
F.AI RCH 1 L.C>
Test Systems Group

MASTR Operating System
Ref ere nee Manual

Publication Number 57518702

August 1979 Edition

This publication is subject to replacement by a later edition. This publication is also subject to technical
updating by a Publications Bulletin. The issuance of publication improvements by either a later edition or
a bulletin is decided partly on the basis of the degree of change required. To determine whether a later
edition or bulletins exist for a particular publication, consult your local branch office, or FTSG Publications
Department, 1725 Technology Drive, San Jose, CA 95110 (TWX 910-338-0558).

To request copies of this publication, contact:

Fairchild
Test Systems Group
Customer Services
M/S 36-07 /57
1725 Technology Drive
San Jose, California 95110
(408) 998-0123 TWX 910-338-0558

A reader's feedback form is provided at the back of this publication. Help us to help you by providing
comments. If the form has been removed, please send comments to FTSG Publications Department.

© 1979 Fairchild Camera and Instrument Corporation

MASTR Operating System
Reference Manual

Publication Number 57518702 August 1979 Edition

Preface

This manual provides reference data for executing the Sentry assembly language
under the MASTR operating system (Rel. 2.1). The manual describes the conventions,
system tables and system as used by the assembler.

Use of this manual assumes a previous understanding of the Sentry assembly lan
guage and its application to the Sentry test systems. Users who intend to imple
ment assembler programs to augment FACTOR language capabilities must also
have a detailed knowledge of the Sentry operating system characteristics.

The role of this manual is to provide the Sentry system programmer with the
details necessary to implement user-written assembly language overlays under the
MASTR operating system. Appendix C provides supplementary information on the
conversion of TOPSY /DOPSY user overlays to MASTR.

The following manuals are suggested for reference and supplemental reading:

Description Publication Number

FST-2 Computer Manual
Sentry VII Users Manual

57000002
57000013
57518701
57518700

MASTR Command Language Reference Manual
MASTR FACTOR Manual

Caution

The description of the MASTR system in this manual
is provided for reference purposes only. Any alteration
of the operating system may cause disastrous effects,
including damage or destruction of the tester hardware.
The direct use of system tables is inadvisable because
the table may be changed without notice. Use of any
routines noted as reserved for system use only may re
sult in undefined operations. Any modification of the
system software is performed at the sole risk of the
user. Fairchild Test Systems Group will provide no
support for modified software systems. Fairchild Test
Systems Group reserves all rights to the software de
scribed in this manual. Contents and descriptions are
subject to change without notice.

iii

Contents

I INTRODUCTION

1.1 OVERVIEW
1.2 MANUAL CONTENTS

1 . 2. 1 Introduction
1. 2 • 2 System Global Data
I. 2. 3 System Subroutines
1. 2 .4 Input/Output Control System ($IOCS)
1. 2 . 5 MAST R System Files
1. 2. 6 ALLINK Programs

2 SYSTEM GLOBAL DATA

2.1 GENERAL DESCRIPTION AND USAGE
2. 1. 1 Global Constant Usage
2. I. 2 Global Variable Usage
2. I. 3 System Global Variable Usage
2 .1.4 Global Subroutine Usage

2. 2 GLOBAL CONSTANTS
2. 3 SYSTEM GLOBAL VARIABLES

2.3.1 DFDV (SYSVAR + 0)
2.3.2 MlINIT (SYSVAR + 1)
2.3.3 SELP (SYSVAR + 2)
2.3.4 MlWSWC (SYSVAR + 3)
2.3.5 MlWSSC (SYSVAR + 4)
2.3.6 MlWSDA (SYSVAR + 5)
2.3.7 MlFDDA (SYSVAR + 6)
2.3.8 MlFDA (SYSVAR + 7)
2.3.9 SYSINT (SYSVAR + 9)

2.4 GLOBAL VARIABLES
2.4.1 ATPA (GLOVAR + O, 1, 2, 3)
2.4.2 RELDAT (GLOVAR + 4, 5)
2.4.3 SITEQQ (GLOVAR + 6)
2.4.4 APMREV (GLOVAR + 7)
2.4.5 NTVT (GLOVAR + 8)
2.4.6 TVT (GLOVAR + 9)
2.4.7 NSVT (GLOVAR + 10)

v

1-1
1-1
1-1
1-2
1-2
1-3
1-3
1-3

2-1
2-1
2-2
2-2
2-2

2-4
2-8
2-8
2-9
2-9
2-9
2-9
2-9

2-10
2-10
2-10

2-11
2-13
2-13
2-13
2-13
2-13
2-14
2-14

CONTENTS

2.4.8 SVT (G LO VAR + 11) 2-14
2.4.9 NMAC (GLOVAR + 12) 2-14
2. 4. 10 FWMAC (GLOVAR + 13) 2-15
2.4.11 LWMAC (GLOVAR + 14) 2-15
2.4.12 STAVKT (GLOVAR + 15) 2-15
2.4.13 PIDPMF (GLOVAR + 16) 2-15
2. 4. 14 PODPMF (GLOVAR + 17) 2-15
2. 4. 15 DRPMF (GLOVAR + 18) 2-15
2.4.16 FWALT (GLOVAR + 19) 2-15
2.4.17 LWALT (GLOVAR + 20) 2-15
2. 4. 18 FWIOA (GLOVAR + 21) 2-15
2.4.19 NIOA (GLOVAR + 22) 2-16
2.4.20 CURSYS (GLOVAR + 23) 2-16
2.4.21 FGBGFL (GLOVAR + 24) 2-16
2.4.22 REVN (GLOVAR + 25) 2-16
2.4.23 JOB (GLOVAR + 26) 2-16
2.4.24 TPHL (GLOVAR + 27) 2-16
2.4.25 OPHL (GLOVAR + 28) 2-16
2.4.26 DATE (GLOVAR + 29, 30) 2-16
2.4.27 TIME (GLOVAR + 31) 2-16
2.4.28 PGPMF (GLOVAR + 32) 2-17
2.4.29 LWCPU (GLOVAR + 33) 2-17
2.4.30 LWSYS (GLOVAR + 34) 2-17
2.4.31 LWAM (GLOVAR + 35) 2-17
2.4.32 FWAM (GLOVAR + 36) 2-17
2.4.33 ADJFLG (GLOVAR + 37) 2-17
2.4.34 THDACT (GLOVAR + 38) 2-17
2.4.35 PIDFLG (GLOVAR + 39) 2-18
2.4.36 ECHFLG (GLOVAR + 40) 2-18
2.4.37 COMIMG (GLOVAR + 41) 2-18
2.4.38 CMDPMF (GLOVAR + 42, 43, 44) 2-18
2.4.39 OCTAL (GLOVAR + 45) 2-18
2.4.40 OFLERR (GLOVAR + 46) 2-19
2.4.41 LDFLG (GLOVAR + 47) 2-19
2.4.42 MANTISSA (GLOVAR + 48) 2-19
2.4.43 CMDV (GLOVAR + 49) 2-19
2.4.44 NAMEMl, NAMEM2, NAMEM3, NAMEM4,

NAMEM5, NAMEM6, (GLOVAR + 50, 51,
60' 61, 58' 59) 2-20

2.4.45 BIN UM (GLOVAR + 52) 2-20
2.4.46 BINC (GLOVAR + 53) 2-20
2.4.47 COLFLG (GLOVAR + 54) 2-20
2.4.48 RSTIO (GLOVAR + 55) 2-20
2.4.49 ACTFIO (GLOVAR + 56) 2-20
2.4.50 MEMBSY (GLOVAR + 5.7) 2-20
2.4.51 ONUMBl, ONUMB2 (GLOVAR + 62,

GLOVAR + 63) 2-20
2.4.52 NUMBl, NUMB2 (GLOVAR + 64,

GLOVAR + 65) 2-21
2.4.53 STATC (GLOVAR + 66) 2-21

vi

CONTENTS

2.4.54 SPNUMl, SPNUM2, SPNUM3, SPNUM4,
SPNUM5, SPNUM6 (GLOVAR + 67, 68,
69, 70, 71, 72) 2-21

2.4.55 BINARY (GLOVAR + 73) 2-21
2.4.56 INUMBl, INUMB2 (GLOVAR + 74, 75) 2-21
2.4.57 BFLERR (GLOVAR + 76) 2-21
2.4.58 SPOPT (GLOVAR + 77) 2-22
2.4.59 BINCNT (GLOVAR + 78) 2-22
2.4.60 AWATF (GLOVAR + 79) 2-22
2.4.61 ATHDF (GLOVAR + 80) 2-22
2.4.62 NUMFLG (GLOVAR + 81, 82) 2-22
2.4.63 NAMEl, NAME2 (GLOVAR + 83, 84) 2-22
2.4.64 RAID RR (GLOVAR + 86) 2-22
2.4.65 DBUGSA (GLOVAR + 87) 2-23
2.4.66 DFSTAT (GLOVAR + 88) 2-23
2.4.67 SMAFLG (GLOVAR + 89) 2-23
2.4.68 RAIDER (GLOVAR + 91) 2-24
2.4.69 RAID BK (GLOVAR + 92) 2-24
2.4.70 SPDA (GLOVAR + 90) 2-24
2.4.71 AFGBGF (GLOVAR + 93) 2-24
2.4.72 SYSREL (GLOVAR + 94) 2-24
2.4.73 MASTAT (GLOVAR + 95) 2-24
2.4.74 CLIOID (GLOVAR + 96, 97) 2-24
2.4.75 LOTNUM (GLOVAR + 98, 99, 100) 2-24
2.4.76 DEVNUM (GLOVAR + 101, 102) 2-24
2.4.77 CATGRY (GLOVAR + 103, 104, 105) 2-25
2.4.78 RSTTSC (GLOV AR + 106) 2-25
2.4.79 BGID (GLOVAR + 107, 108) 2-25

2.5 TESTER VARIABLE 2-26
2. 5 .1 TSWITCH (TVT + 0) 2-28
2.5.2 TVALUE (TVT + 1) 2-28
2.5.3 TSN (TVT + 2) 2-28
2.5.4 TTT (TVT + 3) 2-28
2.5.5 TDATAL (TVT + 4) 2-29
2.5.6 TRTD (TVT + 5) 2-29
2.5.7 TGLOBl - TGL040 (TVT + 11 - 50) 2-29
2.5.8 TINDEX (TVT + 61) 2-29
2.5.9 TCPC (Command Processor Control)

(TVT + 62) 2-30
2.5.10 TDCDLY (DC time DeLaY) (TVT + 63) 2-30
2.5.11 TODLY (Time Out) (TVT + 64) 2-31
2.5.12 TOVER (OVERride) (TVT + 65) 2-31
2.5.13 TDLO (TVT + 67) 2-32
2.5.14 TDLF (TVT + 68) 2-32
2.5.15 TDLS (TVT + 69) 2-32
2.5.16 TDLR (DataLog Request) (TVT + 70) 2-32
2.5.17 TDLC (DataLog Control and status (TVT + 71) 2-33
2.5.18 TLMFC (TVT + 72) 2-33
2.5.19 TPDF (TVT + 73) 2-34
2.5.20 TPDS (TVT + 74) 2-34

vii

CONTENTS

2.5~21 TPDR (TVT + 75) 2-34
2.5.22 TDFR (TVT + 76) 2-34
2. 5. 23 TMACTL (TVT + 77) 2-34
2.5.24 TPPO (TVT + 78) 2-35
2.5.25 TSYNC (TVT + 79) 2-35
2. 5. 26 TMADSP (TVT + 80) 2-35
2.5.27 TMOD (TVT + 81) 2-36
2.5.28 TAPMPl, TAPMP2 (TVT + 82, 83) 2-36
2.5.29 TAPMFl, TAPMF2 (TVT + 85, 86) 2-36
2.5.30 TPDD (TVT + 93) 2-36
2.5.31 TVTLL (TVT + 93) 2-36
2. 5. 32 TSTEP (TVT + 94) 2-37
2.5.33 TPAUSE (TVT + 95) 2-37
2.5.34 TIP(TVT+96) 2-37
2.5.35 TBINT(TVT+97) 2-37
2. 5. 36 TBINS (TVT + 98) 2-37
2.5.37 TMPIN (TVT + 99) 2-38
2. 5. 38 TVTLG (TVT + 104) 2-38
2.5.39 TPID, TTTK, TMTRl, TMTR2, TCR, TDIF,

TVK2, TMIF (TVT + 105 - 113) TPOD, TTTD,
TMTWl, TMTW2, TLD, TDOF, TCLO, TVP2,
TMOF (TVT + 114 - 112) 2-38

2.5.40 TOPT (TVT + 123) 2-40
2 • 5 . 4 1 TA TT A (TVT + 12 4) 2-41
2. 5 .42 TJOB (TVT + 125) 2-41
2.5.43 TMSTK (TVT + 126) 2-41
2.5.44 TOMSTK (TVT + 127) 2-41
2.5.45 TRTDS(TVT+l28) 2-41
2.5.46 TTITLE (TVT + 130 through 145) 2-42

2.6 CURRENT STATION VARIABLES (SVT) 2-43
2.6.l SITE (SVT + 0) 2-44
2. 6. 2 STHC (Test Head driver Control (SVT + 1) 2-44
2.6.3 SPIN (SVT + 2) 2-45
2.6.4 SMSR (SVT + 3) 2-45
2 . 6 . 5 SM F (SVT + 4) 2-45
2.6.6 SEIR (SVT + 5) 2-45
2.6.7 STEF(SVT+6) 2-46
2.6.8 SVOFFS (SVT +7) 2-46
2.6.9 SLML(SVT+8) 2-46
2. 6 .10 STRIP (SVT + 9) 2-47
2.6.11 STPP(SVT+lO) 2-47
2. 6 .12 SMSRH (SVT + 11) 2-47
2.6.13 SINC(SVT+l2) 2-47
2.6.14 SFVAL(SVT+l3) 2-47
2.6.15 SPG(SVT+l4) 2-48
2.6.16 SPMOD(SVT+l5) 2-48
2. 6 .17 SDLAF (SVT + 16) 2-48
2.6.18 SIFC (SVT + 17) 2-48
2.6.19 SIFV(SVT+l8) 2-48
2.6.20 SMR(SVT+l9) 2-49

viii

CONTENTS

2.6.21 SFR (SVT + 20)
2 .6 .22 SSAMC (SVT + 21)
2.6.23 SQ(SVT+22)
2.6.24 SQL (SVT + 23)
2. 6 .25 SLIMO (SVT + 24)
2.6.26 SLIM! (SVT + 25)
2.6.27 SDCTOE (SVT + 26)
2. 6 .28 SDCTO (SVT + 27)
2.6.29 SDCTlE (SVT + 28)
2.6.30 SDCTl (SVT + 29)
2.6.31 SILOE (SVT+30)
2.6.32 SILO (SVT+31)
2. 6 .33 SIHIE (SVT + 32)
2.6.34 SIHI (SVT + 33)
2. 6 .35 SVLOE (SVT + 34)
2.6.36 SVLO (SVT + 35)
2. 6 .37 SVHIE (SVT + 36)
2.6.38 SVHI (SVT + 37)
2.6.39 S488CT (SVT + 38)
2. 6 .40 SAPMCT (SVT + 39)
2.6.41 SPPM (SVT+42)
2.6.42 SPERN (SVT + 43)
2. 6 .43 SPERV (SVT + 44)

3 SYSTEM SUBROUTINES

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3 .11
3.12
3.13
3.14
3.15
3.16
3 .17
3.18
3 .19
3.20
3.21
3.22
3.23
3.24

WAIT
OUTOPN
OU TC LS
NUMERR
COM ERR
$IOCS
MSG IN
MSG OUT
UMSGW
ADJMEM
SCNFIL
GTSTAT
CONY
PUTD
PUTC
MOVEDN
MOVEUP
PUTE
PUTO
PROCESS
ALTER
$PARSE
IDTSCN
NUMBER

ix

2-49
2-49
2-49
2-49
2-49
2-50
2-50
2-50
2-50
2-50
2-50
2-50
2-51
2-51
2-51
2-51
2-51
2-51
2-51
2-52
2-52
2-52
2-52

3-4
3-4
3-5
3-5
3-6
3-7
3-7
3-7
3-8
3-9

3-10
3-12
3-13
3-14
3-15
3-16
3-17
3-18
3-18
3-19
3-26
3-28
3-29
3-30

CONTENTS

3.25 INTSCN 3-31
3.26 SEARCH 3-32
3.27 MPZERO 3-33
3.28 GETC 3-33
3.29 READW 3-34
3.30 WRITEW 3-35
3.31 IERMSG 3-36
3.32 DUMP 3-36
3.33 PU TIME 3-37
3.34 GTTDV 3-38
3.35 HEADER 3-39
3.36 SPIOER 3-39
3.37 FGOVC 3-40
3.38 ALLEX 3-40
3.39 COMM ND 3-41
3.40 PUTW 3-42
3. 41 TWAIT 3-42
3.42 FGBGRT 3-43
3.43 MONINT 3-43
3.44 SCALE 3-44
3.45 FGWAIT 3-44
3.46 ERRCNV 3-45
3.47 FSUB 3-46
3.48 FAND 3-46
3.49 FEOR 3-47
3.50 FLOG 3-47
3.51 FADD 3-48
3.52 FDIV 3-48
3.53 FFIXS 3-49
3.54 FOR 3-49
3.55 FNOT 3-50
3.56 FEXP 3-50
3.57 FMUL 3-51
3.58 FFIX 3-51
3.59 FFLT 3-52
3.60 FFLTS 3-52
3.61 FCAM 3-53
3.62 LOAD 3-54
3.63 DELFIL 3-55
3.64 RELOV 3-55
3.65 ATTA 3-55
3.66 DTTA 3-56
3.67 PAGTP 3-57
3.68 FGBGWT 3-57
3.69 FGBGH 3-57
3.70 FINDVL 3-58
3.71 FGIO 3-58
3.72 DMASTR 3-59
3.73 FGOH 3-60
3.74 ENBTST 3-62
3.75 WWAIT 3-62

x

CONTENTS

3.76 AD RX LA 3-63
3.77 IN TERP 3-64
3.78 ENTBSY 3-65
3.79 RSOVC 3-65
3.80 STALL 3-66
3.81 UPDATE 3-66
3.82 PU TENG 3-68
3.83 PUTA 3-70
3.84 BGCHK 3-70
3.85 CALLMOD 3-71
3.86 PUTB 3-72
3.87 PUTH 3-73
3.88 SAVENV 3-73
3.89 USVENV 3-73

4 I/O CONTROL SYSTEM ($IOCS)

4. 1 $IOCS 4-1
4 .1. 1 $IOCS Operation 4-1
4 .1. 2 Devices Handled by $IOCS 4-3
4 .1. 3 Functions Performed by $IOCS 4-3
4 .1.4 Error Detected by $IOCS 4-4
4 .1. 5 Definition of End-of-File 4-4
4 .1. 6 Definition of End of Record 4-5
4 .1. 7 General Calling Sequence 4-5
4 .1. 8 Mechanism 4-6
4 .1. 9 1/0 Device Formats 4-7

4.2 1/0 ASSIGNMENT TABLE (IOATAB) 4-9
4.3 OPEN CALL TO $IOCS 4-12
4.4 READ/WRITE RECORD 4-16
4.5 TERMINATE 1/0--CLEAR SCREEN 4-18
4.6 TOP OF FORM 4-20
4.7 UNFORMATTED ALPHA WRITE 4-21
4.8 SKIP A FILE MARK ON MAGNETIC TAPE 4-22
4.9 W~ITE EOF MARK ON MAGNETIC TAPE 4-23
4 .10 STATUS CHECK REQUEST 4-24
4 .11 VERIFY /READ 4-26
4.12 CLOSE A FILE 4-27
4.13 OPERATOR MESSAGE 4-28
4 .14 DISCONNECT CLIO 4-29
4. 15 FILE TRANSMIT (ADD) 4-29
4. 16 FILE TRANSMIT (CREATE) 4-30
4.17 FILE END INPUT 4-31
4. 18 FILE END OUTPUT (PROCESS) 4-32
4.19 FILE END OUTPUT (PURGE) 4-33
4.20 FILE END OUTPUT (HOLD) 4-34
4. 21 FILE REQUEST 4-35
4.22 VKT TRANSMIT 4-36
4.23 SKIP A RECORD ON MAGNETIC TAPE 4-37

xi

CONTENTS

4.24 PAGE A BLOCK INTO MEMORY 4-38
4.25 REWIND MAGNETIC TAPE 4-39
4.26 MASTR $IOCS ASCII CONTROL MODE 1/0 4-40

5 MASTR FILE DESCRIPTION

5.1 MASTR SYSTEM FILES 5-1
5.2 DISK FILES AND USAGE 5-1

5.2.1 Disk Specification 5-1
5.2.2 Disk Organization 5-1
5.2.3 Disk File Format 5-4

5.3 MAGNETIC TAPE FILES AND USAGE 5-4
5.3.1 Tape Organization 5-4
5.3.2 Blocked File Format Generated by DUMP

and COPY Programs 5-4
5.3.3 TDX-Generated Magnetic Tape 5-6
5.3.4 MBUP Tape Format 5-8

5.4 FILES TRANSFERRED TO THE INTEGRATOR 5-10
5.4.1 Record Description 5-10
5.4.2 CLl/CLO Blocked Binary Files 5-11
5.4.3 CLl/CLO Unblocked String Files 5-11
5.4.4 CLl/CLO Variable Length Data File 5-12

5.5 FILES STORED IN MEMORY 5-12
5.6 STRING FILES 5-18
5.7 VARIABLE LENGTH RECORD DATA FILES 5-18

5.7.1 General Record Format 5-18
5.7.2 File Format for Variable Length Data 5-20
5.7.3 Header Record Format 5-21
5.7.4 Datalog Record Formats 5-22
5.7.5 Writing From FACTOR Program 5-32

5.8 FIXED LENGTH DATA FILES 5-33
5.9 COREIMAGE FILES 5-34

5.9.l Overlay Header Format 5-35
5.9.2 File Type Code List 5-36

5. IO OBJECT FILES 5-37

6 ASSEMBLY LANGUAGE OVERLAYS

6.1 INTRODUCTION 6-1
6. I. I Foreground/Background Processing 6-1
6. I. 2 Risks Involved in ALLINK Programs 6-1

6.2 ALLINK PROGRAM DEFINITION 6-2
6.2.1 ALLINK Header 6-2

xii

CONTENTS

6. 2. 2 Creating Relocatable Coreimage

6 .3 LOADING AND CALLING PROCEDURES
6 • 3 • 1 Loading Procedure
6 • 3 • 2 Calling Procedure

6 .4 SCHEDULING A BACKGROUND TASK
FROM FOREGROUND
6 • 4. 1 Flag word
6 .4. 2 Foreground Procedure
6 • 4 • 3 Calling Background

6 .5 PROCESSING A COMMAND THROUGH MONITOR
FROM FOREGROUND

APPENDICES

A OVERLAY HEADER FORMAT /FILE TYPE CODE LIST

B INSTRUCTION MNEMONICS
B. l OPCODES SORTED BY ASCENDING ALPHA OPCODES
B.2 OPCODES SORTED BY ASCENDING OCTAL OPCODES

c CONVERSION OF TOPSY/DOPSY ASSEMBLY LANGUAGE
PROGRAMS TO MASTR
C .1 INTRODUCTION
C. 2 PROCEDURE

TABLES

4-1 Word Formats

5-1 Record ID For Datalog Records
5-2 Overlay Header Format
5-3 File Type Code List in Memory

FIGURES

2-1 Global Constants Listing
2-2 System Global Variables Listing
2-3 Global Variables Listing
2-4 Tester Variables Listing
2-5 Current Station Variables Listing

3-1 System Subroutine Transfer Vector Listing

4-1 I/O Assignment Table Entry

xiii

6-3

6-3
6-3
6-4

6-6
6-7
6-7
6-8

6-9

B-1
B-4

C-1
C-1

4-10

5-22
5-35
5-36

2-4
2-8

2-11
2-26
2-43

3-2

4-9

FIGURES

5-1
5-2
5-3
5-4
5-5
5-6
5-7
5-8
5-9
5-10
5-11
5-12
5-13
5-14
5-15
5-16
5-17
5-18
5-19
5-20
5-21

6-1

Disk Organization
Disk Directory Entry (Six Words Per File)
A Blocked File
Terminator Format
TDX Tape Format
TDX Directory Header. Format
MBUP Tape Format
CLI/CLO Blocked File Format
CLl/CLO Unblocked File Format
CLl/CLO Variable Length Data File Format
MACTAB (Memory Activity Table)
System Memory Map
File Formats For Variable Length Data
Header Record
DPS Trip Fail Record Format
Direct Current Fail Record Format
Direct Current Pass Record Format
Functional Failure Record Format
Functional Failure Record-Fail Message Format
PPM Memory Functional Failure Record Format
EOT Record Format

Sample ALLINK Program

xiv

5-2
5-3
5-5
5-6
5-7
5-8
5-9

5-11
5-11
5-12
5-14
5-16
5-20
5-21
5-23
5-24
5-25
5-26
5-28
5-30
5-31

6-9

1

Introduction

I.I OVERVIEW

The information within this manual describes the interface between user written
overlays and the MASTR operating system. The information pertains to the
interface only; details of assembly language commands and their use are defined
in the FST-1 Assembler Manual (publication number 67094951) and the FST-2
Computer Manual (publication number 57000002).

An overlay is an assembly language program that is loaded into memory to
perform a particular function. This manual describes the assembly language
under MASTR as a reference for user written overlays. It contains detailed
descriptions of the conventions, system tables, and system subroutines available
with MASTR software.

Two types of user-written assembly language programs or files may be executed
under MASTR. The first typ·e of assembly language program is one which is called
by a FACTOR test program. These are called Assembly Language Linkage files
or ALLINK files.

The second type of assembly language program is one which is called by an opera
tor command while no test station is active. These files are called user overlays.
They are not to be confused with the system overlays, DAT ALOG for example,
which are called into memory as the system demands. To be executed, system
overlays must be resident on the disk or in memory.

1.2 MANUAL CONTENTS

This manual is divided into six sections, each one addressing a different facet
of MASTR software.

1.2.1 Introduction

Section 1 is a general introduction to MASTR organization and gives a brief
summary of the reference material that will be encountered.

1-1

1.2.2 System Global Data

Section 2 includes a listing of system global data. The system global data tables
are divided into five categories:

Global Constants Tables. These tables contain the constants frequently used
by the system and overlays. They are located at an absolute memory location
in order to be referenced via an EQU to the address.

System Variables Tables. This table contain the system configuration. Variables
are referenced via an EQU.

Global Variables Tables. System related items which are global in nature and
not unique for each station. They are referenced directly via an EQU.

Tester Variables Tables. Contains data unique to each of up to four test heads.
T~ey are referenced via index register 2.

Current Station Variables Tables. Contains data unique to the station which
is currently on line. They are referenced via index register 1.

Each listing contains the following information for the data words:

• Location in memory
• Octal representation of the data
• Symbolic label
• Assembler opcode
• Operand
• Comment field

The listings are followed by individual descriptions of the 24-bit data words
contained in the table. Bit position information is provided where applicable.

1.2.3 System Subroutines

Section 3 provides information about the system subroutines, beginning with a
listing of the system subroutine transfer vector. It describes those system proce
dures that are available to users by means of the CALL directive. Each ·
subroutine is described along with the calling sequence needed to activate it
under MASTR.

1-2

1.2.4 Input/Output Control System ($10CS)

Section 4 describes the Input/Output Control System ($IOCS). MASTR software
requires that all I/0 functions must be accomplished through $10CS to preserve
foreground/back-ground configuration. This section provides the programmer
with information concerning principles of operation, handling of devices, $IOCS
functions, and the general calling sequence format. The 1/0 Assignment Table
(IOATAB) is provided along with a detailed explanation of each data word. 1/0
operations available with MASTR are individually discussed, and the calling se
quence for each is provided.

1.2.5 MASTR System Files

Section 5 contains information about the manner in which MASTR maintains sys
tem files. Physical and logical formats are described for disk, magnetic tape,
Integrator and memory file storage. The system memory map (figure 4-12)
shows the MASTR file organization in memory.

1.2.6 ALLINK Programs

Section 6 describes linking of Assembly Language overlays (ALLINK programs)
under MASTR. It shows MASTR format for ALLINK program headers and the
loading and calling procedures from foreground and background. Scheduling back
ground tasks from foreground is explained. A sample ALLINK program is pro
vided. Figure 6-1 gives a working example of the MASTR ALLINK file.

1-3

2

System Global Data

This section describes system globals and their use in assembly language
programs.

2.1 GENERAL DESCRIPTION AND USAGE

There are three types of globals available: constants, variables, and subroutine or
label addresses. All globals are located in the base page at absolute addresses.
By defining the data name and EQUing to the global address, the user may access
any global data.

2.1.1 Global Constant Usage

BITFLD at 102B
NBTFLD at 132B
RTMSK at 162B

LFMSK at 211 B

OCTFLD at 237B
DECFLD at 237B
DBFLD at 404B

Binary constants with one bit set
Binary constants with one bit not set
Binary constants with more than one bit set from
bit 0
Binary constants with more than one bit set from
bit 23
Octal numbers
Decimal numbers
Binary constants with two or more bits set

The complete list of available constants is provided in figure 2-1.

Examples of usage:

BITFLD EQU 102B
RTMSK EQU 162B

BIO EQU BITFLD+IO 2000B
B23 EQU BITFLD+23 40000000B
MINUS I EQU RTMSK+22 77777777B

LDA BIO
AND MINUS I

2-1

2.1.2 Global Variable Usage

GLOVAR at 420B

Variables listed under GLOVAR are used to transfer data between different
programs. Each data item has a particular meaning and must be used according
to the individual definition. Detailed descriptions of variables are provided in
figure 2-3.

Example of usage:

GLOVAR
REVN

EQU
EQU

420B
GLOVAR+23

LDA REVN

2.1.3 System Global Variable Usage

SYSVAR at 64B

Variables listed under SYSVAR are used by MASTR to define system initialization
conditions. These conditions in general are: default device for file loading and
dumping; miscellaneous configuration flags; line printer type; miscellaneous disk
addressing information for directory, file area, and working storage; and starting
address of monitor after bootstrap.

Example of usage:

SYSVAR
SELP

EQU
EQU

64B
SYSVAR+2

LDA SELP

2.1.4 Global Subroutine Usage

SYXVEC at 640B

The starting address of the transfer vectors is located at 6408. There are 63
global subroutines. Detailed descriptions of global subroutines are provided in
section 3. The transfer vector is shown in figure 3-1.

2-2

The transfer vectors follow the SYXVEC address.

Example of usage:

SYXVEC
FFIX
$IOCS

EQU
EQU
EQU

640B
SYXVEC+57
SYXVEC+5

BSM* FFIX
BSM* $IOCS

2-3

2.2 GLOBAL CONSTANTS

A listing of global constants appears in figure 2-1.

PAGE
* BIT FIELD DEFINITIONS

* RX I~PLIES RIT X IS SET

* NBX IMPLIES NOT BIT X IS SET
* BXSY IMPLIES Bil X THRU Y ARE SET

*
* SINGLE BIT FIELDS

* 00101 00000001 DATA lB FOR PMU CONVERGENCE TABLE
00000102 RITFU> EQU * 00102 00000001 BO DATA 18

00103 00000002 81 DATA 28
00104 00000004 B2 DATA 48
00105 00000010 83 DATA lOB
0010& 00000020 84 DATA 206
00107 00000040 BS DATA 406
00110 00000100 Bn DATA 1008
00111 00000200 R7 DATA 200R
00112 00000400 88 DATA 4008
00113 00001000 B9 DATA lOOOR
00114 00002000 RtO DATA 20008
00115 00004000 Blt OATA 4000R
0011& 00010000 812 DATA 100008
00117 00020000 B13 DATA 200008
00120 00040000 R14 DATA 400008
00121 00100000 B15 DATA 1000008
00122 00200000 Rt& DATA 2000008
00123 00400000 Fl17 DATA 4000008
00124 01000000 B18 DATA 10000008
00125 02000000 Fltq DAT A 20000008
0012& 04000000 820 DATA 40000008
00127 10000000 B21 DATA 100000008
00130 20000000 822 DATA 200000008
00131 40000000 823 DATA 400000008

* * NOT BIT•TABLE (INVERSE OF BIT)

* 00000132 NFHFLl'l Erm * 0013<! 77777776 NBO DATA 7777777&8
00133 77777775 NHl DATA 777777758
00134 77777773 NB2 DATA 777777738
00135 777777&7 NR3 DUA 777777&78
0013& 77777757 NB4 DATA 777777578
00137 77777737 NBS DATA 777777378
00140 77777&77 NB& DATA 77777&778
00141 77777577 NH7 DATA 77777577R
00142 77777377 NRB DATA 777773778
00143 77776777 NH9 OATA 7777&7778
00144 77775777 NfHO DATA 777757778
00145 77773777 NRtl DATA 777737778
0014& 777&7777 NF.112 DATA 777&777H
00147 77757777 NA13 DATA 777577778
00150 77737777 NB14 DATA 777377778
00151 77&77777 NB15 DATA 77&777778
00152 77577777 NIH& DATA 775777778
001'53 77377777 NH17 DATA 773777778
00154 76777777 NB18 DATA 7&7777778
00155 75777777 NB19 OATA 757777778
0015& 73777777 NB20 DATA 737777778
00157 &7777777 NR21 DATA &77777778
00160 57777777 NR22 DATA 577777778
OOtbl 37777777 NB23 DATA 377777778

Figure 2-1 Global Constants Listing

2-4

PAGE

*
* ASSORTED MASKS

* 00000162 RTMSK EQU * N

* 00162 00000003 81$0 DATA 38 0
00163 00000007 82$0 DATA 78 1
00164 00000017 RHO l>ATA 17H 2
00165 00000037 BOO DATA 370 3
0016& 00000077 85$0 DATA 77B ll
00167 00000177 8&$0 DATA 1778 5
00170 00000377 A7$0 DATA 3778 b
00171 00000777 flf!SO DATA 7778 7
00172 00001777 89$0 DATA 17778 8
00173 00003777 810$0 DATA 37778 9
00174 00007777 81UO DATA 77778 10
00175 00017777 812$0 DATA 177778 11
0017& 00037777 813$0 DATA 37777R 12
00177 00077777 814$0 DATA 77777R 13
00200 00177777 Rl5$0 DATA 1777778 14
00201 00377777 81&$0 DATA 3777778 15
00202 00777777 Bt 7$0 DATA 7777778 lb
00203 01777777 818$0 DATA 17777778 17
00204 03777777 819$0 DATA 37777778 18
00205 07777777 820$0 DATA 77777778 19
0020() 17777777 821$0 DATA 177777778 20
00207 37777777 822$0 DATA 377777778 21
00210 77777777 823$0 DATA 777777770 22

* 00000211 LFMSK fQU * N

* * 00211 77777776 823$1 DATA 7777777&8 0
00212 77777774 823$2 DATA 777777748 1
00?13 77777770 023$3 DATA 777777708 2
00214 777777&0 R23$ll DATA 777777&08 3
00215 77777740 B23$5 DATA 777777408 4
00216 77777700 823$6 DATA 777777000 5
00217 77777600 823$7 DATA 77777&000 b
00220 77777400 823:f.8 DATA 777774008 7
00221 77777000 623$9 DATA 777770008 8
00222 7777&000 823'1i1 I) DATA 7777&0008 9
002?3 77774000 823$11 DATA 777740000 10
00224 77770000 823$12 DATA 777700008 11
00225 77760000 823$13 DATA 777600008 12
00226 77740000 8?3$14 DATA 77740000R 13
00227 77700000 823$15 DATA 777000008 14
00230 77600000 B23$lb DATA 776000008 15
00231 77400000 823$17 DATA 774000000 1 b
00232 77000000 823$18 DATA 770000008 17
00233 76000000 823$19 DATA 7f:tOOOOOOB 18
00234 74000000 823$20 DATA 74000000R 19
00235 70000000 823$21 DATA 700000008 20
0023b 60000000 B23$2? DATA t>OOOOOOOB 21

Figure 2-1 Global Constants Listings (Continued)

2-5

PAGE

*
* DECIMAL/OCTAL NUMBER

* 00000237 DECFLD EQLJ * DHIMAL FIELO
00000237 OCTFLD EQU * OCTAL FIFLD

* 00237 00000000 DO DATA 0 +O
0021.10 00000001 Dl DATA 1 +t
0021.11 00000002 02 DATA 2 +2
0021.12 00000003 D~ DATA 3 +3
00243 00000004 D4 DATA 4 +4
00241.1 00000005 05 DATA 5 +5
00245 OOOOOOOb Db DATA 6 +!'.
0021.16 00000007 07 DATA 7 +1
00247 00000010 D8 DATA 8 +8
00250 00000011 09 DATA 9 +9
002'51 00000012 D10 DATA 10 +to
00252 00000.013 D 11 DATA 11 +11
00253 00000014 012 DATA 12 +12
00251.1 00000015 Dl3 DATA 13 +13
00255 00000016 011.1 DATA 14 +ti.I
00256 00000017 015 DATA 15 +ts
00257 00000020 016 DATA 11:> +16
002b0 00000021 017 DA T.6 17 +17
002bl 00000022 018 DATA 18 +18
002b2 00000023 DATA 19 +19
002b3 00000021.1 D20 DATA 20 +20
OO?bl.I 00000025 021 DATA 21 +21
002b5 0000002b 022 DATA 22 +22
002bb 00000027 D23 DATA 23 +23
00267 00000030 DATA 21.1 +24
00270 00000031 025 DATA 25 +25
00271 00000032 DATA 2b +2b
00272 00000033 DATA 27 +27
00273 00000031.1 028 DATA 28 +28
00274 00000035 DATA 29 +29
00275 0000003b DAT A 30 +30
00276 00000037 D31 DATA 31 +31
00277 00000040 D32 DATA 32 +32
00300 00000041 033 DATA 33 +33
00301 00000042 034 DATA 31.1 +34
00302 0000001.13 DATA 35 +35
00303 0000001.11.1 DATA 3b +36
00304 00000045 D'H DATA 37 +37
00305 00000046 DAT fl 38 +38
0030b 0000001.17 UATA 39 +39
00307 00000050 D40 DATA 40 t/.10
00310 00000051 D111 DATA 41 +41
00311 00000052 D112 DATA 42 +ll2
00312 00000053 Dll3 DATA 43 +43
00313 00000054 044 DATA 41.1 +44
00311.1 0000005'5 DI.IS DATA 45 +1.15
00315 0000005b DATA lib +lib
00316 00000057 Dll7 DATA ll7 +117
00317 OOOOOObO DllR DATA ll8 +lll\
00320 OOOOOObl D49 DATA 49 +49
00321 00000062 DATA 50 +'50
00322 00000063 DATA 51 +51
00323 00000064 DATA 52 +52
0032ll 00000065 DATA 53 +53
00325 000000b6 DATA 54 +'54
0032b 00000067 DATA 55 +55

F'igure 2-1 Global Constants Listings (Continued)

2-6

00327 00000070 DATA Sb +5b
00330 00000071 DATA 57 +57
00331 00000072 DATA 58 +58
00332 00000073 DATA 59 +59
00333 00000074 DbO DATA bO +bO
00334 00000075 DATA bl +61
00335 0000007b Db2 DATA b2 +b2
00336 00000077 D63 DATA b3 +63
00337 00000100 Db4 DATA 64 +64
00340 00000101 Do5 DATA 65 +65
00341 00000102 DATA ob +66
00342 00000103 Db7 DATA 67 +67
00343 00000104 DATA 68 +68
00344 00000105 DATA 69 +b9
00345 00000106 DATA 70 +70
00346 00000107 DATA 71 +71
00347 00000110 DATA 72 +72
00350 00000111 D73 DATA 73 +73
00351 00000112 D74 DATA 74 +74
00352 00000113 DATA 75 +75
00353 00000114 DATA 76 +76
00354 00000115 DATA 77 +77
00355 000001.tb DATA 78 +78
00356 00000117 DATA 79 +79
00357 00000120 DBO DATA 80 +BO
003M 00000121 DATA 81 +Bl
00361 00000122 DATA 82 +82
00362 00000123 OATA B3 +83
00363 00000124 DATA 84 +84
00364 00000125 DBS DATA 85 +85
00365 00000l2b DATA 86 +86
00366 00000127 DATA 87 +87
00367 00000130 DATA 88 +88
00370 00000131 DATA 89 +F\9
00371 00000132 DATA 90 +90
00372 00000133 DATA 91 +91
00373 00000134 D92 DATA 92 +92
00374 00000135 DATA 93 +93
00375 00000136 DATA 94 +94
00376 00000137 DATA 95 +95
00377 00000140 DATA 96 +96
00400 00000141 DATA 97 +97
00401 00000142 DATA 98 +98
00402 00000143 DATA 99 +99
00403 00000lll4 DATA 100 +100

* 00000113 D512 EQtJ IHTFL0+9
00000210 DMl EQU RTMSK+22
00000211 DM2 EQU LFMSK+O
0000021?. DMll EQU LFMSK+l

PAGE

*
* * DOUBLE BIT FIELDS

* 00000ll04 DBFLO EQLJ * N
001104 00006000 611$10 DATA 00006000R 0
OOllOS 00014000 B 12!F 11 DATA OOOlllOOOR 1
OOllOb 37000000 622$18 DATA 370000008 2
00407 00000360 67$11 DATA 000003606 3
00410 00000300 67$6 DATA 000003008 ll

00000255 63$1 EQLJ Dl ll
00411 00001700 0960 DATA 960 5

Figure 2-1 Global Constants Listings (Continued)

2-7

2.3 SYSTEM GLOBAL VARIABLES

A listing of system variables appears in figure 2-2.

PAGE
000000b4 ORG o4B

*
* GLOBAL VARIABLE FOR USE BY THE SYSTEM

* 000000b4 SYSVAR EQU * N
00064 00000210 DFDV DATA 2108 0 DEFAULT DEVICE FOR FILE LOAD/DUMP
000b5 00000000 Mt INIT DATA 0 1 SYSTEM INITIALIZED FLAG
OOObb 00000002 SFLP DATA 2 2 LP TYPE, DEFAULT•PRINTRONIX
00067 00000000 M!WSWC DATA 0 3 II OF WORD IN WS
00070 00000000 MtWSSC DATA () q # OF SECTORS IN WS
00071 00000000 MtWSDA DATA 0 5 START SECTOR OF ws
00072 00000000 MtFDDA DATA 0 b START SECTOR OF DIRECTORY
00073 00000000 I-It FDA DATA 0 1 START SECTOR OF FILE ARF.:A
00074 00000000 DATA 0 8 SPARE
00075 00001753 DATA SYSINT q ENTRY POINT
00076 00000000 DATA 0 10 SPARE

* 00000100 ORG 1008
00100 01002107 P.RlJ MPRO RESTART FROM 1008

Figure 2-2 System Global Variables Listing

2.3.1 DFDV (SYSV AR + 0)

Contains the default device code for file loading and dumping. For a disk-based
system it is set to disk by $MASTR. Otherwise, it is set to magnetic tape unit I.

23 8 4 0

Output Input

I I

output 5 disk system
8 memory system

input 5 disk system
8 memory system

2-8

2.3.2 MIINIT (SYSVAR + 1)

Contains the following system configuration flags:

Bit

23

19

18

Function

O first execution
1 it has been executed before (set by system initializer $MASTR

and never cleared until it is recreated) ·

Flag to subroutine PUTA

0 address output in decimal
1 address output in octal

0 lV/lmV
1 2V/2mV

17 0 Sentry V, VII
1 Sen try VIII

16 0 4 range PMU
1 6 range PMU

2.3.3 SELP (SYSV AR + 2)

Contains the line printer type indicator:

0
1
2

Data Products/Printronix 80 column
Data Products 132 column
Centronics/Printronix

If the system is called from DOPSY, SELP is set to the type used by DOPSY.
MASTR default is 2.

2.3.4 Ml WSWC (SYSVAR + 3)

Contains the number of words available in disk working storage and is set when
the system is loaded from DOPSY.

2.3.5 Ml WSSC (SYSVAR + 4)

Contains the number of sectors available in disk working storage.

2.3.6 Ml WSDA (SYSVAR + 5)

Contains the starting address of disk working storage in binary sector format.

2-9

2.3.7 MIFDDA (SYSVAR + 6)

Contains the starting address of disk directory in binary sector format.

2.3.8 MIFDA (SYSVAR + 7)

Contains the starting address of disk file area in binary sector format.

2.3.9 SYSINT (SYSVAR + 9)

Contains the starting address of monitor upon bootstrap.

2-10

2.4 GLOBAL VARIABLES

A listing of global variables appears in figure 2-3.

PAGE
00000420 Ol{G 420R

* * GLOBAL VARJABLES FOR USE BY OVERLAYS

* 00000?20 NGLOV

* 00000420 GLOVAR

00420 00000000
00421 00000000
00422 00000000
00423 00000000
00424 21211721
00425 22172730
0042o onooonoo
00427 00000000
00430 00000222
00431 00001)000
00432 00000062
00433 00000000
001.134 00000010
00435 00000000
001.13& 001)00000
00437 00000000
00440 00000000
004Ql 00000000
00442 00000000
001.143 00000000
01)1.144 00000000
001.145 00000000
0044& 00000015
004117 00000000
OOQ50 0.0000000
00451 00000001
00452 77777777
OOQ'53 00000022
00454 00000024
00455 00000000
001150 00000000
001157 00000000
00460 00000000
00461 00000000
001162 00000000
00463 00000000
001164 00000000
004&5 00000000
001166 00000000
001167 00000000
00470 00000000
00471 00000000
00472 00000000
00473 00001503
00474 00000022
001175 00000000
00476 00000000
00477 00000000
00500 00000000

~ 00501 00000000
~ 00502 00000000
.x 00503 00000000

00504 00000000
00505 00000000

* ATPA

REUUT

SJTEQI~
APMRf V
NTVT
TVT
NSVT
SVT
NMAC
FWMAC
LWMAC
STAVKT
PIDPMF
POOP MF
DRPMF
FWALT
LWALT
FWIOA
NIDA
CIJRSYS
FGAGFL
REVN
JOB
TPHL
OPHL
DATF

TIME
Pr.PMF
LWCPU
LWSYS
LWAM
FwAM
ADJFLG
THO ACT
PIDFLG
ECHFLG
COM!MG
CMDPMF

OCTAL
OFLERR
LDFL.G
MANTISSA
[MDV
NAME Mt
NA"1EM2
BJNUM
BP.IC

EQU 144 # OF WORDS IN GLOVAR

EQU * N

DATA 0 0 STAT1 TEST PLAN ATTACHED TO STATION
DATA 0 1 STAT2 + : MACTAB POINTER FOR TP
DATA 0 2 STAT3 0 : NONE ATTACHED
DATA 0 3 STAT4 • : REING EDITED
TEXT '11/12/78' 4,5 RELEASE DATE CSYSREL HAS RELEASE#)

DATA
DATA
DATA
DATA
DATA
DATA
DATA
r>ATA
DATA
DATA
DATA
DATA
L>ATA
DATA
DATA
DATA
D4TA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

0
0
TVfL
0
SVTL
()

MAC EL
0
0
0
0
0
0
0
0
0
IOAEL
0
0
REV
-1
THL
OHL
o,o

6 STATION ON LINE (0•6)
REV OF APM SOFTWARE
8 # OF VARIABLES/STATION IN TVT TABLE
q TVT TARLE ADDRESS
10 # OF VARIABLES IN SVT TABLE
11 SVT TABLE ADDRESS
12 # Of WORDS/ENTRY IN MACTAB
13 MACTAB ADDRESS
14 LAST USED ADDRESS+l MACTAR
15 DEFAULT VKT FOR ALL STATIONS
lb PIO ENTRY ADDRESS IN IOATAB
17 POD ENTRY ADDRESS IN IOATAR
18 DISC DIRECT ENTRY ADDRSS IN IOATAB
1q FIRST ADDRESS OF ALTER BUFFER
20 LAST USED ADDRESS +1 OF ALTBUF
21 FIRST ADDRESS OF IOATAB
22 # Of WORDS/ENTRY IN IOATAB
23 CURRENT SYSTEM, O:BG, t:FG
24 t:BG WAIT FOR FG,2:FG WAIT FOR BG
25 CURRENT REV NUMBER
26 CURRENT JOB NUMBER
27 TEST PLAN HEADER LENGTH
28 OVERLAY HEADER LENGTH
29 CURRENT DATE

DATA O 31 CURRENT TIME IN SECONDS
DATA 0 32 PAGE PMF POINTER
DATA 0 33 CPU LAST AVAILABLE WORD
DATA 0 34 LAST SYSTEM RESERVED WORD +1
DATA 0 35 LAST AVAILABLE WORD TO TP, OVERLAY
UATA 0 36 FIRST AVAILABLE WORD TO TP, OVERLAY
DATA 0 37 AOJMEM WAITING FOR MEMBSY
DATA 0 38 FG ON/OFF FLAG
DATA 0 39 COMMAND ALREADY IN RUFFER FLAG
DATA o 40 ECHO FLAG FOR PROCESS
DATA 0 41 COMMAND IMAGE FROM PROCESS
DATA O,Ct10BUF,18 42 PMF FOR SYSTEM COMMAND

DATA 0
DATA 0
DATA 0
DATA 0
DATA 0
DATA 0
DAT A · 0
DATA 0
DATA O

45 OCTAL VALUE OF INTSCN
lib DECIMAL APPEARED IN INTSCN
47 LOAD tS BUSY FLAG
48 INTEGER VALUE FROM NUMBER
4q DEVICE CODE FROM PROCESS
50 !ST STRING FROM PROCESS
51
52 BINARY VALUE FROM INTSCN/NUMRER
53 BINARY COUNT FORM INTSCN/NUMBER

Figure 2-3 Global Variables Listings

2-ll

0050& 00000000 COLFLG DATA 0 5LI COLUMN FORMAT FLAG FOR PUTE
00507 000022bl RS TIO DATA I-IS TI OF 55 RESET PENDING SCHEDULER FLAG
00510 00000000 ACTF 10 DATA 0 50 FGIO IS ACTIVE OR PENDING
00511 00000000 MEMBSY DATA 0 57 MEMORY BUSY

:;1'00512 00000000 NAME MS DATA 0 58 3RO NAME FROM PROCESS
;.; 00513 00000000 NAMEMb DATA 0 59 3RO NAME FROM PROCESS
;I(00514 00000000 NAMEM3 DATA 0 &O 2NO STRING FROM PROCESS
)';00515 00000000 NAMEM4 DATA 0 bl
1'"0051& 00000000 ONUMR1 DATA 0 &2 OCTAL NUMBER l FROM PROCESS
·i"00517 00000000 ONUMB?. DATA 0 b3 OCTAL NUMAER 2 FROM PROCESS
·00520 00000000 NIJMBt DATA 0 b4 lST DECIMAL # FROM PROCESS IN F.P.
: 00521 00000000 NUMR2 DATA 0 &5 2NO DECIMAL # FROM PROCESS IN F 0 P 0

00522 00000000 STA TC DATA 0 bb VALUE OF STAT N FROM PROCESS
00523 00000000 SPNUMl DATA 0 &7 SPECIAL # FROM PROCESS
00524 00000000 SPNUM2 DATA 0 b8 SPECIAL # FROM PROCESS
00525 00000000 SPNUM3 DATA 0 b9 SPECIAL # FROM PROCESS
0052& 00000000 SPNUM4 DATA 0 70 ~PECIAL # FROM PROCESS
00527 00000000 SPNUM5 DATA 0 71 SPECIAL # FROM PROCESS
00530 00000000 SPNUM& OATA 0 72 SPECIAL # FROM PROCESS
00531 00000000 BINARY DATA 0 73 BINARY VALUE FROM PROCESS

' 00532 00000000 INUMfll DATA 0 74 lST INTEGER FROM PROCESS
~ ooc;33 00000000 INUMH2 DATA 0 75 2ND INTEGER FROM PROCESS

00534 00000000 A FL ERR DATA 0 7b NOT BINARY FLAG FROM INTSCN
·)(00535 00000000 SPOPT DATA 0 77 SPECIAL OPTION FLAG FROM PROCESS
/. 0053& 00000000 RINCNT DATA 0 78 ~!NARY OIGIT COUNT FROM PROCESS

00537 000022&3 AWATF DATA WATSPD 7q ADDRESS OF WAIT FLAG SCHEDULER
00540 000022&4 ATHDF DATA THDFLG 60 ADDRESS OF THDFLAG SCHEDULER
00541 00000000 NUMFLG DATA o,o 61 NUMRER APPEARED FLAG FROM IDTSCN
00542 00000000
00543 00000000 NAME1 DATA 0 63 lST NAME FROM IOTSCN
00544 00000000 NAME2 DA TA 0 114 2ND NAME FROM IDTSCN
00545 00000000 DATA 0 85 SPARE
0054& 00000000 RA I ORR DATA 0 8b RAID BREAKEE RR
00547 000015&1 DtWGSA DATA DRUGS 87 ADDR OF DEBUG ADDR HALT ROUTINE
00550 00000000 DFSTAT OATA 0 811 DEFAULT STATION ID
00551 00000000 SMAFLG DATA 0 89 MA STATTON CONTROL
00552 00000000 SP()A DATA 0 1\10 PO BUFFER BUSY FLAG
00553 00017725 RAIDER DATA RAIDEM 91 AODR OF RAID PG 0 LOGIC
00554 00000100 RAIDBK DATA lOOB 92 SAVE RAID'S RR HERE
00555 00002301 AFGRr.F DATA FGBGSC 93 FGBGH SCHEDULER FLAG
0055& 221&2100 SYSl-IEL DATA I 2 • 1 I 9tl SYSTEM REL # IN ASCII
00557 00000000 MAST AT DATA 0 95 MA STATION FOR CR REQUEST
005b0 00000000 CLIOID DATA o,o 9b CLIO NAMEt,2
00561 00000000
005&2 00000000 LOTNUM DATA o,o,o 96 LOT # FOR CLIO
00563 00000000
005&4 00000000
005&5 00000000 DEVNUM DATA o,o 101 DEVICE # FOR CLIO
005&1> 00000000
005&7 00000000 CATGRY DATA o,o,o 103 CATEGORY FOR CLIO
ooc;10 00000000
00571 00000000
00572 00000000 RS TT SC DATA 0 10& STSC REG IMAGE
00573 00000000 RGID DATA o,o 107 ~ACKGROUND IO
00574 00000000

Figure 2-3 Global Variables Listing (Continued)

2-12

2.4.1 ATPA (GLOVAR + O, 1, 2, 3)

Contains the address of MACTAB for the test program attached to the station.

ATPA + 0
ATPA + 1
ATPA + 2
ATPA + 3

station 1
station 2
station 3
station 4

Contains zero if a test program is not attached.

2.4.2 RELDAT (GLOVAR + 4,5)

Contains the release date of the operating system.

2.4.3 SITEQQ (GLOVAR + 6)

Contains the station number currently online.

O station 1
1 station 2
2 station 3
3 station 4

2.4.4 APMREV (GLOVAR + 7)

Contains the APM F8 operating system revision number in TRASCII.

2.4.5 NTVT (GLOVAR + 8)

Contains the number of variables available in the test head variable table TVT for
each station. See the description of each variable in section 2.5.

TVT table size is NTVT X 4 stations.

2-13

2.4.6 TVT (GLOVAR + 9)

Contains the starting address of TVT table. Each station is allotted the same
number of variables in the test head variable table.

TVT Word 0

1

Word (NTVT-1)

Word (NTVT)

Word NTVT+1

Word (2x(NTVT-1)

2.4.7 NSVT (GLOVAR + 10)

f
Station 1
(NTVT Words)

t
Station 2
(NTVT Words)

t
Station 3
(NTVT Words)

t
Station 4
(NTVT Words)

*

Contains the number of variables in the current station variable table SVT. See
the description of each variable in section 2.6.

2.4.8 SVT (GLOVAR + 11)

Contains the starting address of SVT table.

2.4.9 NMAC (GLOVAR + 12)

Contains the number of variables per entry in MACTAB.

2-14

2.4.10 FWMAC (GLOVAR + 13)

Contains the starting address of MACTAB.

2.4.11 LWMAC (GLOVAR + 14)

Contains the last-used entry address +l of MACTAB. Points to the first avail
able entry. If MACTAB is empty, LWMAC = FWMAC. When the table is full,
LWMAC = LWSYS.

2.4.12 STAVKT (GLOVAR + 15)

Contains the IOATAB pointer of VKT initially assigned to all stations. If there
are two VKTs in the system then VKTl is used.

2.4.13 PIDPMF (GLOVAR + 16)

Contains the address of system PID entry in IOATAB from which the last com
mand was entered.

2.4.14 PODPMF (GLOVAR + 17)

Contains the address of system POD entry in IOTAB from which the last com
mand was entered.

2.4.15 DRPMF (GLOVAR + 18)

Contains the address of disk directory entry in IOA TAB.

2.4.16 FWALT (GLOVAR + 19)

Contains the first word address of ALTER buffer.

2.4.17 LWALT (GLOVAR + 20)

Contains the last-used address of ALTER buffer+ 1. When the buffer is empty
LWALT = FWALT. When the buffer is full, LWALT = TVT.

2.4.18 FWIOA (GLOVAR + 21)

Contains the first word address of 1/0 assignment table (IOATAB).

2-15

2.4.19 NIOA (GLOVAR + 22)

Contains the number of words per entry in IOATAB.

2.4.20 CURSYS (GLOVAR + 23)

Contains the indicator showing whether current operation is in foreground or
background.

2.4.21

1 foreground
0 background

FGBGFL (GLOVAR + 24)

A flag to indicate that background is waiting for a foreground breakpoint to exe
cute a memory move or vice versa.

1 Background wait for foreground
2 foreground wait for background

2.4.22 REVN (GLOVAR + 25)

Contains the revision level of the system.

2.4.23 JOB (GLOVAR + 26)

Contains the current job number.

2.4.24 TPHL (GLOVAR + 27)

Contains the test program header size.

2.4.25 OPHL (GLOVAR + 28)

Contains the overlay header size.

2.4.26 DATE (GLOVAR + 29, 30)

Contains the current date entered by the command: DATE. Any eight-character
presentation of date is stored.

2.4.27 TIME (GLOVAR + 31)

Contains the current time in seconds initialized by the command: TIME. It is
updated every time a clock pulse occurs.

2-16

2.4.28 PGPMF (GLOVAR + 32)

Contains the address of IOATAB where the entry is reserved for the test program
paging.

2.4.29 LWCPU (GLOVAR + 33)

Contains the highest CPU memory address.

2.4.30 LWSYS (GLOVAR + 34)

Contains the highest address reserved by the system + 1.

2.4.31 LWAM (GLOVAR + 35)

Contains the last available memory address for overlays, test programs, and other
memory files. The area above this is used for stack. If there is no stack, LW AM
equals LWCPU.

2.4.32 FWAM (GLOVAR + 36)

Contains the next available memory address for overlays, test programs, and
other files which may be resident in memory . When there are no files in
memory, FWAM equals LWSYS.

2.4.33 ADJFLG (GLOVAR + 37)

Contains the flag indicating that the ADJMEM subroutine is waiting for DMA to
memory to complete before doing a memory move. Reserved for system use.

2.4.34 THDACT (GLOVAR + 38)

Contains the test head active flag. It is set to 1 when THD is entered and cleared
to 0 on exit. Entering the background to wait for tester activity does not affect
the flag. This flag prohibits entering THD reentrantly. An overlay called from
the keyboard that uses the tester may use the flag to control test head use.

2-17

Example:

2.4.35

LDA
BZ
BSM*
BRU
LDA
STA

CLA

THDACT
*+3
MONINT
*-3
Dl
THDACT

STA THDACT

PIDFLG (GLOVAR + 39)

program entry
TEST HEAD AVAILABLE
YES
NO, WAIT
RETRY

PREVENT OTHER TEST HEAD USE

program exit

Reserved for use by the monitor to indicate that a keyboard command is in
a buff er and ready to be processed.

2.4.36 ECHFLG (GLOVAR + 40)

Contains a flag to PROCESS.

2,0 Do not echo command.
-1 Echo command if input is not VKT.
2 Process scans disk for command.
1 Noise words are acceptable. Do not scan disk.

2.4.37 COMIMG (GLOVAR + 41)

Contains the data formed by the PROCESS routine using the monitor com
mand table. Any key words appearing in the monitor command table are picked
up, and the bit configuration provided for the key words are stored in COMIMG
before any overlay is called.

2.4.38 CMDPMF (GLOVAR + 42, 43, 44)

The PMF header for the system command. Any record read by the monitor is
stored in the buffer pointed to by CMDPMF.

2.4.39 OCTAL (GLOVAR + 45)

Contains octal value obtained by the INTSCN routine.

2-18

2.4.40 OFLERR (GLOVAR + 46)

A flag to indicate that a decimal digit 8 or 9 appeared during scanning a number
in INTSCN. It is a nonzero when the above condition occurs.

2.4.41 LDFLG (GLOVAR + 47)

Set when LOAD is called. Overlays may not call LOAD unless this flag is clear.

2.4.42 MANTISSA (GLOVAR + 48)

Contains the integer value obtained by the NUMBER subroutine.

2.4.43 CMDV (GLOVAR + 49)

Contains the device codes obtained from a command by calling the PROCESS
routine. Up to three input and three output device codes are saved.

23 20 16 12 8 4 0

Output 3 Input 3 Output 2 Input 2 Output 1 Input 1

Device Input Output
Code

0 PID POD
l TTK TTP
2 MTRl MTWl
3 MTR2 MTW2
4 CR LP
5 DIF DOF
6 CLI CLO
7 VK2 VP2
8 MIF MOF

If no device is specified in a command it contains O.

2-19

2.4.44 NAMEMl,
NAMEM3,
NAMEM5,

NAMEM2 (GLOVAR +50, GLOVAR +51)
NAMEM4 (GLOVAR +60, GLOVAR +61)
NAMEM6 (GLOVAR +58, GLOVAR +59)

These cells are used to store string names appearing in a command during the
execution of PROCESS routine. Up to six characters of the first string are stored
in NAMEM2 left justified. The second string is stored in NAMEM3 and NAMEM4
and the third string in NAMEM5, NAMEM6.

2.4.45 BINUM (GLOVAR + 52)

Contains the binary value obtained by INTSCN/NUMBER.

2.4.46 BINC (GLOVAR + 53)

Contains the binary digit count in BINUM.

2.4.47 COLFLG (GLOVAR + 54)

The THD sets this flag to control the output of engineering numbers by PUTE.
Reserved for system use.

2.4.48 RSTIO (GLOVAR + 55)

Reset interrupt sets this flag if foreground 1/0 is in progress. Reserved for sys
tem use.

2.4.49 ACTFIO (GLOVAR + 56)

This flag is set when foreground 1/0 is in progress. Reserved for system use.

2.4.50 MEMBSY (GLOVAR + 57)

This flag is set when DMA to or from memory is in progress. It prevents memory
moves. Reserved for system use.

2.4.51 ONUMBl, ONUMB2 (GLOVAR + 62, GLOVAR + 63)

Contain octal form of numbers appearing in a command. The numbers are stored
by the PROCESS routine. A one indicates that no or only one number appeared.
Values are always absolute (signs are ignored).

2-20

2.4.52 NUMBl, NUMB2 (GLOVAR + 64, GLOVAR + 65)

Used to store numbers that appear in a command during the execution of PRO
CESS routine. The first number to appear in the command is stored in the
NUMBl and the second in NUMB2 in signed floating point format. A -1 in a
cell indicates that no or only one number appeared.

2.4.53 STATC (GLOVAR + 66)

Contains the decoded station identification appearing in a command. The
decoded form is 1, 2, 3 or 4. It contains -1 when a station ID is not entered
in the command.

2.4.54 SPNUMl, SPNUM2, SPNUM3, SPNUM4, SPNUM5, SPNUM6
(GLOVAR + 67, 68, 69, 70, 71, 72)

Used to store numbers that appear in a command in the identifier number batched
form during execution of PROCESS routine. A number is stored to a specific cell
as directed by the key number supplied by the user. A -1 in any cell implies
no number.

2.4.55 BINARY (GLOVAR + 73)

Contains the binary value obtained by the subroutine PROCESS. The binary num
ber must have the format nnnn, where n is either 1 or O.

2.4.56 INUMBl, INUMB2 (GLOVAR + 74, 75)

Contain values equivalent to NUMB! and NUMB2 in integer format. The first
number that appears is placed in INUMBl and the second in INUMB2 by the
subroutine PROCESS. These cells are initialized to -1. The values are always
absolute (signs are ignored).

2.4.57 BFLERR (GLOVAR + 76)

A flag to indicate that the number scanned contains a digit greater than 1 and
cannot be a binary number. It is set by INTSCN and checked by NUMBER routine.

2-21

2.4.58 SPOPT (GLOVAR + 77)

Contains special character flag bits set by PROCESS. If a special character is
sensed during command scan, the defined bit is set in SPOPT. It is initialized to
zero.

Bit

14
0
1

2.4.59

Special Character

a comma(,) is sensed
a minus sign (-) is sensed
a plus sign (+) is sensed

BINCNT (GLOVAR + 78)

Contains the number of digits sensed for the binary number during number scan.
The number is placed in the global BINARY.

2.4.60 AWATF (GLOVAR + 79)

Contains the address of scheduler wait flag. The flag must be set to 1 by the
tester interrupt service if the wait condition is completed. AOM* AWATF

2.4.61 ATHDF (GLOVAR + 80)

Contains the address of scheduler flag for tester start. The flag must be set to 1
by the tester interrupt service if the start interrupt occurs. AOM* ATHDF

2.4.62 NUMFLG (GLOVAR + 81, 82)

A flag that indicates that one or more digits has appeared in an identifier. The
first word contains the character-count (position of the first digit in the buffer)
and the second word contains the starting character-count of the identifier.
NUMFLG + 1 is set for any identifier by $PARSE. NUMFLG is set by IDTSCN
only if a digit is sensed in the identifier. These cells are used by PROCESS
to obtain the special numbers in the form of XXXnnn where XXX is an identifier
and nnn is a number.

2.4.63 NAME!, NAME2 (GLOVAR + 83, 84)

Contain the names or strings scanned by the routine IDTSCN. The maximum of
eight characters is packed in TRASCII left justified. These cells are also used by
SEARCH routine as input names to be searched in the table.

2.4.64 RAIDRR (GLOVAR + 86)

Reserved for system use by RAID to store a relocation register.

2-22

2.4.65 DBUGSA (GLOVAR + 87)

Contains the address of DEBUG address halt entry point in the monitor. BSM*
DBUGSA is placed in the user's program.

2.4.66 DFSTAT (GLOVAR + 88)

Contains the station identification entered by: SET ST A Tn. It is a binary value
of 1 through 4. It is used as the default station identification for processing
commands that require ST A Tn when a station number is not entered in the
command.

2.4.67 SMAFLG (GLOVAR + 89)

Contains the station control information for test head driver issued by the user
through manual analysis command.

23 22 18

Manual Start
Mode

14

Do Now Reset

10 6

Single Step
Mode

2 0

Start

x 43214321432 4 3 2 4 3 2

START

SINGLE STEP MODE

RESET

DO NOW

MANUAL START
MODE

B23

Request for test start from MA (START or carriage
return after MANUAL or STEP). Cleared by
test head driver when accepted.

Request to single step (STEP). Cleared by MA
upon MANUAL, CONTINUE, or STEP OFF.

Request to clear before test start (RESET) cleared
by test head driver when accepted.

Request to call MA foreground immediately. (MEAS,
READ, WRITE, DISP without 'ON'). Cleared
by test head driver when accepted. ST ART bit is
also set.

Request to start test with carriage return. Used
by MA only. Cleared by CONTINUE or MANUAL OFF.

When there is at least one request of ST ART or
DO NOW present.

2-23

2.4.68 RAIDER (GLOVAR + 91)

Reserved for system use by RAID.

2.4.69 RAIDBK (GLOVAR + 92)

Reserved for RAID during breakpoint execution.

2.4. 70 SPDA (GLOVAR + 90)

A flag to indicate that parameter distribution overlay buffer area is busy when
SPDA = 1. SPDA = 0 when it is not busy.

2.4.71 AFGBGF (GLOVAR + 93)

Reserved for system use.

2.4. 72 SYSREL (GLOVAR + 94)

Contains the system release level in TRASCII that is printed by DIRECT and
TE. It is patched by the system generation procedure.

2.4. 73 MASTAT (GLOVAR + 95)

Contains the station ID used to start testing by entering a carriage return. It
is set by MA upon MANUAL or STEP request. A 0 indicates no carriage return
requests. Bit 23 set to 1 indicates VK2. Bits 2 to 0 specify station number
(1 to 4).

2.4.74 CLIOID (GLOVAR + 96, 97)

Contains the six-character file name entered in OPEN or USE command.

2.4. 75 LOTNUM (GLOVAR + 98, 99, 100)

Contains the lot number used by the Integrator system. Before calling $IOCS to open a
file in the Integrator system to output tester data, these cells must be set.

2.4. 76 DEVNUM (GLOVAR + 101, 102)

Contains the device number used by the Integrator system; usage is the same as for
LITNUM.

2-24

2.4. 77 CATGRY (GLOVAR + 103, 104, 105)

Contains the category number used by the Integrator system. Usage is the same
as for LOTNUM.

2.4. 78 RSTTSC (GLOVAR + 106)

Contains the image of STST register when the reset interrupt occurred.

23 14 10 0

I lxJxJxJxl I I
Bit Function

10 Reset on station 1
11 Reset on station 2
12 Reset on station 3
13 Reset on station 4

2.4. 79 BGID (GLOVAR + 107, 108)

Can be set by overlays if a message END of XXXX is to be ouput upon overlay
termination. BGID contains the program name XXXX. If it is zero, the message
is not output.

2-25

2.5 TESTER VARIABLES

A listing of tester variables appears in figure 2-4.

PAGE
*
*
* TEST HEAD VARIABLE TABLE EQU'S CTVTJ
*
* ACCESSED BY INDEX TPCX2)
*

00000222 TVTL EQU 14&
*

00001110 TVTLT EQIJ TVTL+TVTL+TVTL+TVTL 4 STATIONS
*

00000000 TSWITCH EQU 0 GLOBAL VARIABLE SWITCH
00000001 TVALUE Er.Ill 1 GLOBAL VARIABLE VALUE
00000002 TSN EQlJ 2 GLOBAL VARIABLE SN
00000003 TTT EQU 3 GLORAL VARIABLE TT
00000004 TDATAL Er.Ill 4 OATALOG REQUEST
00000005 TIHD EQU s ROUND TRIP DELAY

* EQIJ b SPARE
* EQU 7 SPARE
* EQU 8 SPARE
* EQU q SPARE
* EQU 10 SPARE

00000013 TGLOAl EQll 11 GLOBAL VARIABLE GLOBl
•TGLOB2 EQU 12 GLlJRAL VAR I ABLE GLOB2
•TGLOB3 EQlJ 13 GLOBAL VAR IARLE GLOB3
•TGL084 EQIJ 14 GLOBAL VARIABLE GLOB4
*TGL OBS mu 15 GLOR AL VARIABLE GLOBS
•TGLOB& EQU lb GLOBAL VAR IA ALE GLOB&
•TGLOB7 Er.Ill 17 GLOBAL VARIABLE GLOB7
•TGLOB8 Er.HJ 18 GLOBAL VARIABLE GLOBS
*TGLORC/ EQU lC/ GLOBAL VARIABLE GLOBC/
•TGL010 Er.Ill 20 GLOBAL VARIABLE GLDB10
*TGL011 EQU 21 GLOBAL VARIABLE GLOB11
11tTGL012 EQU 22 GLOBAL VARIA~LE GLOB12
*TGL013 EQU 23 GLOBAL VARIABLE GLOB13
•TGLOtli EQU 24 GLOBAL VARIABLE GLOBll.I
•TGL015 EQlJ 25 GLOBAL VARIABLE GLOB15
•TGLnt& EQU 2b GLOBAL VARIABLE GLOB lb
•TGL0t7 EQU 27 GLOBAL VARIABLE GLOB17
•TGL018 EQIJ 28 GLO~AL VARIABLE GLOB18
•TGLOtC/ mu 29 GLOBAL VARIABLE GLOFH9
•TGL020 EmJ 30 GLOIHL VARIABLE GLOB20
*TGL021 EGii 31 GLOBAL VARIABLE GLOB21
*TGL022 EQU 32 GLO"AL VARIABLE GLOB22
•TGU123 Er.Ill 33 GLOBAL VARIABLE GLOB23
•TGL024 EQU 34 GLOBAL VARIABLE GLOB24
•TGL025 EQU 3'5 GLOBAL VARIABLE GLOB25
•TGL02b EGLI 3b GL08AL VAIHABLE GL082&
*TGUl27 EQU 37 GLOBAL VARIABLE GLOB27
•TGL02B EQU 38 GL08AL VARIABLE GL0828
•TGL029 EGU 39 GLOAAL VARIABLE GLOA29
•TGL030 EQLJ 40 GLOBAL VARIABLE GLOB30
•TGL031 EQU 4 t GLOBAL VARIABLE GLOB31
•TGL032 EQU 42 GL00AL VARIABLE GLOB32
•TGL033 EGU 1.13 GLOBAL VARIAl3LE GLOB33
*TGL03li EQU llll GLOBAL VARIABLE GLOB3li
•TGL03S EGU 45 GLOBAL VARIABLE GLOB35
•TGL03b ECW lib GLOBAL VARIABLE GLOB3b
•TGL037 l:QlJ 47 GLOBAL VARIABLE GLOB37
*TGL038 EQU 1.18 GLOAAL VARIABLE GL0838
*TGL039 EQlJ llC/ GLOBAL VARIABLE GLOB39

00000062 TGLOl.IO EQU 50 GLOBAL VARIABLE GLOB40
* EQU 51 SPARE

Figure 2-4 Tester Variables Listing

2-26

* EQIJ 52 SPARE

* EQU 53 SPARE

* EQU 51.1 SPARE

* EQIJ 55 SPARE

* EQU Sb SPARF.

* EQU 57 SPARE

* EQU 58 SPARE

* EQU 59 SPARE

* EQU bO SPARE

* 00000075 TINDEX EQU bl BINNIG INDEX
00000076 TCPC EQU b2 PROCESS CONTROL,PAUSE,SYNC
00000077 TDCOL Y EQU b3 DC TIME DELAY
00000100 TODLY EQU bl.I LM TIME OUT DELAY
00000101 TnVER EYU b5 MA OVERRIDE

* EQU bb SPARE
00000103 TDLO EQU b7 DL OPTION & DEVICE
00000104 TDLF EQU 08 DATALOG FREQUENCY COUNT
00000105 TDLS EQU 69 DATALOG SKIP CONTROL
00000106 TDLR EQU 70 OATALOG REQUEST
00000107 TDLC EQU 71 DATALOG CONTROL & STATUS
00000110 TLMFC EQU 72 DATALOG ADDITIONAL FAIL COUNT
00000111 TPDF EQU 73 PD FREQUENCY COUNT
00000112 TPDS EQU 74 Pf) SKIP CONTROL
00000113 TPDR EQU 75 PD REQUEST
00000114 TDFR E(W 76 DCF REQUEST
00000115 Hi AC TL EQU 77 MA CONTROL
00000116 TPPO EQU 78 MA PPM REQUEST
00000117 TSYNC EQU 79 MA SYNC COUNT

* EQLJ 80 SPARE
00000121 TMOD EQU 81 PPM,LM MODULE NUMBER

* 00000122 TAPMP1 EQU 82 APM PROCEDURES #1
00000123 TAPMP2 EQU 83 APM PROCEDURES #2
00000124 TAPMFl EQU 84 APM FILE NAME #1
00000125 TAPMF2 EQU 85 APM FILE NAME #2

*
* EQU 86 SPARE

* EQU 87 SPARE

* EQU 88 SPARE

* EQU 89 SPARE

* EQU 90 SPARE

* EQU 91 SPARE

* EQU 92 SPA!~E

00000135 TPDD EQU 93 OIST COUNT
00000135 TVTLL EQU 93 END OF LOCAL CLEAR Cll CLEAR STAT)
00000136 TS TEP EQU 94 PROGRAM STEP COUNT
00000137 TPALJSE EQU 95 PROGRAM PAUSE COUNT
00000140 TIP EQU 9b INSTRUCTION POINTER
00000141 TB INT EQU 97 BIN INITIALIZED
00000142 TB INS EQU 98 BIN STATUS
00000143 TMPJN EQU q9 MAX PIN (DEFAULT : bO)

* EQU 100 SPARE

* EQU 101 SPARE

* EQU 102 SPARE

* EQU 103 SPARE

* EQU 104 SPARE
00000150 TVTLG EQU 104 END OF GLOBAL CLEAR (11 LOAD STAT)
00000151 TPID EQU 105 PID ADDRESS JN JOATAB
00000152 TTTK EQIJ !Ob TTK ADDRESS IN JOATAB
00000153 TMTRt EQIJ 107 MTR1 ADDRESS IN JOATAA
00000154 TMTR2 HIU 108 MTR2 ADDRESS IN IOATAB
00000155 TCR EQU 109 CR ADDRESS IN IOATAB

Figure 2-4 Tester Variables Listing (Continued)

2-27

00000151> TOIF EQU 110 DIF ADDRESS lN IOATAR

* EQU 111 SPARE
00000160 TVK2 EQU 112 VK2 ADDRESS IN IOATAB
0000011>1 TMIF EQll 113 MIF ADDRESS IN IOATAB
0000011>2 TPflD EQlJ 114 POD ADDRESS IN IOATAB
0000011>3 TTTP EQIJ 115 TTP ADDRESS IN IOATAB
00000164 Tt-!TW 1 EQU 1 t b MTW1 ADDRESS IN IOATAB
00000165 TMTW2 EQU 117 MTW2 ADDRESS IN IOATAB
00000166 TLP EQU 118 LP ADDRESS IN IOATAB
00000167 TOOF EQU 119 DOF ADDRESS IN lOATAB
00000170 TCLO EQU 120 CLO ADDRESS IN IOATAB
00000171 TVP2 EQll 121 VP2 ADDRESS IN lOATAB
00000172 TMOF EQU 122 MOF ADDRESS IN IOATAB
00000173 TnPT EQU 123 TESTER OPTION CONTROL
00000174 THTA E!JU 124 ATTACH FLAG
00000175 TJOB EQIJ 125 STATION'S JOR NUMBER
00000176 TMSTK EQU 12b MAX STACK SIZE USED
00000177 TOMSTK EQlJ 127 MAX STACK SIZE SPECIFIED
00000200 TRTDS EQU 128 SAVE ROUND TRIP DELAY SO IT WONT BE CLEARED

* EQU 129 SPARE
00000202 TTITLF EQU 130 THRU 145 STATION TITLE

Figure 2-4 Tester Variables Listing (Continued)

2.5.1 TSWITCH (TVT + 0)

Contains the value in floating point, either programmed as the SWITCH variable
or set by the command: SWITCH.

2.5.2 TVALUE (TVT + 1)

Contains the measurement value in floating point. It is set during execution of
MEASURE VALUE, PIN, VARIABLE, and MACRO MEASURE PIN.

2.5.3 TSN (TVT + 2)

Contains the serial number in floating point either programmed as the SN variable
or set by the command: SN.

2.5.4 TTT (TVT + 3)

Contains the test type programmed as the TT variable in floating point.

2-28

2.5.5 TDATAL {TVT + 4)

Contains the floating point representation of the datalog request flag TDLR. It
can be accessed by the test program to override an operator requested option.
The program may not turn on a request not specified by the operator. Any
combination of bits may be entered.

FCT Count
FCT IFM
EOT
LOG
MEAS
DCT
FCT
TRIP

2.5.6

4010B
4020B

200B
400B

lOOOB
2000B
4000B

lOOOOB

TRTD (TVT + 5)

Contains the floating point value of the round trip delay. It is added to the
strobe values during program execution. It may be changed by a FACTOR program
or displayed by the operator with the command: READ RTD.

2.5.7 TGLOBl - TGL040 {TVT + 11 - 50)

Defined and used by the FACTOR programs and by ALLINK programs, and may
be set or displayed by the command: GLOB.

2.5.8 TINDEX (TVT + 61)

Contains the count of number of times BIN specification has been updated.

2.5.9 TCPC (Command Processor Control) (TVT + 62)

23 21 16

Bit

20
19
18
17
16
15 to O

Statement Number

I I I I I I

Description

Pause on statement number requested
Pause on fail requested
Sync on statement number requested
Sync on ADDR
Sync on COUNT (TSYNC contains COUNT value)
Statement number

Set by manual analysis and used by THD.

2.5.10

23

Bit

23
13 to 0

TDCDLY (DC time DeLaY) (TVT + 63)

14

Time Delay Value

I I I I

Description

Modify active (do not use programmed value)
DC time delay value

2-30

0

0

2.5.11 TODLY (Time Out)(TVT + 64)

23 20

u I I

Bit

23
19 to O

Time Out Value

I I I I I

Description

Modify active (do not use programmed value)
Time out value

0

TDCDLY and TODLY are set by MA when MODIFY commands are entered.
These cells are cleared when MODIFY OFF, CLEAR, or LOAD command is
entered.

2.5.12 TOYER (OVERride) (TVT + 65)

23 19 0

Bit Description

22 Override on TRIP
2 I Override on FCT ALL
20 Override on DCT
19 Override on RESET

2-31

2.5.13 TDLO (TVT + 67)

Contains the DATALOG de~ice code.

Bit

22
3 to O

2.5.14

Description

Top of form on line printer
Device Code
0 Station POD
1 TTP
2 MTWI
3 MTW2
4 LP
5 DOF
6 CLO
7 TTP2

TDLF (TVT + 68)

Contains the DATALOG frequency request. Set by FRQn option to DATALOG
command. If any log option is specified, this cell is cleared or set to the value
specified by FRQn. TDLS is cleared to cause the first device to log.

2.5.15 TDLS (TVT + 69)

Running variable for the DATALOG frequency. It is initialized to zero and
DATALOG overlay is called only when this is zero. At the end of a test, it is
reset to TDLF or decremented to control datalogging.

2.5.16 TDLR (DataLog Request) (TVT + 70)

23 13 7 6 4 2 1 0

I I

2-32

Bit

12
11
10

9
8
7
6
5
4
3
2
1

Description

DPS trip log requested
Functional fail log requested
Measurement fail log requested
All measurement log requested
MEASURE LOG statement log requested
EOT log requested
Reserved for future use
Ignore fail mode (Bll also set)
Count requested (Bll also set)
Spare
Spare
DAT ALOG OFF requested

TRIP
PCT
DCT
MEAS
LOG
EOT

IFM
COUNT

Set by DATALOG in background based on the parameters entered in DATALOG
command.

2.5.17 TDLC (DataLog Control and status) (TVT + 71)

23 22 20 19 17 16 13 6

Bit

23
19
16
12
11
10

9
8
7
6

2.5.18

Description

Datalog active (set when TDLS = 0)
Time-out fail (bit 11 also set)
Reserved for Sentry VII development
Log trip fail
Log functional fail
Log measurement fail
Log all measurements
Log only measure long
Log EOT
Reserved for future use

TLMFC (TVT + 72)

0

Contains the additional fail request on a local memory load. It can be set by
entering the additional number in the DATALOG command. When it is not zero,
the specified number plus one or all fails, whichever is less, is datalogged.

2-33

2.5.19 TPDF (TVT + 73)

Contains the DIST frequency request.

2.5.20 TPDS (TVT + 74)

Similar to TDLS and used to keep track of skipping DIST calls.

2.5.21 TPDR (TVT + 75)

A DIST request flag. When it is not zero, DIST is considered active and DIST
overlay is called for data collection.

2.5.22 TDFR (TVT + 76)

A DCF request flag. When it is not zero, DCF is considered active, and the DCF
overlay is called for data collection.

2.5.23 TMACTL (TVT + 77)

Used to indicate manual analysis requests to foreground from background.

23 15

x

Bit 23

DO LATER REQUEST

Bit Description

10 WRITE
9 DISPLAY
8 READ
7 MEASURE

DO NOW REQUEST

11

Do Later
Request

7

x x x x

4

Do Now
Request

0

x x x x

Requests test head driver to enter MA foreground.
Turned on by MA upon request. Turned off when
there is no request for the next PAUSE and by the
command CLEAR.

Do the function at next PAUSE

Do the function immediately

2-34

Bit Description

3 WRITE
2 DISPLAY
1 READ
0 MEASURE

2.5.24 TPPO (TVT + 78)

23 21 6 0

Bit Description

23 LOOP or STOP ON
22 LOOP
21 STOP
5 to 0 PPM address

Contains MA request for LOOP/STOP ON PPM memory address.

2.5.25 TSYNC (TVT + 79)

Contains 24-bit count for MA SYNC ON COUNT request.

2.5.26 TMADSP (TVT + 80)

Used to indicate the Manual Analysis DISPLAY requests. DISPLAY ALL sets
bits 14 to 20. DISPLAY TIME sets bits 12, 13, 19, and 20.

23 21 12 0

2-35

Bit Description

20 TG
19 STRB
18 CLK
17 PWR
16 EIR
15 FCT
14 PMU
13 SCRAM (ETM)
12 TVn (ETM)

2.5.27 TMOD (TVT + 81)

Contains the current module number loaded to the PPM memory.

2.5.28 TAPMPl, TAPMP2 (TVT + 82, 83)

Contains the APM procedure download control. Each procedure executed by APM
is assigned a VECTOR NUMBER by the FACTOR compiler. As each procedure is
downloaded to APM, a bit is set in the appropriate control word designating that
this procedure is now loaded. A maximum of 48 procedures may be sent to APM
from any FACTOR program.

TAPMPl
TAPMP2

2.5.29

Bits 23 to 0 represent procedures 47 to 24.
Bits 23 to 0 represent procedures 23 to 0.

TAPMFl, TAPMF2 (TVT + 85, 86)

Contains the APM file download control. Each APM procedure file is assigned a
unique file number by the FACTOR compiler. As each procedure file is processed
by the APM test head driver, a bit is set in the appropriate control word
designating that the file is complete. (It will not be processed again.) A maxi
mum of 48 procedure files may be processed.

TAPMFl
TAPMF2

2.5.30

Bits 23 to 0 represent APM procedure files 47 to 24, respectively.
Bits 23 to 0 represent APM procedure files 23 to O, respectively.

TPDD (TVT + 93)

Set by DIST to indicate that histogram data is in memory.

2.5.31 TVTLL (TVT + 93)

The TVT buff er from 0 through TVTLL is cleared by the CLEAR ST A Tn command.

2-36

2.5.32 TSTEP (TVT + 94)

Contains the actual number of manual halts which occurred during a test. Used
to determine if the test is a re-execution due to another station execution.

2.5.33 TPAUSE (TVT + 95)

Contains the actual number of PAUSES that occurred during a test. Used to
determine if the test is a re-execution due to another station execution.

2.5.34 TIP (TVT + 96)

Contains the current instruction number by counting every code as one instruc
tion. It is not the statement number. The header is included; therefore, at
the beginning of the test, it is initialized to the length of the header.

2.5.35 TBINT (TVT + 97)

Used to indicate that the binning test is initialized or the specification
has been updated.

23

Bit

23
0

2.5.36

Description

Specification has been updated by UPDATE INDEX
Binning test is initialized

TBINS (TVT + 98)

1 0

Used to indicate binning is active for the station. Bit 23 set to one indicates
that binning is active.

2-37

2.5.37 TMPIN (TVT + 99)

Used to save the maximum pin number set by the test program with SET MPIN.
If none is set, the default is 60 for a Sentry VII and 120 for a Sentry VIII.

23

I I

Bit

11 to 8
7 to O

2.5.38

I I

12 8

of Ranks
Number I

Description

Number of ranks allowed
Number of pins allowed

TVTLG (TVT + 104)

0

Number of Pins l

The TVT buffer from 0 through TVTLG is cleared by the LOAD STA Tn command.

2.5.39 TPID, TTTK, TMTRl, TMTR2, TCR, TDIF, TVK2, TMIF (TVT
+ 105 - 113)
TPOD,TTTD,TMTW1,TMTW2,TLD,TDOF,TCLO,TVP2,TMOF
(TVT + 114 - 112)

These cells are used to do 1/0 from FACTOR and datalog output. When the cells
have bit 22 set to 1, usage of these devices requires an OPEN command and
datalog OUTPUT is in binary format. Bits 17 to 0 contain the address of IOATAB
if the device has been opened.

If bit 22 is set and bits 17 to 0 are zero at the time of usage, then a terminal
error is issued.

If bit 22 is zero and bits 17 to 0 are zero, an OPEN call to $IOCS must be issued
by the user and the address of IO AT AB returned in X6 must be placed in the
cell so that the device need not be opened for a following usage.

2-38

These cells can be located by calling GTTDV subroutine (SYXVEC + 33) and
properly updated by calling FGOH and FGIO (SYXVEC + 72, 70) for doing 1/0.

TPID/TPOD

23 22 18 0

IU HDR Code I Address of IOATAB

I I I I I I I I I I

Bit 22 = 1 For USE [MTR1/MTR2/MTW1/MTW2/DIF/DOF/CLO] STATn.

Bit 22 = 0 For no USE command (when using system PID/POD) or for
USE [TTK/TTP/LP/CR/PID/POD/VK2/VP2] STATn.

It is reset to system PID/POD upon CLEAR or LOAD STATn by closing the
file previously used.

TTTK/TTTP/TCR/TLP/TTTK2/TTTP2/TVK2/TVP2

23 22 18 0

HOR Code Address of IOATAB

I I I I I I I I I

It is cleared to zero upon CLEAR or LO AD ST A Tn

TMTR1/TMTR2/TDIF /TMTW2/TDOR/TCLO/TMIF /TMOF

The address is cleared to zero upon CLOSE command. These cells are not
cleared (closed) upon CLEAR or LOAD STATn unless the device is opened by
USE command.

23 22 18 0

I I , I
Address of IOATAB/0

I I I I I I I I

2-39

HDR CODE indicates which data type was last output to this device.

Bits2ltol8 Last header issued code

0 None
1 Trip
2 Measure/Measure; Log/Measurement Fail
3 Spare
4 FCT
5
6
7
8
9

Spare
Spare
PPM
PPM, DATA EXTENSION
FACTOR WRITE/FACTOR PAUSE

The command OPEN normally sets binary devices, and the USE command sets
TPID/TPOD. When the USE command is entered for a binary device (e.g. USE
CLO ' name'), the corresponding cell (TCLO) is checked to see if the device is
open. The same check is done at OPEN command so that the same device can be
opened only once by a station.

2.5.40 TOPT (TVT + 123)

Used to save hardware option. It is set during system initialization (after boot
from magnetic tape or entered from DOPSY) and is never cleared.

23 17 6 0

I I
I I LM s;,, I
xlxlxJxJxJxlxlxJxlxJx xJxlxJxlxlx

Bit Definition Obtained From

16 Reserved for Sentry VII
zo

development
15 6 Range PMU
14 Sen try VIII ------ i!' Of

13 ETM Bit 3 SAMC
12 28 volt swing Bit 18 mode register
11 Low voltage Bit 17 mode register
10 New REF /MUX module Bit 15 mode register

9 2V /2mV Option RVS range bit
8 SPM Bit 8 SAMC
7 PPM Bit 7 SAMC
6 10 MHz head Bit 6 SAMC
5 to O LM size (number of

thousands of words)

2-40

2.5.41 TATTA (TVT + 124)

23

I, I

The overlays Binning, DCF, and PD are flagged that the LOAD STATu has taken
place. LOAD sets the flag equal to 7. When the bit is set, the overlay prohibits
new data for the current test program being added to data for the previous test
plan. Before these overlays can be recalled any old data must be deleted. The
overlays reset their respective bit when this occurs.

Bit

0
1
2

2.5.42

Description

Binning
DC failure analysis
Parameter distribution

TJOB (TVT + 125)

Contains the job name of the test program attached to the station. This allows
the user to change stations for background use. During test program paging
and EXEC assembly language overlays, the station job is searched, rather than
the current job.

2.5.43 TMSTK (TVT + 126)

The maximum size that the run time stack reaches during execution. If the
stack is forced beyond 500 words a message is printed at end of test: STATION
n REQUIRED x WORDS OF ST ACK.

2.5.44 TOMSTK (TVT + 127)

Contains the stack size required by the test program.

2.5.45 TRTDS (TVT + 128)
/

Saves the round trip delay. TRTDS restores TRTD by the CLEAR and LOAD
STATn commands.

2-41

2.5.46 TTITLE (TVT + 130 - 145)

Contains the TRASCII station title entered by the user. It prints whenever
the station header outputs.

2-42

2.6 CURRENT STATION VARIABLES (SVT)

A listing of current station variables appear in figure 2-5.

PAGE

"' CllRRENT STATION VARIARLE TABLF <;VT

"' ADDRESSED BY INDEX SP(Xl)

000000&2 SVTL mu 50

00000000
00000001
00000002
00000003
00000004
00000005
OOOOOOOb
00000007
00000010
00000011
00000012
00000013
00000014
00000015
00000016
00000017
00000020
00000021
00000022
00000023
00000024
00000025

00000026
00000027
00000030
00000031
00000032
00000033
00000034
00000035
0000003&
00000037
00000040
00000041
00000042
00000043
00000044
00000045

00000046
00000047

"' SITE
STHC
SPJlll
51-lSR
SMF
SEIR
STEF
SVOFFS
SLML
STRIP
STPP
SMSRH
SINC
SFVAL
SPG
SPMOD
SDLAF
SIFC
SIFV
SMR
SFR
SSA MC

"' SQ
StlL
SUMO
SL!Ml
SDCTOE
SOC TO
SDCT1E
SDCT1
SI LOE
SILO
SIHIE
SIHI
SVLOE
SVLO
SVHIE
SVHI
• S488CT
SAPMCT

ECJU
EGU
EQU
EQU
fQll
EQU
EQIJ
EQIJ
i::.rm
EQU
EQU
EQU
EQll
EQU
Erm
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQIJ
ECJU
EQU
EQll
EQU
EQU
EQU
EQU
EQU
EQU
EQIJ
Erm
EQLI
EQU
EQU
EQlJ

EQIJ
EQU

0
1
2
3
ll
5
b
7
8
9
10
11
12
13
14
15
1&
17
18
19
20
21

22
23
24
25
2b
27
2"
29
30
31
32
33
34
35
3b
37

38
39

ON•LINE SITE
TEST HEAD CONTROL
CURRENT PHU PIN NUMBER
CURRENT PHU MEASUREMENT
MEASURE FLAG FOR DL
EIR IMAGE
TERMINAL ERROR FLAG
VOFFSET VALUE
LOCAL MEMORY LOCATION
OPS TRIP STATUS
TEST PLAN ADDRESS
SAVE MEASUREMENT IN REG FORMAT FOR MA
INC ENABLE FLAG
FORCING VALUE FOR MACRO
LOCAL MEMORY PAGE SIZE
PROGRAM MOOE (PPM/SPM,ETC)
DL ADDITIONAL FAIL FLAG
IF COUNT FOR DL BY COUNT
IF COUNT FOR MA SYNC, SET IF
MODE OF MEASUREMENT •SET PHU SENSE
MODE OF FORCE • SET PMU FORCE
CLAMP BIT (28 VOLT SWING) FOR SAMC, ANY WRITE
TO SAMC SHOULD OR IN THIS GLOBAL, EXCEPT
ANALYSIS
ORIGINAL VALUE OF Q REG
ORIGINAL VALUE OF QL
LIMIT 0 OR LIMIT IF ONLY ONE
LIMIT 1 WHEN THERE ARE 2 LIMITS
ENABLE OCTO FLAG WORD
ENABLE DCTO VALUE
ENABLE OCT1 FLAG WORD
ENABLE DCT1 VALUE

ENABLED LIMIT VALUE
ENABLE IHI

ENABLE VLO

ENABLE VHI

488 BUS CONTROL WORD
APM CONTROL WORD

Figure 2-5 Current Station Variables Listing

2-43

2.6.l SITE (SVT + _O)

Current station number (0 to 3). Set to minus one on entry to the operating sys
tem. It is used when a station comes on line to determine if the start is for the
same station as the previous start.

0 =STAT!, I = STAT2, 2 = STAT3, 3 = STAT4

2.6.2 STHC (Test Head driver Control) (SVT + I)

23 16 13 6 3 0

Statement Bits Seq Bits Test Bits

xxxxxxxx x x x x x x x x x x x x x

Bit

23
22
21
20
19
18
17
16
15 to 13
12
11
10

9
8
7
6

5 to 3
2 to O
5,2
4,1
3,0

Description

One or more of the following bits are set
Tester busy complete
Time out interrupt- FCT fail
Instruction number compare interrupt
Fail occurred (bits 21, 16,IZ, 11, or 10 are set)
Pause statement executed
DC interrupt· occurred (DC measure or DCT)
Reserved for Sentry VU development
Spare
TRIP - DPS TRIP FAIL interrupt,
Functional fail interrupt
DC fail - measurement fail
Measurement executed
Measure, LOG executed
EOT
Reserved for D/L expansion
SEQ bits
TEST bits
FC fail
DC fail
Trip fail

Statement bits are cleared at the end of each statement execution.

SEQ bits are cleared at the end of each sequence and by the CLEAR FAIL state
ment. They are displayed to the EIR lights at the end of each sequence.

2-44

TEST bits are displayed at the end of each test and cleared by the CLEAR FAIL
statement.

2.6.3 SPIN (SVT + 2)

Contains the pin number that the PMU is connected to following an interpretive
CPMU PIN, or the pin measured following an interpretive measure or a macro, or
a DMA measure. This is logged even though the PMU may be disconnected, as
after measure node, or connected to a rest pin, as after a macro .

•
2.6.4 SMSR (SVT + 3)

Contains the floating point value measured following an interpretive measure or a
DMA measure which is logged. The voltage offset value programmed is added to
the measurement value in SMSR.

2.6.5 SMF (SVT + 4)

23

Bit

23
13
12 to 10
9

8
5
1, 0

2.6.6

14 13 10 9 8 6 5

Description

For MEASURE VARIABLE
Mode of measurement 0 =current, 1 =voltage
Range of SM SR

2 0

If two limits enabled it contains pass/fail for SLIMO
= 1 SLIMO failed
= 0 SLIMO passed

LT/GT for SLIMl LT= O, GT= 1
LT/GT for SLIMO LT= O, GT= 1
Number of limits (0,1,2

SEIR (SVT + 5)

Contains EIR register information to be displayed. SEIR is written to the EIR
register at the sequence halt (MANUAL, PAUSE, etc.) at the end of each test
and at the terminal error. Any program writing to the EIR should put the value in
SEIR.

2-45

Bit

14
13
12
11
10
9 to O

Description

End of test
Functional test pass
Functional test fail
DC/TRIP test pass
DC/TRIP test fail
User written information or binning gates if used.

At a terminal error, bits 11 and 10 are on and bits 9 to 0 contain the terminal
error number. "'

2.6. 7 STEF (SVT + 6)

Contains the terminal error number. See the terminal error list for currently
available error numbers.

2.6.8 SVOFFS (SVT + 7)

Voltage offset value is stored here in floating point format. All are zero if no
offset is programmed.

2.6.9 SLML (SVT + 8)

Contains the delayed memory address needed by the DATALOG overlay in order
to obtain the functional data from the local memory.

23 12 0

Memory Location

2-46

2.6.10 STRIP (SVT + 9)

Contains the failed DPS number needed by the DATALOG overlay. The interrupt
service for TRIP FAIL sets this information.

23

Bit

11
10

1

2.6.11

Failure

DPS3 TRIP
DPS2 TRIP
DPSl TRIP

STPP (SVT + 10)

12 11 10 9 0

Contains the pointer to the absolute address of the test program for the station
currently online. It points to one of the four ATPA cells when a test station is
online.

2.6.12 SMSRH (SVT + I I)

Contains the results of a measurement following any MEASURE statement except
MEASURE variable. The value does not have the programmed voltage offset
added back as SMSR and TVALUE do. Bits 0 to 10 contain the measurement;
bits 11 to 14 contain the mode and range from the PSL.

2.6.13 SINC (SVT + 12)

Flags test head driver to set the INC interrupt enable following a statement.
After a station start request following a pause on statement number the IND is at
the value which causes an interrupt. This interrupt is thrown away. After the
IND is bumped by the next statement, SINC indicates that the INC interrupt
enable should be turned back on.

2.6.14 SFVAL (SVT + 13)

Contains the value of the PPS register at the time of the last SET TEST number.
It is used by DC MACRO processing and analysis.

2-47

2.6.15 SPG (SVT + 14)

An indicator that tells if the currently running program contained a SET PAGE
statement. If there is no SET PAGE, it is zero. Otherwise, it contains the local
memory size specified by SET PAGE.

2.6.16

23

I I

Bit

9
8
7
6
5
4
3
2
1
0

2.6.17

SPMOD (SVT + 15)

Description

2V/2mV program
SPM program

10 9 .8 7 6 5 4 3 2 1 0

lxlxlxlxlxlxlxlxlxlxl

PDMA (SET PERIODi is DMA)
ETM program
APM program
488 Bus program
6 range PMU program
Sentry VIII program
Set PPM ON programmed; do not reset bit 0
REXEC executed or SET PPM ON, D/L treats a functional fail as a
PPM fail

SDLAF (SVT + 16)

SDLAF is non-zero when additional fails are being logged. This controls the
datalogger output.

2.6.18 SIFC (SVT + 17)

IGNORE FAIL register value used to save last location during additional datalog
fails.

2.6.19 SIFV (SVT + 18)

IGNORE FAIL value set by SET IF AIL instruction and sync by count or ADDRESS.

2-48

2.6.20 SMR (SVT + 19)

The sense mode and range of the PMU set by the SET PMU SENSE statement is
stored here.

Bit

14,12,11
0

2.6.21

Description

range
AUTO

SFR (SVT + 20)

The force mode of the PMU set by the SET PMU FORCE statement is stored
here.

Bit Description

13 mode 1 = voltage
14,12,11 range
0,1 AUTO

2.6.22 SSAM C (SVT + 21)

Contains the value of bit 0 of SAMC for 28 volt swing.

Bit 0 = 1

Bit 0 = 0

2.6.23

Indicates that the reference voltage supplies are clamped at -22
volts.
Indicates that the reference voltage supplies are clamped at -16
volts. This occurs when a period is less than 200 ns.

SQ (SVT + 22)

Contains the original value of Q from the SET Q statement.

2.6.24 SQL (SVT + 23)

Contains the original value of QL from the SET Q statement.

2.6.25 SLIMO (SVT + 24)

Contains the ENABLE DCTO limit if two limits have been enabled for a
measurement, or it contains either the DCTO, DCTl, or SET DCT limit if only one
is enabled. The voltage offset has been added if it was programmed. This is the
value printed by the datalogger. The value is in floating point.

2-49

2.6.26 SLIMl (SVT + 25)

Contains the ENABLE DCTl limit if two limits have been enabled for a measurement.
The voltage offset has been added if it was programmed. This is the value
printed by the datalogger. The value is in floating point.

2.6.27 SDCTOE (SVT + 26)

Flag word for ENABLE DCTO

Bit Description

never enabled or disabled
disabled
I enabled

0
-1

0
13 LT/GT flag 0 = LT, I= GT (DCTO/DCTl)

2.6.28 SDCTO (SVT + 27)

Value of ENABLE DCTO in floating point. The voltage offset is not added.

2.6.29 SDCTlE (SVT + 28)

Flag word for ENABLE DCTl. See SDCTOE.

2.6.30 SDCTI (SVT + 29)

Value of ENABLE DCTI in floating point. The voltage offset is not added.

2.6.31 SILO E (SVT + 30)

Flag word for ENABLE ILO.

Bit

0
-1

I

2.6.32

Description

never enabled or disabled
disabled
enabled

SILO (SVT + 31)

Value of ENABLE ILO in floating point.

2-50

2.6.33 SIHIE (SVT + 32)

Flag word for ENABLE IHI. See SILOE.

2.6.34 SIHI (SVT + 33)

Value of ENABLE IHI in floating point.

2.6.35 SVLOE (SVT + 34)

Flag word for ENABLE VLO. See SILOE.

2.6.36 SVLO (SVT + 35)

Value of ENABLE VLO in floating point. The voltage offset is added to the value.

2.6.37 SVHIE (SVT + 36)

Flag word for ENABLE VHI. See SILOE.

2.6.38 SVHI (SVT + 37)

Value of ENABLE VHI in floating point. The voltage offset is added to the value.

2.6.39 S488CT (SVT + 38)

Contains the control word for execution of the FACTOR 488 statements.

23 21

Bit

23
22
21

4
3
2
1
0

5 0

Description

IEEE 488 Bus SRQ interrupt pending
APM high speed sync (APS) interrupt pending
APM SRQ pending
400 opcode active
ON BRANCH active
APM checked and initialized
APM high speed sync branching disabled (ON APS)
IEEE 488 bus SRQ branching disabled (ON SRQ/ON PPR/ON APF)

Bits 23 and 22 are set directly by their respective interrupt service routines.

2-51

2.6.40 SAPMCT (SVT + 39)

APM control word for execution of APM programs. This word contains a history
of all SRQs sent from APM. As APM requests are serviced, the corresponding
bits in this control word are reset. Bits O to 15 represent the SRQ types sent
by APM. Bit 0 represents SRQ type O, bit 1 SRQ 1, etc.

23 16 0

Data Buffers APM SRO Type

x x x x x x x x x x x x x x x

Bit

19
18
17
16
10

9
8
7
6
5
4
3
2
1
0

2.6.41

Description

Data in APM error buffer
Data in APM data log buffer
Data in APM pass/fail test buffer
Data in APM measurement result buffer
APM system terminal error
Error SRQ
Information for data logger
Immediate statement complete
Abortive procedure end (APM fail)
Normal procedure end (APM pass)
APM at a pause
Completed data record
System operation complete
Trigger ·
Read data to send from data buffer

SPPM (SVT + 42)

Reserved for Sentry VII development.

2.6.42 SPERN (SVT + 43)

Reserved for Sentry VII development.

2.6.43 SPERV (SVT + 44)

Reserved for Sentry VII development.

2-52

3

System Subroutines

System subroutines are procedures that are available under MASTR for use by the
operating system or user-written overlays. System subroutine definitions are
provided unless the subroutine is reserved for system use. The reserved
subroutines must not be CALLed by user overlays. Using the reserved subroutines
may leave the operating system in an undefined state. Transfer vectors used to
access the system subroutines are listed in figure 3-1.

3-1

000006110

000006110
006110 0000?536
006111 00006735
006lJ2 00006642
006ll3 00001726
006£111 000017111
006115 00010322
OOnllb 00006651
0061.17 000066n6
00650 00006702
006<;1 OOOO"i663
00652 0000%55
00653 00003276
00651.1 00017671
00f>'i5 000051'>74
001>56 00017625
00b57 00006343
006b0 00006352
00661 oooo56n6
0061'2 00005671
oo&63 ooooc;&tin
006nll 00005724
00665 00005727
O!Jbl>b 00005732
00667 00005735
00670 000057110
00671 000171.167
00672 00017511~
00673 00017523
006711 000175611
001>75 00017577
0111'>76 00005425
00677 ooooc;110
00700 00003307
00701 00004360
00702 00005721
00703 00003106
0070i.I 00003'i10
011705 00003117i.I
00706 0000231.11
00707 00017607
00710 000031142
00711 0001)3403
00712 00003637
00713 00005452
00714 00003457
00715 0000531.13
00111> ooooc;472
00717 OflOOS"iOO
00720 00005506
00721 00005522
00722 000051.175
00723 00005467
007?£1 00005530
00725 00005"i03

Figure 3-1

*

*
*

PAGF

ORG GLOVAR+NGLOV

* SYSTEM SUHROUTTNE TRA~$FER VECTOR (8SM* (SYXVfC+N))

*
* SYXVEC EQU

TV
..1f TV
;(. 1 v

TV
TV

-le TV
.:j, TV
1' TV

~ -1 TV
TV
TV
TV
TV

1Tv
<TV

TV
TV

'-TV
7f r v

TV
TV
rv

"!"TV
TV
TV
TV
TV

-¥TV
7 :X TV
; fr TV

TV
TV
TV
TV

~ :t- 1 v
TV
TV

I TV
TV

""'.TV
TV
TV
TV
TV
TV

c?'.TV
TV
TV
TV
TV
IV
TV
TV
TV

'Ir

wAIT
OUTOPN
OllTCLS
f\llJMERR
COME RR
uocs
MSGIN
MSGOUT.
UMSGW
AJ1,1MEM
SCNFIL
GTSTAT
CONV
PllTO
PIJTC
MOVEl>N
MOVEllP
PUTF.
PUTO
PROCESS
AL TfR
$PARSE
IDTSCl'.I
NUMBER
lNTSC:N
5EARCH
MP ZERO
GfTC
READW
WRITl:.W
IERMSG
OUMP
PU flME
GTTOV
HEADER
SPIOfR
FGOVC
ALLEX
COMMND
PllTW
TWAIT
FGBGRT
MON INT
SCALI:.
FGwAIT
ERRCNV
FSUR
FAND
FEUR
FLUG
F AUD
Fl) IV
FF !XS
FOR

N
0 TFSTER BIJSY WAIT tN FORF.GROUND
1 OPEN OUTPUT FOR ALPHA PRINT
2 CLOSE OUTPUT ALPHA PRINT
3 NUM8ER ERROR CBRU*)
4 COMMAND SYNTAX ERROR CBRU*)
5 I/0 DRIVER
6 INPUT A MESSAGE FROM SYSTEM PIO
7 OUTPUT A MESSAGE ON SYSTEM POD
8 OUTPUT A MESSAGE ON SYSTEM POD W/0 CR/LF
q ADJUST MEMORY USAGE
10 SCAN FILES IN MEMORY
11 OF.CODE STATION ID FROM COMMAND OR DEFAULT
1? CONVERT BINARY TO DECIMAL
13 PUT DECIMAL NUMBER IN RUFFER
14 PUT CHARACTER IN BUFFER
15 MOVE A ~EMORY BLOCK ASCENDING ORDER
16 MOVE A MEMORY BLOCK OESCENDJNG ORDER
17 PUT ENG # JN BUFFER
18 PUT OCTAL # IN BUFFER
19 PROCESS A COMMAND
?.O ALTER RUFFER SCAN/PROCESS
21 DEFINE NEXT INPUT RECORU FIELD
~2 SCAN IDENTIFIER
23 SCAN A NUMBER (SET IN F.P. FORM)
24 SCAN INTEGER NUMBER
25 SEARCH TABLE
26 CLEAR CORE CX&,X7)
27 GET A CHARACTER FROM BUFFER .~ '" ('"'
28 GET A WORD FROM BUFFER '"; , .. <"' /
29 PUT WORD IN RUFFER
30 TERMINAL ERROR IN THO
31 OUMP TP,OVLY,MOD
32 PUT DATE, TIME IN BUFFER
33 GET IO DEVICE ADDR IN TVT
34 OUTPUT HEADER (RINN,PD,OCF,MA)
35 sines ERROR CHECK AND MSG
36 CALL OVERLAY FOREGROUND
37 ASSfMRLY LANGUAGE LINKAGE EXECUTION
3R RETURN TO MONITOR CRRU•)
3Q PLACE 11 TASCII CHARACTE~S IN BUFFER
40 WAIT ON TESTER ACTIVITY
41 SCHEDllLE BACKGROUND FROM FOREGROUND
42 ENTER SCHEDULER(SAVE HARDWARE)
43 SCALE F.P. TO TESTER VALUES
44 FOREGROUND WAIT FOR BACKGROUND
45 SIOCS ERROR CODE OECOOER, MESSAGE OUTPUT
46 FLOATING POINT SU~TRACT (A•E •> A)
47 FLOATING POINT ANO (A AND E •> A)
48 FLOATING POINT EOR (A EOR E •> A)
49 FLOATTNG POINT LOG CLOG A •> A)
SO FLOATING POINT ADD (A+E •> A)
51 FLO•TING POINT DIVIDE (A/E •> A)
52 FIX FLOATING POINT INTO A,E
53 FLOATING POINT OR CA OR E •> A)

System Subroutine Transfer Vector Listing

3-2

011726 0000<;<; 11 rv I-NOT 54 FLOl\TlNG POPH ,'JOT (A NOT F -> A)
00727 OP00'\52'> TV F F_XP "'" FtflATJNr, POINT EXPONENT (A -> A)
OOBO nono'l464 TV f- ·1UL 56 FLOATTN(, POINT MULTIPLY (A * F -> A)
oont OOOO<;'i 1 ll IV FF IX '\7 FJX FLO.HING POINT INTO A (A -> A)
0117 32 OO!l05517 I\/ FFLT 5.'l FLOAT INTEGF.~ IN A (A -> A)
!11173 ~ OOOO')'i33 TV FFLTS ')Q FLflAT NllMRER IN _A, E <A ,E -> A)
0073<.1 00017712 TV Fr.AM 6'1 FLOATINf~ POI"H C0'1PARF. (A,E)
0fJ73':> 0000570'; rTV LOAO I, 1 LOA!) A FILE INTO MEMOIH
00736 oooo.3n5? x TV iJELFIL 1,;.> l)flETI': FILE RY NAME CHA"lGF.
00737 OOOO'lll?Cl TV RF..LOV 63 CALL 1JVI. Y FOR RELEASE
0(17/lO 0(1004'>54 IV ATIA 64 ATTl>CH OVLY TO STA TN
no741 ()0004571 TV OTIA 1>5 f)fTTACH OVLY FROM STATN
01)742 00004663 TV f'AGETP bl> PAGF TEST PLAN
on743 001)(14/>0ll l v ~-r;11r.-.T 1,7 Ff;/RG WAITING
on744 0()001~1)31 IV f'GHGH 611 FG/tiG HALT FOR ME'l MOVE
00745 0ll005436 TV FINDVL 69 FINI) VAtHABLE AODR IN STACK
00741) 00001,36£1 -KT V FGin .,0 FOREGROUND to
007 1H 0000'>441 * TV D"IAST R 71 START TESTER 0"'A .!IND WAIT FOR IJONE
00750 0000653? -X TV FGUH 72 F11REGROIJND HEADER OUT
00751 00005444 * TV tNbTST n ENARLE LOCAL MF.MORY TEST
007C,2 nooo<;1141 TV WW A IT 74 WAIT FOR LM TEST IN FG
00753 0001,c;713 , ~-TV AORXLA 75 1)JSC flOOR TRANSLATE
007"ill 00005451, :.,-, r v INTERP 76 CALL INTERPRETER
00755 00005461 TV f.NT~SY 77 ENAtlLE TESTER AUSY COMP INTERRUPT
007"i6 00003611 TV R"IJVC 7A CALL OVLY FOR FG RESET
00757 'l0004f1?5 TV STALL 79 STALL BG PROCESS
0()760 00005743 -; -:¥ TV UPDATE 80 CRf A Tt /OELE TE A FILE
007nl 00005751 :+ T \/ PU TENG 81 PUT ENG VALUES IN BUFFER
00762 000057c;4 -rTv f'UTA 8? PUT OCTALIDECl"IAL ADDR IN HUFFER
1)0763 00003757 TV hGCHK 83 CHECK IF tiG ACTIVITY ON
00764 00000000 TV 0 At.I
00765 00005757 TV CALL MOD .qc; CALL OVLY MODULE
00766 000056 77 ~ TV f'UfA 81, PIH BINARY " IN BUFFER
00767 ooons102 '·TV PUTH P.7 PUT HEX ti IN BUFFER
00770 0000()01>1 TV SAVENV flll So\VE ENVIRON"IENT
00771 00006115 TV l1SVENV 89 RES TOI-IE F.NVIRONMENT

* TV IRIO 90 J 'llJS !)RIVER - RESERVED

*

Figure 3-1 System Subroutine Transfer Vector Listing (Continued)

3-3

3.1 WAIT

Reference Location

Description

Input Parameters

Output Parameters

Return

Calling Sequence

Registers Used

Allowed Usage

3.2 OUTOPN

Reference Location

Description

Input Parameters

Output Parameter

Return

Calling Sequence

Routine Used

Registers Used

Allowed Usage

SYXVEC + 0

This is a wait routine called by the foreground
processing when the test station becomes busy. It
allows background processing to continue.

Control returns to foreground only after the contents
of address AWATF (GLOVAR + 79) are set to 1
by the interrupt service when the busy condition
is completed.

None

None

BSM address + 1

BSM* WAIT

All registers and state switches are saved and
restored.

Foreground only

SYXVEC + l

This subroutine opens an output device for a string
record file. It can be used to output data summary.

CMDV (GLOVAR +49) must contain the device code.
If CMDV is zero, the system POD is used.

NAMEMl, NAMEM2 (GLOVAR +50, 51) must contain
the file name if the device is a CLO or DOF.

X6 contains the pointer to IOATAB for this device.

BSM address + l
BSM address +2

BSM* OUTOPN

$IOCS

error return
normal return

Xl, X6, A, and E are not restored.

Background only

3-4

3.3 OUTCLS

Reference Location SYXVEC +2

Description This subroutine closes an output device.

Input Parameter X6 pointer to IOATAB.

Output Parameters None

Return

Calling Sequence

Routine Used

Registers Used

Allowed Usage

3.4 NUMERR

Reference Location

Description

Input Parameters

Output Parameters

Return

Calling Sequence

Routine Used

Registers Used

BSM address +I
BSM address +2

error return
normal return

LDX*
BSM*

X6,IOATAB ptr.
OUTCLS

$IOCS

XI, A, E and X6 are not restored.

Background only

SYXVEC + 3

This handles number errors for all programs and
subroutines. Because of its general nature, error
reporting is at a minimum.

None

None

Control is not returned to the caller. An error mes
sage, ERROR IN NUMB, is output to POD by the moni
tor, and control is passed to the monitor command
scan routine.

BRU* NUMERR

MSGOUT to print out the error message by the
monitor.

Not applicable since there is no return to caller.

3-5

Note

If the user intends to conduct any kind of recovery
from a number error (for example, requesting a number
again from an input device), this routine should not
be used. Instead, BRU to another routine in the
user's program for recovery.

Allowed Usage Background only

3.5 COM ERR

Reference Location

Description

Input Parameter

Output Parameters

Return

Calling Sequence

Routine Used

Registers Used

SYXVEC + 4

Processes a command decoding error (decoding done
in the subroutine called PROCESS) for all
programs and subroutines. Because of its general
nature, error reporting is at a minimum.

E contains one-word text of error.

None

Control is not returned to the caller, an error mes
sage, ERROR IN XXXX, is output to POD by the moni
tor, and control is passed onto the monitor command
scan routine. XXXX is the contents of Eon entry.

BRU* COM ERR

MSGOUT prints out the error message by the monitor.

Nonessential to the caller, as this is an error
terminating subroutine.

Note

If the user intends to conduct any kind of recovery from
a command error on further diagnosing the error, this
subroutine should not be used. Instead, BRU to user's
own error handling routine for this error processing.

Allowed Usage Background only

3-6

3.6 $10CS

Reference Location

Description

3.7 MSG IN

Reference Location

Description

Input Parameters

Output Parameter

Return

Calling Sequence

INBUF

Registers Used

Allowed Usage

3.8 MSGOUT

Reference Location

Description

Input Parameters

Output Parameter

Return

SYXVEC + 5

See section 4

SYXVEC + 6

Reads a record from the system PID.

Xl Starting address of input buffer (buffer must
have 18 words)

A Prompting character in TRASCII right
justified or zero

A $IOCS error code for error return

BSM address +I
BSM address +2

error return
normal return

BSS
LDX
LDA
BSM*
BRU

18
XI ,INBUF
DO or CLA
MSG IN
ERROR

normal return

A, E, XI, and X6 are not restored.

Foreground/background

SYXVEC +7

Writes a record to the system VKT.

XI Starting address or record buffer
X2 Number of words to be output

A $IOCS error code for error return

BSM address +I
BSM address +2

3-7

error return
normal return

Calling Sequence

OUTDCB
OUTBUF

Registers Used

Allowed Usage

3.9 UMSGW

Reference Location

Description

Input Parameters

Output Parameter

Return

Calling Sequence

OUTBUF

Registers Used

Allowed Usage

O,OUTBUF,5 DATA
TEXT I XXXX,XX W,ORDS, LEF.T I

LDX
LDX
BSM*
BRU

X2, 5 _.,, /Jv ,., 1, , ,, , /; , .• · ., -/1
Xl,OUTBUF .-,. ,u,,·i .:" '"""""·""''

MSG OUT
ERROR

error return
normal return

A, E, Xl, and X6 are not restored.

Foreground/background

SYXVEC + 8

Writes a record without carriage return and line-feed
to system POD.

Xl Starting address of .record buffer
X2 Number of words to be output

A $IOCS error code for error return

BSM address + 1
BSM address +2

error return
normal return

TEXT

LDX
LDX
BSM*
BRU

'PIN =I

X2,5
Xl ,OUTBUF
UMSGW
ERROR

normal return

A, E, Xl, and X6 are not restored.

Foreground/background

3-8

3.10 ADJMEM

Reference Location

Description

Input Parameters

Output Parameters

Return

SYXVEC + 9

This routine handles .adjustment of dynamic memory
allocation area. Its functions are releasing a file by
name, or releasing all test programs or all overlays;
expanding a test program or overlay, or repacking a
test program or overlay. Physically, the data in the
impacted memory area is moved up or down and the
memory activity table is updated for the change.

BSM address + 1
Function code to be performed

0 Release a file specified in X5
1 Release all test programs
2 Release all overlays
3 Release all test program overlays
4 Expand the test program or overlay

specified in X5
5 Repack the test program or overlay

specified in X5
6 Bump page TP or release inactive

programs
7 Release all modules
8 Release all files previously marked for release
9 Make room for fixed overlay

For functions O, 4 and 5, X5 must contain the address
of the file entry in MACT AB.

For function 4, the A register must contain the expan
sion size in words.

For function 5, the A register must contain the new
test program or overlay size in words.

For functions 6 and 9, the A register must contain the
required size in words.

For function 9, X5 points to MACTAB entry.

For functions 4, 5, 6, and 9, BSM address + 2 cannot
expand due to lack of memory space.

BSM address+ 3 for expansion complete
BSM address + 2 for all others

3-9

Calling Sequence

For functions 0, I, 2 and 3

LDX
BSM*
DATA

Xl, function code
ADJMEM
0/1/2/3

normal return

For functions 4 and 5

LDX
LDA
BSM*
DATA

X5, MACTAB address
size
ADJMEM
4/5

error return
normal return

For functions 6 and 9

Routines Used

Registers Used

Allowed Usage

3.11 SCNFIL

Reference Location

Description

LDA
BSM*
DATA

MOVEDN
MOVEUP
FGBGH

size
ADJMEM
6/9

error return
normal return

to pack the memory
to expand the memory
to wait for foreground or background
activity completion

A and E registers are not restored.

Background only. Foreground may call this routine on
special condition, but this feature is reserved for the
operating system.

SYXVEC + 10

This routine scans MACTAB to find the requested file,
or output test program or overlay names on POD.

The function performed depends on the code supplied
in X 1 register.

3-10

Input Parameters

Output Parameters

Return

Calling Sequence

X 1 Function code

0 Search for any file with the name in A and E
1 Search for a test program with the name

in A and E
2 Search for an overlay with the name in A and E
3 Search for a system job overlay with overlay

code in A
4 List all test programs in memory
5 List all overlays in memory
6 List all files in memory
7 List one file with X5 pointing to MACTAB
8 LIST JOB

For functions O, 1 and 2, A and E registers must con
tain maximum six-character file name left justified.

For function 3, the overlay code (13 to 40B) must be in
A register.

For functions O, 1, 2, and 3, the BSM address + 1 must
contain the job name. (If zero, the current job is
used).

For function 7, X5 must point to the file entry in
MAC TAB.

For functions O, I, 2, and 3 upon normal return:

X5 address of the file entry in MACTAB
X7 starting address of the file in memory

None for all other functions

For functions O, I, 2, and 3:
BSM address +2 not found return
BSM address +3 normal return

For all others:
BSM address+ 1

For functions O, 1, 2, and 3

JOB

Routines Used

LDX
BSM*
DATA
BRU

XI, function code
SCNFIL
0
ERROR

Job number
not found return
found return

$IOCS to output names for functions 7,
4, 5, and 6

PUTD to place values in output buff er

3-11

Registers Used

Allowed Usage

3.12 GTSTAT

Reference Location

Description

Input Parameters

Output Parameters

Return

Calling Sequence

Registers Used

Allowed Usage

A and E are not restored for functions O, 1, 2, and 3.
No register is restored for functions 4, 5, 6, and 7.

Functions O, 1, 2, and 3 are allowed for foreground and
background.

Functions 4, 5, 6, and 7 are allowed for background
only.

SYXVEC + 11

This subroutine decodes the station identification
entered in an operator command into internal usage
format.

STATC (GLOVAR +66) Station identification 1
through 4 which is normally set by the PROCESS rou
tine. If STATC = O, then DFSTAT (GLOVAR +88) is
used as default station.

A and X6
X2

Logical station number (0 through 3)
Starting address of tester variable table, VKT
for that station. On error return, E = ' ST AT' •

BSM address + 1 station ID not entered in command or
no default has been set up by SET
STAT command.

BSM address +2

BSM*
BRU

GTSTAT
ERROR

normal return

NO STATION RETURN
normal return

A, E, X2, and X6 are not restored.

Foreground/background

3-12

3.13 CONV

Reference Location

Description

Input Parameters

Output Parameters

Return

Calling Sequence

Registers Used

Allowed Usage

SYXVEC + 12

This subroutine is used to convert a positive
number in A register into its decimal equivalent.
The decimal digit is represented in a certain number of
bits specified by the caller (the digit width). The digit
width is specified in the E register.

For example, before calling the subroutine,
A = 144 (octal)
E = 4 [i.e., 4 bits for each decimal digit (BCD)]
Upon exiting from CONV,
A= 0
but,
E=

loo o 1lo o o olo o o ol

One Decimal Digit

1 0 0 (BCD)

A positive octal number
E digit width in bits

A 0
E converted number in decimal representation

BSM address+ 1

LDA
LDE
BSM*

OCTNUM
DIGWID
CONY

A, E, and Xl

Foreground/background

3-13

3.14 PUTD

Reference Location

Description

Input Parameters

Output Parameters

Return

Calling Sequence

Routine Used

Register Used

Allowed Usage

SYXVEC + 13

This subroutine converts a positive number in the
A register into its TRASCII coded decimal equivalent and
packs it into a user-specified buffer.

A positive number to be converted and packed
X 1 number of digits wanted (field width)

(Each digit is represented by a
TR ASCII coded character) .

X7 pointer to the three-word DCB
word 0 character count
word I buffer address
word 2 buff er size in words

State switch 7 set
State switch 7 not set

do not suppress leading zeros
suppress leading zeros

A pointer to the next available location in the PMF
buffer.

If the number overflows its field (larger than the field
width specified), a back slash is stored into the
buffer before an exit of the routine.

Word 0 of the DCB points to the next available char
acter in the buffer.

BSM address+ 1

LDX
LDA
LDX
BSM*

PUTC

Xl ,3
NUMBER
X7 ,PMFDCB
PUTD

X l is not restored.

Foreground/background

3-14

3.15 PUTC

Reference Location

Description

Input Parameters

Output Parameters

Return

Calling Sequence

Register Used

Allowed Usage

SYXVEC + 14

This subroutine is used to pack a character in the
lower six bits in A register into the buff er specified
by the caller in X7.

A a TRASCII character in the lower six bits
X7 pointer to a three-word DCB

word 0 character count
word 1 buffer address
word 2 buff er size in words

A 0
0, X7 incremented to next character location in buffer

BSM address + 1
BSM address +2

O, X7 beyond buffer size
normal return

LDA
LDX
BSM*

TRASCIT
X7 ,PMFDCB
PUTC

A is not restored.

Foreground/background

3-15

error return
normal return

3.16 MOVEDN

Reference Location

Description

Input Parameters

Output Parameter

Return

Calling Sequence

Registers Used

Allowed Usage

SYXVEC + 15

This subroutine moves data blocks from one
memory location to another. Data is moved from a
block in ascending order, or from a smaller to a larger
address in the block.

XS Smaller
address

,, ,,
Data pickup Data flow
flows from from block
top to bottom to block

Larger

X4 address
Block to be moved Block to move to

X5 starting address of block to be moved
X4 ending address of block to be moved
X7 starting address of block to move into

X7 last word moved address + 1

BSM address+ 1

LDX
LDX
LDX
BSM*

· X5,BLKTOP
X4,BLKBOT
X7 ,INTOP
MOVEDN

X4, 5, and 7

Foreground/background

3-16

X7

3.17 MOVEUP

Reference Location

Description

Input Parameters

Output Parameters

Return

Calling Sequence

Registers Used

Allowed Usage

SYXVEC + 16

This subroutine moves data blocks from one
memory location to another. Data is moved from a
block in descending order, or from a larger to a
smaller address in the block.

X4 Smaller
Address

Data pickup
flows from Data flow
bottom to top from block

to block
A ... '~

Larger

X5 ~
Address

Block to be moved Block to move into

X4
X5
X7

ending address of block to be moved
starting address of block to be moved
starting address of block to move into

None

BSM address + 1

LDX
LDX

·LDX
BSM*

X5,BLKBOT
X4,BLKTOP
X7 ,INTOP
MOVEUP

X4, 5, and 7

Foreground/background

3-17

X7

3.18 PUTE

Reference Location

Description

Input Parameters

Output Parameters

Return

Calling Sequence

Routines Used

Registers Used

Allowed Usage

3.19 PUTO

Reference Location

Description

Input Parameters

SYSVEC + 17

This subroutine converts a floating point number to
printing format, a four-digit integer, or scientific
format and places it in the buffer.

A a floating point number
X7 starting address of three-word DCB

(used by PUTC, PUTD)

Converted number in the buffer. If the floating point
number is an integer and the magnitude is between
-999 and +9999, th~ format is -nnn to nnnn.

For all other numbers, the format is ±n.nnnE±nn. The
decimal point moves left or right in order to make
the characteristic a multiple of three.

0 and X7 are adjusted to one character beyond the last
used. The output requires 10 columns. If an integer
is output the remaining spaces are cleared.

BSM address+ 1

LDA
LDX
BSM*

NUMBER
X7 ,DCB
PUTE

PUTD, PUTC, CONV, FFIXS

A, E, XI, SW7 are not restored.

Foreground/background

SYXVEC +18

This subroutine converts a binary number into octal
TRASCII and places it in the buffer, right justified.

A positive binary number
X 1 number of digits desired
X7 PMF pointer

State switch 7 set
State switch 7 not set

3-18

do not suppress leading zeros
suppress leading zeros

Output Parameters

Return

Calling Sequence

Routine Used

DCB
BUF

Registers Used

Allowed Usage

3.20 PROCESS

Reference Location

Description

0 and X7 are adjusted to point to the next character
position

BSM address + 1

DATA o, BUF, 20
BSS 20

LDA NUMBER
LDX Xl ,8 8 digits
LDX X7 ,DCB
BSM* PUTO

PUTC

A and X 1 are not restored

Foreground/background

SYXVEC + 19

This subroutine is used to scan a command statement
(represented in a string record) to create a coded 24-
bit word representation of the statement. A statement
is made up of various fields separated by spaces or
other special characters. The codes are supplied by
the caller in his keyword table which contains
identifiers and corresponding codes for all identifiers
in the command statement to be decoded.

PROCESS scans the statement fields, using the table
to select the code corresponding to matching identifiers or
special options and builds the coded representation from the
codes.

The fields of a statement are identified as one of the
following:

• Identifier - Starts with an alpha character and up
to four alphanumeric characters.

• Name - A string of up to six characters, enclosed
by single quotes ('). Quotation marks are not
counted as part of the six character name.

3-19

• Number - A field with only numeric characters
(±nnn), numeric characters with a decimal point
(± nn.n), numeric characters followed by B to
specify an octal number, numeric characters with
exponential notation (±nnE±n), numeric charac
ters followed by * to specify a binary number.

• Identifier Number - Identifier up to four characters
is matched with a number (FRQnn). There is no
space or special character between the identifier
and the number.

• Special Character - A comma(,) is considered as a
special option identifier.

Input Parameters X5 The address of three-word DCB
word 0 Current word/character count
word 1 Buffer address word
word 2 Buff er size

X7 Starting address of the key word table
X6 Ending address (last word of the table + 1)

Rules and Restriction of Input:

1. Each entry in the key word table must be two words.

23

Word I
Word 2
Word 2

four character identifier
code for the identifier
format

18 17 16 15

Key Code

Bit 23
Bit 22 to 18

Key word flag
Key code

Option Code

0

All identifiers that belong to the key word contain the same code as the key
word.

Bit 17 Complete flag

This flag provides the capability to require a modifier. The statement is
complete only if this bit is set. It is set in the code of the key word if no
modifier is required; otherwise, it is set in the code of a required option.

3-20

At least one identifier must set this bit or PROCESS takes the error return.
For example, if either ON or OFF must be specified, the bit is off in the key
word code and set in the codes for ON and OFF.

Bit 16 Duplicate flag

This flag provides the capability to disallow the use of two or more options
together. If this bit is set by a modifier that is in a statement, PROCESS
takes the error return if another modifier is scanned that also has this bit
set. For example, to cause an error if both OFF and ON are entered in a
statement, set the duplicate bit in the codes for OFF and ON.

Bits 14 to 0 Options

These bits are defined by the user to identify the optional identifiers
By checking these bits the user can determine which modifiers were
entered.

Bit 15 Identifier number concatenated from flag (see 6 below) .

2. The first field in the statement must be a key word. Any other occur
rences of key words are ignored.

3. A maximum of two number fields in a statement are saved.

4. A maximum of two string names in a statement are saved.

5. A maximum of six identifier-number fields are allowed in a statement.

6. Codes provided for the identifiers that appear in a statement in the
identifier-number form must be a value in the range 1 to 6 in bits 5 to 0 and
bit 15 is set to 1. These may not be key words and the value is not ORed
into the final code. The value 1-6 is used to store the associated number.
Bits 23 to 18 should conform to the key code.

7. No more than three input device and three output device mnemonics may
appear in a statement.

8. Normally, noise words are not allowed in a command. ECHFLG (GLOVAR
+ 40) is used to control this condition.

9. If the ST ATn is allowed in the command, it must be entered in the table
with the code, XXlOOOOOB; -f universal, XX is zero; otherwise, XX should
conform to the key code.

3-21

10, Only one binary number is saved.

Output Parameters

Description of Output:

A Final coded representation of the statement upon
error return

E The graphics of the error

'PARM' Invalid parameter usage
'COMM' Duplicate key word or missing parameters
'NUMB' Number error

X5 MA CT AB pointer if an overlay is loaded.
X7 Start address of file if overlays are loaded

I. The final code is formed by ORing the codes of identifiers appeared in the
statement except identifier-number codes.

23

Final code format:

Key

Bit

23
22 to 18

17
16
15

14 to 0

18 17 16 15 0

Option Code

Description

Key word flag (from the identifier in the first field)
From the key identifier and subset of key identifier,
if any
Complete statement
Duplicate flag
One or more string names have appeared in the
statement. The first four characters of the first name
are stored in NAMEMl global and the last two charac
ters in NAMEM2 global. The second name is stored in
NAMEM3 and NAMEM4. Only the first six characters
of each name are saved.
Codes provided for optional identifiers are ORed ·
together

3-22

2. If one or more numbers have appeared in the statement, decimal values are
saved in NUMBl and NUMB2 in floating point format in the order entered
(twos complement if negative). Numbers are also saved in ONUMBl, ONUMB2
in octal form. Fixed decimal representations of numbers are saved in INUMBl,
INUMB2. If a digit 8 or 9 has appeared in a number field, global OFLERR
is set to 1. NUMBl, NUMB2, INUMBl, INUMB2, ONUMBl, ONUMB2 and
BINARY are initialized to -1. A binary number is saved in BINARY with
its digit count in BINCNT.

Examples:

Input INUMBl INUMB2 ONUMBl ONUMB2 OFLERR

0101* 5 -1 101 -1 0
101 145B -1 101 -1 0
lOlB lOlB -1 101 -1 0
81 121B -1 101 -1 1

lOB 10 lOB 12B 10 10 0
20 0101* 24B 5B 20 101 0
0101* 20 5B 24B 101 20 0

Input BINARY BINCNT NUMB! NUMB2

0101* 5 4 20720000B (FP5) -1
101 -1 0 21745000B (FPlOl) -1
lOIB -1 0 21701000B (FPlOlB) -1
81 -1 0 21721000B (FP81) -1

lOB 10 -1 0 21100000B (FPS) 21120000B (FPlO)
20 0101* 5 4 21320000B (FP20) 20720000B (FP5)
0101 * 20 5 4 20720000B (FP5) 21320000B (FP20)

3. If one or more identifier-number fields have appeared in the statement, num-
bers are stored in globals SPNUM I through SPNUM6 according to the code
provided for the identifier. SPNUMI through SPNUM6 are -1 if no identifier
number is entered.

3-23

4. If 1/0 device mnemonics appear in the statement, then a pre-defined
device code is stored for each device mnemonic in the same order as
they appear in the statement stored in global CMDV. The device codes
are in the following format:

23 20 16 12 8 4 0

Output 3 Input 3 Output 2 Input 2 Output 1 Input 1

Code Input Output

1 TTK TTP
2 MTRl MTWl
3 MTR2 MTW2
4 CR LP
5 DIF DOF
6 CLI CLO
7 VK2 VP2
8 MIF MOF

5. If a STATn appears in the statement, the station identification number
is stored in global STATC in binary, (STATI then STATC =binary I. STATC
is initialized to -1).

6. If a comma appears, bit 14 of SPOPT is set to 1. If a plus sign appears,
bit 1 is set to I. If a minus sign has appears, bit O is set to 1.

Return

Calling Sequence

BSM address+ l
BSM address +2

error return with E = error code
normal return with A = final code

LDX
LDX
LDX
BSM*
BRU

X5 ,DCB addr
X7, table start addr
X6, table end addr
PROCESS
ERROR

3,...24

error return
normal return

Example:

TABSTR EQU *
DATA 'COPY I' 41400000B KEY IDENTIFIER
DATA 'ALL I' OIOOOIOOB SUB-OPTION IDENTIFIER
DATA 'OFF', 01000200B SUB-OPTION IDENTIFIER
DATA 'FRQ', 0110000 IB !DENT-NUMBER FIELD

TABEND EQU *

PMFDCB DATA 0 CURRENT WORD COUNT
DATA BUF BUFFER ADDRESS
DATA 20 BUFFER SIZE

BUF BSS 20

LDX X5,PMFDCB
LDX X6,TABEND
LDX X7, TABSTR
BSM* PROCESS
BRU ERROR
STA COMING SAVE A AT NORMAL RETURN

Result:

Command Entered Code Formed

COPY 41400000B
COPY ALL 41400 IOOB
COPY OFF 41400200B
COPY ALL FRQ6 41400 IOOB SPNUMI = 6

3-25

3.21 ALTER

Reference Location

Description

Input Parameters

23 21 18

I I
Stat

Output Parameters

Return

Routines Used

Registers Used

SYXVEC + 20

This routine scans the ALTER buffer to clear all
entries for a station, replace or make new entry, find
a particular entry, and list all entries for a station.

BSM address+ 1 contains option number

Option number

0 Clear all entries for a station and pack
1 Replace if an entry for the instruction exists;

otherwise, make a new entry
2 Find an entry for the instruction
3 List all entries for a station
4 Clear one entry for the instruction

A Station number in bits 20 through 18 right
justified for options 0 and 3

Station number in bits 20 through 18 IND value
in bits 17 through 0 for options 1, 2 and 4

IND Value/O

STAT 0 = STATl
1 = STAT2

E Floating point value for option 1
A Floating point value for option 2

None for all other options

BSM address +3
BSM address +2

normal return
not found for option 2

0

alter buff er full for option l

$PARSE, GETC, IDTSCN, SEARCH

Xi, X5, X6, X7, A, and E registers
X 1 is restored

3-26

Allowed usage System use only

Routines Used PUTE, PUTC, $IOCS for option 3 only

Calling Sequence

Options 0 and 3

Option 1

Option 2

Registers Used

Allowed Usage

LDA station number
SL 18
BSM* ALTER
DATA 0 (or 3)
NOP *

LDA station number
SL 18
OR IND value
LDE floating pt. val.
BSM* ALTER
DATA 1
BRU ERROR OVERFLOW

normal return

LDA station number
SL 18
OR IND value
BSM* ALTER
DATA 2
BRU NO ALTER VALUE

YES ALTER HERE

A, X6, and E are not restored for options O, 1, 2 and 4.
A, E, Xl, X2, X3, X6 and X7 are not used and not
restored for option 3.

Options O, 1, 2 and 4 are allowed for foreground
and background for system use only.

Option 3 is allowed for background for system use
only.

3-27

3.22 $PARSE

Reference Location

Description

Input Parameters

Output Parameters

SYXVEC + 21

This subroutine is used to scan and identify a
field in the caller's buffer as follows:

1. Identifier - a string of alphanumeric charac-
ters with an alpha leading character. It is terminated
by either a maximum of eight characters or
by a special character (a space is treated as
a special character). It is packed (left justified)
into two global variables NAMEl and NAME2.
However, upon exiting from this subroutine,
X6 contains the location of NAMEl in memory.

2. Number - a string of numeric characters
(TRASCII coded) is converted into a floating point
number and stored in the E register upon exiting
from this subroutine. When a 1- 1 sign is encountered,
a 15B is returned in A. The caller must make
provision for this in processing negative numbers.

3. Special character - If the character is other
than a space or a period, which are OB and 16B
respectively in TRASCII code, it is stored in
the A register before exiting from this subroutine.
A space is ignored when scanning for the start
of a field, but also terminates the field when
processing it. A period is taken as a decimal
point when processing a number field.

X7 address of the three-word DCB
word 1 character count
word 2 buffer address
word 3 buff er size in words

The A register can be one of the following codes:

1. 0
2. 1 thru 77B

3. lOOB

X6
4. lOlB

5. l 77B

3-28

error in a number scan
the TRASCII code of a special
character encountered
an identifier is encountered
and packed into NAMEl and
NAME2
location of NAMEl in memory
a number is encountered and
converted into a floating point
equivalent (stored in E register)
and an octal equivalent (stored in
OCTAL i.e. 10=810).
end of record - end of buff er

Return

Calling Sequence

Routines Used

Registers Used

Allowed Usage

3.23 IDTSCN

Reference Location

Description

BSM address + 1

LDX
BSM*

X7 ,PMFDCB
$PARSE

GETC, IDTSCN, NUMBER

A, E, X6 are not restored.

Background only.

SYXVEC + 22

This subroutine is used to scan the caller's buffer for
an identifier or a string field and packs it (left
justified) into global variables NAMEl and NAME2.

Prerequisites:

1. The caller must have located the first char
acter of either an identifier or a string field.

2. The caller should distinguish between packing
an identifier (setting the OV, overflow indicator)
or a string input (resetting the OV).

Explanation:

When this subroutine is packing a string input, the
subroutine checks for whichever of the following ter
minators comes first:

• a prime mark - '
• an end-of-record mark -177B
• exceeds eight characters in the string, at

which time the subroutine continues scanning the
buff er for either of the above, but there is no more
packing into NAMEl and NAME2.

When this subroutine is packing an identifier, the
subroutine stops scanning when it detects any special
character.

In all cases, only the first eight characters maximum
are packed (left justified) into NAMEl and NAME2.

3-29

Input Parameters

Output Parameters

Re tum

Calling Sequence

Routine Used

Registers Used

Allowed Usage

3.24 NUMBER

Reference Location

Description

Input Parameter

Output Parameters

OV set for identifier scan
reset for string scan

A first character
X7 pointer to three-word D

X6 address of NAM El in memory.
The globals NAMEl and NAME2 contain eight
characters of the name.

BSM address+ 1

LDA
LDX
SST
BSM*
LDA
LDX
RST
BSM*

GETC

CHARS
X7 ,PMFDCB
ov
IDTSCN
CHARS
X7 ,PMFDCB
ov
IDTSCN

A, E, X7, and X6

Background only

SYXVEC + 23

for identifier scan

for string scan

This subroutine scans a number in one of the following
forms in the input buffer:

1. Octal integer nnn, nnnB
nn.nn, nn
nnE±nn
nnnnnnnnnn*

2. Decimal number
3. Exponential number
4 • Binary number

X7 starting address of the PMF control
block O, X7 must contain the character
pointer pointing to the beginning of the
number field (the most significant digit
or - sign).

A= 0
A= lOOB
E
OFLERR

OCTAL

number syntax error
number has been converted
number in floating point
(GLOVAR + 46) =non-zero if a digit
8 or 9 has appeared in the field
(GLOVAR + 45) contains octal repre
sentation of the number

3-30

Return

Calling Sequence

Routines Used

Registers Used

Allowed Usage

3.25 INTSCN

Reference Location

Description

Input Parameters

Output Parameters

Return

0, X7 is updated to point to the next character
(number terminating character)

BINC (GLOVAR + 52) contains binary representation
of the number

BINCNT (GLOVAR +53) contains the number
of digits appeared in the representation
of the number

MANTISSA (GLOVAR +48) contains fixed decimal
form of the number

BSM address + 1

LDX
BSM*

X7 ,PMFDCB
NUMBER

GETC, INTSCN

A, E, X6 are not restored

Background only

SYXVEC + 24

This subroutine is used to scan the number field in the
buffer for an integer and to convert it into an octal
number and a decimal number. The two conversions
are done simultaneously and both values are available
to the caller upon exiting from this subroutine.

X7 pointer to three-word DCB
X6 pointer to the location which is to store the

result of the decimal conversion

A

E
X6

0 ,X7

OCTAL

last character obtained from the buff er (the
first non-numeric character obtained in the
scanning of the number)
digit count of the number obtained
pointer to the location containing the
decimal equivalent
has been updated just past the number
field
(global variable) con ta ins the octal
equivalent

BSM address + 1

3-31

Calling Sequence

Routine Used

Registers Used

Allowed Usage

3.26 SEARCH

Reference Location

Description

Input Parameters

Output Parameter

Return

Calling Sequence

TABSTR

TABEND
ITMSIZ

Registers Used

LDA
LDX
BSM*

GETC.

X7 ,PMFDCB
X6,DECNUM
INTSCN

A, E, X6 are not restored

Background only

SYXVEC + 25

This subroutine is used to search through a table
supplied by the caller for a name specified in
NAME! and NAME2. NAME! and NAME2 are normally
set up by the $PARSE subroutine before this subroutine
is called.

X6
X7
A

X7

ending address + l of the table to be searched
starting address of the table to be searched
number of words per entry in the table supplied.
It is used.as a bias to step through the table
from item to item. The minimum value is two.

address of the item found in the table.

BSM address + J item found in table
BSM address+ 2 item not found in table

LDX
LDX
LDA
BSM*

EQU
BSS
EQU
EQU

X6,TABEND
X7 ,TABSTR
ITMSIZ
SEARCH

*
200B

*
4B

X6, X7, A, E are not restored

3-32

Indicator Used

Allowed Usage

3.27 MPZERO

Reference Location

Description

Input Parameters

Output Parameter

Re tum

Calling Sequence

BUFSTR

BU FEND

Registers Used

Allowed Usage

3.28 GETC

Reference Location

Description

OV (overflow) is undefined on return.

Foreground/background

SYXVEC + 26

This subroutine is used to clear memory (move
zeros into memory locations) within specified
limits.

X6 ·ending address of the memory to be cleared
(the larger of the limits).

X7 starting address of the memory to be
cleared (the smaller of the limits).

A= 0

BSM address + 1

LDX
LDX
BSM*

EQU
BSS
EQU

X6,BUFEND
X7 ,BUFSTR
MPZERO

*
200B
*-1

for external
programs/subroutines (indirect
calling through system trans
fer vector)

X6, X7, A, E are not restored

Foreground/background

SYXVEC + 27

This subroutine gets a character from the buffer
specified by the caller and decodes it into one
of the following:

• alpha
• numeric
• special character

3-33

Input Parameters

Output Parameters

Return

Calling Sequence

Routine Used

Register Used

Allowed Usage

3.29 READW

Reference Location

Description

Input Parameters

Output Parameters

Re tum

X7 pointer to three-word DCB
word 1 character count
word 2 buffer address
word 3 buffer size in words

A character from buff er

BSM address + 1
BSM address + 2
BSM address + 3

character is alpha
character is numeric
character is special, including
the l 77B (end of buffer)

Note that $, the dollar sign, is regarded as an alpha
character. The character returned is in TRASCII
code (right justified).

LDX
BSM*

READW

A

X7 ,PMFDCB
GETC

Foreground/background

SYXVEC + 28

This subroutine is used to read a word from the
specified buffer in memory.

X7 pointer three-word DCB
word 0 character count
word 1 buffer address
word 2 buffer size in words

A relative address of the word in the buffer

A the content of the word (if the location
of the word is still within the buff er limit)

X7 unchanged

BSM address+ 1 if location of word is out of bounds
BSM address +2 if still in bounds

3-34

Calling Sequence

Register Used

Allowed Usage

3.30 WRITEW

Reference Location

Description

Input Parameters

Output Parameters

Return

Calling Sequence

Register Used

Allowed Usage

LDX
LDA
SR
BSM*

X7 ,PMFDCB
O,X7
2
READW

A is not restored.

Foreground/background

SYXVEC + 29

get character count
get the relative word address

This subroutine is used to write a value from
the E register into a caller-specified buff er in
memory.

X7 pointer to the three-word DCB
A relative address of the word in the

buffer to receive the value
E value to be written into the buff er

X7 = A absolute address of the location in the
buff er that was just written into (if it
does not exceed the boundary of the
buffer itself)

BSM address + 1, if write out of bounds
BSM address + 2, if write within bounds

LDX
LDA
SR
LDE
BSM*

X7 ,PMFDCB
O,X7
2
VALUE
WRITEW

A is not restored.

Foreground/background

3-35

get character count
get relative address of word

error return
normal return

3.31 IERMSG

Reference Location

Description

Input Parameter

Output Parameters

Return

Calling Sequence

Registers Used

Allowed Usage

3.32 DUMP

Reference Location

Description

Input Parameters

Output Parameters

Return

Routine Used

SYXVEC + 30

Routine in test head driver (THD) to handle terminal
errors

A terminal error number

None

No return. THD completes testing and continues
to next station

LDA
BSM*

TEN UM
IERMSG

Not applicable

Foreground only

SYXVEC + 31

terminal number

This routine dumps an overlay, a test plan, or a module
to a storage medium, magnetic tape, disk or Integrator.
The file to be dumped must be in memory.

X5 points to MACTAB

CMDV (bits 7 to 4) contains the output device code.
If these bits are zero, the DFDV device is used.

A error code for error return
A If positive, IOCS error code
A If negative, PARM if illegal device

NAME if the file is partial or not in memory

BSM address + l error return
BSM address + 2 normal return

$IOCS

3-36

Calling Sequence

Registers Used

Allowed Usage

3.33 PUTIME

Reference Location

Description

Input Parameters

Output Parameters

Return

Calling Sequence

Routine Used

Registers Used

Allowed Usage

BSM* DUMP
error return
normal return

A, E, XI, X6 are not restored.

Background only

SYXVEC + 32

This routine converts the current time into HH:MM
format and places it in the buffer following the date.

DATE (GLOVAR + 29, 30) contains the current date
TIME (GLOVAR + 31) contains the current time

in seconds
X7 starting address of three-word DCB (used

by PUTD, PUTC)

Date and time are placed in the buffer

Format:

MM/DD/YY HH:MM

where MM/DD/YY is an eight-character date entered
by the command: DATE. It is output in the format
entered in the command.

HH hours in 01 through 2 3
MM minutes in 00 through 59
YY 2 spaces
0, X7 is adjusted to one character beyond the last used.

BSM address+ I

LDX
BSM*

X7 ,DCB
PU TIME

PUTD,PUTC

A, E, XI are not restored.

Foreground/background

3-37

3.34 GTTDV

Reference Location

Description

Input Parameters

23

I I

Output Parameters

Return

Calling Sequence

SYXVEC + 33

This subroutine calculates the address of the device
entry in TVT table for the station and obtains the
IOATAB pointer to be used for IO for the station.

A device code in the following format:

Device Output
Code

4

Input

Device
Code

0

0 POD PID of the station
l TTP TTK
2 MTWl MTRl
3 MTW2 MTR2
4 LP CR
5 DOF DIF
6 CLO
7 VK2 VP2
8 MIF MOF

Only one device, either input or output, can be re
quested at one time.

Bit 23 I for input, 0 for output
X2 address of TVT table for the station

X7 address of the device entry in TVT table for the
station

A contents of the device entry (see the
description of TPID, TMTRI, or TDOF.)

BSM address + 1 error return (invalid device)
BSM address + 2 normal return

LDA
BSM*

device
GTTDV

3-38

Registers Used

Allowed Usage

3.35 HEADER

Reference Location

Description:

Input Parameters

Output Parameters

Return

Calling Sequence

Routine Used

Registers Used

Allowed Usage

3.36 SPIOER

Reference Location

Description

Input Parameter

Output Parameters

Return

A, E, X7 are not restored.

Foreground/background

SYXVEC + 34

This subroutine is used to output a standard header for
the data accumulation overlays, the station number,
test plan, name and serial number.

A · TSN (serial number)
E station number (O to 3)
X6 IOATAB pointer for the output device.

Output device must have been opened prior to
calling this routine.

A header line is output to the device. TOF is issued if
the device is a line printer.

BSM address+ 1

LDA
LDE
LDX*
BSM*

$IOCS

TSN,TP
station
X6 ,IOPT
HEADER

A, E, and X7 are not restored. State switch 7 is used.

Foreground

SYXVEC + 35

This subroutine checks error code returned from
$IOCS. If the device is busy, it returns to BSM address-
2 for retry; otherwise, it outputs a message on the
VKT and returns to the monitor.

A $IOCS error code

None

BSM addr~ss-2 if the device is busy (A = 7).
Otherwise, no return.

3-39

Calling Sequence

Routine Used

Register Used

Allowed Usage

3.37 FGOVC

Reference Location

Description

Input Parameter

Output Parameters

Return

Calling Sequence

Routine Used

Allowed Usage

3.38 ALLEX

Reference Location

Description

Input Parameters

Output Parameters

LDX
BSM*
BSM*

ERRCNV

XI, DCB
$IOCS
SPIOER

A is not restored.

Background only

SYXVEC + 36

$IOCS error return point

This routine calls system overlays at foreground entry
point. Reserved for operating system use only.
Not reentrant.

A assigned system overlay code

None

BSM address+ 1 overlay not found
BSM address + 2 normal return

LDA
BSM*

None

overlay code
FGOVC

Foreground only

SYXVEC + 37

error re turn
normal return

This subroutine is used to execute foreground portion
of ALLINK overlay. If the called overlay is not in
memory, it is loaded before executing it from the
foreground entry point.

A and E register must contain the six-character name
of the overlay left justified.

None

3-40

Return

Calling Sequence

Routine Used

Registers Used

Allowed Usage

3.39 COMMND

Reference Location

Description

Input Parameters

Output Parameters

Return

Calling Sequence

Registers Used

Allowed Usage

BSM address + 1 error return

There is no room in memory to load, or overlay cannot
be found on disk

BSM address +2 execution complete

LDA
LDE
BSM*
BRU

SCNFIL

namel
name2
ALLEX
ERROR error return

normal return

All registers and state switches are saved and
restored.

Foreground only

SYXVEC + 38

Allows return to the monitor after completing a pro
cess. COMMND can be used for a temporary return
while waiting to be called by other programs (DEBUG
waiting for an address halt to occur; return from
background after scheduled by foreground). It is not
normal termination of a foreground or background
task and may not be used to indicate the completion
of a process.

None

None

No return

BRU* COMM ND

Not applicable

Foreground/background

3-41

3.40 PUTW

Reference Location

Description

Input Parameters

SYXVEC + 39

This subroutine is used to pack a word in A register
into the buffer specified by the caller. The word
should be of four TRASCII characters.

A
X7

four TRASCII characters
starting address of the three-word DCB

Output Parameters None

Return

Calling Sequence

Routine Used

Registers Used

Allowed Usage

3.41 TWAIT

Reference Location

Description

Input Parameters

Output Parameters

Return

Calling Sequence

Registers Used

Allowed Usage

BSM address+ 1
BSM address + 2

for buffer overflow
for normal return

LDA
LDX
BSM*

PUTC

CHARS
X7 ,PMFDCB
PUTW

error return
normal return

XO, Xl, and A are not restored.

Foreground/background

SYXVEC + 40

This subroutine waits for the foreground activity to
complete before returning control to the caller.

None

None

BSM address + 1

BSM* TWAIT

All registers and state switches are saved and
restored.

Background only

3-42

3.42 FGBGRT

Reference Location

Description

Input Parameter

Output Parameters

Re tum

Calling Sequence

BGADR

Registers Used

Allowed Usage

SYXVEC + 41

This routine schedules the background part of a pro
gram from the foreground.

X7 address of the background process to be activated

None

BSM address + 1

LDX
BSM*

EQU

X7 ,BGADR
FGBGRT

*
All registers are'restored.

Foreground only

Note

start of background process

When the background is entered due to scheduling
through FGBGRT, all registers are undefined. Refer to.
paragraph 6.4 for additional information.

3.43 MONINT

Reference ·Location

Description

Input Parameters

Output Parameters

Return

SYXVEC + 42

This subroutine allows entering the scheduler loop
once, so that the higher priority functions such as
testing can regain control. Control returns to the
calling program if there is no higher priority function
waiting or at the next break of the higher priority
function process. It is recommended to call this rou
tine during a long calculation or if formatting of data
is involved.

None

None

BSM address + 1

3-43

Calling Sequence

Registers Used

Allowed Usage

3.44 SCALE

Reference Location

Description

3.45 FGWAIT

Reference Location

Description

Input Parameters

Output Parameters

Return

Calling Sequence

Registers Used

Allowed Usage

BSM* MONINT

All registers and state switches are saved and
restored.

Background only

SYXVEC + 43

For use by THD only

SYXVEC + 44

This routine allows entering the scheduler once from
foreground to allow the background to process. It is
used by the program that requires handshaking be
tween the foreground and background.

None. The program should maintain a flag to indicate
that background has completed the process and is
ready to accept next data.

None

BSM address + 1

LDA
BZ
BSM*
BRU

flag
*+3
FGWAIT
*-3

BACKGROUND BUSY?
NO, READY NOW
YES, WAIT

All registers and state switches are saved and
restored.

Foreground only

3.46 ERRCNV

Reference Location

Description

Input Para.meter

Output Parameters

Retum ·

Calling Sequence

ERROR

Registers Used

Allowed Usage

SYXVEC + 45

This subroutine is used to output an $IOCS error
message to the VK T.

Error code 7 should be detected prior to calling
ERRCNV, since it is simply a busy condition.

A register error code

Code Message

0 NONE
1 END OF FILE INPUT
2 DEVICE NOT AVAILABLE
3 INVALID FUNCTION
4 ERROR IN FILE - DATA
5 FILE NOT FOUND
6 1/0 ERROR
7 DEVICE BUSY
8 INVALID I/ 0 TABLE
9 DATA OVERFLOW

10 NO WRITE RING
11 CLIO ERROR
12 1/0 TABLE OVERFLOW
13 EXCESS WORDS IN READ
14 WS NOT AVAILABLE
15 MACTAB OVERFLOW
16 DUPLICATE FILE

777 INTEGRATOR ERROR

BSlVI address + 1
BSM address +2

error return
normal return

BSM*
BRU

BSM*
NOP

$IOCS
ERROR

ERRCNV

* Ignore Error

A, E, Xl, and X6 are not restored.

Background/foreground

3-45

...

3.47 FSUB

Reference Location

Description

Input Parameters

Output Parameter

Return

Calling Sequence

Registers Used

Allowed Usage

3.48 FAND

Reference Location

Description

Input Parameters

Output Parameter

Return

Calling Sequence

Routines Used

Registers Used

Allowed Usage

SYXVEC + 46

This routine subtracts a signed floating point value in
E from a signed floating point value in A and returns
the difference in A in floating point.

A floating point number to be subtracted from (minuend)
E floating point number to subtract (subtrahend)

A signed difference in floating point (remainder)

BSM address + 1

LDA
LDE
BSM*

VALI
VAL2
FSUB

A and E are not restored.

Foreground/background

SYXVEC + 47

(VALI - VAL2)

This routine applies logical AND operation to A and E
and returns the result in A. A and E are fixed before
logical AND is applied, hence, the values must be
integers in floating point format, (no decimal frac
tions in A or E).

A and E contain integers in floating point format.

A contains the result in floating point format.

BSM address + I

LDA
LDE
BSM*

VALi
VAL2
FAND

FFIX, FFLT

A and E are not restored.

Foreground/background

3-46

3.49 FEOR

Reference Location

Description

Input Parameters

Output Parameter

Return

Calling Sequence

Routines Used

Registers Used

Allowed Usage

3.50 FLOG

Reference Location

Description

Input Parameter

Output Parameters

Return

Calling Sequence

Registers Used

Allowed Usage

SYXVEC + 48

This routine applies exclusive OR to A and E and re
turns the result in A. A and E are fixed before
exclusive OR is applied, hence, the values must be
integers in floating point format.

A and E contain integers in floating point format.

A contains the result in floating point format.

BSM address + 1

LDA
LDE
BSM*

VALl
VAL2
FEOR

FFIX, FFLT

A and E are not restored.

Foreground/background

SYXVEC + 49

This routine converts the floating point value in A into
base 2 logarithm and returns the result in A.

A contains a positive floating point value.

A contains base 2 logarithm value in floating point
format. OV indicator is set if the input is negative or
zero.

BSM address + 1

LDA
BSM*

VAL
FLOG

A and E are not restored.

Foreground/background

3-47

3.51 FADD

Reference Location

Description

Input Parameters

Output Parameter

Return

Calling Sequence

Registers Used

Allowed Usage

3.52 FDIV

Reference Location

Description

Input Parameters

Output Parameters

Return

Calling Sequence

Registers Used

Allowed Usage

SYXVEC + 50

This routine adds signed floating point values in A and
E and returns the sum in A in floating point.

A and E floating point values.

A the sum.

Overflow indicator is set if the overflow condition
occurs.

BSM address + 1

LDA
LDE
BSM*

VALl
VAL2
FADD

A and E are not restored.

Foreground/background

SYXVEC + 51

This routine divides the floating point value in A by
the floating point value in E and returns the quotient
in A in floating point.

A the dividend in floating point.
E the divisor in floating point.

A the signed quotient in floating point.
Overflow indicator is set for overflow or underflow.

BSM address + 1

LDA
LDE
BSM*

VALl
VAL2
FDIV

A and E are not restored.

Foreground/background

3-48

(VAL1/VAL2)

3.53 FFIXS

Reference Location

Description

Input Parameter

Output Parameters

Return

Calling Sequence

Registers Used

Allowed Usage

3.54 FOR

Reference Location

Description

Input Parameters

Output Parameters

Return

Routine Used

Calling Sequence

Registers Used

Allowed Usage

SYXVEC + 52

This subroutine converts a floating point number in the
A register into a signed octal integer returned in the
A register and the power of 10 multiplier returned
in the E register.

A

A

E

the floating point number to be fixed (converted
to an octal integer).

the signed octal integer equivalent of the floating
point number
the power of 10 multiplier

BSM address + 1

LDA
BSM*

FPNUM
FFIXS

A and E are not restored.

Foreground/background

SYXVEC + 53

This routine applies logical OR to A and E and returns
the result in A. A and E are fixed before OR is ap
plied, hence, the values must be integers in floating
point format.

A and E integers in floating point format.

A the result in floating point format.

BSM address + 1

FFIX, FFLT

LDA
LDE
BSM*

VALI
VAL2
FOR

A and E are not restored.

Foreground/background

3-49

3.55 FNOT

Reference Location

Description

Input Parameter

Output Parameter

Return

Routines Used

Calling Sequence

Registers Used

Allowed Usage

SYXVEC + 54

This routine applies logical negation to A. A is fixed
before negation is applied, hence, the value must be
an integer in floating point format.

A integer in floating point format.

A negated value in floating point format.

BSM address + 1

FFIX, FFLT

LDA
BSM*

VAL
FNOT

A and E are not restored.

Foreground/background

Note

A floating point number may be negated by use of the
machine language TCA instruction.

3.56 FEXP

Reference Location

Description

Input Parameter

Output Parameter

Return

Calling Sequence

Registers Used

Allowed Usage

SYXVEC + 55

This routine calculates the value 2n where n is given in
the A register in floating point format.

A signed exponent in floating point.

A result in floating point.

BSM address + 1

LDA
BSM*

EXP
FEXP

A and E are not restored.

Foreground/background

3-50

CALCULATE2**EXP

3.57 FMUL

Reference Location

Description

Input Parameters

Output Parameters

Return

Calling Sequence

Registers Used

Allowed Usage

3.58 FFIX

Reference Location

Description

Input Parameter

Output Parameters

SYXVEC + 56

This subroutine is called for multiplying two floating
point numbers together. The numbers are all 24
bits. The first number is loaded in the A register
upon entering this subroutine and the second number
is in the E register. If the result of this multi
plication is too large (the characteristic is greater
than 177 octal), then the overflow indicator (OV)
is set upon exiting from the subroutine. If the product
is too small (the characteristic is less than 101 octal),
the end result is represented by zeros.

The sign of the product follows the algebraic conven
tion(+ x + = +, + x - = -, - x - = +).

A value (floating point) of first number
E value (floating point) of second number

A signed product in floating point
Overflow indicator is set if the end result is too
big

BSM address + 1

LDA
LDE
BSM*

FPNUMl
FPNUM2
FMUL

A and E registers are not restored.

Foreground/background

SYXVEC + 57

This subroutine is used to convert a floating
point number in the A register into an octal integer
returned in A register.

A the floating point number to be fixed (i.e., to be
converted to an octal integer).

A the octal integer equivalent.

If the floating point number is so small that its char
acteristic is less than 10 lB, then it is truncated
as a zero octal integer.

3-51

C'a lling Sequence

Registers Used

Allowed Usage

3.59 FFLT

Reference Location

Description

Input Parameter

Output Parameter

Return

Calling Sequence

Registers Used

Allowed Usage

3.60 FFLTS

Reference Location

Description

Input Parameters

nsM uddrcss + I

LDA
BSM*

FPNUM
FFIX

A and E are not restored.

Foreground/background

SYXVEC + 58

This subroutine converts an octal number in the A
register into a floating point number that is stored in
the A register on exit.

A signed octal integer

A signed floating point number

BSM address + 1

LDA
BSM*

OCTNUM
FFLT

A and E are not restored.

Foreground/background

SYXVEC + 59

This subroutine converts an octal number in the
A register and its power of 10 in the E register
into a floating point number that is stored in the
A register upon exiting.

Both positive and negative numbers are processed by
this subroutine.

A signed octal integer
E degree of power of 10

3-52

Output Parameters

Return

Calling Sequence

Registers Used

Allowed Usage

3.61 FCAM

Reference Location

Description

Input Parameters

Output Parameters

Return

Calling Sequence

Register Used

Allowed Usage

A signed floating point number

If there is an underflow (number is too small),
then A equals 0.

If there is an overflow (number is too large), the
overflow indicator is set when exiting from this
subroutine and the A register does not contain this
floating point equivalent.

BSM address + 1

LDA
LDE
BSM*

OCTNUM
PWRlO
FFLTS

A and E are not restored.

Foreground/background

SYXVEC + 60

This routine compares the floating point value in A to
the floating point value in E and returns indicators
GT, EQ, LT, and BE.

A and E registers contain floating point values.

Indicators are set as follows:

GT set if A> E
E EQ set if A = E
LT set if A < E
BE set if any bit in A set corresponds to the bit set in E.

BSM address + 1

LDA
LDE
BSM*

VALl
VAL2
FCAM

E register is not restored.

Foreground/background

3-53

Note

This routine maintains compatibility with other programs
that use FCAM. The machine language instruction CAM
may be used with floating point numbers.

3.62 LOAD

Reference Location

Description

Input Parameters

Output Parameters

Return

SYXVEC + 61

This routine loads files into memory from the
specified IO device and makes entries into MACTAB.
It can be called from either foreground or background.
If the loading device is a disk and the file is a test
program, the file is not loaded into memory unless
there is enough room to load completely. However,
the entry is still made in MACTAB.

A and E registers contain six-character file names.
BSM address + 1 contains the expected file type.

14B to 40B
76B
75B
74B
77B
71B
- 1
- 2

system overlay file codes
test program
module test program
string or any file without a header
ALLINK overlay
ALLINK overlay that must remain fixed in
any one of above type
75 or 76 and KEEP

BSM address + 2 contains the loading device code.

O default loading device
2 magnetic tape unit 1
3 magnetic tape unit 2
5 disk
6 CLI

BSM address + 3 contains file expansion size in words.

X7 start address of the file loaded in memory
X5 MACTAB pointer where the entry is made
A error code for error return

A error code from $IOCS if positive
error message if negative:

'PARM ' Illegal loading device code
'SIZE' Insufficient room in MACTAB

..,_ 'TY PE' Wrong file type
' NAME' File not found

BSM address+ 4 error return
BSM address + 5 normal return

3-54

Calling Sequence

Registers Used

Allowed Usage

3.63 DELFIL

Reference Location

Description

3.64 RELOV

Reference Location

Description

3.65 ATTA

Reference Location

Description

Input Parameters

DLD
BSM*
DATA
DATA
DATA

DATA

file name
LOAD
file type
device code
expansion size

job number

None restored

Foreground/background

SYXVEC + 62

For system use only.

SYXVEC + 63

For system use only.

SYXVEC + 64

if - 1 or 0 , use word 6
if 0 , use this word

error return
normal return

This routine attaches a file to a station or makes it
busy. Before the overlay starts collecting data for a
station or starts interactive process with a station,
ATTA should be called. The attached programs/sta
tions are indicated in the NAME command output.
Calling ATTA prevents autoreleasing in a disk-based
system. See DTT A for detaching.

X5 MACTAB pointer of the file to be attached (at
background and foreground entry points X5 is set
to MACTAB for the overlay). If MACTAB pointer
is unknown, call SCNFIL subroutine to locate the
pointer.

A logical station ID (0, 1, 2, or 3) to attach
program to a station makes overlay busy.

3-55

Output Parameters

Return

Calling Sequence

Register Used

Allowed Usage

3.66 DTTA

Reference Location

Description

Input Parameters

Output Parameters

Return

Calling Sequence

Register Used

Allowed Usage

None

BSM address+ 1

LDX*
LDA
BSM*

X5,SAVX5
STAT
ATTA

A is not restored.

Foreground/background

SYXVEC + 65

SAVX5 contains MACTAB
pointer

This routine detaches a file from a station.
See ATTA for attaching.

X5 MACTAB pointer of the file to be detached (at
backgrou~d an.d foreground entry points, X5 is
already set). '

A logical station ID (0, 1, 2, 3) fol,' station
related file; 4 to clear busy.

None

BSM address + 1

LDX*
LDA
BSM*

X5,SAVX5
STAT
DTTA

A is not restored.

Foreground /background

3-56

3.67 PAGTP

Reference Location

Description

Input Parameters

Output Parameters

Return

Calling Sequence

Routines Used

Register Used

Allowed Usage

3.68 FGBGWT

Reference Location

Description

3.69 FGBGH

Reference Location

Description

SYXVEC + 66

This routine reads a test program into memory in
pages during testing. If the test program is currently
in memory, the required block is read into the same
memory area. If it is not in memory (bumped) due to
other programs being released or loaded, it allocates
the new test program area by releasing inactive programs
and by bumping other test programs before it loads the
test program.

A current instruction number
X5 the pointerto MACTAB for the test program

X5 points to MACTAB for test program

BSM address + 1
No re turn if error.

normal return

Terminal errors:

12 not enough memory space to page
44 I/O error during paging

LXA
LDA
BSM*

X5
TIP, TP
PAGETP

$IOCS, ADJMEM

E is not restored.

Foreground only

SYXVEC + 67

Reserved for system use.

SYXVEC + 68

Reser~ed for system use.

3-57

X5 =address of MACTAB
instruction pointer

normal return

3.70 FINDVL

Reference Location

Description

Input Parameter

Output Parameter

Return

Calling Sequence

Routines Used

Registers Used

Allowed Usage

3.71 FGIO

Reference Location

Description

Input Parameters

Output Parameters

SYXVEC + 69
Reserved for system use only.

This routine converts a block or variable number of a
variable, array, or global into the absolute location of
the variable. The address is in the A register on exit.
Internal cells are altered for use by ARITH which calls
the routine when a statement references a variable.
BNO contains the block number, VNO contains the
variable number, and VLOC contains the absolute
address~

A contains the block or variable number. Bits 12
through 10 contain the block number, and bits
9 to 0 contain the variable number.

A contains address of the variable.

BSM address + 1

BSM*. FINDVL

None

X7 and E registers are not restored.

Foreground or background at a pause

SYXVEC + 70

This routine does I/O from foreground. Prior to call-
ing routine, the device must have been opened and set up
by calling FGOH. This routine is used to output
the data to the device used by DAT ALOG or
FACTOR. If the MON button is depressed, out-
put is suppressed.

A IOATAB address returned from FGOH call.
X 1 address of IOCS DCB

None

3-58

Return

Calling Sequence

BSM address + I end of file on input
BSM address + 2 normal return

Error condition:

The control branches to the terminal error processor
if an error condition occurs. No return is made
to the caller in this case.

Terminal Error

40 1/0 error
45 Device is not opened

LDA
LDX
BSM*
NOP

1/0
Xl,DCB
FGIO

*

data from FGOH (BSM + I)

EOF return
normal return

Routines Used $IOCS, ERRCNV

Registers Used A and E are not restored,
XI (SP) is restored to the SVT pointer.

Allowed Usage Foreground only

3.72 DMASTR

Reference Location

Description

Input Parameters

Output Parameters

Return

SYXVEC + 71

This routine starts DMA and gives control to the back
ground. All interrupt bits are cleared, saving any
enable bits, then the trap (bit 4), fail (bit 6), and reset
(bit 12) interrupt enable bits are set in the status
register. Bits 11 and IO of the mode registers are
cleared and bit 9 is set to start DMA. WAIT is called
to give background control until an interrupt takes
place.

None

None

BSM address + I

If tester reset is pressed while background has control,
there is no return to the caller.

3-59

Calling Sequence

Routines Used

Registers Used

Allowed Usage

3.73 FGOH

Reference Location

Description

Input Parameters

BSM* DMASTR

DWAIT is called, and cans WAIT.

The A register is not restored.

Foreground

SYXVEC + 72

This subroutine keeps track of I/O device usage by
stations. If the device is a disk, magnetic tape, or
communication link, the device should open by com
mand: OPEN. It opens all other devices if it has
not been used before. It keeps track of the type of
output issued by using the header code. When it is the
first use of the current I/O since the beginning of the
test, the standard station header is output before it
returns to the caller.

A dE;!vice code in bits 3 to P.
0 PID/POD of the current station
I TIK/TTP
2 MTRI/MTWI
3 MTR2/MTW2
4 CR/LP
5 DIF/DOF
6 CLO (CLI is illegal)
7 VP2/VK2
8 MIF/MOF

Bit 23 must be set to 1 for input device.

E current line header code in bits 3 to 0 .
O override output of station header
1 datalog trip
2 datalog measure/DCT
4 datalog FCT
7 datalog PPM memory fail
8 datalog PPM data extension
9 FACTOR write/FACTOR pause
13 to 15 Reserved for ALLINK generated headers

X2 TVT address of the station

3-60

Output Parameters

Return

Calling Sequence

IOPT

Routines Used

Registers Used

Allowed Usage

BSM address + 1 contains the device pointer required
by FGIO. It is the contents of the ·device variable
in station global table such as TPO D or TL P (see
the description in TVT table description).

Bit 22 set to 1 indicates that binary formatting is
required for this device.

BSM address + 2

The current output is not the same type as the last one
or the output requires binary format.

· BSM address + 3

The current output is not the same type as the last one
and needs a line header (Datalog FCT after DCT
output).

BSM address + 4

The current output is the first output to this device
since the beginning of the test, hence, the station
header has been output.

Error condition:

If the device is a disk, magnetic tape, or
communication link, and it has not been opened by the
command OPEN or SET, then the control
branches to terminal error 42.

If the device code is invalid, the control branches to
terminal error 43.

LDA
LDE
BSM*
DATA

device code
header code
FGOH
0 Device pointer put in here

No header change return
Header change return
First output return

GTTDV,FGOPEN,HEADER

A and E are not restored.
X 1 (SP) is restored to SVT pointer.

Foreground only

3-61

3.74 ENBTST

Reference Location

Description:

Input Parameters:

Output Parameters

Return

Calling Sequence

Routine Used

Registers Used

Allowed Usage

3.75 WWAIT

Reference Location

Description

Input Parameters

Output Parameters

SYXVEC + 73

This routine initiates a functional test by writing the
contents of the A register on entry to SAMA. The
user should enable the clock timeout interrupt and
write the clock register before entry if a timeout is
required (MATCH or EXT). This routine then enables
the FCT interrupt (set bit 6 SR), and enables the
tester busy interrupt (set bit 16, reset bit 17 SR).
Then SAMA is written. Generally, WWAIT should
be called following the call to ENBTST to pass control
to the background.

A must contain the data to be written to SAMA.
Bit O must be set to begin testing.

None

BSM address+ 1

LDA
BSM*
BSM*

SAMA data
ENBTST
WWAIT

ENTBSY is called to enable the tester busy interrupt.

A and E registers are not restored.

Foreground

SYXVEC + 74

This routine turns control over to the background
until the tester busy flag set by ENBTST or ENTBSY
is reset.

None

None

3-62

Return

Calling Sequence

Routines Used

Registers Used

Allowed Usage

3.76 AD RX LA

Reference Location

Description

Input Parameters

Output Parameters

BSM address+ I

If WW AIT is called by a foreground program and
tester reset is pressed, there is no return to the
caller. If WWAIT is called by a background program,
reset causes control to be returned to the caller.
In this case, bit 10 to 13 of RSTTSC (GLOVAR +
106) indicates that reset was pressed. The program
should check for reset following a call to WWAIT.
In most cases when the station is reset, the background
program should exit.

LDA
BSM*
BSM*

SAMA data
EN BT ST
WWAIT

DWAIT is called and calls WAIT.

All registers are restored.

Foreground/background overlays using the tester

SYXVEC + 75

This routine translates the relative address of a word
in a file into an absolute address of the word in a
memory buffer. If the word is not currently in
memory, the current buff er contents are written back
to the file (if its contents have been modified) and a
new portion of the file is read into the buffer.

The current contents of the buff er can be written
back to the file by calling with a relative address of -1.

X6 1/0 assignment table pointer
X7 pointer to three-word DCB for memory buffer

word 0 0
word 1 buff er address
word 2 buff er word count

A relative address of word in file (or
-1 to force the current buffer contents to be
written back to file)

A address or word in memory buffer
(relative to current relocation register)

X6, X7 unchanged

3-63

Re tum

Calling Sequence

Routines Used

Registers Used

Allowed Usage

3.77 INTERP

Reference Location

Description

Input Parameters ,

"i .'

Re tum

Calling Sequence

BSM address + 1 on error
A = O address error
A = non zero $IOCS error code

BSM address +2 for normal return

LDX
LDX
LDA
BSM*
BRU

$IOCS

A, X6, X7

X6 ,1/0 assignment table pointer
X7, buff er DCB
word relative ·address in file
AD RX LA
ERROR error return

normal return

Foreground/background

SYXVEC + 76

This call accesses the THD interpreter for processing
a data code in the 500 or 600 series. Any tester func
tion desired that directly corresponds to a FACTOR
code may be done by a call to INTERP~. Care must. be
taken to return ally system cells used fo their previous
state. For example, if a measurement is done by a
call to INTERP, STHC records the measurement and
any pass/fail information. This triggers the data
logger and lights the pass/fail lamps unless STHC is
restored to its previous state 'before an exit of the
user overlay. The IND register should be restored
by an overlay calling INTERP.

X 1 pointer to SVT table
X2 pointer to TVT table
A opcode in acceptable form

BSM address + 1 IND has not been incremented
BSM address+2 IND has been incremented

LDA
BSM*
NOP

opcode
INTERP
0

3-64

return

Routines Used

Registers Used

Allowed Usage

3.78 ENTBSY

Reference Location

Description

Input Parameters

Output Parameters

Return

Calling Sequence

Routines Used

Registers Used

Allowed Usage

3.79 RSOVC

Reference Location

Description

Input Parameters

Output Parameters

Any interpreter routines

Depends on opcode

Foreground

SYXVEC + 77

This routine enables the tester busy complete inter-
rupt and turns off the tester busy interrupt bit (SR bit 16
on, bit 17 off). A flag is set to indicate that the
interrupt is enabled. The flag is reset by the tester
busy interrupt routine. Either before or after the
call, some activity must be done to generate a tester
busy interrupt. This routine then enables the interrupt.
Generally WWAIT is called, following the call to
ENTBSY, to wait for completion in the background.
If the interrupt has already occurred WWAIT does
not pass control to the background, since this would
cause a hang condition.

None

None

BSM address + 1

Initiate activity which generates interrupt

BSM*
BSM*

None

ENTBSY
WWAIT

The A register is restored.

Foreground

SYXVEC + 78

This routine calls foreground overlay at the reset
entry point if an overlay was running at the time the
reset was pressed. Reserved for system use.

None

None

.3-65

Return

Calling Sequence

Registers Used

Allowed Usage

3.80 STALL

Reference Location

Description

3.81 UPDATE

Reference Location

Description

Input Parameters

BSM address + I

BSM* RSOVC

All registers and state switches are restored.

Foreground only

SYXVEC + 79

Reserved for system use.

SYXVEC + 80

This subroutine creates, assigns, or deletes memory or
disk files. Before a file is created, the remaining data
in the block is written out to working storage if a
block buff er has been specified and the current block
pointer in IO AT AB is non-zero. The . working storage
file is closed after the file is created. Word IO of the
IOATAB entry specifies the number of words used. If
word 10 of the IOATAB entry is zero, assigning a
space rather than creating a file is assumed. The A
register must contain the assigning size.

The second option changes the file name on disk or in
memory so that the file becomes obsolete.
The first character of the obsolete file name is
changed to an ampersand.

BSM

BSM

address+ I contains the option code.
0 create
I delete (name change)
address+ 2 and 3 contain the file name
left justified.

3-66

Output Parameters

Return

For create,

BSM address + 4 contains the file type. Word
must never be zero. Bits 23 through 6 are
reserved for future expansion.

14B to 30B
71B

system overlays
ALLINK/Overlay
DATA 72B

73B
74B
75B
76B
77B

OBJECT
string
module test
test plans
ALLINK/overlay

If the device is a disk, the file type is mapped to disk
file type as follows:

14B to 30B, 77B
72B, 75B, 76B
73B

core image
data
OBJECT
string 74B

BSM address + 3, for delete option only, contains the
device code.

lOB MIF
5B DIF

X6 IOATAB pointer of WS (create only)
A number of words to assign for zero word

used

A Contains the $10CS error code for error return.

2 the device is not the memory or disk or
the file is not a working storage

9 insufficient block size or file overflow
8 invalid I/ 0 assignment

14 MACTAB overflow for memory file
16 duplicate file

BSM address + 4 error return
BSM address + 5 normal return

3-67

Calling Sequence

For create:

ERROR

For delete:

ERROR

Routines Used

Registers Used

Allowed Usage

3.82 PUTENG

Reference Location

Description

Input Parameters

LDX*
BSM*
DATA
DATA
DATA
BRU

BSM*
NOP

BSM*
DATA
DATA
DATA
BRU

BSM*
NOP

X6, IOAPT
UPDATE
0
namel,name2
file type
ERROR

normal return

ERRCNV
0

UPDATE
l
name 1, name2
device code (5B/10B)
ERROR

ERCNV
0

normal return

$IOCS, ADJMEM, SCNFIL, STALL

A and E registers are not restored.

Foreground/background

SYXVEC + 81

This subroutine converts a floating point number to
printing format, a four-digit integer, engineering for
mat, or scientific format and places it in the buffer.

A
X7

E

a floating point number
starting address of three-word DCB (used
by PUTC, PUTD)
For engineering format, use letter.
For scientific format, use 0.

Word O of the DCB points to the next available
character.

3-68

Output Parameters

Return

Calling Sequence

Routine Used

Registers Used

•Allowed Usage

Converted number in the buffer.

For E = 0:

If the floating point number is an integer and the
magnitude is between - 999 and 9999, the format is
is - nnn to nnnn.

For all other numbers, the format = ±n.nnnE±nn.
The decimal point moves left or right in order
to make the characteristic multiple of three.

For E = letter:

If the floating point number is an integer and the
magnitude is between -999 and +9999 the format
is -nnn±ml to nnnn±ml. Where mis the magnitude
and 1 is the letter entered in the E register.

For all other numbers, the format is ±n.nnn±ml.
The decimal moves to the left or right so that the
magnitude represents a multiple of three.

The magnitude is represented as follows:

T
G
M
K

Tera
Gig a
Mega
Kilo

E+l2 M
E+9 U
E+6 N
E+3 P

F

BSM address + 1

LDA
LDX
BSM*

FPNUM
X7, DCB
PU TENG

PUTD, PUTC, CONV, FFIXS

Milli
Micro
Nano
Pico
Fem to

A, E, XI, SW7 are not restored.

Foreground/background

3-69

E-3
E-6
E-9
E-12
E-15

3.83 PUTA

Reference Location

Description

Input Parameters

Output Parameters

Return

Calling Sequence

Routines Used

Registers Used

Allowed Usage

3.84 BGCHK

Reference Location

Description

Input Parameters

SYXVEC + 82

This routine converts a binary number to either octal
or decimal and places it in the output buffer. Either
PUTO or PUTD is used. The routine outputs decimal
if the system is configured for decimal output by bit
19 of M 1 NIT set to zero. Leading zeros are suppresed.
If MlNIT is set to 1 the output is octal. Leading
zeros are not suppressed for octal output. This
routine is used throughout the system for outputting
local memory addresses.

A
Xl
·x7

positive binary
number of digits
PMF pointer

0 and X7 are adjusted to point to the next character
position.

BSM address + 1

LDX
LDA
LDX
BSM*

Xl ,length
binary number
X7 ,DCB
PUTA

PUTO or PUTD

A and X 1 are not restored.

Foreground/background

SYXVEC + 83

This subroutine checks for background activity. There
are two options. The first checks for no activity, by
testing from foreground. The other option checks for
more than one background task. It allows testing from
a background task to see if there is any other
background task active.

A 0
I
2
3

Check for no background only
Check for one background
Check for no overlay
Check for one overlay only

3-70

Output Parameters

Return

Calling Sequence

Routine Used

Registers Used

Allowed Usage

3.85 CALLMOD

Reference Location

Description

Input Parameters

Output Parameters

Return

None

BSM address + 1
BSM address + 2

LDA
BSM*

None

check code
BGCHK

A and E are used and not restored.

Foreground/background

SYXVEC + 85

This subroutine provides a means to call another
overlay module from an overlay module.

When the overlay calls a module using this routine,
CPU control is transferred to the module at the mod
ule entry point after the relocation register is set to
the address specified by the calling module. It returns
to the calling module when the called module returns
control Jo CALLMOD.

The sequence that occurs when the call to CALLMOD
.is executed starts at the module entry point in the
module. First, the parameter following the call
is retrieved and the return address is incremented.
The address field of the parameter is used as an
index to the module linkage table. The true BSM
or BRU instruction is extracted from the linkage
table and stored in the program execution path
to be executed later.

A register contains the starting address of the called
module in absolute address.

All other registers and switches are transferred to the
calling module as they are.

All registers and switches returned from the called
module are transferred back to the calling module.

Defined by modules.

3-71

Calling Sequence

Routines Used

Registers Used

Allowed Usage

LDA
BSM*

None

module address
CALLMOD

A is undefined on return.

Foreground/background

Rules for module programs callable by CALLMOD:

• The standard overlay header must be maintained.
• It is always called at the module entry point.
• Header word 8 is used to store the relocation register of the calling program.
• Header word 9 is used to store the return address of the calling program.
• Return to the calling module must be done through the module entry point.
• Header word 9 may be incremented to control the return address.

3.86 PUTB

Reference Location

Description

Input Parameters

Output Parameters

Return

Calling Sequence

DCB
BUF

Routines Used

Allowed Usage

SYXVEC + 86

This subroutine converts a binary number to binary
TRASCII and ~laces it right justified in the buffer.

A positive binary number
X 1 number of digits desired
X7 DCB pointer

0 and X7 are adjusted to point to the next character
position.

BSM address+ 1

DATA
BSS
LDA
LDX
LDX
BSM*

O,BUF ,20
20
binary number
Xl ,8
X7 ,DCB
PUTB

A and X 1 are not restored.

Foreground/Background

3-72

3.87 PUTH

Reference Location

Description

Input Parameters

Output Parameters

Return

Calling Sequence

Routine Used

DCB
BUF

Registers Used

Allowed Usage

3.88 SAVENV

Reference Location

Description

3.89 USVENV

Reference Location

Description

SYXVEC + 87

This subroutine converts a binary number into
hexadecimal TRASCII and places it in the buff er right
justified.

A positive binary number
X 1 number of digits desired
X7 DCB pointer

SW7 set do not suppress leading zeros
SW7 not set suppress leading zeros

0 and X7 are adjusted to point to the next character
position.

BSM address + 1

DATA
BSS
LDA
LDX
LDX
BSM*

PUTC

O,BUF ,20
20
binary number
Xl, 8
X7 ,DCB
PUTH

A and X 1 are not restored.

Foreground/Background

SYXVEC + 88

Reserved for interrupt system use.

SYXVEC + 89

Reserved for interrupt system use.

3-73

4

1/0 Control System ($10CS)

4.1 $IOCS

All I/O functions must be accomplished through $IOCS to preserve foreground/
background configuration. $IOCS is closely tied to the task scheduler and is a re
entrant routine (it can be called any number of times at any point by any number
of tasks).

4.1.1 $IOCS Operation

$IOCS operation is based on the following principles:

• Devices are available to any program on a first-come-first-served basis,
except for the keyboard (TTK), which can be overridden by the TTP.

• Devices on the same channel can be active only one at a time. One more
request can be accepted while the channel is busy and is waiting for the chan
nel release by the first request.

• Device protection on a channel is on a function basis. This means that a
channel is busy while processing a function such as reading a record or
rewinding. It does not prohibit other channels from being activated.

• One program may use any number of d.ivices or may use the same device for
two or more different purposes. For example, read a file from the disk and
write another file on the disk.

• I/O completion is defined as having one of the following conditions fulfilled:

In an input operation, a terminating character is received.
In an output operation, the end of buffer is reached.
A terminating interrupt from a device is obtained.

4-1

• The character set used internally by the system is in TRASCII code. $IOCS
makes conversion just prior to sending it out or after reading it in if the exter
nal data mode is different from the internal mode in normal mode. (See ASCII
control mode)

TTK/VK2
TTP, LP, VP2
CR
MTRl, MTR2
MTWl, MTW2
DIP, DOF, MIF, MOF
CLI (binary read)
C LI (alpha read)
CLO (binary write)
CLO (alpha write)

ASCII TRASCII
TR ASCII ASCII
BCD TRASCII
No conversion
No conversion
No conversion
No conversion
ASCII TRASCII
No conversion
TRASCII ASCII

• All read or write requests are initiated by OPEN and terminated by CLOSE.
• Data on all devices are read or written sequentially forward from the

beginning of the file. Random access on a disk file must be controlled by the
user, using the 1/0 assignment table provided.

• All I/0 operations are considered WAIT FOR COMPLETION unless otherwise
specified.

• A maximum of two requests on the same channel can be entered. If the third
request is the same file as the one pending (same device, same program, same
file), the last request overrides the one pending unless otherwise specified.

• If a function requested is meaningless to the device, it is treated as NOP
(return as if completed); for example, TOP-OF-FORM on magnetic tape.

• Read from TTK always echoes the character to TTP in normal mode.
• ASCII control mode for VKT:

Read

Write

Data characters are echoed to screen and are packed into buffer
in TRASCII (four characters per word). As soon as a control character
is sensed, it is placed in the last word of buff er + 1 right justified and
control is returned to the caller.

Output is specified by the cha'!'acter count. Characters are
stored in ASCII (three characters/word) left justified.

4-2

4.1.2 Devices Handled by $IOCS

Device Mnemonic Code Transfer Mode

VKT keyboard/ Character by character
printer TTK/TTP 1 interrupt
Magnetic tape
unit 1 MTRl/MTWl 2 DMA
Magnetic tape
unit 2 MTR2/MTW2 3 DMA
Card reader CR 4 DMA
Line printer LP 4 Block transfer through

hardware buff er
Disk file DIF /DOF 5 OMA
Com link to CLI/CLO 6 Character by character link to
Integrator interrupt
VKT2 VK2/VP2 7 Character by character

interrupt
Memory file MIF/MOF 8 Word by word move

4.1.3 Functions Performed by $IOCS

Code Function

0 Open (request to reserve the usage of a device)
1 Read/write a record
2 Kill input (TTK/CLI only) /clear VKT screen (foreground and

background)
3 Top of form on line printer
4 Unformatted write (write TTP without CR/LF) /file transmit

(create to CLO)
5 Skip file on magnetic tape/file end to CLI
6 Rewind magnetic tape/file end (process) to CLO
7 Write EOF on magnetic tape/file end (purge) to CLO

10 Status check on magnetic tape and disk
11 Read without transfer on magnetic tape and disk for verification/

file end (hold) to CLO
12 Close (release the usage of a device)
13 File request to CLI/ magnetic tape record skip
14 Control message to CLO/file page from DIF /MIF
15 Disconnect CLI/CLO/VKT screen transmit
16 File transmit (ADD)
17 Reserved

4-3

4.1.4 Error Detected by $IOCS

An error code is returned in the A register upon error exit from $IOCS.

Code Description

1 An end of file has been reached on a read operation
2 An invalid device code is used for the function or device not

available
3 An invalid function code is in the DCT
4 Parity_ error on a read magnetic tape/CLI/DIF read error on card

reader
5 File not found on DIF /DOF /CLI
6 Undefined magnetic tape error/unrecoverable CL error
7 Device busy (both active and pending occupied)
8 Invalid I/0 assignment table address is used
9 Insufficient block size or file overflow for DOF /MOF

10 No write ring on magnetic tape
11 CLIO error
12 I/O table overflow
13 Excess word count on read
14 Disk working storage already in use
15 MACTAB overflow for MOF

777 Integrator/RTE error nn

4.1.5 Definition of End-of-File

While reading a file, $IOCS recognizes an end of file when the following condition
occurs:

Device

TTK/VK2.

MTR1/MTR2
CR

DIF

CLI
MIF

Condition

// characters in column 1 and 2 and no other character
in the record
Sensing a file mark
II characters in column land 2 and no other character
on the card
Number of words so far reaches the file size specified
in the directory
Sensing a file end message
Number' of words so far reaches the file size specified
in MACTAB

4-4

4.1.6 Definition of End of Record

While reading a record, $IOCS recognizes an end of record when the following
condition occurs.

Device

TTK/VK2
MTR1/MTR2
CR
DIF, MIF

not blocked
blocked-source
blocked-variable
size-data
blocked-fixed
size-data

CLI

Condition

Sensing a carriage return character
Sensing a record mark
Sensing a completion interrupt

Sensing a completion interrupt
Sensing a 77B character
Number of words obtained = record size
Specified in the first record word (Bit 7 to 0)
Number of words obtained= record size
Specified in the directory
Sensing ETX during message type 3 transfer

4.1. 7 General Calling Sequence

All read and write functions must be initiated by an OPEN call and terminated by
a CLOSE call. If the OPEN is successful, a pointer to I/O assignment table is
returned to the calling program. This pointer must be set to X6 for all read or
write in that device.

Three or four other parameters must be passed to $IOCS. The location of the
first parameter must be specified in index register XI and all other parameters
must be in consecutive memory locations.

Parameter l

Parameter 2
Parameter 3
Parameter 4
Parameter 5, 6

Contains input/output indication, function, device code,
and other control information particular to the function
Contains the address of the buffer
Contains the buffer size (number of words to be transferred)
Contains the job number (OPEN call only)
Contains the file name (OPEN call only)

4-5

Example of general calling sequence:

OPNDCB

*
RDCB

*
RC LOSE

4.1.8 Mechanism

DATA
DATA
DATA
DATA
DATA

DATA
DATA
DATA

DATA

LDX
BSM*
BRU
STX

LDX*
LDX
BSM*
BRU

LDX*
LDX
BSM*
BRU

XXXXXXXXB
BLKBUF
48
0
o,o

XXXXXXXXB
INBUF
20

52000000B

Xl,OPNDCB
$IOCS
OPE RR
X6,IOPTR

X6,IOPTR
Xl,RDCB
$IOCS
RDERR

X6 ,IOPTR
XI ,RCLOSE
$IOCS
ERROR

OPEN KEY WORD
BLOCK BUFFER ADDR
BUFFER SIZE
CURRENT SIZE
FILE NAME

READ KEY WORD
RECORD BUFFER ADDR
RECORD SIZE

CLOSE KEY WORD

OPEN CALL
ERROR RETURN
SAVE IOATAB PTR

GET IOATAB PTR

READ CALL

GET IOATAB PTR

$IOCS is divided into three parts: initializing I/O request, driving 1/0 device, and
terminating I/0 request.

I. Initialization of I/O request. This occurs at the time of OPEN request and
the majority of work is internal housekeeping. Unless the device is a commu
nication link or disk, the hardware is not involved at this time. $IOCS assigns
the device to the requesting program by entering necessary information into
the I/O assignment table and returning the entry pointer to the program to be
used for read/write operation.

4-6

2. Driving 1/0 device. This part of $IOCS is divided into three sections:
1/0 initialization, interrupt service, and I/O completion. Though functions
performed in these sections differ depending on the device type, the follow
ing functions are common to all devices:

• Decoding of keywords
• Stacking the request as pending if the device is not available
• Setting up the device into a ready state by sending out control

functions (for example, an ESCAPE code to clear the VKT interface
circuit before reading or writing to it)

• Turning on the interrupt enable flip-flop on a selected device
(PON) and turning on the CPU interrupt system (IEN) after setting up
the device for the operation

3. Termination of I/O Request. Completion of 1/0 function is always detected
in an interrupt service. When this condition occurs, a scheduler flag for the
channel is set so that the control returns to the end of channel process. If
another request is pending for the channel, it is started immediately before
returning to the current request.

4.1.9 1/0 Device Formats

4.1.9.l VKT DRIVER

A character is transferred between the CPU and an 1/0 device through the
accumulator bus. Each character transfer is accompanied by an interrupt. The
process continues until, on output, the buffer has been exhausted, or on input, the
buffer has been filled or a terminating character (carriage return) has been
received. On output, a line feed and a carriage return, characters (12B, 15B) are
sent out at the end of the buffer transfer.

4.1.9.2 LINE PRINTER

Data characters are written to the printer hardware buffer until the hardware
buff er is full. The size of the buff er differs depending on the printer model.

Buffer Size

20 characters
24 characters

132 characters

Model

Data Products
Data Products
Centronics/ Printronix

Columns

80
132
132

If the output message exceeds the length of the respective line printer hardware
buff er, it can be printed as a multiple hardware buffer dump. An interrupt occurs
at the end of a hardware buffer dump (after printing one buffer of characters).

4-7

4.1.9.3 MAGNETIC TAPE

A block of data is transferred between the CPU memory buffer and the tape in
DMA mode. Between 6 and 16 thousand words can be transferred in one read or
write operation. At the end of one transfer, an interrupt occurs. The status of
the device can be obtained through the accumulator bus. The record gap is auto
matically written after each block write. At the end of a file, a file mark is sent
as a file terminator. Up to 10 retries are made on parity error.

4.1.9.4 CARD READER

Data characters are transferred in BCD format from the card reader to the CPU
memory buffer in DMA mode. One to 20 words can be transferred at one read. At
the end of one transfer, an interrupt occurs. The card reader status can be
obtained through the accumulator bus.

4.1.9.5 DISK

A block of data is transferred between the CPU memory buff er and disk in DMA
mode. A block must be in multiples of 48 words; the maximum is 64 thousand
words. At the end of one transfer an interrupt occurs. The disk status can be read
through the accumulator bus. Up to 10 retries are made on parity error. Verifica
tion is applied immediately after each write operation.

$IOCS provides functions similar to INREC/OUTREC if the user provides a block
buffer that is different from the record buffer.

On input

On output

4.1.9.6

$IOCS reads one or more sectors into the block buff er and transfers
to one record at a time at each read request.

At each write request, $IOCS places a record into the block buffer
and transfers the block when it becomes full or at CLOSE request.

COMMUNICATION LINK

Each record is preceded and followed by line protocol. Each character, once the
record is initiated, is accompanied by an interrupt. A character is transferred
between the CPU and the I/O channel through the accumulator bus. The process
continues until, on output, the buffer has been exhausted, or on input, the buffer
has been filled or a terminating character (ETX) has been received. There is a
112-character buff er to accumulate a note message which could be received at any
point in time.

4-8

4.2 1/0 ASSIGNMENT TABLE (IOATAB)

The 1/0 assignment table consists of 20 entries. Each entry (figure 4-1) contains
13 words, for a total of 260 words. The first six words are reserved for use by
system. Word formats are described in table 4-1.

23 21 18 15 12 9 6 3

I I I I I
B D E B c L B w I

0

FDSTAT 0 F M F K M M M Stat s F Device Code
J_ l l

FNAME1 First Four Characters of File Name
_l _1 _l _l _l

FNAME2 2 Last Two Characters of File File Type
_l _J _J l l

FJOB 3 Job Number
_l _l j l j j l

FDADDR 4 Starting Disk Address
_l l _J _J_ l _J l

FSIZE 5 File Size
j _L l j j j

FCBBP 6 0 Current Block Address
I _L j j j j

FBBADR 7 0 Block Buffer Address
l l l j j j

FBBSIZ 8 Block Buffer Size
l I _l l _l j

FCDADR 9 Error Code
l I J_ J_ l l

FCSIZE 10 p Current File Size
I I J l _l l

FRSIZE 11 0 Record Size
l l l l J_ l

12 0
I I 1 l l J_ l

Figure 4-1 1/0 Assignment Table Entry

4-9

,I

!

Table 4-1 Word Formats

Word 0: FDSTAT

BS (Bit 23)

DM (Bit 22)

EF (Bit 21) .

BK (Bit 20)

CM (Bit 14)

LM (Bit 13)

BM (Bit 12)

WS (Bit 8)

IF (Bit 4)

(Bits 3 to O)

Word 1: FNAMEl

O Entry not used. Entry is used when set to 1.

I/ 0 is active or pending. Turned on when a request
with an immediate return is accepted and cleared
when that 1/0 is completed.

Binary data format; 0 =ASCII.

EOF has occurred on CLI. It signals CLOSE function
MSG TYPE 5 instead of KILL input.

Auto blocking by $IOCS requested for disk and
memory files. Transfer one record at a time to or
from the block buffer.

PID is a command file and the last command has not
been completed. Cleared as soon as the command is
completed.

Lock out a command from being entered from this
PID.

Block has been modifed. Used by ADRXLA.

Working storage 1/0.

1/0 is input.

Device Code

1 VKl/VPl
2 MTRl/MTWl
3 MTR2/MTW2
4 CR/LP
5 DIF/DOF
6 CLI/CLO
7 VK2/VP2
8 MIF/MOF

First four characters of the file name in TRASCII/
MACTAB address for MIF/MOF.

4-10

Table 4-1 Word Formats (Continued)

Word 2: FNAME2

Bit 23 to 12 Last two characters of the file name in TRASCII.

Bit 2 to 0 File type
000 Source
001 Fixed size data file
010 Object
011 Core image
101 Variable length data file

Word 3: FJOB Job number in TRASCII.

Word 4: FDADDR Starting disk address of a disk file in binary
sector/starting memory address of a memory file.

Word 5: FSIZE Number of words used for input. Number of words
available for output until it is closed.

Word 6: FCBBP Current block address (0 through FBBSIZ) relative to
the first word of the block. Used by auto blocking and
close. Word count for data files; character count for
source files.

Word 7: FBBADR Block buff er address in the user's program.

Word 8: FBBSIZ Block buffer size in words; must be in multiples of 48
words for disk files.

Word 9: FCDADR Er~or code detected during immediate return I/0;
otherwise, O.

Word IO: FCSIZE Number of words already read or written; updated at
, the end of each read or write. If auto blocking is
,used, it corresponds with the block data rather than
the record data so far orocessed.

P(Bit23) When auto blocking with a partial buffer, bit 23 is
also set.

Word 11: FRSIZ Record size for fixed-length data files. At open
Bit 9 to 0 time, set to the size in the disk directory or 18

words. At close, written back to disk directory.

-

4-11

4.3 OPEN CALL TO $IOCS

Purpose To initialize read or write operation.

Description $IOCS checks for the availability of the device and
assigns an entry in 1/0 usage assignment table.
Depending on the device type, the following additional
function is performed:

Device

TTK/TTP
LP
CR
MTR
MTW
DIP /DOF
CLI
CLO
VK2/VP2
MIF/MOF

Entry Parameters

DCB Word 0

Function Performed

Status check
Status check
Status check
Status check
Status check
Directory search
Open at the Integrator
Open at the Integrator
Status check
MACTAB search

Error Condition

Not available
Not available
Not available
Not available
Not available or write ring off
Not available or file not found
Not available or file not found
Not available or duplicate file
Not available
File not found

Xl address of six-word DCB

Globals LOTNUM (three words), DEVNUM (two
words), CATGRY (three words), contains file
identification if the device is a CLI or CLO and
the station identification in DCB word O is not
zero. These variables are ignored for all other
cases.

11
'I

23 18 1413121110 3 0

F D M A B ST 0 s

I
F
D

!

/1 ell

?'il
O = output, l = input
function code = 0
device code

i

0 device specified in global CMDV
(process routine sets it). If CMDV = O,
the system PID/POD.

4-12

DCB Word 1

DCB Word 2

D device code (continued)
.1 TTK/TTP

M

B

2 MTRl/MTWl
3 MTR2/MTW2
4 CR /LP
5 DIP /DOF
6 CLl/CLO
7 VK2/VP2
8 MIF/MOF

Data transfer mode
0 Alpha M'. >'

1 Binary
••. /-' 7 [' §'- ,,,, r ~ tf··v/i'

1.,_:l Auto block requested
O No blocking

A 1 Append open (CLO only) ; otherwise O

ST Strobed download for communication link
(ST bit must also be set on each read)

S Station identification
0 Non-station related background function
1 Station 1
2 Station 2
3 Station 3
4 Station 4

Block buffer address or 0.

Block buff er size in multiples of 48 words or O.

The block buff er supplied in open is used only if the device is DIF /DOF,
l\/IIF /MOF, or !VTTR/MTW and bit 11 of DCB word 0 = 1.

Input

Output

Read a block from disk if the block buffer is empty.
Transfer one record from the block buff er to the re
cord buff er ...

Move a record from the record buff er to the block
buffer. Write a block to the disk if the block is full.

The record buff er is supplied at the time of read or write call to $IOCS. Auto
matic blocking is provided to file type 000 (source), 001 (fixed size data), and 101
(variable size). For all other devices and file types records are transferred
directly between the record buff er and the device one record at a time.

If bit 11 of DCB word 0 is zero and the device is a disk, it is assumed that the
user takes care of blocking in his own program.

4-13

e<(' C•·•

:r /(;,.

DCB Word 3 Job number in TRASCII
0 = current job in global, JOB
-1 = system job
It is used for disk files only.

DCB Word 4, 5 Six-character file name for DIF, DOF, CLI, CLO, MIF,
MOF.

DCB Word 4 -1 implies the file to be opened is the disk or memory
working storage.

Bits 2 to 0 of DCB word 5 must contain the file type if
the file is a DOF /MOF working storage.

0 string
1 fixed size data
2 OBJ
3 coreimage
5 variable size data

Note

If the device is a system PID or POD, then no function
is performed upon open call. The system PID or POD
is opened at the time of processing SET COMMAND.
It can be used by the user but the user is not able
to physically open or close it.

Calling Sequence

RO PEN DATA 40XXXXXXB
DATA RBLBUF BLOCK BUFFER ADDRESS
DATA n BLOCK BUFFER SIZE
DATA o,o,o

WO PEN DATA OOXXXXXXB
DATA WBLBUF BLOCK BUFFER ADDRESS
DATA n BLOCK BUFFER SIZE
DATA o,o,o

LDX Xl, ROPEN
BSM* $IOCS
BRU RO ERR -error return

-normal return

LDX Xl, WOPEN
BSM* $IOCS
BRU WO ERR -error return

-normal return

4-14

Exit Parameter For normal return:

X6 The address of 1/0 assignment table for this
device.

For error return:

A register error code.

2 An invalid device code specified or device not
available (no interface)

3 An invalid function code specified
4 Parity error during disk directory read or OPEN

call to DP system
5 File not found for DIP, DOF, MIF, MOP
7 Device busy
9 Insufficient block size or memory space

10 No write ring on magnetic tape
11 CLIO error
12 1/0 table overflow
14 Working storage already in use
15 MACTAB overflow for MOP

4-15

4.4 READ/WRITE RECORD

Purpose To initiate a read or write a record

Description If the device is a card reader or a magnetic tape,
$IOCS initiates a DMA record transfer. If the device
is a TTK,TTP,CLI, or CLO, $10CS initiates record
transfer in character-by-character interrupt mode. If
the device is a disk, tape, or memory and the block
buff er is provided, $IOCS transfers a record between
the record buffer and the block buffer. If the block
buffer is full for output, $IOCS moves the block to the
disk; if the block is empty for input, $IOCS reads the
block from the disk. If the block buff er is not pro
vided, $IOCS initiates DMA transfer directly between
disk and the user's read or write buffer. If the
read/write is requested as ASCII-control-character
mode, data characters (40B-137B) obtained are echoed
and packed into buffer in TRASCII. A control
character is placed right justified into the last word of
buffer+ I and $IOCS exits to the caller. A prompting
character (may be used to echo the previous character
read) is output before read, if provided. Trailing
blanks are not output.

Entry Parameter

DCB Word 0

For read

X6 The address of 1/0 assignment table obtained
from OPEN.

XI The address of three-word DCB.

23 18 14 13 12 11 10 8 0

p

4-16

For write

23 18 14 13 12 0

Where

0

I I

R = Return type

1 Immediate return after initiating 1/0
or placing in the pending list.

O Wait for I/ 0 completion.

When the request is activated or placed in the pending list, bit 23 of the first
word of I/O assignment table for the request is set to 1, indicating it is busy.
When the requested function is completed, it is cleared to zero.

DCB Word 1

DCB Word 2

Calling Sequence

RDCB

WDCB

C = 0 Normal mode
1 ASCII control character mode

M = 1 Monitor command read only
0 All others

ST ·Strobed download from communication
link (ST bit must also be set on the open
call)

P A prompting character in ASCII code

Starting address of record buffer

Record size (the number of words to be transferred),
the character count for WRITE ASCII control mode

DATA 410XXXOOB
DATA INBUF
DATA n RECORD SIZE

DATA OlOOOOOOB
DATA OUTBUF
DATA n NO. OF WORDS TO WRITE

LDX* X6 ,IOTPI
LDX Xl,RDCB
BSM* $IOCS

4-17

Exit Parameters

BRU

LDX*
LDX
BSM*
BRU

RDERR

X6,IOTPO
Xl, WDCB
$IOCS
WR ERR

For error return:

A register error code

1 end of input file
2 device off-line
4 parity error

error return
normal return

error re turn
normal return

6 unrecoverable hardware error
7 device busy
8 invalid I/ 0 assignment address
9 file overflow for DOF or MOF

13 excess word count on read

For error 13, the E register contains the actual num
ber of words read. Error 13 takes normal return
rather than error return.

4.5 TERMINATE I/0-CLEAR SCREEN

Purpose To terminate currently active I/0 on TTK/TTP

Description $IOCS clears the channel if the device is TTK or CLI.

Entry Parameters

DCB word 0

For input

23 18

D

If the device is VKT screen, the screen is cleared.

X6

Xl

The address of I/O assignment table or 0. If it
is zero, the device must be specified in the
parameter word 1.
The address of one word DCB

14 13 12 0

0

4-18

For output

23 18

D

I I

Where

14 13 12

D

R

0

device code
O device specified by X6
1 TTK/TTP
6 CLI
7 VK2/VP2
return type

(See description in paragraph 4.4 READ/WRITE RECORD)

Calling Sequence

KILLIN
KILLOUT

Exit Parameters

DATA
DATA

LDX*
LDX
BSM*
BRU

LDX*
LDX
BSM*
BRU

42XXOOOOB
02XXOOOOB

X6,IOTPI
XI, KILLIN
$IOCS
ERROR error return

normal return
X6,IOTPO
Xl,KILLOUT
$IOCS
ERROR error return

normal return

For error return:

A register error code

2 device off-line
6 unrecoverable hardware error
7 device busy
8 invalid 1/0 assignment table address

4-19

0

4.6 TOP OF FORM

Purpose To advance to top-of-form on line printer

Description This function is performed to the line printer only. If
other devices are specified, it is a NOP.

Entry Parameter

DCB Word 0

23 18

D

Where

Calling Sequence:

TOF

Exit Parameters

X6 Address of I/O assignment table
X 1 Address of one word DCB

14 13

D

0

I I

Device code
O Device specified by X6
4 LP

0

R Return type (See paragraph 4. 4
READ/WRITE RECORD for description)

DATA
LDX*
LDX
BSM*
NOP

03XXXXXXB
X6,IOTPO
Xl, TOF
$IOCS
*

For error return:

A register error code

2 device off-line
7 device busy

ignore error return
normal return

8 invalid I/0 assignment table address

4-20

4.7 UNFORMATTED ALPHA WRITE

Purpose To initiate a write ASCII operation without trailing
carriage return and line feed

Description This function is used to write a message and wait for

Entry Parameters

DCB Word 0

23 18

0

Where

DCB Word 1

DCB Word 2

Calling Sequence

WNCRLF

Exit Parameter

a response in the same line; for example, PIN NUM
BER = response entered here. Therefore, this function
is provided to TTP only.

X6 The address of 1/0 assignment table
X 1 The address of three-word DCB

14 13

0

I I

0

R Return type (see paragraph 4 .4 READ/WRITE
RECORD for description)

Starting address of the output buffer

Record size (the number of words to be output)

DATA 040XOOOOB
DATA WRBUF
DATA n

LDX* X6,IOTPO
LDX Xl, WNCRLF
BSM* $IOCS
BRU ERROR

For error return:

A register error code

7 device busy

BUFFER ADDR
RECORD SIZE

error return
normal return

8 invalid I/O assignment table address

4-21

4.8 SKIP A FILE MARK ON MAGNETIC TAPE

Purpose To skip past an EOF mark on the tape.

Description The tape is moved until an EOF mark is skipped
over.

Entry Parameters

DCB Word 0

23 18

D

I I

Where

Calling Sequence:

SKIPF

Exit Parameters

X6 The address of I/O assignment table or zero if
the device is specified in the DCB

XI The address of one word DCB

14 13 12

D

0

Device code
0 device specified by X6
2 MTRI
3 MTR2

1 0

R Return type (see paragraph 4. 4
READ/WRITE RECORD for description)

N 0 skip forward

DATA

LDX*
LDX
BSM*
BRU

I skip backward

45XXOOOXB

X6 ,IOTPI
XI ,SKIPF
$IOCS
ERROR

For error return: ·

A register error code

2 device off-line
7 device busy

error return
normal return

8 invalid I/O assignment table address

4-22

4.9 WRITE EOF MARK ON MAGNETIC TAPE

Purpose

Entry Parameter

23 18

I o I o I o
0~ 1 I 1 I 1 I

D

Where

Calling Sequence

EOFDCB

Exit Para meter

To write a file terminator mark on a tape

XI Address of one-word DCB
X6 Address of I/O assignment table or 0 for

device override

14 13 12

IR 11

D device code

0 device specified by X6
2 MTWl
3 MTW2

R Return type (See paragraph 4. 4
READ/WRITE RECORD for description)

DATA

LDX
BSM*
BRU

07XXOOOOB

Xl,EOFDCB
$IOCS
ERROR

None for normal return

For error return:

A register error code

2 device off-line
7 device busy

error return
normal return

8 invalid 1/0 assignment table address
10 write ring

4-23

4.10 STATUS CHECK REQUEST

Purpose To check the status of a device

Description $IOCS issues a status read to the device and returns
the status word.

Entry Parameter

DCB Word 0

23 18

D

Where:

Calling Sequence

STD CB

Exit Parameter

Xl Address of one-word DCB
X6 Address of 1/0 assignment table for 0 for

device override

14

D

DATA

LDX
BSM*
BRU

Device code
0 device specified by X6
2 MTRl/MTWl
3 MTR2/MTW2
5 DIF /DOF
6 CLl/CLO

lOXXOOOOB

Xl,STDCB
$IOCS
ERROR error return

normal return

For normal return:

A register status word

4-24

Status Word Description:

Bit

0
1
2
3

4

5

6

7
8
9

10
11

12
13

14

15

16
17

Magnetic Tape Status

Device ready
Interrupt in process
Interrupt enabled
Interrupt pending

Rewinding

No write enable ring

Memory protect
Switch on
BOT
Low density
Tape mark has passed
Data overflow
DCB error

Rewind ended
Word count record
Length
Word count record
Length
Longitudinal parity
Error
Vertical parity error
EOT has passed

Disk Status

Disk not ready
Parity error
Interrupt enabled
Interrupt not manually
inhibited
Memory not manually
inhibited
Maintenance segment
addressable
Data overflow /memory
Protect on
Track address overflow
DCB error
Interrupt in process
Segment not found
Write not manually
inhibited
Write not inhibited
DCU in error state

For error return:

A register error code

7 device busy
8 invalid I/0 assignment table address

4-25

4.11 VERIFY /READ

Purpose To read a record without data transfer to memory
for verification

Description This function is provided to magnetic tape and disk
only.

Entry Parameter

DCB Word 0

23 18

0

DCB Word 1

DCB Word 2

Calling Sequence

VER DCB

Exit Parameter:

Xl Address of two-word DCB
X6 Address of 1/0 assignment table

14 13 0

0

R Return type (see paragraph 4. 4
READ/WRITE RECORD for description)

Buff er address

Record word count

DATA
DATA
DATA

LDX
BSM*
BRU

510XOOOOB
RBUF
512

Xl, VRDCB
$IOCS
ERROR

For error return:

A register error code

1 end of file
2 device not available
4 parity error
7 device busy

error return
normal return

8 invalid 1/0 assignment table address

4-26

4.12 CLOSE A FILE

Purpose To release the device usage

Description Causes the entry in the 1/0 assignment table to be
released. When I is equal to zero, the following actions
are also taken.

Entry Parameters

DCB Word 0

23 18

0

Where

Calling Sequence

RC LOSE

If the device is a MTW 1 or MTW2, two end-of-file
marks (one for file end, one for tape end) are written
and the tape is repositioned backward so that the next
file overrides the tape-end mark if written. If the
device is a DOP or MOP, the block buffer, if any, is
output to disk or memory and the directory is updated
with the current size. If the device is a CLI or CLO, a
CLOSE call is issued. If the device is a TTK, TTP,
CR, LP, MTRI, MTR2, MIF, or DIP, no other function is
performed.

X6
XI

The address of I/0 assignment table
The address of one-word DCB

14 12 10 0

0

I I I

I 1 input
0 output

R Return type (see paragraph 4. 4
READ/WRITE RECORD description)

c CLO OPTION
0 hold CLO
I purge CLO
2 process CLO

DATA 52000000B
LDX X6,IOTPI
LDX Xl,RCLOSE
BSM* $10CS
BRU ERROR error return

normal return

4-27

Exit Parameters For error return:

A register error code

4 parity error
7 device busy
8 invalid 1/0 assignment table address

4.13 OPERATOR MESSAGE

Purpose To display a message at the Integrator VKT

Description Allows transfer of a message from the local VKT to
the Integrator VKT

DCB Word 0

23 18 141312 0

I 0 I 0 I 1
1
; 1 I 0 I 0 I 0 I 1 I ~ I 0 I 0 I 0 I

0

I I

DCB Word 1 Address of the message buffer

DCB Word 2 Number of words to output

Calling Sequence

OPMDCB DATA 14300000B, MSAGBUF, n

Exit Parameters

LDX
BSM*

Xl,OPMDCB
$IOCS

For error return:

A register error code

6 unrecoverable CLIO error
7 device busy

4-28

error return
normal return

4.14 DISCONNECT CLIO

Purpose To disconnect communication link

Description Used to disconnect the linkage to Integrator. Upon
next open, the line is connected again.

Entry Parameters Xl Address of one-word DCB

DCB Word 0

23 18 141312

Calling Sequence

HNGDCB

Exit Parameters

DATA

LDX
BSM*

15300000B

Xl,HNGDCB
$IOCS

For error return:

A register error code

0

I I

error return
normal return

6 unrecoverable CLIO error
7 device busy

4.15 FILE TRANSMIT (ADD)

0

Purpose To initiate up-load of data to be appended to the
file at the Integrator

Description This function is reserved for $IOCS internal use. It is
internally generated by $IOCS initializer when an open
output add is issued to $IOCS.

Entry Parameters X6 Address of 1/0 assignment table
XI Address of three-word DCB

4-29

DCB Word 0

23 18

101010~011 1, I 0

DCB Word 1

DCB Word 2

Calling Sequence

FTADCB

Exit Parameters

14 13 12 0

It! 0 I
The address of the 10-word file identification

word O, 1 file name, file type
2,3,4 lot number or zero

5,6 device number or zero
7 ,8,9 category or zero

The number of words to output= 10

DATA

LDX*
LDX
BSM

03000000B, CLIO ID, 10

X6, CSX6
Xl,FTADCB
$IOCS

For error return:

A register error code

4 parity error
6 unrecoverable CLIO error
7 device busy

error return
normal return

4.16 FILE TRANSMIT (CREATE)

Purpose To initiate up-load of data and create a file at the
Integrator

Description This function is reserved for $IOCS internal use. It
is generated internally by $IOCS initializer when an
open output is issued to $IOCS.

Entry Parameters X6 Address of 1/0 assignment table
X 1 Address of three-word DCB

4-30

DCB Word 0

23 18

0

DCB Word 1

DCB Word 2

Calling Sequence

FT DCB

Exit Parameters

14 13 12 0

ltl 0

The address of the 10-word file identification

word O,l file name, file type
2,3,4 lot number or zero

5,6 device number or zero
7 ,8,9 category or zero

The number of words to output = 10

DATA
LDX*
LDX
BSM

04000000B, CLIO ID, 10
X6,CSX6
Xl, FTDCB
$IOCS

For error return:

A register error code

4 parity error
5 duplicate file
6 unrecoverable CLIO error
7 device busy

error return
normal return

4.17 FILE END INPUT

Purpose To close input file due to EOF at the Integrator

Description This function is reserved for $IOCS internal use. It is
generated by $IOCS initializer when a close input is
issued to $IOCS.

Entry Parameters X6 Address of 1/0 assignment table
X 1 Address of one-word DCB

4-31

DCB Word O

23 18

10;01071101 1 I
0

I I I

Calling Sequence

FEIDCB

Exit Parameters

14 13 12

ltl
DATA

LDX*
LDX
BSM

5000000B

X6,CSX6
Xl,FEIDCB
$IOCS

For error return:

A register error code

4 parity error

0

I I

error return
normal return

6 unrecoverable CLIO error
7 device busy

4.18 FILE END OUTPUT (PROCESS)

0

Purpose To close an output file at the Integrator and allow
immediate processing.

"

Description This function is reserved for $IOCS internal use. It is
internally generated by $IOCS initializer when a close
output is issued to $IOCS.

Entry Parameters X6 Address of 1/0 assignment table
X 1 Address of one-word DCB

4-32

DCB Word 0

23 18

I 0 I 0 I 0 ~·, J 1 I 0 I
0

I I

Calling Sequence

FEDCB

Exit Parameters

14 13 12

ltl
DATA

LDX*
LDX
BSM

06000000B

X6,CSX6
Xl,FEDCB
$IOCS

For error return:

A register error code

4 parity error

0

I I

error return
normal return

6 unrecoverable CLIO error
7 device busy

4.19 FILE END OUTPUT (PURGE)

Purpose To purge an output file at the Integrator

0

Description This function is reserved for $IOCS internal use. It is
generated by $IOCS initializer when a purge-open is
issued to $IOCS.

Entry Parameters

DCB Word 0

23 18

X6 Address of I/O assignment table
X 1 Address of three-word DCB

14 13 12

I~ 1 l"l"I
0

4-33

0

DCB Word l

DCB Word 2

Calling Sequence

FEPDCB

The address of 10-word file identification

word O, 1 file name, file type
2,3,4 lot number or zero

5,6 device number or zero
7 ,8,9 category or zero

The number of words to output= 10

DATA

LDX*
LDX
BSM

07000000B, CLIO ID, 10

X6,CSX6
Xl ,FEPDCB
$IOCS

error return
normal return

4.20 FILE END OUTPUT (HOLD)

Purpose To close an output file and hold for later processing at
the Integrator

Description This function is reserved for $IOCS internal use. It is
generated by $IOCS initializer when a close output
and hold is issued to $IOCS.

Entry Parameters

DCB Word 0

23 18

0

X6 Address of 1/0 assignment table
X 1 Address of one-word DCB

14 13 12

ltl 0

I I

4-34

0

Calling Sequence

FEHDCB

Exit Parameters

DATA

LDX*
LDX
BSM

l IOOOOOOB

X6,CSX6
Xl,FEHDCB
$IOCS

For error return:

A register error code

4 parity error
5 file name error

error return
normal return

6 unrecoverable CLIO error
7 device busy

4.21 FILE REQUEST

Purpose To initiate download of a file from the Integrator

Description This function is reserved for $IOCS internal use. It is
internally generated by $IOCS initializer when an open
input to CLI is issued to $IOCS.

Entry Parameters

DCB Word 0

23 18

0

DCB Word 1

DCB Word 2

X6 Address of 1/0 assignment table
X 1 Address of three-word DCB

14 13 12

!ti 0

I

0

The address of the 10-word file identification

word 0,1 file name, file type
2,3,4 lot number or zero

5,6 device number or zero
7 ,8,9 category

The number of words to output= 10

4-35

Calling Sequence

FR DCB

Exit Parameters

DATA

LDX*
LDX
BSM

53000000B, CLIO ID, 10

X6,CSX6
Xl, FRDCB
$IOCS

For error return:

A register error code

4 parity error
5 file not found
6
7

unrecoverable CLI error
device busy

error return
normal return

4.22 VKT TRANSMIT

Purpose To initiate data transmisssion from VKT screen to a
buffer

Description It is a special form of read and only applies to TTP.

Entry Parameters
•

DCB Word 0

23 18

0

Where

VKT transmit allows reading of the data on the VKT
screen from the home position to the last-written data
position. The buff er must be large enough to store 7 4
characters by 27 lines in ASCII (666 words). All char
acters except EOT (4B) are transferred to the buff er
without any conversion (three ASCII characters per
word).

X6 Address of I/O assignment table obtained from open
X 1 Address of three-word DCB.

14 13 12 0

I "I' I I

R Return type (see paragraph 4 .4 READ/WRITE
RECORD)

4-36

DCB Word 1

DCB Word 2

Calling Sequence

DCB

Exit Parameters

Starting address of record buff er

Record size (number of characters)

DATA

LDX
BSM*
BRU

550 IOOOOB, BUF, 1998

XI ,DCB
$IOCS
ERROR

For error return only:

A register error code

7 device busy

error return
normal return

8 invalid I/0 assignment table address

4.23 SKIP A RECORD ON MAGNETIC TAPE

Purpose

Entry Parameters

DCB Word 0

23 18

I , I 0 I 1 ~o I 1 I 1 I
D

Where

To skip a record forward or backward

X6 Address of I/0 assignment table or zero if the
device is specified in DCB

X 1 Address of one-word DCB

14 13

I R I

D device code
0 device specified by X6
2 MTRl
3 MTR2

R return type
0 return after completion
1 immediate return

N 0 skip forward
1 skip backward

4-37

0

I N I

Calling Sequence

SK IPR

Exit Parameters

DATA

LDX*
LDX
BSM*
BRU

53000000B

X6,IOTP
Xl,SKIPR
$IOCS
ERROR

For error return:

A register error code

7 device busy

error re turn
normal return

8 invalid I/0 assignment table

4.24 PAGE ABLOCK INTO MEMORY

Purpose To refresh the block of data from the disk or memory
file at the current position of the file. For operating
system use only.

Description This function can be used only if the block buffer was
provided at open time. $IOCS reads in a block from
the disk or memory starting at the sector/memory
address which is one block before the current address
specified in the IOATAB.

Entry Parameter

DCB Word

23 18

0

X6 Address of 1/0 assignment table
X l Address of one-word DCB

14 13 0

R return type (see paragraph 4.4
READ/WRITE RECORD for description)

4-38

Calling Sequence

RPDCB

Exit Parameters

DATA

LDX*
LDX
BSM*
BRU

54000000B

X6,IOPT
Xl,RPDCB
$IOCS
ERROR

For error return:

A register error code

4 parity error
7 device busy

error re turn
normal return

8 invalid 1/0 assignment table

4.25 REWIND MAGNETIC TAPE

Purpose

Entry Parameter

DCB Word

23 18

To rewind a tape to BOT position

X6 Address of II 0 assignment table or 0 for
device override

X 1 Address of one-word DCB

14 13

I I I I I

D device code
0 device specified by X6
2 MTWl
3 MTW2

R return type

4-39

0

Calling Sequence

DCB DATA 06XXOOOOB

LDX
BSM*
BRU

XI, DCB
$IOCS
ERROR error return

normal return

Exit Parameters For error return:

A register error code

2 device off line
7 device busy
8 invalid I/0 assignment table

4.26 MASTR $IOCS ASCII CONTROL MODE 1/0

1. Read

Uses the same DCB word 0 as normal read with bit 12 of DCB word O set to
1 (see paragraph 4.4). The record buffer must be defined as the maximum
allowed input words plus one. All data characters, (40g and 137g) are stored
into the buffer in TRASCIT (four characters per word). As soon as a control
character appears, it is placed in ASCIT right justified into the last word of
the buffer and $IOCS returns to the caller.

Caller's Buffer

yyyy yyyy

Word 0 Word 1

Y =data characters in TRASCIT
X =control characters in ASCIT

x

Last Word Last Word+1

The number of characters obtained, excluding the control character, is
returned in the A register.

2. Write

Uses the same DCB word O as normal write with bit 12 of DCB word 0 set to
1 (see paragraph 4.4). Characters to be written must be stored in ASCII
(three characters per word) left justified. DCB word 3 contains the number
of characters to be written.

4-40

5

MASTR File Description

5.1 MASTR SYSTEM FILES

MASTR system files are created, saved, and transferred to and from the disk,
magnetic tapes, the disk at the Integrator, and in memory. MASTR maintains all
files in defined format. The physical formats are defined by the peripheral re
quirements and described in paragraph 5.2 through 5.5. The logical formats of
files are defined by MASTR and described in paragraphs 5.6 through 5.10.

5.2 DISK FILES AND USAGE

5.2. l Disk Specification

200 tracks in Burroughs disk
192 tracks in Alpha Data disk

80 sectors/track
48 words/sector

5~2.2 Disk Organization

The disk is physically divided into five sections (figure 5-1). The coreimage
buffer is used by DOPSY; $ARR is the DOPSY monitor and is booted into memory
when the MASTR command DOPSY is entered.

The disk files are identified in the disk directory. The information of each file is
stored in a six-word directory entry (figure 5-2). There are 640 file entry spaces
reserved on disk (80 sectors).

The file area contains the actual file data in consecutive order, as specified in the
directory. The directory does not contain any pointer to a file; to locate the
starting sector address of a file, the sum of assigned sector numbers of the
preceding files must be added to the starting address of the file area.

The unused portion of the disk is called working storage, which can be used to
assign a file space or to create a new file.

5-1

Core Image Buffer

$ARR

File Directory

System Files and User Files

!----------------
Working Storage

Figure 5-1 Disk Organization

Sector

0

171

178

258

5-2

BK Buffer

80 Sectors 48 Words/Sector
80 Sectors/Track

Burroughs Disk
200 Tracks

Alpha Data Disk
192 Tracks

Remaining disk space is working storage.

16000 (Burroughs)
15320 (Alpha Data)

23 21 18 15 12 9 6 3 0

I I I I I I I I I I I I I I I I I
Word 0 Name 1

.l J J l l l
File

Name2 L
.l I I .l l Jvpe

2 Job Number
l J J _J _J l l

3 Number of Words Used
_L I I I J l J

Load Address
4 Number of Sector Allocated Record Size

J_ I I I

Address
Entry Point IS Load Point

..1 l l J_ l J_ l
5

Word Bit Description

0 23 to 0 First four characters of file name (TRASCil)

1 23 to 12 Last two characters of file name (TRASCII)
11 to 4 Not used
3 to 1 File type

000 string
001 data (fixed length)
010 object
011 core image
101 data (variable length)

0 = 1 last entry in the directory

2 23 to O Four-character job number (TRASCI) of the file
3 23 to O Number of words used by the file (file size)

4 23 to 10 Number of sectors allocated for the file
9 to 0 File type O 11 only - first 10 bits of address

(loading point of program)
9 to O File type 00 1 only - record size

5 23 to 20 Last four bits of address (load point)
(File Type) 19 to 16 Not used
011 only 15 to 2 Entry point of program

1 to O Interrupt sector count used

Figure 5-2 Disk Directory Entry (Six Words per File)

5-3

5.2.3 Disk File Format

On disk, five different file types are maintained: string files, variable data files,
fixed data files, coreimage files and object files. DOPSY does not generate or
recognize variable length data files and treats all data files as if they are fixed.

All files on disk are placed continguously without any physical record or file
terminators. An end of a file is identified by the number of words in the file,
which can be obtained in the directory entry. A record can be identified based on
the file type.

A string file record for the disk is described in paragraph 5.6 and it is identical to
ones on other media.

Coreimage file format is described in paragraph 5.9. In DOPSY, coreimage files
are not transferable.

Five different record formats for object files .are described in paragraph 5.10.

5.3 MAGNETIC TAPE FILES AND USAGE

5.3.1 Tape Organization

A physical record is data terminated by a record mark. Skipping a record forward
or backward is done on this physical record. The size of one physical record is
determined by the program which generates the record onto a tape.

A logical record is defined based on the file type. Normally, there are several
logical records in a physical record.

A file is a set of physical records terminated by a tape mark. Skipping a file
forward or backward uses this tape mark for positioning. The tape mark is
normally written at the file closing time. Datalogging to a magnetic tape or
FACTOR writing to a magnetic tape always causes a tape mark to be written
immediately after a physical record and repositioned back. If another record is
written, the tape mark is erased over; otherwise, the tape mark is there even if
the file is never closed.

An end of a logical tape (an end of valid data area) is identified by having a tape
mark without a file. $IOCS always writes two tape marks at the file closing time
and backs up one tape mark in case another file is written. Therefore, all closed
tapes always have an end of a logical tape.

5.3.2 Blocked File Format Generated by DUMP and COPY Programs

File types handled by DUMP and COPY are identical to those on disk; string,
variable and fixed size data, coreimage and object files. Record formats for
these files are described in paragraphs 5.6 through 5.10 and shown in figure 5-3.

5-4

Physical Record

2

3

,.,

n

Six-Word Header

Record Mark

960-Word Block

Record Mark

960-Word Block

Record Mark

1-960-Word Block

Record Mark

Tape Mark

9

Header is identical to six-word disk directory
(Figure 4-2) except that the last word contains
"ROBT" for all file types except coreimage.

Logical records are blocked into 960-word
physical record.

A logical record may cross between two
physical records.

The last block may be 1-960 word remaining data.

This format can be read by LOAD, COPY or DOPSY BMT programs.

Figure 5-3 A Blocked File

5-5

5.3.3 TDX-Generated Magnetic Tape

During TDX INIT, a terminator record is generated (figure 5-4).

TDX MAKE generates multiple directories (figure 5-5). Each directory contains a
directory header (figure 5-6) followed by multiple files (figure 5-5).

TDX program causes COPY program to generate files as described in paragraph 5.3.2.

This tape format can be read by LOAD, MASTR TDX and DOPSY TDX.

Record I
TDX

Figure 5-4 Terminator Format

I
TAPE

5-6

Directory Header

Tape Mark

Directory 1 File

File

'
Directory Header

Directory 2
Tape Mark

File

'
~

Directory Header

Directory n
Tape Mark

File

Terminator

Tape Mark

Tape Mark

Figure 5-5 TDX Tape Format

5-7

~

}
Generated by TDX
(Figure 5-6)

}
Generated by COPY
(Figure 5-3)

} Generntod by COPY

Figure 5-4

Record 1 l
TH IS TDX
NT A IN s
ES. B LOCKED
(REV 2 . 1)

2 r
DIRE C TORY

3 l
I I 1 v ER IF Y

t

xx xx)
4 l

I I J OB

5 l
ANY COM ME
ERED BETW

T

k-1 T

l
TAPE

n

l

l
1

(

l . XXXX'

T
NTS
EEN

T

T

l
co
Fil

l
m

l
NAME

xx xx

l

T
ENT
" "

T

T

7th word contains n in
TRASCI I right justitied
n ~ number of files in
directory + 1

4th word contains m in
TRASCI I left justified
t =file type (S,0,0,)
xx ~ checksum

Any combination or job,
verify and comment
appear in records 3-(k- 1)

I T T k The last record in tape
I I s ET T TK T TP directory is always I /set

Figure 5-6 TDX Directory Header Format

5.3.4 MBUP Tape Format

The purpose of the MBUP tape is to save the contents of memory on magnetic
tape (figure 5-7). MBUP transfers the bootstrap loader and the operating system
from memory to magnetic tape. It then calls DUMP to output the remaining
files.

This tape can be read by the MBUP overlay or LOAD program. Jf the first two
files (the boot and the operating system) are skipped, the remaining files can be
read by the COPY overlay or DOPSY BMT.

5-8

Filo 1 I

File 2

File 3

File4

File m

{
{

{

~

Bootstrap

Tape Mark

Header

Record Mark

MASTR Operating System
Blocked in 960-Word Records

Record Mark

Checksum

Tape Mark

File

File

4

File

Tape Mark

Figure 5-7 MBUP Tape Format

5-9

}

}

}

Generated by DUMP (Figure 5-3)

Generated by DUMP

Generated by DUMP

5.4 FILES TRANSFERRED TO THE INTEGRATOR

5.4.1 Record Description

The maximum size of a record is 124 characters for a string record and 40 words
for a binary record. Either record is appended with an eight-character record
header before transmitting to the Integrator. The header is stripped off by the
driver when it is sent from the Integrator. A leading protocol character, STX,
and trailing protocol characters, ETC and LRC, also are appended or stripped by
the driver. ·

Characters 0 8 n n+1 n+2

l..-~-S-T-X~~-.-~~H-ea-d-er~--.1,.......R-ec~or_d_D_a_ta~~l~~-E-T-C~~..-~~L-R-C~--.

Character Record Format

STX 0 Start transmission

Header 1 FST system code = ASCIT 0

2 Sub addr =Station 1, 2, 3, 4 in
ASCIT or ASCIT 8 for background

3 Destination code= ASCIT 0

4 Sub addr =same as word 2

5 Character count for binary record
(3 per word) , 0 for string record

6 Message type

7 Spare

8 Spare

Record Data n Data

ETC n + 1 End of transmission

LRC n+2 Checksum

5-10

5.4.2 CLI/CLO Blocked Binary Files

Files transferred to and from the Integrator by programs LOAD or DUMP are
in blocked binary format. All file types described in paragraphs 5.6 through
5.10 can be transferred in the format shown in figure 5-8.

Six-Word File Header

Data Record 1

Data Record 2

t *

Same as disk directory
entry (see figure 4-2).

Data records are blocked
in 40 words.

Data Record n The last record may be :'.:: 4 0 words.

Figure 5-8 CLI/CLO Blocked File Format

5.4.3 CLI/CLO Unblocked String Files

Files transferred to and from the Integrator by the program COPY are unblocked
and contain variable-length string records. Only the string files (paragraph 5.6)
can be transferred in the format shown in figure 5-9.

Record 1

Record 2 J
Record 3

t 9

Record n-1]
Record n

Figure 5-9 CLI/CLO Unblocked File Format

5-11

5.4.4 CLI/CLO Variable Length Data File

The files CLO or DATALOG to CLO are created by FACTOR WRITE statements
and contain variable-length data records (See paragraph 5.7 and figure 5-10). The
record size is limited to 40 words.

Record 1 l
Record 2 J
Record 3 J

·~ i
Record n-1

Record n J
J

Figure 5-10 CLI/CLO Variable Length Data File Format

5.5 FILES STORED IN MEMORY

Since memory has no physical breaks, any file loaded or created in memory re
sides contiguously from the starting address to the end address.

MACTAB is a file directory (figure 5-11) that has information on the files
currently in memory. There are many more file types in memory than on disk or
magnetic tape. This is because once a file is loaded into memory, it can be
executed or used to test a device. It is desirable to indicate allowed usage to
minimize operator error. File types indicated for files in memory are subsets of
file types provided to disk or magnetic tape files.

5-12

They are mapped as follows:

Type In
Memory

OVLY

TP

MOD

s

DATA

OBJ

u
Undefined

Type On
Disk

COREIMAGE

DATA

DATA

STRING

DATA

OBJECT

COREIMAGE

Description

Assembly language program
executable as an overlay

FACTOR test program
executable on a
station or loadable by
LMLOAD overlay

FACTOR module program
callable or loadable by
LMLOAD overlay.

String/source file

File written by a FACTOR
program or by an overlay

A file generated by Assembler

Coreimage file that is not
an overlay or a working
storage file that has not been
assigned as a particular file
type.

Formats for these files are described in sections 5.6 through 5.10. Internally, file
types are used by a code which maps with the file type code supplied in the test
program header (paragraph 5.8) or the overlay header (paragraph 5.9). Refer to
the system memory map, figure 5-12.

5-13

8 words per entry, 32 entries in table
Total 256 words. The table is expandable by ASSIGN command.

23 21 18 15 12 9 6 3

I I I I I I I I I I I I I I I I
MAJ OB 0 Job Number

J_ l J_ l l l 1

MANAM Name 1
J_ J_ l l l

MATYP 2 Name 2 Active IND Type
J_ l l i

MAMADR 3 0 Memory Address
l l l J_ l

MAFSIZ 4 M K R p File Size
l J_ J_ J_ l

MAMSIZ 5 0 Memory Size
_l _L l l l l

MAI OPT 6 0 IOATAB Pointer
l J_ J_ l l l

MAWSTR 7 0 Window Start
l l J_ l l l l

Figure 5-11 MACTAB (Memory Activity Table)

Job Number Job number of the file

NAME!, NAME2 Six-character file name
O =not used, NAME 1 = -1 =Working Storage

Active IND File is active when non-zero
Bit 6 file attached to STAT!
Bit 7 ·file attached to STAT2
Bit 8 file attached to STAT3
Bit 9 file attached to STAT4
Bit 10 overlay currently running
Bit 11 file is open for I/O

5-14

0

I I

Type

Memory Address

M (Bit 23)

K (Bit 22)

R (Bit 21)

P (Bit 20)

File size

Memory size

IOATAB pointer

Window start

File type code from file header (octal)
13 to 40 System overlay
71 Over lay in background, expands, or

generates memory files.
72 DATA
73 OBJ
74 STRING
75 Module test plan
76 Test plan
77 ALLINK overlay

0 Undefined

Starting address of the file in memory

Indicates that this file is in memory
NAME 1=0 and M = 0 occurs only for PAGE test plan
which is bumped out of memory

Keep indicator
1 The file was loaded with KEEP option or from

non-disk media
0 The file was loaded from disk without KEEP

option

Pending to be released

Partial indicator
0 complete file is in memory
1 partial test plan due to paging is in memory

Number of words required to hold the file.

Number of words in memory actually allocated to the
file. If greater than file size, file has extra memory
(expanded). If less, file is forced to page. If zero, file
not in memory.

Starting disk sector address for test programs loaded
from disk/IOATAB address for files used as memory files

Instruction count at the first address of the file area
for paging test programs.

5-15

Address 0

1

63
6
7
4
6

7

7

12
130
15
160

206
207
234
235

1 40
402
417
420

607
610

~

Entry I Restart

Reserved for Interrupt Address

SYSVAR (System Variables)

BITFLD (Bits Set)

NBTF LD (Bits Not Set)

RTMSK (Mask Set from Right)

LFMSK (Mask Set from Left)

DECFLD
OCTFLD
(Octal, Decimal Constants)

DBFLD (Double-Bit Fields)

GLOVAR (Global Variables)

SY XV EC
(Subroutine Transfer Vectors)

,,..,i-

Figure 5-12 System Memory Map

5-16

Up to this point
·cells are fixed

~ Monitor ~

Subroutines
$10CS and Drivers

Test Head Driver

Station Variable Table (SVT)

ALTER Buffer

Tester Variable Table (TVT)

10 Assignment Table (IOATAB)

Memory Activity Table (MACTAB)

Test Programs, Overlays, Files

t------------- -

Available Memory Space

1------- -------
Run Time Stack

High Address

Up to here booted from disk or mag tape
VT s

FWALT

TVT

F WIOA

F

a

WMAC

Expandable by
Command

LWSYS

FWAM

LWAM

LWCPU

Reserved space restored
from $GLOBS at return
from DOPSY

Dynamic Allocation Area

Figure 5-12 System Memory Map (Continued)

5-17

5.6 STRING FILES

String files may be an assembly language source, a FACTOR test program source,
a command file, or any file containing TRASCII data.

A string record contains 0 to 1 32 TRASCII characters terminated by 77B (a
backarrow character).

The terminator 77B is always right justified in the last word of a record. The
record may contain up to three blank characters. All other trailing blanks are
eliminated.

String File

Record 1 I I Record 2 I I : Rocoro n I I

5.7 VARIABLE LENGTH RECORD DATA FILES

Data files opened by the command OPEN are variable in length and are written by
FACTOR WRITE statements, datalog in binary format, or by overlays. To be a
variable record format can be specified during OPEN procedure and blocking or
unblocking can be done using the word count in each record.

5-18

5.7.1 General Record Format

Word 0 Data

Word 0 contains the following information:

Bit

0 to 11

12 to 17

18 to 21

22

23

Description

Record length in words, 4096 words maximum

Record Type. Each datalog record carries a two-digit number that
specifies the type of record.
(See table 5-1)

Bits 12 to 14 specify the particular record type with the class, for
example, de measurement, voltage mode or failure

Bits 15 to 17 specify a record class, such as
DC MEAS

Spare, not used.

1 User-defined record
0 System-defined record

1 Format record
0 DATA record

5-19

A data record from the datalogger with two items would appear as:

23 21 18 15 12 9 6 3 0

I
Word 0

0 0 Record ID 3
_l J _l J _l

Word
Item 1

J_ _l 1 1 I I I
Word 2

ltem2

_l _l J_ J_ l 1 1

5. 7 .2 File Format for Variable Length Data

The disk, memory, or magnetic tape files generated by DATALOG or FACTOR
WRITE statements contain a header record that is generated during OPEN output.
Since it is skipped over during open input, the FACTOR test program does not see
this record. If an overlay is written to read this file, it must handle this record. If
an overlay generates a file to be read by a FACTOR program, this record must be
generated. File form a ts are shown in figure 5-13.

File on Disk or Memory File on Magnetic Tape

Header Record Header Record

Data Record 1 Record Mark

Data Record 2 Data Record 1

+
,., Record Mark

Data Record 2

Data Record n Record Mark

File on Integrator

Data Record 1
it.

'"'
Data Record 2 Data Record n

.;. '" Record Mark

Tape Mark
Data Record n

Figure 5-13 File Formats For Variable Length Data

5-20

5. 7 .3 Header Record Format

The header record (figure 5-14) is prepared at the time of opening an output by
requesting log, device, and category information. This data is required at the
Integrator in order to sort the data properly. They are sent to the Integrator as
part of the file identification for opening the file, but are stored as the first re
cord for all other media.

Each item is left justified in each position of words provided.

23 21 18 15 12 9 6 3 0

I I I I I I
0 0 0 13

File Name (First 4 Characters)

2 File Name (Last 2 Characters) 0

3

4 Lot Number (12 Characters)

5

6
Device Number (8 Characters)

7

10

11
Category (12 Characters)

12

Figure 5-14 Header Record

5-21

5.7 .4 Datalog Record Formats

Measurements are sent as FST 24-bit floating point numbers. Records with ASCII
information are sent with four 6-bit TRASCII characters per word. Integer and
central information varies depending on the record. See each record description
for specific format (table 5-1).

Table 5-1 Record ID For Datalog Records

Record ID
Number Record Is From

00 Open header record
01 DPS voltage trip
02 DPS current trip
10 Direct current fail - current force mode
11 Direct current fail - voltage force mode
12 Direct current pass - current force rnode
13 Direct current pass - voltage force mode
14 Measure variable
20 Functional failure
21 PPM memory fail
22 PPM memory fail, data extension
23 Functional failure, messages
30 EOT record
31 Device header
40 Shmoo plot
50 Data I/O

5-22

5. 7 .4.1 DPS TRIP FAIL RECORD

The DPS trip fail record (figure 5-15) is generated when DATALOG TRIP is re
quested and a power supply trip occurs.

Each power supply trip is written as a separate record.

23 21 18 15 12 9 6 3

I I I I I I I I
Word O 0 0 Record ID Record Length

l l l J 1

Instruction Number

l l I J_ I I I

2 Test Type

l I I I I I I

3 Module Number

l I I I l I I

4 Trip Supply Number

l l l J_ I I I

5 GT/LT

l I J_ I I I I

6 Trip Value

l l J_ J_ J_ 1 l

Word Description

0 Record ID = 02 Current TRIP
Record ID = 01 Voltage TRIP
Record length= 7 FST words

1 Instruction number = 16..,.bit unsigned integer

2 Test type = 16-bit unsigned integer

3 Module number= 16-bit unsigned integer

4 Trip supply number = 16-bit unsigned integer

5 GT/LT= TRASCII LT or GT

6 Trip value = 24-bit floating point number

Figure 5-15 DPS Trip Fail Record Format

5-23

0

I I

5.7.4.2 DIRECT CURRENT FAIL RECORD

The direct current fail record (figure 5-16) is generated when DATALOG DCT/
MEAS/LOG is requested and the measurement fails. ·

23 21 18 15 12 9 6 3

I I I I I I I I I I I I I I I I I
Word 0 0 0 Record ID Record Length

J _L I I

Instruction Number

I J I I I I

2 Test Type

l l l l I I

3 Module Number

l _L I l l J

4 Pin Number
I I I I I I

5 Flag Word

l j_ l l _L j_

6 Measured Value

l J_ l l J_ J_

7 DCTO Limit

l J_ l l J I

10 DCT1 Limit
l J_ l l J_ J_

Word Description

0 Record ID = 10 current force/voltage measure mode
Record ID = 11 voltage force/current measure mode
Record length = 9 FST words

1 Instruction number
2 Test type = 16-bit unsigned integer
3 Module number= 16-bit unsigned integer
4 Pin number

I

_L

I

1

I

l

J_

J_

J_

0

I I

5 Flag word - ASCII formatting information - cell SMF of SUT table
6 Measured value= 24-bit floating point number
7 DCTO = 24-bit floating point number
8 DCTl = 24-bit floating number

Figure 5-16 Direct Current Fail Record Format

5-24

5.7.4.3 DIRECT CURRENT PASS RECORD

The de PASS record (figure 5-17) is generated when the DATALOG MEASURE/LOG
is requested and the de measurement passes.

23

Word 0 0

2

3

4

5

6

7

10

RECORD ID=

0

21

I I I

l

_l

l

_l

l

I

I

_l

_l

12
13
14

18 15 12 9

I I I I I I I I I
Record ID

l

Instruction Number
_l l _l

Test Type

l l l

Module Number
_l _l _l

Pin Number

l l l

Flag Word

I _l l

Measured Value

I _l J

DCTO Limit
_l j j

DCT1 Limit

J j J

Current mode
Voltage mode
Measure variable

l

l

l

l

l

l

j

j

l

6 3

I I I I
Record Length

l l

_l _l

-1 l

l l

l l

l j

l J_

j -1

-1 l

Remaining record fields are the same as a de fail record, (figure 5-16)

Figure 5-17 Direct Current Pass Record Format

5-25

0

I I

5.7.4.4 FUNCTIONAL FAILURE RECORD

The functional failure record (figure 5-18) is generated when DATALOG FCT is
requested and a functional failure occurs.

23 21 18 15 12 9 6 3 0

I I I I I I I I I I I I I I I I I I
0 0 Record ID Record Length

_l I 1 1 I

Instruction Number

I I I J_ J I I

Test Type

l I I J_ 1 l 1

Module Number

l I I l .l J_ l

Local Memory Location

l l l l I I I

Test Sequence Count

l I I l l_ l_ .l

F-Register Rank 1
l I I J_ J_ 1 1

C-Register Rank 1

I I I J_ l l_ i

F-Register Rank 2

l I I J_ 1 l_ l_

C-Register Rank 2

__L 1 1 J_ l I I

•
I> •

•
l _l J_ J_ I I I

F-Register Rank n
I I I J_ J_ l l

C-Register Rank n

l I 1 l J_ I I

Figure 5-18 Functional Failure Record Format

5-26

Word Description

O Record ID = 20
Record length = 14 to 22 words (depends on number of ranks used)

1 Instruction number= 16-bit integer
2 Test type = 16-bit integer
3 Module number = 16-bit integer
4 Local memory location= 12-bit integer
5 Test sequence count = 24-bit integer

The C and F register data is contained in bits 0 to 14.

Figure 5-18 Functional Failure Record Format (Continued)

5-27

5.7.4.5 FUNCTIONAL FAILURE RECORD FAIL MESSAGE

The functional failure record fail message (figure 5-19) is generated for de
timeout, loop count or clock burst count failure.

23 21 18 15 12 9 6 3 0

I I I I I I I I I I I I I I I I I I
0 0 Record ID Record Length

L l l _l l
Instruction Number

l l l l l l l

Test Type

L l l l l l l
Module Number

J_ l l J_ l l l

Local Memory Location
_l l 1 _l l l l

Test Sequence Count

l l l l l l l

TRASCll Message

l l l l l l 1

TRASCI I Message

l l l l 1 l 1

TRASCI I Message

l. l l J_ l j_ j_

Figure 5-19 Functional Failure Record Fail Message Format

5-28

Word

0

1
2
3
4
5
6 to 9

Description

Record ID = 23
Record length = 9 FST words
Instruction number = 16-bit integer
Test type= 16-bit integer
Module number = 16-bit integer
Local memory location = 12-bit integer
Test sequence count = 24-bit integer
TR ASCII messages are:

TIO
FC
LOOP
TIO, FC
TIO, LOOP

Each message is three words, with four 6-bit TRASCII characters
per word.

Figure 5-19 Functional Failure Record-Fail Message Format (Continued)

5-29

5.7.4.6 PPM MEMORY FUNCTIONAL FAILURE RECORD

The PPM memory functional failure record (figure 5-20) is generated when a
function fail in an MUT occurs.

23 21

I I I I
0 0

_l

j

l

l

J

l

l

_L

I

I

J_

Word

0

4
9 to 10

18 15 12 9 6

I I I I I I I I I I
Record ID Record Length

...L _l J

Instruction Number

J _l I _l _l

Test Type

l l l J_ J_

Module Number
l l I I I

Test Sequence Count

l J l l J_

Data Readout Number One Register

l l J l l

Data Readout Number Two Register
l l l J _l

C-Register Rank 1
I _l l _l _l

C-Register Rank 2
I _l I I _L

C-Register Rank 3

J _l I I I

C-Register Rank 4
J_ J_ I I I

Description

Record ID = 21 (nondata extension mode)
Record ID = 22 (data extension mode)
Record length = 11 words
Test sequence count = 24-bit integer

3 0

I I I I

_l

_l

J_

l

l

l

_l

_L

_L

l

l

C - Register Ranks 3 and 4 contain information for data extension
mode only.

Except for ID and test sequence count, all words are 16-bit integers

Figure 5-20 PPM Memory Functional Failure Record Format

5-30

5. 7 .4. 7 EOT RECORD

The EOT record (figure 5-21) is generated when end-of-test point is reached and
DATALOG EOT is requested.

23 21 18 15 12 9 6 3 0

I I I I I I I I I I I I I I I I I I I
Word 0 0 0

I

l ..1

Record length = 2
Record ID = 30
EIR data

Bit

0 to 9
10
11
12
13
14

Description

User defined value
DC test fail
DC test pass
Fune tional test fail
Functional test pass
End of test

Record ID
J_

El R Data

l l

Figure 5-21 EOT Record Format

5-31

Record Length
l I l

..1 I I

5.7.5 Writing From A FACTOR Program

A FACTOR program may cause data to be written by one of the following types
of statements:

• WRITE "ident" ARRAY;
• WRITE "ident" variable; variable, .•. ;
e WRITE "ident" 'TEXT'; .
e WRITE "ident" 'TEXT', VI, V2, V3, 'TEXT', V4, VS, V6;
• WRITE "ident" /n/ 'TEXT', variable;

The first two statements above result in the following format:

23 21 18 15 12 9 6

I I I I I I I I I I I I
0 Code ID Record Length

1 Item 1

2 Item 2

n Item n

Word 0:

3 0

I I I

Record length number of elements in the array plus I (4,096
maximum) or number of variables plus I (33 maximum).

ID
Code

Word I ton

TRASCII character in double quotes
010000 (binary)

floating point numbers

The last three statements involve a combination of binary and TRASCII data and
may cause more than one record to be generated.

5-32

Word 0 Text 1
Word 0 V1 J V2 V3]
Word 0 Text

Word 0 V4 I V5 V6 J

Word 0 has the same format as the first two FACTOR program statements.

Record length number of words in text plus 1 or number of variables plus 1
(maximum 33 words).

5.8 FIXED LENGTH DAT A FILES

Fixed length data files contain data in words rather than characters. The number
of words per record can be obtained in the disk directory or file headers (figure 5-2).
The record length of 18 words is used as default.

Word 0 Word 1 Word 2 Word n

RECORD= n + 1 words

Test programs and modules are normally considered fixed-length data files. How
ever, these files have additional defined format. The first 18 words are the test
program header; each word is used according to definition. The FACTOR
compiler generates this header for test programs and modules. The extended
FACTOR compiler generates this header for macro modules. LMLOAD overlay
generates this header for local memory data modules.

5-33

Test Program, Module Header

Word 0
1
2

3
4
5
6 to 16
17

Reserved
First four TRASCII characters of the name
Last two TRASCII characters of the name (left
justified
File type: 76B for test programs, 75B for modules
Release revision number
Program size (number of words used)
Reserved
Contains APM vector table pointer

5.9 COREIMAGE FILES

Coreimage files contain data in words. This data may be absolute or relocatable,
depending on the data and the usage of the file. Programs run under DOPSY are
absolute coreimage and overlays run under MASTR are relocatable coreimage.
Normally absolute coreimage files are not transferrable and remain on disk. The
format of a relocatable coreimage file is identical to the one of an absolute
coreimage file except that it does not use interrupt sectors.

COREIMAGE FILES (FILE TYPE= 011)

Coreimage Files (File Type= 011)

2 3 Program Body

Interrupt Sectors

The first three sectors may contain interrupt addresses. The number of sectors
used for interrupts is specified in the directory word 5 bits 1 to O. Interrupt sec
tors contain two words of information per interrupt. (48 words by 3 sectors/2word =
72 interrupts per program maximum).

Program body is already mapped to memory (I word of data= 1 word of memory
when loaded).

5-34

INTERRUPT INFORMATION IN INTERRUPT SECTORS

Word 0

Word

0
1

23 21

I I
0

L 0

Bit

13 to O
23
5 to O

18 15 12 9 6

I I I I
0 Service Address

0

Description

Address of interrupt service routine
= 1 last interrupt entry
Interrupt address of the device

5.9.l Overlay Header Format

3

I I

Device

A MASTR overlay is a relocatable coreimage file beginning with a 22-word
overlay header.

Words 22 to 27 contain information used by the VERIFY overlay to display REL
and date.

Table 5-2 describes the contents of each of the words that comprise the header.

Table 5-2 Overlay Header Format

0

0

WORD 0
1
2
3
4
5
6
7

The first four characters of overlay name in TRASCII
The last two characters of overlay name in TRASCII
File type code

10
11
12
13
14
15
16
17
20
21

Release revision number in TRASCII
File length including header (words)
Expansion size (words) at load time
Reserved for system use
Module relocation value store
Module return address store
PZE for module entry point
BR U for module entry point
PZE for reset/kill entry
BR U for reset/kill process
PZE for special purpose entry
BR U for special purpose entry
PZE for release overlay entry
BR U for release over lay process

5-35

Table 5-2 Overlay Header Format (Continued)

WORD22
23
24
25
26
27 to 33

PZE for normal background entry
BR U for normal background entry
PROC for foreground entry
BRU for foreground entry
Number of words in release notes
Release notes (date)

5.9.2 File Type Code List

Table 5-3 shows the file type code list.

Table 5-3

Code

0 to 12B
14B
15B
16B
17B
20B
21B
22B
23B
24B
25B
26B
27B
30B
31B
32B
33B
34B
35B
36B
71B

72B
73B
74B
75B
76B
77B

File Type Code List In Memory

Files

Undefined

Manual analysis

Parameter distribution
Datalogger

DEBUG

Overlay that takes long time to execute
(EDIT), expands (COMPILE), or generates
memory files (ASM, COPY)
Data files
Object files
STRING files
Module test programs
Test programs
General overlay

5-36

5.10 OBJECT FILES

Object files are generated by assembler and used by CREATE to generate
coreimage files. An object file contains relocation directives as well as
executable CPU instructions.

OBJECT FILE (FILE TYPE= 010)

Object File (File Type= 010)

I ""'°'d 1 Roco<d 2 : Record n

Variable Size Record

Record: Contains from 2 to 6 words, depending on the record type

The following format is used for word 0 in all records, except record type 4
and 5.

Word

Word 0

23 21 18 15 12 9 6 3

I I I I
0 Type Number of Words Relocation Address

Bit

23 to 21

20 to 15

14 to 0

Description

Record Type
0 = ST ART (first object record)
1 =DATA (Instruction record)
2 = PROC
3 =CALL
7 =END

Number of data words in this record excluding
word 0 and word 1

Relocation address to which the data words are
loaded.

5-37

0

Record Type= 0 (START)

23 21 18 15 12 9 6 3 0

Word

Word 1

I I I I I I I

Bit Description

0

1

0 No ABS directive (software relocatable)
1 Absolute program (ABS directive)

0 No REL directive (not relocatable by
hardware)

1 Hardware relocatable (REL directive)

Record Type= l (DATA/INSTRUCTION)

23

I
Word , I

Word 1

Word 2

21 18 15

I I I I I I I
12 9

I I

I

6 3

I I I I
Relocation Indicator

I

Bit Description

23 to O

Word n

Instruction in record is relocatable if corresponding
bit is set.
Contains instruction words.

5-38

I I

0

Record Type :: 2 or 3 (PROC or CALL)

Word

Word 2

Word 1
Word 2

23 21 18 15 12 9 6 3

I I I I I I I I I I I I I I I I
Name 1

Name 2

Bit Description

23 to 0
23 to 12

First four character symbol name (TR ASCII)
Last two character symbol name (TR ASCII)

Record types 2 and 3 contain no other data.

Record Type = 4 (EXT)

Word 0

Word 0

Word l
Word 2

2

23 21 18 15 12 9

I I I I I I I I I I I I I
Record D
Type 0

_l l

Name 1
_l I _l

l
Nale 2

I

Bit Description

23 to 21
20

Record type
D/0 data= 1, opcode= 0
Right half of opcode

I

I

I

6 3

I I I I
Opcode

I I

I I

Opcode
I J

11 to 0
23 to 0
23 to 12
11 to 0

First four characters symbol name (TR ASCII)
Last two characters symbol name (TRASCII)
Left half of opcode

5-39

0

I I

0

I I

Record Type = 5 (ENT)

23 21 18 15 12 9 6 3

I I I I I I I I I I I I I I I I I
Word 0

Record
Relative Address Type

l l l _l l l

Name 1
l l l l l l

2 Name 2 Flags
l I l _l _l l

Bit Description

Word 0 23 to 21 Record type
13 to O Relative address of symbol

Word 1 23 to O First four characters symbol name
Word 2 23 to 12 Last two characters symbol name

11 to 0 Flags

Record Type = 7 (END)

23 21 18 15 12 9 6 3

I I I I I I I I I I I I I I I I I
Word Check Sum

l _l J_ l _l l l

2 Last Record of File
J_ l .1 l _l l _J_

Bit Description

Word 1 23 to O

Word 2 23 to O

Checksum of the file excluding type 7 record.
Bit 23 is always set to 1. Checksum is obtained
from summing all words in the file and
40000000B is ORed at the end.
Contains 77777777B to indicate last record of
file.

5-40

0

I I

0

I I

6

Assembly Language Overlays

6.1 INTRODUCTION

Assembly language overlays (ALLINK programs) are user-written assembly lan
guage programs that are executed either through the EXEC statement of a FAC
TOR program or as a background function. Executing ALLINK programs through
the EXEC statement initiates and performs data collections or manipulations by
communicating between a FACTOR program and/or provides communications
between a FACTOR program in foreground and associated background processing.
Executing assembly language programs as a background function performs 1/0
operations, for example, outputting reports or receiving information from the
keyboard.

ALLINK programs are written in Fairchild Assembly Language for the FST-2
computer. The instruction set and the assembler are described in the FST-2
Computer Manual, publication number 57000002.

6.1.1 Foreground/Background Processing

Foreground processing refers to Tester-related operations. Thus, the FACTOR
program and the section of the ALLINK program executed through the EXEC
statement are ref erred to as operating in the foreground.

Background processing refers to non-Tester-related operations which are rela
tively slow, such as 1/0 operation. During foreground processing, there is acer
tain amount of hardware idle time, such as relay switching and power supply
settling time. During this idle time, background performs its operation. Thus,
the slower background operations are performed without affecting test time.
Obviously, 1/0 operations in foreground processing would decrease Tester
throughput significantly.

6.1.2 Risks Involved in ALLINK Programs

AL LINK programs that perform functional or de failure testing have a direct
effect on the results from system routines such as datalog or DCF. Device fail
ure, whether it occurs in a FACTOR test program or an ALLINK program, causes
the interrupt service to set flags, which are the basis for decisions by system
routines. Thus, if an ALLINK program does perform this type of testing, the
results from system routine may be meaningless.

6-1

Since any ALLINK program executed by the system cannot be completely
controlled by the system software, any undebugged ALLINK program
inadvertently may alter the hardware and software and thus, alter or destroy the
integrity of the system software. Therefore, it is highly recommended that
ALLINK programs be debugged outside of production environments.

6.2. ALLINK PROGRAM DEFINITION

The system requires the ALLINK program to have a header. See paragraph 5.9. l
for a description of the overlay header format.

6.2.l ALLINK Header

The header consists of 27B words at the beginning of the ALLINK program and
contains the system information for loading and executing the overlay. The
header must follow the format given in appendix A, and must have an OBJ 7 and
REL directives in front of the header. There are three program entry points. The
mode under which the ALLINK program is executed determines which of the
entry points is used.

The foreground entry point is used to transfer control from a FACTOR test plan
(through the EXEC statement) to the foreground section of the overlay.

The background entry point is used when the monitor receives a program-name
command for the overlay.

The release entry point is used when the command: RELEASE is entered to re
move the ALLINK program from memory.

The reset entry point is used when the tester is reset manually (reset pushbutton).

Example Entry Points:

RESET PZE 0 RESET ENTRY POINT
BRU* RESET RETURN IMMEDIATELY
BSS 2

RELSE PZE 0 RELEASE ENTRY POINT
BRU* RELSE RETURN IMMEDIATELY

BGEP PZE 0 BACKGROUND ENTRY POINT
BRU BGSTRT GO TO BACKGROUND

PROCESS ROUTINE
FGEP PZE 0 FOREGROUND ENTRY POINT

BRU FGSTRT GO TO FOREGROUND
PROCESS ROUTINE

This example shows foreground, background, reset, and release entry points with no
clean-up when the overlay is released (the release is always performed when
requested). There is no foreground processing in this program.

6-2

RSENT PZE 0
BRU* RS ENT
BSS 2

RELSE PZE 0
BRU CLRUP

BGEP PZE 0
BRU BGSTRT

FGEP PZE 0
BRU* FGEP

6.2.2 Creating Relocatable Coreimage

GO TO RELEASE
PROCESS ROUTINE

NO FOREGROUND PROCESS

After an ALLINK program is assembled and an object file is created, a
relocatable coreimage file can be created with the following command in DOPSY:

CREATE 'name' 'obj-file-name'

Rules and Restrictions:

o REL directive is provided at the beginning of the SOURCE program or REL
parameter is supplied in the ASM command.

o The program must be originated at location 0. This will happen by default
if an ORG directive is not included at the beginning of the program.

6.3 LOADING AND CALLING PROCEDURES

6.3.1 Loading Procedure

Before the ALLINK program can be called by either foreground or background, it
can be loaded using the monitor LOAD command.

Example:

LOAD 'DBTS'

This command causes the ALLINK program DBTS to be loaded from disk.

Once loaded, the program can be called from either foreground or background. If
the ALLINK program is called by a command or by the EXEC FACTOR state
ment, and if it has not been loaded into memory, the system tries to load automat
ically. If there is not enough room, a terminal error occurs at EXEC execution
point.

6-3

6.3.2 Calling Procedure

An ALLINK program is called from the foreground by a FACTOR EXEC state
ment. EXEC statements must have the following format:

EXEC program-name (v1,v2, .•• vn)

Where program-name is the name of the ALLINK program in relocatable
coreimage form. A maximum of 63 parameters is allowed. Each parameter is
evaluated at the time of EXEC and may be global variables, user-defined
variables, array elements, formal parameters or arithmetic expressions.

Upon entry to the AL LINK program, the index registers contain the following
information:

X3 number of parameters passed
X4 address of 1st parameter -1
X6 station code -1 (i.e. code 0 to 3 =station I to 4)

The FACTOR statements:

DCL P2 [3]; REM NOTE P2 IS AN ARRAY;

EXEC XTEST (Pl,P2,P3);

would cause pointers and variables to be mapped as shown:

Pointer Stack Parameters Array

X4 Value P1

Address of P1
Address P2

Address of Address of P2
t---9~ Value P2[0] Size of Array

Address of P3 Value P3
Value P2[1]

Value p2[2]

Value P2[3]

6-4

To obtain and save Pl and P3 use the following instruction sequence:

LDA*
STA
LDA*
STA

To obtain element 3 of array P2, use:

LDA*
LXA
LDA

I, X4
TEMPI
3, X4
TEMP3

2,X4
X5
3,X5

GET lST PARAMETER
SAVE IT
GET 3RD PARAMETER
SAVE IT

GET ADDRESS OF ARRAY
MOVE TO X5
GET 3RD ELEMENT

If it is known whether a passed parameter is a variable or an array, then the
determination can be made by checking bit 22 of the word in the pointer stack.
For example, to check P2 for an array use the following instruction sequence:

LDA
CAM
BBC

2,X4
B22
ARRAY

To obtain the number of parameters, the instruction

LAX X3

is executed.

6.3.2.2 BACKGROUND CALL

GET P2 POINTER
IF B22 SET
THEN IT IS AN ARRAY

The background section of ALLINK program can be entered by the command:

program-name (input) (output) optional parameters

where program-name is the name of the ALLINK overlay and the input and output
devices are optionally assigned to the program. Absence of input/output dvices
causes default to the PID/POD for any I/0 operations. Allowable input/output
mnemonics are shown in the Sentry VII Users Manual, publication 57000013.

Example:

EXAMPLE LP

This command would cause the ALLINK program (overlay) named EXAMPLE to be
executed in the background mode using the line printer as its output device.

6.3.2.3 RELEASE CALL

This section of the ALLINK program can be entered by a command:

RELEASE 'program-name'

6-5

There are three possible release procedures:

• No release processing is needed. The ALLINK program should return to the
system immediately as is shown in the first example entry point (see para
graph 6.2.1).

• A clean-up process is necessary before release in order to maintain system/
user program integrity. The entry to this user clean-up process may be
accomplished as is shown in the second example entry point (see paragraph
6.2. I). This type of process may be done, for example, to restore system
words that are used by the ALLINK program but that are not automatically
restored by the system.

• The ALLINK processing is incomplete and the program should not be released
at the time the release command is entered. For example, data saved by the
ALLINK program has not been completely analyzed.

The ALLINK program should display a message to the operator and return to the
system at CALLed address +2.

Example:

6.3.2.4

CLRUP EQU

AOM
BRU*

*

RELSE
REL SE

OVERLAY ACTIVE/IN ACTIVE CALL

can not release yet

In addition to the command: RELEASE, any overlay can be released automati
cally by MASTR in a disk based system when the memory space is needed.

When this condition occurs, the system searches overlays and test programs in
memory and tries to release inactive ones. It is the responsibility of the overlay
to indicate if it is active or inactive. To indicating being active, the overlay must
call ATTA subroutine (SYXVEC + 64) and DTTA ((SYXVEC + 65) when it is no
longer needed for a station. An active indicator for each station is shown in
NAME command output. During the automatic release process, the overlay is
also called at RELEASE entry point.

Prior to calling the background part of an overlay, the system automatically
indicates that it is active and clears it to inactive upon background return.

6.4 SCHEDULING A BACKGROUND TASK FROM FOREGROUND

Within the ALLINK program, the foreground section may call a routine in the
background section in order to perform some background-type processing; for
example, to print a message on data collected by foreground.

6-6

Note that while these sections are part of the same overlay, they perform as
separate tasks. Foreground initiates this type of call through the scheduler. If
the foreground and the background tasks share a common data area, the fore
ground task has to wait to allow the background task to finish using the data area.

6.4.1 Flagword

A flagword must be provided to indicate background or foreground activity. This
word is a local variable; it is defined and used exclusively within the ALLINK
program. The flagword is turned on by foreground processing and turned off at
the end of the background processing so that the next time the foreground task
comes in, it can tell if the background process is done. Ref er to figure 6-1 for a
typical ALLINK program.

6.4.2 Foreground Procedure

At the beginning of the foreground, entry is made from a test program by an
EXEC statement.

1. Test the activity flag to see if the background task is completed. If the flag
is ON, call the scheduler wait routine, FGWAIT (refer to SYXVEC + 44). This
makes the foreground task wait one complete scheduler cycle in order to give
the background time to finish.

2. At the return from FGWAIT, test the flag again.

3. If the flag is OFF, start the foreground task.

Example:

FG EQU
LDA
BZ
BSM*
BRU

At the end of foreground processing:

1. Set the activity flag ON.

*
FLAG
*+3
FGWAIT
*-3

FOREGROUND START ADDRESS
BACKGROUND DONE?
YES, START FG PROCESS
NO, THEN WAIT
CHECK FLAG AGAIN
Start foreground
process here

2. Call the task scheduling routine FGBGRT (refer to SYXVEC + 41) with the
background process address in index register 7.

3. Return to test program execution.

6-7

Example:

*FG PROCESSING
LDA
STA
LDX

*
BGADl

BSM*
BRU*

EQU

6.4.3 Calling Background

Dl
FLAG
X7 ,BGADl

FGBGRT
FGENTR

*

SET ACTIVITY FLAG
GET ADDRESS OF
TASK AND SET IN THE
SCHEDULER
RETURN TO TEST PLAN THROUGH
THE FOREGROUND ENTRY POINT.

THIS MUST BE THE BACKGROUND
PROCESSING START ADDRESS

When the background is called because foreground scheduled an activity:

I. Complete the necessary background processing, (I/O data processing, etc.
1/0 usage and restrictions are described in section 3).

2. At the end of processing, clear the activity flag.

3. Exit from background through the global transfer VECTOR COMMAND
(refer to SYXVEC + 38).

Example:

BGADl EQU

LDA
STA
BRU*

*

DO
FLAG
COMM ND

6-8

Any processing

Clear the flag

Return

6.5 PROCESSING A COMMAND THROUGH MONITOR FROM
FOREGROUND

To force the monitor to process a command from the prepared buff er the follow
ing steps are taken.

1. At the background entry:

• Save the global PIDPMF (GLOVAR + 16)
It contains the address of PID entry in IOATAB

• Save the global CMDPMF+ 1 (GLOVAR + 43)
It contains the address of the command record buffer of the current PID.

• Lock out the current PID from reading another command (bit 13 of
the first word of IOATAB entry must be set to 1)

2. Just before returning to monitor through background entry point:

• Clear the command lock out .

• Place a required command in the record buffer using the address saved •

• Set the global PIDFLG (GLOVAR + 39) to the saved PIMPMF (the
address of the entry IOATAB).

FST MASTR ASSEMBLER REL 2. 1 00:03 SOURCE: *EXM2
ARR 00000177 ARRCNT 00000146 822 00000110
BG FIN 00000264 BGMl 00000237 BG"1SG 00000?32
BGSTAR 00000267 fl I IF IN 00000033 CLSE 000003111
COMFLG 00000105 COMMND 00000706 DI 00000106
0205 00000112 04 00000107 EXMPLE 00000024
FFIX 00000731 FG1 00000160 Fr.2 00000205
FGBGRT 00000711 FGENT 00000147 FGEX 000002?1
FGWAIT 00000714 FP9 ilOOOOl 11 FWORD 00000000
GLOVAR 00000420 IERMSG 00000676 LWOh'O 00000315
MO VEIT 00000301 "ISG 00000030 MSG IN 00000640
Msr.our 00000647 "1SGS 00000113 OUTtlUF 00000057
OVBGEP 00000022 PARMS 00000145 PA<H 00000104
PODPMF 00000441 PRC HAR ()001J0026 RECtilJF 00000024
REL SE 00000020 ST4RS 00000120 ST Nil 00000032
SVX6 OOOOOlf\3 SYXVEC 00000640 TA8tNO 00000144
TABLE 000001?1 TE20'J 00000230 TOF 00000027
WRITR 00000307 Xl 00000001 X2 00000002
X3 00000003 X4 000000011 XS 00000005
Xb 0000·0006 X7 00000007 $IOCS 000006115

Figure 6-1 Sample ALLINK Program

6-9

* THIS IS A SA~PLE ALL!NK PMOGRAM NAMED 1 EXMPLE 1

* IT CAN RE LOADED USING THE SYSTEM COMMAND

* * II LOAD 1 EXMPLE'

* * THE FOREGROUND SECTION I~ CALLED BY THE FACTOR STATEMENT

* * EXEC EXMPLE (PARAMETER);

* THE FOREGRlllJND SECTION CALLS THE RACKGROUlllD RQUTINF
* BGMSG WHICH OUTPUTS A MESSAGE BASED ON THE PARA~ETERS

* PASSED TO IT BY FUREQROUNU

* * THE BACKGROUND SECTION CAN BE CALLED ~ITH THE COMMAND

* * II FXMPLE
* * IT OUTPUTS A PROMPTING CHARACTER $, REAu INPUT FROM PIO
* AND OUTPUTS IT TO POD

*
*
* 7

MAKE IT RUN-TIME RELOCATABLE
*

*
*
*

OVERLAY HEADER *
*
* ***

* 00000 00000000 FWORD DATA 0 0
00001 45705560
00002 54450000
ooon~ 00000011
00004 00000000
00005 00000315
00006 OOOOOOP
00020 00000000 RELSE
00021 41040020
00022 00000000 OVBGEP
01)023 41000267
00024 00000000 EXMPLE
00025 41000147

*

TEXT

DATA
DATA
DATA
8SS
PZE
BRU•
PZE
f!RU
PZE
~RU

•EXMPLE'

77!3
0
UvORU-FWORO
10
0
RELSE
0
BGSTART
0
FGENT

1,2 PROGRAM 1~AME

3 ALLINK CODE
4
5 PROGRAM SIZE
b-15 r.JOT USED
16 RELEASE ENTRY POINT
17 IMMEDIATE RETURN
18 BACKGROUf\ID ENTRY POINT
19 GO TO BACKGROUND START
20 FOREC::ROUND ENTRY POI MT
21 GO TO FORE'iROIJND START

Figure 6-1 Sample ALLINK Program (Continued)

6-10

PAGE

* * THE FOLLOWING EQU 1 S LINK TO SYSTEM GLOBALS AND
* TRANSFER VECTORS

00000640
00000645
00000646
00000647
000(10676
00000706
00000711
00000714
00000731

*
SYXVEC
$IOCS
MSG IN
MSGOUT
IERMSr.
COMM NO
FGBGRT
FGWAIT
FFIX

* 00000420 GLOVAR
00000441 POOPMF

*

EQU
EGLI
EQU
EQU
EQU
EQU
EQU
EQU
EQL'

EQU
EQU

hi.I OB
SYXVEC+5
SYXVEC+6
SYXVEC+7
SYXVEC+30
SYXVEC+38
SYXVEC+lll
SYXVEC+4ll
SYXVEC+57

11208
GLOVAR+l7

LOCATION OF TRANSFER VECTOR
roes SUBROUTINE
REAO FROM PIO ROUTINE
WRITE POO ROUTINE
TERMINAL ERRORS
RETURN TO SYSTEM

LOCATION OF GLOBAL VARIABLES
ADDRESS OF POD PMF

* IO CONTROL WORDS ANO BUFFERS

00000024
00026 00000001.1
00027 03000000
00030 6361.15760
00031 00000000
00032 00000001

* RECBUF
PRC HAR
TOF
MSG

STNO

* 00033 00000024 BUFIN
00057 000000211 OUTBUF

*
*

EQIJ
DATA
DATA
DATA

BSS

BSS
BSS

20
QB
03000000&
'STOP 1 ,0

RECBUF
RECBUF

SIZE OF IO BUFFER
PROMPTING CHARACTER $
TOP OF FORM CODE FOR $IOCS

* PROGRAM DATA STORAGES AND CONSTANTS

* 00000001 Xl
00000002 X2
00000003 X3
000000011 X4
00000005 X5
00000006 X6
00000007 X7

00103 00000000
00104 00000000
00105 00000000
00106 00000001
00107 00000004
00110 20000000
00111 21110000
00112 00000315
00113 00000000
00114 212121?1
00115 22222222
00116 23232323
00117 24242421.1
00120 12121212

* SVX6
PARX
COMFLG
01
Oll
622
FP9
D205
MSGS

STARS ..
* 00121 00000024 TABLE

00000144 TAAEND
00145 00000-000 PARMS
00146 00000000 AR~CNT

*

EQU
EQU
EQU
EQll
EQIJ
EQU
EQU

1
2
3
4
5
6
7

0
0

INDEX REGISTER 1
INDEX REGISTER 2
INDEX REGISTER 3
INDEX i'IEGISTER 4
INDEX REGISTER 5
INDFX REGISTER 6
INDEX REGISTER 7

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DAT A

0 FG/BG BUSY FLAG
1
Q

20000000R
211100006
205
0
I 1111 I

1 2222 1

1 3333 1

1 4444 1

'****'

RSS 20
fQU •-1
DATA 0
DATA 0

Figure 6-1 Sample ALLINK Program (Continued)

6-11

PAGE
*
**
* *
* FOREGROUND SECTION CALLED BY EXEC STATEMENT *
* *
**
*

00000147 FGENT EQU *
00147 64000105 LOA COMFLG BACKGROUND STILL BUSY?
00150 42200153 AZ •+3 NO, GO AHEAD AND SEND NEXT MSG
00151 12040714 BSM* FGWAIT YES, WAIT
00152 41000147 BRU FGENT

*
Ov153 56300145 STX X3rPARMS
00154 45700121 LOX X7,TABLE
00155 45600144 LOX Xb,TABEND
00156 07000604 CLA
00157 54000104 STA PARX
0011>0 64000145 FGl LOA PARMS
00161 4220022! BZ FGE:X
00lb2 24400001 LOA 1,x4
00163 63000110 CAM FJ22
00164 43040177 BBC ARR
00165 24440001 LOA* 1 1 XII
00166 63000111 CAM FP9 DON'T ALLOW 9
00167 43200230 BE TE205
00170 76000104 ADM PARX
00171 77000145 SOI• PARMS
00172 14700000 STA f), X7 STORE: PARAMETER
00173 11400001 l\TX x 4, 1
00174 11700001 ATX X7, 1
00175 431001h0 BL FGl
00176 41000221 BRU FGEX TABLE FULL

* 00177 24440001 ARR LOA* 1,X4
00200 11400001 ATX x 4, 1
00201 7700014'i SO"'- PARMS DECREMENT COUNTER
00202 07500000 LXA XS POINTER TO ARRAY
00203 25500000 LDE o,xs ARR SIZE
00204 55000146 STE ARROJT
00205 11500001 FG2 ATX x 5, 1
00206 24500000 LOA o,x5
00207 63000111 c Af.1 FP9 DONT ALLOW 9
00210 43200230 BE TE205
00211 14700000 STA O,X7
00212 76000104 AOM PARX
00213 11700001 ATX x 7, 1
00.?14 43600221 BGE FGEX
00215 77000146 SOM ARRCNT
00216 64000146 LDA ARRCNT
00217 42200160 8Z FGl END OF ARRAY
00.?20 41000?0<; r!RU FG2

*
00000221 FGEX EQU *

00221 07600200 LAX X6 SAVE STHION ID
00222 54000103 STA SVX6

*
00?23 64000106 LOA Dl TURN DN tlACKGROUNO AUSY FLAG
00224 54000105 STA COMFLG

*
00225 45700.?3.? LDX X7,AGMSG ADDRESS OF BACKGROUND ROUTINE
00226 12040711 '!SM* FGbGRT AND SCHtDULE BACKGROUND

Figure 6-1 Sample ALLINK Program (Continued)

6-12

00227 41040024 BRU* EX~~PLE RETURN TO TESTING

* 00230 &4000112 TE205 LDA 0205
11SM• IFRMSG 00231 1204067&

PllGE
**
* *
* BACKGROUND ROUTINE SCHEDULED BY FOREGROUND *
* *
**
*

00000232 BGMSG EQU *
00232 05b40441 LOH '116,POOPMF SET Xb TO ADDRESS OF POO
00233 45100027 LOX X 1, TOF
00234 120406115 i:lSM* $lOCS DO TOP OF FORM IF POD IS
00235 50000235 NOP * IGNORE ERROR
00236 45700121 LOX X7,TABLE
00237 5&70014& BGMl STX X7,ARRCNT
00240 64000104 LOA PAl<X DONE?
00?41 42200?611 RZ BGFIN
00242 24700000 LOA 0,)(7
002113 12040731 t3SM• FFIX
00244 42300247 BNZ •+3
00245 63000107 CAM 04
002116 43300?51 BLE •+3
00247 64000120 LOA STARS
00250 41000253 '3RU •+3
00251 07500000 LXA XS
00252 64500113 LOA MSGS,X5 GET MESSAGE TO PRINT
00253 54000032 STA STNO
00254 45100030 LOX Xl,MSG START ADDRESS OF OUTPUT
0025i:; 05200003 LOX X2,3 NO. OF WORDS TO OUTPUT
00256 12040647 8S"I* MSGOUT
00257 50000257 NOP * IGNO~E ERROR

*
002&0 77000104 50'1 PARX DECRf.MEi\JT COIJNT
00261 45740146 LOX• X7,ARRCNT
002&2 11700001 ATX X7, 1
00263 41000?37 BIW 8GM1

*
00000264 BGFIN Er:lU *

PMF

LP

002&4 070006011 CLA CLEAi< BACKGROUND AUSY FLAG
00265 54000100:, STA COMFLG
0026& 01040706 BRU• COMMNO RETUi<N TO SYSTEM

Figure 6-1 Sample ALLINK Program (Continued)

6-13

PAGE

*

* * * BACKGROUND SECTION CALLEO BY AN OPERATOR COMMAND *
* II EXMPLE *
* * * IT REAOS A RECORU FROM PID ANO OUTPUTS IT TO POU *
* IT EXITS WHEN FOUR ASTERISKS ARE ENTERED *
* *

*

00000267 8GSTART EQU * X1 1 BUFIN 002b7 45100033 LOX
00270 b400002b LOA
00271 12040646 BSM*
00272 50000272 NOP

*

PRC HAR
MSG!N

*

ADURESS OF INPUT BUFFER
P~OMPTING CHARACTER $

READ A RECORD

* NOW OUTPUT IT TO POD

00273 05400'012
00274 05500000
00275 05300002
0027b 64000033
00277 63000120
00300 4320031£1

*

*
00000301 MOVE IT

00301 64500033
00302 54300057
00303 11500001
00304 43400307
00305 1130000?
0030b 41000301

* 00000307 WRITR
00307 45100057
00310 05200024
00311 120£10b£17
00312 50000312
00313 41000267

* 00000314 CLSE
00314 41040022

* 00000315 LWORD

LDX
LOX
LOX
LOA
CAM
!3E

EQU
LOA
STA
ATX
BG
HX
BRU

EQU
LOX
LOX
!3Sr~·

NOP
BRU

x 4, 10
xs,o
X3,2
RUF IN
STARS
CLSE

*
Bl'FIN,X5

THE ~ECORD : **** ?

YES, EXIT NOW

OUTBUF,X3 MOVE IT TO OUTPUT RUFFER
X5,1 WITH SPACING
NRITR
X3,2
MOVE IT

* Xl,OUTBUF ADDRESS OF OUTPUT BUFFER
X2,20 NO. OF WORDS TO OUTPUT
MSGOUT
* IGNORE ERROR
8GSTART

EQU *
>JRU• OVtlGEP

EQU
END *

RETUR~ TO SYSTEM

Figure 6-1 Sample ALLINK Program (Continued)

6-14

00000177 ARR 00164
00000146 ARRCNT 0020£1 00215 00216 00237 00261
00000110 822 00163
0000026£1 RGFIN 00241
00000237 BGMl 00263
00000232 BGMSG 00225
00000267 BGSTAR 00023 00313
00000033 BUFIN 00267 00276 00301
00000314 CLSE 00300
00000105 en MF LG 00147 00224 00265
0000070?, COMMNO 00266
00000106 Dl 00223
00000112 D205 00?30
00000107 04 00245
00000024 EX MP LE 00227
00000731 FF!X 00243
00000160 FGl 00175 00217
00000205 FG2 00220
00000711 FGBGRT 00226
00000147 FGENT 00025 00152
00000221 FGEX 00161 00176 0021 ll
00000714 FGWAIT 00151
00000111 FP9 00166 00207
00000000 FWORO 00005
00000420 GLOVAR 00026
00000676 IERMSG 00231
00000315 LWORO 00005
00000~01 MOVE IT 00306
00000030 MSG 00254
00000646 MSG IN 00271
00000647 MSGOUT 00256 00311
00000113 MSGS 00252
00000057 OUTBUF 00302 00307
00000022 OVBGEP 00314
00000145 PARMS 00153 00160 00171 00201
00000104 PARX 00157 00170 00212 00240 00260
00000441 PODPMF 00232
00000026 PRC HAR 00270
00000024 RECBUF 00033 00057
00000020 REL SE 00021
00000120 STARS 00247 00277
00000032 STNO 00253
00000103 SVX6 00222
00000640 SYXVEC 00026 00026 00026 00026 0002t 00026 00026 00026
00000144 TABEND 00155
00000121 TABLE 00154 00236
00000230 TE205 00167 00210
00000027 TOF 00233
00000307 WRITR 00304
00000001 Xl 00233 00254 00267 00307
00000002 X2 00255 00310
00000003 X3 00153 00275 00302 00305
00000004 XII 00162 00165 00173 00177 00200 00273
00000005 XS 00202 00203 00205 00206 0 02'51 00252 00274 00301 00303
00000006 X6 00155 00221 00232
00000007 X7 00154 00172 00174 00211 00213 00225 00236 00237 00242

00261 00262
000006£15 $IOCS 00234

Figure 6-1 Sample ALLINK Program (Continued)

6-15

A

Overlay Header Format
File Type Code List

WORD 0
1

A.,, 2
j) ',;._,
I;} ~---···-···--------------3--···- ----------
,/

4
5
6
7

10
11
12
13
14
15
16
17
20
21
22
23
24
25
26
27 to 33

0
The first four characters of overlay name in TRASCII
The last two characters of overlay name in TRASCII
File type code
Release revision number in TRASCII
File length including header (words)
Expansion size (words) at load time
Reserved for system use
Module relocation value store
Module return address store
PZE for module entry point
BR U for module entry point
PZE for reset/kill entry
BR U for reset/kill process
PZE for special purpose entry
BRU for special purpose entry
PZE for release overlay entry
BR U for release overlay entry
PZE for normal background entry
BR U for normal background entry
PZE for foreground entry
BRU for foreground entry
Number of words in release notes
Release notes (date)

A-1

FILE TYPE CODE LIST
, . l c.;;r1'lr?~...,,., :,1.

/le~1::.J t?t' v

/IV
Code File

0 Undefined
20B Manual Analysis
21B
22B
23B Parameter Distribution
24B Datalogger
25B
26B DEBUG
27B
30B
31B
32B
33B
34B
35B
36B
7 lB Overlay that takes a long time to execute (EDIT),

expands (COMPILE), or generates memory files (ASM, COPY).
72B Data files
73B Object files
7 4B STRING files
75B Module test programs
76B Test programs
77B General overlay

A-2

B

Instruction Mnemonics

B.l OPCODES SORTED BY ASCENDING ALPHA OPCODES

Opcode Mnemonic Code Description Cycles

ABS ABSOLUTE PROGRAM LOCATOR

* 20000000 ADD ADD

* 26000000 AND LOGICAL AND 2

* 36000000 AOM ADD ONE TO MEMORY 4
064034XX ARD ALTERNATE READ 1
066134XX ARDS ALTERNATE READ ST A TUS 1
06422400 ASP AC ALTERNATE SPACE 1
06401500 ART ALTERNATE READ RECORD TAPE 1

* 11000000 ATX ADD TO INDEX 2

* 07000000 AUG AUGMENT

* 06423400 A WRIT ALTERNATE WRITE 1

* 00000000 BAH BRANCH AFTER HALT 1

* 02000000 BAT BRANCH ON A-REGISTER TEST 1

* 03040000 BBC BRANCH BIT COMPARE 1

* 03200000 BE BRANCH IF EQUAL 1

* 03400000 BG BRANCH IF GREATER 1

* 03600000 BGE BRANCH IF GREATER OR EQUAL 1

* 03100000 BL BRANCH IF LESS 1

* 33000000 BLE BRANCH IF LESS OR EQUAL 1

* 02100000 BN BRANCH IF NEGATIVE 1

* 03500000 BNE BRANCH NOT EQUAL 1

* 02500000 BNEZ BRANCH IF NOT EQUAL TO ZERO 1

* 02300000 BNZ BRANCH IF NEGATIVE OR ZERO 1

* 02040000 BO BRANCH IF ODD 1

* 03000000 BOI BRANCH ON INDICATOR l

* 04000000 BOS BRANCH ON STATE 1

* 04440000 BOV BRANCH ON OVERFLOW 1

* 02400000 BP BRANCH IF POSITIVE 1

* 02600000 BPZ BRANCH IF POSITIVE OR ZERO 1

* 01000000 BRU BRANCH UNCONDITIONAL 1

B-1

B.1 OPCODES SORTED BY ASCENDING ALPHA OPCODES (Continued)

Opcode Mnemonic Code Description Cycles

* 12000000 BSM BRANCH STORAGE RETURN
ATM 2

BSS BLOCK STORAGE SIZE

* 02200000 BZ BRANCH IF ZERO l
12000000 CALL SUBROUTINE CALL

* 23000000 CAM COMPARE A WITH MEMORY 2
07000604 CLA CLEAR ACCUMULATOR I

* 30000000 DADD DOUBLE ADD 3

* DATA DATA DEFINITION

* 35000000 DIV DIVIDE 26
35000000 DLD DOUBLE LOAD 3
07034000 DSA DOUBLE SHIFT AROUND 3
07036000 DSL DOUBLE SHIFT LEFT
07016000 DSN DOUBLE SHIFT NORMALIZED
07030000 DSR DOUBLE SHIFT RIGHT

* 33000000 DST DOUBLE STORE 3

* 32000000 DSUB DOUBLE SUBTRACT 3
07014000 DTC DOUBLE TWO'S COMPLEMENT 2

END PROGRAM TERMINATOR

* 21000000 EOR EXCLUSIVE OR 2
EQU EQUIVALENCE

060100XX ETST ERROR TEST I
07010000 EXC EXCHANGE A AND E I
06051500 FSKIPB SKIP FILE FORWARD (ADVANCE

TO TAPE MARK) I
06041500 FSKIPF SKIP FILE BACKWARE (ADVANCE

TO TAPE MARK) 1
07012400 IDA INTERRUPT DISABLE 1
07004400 IEN INTERRUPT EN ABLE 1
07000600 LAR LOAD A FROM RELOCATION

REGISTER 1
07000200 LAX LOAD A FROM INDEX 1

* 24000000 LDA LOAD A-REGISTER 2

* 25000000 LDE LOAD E-REGISTER 2
07032000 LDS LOGICAL DOUBLE SHIFT

* 05000000 LDX LOAD INDEX 1
LIST PRODUCE ASSEMBLY LISTING

07000400 LRA LOAD RELOCATION REGISTER
FROM A 1

07022000 LS LOGICAL SHIFT A
07000000 LXA LOAD INDEX FROM A l

* 34000000 MUL MULTIPLY 25
NO LIST NO ASS EMBLY LISTING

10000000 NOP NO OPERATION I
OBJ PRODUCE OBJECT PROGRAM

* '27000000 OR OR (INCLUSIVE) 2
ORG ORIGINATION CONTROL

B-2

B.1 OPCODES SORTED BY ASCENDING ALPHA OPCODES (Continued)

Opcode Mnemonic Code Description Cycles

PAGE PAGINATION CONTROL
060010XX PCOMP PRIORITY COMPLETE 1
060110XX POFF PRIORITY OFF (INTERRUPT

DISABLE) I
060130XX PON PRIORITY ON (INTERRUPT

ENABLE) I
00000000 PROC SUBROUTINE ENTRY POINT
00000000 PZE POSITIVE ZERO (ENTRY PT)
064014XX RD READ I
066114XX RDS READ STATUS 1
06501500 RDT READ (MAGNETIC) TAPE 1
06601400 RDTT READ TELETYPE 1
06611700 REWC READ. EXCESS WORD COUNT 1
06000500 REWIND REWIND TAPE 1
06011500 RSKIPB SKIP RECORD BACKWARD 1
06001500 RSKIPF SKIP RECORD FORWARD 1
07006000 RSR READ SWITCH REGISTER 1
07012000 RST RESET STATE 1

* 17000000 RUM REPLACE UNDER MASK 2
07024000 SA SHIFT A AROUND LEFT
06461500 SKWR SKIP AND WRITE 1
07026000 SL SHIFT A LEFT

* 37000000 SOM SUBTRACT ONE FROM MEMORY 4
06420400 SPAC SPACE 1
06000000 SPU SELECT PERIPHERAL UNIT

(DETAILED SPU COMMANDS
ARE LISTED IN APPENDIX D) I

07020000 SR SHIFT A RIG HT
07004000 SST SET STATE 1

* 14000000 STA STORE-A-REGISTER 2

* 15000000 STE STORE-E-REGISTER 2
07000611 STMl SET FST-1 MODE 1
07000612 STM2 SET FST-2 MODE 1
060000XX STST STATUS TEST 1

* 16000000 STX STORE INDEX 2

* 22000000 SUB SUBTRACT 2
07002000 TCA TWO's COMPLEMENT A I
06000400 TOF TOP-OF-FORM 1
064214XX WRIT WRITE 1
06061500 WRITM WRITE TAPE MARK 1

* B23=0 for Absolute Memory Reference of Non-REL Program
=l for Relocatable Memory Reference with REL Program

B-3

B.2 OPCODES SORTED BY ASCENDING OCTAL OPCODES

Opcode Mnemonic Code Description Cycles

ABS ABSOLUTE PROGRAM LOCATOR
00000000 BSS BLOCK STORAGE SIZE

* 00000000 DATA DATA DEFINITION
00000000 END PROGRAM TERMINATOR

EQU EQUIVALENCE
LIST PRODUCE ASSEMBLY LISTING

NO LIST NO ASSEMBLY LISTING

OBJ SPECIFY OBJECT PROGRAM SIZE
ORG ORIGINATION CONTROL
PAGE PAGINATION CONTROL

* 00000000 BAH BRANCH AFTER HALT I
00000000 PROC SUBROUTINE ENTRY POINT
00000000 PZE POSITIVE ZERO (ENTRY PT)

* 01000000 BRU BRANCH UNCONDmONAL I

* 02000000 BAT BRANCH ON A-REGISTER TEST I

* 02040000 BO BRANCH IF ODD I

* 02100000 BN BRANCH IF NEGATIVE I

* 02200000 BZ BRANCH IF ZERO I

* 02300000 BNZ BRANCH IF NEGATIVE OR ZERO I

* 02400000 BP BRANCH IF POSITIVE I

* 02500000 BNEZ BRANCH IF NOT EQUAL TO
ZERO I

* 02600000 BPZ BRANCH IF POSITIVE OR
ZERO I

* 03000000 BOI BRANCH ON INDICATOR I

* 03040000 BBC BRANCH BIT COMPARE I

* 03100000 BL BRANCH IF LESS I

* 03200000 BE BRANCH IF EQUAL I

* 03300000 BLE BRANCH IF LESS OR EQUAL I

* 03400000 BG BRANCH IF GREATER I

* 04000000 BOS BRANCH ON STATE I

* 04440000 BOV BRANCH ON OVERFLOW I
06000000 SPU SELECT PERIPHERAL UNIT

(DETAILED SPU COMMANDS
ARE LISTED IN APPENDIX D)

060000XX STST STATUS TEST I
06000400 TOF TOP-OF-FORM I
06000500 REWIND REWIND TAPE I

B-4

B.2 OPCODES SORTED BY ASCENDING OCTAL OPCODES (Continued)

Opcode Mnemonic Code Description Cycles

0600 lOXX PCOMP PRIORITY COMPLETE 1
06001500 RSKIPF SKIP RECORD FORWARD 1
060 lOOXX ETST ERROR TEST 1
060110XX POFF PRIORITY OFF

(INTERRUPT DISABLE) 1
06011500 RSKIPB SKIP RECORD BACKWARD 1
060130XX PON PRIORITY ON (INTERRUPT

ENABLE) 1
06020400 FEED CHARACTER (PAPER TAPE)

FEED 1
06041500 FSKIPF SKIP FILE FORWARD

(ADVANCE TO
TAPE MARK 1

06051500 FSKIPB SKIP FILE BACKWARD
(GO BACK TO TAPE MARK) 1

06061500 WRITM WRITE TAPE MARK 1
064014XX RD READ 1
06401500 ART ALTERNATE READ RECORD

TAPE 1
064034XX ARD ALTERNATE READ 1
06420400 SPAC SPACE 1
064214XX WRIT WRITE 1
06422400 ASP AC ALTERNATE SPACE 1
06423400 A WRIT ALTERNATE WRITE 1
06461500 SKWR SKIP AND WRITE 1
06501500 RDT READ (MAGNETIC) TAPE 1
06601400 RDTT READ TELETYPE 1
066114XX RDS READ STATUS 1
06613400 ARDS ALTERNATE READ STATUS 1
07000000 AUG AUGMENT
07000000 LXA LOAD INDEX FROM A 1
07000200 LAX LOAD A FROM INDEX 1
07000400 LRA LOAD RELOCATION REGISTER

FROM A 1
07000600 LAR LOAD A FROM RELOCATION

REGISTER 1
07000604 CLA CLEAR ACCUMULATOR 1
07000611 STMl SET FST-1 MODE 1
07000612 STM2 SET FST-2 MODE 1
07002000 TCA TWO'S COMPLEMENT A 1
07004000 SST SET STATE 1
07004400 IEN INTERRUPT ENABLE 1
07006000 RSR READ SWITCH REGISTER 1
07010000 EXC EXCHANGE A AND E 1

B-5

B.2 OPCODES SORTED BY ASCENDING OCTAL OPCODES (Continued)

Opcode Mnemonic Code Description Cycles

07012000 RST RESET STATE 1
07012400 IDA INTERRUPT DISABLE I
07014000 DTC DOUBLE SHIFT NORMALIZED
07020000 SR SHIFT A RIG HT
07022000 LS LOGICAL SHIFT A
07024000 SA SHIFT A AROUND LEFT
07026000 SL SHIFT A LEFT
07030000 DSR DOUBLE SHIFT RIG HT
07032000 LDS LOGICAL DOUBLE SHIFT
07034000 DSA DOUBLE SHIFT AROUND
07036000 DSL DOUBLE SHIFT LEFT

* 10000000 NOP NO OPERATION 1

* 11000000 ATX ADD TO INDEX 2

* 12000000 BSM BRANCH STORE RETURN ATM 2
12000000 CALL SUBROUTINE CALL

* 14000000 STA STORE A-REGISTER 2

* 15000000 STE STORE E- REGISTER 2

* 16000000 STX STORE INDEX 2

* 17000000 RUM REPLACE UNDER MASK 2

* 20000000 ADD ADD 2

* 21000000 EOR EXCLUSIVE OR 2

* 22000000 SUB SUBTRACT 2

* 23000000 CAM COMPARE A WITH MEMORY 2

* 24000000 LDA LOAD A-REGISTER 2

* 25000000 LDE LOAD E-REGISTER 2

* 26000000 AND LOGICAL AND 2

* 27000000 OR OR (INCLUSIVE) 2

* 30000000 DADD DOUBLE ADD 3

* 31000000 DLD DOUBLE LOAD 3

* 32000000 DSUB DOUBLE SUBTRACT 3

* 33000000 DST DOUBLE STORE 3

* 34000000 MUL MULTIPLY 25

* 35000000 DIV DIVIDE 26

* 36000000 AOM ADD ONE TO MEMORY 4

* 37000000 SOM SUBTRACT ONE FROM MEMORY 4

* Bit 23 = 0 for Absolute Reference of non-REL Program
= I for Relocation Memory Reference with REL Directive

B-6

c

Conversion of TOPSY /DOPSY
Assembly Language Programs
to MASTR

C.l INTRODUCTION

To run in MASTR, assembly language overlays must be modified to include a pro
gram header, to use the new global variables, and to follow the calling sequences
as defined for IOCS and system subroutines.

The same overlay may be called from the FACTOR program by the EXEC state
ment and from a command from the background. There is no need to maintain
two copies of the program as in TOPSY.

MASTR can load and execute an assembly language overlay at any location in
memory. It is no longer necessary to create the coreimage files at specific loca
tions to avoid overlap with other coreimage files.

C.2

Note

The object files are no longer supplied on the system
DBUP tape.

PROCEDURE

This section defines a step by step procedure for the conversion of DOPSY /
TOPSY assembly language programs to MASTR. The difficulty of the conversion
depends to a great deal on the complexity of the program and the familiarity of
the programmer doing the conversion with that program. If the program is well
structured and documented, the conversion should be straight forward.

1. In the job 'HELP', there is a source file named '*AHDR'. Add this header
to the program by inserting the existing program in the appropriate place
for a foreground or background program. Note that a foreground entry is
made when called from a FACTOR program by means of the EXEC state
ment. The background entry is made when called by a command.

C-1

2. Examine all EQU statements to find references to system globals. If any
exist, then their usage must be examined and replaced with the equivalent
in MASTR. Note that there is not always a direct replacement for a
DOPSY / TOPSY variable. System globals in MASTR will be located in
SYSVAR (system variables), GLOVAR (global variables), TVT (test head
variables), and SVT (current station variables).

3. Examines all EQU statements to fine uses of system routines that are
called by a BSM* instruction. These calls must be replaced with the equiva
lent call to MASTR by the SYXVEC table. Note that some calling se
quences are different, i.e., the floating point routines use the E-register
instead of a parameter placed after the call.

4. Examine all CALL statements to find references to external routines.

a. The routine that is called may now be a part of the MASTR rou
tine library, so examine the routines in SYXVEC for an equivalent
function.

b. The routine that is called may be another part of the program
that also must be converted. A linking CREATE program is available
on MASTR Rel 2.0. When linking object files together to make a
MASTR overlay, put the tag LASTW on the END instruction of the last
module only and link it to the first module with an ENT and EXT in
struction. Also change the fifth word to be "DATA LASTW".

5. Examine the program for any PROC directives with an interrupt location
specified. Also examine the program for any SPU instruction to 1/0
devices. All routines that perform direct input/output to a peripheral must
be changed to use IOCS. An overlay may read and write directly to the test
registers providing the usage does not conflict with the test head driver.

6. Add an initialization section that:

a. clears any flags that must be 0 upon entry - remember that the
programs may not be reloaded from the disk each time. The routine
MPZERO may be useful for this function.

b. opens files for 1/0 and saves the pointers to IOATAB (X6), for
use by subsequent calls to IOCS.

7. Define data control blocks (DCBs) in MASTR format for each 1/0 operation
and change all calls to use IOCS.

C-2

8. Upon exit from the program, all files that are open must be closed (even
upon exit due to an error). This is required so that the system IOATAB is
not filled with files that are no longer used. The IOATAB pointer serves as
a useful flag if coded as follows:

EXIT
LDA IO ATP Get File ID
BZ CLOSED File Already Closed
LXA X6 Set Up ID for IOCS
CLA
STA IO ATP Mark File Closed
LDX. Xl,CLOSE Get Control Word
BSM* IOCS Close the File
BRU ERROR Error Return

CLOSED

9. Change program exit to return through the foreground (FGEP) or background
(BGEP) as appropriate.

10. Check for conflicting uses of index registers and state switches with the
new system routines, i.e., IOCS uses XI and X6.

C-3

Index

ACTFIO, 2-12, 2-20
ADJFLG, 2-11, 2-17
ADJMEM, 3-2, 3-9, 3-10
ADRXLA, 3-3, 3-63, 3-64
AFGBGF, 2-12, 2-24
ALLEX, 3-2, 3-40, 3-41
ALLINK, 1-3, 6-1 to 6-15

Calling procedure, 6-4 to 6-6, 6-8
Creating coreimage, 6-3
Foreground/background processing,
6-1, 6-9
Header, 6-2
Loading procedure, 6-3
Program definition, 6-2
Risks, 6-1, 6-2
Sample program, 6-9 to 6-15
Scheduling, 6-6 to 6-8

ALTER, 3-2, 3-26, 3-27
APMREV, 2-11, 2-13
Assembly language overlays, see ALLINK
ATHDF, 2-12, 2-22
ATPA, 2-11, 2-13
ATTA, 3-3, 3-55, 3-56
AWATF, 2-12, 2-22

BFLERR, 2-12, 2-21
BGCHK, 3-3, 3-70
BGID, 2-12, 2-25
BINARY, 2-12, 2-21
BINC, 2-11, 2-20
BINCNT, 2-12, 2-22
BINUM, 2-11, 2-20

CALLMOD, 3-3, 3-71
CATGRY, 2-12, 2-25
Clear VKT, 4-18, 4-19
CLI/CLO blocked file, 5-11
CLI/CLO unblocked file, 5-11
CLl/CLO variable length file, 5-12

CLIO disconnect, 4-29
CLIOID, 2-12, 2-24
Close a file, 4-27
CMDPMF, 2-11, 2-18
CMDV, 2-11, 2-19
COLFLG, 2-12, 2-20
COMERR, 3-2, 3-6
COMIMG, 2-11, 2-18
COMMND, 3-2, 3-41
CONV, 3-2, 3-13
Coreimage files, 5-34, 5-35, 5-36
Current station variables, 2-43 to 2-52
CURSYS, 2-11, 2-16

Data files, fixed length, 5-33, 5-34
Data files, variable length, 5-18 to 5-20
DATA/INSTRUCTION, 5-38
Datalog record format, 5-22
DATE, 2-11, 2-16
DBUGSA, 2-12, 2-23
DELFIL, 3-3, 3-55
Device, close a file, 4-28
DEVNUM, 2-12, 2-24
DFDV, 2-8
DFSTAT, 2-12, 2-23
Direct current fail record, 5-24
Direct current pass record, 5-25
Disk files and usage, 5-1 to 5-4

Disk directory entry, 5-3
Disk file format, 5-4
Disk organization, 5-1, 5-2
Disk specification, 5-1

DMASTR, 3-3, 3-59, 3-60
DPS trip fail record, 5-23
DRPMF, 2-11, 2-15
DTT A, 3-3, 3-56
"DUMP, 3-2, 3-36, 3-37

ECHFLG, 2-11, 2-18

Index-I

ENBTST, 3-3, 3-62, 3-63
END, 5-40
End of test record, 5-31
ENT, 5-40
ENTBSY, 3-3, 3-65
ERRCNV, 3-2, 3-45
EXT, 5-39

FACTOR, writing from, 5-32
F ADD, 3-2, 3-48
Fail message, functional, 5-28, 5-29
Fail record, direct current, 5-24
Fail record, DSP trip, 5-23
Fail record, functional, 5-26, 5-27
F AND, 3-2, 3-46
FCAM, 3-3, 3-53
FDIV, 3-2, 3-48
FEOR, 3-2, 3-47
FEXP, 3-3, 3-50
FFIX, 3-3, 3-51
FFIXS, 3-2, 3-49
FFLT, 3-3, 3-52
FFLTS, 3-3, 3-52, 3-53
FGBGFL, 2-11, 2-16
FGBGH, 3-3, 3-57
FGBGRT, 3-2, 3-43
FGBGWT, 3-3, 3-57
FGIO, 3-3, 3-58, 3-59
FGOH, 3-3, 3-60, 3-61
FGOVC, 3-2, 3-40
FGWAIT, 3-2, 3-44
File(s)

Coreimage, 5-34, 5-35, 5-36
Data, 5-18 to 5-34
End input, 4-31, 4-32
End output, 4-32, 4-33, 4-34
Object, 5-37 to 5-40
Request, 4-35
Stored in memory, 5-12 to 5-17
String, 5-18
System, 1-3
Transferred to Integrator, 5-10 to
5-12
Transmit (add), 4-29, 4-30
Transmit (create), 4-30, 4-31
Type 010, 5-37
Type code list, 5-36

FINDVL, 3-3, 3-58
Fixed length data files, 5-33, 5-34
FLOG, 3-2, 3-47
FMUL, 3-3, 3-51
FNOT, 3-3, 3-50
FOR, 3-2, 3-49

FSUB, 3-2, 3-46
Functional failure message, 5-28, 5-29
Functional failure record, 5-26, 5-27
Functional failure record, PPM, 5-30
FWALT, 2-11, 2-15
FWAM, 2-11, 2-17
FWIOA, 2-11, 2-15
FWMAC, 2-11, 2-15

General record format, 5-19
GETC, 3-2, 3-33
Global constant, 2-1, 2-4 to 2-7
Global data, 1-2
Global subroutine, 2-2
Global variable, 2-2
GLOVAR, global variable, 2-11 to 2-25
GTSTAT, 3-2, 3-12
GTTDV, 3-2, 3-38, 3-39

HEADER, 3-2, 3-39
Header record format, 5-21

IDTSCN, 3-2, 3-29, 3-30
IERMSG, 3-2, 3-36
Input/output control system ($IOCS),

1-3

lndex-2

ASCII control mode, 4-40
Calling sequence, 4-5
CLIO disconnect, 4-29
Close a file, 4-27
Device formats, 4-7, 4-8
Devices, 4-3
Driving 1/0 device, 4-7
End of file definition, 4-4
End of record definition, 4-5
EOF mark, 4-23
Error code, 4-4
File end input, 4-31, 4-32
File end output, 4-32, 4-33, 4-34
File request, 4-35
File transmit (add), 4-29
File transmit (create), 4-30
Functions, 4-3
Initialization, 4-6
IOATAB, 4-9
OPEN call, 4-12 to 4-15
Operation principles, 4-1, 4-2
Operator message, 4-28
Page a block into memory, 4-38
READ/WRITE record, 4-16 to 4-18
Rewind magnetic tape, 4-39
Skip a file, 4-22
Skip a record, 4-37

Status check request, 4-24, 4-25
Terminate I/O, 4-18, 4-19
Termination, 4-7
Top of form, 4-2 0
Unformatted write, 4-21
VERIFY /READ, 4-26
VKT transmit, 4-36
Word formats, 4-10, 4-11

Integrator
Disconnect CLIO, 4-29
File end input, 4-31
File end output, 4-32, 4-33, 4-34
File request, 4-35
File transmit (add), 4-29, 4-30
File transmit (create), 4-30, 4-31
Files transferred to, 5-10, 5-11, 5-12
Operator message, 4-28

INTSCN, 3-2, 3-31
INUMBl, INUMB2, 2-12, 2-21
INTERP, 3-3, 3-76
I/O assignment table (IOATAB), 4-9

JOB, 2-11, 2-16

LDFLG, 2-11, 2-19
LOAD, 3-3, 3-63, 3-64
LOTNUM, 2-12, 2-24
LWALT, 2-11, 2-15
LWAM, 2-11, 2-17
LWCPU, 2-11, 2-17
LWMAC, 2-11, 2-15
LWSYS, 2-11, 2-17

MlFDA, 2-8, 2-10
MlFDDA, 2-8, 2-10
MlINIT, 2-8, 2-9
MlWSDA, 2-8, 2-9
Ml WSSC, 2-8, 2-9
MlWSWC, 2-8, 2-9
MACTAB, 5-14, 5-15
Magnetic tape

Rewind, 4-39
Skip file mark, 4-22
Skip record, 4-37
Write EOF mark, 4-23

Magnetic tape files and usage, 5-4 to
5-9
Blocked file format, 5-4, 5-5
MBUP format, 5-8
Organization, 5-4
TDX-generated, 5-6 to 5-8

MANTISSA, 2-11, 2-19
MASTAT, 2-12, 2-24

MASTR file description, 5-1 to 5-40
MEMBSY, 2-12, 2-20
Memory activity table, 5-14, 5-15
Memory map, 5-16, 5-17
MONINT, 3-2, 3-43, 3-44
MOVEDN, 3-2, 3-16
MOVEUP, 3-2, 3-17
MPZERO, 3-2, 3-33
MSG IN, 3-2, 3-7
MSGOUT, 3-2, 3-7, 3-8

NAMEl, NAME2, 2-12, 2-22
NAMEMl through NAMEM6, 2-11, 2-12,

2-20
NIOA, 2-11, 2-16
NMAC, 2-11, 2-14
NSVT, 2-11, 2-14
NTVT, 2-11, 2-13
NUMBl, NUMB2, 2-12, 2-21
NUMBER, 3-2, 3-30, 3-31
NUMERR, 3-2, 3-5
NUMFLG, 2-12, 2-22

Object files, 5-37 to 5-40
DATA/INSTRUCTION, 5-38
File type 010, 5-37
END, 5-40
ENT, 5-40
EXT, 5-39
PROC/CALL, 5-39
START, 5-38

OCTAL, 2-11, 2-18
OFLERR, 2-11, 2-19
ONUMBl, ONUMB2, 2-12, 2-20
OPEN call to $IOCS, 4-12 to 4-15
Operator message, 4-28
OPHL, 2-11, 2-16
OUTCLS, 3-2, 3-5
OUTOPN, 3-2, 3-4
Overlay header format, 5-35

PAGTP, 3-3, 3-57
$PARSE, 3-2, 3-28, 3-29
Pass record, direct current, 5-25
PIDFLG, 2-11, 2-18
PIDPMF, 2-11, 2-15
PGPMF, 2-11, 2-17
PODPMF, 2-11, 2-15
PPM functional failure record, 5-30
PROC/CALL, 5-39
PROCESS, 3-2, 3-19 to 3-25
PUTA, 3-3, 3-70
PUTB, 3-3, 3-72

lndex-3

PUTC, 3-2, 3-15
PUTD, 3-2, 3-14
PUTE, 3-2, 3-18
PUTENG, 3-3, 3-68, 3-69
PUTH, 3-3, 3-73
PUTIME, 3-2, 3-37
PUTO, 3-2, 3-18
PUTW, 3-2, 3-42

RAIDBK, 2-12, 2-24
RAIDER, 2-12, 2-24
RAIDRR, 2-12, 2-22
RELOV, 3-3, 3-55
READ/WRITE record, 4-16, 4-17, 4-18
READW, 3-2, 3-34
Record format, datalog, 5-22
Record format, general, 5-19
Record format, header, 5-21
RELDAT, 2-11, 2-13
REVN, 2-11, 2-16
RSOVC, 3-3, 3-65, 3-66
RSTIO, 2-12, 2-20
RSTTSC, 2-12, 2-25

S488CT, 2-43, 2-51
SAPMCT, 2-43, 2-52
SAVENV, 3-3, 3-73
SCALE, 3-2, 3-44
SCNFIL, 3-2, 3-10, 3-11, 3-12
SDCTO, 2-43, 2-50
SDCTOE, 2-43, 2-50
SDCTl, 2-43, 2-50
SDCTlE, 2-43, 2-50
SDLAF, 2-43, 2-48
SEARCH, 3-2, 3-32
SEIR, 2-43, 2-45, 2-46
SELP, 2-8, 2-9
SFR, 2-43, 2-49
SFVAL, 2-43, 2-47
SIFC, 2-43, 2-48
SIFV, 2-43, 2-48
SIHI, 2-43, 2-51
SIHIE, 2-43, 2-51
SILO, 2-43, 2-50
SILOE, 2-43, 2-50
SINC, 2-43, 2-47
SITE, 2-43, 2-44
SITEQQ, 2-11, 2-13
Skip file mark, 4-22
SLIMO, 2-43, 2-49
SLIMl, 2-43, 2-50
SLML, 2-43, 2-46 •
SMAFLG, 2-12, 2-23

SMF, 2-43, 2-45
SMR, 2-43, 2-49
SMSR, 2-43, 2-45
SMSRH, 2-43, 2-47
SPDA, 2-12, 2-24
SPG, 2-43, 2-48
SPIN, 2-43, 2-45
SPIOER, 3-2, 3-39, 3-40
SPMOD, 2-43, 2-48
SPNUMl to SPNUM6, 2-12, 2-21
SPOPT, 2-12, 2-22
SQ, 2-43, 2-49
SQL, 2-43, 2-49
SSAMC, 2-43, 2-49
STALL, 3-3, 3-66
START (object files), 5-38
STATC, 2-12, 2-21
Status check request, 4-24
Status word description, 4-25
STA VKT, 2-11, 2-15
STEP, 2-43, 2-46
STHC, 2-43, 2-44
STPP, 2-43, 2-47
String files, 5-18
STRIP, 2-43, 2-47
STX, 5-10
Subroutines, system, 1-2, 3-1 to 3-73
SVHI, 2-43, 2-51
SVHIE, 2-43, 2-51
SVLO, 2-43, 2-51
SVLOE, 2-43, 2-51
SVOFFS, 2-43, 2-46
SVT (current station variables), 2-43 to

2-52
SYSINT, 2-8, 2-10
SYSREL, 2-12, 2-24
System memory map, 5-16, 5-17
System variable, 2-2, 2-8
SYSV AR, 2-8 to 2-10
SYXVEC, 3-1 to 3-3

Table
Current station variables (SVT), 2-43
Global constants, 2-4 to 2-7
Global variables, (GLOV AR), 2-11,
2-12
Subroutine transfer vector (SYXVEC),
3-2, 3-3
System global variables (SYSVAR),
2-8
Tester variables (TVT), 2-26 to 2-2 8

TAPMFI, TAPMF2, 2-27, 2-36
TAPMPI, TAPMP2, 2-27, 2-36

Index-4

TATTA, 2-28, 2-41
TBINS, 2-27, 2-37
TBINT, 2-27, 2-37
TCLO, 2-28, 2-38, 2-39
TCPC, 2-27, 2-30
TCR, 2-27, 2-38, 2-39
TDATAL, 2-26, 2-29
TDCDLY, 2-27, 2-30
TDFR, 2-27, 2-34
TDIF, 2-28, 2-38, 2-39
TDLC, 2-27, 2-33
TDLF, 2-27, 2-32
TDLO, 2-27, 2-32
TDLS, 2-27, 2-32
TDOF, 2-28, 2-38, 2-39
TDLR, 2-27, 2-32, 2-33
Terminate 1/0, 4-18, 4-19
Tester variables, 2-26 to 2-28
TGLOBl through TGL040, 2-26, 2-29
THDACT, 2-11, 2-17, 2-18
TIME, 2-11, 2-16
TINDEX, 2-27, 2-29
TIP, 2-27, 2-37
TJOB, 2-28, 2-41
TLP, 2-28, 2-38, 2-39
TLMFC, 2-27, 2-33
TMACTL, 2-27, 2-34, 2-35
TMADSP, 2-35
TMIF, 2-28, 2-38, 2-39
TMOD, 2-27, 2-36
TMOF, 2-28, 2-38, 2-39
TMPIN, 2-27, 2-38
TMSTK, 2-28, 2-41
TMTRl, 2-27, 2-38, 2-39
TMTR2, 2-27, 2-38, 2-39
TMTWl, 2-28, 2-38, 2-39
TMTW2, 2-28, 2-38, 2-39
TODLY, 2-27, 2-31
TOMSTK, 2-28, 2-41
Top of form, 4-21
TOPT, 2-28, 2-40
TOVER, 2-27, 2-31
TP A USE, 2-27, 2-37
TPDD, 2-27, 2-36
TPDF, 2-27, 2-34
TPDR, 2-27, 2-34
TPDS, 2-27, 2-34
TPHL, 2-11, 2-16
TPID, 2-27, 2-38, 2-39
TPOD, 2-28, 2-38, 2-39
TPPO, 2-27, 2-35
Transfer vector, subroutine, 3-1
TRTD, 2-26, 2-29

TRTDS, 2-28, 2-41
TSN, 2-26, 2-28
TSTEP, 2-27, 2-37
TSWITCH, 2-26, 2-28
TSYNC, 2-27, 2-35
TTITLE, 2-28, 2-42
TTT, 2-26, 2-28
TTTK, 2-27, 2-38, 2-39
TTTP, 2-28, 2-38, 2-39
TVALUE, 2-26, 2-28
TVK2, 2-28, 2-38, 2-39
TVP2, 2-28, 2-38, 2-39
TVT, 2-11, 2-14
TVTLG, 2-27, 2-38
TVTLL, 2-27, 2-36
TWAIT, 3-2, 3-42

UMSGW, 3-2, 3-8
UPDATE, 3-3, 3-66, 3-67, 3-68
USVENV, 3-3, 3-73

Variable length record data files, 5-18
to 5-20
File format, 5-20
Record format, 5-19

VERIFY /READ, 4-26
VKT transmit, 4-36, 4-37

WAIT, 3-2, 3-4
Write (unformatted), 4-21
WRITEW, 3-2, 3-35
Writing from FACTOR, 5-32
Word formats (IOATAB), 4-10, 4-11
WWAIT, 3-3, 3-62, 3-63

$IOCS, see input/output control system
$PARSE, 3-2, 3-28, 3-29

Index-5

Feedback Form

Please send us your comments. They will help us produce better publications for you. We are interested in
comments on accuracy, completeness, organization, clarity, audience suitability, illustrations, and detail
level. If you choose to identify yourself (lower left), we will acknowledge your comments. All comments
are confidential, FTSG property.

Optional

Title ___________________ _

Address-------------------

Phone ___________________ _

Telex ___________________ _

l=AIRCHIL..O
Test Systems Group

Publications Department Use Only

P/N 57518702

Rev --------- Date 8/79. ______ _

Technical Reviewer Date Response Sent Date

634700-1

Business Reply Mail
First Class Permit No. 5699 San Jose, California

Postage Will Be Paid By

Fairchild Test Systems Group
Technical Publications
1725 Technology Drive
San Jose, Ca. 95110

111111 No Postage
Necessary If
Mailed In The
United States

	000
	001
	002
	003
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	1-01
	1-02
	1-03
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	2-45
	2-46
	2-47
	2-48
	2-49
	2-50
	2-51
	2-52
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	3-47
	3-48
	3-49
	3-50
	3-51
	3-52
	3-53
	3-54
	3-55
	3-56
	3-57
	3-58
	3-59
	3-60
	3-61
	3-62
	3-63
	3-64
	3-65
	3-66
	3-67
	3-68
	3-69
	3-70
	3-71
	3-72
	3-73
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	A-01
	A-02
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	C-01
	C-02
	C-03
	I-01
	I-02
	I-03
	I-04
	I-05
	replyA
	replyB

