
Performance Estimation* Methods for XP32 MAXL

Ian J. Curington and Rex W. Tracy
Floating Point Systems, U.K., Ltd.

Abstract
XP32 application programs depend
optimal execution. Methods
introduced in this paper, using
spectral analysis application,
is introduced and applied to the

heavily on program structure for
of designing XP32 programs are
as an example an interpolated
A performance analysis technique

example.

Introduction
This paper illustrates a concise approach to performance
estimation of XP32 MAXL program modules. A structured application
design methodoloy is introduced, showing the manner in which code
structure affects performance. This methodology is a tool for the
analysis of a wide variety of application programs on the XP32, as
well as a model for the application structure.

Problem Statement
To illustrate the analysis techniques discussed below, an
application problem is posed for execution on the XP32
co-processor in the FPS-5000 Series array processor. The problem
considered is one of interpolated spectral estimation using
multiple XP32 co-processors. The problem common to the design of
this, and many other potential applications, is identifying the
maximum system throughput achievable for a given number of
co-processors. Additionally, it is useful to know whether or not
an XP32 can achieve high performance on this application.

The example is centered around a specific spectrum estimation
process which is illustrated in Figure 1. As shown in the block
diagram, data originates in the FPS-5000 Series System Common
Memory (SCM) , is processed in an XP32 co-processor, and results
are returned to SCM. One block of time-ordered input data is
processed at a time. The process expands the input block by zero
filling and windowing before applying the forward Fast Fourier
Transform (FFT). The frequency domain data is then scaled and a
magnitude estimate made at each of the frequencies from the FFT.
The process continues for a large number of data blocks.

Performance Estimation Methods - FUSE Conference 1984
Curington, Tracy, Floating Point Systems UK

Page 2

In this example, the specific parameters of the application lead
to the use of an interpolated spectral estimate and system
parameters given by

NINPUT = 128
NFFT = 512
NOUTPT = 256

where NINPUT represents the number of acquired data samples
processi-ng block, NFFT is the size of the FFT data block,
NOUTPT is the number of spectral estimates sent back to SCM.

per
and

Analysis Methodology
Developing an application package for use in the FPS-5000 involves
a series of decisions determining the structure of the code to be
developed. The first consideration is how to partition the
application between the various system processors. In this
example, a portion of the spectral processing could be performed
by the XP32, while the remainder is processed by the control
processor. However, in order to facilitate extending the
application code to multiple XP32 co-processors, in this example
processing is performed entirely within one XP32 co-processor.

Limiting the problem to one XP32, without using the control
processor arithmetic capabilities, performance estimation and
optimization proceeds in the following manner:

1. Analyze the processing requirements of the computations in a
single XP32 co-processor as shown in the following example
analysi s.

2. Analyze the I/O requirements necessary to support a single
XP32 and determine if the SCM bandwidth can support the single
XP32, or multiple XP32s, also shown in the following example
analysis.

Performance Estimation Methods - FUSE Conference 1984
Curington, Tracy, Floating Point Systems UK

Page 3

3. Determine the relationship between processing time and I/O
time between the XP32 local main data (LMD) and SCM.
1. If I/O time is greater than processing time, then little

will be gained by optimizing the structure of the XP32
MAXL code. However, repartitioning the application to
include more intensive XP32 calculations would be helpful.

2. If I/O time is less than processing time, XP32 MAXL code
should be organized to take advantage of overlapped data
transfer and efficient executive queue management.

4. Create a preliminary draft of the XP32 MAXL code to estimate
the number of XP32 co-processors appropriate for this
appl ication.

first order estimate of both the
the XP32 code (given a particular
an estimate of the system

These steps lead to an efficient
best way in which to structure
problem partitioning) , and to
performance on this application.

Example Analysis
For the purposes of tbis paper, the computational - analysi s begins
by developing a table associating XP32 math library (XPMLIB)
functions with the required processing tasks. An overhead
estimate must be added to account for the processing time spent
queueing and dequeueing the operations to be performed by the
arithmetic section of the XP32. Further entries in the table are
included- for each of the data transfers between SCM and XP32 Local
Main Data (LMD). An illustration for this specific application is
given in Table 1. In estimating data transfer times, an
FPS-5100/54 00 Series Array Processor is assumed.

From the analysis shown in Table 1, a number of conclusions may be
drawn from this application. First, the processing time is
considerably longer than the I/O transfer time, indicating that
this application is a good candidate for using multiple XP32
co-processors. Because any one XP32 requires only 10 percent of
the SCM bandwidth, transfer times are not likely to be extended
beyond these estimates. Second, the upper bound on throughput
with a single XP32 is limited by the processing time of 1.128
milliseconds (if the code is structured to overlap I/O and
processing). Finally, if the code is written in a simplistic
manner, such as input, process, output, the XP32 time will equal
the sum of I/O and processing time (approximately 1.32
milliseconds). This time is approximately 20 percent longer than
if the code were fully optimized.

Performance Estimation Methods - FUSE Conference 1984
Curington, Tracy, Floating Point Systems UK

Page 4

Processing
Function

Vector
Size

XP32
Math Lib
Rout i ne

Function
Start-up
(cycles)

Function
Execut ion

(cycles/pt)

Total
Execution Time
(microsecond s)

Zero Pad NFFT ZVCLR 20 0.5 46.00

Window NINPUT ZVMUL 19 1.5 35.16

Real FFT NFFT ZRFFT 90 7.5 603.10

Scale FFT NFFT ZSCLRF 19 3.0 259.16

Magnitude NOUTPT ZCVMGS 20 1.5 131.33

Subtotal Arithmetic Processing Time 1074.76

Queue/Dequeue overhead (5%) 53.74

Total Processing Time 1128.50 usee

Transfer
SCM — ► LMD NINPUT XPDMAR

3.0
(2MHz) 64.00

Transfer
LMD — ► SCM NOUTPT XPDMAR

3.0
(2MHz) 128.00

Total Data Transfer Time 192.00 usee

Transfer Timing Estimates.Processing and DataTable 1.

Because vector sizes are in the range of 128 to 512, a greater
than usual amount of overhead may occur in queue management. This
amount is estimated to be approximately 5 percent, and is shown as
an addition to the processing subtotal in Table 1 .

A Simple Program Structure
This section describes a MAXL program which implements the
spectral estimation process as described in the previous section.
Initially, no attempt is made to take advantage of the XP32
capability of overlapping data transfers with computation.

In constructing the example code, it is assumed that there are a
number of input data blocks available in SCM when the XP32 code is
entered. The address of the data, the number of data blocks, and
the address of the resultant buffer in SCM are passed to the XP32
MAXL routine when it is initially started by the control
processor. The XP32 processes all available data blocks before
returning control to the control processor.

In order to introduce the code included in this section, the
overall structure is outlined in Figure 2. This structured

Performance Estimation Methods - FUSE Conference 1984
Curington, Tracy, Floating Point Systems UK

Page 5

technique is useful in organizing the flow of control in XP32
applications.

A. Do for all data blocks available:

1. Input Buffer from SCM to Local Main Data (LMD).
. Wait for LMD buffer to be filled.
• Process Spectral Estimation Arithmetic Operations.
. Wait for computations to finish.
. Output results to SCM.
. Wait for buffer to empty.

B. Pass control back to the control processor.

C
N

 (J
I

G
J

N
J

Figure 2. Example Non-overlapped MAXL Structure.

C XP32 MAXL SPECTRAL ESTIMATION EXAMPLE
C

SUBROUTINE SPECTR (INAD, NBLOCKS, OUTAD)
C
CSAPMATH ZVCLR ,ZVMUL ,ZRFFT,ZSCRLF,ZCVMGS

PARAMETER (FROMXP=1, TOXP=2, NFFT=512, NINPUT=128)
PARAMETER (NOUTPT=256, FL0AT=2)

C
INTEGER BUFFER,J,WORK,WINDOW

C
C LMD LOCATIONS:
C BUFFER=0, WINDOW BUFFER=8K, WORK AREA=12K

DATA BUFFER,WINDOW,WORK/ 0, 8192, 12288 /
C
C FOR ALL DATA BLOCKS,

DO 600 J=l,NBLOCKS
C
C GET DATA IN FROM SCM

CALL XPDMAR (TOXP , BUFFER, 1, INAD, 1, FLOAT, NINPUT)
CALL XPISNC

C
C RUN THE PROCESSING FUNCTIONS

CALL ZVCLR (WORK, 1, NFFT)
CALL ZVMUL (BUFFER, WINDOW, WORK, NINPUT)
CALL ZRFFT (WORK, NFFT, 1)
CALL ZSCLRF(WORK, NFFT, 3, 1)
CALL ZCVMGS(WORK, BUFFER, NOUTPT)

. CALL XPISNC
C
C NOW SEND THE RESULT BACK TO SCM.

CALL XPDMAR (FROMXP , BUFFER, 1, OUTAD, 1, FLOAT, NOUTPT)
CALL XPISNC
INAD = INAD + NINPUT
OUTAD = OUTAD + NOUTPT

600 CONTINUE

Performance Estimation Methods - FUSE Conference 1984
Curington, Tracy, Floating Point Systems UK

Page 6

RETURN
END

C END OF EXAMPLE

This code sequence can be combined with the numbers obtained from
Table 1 to generate a timing diagram for the execution of this
example. As shown in Figure 3, the total processing time is
approximately 1.32 milliseconds.

Input Data
Transfer

◄— Input Block N

Ar i thmet ic
Operations

◄— Process Block N ------►

Output
Data Transfer

Output Block N

Time

Timing Diagram for Non-Overlapped Example.Figure 3.

Given that the FPS-5100/5400 architecture can support an aggregate
data transfer bandwidth of 4Mhz, a second XP32 co-processor could
easily be included (to process half of the required blocks) with
no throughput degradation caused by memory contentions. Even with
two XP32s in the application, the total requirement for memory
access is .384 milliseconds (at 2Mhz), out of a frame time of
1.32 milliseconds. Thus opportunity exists to add a third XP32
(which increases I/O time to .576 milliseconds), and continue to
have sufficient SCM bandwidth available to support additional
computations by the control processor.

Viewed from the perspective of overall system throughput, the
effective frame time is 1.32/3 or 440 microseconds per data block.
If a real time interface, such as a GPIOP, is involved in data
acquisition, the I/O rate translates into 3.44 microseconds per
input data word with block size of 128. The additional I/O load
of the GPIOP at 290 KHz continues to leave a wide margin for SCM
access by the control processor.

Adding Overlap of Data Transfer and Computation
Starting with the same overall assumptions, overlapping data
transfers with computation, the first step is to revise the
structural outline of the XP32 MAXL code. Figure 4 shows a double
buffered control scheme surrounding exactly the same processing
steps. To further simplify the control structure, assume that an
even number of data blocks are to be processed. An odd number of
data blocks can easily be accomodated by skipping the last buffer
B processing and output steps 7, 9, and 10 in Figure 4.

Performance Estimation Methods - FUSE Conference 1984
Curington, Tracy, Floating Point Systems UK.

Page 7

1.
2.
3.
4.
5.

Buffer A
for Buffer A to fill
Process on Buffer A (I
Buffer B
1 to (NBLOCKS/2)-2 the
Wait for Buffer B full
Start Process on Buffer
Output Buffer A results
Input new Buffer A
Wait for Buffer A full
Start Process on Buffer
Output Buffer B
Input new Buffer B

Input
Wait
Start n Place)

following :
and Process
B

Input
Do J =

mg Completee

•
•

0 U

ing Completeand Process
A

6. Wait for Buffer B full and Processing Complete
7. Start Process on Buffer B
8. Output Buffer A results
9. Wait for Processing Complete
10. Output Buffer B results
11. Wait for Buffer B emptied
12. Pass Control back to the control processor

Figure 4. Double Buffered Control Outline.

Translating the structure into MAXL is accomplished as shown in
the following MAXL code module. The processing calls could be
split off into a separate MAXL module for symbolic independence
and more structured programming style, but are shown merged
in-line to minimize MAXL interpretation overhead.

C DOUBLE BUFFERED OVERLAPPED I/O VERSION OF
C XP32 MAXL SPECTRAL ESTIMATION EXAMPLE
C

SUBROUTINE SPECTR (INAD, NBLOCKS, OUTAD)
C
C$APMATH ZVCLR ,ZVMUL ,ZRFFT,ZSCRLF ,ZCVMGS

PARAMETER (FROMXP=1, TOXP=2, NFFT=512, NINPUT=128)
PARAMETER (NOUTPT=256, FLOAT=2)

C
INTEGER N ,TEMP,BUFFRA ,BUFFRB ,IADDR ,OADDR ,J ,WORK,WINDOW

C
C LMD LOCATIONS:
C BUFFER A =0, BUFFER B =4K, WINDOW BUFFER=8K, WORK AREA=12K

DATA BUFFRA,BUFFRB,WINDOW,WORK/ 0, 4096, 8192, 12288 /
C
C INITIALIZE LOCAL POINTERS

IADDR = INAD
OADDR = OUTAD

C
C START FIRST READ OPERATION

CALL XPDMAR (TOXP, BUFFRA, 1, IADDR, 1, FLOAT, NINPUT)
CALL XPISNC

Performance Estimation Methods - FUSE Conference 1984
Curington, Tracy, Floating Point Systems UK

Page 8

IADDR = IADDR + NINPUT •
C
C PROCESS BUFFER A

CALL ZVCLR (WORK, 1, NFFT)
CALL ZVMUL (BUFFRA, WINDOW, WORK, NINPUT)
CALL ZRFFT (WORK, NFFT, 1)
CALL ZSCLRF(WORK, NFFT, 3, 1)
CALL ZCVMGS (WORK, BUFFRA, NOUTPT)

C
C START READING BUFFER B

CALL XPDMAR (TOXP, BUFFRB, 1, IADDR, 1, FLOAT, NINPUT)
IADDR = IADDR + NINPUT

C
C COMPUTE THE NUMBER OF TIMES THROUGH THE DO-LOOP

TEMP = NBLOCKS **2*-l
N = TEMP -2

C
C MAIN LOOP THROUGH ALL BUT THE LAST TWO BUFFERS

DO 600 J = 1, N

CALL XPISNC
CALL ZVCLR (WORK, 1, NFFT)
CALL ZVMUL C’BUFFRB, WINDOW, WORK, NINPUT)
CALL ZRFFT (WORK, NFFT, 1)
CALL ZSCLRF (WORK, NFFT, 3, 1)
CALL ZCVMGS (WORK, BUFFRB, NOUTPT)
CALL XPDMAR (FROMXP, BUFFRA, 1, OADDR, 1, FLOAT, NOUTPT)
CALL XPDMAR (TOXP, BUFFRA, 1, IADDR, 1, FLOAT, NINPUT)
'OADDR = OADDR + NOUTPT
IADDR = IADDR + NINPUT

CALL XPISNC
CALL ZVCLR (WORK, 1, NFFT)
CALL ZVMUL (BUFFRA, WINDOW, WORK, NINPUT)
CALL ZRFFT (WORK, NFFT, 1)
CALL ZSCLRF(WORK, NFFT, 3, 1)
CALL ZCVMGS (WORK, BUFFRA, NOUTPT)
CALL XPDMAR (FROMXP, BUFFRB, 1, OADDR, 1, FLOAT, NOUTPT)
CALL XPDMAR (TOXP, BUFFRB, 1, IADDR, 1, FLOAT, NINPUT)
OADDR = OADDR + NOUTPT
IADDR = IADDR + NINPUT

600 CONTINUE

CALL XPISNC
CALL ZVCLR (WORK, 1, NFFT)
CALL ZVMUL (BUFFRB, WINDOW, WORK, NINPUT)
CALL ZRFFT (WORK, NFFT, 1)

. CALL ZSCLRF (WORK, NFFT, 3, 1)
CALL ZCVMGS (WORK, BUFFRB, NOUTPT)
CALL XPDMAR (FROMXP, BUFFRA, 1, OADDR, 1, FLOAT, NOUTPT)
OADDR = OADDR + NOUTPT
CALL XPISNC
CALL XPDMAR (FROMXP, BUFFRB, 1, OADDR, 1, FLOAT, NOUTPT)
CALL XPISNC

C

Performance Estimation Methods - FUSE Conference 1984
Curington, Tracy, Floating Point Systems UK

Page 9

RETURN
END

In the same method as the previous non-overlapped case, a timing
diagram can be built combining the MAXL code structure with the
timing analysis performed earlier. In this case, the only time
the arithmetic section is not performing useful calculations is
while communicating syncroni zation information to the XP32
executive or is performing request queue management operations.
The timing is the same as for the previous analysis and is
summarized graphically in Figure 5. The effective frame time has
been reduced to 1.13 milliseconds.

Input Block N + 1Input Data
Transfer

Process Block NAr i thmet ic
Operations

Output
Data Transfer

Output Block N

Time

Figure 5. Timing Diagram for Overlapped Double-Buffered Example.

Again, the memory bandwidth requirements for this program
structure are found to be small (192 microseconds at 2Mhz out of
every 1128 microseconds), leading to the conclusion that multiple
XP32s are able to operate in this environment. Using three XP32s,
the effective frame time is 377 microseconds, or approximately
2.95 microseconds per data sample. At continuous real-time rates,
the throughput requirement of the I/O channel is 340 kHz and falls
within the capabilities of the FPS -SOOO architecture.

XP32 Executive Performance Considerations
The preceding analysis has ignored the effects of the XP32
executive on overall throughput. In this specific application, it
may be valid to ignore the executive because of the MAXL code
structure. The executive operates in a fashion designed to
minimize the overhead in starting operations, and performs as much
MAXL interpretation as possible, overlapped with other XP32
functions. In the above examples the only area in which MAXL
interpretation may affect performance is the updating of address
pointers.

If a MAXL program is structured to leave the arithmetic section
idle while performing control operations, a more thorough analysis
technique is required. The speed of MAXL code interpreted by the
executive is slower than the same code executing on the control
processor, where MAXL is compiled to APAL rather than interpreted.
Due to this consideration, It is therefore advantageous to retain

Performance Estimation Methods - FUSE Conference 1984
Curington, Tracy, Floating Point Systems UK

Page 10

as much of the time consuming MAXL operations on the control
processor as possible.

The executive performs numerical operations on 24-bit integers by
performing several distinct steps. First, it fetches the code
word from SCM, storing it internally in a scratch area. Second,
it decodes and validates the requested operation, and reads the
parameter list. In the third step, it executes the requested
operation. The time required for these steps can be summarized as

1. Fetch Operation = 1 . 5 cycles
2. Validate, Decode, Fetch N Arguments = 2.5 * N + 3.5 cycles
3. Execute Operation = 1 to 50 cycles

The time required for execution of the operation varies
considerably with the type of operation. Figure 6 shows the
approximate cost of various operations (one cycle in the XP32
takes .167 microseconds). The times may be longer if SCM
bandwidth is restricted, and if the internal queues in the XP32
become full.

Operation Approx imate Time (Cycles)

I = J+K
I = 47
I = 1+1
I = J+73
l’ = J*K
I = ISCM(K)
I = ILMD(K)
DO ...
Continue
CALL NAME(1,

6
6
6
6
50
20
13
1
1

2,...,N) 40 + 3/2*N

Figu re 6 . XP32 Execu t ive Ope ra t i on T imes .

Future Directions
To confirm the validity of these performance evaluation
techniques, testing of application codes such as those shown in
this paper on production XP32s is required. As experience is
gained, the model can be refined to produce more accurate results.
The optimizations present in the XP32 executive may improve the
execution times beyond those shown. More advanced tools are
expected to become available to allow automatic performance
evaluation, such as an XP32 simulator, run-time process monitor,
or program development tools appropriate for multi-processor
environments. Hopefully the techniques presented in this paper
will prove useful. More advanced techniques will always be a
welcome improvement.

Performance Estimation Methods - FUSE Conference 1984 Page 11
Curington, Tracy, Floating Point Systems UK

Conclusion
The carefully applied structuring techniques for XP32 MAXL
programs has been shown to yield dramatic performance improvements
over traditional methods. The FPS-5000 Series architecture is
capable of sustaining high throughput when the application is
structured correctly. Through analysis techniques discussed in
this paper the achievable performance can be estimated ahead of
the actual implementation. Future developments will aid in
refining the analysis tools and allow for direct performance
estimates.

References

[1] Curington, I. "Power Spectrum Analysis with the FPS-5000
Series", CHECKPOINT Vol. 1, Issue 7, August 1983, Floating
Point Systems, Portland Oregon.

[2] Tracy, R. W. "A Distributed Architecture for High
Throughput Array Processors" FPS-5000 Series Application Note,
June 1983, Floating Point Systems, Portland Oregon.

[3] "FPS-5000 Preliminary User’s Guide" Publication number
800-1013-000A, January 1984, Floating Point Systems, Portland
Oregon.

