Clock Signal to CPU 1-2 SH16
A1

Headers for 12 Bit I/O and 8 Bit I/O

Jumperfield Description Default Schematics
Connection

B12 User I/O --- SH8
D1

Default Jumper Setting for Parallel I/O (PI/T)

Jumperfield Description Default Schematics
Connection

B18 Interrupt Request, 2-3 SH8
Hardware Watchdog PI/T #2 D4

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

2-20

Figure 2-1: Location Diagram for All Jumperfields

SECTION 1 INTRODUCTION

2-21

Figure 2-2: The Front Panel of the CPU Board

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

2-22

This page intentionally left blank

SECTION 1 INTRODUCTION

3-1

3. SPECIFICATIONS OF THE CPU BOARD

CPU Type 68040

CPU Clock Frequency CPU-40B/x 25.0 MHz
CPU-40D/x 33.0 MHz

Shared DRAM Capacity with Parity CPU-40X/4 4 Mbytes
CPU-40X/16 16 Mbytes

Shared SRAM Capacity CPU-41X/4 4 Mbytes
CPU-41X/8 8 Mbytes

SRAM Capacity with On-board Battery Backup 128 Kbytes
FLASH EPROM 128 Kbytes

Number of System EPROM Sockets 2
Data Path 32-Bits

Serial I/O Interfaces (68562) 4
RS232/RS422/RS485 Compatible 4 of 4

24-bit Timer with 5-bit Prescaler 2
8-bit Timer 1

Parallel I/O Interface (68230) 12 Lines

Real Time Clock with On-board Battery Backup 72423

VMEbus Interface A32, A24, A16:D8, D16, D32, UAT, RMW Master
A32, A24:D8, D16, D32, RMW Slave

Four Level Arbiter Yes
SYSCLK Driver Yes
Mailbox Interrupts 8

FORCE Message Broadcast FMB FIFO 0 8 Bytes
FMB FIFO 1 1 Byte

VMEbus Interrupter/VMEbus and Local Interrupt Handler 1 to 7
All Sources can be Routed to a Software Programmable IRQ Level Yes

RESET/ABORT Switch Yes

VMEPROM Firmware Installed on All Board Versions 256 Kbytes

Power Requirements +5V min/max 5.2A/6.0A
+12V min/max 0.1A/0.3A
-12V min/max 0.1A/0.3A

Operating Temperature with Forced Air Cooling 0 to +50EC
Storage Temperature -40 to +85EC
Relative Humidity (noncondensing) 0 to 95%
Board Dimensions 234x160mm/9.2x6.3in
No. of Slots Used 1

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

3-2

This page intentionally left blank

SECTION 1 INTRODUCTION

4-1

4. ORDERING INFORMATION

SYS68K/CPU-40B/4-00 25.0 MHz 68040 based CPU board with DMA, 4 Mbyte shared DRAM, 4 serial I/O channels,
FLXi, VMEPROM. Documentation included.

SYS68K/CPU-40B/4-01 25.0 MHz 68040 based CPU board with DMA, 4 Mbyte shared DRAM, 4 serial I/O channels,
EAGLE-01C (SCSI, floppy disk and Ethernet Interface), VMEPROM. Documentation included.

SYS68K/CPU-40B/16-00 25.0 MHz 68040 based CPU board with DMA, 16 Mbyte shared DRAM, 4 serial I/O channels,
FLXi, VMEPROM. Documentation included.

SYS68K/CPU-40B/16-01 25.0 MHz 68040 based CPU board with DMA, 16 Mbyte shared DRAM, 4 serial I/O channels,
EAGLE-01C (SCSI, floppy disk and Ethernet Interface), VMEPROM. Documentation included.

SYS68K/CPU-40D/4-00 33.0 MHz 68040 based CPU board with DMA, 4 Mbyte shared DRAM, 4 serial I/O channels,
FLXi, VMEPROM. Documentation included.

SYS68K/CPU-40D/4-01 33.0 MHz 68040 based CPU board with DMA, 4 Mbyte shared DRAM, 4 serial I/O channels,
EAGLE-01C (SCSI, floppy disk and Ethernet Interface), VMEPROM. Documentation included.

SYS68K/CPU-40D/16-00 33.0 MHz 68040 based CPU board with DMA, 16 Mbyte shared DRAM, 4 serial I/O channels,
FLXi, VMEPROM. Documentation included.

SYS68K/CPU-40D/16-01 33.0 MHz 68040 based CPU board with DMA, 16 Mbyte shared DRAM, 4 serial I/O channels,
EAGLE-01C (SCSI, floppy disk and Ethernet Interface), VMEPROM. Documentation included.

SYS68K/CPU-41B/4-00 25.0 MHz 68040 based CPU board with DMA, 4 Mbyte shared SRAM, 4 serial I/O channels,
FLXi, VMEPROM. Documentation included.

SYS68K/CPU-41B/4-01 25.0 MHz 68040 based CPU board with DMA, 4 Mbyte shared SRAM, 4 serial I/O channels,
EAGLE-01C (SCSI, floppy disk and Ethernet Interface), VMEPROM. Documentation included.

SYS68K/CPU-41B/8-00 25.0 MHz 68040 based CPU board with DMA, 8 Mbyte shared SRAM, 4 serial I/O channels,
FLXi, VMEPROM. Documentation included.

SYS68K/CPU-41B/8-01 25.0 MHz 68040 based CPU board with DMA, 8 Mbyte shared SRAM, 4 serial I/O channels,
EAGLE-01C (SCSI, floppy disk and Ethernet Interface), VMEPROM. Documentation included.

SYS68K/CPU-41D/4-00 33.0 MHz 68040 based CPU board with DMA, 4 Mbyte shared SRAM, 4 serial I/O channels,
FLXi, VMEPROM. Documentation included.

SYS68K/CPU-41D/4-01 33.0 MHz 68040 based CPU board with DMA, 4 Mbyte shared SRAM, 4 serial I/O channels,
EAGLE-01C (SCSI, floppy disk and Ethernet Interface), VMEPROM. Documentation included.

SYS68K/CPU-41D/8-00 33.0 MHz 68040 based CPU board with DMA, 8 Mbyte shared SRAM, 4 serial I/O channels,
FLXi, VMEPROM. Documentation included.

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

4-2

SYS68K/CPU-41D/8-01 33.0 MHz 68040 based CPU board with DMA, 8 Mbyte shared SRAM, 4 serial I/O channels,
EAGLE-01C (SCSI, floppy disk and Ethernet Interface), VMEPROM. Documentation included.

SYS68K/IOBP-1 Backpanel for single board computers providing SCSI and floppy disk drive connectors.

SYS68K/CABLE MICRO-9 SET 1 Set of three adapter cables 9-pin micro D-Sub male connector to 9-pin D-Sub female connector,
length 2 m.

SYS68K/CABLE MICRO-9 SET 2 Set of four adapter cables 9-pin micro D-Sub male connector to 25-pin D-Sub female connector,
length 2 m.

SYS68K/VMEPROM/40/UP VMEPROM update service for the SYS68K/CPU-40 series.

SYS68K/VMEPROM/UM VMEPROM User's Manual excluding the SYS68K/CPU-40 description.

SYS68K/CPU-40/UM User's Manual for the SYS68K/CPU-40 product, including VMEPROM User's Manual and
EAGLE-01C User's Manual (separately available as EAGLE-01C/UM).

SYS68K/FGA-002/UM User's Manual for the FGA-002 Gate Array.

SECTION 1 INTRODUCTION

5-1

5. HISTORY OF MANUAL REVISIONS

Revision No. Description Date of Last Change

0 First Print. FEB/05/1991

1 The following sections/pages have been changed: APR/16/1991

Section 1: Page 2-16 (EPROM Description)

Section 3: Pages 3-11, 3-12, 3-14, 3-15 (EPROM
Description)

Section 4: Page F-1 (EPROM Description)

Sections 7, 8, and 9: These have been changed to
adapt to VMEPROM Version 2.74

Section 1: Chapter 3: Power Requirements for + 12V
changed from 0.1A/0.5A to 0.1A/0.3A

Section 3: Chapter 3.9.4 has been eliminated.
Chapter 3.9.12: New Board Identification.
Chapter 3.9.16: 1 and 0 were switched.

AUG/23/1991

2 Rework for PCB Revision 2 FEB/03/1992

3 MAY/05/1992

Editorial changes throughout the manual.

Section 3: Chapter 3.9.12: Board identification number
has been corrected.

Section 5: Data Sheets updated.

4

Section 3: Figures 3-8, 3-9, 3-13, 3-17 and 3-20 have
been corrected.

Sections 7, 8 and 9: have been changed.

NOV/17/1992

5 JUN/9/1993Sections 1 and 4: A description of jumperfield B18 has
been added.

6 NOV/18/1993Sections 3 and 7: RTC programming example has
been corrected in Section 3 and in a correction to the
description of the Upper Rotary Switch has been added
in Section 7.

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

5-2

7 MAR/14/1996Section 3: DRM-01/4 and DRM-01/16 have been
replaced by DRM-03 and DRM-05 respectively.
Appendix F-2: The description of jumperfield B13 has
been corrected.

8 Editorial Changes Febr/18/1997

INSTALLATION

This page was intentionally left blank

W A R N I N G

TO AVOID MALFUNCTIONS AND COMPONENT DAMAGE, PLEASE READ THE COMPLETE
INSTALLATION PROCEDURE BEFORE THE BOARD IS INSTALLED IN A VMEBUS ENVIRONMENT.

C A U T I O N

To ensure proper functioning of the product over its usual lifetime, take the following precautions before
handling the board.

Malfunction or damage to the board or connected components:

Electrostatic discharge and incorrect board installation and uninstallation can damage circuits or shorten

their lifetime.

! Before installing or uninstalling the board, read this Installation section

! Before installing or uninstalling the board, in a VME rack:

- Check all installed boards for steps that you have to take before turning off the power.

- Take those steps.

- Finally turn off the power.

- Before touching integrated circuits, ensure that you are working in an electrostatic free

environment.

! Ensure that the board is connected to the VMEbus via all 2 connectors, the P1 and the P2, and that

power is available on all ot them.

! When operating the board in areas of strong electromagnetic radiation, ensure that the board

- is bolted on the VME rack

- and shielded by closed housing.

This page was intentionally left blank

i

TABLE OF CONTENTS

1. GENERAL OVERVIEW . 1-1

1.1 The Rotary Switches . 1-1

1.2 The Function Switch Positions . 1-1

1.3 Connection of the Terminal . 1-3

1.4 The Default Hardware Setup . 1-4

2. INSTALLATION IN THE RACK . 2-1

2.1 Power ON . 2-1

2.2 Correct Operation . 2-2

3. ENVIRONMENTAL REQUIREMENTS . 3-1

LIST OF FIGURES

Figure 1-1: Front Panel of CPU Board and the Rotary Switch Positions 1-2

Figure 1-2: Pinout of the Micro D-Sub and D-Sub Connector for RS232 1-4

ii

This page was intentionally left blank

SECTION 2 INSTALLATION

1-1

1. GENERAL OVERVIEW

Easy installation of the CPU board is provided since the memory map, the I/O devices, and the interfaces
are configured to communicate with a standard terminal containing RS232 interface.

The monitor (VMEPROM) boots up automatically with the setup of the rotary switches on the front panel.

1.1 The Rotary Switches

Two rotary switches are installed on the CPU board to configure the startup of the VMEPROM or a user
program.

The following lists the default configuration for bootup.

Switch Hex Code

2 $F
1 $F

The different functions of the rotary switches are described in detail in the Introduction to VMEPROM as
well as in the Hardware User's Manual of this particular CPU board.

1.2 The Function Switch Positions

The CPU board contains two function switches. These two switches are defined as RESET and ABORT .
The RESET switch is located in the first and upper position, and the ABORT switch is located directly
underneath in the second and lower position.

The two moveable positions of these switches are defined as "Up" and "Down".

All function switches must be set to the position "Down" upon performing initial installation.

Please toggle each of the switches before installing the board in the rack in order to detect mechanical
damage to the switches during transport.

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

1-2

Figure 1-1: Front Panel of CPU Board and the Rotary Switch Positions

SECTION 2 INSTALLATION

1-3

1.3 Connection of the Terminal

The terminal must be connected to the 9-pin Micro D-Sub connector 1 on the CPU board.

The board is delivered with a 9-pin Micro D-Sub to 9-pin D-Sub adapter cable.

The following communication setup is used for interfacing the terminal. Please configure the terminal to
this setup.

 No Parity
 8 Bits per character
 1 Stop Bit
 9600 Baud
 Asynchronous Protocol

The hardware interface is RS232 compatible. The following signals are supported on the 9-pin Micro D-sub
connector on the front panel:

Signal Input Output Required 9 Pin Micro Description 9 Pin D-Sub of the
D-Sub Adapter Cable

Connector

DCD X 1 Data Carrier Detect 1
RXD X X 2 Receive Data 2
TXD X X 3 Transmit Data 3
DTR X 4 Data Terminal Ready 4
GND 5 Signal GND 5
DSR X X 6 Data Set Ready 6
RTS X X 7 Request to Send 7
CTS X X 8 Clear to Send 8
GND X 9 Signal GND 9

CAUTION

1) The terminal used must not drive a signal line which is marked to be an output of CPU
board.

2) All signals marked as "Required" must be supported from the terminal to enable the
transmission.

3) If the terminal is configured to the listed setup, please connect the 9-pin Micro D-Sub
connector to the terminal with a cable which supports all of the required signals.

5

4

3

2

1

9

8

7

6

GND

DTR

TXD

RXD

DCD

GND

CTS

RTS

DSR

RS232

Pa

B) Micro DSUB and DSUB Female Connectors

5

4

3

2

1

9

8

7

6

GND

DTR

TXD

RXD

DCD

GND

CTS

RTS

DSR

RS232

Pa

A) Micro DSUB Male Connector Soldered

on the Adapter/Terminal Cableon the CPU Board

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

1-4

Figure 1-2: Pinout of the Micro D-Sub and D-Sub Connector for RS232

SECTION 2 INSTALLATION

1-5

1.4 The Default Hardware Setup

The VMEbus interface is configured to be used immediately, without any changes.

This results in a default hardware setup which may conflict with other boards installed in the rack.

The following signals are driven/received from the CPU board:

Signal Driven Received From

SYSCLK X FGA-002 Gate Array
BR3* X FGA-002 Gate Array
BR[3..0]* X 4 Level Arbiter
BG[3..0]OUT* X 4 Level Arbiter
ACFAIL* X FGA-002 Gate Array
SYSFAIL* X FGA-002 Gate Array
SYSRESET* X X FGA-002 Gate Array

CAUTION

1) The on-board four level arbiter is enabled and reacts on every Bus Request*.

2) The CPU board is configured as a slot 1 controller.

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

1-6

This page intentionally left blank

SECTION 2 INSTALLATION

2-1

2. INSTALLATION IN THE RACK

The CPU board can immediately be mounted into a VME rack at slot 1.

CAUTION

1) Switch off power before installing the board to avoid electrical damage to the
components.

2) The CPU board contains a special ejector (the handles).
The board must be plugged in, and the screws on the front panel tightened up to
guarantee proper installation.

3) Unplug every other VMEbus board to avoid conflicts.

2.1 Power ON

Power to the VMEbus rack may be switched on when the board is correctly installed, the switches are in
the correct positions, and the terminal is correctly configured and under power.

Initially, the green RUN LED will light up, and after one to three seconds the message "Wait until hard disk
is up to speed" will be displayed. A few seconds later the VMEPROM banner should appear.

The terminal is now at the user's discretion. At this point, it is advised to make a few carriage returns, to
obtain the question mark (?_) prompt.

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

2-2

2.2 Correct Operation

To test the correct operation of the CPU board, the following command must be typed in:

? SELFTEST<cr>

It is a matter of a few seconds until all tests are completed. Once all tests are completed, the following
messages will appear on the screen:

VMEPROM Hardware Selftest

I/O test passed

Memory test passed

Clock testpassed

Any errors will be reported as they occur.

If an error message is displayed, please refer to Section 7, "Introduction to VMEPROM" containing the
command description "SELFTEST".

SECTION 2 INSTALLATION

3-1

3. ENVIRONMENTAL REQUIREMENTS

This board was specified and tested for reliable operation under certain environmental conditions. Based
on our performance tests, this board is capable of operating within the temperature range of 0 C to 50 Co o

when used inside of a FORCE TARGET-32 chassis. The following chart details the calculated rate of
forced air cooling.

Rate of Forced Air Cooling

Air Cooling per Board Total Air Cooling - Target-32

5.5 CFM* = 0.0026 cubic meter/sec 131 CFM = 0.062 cubic meter/sec

275 LFM** = 1.4 meter/sec 275 LFM = 1.4 meter/sec

 * CFM = Cubic Feet per Minute ** LFM = Linear Feet per Minute

The TARGET-32 chassis performs forced air cooling using four axial fans. The amount of airflow needed
for cooling and normal operation is reflected by certain factors such as ambient temperature, number and
location of boards in the system, and outside heat sources. Sufficient air cooling is normally obtained when
5.5 CFM and 275 LFM is circulating around each board at an ambient temperature between 0 C and 50 C.o o

Allowable storage temperatures may range between -40 C and 85 C. The rate of relative humidity (non-o o

condensing) should not be less than 5%, and should not exceed 95%. The following illustration is a pictorial
view of the fan placement in the chassis.

HARDWARE USER'S MANUAL

This page was intentionally left blank

i

TABLE OF CONTENTS

1. GENERAL INFORMATION . 1-1

2. THE PROCESSOR . 2-1

2.1 The CPU 68040 . 2-1
2.1.1 Hardware Interface of the 68040 . 2-1
2.1.1.1 General Operation . 2-1

2.2 The Instruction Set . 2-1

2.3 Vector Table of the 68040 . 2-2

3. THE LOCAL BUS . 3-1

3.1 The FGA-002 Gate Array . 3-1

3.2 The Shared RAM . 3-2
3.2.1 General Operation . 3-2
3.2.2 Shared RAM Information . 3-2
3.2.3 The DRM-03 . 3-4
3.2.4 RAM Type Information for the DRM-03 . 3-5
3.2.5 Summary of the DRM-03 . 3-5
3.2.6 The DRM-05 . 3-6
3.2.7 RAM Type Information for the DRM-05 . 3-7
3.2.8 Summary of the DRM-05 . 3-7
3.2.9 The SRM-01/4 . 3-8
3.2.10 RAM Type Information for the SRM-01/4 . 3-9
3.2.11 Summary of the SRM-01/4 . 3-9
3.2.12 The SRM-01/8 . 3-10
3.2.13 RAM Type Information for the SRM-01/8 . 3-11
3.2.14 Summary of the SRM-01/8 . 3-11

3.3 The System EPROM Area . 3-12
3.3.1 Memory Organization of the System EPROM Area . 3-12
3.3.2 Usable Device Types for the EPROM Area . 3-15
3.3.3 Access Time Selection of the System EPROM Area . 3-18
3.3.4 Address Map of the System EPROM Area . 3-18
3.3.5 Summary of the EPROM Area . 3-18

3.4 The FLXibus . 3-19
3.4.1 Introduction to the FLXibus . 3-19

3.5 The Local FLASH EPROM . 3-20
3.5.1 Memory Organization of the FLASH EPROM . 3-20
3.5.2 Programming the FLASH EPROM . 3-21
3.5.3 Address Map of the FLASH EPROM . 3-21
3.5.4 Summary of the Local FLASH Memory . 3-21
3.5.5 Jumper Settings for B16 . 3-21
3.5.6 Location Diagram of Jumperfield B16 . 3-22

3.6 The Local SRAM . 3-23

ii

3.6.1 Memory Organization of the User SRAM . 3-23
3.6.2 The Address Map of the SRAM Area . 3-26
3.6.3 Summary of the SRAM Area . 3-26

3.7 The Boot EPROM . 3-27
3.7.1 Summary of the Boot EPROM Area . 3-27

3.8 The DUSCC 68562 . 3-29
3.8.1 Address Map of the DUSCC1 Registers . 3-30
3.8.2 RS232 Hardware Configuration of Port #1 and #2 . 3-32
3.8.3 Cable for the Micro D-Sub Connector . 3-38
3.8.4 RS422/RS485 Hardware Configuration of Ports #1 and #2 3-38
3.8.5 RS232 and RS422/RS485 Driver Modules FH002 and FH003 3-45
3.8.6 Summary of DUSCC1 . 3-45
3.8.7 Address Map of the DUSCC2 Registers . 3-46
3.8.8 RS232 Hardware Configuration of Ports #3 and #4 . 3-48
3.8.9 Cable for the Micro D-Sub Connector . 3-52
3.8.10 RS422/RS485 Hardware Configuration of Port #3 and #4 3-52
3.8.11 RS232 and RS422/RS485 Driver Modules FH002 and FH003 3-58
3.8.12 Summary of DUSCC2 . 3-58

3.9 The PI/T 68230 . 3-59
3.9.1 Address Map of the PI/T1 Registers . 3-60
3.9.2 I/O Configuration of PI/T1 . 3-61
3.9.3 Rotary Switches . 3-62
3.9.4 Lock Cycles . 3-64
3.9.5 Interrupt Request Signal . 3-65
3.9.6 A24 Slave Mode . 3-65
3.9.7 Reserved Lines . 3-65
3.9.8 Summary of PI/T1 . 3-66
3.9.9 Address Map of the PI/T2 Registers . 3-67
3.9.10 I/O Configuration of PI/T2 . 3-68
3.9.11 Memory Size Recognition . 3-69
3.9.12 Board Identification . 3-69
3.9.13 Interrupt Request Signal . 3-69
3.9.14 12 Bit I/O Port . 3-70
3.9.15 MODLOW . 3-72
3.9.16 RAM Module Configuration Signals . 3-72
3.9.17 Timer IRQ/Reset . 3-73
3.9.18 PIRQ . 3-73
3.9.19 Enable A24 Slave Mode . 3-73
3.9.20 Reserved Line . 3-74
3.9.21 Summary of PI/T2 . 3-74

3.10 The Real Time Clock (RTC) 72423 . 3-75
3.10.1 Address Map of the RTC Registers . 3-75
3.10.2 RTC Programming . 3-75
3.10.3 Summary of the RTC . 3-79

4. FUNCTION SWITCHES AND INDICATION LEDs . 4-1

4.1 RESET Function Switch . 4-1

iii

4.2 ABORT Function Switch . 4-1

4.3 "RUN" LED . 4-2

4.4 "BM" LED . 4-2

4.5 Rotary Switches . 4-2

5. THE CPU BOARD INTERRUPT STRUCTURE . 5-1

6. VMEBUS INTERFACE . 6-1

6.1 VMEbus Master Interface . 6-1
6.1.1 Data Transfer Size of the VMEbus Interface . 6-1
6.1.2 Address Modifier Implementation . 6-4

6.2 VMEbus Slave Interface . 6-8
6.2.1 The Access Address . 6-8
6.2.2 Data Transfer Size of the Shared RAM . 6-8
6.2.3 Address Modifier Decoding and A24 Slave Mode . 6-8

6.3 The VMEbus Interrupt Handler . 6-11

6.4 VMEbus Arbitration . 6-12
6.4.1 Four Available VMEbus Arbiters . 6-12
6.4.2 The On-Board Four Level Arbiter . 6-12
6.4.3 The VMEbus Release Function . 6-18
6.4.3.1 Release Every Cycle (REC) . 6-18
6.4.3.2 Release on Request (ROR) . 6-18
6.4.3.3 Release After Timeout (RAT) . 6-18
6.4.3.4 Release on Bus Clear (RBCLR) . 6-19
6.4.3.5 Release When Done (RWD) . 6-19
6.4.3.6 Release Voluntary (RV) . 6-19
6.4.3.7 Release on ACFAIL (ACFAIL) . 6-19

6.5 The VMEbus Interrupter . 6-21
6.5.1 The Interrupt Generation Register . 6-21
6.5.2 The Interrupt Vector Register . 6-22

6.6 The SYSCLK Driver . 6-23

6.7 Exception Signals . 6-25

6.8 RESET Generation . 6-27
6.8.1 The Front Panel RESET Switch . 6-27
6.8.2 The Voltage Sensor Module FH001 . 6-27
6.8.3 VMEbus RESET Conditions . 6-29
6.8.3.1 Receive RESET from VMEbus . 6-29

6.8.3.2 Drive RESET to VMEbus . 6-29
6.8.3.3 Default Configuration of Jumperfield B13 . 6-29
6.8.4 The RESET Instruction . 6-31

iv

LIST OF FIGURES
Figure 2-1: Jumper Setting for B17 . 2-3
Figure 2-2: Location Diagram of Jumperfields B17 . 2-4
Figure 3-1: Memory Organization of the System EPROM Area . 3-12
Figure 3-2: Location Diagram of the System EPROM Area . 3-13
Figure 3-3: Configuration Jumper Settings of System EPROM Area Jumperfield B11 3-16
Figure 3-4: Location Diagram of Jumperfield B11 Configuration of the System EPROM Area . 3-17
Figure 3-5: Location Diagram of the Backup Supply Jumperfield B1 and B20 3-25
Figure 3-6: Location Diagram of the Boot EPROM . 3-28
Figure 3-7: Location Diagram of the 0S Resistors R563 to R569 . 3-34
Figure 3-8: RS232 Connection Between DUSCC1 and VMEbus Connector P2 3-35
Figure 3-9: RS232 Connection Between DUSCC1 and Micro D-Sub Connector 3-35
Figure 3-10: Pinout of the Micro D-Sub and D-Sub Connector for RS232 3-35
Figure 3-11: Location Diagram of RS232 Configuration Jumperfields B3, B4, B5, and B6 3-37
Figure 3-12: Location Diagram of the 0S Resistors R563 to R569 . 3-40
Figure 3-13: RS422/RS485 Connection between DUSCC1 and VMEbus Connector P2 3-41
Figure 3-14: RS422/RS485 Pinout of the Micro D-Sub and D-Sub Connectors 3-42
Figure 3-15: Location Diagram of RS422/RS485 Configuration Jumperfields B3, B4, B5, and B6

. 3-43
Figure 3-16: Location Diagram of RS232/RS422/RS485 Driver/Receivers J20 and J21 plus

Resistor Arrays J22 and J23 . 3-44
Figure 3-17: Connection Between DUSCC2 and D-Sub Connector for RS232 3-49
Figure 3-18: Location Diagram of RS232 Configuration Jumperfields B7 through B10 3-50
Figure 3-19: RS232 Pinout of the Micro D-Sub and D-Sub Connectors 3-51
Figure 3-20: Connection between DUSCC2 and Micro D-Sub Connector for RS422/RS485 . . . 3-53
Figure 3-21: Location Diagram of RS422/RS485 Configuration Jumperfields B7 through B10 . . 3-54
Figure 3-22: RS422/RS485 Pinout of the Micro D-Sub and D-Sub Connectors 3-55
Figure 3-23: Location Diagram of RS232/RS422/RS485 Driver/Receiver J25/J26 and Resistor

Arrays J27/J28 . 3-57
Figure 3-24: CPU Board Front Panel and Rotary Switch Positions . 3-63
Figure 3-25: Location Diagram of Header B12 . 3-71
Figure 3-26: RTC Programming Example . 3-76
Figure 3-27: Location Diagram of the Backup Supply Jumperfield B1 and B20 3-78
Figure 4-1: Front Panel of the CPU Board . 4-3
Figure 6-1: Requester/Arbiter Jumperfield B19 . 6-16
Figure 6-2: Location Diagram of Jumperfield B19 . 6-17
Figure 6-3: Usage of Jumperfield B13 . 6-23
Figure 6-4: Location Diagram of B13 . 6-24
Figure 6-5: Usage of Jumperfield B13 . 6-25
Figure 6-6: Location Diagram of Jumperfield B13 . 6-26
Figure 6-7: Jumper Settings for Jumperfield B2 . 6-27
Figure 6-8: Location Diagram of Jumperfield B2 . 6-28
Figure 6-9: Location Diagram of Jumperfield B13 . 6-30

v

LIST OF TABLES

Table 2-1: Exception Vector Assignments . 2-2
Table 3-1: Address Map of the EPROM Area . 3-18
Table 3-2: Serial I/O Port #1 (DUSCC1) Register Address Map . 3-30
Table 3-3: Serial I/O Port #2 (DUSCC1) Register Address Map . 3-31
Table 3-4: Ports #1 and #2 (DUSCC1) Common Register Address Map 3-31
Table 3-5: Default Setting of RS232 Configuration Jumperfields . 3-38
Table 3-6: RS422/RS485 Configuration Jumperfield Settings . 3-41
Table 3-7: PCB Locations for the RS232/RS422/RS485 Configuration 3-42
Table 3-8: Serial I/O Port #3 (DUSCC2) Register Address Map . 3-46
Table 3-9: Serial I/O Port #4 (DUSCC2) Register Address Map . 3-47
Table 3-10: Ports #3 and #4 (DUSCC2) Common Registers Address Map 3-48
Table 3-11: Default Setting of the RS232 Configuration Jumperfields . 3-51
Table 3-12: RS422/RS485 Configuration Jumperfield Setting . 3-55
Table 3-13: PCB Locations for RS232/RS422/RS485 Configuration . 3-56
Table 3-14: PI/T1 Register Layout . 3-60
Table 3-15: PI/T1 Interface Signals . 3-61
Table 3-16: PI/T2 Register Layout . 3-67
Table 3-18: PI/T2 Interface Signals . 3-68
Table 3-17: RTC Register Layout . 3-75
Table 6-1: Data Bus Size of the VMEbus . 6-2
Table 6-2: Defined VMEbus Transfer Cycles (D32 Mode) . 6-3
Table 6-3: Defined VMEbus Transfer Cycles (D16 Mode) . 6-3
Table 6-4: Address Ranges . 6-4
Table 6-5: Address Modifier Codes . 6-5
Table 6-6: Address Modifier Codes Used on the CPU Board . 6-7
Table 6-7: VMEbus Slave AM Codes . 6-10
Table 6-8: VMEbus Arbiter/Requester Register Layout . 6-13
Table 6-9: Description of Arbiter/Requester Register Bits . 6-13
Table 6-10: Bit Settings for VMEbus Request Level . 6-14
Table 6-11: Bit Settings for VMEbus Arbiter Mode . 6-15
Table 6-12: Bus Release Functions . 6-20
Table 6-13: VMEbus Interrupter Registers . 6-21
Table 6-14: Description of the IRQ Generation Register . 6-22

vi

This page was intentionally left blank

SECTION 3 HARDWARE USER'S MANUAL

1-1

1. GENERAL INFORMATION

This CPU board is a high performance single board computer based on the 68040 microprocessor and the
VMEbus. The board incorporates a modular I/O subsystem which provides a high degree of flexibility for
a wide variety of applications. The CPU board can be used with or without an I/O subsystem, called an
"EAGLE" module.

The board is able to hold a RAM Module which can be DRAM (CPU-40) or SRAM (CPU-41) based.

The CPU-40/41 family design utilizes all of the features of the powerful FORCE Gate Array (FGA-002).
Among its features is a 32-bit DMA controller which supports local (shared) memory, VMEbus and I/O data
transfers for maximum performance, parallel real time operation and responsiveness.

The EAGLE modules are installed on the CPU board via the FLXi (FORCE Local eXpansion interface). This
provides a full 32-bit interface between the base board and the EAGLE module I/O subsystem, providing
a range of I/O options.

Four multiprotocol serial I/O channels, a parallel I/O channel and a Real Time Clock with on-board battery
backup are installed on the base board which, in combination with EAGLE modules, makes the CPU board
a true single board computer system.

A broad range of operating systems and kernels is available for the CPU board. However, as with all
FORCE COMPUTERS' CPU cards, VMEPROM firmware is provided with the board at no extra cost.
VMEPROM is a Real Time Kernel and is installed on the CPU board in the 16-bit wide EPROM sockets,
which results in a 32-bit wide System EPROM area. This ensures that the board is supplied ready to use.

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

1-2

This page intentionally left blank

SECTION 3 HARDWARE USER'S MANUAL

2-1

2. THE PROCESSOR

2.1 The CPU 68040

2.1.1 Hardware Interface of the 68040

The 68040 uses a nonmultiplexed 32-bit address and 32-bit data bus. The 68040 does not support the
dynamic bus sizing like the 68020 or 68030. On this CPU board the dynamic bus sizing is built in external
hardware (two programmable gate arrays). This means if the 68040 does a long word read from a byte
device, the external hardware will fetch 4 bytes from this byte wide device, from a long word and
acknowledge the access cycle to the 68040. Therefore all device drives within the 68020 or 68030 can be
used on this CPU board. Please note that the 68040 has a 4 Kbyte instruction and a 4 Kbyte data cache
which may cause problems.

2.1.1.1 General Operation

The CPU drives the address lines (A0-A31), the size lines (SIZ0, SIZ1) the transfer type (TT0-TT1) on every
cycle, and modifier (TM0-2) signals independent of a cache hit or miss. These signals are used to decode
the memory map of the CPU board.

The transfer start (TS) signals the hardware on the CPU board that the current cycle is not a cache cycle,
and that the decoding outputs are valid.

The 32 data lines (D0-D31) are also driven from the processor on write cycles and sensed on read cycles.

The size of the data transfer is defined by the SIZE output signals (always driven from the CPU when
master). The transfer acknowledge or the transfer error acknowledge signal (TA, TEA) or both terminate
the transfer cycle. CPU 68040 cycles only allow a port width of 32 bits.

If an access error occurs (TEA sensed from the CPU), exception handling starts because the current cycle
has been aborted (illegal transfer or wrong data).

During local bus operation, an access error will be generated if a device does not respond correctly.

VMEbus transfers may also be aborted via a TEA (VMEbus : BERR*).

The TA and TEA signal asserted simultaneously initiate a retry cycle.

2.2 The Instruction Set

For the 68040 instruction set and further information relative to programming, please refer to the 68040
User's Manual.

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

2-2

2.3 Vector Table of the 68040

The following table lists all vectors defined and used by the 68040 CPU.

Table 2-1: Exception Vector Assignments

Vector Vector Offset Assignment
Number(s) (Hex)

0 000 Reset Initial Interrupt Stack Pointer
1 004 Reset Initial Program Counter
2 008 Access Fault (Bus Error)
3 00C Address Error

4 010 Illegal Instruction
5 014 Integer Divide by Zero
6 018 CHK, CHK2 Instruction
7 01C FTRAPcc, TRAPcc, TRAPV Instructions

8 020 Privilege Violation
9 024 Trace
10 028 Line 1010 Emulator (Unimplemented A-Line Opcode)
11 02C Line 1111 Emulator (Unimplemented F-Line Opcode)

12 030 (Unassigned, Reserved)
13 034 Defined for MC68020/MC68030, not for MC68040
14 038 Format Error
15 03C Uninitialized Interrupt

16-23 040-05C (Unassigned, Reserved)

24 060 Spurious Interrupt
25 064 Level 1 Interrupt Autovector
26 068 Level 2 Interrupt Autovector
27 06C Level 3 Interrupt Autovector

28 070 Level 4 Interrupt Autovector
29 074 Level 5 Interrupt Autovector
30 078 Level 6 Interrupt Autovector
31 07C Level 7 Interrupt Autovector

32-47 080-0BC TRAP #0-15 Instruction Vectors

48 0C0 FP Branch or Set on Unordered Condition
49 0C4 FP Inexact Result
50 0C8 FP Divide by Zero
51 OCC FP Underflow

52 ODO FP Operand Error
53 OD4 FP Overflow
54 0D8 FP Signaling NAN
55 ODC FP Unimplemented Data Type

56 0E0 Defined for MC68030 and MC68851, not for MC68040
57 0E4 Defined for MC68851, not for MC68040
58 0E8 Defined for MC68851, not for MC68040

59-63 0EC-0FC (Unassigned, Reserved)

64-255 100-3FC User Defined Vectors (192)

SECTION 3 HARDWARE USER'S MANUAL

2-3

For test purposes the clock signal for the microprocessor is connected via jumper B17 to the devices.
When using the CPU board, this jumper must be inserted according to the following figure.

CAUTION

If jumper B17 is removed, damage may be caused to the devices on the CPU board.

Figure 2-1: Jumper Setting for B17

 +)))))))),+)))))))),
 B17 ** o))))))))o **
 .))))))))-.))))))))-
 2 1

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

2-4

Figure 2-2: Location Diagram of Jumperfields B17

SECTION 3 HARDWARE USER'S MANUAL

3-1

3. THE LOCAL BUS

3.1 The FGA-002 Gate Array

The FGA-002 Gate Array featured on this CPU board has 24,000 gates and 281 pins.

The FGA-002 Gate Array controls the local bus and builds the interface to the VMEbus. It also includes
a DMA controller, complete interrupt management, a message broadcast interface (FMB), timer functions,
and mailbox locations.

This gate array monitors the local bus. This in turn signifies that if any local device is to be accessed, the
gate array takes charge of all control signals in addition to used address and data signals.

The FGA-002 Gate Array serves as a manager for the VMEbus. All VMEbus address and data lines are
connected to the gate array through the buffers. Additional functions such as the VMEbus interrupt handler
are also installed on the FGA-002 Gate Array. The SGL VMEbus arbiter in the FGA/002 must remain
disabled because the 4 level VME arbiter of the CPU board is designed in a separate device and connected
with the VME bus (please refer to chapter 6.4 VMEbus Arbitration for further information).

The start address of the FGA-002 Gate Array registers is $FFD00000. All registers of the gate array and
associated functions are described in detail in the FGA-002 Gate Array User's Manual.

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

3-2

3.2 The Shared RAM

On this CPU board the shared RAM is placed on a module to allow the adaptation of DRAM or SRAM to
the base board.

All signals which are needed to control the shared RAM are available on the RAM module connector.
Therefore RAM devices with different access times can also be used on this CPU board to take advantage
of the 68040 with higher frequency if it becomes available.

3.2.1 General Operation

The Shared RAM is accessible from the 68040 and from the VMEbus. The access address for the 68040
starts at $00000000. The access address for the VMEbus is software programmable in 4 Kbyte steps. The
defined memory range can be write protected in coordination with the address modifier codes. For
example, in supervisor mode the memory can be read and written, in user mode memory can only be read.

If an access from the VMEbus takes place the onboard logic requests the local bus mastership from the
local arbiter via the FGA-002 Gate Array. After the arbiter has granted local bus mastership to the FGA-002
Gate Array, the access cycle is executed. A read cycle is terminated by latching all data from the memory;
a write cycle is ended by storing the data in the memory cells. Both read and write cycles are terminated
on the local bus side and the FGA-002 Gate Array immediately releases bus mastership to the CPU while
completing the fully asynchronous VMEbus access cycle.

3.2.2 Shared RAM Information

The RAM module connector holds several signals which are software readable and inform the user
concerning RAM type and functionality.

These pins are readable via the PI/T2 device which is installed on the CPU board. For base address and
register address information please refer to the chapter 3.9.9 Address Map of the PI/T2 Registers for
further information.

SECTION 3 HARDWARE USER'S MANUAL

3-3

The following table shows the information which can be read and the corresponding PI/T bit. The RAM
modules which are accessible are described in the following chapters which also contain the RAM Type
Information description.

RAM Type Information on PI/T2

PI/T Bit Name Value Description

PB0 MCD0 * Describes the memory size of the module.
PB1 MCD1 * Please refer to the following chapters.
PB2 MCD2 *

PC2 RAMTYP 0 SRAM
1 DRAM

PC4 BURST 0 Not available
1 Available

PC6 PARITY 0 Not available
1 Available

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

3-4

3.2.3 The DRM-03

The following CPU board is assembled with the DRM-03.

CPU Board RAM Module RAM Capacity

CPU-40B/4/xx DRM-03/4 4 Mbyte

"xx" contains the EAGLE module number and is independent of the RAM module.

Features of the DRM-03

! 4 Mbyte DRAM

! Burst READ and Burst WRITE capability

! Parity Generation and Checking

! Asynchronous refresh is provided every 14µs

! Accessible via VMEbus

The access address for the 68040 is as follows:

RAM Module Access Address

DRM-03/4 $ 0000 0000 .. $ 003F FFFF

The access address for the VMEbus is programmable in 4 Kbyte steps through the FGA-002. The defined
memory range can be write protected in coordination with the address modifier codes. For example, in
supervisor mode the memory can be read and written, in user mode memory can only be read.

The DRAM module includes byte parity check for local and VMEbus accesses. If a parity error is detected
on a VMEbus cycle, a BERR is forced to the VMEbus informing the requestor that a parity error has
occurred. On local accesses, a Transfer Error Acknowledge (TEA) is forced to the processor if a parity
error was detected. The chart on the next page lists the required CPU clock cycles and wait states for
accessing the shared RAM.

The following chart lists the required CPU clock cycles and wait states for accessing the shared RAM.

SECTION 3 HARDWARE USER'S MANUAL

3-5

Board 68040 Clock No. of CPU Clock No. of CPU Clock No. of Wait No. of Wait
Type Frequency Cycles Counted Cycles for States for States for

From TS to TA Burst Cycles Normal Cycles Burst Cycles
for Normal Cycles

CPU-40/B 25 MHz 4 1 3 0

3.2.4 RAM Type Information for the DRM-03

The following information can be read from the PI/T2.

RAM Type Information

PI/T Bit Name DRM-03/4

PB0 MCD4 1
PB1 MCD1 1
PB2 MCD2 0

PC2 RAMTYP 1

PC4 BURST 1

PC6 PARITY 1

3.2.5 Summary of the DRM-03

Capacity 4 Mbyte

Port Data Width 32 bits

Local Data Width 128 bits and 16 bit parity

Burst Mode Supported

Parity Mode Supported

Device 256K x 18 Fast Page Mode

Supported Transfers Byte, Word, Long word, Cache Line (16 bytes)

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

3-6

3.2.6 The DRM-05

The following CPU boards are assembled with the DRM-05.

CPU Board RAM Module RAM Capacity

CPU-40B/16/xx DRM-05/16 16 Mbyte
CPU-40B/32/xx DRM-05/32 32 Mbyte

"xx" contains the EAGLE module number and is independent of the RAM module.

Features of the DRM-05

! 16 or 32 Mbyte DRAM

! Burst READ and Burst WRITE capability

! Parity Generation and Checking

! Asynchronous refresh is provided every 14µs

! Accessible via VMEbus

The access address for the 68040 is as follows:

RAM Module Access Address

DRM-05/16 $ 0000 0000 .. $ 00FF FFFF
DRM-05/32 $ 0000 0000 .. $ 01FF FFFF

The access address for the VMEbus is programmable in 4 Kbyte steps through the FGA-002. The defined
memory range can be write protected in coordination with the address modifier codes. For example, in
supervisor mode the memory can be read and written, in user mode memory can only be read.

The DRAM module includes byte parity check for local and VMEbus accesses. If a parity error is detected
on a VMEbus cycle, a BERR is forced to the VMEbus informing the requestor that a parity error has
occurred. On local accesses, a Transfer Error Acknowledge (TEA) is forced to the processor if a parity
error was detected. The chart on the next page lists the required CPU clock cycles and wait states for
accessing the shared RAM.

The following chart lists the required CPU clock cycles and wait states for accessing the shared RAM.

SECTION 3 HARDWARE USER'S MANUAL

3-7

Board 68040 Clock No. of CPU Clock No. of CPU Clock No. of Wait No. of Wait
Type Frequency Cycles Counted Cycles for States for States for

From TS to TA Burst Cycles Normal Cycles Burst Cycles
for Normal

Cycles

CPU-40/B 25 MHz 4 1 3 0

3.2.7 RAM Type Information for the DRM-05

The following information can be read from the PI/T2.

RAM Type Information

PI/T Bit Name DRAM-05/16 DRAM-05/32

PB0 MCD4 1 0
PB1 MCD1 0 0
PB2 MCD2 0 0

PC2 RAMTYP 1 1

PC4 BURST 1 1

PC6 PARITY 1 1

3.2.8 Summary of the DRM-05

Capacity 16 or 32 Mbyte

Port Data Width 32 bits

Local Data Width 128 bits and 16 bit parity

Burst Mode Supported

Parity Mode Supported

Device 1M x 4 /4M x 1 Fast Page Mode

Supported Transfers Byte, Word, Long word, Cache Line (16 bytes)

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

3-8

3.2.9 The SRM-01/4

The following CPU boards are assembled with the SRM-01/4.

CPU Board RAM Module

CPU-41B/4/xx SRM-01/4

"xx" contains the EAGLE module number and is independent for the RAM module.

The SRM-01/4 is a 4 Mbyte RAM module using Static Memory devices. The RAM module has the following
features.

Features of the SRM-01/4

! 4 Mbyte SRAM

! Burst READ and Burst WRITE capability

! Battery Backup via VMEbus

! Accessible via VMEbus

The access address for the 68040 is $00000000 to $003FFFFF.

The access address for the VMEbus is programmable in 4 Kbyte steps through the FGA-002. The defined
memory range can be write protected in coordination with the address modifier codes. For example, in
supervisor mode the memory can be read and written, in user mode memory can only be read.

Parity check is not necessary for SRAM devices because these components are protected against soft
errors owing to alpha emission. The following chart lists the required CPU clock cycles and wait states for
accessing the shared RAM.

Board 68040 Clock No. of CPU Clock No. of CPU Clock No. of Wait No. of Wait
Type Frequency Cycles Counted Cycles for States for States for

From TS to TA Burst Cycles Normal Cycles Burst Cycles
for Normal Cycles

CPU-41/B 25 MHz 3 1 2 0

SECTION 3 HARDWARE USER'S MANUAL

3-9

3.2.10 RAM Type Information for the SRM-01/4

The following information can be read from the PI/T2.

RAM Type Information

PI/T Bit Name Value

PB0 MCD4 1
PB1 MCD1 1
PB2 MCD2 0

PC2 RAMTYP 0

PC4 BURST 1

PC6 PARITY 0

3.2.11 Summary of the SRM-01/4

Capacity 4 Mbytes

Address Range $00000000 to $003FFFFF

Port Data Width 32 bits

Local Data Width 128 bits

Burst Mode Supported

Parity Mode Not necessary

Device 128K x 8 Static RAM

Supported Transfers Byte, Word, Long word, Cache Line (16 bytes)

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

3-10

3.2.12 The SRM-01/8

The following CPU boards are assembled with the SRM-01/8.

CPU Board RAM Module

CPU-41B/8/xx SRM-01/8

"xx" contains the EAGLE module number and is independent for the RAM module.

The SRM-01/8 is an 8 Mbyte RAM module which is used on the CPU-41B/8.

Features of the SRM-01/8

! 8 Mbyte SRAM

! Burst READ and Burst WRITE capability

! Battery Backup via VMEbus

! Accessible via VMEbus

The access address for the 68040 is $00000000 to $007FFFFF.

The access address for the VMEbus is programmable in 4 Kbyte steps through the FGA-002. The defined
memory range can be write protected in coordination with the address modifier codes.

For example, in supervisor mode the memory can be read and written, in user mode memory can only be
read.

Parity check is not necessary for SRAM devices because these components are protected against soft
errors owing to alpha emission. The following chart lists the required CPU clock cycles and wait states for
accessing the shared RAM.

Board 68040 Clock No. of CPU Clock No. of CPU Clock No. of Wait No. of Wait
Type Frequency Cycles Counted Cycles for States for States for

From TS to TA Burst Cycles Normal Cycles Burst Cycles
for Normal

Cycles

CPU-41/B 25 MHz 3 1 2 0

SECTION 3 HARDWARE USER'S MANUAL

3-11

3.2.13 RAM Type Information for the SRM-01/8

The following information can be read from the PI/T2.

RAM Type Information

PI/T Bit Name Value

PB0 MCD4 0
PB1 MCD1 1
PB2 MCD2 0

PC2 RAMTYP 0

PC4 BURST 1

PC6 PARITY 0

3.2.14 Summary of the SRM-01/8

Capacity 8 Mbytes

Address Range $00000000 to $007FFFFF

Port Data Width 32 bits

Local Data Width 128 bits

Burst Mode Supported

Parity Mode Not necessary

Device 128K x 8 Static RAM

Supported Transfers Byte, Word, Long word, Cache Line (16 bytes)

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

3-12

3.3 The System EPROM Area

The first two read cycles after RESET of the microprocessor are fetches of the Initial Interrupt Stack Pointer
and the Initial Program Counter. These cycles are executed under addresses $0 and $4 respectively. A
special control logic maps the System EPROM Area down to this address to start the CPU from the
installed EPROMs. As a result of this downmapping, the first two long words in the EPROM must contain
the following data:

$0 in EPROM Initial Interrupt Stack Pointer
$4 in EPROM Initial Program Counter

The data path of the System EPROM Area is 32 bits wide. The system EPROM consists of two 16 bit wide
EPROM devices.

3.3.1 Memory Organization of the System EPROM Area

The memory organization of the System EPROM and the location number of the sockets are outlined in the
following figure. The one after that shows the location diagram of the sockets.
Figure 3-1: Memory Organization of the System EPROM Area

Long Word Address D31 D24 D23 D16 D15 D8 D7 D0

$FF00 0000

Byte 0 Byte 1 Byte 2 Byte 3

$FF00 0000 $FF00 0001 $FF00 0002 $FF00 0003

$FF00 0004

Byte 4 Byte 5 Byte 6 Byte 7

$FF00 0004 $FF00 0005 $FF00 0006 $FF00 0007

.

.

.
UU UM LM LL
J30 J30 J29 J29

UU = Upper Upper Byte in J30
UM = Upper Middle Byte in J30
LM = Lower Middle Byte in J29
LL = Lower Lower Byte in J29

SECTION 3 HARDWARE USER'S MANUAL

3-13

Figure 3-2: Location Diagram of the System EPROM Area

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

3-14

The following read only cycles can be forced to the System EPROM Area:

Byte: 8 Bits ** Word: 16 Bits ** Long Word: 32 Bits

The processor supports long word read instructions to odd addresses, resulting in byte and word accesses
which meet the 68040 boundary requirements. If a user program must be burned into EPROMs for CPU
board usage, the data bytes must be burned into the different chips as shown below.

Device Locations Address

UU, UM: XXX0 XXX1
J30 (UPPER) XXX4 XXX5

XXX8 XXX9
XXXC XXXD

LM, LL: XXX2 XXX3
J29 (LOWER) XXX6 XXX7

XXXA XXXB
XXXE XXXF

CAUTION

1) The bus size of the System EPROM Area cannot be changed. Two EPROMs must always be
used for proper operation.

2) Microprocessor interactive fetches can only be on addresses ($0,2,4,6, 8...). An Address Trap
Error occurs if a program is started/executed on odd addresses ($1,3,5,7...).

3) Data can be read from any address; odd, even or unaligned in byte, word, or long word format.

4) Write cycles to the EPROM Area are forbidden.

5) All chips must be the same device type and access time for usage in System EPROM Area.

SECTION 3 HARDWARE USER'S MANUAL

3-15

Example for Data Transfers:

The following instruction is fully supported from the System EPROM Area:

MOVE.X ($FF00 000Y), D0

X = B = Byte 1 Byte
X = W = Word 2 Bytes
X = L = Long Word 4 Bytes

Y = 0
Y = 1
Y = 2
Y = 3

.

.

.

All combinations of the listed instructions are allowed and possible.

3.3.2 Usable Device Types for the EPROM Area

The following device types or equivalent are supported by the System EPROM Area:

Device Device Capacity Total Capacity Default Configuration

27210 64K x 16 256 Kbytes
272048 128K x 16 512 Kbytes X

UNDEFINED 256K x 16 1 Mbyte
UNDEFINED 512K x 16 2 Mbytes

The default configuration, using 27210 devices, is provided for the installation of VMEPROM. The following
figure outlines the different jumper settings for the listed device types and the one to follow shows the
location diagram of Jumperfield B11 for device dependent configuration. The Appendix of this Hardware
User's Manual lists a table of the usable pinouts for the System EPROM Area if other devices than those
listed must be used.

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

3-16

Figure 3-3: Configuration Jumper Settings of System EPROM Area Jumperfield B11

Jumpersetting: Device: Organization:

B11

1 o o

o o

o o

27C210 64K x 16

B11

1 o))))o

o o

o o

27C2048 128K x 16
(DEFAULT)

B11

1 o))))o

o))))o

o o

UNDEFINED 256K x 16

B11

1 o))))o

o))))o

o))))o

UNDEFINED 512K x 16

SECTION 3 HARDWARE USER'S MANUAL

3-17

Figure 3-4: Location Diagram of Jumperfield B11 Configuration of the System
EPROM Area

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

3-18

3.3.3 Access Time Selection of the System EPROM Area

The access time of the System EPROM Area is software programmable in the FGA-002 Gate Array. It can
be adapted to various access speeds of the EPROM devices. A complete description of the FGA-002 Gate
Array can be found in the related manual.

3.3.4 Address Map of the System EPROM Area

The start address of the System EPROM Area is mapped via the FGA-002 Gate Array and cannot be
changed. The size of this memory area depends on the memory capacity of the used devices. The
following table lists the address map of the EPROM area.

Table 3-1: Address Map of the EPROM Area

Start Address End Address Used Device Total Capacity Default
Configuration

FF00 0000 FF03 FFFF 27210 256 KBYTES
FF00 0000 FF07 FFFF 272048 512 KBYTES X
FF00 0000 FF0F FFFF UNDEFINED 1 MBYTE
FF00 0000 FF1F FFFF UNDEFINED 2 MBYTES

3.3.5 Summary of the EPROM Area

Not Allowed Access with Function Code 111

Usable Data Bits D00 - D31

Supported Port Size Long Word

No. of Devices to be Installed 2

Upper Upper Byte J30
Upper Middle Byte J30
Lower Middle Byte J29
Lower Lower Byte J29

Maximum Capacity 2 Mbytes

Default Configuration for 128K * 16 Devices

Default Access Time 200ns

Access Address Range $FF00 0000 START
 $FF03 FFFF END

SECTION 3 HARDWARE USER'S MANUAL

3-19

3.4 The FLXibus

The CPU board can be used with or without an I/O subsystem, called an "EAGLE" Module.

The EAGLE module increases the functionality of the board and adds extra I/O features to fit the application
requirement. EAGLE modules connect directly to the FLXi (FORCE Local eXpansion interface) of the base
board.

If your CPU board is assembled with an EAGLE module please refer to the "EAGLE Module" manual which
is shipped with this board and should be placed in Section 6 of this manual.

3.4.1 Introduction to the FLXibus

The FLXi (FORCE Local eXpansion interface) is a 32 bit interface with non-multiplexed data and address
lines.

An EAGLE module holds a FLXibus interface and an I/O interface (64 pins), which is directly connected to
row a and row c of the VMEbus P2 connector.

The aim of the EAGLE module concept is to be more flexible in the I/O part of the board. This circumvents
the complete redesign of a board if new I/O devices or customer specific solutions must be implemented.
By having several modules available, the necessity of designing new boards is avoided.

The EAGLE module has the ability to become master of the FLXi and therefore the devices on the EAGLE
module are able to transfer data to the "main memory" on the base board if they have DMA capability.

Features of the FLXibus

! One or more identical or different EAGLE modules can be used on a base board. This CPU board
is capable of holding one EAGLE module.

! The EAGLE modules contain all necessary software which is stored in the on-board EPROMs.

! The EAGLE module can become bus master (e.g. for DMA transfers) on the base board.

! Interrupts to the base boards are supported.

! FLXibus definition is based on the 68020 asynchronous interface and supports frequencies up to
50 MHz.

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

3-20

3.5 The Local FLASH EPROM

The CPU board holds a 128K x 8 FLASH EPROM which allows data storage without the need of a battery
or supply via the +5VSTDBY VMEbus line.

3.5.1 Memory Organization of the FLASH EPROM

The FLASH EPROM is connected with the data lines D24 to D31. This device features a byte port. The
cycle control chip (CCC) between the 68040 processor and the FGA-002 simulates the dynamic bus sizing,
so that succeeding bytes seen by the microprocessor are handled in the same manner as succeeding bytes
for the FLASH EPROM. Byte, word, and long word accesses are managed by the dynamic bus sizing of
the microprocessor. For further details, please refer to the CCC description.

Data can be read from any address; odd, even or unaligned in byte, word, or long word format, and written
to any address in byte format.

Example for Data Transfers:

The following instruction is fully supported from the FLASH EPROM Area:

MOVE.X ($FFC8 000Y), D0

X = B = Byte 1 Byte
X = W = Word 2 Bytes
X = L = Long Word 4 Bytes

Y = 0
Y = 1
Y = 2
Y = 3
 .
 .
 .

SECTION 3 HARDWARE USER'S MANUAL

3-21

3.5.2 Programming the FLASH EPROM

The software and hardware to erase and program the FLASH EPROM is installed on the CPU board. For
detailed information on how to program the FLASH EPROM, please refer to the CPU-40 VMEPROM
description which is located in Section 7 and Section 8 of this manual.

Before programming the FLASH EPROM the write protection jumper on jumperfield B16 must be set from
1-2 to 2-3. The following page shows the location of jumperfield B16.

3.5.3 Address Map of the FLASH EPROM

The address range of the FLASH EPROM Area is mapped via the FGA-002 and a PAL and is
unchangeable.

3.5.4 Summary of the Local FLASH Memory

Not Allowed Access with Function Code 1 1 1

Supported Port Size Byte

Capacity 128 Kbytes

Chip Organization 128K x 8

Access Time 200ns

Access Address $FFC80000 to FFC9FFFF

3.5.5 Jumper Settings for B16

 +))))),+))))), +))))),+))))),
 ** ** ** **
 1 ** o ** Write disabled = 1 ** o ** Write enabled
 ** ** ** Write Protection ** **
 ** o ** (Default) ** o **
 ** ** ** ** **
 ** o ** ** o **
 .)))))-.)))))- .)))))-.)))))-

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

3-22

3.5.6 Location Diagram of Jumperfield B16

SECTION 3 HARDWARE USER'S MANUAL

3-23

3.6 The Local SRAM

The SRAM allows the user to retain data even when the power supply is switched off. A battery provides
the voltage for the SRAM standby mode. With Jumper B20, it is possible to select either the on board
battery or the +5VSTDBY of the VMEbus for backup supply.

3.6.1 Memory Organization of the User SRAM

This device features a byte port. External hardware simulates the dynamic bus sizing, so that succeeding
bytes seen by the microprocessor are handled in the same manner as succeeding bytes for the Local
SRAM. Byte, word, and long word accesses are managed by the dynamic bus sizing of the external
hardware.

Data can be read from and written to any address; odd, even or unaligned in byte, word, or long word
format.

Example for Data Transfers:

The following instruction is fully supported from the SRAM Area:

MOVE.X ($FFC0 000Y), D0

X = B = Byte 1 Byte
X = W = Word 2 Bytes
X = L = Long Word 4 Bytes

Y = 0
Y = 1
Y = 2
Y = 3
 .
 .
 .

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

3-24

All combinations of the listed instructions are allowed and possible.

This SRAM can be used to save special settings of the FGA-002 as described in Section 7 , Introduction
to VMEPROM of this manual.

The following figure shows the location diagram of Jumperfield B20 for the backup supply. The default
configuration uses the on board battery.

Please note that the Real Time Clock on the CPU board is supplied via the same jumperfield.

 B1 B1
 +))), +))),
 1 * o * Battery is connected to 1 * o * Battery is cut from
 * | * Backup Supply Line * * Backup Supply Line
 * o * (default) * o *
 .)))- .)))-

 B20 B20
 +))), +))),
 1 * o * +5VSTDBY is connected to 1 * o * +5VSTDBY is cut from
 * | * Backup Supply Line * * Backup Supply Line
 * o * * o * (default)
 .)))- .)))-

NOTE

The battery is not installed on the CPU board to avoid damage during shipment.

CAUTION

If the special settings for the FGA-002 which are stored in the SRAM are used, these settings will be
erased when

a) removing the jumper on jumperfield B1 or disassembling the battery
 and

b) removing the jumper on jumperfield B20 or removing the board from the VMEbus.

SECTION 3 HARDWARE USER'S MANUAL

3-25

Figure 3-5: Location Diagram of the Backup Supply Jumperfield B1 and B20

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

3-26

3.6.2 The Address Map of the SRAM Area

The address range of the SRAM Area is mapped via the FGA-002 and a PAL and is unchangeable. The
SRAM is used by the boot software and therefore not fully available to the user. Please refer to the FGA-
002 User's Manual, Section 10, Boot Software .

3.6.3 Summary of the SRAM Area

Not Allowed Access with Function Code 111

Supported Port Size Byte

Capacity 128 Kbytes

Chip Organization 128K * 8 Devices

Access Time 100ns

Access Address $FFC0 0000 - $FFC1 FFFF

SECTION 3 HARDWARE USER'S MANUAL

3-27

3.7 The Boot EPROM

The CPU board contains one 28-pin EPROM which is used to boot up the processor and run a program to
initialize register contents of the FGA-002 Gate Array. This program finishes in such a manner that the
System EPROM appears to have booted the CPU Board. The device type of the Boot EPROM is 27512
with the total memory capacity of 64 Kbytes. The location is J15.

For more detailed information over the Boot EPROM, please refer to Section 10, Boot Software
Description of the FGA-002 Users Manual.

The figure on the page to follow displays the location of the Boot EPROM on the CPU board.

3.7.1 Summary of the Boot EPROM Area

Access Not Allowed with Function Code 111

Supported Port Size Byte

No. of Devices to be installed 1

Maximum Capacity 64 Kbytes

Default Access Time 200ns

Access Address $FFE0 0000 - $FFE0 FFFF

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

3-28

Figure 3-6: Location Diagram of the Boot EPROM

SECTION 3 HARDWARE USER'S MANUAL

3-29

3.8 The DUSCC 68562

The Dual Universal Serial Communications Controller 68562 (DUSCC) is a single-chip MOS-LSI
communications device that provides two independent, multiprotocol, full duplex receiver/ transmitter
channels in a single package. Each channel consists of a receiver, a transmitter, a 16 bit multifunction
counter/timer, a digital phaselocked loop (DPLL), a parity/CRC generator and checker, and associated
control circuits.

Features of the DUSCC

! Dual full-duplex synchronous/asynchronous receiver and transmitter

! Multiprotocol operation consisting of:

BOP: HDLC/ADCCP, SDLC, SDLC Loop, X.25 or X.75 link level
COP: BISYNC, DDCMP, X.21
ASYNC: 5-8 bit plus optional parity

! Programmable data encoding formats: NRZ, NRZI, FM0, FM1, Manchester

! 4 character receiver and transmitter FIFOs

! Individual programmable baud rate for each receiver and transmitter

! Digital phase locked loop

! User programmable counter/timer

! Programmable channel modes full/half duplex, auto echo, local loopback

! Modem control signals for each channel: RTS, CTS, DCD

! CTS and DCD programmable auto enables for Receiver (RX) and Transmitter (TX)

! Programmable interrupt on change of CTS or DCD

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

3-30

3.8.1 Address Map of the DUSCC1 Registers

The following tables contain the complete register map of the DUSCC1.

Table 3-2: Serial I/O Port #1 (DUSCC1) Register Address Map

Port Base Address: $FF802000

Address Offset Reset
HEX HEX Value Mode Label Description

$FF802000 00 00 R/W DUSCMR1 Channel Mode Reg 1
$FF802001 01 00 R/W DUSCMR2 Channel Mode Reg 2
$FF802002 02 -- R/W DUSSS1R SYN1/Secondary Adr Reg 1
$FF802003 03 -- R/W DUSS2R SYN2/Secondary Adr Reg 2
$FF802004 04 00 R/W DUSTPR Transmitter Parameter Reg
$FF802005 05 -- R/W DUSTTR Transmitter Timing Reg
$FF802006 06 00 R/W DUSRPR Receiver Parameter Reg
$FF802007 07 -- R/W DUSRTR Receiver Timing Reg
$FF802008 08 -- R/W DUSCTPRH Counter/Timer Preset Reg H
$FF802009 09 -- R/W DUSCTPRL Counter/Timer Preset Reg L
$FF80200A 0A -- R/W DUSCTCR Counter/Timer Control Reg
$FF80200B 0B 00 R/W DUSOMR Output and Miscellaneous Reg
$FF80200C 0C -- R DUSCTH Counter/Timer High
$FF80200D 0D -- R DUSCTL Counter/Timer Low
$FF80200E 0E 00 R/W DUSPCR Pin Configuration Reg
$FF80200F 0F -- R/W DUSCCR Channel Command Reg
$FF802010 10
$FF802011 11
$FF802012 12 -- W DUSTFIFO Transmitter FIFO
$FF802013 13
$FF802014 14
$FF802015 15
$FF802016 16 -- R DUSRFIFO Receiver FIFO
$FF802017 17
$FF802018 18 00 R/W DUSRSR Receiver Status Reg
$FF802019 19 00 R/W DUSTRSR Transmitter/Receiver Stat Reg
$FF80201A 1A -- R/W DUSICTSR Input + Counter/Timer Stat Reg
$FF80201C 1C 00 R/W DUSIER Interrupt Enable Reg

SECTION 3 HARDWARE USER'S MANUAL

3-31

Table 3-3: Serial I/O Port #2 (DUSCC1) Register Address Map

Port Base Address: $FF802000

Address Offset Reset
HEX HEX Value Mode Label Description

$FF802020 00 00 R/W DUSCMR1 Channel Mode Reg 1
$FF802021 01 00 R/W DUSCMR2 Channel Mode Reg 2
$FF802022 02 -- R/W DUSSS1R SYN1/Secondary Adr Reg 1
$FF802023 03 -- R/W DUSS2R SYN2/Secondary Adr Reg 2
$FF802024 04 00 R/W DUSTPR Transmitter Parameter Reg
$FF802025 05 -- R/W DUSTTR Transmitter Timing Reg
$FF802026 06 00 R/W DUSRPR Receiver Parameter Reg
$FF802027 07 -- R/W DUSRTR Receiver Timing Reg
$FF802028 08 -- R/W DUSCTPRH Counter/Timer Preset Reg H
$FF802029 09 -- R/W DUSCTPRL Counter/Timer Preset Reg L
$FF80202A 0A -- R/W DUSCTCR Counter/Timer Control Reg
$FF80202B 0B 00 R/W DUSOMR Output and Miscellaneous Reg
$FF80202C 0C -- R DUSCTH Counter/Timer High
$FF80202D 0D -- R DUSCTL Counter/Timer Low
$FF80202E 0E 00 R/W DUSPCR Pin Configuration Reg
$FF80202F 0F -- R/W DUSCCR Channel Command Reg
$FF802030 10,
$FF802031 11*
$FF802032 12* -- W DUSTFIFO Transmitter FIFO
$FF802033 13-
$FF802034 14,
$FF802035 15*
$FF802036 16* -- R DUSRFIFO Receiver FIFO
$FF802037 17-
$FF802038 18 00 R/W DUSRSR Receiver Status Reg
$FF802039 19 00 R/W DUSTRSR Transmitter/Receiver Stat Reg
$FF80203A 1A -- R/W DUSICTSR Input + Counter/Timer Stat Reg
$FF80203C 1C 00 R/W DUSIER Interrupt Enable Reg

Table 3-4: Ports #1 and #2 (DUSCC1) Common Register Address Map

Port Base Address: $FF802000

Address Offset Reset
HEX HEX Value Mode Label Description

$FF80201B 1B 00 R/W DUSGSR General Status Register
$FF80201E 1E 0F R/W DUSIVR Interrupt Vec Reg Unmodified
$FF80201F 1F 00 R/W DUSICR Interrupt Control Register
$FF80203E 3E 0F R DUSIVRM Interrupt Vec Reg Modified

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

3-32

3.8.2 RS232 Hardware Configuration of Port #1 and #2

Ports #1 and #2 are built around the DUSCC (J19). The DUSCC is connected to the local 8 bit data bus.

The RS232 interfaces of port #1 and #2 are identical except that port #1 is additionally wired to a 0S
resistor field which allows connection to the VMEbus P2 connector. The 0S resistors are not installed in
the default configuration because it may conflict with the EAGLE module. All RS232 driver and receivers
are installed in the default configuration. The I/O signals of port #1 are connected to the VME connector
P2 as follows:

Signal Input Output VME Connector P2 Description

DCD X c29 Data Carrier Detect
RXD X c30 Receive Data
TXD X c31 Transmit Data
DTR X c32 Data Terminal Ready
DSR X X a29 Data Set Ready
RTS X a30 Request to Send
CTS X a31 Clear to Send
GND a32 Signal GND

The individual I/O signal assignment of ports #1 and #2 are listed as follows:

Signal Input Output 9 Pin D-Sub Connector Description

DCD X 1 Data Carrier Detect
RXD X 2 Receive Data
TXD X 3 Transmit Data
DTR X 4 Data Terminal Ready
GND 5 Signal GND
DSR X X 6 Data Set Ready
RTS X 7 Request to Send
CTS X 8 Clear to Send
GND 9 Signal GND

SECTION 3 HARDWARE USER'S MANUAL

3-33

The following figure shows the location diagram of the 0S resistor fields R563 to R569 and the figure
afterwards displays the connection between the DUSCC and the VMEbus Connector P2, and the Micro D-
Sub connector.

CAUTION

Before installing the 0S resistors to generate the port #1 availability on the VMEbus P2 Connector,
please make sure that the EAGLE module which is being used does not occupy the VMEbus P2
signals c29 to c32 and a29 to a32. Otherwise the board will be damaged.

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

3-34

Figure 3-7: Location Diagram of the 0 SS Resistors R563 to R569

DUSCC

68562
CHANNEL

A B

Pin No. Pin No.

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

TXD

SOU

OU2

OU1

RTC

TRC

CTS

IN1

DCD

RXD

19

02

14

16

06

17

10

07

18

01

13

15

04

09

08

05

FH002

Ba

12
GND

CTS

RTS

DSR

1

2

3

Bb

VME P2

A29

A30

A31

A32

GND

W7

W6

W3

W8

W1

W2

W5

W4

DTR

TXD

RXD

DCD
C29

C30

C31

C32

39

45

36

37

43

44

35

48

42

40

15

9

18

17

11

10

19

12

14

5

DUSCC

68562
CHANNEL

A B

Pin No. Pin No.

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

TXD

SOU

OU2

OU1

RTC

TRC

CTS

IN1

DCD

RXD

19

02

14

16

06

17

10

07

18

01

13

15

04

09

08

05

FH002

Ba

12

9

8

7

6

5

4

3

2

1

1

2

3

Bb

Pa

GND

DTR

TXD

RXD

DCD

DSR

RTS

CTS

GND

GND

W7

W6

W3

W8

W1

W2

W5

W4

39

45

36

37

43

44

35

48

42

40

15

9

18

17

11

10

19

12

14

5

SECTION 3 HARDWARE USER'S MANUAL

3-35

Figure 3-8: RS232 Connection Between DUSCC1 and VMEbus Connector P2

Figure 3-9: RS232 Connection Between DUSCC1 and Micro D-Sub Connector

5

4

3

2

1

9

8

7

6

GND

DTR

TXD

RXD

DCD

GND

CTS

RTS

DSR

RS232

Pa

B) Micro DSUB and DSUB Female Connectors

5

4

3

2

1

9

8

7

6

GND

DTR

TXD

RXD

DCD

GND

CTS

RTS

DSR

RS232

Pa

A) Micro DSUB Male Connector Soldered

on the Adapter/Terminal Cableon the CPU Board

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

3-36

The devices are labeled as shown in the following chart.

Port# Channel Ba Bb Pa Connector

1 a B3 B5 PD1 1/VME P2
2 b B4 B6 PD2 2

The next figure shows the pinout of the Micro D-Sub connector for RS232. The figure on the next page
displays the location of the RS232 configuration jumperfields. The default setting of the RS232
configuration jumperfield is shown in the next table.

Figure 3-10: Pinout of the Micro D-Sub and D-Sub Connector for RS232

SECTION 3 HARDWARE USER'S MANUAL

3-37

Figure 3-11: Location Diagram of RS232 Configuration Jumperfields B3, B4,
B5, and B6

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

3-38

Table 3-5: Default Setting of RS232 Configuration Jumperfields

 B3, B4 B5, B6

 +)))))), +))))),
 1 * o o *16 1 * o *
 * * * *
 2 * o))o *15 2 * o *
 * * * *
 3 * o o *14 3 * o *
 * * * *
 4 * o o *13 .)))))-
 * *
 5 * o o *12
 * *
 6 * o o *11
 * *
 7 * o o *10
 * *
 8 * o))o * 9
 .))))))-

3.8.3 Cable for the Micro D-Sub Connector

The CPU board is delivered with one 9-pin Micro D-Sub to 9-pin D-Sub Adapter Cable. Additional cables
or a 9-pin Micro D-Sub to 25-pin D-Sub Adapter Cable are available from FORCE COMPUTERS.

3.8.4 RS422/RS485 Hardware Configuration of Ports #1 and #2

The CPU board is delivered with RS232 compatible interface buffers installed on all serial I/O ports. It is
possible to reconfigure I/O ports #1 and #2 to be RS422/RS485 compatible. Termination resistors can be
installed to adapt various cable lengths and reduce reflections. The resistor value is user application
dependent. A recommended value for all resistors is 1 KOHM. The RS422/RS485 interfaces of ports #1
and #2 are identical except that port #1 is additionally wired to a 0S resistor field which allows connection
to the VMEbus P2 connector.

SECTION 3 HARDWARE USER'S MANUAL

3-39

The 0S resistors are not installed in the default configuration because it may conflict with the EAGLE
module.

Signal Input Output VME Connector P2 Description

TXD- X c29 Transmit Data
RTS- X c30 Request to Send
CTS+ X c31 Clear to Send
RXD+ X c32 Receive Data
TXD+ X a29 Transmit Data
RTS+ X a30 Request to Send
CTS- X a31 Clear to Send
RXD- X a32 Receive Data

The next figure shows the location diagram of the 0S resistors R563 to R569 and the figure afterwards
displays the connection between the DUSCC1 and the VMEbus connector.

CAUTION

Before installing the 0S resistors to generate the port #1 availability on the VMEbus P2 Connector,
please make sure that the EAGLE module which is being used does not occupy the VMEbus P2
signals c29 to c32 and a29 to a32. Otherwise the board will be damaged.

The devices are labeled according to the following chart.

Port# Channel Ba Bb Pa Connector Resistor Array

1 a B3 B5 PD1 1/VMEbus P2 J22
2 b B4 B6 PD2 2 J23

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

3-40

Figure 3-12: Location Diagram of the 0 SS Resistors R563 to R569

DUSCC

68562
CHANNEL

A B

Pin No. Pin No.

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

TXD

SOU

OU2

OU1

RTC

TRC

CTS

IN1

DCD

RXD

19

02

10

07

FH003

Ba

Bb VMEbus P2

1 2 3

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Ja

+5V

15

09

01

05

18

08

13

12

W1

W2

W3

W4

W6

W5

W8

W7

A29
TXD+

A30
RTS+

A31
CTS-

A32
RXD-

C32RXD+

C31CTS+

C30RTS-

C29TXD-

39

45

36

37

43

44

35

48

42

40

15

9

17

11

10

19

12

14

18

5

SECTION 3 HARDWARE USER'S MANUAL

3-41

Figure 3-13: RS422/RS485 Connection between DUSCC1 and VMEbus
Connector P2

Table 3-6: RS422/RS485 Configuration Jumperfield Settings

 B3, B4 B5, B6
 +)))))),+)))))), +))))),+))))),
1** o o **16 1 ** o **
 ** ** ** ** **
2** o))))o **15 2 ** o **
 ** ** ** **
3** o o **14 3 ** o **
 ** ** .)))))-.)))))-
4** o o **13
 ** **
5** o o **12
 ** **
6** o o **11
 ** **
7** o o **10
 ** **
8** o))))o **9
 .))))))-.))))))-

5

4

3

2

1

9

8

7

6

RXD-

RXD+

CTS+

RTS-

TXD-

RXD-

CTS-

RTS+

TXD+

RS422/RS485

Pa

5

4

3

2

1

9

8

7

6

RXD-

RXD+

CTS+

RTS-

TXD-

RXD-

CTS-

RTS+

TXD+

RS422/RS485

Pa

A) Micro DSUB Male Connector

Soldered on the CPU Board

B) Micro DSUB and DSUB Female Connectors

on the Adapter/Terminal Cable

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

3-42

Figure 3-14: RS422/RS485 Pinout of the Micro D-Sub and D-Sub Connectors

The following table shows the PCB locations and devices that have to be inserted according to the
RS232/RS422/RS485 configuration.

Table 3-7: PCB Locations for the RS232/RS422/RS485 Configuration

Port #
RS232 Devices RS422/RS485 Devices

Driver and Receiver FH002 Driver and Receiver FH003 Resistor Array Ja

1 J20 J20 J22
2 J21 J21 J23

The RS422/RS485 compatible interface supports TXD, RXD, RTS, CTS with differential outputs and inputs.
The port occupies the same eight pins of the P2 connector as in the RS232 compatible configuration, but
with a different signal association. The following figure displays the location diagram for the RS232/
RS422/RS485 driver/receiver J22 and resistor array J23.

SECTION 3 HARDWARE USER'S MANUAL

3-43

Figure 3-15: Location Diagram of R S422/RS485 Configuration Ju mperfields B3,
B4, B5, and B6

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

3-44

Figure 3-16: Location Diagram of RS232/RS422/RS485 Driver/Receivers J20
and J21 plus Resistor Arrays J22 and J23

SECTION 3 HARDWARE USER'S MANUAL

3-45

WARNING

1) Please make sure that the jumper setting is adapted to the user driver module.
2) Any mistakes could ruin the inserted component upon board powerup.

3.8.5 RS232 and RS422/RS485 Driver Modules FH002 and FH003

To save space and to be able to vary the interface, FORCE COMPUTERS has developed the RS232 and
RS422/RS485 modules with the FH002 and FH003. These 21-pin SIL modules are installed with sockets
so that they may be easily changed. The default jumper setting on the CPU board for the RS232 module
is as shown below:

 B3, B4 B5, B6

 +)))))), +))))),
 1 * o o *16 1 * o *
 * * * *
 2 * o))o *15 2 * o *
 * * * *
 3 * o o *14 3 * o *
 * * * *
 4 * o o *13 .)))))-
 * *
 5 * o o *12
 * *
 6 * o o *11
 * *
 7 * o o *10
 * *
 8 * o))o * 9
 .))))))-

3.8.6 Summary of DUSCC1

Device 68562 DUSCC

Access Address $FF802000

Port Width Byte

Interrupt Request Level Software programmable

FGA-002 Interrupt Level Local IRQ #4

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

3-46

3.8.7 Address Map of the DUSCC2 Registers

The following tables contain the complete register map of DUSCC2.

Table 3-8: Serial I/O Port #3 (DUSCC2) Register Address Map

Port Base Address : $FF802200

Address Offset Reset Mode Label Description
HEX HEX Value

$FF802200 00 00 R/W DUSCMR1 Channel Mode Reg 1
$FF802201 01 00 R/W DUSCMR2 Channel Mode Reg 2
$FF802202 02 -- R/W DUSSS1R SYN1/Secondary Adr Reg 1
$FF802203 03 -- R/W DUSS2R SYN2/Secondary Adr Reg 2
$FF802204 04 00 R/W DUSTPR Transmitter Parameter Reg
$FF802205 05 -- R/W DUSTTR Transmitter Timing Reg
$FF802206 06 00 R/W DUSRPR Receiver Parameter Reg
$FF802207 07 -- R/W DUSRTR Receiver Timing Reg
$FF802208 08 -- R/W DUSCTPRH Counter/Timer Preset Reg H
$FF802209 09 -- R/W DUSCTPRL Counter/Timer Preset Reg L
$FF80220A 0A -- R/W DUSCTCR Counter/Timer Control Reg
$FF80220B 0B 00 R/W DUSOMR Output and Miscellaneous Reg
$FF80220C 0C -- R DUSCTH Counter/Timer High
$FF80220D 0D -- R DUSCTL Counter/Timer Low
$FF80220E 0E 00 R/W DUSPCR Pin Configuration Reg
$FF80220F 0F -- R/W DUSCCR Channel Command Reg
$FF802210 10,
$FF802211 11*
$FF802212 12* -- W DUSTFIFO Transmitter FIFO
$FF802213 13-
$FF802214 14,
$FF802215 15*
$FF802216 16*
$FF802217 17- -- R DUSRFIFO Receiver FIFO
$FF802218 18 00 R/W DUSRSR Receiver Status Reg
$FF802219 19 00 R/W DUSTRSR Transmitter/Receiver Stat Reg
$FF80221A 1A -- R/W DUSICTSR Input + Counter/Timer Stat Reg
$FF80221C 1C 00 R/W DUSIER Interrupt Enable Reg

SECTION 3 HARDWARE USER'S MANUAL

3-47

Table 3-9: Serial I/O Port #4 (DUSCC2) Register Address Map

Port Base Address : $FF802220

Address Offset Reset Mode Label Description
HEX HEX Value

$FF802220 00 00 R/W DUSCMR1 Channel Mode Reg 1
$FF802221 01 00 R/W DUSCMR2 Channel Mode Reg 2
$FF802222 02 -- R/W DUSSS1R SYN1/Secondary Adr Reg 1
$FF802223 03 -- R/W DUSS2R SYN2/Secondary Adr Reg 2
$FF802224 04 00 R/W DUSTPR Transmitter Parameter Reg
$FF802225 05 -- R/W DUSTTR Transmitter Timing Reg
$FF802226 06 00 R/W DUSRPR Receiver Parameter Reg
$FF802227 07 -- R/W DUSRTR Receiver Timing Reg
$FF802228 08 -- R/W DUSCTPRH Counter/Timer Preset Reg H
$FF802229 09 -- R/W DUSCTPRL Counter/Timer Preset Reg L
$FF80222A 0A -- R/W DUSCTCR Counter/Timer Control Reg
$FF80222B 0B 00 R/W DUSOMR Output and Miscellaneous Reg
$FF80222C 0C -- R DUSCTH Counter/Timer High
$FF80222D 0D -- R DUSCTL Counter/Timer Low
$FF80222E 0E 00 R/W DUSPCR Pin Configuration Reg
$FF80222F 0F -- R/W DUSCCR Channel Command Reg
$FF802230 10,
$FF802231 11*
$FF802232 12* -- W DUSTFIFO Transmitter FIFO
$FF802233 13-
$FF802234 14,
$FF802235 15*
$FF802236 16*
$FF802237 17- -- R DUSRFIFO Receiver FIFO
$FF802238 18 00 R/W DUSRSR Receiver Status Reg
$FF802239 19 00 R/W DUSTRSR Transmitter/Receiver Stat Reg
$FF80223A 1A -- R/W DUSICTSR Input + Counter/Timer Stat Reg
$FF80223C 1C 00 R/W DUSIER Interrupt Enable Reg

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

3-48

Table 3-10: Ports #3 and #4 (DUSCC2) Common Registers Address Map

Port Base Address : $FF802200

Address Offset Reset Mode Label Description
HEX HEX Value

$FF80221B 1B 00 R/W DUSCMR1 Channel Mode Reg 1
$FF80221E 1E 0F R/W DUSCMR2 Channel Mode Reg 2
$FF80221F 1F 00 R/W DUSSS1R SYN1/Secondary Adr Reg 1
$FF80223E 3E 0F R DUSS2R SYN2/Secondary Adr Reg 2

3.8.8 RS232 Hardware Configuration of Ports #3 and #4

Ports #3 and #4 are built around the DUSCC (J24). DUSCC2 is connected to the local 8 bit data bus and
is accessible in the byte mode. The RS232 interfaces of port #3 and #4 which are wired to the two 9-pin
Micro D-Sub connectors (named "3" and "4") on the front panel are identical. All RS232 driver and receivers
are installed in the default configuration. The individual I/O signal assignment of the two channels is listed
as follows:

Signal Input Output 9 Pin D-Sub Connector Description

DCD X 1 Data Carrier Detect
RXD X 2 Receive Data
TXD X 3 Transmit Data
DTR X 4 Data Terminal Ready
GND 5 Signal GND
DSR X X 6 Data Set Ready
RTS X 7 Request to Send
CTS X 8 Clear to Send
GND 9 Signal GND

The following figure displays the connection between DUSCC2 and the D-Sub connectors.

DUSCC

68562
CHANNEL

A B

Pin No. Pin No.

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

TXD

SOU

OU2

OU1

RTC

TRC

CTS

IN1

DCD

RXD

19

02

14

16

06

17

10

07

18

01

13

15

04

09

08

05

FH002

Ba

12

9

8

7

6

5

4

3

2

1

1

2

3

Bb

Pa

GND

DTR

TXD

RXD

DCD

DSR

RTS

CTS

GND

GND

W7

W6

W3

W8

W1

W2

W5

W4

39

45

36

37

43

44

35

48

42

40

15

9

18

17

11

10

19

12

14

5

SECTION 3 HARDWARE USER'S MANUAL

3-49

Figure 3-17: Connection Between DUSCC2 and D-Sub Connector for RS232

The devices are labeled as shown in the following chart.

Port # Channel Ba Bb Pa Connector

3 A B7 B9 PD3 3
4 B B8 B10 PD4 4

The location diagram of the RS232 Configuration Jumperfields is found in the figure on the next page. The
default setting of the RS232 configuration jumperfield is shown in the next table.

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

3-50

Figure 3-18: Location Diagram of RS232 Configuration Jumperfields B7
through B10

5

4

3

2

1

9

8

7

6

GND

DTR

TXD

RXD

DCD

GND

CTS

RTS

DSR

RS232

Pa

B) Micro DSUB and DSUB Female Connectors

5

4

3

2

1

9

8

7

6

GND

DTR

TXD

RXD

DCD

GND

CTS

RTS

DSR

RS232

Pa

A) Micro DSUB Male Connector Soldered

on the Adapter/Terminal Cableon the CPU Board

SECTION 3 HARDWARE USER'S MANUAL

3-51

The following is the displayed pinout of the D-Sub connector for RS232 Configuration.

Figure 3-19: RS232 Pinout of the Micro D-Sub and D-Sub Connectors

Table 3-11: Default Setting of the RS232 Configuration Jumperfields

 B7, B8 B9, B10
 +)))))), +))))),
 * * * *
 1 * o o *16 1 * o *
 * * * *
 2 * o))o *15 2 * o *
 * * * *
 3 * o o *14 3 * o *
 * * * *
 4 * o o *13 .)))))-
 * *
 5 * o o *12
 * *
 6 * o o *11
 * *
 7 * o o *10
 * *
 8 * o))o * 9
 * *
 .))))))-

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

3-52

3.8.9 Cable for the Micro D-Sub Connector

The CPU board is delivered with one 9-pin Micro D-Sub to 9-pin D-Sub Adapter Cable. Additional cables
or a 9-pin Micro D-Sub to 25-pin D-Sub Adapter Cable are available by order from FORCE COMPUTERS.

3.8.10 RS422/RS485 Hardware Configuration of Port #3 and #4

The CPU board is delivered with RS232 compatible interface buffers installed on all serial I/O ports. It is
possible to reconfigure I/O ports #3 and #4 so that they are RS422/RS485 compatible. Termination
resistors can be installed to adapt various cable lengths and reduce reflections. The resistor value is user
application dependent. A recommended value for all resistors is 1 KOHM. The I/O signal assignment of
each of the channels is listed as follows:

Signal Input Output 9 Pin D-Sub Connector Description

TXD- X 1 Transmit Data
RTS- X 2 Request to Send
CTS+ X 3 Clear to Send
RXD+ X 4 Receive Data
RXD- X 5 Receive Data
TXD+ X 6 Transmit Data
RTS+ X 7 Request to Send
CTS- X 8 Clear to Send
RXD- X 9 Receive Data

The next figure displays the connection between DUSCC2 and D-Sub connectors.

DUSCC

68562
CHANNEL

A B

Pin No. Pin No.

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

TXD

SOU

OU2

OU1

RTC

TRC

CTS

IN1

DCD

RXD

19

02

10

07

FH003

Ba

9

8

7

6

5

4

3

2

1

Bb

Pa

RXD-

RXD+

CTS+

RTS-

TXD-

TXD+

RTS+

CTS-

RXD-

1 2 3

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Ja

+5V

15

09

01

05

18

08

13

12

W1

W2

W3

W4

W6

W5

W8

W7

39

45

36

37

43

44

35

48

42

40

15

17

11

10

19

12

9

14

18

5

SECTION 3 HARDWARE USER'S MANUAL

3-53

Figure 3-20: Connec tion between DUSCC2 and Micro D-Sub Connector for
RS422/RS485

The devices are labeled according to the following chart.

Port # Channel Ba Bb Pa Connector

3 A B7 B9 PD3 3
4 B B8 B10 PD4 4

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

3-54

Figure 3-21: Location Diagram of R S422/RS485 Configuration Jumperfields B7
through B10

5

4

3

2

1

9

8

7

6

RXD-

RXD+

CTS+

RTS-

TXD-

RXD-

CTS-

RTS+

TXD+

RS422/RS485

Pa

5

4

3

2

1

9

8

7

6

RXD-

RXD+

CTS+

RTS-

TXD-

RXD-

CTS-

RTS+

TXD+

RS422/RS485

Pa

A) Micro DSUB Male Connector

Soldered on the CPU Board

B) Micro DSUB and DSUB Female Connectors

on the Adapter/Terminal Cable

SECTION 3 HARDWARE USER'S MANUAL

3-55

Figure 3-22: RS422/RS485 Pinout of the Micro D-Sub and D-Sub Connectors

Table 3-12: RS422/RS485 Configuration Jumperfield Setting

 B7, B8 B9, B10
 +)))))),+)))))), +))))),+))))),
 ** ** ** **
 1 ** o o **16 1 ** o **
 ** ** ** | **
 2 ** o))))o **15 2 ** o **
 ** ** ** **
 3 ** o o **14 3 ** o **
 ** ** ** **
 4 ** o o **13 .)))))-.)))))-
 ** **
 5 ** o o **12
 ** **
 6 ** o o **11
 ** **
 7 ** o o **10
 ** **
 8 ** o))))o ** 9
 ** **
 .))))))-.))))))-

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

3-56

The following table shows the PCB locations and devices that have to be inserted according to the
RS232/RS422/RS485 configuration.

Table 3-13: PCB Locations for RS232/RS422/RS485 Configuration

Port #
RS232 Devices RS422/RS485 Devices

Driver and Receiver FH002 Driver and Receiver FH003 Resistor Array Ja

3 J25 J25 J27
4 J26 J26 J28

The RS422/RS485 compatible interface supports TXD, RXD, RTS, CTS with differential outputs and inputs.
Each port occupies the same nine pins of the D-Sub connector as in the RS232 compatible configuration,
but with a different signal association. The following figure displays the location diagram for the RS232
RS422/RS485 driver/receiver J25/J26 and resistor arrays J27/J28.

WARNING

1) Please make sure that the jumper settings are adapted to the user driver module.
2) Any mistakes could ruin the inserted component upon board powerup.

SECTION 3 HARDWARE USER'S MANUAL

3-57

Figure 3-23: Location Diagram of R S232/RS422/RS485 Driver/Receiver J25/J26
and Resistor Arrays J27/J28

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

3-58

3.8.11 RS232 and RS422/RS485 Driver Modules FH002 and FH003

To save space and to be able to vary the interface, FORCE COMPUTERS has developed the RS232 and
RS422/RS485 modules with the FH002 and FH003. These 21-pin SIL modules are installed with sockets
so that they may be easily changed. The default jumper setting on the CPU board for the RS232 module
is as shown below:

 B7, B8 B9, B10

 +)))))), +))))),
 * * * *
 1 * o o *16 1 * o *
 * * * *
 2 * o))o *15 2 * o *
 * * * *
 3 * o o *14 3 * o *
 * * * *
 4 * o o *13 .)))))-
 * *
 5 * o o *12
 * *
 6 * o o *11
 * *
 7 * o o *10
 * *
 8 * o))o * 9
 * *
 .))))))-

3.8.12 Summary of DUSCC2

Device 68562 DUSCC

Access Address $FF802200

Port Width Byte

Interrupt Request Level Software programmable

FGA-002 Interrupt Channel Local IRQ #5

SECTION 3 HARDWARE USER'S MANUAL

3-59

3.9 The PI/T 68230

The MC68230 Parallel Interface/Timer provides versatile double buffered parallel interfaces and an
operating system oriented timer. The parallel interfaces operate in unidirectional or bidirectional modes,
either 8 or 16 bits wide. The PI/T contains a 24 bit wide counter and a 5 bit prescaler.

Features of the PI/T

! MC68000 Bus Compatible

! Port Modes Include: Bit I/O
Unidirectional 8 bit and 16 bit
8 bit and 16 bit

! Selectable Handshaking Options

! 24 bit Programmable Timer

! Software Programmable Timer Modes

! Contains Interrupt Vector Generation Logic

! Separate Port and Timer Interrupt Service Requests

! Registers are Read/Write and Directly Addressable

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

3-60

3.9.1 Address Map of the PI/T1 Registers

PI/T1 is accessible via the 8 bit local I/O bus (byte mode). The following table shows the register layout
of the PI/T1.

Table 3-14: PI/T1 Register Layout

Default I/O Base Address: $FF80 0000
Default Offset: $0000 0C00
Default Name: PI_T1

Address Offset Reset
HEX HEX Value Label Description

FF800C00 00 00 PIT1 PGCR Port General Control Register
FF800C01 01 00 PIT1 PSRR Port Service Request Register
FF800C02 02 00 PIT1 PADDR Port A Data Direction Register
FF800C03 03 00 PIT1 PBDDR Port B Data Direction Register
FF800C04 04 00 PIT1 PCDDR Port C Data Direction Register
FF800C05 05 00 PIT1 PIVR Port Interrupt Vector Register
FF800C06 06 00 PIT1 PACR Port A Control Register
FF800C07 07 00 PIT1 PBCR Port B Control Register
FF800C08 08 -- PIT1 PADR Port A Data Register
FF800C09 09 -- PIT1 PBDR Port B Data Register
FF800C0A 0A -- PIT1 PAAR Port A Alternate Register
FF800C0B 0B -- PIT1 PBAR Port B Alternate Register
FF800C0C 0C -- PIT1 PCDR Port C Data Register
FF800C0D 0D -- PIT1 PSR Port Status Register
FF800C10 10 00 PIT1 TCR Timer Control Register
FF800C11 11 0F PIT1 TIVR Timer Interrupt Vector Register
FF800C12 12 -- PIT1 CPR Counter Preload Register
FF800C13 13 -- " "
FF800C14 14 -- " "
FF800C15 15 -- " "
FF800C16 16 -- PIT1 CNTR Count Register
FF800C17 17 -- " "
FF800C18 18 -- " "
FF800C19 19 -- " "
FF800C1A 1A 00 PIT1 TSR Timer Status Register

SECTION 3 HARDWARE USER'S MANUAL

3-61

3.9.2 I/O Configuration of PI/T1

The following table lists all I/O signals connected to PI/T1. The functions of these signals are described
in the corresponding chapter. Additional information is provided in the PI/T data sheet, included in Section
No. 5, COPIES OF DATA SHEETS .

Table 3-15: PI/T1 Interface Signals

PI/T1 I/O Pin PI/T Signal Name Connected Signal Input/Output

4 PA0 Rotary Switch 1 I
5 PA1 " I
6 PA2 " I
7 PA3 " I
9 PA4 Rotary Switch 2 I
10 PA5 " I
11 PA6 " I
12 PA7 " I

14 H1 Reserved -
15 H2 Reserved -
16 H3 Reserved -
17 H4 Reserved -

18 PB0 O
19 PB1 O
22 PB2 A31..A24 O
23 PB3 Control O
24 PB4 for O
25 PB5 Accesses in O
26 PB6 Slave Mode O
27 PB7 O

34 PC0 Reserved -
35 PC1 Reserved -
36 PC2 Reserved -
37 PC3 Timer IRQ O
38 PC4 Lock Cycles O
39 PC5 Reserved -
40 PC6 Reserved -
41 PC7 Reserved -

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

3-62

3.9.3 Rotary Switches

There are two rotary switches installed on the front panel of the CPU board. The position of each switch
can be read in via port A of the PI/T1. The next figure outlines the front panel and the position of the rotary
switches. Each rotary switch covers four bits. Therefore, each switch holds 16 positions and the code
shown on the switch (i.e., 0-9 and A-F) can be read from the line PA0-PA3 (SW1) and PA4-PA7 (SW2) of
PI/T1. The following lists the input signals of PI/T1 in relation to the rotary switch signals.

Rotary Switch Signals Assignment

PI/T1 Signal Rotary Switch Bit Data Bit of PI/T Port A

PA0 SW1/1 0 0
PA1 SW1/2 1 1
PA2 SW1/3 2 2
PA3 SW1/4 3 3
PA4 SW2/1 4 4
PA5 SW2/2 5 5
PA6 SW2/3 6 6
PA7 SW2/4 7 7

For application programs, the rotary switches can be used as a general purpose input channel for
diagnostics, configuration selection, or automatic system boot with different configurations. VMEPROM
uses the rotary switches for automatic configuration.

NOTE: The rotary switches serve a special function in conjunction with the RESET and
ABORT switches. This functionality is built into the BOOT EPROM and is
described in detail in the BOOT Software description of the FGA-002 User's
Manual.

SECTION 3 HARDWARE USER'S MANUAL

3-63

Figure 3-24: CPU Board Front Panel and Rotary Switch Positions

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

3-64

3.9.4 Lock Cycles

On the initial cycle of a line access, a retry causes the MC68040 processor to retry the bus cycle. A retry
signaled during the second, third, or fourth cycle of a line transfer is recognized by the processor as a bus
error, and causes the processor to abort the line transfer and start an access fault exception subroutine.

When the local MC68040 wants to access a slave on the VMEbus and has already been granted the local
bus, and a master on the VMEbus wants to access the MC68040's Shared Memory and has already been
granted the VMEbus, a bus collision occurs. In this case the FGA-003 signals a retry to the MC68040 to
resolve the collision on hardware level. It is not necessary that software observes this event.

When a bus collision occurs during the second, third, or fourth cycle of a line transfer, where the processor
is not able to retry the cycle, the MC68040 initiates a bus error. So the collision appears on the software
level and can be resolved there with considerable time expense.

To prevent the software from being concerned, the following feature is implemented on the CPU-40/41 Rev.
2 and succeeding revisions.

The signal ENARMC 16 can be activated by software via PI/T1 Pin PC4. With this signal driven low a line
transfer from the MC68040 is defined as a locked RMC transfer. So the FGA-002, when being granted the
VMEbus, doesn't release the VMEbus until all four long cycles of the line tranfer are successfully completed
or an actual bus error occurred.

When using this feature the FGA-002 must be programmed to drive ASVME high between the locked RMC
similar cycles and not to support real VMEbus compatible Read Modify Cycles. Actual RMC transfers from
the MC68040 are treated the same way. As a result, on a slave board which is accessible from the VME
bus as well as from the VSB, this kind of arbitration locked read modify cycle can be broken.

PC4:

To enable the feature that line transfers are defined as locked cycles, this bit must be programmed to low.
Be sure to program the FGA-002 so that ASVME is driven high between RMC transfers.

To disable this feature, this bit must be programmed to high. VMEPROM programs this bit to low by
default.

SECTION 3 HARDWARE USER'S MANUAL

3-65

3.9.5 Interrupt Request Signal

TOUT:

The PI/T1 pin 37 is used as an interrupt request line. The 24 bit timer can generate interrupt requests at
a software programmable level. This interrupt request line is connected to the IRQ #2 of the FGA-002.

PIRQ:

The PI/T pin 33 is used to generate an interrupt depending on the handshake lines of the PI/T. The PIRQ
is connected to the TOUT pin but is not able to generate an interrupt because the handshake lines are not
used and are reserved.

3.9.6 A24 Slave Mode

In order to allow an A24 slave mode, as described in the chapter Address Modifier Decoding and A24
Slave Mode , the A31 to A24 address lines are programmable for this mode as described in the following
table displaying the PI/T bit and the coordinating address line.

PI/T Port B Bit Address Line

0 A24
1 A25
2 A26
3 A27
4 A28
5 A29
6 A30
7 A31

3.9.7 Reserved Lines

H1, H2, H3, H4, PC0, PC1, PC2, PC5, PC6, PC7:

These lines are not used. In order to retain compatibility to following versions, these lines should not be
used in any applications.

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

3-66

3.9.8 Summary of PI/T1

Device 68230 PI/T

Access Address $FF800C00

Port Width Byte

Interrupt Request Level Software programmable

FGA-002 Interrupt Channel (Timer IRQ) Local IRQ #2

SECTION 3 HARDWARE USER'S MANUAL

3-67

3.9.9 Address Map of the PI/T2 Registers

The PI/T2 is accessible via the 8 bit local I/O bus (byte mode). The following table shows the register layout
of PI/T2.

Table 3-16: PI/T2 Register Layout

Default I/O Base Address: $FF80 0000
Default Offset: $0000 0E00
Default Name: PI_T2

Address Offset Reset
HEX HEX Value Label Description

FF800E00 00 00 PIT2 PGCR Port General Control Register
FF800E01 01 00 PIT2 PSRR Port Service Request Register
FF800E02 02 00 PIT2 PADDR Port A Data Direction Register
FF800E03 03 00 PIT2 PBDDR Port B Data Direction Register
FF800E04 04 00 PIT2 PCDDR Port C Data Direction Register
FF800E05 05 00 PIT2 PIVR Port Interrupt Vector Register
FF800E06 06 00 PIT2 PACR Port A Control Register
FF800E07 07 00 PIT2 PBCR Port B Control Register
FF800E08 08 -- PIT2 PADR Port A Data Register
FF800E09 09 -- PIT2 PBDR Port B Data Register
FF800E0A 0A -- PIT2 PAAR Port A Alternate Register
FF800E0B 0B -- PIT2 PBAR Port B Alternate Register
FF800E0C 0C -- PIT2 PCDR Port C Data Register
FF800E0D 0D -- PIT2 PSR Port Status Register
FF800E10 10 00 PIT2 TCR Timer Control Register
FF800E11 11 0F PIT2 TIVR Timer Interrupt Vector Register
FF800E12 12 -- PIT2 CPR Counter Preload Register
FF800E13 13 -- " "
FF800E14 14 -- " "
FF800E15 15 -- " "
FF800E16 16 -- PIT2 CNTR Count Register
FF800E17 17 -- " "
FF800E18 18 -- " "
FF800E19 19 -- " "
FF800E1A 1A 00 PIT2 TSR Timer Status Register

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

3-68

3.9.10 I/O Configuration of PI/T2

The following table lists all I/O signals connected to PI/T2. The functions of these signals are described
in the corresponding chapter. Additional information is provided in the PI/T data sheet, included in Section
No. 5, COPIES OF DATA SHEETS .

Table 3-18: PI/T2 Interface Signals

PI/T I/O Pin PI/T Signal Name Connected Signal Input/Output

4 PA0 I/O
5 PA1 I/O
6 PA2 I/O
7 PA3 I/O
9 PA4 I/O
10 PA5 I/O Port via I/O
11 PA6 B12 I/O
12 PA7 I/O
14 H1 I
15 H2 I/O
16 H3 I
17 H4 I/O

18 PB0 Memory Size I
19 PB1 " I
22 PB2 " I
23 PB3 Board ID I
24 PB4 " I
25 PB5 " I
26 PB6 " I
27 PB7 " I

34 PC0 MODLOW I
35 PC1 Reserved -
36 PC2 RAMTYP I
37 PC3 Timer IRQ/Reset O
38 PC4 BURST I
39 PC5 PORT IRQ O
40 PC6 PARITY I
41 PC7 ENA24 O

SECTION 3 HARDWARE USER'S MANUAL

3-69

3.9.11 Memory Size Recognition

PB0-PB2:

From these lines, the on-board memory capacity can be read in by software. Please refer to chapter 3.2
The Shared RAM for detailed information.

3.9.12 Board Identification

PB3-PB7:

From these lines, the CPU board identification number can be read in by software. Every CPU board has
its own number. Different versions of one CPU board (i.e. different speeds, capacity of memory, or
modules) contain the same identification number. In the case of the CPU-40/41, the number is twenty
($14).

3.9.13 Interrupt Request Signal

TOUT:

PI/T2 pin 37 is used as an interrupt request line. The 24 bit timer can generate interrupt requests on a
software programmable level. Together with the Port Interrupt Request line, the timer interrupt request line
is connected to the local IRQ #3 of the FGA-002. Therefore the software has to check whether the interrupt
request was generated by the timer or by the port handshake lines.

PIRQ:

PI/T2 pin 39 is used as an interrupt request line. The port handshake lines can generate interrupts on a
software programmable level. Together with the Timer Interrupt Request line, the port interrupt request line
is connected to the local IRQ #3 of the FGA-002. Therefore the software has to check whether the interrupt
request was generated by the timer or by the port handshake lines.

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

3-70

3.9.14 12 Bit I/O Port

PA0-PA7, H1-H4:

This 12 bit I/O port is routed to a 24-pin header B12 allowing flat cable connection. Eight bits are connected
to PI/T2 port A and are used as inputs or outputs; the remaining four bits are connected to the PI/T2
handshake pins. This port can be used to build a Centronics type interface.

PI/T Header B12

Signal Pin Pin

PA0 4 1
PA1 5 2
PA2 6 3
PA3 7 4
PA4 9 5
PA5 10 6
PA6 11 7
PA7 12 8
H1 14 9
H2 15 10
H3 16 11
H4 17 12

The figure on the next page shows the location diagram of Jumperfield B12.

SECTION 3 HARDWARE USER'S MANUAL

3-71

Figure 3-25: Location Diagram of Header B12

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

3-72

3.9.15 MODLOW

PC0

This line is driven low by an Eagle Module if there is one inserted. Be sure to leave this pin undriven by the
PI/T. If no Eagle Module is inserted and this signal is driven low the local IACK daisy chain is not closed!

3.9.16 RAM Module Configuration Signals

PC2, PC4, PC6:

From PC2, RAMTYP of the RAM module can be read as shown in the following chart.

PC2 RAM Type

1 DRAM
0 SRAM

For more information please refer to the chapter The Shared RAM .

From PC4, BURST capability of the RAM module can be read as shown in the following chart.

PC4 Burst Mode

1 Yes
0 No

From PC6, PARITY capability of the RAM module can be read as shown in the following chart.

PC6 Parity

1 Yes
0 No

For more information please refer to the chapter The Shared RAM .

SECTION 3 HARDWARE USER'S MANUAL

3-73

3.9.17 Timer IRQ/Reset

PC3:

This line can be connected to FGA-002 LIRQ 3 or to the RESET operation via jumperfield B18. An interrupt
can be requested by the PI/T timer or directly by programming this line to low, when the jumper is inserted
in 2-3. With a jumper inserted in 1-2, this bit can generate a RESET which is equivalent to a Powerup
RESET so that the contents of a RAM disk in DRAM area can be destroyed.

3.9.18 PIRQ

PC5:

Interrupts from the PI/Ts handshake lines are routed to this FGA-002 LIRQ3 line.

3.9.19 Enable A24 Slave Mode

PC7:

The A24 slave mode can be enabled via the PC7 bit as described in the chapter Address Modifier
Decoding and A24 Slave Mode .

PC7 Enabled VMEbus Slave Mode

1 A32
0 A32/A24

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

3-74

3.9.20 Reserved Line

PC1:

This line is not used. In order to retain compatibility to following versions, this line should not be used in
any applications.

3.9.21 Summary of PI/T2

Device 68230 PI/T

Access Address $FF800E00

Port Width Byte

Interrupt Request Level Software programmable

FGA-002 Interrupt Channel
Timer IRQ: Local IRQ #3

SECTION 3 HARDWARE USER'S MANUAL

3-75

3.10 The Real Time Clock (RTC) 72423

There is an RTC 72423 installed on the CPU board, containing its own battery to maintain the RTC function
during power down.

3.10.1 Address Map of the RTC Registers

The RTC 72423 is a four bit device. It must be accessed in byte mode and the upper four bits are "don't
care" during read and write accesses. The base address of the RTC is $FF803000. The following table
shows the register layout of the RTC 72423.

Table 3-17: RTC Register Layout

Default I/O Base Address: $FF80 0000
Default Offset: $0000 3000
Default Name: RTC

Address Offset Label Description
HEX

FF803000 00 RTC1SEC 1 Second Digit Register
FF803001 01 RTC10SEC 10 Second Digit Register
FF803002 02 RTC1MIN 1 Minute Digit Register
FF803003 03 RTC10MIN 10 Minute Digit Register
FF803004 04 RTC1HR 1 Hour Digit Register
FF803005 05 RTC10HR PM/AM and 10 Hour Digit Register
FF803006 06 RTC1DAY 1 Day Digit Register
FF803007 07 RTC10DAY 10 Day Digit Register
FF803008 08 RTC1MON 1 Month Digit Register
FF803009 09 RTC10MON 10 Month Digit Register
FF80300A 0A RTC1YR 1 Year Digit Register
FF80300B 0B RTC10YR 10 Year Digit Register
FF80300C 0C RTCWEEK Week Register
FF80300D 0D RTCCOND Control Register D
FF80300E 0E RTCCONE Control Register E
FF80300F 0F RTCCONF Control Register F

3.10.2 RTC Programming

The following programming example shows how to read from or write to the RTC. Please note that the RTC
must be stopped prior to reading the date and time registers. For further details, please refer to the RTC
72423 Data Sheet in Section 5, COPIES OF DATA SHEETS in this manual.

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

3-76

Figure 3-26: RTC Programming Example
/***
** read RTC 72421 and load to RAM **
** 30-Oct-87 M.S. **
***/

setclock(sy)
register struct SYRAM *sy;
{
register struct rtc7242 *rtc = RTC2;
register long count=100000l;

while(--count)
 { rtc->dcontrol = 1; /* hold clcok */
 if(!(rtc->dcontrol&0x02))
 break; /*RTC NOT BUSY */
 rtc->dcontrol = 0;
 }
if(!count)
 { printf("\nCannot read Realtime Clock");
 rtc->dcontrol = 0;
 return; }
sy->_ssec[0] = (unsigned char)((rtc->sec10reg&0x07)*10 + (rtc->sec1reg&0x0f));
sy->_smin = (unsigned char)((rtc->min10reg&0x07)*10 + (rtc->min1reg&0x0f));
sy->_shrs = (unsigned char)((rtc->hou10reg&0x03)*10 + (rtc->hou1reg&0x0f));
sy->_syrs[0] = (unsigned char)((rtc->yr10reg&0x0f)*10 + (rtc->yr1reg&0x0f));
sy->_sday = (unsigned char)((rtc->day10reg&0x03)*10 + (rtc->day1reg&0x0f));
sy->_smon = (unsigned char)((rtc->mon10reg&0x01)*10 + (rtc->mon1reg&0x0f));
rtc->dcontrol = 0; /* start clock */
}

/***
** write RTC 72421 from RAM **
** 30-Oct-87 M.S. **
***/

writeclock(sy)
register struct SYRAM *sy;
{
register struct rtc7242 *rtc = RTC2;
register long count=100000l;
while(--count)
 { rtc->dcontrol = 1; /* hold clcok */
 if(!(rtc->dcontrol&0x02))
 break; /*RTC NOT BUSY */
 rtc->dcontrol = 0;
 }
if(!count)
 { printf("\nCannot read Realtime Clock");
 rtc->dcontrol = 0;
 return; }
rtc->fcontrol = 5;
rtc->fcontrol = 4; /* 24-hour clock */
rtc->sec10reg = sy->_ssec[0]/10;
rtc->sec1reg = sy->_ssec[0]%10;
rtc->min10reg = (char)(sy->_smin/10);
rtc->min1reg = (char)(sy->_smin%10);
rtc->hou10reg = (char)(sy->_shrs/10);
rtc->hou1reg = (char)(sy->_shrs%10);
rtc->yr10reg = sy->_syrs[0]/10;
rtc->yr1reg = sy->_syrs[0]%10;
rtc->day10reg = sy->_sday/10;
rtc->day1reg = sy->_sday%10;
rtc->mon10reg = sy->_smon/10;
rtc->mon1reg = sy->_smon%10;
rtc->dcontrol = 0; /* start clock */
}

SECTION 3 HARDWARE USER'S MANUAL

3-77

The following figure shows the location diagram of jumperfield B20 for backup supply. The default
configuration uses the onboard battery. Please note that the SRAM on this CPU board is also supplied via
this jumperfield.

 B1 B1
 +))), +))),
 1 * o * Battery is connected to 1 * o * Battery is cut from
 * | * Backup Supply Line * * Backup Supply Line
 * o * (default) * o *
 .)))- .)))-

 B20 B20
 +))), +))),
 1 * o * +5VSTDBY is connected to 1 * o * +5VSTDBY is cut from
 * | * Backup Supply Line * * Backup Supply Line
 * o * * o * (default)
 .)))- .)))-

NOTE

The battery is not installed on the CPU board to avoid damage during shipment.

CAUTION

Before altering jumperfield B1 or disassembling the battery, please consult Chapter 3.6, The Local
SRAM.

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

3-78

Figure 3-27: Location Diagram of the Backup Supply Jumperfield B1 and B20

SECTION 3 HARDWARE USER'S MANUAL

3-79

3.10.3 Summary of the RTC

Device 72423 RTC

Access Address $FF80 3000

Access Mode Byte only

Supported Transfers Byte only, the upper 4 bits are to be ignored for read and write
accesses

Battery Type Varta CR 1/3 or equivalent

Interrupt Request Level Software programmable

FGA-002 Interrupt Request Channel Local IRQ #0

SECTION 3 HARDWARE USER'S MANUAL

4-1

4. FUNCTION SWITCHES AND INDICATION LEDs

The following paragraphs describe all switches and indicator LEDs. Figure 4-1 shows the front panel of the
CPU board.

4.1 RESET Function Switch

A reset of all on-board I/O devices and the CPU is performed if the RESET switch is pushed to the "UP"
position. RESET is held active until the switch is in "DOWN" position. In addition, a local timer guarantees
a minimum reset time of two to three seconds. Power fail and power up also force a RESET (2-3 seconds)
to start the board if the supply voltage is out of range (below 4.8 Volts).

Normal switch position: "DOWN"

If enabled, the reset is also driven to the VMEbus. For more information, please refer to the chapter
VMEbus RESET Conditions .

In combination with the ABORT switch, the RESET switch has a special function which is described in the
BOOT Software description of the FGA-002 User's Manual.

When the Reset Switch is toggled twice a Powerup equivalent Reset can be generated. The time lapse
immediately after the Reset Switch is released must be 0,2 seconds or less.

4.2 ABORT Function Switch

An interrupt on a software programmable level is provided on the board to allow an abort of the current
program, to trigger a self-test or to start a maintenance program. ABORT is activated in "UP" position and
deactivated in "DOWN" position.

Normal switch position: "DOWN"

In combination with the RESET switch, the ABORT switch has a special function which is described in the
BOOT Software description of the FGA-002 User's Manual.

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

4-2

4.3 "RUN" LED

The first LED below the RESET and ABORT switch is the RUN LED. This bicolor LED is green if the
processor is not in HALT state. It is red during the RESET phase, and when the processor is in HALT state.

4.4 "BM" LED

If the CPU board is the current bus master, the BM LED is lit. Optical control is provided through this LED
whether or not the board is working on VME.

4.5 Rotary Switches

There are two rotary switches (SW1 and SW2) which are four bit, hexadecimal encoded. These switches
are completely under software control. The default setting is $FF. For a detailed description of the use of
these switches under VMEPROM, please refer to the Section No. 7, Introduction to VMEPROM .

In combination with the RESET and ABORT switches, the rotary switches have a special function which
is described in the BOOT Software description of the FGA-002 User's Manual.

SECTION 3 HARDWARE USER'S MANUAL

4-3

Figure 4-1: Front Panel of the CPU Board

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

4-4

This page was intentionally left blank

SECTION 3 HARDWARE USER'S MANUAL

5-1

5. THE CPU BOARD INTERRUPT STRUCTURE

All interrupts on the CPU board are handled via the FGA-002 or the hardware which is controlling the
FLXibus.

The interrupts of the FLXibus and the interrupts handled by the FGA-002 are daisy chained. If an interrupt
occurs on the FLXibus with the same priority as an interrupt occurring through the FGA-002, the priority is
as follows:

Priority of the Onboard Interrupts

Highest Priority

FLXibus

FGA-002

Lowest Priority

The interrupts which are caused by the EAGLE module are described in Section 6, EAGLE Module .
Interrupts handled by the FGA-002 are described in the following paragraphs.

The Gate Array installed on the CPU board handles all local and VMEbus interrupts. Each interrupt request
from the local bus through the two DUSCCs, RTC, the two timers, as well as the Gate Array specific
interrupt requests, are combined with seven VMEbus interrupt requests.

Each IRQ source including VMEbus IRQs can be programmed to interrupt the CPU on an individual
programmable level (1 to 7).

The Gate Array supports the vector, or initiates an interrupt vector fetch from the I/O device or from the
VMEbus.

In addition to local interrupts, the ACFAIL and SYSFAIL signals can be used to interrupt the CPU on a
software programmable level.

Gate Array supplied interrupt vectors have basic vector and fixed increments for each source. The basic
vector is software programmable.

For a complete description of interrupt handling, please refer to the FGA-002 Users Manual.

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

5-2

The chart below shows the connection between local devices and the local interrupt request of the
FGA-002.

Device Base Address Function Local Interrupt FGA-002 Pin
Request Number Number

RTC $FF803000 * 0 C07

PI/T1 $FF800C00 Timer IRQ 2 E07

PI/T2 $FF800E00 * 3 A06

DUSCC1 $FF802000 * 4 B06

DUSCC2 $FF802200 * 5 B05

 * More than one function is available. Please refer to the data sheet of the coinciding
device in Section No. 5, COPIES OF DATA SHEETS , for a complete description.

SECTION 3 HARDWARE USER'S MANUAL

6-1

6. VMEBUS INTERFACE

The CPU board contains a VMEbus interface which is compatible with the following standards:

IEEE 1014

The VMEbus interface supports 8, 16, 32 bit, and unaligned data transfers. The extended, standard, and
short I/O address modifier codes are implemented to interface to all existing VMEbus products.

Read-Modify-Write cycles on the VMEbus are handled as described in the VMEbus Standard (see above).
The address strobe signal is held low during this cycle while the data strobe signals are driven low twice,
once for the read cycle and once for the write cycle, and high between the both of them.

All seven interrupt request signals are connected to the FGA-002 which can optionally map every level and
then interrupt the local CPU. A four level bus arbiter together with several release functions are
implemented with all slot 1 functions such as SYSRESET driver and receiver and SYSCLOCK driver.

The following chapters describe the functions of the interface parts in detail.

6.1 VMEbus Master Interface

6.1.1 Data Transfer Size of the VMEbus Interface

The VMEbus interface contains memory areas where the transfer size is software programmable to be 16
or 32 bits wide.

The memory areas which contain the software programmable data bus size are fixed mapped and can't be
modified.

The hardware on the CPU board adjusts the transfer size of the data bus automatically, so that no
additional overhead in the programs is necessary.

The table on the next page lists the VMEbus memory areas and their data bus sizes in detail.

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

6-2

Table 6-1: Data Bus Size of the VMEbus

Start Address End Address Type Transfer Size

 XXXX XXXX* F9FF FFFF VME:A32 PROGRAMMABLE

FB00 0000 FBFE FFFF VME:A24

FBFF 0000 FBFF FFFF VME:A16
PROGRAMMABLE

FC00 0000 FCFE FFFF VME:A24 FIXED, 16 BIT

FCFF 0000 FCFF FFFF VME:A16 FIXED, 16 BIT

* XXXX XXXX = 0040 0000 for CPU-40x/4 or 0100 0000 for CPU-40x/16
* XXXX XXXX = 0040 0000 for CPU-41x/4 or 0080 0000 for CPU-41x/8

NOTE

1) The data bus transfer size of the areas marked "FIXED" cannot be modified.

2) The data bus transfer size of the areas marked as "PROGRAMMABLE" can be set to
16 or 32 bits. The default setup after RESET through the hardware is 32 bits.

VMEPROM contains a command (MEM) to set up the data bus transfer size of the software programmable
areas.

MEM displays the current data bus transfer size
MEM 16 sets the size to 16 data bus transfer bits only
MEM 32 sets the size to 32 data bus transfer bits
 (8 and 16 bit transfers are also allowed)

In addition, VMEPROM uses one bit of the rotary switches available on the front panel to select the data
bus size of the VMEbus after RESET or power up.

This default configuration is useful if a user program or an operating system is started, and additional
memory boards with known data sizes are installed.

For details on the usage of the rotary switches, please refer to Section 7, Introduction to VMEPROM .

SECTION 3 HARDWARE USER'S MANUAL

6-3

Table 6-2: Defined VMEbus Transfer Cycles (D32 Mode)

Transfer Type D31-D24 D23-D16 D14-D8 D7-D0 Supported

Byte x y
Byte x y

Word x x y

Long Word x x x x y

Unaligned Word x x y
Unaligned x x x y
Long Word A
Unaligned x x x y
Long Word B

RMW Byte x y
RMW Byte x y
RMW Word x x y
RMW Long Word x x x x y

RMW = Read Modify Write

Table 6-3: Defined VMEbus Transfer Cycles (D16 Mode)

Transfer Type D31-D24 D23-D16 D14-D8 D7-D0 Supported

Byte x y
Byte x y

Word x x y

RMW Byte x y
RMW Byte x y

RMW Word x x y

RMW = Read Modify Write

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

6-4

6.1.2 Address Modifier Implementation

The VMEbus defines three different Address Modifier Ranges as shown in the following table:

Table 6-4: Address Ranges

Mode Used Address Lines Short Form

Extended Addressing A1-A31 A32
Standard Addressing A1-A24 A24
Short I/O A1-A15 A16

All allowed and defined Address Modifier (AM) Codes are listed in the next table. The supported AM codes
are marked with an asterisk (*).

The address range of the microprocessor (4 Gigabyte) is split into several areas to support all of the listed
AM codes. The table to follow lists the address ranges and the supported AM codes for this range.

All I/O and Memory Boards on the VMEbus which will be addressed in the listed address ranges must use
one or a combination of the AM codes to guarantee proper operation.

SECTION 3 HARDWARE USER'S MANUAL

6-5

Table 6-5: Address Modifier Codes

HEX
Code

Address Modifier

Function5 4 3 2 1 0

3F H H H H H H Standard Supervisory Block Transfer
*3E H H H H H L Standard Supervisory Program Access
*3D H H H H L H Standard Supervisory Data Access
3C H H H H L L Reserved
3B H H H L H H Standard Privileged Block Transfer
3A H H H L H L Standard Privileged Program Access
39 H H H L L H Standard Privileged Data Access
38 H H H L L L Reserved

37 H H L H H H Reserved
36 H H L H H L Reserved
35 H H L H L H Reserved
34 H H L H L L Reserved
33 H H L L H H Reserved
32 H H L L H L Reserved
31 H H L L L H Reserved
30 H H L L L L Reserved

2F H L H H H H Reserved
2E H L H H H L Reserved

*2D H L H H L H Short Supervisory Access
2C H L H H L L Reserved
2B H L H L H H Reserved
2A H L H L H L Reserved

*29 H L H L L H Short Privileged Access
28 H L H L L L Reserved

27 H L L H H H Reserved
26 H L L H H L Reserved
25 H L L H L H Reserved
24 H L L H L L Reserved
23 H L L L H H Reserved
22 H L L L H L Reserved
21 H L L L L H Reserved
20 H L L L L L Reserved

L = low signal level H = high signal level

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

6-6

The Address Modifier Codes (cont'd)

HEX
Code

Address Modifier

Function5 4 3 2 1 0

1F L H H H H H Standard Supervisory Block Transfer
1E L H H H H L Standard Supervisory Program Access
1D L H H H L H Standard Supervisory Data Access
1C L H H H L L Reserved
1B L H H L H H Standard Privileged Block Transfer
1A L H H L H L Standard Privileged Program Access
19 L H H L L H Standard Privileged Data Access
18 L H H L L L Reserved

17 L H L H H H Reserved
16 L H L H H L Reserved
15 L H L H L H Reserved
14 L H L H L L Reserved
13 L H L L H H Reserved
12 L H L L H L Reserved
11 L H L L L H Reserved
10 L H L L L L Reserved

0F L L H H H H Reserved
*0E L L H H H L Reserved
*0D L L H H L H Short Supervisory Access
0C L L H H L L Reserved
0B L L H L H H Reserved

*0A L L H L H L Reserved
*09 L L H L L H Short Previleged Access
08 L L H L L L Reserved

07 L L L H H H Reserved
06 L L L H H L Reserved
05 L L L H L H Reserved
04 L L L H L L Reserved
03 L L L L H H Reserved
02 L L L L H L Reserved
01 L L L L L H Reserved
00 L L L L L L Reserved

L = low signal level H = high signal level

SECTION 3 HARDWARE USER'S MANUAL

6-7

Table 6-6: Address Modifier Codes Used on the CPU Board

Address Range Address Modifier Code

 XXXX XXXX* 001110 SPA
: VMEbus (Extended Access) 001101 SDA
: A32 : D32, D24, D16, D8 001010 NPA

F9FF FFFF 001001 NDA

FBFF 0000 111110 SPA
: VMEbus (Standard Access) 111101 SDA
: A24 : D32, D24, D16, D8 111010 NPA

FBFE FFFF 111001 NDA

FBFF 0000
: VMEbus (Short I/O Access) 101101 SDA
: A16 : D32, D24, D16, D8 101001 NDA

FBFF FFFF

FC00 0000 111110 SPA
: VMEbus (Standard Access) 111101 SDA
: A24 : D16, D8 111010 NPA

FCFE FFFF 111001 NDA

FCFF 0000
: VMEbus (Short I/O Access) 101101 SDA
: A16 : D16, D8 101001 NDA

FCFF FFFF

SPA = Supervisor Program Access
SDA = Supervisor Data Access
NPA = Nonprivileged Program Access
NDA = Nonprivileged Data Access

* XXXX XXXX = 0040 0000 for CPU-40x/4 or 0100 0000 for CPU-40x/16
* XXXX XXXX = 0040 0000 for CPU-41x/4 or 0080 0000 for CPU-41x/8

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

6-8

6.2 VMEbus Slave Interface

6.2.1 The Access Address

The onboard shared RAM of the CPU board is also accessible from the VMEbus side. Both the begin and
end address are programmable in 4 Kbyte increments inside the FGA-002. The complete address decoding
for the shared RAM logic is performed inside the FGA-002 Gate Array. For details on the programming of
the access address, please refer to the BOOT Software description in the FGA-002 User's Manual.

6.2.2 Data Transfer Size of the Shared RAM

The VMEbus interface of the shared RAM is 32 bits wide. It supports 32 bit, 16 bit, and 8 bit as well as
unaligned (UAT) and read-modify-write (RMW) transfers.

6.2.3 Address Modifier Decoding and A24 Slave Mode

For access to the shared RAM from the VMEbus side, extended (A32) and standard (A24) accesses are
allowed.

The FGA-002 only recognizes A32 accesses. The access address for an A32 access can be programmed
as described above.

If an A24 access takes place additional onboard hardware translates this A24 access to an A32 access to
the FGA-002. This means that the standard address modifier code from the VMEbus is modified to
extended address modifier to the FGA-002. In A24 mode the address lines A31 to A24 of the VMEbus must
not be used for address decoding. Therefore these address lines are driven to the FGA-002 via an
additional driver. The value of these address bits are programmable via the PI/T1 Port B. For detailed
information about the address map and register layout of the PI/T1 please refer to the chapter Address Map
of the PI/T1 Registers .

SECTION 3 HARDWARE USER'S MANUAL

6-9

The following table shows which PI/T bit belongs to which address line.

A31 to A24 for FGA-002 in A24 Slave Mode

PI/T1 Port B Bit Address Line

0 A24
1 A25
2 A26
3 A27
4 A28
5 A29
6 A30
7 A31

The value of these bits must be programmed according to the access address inside the FGA-002.

For example if the shared RAM access address for VMEbus is programmed to:

Start Address $10000000
End Address $10400000

the PI/T bits must be programmed to:

PI/T1 Port B Bit 7 6 5 4 3 2 1 0
0 0 0 1 0 0 0 0

to allow A24 accesses.

If an A24 master now accesses the address $005000, it reaches the same address as an A32 master
accessing the address $10005000.

A32 mode is always enabled and A24 mode can be enabled in addition via the PI/T2 Port C Bit 7. For
detailed information about the address map and register layout of the PI/T2, please refer to the chapter
Address Map of the PI/T2 Registers .

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

6-10

The following table shows the function of the PI/T2 Port C bit 7.

PI/T2 Port C Bit 7 Enable VMEbus Slave Accesses

1 A32
0 A32/A24

The following table shows the allowed AM Codes for VMEbus accesses to the Shared RAM.

Table 6-7: VMEbus Slave AM Codes

HEX
Code

Address Modifier

Function5 4 3 2 1 0

3E H H H H H L Standard Supervisory Program Access
3D H H H H L H Standard Supervisory Data Access
3A H H H L H L Standard Previleged Program Access
39 H H H L L H Standard Previleged Data Access

0E L L H H H L Extended Supervisory Program Access
0D L L H H L H Extended Supervisory Data Access
0A L L H L H L Extended Previleged Program Access
09 L L H L L H Extended Previleged Data Access

L = low signal level H = high signal level

SECTION 3 HARDWARE USER'S MANUAL

6-11

6.3 The VMEbus Interrupt Handler

All seven VMEbus interrupt request (IRQ) signals are connected to the interrupt handling logic on the
FGA-002 Gate Array. Each of the VMEbus IRQ signals can be separately enabled or disabled. The
FGA-002 Gate Array allows high end multiprocessor environment board usage with distributed interrupt
handling.

The FGA-002 Gate Array uses the interrupt as a D08(O) interrupt handler in accordance with the VMEbus
Standard.

In addition every VMEbus interrupt level can be mapped to cause an interrupt on a different level to the
processor. So for example a VMEbus interrupt request on level 2 can be mapped to cause an interrupt
request on level 5 to the processor.

CAUTION

The CPU board only supports the byte interrupt vectoring.

The byte interrupt vector is implemented on most of the existing boards because the VMEbus
Specification Rev. A and B do not include a word or long word interrupt vector. Therefore, older
VMEbus boards can be used together with this CPU board if they are compatible to the current timing
specification.

The complete VMEbus interrupt handling is done inside the FGA-002. Therefore please refer to the
FGA-002 User's Manual for a detailed description of the programming of the interrupt management
functions.

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

6-12

6.4 VMEbus Arbitration

Each transfer to/from an area marked in Table 6-6 causes a VMEbus access cycle. The VMEbus defines
an arbitration scheme to arbitrate the bus mastership. Four request levels are defined as 0, 1, 2, and 3.

6.4.1 Four Available VMEbus Arbiters

A VMEbus Arbiter may operate in one of the following modes:

a) Single Level Arbiter
b) Prioritized 4-Level Arbiter
c) Round Robin 4-Level Arbiter
d) Prioritized Round Robin 4-Level Arbiter

The arbiter modes a, b, and c above are defined in the VMEbus standard and mode d has been developed
by FORCE COMPUTERS and implemented on the CPU board. The arbiter mode used is application
dependent.

6.4.2 The On-Board Four Level Arbiter

The CPU board contains a four level arbiter which can be enabled/disabled through hardware. The four
level arbiter together with the VMEbus request level control and the VMEbus interrupter is built in an LCA
which is a programmable gate array.

CAUTION

1) If the four level arbiter is enabled, the board must be plugged into slot 1 of the VMEbus rack,
as defined in the VMEbus standard.

2) All other boards must force bus requests at level 0...3 if the on-board arbiter is enabled.

3) No other arbiter can be used if the on-board arbiter is enabled.

4) If an external arbiter is used, the on-board arbiter must be disabled.

5) By default, the four level arbiter is enabled.

6) The SGL VMEbus arbiter in the FGA-002 must remain disabled in all cases.

The arbiter can work in the Prioritized 4-level, Round Robin 4-level or Prioritized Round Robin 4-level mode.

SECTION 3 HARDWARE USER'S MANUAL

6-13

The VMEbus Arbiter/Requester/Interrupter LCA has three internal registers which are one byte wide. One
of the registers is used to control the VMEbus Requester and the VMEbus Arbiter. It can be accessed on
address $FF803E02.

Table 6-8: VMEbus Arbiter/Requester Register Layout

Default I/O Base Address: $FF800000
Default Offset: $00003E02

Address Offset Mode Default Label Description
HEX HEX Value

FF803E02 00 R/W 73 ARBRE Arbiter/Requester Register
G

Table 6-9: Description of Arbiter/Requester Register Bits

Bit Value Mode Description

 0 1* R/W Request level: low bit

1 1* R/W Request level: high bit

 2 2* R/W Arbiter mode: low bit

3 2* R/W Arbiter mode: high bit

4 -- R No function

5 -- R No function

 6 R Setting of arbiter jumperfield:
1 Arbiter enabled (Jumper inserted)
0 Arbiter disabled (Jumper not inserted)

7 R/W Control of request level:
1 Done by software
0 Done by hardware

1* See the description "Request Level"
2* See the description "Arbiter Mode"

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

6-14

Request Level

The control of the request level on VMEbus can be done either by software (bit 7 is set to one) or by
hardware (bit 7 is set to zero).

If the control of the request level is done by hardware the request level is selected via jumperfield B19. The
jumpersettings for the VMEbus request levels 0 to 3 are shown in figure 6-1: Requester/Arbiter Jumperfield
B19.

If the control of the request level is done by software the request level is selected via bit 0 and bit 1 of the
register. The bit settings for the VMEbus request levels 0 to 3 are shown in the next table.

Table 6-10: Bit Settings for VMEbus Request Level

Bit 1 Bit 0 VMEbus Request Level Default

0 0 0
0 1 1
1 0 2
1 1 3 *

NOTE

If the user wants to select the request level by software (bit 7 set to one) the two jumpers in
jumperfield B19 for the request level (see Figure 6-1: Requester/Arbiter Jumperfield B19) must be
removed before. Otherwise bit 7 can't be set to one.

SECTION 3 HARDWARE USER'S MANUAL

6-15

Arbiter Enable/Disable

The onboard VMEbus arbiter can enabled or disabled via the third jumper of jumperfield B19 (see Figure
6-1: Requester/Arbiter Jumperfield B19). The setting of the jumper can be read by software via bit 6 of the
requester/arbiter register (see Table 6-9: Description of Requester/Arbiter Register Bits).

Arbiter Mode

The arbiter mode of the onboard VMEbus arbiter can be selected by software via bit 2 and bit 3 of the
requester/arbiter register. The bit settings for the three arbiter modes are shown in Table 6-11: Bit Settings
for VMEbus Arbiter Mode.

Table 6-11: Bit Settings for VMEbus Arbiter Mode

Bit 3 Bit 2 Default Arbiter Mode

0 0 * prioritized mode
0 1 round robin mode
1 0 prioritized round robin mode
1 1 prioritized round robin mode

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

6-16

Figure 6-1: Requester/Arbiter Jumperfield B19

Arbiter Enabled Arbiter Disabled

Bus Request Level 3

B19 (default) B19

1 6 1 6

2 o))))o 5 2 o))))o 5

3 4 3 4

o))))o o))))o

o))))o o o

Bus Request Level 2

B19 B19

1 6 1 6

2 o o 5 2 o o 5

3 4 3 4

o))))o o))))o

o))))o o o

Bus Request Level 1

B19 B19

1 6 1 6

2 o))))o 5 2 o))))o 5

3 4 3 4

o o o o

o))))o o o

Bus Request Level 0

B19 B19

1 6 1 6

2 o o 5 2 o o 5

3 4 3 4

o o o o

o))))o o o

SECTION 3 HARDWARE USER'S MANUAL

6-17

Figure 6-2: Location Diagram of Jumperfield B19

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

6-18

6.4.3 The VMEbus Release Function

The CPU board contains several different software selectable bus release functions to relinquish VMEbus
mastership. The Bus Release Operation is independent of whether or not the on-board arbiter is enabled
and independent of the Bus Request level. Easy handling and usage of the bus release functions is
provided through the FGA-002 Gate Array. RMW Cycles are always completed before the bus is released.
VMEPROM allows the user to change the release function through the ARB command. Please refer to the
Introduction to VMEPROM for details. The modes are defined in the following chapters.

6.4.3.1 Release Every Cycle (REC)

The REC mode causes a release of VMEbus mastership after the initiated transfer cycle has been
completed. A normal read or write cycle is terminated after the address and data strobes are driven high
(inactive state). A Read Modify Write cycle (RMW) is terminated after the write cycle is completed by the
CPU, through deactivation of the address and data strobes. If the REC mode is enabled, all other bus
release functions have no impact ("don't care"). The REC mode is only for CPU cycles to the VMEbus, and
not for DMA cycles. The programming of the REC mode is described in the FGA-002 Gate Array User's
Manual.

6.4.3.2 Release on Request (ROR)

The ROR Mode is defined as a release of bus mastership if another bus requester has requested bus
mastership and the CPU board is the current bus master. The Gate Array contained DMA controller can
also be the requestor causing such a bus release. The ROR mode is only for CPU cycles to the VMEbus,
and not for DMA cycles. The ROR mode cannot be disabled, it is programmable how long the CPU stays
VMEbus master despite of a Bus Request pending. The programming of the ROR mode is described in
the FGA-002 Gate Array Manual.

6.4.3.3 Release After Timeout (RAT)

A timer with a fixed clock rate is installed in the FGA-002 providing a bus mastership release after 100
microseconds of no CPU cycles to the VMEbus. This release function is active only after the ROR mode
timeout. This function cannot be disabled. The RAT Mode is only for CPU cycles to the VMEbus and not
for DMA cycles. The programming of the RAT mode is described in the FGA-002 Gate Array Manual.

SECTION 3 HARDWARE USER'S MANUAL

6-19

6.4.3.4 Release on Bus Clear (RBCLR)

The RBCLR function allows the bus mastership release if an external arbiter asserts the BCLR* signal of
the VMEbus. This function then overrides the ROR function timing limitations. The RBCLR Mode is only
for CPU cycles to the VMEbus and not for DMA cycles. The programming of the RBCLR mode is described
in the FGA-002 Gate Array User's Manual.

6.4.3.5 Release When Done (RWD)

The DMA Controller installed in the FGA-002 Gate Array can also be VMEbus master. It always operates
in transfer rounds (maximum 32 transfers). The bus is always released after completion of such a transfer
round. The other Bus Release Functions are for CPU mastership to the VMEbus. The VMEbus board
mastership is always a CPU or DMA Controller mastership. Gaining mastership is always a VMEbus
arbitration sequence.

6.4.3.6 Release Voluntary (RV)

If the local processor is VMEbus bus master, the release on request counter inhibits the gate array from
releasing the bus for the specified time (See ROR function). After this time elapses, the gate array may
release the bus voluntary if the local CPU does not perform accesses to the VMEbus within a 100
microsecond time period. After each new access to VME, this 100 us time period must pass until the bus
is released voluntary.

6.4.3.7 Release on ACFAIL (ACFAIL)

If the board is programmed by the Gate Array to be the ACFAILHANDLER in the VMEbus Rack, and if the
ACFAIL* signal of the VMEbus is asserted, the CPU will not release the VMEbus if it is the bus master.
That is, REC, ROR, RAT, and RBCLR do not operate in this case. If the board is not ACFAILHANDLER
and the ACFAIL* signal is asserted, the board will release the VMEbus immediately.

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

6-20

Table 6-12: Bus Release Functions

Function Enabled Release

REC Yes Every Cycle
ROR Y
RAT Y

 RBCLR X

REC NO BR(0,1,2) = 0
ROR Y or
RAT Y Timeout

 RBCLR NO

REC NO BR(0,1,2) = 0 or
ROR Y Timeout or BCLR = 0
RAT Y

 RBCLR YES

X = don't care Y = cannot be disabled

SECTION 3 HARDWARE USER'S MANUAL

6-21

6.5 The VMEbus Interrupter

The VMEbus Interrupter on the CPU board can generate interrupts on the VMEbus interrupt levels IRQ1
to IRQ7. The interrupts can be generated by software. The interrupter can generate a byte wide interrupt
vector which is software programmable.

The VMEbus Interrupter on the CPU board together with the VMEbus Arbiter/Requester is built in an LCA
which is a programmable gate array. This LCA has three internal registers which are byte wide. Two of
these registers are used to control the VMEbus Interrupter. They are accessed on addresses $FF803E00
and $FF803E01.

Table 6-13: VMEbus Interrupter Registers

Default I/O Base Address: $FF800000
Default Offset: $00003E00

Address Offset Mode Default Label Description
HEX HEX Value

FF803E00 00 R/W 01 IRQREG Interrupt generation register
FF803E01 01 R/W 00 VECTREG Interrupt vector register

6.5.1 The Interrupt Generation Register

The VMEbus Interrupts on levels IRQ1 to IRQ7 can be generated by software via bit 1 to bit 7 of the IRQ
generation register. Bit 0 of the register has no function (see Table 6-14: Description of the IRQ Generation
Register). An interrupt is generated by setting the corresponding register bit to one. When the interrupt is
acknowledged by the VMEbus Interrupt Handler the bit is automatically set to zero again.

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

6-22

Table 6-14: Description of the IRQ Generation Register

Bit Value Mode Description

0 -- -- No function

1 R/W VMEbus interrupt IRQ1
1 Active
0 Inactive (automatically set to zero again)

2 R/W VMEbus interrupt IRQ2
1 Active
0 Inactive (automatically set to zero again)

3 R/W VMEbus interrupt IRQ3
1 Active
0 Inactive (automatically set to zero again)

4 R/W VMEbus interrupt IRQ4
1 Active
0 Inactive (automatically set to zero again)

5 R/W VMEbus interrupt IRQ5
1 Active
0 Inactive (automatically set to zero again)

6 R/W VMEbus interrupt IRQ6
1 Active
0 Inactive (automatically set to zero again)

7 R/W VMEbus interrupt IRQ7
1 Active
0 Inactive (automatically set to zero again)

6.5.2 The Interrupt Vector Register

The interrupt vector register holds the byte wide interrupt vector for the VMEbus interrupts. It can be read
and written and must be set to the right value before an interrupt is activated. It must not be changed as
long as a VMEbus Interrupt from the board is pending.

SECTION 3 HARDWARE USER'S MANUAL

6-23

6.6 The SYSCLK Driver

The CPU board contains all circuities to support the SYSCLK signal. The output signal is a stable 16 MHz
signal with a 50/50 high/low cycle.

The driver circuitry for the SYSCLK signal has a current driver capacity of 64 [mA].

The SYSCLK signal can be enabled and disabled via a jumper setting at B13.

Jumper 1-8 inserted SYSCLK driven (default)
Jumper 1-8 removed SYSCLK not driven

The usage of jumperfield B13 is shown in Figure 6-3 and the location diagram of the SYSCLK jumperfield
is outlined in Figure 6-4.

CAUTION

Only one board (located in slot 1) in the VMEbus environment must drive the SYSCLK signal.

Figure 6-3: Usage of Jumperfield B13

"SYSCLK driven if jumper 1-8 is inserted"

B13

8 7 6 5

o o o o
|
o o o o

1 2 3 4

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

6-24

Figure 6-4: Location Diagram of B13

SECTION 3 HARDWARE USER'S MANUAL

6-25

6.7 Exception Signals

The VMEbus defines the signals ACFAIL, SYSFAIL, and RESET for signaling exceptions or status.

The ACFAIL and the SYSFAIL signals of the VMEbus are connected to the FGA-002 Gate Array.

The FGA-002 may be programmed to generate interrupts on SYSFAIL and ACFAIL. For detailed
information please refer to the FGA-002 User's Manual.

VMEPROM monitors the SYSFAIL line during the initialization of external intelligent I/O boards. The
ACFAIL line is ignored by VMEPROM.

The FGA-002 drives the SYSFAIL line after Reset until initialization of the board is completed.

To remain compatible to older boards this signal can be enabled and disabled via a jumper setting at B13.

Jumper 2-7 inserted SYSFAIL driven (default)
Jumper 2-7 removed SYSFAIL not driven

The usage of jumperfield B13 is shown in the following figure, and the location diagram of the SYSFAIL
jumperfield is outlined in the figure on the next page.

Figure 6-5: Usage of Jumperfield B13

"SYSFAIL driven if jumper 2-7 is inserted"

B13

8 7 6 5

o o o o
|

o o o o

1 2 3 4

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

6-26

Figure 6-6: Location Diagram of Jumperfield B13

SECTION 3 HARDWARE USER'S MANUAL

6-27

6.8 RESET Generation

There is an IEEE 1014 compatible SYSRESET* driver installed on the CPU board. The RESET generator
circuitry is operable if the power supply VCC is at least 3 volts. The RESET signal can be asserted (low)
on any one of the following conditions:

! Front Panel RESET switch toggled

! Voltage Sensor detects VCC below limit (4.8V)

! Execution of the RESET instruction by the microprocessor on the board

The asserted RESET signal will be held low for at least 200 milliseconds after removing all the above
conditions.

When the Reset Switch is toggled twice a Powerup equivalent Reset can be generated. The time lapse
immediately after the Reset Switch is released must be 0,2 seconds or less.

6.8.1 The Front Panel RESET Switch

The upper switch on the front panel of the CPU board is the RESET switch. Toggling it provides a reset
of all on-board devices, independent from the jumper options. With the jumper B13 3-6 connection
inserted, the SYSRESET* signal of the VMEbus backplane will be asserted. When the RUN LED is red,
the processor is in the HALT state. For example, this state will be entered if a double bus fault occurs. A
reset of the board must be performed by toggling the RESET switch or by asserting the SYSRESET*
backplane signal. The light of the RUN LED is also red while the RESET generator drives the reset. After
reset, the red light must change to green.

6.8.2 The Voltage Sensor Module FH001

The voltage sensor module FH001 is included with the RESET generator. Power up reset is provided by
this sensor, as soon as the supply voltage VCC has reached 3 volts. RESET will be asserted if VCC is less
than 4.8 volts on the board, once the jumper B2 pin 1-2 is removed (B). This jumper is removed upon
delivery. When the jumper at B2 1-2 is inserted (A), RESET will be asserted if VCC is less than 4.6 volts.
RESET will stay asserted at least 200 milliseconds after the supply voltage has passed the threshold.
Jumperfield B2 pin 1-2 must be removed for normal operation, and may be inserted for test purposes.

Figure 6-7: Jumper Settings for Jumperfield B2

 +))))))), +))))))),
A) B2 1 * o)))o * 2 B) B2 1 * o o * 2
 4.6V .)))))))- 4.8V .)))))))-
 (default)

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

6-28

Figure 6-8: Location Diagram of Jumperfield B2

SECTION 3 HARDWARE USER'S MANUAL

6-29

6.8.3 VMEbus RESET Conditions

6.8.3.1 Receive RESET from VMEbus

In order to receive a RESET from the VMEbus on the CPU board, jumper B13, 4-5 must be inserted. If
removed, the SYSRESET signal from the VMEbus is not monitored on the CPU board.

B13

8 7 6 5

o o o o
|

o o o o

1 2 3 4

6.8.3.2 Drive RESET to VMEbus

To drive the RESET signal on the VMEbus, jumper B13, 3-6 must be inserted on the CPU board. When
inserted, the RESET from the front panel switch and voltage monitor are driven to the VMEbus. If not
inserted, SYSRESET is not VMEbus driven.

B13

8 7 6 5

o o o o
|

o o o o

1 2 3 4

6.8.3.3 Default Configuration of Jumperfield B13

By default, SYSCLK and SYSRESET are driven to the VMEbus; SYSRESET and SYSFAIL are monitored
by the CPU board.

B13

8 7 6 5

o o o o
| | | |
o o o o

1 2 3 4

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

6-30

Figure 6-9: Location Diagram of Jumperfield B13

SECTION 3 HARDWARE USER'S MANUAL

6-31

6.8.4 The RESET Instruction

The RESET instruction of the microprocessor is designed to reset peripherals under program control,
without resetting the processor itself. This instruction is fully supported by the CPU board. The RESET
instruction triggers the RESET generator and resets all peripherals on the board driving RESET to low. At
this point the processor on the CPU itself will not be reset. Therefore, program execution will go on with
the next operation code. If another board asserts SYSRESET* before this instruction triggered reset is
ended, then the processor will still not be reset because of a lockout logic.

APPENDIX TO THE
HARDWARE USER'S MANUAL

This page was intentionally left blank

i

LIST OF APPENDICES

A. SPECIFICATION OF THE CPU BOARD

B. MEMORY MAP OF THE CPU BOARD

C. ADDRESS ASSIGNMENT AND REGISTER LAYOUT OF THE I/O DEVICES

D. PIN ASSIGNMENTS OF THE EPROM SOCKETS
D.1 Pin Assignment for EPROM Area

E. CIRCUIT SCHEMATICS OF CPU BOARD
E.1 Circuit Schematics of DRM-01
E.2 Circuit Schematics of SRM-10

F. DEFAULT JUMPER SETTINGS ON THE CPU BOARD

G. CONNECTOR PIN ASSIGNMENT
G.1 J1/P1 Pin Assignments
G.2 J2/P2 Pin Assignments

H. COMPONENT PART LIST

I. GLOSSARY OF VME/1014 TERMS

J. LITERATURE REFERENCE

K. PRODUCT ERROR REPORT

ii

This page was intentionally left blank

SECTION 4 APPENDIX TO THE HARDWARE USER'S MANUAL

A-1

APPENDIX A

SPECIFICATIONS OF THE CPU BOARD

CPU Type 68040

CPU Clock Frequency CPU-40B/x 25.0 MHz
CPU-40D/x 33.0 MHz

Shared DRAM Capacity with Parity CPU-40X/4 4 Mbytes
CPU-40X/16 16 Mbytes

CPU Clock Frequency CPU-41B/x 25.0 Mhz
CPU-41D/x 33.0 MHZ

Shared SRAM Capacity CPU-41X/4 4 Mbytes
CPU-41X/8 8 Mbytes

SRAM capacity with On-board Battery Backup 128 Kbytes
FLASH EPROM 128 Kbytes

Number of System EPROM Sockets 2
Data Path 32-bits

Serial I/O Interfaces (68562) 4
RS232/RS422/RS485 Compatible 4 of 4

24-bit Timer with 5-bit Prescaler 2
8-bit Timer 1

Parallel I/O Interface (68230) 12 lines

Real Time Clock with On-board Battery Backup 72423

VMEbus Interface A32, A24, A16:D8, D16, D32, UAT, RMW Master
A32, A24:D8, D16, D32, RMW Slave

Four Level Arbiter Yes
SYSCLK Driver Yes
Mailbox Interrupts 8

FORCE Message Broadcast FMB FIFO 0 8 bytes
FMB FIFO 1 1 byte

VMEbus Interrupter/VMEbus and Local Interrupt Handler 1 to 7
All Sources can be Routed to a Software Programmable IRQ Level Yes

RESET/ABORT Switch Yes

VMEPROM Firmware Installed on All Board Versions 256 Kbytes

TO BE CONTINUED

SYS68K/CPU-40/41 FORCE COMPUTERS

A-2

SPECIFICATIONS OF THE CPU BOARD CONTINUED

Power Requirements +5V min/min 5.2A/6.0A
+12V min/max 0.1A/0.3A
-12V min/max 1.0A/0.3A

Operating Temperature with Forced Air Cooling 0 to +50EC
Storage Temperature -40 to +85C
Relative Humidity (noncondensing) 0 to 95%
Board Dimensions 234x160mm/9.2x6.3in
No. of Slots Used 1

SECTION 4 APPENDIX TO THE HARDWARE USER'S MANUAL

B-1

APPENDIX B

MEMORY MAP OF THE CPU BOARD

Start End
Address Address Type

00000000 003FFFFF Shared Memory (4 Mbyte)
00000000 007FFFFF Shared Memory (8 Mbyte) or
00000000 00FFFFFF Shared Memory (16 Mbyte)

00400000 F9FFFFFF VMEbus Addresses (4 Mbyte Shared Memory)
A32: D32, D24, D16, D8

00800000 F9FFFFFF VMEbus Addresses (8 Mbyte Shared Memory)
A32: D32, D24, D16, D8

01000000 F9FFFFFF VMEbus Addresses (16 Mbyte Shared Memory)
A32: D32, D24, D16, D8

FA000000 FAFFFFFF Message Broadcast Area

FB000000 FBFEFFFF VMEbus
A24: D32, D24, D16, D8

FBFF0000 FBFFFFFF VMEbus
A16: D32, D24, D16, D8

FC000000 FCFEFFFF VMEbus
A24: D16, D8

FCFF0000 FCFFFFFF VMEbus
A16: D16, D8

FD000000 FEFFFFFF Reserved

FF000000 FF7FFFFF SYSTEM EPROM

FF800000 FFBFFFFF Local I/O

FFC00000 FFC7FFFF LOCAL SRAM

FFC80000 FFCFFFFF Local FLASH EPROM

FFD00000 FFDFFFFF Registers of FGA-002

FFE00000 FFEFFFFF BOOT EPROM

FF803E00 FF803FFF VMEbus Arbiter

FFF00000 FFFFFFFF Reserved

SYS68K/CPU-40/41 FORCE COMPUTERS

B-2

This page was intentionally left blank

SECTION 4 APPENDIX TO THE HARDWARE USER'S MANUAL

C-1

APPENDIX C

ADDRESS ASSIGNMENT AND REGISTER LAYOUT OF THE I/O DEVICES

Serial I/O Port #1 (DUSCC1) Register Layout

Port Base Address: $FF802000

Address Offset Reset
HEX HEX Value Mode Label Description

$FF802000 00 00 R/W DUSCMR1 Channel Mode Reg 1
$FF802001 01 00 R/W DUSCMR2 Channel Mode Reg 2
$FF802002 02 -- R/W DUSSS1R SYN1/Secondary Adr Reg 1
$FF802003 03 -- R/W DUSS2R SYN2/Secondary Adr Reg 2
$FF802004 04 00 R/W DUSTPR Transmitter Parameter Reg
$FF802005 05 -- R/W DUSTTR Transmitter Timing Reg
$FF802006 06 00 R/W DUSRPR Receiver Parameter Reg
$FF802007 07 -- R/W DUSRTR Receiver Timing Reg
$FF802008 08 -- R/W DUSCTPRH Counter/Timer Preset Reg H
$FF802009 09 -- R/W DUSCTPRL Counter/Timer Preset Reg L
$FF80200A 0A -- R/W DUSCTCR Counter/Timer Control Reg
$FF80200B 0B 00 R/W DUSOMR Output and Miscellaneous Reg
$FF80200C 0C -- R DUSCTH Counter/Timer High
$FF80200D 0D -- R DUSCTL Counter/Timer Low
$FF80200E 0E 00 R/W DUSPCR Pin Configuration Reg
$FF80200F 0F -- R/W DUSCCR Channel Command Reg
$FF802010 10
$FF802011 11
$FF802012 12 -- W DUSTFIFO Transmitter FIFO
$FF802013 13
$FF802014 14
$FF802015 15
$FF802016 16 -- R DUSRFIFO Receiver FIFO
$FF802017 17
$FF802018 18 00 R/W DUSRSR Receiver Status Reg
$FF802019 19 00 R/W DUSTRSR Transmitter/Receiver Stat Reg
$FF80201A 1A -- R/W DUSICTSR Input + Counter/Timer Stat Reg
$FF80201C 1C 00 R/W DUSIER Interrupt Enable Reg

SYS68K/CPU-40/41 FORCE COMPUTERS

C-2

Serial I/O Port #2 (DUSCC1) Register Layout

Port Base Address: $FF802000

Address Offset Reset
HEX HEX Value Mode Label Description

$FF802020 00 00 R/W DUSCMR1 Channel Mode Reg 1
$FF802021 01 00 R/W DUSCMR2 Channel Mode Reg 2
$FF802022 02 -- R/W DUSSS1R SYN1/Secondary Adr Reg 1
$FF802023 03 -- R/W DUSS2R SYN2/Secondary Adr Reg 2
$FF802024 04 00 R/W DUSTPR Transmitter Parameter Reg
$FF802025 05 -- R/W DUSTTR Transmitter Timing Reg
$FF802026 06 00 R/W DUSRPR Receiver Parameter Reg
$FF802027 07 -- R/W DUSRTR Receiver Timing Reg
$FF802028 08 -- R/W DUSCTPRH Counter/Timer Preset Reg H
$FF802029 09 -- R/W DUSCTPRL Counter/Timer Preset Reg L
$FF80202A 0A -- R/W DUSCTCR Counter/Timer Control Reg
$FF80202B 0B 00 R/W DUSOMR Output and Miscellaneous Reg
$FF80202C 0C -- R DUSCTH Counter/Timer High
$FF80202D 0D -- R DUSCTL Counter/Timer Low
$FF80202E 0E 00 R/W DUSPCR Pin Configuration Reg
$FF80202F 0F -- R/W DUSCCR Channel Command Reg
$FF802030 10,
$FF802031 11*
$FF802032 12* -- W DUSTFIFO Transmitter FIFO
$FF802033 13-
$FF802034 14,
$FF802035 15*
$FF802036 16* -- R DUSRFIFO Receiver FIFO
$FF802037 17-
$FF802038 18 00 R/W DUSRSR Receiver Status Reg
$FF802039 19 00 R/W DUSTRSR Transmitter/Receiver Stat Reg
$FF80203A 1A -- R/W DUSICTSR Input + Counter/Timer Stat Reg
$FF80203C 1C 00 R/W DUSIER Interrupt Enable Reg

Ports #1 and #2 (DUSCC1) Common Register Address Map

Port Base Address: $FF802000

Address Offset Reset
HEX HEX Value Mode Label Description

$FF80201B 1B 00 R/W DUSGSR General Status Register
$FF80201E 1E 0F R/W DUSIVR Interrupt Vec Reg Unmodified
$FF80201F 1F 00 R/W DUSICR Interrupt Control Register
$FF80203E 3E 0F R DUSIVRM Interrupt Vec Reg Modified

SECTION 4 APPENDIX TO THE HARDWARE USER'S MANUAL

C-3

Serial I/O Port #3 (DUSCC2) Register Address Map

Port Base Address : $FF802200

Address Offset Reset Mode Label Description
HEX HEX Value

$FF802200 00 00 R/W DUSCMR1 Channel Mode Reg 1
$FF802201 01 00 R/W DUSCMR2 Channel Mode Reg 2
$FF802202 02 -- R/W DUSSS1R SYN1/Secondary Adr Reg 1
$FF802203 03 -- R/W DUSS2R SYN2/Secondary Adr Reg 2
$FF802204 04 00 R/W DUSTPR Transmitter Parameter Reg
$FF802205 05 -- R/W DUSTTR Transmitter Timing Reg
$FF802206 06 00 R/W DUSRPR Receiver Parameter Reg
$FF802207 07 -- R/W DUSRTR Receiver Timing Reg
$FF802208 08 -- R/W DUSCTPRH Counter/Timer Preset Reg H
$FF802209 09 -- R/W DUSCTPRL Counter/Timer Preset Reg L
$FF80220A 0A -- R/W DUSCTCR Counter/Timer Control Reg
$FF80220B 0B 00 R/W DUSOMR Output and Miscellaneous Reg
$FF80220C 0C -- R DUSCTH Counter/Timer High
$FF80220D 0D -- R DUSCTL Counter/Timer Low
$FF80220E 0E 00 R/W DUSPCR Pin Configuration Reg
$FF80220F 0F -- R/W DUSCCR Channel Command Reg
$FF802210 10,
$FF802211 11*
$FF802212 12* -- W DUSTFIFO Transmitter FIFO
$FF802213 13-
$FF802214 14,
$FF802215 15*
$FF802216 16*
$FF802217 17- -- R DUSRFIFO Receiver FIFO
$FF802218 18 00 R/W DUSRSR Receiver Status Reg
$FF802219 19 00 R/W DUSTRSR Transmitter/Receiver Stat Reg
$FF80221A 1A -- R/W DUSICTSR Input + Counter/Timer Stat Reg
$FF80221C 1C 00 R/W DUSIER Interrupt Enable Reg

SYS68K/CPU-40/41 FORCE COMPUTERS

C-4

Serial I/O Port #4 (DUSCC2) Register Address Map

Port Base Address : $FF802220

Address Offset Reset Mode Label Description
HEX HEX Value

$FF802220 00 00 R/W DUSCMR1 Channel Mode Reg 1
$FF802221 01 00 R/W DUSCMR2 Channel Mode Reg 2
$FF802222 02 -- R/W DUSSS1R SYN1/Secondary Adr Reg 1
$FF802223 03 -- R/W DUSS2R SYN2/Secondary Adr Reg 2
$FF802224 04 00 R/W DUSTPR Transmitter Parameter Reg
$FF802225 05 -- R/W DUSTTR Transmitter Timing Reg
$FF802226 06 00 R/W DUSRPR Receiver Parameter Reg
$FF802227 07 -- R/W DUSRTR Receiver Timing Reg
$FF802228 08 -- R/W DUSCTPRH Counter/Timer Preset Reg H
$FF802229 09 -- R/W DUSCTPRL Counter/Timer Preset Reg L
$FF80222A 0A -- R/W DUSCTCR Counter/Timer Control Reg
$FF80222B 0B 00 R/W DUSOMR Output and Miscellaneous Reg
$FF80222C 0C -- R DUSCTH Counter/Timer High
$FF80222D 0D -- R DUSCTL Counter/Timer Low
$FF80222E 0E 00 R/W DUSPCR Pin Configuration Reg
$FF80222F 0F -- R/W DUSCCR Channel Command Reg
$FF802230 10,
$FF802231 11*
$FF802232 12* -- W DUSTFIFO Transmitter FIFO
$FF802233 13-
$FF802234 14,
$FF802235 15*
$FF802236 16*
$FF802237 17- -- R DUSRFIFO Receiver FIFO
$FF802238 18 00 R/W DUSRSR Receiver Status Reg
$FF802239 19 00 R/W DUSTRSR Transmitter/Receiver Stat Reg
$FF80223A 1A -- R/W DUSICTSR Input + Counter/Timer Stat Reg
$FF80223C 1C 00 R/W DUSIER Interrupt Enable Reg

Ports #3 and #4 (DUSCC2) Common Registers Address Map

Port Base Address : $FF802200

Address Offset Reset Mode Label Description
HEX HEX Value

$FF80221B 1B 00 R/W DUSCMR1 Channel Mode Reg 1
$FF80221E 1E 0F R/W DUSCMR2 Channel Mode Reg 2
$FF80221F 1F 00 R/W DUSSS1R SYN1/Secondary Adr Reg 1
$FF80223E 3E 0F R DUSS2R SYN2/Secondary Adr Reg 2

SECTION 4 APPENDIX TO THE HARDWARE USER'S MANUAL

C-5

PI/T1 Register Layout

Default I/O Base Address: $FF80 0000
Default Offset: $0000 0C00
Default Name: PI_T1

Address Offset Reset
HEX HEX Value Label Description

FF800C00 00 00 PIT1 PGCR Port General Control Register
FF800C01 01 00 PIT1 PSRR Port Service Request Register
FF800C02 02 00 PIT1 PADDR Port A Data Direction Register
FF800C03 03 00 PIT1 PBDDR Port B Data Direction Register
FF800C04 04 00 PIT1 PCDDR Port C Data Direction Register
FF800C05 05 00 PIT1 PIVR Port Interrupt Vector Register
FF800C06 06 00 PIT1 PACR Port A Control Register
FF800C07 07 00 PIT1 PBCR Port B Control Register
FF800C08 08 -- PIT1 PADR Port A Data Register
FF800C09 09 -- PIT1 PBDR Port B Data Register
FF800C0A 0A -- PIT1 PAAR Port A Alternate Register
FF800C0B 0B -- PIT1 PBAR Port B Alternate Register
FF800C0C 0C -- PIT1 PCDR Port C Data Register
FF800C0D 0D -- PIT1 PSR Port Status Register
FF800C10 10 00 PIT1 TCR Timer Control Register
FF800C11 11 0F PIT1 TIVR Timer Interrupt Vector Register
FF800C12 12 -- PIT1 CPR Counter Preload Register
FF800C13 13 -- " "
FF800C14 14 -- " "
FF800C15 15 -- " "
FF800C16 16 -- PIT1 CNTR Count Register
FF800C17 17 -- " "
FF800C18 18 -- " "
FF800C19 19 -- " "
FF800C1A 1A 00 PIT1 TSR Timer Status Register

SYS68K/CPU-40/41 FORCE COMPUTERS

C-6

PI/T2 Register Layout

Default I/O Base Address: $FF80 0000
Default Offset: $0000 0E00
Default Name: PI_T2

Address Offset Reset
HEX HEX Value Label Description

FF800E00 00 00 PIT2 PGCR Port General Control Register
FF800E01 01 00 PIT2 PSRR Port Service Request Register
FF800E02 02 00 PIT2 PADDR Port A Data Direction Register
FF800E03 03 00 PIT2 PBDDR Port B Data Direction Register
FF800E04 04 00 PIT2 PCDDR Port C Data Direction Register
FF800E05 05 00 PIT2 PIVR Port Interrupt Vector Register
FF800E06 06 00 PIT2 PACR Port A Control Register
FF800E07 07 00 PIT2 PBCR Port B Control Register
FF800E08 08 -- PIT2 PADR Port A Data Register
FF800E09 09 -- PIT2 PBDR Port B Data Register
FF800E0A 0A -- PIT2 PAAR Port A Alternate Register
FF800E0B 0B -- PIT2 PBAR Port B Alternate Register
FF800E0C 0C -- PIT2 PCDR Port C Data Register
FF800E0D 0D -- PIT2 PSR Port Status Register
FF800E10 10 00 PIT2 TCR Timer Control Register
FF800E11 11 0F PIT2 TIVR Timer Interrupt Vector Register
FF800E12 12 -- PIT2 CPR Counter Preload Register
FF800E13 13 -- " "
FF800E14 14 -- " "
FF800E15 15 -- " "
FF800E16 16 -- PIT2 CNTR Count Register
FF800E17 17 -- " "
FF800E18 18 -- " "
FF800E19 19 -- " "
FF800E1A 1A 00 PIT2 TSR Timer Status Register

SECTION 4 APPENDIX TO THE HARDWARE USER'S MANUAL

C-7

RTC Register Layout

Default I/O Base Address: $FF80 0000
Default Offset: $0000 3000
Default Name: RTC

Address Offset Label Description
HEX

FF803000 00 RTC1SEC 1 Second Digit Register
FF803001 01 RTC10SEC 10 Second Digit Register
FF803002 02 RTC1MIN 1 Minute Digit Register
FF803003 03 RTC10MIN 10 Minute Digit Register
FF803004 04 RTC1HR 1 Hour Digit Register
FF803005 05 RTC10HR PM/AM and 10 Hour Digit Register
FF803006 06 RTC1DAY 1 Day Digit Register
FF803007 07 RTC10DAY 10 Day Digit Register
FF803008 08 RTC1MON 1 Month Digit Register
FF803009 09 RTC10MON 10 Month Digit Register
FF80300A 0A RTC1YR 1 Year Digit Register
FF80300B 0B RTC10YR 10 Year Digit Register
FF80300C 0C RTCWEEK Week Register
FF80300D 0D RTCCOND Control Register D
FF80300E 0E RTCCONE Control Register E
FF80300F 0F RTCCONF Control Register F

SYS68K/CPU-40/41 FORCE COMPUTERS

C-8

This page was intentionally left blank

1

2

3

4

5

6

40

39

38

37

36

35

7

8

9

10

34

33

32

31

11

12

13

14

30

29

28

27

15

16

17

18

26

25

24

23

19

20

22

21

2

7

2

1

0

2

7

2

1

0

VPP

CE

D15

D14

D13

D12

VCC

PGM

NC

A15

A14

A13

A12

A11

A10

D11

D10

D9

D8 A9

GND GND

D7

D6

D5

D4

D3

D2

D1

A8

A7

A6

A5

A4

A3

A2

D0

OE

A1

A0

SECTION 4 APPENDIX TO THE HARDWARE USER'S MANUAL

D-1

APPENDIX D

PIN ASSIGNMENTS OF THE EPROM SOCKETS

Pin Assignment for EPROM Area

SYS68K/CPU-40/41 FORCE COMPUTERS

D-2

This page was intentionally left blank

SECTION 4 APPENDIX TO THE HARDWARE USER'S MANUAL

E-1

APPENDIX E

CIRCUIT SCHEMATICS OF CPU BOARD

SYS68K/CPU-40/41 FORCE COMPUTERS

E-2

This page was intentionally left blank

SECTION 4 APPENDIX TO THE HARDWARE USER'S MANUAL

E-3

E.1 Circuit Schematics of DRM-01

SYS68K/CPU-40/41 FORCE COMPUTERS

E-4

This page was intentionally left blank

SECTION 4 APPENDIX TO THE HARDWARE USER'S MANUAL

E-5

E.2 Circuit Schematics of SRM-01

SYS68K/CPU-40/41 FORCE COMPUTERS

E-6

This page was intentionally left blank

SECTION 4 APPENDIX TO THE HARDWARE USER'S MANUAL

E-1

APPENDIX F

DEFAULT JUMPER SETTINGS ON THE CPU BOARD

The following are the default jumper settings and a location diagram displaying all jumpers.

Default Jumper Settings for the CPU

Jumperfield Description Default Schematics
Connection

B2 Reset Voltage Sensor --- SH4
B4

B20 Backup Supply for Local SRAM and --- SH4
RTC via +5VSTDBY B2

B1 Backup Supply for Local SRAM and 1-2 SH4
RTC via Bat 1 B2

Default Jumper Settings for System EPROMs and SRAM/EEPROM

Jumperfield Description Default Schematics
Connection

B11 System EPROM device select 1-6 SH5
A4

B16 FLASH EPROM write dis-/enable 1-2 SH4
C2

Default Jumper Settings for Serial I/O (RS232)

Jumperfield Description Default Schematics
Connection

B3 Connector 1, PD1 2-15 SH6
(DUSCC1 Port #1) 8-9 B2

B4 Connector 2, PD2 2-15 SH6
(DUSCC1 Port #2) 8-9 B3

B5 Connector 1, PD1 --- SH6
(DUSCC1 Port #1) C2

B6 Connector 2, PD2 --- SH6
(DUSCC Port #2) C3

B7 Connector 3, PD3 2-15 SH7
(DUSCC2 Port #3) 8-9 B2

B8 Connector 4, PD4 2-15 SH7
(DUSCC2 Port #4) 8-9 B3

B9 Connector 3, PD3 --- SH7
(DUSCC2 Port #3), PD3 C2

B10 Connector 4, PD4 --- SH7
(DUSCC Port #4), PD4 C3

SYS68K/CPU-40/41 FORCE COMPUTERS

F-2

Default Jumper Settings for VMEbus

Jumperfield Description Default Schematics
Connection

B19 Four level Arbiter Request Level 1-6 SH9
2-5 B4
3-4

B13 SYSCLK 1-8 SH10
SYSFAIL 2-7 C2
Drive VMEbus RESET 3-6
Receive VMEbus RESET 4-5

Default Jumper Settings for Test

Jumperfield Description Default Schematics
Connection

B17 Clock Signal to CPU 1-2 SH16
A1

Headers for 12 Bit I/O and 8 Bit I/O

Jumperfield Description Default Schematics
Connection

B12 User I/O --- SH8
D1

Default Jumper Setting for Parallel I/O (PI/T)

Jumperfield Description Default Schematics
Connection

B18 Interrupt Request, 2-3 SH8
Hardware Watchdog PI/T #2 D4

SECTION 4 APPENDIX TO THE HARDWARE USER'S MANUAL

F-3

Location Diagram for All Jumperfields

SYS68K/CPU-40/41 FORCE COMPUTERS

F-4

This page was intentionally left blank

SECTION 4 APPENDIX TO THE HARDWARE USER'S MANUAL

G-1

APPENDIX G

CONNECTOR PIN ASSIGNMENTS OF CPU BOARD

G.1 VMEbus/P1 Pin Assignments

PIN ROW A ROW B ROW C
NUMBER SIGNAL SIGNAL SIGNAL

MNEMONIC MNEMONIC MNEMONIC

1 D00 BBSY* D08
2 D01 BCLR* D09
3 D02 ACFAIL* D10
4 D03 BG0IN* D11
5 D04 BF0OUT* D12

6 D05 BG1IN* D13
7 D06 BG1OUT* D14
8 D07 BG2IN* D15
9 GND BG2OUT* GND
10 SYSCLK BG3IN* SYSFAIL*

11 GND BG3OUT* BERR*
12 DS1* BR0* SYSRESET*
13 DS0* BR1* LWORD*
14 WRITE* BR2* AM5
15 GND BR3* A23

16 DTACK* AM0 A22
17 GND AM1 A21
18 AS* AM2 A20
19 GND AM3 A19
20 IACK* GND A18

21 IACKIN* SERCLK(1) A17
22 IACKOUT* SERDAT*(1) A16
23 AM4 GND A15
24 AO7 IRQ7* A14
25 AO6 IRQ6* A13

26 AO5 IRQ5* A12
27 AO4 IRQ4* A11
28 AO3 IRQ3* A10
29 AO2 IRQ2* A09
30 AO1 IRQ1* A08

31 -12V +5VSTDBY +12V
32 +5V +5V +5V

SYS68K/CPU-40/41 FORCE COMPUTERS

G-2

G.2 VMEbus/P2 Pin Assignments

PIN ROW A ROW B ROW C
NUMBER SIGNAL SIGNAL SIGNAL

MNEMONIC MNEMONIC MNEMONIC

1 X +5V X
2 X GND X
3 X RESERVED X
4 X A24 X
5 X A25 X

6 X A26 X
7 X A27 X
8 X A28 X
9 X A29 X
10 X A30 X

11 X A31 X
12 X GND X
13 X +5V X
14 X D16 X
15 X D17 X

16 X D18 X
17 X D19 X
18 X D20 X
19 X D21 X
20 X D22 X

21 X D23 X
22 X GND X
23 X D24 X
24 X D25 X
25 X D26 X

26 X D27 X
27 X D28 X
28 X D29 X
29 Y D30 Y
30 Y D31 Y

31 Y GND Y
32 Y +5V Y

X: EAGLE Module dependent
Y: EAGLE Module dependent or serial I/O interface if these pins are not used by an EAGLE module and

the solder bridge field b22 is assembled.

SECTION 4 APPENDIX TO THE HARDWARE USER'S MANUAL

H-1

APPENDIX H

GLOSSARY OF VME/1014 TERMS

A16

A type of module that provides or decodes an address on address line A01 through A15.

A24

A type of module that provides or decodes an address on address lines A01 through A23.

A32

A type of module that provides or decodes an address on address lines A01 through A31.

ADDRESS-ONLY CYCLE

A DTB cycle that consists of an address broadcast, but no data transfer. SLAVES do not
acknowledge ADD RESS-ONLY cycles and MASTERS terminate the cycle without waiting
for an acknowledgment.

ARBITER

A functional module that accepts bus requests from REQUESTOR modules and grants
control of the DTB to one REQUESTOR at a time.

ARBITRATION

The process of assigning control of the DTB to a REQUESTOR.

SYS68K/CPU-40/41 FORCE COMPUTERS

H-2

ARBITRATION BUS

One of the four buses provided by the 1014 backplane. This bus allows an ARBITER
module and several REQUESTOR modules to coordinate use of the DTB.

ARBITRATION CYCLE

An ARBITRATION CYCLE begins when the ARBITER senses a bus request. The ARBITER
grants the bus to a REQUESTOR, which signals that the DTB is busy. The REQUESTOR
terminates the cycle by taking away the bus busy signal which causes the ARBITER to
sample the bus requests again.

BACKPLANE (1014)

A printed circuit (PC) board with 96-pin connectors and signal paths that bus the
connector pins. Some 1014 systems have a single PC board, called the J1 backplane. It
provides the signal paths needed for basic operation. Other 1014 systems also have an
optional second PC board called a J2 backplane. It provides the additional 96-pin
connectors and signal paths needed for wider data and address transfers. Still others
have a single PC board that provides the signal conductors and connectors of both the
J1 and J2 backplanes.

BACKPLANE INTERFACE LOGIC

Special interface logic that takes into account the characteristics of the backplane: its
signal line impedance, propagation time, termination values, etc. The 1014 specification
prescri bes certain rules for the design of this logic based on the maximum length of the
backplane and its maximum number of board slots.

BLOCK READ CYCLE

A DTB cycle used to transfer a block of 1 to 256 bytes from a SLAVE to a MASTER. This
transfer is done using a string of 1, 2, or 4 byte data transfers. Once the block transfer is
started, the MASTER does not release the DTB until all of the bytes have been transferred.
It differs from a string of read cycles in that the MASTER broadcasts only one address and
address modifier (at the beginning of the cycle). Then the SLAVE increments this address
on each transfer; the data for the next cycle is retrieved from the next higher location.

SECTION 4 APPENDIX TO THE HARDWARE USER'S MANUAL

H-3

BLOCK WRITE CYCLE

A DTB cycle used to transfer a block of 1 to 256 bytes from a MASTER to a SLAVE. The
block write cycle is very similar to the block read cycle. It uses a string of 1, 2, or 4 byte
data transfers and the MASTER does not release the DTB until all of the bytes have been
transferred. It differs from a string of write cycles in that the MASTER broadcasts only one
address and address modifier (at the beginning of the cycle). T hen the SLAVE increments
this address on each transfer so that the next transfer is stored on the next higher
location.

BOARD

A printed circuit (PC) board, its collection or electronic components, and either one or two
96-pin connectors that can be plugged into 1014 backplane connectors.

BUS TIMER

A functional module that measures how long each data transfer takes on the DTB, and
terminates the DTB cycle if a transfer takes too long. If the MASTER tries to transfer data
to or from a nonexistent SLAVE location, it might wait forever. The BUS TIMER prevents
this by terminating the cycle.

D08(0)

A SLAVE that sends and receives data 8 bits at a time over D00-D07, or an INTERRUPT
HANDLER that receives 8 bit STATUS/IDs over D00-D07, or an INTERRUPTER that sends
8 bit STATUS/IDs over D00-D07.

D08(E0)

A MASTER that sends or receives data 8 bits at a time over either D00-D07 or D08-D15, or
A SLAVE that sends and receives data 8 bits at a time over either D00-D07 or D08-D15, or
an INTERRUPT HANDLER that receives 8 bit STATUS/IDs over D00-D07, or an
INTERRUPTER that sends 8 bit STATUS/IDs over D00-D07.

SYS68K/CPU-40/41 FORCE COMPUTERS

H-4

D16

A MASTER that sends and receives data 16 bits at a time over D00-D15, or A SLAVE that
sends and receives data 16 bits at a time over D00-D15, or an INTERRUPT HANDLER that
receives 16 bit STATUS/IDs over D00-D15, or an INTERRUPTER that sends 16 bit
STATUS/IDs over D00-D15.

D32

A MASTER that sends and receives data 32 bits at a time over D00-D31, or A SLAVE that
sends and receives data 32 bits at a time over D00-D31, or an INTERRUPT HANDLER that
receives 32 bit STATUS/IDs over D00-D31, or an INTERRUPTER that sends 32 bit
STATUS/IDs over D00-D31.

DAISY CHAIN

A special type of 1014 signal line that is used to propagate a signal level from board to
board, starting with the first slot and ending with the last slot. There are four bus grant
daisy chains and one interrupt acknowledge daisy chain on the 1014.

DATA TRANSFER BUS

One of the four buses provided by the 1014 backplane. The DATA TRANSFER BUS allows
MASTERS to direct the transfer of binary data between themselves and SLAVES. (DATA
TRANSFER BUS is often abbreviated to DTB).

DATA TRANSFER BUS CYCLE

A sequence of level transitions on the signal lines of the DTB that result in the transfer of
an address or an address and data between a MASTER and a SLAVE. There are seven
types of data transfer bus cycles.

DTB

An acronym for DATA TRANSFER BUS.

SECTION 4 APPENDIX TO THE HARDWARE USER'S MANUAL

H-5

FUNCTIONAL MODULE

A collection of electronic circuitry that resides on one 1014 board and works together to
accomplish a task.

IACK DAISY CHAIN DRIVER

A functional module which activates the interrupt acknowledge daisy chain whenever an
INTERRUPT HANDLER acknowledges an interrupt r equest. This daisy chain ensures that
only one INTERRUPTER will respond with its STATUS/ID when more than one has
generated an interrupt request.

INTERRUPT ACKNOWLEDGE CYCLE

A DTB cycle, initiated by an INTERRUPT HANDLER that reads a "STATUS/ID" from an
INTERRUPTER. An INTERRUPT HANDLER generates this cycle when it detects an
interrupt request from an INTERRUPTER and it has control of the DTB.

INTERRUPT BUS

One of the four buses provided by the 1014 backplane. The INTERRUPT BUS allows
INTERRUPTER modules to send interrupt requests to INTERRUPT HANDLER modules.

INTERRUPTER

A functional module that generates an interrupt request on the INTERRUPT BUS and then
provides STATUS/ID information when the INTERRUPT HANDLER requests it.

INTERRUPT HANDLER

A functional module that detects interrupt requests generated by INTERRUPTERS and
responds to those requests by asking for STATUS/ID information.

SYS68K/CPU-40/41 FORCE COMPUTERS

H-6

LOCATION MONITOR

A functional module that monitors data transfers over the DTB in order to detect accesses
to the locations it has been assigned to watch. When an access occurs to one of these
assigned locations, the LOCATION MONITOR generates an on-board signal.

MASTER

A functional module that initiates DTB cycles in order to transfer data between itself and
a SLAVE module.

OBO

A SLAVE that sends and receives data 8 bits at a time over D00-D07.

POWER MONITOR MODULE

A functional module that monitors the status of the primary power source to the 1014
system and signals when that power has strayed outside the limits required for reliable
system operation. Since most systems are powered by an AC source, the power monitor
is typically designed to detect drop-out or brown-out conditions on AC lines.

READ CYCLE

A DTB cycle used to transfer 1, 2, or 4 bytes from a SLAVE to a MASTER. The cycle
begins when the MASTER broadcasts and address and an addr ess modifier. Each SLAVE
captures this address and address modifier, and checks to see if it is to respond to the
cycle. If so, it retrieves the data from its internal storage, places it on the data bus, and
acknowledges the transfer. Then the MASTER terminates the cycle.

READ-MODIFY-WRITE CYCLE

A DTB cycle that is used to both read from, and write to a SLAVE location without
permitting any other MASTER to access that location. This cycle is most useful in
multiprocessing systems where certain memory locations are used to control access to
certain systems resources. (For example, semaphore locations.)

SECTION 4 APPENDIX TO THE HARDWARE USER'S MANUAL

H-7

REQUESTOR

A functional module that resides on the same board as a MASTER or INTERRUPT
HANDLER and requests use of the DTB whenever its MASTER or INTERRUPT HANDLER
needs it.

SERIAL CLOCK DRIVER

A functional module that provides a periodic timing signal that synchronizes operation of
the VMSbus. (Although the 1014 specification defines a SERIAL CLOCK DRIVER for use
with the VMSbus, and although it reserves two backplane signal lines for use by that bus,
the VMSbus protocol is completely independent of the 1014.)

SLAVE

A functional module that detects DTB cycles initiated by a MASTER and, when those
cycles specify their participation, transfers data between itself and the MASTER.

SLOT

A position where a board can be inserted into a 1014 backplane. If the 1014 system has
both a J1 and a J2 backplane (or a combination J1/J2 backplane) e ach slot provides a pair
of 96-pin connectors. If the system has only a J1 backplane, then each slot provides a
single 96-pin connector.

SUBRACK

A rigid framework that provides mechanical support for boards inserted into the
backplane, ensuring that the connectors mate properly and that adjacent boards do not
contact each other. It also guides the cooling airflow through the system, and ensures
that inserted boards do not disengage themselves from the backplane due to vibration or
shock.

SYSTEM CLOCK DRIVER

A functional module that provides a 16 MHz timing signal on the UTILITY BUS.

SYS68K/CPU-40/41 FORCE COMPUTERS

H-8

SYSTEM CONTROLLER BOARD

A board which resides in slot 1 of a 1014 backplane and has a SYSTEM CLOCK DRIVER,
a DTB ARBITER, an IACK DAISY CHAIN DRIVER, and a BUS TIMER. Some also have a
SERIAL CLOCK DRIVER, a POWER MONITOR or both.

UAT

A MASTER that sends or receives data in an unaligned fashion, or a SLAVE that sends and
receives data in an unaligned fashion.

UTILITY BUS

One of the four buses provided by the 1014 backplane. This bus includes signals that
provide periodic timing and coordinate the power up and power down of 1014 systems.

WRITE CYCLE

A DTB cycle used to transfer 1, 2, or 4 bytes from a MASTER to a SLAVE. The cycle
begins when the MASTER broadcasts an address and address modifier and places data
on the DTB. Each SLAVE captures this address and address modifier, and checks to see
if it is to respond to the cycle. If so, it stores the data and then acknowledges the transfer.
The MASTER then terminates the cycle.

SECTION 4 APPENDIX TO THE HARDWARE USER'S MANUAL

I-1

APPENDIX I

LITERATURE REFERENCE

Please refer to the following books for more detailed information.

1) MC 68040 Users Manual

2) VMEbus Standards:

2618 S Shannon
Tempe Arizona 85282
(602) 966-5936

SYS68K/CPU-40/41 FORCE COMPUTERS

I-2

This page was intentionally left blank

SECTION 4 APPENDIX TO THE HARDWARE USER'S MANUAL

J-1

APPENDIX J

PRODUCT ERROR REPORT

ALTHOUGH FORCE COMPUTERS HAS ACHIEVED A VERY HIGH STANDARD OF QUALITY IN
PRODUCTS AND DOCUMENTATION, SUGGESTIONS FOR IMPROVEMENT ARE ALWAYS WELCOME.

ANY FEEDBACK YOU CARE TO OFFER WOULD BE APPRECIATED.

PLEASE USE ATTACHED "PRODUCT ERROR REPORT" FORM FOR YOUR COMMENTS AND RETURN
IT TO ONE OF OUR FORCE COMPUTERS OFFICES.

FORCE COMPUTERS, GmbH

COPIES OF DATA SHEETS

COPIES OF DATA SHEETS

RTC 72423

DUSCC 68562

PI/T 68230

USERS NOTES

USERS NOTES

USERS NOTES

OPTIONS/APPLICATIONS /MODIFICATIONS

INTRODUCTION TO VMEPROM
IN USE WITH THE SYS68K/CPU-40/41

i

TABLE OF CONTENTS

1. GENERAL . 1-1

1.1 General Information . 1-1
1.2 Features of VMEPROM . 1-1
1.3 Power-up Sequence . 1-2
1.4 Front Panel Switches . 1-3
1.4.1 RESET Switch . 1-3
1.4.2 ABORT Switch . 1-3
1.4.3 Control Switches . 1-3
1.4.4 Default Memory Usage of VMEPROM . 1-8
1.4.5 Default EPROM Usage of VMEPROM . 1-9

2. DETAILS OF THE CPU BOARD . 2-1

2.1 EPROM/RAM Layout . 2-1
2.2 On-board I/O Devices . 2-2
2.2.1 Base addresses of onboard I/O devices . 2-2
2.2.2 Base Addresses of EAGLE Module Devices . 2-3
2.3 On-board Interrupt Sources . 2-4
2.4 Off-board Interrupt Sources . 2-5
2.5 The On-Board Real Time Clock . 2-5

3. CONCEPT OF VMEPROM . 3-1

3.1 Getting Started . 3-1
3.2 Command Line Syntax . 3-1
3.3 VMEPROM Commands . 3-2

4. SPECIAL VMEPROM COMMANDS FOR CPU BOARD . 4-1

4.1 ARB - Set the Arbiter of the CPU Board . 4-1
4.2 CONFIG - Search VMEbus for Hardware . 4-2
4.3 FGA - Change Boot Setup for Gate Array . 4-3
4.4 FLUSH - Set Buffered Write Mode . 4-4
4.4.1 EAGLE-01C Module . 4-4
4.4.2 EAGLE Modules together with the Management Entity (ME) . 4-5
4.5 FMB - Force Message Broadcast . 4-6
4.6 FUNCTIONAL - Perform Functional Test . 4-7
4.7 MEM - Set Data Bus Width of the VMEbus . 4-7
4.8 PROG - Program FLASH EPROM . 4-8
4.9 SELFTEST - Perform On-board Selftest . 4-9

5. INSTALLING A NEW HARD DISK WITH ONBOARD SCSI CONTROLLER 5-1

ii

LIST OF TABLES

Table 1: RAM Disk Usage . 1-6

Table 2: Program After Reset . 1-6

Table 3: Boot an Operating System . 1-6

Table 4: Examples in Using the Rotary Switches . 1-7

Table 5: On-board I/O Devices . 2-2

Table 6: On-board Interrupt Sources . 2-4

Table 7: Off-board Interrupt Sources . 2-5

SECTION 7 INTRODUCTION TO VMEPROM

1-1

1. GENERAL

1.1 General Information

This CPU board operates under the control of VMEPROM, an EPROM resident real time multiuser
multitasking monitor program. VMEPROM provides the user with a debugging tool for single and
multitasking real time applications. This manual describes those parts of VMEPROM which pertain to the
hardware of the CPU. All general commands and system calls are described in the VMEPROM User's
Manual.

1.2 Features of VMEPROM

! Line assembler/disassembler supporting all 68040 instructions.

! Numerous commands for program debugging, including breakpoints, tracing, processor register
display and modify.

! Display and modify floating point data registers.

! S-record up/downloading from any port defined in the system.

! Time stamping of user programs.

! Built-in Benchmarks.

! Support of RAM-disk, floppy and Winchester disks, also allowing disk formatting and initialization.

! Disk support for ISCSI-1 cards.

! Serial I/O support for up to two SIO-1/2 or ISIO-1/2 boards in the system.

! Support for EAGLE modules and IBC-20 boards.

! EPROM programming utility using the SYS68K/RR-2/3 boards.

! Full Screen Editor.

! Numerous commands to control the PDOS kernel and file manager.

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

1-2

Features of VMEPROM cont'd

! Complete task management.

! I/O redirection to files or ports from the command line.

! Over 100 system calls to the kernel supported.

! Data conversion and file management functions.

! Task management system calls in addition to terminal I/O functions.

1.3 Power-up Sequence

After power-up, the processor retrieves the initial stack pointer and program counter from address locations
$0 and $4. These locations are the first 8 bytes of the EPROM area. They are mapped down to address
$0 for a defined start after reset or power-up. Control is transferred to the BIOS modules to perform all the
necessary hardware initialization of the CPU. The real time kernel is started and the user interface of
VMEPROM is invoked as the first task. This sequence also reads the Real Time Clock (RTC) of the CPU
board and initializes the software clock of the kernel. If a terminal is connected to the terminal port of the
CPU board, the VMEPROM banner and the VMEPROM prompt ("? ") will be displayed upon power-up or
reset.

The default terminal port setup is as follows:

Asynchronous communication
9600 Baud
8 data bits
1 stop bit
no parity
Hardware handshake protocol

If the above message does not appear, check the following:

1) Baud rate and character format setting of the terminal (default upon delivery of the CPU board is
9600 Baud, 8 data bits, 1 stop bit, no parity).

2) Cable connection from the CPU board to the terminal (refer to the Hardware User's Manual for the
pinning of the D-Sub connector and the required handshake signals).

3) Power supply, +5V, +12V, -12V must be present. See the Hardware User's Manual for the power
consumption of the CPU board.

If everything goes well, the header and prompt are displayed on the terminal and VMEPROM is now ready
to accept commands.

SECTION 7 INTRODUCTION TO VMEPROM

1-3

1.4 Front Panel Switches

1.4.1 RESET Switch

Pressing the RESET switch on the front panel causes all programs to terminate immediately and resets the
processor and all I/O devices.

When the VMEPROM kernel is started, it overwrites the first word in the user memory after the task control
block with an EXIT system call. If breakpoints were defined and a user program was running when the
RESET button was pressed, the user program could possibly be destroyed.

Pressing reset while a program is running should only be used as a last resort when all other actions (such
as pressing ^C twice) have failed.

1.4.2 ABORT Switch

The ABORT switch is defined by VMEPROM to cause a level 7 interrupt. This interrupt cannot be disabled
and is therefore the appropriate way to terminate a user program and return to the command level of
VMEPROM.

If ABORT is pressed while a user program is under execution, all user registers are saved at the current
location of the program counter and the message "Aborted Task" is displayed along with the contents of
the processor register.

If ABORT is pressed while a built-in command is executed or the command interpreter is waiting for input,
only the message is displayed and control is transferred to the command interpreter. The processor
registers are not modified and are not displayed in this case.

NOTE: Tasks with port 0 as its input port will not be aborted.

1.4.3 Control Switches

The two rotary switches on the front panel of the CPU board define the default behavior and actions taken
by VMEPROM after power up or RESET.

The default definition of some of these switches can be patched in the EPROMs for the user's convenience.
Please refer to the Appendix of this manual for a description of the memory locations to be patched.

The switch settings are read in by VMEPROM after reset and control various options.

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

 Please note that the devices on an EAGLE-01C are handled like onboard devices. For this reason the EAGLE-01C is not considered an
1

EAGLE module.

1-4

The following describes the software definition for every switch:

Upper Rotary Switch (SW2):

Bit 3: If no EAGLE-01C is installed, this bit defines whether the Management Entity (ME) is to be started.1

In other words, if this bit is set to "1", the driver for all devices on the EAGLE module which are
usable from VMEPROM will be installed.

If an EAGLE-01C is installed, this bit indicates whether the RAM disk should be initialized
after reset. If this bit is set to "0", the RAM disk is initialized as defined by bit 0 and 1 of
SW2. When the disk is initialized, all data on the disk is lost.

Bit 2: This bit defines the default data bus size on the VMEbus. If the bit is set to "0", 16 bits are selected,
if it is set to "1", 32 bits are selected.

Bit 1:
and These two bits define the default RAM disk. See Table 1 for a detailed description.
Bit O:

If Autoboot is set by bit 2 and bit 3 of SW1, bit 1 and 0 of SW2 define which operating system will be
booted. See Table 3 for detailed description.

SECTION 7 INTRODUCTION TO VMEPROM

1-5

Lower Rotary Switch (SW1):

Bit 3: These two bits define which program is to be invoked after reset.
and Please refer to Table 2 for a detailed description.
Bit 2:

Bit 1: If this switch is "0", VMEPROM tries to execute a startup file after reset. The default
filename is SY$STRT. If the bit is "1", VMEPROM comes up with the default banner.

Bit 0: If this switch is set to "0", VMEPROM checks the VMEbus for available hardware after reset.

In addition VMEPROM waits for SYSFAIL to disappear from the VMEbus. The following
hardware can be detected:

Contiguous memory starting at the end of the on-board memory
ISIO-1/2
SIO-1/2
ISCSI-1
Boards with a running Management Entity (IBC-20, CPU-40/41)

Please refer to Chapter 4.2 of this section for details.

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

1-6

Table 1: RAM Disk Usage

Bit 1 Bit 0 Upper Switch (SW2)

 1 1 = RAM DISK AT TOP OF MEMORY (32 Kbytes)
 1 0 = RAM DISK AT $FFC81000 (64 Kbytes)
 0 1 = RAM DISK AT $40700000 (512 Kbytes)
 0 0 = RAM DISK AT $40800000 (512 Kbytes)

Table 2: Program After Reset

Bit 3 Bit 2 Lower Switch (SW1)

 1 1 = VMEPROM (OR USER PROGRAM at same location)
 1 0 = USER PROGRAM AT $FFC81000
 0 1 = Autoboot System
 0 0 = USER PROGRAM AT $40800000

Table 3: Boot an Operating System

NOTE: Valid only if SW1 is set to Autoboot

Bit 1 Bit 0 Upper Switch (SW2)

 1 1 = Boot PDOS
 1 0 = Boot UNIX
 0 1 = Boot another operating system
 0 0 = Setup for UNIX mailbox driver

SECTION 7 INTRODUCTION TO VMEPROM

1-7

Table 4: Examples in Using the Rotary Switches

Rotary Switches
Description

Upper Lower

$F $F The Management Entity (ME) is started if an EAGLE is not
installed.
No RAM Disk initialization will be done.
The VMEbus data size is 32 bits.
The RAM Disk is on top of memory.
VMEPROM will be started.
No start file will be executed.
The available hardware on the VMEbus will not be checked.

$4 $C RAM Disk initialization will be done if an EAGLE-01C is
installed.
The VMEbus data size is 32 bits.
The RAM Disk is located at address $40800000.
VMEPROM will be started.
VMEPROM tries to execute a startup file.
The available hardware on the VMEbus will be checked.

$B $7 The VMEbus data size is 16 bits.
Autoboot System is enabled.
PDOS will be booted.

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

1-8

1.4.4 Default Memory Usage of VMEPROM

By default, VMEPROM uses the following memory assignment for the CPU board:

MAIN MEMORY LAYOUT

Start address End address Type

$00000000 $000003FF Vector Table

$00000400 $00000FFF System Configuration Data

$00001000 $00005FFF SYRAM

$00007000 $00007FFF Task Control Block 0

$00008000 $........ User Memory of Task 0

$........ $........ Mail Array

$........ $........ RAM Disk (optional)

$........ $........ Hashing buffer / Management Entity (ME)

Please note that the size of the first task cannot be extended beyond the highest on-board memory address.
However, the additional memory which can be installed may be used for data arrays or for creating new
tasks. The maximum memory which may be used for tasking is 64 Mbytes. If more memory is available,
it can only be used for data storage, but not for tasking memory.

SECTION 7 INTRODUCTION TO VMEPROM

1-9

1.4.5 Default EPROM Usage of VMEPROM

MEMORY LAYOUT OF THE SYSTEM EPROM

 $FF000000 6447
 5 Initial Supervisor Stackpointer 5
 $FF000004 K))M
 5 Initial Program Counter 5))))))),
 $FF000008 K))M *
 5 Pointer to VMEPROM Initialization 5))))), *
 $FF00000C K))M * *
 5 Pointer to User Alterable Memory Locations 5))), * *
 $FF000010 K))M * * *
 5 Pointer to VMEPROM shell 5 , * * *
 K))M =3)3)3)-
 5 BIOS Modules 5 * * *
 5 Kernel 5 * * *
 5 File Manager 5 * * *
 K))M * * *
 5 EPROM resident installable devices and tables 5 * * *
 K))M =3)3)-
 5 VMEPROM Initialization Code 5 * *
 K))M =3)-
 5 User Alterable Memory Location 5 *
 K))M *
 5 System Tools/Management Entity (ME) 5 *
 K))M =-
 5 VMEPROM Shell 5
 5 System Tools 5
 5 Debugging Tools 5
 5 Line Assembler/Disassembler 5
$FF040000 K))M
 5 Floating Point Software Library 5
$FF050000 K))M
 5 UNIX 5.4 and PDOS 4.X Boot Program 5
$FF058000 K))M
 5 Another Boot Program 5
$FF060000 K))M
 5 PDOS 3.3 Boot Program 5
$FF080000 9448

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

1-10

This page was intentionally left blank

SECTION 7 INTRODUCTION TO VMEPROM

2-1

2. DETAILS OF THE CPU BOARD

2.1 EPROM/RAM Layout

Address Device

0000 0000
9 Local RAM

.........*

FF00 0000
9 EPROM Area

FF7F FFFF

FFC0 0000
9 SRAM Area

FFC7 FFFF

FFC8 0000
9 FLASH EPROM Area

FFCF FFFF

FFE0 0000
9 EPROM Area

FFEF FFFF

 * 6 Highest On-board Memory Address

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

2-2

2.2 On-board I/O Devices

2.2.1 Base addresses of onboard I/O devices

Table 5: On-board I/O Devices

BASE ADDRESS DEVICE

$FF803000 RTC 72423

$FF802000 DUSCC1 68562

$FF802200 DUSCC2 68562

$FF800C00 PI/T1 68230

$FF800E00 PI/T2 68230

$FFD00000 FGA-002

$FF803400 SCSI 87031*

$FF803800 FDC 37C65*

$FEF80000 LAN 7990*

*Only applicable when an EAGLE-01C is installed.

SECTION 7 INTRODUCTION TO VMEPROM

 The offset for every I/O device on the EAGLE Module is described in the EAGLE Module Firmware User's Manual.2

2-3

2.2.2 Base Addresses of EAGLE Module Devices

Because of the flexibility of the EAGLE module concept, the EAGLE Module ID-EPROM holds offsets
for I/O device addresses. The complete I/O device base address is calculated as a base address
provided by VMEPROM plus an offset.2

Example:

I/O module base address provided from VMEPROM: $FEC00000
Device offset provided from the EAGLE Module ID-EPROM

+
$000016
00

Device base address: $FEC01600

The ID-EPROM base address of EAGLE Modules is always at $FE800000

Additional EPROMs/RAM always start at $FD800000. Beginning with chip select 1 of the first FC68165,
every RAM/EPROM device found is programmed so that its base address is behind the last address of
the previous device.

The following is an example where an EAGLE module has 1 FC68165 device:

! The ID-EPROM is connected to chip select 0.
! An SRAM device is connected to chip select 3. The SRAM size is $80000.
! An EPROM device is connected to chip select 4.

This module would have:

! the ID-EPROM at address $FE800000
! the SRAM device at address $FD800000
! and the EPROM device at base address $FD880000

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

2-4

2.3 On-board Interrupt Sources

The following table shown is used for the on-board interrupt sources and levels which are defined by
VMEPROM. All interrupt levels and vectors of the onboard I/O devices are software programmable via
the FGA-002 Gate Array.

Table 6: On-board Interrupt Sources

DEVICE INTERRUPT LEVEL INTERRUPT VECTOR

Abort Switch 7 232

PI/T1 5 242

DUSCC1 4 244

DUSCC2 4 245

Management
Entity 2 192

EAGLE UART
Driver 5 196

EAGLE DISK
Driver 5 198

SECTION 7 INTRODUCTION TO VMEPROM

2-5

2.4 Off-board Interrupt Sources

VMEPROM supports several VMEbus boards. As these boards are interrupt driven the level and
vectors must be defined for VMEPROM to work properly. The following table shows the default
setup of the interrupt levels and vectors of the supported hardware. For a detailed description of the
hardware setup of the boards, please refer to the Appendix of this manual. The supported I/O
boards together with the base addresses and the interrupt level and vector are summarized in Table
7. In order for these boards to work correctly with VMEPROM, the listed interrupt vectors may not be
used.

Table 7: Off-board Interrupt Sources

Board Interrupt Level Interrupt Vector Board Base Address

SIO-1/2 4 64-75 $FCB00000

ISIO-1/2 4 76-83 $FC960000

ISCSI-1 4 119 $FCA00000

IBC UART
Driver 5 197 ---

IBC Disk
Driver 5 199 ---

2.5 The On-Board Real Time Clock

During the power up sequence, the on-board real time clock of the CPU board is read and loaded in
the VMEPROM. This sequence is done automatically and requires no user intervention. If the
software clock of VMEPROM is set by the ID command as described in the VMEPROM User's
Manual, the RTC is set automatically to the new time and date values.

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

2-6

This page was intentionally left blank

SECTION 7 INTRODUCTION TO VMEPROM

3-1

3. CONCEPT OF VMEPROM

3.1 Getting Started

After power-up or after RESET has been pressed, VMEPROM prints a banner showing the version
and revision being used and prints the prompt ("? ").

If the above message does not appear, check the following:

1) Baud rate and character format setting of the terminal (default upon delivery of the
CPU board is 9600 Baud, 8 data bits, 1 stop bit, no parity).

2) Cable connection from the CPU board to the terminal (refer to the Hardware User's
Manual for the pinning of the D-Sub connector and the required handshake
signals).

3) Power supply, +5V, +12V, -12V; must be present. See the Hardware User's
Manual for the power consumption of the CPU board.

If everything goes well, the header and prompt are displayed on the terminal and VMEPROM is now
ready to accept commands.

3.2 Command Line Syntax

All valid VMEPROM commands consist of the following:

? command<cr> or
? command parameters<cr>

The underlined areas must be entered by the user. If more than one parameter will be entered, they
must be separated by a space or a comma.

For a detailed description of all functions of the command interpreter please refer to chapter 3 of the
VMEPROM User's Manual.

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

3-2

3.3 VMEPROM Commands

VMEPROM supports many commands. All of these commands are EPROM resident and are
available at any time. Most of these commands are common for all versions of VMEPROM. All the
common commands of VMEPROM are described in detail in the VMEPROM User's Manual. Those
commands which are specific for the hardware of the CPU board are described in the following
paragraphs of this manual. For a short description of one or all VMEPROM commands, the HELP
command can be used. Enter HELP<cr> for a description of all commands, or enter HELP
command<cr> for a description of a particular command.

SECTION 7 INTRODUCTION TO VMEPROM

4-1

4. SPECIAL VMEPROM COMMANDS FOR CPU BOARD

The following commands are implemented on the CPU board in addition to those listed in the
VMEPROM User's Manual.

4.1 ARB - Set the Arbiter of the CPU Board

Format: ARB

The ARB command allows the user to set the arbitration mode of the CPU board for VMEbus. This
command is also used to select the Standard Access Mode for the VMEbus. Additionally, the
VMEbus interrupts can be enabled or disabled.

Example:

? ARB<cr>

Current arbiter mode: enabled, Mode = Prioritized ROUND ROBIN
 Set arbiter mode ? (Y,y/-) : Y
 ROUND ROBIN mode ? (Y,y/-) :Y
 Prioritized ROUND ROBIN ? (Y,y/-) : N
New arbiter mode = ROUND ROBIN

Standard Access Mode (A24) for Slave Accesses currently disabled.
 Enable A24 mode ? (Y,y/-) : Y
 A31-A24 = 80
Change interrupt mask ? (Y,y/-) : Y

Enable(1) / Disable(0) VMEbus interrupts by level:

STATUS: Level: 7 6 5 4 3 2 1

1 1 1 1 1 1 1

SET: Enter new interrupt mask: 1 1 1 1 1 1 0

?_

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

4-2

4.2 CONFIG - Search VMEbus for Hardware

Format: CONFIG

This command searches the VMEbus for available hardware. It is useful if VMEPROM is started and
bit 0 of the lower rotary switch on the front panel is set to "1", so that VMEPROM does not check the
configuration by default.

In addition this command allows the user to install additional memory in the system. Additional
memory can ONLY be installed with this command.

The following hardware is detected:

1. ISIO-1/2
2. SIO-1/2
3. ISCSI-1
4. Boards with a running Management Entity
5. Contiguous memory starting at the highest on-board memory address

The boards must be set to the default address for 32 bit systems. This setup is summarized for all
supported boards in the Appendix of this manual.

Additional memory must be contiguous to the on-board memory of the CPU board. This memory is
cleared by the config command to allow DRAM boards with parity to be used. Please remember
that the installation of additional memory does not effect the RAM size of the running task. However,
VMEPROM identifies this installed memory area and every time memory is required (i.e. with CT or
FM) it is taken from this area as long as there is enough free space.

The CONFIG command also installs Winchester disks in the system and initializes the disk controller
(if available). So if a SYSFAIL is active on the VMEbus (which can come for example from the
ISIO-1/2 or ISCSI-1 controller during selftest), the command is suspended until the SYSFAIL signal is
no longer active.

Example:

? CONFIG<cr>
UART FORCE ISIO1/2 (U3) INSTALLED
ISCSI-1: 1 boards available
ISIO-1/2: 1 boards available

? _

SECTION 7 INTRODUCTION TO VMEPROM

4-3

4.3 FGA - Change Boot Setup for Gate Array

Format: FGA

Some registers of the gate array are definable by the user. The contents of this register are stored in
the onboard battery SRAM in a short form.

The boot software for the gate array will take these values after reset to initialize the gate array. The
FGA command may be used to enter an interactive mode for changing this boot table in the battery
SRAM.

The FGA command will show the actual value stored in the battery SRAM. To change any value, a
new one has to be entered in binary form. If only a <cr> is entered, no change will be made. To step
backward a minus has to be entered. If a <.> or <ESC> is given, the FGA command returns to the
shell.

Example:

? FGA

>>> Setup for FGA-002 BOOTER <<<

REGISTER FGA offset value in SRAM changed value

SPECIAL $0420 %00011110 %00011110
CTL_01 $0238 %00000100 %00000100
CTL_02 $023C %00000000 %00000000
CTL_05 $0264 %00001100 %00001100
CTL_12 $032C %00000000 %00000000
CTL_14 $0354 %00000000 %00000000
CTL_15 $0358 %01001100 %01000110
CTL_16 $035C %00100000 %00100000
MBX_00 $0000 %00000000 %00001001
MBX_01 $0004 %00000000 %00000000
MBX_02 $0008 %00000000 %00000000
MBX_03 $000C %00000000 .
MBX_04 $0010 %00000000
MBX_05 $0014 %00000000
MBX_06 $0018 %00000000
MBX_07 $001C %00000000

?

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

4-4

4.4 FLUSH - Set Buffered Write Mode

4.4.1 EAGLE-01C Module

Format: FLUSH
FLUSH ?
FLUSH ON
FLUSH OFF

This command flushes all modified hashing buffers for disk write or enable/disable buffered write
mode for the local SCSI controller.

If no argument is entered, all modified hashing buffers are flushed. If an argument of "ON" or "OFF"
is given, the buffered write mode will be enabled or disabled. By entering a question mark as an
argument, only a message will be displayed, whether the buffered write mode is enabled or disabled.

Example:

? flush

All modified buffers are flushed

? flush ON

Buffered write is enabled

SECTION 7 INTRODUCTION TO VMEPROM

4-5

4.4.2 EAGLE Modules together with the Management Entity (ME)

Format: FLUSH
FLUSH <disk number>, <time>

The first command flushes all buffers on all disks in the system.

The second command sets a flush time for the device driver task. The device driver task has to
flush its buffers periodically every <time> seconds. Please refer to the USER'S MANUAL of the
EAGLE Module to see fi the device driver taks is able to handle this service. The parameter <disk
number> is only used to select a specific device driver task. Every disk which is connected to this
task is flushed.

Example:

? FLUSH

All modified buffers are flushed

? FLUSH 2 20

Flush time: 20 seconds

? _

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

4-6

4.5 FMB - Force Message Broadcast

Format: FMB <slotlist>,<FMB channel>,<message>
FMB [<FMB channel>]

The FMB command allows sending a byte message to individual slots in the backplane, broadcast to
all the boards, and getting a pending message.

The first format is used to send a message. With this the first parameter is used to select the slots
to which a message should be sent. Each slot number can be separated with a '/' sign; a '-' defines a
range of slot numbers. Slot numbers can range from 0 to 21. A slot number of 0 sends the message
to all slots. The second parameter defines which FMB channel should be used. It can be '0' or '1'.
The message is the byte to be deposited into the FMB channel(s).

The second format is used to get messages. If no parameter is given, one message of each FMB
channel is fetched and displayed. If a channel is specified only this channel is addressed and the
message will be displayed.

Example:

? FMB
FMB channel 0 is empty
FMB channel 1 is empty

? FMB 1-21,0,$EF

? FMB 1-21,1,%10100001

? FMB
FMB channel 0 = $EF
FMB channel 1 = $A1

? FMB 1-21,1,$77

? FMB 1
FMB channel 1 = $77

? FMB 1/2/5/7-19/21,0,$1

? _

SECTION 7 INTRODUCTION TO VMEPROM

4-7

4.6 FUNCTIONAL - Perform Functional Test

Format: FUNCTIONAL

NOTE: This command is not designed for the user, but instead for internal purposes by
FORCE COMPUTERS.

4.7 MEM - Set Data Bus Width of the VMEbus

Format: MEM
 MEM 16
 MEM 32

This command can display or set the data bus width of the CPU board on the VMEbus.
If no argument is entered, the current data bus width is displayed. If an argument of '16' or '32' is
given, the data bus width is set to 16 or 32 bits respectively.

Example:

? MEM<cr>
Data bus width is set to 32 bits

? MEM 16<cr>

? MEM<cr>
Data bus width is set to 16 bits

? MEM 32<cr>

? _

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

4-8

4.8 PROG - Program FLASH EPROM

Format: PROG [<source>[,<destination>[,<length>[,<width>]]]]

This command is used to program FLASH EPROMs. All parameters may be specified on the
command line or may be entered interactively after the function has been invoked.

The first parameter <source> is the start address of the data which is to program into the FLASH
EPROM.

The second parameter <destination> represents the base address of the FLASH EPROM.

The third parameter <length> specifies the length of the FLASH EPROM. If 0 is entered the length
and width is automatically calculated.

The fourth parameter <width> selects the data width of the FLASH EPROMs. Three values are
possible:

'1': Byte width (8-bit)
'2': Word width (16-bit)
'4': Long width (32-bit)

Please note that the FLASH EPROM(s) must be completely programmed. Therefore programming
only parts of a FLASH EPROM is not possible.

Example:

? PROG $100000 $FFC80000 0
 programming......
 FLASH EPROM successfully programmed

? PROG
 Source base address = $40800000
 FLASH EPROM base address = $FFC80000
 Source length (0 for automatic select) = $20000
 Width (1,2 or 4) = 1
 programming......
 FLASH EPROM successfully programmed

?_

SECTION 7 INTRODUCTION TO VMEPROM

 Only applicable when an EAGLE-01C Module is installed.
3

4-9

4.9 SELFTEST - Perform On-board Selftest

Format: SELFTEST

This command performs a test of the on-board functions of the CPU board. It may only be run if no
other tasks are created. If there are any other tasks no selftest will be made and an error will be
reported. The selftest tests the memory of the CPU board and all devices on the board.

The following tests are performed in this order:

1. I/O test

This function tests the access to and the interrupts from the DUSCC. If the DUSCC cannot generate
interrupts an error will be reported. This test also checks if reading from and writing to the floppy
disk controller and the SCSI controller proceeds as expected.3

2. Memory test on the memory of the current task.

The following procedures are performed:

1) Byte Test
2) Word Test
3) Long Word Test

All passes of the memory test perform pattern reading and writing as well as bit shift tests. If an
error occurs while writing to or reading from memory it will be reported.

3. Clock Test

If the CPU does not receive timer interrupts from the PI/T 68230 an error will be displayed. This
ensures that VMEPROM could initialize the PI/T 68230 properly and the interrupts from the PI/T are
working.

CAUTION: During this process, all memory is cleared.

Example:

? SELFTEST

VMEPROM Hardware Selftest

I/O test passed
Memory test passed
Clock test passed
? _

SYS68K/CPU-40/41 FORCE COMPUTERS

4-10

This page intentionally left blank

SECTION 7 INTRODUCTION TO VMEPROM

5-1

5. INSTALLING A NEW HARD DISK

The hard disk must be set to 256 bytes per block. The FRMT command of VMEPROM may be used
to set all hard disk parameters, to format the Winchester and to divide the disk into logical partitions.
Before starting the FRMT command, the number of the last logical block of the Winchester must be
known. The number of physical blocks per track must be 32, the number of bytes per sector must be
256. By using the following equation:

(# of Heads) * (# of Cylinders) * (Blocks/Track) = # of Last logical block

the number of Heads and the number of Cylinders may be calculated.

NOTE: The maximum number of Heads is 16. The number of large and floppy partitions are
definable by the user.

The following example aids in formatting a CDC 94211-5 Winchester.

 ? FRMT
 68K PDOS Force Disk Format Utility 07-Sep-88
 Possible Disk Controllers in this System are:
 Controller #1 is not defined
 Controller #2 is not defined
 Controller #3 is a Force ISCSI-1
 Controller #4 is a onboard CPU-40/41 SCSI
 Drives that are currently defined in system are:
 F0 is controller #4 , drive select $82
 F1 is controller #4 , drive select $83
 W0 is controller #4 , drive select $00

 All not named drives are undefined

 Select Menu: W,W0-W15=Winch; F,F0-F8=Floppy; Q=Quit
 Select Drive: W
 W0 Main Menu: 1)Parm 2)BadT 3)Form 4)Veri 5)Part 6)Writ
 P)Togl Q)Quit
 Command: 1

 W0 Parameters Menu: A)lter, D)isplay, R)ead file, Q)uit
 Command: A
 # of Heads = 10
 # of Cylinders = 1022
 Physical Blocks per Track = 32
 Physical Bytes per Block = 256
 Shipping Cylinder = 0
 Step rate = 0
 Reduced write current cyl = 0
 Write Precompensate cyl = 0

 Current Winch Drive 0 Parameters:
 # of Heads = 10
 # of Cylinders = 1022
 Physical Blocks per Track = 32
 Physical Bytes per Block = 256
 Shipping Cylinder = 0
 Step rate = 0
 Reduced write current cyl = 0
 Write Precompensate cyl = 0`

5-2

(cont'd)

 W0 Parameters Menu: A)lter, D)isplay, R)ead file, Q)uit
 Command: Q
 W0 Main Menu: 1)Parm 2)BadT 3)Form 4)Veri 5)Part 6)Writ
 P)Togl Q)Quit
 Command: 3
 Sector Interleave = 0
 Physical Tracks to FORMAT = 0,10219
 Ready to FORMAT Winchester Drive 0 ? Y
 Sector Interleave Table: 0,1,2,3,4,5,6,7,8,9,10,11,12,
 13,14,15,16,17,18,19,20,21,22,
 23,24,25,26,27,28,29,30,31

 Issuing Format Drive Command.
 FORMAT SUCCESSFUL !

 W0 Main Menu: 1)Parm 2)BadT 3)Form 4)Veri 5)Part 6)Writ
 P)Togl Q)Quit
 Command: 5
 W0 Partitions Menu: A)lter, D)isplay, R)ecalc, Q)uit
 Command: A
 # of Large partitions = 6
 # of Floppy Partitions = 15
 First track for PDOS Parts = 0
 Last track for PDOS Parts = 10219
 First PDOS disk # = 2

 Current Winch Drive 0 Partitions:
 # of Large partitions = 6
 # of Floppy Partitions = 15
 First track for PDOS Parts = 0
 Last track for PDOS Parts = 10219
 First PDOS disk # = 2
 Total # of Logical Tracks = 10220

 Disk # Logical Trks Physical Trks PDOS sectors
 Base,Top Base,Top Total/{boot}
 2 0,1502 0,1502 48064/47872
 3 1503,3005 1503,3005 48064/47872
 4 3006,4508 3006,4508 48064/47872
 5 4509,6011 4509,6011 48064/47872
 6 6012,7514 6012,7514 48064/47872
 7 7515,9017 7515,9017 48064/47872
 9 9018,9097 9018,9097 2528/2336
 10 9098,9177 9098,9177 2528/2336
 11 9178,9257 9178,9257 2528/2336
 12 9258,9337 9258,9337 2528/2336
 13 9338,9417 9338,9417 2528/2336
 14 9418,9497 9418,9497 2528/2336
 15 9498,9577 9498,9577 2528/2336
 16 9578,9657 9578,9657 2528/2336
 17 9658,9737 9658,9737 2528/2336
 18 9738,9817 9738,9817 2528/2336
 19 9818,9897 9818,9897 2528/2336
 20 9898,9977 9898,9977 2528/2336
 21 9978,10057 9978,10057 2528/2336
 22 10058,10137 10058,10137 2528/2336
 23 10138,10217 10138,10217 2528/2336

SECTION 7 INTRODUCTION TO VMEPROM

5-3

(cont'd)

 W0 Partitions Menu: A)lter, D)isplay, R)ecalc, Q)uit
 Command: Q
 W0 Main Menu: 1)Parm 2)BadT 3)Form 4)Veri 5)Part 6)Writ P)Togl
 Q)Quit
 Command: 6
 Write to Disk Y)es, N)o, F)ile : Y
 Write to file (Y/N)?N
 W0 Main Menu: 1)Parm 2)BadT 3)Form 4)Veri 5)Part 6)Writ P)Togl
 Q)Quit
 Command: Q
 Exit to Select Drive. Update Param RAM (Y/N) ? Y
 System Parameter RAM Updated!!
 Select Menu: W,W0-W15=Winch; F,F0-F8=Floppy; Q=Quit
 Select Drive: Q

After formatting the disk, all logical partitions must be initialized using the INIT command.
The example below may be used to initialize the large logical partition number two.

 ? INIT
 Enter Disk # :2
 Directory Entries :1024
 Number of sectors :47776
 Disk Name :SYSTEM
 Init: Disk # 2
 Directory entries: 1024
 Number of sectors: 47776
 Disk name: SYSTEM
 Initialize disk ? Y

 ?

APPENDIX TO THE
INTRODUCTION TO VMEPROM

A. VMEbus Board Setup . A-1

A1. VMEbus Memory . A-1
A2. SYS68K/SIO-1/SIO-2 . A-2
A3. SYS68K/ISIO-1/2 . A-3
A4. SYS68K/ISCSI-1 Disk Controller . A-4
A5. Local FDC and SCSI Controller . A-5
A6. Boards with a running Management Entity (ME) . A-6
A6.1 UART Driver . A-6
A6.1.1 Onboard EAGLE Module . A-6
A6.1.2 Offboard EAGLE Modules . A-7
A6.2 Disk Driver . A-8

B. S-Record Formats . B-1

B1. S-Record Types . B-1
B2. S-Record Example . B-2

C. System RAM Definitions . C-1

D. Task Control Block Definitions . D-1

E. Interrupt Vector Table of VMEPROM . E-1

F. Benchmark Source Code . F-1

G. Special Locations . G-1

H. Generation of Applications in EPROM . H-1

H1. General Information . H-1
H1.1 Replacing the User Interface . H-1

I. Introduction to the RAM Port . I-1

I.1 Accessing the RAM port through the ACI . I-1
I.1.1 Acquire the RAM port . I-2
I.1.2 Reading Data from the RAM port . I-3
I.1.3 Writing Data to the RAM port . I-4
I.2 Accessing the RAM Port from VMEPROM . I-5
I.3 The Internal Structure of the RAM Port . I-7

J. Minimum Demands for Device Driver Tasks in Order to Run with VMEPROM . . J-1

J.1 Device Driver Tasks for Serial Devices . J-1
J.2 Device Driver Tasks for Block Devices . J-4
J.2.1 Floppy Devices . J-4
J.2.2 SCSI Devices . J-9

SECTION 8 APPENDIX TO THE INTRODUCTION TO VMEPROM

 Please note that the printed UART and Disk Driver addresses are only examples. They may alternate according to software versions.1

A-1

APPENDIX A

A. VMEbus Board Setup

This appendix summarizes the changes to be made to the default setup of additional VMEbus boards so
that they are VMEPROM compatible. Appendices A.2 through A.6 are available in EPROM, but are not
installed. All drivers may be installed with the INSTALL command. When INSTALL followed by a question
mark is entered, the following will appear:1

? INSTALL ?

THE FOLLOWING UARTS AND DISK DRIVERS ARE ALREADY IN EPROM:

DISK DRIVER FORCE ISCSI-1 ADDR: $FF007300
DISK DRIVER FORCE IBC/ME ADDR: $FF004CC0
DISK DRIVER FORCE EAGLE/ME ADDR: $FF004E30
DISK DRIVER FORCE EAGLE-01C ADDR: $FF007FF0
UART DRIVER FORCE CPU-40/41/DUSCC ADDR: $FF004500
UART DRIVER FORCE SIO-1/2 ADDR: $FF004800
UART DRIVER FORCE ISIO-1/2 ADDR: $FF004C00
UART DRIVER FORCE IBC/ME ADDR: $FF008410
UART DRIVER FORCE EAGLE/ME ADDR: $FF008610
UART DRIVER FORCE UNIX MAIL ADDR: $FF005100
UART DRIVER FORCE LOCAL RAM port ADDR: $FF00EE7C

By typing in: INSTALL <file>,<address><cr> , a specific driver may be loaded in the system. The
addressed file should be located in EPROM.

A1. VMEbus Memory

In general, every FORCE memory board can be used together with VMEPROM. The base address must
be set correctly in order to use the board within the tasking memory of VMEPROM. The board base
addresses of any additional memory boards must be set to be contiguous to the on-board memory. It is
strongly recommended that only 32 bit memory boards are used because of speed purposes.

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

A-2

A2. SYS68K/SIO-1/SIO-2

These two serial I/O boards are set to the base address $B00000 by default. VMEPROM expects the first
SIO-1/SIO-2 boards at $FCB00000. This is in the standard VME address range (A24, D16, D8) with the
address $B00000. The address modifier decoder (AM-Decoder) of the SIO-1/2 boards must be set to:

Standard Privileged Data Access
Standard Nonpriviledged Data Access

Please refer to the SIO User's Manual for setup. If a second SIO-1/2 board will be used, the base address
must be set to FCB00200. The AM-decoder setup described above must again be used. Please refer to
the User's Manual of your SIO board for the address setup of the second SIO board. Before using the
driver for the SIO-1/2 board, the driver must be installed by using the INSTALL command. The following
must be entered:

? INSTALL U2,$FF004800

In order to install one of the ports of the SIO boards in VMEPROM, the BP command can be used. The
SIO-1/2 boards use the driver type 2. To install the first port of a SIO board with a 9600 baud rate, the
following command line can be used:

? BP 4, 9600, 2, $FCB00000

The port can then be used as port number 4. Please note that the hardware configuration must be detected
before a port can be installed. This can be done with the CONFIG command or by setting a front panel
switch on the CPU Board and pressing RESET. Please refer to the command description in the VMEPROM
User's Manual for a detailed description of the CONFIG and BP commands. The base addresses of all
ports of a SIO-1/2 board which must be specified with the BP command is as follows:

SIO port # Address

1 (first SIO board) $FCB00000
2 $FCB00040
3 $FCB00080
4 $FCB000C0
5 $FCB00100
6 $FCB00140
1 (second SIO board) $FCB00200
2 $FCB00240
3 $FCB00280
4 $FCB002C0
5 $FCB00300
6 $FCB00340

SECTION 8 APPENDIX TO THE INTRODUCTION TO VMEPROM

A-3

VMEPROM supports up to two serial I/O boards. These can be either the SIO-1/2 board, the ISIO-1/2
board, or a mixture of both. Please note that the first board of every type must be set to the first base
address. In using one SIO-1 board and one ISIO-1 board, the base address of the boards must to be set
to:

SIO-1 $FCB00000
ISIO-1 $FC960000

A3. SYS68K/ISIO-1/2

These serial I/O boards are set to the address $960000 in the standard VME address range by default.
VMEPROM awaits this board at this address (FC960000 for the CPU-40/41); no changes need to be made
to the default setup. An optional second board may be used. When used, the address must be set to
$980000. Read the SYS68K/ ISIO-1/2 User's Manual for a description of the base address setup. Before
using the driver for the ISIO-1/2 board, the driver must be installed by using the INSTALL command. The
following must be entered:

? INSTALL U3,$FF004C00

In order to install one of the ports of an ISIO board in VMEPROM, the BP command can be used. The
ISIO-1/2 boards are driver type 3. In order to install the first port of an ISIO board with a 9600 baud rate,
the following command line can be used:

? BP 4, 9600, 3, $FC968000

The port number is four. The hardware configuration must be detected before a port can be installed. This
is done with the CONFIG command, or by setting a front switch on the CPU board and pressing RESET.
Read the command description in the VMEPROM User's Manual for a description of the CONFIG and BP
commands. The base address of all ISIO-1/2 ports, specified by the BP command, is as follows:

ISIO port # Address

1 (first ISIO board) $FC968000
2 $FC968020
3 $FC968040
4 $FC968060
5 $FC968080
6 $FC9680A0
7 $FC9680C0
8 $FC9680E0
1 (second ISIO board) $FC988000
2 $FC988020
3 $FC988040
4 $FC988060
5 $FC988080
6 $FC9880A0
7 $FC9880C0
8 $FC9880E0
VMEPROM supports two serial I/O boards. These can be the SIO-1/2 or ISIO-1/2 board or mixture of both.
The first board of each type must be set to the first base address. When using one SIO-1 and one ISIO-1
board, the base address of the boards must be set to:

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

A-4

SIO-1 $FCB00000
ISIO-1 $FC960000

A4. SYS68K/ISCSI-1 Disk Controller

VMEPROM supports up to two floppy disk drives and three Winchester disk drives together with the ISCSI-1
disk controller. The floppy drives must be jumpered to drive select 3 and 4 and can be accessed as disk
number 0 and 1 out of VMEPROM. The floppy drives are installed automatically when a ISCSI-1 controller
is detected by the CONFIG command or after pressing RESET when the front panel switch of the CPU
board is set to detect the hardware configuration. Usable floppy drives must support 80 tracks/side, and
must be double sided/double density. The step rate used is 3 ms. The Winchester drives are not installed
automatically. The VMEPROM FRMT command must be used for defining the following factors:

! The physical structure of the drive (i.e. number of heads, number of cylinders, drive select number,
etc.)

! The bad block of the Winchester drive

! The partitions to be used

If this setup is done once for a particular drive, the data is stored in the first sector of the Winchester and
is loaded automatically when the disk controller is installed in VMEPROM. The driver for the ISCSI-1 may
be installed by using the INSTALL command. The following must be entered:

? INSTALL W,$FF007300

The default base address of the ISCSI-1 controller is $A00000 in the standard VME address range. This
is the address $FCA00000 for the CPU board and no changes have to be made to this setup. The ISCSI-1
driver uses interrupts by default. This cannot be disabled. Please make sure that the interrupt daisy chain
is closed so that the controller can work properly.

SECTION 8 APPENDIX TO THE INTRODUCTION TO VMEPROM

 Only if the floppy drive is able to generate or read this signal.2

 DITO3

 DITO4

A-5

A5. Local FDC and SCSI Controller

NOTE: The following chapter only applies to those CPU boards which contain an
installed EAGLE-01C Module .

VMEPROM supports up to two floppy disk drives and three Winchester disk drives together with the local
FDC and SCSI Controller. The floppy drives are installed automatically.

Here are the required floppy drive settings:

! Drive select 2(0) or 3(1); VMEPROM access drive select 2 as disk 0 and drive select 3 as
disk 1

! Head Load is to be executed if Motor On and Drive Select is TRUE.

! Pin 34 of the floppy interface should select the Disk Change signal.2

! Pin 2 of the floppy interface selects high or normal density. When this signal is "low level", it3

designates normal density mode. VMEPROM only operates under normal density.

! Pin 4 should be the Eject signal.4

The step rate used is 3 ms.

The Winchester drives are not installed automatically.

The VMEPROM FRMT command must be used for defining the following factors:

! The physical structure of the drive (i.e. number of heads, number of cylinders, drive select number,
etc.)

! The bad block of the Winchester drive

! The partitions to be used

If this setup is done once for a particular drive, the data is stored in the first sector of the Winchester and
is loaded automatically when the disk controller is installed in VMEPROM. Upon viewing the VMEPROM
Banner, the driver for the local FDC and SCSI controller is already installed. For this driver, memory is
needed for hashing. The storage for the hashing buffers is allocated at the top of memory.

SYS68K/CPU-39 USER'S MANUAL FORCE COMPUTERS

A-6

A6. Boards with a running Management Entity (ME)

Four drivers are included in VMEPROM which manage the communication with the ME, two disk drivers
and two UART drivers. Two of each type are necessary because one controls the onboard EAGLE
module(s) and the other controls offboard modules. The driver for offboard modules searches for every
board in the system (except itself) and installs as many devices as the driver can handle. To ensure that
the driver can find all IBC boards in system, their base addresses must be set according to the following
table.

Slot # Base Address

1 $80000000

2 $84000000

3 $88000000

4 $8C000000

. .

. .

. .

21 $D0000000

A6.1 UART Driver

A6.1.1 Onboard EAGLE Module

To install the UART driver, type:

? INSTALL U7,$FF008610

The UART driver can handle up to 64 serial ports. However, the kernel only allows up to 15 ports. To select
a specific port use the BP command. The BP command expects a UART base address. This address is
a logical address starting with $1 for the first serial device. The second serial device gets a logical address
$2 and so on. For example, when an EAGLE module has 3 serial channels their logical addresses are $1,
$2 and $3. To inform the kernel about the second channel, type:

? BP $1905,1,7,$2

Now port 5 is connected to the second serial device on the EAGLE module. The baud rate is set to 9600
baud. The handshake is set to XON/XOFF.

SECTION 8 APPENDIX TO THE INTRODUCTION TO VMEPROM

A-7

A6.1.2 Offboard EAGLE Modules

To install the UART driver, type:

? INSTALL U8,$FF008410

Now the driver searches for up to 21 boards in the system if there is a ME running on it. Every serial device
is installed. Additionally, the RAM port of every board with a ME is installed.

The UART driver can handle up to 64 serial ports. However, the kernel only allows up to 15 ports. To
select a specific port use the BP command. The BP command expects a UART base address. This
address is a logical address, $1 for the first physical serial device, $2 for the second and so on. The logical
address of the RAM port is always the base address of the currently installed board.

The following is an example where a system contains 3 IBC-20 cards.

The first IBC-20 has an EAGLE with 3 serial channels; the IBC-20 base address is $84000000. The second
has no serial device; the IBC-20 base address is $B4000000. The third has two EAGLE modules with 6
serial channels; the IBC-20 base address is $B8000000.

SYS68K/CPU-39 USER'S MANUAL FORCE COMPUTERS

A-8

After the INSTALL command the driver knows 12 serial channels.

Logical Address UART

$84000000 RAM port of the first IBC-20

$00000001 The first serial channel of the first IBC

$00000002 The second serial channel of the first IBC-20

$00000003 The third serial channel of the first IBC-20

$B4000000 RAM port of the second IBC-20

$B8000000 RAM port of the third IBC-20

$00000004 The first serial channel of the third IBC-20

$00000005 The second serial channel of the third IBC-20

$00000006 The third serial channel of the third IBC-20

$00000007 The fourth serial channel of the third IBC-20

$00000008 The fifth serial channel of the third IBC-20

$00000009 The sixth serial channel of the third IBC-20

To inform the kernel about the second channel of the third IBC-20, type:

? BP $1905,1,8,$5

Now port 5 is connected to the second serial device on the EAGLE module. The baud rate is set to 9600
baud. The handshake is set to XON/XOFF.

A6.2 Disk Driver

VMEPROM supports up to two floppy disk drives and up to four hard disk drives per driver. The first floppy
controller and every hard disk controller which is found on the EAGLE Module(s) are installed (up to the limit
of four hard disk drives). Hard disks must have a valid partition table on the first physical block. If none
is found a default partition table is used. The VMEPROM FRMT command must be used to define the
partitions.

Depending on the device driver task the disk access can be cached. Therefore, not every data which is
written to the disk from VMEPROM must be written to the hard disk. The FLUSH command of VMEPROM
is used to be sure that all data is written to every hard disk.

The driver for onboard EAGLE Modules automatically is installed after power up, while the offboard driver
must be installed with the command:

? INSTALL W,$FF004CC0

SECTION 8 APPENDIX TO THE INTRODUCTION TO VMEPROM

B-1

APPENDIX B

B. S-Record Formats

B1. S-Record Types

Eight types of S-records have been defined to accommodate the needs of the encoding, transportation and
decoding functions. VMEPROM supports S0, S1, S2, S3, S7, S8 and S9 records (S7 and S8 on load only).

An S-record format module may contain S-records of the following types:

S0 The header record for each block of S-records.

S1 A record containing code/data and the 2-byte address at which the code/data is to reside.

S2 A record containing code/data and the 3-byte address at which the code/data is to reside.

S3 A record containing code/data and the 4-byte address at which the code/data is to reside.

S5 A record containing the number of S1, S2 and S3 records transmitted in a particular block. The
count appears in the address field. There is no code/data field. Not supported by VMEPROM.

S7 A termination record for a block of S3 records. The address field may optionally contain the 4-byte
address of the instruction to which control is to be passed. There is no code/data field.

S8 A termination record for a block of S2 records. The address field may optionally contain the 3-byte
address of the instruction to which control is to be passed. There is no code/data field.

S9 A termination record for a block of S1 records. The address field may optionally contain the 2-byte
address of the instruction to which control is to be passed.

Only one termination record is used for each block of S-records. S7 and S8 records are usually used only
when control is to be passed to a 3 or 4 byte address. Normally, only one header record is used, although
it is possible for multiple header records to occur.

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

B-2

B2. S-Record Example

S214020000000004440002014660000CB241F8044CB1
S214020010203C0000020E428110C1538066FA487AE4
S214020020001021DF0008487A001221DF000C4E750E
S21402003021FC425553200030600821FC41444452C2

 XX.- Check-sum
 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX)))) Data
 0200XX)))))))))))))))))))))))))))))))))))) 24 bit Address
 14)) Byte Count
S2))) Record Type

S9030000FC

 FC)))))))))))))))))))))))))))))))))))) Check-sum
 0000)))))))))))))))))))))))))))))))))))))) Data
 03)) Byte Count
S9))) Record Type

SECTION 8 APPENDIX TO THE INTRODUCTION TO VMEPROM

C-1

APPENDIX C

C. System RAM Definitions

/* SYRAM:H -- DEFINITION OF SYRAM BLOCK OF MEMORY
 05-Jan-88 Revised to correspond to PDOS 3.3
 BRIAN C. COOPER, EYRING RESEARCH INSTITUTE, INC.
 Copyright 1985-1988
*/
#define NT 64 /* number of tasks */
#define NM ((NT+3)&0xFC) /* number of task messages */
#define NP 16 /* number of task message pointers */
#define ND ((NT+3)&0xFC) /* number of delay events */
#define NC 8 /* number of active channel buffers */
#define NF 64 /* number of file slots */
#define NU 15 /* number of I/O UART ports */
#define IZ 6 /* input buffer size (2^p2p. */
#define MZ 0x4000000 /* maximum memory size */
#define TZ 64 /* task message size */

#define NTB NT
#define NTM NM
#define NTP NP
#define NCB NC
#define NFS NF
#define NEV ND
#define NIE (ND/2)
#define NPS (NU+1)
#define P2P IZ
#define MMZ MZ
#define TMZ TZ

#define IMK (0xFF>>(8-P2P)) /* input buffer wrap around mask */
#define NCP ((1<<P2P)+2) /* (# characters/port) + 2 */
#define MPZ 2048 /* memory page size */
#define MBZ (MMZ/MPZ) /* memory bitmap size */
#define NMB (MBZ/8) /* number of map bytes */
#define FSS 38 /* file slot size */
#define TQB 2 /* TCB index */
#define TQM (TQB+4) /* map index */
#define TQE (TQM+2) /* event #1 / event #2 */
#define TQS (TQE+2) /* scheduled event */
#define TBZ (TQS+2+4) /* TASK entry size */
#define BPS 256 /* bytes per sector */
#define NRD 4 /* number of RAM disks */

struct SYRAM{
/*000*/ char *_bios; /* address of bios rom */
/*004*/ char *_mail; /* *mail array address */
/*008*/ unsigned int _rdkn; /* *ram disk # */
/*00A*/ unsigned int _rdks; /* *ram disk size */
/*00C*/ char *_rdka; /* *ram disk address */
/*010*/ char _bflg; /* basic present flag */
/*011*/ char _dflg; /* directory flag */
/*012*/ int _f681; /* 68000/68010 flag */
/*014*/ char *_sram; /* run module B$SRAM */
/*018*/ int spare1; /* reserved for expansion */
/*01A*/ int _fcnt; /* fine counter */
/*01C*/ long _tics; /* 32 bit counter */
/*020*/ unsigned char _smon; /* month */
/*021*/ unsigned char _sday; /* day */
/*022*/ unsigned char _syrs[2]; /* year */
/*024*/ unsigned char _shrs; /* hours */
/*025*/ unsigned char _smin; /* minutes */
/*026*/ unsigned char _ssec[2]; /* seconds */
/*028*/ char _patb[16]; /* input port allocation table */
/*038*/ char _brkf[16]; /* input break flags */
/*048*/ char _f8bt[16]; /* port flag bits */
/*058*/ char _utyp[16]; /* port uart type */
/*068*/ char _urat[16]; /* port rate table */

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

C-2

C. System RAM Definitions (cont'd)
/*078*/ char _evtb[10]; /* 0-79 event table */
/*082*/ char _evto[2]; /* 80-95 output events */
/*084*/ char _evti[2]; /* 96-111 input events */
/*086*/ char _evts[2]; /* 112-127 system events */
/*088*/ char _ev128[16]; /* task 128 events */
/*098*/ long _evtm[4]; /* events 112-115 timers */
/*0A8*/ long _bclk; /* clock adjust constant */
/*0AC*/ char *_tltp; /* task list pointer */
/*0B0*/ char *_utcb; /* user tcb ptr */
/*0B4*/ int _suim; /* supervisor interrupt mask */
/*0B6*/ int _usim; /* user interrupt mask */
/*0B8*/ char _sptn; /* spawn task no. (** must be even **) */
/*0B9*/ char _utim; /* user task time */
/*0BA*/ char _tpry; /* task priority (** must be even **) */
/*0BB*/ char _tskn; /* current task number */
/*0BC*/ char spare2; /* reserved */
/*0BD*/ char _tqux; /* task queue offset flag/no */
/*0BE*/ char _tlck[2]; /* task lock/reschedule flags */
/*0C0*/ char _e122; /* batch task # */
/*0C1*/ char _e123; /* spooler task # */
/*0C2*/ char _e124;
/*0C3*/ char _e125;
/*0C4*/ long _cksm; /* system checksum */
/*0C8*/ int _pnod; /* pnet node # */
/*0CA*/ char bser[6]; /* bus error vector */
/*0D0*/ char iler[6]; /* illegal vector */
/*0D6*/ char ccnt[16]; /* control C count */
/*0E6*/ char *_wind; /* window id's */
/*0EA*/ char *_wadr; /* window addresses */
/*0EE*/ char *_chin; /* input stream */
/*0F2*/ char *_chot; /* output stream */
/*0F6*/ char *_iord; /* i/o redirect */
/*0FA*/ char _fect; /* file expand count */
/*0FB*/ char _pidn; /* processor ident byte */
/*0FC*/ long *_begn; /* abs addr of K1$BEGN table */
/*100*/ int _rwcl[14]; /* port row/col 1..15 */
/*11C*/ char *_opip[15]; /* output port pointers 1..15 */
/*158*/ char *_uart[16]; /* uart base addresses 1..15 */
/*198*/ long _mapb; /* memory map bias */
/* */
/* the following change with different configurations: */
/* configuration for VMEPROM is defined to: */
/* NT = 64, NF = 64, MZ = $400000 */
/* */
/* NOTE: the offset on top of each line is calculated only for this */
/* configuration */
/* */
/*019C*/ char _maps[NMB]; /* system memory bitmap */
/*119C*/ char _port[(NPS-1)*NCP]; /* character input buffers */
/*157A*/ char _iout[(NPS-1)*NCP]; /* character output buffers */
/*1958*/ char rdtb[16]; /* redirect table */
/*1968*/ int _tque[NTB+1]; /* task queue */
/*19EA*/ char _tlst[NTB*TBZ]; /* task list */
/*1DEA*/ char _tsev[NTB*32]; /* task schedule event table */
/*25EA*/ long _tmtf[NTM]; /* to/from/INDEX.W */
/*26EA*/ char _tmbf[TMZ*NTM]; /* task message buffers */
/*36EA*/ char _tmsp[NTP*6]; /* task message pointers */
/*374A*/ char _deiq[2+8+NIE*10]; /* delay event insert queue */
/*3894*/ char _devt[2+NEV*10]; /* delay events */
/*3B16*/ int _bsct[32]; /* basic screen command table */
/*3B56*/ int _xchi[NCB]; /* channel buffer queue */
/*3B66*/ char _xchb[NCB*BPS]; /* channel buffers */
/*4366*/ char _xfsl[NFS*FSS]; /* file slots */
/*4CE6*/ char _l2lk; /* level 2 lock (file prims, evnt 120) */
/*4CE7*/ char _l3lk; /* level 3 lock (disk prims, evnt 121) */
/*4CE8*/ long _drvl; /* driver link list entry point */
/*4CEC*/ long _utll; /* utility link list entry point */
/*4CF0*/ int _rdkl[NRD*4 + 1]; /* RAM disk list */
};

SECTION 8 APPENDIX TO THE INTRODUCTION TO VMEPROM

D-1

APPENDIX D

D. Task Control Block Definitions

#define MAXARG 10 /* max argument count of the cmd line */
#define MAXBP 10 /* max 10 breakpoints */
#define MAXNAME 5 /* max 5 names in name buffer */
#define TMAX 64 /* Max number of tasks */
#define ARGLEN 20 /* maximum argument length */

/* special system flags for VMEPROM */

#define SOMEREG 0x0001 /* display only PC,A7,A6,A5 */
#define T_DISP 0x0002 /* no register display during trace(TC>1) */
#define T_SUB 0x0004 /* trace over subroutine set */
#define T_ASUB 0x0008 /* trace over subroutine active */
#define T_RANG 0x0010 /* trace over range set */
#define REG_INI 0x0020 /* no register initialization if set */
#define RE_DIR 0x0040 /* output redirection into file and */
 /* console at the same time */

/* the registers are stored in the following order: */
#define VBR 0
#define SFC 1
#define DFC 2
#define CACR 4
#define PC 5
#define SR 6
#define USTACK 7
#define SSTACK 8
#define MSTACK 9
#define D0 10 /* 10-17 = D0-D7 */
#define A0 18 /* 18-24 = A0-A6 */

#define N_REGS 25

#define BYTE unsigned char
#define WORD unsigned int
#define LWORD unsigned long

struct TCB{

/*000*/ char _ubuf[256]; /* 256 byte user buffer */
/*100*/ char _clb[80]; /* 80 byte monitor command line buffer */
/*150*/ char _mwb[32]; /* 32 byte monitor parameter buffer */
/*170*/ char _mpb[60]; /* monitor parameter buffer */
/*1AC*/ char _cob[8]; /* character out buffer */
/*1B4*/ char _swb[508]; /* system work buffer/task pdos stack */
/*3B0*/ char *_tsp; /* task stack pointer */
/*3B4*/ char *_kil; /* kill self pointer */
/*3B8*/ long _sfp; /* RESERVED FOR INTERNAL PDOS USE */
/*3BC*/ char _svf; /* save flag -- 68881 support (x881) */
/*3BD*/ char _iff; /* RESERVED FOR INTERNAL PDOS USE */
/*3BE*/ long _trp[16]; /* user TRAP vectors */
/*3FE*/ long _zdv; /* zero divide trap */
/*402*/ long _chk; /* CHCK instruction trap */
/*406*/ long _trv; /* TRAPV Instruction trap */

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

D-2

D. Task Control Block Definitions (cont'd)

/*40A*/ long _trc; /* trace vector */
/*40E*/ long _fpa[2]; /* floating point accumulator */
/*416*/ long *_fpe; /* fp error processor address */
/*41A*/ char *_clp; /* command line pointer */
/*41E*/ char *_bum; /* beginning of user memory */
/*422*/ char *_eum; /* end user memory */
/*426*/ char *_ead; /* entry address */
/*42A*/ char *_imp; /* internal memory pointer */
/*42E*/ int _aci; /* assigned input file ID */
/*430*/ int _aci2; /* assigned input file ID's */
/*432*/ int _len; /* last error number */
/*434*/ int _sfi; /* spool file id */
/*436*/ BYTE _flg; /* task flags (bit 8=command line echo) */
/*437*/ BYTE _slv; /* directory level */
/*438*/ char _fec; /* file expansion count */
/*439*/ char _spare1; /* reserved for future use */
/*43A*/ char _csc[2]; /* clear screen characters */
/*43C*/ char _psc[2]; /* position cursor characters */
/*43E*/ char _sds[3]; /* alternate system disks */
/*441*/ BYTE _sdk; /* system disk */
/*442*/ char *_ext; /* XEXT address */
/*446*/ char *_err; /* XERR address */
/*44A*/ char _cmd; /* command line delimiter */
/*44B*/ BYTE _tid; /* task id */
/*44C*/ char _ecf; /* echo flag */
/*44D*/ char _cnt; /* output column counter */
/*44E*/ char _mmf; /* memory modified flag */
/*44F*/ char _prt; /* input port # */
/*450*/ char _spu; /* spooling unit mask */
/*451*/ BYTE _unt; /* output unit mask */
/*452*/ char _u1p; /* unit 1 port # */
/*453*/ char _u2p; /* unit 2 port # */
/*454*/ char _u4p; /* unit 4 port # */
/*455*/ char _u8p; /* unit 8 port # */
/*456*/ char _spare2[26]; /* reserved for system use */

/**/
/* VMEPROM variable area */
/**/

/*470*/ char linebuf[82]; /* command line buffer */
/*4C2*/ char alinebuf[82]; /* alternate line buffer */
/*514*/ char cmdline[82]; /* alternate cmdline for XGNP */
/*566*/ int allargs, gotargs; /* argc save and count for XGNP */
/*56A*/ int argc; /* argument counter */
/*56C*/ char *argv[MAXARG]; /* pointer to arguments of the cmd line */
/*594*/ char *odir, *idir; /* I/O redirection args from cmd line */
/*59C*/ int iport,oport; /* I/O port assignments */
/*5A0*/ char *ladr; /* holds pointer to line in_mwb */
/*5A4*/ LWORD offset; /* base memory pointer */
/*5A8*/ int bpcnt; /* num of defined breakpoints */
/*5AA*/ LWORD bpadr[MAXBP]; /* breakpoint address */
/*5D2*/ WORD bpinst[MAXBP]; /* breakpoint instruction */
/*5E6*/ char bpcmd[MAXBP][11]; /* breakpoint command */

SECTION 8 APPENDIX TO THE INTRODUCTION TO VMEPROM

D-3

D. Task Control Block Definitions (cont'd)

/*654*/ WORD bpocc[MAXBP]; /* # of times the breakpoint should be */
 /* skipped */
/*668*/ WORD bpcocc[MAXBP]; /* # of times the breakpoint is already */
 /* skipped */
/*67C*/ LWORD bptadr; /* temp. breakpoint address */
/*680*/ WORD bptinst; /* temp. breakpoint instruction */
/*682*/ WORD bptocc; /* # of times the temp. breakpoint should */
 /* be skipped */
/*684*/ WORD bptcocc; /* # of times the temp. breakpoint is */
 /* already skipped */
/*686*/ char bptcmd[11]; /* temp. breakpoint command */
/*691*/ char outflag; /* output messages (yes=1,no=0) */
/*692*/ char namebn[MAXNAME][8]; /* Name buffer, name */
/*6BA*/ char namebd[MAXNAME][40]; /* Name buffer, data */
/*782*/ WORD errcnt; /* error counter for test .. */
/*784*/ LWORD times,timee; /* start/end time */
/*78C*/ LWORD pregs[N_REGS]; /* storage area of processor regs */
/*7F0*/ WORD tflag; /* trace active flag */
/*7F2*/ WORD tcount; /* trace count */
/*7F4*/ WORD tacount; /* active trace count */
/*7F6*/ WORD bpact; /* break point active flag */
/*7F8*/ LWORD savesp; /* save VMEprom stack during GO/T etc */
/*7FC*/ char VMEMSP[202]; /* Master stack, handle w/ care */
/*8C6*/ char VMESSP[802]; /* supervisor stack, handle w/ care */
/*BE8*/ char VMEPUSP[802]; /* vmeprom internal user stack */
/*F0A*/ LWORD f_fpreg[3*8]; /* floating point data regs */
/*F6A*/ LWORD f_fpcr; /* FPCR reg */
/*F6E*/ LWORD f_fpsr; /* FPSR reg */
/*F72*/ LWORD f_fpiar; /* FPIAR reg */
/*F76*/ BYTE f_save[0x3c]; /* FPSAVE for null and idle */
/*FB2*/ BYTE cleos[2]; /* clear to end of screen parameter */
/*FB4*/ BYTE cleol[2]; /* clear to end of line parameters */
/*FB6*/ char u_prompt[10]; /* user defined prompt sign */
/*FC0*/ long c_save; /* save Cache control register */
/*FC4*/ long exe_cnt; /* execution count */
/*FC8*/ BYTE nokill; /* kill task with no input port */
/*FC9*/ BYTE u_mask; /* unit mask for echo */
/*FCA*/ WORD sysflg; /* system flags used by VMEPROM */
 /* bit 0: display registers short form */
 /* bit 1: trace without reg. display */
 /* bit 2: trace over subroutine */
 /* bit 3: trace over subroutine active */
 /* bit 4: trace over range */
 /* bit 5: no register initialization */
 /* bit 6: output redirection into file */
 /* and console at the same time */
/*FCC*/ LWORD t_range[2]; /* start/stop PC for trace over range */
/*FD4*/ LWORD ex_regs; /* pointer to area for saved regs */
/*FD8*/ BYTE sparend[0x1000-0xFD8]; /* make tcb size $1000 bytes */
 char _tbe[0]; /* task beginning */
};

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

D-4

This page was intentionally left blank

SECTION 8 APPENDIX TO THE INTRODUCTION TO VMEPROM

E-1

APPENDIX E

E. Interrupt Vector Table of VMEPROM

Vector Vector
Number/s HEX Assignment

 0 000 Reset: Initial Interrupt Stack Pointer
 1 004 Reset: Initial Program Counter
 2 008 Bus Error
 3 00C Address Error
 4 010 Illegal Instruction
 5 014 Zero Divide
 6 018 CHK, CHK2 Instruction
 7 01C FTRAPcc, TRAPcc, TRAPV Instructions
 8 020 Privilege Violation
 9 024 Trace
10 028 VMEPROM System Calls
11 02C Coprocessor Instructions
12 030 (Unassigned, Reserved)
13 034 Not used
14 038 Format Error
15 03C Uninitialized Interrupt
16 040 ,

THROUGH /< (Unassigned, Reserved)
23 05C -
24 060 Spurious Interrupt
25 064 AV1
26 068 AV2
27 06C AV3
28 070 AV4
29 074 AV5
30 078 AV6
31 07C AV7
32 080 ,

THROUGH /< TRAP #0-15 Instruction Vectors
47 OBC -
48 0C0 FPCP Branch or Set on Unordered Condition
49 0C4 FPCP Inexact Result
50 0C8 FPCP Divide by Zero
51 0CC FPCP Underflow
52 0D0 FPCP Operand Error
53 0D4 FPCP Overflow
54 0D8 FPCP Signaling NAN
55 0DC FPCP Unimplemented Data Type
56 0E0 PMMU Configuration
57 0E4 PMMU Illegal Operation
58 0E8 PMMU Access Level Violation
59 0EC ,

THROUGH /< Unassigned, Reserved
63 0FC -
64 100 ,

THROUGH /< SIO-1/2 Interrupt Vectors
75 12C -
76 130 ,

THROUGH /< ISIO-1/2 Interrupt Vectors
83 14C -

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

E-2

cont'd.....

Vector Vector
Number/s HEX Assignment

84 150 ,
THROUGH /< User Defined

118 ID8 -
119 IDC Disk Interrupt Vector
120 1E0 ,

THROUGH /< User Defined
127 1FC -
128 200 ,

THROUGH /< Vector numbers for up to 4 FC68165s
191 2FC -
192 300 Mailbox 0 (Used from the ME)
193 304 Mailbox 1
194 308 Mailbox 2
195 30C Mailbox 3 (Reserved)
196 310 Mailbox 4 (Used from the EAGLE UART driver)
197 314 Mailbox 5 (Used from the IBC UART driver)
198 318 Mailbox 6 (Used from the EAGLE disk driver)
199 31C Mailbox 7 (Used from the IBC disk driver)
200 320 ,

THROUGH /< Reserved
223 37C -
224 380 Timer
225 384 Reserved
226 388 Reserved
227 38C Reserved
228 390 FMB1 Refused
229 394 FMB0 Refused
230 398 FMB1 Message
231 39C FMB0 Message
232 3A0 ABORT
233 3A4 ACFAIL*
234 3A8 SYSFAIL*
235 3AC DMA Error
236 3B0 DMA Normal
237 3B4 PARITY Error
238 3B8 Reserved
239 3BC Reserved
240 3C0 LOCAL1
241 3C4 LOCAL2
242 3C8 LOCAL3
243 3CC LOCAL4
244 3D0 LOCAL5
245 3D4 LOCAL6
246 3D8 LOCAL7
247 3DC LOCAL8
248 3E0 ,

THROUGH /< Reserved
254 3F4 -
255 3FC Empty Interrupt

SECTION 8 APPENDIX TO THE INTRODUCTION TO VMEPROM

F-1

APPENDIX F

F. Benchmark Source Code

** Module name: Assembler benchmarks Version: 1.0 **
** date started: 20-Apr-87 M.S. last update: 23-Apr-87 M.S. **
** Copyright (c) 1986/87 FORCE Computers GmbH Munich **

*
 section 0
 opt alt,P=68020,P=68881
 xdef .benchex
 xdef .BEN1BEG,.BEN1END
 xdef .BEN2BEG,.BEN2END
 xdef .BEN3BEG,.BEN3END
 xdef .BEN4BEG,.BEN4END
 xdef .BEN5BEG,.BEN5END
 xdef .BEN6BEG,.BEN6END
 xdef .BEN7BEG,.BEN7END
 xdef .BEN8BEG,.BEN8END
 xdef .BEN9BEG,.BEN9END
 xdef .BEN10BEG,.BEN10END
 xdef .BEN11BEG,.BEN11END
 xdef .BEN12BEG,.BEN12END
 xdef .BEN13BEG,.BEN13END
 xdef .BEN14BEG,.BEN14END
 page
*
* benchmark execution: benchex(address)
*
 movem.l d1-a6,-(a7)
 move.l 15*4(a7),a0
 jsr (a0)
 movem.l (a7)+,d1-a6
 rts
*
* BENCH #1: DECREMENT LONG WORD IN MEMORY 10.000.000 TIMES
*
 LEA.L @010(PC),A0
 MOVE.L #10000000,(A0)
@020 SUBQ.L #1,(A0)
 BNE.S @020
 RTS
@010 DS.L 1

*
* BENCH #2: PSEUDO DMA 1K BYTES 50.000 TIMES
*
 MOVE.L #50000,D2 ; DO 50000 TRANSFERS
@001 MOVE.W #$FF,D3 ; EACH IS 1K BYTES
 LEA.L @010(PC),A1 ; A1 POINTS TO SOURCE AND DESTINATION
@002 MOVE.L (A1),(A1)+
 DBRA D3,@002
 SUBQ.L #1,D2
 BNE.S @001
 RTS
 NOP
@010 NOP
 PAGE

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

F-2

(cont'd)

*
* BENCH #3: SUBSTRING CHARACTER SEARCH 100.000 TIMES TAKEN FROM EDN 08/08/85
*
*
 MOVE.L #100000,D4
@002 MOVE.L #15,D0
 MOVE.L #120,D1
 LEA.L EDN1DAT(PC),A1
 LEA.L EDN1DAT1(PC),A0
 BSR.S EDN1
 SUBQ.L #1,D4
 BNE.S @002
 RTS
*
****** BEGIN EDN BENCH #1 *******
EDN1 MOVEM.L D3/D4/A2/A3,-(A7)
 SUB.W D0,D1
 MOVE.W D1,D2
 SUBQ.W #2,D0
 MOVE.B (A0)+,D3
@010 CMP.B (A1)+,D3
@012 DBEQ D1,@010
 BNE.S @090
 MOVE.L A0,A2
 MOVE.L A1,A3
 MOVE.W D0,D4
 BMI.S @030
@020 CMP.B (A2)+,(A3)+
 DBNE D4,@020
 BNE.S @012
@030 SUB.W D1,D2
@032 MOVEM.L (A7)+,D3/D4/A2/A3
 RTS
@090 MOVEQ.L #-1,D2
 BRA.S @032

******* END EDN BENCH #1 *******
EDN1DAT DC.B '000000000000000000000000000000'
 DC.B '000000000000000000000000000000'
EDN1DAT1 DC.B 'HERE IS A MATCH000000000000000'
 PAGE

*
* BENCH #4: BIT TEST/SET/RESET 100.000 TIMES TAKEN FROM EDN 08/08/85
*
 MOVE.L #100000,D4
 LEA.L EDN2DAT(PC),A0
@010 MOVEQ.L #1,D0 ; TEST
 MOVEQ.L #10,D1
 BSR.S EDN2
 MOVEQ.L #1,D0
 MOVEQ.L #11,D1
 BSR.S EDN2
 MOVEQ.L #1,D0
 MOVE.W #123,D1
 BSR.S EDN2
 MOVEQ.L #2,D0 ; SET
 MOVEQ.L #10,D1
 BSR.S EDN2

SECTION 8 APPENDIX TO THE INTRODUCTION TO VMEPROM

F-3

(cont'd)

 MOVEQ.L #1,D0
 MOVEQ.L #11,D1
 BSR.S EDN2
 MOVEQ.L #1,D0
 MOVE.W #123,D1
 BSR.S EDN2
 MOVEQ.L #3,D0 ; RESET
 MOVEQ.L #10,D1
 BSR.S EDN2
 MOVEQ.L #1,D0
 MOVEQ.L #11,D1
 BSR.S EDN2
 MOVEQ.L #1,D0
 MOVE.W #123,D1
 BSR.S EDN2
 SUBQ.L #1,D4
 BNE.S @010
 RTS
*
EDN2 SUB.W #2,D0
 BEQ.S @020
 SUBQ.W #1,D0
 BEQ.S @030

@010
* BFTST (A0){D1:1}
 DC.W $E8D0
 DC.W $0841
 SNE D2
 RTS

@020
* BFSET (A0){D1:1}
 DC.W $EED0
 DC.W $0841
 SNE D2
 RTS
@030
* BFTST (A0){D1:1}
 DC.W $E8D0
 DC.W $0841
 SNE D2
 RTS
EDN2DAT DC.L 0,0,0,0
 PAGE
*
* BENCH #5: BIT MATRIX TRANSPOSITION 100.000 TIMES
* TAKEN FROM EDN 08/08/85
*
 MOVE.L #100000,D4
 LEA.L EDN3DAT(PC),A0
@002 MOVE.L #7,D0
 MOVEQ.L #0,D1
 BSR.S EDN3
 SUBQ.L #1,D4
 BNE.S @002
 RTS

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

F-4

(cont'd)

*
EDN3 MOVEM.L D1-D7,-(A7)
 MOVE.L D1,D2
 MOVE.W D0,D7
 SUBQ.W #2,D7
@010 ADDQ.L #1,D1
 MOVE.L D1,D3
 ADD.L D0,D2
 MOVE.L D2,D4
@020
 BFEXTU (A0){D3:1},D5
 BFEXTU (A0){D4:1},D6
 BFINS D5,(A0){D4:1}
 BFINS D6,(A0){D3:1}
 ADD.L D0,D3
 ADDQ.L #1,D4
 CMP.L D3,D4
 BNE.S @020
 DBRA D7,@010
 MOVEM.L (A7)+,D1-D7
 RTS
EDN3DAT DC.B %01001001
 DC.B %01011100
 DC.B %10001110
 DC.B %10100101
 DC.B %00000001
 DC.B %01110010
 DC.B %10000000
 EVEN
 PAGE
*
* BENCH #6: CACHE TEST - 128KB PROGRAM IS EXECUTED 1000 TIMES
* CAUTION: THIS BENCHMARK NEEDS 128 KBYTE MEMORY
*
 LEA.L @010(PC),A2
 MOVE.L #$203A0000,D1 ; OPCODE FOR MOVE.L ($0,PC),D0
 MOVE.L #$20000/4,D2 ; LENGTH IS 128 KBYTE
@004 MOVE.L D1,(A2)+ ; LOAD OPCODE TO MEMORY
 SUBQ.L #1,D2
 BNE.S @004
 MOVE.W #$4E75,(A2) ; APPEND RTS
* PROGRAM IS NOW LOADED -- START 1000 TIMES
 MOVE.L #1000,D3
@008 BSR.S @010
 SUBQ.L #1,D3
 BNE.S @008
 RTS
*
@010 DC.L 0 ; PROGRAM WILL START HERE
 PAGE
*
* BENCH #7: FLOATING POINT 1.000.000 ADDITIONS
*
 MOVE.L #1000000,D5
 FMOVE.L #0,FP0
 FMOVE.L #1,FP1
@010 FADD.X FP0,FP1
 SUBQ.L #1,D5
 BNE.S @010
 RTS

SECTION 8 APPENDIX TO THE INTRODUCTION TO VMEPROM

F-5

(cont'd)

*
* BENCH #8: FLOATING POINT 1.000.000 SINUS
*
 MOVE.L #1000000,D5
 FMOVE.L #1,FP1
@010 FSIN.X FP1
 SUBQ.L #1,D5
 BNE.S @010
 RTS
 PAGE
*
* BENCH #9: FLOATING POINT 1.000.000 MULTIPLICATIONS
*
 MOVE.L #1000000,D5
 FMOVE.L #1,FP0
 FMOVE.L #1,FP1
@010 FMUL.X FP0,FP1
 SUBQ.L #1,D5
 BNE.S @010
 RTS
 page

*
* PDOS BENCHMARK #1: CONTEXT SWITCHES
*
 MOVE.L #100000,D6
@000 XSWP ;CONTEXT SWITCH
 SUBQ.L #1,D6 ;DONE?
 BGT.S @000 ;N
 RTS
 PAGE
*
* PDOS BENCHMARK #2: EVENT SET
*
 MOVEQ.L #32,D1 ;SELECT EVENT 32
 MOVE.L #100000,D6
*
@000 XSEV ;SET EVENT
 SUBQ.L #1,D6 ;DONE?
 BGT.S @000 ;N
 RTS
 PAGE
*
* PDOS BENCHMARK #3: CHANGE TASK PRIORITY
*
 MOVEQ.L #-1,D0 ;SELECT CURRENT TASK
 MOVEQ.L #64,D1 ;SET PRIORITY TO 64
 MOVE.L #100000,D6
*
@000 XSTP ;SET PRIORITY
 SUBQ.L #1,D6 ;DONE?
 BGT.S @000 ;N
 RTS

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

F-6

(cont'd)

*
* PDOS BENCHMARK #4: SEND TASK MESSAGE
*
 CLR.L D0 ;SELECT TASK #0
 LEA.L MES01(PC),A1 ;POINT TO MESSAGE
 MOVE.L #100000,D6
*
@000 XSTM ;SEND MESSAGE
 XKTM ;READ MESSAGE BACK
 SUBQ.L #1,D6 ;DONE?
 BGT.S @000 ;N
 RTS
MES01 DC.B 'BENCH #13',0
 EVEN
 PAGE

*
* PDOS BENCHMARK #5: READ TIME OF DAY
*
 MOVE.L #100000,D6
@000 EQU *
 XRTP
 SUBQ.L #1,D6 ;DONE?
 BGT.S @000 ;N
 RTS
 end

SECTION 8 APPENDIX TO THE INTRODUCTION TO VMEPROM

G-1

APPENDIX G

G. Special Locations

The following table describes some special locations in the EPROM. These locations define the default
setup of the name of the startup file, user program location and RAM disk addresses. These options
can be selected by front panel switches.

The locations shown in the table can be changed by the user to adapt VMEPROM to every
environment. To make the necessary changes, please conduct the following steps:

1. Read the EPROMs with an EPROM programmer

2. Modify the code

3. Burn new EPROMs and keep the old ones in a safe location

4. Insert the new EPROMs in the CPU board and test the changes

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

G-2

The address of the following table is located at address $C relative to the beginning of the EPROM):

Offset Size Default Description

$00 DS.B 22 'SY$STRT',0 Name of the startup file. It has to be a 0-terminated string.

$16 DS.W 1 8 Disk no. of first RAM disk entry.
DS.W 1 2048 No. of 256 byte sectors.
DS.L 1 $40800000 Start address of first RAM disk.
DS.W 1 8 Disk no. of second RAM disk entry.
DS.W 1 2048 No. of 256 byte sectors.
DS.L 1 $40700000 Start address of second RAM disk.
DS.W 1 8 Disk no. of third RAM disk entry.
DS.W 1 256 No. of 256 byte sectors.
DS.L 1 $FFC10000 Start address of third RAM disk.

$2E DS.B 18 'SY$DSK',0 Default name of initialized RAM disk. It must be a 0-terminated string.

$40 DS.L 1 $40800000 These four entries contain the address which is jumped to after kernel
DS.L 1 $........ initialization. The second entry contains the address of the BOOT command.
DS.L 1 $FFC10000 The fourth address is the start address of the VMEPROM shell. These values
DS.L 1 $........ depend on the VMEPROM version.

$50 DS.B 4 'USER' Disk drivers need this ident to make sure that below data is valid.

$54 DS.B 1 $03 Bit 0: If this bit is "0", no message occurs indicating that VMEPROM is
waiting until the hard disk is up to speed. This bit is only considered
if bit 1 is set to "1".

Bit 1: If it is "0", VMEPROM will not wait until hard disk is up to speed.

Bit 2: Reserved, should be "0".
Bit 3: Reserved, should be "0".
Bit 4: Reserved, should be "0".
Bit 5: Reserved, should be "0".
Bit 6: Reserved, should be "0".
Bit 7: Reserved, should be "0".

$55 DS.B 1 $FF Reserved

$56 DS.B 1 $07 Controller ID for the ME disk drivers.

$57 DS.B 5 5 * $FF Reserved

$5C DS.W 1 16 This entry defines the number of hashing buffers. Valid entries are numbers
from 1 to 32. The hashing buffers are used to improve disk access speed. Each
buffer can hold 16 Kbytes of data.

$5E DS.L 1 384 * 1024 Size of the Management Entity.

? M $FF00000C L Example of how to find this table:

FF00000C FF008A00 : .<cr>

? MD $FF008A00 60
FF008A00: 53 59 24 53 54 52 54 00 00 00 00 00 00 00 00 00 SY$STRT.........
FF008A10: 00 00 00 00 00 00 00 08 08 00 40 80 00 00 00 08@.....
FF008A20: 08 00 40 70 00 00 00 08 01 00 FF C1 00 00 53 59 .@.p..........SY
FF008A30: 24 44 53 4B 00 00 00 00 00 00 00 00 00 00 00 00 $DSK............
FF008A40: 40 80 00 00 FF 00 F0 EA FF C1 00 00 FF 00 88 A4 @........p......
FF008A50: 55 53 45 52 03 00 07 FF FF FF FF FF 00 10 00 60 USER............

 ? _

SECTION 8 APPENDIX TO THE INTRODUCTION TO VMEPROM

H-1

APPENDIX H

H. Generation of Applications in EPROM

H1. General Information

In general, there are three ways to bind an application program in EPROMs to the VMEPROM kernel.
In all cases the application program is executed in user mode. The XSUP system call can be used to
switch to supervisor mode. The first way keeps the original EPROMs of VMEPROM. The application
can be put into an external RR-2 or RR-3 board on the VMEbus. In this case, the front panel switches
of the CPU board must be set so that the application program is started after VMEPROM is booted. In
this instance, the user stack is located at the top of the tasking memory and the supervisor stack is
located within the task control block. The supervisor stack has a size of 500 bytes. No registers are
predefined. If the reserved supervisor stack space is not sufficient, the stack pointer has to be set to
point to an appropriate address in RAM.

H1.1 Replacing the User Interface

The following section describes how an application program can be put into EPROMs, replacing the
user interface of VMEPROM. This method gives nearly 180 Kbytes of EPROM space to the application.
Two general ways are possible:

a. Removing All Setups:

If no setups are required, the application can be put into EPROMs at an address which is located in
address $8 relative to the EPROM start address (real address $FF000008). The code is started in user
mode, directly after the kernel has been initialized. The supervisor stack is located in the task control
block (size is about 500 bytes) and the user stack is located at the top of the task's memory. Only bit 2
of SW2 of the rotary switches on the front panel is used. It defines the data bus width on the VMEBus.
All other bits are insignificant.

SYS68K/CPU-39 USER'S MANUAL FORCE COMPUTERS

H-2

b. Keep All Setups:

To keep all setups the user program can be put into EPROM at an address which is located in address
$10 relative to the EPROM start address (real address $FF000010). In this case, the front panel
switches are defined as described in the "Introduction to VMEPROM". Both the user and the supervisor
stack are located in the task control block. The user stack has a reserved space of 800 bytes and the
supervisor stack a space of 800 bytes. The program is started in user mode. The following values are
available on the stack:

4(A7) Long word containing the begin address of the TCB
8(A7) Long word containing the begin address of the system RAM (SYRAM).

A C-program at this address could look like this:

main (tcbp, syramp)

struct TCB *tcbp;

struct SYRAM *syramp;

{

.

.

.

SECTION 8 APPENDIX TO THE INTRODUCTION TO VMEPROM

 The data passed through RAM port depends on what the certain task expects as input; a VMEPROM task expects proper VMEPROM commands1

such as lt , md , etc.; whereas a user-written task interprets the data in another context. Independent of the context any data is exchanged through
the RAM port "byte per byte".

I-1

APPENDIX I

I. Introduction to the RAM Port

The Management Entity provides a RAM port accessible through the Application Command Interface
and can be used as an character oriented input/output port of any VMEPROM task running on the same
board as the Management Entity. Within the VMEPROM environment the RAM port is assigned to a
specific task using one of the appropriate commands offered by VMEPROM. Thus, an application
running on another board in the system communicates with the task via the backplane; this means that
the application sends VMEPROM commands through the RAM port to the task and receives the
responses of the task through the RAM port as
well .1

I.1 Accessing the RAM port through the ACI

Before any data can be exchanged through the RAM port, an application has to gain the ownership of
the RAM port in the same manner as an application establishes a logical connection between itself and
a specific device. First, the application has to issue the OPEN command through the ACI specifying the
RAM port as the device to be opened. If the application has gained the ownership of the RAM port then
it exchanges data between itself and the RAM port using the READ and WRITE commands provided by
the ACI. The number of bytes which can be read from or written to the RAM port using the appropriate
commands is limited to one byte and any attempt to read or write more than one byte will be refused by
the ACI. Also, any attempt to issue the SERVICE command to the RAM port will be refused by the ACI,
because the RAM port driver does not support this feature. To release the RAM port the CLOSE
command has to be issued. In the following subsections all commands to gain the ownership of the
RAM port, to exchange data between an application and the RAM port, and to release the RAM port are
described in detail.

SYS68K/CPU-39 USER'S MANUAL FORCE COMPUTERS

I-2

I.1.1 Acquire the RAM port

The OPEN command requests the establishment of a logical connection between an application and
the RAM port; the appropriate Command Control Buffer is structured as presented in Figure 1.

Whenever an OPEN command is issued through the Application Command Interface to 'open' the RAM
port, the Management Entity verifies whether the RAM port is still available and in this case it takes
possession of the RAM port. If the RAM port is already owned by another application, the attempt to
acquire the RAM port is refused by the Management Entity.

struct _ccb_open_command
{

unsigned long _access_control_flags;
unsigned long _reserved_for_ME_purpose[10];
unsigned long command;
unsigned long logical_device_code;
unsigned long inquiry_mode;
unsigned long response_mode;
unsigned long data_exchange_mode;
unsigned long application_address;
unsigned long _remnant[47];

};

Figure 1: Structure of the CCB used to gain RAM port ownership

The OPEN Command is to execute as described in the Application Command Interface Programming
Guide.

logical_device_code:
Because the RAM port is permanently available through the ACI, the major and minor device number
of the RAM port are always the same: both the major device number of $0 and the minor device
number -4 ($FC) specify the RAM port. (The Management Entity keeps track of the major device
numbers of all devices available on present EAGLE modules; and due to the fact that the RAM port
is managed by the ME directly and because it is permanently available through the ACI independent
of the presence of any EAGLE module, the ME orders the RAM port at the beginning of its internal
device list. Therefore, the major device number assigned to the RAM port by the ME is $0 and the
minor device number -4 denotes the proper RAM port.)

SECTION 8 APPENDIX TO THE INTRODUCTION TO VMEPROM

I-3

I.1.2 Reading Data from the RAM port

The READ command initiates a data exchange between the character oriented RAM port and an
application and the data is transferred from the RAM port to an application.

The Command Control Buffer to read data from the RAM port is structured as described in Figure 5.

struct _ccb_read_command
{

unsigned long _access_control_flags;
unsigned long _reserved_for_ME_purpose[10];
unsigned long command;
unsigned char *buffer;
unsigned long count;
unsigned long block_number;
unsigned long read_mode;
unsigned long _remnant[48];

};

Figure 2: Structure of CCB used to read data from RAM port

The READ command is described in the Application Command Interface Programming Guide.

Special paramters are:

count:
The Management Entity allows only one byte to be read from the RAM port at the time and refuses
any attempt to read more or less than one byte. Thus, the count has to specify always one byte
($1).

block_number:
Because the RAM port is a character oriented device this entry is not considered and should be
cleared.

read_mode:
Each read access to the RAM port is carried out in the status mode independent of the state of the
WAIT flag. Thus, any attempt to read a byte from the RAM port either returns an available data byte,
or is refused if no data is available. It is recommendable to clear all bits.

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

I-4

I.1.3 Writing Data to the RAM port

The WRITE command initiates a data exchange between the character oriented RAM port and an
application and the data is transferred from the application to the RAM port.

The Command Control Buffer to write data to the RAM port is structured as described in Figure 7.

struct _ccb_write_command
{

unsigned long _access_control_flags;
unsigned long _reserved_for_ME_purpose[10];
unsigned long command;
unsigned char *buffer;
unsigned long count;
unsigned long block_number;
unsigned long write_mode;
unsigned long _remnant[48];

};

Figure 3: Structure of CCB used to write data to RAM port

The WRITE command is described in the Application Command Programming Guide.

Special parameters are:

count:
The Management Entity allows only one byte to be written to the RAM port at the time and refuses
any attempt to write more or less than one byte. Thus, the count has to specify always one byte
($1).

block_number:
Because the RAM port is a character oriented device this entry is not considered and should be
cleared.

write_mode:
Each write access to the RAM port is carried out in the status mode independent of the state of the
WAIT flag. Thus, any attempt to write a byte to the RAM port either is accepted, or is refused if no
more data can be accumulated by the RAM port. So, it is recommendable to clear all bits.

SECTION 8 APPENDIX TO THE INTRODUCTION TO VMEPROM

I-5

I.2 Accessing the RAM Port from VMEPROM

VMEPROM is equipped with a UART driver to exchange data via the RAM port and to alter the
operating mode of the RAM port. This RAM port UART driver is constructed like all other standard
VMEPROM (PDOS) UART drivers and thus provides the same functions.

In contrast to the standard UART drivers the 'port' flags related to the RAM port UART driver affect it in
a different way. As shown in figure 9, the 'port' flags consist of eight bits and the RAM port UART driver
considers only the C--flag and the I--flag; all other flags are ignored by the driver. The C--flag is
interpreted by the kernel rather than by the RAM port driver. And the kernel determines upon the state
of this flag how to treat control characters, like CTRL-C, ESC, etc.,received via the RAM port. To modify
the 'port' flags the VMEPROM command bp has to be used and the state of the certain flags are
specified as an argument in the argument list of the command. In the following list each flag and its
effect on the RAM port UART driver is described in detail:

S: The control flow by software flag specifies whether the data flow via the 'serial' data communication
line has to be managed by the XON/XOFF protocol. If this flag is set then the XON and XOFF
characters are used to control data flow via the serial data communication line; otherwise the
XON/XOFF protocol is not used.

C: The ignore control character flag either leads the appropriate routine of the VMEPROM kernel
dealing with the character input to interprete received control characters, or to pass the control
characters through the kernel without any processing. If the flag is set then all received control
characters are passed to the application directly; otherwise the kernel interprets the control
characters CTRL-C, CTRL-X, ESC.

D: The control flow by hardware flag specifies whether the data flow via the 'serial' data
communication line has to be managed by the specific hardware handshake signals. If this flag is
set then the DTR signal is used to control data flow via the serial data communication line;
otherwise no hardware handshake protocol is used.

8: The size of character flag denotes the number of bits used to represent a character to be received or
transmitted via the serial data communication line. If the flag is set then the character's size is eight
bits; otherwise seven bits are used to represent a character.

I: The not interrupt driven input flag controls whether the receipt of a character is indicated by a
hardware interrupt. If this flag is set then the receipt of a character is not indicated by an interrupt;
otherwise a hardware interrupt is generated to indicate the receipt of a character.

P: The even parity enable flag indicates to generate an even parity bit for each character to be
transmitted via the serial data communication line and to check the even parity of each character
received via the serial data communication line. If this flag is set then the even parity generation and
verification is done for each received and transmitted character; otherwise the parity generation and
verification is disabled.

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

I-6

H: reserved for the VMEPROM kernel's internal purpose

F: reserved for the VMEPROM kernel's internal purpose

7 6 5 4 3 2 1 0

F H P I 8 D C S

Figure 4: RAM Port UART Driver's 'port' Flags

SECTION 8 APPENDIX TO THE INTRODUCTION TO VMEPROM

I-7

I.3 The Internal Structure of the RAM Port

The RAM port provided by the Management Entity consists of an internal 32 bits width semaphore
register and two 128 byte width circular buffers - the 'receive' and 'transmit' buffer - each equipped with
two pointers to manage insertion and removal of data. Both, the RAM port driver of the Management
Entity and the RAM port UART driver provided by VMEPROM have access to the internal flag register,
the 'receive' buffer and the 'transmit' buffer of the RAM port as depicted in Figure 10.

Application Management Entity's RAM port driver VMEPROM
Command RAM port
Interface UART driver

 . .
 . .
 . +))< K2$CHRI
 . * 0 127 .
 . * +)))))))))))))))))))))))))))))), .
 WRITE))))))))))))2)< * Receive Buffer *)))))< UDxG
 . .))))))))))))))))))))))))))))))- .
 . > > .
 . * * .
 . RDptr RxDptr .
 . .
 . 0 127 .
 . +)))))))))))))))))))))))))))))), .
 READ =)))))))))))))) * Transmit Buffer * =)))))) UDxP
 . .))))))))))))))))))))))))))))))- .
 . > > .
 . * * .
 . * * .
 TxDptr WRptr

Figure 5: Internal Structure of the RAM port

Within the context of the RAM port the receive describes the process of writing data through the Application
Command Interface to the RAM port's receive buffer; and the transmit relates to the process of reading data
through the ACI from the RAM port's transmit buffer.

Every access to the RAM port through the ACI and the RAM port's operating mode are controlled by the
specific flags in the internal semaphore register. As shown in Figure 11 the most significant two bits in this
register are in use and described below:

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

 The routines UxHW (Signal High Water) and UxLW (Signal Low Water) provided by the VMEPROM RAM port UART driver are called by the2

VMEPROM kernel depending on the state of the internal type-ahead buffer. Please refer to the "PDOS Developer's Reference" for more detailed
information.

I-8

! The RPINTR flag either causes to pass direclty a received character to the appropriate routine of the
VMEPROM kernel dealing with character input, or to store the received character in the RAM port's
internal receive buffer. If the RPINTR flag is cleared then all received data bytes are placed in the
receive buffer as long as enough room is available in the buffer. In the case that the RPINTR flag is set
then all received characters are passed direcly to the kernel of VMEPROM via a specific call.

The RPINTR flag is modified upon the state of the I-flag in the RAM port's 'port' flag whenever the routine
UxDB of the VMEPROM's RAM port UART driver is called (I-flag = 0 -> RPINTR = 1; I-flag = 1 -> RPINTR
= 0;)

! The RPLOCK flag is used to refuse any attempt to write further data to the RAM port through the
Application Command Interface. If the RPLOCK flag is reset then data bytes can be written to the RAM
port; otherwise any attempt to write data to the RAM port is refused by the Mnagement Entity's RAM port
driver. This flag is underlineset by the UxHW routine provided by the VMEPROM RAM port UART
driver to cause to refuse an further attempt to write data bytes to the RAM port from the VMEbus side.
The RAM port UART driver's routine UxLW resets the RPLOCK flag to enable the receipt of further data
via the RAM port .2

31 30 29 28 27 1 0

RPINTR RPLOCK reserved reserved reserved ! ! ! reserved reserved

Figure 6: The semaphore register of the RAM port

SECTION 8 APPENDIX TO THE INTRODUCTION TO VMEPROM

J-1

APPENDIX J

J. Minimum Demands for Device Driver Tasks in Order to Run with VMEPROM

J.1 Device Driver Tasks for Serial Devices

The following commands have to be supported in order that VMEPROM works properly with the device
driver task:

OPEN
VMEPROM executes the OPEN command with a data exchange mode of $C0000000. Therefore, the
device driver task has to support Direct Memory Access. Furthermore, it has to have the possibility to
transfer the data directly into the applications (VMEPROMs) memory.

Positive return values indicate a successful OPEN.

READ
VMEPROM always tries to read exactly 1 character. The read mode is set to $00000002. The WAIT
bit is cleared. Therefore, the device driver task is not allowed to wait until the character is available.

Any return value except 0 indicates a READ error.

WRITE
VMEPROM always tries to write exactly 1 character. The write mode is set to $00000002. The WAIT
bit is cleared. Therefore, the device driver task is not allowed to wait until the character can be sent.

Any return value except 0 indicates a WRITE error.

CLOSE
The CLOSE command is executed without any additional parameter.

The return value is not used.

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

J-2

SERVICE
Service codes from -1024 to -2047 are reserved for serial drivers; the codes from -1024 to -1279 are
reserved for VMEPROM.
Only one service code is used from VMEPROM. It is service number -1026. It has to set the UART
parameter.

The following service parameters have to be supported:

service parameter[0]: to define the baudrate used

VALUE BAUDRATE

2 150

3 300

4 600

5 1200

6 2400

7 4800

8 9600

9 19200

10 38400

service_parameter[1]: to define the number of data bits per character

VALUE NUMBER OF
DATA BITS

PER
CHARATER

0 7

1 8

SECTION 8 APPENDIX TO THE INTRODUCTION TO VMEPROM

J-3

service_parameter[2]: to define the number of stop bits

VALUE NUMBER OF
STOP BITS

0 1

1 2

service_parameter[3]: to define the parity to be used

VALUE PARITY

0 no

1 even

2 odd

service_parameter[4]: to define the flow control to be used

VALUE FLOW
CONTROL

0 no handshake

1 XON/XOFF

2 RTS/CTS

3 DTR/DSR/DCD

Any return value except 0 indicates that the device driver task is not able to set the requested
parameter.

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

J-4

J.2 Device Driver Tasks for Block Devices

J.2.1 Floppy Devices

The following commands have to be supported in order that VMEPROM works properly with the device
driver task:

OPEN
VMEPROM executes the OPEN command with a data exchange mode of $C0000000. Therefore, the
device driver task has to support Direct Memory Access. Furthermore, it has to have the possibility to
transfer the data directly into the applications (VMEPROMs) memory.

Positive return values are indicating a successful OPEN.

SECTION 8 APPENDIX TO THE INTRODUCTION TO VMEPROM

J-5

READ
The READ command is executed with a read mode of $80000000. Because of this the device driver
task has to wait until the data is read.

The parameters used are:

_remnant[0]: the drive number (0 or 1)

_remnant[1]: reserved (any value should be ignored)

The following return values are allowed:

VALUE DESCRIPTION

0 Read successfully completed

-32 Record not found

-33 Address mark not found

-34 Write protect error

-35 Sector not found

-36 Overrun error

-37 CRC error on the disk

-38 Illegal sector

-39 Parameters wrong

-40 Format error

-41
. Timeout
.
.

-49

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

J-6

WRITE
The WRITE command is executed with a write mode of $80000000. Because of this the device
driver task has to wait until the data is written.

The parameters used are:

_remnant[0]: the drive number (0 or 1)

_remnant[1]: reserved (any value should be ignored)

The following return values are allowed:

VALUE DESCRIPTION

0 Write successfully completed

-32 Record not found

-33 Address mark not found

-34 Write protect error

-35 Sector not found

-36 Overrun error

-37 CRC error on the disk

-38 Illegal sector

-39 Parameters wrong

-40 Format error

-41
. Timeout
.
.

-49

SECTION 8 APPENDIX TO THE INTRODUCTION TO VMEPROM

J-7

CLOSE
The CLOSE command is executed without any additional parameter.

The return value is not used.

SERVICE
Service codes from -2048 to -3071 are reserved for floppy drivers; the codes from -2048 to -2303 are
reserved for VMEPROM.

The following services have to be supported from the device driver task:

SERVICE CODE DESCRIPTION

-2049 Set Floppy Parameter

-2050 Format
Floppy

The possible return values are listed in the READ/WRITE command description.

Parameters for the set floppy parameter service:

- service parameter[0]: drive number (0 or 1)
- service parameter[1]: number of cylinders (80)
- service parameter[2]: sectors/cylinder (32)
- service parameter[3]: bytes/sector (coded) (1)

VALUE Bytes/Sector

1 256

2 512

3 1024

4 2048

5 4096

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

J-8

- service parameter[4]: number of heads (2)
- service parameter[5]: RW gap ($20)
- service parameter[6]: format gap ($36)
- service parameter[7]: density (1)

VALUE Density

0 High Density

1 Double Density

- service parameter[8]: step rate (1)

Parameters for the format floppy service:

- service parameter[0]: drive number (0 or 1)

- service parameter[1]: address of an interleave table

The interleave table must have as many entries as the floppy has sectors/track, i.e. the
following table has an interleave of 0

 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

while the next one has an interleave of 1.

 1,9,2,10,3,11,4,12,5,13,6,14,7,15,8,16

Both have 16 sectors/track. The size of every entry is 1 byte.

SECTION 8 APPENDIX TO THE INTRODUCTION TO VMEPROM

J-9

J.2.2 SCSI Devices

The following commands have to be supported in order that VMEPROM works properly with the device
driver task.

OPEN
VMEPROM executes the OPEN command with a data exchange mode of $C0000000. Therefore, the
device driver task has to support Direct Memory Access. Furthermore, it has to have the possibility to
transfer the data directly into the applications (VMEPROMs) memory.

The parameters used are:

_remnant[0]: Buffer count
If the device driver task is able to cache data this entry defines how many buffers should be used.

_remnant[1]: Buffer size
If the device driver task is able to cache data this entry defines the size of each buffer in Bytes.

_remnant[2]: Controller SCSI ID
This entry defines which SCSI ID the controller should have.
Positive return values indicate a successful OPEN.

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

J-10

READ
The READ command is executed with a read mode of $80000000. Because of this the device driver
task has to wait until the data is read.

The parameters used are:

_remnant[0]: SCSI bus ID as returned from the get device list service.

_remnant[1]: Logical block size
VMEPROM uses a block size of 256 bytes.

The following return values are allowed:

VALUE DESCRIPTION

0 Read successfully completed

-50 SCSI error

-51 Illegal SCSI bus phase

-52 Illegal SCSI command

-53 Timeout

-54 Illegal drive ID

SECTION 8 APPENDIX TO THE INTRODUCTION TO VMEPROM

J-11

WRITE
The WRITE command is executed with a write mode of $80000000. Because of this the device
driver task has to wait until the data is written.

The parameters used are:

_remnant[0]: SCSI bus ID as returned from the get device list service

_remnant[1]: Logical block size
VMEPROM uses a block size of 256 bytes.

The following return values are allowed:

VALUE DESCRIPTION

0 Read successfully completed

-50 SCSI error

-51 Illegal SCSI bus phase

-52 Illegal SCSI command

-53 Timeout

-54 Illegal drive ID

CLOSE
The CLOSE command is executed without any additional parameter.

The return value is not used.

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

J-12

SERVICE
Service codes from -3072 to -4095 are reserved for floppy drivers; the codes from -3072 to -3327 are
reserved for VMEPROM.

The following services have to be supported from the device driver task:

SERVICE DESCRIPTION
CODE

-3073 Get Device List

-3074 Flush All Hashing Buffers

-3092 Transparent Mode

-3097 Format Disk

Any return value except 0 indicates an error.

Parameters for the Get Device List service:

input parameter:

service_parameter[0]: address of a buffer for the returned data

service_parameter[1]: maximum length of the buffer

returned data: status

Structure of the returned data:

typedef struct SCSI_CTRL
{
unsigned char id; /* SCSI bus ID of the device */
unsigned char lun; /* logical unit number */
unsigned char dev_type; /* device type as returned */

/* by the INQUIRY command */
unsigned char flags;
unsigned long last_block; /* last logical block of the device */
unsigned long blocksize; /* physical blocksize of the device */
char dev_name[24]; /* vendor and product information */
} SCSI_CONTROL;

struct { unsigned long dev_count;
SCSI_CONTROL scntrl[6];
} GDL_PAR;

SECTION 8 APPENDIX TO THE INTRODUCTION TO VMEPROM

J-13

Parameters for the flush service:

input parameter:

nothing

returned data: status

Parameters for the transparent mode service:

input parameter:

service_parameter[0]: SCSI bus ID as returned from the get device list service
service_parameter[1]: SCSI command (byte 0-3)
service_parameter[2]: SCSI command (byte 4-7)
service_parameter[3]: SCSI command (byte 8-11)
service_parameter[4]: pointer to data buffer
service_parameter[5]: transfer count

returned data: data returned from the SCSI device/status

Parameters for the format disk service:

input parameter:

service_parameter[0]: SCSI bus ID as returned from the get device list service

 returned data: status

THE APPLICATION COMMAND INTERFACE
PROGRAMMING GUIDE

This page was intentionally left blank

Table of Contents

1. Introduction . 1-1

1.1 The Logical Devices . 1-4
1.2 The Command Control Buffers . 1-5

2. The Complete Description of All Commands Provided by The
Application Command Interface . 2-1

2.1 The OPEN Command . 2-1
2.2 The CLOSE Command . 2-11
2.3 The READ Command . 2-13
2.4 The WRITE Command . 2-17
2.5 The SERVICE Command . 2-21
2.5.1 The Get Logical Device Number Service . 2-25

3. Command Chaining . 3-1

3.1 The CCB_ALLOCATE Command . 3-3
3.2 The CCB_FREE Command . 3-5

4. Error Codes . 4-1

4.1 Common Error Codes . 4-1
4.2 Error Codes Related To The OPEN Command . 4-1
4.3 Error Codes Related To The CLOSE Command . 4-2
4.4 Error Code Related To The READ Command . 4-2
4.5 Error Code Especially Related To The WRITE Command . 4-2
4.6 Error Codes Related To The SERVICE Command . 4-2
4.7 Error Codes Especially Related To The CCB_ALLOCATE Command 4-3
4.8 Error Codes Especially Related To The CCB_FREE Command 4-3

5. The following example shows how to communicate with the ACI 5-1

Figure 1: The Access Control Flags of the Command Control Buffer 1-6
Figure 2: The inquiry and response mode . 2-2
Figure 3: The data exchange mode . 2-7
Figure 4: The read mode . 2-14
Figure 5: The write mode . 2-18

List of Tables

Table 1: The inquiry mode major and minor interrupt numbers . 2-4
Table 2: The response mode major and minor interrupt numbers . 2-6

SECTION 9 APPLICATION COMMAND INTERFACE PROGRAMMING GUIDE

1-1

1. Introduction

Each base board equipped with one or more EAGLE module slots provides a unique software interface -
called the Application Command Interface (ACI) - through which the application communicates with
specific devices on the EAGLE modules. Furthermore, the interface offers the capability to gain various
information about the EAGLE modules and the particular devices on the modules.

All communication through the Application Command Interface is done by the use of special data packets
named Command Control Buffers (CCB). These Command Control Buffers are provided and managed
by the Application Command Interface. Depending on the contents of such a Command Control Buffer,
issued through the Application Command Interface, the underlying software processes the Command
Control Buffer and carries out the requested command.
The Application Command Interface provides the following five commands:

1. The OPEN command to establish a logical connection between the application and a specific
device.

2. The CLOSE command to release an existing logical connection between the application and a
specific device.

3./4. The READ and WRITE commands used to initiate data exchanges via an existing logical
connection between the application and a device.

5. The SERVICE command to gain generic information about the devices accessible through the
Application Command Interface. This command is also used to modify device parameters, to get
use of special services provided by a logical group of devices; or to control the operating mode of
a certain device driver dealing with a particular device.

The status information about the command issued through the Application Command Interface is passed
to the application through the same Command Control Buffer used to send the command through the
interface.

A command is "issued" through the Application Command Interface by generating a MAILBOX 0 interrupt
on the board providing the Application Command Interface. When the attention of the Application
Command Interface has been gained by such an interrupt, then the underlying software verifies the
consistency of the contents of the issued Command Control Buffer; passes the packet to the entity dealing
with the processing of the command; and finally the entity returns all status information through the
processed Command Control Buffer to report the course of the command execution to the application. In
general, the entity "returning" the Command Control Buffer through the Application Command Interface
uses certain semaphores within the Command Control Buffer to indicate the completion of the issued
command, and depending on the state of certain parameters, it probably gains the attention of the
application by generating an interrupt described by corresponding parameters.

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

1-2

As mentioned above the application accesses devices on an EAGLE module via a logical connection,
rather than directly. Therefore, each device accessible through the Application Command Interface is
identified by a unique logical device number which is provided by the interface.

A base board providing the Application Command Interface deposits the NUL terminated string "ACI"
beginning at offset $0 of the board's main memory accessible from the VMEbus; and the VMEbus address
of the first Command Control Buffer (CCB 0), provided by the Application Command Interface, is loaded
into the long word at offset $4. Thus, the application intending to communicate with devices through the
Application Command Interface, or to get generic information about available devices, has to look for the
"ACI" identifier within the VMEbus' standard (A24) and extended (A32) address range.

Any application has to verify whether the base board the application is running on provides the Application
Command Interface, too.

If the application has found a board providing the interface, it has to use the first Command Control Buffer,
addressed by the content of the long word at offset $4 of the board's memory, either to issue the SERVICE
command to get information about the available devices or other information about the EAGLE modules;
or to issue the OPEN command to establish a logical connection between the application and a specific
device.

However, before the application uses the first Command Control Buffer to issue a command through the
Application Command Interface it has to gain the ownership of the first Command Control Buffer.

The detailed structure of a Command Control Buffer is described in the subsection "The Command Control
Buffers".

The Command Control Buffer contains some semaphores to be used to control the access to the buffer,
and to indicate various states of the Command Control Buffer. To gain the ownership of the Command
Control Buffer a semaphore has to be set to indicate that the buffer is already in use by an application. Due
to this fact, the application has to verify the state of this semaphore, and if the semaphore is cleared, that
means the Command Control Buffer is available, the application has to set it to prevent the Command
Control Buffer from being acquired by another application.

When the application has the ownership of the first Command Control Buffer, it has to prepare the buffer
to issue the particular command. The application can only issue the OPEN command or the SERVICE
command, to get generic information, through the Application Command Interface. All other commands
(CLOSE, READ, and WRITE) are refused by the Application Command Interface because no logical
connection between the application and a device exists.

SECTION 9 APPLICATION COMMAND INTERFACE PROGRAMMING GUIDE

1-3

Depending on the command to be issued, the application has to prepare the first Command Control Buffer
and has to set another semaphore that indicates that the Command Control Buffer is ready to be passed
through the Application Command Interface. To inform the Application Command Interface about the
readiness of the first Command Control Buffer used to issue the particular command (OPEN or SERVICE),
the application has to generate the MAILBOX 0 interrupt on the appropriate base board.

Now the application has to verify cyclically (polling) the state of the semaphore indicating the readiness of
the Command Control Buffer to issue a command, to determine that the command has been carried out
by the underlying software. When the command has been carried out, the underlying software returns all
status information through the first Command Control Buffer and clears the semaphore, indicating the
completion of the issued command. The semaphore described acts as a "BUSY" semaphore set by the
application, to indicate that the Command Control Buffer is "passed" to the Application Command Interface
in order to be processed, and cleared by the Application Command Interface, to signal that the Command
Control Buffer has been processed and is "returned" to the application.

If the OPEN command has been issued through the Application Command Interface, then the first
Command Control Buffer contains the address of a Command Control Buffer allocated by the Application
Command Interface which is associated with the logical connection between the application and the
appropriate device. The application has to use this Command Control Buffer to issue subsequent
commands through the Application Command Interface (READ, WRITE, CLOSE, and SERVICE).

In case of the SERVICE command the Command Control Buffer contains further information, depending
upon the requested service. Of course, the READ and WRITE commands also need additional
parameters.

Independent from the issued command, the first Command Control Buffer has to be released by the
application by clearing the semaphore which indicates that the buffer is already in use, to allow other
applications to gain the ownership of the first Command Control Buffer and to issue commands through
the Application Command Interface.

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

1-4

1.1 The Logical Devices

The devices on available EAGLE modules cannot be accessed from the VMEbus directly, but the
Application Command Interface provides a method to access devices on a "higher logical" level. Each
device accessible through the Application Command Interface is identified by an unique "logical device
number" that has been assigned to the device by the Application Command Interface. Such a logical device
number consists of a major device number and a minor device number. The major device number packs
up a number of devices with the same characteristics, and the minor device number identifies each device
in such a group of devices packed up under the major device number.

In general, devices are divided into two classes: the first class represents devices which can be shared
among a number of applications (SHARABLE devices), which means that multiple applications can access
the device simultaneously (e.g. SCSI Controller, FD Controller, Ethernet Controller, etc.). Logical
connections to a SHARABLE device can be established by multiple applications simultaneously. The
second class contains devices which cannot be shared among applications (NON_SHARABLE devices),
and only one application can establish a logical connection to such a device.

The device classes can be distinguished by the minor device number assigned to the corresponding
device: a minor device number in the range 0 to 31 identifies a NON-SHARABLE device (which means up
to 32 devices are packed up under one single major device number); and the minor device number -1
specifies a SHARABLE device.

Furthermore, devices in the classes are divided into groups of devices with the same characteristics
(device type): devices which allow communication via a serial communication line (e.g. ethernet, FDDI,
RS-232, etc.), devices which communicate via a parallel "bus" (e.g. ordinary parallel I/O peripheral,
IEEE-488 Controller, etc.), devices which are attached to mass storage devices (e.g. SCSI Controller, FD
Controller, etc.). Thus the Application Command Interface offers accesses to generic SERIAL-, PARALLEL-
, and MASS STORAGE devices.

To establish a logical connection to a device the application has to issue the OPEN command through the
Application Command Interface with the appropriate logical device number of the device the application
wants to communicate with. The Application Command Interface returns a Command Control Buffer
associated with the particular device to the application and the application has to use this Command
Control Buffer to issue subsequent commands to the "device".

SECTION 9 APPLICATION COMMAND INTERFACE PROGRAMMING GUIDE

1-5

1.2 The Command Control Buffers

As mentioned previously the Command Control Buffer is the basic data structure to issue commands
through the Application Command Interface. This data structure of 256 bytes size consists of two logical
parts.

The first part (44 bytes) is used to store global information for the device driver dealing with the device the
Command Control Buffer is associated with, to control the access to the Command Control Buffer and to
reflect the state of a Command Control Buffer.

The second part (212 bytes) is exclusively used to specify the command to be issued through the
Application Command Interface, as well as the parameters that accompanies the command. All status
information reflecting the course of the processed command are passed through this area to the
application.

The generic structure of a Command Control Buffer is described below (using the C programming language
elements):

 typedef struct _ccb
 {
 unsigned long _access_control_flags;
 long (*ME_system_call) ();
 struct _ccb *ccb_link;
 long last_command;
 unsigned long _reserved[7];
 long command_or_status;
 unsigned long remnant[52];
 } CCB;

The first eleven entries in the data structure described above are common to all Command Control Buffers,
independent from the command being issued through the Application Command Interface. The structure
of the remaining 53 entries depend on the command issued, and whether the Command Control Buffer is
"passed" to the Application Command Interface or "returned" to the application through the Application
Command Interface.

unsigned long _access_control_flags
This entry represents the Access Control Field consisting of semaphores to control the access
to the Command Control Buffer and to reflect the state of the Command Control Buffer.

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

1-6

The semaphores depicted in Figure 1 are defined and described in the following.

! The ALLOCATE semaphore indicates whether a Command Control Buffer is already
acquired. If the ALLOCATE semaphore is cleared then the application may gain the
ownership of the Command Control Buffer by setting this semaphore. When the
semaphore is set it marks the Command Control Buffer as already allocated by another
application.

! The BUSY semaphore indicates whether the Command Control Buffer is ready to be
processed by the Application Command Interface. The application has to set this
semaphore to signal the readiness of the Command Control Buffer to be issued through
the Application Command Interface.
The BUSY semaphore is cleared when the command has been carried out and the
Command Control Buffer is "returned" to the application. Thus, the application may get use
of the BUSY semaphore to detect the completion of a command.

! The FINAL semaphore marks the last Command Control Buffer available in the list of
Command Control Buffers managed by the Application Command Interface. This
semaphore has not to be affected by the application.

! The PROCESS semaphore is used by the Application Command Interface for internal
purpose and signal that the command issued through the Application Command Interface
has been accepted by the interface, but the command has not been completed (in-service).
When the Command Control Buffer is "returned" to the application the semaphore is
cleared. Because this semaphore is exclusively used by the Application Command
Interface for its own purpose, it should never be affected by an application.

Figure 1: The Access Control Flags of the Command Control Buffer

31 30 29 28 27 0

Allocate Busy Process Final Reserved !!! Reserved

SECTION 9 APPLICATION COMMAND INTERFACE PROGRAMMING GUIDE

1-7

long (*ME_system_call) ()
This entry contains the address of a routine supplied by the Application Command Interface which
provides specific services. This address is exclusively used by a device driver dealing with the
device associated with the Command Control Buffer, and should not be altered by the application!

struct _ccb *ccb_link
This entry addresses a Command Control Buffer chained to this Command Control Buffer. If no
Command Control Buffer is chained then this entry contains the value zero.

The application may issue a command to cause to chain up a certain number of Command Control
Buffers to this Command Control Buffer. If the application likes to get rid of the Command Control
Buffers chained to this Command Control Buffer it has to issue a command to release all Command
Control Buffers chained to the Command Control Buffer.

The application should not affect this entry!

long last_command
This entry contains the command code of the last command issued through the Application
Command Interface.

The application should not affect this entry!

unsigned long _remnant[7]
These entries are reserved for future use and should not be affected by the application.

long command_or_status
This entry is used by the application to specify the command to be "passed" through the Application
Command Interface (the type of the Command Control Buffer); and the entries _remnant[0] to
_remnant[51] contain further command parameters. When the Command Control Buffer is
"returned" through the Application Command Interface this entry contains the status and the entries
_remnant[0] to remnant[51] contain further status information.

In general, the zero integer value (OK) indicates that the command has been completed
successfully, whereas a negative integer value reports an error. The values -1 to -31 are dedicated
exclusively to the Application Command Interface to indicate common errors. All other values
beginning with the value -32 are returned by the device driver dealing with the device the Command
Control Buffer is associated with.

SECTION 9 APPLICATION COMMAND INTERFACE PROGRAMMING GUIDE

2-1

2. The Complete Description of All Commands Provided by The Application
Command Interface

The following subsections describe each command provided by the Application Command Interface in
detail and discuss the appropriate structure of the Command Control Buffers to issue the particular
command through the Application Interface, as well as the structure of the Command Control Buffer
"returned" through the interface to the application.

2.1 The OPEN Command

The OPEN command requests to establish a logical connection between the application and a
physical device; the appropriate Command Control Buffer is structured as presented below.

Whenever an OPEN command is issued through the Application Command Interface the underlying
software verifies whether it is necessary to initialize the specific physical device. If a physical device
can be owned by more than one application, like floppy disk controllers, or SCSI controllers, the certain
device is being initialized only on the receipt of the very first OPEN command. In contrast, a physical
device, which may be owned by only one single application, like a serial channel of a serial
communication controller, is initialized upon the receipt of every OPEN command.

 typedef struct _ccb_open_command
 {
 unsigned long _access_control_flags;
 long (*ME_system_call) ();
 CCB *ccb_link;
 long last_command;
 unsigned long _reserved[7];
 long command;
 unsigned long logical_device_number;
 unsigned long inquiry_mode;
 unsigned long response_mode;
 unsigned long data_exchange_mode;
 unsigned long response_mode_address;
 unsigned long _remnant[47];
 } CCB_OPEN_COMMAND;

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

2-2

_access_control_flags:
The BUSY semaphore has to be set to indicate the readiness of the Command Control Buffer
to be processed; all other semaphores within the Access Control Field have to be left unaffected.

command:
The value $00 indicates that the Command Control Buffer is used to issue the OPEN command
through the Application Command Interface.

logical_device_number:
The logical device code denotes the device the application likes to communicate with. The
Application Command Interface translates this code using all information provided by the EAGLE
Module Software Interface to determine the appropriate physical device. The application can
obtain a list of logical device numbers, relating to a group of physical devices with the same
functional characteristics using the SERVICE command GET LOGICAL DEVICE NUMBER.

inquiry_mode:
The inquiry mode describes the way the application prefers to gain the attention of the
Application Command Interface when it will issue subsequent commands. Virtually, the Application
Command Interface's attention is gained by the generation of a specific interrupt on the
corresponding base board which may be one of the following interrupts:

! one of the seven VMEbus interrupts, or

! one of the two FORCE Message Broadcast interrupts, or

! one of the eight Mailbox interrupts.

The least significant eight bits of the inquiry mode contain the major interrupt number and the
minor interrupt number as shown in Figure 2. The major interrupt number specifies the interrupt
class - one of the interrupts listed above -, whereas the minor interrupt number specifies which
of the interrupts in the class is being used. Refer to Table 1 for a list of the different major and
minor interrupt numbers.

Figure 2: The inquiry and response mode

31 24 23 16 15 8 7 4 3 0

Reserved Vector Number IRQ Level Major Interrupt Minor Interrupt
Number Number

SECTION 9 APPLICATION COMMAND INTERFACE PROGRAMMING GUIDE

2-3

The interrupt request level to be assigned to the particular interrupt is contained by bits 8 through 15
and has to be one of the MC680XX interrupt request levels. The Application Command Interface
uses this value to set the corresponding Interrupt Control Register of the FORCE Gate Array-002
on the base board.

If one of the VMEbus interrupts is specified to gain the attention of the Application Command Interface
then bits 16 through 23 have to contain the exception vector number provided by the VMEbus
interrupter during the interrupt cycle. The most significant eight bits of the inquiry mode are reserved
and should be cleared.

response_mode:
The response mode describes the way the application prefers to be informed about the
completion of a command and may identify one of the following four modes:

! The POLLING mode where the application has to verify the state of the BUSY
semaphore within the Access Control Field of the certain Command Control Buffer
to detect the completion of a command.

! The MAILBOX interrupt mode where the Application Command Interface generates
one of the eight mailbox interrupts on the board on which the application is running.
Obviously, this mode can be selected only if a FORCE Gate Array FGA-002A is on the
board where the application runs.

! The VMEbus interrupt mode where the Application Command Interface initiates an
interrupt cycle on the VMEbus to inform the application about the completion of a
command.

! The FORCE Message Broadcast interrupt mode where the Application Command
Interface executes a FMB cycle on the VMEbus to inform the application about the
completion of a command. Obviously, this mode can be selected only if a FORCE Gate
Array FGA-002A is on the board where the application runs.

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

2-4

Table 1: The inquiry mode major and minor interrupt numbers

Major Interrupt Number Minor Interrupt Number Interrupt Source

$1 $0 VMEbus interrupt 1

$1 VMEbus interrupt 2

$2 VMEbus interrupt 3

$3 VMEbus interrupt 4

$4 VMEbus interrupt 5

$5 VMEbus interrupt 6

$6 VMEbus interrupt 7

$2 $0 FMB channel 0

$1 FMB channel 1

$3 $0 Mailbox 0

$1 Mailbox 1

$2 Mailbox 2

$3 Mailbox 3

$4 Mailbox 4

$5 Mailbox 5

$6 Mailbox 6

$7 Mailbox 7

SECTION 9 APPLICATION COMMAND INTERFACE PROGRAMMING GUIDE

2-5

The least significant eight bits of the response mode contain the major interrupt number and the minor
interrupt number as shown in Figure 2. The major interrupt number specifies the interrupt class - one
of the interrupts listed above -, whereas the minor interrupt number specifies which of the interrupts in the
class is being used. Refer to table 2 for a list of the different major and minor interrupt numbers.

In contrast to the inquiry mode it is possible to specify the POLL mode; in this case the application has
to detect the completion of a command upon the state of the BUSY semaphore within the Access
Control Field of the particular Command Control Buffer.

The interrupt request level is reserved for the response mode and should be cleared.

If one of the VMEbus interrupts is specified to inform the application about the completion of a command
then bits 16 through 23 have to contain the exception vector number provided by the VMEbus interrupter
during the interrupt cycle. The most significant eight bits of the response mode are reserved and should
be cleared.

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

2-6

Table 2: The response mode major and minor interrupt numbers

Major Interrupt Number Minor Interrupt Number Interrupt Source

$0 $0 No interrupt, POLL mode

$1 $0 VMEbus interrupt 1

$1 VMEbus interrupt 2

$2 VMEbus interrupt 3

$3 VMEbus interrupt 4

$4 VMEbus interrupt 5

$5 VMEbus interrupt 6

$6 VMEbus interrupt 7

$2 $0 FMB channel 0

$1 FMB channel 1

$3 $0 Mailbox 0

$1 Mailbox 1

$2 Mailbox 2

$3 Mailbox 3

$4 Mailbox 4

$5 Mailbox 5

$6 Mailbox 6

$7 Mailbox 7

SECTION 9 APPLICATION COMMAND INTERFACE PROGRAMMING GUIDE

2-7

data_exchange_mode:
The data exchange mode defines the way the data has to be interchanged between the
application and a physical device and describes the location of the data to be transferred. As shown
in Figure 3 below, the most significant two bits specify the data exchange mode: the DMA
semaphore specifies whether the data has to be transferred by Direct Memory Access or by
the Microprocessor; and the GLOBAL semaphore identifies whether to transfer data via the
VMEbus to, or from a buffer provided by the application, or via the local data paths to, or from a
buffer offered by the device driver.

In particular, if the GLOBAL semaphore is set then the data is transferred via the VMEbus by
either the Direct Memory Access Controller or by the Microprocessor according to the state of
the DMA flag. If the DMA flag is set then the Direct Memory Access Controller transfers the data,
otherwise the microprocessor carries out the data transfer. The direction of the data transfer
depends on the data transfer command - READ or WRITE -initiated by the application. If the
GLOBAL flag is cleared then the application assumes that the device driver provides a buffer
used to accumulate the data received from a physical device or to store the data to be transferred
to a physical device. Thus, in this case the data transfer between the application and a physical
device proceeds in the two steps: in the first step the application has to lead the Application
Command Interface to supply an internal buffer used to store the data to be transferred to a
physical device, or to accumulate the data received from a physical device. Depending upon
the data transfer to be carried out, the application has to move the data from its own buffer to the
internal buffer at the beginning of the WRITE command; or it has to copy the data from the
internal buffer to its private buffer at the end of the READ command.

Figure 3: The data exchange mode

31 30 29 28 27 0

DMA LOCAL RESERVED RESERVED RESERVED !!! RESERVED
CPU GLOBAL

response_mode_address:
If the response mode either specifies one of the mailbox interrupts or one of the FMB interrupts
to be used to inform the application about the completion of a command then the response
mode address has to contain the address of the particular mailbox or FMB channel to be
accessed from the VMEbus to gain the application's attention.

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

2-8

_remnant:
This data area may be used by the device driver for additional parameters. For further information
please refer to the detailed description of the device driver.

When the OPEN command has been carried out the status of the completion of the command is
returned through the same Command Control Buffer used to issue the command. The structure
of the corresponding Command Control Buffer is structured as described below.

 typedef struct _ccb_open_status
 {
 unsigned long _access_control_flags;
 long (*ME_system_call) ();
 CCB *ccb_link;
 long last_command;
 unsigned long _reserved[7];
 long status;
 CCB *ccb;
 long ccb_number;
 unsigned long ACI_inquiry_address;
 unsigned long _remnant[49];
 } CCB_OPEN_STATUS;

_access_control_flags:
The BUSY and the PROCESS semaphore are both cleared to signal the completion of the
command. All other semaphores are unaffected.

status:
The status reports the course of the command and indicates one of the following cases:

ACI_OK:
Indicates the successful termination of the command and the other entries within the Command
Control Buffer contain further information.

ACI_E_ILLEGAL_COMMAND:
An illegal command code has been specified.

ACI_E_INCONSISTENT_COMMAND_CHAIN:
Inconsistent command chain.

ACI_E_BUS_ERROR:
A BUS / ADDRESS ERROR occurred within a device driver.

SECTION 9 APPLICATION COMMAND INTERFACE PROGRAMMING GUIDE

2-9

ACI_E_OPEN_CCB_ALREADY_IN_USE:
An attempt to establish a logical connection to a physical device is refused by the Application
Command Interface due to the fact that the Command Control Buffer is already used for a logical
connection to a device.

ACI_E_OPEN_ILLEGAL_INQUIRY_MODE:
An illegal inquiry mode has been specified. Probably, an invalid major or minor interrupt number,
or an illegal Interrupt Request Level has been specified, or an illegal Exception Vector Number
has been specified. The value is also returned when the data within the inquiry mode are not
consistent. For example, if the MAILBOX mode is specified but one or more of the most significant
16 bits are set.

ACI_E_OPEN_ILLEGAL_RESPONSE_MODE:
An illegal response mode has been specified. Probably, an invalid major or minor interrupt
number, or an illegal Interrupt Request Level has been specified, or an illegal Exception Vector
Number has been specified. The value is also returned when the data within the response mode
are not consistent. For example, if the MAILBOX mode is specified but one or more of the most
significant 16 bits are set.

ACI_E_OPEN_ILLEGAL_DATA_EXCHANGE_MODE:
An illegal data exchange mode has been specified. This status is returned whenever one or
more of the least significant 30 bits are set.

ACI_E_OPEN_ILLEGAL_LOGICAL_DEVICE_NUMBER:
An illegal logical device number has been specified which cannot be translated to its
corresponding physical device code by the Application Command Interface.

ACI_E_OPEN_INSUFFICIENT_CCBS:
The Application Command Interface is not able to allocate a Command Control Buffer within its
internal Command Control Buffer list.

ACI_E_OPEN_DEVICE_ALREADY_IN_USE:
Another application already owns the physical device and no other can gain the ownership of this
device until the certain application releases the logical connection to the device.

ACI_E_OPEN_INSUFFICIENT_MEMORY:
The Application Command Interface cannot allocate the memory required by a device driver when
the device driver has to be activated upon the receipt of an OPEN.

ACI_E_OPEN_CANNOT_ACTIVATE_DEVICE_DRIVER:
The Application Command Interface cannot activate the device driver dealing with the physical
device.

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

2-10

*ccb:
Addresses the Command Control Buffer allocated by the Application Command Interface. The
assigned Control Buffer has to be used by the application to issue subsequent commands
through the Application Command Interface.

ccb_number:
Contains the number of the assigned Command Control Buffer and has to be used whenever the
application will gain the attention of the Application Command Interface by a FORCE Message
Broadcast cycle.

ACI_inquiry_address:
If the inquiry mode specifies to gain the attention of the Application Command Interface by either
a mailbox interrupt or a FMB interrupt then it contains according to the major and minor interrupt
number of the inquiry mode the address of the particular mailbox or FMB channel to be accessed
from the VMEbus.

_remnant:
This data area may be used by the device driver for additional parameters. For further information
please refer to the detailed description of the device driver.

Because the OPEN command has to be issued through the Command Control Buffer #0, the
application has to release the Command Control Buffer after it has gained its own Command
Control Buffer by clearing the ALLOCATE semaphore within the Access Control Field. All
subsequent commands are issued through the Application Command Interface using the
assigned Command Control Buffer.

SECTION 9 APPLICATION COMMAND INTERFACE PROGRAMMING GUIDE

2-11

2.2 The CLOSE Command

The CLOSE command requests to release a logical connection between the application and a
physical device, and depending on the type of the physical device to reset the device. After the CLOSE
command has been completed the application still owns the Command Control Buffer used to issue
commands through the Application Command Interface. To get rid of the Command Control Buffer the
application has to clear the ALLOCATE semaphore in the Access Control Field to return the Command
Control Buffer to the Application Command Interface.

The particular Command Control Buffer is structured as described below.

 typedef struct _ccb_close_command
 {
 unsigned long _access_control_flags;
 long (*ME_system_call) ();
 CCB *ccb_link;
 long last_command;
 unsigned long _reserved[7];
 long command;
 unsigned long _remnant[52];
 } CCB_CLOSE_COMMAND;

_access_control_flags:
The BUSY semaphore has to be set to indicate the readiness of the Command Control Buffer
to be processed; all other semaphores within the Access Control Field have to be left unaffected.

command:
The value $0C indicates that the command control buffer is used to issue the CLOSE command
through the Application Command Interface.

_remnant:
This data area may be used by the device driver for additional parameters. For further information
please refer to the detailed description of the device driver.

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

2-12

After the CLOSE command has been carried out, the status of the completion of the command is
returned through the same Command Control Buffer used to issue the command. The corresponding
Command Control Buffer is structured as described below.

 typedef struct _ccb_close_status
 {
 unsigned long _access_control_flags;
 long (*ME_system_call) ();
 CCB *ccb_link;
 long last_command;
 unsigned long _reserved[7];
 long status;
 unsigned long _remnant[52];
 } CCB_CLOSE_STATUS;

_access_control_flags:
The BUSY and the PROCESS semaphore are both cleared to signal the completion of the
command. All other semaphore are unaffected.

status:
The status reports the course of the command and indicates one of the following cases:

ACI_OK:
Indicates the successful termination of the command

ACI_E_ILLEGAL_COMMAND:
An illegal command code has been specified.

ACI_E_INCONSISTENT_COMMAND_CHAIN:
Inconsistent command chain

ACI_E_BUS_ERROR:
A BUS / ADDRESS ERROR occurred within a device driver.

ACI_E_CLOSE_NO_CONNECTION:
The logical connection to the device is already released

ACI_E_CLOSE_CANNOT_DEACTIVATE_DEVICE_DRIVER:
The Application Command Interface cannot deactivate the device driver.

_remnant:
This data area may be used by the device driver for additional parameters. For further information
please refer to the detailed description of the device driver.

SECTION 9 APPLICATION COMMAND INTERFACE PROGRAMMING GUIDE

2-13

2.3 The READ Command

The READ command initiates a data exchange between a device and the application. The data is
transferred from a device to the application. If any data have to be read from a block oriented device then
blocks of data are transferred; in case of a character oriented device only bytes can be received from
the device. The number of blocks or bytes to be read has to be specified too. The Command Control
Buffer to issue a READ command is structured as described below.

 typedef struct _ccb_read_command
 {
 unsigned long _access_control_flags;
 long (*ME_system_call) ();
 CCB *ccb_link;
 long last_command;
 unsigned long _reserved[7];
 long command;
 unsigned char *buffer;
 unsigned long count;
 unsigned long block_number;
 unsigned long read_mode;
 unsigned long _remnant[48];
 } CCB_READ_COMMAND;

_access_control_flags:
The BUSY semaphore has to be set to indicate the readiness of the Command Control Buffer
to be processed; all other semaphores within the Access Control Field have to be left unaffected.

command:
The value $04 indicates that the command control buffer is used to issue the READ command
through the Application Command Interface.

*buffer:
Addresses the buffer where the data read from the device have to be stored.

count:
Specifies either the number of blocks to be read from a block oriented device or specifies the
number of bytes to be read from a character oriented device.

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

2-14

block_number:
If any data have to be read from a block oriented device then this entry specifies the number of
the block where to start reading the number of blocks specified by count. In case of a character
oriented device this entry is negligible.

In particular, the entry block_number is interpreted in different ways depending on the certain
device driver: a device driver dealing with a block oriented device will use this entry to determine
the block number where to start reading the number of blocks specified by the entry count. In
contrast to the mentioned above, a device driver dealing with a character oriented device will
only consider the information contained by the entry count.

read_mode:
The read mode specifies the conditions under which the READ command has to be carried out. As
shown in Figure 4 it contains one flag to specify the mode of operation. This flag is valid for all
device drivers. The usage of all reserved flags is device driver dependent. For further information
please refer to the detailed description of the device driver.

The WAIT flag controls whether the READ command has to be carried out either in the wait or
the status mode. If this flag is set, the wait mode is selected. In this case the corresponding
device driver does not inform the application about the completion of the command until all data
blocks or bytes have been read properly or a fail state causes to terminate the operation before
all required data have been transferred.

In the status mode - the WAIT flag is cleared - the device driver reports the successful completion
of the command only if just as much blocks or bytes are already available as specified by
count and transfers the data to the specified buffer. If the number of available data blocks or
bytes is less than the required number, the device driver reports an error but enters the number
of the data blocks or bytes currently available into the entry count of the Command Control
Buffer used to issue the READ command to the device driver. Thus, the application can use this
information to read all available data by a subsequent READ command.

Figure 4: The read mode

31 30 29 28 27 0

WAIT RESERVE RESERVED RESERVED RESERVED !!! RESERVED
D

SECTION 9 APPLICATION COMMAND INTERFACE PROGRAMMING GUIDE

2-15

_remnant:
This data area may be used by the device driver for additional parameters. For further information
please refer to the detailed description of the device driver.

When the READ command has been carried out by the device driver the completion status is
returned through the same Command Control Buffer used to issue the command. The structure
of the corresponding Command Control Buffer is described below.

 typedef struct _ccb_read_status
 {
 unsigned long _access_control_flags;
 long (*ME_system_call) ();
 CCB *ccb_link;
 long last_command;
 unsigned long _reserved[7];
 long status;
 unsigned char *buffer;
 unsigned long count;
 unsigned long block_number;
 unsigned long read_mode;
 unsigned long _remnant[48];
 } CCB_READ_STATUS;

_access_control_flags:
The BUSY and the PROCESS semaphore are both cleared to signal the command completion.
All other semaphores are unaffected.

status:
The status reports the state of the completion of the command and either indicates the successful
completion or the termination of the command due to the recognition of an error. In the former case
a zero is returned; in the latter case a negative value is returned. The following error codes are
returned by the Application Command Interface directly.

ACI_OK:
Indicates the successful termination of the command

ACI_E_ILLEGAL_COMMAND:
An illegal command code has been specified.

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

2-16

ACI_E_INCONSISTENT_COMMAND_CHAIN:
Inconsistent command chain

ACI_E_BUS_ERROR:
A BUS / ADDRESS ERROR occurred within a device driver.

ACI_E_READ_NO_CONNECTION:
The logical connection to a device does not exist

For device driver dependent error codes please refer to the detailed description of the particular
device driver.

*buffer:
This entry is not affected by the device driver and still addresses the beginning of the buffer where
the data read from the device have been stored.

count:
Contains the number of data blocks and bytes read from the device. In case of any error detected
by the device driver the number of bytes may be less than the number specified by the application.

read_mode:
This entry is not affected by the device driver and still contains the read mode as specified by
the application.

_remnant:
This data area may be used by the device driver for additional parameters. For further information
please refer to the detailed description of the device driver.

SECTION 9 APPLICATION COMMAND INTERFACE PROGRAMMING GUIDE

2-17

2.4 The WRITE Command

The WRITE command initiates a data exchange between a device and the application. The data is
transferred from the application to a device. If any data have to be written to a block oriented device then
blocks of data are transferred; in case of a character oriented device only bytes can be transmitted to the
device. The number of blocks or bytes to be written have to be specified too. The Command Control
Buffer to issue a WRITE command is structured as described below.

 typedef struct _ccb_write_command
 {
 unsigned long _access_control_flags;
 long (*ME_system_call) ();
 CCB *ccb_link;
 long last_command;
 unsigned long _reserved[7];
 long command;
 unsigned char *buffer;
 unsigned long count;
 unsigned long block_number;
 unsigned long write_mode;
 unsigned long _remnant[48];
 } CCB_WRITE_COMMAND;

_access_control_flags:
The BUSY semaphore has to be set to indicate the readiness of the Command Control Buffer to
be processed; all other semaphores within the Access Control Field have to be left unaffected.

command:
The value $08 indicates that the command control buffer is used to issue the WRITE command
through the Application Command Interface.

*buffer:
Addresses the buffer which contains the data to be written to the device.

count:
Specifies either the number of blocks to be written to a block oriented device or specifies the
number of bytes to be written to a character oriented device.

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

2-18

block_number:
If any data have to be written to a block oriented device then this entry specifies the number of the
block where to start writing the number of blocks specified by count. In case of a character
oriented device this entry is negligible.

In particular, the entry block_number is interpreted in different ways depending on the certain
device driver: a device driver dealing with a block oriented device will use this entry to determine
the block number where to start writing the number of blocks specified by the entry count. In
contrast to the mentioned above, a device driver dealing with a character oriented device will
only consider the information contained by the entry count.

write_mode:
The write mode specifies the conditions under which the WRITE command has to be carried out.
As shown in Figure 5 it contains one flag to specify the mode of operation. This flag is valid for
all device drivers. The usage of all reserved flags is device driver dependent. For further
information please refer to the detailed description of the device driver.

The WAIT flag controls whether the WRITE command has to be carried out either in the wait or
the status mode. If this flag is set, the wait mode is selected. In this case the corresponding
device driver does not inform the application about the completion of the command until all data
blocks or bytes have been written properly or a fail state causes to terminate the operation
before all required data have been transferred. In the status mode - the WAIT flag is cleared -
 the device driver reports the successful completion of the command only if just as much blocks
or bytes can be written to the device as specified by count and transfers the data to the specific
device from the buffer. If the number of data blocks or bytes which can be written to the device
is less than the required number, the device driver reports an error but enters the number of the
data blocks or bytes, that could be written to the device, into the entry count of the Command
Control Buffer used to issue the WRITE command to the device driver. Thus, the application can
use this information to write the possible amount of data to the device by a subsequent WRITE
command.

Figure 5 The write mode

31 30 29 28 27 0

WAIT RESERVE RESERVE RESERVE RESERVE !!! RESERVED
D D D D

SECTION 9 APPLICATION COMMAND INTERFACE PROGRAMMING GUIDE

2-19

_remnant:
This data area may be used by the device driver for additional parameters. For further information
please refer to the detailed description of the device driver.

When the WRITE command has been carried out by the device driver the status of the completion
of the command is returned through the same Command Control Buffer used to issue the
command. The structure of the corresponding Command Control Buffer is described below.

 typedef struct _ccb_write_status
 {
 unsigned long _access_control_flags;
 long (*ME_system_call) ();
 CCB *ccb_link;
 long last_command;
 unsigned long _reserved[7];
 long status;
 unsigned char *buffer;
 unsigned long count;
 unsigned long block_number;
 unsigned long write_mode;
 unsigned long _remnant[48];
 } CCB_WRITE_STATUS;

_access_control_flags:
The BUSY and the PROCESS semaphore are both cleared to signal the completion of the
command. All other semaphores are unaffected.

status:
The status reports the state of the completion of the command and either indicates the successful
completion or the termination of the command due to the recognition of an error. In the former case
a zero is returned; in the latter case a negative value is returned. The following error codes are
returned by the Application Command Interface directly.

ACI_OK:
Indicates the successful termination of the command

ACI_E_ILLEGAL_COMMAND:
An illegal command code has been specified.

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

2-20

ACI_E_INCONSISTENT_COMMAND_CHAIN:
Inconsistent command chain

ACI_E_BUS_ERROR:
A BUS / ADDRESS ERROR occurred within a device driver.

ACI_E_WRITE_NO_CONNECTION:
The logical connection to a device does not exist.

For device driver dependent error codes please refer to the detailed description of the particular device
driver.

*buffer:
This entry is not affected by the device driver and still addresses the beginning of the buffer
containing the data which have been written to the device.

count:
Contains the number of data blocks and bytes written to the device. In case of any error detected
by the device driver the number of bytes may be less than the number specified by the application.

write_mode:
This entry is not affected by the device driver and still contains the write mode as specified by
the application.

_remnant:
This data area may be used by the device driver for additional parameters. For further information
please refer to the detailed description of the device driver.

SECTION 9 APPLICATION COMMAND INTERFACE PROGRAMMING GUIDE

2-21

2.5 The SERVICE Command

The SERVICE command requests special services provided by the Application Command Interface and
a specific device driver. The Application Command Interface provides services to control the device
driver's parameter, such as task priority etc., or to allocate additional memory which is dedicated to a
logical connection; and a device driver provides services to modify the hardware parameter of a
peripheral (changing the transmission rate of a serial communication controller, to enable or disable
special functions implemented in the peripheral, like timers, counters, etc.) or to change the operating
mode of the device driver. The structure of the Command Control Buffer to issue a SERVICE
command is described below.

 typedef struct _ccb_service_command
 {
 unsigned long _access_control_flags;
 long (*ME_system_call) ();
 CCB *ccb_link;
 long last_command;
 unsigned long _reserved[7];
 long command;
 long service;
 unsigned long service_parameter[51];
 } CCB_SERVICE_COMMAND;

_access_control_flags:
The BUSY semaphore has to be set to indicate the readiness of the Command Control Buffer
to be processed; all other semaphores within the Access Control Field have to be left unaffected.

command:
The value $10 indicates that the command control buffer is used to issue the SERVICE command
through the Application Command Interface.

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

2-22

service:
Specifies the proper service to be carried out by the Application Command Interface or the
appropriate device driver. A positive value identifies a service required of the Application
Command Interface, whereas a negative value designates a service to be provided by the device
driver. (Please refer to the appropriate "EAGLE Module's Firmware User's Manual" to get detailed
information about the services provided by the device drivers dealing with the devices on the
particular EAGLE module.)

The services listed in the table below are provided by the Application Command Interface and the
appropriate code has to be specified in the entry "service" to issue the particular service request
to the Application Command Interface.

Service Code

Get Logical Device Numbers 1

Services provided by the Application Command Interface.

SECTION 9 APPLICATION COMMAND INTERFACE PROGRAMMING GUIDE

2-23

service_parameter:
Depending on the required service further parameters are defined by this entry. The number and
type of these parameters depend on the specific device driver.

 typedef struct _ccb_service_status
 {
 unsigned long _access_control_flags;
 long (*ME_system_call) ();
 CCB *ccb_link;
 long last_command;
 unsigned long _reserved[7];
 long status;
 unsigned long service_parameter[52];
 } CCB_SERVICE_STATUS;

_access_control_flags:
The BUSY and the PROCESS semaphore are both cleared to signal the completion of the
command. All other semaphores are unaffected.

status:
The status reports the state of the completion of the command and either indicates the successful
completion or the termination of the command due to the recognition of an error. In the former case
a zero is returned; in the latter case a negative value is returned.

The following error codes are returned by the Application Command Interface directly.

ACI_OK:
Indicates the successful termination of the command.

ACI_E_ILLEGAL_COMMAND:
An illegal command code has been specified.

ACI_E_INCONSISTENT_COMMAND_CHAIN:
Inconsistent command chain.

ACI_E_BUS_ERROR:
A BUS / ADDRESS ERROR occurred within a device driver.

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

2-24

ACI_E_SERVICE_NO_CONNECTION:
The logical connection to a device does not exist.

ACI_E_SERVICE_NOT_SUPPORTED:
Indicates that the specific device driver does not support any SERVICE command.

ACI_SERVICE_UNKNOWN_SERVICE:
Unknown service requested.

For device driver dependent error codes please refer to the detailed description of the particular device
driver.

service_parameter:
Depending on the required service further information is returned to the application through this
area of the Command Control Buffer. The number of parameters and their meaning depends on
the specific device driver. (Please, refer to the detailed description of the particular device
driver).

The Application Command Interface provides services to get generic information about devices
on available EAGLE modules. These services are described in the following subsection in detail,
as well as the information returned by the Application Command Interface.

SECTION 9 APPLICATION COMMAND INTERFACE PROGRAMMING GUIDE

2-25

2.5.1 The Get Logical Device Number Service

The application has to issue the Get Logical Device Number service command to obtain a list of logical
device numbers of devices of a particular type (e.g. a device that exchanges data via serial communication
lines, a device that exchanges data through a parallel interface, etc.).The Application Command Interface
returns a list of logical device numbers identifying all devices on the available EAGLE modules that are of
the same type as specified by a parameter of the issued SERVICE command. (For a detailed description
of these bits, refer to the "EAGLE Module Specification.")

The Application Command Interface returns a table of logical device numbers to the application, and each
logical device number consists of two bytes. The most significant byte represents the major device number
assigned to device and the least significant byte specifies the maximum number of minor devices packed
up under the major device number.

Assuming the Application Command Interface has returned a logical device number $0203 (major device
number = 2, minor device numbers are ranging from 0 to 3), then this value has to be interpreted in the
following way: the most significant byte of this value represents the major device number (in this case 2)
which corresponds to a device on an available EAGLE module that is of the same type as specified by a
parameter of the SERVICE command. The least significant byte (in this case 3) indicates the minor device
number of the "last" device packed up under the major device number. Thus, four devices are packed up
under one major device number; the minor device number 0 corresponds to the first minor device, the
minor device number 1 corresponds to the second minor device, the minor device number 2 corresponds
to the third minor device, and last but not least the minor device number 3 corresponds to the fourth minor
device packed up under the major device number.
The end of the table is indicated by the value $0000 (major device number = 0, minor device number = 0).

Further parameters have to be passed to the Application Command Interface through the parameter area
of the certain Command Control Buffer as described below:

unsigned long parameter[0]
Contains the type of device. (For a detailed description of these bits, refer to the "EAGLE Module
Specification.")

unsigned long parameter[1]
Addresses a location within the VMEbus address space where the table of logical device numbers
has to be placed by the Application Command Interface. If this entry is cleared, then the Application
Command Interface places the logical device numbers within the same Command Control Buffer
beginning at the location parameter[1].

SECTION 9 APPLICATION COMMAND INTERFACE PROGRAMMING GUIDE

3-1

3. Command Chaining

The Application Command Interface supports the capability to issue a sequence of commands through the
interface which are executed in successive order. The commands are passed through the Application
Command Interface in a chain of Command Control Buffers and each Command Control Buffer is used to
issue a single command. The Application Command Interface informs the application about the completion
of all commands in the chain only until the last command has been executed successfully, or it informs
the application about the abnormal termination of a command when a fail state has been detected.

A command chain is built up when the application issues the CCB_ALLOCATE command through the
Application Command Interface via an already existing logical connection to a device. The
CCB_ALLOCATE leads the Application Command Interface to allocate a given number of Command
Control Buffers and to chain these buffers to the Command Control Buffer associated with the logical
connection.

The entry [ccb_link] within the first part of each Command Control Buffer addresses the following
Command Control Buffer and the NULL pointer identifies the last Command Control Buffer in the chain (A
'single' Command Control Buffer is always the first and last Command Control Buffer in a 'chain' consisting
of only one Command Control Buffer).

To get rid of the Command Control Buffers chained to a Command Control Buffer associated with the
logical connection the application has to issue the CCB_FREE command to 'return' the occupied Command
Control Buffers to the Application Command Interface.

The following constraints apply to the command chains:

1. Only READ and WRITE commands are allowed within the command chain. SERVICE
commands which affect the device driver only can be issued through the Application Command
Interface within a command chain.

2. Only the first Command Control Buffer of the chain can be used to issue the CCB_FREE
command.

3. The CCB_ALLOCATED command can be used only if the application already has issued an OPEN
command through the Application Command Interface and received its own Command Control
Buffer associated with the logical connection.

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

3-2

Therefore, the following steps are recommended to build up a command chain:

1. First, a logical connection has to be established between the application and a specific device
using the OPEN command.

2. When the application has established a logical connection, and has received its own
Command Control Buffer through the Application Command Interface, it can issue the
CCB_ALLOCATE command to acquire a specific number of Command Control Buffers.

3. The application must have prepared all Command Control Buffers in the chain - according to
the rules mentioned above - before the chain is passed through the Application Command
Interface.

4. Once the completion of all commands in the chain has been indicated, the application has to verify
the status of each issued command, and then may release the Command Control Buffers in the
chain by issuing a CCB_FREE command through the first Command Control Buffer of the chain.

5. The application has to issue the CLOSE command using the remaining Command Control Buffer
to release the logical connection to the device.

SECTION 9 APPLICATION COMMAND INTERFACE PROGRAMMING GUIDE

3-3

3.1 The CCB_ALLOCATE Command

The CCB_ALLOCATE command is used to acquire a specific number of Command Control Buffers
which will be chained to the Command Control Buffer associated with the logical connection.

The particular Command Control Buffer is structured as described below.

 typedef struct _ccb_allocate_command
 {
 unsigned long _access_control_flags;
 long (*ME_system_call) ();
 CCB *ccb_link;
 long last_command;
 unsigned long _reserved[7];
 long command;
 long ccb_number;
 unsigned long reserved[50];
 } CCB_ALLOCATE_COMMAND;

_access_control_flags:
The BUSY flag has to be set to indicate the readiness of the Command Control Buffer to be
processed; all other flags within the Access Control Field have to be left unaffected.

command:
The value $18 indicates that the command control buffer is used to issue the CCB_ALLOCATE
command through the Application Command Interface.

ccb_number:
Number of Command Control Buffers to be allocated and linked up to a chain.

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

3-4

After the CCB_ALLOCATE command has been carried out, the status of the completion of the command
in the same Command Control Buffer used to issue the command. The corresponding Command Control
Buffer is structured as described below.

 typedef struct _ccb_allocate_status
 {
 unsigned long _access_control_flags;
 long (*ME_system_call) ();
 CCB *ccb_link;
 long last_command;
 unsigned long _reserved[7];
 long status;
 long ccb_number;
 CCB *chain_head;
 unsigned long reserved[51];
 } CCB_ALLOCATE_STATUS;

_access_control_flags:
The BUSY and the PROCESS flags are both cleared to signal the completion of the command.
All other flags are unaffected.

ccb_link:
On successful completion of the command ccb_link contains a pointer to the next Command
Control Buffer in the chain. Otherwise this entry is cleared.

status:
The status reports the course of the command and indicates one of the following cases:

ACI_OK:
Indicates the successful termination of the command.

ACI_E_ILLEGAL_COMMAND:
An illegal command code has been specified.

ACI_E_INCONSISTENT_COMMAND_CHAIN:
Inconsistent command chain.

ACI_E_BUS_ERROR:
Reserved

SECTION 9 APPLICATION COMMAND INTERFACE PROGRAMMING GUIDE

3-5

ACI_E_ALLOCATE_ILLEGAL_NUMBER_OF_CCBS:
An illegal number of Command Control Buffers to be allocated has been specified.

ACI_E_ALLOCATE_INSUFFICIENT_CCBS:
No more Command Control Buffers available.

ccb_number:
Specifies the number of Command Control Buffers which have been allocated.

*chain_head:
Addresses the Command Control Buffer which is the first CCB in the chain.

3.2 The CCB_FREE Command

The CCB_FREE command is used to release all Command Control Buffers of a chain except the first
Command Control Buffer of the chain.

The particular Command Control Buffer is structured as described below.

 typedef struct _ccb_free_command
 {
 unsigned long _access_control_flags;
 long (*ME_system_call) ();
 CCB *ccb_link;
 long last_command;
 unsigned long _reserved[7];
 long command;
 unsigned long reserved[52];
 } CCB_FREE_COMMAND;

_access_control_flags:
The BUSY flag has to be set to indicate the readiness of the Command Control Buffer to be
processed; all other flags within the Access Control Field have to be left unaffected.

command:
The value $1C indicates that the command control buffer is used to issue the CCB_FREE
command through the Application Command Interface.

After the CCB_FREE command has been carried out, the status of the completion of the command is
returned through the same Command Control Buffer used to issue the command.

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

3-6

The corresponding Command Control Buffer is structured as described below.

 typedef struct _ccb_free_status
 {
 unsigned long _access_control_flags;
 long (*ME_system_call) ();
 CCB *ccb_link;
 long last_command;
 unsigned long _reserved[7];
 long status;
 unsigned long reserved[52];
 } CCB_FREE_STATUS;

_access_control_flags:
The BUSY and the PROCESS flags are both cleared to signal the completion of the command.
All other flags are unaffected.

status:
The status is always zero and indicates the successful termination of the command.

SECTION 9 APPLICATION COMMAND INTERFACE PROGRAMMING GUIDE

4-1

4. Error Codes

This section lists all error codes which are returned through the Application Command Interface to indicate
the fail states detected by the Application Command Interface. All error codes returned by a particular
device driver, dealing with a specific device on an EAGLE module, are described in the appropriate
"Firmware User's Manual" of the EAGLE module.

4.1 Common Error Codes

ACI_OK 0

ACI_E_ILLEGAL_COMMAND -1

ACI_E_INCONSISTENT_COMMAND_CHAIN -2

ACI_E_BUS_ERROR -3

4.2 Error Codes Related To The OPEN Command

ACI_E_OPEN_CCB_ALREADY_ASSOCIATED -5

ACI_E_ILLEGAL_INQUIRY_MODE -6

ACI_E_ILLEGAL_RESPONSE_MODE -7

ACI_E_OPEN_ILLEGAL_DATA_EXCHANGE_MODE -8

ACI_E_OPEN_ILLEGAL_LOGICAL_DEVICE_NUMBER -9

ACI_E_OPEN_INSUFFICIENT_CCBS -10

ACI_E_OPEN_DEVICE_ALREADY_IN_USE -11

ACI_E_OPEN_INSUFFICIENT_MEMORY -13

ACI_E_OPEN_CANNOT_ACTIVATE_DEVICE_DRIVE -14
R

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

4-2

4.3 Error Codes Related To The CLOSE Command

ACI_E_CLOSE_NO_CONNECTION -5

ACI_E_CLOSE_CANNOT_DEACTIVATE_DEVICE_DRIVE -6
R

4.4 Error Code Related To The READ Command

ACI_E_READ_NO_CONNECTION -5

4.5 Error Code Especially Related To The WRITE Command

ACI_E_WRITE_NO_CONNECTION -5

4.6 Error Codes Related To The SERVICE Command

ACI_E_SERVICE_NO_CONNECTION -5

ACI_E_SERVICE_NOT_SUPPORTED -6

ACI_E_SERVICE_UNKNOWN_SERVICE -7

SECTION 9 APPLICATION COMMAND INTERFACE PROGRAMMING GUIDE

4-3

4.7 Error Codes Especially Related To The CCB_ALLOCATE Command

ACI_E_ALLOCATE_ILLEGAL_NUMBER_OF_CCBS -4

ACI_E_ALLOCATE_INSUFFICIENT_CCBS -5

4.8 Error Codes Especially Related To The CCB_FREE Command

None

SECTION 9 APPLICATION COMMAND INTERFACE PROGRAMMING GUIDE

5-1

5. The following example shows how to communicate with the ACI

NOTE: This example has to run on the same board where the ACI is implemented. The

communication with the ACI is done in polled mode. This example is programmed to run
in a PDOS environment. It can easily be ported to any operating system.

#include "XLIB.h"

#define MAILBOX 0xffd80000L
#define DPR_BASE 0x80000000L

#define ACI_IDENTIFIER 0x41434900L

#define OPEN 0x00L
#define READ 0x04L
#define WRITE 0x08L
#define CLOSE 0x0CL
#define SERVICE 0x10L

#define ALLOCATE 31
#define BUSY 30

#define GET_LOGICAL_DEVICE_NUMBER 1L

#define POLL 0x00
#define MBOX0 0x30
#define IRQL2 0x200L

struct _ccb_t
 {
 unsigned long _access_control_flags;
 long (* _ME_system_call) ();
 struct _ccb_t *ccb_link;
 long last_command;
 unsigned long _reserved[7];
 long command_or_status;
 unsigned long _remnant[52];
 };

struct _ccb_open_command
 {
 unsigned long _access_control_flags;
 long (* _ME_system_call) ();
 struct _ccb_t *ccb_link;
 long last_command;
 unsigned long _reserved[7];
 long command;
 unsigned long logical_device_number;
 unsigned long inquiry_mode;
 unsigned long response_mode;
 unsigned long data_exchange_mode;
 unsigned long response_mode_address;
 unsigned long remnant[47];
 };

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

5-2

struct _ccb_sopen_status
 {
 unsigned long _access_control_flags;
 long (* _ME_system_call) ();
 struct _ccb_t *ccb_link;
 long last_command;
 unsigned long _reserved[7];
 long status;
 struct _ccb_t *ccb;
 long ccb_number;
 unsigned long ACI_inquiry_address;
 unsigned long remnant[49];
 };

struct _ccb_close_command
 {
 unsigned long _access_control_flags;
 long (* _ME_system_call) ();
 struct _ccb_t *ccb_link;
 long last_command;
 unsigned long _reserved[7];
 long command;
 unsigned long release_state; /* !!!! always cleared !!!! */
 unsigned long _remnant[51];
 };

struct _ccb_sclose_status
 {
 unsigned long _access_control_flags;
 long (* _ME_system_call) ();
 struct _ccb_t *ccb_link;
 long last_command;
 unsigned long _reserved[7];
 long status;
 unsigned long _remnant[52];
 };

struct _ccb_read_command
 {
 unsigned long _access_control_flags;
 long (* _ME_system_call) ();
 struct _ccb_t *ccb_link;
 long last_command;
 unsigned long _reserved[7];
 long command;
 unsigned char *buffer;
 unsigned long count;
 unsigned long block_number;
 unsigned long read_mode;
 unsigned long _remnant[48];
 };

struct _ccb_sread_status
 {
 unsigned long _access_control_flags;
 long (* _ME_system_call) ();
 struct _ccb_t *ccb_link;
 long last_command;
 unsigned long _reserved[7];
 long status;
 unsigned char *buffer;
 unsigned long count;
 unsigned long block_number;
 unsigned long read_mode;
 unsigned long _remnant[48];
 };

SECTION 9 APPLICATION COMMAND INTERFACE PROGRAMMING GUIDE

5-3

struct _ccb_write_command
 {
 unsigned long _access_control_flags;
 long (* _ME_system_call) ();
 struct _ccb_t *ccb_link;
 long last_command;
 unsigned long _reserved[7];
 long command;
 unsigned char *buffer;
 unsigned long count;
 unsigned long block_number;
 unsigned long write_mode;
 unsigned long _remnant[48];
 };

struct _ccb_swrite_status
 {
 unsigned long _access_control_flags;
 long (* _ME_system_call) ();
 struct _ccb_t *ccb_link;
 long last_command;
 unsigned long _reserved[7];
 long status;
 unsigned char *buffer;
 unsigned long count;
 unsigned long block_number;
 unsigned long write_mode;
 unsigned long _remnant[48];
 };

struct _ccb_cservice_command
 {
 unsigned long _access_control_flags;
 long (* _ME_system_call) ();
 struct _ccb_t *ccb_link;
 unsigned long last_command;
 unsigned long _reserved[7];
 long command;
 long service;
 unsigned long parameter[51];
 };

struct _ccb_sservice_status
 {
 unsigned long _access_control_flags;
 long (* _ME_system_call) ();
 struct _ccb_t *ccb_link;
 long last_command;
 unsigned long _reserved[7];
 long status;
 unsigned long _remnant[52];
 };

/*

 Forwards

*/
static void get_ccb();
static void put_ccb();
static void do_mbox0();
static void wait_not_busy();
static unsigned long do_service();
static short check_device();
static long open_device();
static unsigned long set_floppy_parameter();
static unsigned long do_me_read();
static unsigned long do_me_write();
static long close_device();

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

5-4

/*

 call: main()

 in : nothing

 out : nothing

 description:
 'main' first waits until the ME has written its identifier. Then,
 the address of the first CCB is fetched. With this CCB the ACI is
 asked if there is a floppy device driver task available. If yes,
 this task is opened. Furthermore a service call for the floppy
 device driver task is executed. At the end the first CCB0 is
 released.

 called subroutines: get_ccb(), check_device(), open_device(),
 set_floppy_parameter(), put_ccb(), do_me_read(),
 do_me_write(), close_device()

*/
main()
{ short found;
 struct _ccb_open_command *ccb_ptr;
 unsigned long floppy_ccb = 0L;
 char buffer[256];

 while (*(long *)0L != ACI_IDENTIFIER)
 ; /* wait until ME is ready */
 ccb_ptr = (struct _ccb_open_command *)(*(long *)0x04L & 0x00ffffff);
 /* get address of CCB0 */
 get_ccb(ccb_ptr); /* get the first CCB */
 if ((found = check_device(ccb_ptr,2L,0L)) != 0)
 /* check for a floppy controller */
 if (open_device(ccb_ptr,found) == 0)
 /* there is one */
 /* try to open it */
 floppy_ccb = (long)(((struct _ccb_sopen_status *)ccb_ptr)->ccb)
 & 0x00ffffffL;
 /* open was ok, get our CCB */
 put_ccb(ccb_ptr); /* CCB 0 is not longer used */
 if (floppy_ccb != 0) /* execute only if a floppy device */
 /* is present */
 { set_floppy_parameter(floppy_ccb,0L);
 /* do a service call to the floppy */
 /* device driver task */
 do_me_read(floppy_ccb, 100L, buffer, 0L);
 /* read block 100 from drive 0 */
 do_me_write(floppy_ccb, 100L, buffer, 0L);
 /* write block 100 to drive 0 */
 close_device(floppy_ccb); /* terminate this connection */
 } /* end if */
} /* end of 'main()' */

/*
 call: get_ccb(ccb_ptr)

 in : ccb_ptr -> address of CCB which is to use

 out : nothing

 description:
 get_ccb() waits until it gets the requested CCB. This MUST be done
 with an opcode which cannot be interrupted from another processor.

 called subroutines: none

*/

SECTION 9 APPLICATION COMMAND INTERFACE PROGRAMMING GUIDE

5-5

static void get_ccb(ccb_ptr)
struct _ccb_cservice_command *ccb_ptr;
{ while (XTAS((char *)&ccb_ptr->_access_control_flags) != 0)
 /* allocating the CCB with a TAS */
 ; /* instruction */
} /* end of 'get_ccb()' */

/*
 call: put_ccb(ccb_ptr)

 in : ccb_ptr -> address of CCB which is no longer used

 out : nothing

 description:
 put_ccb() makes the previous allocated CCB accessible to other
 tasks.

 called subroutines: none

*/
static void put_ccb(ccb_ptr)
struct _ccb_cservice_command *ccb_ptr;
{ ccb_ptr->_access_control_flags &= ~(1L << ALLOCATE);
 /* the CCB is free for other */
} /* end of 'put_ccb()' */

/*
 call: do_mbox0(ccb_address)

 in : ccb_address -> CCB address

 out : Nothing

 description:
 do_mbox0() initiates a Mailbox 0 interrupt. If the CCB is onboard
 the interrupt will come to myself. If the CCB is offboard the
 interrupt will be generated at this board.

 called subroutines: none

*/
static void do_mbox0(ccb_address)
register unsigned long ccb_address;
{ if (ccb_address < DPR_BASE) /* ME onboard ? */
 { while (*(char *)MAILBOX < 0) /* initiate an onboard Mailbox 0 */
 /* interrupt */
 ; /* until success */
 } /* do not forget this bracket */
 else /* the CCB is not on this board */
 { while (*(char *)(0xfcff0000 | ((ccb_address >> 16) & 0xff00)) < 0)
 /* initiate a VMEbus Mailbox 0 */
 /* interrupt */
 ; /* until success */
 } /* end if */
} /* end of 'do_mbox0()' */

/*
 call: wait_not_busy(ccb_ptr)

 in : ccb_ptr -> address of CCB which is used

 out : nothing

 description:
 wait_not_busy() waits until someone (hopefully the ME) clears
 the BUSY bit

 called subroutines: none

*/

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

5-6

static void wait_not_busy(ccb_ptr)
struct _ccb_cservice_command *ccb_ptr;
{ while (ccb_ptr->_access_control_flags & (1L << BUSY))
 ; /* we're waiting until the ME has */
 /* cleared the BUSY bit */
} /* end of 'wait_not_busy()' */

/*
 call: do_service(ccb_ptr, service_number)

 in : ccb_ptr -> CCB address
 service_number -> number of the requested service call

 out : error number

 description:

 called subroutines: do_mbox(0), wait_not_busy()

*/
static unsigned long do_service(ccb_ptr, service_number)
register struct _ccb_cservice_command *ccb_ptr;
unsigned long service_number;
{

 ccb_ptr->command = SERVICE; /* we do a SERVICE call */
 ccb_ptr->service = service_number; /* set requested service number */
 ccb_ptr->_access_control_flags |= 1L << BUSY;
 /* we have to set the BUSY bit */
 do_mbox0(ccb_ptr); /* and to initiate a Mailbox 0 */
 /* interrupt */
 wait_not_busy(ccb_ptr); /* we're waiting until the ME has */
 /* done its job */
 return(((struct _ccb_sservice_status *)ccb_ptr)->status);
 /* return error value */
} /* end of do_service() */

/*
 call: check_device(ccb_ptr, device, destination)

 in : ccb_ptr -> address of CCB which is to use
 device -> device mask
 destination -> to where the data is to send

 out : Major/Minor number of the (first) device or 0 if none

 description:
 check_device() checks if the accessed target has I/O device of the
 type requested in 'device'.

 called subroutines: do_mbox0(), wait_not_busy()

*/

SECTION 9 APPLICATION COMMAND INTERFACE PROGRAMMING GUIDE

5-7

static short check_device(ccb_ptr, device, destination)
register struct _ccb_cservice_command *ccb_ptr;
unsigned long device;
register short *destination;
{ ccb_ptr->command = SERVICE; /* we do a SERVICE call */
 ccb_ptr->service = GET_LOGICAL_DEVICE_NUMBER;
 /* we want to get logical device */
 /* numbers */
 ccb_ptr->parameter[0] = device; /* of these devices */
 ccb_ptr->parameter[1] = (unsigned long)destination;
 /* set destination of the list */
 ccb_ptr->_access_control_flags |= 1L << BUSY;
 /* we have to set the BUSY bit */
 do_mbox0(ccb_ptr); /* and to initiate a Mailbox 0 */
 /* interrupt */
 wait_not_busy(ccb_ptr); /* we're waiting until the ME has */
 /* done its job */
 if (destination == (short *)0) /* is the destination in the CCB ? */
 destination = (short *)(&(ccb_ptr->parameter[1]));
 /* yes, then we have set this address*/
 return(*destination); /* return Major/Minor number */
} /* end of check_device() */

/*
 call: open_device(ccb_ptr, major_minor)

 in : ccb_ptr -> address of CCB which is to use
 major_minor -> Major/Minor number of the device

 out : ME return value in the CCB

 description:
 open_device() tries to open an I/O device. The device number is
 given in 'major_minor'.

 called subroutines: do_mbox0(), wait_not_busy()

*/
static long open_device(ccb_ptr, major_minor)
register struct _ccb_open_command *ccb_ptr;
short major_minor;
{ ccb_ptr->command = OPEN; /* we do a OPEN call */
 ccb_ptr->logical_device_number = (unsigned long)major_minor;
 /* set device wanted */
 ccb_ptr->inquiry_mode = IRQL2 | MBOX0;
 /* interrupt level 2/ Mailbox 0 */
 ccb_ptr->response_mode = POLL; /* set response mode */
 ccb_ptr->data_exchange_mode = 0xc0000000;
 /* the device driver task has to */
 /* transfer the data directly with */
 /* DMA */
 ccb_ptr->_access_control_flags |= 1L << BUSY;
 /* we have to set the BUSY bit */
 do_mbox0(ccb_ptr); /* and to initiate a Mailbox 0 */
 /* interrupt */
 wait_not_busy(ccb_ptr); /* we're waiting until the ME has */
 /* done its job */
 return(((struct _ccb_sopen_status *)ccb_ptr)->status);
 /* return open status */
} /* end of open_device() */

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

5-8

/*
 call: set_floppy_parameter(ccb_ptr, drive)

 in : ccb_ptr -> CCB address
 drive -> floppy drive number

 out : STATUS as returned from the ME in the CCB

 description:
 set_floppy_parameter executes a set floppy parameter service.

 called subroutines: do_service()

*/
static unsigned long set_floppy_parameter(ccb_ptr, drive)
register struct _ccb_cservice_command *ccb_ptr;
unsigned long drive;
{ ccb_ptr->parameter[0] = drive; /* set drive number */
 ccb_ptr->parameter[1] = 80; /* set number of cylinder */
 ccb_ptr->parameter[2] = 32; /* set sectors/cylinder */
 ccb_ptr->parameter[3] = 1; /* set bytes/sector (coded) */
 ccb_ptr->parameter[4] = 2; /* set number of heads */
 ccb_ptr->parameter[5] = 0x20; /* set R/W gap */
 ccb_ptr->parameter[6] = 0x36; /* set format gap */
 ccb_ptr->parameter[7] = 1; /* set density */
 ccb_ptr->parameter[8] = 1; /* set step rate */
 return(do_service(ccb_ptr,-2049L)); /* execute service */
} /* end of 'set_floppy_parameter()' */

/*
 call: do_me_read(ccb_ptr, block, buffer, drive)

 in : ccb_ptr -> CCB address
 block -> requested block number
 buffer -> address of source data
 drive -> drive number

 out : STATUS as return from the ME in the CCB

 description:
 do_me_read() reads exactly one block from the given drive.
 It waits until the ME has returned a status. The block size is
 fixed to 256Bytes.

 called subroutines: wait_not_busy(), do_mbox0()

*/

SECTION 9 APPLICATION COMMAND INTERFACE PROGRAMMING GUIDE

5-9

static unsigned long do_me_read(ccb_ptr, block, buffer, drive)
register struct _ccb_read_command *ccb_ptr;
unsigned long block;
unsigned char *buffer;
unsigned long drive;
{ ccb_ptr->command = READ; /* we do a READ call */
 ccb_ptr->buffer = buffer; /* set read buffer */
 ccb_ptr->count = 1; /* we want to read 1 block */
 ccb_ptr->block_number = block; /* block number to read */
 ccb_ptr->read_mode = 0x80000000; /* we want to wait for the data */
 ccb_ptr->_remnant[0] = drive; /* set drive number */
 ccb_ptr->_remnant[1] = 256L; /* set block size */
 ccb_ptr->_access_control_flags |= 1L << BUSY;
 /* we have to set the BUSY bit */
 do_mbox0(ccb_ptr); /* and to initiate a Mailbox 0 */
 wait_not_busy(ccb_ptr); /* we're waiting until the ME has */
 /* done its job */
 return(((struct _ccb_sopen_status *)ccb_ptr)->status);
 /* return error value */
} /* end of do_me_read() */

/*
 call: do_me_write(ccb_ptr, block, buffer, drive)

 in : ccb_ptr -> CCB address
 block -> requested block number
 buffer -> address where the data is to store
 drive -> drive number

 out : STATUS as return from the ME in the CCB

 description:
 do_me_write() writes exactly one block to the given drive.
 It waits until the ME has returned a status. The block size is
 fixed to 256Bytes.

 called subroutines: wait_not_busy(), do_mbox0()

*/
static unsigned long do_me_write(ccb_ptr, block, buffer, drive)
register struct _ccb_write_command *ccb_ptr;
unsigned long block;
unsigned char *buffer;
unsigned long drive;
{ unsigned long error;

 ccb_ptr->command = WRITE; /* we do a WRITE call */
 ccb_ptr->buffer = buffer; /* set write buffer */
 ccb_ptr->count = 1; /* we want to write 1 block */
 ccb_ptr->block_number = block; /* block number to write */
 ccb_ptr->write_mode = 0x80000000; /* we want to wait until written */
 ccb_ptr->_remnant[0] = drive; /* set drive number */
 ccb_ptr->_remnant[1] = 256L; /* set block size */
 ccb_ptr->_access_control_flags |= 1L << BUSY;
 /* we have to set the BUSY bit */
 do_mbox0(ccb_ptr); /* and to initiate a Mailbox 0 */
 /* interrupt */
 wait_not_busy(ccb_ptr); /* we're waiting until the ME has */
 /* done its job */
 return(((struct _ccb_sopen_status *)ccb_ptr)->status);
 /* return error value */
} /* end of do_me_write() */

SYS68K/CPU-40/41 USER'S MANUAL FORCE COMPUTERS

5-10

/*
 call: close_device(ccb_ptr)

 in : ccb_ptr -> address of CCB which is to use

 out : ME return value in the CCB

 description:
 close_device() simply executes a CLOSE command to the given CCB.
 The response mode is not of interrest because we simply poll the
 answer.

 called subroutines: do_mbox0(), wait_not_busy()

*/
static long close_device(ccb_ptr)
register struct _ccb_close_command *ccb_ptr;
{ unsigned long error;

 ccb_ptr->command = CLOSE; /* we do a CLOSE call */
 ccb_ptr->_access_control_flags |= 1L << BUSY;
 /* we have to set the BUSY bit */
 do_mbox0(ccb_ptr); /* and to initiate a Mailbox 0 */
 /* interrupt */
 wait_not_busy(ccb_ptr); /* we're waiting until the ME has */
 /* done its job */
 error = ((struct _ccb_sclose_status *)ccb_ptr)->status;
 /* get close status */
 put_ccb(ccb_ptr); /* this CCB is no longer used */
 return(error); /* return status */
} /* end of close_device() */

	SYS68K/CPU-40/41
	User’s Manual

