FACTOR

FOR SENTRY 500/510/11

A PROGRAMMED INSTRUCTION MARUAL

© FAIRCHILD CAMERA AND INSTRUMENT CORP. 1976

FAIRCHTUD SYSTEMS TECHNOLOGY - 1725 TECHNOLOGY DRIME: SAN JOSE, CALIFORNIA 90110

TABLE OF CONTENTS

An Introduction to FACTOR	1-1
Lesson Two: FACTOR Relational Logic and Branching	2-1
Lesson Three: Numbers, Compiled and Printed	3-1
Lesson Four: FACTOR Arithmetic Expressions	~4 - 1
Lesson Five: Pin Definitions	5-1
Lesson Six: Local Memory Management	6-1

HOW TO USE THIS MANUAL

The text of this manual is self-instructional permitting the reader, as a student, to learn at his own rate. To accomplish this, the text is divided into information frames, reinforcement frames, and answer frames. The information frames, as might be expected, provide the reader with data relating to a particular topic. To reinforce the data presented and to verify your understanding of it, subsequent frame(s) will rephrase a statement of fact and require you to fill in a missing word or group of words, or to respond with an answer to a question. To validate your response, turn to the next page and check the corresponding numbered answer frame. Afterwards, return to the next sequential information frame and continue your study.

1.	This is an "information" frame.					 •
1.	rms is an "information" frame.					
1						
ĺ						
]						
l						
1						
1	•					
1						
				_		
2.	A "reinforcement" frame is used to			·	<u> </u>	
Z.	reinforce data or information					
l			•			
	presented in previous "information"					
1	frame.					
l						
1						
j				,		
1						
1						
ł						
j						
3.	This is a day					
3.	This is a <u>Rein Forcement</u> frame.					
	irame.					
1						
1						
l						
ĺ						
1						
4.	After well-deting your answer for					
4.	After validating your answer for frame 3, you should continue					
1	trame 3 voli spolito continue	1				
1	and dien have	- 1			•	
	reading here.					
	reading here.					
	reading here.					
	reading here.					
	reading here.					
	reading here.					
	reading here.					
	reading here.					
	reading here.					

5.	This can be information or reinforcement frame.	
6.	So can this one.	
_		√
7.	This one too.	3. Reinforcement This is the "answer"
		frame for frame 3 on the previous page.
-		page.
8.	If you understand the difference between "information", "reinforcement", and "answer" frames then begin the lesson on Page 1, otherwise go back to frame 1 of this exercise.	
	to frame 1 of this exercise.	

LESSON 1

TOPIC:

AN INTRODUCTION TO FACTOR

GIVEN:

- 1. The Booklet
 AN INTRODUCTION TO FACTOR
- 2. Pencil and eraser.

PERFORMANCE:

Student proceeds through the numbered frames, sequentially.

Student writes short responses in the response frames, compares his responses with the data provided in the answer frames and corrects his responses to agree with the furnished answers.

STANDARD:

The student provides 100% correct responses within 20 minutes.

AN INTRODUCTION

TO

FACTOR*

A COMPILER LANGUAGE

FOR THE

SENTRY 600

SENTRY 610

SENTRY II

*Herein referred to as "S600 FACTOR"

1. FACTOR is a human language. People understand it, machines don't.	•
2. After you have learned to write a FACTOR program, it will have to be translated (compiled) before the Sentry System can react to the information in the program.	
3. When the FACTOR program has been compiled (translated) the end result could be called machine language. Some people learn to read this (people are smarter than machines)	
4. SO ARE YOU!!!! (But you're probably not nearly as ornery, stubborn, mule-headed, cussedetc.,etc., etc.,)! You will learn how to have your FACTOR program translated (compiled) in another lesson. This lesson introduces you to the FACTOR language.	

5. EVERY

Factor statement ends with a semicolon.

6. EVERY

program written with S600 Factor starts with a SET PAGE number; statement.

7. For example

SET PAGE 10;

is a valid opening statement for an S600 FACTOR program. Until you learn more FACTOR, don't use a number larger than 1024;

8. Try writing a statement that can start an S600 FACTOR program.

SET PAGE 200:

9. Take a look at your answer to frame 8. Did you make any spelling errors? Did you leave at least one space after SET and after PAGE? Did you remember the semi-colon? Did you use solid capitals?	•
	•
10. If you wrote the statement correctly, the compiler would be able to translate (compile) it correctly.	
11. FACTOR is a compiler language using	
English language-type statements.	
	8. SET PAGE 1024;
English language-type statements.	8. SET PAGE 1024; (Any number between 1 1024 is satisfactory during this lesson.)
English language-type statements.	(Any number between 1 1024 is satisfactory

12. Circle all true statements. a. FACTOR is a machine language. b. FACTOR is a compiler language. FACTOR is a programming language for Sentry test systems. FACTOR is a universal compiler language used by the semiconductor industry.	
14. ALL FACTOR statements end with a	
	1400 AND 14
1. Arithmetic and logical control statements. 2. Test control statements, which set up and execute tests on electronic devices.	
16. You can learn much about the arithmetic and control statements without even seeing a machine Let's start right now.	

17. $A = 6$ is algebra $A = 6;$ is a FACTOR statement.	13. b and c should be circled.
18. The FACTOR statement A = 6; is not a simple statement of equality.	If you wrote the word "semicolon", erase it and replace it with ";".
19. A = 6; means store a value of 6 in a location named A.	
is a variable assignment statement.	

21. You don't have to know where the location called A is. That is the Sentry's problem.	
22. Once you have told (programmed) the system that a location, that you name, contains a value, the $\sqrt{\mu l_{\mu} \varphi}$ is stored in the named $l_{OCATion}$.	
23. $A = 6;$	
is a FACTOR	•
variable Assignment statement.	
24.	

25. A + 1 is an algebraic expression. It can be used in FACTOR as an algebraic	•
expression.	
26. A = A +'1; is a legal FACTOR statement, but it is not an algebraic equation.	value location
27. A = A+ 1; is legal in FACTOR because it is a variable assignment statement, not an equation.	23. assignment
28. A = A + 1; means Fetch the present contents of A Add 1 to the number fetched Assign the sum to location A	24. (a value of) 6 location A

29. Interpret the following:

$$A = 6;$$
 $A = A + 1;$
 $A = 6 + 1 = 7$
END;

30. In framé 29, the statement

$$A = A + 1$$
; means

fetch Add	the 1	valu	e <u>6</u>		from	<u>A.</u>	Clocation	1
Store	the	sum	in	A	LOCA	Tion		

31. In frame 29, the final value of A (Location) (before END;) is _____.

32. Only the system knows where A is.

33. Is A = A + 1;

"an algebraic equation?

No!

34. A + 1 = A; is a

MISTAKE

(and the compiler will call it a syntax error).

30.

6 (location) A

1_

(location) A

35. <u>Location of a FACTOR variable must be</u> defined by a <u>single variable</u> identifier.

31. I have no idea, but I know that location A contains 7.

36. Circle the legal FACTOR statements.

$$C = 25;$$
 $A = A + C;$
 $14 = D;$

C + 2 = 27;

37. Perhaps you wondered about 14 = D;

33. NO

This is <u>incorrect because</u> the <u>variable</u> identifier must always be on the <u>left</u> of the equal sign.

38. A <u>variable assignment statement</u> can generally be described by

variable = expression;

39. In frame 34, because the words "variable" and "expression" are written in lower case letters, the programmer is free to use his own variable identifier and his own expression.

40. variable = expression;
is the SYNTACTICAL format of the
variable assignment statement. SYNTAX
is the set of rules for a language.

36.

C = 25;A = A + C;

41. Every S600 FACTOR program must start with SET PAGE number; Every FACTOR program ends with END:	•
Every FACTOR program ends with END;	
42. The words supplied for the SET PAGE number; statement imply, syntactically, that you must write SET PAGE exactly as shown (because of the capitals) but that you may supply your own number.	
43. Syntax is the set of rules for a	
43. Syntax is the set of rules for a language.	
44. FACTOR is a (human/machine) <u>human</u> language.	

45. FACTOR is a (compiler/machine) <u>Compiler</u> language.	41.
	SET PAGE
46. FACTOR is a procedural test language	
used universally by the semiconductor industry. (True/false) False.	
	•
	·
47. Every FACTOR statement ends with a	43. SYNTAX
Every FACTOR program ends with $\overline{\mathcal{E}\mathcal{N}\mathcal{D}}$.	
48. X = 27; is a FACTOR VAVIABLE ASSIGNMENT statement.	44.
	<u>human</u>

49. variable = expression; where variable must be a (single variable identifier/any algebraic expression) 510967 Variable Identifier	45. <pre>compiler</pre>
50. You may make up your own names (for variable identifiers) with very few exceptions.	46. <u>false</u>
51. You won't have to memorize the rules for naming variables because: 1. They are simple. 2. The compiler will warn you if you violate a rule. 3. As you learn more FACTOR statements the reasons for the rules tend to become obvious.	47. <u>;</u> <u>END</u>
52. The following are acceptable variable identifiers: A CHISAUARE ALARGEIDENTIFIER A1B2C3D4 PHOENIX	variable assignment

53. The <u>FACTOR</u> compiler <u>accepts</u> only the first eight characters of a variable 49. identifier; ignoring any additional characters. single variable identifier 54, Thus ALARGEIDENTIFIER ALARGEID ALARGEIDEA ALARGEIDEAINDEED are all the same variable name that the compiler recognizes as ALARGEID . 55. The compiler will not warn you if you use more than eight characters to identify a variable. 56. It is good practice, since the usage of identifiers is totally determined by the programmer, to use names (identifiers) that represent the meaning or use of a variable.
TEMP, for instance, could be the name given to a working variable. COUNTER might be the name given a variable that is used as a general purpose counter, and so on. (This does not imply, however, that FACTOR attaches any significance to these names. They are purely artificial devices that aid the user's memory and make a program more intelligible.)

57. If you use a variable without first assigning a value to it, the initial value becomes zero.

An example is in frame 58.

58. B = A + 1;

If this statement is the very first reference to A in the program, zero (0) is stored in A. The statement B = A + 1; results in 1 being stored in location B.

54.

ALARGEID

59. SET PAGE 1024;

B = 9;

B = A + 4;

END;

8 (Location)

Contains 4

60. Refer to frame 59. The last value stored in the location called B is μ

61. The following are not acceptable variable identifiers: 123 (Identifiers may not start with a digit) AB C (Special characters, including blanks, are not allowed) END (Reserved words are illegal)	•
62. You are not finished with this lesson until you look at the rules on the next page.	
	<i>:</i>
	60. <u>4</u>
	(If you wrote down 9 or 13, repeat frames 57-60)

RULES FOR NAMING VARIABLES

- A <u>variable</u> name can be of any <u>length</u> up to <u>eight</u> characters.
 Any additional <u>legal</u> characters are <u>ignored</u>.
- 2. The first character must be a

Letter (English alphabet only)
or
(often called a "pound sign").
or
\$ (The dollar sign)

3. The rest of the characters can be any combination of

Any character allowed for the first character (letter, #, \$).

or
Numbers (digits)
or
.__(Period).

4. The following words are reserved for the system and are, therefore, not acceptable variable identifiers.

AND DCL GOTO PAUSE -WR ASSIGN DISABLE GTPGEN WRITE ATDO IF PGM XCON BEGIN ELSE INSERT XCONF RD BLOCK ENABLE LEQ READ XPMU BRANCH END LTREM ΒY EOR MEASURE RESET CALL ΕQ NEG SELECT CGEN EXEC SET NEQ CONF SOCKET FOR NOISE CONN FORCE NOT SUBR CLEAR FUNCT onTHEN CPMU GΕ OR THRU

LESSON TWO

TOPIC:

FACTOR RELATIONAL LOGIC AND BRANCHING

GIVEN:

l. The Booklet

FACTOR RELATIONAL LOGIC AND BRANCHING

2. Pencil and eraser

PREREQUISITE: COMPLETION OF LESSON ONE

PERFORMANCE:

Student proceeds through the number frames responding to branching instructions.

Student writes short responses in the response frames, compares his responses with the data provided in answer frames and corrects his responses to agree with the furnished answers.

Standard: The student provides 100% correct responses within one hour.

$\mathtt{F} \ \mathtt{A} \ \mathtt{C} \ \mathtt{T} \ \mathtt{O} \ \mathtt{R}$

RELATIONAL LOGIC

AND

BRANCHING

Special Notice to YOU the student

If a friend of yours offers to help you in a task, don't offend him by reminding him that the nails go into the board "pointy-end first."

On the other hand, when you are dealing with a computer, you often have to be ridiculously specific.

Some of the frames in this lesson might tend to aggrevate you.

e.g. Getting angry with a machine provides it with correct data <u>False</u> (true/false)

If this frame made you angry then programming might not be your bag.

1. The <u>Sentry System</u>, in response to <u>FACTOR programs</u>, can react as if making <u>logical decisions</u>.

2. A= expression is a variable

Assignment statement.

3. The English statement "16 is greater than 4" is True (true/false).

4. The FACTOR variable assignment statement A=16 GT 4; stores the value of the expression in the location called A.

5. GT is a relational operator meaning greater Than	
6. A=16 GT 4; requires that a value, indicating that the relation 16 GT 4 is true, be Mocation A.	2. <u>assignment</u>
7. The value stored when variable = relational expression is 1 for true or Ø for false.	3. true (Watch it!!STUPID was not one of the options)
8. The relational operators are: Symbol Operation EQ equal GE greater than or equal GT greater than LT less than LEQ less than or equal NEQ not equal	

9. Practice by completing frames 10 through 12	5.	(is) greater than
10. GIVEN: SET PAGE 1; A=6; B=1; C=A LT B; END;	6.	stored in (location) A
Location C contains		
11. SET PAGE 1: A=6; B=1; C=A LT B; 6 \$\times 1 \text{False} \(\sigma = \text{G} \) D=A GT B; 6 > 1 \text{True} 0 = 1 E=D GE C; 1 \geq 0 \text{True} 2 END; Location E contains 1		
12. Circle the true relationships 5 NEQ 6 9 EQ 2 14 LEQ 13 -4 LT 3 -4 < 3 12 GE 6 9 GT 9		

13.	If you had trouble with frame 11 No Trouble GOTO frame 15.	
14.	GOTO frame 16	10. <u>Ø</u>
15.	<pre>In frame 11, C is Ø because 6 LT 1 is false, D is 1 because 6 GT 1 is true. Therefore E = D GE C; is E = 1 GE Ø; True, therefore E=1.</pre>	11. <u>1</u>
16.	Fill in the blanks	12. 5 NEQ 6 12 GE 6 -4 LT 3

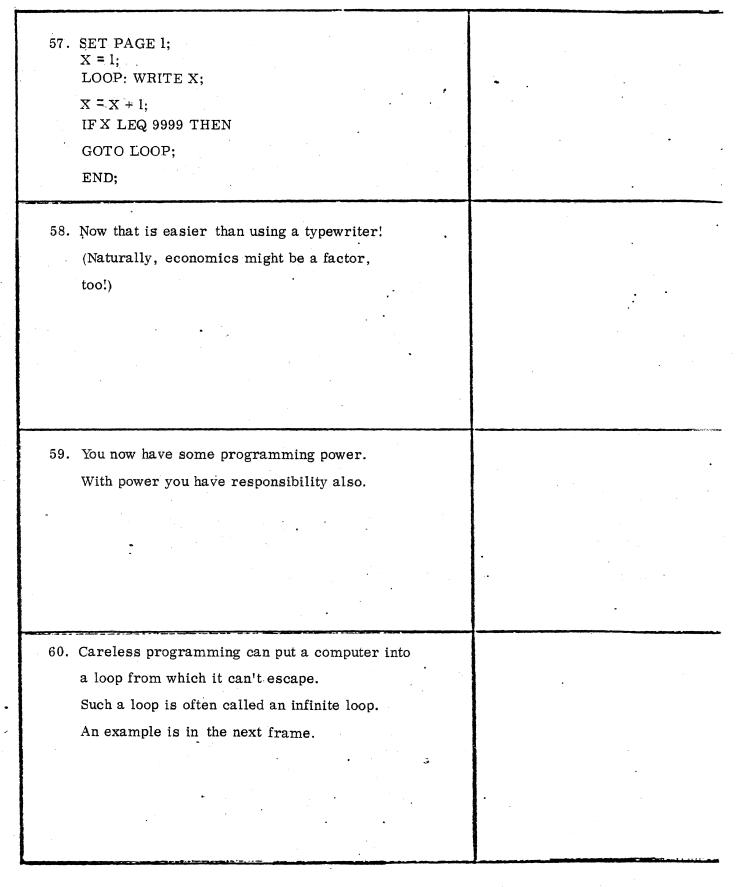
Execution of this statement causes the word TRUE to be written out on an output device.		GT not equal GE EQ less than LEQ	
20. IF 7 NEQ 28 THEN WRITE 'TRUE';	16.		
	ACT THE CONTRACT OF THE CONTRA		
to the statement in frame 18 if you program as shown in frame 20.			,
19. You can cause the Sentry System to respond			
	·		
true	,		
l8. IF 7 NEQ 28 then write 'true'.		e e e e e e e e e e e e e e e e e e e	
= means <u>Assign to VAVIA</u> ble A VALUE	•		
17. = means 4sscar to Variable a			

21. <u>IF relation THEN</u> statement;	assign a value to or store a value in head point
22. According to FACTOR syntax you, the programmer, must fill in (refer to frame 21) the relation and a statement.	18. true
23. IF 7 EQ 28 THEN WRITE 'TRUE'; Is the relation (ship) true?	
24. Should a <u>computer</u> executing the statement in frame 23 write out anything at all? **No output	

25. If 7 is less than 6 then write true in the blank	
26. You didn't have any choice, but to ignore the blank in frame 25, and proceed to the next frame.	relation (ship) and a (FACTOR) statement.
27. If 2 EQ 2 then write true in the blank True.	23. NO
28. After you filled in the blank you still had no choice but to proceed to the next frame.	24. NO

29.	If 2 EQ 2 then GOTO frame 33.	25.
30.	You must have a problem of some sort or you wouldn't be reading this frame. Go back to frame 29 and do what it says to do.	
31.	The branch you just executed is (conditional/unconditional) <u>unconditional</u>	27. true
32.	GOTO frame 38.	

33. You just performed a conditional branch. You branched from frame 29 to frame 33 because the condition in frame 29 is true.	
34. The <u>IF - THEN statement</u> is a form of Conditional branch.	
35. Perhaps you feel that a conditional branch requires a GOTO.	31. unconditional
36. IF relation THEN A=6; A=A+1; Now, if the relation is true, A=6 is executed. If the relation is false, the program branches around A=6 and does not execute it. The branch is conditional.	


37.	GOTO frame 31.	
·		•
38.	The simple GOTO is an <u>uncondition</u> L. branching statement.	34. conditional
39.	The simpliest form of the GOTO statement is GOTO label;	
40.	A <u>label</u> is a <u>symbolic statement</u> identifièr.	·

41.	You can <u>make up label names using</u> the same rules you learned for naming variables.	
42.	Once you have named a variable, that name cannot be used as a label and vice versa. Fortunately, the compiler knows this and issues warnings as shown in the next two frames.	38. unconditional
43.	O00001 SET PAGE 1; O00002 TURKEY=1; O00003 GOTO TURKEY; O00004 TURKEY: END; TURKEY USE ERROR - DEFINED LABEL O001B COMPILATION ERRS	
44.	000001 SET PAGE 1; 000002 DUCK: A=2 000003 DUCK=4;	
	DUCK USE ERROR - DEFINED LABEL 000004 END; 0001B COMPILATION ERRS	

45. A l <u>abel</u> is a s <u>ymbolic statement</u> identifier.	
46. LOOP: WRITE X; Loop is a <u>symbolic</u> statement identifier which identifies the statement immediately following it (WRITE X;).	
47. Note (frame 46) that a colon was used to separate (delimit) LOOP from WRITE.	
48. But the colon is not part of the label and is not used when the label is referenced. E.g. LOOP: WRITE X; IF X LEQ 6 GOTO LOOP;	

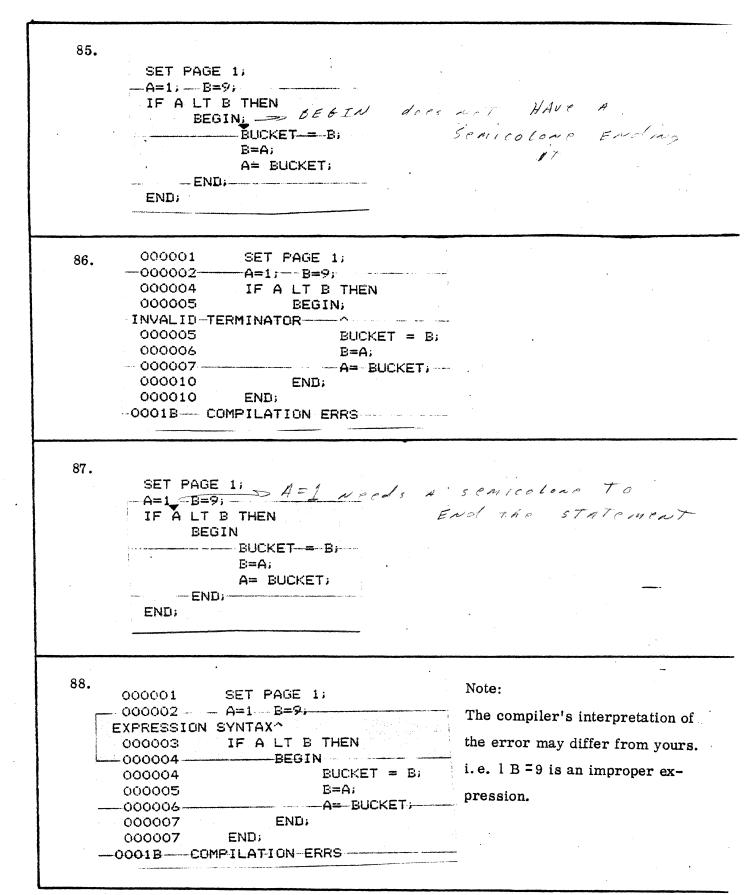
49. A label is a symbolic statement identifier.	
50. A label is delimited by a but it does not contain a when reference	46.
51. Label names follow the same rules as	
52. The same name can be used, in the same main program for both a label and a variable. (true/false) False	

49.
symbolic
identifier
<u>identifier</u>
50.
<u> </u>
<u>:</u>
51.
variable
1
52.
52.
52. false

61. SET PAGE 1;	
LOOP: X=1;	
WRITE X;	•
X=X+1;	
IF X LEQ 9999 THEN	•
GOTO LOOP; END;	
62. If you see why frame 61 is an infinite loop	
GOTO frame 66.	
63. On the first pass thru the program, X starts as	
I then increments to 2. The relation is true.	
The program branches to loop which forces X	
to 1, again. X is never assigned a value greater than 2.	
A is never assigned a value greater than 2.	
64. If you don't see why 61 is an infinite loop THEN BEGIN	
SHAFT=1;	

IF SHAFT LT 2 THEN

GOTO frame 60;


66. The simplest form of the IF-THEN statement is IF relation THEN statement 1; Statement 2; (note: assume statement 1 is not a COTO label statement). 67. Refer to frame 66 If the relation is true, Statement 1 is executed (true/false) True Statement 2 is executed (true/false) + rue 68. Refer to frame 66 If the relation is false, Statement 1 is executed (true/false) + rue Statement 2 is executed (true/false) + rue	65.	I hope you lived through the last page.			
IF relation THEN statement 1; Statement 2; (note: assume statement 1 is not a GOTO label statement). 67. Refer to frame 66 If the relation is true, Statement 1 is executed (true/false) True Statement 2 is executed (true/lalse) True 68. Refer to frame 66 If the relation is false, Statement 1 is executed (true/false)			•		
IF relation THEN statement 1; Statement 2; (note: assume statement 1 is not a GOTO label statement). 67. Refer to frame 66 If the relation is true, Statement 1 is executed (true/false) True Statement 2 is executed (true/lalse) True 68. Refer to frame 66 If the relation is false, Statement 1 is executed (true/false)			,		•
IF relation THEN statement 1; Statement 2; (note: assume statement 1 is not a GOTO label statement). 67. Refer to frame 66 If the relation is true, Statement 1 is executed (true/false) True Statement 2 is executed (true/lalse) True 68. Refer to frame 66 If the relation is false, Statement 1 is executed (true/false)					
Statement 2; (note: assume statement l is not a GOTO label statement). 67. Refer to frame 66 If the relation is true, Statement l is executed (true/false) True Statement 2 is executed (true/false) True 68. Refer to frame 66 If the relation is false, Statement l is executed (true/false) Full 69. Statement l is executed (true/false)	66.	The simplest form of the IF-THEN statement is			
(note: assume statement l is not a GOTO label statement). 67. Refer to frame 66 If the relation is true, Statement l is executed (true/false) True Statement 2 is executed (true/false) True 68. Refer to frame 66 If the relation is false, Statement l is executed (true/false) True		IF relation THEN statement 1;			•
label statement). 67. Refer to frame 66 If the relation is true, Statement 1 is executed (true/false) True Statement 2 is executed (true/false) True 68. Refer to frame 66 If the relation is false, Statement 1 is executed (true/false) False		Statement 2;			
67. Refer to frame 66 If the relation is true, Statement 1 is executed (true/false) Statement 2 is executed (true/false) 68. Refer to frame 66 If the relation is false, Statement 1 is executed (true/false)		(note: assume statement l is not a GOTO .	•		•
If the relation is true, Statement 1 is executed (true/false) True Statement 2 is executed (true/false) True 68. Refer to frame 66 If the relation is false, Statement 1 is executed (true/false) Table 1	,	label statement).			
If the relation is true, Statement 1 is executed (true/false) True Statement 2 is executed (true/false) True 68. Refer to frame 66 If the relation is false, Statement 1 is executed (true/false) Table 1					
If the relation is true, Statement 1 is executed (true/false) True Statement 2 is executed (true/false) True 68. Refer to frame 66 If the relation is false, Statement 1 is executed (true/false) Table 1					·
Statement l is executed (true/false) True Statement 2 is executed (true/false) True 68. Refer to frame 66 If the relation is false, Statement l is executed (true/false) Table False	67.	Refer to frame 66			
Statement 2 is executed (true/false) True? 68. Refer to frame 66 If the relation is false, Statement 1 is executed (true/false) FALSE		If the relation is true,		• "	
68. Refer to frame 66 If the relation is false, Statement 1 is executed (true/false) FALSE		Statement l is executed (true/false) True			
If the relation is false, Statement 1 is executed (true/false) FALSE		Statement 2 is executed (true/false)			
If the relation is false, Statement 1 is executed (true/false) FALSE			•		
If the relation is false, Statement 1 is executed (true/false) FALSE					÷
Statement l is executed (true/false) FALSP	68.	Refer to frame 66			
		If the relation is false,			
Statement 2 is executed (true/false)		Statement 1 is executed (true/false) FALSP			
	•				

69. Often, it is desirable to execute more than one statement if the relation is true.	•
70. This can be accomplished by nesting the statements between BEGIN and END;	
71. Look closely at frame 70. Is there a semicolon after BEGIN? No Is there a semicolon after END?	67. true true
72. Past experience shows that many programmers forget the information in frame 71 IF N LT 2 THEN BEGIN N=N+1; GOTO frame 71; END;	68. false true

1	
73. If the relation in frame 74 is true, statements	
1 thru n are executed before statement X.	•
If the relation is false statements I thrun are	•
not executed (i.e. program branches directly	
to statement X.)	•
74. IF relation THEN	
BEGIN	
Statement 1;	
Statement 2;	
Statement n	
Statement n;	
END;	
Statement X;	
75. If statement n in frame 74 is a GOTO label statement,	71.
Statement X (must, cannot, might) Might	no
be executed.	yes
	•
•	•
76. The correct response for frame 75 requires you to	
realize that the location of the label could cause	•
a branch that bypasses statement X;	
	•

77. The "END", statement that closes a nest of statements started by "BEGIN" does not end the program.	
78. A FACTOR program may contain more than one ''END;''statement. (true/false)	
79. If you fail to close the group of statements started with "BEGIN", all statements following "BEGIN" are seen by the compiler as inside the nested group. The next "END;" card would close the group.	75. <u>might</u>
80. Fortunately, the compiler counts the number of	
80. Fortunately, the compiler counts the number of "END:" statements in your program. If it reads too few, it writes END OF FILE INPUT and points an arrow at the last statement it read.	

81. 000001 SET PAGE 1; 000002 A=1; B=9; 000004 IF A LT B THEN 000005 BEGIN, 000005 BUCKET =B; 000006 B=A; 000007 A=BUCKET; 000010 END; END OF FILE INPUT	
82. In frame 83 is an example of a properly ended program. Note the statement ''0000B COMPILATION ERRS'' (the ''B'' reminds you that the number of errors is printed in Octal)	78. <u>true</u>
83. 000001 SET PAGE 1; 000002 A=1; B=9; 000004 IF A LT B THEN 000005 BEGIN 000005 BUCKET =B, 000006- B=A; 000007 A=BUCKET; 000010 END; 000010 END; 0000B COMPILATION ERRS	
84. In the following frames are examples of coding. Each example is followed by a compiler listing. Try to spot the errors in each example before ''peeking'' at the compiler listing.	


```
89.
    SET PAGE 1;
    A=1; B=9;
    IF A LT B
         BEGIN
        - BUCKET = B; -
             E=A;
             A= BUCKET;
       END; ---
    END:
     000001 SET PAGE 1;
90.
    Note:
    000004 IF A LT B
000005 BEGIN
                                     The compiler does not detect that
    STATEMENT-SYNTAX-
                                     "THE N" is missing until it reads
                       BUCKET = B;
     000005
     900009
                       E=A;
                                     "B" of BEGIN.
    -000007--
                    - A=-BUCKET;
     000010
                   END;
     000010 END;
   --- OOO1B - --- COMPILATION ERRS
91.
    SET PAGE 1;
   - A=1; -- B=9;- -- --
   IF A LT B THEN
       BEGIN
            - BUCKET---B;---
             B=A: = Is NOT Semicolane
             A= BUCKET;
       END;
    END:
92.
  000001
           SET PAGE 1;
  -000002-
           —A=1;—B=9;
                                     You expected maybe 'i mproper
  000004 IF A LT B THEN
000005 BEGIN
                                     semicolon'?
 -000005-
                  BUCKET = B;
  000006
 EXPRESSION SYNTAX
 _000007 ____ A= BUCKET;
  000007 END;
  000007 END;
 OOO1B COMPILATION ERRS
```

93.	
SET PAGE 1; A=1; B=9; IF A LT B THEN BEGIN BUKCET = B; B=A; A= BUCKET; END;	
None	•.
94. 000001 SET PAGE 1; -000002	Quote: "Compiler quite happy pounding on pointy end of nail". — Fucius Kahn
95. The program in frame 94 executes end up with zero stored in A. You see B i stored in BUKCET.	
96. END;	

LESSON THREE

TOPIC: NUMBERS, COMPILED AND PRINTED

GIVEN:

1. The Booklet

NUMBERS, COMPILED AND PRINTED

2. Pencil and eraser

PREREQUISITE: COMPLETION OF LESSONS ONE AND TWO

PERFORMANCE:

Student proceeds through the number frames responding to branching instructions.

Student writes short responses in the response frames, compares his responses with the data provided in answer frames and corrects his responses to agree with the furnished answers.

Standard: The student provides 100% correct responses within 30 minutes.

NUMBERS,

COMPILED

AND

PRINTED

I. Integers may be entered by variable	
assignment statements	
For instance	
DECINT=8;	
2. The FACTOR compiler recognizes a number	
as Octal if it is immediately followed by B.	
For instance	
OCTINT=1ØB;	
3. No imbedded characters are allowed in an	
integer or between an octal integer and B.	
4. INTEGERS	
8 8 Ø 1ØB 2.000	
+9 27_B	
+1ØB 9_B +71	
-77B	

5.	There is a <u>limit</u> to the magnitude of integer inputs. It is 37777777B or, in decimal form 8388607.	
6.	ACCEPTABLE UNACCEPTABLE +8388607 +8388608 -3388607 -8388608 +37777777B +40000000B 37777777B 40000000B -37777777B -40000000B	
7.	There is no compiler warning if you enter an integer that is too large. See frame 8.	
8.	This entry A=8388608; results in A=-1; GOTCHA!!!	

9.	Decimal numbers may be programmed with a fractional part preceded by a period. Octal numbers cannot. The string cannot exceed 8388607.	
10.	Acceptable Unaccept able 20.2 37.1B 838860.7 838860.8 999.999 99999.99 .00002 99999.99	
11.	No number can end with a period.	
	Acceptable Unacceptable 88.0 88.	
12.	Circle the unacceptable input values. 100.1 37.77B 9.0 40000000 1,024	

13. Decimal numbers may be followed by a "power of ten" multiplier specified as E followed by an integer. An example is in frame 14.	
l4. 17E6 means 17 times 106 15. Numbers expressed as shown in frame 14 are often called "exponentials" or are said to be in "engineering format".	
l6. The exponent (following the E) must be a decimal integer. It can be signed or unsigned. FACTOR accepts an unsigned integer as positive.	12. UNACCEPTABLE 37.77B 8388607.1 267. 40000000 34218B 1,024

	17.	ACCEPTABLE UNACCEPTA 2EIØ 2EIØB +2.4E-IØ +2.4E-IØ.1 -6EØ3 -6.EØ3 -14E+2 -14BE+2 8388607 E2 8388608E2	ABLE	
	18.	NOTE 83886Ø7E2 is acceptable 83886Ø7ØØ is not!!!		

popular designations designations of the Charlest George Association and the Control of the Cont	19.	Exponential values can exceed the limit for integers. (true/false)		
The state of the s				
	20.	There is a limit, even for exponentials. The maximum range of FACTOR numbers is (approximately) 2.7105E-20 <th></th> <th></th>		

flor The cau	CTOR stores all numbers as ating point numbers. as A= 100; B= 144B; C= 1E2; ase identical data to be stored in B and C.	
is <u>l</u> of <u>r</u>	e mantissa of the floating point format 6 (binary) bits. Therefore, the resolution numbers stored in your FACTOR program part in 65535.	
sen on t	ch more than you will need for testing miconductor devices. But if you insist crying to add 65535 and 0.1, you can ceed in wasting the computer's (and r) time.	19. <u>true</u>
1	numerical format resulting from WRITE ements is different, but simpler.	

25.	ONLY FACTOR WRITE STATEMENTS	
	TO THE LINE PRINTER OR THE VIDEO	
	SCREEN ARE WITHIN THE SCOPE OF	
	THIS LESSON.	
26.	The general form for writing a numeric	
	output is	
	WRITE (LP) expression;	
	to write to the line printer	
	or	
	WRITE (TTP) expression;	
	to write to the video screen	
27.	TTP is actually a mnemonic for TeleType	
	Printer. Most systems use a VKT (Video Key-	
	board Terminal) which is a compatible alternative	
	to the teletype. Hence TTP can mean the video	
	screen of the VKT.	
20	WDITE (ID) commende	
20.	WRITE (LP) expression;	
	WRITE (TTP) expression;	
	always	
	writes a decimal number	
	Manage Self Manage Community Community Self Community Self Self Self Self Self Self Self Self	
	on the appropriate device	

29.	consider: SET PAGE 1; A=10B; WRITE (LP) A; END;				
30.	The program in frame	e 29 prints	·		
31.	consider: SET PAGE 1; B= -8; WRITE (LP) B; END;	•			
32.	The program in frame	31 writes			

33.	The plus sign is suppressed for positive integer printouts. The minus sign is not. Integer printouts are limited to four characters.	
34.	The maximum positive number that the LP or TTP can print out is 9999. The maximum negative is -999.	-
A	Consider: SET PAGE 1; X= 16384; WRITE (TTP) X; END;	
	The program in frame 35 writes +1.638E+04 on the TTP.	

37	Is 16384 an integer? Yes		
01.	Does it print as an integer? No		•
	boos it print as an integer?		
	·		
38.	How many characters were	34.	
	printed out in frame 36?	9999	
	.10	<u>-999</u>	
		·	
39.	Non-integer printouts always appear as a signed		
	four-digit decimal number between 1,000 and 9,999		
	with a signed two digit exponent.		
	Plus signs are not suppressed.		
	·		
40.	Consider:		
	SET PAGE 1;		
	WRITE (LP) 409.6;		
	END;		
	This program prints 4.096 E+02		
	on the line printer.		

41. In f	rame 42, write the given num	nber as	37.
it w	ould appear on the line prin	ter or	yes
vide	o screen.		no
	•		
42.			20
Give	n Output		38.
<u>-27 I</u>			<u>10</u>
+21E 1 3 008			
<u>-6.0</u>	7 -6.070 E-00		
43. Num	bers printed out are		
	inded off", not truncated.		•
	The state of the s	•	
			·
44.			40.
11.	END		
/Tho			+4.096E+02
	answer to frame 42 is on		
the	next sheet).		

	42. Given Output
	-27 B -Ø23
•	$+21E1$ $21\emptyset$ $13\emptyset\emptyset\emptyset$ $+1.300E+\emptyset4$
	-6.07 $-6.070 E - \emptyset \emptyset$
e e e e e e e e e e e e e e e e e e e	
•	
·	

LESSON FOUR

TOPIC:

FACTOR ARITHMETIC EXPRESSIONS

GIVEN:

- 1. The Booklet FACTOR ARITHMETIC EXPRESSIONS
- 2. Pencil and eraser

PREREQUISITE: COMPLETION OF LESSONS ONE, TWO AND THREE

PERFORMANCE:

Student proceeds through the number frames responding to branching instructions.

Student writes short responses in the response frames, compares his responses with the data provided in answer frames and corrects his responses to agree with the furnished answers.

Standard: The student provides 100% correct responses within 40 minutes.

FACTOR
ARITHMETIC
EXPRESSIONS

1.	Somewhere, at some time, you probably learned that XY is the product of a variable named X and a variable named Y. In other words, XY means X times Y.	
2.	The FACTOR compiler recognizes XY as the name of a Variable location or of a symbolic statement identifier called a Label.	
3.	The FACTOR multiplication operator is the asterisk (*). Thus X*Y means X times Y to the FACTOR compiler.	
4.	Write the FACTOR statement that stores the product of R and T in location D. $D = R *T;$	

5.	Write the FACTOR statement equivalent to the algebraic equation $C = 2Wr$ $A = 3./4;$ $C = 2 + A + R;$		
6.	Frame 5 illustrates a very practical point. There is no point in forcing a machine to look up (access) a number unless you have a good reason for it. Accessing takes a finite amount of time.	2.	variable label
7.	Which is faster? example a. C = 6.28*R; example b. PI = 3.14; C = 2*PI*R; example A (C = 6.28 ★ K;		
8.	Circle the incorrect FACTOR statements A = B*C; Z = MN;	4.	D = R*T;

Q = 9T;

9.	HOLD IT!!! If you circled Z=MN in frame 8, you jumped to the conclusion that M and N were different variables. MN is a legitimate variable name. Look at the compiler's opinion.	5. <u>c = 2*3.14*R;</u> <u>or</u> <u>c = 6.28*R;</u> or PI = 3.14; c = 2*PI*R; etc.
10.	000001 SET PAGE 1; 000002 A = B*C; 000003 Z = MN; 000004 Q = 9T; EXPRESSION SYNTA^ 000005 END; 0001B COMPILATION ERRS	
11.	FACTOR uses the traditional + for an addition operator and - for subtraction.	7. <u>a</u>
12.	The algebraic equation A = B+C+D+E is easily programmed as A = B+C+D+E; Similarly F = G-H+I-K is programmed as	8. Q = 9T;

F = G-H+I-K;

13.	The compiler scans an expression		
	from left to right just as you (usually) do.		
		.	
14.	The compiler	l	
	ALWAYS		
	scans an expression from left to right.		
15.	Consider:		
	A = P+PRT, where P, R and T are separate		
	variables.		
	You probably would "group" this equation like		
	this		
	A = P (1 + RT)		
		-	
16.	But you wouldn't try to program that as		
	A = P*1 + R*T;		
	No! No! No! No!		

	
17. The FACTOR compiler recognizes parentheses	
as grouping symbols.	
18. Write a FACTOR statement equivalent	
to	
A = P (1 + RT).	
A = P * (1 + R * T);	
19. The FACTOR operator for division is the slash (/).	
That is, Percent = N÷100	
can be programmed as	
PERCENT = N/100;	
20. Write the FACTOR statement equivalent to	
X = A+B	
C+D	
X = (A + B) / (C + D);	
•	

21. The compiler Always scans an	
expression from <u>LeFt</u> to <u>Right</u>	
_	
22. The FACTOR operator for division	18.
is	$A = P^*(l+R^*T);$
A SLASH	
·	
23. Since the FACTOR operator for division cannot	
group terms you must use parentheses to program	•
a fraction where the numerator or denominator	
is a polynomial.	
24. $A + B$ \Rightarrow $A + B/C + D$	20.
C + D	X = (A + B) / (C + D);
You know it. I know it.	
BUT	
The FACTOR compiler will never know what that	
"thing" on the left is.	

25.	The FACTOR operator for exponentiation is the up arrow (**). That is Given: X = \(\nabla \overline{\gamma}\) Program: X = Y \(\nabla \overline{\gamma}\);	21.	always left right
	Since NEGATION takes precedence over EXPONENTIATION never try to raise a negative number to a power. IF Y in frame 25 were negative, X would be "imaginary". FACTOR handles only real numbers.	22.	/
	Given: N=3*4*2; Result: 48 (not 144) is stored in N. Because exponentiation has precedence over multiplication		**
	The FACTOR compiler ALWAYS scans an expression from left to right but performs operations in order of precedence. Read the rules on the next page.		

RULES FOR EVALUATION OF FACTOR

ARITHMETIC EXPRESSIONS

Arithmetic expressions are evaluated left-to-right according to the following rules:

- 1.) <u>Rarenthesized</u> expressions are <u>evaluated</u> first. If parenthesized expressions are <u>nested</u>, the <u>innermost</u> expression is <u>evaluated</u>, then the <u>next innermost</u> until the entire expression has been <u>evaluated</u>.
- 2.) Within parenthesis and/or whenever parenthesis do not govern the order or evaluation, the hierarchy of operations in order of precedence is
 - a.) Negation (NEG)
 - b.) Exponentiation (1)
 - c.) Multiplication or division (*,/),
 - d.) Addition or subtraction (+, -).

Example:

The expression

$$A* (Z-(B\uparrow C)/T)) + VAL$$

is evaluated in the following sequence:

B↑C→e₁ NOTE: That is, B↑C is temporarily held as partial solution e₁.

e₁ / T→e₂

Z-e₂→e₃

e₃*A→e₄

e4 + VAL7e5

$$A = P (1 + RT)^{N}$$

where R is rate and T is time

$$A = P*((1+R*T) \uparrow N);$$

30. CAUTION

The Sentry's computer does not handle "imaginary" numbers. Therefore BC is not allowed when B is negative, since the result could be "imaginary".

31. Circle the incorrect FACTOR statements

W =
$$5+2$$
;
X = $-5+2$;
Y = $-(5+2)$;
Z = $5+(-2)$;

32. Negation takes highest precedence! The minus sign in front of the 5 in the value assigned to X (frame 31) is a negation not a subtraction.

33. Compare frame	34 with frame 32.	29.	A = P* (1+R*T)↑N;
	Plus 9 is subtracted from 15. minus sign is a subtraction		
1	programmed with the symbol "NEG" s sign in a context other than sub-	31.	X = -5 ↑ 2
	-		
36. A = -6; A = NEG 6; C = D*NEG E; C = D* - E; C = D* (-E);	All these examples are permissable but most programmers use only the first and last forms, avoiding the others as unnecessarily confusing.		

LESSON FIVE

TOPIC:

PIN DEFINITIONS

GIVEN:

- 1. The booklet: Pin Definitions
- 2. Pencil and eraser

PREREQUISITE:

Completion of Lesson Four

PERFORMANCE:

Student proceeds through the number frames responding to branching instructions.

Student writes short responses in the response frames, compares his responses with the data provided in answer frames and corrects his responses to agree with the furnished answers.

Standard: The student provides 100% correct responses within one hour.

PIN DEFINITIONS

A PROGRAMMED STUDY AID

SENTRY 600 PROGRAMMING

© 1974 by FAIRCHILD SYSTEMS TECHNOLOGY 1725 Technology Drive San Jose, California 95110

Р	IN	DE	FI	ΝI	TI	01	NS.
						U 1	

1.	In this lesson, a pin refers to a land on a pin	
,	electronics card that mates with a connector on the performance board.	·
	· ·	
2.	A pin is a <u>Land</u> on an electronics card.	
	•	
3.	There are two sets of identical pin electronics per card; hence, two electronically identical	
	pins per card.	
	•	
4.	Therefore, the pin electronics of: A "30-PIN" Sentry 600 requires	
	A "60-PIN" Sentry 600 requires 30 cards.	

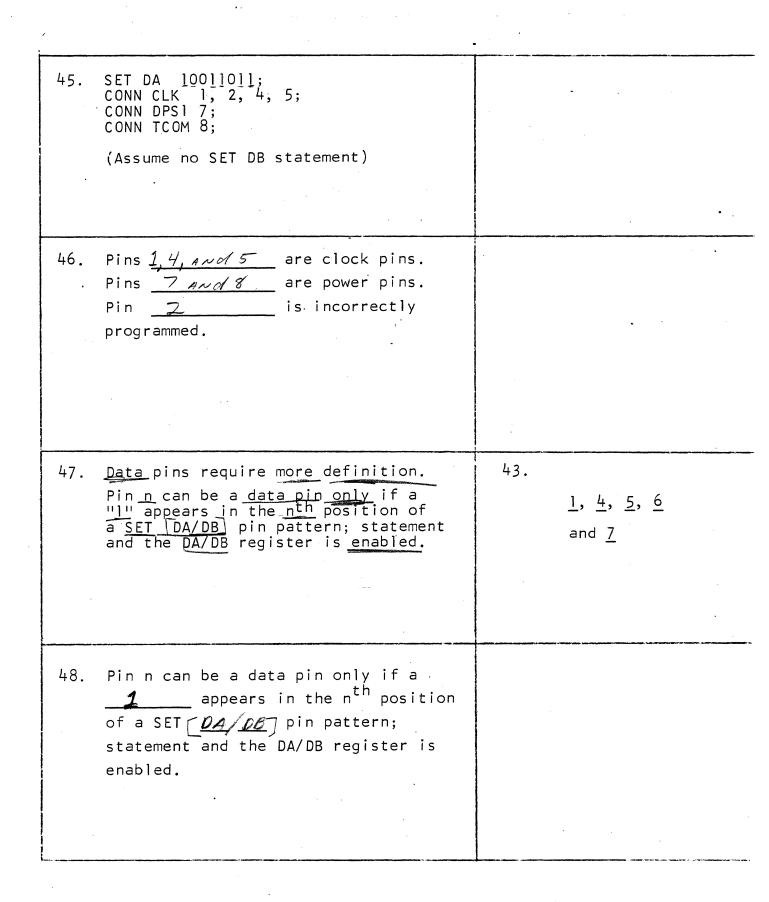
				
5. Since all pins are electronically identical, any pin can be programmed as either an input or an output pin.				
6. The terms input and output are relative to the DUT; an input pin connects an input to the DUT from the Sentry 600.	2.	land		
			.:	
7. An input pin connects an input <u>To</u> the DUT <u>From</u> the Sentry 600.				.••
8. Input pins may be used to apply power, clocks or data to the DUT.	4.			
		<u>15</u>		
		30		•

9.	Input pins may be used to apply <u>power</u> , <u>CLOCK</u> or <u>data</u> to the DUT.			
,				
				•
10.	Power pins provide a steady DC voltage to the DUT.			
				*
				· •
11.	Data pins normally apply NRZ (non-return-to-zero) data to the DUT.	7.	<u>to</u> from	
12.	Data pins normally apply NRZ (<u>Now - return</u> - <u>To - Zero</u>) data to the DUT.			

13.	The <u>source</u> of the <u>data</u> is <u>local memory</u> in the <u>high</u> speed test station controller.	9. power clocks data
14.	The <u>source</u> of the data is <u>local</u> <u>Memory</u> in the high speed test station controller.	
15.	NRZ data stays at the programmed level for a period equal to that programmed by the SET PERIOD statement.	• •
16.	NRZ data, stays at the programmed level for a period <u>Equal</u> to that programmed by the SET PERIOD statement.	12. non-retum-to-zero

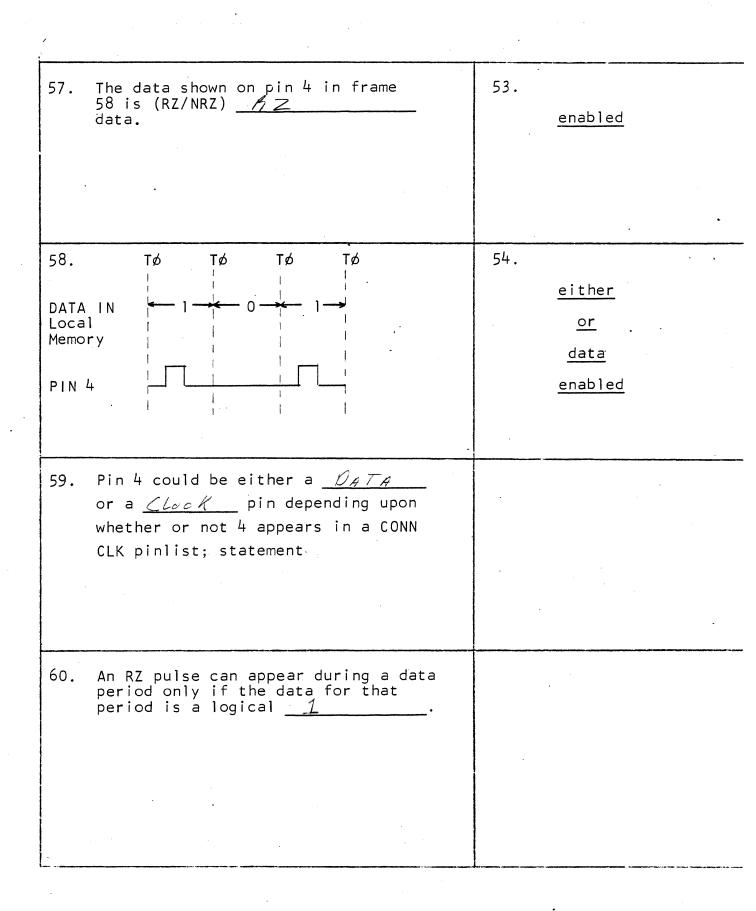
17. NRZ data stays at the <u>programed</u> <u>Level</u> for a period <u>Fqual</u> to that programmed by the <u>SET</u> <u>FEKIOD</u> statement.	•
18. Compare the statements in frame 19 with the waveforms in frame 20.	14. <u>source</u> <u>local memory</u>
19. SET DA 1111; SET F 1010; REM 1st PERIOD DATA; SET F 0111; REM 2nd PERIOD DATA; SET F 1001; REM 3rd PERIOD DATA; SET PERIOD 500E-9, RNG0; ENABLE TEST;	
20. Assume positive logic	16.
TØ TØ TØ PIN 1	<u>equal</u>
PIN 2 PIN 3 PIN 4	

21. The simplest programming for a data pin, syncs the data with the programmed period. Review frames 19 and 20, noting the data transition points, then go on to frame 22.	17.	programmed	level	
	to frame 22.		equal	
			SET PERIOD	
				•
22.	The simplest programing case for a data pin applies (NRZ/RZ) <u>NRZ</u> data to the pin. This data is in synchronization with the <u>Programed</u> period.			
			•	
23.	NRZ data can be synchronized with a timing generator by connecting a timing generator to the pin.	,		
			,	
24.	NRZ data can be synchronized with a			
	Timing Generator by connecting it to the pin.			
			,	

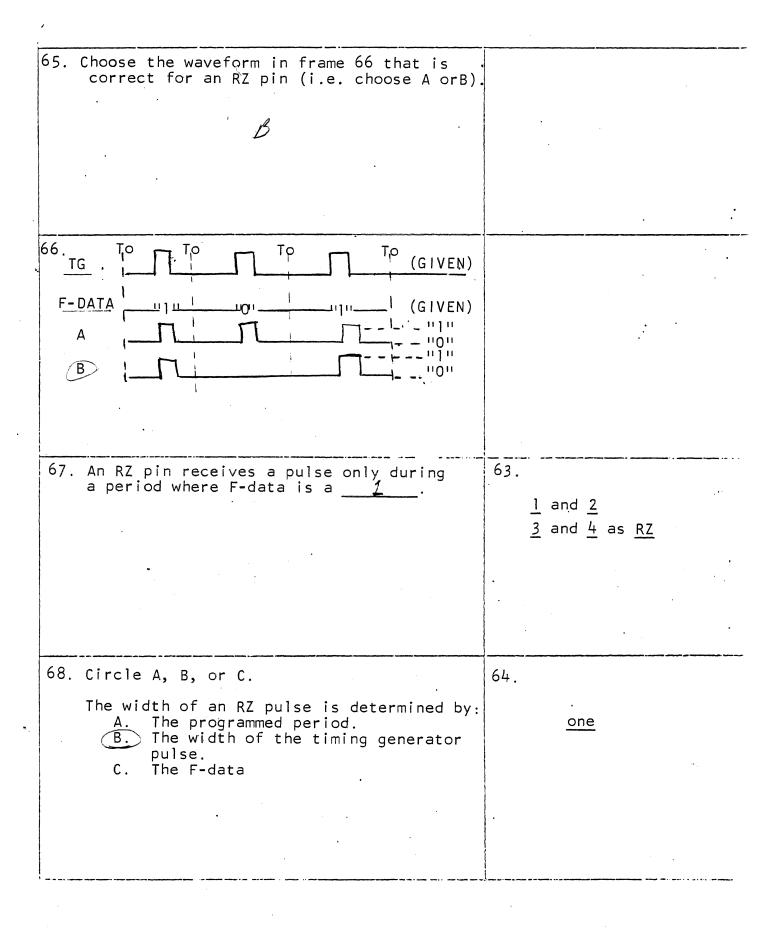

25. Frame 26 shows the same data on pins 1 and 2 but pin 1 is connected to a timing generator while pin 2 is not. Both pins are NRZ.	
	•
26. Tø Tø Tø Timing Gen. PIN 1 PIN 2	NRZ programmed
27. Note that the data on pins 1 and 2 have the same period but different transition points.	
28. Transitions on pin 1 are synchronized by the leading edge of the Timing Generator pulse. Transitions on pin 2 occur at	timing generator

29.	If no timing generator is connected to a data pin, data transitions occur at	
		·
30.	If a timing generator is connected to an NRZ data pin, data transitions occur at positive edge of	
	timing pulso.	
31.	NRZ data stavs at the programmed level for a period equal to that programmed by the <u>SET PERIOD</u> statement.	
32:	Machines with the "1-nanosecond option" provide a special case that can violate the statement in frame 31. This case is covered in the OPTIONS lesson.	28. timing generator
	- Covered in the Original resson.	<u>TØ</u>
		·

33. <u>Clock pins normally provide RZ</u> (<u>return-to-zero</u>) waveforms to the DUT.	29. <u>Tø</u>
34. Clock pins normally provide RZ (<u>reTurn</u> - <u>To-Zero</u>) waveforms to the DUT.	the leading edge of the timing generator pulse.
35. Data can drive an RZ waveform to a "]" level only during the timing generator pulse. When the pulse ends, the wave- form returns to zero.	31. SET PERIOD
36. Data can drive an RZ waveform to a	


		
37.	Since a clock pin normally applies RZ data to the DUT and RZ data requires a timing generator, a <u>Timing</u> Generator must be connected to a	
	clock pin.	
		•
38.	An input pin becomes a clock pin when its number appears in a CONN CLK pin	34.
	list; statement.	<u>return-to-zero</u>
	• •	
<u></u>		
39.	Input pins can provide <u>fower</u> , <u>DATA</u> , or <u>Clock</u> to the DUT.	
	to the bot.	
Additional to the state of the		
40.	An input pin becomes a <u>Clock</u>	36.
	pin when its number appears in a CÓNN CLK pin list; statement.	
		timing generator
	•	zero

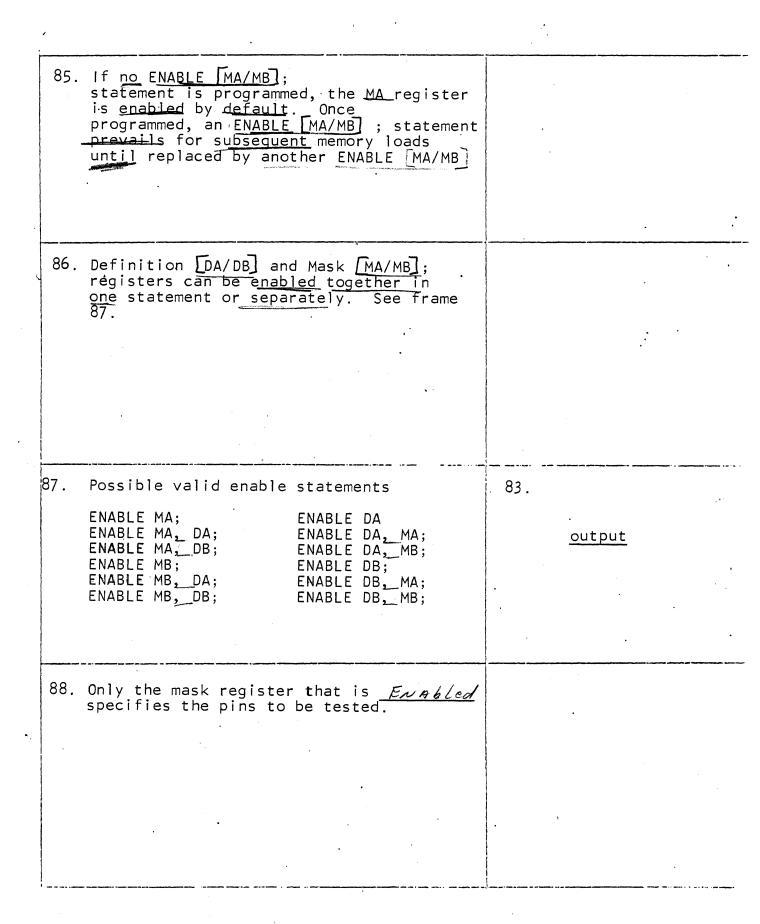
1		
41.	An input pin becomes a power pin when its number appears in a CONN DPSI/DPS2/DPS3/TCOM pin list; statement.	37. timing generator
42.	A "]" must appear in the nth position of either a SET DA or a SET DB pin-pattern; statement before pin n can be an input pin.	
43.	SET DA 1001001; SET DB 0000111; Pins <u>1</u> , <u>4</u> , <u>5</u> , <u>6</u> and <u>7</u> can be input pins.	power clocks data
44.	Study frame 45 then respond to frame 46.	40. <u>clock</u>



pin, the DA/DB r	input pin to be a data egister defining the eENAbled			
1.				
50. The DA register ENABLE DA; state register is enab DB; statement. To applies to the me follow it.	led by the ENABLE he enable statement	46.	1, 4, 5 7, 8 2	
51. If no ENABLE DA appears in a FAC is enabled by de ENABLE DA/DB s	TOR program, DA			
52. No ENABLE DA; st to enable the DA Enrable currently progra		48.	<u>" "</u> DA/DB	

53. A power or clock pin must have a "l" in the pin pattern of either the DA or the DB register but a data pin must have a "l" in the pin pattern of the ENAbled D register.	49. <u>enabled</u>
54. A power or clock pin must have a " in the pin pattern of <u>Either</u> the DA <u>OR</u> the DB register, but a <u>OATA</u> pin must have a " in the pin pattern of the <u>ENABLED</u> . D register.	
55. Power, clock and data pins are mutually exclusive. The last definition in the FACTOR program prevails.	
56. Therefore, if a pin number appears in the pin list of a CONN (DPSI/DPS2/DPS3/TCOM/CLK) pinlist; statement it cannot be a data pin.	52. <u>ENABLE</u> <u>DB</u>

61.	Since data pins are normally provided with NRZ waveforms, a <u>SET RZ pin</u> pattern; statement is necessary to apply RZ waveforms to a data pin.	57 . <u>RZ</u>
62.	A logical """ in the pin pattern of a SET RZ statement defines a pin as RZ, a "0" defines the pin as NRZ.	
63.	SET RZ 0011; The above statement defines pins 1 and Z as NRZ and pins 3 and 4 as 82.	59. <u>clock</u> <u>data</u>



69. A data pin IS NRZ unless a "!" is programmed for the pin in SET <u>AZ</u> pinlist. 70. A clock pin is normally (RZ/NRZ) <u>AZ</u> . 66. (An RZ pulse can appear during a data period only if the data for that period is a logical one.) 71. The <u>CONN CIK pinlist</u> ; statement <u>automatically loads a "!" into the RZ register for every pin specified in the pinlist. 72. Data pins are normally (RZ/NRZ) <u>MAZ</u> but clock pins are normally (RZ/NRZ) <u>MAZ</u>. 8. B. The width of the timing generator pulse.</u>			
(An RZ pulse can appear during a data period only if the data for that period is a logical one.) 71. The CONN CLK pinlist; statement automatically loads a "!" into the RZ register for every pin specified in the pinlist. 72. Data pins are normally (RZ/NRZ) NBZ but clock pins are normally (RZ/NRZ) B. The width of the timing generator pulse.	69.	programmed for the pin in SET eta eta	
(An RZ pulse can appear during a data period only if the data for that period is a logical one.) 71. The CONN CLK pinlist; statement automatically loads a "!" into the RZ register for every pin specified in the pinlist. 72. Data pins are normally (RZ/NRZ) NBZ but clock pins are normally (RZ/NRZ) B. The width of the timing generator pulse.			•
(An RZ pulse can appear during a data period only if the data for that period is a logical one.) 71. The CONN CLK pinlist; statement automatically loads a "!" into the RZ register for every pin specified in the pinlist. 72. Data pins are normally (RZ/NRZ) NBZ but clock pins are normally (RZ/NRZ) B. The width of the timing generator pulse.			
(An RZ pulse can appear during a data period only if the data for that period is a logical one.) 71. The CONN CLK pinlist; statement automatically loads a "!" into the RZ register for every pin specified in the pinlist. 72. Data pins are normally (RZ/NRZ) NBZ but clock pins are normally (RZ/NRZ) B. The width of the timing generator pulse.			·
during a data period only if the data for that period is a logical one.) 71. The CONN CLK pinlist; statement automatically loads a "1" into the RZ register for every pin specified in the pinlist. 72. Data pins are normally (RZ/NRZ) MBZ but clock pins are normally (RZ/NRZ) B. The width of the timing generator pulse.	70.	A clock pin is normally (RZ/NRZ) <u>パス</u> .	66.
71. The CONN CLK pinlist; statement automatically loads a "l" into the RZ register for every pin specified in the pinlist. One 72. Data pins are normally (RZ/NRZ) MBZ but clock pins are normally (RZ/NRZ) MBZ. B. The width of the timing generator pulse.			during a data period only if the data for that
72. Data pins are normally (RZ/NRZ) <u>N月Z</u> but clock pins are normally (RZ/NRZ) <u>月</u> Z. B. The width of the timing generator pulse.		•	perved is a regreat one.)
72. Data pins are normally (RZ/NRZ) <u>N月Z</u> but clock pins are normally (RZ/NRZ) <u>月</u> Z. B. The width of the timing generator pulse.			
but clock pins are normally (RZ/NRZ) <u>RZ</u> . B. The width of the timing generator pulse.	71.	The <u>CONN CLK</u> pinlist; statement auto- matically loads a "l" into the <u>RZ</u> register for every pin specified in the pinlist.	67 . <u>one</u>
but clock pins are normally (RZ/NRZ) <u>RZ</u> . B. The width of the timing generator pulse.			
but clock pins are normally (RZ/NRZ) <u>RZ</u> . B. The width of the timing generator pulse.			-
timing generator pulse.	72.	Data pins are normally (RZ/NRZ) <u>NRZ</u> but clock pins are normally (RZ/NRZ) <u>RZ</u> .	68.
			timing generator pulse.
		•	

73.	Clock pins can be redefined as NRZ by programming a SET RZ pinlist; statement after the CONN CLK pinlist; statement.	69.	<u>RZ</u>	
				. :
74.	Clock pins can be redefined as NRZ by programming a (one/zero) zero into the SET RZ pinlist; statement (before/after) AFteV the appropriate CONN CLK pinlist; statement.	70.	<u>RZ</u>	
75.	Data transitions for NRZ pins, with no timing generator connected to them, are at			.0
	·			
76.	Data transitions for NRZ pins, with a timing generator connected to them, are at the <u>Leading Edge</u> of the <u>Timing</u>	72.		
			NRZ RZ	

77.	Pulses are applied to RZ pins only during the programmed width of a timing generator pulse and only if the F-data for the pin is a logical	
		•
78.	Each pin can be programmed as either an input or an <u>output</u> pin	74.
		zero
		<u>after</u>
	,	
79.	Each pin is connected to a functional test comparator during functional testing.	75.
		тø -
80.	The functional test comparator can be programmed to perform a pass/fail test on each pin during each period of a functional test.	76. <u>leading edge</u> timing generator pulse
		·
1		

		·			
81.	Usually test data is desired only for output pins.	77.			,
		,	width		
			one		
					:
82.	Any pin that is not an input pin can be considered an output pin.	78.	output		
				•	
83.	A pin that is neither a power pin nor a clock pin and that does not have a "1" assigned in the pin pattern of an enabled D register is an output pin.				
					:
84.	Functional test data for a pin is ignored unless a "]" appears for that pin in an enabled MA or MB register.				
					•
!		l			

						·
	•					
-						
7	•	•		•		•
				•		. .
				•		
	· · · · · · · · · · · · · · · · · · ·					
						.,
	•					
					88. <u>enabled</u>	
			•			
			•	The state of the s		
			5-25			

LESSON SIX

TOPIC:

LOCAL MEMORY MANAGEMENT

GIVEN:

- 1. The booklet: Local Memory Management
- 2. Pencil and eraser

PREREQUISITE:

Completion of Lesson Five

PERFORMANCE:

Student proceeds through the number frames responding to branching instructions.

Student writes short responses in the response frames, compares his responses with the data provided in answer frames and corrects his responses to agree with the furnished answers.

Standard: The student provides 100% correct responses within one hour.

LOCAL MEMORY MANAGEMENT

A PROGRAMMED STUDY AID

SENTRY 600 PROGRAMMING

© 1974 by FAIRCHILD SYSTEM TECHNOLOGY
1725 Technology Drive
San Jose, California 95110

LOCAL MEMORY MANAGEMENT

1. Local memory locations are loaded sequentially by a series of SET F statements.	,
(REF: FACTOR MANUAL paragraph	
_	•
2. A series of SET F statements load local memory Locations (how?)	
sequentially	
3. Each memory load starts at address Ø, unless modified by an AT statement.	
	•
4. Unless modified by an AT statement, each memory load starts at address	
	:

5 A manager land consisting of 16 CCT 5	
5. A memory load consisting of 16 SET F statements loads local memory locations o through /5.	
	•
6. The <u>first SET F (or SET FI)</u> following an 2. <u>sequentially</u> ENABLE TEST statement starts a new memory load.	
	•
	·
7. If sixteen memory locations are programmed followed by ENABLE TEST, the next SET F statement loads address	•
	:
	-
8. Unless modified by an AT statement, 4. each memory load starts at address	

•	
9. An AT statement can specify an address to be loaded. For example AT II; SET F pin pattern; loads memory location eleven (decimal). (REF: FACTOR MANUAL paragraph 11.4.23)	5
10. The AT statement can be used to start a new memory load at an address other than 0. Subsequent loads are sequential. Note the programming and remarks in frame 11.	
11. ENABLE TEST; REM THE PREVIOUS TEST LOADED 16 LOCATIONS; AT 11; SET F pin pattern; REM THIS LOADS LOCATION 11; SET F pin pattern; REM THIS LOADS LOCATION 12; SET F pin pattern; REM THIS LOADS LOCATION 13; ENABLE TEST;	7. ø
12. The programming in frame 11 modified the contents of locations 11, 12 and 13 but did not change locations Ø through 10, 14, and 15.	_Ø

13. The <u>first SET F</u> statement of a <u>memory load or following</u> an <u>AT statement programs all pins to zero that are <u>not specified</u> as <u>logical ones</u>. Examples are given in frame 14.</u>	
14. SET PAGE 100; REM 30-PIN SYSTEM; + set-up instructions ENABLE DA, MA; SET F 0010111; REM 3,5, 6 and 7 PRO- TO ONES, THE OTHER 26 PINS ARE PROGRAMMED TO ZEROES; ENABLE TEST; AT 10; SET F 1; REM F-DATA IS ONE FOLLOWED BY 29 ZEROES;	
15. The first SET F statement of a memory load or after an AT statement programs all pins to zero that are not specified as logical 25.	
16. Subsequent SET F statements within one memory load need specify only the change from one location to the next. Note the example in frame 17.	

17. Sequential SET F's LOC F-DATA (30 PINS SET F ØØØØ1;	Ø ØØØØØ ØØØØØ ØØØØØ Ø ØØØØØ ØØØØØ ØØØØØ Ø ØØØØØ ØØØØØ ØØØØØ
18. During compilation of a FACTOR progra each statement that controls the tester is converted into a code that can be executed by the Sentry 600.	·
19. During execution, this executable cod causes the pin pattern of each SETF statement to be loaded into local memory as F-D	e 15. e- <u>AT</u> ata.
	ones
20. Two enable bits are loaded into the lomemory along with the F-Data. One enables a D register. The other enables an M regi	ster.

21. Two enable bits are loaded into local memory along with the Folata. One enables a Dregister. The other enables an register.	
22. The state of these two enable bits is determined, at compile time, ENABLE [MA/MB/DA/DB]; statement.	
23. The state of these two enable bits is	
determined at <u>Compile</u> time.	
24. Thus, the ENABLE MA etc. statement does not appear as executable code in the compiled program. It has already caused the compiler to modify the code that loads local memory.	

25. Since ENABLE MA etc. produces no executable code it does not exist in the executable DATA file.	21. <u>F-Data</u>
Control of the Contro	D
	. <u>M</u>
26. Since it is impossible to branch to a statement that does not exist at execution time, an ENABLE MA etc. statement should not be labelled.	
27. An ENABLE MA etc statement should wor be labelled.	23. Compile
Not be labelled.	
28. Any <u>executable statement written</u> within a s <u>tring</u> of <u>SET F</u> statements starts a new memory load.	
•	Ţ.

29. Any executable statement written within	
a string of <u>SET F</u> statements starts a <u>New</u> local memory load.	
10001	
·	•
	·
30. Note the remarks De ete.	
SET F; REM LOAD LOC Ø; SET F; REM LOAD LOC 1:	
SET F; REM LOAD LOC 1; SET F; REM LOAD LOC 2;	
200 2,	
If A EQ 2	
THEN SET F	
ELSE SET F;	
ENABLE TEST;	
31. In frame 30, note that the first location of	. 27.
local memory is changed if A equals 2 but the second	27.
location (LOC 1) is changed if A does not equal 2.	not
Delete	
32. BUT	
ENABLE [MA/MB/DA/DB] (,MA/MB/DA/DB/)	
generates no executable code	
Therefore it CAN	
be nested within a string of SET F statements without starting a new load.	
TOUCH SCATCING A NEW LUAY.	
•	

33. A D or an M enable CAN (can/cannot) be loaded within a string of SET F statements without starting a new memory load.	29
34. This characteristic of the D or M enable allows changing pin definition (data/output) and mask definition (care/don't care	
during execution of a functional test.	
35. When the Test Operating System executes	
the ENABLE TEST; statement the F-Data are executed at the high-speed test rate.	
	,
36. F-Data are executed at the high-sptest rate.	

37. The high-speed test rate is programmed by the SET PERIOD statement. This statement must appear before the first ENABLE TEST; in a program.

(REF: FACTOR MANUAL paragraph 11:4.17)

33. Can

38. The functional test rate is programmed by the \underline{SET} \underline{PERIOD} statement.

39. The shortest period is determined by the system capability. Thus, minimum period for a 10 MHZ system is 100 nanoseconds; minimum period for a 5 MHZ system is 200 nanoseconds.

40. Rate (frequency) and period are reciprocals, i.e.

frequency = 1; period = 1

36.

frequency

high-speed

HERTZ = 1 ; seconds = $\frac{1}{Hertz}$

period

41.	Α	t <u>est</u>	rat	e o	f 2	MHZ	requires	а	pro-
gramm	med	d per	iod	of		oo ns			

1 = ,5 x10. = 500 ns

42. When the <u>functional</u> test takes <u>place</u>, the <u>first local memory word executed</u> is that in <u>location</u> Ø, unless a <u>SET START</u> statement appeared since the <u>last ENABLE TEST</u>; statement.

38.

SET PERIOD

43. During functional test execution the first F-data is from memory location unless a SET START statement appeared since the last ENABLE TEST; statement.

(REF: FACTOR MANUAL paragraph 11.4.22)

44. A SET START statement does not "carry-over" from one functional test to the next. That is, if the first functional test has a SET START statement but the second does not, the second test starts at location zero.

•	·
45. A SET START statement does NoT (does/does not) carry over from one functional test to the next	41.
	500 manoseconds
46. Note the difference between the AI and	
the <u>SET START</u> statements. An <u>AT statement</u> may control the <u>first</u> location loaded.	·
A SET START, statement controls the first	
location executed.	
and demonstration and compared and and and and and and and and and an	
	The state of the s
47. An AT statement may control the first location Londed. A SET START statement controls the first statement executed.	43.
	Ø
	•
	·
18 It is possible to madify part	
48. It is possible to modify part of local memory using the AT statement but execute all of local memory by not using SET START. Consider the remarks in frame	
execute all of local memory by not using	
SET START. Consider the remarks in frame	
49.	

49. ENABLE TEST; REM THIS TEST USED LOCA- TIONS Ø THRU 15;	45.
AT 12; SET F; SET F; SET F; SET F;	<u>does not</u>
ENABLE TEST; REM TEST STARTS AT LOCATION Ø;	
50. If frame 49 were modified by a SEI START 12; statement placed just before the AT or just before the last ENABLE TEST; the test would execute locations 12 through 15 without using or changing locations Ø thru 11.	
51. A functional test starts at location \emptyset unless modified by a <u>SET START</u> statement.	47.
	loaded
i e e e e e e e e e e e e e e e e e e e	
52. Unless a SET MAJOR statement is programmed, the last local memory location executed for a specific load is the highest location loaded during that load.	
grammed, the <u>last local</u> memory location executed for a specific load is the highest	
grammed, the last local memory location executed for a specific load is the highest location loaded during that load. (REF: FACTOR MANUAL paragraph	

	*
53. Unless a <u>SET MAJOR</u> statement is pro- grammed, the <u>last memory location executed</u> for a specific load is the <u>highest</u> location loaded during that load.	
	.
54. Unless a <u>SET MAJOR</u> statement is programmed, the last memory location exe-: cuted for a specific load is the <u>highest</u> location loaded during <u>That</u> load.	
	·
	51. SET START
	<u>521 51/40</u>

54. SET MAJOR highest that		
SET MAJOR highest that		53.
SET MAJOR highest that		highest
SET MAJOR highest. that		
SET MAJOR highest. that		
highest. that		54.
t hat		
	•	
		2.33
	<u> </u>	