Programmers
FLOATING POINT
SYSTEMS. INC. R?\’;l%l‘enaﬁe
Nnu
Part One

by FPS Technical Publications Staff

Programmers

Reference
Manual

Part One

1st Edition, January 1978

Publication No. FPS-7319

NOTICE

The material in this manual is for
information purposes only and is
subject to change without notice.

Floating Point Systems, Inc. dassumes
no responsibility for any errors |
which may appedr in this publication.

Copyright (:> 1978 by Floating Point Systems, Inc.
Beaverton, Oregon 97005

A1l rights reserved. No part of this publication may

be reproduced in any form or by any means without
written permission from the publisher.

Printed in U.S.A.

CHAPTER 1

.
[o A 0e W e\ We NN NV, IR S SN VS TN SN

* e = s e @
.

L] .

[ol 0 el sl el aa)
.

E S S

CHAPTER 2

.

00~ WU W N

. o . » = .

RN NP DN

CHAPTER 3

. .

e o
. * o
W N~

. o
L]
(VST S e

WLWWLWLWWLWWWLW LW
MPpLWLWLLWD DD -

.

w
.
w
.
—

« .
w
. e
[P S]

CONTENTS

INTRODUCTION

PURPOSE

SCOPE

GENERAL DESCRIPTION

SYSTEM OVERVIEW

EXAMPLE AP-120B APPLICATION

SOFTWARE
APEX (A.P. Executive)
APMATH
Program Development Package
APTEST '

FUNCTIONAL OVERVIEW

CONTROL UNIT

S-PAD UNIT

FLOATING ADDER UNIT

FLOATING MULTIPLIER UNIT

DATA PAD UNIT

DATA MEMORY UNIT

TABLE MEMORY UNIT

INTERNAL FLOATING POINT FORMAT

FLOATING POINT ARITHMETIC THEORY

INTRODUCTION
GENERAL NUMBERING SYSTEMS
Base
Radix Point
Types of Binary Notation Systems
NUMBER FORMATS
Fixed=-Point Numbers
Floating=-Point Numbers
Normalization :
AP-120B FLOATING-POINT FORMAT (FPN)
AP-120B FLOATING~POINT ARITHMETIC OPERATIONS
{(OVERVIEW)
Floating=-Point Addition, Subtraction and
Multiplication
Rounding
Overflow and Underflow

iii

Page

,__.
|
-

[UL
w N -

IS

P
\O 00 00 00 00

=k e b b b e
|

2-1

2-2
1-3
2-5
2=-7
2-9
2-11
2-13
2=-14

3-2
3-3
3-3
3-3
3=4
3-11
3-11
3-13
3-14
3-16

3-20
3=-21

3-25
3-29

CHAPTER &4 DETAILED DESCRIPTiONS OF THE FUNCTIONAL UNITS

4.1 S=PAD 41
bel.l General Description 4=1
4.1.2 S—-PAD Operatioms 4=4
4.1.3 S-PAD Source and Destination Registers 4=5
4ol.4 S-PAD Function)
4.1.5 S-PAD Modifiers "#", "Sh", "&" 47
4.1.6 S-PAD Associated Test and Branch Operations 4~8
4.1.7 Bit Reverse 4=-10
4.1.8 General Programming Rules 4=15
4.1.9 S-PAD Carry Bit Conditioms 4=16
4.1.10 Programming Example 417
4.2 SPECIAL OPERATIONS GROUP (SPEC) 4=19
4.2.1 Branch Operations 4=20
442.2 Data Transfer Operations 4=27
4.2.3 Program Source Address Modification 4=32
4.2.4 Branch Group Summary 4=36
4.2.5 AP-120B Intermal Status Register (APSTATUS) 4-39
4.2.6 PERR and PENB, Theory of Operation 4=43
4.3 FLOATING ADDER (FADDR) 4=45
4.3.1 General Description, Theory of Operation b=l
4.3.2 FADDR Single and Double Operand Operations 4=49
4.3.3 Floating Point Logical Operations 4=30
4.3.4 FADDR Operands (via Al, A2 Registers) 4=52
4.3.5 FADDR Result (FA) 4=53
4.3.6 FADDR Test, Branch and Error Comdition 4=54
4.3.7 Floating Point Adder Programming Considerationsé4-55
4.4 FLOATING MULTIPLIER (FMULR) 4=58
be4.1 General Description, Theory of Operation 4=59
4a4.2 The FMULR Operation -- FMUL 4=62
4.4.3 FMULR Operands (via M1, M2 Registers) 4=63
bbb The FMULR Result (FM) 4-64
4ebo5 FMULR Test, Branch and Error Conditions 4=65
bob.B FMUL Programming Consideratiomns 4=66
4.5 I1/0 GROUP 4=71
4.5.1 AP-120B I/0 Operations 4=72
4.5.2 Virtual Front Panel (PANEL) 4=77
4.5.3 Programmed I/0 4-87
4.5.4 Programming Example 4=104
4.6 DATA PAD SUMMARY 4=110
4o6.1 General Description, Theory of Operation 4-111
4.6.2 Data Pad Operations 4-112
4.643 Data Pad Addressing : 4=116
4ab.4 Programming Examples 4~118
4.7 MEMORY GROUP 4-120
4.7.1 Main Data Memory (MD) 4-121
4.7.2 Table Memory (TMA) 4=-131

iv

CHAPTER 5 HOW TO PROGRAM THE AP-120B 5-1

5.1 MEET THE AP....AGAIN 5-1
5.1.1 Introduction 5-1
5.1.2 Basic Overview 5-2
5.1.3 Referencing Memory 5=5
5.1.4 S~-PAD Mnemonics 5-6
5.1.5 Other Pseudo-Ops 5=7
5.2 LOOPS 5=8
5.2.1 A Poor Loop 5-8
5.2.2 Determining Length of a Loop 5-10
5.2.3 Writing a Real Memory-Limited Loop 5-11
5.2.4 Writing Intros 5-13
5.2.5 Dot Product Program 5=15
5.2.6 Notation 5-18
5.2.7 Dropping Out One Early 5-20
5.2.8 Interaction Between Columns 5-23
5.2.9 Changing DPA 5=24
5.2.10 Non-Memory-Limited Loops 5-15
5.2.11 A One-Cycle Loop 5-26
5.3 CAVEAT PROGRAMMER (LET THE PROGRAMMER BEWARE) 5-29
5.3.1 Calling Another Sub=-Routine 5-19
5.3.2 Illegal Instruction Sequences (Not Caught

by APAL) 5-=31
5.3.3 Other Things to Watch Out For (Caught by APAL) 5-31

Number

1-1
2-1
2-2
2-3
2=4
2=5
2-6
2~7
3-1
4=1
4=2
4=3
4=4
4=5
4-6

Number

1-1
3-1
3=-2
4=1
4=-2
4=3

FIGURES

Title

AP-120B Arithmetic Paths
Control Unit

S=-Pad Unit

Floating Adder Unit
Floating Multiplier

Data Pad

Data Memory Unit

Table Memory

AP-120B Floating Point Number Format
3-PAD Block Diagram

PS Formats

Program Source Memory File
Data Pad

Main Data Block

Table Memory

TABLES

Title

Related Publications

The AP~120B Rounding Decision Table
The AP-~120B Truncation Decision Table
S-PAD Timing Examples

Loading and Executing AP-120B Bootstrap

Table Memory CEXP Truth Table

vi

Page

1-5
2=2
2=4
2-6
2-8
2-10
2-12
2-13
3-18
4=3
4-28
4=29
4=-111
4=121
4=132

Page

1-10
3-26
3-28
4-9
4-106
4-138

APPENDIX

Glossary

List of Terms and Usage

List of Functions

Instruction Field Layout and Summary

Instruction Descriptions

vii

CHAPTER 1

INTRODUCTION

1.1 PURPOSE

This manual provides the information necessary for the programmer to
write programs for the AP-120B Array Processor to be assembled by the
AP Assembler (APAL). It is designed for use both as an introduction
to programming the AP-120B and as a reference manual.

1.2 SCOPE

This manual contains material on how to program the AP-120B including
detailed descriptions of the AP's functiomal units and its instructionm
set.

Chapter 1 includes a general description of the AP-120B and an example
of its application. Chapter 2 1introduces the AP-120B's fuanctional
units.

A review of floating point arithmetic theory and the format used by the
AP-120B are in Chapter 3.

Chapter 4 1includes detailed descriptions of the functional units,
including programming examples and considerationms. How to take
advantage of the AP-120B's pipeline processing is discussed in Chapter
5, "How to Program the AP-120B."

The Appendix includes both a brief summary of the instruction set,
Appendix D, and a discussion of each instruction, Appendix E. A
diagram of the instruction field layout in Appendix D shows at a glance
the relationship of the functional units to the instruction word.

For information about the Software Packages supplied with the AP-120B,
the AP Math Library or the Program Development Package refer to Table
1-1, Related Publications, in Sectiom l.6.

1.3 GENERAL DESCRIPTION

The AP-120B is a high-speed (167-ns cycle time) peripheral
floating-point arithmetic Array Processor, which is intended to work in
parallel with a host computer.

Its internal organization is particularly well suited to performing the
large numbers of reiterative multiplications and additions required in

digital signal processing, matrix arithmetic, statistical analysis, and
numerical simulation.

The highly parallel structure of the AP-120B allows the 'overhead" of
array 1indexing, loop counting, and data fetching from memory to be
performed simultaneously with arithmetic operatioms on the data. This
allows much faster execution than on a typical general-purpose
computer, where each of the above operations must occur sequentially.

The AP+120B achieves its high speed through the use of fast commercial
integrated circuit elements and an architecture that permits each
logical unit of the machine to operate independently and at maximum
speed..

Specifically:

1. Programs, coustants, and data each reside in
separate, independent memories, to eliminate
memory accessing conflicts.

2. Independent floating—point multiply and adder
units allow both arithmetic operations to be
initiated every 167 us.

3. Two large (32 locatioms each) blocks of
floating-point accumulators are available for
temporary storage of intermediate results
from the multiplier, adder, or from memory.

4. Address indexing and counting functions are
performed by an independent integer arithmetic
unit that includes 16 integer accumulators.

In a typical applicationm, such as a Fast Fourier Transform, the above
features allow nearly the entire computation to be overlapped with data
memory access time.

Effective processing precision is enhanced by 38~bits of internal data
width, an internal floating-point format with optimum numerical
properties, and a convergent rounding algorithm.

1.4 SYSTEM OVERVIEW

A general block diagram of AP-120B arithmetic paths appears in Figure
1.1,

Connection is made to the host in a manner that permits data transfers
to occur under control of either the Host Computer or the AP-120B. For
most host computers, this will mean that the AP-120B is interfaced to
both the. programmed I/0 and DMA channels.

CONTROL
MEMORY

CONTROL

MEMORY

1/0

L}

!

38-bit BUS STRUCTURES

ARITHMETIC

PROGRAM
MEMORY

(to 4K X 64 bits)

PS

S-PAD

(16 X 16 bits)

SPFN

1

MEMORY ADDRESS

4 REGISTERS

(MA, TMA, DPA)
X 16 bits)

TABLE
MEMORY

RAM or ROM
(to 64K X 38 bits)

FLOATING-POINT
ADDER

™

DATA PAD X

(32 X 38 bits)

Al
> FA

DPX

DATAPAD Y

(32 X 38 bits)

DPY

MAIN DATA

MEMORY

(to 1 Meg X 38 bits)

MD

MDI MD

A2

FLOATING-POINT

HOST
INTERFACE

SWITCH REG
FUNCTION REG
LIGHTS REG

INBS

e T S

MULTIPLIER
M1

ot QP
16/32

INBS

PioP

INBS

DATA PAD BUS (38 Bits)

Figure 1l=1 AP-120B Arithmetic Paths

FM
e

The system elements are interconnected with multiple parallel paths so
that transfers can occur in parallel. All internal floating-point data
paths are 38-bits 1in width (l0-bit biased bimary exponent and 28-bit
2's complement mantissa).

Data Memory (MD) is organized in 8K-word modules of 38-bit words each,

expandable up to 64K words in the main chassis. The effective memory
cycle time (interleaved) is 333 ns.

Table Memory (TM) is used for storage of constants (FFT comstants), and
is tied to a separate data path so as not to interfere with Data
Memory. It 1is bipolar, 167 ns read-only memory, and is organized in
512-word, 38-bit increments.

Data Pad X (DPX) and Data Pad Y (DPY) are two blocks of 32 floating
accumulators each. Each 1s a two—part register block, wherein one
register may be read and another written from each block in one
instruction cycle.

The Floating Adder (FA) comsists of two input registers (Al and A2) and
a two—stage pipe—line which performs the operatioms, and convergently
rounds the normalized result. '

The Floating Multiplier (FM) consists of input registers (M1 and M2)
and a three-stage pipe—line which performs the multiply operationm.
Products are normalized and convergently rounded 38-bit numbers.

The S-PAD comnsists of 16 integer registers and an integer arithmetic
unit which 1s wused to form operand addresses and to perform integer
arithmetic.

1.5 EXAMPLE AP-120B APPLICATION

-

A simple FFT processing sequence would go as follows:

Initial conditions are that the FFT program 1is resident in Program
Source Memory internal to the AP-120B, the array to be transformed is
resident in host memory, and the host CPU has 1initiated the AP-120B
processor with an I/0 imstructionm.

1. The AP-120B requests host DMA cycles to
transfer the array from host memory to
internal data memory. Data is converted from
host floating-point format to intermal AP-120B
floating—=point format "on the fly."

2. The FFT algorithm is performed, with data
remaining in internal AP-120B format. This
yields the benefit of 38-bit precision and
convergent rounding during the critical phases
of processing.

3. The frequency domain array is transferred back

" to host memory by requesting host DMA cycles.
Data is converted from internal format to host
format "on the fly."

4. The AP-120B proceeds to another process or
stops executing, depending on previously
established conditions. An interrupt to the
host can be issued.

The AP-120B is most efficiently used when a sequence of operations is
performed on one or more sets of data which reside in internal data
memory. This reduces data-transfer overhead, and retains maximum
numerical precision. For example, a reasonable sequence would be to
transfer a trace and a filter, FFT both, array multiply, 1inverse FFT,
and transfer the result back to host memory.

The AP-120B Data Memory has DMA capability. That is to say that MD
cycles can be stolen from the AP-120B microprocessor by the interface.
This capability allows Host Computer DMA to AP-120B DMA data transfers
to occur, thereby minimizing both host CPU and AP-120B overhead.

The AP-120B has been designed with enough flexibility built-in so that
its power «can be harnessed in a variety of ways. Subsequent sections
describe its use in detail.

1.6 SOFTWARE

Four packages of software are supplied with the AP-120B which assist
. the user toward the solution of his particular processing task.

1.6.1 APEX (A.P. Executive)

APEX 1is a mechanism for communicating with the AP-120B via a series of
FORTRAN or machine language subroutine "calls." The executive driver

routine interprets the particular user call and directs the AP-120B to
perform the specified action. For example, in Fortran, to load an

array A containing N real data points into the AP-120B, and perform a
real Fast Fourier Transform upon that data:

IA=0
CALL APPUT (A,IA,N,2)
CALL RFFT (IA,N,1)

Both the Standard Applications Subroutines described below and user
developed AP-120B programs may be called from the host computer using
APEX.

1.6.2 APMATH (A.P. Math Library)
These are subroutines written in AP-120B assembly language which are

callable from host computer Fortran or machine language programs using
APEX. They are listed in the AP-120B Math Library.

1.6.3 Program Development Package

Four Fortran IV programs which are compiled on the host computer during
installation aid user program development.

3

These are:

1. APAL A.P. Assembly Language. A
cross—assembler which provides
a two pass assembly of symbolic
coding into an object module.
APAL generates detailed error
diagnostics.

2. APLINK A.P. Linker. Links and
relocates separate APAL object

modules together into a single
execution module.

3. APDBUG A.P. Debugger. An interactive
debugging program. The user
may selectively set
breakpoints, examine and
change memory and register
contents, and run program
segments.

4, APSIM A.P. Simulator. Called by
APDBUG, APSIM provides a
programmed simulation of the
various hardware elements of
the AP-120B. All timing
characteristics of the AP-120B
are emulated, and the floating
point arithmetic is simulated
(including rounding) to the
least significant bit., APSIM
is a convenient tool in
bringing up new AP-120B
programs off line without
interfering with production runs.

l.6.4 APTEST (A.P. Test Programs)

APTEST is a collection of 1interactive diagnostic

test and verify

programs which aid in isolation of hardware faults. These are:

1. APTEST A.P, Tester. Exercises the
Panel, DMA interface, and
various internal registers and
memories. Tests Main Data
Memory with simple patterns and
then with random numbers.

Board level diagnostic
indicators are provided.

2. APPATH A.P. Path Tester. Tests the
various internal data paths and
gives board level diagnostics.

3. APARTH A.P. Arithmetic Test. Tests
the floating point adder,
multiplier, and S-Pad
arithmetic unit with

pseudo—~random number and
operation sequences.

4, FIFFT Forward/Inverse FFT Test.
Verifies the correct operation
of the AP-120B as a complete
unit by doing forward/inverse
FFT transforms on both spikes
and random number sequences.

Table 1-1 lists Floating Point Systems publications related to
software.

Table 1-1 Related Publications

Manual Number
Processor Handbook 7259
Software Development Package Manuals 7292

(includes APAL Array Processor Assembly
Language Manual, APLINK-Array Processor
Linking Loader Manual)
AP-120B DEBUG-Array Processor DeBugger Manual 7364
AP-120B Diagnostic Software Manual 7284
(includes APTEST, APPATH, APARTH, FIFFT)

AP-120B Math Library Paarts I & II 7288-02,
IOP 16/38 Users Manual 7310R
Programmable 1/0 Processor (PIOP) 7350

(scheduled winter quarter 1978)

AP~120B

03

CHAPTER 2

FUNCTIONAL OVERVIEW

The hardware of the AP-120B is composed of three types of functional
elements.

1. Logical and control elements
a. Control unit

b. S=Pad unit

2. Floating-Point arithmetic elements
a. Floating—-point adder
b. Floating-point multiplier

3. Memory elements)
a. Data Pad unit
b. Main data memory unit
¢. Table memory unit B

Each of these funtional units is INDEPENDENT and thus can independently

perform the programmed operations for which it was designed in parallel
with the other functional units.

2.1 CONTROL UNIT

The Control Unit, as illustrated by Figure 2-1, consists of:

a. Program Source Memory (PS)
b. Program Source Address (PSA) Register
c. Control Buffer (CB) with decoding logic
d. Subroutine Returm Stack (SRS)
with subroutine return stack pointer (SRA)

The operation of the AP-120B is controlled by the execution of 64-bit
instruction words which reside in Program Source (PS) Memory. The
program word for the next instruction to be performed is selected by
the address in the Program Source Address (PSA) register. At the
initiation of the next machine cycle, this program word is transferred
to the Control Buffer (CB) where it is decoded and executed. The PSA
is incremented by one unless a branch in the current imstruction causes
the PSA to move to another locatiomn 1in Program Source (PS) wmemory.
Access to Program Source memory and instruction decoding are overlapped
so that the AP-120B can operate at a 6 MHz rate (167 ns).

Branching is accomplished in two manners. A short-range branch 1is
provided by adding the 5-bit branch displacement field to the current
PSA. This gives a branch range of from -20(octal) to +17(octal). A

long-range jump to any location in PS is accomplished by loading the
desired target address into PSA.

Subroutine jumps are made by a "JSR" instruction which saves the
current PSA in the Subroutine Return Stack (SRS) and sets PSA to the
subroutine address. Returm is via a "RETURN," which loads the PSA with
the last entered return address on the SRS.

SRA (Subroutine Return Address) is the Subroutine Returm Stack pointer,
which 1s automatically incremented or decremented as subroutines are
called and returns are made from the subroutine.

Program 1
Source Program Source Address (PSA)
Memory i’
(PS) <

' Subroutine
Return
SRA Stack

)l

Control
Buffer(CB)

Figure 2-1 Control Unit

2.2 S-PAD UNIT

This wunit, illustrated by Figure 2-2, performs the integer address
indexing, loop counting and control functions necessary to direct
completion of a given algorithm. In form, it is similar to familiar
mini-computers such as the PDP-11 or Nova.

The S-Pad contains sixteen 16-bit directly—-addressable registers. The
contents of these registers pass through a special integer ALU
associated with this unit.

The output of the ALU may be directed back to the specified S-Pad
destination register, and also to any of the following address memory

registers: Memory Address (MA), Table Memory Address (TMA), or Data
Pad Address (DPA).

The S-PAD integer ALU functions include:

FUNCTION EFFECT
a. Move S2D S=Source
b. Logical Complement S+D register
c. Clear 0+D D-Destination
d. Increment S+1-D register
e. Decrement S-1D
f. Add D+S-D
g. Subtract D-5+D
h. Logical AND D AND S+D
i. Logical OR D OR S-3D

j. Logical Equivalence D EQV S=D

The output of the S-PAD ALU (called S—-PAD FUNCTION or SPFN), may be
used unmodified, shifted left once, shifted right once, or shifted
right twice.

A hardware bit~reverse function included in the S-~Pad accomplishes the
bit swapping necessary to access data in scrambled order after an FFT.

The S~PAD ALU also sets three condition bits 1in the AP-120B Status
Register depending upon the output of the ALU/shifter:

N: -"set if result <0; cleared otherwise
Z: set if result =0; cleared otherwise
C: set if a carry occurred; cleared otherwise

These bits may be tested by the next AP instruction, and a branch made
depending upon whether the specified condition was true.

D+

S-Pad £1
Registers w4 Data Pad Address (DPA) Register

16 i Memory Address (MA) Register L
L

| Bit Rev.

:

S—-Pad o Table Memory Address (TMA) Register
ALU/Shifter —

l(SPFN)

Y
Data Pad Bus (DB)

Figure 2-2 S-Pad Unit

2.3 FLOATING POINT ADDER UNIT

The Floating Point Adder, shown in Figure 2-3, does addition (or
subtraction) operations on the contents of the Adder imput registers

(Al and A2). The operation is performed in two stages, each of which
takes one machine cycle.

In the first stage, the exponents of the two numbers are compared and
the fractions are aligned by shifting the fraction of the smaller
number right. The fractions are then added (or subtracted). In the

second stage the resulting £fraction 1is normalized and convergently
rounded.

Since the two stages are independent of each other, a new pair of
numbers may be entered 1into Al and A2 every AP cycle (167 ns). The
result is available for use two cycles later (333 us).

In effect, the Floating Adder (FA) is a pipeline, where new inputs may
be entered into the pipeline stream every cycle. Initiation of an add
operation loads the two numbers to be added into the Al and A2 input
registers. The previous Adder input is pushed down the pipeline to the
Adder Buffer register. One cycle later the completed result (called
FA) from the Buffer is available for storage or use by another unit.
Thus a new add may be started every 167 ns, and the result is ready 333
ns later.

Al may be loaded from Data Pad (DP), from the output of the Floating

Multiplier (FM), or from Table Memory (TM). A2 may be loaded from Data

Pad (DP), from the output of the Floating Adder (FA), or from Data
Memory (MD). ,

The output of the Floating Adder (FA) may be directed to the Multiplier
(M2), to the Adder (A2), to Data Pad (DP), or to Memory ILnput (MI).

The operations performed by the Floating Adder are:

a. Al+QlA2

b. Al-A2

c. A2-Al

d. Al EQV A2

e. Al AND A2

f. Al OR A2

g. Convert A2 from signed magnitude to 2's
complement format

h. Convert A2 from 2's complement to signed
magnitude format

i. Scale A2

j. Absolute value of A2

k. Fix A2

Al

Four condition bits in the AP Status Register are set or cleared by the

Floating
FZ -
FN -

FO -

FU -

Adder depending upon the current result:

set to one if result is zero, else cleared

to zero.

set to one if result is negative, else cleared
to zero.

set to one if exponent overflow occurred. The
result was forced to the signed maximum value.
set to one if exponent underflow occurred.

The result was forced to zero.

The overflow and underflow bits remain set until cleared by the

program.

These bi
result

ts may be tested by the instruction after the Floating Adder
is completed; i.e., three cycles after the Floating Adder

operation was initiated.

ZFRO

DFX DfY HM ﬁ? Fe D%X D?Y ﬁD ZE?O

A2
]

19
Al A2

Align
fractions Stage 1
and add

Buffer

Normalize
and Stage 2
round ‘

l(FA)

VAN Y 4

M2 A2 MI DPX DPY

Figure 2-3 Floating-Point Adder Unit

2.4 FLOATING POINT MULTIPLIER UNIT

The Floating Multiplier, Figure 2-4, forms the product of the two
multiplier input registers (M1 and M2).' The product is formed in three
stages, each of which takes one machine cycle.

In the first stage, the 56-bit product of the two 28-bit fractioms are
partially completed. The second stage completes the product of the
fractions. In the third and final stage the exponents are added, and
the mantissa product is normalized and convergently rounded.

The Floating Multiplier, like the Floating Adder, 1is organized as a
pipeline. Initiation of a multiply loads the two numbers to be
maltiplied into the M1 and M2 input registers. The two previous
multiplier inputs are pushed down the pipeline to Buffer 2 and Buffer 3
respectively. One cycle later, the result from Buffer 3 is available
for storage or use by another unit.

Thus a new product may be started every 167 ns, and the result is ready
500 ns later.

Ml may be loaded from Data Pad (DP), the output of the Floating
Multiplier (FM) or from Table Memory (TM). M2 is loaded from Data Pad
(DP), the Adder (FA), or from Main Data Memory (MD).

Two error bits in the AP Status Register are affected by the Floating
Multiplier: -

FO - set if exponent overflow occurred. The result
was forced to the signed maximum value.

FU - set is exponent underflow occurred. The result
was forced to zero.

D?X’ 'D!PY T%! FM FA lex DllDY ‘:{(D

1

—

M1 M2

Stage 1
Start product
of fractions

Buffer 2

Complete
product of Stage 2
fractions

Buffer 3
Add exponents
Normalize

and Stage 3
Round

(FM)

Yy vy 11

M1 Al MI DPX DPY

Figure 2-4 Floating Multiplier

2.5 DATA PAD UNIT

Data Pad, 1illustrated by Figure 2-5, consists of two fast accumulator
blocks, each with 32 floating-point locatioms, called Data Pad X (DPX)
and Data Pad Y (DPY). In a single machine cycle the contents of one
location from each Data Pad may be read out and used. In addition,
data may also be stored into one location in each Data Pad in the same
cycle. That is, for example, in a single instruction (167 as) a
multiply may be initiated specifying one argument from DPX and another
from DPY; an Adder result (FA) may be stored into a DPX locatiom, and
a data element in Main Data stored into a DPY location. On the very
next instruction similar wmultiple Data Pad accessing could be
accomplished again.

The two memories are addressed via a combination of the Data Pad
Address (DPA) register and four index field values contained in a given
instruction word. DPA may be thought of as a base address register or
stack pointer. It may be loaded from the S-Pad (SPFN) or its contents
may be incremented or decremented by one.

For a given read or write operatiom, say reading from Data Pad X, an
index value contained in the instruction 1is added to the current
contents of DPA to give the effective address for that particular
operation. The four index fields (one each for read DPX, read DPY,
write DPX, and write DPY) are each 3 bits wide, and have a range from
-4 to +3 relative to DPA.

Data from either Data Pad may be used by the Multiplier (M1, M2), Adder
(Al, A2), or Memory Lnput (MI). Data may be stored into Data Pad from
the Adder (FA), Multiplier (FM), S-Pad Function output (SPFN), the
Command Buffer Value (VALUE), or from Data Pad (DP).

INBS VALUE DPX DPY MD SPFN TM
] l | | l !]

(Data Pad Bus = DPBS)
Fa M
FA FM l 1
-
. vy ¥ Iy |
Write Index — — Write Index
DPX DPA ——XN DPY
Read Index —3 Read Index
(DPX) (DPY)
\? v v v v v v v 9 -
M1 M2 Al A2 DPBS M1 M2 Al A2 DPBS

Figure 2-5 Data Pad

2.6 DATA MEMORY UNIT

The Data Memory unit, illustrated in Figure 2-6, is the primary data
store for the AP-120B. It is available in 38-bit wide 8K modules which
have an interleaved cycle time of 333 or 167 ns.

The memory unit contains a Memory Data (MD) buffer and a Memory Input
(MI) buffer. Data read from memory is placed by the controller into
MD, while data is written into memory from the MI. The Memory Address
(MA) register points to the desired memory locatiom.

In referencing memory for read or write operations, the selected
operation 1is initiated by making a change to the Memory Address (MA)

register. The MA register may be loaded from the S-Pad (SPFN) or its
contents incremented or decremented by one.

A write operation is specified by loading MI with the data to be
written during the same instruction in which MA is changed. This data
is then written into memory from MI during the next two AP cycles.
Data may be loaded into MI from the Floating Adder (FA), Floating
Multiplier (FM), Data Pad (DP), Memory (MD), Table Memory (TM), the
Input Bus (INBS), S=Pad Function (SPFN), or the Command Buffer Value
(VALUE). A memory operation may be initiated every other cycle. The
intervening cycle may be wused for any other AP-120B function except
another memory initiate.

When a memory READ is initiated, the requested memory data is placed by
. the memory controller into the Memory Data (MD) register 3 cycles after
the request was made. Two instructions after the read request, another
memory operation may be initiated. Again, the intervening cycle may be
used for any non—memory functions. Data in MD may be wused by the
Floating Adder (A2), Floating Multiplier (M2), or Data Pad (DP).

To optimize the operation of the AP-120B it 1is necessary for the
programmer to '"look ahead" and initiate memory reads prior to the
actual time that arguments from data memory are to be used in a
calculation.

The system provides a "memory lock-out' which serves to 1insure that
erroneous reads and writes of memory do not occur. If a memory

initiate occurs while memory is "busy," further program execution 1is
halted until the previous memory cycle is completed.

FA M INBS VALUE DPX DPY MD SPFN
+ r + + + + + +

l i (Data Pad Bus)

Figure 2-6 Data Memory Unit

2.7 TABLE MEMORY UNIT

The repeated use of standard comstants (such as complex roots of unity
and transcendental values) in signal processing routines dictate their
ready availability to the programmer. A separate Table Memory (TM),
shown in Figure 2-7, eliminates memory accessing conflicts by allowing
data values and table values (constants) to be placed in separate
memory banks.

Values read from Table Memory are placed by the <controller into the
Table Memory (TM) buffer register. The Table Memory Address (TMA)
register serves as a pointer to the desired location. The standard TM
is ROM. RAM is available as an optiom.

A Table Memory read is initiated by changing the contents of TMA,
either by loading a value from the S-PAD (SPFN), or by incrementing or
decrementing the contents of TMA.

A new table value may be requested every machine cycle. This value 1is

available for wuse two cycles later. The value may be used by the
Floating Adder (Al), Floating Multiplier (Ml), or Data Pad (DP).

In FFT mode (i.e., when a FFT is being computed), the address in TMA is
interpreted by the hardware to be an angle which points to the
appropriate root of unity for a particular step in the algorithm. This
allows the full table of roots of unity to be compressed into a single
quadrant of cosines.

e il

Table
Memory
(ROM) —TMA

™

]
\ ¥
A1 M1 DPBS

Figure 2-7 Table Memory

2.8 INTERNAL FLOATING POINT FORMAT

Floating—-point data internal to the AP-120B is represented as follows:

Exponent Mantissa

2 11 12 39

E¢ E9 M¢ M27
Where:

Mantissa 28-bit two's complement fraction

Exponent 10-bit binary exponent, biased by 512

The value of a floating—-point number in this format is defined as:
Mantissa * 2 (Expoment =512)

The dynamic range of this format is from 0.5 * 2(-=512) to (l-2 [-28]) *
2(511); or, from 3.7 * 10(~155) to 6.7 * 10(153).

The 28-bit fraction, combined with the convergent rounding algorithm
used in the Floating Adder and Multiplier, gives a maximum relative
error of 7.5 * 10(-9) per arithmetic operatiom. This is a precisiom of
- 8.1 decimal digits. As a comparison, unrounded IBM 360 format gives
only 6.0 decimal digits of arithmetic accuracy.

The convergent rounding hardware rounds up when the magnitude of the
remainder is GREATER than 1/2 of the least significant bit of the
mantissa. This serves to minimize truncation errors in long series of
arithmetic calculations.

Format conversion between Host format and AP-120B format occurs in the
Interface and in the Floating Adder unit. The dynamic range of the
internal format is large enough to accomodate IBM 360 format and other
Host formats. The extended precision of the AP-120B intermal format
insures that accuracy is maintained during critical stages of data
analysis.

CHAPTER 3

‘FLOATING POINT ARITHMETIC THEORY

The subject matter within this summary requires a certain amount of
preparatory discussion regarding types of numbering systems and
notation as well as explanations of AP-120B FLCATING POINT number
format and FLOATING-POINT ARITHMETIC OPERATIONS.

Those familiar with computer numbering systems may wish to bypass the
preliminary sections of this summary and begin with the section dealing
with the AP-120B FPN (FLOATING-POINT NUMBER) format. If the user
understands the AP Floating-Point format in Section 3.4 and the

fundamentals of floating-point addition and multiplication he can skip
to Chapter 4.

Accordingly, this summary 1s presented in sections = general to
specific - in the following manner:

1) INTRODUCTION

2) GENERAL NUMBERING SYSTEMS

* BASE
" * RADIX
* TYPES OF NOTATION METHODS
3) NUMBER FORMATS
* FIXED-POINT
* FLOATING-POINT
* NORMALIZATION
4) AP-120B FLOATING-POINT NUMBER FORMAT
S) AP-120B FLOATING-POINT ARITHMETIC OPERATIONS (overview)

* FLOATING~POINT ADDITION, SUBTRACTION AND MULTIPLICATION

* ROUNDING/TRUNCATION

* QVERFLOW AND UNDERFLOW

3.1 INTRODUCTION

The AP-120B FLOATING-POINT ARITHMETIC section consists of two units:
the FLOATING-POINT ADDER (FADDR) and the FLOATING-POINT MULTIPLIER
(FMULR). Both FADDR and FMULR operate on numbers represented 1in the
AP-120B FLOATING-POINT NUMBER format (FPN).

The purpose of this summary is to acquaint the reader with a general
overview on the most common types of digital computer numbering
systems, and then to focus in on the format and characteristics of the
particular numbering system used by the AP-120B FLOATING~POINT
ARITHMETIC hardware.

3.2 GENERAL NUMBERING SYSTEMS

3.2.1 Base

The BASE of a numbering system denotes how many different elements are
used to represent progressive digits. For example, the decimal
numbering system in general use today uses ten different elements to
convey value (0, 1, 2, 3, 4, 5, 6, 7, 8, 9). The decimal system, then,
is defined as a BASE(10) numbering system.

Digital computers, however, are not designed to efficiently handle a
BASE(10) numbering system. Since the basic hardware element of most
computers is a flip-flop or latch capable of only two significant
states (1 and 0), the most convenient numbering system for digital
computers is the two—element BINARY number system (BASE(2)), or
numbering systems that are based on some power of two, such as OCTAL,
(BASE(8)), or HEXI-DECIMAL (BASE(l6)).

3.2.2 Radix Point

A RADIX POINT is that reflexive point where all numbers to the left
represent integer quantities greater than or equal to O and where all
numbers to the right represent fractionmal quantities less than 1.

In BASE(10) systems, the RADIX POINT is specifically termed the DECIMAL
POINT. In BASE (2) systems, it is termed the BINARY POINT. Since the
AP-120B uses a BASE(2) number system, the term BINARY POINT will be
used in this summary.

BINARY
POINT
iiﬁght 27 28 5 24 53 52 1 g7l 72 73 54 75 576 5T 578
1 1 [1 1 i | | I B 1 |
C ~ I e ~—
integers > g "~ fractions <1

3.2.3 Types of Binary Notation Systems

Once the base of a numbering system has been established, the question
remains — what type of notation system will be used to represent a
BINARY NUMBER in such a manner as to convey not only magnitude, but
also sign.

There are four popular'systems of notation used to accomplish this
purpose.

1) SIGNED-MAGNITUDE notation
2) ONES-COMPLEMENT notation
3) TWOS-COMPLEMENT notation

4) EXCESS or BIAS notation

* Signed-Magnitude

SIGNED-MAGNITUDE notation uses a Sign-Bit to indicate the sign of the
quantity being represented. The integer value 1s in the same format
for both negative and positive values - only the Sign-Bit changes to
_indicate the sign of the quantity represented. Usually the Sign-Bit is
positioned to the left of the number and typically a "0" in the
Sign-Bit position indicates a positive number, and a "1" indicates a
negative number.

Example:

SIGNED-MAGNITUDE NOTATION

2 1 2 1l i s
L 8 L | ——3P> indicates +101, or +5,

] 1,118, 1 | .—-__gp. indicates -1012 or -58

* Ones—Complement

ONES-COMPLEMENT notation also uses a Sign—Bit on the left of the number
to denote sign. A positive number represented in SIGN-MAGNITUDE or
ONES-COMPLEMENT is exactly the same in appearance. Negative numbers,
however, are represented differently in that the Sign-Bit not only
changes, but the quantity is complemented, as well.

Example:

C ONES-COMPLEMENT NOTATION
Sign-
Bit
|
v :
L g 1 1 | 8 1 1 | ——P indicates +101, or +58

| 1, 811,88 | ——P indicates -101, or -54

The major drawback of both SIGN-MAGNITUDE and ONES~COMPLEMENT notation
systems 1s thac there are two possible forms in which to represent the
value ZERO (0).

* Twos—Complement

Positive values represented in TWOS-COMPLEMENT format appear the same
as 1in the SIGN MAGNITUDE and ONES~-COMPLEMENT formats. The SIGN-BIT is
also to the left. However, for negative values, the number 1is
complemented as in ONES—-COMPLEMENT, and then a BINARY ONE is added.

Example:
TWOS-COMPLEMENT NOTATION
. g 1 L 4y 8- 31 1 | ——3P indicates +1012’or +58
1 '] 1 Jo} ONES~COMPLEMENT
+ 1 plus "one”
23 22 Y
3 i 3 - -
1 1 8 1 4 1 | ———p indicates lDl2 or 58
dﬂ dl d2 d3

Integers represented in TWOS-COMPLEMENT notation may be expressed by
the following equation:

. N-1 N-1 N-(i+1) 4
TV==[(-dg*2) + (I d. * 2

i=1 *

where: TV = TRUE VALUE

d(0) = digit in Oth
position

(SIGN BIT)

d(i) = digit im ith
position

N = number of bits

in the data word

Given below 1s a range of values for a 4-bit data word expressed in
TWOS-COMPLEMENT notation.

Sign

Digit
Weight [-23 122 [21] 20 |

Bit 0 1 2 3
Position
True
Value
(octal)
/O 1 1 1 +7
0 1 1 0 +6
0 1 0 1 +5
0 1 0 0 Positive Numbers +4
0 0 1 1 +3
0 0 1 0 +2
Range of 0 0 0 1 +1
all possible 0 0 0 0 Zero 0
numbers 1 1 1 1 -1
1 .1 1 0 -2
1 1 0 1 -3
1 1 0 -0 > Negative numbers -4
1 0 1 1 -5
1 0 1 0 -6
1 0 0 1 -7
1 o o ot -10
S

N = number of bits im the data word

- TWOS—-COMPLEMENT notation has several advantages over SIGNED-MAGNITUDE
and ONES-COMPLEMENT notation, in that:

* The problem of two possible forms of zero disappears;
only one form of zero is possible, and

* TWOS~COMPLEMENT numbers may be added and subtracted
without concern for the sign of each number if sign-
extended by one bit. The result obtained from either

operation will be correctly represented in TWOS-
COMPLEMENT form.

Note also that the maximum—-negative number possible in TWOS-COMPLEMENT
is "1" greater (in magnitude) than the maximum—positive number.

* Excess (Bias) Notation

Another notation system capable of differentiating negative from
positive quantities 1is the EXCESS or BIAS system. This method simply
establishes a mid-point in the range of all possible numbers that can
be represented in a given length data word. The mid-point is given a
null or zero value and all numbers exceeding the null point are
increasingly positive, and all numbers below the null point are
increasingly negative.

BIAS NOTATION

Bias-

B%t

v,
L 1 4y 1 4 g 1 1 —Pr indicates +1012 or +58
1 g 1 g 1 1 | 1 | —> indicates ~1012 or -58

Integers represented in BIAS notation may be expressed by the following
equation:

N-1 N-{i+l) N-1
™= [(Z di * 2) = (2)]
i+g@

where: TV = TRUE VALUE
d(i) = Digit in ith
position
N = Number of bits
in the
data word

Given below is the range of values for a 4-bit data word

BIAS notatiom:

BIAS~
Bi’l’
peighe — P 23 | 22 b P
—_—_— 2 3
Bit g L
Position
0 —
Bias
Bit
1 1 1 1
)
1 1 1 . g
1 1 g 1
4 1 1 2 #) Positive Numbers
1 g 1 1
19 1 g
Ranga , 1 .} 2 1
of all -~
possible ¢ 1 @ a 4 4Mid Point (zero)
numbers
@ 1 1 1)
[} 1 1 g
] 1 2 1
] 1 7} g) Negative Numbers
o}) 1 1
"] ;éﬁ 1 J°]
%] 2 2 1
L.ﬁ 2 2 g__

expressed in

True
Value
(Octal)

+7
+6
+5
+4
+3
+2

+1

Three things become apparent:

1) The BIAS-BIT occupies bit position 0. When BIAS = “1",
it indicates that a positive quantity resides in the
remaining bits of the data word. When the BIAS = "0",
it indicates that a negative quantity resides in the
remaining bits.

2) The APPARENT VALUE exceeds the TRUE VALUE by the weight
of the BIAS BIT. In other words:

TRUE VALUE = APPARENT VALUE -2 N1
Waere: N = the number of bits in the Data Word

3) The maximum-negative number possible is "1'" greater in
magnitude than the maximum—positive number possible.

The AP-120B uses a mixed system of TWOS-COMPLEMENT notation and
notation for the AP-120B FLOATING POINT NUMBER FORMAT.

BIAS

3.3 NUMBER FORMATS

3.3.1 Fixed=Point Numbers

FIXED-POINT formatted numbers are numbers which have a stationary or
fixed BINARY-POINT. FIXED-POINT formatted numbers are termed according
to the location at which the BINARY-POINT is fixed. In other words, if
a given number has a BINARY-POINT fixed to the extreme right of the
data word, the number is said to be in the fixed=-point INTEGER format,
since all non-zero values that the format can represent are 1integers
with wmagnitude 2> 1. Conversely, if the BINARY-POINT is fixed to the
extreme left of the data-word, the number 1is said to be 1in the
fixed=-point FRACTION format since all values that can be represented
are fractions with magnitude < 1. If the BINARY-POINT is fixed at some

point between the two extremes, the number is said to be in fixed-point
MIXED-NUMBER format.

Examples, assume a 4-bit data-word

BN

FIXED~-POINT INTEGER BINARY

POINT
%
v
) 2 1
L2322ty P
— - _J
Magnitude of integers 20
FIXED-POINT FRACTION
BINARY
Pii?T
S -2 -3 -4
L2ty 27y 273) 2t
— —~—— 7

Fractions < 1

FIXED-POINT MIXED-NUMBER

BINARY
POINT

|
v
| 2 2 !

~

integers fractions
>0 <1

Since FIXED-POINT INTEGER formats and FIXED-POINT FRACTION formats ére
elements of the AP-120B FLOATING-POINT format, both are discussed in

more detail, below:
FIXED-POINT INTEGERS

Unsigned FIXED-POINT INTEGERS may be expressed 1in the following
equation:

N-1l N-{(i+1)
™ = (T di * 2)
i=g

However, in order to represent a signed FIXED-POINT INTEGER, a notation
system must be wused. Given below is the equation for a FIXED-POINT
INTEGER expressed in BIAS notatiom.

BIASED FIXED-FOINT INTEGER

N-1 N-(i+1) N-1
™= [(Z 4, *2) = (2)]
. i
i=g

The utility of expressing a BIASED FIXED-POINT INTEGER will become
apparent as AP-120B FLOATING-POINT NUMBERS are discussed, later in this
summary.

FIXED-POINT FRACTIONS

Unsigned FIXED-POINT FRACTIONS may be expressed by the following

equation: .
N-1 -(i+1)

™ = (I di * 2)

However, in order to represent a signed FIXED-POINT FRACTION, we must
express the fraction using a notation system. Given below, is the
equation for a FIXED-POINT FRACTION expressed in TWOS-COMPLEMENT
notation:

TWOS-COMPLEMENT FIXED-POINT FRACTION

P N-1 -3
™V =[(-d, *2") + (T 4, *2)]
8 i=1 * :

Again, the utility of expressing a TWOS—-COMPLEMENT FIXED-POINT FRACTION
will be seen when the AP-120B FLOATING-POINT format is introduced later
in this summary.

o~

3.3.2 Floating—Point Numbers

FLOATING-POINT NUMBERS are a product of two FIXED-POINT NUMBERS = the
BASE raised to a SIGNED-EXPONENT (expressed is a FIXED-POINT INTEGER)
times a SIGNED-FRACTION {MANTISSA) expressed as a FIXED-POINT FRACTION.
A general expression for FLOATING-POINT NUMBERS is given below:

FLOATING-POINT NUMBER = BASE ®®""® * MANTISSA

Where BASE = BASE of a given number system
(in many digital computers,
BASE = 2)
EXPONENT Signed FIXED-POINT INTEGER

MANTISSA Signed FIXED-POINT FRACTION

A FLOATING~POINT NUMBER is so—called because the BINARY-POINT is not
fixed but is allowed to float, thereby increasing the range of.numbers
that may be represented in a fixed-length data word. Due to its
logarithmic nature, a FLOATING-POINT NUMBER 1is able to represent
numbers ranging from very small positive or negative fractions to very
large positive or negative integers. A typical format for a
FLOATING-PQINT NUMBER is given on the following page.

TYPICAL FLOATING POINT NUMBER FORMAT

EXPONENT :ig;ISSA
SIGN EXPONENT MANTISSA
BINARY- BINARY-
POINT POINT

EXPONENT MANTISSA

FLOATING-POINT NUMBERS possess unique manipulative characteristics in
that a given number can be represented by various combinatioms of
EXPONENT and MANTISSA values. The value of any given FLOATING-POINT
NUMBER 1is preserved while changing the individual wvalues of its
component parts - as long as the EXPONENT is:

* Correspondingly incremented by the same aumber that the
MANTISSA is right-shifted or,

* Correspondingly decremented by the same number that the
MANTISSA is left-shifted

within the constraints imposed by a fixed-length data word.

Example:
The value (+.5) may be represented in FLOATING-POINT format as:
(29) * (+.5)] ’
But, (+.5) can just as welﬁ.be represented as:
[(2°) * (+.25)]

or
((22) * (+.125)]

The difference is that only the first representation is NORMALIZED.

3.3.3 Normalization

NORMALIZATION of a TWOS-COMPLEMENT MANTISSA FPN is the process whereby
the bits of the MANTISSA are left-shifted or right-shifted and the
EXPONENT correspondingly decremented or incremented until the
second-most significant bit of the MANTISSA is not equal to the

MANTISSA-SIGN (the most significant bit of the MANTISSA). A
FLOATING-POINT NUMBER is said to be NORMALIZED only when the SIGN of
the MANTISSA and the second-most significant bit of the MANTISSA are
unequal. The major exception to this rule is a mantissa of zero which
cannot be normalized. The above normalization rule guarantees that
positive non-zero mantissas lie in the ramge 0.5 to 0.9999 (0.10000000
to 0.1111111111 in binary) and negative mantissas in the range -1.0 to
-0.4999 (1.00000000 to 1.011111111111). Typically the unnormalized
mantissa =-0.5 (1.10000000) -is allowed since it can be handled by the
hardware.

Example:
ﬁXPONENT MANTISSA
r - Rl " -~]
Mantilssa
Sign
Second-Most
Significant
Bit
|] ‘+’! 2} |
Digit Position 29 g1
_ NORMALIZED Jo) 1
i 2
g 2
UNNORMALIZED 1 1

The major importance is that NORMALIZATION preserves the maximum number
of significant bits in the MANTISSA while protecting against problems
arising from OVERFLOW out of the bits of significance (the
NORMALIZATION process CAN involve a right shift).

3.4 AP-120B FLOATING-POINT FORMAT (FPN)

The AP-120B uses a 38-bit data word to express . FLOATING-POINT NUMBERS
internally (See Figure 3-1). The most significant 10 bits of the word
are dedicated to expressing the EXPONENT in biased notation and the
remaining 28 bits are dedicated to expressing the MANTISSA in
TWOS-COMPLEMENT notation.

BIAS MANTISSA
BIT SIGN
l
v v
bits g2 g1 11 28 . 21 27
L1 L1 L L
[~ 7 < e’
EXPONENT MANTISSA
PORTION PORTION

THE AP-120B FLOATING-POINT NUMBER (FPN) may be expressed in the same
manner used earlier to express FLOATING~POINT NUMBERS generally, viz.:

FPN = BASE ®*wonens * MANTISSA

In the AP-120B FLOATING-POINT format, however, the EXPONENT SIGN is
indicated by use of a BIAS-BIT rather than a SIGN-BIT. Specifically,
the EXPONENT of the AP-120B FPN is expressed as a BIASED FIXED-POINT
INTEGER and the MANTISSA is expressed as a TWOS-COMPLEMENT FIXED-POINT
FRACTION. The general equation may be re-exprassed as follows:

TpN = 2 [BIASED FIXED-POINT INTEGER] & [TWOS~COMPLEMENT FIXED-POLNT
FRACTION]

Using the equations developed earlier in this summary for BIASED FIXED-
POINT INTEGERS and TWOS-COMPLEMENTED FIXED-POINT FRACTIONS, we now
have:

Ng-L N_-(i+1) N_-1 §,-1
PR d, *2 =2 - N1, [(~

FEN 1=g

2

i=1

Where: N(e) = number of digits in the EXPONENT
N(m) = oumber of digits in the MANTISSA

Since, in the AP-120B, N(e) = 10 and N(M) = 28, the FPN may finally bDe
the AP=-120B, the AP expressed as follows (the exponent sum has been
corrected for the fact that the digits start at number 2)

« % 4z a 2 H1

11

11-3i 27 .
[z a, 2" - ;1291 R
= 2 i=2 1 * [do + (§=l di 2 7]

FPN

Expressed in this manner, it can be seen that the effect of the BIAS
scheme (with respect to the EXPONENT) is to shift the TRUE VALUE of the
EXPONENT by a factor of (-512), the weighted value of the BIAS-BIT

(2 9). Accordingly, the TRUE VALUE of the AP-120B FPN EXPONENT can be
expressed in the following manner:

TRUE APPARENT
VALUE = VALUE - 512
(EXPONENT) (EXPONENT)

Note that the range of the FPN EXPONENT is:
[+511 to ~512].

The range of the MANTISSA (.M) is:
[+1> 4> -1]

The dynamic range for the AP—-120B FPN is:

(0.5 * 2 212) 5 (1.0-2727) = 2_511:)] or,
from 3.7 * 10~155 to 6.7 * 10 153

3iaa
aie

Weightad Y, 3

Value=p ! 37 2" 2

?

Figure 3-1

Sign
BAR

MANTISSA

§,5 .8 .1 .2 1 o[g
!z lz Lz !z lz Lz Lz

|

2 izz 21

AP-120B FLOATING POINT NUMBER FORMAT

2772 22

3 38 504 7*29{!02-1142'!3 u-u l!’i?-il'li ZB"H !2 lli‘ -23 2% -I7
‘ -

2 277272

o i]

31e o>
Pesition

02 93 ow 38 06 47 38 Q3 18 11

1.2

|

A?l

92 23 aw 05 (14 07 38 99 10 11 12 13 16 15 16

17 13

13

29 21 22 ZJ 2y 13 2% 2%

Radix
Poains
H::TISSZ
EZXAMPLES
S ONENT MANTISSA
(aTas Al S w COMMENTS
a!rr s:'a: '
v v
20) g1 99129 | 21 |27
g 900 290 293 | 3 | 7990 990 290 999 999 297 290 £99 298| Z=F0 (See Note)
1 ggg g9d8 291 ﬁ 199 228 293 999 298 299 228 290 794 (21)*<.5)
1 29g 293 298 | 1| 999 299 2008 227 299 798 299 799 229 (2°)*(-l.0)
1292 398 393 | 3 | 129 299 999 299 999 799 T F98 F93 (2°)*(.5)
1l 9298 289 298 1| 122 7222 9908 2298 2990 798 293 328 229 (2°)'(-.5)
1111 111l 111 3 112 111 112 11l 111 11l 11l 11l 111) ASMAX
} 1111 111 111 | 1| 299 2278 799 292 298 228 287 239 793\ aswmaxX
1ﬂ 999 280 292 8| 128 288 399 792 299 285 798 983 78| AIMM

18

Although (0.0) and (-.5) examples are not in NORMALIZED form, both
FADDR and FMULR can handle these two specific cases correctly.

NOTE

Although the APPARENT VALUE of ZERO EXPONENT = 0,
the TRUE VALUE of ZERO EXPONENT = -512. (Which
multiplied with a MANTISSA of .0, still equals
0.0)'

3.5 AP-120B FLOATING-POINT ARITHMETIC OPERATIONS (OVERVIEW)

The AP-120B is capable of simyltaneous FLOATING-POINT ADDER (FADDR) and
FLOATING-POINT MULTIPLIER (FMULR) operation. This section will present
a general overview of the arithmetic operations of both units and
discuss operations common to both = such as requirements for
NORMALIZATION and CONVERGENT-ROUNDING/TRUNCATION.

First, a brief review of the manipulative characteristics of FPN's 1is
in order. As stated in the preceding section, the same—-value FPN may
be expressed in various combinations of EXPONENT and MANTISSA values.
The key requirement for maintaining the value of any given FPN is that
the EXPONENT must be correspondingly incremented or decremented by the
same number that the MANTISSA 1is right-shifted or left-shifted,
respectively. Example:

The number (+.5) may be represented, in NORMALIZED form, by the
following combination of EXPONENT and MANTIS$SA values - - -

&> —EXPONENT TRUE VALUE (APPARENT VALUE = 512)
BASE ?‘V

(2°) * (+.5) <¢—— MANTISSA TRUE VALUE
0.1000

However, the same number may be expressed, in UNNORMALIZED form, by the
following combinations of EXPONENT and MANTISSA -~ - -

1

(27) * (.25
0.01000
or 5
(27) * (+.1295)
0.001000

.

Note that as the EXPONENT value, in each case, was incremented by 1,
the corresponding. MANTISSA value was decremented by means of halving
~ right-shifting the MANTISSA bits 1 position. Had the example
decremented the sample EXPONENTS by some number "N", then the
corresponding MANTISSA’s, in each case, would have been incremented by
means of left-shifting the MANTISSA bits "N" positions.

3.5.1 Floating-Point Addition, Subtraction and Multiplication

* Addition

In order to ADD two FPN's, the MANTISSA's of both operands must be
expressed 1in terms of the same EXPONENT. This requirement is met, in
the AP-120B, by means of a comparison operation which compares the
EXPONENTS of the two operands - retaining the larger EXPONENT as the
EXPONENT of the result and right-shifting the MANTISSA of the smaller
operand the number of positions that reflect the difference between the
two EXPONENTS. For example, assume the following ADD operation:

4 +8 =12

In FLOATING POINT format, the operands may be expressed as follows:
[23) * (.5)] + [2%) * (.5)] =1]
0.10000. 0.10000

First, the EXPONENTS are compared. The larger EXPONENT becomes the
EXPONENT of the result while the MANTISSA of the smaller operand is

right-shifted the number of positions that raflect the difference in
the two EXPONENTS: :

[(2°4) % (L25)] + [(24) = (5] = [(2%) = ()]
0.010000 0.100

Then, the MANTISSA's are algebraically added:
[(2&) % (L25)] + [(2%) * (.L5)] = [(2%) * (\75)]
0.110000

Note that the MANTISSA of the result is already NORMALIZED. Had it
been UNNORMALIZED, then the FADDR logic would have left-shifted the
MANTISSA and correspondingly decremented or incremented the EXPONENT
until the second-most significant bit of the MANTISSA was unequal to
the most—- significant bit (MANTISSA sign).

* Subtraction

SUBTRACTION of two FPN's is achieved by negating the subtrahend and
adding the negated subtrahend to the minuend. Negation is achieved by
two's complementing the subtrahend. See example below:

MINUEND 0100 +4 1100 -4
SUBTRAHEND 0011 +3 1101 -3
NEGATE SUBTRAHEND 1101 -3 0011 +3
RESULT 0001 +1 1111 -1

3 - 21

Mantissa Overflow

In MANTISSA OVERFLOW situations (when a digit of numerical significance
has carried to the left of the radix point), the proper result 1is
achieved by shifting the MANTISSA to the right ome digit and
incrementing the EXPONENT.

QVERFIOW
SIGN

EXPONENT 28 | 41 | 22 27

thuE stap->f L B B PPP P90 P09 UPB PPP 4pP

COVERFLCW
DIGIT
CORRECTED
99, 91 2 s
OVERFLOW 8 L1 g ppp 9p¢ 999 999 £9F 999
DIGIT 5)
SHIFTED
RIGHT
AND

EXPONENT + 1

* Multiplication

MULTIPLYING two FPN's with different EXPONENTS requires that (1) the
EXPONENTS be algebraically added, and (2) the MANTISSA's be multiplied.
Except for two specific cases, the operands involved in FLOATING-POINT
MULTIPLICATION must be NORMALIZED in order to obtaim a correct result.
As with the addition example above, detailed discussion of result
NORMALIZATION and ROUNDING operations is reserved for later sections of
this summary.

OlAssume the following multiplication operation:
(12) * (.25) = 3

In AP-120B FLOATING=POINT format, the operands would be expressed as:
(@)= ()« by =)y =11)

First, the EXPONENTS are algebraically added. The sum of the EXPONENTS
becomes the EXPONENT of the prelxmxnary result.

((24) *» (L715)] *» [(2-4) * (5] =[(23) = ()]

Then, the MANTISSA's are multiplied. The product of the MANTISSA's
becomes the MANTISSA of the prellmlnary result.
(2%) * (715)] = [(2 7V) % (.5)] = [(23) * (.375)]
0.11000 0.1000 .01100000
Preliminary
Result

Note, however, that the PRELIMINARY-RESULT is not NORMALIZED.
Accordingly, the FMULR logic will left-shift the MANTISSA bits and
correspondingly decrement the EXPONENT until the second-most
significant bit of the MANTISSA is not equal to the MANTISSA-SIGN. To

illustrate this operation, let us portray the PRELIMINARY RESULT, of
the example, in its bit configuration:

PRELIMINARY
RESULT

MANTISSA SECOND-MOST
B SIGN SIGNIFICANT BIT

BIT
‘lFX”ONENT ~l' MANTISSA

Ve N
[23 * (375) 1 = looocooon o110ooooooooooooooooooooooo

The FMULR logic will left—-shift the MANTISSA bits and correspondingly
decrement the EXPONENT until the second-most significant bit of the
MANTISSA is not equal to the MANTISSA-SIGN. (In this example, the
MANTISSA is left-shifted one p051t10n and the EXPONENT 1is decremented
by ome).

NORMALIZED
RESULT

SECOND-MOST
SIGNIFICANT BIT

BIAS MANTISSA
BIT SI&N

lFX?ONENT v MANTISSA

[(22) * (,75)] = 1000000010 0.110000000000000000000000000

Unlike the Floating Add Logic, the FMULR logic can only shift the
MANTISSA one position left or right since it can be shown for

normalized twos— complement mantissas that the worst case normalization
required is only one position.

The AP-120B FMULR is capable of operating on the following UNNORMALIZED
operands:

EXPONENT MANTISSA

™

Youuuh ve N
(1) Z2ERO = ooooooooo@ 0000000000000000000000000000

and,

(2) Any number with a MANTISSA of (-.5), such as:

EXPONENT

-

(A A
any number 11000000000000000000C0C00000

Note that ZERO has an exponent with a TRUE-VALUE of -512.

3.5.2 Rounding

During a FLOATING-POINT MULTIPLY (FMUL) or most of the FADD group
operations (See FADDR Summary, Chapter 4), the preliminary-result
obtained 1is NORMALIZED and then CONVERGENTLY-ROUNDED. NORMALIZATION
operations have been discussed earlier in this summary. The purpose of
this section is to present the particular ROUNDING method employed by
the AP-120B - - - CONVERGENT-ROUNDING.

CONVERGENT-ROUNDING 1is so—called because the frequency distribution

curve for the rounding~decision matrix is slightly skewed toward zero
(See Table 3-1).

Both FADDR and FMULR wunits employ a 3-bit extemnsion of the
PRELIMINARY-RESULT MANTISSA in order to store bits of significance
generated off the least significant bit of the MANTISSA during a given
operation. These bits - - called GUARD-BITS - - reside to _ the
immediate right of MANTISSA bit 27 and have bit weights of 2728 R
2-29 | and 2730 | respectively.
Prior to NORMALIZATION bits 31 to 58 of the FADDR Result (bits 31 to 50
of the FMULR Result) are inclusively OR'ed intc bit 30 of the residue.
This has the effect of guaranteseing that the rounding occurs only when
the magnitude of the residue is strictly greater than 2 —28 (= one
half of the LSB).

MANTISSA

P,

Table 3-i
The AP-120B ROUNDING-DECISION TABLE

r,‘
Bit

: 2
Weight -----.>vl -2 s

2

-1

GUARD

BITS: contain RESIDUE

N

-
2~29 2—30 MORE

|] POSITIVE

Digit «———’p» g
Position

if: MANTISSA SIGN=¢
(MANTISSA is
positive), and
the residue is:

if£:
(MANTISSA is
negative), and
the residue is:

MANTISSA SIGN=1

1

29 30 ?,

add 277 to ManTISSA
and throw away guard
bits increasing it to
the next-larger mag-
nitude positive number.

AR ST ST S B S N o

Throw away guard bits
decreasing to the
next-smaller magnitude
’ positive number.

w | e W W
QW W W

v

TOWARDS
ZERO
f,
~
_2‘7

add 2 to MANTISSA
effectively decreasing
’ to the next-smaller
magnitude positive
number.

W W "\ ™

26

Add zero effectively |
rounding to the next- 1
Y larger magnitude ;
negative number.

L U ST R SR S A
LSRRI SURST B U SR
J

v
MORE NEGATIVE

The value contained in the GUARD BITS is called the RESIDUE. The
magnitude of the RESIDUE and the sign of the PRELIMINARY-RESULT
MANTISSA jointly determine the direction 1in which the PRELIMINARY-

RESULT will be rounded (either toward the next—larger-magnitude number
or toward zero).

If the rounding operation causes mantissa overflow, the AP-120B
hardware takes care of it by shifting the mantissa to the right one
digit and incrementing the exponent.

Note that the TRUE VALUE of the RESIDUE may be expressed as:
30

Teesoog = [(—d5 * 2% 4z a * 274y,
- e i=28

Where: d(0) = Digit in O0(th) position
(MANTISA-SIGN)

D(i) = GUARD-BIT in i(th)
position

The ROUNDING-DECISION is based on the following relatiom:

30 . -
gy * 272y vz a *27H1> [0 « @727
i=28 '

Where d(27) = Least significant bit

of the preliminary-
result MANTISSA

Note that if the relation is true and 11 = magnitude, the PRELIMINARY
RESULT MANTISSA will be rounded to the next-larger magnitude number.

The floating adder has two operations which truncate--FSCLT and FIXT.
When a preliminary result is positive, the FA truncates by ignoring the
residue--throwing it away. If the Preliminary result is negative and
there is any residue, 2(-27) is added to the mantissa; this makes the
result closer to the next smaller magnitude number. Truncation always
goes towards zero (See Table 3-2).

Table 3-2
The AP-120B TRUNCATION-DECISION TABLE

GUARD
MANTISSA BITS: contain Residue
([‘ - N la - B
Bit
. 2 -1 -26 -27 -28 -29 -30
Weight -—-—;p* -2 .2 2 2 2 2 2
et { | f ¢]] { L |
Digit —3 & 1 7726 27 28 29 30
Position
N\
if: MANTISSA SIGN=g 1 1 1
pm s L1
i an .
LT Throw away guard bits
: 1 : .
the rasidue is 1 2 decreasing to the next-
1 2 2 smaller magnitude positive
g 1 1 number.
2 1 g
5 s 1 l
TCWARDS
ZERQ
A
if: MANTISSA SIGN=1 1 1 1 !
(MANT;SSA is 1 1 g
negative), and
the residue is: 1 2 1 » -27
1 P g > add. 2 to MANTISSA
effectively decreasing
/] 1 1 to the next-smaller
g 1 3 magnitude negative number.
g 2 1)
2 2 2

3.5.3 Overflow And Underflow

The current result of a FADDR or FMULR operation (FA, FM) is tested as
to OVERFLOW (See Note 1) and UNDERFLOW (See Note 2) conditioms. If an
OVERFLOW condition occurs, the AP-120B hardware will force the maximum
signed Floating— Point number possible (APMAX or APNMAX) onto FA or FM
and the OVF bit of the APSTATUS register will be set to "1".
Similarly, if an UNDERFLOW condition occurs, the AP-120B hardware will
force a Floating Point 0.0 (ZERO) onto FA or FM and set the UNF bit of
APSTATUS REGISTER to "1".

EXPONENT MANTISSA
r - WSI(;N(AL
o7} 09 | g¢ | A1 27
AP MAX 1 111 111 111{¢ | 111 111 111 111 111 111 111 111 111

AP NMAX 1 111 111 111 |1 | 39@ 799 999 g9¢ PP3 999 999 299 299

ZERO g 9990 290 298 |2 | P0P 290 2098 900 200 299 999 398 PP

NOTES

1. Overflow. The EXPONENT of the current FADDR
or FMULR Result exceeds an APPARENT VALUE
of 1023. (TRUE VALUE = 511). If the sign
of the MANTISSA of the offending result is
positive, the AP-120B hardware forces the
maximum-positive FLOATING-POINT NUMBER
(APMAX) into FA or FM, depending on which
operation caused the error condition. If
the MANTISSA of the offending result is
negative, the maximum-negative FLOATING-
POINT NUMBER (APNMAX) is forced onto FA
or FM.

2. Underflow. When a current FADDR or FMULR
operation produces an EXPONENT Result
less than an APPARENT VALUE of 0 (TRUE
VALUE = -512). The AP-120B hardware will
force a FLOATING-POINT 0.0 (ZERO) into
FA or FM, depending on which operation
caused the error condition.

Note that FLOATING-POINT ZERO has an EXPO NENT with an appareﬁt value
of 0. (TRUE VALUE = -512) and a MANTISSA with a TRUE VALUE of O.

CHAPTER. &

DETAILED DESCRIPTION OF THE FUNCTIONAL UNITS

4.1 S-PAD SUMMARY

4.1.1 General Description

The SCRATCH PAD (S-PAD) illustrated in Figure &4-1 1is generally
analogous to the arithmetic/logical and control wunits of wmost
mini-computers. Operations with the 3§-PAD group of the AP-120
instruction set are primarily used to perform integer addressing and
loop counting operaticns.

S-PAD is a l6-bit wide arithmetic/logical unit which contains sixteen
lé-bit directly addressable registers (SP(0-15)). Operands for S—PAD
operations are termed S~PAD SOURCE REGISTER (SP(SPS)) and S-PAD
DESTINATION REGISTER (SP(SPD)). The particular S-PAD registers
selected as operands for a given operation are determined by the values
in the SPS and SPD fields of the current imstruction word.

The result of a given 3-PAD operation, termed the S-PAD FUNCTION
(SPFN), Dbecomes available for use during the current instructiom cycle
and may be applied to the following elaments:

MAIN DATA MEMORY ADDRESS REGISTER (MA)
TABLE MEMORY ADDRESS REGISTER (TMA)
DATA PAD ADDRESS REGISTER (DPA)
FLOATING ADDER (FADDR) Al Input Register
DEVICE ADDRESS REGISTER (DA), and/or
onto the DATA PAD BUS (DB)

* 4 ok ok o *

Three conditionm bits of the APSTATUS Register -are set or clearsd
depending on the state of the particular SPFN result. These bits (C,
N, Z) may be tested (one cycle after the appropriats SPFN beccmes
enabled) by appropriate operations within the BRANCH group and/or SPEC
group (STEST field), of the AP-120B Iostruction Set. These bits resmain
latched if no S~PAD arithmetic operation is specified.

The S—-PAD integer ALU functions include:

Function

de

b -

Co

d.

2.
£.
g.
h.
i.
i.

Move

Laogical complement
Clear

Increment
Decrement

add

Subtrzct

Logical AND
Logical OR

Logical Equivalence

£

£

ffecr

S>> D S-Source ragistar
§> D D-Destination resgister
e
§+1> D
S$=1> 1D
D+S> D
D-5>D
D AND S> D
D OR $> D
D EQV $> D

SAG=-SA3

OAG~0A3

QECTMATE

SPSP-5PS3
SPM

SPCIN

S3g

4:1
uUx
\ \
= R
Z SPAD
[-7 /R zeersTess
W
S
|
® BIT REVERSE
|
=7
SETTT
\ \/
s 2:1
i d
\
a 3
ALy
}
Vi
spzZ=D
N e SPCRY
SPENG@-SPENLS*
\Y
SPFNP@*’ SPFN1S*
Figure 4-1 S-PAD Block Diagram

4.1.2 S-Pad Operations
The S=PAD may perform either single—operand or double=operand
arithmetic/logical operations. The operations available within the SOP

field are double—=operand while the operations available within the SOPL
field are single—operand.

4.1.2.1 Single-Operand Operations

S-PAD single—operand operations use the currently specified SP(SPD) as
the sole operand. (See SOPl)

SINGLE-OPERAND INSTRUCTIONS AND ALLOWABLE S~PAD MODIFIERS

L,R
RR BIT S=PAD REGISTER(S)
OPERATION SHIFT REVERSE NO-LQAD (#) USED
INC YES NO YES SP(SPD)
DEC YES NO YES SP(SPD)
coM YES NO YES SP(SPD)
CLR- YES NO YES SP(SPD)

4,1.2.2 Double~Operand Operations

S-PAD double-operand operations use both currently specified SP(SPS)
AND SP(SPD) as operands for a given operation. (See SOP)

DOUBLE-OPERAND INSTRUCTIONS AND ALLOWABLE S~PAD MODIFIERS

BIT (&) S~PAD REGISTER(S)
OPERATION SHIFT REVERSE NO LOAD (#) USED
MOV YES YES YES SP(SPS),SP(SPD)
ADD YES YES YES SP(SPS),SP(SPD)
SUB YES YES YES SP(SPS),SP(SPD)
AND YES YES YES SP(SPS),SP(SPD)
OR YES YES YES SP(SPS),SP(SPD)
EQV YES YES YES SP(SPS),SP(SPD)

The result of either single-operand - or double-operand operations -
SPFN-is normally stored back into the SP(SPD) unless an S~PAD NO-LOAD
is specified.

4.1.3 S-Pad Source and Destination Registers (SP(SPS)) (SP(SPD))

As stated before, up to two of the 16 S-PAD Registers may be accessed
per instruction. The particular SP(SPS) and/or SP(SPD) to be used in a

given operation 1is specified by the respective SPS and SPD fields in
the instruction word.

SP registers may be labeled by name, using the following assembler
pseudo-operation:

N $EQU 0 Meaning: Assign S-PAD Register "0" the name "N"*

All SP names must be declared in this manner before including them in
an instruction. Additiomally, it is permissible to specify more than
one name for a given SP and it may be useful to do so when using the
same SP to perform separate tasks in a program.

* NOTE

Don't confuse the designated number of the
SP with its contents. For example:

N $EQU 5 specifies that S—-P 5 will

be labeled as "N". But, the contents

of "N" would not necessarily be equal to
the value of five.

4,1.4 S~-Pad Function (SPFN)

The result of a given S—PAD operation 1is termed the S—-PAD FUNCTION
(SPFN). The SPFN 1is ,h normally loaded '"back" into the curreantly
designated SP(SPD) . SPFN is available during the current instruction
cycle as an input to any of the three MEMORY ADDRESS REGISTERS: MEMORY
ADDRESS REGISTER (MA), TABLE MEMORY ADDRESS REGISTER (TMA), DATA PAD
ADDRESS (DPA), and also may be enabled onto the DATA PAD BUS (DB),
which may input to the I/O Device Address register (DA).

Example: ADD 5,6; DB=SPFN
(Result of ADD 5,6 is placed upom DB)>

&~
U
o

4,1.5 S~Pad Modifiers "#", "Sn", "&"

Three optional modifiers may be used to alter the effect of an S-PAD
operation:

S-PAD MODIFIERS

FIELD OPERATOR EFFECT

"B" "' BIT REVERSE SP(SPS) before using as
an S-PAD operand for double-operand
operations. (See 4.1.7, BIT REVERSE)

nSH" "L","R", or "RR" SHIFT result of S-PAD operaticm.
The shifted result becomes available
as SPFN.
OPERATOR MEANING EXAMPLE
L Left shift once ADDL
R Right shift once ADDR
RR Right shift twice ADDRR
COND "N S-PAD NO-LOAD inhibit the normal

"back" storing of SPFN into the
currently specified SP(SPD). S=PAD
NO-LOAD disables the remaining
operations in the BRANCH GROUP for
the current instruction cycle.
(See BRANCH)

ADDL# &5,and 6 _ Add a bit-reversed SP(SPS) to
SP(SPD), shift the result left once,
then inhibit "back loading" SP(SPD).

NOTE

Loading of Comnditiom Bits (C, N, Z) is not
inhibited by the "#".

4.1.6 S~Pad Associated Test and Branch Operations

Three Condition Bits (C, N, Z) are set or cleared 1imn APSTATUS,
depending on the condition of the current SPFN. These bits become

valid and may be tested (and branches made accordingly), as of the next
instruction cycle.

S-PAD-RELATED BiTS IN APSTATUS REGISTER

Z (bit 35) Set to "1" ome cycle after the current SPFN=Q.
N (bit 6) Set to "1" one cycle after the current SPFN<O.
¢ (bit 7) $-PAD Carry Bit:

*1f an S~PAD shift was specified in forming
SPFN, then C reflects the last bit shifted
off the SP as a result of ANY S~PAD shift
operation. (L, R, or RR).

*Lf an S-PAD shift was not specified, then C
reflects the state of the S-PAD Carry Bit as
set by the last S-PAD operation.

Note that S—-PAD-Related APSTATUS Bits set by the current SPFN become

valid and may be tested by a conditional branch as of the NEXT
instruction. $-PAD, NOP and SPEC group operations DO NOT affect the
state of condition bits in APSTATUS.

S~PAD RELATED BRANCH OPERATIONS

INSTRUCTION- SUB- INSTRUCTION BRANCH RELATED BIT(S)
WORD GROUP GROUP MNEMONIC CONDITION IN APSTATUS
BRANCH COND BEQ SPFN=0 Z
BNE ~ SPFN=0 z
BGE SPFN>0 N
BGT SPFN>0 Z,N
SPEC STEST BLT SPFN<O N
BNC S-PAD CARRY=l ¢
BZC S-PAD CARRY=0 c

For details on BRANCH TARGET ADDRESS formulatiom, see SPEC summary,
Section 4.2. Some S-PAD timing examples are listed in Table 4-1.

Table 4-1 S~PAD TIMING EXAMPLES

DB APSTATUS BRANCH
BITS CONDITIONS
INSTRUCTION SP(2) SP(3) (12-27) SPFN N Z C BLT BEQ BNC

l. - 3 N - - - - - - - -
2. DEC 2 3 - - 2 - - - - - -
3. DEC 2 2 - - 1 0 0 1 F F T
4, DEC 2 1 - - 0 0 0 1 F F T
5. NOP 0 - - -1 0 1 1 F T T
6. NOP 0 - - -1 0 1 1 F T T
l. - 5 7 - - - - - - - -
2. SUB 2,3 5 7 - 2 - - - - =
3. NOP 5 2 - -3 0 0 1 F F T
4, NOP 5 2 - -3 0 0 1 F F T
lo = 5 7 - - - = - - - =
2. SUB# 2,3 5 7 - 2 - - - - -
3. NOP 5 7 - 2 0 0 1 F F T
4, NOP 5 7 - 2 0 0 1 F F T
1. - 3 - - - - - - - - -
2, LDSPI 2;

DB=~1 3 - -1 3 - - = - - -
3. NOP -1 - - -1 0 0 1 F F T
4, NOP -1 - - -1 0 0 1 F F T

- means don't know or don't care
F = Branch Condition False
T = Branch Condition True

5.1.7 Bit‘ReQerse

4,1.7.1 General Description

BIT-REVERSE is the process 1in which the contents of an address—
subscript for an array base-address are reflexively transformed. In
other words, the contents of the bits of an address—subscript undergo a
bit-for-bit exchange about the center or reflex point of the word.
Example:

Assume a 3 bit word:

I Center Point (Reflex Point)
o 1 2
I S |
The contents of bit 02 are exchanged with
A A 8
| ’ the contents of bit 0. The center bit, bit

0l, is unchanged.

The word would be transformed as follows:

CONTENTS CONTENTS
BEFORE AFTER
BIT-REVERSING BIT-REVERSING
000 000
001 100
010 010
011 , 110
100 001
101 101
‘110 011
111 111

If the address—subscript is an even numbered word, the contents would
be transformed in the following wmanner:

_ . Reflex Point
0] 1 2 3

{ |] | |
A A A
R

4.1.7.2 Bit-Reverse General Application

In the course of FAST FOURIER TRANSFORM operations it 1is sometimes

desirable to access a data array in bit-reversed order. For an eight-
point data array A:

NORMAL BIT-REVERSED SUBSCRIPT IN SUBSCRIPT IN
ORDER ORDER NORMAL ORDER BIT-REVERSED ORDER
A(0) A(0) 0 0

A(D) A(4) 1 4

A(2) A(2) 2 2

A(3) A(6) 3 6

A(4) A(L) 4 1

A(5) A(S5) 5 5

A(6) A(3) 6 3

A(7) A(7) 7 7

The array is accessed in normal order by successively incrementing the
subscript. Similarly, the array is accessed in bit-reversed order by
incrementing the subscript. The bit-reversed value of the subscript,
however, 1s then used each time to access the array in bit-reversed
order.

4.1.7.3 AP-120B Bit-Reverse Application

When the S~PAD BIT-REVERSE (&) is specified for an S—-PAD operation, the
following process occurs:

1) A 15-bit wide BIT-REVERSE (&) is performed on bits
0-14 of the SP(SPS). Bit 15 is set. to O.

2) The bit-reversed result is right shifted using the
APSTATUS BIT-REVERSE FIELD (APSTATUS (Bits 13-15))
as the shift count. Bit 15 is again set to 0.

3) The bit-reversed, shifted word is then used as the
source-operand for the particular S-PAD operation
specified. Note that the S—-PAD operation is performed
AFTER the bit-reverse operation.

TO ELABORATE:
* First-
The contents of SP(SPS) are bit-reversed in the following
manner: The contents of bit "0" are "swapped" with the
contents of bit "14'", the contents of bit "0l" are "swapped"
with the contents of bit"13", and so on. Bit "07" remains

unchanged. Since the complex numbers of a data—array consist
of a real part and an imaginary part, each address of an

4 = 11

array actually consists of two successive memory locationms,
the first containing the imaginary part. Therefore, the
index of the real part of the number is always "even';

bit "15" of the index (SP(SPS)) is always cleared to "0".

Example:

REFLEX BIT CLEARED
REMAINS UNCHANGED O "0"
v v

l 6 (7 | 8 | 9 'lO! llI 12 l13 {14 l151

A A A A A A A A A

* Second-
The result from the 15-bit wide BIT-REVERSE operation
is shifted right so as to fit into the actual width of
the word being processed. The shift involves Bits 0-14
with zeros filled in on the left and into Bit 1S5.

The number of shifts that will be done during the
alignment shift depends upon the value contained in
the Bit-Reverse field (Bits 13~-15). The programmer
must place the correct value into the BIT-REVERSE
field before using a BIT~REVERSE operationm.

The value that must be pre~programmed into the
APSTATUS REGISTER BIT-REVERSE FIELD depends on the
size of the complex data array, and is listed below
accordingly. The Shift Count = lS—n, where n = the
power of two.

Number of

Bits in the Shift Count to be placed in Bit
Array Size Subscript word Reverse Field of APSTATUS REGISTER

32,768 15 0
16,384 14 1
8,192 13 2
4,096 12 3
2,048 11 4
1,024 10 5
512 9 6

256 8 7

Example: To bit-reverse an 8-bit address word

1) Desired bit-reverse:

&

7 18| 9110|11]12]13}14 | Normal
8 |9l1of11f12{13}1

4 Bit-Reversed

2) As accomplished by the bit-reverse operator (&) with
the Bit-Reversed Shift count set to 7:

/

.
) ~ J

o 1 2 3 4 5 6 7 8 9 {10 |11 {12 131141} 1s

0

i§E§§§§§§§§§EE§::::;‘~$ i

0 1 2 3 4 5 6 7 8 9 {10 {11 {12 |13 |14 15

& - 13

* Third—
The bit-reversed, shifted SP(SPS) is now ready to be used as
the source operand in am S-PAD operation. Most commonly,
BIT-REVERSE is used in the following manner:

ADD# &subs, base;SETMA This operation bit-reverses an
array subscript and adds it to
the base—address of an array.
This sum is used to initiate
a memory fetch. The NO-LOAD(#)
is stipulated so as to prevent
the base-address (contained in
SP(SPD)) from being overwritten
by the SPFN produced from the
ADD operation.

BIT-REVERSE (&) clears bit 15 of a subscript-word, and hence 1is
intended to be used to access complex arrays. A subscript to be
bit-reversed must always be even, and point to the real part of a
complex pair. The bit-reverse shift count must agree with the word
width of the subscript, which ig turn must agree with the size of the
complex array being accessed. That is, an eight—-bit subscript, which

will address an array of 2(8)=256 complex pairs, needs a shift count of
15-8=7.

Since the shift count is limited to a wmaximum of seven places, 256
points 1is the smallest complex array that can be directly accessed
using the BIT-REVERSE operator.

Thers is a technique, however, that permits use of the BIT- REVERSE
operator for arrays smaller than 256 complex points. This tachnique is
based on the fact that a right shift after bit—reversal is equivalent
to a left shift before bit-reversal. Thus, if the index for a small
array is. placed in the left byte of the l6=bits of an S-P4D Register (a
left shift by seven places) and if the increment for that index is
correspondingly left shifted so that necessary index alteration
operations will take place consistently, then the BIT-REVERSE shiftar
can be used with a shift count of 8-n where n=the power of two.

Q 1 2 3 4) 8 7 8 g 10 ll 12 13 14 15
< index > Q Q 0 0 0 Q Q 0

—
w

, Bit-Reversed Result
BIT-REVERSE operator for small arrays

(N <25 n<8
4 - 14

4.1.8

General Programming Rules (S=Pad Group)
Only ome S—-PAD operation'may be specified per instruction cycle.

If a single-operand instruction is specified, then SP(SPD) is
the only operand used. The BIT-REVERSE field is disabled.

If a double-operand instruction is specified, then both SP(SPS)
and SP(SPD) are used. SP(SPS) may be "bit-reversed" before use.

SUBtract will subtract the first argument (SP(SPS)) specified
from the last argument specified (SP(SPD)). Example:

SUB 6,5 will subtract the contents of SP 6
from the contents of SP'5.

The preliminary result of an S—-PAD operation may be shifted
before becoming SPFN. The contents of SPFN are stored back
into the currently designated SP(SPD) unless an

S-PAD NO-LOAD (#) is specified. SPFN reflects the final
result of the current S~PAD operation including any S-PAD
modification operations stipulated.

The condition of SPFN sets or clears the C, N, and Z bits
of the APSTATUS Register — effective as of the NEXT
instruction cycle, accordingly:

* Branches which test the condition of SPFN
may be made one instruction following the
appropriate S—PAD operation.

IMPORTANT NOTE: Although the cbnten:s of SP(SPD) will not be
changed during a "NOP" instruction following an S-PAD

operation, SPFN will change = reflecting the new contents
of SP(SPD).

Although the S-Pad related bits in APSTATUS will not be
altered by an S-PAD NOP, the programmer should exercise
care when executing an RSPFN op-code, (See RDREG, 1/0),
since the conteats of SPFN may be altered from their state
during the last S-PAD operatiom.

4.1.9 S-Pad Carry Bit Conditioms

During any of the operations listad below (except OR) the S~PAD CARRY
BIT will be set to "l1" if the corresponding equation for the current
operation specified is true.

Note that when using S—PAD test and branch operations, Bit C of the
APSTATUS REGISTER will reflect the state of the S—-PAD CARRY BIT for the
last preceding S—-PAD operation unless a shift modifier was specified
for that operation. If an S-PAD shift was specified, "C" will reflect
the state of the last bit shifted off the end.
S-PAD CARRY-BIT RELATIONS
If true; then S~PAD CARRY BIT is set to "1"

Operation equations

SUB. (SP(SPD)) + (SP(SPS)) + 1 >2(16)

INC [(sP(SPD)) + 1] 2>2(16)

DEC (SP(SPD)) + 177777 22(16)

coM (SP(SPD)) + 177777 >2(16)

CLR (SP(SPD) + .(SP(SPD)) >2(16)

ADD (SP(SPD)) + (SP(SPS)) >2(l6)

OR S~-PAD CARRY BIT is set to 'OV

EQV (SP(sPD)) + (SP(SPS)) >2(16)

AND [(sp(sPD)) AND (SP(SPS))] + (SP(SPD)) > 2(16)

MOV [(SP(SPD)) aND (SE(S25))] + [(SP(SPD)) OR (SP(SPS))]>2(1l[)

4.1.10 Programming Example

Load Data Pad X with an array "A," with N elements starting at Main
Data Memory location 3721x. "CIR" is in S-Pad register which will be
used as a counter. '

l. CLR# CTR; SETDPA "Set DPA to 0

2. LDMA; DB=3721 "Fetch the first
"element

3. LDSPI CTR; DB=N "Initialize "CTR"
"to N

4, LOOP: INCMA; DEC CTR "Fetch next element,
"Ax+l

5. DPX<MD; Store Ax into DPXx,

INCDPA; BNE LOOP "advance DPA and test

"counter.

Below is a chart of the above loop, for N=3 elements.

Inst. Memory Data Pad ‘ S-Pad

MA MI bBPA 0 1 2 “CTR" Test
L. -— -—— 0 — e= a- -

2. 3721 -—-- 0 am me =- —

3. -— -—- 0 —— == e 3

4. 3722 -— 0 a_ = e 3

5. -— AD 0 AO -— - 2 true
4, 3723 -—- 1 AO - -- 2

5. -— A1 1 AO A1 -- 1 true
4. -—- 2 AO A1 - 1

5. -—- A2 2 A0 A1 A2 0 false

A generalization on the above example is to fetch array "A" from every
Kth memory location.

The increment is stored in S-Pad register "STEP," and the array pointer

is stored in "PTIR:"

1.

2.
3.

40

5.

LDSPI STEP; DB=K

CLR# CTR; SET DPA
LDMA; DB=BASE

LDSPT CTIR; DB=N

LOOP: ADD STEP, PTR; SETMA

BEQ DONE

DPX<MD; INCDPA
DEC CTR; BR LOOP

"Initialize
NI'STEPH CO K
"Set DPA to O
"Fetch the first
"element, Ax
"Initialize "CIR"
"to N

"Advance memory
"pointer. Fetch
"next element,
"Ax+x. Test
"counter and jump
"out if done.
"Store Ax into
"DPXx, advance
"DPA Decrement
""Cm" and jump
"back to LOOP.

4.2 SPECIAL OPERATIONS GROUP SUMMARY (SPEC)

The op-codes available within the SPEC group fall within the following
functional groups: Branch and Test Instructions, Jumps, Data Transfer
Instructions and Program Control instructions related to PROGRAM SOURCE

ADDRESS REGISTER (PSA) and SUBROUTINE RETURN ADDRESS STACK (SRS)
modification.

Discussion of the components involved in the SPECIAL OPERATIONS GROUP
(SPEC) is presented in the following manner:

1) Test, Branch and Jump logic related to op-codes within this group,
including:

* Appropriate Control bits of the APSTATUS REGISTER

* AP-120B GENERAL FLAGS

* Types of branches and Branch Timing Implications

2) Data Transfer Operations, including:

* The PROGRAM SOURCE MEMORY (PS) =-- theory of operationm,
addressing, and types of formats available.

* The VIRTUAL FRONT PANEL (PANEL) and PANEL registers
related to SPEC GROUP transfer operations.
3) PROGRAM ADDRESS and SUBROUTINE ADDRESS modification (JUMPS)
* Program Jumps

. * Jumps to Subroutines (JSRS)

4.2.1 Branch Operations

Branches available within the SPECIAL OPERATIONS GROUP (SPEC) may be
used 1in tandem with other branch instructiomns available within the
CONDITIONAL BRANCH GROUP (see BRANCH). Both groups of branches use the
DISP field (instruction word Bits 27=-31) to calculate the BRANCH TARGET
ADDRESS. If branch op-codes are used from both groups in the same
instruction word, the branch operations are OR'ed. Example:

BFLT LOOP; BEQ LOQP Meaning: (If esither FA is < 0, or
SPFN is = 0, then the program will
branch to the location indicated
as LCOP).

4.,2.1.1 Test Conditions

Oue of the following functions is tested to determine the status of a
given branch operation decision. _
*Selected bits of the AP-120B INTERNAL STATUS REGISTER (APSTATUS)
*AP-120B GENERAL FLAGS
*DATA~PAD BUS statea

* SPEC-Related Bits in APSTAIUS Register

Bit Name Condition Related SPEC
Op=Code(s)
FN (bit 4) Set to "1" when Floating Adder Result (FA) BFLT

is negative; reset to "O" when FA is zero
or positive.

N (bit 6) Set to "1" when S=PAD FUNCTION (SPFN) is BLT
negative; reset to "0" when SPFN is zero
or positive.

c (bit 7) Set to "1" when an S=PAD operatiom produces BNC,B2ZC
a carry either by arithmetic generation or
as a result of an S-PAD SHIFT operationm;
reset to "0" when no S~PAD carry is producad.

IFFT Set to "1" when AP-120B is processing in the BIFN,BIFZ
(bit 11) IFFT mode. (Set or cleared via programmed
instructions).

* AP-120B General Flags

There are four flags (0,1,2,3) available for gemeral use within the
AP-120B. These flags may be set to "l1" or cleared to "O0" by software
instructions (See FLAG, 1/0). A list of the general FLAGS and their
respective branch operations is given below:

AP-120B GENERAL FLAGS

AP FLAG Branch Contingency Related SPEC Op-code
FLO Set to "1" BFLO
FL1 Set to '"1" BFLI1
FL2 Set to "1" BFL2
FL3 Set to "1" BFL3

Note that a minimum of one cycle must intervene between a flag
modification instruction (e.g., SFLO) and the related test instruction.

* Data-Pad Bus (DB) Test

Additionally, the data enabled onto the DATA-PAD BUS (DB) may be tested
as to state and branches made accordingly:

STATE (DPBS) Related SPEC Branch Op~Code
Negative BDBN
Zero or Positive BDBZ
and
Unnormalized
WARNING

These branches will not work correctly following an
instruction from the PS field (e.g., RPSF). They
will branch as if DB=0.

4.2.1.2 Branch Target Address Formulation

4 BRANCH TARGET ADDRESS is formed by summing the current PSA with the
biased DISP field in the following manner:

(PSA) + (DISP - 20(octal)) PSA Meaning: The current contents
of the PROGRAM SOURCE ADDRESS
REGISTER (PSA) are added to
the contents of the biased
5-bit DISplacement field

(instruction word bits 27—
32).

The BRANCH TARGET ADDRESS thus formed will be the next program location
to be executed if the curreat branch condition is satisfied.

Biased Displacement Field

The DISP field contains a 5-bit BIASED integer. BIAS is the leftmost
bit of the field. When Bias = 1, DISP contains a positive value in the
remaining four bits of the £field. When BIAS = O, DISP contains a
negative value in the remaining bits, in unsigned twos-complement form.

The TRUE-VALUE of DISP is always 20(octal) less than its
APPARENT-VALUE.

The range of BRANCH TARGET Addresses using DISP is from =-20(octal) to

+17 (octal) 1locatioms reslative to the current PROGRAM SOURCE ADDRESS
(PsA). - .

4.2.1.3 Branch Timing

All of the conditioms tested within this group of branch instructions
relate to the state of the appropriace device (e.g., DB, SPFN, FA,
etc.) as of the previous instruction cycle.

For example, a BFLT op~code tests the condition of the FLOATING ADDER
QUTPUT (FA) enabled onto the FA Bus during the praceding instruction.
Similarly, a BLT op=code tests the state of the S-PAD FUNCTION (SPFN)
enabled during the preceding instruction cycle.

All the Status Bits related to branch operations are latched into the
APSTATUS register one cycle after the condition that generated them
becomes enabled. A Status Bit will remain set or cleared from that
time until ome cycle after the next operation produces a condition that
will change the Status Bit.

If the condition to be tested was set via an LDAPS instruction, then a
one cycle delay must be observed before testing it. Note that the
LDAPS wins out over the dynamic FA, FM or S-PAD condition 1in
determining the state of APSTATUS.

The following examples provide explicit illustrations of the timing
relationships for the different types of branch conditioms.

Example: FLOATING ADDER RESULT (FA) TESTED

Result Appropriate
Available Status Bit

tl FADD TM,MD - - Note that the result of the
t2 FADD DPX(-1),DPY(2) =~ - first FADD (FADD(tl)) be-
t3 NOP FA(tl) comes available as FA at

t4 BFLT LOOP FA(tl) FN(tl) t3. The earliest that one
t5 NOP FA(tl) FN(tl) could test it them is at

t6 NOP FA(tl) FN(tl) t4. Note also that FN in
t7 FADD FA(tl) FN(tl) APSTATUS will continue to
t8 NOP FA(t2) FN(tl) reflect the state of this
t9 BFLT LOOPl FA(t2) FN(t2) particular FADD result

until two cycles after the
next FADD operation. The
result (FA(t2)) of FADD(t2)
becomes available at t8 and
the earliest one could test
it is at t9, as shown.

The timing of the preceding example is applicable to all FA and FM re-
lated branches (APSTATUS bits FN, FZ, OVF and UNF).

Examﬁle: S=PAD FUNCTION (SPFN) TESTED

Result Appropriate
Available Status Bit

tl ADD3,4 SPFN(tl) — Note that the result of the
t2 NOP *SPFN(tl) N(el) firstc S-PAD OPERATION (ADD
t3 WRTIEX® *GPFN(tl) N(tl) 3,4) becomes available dur-
t4 NOP *3PFN(tl) N(tl) ing tl. The earliest omne

£5 BLT LOOP1 *SPFN(tl) N(tl) could test this result,

t6 BGE LOOP *SPFN(cl) N(el) then, is at t2. But to ill-
t7 ADD 4,5 SPFN(t7) N(tl) ustrate the point that the
t8 BLT LOOP 3 *3PFN(t7) N(e7) BRANCH CONDITION BITS

latch, the example, does
not specify the appropriate
test-branch op-code until
t5. Note also that more
than one branch may be made
on the same SPFN, even at a
different time, as loung as
the SPFN state for the
operation inquiry is stcill
latched in APSTATUS (i.e.,
BGE (t6). The appropriate
APSTATUS bit conditiom pro-
duced from the ADD OPERA-
tion at tl is not altered
until one cycle aftar the
next S—PAD OPERATION (e.g.,
t8). Note also that WRIEXP
is effectively an S-PAD NOC-
Q0P with respect to the con-
dition bits of the APSTATUS
REGISTER. The BLT at t8
tests the result of the ADD
4, 5 instruction at t7.

NOTE

*The value in SPFN will reflect the updated
contents of SP(SPD) during times t2 to t6
and t8 to t9.

Example: DATA PAD BUS (DB) TESTED

tl

t2

t3
té
t5
th

Result
Available on DB

DB=MD DB(tl)
BDBN LOOP1 ZERO
NOP ZERO
DB=DPX(2) DB(t4)
BDBN LOOPl; DB=DPX(2) DB(t4)
BDBZ LOOP2 ZERO

Example: APSTATUS TEST following LDAPS

tl
t2

t2

t3
té4
t5
th

t7

ADD1l, 2; LDAPS; DB=value
BLT LOOPI

BEQ LOOP2

FADD

FADD

LDAPS; DB=value
BFLT LOOP3

BGE LOOP4

NOTE

Note that DB is not
latched as in the above
example and is available
for testing for only one
cycle following the appro-
priate enabling operation.
In order to perform two
sequential branch opera-
tions on the same DB, omne
must "hold" it by a dupli-
cate operation (e.g., the
branch at t5 will test the
DB (t4). But it is neces-
sary to re-enable DB at t5
in order to perform the
branch at t6).

(See Note)
"Test result of
ADD 1, 2 at tl
"Test result of
LDAPS at tl

"Test result of

FADD at t4

"Test result of LDAPS
at t5

The cycle following the LDAPS is dominated

by the most recent dynamic counditioms, e.g.,
ADD 1,2 at tl determines BRANCH status during
t2 and FA result during t5 controls branch
during t6. The cycle after that, the LDAPS
dominates———thus the branches at t3 and t7.'
test the result of the preceding LDAPS

instruction.

Example: AP-120B FLAG TESTED

tl

t2
£3
ts4
t5

CFLO

NOP

SFLO

BFLO LOOP!

BFLO LOOPl; CFLO

26

Note that a set/clear flag
operation is effective,
with respect to testing,
one cycle after being
performed. Accordingly,
the BFLO at t4 will find
the flag clear and will
not result in a program
branch. The SFLO at t3 will
be effective as of t4 and
the BFLO at t£5 will pro—
duce a program branch.

4.2.2 Data Transfer Operations

The op-codes within the PSEVEN, PSODD, and PS fields of SPEC group deal
with program~word transfer operations between PROGRAM SOURCE MEMORY
(PS) and the LITES or SWITCH registers, (LITES, SWR) in the AP VIRTUAL
FRONT PANEL (PANEL). The transfers are via the PANEL-BUS (PNLBS) and
the DB. The PROGRAM SOURCE WORD may be transferred in QUARTIER-WORD,
HALF~-WORD, or FLOATING-POINT LITERAL format. All PS read and load
operations are two-cycle instructions. They behave like one-=cycle
instructions in that they execute on the first cycle, but they require
a second cycle to fetch the next imstruction. Therefore, they behave
like two cycles, as far as MD timing is concerned.

The available PS formats are presented in Figure 4-2.

87

(23]

PROGRAM SOURCE {PS) 64 BITS

RELEVENT
FURCTIONS

s . 63
PROGRAM-SOURCE (PS)
|
B h2 63
PrOGR- SouncE-EFTTIALE oLty PROGRAN-S0uRCERIIIT-IALE
k e npz vhe 6))
PROGRAN- souncsg“"”c"’ 2ER0 PROGRAM- sQUKCRUMTER-ONE PHOGRAN- souncagu“mm'mo PHROGIAH - SOURC] *?u" RTER-TUREE
{rs*) (Ps*") (ps™) tps¥)
" 2¢he r.lns 47‘:0 63
////////////////Z . PROGRAM- SOUKCET AT ING-POINT LITERAL (FPL,
.~) - ~— J
EXPORENT lliGll‘HAN’l‘lSSA LOM-MANTISSA
L v
MANTISSA
Figure 4-2 PS Formats

R

PSFPL

4.2

The
bit
The
the
in

.2.1 Program Source Memory (PS)

Program Source Memory file (PS) shown in Figure 4-3 contains the 64
instruction words by which programs in the AP-120B are executed.
location of the Program Source Word to be executed is pointed to by
PROGRAM SOURCE ADDRESS REGISTER (PSA) and the instruction contained
that location is decoded, and the appropriate control-functions are

generated, by the CONTROL BUFFER (CB).

From:

Virtual
Front
Panel To: PS
c8
4———Host Data-———-——* Switches |frm—e————)) ?;:AD
OPBS APSTATUS—PNLBS ———H Lites Host Data >
S-PAD CA

TMA SWR
0PA PS Host Data ———— Function \\\\\’
Additional

M
:: Control Signals

From: PNLBS , e FTOM?
oP8s | ;
.
Program Source Su:r:u:;ne
Memory File etu
PSA 4 . Address SRA
(ps) Stack
(SRS)
Address
Ta: PNLBS Modification

0P8BS

Instruction
Decoding

v
Instruction
Control Signais

Figure 4—~3 Program Source Memory File

PSA + (8
PSA
T™A
or:3

Addressing of the PROGRAM SOURCE MEMORY is accomplished by reference to
the 12 bit PROGRAM ' SOURCE ADDRESS REGISTER (PSA). PSA may be
sequentially incremented, azitered by either branch or jump imstruction,
or modified by the several SUB-ROUTINE ADDRESS RETURN STACK (SRS)
-related instructions.

4.2.2.2 Program Source Transfer Operation Addressing

When transferring data to or from PROGRAM SOURCE MEMORY (PS),

addressing of the PS word is accomplished by either of the following
methods:

1. ABSOLUTE - The address of the PROGRAM SOURCE WORD to
be read/written is ABSOLUTE from either:
* The 12 bit address contained in the VALUE.field of
the current instruction word,
* the least significant 12 bits of the TABLE MEMORY
ADDRESS (TMA), or

* the 12-bit address currently enabled onto the PANEL
BUS (PNLBS).

2. RELATIVE - The address of tha PROGRAM SOURCE WORD
to be transferred is RELATIVE to the current PSA.
The address is formed by adding the current
contents of the PROGRAM SOURCE ADDRESS REGISTER
(PSA) with the l2-bit address contained in the
VALUE. field of the current instruction word.

4.2.2.3 SPEC-related Virtual Frount Panel (PANEL) registers

The LITES REGISTER (LITES) and SWITCH REGISTER (SWR) of cthe VIRTUAL
FRONT PANEL (PANEL) are involved in many SPEC group cransfer op-codes.
Both are lé=-bit wlde registers.

The LITES register is used as a destination register of the PNLBS in
the appropriate SPEC group transfer operations. The host can read
LITES but cannot load it. The AP-120B can load LITES, but canmnot read
it. The SWITCH REGISTER is used as a source register for the PNLBS.
The host can load and read SWR. The AP-120B can cnly read SWR.

Data transfers between PS and the appropriate PANEL registers are via
the PANEL BUS (PNLBS) and require two machine cycles to execute (See
Note). (For a complete description of the VIRTUAL FRONT PANEL, see L/O
SUMMARY).

NOTE

When executing these instructions, the programmer
must not attempt to execute any other operatiom
which uses the PNLBS for addressing or transferring
or a PNLBS conflict will occur.

4.2.3 Program Source Address Modificationm

The op-codes countained in the SETPSA fields are used to amodify the
program locaticn by means of forcing a specified value into the PROGRAM
SOURCE ADDRESS REGISTER (PSA). The op=-codes within the SETPSA field
fall into two categories:

* Program Jumps

* Jumps to subroutines

4,2.3.1 Program Jumps

ABSOLUTE or RELATIVE PROGRAM JUMPS available in the SETPSA field
replace the contents of the PROGRAM SOURCE ADDRESS REGISTER (PSA) with
a specified value. The Jump may be ABSOLUTE, wheraby the contents of
PSA are replaced by the current contents of a specified ragister, or
the address currently enabled upon a specified Data Bus; or the Jump
may be RELATIVE - whereby the dacta from a specified source is
algebraically added to.the current contents of PSA.

4.2.3.2 Jumps to Subroutines

The AP-120B uses an address stack, termed the SUB~ROUTINE RETURN
ADDRESS STACX (SRS), which 1is normally used to save the current
contents of PSA plus "1" in the execution of a SUB-ROUTINE JUMP
OPERATION (JSP). The address thus saved may be retrieved via a RETURN
operation (see RETURN, BRANCH) at the completion of a given sub-routine
operation thus enabling the program to return to the next
program~source location following the JSR.

4.2.3.3 SRS Operation

The SRS is a LAST-IN - FIRST-OUT (LIFO) memory stack with a capacity
for sixteen 12-bit addresses. Addressing control for the SRS is
performed by an up/down counter termed the SUB-ROUTINE RETURN ADDRESS
REGISTER (SRA). The address last stored into SRS during a sub-routine
jump will be the address enabled into PSA upon a return operation.
Note, however, that the address storad in this "last-in" position of
SRS can be changed via use of selected operations in the SETEXIT field.

The SUB-ROUTINE RETURN STACK (SRS) can store up to a maximum of 16
address words at one time, allowing the programmer to specify a maximum
of 16 nested sub~routines. Attempting to exceed the maximum number of
nested sub-routines will set the SUB-ROUTINE RETURN ADDRESS OQVERFLOW

(SRAO) in the APSTATUS register, as will a RETURN operation that has
not been preceded by a SUB-ROUTINE JUMP OPERATION.

4 - 32

An example of SUB-ROUTINE JUMP and RETURN operations is given below:

MAIN PROGRAM SUB-ROUTINE 1 SUB-ROUTINE 2
N(0) 2z N(15) SUBL:Zz N(30) SuB2:2z
N(l) 2Z N(l6) ZZ N(31) zzZ
N(2) 2z N(17) JSR SUB2 N(32) zz
N(3) JSR SUBI N(18) 2Z N(33) 22
N(4) HALT N(19) RETURN N(34) RETURN

ZZ= non-related operation

Note that the MAIN PROGRAM will jump to SUB-ROUTINE 1 (N(15)) wupon
executing the JSR instruction at N(3). During this jump, the SR& is
incremented and N(4) (curremt PSA + 1) will be stored 1into the
"last-in" position of the SUB-ROUTINE RETURN STACK (SRS).

The program will now execute in SUB-ROUTINE 1 until locatiom N(17), at
which time a jump will occur to SUB-ROUTINE 2 at location N(30). The
SRA is again incremented, and the address N(18) (the now current PSA +
1) becomes the "last-in' address stored into SRS.

This program will now execute in SUB-ROUTINE 2 wuntil location N(34),
where a RETURN will be executad. At this time, the "last—-in' address
N(i8) will be written into PSA and the program will jump back to that
location. SRA is decremented so that now N(4) again becomes the
"last-in" address contained ia SRS.

The Program Proceeds: At N(19) a RETURN will again be executad, and
the SRS will write the address N(4) into PSA. The program will halt at
that locationm. SRA is decremented and the "last-in'' address becomes
the address written into SRS one time before address N(4) was 1intially
written into SRS.

WARNING

The JSR instruction has a number of hardware
timing problems not detected by APAL or APSIM.

NOTE

A JSR must not be followed immediately by a
RETURN.

Example:
ILLEGAL

N(14) JSR SUB2
N(l5) RETURN

Also, any two—cycle instruction immediately
before a JSR is illegal.

Example:
ILLEGAL

N(13) RPSF
N(l4) ISR SUB2

1f the breakpoint of the front pamel is used
to stop the machine so that PSA is pointing to

an instruction before a JSR, it is not possible
to continue.

Example:
ILLEGAL

Breakpoint at N(4) followed by
N(5) 2z
N(6) JSR SUBL
A halt followed by a JSR is also illegal.

Example:
ILLEGAL

N(13) HALT
N(l4) ISR SUB2

4,2.3.4 Conditional Branch Op-Code Group

Purpose: UNCONDITIONAL and CONDITIONAL BRANCHES to program locations

COND

DISP

within a range of +17(octal) to =20(octal) locations rela-
tive to the current PROGRAM SOURCE ADDRESS (PSA), the SUB-
ROUTINE RETURN OPERATION, and the S=-PAD NO LOAD function.

23 24 25 26 27 28 29 30 31

COND DISP

CONDITIONAL BRANCH: Four—bit field whose value determines
the specific operation to be performed within the BRANCH
gToup.

DISPLACEMENT: Five—-bit field whose value with the BIAS
subtracted is added to the current PSA to form the BRANCH
TARGET ADDRESS for the specified branch operatioms. (BIAS =
20(octal)) '

4.2.4 Branch Group Summary

The CONDITIONAL BRANCH op—-code group consists of two fields: COND

(instruction word bits 23-26) and DISP (imstruction word bits 27-31).
The value contained in the COND field selects the ome operatiom of the
BRANCH GROUP to be performed during the current instruction cycle.

The operations available within the COND field are:

1) s-PAD NO-LOAD (i),

2) UNCONDITIONAL BRANCH

3) CONDITIONAL BRANCHES and,
4) SUB-ROUTINE RETURN

When an UNCONDITIONAL BRANCH, is specified, or the branch condition of
a CONDITIONAL BRANCH 1is satisfied, the program will branch to the
PROGRAM SQURCE location obtained by adding the current contents of
PROGRAM SOURCE ADDRESS REGISTER (PSA) with the value (BIAS removed)
contained in the DISP field. The BRANCH TARGET ADDRESS thus ' obtained

is limited to a range from -20(cctal) to +17(octal) locations relative
to the current PSA.

For a detailed discussion of the addressing, timing and programming
examples for Branch type operations, refer to SPEC SUMMARY, Part 1l -
Test, Branch and Jump Operations. All sections of Part 1l apply equally
to Branch operations within this group EXCEPT Part la = Test

Conditions. Discussion of test conditions appropriate to BRANCH GROUP
op-coded is presented below.

4.2.4,1 Test Conditioms

The following conditions are tested by op—-codes within the BRANCH GROUP
to determine whether or not the branch conditiom £for the appropriate
operation is gsatisfied.

1. Selected Bits of the AP INTERNAL STATUS REGISTER (APSTATUS)

2. Selected Input/Output Flags

* BRANCH Related Bits in APSTATUS REGISTER

Bit Name

OVF (bit 0)

UNE (bit 1)

DIVZ (bit 2)

FZ (bit 3)

FN {(bit 4)

z (bit 5)

N- (bit 6)

Condition

Set to "1" when the FA or FM available
during the preceding cycle has OVER-
FLOWED. Once set to a l, OVF remains
latched until cleared by the program
or host computer. i}

Set to "l" when the FA or FM available
during the preceding cycle has UNDER-
FLOWED. Once set to a "1", UNF remains
latched until cleared by the program or
host computer.

Set to "l" when a divide by zero has
been detected by the divide software.
Remains latched until set or cleared
by the program or host computer.

Set to "l1" when the FA available
during the preceding cycle was zero.
Cleared to "0" otherwise.

Set to "l1" when the FA available
during the preceding cycle was
negative. Cleared to "0" otherwise.

Set to "1" when SPFN during the most
recent preceding S-PAD operation
equaled 0., Cleared to 0 otherwise.

Set to "1'" when SPFN during the most

recent preceding S—-PAD operation was
negative. Cleared to "0" otherwise.

NOTE

Related BRANCH
Op-code(s)

BFPE
(See note)

BFPE
(See Note)

BFPE
(See Note)

3FEQ, BFMNE,
BFGT
(See Note)

BFGE, BFGT
(See Note)

BEQ, BNE,
BGT
(See Note)

BGE, BGT
(See Note)

Indicates that the named op-code tests two or
more conditions in order to determine status of

branch conditions.

* 1/0 FLAGS Test by BRANCH GROUP Op=-codes

The I/0 DATA READY FLAG (IODRDY) and the INTERRUPT REQUEST FLAG
(INTRQ)may be tested by appropriate op—codes within this group and
branches made accordingly.

BRANCH - Related I/O Flags

AP I/0 Flag Branch Contingency Related BRANCH Op-code
IODRDY Set to "1" BION
Set to "O" BIOZ
INTRQ Set to "1" BINIRQ

4.2.4.2 BRANCH TARGET ADDRESSING

The BRANCH TARGET ADDRESS is calculated by adding the current contents
of the PROGRAM SOURCE ADDRESS REGISTER (PSA) with the value (BIAS
removed) contained in the DISPlacement field of the instruction word.
The biasing scheme used for calculating BRANCH TARGET ADDRESSES is
explained fully in SPEC SUMMARY - Types of Branch Operationms.

In assembly format, the BRANCH TARGET ADDRESS is specified 1in the
following manner:

BIFZ TARG

Where TARG may be a name or number specifying a target address. The
BRANCH TARGET ADDRESS wmust be within a range from +17(octal) to
-20(octal) locatioms relative to the current PROGRAM SOURCE ADDRESS
(PSA). ‘A relative address within the proper range wmay be specified
direectly by using the assembler symbol ".", which always has the value
of the current locatiom, i.e., BR .-3. (means branch three locatioms
backwards from the current location).

NOTE

The following rules apply to ALL conditiomal
branches:

1. Conditional branches test their particular
condition as it existed during the previous
instruction.

2. The branch determines what instructionm will
be executed NEXT. It has no effect upon
execution of the current instruction.

See a more complete explanation in the SPEC
section.

4,2.5 AP-120B Internal Status Register (APSTATUS) Summary

APSTATUS is a l6-bit read/write register containing status bits which
may be used to monitor conditions pertinent to Floating—Point
Arithmetic results, the S-Pad RESULT (SPFN), S—-Pad CARRY, FFT and IFFT
addressing functions, SUB-ROUTINE-RETURN-STACK OVERFLOW conditions, and
optionally, MEMORY-PARITY.

Changes in APSTATUS bits are generated by either AP-120B hardware
functions or programmed instruction, (whether via AP-120B or Host-CPU).
APSTATUS 1s readable to the AP-120B via use of the RAPS instructiomn
(see 1/0, RDREG field). It is writable from the AP-120B via use of the
LDAPS instruction (see I/0, LDREG field) except for PERR, which 1is
"set-only'"; PERR and PENB=0 if parity option is not present. Changes
in STATUS-BITS become effective, with respect to subsequent testing

operations, one AP cycle after the condition occurred that caused the
change. :

APSTATUS is cleared via a Panel Reset (To clear the I/O interface the
programmer must also use the interface reset). PERR and PENB are also
cleared by an interface reset.

Given below is the APSTATUS format and descriptions of the individual
STATUS~-BITS.

APSTATUS FORMAT

T
1 2 3 4 5 6 7 8 9 10 11 12 13 14

!
15

QOVF | UNF |DIVZ | FZ FN Z N C |PERR | PENB |SRAO |IFFT| ©FT | Bit Reverse

BIT MNEMONIC MEANING

0 OVF OVERFLOW: Set ome cycle after the current FADDR
or FMULR RESULT (FA or FM) has OVERFLOWED. Set
by AP-120B hardware. Remains set until clearesd by
programmed instruction (LDAPS) or panel RESET,
(See Note 1).

1 UNF UNDERFLOW: Set when current FADDR or FMULR
RESULT (FA or FM) has UNDERFLOWED. Set by
AP-120B hardware. Remains set until cleared by
programmed instruction (LDAPS) or panel RESET,
(See Note 2).

2 DIVZ A DIVIDE-BY-ZERO has occurred. Set and cleared

by programmed instruction (LDAPS)(See Note 3) or
panel RESET. ’

10

FZ

PERR

PENB

SRAC

FA-ZERO: Set to "1" one cycle after the current
FADDR-RESULT (FA) equals 0.0. Cleared to "0"
when FA does not equal 0.0 (Via AP-120B hardware
or programmed instruction or panel RESET.)

FA-NEGATIVE: Set to "1" omne cycle after the
current FADDR-RESULT (FA) <0.0. Cleared to "O"
when FA> 0.0. (Via AP-120B hardware or pro-
grammed instruction or panel RESET.)

SPFN-ZERO: Set to "1" ome cycle after the
current S—-Pad function (SPFN) equals 0. Cleared
to '"0" when SPFN does not equal 0. (Via AP-120B
hardware or programmed instruction or panel
RESET.)

SPFN-NEGATIVE: Set to "1" one cycle after the
current S-PAD function (SPFN) < 0. (Via AP-120B
hardware or programmed instruction.)

S-PAD CARRY: If an S—-PAD shift .was specified, "C"
reflects the last bit shifted off SPFN as a
result of the shift operation. If a shift was not

specified "C" reflects the state of S—-PAD CARRY
BIT or panel RESET.

PARITY-ERROR: (Optional). Set when a Main Data
Memory (MD) PARITY-ERROR has occurred. Three
parity—-bits are used, one sach for the EXPONENT,
HIGH-MANTISSA, and LOW-MANTISSA portioms of the
memory word (See Note 4). If "PENB" is set, the
AP-120B will halt on this error. Cleared only via
panel or interface reset. Set only by LDAPS.

PARITY-HALT-ENABLE: (Optional). Enables halt on
MEMORY PARITY ERROR. ILf set, the AP-120B will
halt when a MEMORY-PARITY-ERROR is detected.
Set or cleared by LDAPS.Cleared by panel or
interface reset.

SUB~-ROUTINE-RETURN~STACK OVERFLOW. Set to "1" via
AP-120B hardware if more than 16 levels nested
sub~routine-calls have occurred, or if a "RETURN"
is executed without a corresponding "JSR".

(Cleared via programmed imstruction or panel
RESET.) '

11

12

13-15

IFFT

FFT

INVERSE-FFT FLAG. (Set via programmed instruc-—
tion.) When set in comjunction with the FFT FLAG
(bit 12), this bit causes ROOTS-OF-UNITY table
references to be interpreted as positive angles
when set and negative angles when cleared.

(Cleared via programmed instruction or panel
RESET.)

FFT FLAG. Set and cleared via programmed instruc—
tion or panel RESET. When set, causes Table
Memory Addresses to be interpreted as angles
referencing the ROOTS-OF-UNITY table contained

in Table Memory.

BIT-REVERSE BIT-REVERSE SHIFT-VALUE. Three—bit field whose

3.

value controls the number of shifts accompanying
an address BIT- REVERSING operation. See (S-PAD,
BIT-REVERSE.) Shift value to be placed in this
field is determined by the following equation:

BIT-REVERSE = 15 - (logy M)
Where: N = length of complex—data-array
to which BIT-REVERSE opera-
tion (&) is being applied.

NOTES

OVERFLOW occurs when EXPONENT of result is
increased above APPARENT-VALUE of 1023 (TRUE-
VALUE of 511). APMAX or APNMAX is forced as
the result, depending on the sign of the
MANTISSA.

UNDERFLOW occurs when EXPONENT of result
is decreased below APPARENT-VALUE of O
(TRUE-VALUE of =512.) ZERO (0.0) is forced
as the result.

Result is set to the value of the dividend
when a DIVIDE-BY-ZERO has occurred. (Via

programmed instruction.) Used by AP-120B
Math Library Divide Routines.

EXPONENT, HIGH-MANTISSA and LOW-MANTISSA
PARITY-BITS occupy data-word bit positionms
00, 01, and 40, respectively.

Selectad STATUS-BITS

(if the appropriate condition is satisfied) by
instructions:

INSTRUCTION
WORD GROUP

BRANCH

SFEC

SUB-
GROUP

COND

STEST

within APSTATUS may be testad and branched upon

INSTRUCTION
MNEMONIC

BFPE

BFEQ
BFNE
BFGE
BFGT
BEQ
BNE
BGE
BGT

BFLT
BLT
BNC
BZC
BIFN
BIFZ

42

the

BRANCH
CONDITION

Floating
Point Error

FA=0.0
FA=0.0
FA20.0
FA>0.0
SPFN=Q
SPFN~0
SPFN20
SPFN>0

FA<C.0

'SPFNKO

S~PAD-CARRY=1
S~PAD-CARRY=0
IFFT Bit=l
IFFT Bit=0

following AP-120B

RELATED BIT(S)
in APSTATUS

UNF, OVF or
DIVZ = 1

FzZ=1
FZ=0
FN=0
FN,FZ=0
z=1-
Z=0

N=0
Z,N=0

FN=1
N=1
Cc=1
C=0
IFFT=1
IFFT=0

4.2.6 PERR and PENB, Theory of Operatiom

PERR, the Parity Error bit, will be set to a "ome'" by the Parity Optiom
Logic any time a parity—error is detected on a read cycle from Main
Data memory. The Parity-Option Logic checks parity om all read cycles
whether from the AP processor, the Host Interface or other DMA device
such as the IOP and the PIOP. ' When PERR is set to a 'ome' as a result
of a detected parity error, the data word, parity bits, memory address
and cycle acknowledge priority level of the failure are recorded in the
logging registers. As a check of the Parity Error Registers, PERR can
be set from the AP. If PERR is set via an LDAPS the logging registers
will record the above information for the memory read cycle jJust
completed.

When PENB and PERR are both set, the AP will halt immediately. In
fact, if an attempt is made to start or continue the AP when both of
these bits are set, the AP will not go into the running state. Also,
because of the overlap fetch/execute, the next instruction will have
been set up. This may cause problems when restarting if this is not
taken into account.

The immediate halt characteristic may cause lost interrupt problems
with certain Host Interface/driver combinatiomns. Thus, the recommended
start-up procedure in the presence of DMA transfers overlapped with AP
running is to clear PENB via a panel deposit to APSTATUS before
starting the AP. Then to have the initializer code in the AP, set PENB
when it <clears OVF UNF and DIVZ before branching to the user-called
routine. The '"Set-only" characteristic of PERR protects the Parity
Option from losing parity errors.

Note that contrary to common industry practice, the Parity Option
generates even-parity. The highly inter—leaved nature of optimized, AP
math-library routines requires many of them to read extra locations
past the end of the arrays on which they are operating. Thus even—
parity was selected so that a read from non—existent memory (all =zeros
on data and parity bits) would not cause spurious parity errors.

The following parity-error registers can be read via IN imstructioms at
their respective Device Addresses. They reflect the first data-word,
address and memory priority level that caused a parity error.

DA

33

34

35

REGISTER

MDLMAN
MDHMAN

MDEX?

DPMBS 15 le

10

27 28

DESCRIPTIOCN

Low Mantissa portion of
failing locatiom

High Mantissa portion of
failng location

Exponent and parity bits
of failing locatiom
(Format below)

17, 18 27

29 30 3%

MD@@ MDEL

MD@4

=P

36

37

DPMBS
I0

—

PEAD

¥DCA

21
33

22

34

MD4g LMAN PARITY BIT
MD@l EMAN PARITY BIT
MD@@ EXP PARITY BIT

(Note even parity)

DESCRIPTION

Parity Error Address
Address of Failing Location
(least significant 16 bits)

Main Datca Cycle
Acknowledge prioricy level
and Address Extension.
(Format below)

23 24 25 28 27
3s 3 37 38 79

MDCR3 [MA(-4) MA(-3) |[MA (-2} MA(-1)

4.3 FLOATING ADDER SUMMARY (FADDR)

Discussion of the AP-120B FLOATING-POINT ADDER (FADDR) is presented
the following manner:

General description and theory of operation

. FADDR single and double operand operatioms

FADDR Operands -— Al and A2
FADDR Result -— FA
FADDR-associated test, branch, and error couditions

FADDR programming comsiderations

in

4.3.1 General Description, Theory of Operation

The AP-120B FLOATING-POINT ADDER (FADDR) is a two-stage arithmetic,

logical, and format—-conversion unit that uses 38-bit FLOATING-POINT
NUMBERS as its operands.

* The Operands (Al, A2)

The operands (contained in the Al and A2 registers) are selectad by the
octal-value contained in the respective Al and A2 fields of the current
instruction word.

The available inputs to the two FADDR REGISTERS are listed 1in the Al
and A2 summaries. (See Section 4.3.4).

* The Operations

The particular operation selected by the octal value in the FADD, or
FADDl fields is then performed. (See Sectiom 4.3.2).

* The Result (FA)

The result of a specified FADDR operation is enmabled onto the FLOATING
ADDER OUTPUT BUS (FA) ome cycle after the next FADDR operatiom is
initiated. The result is either NORMALIZED and CONVERGENTLY-ROUNDED,
or unnormalized and rounded, or unnormalized and TRUNCATED, depending
on the operation specified. (See FLOATING POINT SUMMARY, for wmore
details on NORMALIZATION and ROUNDING/TRUNCATION operations.)

Because of the unique configuration of the AP-120B FADDR, after the
initial "pipeline" set-up requirements have been satisfied, the FADDR
is capable of producing significant FLOATING-POINT ARITHMETIC results
every instruction cycle (167 as). Note that the AP-120B allows
simultaneous FLOATING-POINT ADDER (FADDR) and FLOATING-POINT MULTIPLIER
(FMULR) operatioms.

* Theory of Operatiom

The AP-120B FLOATING-POINT ADDER (FADDR) 1is essentially a two-stage
pipeline which operates in the following manner:

Stage One
In the first stage, the EXPONENTS of the Al and A2 OPERANDS are
compared. The larger of the two EXPONENTS becomes the EXPONENT of the
result. The MANTISSA of the smaller operand 1is correspondingly
arithmetically right-shifted a number of places that reflects the
magnitude of the difference between the two source—operand EXPONENTS.

The "aligned" mantissas then undergo the specified FADDR operation and
the result is presented to the second—-stage buffer latch.

When a subsequent FADDR operation is initiated, the preliminary result
is "pushed" down into Stage Two.

Stage Two
In Stage Two, the preliminary result will be NORMALIZED or not and
" either CONVERGENTLY-ROUNDED or TRUNCATED, depending on the operation
specified. (See Sectiom 4.3.2).

This result becomes available onto the FA BUS one instruction cycle
later. Appropriate bits of the APSTATUS REGISTER will be set according
to the conditiom of this FADDR result and may be tested for
significance one cycle after this result is enabled onto FA (two cycles
after the second FADDR operatiom).

If the difference in exponents exceeds 31 (the number of significant
bits in the AP FLOATING-POINT MANTISSA and FADDR GUARD BITS), a SHIFT=-
INHIBIT will occur, causing the operand with the SMALLER EXPONENT to be
interpreted as positive 0.0. The result of the specified operation
will reflect this interpretatiom. ‘

NOTE

The APSTATUS bits will remain latched until one

cycle after the result of a subsequent FADDR
operation becomes available as FA.

As stated before, the result of an initial FADDR operation becomes
available as FA only after a subsequent FADDR operation has bDeen
specifiad. In other words, the result of a given FADDR operation must
be pushed down the "pipeline” and out onto the FA Bus by a successive
FADDR operation —— the result of which, in turn, must be pushed out by
yet another successive FADDR operation. Example:

OPERATION (COMMENTS) RESULT AVAILABLE AS FA
tl FADD DPX,DPY - -
t2 FADD TM,MD - ———
£3 NOP (FA = DPX + DPY)
t4 NOP (FA = DPX + DPY)
e5 FADD (PUSHES PIPELINE) (FA = DPX + DPY)
£6 Noe (FA = T™ + MD)

4.3.2 FADDR Single and Double Operand Operatioms

The FLOATING ADDER Performs Flcating Point:-
* Arithmetic
* Logical
* Format Conversion, and
* Scaling Operationms (floating to variable-width fixed-
point conversionm)

Instructions in the FADD field are double—operand operatioms which wuse
the Al and A2 fields to specify source—operands. Iastructionms in the
FADD]l field use only a single—operand. When a FADDl field op-code 1is
specified (i.e. FADD = 0), the input selected as the source cperand is
determined by the octal-value in the A2 field.

Only ome op~code from the following groups may be initiated during a
given instruction cycle.

OCTAL SQURCE OPERAND
ARITHMETIC OPCODE FIELD USED VALUE FIELD(S) USED QPERATION

FADD FADD 3 <Al, A2> (Al) + (A2)
FSUB FADD 2 <Al, A2> (aAl) - (A2)
FSUBR FADD 1 <Al, A2> (A2) - (Al)

4,3.3 Floating Point Logical Operatious

These instructions (FAND, FOR, FEQV) perform logical operations om
floating-point numbers. Exponeant alignment occurs as for a normal
floating—point add. The two mantissas are then combined using the

specified logical operations. The result 1s then normalized and
rounded.

LOGICAL QPCODE OCTAL ~ SOURCE/QPERAND

COMPARISON FIELD USED VALUE FIELD(S) USED OPERATION
FEQV FADD 4 , <Al, A2> (Al) EQV (A2)
FAND FADD 5 <Al, A20 (Al) AND (A2)

FOR FADD 6 <al, A2> (Al) OR (A2)

FORMAT CONVERSICN

FIX FADDL L A2 Canvert (A2) to
: a 28-bit integer
(rounded)
FIXT ' FADDL 2 A2 Convert (A2) to

a 28-bit INTEGER;
TRUNCATE the RESULT
(See Note 1)

FSM2C FADDL 4 A2 Convert (A2):
' from SIGNED-MAGNI-
TUDE to TWOS—-
COMPLEMENT

F2CSM FADDL 5 A2 Convert (A2):
from TWOS-COMPLE-
MENT to SIGNED-
MAGNITUDE

FABS FADDL 7 A2 Convert (A2):
to its ABSOLUTE
VALUE

SCALING

FSCALE FADDL 6 A2 Scale (A2) using
SPFN as references,
Result rounded.
(See Note 2)

FSCLT FADDL 3 A2 Scale (A2) using
SPFN as reference;
RESULT TRUNCATED
(See Notes 1 and 2)

<Al, A2> indicates that source operands need not be specified if a FADD
"dummy" operation is used to push the result of the preceding FADDR
operation down the pipeline.

NOTES

1. TRUNCATION - In an FSCLT or FIXT operation,

the result will be TRUNCATED rather than
CONVERGENTLY ROUNDED. (See FLOATING-POINT
SUMMARY = ROUNDING/TRUNCATION.)

2. The current SPFN when the FSCALE operation
is initiated. For correct results SPFN must
equal maximum—comparison (AL x®ement 415,

Note that the BIAS BIT of a given EXPONENT is automatically removed
when the EXPONENT is transferred to S-PAD via an LDSPE instruction.
(See SOPl). Accordingly, the value contained in a given S-PAD register
following an LDSPE instruction will be the TRUE-VALUE of the EXPONENT.
However, the BIAS BIT for a given EXPONENT is not removed 1if the
transfer is via an LDSPI or LDSPNL instruction.

When the comntents of a given S-PAD register are transferred to FADDR
Al csxponent | A sxeonentt ¢ to DB (via DB = SPFN), the BIAS is automatically
added, thus producing an APPARENT-VALUE 512 greater than the
TRUE-VALUE.

4.3.4 FADDR Operands (via Al, A2 Registers)

The FADDR uses Al and A2 registers as the input—buffers for the source
operand(s) specified for a given operation. The programmer may select
one of six available sources to be used as the Al REGISTER operand and
one of eight sources for the A2 REGISTER operand.

The list below shows the sources available for each respective FADDR
ragister.

Al REGISTER Al FIELD VALUE A2 REGISTER A2 FIELD VALUE
SOURCE (IN OCTAL) SOURCE (IN OCTAL)
NC* 0 NC* 0
™ 1 FA 1
DPX(idx) 2 DPX(idx) 2
DPY(idx) 3 DPY(idx) 3
™ 4 MD 4
ZERQ** 5 ZERQO** S
MDPX(idx)#*** 6
EDPX(idx)#** 7
NQTES

*# NC: NO CHANGE -- The input-buffers remain unchanged. This
mnemonic is implied if no FADDR operands are specified.

*% ZERO:Floating Point 0.0

#*%% MDPX: | Indicates split-word source. See A2 for a detailed

*%% FEDPX: | explanation of these sources.

Although the appropriate instruction-word fields and octal-values are
listed above, the assembler format coding need only specify the desired
operation and the operand source(s). Examples:

ASSEMBLER FORMAT COMMENTS

FADD "Dummy FADD

FADD NC,NC "Dummy’ FADD

FSUB FM,FA Subtract (FA) from (FM)

FSUBR FM,FA Subtract (FM) from (FA)

MOV 5,5;FSCALE T™™ Shift (IM) Right arithmetically a

number of positions that is one
less than the difference
between SP(5) and the TRUE-
VALUE of the EXPONENT of

(™)

4.3.5 The FADDR Result (FA)

The NORMALIZED and either CONVERGENTLY-ROUNDED or TRUNCATED RESULT*
becomes available onto the FLOATING ADDER OUTPUT BUS (FA) one
instruction cycle after the next FADDR operatiomn is initiated. This FA
will remain latched until replaced following the next FADDR operatioms.

The FLOATING ADDER QUTPUT (FA) may be directed to:

The FLOATING-ADDER A2 REGISTER

The FLOATING-MULTIPLIER M2 REGISTER
DATA PAD X or DATA PAD Y, or

to MAIN DATA MEMORY INPUT REGISTER (MI)

* ¥ F F

FA sets the appropriate bits of the APSTATUS REGISTER and these bits
may be tested for significance on the 1instruction cycle after FA
becomes valid.

*In case of FA OVERFLOW or UNDERFLOW, a signed-maximum or ZERO
number is forced as the result. (See FLOATING-POINT SUMMARY-
OVERFLOW/UNDERFLOW.)

4,3.6 FADDR Test, Branch, and Error Coundition

The FADDR result (FA) sets or clears appropriate bits of the APSTATUS
REGISTER. These bits may be tested and branches made on their
condition one instruction cycle after the appropriate FADDR result 1is
enabled onto FA.

FADDR RELATED BITS IN APSTATUS

APSTATUS RELATED BRANCH

BIT NAME CONDITION OPCODE(S)
OVF Set to "1" when the current BFPE

(bitc Q) FA or FM has OVERFLOWED (See (See note 1)

note 2). OVF remains latched until
cleared by the microprogram or

HOST-CPU.
UNF Set to "1" when the current BFPE
(bitc QL) FA or FM has UNDERFLOWED (See (See note 1)

note 2). UNF remains latched until
clearsd by the microprogram
or HOST-CPU.

FZ Set to "1" when the current BFGE
(bit 03) FA is equal to "0.0"; cleared BFGT
to "Q" when current FA is not BFNE

equal to "0.0".

FN Set to "1'" when the current BFLT
(bit 04) FA is negative; cleared to
"0" when current FA is non—
negative.
NOTES

l. Indicates that the named op=code tests
two or more conditions in order to
determine status of branch conditiom.

2. See FLOATING POINT SUMMARY-QVERFLOW.

4.3.7 Floating Point Adder Programming Considerations

4.3.7.1 Simple Examples

Any data source listed under Al may be combined with any data source
listed under A2. For example, to add a number from Data Pad X to
another from Data Pad Y:

FADD DPX, DPY "DPX + DPY

or to subtract a number read out of Data Memory from a coustant in
Table Memory:

FSUB TM,MD "TM - MD
A reverse subtract changes the order of the subtractiom, i.e.,
FSUBR TM,MD "MD - TM
subtracts a constant from Table Memcry from a number in Data Memory.
To negate a number from DPX:
FSUB ZERO, DPX "0.0 - DPX = -DPX
To take the absolute value of a number from Data Memory:
FABS MD "ABS(MD)

To fix (convert from floating—point to integer) a number from DPY:

FIX DPY "FIX (DPY)

4,3.7.2 Pipelining Considerations

The Floating Adder is a two-stage pipeline. A "FADD" instruction loads
the designated operands into the Al and A2 registers. The previous
contents of Al and A2 are pushed down the pipeline to the Buffer
register. One AP cycle later the new contents of Buffer have been
normalized and rounded, and are then available for use or storage
elsewhere.

The following imstruction sequence illustrates how the Adder pipeline
works, where A,B...G,H are floating-point numbers to be added:

Adder

Pipeline:

Buf- Adder
Time Cycle Instructiom 4l, A2 fer Result (FA)
0 1. FADD A,B A,B —— ——
167us 2. FADD C,D c,D A,B —e——
333as 3. FADD E,F E,F c,D A+B
SQ0ns &, FADD G,H G,H E,F C+D
667ns S. FADD — G,H E+F
833us 6. — —— G,H G+H

The "FADD" without arguments in cycle 5 is used only to push the last
computation 1into the Buffer Register, and hence to the end of the
pipeline. Thus, it is a dummy add in the sense that we don't care what
its arguments are, since we will never use the results. In the above
example we completed our floating~point adds in one microsecond.
During cycles 2-4, while we kept the pipeline full, adds were being
done every 167ns, the maximum rate.

The completed results, as they come out of the Adder pipelime, are
referred to by the mnemonic "FA." FA is dynamic, in the sense that it
must be used or stored elsewhere before being changed by the nexc
floating~adder instruction. The programmer has, however, complete
control over the pipeline. Arguments advance ONLY when pushed through
the pipeline by floating—adder imstructious.

4.3.7.3 Pipelining Example
A complete computational, sequence 1s to do the vector sum Ax=Ax+3x,

1i=0,1,2,3. Ax is stored in Data Pad X locations 0-3 and Bx 1s stored
in Data Pad Y location 0-3.

1. TFADD DPX(@), DPY(®) "Do Ag¢+Bg
2. TFADD DPX(1l), DPY(1) "Do A1+B;

3. TFADD DPX(2), DPY(2); DPX(®P)<FA "Do Az2+B2, Ag+Bg is now
done, save it in Ag

4, TFADD DPX(3), DPY(3); DPX(1)<FA '"Do A3+B3, A1+Bi1 is now
done, save it in A

5. TFADD DPX(2)<FA "Push Adder; save A2+B2in A:

6. DPX(3)<FA "Save A3;+B3 in 43

Below 1is a chart of this computation, showing the state of the Adder
pipeline and Data Pad after each instruction is executed.

Adder Pipeline Adder Data Pad X:

Cycle fAl, A2 Buffer | Result 0 1 2 3

1. Ag, Bg —-—— —_— Ag Al A Aj

2. A1, B1 Ap, Bog — Ao Al An As
. 3. A>, B2 A, Bi Ao+Bo Ao+Bo A Az A3

4 A3, B3 AZ: Bz A1+B1 Ao"'Bo A1+Bl A2 A3

5 -—- Aj, B, A,+B, Ag+By A1+B; A,+B, Aj

6. ——— A, By A3+B; Ag+By A;+B; A,+B, A3+B;

4.3.7.4 FADDR Branches Programming Consideratioms

The FADDR branches test "FA" one instruction cycle after it is ready
for use. That is, an Adder result may be tested ome cycle after it has
come out of the Adder pipeline. An example:

1. FSUB DPX,DPY "Do a computation

2. FADD "Push ‘the result out

3. DPX>FA "Save the result

4, BFEQ LOOP M"Test the result here (branch
"to location "LOOP" if result
"was zero '

Compound tests may be made also. Test MD to see if it is between a
lower limit contained inm DPX (1) and an upper limit in DPX (2), i.e.,
see if DPX(1)<MD<KDPX(2):

1. FSUBR DPX(2), MD "Do MD-DPX(2)

2. FSUB DPX(1l), MD "Do DPY(1l)-MD

3. FADD : "Push first test result
"out

4. BFGT BIG "Was too big

5. BFGT SMALL "Was too small

Be o o o "OoK

The branches are made relative to the current Program Source Address
(PSA), with a 5-bit displacement value. This means that the
conditional branch target address must be within =-20(octal) to
+17(octal) locations of the currenmt.instruction.

4.4 FLOATING MULTIPLIER (FMULR)

Discussion of the AP-120B FLOATING POINT MULTIPLIER (FMULR)
presented in the following wmanner:

l‘

General description and theory of operation

FMULR operation --— FMUL

FMULR operands —-— M1 and M2

FMULR result == FM

FMULR associated TEST, BRANCH, and ERROR conditions

FMUL Programming Consideratioms

is

4.4.1 General Description, Theory of Operatiom

The AP-120B FLOATING POINT MULTIPLIER (FMULR) is a three-stage
multiplication unit wusing 38-bit FLOATING POINT NUMBERS as its
operands.

4,4,1.1 The Operands (M1, M2)

The operands (contained in Ml and M2 registers) are selected by the
value contained in the respective M1l and M2 fields of the current
instruction word.

The available inputs to the two FMULR registers are described in detail
in Section 4.4.3 and in Ml, M2 of the instruction summary.

FMULR operands must not be unnormalized by more than one bit position
or an unnormalized, and thus possibly inaccurate, product will result.
With unnormalized operands the result will be ‘incorrect in that it will
be unnormalized by the sum of the number of unnormalized bit positions
of the two input arguments.

Since the FMULR intermally retains only 28 bits of MANTISSA Result (the
full 56-bit product is generated in order to produce a clean 28-bit
result), wuse of unnormalized operands can yield results with the loss
of many, if not all, of the bits of significance expected £for the
result.

4.4,1.2 The Result (FM)

The NORMALIZED, CONVERGENTLY-ROUNDED result 1s enabled onto the
FLOATING MULTIPLIER BUS (FM) ome cycle after the second subsequent
FMULR operation is initiated, (See Section 4.4.4)

After the initial "pipeline" set-up requirements have been satisfied,
the FMULR can produce significant FLOATING POINT MULTIPLICATION results

every instruction cycle (167 ns). Note that the AP-120B allows
simultaneous FLOATING POINT MULTIPLIER (FMULR) and FLOATING POINT ADDER
(FADDR) operations.

4.4.1.3 Theory of Operation
The process of multiplying two FLOATING POINT NUMBERS (FPN's) requires

that the true EXPONENTS of both operands be added and the MANTISSAS of
- both operands be multiplied. The sum of the EXPONENTS becomes the

4 - 59

EXPONENT of the result.

The AP-120B FLOATING POINT MULTIPLIER (FMULR) is a THREE-STAGE pipeline
which opetrates in the following manner:

* Stage One

In the first stage, the FMUL instructiomn loads the Ml and M2 operands.
A partial multiplication is then performed on the two MANTISSAS and the
EXPONENT true-values are added.

. . .

When a second FMUL is executed, the partial product and EXPONENT sum
are '"pushed" down into STAGE TWO by being latched in the second-stage
buffer.

* Stage Two

In the second stage, the MANTISSA wmultiplication operation 1is
completed.

When a third FMUL is executed, the preliminary result is "pushed" down
into the STAGE THREE buffer.

* Stage Three
In the third stage, the result is NORMALIZED and CONVERGENTLY-ROUNDED.

This result becomes available as FM on the next instruction cycle after
the third FMUL. THe UNDERFLOW or OVERFLOW bit of the APSTATUS REGISTER
will be set according to the condition of this result and may be tested
for significance one cycle after this result becomes available as M
(two cycles after the third FMUL), These two status bits, once set,
remain set until they are cleared via LDAPS (see I/0 group) or by a
RESET operation from the Host to the pamel reset. The interface reset,
however, does not affect the APSTATUS register.

Stated again, the result of an initial FMUL becomes available as FM
only after two subsequent FMULS have been initiated.

Example:
OPERATION (COMMENTS) RESULT AVAILABLE AS FM

tl FMUL DPX,DPY —————

£2 FMUL TM,MD = eeee————

t3 FMUL DPY(3),DPX(2) = ———————

th zz (FM = DPX * DPY)

t5 YAA (FM = DPX * DPY)

té FMUL (pushes pipeline) (FM = DPY * DPY)

t7 zZ (FM = TM * MD)

£10 zZ (FM = ™ * MD)

ZZ = Any non-FMUL instruction.

NOTE

The result of the FMUL operation initiated
at t3 is at tl0 still '"hanging" in the pipe-
line, where it will remain until ome cycle
after another FMUL is initiated.

4,4.2 The FMULR Operation -— FMUL

When the M field of the instruction word = 1l and VALUE field 1is not
used, a FLOATING MULTIPLY (FMUL) is initiated using the source operands
selectad by the octal value of the MLl and M2 fields of the inmstruction
word. (M1 * M2))

4,4.3 FMULR Operands (via M1, M2 registers)

The FMULR uses Ml and M2 registers as the input buffers for the
operands selected for the current FMUL operation. The programmer may
select one of four available sources to be used as the M1 REGISTER
operand and one of four available sources for the M2 REGISTER operand.
Source operands must not be UNNORMALIZED by more than one bit position
or- an incorrect (unnormalized) result will be obtained.

The list below shows the sources available for each respectiver FMULR
register. (See Ml, M2 for detailed descriptioms.)

M1 REGISTER M1 FIELD VALUE M2 REGISTER M2 FIELD VALUE
SOURCE (IN 0OCTAL) SOURCE (IN OCTAL)
™ 0 FA 0
DPX(idx) 1 DPX(idx) 1
DPY(idx) 2 DPY(idx) 2
™ 3 MD 3

For coding in ASSEMBLER FORMAT, the programmer need only specify FMUL
with the desired operand sources. Examples:

ASSEMBLER
FORMAT COMMENTS
FMUL "dummy' FMUL actually an FMUL FM,FA
FMUL FM, FA Multiply: Current (FM) * current (FA)
FMUL DPY(-3),DPX Multiply: (DPY(DPA-3)) * (DPX(DPA))

4.4.4 The FMULR Result (FM)

The FLOATING MULTIPLIER OUTPUT (FM) may be directed to:

L.
2.
3.
4,
5.

FMULR M1 REGISTER

FADDR Al REGISTER.

MAIN DATA MEMORY INPUT REGISTER (MI)
DATA PAD Y (DPY), or

DATA PAD X (DPX)

FM can set the UNDERFLOW OR OVERFLOW bits of the APSTATUS REGISTER.

These bits may be tested for significance omne AP cycle later (after FM

is wvalid).

NOTE

In the case of M OVERFLOW or UNDERFLOW,
a signed maximum or zero is forced as the
result. (See FLOATING POINT SUMMARY,
OVERFLOW/UNDERFLOW.)

4,4,5 FMUL Test, Branch, and Error Conditions

The FMUL results (FM) can set UNDERFLOW or OVERFLOW bits of the
APSTATUS REGISTER. These bits may be tested and branches made on their

condition one 1instruction cycle after the appropriate FADDR result is
enabled onto FA.

APSTATUS RELATED BRANCH
BIT NAME CONDITION OPCODE(S)
OVF Set to '"1" when the current FM has BFPE

(bit 0) overflowed, (See Note 2), OVF remains (See Note 1)

latched until cleared by the micro-
program or host computer.

UNF Set to "1" when the current FM result BFPE
(bit 1) has underflowed; (See Note 2), UNF (See Note 1)
remains latched until cleared by the
microprogram or host computer.

NOTES

l. Indicactes that the named op-code tests
two or more conditions in order to de-
termine status of branch condition.

2. See FLOATING POINT SUMMARY, OVERFLOW/
UNDERFLOW.

4.4.6 FMUL Programming Considerationms

4.4.6.1 Simple Examples

Any of the data sources listad under Ml may be multiplied by any of the

data sources in M2. For example, to multiply a number read <from Data
Memory by a constant from Table Memory:

FMUL TM,MD "TM * MD

or, to multiply a agumber in Data Pad X by another number in Data Pad Y:

FMUL DPX,DPY "DPX * DPY

4.4.6.2 Pipelining Counsiderations

The Floating Multiplier is a three—stage pipeline. Aan "FMUL"
instruction loads the specified operands into the M1 and M2 registers.
The two previous partially completed products are pushed down the
pipeline to Buffer 2 and Buffer 3 respectively. One AP cycle later the
new’ contents of Buffer 3 have been normalized and rounded, and ars then
available for use or storage elsewhere.

The following instruction sequence 1illustrates how the Multiplier

pipeline works, where A,B...G,H are £floating-point numbers to be
multiplied together. :

Multiplier

Pipeline
: M1, BUF- BUF~ Multiplier
Time Cycle Instruction M2 FER 2 FER 3 Result (FM)

0 1. FMUL 4,8 A,B === === ———
167ns 2. FMUL C,D C,D A,B === ==
333us 3. FMUL E,F E,F C,D A,B ==
500us 4. FMUL G,H G,H E,F C,D A*B
667ns S. FMUL .-~ G,H E,F C*D
833ns 6. FMUL == === G,H E*F
1.0us 7. —— - -—— G,H G*H

The "FMUL" in cycles S and 6 are dummy multiplies used to push the last
two computations to the end of the pipeline. In the above example we

completed four floating=point wmultiplies in l.Qus. During cycles 3-4,
while the pipeline was full, products were being done every l67ns, the
maximum rate.

The completed products as they come out of the Multiplier pipeline are

referred to by the mnemonic "FM." FM is dynamic, in that it must be
used or stored before being changed by the next "FMUL" instruction.

4 - 66

4.4,.6.3 Pipelining Example

A computational example is to square the elements in a vector:

Ay = Aq*ay, i=0,1,2,3.

[\ T

w

SO S TN

Below is a
Multiplier

Cycle
1.

2.

BN TR ¢) Y &) RN $N

FMUL DPX(9),DPX(9)

FMUL DPX(1) ,DPX(1)

FMUL DPX(2) ,DPX(2)

FMUL DPX(3),DPX(3);

FMUL; DPX(1)<FM

FMUL: DPX(2)<FM

DPX(3)<FM

chart of this

Multiplié;”Pipeline
{gl,mz Buffer 2 Buffer 3
Ag Ay ——m —_

A1 ,41 AgAg -—=

As, A7 AL,A1 Ag,Ag

Az A3 Ap, 4, Ay, 4,
-== Aj3,A; Az, A,
-—= === Az A3
-—= - A3, A3

DPX($)<FM

computation, showing
pipeline and Data Pad X after each instruction is executed.

Multiplier
Result (FM

67

Ay is stored in Data Pad X.

t

Do A2
"Do AZ?
"Do A2
"Do A2, save A2
3 0
"Save Af
"Save A2
2

"Save A2
3

the state of the

Data Pad X
y 0 1 2
Ag A Ay
Ay Ay Ay
Ag A, A,
AZ A, &
5 1 2
AZ A? a
o 1 72
AZ AZ AZ
0 1 2
AZ A? p2
0 1 2

4.4.6.4 Multiply—-Add Example

The full floating—-point computational power of the AP-120B is wutilized
when we consider a process involving both multiplies and adds. Form
the dot product of two eight-element vectors Ax Bx = AxBx, i = =4, =3,
eee L1, 2, 3 where Ax 1is in Data Pad X and Bx is in Data Pad Y:

Fi11 the
Multiplier
Pipeline

Fill the
Adder
Pipeline

Both
Pipelines
full

Empty the
Multiplier
Pipeline

Empty
the Adder
Pipeline

N

RAYA

10.

11.

12.

13.

14.

FMUL DPX (
FMUL DPX (
FMUL DPX (
(
z

FMUL DPX
FADD FM,

FMUL OPX (0),
FADD FM, ZERO

FMUL OPX (1),
FADD FM, FA

FMUL OPX (2),
FADD FM, FA

FMUL DPX (23),
FADD FM, FA

FMUL; FADD FM, FA
FMUL; FADD FM, FA

FADD FM, FA

FADD; OPX (3)<FA

FADD DPX (3), FA

FADD
DPX (3)<FA

69

"Do A-4B-.4
"Do A-3B-3
“Do A_2B.p

"Do A-1B-1. A-4B.g is

it

now done, save it in
adder.

"Do AgBg. A-3B.3 is now

1]

"

done, save it in the
adder.

"Do A1B1. A_2B.2 is now

"

coming out of the mul-
tiplier, and A_4B_4
from the adder, add
them together.

"Do ApBp. A_1B_1 is now

"

"

"

coming out of the mul-
tiplier, and A_3B_3
from the adder, add
them together.

"Do A3B3. AgBg is now

i

"

i

coming out of the mul-
tiplier, and (A.gB.a +
A_pB_p) from the adder,
add them together.

"A1By is coming out of the

it

i

multiplier, and (A_3B.3
+A_1B_1) from the
adder, add them to-
gether.

"AgBp is coming out of the

1

multiplier, and (A_4B.g4
+A_2B_2+AgBg) from the
adder, add them to-
gether.

"A3B3 is coming out of

]
n
1}

n

i1
"
H
1t

it

the multiplier, and
(A-3B_3+A_18.1+A1By)
from the adder, add
them together.

"(A.4B.4+A_ B o +AgBy+AnBy)

is coming out of the
adder, save it in DPX (3).

"(A.3B-3+AL1B_1+AgBp+hAgBy)

is coming out of the
?dder add it to
AgBatA 7B +AgBy+
PoBp) which was saved
in DPX (3).

"Push result out of Adder

"The result:

1

(A.gB_g+
N
+ 1 + +
igsgd 1nlDPX (3) 3 3

In accumulating the sum—of-products, the even term sum was kept in one
half of the adder pipeline and the odd term sum in the other half.
During cycles 5=7 when both pipelines were full, floating~point
mltiply—adds were being computed every 167ns. This is 12 million
floating=point computations per secound. 4 longer sum of products
calculation, involving more terms, would wmaintain this maximum
computation rate for nearly all of the computation loop. Here, in a
short calculation, wmost of the time was spent filling and emptying
pipelines. Even so, the seven adds and eight multiplies took 13 cycles
(2.5us) to complete, or am overall rate of 333ns per floating-point
miltiply=-add.

As a further aid in understanding the multiply—add interaction 1in the

above sum-of-products computation, the <chart below summarizes the
computation:

. Multiplier: Adder: Data Pad:
Cycle [M1,¥2 F™ | [al, A2 FA | 3
1. Ay ,Boy ——— — —_— _—
2. A_3,B_3 -—= —_— -— —_—
3. A7 ,BLy; -—= — — -—
4. A.1,Boy A3*B, A_LB_,,0.9 -— -_—
5. A4,Bq A_3*B_3; A.3B_,;,0.9 _— —
8. 4;,By A_,*B_, A_,B_, A ,B_, A_4B_, -—
7. 4,,B, A_1*A.; ALB_y,A3B_; A 3By -—
8. A3,By Ag*Ay 4¢Bg, ES, ES, _—
9, _— A1*A, A;By, 05, 0s, —
10 -— Ay, *A, 4,B,, ES; ES; -—
11. — A3*A3 A3B;, 08, 0S4 —
12, —_— —-— —-— ES, ES,
13. — _— 0S,, ES, 0s, ES,
14. -— —— -— —-— ES,
15. -— -— -— - 0S4 +ESy OSy+ES,
E3J is n terms of the even term Sum: A{Bj,i = -4,-2,0,2
O0S 1is n terms of the odd term Sum: AyB4,i = -3,-1,1,3

4.5 1/0 GROUP

The Op-Codes available within the I/O group of the AP-120B instruction
word provide the operations necessary for (1) DATA TRANSFERS between
the AP-120B and the HOST COMPUTER INTERFACE (HOST-CPU 1I/F) or other
ADDRESSABLE I/0 DEVICES through the programmed I/0 Sectiom and (2)
AP-120B INTERNAL REGISTER transfers to the PANEL BUS.

This summary is presented in sections related to the functional areas

of the AP-120B I/O STRUCTURE: (1) the VIRTUAL FRONT PANEL (PANEL), AND
(2) PROGRAMMED I/O OPERATIONS.

An outline of this summary is presented below:

I. AP-120B I/0 OPERATIONS
* General Overview
* Panel Operations
* Programmed I/O Operatioms
* DEVICE ADDRESSING

II. AP-120B VIRTUAL FRONT PANEL (PANEL)
* General Description
* Panel Operatious
* General Rules

III. PROGRAMMED I/0

a. HOST INTERFACE
* Control Register
* Formatter
* Direct Memory Access operations and related

transfer and control registers

* Programmed Interrupts

b. ADDRESSABLE 1/0 DEVICES
* TMRAM
* OTHER I/O DEVICES

IV. PROGRAMMING EXAMPLE

4.5.1 AP-120B I/0 OPERATIONS

4.5.1.1 General Overview

The AP-120B I/0 structure consists of two major areas of operatiom:

(1) VIRTUAL FRONT PANEL (PANEL) - through which the HOST=CPU -

may examine /or alter AP-120B INTERNAL REGISTERS and
Data Memories.

(2) PROGRAMMED I/0 - through which data transfers are accomplished
between the AP-120B and addressable I/0 DEVICES. The L1/O
DEVICES that may be addressed via programmed I/0 operations
are grouped in the following manner:

A. HOST INTERFACE
* CONTROL REGISTER (CTL)
* FORMATTER (FMT)
* DIRECT MEMORY ACCESS REGISTERS:
WORD COUNT REGISTER (WC)
HOST MEMORY ADDRESS REGISTER (HMA, HHMA)
AP-120B MEMORY ADDRESS REGISTER (APMA)

B. OTHER ADDRESSABLE I/0 DEVICES
* WRITABLE TABLE MEMORY (TMRAM)
* MEMORY BANK SELECT
* QTHER I/0 DEVICES

4.5.1.2 Panel Operations

The PANEL is similar in function ¢to the console of a stand-alone

computer and comnsists of three 16-bit registers: LIGHTS (LITES),
SWITCHES (SWR), AND FUNCTION (FN).

The PANEL is primarily under the control of the HOST-CPU. Through
PANEL operations, the HOST-CPU may examine and medify internal AP-120B
registers as well as dictate control functions related to AP-120B

program execution. The AP- 120B may deposit into the LIGHTS REGISTER
(LITES), and read the SWR.

Typically, the PANEL is used for bootstrap operations (loading and
starting programs) and for debugging user software by using hardware
breakpoints and/or by examining and wmodifying AP-120B registers and
memory. PANEL OPERATIONS are controlled by the condition of control
bits in the FUNCTION REGISTER (FN). (See Section 4.5.2 for more
details on PANEL operations).

4.5.1.3 Programmed I1/0 Operatioms

The operations available through PROGRAMMED I/0 will be discussed 1in
detail 1in Section 4.5.3 of this summary. The purpose of this section
is to present a general overview of the components and operations
involved 1in executing basic PROGRAMMED 1/0 transfers between the
AP-120B and ADDRESSABLE 1/0 DEVICES.

* Theory of Operations -

In contrast to the customary use of a DEVICE CODE FIELD within a given
I/0 1instruction word, the AP-120B uses a separate eight-bit register,
termed the DEVICE ADDRESS REGISTER (DA), whose current contents
designate the particular I/0 DEVICE involved in the current AP-120B I/0
operation. Because DA 1is a separate register, the programmer must
properly condition the contents of DA at least ome instruction before
initiating an I/0 operation to the desired I/0 DEVICE.

Generally, the designated I/0 DEVICE communicates its state of
availability to the AP—120B (whether or not it is ready to receive or
send data) by the current state of its I/0 DATA READY FLAG (IODRDY).
When IODRDY of the desigmated I/0 DEVICE is equal to 1, then the I/0
DEVICE is READY for the current 1/0 transfer operation.

Certain Op-Codes within the AP-120B 1instruction set are capable of
testing the state of a device's IODRDY FLAG before executing a given
I/0 Op-Code. When these Op—Codes are used, the AP-120B will execute a
SPIN operation (See note) until IODRDY(DA) is equal to 1, at which time
the specified I/0 transfer will be executed.

The particular DATA PATHS employed in an I/O operation depend on which
DATA-TRANSFER MODE is being used. Generally, with the exception of the
DIRECT-MEMORY ACCESS MODE (DMA), data to be OUTPUT from the AP-120B
must be placed onto the DATA PAD BUS (DB) where it 1is automatically
placed onto the INBS by the AP-120B I/0O structure and OUTPUT to the
addressed 1/0 DEVICE. Data input to the AP-120B must be concurrently
transferred onto DB (via use of a DATA PAD GROUP OP-CODE) from the I/0
BUS (INBUS) where it is placed by the sending I/O DEVICE.

NOTE

A "SPIN" will suspend all on-going program
operations within the AP-120B until the
IODRDY(DA) FLAG = 1. Note, however, that
an infinite SPIN loop will occur if the
IODRDY(DA) never equals l. Do not use I/0
SPINS during overlapped main data accesses
(See Section 4.7).

* In/Out Operations

Basically, there are four types of PROGRAM CONTROL INPUT OR OQUTPUT
instructions. The FROGRAMMER may: (1) unconditionally tramnsfer DATA
(via IN, 0UT); (2) SPIN until the I/0 DEVICE is READY (IODRDY(DA)=1),
and then transfer DATA (via SPININ, SPNOUT); (3) transfer DATA then
change the contents of DA (INDA, OUTDA); or (4) SPIN until

IODRDY(DA)=1, then transfer DATA, and then change the contents of DA
(SPINDA, SPOTDA). (See IN/OUT field for more details.)

Examples of typical non-DMA PROGRAMMED I/0 operatioms are given below:

Assume the S—-PAD REGISTER 5 equals the desired 1/0 DEVICE ADDRESS.

TO INPUT DATA INTO AP-120B:

ASSEMBLER FORMAT (MEANING)

MOV 5,5; LDDA;DB=SPFN (Set‘up DEVICE ADDRESS)

IN; DPX(-3)<INBS (INPUT data onto INBUS and
transfer it to DPX(-3) via
DB.)

or, TO INPUT BY TESTING IODRDY(DA)
MOV 5,5; LDDA;DB=SPFN (Set'up DEVICE ADDRESS)
SPININ; DPX(=3)<INBS (SPIN until IODRDY flag is

set, then INPUT onto

INBS and transfer it to
DPX(-3) via DB.)

TO OUTPUT DATA AP-120B:
MOV 5, 5;LDDA;DB=SPFN (Set up DEVICE ADDRESS)
QUT ; DB=TM (Put DATA WORD onto DB,
then OUTPUT. THE 1/0 LOGIC
will place the data word
onto INBS whers it will be
QUTPUT to the I/0 DEVICE.)

TO QUTPUT BY TESTING IODRDY(DA)

MOV 5,5;LDDA;DB=SPFN (Set=-up DEVICE ADDRESS)

SPNOUT ;DB=TM (SPIN umtil I/0 DEVICE 1is
ready to accept the DATA
WORD. When ready, the I/0
logic will place the DATA
WORD onto INBS where it will
be OUTPUT to the I/0 DEVICE.)

or, LDDA; DB=DEV (Set device address)
QUTDA; MOV 5, S (Qutput to first device
and set DA to SPFN.)

In order to execute an INPUT or OUTPUT operatiom, the object I/0 DEVICE

& - 74

must be selected by placing its DEVICE ADDRESS into the AP-120B I/0
DEVICE ADDRESS REGISTER (DA). DA is an eight-bit register affording a
range of 256 different I/0 DEVICE ADDRESSES. The lower DEVICE
ADDRESSES are dedicated in the following manner:

I1/0 DEVICE DEVICE ADDRESS

HOST INTERFACE
DMA REGISTERS:
WORD COUNT REGISTER (WC) 0
HOST MEMORY ADDRESS REGISTER (HMA) 1
CONTROL REGISTER (CTL)(See Note 1) 2
AP-120B MEMORY ADDRESS REGISTER (APMA) 3
FORMATTER (FMT) 4
WRITABLE TABLE MEMORY (TMRAM)(See Note 2) 5

MEMORY ADDRESS EXTENSION (MAE) 30
APMA EXTENSION (APMAE) 31
MASK (including MODE and I1/0) 32
ADDITIONAL DEVICE ADDRESSES are:

First IOPl6 10-14

Second IOPl6 20-24

Parity Option 33-37

First PIOP 100,101,110~-117

NOTES

l. CTL register provides control functiomns for
other HOST-INTERFACE functions besides DMA.

2. HHMA uses device address 5 in some systems.
However, if both TMRAM and HHMA are needed,
then HHMA is moved to another address which
depends upon the system's configurationm.

* DA Modification Instructions

The current contents of the DEVICE ADDRESS REGISTER (DA) determine
which I/0 DEVICE will be involved for a current AP-120B I/0 operatiom.
DA may be altered, via programmed instruction, by use of one of the
following OP-CODES. (Effective as of the next imstructiom cycle).

QP-CODE

LDDA

ouTDA

SPOTDA

INDA
SPINDA
SNSADA

SPNADA

SNSBDA

SPNBDA

Additionally,

1/0 SuUB-
FIELD

LDREG

INOUT

INOUT

INOUT

INCUT

SENSE

SENSE

SENSE

SENSE

certain OP-CODES within the SENSE field permit either of
two condition limes (A,B) to be enabled into the IODRDY FLAG. (See
SENSE field) Conditioms "A" and "B" are device dependent and have no a

prior descriptioms.

OCTAL VALUE

7

2

[¢)Y

76 : |

OPERATION

(DPBS)>» DA

Perform output to
current I/0 DEVICE(DA) then
(SPFN)> DA

Spin until IODRDY(DA)=1,
then QUTPUT DATA, then
(SPFN)> DA

Perform INPUT from
1/0 DEVICE(DA), then (SPFN)> DA

Spin until IODRDY(DA)=1l, then
INPUT DATA, then (SPFN)3> DA

Enable CONDITION "A" to
IODRDY(DA), then (SPFN)> DA

Test loop for CONDITION "A":
"A" is continually enabled into
IODRDY(DA) while the AP-120B
SPINS. When (IODRDY(DA)) = 1,
then (SPFN)s DA

Enable CONDITION '"B"
to IODRDY(DA), then (SPFN)= DA

Test loop for CONDITION "B':
"B" is continually emabled into
IODRDY while the AP-120B SPINS.

When (IODRDY(DA)) = 1, then
(SPFN)> DA

4.5.2 Virtual Front Panel (PANEL)

4.5.2.1 General Description

The AP-120B I/0 STRUCTURE contains a VIRTUAL FRONT PANEL (PANEL)
consisting of three 16-bit registers = (1) SWITCHES (SWR), (2) LIGHTS
(LITES), AND (3) FUNCTION (FN). The registers are under control of the
HOST-CPU via HOST-INTERFACE. The HOST may examine and/or set these
registers at any time, irrespective of the state of the AP-120B. The
AP-120B, however, may only DEPOSIT into the LITES register and only
READ the SWR (See HOSTPNL field of Special Operations group in

instruction descriptions). A brief description of the PANEL registers
are given below:

REGISTER DESCRIPTION

SWITCHES (SWR) (16 Bits) Used to enter DATA and ADDRESSES
into the AP-120B. Can be read or
written by HOST-CPU or read by AP-
120B programmed instruction.

LIGHTS (LITES) (16 Bits) Used to display the contents of
internal AP-120B registers. Can be
read by HOST-CPU and written by AP-
120B programmed instruction.

FUNCTION (FN) (16 Bits) Provides VIRTIUAL FRONT PANEL
control operations. Can be read
or written by HOST-CPU only.

4.5.2.2 Panel Operations

The control bits of the PANEL FUNCTION REGISTER (FN) determine the
current operation(s) of the VIRTUAL FRONT PANEL. The available PANEL
operations may be classed into two groups = (1) AP-120B PROGRAM

CONTROL, and (2) AP-120B INTERNAL REGISTER EXAMINATION and
MODIFICATION.

A detailed explanation of available PANEL operations and related
control bits of the FUNCTION REGISTER (FN) 1is given below. Unless

otherwise noted, the active state of the appropriate FN control bit is
a "l".

PANEL FUNCTION REGISTER FORMAT

STOP

1 2 3 4 5 6 7 8 2110 11 {12 13 14 13
START | CONT | STEP | RESET | EXAM | DEP | BREAK INC WORD REGISTER SELECT

When the AP-120B is running only the STOP and RESET panel functiomns are
valid. The other panel functions can only be exercised after the

AP-120B has been halted. BREAK and REGISTER SELECT can be altered and
have an effect.

PANEL OPERATIONS AND RELATED FN CONTROL BITS
AP-120B PROGRAM CONTROL

RELATED FN
OPERATION REGISTER BIT(s) EFFECT

STOP/HALTED BIT "Q" STOP AP-120B program execution upon
completion of the current instruc-=
tion. EN bit "0" reflects the
current state of the AP-120B when
examined by the HOST. ("1" equals
AP-120B HALTED, "0Q'" = AP-120B RUN-
NING). Setting this bit will stop
the AP. Note that if AP-120B is
currently executiag a "SPIN" con~-
ditiom, the halt will be effective
only after the "SPIN" has been
completed.

START BIT "1" START AP-120B program execution at
the program location specified by
the contents of the SWITCHES (SWR)
register. The preferred first
instruction should be a NOP to
to avoid timing sequence.

CONT BIT "2" CONTINUE AP-120B program execution
at the program location pointed to
by the current contents of the PRO-
GRAM SOURCE ADDRESS REGISTER (PSA).

STEP BIT "3" Single STEP. The AP-120B instruc-
tiom at the program location point-~
ed to by the current contents of
PSA will be executed. The PSA
will then be advanced to point to
the next program location.

4 - 78

RESET

BREAK

REGISTER
SELECT

PSA

BIT "4"

BIT |'7"

CORRESPONDING
OCTAL VALUE
IN REG SEL
FIELD

w

RESET and HALT the AP-120B immed-
iately. Clear S—-PAD Register "O"
(SP(0)) and set current SPFN to
SP(SPFN); clear APSTATUS Register,
reset and clear MAIN DATA MEMORY
TIMING. Inoperative if AP-120B
caught in amn I/0 SPIN,

BREAKPOINT - valid only if PSA,
MA, or TMA is specified in the
REGISTER SELECT field (FN bits
12-15). This causes AP-120B pro-
gram execution to halt when con-
tents of selected register equal
the value set into SWR register.
The exact timing of a given BREAK
operation is dependent on the
ADDRESS REGISTER selected.

EFFECT

Halt AP-120B program execution on
next instruction following the
one whose address is contained

in SWR. PSA will point to the
instruction following it.

Halt AP-120B program execution
after executing the next instruc-—
tion following the one that refer-
enced the memory location whose
address is contained in SWR. PSA
will point to the second in-
struction following the one

which caused the breakpoint.

79

AP-120B REGISTER EXAMINATION AND MODIFICATION

RELATED FN
OPERATION REGISTER BIT(s) EFFECT

EXAM BIT "5" EXAMINE the register or memory
selected by the octal value con-
tained in the REGISTER SELECT field
(FN bits 12-15).. Display to LITES
that PORTICON of the selected
register or memory as determine by
the WORD field (FN bits 10-11).

DEP BIT "8" DEPOSIT the countents of the
SWITCHES (SWR) into the register

registar or memory selected by the
value contained in the REGISTER

SELECT field (FN bits 12-15). The
deposit will occur to that portiom
of the object register or memory
selected by the value con-

tained in the WORD FIELD (FN

bits 10-11).

INC BITS 3-9 Increment either MA, TMA, or DPA-
: depending on current value—

following completion of the other
concurrently specified PANEL
operations. This operation al-
lows sequential memory locations
to be examined or deposited. Note
that MA pre—increments on the
concurrent DEPOSIT into MD.

INC OCTAL ADDRESS REGISTER TO BE
VALUE INCREMENTED

0 NONE

1 MA (MAIN DATA MEMORY ADDRESS
REGISTER

2 DPA (DATA PAD ADDRESS REGISTER)

3 TMA (TABLE MEMORY ADDRESS
REGISTER

WORD BITS 10-11 Selects which portion of a

register or memory is deposited or
examined. The WORD field is used
in conjunction with REGISTER SELECT
(FN BITS 12-15). Portioms are
selected in the following wmanner.

4 - 80

WORD OCTAL

VALUE 1S: REGISTER SELECTED BY CURRENT VALUE IN FN BIT 12-15 IS:
16 BITS
OR LESS 38 BITS 64 BITS (PROGRAM SOURCE)
0 ALL % PS(QUARTER ZERO)
(Ps(Q0));
(PS(bits 0-15))
1 *% EXPONENT bits 02-11 PS(QUARTER ONE)
right justified, (Ps(Ql));
zero filled. (PS (bits 16=31))
2 K% HIGH MANTISSA - PS(QUARTER TWO)
MANTISSA bits 00-11; (Ps(Q2)); (Ps
right justified, (bits 32-47))
zero filled.
3 *%* LOW MANTISSA - PS (QUARTER THREE)
MANTISSA bits 12-27. (Ps(Q3)); (PS (bits
48-63))

**Not applicable

REGISTER
SELECT BITS 12-15 Selects which register, memory, or data path
will be examined or deposited for the cur-
rent PANEL OPERATION. Used in conjunction
with WORD field, (FN bits 10-11) by OCTAL
VALUE, in the following manner:
REGISTER SELECT REGISTER (Field bit
OCTAL VALUE SELECTED length) COMMENTS
0 PSA (12) PROGRAM SOURCE ADDRESS
REGISTER
1 SPD (&) S-PAD DESTINATION
ADDRESS REGISTER
2 MA (16) MAIN DATA MEMORY
ADDRESS REGISTER
3 ™A (16) TABLE MEMORY ADDRESS
REGISTER
4 DPA (6) DATA PAD ADDRESS

REGISTER (DPA is 6 bits
wide even though DPA
has 32 registers.)

10

11

13

14

15

16

17

SPFN(16)
(See Note 1)

SP(SPD)(16)
(See Note 2)

APSTATUS (16)

DA (8)

PS(TMA) (64)

INBS(DA) (38)

0

DPX(DPA-4) (38)

DPY(DPA-4) (38)

MD(MA) (16)

T™(T™A)

S-PAD FUNCTION
currently enabled. May
be EXAMINED ONLY.

S-PAD DESTINATION
REGISTER currently
specified by SPD.
May be DEPOSITED
ONLY.

AP-120B INTERNAL STATUS
REGISTER

DEVICE ADDRESS REGISTER

PROGRAM SOURCE WORD
specified by the AD-
DRESS currently
contained in TMA.

Read input data from
1/0 device specified by
DA register. May be
examined only.

Not applicable

DATA PAD X location
specified by the cur-
rent contents of DPA
minus 4.

DATA PAD Y location
specified by the current

-contents of DPA minus 4.

MAIN DATA MEMORY lo-
cation specified by the
current countents of MA.~

Not applicable

TABLE MEMORY locatiom
specified by current
contents of TMA. May
be EXAMINED ONLY.Note
one cycle delay in
examination after
change of TMA.

NOTES

l. Valid only during EXAMINATION operation (FN

bit 5 = 1),
2. Valid only during DEPOSIT operation (FN bit
6 = l)‘
General Rules - Panel Operations -~

* STARTING the AP-120B (via START or CONT)

The PANEL START function can be used to start the AP-120B program with
the following restrictiom:

The FIRST INSTRUCTION executed by the AP-120B following a START command
MUST NOT alter PSA in any manner other than to advance it to the next
sequential instruction. The user should not use a BRANCH or JUMP
instruction or any instructiom within the SPEC or I/0 groups of the
instruction word. Accordingly, the preferred first instruction 1is a
NOP.

The PANEL CONT function 1s recommended to start the AP-120B, in the
following manner:

l. Set SWR to the starting address and execute a DEP into PSA.

2. Set SWR to a desired breakpoint (See notz) and execute a CONT.

NOTE

This places the necessary breakpoint code
into the user's program should he need to
debug the program.

* STOPPING the AP-120B (via STOP or BREAK)

On all stopping operations except RESET, the AP120B will stop with PSA
set to the ADDRESS of the next instruction. Since SPFN is current, it
will be set according to the instruction that the PSA 1is currently
pointing to. Otherwise, the instruction pointed to by PSA is not
executed and will execute correctly when the user STEPS or CONTINUES
(except for MD timing).

* MAIN DATA TIMING CYCLE

The MD memory timing is designed so as to preserve the
current state of the timing sequence when a STOP or BREAK
is executed. MD timing will be in its proper sequence
when the user STEPS or CONTINUES.

Note that the user must not examine or alter either
MD or TM, nor should he permit a DMA transfer while the
AP-120B is stopped, if MD timing is suspended. ™ will
also be upset by any panel operation other than continue
if one cycle after SETTMA, INCTMA, DECTMA or LDTMA.

To determine condition of MD memory timing: If PSA is
pointing to either the first or second instruction loca=
tion following a SETMA, INCMA, DECMA, or LDMA, the memory
cycle is suspended in mid—operation and the restrictions
stipulated in the nots above apply.

* RESETTING the AP-120B (via RESET)

The user may not correctly STEP or CONT following execution of a PANEL
RESET. MD memory timing is cleared and APSTATUS is reset. Also SP(0)
is c¢leared and SPFN is set to SP(SPD) with SPD=0. Thus the S—-PAD

registers can be examined by setting SPD (DEP to SPD) and examining
SPFN.

* STEPPING the AP-120B (via STEP)

The wuser may alter or examine any register or memory except for

restrictions concerning MD MEMORY TIMING and TM timing as already
discussed.

* EXAMINING or DEPOSITING

The user may examine and/or deposit into any available field withia the

restrictions concerning MD MEMORY and TM TIMING and the conditionms
listed below:

* The current contents of TMA are used as a pointer to
indicate which PROGRAM SOURCE locatiom is to be examin=-
ed or deposited.

* TO EXAMINE SP(SPD) - since SP(SPD) may not be examined

directly,

the user may execute a PANEL RESET to force

an SP(SPD) to SPFN and then examine SPFN (This clears
SP(0)). Alternatively, this may be accomplished with
the following micro—-code sequence:

MOV #0,0

RSPFN; LDSPNL 0
HALT

NOP

This will set SPFN=SP(SPD) without clearing SP (0).

Note that a PANEL RESET will also clear MD TIMING and APSTATUS.

*T0 EXAMINE OR DEPOSIT INTO MD - a MEMORY READ CYCLE is ini-

tiated by the user executing a DEP into MA.

A MEMORY WRITE

CYCLE is initiated by the user executing a DEP into MD.

Therefore to deposit into a given MD location, and then
examine that MD location, the following sequence must be

performed.

OPERATION

(1) Set MA to
location X

(2) Examine MD

(3) Deposit into
MD(X) (This
writes into
MD at pre-
viously set
MA)

(4) SET MA to
location X

PANEL REGISTER CONDITIONS

LITES

Will reflect
contents
of MD(X)

MD(X)

SWR

Set to
address X

——

Set to value
desired to be
deposited into
WORD (bits 10~

Set to address
X

- 85

FN

DEP (BIT 6) =1
REG SEL (bits 12-
15) =2 (MA)

Exam FN=1002(8)
(bit 35) =1

REG SEL 15
WORD = 1, 2 or 3

[

DEP (bit 6) =1
REG SEL (bits
12-15) = 15(MD)

10-11) = 1, 2 or
3

DEP (bit 6) =1
REG SEL (bits 12-
15) = 2(MA)

WORD (bits 10=-
11) =0

(5) Examine MD Will reflect — === Exam (bit 5) =1
new contents REG SEL = 15
of MD(X) WORD = 1,2, or 3

* TO EXAMINE TM - because the TABLE MEMORY hardware
requires two PANEL operations to retrieve a requested
™ location, the following sequence must be performed.

PANEL REGISTER CONDITIONS

OPERATION
LITES SWR FY
(1) set ™A (To — Address X DEP (bit 6) =1
initiate exa- REG SEL (bits
aine TM(X) 12-15) = 3(T™A)
(2) Set TMA —— Address X Same as above

("Dummy PANEL

operation to

retrieve con- '
tents of T™M(X))

(3) Examine TM (TM(X)) —— Exam (bit 5) =1
REG SEL =3
WORD = 1,2 or 3
NOTE

WRITABLE TABLE MEMORY (TMRAM) may be deposited

through PANEL operations. The user must resort
to program L/0 Op-Codes in order to WRITE into
TMRAM.

* USING THE INCREMENT FUNCTION (via INC) |

This function is valid only when either Exam, Dep, RESET or START is |

selected in the FN. The timing of incrementation is dependent on the \
operation specified.

Assume INC'= 1, 2, or 3

REGISTER 1
SELECTED IN PANEL ‘
INC FIELD OPERATION EFFECT
DPA EXAM or DEP MD increments after the specified
™A DE?P operation.
|
\
MA DEP MD Increments before executing current

DEP operation. ‘

4 - 86 1

4.5.3 PROGRAMMED I/0

ADDRESSABLE 1/O DEVICES capable of I/0 transfer operations via use of
the AP-120B PROGRAMMED 1/0 may be classed in the following manner:

A. HOST INTERFACE and related REGISTERS

B. Other ADDRESSABLE I/0 DEVICES

4.5.3.1 HOST-INTERFACE and related REGISTERS

* General Description

The HOST-INTERFACE acts as a buffer between AP—-120B and HOST-CPU. The

HOST-INTERFACE is capable of both programmed-control 1/0 (See Note 1)
and DIRECT MEMORY ACCESS (DMA) operations. It «consists of the

following AP-120B ADDRESSABLE REGISTERS:

AP-120B DEVICE
DEVICE ADDRESS

WORD COUNT REGISTER (WC) (16 bits)

HOST MEMORY ADDRESS REGISTER (HMA) (16 bits)

CONTROL REGISTER (CTL) (16 bits)

AP-120B MEMORY ADDRESS REGISTER (APMA) (16 bits)
FORMATTER (FMT) (38 bits)

High Host Memory address (HHMA)(2-4 bits)(See Note 2)

ur S WP - O

NOTES

1. PROGRAMMED CONTROL I/0 - 1/0 data transfer
operations are accomplished through sequential
program instruction execution. Although the
DMA control registers may be accessed through
PROGRAMMED CONTROL 1/0, the actual DMA transfer
operation when enabled is autonomous.

2. HHMA is applicable only for those HOST CPU's
having more than 16 bits of DMA address.

* Control Register (CTL)

CTL is a l6-bit I/O ADDRESSABLE REGISTER (DA = 2). CTL contains the
condition bits that control most HOST-INTERFACE-related I/0 operations.
CTL can be read anytime by the executing AP-120B program without regard
to HOST-CPU activity. CTL can be writtem by either the HOST-CPU or

* AP-120B. However, if both attempt to write CTL at the same time, the

HOST-CPU will be given priority.
The operations directed by CTL fall into the following groups:

1)Mode and direction of transfer (DMA or PROGRAMMED -
CONTROL I/0)

2) Type of DATA FORMAT and I/O PATH SELECTION (via
FORMATTER)

3) Transfer STATUS and ERROR BITS, and

&) PROGRAMMED~INTERRUPT enable bits

CONTROL REGISTER FORMAT

1 2 3 4 S 6 7 8 9 10 11 12 13{ 14
INTR | IAP IH IH| IH | FERR | DLATE | CC| AP WRT DEC | DEC | FMT
AP WC | HALT| WC | ENB DMA | HOST| APMA| HMA

15

START

A description of CTL bit operations is given below. Further details of
particular CTL bit functions will be discussed in sections related to
the I/0 DEVICES which are controlled or monitored by the CTL register,
All bits are READ/WRITE except as noted.

Bit O WC=0 Indicates that the Word Count Register is zero. Note
that WC is decremented only during DMA transfers to/
from Host Memory. Bit O is a Read only bit. It should
not be used to monitor DMA activity.

Bit 1 INTRAP Set the INTRQ (Interrupt Request) flag in the AP-120B.

Bit 2 IAPWC Set INTRQ (Interrupt Request) flag in the AP-120B
when the DMA transfer is done.

Bit 3 IHALT Enable a Host Interrupt when the AP-120B halts.

Bit 4 IHWC Enable a Host Interrupt when the DMA transfer is done.

Bit S IHENB Interrupt Host Enable. " Interrupt Host if AP-120B
attempts to set this bit, or if AP-120B executes an

"INTEN" instruction (See I/O field). This bit can
actually be written only by the Host.

4 - 88

Bit 6

Bit 7

Bit 8

Bit 9

Bit 10

Bit 11

Bit 12

FERR

DLATE

ccC

APDMA

WRTHOST

DECAPMA

DECHMA

Format Error. Indicates that EXPONENT UNDERFLOW or
OVERFLOW occurred in conversion from AP-120B Format to
Host Floating—Point Format. (Read only) Can be set
only during transfers with CTL10=1 and FMT=2 or 3.

Due to the Pipeline nature of the FORMATTER, the next
two words past the end (before the beginning if CTLll=
1) of the DATA ARRAY will be loaded into the FORMATTER
at the end of the transfer. In order to avoid spurious
setting of FERR, the programmer must insure that

these two words are either zero or are FPN's within
the allowable dynamic range of formats 2 or 3.

Data Late. Indicates that the AP-120B did not empty/
load the FORMAT BUFFER before the Host attempted to
reload/read it. On some Hosts this bit also indicates
an attempt to access non—existent Host memory. In the
latter case, the DMA transfer is terminated (PDP-11
only). Bit 7 is a read-only bit that is cleared by
an interface reset or by setting HDMA START (CTL

15). It is not cleared by a panel Reset.

Consecutive Cycle. Block DMA tramnsfers to/from Host
memory will occur without interruption. On typical
Hosts, the Host CPU will be locked out but other
higher priority DMA devices will still have access
to Host memory. Some Host interfaces are equipped
with a hardware selectable consecutive cycle

counter that limits the number of cycles stolen

in a burst.

Allows the interface to perform DMA transfers to/
from AP-120B memory. Depending on the direction of
transfer, a MAIN DATA MEMORY cycle is initiated every
time the Host finishes reading or loading the format
register, whether via DMA or program comntrol. On the
AP-120B side, the format register is loaded from the
MAIN DATA BUS instead of the DATA PAD BUS.

Write to Host. This bit controls the

direction of transfer. If set, data is read from the
Ap—-120B, passed through the FORMAT REGISTER, and
written to the Host. If clear, the direction of
transfer is reversed.

Decrement APMA, If set, APMA is decremented during
DMA transfers to/from Ap-120B MAIN DATA MEMORY. If
clear, APMA is incremented.

Decrement HMA. 1If set, DMA is decremented during

DMA transfers to/from Host memory. If clear, HMA
is incremented.

Bits 13

& 14 FMT Format Register Control. (See FORMATTER, uext
section).

Bit 15 HDMA Host DMA Start. Initiate DMA transfers to/from Host
start/ memory. When read, the state of this bit reflects the
busy status of the Host DMA activity ("1" if active, "0"
if inactive). Transfers continue until WC=0. Writing a
"0" in this bit with DMA active has no effect on the
transfer as long as the state of CTL (bits 8-14) is
not changed. The programmer should aot, under any
circumstances, write a "1" in this bit with the DMA
active. This is the bit that should be read in
order to monitar DMA activity.

* Formatter (FMT)
The FORMATTER consists of the following:

* The necessary decoding logic to interpret the
types of ongoing I/0 transfer (via CTL bits 9,
10, 12, 13 and 14)

* A 38 bit double-buffered register, and

* An I/0 DATA READY FLAG for AP-120B operations

FMT has an I/0 DEVICE ADDRESS of &

The FORMATTER is a HOST-INTERFACE transfer buffer which under the
direction of selected bits of the CONTROL REGISTER (CTL), performs the
following functions in order to coordinate the 1/O transfer operations

specified (whether via PROGRAMMED I/0 or DMA):
1) FORMAT CONVERSION
2) INPUT BUS SELECTION

3) TRANSFER-DIRECTION CONTROL and ORDER of
DATA-WORD ASSEMBLY

4) 1/0 TRANSFER TIMING COORDINATION via its
IODRDY flag :

(1) FORMAT CONVERSION

The following FORMAT CONVERSION operations may be performed for a given
1/0 TRANSFER between the AP-120B and the HOST-CPU. Note that the
function selected is entirely dependent on the conditions of bits 13
and 14 of the HOST-INTERFACE CONTROL REGISTER (CTL). The programmer
must insure that the CTL bits are configured in a wmanner consistent
with the particular I/0 transfer being executed.

VALUE in CTL FORMAT CONVERSION
Bits 13-14 OPERATION
0 32-bit integer. No format conversion. Used to

transfer integers of half-words.

1 16-bit integer. l6-bit integers from the Host are
converted to unnormalized 38-bit AP-120B FPN's.
Low l6-bits of AP-120B FPN are sent to Host.

2 Conversion of "SIGN-MAGNITUDE MANTISSA
with BINARY EXPONENT'" format to/from
AP-120B Floating Point format. Includes
logic to handle '"Phantom Bit'" and TWO's
COMPLEMENT formats (See Notes l and 2).

3 Conversion of IBM 32-bit format to/from
AP-120B format. IBM format can be specified
to be either SIGN-MAGNITUDE or TWO's
COMPLEMENT (See Notes 1 and 2).

NOTES

l. For format types 2 and 3, the FORMATTER has
the necessary logic to detect OVERFLOW and
UNDERFLOW on conversion from AP-120B format

and to force a signed maximum quantity omn
OVERFLOW or Floating=Point Zero on UNDERFLOW.

2. Operation may vary depending on Host=CPU
used. Generally, one of either format 2 or
3, will be adapted to the single precision
Floating=~Point format of the Host in
question.

(2) INPUT BUS SELECTION

One of the following formatter input busses is selected by FMT
depending on the I/O operation being performed (as determined by CTL
bits 9 and 10).

CTL CTL
BIT 9 BIT 10 INPUT BUS SELECTED BY FMT
0 OR 1 0 HOST DATA BUS

0 1 AP-120B I/0 BUS (INBUS)

1 1 AP-120B MAIN DATA OUTPUT

(3) DIRECTION or TRANSFER and ORDER of DATA-WORD ASSEMBLY

Bit 10 of CTL (WRTHOST) determines which direction the FMT will
transfer. (Whenm WRTHOST = 1, the transfer 1is to HOST=CPU; when
WRTHOST = 0, then the transfer is to AP-120B).

The FMT may assemble bi-directional 16-bit words <from the HOST-CPU
before transferring them to the AP-120B, (depending on the format
selected via CTL bits 13 and 14). The order in which the half-words
are assembled is dependent on the condition of CTL bit 12 (DECHMA). 1If
DECHMA = 1, the HOST-CPU DMA 1I/F is assumed to be going backwards
through host memory and the FMT will expect to receive a LOW WORD
fcllowed by a HIGH WORD and will assemble the two words accordingly.
If DECHMA = 0, then the order of assembly is reversed (See Note).

NOTE

FLOATING POINT NUMBER ARRAYS are always
expected to be stored in FORWARD ORDER;
that is, with the LOW WORD portion of
the DATA-WORD stored in the next higher
numbered host memory location than the
HIGH WORD portion.

(4) I/0 TIMING COORDINATION via IODRDY

FMT will generate an I1/0 READY respomnse (via IODRDY = 1) to an
appropriate AP-120B IN/OUT or SENSE INSTRUCTION (with DA = &4). If
IODRDY = 1, then the FMT is ready to either:

(1) Receive the DATA~WORD from the AP-120B (when CTL bit 10
(WRTHOST = 1), or

(2) Send FORMATTED DATA to the AP-120B (when CTL bit 10
(WRTHOST) = 0).

Note that to iasure correct execution of a given I/0O transfer
operation, all functions of FMT must be properly selected. (i.e., all
appropriate CTL bits must be correctly conditiomed).

* Direct Memory Access (DMA)

The AP-120B is capable of both STANDARD-DMA and PARTIAL-DMA operatioms
between the AP-120B and HOST-CPU. STANDARD DMA 1is defined as
autonomous (outside of programmed - 1/0) block transfers between
AP-120B MAIN DATA MEMORY (MD) and HOST-CPU MEMORY, via HOST- INTERFACE
FORMATTER (FMT). Partial DMA is a mixed mode of DMA and PROGRAMMED -
I1/0, available in the following combinatioms:

1) HOST~CPU MEMORY via DMA to FMT, via PROGRAMMED - I/0 to
AP-120B

2) HOST-CPU via PROGRAMMED I/0 to FMT, via DMA to AP-120B
MAIN DATA MEMORY (MD).

3) AP-120B MD via DMA to FMT, via PROGRAMMED I/0 to HOST-CPU.
4) AP-120B PROGRAMMED I/0 to FMT, via DMA to HOST-CPU MEMORY.

The particular mode executed depends on the configuration of bits 8-15
of the CTL register. (See, CONTROL register, this summary).

93

el
]

STANDARD DMA

MEMORY

HOST-~

(BI-DIRECTIONAL)

via
BLOCKX~-TRANSFER

DMA
>

<

PROGRAMMED I/O

MEMORY

HOST~
CPU

HOST-INTERFACE
FORMATTER (FMT)

(BI-DIRECTIONAL)

via

BLOCK-TRANSFER
DMA

< P>

MAIN DATA (MD)

AP-120B

0w o

HOST-INTERFACE
FORMATTER (FMT)

"

MAIN DATA (MD)

AP-120

nwwo

* At end of AP-120B~-TO-HOST Transfer, AP must transfer
two more words than Host.

94

PARTIAL DMA

FOUR TYPES:

HOST-INTERFACE
FORMATTER (FMT)

HOST-INTERFACE
FORMATTER (FMT)

via
BLOCKX-TRANSFER
DFA
(1) MEMORY ”
HOST-
CPU
PROGRAMMED I/0
(2) via HOST I/0
B
MEMORY US
HOST- ’
CPU
(3)
PROGRAMMED I,/0
EMORY via HOST I/0
HOST- BUS
cry (See Note 1)
via
(4) BLOCK~TRANSFER
DMA
MEMORY “
HOST-
CPU

HOST-INTERFACE

FORMATTER (FMT)

HOST-INTERFACE
FORMATTER (FMT)

95

PROGRAMMED I/0 | MAIN DATA (MD)
via INBUS
» | D | AP-120B
P
B
S
via
BLOCX~-TRANSFER
DMA ’> MAIN DATA (MD)
D AP-120B
P
B
S
via
BLOCX-TRANSFER
‘ DMA MAIN DATA (MD)

AP-120B

0w wwvo

PROGRMAMED I/O
via INBUS

‘

(See Note 2)

MAIN DATA (MD)

AP-120B

v w9 o

NOTES

l. First two arguments read by host (32 bits
total in Format 1, 64 bits total in Formats
0, 2, 3) must be discarded.

2. AP-120B must transfer two more words than
word count at end of transfer.

DMA - Related Registers

The following AP-120B ADDRESSABLE Registers provide the necessary
information and control bits for DMA execution. If the prégrammer
wishes to control or initiate host DMA transfers from within the

AP-120B, he must properly condition the applicable bits of these
registers.

DMA-RELATED DEVICE
REGISTER ADDRESS DMA-RELATED BITS
CONTROL (CTL) 2 Bit 8 (CC)
(See CONTROL REGISTER, Bit 9 (APDMA)
this summary, for more Bit 10 (WRTHOST)
details) Bit 11 (DECAPMA)
Bit 12 (DECHMA)
Bit 13 & 14 (FMT)
Bit 15 (HDMA START/BUSY)
WORD COUNT (WC) 0 All: Contains the value repre-
: senting the length of block
measured in Host CPU words to
be transferred in current DMA
operation. (1l to 65,535 Host
words) .
HOST MEMORY ADDRESS 1 All: Contains the HOST MEMORY
(HMA) ADDRESS at which DMA transfer
will begin (applicable only in
STANDARD DMA or PARTIAL DMA
types "1" and "4")
AP-120B MEMORY ADDRESS 3 All: Contains AP-120B MEMORY
(APMA) ADDRESS at which DMA transfer

will begin (applicable in
STANDARD DMA and PARTIAL DMA
types 2" and "3").

The specific operations required for HOST-CPU PROGRAMMED 1/0 depend
entirely on the type of HOST-CPU being used. Programming examples for
AP-120B PARTIAL-DMA (l and 4 above) are presented in the PROGRAMMING
EXAMPLE section of this summary. (e.g., BOOTSTRAP example).

4 - 96

DMA Operations
Generally, DMA operatioms are executed in the following manner:

(1) Bits 8-=15 of CTL determine the particular mode, format,
and direction of DMA operation to be performed.

(2) The value placed in WC determines the length of block
to be transferred (number of words).

(3) Addresses place& in either HMA or APMA (or both, depending
on mode of DMA selected) indicate respective MEMORY
ADDRESSES at which the transfer is started.

Once the DMA is initialized (CTL bit 15 = "1"), the AP-120B will raise
its DMA REQUEST to the HOST-CPU. Once the DMA REQUEST is granted, the
AP-120B will transfer/receive in the following manner;

a. DMA will transfer one word (See Note), then -

b. If CC=0 (Bit 08), the AP-120B will drop its request for
one HOST-CPU MEMORY cycle, allowing lower priority
devices the opportunity to request and receive HOST-

CPU channel priority.

c. One cycle later, the AP-120B will again raise its request to
HOST-CPU (locking out all other lower priority devices) and
will again transfer one word.

d. The process will continue until the DMA tranfer is completed
(WC = 0) or until a programmed RESET prematurely terminates
the operation. Additiomnally, FERR (CTL bit 06) will be set
if EXPONENT OVERFLOW or UNDERFLOW occurred during the transfer
operation,

NOTE

If DMA is the consecutive cycle mode (CTL
bit 8 = "1") then DMA will transfer the
number of words indicated by the value
selected on the DMA "HEX" hardware switch,
if applicable, before dropping its request
for one cycle.

* Programmed Interrupts
The AP—-120B is capable of generating the following interrupts:

a. AP-120B INTERNAL INTERRUPTS
(1) UNCONDITIONAL
(2) DMA INACTIVE

b. INTERRUPTS TO HOST-CPU
(1) AP-120B HALTED
(2) DMA INACTIVE
(3) CONTROL BIT "5" (CTLOS)

* AP-120B INTERNAL INTERRUPTS

AP-~120B INTERNAL INTERRUPTS, when active, set the INTERRUPT REQUEST
FLAG (INTRQ) to '"1". 1INTRQ may then be tested and branches made by use
of the BINTRQ Op-Code. (See BRANCH).

Both INTERNAL INTERRUPTS initially require an appropriate enabling bit
set to "1" in the CONTROL REGISTER (See Note).

* The UNCONDITIONAL interrupt requires CTL bit "1" (INTRAP)

be set, If INTRAP is set, the AP hardware will unconditionally
set the INTRQ flag.

* The DMA INACTIVE interrupt requires CTL bit "2" (IAPWC) to be
. set as an enable. With IAPWC set to "1" when HDMA START=0
(indicating that DMA is inactive), the INTRQ flag will be set.

INTRQ will be true as long as the conditions for either interrupt - stay

CTL OTHER
INTERRUPT ENABLING BIT CONDITIONS EFFECT
UNCONDITION Bit "1" = "¢ none Set INTRQ to "1"
(INTRAP)
DMA DONE Bit "2" = "1* HOST DMA Set INTRQ to "1"
(IAPWC) INACTIVE
NOTE

Additionally, AP-120B INTERNAL INTERRUPTS
require PRIORITY GRANTED via the INTPIN enable
line. (Applicable only if there are other
AP-120B I1/0 devices in the hardware config-
uration). The host interface has the lowest
interrupt priority.

Example:

To set UNCONDITIONAL INTERRUPT: (effectively using CTLOl as a program
flag)

ASSEMBLER
FORMAT (MEANING)
LDDA; DB=2 (Set up DA for CTL)
OUT; DB=40000 (Write CTL bit "1"(See Note)
INTRQ is set to "1'")
)
o
o]
o
BINTRQ SVCRT (Branch to SVCRT (service routine)

if INTRQ = 1)
To set DMA INACTIVE INTERRUPT:
LDDA; DB=2 (Set up DA for CTL)

OUT; DB=20000 (Write CIL bit "2'"(See Note) -
when DMA DONE, then INTRQ 1is
set to "1").

o]

BINTRQ SVCRT (Branch to SVCRT (service routine)
if INTRQ = 1) bramch occurs only
if DMA inactive.

NOTE

The PROGRAMMER may destroy existing status bits
in CTL when writing new bits. To avoid this, he
should first examine the bits of CTL and, if
needed, rewrite existing bits except for CTL1S
back into CTL along with the desired enable
bit. This procedure is not advisable if the
Host CPU may be writing CTL at the same time.

4 - 99

* Iaterrupts To Host-CPU

THE AP-120B is capable of generating three interrupts to HOST-CPU.
Like the AP-120B INTERNAL INTERRUPTS, HOST-CPU interrupts require prior
conditioning of the appropriate enable bits in the CONTROL REGISTER
(CTL) in addition to the particular conditiom being true.

HOST~-CPU INTERRUPTS

CTL OTHER

INTERRUPT ENABLING BIT CONDITIONS EFFECT (See Note 1)
AP-120B Big "3" =1 AP-120B Cause HOST-CPU
HALTED (IHALT) HALTED INTERRUPT

DMA Bic "4" =1 Cause HOST-CPU
INACTIVE (IHWC) DMA INACTIVE INTERRUPT

CTLOS 3ig "S" =1 AP attempcted Cause HOST-CPU

(See Note 2) (IHENB) to set bit 5 INTERRUPT

or executed IHFNB

NOTES

l. The specific operation of interrupt generation
depends on the particular HOST-CPU and HOST-
INTERFACE employed.

2. CTLOS interrupt will generate a HOST-CPU
INTERRUPT in the following manner:

a. HOST-CPU must have previously set
CTLOS to "1".

b. The AP-120B attempts to set CTLOS
by use of an INTEN Op-Code (See
CONTROL) or by writing a 2000(8)
inco CTL.

c. A HOST-CPU interrupt will be
generated.

In order to facilitate repeated use of the CTLOS5S INTERRUPT, the azethod
used to clear the CTLOS interrupt condition is for the host to load the
FN register. In most HOST-CPU 1/F's, any WRITE to FN automatically
clears a CTLOS interrupt condition. The AP-120B can also clear the
interrupt condition by trying to WRITE a "0" into CTLO5. The state of
CTLOS will not be changed by the AP=120B actiom.

4 =100

Example:

CTLO5 INTERRUPT APPLICATION

HOST-CPU PROGRAM AP-120B PROGRAM (MEANING)
Stipulated Condition o
(Sets CTLOS) o
o) o
0 o
o o
o o
INTEN (INTEN attempts to set
o CTLOS5; generates HOST-
o CPU INTERRUPT)
o)
or,
LDDA, DB=2 "set up DA
QUT; DB=2000 "attempt to set CTLOS

Host—-CPU Interrupt Service Routine

Handles interrupt; then clears CTLOS5 interrupt condition by an L/O
output to FN, thus enabling another CTLO5 interrupt. The suggested
DATA-WORD to be written into FN is zero or one that restores FN
bits 7 to 15.

Host Interrupt Handler Programming Consideratioms

In most host interfaces the following protocol will insure that all
three AP to host interrupts (HALT, DMA DONE and CTLOS5) can be serviced
without danger of a "lost" interrupt:

a) Poll the two visible interrupting conditions in a fixed
order; e.g., AP halted and Halt interrupt enabled first
followed by DMA inactive and DMA interrupt enabled. If
the condition and the interrupt enable are both true then
perform the required service.

b) If no service was required by the two visible conditioms
then the interrupt was due to the AP-120B having set CTL
bit with IHENB set and this interrupt should be given its
required service. This service should include a reset of
the bit 5 condition by writing the FN register.

c) Clear all three interrupt enables in the CTL register.

4 =101

d) Re—enable only those interrupts that were enabled at entry
to the routine and were NOT serviced in step a) above. Be
careful here not to set the HDMA START bit in the CTL
register. Writing a zero into HDMA START will not affect a
DMA transfer that is in progress as loung as the other DMA
control bits (CTLO8 to CTL14) are not altered. LHENB can be
re~enabled if step b) cleared the condition via a write FN.
register.

The net result of steps c) and d) is to clear the interrupt request
logic thus allowing another interrupt to occur when another condition
comes true. This technique will work even if the condition came true
while in the service routine.

The routines that initiate DMA and AP-120B processor action will have
to enable the appropriate interrupts AFTER starting the DMA or the
AP-120B processor. This is now possible since the interrupt enables in
the CTL register can now be safely modified while the DMA is running as
long as a zero is written into HDMA START. Again, IHENB can be left on
if the interrupt service routine uses a write to the FN registers to
clear the CTLOS condition. If the service routine does not clear the
CTLOS5 condition then IHENB can be set any time following the first
write FN register coumand. The start routine must be careful to
inhibit all AP-120B interrupts (set PDP-l11 processor priority at or
above level 4) when modifying the CTL register.

4,5.3.2 Addressable 1/0 Devices

The AP-120B I/0 STRUCTURE may perform transfer operations with up to
256 I/0 DEVICES addressable through use of the eight bit DEVICE ADDRESS
REGISTER (DA). The first 24 addresses are dedicated to HOST- INTERFACE

DEVICES (DA 0-4,6) to WRITABLE TABLE MEMORY-TMRAM (DA 5); MEMORY BANK
SELECT (30,31), first IOPl6, 10 to 14, and second IOP 16, 20 to 24.

4 - 102

e R

* TMRAM

With respect to writing operations, TMRAM is essentially an I/0 DEVICE
whose address is 5. To WRITE into TMRAM, one must set DA to 5 at least
one cycle before outputting data to TMRAM. For example, in order to
WRITE the current FA into TMRAM location 100(8), the following program
would be specified:

Assume S-PAD REGISTER 6 equals "100(octal)"

ASSEMBLER FORMAT (Meaning)
o
o
DPX(0)<FA Save FA in DPX(0)
LDDA; DB=5 (Select TMRAM as I/0 DEVICE(DA))
MOV 6,6; SETTMA; DB=DPX(0); OUT (Set TMA to"100(octal), WRITE
° DPX(0) into TMRM 100(octal))
[o]
[s]

Because of the ™ WRITE operation, two cycles later the out-put of
TMREG is undefined. Three cycles later (assuming no change in TMA) the
contents written into TMRAM will be available as the TM OUTPUT (IM).

* Other Addressable 1/0 Devices

A variety of I/0 DEVICES may be added to the AP-120B, depending on user
application and HOST-CPU to AP-120B CONFIGURATION.

4 =103

4.5.4 Programming Example

The example given in this section shows how the AP=120B BOOTSTRAP
program is loaded and used along with the HOST-DMA to store a given
program into AP-120B PROGRAM SOURCE MEMORY. The example nicely
illustrates the various functions of the AP-120B I/0 structure.

AP-120B BOOTSTRAP

Essentially, the AP-120B BOOTSTRAP is loaded and executed 1in the
following manner (See Table 4-2):

(1) The three-word BOOTSTRAP program is loaded into the AP-120B
by the HOST-CPU using AP-120B PANEL operations.

(2) The BOOTSTRAP is started by HOST-CPU --again using the PANEL.

(3) With the AP-120B BOOTSTRAP running, a HOST-DMA is initiated.
The HOST-DMA transfers l6-bit program quarter-words to the
FORMATTER (FMT). FMT assembles them into 32-bit half-words
and signals the AP-120B when it is ready. The AP-120B
BOOTSTRAP then stores the half-word into the appropriate
portion of the PROGRAM SOURCE MEMORY.

(4) The process continues. When the HOST-DMA is finished, the
HOST-CPU is interrupted. (If interrupts are not used

the HOST-CPU may test the CTL REGISTER-bit 15 to determine
when the DMA is done.)

(5) The AP-120B is then reset (HOST ABORT function). The AP-
120-B may then be started again by the HOST-CPU at the
starting address of the newly loaded program.

BOOT-LOADS INSTRUCTION HALF-WORDS FROM THE HOST DMA
INTO PROGRAM MEMORY

$LOC 0
000000 000003 BOOT: LDDA; DB=4 "SET TO HOST DMA
107000 FORMATTER
002000
000004
000001 011363 LOOP: SPININ,; "SPIN (WAIT) UNTIL A
WORD IS READY
145000 DB=INBS; "PUT THE WORD ONTO DB
0clo00 LPSLT ' "STORE IT INTO THE
LEFT HALF OF PS(TMA)
000000

4 - 104

000002

000003

000004

000005

000006

0ooco7

000010

011367
145117
001000

000000

000003
174000
040004
000000

goooolL
122000
000400
012400

000001
122000
000400
012400

011027
106000

000400
012400

000003

170000

000000
000000

000000
000000
000000
000000

SPININ;
DB=INBS;
LPSRT;

INCTMA;

BR LOOP

"
1"
"
1"

"WAIT FOR THE DMA
"GET IT IN

"STORE IT INTO THE
RIGHT HALF OF PS(TMA)
"INCREMENT THE
POINTER (TMA)

""BRANCH BACK FOR MORE

"CALLER-CALL AN AP-120B SUBROUTINE FROM THE HOST

COMPUTER

CALLER: DPX<ZERQ;
REFR

FMUL DPX,DPX;
FADD DPX,DPX

FMUL DPX,DPX;
FADD DPX,DPX

FMUL DPX,DPX;
LDAPS;

DB=ZERO
JSRT

HALT

NOP

$END

4 =105

"GET ZERO INTO DPX
'""MEMORY REFRESH SYNCH

"CLEAR THE MULTIPLIER
"AND THE ADDER

"PUSH THE PIPELINES

"AND AGAIN FOR FMUL
"CLEAR THE STATUS
REGISTER

"GO DO THE SUBROUTINE

""HALT ON RETURN FROM
THE SUBROUTINE

901

OPERATION

Load AP-120B BOOTSTRAP
via PANEL (See Note)

(BOOTSTRAP is loaded

into PS locations O,
1, and 2)

Table 4-2 LOADING AND EXECUTING AP-120B BOOTSTRAP

(1) 0> SWR

(2)

(3)

(4)

(5)

1003 (octal) > FN

(Bootstrap word bits
1010(octal) > FN

(Bootstrap word bits
1030(octal) > FN

(Bootstrap word bits
1050(octal) > FN

(Bootstrap word bits
1370(octal) > FN

Repeat steps 2-5 for
remaining bootstrap word

0-15) > SHWR

16-31) > SWR

32-47) > SHR

32-47) > SWR

J

[Conmens]

Deposit 0 into TMA (TMA is
the pointer for depositing
into PS)

(Deposit first quartile of
bootstrap word into QUARTER
ZERO of PS(TMA))

(Deposit second quartile of
bootstrap word into QUARTER
ONE of PS(TMA))

(Deposit third quartile of
bootstrap word into QUARTER
TWO of PS(TMA))

(Deposit fourth quartile of
bootstrap word into QUARTER
THREE of (PS)TMA. TMA is then
incremented by "1" to point
to the next PS location.

L0T

:

OPERATION

200(0OCTAL) > SWR
1003(octal) > FN

Indicate to AP-120B

where to start loading
selected program. (Assume
200 is PS address where
program is to be loaded)

Start AP-120B BOOTSTRAP 0
PROGRAM

SWR
1000(octal)> FN =
20000(octal) > FN

Start PARTIAL-DMA from 1000(octal) > HMA
HOST MEMORY to HOST- 1000(octal) > WC
INTERFACE FORMATTER (FMT) 4201(octal) » CTL
(assume program to be

transferred to AP-120B

is now stored in HOST

MEMORY location 1000 and

that the program to be

loaded is 200(octal)

AP program words

(1000(octal) 16-bit

host words).)

EXECUTING THE BOOTSTRAP

BOOTSTRAP is
started-AP is
waiting for
first program
half-words

to be trans-
ferred.

Dep PSA
= Continue

AP is waiting

HOST-CPU deposits 200 into
TMA (via panel)

Starts program at PS location
0 (BOOTSTRAP) via Pane! Continue

Set HOST-DMA address to 1000

Set WORD COUNT to 1000 (assume
16-bit HOST-word)

(Initialize HOST-DMA to FMT
in consecutive cycle mode.
When done, send interrupt to
HOST-CPU when HOST-DMA is
done.)

801

EXECUTING THE BOOTSTRAP (CONTINUED)

OPERATION

HOST-CPU is transferring HOST-CPU is trans-
16-bit words to FMT, via ferring 16-bit words
DMA, FMT is assembling from HOST-MEMORY to
them into 32-bit words FMT,
and when ready, signals
AP-120B BOOTSTRAP pro-
gram, BOOTSTRAP then
loads formatted word
into PS at location TMA
in the following
manner:
* First 32-bit word
goes into PS -
left half,
* Second 32-bit word
goes into PS -
right half.

LOOP:

[commenTs |

AP BOOTSTRAP Set DEVICE ADDRESS to .
LDDA; DB=4 (FMT)
SPININ, Spin until first half word

DB=INBS; LPSLT is ready, then store it into

SPININ; DB=INBS; PS(LH)TMA.

LPSRT; INCTMA;

BR LOOP Spin until second half word
is ready, then store it into
PS(RH)TMA; then increment TMA
and branch back to LOOP,

When HOST-DMA is completed, DMA INACTIVE INTERRUPT will be sent to HOST-CPU,

by stopping the AP-120B BOOTSTRAP as follows:

RESET AP-120B

Set TMA to desired AP-
120B starting address

Start newly loaded
program running in
AP-120B

200(octal) > SWR
1003(octal) > FN
3(octal) » SWR

1000 (octal)-> FN
20000(octal) > FN

NOTE

HOST-CPU will respond to the interrupt

Resef AP-120B using 1/0 reset
command

Deposit starting location

200 into TMA

Continue at AP-120B

PROGRAM SOURCE location 3

4 using caller to clear
pipelines and APSTATUS

601

The specific OP-CODES usd by the HOST-CPU
depends on the type of HOST-CPU used.

4.6 DATA PAD SUMMARY

Discussion of the DATA PAD GROUP (DP) will be presented
following manner:

l. General Description and Theory of Operation
2. DP' Group Operations

3.. DP Addressing

4. Programming Examples

4 -110

in

the

4.6.1 General Description, Theory of Operation

DATA PAD (DP) 1is a block consisting of two high-speed accumulator
files, termed DATA PAD X (DPX) and Data PAD Y (DPY), respectively (See
Figure 4-4).

Each file contains thirty-two, 38-bit accumulators. Both files share a
common address pointer, termed the DATA PAD ADDRESS REGISTER (DPA).
DPA, along with one of four BIASED index field XR=X Read Index, YR=Y
Read, XW=X Write, YW=Y Write, 1is used to determine the EFFECTIVE
ADDRESS (EFA) for any given DP READ or WRITE operation (See Section
4.6.4 for more details on DP addressing).

Data to be stored into DATA PAD may come from the currently available
FLOATING ADDER result (FA), the currently available FLOATING MULTIPLIER

result (FM), or ome of eight possible sources enabled onto the DATA PAD
BUS.

Data READ from DATA PAD may go to the FLOATING MULTIPLIER OPERAND
REGISTERS (M1, M2), the FLOATING ADDER OPERAND REGISTERS (Al, A2), the
MAIN DATA MEMORY INPUT REGISTER (MI), or onto the DATA PAD BUS (DB).

The DATA PAD REGISTERS behave like true accumulators in that the
contents of one register can be read out and written into in the same
instruction without conflict. The WRITE takes place at the very end of
the instruction c¢cycle so that the old contents can be read out for use
during the cycle and the updated contents will be available during the
immediately succeeding instruction cycle.

ey
CTRLE

INBS VALUE DPX DPY MD SPFN TM

a | | | | | I
(Data Pad Bus = DPBS)

| FA FM
FA TM | |

h, .4
Write Index Write Index
DPA
Read Index Read Index
(DPX)
¥y r ¥ ¥ = v v v v v
1 M2 Al A2 DPB M1 M2 Al A2 DPBS

Figure 4-4 Data Pad

4 =111

4.6.2 Data Pad Operations

Operations within the Data PAD GROUP may be classed in the following
groups:

* DPX or DPY explicit WRITE operations
* DPX or DPY implicit READ operatioms
* DPBS source enabling operations

4.6.2.1 DPX or DPY Explicit WRITE Operations

One each DPX and DPY location may be written during a given instruction
cycle, using either the DPX or DPY fields and either XW or YW fields of
the instruction word.

INSTRUCTION: WORD OCTAL

MNEMONIC FIELD(S) USED VALUE OPERATION
DPX(idx)<DB DPX 1 Stores current DB
Xw 0-7 into specified DATA
PAD X location.
DPX(idx)<FA DPX 2 Stores current FA into
W 0-7 specified DATA PAD X
' location.
DPX(idx)<FM DPX 3 Stores current FM into
W 0-7 specified DATA PAD X
location.
DPY(idx)<DB DPY 1l Stores current DB
W 0-7 . into specified DATA
PAD Y location.
DPY(idx)<FA DPY 2 Stores current FA into
W 0-~7 specified DATA PAD Y
location.
DPY(idx)<FM DPY 3 Stores current FM into
W -7 specified DATA PAD Y
location.
NOTE

If VALUE field is used in the same disabled.
The DPY location will be referenced by the
XW. field, instead.

4 =112

4.6.2.2 DPX,DPY Implicit Read Operatiouns

One each DPX and DPY location may be read during a given instruction
cycle. Whenever a DATA PAD X or Y location is referenced as part of an
operation in this or amother group in the current instruction word, the
XR and YR fields of this group are referenced. Example:

FADD DPY(1l),DPX(2)

The appropriate index fields in the DP group will be set when
specifying the above operatiom. The YR field will be set to
"S5(octal)", and the XR field set to "6(octal)", since the fields are
BIASED by four. The index is relative to the current contents of the
DATA PAD ADDRESS REGISTER (DPA).

A complete summary of the DATA PAD addressing scheme is given in the
following sectione.

4.6.2.3 DPBS Enabling Operations

One: of eight sources may be enabled onto DPBS during a given
instruction cycle, using the DPBS field of the current instructiom
word. Specifying a DPBS source has an immediate effect, that is, the
DPBS. source enabled during a given instruction will be the data
currently used in all DPBS-related operatiomsi during the same
instruction cycle. '

Note that only one source may be enabled onto DPBS during any given

instruction and that source will remain as DPBS only during this
instruction. ’

INSTRUCTION WORD OCTAL
MNEMONIC FIELD(S) USED VALUE OPERATION

DB = ZERO DPBS 0 Floating Point ZERO
(0.0) is enabled as
DPBS for the current
instruction. This is
the default selectionm
for DPBS.

DB = INBS DPBS 1 The data currently
enabled onto INBS is
enabled as DPBS for
the current instruction.

4 =113

DB = value
(See Note)

DB = DPX(idx)

DB = DPY(idx)

DB = MD

DB = SPFN

DB = TM

DPBS
VALUE

DPBS

DPBS
YR

DPBS

DPBS

DPBS

0-7

4

The contents of the
value field are enabled
as DPBS for the current
instruction. (Partial
word transfer, see
instruction summary

(DB = VALUE) far a
detailed explanation.

The contents of the
currently specified
DATA PAD X location is
enabled as DPBS for the
current instruction.

The contents of the
currently specified
DATA PAD Y location
is enabled as DPBS
for the current in-
struction.

The current contents
of the MAIN DATA QUTPUT
REGISTER (MDREG) are
enabled as DPBS for the
current instruction..

The current SPFN 1is
enabled as DPBS for

the current instruction.
(Partial-word transfer,
see illustration summary
(DB = SPFN) for a de-
tailed explanation).

The current contents of
the: TABLE MEMORY OQUTPUT
REGISTER (TMREG) are
Enabled as DPBS for the
current instruction.

NOTE

Value is an integer from decimal -32768 to 32767
or 0 to 177777 in octal or a label (constant).

In addition to the eight sources available in the DPBS field, three
other sources (PS Left Half, PS Floating and PNLBS) can be enabled onto
DPBS via operations in the SPEC group. These operations (e.g. RPSL,
RPSF, SWDB) take precedence over the DPBS field.

i

4 =115

4.6.3 Data Pad Addressing
The effective address of a location in DATA PAD to be read or written
is. determined by the following combination of elements:

* The: current contents of the DATA PAD ADDRESS
REGISTER (DPA), plus

* The value contained in the appropriate INDEX field
(Xw, XR, YW, YR) of the current instructiom word,
minus

* The BIAS (4(octal))

The INDEX field value is contained within the current instruction word.

The DPA contents may be changed by use of the following instructions
effective one cycle after the appropriate instruction is executed.

INSTRUCTION MEANING
INCDPA Add "1" to DPA
DECDPA Subtract "1" from DPA
SETDPA Set current SPFN into DPA
LDDPA Set current DPBS into DPA

DPA: is circular imn that incrementing DPA currently containing the
maximum address (37octal) will produce a DPA of O(octal) as of the next
instruction cycle. Accordingly, decrementing a DPA of 0(octal) will
produce a DPA of 37 (octal) as of the next instruction cycle. This
circular effect applies equally to indexing. Example:

if DPA = 37(octal); then:
DPX(2) would indicate DPX locatiom l(octal).

if DPA = 0(octal); then
DPX(=2) would indicate DPX locatiom 36(octal).

Note that instructions from LDREG field (LDDPA, LDTMA, MA) cause
SETDPA, SETTMA, and SETMA to load from DPBS instead of SPFN.

Examples Meaning

DB<DPX(1) Place the contents of the DPX
location pointed to by the
current contents of the DPA
plus one ontoc DPBS.

4 =116

When specified in the above fashion, the ASSEMBLER will place a
"S(octal)" 1into the XR field and a "3(octal)" into the DPBS field of
the instruction word. The "5" in the XR field indicates that the DPX
READ operation is '"S" BIAS locations relative to current DPA. BIAS is
"4(octal" for the DATA PAD INDEX FIELDS.

Accordingly, eight locations are available for any given DPX or DPY
READ/WRITE operation, from +3 to =4 locations relative to the current

APPARENT VALUE TRUE VALUE
(VALUE CONTAINED IN INDEX FIELD) RELATIVE TO DPA MEANING

7 +3 DPX or Y(DPA) +3
6 2 DPX or Y(DPA) +2
5 1 DPX or Y(DPA) +1
4 0 DPX or Y(DPA)

3 -1 DPX or Y(DPA) -1
2 -2 DPX or Y(DPA) -2
1 -3 DPX or Y(DPA) =3
0 -4 DPX or Y(DPA) =4

Of course, the programmer need only indicate the desired DATA PAD
location in the following manner:

DPX (+3) DPY (+3)
DPX (+2) DRY (+2)
DPX (+1) DPY (+1)
DPX (0) DPY (0)

DPX (~1) DPY (-1)
DPX (-2) DPY (-2)
DPX (=3) DPY (=3)
DPX (~4&4) DPY (~4)

4 =117

4.6.4 Programming Examples

Since four separate displacement fields (XW, XR, YW, YR) are provided
within the instruction word, four separate locations in DATA PAD may be
used in a given instruction. Example:

Assume DPA = 24(octal):
FADD DPX(3),MD; FMUL TM,DPY(-2); DPX(-3)<FA; DPY(1)<FM

The above operatiom would:
* Use the contents of DPX location 27 in the FADDR operatiom,
* Use the contents of DPY location 22 in the FMULR operatiom,
* Write the currently available FA into DPX location 21, and
* Write the currently available FM into DPY location 23.

Note that only one DPX location may be written, only ome DPY location
may be written, only one DPX location may be read, and only ome DPY
location may be read during the same instruction cycle.

Using the DPBS to Write Into DATA PAD

Again, one may write into DATA PAD from FA, FM or from one of eight
possible sources available on the DATA PAD Bus (DB).

4 - 118

Note, that only ONE source may be enabled onto DB for any given
instruction. Example:

LEGAL

1. DPX<DB; DPY<DB; DB = MD Meaning: Write MD into both DPX
and DPY via DB.

2. DPXKFA; DPY<DB; DB = TM Meaning: Write current FA to DPX,
write current TM to DPY
via DPBS.

ILLEGAL

3. DPX<DB; DB = MD; DPY<DB; DB = TM Again, only ONE source may
be enabled onto DB per
instruction.

* DB Shorthand Notation
The assembler will éutomatically enable a source onto DB even though

the programmer has not explicitly written the instruction. In other
words, the above examples may be written as follows:

Programmer Writes: Assembler Inserts:

1. DPX<MD;DPY<MD DB = MD
2. DPX<FA; DPY<TM DB = T™™
3. DPXMD; DPY<TM Error: Assembler will flag as such.

As shown by the above examples, when using the shorthand notatiom, the
programmer must bear in mind that he may only use one source as DPBS in
a given instructionm cycle.

4 =119

4.7 MEMORY GROUP

The operations available within the MEMORY GROUP may be classed into
the following functional groups:

* MAIN DATA MEMORY (MD) accessing operatioms

MAIN DATA MEMORY ADDRESS REGISTER (MA) modification
* DATA PAD ADDRESS REGISTER (DPA) modification
* TABLE MEMORY (TM) accessing operations

TABLE MEMORY ADDRESS (TMA) modification

Accordingly, this summary will be presented in the following manner:

1. MAIN DATA MEMORY (MI and MA fields)
* General description
* Addressing and memory cycle initialization
* MD read and write operations

2. DATA PAD ADDRESS modificatiom (DPA field)

3. TABLE MEMORY (TMA field)
* General description
* Addressing
* Read and write operations

4 - 120

4,7.1 Main Data Memory (MD)

4.7.1.1 General Description

MAIN DATA (MD) is the main storage file, within the AP-120B for 4l-bit
data words. MD is a monolithic storage file available in 8K, 16K, 32K
and 64K modules = 64K per page — up to a million words. MAIN DATA has
two speed ranges: 333 or 167 ns if the interleaving capability is
utilized and 500 or 333 ns if non-interleaving locations are accessed.

The MAIN DATA BLOCK (Figure 4-5) consists of the following component
parts:

MEMORY INPUT REGISTER (MI)

MAIN DATA STORAGE FIELD (MD)

MAIN DATA MEMORY OUTPUT REGISTER (MDREG)
MAIN DATA MEMORY ADDRESS REGISTER (MA)

ZERO
FA FM DPBS: From one of these - INBS
l l l VALUE
DPX
MEMORY ﬁiY
INPUT (MI) ™
REGISTER SPEN
DMA -
MAIN
DATA
STORAGE (MD)
FILE
DMA < ¥
MEMORY
OUTPUT (MDREG)
REGISTER
¥ v ¥
A2 DPBS M2

Figure 4-5 MAIN DATA BLOCK

4 =121

MAIN DATA may be written from the FADDR output (FA), the FMULR output
(FM), or from one of several sources enabled onto the DATA PAD BUS
(DB). The MAIN DATA output, termed MD, is available as an input
directly to the FADDR A2 operand register (A2), the FMULR M2 operand
register (M2), or may be enabled onto the DB.

Additionally, MD may be accessed via DIRECT MEMORY ACCESS (DMA) from
the Host and other I/0 interfaces.

The format of a typical MD data word is presented below:

Optional Exponent. Optional
Parity Bias Mantissa Parity
Bits Bit ign, Bit
28 21 g2 11 12 13 23 24 39 40
I - — | N Ao
AN—_— . . I\ ~ I\ ~ J
EXPONENT HIGH Low
MANTISSA MANTISSA
. — W,
MANTISSA

4.7.1.2 Addressing and Memory Cycle Initializatiom

The 16-bit MEMORY ADDRESS REGISTER (MA) is the pointer indicating which
MD location is read or written during a given operation. Additionally,
an MD memory cycle is initiated each time the contents of MA are
altered by use of an INCMA, DECMA, SETMA or LDMA instruction.

MA: MODIFICATION
OP-CODES. EFFECT

INCMA Increment MA by "1"; initiate an MD
memory cycle.

DECMA Decrement MA by "1'"; initiate an MD
’ memory cycle.

SETMA Set MA from current SPFN (See Note);
initiate an MD memory cycle.

LDMA Set MA from current DB; initiate
an MD memory cycle.

4 =122

If an MI Op-Code is concurrently specified with an appropriate MA
modification Op-Code, then an MD MEMORY WRITE CYCLE is initiated, using
the new contents of MA to indicate the MD location to be written. If
an MA modification instruction is specified without a concurrent MI
Op-Code, then an MD MEMORY READ CYCLE 1is initiated using the new
contents of MA to indicate the MD location to be read. Use of an MI
Op=Coder WITHOUT a concurrent MA modification op—code results in a NOP.

NOTE

If an Op~Code from the LDREG field (I/0) is used
concurrently, then SETMA will set MA from current

DB, not SPFN.

EXAMPLES:
INITIATING AN MD WRITE CYCLE

MOV 5,5; SETMA; MA<CFA

(Set MA to
current FA
pointed to

(MEANING)

current SPFN, write
into MD location
by the new contents

of MA).

LDMA; DB=DPX(0); MI<FM (Set MA to current DPX(Q), write
current FM into MD location «
pointed to by the new contents
of MA).

INCMA; MIKDB (Increment MA by "1", write

INITIATING AN MD READ CYCLE

MOV 5,5; SETMA

DECMA

4

current DB
pointed to
MA)O

(Set MA to

into MD location
by new contents of

current SPFN, read MD

location pointed to by new
contents of MA).

(Decrement MA by "1", read MD
location pointed to by the new
contents of MA).

- 123

Note, again, that an MA modification Op-Code executed WITH a coucurrent
MI Op-Code generates. an MD WRITE CYCLE. An MA modification Op=Code
WITHOUT an MI Op-Code generates an MD READ CYCLE.

4.7.1.3 Interleave

STANDARD speed MD MEMORY references the same bank of memory every three
AP cycles (500 ns). In order to facilitate faster intervals between
successive memory reference instructions, the AP 1208 MAIN DATA MEMORY
is: divided into banks containing 4K or 16K words each. These banks are
interleaved 1in pairs with odd number memory locations contained in ome
bank of the pair and even memory locations in the other bank of the
pair. Memory reference instructions are allowable every other
instruction cycle (333 ns) as long as INTERLEAVE (the sequential
reference to different MD MEMORY BANKS) is not violated. Any attempt
to reference the same bank of memory (NON-INTERLEAVING) before the
minimum time constraint will cause the AP-120B hardware to generate a
"SPIN' operation - effectively suspending all ongoing AP-120B program
execution one cycle at a time until the memory is no longer busy and
can execute the memory reference instruction which prompted the 'SPIN"
condition. This feature allows. AP-120B programs to be written without
concern for memory interleaving. But for maximum execution speed the
interleaving feature should be used. Thus, for optimum coding of
memory accesses, the programmer should be aware of the order 1in which
he accesses: memory banks.

For FAST MD MEMORY, memory reference may be made to different banks
(INTERLEAVED) every AP cycle (167 ns) and to the same bank
(NON~INTERLEAVED) every other AP cycle (333 ns.)

Interleave examples: locations 3 and & are interleaved by the odd-even
interleave. Locations: decimal 8190 and 8192 are interleaved because
they reference different bank pairs (4-K bank size). For the 16-K bank
size, the bank-pair size is 32K. Thus, for example, locations decimal
32766 and 32768 are in different bank pairs.

NOTE

For the 32K and 64K memory modules, the
bank size 1s increased to l6K.

& - 124

EXAMPLE:

MEMORY
ADDRESS MEMORY STANDARD MEMORY FAST MEMORY
SEQUENCE BANK REFERENCE REFERENCE
(OCTAL) SEQUENCE TIMING TIMING
101 1
102 0 Every two Every
103 1 AP cycles AP cycle
104 Q (Interleaved) (Interleaved)
100 0
102 0 Every three Every two
104 0 AP cycles AP cycles
106 0 (Non-interleaved) (Non-interleaved)
234 0
10374 2 Every two Every
233 1 AP cycles AP cycle
10376 2 (Interleaved) (Interleaved)

4.7.1.4 MD Read and Write Operations

Three AP clock cycles after an MD memory read cycle has been initiated,
the data from the selected memory location becomes available as MD to
the DB, A2 operand register, and M2 operand register. '

STANDARD MEMORY FAST MEMORY
LOCATION LOCATION
AP AVAILABLE AP AVAILABLE
CODE AS MD CODE AS MD
1. INCMA ————— 1. INCMA ————
2. NOP ———— 2. INCMA ————
3. INCMA — 3. INCMA ———
4. NOP MD101 4. NOP MDI101
5. INCMA MD101 5. NOP MD102
6. NOP MD102 6. NOP MD103
7. NOP MD102 7. NOP MD103
8. NOP MD103 8. NOP MD103

4 =125

Once an MD MEMORY WRITE CYCLE is initiated, the data specified by the
concurrent MI Op-Code is loaded into the MEMORY INPUT REGISTER (MI) and
written into MD at the location pointed to by the MA register.

Data may be written INTERLEAVED every other AP cycle and

NON-INTERLEAVED every three AP cycles for standard wmemory and
INTERLEAVED every cycle and NON-INTERLEAVED every other cycle for fast
MD.

Note that the example for standard wmemory with NOP's between the
INCMA's will execute correctly on Fast Memory; however, the reverse is

not true. Both examples will execute correctly with the INCMA's
replaced by SETMA's even if the memory accesses are NON-INTERLEAVED.
NON-INTERLEAVED accesses merely result 1in a slowdown of instruction
execution; they do not change the timing relationships between
instructions. Writing MD leaves the contents of MDREG unchanged. This
allows a memory Read cycle to be initiated and the data to be used
later irrespective of intervening MD write cycles.

4.7.1.5 AP-120B DMA and Refresh Time Penalties

l. REFRESH

AP Clock

MD_Cycle Initiates Refres; Cycle
\

FAST MD

a) Refresh costs three clocks = 500ns if AP running interleaved
cycles (worst case).

b) Refresh costs only two clocks if non-interleaved cycles. in AP

program.
STANDARD MD
AP Clock
MD Cycle Initiates _Refresh Cycle
{
v

c) Refresh costs four clocks = 667ns if AP running interleaved
cycles (worst case).

d) Refresh costs only three clocks if AP program running
non-interleaved cycles.

2. DMA interference (assuming AP running interleaved cycles).

Time to be added to AP execution
per DMA memory cycle:

Fast MD Std MD
a) Host interface DMA interference:
DMA address in separate bank-pair
from AP accesses 1 clock 2 clocks
Same bank-pair Z clocks 3 clocks
b) Second DMA channel (IOP,PIOP):
Separate bank-pair 2 clocks 3 clocks
Same bank-pair 2 1/2 clocks 3 1/2 clocks

Subtract one clock if AP running non—interleaved cycles
in one bank. One clock = 167ns

4.7.1.6 Programming Examples

* Read Example

Load a vector Ax,i = 0,2 stored in Memory Locatiomns 101, 102, 103 into
DPX locations 10, 11, 12. We will assume that MA was set to 100 and
DPA was set to 10 before we started.

%J INCMA "Fetch A0 from Memory

3: INCMA "F’etch-!-\1 from Memory

4, DPX<MD; INCDPA “Store4AO into DPX location 10
" and bump DPA pointer to 11.

5. INCMA; "Fetch A2 from Memory

6. DPX<MD; INCDPA "Store A1 into DOPX location 11

; " and bump DPA pointer to 12.

8. DPX<MD "Store A, into DPX location 12.

4 - 127

Below is a chart of the above
component after each instruction.

Memor v
Cycle [MA MD |

1. 101 ---
2. 101 ---
3. 102 --=
4. 102 AO
5. 103 AO
6. 103 A1
7. 103 A1
8. 103 A2

* Write Example

Square- the elements

transfer, showing the state of -each
Data Pad
OPA DPXlO DPXll DPX12|
10 —— ——— ——
10 -—— -— -—
10 —— — —
10 A -—— ———
A - —
11 AO A1 ———
12 AO A1 —-=
12 AO Al AZ

of a vector Ax,i =0, 1, 2, in DPX locatioms 10O,
11, 12 and store the results into Data Memory locatioms 101, 102,

103.

We will assume that MA was set to 100 and DPA was set to 10 before we

started.

1. FMUL DPX, DPX; INCDPA
2. FMUL

3. FMUL DPX, DPX; INCDPA
&, FMUL; MI<FM; INCMA

4

- 128

“Square-AO, bump DPA paointer
" to 11.

"Push down the multiplier

" pipeline.
“Square-Al,
" to 12,
"Weite A2 into memory location
" 101. ©

bump DPA painter

Below is a chart of this computatiom:

. Multiplier Memory
Cycle DPA MIM2— FM | [MA MD |
1. 10 Agshy -- — -
2. 11 — - - -
3. 11 ALAL - S —
\ 2 2
&, 12 — Ag 101 Aj

2

5. 12 AZ’AZ - 101 AO
2 2

6. 12 - AL 102 A
7. 12 — - 102 A%
2 2

8 12 _— AZ 103 AZ

P o

* Memory Interleave

Data Memory is divided into 16 banks of 4K words each using MAQ00-MAOQ2
and MAl5 as a memory banmk select. (These are the three highest-order
bits and the least-significant bit of MA.) Memory references to
different banks may be made every 2 AP cycles, while references to the
same bank may be made every 3 AP cycles. For some possible memory
addressing sequences we have:

4 =129

Memory

Memory Address Memory Bank Reference
Sequence (Octal) Sequence: Timing

101, 102, 103, 104,... 1, 0, 1, 0,...every 2
‘ AP cycles
166, 165, 164, 163,... 0, 1, 0, 1,...every 2
AP cycles
100, 102, 104, 106,... 0, 0, 0, 0,...every 3
AP cycles
233, 10374, 234, 10376,... 1, 2, 0, 2,...every 2
AP cycles

Thus references to successive sequential memory locations may be
every other AP cycle, but references to successive—odd
successive—even locations must be three cycles apart.

4 - 130

made
or

4.7.2 TABLE MEMORY (TMA)

4.7.2.1 General Description

The TABLE MEMORY FILE (TM) is a separate 38-bit wide storage file used
to store standard constants and other slowly changing coefficients.

Addressing for TM locations 1is achieved by use of the TABLE MEMORY
ADDRESS REGISTER (TMA).

TM is available in two types =-— READ ONLY MEMORY (TMROM) and RANDOM
ACCESS MEMORY (TMRAM). TMRAM 1is capable of both being WRITTEN and
READ, while TMROM is capable only of being READ. In both types of
memory, the contents of the TM 1location pointed to by the current
contents of TMA become available as TM two cycles after an instructiom
that alters TMA, with one exception; that is=—for a TMRAM WRITE
operation, the contents of TMREG are undefined two cycles later, and
the new contents of the TM location written can become available as TM

three cycles later if TMA is not changed.
TABLE MEMORY (Figure 4=6) consists of the following component parts:
1. TABLE MEMORY STORAGE FILE (TM)
2. TABLE MEMORY ADDRESS REGISTER (TMA)
3. TABLE MEMORY OUTPUT REGISTER (IMREG)

4. TABLE MEMORY INPUT REGISTER (TMIREG)

4 =131

DPBS=INBS

TMRAM
ONLY

TMIREG

TMREG

TO: Al
M1
DPBS

Figure 4-6 Table Memory

& - 132

(Device address "5")

(o]

seikpeii . .

Values stored in Table Memory are read by setting the Table Memory
Address (TMA) register to the address of the desired Table Memory
location. This is done by the instructions:

INCTMA "Increment TMA by 1
DECTMA "Decrement TMA by 1
SETTMA "Set TMA to the current S-Pad

#function (SPFN)

Each of the above initiates a fetch from the Table Memory Location
pointed at by the new contents of TMA. Two AP cycles later the
contents of the desired location are available for use. A new location
may be fetched every Ap cycle. One instruction must be placed between
a TMA address modification instruction and the use of TM contents.

Therefore,
INCTMA "points to TM address X
INCTMA "points to TM address Y
FMUL TM, MD "Multiplies contents of TM address
""X with MD
FMUL TM, DPX(0) Multiplies contents of TM address

" Y with DPX(0)

In TMRAM, data may be written into TM from the DATA PAD BUS (DB), via
an I/0 instruction. Data may be read from TMRAM or TMROM directly to
the FLOATING ADDER Al OPERAND REGISTER (Al), to the FLOATING MULTIPLIER
M1 OPERAND REGISTER (Ml), or onto the DATA PAD BUS (DB).

With respect to writing operations, TMRAM is an I/0 DEVICE whose
address is 5. To write into TMRAM, one must set DA to 5 at least one
cycle before outputting data to TMRAM., For example, in order to write
the current FA into TMRAM location 100(octal), the following program
would be specified:

Assume S-PAD REGISTER 6 equals "100(octal)"

ASSEMBLER FORMAT (Meaning)

o

0

)

LDDA;DB = 5 (Select TMRAM as IODEVICE (DA))

MOV 6,6; SETTMA; DB<FA; OUT (Set TMA to "100(octal)", write
current FA into TMRAM 100(Qctal)

0

o

o

4 =133

Because the TABLE MEMORY INPUT REGISTER can accept data in 167 us, it
does. not have an IORDY flag associated with it. Therefore, the SPNOUT
instruction should not be used to load TMRAM. Data placed on DB during
the OUT instruction is written into TMRAM at the address contained in
TMA following the OUT instruction. Thus, if an OUT instructiom also
modifies TMA, the data is written at the TMA address specified by that
OUT instruction.

Example:
Location
Counter INSTRUCTION COMMENTS
0 LDDA; DB=5 " SET DA=5
1 QUT; DB=DPX(0); " Send DPX(0) to TMRAM
INCTMA " at TMA+L
2 NOP " Other user code
" Previous TM output OK
" here
3 NOP " T™ output invalid
" during this instruction
4. FADD TM, DPX(1) " Use of TMRAM
' '"" Qutput OK here
" User gets value
" Written by the OUT
" If TMA not changed
" At instructiom 2
It 1is possible to write TMRAM on every instructiom. TMRAM behaves in

all other respects exactly as does TABLE MEMORY ROM (TMROM). Different
TMRAM locations can be read on every instructiom (167 ns cycle) and the
output data 1is available for use during the second following
instruction (167 ns access). It isi ounly after TMRAM WRITE that the
TMRAM output is invalid during the second following instruction.

4.7.2.2 Addressing

Addressing of appropriate TM locatioms is achieved by reference to the
current contents of the 16-bit TABLE MEMORY ADDRESS (TMA). When used
strictly as an address pointer, TMA is capable of addressing 64K of
TABLE MEMORY.

4 - 134

However, TMA is alternatively used as both an address pointer and as a
quadrant/sine/cosine 1indicator for <constants used in FFT or IFFT
operations. This alternate addressing is enabled by the FFT Bit in
APSTATUS (Bit 12) and is modified by the IFFT Bit (Bit ll1). 1Im this
case, certain bits in TMA also perform control functions for

- referencing and properly preparing the raw constant stored im TM.
Given below is a sample FFT-related format of TMA for a 2048 word
cosine table (8K max FFT size).

NOT INDICATES ™ @ = indicates
USED QUADRANT ADDRESS WORD cosine
e Ve - — | 1 = indicates

| | I TR e

| T T T 1 I [

1 {
bit 49 Iﬁl l¢2l a3 l¢4 14 15

This division of the TMA register 1into three sections allows the
programmer to address a table of real cosine values lying between
angles 0 and 90 degrees as if it were a full circle of complex

exponential wvalues with the real part in even numbered locations and
the imaginary part in odd numbered locatioms.

TMA quadrant, sine, cosine theory of operation:

The complex exponential function and the sine and cosine functions are
related via the following equation;

S

5% 2 cosine (X) £ sine (X)

EXP (£X) - COS (X) = j SIN (X).

Thus, the real part of the complex exponential of plus or minus a
positive real number X is the cosine of X and the imaginary part 1is
plus or minus the sine of X. A forward FFT requires complex
exponentials of negative arguments CEXP(-X), while an inverse FFT
(IFFT) requires complex exponentials of positive arguments, CEXP(X).
Thus, the TMA logic is set up so that the normal mode of cperation (FFT
= "1", IFFT = "0" in APSTATUS) is to produce complex exponentials of
minus X. With FFT = "1" and IFFT = "1", the TMA logic produces complex

exponentials of plus X. With FFT = "0" and IFFT = "0" or "1", the
logic treats TMA as an unmodified 16-bit address.

Complete understanding of the TMA complex exponential addressing
requires knowledge of the following trigonometric identities with 0
degrees { X < 90 degrees.

4 =135

oth quadrant CO0S (X) = CO0S (X)
SIN (X) = cos (90° - X).

15% quadrant COS (x+90°) = -SIN (X)
| = -C0S (909 - X)

SIN (x+90°) = COS (X)

2" quadrant cos (x+180°%) = -COS (X)

SIN (x+180%) = -SIN (X)
= -C0S (90° - X)

3" quadrant oS (x+270°) = SIN (X)

= €0S (90°% - X)
SIN (x+270%) = -COS (X)

Thus, these eight equations reduce the desired sine and cosine values
in any quadrant to cosine values in the Oth quadrant (0 degrees < X <

90 degrees) plus the one value COS (90 degrees) =0 for X = 0 in COS
(90 degrees - X).

This last value is achieved by inhibiting the output of TM when COS (90
degrees) is desired. Since the equations do require negative values of
the cosine and the table contains only positive values, the logic in
TMREG contains a two's complement generator that is capable of negating
the mantissa of the output of TIM, thus producing a negative
floating-point result whem -CCS(X) or -COS(90 degrees — X) is required.

For use with the FFT or IFFT, the table size required is always a power
of two since the FFT algorithm works with the power of two number of
data points. The FFT requires a full circle of complex exponentials
that has the same number of complex values in it as the largest number
of data points desired (number of real points for real FFT's, number of
complex points for complex FFT's). Since the above equations reduce
the full circle of complex expomentials to one quadrant of cosines, we
see that the cosine table must contain one—~fourth the number of points
for the largest desired FFT.

Thus, for the typical case of an 8192-point maximum size FFT, there
will be 2048 values of the cosine function in table memory. The values
are. computed for the angles (19 s 2048 where n=0cw 2047 . Thus each
increment in TM address, represents an angle increment of 90° + 2048 ,

4 - 136

Since an angle of 90 degrees corresponds to a table memory address of
2048, the problem of generating the addresses for the angles 90 degrees
- X required by the above equations reduces to a question of simply
two's complementing the TM address (Bits 04 to 14) portion of the TMA
register output and masking the result back to 1l bits.

2048-90° n-90Q° 90°
c . = - - - .
(90 x) — 5548 (2048 - n) 5595

In ll-bit binary arithmetic, (2048 = n) is an equivalent definiticn of
the two's complement of n.

Thus, the hardware logic for the complex exponmential generation also
provides the ability to steer bits 04 to 14 of the TMA register, onto
bits 05 to 15 of the TMA address bus, while placing zeros om bits 00 to
04, and to conditiomally two's complement bits 04 to 14 of TMA, when
the angle (90 degrees - X) is required.

Note that the op—code RTMA reads the value on the TMA address bus,
while the op-codes in the SPEC OPER field that use TMA (JSRT, JMPT,
LPSLT, etc.) use the unaltered l6=bit contents of the TMA register.
An FN register breakpoint on TMA also uses the value on the TMA address
bus.

Table 4=3 shows the Table Memory CEXP truth table.

4 =137

Table 4-3 Table Memory CEXP Truth Table

™ ™
QUADRANT SIN/COS FFT IFFT ADDRESS QUTPUT
0 Full 16 bits +

0 4] 0 1 0/1 +n +

0 0 1 1 0/1 -n -/+
0 L 0 1 0/1 -n -

Q 1 1 1 0/1 +n -+
1 0 0 1 0/1 +n -

1 0 1 1 0/1 -n +/=
1 1 0 1 0/1 -n *

1 1 1 l 0/1 +n +f=-

a = bits 04 to lA«ofV:MA register for a 2048 point cosine table.
Maximum points in FFT = 8192.

quadrant = Bits 02 and 03 of TMA register for a 2048 point cosine table
SIN/COS = Bit 15 of TMA register

FFT = Bit 12 of APSTATUS

IFFT = Bit 11 of APSTATUS

Hardware strap optionS«allowrn to be widened and the quadrant bits
moved to the left, thus allowing alternative cosine table sizes of 4K
(16K FFT) and 8K (32K FFT). Cosine table sizes of 16K and 32K are

possible. However, the quadrant determination logic will not work
properly and thus special FFT micro-code would be required.

4 - 138

4.7.2.3 Read and Write Operations

In READ OPERATIONS the contents of the TM location pointed to by the
current address contained in TMA will become available as TM two
instruction cycles later.

In order to change TMA, one may specify an INCTMA, DECTMA, SETTMA
op-code from the TMA field of the MEMORY portion of the instruction
word, or specify a LDTMA op~code from the LDREG field of the 1I/0
portion of the instruction word. The contents of TMA as altered by
these op-codes are available one cycle later for op-codes that use it
as an address (JSRT) or data (RDTMA). The available TMA modification
op~codes are given below:

INSTRUCTION OCTAL

WORD FIELD VALUE OP-CODE OPERATION

TMA 1 INCTMA Increment current TMA
address by "1"

T™MA 2 DECTMA Decrement current TMA
address by "1"

TMA 3 SETTMA Replace TMA address
with current SPFN (See
Note)

LDREG 3 LDTMA Replace TMA address

with current DB

NOTE
If an Op-Code from LDREG field (I/0) is used con—

currently, then SETTMA will replace the TMA address
with the current DB, not SPFN.

4 - 139

4.7.2.4 Programming Examples

* Example 1

Do the vector sum Ax = B+K, 1 = 0, 1, 2, where Ax is in DPX locations
10-12, Bx 1is in DPY 10-13, and Kx is a series of constants stored in
Table Memory locationm 235-237. Ax will be stored back into DPX. Ve
will assume that DPA was set to 10 and TMA was set to 234 before we
start.

1. INCTMA "Fetch KO
2. INCTMA "Fetch K1
3. INCTMA; FADD TM, CPY; INCDPA "Do KO +°B~, bump DPA to 11
&, FADD TM, DPY; INCDPA “Do K1 +'Bl’ bump DPA to 12
5. FADD TM, DPX (0); DPX (-2)<FA "Do K5 + B,, store A in DPX
6. FADD: DPX (-1)<FA "Store AI in DPXll
7. DPX (0)<FA "Store A, in DPX
2 12
The following charts the above computationm:
Table Mamory Adder Data Pad X
Cycle TMA ™ Al,A2 FA OPA 10 11 12
1. 235 -— — — 10 _— — —
2 236 -——- -— -— 10 -—- — -—
3. 237 K K+,B ——— 10 —— — ———
. 237« 4 Kg,ag — 11 emm e o
5. 237 Kz KZ ’BZ KO+B 0 12 A 0 — —
6. 237 K2 -=- " K1+B1 12 AO A1 —
7 237 Kg, _— K2+B2 12 A0 A1 A2

* Example 2 — A Complex Multiply

An example using both memories is a complex multiply from the FFT (Fast
Fourier Transform) algorithm. The multiply is between a complex signal
point held in Data Memory and a «complex exponential value (a root of
unity, xxx) fetched from Table Memory. The computation is:

X

n

R = CR™WR - Cy™y

1 = G

X +C

s

Where C is the data point and W is the complex expomentisl "R" and "I"
denote real and imaginary parts respectively. C 1is in Main Data
Memory, and W is in Table Memory.

4 = 140

10

Fetch the 1. INCMA . “Fetch CR from Data Memory
4 arguments 2. INCTMA “Fetch WR from Table Memory
3. INCMA; INCTMA "Fetch CI fetch NI
4. FMUL TM, MD "Do CR * WR
Do the 5. FMUL TM, MD; DECTMA "Do CR * wI fetch NI
multiplies 6. FMUL TM, MD "Do CI *‘WI
7. FMUL TM, MD; DPX (Q)<FM "Do CI * WR, Save CRWR, In DPX
8. FMUL; DPX (1)<FM "Save CRWI in DPX
Do the 2 9. FMUL; FSUBR FM, DPX (p) "Do Xp *+ CoMp=CiWy
adds. 10. FADD FM, OPX (1) "Do XI ='CRNI +'CIwR
11. DPX (0Q)<FA; FADD Xa is ready, save in DPX
12. DPX (1)<FA XI is ready, save in DPX

The total elapse& time is 12 cycles or 2us. In practice, however, we
can overlap all but cycles 4-7 with the preceding and following

computations. The complex multiply then takes us only 667ns, when
mixed in with other computations.

Below is a summary chart of the complex multiply:

Memories Multiplier Adder Data Pad
Cycle [TM MD | [M1,M2 FM | |AL,A2 FA | | € 1|
1. -—- —— --- -— -—- -—- - -—-
2. -—-- —— ae— -— -—- -— -— -——-
3. -— —— - — -— -— -— -—
4. wR CR NR,CR -—- -—- -—- -—- -—-
5. W o Wr,C --- -—- -— -—— -
I R I°ZR
6. NI CI wI,CI -—- -— -—- -—- -—
* - - ——
7. WR CI WR,,CI NR*CR WRCR
8. -—- -ce a-- wI CR --- -—- wRCR WICR
9. -—- ——— e=- NI*CI wICI’wRCR -—- NRCR WICR
10. -—- ——— -e- W_*Co W Cr,W;Co X W,C W:C
I "RTI’I"R R R™R IR
11 -—- ——— e=- -—- -—- X X W:C
I R IR
12 - ——— e=- -—- -—- XR XI

4 - 141

CHAPTER 5

HOW TO PROGRAM THE AP-120B

S.l MEET THE AP:. QQQQQAGAIN‘

5.1.1 Introduction

The purpose of this. chapter is to illustrate the way to use the AP most
efficiently, i.e., to write good loops. It assumes that the reader has
already read the Software Development Package Manual (APAL, Sections 2
and 3) and has at least a passing acquaintance with the AP instruction
set.

This chapter presents a short review of the basic elements of the Array
Processor from the programmer's point of view, covers methods and

techniques of writing loops and suggests some common pitfalls to avoid.

It reviews some of the basic AP instructions; it is not meant to be
all-inclusive but to briefly cover the most-often—used things.

This chapter assumes the use of the AP's 333 ns interleaved memory.

5.1.2 Basic OQverview

5.1.2.1 Arithmetic

Both the Floating Adder and Floating Multiplier need explicit
instructions (e.g., FADD and FMUL, respectively) to push their
respective answers out of the pipelines. Given these 'pushers", the
Floating Adder result (FA) will be available two cycles after the
original instruction, and the Floating Multiplier result (FM) will be
available three cycles after the original instructiom:

0. FADD DPX, DPY '"add 0. FMUL DPX, DPY '"multiply
1. FADD "push l. FMUL "push
2. DPX(1)<FA "store answer 2. FMUL "push
3. DPY(1)<FM "store answer

The empty FADD and FMUL "pushers" can also be read Adder or Multiplier
operations, thus producing new answers each cycle.

If the '"pushers" do not directly follow the original instructioms, FA
will come out one cycle after the first FADD pusher, and FM will come
out one cycle after the second FMUL pusher. Both FA and FM will remain
available for succeeding cycles until a new FA or FM is pushed out.

The arguments for Adder and Multiplier imstructious consist of one from

column A and one from column B, (in that order):

COLUMN A (Al or Ml) COLUMN B (A2 or M2)
FM FA
™ MD
DPX DPX
DBY DPY

The Adder has additional arguments of ZERO and NC (no change), which
can be used in either or both columns.

5.1.2.2 Main Data Memory

Reading from memory requires one of the following instructions: SETMA,
INCMA, DECMA, or LDMA. In practice, it is usually done by the SETMA
instruction. The result, MD, comes out three cycles later and is also
available for succeeding cycles until a new MD comes out. No "pushers”
are needed. Writing into memory requires one of the above instructions
plus MI<source, where source is FA, FM or DB. This goes on the same
line as SETMA, and gets done in that cycle. Memory can be referenced
every two cycles, for either a read or write.

5.1.2.3 Table Memory

Table memory is usually referenced by the SETTMA or LDTMA instruction.
Two cycles later, TM is available and remains so until two cycles after
the next instruction affecting TMA. Such instructions can occur in
every cycle, producing a new TM every cycle.

5¢le2.4 Data Pad

DPX and DPY each contain 32 registers, eight of which are accessible
from any given DPA. That is, one can reference DPX from DPX(DPA-4) to
DPX(DPA+3), and similarily for DPY.

The Data Pad Bus is usually used to store data from memory or from one
Data Pad register into another, or to utilize a value, e.g., 1in
conjunction with a load operatiom:

DPX(1)<DB; DB=DPY(-2) This can be shortemed to
DPX(1)<DPY(-2).)

DPX<DB; DB=MD (Or DPX<MD)

LDDPA; DB=3 (This sets DPA=3)

Storing 1into. Data Pad from FA or FM does not use the Data Pad Bus.
This is important, as it leaves DB free for other uses.

5'01.2&5 S‘Pad

S-Pad registers are usually used as address pointers or counters, and
thus to pass parameters to a program. An S-Pad operation must
accompany a SETMA (or SETDPA, SETTMA, etc.) instruction. An S-Pad
operation must also precede a conditional branch (BGT, BNE, etc.) by
one cycle. That is, conditional branches are based on the S5-Pad
Function (SPFN) of the S-Pad operation in the previous cycle.

The fastest way to get an integer into S~Pad is to use the LDSPI
instruction:
LDSPI COUNT; DB=5

This puts 5 into an S-Pad register called COUNT. The value is assumed
to be octal unless a decimal point is added. DB=15. (note point) is
equivalent to DB=17 (octal), or to DB=0FX (hex). Hexadecimal numbers
must start with a numeric digit and end with "X".

o

Although the Floating Adder operation FSUB Al, A2 will do Al-A2, the
S-Pad operation SUB subtracts in the opposite direction, 1i.e., SUB
PIECE, TOTAL will do:

(contents of S-Pad TOTAL) minus (contents of S=Pad PIECE).

5.1.3 Referencing Memory

In order to read something out of memory, or write into it, the
location in memory where this will occur must be provided. The SETMA
instruction gets this necessary information from the S-Pad Function
(SPFN) of the same cycle. Therefore, one needs to comstruct an S=Pad
operation which will result in a pointer to the appropriate memory
location. Gemerally, this takes the form of adding increments to
pointers. For example, 1if there was a 4~element vector in memory
locations 100, 102, 104, 106, one would need an S-Pad register (say,
APTR) containing the base address (100), and another S-Pad register
(AINC) containing the increment between elements (2). Then, if one
wanted to read the element in location 102, the appropriate instruction
would be ADD AINC, APTR; SETMA. Now APTR would contain 102. If one
wrote another ADD AINC, APTR; SETMA the contents of memory Llocation
104 would be read.

Consider the following instructiom: MOV APTR, APTR. This doesn't seem
to accomplish much, but in the light of the above discussion, it can be
seen that its SPFN could be useful for a SETMA. This is how one would
get the first element of a vector.

All of the above is correspondingly true for writing into memory.

5.1l.4 S=Pad Mnemonics

S-Pad names such as APTR, AINC, N are really only temporary names for
the 16 S-Pad registers. A statement such as DEC N will not mean
anything to the assembler unless the program has equated the mnemonic
"N'" with a specific S—Pad register, such as S-Pad 0. This is dome by
the following assembler pseudo-op: N $EQU O. All S-Pad names used 1in
a program must be declared in this manner before using them in an
instruction. Thus, programs generally begin with lists like:

APTR SEQU 0
AINC $EQU 1
BPTR SEQU 2
BINC $EQU 3
N SEQU &

These S—-Pad numbers should not be confused with the contents of the
S-Pads. ADD BINC, BPTR would not add 3 to 2 (using the above list),
but would add the contents of S~-Pad 3 to the contents of S-Pad 2.

There can be more than one name for an S-Pad register. If you had two
different vectors, A and B, and wished to use the mnemonics AINC and
BINC for their increments, you could use the same S-Pad register if the
increment for both is the same in all cases, by declaring:

AINC $EQU 1
BINC SEQU 1

5.1.5 Other Pseudo-Ops

Besides the $EQU pseudo-op, the typical program includes STITLE and
SENTRY pseudo—ops at the very beginning, and an SEND at the very end.
A basic program with one loop would have the following form:

$TITLE name
$ENTRY name

S-Pad mnemonic SEQU 0
> .. l
> .- 2

. . -
. . .
. . .

name: (code)
1"

("intro" to loop and any initializationms
and pointer adjustments)

loop: (code)
1

n

$END

See the software manual for explanations of these pseudo-ops.

5.2 LOOPS

5.2.1 A Poor Loodp

The loop is where the potential of the AP comes into full bloom. For

example,

one way (lengthy but workable) to write a dot product program
is as follows:

Given:

Produ

ce:l

Vectors A and B in Main Data Memory, with elements of

each vector in equally spaced locations in memory (e.g.,

even—numbered locations).

N

c= A(m).B(m)
m=1

Parameters passed in S-Pad:

S-Pad Name Contains:
APTR base address of vector A
BPIR base address of vector B
XINC increment (number of locations from one
element to the next) (same for both vectors)
N number of elements in each vector
CPTR address of answer
DOTPROD: SUB. XINC, APTR (See Note below)

LOOP:

DONE:

SUB XINC, BPTR (See Note below)

FADD ZERO, ZERO "initialize FA=0

FADD

ADD XINC, APTR; SETMA "'get mth element of vector A
NOP* " from memory

NOP

DPX<MD "MD=A(m), store into DPX

ADD XINC<K BPTR; SETMA "get mth element of vector B
NOP

NOP

FMUL DPX, MD "MD=B(m), do A(m).B(m)

FMUL

FMUL .

FADD FM, FA "add product to sum of products
FADD

DEC N ""decrement counter

BGT LOOP "branch back if not done yet

"(i.e. 1f N>0Q)
MOV CPTR, CPTR; SETMA; MI<FA
"otherwise, store answer

NOTE

This is so that the first time through the loop,
ADD XINC, APTR and ADD XINCK BPIR will not move
the pointer to the second element, passing up
the first altogether.

To begin with, this program can certainly be shortened by combining
instructions and overlapping memory fetches. Thus:

DOTPROD: FADD ZERO, ZERO; SUB XINC, APTR
FADD; SUB XINC, BPTR

LOOP: ADD XINC, APTR; SETMA "get A(m)
NOP)
ADD XINC, BPTR; SETMA "get B(m)
DPX<MD "store A(m) in DPX
NOP
FMUL DPX, MD "do A(m).B(m)
FMUL
FMUL
FADD FM, FA; DEC N "add product to sum of products
: ‘ " and decrement counter
FADD; BGT LOOP "test if done. If not, branch
" to LOOP
DONE: MOV CPTR, CPTR; SETMA; MI<FA

"if so, stare answer

Note the extra FMUL's and FADD's, described as "pushers'". These push
the answers through the pipelines, so that FM and FA will contain what
they are intended to «contain. This is pointed out because the
beginning AP programmer is likely to forget to put '"pushers" in his
code.

Now the 1loop of the evolving dot product program is ten cycles long.
This. means that each new pair of elements costs ten more cycles.
Although better than the initial example, which had a l4-cycle loop,
this can actually be cut down to a mere four cycles!

5.2.2 Determining Length of Loop

One might suppose that the length of a program loop depends on what one
is trying to do. This 1is true, but not in the way one would think.

The AP programmer decides ahead of time how many cycles his loop should

contain, and then fits everything into that framework. How does he
pick the magic number? Most commonly, loops are memory—limited.
Recall that one can reference memory (to read or to store) every two
cycles. If one has two memory references to do (e.g., '"get A" and "get
B"), then the loop will be at least four cycles long (two per memory
reference). And, unless one has more than four different FMUL's, four
different FADD's, or four different S-Pad operatioms to do, the loop
should be, at MOST, four cycles. A lot can be dome in four cycles when
one can do a Floating Multiplier operatiom, a Floating Adder operation,
an S-Pad operation, a branch, a memory reference, a Data Pad Bus
transfer, etc., in EACH cycle.

5.2.3 Writing A Real Memory-Limited Loop

Before continuing with the transformation of the dot product program,
another example will be utilized.

Given: Vectors A and B in Main Data memory, length=N elements
Produce: Vector C (in memory), where C(m)=A(m)2+B(m) for m=l to N

Parameters:

S=Pad Name Contains
APTR base address of A
BPTR base address of B
CPTR base address of C
XINC increment (same for all vectors in this example)
N number of elements
Note that there should be three memory references in the loop: 'get

A", "get B", and "store C". (Unlike the dot product which accumulated
a running sum in the Adder, this program needs to store an answer after
each set of computatioms. For the dot product, storing was not a
repeated process, and hence not included in its 1loop.) Three memory

references, one every other cycle, means the loop would be six cycles
long. It would start like this:

1) =-=—(nothing here, but count a cycle)

2) ADD XINC, APTR; SETMA get A

3) ——-

4) ADD XINC, BPTR; SETMA "get B

5) DPX<MD "store A in DPX
6) FMUL DPX, MD "do A*A

(The reason for starting on the second line will be explained later.)

Now it has run out of cycles, but there is still more to do, so it
starts back up at the first cycle, which is where the end will branch
to, when it gets around to testing if it's done.

LOOP:

This 1is

1)

2)

3)

4)

5)

6)

the entire loop.

——

ADD XINC, APTR;
SETMA

ADD XINC, BPTR;
SETMA

DPXMD

FMUL DPX, MD

FMUL "B is available
here, but
"not needed yet

FMUL

FADD FM, MD "add B to A(2)
FADD.

DEC N "answer 1s avail~

able here
"but can't re-
ference memory
"vet to store it

ADD XINC, CPTR; SETMA; MI<KFA;
BGT LOOCP ""store answer and
"test if done

In its proper form, taking out lines and

adding semicolons, it looks like this#

LOQP:

FMUL
ADD XINC, APTR; SETMA; FMUL
FADD FM, MD
ADD XINC, BPTR; SETMA; FADD
DPX<MD; DEC N
FMUL DPX, MD; ADD XINC, CPTR; SETMA; MIKFA; BGT LOOP

P N

5.2.4 Writing Intros

Notice, however, that if the program goes right into this loop, after
initial overhead such as SUB XINC, APTR

SUB. XINC, BPTR

SUB XINC, CPIR
it picks up the first element of A and B as it's supposed to, but it
also stores something into C before it's ready to, and decrements the
counter too early. IT GOES THROUGH BOTH COLUMNS AT THE SAME TIME.
What is desired, however, is that computations in the second colummn
continue from the first columm. The only way it can do this is to
continue from what the first columm did in the PREVIOUS time through
the loop. And the FIRST time, there was no previous time. Hence the
need for additional microcode before getting into the loop.

Exactly what needs to go before the loop? In order for the second
column of the loop to be doing what it's supposed to when the program
gets to it, the first column must precede it. Essentially, ome
rewrites the first column as an "intro" to the loop. Thus:

PROGRAM: MOV APTR, APTR; SETMA "get first element
"of A
SUB XINC, CPTR "to offset ADD in
‘ loop
MOV BPTR, BPTR; SETMA "get first element
"of B
DPX<MD "store A(l) in DPX
FMUL DPX, MD "do A(1)2
LOOP: FMUL
ADD XINC, APTR; SETMA; FMUL "get A(mt+l)
FADD FM, MD "do A(m)2+B(m)
ADD XINC, BPTR; SETMA; FADD "get B(m+l)
DPX<MD; DEC N "store A(m+l)
FMUL DPX, MD; ADD XINC, CPTR; SETMA; MI<KFA; BGT LOOP

"do A(m+1)2, store
"C(m), test if done

DONE: RETURN

To clear up a loose end regarding the structure of memory—-limited
loops, one might notice that since the branch wmust be in the last
cycle, the DEC N instruction must be in the second-to—last cycle. DEC
is an S-Pad operation and cannot be in the same cycle as another S-Pad
operation, such as ADD XINC, XPTR. A memory—-limited loop has SETMA's
(requiring S~Pad operations) omn every other line. Since the DEC N
operation will go om an odd-numbered line of the loop, the SETMA's must
go on even—numbered lines. This is why the first thing to do,ADD XINC,
APTR; SETMA (See section 5.2.3), was put on line 2.

5.2.5 Dot Product Program

It is now possible to write the four cycle dot product. Using the
technique outlined above, the loop should be constructed as follows:

1) —-
2) ADD XINC, APTR; SETMA ''get A
3) —-
4) ADD XINC, BPTR; SETMA ‘"get B
then
1) === DPX<MD "store A
2) ADD XINC, APTR; SETMA ---—
3) -— FMUL DPX, MD '"do A.B

4) ADD XINC, BPTR; SETMA FMUL

then
1) =—- DPX<MD FMUL
2) ADD XINC, APTR; SETMA =——- FADD FM,FA "add A.B to sum
"of products
3) === FMUL DPX, MD FADD; DEC N'"decrement
counter
4) ADD XINC, BPTR; SETMA FMUL BGT LOOP "test if done

The intro to this three column loop will consist of the first column
alone, then the first and second column together. Other overhead, such
as initializing FA to O, can be mixed in with the intro.

To generalize, an N-colummn loop would require an intro consisting of
column 1 followed by columns 1 and 2 together, followed by columns 1, 2
and 3 together....followed by columns 1, 2,...,N-1 together.

STITLE DOTPROD
$ENTRY DOTPROD

APTR $EQU
BPTR $EQU
CPTR SEQU
XINC $EQU
N SEQU

DOTPROD:

LOOP:

DONE:

SEND

Q
1
2
3
A

MOV APTR, APTR; SEIMA; FADD ZERO, ZERO

MOV BPTR, BPTR; SETMA; FADD
DPX<MD

ADD XINC, APTR; SETMA

FMUL DPX, MD

ADD XINC, BPTR; SETMA; FMUL
DPX<MD; FMUL

ADD XINC, APTR; SETMA; FADD FM, FA
FMUL DPX, MD; FADD; DEC N
ADD XINC, BPTIR; SETMA; FMUL; BGT LOOP

MOV CPTR, CPTR; SETMA; MI<FA; RETURN

"get A(l) and
"initialize FA=0

"get B(Ll)
"store A(l)
"get A(2)

"do A(1)*B(1)
"get B(2)
"store A(m+l)

"get A(m+2), add
"A(m)B(m) to sum

"do A(m+1)B(m+l)
"deqrement counter

"get B(m+2), test if
"done

"if so, store answer

Now each new pair of elements will cost four more cycles, because every
four cycles a new pair is being fetched; every four cycles another
product is added to the sum. The longer overhead is no disadvantage as
it is only done once, and even if the program was called with N
containing 1, making the streamlined 1loop unnecessary, it takes no
longer than the unstreamlined program.

Note that there are two SETMA's in a row at the beginning and again at
the end of the program. This will not cause any problems except to
make memory spin, which is the memory's way of putting in the NOP's the
programmer leaves out. The timing is still the same, and this way
there are two less locations of Program Source used up.

It might be mentioned that if one were getting Vectors A and B out of
Data Pad instead of memory, the dot product could be written with a
one-cycle loop! This will be demonstrated later.

5.2.6 Notation

A few words about notation are in order. The "---'" used when writing
loops in column form simply denotes a blank spot, indicating a cycle
goes by while awaiting the results of a memory fetch or while looking
for a more propitious spot to use the results of the Adder or
Multiplier, etc. Normally, something else will eventually go oun the
same line, in a different column.

Example: This takes vector A, multiplies it by a constant im DPX, and
stores it in vector B.

1) === FMUL DPX, MD

2) ADD XINC, APTR; SETMA FMUL

3) === FMUL; DEC N

4) == ADD XINC, BPTR; SETMA; MIKFM; BGT LOOP

Since the length of the loop was already decided by the number of
SETMA's, these blank spots cause no harm to the speed. It is the
number of cycles in the loop, not the number of columns, which
determines. speed. Extra columns simply mean longer intros, which the

program only goes through once anyway unless 1it's part of a nested
loop.

In. loops with several Adder or Multiplier operations, it often happens
that one such instruction will be a "pusher" for another in another
column.

1) (code) FMUL DPY, MD (code)
2) " FMUL DPX, DPY FMUL "
3) '* FMUL FMUL "
4) " FMUL DPYLFM "
5) " DPX(1)<FM "

6) 118 "

In column 2, lines 2 and 3 are illegal, as those lines already contain
FMUL's (which will do the pushing for column 2 as well as column 1).
However, it may be advantageous to the programmer to note to himself
somehow that FMUL's do belong there, in case things in the first column
get moved around for some reason. This is the purpose of such notation
as (fmul) or (fadd).

Thus:
1) (code) FMUL DPY, MD (code)
2) " FMUL DPX, DPY (fmul) "
3) " FMUL (fmul) "
4) " FMUL DPY<FM "
5) " DPX(1)<FM "
6) 1" 1"

Now, if pieces of the first column were moved down a couple of lines
for some reason,

1) (code) FMUL DPY, MD (code) DPX(1)<FM
2) " (fmul) "
3) " (fmul) "
4) "FMUL DPX, DPY DPY<FM "
5) "FMUL. 11}
6) "FMUL "

the programmer would be reminded to put real FMUL's back on those
lines.

When writing loops with a small number of cycles, these reminders can
also help one keep track of the colummns, as in:

-— -— DPY<MD FMUL FADD FM, FA; DEC N
ADD XINC, APTR; SETMA --- FMUL, DPY, MD (fmul) FADD; BGT LOOP

This gets a vector from memory, squares each element and adds the
squares together (sort of a dot product between vector A and itself).
The seemingly empty columns, which disappear when the loop is written
in proper form (see below), are necessary in order to write the intro
properly. If one 1left out the second column, for example, his intro
would start with:

MOV APTR, APTR; SETMA
DPY<MD
ADD XINC, APTR; SETMA; FMUL DPY, MD

Clearly, the first MD will not be the first element fetched. By the

time it gets down to FADD FM, FA in the loop, something which doesn't
belong will be added in.

This is what the intro and loop should look like:

MOV APTR, APTR; SETMA

FADD ZERO, ZERO "initialize FA=0
ADD XINC, APTR; SETMA; FADD

DPY<MD

ADD XINC, APTR; SETMA; FMUL DPY, MD
DPY<MD; FMUL

ADD XINC, APTR; SETMA; FMUL DPY, MD

LOOP: DPY<MD; FMUL; FADD FM, FA; DEC N
ADD XINC; APTR; SETMA; FMUL DPY, MD; FADD; BGT LOOP

(answer)<FA

5.2.7 Dropping Out One Early

1) === (code) - (code)
2) ADD XINC, APTR; SETMA " "

3) (code) " "

4) ADD XINC, BPTR; SETMA " "

5) (code) " "

6) " ADD XINC, CPTR; SETMA "

7" (code) " DEC N

8) w " ADD XINC, DPTR; SETMA

MI<DPX; BGT LOQP

Here, there are two memory reads in the first column, one read 1in the
second column, and a store in the last column. When writing the intro,
the pointers should be taken care of as follows:

MOV APTR, APTR; SETMA
SUB XINC, DPTR; (code)
MOV BPTR, BPTR; SETMA
(code)

-

ADD XINC, APTR; SETMA; (code)
(code)
ADD XINC, BPTR; SETMA; "
(code) "
" MOV CPTR, CPTR; SETMA

" (code)

If the memory reference in the second column of the loop was a store
instead of a read, the problem would become more complicated. By the
time the counter went down to zero and the last result was stored at
DPTR, an extra C would have been stored, possibly over a valuable piece
of data, such as the beginning of vector D. Or if instead of ADD XINC,
CPTR; SETMA; MI<KDPY in the second column, we had DPY<FA (where FA is
cumulative, as in the dot product) and later stored DPY into CPIR after
getting out of the loop, an extra FA would have been computed and DPY
would contain an incorrect answer. In this case, it would be wise to
drop out of the loop one time early. One would put an extra DEC N
somewhere in the intro, so that the loop would be done N-l times. Then
after the loop, write just the last column (not including DEC and the

branch, of course), which is all that remains to be done from the loop
anyway.

e e

Example: This does a dot product of vectors A and B, and also outputs
the square of each updated sum into vector D.

-— FMUL DPX, MD -—

ADD XINC, APTR; SETMA (fmul) FMUL DPY, DPY

-— FMUL (fmul)

ADD XINC, BPTR; SETMA FADD FM, FA FMUL

DPX<MD FADD DEC N

-— DPY<FA ADD XINC, DPTR; SETMA; MI<FM;

BGT LOOP

When it 1is going through the loop for the last time and storing the
very last thing in D (column 3), it is also simultaneously doing extra
executions of columns 1 and 2. Normally, that doesn't matter, but in
this case, something extra is being added to the cumulative sum of the
dot product (column 2), which was completed the previous time through
the loop. By dropping out of the loop before its 1last time around,
this error is avoided:

MOV APTR, APTR; SETMA

DEC N "to cause dropping out early
MOV BPTR, BPTR; SETMA
DPX<MD
SUB XINC, DPTR "to nullify the first ADD XINC, DPTIR
FMUL DPX, MD
ADD XINC, APTR; SETMA; FMUL
FMUL
ADD XINC, BPTR; SETMA FADD FM, FA
DPX<MD FADD
DPY<FA
LOOP: FMUL DPX, MD
ADD XINC, APTR; SETMA FMUL DPY, DPY
FMUL
ADD XINC, BPTR; SETMA FADD FM, FA FMUL
DPX<MD FADD; DEC N
DPY<FA; ADD XINC, DPTR; SETMA; MI<FM;
BGT LOOP
OUT: FMUL DPY, DPY
MOV CPTR, CPTR; SETMA; MI<KDPY; FMUL
FMUL
ADD XINC, DPTR; SETMA; MIFM;
RETURN

Notice that the (fmul) in column 2 became a real FMUL in the intro.
OUT starts just the last column. The next line stores the completed
dot product.

One might wish to come out one early even if one doesn't strictly need
to, if the loop is long and there are only a couple of

last column:

1) (code) (code)
2) " SETMA "

3) " " ' SETMA; MI<KDPX
4) "

5) 1"

6) " SETMA

7) 1"

8) " SETMA

9) "

10) " SETMA

11) " DEC N

12) ' SETMA BGT LOOP

In this

last four lines afterward would save going

nothing.

lines 1in

the

case, coming out of the loop one time early and adding on the

22

through

eight

cycles

for

5.2.8 Interaction Between Columns

In order to fit things into complicated loops without creating op—code
conflicts, the AP programmer takes advantage of results (e.g. MD, FA)
which are the same for one or more cycles after first available.
Sometimes he will purposely delay the pushing of an answer through a
pipeline by leaving out "pushers'. But he must be careful of the way
the columns interact with each other within the loop.

1) FMUL DPX, DPY .

2) . FMUL DPY(3), DPX(2)
3) . FMUL

4) FMUL .

5) FMUL DPY(1)<FM

6) DPX(1)<FM .

The FMUL's in column 2 will act as 'pushers" for the FMUL DPX, DPY in
column 1, whose answer will come out on line 4 instead of line 6 as
desired and will disappear forever when replaced by a new FM on line 5.
Notice the FMUL on line 4 in column 1 acts as a pusher for columm 2,
which was planned for.

Another example:

1) (code) DPX<MD (code)
2) ADD XINGC, APTR; SETMA (code) DPX<FA
3) (code) FADD FM, DPX (code)
4)y v (code) "

The DPX of column 2, line 3 will not be the same as what was stored
into it in column 2, line l. It will be FA from column 3, line 2.

5.2.9 Changing DPA

Because one can access things in Data Pad much faster than things 1in
memory, it makes sense to store things from memory into Data Pad if
they will be used again. For example, if one is going to wuse an N=-
element vector for several different computations, one could store it
in DPX(0), DPX(1l),....,DPX(N-1). Because the Data Pad indices can only
be accessed from -4 to +3 with a static DPA, 1t becomes useful to leave
the index alone and change DPA.

Storing vector A in DPX ig basically the repeated operation of DPXMD;
INCDPA. If DPA is initially set to zero, then the first element will
be stored into DPX(0). INCDPA will increase DPA for the NEXT

instruction.
Thus: DPX<MD; INCDPA "refers to DPX(0)
DPX<MD "refers to DPX(1)

The ways to set DPA to zero:

CLR# (S=-Pad name); SETDPA "uses up S~Pad field
or
DB=ZERO; LDDPA "uses up Adder field

This loop will read a vector from memory into Data Pad X:

— --— DPX<MD; INCDPA; DEC N
ADD XINC, APTR; SETMA. -—-— BGT LOOP

With intro:

MOV APTR, APTR; SETMA
CLR# APTR; SETDPA
ADD XINC, APTR; SETMA
LOOP: DPX<MD; INCDPA; DEC N
ADD XINC, APTR; SETMA; BGT LOOP

5.2.10 Non-Memory-Limited Loops

A non-memory-limited loop 1is a loop in which two times the number of
memory references 1is 1less than the number of same-op-code-field
operations required. For example, if there are five Floating Adder
operations to be done (FADD, FSUB, FSUBR, etc.) but only two memory
references (a fetch and a store), the five Adder operations cannot fit
into four cycles.

Incidentally, "pushers" don't count in figuring out how many cycles are
needed. In a five-cycle loop with five different Adder operatioms, the
Adder instructions become each other's pushers.

Recall that in memory-limited loops, the first instruction in column 1
usually starts on line 2, to avoid S—Pad conflicts on the next-to—last
line. (See last paragraph of Sectiom 5.2.4). This is not necessary in
non-memory—limited loops.

The following loop will test whether each element of a vector in DPY is
within the range between a maximum limit and minimum limit. If so, the
element is added to a cumulative sum. The maximum limit 1is
conveniently located in MD, and the minimum limit in FM, by the grace
of whatever program uses this loop. Neither FM nor MD change during
this loop's executionm.

FSUB DPY, MD BFGT BIGGER (fadd)
FSUB FM, DPY BFGT SMALL DPX<FA; DEC N
(fadd) INCDPA FADD DPY(-1), DPX BGT LOOP

Note that the BFGT instruction tests FA of the previous cycle.

5.2.11 A One-Cycle Loop

For the one-cycle dot product, it
already in Data Pad, starting at DPX(0)
Obviously, vectors

is assumed that the vectors are

and DPY(0) (where DPA=0).

longer than 32 elements cannot be handled this way

(or can only be handled in segments of 32 or less).

This is what the loop really looks like:

FMUL DPX, DPY; INCDPA (fmul) (fmul)

The FMUL and FADD instructions become the

$STITLE DOTPROD
SENTRY DOTPROD

N SEQU O
CPTR $EQU 1

"number of elements in e
"where to store answer

DPTPROD: CLR# N; SETDPA
FMUL DPX, DPY;
INCDPA;
DEC N
FMUL DPX, DPY;
INCDPA
FMUL. DPX, DPY;
INCDPA;
FADD ZERO, ZERO
FMUL DPX, DPY;
INCDPA;
FADD FM, ZERO;
DEC N
FMUL DPXK< DPY;
INCDPA;
FADD FM, FA;
DEC N3j
BGT LOOP

LOOP:

OUT: DPX<FA; FADD

FADD DPX, FA

FADD

MOV CPTR, CPTR; SETMA; MIKFA;
RETURN

$END

26

FADD FM, FA; DEC N

(fadd) BGT
LOOP

ir own ''pushers’.

ach vector

"DPA=0

"do A(L)*B(1)

"DPA to 1

"'set drop out early
"do A(2)*B(2)

"DPA to 2

"do A(3)*B(3)

"DPA to 3

"init. FA=0

"do A(4)*B(4)

"DPA to 4

"A(1)B(l) in Adder
"decrement counter
"do A(m)*B(m)

"DPA to DPA+1

"add A(m~3)B(m=3) to sum
"decrement counter
"test if done

"“"store cumulative FA
""add it to other cumulative FA

"store answer

bimBeesimi e TRl

This particular sort of loop has a problem with the Floating Adder, in
that a cumulative FA needs at least two cycles to accumulate each new
addition. Hence, the one-cycle loop is actually operating with two
mutually exclusive cumulative FA's, interwoven with each other:

FADD FM, FA
FADD FM, FA
FADD FM, FA
FADD FM, FA
FADD FM, FA

At the end of all this, they (the two strings of sums) need to be added
to each other. (see OUT, the label after LOQP).

This also illustrates the practice of dropping out of the loop ome time
early. If it didn't drop out early, the last (unneeded) FADD FM, FA of
the 1loop would push out onme of the two cumulative FA's. By the next
cycle it would be gone forever. By dropping out early, DPX<FA «can be
done before it's too late.

This 1line of reasoning can eventually lead one to the idea that the
last column of the loop (see beginning of Section 4.2.16) is
unnecessary, since there is no way for the Adder result to come out in
time for the next FADD FM, FA, The FADD FM, FA of each of the two

strings of cumulative FA's will push out the other string. So the loop
need only be of the form:

FMUL DPX, DPY; INCDPA (fmul) (fmul) DEC N FADD FM, FA; BGT LOOP

This is one column less than before, which means that there will be ome
column's worth (in this case, one line) less to put in the intro. It
will also not be necessary to come out of the loop one time early, as
there 1s no extra FADD FM, FA to push away something needed. It is
still necessary to add the two cumulative FA's together at the end.

$TITLE DOTPROD
$ENTRY DOTPROD

N SEQU O
CPTR SEQU 1

DOTPROD:

LOOP:

OUT:

$END

CLR# N; SETDPA
FMUL DPX, DPY;
INCDPA;
FADD. ZERO, ZERO
FMUL DPX, DPY;
INCDPA;
FADD ZERO, ZERO
FMUL DPX, DPY;
INCDPA;
DEC N
FMUL DPX, DPY;
INCDPA;
DEC N;
FADD FM, FA;
BGT LOOP
DPX<FA; FADD
FADD DPX, FA
FADD

"DPA=0
"A(l) * B(1)

"

DPA to 1
initialize cum. FA=0

"A(2) *B(2)

"

DPA to 2

initialize other cum.

"A(3) * B(3)

n

DPA to 3

"A(m) * B(m)

"

11

"

"store first cumulative FA

DPA to DPA+1
decrement counter

add A(m=3)B(m=3) to cum. FA

test 1f done

FA=Q

""add it to other cumulative FA

MOV CPTR, CPTR; SETMA; MI<KFA;"store answer

RETURN

28

5.3 CAVEAT PROGRAMMER (LET THE PROGRAMMER BEWARE)

5.3.1 Calling Another Sub-Routine

The JSR instruction allows one program to utilize another program, for
example the divide sub-routine (DIV). In order to do this, one must
declare DIV external ($EXT DIV) so that the assembler and linker will
know what to do with the otherwise undefined symbol. One must also
save everything he will need when program execution gets back to his
main program. Depending upon what was used in the called sub-routine,
some things may remain untouched. Commonly one should not count on
being able to leave things in the Adder or Multiplier. Parts of Data
Pad may also be changed, or DPA may change. S-Pad will probably not
remain inviolate. (Remember, it's the S-Pad register number, not name,

which is important.) These things need to be checked before doing a
JSR.

5.3.2 Illegal Instruction Sequences (not caught by APAL)

The following sequences of instructions have been found to work
improperly. They are not flagged as -errors by APAL and thus the
programmer must be very careful to avoid them.

CODE

SEQUENCE EXAMPLE PROBLEM

1) Two consecutive RETURN JSR Stack pointer out of step.
instructions. RETURN

2) A two—-cycle instruction RPSF Stack pointer out of step.
(PS, PSODD, or PSEVEN JSR
field) followed by a
JSR instruction.

3) An instruction from the LPSL The branch occurs based on
PS field followed by a BDBN DB=0.
BDBN or BDBZ instruction.

4) HALT followed by JSR. HALT Causes stack pointer over-

JSR flow if repeated (stack
pointer out of step).

5) Panel breakpoint before Stack pointer out of step.
a JSR.

6) Set flag SFLO Wait one instruction after
Branch flag BFLO setting before branch.

7) LDAPS LDAPS Wait one instruction after
BR APSTATUS BEQ setting before branch.

O

5.3.3 Other Things To Watch Out For (caught by APAL)

The rest of this section consists of various short examples, cautions,
and reminders.

DPX<MD; DPY<DPX(1)

Illegal. Data Bus is assigned twice. (The above is really
DPX<DB; DB=MD; DPY<DB; DB=DPX(1l).)

DPX<MD; DPYMD is legal. (DB=MD; DPX<DB; DPY<DB)

DPX<FA; DPY<FM
Legal. FA and FM don't use the Data Bus.

DPX<FA; DPY<FM; DPX(1)<MD
Illegal. Data Pad X is being written into twice (different
indices). Within each cycle, there should be no more than
one of each of the following:

write into DPX

write into DPY

read from DPX

read from DPY
The exception is when reading out of Data Pad more than once
but using the same index: '

FADD DPX, FA; FMUL DPX, FA; DPY(1)<DPX is legal.

FADD DPY, DPY; FMUL DPY, DPY is legal.

FADD DPX, FA; FMUL DPX(l), FA is not legal.

FADD DPX, DPY; DPY<MD
The old value of DPY, before MD replaces it, is used in the sum.

DB=4; LDSPI XINC; LDDPA; DPX(2)<FM
Both DPA and the contents of XINC will become 4, but the
previous DPA is used in referencing DPX(2).

SUB# XINC, APTR; BGT OUT
Illegal. The # uses the condition field (branch).

APPENDICES

A

Al

A2

ALU
APAL
APARTH
APBUG
APEX
APLINK
APMA
APMATH
APMAX
APNMAX
APPATH
APSIM
APSTATUS
APTEST
B

CB

CTL

DA

DB

DMA

DP

DPA
DPBS

DPX
DPY
DST
EFA
FA

FADDR
™

FFT
FMT
FMULR

APPENDIX A

GLOSSARY

I.0 Device Condition "A" Flag
Floating Adder Input Register #1
Floating Adder Input Register #2
Arithmetic - Logic Unit

A.P. Assembly Language (S/W package)
A.P. Arithmetic Test (S/W package)
A.P. Debugger (S/W package)
A.P.\Executive (S/W package)

A.P. Linker (S/W package)

AP-120B Memory Address Register
A.P. Math Library (S/W package)
Maximum=-Positive Floating-Point Number
Maximum-Negative Floating-Point Number
A.P. Path Tester (S/W package)

A.P. Simulator (S/W package)

A.P. Status Register

A.P. Tester (S/W package)

I/0 Device Condition "B'" Flag
Control Buffer (command)

Control Register

I/0 Device Address

Data Pad Bus

Direct Memory Access

Data Pad Group

Data Pad Address Register

Data Pad Bus Field,

Data Pad Bus

Data Pad X Registers

Data Pad Y Registers

Destination Register

Effective Address

Floating Adder Output Register,
Floating Adder Result

Floating Adder

Floating Multiplier Output Register,
Floating Multiplier Qutput

Fast Fourier Transform

Formatter

Floating Multiplier

FPN
HHEMA

IFFT
INBS
INTRQ
IODRDY
JSRS
LIFO
LITES
LSB
Ml

M2

MA
MAE
MD

MI
MSB
PANEL
PNLBS
PS
PSA
SP
SP(SPD)
SP(SPS)
S-PAD
SPD
SPFN
SRA
SRAO

~ SRC
SRS
SVCRT
SWR
™
™A
TMRAM
VALUE
wC

Function Register

Floating Point Number

High Host Memory Address

Host Memory Address Register

Inverse Fast Fourier Transform

I/0 Input Bus

Interrupt Request Flag

1/0 Data Ready Flag

Jumps To Subroutines
Last-In--First-Out

Lights Register

Least Significant Bit

Floating Multiplier Input Register #1
Floating Multiplier Input Register #2
Memory Address Register

Memory Address Extension

Data Memory

Memory Input

Most Significant Bit

AP Virtual Front Panel

Panel Bus

Program Source Memory

Program Source Address Register
Scratch Pad Register

S—-Pad Destination

S-Pad Source

Scratch Pad (See also SP)

Scratch Pad Destination Address Register
S—-Pad Function

Subroutine Return Address

Subroutine Return Address Overflow
Source Register

Subroutine Return Stack

Service Routine

Panel Switch Register

Table Memory

Table Memory Address Register
Writable Table Memory (Random Access)
Command Buffer Value

Word Count Register

APPENDIX B
LIST OF TERMS AND USAGE

The following terms and abbreviations are used throughout Part III to

facilitate instruction descriptions.

TERM/ABBREVIATION MEANING USAGE
<> Optional Instruction Elements or operands
Mnemonic contained within are
optional.
e.g.

ADD<sh><#> <g> 5,6

If no <>, then listed
operands are mandatory.

& BIT-REVERSE When specified, this
Operator symbol immediately pre-
e h d.
o eisgt e SPSPS operand

ADD &sub, base
(See S~-PAD SUMMARY, SPFN

MODIFIERS)
sh S-PAD Shift Indicates one of 4 S-PAD
Cperator shift options:
e.g.

SUB<sh > 5,6
(See S-PAD SUMMARY, SPFN

MODIFIZERS)
S=-PAD NO-LOAD Indicates that normal
Operator (SPFN)+'SPSPD operation in
inhibited.
e.g.
Mov# 5,5
sps S-PAD Source Indicates currently desig-
Register nated S-PAD DESTINATION
REGISTER.
e.qg.

ADD sps, spd

(See S-PAD SUMMARY, S-PAD
OPERANDS)

targ BRANCH TARGET

ADDRESS
adr ADDRESS
idx DATA-PAD
Index
val value
al Al source operand
a2 A2 source operand

An address contained in
the DISP field of the
instruction word within
a range of -20_ to +17
locations relative to
the current program lo-
cation; by name, number,
or expression.
e.g.
BR targ

(See SPEC SUMMARY, Test,
Branch, and Jump Op-
erations).

Address contained in
Value field of instruc-
tion word. May be used
for both absolute and
relative addressing op-
erations.
(See SPEC SUMMARY, Test,
Branch, and Jump Op-
erations).

e.qg.

JMP adr

DATA-PAD location spec-
ifier; by name, number,
or expression, within -4
to +3 locations relative
to current DPA.
e.qg.
DPY (idx) <FA

Numeric value contained
in the VALUE field of the
current instruction word.

Indicates currently se-
lected Al REGISTER source
operand.

Indicates currently se=-
lected A2 REGISTER source
operand.
e.qg.
FADD al, a2

ml

m2

M1l source-operand

M2 source-cperand

Indicates currently
selected M1 register
source-operand.

Indicates currently
selected M2 register
source-operand
e.g.
FMUL ml,m2

APPENDIX C

LIST OF FUNCTIONS

FUNCTION OPERATOR FUNCTION
+ PLUS
- MINUS
EQV EQUIVALENCE
(NOT Exclusive OR)
AND AND
OR OR
() Contents of a
Register or Data
currently enabled
onto a bus.
superscripts indicates portion

of larger elements.

MEANING
Additive; A plus B
Subtractive; A plus B

If A=B, then C=l;
if A=B, then C=0.

Indicates that both ele-
ments must be present to
satisfy the test coundi-
tion.

Indicates that any one or
both element(s) present
satisfies the test con-
dition.

Used to describe Register
Transfers in the fol-
lowing manner:

(A2) DPX(idx)
Meaning: The contents of
A2 register replace the
contents of DPX(idx).

Example:
Ql
PS
Meaning: Quarter-one (bits
16=31) of the PROGRAM-
SOURCE word .
Note: To avoid double=-
superscripting, the fol=-
lowing convention is
observed: "
QL
PS bits 23-27
Meaning: Bits 23 through
27 of the QUARTER-ONE por=-
tion of the PROGRAM-SOURCE
word.

arg
subscripts

logical complement
"as addressed by"

e.g., SP(SPS)
Example:
PS

™A
Meaning: PROGRAM~-SOURCE
word at the location
pointed to by the current
contents of TABLE MEMORY
ADDRESS REGISTER (TMA).
Note: For addressing
subscripts, the ()
operator is implied.

Ebeaiarntt &

APPENDIX D

INSTRUCTION FIELD LAYQUT AND SUMMARY

AP-120B INSTRUCTIONS

Unconditional Fields

Each of the following fields may be used in any given instruction word.

QCctal Octal
Code Field Name Code
B S0P SOP1 SH SPS SPD FADD FADD1 Al A2
2 NOP SOP1 NOP NOP (S-Pad (S-Pad FADD1l NOP NC NC ?
1 & SPEC WRTEXP L Source Dest. FSUBR FIX M FA 1
2 ADD WRTHMN RR Reg.) Reg.) FSUB FIXT DPX DPX 2
3 SUB WRTLMN R FADD FSCLT DPY DPY 3
4 MOV NOP (0=-17) (0-17) TFEQV FSM2C ™ MD 4
5 AND NOP FAND F2CSM ZERO ZERO 5
6 CR NOP FOR FSCALE ZERO MDPX 6
7 EQV NOP - I0 FABS ZERO EDPX 7
19 CLR 19
11 INC ‘ 11
12 DEC 12
13 coM ‘) 13
14 LDSPNL 14
15 LDSPE 15
16 LDSPI 16
17 LDSPT 17
Octal . QOctal
Code Field Name Code

COND. DISP DPX DPY DPBS IR YR W w M
o NOP (Branch NOP NOP ZERO (DPX (DPY (DPX (DPY NO? ?
1 # Displa~ DB DB INBS Read Read Write Write FMUL - 1
2 BR cement) FA FA VALUE*> Index) Index) Index) Index) 2
3 BINTRQ (0-37) ™M M DPX 3
4 BION DPY (0-7) (0-7) (0=7) (0=-7) 4
5 BIOZ MD 3
6 BFPE SPFN 6
T RETURN ™ 7
19 BFEQ 19
11 BFNE 11
12 BFGE 12
13 BFGT 13
14 BEQ 14
15 BNE 15
16 BGE 16
17 BGT 17
Octal Octal
Code Field Name Code
M1 M2 MI MA DPA ™A
) ™ FA NOP NOP NOP NOP 9
1 DPX DPX FA INCMA INCDPA INCTMA 1
2 DPY DPY FM DECMA DECDPA DECTMA 2
3 ™ MD DB SETMA SETDPA SETTMA 3

* This instruction uses a 16-bit immediate VALUE as a constant or address. (in bits
48~63 of this instruction). The YW, FM, M1, M2, MI, TMA and DPA fields are then
disabled for this instruction word.

D-1

SPEC Fields

One: of the SPEC Fields may be used per instruction word.
SOP1, SH, SPS, and SPD) are then disabled for this instruction.

Octal
Code Field Name
SPEC STEST
? STEST BFLT
1 HOSTPNL BLT
2 SPMDA BNC
3 NOP BZC
4 NOP BDBN
5 NOP BDBZ
6 NOP BIFN
7 NCP BIFZ
19 SETPSA NOP
11 PSEVEN NOP
12 PSODD NOP
13 PS NOP
14 SETEXIT BFLQ
15 NOP BFL1
16 NOP BFL2
17 NOP BFL3
I1/0 Fields

One of the I/0 fields may be used per instruction word.
(FADD, FADD1, Al, and A2) are then disabled for this instruction Word.

Octal
Code Field Names
I0 LDREG
()8 LDREG NCP
1 RDREG LDSPD
2 SPMDAV LDMA
3 REXIT LDTMA
4 INOUT LDDPA
S SENSE LDSP
& FLAG LDAPS
7 CONTROL. LDDA

* This instruction uses a 1l6-bit integer VALUE (in bits 48-63 of the instruction word).

HOSTPNL

PNLLIT
DBELIT
DBHLIT
DBLLIT
NOP
NOP
NOoP
NOP
SWDB
SWDBE
SWDBH
SWDBL
NOP
NOP
NOP
NOP

RDREG

RPSA
RSPD
RMA
RTMA
RDPA
RSPFN
RAPS
RDA

SETPSA

JUPA®
JSRA®
JMP*
JSR*
JMPT
JSRT
JMPP
JSRP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP

INouT

ouT
SPNOUT
oUTDA

SPOTDA -

IN
SPININ
INDA
SPINDA

PSEVEN

RPSOA*
RPS24*
RPSQ*
RPS2%*
RPSQT
RPS2T
NOP
NOP
WPS@A*
WPS24*
WPSp®
WPS2*
WPSQT
WPS2T
NOP
NoP

SENSE

SNSA
SPINA
SNSADA
SPNADA
SNSB
SPINB

SNSBDA.

SPNDBA

PSODD

RPS1a=
RPS3A*
RPS1*
RPS3*
RPS1T
RPS3T
NOP
NOP
WPS1Ax*
WPS34*
WPS1*
WPS3*
WPS1T
WPS3T
NOP
NOP

FLAG

SFLQ
SFL1
SFL2
SFL3
CFLQ
CFL1
CrL2
CFL3

PS

RPSLA*
RPSTA=*
RPSL=*
RPSF*
RPSLT
RPSFT
RPSLP
RPSFP
LPSLA*
LPSRA*
LPSL*
LPSR=*
LPSLT
LPSRT
LPSLP
LPSRP

CONTROL

HALT
IORST
INTEN
INTA
REFR
WRTEX
WRTMAN
NOP

The S~PAD Fields (3, SOP,

SETEXIT

NOP
SETEXA*®
NOP
SETEX*
NOP
SETEXT
NOP
SETEXP
NOP
NOP
NOP
NOP
NOP
NOP

- NOP

NOP

The: Floating Adder Fields

Octal
Code

N LN S

Octal
Code

NO U W e

The YW, FM, M1, M2, MI, MA, TMA, and DPA Fields are then disabled for this iastruction

word.

B L

£-a

AP-120B Instruction Field Layout

0

1

2 3 4 5 6 7 8 9 1011 12 13

23 24 25 26 27 28 29 30 31

B

sop

SH SPS

SPD

14 15 16 17 18 19 20 21 22

FADD

Al

A2

COND

DISP

S-Pad Group

Adder Group

Branch Group

SOoP1

SPEC OPER

FADD1

I/0

32 33 34 35 36 37 38

39 40 41 42 43 44 45 46 47 48 49 50

51 52 53 54 55

56 57 58 59 60 61 62 63

DPX

DPY

DPBS XR

YR

xw‘

YW FM

M1

M2

MI

MA

DPA

TMA

Data Pad Group

Multiply Group

Memory Group

VALUE

S-PAD GROUP

lo] 1 314 516 9 |10 13
[B| SOP | SH | SPS SPD
SOPL '
Octal
Field Code Mnemonic Ef fect
B ? - No-Op
1 & Use SPgpg (bit-reversed)
SOoP ? - See SOP1 field
1 - See Special Operations Group
2 ADD (SPgpp)+(SPgpg) *SPFN
3 SUB (SPgpp)-(SPgpg) ~SPFN
4 MoV (SPgpg) >SPFN
5 AND (SPgpp) AND(SPgpsg) *SPEN
6 ‘OR (SPgpp)OR(SPgpg) *SPFN
7 EQV (SPgpp JXOR(SPgpg) ~SPFN
*SH ? - Ho-Op |
1 L SPFN*2-+-SPFN (left shift)
2 RR SPFN:4-+SPFN (double right shift)
3 R SPFN:2+SPFN (right shift)
SPS 0-178 0-17g S-Pad Source Operand Address
SPD 0-17g 0-174 S-Pad Destination Address, SPFN+°Tgpp

unless inhibited by No Load (COND=1)

*nvote: These are logzical shifts:

Right shift 0 ~[_o-15] ~[c]
Left shift [Cl«[_0-15] <0

Octal

Field Code Mnemonic Effect
SOP1) - No-Op

1 WRTEXP Restricts DPX, DPY & MI fields to Write
Exponent Cnly

2 WRTHMN Restricts DPX, DPY & MI fields to Write
High Mantissa Only (Bits 00-11)

3 WRTLMN Restricts DPX, DPY & MI fields to Write
Low Mantissa Only (Bits 12-27)

4 - -

5 - -

6 - -

7 - -

10 CLR @-SPFN

11 INC (SPSPD)+1+SPFN

12 DEC (SPgpp)-1+SPFN

13 COM (SPgpp)~SPFN

14 LDSPNL SPgpp + SPFN, PNLBS =+ SPgpp

15 LDSPE SPgpp + SPFN, DPBSE - 512 - SPgpp

16 LDSPI SPspp + SPFN, DPBS'L» SP_,,

17 LDSPT SPepp - SPFN, DPBS'sp

MH=Mantissa High=Mantissa bits 00-11

ML=Mantissa Low=Mantissa bits 12-27

MT=Mantissa bits for table lookups=Mantissa bits 02-08
E=Exponent

SPECIAL OPERATIONS GROUP

1 3 , 6 9110 13
2 9 1 SPEC STEST
BUS LT PN L
SETPSA
PSEVEN
PSODD
PS
SETEXIT
Octal
Field Code Mnemonic Effect
SPEC 7] - See STEST Field (B-6)
1 - See HOSTPNL Field (B-7)
2 SPMDA Spin until MD available
3 - -
4 - -
5 - -
6 - -
7 - -
10 - See SETPSA Field, inhibit TEST
except No Load (B-8)
11 - See PSEVEN Field (B-9)
12 - See PSODD Field (B-10)
13 - See PS Field (B-11)
14 - See SETEXIT Field (E-12)
15 - -
16 - -
17 - -

e R o

Octal

Field Code Mnemonic Effect

STEST o BFLT Branch if FA<p.9
1 BLT Branch if SPFN<Q
2 BNC Branch if S-Pad carry bit=1
3 BZC Branch if S-Pad carry bit=9
4 BDBN Branch if DPBS<@.0
5 BDBZ Branch if DPBS positive and unnormalized
6 BIFN Branch if Inverse FFT flag=l
7 BIFZ Branch if Inverse FFT flag=0
10 - -
11 - -
12 - -
13 - -
14 BFLO Branch if Flag ¢=1
15 BFL1 Branch if Flag 1=1
16 BFL2 Branch if Flag 2=1
17 BFL3 Branch if Flag 3=1

If the above specified condition is true
in the COND field is true,

OR

the condition specified

a branch occurs to (PSA)+DISP-20

Octal

Field Code ; Mnemonic Effect
HOSTPNL ¢ PNLLIT PNLBS -LITES
1 DBELIT DPBSE-PNLBS-LITES
2 DBHLIT pPBSMELPNLBS+LITES
3 DBLLIT DPBSML>PNLBS+LITES
4 - -
5 - -
7 - - |
10 SWDB (SWR) -PNLBS-DPBS
11 SWDBE (SWR) +PNLBS-DPBSE and WRTEXP*
12 SWDBH (SWR) ~PNLBS-DPBSMH and wrTHMN *
13 SWDBL (SWR) ~PNLBS-DPBSML and WRTLMN *
14 - -
15 - -
16 - -
17 - -

*Restrict DPS, DPY and MI to:

WRTEXP: Write Exponent only

WRTHMN : Write High Mantissa
only (bits 00-11)

WRTLMN : Write Low Mantissa
only (bits 12-27)

MH=Mantissa High=Mantissa bits 00-11
ML=Mantissa Low =Mantissa bits 12-27
E=Exponent

D-8

T

Octal

Field Code Mnemonic Effect
SETPSA @ JMPA VALUE-+PSA
1 JSRA (SRA)+1-SRA, (PSA)+1+SRSgRra, VALUE-PSA
2 JMP VALUE+(PSA)+PSA
3 JSR (SRA)+1-SRA, (PSA)+1+SRSgRa, VALUE
+(PSA)~PSA
4 JMPT (TMA)~-PSA
5 JSRT (SRA)+1+SRA, (PSA)+1+SRSgR,, (TMA)-PSA
6 JMPP (SWR)~PNLBS~+PSA
7 JSRP (SRA)+1+-SRA, (PSA)+1~+SRS

(SWR)~PNI BS-+PSA SRA’

VALUE=Bits 48-63 of this instruction (CB48-CB63)

Octal

Field Code Mnemonic Effect
PSEVEN @ RPSQA (PSP)-PNLBS+ LITES
VALUE
1 RPS2A (PSQ2)-+PNLBS+ LITES
VALUE
2 RPS((PS2 i) “PNLBS> LITES
Q2 -5
3 RPS2 (PS22 . ocs) “PNLBS~ LITES
4 RPSQT (PsQTgA y+~PNLBS>~ LITES
5 RPS2T (PS%%A)>PNLBS> LITES
6 - -
7 - -
-+D Q9
10 WPSQA (SWR) PNLBS-PS2
R _ peQ2
11 WPS2A (SWR) ~PNLBS PSVALUE
- .pS¥
12 WPSQ (SWR) PNLBS-PS®
- Q2
13 WPS2 (SWR) PNLBS»PS22
14 WPS@T (SWR) -+PNLBS-PS¥
SW - Q2
15 WPS2T (SWR) PNLBS+PS 22
16 - -
17 - _

This field requires 2 cycles to execute

VALUE = Bits 48-63 of this instruction (CB48-CB63)
Q@ = Quarter zero of Program Source Word (PS@QP-PS13)
Q2 = Quarter two of Program Source Word (PS31-PS47)

D-10

Octal

Field Code Mnemonic Effect
PSODD] RPS14A (ps @ UE)»PNLBS-» LITES
VAL
1 RPS3A (PS23)+PNLBS~ LITES
VALUE
Q1 N - o
2 RPS1 (PSVALUE+PSA) PNLBS- LITES
Q3 -
3 RPS3 (PSVRLUBPSA) PNLBS+ LITES
4 RPS1T (Ps%ﬁA)-»PNLBs-» LITES
‘ Q3 .
5 RPS3T (PS,)»PNLBS~ LITES
6 _ -
7 _ -
- - Ql
10 WPS1A (SWR) PNLBS Pswuﬂa
3
11 WPS34A (SWR) ~PNLBS-PSZ
- - Ql
12 WPS1 (SWR) PNLBS PSVALUE+PSA
T - Q3
13 WPS3 (SwR) ~PNLBS-PS -
- ~pg el
14 WPS1T (SWR) PNLBS PSTMA
- - Q3
15 WPS3T (SWR) PNLBS—»PSTMA
16 - -
17 - -
This field requires 2 cycles to execute.
VALUE=Bits 48-63 of this instruction (CB48-CB63)
Ql=Quarter one of Program Source Word (PS16-PS31)

Q3=Quarter

three of Program Source Word (PS48-PS63)

D-11

Octal ;

Field Code Mnemonic Effect |
|
LH
PS) RPSLA (PSgn .)~DPBS
FP
1 RPSFA (PS¢p oz)-DPBS
LH
2 RPSL (PSyr ripes)DPBS
FP !
3 RPSF (PST ioes)-DPBS
LB
4 RPSLT (PSTH)~DPBS
5 RPSFT (PS ;;iA y+DPBS
6 RPSLP (PS TN) ~DPBS |
7 FP | |
RPSFP (PSTY)+DPBS
) LH
10 LPSLA DPBS-PS T8
s RH
11 LDPSRA DPBS-PS ot
) LH
12 LPSL DPBS-PS (h o
~ RH
13 LPSR DPBS-PS) .
14 LPSLT DPBS-PS TLf;A
. : RH
15 LPSRT DPBS+PS
16 LPSLP DPBS-PS &
PNLBS
17 LPSRP DPBS~PS gﬁws

This field requires 2 cycles to execute.

VALUE=Bits 48-63 of this instruction (CB48-CB63)

LH=Left half of Program Source Word (Bits 00-31)

RH=Right half of Program Source Word (Bits 32-63)

FP=Program Source bits 26-63, used for floating-point literals

D-12 |

Octal
Field Code Mnemonic Effect

SETEXIT ¢ - -

1 SETEXA VALUE~SRSgps

2 - -

3 SETEX VALUE+(PSA)~SRSgpp
4 _ -

5 SETEXT TMA>SRSgp,

6 - -

7 SETEXP PSA+1 ~SRSgp,

Sets the current subroutine return address as indicated above.
SRA does not change.
VALUE=Bits 48-63 of this instruction.

FLOATING ADDER GROUP

Pg 16|17 19120 22
FADD Al A2
FADD1
Octal
Field Code Mnemonic Effect
FADD) - See FADD1 field
1 FSUBR Subtract: (A2) - (Al)
2 FSUB Subtract: (Al) - (A2)
3 FADD Add: (Al) + (A2)
4 FEQV Logical Equivalence: (Al) XOR (A2)
5 FAND Logical é.nd,-' (Al) AYND (A2)
6 FOR Logical or: (Al) OR (A2)
7 - See I/0 Group
Al 9 NC (AL)~Al
1 FM FM+AL
2 DPX(1DX) (DPXppa+1DX)~Al Where XR=1DX+4
3 DPY(1DX) (DPYpps+1DX)*Al Where YR=1DX+4
4 ™ (TM)~AL
5 ZERO g.g~ AL
6 - -
7 - -
Note: All floating adder op-codes:

1. Align exponents

Perform the specified arithmetic,

overation

3. Normalize

logical, or shift

Convergently round

D-14

Octal

Field Code Mnemonic Effect
A2) NC (A2)>A2
1 FA FA-A2
2 DPX (1DX) (DPXpps, 1px)+42, Where XR=1DX+4
3 DPY (1DX) (DPYnpa+ 1DX)~A2 Where YR=1DX+4
4 MD (MD)~>A2
5 ZERO @.0-A2
M
I\
6 MDPX (1DX) SPFN+512-42E: (PPX'pps Lipx yog0™
7 EDPX (1DX) (DPXDp,, 1p¢ y-a27 sprv a2 gg-91),
g -a2"(g2-27)
FADD1 i - No-Op

1 FIX Convert (A2) to an integer

2 FIXT Convert (A2) to an integer (result
truncated)

3 FSCLT Shift (A2) right and increment A2E
until A2E =(SPFN+511) (result trun-
cated).

4 FSM2C Convert (A2), from signed Magnitude
to 2's complement.

) F2CSM Convert (A2) from 2's complement
to signed magnitude.

hn

FSCALE Shift @2)right and increment A2~
until A2&=SPFN+511.

FABS Take the absolute value of (A2).

D-15

I/0 GROUP

14 16117 19120 22
1 1 11 T/0 LDREG
RIREG
INOUT
SENSE
FLAG
CONTROL
Octal
Field Code Mnemonic Effect
1/0 @ - See LDREG field
1 - See RDREG field
2 SPMDAV Spin until MD available
3 REXIT SRS (SRA) —> PNLBS (See Note)
4 - See INOUT field
S - See SENSE field
6 - See FLAG field
7 - See CONTROL field
LDREG /) - No-Op
1 LDSPD DPBS-+SPD
2 LDMA DPBS-MA
3 LDTMA DPBS+TMA
4 LDDPA DPBS+DPA
5 LDSP SPSPD*SPFN,DPBS*SPSPD
6 LDAPS DPBS+APSTATUS
7 LDDA DPBS+DA

Note: This is generally used with a LDSPNL to load SRS into S-Pad

register. It doesn't affect SRA.

D-16

Octal

Field Code Mnemonic Effect
RDREG ? RPSA (PSA)-~PNLBS
1 RSPD (SPD)+PNLBS
2 RMA (MA)-~PNLBS
3 RTMA (TMA)-~PNLBS
4 RDPA (DPA)~+PNLBS
5 RSPFN SPFN-PNLBS
6 RAPS (APSTATUS)>PNLBS
7 ‘RDA (DA)+~PNLBS
INOUT 9 ouT DPBS~IODEVICEp,
1 SPNOUT SPIN if IODRDYp,=9
DPBS+IODEVICE
DA
2 OUTDA DPBS-IODEVICE,, , SPFN-DA
3 SPOTDA SPIN if IODRDYp,=@, SPFN-DA
DPBS—~IODEVICE
DA
4 IN (IODEVICEDA)+INBS
5 SPININ SPIN if IODRDYpa=9
(IODEVICEp,)~INBS
6 INDA (IODEVICEDA)+INBS, SPFN-DA
7 SPINDA SPIN if IODRDYpa=@, SPFN-DA

(IODEVICEDA)+INBS

D-17

Octal

Field Code Mnemonic Effect
SENSE 0 sNsa ApA~IODRDY Flag
1 SPINA Apa+IODRDY, SPIN if IODRDY=Q
2 SNSADA Apa~IODRDY, SPFN-DA
3 SPNADA ADA+10DRDY, SPIN if IODRDY=@, SPFN-DA
4 SNSB Bps~IODRDY Flag
5 SPINB Bpa+~IODRDY, SPIN if IODRDY=9
6 SNSBDA Bps~IODRDY, SPFN-TA
7 SPNBDA Bpa~IODRDY, SPIN if IODRDY=p, SPFN-DA

A and B are I/O device dependent conditions, either 1 or 0

FLAG

- 9

w N

N O g Wb

SFL@
SFL1
SFL2
SFL3
CFL@
CFL1
CFL2
CFL3

D-18

1-FLAGg
1+-FLAG]
1+FLAG2
1-FLAG3
¢+FLAG¢
Q+FLAG1
@-~FLAG,
p-~FLAGq

Octal

Field Code Mnemonic Effect
CONTROL 0 HALT Halt
1l IORST I/O reset (See note)
2 INTEN Interrupt enable - generates
CTLOS Interrupt to Host
3 INTA Interrupt acknowledge. Device
Address of interrupting device
put into DPBS.
4 REFR Memory refresh sync
5 WRTEX Restricts DPX, DPY & MI to
Write exponent only
6 WRTMAN Restricts DPX, DPY & MI to
Write Mantissa Only (Bits 0-27)
7 Not Used —-——
Note: This also clears flags.

D-19

BRANCH GROUP

23 26127 _ 31
COND DISP
Octal
Field Code Mnemonic Effect
COND) - No-Op
1 # Inhibit load of SPFN-+SPgpp
2 BR Branch always
3 BINTRQ Branch if INTRQ (Interrupt Request)
flag=1
4 BION Branch if IODRDYDA flag=1
5 BIOZ Branch if IODRDYDA flag=0
6 BFPE Branch on floating-point arith-
metic error (overflow, underflow,
or divide by zero)
7 RETURN (SRSggpp)»PSA, (SRA)-1+SRA (Sub-
routine return Jjump.
NOTE: "RETURNS" may not be made in. two succes;ive instructions.
10 BFEQ Branch if FA-9.9
11 BFNE Branch if FA#0.9
12 BFGE Branch if FA>0.9
13 BFGT Branch if FA>Q.Q
14 BEQ Branch if SPFN=9
15 BNE Branch if SPFN#9
16 BGE Branch if SPFN>9
17 BGT Branch if SPFN>Q
Note: FA and SPFN are tested as to their state for the previous
instruction.
DISP 9 to 37 If branch condition is true, (PSA)

+DISP-20-+PSA

Thus the effective Branch Range is -20 to +17 relative to the
current instruction.

D=-20

DATA PAD GROUP

32 33|34 35[36 38[39 4142 4445 47[48 50
DPX__|DPY |DPBS __|X® YR XW W
Octal

Field Code Mnemonic Effect

DPX) - No-Op
1 DPX(1DX) <DB DPBS~*DPXZppa+1DX, Where XW=1DX+4
2 DPX(1DX)<FA FA+*DPXppa+1DX, Where XW=1DX+4
3 DPX(1DX) <FM FM>*DPXppx+1DX, Where XW=1DX+4

DPY ? - No-Op
1 DPY(1DX)<DB DPBS>*DPYppA+1DX Where YW=1DX+4
2 DPY(1DX) <FA - FA>*DPYpps+1DX Where YW=1DX+4
3 FM>*DPYpps+1DX Where YW=1DX+4

)
*A1]l bits written unless WRTEXP, WRTHMAN

and HOSTPNL field.

DPY (1DX) <FM

b

S

or WRTLMAN set. See SOP1

DPBS)

N O

7

DB=ZERO
DB=INBS
DB=VALUE

DB=DPX(1DX)
DB=DPY(1DX)
DB=MD
DB=SPFN

DB=TM

@.p-+-DPBS
INBS-~DPBS

VALUE-DPBSE, VALUE-DPBSML,
sign extended into DPBSM

= 4
(DPXDPA + lDX)*DPBS'Where XR=1DX+4
(OPYppa + 1px)
(MD) DPBS

*DPB% Where YR=1DX+4

SPFN + 512+DPBSE, SprN-DPBSML
sign extended into DPBSMH

(TM)~+DPBS

DPBS forced to § if HOSTPNL field=10 to 13

ML=Mantissa Low (Mantissa Bits 12-27)
MH=Mantissa High (Mantissa Bits 00-11)

E=Exponent

VALUE is a 16-bit 2's complement number,
the instruction word.

D-21

contained in bits 48-83 of

Octal

Field Code Mnemonic Effect

XR P to 7 DPX Read EFA is (DPA)+XR-4
YR @ to 7 DPY Read EFA is (DPA)+YR-4
XW P to 7 DPX Write EFA is (DPA)+XW-4
w @ to 7 DPY Write EFA is (DPA)+YW-4,

YW=XW if VALUE is used in
another field)

D-22

T

FLOATING MULTIPLIER GROUP

51152 53|54 55
FM| M1 M2

Octal

Field Code Mnemonic Effect

™M @ - No-Op
1 FMUL Multiply: (M1)*(M2)

M1) FM FM->M1
1 DPX (1DX) (DPXppa+ 1DX)’*Ml) Where XR=1DX+4
2 DPY (1DX) (DPYppa+ 1px)*Ml, where YR=1DX+4
3 ™ (TM)->M1

M2) FA FA-M2
I DPX (1DX) (DPXppp+ 1px)>M2, Where XR=1DX+4
2 DPY (1DX) (DPYpps: 1px)+M2, Where YR=1DX+4
3 MD (MD)-M2

Note: These fields are nbt in effect if VALUE is used in
another field.

Arguments that are unnormalized by more than one position will
produce incorrect results.

D-23

MEMORY GROUP

56 57|58 59|60 61|62 63
MI MA DPA | TMA

Octal :
Field Code Mnemonic Effect
MI 3 - No-Op
1 MI<FA FA-MI, write MI into Data Memory**
2 MI<FM FM-MI, write MI into Data Memory**
3 MI<DB DPBS-MI, write MI into Data Memory**

**A1]1 bits written unless WRTEXP, WRTHMAN or WRTLMAN is set.
See SOP1l and HOSTPNL fields.

MA @ - No-Op
1l INCMA (MA)+17*MA, intitate a Data Memory
cycle
2 DECMA (MA)-1"MA, initiate a Data Memory
cycle
3 SETMA *SPFN-MA, initiate a Data Memory cycle
*DPBS is used in place of SPFN if LDREG field is used.
DPA] - No-Op
1 INCDPA (DPA)+1-+DPA
2 DECDPA (DPA)~-1-+DPA
3 SETDPA *SPFN--DPA

*DPBS is used in place of SPFN if LDREG field is used.

Note: These fields are not in effect if a value is used by
another field. Changes made in MA, TMA, or DPA do not
affect the values of these registers used by other
fields during the current instruction.

D-24

Octal

Field Code Mnemonic Effect
TMA @ - No-Op
1 INCTMA (TMA)+1-»TMA, initiate a read from

Table Memory

2 DECTMA (TMA)Y+1-TMA, initiate a read from
' Table Memory

3 SETTMA *SPFN-TMA, initiate a read from
Table Memory

*DPBS is used in place of SPFN if LDREG field is used.

Note:

These fields are not in effect if a VALUE is used by
another field. Changes made in MA, TMA, or DPA do not

affect the values of these registers used by other fields
during the current instruction.

0 :
o NOP Assembler recognizes this mnemonic
63 and will insert an all zeros instruction

which is a NOP.

D-25

§eenecnenneeasaD=d
Aleeesecenaen..D=14
A2ueeeeeeenenesD=15
ADDeveveeenneesD=b
ANDeeeveeneonaaD=b
: PO TVA
BDBNoeeronoanns D-7
BDBZeeeseeoaaeD=T
BEQee+eseseeeesD=20
BFEQe e« eesaseeaD=20
BFGE+«eeessessaD=20
BFGT+eevvseeesD=20
BFLOeeeseanseaD=7
BFLleveseesensaD=7

BFL3eeeesaeseeD=7
BFLT+veevcnsesaD=7
BFNE+eeuoenanen D-20
BFPE:eouses +eeaD=20
BGEeesesoosaesaD=20
BGTevesocnaessaD=20
BIFN:eeoeessoaaD=7
BIFZeeeoaseeoaaD=7
BINTRQe e« s o« s «D=20
BION.seeesssaaaD=20
BIOZevseoseassD=20
BLT eeeseeeaaesoD=7
BNCe eo eovesesaaD=7
BNEesosaosoaassD=20
BReoosoconesasaD=20
BZCeveeoonanaaD=7
CFLO+eeeosseaseD-18
CFLleeeesesans.D=18
CFL2ecessseese.D=18
CFL3.veeseasssD=18
CLReveossesens D=5
COMeeooeoanessaD=5
CONDeveevasoossD=20
CONTROL .+« «s0eeD=19
DBevevaveoneasaD=21
DBELIT.ecscooo.D-8
DBHLIT+ eeceveee D-8
DBLLIT.++sccs..D=8
DECecesasceansaD=5
DECDPA« «evss.e.D=24

INDEX

D-26

DECMA+ eeeeeeeeeD=24
DECTMA.+ eeeeeesaD=25
DISPeveeesceesaD=20
DPAeecesaneaeas.D=24
DPBSevvensesws.D=21
DPXeveoeesnenasD=14, D=15,
D-21. D-23
DPYeeeeeessensaD=14, D-15,
D-21, D-23
EDPXeceeaasaasaD=15
EQVeceoenenannn D-4
F2CSMuerrnnnannn D-15
FAeeeonenennnns D-15, D-24
FABSeeeeseeesesD=15
FADDesveuveens.D=14
FADDleevesneoeos.D=15
FAND e+ eeveneesaD=14
FEQVeeuoeruenne D=14
FIXeweennnnn ...D-15
FIXTeeesoaeoasaD=15

FLAGeooeeeeeessD=18
FM. oo.o.ooopc'cD"‘]’l}, D—23,

D-24
FMULeceoeeeeensD=23
FORcecocosooseesD=14
FSCALE.c... seseD=15
FSCLTeeeeeeeeasD-15
FSM2CeeeseeeessD=15
FSUBececeeneeseD=14
FSUBRececesecsesD=14
HALT . eeceeeeeeD=19
HOSTPNLe+sees..D=8
INeeeoeeeooonaasD=17
INBSceeoosooeeeD=21
INCeoeoooseseaeD=5
INCDPAe¢eecowes s D=24
INCMA:vceveeeasD=24
INCTMA.cceeseeeD=25
INDAeeceooeoeeesD=17
INOUTeeeeeeseeaD=17
INTAdeceesaseesD=19
INTEN:eeeseseeasD=19
I0ceceeeveeesssD=16
IORSTeeeeeosessD=19
JMPececesesenssD=9

JMPAceveeesaseaD=9
"IMPPeeeereseoeeD=9
JMPTeeeveenaseeD=9
JSReeeeesenase D=9
JSRAeeeueennes.D=9
JSRPeveresnees.D=0
JSRTeeeeeeeess.D=9
LececsnsenesoaaD=d
LDAPSeveees....D-16
LDDA« teeeesessD=16
LDDPAceveceess .D=16
LDMAeeveneeeoaaD=16
LDREGeeseeevesD=16
LDSPeveveneeessD=16
LDSPDevevcevess.D=16
LDSPEeueeeenssD=5
LDSPI.veesreesaD=5
LDSPNLeeeeeos. D=5
LDSPTeeeveeeess.D=5
LDTMA++evoeees.D=16
LPSLeeeeansseasD=12
LPSLAceeceeseoeD=12
LPSLPeeesseena.D=12
LPSLT ¢eesueeaesD=12
LPSReceusesessaD=12
LPSRAeevesesnsaD=12
LPSRPeceveenseaD=12
LPSRTeeeeuseeeasD=12
MleeeooeeoeonaaD=23
M2eceeeeraneessD=23
MAveeeoeannoaeaD=24

MD-voouoccoaou-D-ls, D‘Zl,

D-23
MDPXeeeveeesessD=15
MleeeooonenesoaD=24
MOVeeooeooooeeesDmb

NCvooooat-o‘oo.D-la’ D‘lS

NOPieeveseseeseD=25
ORecescecsceeseDd=b

OUTececceeceaeeD=l7
OUTDAcceceeesssD=17

PNLLIT.e¢sses..D=8
PS...........--D-IZ

PSEVEN.¢eesoo..D-10
"PSODDececscosesD=-11
ReceeornesseeesD=4
RAPSeecevecees.D=17
RDAceseecesneesD=l7

D-27

RDPA++eevssnnsaD=17
RDREG.++eceesesD=17
REFR.«sevseeseaD=19
RETURN..D=20
REXITeeveeees.D=16
RMA«veseneeneeeD=17
RPSOveeseeveseD=10
RPSOA.eeveen.. .D=10
RPSOT.weevsssaD=10
RPSlecuevons e D=11
RPSIAcuueennn..D=11
RPSIT.evsveeensaD-11
RPS2ueeeeessss.D=10
RPS2A¢usvvsess.D=10
RPS2Teueense e D-10

RPS3eeeecesees.D=11

RPS3AceeeeseesD=11
RPS3TeeeeeoeeesD=11
RPSAccieseeeessD=17
RPSFeeeseveeessD=12
RPSFAceceseesssD=12
RPSFPeceeceesssD=12
RPSFTeveceeeessD=12
RPSLececeecesssD=12
RPSLAceeeeneassD=12
RPSLPeeesssesssD=12
RPSLTeeeeeeesssD=12
RRececeeseeaeeaD=4

RSPDeecesssoesesD=17
RSPFNeeeeoeeeseD=17
RTMAeveeaoessssD=17
SENSEe¢eceseeeesD=18
SETDPAcceecssseD=24
SETEXe e eeveeseeD=13
SETEXAceseeeeeeD=13
SETEXIT.eeseseeD=13
SETEXP ¢ eeseoeseD=13
SETEXTeeeeseseeD=13
SETMA.vsveeeeedD=24
SETSPAcceceeeseD=9

SETTMA s veeeseeeD=25
SFLO¢esesseesesD=18
SFLleseoeoossseD=18
SFL2eeeevsessseD=18
SFL34¢eseesesssD=-18
SHeosooeoeosoes D=4

SNSAeeeeeesesasD=18
SNSADA¢eoeeecessD=18

SNSBeeeeesvesasD=18
SNSBDAe s eeeo.D=18
S0Pt cecesecsecesDd=4
SOPI...,...Q....D-s
SPDuceroecessssDmd
SPECaveceocessD=b
SPFN.eeeoeeseaaD=21

SPINA'&Q e o w e 'D"l?

SPI‘NB;-- ceoe QQDD’lS
SPI}TDAO s e s -D"'17
SPININ.. seenee 0D"‘17

SPMDA- vesssven OD""‘6
SPMDAV. es s s e e oD"ls

SPNADA:«ceeoesD=1&

SPNBDA+eseeseeD~18
SPNOUT..eceeeesD=17
SPOTDAcscesseesD=17
SPSeeccans eeeesD=b
STEST:eceeceee D=7
SUBescsveraneasD=d
SWDBeeeosoosesD=8
SWDBEomont'.o.oD"g
SWDBH.esveeeee.D=-8
SWDBLasvsseeoesD=8

mo 0 s e 0 s o e OD"IA, D—Zl,

D-23
TMAeeereecoeeseD=25
VALUE..eceeeseD=21
WPSO.seseeaeeesD=10
WPSOAt *s 0000w .D-'lO
WPSOT:.veeeeses.D=10
WPSlewecooseasaD=11
WPSlAeeeeieeas D11
WPS1T.eseoeeeeaD=-11
WPS2eteeeeseeeasD=10
WPS2A.eereceseaD=10
WPS2Teeeoeeaes.D=10
WPS3eeeeesnensdDd=11l
WPS3AceeerecesesD=11
WPS3TQ ves oo so OD"'IL
WRTEXeeeeseseeD=19
WRTEXP cveseoeesD=5
WRTm'IN' LR I N Y ‘D"S
WRTLMN oo vessD=5
WRTMAN .+ eoeeeesD=19

}m-.«..........oD—ZZ

Xw«-<.v cccccc ...»-D—ZZ

D-28

YR‘........J.-oD"ZZ
YWQ o seo o e ...f..oD-ZZ

ZERO ® oo e 00 e ovtvD“‘ll&, D-lS,

D=21 .
#ooosu-»o.¢;¢-.oD-20

e

FLOATING POINT
SYSTEMS, INC.

CALL TOLL FREE 800-547-1445
PO. Box 23489, Portland, OR 97223
(503) 641-3151, TLX: 360470 FLOATPOINT PTL

