Test Systems Group

MASTR Operating System Reference Manual

Publication Number 57518702

August 1979 Edition

This publication is subject to replacement by a later edition. This publication is also subject to technical updating by a Publications Bulletin. The issuance of publication improvements by either a later edition or a bulletin is decided partly on the basis of the degree of change required. To determine whether a later edition or bulletins exist for a particular publication, consult your local branch office, or FTSG Publications Department, 1725 Technology Drive, San Jose, CA 95110 (TWX 910-338-0558).

To request copies of this publication, contact:

Fairchild Test Systems Group Customer Services M/S 36-07/57 1725 Technology Drive San Jose, California 95110 (408) 998-0123 TWX 910-338-0558

A reader's feedback form is provided at the back of this publication. Help us to help you by providing comments. If the form has been removed, please send comments to FTSG Publications Department.

© 1979 Fairchild Camera and Instrument Corporation

MASTR Operating System Reference Manual

Publication Number 57518702

August 1979 Edition

Preface

This manual provides reference data for executing the Sentry assembly language under the MASTR operating system (Rel. 2.1). The manual describes the conventions, system tables and system as used by the assembler.

Use of this manual assumes a previous understanding of the Sentry assembly language and its application to the Sentry test systems. Users who intend to implement assembler programs to augment FACTOR language capabilities must also have a detailed knowledge of the Sentry operating system characteristics.

The role of this manual is to provide the Sentry system programmer with the details necessary to implement user-written assembly language overlays under the MASTR operating system. Appendix C provides supplementary information on the conversion of TOPSY/DOPSY user overlays to MASTR.

The following manuals are suggested for reference and supplemental reading:

Description

Publication Number

FST-2 Computer Manual	57000 00 2
Sentry VII Users Manual	57000013
MASTR Command Language Reference Manual	57518701
MASTR FACTOR Manual	57518700

Caution

The description of the MASTR system in this manual is provided for reference purposes only. Any alteration of the operating system may cause disastrous effects, including damage or destruction of the tester hardware. The direct use of system tables is inadvisable because the table may be changed without notice. Use of any routines noted as reserved for system use only may result in undefined operations. Any modification of the system software is performed at the sole risk of the user. Fairchild Test Systems Group will provide no support for modified software systems. Fairchild Test Systems Group reserves all rights to the software described in this manual. Contents and descriptions are subject to change without notice.

Contents

1 INTRODUCTION

OVERV	'IEW	1-1
MANU	AL CONTENTS	1-1
1.2.1	Introduction	1-1
1.2.2	System Global Data	1-2
1.2.3	System Subroutines	1-2
1.2.4	Input/Output Control System (\$IOCS)	1-3
1.2.5		1-3
1.2.6	ALLINK Programs	1-3
	MANU, 1.2.1 1.2.2 1.2.3 1.2.4 1.2.5	1.2.4 Input/Output Control System (\$IOCS)1.2.5 MASTR System Files

2 SYSTEM GLOBAL DATA

2.1	GENER.	AL DESCRIPTION AND USAGE	2-1
	2.1.1	Global Constant Usage	2-1
	2.1.2	Global Variable Usage	2-2
	2.1.3	•	2-2
	2.1.4		2-2
2.2	GLOBA	L CONSTANTS	2-4
2.3	SYSTEM	I GLOBAL VARIABLES	2-8
	2.3.1	DFDV (SYSVAR + 0)	2-8
	2.3.2	M1INIT (SYSVAR + 1)	2-9
	2.3.3	SELP (SYSVAR $+ 2$)	2-9
	2.3.4	M1WSWC (SYSVAR + 3)	2-9
	2.3.5	M1WSSC (SYSVAR + 4)	2-9
	2.3.6	M1WSDA (SYSVAR + 5)	2-9
	2.3.7	M1FDDA (SYSVAR + 6)	2-10
	2.3.8	M1FDA (SYSVAR + 7)	2-10
	2.3.9	SYSINT (SYSVAR + 9)	2-10
2.4	GLOBA	L VARIABLES	2-11
	2.4.1	ATPA (GLOVAR + 0, 1, 2, 3)	2-13
	2.4.2	RELDAT (GLOVAR + 4, 5)	2-13
	2.4.3	SITEQQ (GLOVAR + 6)	2-13
	2.4.4	APMREV (GLOVAR + 7)	2-13
	2.4.5	NTVT (GLOVAR + 8)	2-13
	2.4.6	TVT $(GLOVAR + 9)$	2-14
	2.4.7	NSVT (GLOVAR + 10)	2-14

2.4.8	SVT (GLOVAR + 11)	2-14
2.4.9	NMAC (GLOVAR + 12)	2-14
2.4.10	FWMAC (GLOVAR + 13)	2 - 15
2.4.11	LWMAC (GLOVAR + 14)	2-15
2.4.12	STAVKT (GLOVAR + 15)	2 - 15
2.4.13	PIDPMF (GLOVAR + 16)	2-15
2.4.14	PODPMF (GLOVAR + 17)	2-15
2.4.15	DRPMF (GLOVAR $+ 18$)	2 - 15
2.4.16	FWALT (GLOVAR + 19)	2-15
2.4.10	LWALT (GLOVAR + 20)	
2.4.18	FWIOA (GLOVAR + 21)	2 - 15
2.4.19	NIOA (GLOVAR $+ 22$)	2 - 16
2.4.19 2.4.20	CURSYS (GLOVAR + 23)	2-10 2-16
2.4.20	FGBGFL (GLOVAR + 24)	2-16
2.4.21 2.4.22	$\frac{1}{10000000000000000000000000000000000$	2-10 2-16
	JOB (GLOVAR + 26)	2 - 16 2 - 16
2.4.23		
2.4.24	TPHL (GLOVAR $+ 27$)	2 - 16
2.4.25	OPHL (GLOVAR $+ 28$)	2-16
2.4.26	DATE (GLOVAR $+ 29, 30$)	2-16
2.4.27	TIME (GLOVAR $+$ 31)	2-16
2.4.28	PGPMF (GLOVAR $+$ 32)	2-17
2.4.29	LWCPU (GLOVAR + 33)	2-17
2.4.30	LWSYS (GLOVAR + 34)	2-17
2.4.31	LWAM (GLOVAR + 35)	2 - 17
2.4.32	FWAM (GLOVAR + 36)	2 - 17
2.4.33	ADJFLG (GLOVAR + 37)	2 - 17
2.4.34	THDACT (GLOVAR + 38)	2 - 17
2.4.35	PIDFLG (GLOVAR + 39)	2 - 18
2.4.36	ECHFLG ($GLOVAR + 40$)	2-18
2.4.37	COMIMG (GLOVAR + 41)	2 - 18
2.4.38	CMDPMF (GLOVAR + 42, 43, 44)	2-18
2.4.39	OCTAL (GLOVAR + 45)	2-18
2.4.40	OFLERR (GLOVAR + 46)	2 - 19
2.4.41	LDFLG (GLOVAR + 47) MANTISSA (GLOVAR + 48)	2-19
2.4.42	MANTISSA (GLOVAR + 48)	2-19
2.4.43	CMDV (GLOVAR + 49)	2-19
2.4.44	NAMEM1, NAMEM2, NAMEM3, NAMEM4,	
	NAMEM5, NAMEM6, (GLOVAR $+$ 50, 51,	
	60, 61, 58, 59)	2-20
2.4.45	BINUM (GLOVAR $+ 52$)	2-20
2.4.46	BINC ($GLOVAR + 53$)	2-20
2.4.47	COLFLG (GLOVAR + 54)	2 - 20
2.4.48	RSTIO ($GLOVAR + 55$)	2-20
2.4.49	ACTFIO (GLOVAR + 56)	2-20
2.4.50	MEMBSY (GLOVAR + 57)	2-20
2.4.51	ONUMB1, ONUMB2 (GLOVAR + 62,	
	GLOVAR + 63)	2-20
2.4.52	NUMB1, NUMB2 (GLOVAR + 64,	
	GLOVAR + 65)	2-21
2.4.53	STATC $(GLOVAR + 66)$	2-21
	An and a second s	

	0 4 5 4		
	2.4.54	SPNUM1, SPNUM2, SPNUM3, SPNUM4,	
		SPNUM5, SPNUM6 (GLOVAR + $67, 68,$	0.01
	0 4 55	69, 70, 71, 72)	2-21
	2.4.55	BINARY (GLOVAR + 73)	2-21
	2.4.56	INUMB1, INUMB2 (GLOVAR + 74, 75) BFLERR (GLOVAR + 76)	2-21
	$2.4.57 \\ 2.4.58$	SPOPT (GLOVAR + 77)	2-21 2-22
	2.4.58 2.4.59	BINCNT (GLOVAR + 78)	2-22 2-22
	2.4.59 2.4.60	AWATF (GLOVAR + 79)	2-22 2-22
	2.4.61	ATHDF (GLOVAR + 80)	2-22 2-22
	2.4.62	NUMFLG (GLOVAR + $81, 82$)	2-22 2-22
	2.4.63	NAME1, NAME2 (GLOVAR + 83, 84)	2 - 22
	2.4.64	RAIDRR (GLOVAR + 86)	2-22
	2.4.65	DBUGSA (GLOVAR + 87)	2-23
	2.4.66	DFSTAT (GLOVAR + 88)	2-23
	2.4.67	SMAFLG (GLOVAR + 89)	2-23
		RAIDER (GLOVAR + 91)	2-24
		RAIDBK (GLOVAR + 92)	2 - 24
	2.4.70	SPDA (GLOVAR + 90)	2-24
	2.4.71	AFGBGF (GLOVAR + 93)	2 - 24
	2.4.72	SYSREL (GLOVAR + 94)	2-24
	2.4.73	MASTAT (GLOVAR + 95)	2-24
		CLIOID (GLOVAR $+ 96, 97$)	2-24
		LOTNUM (GLOVAR + 98, 99, 100)	2-24
	2.4.76	DEVNUM (GLOVAR + 101, 102)	2-24
	2.4.77	CATGRY (GLOVAR + 103, 104, 105)	2-25
		RSTTSC (GLOVAR + 106)	2-25
	2.4.79	BGID (GLOVAR + 107, 108)	2-25
2.5	TESTER	VARIABLE	2-26
2.0		TSWITCH $(TVT + 0)$	2-28
		TVALUE $(TVT + 1)$	2-28
		TSN (TVT + 2)	2-28
		TTT (TVT + 3)	2-28
		TDATAL (TVT + 4)	2-29
	2.5.6	TRTD $(TVT + 5)$	2-29
	2.5.7	TGLOB1 - TGLO40 (TVT + 11 - 50)	2-29
	2.5.8	TINDEX $(TVT + 61)$	2-29
	2.5.9	TCPC (Command Processor Control)	
		(TVT + 62)	2-30
	2.5.10	TDCDLY (DC time DeLaY) (TVT + 63)	2-30
	2.5.11	TODLY (Time Out) (TVT + 64)	2-31
	2.5.12	TOVER (OVERride) (TVT + 65)	2-31
	2.5.13	TDLO (TVT + 67)	2-32
	2.5.14	TDLF (TVT + 68)	2-32
	2.5.15	TDLS $(TVT + 69)$	2-32
	2.5.16	TDLR (DataLog Request) (TVT + 70)	2-32
	2.5.17	TDLC (DataLog Control and status (TVT + 71)	2-33
	2.5.18	TLMFC $(TVT + 72)$	2-33
	2.5.19	TPDF $(TVT + 73)$	2-34
	2.5.20	TPDS $(TVT + 74)$	2-34

	2.5.21	TPDR $(TVT + 75)$	2-34
	2.5.22	TDFR (TVT + 76)	2-34
	2.5.23	TMACTL (TVT + 77)	2-34
	2.5.24	TPPO $(TVT + 78)$	2-35
	2.5.25	TSYNC $(TVT + 79)$	2-35
	2.5.26	TMADSP (TVT + 80)	2 - 35
	2.5.27	TMOD $(TVT + 81)$	2 - 36
	2.5.28	TAPMP1, TAPMP2 (TVT + 82 , 83)	2-36
	2.5.28 2.5.29	TAPMP1, TAPMP2 ($1V1 + 82, 83$) TAPMF1, TAPMF2 (TVT + 85, 86)	2-36 2-36
	2.5.30	TPDD (TVT + 93)	2 - 36
	2.5.31	TVTLL (TVT + 93)	2 - 36
	2.5.32	TSTEP $(TVT + 94)$	2-37
	2.5.33	TPAUSE $(TVT + 95)$	2-37
	2.5.34	TIP (TVT + 96)	2-37
	2.5.35	TBINT $(TVT + 97)$	2 - 37
	2.5.36	TBINS $(TVT + 98)$	2 - 37
	2.5.37	TMPIN $(TVT + 99)$	2 - 38
	2.5.38	TVTLG $(TVT + 104)$	2 - 38
	2.5.39	TPID, TTTK, TMTR1, TMTR2, TCR, TDIF,	
		TVK2, $TMIF$ ($TVT + 105 - 113$) $TPOD$, $TTTD$,	
		TMTW1, TMTW2, TLD, TDOF, TCLO, TVP2,	
		TMOF (TVT + $114 - 112$)	2-38
	2.5.40	TOPT $(TVT + 123)$	2-40
	2.5.41	TATTA $(TVT + 124)$	2-41
	2.5.42	TJOB (TVT + 125)	2 - 41
	2.5.43	TMSTK $(TVT + 126)$	2 - 41
	2.5.44	TOMSTK $(TVT + 127)$	2 - 41
	2.5.45	TRTDS $(TVT + 128)$	2^{-41}
	2.5.46	TTITLE (TVT + 130 through 145)	2-41 2-42
	2.0.40	IIIIIII (IVI + ISO GHOUGH 143)	2-42
2.6	CURRE	NT STATION VARIABLES (SVT)	2-43
2.0		SITE (SVT + 0)	2-43 2-44
	2.6.1		2-44 2-44
	2.6.3	SPIN (SVT + 2)	2-45
		SMSR(SVT + 3)	2-45
	2.6.5		2-45
		SEIR $(SVT + 5)$	2-45
	2.6.7	STEF $(SVT + 6)$	2-46
	2.6.8		2-46
	2.6.9	SLML (SVT + 8)	2-46
	2.6.10	STRIP (SVT $+ 9$)	2 - 47
	2.6.11	STPP (SVT + 10)	2-47
	2.6.12	SMSRH ($SVT + 11$)	2-47
	2.6.13	SINC (SVT $+ 12$)	2 - 47
	2.6.14	SFVAL (SVT + 13)	2-47
	2.6.15	SPG (SVT + 14)	2-48
	2.6.16	SPMOD (SVT + 15)	2-48
÷ į			2 - 48
	2.6.18	SIFC $(SVT + 17)$	2-48
	2.6.19	SIFV (SVT + 18)	2 - 48
	2.6.20	SMR (SVT + 19)	2-49
	······································	·····	

2.6.21	SFR $(SVT + 20)$	2-49
2.6.22	SSAMC (SVT $+ 21$)	2-49
2.6.23	SQ (SVT + 22)	2-49
2.6.24	SQL (SVT + 23)	2-49
2.6.25	SLIMO (SVT $+ 24$)	2-49
2.6.26	SLIM1 (SVT $+ 25$)	2-50
2.6.27	SDCTOE (SVT + 26)	2-50
2.6.28	SDCT0 (SVT + 27)	2-50
2.6.29	SDCT1E (SVT + 28)	2-50
2.6.30	SDCT1 (SVT + 29)	2-50
2.6.31	SILOE $(SVT + 30)$	2-50
2.6.32	SILO $(SVT + 31)$	2-50
2.6.33	SIHIE $(SVT + 32)$	2-51
2.6.34	SIHI $(SVT + 33)$	2 - 51
2.6.35	SVLOE (SVT + 34)	2 - 51
2.6.36	SVLO ($SVT + 35$)	2 - 51
2.6.37	SVHIE (SVT $+$ 36)	2-51
2.6.38	SVHI (SVT $+$ 37)	2-51
2.6.39	S488CT (SVT + 38)	2-51
2.6.40	SAPMCT $(SVT + 39)$	2-52
2.6.41	SPPM $(SVT + 42)$	2 - 52
2.6.42	SPERN (SVT $+ 43$)	2-52
2.6.43	SPERV (SVT + 44)	2-52

3 SYSTEM SUBROUTINES

0 1		9 4
3.1	WAIT	3-4
3.2	OUTOPN	3-4
3.3	OUTCLS	3-5
3.4	NUMERR	3-5
3.5	COMERR	3-6
3.6	\$IOCS	3-7
3.7	MSGIN	3-7
3.8	MSGOUT	3-7
3.9	UMSGW	3-8
3.10	ADJMEM	3-9
		3-10
3.11	SCNFIL	
3.12	GTSTAT	3-12
3.13	CONV	3-13
3.14	PUTD	3-14
3.15	PUTC	3-15
3.16	MOVEDN	3-16
3.17	MOVEUP	3-17
3.18	PUTE	3-18
3.19	PUTO	3-18
3.20	PROCESS	3-19
3.21	ALTER	3-26
3.22	\$PARSE	3-28
3.23	IDTSCN	3-29
3.24	NUMBER	3-30
••••		• • • •

ix

		_						
	3.25	INTSCN			~			3-31
		SEARCH		1.1.1				3-32
	3.27	MPZERO						3-33
a di		GETC						3-33
	3.29	READW						3-34
	3.30	WRITEW						3-35
	3.31	IERMSG						3-36
	3.32	DUMP						3-36
	3.33	PUTIME	57	· · ·				3-37
	3.34	GTTDV						3-38
	3.35	HEADER						3-39
	3.36	SPIOER						3-39
	3.37	FGOVC						3-40
	3.38	ALLEX						3 - 40
	3.39	COMMND						3-41
	3.40	PUTW						3-42
	3.41	TWAIT						3-42
	3.42	FGBGRT						3 - 43
	3.43	MONINT		•				3-43
	3.44	SCALE				-		3-11
	3.44	FGWAIT						3-44
	3.45	ERRCNV						3-44
	3.40 3.47	FSUB						3-43
	3.48	FAND						3 - 40
	3.48 3.49							3-40
		FEOR						3-47
	3.50	FLOG						3-47
	3.51	FADD						3-48
	3.52	FDIV						3-48
	3.53	FFIXS						3-49
	3.54	FOR						3-49
	3.55	FNOT						3-50
	3.56	FEXP					.*	3-50
	3.57	FMUL						3-51
	3.58	FFIX						3-51
	3.59	\mathbf{FFLT}						3 - 52
4	3.60	FFLTS						3 - 52
	3.61	FCAM						3-53
4 	3.62	LOAD						3 - 54
	3.63	DELFIL						3-55
· · · 2	3.64	RELOV						3-55
2	3.65	ATTA						3-55
	3.66	DTTA						3-56
	3.67	PAGTP						
	3.68	FGBGWT						
	3.69	FGBGH						
:	3.70	FINDVL				à la c		
	0 = 1	FGIO						3-58
	3.72	DMASTR						3-59
	3.73	FGOH						3-60
	3.74	ENBTST						3-62
	0 75	WWAIT						
al a car	0.10	** ** 271 1						0 04

х

3.76	ADRXLA	3-63
3.77	INTERP	3-64
3.78	ENTBSY	3-65
3.79	RSOVC	3-65
3.80	STALL	3-66
3.81	UPDATE	3-66
3.82	PUTENG	3-68
3.83	PUTA	3-70
3.84	BGCHK	3-70
3.85	CALLMOD	3-71
3.86	PUTB	3-72
3.87	PUTH	3-73
3.88	SAVENV	3-73
3.89	USVENV	3-73

4 I/O CONTROL SYSTEM (\$IOCS)

4.1	\$IOCS 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 4.1.6 4.1.7	\$IOCS Operation Devices Handled by \$IOCS Functions Performed by \$IOCS Error Detected by \$IOCS Definition of End-of-File Definition of End of Record General Calling Sequence	$\begin{array}{r} 4-1 \\ 4-1 \\ 4-3 \\ 4-3 \\ 4-4 \\ 4-4 \\ 4-5 \\ 4-5 \\ 4-5 \end{array}$
	$4.1.8 \\ 4.1.9$		$4-6 \\ 4-7$
	4.1.9	I/O Device Formats	4-7
4.2	I/O ASS	SIGNMENT TABLE (IOATAB)	4-9
4.3		CALL TO \$IOCS	4-12
4.4	READ/	WRITE RECORD	4-16
4.5	TERMI	NATE I/OCLEAR SCREEN	4-18
4.6		FFORM	4-20
4.7		RMATTED ALPHA WRITE	4-21
4.8		FILE MARK ON MAGNETIC TAPE	4-22
4.9	,	EOF MARK ON MAGNETIC TAPE	4-23
4.10		S CHECK REQUEST	4-24
4.11	VERIFY		4-26
4.12	CLOSE		4-27
4.13		TOR MESSAGE	4-28
		NNECT CLIO	4-29
		RANSMIT (ADD)	4-29
4.16		RANSMIT (CREATE)	4-30
4.17		ND INPUT	4-31
4.18		ND OUTPUT (PROCESS)	4-32
4.19		ND OUTPUT (PURGE) ND OUTPUT (HOLD)	4-33 4-34
4.20			4-34
	FILE R	ANSMIT	4-35
4.22		RECORD ON MAGNETIC TAPE	4-37
4.40	onir A	RECORD ON MAGNETIC TAPE	4-01

6

4.24	PAGE A BLOCK INTO MEMORY	4-38
4.25	REWIND MAGNETIC TAPE	4-39
4.26	MASTR \$IOCS ASCII CONTROL MODE I/O	4-40

5 MASTR FILE DESCRIPTION

5.1 5.2		SYSTEM FILES LES AND USAGE	5-1 5-1
0.4		Disk Specification	5-1
	5 2 2	Disk Organization	5-1
		Disk File Format	5-4
			0 1
5.3		TIC TAPE FILES AND USAGE	5-4
	5.3.1	Tape Organization	5-4
	5.3.2	Blocked File Format Generated by DUMP	
		and COPY Programs	5-4
	5.3.3		5-6
	5.3.4	MBUP Tape Format	5-8
5.4	FILES T	RANSFERRED TO THE INTEGRATOR	5-10
	5.4.1	Record Description	5-10
	5.4.2		5-11
		CLI/CLO Unblocked String Files	5-11
	5.4.4	CLI/CLO Variable Length Data File	5-12
5.5	FILES S	TORED IN MEMORY	5-12
5.6	STRING		5-18
5.7	VARIAE	BLE LENGTH RECORD DATA FILES	5-18
0.1	5.7.1		5-18
			5-20
	573	File Format for Variable Length Data	5 - 21
	571	Header Record Format Datalog Record Formats	5 - 22
	575	Writing From FACTOR Program	5-32
	0.1.0	writing From FACTOR Frogram	J-52
5.8	FIXED I	LENGTH DATA FILES	5-33
5.9	COREIN	AGE FILES	5-34
		Overlay Header Format	5-35
		File Type Code List	5-36
5.10	OBJECT	ſ FILES	5-37
ASSE	MBLY LA	NGUAGE OVERLAYS	
6.1	INTROI	DUCTION	6-1
	6.1.1	Foreground/Background Processing	6-1
	6.1.2	Risks Involved in ALLINK Programs	6-1
6.2	ALLINK	PROGRAM DEFINITION	6-2

.2	ALLINK	PROGRAM DEFINITION		6-2
	6.2.1	ALLINK Header		6-2

		6.2.2 Creating Relocatable Coreimage	6-3
	6.3	LOADING AND CALLING PROCEDURES 6.3.1 Loading Procedure 6.3.2 Calling Procedure	$6-3 \\ 6-3 \\ 6-4$
	6.4	SCHEDULING Å BACKGROUND TASK FROM FOREGROUND 6.4.1 Flagword	6-6 6-7
		6.4.2Foreground Procedure6.4.3Calling Background	6-7 6-8
	6.5	PROCESSING A COMMAND THROUGH MONITOR FROM FOREGROUND	6-9
APPE	NDICE	S	
Α	OVER	LAY HEADER FORMAT/FILE TYPE CODE LIST	
В		RUCTION MNEMONICS	
	B.1 B.2		B-1 B-4
С		VERSION OF TOPSY/DOPSY ASSEMBLY LANGUAGE GRAMS TO MASTR	
		INTRODUCTION PROCEDURE	C-1 C-1
TABL	ES		
4-1	Word	Formats	4-10
5-1 5-2 5-3	Overl	rd ID For Datalog Records ay Header Format Type Code List in Memory	5-22 5-35 5-36
FIGU	RES		
2-1 2-2 2-3 2-4 2-5	Syste Globa Teste	l Constants Listing m Global Variables Listing l Variables Listing r Variables Listing ent Station Variables Listing	2-4 2-8 2-11 2-26 2-43
3-1	Syste	m Subroutine Transfer Vector Listing	3-2
4-1	I/O A	ssignment Table Entry	4-9

FIGURES

5-1	Disk Organization	5-2
5-2	Disk Directory Entry (Six Words Per File)	5-3
5-3	A Blocked File	5-5
5-4	Terminator Format	5-6
5-5	TDX Tape Format	5-7
5-6	TDX Directory Header Format	5-8
5-7	MBUP Tape Format	5-9
5-8	CLI/CLO Blocked File Format	5-11
5-9	CLI/CLO Unblocked File Format	5-11
5-10	CLI/CLO Variable Length Data File Format	5-12
5-11	MACTAB (Memory Activity Table)	5-14
5-12	System Memory Map	5-16
5-13	File Formats For Variable Length Data	 5-20
5-14	Header Record	5-21
5-15	DPS Trip Fail Record Format	5-23
5-16	Direct Current Fail Record Format	5-24
5-17	Direct Current Pass Record Format	5-25
5-18	Functional Failure Record Format	5-26
5-19	Functional Failure Record-Fail Message Format	5-28
5-20	PPM Memory Functional Failure Record Format	5-30
5-21	EOT Record Format	5-31
6-1	Sample ALLINK Program	6-9

6-1 Sample ALLINK Program

Introduction

1.1 OVERVIEW

The information within this manual describes the interface between user written overlays and the MASTR operating system. The information pertains to the interface only; details of assembly language commands and their use are defined in the FST-1 Assembler Manual (publication number 67094951) and the FST-2 Computer Manual (publication number 57000002).

An overlay is an assembly language program that is loaded into memory to perform a particular function. This manual describes the assembly language under MASTR as a reference for user written overlays. It contains detailed descriptions of the conventions, system tables, and system subroutines available with MASTR software.

Two types of user-written assembly language programs or files may be executed under MASTR. The first type of assembly language program is one which is called by a FACTOR test program. These are called Assembly Language Linkage files or ALLINK files.

The second type of assembly language program is one which is called by an operator command while no test station is active. These files are called user overlays. They are not to be confused with the system overlays, DATALOG for example, which are called into memory as the system demands. To be executed, system overlays must be resident on the disk or in memory.

1.2 MANUAL CONTENTS

This manual is divided into six sections, each one addressing a different facet of MASTR software.

1.2.1 Introduction

Section 1 is a general introduction to MASTR organization and gives a brief summary of the reference material that will be encountered.

1.2.2 System Global Data

Section 2 includes a listing of system global data. The system global data tables are divided into five categories:

Global Constants Tables. These tables contain the constants frequently used by the system and overlays. They are located at an absolute memory location in order to be referenced via an EQU to the address.

System Variables Tables. This table contain the system configuration. Variables are referenced via an EQU.

Global Variables Tables. System related items which are global in nature and not unique for each station. They are referenced directly via an EQU.

Tester Variables Tables. Contains data unique to each of up to four test heads. They are referenced via index register 2.

Current Station Variables Tables. Contains data unique to the station which is currently on line. They are referenced via index register 1.

Each listing contains the following information for the data words:

- Location in memory
- Octal representation of the data
- Symbolic label
- Assembler opcode
- Operand
- Comment field

The listings are followed by individual descriptions of the 24-bit data words contained in the table. Bit position information is provided where applicable.

1.2.3 System Subroutines

Section 3 provides information about the system subroutines, beginning with a listing of the system subroutine transfer vector. It describes those system procedures that are available to users by means of the CALL directive. Each subroutine is described along with the calling sequence needed to activate it under MASTR.

1.2.4 Input/Output Control System (\$IOCS)

Section 4 describes the Input/Output Control System (\$IOCS). MASTR software requires that all I/O functions must be accomplished through \$IOCS to preserve foreground/back-ground configuration. This section provides the programmer with information concerning principles of operation, handling of devices, \$IOCS functions, and the general calling sequence format. The I/O Assignment Table (IOATAB) is provided along with a detailed explanation of each data word. I/O operations available with MASTR are individually discussed, and the calling sequence for each is provided.

1.2.5 MASTR System Files

Section 5 contains information about the manner in which MASTR maintains system files. Physical and logical formats are described for disk, magnetic tape, Integrator and memory file storage. The system memory map (figure 4-12) shows the MASTR file organization in memory.

1.2.6 ALLINK Programs

Section 6 describes linking of Assembly Language overlays (ALLINK programs) under MASTR. It shows MASTR format for ALLINK program headers and the loading and calling procedures from foreground and background. Scheduling background tasks from foreground is explained. A sample ALLINK program is provided. Figure 6-1 gives a working example of the MASTR ALLINK file.

System Global Data

This section describes system globals and their use in assembly language programs.

2.1 GENERAL DESCRIPTION AND USAGE

There are three types of globals available: constants, variables, and subroutine or label addresses. All globals are located in the base page at absolute addresses. By defining the data name and EQUing to the global address, the user may access any global data.

2.1.1 Global Constant Usage

BITFLD at 102B	Binary constants with one bit set
NBTFLD at 132B	Binary constants with one bit not set
RTMSK at 162B	Binary constants with more than one bit set from bit 0
LFMSK at 211B	Binary constants with more than one bit set from bit 23
OCTFLD at 237B	Octal numbers
DECFLD at 237B	Decimal numbers
DBFLD at 404B	Binary constants with two or more bits set

The complete list of available constants is provided in figure 2-1.

Examples of usage:

BITFLD	EQU	102B	
RTMSK	EQU	162B	
B10	EQU	BITFLD+10	2000B
B23	EQU	BITFLD+23	40000000B
MINUS1	EQU	RTMSK+22	77777777B
	LDA AND	B10 MINUS1	

2.1.2 Global Variable Usage

GLOVAR at 420B

Variables listed under GLOVAR are used to transfer data between different programs. Each data item has a particular meaning and must be used according to the individual definition. Detailed descriptions of variables are provided in figure 2-3.

Example of usage:

GLOVAR REVN	EQU EQU	420B GLOVAR+23
	•	
	•	
	LDA	REVN

2.1.3 System Global Variable Usage

SYSVAR at 64B

Variables listed under SYSVAR are used by MASTR to define system initialization conditions. These conditions in general are: default device for file loading and dumping; miscellaneous configuration flags; line printer type; miscellaneous disk addressing information for directory, file area, and working storage; and starting address of monitor after bootstrap.

Example of usage:

SYSVAR	EQU	64B
SELP	EQU	SYSVAR+2
	•	
	•	
	LDA	SELP

2.1.4 Global Subroutine Usage

SYXVEC at 640B

The starting address of the transfer vectors is located at 640B. There are 63 global subroutines. Detailed descriptions of global subroutines are provided in section 3. The transfer vector is shown in figure 3-1.

The transfer vectors follow the SYXVEC address.

Example of usage:

SYXVEC FFIX \$IOCS	EQU EQU EQU	640B SYXVEC+57 SYXVEC+5
	•	
	•	
	BSM* BSM*	FFIX \$IOCS

2.2 GLOBAL CONSTANTS

A listing of global constants appears in figure 2-1.

		PAGE			
	* BIT FI	ELD DE	FINITIONS		
	* BX IMP	LIES B	IT X IS SE	ET	
			NOT BIT X		
		MPLIES	BIT X THR	RU Y ARE SET	
	*				
	* SINGLE	BILF	TELUS		
00101 00000001	×	DATA	1 B	FOR PMU CONVERGENCE	TADIE
00000102	BITELD	EQU	*	TOR THE CONVERGENCE	TADLE
00102 00000001	Bo	DATA	18		
00103 0000002	81	DATA	28		
00104 00000004	B2	DATA	48		
00105 00000010	83	DATA	108		
00106 00000020	84	DATA	20B		
00107 00000040	85	DATA	40B		
00110 00000100	86	DATA	100B		
00111 00000200	87	DATA	200B		
00112 00000400	88 80	DATA	4008		
00113 00001000 00114 00002000	B9 B10	DATA DATA	1000B 2000B		
00115 00002000	B11	DATA	4000B		
00116 00010000	812	DATA	10000B		
00117 00020000	B13	DATA	20000B		
00120 00040000	B14	DATA	40000B		
00121 00100000	B15	DATA	100000B		
0000200 22100	B16	DATA	200000B		
00123 00400000	817	DATA	400000B		
00124 01000000	618	DATA	10000008		
0000050 02000000	819	DATA	200000B		
00126 04000000	820	DATA	4000000B		
00127 10000000	821	DATA	1000000B		
00130 20000000 00131 40000000	822 823	DATA DATA	20000000B 40000000B		
00131 4000000	*	UPIA	400000000)	
		T-TABL	E (INVERSE	E OF BIT)	
	*				
00000132	NBTELD	EQU	*		
00132 77777776	NBO	DATA	77777776B	3	
00133 77777775	NH1	DATA	77777775B	3	
00134 7777773	NB2	DATA	7777773B		
00135 7777767	NB3	DATA	777777678		
00136 7777757	NB4	DATA	777777578		
00137 77777737 00140 77777677	NB5 NB6	DATA Data	777777378 777776778		
00140 77777677 00141 77777577	NB7	DATA	77777577B		
00142 7777377	NB8	DATA	777773778		
00143 77776777	NH9	DATA	777767778		
00144 77775777	NB10	DATA	777757778		
00145 77773777	NB11	DATA	777737778		
00146 77767777	NB12	DATA	77767 777 8	3	
00147 77757777	NB13	DATA	77757777B	3	
00150 77737777	NB14	DATA	777 377 778		
00151 77677777	NB15	DATA	77677778		
00152 77577777	NB16	DATA	77577778		
00153 77377777	NB17		773777778 767777778		
00154 76777777 00155 75777777	NB18 NB19	DATA DATA	757777778		
00156 73777777	NB20	DATA	737777778		
00157 67777777	NB21	DATA	67777778		
00160 57777777	NB22	DATA	5777777B		
00161 37777777	NB23	DATA	37777777B		

Figure	2-1	Global	Constants	Listing
--------	-----	--------	-----------	---------

```
PAGE
```

			PAGE		
		*			
		* ASSORT	ED MASI	< S	
		*			
	00000162	RTMSK	EQU	*	N
		*			
00162	00000003	B1\$0	DATA	38	0
00163	00000007	82\$0	DATA	78	1
00164	00000017	B3\$0	DATA	178	2
00165	00000037	B4\$0	DATA	378	3
00166	00000077	85\$0	DATA	778	4
00167	00000177	B6\$0	DATA	1778	5
00170	00000377	B7\$0	DATA	377B	6
00171	00000777	88\$0	DATA	777B	7
00172	00001777	89\$0	DATA	17778	8
00173	00003777	B10\$0	DATA	3777B	9
00174	00007777	B11\$0	DATA	7777B	10
00175	00017777	B12\$0	DATA	177778	11
00176	00037777	B13\$0	DATA	377778	12
00177	00077777	814\$0	DATA	777778	13
00200	00177777	B15\$0	DATA	1777778	14
00201	00377777	B16\$0	DATA	3777778	15
00202	00777777	B17\$0	DATA	7777778	15
00202	01777777	B18\$0	DATA	1777777B	17
00203	03777777	B1950	DATA	3777777B	18
00205	07777777	B20\$0	DATA	77777778	-
00205	17777777	B21\$0	DATA	17777777B	19 20
	37777777				
00207		822\$0	DATA	377777778	21
00210	7777777	B23\$0	DATA	77777778	55
		*	600		
	00000211	LFMSK	EQU	*	N
	7777777	*	DATA	7777777/0	*.
00211	7777776	B23\$1	DATA	77777768	0
00212	7777774	823\$2	DATA	77777774B	1
00213	7777770	B23\$3	DATA	77777770B	2
00214	7777760	B23\$4	DATA	77777608	3
00215	77777740	823\$5	DATA	77777740B	4
00216	77777700	823\$6	DATA	777777008	5
00217	77777600	B23\$7	DATA	77777600B	6
00550	77777400	823\$8	DATA	77777400B	7
00221	77777000	823\$9	DATA	77777000B	8
00555	77776000	823\$10	DATA	77776000B	9
00223	77774000	823\$11	DATA	77774000B	10
00224	77770000	823\$12	DATA	777700008	11
00225	77760000	823813	DATA	777600008	12
00256	77740000	823\$14	DATA	77740000B	13
00227	77700000	823\$15	DATA	77700000B	14
00230	77600000	823816	DATA	77600000B	15
00231	77400000	823\$17	DATA	774000008	16
00232	77000000	B23\$18	DATA	77000000B	17
00233	76000000	823\$19	DATA	76000000B	18
00234	74000000	823\$20	DATA	74000000B	19
00235	70000000	B23\$21	DATA	70000000B	50
00236	60000000	B23\$22	DATA	600000008	21

Figure 2-1 Global Constants Listings (Continued)

Р	A	GE	-
---	---	----	---

		*			
			1 /00 7 4	L NUMBER	
		* DECIMA		IL NUMBER	
•	0000777	DECFLD	500	-	
	0000237		EQU	*	DECIMAL FIELD
0	0000237	OCTFLD	EQU	*	OCTAL FIELD
		*			_
	0000000	Do	DATA	0	+0
00240 0	0000001	D1	DATA	1	+1
00241 0	0000002	D2	DATA	2	+2
00242 0	0000003	03	DATA	3	+3
00243 0	0000004	D4	DATA	4	+4
00244 0	0000005	D5	DATA	5	+5
	0000006	D6	DATA	6	+6
		D7	DATA	7	+7
		D8	DATA	8	+8
		D9	DATA	9	+9
		D10	DATA	10	+10
		D11	DATA	11	+11
		D12	DATA	12	
					+12
		D13	DATA	13	+13
		D14	DATA	14	+14
		D15	DATA	15	+15
		D16	DATA	16	+16
		D17	DATA	17	+17
		D18	DATA	18	+18
00595 0	0000023		DATA	19	+19
00263 0	0000024	D20	DATA	20	+20
00264 0	0000025	D21	DATA	21	+21
0 265 0	0000026	022	DATA	22	+22
00266 0	0000027	D23	DATA	23	+23
00267 0	0000030		DATA	24	+24
00270 0	0000031	D25	DATA	25	+25
	0000032		DATA	26	+26
	0000033		DATA	27	+27
			DATA	28	+28
	0000035		DATA	29	+29
	0000036			30	+30
			DATA	31	+31
			DATA	32	+32
		033	DATA	33	+33
			DATA	34	+34
	0000043		DATA	35	+35
	0000044	a	DATA	36	+36
		D37	DATA	37	+37
	0000046		DATA	38	+38
00306 0	0000047		DATA	39	+39
00307 0	0000050	D40	DATA	40	+40
00310 0	0000051	D41	DATA	41	+41
00311 0	0000052	D42	DATA	42	+42
00312 0	0000053	D43	DATA	43	+43
00313 0	0000054	D44	DATA	44	+44
	0000055	D45	DATA	45	+45
	0000056		DATA	46	+46
		D47	DATA	47	+47
		D48	DATA	48	+48
	0000061	D49	DATA	49	+49
		U 47	DATA		+50
	0000062			50	
	0000063		DATA	51	+51
	0000064		DATA	52	+52
	0000065		DATA	53	+53
	0000066		DATA	54	+54
00326 0	0000067		DATA	55	+55

Figure 2-1 Global Constants Listings (Continued)

00327	00000070		DATA	56	+56
00330	00000071		DATA	57	+57
00331	00000072		DATA	58	+58
00332	00000073		DATA	59	+59
		D()			-
00333	00000074	D60	DATA	60	+60
00334	00000075		DATA	61	+61
00335	00000076	D62	DATA	62	+62
00336	00000077	D63	DATA	63	+63
00337	00000100	D64	DATA	64	+64
00340	00000101	D65	DATA	65	+65
00341	00000102	- • -	DATA	66	+66
00342	00000102	D67	DATA	67	+67
		007			
00343	00000104		DATA	68	+68
00344	00000105		DATA	69	+69
00345	00000106		DATA	70	+70
00346	00000107		DATA	71	+71
00347	00000110		DATA	72	+72
00350	00000111	D73	DATA	73	+73
00351	00000112	D74	DATA	74	+74
00352	00000113	014	DATA	75	+75
00353	00000114		DATA	76	+76
00354	00000115		DATA	77	+77
00355	00000116		DATA	78	+78
00356	00000117		DATA	79	+79
00357	00000120	D80	DATA	80	+80
00360	00000121		DATA	81	+81
00361	00000122		DATA	82	+82
			DATA		
00362	00000123			83	+83
00363	00000124		DATA	84	+84
00364	00000125	D85	DATA	85	+85
00365	00000126		DATA	86	+86
00366	00000127		DATA	87	+87
00367	00000130		DATA	88	+88
00370	00000131		DATA	89	+89
00371	00000132		DATA	90	+90
00372	00000133	Dep	DATA	91	+91
00373	00000134	D92	DATA	92	+92
00374	00000135		DATA	93	+93
00375	00000136		DATA	94	+94
00376	00000137		DATA	95	+95
00377	00000140		DATA	96	+96
00400	00000141		DATA	97	+97
00401	00000142		DATA	98	+98
00402	00000143		DATA	99	+99
00403	00000144		DATA	100	+100
		*			
	00000113	D512	EQU	BITFLD+9	
	00000210	DM1	EQU	RTMSK+22	
	00000211	DM2	EQU	LFMSK+0	
	00000212	DM4	EQU	LFMSK+1	
	00000217.	0114	6.90	L)	
			PAGE		
		*			
		*			
		*	BIT F	IELDS	
		★ ★ DOUBLE	BIT F	IELDS	
	00000404	* * DOUBLE *			N
00404	00000404	★ ★ DOUBLE ★ DBFLD	EQU	*	N
00404	00006000	★ ★ DOUBLE ★ DBFLD B11\$10	EQU DATA	* 00006000B	0
00405	$\begin{array}{c} 0 0 0 0 0 0 0 0 0 0 $	<pre>* DOUBLE * DBFLD B11\$10 B12\$11</pre>	EQU DATA DATA	* 00006000B 00014000B	0 1
	00006000	★ ★ DOUBLE ★ DBFLD B11\$10	EQU DATA DATA DATA	* 00006000B 00014000B 37000000B	0 1 2
00405	$\begin{array}{c} 0 0 0 0 0 0 0 0 0 0 $	<pre>* DOUBLE * DBFLD B11\$10 B12\$11</pre>	EQU DATA DATA	* 00006000B 00014000B	0 1
00405	00006000 00014000 37000000	* DOUBLE * DBFLD B11\$10 B12\$11 B22\$18	EQU DATA DATA DATA	* 00006000B 00014000B 37000000B	0 1 2
00405 00406 00407	00006000 00014000 37000000 00000360	* DOUBLE * DBFLD B11\$10 B12\$11 B22\$18 B7\$4 B7\$6	EQU DATA DATA DATA DATA DATA	* 00006000B 00014000B 37000000B 00000360B	0 1 2 3
00405 00406 00407	00006000 00014000 37000000 00000360 00000300	* DOUBLE * DBFLD B11\$10 B12\$11 B22\$18 B7\$4	EQU DATA DATA DATA DATA	* 00006000B 00014000B 37000000B 00000360B 00000300B	0 1 2 3

Figure 2-1 Global Constants Listings (Continued)

2.3 SYSTEM GLOBAL VARIABLES

A listing of system variables appears in figure 2-2.

			PAGE		
	00000064		ORG	64B	
		*			
		* GLOBA	L VARI	ABLE FOR	USE BY THE SYSTEM
		*			
	00000064	SYSVAR	EQU	*	N
00064	00000210	DFDV	DATA	210B	0 DEFAULT DEVICE FOR FILE LOAD/DUMP
00065	00000000	M1INIT	DATA	0	1 SYSTEM INITIALIZED FLAG
00066	20000000	SELP	DATA	2	2 LP TYPE, DEFAULT≖PRINTRONIX
00067	00000000	MIWSWC	DATA	0	3 # OF WORD IN WS
00070	00000000	M1WSSC	DATA	0	4 # OF SECTORS IN WS
00071	00000000	MIWSDA	DATA	0	5 START SECTOR OF WS
00072	00000000	M1FDDA	DATA	0	6 START SECTOR OF DIRECTORY
00073	000000000	MIFDA	DATA	0	7 START SECTOR OF FILE AREA
00074	00000000		DATA	0	8 SPARE
00075	00001753		DATA	SYSINT	9 ENTRY POINT
00076	00000000		DATA	0	10 SPARE
		*			
	00000100		ORG	1008	
00100	01002107		BRU	MPRO	RESTART FROM 100B

Figure 2-2 System Global Variables Listing

2.3.1 DFDV (SYSVAR + 0)

Contains the default device code for file loading and dumping. For a disk-based system it is set to disk by \$MASTR. Otherwise, it is set to magnetic tape unit 1.

23	8	4	0
		Output	Input

output 5 disk system

- 8 memory system
- input
- 5 disk system
- 8 memory system

2.3.2 MIINIT (SYSVAR + 1)

Contains the following system configuration flags:

Bit	Function						
23	 first execution it has been executed before (set by system initializer \$MAST) and never cleared until it is recreated) 						
19	Flag to subroutine PUTA						
	 address output in decimal address output in octal 						
18	0 1V/1mV 1 2V/2mV						
17	0 Sentry V, VII 1 Sentry VIII						
16	0 4 range PMU 1 6 range PMU						

2.3.3 SELP (SYSVAR + 2)

Contains the line printer type indicator:

1

- 1 Data Products 132 column
- 2 Centronics/Printronix

If the system is called from DOPSY, SELP is set to the type used by DOPSY. MASTR default is 2.

2.3.4 M1WSWC (SYSVAR + 3)

Contains the number of words available in disk working storage and is set when the system is loaded from DOPSY.

2.3.5 M1WSSC (SYSVAR + 4)

Contains the number of sectors available in disk working storage.

2.3.6 M1WSDA (SYSVAR + 5)

Contains the starting address of disk working storage in binary sector format.

2.3.7 M1FDDA (SYSVAR + 6)

Contains the starting address of disk directory in binary sector format.

2.3.8 M1FDA (SYSVAR + 7)

Contains the starting address of disk file area in binary sector format.

2.3.9 SYSINT (SYSVAR + 9)

Contains the starting address of monitor upon bootstrap.

2.4 GLOBAL VARIABLES

A listing of global variables appears in figure 2-3.

			DACE			
	00000420		PAGE ORG	420B		
	00000420	*	0.10	4200		
		* GLOBAL	VARIAE	BLES FOR US	SE E	BY OVERLAYS
	000000000	*	FOU	1 0 4		NE WODDE IN CLOVAD
	00000550	NGLOV	EQU	144	# (.	OF WORDS IN GLOVAR
	00000420	GLOVAR	EQU	*	N	
		*				
	00000000	ΑΤΡΑ	DATA	0	0	STAT1 TEST PLAN ATTACHED TO STATION
	00000000		DATA	0	1	STAT2 + = MACTAB POINTER FOR TP
	000000000000000000000000000000000000000		DATA DATA	0	23	STAT3 0 = NONE ATTACHED STAT4 - = BEING EDITED
	21211721	RELDAT	TEXT	•		5 RELEASE DATE (SYSREL HAS RELEASE #)
	22172730		12.41	11,12,70		
	00000000	SITEON	DATA	0	6	STATION ON LINE (0-6)
00427	00000000	APMREV	DATA	0	REV	OF APM SOFTWARE
00430	00000555	NTVT	DATA	TVTL	8	# OF VARIABLES/STATION IN TVT TABLE
	00000000	TVT	DATA	0	9	TVT TABLE ADDRESS
	00000065	NSVT	DATA	SVTL		# OF VARIABLES IN SVT TABLE
	00000000	SVT	DATA	0		SVT TABLE ADDRESS
	00000010	NMAC	DATA	MACEL		# OF WORDS/ENTRY IN MACTAB
	000000000	FWMAC LWMAC	DATA Data	0		MACTAB ADDRESS LAST USED ADDRESS+1 MACTAB
	00000000	STAVKT	DATA	0		DEFAULT VKT FOR ALL STATIONS
	00000000	PIDPMF	DATA	0		PID ENTRY ADDRESS IN IDATAB
	00000000	PODPMF	DATA	0		POD ENTRY ADDRESS IN IDATAB
00442	00000000	DRPMF	DATA	0	18	DISC DIRECT ENTRY ADDRSS IN IOATAB
00443	00000000	FWALT	DATA	0	19	FIRST ADDRESS OF ALTER BUFFER
	000000000	LWALT	DATA	0		LAST USED ADDRESS +1 OF ALTBUF
	00000000	FWIDA	DATA	0		FIRST ADDRESS OF IDATAB
	00000015	NICA	DATA	IDAEL		# OF WORDS/ENTRY IN IOATAB
	00000000	CURSYS FGBGFL	DATA Data	0 0		CURRENT SYSTEM, 0=BG, 1=FG 1=BG wait for FG,2=FG wait for BG
	00000001	REVN	DATA	REV		CURRENT REV NUMBER
	7777777	JOB	DATA	-1		CURRENT JOB NUMBER
	22000000	TPHL	DATA	THL		TEST PLAN HEADER LENGTH
00454	00000024	OPHL	DATA	OHL		OVERLAY HEADER LENGTH
00455	00000000	DATE	DATA	0,0	29	CURRENT DATE
	000000000					
	00000000	TIME	DATA	0		CURRENT TIME IN SECONDS
	00000000	PGPMF	DATA	0		PAGE PMF POINTER
	000000000	LWCPU Lwsys	DATA Data	0		CPU LAST AVAILABLE WORD LAST SYSTEM RESERVED WORD +1
	000000000	LWAM	DATA	0		LAST AVAILABLE WORD TO TP, OVERLAY
	000000000	FWAM	DATA	0		FIRST AVAILABLE WORD TO TP, OVERLAY
	00000000	ADJFLG	DATA	ŏ		ADJMEM WAITING FOR MEMBSY
00466	00000000	THDACT	DATA	0	38	FG ON/OFF FLAG
00467	00000000	PIDFLG	DATA	0	39	COMMAND ALREADY IN BUFFER FLAG
	00000000	ECHFLG	DATA	0		ECHO FLAG FOR PROCESS
	00000000	COMIMG	DATA	0		COMMAND IMAGE FROM PROCESS
	00000000	CMDPMF	DATA	U, CMUBUF,	18 4	12 PMF FOR SYSTEM COMMAND
	00001503					
	00000022	OCTAL	DATA	0	45	OCTAL VALUE OF INTSCN
	000000000	OFLERR	DATA	õ		DECIMAL APPEARED IN INTSCN
	00000000	LDFLG	DATA	0		LOAD IS BUSY FLAG
	00000000	MANTISSA		0		INTEGER VALUE FROM NUMBER
	00000000	CMDV	DATA	0		DEVICE CODE FROM PROCESS
	00000000	NAMEM1	DATA	0		1ST STRING FROM PROCESS
	00000000	NAMEM2	DATA		51	RINARY VALUE ERON INTORNANDER
	00000000	BINUM	DATA	0		BINARY VALUE FROM INTSCN/NUMBER
00202	00000000	BINC	DATA	0	22	BINARY COUNT FORM INTSCN/NUMBER

Figure 2-3 Global Variables Listings

* * *

00506	00000000	COLFLG	DATA	0		COLUMN FORMAT FLAG FOR PUTE
00507	00002261	RSTIO	DATA	RSTIUF	55	RESET PENDING SCHEDULER FLAG
00510	00000000	ACTFIO	DATA	0	56	FGIO IS ACTIVE OR PENDING
00511	00000000	MEMBSY	DATA	0	57	MEMORY BUSY
オ 00512	00000000	NAMEM5	DATA	0	58	3RD NAME FROM PROCESS
× 00513	00000000	NAMEM6	DATA	0	59	3RD NAME FROM PROCESS
	00000000	NAMEM3	DATA	0	60	2ND STRING FROM PROCESS
	00000000	NAMEM4	DATA	0	61	
	00000000	ONUMB1	DATA	0	62	OCTAL NUMBER 1 FROM PROCESS
	00000000	ONUMB2	DATA	õ		OCTAL NUMBER 2 FROM PROCESS
	00000000	NUMB1	DATA	Õ		1ST DECIMAL # FROM PROCESS IN F.P.
	00000000	NUMB2	DATA	0		2ND DECIMAL # FROM PROCESS IN F.P.
	00000000	STATC	DATA	0		VALUE OF STAT N FROM PROCESS
	00000000	SPNUM1	DATA	ő		SPECIAL # FROM PROCESS
	000000000	SPNUM2	DATA	0		SPECIAL # FROM PROCESS
	000000000	SPNUM3	DATA	0		SPECIAL # FROM PROCESS
		SPNUM4	DATA	0		SPECIAL # FROM PROCESS
	00000000		DATA			
		SPNUM5		0		SPECIAL # FROM PROCESS
	00000000	SPNUM6	DATA	0		SPECIAL # FROM PROCESS
1	00000000	BINARY	DATA	0		BINARY VALUE FROM PROCESS
00532	00000000	INUMB1	DATA	0		1ST INTEGER FROM PROCESS
~ 00533	000000000	INUMB2	DATA	0		2ND INTEGER FROM PROCESS
	00000000	BFLERR	DATA	0		NOT BINARY FLAG FROM INTSCN
	00000000	SPOPT	DATA	0		SPECIAL OPTION FLAG FROM PROCESS
· · · · · · · · · · · · · · · · · · ·	00000000	BINCNT	DATA	0		BINARY DIGIT COUNT FROM PROCESS
	00002263	AWATF	DATA	WATSPD		ADDRESS OF WAIT FLAG SCHEDULER
	00002264	ATHDE	DATA	THDFLG		ADDRESS OF THDFLAG SCHEDULER
00541	000000000	NUMFLG	DATA	0,0	81	NUMBER APPEARED FLAG FROM IDTSCN
00542	000000000					
00543	00000000	NAME1	DATA	0	83	1ST NAME FROM IDTSCN
00544	00000000	NAME2	DATA	0	84	2ND NAME FROM IDTSCN
00545	00000000		DATA	0	85	SPARE
00546	00000000	RAIDRR	DATA	0	86	RAID BREAKEE RR
00547	00.001561	DBUGSA	DATA	DBUGS	87	ADDR OF DEBUG ADDR HALT ROUTINE
00550	00000000	DFSTAT	DATA	0	88	DEFAULT STATION ID
00551	00000000	SMAFLG	DATA	0	89	MA STATION CONTROL
	00000000	SPDA	DATA	0		PD BUFFER BUSY FLAG
	00017725	RAIDER	DATA	RAIDEM		ADDR OF RAID PG O LOGIC
	00000100	RAIDBK	DATA	100B	-	SAVE RAID'S RR HERE
	00002301	AFGRGF	DATA	FGBGSC		FGBGH SCHEDULER FLAG
	22162100	SYSREL	DATA	'2.1'		SYSTEM REL # IN ASCII
	00000000	MASTAT	DATA	0		MA STATION FOR CR REQUEST
	000000000	CLICID	DATA	0,0		CLIO NAME1,2
	000000000		UNIN	0,0	/0	CETO MANELYE
	000000000	LOTNUM	DATA	0,0,0	0.0	LOT # FOR CLIO
	000000000	CONNOM	0414	0,0,0	70	
	000000000					
		OF MALLA	DATA	0 0	• •	I DEVICE # EOD CLITO
	00000000	DEVNUM	DATA	0,0	10	1 DEVICE # FOR CLIO
	00000000	CATODY		0 0 0		CATEGORY FOR CLIG
	00000000	CATGRY	DATA	0,0,0	10.	3 CATEGORY FOR CLIO
	00000000					
	00000000	0.0				(0700 DED THIOF
	00000000	RSTISC	DATA	0		6 STSC REG IMAGE
	00000000	BGID	DATA	0,0	10	7 BACKGROUND ID
00574	000000000					

Figure 2-3 Global Variables Listing (Continued)

2.4.1 ATPA (GLOVAR + 0, 1, 2, 3)

Contains the address of MACTAB for the test program attached to the station.

ATPA + 0	station 1
ATPA + 1	station 2
ATPA + 2	station 3
ATPA + 3	station 4

Contains zero if a test program is not attached.

2.4.2 RELDAT (GLOVAR + 4,5)

Contains the release date of the operating system.

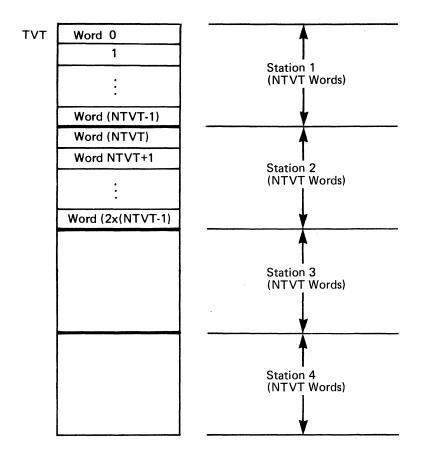
$2.4.3 \qquad \text{SITEQQ (GLOVAR + 6)}$

Contains the station number currently online.

0	station 1
1	station 2
2	station 3
3	station 4

2.4.4 **APMREV (GLOVAR + 7)**

Contains the APM F8 operating system revision number in TRASCII.


2.4.5 NTVT (GLOVAR + 8)

Contains the number of variables available in the test head variable table TVT for each station. See the description of each variable in section 2.5.

TVT table size is NTVT X 4 stations.

2.4.6 TVT (GLOVAR + 9)

Contains the starting address of TVT table. Each station is allotted the same number of variables in the test head variable table.

2.4.7 NSVT (GLOVAR + 10)

Contains the number of variables in the current station variable table SVT. See the description of each variable in section 2.6.

2.4.8 SVT (GLOVAR + 11)

Contains the starting address of SVT table.

2.4.9 NMAC (GLOVAR + 12)

Contains the number of variables per entry in MACTAB.

2.4.10 FWMAC (GLOVAR + 13)

Contains the starting address of MACTAB.

2.4.11 LWMAC (GLOVAR + 14)

Contains the last-used entry address +1 of MACTAB. Points to the first available entry. If MACTAB is empty, LWMAC = FWMAC. When the table is full, LWMAC = LWSYS.

2.4.12 STAVKT (GLOVAR + 15)

Contains the IOATAB pointer of VKT initially assigned to all stations. If there are two VKTs in the system then VKT1 is used.

2.4.13 PIDPMF (GLOVAR + 16)

Contains the address of system PID entry in IOATAB from which the last command was entered.

2.4.14 **PODPMF (GLOVAR + 17)**

Contains the address of system POD entry in IOTAB from which the last command was entered.

2.4.15 DRPMF (GLOVAR + 18)

Contains the address of disk directory entry in IOATAB.

2.4.16 FWALT (GLOVAR + 19)

Contains the first word address of ALTER buffer.

2.4.17 LWALT (GLOVAR + 20)

Contains the last-used address of ALTER buffer +1. When the buffer is empty LWALT = FWALT. When the buffer is full, LWALT = TVT.

2.4.18 FWIOA (GLOVAR + 21)

Contains the first word address of I/O assignment table (IOATAB).

2.4.19 NIOA (GLOVAR + 22)

Contains the number of words per entry in IOATAB.

2.4.20 CURSYS (GLOVAR + 23)

Contains the indicator showing whether current operation is in foreground or background.

- 1 foreground
- 0 background

2.4.21 FGBGFL (GLOVAR + 24)

A flag to indicate that background is waiting for a foreground breakpoint to execute a memory move or vice versa.

- 1 Background wait for foreground
- 2 foreground wait for background

2.4.22 REVN (GLOVAR + 25)

Contains the revision level of the system.

2.4.23 JOB (GLOVAR + 26)

Contains the current job number.

2.4.24 TPHL (GLOVAR + 27)

Contains the test program header size.

2.4.25 OPHL (GLOVAR + 28)

Contains the overlay header size.

2.4.26 DATE (GLOVAR + 29, 30)

Contains the current date entered by the command: DATE. Any eight-character presentation of date is stored.

2.4.27 TIME (GLOVAR + 31)

Contains the current time in seconds initialized by the command: TIME. It is updated every time a clock pulse occurs.

2.4.28 **PGPMF (GLOVAR + 32)**

Contains the address of IOATAB where the entry is reserved for the test program paging.

2.4.29 LWCPU (GLOVAR + 33)

Contains the highest CPU memory address.

2.4.30 LWSYS (GLOVAR + 34)

Contains the highest address reserved by the system +1.

2.4.31 LWAM (GLOVAR + 35)

Contains the last available memory address for overlays, test programs, and other memory files. The area above this is used for stack. If there is no stack, LWAM equals LWCPU.

2.4.32 FWAM (GLOVAR + 36)

Contains the next available memory address for overlays, test programs, and other files which may be resident in memory. When there are no files in memory, FWAM equals LWSYS.

2.4.33 ADJFLG (GLOVAR + 37)

Contains the flag indicating that the ADJMEM subroutine is waiting for DMA to memory to complete before doing a memory move. Reserved for system use.

2.4.34 THDACT (GLOVAR + 38)

Contains the test head active flag. It is set to 1 when THD is entered and cleared to 0 on exit. Entering the background to wait for tester activity does not affect the flag. This flag prohibits entering THD reentrantly. An overlay called from the keyboard that uses the tester may use the flag to control test head use.

Example:

		program entry
LDA	THDACT	TEST HEAD AVAILABLE
BZ	*+3	YES
BSM*	MONINT	NO, WAIT
		•
BRU	*-3	RETRY
LDA	Dl	
STA	THDACT	PREVENT OTHER TEST HEAD USE
•		
•		
•		
•		
CLA		
STA	THDACT	
		program exit

2.4.35 PIDFLG (GLOVAR + 39)

Reserved for use by the monitor to indicate that a keyboard command is in a buffer and ready to be processed.

2.4.36 ECHFLG (GLOVAR + 40)

Contains a flag to PROCESS.

- 2,0 Do not echo command.
- -1 Echo command if input is not VKT.
- 2 Process scans disk for command.
- 1 Noise words are acceptable. Do not scan disk.

2.4.37 COMIMG (GLOVAR + 41)

Contains the data formed by the PROCESS routine using the monitor command table. Any key words appearing in the monitor command table are picked up, and the bit configuration provided for the key words are stored in COMIMG before any overlay is called.

2.4.38 CMDPMF (GLOVAR + 42, 43, 44)

The PMF header for the system command. Any record read by the monitor is stored in the buffer pointed to by CMDPMF.

2.4.39 OCTAL (GLOVAR + 45)

Contains octal value obtained by the INTSCN routine.

2.4.40 OFLERR (GLOVAR + 46)

A flag to indicate that a decimal digit 8 or 9 appeared during scanning a number in INTSCN. It is a nonzero when the above condition occurs.

2.4.41 LDFLG (GLOVAR + 47)

Set when LOAD is called. Overlays may not call LOAD unless this flag is clear.

2.4.42 MANTISSA (GLOVAR + 48)

Contains the integer value obtained by the NUMBER subroutine.

2.4.43 CMDV (GLOVAR + 49)

Contains the device codes obtained from a command by calling the PROCESS routine. Up to three input and three output device codes are saved.

23	20			16				12			8				4			0
Outp	ut 3	Inpi	ut 3		C	Dutp	out :	2	Inp	ut 2		(Jutp	but	1	Inp	ut 1	

Device Code	Input	Output
0	PID	POD
1	ТТК	TTP
2	MTR 1	MTW1
3	MTR2	MTW2
4	\mathbf{CR}	\mathbf{LP}
5	DIF	DOF
6	CLI	CLO
7	VK2	VP2
8	MIF	MOF

If no device is specified in a command it contains 0.

2.4.44 NAMEM1, NAMEM2 (GLOVAR +50, GLOVAR +51) NAMEM3, NAMEM4 (GLOVAR +60, GLOVAR +61) NAMEM5, NAMEM6 (GLOVAR +58, GLOVAR +59)

These cells are used to store string names appearing in a command during the execution of PROCESS routine. Up to six characters of the first string are stored in NAMEM2 left justified. The second string is stored in NAMEM3 and NAMEM4 and the third string in NAMEM5, NAMEM6.

2.4.45 BINUM (GLOVAR + 52)

Contains the binary value obtained by INTSCN/NUMBER.

2.4.46 BINC (GLOVAR + 53)

Contains the binary digit count in BINUM.

2.4.47 COLFLG (GLOVAR + 54)

The THD sets this flag to control the output of engineering numbers by PUTE. Reserved for system use.

2.4.48 RSTIO (GLOVAR + 55)

Reset interrupt sets this flag if foreground I/O is in progress. Reserved for system use.

2.4.49 ACTFIO (GLOVAR + 56)

This flag is set when foreground I/O is in progress. Reserved for system use.

2.4.50 MEMBSY (GLOVAR + 57)

This flag is set when DMA to or from memory is in progress. It prevents memory moves. Reserved for system use.

2.4.51 ONUMB1, ONUMB2 (GLOVAR + 62, GLOVAR + 63)

Contain octal form of numbers appearing in a command. The numbers are stored by the PROCESS routine. A one indicates that no or only one number appeared. Values are always absolute (signs are ignored).

2.4.52 NUMB1, NUMB2 (GLOVAR + 64, GLOVAR + 65)

Used to store numbers that appear in a command during the execution of PRO-CESS routine. The first number to appear in the command is stored in the NUMB1 and the second in NUMB2 in signed floating point format. A -1 in a cell indicates that no or only one number appeared.

2.4.53 STATC (GLOVAR + 66)

Contains the decoded station identification appearing in a command. The decoded form is 1, 2, 3 or 4. It contains -1 when a station ID is not entered in the command.

2.4.54 SPNUM1, SPNUM2, SPNUM3, SPNUM4, SPNUM5, SPNUM6 (GLOVAR + 67, 68, 69, 70, 71, 72)

Used to store numbers that appear in a command in the identifier number batched form during execution of PROCESS routine. A number is stored to a specific cell as directed by the key number supplied by the user. A -1 in any cell implies no number.

2.4.55 BINARY (GLOVAR + 73)

Contains the binary value obtained by the subroutine PROCESS. The binary number must have the format nnnn, where n is either 1 or 0.

2.4.56 INUMB1, INUMB2 (GLOVAR + 74, 75)

Contain values equivalent to NUMB1 and NUMB2 in integer format. The first number that appears is placed in INUMB1 and the second in INUMB2 by the subroutine PROCESS. These cells are initialized to -1. The values are always absolute (signs are ignored).

2.4.57 BFLERR (GLOVAR + 76)

A flag to indicate that the number scanned contains a digit greater than 1 and cannot be a binary number. It is set by INTSCN and checked by NUMBER routine.

2.4.58 **S**POPT (GLOVAR + 77)

Contains special character flag bits set by PROCESS. If a special character is sensed during command scan, the defined bit is set in SPOPT. It is initialized to zero.

Bit Special Character

14 a comma (,) is sensed 0 a minus sign (-) is sens

0 a minus sign (-) is sensed 1 a plus sign (+) is sensed

a plus sign (+) is sensed

2.4.59 BINCNT (GLOVAR + 78)

Contains the number of digits sensed for the binary number during number scan. The number is placed in the global BINARY.

2.4.60 AWATF (GLOVAR + 79)

Contains the address of scheduler wait flag. The flag must be set to 1 by the tester interrupt service if the wait condition is completed. A0M* AWATF

2.4.61 ATHDF (GLOVAR + 80)

Contains the address of scheduler flag for tester start. The flag must be set to 1 by the tester interrupt service if the start interrupt occurs. $A0M^*$ ATHDF

2.4.62 NUMFLG (GLOVAR + 81, 82)

A flag that indicates that one or more digits has appeared in an identifier. The first word contains the character-count (position of the first digit in the buffer) and the second word contains the starting character-count of the identifier. NUMFLG + 1 is set for any identifier by \$PARSE. NUMFLG is set by IDTSCN only if a digit is sensed in the identifier. These cells are used by PROCESS to obtain the special numbers in the form of XXXnnn where XXX is an identifier and nnn is a number.

2.4.63 NAME1, NAME2 (GLOVAR + 83, 84)

Contain the names or strings scanned by the routine IDTSCN. The maximum of eight characters is packed in TRASCII left justified. These cells are also used by SEARCH routine as input names to be searched in the table.

2.4.64 RAIDRR (GLOVAR + 86)

Reserved for system use by RAID to store a relocation register.

2.4.65 DBUGSA (GLOVAR + 87)

Contains the address of DEBUG address halt entry point in the monitor. BSM* DBUGSA is placed in the user's program.

2.4.66 DFSTAT (GLOVAR + 88)

Contains the station identification entered by: SET STATn. It is a binary value of 1 through 4. It is used as the default station identification for processing commands that require STATn when a station number is not entered in the command.

2.4.67 SMAFLG (GLOVAR + 89)

Contains the station control information for test head driver issued by the user through manual analysis command.

23	22	18							14				10				6			 0		
		Manual Start Mode		art	Do Now					Re	set		Single Step Mode				Start					
X		4	3	2	1	4	3	2	1	4	3	2	1	4	3	2	1	4	3	2	1	

START Request for test start from MA (START or carriage return after MANUAL or STEP). Cleared by test head driver when accepted. SINGLE STEP MODE Request to single step (STEP). Cleared by MA upon MANUAL, CONTINUE, or STEP OFF. RESET Request to clear before test start (RESET) cleared by test head driver when accepted. DO NOW Request to call MA foreground immediately. (MEAS, READ, WRITE, DISP without 'ON'). Cleared by test head driver when accepted. START bit is also set. MANUAL START Request to start test with carriage return. Used by MA only. Cleared by CONTINUE or MANUAL OFF. MODE B23 When there is at least one request of START or DO NOW present.

2.4.68 **RAIDER (GLOVAR + 91)**

Reserved for system use by RAID.

2.4.69 RAIDBK (GLOVAR + 92)

Reserved for RAID during breakpoint execution.

2.4.70 SPDA (GLOVAR + 90)

A flag to indicate that parameter distribution overlay buffer area is busy when SPDA = 1. SPDA = 0 when it is not busy.

2.4.71 AFGBGF (GLOVAR + 93)

Reserved for system use.

2.4.72 SYSREL (GLOVAR + 94)

Contains the system release level in TRASCII that is printed by DIRECT and TE. It is patched by the system generation procedure.

2.4.73 MASTAT (GLOVAR + 95)

Contains the station ID used to start testing by entering a carriage return. It is set by MA upon MANUAL or STEP request. A 0 indicates no carriage return requests. Bit 23 set to 1 indicates VK2. Bits 2 to 0 specify station number (1 to 4).

2.4.74 CLIOID (GLOVAR + 96, 97)

Contains the six-character file name entered in OPEN or USE command.

2.4.75 LOTNUM (GLOVAR + 98, 99, 100)

Contains the lot number used by the Integrator system. Before calling \$IOCS to open a file in the Integrator system to output tester data, these cells must be set.

2.4.76 DEVNUM (GLOVAR + 101, 102)

Contains the device number used by the Integrator system; usage is the same as for LITNUM.

2.4.77 CATGRY (GLOVAR + 103, 104, 105)

Contains the category number used by the Integrator system. Usage is the same as for LOTNUM.

2.4.78 RSTTSC (GLOVAR + 106)

Contains the image of STST register when the reset interrupt occurred.

23	14	10	 0
		XXXX	

Bit Function

10	Reset on station 1
11	Reset on station 2
12	Reset on station 3
13	Reset on station 4

2.4.79 BGID (GLOVAR + 107, 108)

Can be set by overlays if a message END of XXXX is to be ouput upon overlay termination. BGID contains the program name XXXX. If it is zero, the message is not output.

2.5 TESTER VARIABLES

A listing of tester variables appears in figure 2-4.

		PAGE		
	*			
	*			
	* TEST H	EAD VA	RIABLE	TABLE EQU'S (TVT)
	*			
	*	ACCES	SED BY	INDEX TP(X2)
	*	FOU		
00000555	TVTL *	EQU	146	
00001110	TVTLT	EQU		TVTL+TVTL+TVTL 4 STATIONS
00001110	*	C GU)	111211	
00000000	TSWITCH	EQU	0	GLOBAL VARIABLE SWITCH
00000001	TVALUE	EQU	1	GLOBAL VARIABLE VALUE
00000005	TSN	EQU	2	GLOBAL VARIABLE SN
00000003	TTT	EQU	3	GLOBAL VARIABLE TT
00000004	TDATAL	EQU	4	DATALOG REQUEST
00000005	TRTD	EQU	5	ROUND TRIP DELAY
	*	EQU	6	SPARE
	*	EQU	7	SPARE
	*	EQU EQU	8 9	SPARE SPARE
	*	EQU	10	SPARE
00000013	TGLOB1	EQU	11	GLOBAL VARIABLE GLOBI
00000010	*TGLOB2	EQU	12	GLUBAL VARIABLE GLOB2
	*TGLOB3	EQU	13	GLOBAL VARIABLE GLOB3
	*TGL0B4	EQU	14	GLOBAL VARIABLE GLOB4
	*TGL0B5	EQU	15	GLOBAL VARIABLE GLOB5
	*TGLOB6	EQU	16	GLOBAL VARIABLE GLOB6
	*TGLOB7	EQU	17	GLOBAL VARIABLE GLOB7
	*TGLOB8	EQU	18	GLOBAL VARIABLE GLOBB
	*TGLOB9	EQU	19	GLOBAL VARIABLE GLOB9
	*TGL010 *TGL011	EQU EQU	20 21	GLOBAL VARIABLE GLOB10 Global variable glob11
	*TGL012	EQU	22	GLOBAL VARIABLE GLOB11 Global Variable Glob12
	*TGL013	EQU	23	GLOBAL VARIABLE GLOBIZ
	*TGL014	EQU	24	GLOBAL VARIABLE GLOBIA
	*TGL015	EQU	25	GLOBAL VARIABLE GLOB15
	*TGL016	EQU	26	GLOBAL VARIABLE GLOB16
	*TGL017	EQU	27	GLOBAL VARIABLE GLOB17
	*TGL018	EQU	28	GLOBAL VARIABLE GLOB18
	*TGL019	EQU	29	GLOBAL VARIABLE GLOB19
	*TGL020	EQU	30	GLOBAL VARIABLE GLOB20
	*TGL021	EQU	31	GLOBAL VARIABLE GLOB21
	*TGL022 *TGL023	EQU EQU	32 33	GLOBAL VARIABLE GLOB22 Global Variable Glob23
	*TGL024	EQU	34	GLOBAL VARIABLE GLOB24
	*TGL025	EQU	35	GLOBAL VARIABLE GLOB25
	*TGL026	EQU	36	GLOBAL VARIABLE GLOB26
	*TGL027	EQU	37	GLOBAL VARIABLE GLOB27
	*TGL028	EQU	38	GLOBAL VARIABLE GLOB28
	*TGL029	EQU	39	GLOBAL VARIABLE GLOB29
	*TGL030	EQU	40	GLOBAL VARIABLE GLOB30
	*TGL031	EQU	41	GLOBAL VARIABLE GLOB31
	*TGL032	EQU	42	GLOBAL VARIABLE GLOB32
	*TGL033 *TGL034	EQU EQU	43	GLOBAL VARIABLE GLOB33 Global variable glob34
	*TGL034	EQU	44 45	GLOBAL VARIABLE GLOB34 Global variable glob35
	*TGL036	EQU	46	GLOBAL VARIABLE GLOBSS
	*TGL037	EQU	47	GLOBAL VARIABLE GLOB37
	*TGL038	EQU	48	GLOBAL VARIABLE GLOB38
	*TGL039	EQU	49	GLOBAL VARIABLE GLOB39
00000062	TGL040	EQU	50	GLOBAL VARIABLE GLOB40
	*	EQU	51	SPARE

Figure 2-4 Tester Variables Listing

2-26

	*	EQU	52	SPARE
	*	EQU	53	SPARE
	*	EQU	54	SPARE
	*	EQU	55	SPARE
	*	EQU	56	SPARE
	*	EQU	57	SPARE
	*	EQU	58	SPARE
	*	EQU	59	SPARE
	*	EQU	60	SPARE
	*			
00000075	TINDEX	EQU	61	BINNIG INDEX
00000076	TCPC	EQU	62	PROCESS CONTROL, PAUSE, SYNC
00000077	TOCOLY	EQU	63	DC TIME DELAY
00000100	TODLY	EQU	64	LM TIME OUT DELAY
00000101	TOVER	EQU	65	MA OVERRIDE
00000107	* TDL0	EQU	66 47	SPARE DL OPTION & DEVICE
00000103 00000104	TDLO TDLF	EQU EQU	67 68	DATALOG FREQUENCY COUNT
00000105	TDLS	EQU	69	DATALOG SKIP CONTROL
00000106	TDLR	EQU	70	DATALOG REQUEST
00000107	TDLC	EQU	71	DATALOG CONTROL & STATUS
00000110	TLMFC	EQU	72	DATALOG ADDITIONAL FAIL COUNT
00000111	TPDF	EQU	73	PD FREQUENCY COUNT
00000112	TPDS	EQU	74	PD SKIP CONTROL
00000113	TPDR	EQU	75	PD REQUEST
00000114	TDFR	EQU	76	DCF REQUEST
00000115	TMACTL	EQU	77	MA CONTROL
00000116	TPPO	EQU	78	MA PPM REQUEST
00000117	TSYNC	EQU	79	MA SYNC COUNT
	*	EQU	80	SPARE
00000121	TMOD	EQU	81	PPM,LM MODULE NUMBER
	*	500		ADM BROCEDURES #1
00000122	TAPMP1	EQU	82	APM PROCEDURES #1 APM PROCEDURES #2
00000123 00000124	TAPMP2 TAPMF1	EQU EQU	83 84	APM FILE NAME #1
00000125	TAPME2	EQU	85	APM FILE NAME #2
0000125	*	200	05	Arm Fill MADE WE
	*	EQU	86	SPARE
	*	EQU	87	SPARE
	*	EQU	88	SPARE
	*	EQU	89	SPARE
	*	EQU	90	SPARE
	*	EQU	91	SPARE
	*	EQU	92	SPARE
00000135	TPDD	EQU	93	DIST COUNT
00000135	TVTLL	EQU	93	END OF LOCAL CLEAR (// CLEAR STAT)
00000136	TSTEP	EQU	94	PROGRAM STEP COUNT
00000137	TPAUSE	EQU	95	PROGRAM PAUSE COUNT
00000140	TIP	EQU	96	INSTRUCTION POINTER
00000141	TBINT	EQU	97	BIN INITIALIZED
00000142	TBINS Tmpin	EQU	98 99	BIN STATUS MAY PIN (DEFAULT - 60)
00000143	*	EQU EQU	100	MAX PIN (DEFAULT = 60) SPARE
	*	EQU	101	SPARE
	*	EQU	102	SPARE
	*	EQU	103	SPARE
	*	EQU	104	SPARE
00000150	TVTLG	EQU	104	END OF GLOBAL CLEAR (// LOAD STAT)
00000151	TPID	EQU	105	PID ADDRESS IN IDATAB
00000152	TTTK	EQU	106	TTK ADDRESS IN IDATAB
00000153	TMTR1	EQU	107	MTR1 ADDRESS IN IOATAB
00000154	TMTR2	EQU	108	MTR2 ADDRESS IN IOATAB
00000155	TCR	EQU	109	CR ADDRESS IN IOATAB

Figure 2-4 Tester Variables Listing (Continued)

00000156	TDIF	EQU	110	DIF ADDRESS IN IDATAB
	*	EQU	111	SPARE
00000160	TVK2	EQU	112	VK2 ADDRESS IN IDATAB
00000161	TMIF	EQU	113	MIF ADDRESS IN IOATAB
00000162	TPOD	EQU	114	POD ADDRESS IN IOATAB
00000163	TTTP	EQU	115	TTP ADDRESS IN IOATAB
00000164	TMTW1	EQU	116	MTW1 ADDRESS IN IOATAB
00000165	TMTW2	EQU	117	MTW2 ADDRESS IN IOATAB
00000166	TLP	EQU	118	LP ADDRESS IN IOATAB
00000167	TDOF	EQU	119	DOF ADDRESS IN IDATAB
00000170	TCLO	EQU	120	CLO ADDRESS IN IOATAB
00000171	TVP2	EQU	121	VP2 ADDRESS IN IOATAB
00000172	TMOF	EQU	122	MOF ADDRESS IN IOATAB
00000173	TOPT	EQU	123	TESTER OPTION CONTROL
00000174	TATTA	EQU	124	ATTACH FLAG
00000175	TJOB	EQU	125	STATION'S JOB NUMBER
00000176	TMSTK	EQU	126	MAX STACK SIZE USED
00000177	TOMSTK	EQU	127	MAX STACK SIZE SPECIFIED
00000200	TRTDS	EQU	128	SAVE ROUND TRIP DELAY SO IT WONT BE CLEARED
00000200	*	EQU	129	SPARE
00000000	TTITLE	EQU		J 145 STATION TITLE
00000505	I I I I L C.	EWU	120 1040	J 14J STATION TIME

Figure 2-4 Tester Variables Listing (Continued)

2.5.1 TSWITCH (TVT + 0)

Contains the value in floating point, either programmed as the SWITCH variable or set by the command: SWITCH.

2.5.2 TVALUE (TVT + 1)

Contains the measurement value in floating point. It is set during execution of MEASURE VALUE, PIN, VARIABLE, and MACRO MEASURE PIN.

2.5.3 TSN (TVT + 2)

Contains the serial number in floating point either programmed as the SN variable or set by the command: SN.

2.5.4 TTT (TVT + 3)

Contains the test type programmed as the TT variable in floating point.

2-28

2.5.5 TDATAL (TVT + 4)

Contains the floating point representation of the datalog request flag TDLR. It can be accessed by the test program to override an operator requested option. The program may not turn on a request not specified by the operator. Any combination of bits may be entered.

FCT Count	4010B
FCT IFM	4020B
EOT	200B
LOG	400B
MEAS	1000B
DCT	2000B
FCT	4000B
TRIP	10000B

2.5.6 TRTD (TVT + 5)

Contains the floating point value of the round trip delay. It is added to the strobe values during program execution. It may be changed by a FACTOR program or displayed by the operator with the command: READ RTD.

2.5.7 TGLOB1 - TGLO40 (TVT + 11 - 50)

Defined and used by the FACTOR programs and by ALLINK programs, and may be set or displayed by the command: GLOB.

2.5.8 TINDEX (TVT + 61)

Contains the count of number of times BIN specification has been updated.

2.5.9 TCPC (Command Processor Control) (TVT + 62)

23	21	16													. 0					
											ę	State	emer	nt N	umt	ber				
		х	Х	Х	Х	Х					Ι									

Bit Description

20	Pause on statement number requested
19	Pause on fail requested
18	Sync on statement number requested
17	Sync on ADDR
16	Sync on COUNT (TSYNC contains COUNT value)
15 to 0	Statement number

Set by manual analysis and used by THD.

2.5.10 TDCDLY (DC time DeLaY) (TVT + 63)

23					14								·		 0	_
								Г	īme	De	lay '	Valu	ie			
х																

Bit Description

23Modify active (do not use programmed value)13 to 0DC time delay value

2.5.11 TODLY (Time Out)(TVT + 64)

23	20		0
		Time Out Value	
X			

Bit Description

23	Modify active (do not use programmed value)
-----------	---

19 to 0 Time out value

TDCDLY and TODLY are set by MA when MODIFY commands are entered. These cells are cleared when MODIFY OFF, CLEAR, or LOAD command is entered.

2.5.12 TOVER (OVERride) (TVT + 65)

23				19						 				0
	Х	Х	Х	Х										

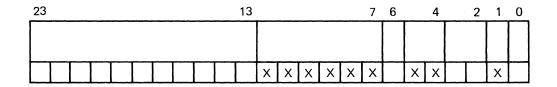
- Bit Description
- 22 Override on TRIP
- 21 Override on FCT ALL
- 20 Override on DCT
- 19 Override on RESET

2.5.13 TDLO (TVT + 67)

Contains the DATALOG device code.

22 3 to 0

- Top of form on line printer Device Code
- 0 Station POD
- 1 TTP
- 2 MTW1
- 3 MTW2 4 LP
- 5 DOF
- 6 CLO
- 7 TTP2


2.5.14 TDLF (TVT + 68)

Contains the DATALOG frequency request. Set by FRQn option to DATALOG command. If any log option is specified, this cell is cleared or set to the value specified by FRQn. TDLS is cleared to cause the first device to log.

2.5.15 TDLS (TVT + 69)

Running variable for the DATALOG frequency. It is initialized to zero and DATALOG overlay is called only when this is zero. At the end of a test, it is reset to TDLF or decremented to control datalogging.

2.5.16 TDLR (DataLog Request) (TVT + 70)

Bit Description

12	DPS trip log requested	TRIP
11	Functional fail log requested	FCT
10	Measurement fail log requested	DCT
9	All measurement log requested	MEAS
8	MEASURE LOG statement log requested	LOG
7	EOT log requested	EOT
6	Reserved for future use	
5	Ignore fail mode (B11 also set)	IFM
4	Count requested (B11 also set)	COUNT
3	Spare	
2	Spare	
1	DATALOG OFF requested	

Set by DATALOG in background based on the parameters entered in DATALOG command.

2.5.17 TDLC (DataLog Control and status) (TVT + 71)

2	32	22	20	19	17	16	13				6										0		
Γ																							
					1																		
5	<t< td=""><td></td><td></td><td>х</td><td></td><td>Х</td><td></td><td></td><td></td><td>х</td><td>Х</td><td>Х</td><td>X</td><td>Х</td><td>Х</td><td>Х</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			х		Х				х	Х	Х	X	Х	Х	Х							

Bit Description

- 23 Datalog active (set when TDLS = 0)
- 19 Time-out fail (bit 11 also set)
- 16 Reserved for Sentry VII development
- 12 Log trip fail
- 11 Log functional fail
- 10 Log measurement fail
- 9 Log all measurements
- 8 Log only measure long
- 7 Log EOT
- 6 Reserved for future use

2.5.18 TLMFC (TVT + 72)

Contains the additional fail request on a local memory load. It can be set by entering the additional number in the DATALOG command. When it is not zero, the specified number plus one or all fails, whichever is less, is datalogged.

2.5.19 TPDF (TVT + 73)

Contains the DIST frequency request.

2.5.20 TPDS (TVT + 74)

Similar to TDLS and used to keep track of skipping DIST calls.

2.5.21 TPDR (TVT + 75)

A DIST request flag. When it is not zero, DIST is considered active and DIST overlay is called for data collection.

2.5.22 TDFR (TVT + 76)

A DCF request flag. When it is not zero, DCF is considered active, and the DCF overlay is called for data collection.

2.5.23 TMACTL (TVT + 77)

Used to indicate manual analysis requests to foreground from background.

23							15				11				7			4				0
							Do Later Request						Do Now Request									
Х												X	X	х	х				х	х	X	Х

Bit 23 Requests test head driver to enter MA foreground. Turned on by MA upon request. Turned off when there is no request for the next PAUSE and by the command CLEAR.

DO LATER REQUEST Do the function at next PAUSE

10	WRITE
9	DISPLAY
8	READ
7	MEASURE

DO NOW REQUEST

Do the function immediately

Bit	Description
-----	-------------

WRITE
DISPLAY
READ
MEASURE

2.5.24 TPPO (TVT + 78)

23	21								6						0
XX	X									Х	Х	Х	х	х	X

Bit Description

22 LOOP

21 STOP

5 to 0 PPM address

Contains MA request for LOOP/STOP ON PPM memory address.

2.5.25 TSYNC (TVT + 79)

Contains 24-bit count for MA SYNC ON COUNT request.

2.5.26 TMADSP (TVT + 80)

Used to indicate the Manual Analysis DISPLAY requests. DISPLAY ALL sets bits 14 to 20. DISPLAY TIME sets bits 12, 13, 19, and 20.

23	21	12	0
	Ι	x x x x x x x x x x	

Bit	Description
20	TG
19	STRB
18	CLK
17	PWR
16	EIR
15	FCT
14	PMU
13	SCRAM (ETM)
12	TVn (ETM)

2.5.27 TMOD (TVT + 81)

Contains the current module number loaded to the PPM memory.

2.5.28 TAPMP1, TAPMP2 (TVT + 82, 83)

Contains the APM procedure download control. Each procedure executed by APM is assigned a VECTOR NUMBER by the FACTOR compiler. As each procedure is downloaded to APM, a bit is set in the appropriate control word designating that this procedure is now loaded. A maximum of 48 procedures may be sent to APM from any FACTOR program.

TAPMP1	Bits 23 to 0 represent procedures 47 to 24.
TAPMP2	Bits 23 to 0 represent procedures 23 to 0.

2.5.29 TAPMF1, TAPMF2 (TVT + 85, 86)

Contains the APM file download control. Each APM procedure file is assigned a unique file number by the FACTOR compiler. As each procedure file is processed by the APM test head driver, a bit is set in the appropriate control word designating that the file is complete. (It will not be processed again.) A maximum of 48 procedure files may be processed.

TAPMF1Bits 23 to 0 represent APM procedure files 47 to 24, respectively.TAPMF2Bits 23 to 0 represent APM procedure files 23 to 0, respectively.

2.5.30 TPDD (TVT + 93)

Set by DIST to indicate that histogram data is in memory.

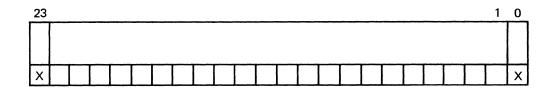
2.5.31 TVTLL (TVT + 93)

The TVT buffer from 0 through TVTLL is cleared by the CLEAR STATn command.

2.5.32 TSTEP (TVT + 94)

Contains the actual number of manual halts which occurred during a test. Used to determine if the test is a re-execution due to another station execution.

2.5.33 TPAUSE (TVT + 95)


Contains the actual number of PAUSES that occurred during a test. Used to determine if the test is a re-execution due to another station execution.

2.5.34 TIP (TVT + 96)

Contains the current instruction number by counting every code as one instruction. It is not the statement number. The header is included; therefore, at the beginning of the test, it is initialized to the length of the header.

2.5.35 TBINT (TVT + 97)

Used to indicate that the binning test is initialized or the specification has been updated.

Bit Description

23 Specification has been updated by UPDATE INDEX0 Binning test is initialized

2.5.36 TBINS (TVT + 98)

Used to indicate binning is active for the station. Bit 23 set to one indicates that binning is active.

2.5.37 TMPIN (TVT + 99)

Used to save the maximum pin number set by the test program with SET MPIN. If none is set, the default is 60 for a Sentry VII and 120 for a Sentry VIII.

23	12	8		0
		Number of Ranks	Number of Pins	

Bit Description

11 to 8Number of ranks allowed7 to 0Number of pins allowed

2.5.38 TVTLG (TVT + 104)

The TVT buffer from 0 through TVTLG is cleared by the LOAD STATn command.

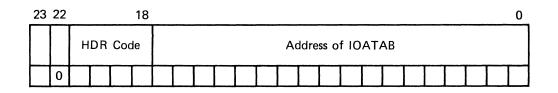
2.5.39 TPID, TTTK, TMTR1, TMTR2, TCR, TDIF, TVK2, TMIF (TVT + 105 - 113) TPOD, TTTD, TMTW1, TMTW2, TLD, TDOF, TCLO, TVP2, TMOF (TVT + 114 - 112)

These cells are used to do I/O from FACTOR and datalog output. When the cells have bit 22 set to 1, usage of these devices requires an OPEN command and datalog OUTPUT is in binary format. Bits 17 to 0 contain the address of IOATAB if the device has been opened.

If bit 22 is set and bits 17 to 0 are zero at the time of usage, then a terminal error is issued.

If bit 22 is zero and bits 17 to 0 are zero, an OPEN call to \$IOCS must be issued by the user and the address of IOATAB returned in X6 must be placed in the cell so that the device need not be opened for a following usage. These cells can be located by calling GTTDV subroutine (SYXVEC + 33) and properly updated by calling FGOH and FGIO (SYXVEC + 72, 70) for doing I/O.

TPID/TPOD


23	22				18												0
		F	IDR	Со	de				Ac	ldre	ss o	f 10	AT	٩B			
	X																

Bit 22 = 1 For USE [MTR1/MTR2/MTW1/MTW2/DIF/DOF/CLO] STATn.

Bit 22 = 0 For no USE command (when using system PID/POD) or for USE [TTK/TTP/LP/CR/PID/POD/VK2/VP2] STATn.

It is reset to system PID/POD upon CLEAR or LOAD STATn by closing the file previously used.

TTTK/TTTP/TCR/TLP/TTTK2/TTTP2/TVK2/TVP2

It is cleared to zero upon CLEAR or LOAD STATn

TMTR1/TMTR2/TDIF/TMTW2/TDOR/TCLO/TMIF/TMOF

The address is cleared to zero upon CLOSE command. These cells are not cleared (closed) upon CLEAR or LOAD STATh unless the device is opened by USE command.

23	22		18		_											0
							A	ddre	ess c	of IC	ΑΤ	AB/	0			
	1															

HDR CODE indicates which data type was last output to this device.

Bits 21 to 18

Last header issued code

- 0 None
- l Trip
- 2 Measure/Measure; Log/Measurement Fail
- 3 Spare
- 4 FCT
- 5 Spare
- 6 Spare
- 7 PPM
- 8 PPM, DATA EXTENSION
- 9 FACTOR WRITE/FACTOR PAUSE

The command OPEN normally sets binary devices, and the USE command sets TPID/TPOD. When the USE command is entered for a binary device (e.g. USE CLO ' name'), the corresponding cell (TCLO) is checked to see if the device is open. The same check is done at OPEN command so that the same device can be opened only once by a station.

2.5.40 TOPT (TVT + 123)

Used to save hardware option. It is set during system initialization (after boot from magnetic tape or entered from DOPSY) and is never cleared.

12 377

23	17	6 0
		LM Size
		x x x x x x x x x x x x
	ng sa shi na shi Guladh	
Bit	Definition	Obtained From
1. 16	Reserved for Sentry VII ——	-POSSIBLE M3 Change to S-20 (DATH FROM LMTRAG) Source FILE.
15	6 Range PMU	(source file. /
14	Sentry VIII	Same as before
13	ETM	Bit 3 SAMC
12	28 volt swing	Bit 18 mode register
11	Low voltage	Bit 17 mode register
10	New REF/MUX module	Bit 15 mode register
9	2V/2mV Option	RVS range bit
8	SPM	Bit 8 SAMC
7	PPM	Bit 7 SAMC
6	10 MHz head	Bit 6 SAMC
5 to 0	LM size (number of thousands of words)	

2.5.41 TATTA (TVT + 124)

23	 	3	2	1	0

The overlays Binning, DCF, and PD are flagged that the LOAD STATn has taken place. LOAD sets the flag equal to 7. When the bit is set, the overlay prohibits new data for the current test program being added to data for the previous test plan. Before these overlays can be recalled any old data must be deleted. The overlays reset their respective bit when this occurs.

Bit Description

- 0 Binning
- 1 DC failure analysis
- 2 Parameter distribution

2.5.42 TJOB (TVT + 125)

Contains the job name of the test program attached to the station. This allows the user to change stations for background use. During test program paging and EXEC assembly language overlays, the station job is searched, rather than the current job.

2.5.43 TMSTK (TVT + 126)

The maximum size that the run time stack reaches during execution. If the stack is forced beyond 500 words a message is printed at end of test: STATION n REQUIRED x WORDS OF STACK.

2.5.44 TOMSTK (TVT + 127)

Contains the stack size required by the test program.

2.5.45 TRTDS (TVT + 128)

Saves the round trip delay. TRTDS restores TRTD by the CLEAR and LOAD STATn commands.

2.5.46 TTITLE (TVT + 130 - 145)

Contains the TRASCII station title entered by the user. It prints whenever the station header outputs.

2.6

CURRENT STATION VARIABLES (SVT)

A listing of current station variables appear in figure 2-5.

		PAGE		
	*			
	* CHRREN	T STAT	ION VARIA	BLE TABLE SVT
	*	ADDRE	SSED BY T	NDEX SP(X1)
	*	40000	0020 01 1	
00000065	SVTL	EQU	50	
	*			
	*	-	_	
00000000	SITE	EQU	0	ON-LINE SITE
00000001	STHC Spin	EQU EQU	1 2	TEST HEAD CONTROL
00000002	SMSR	EQU	3	CURRENT PMU PIN NUMBER Current PMU measurement
00000004	SMF	EQU	4	MEASURE FLAG FOR DL
00000000	SEIR	EQU	5	EIR IMAGE
00000006	STEF	EQU	6	TERMINAL ERROR FLAG
00000007	SVOFFS	EQU	7	VOFFSET VALUE
00000010	SLML	EQU	8	LOCAL MEMORY LOCATION
00000011	STRIP	EQU	9	DPS TRIP STATUS
00000012	STPP	EQU	10	TEST PLAN ADDRESS
00000013	SMSRH	EQU	11	SAVE MEASUREMENT IN REG FORMAT FOR MA
00000014	SINC	EQU	12	INC ENABLE FLAG
00000015	SEVAL	EQU	13	FORCING VALUE FOR MACRO
00000016	SPG	EQU	14	LOCAL MEMORY PAGE SIZE
00000017	SPMOD	EQU	15	PROGRAM MODE (PPM/SPM,ETC)
00000020	SDLAF	EQU	16	DL ADDITIONAL FAIL FLAG
00000021	SIFC	EQU	17	IF COUNT FOR DL BY COUNT
00000022	SIFV	EQU	18	IF COUNT FOR MA SYNC, SET IF
00000023 00000024	SMR SFR	EQU	19	MODE OF MEASUREMENT -SET PMU SENSE
00000025	SSAMC	EQU EQU	20 21	MODE OF FORCE - SET PMU FORCE
0000025	*	600	21	CLAMP BIT (28 VOLT SWING) FOR SAMC, ANY WRITE TO SAMC SHOULD OR IN THIS GLOBAL, EXCEPT
	*			ANALYSIS
00000026	SQ	EQU	22	ORIGINAL VALUE OF Q REG
00000027	SUL	EQU	23	ORIGINAL VALUE OF QL
00000030	SLIMO	EQU	24	LIMIT O OR LIMIT IF ONLY ONE
00000031	SLIM1	EQU	25	LIMIT 1 WHEN THERE ARE 2 LIMITS
00000032	SDCTOE	EQU	26	ENABLE DCTO FLAG WORD
00000033	SDCTO	EQU	27	ENABLE DCTO VALUE
00000034	SDCT1E	EQU	28	ENABLE DCT1 FLAG WORD
00000035	SDCT1	EQU	29	ENABLE DCT1 VALUE
00000036	SILOE	EQU	30	
00000037	SILO	EQU	31	ENABLED LIMIT VALUE
00000040	SIHIE	EQU	32	ENABLE IHI
00000041	SIHI	EQU	33	
00000042	SVLOE	EQU	34	ENABLE VLO
00000043	SVLO	EQU	35	
00000044	SVHIE	EQU	36	ENABLE VHI
00000045	SVHI ★	EQU	37	
00000046	S488CT	EQU	38	488 BUS CONTROL WORD
00000047	SAPMCT	EQU	39	APM CONTROL WORD

Figure 2-5

Current Station Variables Listing

2.6.1 SITE (SVT + 0)

Current station number (0 to 3). Set to minus one on entry to the operating system. It is used when a station comes on line to determine if the start is for the same station as the previous start.

0 = STAT1, 1 = STAT2, 2 = STAT3, 3 = STAT4

2.6.2 STHC (Test Head driver Control) (SVT + 1)

23					16			13					,		6			3			0
					Sta	tem	ent	Bits			·					Se	q Bi	its	Te	st B	its
X X X	x x	Х	х	х	х	•			х	X	X	X	х	х	Х	х	х	х	X	х	х

Bit	Description
23	One or more of the following bits are set
22	Tester busy complete
21	Time out interrupt – FCT fail
20	Instruction number compare interrupt
19	Fail occurred (bits 21, 16,12, 11, or 10 are set)
18 .	Pause statement executed
17	DC interrupt occurred (DC measure or DCT)
16	Reserved for Sentry VII development
15 to 13	Spare
12	TRIP - DPS TRIP FAIL interrupt
11	Functional fail interrupt
10	DC fail - measurement fail
9	Measurement executed
8	Measure, LOG executed
7	EOT
6	Reserved for D/L expansion
5 to 3	SEQ bits
2 to 0	TEST bits
5,2	FC fail
4,1	DC fail
3,0	Trip fail

Statement bits are cleared at the end of each statement execution.

SEQ bits are cleared at the end of each sequence and by the CLEAR FAIL statement. They are displayed to the EIR lights at the end of each sequence. TEST bits are displayed at the end of each test and cleared by the CLEAR FAIL statement.

2.6.3 SPIN (SVT + 2)

Contains the pin number that the PMU is connected to following an interpretive CPMU PIN, or the pin measured following an interpretive measure or a macro, or a DMA measure. This is logged even though the PMU may be disconnected, as after measure node, or connected to a rest pin, as after a macro.

2.6.4 SMSR (SVT + 3)

Contains the floating point value measured following an interpretive measure or a DMA measure which is logged. The voltage offset value programmed is added to the measurement value in SMSR.

2.6.5 SMF (SVT + 4)

23					14	13			10	9	8	6	5		2		0
X						х	Х	Х	Х	Х	Х		Х			Х	Х

Bit Description

23 13	For MEASURE VARIABLE Mode of measurement 0 =	
12 to 10	Range of SMSR	
9	If two limits enabled it co = 1 SLIMO fai	ontains pass/fail for SLIM0
	= 1 SLIMO Ial = 0 SLIMO pa	
8	LT/GT for SLIM1	LT = 0, GT = 1
5	LT/GT for SLIM0	LT = 0, GT = 1
1,0	Number of limits (0,1,2	

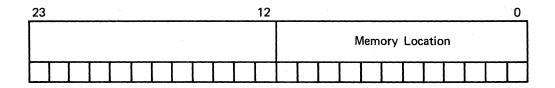
2.6.6 SEIR (SVT + 5)

Contains EIR register information to be displayed. SEIR is written to the EIR register at the sequence halt (MANUAL, PAUSE, etc.) at the end of each test and at the terminal error. Any program writing to the EIR should put the value in SEIR.

Bit	Description	
14	End of test	
13	Functional test pass	
12	Functional test fail	1
11	DC/TRIP test pass	
10	DC/TRIP test fail	
9 to 0	User written information or binning gates	if used.

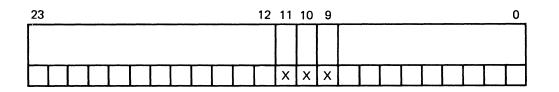
At a terminal error, bits 11 and 10 are on and bits 9 to 0 contain the terminal error number.

2.6.7 STEF (SVT + 6)


Contains the terminal error number. See the terminal error list for currently available error numbers.

2.6.8 SVOFFS (SVT + 7)

Voltage offset value is stored here in floating point format. All are zero if no offset is programmed.


2.6.9 SLML (SVT + 8)

Contains the delayed memory address needed by the DATALOG overlay in order to obtain the functional data from the local memory.

2.6.10 STRIP (SVT + 9)

Contains the failed DPS number needed by the DATALOG overlay. The interrupt service for TRIP FAIL sets this information.

Bit Failure

11	DPS3 TRIP
10	DPS2 TRIP
1	DPS1 TRIP

2.6.11 STPP (SVT + 10)

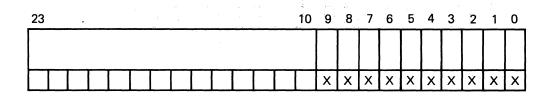
Contains the pointer to the absolute address of the test program for the station currently online. It points to one of the four ATPA cells when a test station is online.

2.6.12 SMSRH (SVT + 11)

Contains the results of a measurement following any MEASURE statement except MEASURE variable. The value does not have the programmed voltage offset added back as SMSR and TVALUE do. Bits 0 to 10 contain the measurement; bits 11 to 14 contain the mode and range from the PSL.

2.6.13 SINC (SVT + 12)

Flags test head driver to set the INC interrupt enable following a statement. After a station start request following a pause on statement number the IND is at the value which causes an interrupt. This interrupt is thrown away. After the IND is bumped by the next statement, SINC indicates that the INC interrupt enable should be turned back on.


2.6.14 SFVAL (SVT + 13)

Contains the value of the PPS register at the time of the last SET TEST number. It is used by DC MACRO processing and analysis.

2.6.15 SPG (SVT + 14)

An indicator that tells if the currently running program contained a SET PAGE statement. If there is no SET PAGE, it is zero. Otherwise, it contains the local memory size specified by SET PAGE.

2.6.16 SPMOD (SVT + 15)

Bit	Description	
9 8 7 6 5 4 3 2 1 0	2V/2mV program SPM program PDMA (SET PERIODi is DMA) ETM program APM program 488 Bus program 6 range PMU program Sentry VIII program Set PPM ON programmed; do not reset bit 0 REXEC executed or SET PPM ON, D/L treats a functional fail as a PPM fail	
8 7 6 5 4 3 2 1 0	PDMA (SET PERIODI is DMA) ETM program APM program 488 Bus program 6 range PMU program Sentry VIII program Set PPM ON programmed; do not reset bit 0 REXEC executed or SET PPM ON, D/L treats a functional fail as	a

2.6.17 SDLAF (SVT + 16)

SDLAF is non-zero when additional fails are being logged. This controls the datalogger output.

2.6.18 SIFC (SVT + 17)

IGNORE FAIL register value used to save last location during additional datalog fails.

2.6.19 SIFV (SVT + 18)

IGNORE FAIL value set by SET IFAIL instruction and sync by count or ADDRESS.

2.6.20 SMR (SVT + 19)

The sense mode and range of the PMU set by the SET PMU SENSE statement is stored here.

Bit Description

14,12,11	range
0	AUTO

2.6.21 SFR (SVT + 20)

The force mode of the PMU set by the SET PMU FORCE statement is stored here.

13	mode	l = voltage
14,12,11	range	
0,1	AUTO	

2.6.22 SSAMC (SVT + 21)

Contains the value of bit 0 of SAMC for 28 volt swing.

Bit $0 = 1$	Indicates that the reference voltage supplies are clamped at -22
	volts.

Bit 0 = 0 Indicates that the reference voltage supplies are clamped at -16 volts. This occurs when a period is less than 200 ns.

2.6.23 SQ (SVT + 22)

Contains the original value of Q from the SET Q statement.

2.6.24 SQL (SVT + 23)

Contains the original value of QL from the SET Q statement.

2.6.25 SLIM0 (SVT + 24)

Contains the ENABLE DCT0 limit if two limits have been enabled for a measurement, or it contains either the DCT0, DCT1, or SET DCT limit if only one is enabled. The voltage offset has been added if it was programmed. This is the value printed by the datalogger. The value is in floating point.

2.6.26 SLIM1 (SVT + 25)

Contains the ENABLE DCT1 limit if two limits have been enabled for a measurement. The voltage offset has been added if it was programmed. This is the value printed by the datalogger. The value is in floating point.

2.6.27 SDCT0E (SVT + 26)

Flag word for ENABLE DCT0

Bit Description

0	never enabled or disabled
-1	disabled
0	l enabled
13	LT/GT flag $0 = LT, 1 = GT (DCT0/DCT1)$

2.6.28 SDCT0 (SVT + 27)

Value of ENABLE DCT0 in floating point. The voltage offset is not added.

2.6.29 SDCT1E (SVT + 28)

Flag word for ENABLE DCT1. See SDCT0E.

2.6.30 SDCT1 (SVT + 29)

Value of ENABLE DCT1 in floating point. The voltage offset is not added.

2.6.31 SILOE (SVT + 30)

Flag word for ENABLE ILO.

	-	
R1t	LOCOT	nntion
Bit	Deser	ription

0 never enabled or disabled -1 disabled 1 enabled

·

2.6.32 SILO (SVT + 31)

Value of ENABLE ILO in floating point.

2.6.33 SIHIE (SVT + 32)

Flag word for ENABLE IHI. See SILOE.

2.6.34 SIHI (SVT + 33)

Value of ENABLE IHI in floating point.

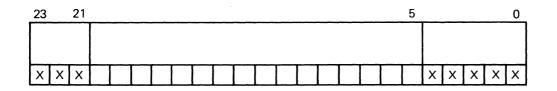
2.6.35 SVLOE (SVT + 34)

Flag word for ENABLE VLO. See SILOE.

2.6.36 SVLO (SVT + 35)

Value of ENABLE VLO in floating point. The voltage offset is added to the value.

2.6.37 SVHIE (SVT + 36)


Flag word for ENABLE VHI. See SILOE.

2.6.38 SVHI (SVT + 37)

Value of ENABLE VHI in floating point. The voltage offset is added to the value.

2.6.39 S488CT (SVT + 38)

Contains the control word for execution of the FACTOR 488 statements.

Bit Description

23 IEEE 488 Bus SRQ interrupt pendi	mg [.]
-------------------------------------	-----------------

- 22 APM high speed sync (APS) interrupt pending
- 21 APM SRQ pending
- 4 400 opcode active
- 3 ON BRANCH active
- 2 APM checked and initialized
- 1 APM high speed sync branching disabled (ON APS)
- 0 IEEE 488 bus SRQ branching disabled (ON SRQ/ON PPR/ON APF)

Bits 23 and 22 are set directly by their respective interrupt service routines.

2.6.40 SAPMCT (SVT + 39)

APM control word for execution of APM programs. This word contains a history of all SRQs sent from APM. As APM requests are serviced, the corresponding bits in this control word are reset. Bits 0 to 15 represent the SRQ types sent by APM. Bit 0 represents SRQ type 0, bit 1 SRQ 1, etc.

23						16														0
	Dat	аBι	uffer	S						Д	PM	SRO	2 T y	/pe						
			X	X	X	X	ŀ			Х	Х	Х	X	X	Х	X	х	Х	X	Х

Bit Description

Data in APM error buffer
Data in APM data log buffer
Data in APM pass/fail test buffer
Data in APM measurement result buffer
APM system terminal error
Error SRQ
Information for data logger
Immediate statement complete
Abortive procedure end (APM fail)
Normal procedure end (APM pass)
APM at a pause
Completed data record
System operation complete
Trigger
Read data to send from data buffer

2.6.41 SPPM (SVT + 42)

Reserved for Sentry VII development.

2.6.42 SPERN (SVT + 43)

Reserved for Sentry VII development.

2.6.43 SPERV (SVT + 44)

Reserved for Sentry VII development.

System Subroutines

System subroutines are procedures that are available under MASTR for use by the operating system or user-written overlays. System subroutine definitions are provided unless the subroutine is reserved for system use. The reserved subroutines must not be CALLed by user overlays. Using the reserved subroutines may leave the operating system in an undefined state. Transfer vectors used to access the system subroutines are listed in figure 3-1.

	PAGE			
00000640	* 0RG	GLOVAR+N	IGLOV	
	*			
	* * SYSTEM SUBRO *	UTINE TRA	NSFE	R VECTOR (BSM* (SYXVEC+N))
	*			
00000640	SYXVEC EQU	*	N	
00640 00002536	TV	WAIT	0	TESTER BUSY WAIT IN FOREGROUND
00641 00006735	₩ TV	OUTOPN	1	OPEN OUTPUT FOR ALPHA PRINT
00642 00006642 00643 00001726	עד אי דע	OUTCLS	2 3	CLOSE OUTPUT ALPHA PRINT NUMBER ERROR (BRU*)
00644 00001741	TV	COMERR	4	COMMAND SYNTAX ERROR (BRU*)
00645 00010322	* TV	\$10CS	5	I/O DRIVER
00646 00006651	-¥ TV	MSGIN	6	INPUT A MESSAGE FROM SYSTEM PID
00647 000066666	¥ TV	MSGOUT	7	OUTPUT A MESSAGE ON SYSTEM POD
00650 00006702	? ★TV	UMSGW	8	OUTPUT A MESSAGE ON SYSTEM POD W/O CR/LF
00651 00005663	T V	ADJMEM	9	ADJUST MEMORY USAGE
00652 00005655 00653 00003276	τν τν	SCNFIL		SCAN FILES IN MEMORY
00654 00017671	TV	GTSTAT Conv		DECODE STATION ID FROM COMMAND OR DEFAULT CONVERT BINARY TO DECIMAL
00655 00005674	×тv	PUTD		PUT DECIMAL NUMBER IN BUFFER
00656 00017625	×ΤV	PUTC		PUT CHARACTER IN BUFFER
00657 00006343	τv	MOVEDN	15	MOVE A MEMORY BLOCK ASCENDING ORDER
00660 00006352	τv	MOVEUP		MOVE A MEMORY BLOCK DESCENDING ORDER
00661 00005666	* T V	PUTE		PUT ENG # IN BUFFER
00662 00005671	* T V	PUTO		PUT OCTAL # IN BUFFER
00663 00005660 00664 00005724	T V T V	PROCESS ALTER		PROCESS A COMMAND Alter Buffer Scan/process
00665 00005727	rv	SPARSE		DEFINE NEXT INPUT RECORD FIELD
00666 00005732	× TV	IDTSCN		SCAN IDENTIFIER
00667 00005735	ΤV	NUMBER		SCAN A NUMBER (SET IN F.P. FORM)
00670 00005740	ΤV	INTSCN		SCAN INTEGER NUMBER
00671 00017467	TV	SEARCH		SEARCH TABLE
00672 00017514 00673 00017523	TV	MPZERO		CLEAR CORE (X6,X7)
00674 00017564	? ⊀TV ? ×TV	GETC READW		GET A CHARACTER FROM BUFFER GET A WORD FROM BUFFER 7 COMMENTATION
00675 00017577	7 * TV	WRITEW		PUT WORD IN BUFFER
00676 00005425	ŤV	IERMSG		TERMINAL ERROR IN THD
00677 00005710	τv	DUMP	31	DUMP TP,OVLY,MOD
00700 00003307	ΤV	PUTIME		PUT DATE, TIME IN BUFFER
00701 00004360	TV	GTTDV		GET IO DEVICE ADDR IN TVT
00702 00005721 00703 00003106	7 ≠ 1V	HEADER		OUTPUT HEADER (BINN, PD, DCF, MA)
00704 00003510	TV TV	SPIOER FGOVC		\$IDCS ERROR CHECK AND MSG CALL OVERLAY FOREGROUND
00705 00003474	×τν	ALLEX		ASSEMBLY LANGUAGE LINKAGE EXECUTION
00706 00002341	тν	COMMND		RETURN TO MONITOR (BRU*)
00707 00017607	ベマ	PUTW		PLACE 4 TASCII CHARACTERS IN BUFFER
00710 00003442	TV	TWAIT		WAIT ON TESTER ACTIVITY
00711 00003403	TV	FGBGRT		SCHEDULE BACKGROUND FROM FOREGROUND
00712 00003637	T V T V	MONINT SCALE		ENTER SCHEDULER(SAVE HARDWARE) Scale F.P. to tester values
00713 00003452	TV	FGWAIT		FOREGROUND WAIT FOR BACKGROUND
00715 00005343	*TV	ERRCNV		\$IOCS ERROR CODE DECODER, MESSAGE OUTPUT
00716 00005472	τν	FSUB		FLOATING POINT SUBTRACT (A-E -> A)
00717 00005500	ΤV	FAND	47	FLOATING POINT AND (A AND E -> A)
00720 00005506	TV	FEUR		FLOATING POINT EOR (A EOR E -> A)
00721 00005522	TV	FLUG		FLOATING POINT LOG (LOG A -> A)
00722 00005475 00723 00005467	TV TV	FADD FDIV		FLOATING POINT ADD (A+E -> A) FLOATING POINT DIVIDE (A/E -> A)
00724 00005530	TV	FFIXS		FIX FLOATING POINT DIVIDE (AZE => A)
00725 00005503	т	FOR		FLOATING POINT OR (A OR E -> A)

Figure 3-1 System Subroutine Transfer Vector Listing

00726	00005511	٢v	FNOT	54	FLOATING POINT NOT (A NOT E -> A)
00727	00005525	T١	FEXP	55	FLOATING POINT EXPONENT (A -> A)
00730	00005464	τv	F MUL	56	FLOATING POINT MULTIPLY (A \star F -> A)
00731	00005514	I V	FFIX	57	FIX FLOATING POINT INTO A (A -> A)
00732	00005517	Τv	FFLT	58	FLOAT INTEGER IN A (A -> A)
00733	00005533	ΤV	FFLTS	59	FLOAT NUMBER IN A,E (A,E -> A)
00734	00017712	ΤV	FCAM	60	FLOATING POINT COMPARE (A,E)
00735	00005705	* T V	LOAD	61	LOAD A FILE INTO MEMORY
00736	00003052	-x TV	0ELFIL	62	DELETE FILE BY NAME CHANGE
00737	00004420	τv	RELOV	63	CALL OVLY FOR RELEASE
00740	00004554	1 \	ATIA	64	ATTACH OVLY TO STATN
00741	00004571	٦V	DTIA	65	DETTACH OVLY FROM STATN
00742	00004663	τv	PAGETP	66	PAGE TEST PLAN
00743	00004604	٦V	FGBGWT	67	FG/BG WAITING
00744	00004631	IV	FGBGH	68	FG/HG HALT FOR MEM MOVE
00745	00005436	Τv	FINDVI.	69	FIND VARIABLE ADDR IN STACK
00746	00006364	*11	FG10	70	FUREGROUND IO
00747	00005441	* TV		71	START TESTER DMA AND WAIT FOR DONE
00750	00006532	× 1 v	/ FGOH	72	FOREGROUND HEADER OUT
	00005444	≁ T\	ENBIST	73	ENABLE LOCAL MEMORY TEST
00752	00005447	T V	/ WWAIT		WAIT FOR LM TEST IN FG
00753	00005713	5. ÷ TV	ADRXLA	75	DISC ADDR TRANSLATE
	00005456	Z+ Γ \	INTERP	76	CALL INTERPRETER
00755	00005461	≂ T\	ENTRSY	77	ENABLE TESTER BUSY COMP INTERRUPT
	00003611	τv		78	CALL OVLY FOR FG RESET
00757	00004025	T١	STALL	79	STALL BG PROCESS
	00005743	7 X IV		80	CREATE/DELETE A FILE
	00005751	×Τ.		81	PUT ENG VALUES IN BUFFER
	00005754	×1 V			PUT OCTAL/DECIMAL ADDR IN BUFFER
	00003757	τv			CHECK IF BG ACTIVITY ON
	000000000	T V		84	
	00005757	τv			CALL OVLY MODULE
	00005677				PUT BINARY # IN BUFFER
	00005702	~ T \			PUT HEX # IN BUFFER
	00006061	- <u>T</u> V			SAVE ENVIRONMENT
00771	00006115	· TV	• -		RESTORE ENVIRONMENT
		* TV	/ IBIO	90	13US DRIVER - RESERVED
		*			

Figure 3-1 System Subroutine Transfer Vector Listing (Continued)

3.1 WAIT	
Reference Location	SYXVEC + 0
Description	This is a wait routine called by the foreground processing when the test station becomes busy. It allows background processing to continue.
	Control returns to foreground only after the contents of address AWATF (GLOVAR + 79) are set to 1 by the interrupt service when the busy condition is completed.
Input Parameters	None
Output Parameters	None
Return	BSM address +1
Calling Sequence	BSM* WAIT
Registers Used	All registers and state switches are saved and restored.
Allowed Usage	Foreground only
3.2 OUTOPN	
3.2 OUTOPN Reference Location	SYXVEC + 1
	SYXVEC + 1 This subroutine opens an output device for a string record file. It can be used to output data summary.
Reference Location	This subroutine opens an output device for a string
Reference Location Description	This subroutine opens an output device for a string record file. It can be used to output data summary. CMDV (GLOVAR +49) must contain the device code.
Reference Location Description	This subroutine opens an output device for a string record file. It can be used to output data summary. CMDV (GLOVAR +49) must contain the device code. If CMDV is zero, the system POD is used. NAMEM1, NAMEM2 (GLOVAR +50, 51) must contain
Reference Location Description Input Parameters	This subroutine opens an output device for a string record file. It can be used to output data summary. CMDV (GLOVAR +49) must contain the device code. If CMDV is zero, the system POD is used. NAMEM1, NAMEM2 (GLOVAR +50, 51) must contain the file name if the device is a CLO or DOF.
Reference Location Description Input Parameters Output Parameter	 This subroutine opens an output device for a string record file. It can be used to output data summary. CMDV (GLOVAR +49) must contain the device code. If CMDV is zero, the system POD is used. NAMEM1, NAMEM2 (GLOVAR +50, 51) must contain the file name if the device is a CLO or DOF. X6 contains the pointer to IOATAB for this device. BSM address +1 error return
Reference Location Description Input Parameters Output Parameter Return	 This subroutine opens an output device for a string record file. It can be used to output data summary. CMDV (GLOVAR +49) must contain the device code. If CMDV is zero, the system POD is used. NAMEM1, NAMEM2 (GLOVAR +50, 51) must contain the file name if the device is a CLO or DOF. X6 contains the pointer to IOATAB for this device. BSM address +1 error return BSM address +2 normal return
Reference Location Description Input Parameters Output Parameter Return Calling Sequence	 This subroutine opens an output device for a string record file. It can be used to output data summary. CMDV (GLOVAR +49) must contain the device code. If CMDV is zero, the system POD is used. NAMEM1, NAMEM2 (GLOVAR +50, 51) must contain the file name if the device is a CLO or DOF. X6 contains the pointer to IOATAB for this device. BSM address +1 error return BSM address +2 normal return BSM* OUTOPN

3-4

3.3 OUTCLS

Reference Location		
Meterence Location	SYXVEC +2	
Description	This subroutine closes an output device.	
Input Parameter	X6 pointer to IOATAB.	
Output Parameters	None	
Return	BSM address +1 error return BSM address +2 normal return	
Calling Sequence		
	LDX* X6,IOATAB ptr. BSM* OUTCLS	
Routine Used	\$IOCS	
Registers Used	X1, A, E and X6 are not restored.	
Allowed Usage	Background only	
3.4 NUMERR		
Reference Location	SYXVEC + 3	
Description	This handles number errors for all programs and subroutines. Because of its general nature, error reporting is at a minimum.	
Description Input Parameters	subroutines. Because of its general nature, error	
-	subroutines. Because of its general nature, error reporting is at a minimum.	
Input Parameters	subroutines. Because of its general nature, error reporting is at a minimum. None	
Input Parameters Output Parameters	subroutines. Because of its general nature, error reporting is at a minimum. None None Control is not returned to the caller. An error mes- sage, ERROR IN NUMB, is output to POD by the moni- tor, and control is passed to the monitor command	
Input Parameters Output Parameters Return	subroutines. Because of its general nature, error reporting is at a minimum. None None Control is not returned to the caller. An error mes- sage, ERROR IN NUMB, is output to POD by the moni- tor, and control is passed to the monitor command	
Input Parameters Output Parameters Return	subroutines. Because of its general nature, error reporting is at a minimum. None None Control is not returned to the caller. An error mes- sage, ERROR IN NUMB, is output to POD by the moni- tor, and control is passed to the monitor command scan routine.	

Note

If the user intends to conduct any kind of recovery from a number error (for example, requesting a number again from an input device), this routine should not be used. Instead, BRU to another routine in the user's program for recovery.

Allowed Usage Background only 3.5 COMERR **Reference** Location SYXVEC + 4Processes a command decoding error (decoding done Description in the subroutine called PROCESS) for all programs and subroutines. Because of its general nature, error reporting is at a minimum. **Input Parameter** contains one-word text of error. E **Output Parameters** None Return Control is not returned to the caller, an error message, ERROR IN XXXX, is output to POD by the monitor, and control is passed onto the monitor command scan routine. XXXX is the contents of E on entry. **Calling Sequence** BRU* COMERR Routine Used MSGOUT prints out the error message by the monitor. **Registers** Used Nonessential to the caller, as this is an error terminating subroutine.

Note

If the user intends to conduct any kind of recovery from a command error on further diagnosing the error, this subroutine should not be used. Instead, BRU to user's own error handling routine for this error processing.

Allowed Usage

Background only

3.6 \$IOCS		
Reference Location	SYXVEC + 5	
Description	See section 4	
3.7 MSGIN		
Reference Location	SYXVEC + 6	
Description	Reads a record from the system PID.	
Input Parameters	 X1 Starting address of input buffer (buffer must have 18 words) A Prompting character in TRASCII right justified or zero 	
Output Parameter	A \$IOCS error code for error return	
Return	BSM address +1 error return BSM address +2 normal return	
Calling Sequence		
INBUF	BSS 18 LDX X1,INBUF LDA D0 or CLA BSM* MSGIN BRU ERROR normal return	
Registers Used	A, E, X1, and X6 are not restored.	
Allowed Usage	Foreground/background	
3.8 MSGOUT		
Reference Location	SYXVEC +7	
Description	Writes a record to the system VKT.	
Input Parameters	X1 Starting address or record bufferX2 Number of words to be output	
Output Parameter	A \$IOCS error code for error return	
Return	BSM address +1 error return BSM address +2 normal return	

Calling Sequence		
OUTDCB OUTBUF	DATA 0,OUTBUF,5 TEXT 'XXXXXX WO	RDS LEFT'
	LDX X2,5 - Market LDX X1,OUTBUF - BSM* MSGOUT BRU ERROR	her of words a structure stated were a f buffer
		error return normal return
Registers Used	A, E, X1, and X6 are not	restored.
Allowed Usage	Foreground/background	
3.9 UMSGW		
Reference Location	SYXVEC + 8	
Description	Writes a record without of to system POD.	arriage return and line-feed
Input Parameters	X1 Starting address of rX2 Number of words to	
Output Parameter	A \$IOCS error code for	error return
Return		return al return
Calling Sequence		
OUTBUF	TEXT 'PIN = '	
	LDX X2,5 LDX X1,OUTBUF BSM* UMSGW BRU ERROR	
		normal return
Registers Used	A, E, X1, and X6 are not	restored.
Allowed Usage	Foreground/background	

3.10 ADJMEM

Reference Location

Description

Input Parameters

This routine handles adjustment of dynamic memory allocation area. Its functions are releasing a file by name, or releasing all test programs or all overlays; expanding a test program or overlay, or repacking a test program or overlay. Physically, the data in the impacted memory area is moved up or down and the memory activity table is updated for the change.

BSM address + 1 Function code to be performed

0 Release a file specified in X5

- 1 Release all test programs
- 2 Release all overlays

SYXVEC + 9

- 3 Release all test program overlays
- 4 Expand the test program or overlay specified in X5
- 5 Repack the test program or overlay specified in X5
- 6 Bump page TP or release inactive programs
- 7 Release all modules
- 8 Release all files previously marked for release
- 9 Make room for fixed overlay

For functions 0, 4 and 5, X5 must contain the address of the file entry in MACTAB.

For function 4, the A register must contain the expansion size in words.

For function 5, the A register must contain the new test program or overlay size in words.

For functions 6 and 9, the A register must contain the required size in words.

For function 9, X5 points to MACTAB entry.

For functions 4, 5, 6, and 9, BSM address + 2 cannot expand due to lack of memory space.

BSM address + 3 for expansion complete BSM address + 2 for all others

Output Parameters

Return

Calling Sequence

For functions 0, 1, 2 and 3

LDX	X1, function code
BSM*	ADJMEM
DATA	0/1/2/3
· · · · ·	

normal return

For functions 4 and 5

LDX	X5, MACTAB address	
LDA	size	
BSM*	ADJMEM	
DATA	4/5	
		error return
		normal return

For functions 6 and 9

	LDA size BSM* ADJMEM DATA 6/9		
		error return normal return	
Routines Used	MOVEDNto pack the mMOVEUPto expand theFGBGHto wait for for activity comp	memory reground or background	
Registers Used	A and E registers are not res	tored.	
Allowed Usage	Background only. Foregroun	Background only. Foreground may call this routine or	

Background only. Foreground may call this routine on special condition, but this feature is reserved for the operating system.

9.11 SONLIP	3.11		SCNFIL
-------------	------	--	--------

Reference Location

SYXVEC + 10

Description

÷:

This routine scans MACTAB to find the requested file, or output test program or overlay names on POD.

The function performed depends on the code supplied in X1 register.

X1 Function code

- 0 Search for any file with the name in A and E
- 1 Search for a test program with the name in A and E
- 2 Search for an overlay with the name in A and E
- 3 Search for a system job overlay with overlay code in A
- 4 List all test programs in memory
- 5 List all overlays in memory
- 6 List all files in memory
- 7 List one file with X5 pointing to MACTAB
- 8 LIST JOB

For functions 0, 1 and 2, A and E registers must contain maximum six-character file name left justified.

For function 3, the overlay code (13 to 40B) must be in A register.

For functions 0, 1, 2, and 3, the BSM address +1 must contain the job name. (If zero, the current job is used).

For function 7, X5 must point to the file entry in MACTAB.

Output Parameters

For functions 0, 1, 2, and 3 upon normal return:

X5 address of the file entry in MACTABX7 starting address of the file in memory

None for all other functions

Return

For functions 0, 1, 2, and 3: BSM address +2 not found return BSM address +3 normal return

For all others: BSM address +1

Calling Sequence

For functions 0, 1, 2, and 3

JOB	LDX BSM* DATA BRU	X1,function code SCNFIL 0 ERROR	Job number not found return found return	
Routines Used		to output names for func 4, 5, and 6	·	
	PUTD	to place values in output buffer		

Registers Used		stored for functions 0, 1, 2, and 3. Dred for functions 4, 5, 6, and 7.
Allowed Usage	Functions 0, 1, 2, a background.	and 3 are allowed for foreground and
	Functions 4, 5, 6, a only.	and 7 are allowed for background
3.12 GTSTAT		
Reference Location	SYXVEC + 11	
Description		codes the station identification ator command into internal usage
Input Parameters	STATC (GLOVAR +66) Station identification 1 through 4 which is normally set by the PROCESS rou- tine. If STATC = 0, then DFSTAT (GLOVAR +88) is used as default station.	
Output Parameters	X2 Starting	station number (0 through 3) g address of tester variable table, VKT t station. On error return, E = 'STAT'.
Return	BSM address +1	station ID not entered in command or no default has been set up by SET STAT command.
	BSM address +2	normal return
Calling Sequence	- 	
	BSM* GTSTAT BRU ERROR 	NO STATION RETURN normal return
Registers Used	A, E, X2, and X6 a	re not restored.
Allowed Usage	Foreground/backgr	ound

3 . 1 3	CONV		
Reference L	ocation	SYXVEC + 12	
Description		This subroutine is used to convert a positive number in A register into its decimal equivalent. The decimal digit is represented in a certain number of bits specified by the caller (the digit width). The digit width is specified in the E register.	
		For example, before calling the subroutine, A = 144 (octal) E = 4 [i.e., 4 bits for each decimal digit (BCD)] Upon exiting from CONV, A = 0 but, E =	
		Ę	0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
		100) (BCD)
Input Parame	eters		positive octal number digit width in bits
Output Para	meters		0 converted number in decimal representation
Return		BSM address + 1	
Calling Seque	ence		
		LDA LDE BSM*	DIGWID
Registers Us	ed	Α, Ε,	, and Xl
Allowed Usa	ge	Foreground/background	

.

3.14 PUTD

Reference Location

Description

Input Parameters

SYXVEC + 13

This subroutine converts a positive number in the A register into its TRASCII coded decimal equivalent and packs it into a user-specified buffer.

A positive number to be converted and packed

- X1 number of digits wanted (field width) (Each digit is represented by a TRASCII coded character).
- X7 pointer to the three-word DCB word 0 character count word 1 buffer address word 2 buffer size in words

State switch 7 setdo not suppress leading zerosState switch 7 not setsuppress leading zeros

Output Parameters

A pointer to the next available location in the PMF buffer.

If the number overflows its field (larger than the field width specified), a back slash is stored into the buffer before an exit of the routine.

Word 0 of the DCB points to the next available character in the buffer.

BSM address + 1

Calling Sequence

Return

LDX LDA LDX BSM*	X1,3 NUMBER X7,PMFDCB PUTD
PUTC	
X1 is not	restored.

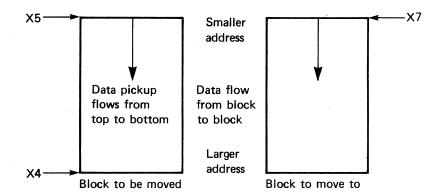
Allowed Usage

Routine Used

Register Used

Foreground/background

3.15 PUTC	
Reference Location	SYXVEC + 14
Description	This subroutine is used to pack a character in the lower six bits in A register into the buffer specified by the caller in X7.
Input Parameters	 A a TRASCII character in the lower six bits X7 pointer to a three-word DCB word 0 character count word 1 buffer address word 2 buffer size in words
Output Parameters	A 0 0, X7 incremented to next character location in buffer
Return	BSM address +1 0, X7 beyond buffer size BSM address +2 normal return
Calling Sequence	
	LDA TRASCII LDX X7,PMFDCB BSM* PUTC error return normal return
Register Used	A is not restored.
Allowed Usage	Foreground/background


3.16 MOVEDN

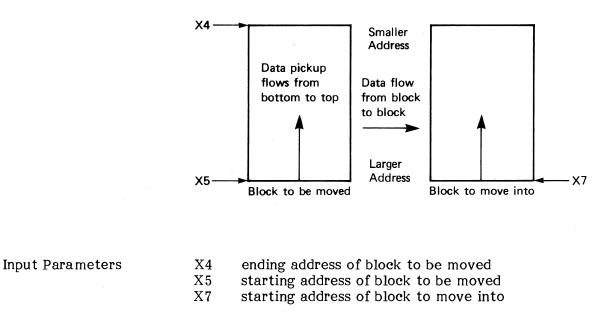
Reference Location

SYXVEC + 15

Description

This subroutine moves data blocks from one memory location to another. Data is moved from a block in ascending order, or from a smaller to a larger address in the block.

Input Parameters		starting address of block to be moved ending address of block to be moved starting address of block to move into
Output Parameter	X7	last word moved address + 1
Return	BSM	address + 1
Calling Sequence		
	LDX LDX LDX BSM	X4,BLKBOT X7,INTOP
Registers Used	X4,	5, and 7
Allowed Usage	Fore	ground/background


3.17 MOVEUP

Reference Location

SYXVEC + 16

Description

This subroutine moves data blocks from one memory location to another. Data is moved from a block in descending order, or from a larger to a smaller address in the block.

Output	Para	meters
Julpu	LIMA	meters

Return

Calling Sequence

LDX	X5,BLKBOT
LDX	X4,BLKTOP
LDX	X7, INTOP
BSM*	MOVEUP

Registers Used	X4, 5, and 7
Allowed Usage	Foreground/background

None

BSM address + 1

3.18 PUTE	
Reference Location	SYSVEC + 17
Description	This subroutine converts a floating point number to printing format, a four-digit integer, or scientific format and places it in the buffer.
Input Parameters	 A a floating point number X7 starting address of three-word DCB (used by PUTC, PUTD)
Output Parameters	Converted number in the buffer. If the floating point number is an integer and the magnitude is between -999 and +9999, the format is -nnn to nnnn.
	For all other numbers, the format is $\pm n.nnnE\pm nn$. The decimal point moves left or right in order to make the characteristic a multiple of three.
	0 and X7 are adjusted to one character beyond the last used. The output requires 10 columns. If an integer is output the remaining spaces are cleared.
Return	BSM address + 1
Calling Sequence	
	LDA NUMBER LDX X7, DCB BSM* PUTE
Routines Used	PUTD, PUTC, CONV, FFIXS
Registers Used	A, E, X1, SW7 are not restored.
Allowed Usage	Foreground/background
3.19 PUTO	
Reference Location	SYXVEC +18
Description	This subroutine converts a binary number into octal TRASCII and places it in the buffer, right justified.
Input Parameters	 A positive binary number X1 number of digits desired X7 PMF pointer
	State switch 7 setdo not suppress leading zerosState switch 7 not setsuppress leading zeros

Output Parameters0 and X7 are adjusted to point to the next character
positionReturnBSM address +1

Calling Sequence

	DCB BUF	DATA B SS	0, BUF, 20 20		
		LDA LDX LDX BSM*	NUMBER X1,8 X7,DCB PUTO	8	digits
Routine Used	l	PUTC			
Registers Use	ed	A and X1	are not restored		
Allowed Usag	;e	Foregrour	nd/background		

3.20 PROCESS

Reference Location SYXVEC + 19

Description

This subroutine is used to scan a command statement (represented in a string record) to create a coded 24bit word representation of the statement. A statement is made up of various fields separated by spaces or other special characters. The codes are supplied by the caller in his keyword table which contains identifiers and corresponding codes for all identifiers in the command statement to be decoded.

PROCESS scans the statement fields, using the table to select the code corresponding to matching identifiers or special options and builds the coded representation from the codes.

The fields of a statement are identified as one of the following:

- Identifier Starts with an alpha character and up to four alphanumeric characters.
- Name A string of up to six characters, enclosed by single quotes ('). Quotation marks are not counted as part of the six character name.

	:	 Number - A field with only numeric characters (±nnn), numeric characters with a decimal point (±nn.n), numeric characters followed by B to specify an octal number, numeric characters with exponential notation (±nnE±n), numeric characters with exponential notation (±nnE±n), numeric characters followed by * to specify a binary number. Identifier Number - Identifier up to four characters is matched with a number (FRQnn). There is no space or special character between the identifier and the number. Special Character - A comma (,) is considered as a special option identifier.
Input Parameters	X5 X7 X6	The address of three-word DCB word 0 Current word/character count word 1 Buffer address word word 2 Buffer size Starting address of the key word table Ending address (last word of the table +1)

Rules and Restriction of Input:

1. Each entry in the key word table must be two words.

Word 1	four character identifier
Word 2	code for the identifier
Word 2	format

23	18	17	16	15		0
к	Key Code	с	D	I	Option Code	

Bit 23Key word flagBit 22 to 18Key code

All identifiers that belong to the key word contain the same code as the key word.

Bit 17 Complete flag

This flag provides the capability to require a modifier. The statement is complete only if this bit is set. It is set in the code of the key word if no modifier is required; otherwise, it is set in the code of a required option. At least one identifier must set this bit or PROCESS takes the error return. For example, if either ON or OFF must be specified, the bit is off in the key word code and set in the codes for ON and OFF.

Bit 16 Duplicate flag

This flag provides the capability to disallow the use of two or more options together. If this bit is set by a modifier that is in a statement, PROCESS takes the error return if another modifier is scanned that also has this bit set. For example, to cause an error if both OFF and ON are entered in a statement, set the duplicate bit in the codes for OFF and ON.

Bits 14 to 0 Options

These bits are defined by the user to identify the optional identifiers By checking these bits the user can determine which modifiers were entered.

Bit 15 Identifier number concatenated from flag (see 6 below).

- 2. The first field in the statement must be a key word. Any other occurrences of key words are ignored.
- 3. A maximum of two number fields in a statement are saved.
- 4. A maximum of two string names in a statement are saved.
- 5. A maximum of six identifier-number fields are allowed in a statement.
- 6. Codes provided for the identifiers that appear in a statement in the identifier-number form must be a value in the range 1 to 6 in bits 5 to 0 and bit 15 is set to 1. These may not be key words and the value is not ORed into the final code. The value 1-6 is used to store the associated number. Bits 23 to 18 should conform to the key code.
- 7. No more than three input device and three output device mnemonics may appear in a statement.
- 8. Normally, noise words are not allowed in a command. ECHFLG (GLOVAR + 40) is used to control this condition.
- 9. If the STATn is allowed in the command, it must be entered in the table with the code, XX100000B; -f universal, XX is zero; otherwise, XX should conform to the key code.

10. Only one binary number is saved.

Output Parameters

A Final coded representation of the statement upon error return

E The graphics of the error

'PARM' Invalid parameter usage

- 'COMM'Duplicate key word or missing parameters
- 'NUMB' Number error
- X5 MACTAB pointer if an overlay is loaded
- X7 Start address of file if overlays are loaded

Description of Output:

1. The final code is formed by ORing the codes of identifiers appeared in the statement except identifier-number codes.

Final code format:

23				1	8	17	16	15										0	
к	Ke	y (Cod	е		С	D	S				Opti	ion	Cod	e				

Bit	Description
23 22 to 18	Key word flag (from the identifier in the first field) From the key identifier and subset of key identifier, if any
17	Complete statement
16	Duplicate flag
15	One or more string names have appeared in the statement. The first four characters of the first name are stored in NAMEM1 global and the last two charac- ters in NAMEM2 global. The second name is stored in NAMEM3 and NAMEM4. Only the first six characters of each name are saved.
14 to 0	Codes provided for optional identifiers are ORed to together

2. If one or more numbers have appeared in the statement, decimal values are saved in NUMB1 and NUMB2 in floating point format in the order entered (twos complement if negative). Numbers are also saved in ONUMB1, ONUMB2 in octal form. Fixed decimal representations of numbers are saved in INUMB1, INUMB2. If a digit 8 or 9 has appeared in a number field, global OFLERR is set to 1. NUMB1, NUMB2, INUMB1, INUMB2, ONUMB1, ONUMB2 and BINARY are initialized to -1. A binary number is saved in BINARY with its digit count in BINCNT.

Examples:

Input	INUMB1	INUMB2	ONUMB1	ONUMB2	OFLERR	
0101* 101 101B 81 10B 10 20 0101* 0101* 20	5 145B 101B 121B 10B 24B 5B	-1 -1 -1 12B 5B 24B	101 101 101 101 10 20 101	-1 -1 -1 10 101 20	0 0 1 0 0 0	
Input	BINARY	BINCNT	NUMB1		NUMB2	
0101* 101 101B 81 10B 10 20 0101* 0101* 20	5 -1 -1 -1 -1 5 5	4 0 0 0 4 4	20720000B 21745000B 21701000B 21721000B 21100000B 21320000B 20720000B	(FP5) (FP101) (FP101B) (FP81) (FP8) (FP20) (FP5)	-1 -1 -1 21120000B 20720000B 21320000B	(FP10) (FP5) (FP20)

3. If one or more identifier-number fields have appeared in the statement, numbers are stored in globals SPNUM1 through SPNUM6 according to the code provided for the identifier. SPNUM1 through SPNUM6 are -1 if no identifier number is entered.

4. If I/O device mnemonics appear in the statement, then a pre-defined device code is stored for each device mnemonic in the same order as they appear in the statement stored in global CMDV. The device codes are in the following format:

23	20			16				12			8				4			0
Outp	out 3	In	put (3	C	Dutp	out :	2	Inpi	ut 2		(Dutp	out	1	Inp	ut 1	

Code	Input	Output
$\frac{1}{2}$	TTK MTR l	TTP MTW1
3	MTR2	MTW2
4	\mathbf{CR}	$_{ m LP}$
5	DIF	DOF
6	CLI	CLO
7	VK2	VP2
8	MIF	MOF

- 5. If a STATn appears in the statement, the station identification number is stored in global STATC in binary, (STAT1 then STATC = binary 1. STATC is initialized to -1).
- 6. If a comma appears, bit 14 of SPOPT is set to 1. If a plus sign appears, bit 1 is set to 1. If a minus sign has appears, bit 0 is set to 1.

Return	BSM address +1	error return with E = error code
	BSM address +2	normal return with A = final code

Calling Sequence

LDX	X5,DCB addr	
LDX	X7, table start addr	
LDX	X6, table end addr	
BSM*	PROCESS	
BRU	ERROR	error return
		normal return

Example:

TABSTR	EQU DATA DATA DATA DATA EQU	* 'COPY', 41400000B 'ALL', 01000100B 'OFF', 01000200B 'FRQ', 01100001B *	
PMFDCB BUF	DATA DATA DATA BSS	0 BUF 20 20	CURRENT WORD COUNT BUFFER ADDRESS BUFFER SIZE
	LDX LDX BSM* BRU STA	X5,PMFDCB X6,TABEND X7,TABSTR PROCESS ERROR COMING	SAVE A AT NORMAL RETURN

Result:

Command E	ntered		Code Formed	
COPY			41400000B	
COPY	ALL		41400100B	
COPY	OFF		41400200B	
COPY	ALL	FRQ6	41400100B	SPNUM1 = 6

3.21 ALTER

Reference Location

Description

Input Parameters

SYXVEC + 20

This routine scans the ALTER buffer to clear all entries for a station, replace or make new entry, find a particular entry, and list all entries for a station.

BSM address +1 contains option number

Option number

- 0 Clear all entries for a station and pack
- 1 Replace if an entry for the instruction exists; otherwise, make a new entry
- 2 Find an entry for the instruction
- 3 List all entries for a station
- 4 Clear one entry for the instruction
- A Station number in bits 20 through 18 right justified for options 0 and 3

Station number in bits 20 through 18 IND value in bits 17 through 0 for options 1, 2 and 4

23	21		18		_									0	-
		Stat	t		-		I	ND '	Valu	ie/0					-
															·

	$\begin{array}{llllllllllllllllllllllllllllllllllll$
Output Parameters	 E Floating point value for option 1 A Floating point value for option 2 None for all other options
Return	BSM address +3 normal return BSM address +2 not found for option 2 alter buffer full for option 1
Routines Used	\$PARSE, GETC, IDTSCN, SEARCH
Registers Used	X1, X5, X6, X7, A, and E registers X1 is restored

Allowed usage

System use only

Routines Used

PUTE, PUTC, \$IOCS for option 3 only

Calling Sequence

Options 0 and 3

LDA	station number
SL	18
BSM*	ALTER
DATA	0 (or 3)
NOP	*

Option 1

LDA	station number
\mathbf{SL}	18
OR	IND value
LDE	floating pt. val.
BSM*	ALTER
DATA	1
BRU	ERROR

OVERFLOW normal return

Option 2

\mathbf{LDA}	station number
SL	18
OR	IND value
BSM*	ALTER
DATA	2
BRU	

NO ALTER VALUE YES ALTER HERE

Registers Used

A, X6, and E are not restored for options 0, 1, 2 and 4. A, E, X1, X2, X3, X6 and X7 are not used and not restored for option 3.

Allowed Usage

Options 0, 1, 2 and 4 are allowed for foreground and background for system use only.

Option 3 is allowed for background for system use only.

Description

SYXVEC + 21

This subroutine is used to scan and identify a field in the caller's buffer as follows:

1. Identifier - a string of alphanumeric characters with an alpha leading character. It is terminated by either a maximum of eight characters or by a special character (a space is treated as a special character). It is packed (left justified) into two global variables NAME1 and NAME2. However, upon exiting from this subroutine, X6 contains the location of NAME1 in memory.

Number - a string of numeric characters 2. (TRASCII coded) is converted into a floating point number and stored in the E register upon exiting from this subroutine. When a '-' sign is encountered, a 15B is returned in A. The caller must make provision for this in processing negative numbers.

3. Special character - If the character is other than a space or a period, which are 0B and 16B respectively in TRASCII code, it is stored in the A register before exiting from this subroutine. A space is ignored when scanning for the start of a field, but also terminates the field when processing it. A period is taken as a decimal point when processing a number field.

X7	address of the	three-word DCB
	word 1	character count
	word 2	buffer address
	word 3	buffer size in words

Output Parameters

The A register can be one of the following codes:

1.	0	error in a number scan
2.	l thru 77B	the TRASCII code of a special
		character encountered
3.	100B	an identifier is encountered
		and packed into NAME1 and
		NAME2
	X6	location of NAME1 in memory
4.	101B	a number is encountered and
		converted into a floating point
		equivalent (stored in E register)
		and an octal equivalent (stored in
		OCTAL i.e. $10=8_{10}$).
-	1775	
5.	177B	end of record - end of buffer

Input Parameters

Return

BSM address + 1

Calling Sequence

	LDX BSM*	X7,PMFDCB \$PARSE
Routines Used	GETC, ID	TSCN, NUMBER
Registers Used	A, E, X6 a	are not restored.
Allowed Usage	Backgrour	nd only.

3.23 IDTSCN

Reference Location

Description

This subroutine is used to scan the caller's buffer for an identifier or a string field and packs it (left justified) into global variables NAME1 and NAME2.

Prerequisites:

SYXVEC + 22

- 1. The caller must have located the first character of either an identifier or a string field.
- 2. The caller should distinguish between packing an identifier (setting the OV, overflow indicator) or a string input (resetting the OV).

Explanation:

When this subroutine is packing a string input, the subroutine checks for whichever of the following terminators comes first:

- a prime mark -'
- an end-of-record mark -177B
- exceeds eight characters in the string, at which time the subroutine continues scanning the buffer for either of the above, but there is no more packing into NAME1 and NAME2.

When this subroutine is packing an identifier, the subroutine stops scanning when it detects any special character.

In all cases, only the first eight characters maximum are packed (left justified) into NAME1 and NAME2.

Input Parameters	 OV set for identifier scan reset for string scan A first character X7 pointer to three-word D 								
Output Parameters	X6 address of NAME1 in memory. The globals NAME1 and NAME2 contain eight characters of the name.								
Return	BSM address +1								
Calling Sequence									
	LDACHARSLDXX7, PMFDCBSSTOVfor identifier scanBSM*IDTSCNLDACHARSLDXX7, PMFDCBRSTOVfor string scanBSM*IDTSCN								
Routine Used	GETC								
Registers Used	A, E, X7, and X6								
Allowed Usage	Background only								
3.24 NUMBER									
Reference Location	SYXVEC + 23								
Description	This subroutine scans a number in one of the following forms in the input buffer:								
	 Octal integer nnn, nnnB Decimal number nn.nn, nn Exponential number nnE±nn Binary number nnnnnnnnn* 								
Input Parameter	 X7 starting address of the PMF control block 0, X7 must contain the character pointer pointing to the beginning of the number field (the most significant digit or - sign). 								
Output Parameters	A = 0number syntax errorA = 100Bnumber has been convertedEnumber in floating pointOFLERR(GLOVAR + 46) = non-zero if a digit 8 or 9 has appeared in the fieldOCTAL(GLOVAR + 45) contains octal representation of the number								

	0, X7 BINC BINCNT MANTISSA	is updated to point to the next character (number terminating character) (GLOVAR + 52) contains binary representation of the number (GLOVAR +53) contains the number of digits appeared in the representation of the number (GLOVAR +48) contains fixed decimal form of the number
Return	BSM address	s + 1
Calling Sequence		
		7, PMFDCB IUMBER
Routines Used	GETC, INTS	SCN
Registers Used	A, E, X6 are	e not restored
Allowed Usage	Background	only
3.25 INTSCN		
Reference Location	SYXVEC + 2	24
Description	buffer for a number and are done sin	Itine is used to scan the number field in the n integer and to convert it into an octal a decimal number. The two conversions nultaneously and both values are available r upon exiting from this subroutine.
Input Parameters	X6 pointer	to three-word DCB to the location which is to store the of the decimal conversion
Output Parameters		last character obtained from the buffer (the first non-numeric character obtained in the scanning of the number)
	X6	digit count of the number obtained pointer to the location containing the
	0,X7	decimal equivalent has been updated just past the number
	OCTAL	field (global variable) contains the octal equivalent
Return	BSM addres	s + 1

3-31

Calling Sequence

		LDA LDX B S M*	X7,PMFDCB X6,DECNUM INTSCN				
Routine Use	đ	GETC					
Registers Us	ed	A, E, X6	are not restored				
Allowed Usa	ge	Background only					
3.26	SEARCH						
Reference L	ocation	SYXVEC	2 + 25				
Description		supplied NAME1	routine is used to search through a table by the caller for a name specified in and NAME2. NAME1 and NAME2 are normally the \$PARSE subroutine before this subroutine				
Input Param	eters	X7 st A nu It	nding address +1 of the table to be searched arting address of the table to be searched umber of words per entry in the table supplied. is used as a bias to step through the table com item to item. The minimum value is two.				
Output Para	meter	X7 ac	ddress of the item found in the table.				
Return			ress + 1 item found in table ress + 2 item not found in table				
Calling Sequ	ence						
		LDX LDX LDA BSM*	X6,TABEND X7,TABSTR ITMSIZ SEARCH				
		•					
	TABSTR	EQU BSS	* 200B				
	TABEND ITMSIZ	EQU EQU	* 4B				
Registers Us	ed	X6, X7,	A, E are not restored				

Indicator Use	ed	OV (overflow) is undefined on return.									
Allowed Usa	ge	Foregrou	nd/background								
3.27	MPZERO										
Reference L	ocation	SYXVEC + 26									
Description		This subroutine is used to clear memory (move zeros into memory locations) within specified limits.									
Input Parame	eters	(the X7 star	ng address of the larger of the lim ting address of th red (the smaller o	e memory to be							
Output Para	meter	$\mathbf{A} = 0$									
Return		BSM address + 1									
Calling Sequ	ence										
		LDX LDX BSM*	X6,BUFEND X7,BUFSTR MPZERO	for external programs/subroutines (indirect calling through system trans- fer vector)							
	BUFSTR	EQU	*								
BUFEND		BSS EQU	200B *-1								
Registers Us	ed	X6, X7, A, E are not restored									
Allowed Usa	ge	Foregrou	nd/background								
3.28	GETC										
Reference L	ocation	SYXVEC	+ 27								
Description			by the caller and	racter from the buffer d decodes it into one							
		 alpha numeric special character 									

3-33

Input Parameters	X7 pointer to three-word DCB word 1 character count word 2 buffer address word 3 buffer size in words							
Output Parameters	A character from buffer							
Return	BSM address + 1character is alphaBSM address + 2character is numericBSM address + 3character is special, includingthe 177B (end of buffer)							
	Note that \$, the dollar sign, is regarded as an alpha character. The character returned is in TRASCII code (right justified).							
Calling Sequence								
	LDX X7,PMFDCB BSM* GETC							
Routine Used	READW							
Register Used	Α							
Allowed Usage	Foreground/background							
3.29 READW								
Reference Location	SYXVEC + 28							
Description	This subroutine is used to read a word from the specified buffer in memory.							
Input Parameters	X7 pointer three-word DCB word 0 character count word 1 buffer address word 2 buffer size in words							
	A relative address of the word in the buffer							
Output Parameters	A the content of the word (if the location of the word is still within the buffer limit)X7 unchanged							
Return	BSM address +1 if location of word is out of bounds BSM address +2 if still in bounds							

Calling Sequence

	LDX LDA SR BSM*	X7,PMFDCB 0,X7 2 READW	get character count get the relative word address							
Register Used	A is not restored.									
Allowed Usage	Foregrou	nd/background								
3.30 WRITEW										
Reference Location	SYXVEC	+ 29								
Description		gister into a caller	write a value from r-specified buffer in							
Input Parameters	A rela buff	ter to the three-w tive address of th er to receive the e to be written in	e word in the value							
Output Parameters	X7 = A	buffer that was j	of the location in the ust written into (if it the boundary of the							
Return		ress +1, if write o ress + 2, if write								
Calling Sequence										
	LDX LDA SR LDE BSM*	X7,PMFDCB 0,X7 2 VALUE WRITEW	get character count get relative address of word error return normal return							
Register Used	A is not	restored.								
Allowed Usage	Foregrou	nd/background								

3.31 IERMSG	
Reference Location	SYXVEC + 30
Description	Routine in test head driver (THD) to handle terminal errors
Input Parameter	A terminal error number
Output Parameters	None
Return	No return. THD completes testing and continues to next station
Calling Sequence	
	LDA TENUM terminal number BSM* IERMSG
Registers Used	Not applicable
Allowed Usage	Foreground only
3.32 DUMP	
Reference Location	SYXVEC + 31
Reference Location Description	SYXVEC + 31 This routine dumps an overlay, a test plan, or a module to a storage medium, magnetic tape, disk or Integrator. The file to be dumped must be in memory.
	This routine dumps an overlay, a test plan, or a module to a storage medium, magnetic tape, disk or Integrator.
Description	This routine dumps an overlay, a test plan, or a module to a storage medium, magnetic tape, disk or Integrator. The file to be dumped must be in memory.
Description	This routine dumps an overlay, a test plan, or a module to a storage medium, magnetic tape, disk or Integrator. The file to be dumped must be in memory.X5 points to MACTABCMDV (bits 7 to 4) contains the output device code.
Description Input Parameters	 This routine dumps an overlay, a test plan, or a module to a storage medium, magnetic tape, disk or Integrator. The file to be dumped must be in memory. X5 points to MACTAB CMDV (bits 7 to 4) contains the output device code. If these bits are zero, the DFDV device is used. A error code for error return A If positive, IOCS error code A If negative, PARM if illegal device

.

Calling Sequence

	BSM* DUMP	_						
		error return normal return						
Registers Used	A, E, Xl, X6 are not rest	ored.						
Allowed Usage	Background only							
C C	ç î							
3.33 PUTIME								
Reference Location	SYXVEC + 32							
Description		current time into HH:MM ne buffer following the date.						
Input Parameters	TIME (GLOVAR + 31)	30) contains the current date contains the current time						
	in seconds X7 starting address by PUTD, PUTC	of three-word DCB (used)						
Output Parameters	Date and time are placed in the buffer							
	Format:							
	MM/DD/YY HH:MM							
		eight-character date entered It is output in the format						
	 HH hours in 01 through 23 MM minutes in 00 through 59 YY 2 spaces 							
	0, X7 is adjusted to one character beyond the last use							
Return	BSM address + 1							
Calling Sequence								
	LDX X7,DCB BSM* PUTIME							
Routine Used	PUTD, PUTC							
Registers Used	A, E, Xl are not restored	l .						
Allowed Usage	Foreground/background							

3.34 GTTDV

Reference Location SYXVEC

Description

SYXVEC + 33

This subroutine calculates the address of the device entry in TVT table for the station and obtains the IOATAB pointer to be used for IO for the station.

Input Parameters

A device code in the following format:

23									•	4			0
							·				De Co	vice de	
X													

Device Code	Output	Input
0	POD	PID of the station
1	TTP	TTK
2	MTW1	MTR1
3	MTW2	MTR2
4	LP	CR
5	\mathbf{DOF}	DIF
6	CLO	-
7	VK2	VP2
8	MIF	MOF

Only one device, either input or output, can be requested at one time.

Bit 23	l for input, 0 for output
X2	address of TVT table for the station

Output Parameters

X7 address of the device entry in TVT table for the station

A contents of the device entry (see the description of TPID, TMTRI, or TDOF.)

Return

BSM address + 1	error return (invalid device)
BSM address + 2	normal return

Calling Sequence

LDA	device
BSM*	GTTDV

Registers Used	A, E, X7 are not restored.	
Allowed Usage	Foreground/background	
3.35 HEADER		
Reference Location	SYXVEC + 34	
Description:	This subroutine is used to output a standard header for the data accumulation overlays, the station number, test plan, name and serial number.	
Input Parameters	 A TSN (serial number) E station number (0 to 3) X6 IOATAB pointer for the output device. Output device must have been opened prior to calling this routine. 	
Output Parameters	A header line is output to the device. TOF is issued if the device is a line printer.	
Return	BSM address + 1	
Calling Sequence		
	LDA TSN, TP LDE station LDX* X6, IOPT BSM* HEADER	
Routine Used	\$IOCS	
Registers Used	A, E, and X7 are not restored. State switch 7 is used.	
Allowed Usage	Foreground	
3.36 SPIOER		
Reference Location	SYXVEC + 35	
Description	This subroutine checks error code returned from \$IOCS. If the device is busy, it returns to BSM address- 2 for retry; otherwise, it outputs a message on the VKT and returns to the monitor.	
Input Parameter	A \$IOCS error code	
Output Parameters	None	
Return	BSM address-2 if the device is busy (A = 7). Otherwise, no return.	

£

	LDX X1, DCB BSM* \$IOCS BSM* SPIOER \$IOCS error return point
Routine Used	ERRCNV
Register Used	A is not restored.
Allowed Usage	Background only
3.37 FGOVC	
Reference Location	SYXVEC + 36
Description	This routine calls system overlays at foreground entry point. Reserved for operating system use only. Not reentrant.
Input Parameter	A assigned system overlay code
Output Parameters	None
Return	BSM address + 1 overlay not found BSM address + 2 normal return
Calling Sequence	
	LDA overlay code BSM* FGOVC error return normal return
Routine Used	None
Allowed Usage	Foreground only
3.38 ALLEX	
Reference Location	SYXVEC + 37
Description	This subroutine is used to execute foreground portion of ALLINK overlay. If the called overlay is not in memory, it is loaded before executing it from the foreground entry point.
Input Parameters	A and E register must contain the six-character name of the overlay left justified.
Output Parameters	None

Return	BSM address +1 error return
	There is no room in memory to load, or overlay cannot be found on disk
	BSM address +2 execution complete
Calling Sequence	
	LDA namel LDE name2 BSM* ALLEX BRU ERROR error return normal return
Routine Used	SCNFIL
Registers Used	All registers and state switches are saved and restored.
Allowed Usage	Foreground only
3.39 COMMND	
Reference Location	SYXVEC + 38
Reference Location Description	SYXVEC + 38 Allows return to the monitor after completing a pro- cess. COMMND can be used for a temporary return while waiting to be called by other programs (DEBUG waiting for an address halt to occur; return from background after scheduled by foreground). It is not normal termination of a foreground or background task and may not be used to indicate the completion of a process.
	Allows return to the monitor after completing a pro- cess. COMMND can be used for a temporary return while waiting to be called by other programs (DEBUG waiting for an address halt to occur; return from background after scheduled by foreground). It is not normal termination of a foreground or background task and may not be used to indicate the completion
Description	Allows return to the monitor after completing a pro- cess. COMMND can be used for a temporary return while waiting to be called by other programs (DEBUG waiting for an address halt to occur; return from background after scheduled by foreground). It is not normal termination of a foreground or background task and may not be used to indicate the completion of a process.
Description Input Parameters	Allows return to the monitor after completing a pro- cess. COMMND can be used for a temporary return while waiting to be called by other programs (DEBUG waiting for an address halt to occur; return from background after scheduled by foreground). It is not normal termination of a foreground or background task and may not be used to indicate the completion of a process. None
Description Input Parameters Output Parameters	Allows return to the monitor after completing a pro- cess. COMMND can be used for a temporary return while waiting to be called by other programs (DEBUG waiting for an address halt to occur; return from background after scheduled by foreground). It is not normal termination of a foreground or background task and may not be used to indicate the completion of a process. None None
Description Input Parameters Output Parameters Return	Allows return to the monitor after completing a pro- cess. COMMND can be used for a temporary return while waiting to be called by other programs (DEBUG waiting for an address halt to occur; return from background after scheduled by foreground). It is not normal termination of a foreground or background task and may not be used to indicate the completion of a process. None None
Description Input Parameters Output Parameters Return	Allows return to the monitor after completing a pro- cess. COMMND can be used for a temporary return while waiting to be called by other programs (DEBUG waiting for an address halt to occur; return from background after scheduled by foreground). It is not normal termination of a foreground or background task and may not be used to indicate the completion of a process. None None No return

3.40 PUTW	
Reference Location	SYXVEC + 39
Description	This subroutine is used to pack a word in A register into the buffer specified by the caller. The word should be of four TRASCII characters.
Input Parameters	A four TRASCII charactersX7 starting address of the three-word DCB
Output Parameters	None
Return	BSM address + 1for buffer overflowBSM address + 2for normal return
Calling Sequence	
	LDA CHARS LDX X7,PMFDCB BSM* PUTW error return normal return
Routine Used	PUTC
Registers Used	X0, X1, and A are not restored.
Allowed Usage	Foreground/background
3.41 TWAIT	
Reference Location	SYXVEC + 40
Description	This subroutine waits for the foreground activity to complete before returning control to the caller.
Input Parameters	None
Output Parameters	None
Return	BSM address +1
Calling Sequence	
	BSM* TWAIT
Registers Used	All registers and state switches are saved and restored.
Allowed Usage	Background only

3.42 FGBGRT

Reference Location	SYXVEC + 41
Description	This routine schedules the background part of a pro- gram from the foreground.
Input Parameter	X7 address of the background process to be activated
Output Parameters	None
Return	BSM address +1
Calling Sequence	
	LDX X7,BGADR BSM* FGBGRT
BGADR	EQU * start of background process
Registers Used	All registers are restored.
Allowed Usage	Foreground only

Note

When the background is entered due to scheduling through FGBGRT, all registers are undefined. Refer to paragraph 6.4 for additional information.

3.43 MONINT

Reference Location SYXVEC + 42

Description

This subroutine allows entering the scheduler loop once, so that the higher priority functions such as testing can regain control. Control returns to the calling program if there is no higher priority function waiting or at the next break of the higher priority function process. It is recommended to call this routine during a long calculation or if formatting of data is involved.

Input Parameters	None
Output Parameters	None
Return	BSM address +1

	BSM*	MONINT	
Registers Used	All regist restored.		tches are saved and
Allowed Usage	Backgrou	nd only	
3.44 SCALE			
Reference Location	SYXVEC	+ 43	
Description	For use b	y THD only	
3.45 FGWAIT			
Reference Location	SYXVEC	+ 44	
Description	foregrou used by t	nd to allow the ba	ng the scheduler once from ackground to process. It is requires handshaking be- background.
Input Parameters	that back		l maintain a flag to indicate leted the process and is
Output Parameters	None		
Return	BSM add	ress + 1	
Calling Sequence			
	LDA BZ BSM* BRU	flag *+3 FGWAIT *-3	BACKGROUND BUSY? NO, READY NOW YES, WAIT
Registers Used	All registrestored.		tches are saved and
Allowed Usage	Foregrou	nd only	

3.46 ERRCNV	
Reference Location	SYXVEC + 45
Description	This subroutine is used to output an \$IOCS error message to the VKT.
	Error code 7 should be detected prior to calling ERRCNV, since it is simply a busy condition.
Input Parameter	A register error code
Output Parameters	Code Message
	 NONE END OF FILE INPUT DEVICE NOT AVAILABLE INVALID FUNCTION ERROR IN FILE - DATA FILE NOT FOUND I/O ERROR DEVICE BUSY INVALID I/O TABLE DATA OVERFLOW NO WRITE RING CLIO ERROR CLIO ERROR I/O TABLE OVERFLOW EXCESS WORDS IN READ WS NOT AVAILABLE MACTAB OVERFLOW DUPLICATE FILE TNTEGRATOR ERROR
Return	BSM address +1 error return BSM address +2 normal return
Calling Sequence	
	BSM* \$IOCS BRU ERROR
ERROR	BSM* ERRCNV NOP * Ignore Error
Registers Used	A, E, X1, and X6 are not restored.
Allowed Usage	Background/foreground

3.47 FSUB	
Reference Location	SYXVEC + 46
Description	This routine subtracts a signed floating point value in E from a signed floating point value in A and returns the difference in A in floating point.
Input Parameters	 A floating point number to be subtracted from (minuend) E floating point number to subtract (subtrahend)
Output Parameter	A signed difference in floating point (remainder)
Return	BSM address + 1
Calling Sequence	
	LDA VAL1 LDE VAL2 (VAL1 - VAL2) BSM* FSUB
Registers Used	A and E are not restored.
Allowed Usage	Foreground/background
3.48 FAND	
Reference Location	SYXVEC + 47
Description	This routine applies logical AND operation to A and E and returns the result in A. A and E are fixed before logical AND is applied, hence, the values must be integers in floating point format, (no decimal frac- tions in A or E).
Input Parameters	A and E contain integers in floating point format.
Output Parameter	A contains the result in floating point format.
Return	BSM address + 1
Calling Sequence	
	LDA VAL1 LDE VAL2 BSM* FAND
Routines Used	FFIX, FFLT
Registers Used	A and E are not restored.
Allowed Usage	Foreground/background

3.49 FEOR	
Reference Location	SYXVEC + 48
Description	This routine applies exclusive OR to A and E and re- turns the result in A. A and E are fixed before exclusive OR is applied, hence, the values must be integers in floating point format.
Input Parameters	A and E contain integers in floating point format.
Output Parameter	A contains the result in floating point format.
Return	BSM address + 1
Calling Sequence	
	LDA VAL1 LDE VAL2 BSM* FEOR
Routines Used	FFIX, FFLT
Registers Used	A and E are not restored.
Allowed Usage	Foreground/background
3.50 FLOG	
Reference Location	SYXVEC + 49
Description	This routine converts the floating point value in A into base 2 logarithm and returns the result in A.
Input Parameter	A contains a positive floating point value.
Output Parameters	A contains base 2 logarithm value in floating point format. OV indicator is set if the input is negative or zero.
Return	BSM address + 1
Calling Sequence	
	LDA VAL BSM* FLOG
Registers Used	A and E are not restored.
Allowed Usage	Foreground/background

3.51 FADD	
Reference Location	SYXVEC + 50
Description	This routine adds signed floating point values in A and E and returns the sum in A in floating point.
Input Parameters	A and E floating point values.
Output Parameter	A the sum.
	Overflow indicator is set if the overflow condition occurs.
Return	BSM address + 1
Calling Sequence	
	LDA VAL1 LDE VAL2 BSM* FADD
Registers Used	A and E are not restored.
Allowed Usage	Foreground/background
3.52 FDIV	
3.52 FDIV Reference Location	SYXVEC + 51
	SYXVEC + 51 This routine divides the floating point value in A by the floating point value in E and returns the quotient in A in floating point.
Reference Location	This routine divides the floating point value in A by the floating point value in E and returns the quotient
Reference Location Description	This routine divides the floating point value in A by the floating point value in E and returns the quotient in A in floating point. A the dividend in floating point.
Reference Location Description Input Parameters	This routine divides the floating point value in A by the floating point value in E and returns the quotient in A in floating point.A the dividend in floating point.E the divisor in floating point.A the signed quotient in floating point.
Reference Location Description Input Parameters Output Parameters	This routine divides the floating point value in A by the floating point value in E and returns the quotient in A in floating point.A the dividend in floating point.E the divisor in floating point.A the signed quotient in floating point.Overflow indicator is set for overflow or underflow.
Reference Location Description Input Parameters Output Parameters Return	This routine divides the floating point value in A by the floating point value in E and returns the quotient in A in floating point.A the dividend in floating point.E the divisor in floating point.A the signed quotient in floating point.Overflow indicator is set for overflow or underflow.
Reference Location Description Input Parameters Output Parameters Return	 This routine divides the floating point value in A by the floating point value in E and returns the quotient in A in floating point. A the dividend in floating point. E the divisor in floating point. A the signed quotient in floating point. Overflow indicator is set for overflow or underflow. BSM address +1 LDA VAL1 LDE VAL2 (VAL1/VAL2)

3.53 FFIXS	
Reference Location	SYXVEC + 52
Description	This subroutine converts a floating point number in the A register into a signed octal integer returned in the A register and the power of 10 multiplier returned in the E register.
Input Parameter	A the floating point number to be fixed (converted to an octal integer).
Output Parameters	 A the signed octal integer equivalent of the floating point number E the power of 10 multiplier
Return	BSM address + 1
Calling Sequence	
	LDA FPNUM BSM* FFIXS
Registers Used	A and E are not restored.
Allowed Usage	Foreground/background
3.54 FOR	
3.54 FOR Reference Location	SYXVEC + 53
	SYXVEC + 53 This routine applies logical OR to A and E and returns the result in A. A and E are fixed before OR is ap- plied, hence, the values must be integers in floating point format.
Reference Location	This routine applies logical OR to A and E and returns the result in A. A and E are fixed before OR is ap- plied, hence, the values must be integers in floating
Reference Location Description	This routine applies logical OR to A and E and returns the result in A. A and E are fixed before OR is ap- plied, hence, the values must be integers in floating point format.
Reference Location Description Input Parameters	This routine applies logical OR to A and E and returns the result in A. A and E are fixed before OR is ap- plied, hence, the values must be integers in floating point format. A and E integers in floating point format.
Reference Location Description Input Parameters Output Parameters	This routine applies logical OR to A and E and returns the result in A. A and E are fixed before OR is applied, hence, the values must be integers in floating point format.A and E integers in floating point format.A the result in floating point format.
Reference Location Description Input Parameters Output Parameters Return	This routine applies logical OR to A and E and returns the result in A. A and E are fixed before OR is applied, hence, the values must be integers in floating point format.A and E integers in floating point format.A the result in floating point format.BSM address +1
Reference Location Description Input Parameters Output Parameters Return Routine Used	This routine applies logical OR to A and E and returns the result in A. A and E are fixed before OR is applied, hence, the values must be integers in floating point format.A and E integers in floating point format.A the result in floating point format.BSM address +1
Reference Location Description Input Parameters Output Parameters Return Routine Used	 This routine applies logical OR to A and E and returns the result in A. A and E are fixed before OR is applied, hence, the values must be integers in floating point format. A and E integers in floating point format. A the result in floating point format. BSM address +1 FFIX, FFLT LDA VAL1 LDE VAL2

.

3.55 FNOT	• · · · · · · · · · · · · · · · · · · ·
Reference Location	SYXVEC + 54
Description	This routine applies logical negation to A. A is fixed before negation is applied, hence, the value must be an integer in floating point format.
Input Parameter	A integer in floating point format.
Output Parameter	A negated value in floating point format.
Return	BSM address +1
Routines Used	FFIX, FFLT
Calling Sequence	
	LDA VAL BSM* FNOT
Registers Used	A and E are not restored.
Allowed Usage	Foreground/background

.

Note

A floating point number may be negated by use of the machine language TCA instruction.

3.56	FEXP			
Reference Lo	cation	SYXVEC	+ 55	
Description			ine calculates the ister in floating p	e value 2 ⁿ where n is given in point format.
Input Parame	ter	A signed	l exponent in floa	ting point.
Output Param	neter	A result	in floating point	
Return		BSM addr	ess +1	
Calling Seque	nce			
		LDA BSM*	EX P FEX P	CALCULATE 2**EXP
Registers Use	ed	A and E a	are not restored.	
Allowed Usag	e	Foregrou	nd/background	

Reference Location SYXVEC + 56 Description This subroutine is called for multiplying two floating point numbers together. The numbers are all 24 bits. The first number is loaded in the A register upon entering this subroutine and the second number is in the E register. If the result of this multiplication is too large (the characteristic is greater than 177 octal), then the overflow indicator (OV) is set upon exiting from the subroutine. If the product is too small (the characteristic is less than 101 octal). the end result is represented by zeros. The sign of the product follows the algebraic convention (+ x + = +, + x - = -, -x - = +). value (floating point) of first number **Input Parameters** Α value (floating point) of second number Е **Output Parameters** Α signed product in floating point Overflow indicator is set if the end result is too big BSM address + 1 Return Calling Sequence LDA FPNUM1 LDE FPNUM2 BSM* FMUL **Registers Used** A and E registers are not restored. Allowed Usage Foreground/background 3.58 FFIX **Reference** Location SYXVEC + 57Description This subroutine is used to convert a floating point number in the A register into an octal integer returned in A register. Input Parameter the floating point number to be fixed (i.e., to be Α converted to an octal integer). **Output Parameters** the octal integer equivalent. А If the floating point number is so small that its characteristic is less than 101B, then it is truncated

3.57

FMUL

3-51

as a zero octal integer.

Return	BSM address + 1		
Calling Sequence			
	LDA FPNUM BSM* FFIX		
Registers Used	A and E are not restored.		
Allowed Usage	Foreground/background		
3.59 FFLT			
Reference Location	SYXVEC + 58		
Description	This subroutine converts an octal number in the A register into a floating point number that is stored in the A register on exit.		
Input Parameter	A signed octal integer		
Output Parameter	A signed floating point number		
Return	BSM address + 1		
Calling Sequence			
	LDA OCTNUM BSM* FFLT		
Registers Used	A and E are not restored.		
Allowed Usage	Foreground/background		
3.60 FFLTS			
Reference Location	SYXVEC + 59		
Description	This subroutine converts an octal number in the A register and its power of 10 in the E register into a floating point number that is stored in the A register upon exiting.		
	Both positive and negative numbers are processed by this subroutine.		
Input Parameters	A signed octal integerE degree of power of 10		

Output Parameters	A signed floating point number		
output l'arameters			
	If there is an underflow (number is too small), then A equals 0.		
	If there is an overflow (number is too large), the overflow indicator is set when exiting from this subroutine and the A register does not contain this floating point equivalent.		
Return	BSM address + 1		
Calling Sequence			
	LDA OCTNUM LDE PWR10 BSM* FFLTS		
Registers Used	A and E are not restored.		
Allowed Usage	Foreground/background		
3.61 FCAM			
Reference Location	SYXVEC + 60		
Description	This routine compares the floating point value in A to the floating point value in E and returns indicators GT, EQ, LT, and BE.		
Input Parameters	A and E registers contain floating point values.		
Output Parameters	Indicators are set as follows:		
	GT set if $A > E$ E EQ set if $A = E$ LT set if $A < E$ BE set if any bit in A set corresponds to the bit set in E.		
Return	BSM address + 1		
Calling Sequence			
	LDA VAL1 LDE VAL2 BSM* FCAM		
Register Used	E register is not restored.		
Allowed Usage	Foreground/background		

Note

This routine maintains compatibility with other programs that use FCAM. The machine language instruction CAM may be used with floating point numbers.

3.62 LOAD **Reference** Location SYXVEC + 61Description This routine loads files into memory from the specified IO device and makes entries into MACTAB. It can be called from either foreground or background. If the loading device is a disk and the file is a test program, the file is not loaded into memory unless there is enough room to load completely. However, the entry is still made in MACTAB. **Input Parameters** A and E registers contain six-character file names. BSM address + 1 contains the expected file type. 14B to 40B system overlay file codes test program 76B 75B module test program 74B string or any file without a header ALLINK overlay 77B ALLINK overlay that must remain fixed in 71B - 1 any one of above type - 2 75 or 76 and KEEP BSM address + 2 contains the loading device code. 0 default loading device 2 magnetic tape unit 1 3 magnetic tape unit 2 5 disk 6 CLI BSM address + 3 contains file expansion size in words. **Output Parameters** start address of the file loaded in memory Χ7 MACTAB pointer where the entry is made X5 error code for error return А A error code from \$IOCS if positive error message if negative: 'PARM' Illegal loading device code 'SIZE' Insufficient room in MACTAB → 'TYPE' Wrong file type 'NAME' File not found Return BSM address + 4 error return BSM address + 5 normal return

	DLD BSM* DATA DATA DATA	file name LOAD file type device code expansion size	if -1 or 0, use word 6 if 0, use this word		
	DATA 	job number	error return normal return		
Registers Used	None re	stored			
Allowed Usage	Foregro	Foreground/background			
3.63 DELFIL					
Reference Location	SYXVE	SYXVEC + 62			
Description	For syst	tem use only.			
3.64 RELOV					
Reference Location	SYXVEC + 63				
Description	For system use only.				
3.65 ATTA					
Reference Location	SYXVE	C + 64			
Description	This routine attaches a file to a station or makes it busy. Before the overlay starts collecting data for a station or starts interactive process with a station, ATTA should be called. The attached programs/sta- tions are indicated in the NAME command output. Calling ATTA prevents autoreleasing in a disk-based system. See DTTA for detaching.				
Input Parameters	bao to is u	ekground and foreg	the file to be attached (at ground entry points X5 is set overlay). If MACTAB pointer FIL subroutine to locate the		
		•	1, 2, or 3) to attach makes overlay busy.		

Output Parameters	None		
Return	BSM address + 1		
Calling Sequence			
	LDX* X5,SAVX5 SAVX5 contains MACTAB LDA STAT pointer BSM* ATTA		
Register Used	A is not restored.		
Allowed Usage	Foreground/background		
3.66 DTTA			
Reference Location	SYXVEC + 65		
Description	This routine detaches a file from a station. See ATTA for attaching.		
Input Parameters	X5 MACTAB pointer of the file to be detached (at background and foreground entry points, X5 is already set).		
	A logical station ID (0, 1, 2, 3) for station related file; 4 to clear busy.		
Output Parameters	None		
Return	BSM address + 1		
Calling Sequence			
	LDX* X5,SAVX5 LDA STAT BSM* DTTA		
Register Used	A is not restored.		
Allowed Usage	Foreground/background		

3.67 PAGTP

Reference Location SYXVEC + 66 Description This routine reads a test program into memory in pages during testing. If the test program is currently in memory, the required block is read into the same memory area. If it is not in memory (bumped) due to other programs being released or loaded, it allocates the new test program area by releasing inactive programs and by bumping other test programs before it loads the test program. **Input Parameters** Α current instruction number Χ5 the pointer to MACTAB for the test program **Output Parameters** X5 points to MACTAB for test program BSM address + 1 normal return Return No return if error. Terminal errors: 12 not enough memory space to page 44 I/O error during paging **Calling Sequence** LXA X5 = address of MACTABX5 instruction pointer LDA TIP, TP BSM* PAGETP normal return ----**Routines Used** \$IOCS, ADJMEM E is not restored. **Register Used** Allowed Usage Foreground only 3.68 FGBGWT **Reference** Location SYXVEC + 67Description Reserved for system use. 3.69 FGBGH **Reference** Location SYXVEC + 68 Description Reserved for system use.

3.70 FINDVL	
Reference Location	SYXVEC + 69 Reserved for system use only.
Description	This routine converts a block or variable number of a variable, array, or global into the absolute location of the variable. The address is in the A register on exit. Internal cells are altered for use by ARITH which calls the routine when a statement references a variable. BNO contains the block number, VNO contains the variable number, and VLOC contains the absolute address.
Input Parameter	A contains the block or variable number. Bits 12 through 10 contain the block number, and bits 9 to 0 contain the variable number.
Output Parameter	A contains address of the variable.
Return	BSM address + 1
Calling Sequence	
	BSM* FINDVL
Routines Used	None
Registers Used	X7 and E registers are not restored.
Allowed Usage	Foreground or background at a pause
3.71 FGIO	
Reference Location	SYXVEC + 70
Description	This routine does I/O from foreground. Prior to call- ing routine, the device must have been opened and set up by calling FGOH. This routine is used to output the data to the device used by DATALOG or FACTOR. If the MON button is depressed, out- put is suppressed.
Input Parameters	A IOATAB address returned from FGOH call. X1 address of IOCS DCB
Output Parameters	None

Return	BSM address + 1 end of file on input BSM address + 2 normal return			
	Error condition:			
	The control branches to the terminal error processor if an error condition occurs. No return is made to the caller in this case.			
	Terminal Error			
	40 I/O error 45 Device is not opened			
Calling Sequence				
	LDAI/Odata from FGOH (BSM + 1)LDXX1, DCBBSM*FGIONOP*EOF returnnormal return			
Routines Used	\$IOCS, ERRCNV			
Registers Used	A and E are not restored, X1 (SP) is restored to the SVT pointer.			
Allowed Usage	Foreground only			
3.72 DMASTR				
Reference Location	SYXVEC + 71			
Description	This routine starts DMA and gives control to the back- ground. All interrupt bits are cleared, saving any enable bits, then the trap (bit 4), fail (bit 6), and reset (bit 12) interrupt enable bits are set in the status register. Bits 11 and 10 of the mode registers are cleared and bit 9 is set to start DMA. WAIT is called to give background control until an interrupt takes place.			
Input Parameters	None			
Output Parameters	None			
Return	BSM address + 1			
	If tester reset is pressed while background has control, there is no return to the caller.			

BSM* DMASTR

DWAIT is called, and calls WAIT.

The A register is not restored.

Routines Used

Registers Used

Allowed Usage

Foreground

SYXVEC + 72

3.73 FGOH

Reference Location

Description

This subroutine keeps track of I/O device usage by stations. If the device is a disk, magnetic tape, or communication link, the device should open by command: OPEN. It opens all other devices if it has not been used before. It keeps track of the type of output issued by using the header code. When it is the first use of the current I/O since the beginning of the test, the standard station header is output before it returns to the caller.

Input Parameters

- A device code in bits 3 to 0.
 - 0 PID/POD of the current station 1 TTK/TTP
 - 2 MTR1/MTW1
 - 3 MTR2/MTW2
 - 4 CR/LP
 - 5 DIF/DOF
 - 6 CLO (CLI is illegal)
 - 7 VP2/VK2
 - 8 MIF/MOF

Bit 23 must be set to 1 for input device.

E current line header code in bits 3 to 0.

- override output of station header
 datalog trip
 datalog measure/DCT
 datalog FCT
 datalog PPM memory fail
 datalog PPM data extension
 FACTOR write/FACTOR pause
 - 13 to 15 Reserved for ALLINK generated headers

X2 TVT address of the station

Output Parameters	BSM address + 1 contains the device pointer required by FGIO. It is the contents of the device variable in station global table such as TPOD or TLP (see the description in TVT table description).	
	Bit 22 set to 1 indicates the required for this device.	hat binary formatting is
Return	BSM address + 2	
	The current output is not or the output requires bina	the same type as the last one ary format.
	BSM address + 3	
	The current output is not and needs a line header (D output).	the same type as the last one Datalog FCT after DCT
	BSM address + 4	
	The current output is the since the beginning of the header has been output.	first output to this device test, hence, the station
	Error condition:	
	If the device is a disk, magnetic tape, or communication link, and it has not been opened by the command OPEN or SET, then the control branches to terminal error 42.	
	If the device code is inval terminal error 43.	id, the control branches to
Calling Sequence		
ΙΟΡΤ	LDA device code LDE header code BSM* FGOH DATA 0	Device pointer put in here No header change return Header change return
		First output return
Routines Used	GTTDV, FGOPEN, HEADER	
Registers Used	A and E are not restored. X1 (SP) is restored to SVT pointer.	
Allowed Usage	Foreground only	

Reference Location

Description:

SYXVEC + 73

This routine initiates a functional test by writing the contents of the A register on entry to SAMA. The user should enable the clock timeout interrupt and write the clock register before entry if a timeout is required (MATCH or EXT). This routine then enables the FCT interrupt (set bit 6 SR), and enables the tester busy interrupt (set bit 16, reset bit 17 SR). Then SAMA is written. Generally, WWAIT should be called following the call to ENBTST to pass control to the background.

A must contain the data to be written to SAMA. Bit 0 must be set to begin testing.

Output Parameters

Input Parameters:

Return

Calling Sequence

LDA SAMA data

ENBTST

WWAIT

A and E registers are not restored.

BSM address +1

None

BSM*

BSM*

Routine Used

ENTBSY is called to enable the tester busy interrupt.

Registers Used

Allowed Usage

3.75 WWAIT

Reference Location

SYXVEC + 74

Foreground

Description

This routine turns control over to the background until the tester busy flag set by ENBTST or ENTBSY is reset.

Input Parameters	None
Output Parameters	None

Return

BSM address +1

If WWAIT is called by a foreground program and tester reset is pressed, there is no return to the caller. If WWAIT is called by a background program, reset causes control to be returned to the caller. In this case, bit 10 to 13 of RSTTSC (GLOVAR + 106) indicates that reset was pressed. The program should check for reset following a call to WWAIT. In most cases when the station is reset, the background program should exit.

Calling Sequence

SAMA data	
ENBTST	
WWAIT	
	ENBTST

DWAIT is called and calls WAIT.

Registers Used All registers are restored.

Allowed Usage

Routines Used

3.76 ADRXLA

Reference Location

SYXVEC + 75

Description

This routine translates the relative address of a word in a file into an absolute address of the word in a memory buffer. If the word is not currently in memory, the current buffer contents are written back to the file (if its contents have been modified) and a new portion of the file is read into the buffer.

Foreground/background overlays using the tester

The current contents of the buffer can be written back to the file by calling with a relative address of -1.

Input Parameters

X6 I/O assignment table pointer

- X7 pointer to three-word DCB for memory buffer word 0 0 word 1 buffer address word 2 buffer word count
- A relative address of word in file (or -1 to force the current buffer contents to be written back to file)

Output Parameters

- A address or word in memory buffer (relative to current relocation register)
- X6,X7 unchanged

Return

BSM address +1 on error A = 0 address error A = non zero \$IOCS error code BSM address +2 for normal return

Calling Sequence

LDXX6, I/O assignment table pointer LDX X7, buffer DCB LDA word relative address in file BSM* ADRXLA BRU ERROR error return normal return ----**Routines** Used \$IOCS **Registers** Used A, X6, X7 Allowed Usage Foreground/background 3.77 INTERP **Reference** Location SYXVEC + 76 This call accesses the THD interpreter for processing Description a data code in the 500 or 600 series. Any tester function desired that directly corresponds to a FACTOR code may be done by a call to INTERP. Care must be taken to return any system cells used to their previous state. For example, if a measurement is done by a call to INTERP, STHC records the measurement and any pass/fail information. This triggers the datalogger and lights the pass/fail lamps unless STHC is restored to its previous state before an exit of the user overlay. The IND register should be restored by an overlay calling INTERP. Input Parameters X1 pointer to SVT table X2 pointer to TVT table opcode in acceptable form Α BSM address +1 IND has not been incremented Return BSM address +2 IND has been incremented Calling Sequence opcode LDABSM* INTERP NOP 0 ___ return

Routines Used	Any interpreter routines
Registers Used	Depends on opcode
Allowed Usage	Foreground
3.78 ENTBSY	
3.78 ENTBSY	
Reference Location	SYXVEC + 77
Description	This routine enables the tester busy complete inter- rupt and turns off the tester busy interrupt bit (SR bit 16 on, bit 17 off). A flag is set to indicate that the interrupt is enabled. The flag is reset by the tester busy interrupt routine. Either before or after the call, some activity must be done to generate a tester busy interrupt. This routine then enables the interrupt. Generally WWAIT is called, following the call to ENTBSY, to wait for completion in the background. If the interrupt has already occurred WWAIT does not pass control to the background, since this would cause a hang condition.
Input Parameters	None
Output Parameters	None
Return	BSM address +1
Calling Sequence	Initiate activity which generates interrupt
	BSM* ENTBSY BSM* WWAIT
Routines Used	None
Registers Used	The A register is restored.
Allowed Usage	Foreground
3.79 RSOVC	
Reference Location	SYXVEC + 78
Description	This routine calls foreground overlay at the reset entry point if an overlay was running at the time the reset was pressed. Reserved for system use.
Input Parameters	None
Output Parameters	None

Return

BSM address + 1

Calling Sequence

BSM* RSOVC

All registers and state switches are restored.

Registers Used

Allowed Usage Foreground only

3.80 STALL

Reference Location

Description

SYXVEC + 79

Reserved for system use.

BSM

3.81 UPDATE

Reference Location

SYXVEC + 80

Description

This subroutine creates, assigns, or deletes memory or disk files. Before a file is created, the remaining data in the block is written out to working storage if a block buffer has been specified and the current block pointer in IOATAB is non-zero. The working storage file is closed after the file is created. Word 10 of the IOATAB entry specifies the number of words used. If word 10 of the IOATAB entry is zero, assigning a space rather than creating a file is assumed. The A register must contain the assigning size.

The second option changes the file name on disk or in memory so that the file becomes obsolete. The first character of the obsolete file name is changed to an ampersand.

Input Parameters

address + 1 contains the option code. 0 create

1 delete (name change)

BSM address + 2 and 3 contain the file name left justified.

For create,

BSM address + 4 contains the file type. Word must never be zero. Bits 23 through 6 are reserved for future expansion.

14B to 30B	system overlays
71B	ALLINK/Overlay
72B	DATA
73B	OBJECT
74B	string
75B	module test
76B	test plans
77B	ALLINK/overlay

If the device is a disk, the file type is mapped to disk file type as follows:

14B to 30B, 77B	coreimage
72B,75B, 76B	data
73B	OBJECT
74B	string

BSM address + 3, for delete option only, contains the device code.

10B MIF 5B DIF

X6 IOATAB pointer of WS (create only)A number of words to assign for zero word used

Output Parameters

A Contains the \$10CS error code for error return.

- 2 the device is not the memory or disk or the file is not a working storage
- 9 insufficient block size or file overflow
- 8 invalid I/O assignment
- 14 MACTAB overflow for memory file
- 16 duplicate file

Return

BSM address + 4 error return BSM address + 5 normal return

For create:			
	LDX* BSM* DATA DATA DATA BRU	X6, IOAPT UPDATE 0 namel,name2 filetype ERROR	normal return
ERROR	BSM* NOP	ERRCNV 0	
For delete:			
ERROR	BSM* DATA DATA DATA BRU BSM* NOP	UPDATE l namel,name2 device code (5B ERROR ERCNV 0	/10B) normal return
Routines Used	\$IOCS, A	DJMEM, SCNFIL	, STALL
Registers Used	A and E r	registers are not r	estored.
Allowed Usage	Foreground/background		
3.82 PUTENG			
Reference Location	SYXVEC	+ 81	
Description	This subroutine converts a floating point number to printing format, a four-digit integer, engineering for- mat, or scientific format and places it in the buffer.		
Input Parameters	X7 st by E Fo Fo	PUTC, PUTD) or engineering for or scientific form f the DCB points	three-word DCB (used mat, use letter.

٠

Converted number in the buffer.

For E = 0:

If the floating point number is an integer and the magnitude is between - 999 and 9999, the format is is - nnn to nnnn.

For all other numbers, the format = $\pm n.nnnE\pm nn$. The decimal point moves left or right in order to make the characteristic multiple of three.

For E = letter:

If the floating point number is an integer and the magnitude is between -999 and +9999 the format is $-nnn\pm m1$ to $nnnn\pm m1$. Where m is the magnitude and 1 is the letter entered in the E register.

For all other numbers, the format is $\pm n.nnn \pm ml$. The decimal moves to the left or right so that the magnitude represents a multiple of three.

The magnitude is represented as follows:

Т	Tera	E+12	Μ	Milli	E-3
G	Giga	E+9	U	Micro	E-6
Μ	Mega	E+6	Ν	Nano	E-9
Κ	Kilo	E+3	Р	Pico	E-12
			F	Femto	E-15

Return

BSM address +1

Calling Sequence

LDA	FPNUM
LDX	X7, DCB
BSM*	PUTENG

Rout	ine U	Ised
------	-------	------

PUTD, PUTC, CONV, FFIXS A, E, X1, SW7 are not restored.

Registers Used

*Allowed Usage

Foreground/background

3.83 P	UTA	
Reference Loca	ation	SYXVEC + 82
Description		This routine converts a binary number to either octal or decimal and places it in the output buffer. Either PUTO or PUTD is used. The routine outputs decimal if the system is configured for decimal output by bit 19 of M1NIT set to zero. Leading zeros are suppresed. If M1NIT is set to 1 the output is octal. Leading zeros are not suppressed for octal output. This routine is used throughout the system for outputting local memory addresses.
Input Paramete	rs	 A positive binary X1 number of digits X7 PMF pointer
Output Paramet	ters	0 and X7 are adjusted to point to the next character position.
Return		BSM address + 1
Calling Sequence	e	
		LDX X1, length LDA binary number LDX X7, DCB BSM* PUTA
Routines Used		PUTO or PUTD
Registers Used		A and X1 are not restored.
Allowed Usage		Foreground/background
3.84 B	GCHK	
Reference Loca	ation	SYXVEC + 83
Description		This subroutine checks for background activity. There are two options. The first checks for no activity, by testing from foreground. The other option checks for more than one background task. It allows testing from a background task to see if there is any other background task active.
Input Paramete	ers	 A 0 Check for no background only 1 Check for one background 2 Check for no overlay 3 Check for one overlay only
		3-70

Output Parameters	None
Return	BSM address + 1 BSM address + 2
Calling Sequence	LDA check code BSM* BGCHK
Routine Used	None
Registers Used	A and E are used and not restored.
Allowed Usage	Foreground/background
3.85 CALLMOD	
Reference Location	SYXVEC + 85
Description	This subroutine provides a means to call another overlay module from an overlay module.
	When the overlay calls a module using this routine, CPU control is transferred to the module at the mod- ule entry point after the relocation register is set to the address specified by the calling module. It returns to the calling module when the called module returns control to CALLMOD.
	The sequence that occurs when the call to CALLMOD is executed starts at the module entry point in the module. First, the parameter following the call is retrieved and the return address is incremented. The address field of the parameter is used as an index to the module linkage table. The true BSM or BRU instruction is extracted from the linkage table and stored in the program execution path to be executed later.
Input Parameters	A register contains the starting address of the called module in absolute address.
	All other registers and switches are transferred to the calling module as they are.
Output Parameters	All registers and switches returned from the called module are transferred back to the calling module.
Return	Defined by modules.

LDA BSM*	module address CALLMOD
None	
A is unde	fined on return.
Foreground/background	
	BSM* None A is unde

Rules for module programs callable by CALLMOD:

- The standard overlay header must be maintained.
- It is always called at the module entry point.
- Header word 8 is used to store the relocation register of the calling program.
- Header word 9 is used to store the return address of the calling program.
- Return to the calling module must be done through the module entry point.
- Header word 9 may be incremented to control the return address.

3.86 PUTB		
Reference Location	SYXVEC + 86	
Description	This subroutine converts a binary number to binary TRASCII and places it right justified in the buffer.	
Input Parameters	 A positive binary number X1 number of digits desired X7 DCB pointer 	
Output Parameters	0 and X7 are adjusted to point to the next character position.	
Return	BSM address + 1	
Calling Sequence		
DCB BUF	DATA 0,BUF,20 BSS 20 LDA binary number LDX X1,8 LDX X7,DCB BSM* PUTB	
Routines Used	A and X1 are not restored.	
Allowed Usage	Foreground/Background	

	3.87	PUTH			
	Reference Location		SYXVEC + 87		
	Description		This subroutine converts a binary number into hexadecimal TRASCII and places it in the buffer right justified.		
	Input Parame	eters		er of	binary number of digits desired nter
			SW7 set SW7 not s		do not suppress leading zeros suppress leading zeros
	Output Parar	neters	0 and X7 position.	are a	adjusted to point to the next character
	Return		BSM addr	ess +	+ 1
	Calling Sequence				
		DCB BUF	DATA BSS LDA LDX LDX BSM*	20 bina X1,	, DCB
	Routine Used	1	PUTC		
	Registers Used		A and X1 are not restored.		
	Allowed Usage		Foreground/Background		
	3.88	SAVENV			
	Reference Location		SYXVEC + 88		
	Description		Reserved	for i	interrupt system use.
	3.89	USVENV			
Reference Loc		ocation	SYXVEC	+ 89)
	Description		Reserved for interrupt system use.		

I/O Control System (\$IOCS)

4.1 \$IOCS

All I/O functions must be accomplished through \$IOCS to preserve foreground/ background configuration. \$IOCS is closely tied to the task scheduler and is a reentrant routine (it can be called any number of times at any point by any number of tasks).

4.1.1 \$IOCS Operation

\$IOCS operation is based on the following principles:

- Devices are available to any program on a first-come-first-served basis, except for the keyboard (TTK), which can be overridden by the TTP.
- Devices on the same channel can be active only one at a time. One more request can be accepted while the channel is busy and is waiting for the channel release by the first request.
- Device protection on a channel is on a function basis. This means that a channel is busy while processing a function such as reading a record or rewinding. It does not prohibit other channels from being activated.
- One program may use any number of devices or may use the same device for two or more different purposes. For example, read a file from the disk and write another file on the disk.
- I/O completion is defined as having one of the following conditions fulfilled:

In an input operation, a terminating character is received. In an output operation, the end of buffer is reached. A terminating interrupt from a device is obtained. • The character set used internally by the system is in TRASCII code. \$IOCS makes conversion just prior to sending it out or after reading it in if the external data mode is different from the internal mode in normal mode. (See ASCII control mode)

TTK/VK2	ASCII TRASCII
TTP, LP, VP2	TRASCII ASCII
CR	BCD TRASCII
MTR1, MTR2	No conversion
MTW1, MTW2	No conversion
DIF, DOF, MIF, MOF	No conversion
CLI (binary read)	No conversion
CLI (alpha read)	ASCII TRASCII
CLO (binary write)	No conversion
CLO (alpha write)	TRASCII ASCII

- All read or write requests are initiated by OPEN and terminated by CLOSE.
- Data on all devices are read or written sequentially forward from the beginning of the file. Random access on a disk file must be controlled by the user, using the I/O assignment table provided.
- All I/O operations are considered WAIT FOR COMPLETION unless otherwise specified.
- A maximum of two requests on the same channel can be entered. If the third request is the same file as the one pending (same device, same program, same file), the last request overrides the one pending unless otherwise specified.
- If a function requested is meaningless to the device, it is treated as NOP (return as if completed); for example, TOP-OF-FORM on magnetic tape.
- Read from TTK always echoes the character to TTP in normal mode.
- ASCII control mode for VKT:

Read Data characters are echoed to screen and are packed into buffer in TRASCII (four characters per word). As soon as a control character is sensed, it is placed in the last word of buffer + 1 right justified and control is returned to the caller.

Write Output is specified by the character count. Characters are stored in ASCII (three characters/word) left justified.

4.1.2 Devices Handled by \$IOCS

Device	Mnemonic	Code	Transfer Mode
VKT keyboard/ printer Magnetic tape	TTK/TTP	1	Character by character interrupt
unit 1 Magnetic tape	MTR1/MTW1	2	DMA
unit 2	MTR2/MTW2	3	DMA
Card reader	CR	4	DMA
Line printer	LP	4	Block transfer through hardware buffer
Disk file	DIF/DOF	5	DMA
Com link to Integrator	CLI/CLO	6	Character by character link to interrupt
VKT2	VK2/VP2	7	Character by character interrupt
Memory file	MIF/MOF	8	Word by word move

4.1.3 Functions Performed by \$IOCS

Code	Function
0	Open (request to reserve the usage of a device)
1 .	Read/write a record
2	Kill input (TTK/CLI only)/clear VKT screen (foreground and background)
3	Top of form on line printer
4	Unformatted write (write TTP without CR/LF)/file transmit (create to CLO)
5	Skip file on magnetic tape/file end to CLI
6	Rewind magnetic tape/file end (process) to CLO
7	Write EOF on magnetic tape/file end (purge) to CLO
10	Status check on magnetic tape and disk
11	Read without transfer on magnetic tape and disk for verification/ file end (hold) to CLO
12	Close (release the usage of a device)
13	File request to CLI/magnetic tape record skip
14	Control message to CLO/file page from DIF/MIF
15	Disconnect CLI/CLO/VKT screen transmit
16	File transmit (ADD)
17	Reserved

.

4.1.4 Error Detected by \$IOCS

An error code is returned in the A register upon error exit from \$IOCS.

Code	Description
1	An end of file has been reached on a read operation
2	An invalid device code is used for the function or device not available
3	An invalid function code is in the DCT
4	Parity error on a read magnetic tape/CLI/DIF read error on card reader
5	File not found on DIF/DOF/CLI
6	Undefined magnetic tape error/unrecoverable CL error
7	Device busy (both active and pending occupied)
8	Invalid I/O assignment table address is used
9	Insufficient block size or file overflow for DOF/MOF
10	No write ring on magnetic tape
11	CLIO error
12	I/O table overflow
13	Excess word count on read
14	Disk working storage already in use
15	MACTAB overflow for MOF
777	Integrator/RTE error nn

4.1.5 Definition of End-of-File

While reading a file, \$IOCS recognizes an end of file when the following condition occurs:

Device	Condition
TTK/VK2	// characters in column 1 and 2 and no other character in the record
MTR1/MTR2	Sensing a file mark
CR	<pre>// characters in column 1 and 2 and no other character on the card</pre>
DIF	Number of words so far reaches the file size specified in the directory
CLI	Sensing a file end message
MIF	Number of words so far reaches the file size specified in MACTAB

4.1.6 Definition of End of Record

While reading a record, \$IOCS recognizes an end of record when the following condition occurs.

Device	Condition
TTK/VK2 MTR1/MTR2 CR DIF, MIF	Sensing a carriage return character Sensing a record mark Sensing a completion interrupt
not blocked blocked-source blocked-variable size-data blocked-fixed size-data CLI	Sensing a completion interrupt Sensing a 77B character Number of words obtained = record size Specified in the first record word (Bit 7 to 0) Number of words obtained = record size Specified in the directory Sensing ETX during message type 3 transfer

4.1.7 General Calling Sequence

All read and write functions must be initiated by an OPEN call and terminated by a CLOSE call. If the OPEN is successful, a pointer to I/O assignment table is returned to the calling program. This pointer must be set to X6 for all read or write in that device.

Three or four other parameters must be passed to \$IOCS. The location of the first parameter must be specified in index register X1 and all other parameters must be in consecutive memory locations.

Parameter 1	Contains input/output indication, function, device code,
	and other control information particular to the function
Parameter 2	Contains the address of the buffer
Parameter 3	Contains the buffer size (number of words to be transferred)
Parameter 4	Contains the job number (OPEN call only)
Parameter 5, 6	Contains the file name (OPEN call only)

Example of general calling sequence:

OPNDCB	DATA DATA DATA DATA DATA	XXXXXXXXB BLKBUF 48 0 0,0	OPEN KEY WORD BLOCK BUFFER ADDR BUFFER SIZE CURRENT SIZE FILE NAME
4.			
RDCB	DATA DATA DATA	XXXXXXXXB INBUF 20	READ KEY WORD RECORD BUFFER ADDR RECORD SIZE
D. G. Z. G. G. D.	 		
RCLOSE	DATA • •	52000000B	CLOSE KEY WORD
	LDX	X1,OPNDCB	
	BSM*	\$IOCS	OPEN CALL
	BRU	OPERR	ERROR RETURN
	STX	X6,IOPTR	SAVE IOATAB PTR
	~		
	•		
	•		
	•		
	LDX*	X6,IOPTR	GET IOATAB PTR
	LDX	X1, RDCB	
	BSM*	\$IOCS	READ CALL
	BRU	RDERR	
	•		
	-		
	• LDX*	VC IODTD	GET IOATAB PTR
		X6,IOPTR	GEI IVATAB PIK
	LDX	X1,RCLOSE	
	BSM*	\$IOCS	
	BRU	ERROR	
	1110	11010010	

4.1.8 Mechanism

\$IOCS is divided into three parts: initializing I/O request, driving I/O device, and terminating I/O request.

1. Initialization of I/O request. This occurs at the time of OPEN request and the majority of work is internal housekeeping. Unless the device is a communication link or disk, the hardware is not involved at this time. \$IOCS assigns the device to the requesting program by entering necessary information into the I/O assignment table and returning the entry pointer to the program to be used for read/write operation.

- 2. Driving I/O device. This part of \$IOCS is divided into three sections: I/O initialization, interrupt service, and I/O completion. Though functions performed in these sections differ depending on the device type, the following functions are common to all devices:
 - Decoding of keywords
 - Stacking the request as pending if the device is not available
 - Setting up the device into a ready state by sending out control functions (for example, an ESCAPE code to clear the VKT interface circuit before reading or writing to it)
 - Turning on the interrupt enable flip-flop on a selected device (PON) and turning on the CPU interrupt system (IEN) after setting up the device for the operation
- 3. Termination of I/O Request. Completion of I/O function is always detected in an interrupt service. When this condition occurs, a scheduler flag for the channel is set so that the control returns to the end of channel process. If another request is pending for the channel, it is started immediately before returning to the current request.

4.1.9 I/O Device Formats

4.1.9.1 VKT DRIVER

A character is transferred between the CPU and an I/O device through the accumulator bus. Each character transfer is accompanied by an interrupt. The process continues until, on output, the buffer has been exhausted, or on input, the buffer has been filled or a terminating character (carriage return) has been received. On output, a line feed and a carriage return, characters (12B, 15B) are sent out at the end of the buffer transfer.

4.1.9.2 LINE PRINTER

Data characters are written to the printer hardware buffer until the hardware buffer is full. The size of the buffer differs depending on the printer model.

Buffer Size	Model	Columns
20 characters	Data Products	80
24 characters	Data Products	132
132 characters	Centronics/Printronix	132

If the output message exceeds the length of the respective line printer hardware buffer, it can be printed as a multiple hardware buffer dump. An interrupt occurs at the end of a hardware buffer dump (after printing one buffer of characters).

4.1.9.3 MAGNETIC TAPE

A block of data is transferred between the CPU memory buffer and the tape in DMA mode. Between 6 and 16 thousand words can be transferred in one read or write operation. At the end of one transfer, an interrupt occurs. The status of the device can be obtained through the accumulator bus. The record gap is automatically written after each block write. At the end of a file, a file mark is sent as a file terminator. Up to 10 retries are made on parity error.

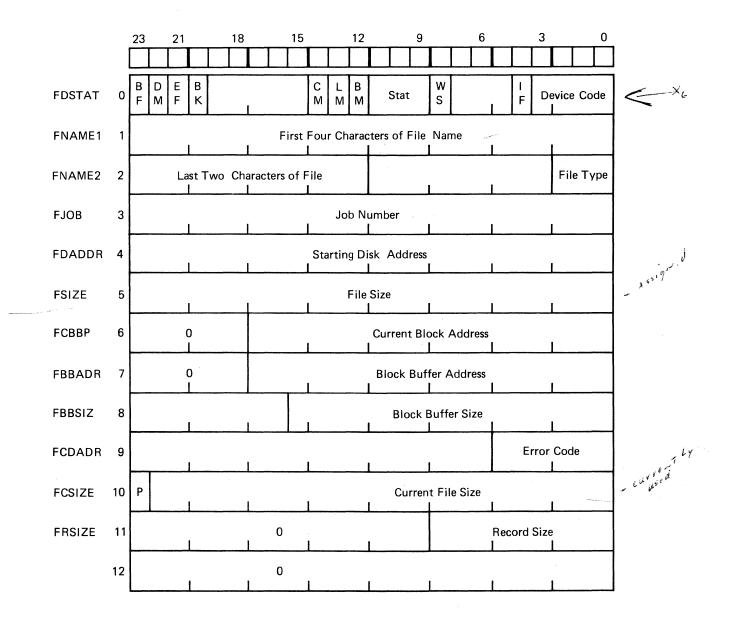
4.1.9.4 CARD READER

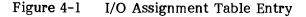
Data characters are transferred in BCD format from the card reader to the CPU memory buffer in DMA mode. One to 20 words can be transferred at one read. At the end of one transfer, an interrupt occurs. The card reader status can be obtained through the accumulator bus.

4.1.9.5 DISK

A block of data is transferred between the CPU memory buffer and disk in DMA mode. A block must be in multiples of 48 words; the maximum is 64 thousand words. At the end of one transfer an interrupt occurs. The disk status can be read through the accumulator bus. Up to 10 retries are made on parity error. Verification is applied immediately after each write operation.

\$IOCS provides functions similar to INREC/OUTREC if the user provides a block buffer that is different from the record buffer.


- On input \$IOCS reads one or more sectors into the block buffer and transfers to one record at a time at each read request.
- On output At each write request, \$IOCS places a record into the block buffer and transfers the block when it becomes full or at CLOSE request.


4.1.9.6 COMMUNICATION LINK

Each record is preceded and followed by line protocol. Each character, once the record is initiated, is accompanied by an interrupt. A character is transferred between the CPU and the I/O channel through the accumulator bus. The process continues until, on output, the buffer has been exhausted, or on input, the buffer has been filled or a terminating character (ETX) has been received. There is a 112-character buffer to accumulate a note message which could be received at any point in time.

4.2 I/O ASSIGNMENT TABLE (IOATAB)

The I/O assignment table consists of 20 entries. Each entry (figure 4-1) contains 13 words, for a total of 260 words. The first six words are reserved for use by system. Word formats are described in table 4-1.

4-9

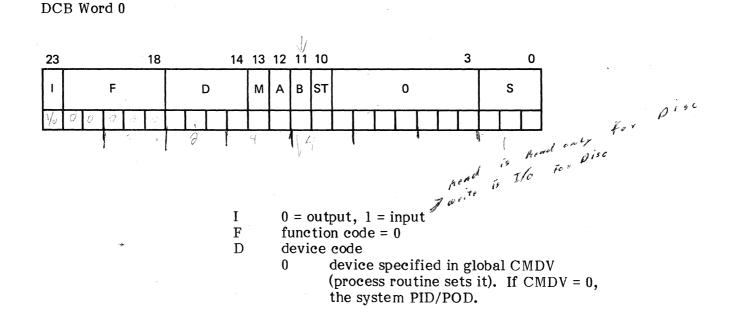
Table 4-1Word Formats

Word 0: FDSTAT	0 Entry not used. Entry is used when set to 1.
BS (Bit 23)	I/O is active or pending. Turned on when a request with an immediate return is accepted and cleared when that I/O is completed.
DM (Bit 22)	Binary data format; 0 = ASCII.
EF (Bit 21)	EOF has occurred on CLI. It signals CLOSE function MSG TYPE 5 instead of KILL input.
BK (Bit 20)	Auto blocking by \$IOCS requested for disk and memory files. Transfer one record at a time to or from the block buffer.
CM (Bit 14)	PID is a command file and the last command has not been completed. Cleared as soon as the command is completed.
LM (Bit 13)	Lock out a command from being entered from this PID.
BM (Bit 12)	Block has been modifed. Used by ADRXLA.
WS (Bit 8)	Working storage I/O.
IF (Bit 4)	I/O is input.
	Dévice Code
(Bits 3 to 0)	 VK1/VP1 MTR1/MTW1 MTR2/MTW2 CR/LP DIF/DOF CLI/CLO VK2/VP2 MIF/MOF
Word 1: FNAME1	First four characters of the file name in TRASCII/ MACTAB address for MIF/MOF.

Word 2: FNAME2	
Bit 23 to 12	Last two characters of the file name in TRASCII.
Bit 2 to 0	File type 000 Source 001 Fixed size data file 010 Object 011 Coreimage 101 Variable length data file
Word 3: FJOB	Job number in TRASCII.
Word 4: FDADDR	Starting disk address of a disk file in binary sector/starting memory address of a memory file.
Word 5: FSIZE	Number of words used for input. Number of words available for output until it is closed.
Word 6: FCBBP	Current block address (0 through FBBSIZ) relative to the first word of the block. Used by auto blocking and close. Word count for data files; character count for source files.
Word 7: FBBADR	Block buffer address in the user's program.
Word 8: FBBSIZ	Block buffer size in words; must be in multiples of 48 words for disk files.
Word 9: FCDADR	Error code detected during immediate return I/O; otherwise, 0.
Word 10: FCSIZE	Number of words already read or written; updated at the end of each read or write. If auto blocking is used, it corresponds with the block data rather than the record data so far processed.
P (Bit 23)	When auto blocking with a partial buffer, bit 23 is also set.
Word 11: FRSIZ Bit 9 to 0	Record size for fixed-length data files. At open time, set to the size in the disk directory or 18 words. At close, written back to disk directory.

Table 4-1 Word Formats (Continued)

.


885

OPEN CALL TO \$IOCS

4.3

Purpose To initialize read or write operation. Description \$IOCS checks for the availability of the device and assigns an entry in I/O usage assignment table. Depending on the device type, the following additional function is performed: Device **Function Performed Error** Condition TTK/TTP Status check Not available LP Status check Not available CR Status check Not available MTR Status check Not available Not available or write ring off MTW Status check DIF/DOF Directory search Not available or file not found Open at the Integrator Not available or file not found CLI CLO Open at the Integrator Not available or duplicate file Status check VK2/VP2 Not available MIF/MOF MACTAB search File not found X1 address of six-word DCB **Entry Parameters**

Globals LOTNUM (three words), DEVNUM (two words), CATGRY (three words), contains file identification if the device is a CLI or CLO and the station identification in DCB word 0 is not zero. These variables are ignored for all other cases.

	D	<pre>device code (continued) 1 TTK/TTP 2 MTR1/MTW1 3 MTR2/MTW2 4 CR/LP 5 DIF/DOF 6 CLI/CLO 7 VK2/VP2 8 MIF/MOF</pre>
	М	Data transfer mode 0 Alpha - Most X Fer to Nisc 1 Binary -1 Auto block requested - down't Mour to work commu-
	В	1 Auto block requested - donot Hour to word count 4 bout word count 0 No blocking Hunys For Bisc Ile
	Α	l Append open (CLO only); otherwise 0
	ST	Strobed download for communication link (ST bit must also be set on each read)
	S	 Station identification Non-station related background function Station 1 Station 2 Station 3 Station 4
DCB Word 1	Block	buffer address or 0.
DCB Word 2	Block	buffer size in multiples of 48 words or 0.
The block buffer supplied in MIF/MOF, or MTR/MTW and		is used only if the device is DIF/DOF, 11 of DCB word $0 = 1$.

Input Read a block from disk if the block buffer is empty. Transfer one record from the block buffer to the record buffer.

Output Move a record from the record buffer to the block buffer. Write a block to the disk if the block is full.

The record buffer is supplied at the time of read or write call to \$IOCS. Automatic blocking is provided to file type 000 (source), 001 (fixed size data), and 101 (variable size). For all other devices and file types records are transferred directly between the record buffer and the device one record at a time.

If bit 11 of DCB word 0 is zero and the device is a disk, it is assumed that the user takes care of blocking in his own program.

DCB Word 3	Job number in TRASCII 0 = current job in global, JOB -1 = system job It is used for disk files only.
DCB Word 4, 5	Six-character file name for DIF, DOF, CLI, CLO, MIF, MOF.
DCB Word 4	-l implies the file to be opened is the disk or memory working storage.

Bits 2 to 0 of DCB word 5 must contain the file type if the file is a DOF/MOF working storage.

- 0 string
- 1 fixed size data
- 2 OBJ
- 3 coreimage
- 5 variable size data

Note

If the device is a system PID or POD, then no function is performed upon open call. The system PID or POD is opened at the time of processing SET COMMAND. It can be used by the user but the user is not able to physically open or close it.

Calling Sequence

ROPEN	DATA DATA DATA DATA	40XXXXXXB RBLBUF n 0,0,0	BLOCK BUFFER ADDRESS BLOCK BUFFER SIZE
WOPEN	DATA DATA DATA DATA	00XXXXXXB WBLBUF n 0,0,0	BLOCK BUFFER ADDRESS BLOCK BUFFER SIZE
	LDX BSM* BRU •	X1, ROPEN \$IOCS ROERR	-error return -normal return
	LDX BSM* BRU	X1,WOPEN \$IOCS WOERR	-error return -normal return

For normal return:

X6 The address of I/O assignment table for this device.

For error return:

- A register error code.
- 2 An invalid device code specified or device not available (no interface)
- 3 An invalid function code specified
- 4 Parity error during disk directory read or OPEN call to DP system
- 5 File not found for DIF, DOF, MIF, MOF
- 7 Device busy
- 9 Insufficient block size or memory space
- 10 No write ring on magnetic tape

11 CLIO error

- 12 I/O table overflow
- 14 Working storage already in use
- 15 MACTAB overflow for MOF

Purpose

4.4

Description

To initiate a read or write a record

If the device is a card reader or a magnetic tape, \$IOCS initiates a DMA record transfer. If the device is a TTK,TTP,CLI, or CLO, \$IOCS initiates record transfer in character-by-character interrupt mode. If the device is a disk, tape, or memory and the block buffer is provided. \$IOCS transfers a record between the record buffer and the block buffer. If the block buffer is full for output, \$IOCS moves the block to the disk; if the block is empty for input, \$IOCS reads the block from the disk. If the block buffer is not provided, \$IOCS initiates DMA transfer directly between disk and the user's read or write buffer. If the read/write is requested as ASCII-control-character mode, data characters (40B-137B) obtained are echoed and packed into buffer in TRASCII. A control character is placed right justified into the last word of buffer + 1 and \$IOCS exits to the caller. A prompting character (may be used to echo the previous character read) is output before read, if provided. Trailing blanks are not output.

Entry Parameter

X6 The address of I/O assignment table obtained from OPEN.

X1 The address of three-word DCB.

DCB Word 0

For read

23					18				14	13	12	11	10	8	3					0
		4	1							R	с	м	ѕт					Ρ		
1	0	0	0	0	1	0	0	0	0											

For write

23					18				14	13	12							0
			1							R	с				0			
0	0	0	0	0	1	0	0	0	0						Τ	Γ		

Where

R = Return type

- 1 Immediate return after initiating I/O or placing in the pending list.
- 0 Wait for I/O completion.

When the request is activated or placed in the pending list, bit 23 of the first word of I/O assignment table for the request is set to 1, indicating it is busy. When the requested function is completed, it is cleared to zero.

	C = 0	Normal mode ASCII control ch	aracter mode
	$M = 1 \\ 0$	Monitor commar All others	nd read only
	ST		d from communication t also be set on the open
	Р	A prompting cha	aracter in ASCII code
DCB Word 1	Starting	g address of reco	rd buffer
DCB Word 2			of words to be transferred), WRITE ASCII control mode
Calling Sequence			
RDCB	DATA DATA DATA	INBUF	RECORD SIZE
WDCB	DATA DATA DATA		NO. OF WORDS TO WRITE
	LDX* LDX BSM*	X6,IOTPI X1,RDCB \$IOCS	

BRU 	RDERR	error return normal return
LDX* LDX BSM* BRU 	X6,IOTPO X1,WDCB \$IOCS WRERR	error return normal return

Exit Parameters

For error return:

A register error code

1 end of input file

2 device off-line

4 parity error

6 unrecoverable hardware error

7 device busy

8 invalid I/O assignment address

9 file overflow for DOF or MOF

13 excess word count on read

For error 13, the E register contains the actual number of words read. Error 13 takes normal return rather than error return.

4.5 TERMINATE I/O--CLEAR SCREEN

Purpose

To terminate currently active I/O on TTK/TTP

Description

Entry Parameters

X6 The address of I/O assignment table or 0. If it is zero, the device must be specified in the parameter word 1.

\$IOCS clears the channel if the device is TTK or CLI. If the device is VKT screen, the screen is cleared.

X1 The address of one word DCB

DCB word 0

For input

23					18			14	13	12							0
		4	2		·	1	D		R				(כ			
1	0	0	0	1	0												

For output

23		_	18			14	13	12							0
	02				D		R				()			
0 0	0 0	1	0												

Where

D device code 0 device specified by X6 1 TTK/TTP 6 CLI 7 VK2/VP2 R return type

(See description in paragraph 4.4 READ/WRITE RECORD)

Calling Sequence

KILLIN	DATA	42XX0000B	
KILLOUT	DATA	02XX0000B	
	LDX* LDX BSM* BRU LDX* LDX BSM* BRU 	X6,IOTPI X1,KILLIN \$IOCS ERROR X6,IOTPO X1,KILLOUT \$IOCS ERROR	error return normal return error return normal return

Exit Parameters

For error return:

A register error code

- 2 device off-line
- 6 unrecoverable hardware error
- 7 device busy
- 8 invalid I/O assignment table address

4.6	TOP OF FOI	RM
Purpose		To advance to top-of-form on line printer
Description		This function is performed to the line printer only. If other devices are specified, it is a NOP.
Entry Param	eter	X6 Address of I/O assignment tableX1 Address of one word DCB

23	18		14	13							0
03		D		R				0			
00001	1										

D

Where

Device code

0 Device specified by X6

- 4 LP
- Return type (See paragraph 4.4 READ/WRITE RECORD for description) R

Calling Sequence:

TOF

DATA	03XXXXXXB	
LDX*	X6,IOTPO	
LDX	X1, TOF	
BSM*	\$IOCS	
NOP	*	ignore error return
		normal return

Exit Parameters

For error return:

A register error code

- 2 device off-line
- 7
- device busy invalid I/O assignment table address 8

4.7 UNFORMATTED ALPHA WRITE

Purpose	To initiate a write ASCII operation without trailing carriage return and line feed
Description	This function is used to write a message and wait for a response in the same line; for example, PIN NUM- BER = response entered here. Therefore, this function is provided to TTP only.
Entry Parameters	X6 The address of I/O assignment table X1 The address of three-word DCB

DCB Word 0

23					18			14	13							 	0	_
		0	4				0		R				()				
0	0	0	1	0	0													

Where	R Return type (see paragraph 4.4 READ/WRITE RECORD for description)									
DCB Word 1	Starting address of the output buffer									
DCB Word 2	Record s	ize (the number o	f words to be output)							
Calling Sequence										
WNCRLF	DATA DATA DATA LDX* LDX BSM* BRU 	040X0000B WRBUF n X6,IOTPO X1,WNCRLF \$IOCS ERROR	BUFFER ADDR RECORD SIZE error return normal return							
Exit Parameter	For error return: A register error code									

7 device busy8 invalid I/O assignment table address

SKIP A FILE MARK ON MAGNETIC TAPE

Purpose	To skip past an EOF mark on the tape.							
Description	The tape is moved until an EOF mark is skipped over.							
Entry Parameters	X6 The address of I/O assignment table or zero if the device is specified in the DCBX1 The address of one word DCB							

DCB Word 0

4.8

23	18		14	13	12						1	0	_
	45	D		R				()			N	
1 0	0 1 0 1									,			

Where

D Device code

0 device specified by X6

- 2 MTR1
- 3 MTR2
- R Return type (see paragraph 4.4 READ/WRITE RECORD for description)
- N 0 skip forward
 - 1 skip backward

Calling Sequence:

SKIPF	DATA	45XX000XB	
	LDX* LDX BSM* BRU	X6,IOTPI X1,SKIPF \$IOCS ERROR	error return normal return
Exit Parameters	For erro	or return:	

A register error code

2 device off-line

7 device busy

8 invalid I/O assignment table address

WRITE EOF MARK ON MAGNETIC TAPE

Purpose	To write a file terminator mark on a tape
Entry Parameter	 X1 Address of one-word DCB X6 Address of I/O assignment table or 0 for device override

23				18			14	13	12		 				
	0	7			1	D		R							
0 0	0	1	1	1											

Where

4.9

D device code

- 0 device specified by X6
- MTW1 2
- 3 MTW2
- Return type (See paragraph 4.4 READ/WRITE RECORD for description) R

Calling Sequence

EOFDCB	DATA	07XX0000B	
	LDX BSM* BRU 	X1,EOFDCB \$IOCS ERROR	error return normal return

Exit Parameter None for normal return

For error return:

A register error code

- $\mathbf{2}$ device off-line
- 7
- device busy invalid I/O assignment table address 8
- write ring 10

4.10 STATUS CHECK REQUEST

Purpose	To check the status of a device
Description	\$IOCS issues a status read to the device and returns the status word.
Entry Parameter	 X1 Address of one-word DCB X6 Address of I/O assignment table for 0 for device override

DCB Word 0

23				18			14	_	•.						
	1	0			C)									
0	0 1	0	0	0											

Where:

D Device code

0 device specified by X6
2 MTR1/MTW1
3 MTR2/MTW2
5 DIF/DOF
6 CLI/CLO

Calling Sequence

STDCB	DATA	10XX0000B	
	LDX BSM* BRU 	X1,STDCB \$IOCS ERROR	error return normal return

Exit Parameter

For normal return:

A register status word

Status Word Description:

Bit	Magnetic Tape Status	Disk Status
0	Device ready	Disk not ready
1	Interrupt in process	Parity error
2	Interrupt enabled	Interrupt enabled
3	Interrupt pending	Interrupt not manually inhibited
4	Rewinding	Memory not manually inhibited
5	No write enable ring	Maintenance segment addressable
6	Memory protect Switch on	Data overflow/memory Protect on
7	BOT	Track address overflow
8	Low density	DCB error
9	Tape mark has passed	Interrupt in process
10	Data overflow	Segment not found
11	DCB error	Write not manually inhibited
12	Rewind ended	Write not inhibited
13	Word count record Length	DCU in error state
14	Word count record Length	
15	Longitudinal parity Error	
16	Vertical parity error	
17	EOT has passed	

For error return:

A register error code

7 device busy8 invalid I/O assignment table address

4.11 VERIFY/READ

Purpose	To read a record without data transfer to memory for verification								
Description	This function is provided to magnetic tape and disk only.								
Entry Parameter	X1 Address of two-word DCBX6 Address of I/O assignment table								

DCB Word 0

23					18			14	13	 						0
		5	1			l	0		R	_			0			
1	0	1	0	0	1											

Return type (see paragraph 4.4 READ/WRITE RECORD for description) R

Buffer address DCB Word 1

Calling Sequence

	VERDCB	DATA DATA DATA	510X0000B RBUF 512	
		LDX BSM* BRU 	X1,VRDCB \$IOCS ERROR	error return normal return
Exit Parame	ter:	For erro	or return:	

A register error code

- l end of file
- 2 device not available
- 4 parity error
- 7 device busy8 invalid I/O assignment table address

4.12	CLOSE A FII	JE
Purpose		To release the device usage
Description		Causes the entry in the I/O assignment table to be released. When I is equal to zero, the following actions are also taken.
		If the device is a MTW1 or MTW2, two end-of-file marks (one for file end, one for tape end) are written and the tape is repositioned backward so that the next file overrides the tape-end mark if written. If the device is a DOF or MOF, the block buffer, if any, is output to disk or memory and the directory is updated with the current size. If the device is a CLI or CLO, a CLOSE call is issued. If the device is a TTK, TTP, CR, LP, MTR1, MTR2, MIF, or DIF, no other function is performed.
Entry Parame	eters	X6 The address of I/O assignment tableX1 The address of one-word DCB
DCB Word 0		

23					18	_		14		12		10						0
1			12			C)		F	8	С				(0		
0	0	1	0	1	0							v 1						

Ι

Where

l input 0 output

- R Return type (see paragraph 4.4 READ/WRITE RECORD description)
- C CLO OPTION
 - 0 hold CLO
 - l purge CLO
 - 2 process CLO

Calling Sequence

RCLOSE	DATA	52000000B	
	LDX	X6,IOTPI	
	LDX	X1, RCLOSE	
	BSM*	\$IOCS	
	BRU	ERROR	error return
			normal return

Exit Parameters	For error return:
	A register error code
	 4 parity error 7 device busy 8 invalid I/O assignment table address
4.13 OPER	ATOR MESSAGE
Purpose	To display a message at the Integrator VKT
Description	Allows transfer of a message from the local VKT to

23			_		18				14	13	12							0	_
		14	1					6		0	0				0				
0	0	1	1	0	0	0	1	1	0										

the Integrator VKT

DCB Word 1 Address o	of the	message buffer
----------------------	--------	----------------

DCB Word 2 Number of words to output

Calling Sequence

	OPMDCB	DATA	14300000B,MSAGE	BUF,n
		LDX BSM* 	X1,OPMDCB \$IOCS	error return normal return
Exit Paramo	eters	For erro	or return:	
		A regist	er error code	

- 6 unrecoverable CLIO error
- 7 device busy

4.14	DISCONNECT	CLIO
Purpose	Т	To disconnect communication link
Description		Used to disconnect the linkage to Integrator. Upon next open, the line is connected again.
Entry Parame	eters X	X1 Address of one-word DCB

23					18				14	13	12							0
		1	5				(6		0	0				0			
0	0	1	1	0	1	0	1	1	0									

Calling	Sequence
---------	----------

	HNGDCB	DATA	15300000B	
		LDX BSM* 	X1,HNGDCB \$IOCS	error return normal return
Exit Parame	ters	For err	or return:	
		A regis	ter error code	
			ecoverable CLIO en ce busy	ror
4.15	FILE TRANS	SMIT (AI	D)	
Purpose			ate up-load of data the Integrator	a to be appended to the
Description		interna		for \$IOCS internal use. It is OCS initializer when an open OCS.
Entry Param	neters		dress of I/O assign dress of three-wor	

23 18	14 13 12 0
03 0	0 0 0 0
DCB Word 1	The address of the 10-word file identification
	word 0,1 file name, file type 2,3,4 lot number or zero 5,6 device number or zero 7,8,9 category or zero
DCB Word 2	The number of words to output = 10
Calling Sequence	
FTADCB	DATA 0300000B,CLIOID, 10
	LDX* X6, CSX6 LDX X1, FTADCB BSM \$IOCS
	error return normal return
Exit Parameters	For error return:
	A register error code
	 4 parity error 6 unrecoverable CLIO error 7 device busy
4.16 FILE TRANS	SMIT (CREATE)
Purpose	To initiate up-load of data and create a file at the Integrator
Description	This function is reserved for \$IOCS internal use. It is generated internally by \$IOCS initializer when an open output is issued to \$IOCS.
Entry Parameters	X6 Address of I/O assignment tableX1 Address of three-word DCB

٠

23	18		14 13	12								,					0		
04		0	0	0						l	0								
0001	0 0													Γ	Τ				
DCB Word 1			The	add	res	s o	f th	e l	0-v	vor	d f	ïle	ide	ent	ifi	cat	tion		
			wor	2,	3,4 5,6	lc de	ot n evic	nam umt ce n gory	oer un	or be	ze r o	ero r ze)					
DCB Word 2			The	nun	nbe	r o	fw	ords	s to	0 0	utp	ut =	= 1	0					
Calling Sequ	ence																		
	FTDC	В	DAT LDX LDX BSM	*	2	X6,	CS FT	00B X6 DC1		CLI	OII	5,1	0						
																	turn retu		
Exit Parame	ters		For	erro	or r	etu	rn:												
			A re	gist	er	err	or c	eode	9										
			5 c	oari1 lupli Inre	cat	te f	ïle	CI	IO		mor	•							
				levi					10	CI	101								
4.17	FILE E	END IN	IPUT																
Purpose			Тос	lose	in	put	fil	e du	ie '	to	ΕO	Fa	t t	he	In	teg	rato	r	
Description			This gene issue	rate	ed l	by S	\$IO												
Entry Param	eters		X6 X1	Ado Ado	lres lres	55 O 55 O	f I/ f oi	′0 a ne-v	ussi WO	ign rd	me DC	nt 1 B	tab	ole					

.

2	23					18			14	13	12							0
ſ	۰		0	5			()		0	0			(כ			
	0 0	7	0	1	0	1												

Calling Sequence

·	FEIDCB	DATA	5000000B	
		LDX* LDX BSM 	X6,CSX6 X1,FEIDCB \$IOCS	error return normal return
Exit Parame	ters	For erro	r return:	
		A regist	er error code	

4 parity error

- 6 unrecoverable CLIO error
- 7 device busy

4.18 FILE END OUTPUT (PROCESS)

Purpose

To close an output file at the Integrator and allow immediate processing.

Description

This function is reserved for \$IOCS internal use. It is internally generated by \$IOCS initializer when a close output is issued to \$IOCS.

Entry Parameters

X6 Address of I/O assignment table X1 Address of one-word DCB

23 18		14 13	12 0
06	0	0	0 0
0 0 0 1 1 0			
Calling Sequence			
FEI	ОСВ	DATA	A 0600000B
		LDX* LDX BSM	X1, FEDCB
			error return normal return
Exit Parameters		For e	error return:
		A reg	gister error code
		6 ur	parity error Inrecoverable CLIO error levice busy
4.19 FIL	E END O	UTPUI	T (PURGE)
Purpose		To pu	urge an output file at the Integrator
Description		gener	function is reserved for \$IOCS internal use. It is erated by \$IOCS initializer when a purge-open is ed to \$IOCS.
Entry Parameters	3		Address of I/O assignment table Address of three-word DCB
DCB Word 0			

23				18			[.] 14	13	12							0
	()7			(D		0	0				0			
0	0 0	1	1	1												

DCB Word 1		The addre	ess of 10-word file identi	fication
		5,	 file name, file type lot number or zero device number or zero category or zero 	0
DCB Word 2		The numb	er of words to output = 1	10
Calling Sequ	ience			
	FEPDCB	DATA	07000000B, CLIOID, 10	
		LDX* LDX BSM 	X6,CSX6 X1,FEPDCB \$IOCS	error return normal return
4.20	FILE END O	UTPUT (HO	OLD)	
Purpose		To close a the Integr	an output file and hold fo ator	or later processing at
Description		This func	tion is reserved for \$IOC	S internal use. It is

Description This function is reserved for \$IOCS internal use. It is generated by \$IOCS initializer when a close output and hold is issued to \$IOCS.

Entry Parameters	X6	Address of I/O assignment table
	X 1	Address of one-word DCB

DCB Word 0

23					18			14	13	12							0
	•	1	1		:	(כ		0	0			(D			
0	0	1	0	0	1												

Calling Sequence

FEHDCB	DATA	11000000B	
	LDX* LDX B S M	X6,CSX6 X1,FEHDCB \$IOCS	
			error return
			normal return

Exit Parameters For error return:

A register error code

- 4 parity error
- 5 file name error
- 6 unrecoverable CLIO error
- 7 device busy

4.21 FILE REQUEST

Purpose	To initiate download of a file from the Integrator
Description	This function is reserved for \$IOCS internal use. It is internally generated by \$IOCS initializer when an open input to CLI is issued to \$IOCS.
Entry Parameters	X6 Address of I/O assignment tableX1 Address of three-word DCB

DCB Word 0

	23					18			14	13	12											0
	53					(D		0	0	0											
Ľ	1	0	1	0	1	1																

DCB Word 1

The address of the 10-word file identification

word 0,1 file name, file type

- 2,3,4 lot number or zero
- 5,6 device number or zero
- 7,8,9 category

DCB Word 2

The number of words to output = 10

Calling Sequence

FRDCB	DATA	53000000B,CLIOID,10	
	LDX* LDX BSM	X6,CSX6 X1,FRDCB \$IOCS	error return
			normal return
Exit Parameters	For error	return:	
	A registe	r error code	
	5 file no	v error ot found overable CLI error e busy	
4.22 VKT TRANS	MIT		
Purpose	To initiat buffer	e data transmisssion fro	m VKT screen to a
Description	VKT tran screen fr position. character acters ex	ecial form of read and or smit allows reading of th om the home position to The buffer must be larg rs by 27 lines in ASCII (6 cept EOT (4B) are transi- any conversion (three AS	he data on the VKT the last-written data ge enough to store 74 66 words). All char- ferred to the buffer
Entry Parameters		ress of I/O assignment ta ress of three-word DCB.	
DCB Word 0			

23	18		14	13	12						0
55		C)	R	1						
101	1 0 1										

Where

R Return type (see paragraph 4.4 READ/WRITE RECORD)

DCB Word 1	Starting	address of record buffer	
DCB Word 2	Record s	ize (number of character	rs)
Calling Sequence			
DCB	DATA	55010000B,BUF,1998	
Exit Parameters	A registe 7 devic	X1,DCB \$IOCS ERROR • return only: •r error code e busy d I/O assignment table a	error return normal return address
4.23 SKIP A REC	ORD ON M	AGNETIC TAPE	
Purpose	To skip a	record forward or back	ward

Entry Parameters X6 Address of I/O assignment table or zero if the device is specified in DCB X1 Address of one-word DCB

DCB Word 0

23					18			14	13												 0
53					l	D		R											N		
1	0	1	0	1	1																

Where

D device code

- 0 device specified by X6
- 2 MTR1
- 3 MTR2
- R return type
 - 0 return after completion
 - 1 immediate return
- N 0 skip forward
 - l skip backward

Calling Sequence

SKIPR	DATA	53000000B	
	LDX* LDX BSM* BRU 	X6,IOTP X1,SKIPR \$IOCS ERROR	error return normal return
Exit Parameters	For error	return:	
	A registe	r error code	
	7 device 8 invalio	e busy d I/O assignment	table
4.24 PAGE A BLC	OCK INTO	MEMORY	
Purpose		e current position	a from the disk or memory of the file. For operating
Description	provided a the disk o address w	at open time. \$IC r memory startin	only if the block buffer was DCS reads in a block from g at the sector/memory before the current address
Entry Parameter		ess of I/O assignr ess of one-word I	
DCB Word			

23					18			14	13							0
		5	54			(0		R							
1	0	1	1	0	0											

R return type (see paragraph 4.4 READ/WRITE RECORD for description)

Calling Sequence

RPDCB	DATA	5400000B	
	LDX* LDX BSM* BRU 	X6,IOPT X1,RPDCB \$IOCS ERROR	error return normal return
Exit Parameters	For error	return:	
	A registe	r error code	
	4 parity 7 device		
		d I/O assignment	table
4.25 REWIND MA	GNETIC T	APE	
Purpose	To rewind	d a tape to BOT p	oosition

Entry Parameter	X6	Address of I/O assignment table or 0 for device override
	X1	Address of one-word DCB

DCB Word

23			18			14	13							0
	06			[D		R							
00	0 1	1	0											

D

- device code 0 device specified by X6 2 MTW1 3 MTW2
- return type R

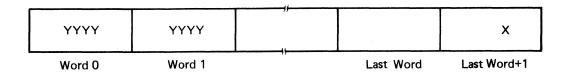
Calling Sequence

DCB	DATA	06XX0000B	
	LDX BSM* BRU 	X1,DCB \$IOCS ERROR	error return normal return

Exit Parameters

For error return:

A register error code


- 2 device off line
- 7 device busy
- 8 invalid I/O assignment table

4.26 MASTR \$IOCS ASCII CONTROL MODE I/O

l. Read

Uses the same DCB word 0 as normal read with bit 12 of DCB word 0 set to 1 (see paragraph 4.4). The record buffer must be defined as the maximum allowed input words plus one. All data characters, $(40_8 \text{ and } 137_8)$ are stored into the buffer in TRASCII (four characters per word). As soon as a control character appears, it is placed in ASCII right justified into the last word of the buffer and \$IOCS returns to the caller.

Caller's Buffer

Y = data characters in TRASCII X = control characters in ASCII

The number of characters obtained, excluding the control character, is returned in the A register.

2. Write

Uses the same DCB word 0 as normal write with bit 12 of DCB word 0 set to 1 (see paragraph 4.4). Characters to be written must be stored in ASCII (three characters per word) left justified. DCB word 3 contains the number of characters to be written.

MASTR File Description

5.1 MASTR SYSTEM FILES

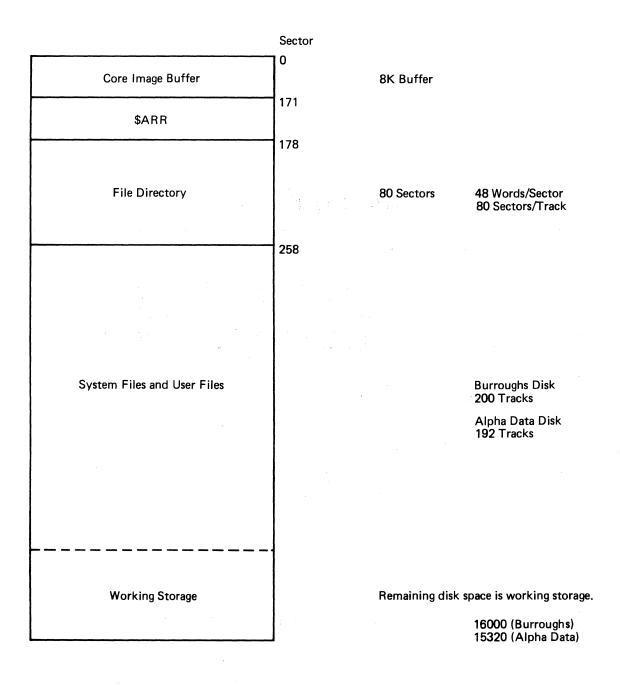
MASTR system files are created, saved, and transferred to and from the disk, magnetic tapes, the disk at the Integrator, and in memory. MASTR maintains all files in defined format. The physical formats are defined by the peripheral requirements and described in paragraph 5.2 through 5.5. The logical formats of files are defined by MASTR and described in paragraphs 5.6 through 5.10.

5.2 DISK FILES AND USAGE

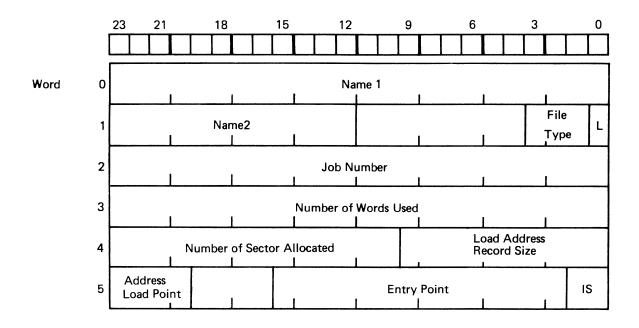
5.2.1 Disk Specification

200 tracks in Burroughs disk 192 tracks in Alpha Data disk

80 sectors/track 48 words/sector


5.2.2 Disk Organization

The disk is physically divided into five sections (figure 5-1). The coreimage buffer is used by DOPSY; \$ARR is the DOPSY monitor and is booted into memory when the MASTR command DOPSY is entered.


The disk files are identified in the disk directory. The information of each file is stored in a six-word directory entry (figure 5-2). There are 640 file entry spaces reserved on disk (80 sectors).

The file area contains the actual file data in consecutive order, as specified in the directory. The directory does not contain any pointer to a file; to locate the starting sector address of a file, the sum of assigned sector numbers of the preceding files must be added to the starting address of the file area.

The unused portion of the disk is called working storage, which can be used to assign a file space or to create a new file.

Figure 5-1 Disk Organization

Word	Bit	Description
0	23 to 0	First four characters of file name (TRASCII)
1	23 to 12 11 to 4 3 to 1	······································
2 3	23 to 0 23 to 0	Four-character job number (TRASCI) of the file Number of words used by the file (file size)
4	23 to 10 9 to 0 9 to 0	Number of sectors allocated for the file File type 011 only - first 10 bits of address (loading point of program) File type 001 only - record size
5 (File Type) 011 only	23 to 20 19 to 16 15 to 2 1 to 0	Last four bits of address (load point) Not used Entry point of program Interrupt sector count used

Figure 5-2 Disk Directory Entry (Six Words per File)

5.2.3 Disk File Format

On disk, five different file types are maintained: string files, variable data files, fixed data files, coreimage files and object files. DOPSY does not generate or recognize variable length data files and treats all data files as if they are fixed.

All files on disk are placed continguously without any physical record or file terminators. An end of a file is identified by the number of words in the file, which can be obtained in the directory entry. A record can be identified based on the file type.

A string file record for the disk is described in paragraph 5.6 and it is identical to ones on other media.

Coreimage file format is described in paragraph 5.9. In DOPSY, coreimage files are not transferable.

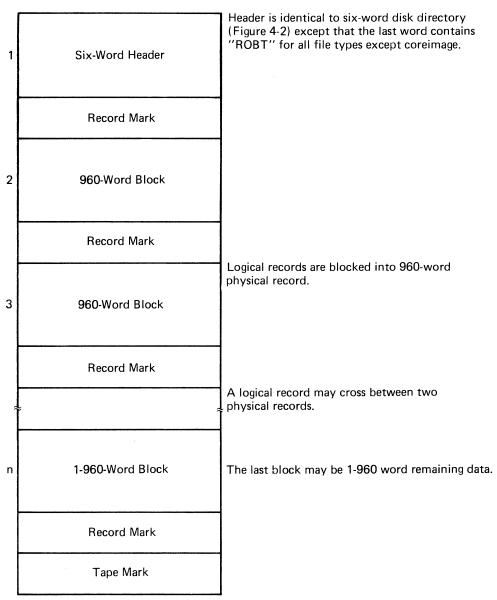
Five different record formats for object files are described in paragraph 5.10.

5.3 MAGNETIC TAPE FILES AND USAGE

5.3.1 Tape Organization

A physical record is data terminated by a record mark. Skipping a record forward or backward is done on this physical record. The size of one physical record is determined by the program which generates the record onto a tape.

A logical record is defined based on the file type. Normally, there are several logical records in a physical record.


A file is a set of physical records terminated by a tape mark. Skipping a file forward or backward uses this tape mark for positioning. The tape mark is normally written at the file closing time. Datalogging to a magnetic tape or FACTOR writing to a magnetic tape always causes a tape mark to be written immediately after a physical record and repositioned back. If another record is written, the tape mark is erased over; otherwise, the tape mark is there even if the file is never closed.

An end of a logical tape (an end of valid data area) is identified by having a tape mark without a file. \$IOCS always writes two tape marks at the file closing time and backs up one tape mark in case another file is written. Therefore, all closed tapes always have an end of a logical tape.

5.3.2 Blocked File Format Generated by DUMP and COPY Programs

File types handled by DUMP and COPY are identical to those on disk; string, variable and fixed size data, coreimage and object files. Record formats for these files are described in paragraphs 5.6 through 5.10 and shown in figure 5-3.

Physical Record

This format can be read by LOAD, COPY or DOPSY BMT programs.

Figure 5-3 A Blocked File

5.3.3 TDX-Generated Magnetic Tape

During TDX INIT, a terminator record is generated (figure 5-4).

TDX MAKE generates multiple directories (figure 5-5). Each directory contains a directory header (figure 5-6) followed by multiple files (figure 5-5).

TDX program causes COPY program to generate files as described in paragraph 5.3.2.

This tape format can be read by LOAD, MASTR TDX and DOPSY TDX.

Record

Figure 5-4 Terminator Format

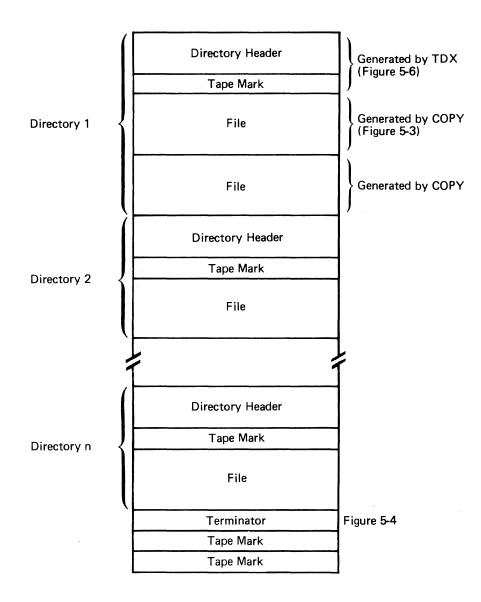
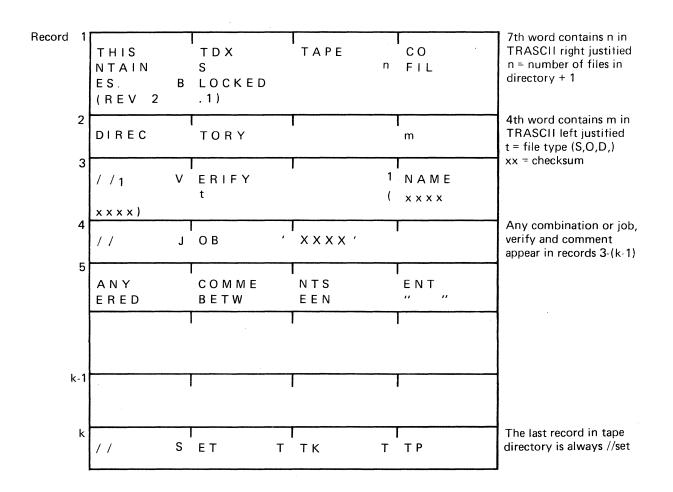
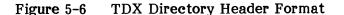




Figure 5-5 TDX Tape Format

5.3.4 MBUP Tape Format

The purpose of the MBUP tape is to save the contents of memory on magnetic tape (figure 5-7). MBUP transfers the bootstrap loader and the operating system from memory to magnetic tape. It then calls DUMP to output the remaining files.

This tape can be read by the MBUP overlay or LOAD program. If the first two files (the boot and the operating system) are skipped, the remaining files can be read by the COPY overlay or DOPSY BMT.

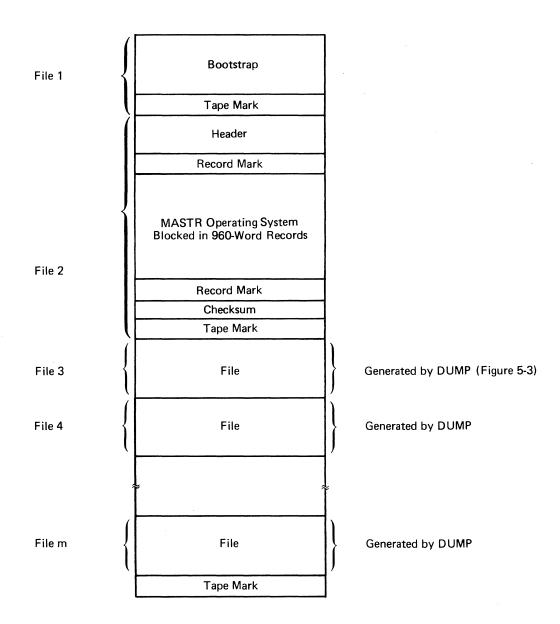


Figure 5-7 MBUP Tape Format

5.4 FILES TRANSFERRED TO THE INTEGRATOR

5.4.1 Record Description

The maximum size of a record is 124 characters for a string record and 40 words for a binary record. Either record is appended with an eight-character record header before transmitting to the Integrator. The header is stripped off by the driver when it is sent from the Integrator. A leading protocol character, STX, and trailing protocol characters, ETC and LRC, also are appended or stripped by the driver.

Characters	0 1	8	n	n+1	n+2
	STX	Header	Record Data	ETC	LRC

Character		Record Format
STX	0	Start transmission
Header	1	FST system code = ASCII 0
	2	Sub addr = Station 1, 2, 3, 4 in ASCII or ASCII 8 for background
	3	Destination code = ASCII 0
	4	Sub addr = same as word 2
	5	Character count for binary record (3 per word), 0 for string record
	6	Message type
	7	Spare
	8	Spare
Record Data	n	Data
ETC	n + 1	End of transmission
LRC	n + 2	Checksum

5.4.2 CLI/CLO Blocked Binary Files

Files transferred to and from the Integrator by programs LOAD or DUMP are in blocked binary format. All file types described in paragraphs 5.6 through 5.10 can be transferred in the format shown in figure 5-8.

Six-Word File Header	Same as disk directory entry (see figure 4-2).
Data Record 1	Data records are blocked in 40 words.
Data Record 2	
a .	3
Data Record n	The last record may be \leq 40 words.

Figure 5-8 CLI/CLO Blocked File Format

5.4.3 CLI/CLO Unblocked String Files

Files transferred to and from the Integrator by the program COPY are unblocked and contain variable-length string records. Only the string files (paragraph 5.6) can be transferred in the format shown in figure 5-9.

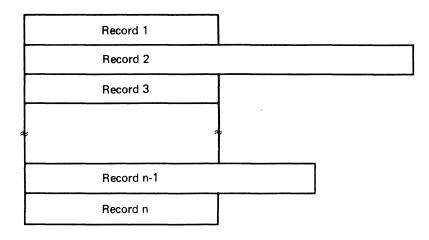


Figure 5-9 CLI/CLO Unblocked File Format

5.4.4 CLI/CLO Variable Length Data File

The files CLO or DATALOG to CLO are created by FACTOR WRITE statements and contain variable-length data records (See paragraph 5.7 and figure 5-10). The record size is limited to 40 words.

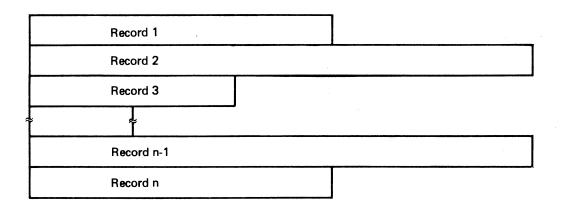


Figure 5-10 CLI/CLO Variable Length Data File Format

5.5 FILES STORED IN MEMORY

Since memory has no physical breaks, any file loaded or created in memory resides contiguously from the starting address to the end address.

MACTAB is a file directory (figure 5-11) that has information on the files currently in memory. There are many more file types in memory than on disk or magnetic tape. This is because once a file is loaded into memory, it can be executed or used to test a device. It is desirable to indicate allowed usage to minimize operator error. File types indicated for files in memory are subsets of file types provided to disk or magnetic tape files. They are mapped as follows:

Type In Memory	Type On Disk	Description
OVLY	COREIMAGE	Assembly language program executable as an overlay
ТР	DATA	FACTOR test program executable on a station or loadable by LMLOAD overlay
MOD	DATA	FACTOR module program callable or loadable by LMLOAD overlay.
S	STRING	String/source file
DATA	DATA	File written by a FACTOR program or by an overlay
OBJ	OBJECT	A file generated by Assembler
U Undefined	COREIMAGE	Coreimage file that is not an overlay or a working storage file that has not been assigned as a particular file type.

Formats for these files are described in sections 5.6 through 5.10. Internally, file types are used by a code which maps with the file type code supplied in the test program header (paragraph 5.8) or the overlay header (paragraph 5.9). Refer to the system memory map, figure 5-12.

8 words per entry, 32 entries in table Total 256 words. The table is expandable by ASSIGN command.

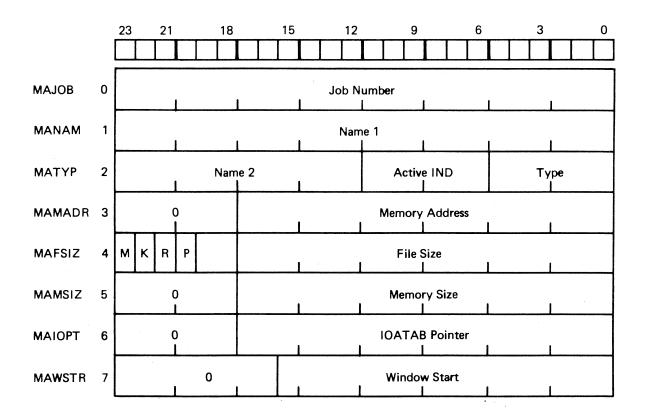
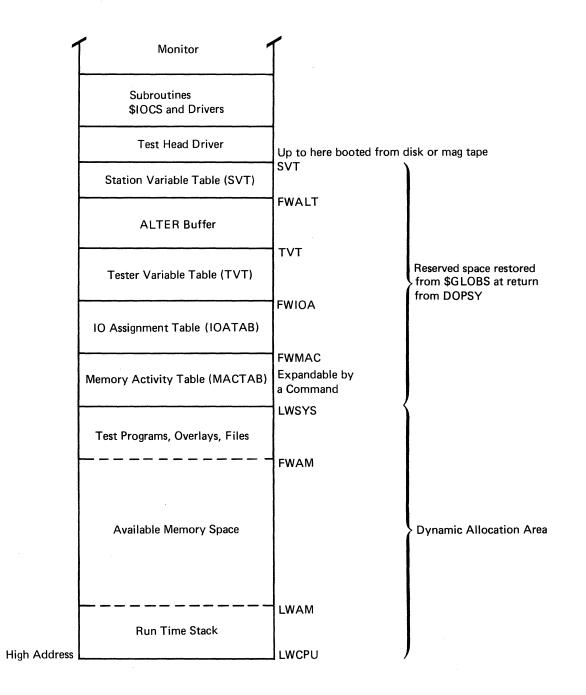


Figure 5-11 MACTAB (Memory Activity Table)

Job Number	Job number of the file			
NAME1, NAME2	Six-character file name 0 = not used, NAME 1 = -1 = Working Storage			
Active IND	File is active when non-zero Bit 6 file attached to STAT1 Bit 7 file attached to STAT2 Bit 8 file attached to STAT3 Bit 9 file attached to STAT4 Bit 10 overlay currently running Bit 11 file is open for I/O			

Bit II file is open for I/O


Type File type code from file header (octal)				
	13 to 40	System overlay		
	71	Overlay in background, expands, or		
		generates memory files.		
	72	DATA		
	73	OBJ		
	74	STRING		
	75	Module test plan		
	76	Test plan		
	77	ALLINK overlay		
	0	Undefined		
Memory Address	Starting a	ddress of the file in memory		
M (Bit 23)	Indicates 1	that this file is in memory		
101 (Dit 20)		0 and $M = 0$ occurs only for PAGE test plan		
		umped out of memory		
		amped out of memory		
K (Bit 22)	Keep indic	eator		
		e was loaded with KEEP option or from		
		sk media		
1		e was loaded from disk without KEEP		
	option			
R (Bit 21)	Pending to	be released		
- (
P (Bit 20)	Partial inc			
		te file is in memory		
	l partial	test plan due to paging is in memory		
File size	Number of	f words required to hold the file.		
Memory size		f words in memory actually allocated to the		
		eater than file size, file has extra memory		
). If less, file is forced to page. If zero, file		
	not in mer	nory.		
IO AT A B pointon	Stanting d	iak goaton addrogs for tost programs loaded		
IOATAB pointer		isk sector address for test programs loaded		
	from disk/	IOATAB address for files used as memory files		
Window start	Instruction	n count at the first address of the file area		
WINDOW Start		test programs.		
	TOL PARING	cost programo.		

Address

0	Entry / Restart	
1 63	Reserved for Interrupt Address	
64 76	SYSVAR (System Variables)	
127	BITFLD (Bits Set)	
130 157	NBTFLD (Bits Not Set)	
160 206	RTMSK (Mask Set from Right)	
207 234	LFMSK (Mask Set from Left)	
235	DECFLD OCTFLD (Octal, Decimal Constants)	
402 417	DBFLD (Double-Bit Fields)	
420	GLOVAR (Global Variables)	
610	SYXVEC (Subroutine Transfer Vectors)	Up to this point
		cells are fixed

Figure 5-12 System Memory Map

.

Figure 5-12 System Memory Map (Continued)

5.6 **STRING FILES**

String files may be an assembly language source, a FACTOR test program source, a command file, or any file containing TRASCII data.

A string record contains 0 to 132 TRASCII characters terminated by 77B (a backarrow character).

The terminator 77B is always right justified in the last word of a record. The record may contain up to three blank characters. All other trailing blanks are eliminated.

String File

Record 1	Record 2		Record n	
			11	

5.7 VARIABLE LENGTH RECORD DATA FILES

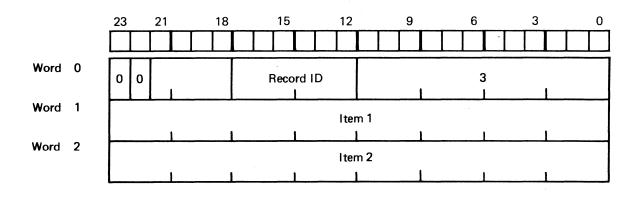
Data files opened by the command OPEN are variable in length and are written by FACTOR WRITE statements, datalog in binary format, or by overlays. To be a variable record format can be specified during OPEN procedure and blocking or unblocking can be done using the word count in each record.

5.7.1 General Record Format

Word 0 Data

Word 0 contains the following information:

- Bit Description
- 0 to 11 Record length in words, 4096 words maximum
- 12 to 17 Record Type. Each datalog record carries a two-digit number that specifies the type of record. (See table 5-1)


Bits 12 to 14 specify the particular record type with the class, for example, dc measurement, voltage mode or failure

Bits 15 to 17 specify a record class, such as DCMEAS

- 18 to 21 Spare, not used.
- 1 User-defined record
 - 0 System-defined record

23 1 Format record

0 DATA record

A data record from the datalogger with two items would appear as:

5.7.2 File Format for Variable Length Data

The disk, memory, or magnetic tape files generated by DATALOG or FACTOR WRITE statements contain a header record that is generated during OPEN output. Since it is skipped over during open input, the FACTOR test program does not see this record. If an overlay is written to read this file, it must handle this record. If an overlay generates a file to be read by a FACTOR program, this record must be generated. File formats are shown in figure 5-13.

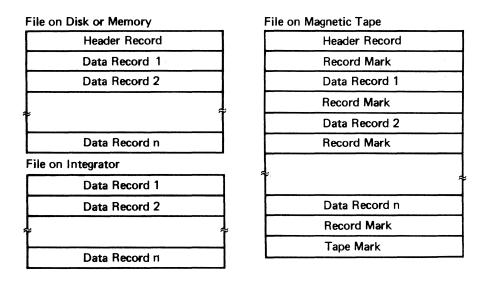
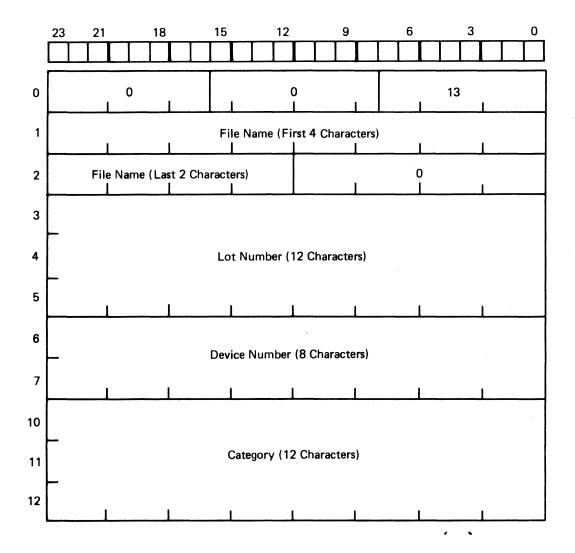




Figure 5-13 File Formats For Variable Length Data

5.7.3 Header Record Format

The header record (figure 5-14) is prepared at the time of opening an output by requesting log, device, and category information. This data is required at the Integrator in order to sort the data properly. They are sent to the Integrator as part of the file identification for opening the file, but are stored as the first record for all other media.

Each item is left justified in each position of words provided.

5.7.4 Datalog Record Formats

Measurements are sent as FST 24-bit floating point numbers. Records with ASCII information are sent with four 6-bit TRASCII characters per word. Integer and central information varies depending on the record. See each record description for specific format (table 5-1).

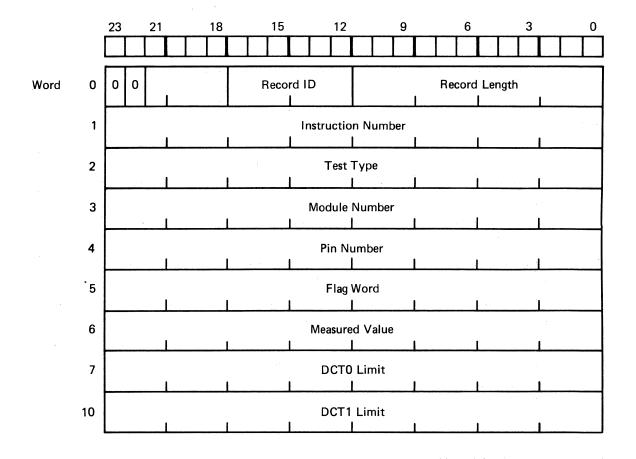
Table 5-1	Record II) For	Datalog	Records
-----------	-----------	-------	---------	---------

Record ID Number	Record Is From
00	Open header record
01	DPS voltage trip
02	DPS current trip
10	Direct current fail - current force mode
11	Direct current fail - voltage force mode
12	Direct current pass - current force mode
13	Direct current pass - voltage force mode
14	Measure variable
20	Functional failure
21	PPM memory fail
22	PPM memory fail, data extension
23	Functional failure, messages
30	EOT record
31	Device header
40	Shmoo plot
50	Data I/O

5.7.4.1 DPS TRIP FAIL RECORD

The DPS trip fail record (figure 5-15) is generated when DATALOG TRIP is requested and a power supply trip occurs.

Word Record ID Record Length Instruction Number Test Type Module Number Trip Supply Number GT/LT Trip Value

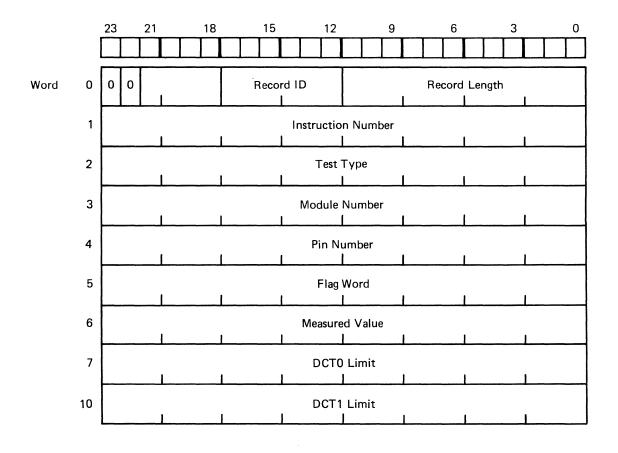

Each power supply trip is written as a separate record.

Word	Description
0	Record ID = 02Current TRIPRecord ID = 01Voltage TRIPRecord length = 7 FST words
1	Instruction number = 16-bit unsigned integer
2	Test type = 16-bit unsigned integer
3	Module number = 16-bit unsigned integer
4	Trip supply number = 16-bit unsigned integer
5.	GT/LT = TRASCII LT or GT
6	Trip value = 24-bit floating point number

Figure 5-15 DPS Trip Fail Record Format

5.7.4.2 DIRECT CURRENT FAIL RECORD

The direct current fail record (figure 5-16) is generated when DATALOG DCT/ MEAS/LOG is requested and the measurement fails.

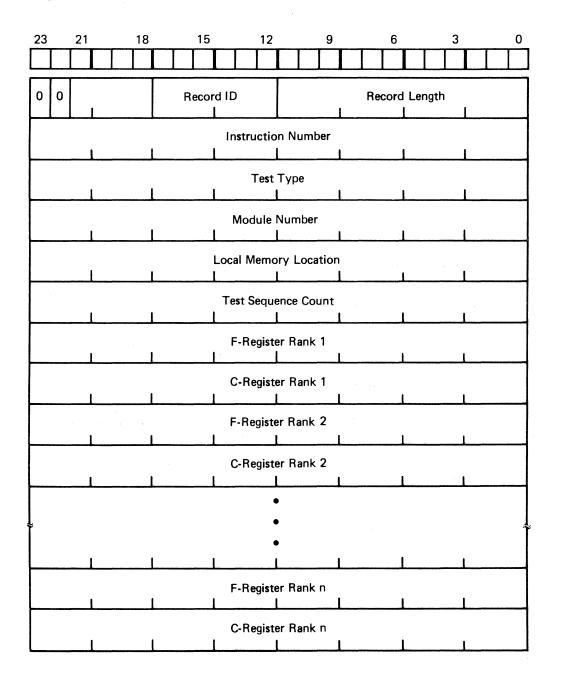


Word	Description
0	Record ID = 10 current force/voltage measure mode Record ID = 11 voltage force/current measure mode Record length = 9 FST words
1	Instruction number
$\frac{1}{2}$	Test type = 16-bit unsigned integer
3	Module number = 16-bit unsigned integer
4	Pin number
5	Flag word - ASCII formatting information - cell SMF of SUT table
6	Measured value = 24-bit floating point number
7	DCT0 = 24-bit floating point number
8	DCT1 = 24-bit floating number

Figure 5-16 Direct Current Fail Record Format

5.7.4.3 DIRECT CURRENT PASS RECORD

The dc PASS record (figure 5-17) is generated when the DATALOG MEASURE/LOG is requested and the dc measurement passes.


RECORD ID =	12	Current mode
	13	Voltage mode
	14	Measure variable

Remaining record fields are the same as a dc fail record, (figure 5-16)

Figure 5-17 Direct Current Pass Record Format

5.7.4.4 FUNCTIONAL FAILURE RECORD

The functional failure record (figure 5-18) is generated when DATALOG FCT is requested and a functional failure occurs.

Figure 5-18 Functional Failure Record Format

5-26

Word	Description
0	Record ID = 20
	Record length = 14 to 22 words (depends on number of ranks used)
1	Instruction number = 16-bit integer
2	Test type = 16-bit integer
3	Module number = 16-bit integer
4	Local memory location = 12-bit integer
5	Test sequence count = 24-bit integer

The C and F register data is contained in bits 0 to 14.

Figure 5-18 Functional Failure Record Format (Continued)

5.7.4.5 FUNCTIONAL FAILURE RECORD FAIL MESSAGE

The functional failure record fail message (figure 5-19) is generated for dc timeout, loop count or clock burst count failure.

23		21		18	15					12 9		9	6			i 3					0	
0	0					R	leco	rd I	D					1	Rec	cord	Ler	ngth		1		
			1					In I	stru	ictio	n Ni L	umt	ber	1			1			1		
			1		1			1	-	Test	Тур І	e		1						1		
			1					1	Mod	dule	Nur	nbe	r	1						1		
								Loc I	al N	1ema	ory I	Loc	atior	ו ו			1			1		
			1	1				Tes	st Se	eque	nce	Cοι	Int	1						1		
			1	1				T	RA	SCII	Me	essa	ge									
				1				T	RA	SCI	Me	essag	je	1						1		
			L					۲ ا	ſRA	SCI	Μe	essa	je	L	- Bornin	1	L			L		ĺ

Figure 5-19 Functional Failure Record Fail Message Format

Word	Description
0	Record ID = 23
	Record length = 9 FST words
1	Instruction number = 16-bit integer
2	Test type = 16-bit integer
3	Module number = 16-bit integer
4	Local memory location = 12-bit integer
5	Test sequence count = 24-bit integer
6 to 9	TRASCII messages are:

T/O FC LOOP T/O, FC T/O, LOOP

Each message is three words, with four 6-bit TRASCII characters per word.

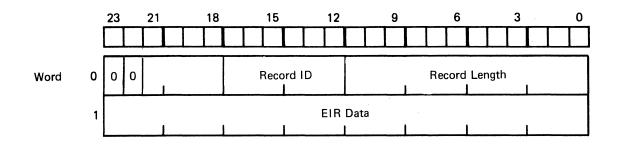
Figure 5-19 Functional Failure Record—Fail Message Format (Continued)

5.7.4.6 PPM MEMORY FUNCTIONAL FAILURE RECORD

The PPM memory functional failure record (figure 5-20) is generated when a function fail in an MUT occurs.

23	21	 18	15		12	9		6	•		3		0
0 0			Reco	ord ID)	Record Length							
	I	I		lns I	struction I	n Number					1		
		1		1	Test 1	Гуре	1				1		
	I			N	Nodule I	Number					1		
	A	 1		Tes	t Sequei	nce Count					£		
	¹	 	Data	Reado	out Nun	nber One F	legiste	r			L		
		 	Data	Reado	out Num	nber Two F	legiste	r I					
	1	1		C-	Registe	r Rank 1	1	1			1		
	1	1		C L	-Registe I	er Rank 2	1						
		 1		C-	Règister I	r Rank 3	1		-		1		
	 I	1		C-	Registe	r Rank 4	1	1	1				

Word Description


0	Record ID = 21 (nondata extension mode) Record ID = 22 (data extension mode)
	Record length = 11 words
4	Test sequence count = 24-bit integer
9 to 10	C - Register Ranks 3 and 4 contain information for data extension mode only.

Except for ID and test sequence count, all words are 16-bit integers

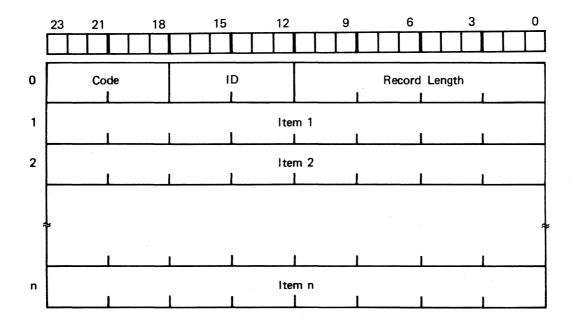
Figure 5-20 PPM Memory Functional Failure Record Format

5.7.4.7 EOT RECORD

The EOT record (figure 5-21) is generated when end-of-test point is reached and DATALOG EOT is requested.

Record length = 2 Record ID = 30 EIR data

Bit	Description
0 to 9 10 11 12 13	User defined value DC test fail DC test pass Functional test fail Functional test pass
14	End of test


Figure 5-21 EOT Record Format

5.7.5 Writing From A FACTOR Program

A FACTOR program may cause data to be written by one of the following types of statements:

- WRITE "ident" ARRAY;
- WRITE "ident" variable; variable,...; .
- •
- WRITE "ident" 'TEXT'; WRITE "ident" 'TEXT', V1, V2, V3, 'TEXT', V4, V5, V6; •
- WRITE "ident" /n/ 'TEXT', variable; •

The first two statements above result in the following format:

Word 0:

Record length	number of elements in the array plus 1 (4,096 maximum) or number of variables plus 1 (33 maximum).
ID Code	TRASCII character in double quotes 010000 (binary)
Word 1 to n	floating point numbers

The last three statements involve a combination of binary and TRASCII data and may cause more than one record to be generated.

Word 0	Text			
Word 0	V1	V2	V3	
Word 0	Text			
Word 0	∨4	V5	V6	

Word 0 has the same format as the first two FACTOR program statements.

Record length number of words in text plus 1 or number of variables plus 1 (maximum 33 words).

5.8 FIXED LENGTH DATA FILES

Fixed length data files contain data in words rather than characters. The number of words per record can be obtained in the disk directory or file headers (figure 5-2). The record length of 18 words is used as default.

Word 0	Word 1	Word 2		Word n
	I		I	

RECORD = n + 1 words

Test programs and modules are normally considered fixed-length data files. However, these files have additional defined format. The first 18 words are the test program header; each word is used according to definition. The FACTOR compiler generates this header for test programs and modules. The extended FACTOR compiler generates this header for macro modules. LMLOAD overlay generates this header for local memory data modules.

Test Program, Module Header

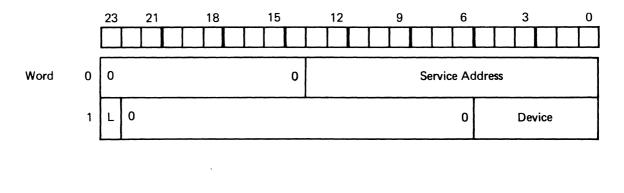
Word	0	Reserved
	1	First four TRASCII characters of the name
	2	Last two TRASCII characters of the name (left justified
	3	File type: 76B for test programs, 75B for modules
	4	Release revision number
	5	Program size (number of words used)
	6 to 16	Reserved
	17	Contains APM vector table pointer

5.9 COREIMAGE FILES

Coreimage files contain data in words. This data may be absolute or relocatable, depending on the data and the usage of the file. Programs run under DOPSY are absolute coreimage and overlays run under MASTR are relocatable coreimage. Normally absolute coreimage files are not transferrable and remain on disk. The format of a relocatable coreimage file is identical to the one of an absolute coreimage file except that it does not use interrupt sectors.

COREIMAGE FILES (FILE TYPE = 011)

Coreimage Files (File Type = 011)


1	2	3	Program Body

Interrupt Sectors

The first three sectors may contain interrupt addresses. The number of sectors used for interrupts is specified in the directory word 5 bits 1 to 0. Interrupt sectors contain two words of information per interrupt. (48 words by 3 sectors/2word = 72 interrupts per program maximum).

Program body is already mapped to memory (1 word of data = 1 word of memory when loaded).

INTERRUPT INFORMATION IN INTERRUPT SECTORS

	2	- · · · · · F · · · · ·
0	13 to 0	Address of interrupt service routine
1	23	= 1 last interrupt entry
	5 to 0	Interrupt address of the device

Description

5.9.1 Overlay Header Format

Bit

Word

A MASTR overlay is a relocatable coreimage file beginning with a 22-word overlay header.

Words 22 to 27 contain information used by the VERIFY overlay to display REL and date.

Table 5-2 describes the contents of each of the words that comprise the header.

0
The first four characters of overlay name in TRASCII
The last two characters of overlay name in TRASCII
File type code
Release revision number in TRASCII
File length including header (words)
Expansion size (words) at load time
Reserved for system use
Module relocation value store
Module return address store
PZE for module entry point
BRU for module entry point
PZE for reset/kill entry
BRU for reset/kill process
PZE for special purpose entry
BRU for special purpose entry
PZE for release overlay entry
BRU for release overlay process

Table 5-2	Overlay	Header	Format
-----------	---------	--------	--------

	PZE for normal background entry
23	BRU for normal background entry
24	PROC for foreground entry
	BRU for foreground entry
26	Number of words in release notes
27 to 33	Release notes (date)

.

 Table 5-2
 Overlay Header Format (Continued)

5.9.2 File Type Code List

Table 5-3 shows the file type code list.

Table 5-3	File Type	Code List	In	Memory
-----------	-----------	-----------	----	--------

,

Code	Files
0 to 12B 14B	Undefined
15B	
16B	
17B 20B	Manual analysis
21B	
22B	
23B	Parameter distribution
24B 25B	Datalogger
26B	DEBUG
27B	
30B	
31B 32B	
33B	
34B	
35B	
36B 71B	Overlay that takes long time to execute
	(EDIT), expands (COMPILE), or generates
	memory files (ASM, COPY)
72B	Data files
73B 74B	Object files STRING files
75B	Module test programs
76B	Test programs
77B	General overlay

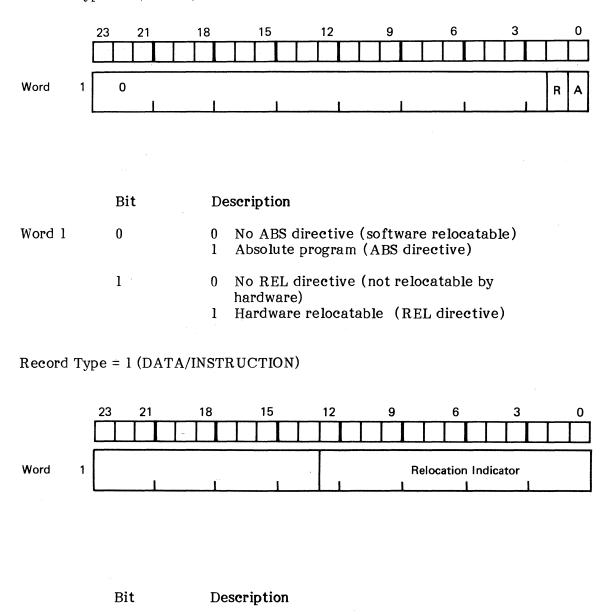
5.10 OBJECT FILES

Object files are generated by assembler and used by CREATE to generate coreimage files. An object file contains relocation directives as well as executable CPU instructions.

OBJECT FILE (FILE TYPE = 010)

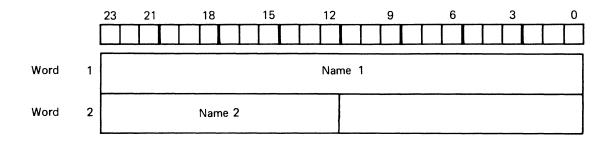

Object File (File Type = 010)

Record 1	Record	2		a	Record n
			L	<u> </u>	


Variable Size Record

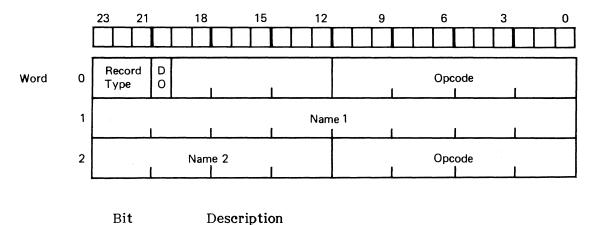
Record: Contains from 2 to 6 words, depending on the record type

The following format is used for word 0 in all records, except record type 4 and 5.

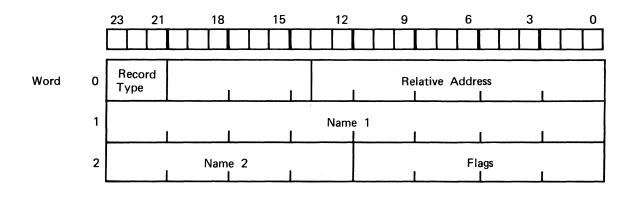


Record Type = 0 (START)

Word 1	23 to 0	Instruction in record is relocatable if corresponding
		bit is set.
Word 2	Word n	Contains instruction words.

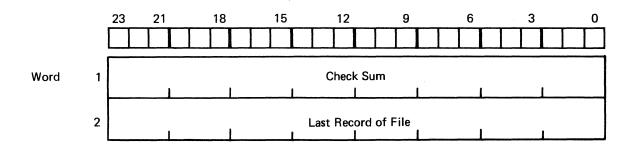

Record Type = 2 or 3 (PROC or CALL)

	Bi t	Description
Word 1	23 to 0	First four character symbol name (TRASCII)
Word 2	23 to 12	Last two character symbol name (TRASCII)


Record types 2 and 3 contain no other data.

```
Record Type = 4 (EXT)
```


23 to 21 Word 0 Record type D/O data = 1, opcode = 0 20Right half of opcode 11 to 0 Word 1 23 to 0 First four characters symbol name (TRASCII) Last two characters symbol name (TRASCII) Word 2 23 to 12 Left half of opcode 11 to 0


Record Type = 5 (ENT)

Description

Word 0	23 to 21	Record type
	13 to 0	Relative address of symbol
Word 1	23 to 0	First four characters symbol name
Word 2	23 to 12	Last two characters symbol name
	11 to 0	Flags

```
Record Type = 7 (END)
```


	Bit	Description
Word 1	23 to 0	Checksum of the file excluding type 7 record. Bit 23 is always set to 1. Checksum is obtained from summing all words in the file and 40000000B is ORed at the end.
Word 2	23 to 0	Contains 77777777B to indicate last record of file.

.

Assembly Language Overlays

6.1 INTRODUCTION

6

Assembly language overlays (ALLINK programs) are user-written assembly language programs that are executed either through the EXEC statement of a FAC-TOR program or as a background function. Executing ALLINK programs through the EXEC statement initiates and performs data collections or manipulations by communicating between a FACTOR program and/or provides communications between a FACTOR program in foreground and associated background processing. Executing assembly language programs as a background function performs I/O operations, for example, outputting reports or receiving information from the keyboard.

ALLINK programs are written in Fairchild Assembly Language for the FST-2 computer. The instruction set and the assembler are described in the FST-2 Computer Manual, publication number 57000002.

6.1.1 Foreground/Background Processing

Foreground processing refers to Tester-related operations. Thus, the FACTOR program and the section of the ALLINK program executed through the EXEC statement are referred to as operating in the foreground.

Background processing refers to non-Tester-related operations which are relatively slow, such as I/O operation. During foreground processing, there is a certain amount of hardware idle time, such as relay switching and power supply settling time. During this idle time, background performs its operation. Thus, the slower background operations are performed without affecting test time. Obviously, I/O operations in foreground processing would decrease Tester throughput significantly.

6.1.2 Risks Involved in ALLINK Programs

ALLINK programs that perform functional or dc failure testing have a direct effect on the results from system routines such as datalog or DCF. Device failure, whether it occurs in a FACTOR test program or an ALLINK program, causes the interrupt service to set flags, which are the basis for decisions by system routines. Thus, if an ALLINK program does perform this type of testing, the results from system routine may be meaningless. Since any ALLINK program executed by the system cannot be completely controlled by the system software, any undebugged ALLINK program inadvertently may alter the hardware and software and thus, alter or destroy the integrity of the system software. Therefore, it is highly recommended that ALLINK programs be debugged outside of production environments.

6.2. ALLINK PROGRAM DEFINITION

The system requires the ALLINK program to have a header. See paragraph 5.9.1 for a description of the overlay header format.

6.2.1 ALLINK Header

The header consists of 27B words at the beginning of the ALLINK program and contains the system information for loading and executing the overlay. The header must follow the format given in appendix A, and must have an OBJ 7 and REL directives in front of the header. There are three program entry points. The mode under which the ALLINK program is executed determines which of the entry points is used.

The foreground entry point is used to transfer control from a FACTOR test plan (through the EXEC statement) to the foreground section of the overlay.

The background entry point is used when the monitor receives a program-name command for the overlay.

The release entry point is used when the command: RELEASE is entered to remove the ALLINK program from memory.

The reset entry point is used when the tester is reset manually (reset pushbutton).

Example Entry Points:

RESET	PZE	0	RESET ENTRY POINT
	BRU*	RESET	RETURN IMMEDIATELY
	BSS	2	
RELSE	PZE	0	RELEASE ENTRY POINT
	BRU*	RELSE	RETURN IMMEDIATELY
BGEP	\mathbf{PZE}	0	BACKGROUND ENTRY POINT
	BRU	BGSTRT	GO TO BACKGROUND
			PROCESS ROUTINE
FGEP	PZE	0	FOREGROUND ENTRY POINT
	BRU	FGSTRT	GO TO FOREGROUND
			PROCESS ROUTINE

This example shows foreground, background, reset, and release entry points with no clean-up when the overlay is released (the release is always performed when requested). There is no foreground processing in this program.

RSENT	PZE BRU* BSS	0 RSENT 2	
RELSE	PZE BRU	0 CLRUP	GO TO RELEASE PROCESS ROUTINE
BGEP	PZE BRU	0 BG S TRT	
FGEP	PZE BRU*	0 FGEP	NO FOREGROUND PROCESS

6.2.2 Creating Relocatable Coreimage

After an ALLINK program is assembled and an object file is created, a relocatable coreimage file can be created with the following command in DOPSY:

CREATE 'name' 'obj-file-name'

Rules and Restrictions:

- o REL directive is provided at the beginning of the SOURCE program or REL parameter is supplied in the ASM command.
- o The program must be originated at location 0. This will happen by default if an ORG directive is not included at the beginning of the program.

6.3 LOADING AND CALLING PROCEDURES

6.3.1 Loading Procedure

Before the ALLINK program can be called by either foreground or background, it can be loaded using the monitor LOAD command.

Example:

LOAD 'DBTS'

This command causes the ALLINK program DBTS to be loaded from disk.

Once loaded, the program can be called from either foreground or background. If the ALLINK program is called by a command or by the EXEC FACTOR statement, and if it has not been loaded into memory, the system tries to load automatically. If there is not enough room, a terminal error occurs at EXEC execution point.

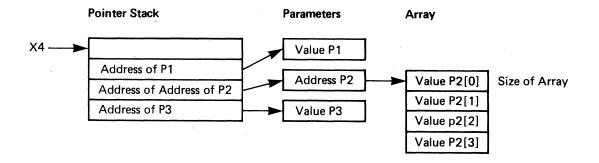
6.3.2 Calling Procedure

An ALLINK program is called from the foreground by a FACTOR EXEC statement. EXEC statements must have the following format:

EXEC program-name $(v_1, v_2, \dots v_n)$

Where program-name is the name of the ALLINK program in relocatable coreimage form. A maximum of 63 parameters is allowed. Each parameter is evaluated at the time of EXEC and may be global variables, user-defined variables, array elements, formal parameters or arithmetic expressions.

Upon entry to the ALLINK program, the index registers contain the following information:


X3 number of parameters passed

- X4 address of 1st parameter -1
- X6 station code -1 (i.e. code 0 to 3 = station 1 to 4)

The FACTOR statements:

DCL P2 [3]; REM NOTE P2 IS AN ARRAY; . . . EXEC XTEST (P1,P2,P3);

would cause pointers and variables to be mapped as shown:

To obtain and save P1 and P3 use the following instruction sequence:

LDA*	1, X4	GET 1ST PARAMETER
STA	TEM P1	SAVE IT
LDA*	3, X4	GET 3RD PARAMETER
STA	TEMP3	SAVE IT

To obtain element 3 of array P2, use:

LDA*	2,X4	GET ADDRESS OF ARRAY
LXA	X5	MOVE TO X5
LDA	3,X5	GET 3RD ELEMENT

If it is known whether a passed parameter is a variable or an array, then the determination can be made by checking bit 22 of the word in the pointer stack. For example, to check P2 for an array use the following instruction sequence:

LDA	2,X4	GET P2 POINTER
CAM	B22	IF B22 SET
BBC	ARRAY	THEN IT IS AN ARRAY

To obtain the number of parameters, the instruction

LAX X3

is executed.

6.3.2.2 BACKGROUND CALL

The background section of ALLINK program can be entered by the command:

program-name (input) (output) optional parameters

where program-name is the name of the ALLINK overlay and the input and output devices are optionally assigned to the program. Absence of input/output dvices causes default to the PID/POD for any I/O operations. Allowable input/output mnemonics are shown in the Sentry VII Users Manual, publication 57000013.

Example:

EXAMPLE LP

This command would cause the ALLINK program (overlay) named EXAMPLE to be executed in the background mode using the line printer as its output device.

6.3.2.3 RELEASE CALL

This section of the ALLINK program can be entered by a command:

RELEASE 'program-name'

There are three possible release procedures:

- No release processing is needed. The ALLINK program should return to the system immediately as is shown in the first example entry point (see para-graph 6.2.1).
- A clean-up process is necessary before release in order to maintain system/ user program integrity. The entry to this user clean-up process may be accomplished as is shown in the second example entry point (see paragraph 6.2.1). This type of process may be done, for example, to restore system words that are used by the ALLINK program but that are not automatically restored by the system.
- The ALLINK processing is incomplete and the program should not be released at the time the release command is entered. For example, data saved by the ALLINK program has not been completely analyzed.

The ALLINK program should display a message to the operator and return to the system at CALLed address +2.

Example:

CLRUP	EQU	*	
	•		
	•		
	AOM BRU*	RELSE RELSE	can not release yet

6.3.2.4 OVERLAY ACTIVE/INACTIVE CALL

In addition to the command: RELEASE, any overlay can be released automatically by MASTR in a disk based system when the memory space is needed.

When this condition occurs, the system searches overlays and test programs in memory and tries to release inactive ones. It is the responsibility of the overlay to indicate if it is active or inactive. To indicating being active, the overlay must call ATTA subroutine (SYXVEC + 64) and DTTA ((SYXVEC + 65) when it is no longer needed for a station. An active indicator for each station is shown in NAME command output. During the automatic release process, the overlay is also called at RELEASE entry point.

Prior to calling the background part of an overlay, the system automatically indicates that it is active and clears it to inactive upon background return.

6.4 SCHEDULING A BACKGROUND TASK FROM FOREGROUND

Within the ALLINK program, the foreground section may call a routine in the background section in order to perform some background-type processing; for example, to print a message on data collected by foreground.

Note that while these sections are part of the same overlay, they perform as separate tasks. Foreground initiates this type of call through the scheduler. If the foreground and the background tasks share a common data area, the foreground task has to wait to allow the background task to finish using the data area.

6.4.1 Flagword

A flagword must be provided to indicate background or foreground activity. This word is a local variable; it is defined and used exclusively within the ALLINK program. The flagword is turned on by foreground processing and turned off at the end of the background processing so that the next time the foreground task comes in, it can tell if the background process is done. Refer to figure 6-1 for a typical ALLINK program.

6.4.2 Foreground Procedure

At the beginning of the foreground, entry is made from a test program by an EXEC statement.

- 1. Test the activity flag to see if the background task is completed. If the flag is ON, call the scheduler wait routine, FGWAIT (refer to SYXVEC + 44). This makes the foreground task wait one complete scheduler cycle in order to give the background time to finish.
- 2. At the return from FGWAIT, test the flag again.
- 3. If the flag is OFF, start the foreground task.

Example:

EQU	*
LDA	FLAG
BZ	*+3
BSM*	FGWAIT
BRU	*-3

FOREGROUND START ADDRESS BACKGROUND DONE? YES, START FG PROCESS NO, THEN WAIT CHECK FLAG AGAIN Start foreground process here

At the end of foreground processing:

1. Set the activity flag ON.

FG

- 2. Call the task scheduling routine FGBGRT (refer to SYXVEC + 41) with the background process address in index register 7.
- 3. Return to test program execution.

Example:

SING		
LDA	Dl	
STA	FLAG	SET ACTIVITY FLAG
LDX	X7,BGAD1	GET ADDRESS OF
		TASK AND SET IN THE
BSM*	FGBGRT	SCHEDULER
BRU*	FGENTR	RETURN TO TEST PLAN THROUGH
		THE FOREGROUND ENTRY POINT.
EQU	*	THIS MUST BE THE BACKGROUND PROCESSING START ADDRESS
	LDA STA LDX BSM* BRU*	LDA DI STA FLAG LDX X7,BGADI BSM* FGBGRT BRU* FGENTR

6.4.3 Calling Background

When the background is called because foreground scheduled an activity:

- 1. Complete the necessary background processing, (I/O data processing, etc. I/O usage and restrictions are described in section 3).
- 2. At the end of processing, clear the activity flag.
- 3. Exit from background through the global transfer VECTOR COMMAND (refer to SYXVEC + 38).

Example:

BGAD1	EQU	*	
	•		Any processing
	•		Any processing
	•		
	•		
	LDA STA	D0 Flag	Clear the flag
	BRU*	COMMND	Return

6.5 PROCESSING A COMMAND THROUGH MONITOR FROM FOREGROUND

To force the monitor to process a command from the prepared buffer the following steps are taken.

- 1. At the background entry:
 - Save the global PIDPMF (GLOVAR + 16) It contains the address of PID entry in IOATAB
 - Save the global CMDPMF+1 (GLOVAR + 43) It contains the address of the command record buffer of the current PID.
 - Lock out the current PID from reading another command (bit 13 of the first word of IOATAB entry must be set to 1)
- 2. Just before returning to monitor through background entry point:
 - Clear the command lock out.
 - Place a required command in the record buffer using the address saved.
 - Set the global PIDFLG (GLOVAR + 39) to the saved PIMPMF (the address of the entry IOATAB).

FST MAS	STR ASSEMBLER	REL	2.1	00:03	SOURCE= *EXM2
ARR	00000177	ARRENT	00000146	825	00000110
BGFIN	00000264	BGM1	00000237	BGMSG	00000232
BGSTAR	00000267	BHFIN	00000033	CLSE	00000314
COMFLG	00000105	COMMND	00000706	D 1	00000106
D205	00000112	D4	00000107	EXMPLE	0000024
FFIX	00000731	FG1	00000160	FG2	00000205
FGBGRT	00000711	FGENT	00000147	FGEX	1520000
FGWAIT	00000714	FP9	00000111	FWORD	0000000
GLOVAR	00000420	IERMSG	00000676	LWORD	00000315
MOVEIT	00000301	MSG	00000030	MSGIN	00000646
MSGOUT	00000647	MSGS	00000113	OUTBUE	00000057
OVBGEP	00000055	PARMS	00000145	PARX	00000104
PODPMF	00000441	PRCHAR	00000026	RECHUF	00000024
RELSE	000000000	STARS	00000120	STN0 1	00000032
SVX6	00000103	SYXVEC	00000640	TABEND	00000144
TABLE	00000121	TE205	00000230	TOF	00000027
WRITR	00000307	X 1	00000001	X 5	0000002
X 3	0000003	X 4	00000004	X5	00000005
X6	00000006	X 7	00000007	\$1005	00000645

Figure 6-1 Sample ALLINK Program

```
THIS IS A SAMPLE ALLINK PROGRAM NAMED 'EXMPLE'
                *
                *
                    IT CAN BE LOADED USING THE SYSTEM COMMAND
                *
                        // LOAD 'EXMPLE'
                *
                *
                    THE FOREGROUND SECTION IS CALLED BY THE FACTOR STATEMENT
                *
                *
                       EXEC EXMPLE (PARAMETER);
                *
                *
                    THE FOREGROUND SECTION CALLS THE BACKGROUND ROUTINE
                *
                    BGMSG WHICH OUTPUTS A MESSAGE BASED ON THE PARAMETERS
                ×
                    PASSED TO IT BY FUREGROUND
                *
                *
                    THE BACKGROUND SECTION CAN BE CALLED WITH THE COMMAND
                *
                *
                       // EXMPLE
                *
                *
                   IT OUTPUTS A PROMPTING CHARACTER $, REAU INPUT FROM PID
                *
                   AND OUTPUTS IT TO POD
                *
                *
                *
                        OBJ
                              7
                        REL
                                        MAKE IT RUN-TIME RELOCATABLE
                *
                *****
                        OVERLAY HEADER
                *
                                                           *
                *
                                                           *
                *****
000000 00000000
               FWORD
                        DATA
                             0
00001 45705560
                        TEXT
                             'EXMPLE'
                                            1,2 PROGRAM NAME
00002 54450000
00003 00000077
                        DATA
                              778
                                            3
                                                  ALLINK CODE
00004 00000000
                        DATA
                                            4
                              0
00005 00000315
                        DATA
                              LWORD-FWORD
                                                  PROGRAM SIZE
                                            5
00006 00000012
                        855
                                            6-15 NOT USED
                              10
                                                  RELEASE ENTRY POINT
000000 0000000
               RELSE
                        P7F
                              0
                                            16
00021 41040020
                        BRU*
                              RELSE
                                            17
                                                  IMMEDIATE RETURN
000055 00000000
               OVBGEP
                        ΡZΕ
                                            18
                                                  BACKGROUND ENTRY POINT
                              0
00023 41000267
                        BRU
                              BGSTART
                                            19
                                                  GO TO BACKGROUND START
                                                  FOREGROUND ENTRY POINT
000024 00000000
               EXMPLE
                        PZE
                                            20
                              0
00025 41000147
                              FGENT
                        BRU
                                            21
                                                  GO TO FOREGROUND START
```

			PAGE			
		* TRANS	OLLOWI FER VE		K TO SYSTEM GLOBALS	AND
	00000640 00000645 00000646 00000647 00000647 00000676 00000706 00000711 00000714 00000731	* SYXVEC \$IOCS MSGIN MSGCUT IERMSG COMMND FGBGRT FGWAIT FFIX *	EQU EQU EQU EQU EQU EQU EQU EQU EQU	6408 SYXVEC+5 SYXVEC+6 SYXVEC+7 SYXVEC+30 SYXVEC+38 SYXVEC+38 SYXVEC+44 SYXVEC+57	LOCATION OF TRAN IOCS SUBROUTINE READ FROM PID RO WRITE POD ROUTIN TERMINAL ERRORS RETURN TO SYSTEM	UTINE
	00000420 00000441	GLOVAR PODPMF	EQU EQU	420B GLOVAR+17	LOCATION OF GLOB Address of Pod P	
		* IO CO *	NTROL	WORDS AND E	FFERS	
00027 00030 00031	00000024 00000004 03000000 63645760 00000000 00000001	RECBUF PRCHAR TOF MSG STNO	EQU DATA DATA DATA BSS	20 4B 030000006 'STOP',0	SIZE OF IO BUFFE PROMPTING CHARAC TOP OF FORM CODE	TER \$
	00000024	* BUFIN OUTBUF	BSS BSS	RECBUF RECBUF		
		* *				
		* PROG *	RAM DA	TA STORAGES	AND CONSTANTS	
	$\begin{array}{c} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 7 \end{array}$	X1 X2 X3 X4 X5 X6 X7	EQU EQU EQU EQU EQU EQU	1 2 3 4 5 6 7	NDEX REGISTER 1 NDEX REGISTER 2 NDEX REGISTER 3 NDEX REGISTER 4 NDEX REGISTER 5 NDEX REGISTER 6 NDEX REGISTER 7	
00103	00000000	* SVX6	DATA	0		
00106 00107 00110 00111 00112 00113 00114 00115 00116 00117	0000000 0000001 0000004 2000000 21110000 0000315 0000000 21212121 2222222 23232323 24242424 12121212	COMFLG D1 D4 B22 FP9 D205 MSGS STARS * TABLE	DATA DATA DATA DATA DATA DATA DATA DATA	0 1 4 20000000B 21110000B 205 0 '1111' '2222' '3333' '4444' '****'	G/BG BUSY FLAG	
00145	00000144 000000000 000000000	TABEND PARMS ARRENT	EQU DATA DATA	*-1 0 0		

			- AUL								
		*									
		******	*****	******	*****	****	* * * * *	****	****	* * * *	
		*								*	
		* FORE	GROUND	SECTION	CALLED	ΒY	EXEC	STA	TEMEN	Т *	
		*								*	
		******	*****	*******	*****	****	****	****	****	****	
		. *									
	00000147	FGENT	EQU	*							
00147	64000105		LDA	COMFLG	BACK	GROU	ND S	TILL	BUSY	?	
	42200153		8 Z	*+3						NEXT	MSG
	12040714		BSM*	FGWAIT	YES,				00		
	41000147		BRU	FGENT	1201		'				
00152	41000147	*	0.00	1 GEAT							
04157	56300145	^ .	STX	X3, PARMS							
	45700121		LDX	X7, TABLE							
	45600144		LDX	-							
				X6, TABEN	U						
	07000604		CLA								
	54000104		STA	PARX							
	64000145	FG1	LDA	PARMS							
	42200221		BZ	FGEX							
	24400001		LDA	1,X4							
	63000110		CAM	822							
00164	43040177		BBC	ARR							
00165	24440001		LDA*	1,X4							
00166	63000111		CAM	FP9	DON "	T AL	LOW 9	,			
00167	43200230		BE	TE205							
00170	76000104		AOM	PARX							
00171	77000145		SOM	PARMS							
00172	14700000		STA	0,X7	STOR	E PA	RAME 1	I E R			
00173	11400001		A T X	X4,1							
00174	11700001		ATX	x7,1							
00175	43100160		BL	FG1							
00176	41000221		BRU	FGEX	TABL	E FU	LL				
		*									
00177	24440001	ARR	LDA*	1,X4							
	11400001		ATX	x4,1							
	77000145		SOM	PARMS		DECR	EMENT	r cou	INTER		
	07500000		LXA	X5			TO AF				
	25500000		LDE	0, X5	ARR						
	55000146		STE	ARRENT							
	11500001	FG2	ATX	X5,1							
	24500000	102	LDA	0,X5							
	63000111		CAM	FP9	DONT	A I I					
			BE		DUNT	466	04 9				
	43200230			TE205							
	14700000		STA	0,X7							
	76000104		AOM	PARX							
	11700001		ATX	X7,1							
	43600221		BGE	FGEX							
	77000146		SOM	ARRENT							
	64000146		LDA	ARRENT	_		_				
	45200160		8 Z	FG1	END	OF A	RRAY				
00550	41000205		HRU	FG2							
		*									
	00000551	FGEX	EQU	*			_				
	07600200		LAX	X6	SAVE	ST 4	TION	ID			
00555	54000103		STA	SVX6							
		*									
00553	64000106		LDA	D1	TURN	0 N	BACK	GROUI	ND BU	SY FL	AG
00224	54000105		STA	COMFLG							
		*									
00225	45700232		LDX	x7,BGMSG	ADDRE	ss o	F BA	CKGR	OUND	ROUTI	NE
	12040711		9SM*	FGBGRT					CKGRO		

PAGE

00227 41040024		BRU*	EXMPLE	RETURN	TO TESTING
00230 64000112 00231 12040676	* TE205	LDA BSM*	D205 IFRMSG		

			PAGE		
		******	*****	******	*****
		*			*
		* BACK	GROUND	ROUTINE S	CHEDULED BY FOREGROUND *
		*			*
		******	*****	*******	*****
		*			
	00000535	BGMSG	EQU	*	
00535	05640441		LDX*	X6,PODPMF	SET X6 TO ADDRESS OF POD PMF
00233	45100027		LDX	X1,TOF	
00234	12040645		BSM*	\$IOCS	DO TOP OF FORM IF POD IS LP
00235	50000235		NOP	*	IGNORE ERROR
	45700121		LDX	X7,TABLE	
	56700146	BGM1	STX	X7,ARRCNT	
00240	64000104		LDA	PARX	DONE?
00241	42200264		ВZ	BGFIN	
	24700000		LDA	0,X7	
00243	12040731		BSM*	FFIX	
00244	42300247		BNZ	*+3	
00245	63000107		CAM	D 4	
00246	43300251		8LE	*+3	
00247	64000120		LDA	STARS	
00250	41000253		BRU	*+3	
00251	07500000		LXA	X5	
00252	64500113		LDA	MSGS,X5	GET MESSAGE TO PRINT
00253	54000032		STA	STNO	
00254	45100030		LDX	X1,MSG	START ADDRESS OF OUTPUT
00255	05200003		LDX	x2,3	NO. OF WORDS TO OUTPUT
00256	12040647		BSM*	MSGOUT	
00257	50000257		NOP	*	IGNORE ERROR
~		*			
00560	77000104		SOM	PARX	DECREMENT COUNT
	45740146		LDX*	x7,ARRCNT	
	11700001		ATX	X7,1	
00563	41000237		BRU	BGM1	
		*			
	00000264	BGFIN	EDU	*	
	07000604		CLA		CLEAR BACKGROUND BUSY FLAG
	54000105		STA	COMFLG	
00266	01040706		BRU*	COMMND	RETURN TO SYSTEM

1

.

Figure 6-1 Sample ALLINK Program (Continued)

.

* * 1 ***** BACKGROUND SECTION CALLED BY AN OPERATOR COMMAND * // EXMPLE IT READS A RECORD FROM PID AND OUTPUTS IT TO POD IT EXITS WHEN FOUR ASTERISKS ARE ENTERED × ** ***** 00000267 BGSTART EQU * 00267 45100033 LDX X1, BUFIN ADDRESS OF INPUT BUFFER LDA PRCHAR PROMPTING CHARACTER \$ 00270 64000026 00271 12040646 BSM* MSGIN READ A RECORD 00272 50000272 NOP NOW OUTPUT IT TO POD * * 00273 05400012 LDX X4,10 00274 05500000 LDX X5,0 x3,2 00275 05300002 LDX THE RECORD = **** ? 00276 64000033 LDA BUFIN STARS 00277 63000120 CAM 00300 43200314 ΒE CLSE YES, EXIT NOW 00000301 MOVEIT FQU 00301 64500033 BUFIN, X5 LDA 00302 54300057 STA OUTBUF, X3 MOVE IT TO OUTPUT BUFFER 00303 11500001 ATX X5,1 WITH SPACING 00304 43400307 8 G WRITR 00305 11300002 ATX X3,2 00306 41000301 BRU MOVEIT 00000307 WRITR EQU 00307 45100057 LDX X1, OUTBUE ADDRESS OF OUTPUT BUFFER 00310 05200024 LDX X5,50 NO. OF WORDS TO OUTPUT 00311 12040647 BSM* MSGOUT 00312 50000312 NOP IGNORE ERROR 00313 41000267 8RU BGSTART 00000314 CLSE FOU 00314 41040022 BRU* OVBGEP RETURN TO SYSTEM 00000315 LWORD EQU * FND

*

*

PAGE

00000177	ARR	00164									
00000146	ARRCNT	00204	00215	00216	00237	00261					
00000110	B55	00163									
00000264	BGFIN	00241									
00000237	BGM1	00263									
00000232	BGMSG	00225									
00000267	BGSTAR	00023	00313								
00000033	BUFIN	00267	00276	00301							
00000314	CLSE	00300									
00000105	COMFLG	00147	00224	00265							
00000706	COMMND	00266									
00000106	D 1	00223									
00000112	D205	00230									
00000107	D4	00245									
00000024	EXMPLE	00227									
00000731	FFIX	00243									
00000160	FG1	00175	00217								
00000205	FG2	00220									
00000711	FGBGRT	00226									
00000147	FGENT	00025	00152								
00000221	FGEX		00176	00214							
00000714	FGWAIT	00151	00110								
00000111	FP9		00207								
00000000	FWORD	00005									
00000420	GLOVAR	00026									
00000676	IERMSG	00231									
00000315	LWORD	00005									
00000301	MOVEIT	00306									
00000030	MSG	00254									
00000646	MSGIN	00271									
00000647	MSGOUT	00256	00311								
00000113	MSGS	00252									
00000057	OUTBUF	00302	00307								
00000055	OVBGEP	00314									
00000145	PARMS			00171							
00000104	PARX	00157	00170	00212	00240	00260					
00000441	PODPMF	00535									
00000056	PRCHAR	00270									
0000024	RECBUE	00033	00057								
00000020	RELSE	00021									
00000120	STARS	00247	00277								
00000032	STNO	00253									
00000103	SVX6	00555									
00000640	SYXVEC		00026	00056	00056	00056	00026	00026	00056		
00000144	TABEND	00155									
00000121	TABLE		00536								
00000230	TE205		00510								
00000027	TOF	00233									
00000307	WRITR	00304									
00000001	X 1			00267	00307						
00000005	x 5	00255									
0000003	X 3			20200							
00000004	X4					00200		0077"		00707	
00000005	X5				00206	00251	00252	002/4	00501	00305	
00000006	X6		00221					00771	00777	00242	
00000007	X 7			00174	00211	00213	00225	00230	00231	00242	
00000645			00565								
00000645	\$IOCS	00234									

Overlay Header Format File Type Code List

WORI	$\begin{array}{c} 0 & 0 \\ 1 & 2 \\ 3 & 4 \\ 5 & 6 \\ 7 & 10 \\ 11 & 12 \\ 13 & 14 \\ 15 & 16 \\ 17 & 20 \\ 21 & 22 \\ 23 & 24 \\ 25 & 26 \end{array}$	0 The first four characters of overlay name in TRASCII The last two characters of overlay name in TRASCII File type code Release revision number in TRASCII File length including header (words) Expansion size (words) at load time Reserved for system use Module relocation value store Module return address store PZE for module entry point BRU for module entry point PZE for reset/kill entry BRU for reset/kill process PZE for special purpose entry BRU for special purpose entry BRU for release overlay entry PZE for normal background entry BRU for normal background entry BRU for foreground entry
	26 27 to 33	Release notes (date)

A-1

FILE TYPE CODE LIST

in Header	LOCATION 3.
Code	File
0	Undefined
20B	Manual Analysis
21B	
22B	
23B	Parameter Distribution
24 B	Datalogger
25B	
26 B	DEBUG
27 B	
30 B	
31B	
32B	
33B	
34B	
35B	
36B	
71B	Overlay that takes a long time to execute (EDIT), expands (COMPILE), or generates memory files (ASM, COPY).
72B	Data files
73B	Object files
74B	STRING files
75B	Module test programs
76B	Test programs
77B	General overlay

Instruction Mnemonics

B.1 OPCODES SORTED BY ASCENDING ALPHA OPCODES

O	ocode	Mnemonic	Code Description	Cycles
		ABS	ABSOLUTE PROGRAM LOCATOR	
*	20000000	ADD	ADD	
*	26000000	AND	LOGICAL AND	2
*	36000000	AOM	ADD ONE TO MEMORY	4
	064034XX	ARD	ALTERNATE READ	1
	066134XX	ARDS	ALTERNATE READ STATUS	1
	06422400	ASPAC	ALTERNATE SPACE	1
	06401500	ART	ALTERNATE READ RECORD TAPE	1
*	11000000	ATX	ADD TO INDEX	2
*	07000000	AUG	AUGMENT	
*	06423400	AWRIT	ALTERNATE WRITE	1
*	00000000	BAH	BRANCH AFTER HALT	1
*	02000000	BAT	BRANCH ON A-REGISTER TEST	1
*	03040000	BBC	BRANCH BIT COMPARE	1
*	03200000	BE	BRANCH IF EQUAL	1
*	03400000	BG	BRANCH IF GREATER	1
*	03600000	BGE	BRANCH IF GREATER OR EQUAL	1
*	03100000	BL	BRANCH IF LESS	1
*	33000000	BLE	BRANCH IF LESS OR EQUAL	1
*	02100000	BN	BRANCH IF NEGATIVE	1
*	03500000	BNE	BRANCH NOT EQUAL	1
*	02500000	BNEZ	BRANCH IF NOT EQUAL TO ZERO	1
*	02300000	BNZ	BRANCH IF NEGATIVE OR ZERO	1
*	02040000	BO	BRANCH IF ODD	1
*	03000000	BOI	BRANCH ON INDICATOR	1
*	04000000	BOS	BRANCH ON STATE	1
*	04440000	BOV	BRANCH ON OVERFLOW	1
*	02400000	BP	BRANCH IF POSITIVE	1
*	02600000	BPZ	BRANCH IF POSITIVE OR ZERO	1
*	01000000	BRU	BRANCH UNCONDITIONAL	1

a 5.

OPCODES SORTED BY ASCENDING ALPHA OPCODES (Continued)

Oŗ	ocode	Mnemonic	Code Description	Cycles
*	12000000	BSM	BRANCH STORAGE RETURN	
			AT M	2
		BSS	BLOCK STORAGE SIZE	
*	02200000	BZ	BRANCH IF ZERO	1
	12000000	CALL	SUBROUTINE CALL	
*	23000000	CAM	COMPARE A WITH MEMORY	2
	07000604	CLA	CLEAR ACCUMULATOR	1
*	30000000	DADD	DOUBLE ADD	3
*		DATA	DATA DEFINITION	
*	35000000	DIV	DIVIDE	26
	35000000	DLD	DOUBLE LOAD	3
	07034000	DSA	DOUBLE SHIFT AROUND	3
	07036000	DSL	DOUBLE SHIFT LEFT	
	07016000	DSN	DOUBLE SHIFT NORMALIZED	
	07030000	DSR	DOUBLE SHIFT RIGHT	
*	33000000	DST	DOUBLE STORE	3
*	32000000	DSUB	DOUBLE SUBTRACT	3
	07014000	DTC	DOUBLE TWO'S COMPLEMENT	2
		END	PROGRAM TERMINATOR	
*	21000000	EOR	EXCLUSIVE OR	2
		EQU	EQUIVALENCE	
	060100XX	ETST	ERROR TEST	1
	07010000	EXC	EXCHANGE A AND E	1
	06051500	FSKIPB	SKIP FILE FORWARD (ADVANCE	-
			TO TAPE MARK)	1
	06041500	FSKIPF	SKIP FILE BACKWARE (ADVANCE	
			TO TAPE MARK)	1
	07012400	IDA	INTERRUPT DISABLE	1
	07004400	IEN	INTERRUPT ENABLE	1
	07000600	LAR	LOAD A FROM RELOCATION	,
	07000000	TAV	REGISTER	1
*	07000200	LAX	LOAD A FROM INDEX	1
*	24000000	LDA	LOAD A-REGISTER	$2 \\ 2$
ጥ	25000000	LDE	LOAD E-REGISTER	Z
*	07032000 05000000	LDS	LOGICAL DOUBLE SHIFT	1
-1-	0000000	LDX LIST	LOAD INDEX PRODUCE ASSEMBLY LISTING	T
	07000400	LISI	LOAD RELOCATION REGISTER	
	07000400	LILA	FROM A	1
	07022000	LS	LOGICAL SHIFT A	I
	07000000	LS LXA	LOGICAL SHIFT A LOAD INDEX FROM A	1
*	34000000	MUL	MULTIPLY	25
-	0100000	NOLIST	NO ASSEMBLY LISTING	40
	10000000	NOP	NO ASSEMBLI EISTING NO OPERATION	1
	10000000	OBJ	PRODUCE OBJECT PROGRAM	T
*	27000000	OR	OR (INCLUSIVE)	2
	2100000	ORG	ORIGINATION CONTROL	-
		0.100		

B.1

B-2

OPCODES SORTED BY ASCENDING ALPHA OPCODES (Continued)

Ol	pcode	Mnemonic	Code Description	Cycles
		PAGE	PAGINATION CONTROL	
	060010XX	PCOMP	PRIORITY COMPLETE	1
	060110XX	POFF	PRIORITY OFF (INTERRUPT	
			DISABLE)	1
	060130XX	PON	PRIORITY ON (INTERRUPT	
			ENABLE)	1
	00000000	PROC	SUBROUTINE ENTRY POINT	
	00000000	PZE	POSITIVE ZERO (ENTRY PT)	•
	064014XX	RD	READ	1
	066114XX	RDS	READ STATUS	1
	06501500	RDT	READ (MAGNETIC) TAPE	1
	06601400	RDTT	READ TELETYPE	1
	06611700	REWC	READ EXCESS WORD COUNT	1
	06000500	REWIND	REWIND TAPE	1
	06011500	RSKIPB	SKIP RECORD BACKWARD	1
	06001500	RSKIPF	SKIP RECORD FORWARD	1
	07006000	RSR	READ SWITCH REGISTER	1
	07012000	RST	RESET STATE	1
*	17000000	RUM	REPLACE UNDER MASK	2
	07024000	SA	SHIFT A AROUND LEFT	
	06461500	SKWR	SKIP AND WRITE	1
	07026000	\mathbf{SL}	SHIFT A LEFT	
*	37000000	SOM	SUBTRACT ONE FROM MEMORY	4
	06420400	SPAC	SPACE	1
	06000000	SPU	SELECT PERIPHERAL UNIT	
			(DETAILED SPU COMMANDS	
			ARE LISTED IN APPENDIX D)	1
	07020000	SR	SHIFT A RIGHT	
	07004000	SST	SET STATE	1
*	14000000	STA	STORE-A-REGISTER	2
*	15000000	STE	STORE-E-REGISTER	2
	07000611	STM1	SET FST-1 MODE	1
	07000612	STM2	SET FST-2 MODE	1
	060000XX	STST	STATUS TEST	1
*	16000000	STX	STORE INDEX	2
*	22000000	SUB	SUBTRACT	2
	07002000	TCA	TWO's COMPLEMENT A	1
	06000400	TOF	TOP-OF-FORM	1
	064214XX	WRIT	WRITE	1
	06061500	WRITM	WRITE TAPE MARK	1

* B23=0 for Absolute Memory Reference of Non-REL Program =1 for Relocatable Memory Reference with REL Program

B.1

.

OPCODES SORTED BY ASCENDING OCTAL OPCODES

O	pcode	Mnemonic	Code Description	Cycles
		ABS	ABSOLUTE PROGRAM LOCATOR	
	00000000	BSS	BLOCK STORAGE SIZE	
*	00000000	DATA	DATA DEFINITION	
	00000000	END	PROGRAM TERMINATOR	
	00000000	EQU	EQUIVALENCE	
		LIST	PRODUCE ASSEMBLY LISTING	
		L101	TRODUCE ASSEMBLT LISTING	
		NOLIST	NO ASSEMBLY LISTING	
		OBJ	SPECIFY OBJECT PROGRAM SIZE	
		ORG	ORIGINATION CONTROL	
		PAGE	PAGINATION CONTROL	
*	00000000	BAH	BRANCH AFTER HALT	1
	00000000	PROC	SUBROUTINE ENTRY POINT	
	00000000	PZE	POSITIVE ZERO (ENTRY PT)	
*	01000000	BRU	BRANCH UNCONDITIONAL	1
*	02000000	BAT	BRANCH ON A-REGISTER TEST	1
*	02040000	BO	BRANCH IF ODD	1
*	02100000	BN	BRANCH IF NEGATIVE	1
*	02200000	BZ	BRANCH IF ZERO	1
*	02300000	BNZ	BRANCH IF NEGATIVE OR ZERO	1
*	02400000	BP	BRANCH IF POSITIVE	1
*	02500000	BNEZ	BRANCH IF NOT EQUAL TO	
			ZERO	1
*	02600000	BPZ	BRANCH IF POSITIVE OR	
			ZERO	1
*	03000000	BOI	BRANCH ON INDICATOR	1
*	03040000	BBC	BRANCH BIT COMPARE	1
*	03100000	BL	BRANCH IF LESS	1
*	03200000	BE	BRANCH IF EQUAL	1
*	03300000	BLE	BRANCH IF LESS OR EQUAL	1
*	03400000	BG	BRANCH IF GREATER	1
*	04000000	BOS	BRANCH ON STATE	1
*	04440000	BOV	BRANCH ON OVERFLOW	1
	06000000	SPU	SELECT PERIPHERAL UNIT	
			(DETAILED SPU COMMANDS	
			ARE LISTED IN APPENDIX D)	
	060000XX	STST	STATUS TEST	1
	06000400	TOF	TOP-OF-FORM	i
	06000500	REWIND	REWIND TAPE	ī
	00000000	1011001101		-

B.2

OPCODES SORTED BY ASCENDING OCTAL OPCODES (Continued)

Opcode Mnemonic Code Description	Cycles
060010XX PCOMP PRIORITY COMPLETE	1
06001500 RSKIPF SKIP RECORD FORWARD	1
060100XX ETST ERROR TEST	ĩ
060110XX POFF PRIORITY OFF	•
(INTERRUPT DISABLE)	1
06011500 RSKIPB SKIP RECORD BACKWARD	1
060130XX PON PRIORITY ON (INTERRUPT	-
ENABLE)	1
06020400 FEED CHARACTER (PAPER TAPE)	
FEED	1
06041500 FSKIPF SKIP FILE FORWARD	-
(ADVANCE TO	
TAPE MARK	1
06051500 FSKIPB SKIP FILE BACKWARD	-
(GO BACK TO TAPE MARK)	1
06061500 WRITM WRITE TAPE MARK	1
064014XX RD READ	1
06401500 ART ALTERNATE READ RECORD	
TAPE	1
064034XX ARD ALTERNATE READ	1
06420400 SPAC SPACE	1
064214XX WRIT WRITE	1
06422400 ASPAC ALTERNATE SPACE	1
06423400 AWRIT ALTERNATE WRITE	1
06461500 SKWR SKIP AND WRITE	1
06501500 RDT READ (MAGNETIC) TAPE	1
06601400 RDTT READ TELETYPE	1
066114XX RDS READ STATUS	1
06613400 ARDS ALTERNATE READ STATUS	1
0700000 AUG AUGMENT	
07000000 LXA LOAD INDEX FROM A	1
07000200 LAX LOAD A FROM INDEX	1
07000400 LRA LOAD RELOCATION REGISTER	
FROM A	1
07000600 LAR LOAD A FROM RELOCATION	
REGISTER	1
07000604 CLA CLEAR ACCUMULATOR	1
07000611 STM1 SET FST-1 MODE	1
07000612 STM2 SET FST-2 MODE	1
07002000 TCA TWO'S COMPLEMENT A	1
07004000 SST SET STATE	1
07004400 IEN INTERRUPT ENABLE	1
07006000 RSR READ SWITCH REGISTER	1
07010000 EXC EXCHANGE A AND E	1

B.2

OPCODES SORTED BY ASCENDING OCTAL OPCODES (Continued)

OĮ	ocode	Mnemonic	Code Description	Cycles
	07012000	RST	RESET STATE	1
	07012400	IDA	INTERRUPT DISABLE	1
	07014000	DTC	DOUBLE SHIFT NORMALIZED	
	07020000	SR	SHIFT A RIGHT	
	07022000	LS	LOGICAL SHIFT A	
	07024000	SA	SHIFT A AROUND LEFT	
	07026000	SL	SHIFT A LEFT	
	07030000	DSR	DOUBLE SHIFT RIGHT	
	07032000	LDS	LOGICAL DOUBLE SHIFT	
	07034000	DSA	DOUBLE SHIFT AROUND	
	07036000	DSL	DOUBLE SHIFT LEFT	
*	10000000	NOP	NO OPERATION	1
*	11000000	ATX	ADD TO INDEX	2
*	12000000	BSM	BRANCH STORE RETURN AT M	2
	12000000	CALL	SUBROUTINE CALL	
*	14000000	STA	STORE A-REGISTER	2
*	15000000	STE	STORE E-REGISTER	2
*	16000000	STX	STORE INDEX	2
*	17000000	RUM	REPLACE UNDER MASK	2
*	20000000	ADD	ADD	2
*	21000000	EOR	EXCLUSIVE OR	2
*	22000000	SUB	SUBTRACT	2
*	23000000	CAM	COMPARE A WITH MEMORY	2
*	24000000	LDA	LOAD A-REGISTER	2
*	25000000	LDE	LOAD E-REGISTER	2
*	26000000	AND	LOGICAL AND	2
*	27000000	OR	OR (INCLUSIVE)	2
*	30000000	DADD	DOUBLE ADD	3
*	31000000	DLD	DOUBLE LOAD	3
*	32000000	DSUB	DOUBLE SUBTRACT	3
*	33000000	DST	DOUBLE STORE	3
*	34000000	MUL	MULTIPLY	25
*	35000000	DIV	DIVIDE	26
*	36000000	AOM	ADD ONE TO MEMORY	4
*	37000000	SOM	SUBTRACT ONE FROM MEMORY	4

*

Bit 23 = 0 for Absolute Reference of non-REL Program = 1 for Relocation Memory Reference with REL Directive

B.2

.

Conversion of TOPSY/DOPSY Assembly Language Programs to MASTR

C.1 INTRODUCTION

To run in MASTR, assembly language overlays must be modified to include a program header, to use the new global variables, and to follow the calling sequences as defined for IOCS and system subroutines.

The same overlay may be called from the FACTOR program by the EXEC statement and from a command from the background. There is no need to maintain two copies of the program as in TOPSY.

MASTR can load and execute an assembly language overlay at any location in memory. It is no longer necessary to create the coreimage files at specific locations to avoid overlap with other coreimage files.

Note

The object files are no longer supplied on the system DBUP tape.

C.2 PROCEDURE

This section defines a step by step procedure for the conversion of DOPSY/ TOPSY assembly language programs to MASTR. The difficulty of the conversion depends to a great deal on the complexity of the program and the familiarity of the programmer doing the conversion with that program. If the program is well structured and documented, the conversion should be straight forward.

1. In the job 'HELP', there is a source file named '*AHDR'. Add this header to the program by inserting the existing program in the appropriate place for a foreground or background program. Note that a foreground entry is made when called from a FACTOR program by means of the EXEC statement. The background entry is made when called by a command.

- 2. Examine all EQU statements to find references to system globals. If any exist, then their usage must be examined and replaced with the equivalent in MASTR. Note that there is not always a direct replacement for a DOPSY/ TOPSY variable. System globals in MASTR will be located in SYSVAR (system variables), GLOVAR (global variables), TVT (test head variables), and SVT (current station variables).
- 3. Examines all EQU statements to fine uses of system routines that are called by a BSM* instruction. These calls must be replaced with the equivalent call to MASTR by the SYXVEC table. Note that some calling sequences are different, i.e., the floating point routines use the E-register instead of a parameter placed after the call.
- 4. Examine all CALL statements to find references to external routines.
 - a. The routine that is called may now be a part of the MASTR routine library, so examine the routines in SYXVEC for an equivalent function.
 - b. The routine that is called may be another part of the program that also must be converted. A linking CREATE program is available on MASTR Rel 2.0. When linking object files together to make a MASTR overlay, put the tag LASTW on the END instruction of the last module only and link it to the first module with an ENT and EXT instruction. Also change the fifth word to be "DATA LASTW".
- 5. Examine the program for any PROC directives with an interrupt location specified. Also examine the program for any SPU instruction to I/O devices. All routines that perform direct input/output to a peripheral must be changed to use IOCS. An overlay may read and write directly to the test registers providing the usage does not conflict with the test head driver.
- 6. Add an initialization section that:
 - a. clears any flags that must be 0 upon entry remember that the programs may not be reloaded from the disk each time. The routine MPZERO may be useful for this function.
 - b. opens files for I/O and saves the pointers to IOATAB (X6), for use by subsequent calls to IOCS.
- 7. Define data control blocks (DCBs) in MASTR format for each I/O operation and change all calls to use IOCS.

8. Upon exit from the program, all files that are open must be closed (even upon exit due to an error). This is required so that the system IOATAB is not filled with files that are no longer used. The IOATAB pointer serves as a useful flag if coded as follows:

EXIT	-		
	LDA	ΙΟΑΤΡ	Get File ID
	BZ	CLOSED	File Already Closed
	LXA	X6	Set Up ID for IOCS
	CLA		
	STA	ΙΟΑΤΡ	Mark File Closed
	LDX	X1,CLOSE	Get Control Word
	BSM*	IOCS	Close the File
	BRU	ERROR	Error Return
CLOSED	-		

- 9. Change program exit to return through the foreground (FGEP) or background (BGEP) as appropriate.
- 10. Check for conflicting uses of index registers and state switches with the new system routines, i.e., IOCS uses X1 and X6.

Index

ACTFIO, 2-12, 2-20 ADJFLG, 2-11, 2-17 ADJMEM, 3-2, 3-9, 3-10 ADRXLA, 3-3, 3-63, 3-64 AFGBGF, 2-12, 2-24 ALLEX, 3-2, 3-40, 3-41 ALLINK, 1-3, 6-1 to 6-15 Calling procedure, 6-4 to 6-6, 6-8 Creating coreimage, 6-3 Foreground/background processing, 6-1, 6-9 Header, 6-2 Loading procedure, 6-3 Program definition, 6-2 Risks, 6-1, 6-2 Sample program, 6-9 to 6-15 Scheduling, 6-6 to 6-8 ALTER, 3-2, 3-26, 3-27 APMREV, 2-11, 2-13 Assembly language overlays, see ALLINK ATHDF, 2-12, 2-22 ATPA, 2-11, 2-13 ATTA, 3-3, 3-55, 3-56 AWATF, 2-12, 2-22 BFLERR, 2-12, 2-21 BGCHK, 3-3, 3-70 BGID, 2-12, 2-25 BINARY, 2-12, 2-21 BINC, 2-11, 2-20 BINCNT, 2-12, 2-22 BINUM, 2-11, 2-20 CALLMOD, 3-3, 3-71 CATGRY, 2-12, 2-25 Clear VKT, 4-18, 4-19 CLI/CLO blocked file, 5-11 CLI/CLO unblocked file, 5-11 CLI/CLO variable length file, 5-12

CLIO disconnect, 4-29 CLIOID, 2-12, 2-24 Close a file, 4-27 CMDPMF, 2-11, 2-18 CMDV, 2-11, 2-19 COLFLG, 2-12, 2-20 COMERR, 3-2, 3-6 COMIMG, 2-11, 2-18 COMMND, 3-2, 3-41 CONV, 3-2, 3-13 Coreimage files, 5-34, 5-35, 5-36 Current station variables, 2-43 to 2-52 CURSYS, 2-11, 2-16 Data files, fixed length, 5-33, 5-34 Data files, variable length, 5-18 to 5-20 DATA/INSTRUCTION, 5-38 Datalog record format, 5-22 DATE, 2-11, 2-16 DBUGSA, 2-12, 2-23 DELFIL, 3-3, 3-55 Device, close a file, 4-28 DEVNUM, 2-12, 2-24 DFDV, 2-8 DFSTAT, 2-12, 2-23 Direct current fail record, 5-24 Direct current pass record, 5–25 Disk files and usage, 5-1 to 5-4 Disk directory entry, 5-3 Disk file format. 5-4 Disk organization, 5-1, 5-2 Disk specification, 5-1 DMASTR, 3-3, 3-59, 3-60 DPS trip fail record, 5-23 DRPMF, 2-11, 2-15 DTTA, 3-3, 3-56 DUMP, 3-2, 3-36, 3-37

ECHFLG, 2-11, 2-18

Index-1

ENBTST, 3-3, 3-62, 3-63 END, 5-40 End of test record, 5-31 ENT, 5-40 ENTBSY, 3-3, 3-65 ERRCNV, 3-2, 3-45 EXT, 5-39 FACTOR, writing from, 5-32 FADD, 3-2, 3-48 Fail message, functional, 5-28, 5-29 Fail record, direct current, 5-24 Fail record, DSP trip, 5-23 Fail record, functional, 5-26, 5-27 FAND, 3-2, 3-46 FCAM, 3-3, 3-53 FDIV, 3-2, 3-48 FEOR, 3-2, 3-47 FEXP, 3-3, 3-50 FFIX, 3-3, 3-51 FFIXS, 3-2, 3-49 FFLT, 3-3, 3-52 FFLTS, 3-3, 3-52, 3-53 FGBGFL, 2-11, 2-16 FGBGH, 3-3, 3-57 FGBGRT, 3-2, 3-43 FGBGWT, 3-3, 3-57 FGIO, 3-3, 3-58, 3-59 FGOH, 3-3, 3-60, 3-61 FGOVC, 3-2, 3-40 FGWAIT, 3-2, 3-44 File(s) Coreimage, 5-34, 5-35, 5-36 Data, 5-18 to 5-34 End input, 4-31, 4-32 End output, 4-32, 4-33, 4-34 Object, 5-37 to 5-40 Request, 4-35 Stored in memory, 5-12 to 5-17 String, 5-18 System, 1-3 Transferred to Integrator, 5-10 to 5 - 12Transmit (add), 4–29, 4–30 Transmit (create), 4-30, 4-31 Type 010, 5-37 Type code list, 5-36 FINDVL, 3-3, 3-58 Fixed length data files, 5-33, 5-34 FLOG, 3-2, 3-47 FMUL, 3-3, 3-51 FNOT, 3-3, 3-50 FOR, 3-2, 3-49

FSUB, 3-2, 3-46 Functional failure message, 5-28, 5-29 Functional failure record, 5-26, 5-27 Functional failure record, PPM, 5-30 FWALT, 2-11, 2-15 FWAM, 2-11, 2-17 FWIOA, 2-11, 2-15 FWMAC, 2-11, 2-15

General record format, 5-19 GETC, 3-2, 3-33 Global constant, 2-1, 2-4 to 2-7 Global data, 1-2 Global subroutine, 2-2 Global variable, 2-2 GLOVAR, global variable, 2-11 to 2-25 GTSTAT, 3-2, 3-12 GTTDV, 3-2, 3-38, 3-39

HEADER, 3-2, 3-39 Header record format, 5-21

IDTSCN, 3-2, 3-29, 3-30 IERMSG, 3-2, 3-36 Input/output control system (\$IOCS), 1 - 3ASCII control mode, 4-40 Calling sequence, 4-5 CLIO disconnect, 4-29 Close a file, 4-27 Device formats, 4-7, 4-8 Devices, 4-3 Driving I/O device, 4-7 End of file definition, 4-4 End of record definition, 4-5 EOF mark, 4-23 Error code, 4-4 File end input, 4-31, 4-32 File end output, 4-32, 4-33, 4-34 File request, 4–35 File transmit (add), 4-29 File transmit (create), 4-30 Functions, 4-3 Initialization, 4–6 IOATAB, 4-9 OPEN call, 4-12 to 4-15 Operation principles, 4-1, 4-2 Operator message, 4-28 Page a block into memory, 4-38 READ/WRITE record, 4-16 to 4-18 Rewind magnetic tape, 4–39 Skip a file, 4-22 Skip a record, 4-37

Status check request, 4-24, 4-25 Terminate I/O, 4-18, 4-19 Termination, 4-7 Top of form, 4-20Unformatted write, 4-21 VERIFY/READ, 4-26 VKT transmit, 4-36 Word formats, 4-10, 4-11 Integrator Disconnect CLIO, 4-29 File end input, 4-31 File end output, 4-32, 4-33, 4-34 File request, 4-35 File transmit (add), 4-29, 4-30 File transmit (create), 4-30, 4-31 Files transferred to, 5-10, 5-11, 5-12 Operator message, 4-28 INTSCN, 3-2, 3-31 INUMB1, INUMB2, 2-12, 2-21 INTERP, 3-3, 3-76 I/O assignment table (IOATAB), 4-9 JOB, 2-11, 2-16 LDFLG, 2-11, 2-19 LOAD, 3-3, 3-63, 3-64 LOTNUM, 2-12, 2-24 LWALT, 2-11, 2-15 LWAM, 2-11, 2-17 LWCPU, 2-11, 2-17 LWMAC, 2-11, 2-15 LWSYS, 2-11, 2-17 M1FDA, 2-8, 2-10 M1FDDA, 2-8, 2-10 M1INIT, 2-8, 2-9 M1WSDA, 2-8, 2-9 M1WSSC, 2-8, 2-9 M1WSWC, 2-8, 2-9 MACTAB, 5-14, 5-15 Magnetic tape Rewind, 4-39 Skip file mark, 4-22 Skip record, 4-37 Write EOF mark, 4-23 Magnetic tape files and usage, 5-4 to 5-9 Blocked file format, 5-4, 5-5 MBUP format, 5-8 Organization, 5-4 TDX-generated, 5-6 to 5-8 MANTISSA, 2-11, 2-19 MASTAT, 2-12, 2-24

MASTR file description, 5-1 to 5-40 MEMBSY, 2-12, 2-20 Memory activity table, 5-14, 5-15 Memory map, 5-16, 5-17 MONINT, 3-2, 3-43, 3-44 MOVEDN, 3-2, 3-16 MOVEUP, 3-2, 3-17 MPZERO, 3-2, 3-33 MSGIN, 3-2, 3-7 MSGOUT, 3-2, 3-7, 3-8 NAME1, NAME2, 2-12, 2-22 NAMEM1 through NAMEM6, 2-11, 2-12, 2 - 20NIOA, 2-11, 2-16 NMAC, 2-11, 2-14 NSVT, 2-11, 2-14 NTVT, 2-11, 2-13 NUMB1, NUMB2, 2-12, 2-21 NUMBER, 3-2, 3-30, 3-31 NUMERR, 3-2, 3-5 NUMFLG, 2-12, 2-22 Object files, 5-37 to 5-40 DATA/INSTRUCTION, 5-38 File type 010, 5-37 END, 5-40 ENT, 5-40 EXT, 5-39 PROC/CALL, 5-39 START, 5-38 OCTAL, 2-11, 2-18 OFLERR, 2-11, 2-19 ONUMB1, ONUMB2, 2-12, 2-20 OPEN call to IOCS, 4-12 to 4-15Operator message, 4-28 OPHL, 2-11, 2-16 OUTCLS, 3-2, 3-5 OUTOPN, 3-2, 3-4 Overlay header format, 5-35 PAGTP, 3-3, 3-57 \$PARSE, 3-2, 3-28, 3-29 Pass record, direct current, 5-25 PIDFLG, 2-11, 2-18 PIDPMF, 2-11, 2-15 PGPMF, 2-11, 2-17 PODPMF, 2-11, 2-15 PPM functional failure record, 5-30 PROC/CALL, 5-39 PROCESS, 3-2, 3-19 to 3-25 PUTA, 3-3, 3-70 PUTB, 3-3, 3-72

PUTC, 3-2, 3-15 PUTD, 3-2, 3-14 PUTE, 3-2, 3-18 PUTENG, 3-3, 3-68, 3-69 PUTH, 3-3, 3-73 PUTIME, 3-2, 3-37 PUTO, 3-2, 3-18 PUTW, 3-2, 3-42 RAIDBK, 2-12, 2-24 RAIDER, 2–12, 2–24 RAIDRR, 2-12, 2-22 RELOV, 3-3, 3-55 READ/WRITE record, 4-16, 4-17, 4-18 READW, 3-2, 3-34 Record format, datalog, 5-22 Record format, general, 5-19 Record format, header, 5-21 RELDAT, 2-11, 2-13 REVN, 2-11, 2-16 RSOVC, 3-3, 3-65, 3-66 RSTIO, 2-12, 2-20 RSTTSC, 2-12, 2-25 S488CT, 2-43, 2-51 SAPMCT, 2-43, 2-52 SAVENV, 3-3, 3-73 SCALE, 3-2, 3-44 SCNFIL, 3-2, 3-10, 3-11, 3-12 SDCT0, 2-43, 2-50 SDCT0E, 2-43, 2-50 SDCT1, 2-43, 2-50 SDCT1E, 2-43, 2-50 SDLAF, 2-43, 2-48 SEARCH, 3-2, 3-32 SEIR, 2-43, 2-45, 2-46 SELP, 2-8, 2-9 SFR, 2-43, 2-49 SFVAL, 2-43, 2-47 SIFC, 2-43, 2-48 SIFV, 2-43, 2-48 SIHI, 2-43, 2-51 SIHIE, 2-43, 2-51 SILO, 2-43, 2-50 SILOE, 2-43, 2-50 SINC, 2-43, 2-47 SITE, 2-43, 2-44 SITEQQ, 2-11, 2-13 Skip file mark, 4-22 SLIM0, 2-43, 2-49 SLIM1, 2-43, 2-50 SLML, 2-43, 2-46 SMAFLG, 2-12, 2-23

SMF, 2-43, 2-45 SMR, 2-43, 2-49 SMSR, 2-43, 2-45 SMSRH, 2-43, 2-47 SPDA, 2-12, 2-24 SPG, 2-43, 2-48 SPIN, 2-43, 2-45 SPIOER, 3-2, 3-39, 3-40 SPMOD, 2-43, 2-48 SPNUM1 to SPNUM6, 2-12, 2-21 SPOPT, 2-12, 2-22 SQ, 2-43, 2-49 SQL, 2-43, 2-49 SSAMC, 2-43, 2-49 STALL, 3-3, 3-66 START (object files), 5-38 STATC, 2-12, 2-21 Status check request, 4-24 Status word description, 4-25 STAVKT, 2-11, 2-15 STEF, 2-43, 2-46 STHC, 2-43, 2-44 STPP, 2-43, 2-47 String files, 5–18 STRIP, 2-43, 2-47 STX, 5-10 Subroutines, system, 1-2, 3-1 to 3-73 SVHI, 2-43, 2-51 SVHIE, 2-43, 2-51 SVLO, 2-43, 2-51 SVLOE, 2-43, 2-51 SVOFFS, 2-43, 2-46 SVT (current station variables), 2-43 to 2 - 52SYSINT, 2-8, 2-10 SYSREL, 2-12, 2-24 System memory map, 5-16, 5-17 System variable, 2-2, 2-8 SYSVAR, 2-8 to 2-10 SYXVEC, 3-1 to 3-3

Table Current station variables (SVT), 2-43 Global constants, 2-4 to 2-7 Global variables, (GLOVAR), 2-11, 2-12 Subroutine transfer vector (SYXVEC), 3-2, 3-3 System global variables (SYSVAR), 2-8 Tester variables (TVT), 2-26 to 2-28 TAPMF1, TAPMF2, 2-27, 2-36 TAPMP1, TAPMP2, 2-27, 2-36

TATTA, 2-28, 2-41 TBINS, 2-27, 2-37 TBINT, 2-27, 2-37 TCLO, 2-28, 2-38, 2-39 TCPC, 2-27, 2-30 TCR, 2-27, 2-38, 2-39 TDATAL, 2-26, 2-29 TDCDLY, 2-27, 2-30 TDFR, 2-27, 2-34 TDIF, 2-28, 2-38, 2-39 TDLC, 2-27, 2-33 TDLF, 2-27, 2-32 TDLO, 2-27, 2-32 TDLS, 2-27, 2-32 TDOF, 2-28, 2-38, 2-39 TDLR, 2-27, 2-32, 2-33 Terminate I/O, 4-18, 4-19 Tester variables, 2-26 to 2-28 TGLOB1 through TGLO40, 2-26, 2-29 THDACT, 2-11, 2-17, 2-18 TIME, 2-11, 2-16 TINDEX, 2-27, 2-29 TIP, 2-27, 2-37 TJOB, 2-28, 2-41 TLP, 2-28, 2-38, 2-39 TLMFC, 2-27, 2-33 TMACTL, 2-27, 2-34, 2-35 **TMADSP**, 2-35 TMIF, 2-28, 2-38, 2-39 TMOD, 2-27, 2-36 TMOF, 2-28, 2-38, 2-39 TMPIN, 2-27, 2-38 TMSTK, 2-28, 2-41 TMTR1, 2-27, 2-38, 2-39 TMTR2, 2-27, 2-38, 2-39 TMTW1, 2-28, 2-38, 2-39 TMTW2, 2-28, 2-38, 2-39 TODLY, 2-27, 2-31 TOMSTK, 2-28, 2-41 Top of form, 4-21 TOPT, 2-28, 2-40 TOVER, 2-27, 2-31 TPAUSE, 2-27, 2-37 TPDD, 2-27, 2-36 TPDF, 2-27, 2-34 TPDR, 2-27, 2-34 TPDS, 2-27, 2-34 TPHL, 2-11, 2-16 TPID, 2-27, 2-38, 2-39 TPOD, 2-28, 2-38, 2-39 TPPO, 2-27, 2-35 Transfer vector, subroutine, 3-1 TRTD, 2-26, 2-29

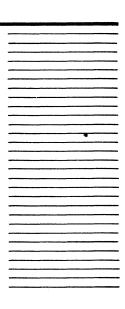
TRTDS, 2-28, 2-41 TSN, 2-26, 2-28 TSTEP, 2-27, 2-37 TSWITCH, 2-26, 2-28 TSYNC, 2-27, 2-35 TTITLE, 2-28, 2-42 TTT, 2-26, 2-28 TTTK, 2-27, 2-38, 2-39 TTTP, 2-28, 2-38, 2-39 TVALUE, 2-26, 2-28 TVK2, 2-28, 2-38, 2-39 TVP2, 2-28, 2-38, 2-39 TVT, 2-11, 2-14 TVTLG, 2-27, 2-38 TVTLL, 2-27, 2-36 TWAIT, 3-2, 3-42 UMSGW, 3-2, 3-8 UPDATE, 3-3, 3-66, 3-67, 3-68 USVENV, 3-3, 3-73 Variable length record data files, 5-18 to 5-20 File format, 5-20 Record format, 5-19 VERIFY/READ, 4–26 VKT transmit, 4-36, 4-37 WAIT, 3-2, 3-4 Write (unformatted), 4-21 WRITEW, 3-2, 3-35 Writing from FACTOR, 5-32 Word formats (IOATAB), 4-10, 4-11 WWAIT, 3-3, 3-62, 3-63 \$IOCS, see input/output control system \$PARSE, 3-2, 3-28, 3-29

Feedback Form

Please send us your comments. They will help us produce better publications for you. We are interested in comments on accuracy, completeness, organization, clarity, audience suitability, illustrations, and detail level. If you choose to identify yourself (lower left), we will acknowledge your comments. All comments are confidential, FTSG property.

· · · ·	
-	
- · · ·	
Optional	Publications Department Use Only
Name	P/N 57518702
Title	Rev Date
Address	
· · · · · · · · · · · · · · · · · · ·	
Phone	
Telex	Technical Reviewer Date Response Sent Date

.


No Postage Necessary If Mailed In The United States

Business Reply Mail

First Class Permit No. 5699 San Jose, California

Postage Will Be Paid By

Fairchild Test Systems Group Technical Publications 1725 Technology Drive San Jose, Ca. 95110

