
~ Floating Point Systems, Inc.
-,

AP-1208
ARRAY TRANSFORM PROCESSOR

- -
DIAGNOSTIC SOFTWARE

MANUAL

II

I I
II I • I

II

AP-120B

DIAGNOSTIC SOFTWARE

MANUAL

FPS-7284-01
c Floating Point Systems, Inc.
All Rights Reserved
Published in the United States of America
Rev. January 1976

FLOATING POINT
SYSTEMS, INC.

P.O. BOX 23489 PORTLAND, OR 97223 11000 S.W llTH STREET, BEAVERTON, OR 97005 (503) 641·3151 TLX: 360470 FLOATPOINT PTL

TABLE OF CONTENTS

APTEST

Section 1 - BRIEF DESCRIPTION:APTEST
1.1 Brief Description

Section 2 - RDS 500 OPERATING INSTRUCTIONS
2.1 Raytheon RTOS

Section 3 - USER COMMANDS
3.1 User Commands

Table 3-1

Section 4 - APTEST ERROR MESSAGES
4.1 Error Messages

APPATH

Section 1 - BRIEF PROGRAM DESCRIPTION;APPATH
1.1 Brief Description

Section 2 - RDS 500 OPERATING INSTRUCTIONS
2.1 Raytheon RTOS

Section 3 - USER COMMANDS
3.1 User Commands

Section 4 - DETAILED DESCRIPTION OF TESTS
PERFORMED AND THE ERROR MESSAGES

4.1 Detailed Description of Tests

FIFFT

Section 1 - BRIEF DESCRIPTION;FIFFT
1.1 Brief Description

Section 2 - RDS 500 OPERATING INSTRUCTIONS
2.1 Raytheon RTOS
2.2 Loading Instructions

Section 3 - USER COMMANDS
3.1 User Commands

Section 4 - DETAILED DESCRIPTION OF TESTS AND
ERROR MESSAGE

Section 5 - DIAGNOSTIC SUGGESTIONS

Section 6 - AP-120B HARDWARE DEBUG ROUTINES

APPENDIX A
Board Number vs. Board Name Glossary

APPENDIX B
AP-120B Backplane Signal Glossary

1-1
1-1

2-1
2-1

3-1
3-1
3-2

4-1
4-1

1-1
1-1

2-1
2-1

3-1
3-1

4-1

4-1

1-1
1-1

2-1
2-1
2-1

3-1
3-1

4-1

5-1

6-1

A-1

B-1

TABLE OF CONTENTS (CONT).

APARTH

Section 1 - BRIEF DESCRIPTION: APARTH
1.1 Brief Description

Section 2 - RDS 500 OPERATING PROCEDURES
2.1 Raytheon Rtos

Section 3 - USER COMMANDS
3.1 User Commands

Table 3-1
APARTH '#' Command Table
Special RDS 500 Debug Commands

1-1
1-1

2-1
2-1

3-1
3-1
3-2
3-6
3-8

Section 4 - APARTH ERROR MESSAGE & ERROR MESSAGE 4-1
INTERPRETATION

4.1 Error Message Format 4-1
4.2 Error Message Interpretation 4-1

Examples: 1)
2)
3)
4)
5)

AP-120B Instruction Format
AP-120B Instruction Summary
AP-120B Internal Status Register

4-5
4-6
4-7
4-8
4-9

4-12
4-13
4-15

FORM # 7278

Revision 1

AP-120B

APTEST

DIAGNOSTIC SOFTWARE MANUAL

11-23-75

Adds 'S' Command
Converts Codes to Hex
Adds tests 7,8,9 and 10

Revision 1.1 1-21-76
Corrects Typographical errors.
Updates Test 7,8,9,10 error messages.

SECTION 1
BRIEF DESCRIPTION;APTEST

1.1 BRIEF DESCRIPTION

This program exercises the Panel and DMA interface func­
tions of the AP-120B. It tests all of the available memory
inside the AP-120B with simple patterns and then with
pseudo-random number patterns.

APTEST 1-1

(INTENTIONALLY BLANK)

APTEST 1-2

SECTION 2
RDS 500 OPERATING INSTRUCTIONS

2.1 RAYTHEON RTOS

Start the program with;

:QU, APPATH
:EX

The program will indicate its readiness to accept user
commands by typing an~·· Typical user response at this
point is to type "RWE ~ ". The program will then begin
to cycle through the test and will type a 'P' for every
complete passes through the test. If an error is encountered,
the program will type out the error and a code number. Refer
to Section IV for a complete description of the error ou~uts
and their interpretation. Given the user input of "RWE@",
the program will type an "*" following the error and then wait
for input from the keyboard. At this point the user can cause
the test to loop on this error if he wishes to isolate the prob­
lem below the Board level using an oscilloscope. The following
section. describes the user input commands.

Note:

This program requires that the FPS supplied package of Tele­
type Control Routines (INPT) be extended onto the Disk along
with APTEST in order for the above Queing sequence to work.

APTEST 2-1

(INTENTIONALLY BLANK)

APTEST 2-2

3.1 USER COMMANDS

SECTION 3
USER COMMANDS

The test program responds to a set of single letter
commands, some of which are to be followed by one or two
Hexadecimal integers. A string of commands may be typed
on a line terminated by a carriage return. With the ex­
ception of the 'E' (Execute) command, the commands can be
typed in any order on the line. The 'E' command should be
typed last since commands following the 'E' will not be
seen by the command string interpreter. Typing a Control
C "tC" will cause the current line to be ignored. Sense
Switch ~ is used to interrupt test program execution and
bring control back to the command input portion of the test
program. The "Rubout" function is more specialized than in
RTOS Teletype input as it can be used to delete only certain
commands. Table 3-1 summarizes the commands recognized by
this test program.

APTEST 3-1

USER
COMMAND

Annnn

B

c

D

E

H

I

L

Mnnnn

R

s

TABLE 3-1

FUNCTION

Input the starting act­
ress of another program
in core to which control
is to be transferred by
the 'B' command.

Transfer program control
to the address specified
in the last preceding 'A'
command.

Type out the user input
flags that have been set.

Set the typeout Disable
flag. Used for Scoping
a hardware fault. Also
disables the error de­
tect ion.

Execute the test program
Used to transfer control
from the command input
section of the program
to the test section.

Set the unconditional
Halt flag. Following
the next 'E' command the
program will execute one
test case and return to
command Input mode.

Set the IO Reset flag.
Test program Resets the
AP-120B between each test
case.

Set the LOOP flag. Pro­
gram loops on the last
executed test case.

Define the AP-120B Mem­
ory Size.

Reset all flags. Clears
D,H,I,L,S and W.

Set short form format for
error typeout. Affects
FIFFT only.

APTEST 3-2

RESTRICTIONS

Must be followed by a
Hexadecimal integer spe­
cifying the desired
absolute address.

This is the last command
on the line that will be
seen by the Command String
Interpreter.

Must be followed by a
hexadecimal integer
(2000=8K)

USER
COMMAND

w

Xnnnn,nnnn

Rubout

tC

TABLE 3-1

FUNCTION

Set Wait on error flag.
If set, the test will
return to command input
mode after encountering
and typing out an error.

Reset the Random Number
generator paramenters.
Used to recreate a test
case from the parameters
typed out in an error
message.

Used to selectively
clear one of the flags
(D,H,I,L,S,N,S, or W).
slash "/".

Used to delete and input
command string if the
"C" is typed before the
Carriage Return.

APTEST 3-3

RESTRICTIONS

Must be followed by two
hexadecimal integers on
the same line.

Type the flag to be
cleared followed by a
rebout i.e., "LRubout"
clears the Loop flag.

SPECIAL RDS 500 DEBUG COMMANDS

User Command Functions.

.nnnn

Onnnn

Type Absolute address of Calling Routine. Used
to locate the Calling program in the absence of
a load map.

Set Base address. The Debugger has a Base address
register that allows the user to reference locations
in his relocatable program using the output of the
SYMII Assembler. Following the ";" command the
user should compute the absolute beginning address
of his program and input it to the debugger using
the"." Command.

Example:

*; @
6CAA
:.6CA5 @

Explanation:

Call to Debugger was at 6CAA. This is the absolute
address of the next instruction following the call.
Assuming this instruction was at relative location
5, the user subtracts 5 from 6CAA and enters 6CA5
as the Base address. (Asterisks are typed by program)

Open the location nnnn+Base. The debugger will
type out the contents (in hexadecimal) of the
opened location.,

To modify this location, the user simply types the
desired hexadecimal value followed by one of the
three pointer movement commands.

To leave it unchanged and open contiguous locations
or return to command input, the user simply types
one of the three pointer movements commands (see below).

APTEST 3-4

Pointer Movement Commands:

(line feed) closes the currently open location and
advances the pointer to the next location in memory.
The debugger will type out the address and then the
contents of the next location.

(up arrow, carriage return1) closes the currently
open location and moves the pointer to the pre­
ceding memory location. The location and contents
are typed out in hexadecimal.

(carriage return) closes the currently open location
and returns to command input mode. The program
will type out an "*"

Example:

*025~~ 1234 123 LF
\()\()26 45AB LF
\()\()27 1564 A t faj
\()\()26 45AB FF ~

OPEN location 25
change to 123, go to 26

·no change to ABF, go to 26
change to ABF, go to 26
change to FF, Quit

Address Calculation Commands:

=nnnn

-nnnn

Adds nnnn to Base and types out result. Converts
relative addresses to absolute.

Subtracts Base from nnnn. Converts absolute addresses
to relative.

Program Control Commands

Tnnnn

Gnnnn

Trap. Sets a Breakpoint trap at relative location
nnnn. The trap consists of two instructions.

SMB TRTN
JMP TRTN

These two instructions are inserted in the user pro­
gram at the time that the "G" (GO) command is issued.
When the trap is encountered, the routine TRTN will
save the ACR and IXR, restore the two user instruc­
tions and return to command input mode. Once encoun­
tered the TRAP is removed and will not be set again
until the user issues another 'T' command.

GO. Starts the user program running at relative
location nnnn after inserting a TRAP (if previously
called for by user) and restoring the ACR and IXk.

APTEST 3-5

p Proceed. Starts the user program running from the
last TRAP location. ACR and IXR are restored. The
overflow and compare f~ops are lost.

Example:

1) *T45 iR
2) '*G25
3) TRAh ·AD
4) *P e,., ACR 8~~~ IXR ~~37

Set TRAP at 45
Start at 25
Prag. Encounters
Proceed from 45

TRAP

At line 3 where the trap was encountered, the program
types out the absolute Hexadecimal location of the
trap and the contents of the ACR and the IXR.

NOTES:

1) Hexadecimal integers may consist of from 1 to n digits termi­
nated by a non-numeric character. This character may be a
comma, a carriage return or the next command letter (other
than A,B,C,D or E). If more than 4 digits are typed, only
the last 4 will be taken as the desired hexadecimal integer.

EXAMPLES:

1) For Normal operation type "RWE(f"'~". This starts the test'
running so that it will return~ command input mode when
an error is encountered.

B) Looping on an error:
1. After program h.as typed~ut an error and returning to

command mode, Type "LE CR~ " to loop on the failed
case to see if the erro 'is solid. Type "LDE fcID"
to go into a scope loop with typeout disabled.~

2. After the error is corrected~ift SS~ to interrupt
the test. Type "D Rubout E CR " to check to make
sure that it has been correc d.

3. To Return to the full test, lift SS0 to interrupt
and type "RWE®" to proceed.

C) · For an overnight Run type "RE Q". The program will
type out all errors and procee~ This will leave a record
of any failures that may have occured. The program will
stop the test automatically if more that 64 errors occur.
This is done so as to prevent excessive wear on the Tele­
type in the case of a catastrophic failure.

APTEST 3-6

SECTION 4
APTEST ERROR MESSAGES

4.1 ERROR MESSAGES

4.1.l TEST 1 checks the WC, HMA, CTRL, APMA, ASPR, and FN
registers.

Error Message Format:

E nnnn A mmmm cccc

Where nnnn is the expected value,
mmmm is the actual value,

and cccc is a code number between </J and 5.

TEST 1 Code Number description:

Code Register under Most likely failing
Number Test board or boards

0 WC Interface
1 HMA Interface
2 CTRL Interface
3 APMA Interface
4 APSR 214
5 FN 214

APTEST 4-1

4.1.2 TEST 2 and TEST 2A check the ability of the AP-120B
Panel to access all of the internal registers that are avail­
able to it.

Error output format is the same as TEST 1 except that
the code number will be in the range 6 to 19 (except for
PS word 3 = 8010).

TEST 2 and TEST 2A Code Number description:

Code
Number

Register under
Test

PSA
SPA
MA
TMA
DPA

most likely failing
board or boards

212,214,210
210,201,214
201,214
212,214
211
201

6
7
8
9
A
B
c
D
E
F

SPAD
APSTATUS
DA

210,201 (if low 3 bits)
Interface

10
8010

11
12
13
14
15
16
17
18
19

PS word ()
PS word 1
PS word 2
PS word 3
DPX EXP
DPX HMAN
DPX LMAN
DPY EXP
DPY HMAN
DPY LMAN
MD EXP
MD HMAN
MD LMAN

216,210,201
216,201
216,201
216,201
200L,211
200R
200L,200R
200L,211
200R
200L,200R
215,202,213,210
215,202,213
215,202,213

4.1.3 TEST 3 performs a basic address test on all the mem­
ories in the AP-120B. The address of each memory location is
written into that location until all locations have been
written, then the entire memory is read back and verified.

TEST 3 error message format:

BASIC ADDR E nnnn A mmmm cccc

Where nnnn is the expected value and is also the address
of the failing location,

mmmm is the actual result
and cc cc is the code number bewteen lA and 27 that iden-

ti fies the memory under test.

See TEST 4 for the Code Number descriptions.

APTEST 4-2

4.1.4 TEST 4 performs a random patterns test of each mem­
ory by filling it with pseudo-random numbers, and reading
them back to check.

TEST 4 error message format:

RND PATTERNS E nnnn A mrnmm CODE=cccc ADDR=aaaa
X, Y=xxxx yyyy

Where nnnn is the expected value,
mmmm is the actual value (note that only the

bits in this word that lie within the width
of the memory portion under test are checked)

cccc is a code number between lA, and 27,
aaaa is the address of the failing location

and xxxx yyyy are the restart parameters for the
random number generator.

TEST 3 and TEST 4 Code Numoer descriptions:

Code
Number

lA
lB
lC
lD
lE
lF
20
21
22
23
24
25
26
27

Memory Under
Test

SPAD
DPX EXP
DPX HMAN
DPX LMAN
DPY EXP
DPY HMAN
DPY LMAN
PS~
PSl
PS2
PS3
MD EXP
MD HMAN
MD LMAN

most likely failing
board or boards

201,210
20dL,211
200R
200L,200R
200L,211
200R.
200L,200R
216,212
216
216
216
215,201,210
215
215

4.1.5 TEST 5 checks the DMA to DMA interface by transferring
Host memory contents into AP-120B Main Data memory in 16-bit
integer mode and then checking the contents of MD against
Host memory by using the AP-120B Panel.

TEST 5 error message #1:

MEMTST LOAD ERROR
WC wwww HMA hhhh APMA aaaa CTRL cccc

The correct values for wwi.vw, hhhh, aaaa, and cccc, are
~~~~' 2~8~, 2~~~, and 8~42, for an AP-120B with 8K of MD. 

Where MVWW, hhhh, aaaa, 
and cccc are the respective contents of the AP-120B 

WC, HMA, APMA, and CTRL registers after 
the completion of the DMA transfer. 

This error indicates that the transfer did not go to com­
pletion correctly. The interface board is the most likely fail­
ing Board in this case. 

APTEST 4-3 



TEST 5 error message #2: 

MTEST CHECK LOC=llll E eeee A aaaa 

Where 1111 is the MD location having incorrect contents, 
eeee is the expected value (host memory contents) 

and aaaa is the actual value. 
This error generally indicates a failure in the Interface, 

or Format boards, however, the problem could be in Main Data 
memory itself, Board 215. 

4.1.6 TEST 6 Reverses TEST 5 and stores a portion of MD 
back into Host memory and then checks for a correct transfer. 

TEST 6 error message #1: 

DMA STORE NOT DONE 
WC wwww HMA hhhh APMA aaaa CTRL cccc 

See description of TEST 5 error message #1. 

TEST 6 error message #2: 

MSTORE LOC=llll E eeee A aaaa 

Where 1111 is Host memory location having incorrect 
contents. 

eeee is the expected (MD) value 
and aaaa is the actual value. 

This error generally indicates an Interface or Format 
board failure, however, the failure could be in MD, Board 215. 

4.1.7 TEST 7 Tests RDS-500 single precision to AP-120B Floating 
Point format conversion. 

Error Message: 

TEST7/8 E eeee eeee eeee 
A aaaa aaaa aaaa ANSP pppp 

Where eeee is the expected AP-120B format result 
aaaa is the actual result. 
PPPP is the_pointer to the table entrv in the listing. 

Consult "RAYTBLu·c~in the listing to find the input 
RDS-500 format FPN. 

4.1.8 TEST 8 Tests AP-120B to RDS-500 format conversion. 

Error Message: 

TEST7/8 E eeee eeee 
A aaaa aaaa ANSP pppp 

Where eeee is the expected 
and aaaa is the actual RDS-500 format result. 

pppp is a pointer to the table entry in the listing. 
Consult "APTBL" in the listing to find the AP-120B 
format number that is equivalent to the expected 
result. 

APTEST 4-4 



. ··-------·-·· --~ 

4.1. 9 Tests IBM short form to AP-120B floating point 
conversion. 

Error Message: 

TEST9/10 E eeee eeee eeee 
A aaaa aaaa aaaa ANSP PPPP 

Consult "IBMTBL" in listing 

4.1.10 TESTlO Tests AP-120B to IBM format conversion. 

Error Message: 

TEST 9/10 E eeee eeee 
A aaaa aaaa ANSP PPPP. 

Consult APTBL2 in listing 

Notes on Tests 7, 8, 9 and 10: 

1) The only difference in the error messages between 
Tests 7 and 8 and between Tests 9 and 10 is in the 
number of hexadecimal numbers typed out. For 
RDS-500 or IBM to AP-120B conversion (Tests 7 and 
9), 3 words each of expected and actual results 
are typed out. For AP-120B to RDS-500 or IBM 
conversion (Tests 8 and 10) 2 words each are typed 
out.:, 

2) Example of Test interpretation. 

Example message: 

TEST9/10 E Cll'fJ </J</J'/J</J 

A 411'/J C/J'/JC/J'/J ANSP !i)6'/J7 

Interpretation: 

Since only 2 words are typed for the expected result, the 
error occured in Test 10. Go to "IBMTBL" in the listing 
of APTEST. Find the entry at relative location 607. 

II D X'Cll'/J' ,'/J -1.0 ". 

Find the corresponding entry in APTBL2 

II D X'2'/Jl ',X'C'/J'/J' ,</J -1.0 ". 

The entry in APTBL2 is the representation of -1.0 in AP-120B 
format that corresponds to the IBM 360 representation in 
IBMTBL. Where possible, the comments in both tables indicate 
the decimal value of the floating point number in question. 

3) Errors in tests 7,8,9 and 10 g~n generally be traced to 
the interface or format Boards (228, 227, 226). 

APTEST 4-5 



(INTENTIONALLY BLANK) 

APTEST 4-6 



FORM #7279 

AP-120B 

APPATH 

DIAGNOSTIC SOFTWARE MANUAL 

Revision 1 11-22-75 
Adds ' S' Command 
Converts Codes to Hex. 

Revision 1.1 1-21-76 
Corrections of typographical errors. 





SECTION 1 
BRIEF PROGRAM DESCRIPTION;APPATH 

1.1 BRIEF DESCRIPTION 

This program tests the bulk of the internal data paths 
within the AP-120B. In contrast to the paths and registers 
tested by the program APTEST, the data paths and registers 
tested by the APPATH require the execution of AP-120B micro­
instructions. Thus this test also effectively checks most of 
the AP-120B micro-instruction set. 

APPATH 1-1 



(INTENTIONALLY BLANK) 

APPATH 1-2 



SECTION 2 
RDS 500 OPERATING INSTRUCTIONS 

2.1 RAYTHEON RTOS 

Start the program with: 

:QU, APPATH 
:EX 

The program will indicate its readiness to accept user 
commands by typing an ~'. Typical user response at this 
point is to type "RWE 0 ". The program will then begin 
to cycle through the test and will type a 'P' for every com­
plete pass ·through the test. If an error- is encounteted, 
the program will type out the error and a code number. Refer 
to Section IV for a complete description of the error ou~uts 
and their interpretation. Given the user input of "RWE e> ", 
the program will type and "*" following the error and then 
wait for input· from the keyboard. At this point the user can 
cause the test to loop on this error if he wishes to isolate 
the problem below the Board level using an oscilloscope. The 
following section describes the user input commands. 

Note: 

This program requires that two other routines, APTBLl and 
INPT, be extended onto the disk in order for the above 
Queing sequence to work. 

APPATH 2-1 



(INTENTIONALLY BLANK) 

APPATH 2-2 



3.1 USER COMMANDS 

SECTION 3 
USER COMMANDS 

The test program responds to a set of single letter 
commands, some of which are to be followed by one or two 
Hexadecimal integers. A string of commands may be typed 
on a line terminated by a carriage return. With the ex­
ception of the 'E' (Execute) command, the commands can be 
typed in any order on the line. The 'E' command should be 
typed last since commands following the 'E' will not 
be seen by the command string interpreter. Typing a Con­
trol C "tC" will cause the current lioe to be ignored. 
Sense Switch ~ is used to interrupt test program execu­
tion and bring control back to the command input portion 
of the test program. The "Rubout" function is more 
specialized than in RTOS Teletype input as it can be used 
to delete only certain commands. Table 3-1 summarizes 
the commands recognized by this test program. 

APPATH 3-1 



USER 
COMMAND 

Annnn 

B 

c 

D 

E 

H 

I 

L 

Mnnnn 

R 

s 

TABLE 3-1 

FUNCTION 

Input the starting ad­
dress of another program 
in core to which control 
is to be transferred by 
the 'B' command. 
Transfer program control 
to the address specified 
in the last preceding 'A' 
command. 

Type out the user input 
flags that have been set. 

Set the typeout Disable 
flag. Used for Scoping 
a hardware fault. Also 
disables the error de­
tection. 

Execute the test program 
Used to transfer control 
from the command input 
section of the program 
to the test section. 

Set the unconditional 
Halt flag. Following 
the next 'E' command the 
program will execute one 
test case and return to 
command Input mode. 

Set the IO Reset flag. 
Test program Resets the 
AP-120B between each test 
case. 

Set the LOOP flag. Pro­
gram loops on the last 
executed test case. 

Define the AP-120B Mem­
ory Size. 

Reset all flags. Clears 
D,H,I,L,S and W. 

Set short form format for 
error typeout. Affects 
FIFFT only. 

APPATH 3-2 

RESTRICTIONS 

Must be followed by a 
Hexadecimal integer spe­
cifying the desired 
absolute address. 

This is the last com­
mand on the line that 
will be seen by the 
Command String Inter­
preter. 

Must be followed by a 
hexadecimal integer 
(2000=8K) 



USER 
COMMAND 

w 

TABLE 3-1 

FUNCTION 

Set Wait on error flag. 
If set, the test will 
return to command input 
mode after encountering 
and typing out an error. 

Xnnnn,nnnn Reset the Random Number 
generator paramenters. 
Used to recreate a test 
case from the parameters 
typed out in an error 
message. 

Rubout Used to selectively 
clear one of the flags 
(D,H,I,L,S,N,S, or W). 
slash"/". 

+c Used to delete and input 
command string if the 
" C" is typed before the 
Carriage Return. 

APPATH 3-3 

RESTRICTIONS 

Must be followed by two 
hexidecimal integers on 
the same line. 

Type the flag to be 
cleared followed by a 
rubout i.e., "LRubout" 
clears the Loop flag. 



SPECIAL RDS 500 DEBUG COMMANDS 

User Command Functions. 

.nnnn 

Onnnn 

Type absolute address of Calling Routing. Used 
to locate the Calling program in the absence of 
a load map. 

Set Base address. The Debugger has a Base address 
register that allows the user to reference locations 
in his relocatable program using the output of the 
SYMII Assembler. Following the ";" command the 
user should compute the absolute beginning address 
of his program and input it to the debugger using 
the"." Command. 

Example: 

*; ~ 
6CAA Q 
:.6CA5 ~ 

Explanation: 

Call to Debugger was at 6CAA. This is the absolute 
address of the next instruction following the call. 
Assuming this instruction was at relative location 
5, the user subtracts 5 from 6CAA and enters, 6CA5 
as the Base address. (Asterisks are typed by program) 

Open the location nnnn + Base. The debugger will 
type out the contents (in hexadecimal) of the 
opened location. 

To modify this location, the user simply types the 
desired hexadecimal value followed by one of the 
three pointer movement commands. 

To leave it unchanged and open contiguous locations 
or return to command input, the user simply types 
one of the three pointer movement commands (see below). 

APPATH 3-4 



---------------

Pointer Movement Commands: 

(line feed) closes the currently open location and 
advances the pointer to the next location in memory. 
The debugger will type out the address and then the 
contents of the next location. 

(up arrow, carriage return) closes the currently 
open location and moves the pointer to the preceding 
memory location. The location and contents are typed 
out in hexidecimal. 

(carriage return) closes the currently open location 
and returns to command input mode. The program will 
type out and "*" 

Example: 

*025 6)" ~ 
1234 123 F 
9)9)26 45AB E 
9)9)27 1564 ABF @ 
9)9)26 45AB FF @ . 

OPEN location 25 
change to 123 1 go to 26 
no change 1 .go to 27 
change ABF, go to 26 
change to FF, Quit 

Address Calculation Commands: 

=nnnn 

-nnnn 

Adds nnnn to Base and types out result. Converts 
relative addresses to absolute. 

Subtracts Base for nnnn. Converts absolute addresses 
to relative. 

Program Control Commands 

Tnnnn 

Gnnnn 

Trap. Sets a Breakpoint trap at relative location 
nnnn. The trap consists of two instructions. 

SMB TRTN 
JMP TRTN 

These two instructions are inserted in the user pro­
gram at the time that the "G" (GO) Command is ·issued. 
When the trap is encountered, the routine TRTN will 
save the ACR and IXR, restore the two user instructions 
and return to command input mode. Once encountered the 
TRAP is removed and will not be set again until the 
user issues another 'T' command. 

GO. Starts the user program running the relative 
location nnnn after inserting a TRAP.(if previously 
called for by user) and restoring the ACR and IXR. 

APPATH 3-5 



p Proceed. Starts the user program running from the 
last TRAP location. ACR and IXR are restored. The 
overflow and compare flops are lost. 

Example: 

1) 
2) 
3) 
4) 

*T45 ! 
*G25 CRi 
TRAP~ AD 
*P E~) 

ACR 8~~~ IXR ~~37 

Set TRAP at 45 
Start at 25 
Prog. Encounters 
Proceed from 45 

TRAP 

At line 3 where the trap was encountered, the program 
types out the absolute Hexadecimal location of the 
trap and the contents of the ACR and the IXR. 

NOTES: 

1) Hexadecimal integers may consist of from 1 to n digits termi­
nated by a non-numeric character. This character may be a 
comma, a carriage return or the next command letter (other 
than A,B,C,D or E). If more than 4 digits are typed, only 
the last 4 will be taken as the desired hexadecimal interger. 

EXAMPLES: 

1) For Normal Operation type nRWE ~ ". This starts the test 
running so that it will return to command input mode when 
an error is encountered. 

B) Looping on an error: 
1. After program has typedert an error and returning to 

command mode, Type "LE CR," to loop on the fai~ 
case to see if the erro is i:;olid. Type "LDE ~ to 
go into a scope loop with typeout disabled._ 

2. After the error is correcte~ift SS~ to interrupt 
the test. Type "D Rubout E .ciy" to check to make 
sure that it has been correc ed. 

3. To Return to ~'full test, lift SS~ to interrupt 
and type "RWE e II to proceed. 

C) For an overnight Run type "RE tCR) ". The program will 
type out all errors and procee~ This will leave a record 
of any failures that may have occurred. The program will 
stop the test automatically if more than 64 errors occur. 
This is done so as to prevent excessive wear on the Tele­
type in the case of a catastrophic failure. 

APPATH 3-6 



SECTION IV 
DETAILED DESCRIPTION OF TESTS 

PERFORMED AND THE ERROR MESSAGES 

4.1 DETAILED DESCRIPTION OF TESTS 

Each path is tested with the following data patterns; 
zero, all~bits on, and a single true bit which is passed 
through all bit positions in the path under test starting 
from the least significant bit and moving left to the most 
significant bit. 

Error output format: 

CODE cccc EXP eeee eeee eeee 
ACT aaaa aaaa aaaa PLOC pppp 

Where cccc is a code number that indicates the 
type of test being performed. 

eeee etc is a 2 to 38-bit value indicating 
the expected result. 

aaaa etc is a 2 to 38-bit value indicating 
the actual result. 

and pppp is pointer to the test table entry corre­
sponding to the current test case. This 
pointer can be used with the program 
listing if analysis beyond the level of 
that given in the following table is de­
sired. The pointer is expressed relative 
to the base address of the table (APTBLl). 

APPATH 4-1 



Description of error codes and board level Diagnostic 
indications. 

Code 

40 

42 

43 

44 

45 

46 

47 

48 

49 

4A 

4B, 4C 

4D 

4E 

4F 

50 

51 

52 

Unique· Path or Paths 
under test 

PS Left half to DPBS, 

PS Rignt half (FP Value) to 
DPBS, 

DPBS to PS left half 

DPBS to PS Right half 

DPBS (approximation portion 
of mantissa) to SPAD 

DPBS (Exponent portion) 
to SPAD 

DPBS to I/O Bus 

DPBS to I/O Bus 

DPBS to I/O Bus 

DPBS to I/O Bus 

DPBS to I/O Bus 

Not implemented 

MD to FMT 

DPX to Al, 
FA to M2 
FM to DPY 

DPX to A2 
FA to DPY 

DPY to Al 
FA to DPX 

DPY to A2 
FA to MD 

FA to A2 

to WC 

to HMA 

to CTRL 

to APMA 

to FMT 

APPATH 4-2 

Most likely fail­
ing Board or Boards 

210, 214 

201, 210 

201, 210 

201, 210 

201, 210 

Interface, 214 

Interface 

Interface 

Interface 

222 

222, Interface 

200L, 200R 
203, 204, 205 
206, 207, 208 

200L, 200R 
203, 205, 204 

200L, 200R 

200L, 200R, 213 

203, 205 



Code 

53 

54 

55 

56 

57 

58 

59 

5A 

5B 

5C 

5D 

5E 

5F 

60 

61 

62 

63 

64 

65 

Unique Path or Paths 
under test 

DPY to M2 
FM to DPX 

DPY to Ml 
FM to DPY 

DPX to M2 
FM to MD 

DPX to Ml 
FM to Al 

MD to M2 
FM to Ml 

MD to A2 

TM to DPBS 

TM to Al 

TM to Ml 

VAL to DPBS (mantissa) 
SPFN to MA 

SPFN to DPBS (mantissa) 

VAL to DPBS (exponent) 
SPFN to DPBS (exponent) 

SPFN to A2 EXP 

SPFN to A2 mantissa 

Not implemented 

VAL to EXIT 
EXIT to PNLBUS 
PNLBUS to SPAD 

VAL + PSA to EXIT (Relative 
JSR) 

SPFN(DPBS) to TMA 
TMA to EXIT 

VAL to PSA (JMPA) 

APPATH 4-3 

Most likely fail­
ing Board or Boards 

200L, 200R 
206, 207, 208 

200L, 200R 
206, 208 

200L, 200R, 213 

200L, 200R 
203, 205 

202 
206, 208 

202 

217, 209 

209 

209 

211 
201 

201 

211 
201 

212, 200L 

212, 200L, 200R 

212, 201 

212 

212 

212 



Code 

66 

67 

68 

NOTES: 

Unique Path or Paths 
under test 

VAL + PSA to PSA (JMP) 

EXIT to PSA (Return Jump) 

TMA to PSA (JMPT) 

Most likely fail­
ing Board or Boards 

212 

212 

212 

Each path typically uses more paths than the unique ones 
indicated. The choice of indicated paths is.based on the 
premise that previously tested paths have been verified and 
are thus no longer under test as the test proceeds. 

The mnemonics used in the above Table are described in de­
tail in the AP-120B programming manual. 

APPATH 4-4 



RM #7280 

AP-120B 

FIFFT 

DIAGNOSTIC SOFTWARE MANUAL 

Revision 1 11-22-75 
Adds 'S' Command 
and short form message 
Adds description of AP-120B 
Hardware debug routines 





SECTION 1 
BRIEF DESCRIPTION;FIFFT 

1.1 BRIEF DESCRIPTION 

This program is intended primarily for use as a verif i­
cation test of the AP-120B. It does not provide board level 
diagnostic indicators as do the diagnostic programs, APTEST 
and APPATH. Its use as a diagnostic requires the skill of a 
technician who is well versed in the theory of operation of 
the AP-120B. 

The test is based on the fact that a forward Fourier 
Transform of a data set followed by an inverse Fourier 
Transform of the result of the forward transform should result 
in the original data set within a predictable error limit. 
Thus the name of the test "FIFFT," is an acronym for "Forward/ 
Inverse Fast Fourier Test". 

The program is divided into two sections. The first 
section uses simple data sets that consist of only one non­
zero point with all the remaining points set to zero. The se­
cond section utilizes a pseudo-random number generator to 
produce data sets. After the forward/inverse FFT process 
the pseudo-random number generator is restarted to recreate 
the input data set for comparison against the result of the 
process. 

FIFFT 1-1 



(INTENTIONALLY BLANK) 

FIFFT 1-2 



SECTION 2 
RDS 500 OPERATING INSTRUCTIONS 

2.1 RAYTHEON RTOS 

Start the program with; 

:QU, FIFFT 
:EX 

The program will indicate its readiness to accept user 
commands by typing an~*"· Typical user response at this 
point is to type "RWE E;y ". The program will then begin to 
cycle through the test and will type a 'F' for every 64 com­
plete passes through the test. If an error is encountered, 
the program will type out the error and a code number. Refer 
to Section IV for a complete description of the error o~uts 
and their interpretation. Given the user input of "RWE~ ", 
the program will type and "*" following the error and then wait 
for input from the keyboard. At this point the user can cause 
the test to loop on this error if he wishes to isolate the 
problem below the Board level using an oscilloscope. The fol­
lowing section describes the user input commands. 

Note: 

Since FIFFT utilizes the FORTRAN compatible output of APLINK, 
it is actually called from a small FORTRAN mainline. 

CALL FIFFTF 
END 

and is entered at FIFFTF which is a FORTRAN compatible entry 
point. 

2.2 LOADING INSTRUCTIONS 

The following routines must be extended into the Disk: 

FIFFTF 

INPT 

FIFT 

AP EXEC 

FORTRAN compatible Driver 

FPS supplied package of 
Teletype Control Routines 

AP-120B micro-code 

AP FORTRAN Executive. 

To get the complete package linked together, run the 
above FORTRAN mainline with an ":FG" command. When the 
system responds with "REDY", type ":GO". In response to 
the "NAME?" query type "FIFFT". An absolute copy of the 
program is now available on the disk and can be run as 
described in Section 2.1. 

FIFFT 2-1 



(INTENTIONALLY BLANK) 

FIFFT 2-2 



3.1 USER COMMANDS 

SECTION 3 
USER COMMANDS 

The test program responds to a set of single letter 
commands, some of which are to be followed by one or two 
Hexadecimal integers. A string of commands may be typed 
on a line terminated by a carriage return. With the ex­
ception of the 'E' (Execute) command, the commands can be 
typed in any order on the line. The 'E' command should be 
typed last since commands following the 'E' will not be 
seen by the command string interpreter. Typing a Control C 
"tC" will cause the current line to be ignored. Sense 
Switch ~ is used to interrupt test program execution and 
bring control back to the command input portion of the test 
program. The "Rubout" function is more specialized than in 
RTOS Teletype input as it can be used to delete only cer­
tain commands. Table 3-1 summarizes the commands recognized 
by this test program. 

FIFFT 3-1 



USER 
COMMAND 

Annnn 

B 

c 

D 

E 

H 

I 

L 

Mnnnn 

R 

s 

TABLE 3-1 

FUNCTION 

Input the starting ad­
dress of· another program 
in core to which control 
is to be transferred by 
the 'B' command. 

Transfer program control 
to the address specified 
in the last preceding 'A' 
command. 

Type out the user input 
flags that have been set. 

Set the typeout Disable 
flag. Used for Scoping 
a hardware fault. Also 
disables the error de­
tection. 

Execute the test program. 
Used to transfer control 
from the command input 
section of the program 
to the test section. 

Set the unconditional 
Halt flag. Following 
the next 'E' command the 
program will execute one 
test case and return to 
command Input mode. 

Set the IO Reset flag. 
Test program Resets the 
AP-120B between each test 
case. 

Set the LOOP flag. Pro­
gram loops on the last 
executed test case. 

Define the AP-120B Mem­
ory Size. 

Reset all flags. Clears 
D,H,I,L,S and W. 

Set short form format for 
error typeout. Affects 
FIFFT only. 

FIFFT 3-2 

RESTRICTIONS 

Must be followed by a 
Hexadecimal integer spe­
cifying the desired 
absolute address. 

This is the last com­
mand on the line that 
will be seen by the 
Command String Inter­
preter. 

Must be followed by a 
hexadecimal integer 
(2000=8K) 



USER 
COMMAND 

w 

FUNCTION 

Set Wait on error flag. 
If set, the test will 
return to conunand input 
mode after encountering 
and typing out an error. 

Xnnnn,nnnn Reset the Random Number 
generator parameters. 
Used to recreate a test 
case from the parameters 
typed out in an error 
message. 

Rubout Used to selectively 
clear one of the flags 
(D,H,I,L,S, or W). Rub­
out echoes as a slash 
"/". 

+c Used to delete an input 
conunand string if the 
"+C" is typed before the 
Carriage Return. 

FIFFT 3-3 

RESTRICTIONS 

Must be followed by two 
hexadecimal integers on 
the same line. 

Type the flag to be 
cleared followed by a 
rubout i.e., "LRubout" 
clears the Loop flag. 



SPECIAL RDS 500 DEBUG COMMANDS 

User Command Functions. 

.nnnn 

Onnnn 

Type Absolute address of Calling Routing. Used 
to locate the Calling program in the absence of 
a load map. 

Set Base address. The Debugger has a Base address 
register that allows the user to reference locations 
in his relocatable program using the output of the 
SYMII Assembler. Following the 11 ;" command the 
user should compute the absolute beginning address 
of his program and input it to the debugger using 
the"." Command. 

Example: 

*; @ 
6CAAV 
*.6CA5@ 

* 
Explanation: 

Call to Debugger was at 6CAA. This is the absolute 
address of the next instruction following the call. 
Assuming this instruction was at relative location 
5, the user subtracts 5 from 6CAA and enters, 6CA5 
as the Base address. (Astericks are typed by program) 

Open the location nnnn + Base. The debugger will 
type out the contents (in hexadecimal) of the 
opened location. 

To modify this location, the user simply types the 
desired hexadecimal value followed by one of the 
three pointer movement commands. 

To leave it unchanged and open contiguous locations 
or return to command input, the user simply types 
one of the three pointer movement commands (see below). 

FIFFT 3-4 



Pointer Movement Commands: 

(line feed) closes the currently open location and 
advances the pointer to the next location in memory. 
The debugger will type out the address and then the 
contents of the next location. 

(up arrow, carriage return) closes the currently 
open location and moves the pointer to the pre­
ceding memory location. The location and contents 
are typed out in hexadecimal. 

(carriage return) closes the currently open location 
and returns to command input mode. The program 
will type out an "*" 

Example: 

*025@ 
1234 123 @_ 
!i'~26 45AB\:r.&) 
~~27 1564 ABF~ 
11'~26 45AB FF B 

OPEN location 25 
change to 123, go to 26 
no change to ABF, go to 26 
change to ABF, go to 26 
change to FF, Quit 

Address Calculation Commands: 

=nnnn 

-nnnn 

Adds nnnn to Base and types out result. Converts 
relative addresses to absolute. 

Subtracts Base from nnnn. Converts absolute addresses 
to relative. 

Program Control Commands 

Tnnnn 

Gnnnn 

Trap. Sets a Breakpoint trap at relative location 
nnnn. The trap consists of two instructions. 

SMB TRTN 
JMP TRTN 

These two instructions are inserted in the user pro­
gram at the time that the "G" (GO) command is issued. 
When the trap is encountered, the routine TRTN will 
save the ACR and IXR, restore the two user instruc­
tions and return to command input mode. Once encoun­
tered the TRAP is removed and will not be set again 
until the user issues another 'T' command. 

GO. Starts the user program running at relative 
location nnnn after inserting a TRAP (if previously 
called for by user) and restoring the ACR and IXR. 

FIFFT 3-5 



p Proceed. Starts the user program running from the 
last TRAP location. ACR and IXR are restored. The 
overflow and compare flops are lost. 

Example: 

1) 
2) 
3) 
4) 

Set TRAP at 45 
Start at 25 

ACR 8~~~ IXR ~~37 Prog. Encounters TRAP 
Proceed from 45 

At line 3 where the trap was encountered, the program 
types out the absolute Hexadecimal location of the 
trap and the contents of the ACR and the IXR. 

NOTES: 

1) Hexadecimal integers may consist of from 1 to n digits termi­
nated by a non-numeric character. This character may be a 
comma, a carriage return or the next command letter (other 
than A,B,C,D, or E). If more than 4 digits are typed, only 
the last 4 will be taken as the desired hexadecimal integer. 

EXAMPLES: 

1) For Normal operation type "RWE~". This starts the test 
running so that it will return to command input mode when 
an error is encountered. 

B) Looping on an error: 
1. After program has type~ut an error and returning to 

command mode, Type "LE CR " to loop on the fai~ 
case to see if the erro is solid. Type "LDE CR " 
to go into a scope loop with typeout disabled. 

2. After the error is correcte~ift SS~ to interrupt 
the test. Type "D Rubout E CR " to check to make 
sure that it has been correc d. 

3. To Return to t~ full test, lift SS~ to interrupt 
and type "RWE ~ " to proceed. 

C) For an overnight Run type "RE GI". The program will 
type out all errors and procee~ This will leave a record 
of any failures that may have occured. The program will 
stop the test automatically if more than 64 errors occur. 
This is done so as to prevent excessive wear on the Tele­
type in the case of a catastrophic failure. 

FIFFT 3-6 



-- --------------------------

SECTION 4 
DETAILED DESCRIPTION OF TESTS AND ERROR MESSAGE 

The impluse and the random FIFFT tests operate by sup­
plying the AP-120B with 2S-bit integers through the 32-bit 
integer, program control to DMA path of the AP-120B interface. 
An AP-120B micro-program converts these integers to floating 
point, rearranges the array in bit-reversed order, performs 
the forward Real FFT, again rearranges_ the array in bit­
reversed order, performs the inverse FFT, and finally con­
verts the array back to 28-bit integers. The test program 
then uses the 32-bit integer, DMA to program control, inter­
face path to read the results back for comparison. 

The first (impluse) test begins with the smallest FFT 
(S points) and works its way up sequentially to the largest 
FFT size that is compatible with the memory configuration 
(SK Real FFT in SK of MD). For each size FFT it slides 
an impluse (~4~~r ~~~~) across the data set. For the 
small FFT's (<256 points), the impulse is placed in sequence 
on every real and complex point of the input data set and 
the data set is tested. For the larger FFT's, the impulse 
is moved through the data set in such a manner as to skip 
larger and larger numbers of points as the size of the data 
set is increased while still testing real and complex points 
in an alternating fashion. This is done in order to allow 
the impulse test to complete in a finite length of time 
(typically less than 5 minutes for a maximum FFT size of SK). 
Upon completion of the first test, the program 

"END IMPULSE TEST." 

The second portion of the test utilizes a very long­
sequence, pseudo-random number generator to select the de­
sired data set size and then to generate the set of 2S-bit 
integers. These numbers are acted upon by the AP-120B in 
exactly the same fashion as in the first test. The test 
program then restarts the pseudo-random number generator 
and uses it to recreate the input data set for comparison 
against the AP-120B output. For every 64 successful random 
Forward/Inverse FFT's, the program types; 

"F" 

FIFFT 4-1 



For a maximum Real FFT size of SK (SK MD; 2K TM Roots 
of unity), the program sets an error limit of 4 in the least 
significant bits of the 2S-bit mantissa for the impulse test. 
For the random FFT test the error limit is m+5 where m is the 
power of 2 such that 2m = N (N is the number of complex data 
points). 

If the deviation between the input and output is greater 
than the allowable error limit, then an error message is 
output in the following format. 

LOC, SIZE, 1111 ssss EXP eeee eeee 
ACT aaaa aaaa X,Y xxxx yyyy 

where 1111 is the location in error, 
ssss is the size of the FFT under test 
eeee etc. is the expected result, 
aaaa etc. is the actual result, 

and xxxx yyyy are the restart parameters for the 
pseudo-random number generator. 

If the short form typeout flag has been set by the user 
('S' command), then the error typeout has the following format: 

LOC,SIZE 1111 ssss aaaa aaaa. 

Where the meanings are the same as those above. 

FIFFT 4-2 



SECTION 5 
DIAGNOSTIC SUGGESTIONS 

The most efficient field technique for isolating pro­
blems uncovered by FIFFT and no other diagnostic is to 
sequentially exchange boards until the problem either 
disappears, or changes in some fashion indicating that a part 
of the fault has been isolated. Lacking a set of spare 
boards, some progress can be made by examining the type of 
error. The smaller the size of FFT that can be made to fail, 
the better the chance of tracing the problem. It is 
sometimes worthwhile to try adjusting the power supply 
voltages (within ±5% limits) to try to make an intermittent 
problem more solid. Errors that seem to be address related 
(bit reversed pairs of points incorrect) can generally be 
traced to problems in Memory (MD, TM), or the addressing 
(ADDR, SPAD). Errors that seem to be data related can 
generally be traced to problems in the arithmetic or accumu­
lators (FA, FM, DPAD). Errors that are voltage related are 
susceptible to a technique that involves setting the voltage 
at the border line between correct and incorrect behavior 
and then tracing the now intermittent bit or bits back in 
time using an oscilloscope until the first point at which 
a failure occurs is found. This technique can typically be 
extended past the board level to isolate the marginal chip 
in question. · 

FIFFT 5-1 



(INTENTIONALLY BLANK) 

FIFFT 5-2 



SECTION 6 
AP-120B HARDWARE DEBUG ROUTINES 

6.1 DESCRIPTION OF ROUTINES 

Incorporated into FIFFT are a set of assembly language 
routines that can be of general use in debugging micro-code 
programs using the AP-120B hardware in cases where the 
micro-program is too lengthy or complex to debug using 
APSIM and APDBG. The debug routines in FIFFT allow the 
user to start the AP-120B, set breakpoints and to examine 
and in some cases modify the contents of AP-120B internal 
registers and memories. 

The routines all rely on the command input section 
of FIFFT (entry INPT) for their teletype input/output. 
They are started with the'G' command and their results 
and input parameters can be examined and modified using 
the open (Onnnn) Command. These commands were described in 
Section 3. 

For example, to deposit a value into MD, the user would 
first open the location LOC and set it to the desired MD 
address, he would then place the 3-word value into the first 
three words of VAL and start the DPMD routine running using 
the 'Gnnnn' command. 

Example: 

To set MD location 25 equal to 12, 123, 1234. Where LOC 
is at relat~ve location 387, VAL is at 388, DPMD is at 3DC 
and the base address of FIFFT is 6800. 

*.68'/J'/J CR 
*0387 CR 
~</J</J</J 25 LF 
</J388 </J</J</J</J 12 
</J389 </J</J</J</J 12 3 
</J38A </J</J</J</J 1234 
*G3DC CR 

LF 
LF 

CR 

* 
Description of Routines: 

ENTRY 
POINT 

RUN IT 

FUNCTION 

Runs the AP-120B 
starting at SADR 
with Breakpoint 
at BP. If a Break­
point is not desired 
be sure that BP is 
outside of the user 
microcode. 

6-1 

Set base address 
Open 387 
Set LOC = 25 
Set VAL = 12 

VAL+l = 123 
VAL+2 = 1234 

Run DPMD 

SECONDARY LOCATIONS 

SADR = Start 
BP = Breakpoint 
To be set on PSA 



ENTRY 
POINT 

CNTU 

DREG 

DMADR 

DSPAD 

DDPAD 

FUNCTION SECONDARY LOCATION 

Continue from a hard- BP - Breakpoint 
W!lre Breakpoint with 
BP as the Breakpoint 
on PSA. See the notes 
below for the recom-
mended useage of the 
hardware breakpoint. 

Dumps the AP-120B in­
terface registers on 
the TTY. The register 
contents are typed out 
in the following order: 
STATUS, SR, FN, LITES, WC, HMA, CTRL, APMA 

(LITES = PDR) 

Dumps the internal 
registers of the 
AP-120B into RDS-500 
memory starting at 
location DADRS in the 
following order: 

DADRS = first location 
into which registers 
are stored. 

PSA, SPD, MA, TMA, DPA, SPFN, APSTATUS, DA 

Dumps S-PAD into RDS-
500 memory starting 
at SPAD. . Note: 
SP(~) will always re­
turn as a zero. The 
user should not attempt 
to continue from a 
breakpoint after using 
DSPAD. 

Dumps DATA PAD into 
memory starting at 
DPAD .. DPX occupies 
DPAD. to DPAD.+X'3F'. 
DPY occupies DPAD.+X 
'40' to DPAD.+X'FF'. 
Each DATA PAD regis­
ter occupies the first 
three words of a 4-
word block. This is 
done so that the hex­
adeci~al displacementt 
fT,Yim -D?AD. · -To a g.i -ven 
register is easier to 

- ·calculate.:· 

6-2 

SPAD. = first location 
into which SPAD registers 
axe stored. STMP= contents 
of·BPA 

DPAD. = first location 
into which DATA PAD regis­
ter are· dumped. 
DTMP = contents of DPA 



ENTRY 
POINT 

EXMD 

EXPS 

DPMD 

DPPS 

-- ----------- ----------- -------------------

FUNCTION SECONDARY LOCATION 

Note: Be sure to exa­
mine DTMP (or DADRS+4 
if DMADR has been called) 
in order to be able to 
convert the indices in 
the user micro-code into ab­
solute DATA PAD addresses. 

Examine MD locationx 
specified by LOC and 
place the contents in 
memory starting at VAL 
in the order: EXPONENT, 
HMANTISSA, LOWMANTISSA 

The contents are also 
typed out on the tele­
type in the above order. 

Examine the PS location 
specified by LOC, place 
the contents in VAL 
and type out the con-
t en ts on the TTY. 

Deposit the contents 
of VAL (first three 
words) into the MD 
location specified 
by LOC. 

Deposit the contents 
of VAL (four words) 
into the PS location 
specified by LOC. 

6-3 

LOC=location 
VAL=contents 

LOC=location 
VAL=contents 

LOC=location 
VAL=contents 

LOC=location 
VAL=contents 



Notes on the use of the hardware panel and breakpoint. 

1) Where does the AP stop on a breakpoint'?' 

a) With the BP set on PSA, the AP-120B will stop with 
P8.l\, pointing to the next instruction. 

Thus breaking on a branch instruction and then ex­
amining PSA will show whether the branch condition 
was true or false (PSA = BP+DISP or PSA = BP+l) 

b) With the BP set on TMA the AP-120B will stop with 
PSA pointing to the second instruction following 
the one that set TMA = BP. 

c) With the BP set on MA the AP-120B will stop on 
either the next instruction or the second instruc­
tion after the one that set MA=BP depending on 
the state of the memory lock-out hardware. 

(next instruction if memory lockout, second instruc­
tion if no memory lockout) 

Thus the stopping point following an MA breakpoint 
will have a one instruction uncertainty. 

2) Does the instruction on which the AP stops execute? 

a) Since SPFN is current, it will be set to the operation 
specified in the instruction that PSA is pointing to. 
The SPSPD register will not be modified unless the user 

changes SPD. Thus if the user wishes to proceed from 
a breakpoint, he must do one of two things. 

1) Be sure that the instruction following the one on 
which the breakpoint is set does not do an S-PAD 
operation or does an S-PAD operation such as MOV 
14,14 or MOV 14,15. (This last instruction is 
safe since it does not hurt to re-execute it). 

or 2) Be sure not be change SPD while the AP-120B is stopped . 
. Changing SPD will cause the S-PAD operation to execute. 
It will be executed again if the user attempts to 
proceed. 

Note that a debug routine that examines all of S-PAD 
will perforce change SPD and thus make proceeding 
impossible, unless condition 1 above is satisfied. 

b) All other portions of the instruction that PSA is pointing 
to remain unexecuted and will execute correctly when the 
user steps or proceeds from the breakpoint. 

6-4 



3) What about MD timing and lockout on a breakpoint in the 
middle of an MD memory cycle? 

a) The hardware has been designed so that the AP can 
be stopped in the middle of a memory cycle. The 
hardware remembers where the memory timing was 
when the AP stopped so that the micro-processor can 
continue correctly from a breakpoint that occurs 
during a memory cycle. 

b) However, the user must not examine MD nor should 
there be any DMA transfers going to or from MD 
while the AP is stopped if the user wishes to 
proceed from the breakpoint. 

Thus, for example, it is possible to break in the 
tight-to-memory portions of the FFT and examine 
DATA PAD or the address registers (PSA,SPA etc) 
and then proceed. But it is not possible to pro­
ceed if the user or the host interface disturbs 
the memory timing by reading or writing MD. 

4) Summary of rules for proceeding from a breakpoint. 

a) S-PAD. The instruction that PSA is pointing to, 
typically the instruction following the one on 
which the breakpoint is set, should be an SPAD 
NOP or an S-PAD instruction that can stand to be 
re-executed. OR, the user should not change 
SPD while the AP is stopped. 

b) MD 

If the breakpoint causes the AP to stop in the 
middle of a memory cycle. (PSA pointing to first 
or second instruction following SETMA, INCMA or 
DECMA)~ the user should not try to examine or mod­
ify MD. 

5) What about stepping the AP? 

The same rules as for proceeding from a breakpoint 
apply to stepping the AP through a micro-program. 
The user can examine and modify any register or 
memory within the constraints mentioned in #4 
a and b above. 

6) What other pitfalls are there in the use of the virtual 
front panel? 

a) Note that the panel always examines SPFN not SPSPD. 

Thus if the user wishes to see SPSPD he must force 

SPFN = SPSPD" This can most easily be done via the 
panel reset function which has the unhappy side 
effect of also clearing SP(~). 

6-5 



b) To examine TM, the user should first set TMA and 
then do a dummy panel operation (deposit TMA again 
for example) in order to enter the output of table 
memory into the table memory buffer register. He 
can then proceed to examine the addressed location 
using the appropriate panel functions. 

c) MD 

Setting MA from the panel initiates an MD memory 
read cycle. Depositing into MD from the panel 
initiates an MD memory write cycle. 

Thus to write MD and then examine what was just 
written, the user must perform a deposit into MA 
operation (with the same address) to initiate ·a 
read cycle before using the examine MD commands. 

d) Using the Increment field in the FN register. 

DPA and TMA always increm~nt after the EXAM or DEP 
operation is complete (remember that TMA is 
used to address program source memory for panel 
operations). 

MA post-increments and initiates a new memory read 
cycle on an EXAM operation. 

MA pre-increments on a DEP operation. 

e) Starting the AP 

The recommended starting procedure is as follows. 

i) set the SR to the starting address and do a 
deposit into PSA 

ii) set SR to the desired breakpoint and do a continue 
to start the AP-120B. 

This proceedure has the significant advantage that it. 
places the necessary breakpoint code into the users 
program should he need to debug his micro-program. 

The panel START function can be used but the user should 
observe the following restriction on the first instruc­
tion executed by the AP-120B. 

The first instruction should not branch or jump or 
modify PSA in any way other that to advance to the 
next instruction. The first instruction should not 
use the SPEC or IO fields. In fact the preferred 
first instruction is a NOP (all zeros). 

6-6 



200L 

200R 

201 

202 

203 

204 

205 

206 

207 

208 

209 

210 

211 

212 

213 

214 

215 

216 

217 

228 
227 
226 

----- --------------·-----------------------

APPENDIX A 
Board Number vs. Board Name Glossary 

DPL 

DPR 

SPAD 

MD REG 

FADDl 

FADD2 

FADD3 

FMULA 

FMULB 

FMULC 

TMREG 

CBl 

CB2 

ADDR 

MI REG 

EXPAN 

MDATA 

PS RAM 

TMROM 
RDSI/F 

FMTE 

FMTM 

Data Pad Left - EXP and LMAN (left byte) 

Data Pad Right - HMAN and LMAN (right byte) 

SPAD Registers and ALU, MA Register and 
PS input Buffero 

Main Data output Buff er Register and 
DPBS to/from PNLBS Buffers 

Floating Adder Board 1 Mantissa shift and 
ALU 

Floating Adder Mantissa normalize and round 

Floating Adder exponent arithmetic 

Floating Multiply Mantissa input register 
Ml and multiplier array A 

Floating Multiply Mantissa input register 
M2 and multiplier array B 

Floating Multiply exponent arithmetic and 
Mantissa partial product sum, normalize 
and round 

Table Memory output Buffer and 2's Complement 
logic for Cosine table unravel in FFT 

Control Buffer, Board 1. Buffer/Decode 
Bits ~ to 13 and 23 to 31 of micro-instruc­
tion 

Control Buffer Board 2. Timing for Main 
Data memory, APSTATUS Register, and Buffer/ 
Decode Bits 32 to 63.of micro-instruction 

Next Instruction Address logic for micro­
processor, Subroutine Return Stack, Table 
Memory Address and clock generation 

Main Data Input Buffer Register 

AP-120B Panel (APSR, FN, LITES) and Buffer/ 
Decode Bits 14 to 22 of micro-instruction 

Main Data Memory card 8K x 38 bits 

Program source memory card 512 x 64 bits 
Table Memory ROM card 8K x 38 bits 
RDS 500 Interface 
Format Conversion card (Exponent). 

Format Conversion Card (Mantissa) 

A-1 



(INTENTIONALLY BLANK) 

A-2 



!ALCLK 

!A2CLK 

!CBCLKl 

!CBCLK2 

!DPLCLK 

!DPLCLK* 

!DPRCLK 

!DPRCLK* 

!FACLK2 

!FACLK3 

!FMCLKA 

!FMCLKB 

!FMCLKC 

! IOCLK 

!MlCLK 

!M2CLK 

!MCLK 

!MDCLK* 

!MICLK 

!PNLCLK 

!SPCLK 

!T69 

!TMCLK 

!WRT* 

------------ --- -------- --

APPENDIX B 

AP-120B BACKPLANE SIGNAL GLOSSARY 

B-1 

Clock for Al Register of FA 

Clock for A2 Register of FA 

Clock for Bd. 210, CB-1 

Clock for Bd. 211, BC-2 

Clock for Bd. 200L DPAD 

Inverted clock for Bd. 200L DPAD 

Clock for Bd. 200R DPAD 

Inverted clock for Bd. 200R DPAD 

Clock for Bd. 204, FADD2 

Clock for Bd. 205, FADD3 

Clock for Bd. 206, FMULA 

Clock for Bd. 207, FMULB 

Clock for Bd. 208, FMULC 

Clock for Interface Bd 

Clock for Ml Register of FM 

Clock for M2 Register of FM 

Clock for Main Data Memory Cards 

Inverted Clock for MDREG Bd. 202 

Clock for MIREG Bd. 213 

Clock for Panel Logic on EXPAN, 
Bd. 214 

Clock for SPAD, Bd. 201 

Clock delayed by 69ns for MD 
Timing Bd. 210 

Clock for TMREG Bd. 209 

Low true write pulse used to 
write PS, and the Subrouting 
Return Stack 



AP-120B BACKPLANE SIGNAL GLOSSARY Continued 

! WRTL* Write pulse for DPL 

! WRTR* Write pulse for DPR 

"GND Extra Grounds not included 
in the standard set provided 
by the motherboard 

AlCLKD* Al Clock Data (low true) 
causes AlCLK 

AlEBS~2* 

AlMBS~~* 

A2CLKD* 

A2EBS~2* 

A2M~~Q* 

A2MBS~f>* 

ABORT* 

Bf>CLK 

BlCLK 

B2CLK 

B3CLK 

B2IO 

BH2HD 

BL2HD 

BS2Al 

BS2A2 

BS2Ml 

BS2M2 

BUF2CLK 

to AlEBSll* 

to AlMBS27* 

to A2EBS11* 

to A2MBS27* 

Al Exponent Bus 

Al Mantissa Bus 

A2 Clock Data causes A2CLK 

A2 Exponent Bus 

A2 Register Bit ~~ (sign bit) 

.A2 Mantissa Bus 

Internal System Reset Line 

Byte f) Clock to FMT Bd-

Byte 1 Clock to FMT Bd. 

Byte 2 Clock to FMT Bd. 

Byte 3 Clock to FMT Bd. 

FMT Buffer to I/O Bus Enable 

FMT Buffer High to Host Data 
Enable 

F:viT Buff er Low to Host Data 
Enable 

Al BS to Al input select line 

A2BS to A2 input select line 

Ml BS to Ml select line 

M2BS to M2 select line 

FMT BUFFER #2 Clock 

B-2 



AP-120B BACKPLANE SIGNAL GLOSSARY - Continued 

CAP2PNL* 

CB2AlE* 

CB2A2E* 

CB2A2M* 

CBCLKE* 

Control Buff er AP to PNLBUS 

Control Buff er to AlEBS Enable 

Control Buff er to A2EBS Enable 

Control Buffer to A2MBS Enable 

Control Buffer Clock Enable 

(BOTTOM HALF INTENTIONALLY BLAl~K) 

B-3 



AP-120B BACKPLANE SIGNAL GLOSSARY Continued 

DA9) to DA3 

DALD* 

DE~7 to DEll ~ 
DE9)7* and DE9)8* 
DEl~A and DEllA 

DECIMATE* 

DMA9)~* to DMA15* 

DMASAME 

DP2AlE 

DP2A2E 

DP2DPE 

DP2MlE 

DP2M2E 

DPA2PNL* 

DPALD*A 

DPBS2PSI* 

DPE2PNL 

DPEBS9)2* to DPEBSll* 

DPH2PNL 

DPL2PNL 

DPMBS9)9)* to DPMBS27* 

EOVCRY 

EOVG* 

SPAD Destination Address Bits 

Device Address Load Enable 

(
Floating Adder 

Delta Exponent Bits for shift 
of mantissa of smaller argument 

Bit-Reverse enable to SPAD 
sourceo 

Direct Memory Address to MD 
from Host Interface 

DMA Bank Address same as last 
bank 

DPAD to AlBS Enable 

DPAD to A2BS Enable 

DPAD to DPBS Enable 

DPAD to MlBS Enable 

DPAD to M2BS Enable 

DPAD Address to Panel Bus 
Enable 

DPAD Address Load Enable 

DPBS to Program Source Input 
Select 

DPBS Exponent to Panel Bus 
Enable 

DPAD Exponent Bus Bits 

DPBS HMAN to Panel Bus 
Enable 

DPBS LMAN to Panel Bus 
Enable 

DPAD Mantissa Bus 

FA Exponent overflow carry 

FA Exponent overflow carry 
generated 

B-4 



AP-120B BACKPLANE SIGNAL GLOSSARY - Continued 

EOVP* 

EX2PNL* 

EXIA 

EXIB 

EXP* 

FAA* 

FAB* 

FACIN* 

FADD* 

FAE~~* 

FAM~~* 

FANEG* 

FAOVF* 

to FAEll* 

to FAM27* 

FAS9) to FAS3 

FAUNF* 

FAZRO* 

FFTQ 

FL9)7*A to FL\19*1 
FLlO* to FLll* 

FLAG9) to FLAG3 

FME9l2* to FMEll* 

FMM9l9l* to FMM27* 

FMOVF* 

FMUL* · 

FMUL*A 

B-5 

FA Exponent overflow carry 
propagate 

Exit to PNLBUS 

Exit Input Select A 

Exit Input Select B 

Exponent Write Select 

FA answer select A 

FA answer select B 

Floating Adder Carry Input 

Floating Add microinstruction 
decode 

Floating Adder Exponent output 

Floating Adder Mantissa output 

FA result negative 

FA result overflow 

FA ALU mode select controls 

FA result underflow 

FA result = zero 

FFT mode flag 

{
FA normalization 

(Float number) 

shift count 

Program selectable Flags 

Floating Multiplier Exponent 
output 

FM Mantissa output 

FM result overflow 

Floating Multiply micro-instruction 
decode 

Floating Multiply micro-instruction 
decode 



AP-120B BACKPLANE SIGNAL GLOSSARY - Continued 

FMUNF* 

FN2HD* 

FRSGN* 

FRSGNQ* 

FSCALE* 

FSCALEQ 

FSCALEQ* 

FSM(-1)* to FSM39>* 

HD9}9} to 

HD2DP 

HRS ET* 

I+H9>9 

I+HlO 

I+Hl3 

I+Hl4 

IFFTQ* 

IN 

INTEN 

INTR* 

INTRQ 

HD15 

I09)9)* to 1039* 

IOACK* 

IODRDY*. 

FM Result underflow 

Function Register to Host Data 
Enable 

FA Force Sign 

Force Sign Latch 

Floating Scale 

Floating Scale Latch 

Floating Scale Latch 

Floating Summer Mantissa bits 
(Connection from Stage 1 to 
State 2 of FA) 

Host Data Bus 

Host Data to DPBS Enable 

Host Reset 

IO OR HOST Data Bit 9>9 

IO OR HOST Data Bit 19l 

IO OR HOST Data Bit 13 

IO OR HOST Data Bit 14 

Inverse FFT Flag 

Decode of IO Input instruction 

Interrupt Enable 

Interrupt Request 

Interrupt Request Latch 

IO BUS 

IO Acknowledge 

IO Data Ready 

B-6 



--··-· ·-·------·--------- ------------

AP-120B BACKPLANE SIGNAL GLOSSARY Continued 

IODRDYQ 

IODRDYQ* 

IOSPMD* 

LT2HD* 

MlEBS~2* to MlEBSll* 

MlMBS~~* to MlMBS27* 

MlR~~Q* to MlR27Q* 

M2EBS~2* to M2EBS11* 

M2MBS~~* to M2MBS27* 

M2R~2Q* to M2R27Q* 

MA~~* to MA15* 

MA2PNL 

MACE* 

MA INC* 

MALD* 

MALD*A 

MAN* 

MANOV 

MAS AME 

MD~2* to MD39* 

MD2A2 

MD2DP 

MD2M2 

MDCA~ 

MDCAl 

B-7 

IO Data Ready Latch 

IO Data Ready Latch 

IO Spin if MD Busy 

LITES to Host Data Enable 

Ml Exponent Bus 

Ml Mantissa Bus 

Ml Register outputs 

M2 Exponent Bus 

M2 Mantissa Bus 

M2 Register outputs 

Memory Address (MD) 

Memory Address to Panel Bus Enable 

Memory Address Count Enable 

Memory Address Increment Select 

Memory Address Load Enable 

Memory Address Load Enable 

Mantissa Write Select 

Mantissa overflow 

MA Bank same as last Bank 

Main Data outputs 

MD to A2BS Enable 

MD o DPBS Enable 

MD to M2BS Enable 

MD Cycle Acknowledge ~ 
(refresh) 

MD Cycle Acknowledge l 
(Host interface) 



AP-120B BACKPLANE SIGNAL GLOSSARY 

MDCA2 

MDCA3 

MDCLKE* 

MDCRlQ* 

MDCR2* 

MDCR3* 

MDEXP 

MDHMAN 

MDI~2 to MDI39 

MD INA* 

MDLMAN 

MDWRT* 

MDWRT3 

MIA 

MIB 

MICLKE* 

OUT* 

OVFL* 

PCYLl* 

PCYL2* 

PNL~~* to PNL15* 

PNL2DP 

PNL2HOST* 

PNL2MD* 

Continued 

MD Cycle Acknowledge 2 

MD Cycle Acknowledge 3 
(AP Internal) 

MD Register Clock Enable 

MD Cycle Request 1 

MD Cycle Request 2 

MD Cycle Request 3 

MD Exponent Write Enable 

MD high Mantissa Write Enable 

MD input bus 

MD cycle initiate 

MD Low Mantissa Write Enable 

MD Write Enable 

MD Write Request 3 

MD Input Select A 

MD Input Select B 

MD Input Clock Enable 

IO OUT micro-instruction 
decode 

Overflow status 

Panel cycle 1 

Panel cycle 2 

Panel Bus 

Panel Bus to DPBS Enable 

Panel Bus to Host (Lites Load 
Enable) 

Panel Bus to MD write request 

PPA~l* to PPA26* :> 
PPA27Q* to PPA3~Q* 
PPA31* to PPA52* 

( ;M Pa.rtial 
\__°f Array A 

Product outputs 

B-8 



--- -----------~------------------------

AP-120B BACKPLANE SIGNAL GLOSSARY Continued 

PP A USE 

PPB(-1)* to PPB24*} 
PPB25Q* to PPB28Q* 
PPB29* to PPB 

PS9J9J* to PS63* 

PS9J2PNL* 

PS9JWRT 

PS12PNL* 

PSlWRT 

PS22PNL* 

PS2WRT 

PS32PNL* 

PS3WRT 

PSA9J4* to PSA15* 

PSA2PNL 

PSAAD 

PSABD 

PS A CD 

PSACLKE* 

PSAZRO 

PSH2DP* 

PSI9J9J to PSI31 

PSL2DP 

REFSYNC* 

RUN* 

S+C2* 

B-9 

Panel Pause from CB-1 (210) 

(
FM Partial Product outputs 
of ARRAY B 

Program Source outputs 

PS Word 9J to Panel Bus Enable 

PS Word 9J Write Strobe 

PS Word 1 to PNL Bus Enable 

PS Word 1 Write Strobe 

PS Word 2 to PNL Bus Enable 

PS Word 2 Write Strobe 

PS Word 3 to PNL Bus Enable 

PS Word 3 write Strobe 

Program Source Address 

PSA to PNL Bus Enable 

PSA Select A Data 

PSA Select B Data 

PSA Select C Data 

PSA Clock Enable 

PSA = Zero, PS Disable 

PS High to DPBS Enable 

PS Input Bus 

PS Low to DPBS Enable 

Refresh Sync 

AP-120B Running 

Step OR Continue Cycle 2 
(panel function) 



AP-120B BACKPLANE SIGNAL GLOSSARY Continued 

SA9) to SA3 

SAMEX 

SAMEY 

SC9'9'* 

SCIN 

SELAlA 

SELA2 

SFWE* 

SHS9) 

SHSl 

SIWE* 

SM2TC* 

SNSA 

SP+DP9)9'* to SP+DP15* 

SP2ADDR 

SP2DP 

SP2PNL 

SPA2PNL* 

SPALD* 

SPCIN 

SPFN9'9'* 

SPFNCRY* 

SPILD* 

SPIN* 

SPAD Source Address 

DPX Read and Write Addresses 
equal 

DPY Read and Write Addresses 
equal 

Sign bit out of FA Stage 1 
mantissa scaler 

FA Scaler inhibit 

Select Al as larger input to FA 

Select A2 as larger input to FA 

SPAD Function Write Enable 

SPFN Shift Select 9' 

SPFN Shift Select 1 

SPAD Input Write Enable 

Sign Magnitude to two's complement 

IO sense A 

SPFN OR DPBS Bus 

SPFN to Address (SP + DP Bus) 
select 

SPFN to DPBS Enable 

SPFN to PNL Bus Enable 

SPAD Address to PNL Bus Enable 

SPAD Destination Address 
Load Enable 

SPFN Carry Input 

SPFN Sign Bit 

'SPFN Carry Output 

SPAD INPUT LOAD Enable 

Micro-processor SPIN 
(hangs on current instruction) 

B-10 



AP-120B BACKPLANE SIGNAL GLOSSARY continued 

SPIOD9' 

SPM 

SPS9' to SPS3 

SP ZED 

SR2HD* 

SR2PNL 

SRACE* . 

SRADEC* 

SRAOVD* 

SRSWE* 

STA2PNL 

STALD* 

TM9'2* to TM39* 

TM2Al 

TM2DP 

TM2Ml 

TMA9'~ to TMA15 

TMA2PNL 

TMACE* 

TMADEC* 

TMALD* 

TMALD*A 

TM I NH 

TMNEG* 

B-11 

SPIN if IODRDY DATA=9' 

SPFN Mode 

SPFN ALU Controls 

SPFN = zero 

Switch Register to Host Data Enable 

Switch Register to Panel Bus Enable 

Subroutine Return Address Count 
Enable 

Subroutine Return Address 
Decrement Select 

Subroutine Return Address 
Overflow Data 

Subroutine Return Stack Write Enable 

AP STATUS to PNL Bus Enable 

APSTATUS Load Enable 

Table Memory Outputs 

TM to AlBS Enable 

TM to DPBS Enable 

TM to MlBS Enable 

Table Memory Address 

TMA to PNL Bus Enable 

TMA Count Enable 

TMA Decrement Select 

TMA Load Enable 

TMA Load Enable 

Table Memory Inhibit 

Table Memory Negate 



AP-120B BACKPLANE SIGNAL GLOSSARY Continued 

TRUNC* FA Truncate 

TRUNCQ FA Truncate Latch 

TRUNCQ* FA Truncate Latch 

TSPIN True Spin 

UNFL* Underflow Status 

USECB* Use Control Buffer 
Bits 48 to 63 as a Value 

USEPSA* Use PSAQ as Source for PSA 

WRTEXP MD Exponent Write Enable 

WRTHM HMAN Write Enable 

WRTLM LMAN Write Enable 

X~l to X~5 DPX Address 
X~2A to X~5A 

XECLKE* DPX Exponent Clock Enable 

XHMCLKE* DPX HMAN Clock Enable 

XIA DPX Input Select A 

XIB DPX Input Select B 

XLMCLKE* DPX LMAN Clock Enable 

Y~l to Y~5 DPY Address 
Y~2A to Y~5A 

Y2Al DPY to AlBS Select 

Y2A2 DPY to A2BS Select 

Y2DP DPY to DPBS Select 

Y2Ml DPY to MlBS Select 

Y2M2 DPY to M2BS Select 

YECLKE* DPY Exponent Clock Enable 

YHMCLKE* DPY HMAN Clock Enable 

B-12 



AP-120B 

APARTH 

DIAGNOSTIC SOFTWARE MANUAL 

Revision 1 1/5/76 

© Floating Point Systems 1976 
All Rights Reserved 
Printed in the United States of America 





SECTION 1 
BRIEF DESCRIPTION: APARTH 

1.1 BRIEF DESCRIPTION 

This program exercises and verifies the accuracy of the 
arithmetic hardware in the AP-120B (FA, FM and S-PAD). In 
addition, due to the heavy use of Data Pad and S-Pad registers, 
the functioning of these registers is thoroughly testedo 

The program utilizes a pseudo-random number generator 
to produce arguments for Data Pad and S-Pad, to select DPA 
and the Decimate shift count, and also to select combinations 
of Floating Adder and S-Pad operations, Data Pad Read and 
Write Indices, and S-Pad register addresses which are combined 
into micro-instructions for the AP-120B to execute. 

The number (1 to 15) of randomly selected instructions 
is also selected by the Random Number Generator. A new user 
command ('N') has been provided, however, to override this 
selection and force the generation of simpler test cases in 
order to help simplify their interpretation. 

After generating the data and instructions, the program 
loads them into AP-120B Data Pad, S-Pad, DPA, APSTATUS and 
Program Source and starts the AP-120B executing the test. The 
program then loads the data into a corresponding set of soft­
ware simulation registers and calls on the simulation package 
(SPADS) to generate the expected results. 

The program then checks all of S-Pad, Data Pad and the 
APSTATUS register against the predicted resultso If any des­
crepancies are encountered, the expected and actual results 
are typed out along with the restart parameters for the Random 
Number Generator. To help facilitate the interpretation of 
the results, several new commands have been added to the FPS 
Teletype Control Routines. Refer to the 'N', '#', and 'F' 
commands in Section 3. Example error messages and their inter­
pretation can be found in Section 4. 

APARTH 1-1 



INTENTIONALLY BLANK 

APARTH 1-2 



SECTION 2 
RDS 500 OPERATING PROCEDURES 

2.1 RAYTHEON RTOS 

Start the program with: 

:QU, APARTH 
:EX 

The program will indicate its readiness to accept user 
commands by typing an "*"· Typical user response at this point 
is "RWE@". The program will then begin generating test 
cases and trying them on the hardware and software and will 
type an 'A' for every 512 test cases (approximately once every 
30 seconds). The following section describes the full set o! 
user commands. 

Note: 

This program requires that the FPS supplied package of Teletype 
Control Routines (INPT) and the simulation package (SPADS) 
be extended onto the Disk along with APARTH in order for the 
above Queing sequence to work. 

APARTH 2-1 



INTENTIONALLY BLANK 

APARTH 2-2' 



3.1 USER COMMANDS 

SECTION 3 
USER COMMANDS 

The test program responds to a set of single letter 
commands, some of which are to be followed by one or two 
Hexadecimal integers. A string of commands may be typed 
on a line terminated by a carriage return. With the ex­
ception of the 'E' (Execute) command, the commands can be 
typed in any order on the line. The 'E' command should be 
typed last since commands following the 'E' will not 
be seen by the command string interpreter. Typing a Con­
trol C "+C" will cause the current line to be ignored. 
Sense Switch ~ is used to interrupt test program execu­
tion and bring control back to the command input portion 
of the test program. The "Ruboutn function is more special­
ized than in RTOS Teletype input as it can be used to delete 
only certain commands. Table 3-1 summarizes the commands 
recognized by this test program. 

APARTH 3-1 



USER 
.COMMAND 

Annnn 

B 

c 

D 

E 

Fnnnn 

TABLE 3-1 

FUNCTION 

Input the starting ad­
dress of another program 
in core to which control 
is to be transferred by 
the 'B' command. 

Transfer program control 
to the address specified 
in the last preceding 'A' 
command. 

Type out the user input 
flags that have been set. 

Set the typeout Disable 
flag. Used for Scoping 
a hardware fault. Also 
disables the error de­
tect ion. 

Execute the test program. 
Used to transfer control 
from the command input 
section of the program 
to the test section. 

Type out the micro­
instruction (Function) 
at PSA location nnnn. 
PSA location 4 corresponds 

RESTRICTIONS 

Must be followed by a 
Hexadecimal integer spe­
cifying the desired 
absolute address. 

This is the last com­
mand on the line that 
will be seen by the 
Command String Inter-

· preter. 

Must be followed by a hexi­
decimal integer. 

to the first randomly 
selected micro-instruction 
The PSA value will be typed 
on a line followed by the 
micro-instruction represen­
ted as four hexidecimal num­
bers. At the end of the line 
line the user can type either 
a line-feed to cause the pro­
gram to type out the next PSA 
value and micro-instruction 
or a carriage return to cause 
the program to return to com­
mand input mode. 

APARTH 3-2 



USER 
COMMAND 

H 

I 

L 

Mnnnn 

Nnnnn 

R 

s 

TABLE 3-1 

FUNCTION 

Set the unconditional 
Halt flag. Following 
the next 'E' command the 
program will execute one 
test case and return to 
command Input mode. 

Set the IO Reset flag. 
Test program Resets the 
AP-120B between each test 
case. 

Set the LOOP flag. Pro­
gram loops on the last 
executed test case. 

Define the AP-120B Mem­
ory Size. 

Select the Number of 
micro-instructions that 
are to constitute each 
test case. Once N is 
set, the Random Number 
Generater is inhibited 
from selecting the size 
of each Test case. This 
condition will persist 
until N is cleared by 
either the 'R' or Rub­
out command. The 'N' 
command is used to force 
the selection of simpler 
test cases in order to 
facilitate their inter­
pretation in the case of 
a solid hardware failure. 

Reset all flags. Clears 
D,H,I,L,N,S and W. 

Set short form format for 
error typeout. Affects 
FIFFT only. 

APARTH 3-3 

RESTRICTIONS 

Must be followed by a 
hexadecimal integer 
(2000=8KO. 

Must be followed by a hexa­
decimal integer in the range 
1 to F. 



USER 
COMMAND 

w 

TABLE 3-1 

FUNCTION 

Set Wait on error flag. 
If set, the test will 
return to command input 
mode after encountering 
and typing out an error. 

Xnnnn,nnnn Reset the Random Number 
generator parameters. 
Used to recreate a test 
case from the parameters 
typed out in an error 
message. 

Rubout Used to selectively 
clear one of the flags 
(D.1 H1 I,L,N,S, or W). 
Rubout echoes as a 
s.}.ash "/" . 

Used to delete an input 
command string if the 
"tC" is typed before the 
Carriage Return. 

APARTH 3-4 

RESTRICTIONS 

Must be followed by two 
hexadecimal integers on 
the same line. 

Type the flag to be 
cleared followed by a 
rubout i.e., "LRubout" 
clears the Loop flag. 



USER 
COMMAND 

SS~ 

SSl 

GR2 

#nnnn 

TABLE 3-1 

FUNCTION 
Sense switch zero is used 
to cause the running or 
looping·test to return 
to command input mode. 
If the program is exe­
cuting correctly, lift­
ing SS~ should cause it 
to type an asterisk on 
the teletype. 

Sense switch one is used 
to shorten the error type­
out in APARTHo It is 
used to prevent the full 
error message from being 
typed our. Only the first 
error encountered and the 
restart parameter line 
will be typed out. 

RDS-500 General Register 2 
is used to select the hard­
ware trigger location. This 
feature is provided in order 
to give the technician a 
convenient means for locat­
ing micro-instruction sequen­
ces when scoping a hardware 
problem. 

Type out argument num-
ber nnnn. The argument 
will be typed out as a 
16-bit hexidecimal inte­
ger. A line feed can be 
used to cause the program 
to type out the next se­
quential argument. A car­
riage return brings the 
program back to command 
input mode. The following 
table summarizes the cor­
responce between argument 
numbers and the various 
input and output contents 
of Data Pad and S-Pad. 

APARTH 3-5 

RESTRICTIONS 

Must be followed by a hexi­
decimal integer. 



APARTH '#' COMMAND 
Argument Number to Register 

Correspondence Table 

a) Input Arguments 

#r/J to #F 
#1</J 
#13 
#16 
#19 
#lC 
#lF 
#22 
#25 
#28 
#2B 
#2E 
#31 
#34 
#37 
#3A 
#3D 

SP(</J to F) 
DPX (-4) 
DPX (-3) 
DPX (-2) 
DPX (-1) 
DPX (fl)) 
DPX (1) 
DPX (2) 
DP~ (3) 
DPY (-4) 
DPY (-3) 
DPY (-2) 
DPY (-1) 
DPY (r/J) 
DPY (1) 
DPY (2) 
DPY (3) 

b) Results of Software simulation 

#4</J to #4F 
#5(/J 
#53 
#56 
#59 
#5C 
#5F 
#62 
#65 
#68 
#6B 
#6E 
#71 
#74 
#77 
#7A 
#7D 

SP(</J to F) 
DPX (-4) 
DPX (-3) 
DPX (-2) 
DPX (-1) 
DPX ( r/J) 
DPX (1) 
DPX (2) 
DPX (3) 
DPY (-4) 
DPY (-3) 
DPY (-2) 
DPY (-1) 
DPY (0) 
DPY (1) 
DPY (2) 
DPY (3) 

APARTH 3-6 



c) Result of AP-120B Hardware 

#S</J to #SF 
#9</J 
#93 
#96 
#99 
#9C 
#9F 
#A2 
#A5 
#AS 
#AB 
#AE 
#Bl 
#B4 
#B7 , 
#BA 
#BD 

SP(</J to F) 
DPX (-4) 
DPX (-3) 
DPX (-2) 
DPX (-1) 
DPX ( </J) 
DPX (1) 
DPX (2) 
DPX (3) 
DPY (-4) 
DPY (-3) 
DPY (-2) 
DPY (-1) 
DPY (!l)) 
DPY (1) 
DPY (2) 
DPY (3) 

APARTH 3-7 



SPECIAL RDS 500 DEBUG COMMANDS 

User Command Functions. 

.nnnn 

Onnnn 

Type Absolute address of Calling Routine. Used 
to locate the Calling program in the absence of 
a load map. 

Set Base address. The Debugger has a Base address 
register that allows the user to reference locations 
in his relocatable program using the output of the 
SYMII Assembler. Following the";" command the 
user should compute the absolute beginning address 
of his program and input it to the debugger using 
the"." Command. 

Example: 

*; @) 
6CAA 
*· 6CA5 @ 
* 
Explanation: 

Call to Debugger was at 6CAA. This is the absolute 
address of the next instruction following the call. 
Assuming this instruction was at relative location 
5, the user subtracts 5 from 6CAA and enters 6CA5 
as the Base address. (Asterisks are typed by program) 

Open the location nnnn + Base. The debugger will 
type out the contents (in hexadecimal) of the 
opened location. 

To modify this location, the user simply types the 
desired hexadecimal value followed by one of the 
three pointer movement commands. 

To leave it unchanged and open contiguous locations 
or return to command input, the user simply types 
one of the three pointer movement commands (see below). 

APARTH 3-8 



Pointer Movement Commands: 

(line feed) closes the currently open location and 
advances the pointer to the next location in memory. 
The debugger will type out the address and then the 
contents of the next location. 

(up arrow, carriage return) closes the currently 
open location and moves the pointer to the pre­
ceding memory location. The location and contents 
are typed out in hexadecimal. 

(carriage return) closes the currently open location 
and returns to command input mode, The program 
will type out an "*" 

Example: 

*025 @ 
1234 lH~F 
9)9)26 45AB F 
9)9)27 1564 A t~ 
9)9)26 45AB FF eJ' 

OPEN location 25 
change to 123, go to 26 
no change, go to 27 
change to ABF, go to 26 
change to FF, Quit 

Address Calculation Commands: 

=nnnn 

-nnnn 

Adds nnnn to Base and types out result. Converts 
relative addresses to absolute. 

Subtracts Base from nnnn. Converts absolute addresses 
to relative 

Program Control Commands 
Tnnnn 

Gnnnn 

Trap. Sets a Breakpoint trap at relative location 
nnnn. The trap consists of two instructions. 

SMB TRTN 
JMP TRTN 

These two instructions are inserted in the user pro­
gram at the time that the "G" (GO) command is issued. 
When the trap is encountered, the routine TRTN will 
save the ACR and IXR, restore the two user instruc­
tions and return to command input mode. Once encoun­
tered the TRAP is removed and will not be set again 
until the user issues another 'T' command. 

GO. Starts the user program running at relative 
location nnnn after inserting a TRAP (if previously 
called for by user) and restoring the ACR and IXR. 

APARTH ~-9 



p Proceed. Starts the user program running from the 
last TRAP location. ACR and IXR are restored. The 
overflow and compare flops are lost. 

Example: 

~~ :~~~1-
3) TRAP AD ACR 8~~~ IXR ~~37 
4) *P R 

Set TRAP at 45 
Start at 25 
Prog. Encounters TRAP 
Proceed from 45 

At line 3 where the trap was encountered, the program 
types out the absolute Hexadecimal location of the 
trap and the contents of the ACR and the IXR. 

NOTES: 

1) Hexadecimal integers may consist of from 1 to n digits termi­
nated by a non-numeric character. This character may be a 
comma, a carriage return or the next command letter (other 
than A,B,C,D or E). If more than 4 digits are typed, only 
the last 4 will be taken as the desired hexadecimal integer. 

EXAMPLES: 

1). For Normal operation type -ltRWE @ II •.. Thi~ starts the test 
running so that it will return t~command input mode when 
an error is encountered. 

B) Looping on an error: 
1. After program has typed out an error and returning to 

command mode, Type "LE CID " to loop on the failed 
case to see if the error "-is solid. Type "LDE @ 11 

to go into a scope loop with typeout disabled. 
2. After the error is corrected lift SS~ to interrupt 

the test. Type "D Rubout E cm II to check to make 
sure that it has been correct~. 

3. To Return to th~ull test, lift SS~ to interrupt 
and type "RWE ~ " to proceed. 

C) For an overnight Run type "RE @ ". The program will 
type out all errors and proceed. This will leave a record 
of any failures that may have occurred. The program will 
stop the test automatically if more than 64 errors occur. 
This is done so as to prevent excessive wear on the Tele­
type in the case of a catastrophic failure. 

APARTH 3-10 



SECTION 4 

APARTH Error Message and Error 
Message Interpretation 

4.1 ERROR MESSAGE FORMAT 

The full APARTH error message has the following format: 

1) APSTATUS E eeee A aaaa 
2) SPD ssss E eeee A aaaa 
3) DPX dddd E eee eeee eeee A aaaa aaa• aaaa 
4) DPY dddd E eeee eeee eeee A aaaa aaaa aaaa 
5) N nnnn X,Y xxxx yyyy APSTATUS pppp DPA dddd 

Where in general, eeee stands for the expected and aaa 
stands for the actual result. Line 1) will appear only if there 
is a discrepancy in the status register. Line 2) appears if 
there is a discrepancy in an S-Pad Register. In line 2), ssss 
is the address of the S-Pad Register in error. Line 2) could 
appear up to 16 tiJ!ies if every S-Pad Register were wrong. Line 
3) appears if there is an error in a Data Pad X Register. Line 
4) appears for an error in a Data Pad Y Register. In lines 
3) and 4), dddd stands for the address of the Data Pad Register 
in error. Lines 3) and 4) could appear up to 8 times each if 
all Data Pad Registers were in error. Line 5) appears if any 
of lines 1) to 4) are present indicating an error. Line 5) 
contains: nnnn, the size of the test case; xxxx yyyy, the restart 
parameters for the random number generator; pppp the expec·ted. 
value for the APSTATUS Register (same as eeee in line 1 if 
line 1 appears); and dddd, the contents of DPA, the Data Pad 
base address register. 

4.2 ERROR MESSAGE INTERPRETATION 

4.2.1 Background Information on program operation. The program 
begins by using the Random Number Generator (GRN) to select 
the number (ENP) of functions that will constitute the test 
case. If the user has set the N flag (Bit 6 of STAT) the 
number of functions is set equal to the user determined parameter 
"EN". The program then uses the GRN to select input values for 
S-Pad (16 by 16-Bits) and Data Pad (8 by 38-Bits for DPX and 
also for DPY). 

It then attacks the problem of generating the Random micro­
instructions. These instructions are placed into a block fol­
lowing the location CODEP in the listing. In order to insure 
that the machine is in a known state prior to the execution 
of the selected instructions, the block of code begins with a 
four instruction header that is used to fill the Multiplier and 
Adder pipelines with zeros. 

APARTH 4-1 



0000 

0001 

0002 

0003 

Header Micro-Code: 

0001 
DAOO 
0000 
lFOO 

0001 
DAOO 
0000 
lFOO 

0001 
DAOO 
0000 
lFOO 

0003 
8COO 
0400 
OOOn 

FADD ZERO, ZERO; FMUL TM, MD 

FADD ZERO,ZERO; FMUL TM, MD 

FADD ZERO, ZERO; FMUL TM, MD 

LDAPS; DB + DECIMATE Count 

Where n is set by the program to equal the selected value 
of the Decimate shift count. Starting at location 4 then the 
program generates ENP random instructions that consist of ran­
domly selected Decimate, SOP, SH, SPS, SPD, FADD, XR, YR, XW, 
and YW Fields. The only restrictions being that SPEC, IO, and 
NOP operations are not generated in the S-PAD and FADD fields. 
On the second instruction following the first FADD (ie. at 
location 6), the DPY field is set to DPY(YW) + FA. On the 
next instruction DPX is set to DPX(XW) + FM. The Al, A2, 
and Ml, M2 fields are set to DPY(YR), DPX(XR). Thus the FA 
and FM operands are the same, DPY + Al, Ml and DPX + A2, M2. 
This makes the generated operation sequences recursive in that 
the output of the arithmetic (FA, FM, S-PAD) can become an input 
argument for a later operation. After the desired number of 
instructions has been generated, a seven instruction ttail-
er is appended to the code to flush any remaining results out 
of the FA and FM pipelines and to provide an instruction se­
quence to set SPFN=SP(SPD) so that all of S-PAD can be examined. 

n+4 

n+5 

n+6 

Trailer Micro-Code: 

0001 
DAOO 
0000 
lFOO 

0000 
0000 
2000 
lFOO 

0003 
FOOO 
cooo 
0000 

FADD ZERO, ZERO; FMUL TM, MD 

XW, YW Randomly selected 
see below for DPX, DPY 

FMUL TM, MD; DPY (YW) + FA 

XW, YW Randomly selected 
See below for DPX 

HALT; DPX (XW) + FM 

XW Randomly selected 

APARTH 4-2 



n+7 

n+8 

n+9 

n+lO 

Notes: 

0000 
0000 
0000 
0000 

0303 
9AOO 
0000 
0000 

0003 
FOOO 
0000 
0000 

0000 
0000 
0000 
0000 

NOP 

LDPNL; RSPFN 

HALT 

NOP 

1) n is the number of randomly selected instructions. 

2) At instruction n+4 and n+5 DPX will be DPX(XW) + FM if 
there have been three preceding FMUL'S. DPY will be 
DPY(YW) +FA if there have been two preceding FADD's. 

The AP-120B is started executing this instruction sequence. 
·It stops when it encounters the HALT at location n+6 (PSA will 
be pointing at n+7 when it is stopped). The program then reads 
the APSTATUS Register in order to capture the state of the 
machine as of the last operation. It then uses the Panel Con­
tinue function to cause the AP-120B to execute instructions 
n+8 and n+9. Instruction n+8 has the effect of setting SPFN 
equal to SP(SPD) so that the program can then proceed to examine 
S-PAD and Data Pad to optain the hardware reslts. 

4.2.2 Error message interpretation. Note that since FM always 
goes to DPX and FA goes to DPY, errors on DPX are typically 
caused by the multiplier while errors in DPY are typically caused 
by the adder. 

Typical error message interpretation precedes by using the 'F' 
command to type out the micro-instructions, examining the micro­
instructions to find the last one that wrote into the register in 
error, counting back ~, 2, or 3 micro-instructions (~ if S-Pad 
2 if FA, 3 if FM), examining that instruction to find the input 
registers to the function in question, and then using the '#' 
command to type out the input numbers. At this point all the 
information is available. Knowing the location of the failing 
instruction, the technician can probably go directly to scoping 
the problem. By setting GR2 to one less than the address of the 
micro-instruction that failed he will have a convenient pointer 
tor.locating it. If the problem is voltage sensitive, this is 
the prefered course of action. If the problem is solid,however, 
it may be worthwhile to attempt to carry out the arithmetic by 
hand, especially if in S-PAD, or FA, in order to be able to local­
ize the problem further. 

APARTH 4-3 



4.2.3 Examples. The following pages contain a selection of 
actual error type outs and their interpretation. Note that 
they are all presented as if the 'W' flag (Wait or error) was 
set i.e., the program types an asterisk following the error 
indicating its readiness to accept new commands. The use of 
the 'F' and '#' commands is illustrated. The AP-1208 Instruction 
Summary and the APSTATUS Register Format are included at the 
end of the examples in order to help facilitate the interpretation 
of the micro-instructions. 

APARTH 4-4 



Example #1 N=l 

AAAAAAAAA 
DPY 0000 E 0284 0479 5AB5 A 0384 0479 5AB1 Error at DPY(+2) 
NOOOl X,Y 62BO 7EC6 APSTATUS 4002 DPA OOlE 

UFO 
0000 0001 DAOO 0000 lFOO User asks for instructions starting at ~-
0001 0001 DAOO 0000 lFOO 
0002 0001 DAOO 0000 lFOO Header Instructions, user types line feed 
0003 0003 8COO 0400 0002 to go to next instruction. 
0004 A5F8 B400 OlFD 7900 
0005 0001 DAOO 0002 DFOO Randomly selected instruction 
0006 0000 0000 2001 FFOO Trailer instructions 
0007 0003 FOOO C007 cooo FA DPY(3) 
0008 0000 0000 0000 0000 
0009 0303 9AOO 0000 0000 User typed carriage return to return to 
OOOA 0003 FOOO 0000 0000 command input mode. 
OOOB 0000 0000 0000 0000 

Notes: 

1) The error is in DPY Register ~ which corresponds to an index of 
+2 with respect to DPA of IE. Since the Data Pad indices are 
biased By 4, this would correspond to an assembled index of 6 
in the micro-instructions. 

2) Instruction 6 is the only one with a non-zero DPY field, but 
the YW index in that instruction is 7=DPY(3) thus the wrong 
result is not in the FA output. 

3) The error in this case was traced to an addressing problem in 
Data Pad in which writing into one register occasionally de­
stroyed the contents of another. 

APARTH 4-5 



Example #2 N=2 

APSTATUS E 0802 A 1002 
DPY OOOC E 0230 OEF9 SAIC A 0000 0000 0000 
N0002 X,Y 294C 16F4 APSTATUS 0802 DPA OOOD 
*F4 
0004 DB42 3400 OlFF 3900 
0005 CDD4 1400 OOCl D900 FIX DPX(-1) 
0006 0001 DAOO 2006 5FOO 
0007 0000-0000 EOOl 7FOO FA ~DPY(-1) 

0008 0003 FOOO C003 4000 

FZ instead of FN 
Error at DPY(-1) 

*#19 
0231 
OF7C 
C50E 

contents of DPX(-1) 

* 
Notes: 

1) The user here has only asked to see the relevant instructions 
ignoring the header and the last 5 instructions of the trailer. 

2) Observe that the error in the APSTATUS Register (FZ set instead 
of FN) is compatible with the descrepancy in the DPY Register. 

3) The interpretation process starts at the end of the code block 
looking for a YW of 3=DPY(-1) with a 2 in a DPY field. This 
is first encountered at instruction #7. The user then counts 
back two instructions to find the operation that failed, FIX 
DPX(-1). He then uses the table given in Section 3 for the '#' 
to type out the input argument. 

4) This problem was traced to a missing pullup Resistor on AlEBS9)3* 
that caused the FIX function to shift the wrong argument. 

APARTH 4-6 



Example #3 N=9 

SPD 0000 E 73CC A 73C4 
N 0009 X,Y CF8B 68AE APSTATUS C906 ERROR in SP(~) 

*F4 
0004 EFIE B400 OOC2 3900 

0005 6F7F 3400 0154 5900 
0006 7441 3400 2046 1900 EQVL 1,~ 
0007 FD60 2400 El98 3900 
0008 OAE5 B400 EI4A F900 
0009 ACC6 3400 E15B 1900 

OOOA B308 1400 ElCD D900 
OOOB 4DAA B400 E09F 1900 
OOOC 6CAC B400 ElDl D900 
OOOD 0001 DAOO E005 lFOO 
OOOE 0000 0000 E005 lFOO 
OOOF 0003 FOOO C002 AOOO 
*#0 
FA18 
*#1 
3C01 

* 
Notes: 

1) Working backwards from the end, instruction #6 is found to be 
the first one to use SP(~) as a destination. The input argu­
ments are shown below the micro-code. 

2) Examination of this case with an oscilloscope showed that in­
struction #6 was executing correctly and thus that the problem 
in fact was address related. Termination of the S-Pad address 
lines solved it. 

APARTH 4-7 



Example #4 N determined by GRN. 
*SA4E3,632HE 

DPY 0016 E 03FF 07FF FFFF A 03FF 0400 OlOF 
N OOOB X,Y A4E3 0632 APSTATUS 9100 DPA 0013 

*F4 

error at DPY(3) 

0004 OEE4 5400 0099 1900 
0005 7966 B400 014B 1900 
0006 6A48 7400 205C B900 
0007 DF89 B400 ElCE D900 
0008 D928 2400 ElAD 7900 
0009 572D 3400 ElD2 9900 
OOOA 598C 6400 E063 3900 
OOOB E050 4400 El55 5900 
OOOC EB72 3400 EOA7 1900 
OOOD 7AF4 B400 E059 3900 
OOOE 8ED6 B400 E06B F900 
OOOF 0001 DAOO E007 3FOO 
0010 0000 0000 E007 lFOO 
0011 0003 FOOO C004 COOO 
0012 0000 0000 0000 0000 
0013 0303 9AOO 0000 0000 
0014 0003 FOOO 0000 0000 
*#74 

FEQV DPX(-2), DPY(~) 

FA +DPY(3) 

03D6 DPY(~) Software Result 

OB9E 
18F4 
*#56 DPX(-2) Software Result 
03FF 
0800 
0000 

* Notes: 

1) Working backwards instruction E is the last to write DPY(3). 

2) The operation if FEQV DPX~-2), DPY(~). 

3) Observe that instruction 9 modified DPX(-2) and instruction 
9 also modifies DPY (~) and that DPX(-2) and DPY(~) remain un­
modified to the end. Thus the input arguments for instruction 
C were taken from the software results rather than from the 
input argument list. 

4) This error turned out to be due to a noise problem in the 
floating adder that was interfering with the overflow detection. 

APARTH 4-8 



--------------.-··----·--------- -------

Example #5 N selected by GRN. 

OPX 0018 E 0000 0000 0000 A 0103 0000 0000 ERROR in OPX(-3) 
N OOOB X,Y B67F 078E APSTATUS 9000 OPA OOlB 

*F4 
0004 E644 2400 0169 F900 
0005 50A6 B400 OOFB 1900 
0006 5968 6400 20EC B900 

0007 0989 B400 E13E 0900 

0008 OE08 2400 ElFO 7900 
0009 66EO 3400 El02 9900 
OOOA 742F 3400 E074 5900 
OOOB 0600 7400 E045 9900 
OOOC 2B02 3400 E077 3900 
0000 B634 B400 El09 7900 
OOOE 04F6 B400 ElFB 3900 
OOOF 0001 OAOO E007 7FOO 

0010 0000 0000 E007 7FOO 
0011 0003 FOOO C004 0000 
*#13 
0304 

OOAF 

E501 
*#7A 
0000 
0()00 
0000 

* 
Notes: 

1) Instruction A uses OPX(-3), OPY(2) 
Instruction O destroys OPX(-3) 

FMUL OPX(-3), OPY(2) 

FM +OPX(-3) 

Input argument for OPX(-3) 

Software result for OPY (2) 

Thus the input argument for OPX(-3) was examined. 
Instruction 9 modifies OPY(2) 

Thus the software result table is used to display OPY(2). 

2) Not all cases are so fortuitous. In some cases an argument 
can be completely masked by preceding and succeeding instructions. 
In these cases the user can try regenerating the case with N 
forced to the minimum number of instructions necessary to get 
up to the failing instruction. Thus in this example the user 
would set N to 7 in order to recreate the sequence up to in­
struction A. The following command sequence would have the 
desired effect. 

APARTH 4-,9 



*N7 
*XB67F,78E 
*HE 
*F4 

0004 E644 2400 0169 F900 
0005 5DA6 B400 OOFB 1900 
0006 5968 6400 20EC B900 

0007 D989 B400 E13E D900 
0008 DE08 2400 ElFO 7900 
0009 66ED 3400 E102 9900 
OOOA 742F 3400 E074 5900 
OOOB 0001 DAOO EOOO lFOO 
OOOC 0000 0000 EOOO 7FOO 
OOOD 0003 FOOO COOS AOOO 

* 
Note; 

User sets N to 7 
User enters RNG Restart parameters 

Regenerated Case with N=7 

FMUL DPX(-3), DPY(2) 

FM +DPX(l) 

The error should now appear in Register DPX(l) and that the fail­
ing instruction is now the last "Real" one to be executed. In 
extreme cases it may be necessary to actually go into the code 
buffer (using the APARTH listing) in order to modify XW and YW in 
some of the instructions following the failing on one in order to be 
able to see the input arguments. In general, the user should try 
to attack the simplest possible cases first (by forcing N to a 
small number) before attempting to work on the larger ones. 

APARTH 4-10 



INTENTIONALLY BLANK 

APARTH 4-ll 



p;;. 
I'd p;;. 
:x:1 
i-3 
i:c: 

H::> 
I 

f--1 
N 

AP-120B Instruction Field Layout 

- . ·-
0 1 2 3 4 5 6 7 8 9 10 11 12 131 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

1 Al ·-1 A2_ I 
.. 

COND DISP SPS SPD 
I --•---~ 

FADD D ISOP SH 1--~Lo-______ .._ ____ ...... ________ _. _______ ... , ____ _ 

S-Pad Group l\dde Branch Group 

.DDl I 
) 

SOPl 
SPEC OFER ====.! - [ ~~ 

32 33 34 35 36 37 38 l.39 40 41 42 43 44 45 46 4.7 4B 49 50~51. 52 53 54 55156 57 58 59 60 61 62 63 

DPX I DPY I DPBS I XR I ,:.::_j~~ ··=[~~ :=~-- ;;r:;i M2 I MI !Ml\ IDPA ITMA 

Data Pad Group JMultiply GroupjMemory Group 

'L ~.::~~UE 

p;;. 
I'd 
I 

1--' 
N 
0 
b;:1 

H 

z 
Cl.l 
i-3 
:x:1 c:: 
(".) 
i-3 
H 
0 z 
lzj 
0 

~ p;;. 
i-3 



AP-120B Instruction Sumnary 

Unconditional Fields 

Each of the following fields may be used in any given instruction word. 

ll Octal 
~ Field Name Code 

D SOP SOPl SH SPS SPD FADD FADDl Al A2 

NOP SOPl NOP NOP (S-Pad (S-Pad FADDl NOP NC NC 9) 
& SPEC WRI'EXP L Source Dest. FSUBR FIX FM FA 1 

ADD WRTHMN RR Reg.) Reg.) FSUB FIXT DPX DPX 2 
SUB WRl'I.MN R FADD :rncALE DPY DPY 3 
WIJV NOP (0-17) (0-17) ~ FSM2C 'IM MD 4 
AND NOP FAND F2CSM ZERO ZERO 5 
OR NOP :FOR NOP ZERO MDPX 6 
F.QV NOP IO FABS ZERO EDPX 7 

CLR 10 
INC 11 
DEC 12 
CUd 13 
IDSPNL 14 
I.DSPE 15 
I.DSPI 16 
I.rePl' 17 

al Octal 
3 Field Name Code 

<X>ND DISP DPX DPY DPBS XR YR xw YW FM 

NOP (Branch NOP IDP ZERO (DPX (DPY (DPX (DPY NOP 91 
# Displa- DB DB !NBS Read read Write Write FMUL 1 
BR canent) FA FA VALUE* Index) Index) Index) Index) 2 
BINTRQ(0-37) FM FM DPX 3 
BION DPY (0-7) (0-7) (0-7) (0-7) 4 
BIOZ MD 5 
HFPE SPEN 6 
REI'URN 'IM 7 
BFEQ 10 
BFNE 11 
BPGE 12 
BFGI' 13 
~ 14 
BNE 15 
BGE 16 
BGl' 17 

APARTH 4-12 



Octal 
Code 

9) 
1 
2 
3 

0 
Field Name 0 

Ml M2 Ml MA TMA DPA 

FM FA NOP NOP NOP NOP 
DPX DPY FA !NOAA I:r-c:rMA INCDPA 
DPY DPY :FM DECMA DECTYA DEX:DPA 
'IM MD DB SEIMA SEITMA SEIDPA 

*This instruction uses a 16 bit VALUE (in bits 48-63 of this instruction). The YW, :FM, 
Ml, M2, Ml, TMA, and DPA Fields are then disabled for this instruction word. 

APARTH 4-13 



--------~-----~------~ 

···--~---~ ······~--"·-· ·-li·~~~-·····-·· -·~· ~ ---~~ ... '"~'"' '"~"··~··· . -~·· ····-···-"-""""·-·-------

~Fields 

of the SPEC Fields may be used per instruction word. The S-PAD Fields (D, SOP, 
30Pl ,SH, SPS, and SPD) are then disabled for this instruction. 

al 
e FIEI.D NAME 

SPEC STEST HOST.PNL SE'IPSA PSEVEN PSCDD PS SEI'EXIT 

STEST BFLT LIT JMPA* RPSOA* RPSlA* RPSLA* NOP 
H05TPNL BLT LIT JSRA* RPS2A* RPS3A* RPSFA* SETEXA* 
SPMDA BNC LIT JMP* RPSC/J* RPSl* RPSL* NOP 
NOP BZC LIT JSR* RPS2* RPS3* RPSF* SEI'EX* 
NOP BDBN NOP JME7I' RPS~ RPSlT RPSLT NOP 
NOP BDBZ NOP JSR!' RPS2T RPS3T RPSFl' SETEXT 
NOP BIFN NOP JMPP NOP NOP RPSLP NOP 
NOP BIFZ NOP JSRP NOP NOP RPSFP SETEXP 
SE'IPSA NOP SWDB NOP WPS9)A* WPSlA* LPSlA* NOP 
PSEVEN :OOP SWDBE :OOP WPS2A* WPS3A* LPSRA* NOP 
PSCDD NOP SWDBH NOP WPSC/J * WPSl * LPSL* NOP 
PS NOP SWDBL NOP WPS2 * WPS3 * IPSR* NOP 
-SETEXIT ~ NOP NOP WPS~ WPSlT IPSLT NOP 
NOP BFL1 NOP NOP WPS2T WPS3T IPSRI' NOP 
NOP BFL2 NOP NOP NOP NOP IPSIP NOP 
NOP BFL3 NOP NOP NOP NOP IPSRP NOP 

Fields 

or the IO Fields may be used per instruction word. The Floating Adder Fields 
(FADD, FADDl, Al, and A2) are then disabled for this instruction word. 

al 
e Field Nruoos 

IO ID REG RDREG INOur SENSE FLAG CDNTROL 

ID REG NOP RPSA OUT SNSA SFL9) HALT 
RD REG I.DSPD BSPD SPNOUI' SPININ SFIJ. IORSr 
SPMDAV I..DMA RMA OUIDA SNSADA SFL2 INTEN 
NOP I.IY.ThfA RTMA sroIDA SPNADA sn.3 INTA 
INOUr IDDPA RDPA IN SNSB CFL9) REFR 
SENSE lDSP RSPFN SPININ SPINB CFL1 WRTEX 
FLAG IDAPS RAPS OUIDA SNSBDA CFL2 WR'l'HM 
CONTROL LODA RDA SP INDA SPNBDA CFL3 WRTI.M 

*This instruction used a 16-bit integer VALUE (in bits 48-63 of the instruction 
word). The YW, :FM, Ml, M3, MI,MA, 'IMA, and DPA Fields are then disabled for this 
instruction word. 

APARTH 4-14 

Octal 
Code 

C/J 
1 
2 
3 
4 
5 
6 
7 

10 
11 
12 
13 
14 
15 
16 
17 

Octal 
Code 

C/J 
1 
2 
3 
4 
5 
6 
7 



AP-120B INTERNAL STATUS REGISTER . \ 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
VF UNF DIVZ FZ FN Z N C 

Bits Mnemonic 

0 OVF 

1 UNF 

2 DIVZ 

3 FZ 

4 FN 

5 z 

6 N 

7 c 

10 SRAO 

SRAO IFFT FFT BIT REVERSE 

Meaning 

. Set when the current adder or multiplier 
(FA or FM) has overflowed. Overflow 
occurs when an exponent value is increased 
above 511. The offending result is s1t to 
the signed maximum of value of (l-2-2 )* 
2511 , which is roughly 6.7 * 101 53. This 
bit remains on until cleared by the micro­
program or host computer. 

Set when the current adder or multiplier 
result (FA or FM) has underflowed. Under­
flow occurs when an exponent value is 
decreased below -512. The minimum legal 
magnitude which numbers can take without 
underflowing is roughly 3.7 * 10-155. The 
offending value is set to zero. This bit 
remains on until cleared by the microprogram 
or host computer. 

A divide by zero has occurred. The result 
was set to the value of the dividend. This 
bit remains on until cleared by the micro­
program or host computer. 

Set when the current adder result (FA) 
is zero. 

Set when the current adder result (FA) 
is negative. 

Set when the current S-pad function (SPFN) 
is zero. 

Set when the current S-pad function (SPFN) 
is negative. 

S-Pad carry bit. If no S-Pad shift is 
specified, carry is the carry bit from the 
S-Pad ALU. If a shift is specified, carry 
is the last bit shifted off the end of the 
S-Pad result by the Shift. 

Subroutine return stack overflow. Set if 
more than 16 levels of nested subrouting 
calls have occurred. 

APARTH 4-15 



11 IFFT 

12 FFT 

13-15 BIT REVERSE 

Inverse FFT flag. When set in conjunction 
with the FFT flag, bit 12, causes roots of 
unity table references to be interpreted 
as positive angles. 

FFT Flag. When set causes Table Memory 
addresses to be interpreted as negative 
angles referencing the roots of unity 
table contained in Table Memory. 

15-Log2N Where N is the length of a complex 
data array to which the S-Pad address bit­
reverse operator is being applied. 

APARTH 4-16 







FLOATING POINT SYSTEMS, INC. 
P.O. BOX 23489 PORTLAND, OR 97223 11000 S.W llTH STREET, BEAVERTON, OR 97005 (503) 641·3151 TLX: 360470 FLO('.TPOINT PT 




