
FLOATING POINT
SYSTEMS, INC.

FPs-1cg
Asserril?ler
CASIVl10Q:l .
Reference

Manual
aeo-742s-001

by FPS Technical Publications Staff

FPS-~OQ
Asserribliir
'ASM;,w..,~·' .. .· .. :-..-.,ti.
Reference

IVlanual
S&Q•742S•001

NOTICE

Publication No. 860-7428-001
September, 197 9

This edition applies to Release A of
FPS-100 software and all subsequent
releases until superseded by a new
edition.

The material in this manual is for
inf orm.ational purposes only and is
subject to change Without notice.

Floating Point Systems, Inc. assumes no
responsibility for any errors which may
appear in this publication.

Copyright C 197 9 by Floating Point Systems , Inc.
Beaverton, Oregon 97005

All rights reserved. No part of this publication
may be reproduced in any form or by any means
without permission in writing from the publisher.

Printed in USA

'.

' ;..:- "~.

:-. f'
• ~ 'r"' ,:

'- ./

CONTENTS

Page
CHAPTER 1 OVERVIEW

1-1 IN'l:RODUCTION 1-1
1. 2 PURPOSE 1-1
l· 3 SCOPE 1-2
1.4 CONVENTIONS 1-2
1. 5 RELATED MANUALS 1-2

CHAPTER 2 S"lNTAX

2.1 CHARACTER SET 2-1
2.2 FILE NAMES 2-3
2.3 SYMBOL NAMES 2-3
2. 4 TABLE MEMORY SYMBOLS 2-4
2.s INTEGEllS 2-4
2.6 EXPRESSIONS 2-5
2.6.l Operands 2-6
2.6.2 Operators 2-6
2. 7 ADDRESSING 2-7
2. 7.1 Relative Addressing 2-7
2.1.2 Absolute Addressing 2-8
2. 7. 3 Relocation of Symbols 2-8

CHAPTER 3 SOURCE PROGRAM STATEMENTS

3.1 INTRODUCTION 3-1
3.2 COMMENT STATEMENTS 3-1
3.3 INSTRUCTION STATEMENTS 3-2
3. 3.1 Label Field 3-2
3.3.2 Op-code Field (Operation Code Field) 3-3
3. 3.3 Comment Field 3-28
3.4 PSEUDO-OPERATION STATEMENTS 3-28
3.4.1 $TASK 3-28
3.4.2 $!SR 3-30
3.4.3 $TITLE 3-30
3.4. 4 $ENTRY 3-31
3.4.5 $SUBR 3-32
3.4. 6 $GLOBAL 3-33
3.4. 7 $INTEGER 3-33
3 .. 4. 8 $REAL 3-35

i3 3.4.9 $TRIPLE 3-34
3.4.10 $COMIO 3-35
3. 4.11 $PA.RAM 3-37

~ 3.4.12 $COMMON 3-39

FPS 860-7428-001 iii

..
3.4.13 $DATA 3-40 ',_/

3.4.14 $EXT 3 .. 43
3. 4.15 $VAL 3-43
3. 4.16 $FP 3-44
3. 4. 17 $EQU 3-45
3.4ol8 $LOC 3-46
3. 4.19 $RADIX 3-47
3. 4. 20 $CALL 3-47
3. 4 .. 21 $INSERT 3-50
3.4.22 $IF ••• $ENDIF 3-51
3.4.23 $LIB ••• $ENDLIB 3-42
3.4.24 $PAGE 3-52
3.4. 25 $BOX •• • $ENDBOX 3-52
3.4.26 $NO LIST 3-53
3.4.27 $LIST 3-53
3.4. 28 $END 3-53
3.4.29 Dummy FMUL and FADD Pushers 3-54
3.4.30 External Variables 3-54
3. 5 ORDER OF PROGRAM STATEMENTS 3-55
3. 6 CREA.TING FTNlOO CALL.ABLE ASMlOO SUBROUTINES 3-56
3.7 CALLING FTNlOO ROUTINES FROM ASMlOO 3-57
3. 8 CALLING ASMlOO SUBROUTINES FROM THE ROST 3-58
3. 8.1 Auto-directed Calls (ADC) to ASMlOO

Subroutines 3-58
J.8.2 User Directed Calls (UDC) to ASM l 00

Subroutines 3-62
~-,

3.9 SAMPLE PROGRAMS 3-63
3. 9.1 tJDC Example 3-63
3. 9. 2 ADC Example 3-66
J. 9. 3 ADC Example with Common Blocks 3-68

CHAPTER 4 OPERATING PROCEDURES

4.1 USING ASMlOO 4-1
4.2 EXECUTION 4-3
4.3 LISTING FILE FORMAT 4-3
4.4 SAMPLE ASMlOO LISTING 4-5

CHAPTER 5 ERROR MESSAGES

s.1 GENERAL INFORMATION 5-l
5.2 MESSAGES 5-2

INDEX

FPS 860-7428-001 iv

L

"'

l

Figure No.

3-1
3-2
3-3
3-4
3-5
3-6

4-1

Table

1-1

2-1
2-2

3-1
3-2

5-1
s-2

No.

FPS 860-7 42 8-001

ILLUSTRATIONS

Title

UDC Subroutine
Host Calling Program for UDC Subroutine
ADC Subroutine
Rost Calling Program for ADC Subroutine
ADC Subroutine with Common Blocks
Host Calling Program for ADC Subroutine

with Common Blocks

Sample ASMlOO Listing

TABLES

Title

Related Manuals

Character Set
Special Characters

Op-code Abbreviations
Table Memory Constants

Message Category
Error Messages

v

Page

3-64
3-65
3-67
3-68
3-69

3-70

4-5

Page

1-2

2-1
2-2

3-4
3-25

5-1
5-3

CHAPTER 1

OVERVIEW

1.1 INTRODUCTION

The Floating Point Systems, Inc., FPS-100 is a peripheral device that
operates independently from but under the direction of a host
processor. It contains its own internal memories and 38-bit
floating-point arithmetic units which are interconnected with multiple
data paths, allowing parallel internal data transfers. Its arithmetic
units, the floating adder and floating multiplier, are designed as
pipelines (operations are performed in independent stages permitting
new operations to begin before old operations are complete). This
parallel processing capability and pipeline arithmetic permit the
FPS-100 to perform high speed array processing.

The FPS-100 Assembly Language {ASMlOO) allows the progratllI1ler to use the
FPS-100 instruction set and control assembly with a group of
pseudo-operations. ASMlOO code is assembled on the host system for
execution on the FPS-100.

1.2 PURPOSE

This manual provides the information necessary for a programmer to
create a complete assembly language program and assemble it using the
ASMlOO assembler. It is not a training manual, however. It does not
attempt to teach assembly language programming to the beginner. !t
does assume that the user is familiar with FPS-100 hardware and the
FPS-100 instruction set.

FPS 860-7428-001 1 1

1.3 SCOPE

This manual describes the syntax of all ASMlOO statements. Complete
descriptions are provided for all pseudo-ops. A short description of
the FPS-100 instruction set is provided, but this manual is not the
primary reference source for the instruction set. For a complete
description of the instruction set, refer to the Programmer's Reference
Manual, Parts 1 and 2. Finally, a description of how to use the
assembler is provided, along with a list of error messages.

1.4 CONVENTIONS

In examples of dialogue at a terminal, user input is underlined to
distinguish it from FPS-100 or program output. Also, all user input is
assumed to be terminated with a carriage return.

In statement descriptions, uppercase characters must pe entered exactly
as shown; lowercase characters indicate that a value or name must be
substituted for the characters. Optional parameters are surrounded by
brackets ({ }).

1·5 RELATED MANUALS

The following manuals may also be of interest to the user.

Table 1-1 Related Manuals

MANUAL PUBLICATION NO.

FPS-100 ProgralDD!er's Reference Manual
Parts One and Two

LODlOO Reference Manual

Sll1100/DBG100 Reference Manual

FTNlOO Reference Manual

FPS-100 Supervisor Reference Manual

FPS 860-7428-001 1 2

FPS 860-7427-000

FPS 860-7423-000

FPS 860-7424-000

FPS 860-7422-000

FPS 860-7445-000

CHAPTER 2

SniTAX

2.1 CHARACTER SET

ASMlOO recognizes the characters in Table 2-1. Characters which have
special meaning are listed in Table 2-2.

ALPHABETIC

A through Z

FPS 860-7428-001

Table 2-1 Character Set

NTJMBElUC

0 through 9

2 - l

SPECIAL

Blank
• Equals
+ Plus

Minus
* Asterisk
I Slash
(Left parenthesis
) Right parenthesis

Comma
• Decimal point
$ Dollar

Tab
< Less than

Semicolon
Colon

" Quote
I Number
& Ampersand

Exclamation point
@ At sign

CHARACTER

+

*
I

•

$

space

tab

=

(

)

<

&

,

>

?

-

Table 2-2 Special Characters

FUNCTION

Integer addition operator; unary addition operator

Integer subtraction operator; unary subtraction operator

Integer multiplication operator

Integer division operator

Decimal point; current location

First character of pseudo-op names

Symbol terminator

Symbol terminator

$EQU pseudo-op; DB • op-code; arithmetic identify

Precedes a data pad index expression

Terminates a data pad index expression

Used with DPX, DPY, and MI op-codes; arithmetic less than

Op-code terminator

Operand separator

Label terminator

Comment start indicator (carriage return terminates)

S-pad no-load indicator

S-pad bit-reverse indicator

First character of predefined symbols

Logical OR operator

Logical complement

Arithmetic greater than

No system £unction

No system function

Absolute addressing

FPS 860-7428-00 l 2 - 2

2.2 FILE NAMES

File names may contain 30 characters including special characters and
numbers. On systems where programmed file assignment is not allowed or
is very difficult, the user must enter the number of the logical unit
of a file assigned prior to calling ASMlOO.

A special symbol (which is different for each host system) exists for
referencing the user terminal (for example: TT: for the PDPll}.

Examples:

RUNNER
RUNNER.OBJ
P38
CHANNEL

2.3 SYMBOL NAMES

Symbol names may be of any length; however, only the first six
characters of a name are significant. The first character of a name
must be alphabetic or the exclamation point (!). The subsequent
characters can be either alphabetic, numeric, or the exclamation point.

Examples:

LOOP
A6
STAR TR ERE

A symbol can be created and given a value by the following:

• defining it with the $EQU pseudo-op

• declaring it with the $INTEGER, $REAL, or $COMMON pseudo-op
and giving it a value with the $DA'!A pseudo-op ·

• using it as a label

• declaring it an external with the $EXT pseudo-op

FPS 860-7 42 8-00 1 2 3

2. 4 TABLE MEMORY SYMBOLS

A symbol with a value preset to the address of each of the constants in
table memory ROM is predefined in ASMlQO. These symbols all start with
the exclamation point character (1) to avoid conflict with any
user-defined symbol. ASMlOO declares these symbols externals when used
in expressions (for example, DB=!ZERO). Therefore, they must be loaded
from library SYMLIB at load time. When these symbols are used in any
other way, such as in labels, ASMlOO treats them as variables, and they
are not predefined.

A complete list of these symbols can be found in section 3.3.2.14. For
example, the following fetches pi from table memory and adds it to a
number in DPX(2):

LDTMA; DB=!PI
NOP
FADD TM, DPX(2)

2.5 INTEGERS

"Fetch PI from TM
"Wait
"Add PI to DPX(2)

Integers can be written in four radices: octal, binary, decimal, or
hexadecimal. In each radix, an integer can be either signed or
unsigned. The radix of a number is established by a radix identifying
character which is written immediately after the number. Octal
integers are denoted by a K, decimal by a period (.), hexadecimal by an
X, and binary by a T. The first digit of a hexadecimal integer must be
a decimal digit. The default radix, if a radix identifier is not used,
is octal unless otherwise specified by a $RADIX pseudo-op.

Integers can be single precision or double precision. Single precision
integers are stored as 16-bit 2~s complement numbers. Integers larger
than 16 bits are truncated to 16 bitse Negative integers larger than
16 bits are truncated before they are negated.

FPS 860-7428-00 l 2 4

..

Double precision integers are declared with the $TRIPLE pseudo-op.
They are stored as 38-bit 2's complement numbers.

Examples:

octal integers :

decimal integers:

hexadecimal integers:

binary integers:

2.6 EXPRESSIONS

177777
-40727K
-10

32767.
-1000.
+10.

OABCDX
123FX
ocx

101101T
-1101T

Expressions are symbolic representations of numbers. They are made of
operands and operators. If an expression contains a reference to an
external symbol, the expression must be of the form external-symbol ±.
expr, where expr is an expression without any external references •

FPS 860-7428•001 2 5

Operands are symbol names, numbers, or the location counter, which is
denoted by a period (.).

Examples:

!BLADR
598X

33K

Operators are of two types, unary and binary.

Unary Operators
,

+
logical complement
positive remainder {+3K, +10.)
negati~e of a number {-15X, -777)

Standard arithmetic operators are the following:

Binary Operators + addition
subtraction

* multiplication
I division

Standard arithmetic relations, which return a value of one if the
relation is true and zero if the relation is false, are as follows (for
example, B $EQU 6<10 sets B to l):

< less than
• equals
> greater than

2 6

Some expressions are:

TBLADR+3F
• + 9.
LOOP + 6 * A
(34 - lOX) * 2

Expressions a:re evaluated from left to right in 16-bit 2's complement
arithmetic: according to FORTRAN precedence standards; parentheses may
be used liberally.

NOTE

Only the low order 16 bits are
expression results in a decimal value
65535.

2.7 ADDRESSING MODES

used if an
larger than

Two modes of addressing can be used on the FPS-100, relative addressing
and absolute addressing. Relative addressing is done unless the
absolute addressing indicator (@) is specified.

2.1.1 RELATIVE ADDRESSING

In this mode, all addresses specified are regarded as relative to the
program source address register (PSA). PSA points to the instruction
currently executing. Therefore, a specified address is really only a
displacement (either positive or negative) which is added to PSA in
order to arrive at an absolute program source· address at execution
time. With relative addressing, the program is position-independent in
program source memory.

FPS 860-7428-001 2 7

2.7.2 ABSOLUTE ADDRESSING

Absolute addressing is performed when the at sign (@) prefaces an
address and the addresses are used in conjunction with the absolute
addressing versions of certain instructions (refer to section
3.3.2.12). In this mode, all addresses represent absolute program
source addresses as they are generated by the assembler or the loader.
No execution time manipulation is required. With absolute addressing,
the program is position-dependent and executes properly only if it is
loaded at the correct program source address.

2.7.3 RELOCATION OF SYMBOLS

The assembler produces relocation information for certain variables so
that the LODlOO loader can generate the correct absolute addresses for
these symbols. ASMIOO generates relocation information for all
external variables and all symbols and constants preceded by the
absolute addressing indicator @.

If the special absolute address indicator is not used, a reference to
an external label is interpreted as the relative displacement from the
instruction referencing the label to the label itself. A reference to
an internal label is interpreted as the displacement of the label from
the beginning of the subroutine as determined by the assembler (this is
the number associated with the label in the symbol table displayed at
the bottom of the assembly listing). Constants are unaltered
regardless of where the program is loaded in program source memory.

The relocation information produced by ASMlOO can only be used by the
LODlOO loader. LNK100 cannot take advantage of this information.

FPS 860-7428-001 2 8

CRAFTER 3

SOURCE PROGRAM STATEMENTS

3.1 INTRODUCTION

ASMlOO source statements can be divided into three categories as
follows:

• comment statements

• instruction statements

• pseudo-op statements

Comment statements allow program documentation. Instruction statements
make up the actual symbolic machine code. Pseudo-ops provide
directions to ASMlOO during the assembly process.

ASMlOO statements can be entered in free format; spaces and tabs may
be used as desired to improve legibility.

3.2·coMMENT STATEMENTS

Everything on a line following a quote mark ("} is treated as a comment
by ASMlOO. A line containing only comments, or a completely blank
line, is a comment statement and is ignored during the assenibly
process. A carriage return terminates a comment.

FPS 860-7428-001 3 l

3.3 INSTRUCTION STATEMENTS

An ASMlOO assembly language instruction statement has the following
format:

label: op-code fields "Comments

The label and comments are optional. The assembler processes the
op-code fields and generates one 64-bit instruction word for each
instruction statement.

3.3. l LABEL FIELD

A label is a user-defined symbol which is assigned the value of the
current location counter and entered into the user symbol table. A
label is a symbolic means of referring to a specific location within a
program. If present, a label always occurs first in an instruction
statemen.t and mtist be terminated by a colon. For example, assume that
the following instruction statement is entered:

LOOP: FADD DPX, DPY "LOOP HERE

If the current location is 76, value of 76 is assigned to symbol LOOP.

FPS 860-7428-001 3 - 2

3. 3. 2 OP-COOE FIELD (OPEltAT!ON CODE FIELD)

The op-code field follows the label field in an instruction statement
and contains one or more FPS-100 op-code mnemonics. Individual
op-codes in an instruction are separated by a semicolon. For example,
the following two groups of opcodes are equivalent. The absence of a
semicolon following the last op-code field on a given line terminates
the instruction with that line.

LOOP: FADD DPX, DPY; FMUL TM, MD; BFGT DONE

or

LOOP: FADD DPX, DPY;
FMUL TM, MD;
BFGT DONE

Each is one instruction statement which assembles into one 64-bit
instruction word. Thus, one instruction statement may be continued
over as many lines as desired to achieve a readable program document.
The absence of a semicolon after the last op-code signals the assembler
that the instruction is ended.

-':.--~.

Op-codes may be written in any order within an instruction. The
assembler flags any conflicting op-codes with an error message•

Some op-codes require operands as arguments. The operand is separated
from the op-code by a space or tab and from another operand by a comma.
Some example op-codes are:

no operands:
one operand:
two operands:

HALT; RETUR.N
FABS MD; BFGT LOOP
FADD DPX, DPY; FMUL TM, MD

If an operand is missing or improper, the assembler generates an
appropriate error message.

The various FPS-100 op-codes may be divided into 13 groups. One
op-code from each group may be used in any given instruction statement
unless otherwise stated.

Under the headings Function and Meaning, upper case characters are used
to indicate the origin of the mnemonic code names.

The list of abbreviations contained in Table 3-1 are used to facilitate
the op-code descriptions. They are explained later when the op-code
group f~rst appears.

FPS 860-7428-001 3 3

Table 3-1 Op-code Abbreviations

PARAGRAPH IN
ABBREVIATION MEANING WHICH DESCRIBED

sh S-pad shift 3.3.2.1

11 s-pad no-load 3.3.2.1

sps S-pad source register 3.3.2.1

spd s-pad destination register 3.3.2.1

& Bit reverse 3.3.2.1

disp Branch displacement 3.3.2.s

al Floating adder argument #1 3.3.2.6

a2 Floating adder argument 112 3.3.2.6

idx Data pad index 3.3.2.6

ml Floating m.ultip lier argument Ill 3.3.2.1
'---~'

m2 Floating multiplier argument 112 3.3.2.1

dbe Data pad bus enable 3.3.2.s

adr Address, value, or expression 3. 3 .. 2. 8

FPS 860-7428-001 3 4

3.3.2.1 S-pad Op-code Group

Purpose: s-pad integer arithmetic

Double Ooerand Op-codes

ADD{sh}{#}{&}sps,spd
SUB{sh}{#}{&}sps,spd
MOV{sh}{f/ }{ &}sps ,spd
AND{ sh}{ fl}{ &}sps ,spd
OR{sh}{i/}{ &}sps, spd
EQV{sh}{tl}{&}sps,spd

Single Operand Op-codes

CLR{sh}{/I} spd
INC{sh}{il} spd
DEC{sh}{/f} spd
COM{sh}{/F} spd

Function

ADD sps to spd
SUBtract sps from spd
MOVe sps tp spd
AND sps tp spd
OR sps to spd
EQuiValence sps to spd

Function

CleaR spd
INCrement spd
DECrement spd
COMplement spd

The result of the above op-codes is SPFN (s-pad function).

Miscellaneous Op-codes

LDSPNL spd
LDSPE spd
LDSPI spd

LDSPT spd

WRTEXP

WRTHMN

WRTLMN

FPS 86-0-7428-001

Function

LoaD Spd from PaNeL bus
LoaD SPd from data pad bus Exponent
LoaD SPd from data pad bus Integer

(low 16-bit)
LoaD SPd from data pad bus Table

look-up bits
enable WRiTe of EXPonent only into

DPX, DPY, or MI
enable WRiTe of High MaNtissa only

into DPX, DPY, or MI
enable WRiTe of Low MaNtissa only

into DPX, DPY, or MI

3 5

Abbreviations:

Name -
sh

Meaning

s-pad shift:

Choices

(omitted)
L
R
RR

Meaning

no shift
shift SPFN left once
shift SPFN right once
shift SPFN right twice

S-pad no-load: if present, do not load SPFN into spd (s-pad
destination register). If specified, a branch group op-code
may not be used in the same instruction statement.

sps S-pad source register: a name, number, or expression
specifying a register number between 0 and 178 •

spd S-pad destination register: a name, number, or expression
specifying a register number between 0 and 17 •
SPFN is loaded into the s-pad destination reg~ster unless
s•pad no-load (#) is specified.

& Bit reverse: if present, bit reverse the contents of sps
before using. The bit reverse is done as specified by
bits 13-15 of the internal status register.

Examples:

MOV 3,6
SUBL l,15
ADDt I &PT.a, BASE
DEC CTR.
CLR 9.
LDSPI 6

FPS 860-7428-001 3 6

3.3.2.2 Memory Address Op-code Group

Purpose:

Op-codes

INCI!A
DECMA
SETMA

initiate main data memory cycles

Function

INCrement Memory Address
DECrement Memory Address
SET Memory Address from SPFN

3.3.2.3 Table Memory Address Op-code Group

Purpose:

Op-codes

INCTMA
DECTMA
SETTMA

initiate table memory fetches

Function

INCrement Table Memory Address
DECrement Table Memory Address
SET Table Memory Address from SPFN

3.3.2.4 Data Pad Address Op-code Group

Purpose: change the DPA {data pad address) register

Op-codes

INCDPA
DECDPA
SETDPA

FPS 860•7428-001

Function

INCrement Data Pad Address
DECrement Data Pad Address
SET Data Pad Address from SPFN

3 7

3.3.2.s Branch Op-code Group

Purpose: conditional branches

Op-code Function

BR disp BRanch unconditionally
BINTRQ disp Branch on INTerrupt ReQuest flag non-zero
B!ON disp Branch on I/O data ready flag Non-zero
BIOZ disp Branch on t/O data ready flag Zero
BFPE disp Branch on Floating-Point Error
BFEQ disp Branch on Floating adder EQual to zero
BFNE disp Branch on Floating adder Not Equal to zero
BFGE disp Branch on Floating adder Greater or Equal to
BFGT disp Branch on Floating adder Greater Than zero
BEQ disp Branch on s-pad function EQual to zero
BNE disp Branch on s-pad function Not Equal to zero
BGE disp Branch on s-pad function Greater or Equal to
BGT disp Branch on s-pad function Greater Than zero

RETURN RETURN from subroutine

Abbreviation:

Name -
disp

Examples:

Meaning

Branch displacement: the branch target address, an
address between 16 locations behind and 15 locations
ahead of the current location.

BB. LOOP
BGT .+3
RFNE A-4

FPS 860• 7 42 8-00 l 3 8

zero

zero

3.3.2.6 Floating Adder Op-code Group

Purpose: f loatirtg-point adds

Double Operand Op-codes

Op-codes

FADD
FSUB
FSUBR
FA.ND
FOR
FEQV

al,a2
al,a2
al,a2
al,a2
al,a2
al,a2

Function

Floating ADD (al+a2)
Floating SUBtract (al•a2)
Floating SUBtract Reverse (a2-al)
Floating AND (al and a2)
Floating OR (al or a2)
Floating EQuiValence (al eqv a2)

Single Operand Op-codes

Op-codes

FIX a2
FIXT a2
FSCALE a2
FSCLT a2
FSM2C a2
F2CSM a2
FABS a2

Other Op-codes

Op-codes

FPAl

FPA2

Adder Operands:

Function

FIX a2 to au integer
FIX a2 to an integer (Truncated)
Floating SCALE of a2
Floating SCaLe of a2 (Truncated)
Form.at conversion, Signed Magnitude to 2's Complement
Format conversion, 2's Complement to Signed Magnitude
Floating ABSolute value

Function

Push Al through the Floating adder without change

Push A2 through the Floating adder without change

Operand Meaning

al floating adder argument no. 1:

FPS 860-7428-001 3 9

Choices

NC
FM
DPX {(idx)}
DPY { (idx)}
TM
ZERO

Meaning

No Change (use previous al)
Floating Multiplier output
Data Pad X
Data Pad Y
Table Memory data
floating-point ZERO

Operand Meaning

a2 adder argument no. 2:

Choices

NC
FA
DPX {(idx)}
DPY {(idx)}
TM
ZERO
MDPX { (idx)}

EDPX {(idx)}

Meaning

No Change (use previous a2)
Floating Adder output
Data Pad X
Data Pad Y
Table Memory data
floating ZERO
use Mantissa from Data Pad X

and exponent from SPFN
use Exponent Data Pad X and

mantissa from SPFN

Abbreviation:

Name -
idx

Examples:

Meaning

Data pad index: a name, expression, or number which
lies in a range of -4 to +3.

FADD TM,MD
FSUB DPX(3), DPY(-4)
FEQV DPX, DPY (C)
FAND ZERO. MDPX(2)
FStrBR NC, FA
FADD

NOTE

Up to £our unique data pad indices may be specified
in one instruction statement. !n particular, only
one indexing each may be used for reading from data
pad X and Y, regardless of how many op-codes use
the data read from data pad.

FPS 860-7428-001 3 ... 10

3.3.2.7 Floating-Point Multiply Op-code Group

Purpose: floating-point multiplies

Op-code Function

FMUL ml,m2 Floating MULtiply ml times m2

Multiplier Operands:

Operand Meaning

ml multiplier operand no. 1

Choices

FM
DPX{(idx)}
DPY{(idx)}
TM

Meaning

Floating Multiplier output
Data Pad X
Data Pad Y
Tab le Memory

m2 multiplier operand no. 2

Examples:

Choices

FA
DPX{(idx)}
DPY{(idx)}
MD

FMUL ™~ MD

Meaning

Floating Adder output
Data Pad X
Data Pad Y
Memory Data

FMUL DPX(AR),DPY(B!)
FMUL

FPS 860-7428-001 3 - 11

3.3.2.s Data Pad X Op-code GrouR

Purpose: storing into data pad X

Op-code Function

DPX{ (idx) }<opt

FPS 860-7428-001

Store opt into data pad x. One of the following
must be used for opt:

Opt Meaning

FA Floating Adder output
FM Floating Multiplier output
DB Data pad Bus
dbe data pad bus enable

This has the same effect
as an explicit data pad bus
op-code. One choice of
data pad bus enable may
be made per instruction
statement.

Choices

ZERO

{@}adr

DPX{(idx)}
DPY{ (idx}}
MD
SPFN
TM

3 12

Meaning

floating ZERO

An address or
numeric value.
Any 16-bit integer
expression is
legal. A floating
multiplier, memory
input, memory
address, or data
pad address
op-code cannot
be used in an
instruction
statement where
an adr is used.
The optional @
indicates an
absolute address.

Data Pad X
Data Pad Y
Memory Data
S-Pad FuNction
Table Memory data

c,_/

~/

"

Examples:

DPX(3)<FM
DPX(-2)<SPFN
DPX MD
DPX(l)<DPY (-2)
DPX(-2)< -123

3.3.2.9 Data Pad Y Op-code Group

Purpose: storing into data pad Y

Op-code Function

DPY{ (idx) }<opt Store opt into data pad y. The
possibilities for opt are the

Examples:

same as those described in section
3.3.2.s.

DPY(-2)<FA
DPY<MD
DPY(2)<TM
Dl>Y(l)<39

FPS 860-7428-001 3 - 13

3.3.2.10 Memory Input Op-code Group

Purpose: writing into main data memory

Op-codes Function

MI<FA move Floating Adder output to the Memory Input
register

MI<FM move Floating Multiplier output to the Memory Input
register

MI<DB move Data pad Bus to the Memory Input register
MI<dbe move dbe to the Memory Input register

To affect a memory write, an op-code from the memory address group or
an LDMA op-code must be included in the instruction statement to supply
the memory address.

Examples:

MI<FA; !NCMA
MI<DPX(3); DECMA
MI<MD; SETMA; ADD 3,6

. FPS 860~7428-001 3 14

..
3.3.2.11 Data Pad Bus Op-code Group

Purpose: explicitly enable data onto the data pad bus

Op-codes Function

DB•ZERO
DB•{@}addr

DB=DPX{ (idx) }
DB•DPY{ (idx)}
DB=MD
DB=SPFN
DB-TM

enable ZERO onto the Data pad Bus
enable adr onto the Data pad Bus

(the optional @ indicates an absolute address)
enable Data Pad X onto the Data pad Bus
enable Data Pad Y onto the Data pad Bus
enable Memory Data onto the Data pad Bus
enable s-Pad FuNction onto the Data pad Bus
enable Table Memory data onto the Data pad Bus

As mentioned in section 3.3.2.s, only one data source may be enabled
onto the data pad bus per instruction statement.

Examples:

DB = 37
DB • DPX(-2)
DB •MD
DB • SPFN

FPS 860-7428-001 3 15

3.3.2.12 Special Operation Op-code Group

If an op-code from this group is chosen, an s-pad group op-code cannot
be used in the same instruction statement.

Abbreviations:

A

@

Special Tests

Meaning

In this section, the optional A at the end of an
op-code signifies that the associated address is an
absolute address. If not specified, the address
is relative. When these op-codes are used, the
absolute address indicator @ should precede
address.

In this section the optional @ preceding the
address indicates to the assembler and loader
that the address is an absolute address. The
assembler generates relocation information, so
the loader can determine the correct absolute
address.

Purpose: additional conditional branches

Op-codes Function

BFLT disp Branch on Floating adder Less Than zero
BLT disp Branch on s-pad function Less Than zero
BNC disp Branch on Non-zero carry bit
BZC disp Branch on Zero Carry bit
BDBN disp Branch if Data pad Bus Negative
BDBZ disp Branch if Data pad Bus Zero
BIFN disp Branch if Inverse FFT flag Non zero
BIFZ disp Branch if Inverse FFT flag Zero
BFLO disp Branch if FLag 0 is l
BFLl disp Branch if FLag l is l
BFL2 disp Branch if FLag 2 is l
BFL3 disp Branch if FLag 3 is l

If one of the preceding tests is used along with a test from the branch
group, the conditions are ORed. In this case, only orte of the branch
op-codes need have the target address as an operand.

Examples:

BNC ODD
BFEQ LOOP; BFLT LOOP 11LESS THAN OR EQUAL TO

FPS 860-7428-001 3 16

..

SETPSA

Purpose: jumps and subroutine jumps

Op-codes Function

JMP{A} {@}adr JuMP to location adr
JMPT JuMP to location whose address is in TMA
JMPP JuMP to location whose address is on the Panel
JSR{A} {@}adr Jump to SubRoutine at location adr
JSRT Jump to SubRout ine at addt'ess in TMA .
JSRP Jump to SubRoutine at address on Panel bus

Examples:

JMP LOOP + 3
JSR FFT
JMPS 300

SETEX!T

Purpose: alter a subroutine return

Op-codes Function

SETEX{A} {@}adr
SETEXT
SETEXP

Example:

SETEX BAD

FPS 860-7428-001

SET subroutine EXit to adr
SET subroutine EXit to contents of TMA
SET subroutine EXit to contents of Panel bus

3 - 17

bus

Program Source

Purpose: read/write program source memory

Op-codes Function

RPSL{A} {@}adr
RPSF{A} {@}adr

RPSLT
Rl'SFT

RPSLP
RPSFP

Read Program Source Left half of location adr
Read Program Source Floating-point number

from location adr
Read Program Source Left half at address in !MA
Read Program Source Floating-point number

at address in !MA
Read Program Source Left half at address on Panel bus
Read Program Source Floating-point number at address

on Panel bus

The preceding op-codes read onto the data pad bus.

op-codes

LPSL{A} {@}adr
LPSlt{A} { @}adr
LPSLT
LPSRT
LPSLP
LPSRP

Function

Load Program Source Left half of location adr
Load Program Source Right half of location adr
Load Program Source Left half pointed at by TMA
Load Program Source Right half pointed at by !MA
Load Program Source Left half pointed at by Panel bus
Load Program Source Right half pointed at by Panel bus

The preceding op-codes load from the data pad bus.

Example:

Rl'SF PI

FPS 860-7 428-001 3 18

~

..

PS Odd and Even

Purpose: reading the host panel switches into program source
memory, writing program source to the panel lights
register

Op-codes Function

RPSO{A} {@}adr Read Program Source quarter 0 from location adr
RPSl{A} {@}adr Read Program Source quarter 1 from location adr
RPS2{A} {@}adr Read Program Source quarter 2 from location adr
RPS3{A} { @}adr Read Program Source quarter 3 from location adr
RPS OT Read Program Source quarter 0 from address in '1'MA
RPSlT Read Program Source quarter 1 from address in TMA
RPS2T Read Program Source quarter 2 from address in '1'MA

RPS3T Read Program Source quarter 3 from address in !MA
WPSO{A} { @}adr Write Program Source quarter 0 into location adr
WPSl{A} {@}adr Write Program Source quarter 1 into location adr
WPS2{A} {@}adr Write Program Source quarter 2 into location ad:r
WPS3{A} {@}adr Write Program Source quarter 3 into location adr
WPS OT Write Program Source quarter 0 into address in T.MA

WPSlT Write Program Source quarter 1 into address in TMA
WPS2T Write Program Source quarter 2 into address in TMA

WPS3T Write Program Source quarter 3 into address in TMA

Host Panel

Purpose: reading the host panel switches, writing to the host
panel lights register

Op-codes Function

PNLLIT PaNeL bus to LighTs
DBELIT Data pad Bus Exponent to LighTs
DBlll.IT Data pad Bus High mantissa to LighTs
DBLLIT Data pad Bus Low mantissa to LighTs
SWDB SWitches to Data pad Bus
SWBE SWitches to Data pad Bus Exponent
SWDBH SWitches to Data pad Bus High mantissa
SWDBL SW itches to Data pad Bus Low mantissa

FPS 860-7428-001 3 19

Special Interrupts

Purpose: provide a software interrupt capability for the FPS-100

Op-codes

ION
!OFF
SETMOD
CUM OD
SELMA
SELS!tA
ENT INT
CM2PM
TRAP
RDPI
WDPI
DBLSW
PN2DBL
EXINT

Miscellaneous

02-c.odes

SPNDAV

FPS 860•7428-001

Function

enable (or turn ON) universal Interrupt
inhibit (or turn OFF) universal Interrupt
SET MODe to supervisor
set mode to user (or CLeaR MODe)
SELect MA
SELec.t Supervisor MA
ENTer INTerrupt
Current Mode to Previous Mode
cause TRAP interrupt
Read Data Pad X and Y Input buff er
Write Data Pad X and Y Input buff er
Data pad Bus Low mantissa to SWitch register
PaNel bus to Data pad Bus Low mantissa
EXit INTerrupt

Function

SPiN until MD AVailable

3 20

·•

3.3.2.13 !/O Op-code Group

If an op-code is used from this group, a floating adder op-code cannot
be used in the same instruction statement.

Load REG, Read REG

Purpose:

Op-codes

LDSPD
LDMA
LDTMA
LDDPA
LDSP
LDAPS
LDDA

reading/writing various internal registers

Function

LoaD S-Pad Destination address register
LoaD Memory Address register
LoaD Table Memory Address register
LoaD Data Pad Address register
LoaD S-Pad register pointed at by spd
LoaD FPS-100 Status register
LoaD !/O Device Address

The preceding op-codes load from the data pad bus.

Op-codes

RPSA
RSPD
RMA
RTMA
RDPA
RSPFN
RAPS
RDA

Function

Read Program Source Address
Read S-Pad Destination register
Read Memory Address register
Read Table Memory Address register
Read Data Pad Address register
Read S-Pad FuNction
Read FPS-100 Status
Read I/O Device Address

The previous op-codes are read onto the panel bus•

FPS 860-7428-001 3 21

IOMEM

Purpose: read/write memory fields

Op-codes

REXl'.T
STATMA
LDOMA
ROMA

IMO UT

Function

Read subroutine EXl'.T address
STATic memory read or write at current MA or SMA
LoaD inactive (Other) Memory Address register
Read inactive (Other) Memory Address register

Purpose: program control input/output of data

Op-codes Function

OUT
SPNOOT
OUTDA
SPOTDA

OUTput data
SPiN until device ready, then OUTput data
OUTput data, then set DA to spfn
SPin until device ready, OuTput data, then

set DA to spfn

The preceding op-codes write to the I/O device specified by the device
address register (DA). These op-codes write whatever data is enabled
onto the data pad bus.

Op-codes

IN
SPININ
INDA
SP INDA

F'PS 860-7428-001

Function

INput data
SPIN until device ready, then INput data
!Nput data, then set DA to spfn
SPin until device ready, then INput data, then

set DA to spfn

3 - 22

The preceding instructions put data onto the input bus from the I/O
device specified by the device address register (DA). To be used, the
data must be put onto the data pad bus and from there moved to a
register or memory.

Example:

IN; DPX(Z)<INBS "READ I/O DATA INTO DPX

SENSE

Purpose: sensing an I/O device condition

Op-codes Function

SNSA
SPINA
SNS ADA
SPNADA
SNSB
SPINB
SNSBDA
SPNBDA

SeNSe condition A
SPIN on condition A
SeNSe condition A, then set DA to spfn
SPiN on condition A, then set DA to spf n
SeNSe condition B
SPIN on condition B
SeNSe condition B, then set DA to spfn
SPiN on condition B, then set DA to spfn

Purpose: set/reset of program flags

Op-codes

SFLO
SFLl
SFL2
SFL3
CFLO
CFLl
CFL2
CFL3

FPS 860-7 428-001

Function

Set FLag 0
Set FLa.g 1
Set FLag 2
Set FLag 3
Clear FLag 0
Clear FLag 1
Clear FLag 2
Clear FLag 3

3 23

CONTROL

Purpose: miscellaneous control functions

Op-code

HALT
IORST
INT EN
INTA
REFR
WR.TEX
WRTMN
SPMDAV
IOINTA

Miscellaneous

Functions

HALT processor
I/O ReSeT
INTerrupt ENable
INTerrupt Acknowledge
memory REFResh synch
enable WR.iTe of EXponent only into DPX, DPY, or MI
enable WRiTe of MaNtissa only into DPX, DPY, or MI
SPin until a Main Data memory cycle AVailable
I/O INTerrupt Acknowledge

Purpose: miscellaneous control functions

op-codes Functions

REXIT Read subroutine EXIT into panel bus

3.3.2.14 Table Memory

Table 3-2 lists the constants available in table memory. This section
also includes the table memory functions. The constants and functions
are externals, and their use must conform to the same rules as other
externals.

FPS 860-7428-001 3 24

Table 3-2 Table Memory Constants

CONSTANT VALUE IN 2K TABLE MEMORY
SYMBOL REPRESENTED TABLE MEMORY ROM ADDRESS (OCTAL)

!ZERO ZERO o.o 4371

!ONE ONE l.O 4001

!TWO TWO 2.0 4002

!THREE THREE 3.0 4441

!FOUR FOUR 4.0 4442

!FIVE FIVE 5.0 4443

!SIX SIX 6.0 4444

!SEVEN SEVEN 7.0 4445

!EIGHT EIGHT 8.0 4446

!NINE NINE 9.0 4447

!TEN TEN 10.0 4450

!SIXTN SIXTEEN 16.0 4451

!HALF HALF o.5 4427

!THIRD ONE THIRD 0.333333333 4430

!FOURTH ONE FOURTH 0.25 4431

!FIFTH ONE FIFTH 0.2 4432

!SIXTH ONE SIXTH 0.166666667 4433

!SVNTH ONE SEVENTH o.14285 7143 4434

!EGHTH ONE EIGHTH 0.125 4435

1NINTR ONE NINTH 0.111111111 4436

!TENTH ONE TENTH o.i 4437

!SXNTH ONE SIXTEENTH 0.0625 4440

!SQRT2 SQRT(2) 1.414213562 4203

FPS 860-7428-001 3 - 25

Table 3-2 Table Memory Constants (cont.)

CONSTANT VALUE IN 2K TABLE MEMORY
SYMBOL REPRESENTED TABLE MEMORY ROM ADDRESS (OCTAL)

!SQRT3 SQB.T(3) 1. 732050808. 4422

!SQRTS SQRT(5) 2-236067977 4423

!SQTlO SQRT (10) 3.162277660 4424

!!SQT2 l.O/SQRT(2) o. 707106781 4206

!ISQT3 l.O/SQRT(3) 0. 5773502 69 4452

!!SQTS 1.0/SQRT(S) o. 44 7213596 4453

!ISQlO 1. O/SQRT (10) 0.31622 7766 4454

!CBT2 CBR'! (2) 1. 259921050 4417

!CBT3 CBRT(3) 1. 4422495 70 4420

!QDRT2 (2.0)**1/4 1.189207115 4421

!LOG2E LOG2 (E) le 442695041 4317

!LOG2 L0Gl0(2) 0.301029996 4411

!LOGE LOGlO(#) Q.434294432 4337

!LN2 LN(2) o. 69314 7181 4336

!LN3 LN (3) 1.098612289 4407

!LNlO LN(lO) 2.302585093 4410

!E E 2. 718281828 4403

!INVE t.O/E o. 36 7879441 4404

!ESQ E**2 7.389056096 4405

!PI PI 3.141592654 4402

!TWOPI 2*PI 6.283185308 4415

!!NVP! 1.0/PI o.318309886 4412

1Pl2 Pl/2 1.570796327 4312

FPS 860-7428-001 3 - 26

Table 3-2 Table Memory Constants (cont.)

CONSTANT
S!MBOL REPRESENTED

lP 14 PI/4

!PII80 PI/180

!PISQ PI**2

!SQTPI SQRT(PI)

!LNPI LN (PI)

!GAMMA GAMMA

!PHI PHI

Elementary Function Tables

Symbol

!DIV
!DIVD2
!SQRT
!SNCS
!LOG
!EXP
!ATAN

Elementary
Function

DIVIDE
HALF ADDRESS
SQUARE ROOT
SIN/COS/
LOGARITHM
EXPONENTIAL
ARC TANGENT

FFT Cosine Table Constants

Symbol Description

VALUE IN
TABLE MEMORY

o. 785398164

o.017453293

9.869604404

1-772453851

1.144729886

o.577215663

1. 618033989

Table Memory
Address (Octal)

4000
2000
4202
4306
4333
4317
4365

2K TABLE MEMORY
ROM .ADDRESS (OCTAL)

4373

4413

4414

4416

4406

4425

4426

Value

!FFTSZ Size of installed 2048 • 4000 (octal)
FFT cosine table

!FFTX2 Size times 2 4096 • 10000 (octal)
!FFTX4 Size times 4 8192 • 20000 (octal)
!FFTX8 Size times 8 16384 = 40000 (octal)

FPS 860-7 428-001 3 - 27

3.3.3 COMMENT FIELD

The remainder of any line following a quote mark {") is treated as a
comment by the assembler and is ignored. The comment field is
terminated by a carriage return. Tilus, an instruction can be written
as follows:

LOOP: FADD DPS, DPY;
FMUL TM, MD;
BFGT DONE

"DO AN ADD
"AND A MULTIPLY
"AND A BRANCH
"ALL IN ONE INSTRUCTION

3.4 PSEUDO-OPERATION STATEMENTS

Pseudo-operations are directives to the assembler which control certain
aspects of the assembly translation process. Each pseudo-op must
appear on a separate line in the source text. All pseudo-op names
start with a dollar sign ($). As With instruction statements,
pseudo-op statements can be labeled and have comments.

3.4.1 $TASK

This pseudo-op identifies the routine that follows as an FPS-100
supervisor task. Tasks require special treatment by the LODlOO loader.
$TASK puses parameters for the task communication block (TCB) to
LODlOO through the object module. If specified, this pseudo-op must
appear as the first statement in a program. The format of this
statement is as follows:

$TASK idn {/M} {priority} {/I} {/S}

idn A 1- to 3-digit task identification

FPS 860-7428-001

number which LOD!OO later uses to create
TCB identifier. The TCB identifier later
created is a common block with name
TCBidn. So, for example, if a task is
designated with a:n identification number
of 5, the user can locate its TCB address
by referencing the co111mon block TCBOOS.

3 28

/M

priority

/I

/S

If specified, this task uses minim.al
machine resources (only those saved in
the minimum state save). If not
specified, this task uses full machine
resources. This parameter is normally
used for system tasks, such as I/O
controller tasks. This option can be
used if the following registers are not
needed:

s-pad registers 8-15
DPY write buff er
all DPX and DPY registers except

DPX(O)-DPX(3)
DPA
floating adder
floating multiplier
flags

Initial run priority and default priority
of the task. Values between 1 and 255
can be specified, with 255 the highest
priority. If this parameter is not
present, a value of 100 is assumed.

For the purpose of initializing the
supervisor ready queue, this inidicates
that the previously specified or default
priority should be ignored and this task
placed at the front of the ready queue.
This optional parameter should normally
be used only for I/O controller tasks,
since it actually results in performing
part of the system bootstrapping function
(it causes the I/O controller tasks to be
waiting for action before any user tasks
start).

If specified, the priority of the task is
slaved. Thus, when the task is activated,
it acquires the priority of the activating
task.

The priority, /I, and /S parameters can also be specified at load time
with LODlOO co1l1Dlands. The LODlOO commands override the parameters
entered with $TASK.

FPS 860-7428-001 3 29

This pseudo-op identifies the routine that follows as an interrupt
service routine. If specified, this pseudo-op must appear before the
$TITLE pseudo-op. The format of this statement is as follows:

$ISR index

index

3.4.3 $TITLE

Device number of the I/O device which
this routine services. This number must
be the same as the device's bit number in
the IMASK register. Possible values are
l through 15.

This pseudo-op names a program. The name need not be unique among the
other symbols in the program. The $TITLE pseudo-op must occur as the
first or second statement in a program. The format of this statement
is as follows:

Examplesl

$TITLE name

name

$TITLE FFT
$TITLE DI vtDE

FPS 860-7428-001

Name of the program.

3 30

3.4.4 $ENTRY

This pseudo-op declares a symbol to be global; that is, a symbol which
is defined in this program and may be referenced by other separately
assembled programs. The identified symbol must be defined in the
program either by the $EQU pseudo-op or by its use as a label. $ENTRY
pseudo-ops must occur before any instruction statements in the program.

If an entry point defined with the $ENTRY pseudo-op is declared
host-callable with the LODlOO loader, a host FORTRAN UDC HAS!
(Host-Arithmetic processor Software Interface) subroutine is created
for it. The term UDC stands for user directed calls. When a UDC HAS!
is created, the calling parameters are integer values or FPS-100 memory
addresses that are loaded into s-pads just prior to the execution of
the FPS-100 routine. Data transfer/FPS-100 execution synchronization
and main data memory allocation are controlled by the user with calls
to APXlOO routines such as APPUT, APGET, APWD, and APWR. LODlOO
generates a HASI that loads and executes the FPS-100 code. A sample
UDC subroutine is shown in section 3.9.1. For a complete description
of HASis, refer to the LODlOO Reference Manual.

The format of this statement is as follows:

$ENTRY symbol{,parnum}

Examples:

symbol

pa mum

$EN!ltY A
$ENTRY B,6
$EN!RY C,O

FPS 860-7428-001

A l-to-6 character symbol which can be
referenced by other separately assembled
programs. This symbol must be defined
with the $EQU pseudo-op or by its use as
a label. When referenced externally,
execution begins at the location
specified by the value of symbol.

If the routine is host-callable, this
parameter must be present, specifying the
number of s-pad parameters expected in the
call. This may be a number from
0-158.

"Not host-callable
"Expect 6 s-pad parameters
"Expect 0 s-pad parameters

3 31

3.4.5 $SUBR

This pseudo-op declares a symbol to be an entry point. It is
equivalent to the $ENTRY pseudo-op except that if a $SUBR entry point
is declared host-callable with LODlOO, a host FORTRAN ADC HA.SI
(host-arithmetic processor software interface) subroutine is created.
The term ADC stands for auto-directed calls. When an ADC HAS! is
created, the calling parameters to a routine have a meaning identical
to those in a call to a FORTRAN subroutine (referred to as "call by
reference"). LODlOO generates a HAS! that, in addition to loading and
executing the FPS-100 code, handles all data transfers and the main
data memory allocation. A sample ADC subroutine is shown in section
3.9.z. For a complete description of HA.S!s, refer to the LODlOO
Reference Manual.

The format of this statement is as follows:

$SUBR symbol{,parnum}

Examples:

symbol

paruum

$SUBR A
$SUBR BBB,6
$SUBR K,O

FPS 860-7428-001

Symbol which can be referenced by other
separately assembled programs. This
symbol must be defined with the $EQU
pseudo-op or by its use as a label. When
referenced externally, execution begins
at the location specified by the value of
symbol.

Number of formal parameters in the
routine. The local data block for this
routine (.LOCAL) should contain at least
parnum locations for parameter addresses.
(Refer to section 3.6 for further
discussion of .LOCAL.) If no local data
block is declared, LODlOO creates one of
size paruum when an. FTNlOO call to
this entry point occurs or when the entry
point is declared host-callable. If this
parameter is not present, a value of O
is assumed.

"Expect 6 parameters
"Expect 0 parameters

3 32

3. 4. 6 $GLOBAL

This pseudo-op declares symbols to be absolute entry points. These
entry points are similar to those declared with the $ENTRY and $SUBR
pseudo-ops. However, $GLOBAL is used when absolute values are required
or when external references are made by ASMlOO instructions that
require absolute references. At load time, no relocation is performed.

The format of this statement is as follows:

$GLOBAL

3.4.7 $INTEGER

Symbol which can be referenced by other
separately assembled prograins. This
symbol, when defined with the $EQU
pseudo-op, declares an absolute address.

This pseudo-op declares variables that later appear in $COMMON or
$PAR.AM statements to be of type integer. This pseudo-op must appear in
the program before any $COMMON or $PAR.AM statements.

The format of this statement is as follows:

$INTEGER

symbol1

Examples:

$INTEGER A

Name of a variable which later appears
in a $COMMON or $PABAM statement.

$INTEGER ARE,BEE,ZEDll

FPS 860-7 42 8-00 l 3 33

3. 4. 8 $REAL

'nlis pseudo-op declares variables that later appear in $COMMON or
$PA.RAM statements to be of type real. This pseudo-op must appear in
the program before any $COMMON or $PARAM statements.

The format of this statement is as follows:

Examples:

$REAL

symbol1 Name of a variable which later appears
in a $COMMON or $PABAM statement.

$REAL IVEC, BLT,J, IPQR
$REAL JNUM

3. 4. 9 $TRIPLE

This pseudo-op declares variables that later appear in $COMMON
statements to be of type double precision integer (38-bit integers).
This pseudo-op must appear in the program before any $COMMON statement.
The format of this statement is as follows:

symbol Name of a variable which later appears in
a $COMMON statement.

A double precision integer specified with $TRIPLE can only occur in
common data blocks other than the .LOCAL block. It is not possible for
a subroutine to have double precision arguments. The only other place
that a double precision value can be referenced is in the $DATA
statement.

FPS 860-7428-001 3 34

3. 4. 10 $COMIO

For host•callable routines, this pseudo-op declares the direction of
transfer of subsequent common blocks. Data in some common blocks need
only be transferred from host to FPS-100. Other common blocks may
require data transfers only from FPS-100 to host. Still others need
both· This pseudo-op declares the type of transfer for a common block.
$COMIO allows the HAS! subroutines to be smaller and more efficient.
(host-arithmetic processor software Interface routines are host FORTRAN
routines created by LODlOO for each host-callable routine.)

If the $COMIC pseudo-op is present, it must appear in the program
before the associated $COMMON. If it is omitted, common blocks are
transferred in both directions.

The format of this statement is as follows:

$COM IO

Name of common block.

FPS 860-7428-001 3 35

opt
n

Examples:

Specifies the type of transfer.
The following are acceptable
values:

~ description

0 Data in this common block
should not be transferred.

1 Data in this common block
should be transferred only
from FPS-100 to host.

2 Data in this common block
should be transferred only
from the host to the
FPS-100.

3 Data should be transferred
from the host to the
FPS-100 and back.

NOTE

If two host-callable routines reference the same
common block, their $COMIO specifications for it
should be the same.

$COMIO AI.D 3
$COMIO BC 1

FPS 860-7428-001 3 36

3.4.11 $PARAM

This pseudo-op is used to describe the formal parameters of a
subroutine that is to be host-callable and for which LODlOO is to
create an ADC HASI (the entry point is declared with the $SUBR
pseudo-op). LODlOO creates a loader parameter block, block number 10,
whose values correspond directly to the parameters of this statement.
Refer to the LODlOO Reference Manual for a description of the loader
blocks. This statement must appear before any executable code.

The format of this statement is as follows:

$PARAM no, symbol 1{(ind1 , ••• ,ind)}{/type}{/op}, ••• ,
symbol {(ind1, ••• ,ind)}{/type}{/op~ n n

no

FPS 860-7428-001

Number of parameters to be described.

The name of a parameter. Later
reference to this ith parameter symbol
refers to the ith position in this
routine's local data block. If a
.LOCAL common block is declared, the
first elements declared in that common
block must correspond with the elements
declared with the $PAR.AM pseudo-op.
The values of the elements in the .LOCAL
common block are addresses of the formal
parameters. Refer to section 3.6 for
further discussion of .LOCAL·

Each indi.. describes a dimension of an
array. This parameter can be an integer
or an integer expression. If expression
indi is preceded by a number sign
(#), this dimension is to be dynamically
defined at run time by the value of the
ind1th parameter.

3 37

type

op

Example:

$PAR.AM

Parameter type. Acceptable values are:

I
R

description

integer
real

Unless the symbol has appeared in a $REAL
or $INTEGER pseudo-op, the default type
for this parameter is integer.

I/O option. The following can be
specified: ·

£!?. description

IP The parameter is an input
argument and must be passed
only into the FPS-100 during
host call.

OP The parameter is an output
argument and must only be
passed back from the
FPS-100.

If both are specified, the parameter is
defined as both. If neither is specified,
no data is transferred but space is
allocated in main data memory for the
parameter.

2, A(l0,#2)/R, INDEX/I/IP

In this example, two parameters are defined. The first is a
two-dimensional real array whose first dimension is 10 and whose second
is defined at run time by the second parameter (INDEX). Its I/O option
is defaulted to both IP and OP. The second parameter is INDEX. It is
an integer scalar whose I/O option has been defined to IP for input "-._/
only.

FPS 860-7428-001 38

3.4.12 $COMMON

This pseudo-op is used to declare a main data memory data area (common
or local data block). This pseudo-op must occur before any executable
code. The format of this statement is as follows:

Example:

$COMMON /name/ symbol1{(ind1, ••• ,indn)}{/type}, ••• ,symbol
ind0) }{/type}

name

symbol.
l.

type

Name of the common block (.LOCAL for a
local data block). If .BLANK, absent,
or //, blank common is assumed.

Name of an element in the data block
(either array or scalar). Later
occurrences of this symbol reference its
base address in the data block.

Dimension of an array.

Type of the variable. Acceptable values
are as follows:

I
R
T

description

integer
real
triple (double precision

integer)

If omitted, the default is the type
specified earlier in the $IN'tEGER,
$TRIPLE, or $REAL pseudo-ops • Otherwise,
the default is a 16-bit integer.

$COMMON /COMA/ I, J, A(lO)/R, K, Kl/T

FPS 860-7 428-001 3 39

3. 4.13 $DATA

This pseudo-op is used to initialize values in a data area declared
with the $COMMON pseudo-op. It should occur in the program before any
executable code but after the common blocks to be initialized. The
form.at of the statement is as follows (brackets indicate that one and
only one line must be chosen):

$DATA

repcnti

valuei

FPS 860-7428-001

[
value J exp ,himann,lomann

n relsyfd { +rva.L }
n - n

Name of an element that must be previously
defined in a $COMMON pseudo-op.

Indicates that element indi-l after the
address of symbol is initialized. Both
positive and negative values can be
specified for ind.. Note that only one
dimension of subseripting is allowed.

Repetition count• This specifies the
number of words starting at symbolt(indi)
that are to be given the value thaf'
follows• The repetition count m.ust be an
integer and not an integer expression.

Initial value for symboli (indi.). This
value must conform to the type described
previously• It must be a single real
value or an expression consisting only of
integers and/or local symbols {labels or
symbols appearing on the left side of $EQU
pseudo-ops; refer to section 3.4.14).

3 40

exp-t, himani,
loman.

l.

FPS 860-7428-001

Three values which initialize a double
precision integer previously declared with
a $TRIPLE pseudo-op. The exp. specifies
the exponent portion (10 bit~), himan.
specifies the high mantissa portion (t2
bits), and loman1 specifies the low
mantissa portion (16 bits) of the 38-bit
word. Each one of these parameters can be
a value (refer to description of value.)
or a relocatable symbol {refer to . l.

description of relsymi).

NOTE

Due to restrictions in the
host-FPS-100 hardware interface, at
this time it is possible to
transfer only 32 bits of
information. Therefore, only four
bits of exponent should be
specified in expi; the remainder
is lost.

Name of a relocatable symbol; that is, a
symbol whose actual value cannot be
determined until load time. Relocatable
symbols include any symbols that are not
local symbols and include external
symbols (declared with the $EXT pseudo
ops) and symbol names for variables in
common (declared with $COMMON pseudo-ops).
However, only variables in common that are
integers can be initialized to values
dependent on relocatable symbols.

3 41

Examples:

$DATA I I, L(4)/10 2, K 3, A(2) 99.99, PI 3.1415

In this example, I is set to I, L(4) and nine locations following L(4)
are set to 2, K is set to 3, A(2) is set ~o 99. 99, and PI is set to
3.1415.

$EXT EXTLA.B , LAB 1
$DATA G EXTLA.B, H LAB 1-3

In this example, the variables G and H are initialized to the addresses
of external variables EXTLAB and LAB!.

$EXT LAB2
$DA.l'A TR.IPA 3,5,17, TRIPB 17, 4095, LAB 2+5

In this example, two double precision integers are initialized. For
TRIPB, the second double precision integer, the low mantissa portion is
initialized to the address plus 6 of the external LAB2.

FPS 860-7428-001 3 - 42

3. 4. 14 $EXT

This pseudo-op declares global symbols which are referenced by this
program but are defined by another separately assembled program. $EXT
pseudo-ops must occur in the program before any instruction statements.
The format of the statement is as follows:

Examples:

symboli Symbol referenced in the program, but
defined elsewhere.

$EXT FLOAT, SCALE, FFT
$EXT DIVIDE

3.4.15 $VAL

This pseudo-op defines 64 bits of data to fill one program source word.
The format of this statement is as follows:

Examples:

One of four 16-bit integers or integer
expressions which represent the four
16-bit quarters of a program source
word. This parameter may contain an
external reference.

$VAL -377, 104763, 10, LOOP + 6
$VAL 0, 0, 2000, 33

FPS 860-7428-001 3 43

This pseudo-op fills the right-most 38 bits of a program source word
with a specified floating-point number. The left-most 26 bits of the
word are cleared. The format of this statement is as follows:

Examples:

$FP value

value

$FP
$FP
$FP

PI: $FP

6.0023E23
2
E-17
J.141592653

Floating-point number.

"PI

A floating-poi.nt number (for example, a constant for an algorithm) can
be read out of program source memory and onto the data pad bus using
the RPSF op-code. As an example, the following loads the contents of
location PI onto data pad X:

RPSF PI ; DPX<DB "GET PI INTO DPX

FPS 860•7428-001 3 44

3. 4. 17 $EQU

This pseudo-op equates a symbol with an expression. If user-defined
symbols are used in the expression, they must be previously defined in
the program. The format of this statement is as follows:

symbol $EQU exp res

symbol Symbol to which a value is assigned.

exp res Expression which is assigned to symbol.

Alternatively, the equals sign (•) can be used in place of $EQU.

If the expression assigned to the symbol contains an external, the
symbol acquires the attributes of an external and must be treated as an
external. For example, if the symbol is used in another expression,
that expression cannot contain other externals.

Examples:

A
LOOP
HERE
MASK
A • 6
X = A*3

$EQU
$EQU
$EQU
$EQU

FPS 860-7 428-001

321
LOC + 3
• - 3
132*3+6

3 45

This pseudo-op sets the current location counter to the value of an
expression. If symbols are used in the expression, they must be
previously defined in the program. Th.is pseudo-op must not be used to
set the location counter backwards. The format of this statement is as
follows:

Examples:

$LOC expres

exp res

$LOC 300

Integer expression whose value determines
the setting of the location counter.

$LOC • + 6 "LEA VE NEXT SIX UNUSED
$LOC LOOP +10

NOTE

$LOC should not be set to an absolute address as in
the first example 1£ the output is to be linked
relocatably with other programs.

FPS 860•7428·001 3 46

\~

3. 4.19 $RADIX

This pseudo-op changes the default number radix to the value of the
expression. The format of this statement is as follows:

Exs.mples:

$RADIX expres

exp res

$RADIX 10
$RADIX 8

3. 4. 20 $CALL

Expression which determines the default
number radix. This expression is entered
and evaluated in base 10. The value of
the expression must be either 8, 10, or
16.

$CALL can be used to call FTNlOO subroutines or ASMlOO subroutines that
conform to certain $SUBR and $PARAM conventions. These conventions are
described in section 3.6. The format of this statement is as follows:

subnam

FPS 860-7428-001

Name of an FTNlOO or ASMlOO subroutine.
It must be declared external.

Arguments to be passed to the called
subroutine, if any. Each arg. can be
an expression {which is eval~ted at
assembly time). The value of arg
represents the address in main da!a
memory of the actual argument and not
the argument itself.

3 47

The user and the $CALL pseudo-op reference the address of the called
subroutine's local data block by means of the following:

DB=llsubroutine-name

The term #subroutine-name is interpreted by the assembler to mean the
address of the called subroutine's local data block (.LOCAL). The
$CALL places the addresses of the actual parameters into the called
routine's local data block, sets s-pads 0 and 1 to the correct values,
and jumps to the routine.

CAUTION

Extreme caution is advised when using this
pseudo-op since the addresses of the argU11tents in
the $CALL are calculated at assembly time, not at
run time. This presents problems .if the argument
addresses cannot be known until run time. This is
the case if the arguments of the $CALL include the
subroutine's own formal parameters. In such cases,
the user must calculate the address of the
argument, place the value of the address in a data
pad register (except for DPX(3)), and use the data
pad as an argument of the call. For exa1J1Ple,
suppose a routine wishes to pass its own parameter
(PAR.AM) to subroutine SUB. The user calculates the
address of the argument and places the result in
DPX(l). The subroutine could be called with the
following:

FPS 860-7428-001

LDMA; DB•PARAM
NOP
NOP
DPX{l)<MD
$CALL SUB (DPX(l))

3 48

Example:

$COMMON / .WCAL/ A/R, I (20), FIVE
$DATA FIVE S
$CALL SUB (A, I+l4, FIVE)

NOTE

The $CALL expands into actual ASMlOO code that is
then assembled. This code also appears on the
listing. The number of program source words used
is (2 X (number of arguments) + 4) unless no
arguments are specified, in which case only two
program source locations are used. The following
is the expansion of the previous example ($CALL SUB
(A,I+l4,FIVE)):

LDMA; DB=/! SUB-1
DPX(3)<DB; DB=A
INCMA; MI<DPX(3)
DPX(3)<DB; DB=I+l4
INCMA; MI<DPX(3)
DPX(3)<DB; DB=FIVE
INCMA; MI<DPX(3)
LDSPI O; DB=/! SUB
LDSPI l; DB=3
JSR SUB

FPS 860-7428-001 3 49

3.4.21 $INSERT

This pseudo•op causes source code to be read from the designated file.
The line number is reset. When end-of-file is encountered, source is
again read from the file originally specified in the ASMlOO call. The
line count is set to its original value when the end of the $INSERT
file is reached. Also, when the $INSERT file is reached during Pass l
of assembly, the line containing the $INSERT is written to the
terminal. When its end is reached, the message "END $INSERT" is
written to the listing. (This happens during Pass 2, also.)

The format of this statement is as follows:

$INSERT filename

filename

Example:

$INSERT F!LEA

FPS 860-7428-001

Name of file containing source code to
be inserted in the source stream.

3 - 50

3.4.22 $IF ••• $ENDIF

These pseudo-ops allow conditional assembly. If the expression which
follows $IF evaluates to zero, any subsequent source lines up to $ENDIF
are not assembled. However, they do appear on the listing.

The format of the $IF statement is as follows:

$IF expression

expression If the expression evaluates to zero,
the subsequent source lines up to $ENDIF
are ignored. If expression is unequal
to zero, the source lines are assembled.

The format of the $ENDIF statement is as follows:

Example:

$END IF

NOTE

$IF pseudo-ops can be nested. That is, $IF/$ENDIF
combinations can appear between other $IF/$ENDIF
combinations.

$IF PROG
PROG $EQU 0
$END IF

FPS 860-7428-001 3 51

3.4.23 $LIB ••• $ENDLIB

These pseudo-<>ps cause loader library start blocks and library end
blocks to be written to the object file. 100100 treats an object
module preceded by a library block as a library and loads only those
routines that satisfy unsatisfied externals.

The format of the $LIB statement is as follows:

$LIB

The format of the $ENDLIB statement is as follows:

$ENDLIB

3.4.24 $PAGE

This pseudo-op begins a new page on the listing. The form.at of this
statement is as follows:

$PAGE

3. 4. 25 $BOX.•. $ENDBOX

'lb.ese pseudo-ops designate that all source lines found between them are
considered comments and are surrounded by a box of asteriskS when the
listing is produced. They can be used to improve the readability of
the listing.

The format of the $BOX statement is as follows:

$BOX

The format of the $ENDBOX statement is as follows:

$ENDBOX

FPS 860-7 428-001 3 52

3. 4. 26 $NOLI ST

This pseudo-op specifies that no source code appears on the listing
after this statement. A $LIST pseudo-op terminates this condition. If
no listing was specified in the call to ASMlOO, this pseudo-op has no
effect.

The format of this statement is as follows:

$NOLI ST

3.4.27 $LIST

This pseudo-op specifies that source code after this statement appears
on the listing. A $NOLIST pseudo-op terminates this condition. If no
listing was specified in the call to ASMlOO, this pseudo-op has no
effect.

·-;

The format of this statement is as follows:

$LIST

3.4. 28 $END

This pseudo-op causes ASMlOO to terminate the assembly. The format of
this statement is as follows:

$END

FPS 860-7428-001 3 53

3. 4. 29 DUMMY FMUL AND FADD PUSHERS

When programming pipelines as described in Part l of the Programmer's
Reference Manual, it is convenient for readability to include in the
code all the FMULs and FADDs that are used as pushers in any of the
columns of the handwritten pipelines. These are coded without
parentheses. Any PMUL or FADD without arguments does not conflict with
other arithmetic arguments of like type and is completely ignored
unless it is the only op-code of its type.

Example:

FADD DPXl, DPYl; FMUL FM,FA; FADD

In this exampie, the last FADD is ignored.

NOTE

Any liMUL op-code used as a pusher in an instruction
word without other :EMULs actually results in the
op-code ~ TM,MD. '!hough unlikely, this op-code
could cause an underflow or overflow condition when
the meaningless result is pushed through the
multiplier pipeline (the result is pushed through
the pipeline when the instruction occurs in a
loop). Unexplained underflow or overflow
conditions discovered during program debugging may
be the result of :EMUL pushers.

3. 4. 30 EXI'ERNAL VARIABLES

The assembler assures that any variable beginning with an exclamation
point (!) is an external variable and is defined outside the
referenciug program. Thus, any external variables used which start
with ! need not be declared external with the $EXT pseudo-op.

FPS 860-7428-001 3 - 54

3. 5 ORDER OF PROGRAM STATEMENTS

There is a definite ordering of statement types within a program which
must be followed. The $TASK or $ISR pseudo-op, if used, must appear
first. The $TITLE pseudo-op must appear next, followed by any $ENTRY,
$SUBR, or $GLOBAL pseudo-ops. $END must be the last statement. The
remainder of the pseudo-ops (if present) and the program body appear in
the following order:

$TASK or $!SR
$TITLE
$ENTRY or $SUBR
$GLOBAL
$EX!
$INTEGER
$REAL
$TRIPLE
$PAR.AM
$COMIO
$COMMON
$DATA
"program, etc."

$END

FPS 860-7 4 2 8-00 l

pseudo-op
pseudo-op
pseudo-op(s)
pseudo-op (s)
pseudo-op(s)
psuedo-op(s)
pseudo-op(s)
pseudo-op(s)
pseudo-op
pseudo-op(s)
pseudo-op(s)
peudo-op(s)

3 - 55

3. 6 CREATING FTNlOO CALLABLE ASMlOO SUBROUTINES

In order to create ASMlOO subroutines that can be called from FTNlOO
program units, the following conventions must be followed:

• The $COMMON pseudo-op should be used to declare a local
common block called .LOCAL. This common block must
contain at least as many locations as the number of
formal parameters in the routine. Any routine which calls
this routine places the addresses of the formal parameters
in this common block. Also, s-pad register 0 is set to
the address of the .LOCAL block, and s-pad register 1 is
set to the number of parameters passed. If the subroutine
has no formal parameters, it is not necessary to declare a
.LOCAL block.

NOTE

If the .LOCAL block is not declared by
the ASMlOO programmer but is referenced
inside the routine (or by another
routine), it is created at load time.
This feature is used by the FPS-100
Math Library but is not suggested for
general use.

• The $COMMON and $DATA pseudo-ops can also be used to
declare and initialize labeled common blocks. This
allows data to be shared between subroutines.

In general then, in order to be callable from an FTNlOO routine, an
ASMlOO routine must have the following format:

$TITLE pseudo-op
$COMMON/.LOCAL/ pseudo-op (if there are formal parameters)
$COMMON pseudo-op (if common blocks are used)
$DATA pseudo-op (if the common block is to be initialized)
code

•
$END pseudo-op

For an example, refer to section 3. 9. 2.

FPS 860-7428-001 3 56

3.7 CALLING FTNlOO ROUTINES FROM ASMlOO

When an FTNlOO routine or an ASMlOO routine that conforms to the FTNlOO
calling conventions is called, it expects the calling routine to
conform to the conventions described in section 3.6. That is,
parameters are passed by placing their addresses in the called
routine's .LOCAL data block (by using the $CALL pseudo-op or by writing
equivalent ASMlOO code). The $COMMON pseudo-op can also be used to
create a common area used to pass data to the called routine.

The general form of an ASMlOO program with a call to an FTNlOO routine
is as follows:

$TITLE pseudo-op

$EXT pseudo-op
$COMMON pseudo-op
$DATA pseudo-op

$CALL pseudo-op

$END

FPS 860-7428-001 3 57

3.8 CALLING ASM!OO SUBROUTINES FROM THE HOST

The following sections describe the procedures necessary to call ASM!OO
subroutines from the host. Both the auto-directed calls (ADC) manner
and the user directed calls (UDC) manner are considered.

3. 8.1 AUTO-DIRECTED CALLS (ADC) TO ASMlOO SOBROU!INES

If a subroutine is called in the ADC manner, data can be passed between
host FORTRAN programs and ASM!OO subroutines as arguments or common
blocks. However, only arguments and common blocks declared in
host-callable routines are transferred from host to FPS-100 and back.
The data is passed as specified in the ASMlOO subroutine. If a
host-callable ASMlOO routine contains a common block which does not
exist on the host, the common block is created on the host by the HA.SI
subroutine which is generated by LODlOO. This is always done unless
the user specifies otherwise with a $COMIC pseudo-op (refer to section
3.4.10). Since the HA.SI created by LODlOO contains this common block. 1

any discrepancies which exist between the ASMlOO routine and the host
FORTRAN program cause meaningless data to be passed. Also, only
labeled common blocks can be shared between host FORTRAN and ASMlOO
subroutines.

The creation of a HASI for this type of call is triggered by the use of
the $SOBR pseudo-op (instead of the $ENTRY pseudo-op) to declare the
subroutine's entry point. 'Ihe form of the actual call to the ASMlOO
routine is exactly like that of a FORTRAN call.

Example:

CALL MYSOB (A,B,2)

The parameters A, B, and 2 are automatically transferred to and from
the FPS-100 according to information supplied in the $PAR.AM pseudo-op.
Since this is a FOR.'rRA.N-style call, the ASMlOO subroutine (in this
case, MYSUB) m.ust conform to the FTN 100 calling conventions described
in sec ti on 3. 6.

Whenever possible, data should be passed between host programs and
ASMlOO subroutines as common blocks rather than as arguments.. Data in
common blocks is generally passed faster than that specified with
$PARAH pseudo-ops.

FPS 860-7428-001 3 - 58

Another method of increasing the rate of data transfer is grouping the
elements of a common block by type in the $COMMON pseudo-op. This is
helpful because when data is actually transferred from host to FPS-100,
only one kind of data (real or integer) can be transferred at a time.
Grouping the elements in a $COMMON pseudo-op by type minimizes the
number of data transfers necessary.

Example:

$COMMON /X/ A(lOO)/R, J(lOO)/I, B(lOO)/R

This requires three data transfers: one to transfer the real array A,
one to transfer the integer array J, and one to transfer the real array
B. However, suppose this statement had been written as follows:

$COMMON /X/ A(lOO)/R, B(lOO)/R, I(lOO)/I

In this case, only two data transfers are necessary: one to transfer
the real arrays A and B and one to transfer the integer array J. The
actual data transfer by types is done internally; the ASMlOO
programmer need not be concerned about it. Be aware, however, that
grouping integer items together and real items together in $COMMON
pseudo-ops results in faster data transfers.

FPS 860-7428-001 3 59

!he programmer should also be aware that problems can arise when a
progtam is called from the host with multiple occurrences of the same
parameter. These problellSS can occur because parameters are passed to
and from the FPS-100 in the order in which they were specified on the
$PARAM pseudo-op. The following examples illustrate the problem.
These examples use FTN 100 subroutines rather than ASMlOO subroutines;
however, the problems apply to ASMlOO routines also.

Examples:

The following FTNlOO subroutine VADNZ is written to add two arrays, put
the results in a third array, and set the first two to zero.

SUBROUTINE VADNZ(A,B,C,N)
DIMENSION A (N) ,B (N) ,C (N)
DO 10 I=l,N
C(I)=A(I)+B(I)
A(I)•O.

10 B (I)•O·
RETURN
END

'I'he expected results are returned when a host FORTRAN program calls
this subroutine using three different arrays •

•

DIMENSION X(lOO) ,Y(lOO) ,Z (100)
•

CAU. VADNZ (X, Y,Z, 100)

•

FPS 860-7428-001 3 60

Upon return from the subroutine, array Z contains the sum of X and y.
But, suppose the programmer attempted to call VADNZ as follows:

CALL VADNZ(X,X,X,100)

In this case, results are unpredictable. When arguments are passed
from the host to the FPS-100, storage locations are reserved for each
of the arguments, whether or not the arguments are unique. In the case
of the last call, storage locations in the FPS-100 are set aside for
three copies of array x. Upon completion of the subroutine, only one
array X contains the sum of arrays X and x. In the host, the ultimate
value depends on the order in which the arguments are trans£ erred back
to the host from the FPS-100. The array X in the host contains the
values of the last array X transferred.

A similar problem occurs if elements of the same array are used as
actual parameters in the call to a subroutine. For example, consider
the following routine:

SUBROUTINE ADDN (I,J,K,N)
DIMENSION I(N),J(N),K(N)
DO 10 L=l,N

10 K(L)=I(L)+J(L)
RETURN
END

Suppose the routine is called as follows:

CALL ADDN (JJ (1) ,JJ {2) ,JJ (3), 100)

The user might expect array JJ to contain something similar to the
Fibonacci series. However, instead of using one array JJ, three arrays
are created in the FPS-100: one starting at JJ(l), one starting at
JJ(2), and one starting at JJ{3). Thus, although the user might expect
the results of the first addition to be available as an operand of the
second, it is actually stored in a different array and is not used in
subsequent calculations. Thus, the subroutine does not return the
expected results •

Difficulties arise not only from specifying the same variable for
multiple formal parameters but also from specifying a variable as a
formal parameter and as an element in comm.on.

For more information regarding ADC type HASis, refer to the LODlOO
Reference Manual.

FPS 860-7428-001 3 61

3.8.2 USER DIRECTED CALLS (UDC) TO ASMlOO SUBROUTINES

A user directed call to an ASMlOO subroutine is triggered by the use of
the $ENTRY pseudo-op to declare the entry point. This type of call
does not pass parameters to the FPS-100 (as With auto-directed calls).
Since parameters are not passed automatically, this type of call can be
much more efficient time-wise than an auto-directed call. It does,
however, require that the user pass and return parameters in main data
memory with APPUT, APGET, and other APXlOO subroutine calls (refer to
the APXlOO Manual for descriptions of these calls).

The actual form of the call to a user's ASMlOO subroutine is as
follows:

CALL MYSUB (IA,2000,3000)

In this call, IA, 2000, and 3000 are not parameters but rather
addresses of parameters that were placed in main data memory earlier by
the user. These addresses are placed in s-pad registers before control
passes to the subroutine.

Further information concerning user directed calls can be found in the
LODlOO lteference Manual.

FPS 860-7428-001 3 62

3.9 SAMPLE PROGRAMS

The following sections give examples of ASMlOO subroutines and host
calling programs.

3.9.1 UDC EXAMPLE

Figure 3-1 illustrates a sample ASMlOO subroutine. 'lhe object code
produced by the ASMlOO assembler using this subroutine is used as input
to the LODlOO loader. If the routine is declared host-callable at load
time~ LODlOO generates a UDC type HAS! (host-arithmetic processor
software interface) and a load module. (Refer to the LODlOO Reference
Manual for a complete description of the load process.)

Figure 3-2 illustrates a host FORTRAN program used to call the ASMlOO
subroutine. This program and the HAS! must be com.piled using the host
FORTRAN compiler and linked using the host loader before program
execution can occur. 'The ASMlOO routine can also be called by other
ASMlOO routines.

FPS 860-7 428-001 3 63

$TITLE VCADD
$ENTRY VCADD, 4

"VECTOR ADD
"ADDS VECTOR A TO VECTOR B AND PUTS THE RESULT INTO VECTOR C
"C(M) "' B (M) + A(M) FOR M = 0 TO N-1

"S-PAD PARAMETERS
A $EQU 0
B $EQU 1
C $EQU 2
N $EQU 3

VCADD: MOV A,A; SETMA
MOV B ,B ; SETMA
DEC C; DPX(O)<MD

LOOP: INC A; SETMA
INC B ; SETMA;

FADD DPX(O) ,MD
DPX(O)<MD;

DEC N; FADD
MI<FA; INC C; SETMA;

BNE LOOP
RETURN
$END

"BASE ADDRESS OF VECTOR A
"BASE ADDRESS OF VECTOR B
"BASE ADDRESS OF C
"NUMBER OF ELEMENTS IN C

"FETCH A{O)
"FETCH B (0)
"SA VE A{O)
"FETCH·A(M+l)
"FETCH B{M+l)
"B(M) + A(M)
"SAVE A{M+l)
II SEE IF DONE?????
"STORE C (M)
"BRANCH IF NOT DONE

Figure 3-1 UDC Subroutine

FPS 860-7428•001 3 - 64

c
c
c

TRE FOLLOWillG IS A HOST PROGRAM ILLUS'1'RATING THE CALL TO VCADD

DIMENSION A(lOO),B(lOO),C(lOO)
INTEGER ADDRA,ADDRB,ADDRC

c
c ... INITIALIZE THE FPS-100
c

CALL APIN!T(0,0,ISTAT)
CALL APLLI('LMOD',4,7,1,1,D,D)

c
c ••• INITIALIZE TRE INPUT ARRAYS
c

DO 10 I=l, 100
A(I)=FLOAT (I)
B(I)=A(I)

10 CONTINUE
c
c ••• PUT THE DATA IN THE FPS-100
c

c

ADDRA=O
N=lOO
CALL APPUT(A,ADDRA,N,2)
ADDRB =ADDRA-+N
ADDRC =ADDRB-+N
CALL APPUT(B,ADDRB,N,2)
CALL APWD

C ••• CALL VCADD
c

CALL VCADD{ADDRA,ADDRB,ADDRC,N)
CALL AJ?WR

c
c •.• RETRIEVE THE DATA FROM TRE FPS-100
c

c

CALL APGET (C ,ADD RC , N, 2)
CALL APWD

c ••• RELEASE THE FPS-100
c

CALL APB.I.SE
STOP
END

Firgure 3-2 Host Calling Program for tJDC Subroutine

FPS 860-7428-001 3 - 65

3.9.2 ADC EXAMPLE

Figure 3-3 illustrates a sample ASMl 00 subroutine. The object code
produced by the ASMlOO assembler using this subroutine is used as input
to the LODlOO loader. If the routine is declared host-callable at load
time, LODlOO generates an ADC type HASI and a load module.

Figure 3-4 illustrates a host FORTRAN program used to call the ASMlOO
subroutine. This program and the HASI must be compiled using the host
FORTRAN compiler and linked using the host loader before program
execution can occur. The ASMlOO routine can also be called from an
FTN 100 program. The $PARAM and $COMIC pseudo-ops can be removed if the
routine is not designated as host-callable.

FPS 860-7428-001 3 66

.'-.

$T!TLE VCADD
$SUBR VCADD, 4
$PABAM 4, AA(#4)/R/IP,AB(#4)/R/IP,AC(#4)/R,.AN/I/IP
$COMMON /.LOCAL/ AA,AB ,AC ,.AN

"VECTOR ADD
"ADDS VECTOR A TO VECTOR B AND PUTS THE RESULT INTO VECTOR C
"C(M) = B (M) + A(M) FOR M = 0 TO N-1

"S-PAD PARAMETERS
A $EQU 0
B $EQU l
c $EQU 2
N $EQU 3

VCADD: LDMA; DB=AA
LDMA; DB=AB
LDSPI A; DB=MD
LOMA; DB=AC
LDSPI B; DB=MD
LOMA; DB=AN
LOSPI C; DB=MD
MOV A,A; SETMA
LDMA; DB=MD
DEC C
MOV B,B;SETMA; DPX(O)<MD
LOS PI N; DB=MD

LOOP: INC A; SETMA
INC B; SETMA;

FADD DPX(O) ,MD
DPX(O)<MD;

DEC N; FADD
MI<FA; INC C; SETMA;

BNE LOOP
RETURN
$END

"BASE ADDRESS OF VECTOR A
"BASE ADDRESS OF VECTOR B
"BASE ADDRESS OF C
"NUMB ER OF ELEMENTS IN C

"LOAD ADDRESS OF A
"LOAD ADDRESS OF B
"SAVE ADDRESS OF A
"LOAD ADDRESS OF C
"SA VE ADDRESS OF B
uLOAD ADDRESS OF N
"SAVE ADDRESS OF C
"FETCH A(O)
"LOAD N
"FETCH B (O)
"SAVE A(O)
"SA VE VALUE OF N
"FETCH A(M+l)
"FETCH B (M+l)
"B(M) + A(M)
"SAVE A{M+l)
" SEE IF DONE?????
"STORE C (M)
"BRANCH IF NOT DONE

Figure 3-3 ADC Subroutine

FPS 860-7428-001 3 - 67

c
c
c

THE FOLLOWING IS A HOST PROGRAM ILLUSTRATmG THE CALL TO VCADD

DIMENSION A(lOO),B(lOO),C(lOO)
c
C ••• INITIALIZE THE FPS-100
c

CALL APINIT(O,O,ISTAT)
CALL APLLI ('LMOD',4,7,1,1,D,D)

c
c ••• mITIALIZE THE mPUT ARRAYS
c

10
c
c

00 10 I•l, 100
A (I)=FLOAT {I)
B(I)=A(I)
CONTINUE

c ••• CALL VCADD
c

N=lOO
CALL VCADD(A,B,C,N)

c
c ••• RELEASE THE FPS-100
c

CALL APRLSE
STOP
END

Figure 3-4 Host Calling Program for ADC Subroutine

3. 9. 3 ADC EXAMPLE WITH COMMON BIDCKS

Figure 3-5 illustrates the same ASMlOO routine as in Figure 3-3, except
that it receives its input in a common block and places its output in
another common block. lbe object code produced by the ASMlOO assembler
using this subroutine is used as input to the LODlOO loader. If the
routine is declared host-callable at load time, LODlOO generates an ADC
type HAS! and a load module. lbe ASMlOO routine in Figure 3-5 is more
efficient than the one in Figure 3-3.

Figure 3-6 illustrates a host FOR1'RAN program used to call the ASMlOO
subroutine. lb.is program and the HA.SI must be compiled using the host
FORTRAN compiler and linked using the host loader before program
execution can occur.

FPS 860-7428-001 3 - 68

_,

$TITLE VCADD
$SUBR VCADD
$RADIX 10
$COMIO INPUT 2 "THIS COMMON BLOCK IS INPUT ONLY
$COMMON /INPUT I PN ,PA(lOO) /R,PB (100) /R
$COMIC OUTPUT l "THIS COMMON BLOCK IS OUTPUT ONLY
$COMMON /OUTPUT/ PC(lOO)/R

"VECTOR ADD
"ADDS VECTOR A TO VECTOR B AND PUTS THE RESULT INTO VECTOR C
"C(M) = B(M) + A(M) FORM• 0 TO N-1

"S-PAD PARAMETERS
A $EQU 0
B $EQU l
C $EQU 2

· N $E~ 3

VCADD: LDMA; DB=PN
LDSPI A; DB=PA
LDSPI B; DB=PB
LDSPI N; DB=MD
MOV A,A; SETMA
LDSPI C; DB=PC
MOV B ,B; SETMA
DEC C; DPX(O)<MD

LOOP: INC A; SETMA
INC B; SEn'.iA;

FADD DPX(O) ,MD
DPX(O)<MD;

DEC N; FADD
MI<FA; INC C; SE'IMA;

BNE LOOP
RETURN
$END

"BASE ADDRESS OF VECTOR A
"BASE ADDRESS OF VECTOR B
"BASE ADDRESS OF C
"NUMB ER. OF ELEMENTS IN C

"LOAD N
"LOAD ADDRESS OF A
"LOAD ADDRESS OF B
"SA VE N
"LOAD A(O)
"LOAD ADDRESS OF C
"LOAD B (0)
"SAVE A(O)
"FETCH A (M+ 1)
"FETCH B (M+l)
"B (M) + A(M)
"SAVE A(M+l)
" SEE IF DONE?????
"STORE C(M)
"BRANCH !F NOT DONE

Figure 3-5 ADC Subroutine with Common Blocks

FPS 860-7428-001 3 - 69

c
c
c

THE FOLLOWING IS A HOST PROGRAM ILLUSTRATING TRE CALL TO VCADD

COMMON /INPUT/ N,A(lOO),B(lOO)
COMMON /OUTPUT/ C (100)

c
c ••• INITIALIZE TRE FPS-100
c

CA.LL AP!NIT(O,O,!STAT)
CALL APLLI('LMOD',4, 7,1,1,D,D)

c
c ••• IN!TIALIZE THE INPUT ARRAYS
c

DO 10 I•l, 100
A{I)•FWAT(I)
B(I)•A(I)

10 CONTINUE
c
c
C • • •CA.LL VCADD
c

N=lOO
CALL VCADD

c
c ••• RELEASE THE FPS-100
c

CA.U. APRLSE
STOP
END

Figure 3-6 Host Calling Program for ADC Subroutine with Comm.on Blocks

FPS 860-7428-001 3 - 70

CRA.Pl'ER 4

OPERATING PROCEDURES

4. 1 USING ASMlOO

ASMlOO is a two-pass assembler which assembles a file of source code
into a relocatable object file. Optionally, an assembly listing is
produced.

To call ASMlOO, the user normally enters the following (this may vary,
however, depending on the host operating system):

ASMlOO

ASMlOO responds by issuing the following:

ASMlOO
SOURCE FILE=

The version and date indicate the version of the assembler and the date
that it was created.

The user responds by entering the desired program file name. ASMlOO
then requests the name of the file to receive the relocatable object
module as follows:

OBJECT FILE=

Tile user responds by entering the desired object file name. ASMlOO
then requests the name of the file to receive the assembly listing as
follows:

LISTING AND ERROR FILE=

The user replies by entering the name of the desired listing file. If
ASMlOO cannot find or assign the requested file, it displays the
message "FILE NOT FOUND OR UNAVAILABLE 11 and repeats its request.

FPS 860-7428-001 4 l

ASMlOO then displays:

LISTING? (Y /N)

A response of Y yields a full assembly listing, symbol table, and any
error messages. An N suppresses the assembly and symbol table listings
and writes any error messages to the listing file.

Finally, if a listing is requested, ASMlOO displays the following:

LISTING RADIX? (8,10,16)

A response of 8 causes the assembly listing to be generated in octal;
a 10 specifies decimal and a 16 hexadecimal.

ASMlOO responds to invalid input with ??? and repeats the request.

The following is an example of a dialogue with ASMlOO. The user
intends to assemble an FPS-100 program on file FFT.AP and write the
object output into file FFT.RB. The listing is placed on file FFT.LS.
Of course, the precise details of how files and devices are named
depends on the particular operating system being used.

ASMlOO
SOURCE FILE =
FFT .A:P
OBJECT FILE •
T!l!'T.RB
LISTING FILE =
FFT.LS
LISTING?
!
LISTING ltAD!X?

!

FPS 860•7428-001 4 - 2

4. 2 EXECUTION

During execution, any errors detected during pass l are displayed
first. The assembly listing (if requested) follows and is interspersed
with pass 2 error messages.

If a fatal error occurs, the message "RUN ABORTED" is displayed at the
terminal and control is returned to the operating system.

The assembler terminates with the message "ASS&"'!BLY COMPLETED".

4.3 LISTING FILE FORMAT

The assembly listing contains the following information for each
program statement:

first column

source
code
line number

FPS 860-7428-001

second column

program
source
address
(location
counter)

4

third column

assembled
program

3

fourth column

source
statement

For program instruction statements, the assembled data is presented as
four numbers representing bits 0-15, 16-31, 32-47, and 48-63 of each
program source word.

At the end of pass two, ASMlOO displays:

(num) ERROR(S) FOR (title)

The (num) is the number of errors detected, and (title) is specified by
the $TITLE pseudo-op in the last routine assembled. Finally, ASMlOO
displays the following:

SYMBOL NAME

The symbol table is displayed next, in the following format:

first column

symbol
nat:1.e

second column

symbol
value

third column

symbol
type

blank - local symbol
EXT - external symbol
ENT - entry symbol

In all of the preceding occurrences where a number (location, data
value, etc.) is printed on the listing, the radix is either octal,
decimal, or hexadecimal, as specified by the user during the initial
dialogue.

FPS 86-0-7428-001 4 4

\.____,,

4.4 SAMPLE ASMlOO LISTING

Figure 4-1 contains a sample ASMlOO listing.

ASMlOO REL. i.oo FIG.3-7 VCADD 06/15/79 09:21 PAGE. 0001

$T'I?L! VCADD
$St!H VCADD
$1ADIX 10

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014

$COMIO mtrr 2 '"MIS COMMON BLOCX IS INPUT 0!1!.Y
$COMMON tr.Im!tl PN,l'A(100)/1l,PlH100)/ll
$COMIO Otrr!UT l "TRIS COMMON BLOCX IS OlJTl!UT ONLY
$COMMON /OUTPUT/ l'C(lOO)/I.

"VECTOB. ADD
"ADDS V!CT01l A TO V!CT01t B AND PUTS 'l'!!E USm.T IN'?O V!CTOlt C

00015

00016

00017

00018
00019

000000

000001

000002

000003

"C(l!) • B(l!) + A(M) . F01l M • 0 TO N•l

"S-PAD PAlUM!TDS
A $!Ql1 0

B $EQU l

c $EQtr 2

N $EQU 3

00020 OOOOOOX 000003 VCADl>: tJ>MA.; DB•PR
102000
002000
000000

00021 OOOOOU 001600 UISPI A; DB.PA
000000
002000
000001

00022 000002% 001604 tJ>SPI B; DB.PB
000000
002000
000145

00023 000003 001614 I.DSPI !I; DB-MD
000000
005000
000000

00024 000004 040000 MOVA.A; SftMA
000000
000000
000060

"JASE ADDUSS 01' VECTOR A

"'BASE ADDRESS OP' VECTOR B

"BASE ADDUSS 01' C

"NtJKB!ll OF !LZMD'l'S DI C

"LOAD N

"LOAD ADDRESS OP A

"LOAD ADDUSS OP B

"SAV& N

"LOAD A(O)

Figure 4-1 Sample ASM~OO Listing

FPS 860-7 42 8-00 l 4 5

ASMlOO lll.• 1.00 P'IG.3-7

0002S OOOOOSX 001610
000000
002000
000000

00026 000006 040104
000000
000000
000060

00027 000007 001210
000000
04S004
000000

00028 000010 001100 LOO?:
000000
000000
000060

0002 9 0000 ll OOllOS
00030 124000

000400
000060

00031 000012 00121S
00032 100000

045004
000000

00033 000013 001110
00034 000655

000000
000160

00035 000014 000000
000340
000000
000000

00036

0000 EUOl.(S} P'OI. VCAJ>D

Sl!OOL VAUra

Dll'IJ'? ooooeo
n 000000
PA 000001
PB 000145
OU'f PO't' 000000
PC 000000
A 000000
B 000001
c 000002
N 000003
VCADD 000000 m
LOOP 000010

VCADD 06/lS/79 09:%1 PAGE 0002

LDSl'I C; DB•PC

MOV B,B; SE'rMA

DEC C; D"PX(O)<MD

UC A; SftMA.

INC B; SE'rMA;
P'ADD llPlt(O) ,MD

DPX(O}<MD;
DEC I; P'ADD

MI<!'A; INC C; S'!TMA;
Bl! LOOP

"!.OAD ADDUSS OP' C

"!.OAD B(O)

"SAVE A(O)

"mat A.(M+l)

"?!TCJI B (MH)
"B(M) + A(M)

"SAVE A.(M+l)
" SD I1' DONE?????

"STOl.E C (M)
''llRABCa I!' NOT 00?1!

Figure 4-l Sample ASMlOO Listing (cont.)

FPS 860-7428-001 4 6

CHAPTER 5

ERROR MESSAGES

5.1 GENERAL INFORMATION

ASMlOO error messages are printed in the listing following the illegal
statement.

Tilere are five basic error classes, which are listed in Table 5-1 along
with the action taken by the assembler:

Table 5-1 Message Category

CATEGORY DESCRIPTION

0

c

M

B

w

FPS 860-7428-001

Out of range: an illegal numeric value
was truncated to the proper range.

Conflicting definitions: the first
definition was used.

Missing (or improper) argument: a value
of zero was used.

Bad syntax: the bad op-code field or
pseudo-op was ignored.

Warning of improper usage.

5 - 1

Tile actual diagnostic takes the following form:

*** c msg nn ON LINE nnnnn

In this ease, c is the error class, msg is the error message, nn is the
error number, and nnnnn is the number of the erroneous line.

NOTE

On some systems, the msg portion of the message is
not displayed. Only the error number is displayed.

5.2 MESSAGES

Tile assembler error messages, along with an explanation as to the
possible causes and/or cures, are given in Table 5-2.

FPS 860-7428-001 5 2

Table 5-2 Error Messages

ERROR
NUMBER

1

2

3

4

5

6

8

9

10

11

13

CATEGORY MESSAGE

W LINE BUFFER
OVERFLOW

C MULTIPLY DEFINED
S'YMBOL

C CONFLICTING
OP-CODES

W S-PAD ADDRESS
TRUNCATED

0

c

c

M

M

M

B

BRANCH ADDRESS
OUT OF RANGE

CONFLICTING
BRANCH ADDRESSES

CONFLICTING DATA
PAD INDEXES

BAD OR MISSING
EXPRESSION

BAD OR MISS ING
FADD ARG

BAD OR MISSING
AMtJL ARG

VALUE FIELD
CONFLICT

FPS 860-7 428-001 5 3

EXPLANATION

An instruction statement is
too long (600 characters maxi
mum) for the listing buffer.

A symbol can be defined only
once in a program.

Two op-codes are used in an
instruction statement which
used the same instruction word
bit fields.

An s-pad address is outside
the legal range of 0-15 and
was truncated to 4 bits.

A branch address is more than
16 locations lower or 15 loca
tions higher than the current
location.

Only one branch address can be
used in any given instruction
statement.

Only one value can be given to
each data pad index (XR, Xl-l,
YR, YW) per instruction
statement.

The assembler cannot process
an expression.

A floating adder op-code has
an invalid Al or A2 operand.

The FMUL op-code has an
invalid Ml or M2 operand.

Only one op-code which uses a
16-bit VALUE field operand can
be used per instruction
statement.

Table 5-2 Error Messages (cont.)

ERROR
NUMBER CATEGORY MESSAGE

15 B UNDEF !NED 0 P-CODE

16 M EXTERNAL SYMBOL
IN EXPRESSION

17 M UNDEFINED USER
Sn!BOL

18 M NUMBER TOO LARGE,
TRUNCATED

20 B

22 M

23

24 0

25 B

26 B

27 B

28 B

29 B

FPS 860-7428-001

UNRECOGNIZED
STATEMENT

EXTERNAL SYMBOL
NOT ALLOWED

MISSlllG $END

DATA PAD INDEX
OUT OF RANGE

BAD COMMON
STATEMENT

BAD DATA
STATEMENT

$COMIO STATEMENT
our OF ORDER OR
ILLFORMATrED

BAD PARAM
STATEMENT

SUBROUTINE NAME
MUST BE DECLARED
EX?ERNAL

5 4

EXPLANATION

An op-code name is not a
legal FPS-100 instruction.

An external symbol cannot be
used to form an expression.

A user symbol is referenced
which was not defined.

The number specified cannot
be represented in the number
of bits allowed for this
value.

A statement line is neither a
comment, instruction, nor
pseudo-op statement.

An external symbol cannot be
used as an argument for this
op-code.

A program must terminate with
a $END pseudo-op.

A data pad Index must be
between -4 and +3 inclusive.

The $COMMON statement is
unacceptable to the assembler.

The $DATA stateJD.ent is
unacceptable to the asseJD.bler.

The $COMIO statement does not
appear before its associated
$COMMON st:atement or is not
formatted properly.

The $PABAM statement is
unacceptable to the assembler.

An external is referenced but
not declared.

ERROR
NUMBER CATEGORY

30 w

31 M

32 w

35 M

36 c

37 M

39 c

FPS 860-7428-001

Table 5-2 Error Messages (cont.)

MESSAGE

BAD OPl'ION -
DEFAULT VALUE
USED

BAD FLOATING PT.
CONSTANT

ILLEGAL PSEUDO-OP
POSITION

BAD PARAMETER

DATA PAD BUS
CONFLICT

MISSING S-PAD ARG

XW /Y.W CONFLICT

5 5

EXPLANATION

An illegal parameter is spec
ified, causing the assembler
to assume the default value.

A floating-point number is
unacceptable to the assembler.

If used, A $TITLE pseudo-op
must appear first in a
program, followed by any $EXT
or $ENTRY pseudo-ops.

A bad parameter is fotmd on a
pseudo-op statement.

Only one data source can be
enabled onto the data pad bus
per instruction statement.

An s-pad op-code is missing
its s-pad register address.

If the value field is used in
an instruction, an op-code
which writes into data pad Y
(such as DPY(2) < EM) can be
used also only if:

• no write into data pad X
is done

or

• the indexes are the same
for the writes into both
DPX and DPY

examples:
legal: JSR SQRT; uses the

DPY(2)<EM value
field and
a store
into DPY.

ERROR.
NUMBER CATEGORY

39 c

43

44

45 B

46 0

47 B

48 B

49 w

50 w

51

FPS 860-7428-001

Table 5-2 Error Messages (cont.)

MESSAGE

XW/YW CONFLICT
(cont.)

READ ERROR

SYMBOL TABLE
OVERFLOW

BAD OR. MISSING
S!MBOL STRING

EXPRESSION STACK
OVERFLOW

BAD $ENTRY

BAD $VAL

BAD $TITLE

EXTRANEOUS
BROUHAHA

BAD OR MISSING
DELIMrtER.

5 - 6

Legal:

EXPLANATION

JSR SQRT;
DPX(2)<FA
DPY(2)<EM

uses the
value
field, and
both data
pad write
indexes
are the
same.

illegal: JSR SQRT; uses the
DPX(-l)<FA value
DPY(2)<EM field, and

the two
data pad
write
indexes
are
different.

There is a file I/0 error.

Too many user symbols.

A symbol is missing or
illegal.

Too many parenthesis in an
expression.

Incorrect $EN!RY statement or
the $ENTRY symbol is also
found in a $EX! •

Incorrect $VAL statement.

Incorrect syntax in a $TITLE
statement.

Extraneous characters are
found with an op-code.

Incorrect punctuation.

-.._ .. /

Table 5-2 Error Messages (cont.)

ERROR
NUMBER

52

53

54

55

56

57

58

59

CATEGORY MESSAGE

M BAD OR MISSING
DATA PAD (BUS) ARG

B UNRECOGNIZED
PSEUDO-OP

B Fll.E NOT FOUND OR
NOT AVAll.ABLE

B NESTED PSUEDO...OP
NOT ALLOWED

W $ENDBOX WITHOUT
$BOX

W · DIVISION BY ZERO

w

w

TOO MANY LINES FOR
INSTRUCTION

MULTIPLE LABELS

FPS 860-7428-001 5 7

EXPLANATION

A data pad argument is
missing or incorrect.

An illegal pseudo-op is
encountered.

'Tile specified file is not
found or is not available.

The specified pseudo-op cannot
be nested.

A $BOX must occur before an
$ENDBOX.

Result is 65,535.

More lines than possible are
specified for one instruction.

Attempt to put more than one
label on a line.

Abbreviations, opcode 3-4
Absolute addressing 2-8
Absolute entry points 3-33
ADC example 3-67
ADC subroutine 3-32,37,59,68,70
Addressing modes 2-7
ASMlOO 4-1
ASMlOO and host FORTRAN

communication 3-59
Assembly listing 4-2
Auto-directed calls 3-32,59

$BOX pseudo-op 3-53
Branch op-code group 3-8

$CALL pseudo-op 3-48
Calling FTNlOO routines from

ASMlOO 3-58
Character set 2-9
$COMIO pseudo-op 3-35,59
Comment field 3-28
Comment statements 3-1
Comments 3-53
Common blocks 3-59,39,69
$COMMON pseudo-op 3-39, 57, 60
Communication between host and

ASMlOO 3-59
Conditional assembly 3-52
Constants, table memory 3-24
Control functions 3-24
Conventions 1-2
Crea.ting F!NlOO callable ASMlOO

subroutines 3-57

Data initialization 3-40
Data pad address op-code

group 3-7
Data pad bus op-code group 3-15
Data pad X op-code group 3-12
Data pad y op-code group 3-13
$DATA pseudo-op 3-40
Data transfer, direction 3-35
Default radix 3-48
Diagnostics 5-1
Double precision 3-34
Duplicate parameters 3-61

Elementary Function Tables 3-27
$END pseudo-op 3-54
$END!OX pseudo-op 3-53

FPS 860-7428-001 I

INDEX

$ENDIF pseudo-op 3-52
$ENDLIB pseudo-op 3-53
Entry point 3-31,32,33
$ENTRY pseudo-op 3-31,63
$EQU pseudo-op 3-46
Error file 4-1
Error messages 5-1
Example programs 3-64
Execution 4-3
Ex:presions 2-5
$EXT pseudo-op 3-44
External symbols 2-5; 3-44,46
External variables 3-55

FADD pushers 3-55
FFT cosine table constants 3-27
Label field 3-2
File assignment, programmed 2-3
File names 2-3
FLAG 3-23
Floating adder op-code group 3-9
Floating-point multiply op-code

group 3-11
EMUL pushers 3-55
Formal parameters 3-37
$FP pseudo-op 3-45
FTNlOO callable subroutines 3-57

$GLOBAL pseudo-op 3-33
Global symbol 3-31,32,33

BASI 3-31
Host callable routines 3-31,32
Host calling program for ADC

subroutine 3-69,71
Host calling program for UDC

subroutine 3-66
Host FORTRAN and ASMlOO

communication 3-59
Host panel 3-19

l

I/O op-code group 3-21
$IF pseudo-op 3-52
Initial priority 3-29
!NOUT 3-22
$INSERT pseudo-op 3-51
Instruction statement 3•2
$INTEGER pseudo-op 3-33
Integers 2-4
Interrupt Service routine 3-30

IOMEM 3-22
$ISR pseudo-op 3-30

$LIB pseudo-op 3-53
Library end blocks 3-53
Library start blocks 3-53
$LIST pseudo-op 3-54
Listing and error file 4-1
Listing file format 4-3
Listing radix 4-2
load REG, read REG 3-21
$LOC pseudo-op 3-47
.LOCAL common block 3-57
.LOCAL data block 3-32
Location counter 2-6; 3-2,47

Meiaory address op-code group 3-7
Memory input op-code group 3-14
Messages 5-1
Minimal machine resources 3-29
Multiple occurrences of

parameters 3-61

$NOLIST pseudo-op 3-54

Object file 4-1
Op-code abbreviations 3-4
Op-code field 3-3
Operands 2-6
Operating procedures 4-1
Operation code ~ield 3-3
Operators 2-6
Order of Statements 3-56

$PAGE pseudo-op 3-53
$PA.BAM pseudo-op 3-37
Priority 3-29
Program communication 3-59
Program name 3-30
Program source 3-18

INDEX

Program statements 3-1
Programmed file assignment 2-3
PS odd and even 3-19
Pseudo-op.eration. statements 3-28
Pushers 3-55

Ba.dices 2-4
Ba.dix 4-2
$RADIX pseudo-op 3-48
$REAL pseudo-op 3-34

FPS 860-7428-001 I

Related manuals 1-2
Relative addressing 2-7
Relocation of symbols 2-8
Run priority 3-29

S-pad op-code group 3-5
Sample ASMlOO listing 4-5
Sample programs 3-64
SENSE 3-23
SETEXIT 3-17
SETPSA 3-17
Single precision integers 2-4
Size of installed FFT cosine

table 3-27
Slaved tasks 3-29
Source file 4-1
Source program statements 3-1
Special characters 2-l
Special interrupts 3-20
Special operation op-code

group 3-16
Special tests 3-16
Standard arithmetic

relations 2-6
Standard arithmetic

operations 2-6
Statement order 3-56
Statements, program 3-1
$SUBR pseudo-op 3-32,59
Subroutine calls 3-48
Supervisor tasks 3-28
Symbol names 2-3
Symbol relocation 2-8
Symbols, table memory 2-4
SYMLIB 2-4

Table memory 3-24
Table memory address op-code

group 3-7
Table memory symbol 2-4
Task col111J1Unication block 3-28
$TASK pseudo-op 3-28
TCB 3-28
$TITLE pseudo-op 3-30
$TRIPLE pseudo-op 3-34

UDC example 3-64
UDC subroutine 3-31,63,65
Unary operations 2-6
User directed calls 3-31, 63

2

-.. ____ ,./

INDEX

Using ASMlOO 4-1 $VAL pseudo-op 3-44

FPS 860-7 428-001 I - 3

READERS COMMENT FORM

Your comments will help us improve the quality and usefulness of our
publications. To mail: fold the form in three parts so that Floating
Point Systems' mailing address is visible, then seal.

I used this manual •••

() as an introduction to the subject
() as an aid for advanced training
() to instruct a class
() to learn operating procedures
() as a reference manual
() other

Date
Department -------

Telephone

I found this material •••

accurate/complete
written clearly
well illustrated
well indexed

YES NO

() ()
() ()
() ()

() ()

Please indicate below, listing the pages, any errors you found in the
manual. Also indicate if you would have liked more information on a
certain subject.

~---------------~-----------------~---~--~~-

BUSINESS REPLY
No postage stamp necessary if mailed in the United States

Postage will be paid by:

FLOATING POINT SYSTEMS, INC.

P. 0. Sox 23489
Portland, Oregon 97223

Attention: Technical Publications

First Class
Permit No. A-737

Portland,
Oregon

-···· 5 •.

- - - - - - - - - - - - - - - - - - _ __.. - - - - - - - "==*' - -- ~ - - - - - - ..- - - - - -

~--..

- --

- --

' '

FLOATING POINT
SYSTEMS, INC.

CALL TOLL FREE 800-54 7-1445
PO. Box 23489, Portland, OR 97223
(503) 641-3151, TLX 360470 FLOATPOINT PTL

