FACTOR
FOR

SENTRY SCG/37C/371

A PROEGPAMNED INSTRUCTION MAHUAL

A

-7

'/At
/

—

t;‘,_“”¢ _ e

.-

Treening.(§'i 1:6.:::1

Wt
~i
(o f

‘

(&) FATACHILD CA¥EXA AWD INSTRUMINT CORP. 1

IRCHTLE SY.STEMS TECHNCLOGY

20 TELHNGLOGY ORI _

N JOSE, CALIFLRNIMN 8510 - SRS l FRREAE)
AT LTI
%mmm

SYSBTEMS TECHNOLOT:

D" 0 OF FAIRCHILO 23 WA o0 \NSTRUMENT S(ADRAY “N

TABLE OF CONTENTS

Lesson One:
An Introduction to FACTOR

Lesson Two:
FACTOR Relational Logic and Branching

Lesson Three:
Numbers, Compiled and Printed

Lesson Four:
FACTOR Arithmetic Expressions

Lesson Five:
Pin Definitions

Lesson Six:
Local Memory Management

HOW TO USE THIS MANUAL

The text of this manual is self-instructional permitting the reader, as a student, to
learn at his own rate. To accomplish this, the text is divided into information
frames, reinforcement frames, and answer frames. The information frames, as
might be expected, provide the reader with data relating to a particular topie. To
reinforce the data presented and to verify your understanding of it, subsequent
frame(s) will rephrase a statement of fact and require you to fill in a missing word
or group of words, or to respond with an answer to a question. To validate your
response, turn to the next page and check the corresponding numbered answer
frame. Afterwards, return to the next sequential information frame and continue
your study.

-ii-

1. This is an "information" frame.

2. A '"reinforcement” frame is used to
reinforce data or information
presented in previous "information"
frame.

3. Thisisa A e/in Foypomr mmss
frame.

4. After validating your answer for
frame 3, you should continue
reading here.

-iii-

5. This can be information or
reinforcement frame.

6. So can this one.

7. This one too.

Reinforcement

This 1s the "answer"
frame for frame
3 on the previous

page.

8. If you understand the difference
between "information”, "rein-
forcement"”, and "answer"
frames then begin the lesson
on Page 1, otherwise go back
to frame 1 of this exercise.

—iv-

LESSON 1

TOPIC:

AN INTRODUCTION TO FACfOR

GIVEN:

1. The Booklet
AN INTRODUCTION TO FACTOR

2. Pencil and eraser.

PERFORMANCE:
Student proceeds through the numbered frames, sequentially.
Student writes short responses in the response frames, compares his
responses with the data provided in the answer frames and corrects
his responses to agree with the furnished answers.

STANDARD:

The student provides 100% correct responses within 20 minutes.

AN INTRODUCTION

TO

FACTOR*

A COMPILER LANGUAGE

FOR THE

SENTRY 600

SENTRY 610

SENTRY II

*Herein referred to as '""S600 FACTOR"

1. FACTOR is a human language. People
understand it, machines don't.

2. After you have learmed to write a FACTOR
program, it will have to be translated -
(compiled) before the Sentry System can
react to the information im the program.

3. When the FACTOR program has been com-
piled (translated) .the end result could be
called machine language. Some people learn
to read this (people are smarter than
machines) o

4. SO ARE YoU!!!!

(But you're probably not nearly as ornery,
stubborn, mule-headed, cussed....etc.,etc.,
E@tCoeyeasal)t

You will learn how to have your FACTOR
program translated (compiled) in another
lesson. This lesson introduces you to the
FACTOR language.

5. | EVERY

" Factor statement ends with a semicolon.

&

6. . - EVERY

program writfen with S600 Factor

starts with a (SET PAGE/number;
statement.

7. For example
SET PAGE 1§;

is a valid opening statement for an
S600 FACTOR program. Until you learn
more FACTOR, don't use a number larger
than 1§24

8. Try writing a statement that camn start
an S600 FACTOR program. :

1-4

9. Take a look at your answer to frame 8.
Did you make any spelling errors? Did you
leave at least one space after SET and

after PAGE? Did you remember the semi- colon’7
Did you use solid capitals?

10. If you wrote the statement correctly,
the compiler would be able to translate
(complle) it correctly. I

11. FACTOR is a compiler language using
English language-type statements.

12. FACIOR is unlque to SENTRY test

systems.

P

8. SET PAGE 1024;

(Any number between 1 and
1024 is satisfactory __ .
during this lesson.)

1-5

12, Circle all true statements.

>a{/ FACTOR is a machine language.
%/g?) FACTOR is a compiler language.
??j) FACTOR is a programming language
— for Sentry test systems.
d. TFACTOR is a universal compiler
language used by the semiconductor
industry.

L

C s

14. ALL FACTOR statements end with a s ..

15. FACTOR prcecvides two types of statement:

1. Arithmetic and logical control
T statements.
2. Test control statements, which set
up and execute tests on electronic
devices.

16. You can learn much about the arithmetic
and control statements without even seeing
a machine

Let's start right now.

1-6

17.

A =6
is algebra

13. b and c should be
circled.

A = 63
is a FACTOR statement.
18. The FACTEOR statement 14, H
is not a ¢ Ple statement of equality. If you wrote the word
e —— ‘ - "semicolon", erase it
and replace-it ‘with
n;n. .
19. A = 6; Jmeans store a value of 6 in a

16cation named A.

variable assignment statement.

At S A7

e it Ao SIS i

ORISR

_problem. ,

tion. called A is. That is the Sentry's

21. You don't have to know where the loca-

22. Once you have told (programmed) the
system that a location, that you name, con=
tains_a_value, the /#/y ¢ 1is stored in the
named (gcaTio s

23. A = 63
is a FACTOR

variable #s5iiop#er# 7T statement.
—7‘————_—

24, A = 6; means store A
in a locatio~ named 4 .

1

el ~

8

o,

25. A+ 1\

"is an algebralc expression. It can
be used in FACTOR as an algebraic,
o —— m—-:-—*—“
expre531on.‘ ‘‘‘‘‘‘‘‘‘‘‘

26, A = A +°1; is a legal FACTOR statement, 22,
but it is not an algebraic equation. o
— ~ value
location :
27. A = A+ 1; is legal in FACTOR because 23.

it is a varlable assignment statement, not

an equation. ;
WW

assignment

28. A = A + 1; means
e

EFetch the present contents of A
Add 1 to the number fetched
Assign the sum to location A

24,
(a vélue of) 6
location

A

1-9

29, Interpret the following:

.SET PAGE 1024;
A= 6; A= L
A=A+1;Ag?
END;

£+

30. .In framé 29, the statement

A=A+ 1; means

S S

fetch the wvalue
Add 7
Store the sum in

4 from 4-(&0‘.'4 704

.
4

4

Loca ¥ row

J

N

31. In frame 29, the final value of A 559447név}

‘4 (before END;) 1is .7

32, On y the.system gpows where A is.

1-10

T

33. Is A= A + 1;
S ‘ /
"an algebraic equation? /4>é7,
34, A + l‘- A; is a 30.
MISTAKE 6 (location) A
(and the compiler will call it a. 1
syntax error). E——
2rrres =r -2
o (location) A
35. Location of a FACTOR yariable must be 31. I have no idea, but

defined by a single variable identifier.

I know that location
A contains 7.

36. _Circle the legal FACTOR statements.

L

(@}
+
=
N
nou
[Nw)

NO l

37. Perhaps you wondered about 14 = D; 33.

"This is incorrect because the variable
;dengiflen.must always be on the left of
the equal sign., o T——
38. A variable assignment statement can
rrenerally be descrlbed by

\'tﬁariable = expression;j>

39, In frame 34, because the words ‘
"vari " and "expression" are written
in Iower case letters, the programmer is
free to use his own variable identifier
and his own expression.
40. . variable = expre331on'\g 36.

is the SYNTECTICKK“format of the

_3;4g§lggass1gnment statement. _SYNTAX C = 25;

R A= A + Cs

is the set of TUles for a 1anguage.

v O S e

1-12

"41. Every S600 FACTOR program must start
‘with

SE7T FL &E number;

Every FACTOR program ends wi;h END;

m—

42, The words supplied for the SET PAGE
number; statement imply, syntactically, that
you must write SET PAGE exactly as shown
(because of the capltalss but that zou may

supply your own number.

_fpufﬁx is the set of rules for a
language.

s e

44, TFACTOR is a (human/machine) ,AZfzﬁA/

language.

1-13

45. FACTOR is a (compiler/machine) o prgrler 41.
language.
' " SET PAGE
46. FACTOR i#s a procedural test language
used universally by the semiconductor
industry.
(True/false) }%;A; € .
47. Every FACTOR statement ends with a | 43,
—
SYNTAX
Every FACTOR program ends with END .
48. X = 27; 'is a FACTOR Vhwiaple Assigrmen™ | b4,
statement. < .
human
‘ - 2 = = e ————— T

1-14

49, variable = expression; where variable

45,
must be a'(single variable identifier/any
algebraic expression) . - compiler
' & P - .
si5 Uiy, mble 18en? FleF
50. You may'make up your own names (for 46.
variable identifiers) with very feéw
exceptions. T
T — false
51. You won't have to memorize the rules 47,
for naming variables because:
l.. They are gimple: 3
2. The compiler will warn you if you
violate a rule. ’ END
3. As you learn more FACTOR statements
the reasons for the rules tend to
become obvious,.
48,

52, The igilgziﬁﬁ are acceptable variable
identifiers: T

A

CHISAUARE

ALARGEIDENTIFIER

A1lB2C3D4

PHOENIX

variable assignment

1-15

53. The FACTOR compiler accepts only the
first eight characters of a variable
identif;gr; ignoring any additional

characters. .

49,

single variable identifier

54, Thus

\
ALARGEIDENTIFIER -
ALARGEID
ALARGEIDEA
ALARGEIDEAINDEED

are all the same variable name that the

compiler recognizes as ALARGEID “

55. The qompiler will not warn you if you
use more than eight chaTacters to identify
a varlable.

56. It is good_practice, since the usage of

identifiers is totally determined by the pro-
grammer, to use names §1dent1f1ers) that rep-
resent the meaning or use of a variable.
TEMP, for instance, could be the name given
to a working variable. COUNTER might be the
name given a variable that is used as a gen- -
eral purpose counter, and so on. (This does
not imply, however, that FACTOR attaches any
significance to these names. They are purely
artificial devices that aid the user's memory
and make a program more intelligible.)

ez To S

1-16

~57. If you use a variable without first
assigning a value to it, the initial value
becomes zero.

1

An example is in frame 58.

58. B = A +1;

If this statement is the very first

reference to A in the program, zero (0) is
stored in A. The statement B = A + 13

results in 1 being stored in location B.

54.

ALARGEID

59. SET PAGE 1024,

o 9; 7 7/ 5 o)
B o At 4y Aed = O by Bleesien)
END; P s

60. Refer to frame 59. The last wvalue

stored in the location called B is Y T

1-17

61. The following are _not acceptab;e

varlable identifiers:

123 (Identifiers may not start with a

ha— digit) w—

AB C ,"ngg%ial characters, including blanks,
.are not allowed) T—

. END = (Reserved words are 111egal)
62. You are-not finished with this lesson

until you look at the rules on the next page.

Snemrnan—— e = i

60.

4

(If you wrote down 9 or

13,

repeat frames 57-60)

1-18

RULES FOR NAMING VARIABLES

A variable.name.can be of any length up to eight characters.
Any additional legal characters are ignored.

The first character must be a
Letter (English éﬁé.ﬂsim,eﬂz’_)
,gr(oftenozalled a "pound sign").
S _(The dgilar sign)

The rest of the characters can be any combination of

Any character allowed for the first character (letter,
#, $)o T

or
Numbers (digits)

or

. (Period).

The following words are reserved for the s Stem.éﬂgmiﬁﬁi
therefore, not acceptable variable identifiers.

AND DCL GOTO PAUSE WR
ASSIGN DISABLE GT PGEN WRITE
AT DO IF PGM XCON
BEGIN ELSE INSERT RD XCONF
BLOCK ENABLE LEQ READ XPMU
BRANCH END LT REM

BY EOR MEASURE RESET

CALL EQ NEG SELECT

CGEN EXEC NEQ SET

CONF FOR NOISE SOCKET

CONN FORCE NOT SUBR

CLEAR FUNCT ON THEN

CPMU GE OR THRU

1519

LESSON TWO

TOPIC:
FACTOR RELATIONAL LOGIC AND BRANCHING

GIVEN:
1. The Booklet

FACTOR RELATIONAL LOGIC AND BRANCHING

2. Pencil and eraser

PREREQUISITE: COMPLETION OF LESSON ONE

PERFORMANCE:

Student proceeds through the number frames responding to
branching instructions.

Student writes short responses in the response frames, compares
his responses with the data provided in answer frames and corrects his
responses to agree with the furnished answers.

Standard: The student provides 100% correct responses within one hour.

FACTOR

RELATIONAL LOGIC

AND

BRANCHING

Special Notice to YOU
the
student

If a friend of yours offers to help you in a task, don't offend him by

reminding him that the nails go into the board "pointy-end first."

On the other hand, when you are dealing with a computer, you often

have to be ridiculously specific.

Some of the frames in this lesson might tend to aggrevate you.

©-8 Getting angry with a machine provides

it with correct data /7/s¢ (true/false)

If this frame made you angry then programming might not be your

bag.

2-3

1. 'The Sentry System, in response to

FACTOR programs, can react as if

making logical decisions.

2. AZ'expression is a variable

A5 1904 e~°T Statement.

3. The English statement "6 is greater
than 4" is 7rue (true/false).
16 24

The FACTOR variable assignment state-.

ment AZ16 GT 4; stores the value of the
e o | T e

expression in the location _Eallea]A.

s, e ——————

s e,

. 5. GT is a relational operator

meaning Zrea Tev T haa

6. A=16 GT 4; requires that a2 value,indicating

2.
that the relation 16 GT 4 is true,be assignment
/) Zoc#?"/é"') A .
7. The value stored wheqj’vg;;juglqle = relational 3. true

expression'is 1 for true or § for false.

——

(Watch it!! STUPID
was not one of the

options)

8. The relational operators are:

Symbol

EQ
GE
GT
LT
LEQ
NEQ

Operation

equal
greater than or equal
greater than
less than
less than or equal
not equal

.

Aetidadiad

9. Practice by completing

frames 10 through 12

(is) greater than

10. GIVEN: SET PAGE I;

A=6;

B=l;

C=A LT B; A
£xp ‘410

Location C contains Z .

stored in (location) A

1. SET PAGEl:
=6; B-l;

C=A LT B; = ¢ =%/ /fwbsr <7 s
=A GT B; (51 True O74
E=D GE C; 16 True 2
END;
Location E contains Z

12. Cifcle the true relationships
,,,,,,, “"*“‘“‘\

5 NEQ 6 9 EQ2

14 LEQ 13 “ ’?fg -y <
42 GE®

9 GT 9

3

, o
. 13. If you had trouble with frame 11 #o 77°% 1°

GOTO frame 15.

14. .) 10.
GOTO frame 16 - ‘ 4
15. In frame 11, C is @ because 6 LT 1 is false, D 11.
is 1 because 6 GT 1 is true. » Al

Therefore E= D GE C;
is
E=1GE#;

True, therefore E=I1.

16. Fill in the blanks ' 12. 5 NEQ 6

& / means greater than

NEQ means gh'r Eau v/
& E means greater than or equal

EQ means equal

LT means [ess 7 Aax

LEG means less than or equal

12 GE 6 -4 LT 3

17,

Smeans Adssion To Varihblr
Val ve

18. IF7 NEQ 28

then wi‘ite 'true'.

Trwr

19. You can cause the Sentry System to respond
. T

to the statement in frame 18 if you program

as shown in frame 20.

20. IF 7 NEQ 28 THEN WRITE 'TRUE";

Execution of this statement causes the word

T_RUE to be w ritten out on an output device.
=
e,

16.

GT

not equal
GE

EQ

less than
LEQ

2-8

. 21. IF relation THEN 17.
statement; | N assign a value to
. or
store a value in
O=——"=
head point
22. According to FACTOR syntax yvou, the 18.
‘ programmer, must fill in (refer to frame 21). true

the e/ a4 tion and a $7g e prra] .

23. IF 7 EQ 28 THEN
WRITE 'TRUE';

Is the relation (ship)true?

V22

24. Should a computer executing the statement

in frame 23 write out anything at all?

A

.25. If 7 is less than 6 then write true in

the blank

26. Youdidn't have any choice, but to ignore the

blank in frame 25, and proceed to the next

22.

relation (ship) and a

frame. (FACTOR) statement.
27. If 2 EQ 2 then write true in the 23.
blank 7w . NO
28. After you filled in the blank you still 24,
had no choice but to proceed to the next NO
frame.
[y I it dslckusiediinalind

©29. If 2 EQ 2 then GOTO frame 33.

30. You must have a problem of some sort
or you wouldn't be reading this frame.

Go back to frame 29 and do what it says

to do.

3l. The branch you just executed is (conditional/

unconditional) ¢/« ¢ onot, 7"/‘0 s g o

) 27'

frue

32. GOTO frame 38.

2-11

33. You just performed a conditional branch.
: _—

You branched from frame 29 to frame 33

because the condition in frame 29 is true.

34. The IF - THEN statement is a form of

C oy 7 wo~slbranch.

35. Perhaps you feel that a conditional branch

requires a GOTO.

31.

unconditional

36. IF relation THEN
A=6;
A=A+];

Now, if the relation is true, A=6 is executed.

If the relation is false, the program branches

around A—6 and does not execute it. The branch

is conditional.
18 conerLlons.

s

2-12

37. GOTO frame 31.

. 38. The simple GOTO is an fip/roed s 7 0 4 £ .

branching statement.

34.

conditional

39. The simpliest form of the GOTO
statement is GOTO label;
e e

40. A label is a symbolic statement

identifier.

A
PN .

2-13

41.

You can make up label names using the same
rules you learned for naminé“?éfiables.

42,

_Opgce you have named a wariable, that name

cannot be used as a label and vice versa.

Fortunately, the compiler knows this and issues
warnings as shown in the next two frames.

38.

unconditional

43,

000001 SET PAGE 1;
000002 TURKEY=1;

000003 ’ GOTO TURKEY;
000004 = TURKEY: END;

TURKEY USE ERRCR - DEFINED LABEL
0001B COMPILATION ERRS

44,

000001 SET PAGE 1;

000002 DUCK: A=2
000003 DUCK=4;

DUCK USE ERROR - DEFINED LABEL
000004 END;

0001B COMPILATION ERRS

2-14

t

45. A label is a symbolic statement

46. LOOP: WRITE X;

Loop is a sys bolic statement identifier

which identifies the statement immediately follow-
ing it (WRITE X;).

47. Note (frame 46) that a colon was used to

separate (delimit) LOOP from
WRITE.

48. But the colon is not part of the label

and is not used when the label is referenced.

E.g. LOOP: WRITE X;

IF X LEQ 6 GOTO LOOP;

......

49. Alabel is a sS40 ol
* 7

- statement //p,af/‘/“/)é/ .
50. A label is-delimited by a o 46.
but it does not contain a L Whea vielorenk ~4 symbolic

51. Label names follow the same rules as

YAy j B4l names.

T e —

52. The same name can be used, in the same main)
program for both a label and a variable.

(true/false). Fl/q? /se

-

2-16

53. Now, if you are new to programming, youare
* probably anxious to see a practical use for all
of this. |

»

49.

symbolic

identifier

54. Let us suppose that you wish to prepare a form
with numbers printed at the left side of the

page.

50.

55. If you only wanted five numbered lines you

would surely use a typewriter.
1

2
3
4
5

51.

variable

56. If you wanted to number 9999 lines,

consider frame 57.

52.

false -

2-17

57. SET PAGE 1;
X=1 .
LOOP: WRITE X;
X=X+1;
IF X LEQ 9999 THEN
GOTO LOOP; '
END; '

58. Now that is easier than using a typewriter!

(Naturally, economics might be a factor,

too!)

59. You now have some programming power.

With power you have respdnsibility also.

60. Careless programming can put a computer into
a loop from which it can't.escape.
Such a loop is often called an infinite loop.

An example is in the next frame.

2-18

61. SET PAGE 1;

WRITE X;
X=X +1;
.IF X LEQ 9999 THEN

GOTO LOOP;
END; ‘

62. If you see why frame 61 is an infinite loop
GOTO frame 66.

63. On the first pass thru the program, X starts as
1 then increments to 2. The relation is true.
The prograni branches to loop which forces X
to 1, again. . .

X is never assigned a value greater than 2.

64. If you don't see why 61 is an infinite loop THEN
BEGIN

SHAFT=I;
[F SHAFT LT 2 THEN
GOTO frame 60;

65. I'hope you lived through the last page.

*

66. The simplest form of the IF-THEN statement is
IF relation THEN statement 1;
Statement 2;

(note: assume statement 1 is not a GOTO
label statement).’

67. Refer to frame 66

If the relation is true,

Statement 1 is executed (true/false) 7 r u ¥

Statement 2 is executed (true/false) 77 « ¢

" 68. Refer to frame 66

If the relation is false,

Statement 1 is executed (true/false) = 4

T L sF

Statement 2 is executed (tfue/false) Tru #

hi

2-20

69. Often, it is desirable to execute more than

. one statement if the relation is true.

.

70. This can be accomplished by nesting
the statements between
BEGIN
and

"END;*

71. Look closely at frame 70. , 67.
Is there ayéemicohﬁn after BEGIN? true
fﬂa) true
Is ther® a semicolon after END? }«ﬁ”‘ﬁ

72. Past experience shows that many programmers forget 68.
the infgrmation in frame 71 false

/ﬂ :

IF N LT 2 THEN true

“

BEGIN T
N=N + 1;

GOTO frame 71; -
END;

2-21

73. If the relation in frame 74 is true, statements

P

.1 thru n.are executed before statement X.

e

If the relation is false ts 1 thrun are - -
not.executed (i.e. program branches directly

to statement X.)

74. IFlrelatiorlx, THEN
BEGIN
Statement 1;
Statement 2;

Statement n;
END;
Statement X;

75. Ifstatement n in frame 74 is a GOTO label statement,

Statement X (must, cannot, might) ,(/r/9/§7*’"
- .

be executed.

71.

no

yes

76. The correct response for frame 75 requires you, to
realize that the location of the label could cause-

a branch that bypasses statement X;

-

2-22 -

" 1
77. The ""END", statement that closes a nest of

.Statements started by "BEGIN'" does not end
T et st . s s S Ve s sn——— , , U

the program.

78. A FACTOR program may contain more than
one "END;''statement. '

(true/false) [yypr

79. If you fail to close the group of statements started

are seen by the compiler as_inside the nested group.

The next "END;''card would close-the group.

-

75.

80. Fortunately, the compiler counts the number of

puSso————y

"END; " statements in your program.

If it reads too few, it writes END OF FILE INPUT

and points an arrow at the*last statement it read.

3

81. 000001 SET PAGE;
000002 A=l; B=9;
000004 . IF A LT B THEN
000005 BEGIN.

000005 BUCKET =B;
000006 B=A; '
000007 A=BUCKET;
000010 ° END;
N

END OF FILE INPUT

82. In frame 83 is an example of a properly ended

.. program.
Note the statement
"0000B COMPILATION ERRS"
(the "B" reminds you that the number of errors

is printed in Octal)

78.

true

83. 000001 SET PAGE I;
000002 A=l; B=9;
000004 IF A LT B THEN
000005 BEGIN

000005 BUCKET =B,
000006- B=A;

000007 ~ A=BUCKET;
000010 <. _END;

000010 END;

0000B COMPILATION ERRS

84. In the following f_ranies are examples of coding. .

Each example is followed by a compiler listing. .
Try to spot the errors in each example before

"peeking' at the-compiler listing.

2-24

85.

SET PAGE 1;
:_.Az 1, — B=%; [

IF A LT B THEN
. o, BEETA Ao rs
BEGIN+~—»

PR MAve #

P

e BUCKET—=--E; SErtrcp o~ e E oy
E=A; ',}
. A= BUCKET;
— — END) — e
END; -
86. QQoOQ01 SET PFPAGE 1;
—Q00Q0Z A=1;—-B=9; -
0QO004 IF A LT B THEN
Q00005 EEGIN; :
CINVALID-TERMINATOR——— ™ - o - e
Q00005 BLICKET = E;
QOQO00A E=A;
- Q00007 — - . — A= BUCKET; -
00Q010 END;
0300010 END;

~0001B - COMPILATION ERRS - -~ - on

87.
— ;.ET Eglig, 1; — >ﬁ :.&.f_..___/f/,__;‘-v r—/f ~ s e scelonrs 7 e
IF & LT B THEN Enol 740 STw Tt T
BEGIN
o e BUCKE T B
E=A;
A= BUCKET; .
— — END;
ENDi;
8 soocot SET PAGE 1i; Note:
000002 - — A=l B=% + The compiler's interpretation of
| EXPREZSSION SYNTAX™ ;.
| 000003 IF A LT E THEN ‘ the error may differ from yours.
- 000004 BEGIN - e ——— _ _
000004 BUCKET = Ei i.e. 1 B =9 is an improper ex-
000005 E=A; .
000006 - A= BUCKET;———— Pression.
000007 END:;
000007 END;

—Q001 B—-COMPILATION-ERRS:

2-25

r—

QOa007
Q0007

e A= BUCKET ;e
ENLD; ‘

ENL;
L O0QO1E_. . COMPILATION .ERRS e

89. -
I SET PAGE 1; :
—A=1; - B=9; S . VA
i A e THEA
b BEGIN)
BUCKET-=-Bi -
E=A;
A= BUCKET:;
— R 1] 1 | T E———
| END;
90. QQOQ01 SET PAGE 1;
—Q00002- AL — BTy — Note:
QOO004 IF ALTE
000005 BEGIN The compiler does not detect that
STATEMENT-SYNTAX—A——— = = = o o o
000005 EUCKET = E; THE N" is missing until it reads
000004 B=A; e
— 000007 -~ A=-BUCKET; — B of BEGIN,
QQ0010 ENL;
000010 END
-QQO01E - - COMPILATION ERRS
9l. -
SET PAGE 1,
—A=1;— B=9i- - -
. IF A LT B THEN
P EBEGIN
i BUCKET—=-Bi—-
B:A_I__ A e SEm gl
A= BUCKET:;
: CENDG
| END; y
92.
Q0001 ZET PAGE 1;
— 000002 ——A=1; —B=Ppr — You expected maybe 'i mproper
| Q0004 IF A LT B THEN
| 000005 BEGIN semicolon' ?
e QOQOOS. . BUCKET-=-By—-
000004 E=A:
EXFRESSION SYNTAX -
— Q00007 ——

2-26

93.

SET FAGE 1;

A=l EB=9; :

' IF A LT E THEN
EEGIN

EBUKCET = _Bi_
E=A;
A= BUCKET;

- ENDG
;. ENL;
T){;/0’ Pals 2
9. 600001 SET PAGE 1; Quote:
000002 ———A=1; - - B=%;- ey . . .
ompiler
L000004 IF A LT E THEN Compiler quite happy pounding
000005 BEGIN on pointy end of nail"'.
—Q0Q0005 BUKCET -=-Bi—
000006 E=A; — Fucius Kahn
000007 A= BUCKET:
—-000010 ———— - ——END; e
000010 ENL; v
QQQQE COMPILATION ERRS)
95. The program in frame 94 executes ending
up with zero stored in A, You see B is
stored in BUKCET.
96.

END;

2-27

LESSON THREE
TOPIC: NUMBERS, COMPILED AND PRINTED

GIVEN:
1. The Booklet

NUMBERS, COMPILED AND PRINTED

2. Pencil and eraser

PREREQUISITE: COMPLETION OF LESSONS ONE AND TWO

PERFORMANCE:

Student proceeds through the number frames responding to
branching instructions.

Student writes short responses in the response frames, compares
his responses with the data provided in answer frames and corrects his
responses to agree with the furnished answers.

Standard: The student provides 100% correct responses within 30 minutes.

NUMBERS,

COMPILED
AND

PRINTED

3-2

. Integers may be entered by variable

_assignment statements

For instance

DECINT=8;

2. The FACTOR compiler recognizes a number
TRE———

as QOctal if it is immediately followed by B.
— -

R ———————

For instance

OCTINT=1¢B;

3. No imbedded characters are allowed in an

integer or between an octal integer and B.

4. INTEGERS
ACCEPTABLE UNACCEPTABLE
8 8 d
14B 2,000
+9 278
+14B 9B
+71
-77B

5. There is a limit to the magnitude of integeri

inputs.

It is

37777777B or, in
decimal form 8388607.

6. ACCEPTABLE UNACCEPTABLE
+8388607 +8388608
8388607 8388608
-83886 07 _ -8388608
+377777TTTB +40000000B
377777TTTB 40000000B
-37777777B =40000000B

7. There is 1o compiler warning if you enter
an integer that is too ul,gr%e. .

See frame 8.

8. This entry
A=8388608;

results in

GOTCHA!!!

3-4

9. Decimal numbers may be programmed with
a fractignal part preceded by gperf?d.
Octal numbers cannot. The string cannot

-u;?i_:_;;_,,._- -
exceed 8388607.
10. Acceptable Unacceptable
,/—\\
20.2 37.1B ~
838860.7 838860.8
999.999 ' 99999, 99
. 00002
11. No number can end with a period.
Acceptable’ =+ Unacceptable
88.0 88.
=
12. Circle the unacceptable input values.

100.1 g388607.1)

TN

(37.778) 9.0
(67D 4000000
((34218B) - 1,024

'power of ten' multiplier specified as E

followed by an integer. An example is
"?—-

in frame 14.

14. 17E6
means

17 times 106

15. Numbers expressed as shown in frame 14
et . T e R
are often called "exponentials' or are said

e ——

to be in "engineering format'.

16. The exponent (following the E) must be
T S

AR

a decimal integer,

It can be signed or unsigned.

FACTOR accepts an unsigned integer as

positive.

12.

UNACCEPTABLE
37.77B 8388607.1
267. 40000000

34218B 1,024

17.

ACCEPTABLE UNACCEPTABLE
2E1¢ 2E14
+2.4E-1§ +2.4E-14.1
-
-6E#3 -6 _E#3
-14E+2 -14BE+2
8388607 E2 83886082
18.
NOTE

83886@#7TE2 is acceptable
“N
838864749)is not !!!

19. Exponential values can exceed the limit
for integers.

(true/false) 7 ;i &

20. There is a limit, even for exponentials.
—=
The maximum range of FACTOR numbers is
(approximately)
2.7105E-20 '</N/<9.2223E8 where /N/ means
the magnitude of N.

21. FACTOR stores %Ll_numbers as
floating point nurr_lb‘ers.
Thus A=100;
B= 144B;
C=1E2;
cause identical data to be stored in
A, Band C.
22. The mantissa of the floating point format
SR
is 16 (binary) bits. Therefore, the resolution
of numbers stored in your FACTOR program
is 1 part in 65535.

23. The resolution of the floating point is 19.
much more than you will need for testing true
semiconductor devices. But if you insist
on trying to add 65535 and 0.1, you can
succeed in wasting the computer's (and
your) time.

24. The numerical format resulting from WRITE

statements is different, but simpler.

25.

TO THE LINE PRINTER OR THE VIDEO
am—— e —————————— A asndd e e

SCREEN ARE WITHIN THE SCOPE OF
THIS LESSON.

26.

The general form for writing a numeric
output is
WRITE (LP) expression;
—= :
to write to the line printer
or
WRITE (TTP) expression;

to write to the video screen

27.

TTP is actually a mnemonic for TeleType

Printer. Most systems use a. Y_g Video Key-

_board Terminal) which is a compatible alternative

to the teietype. Hence TTP can mean the video

screen of the VKT,

28.

WRITE (LP) expression;
or

WRITE (TTP) expression;

writes a decimal number

on the appropriate device

29.

consider:

SET PAGE |;
A=10B;
WRITE (LP) A;
END;

30.

The program in frame 29 prints

8

on the line printer

3L,

consider:

SET PAGE 1;.
B= -8;

WRITE (LP) B;
END;

32.

The program in frame 31 writes

268

on the line printer

3-10

33. The plus sign is suppressed for positive integer

printouts. The minus sign is not. Integer printouts

are iimited to four characters.
——— gt R e

34. The maximum positive number that the LP or TTP
canprintoutis 7779

The maximum negative is - 777

35. Consider:
SET PAGE 1;
X=16384;
WRITE (TTP) X;
END;

36. The program in frame 35
writes
+1. 638 E+@4
on the TTP.

3-11

37. Is 16384 an integer? Vs
7

Does it print as an integer ? A o

38. How many characters were

printed out in frame 36 ?

10

34.

9999
-999

39. _Non-integer printouts always appear as a sigred
four-digit decimal number "xgg_@een 15300 and 9. 999

with a signed two digit exponent.

pee— S

Plus signs are not suppressed.

40. Consider:
SET PAGE 1;
WRITE (LP) 409.6;
END;
This program prints ; 4 09¢ F+P2

on the line printer.

3-12

41. In frame 42, write the given number as

37.
it would appear on the line printer or Yes,
no
video screen.
42, 38.
Given Qutput 10
-27B -£23 -
+21E1 2410
13048 1.300 E+0Y
-6. 07 -4.070 E-00
43. Numbers printed out are
"rounded off", not truncated.
e ——— 3.
44, 40.
END +4. 096 E+02

(The answer to frame 42 is on

the next sheet).

3-13

42.

Given Output
-27B -023
+21E1 21¢
13809 +1. 300 E+g4
-6. 07 -6.070E-@d

3-14

LESSON FOUR

TOPIC:
FACTOR ARITHMETIC EXPRESSIONS

GIVEN:
1. The Booklet
FACTOR ARITHMETIC EXPRESSIONS

2. Pencil and eraser

PREREQUISITE: COMPLETION OF LESSONS ONE, TWO AND THREE

PERFORMANCE:

Student proceeds through the number frames responding to
branching instructions.

Student writes short responses in the response frames, compares
his responses with the data provided in answer frames and corrects his
responses to agree with the furnished answers.

Standard: The student provides 100% correct responses within 40 minutes.

FACTOR
ARITHMETIC
' EXPRESSIONS

Somewhere, at some time, you probably
learned that XY is the product of a varjable

named X and a variable named Y. In other

words, XY means X times Y.
—— R e

The FACTOR compiler recognizes XY

as the name ofa g+ /44L¢ location or

of a symbolic statement identifier called

a_Label

The FACTOR multiplication operator is the

asterisk (*). .

) R

Thus X*Y means X times Y to the
— et o s g

FACTOR compiler.

Write the FACTOR statement that

stores the product of R and T in location D.

0=R*T .

5. Write the FACTOR statement equivalent
to the algebraic equation C =2%wr
A =3/4;
C=2%4%K"

6. TFrame 5 illustrates a very practical point.

There is no point in forcing a machine to look variable
up (access) a number unless you have a good label
reason for it. Accessing takes a finite amount
of time.
7. Which is faster?
example a.. C=6,28*R; A
example b. PI=3,14;
€=2*PI*R;
example 4 [(=4 25¥ % ;
8. Circle the incorrect FACTOR statements
A = B*C; D = R*T;
Z = MN;

9. HOLDIT!!!

If you circled Z=MN in frame 8, you jumped to

the conclusion that M and N were different variables.

MN is a legitimate variable name. Look at the

compiler's opinion.

¢ = 2%3.14*R;

or
C=6.28*R;

or
PI=3.14; «

C =2*PI*R;
etec

10. 000001 SET PAGE I;
000002 A =B*C;
000003 Z =MN;
000004 Q =9T;
EXPRESSION SYNTAA
000005 END;

0001B COMPILATION ERRS

1. FACTOR uses the traditional + for an
=

‘addition operator and - for subtraction. a
12. The algebraic equation A = B+C+D+E is easily
programmed as Q =9T;

A =B+C+D+E;
Similarly F = G-H+I-K is programmed as

F =G-H+I-K;

13. The compiler scans an expression

from left to right just as you (usually) do.
— 2

-

14. The compiler
ALWAYS
PR

scans an expression from left to right.

15. Consider:
A =P+PRT, where P, R_ ?.nd T are separate
variables.)
You probably would ''group' this equation like
this -
A=P (1+RT)

16. But you wouldn't try to program that as
A =DP*] + R*T;
No! No! No! No! No!

17. The FACTOR compiler recognizes parentheses
as grouping symbols.

18. Write a FACTOR statement equivalent

to

A=P (1 + RT).

19. The FACTOR operator for division is the slash (/).
k‘— —
That is, Percent =N=100
can be programmed as

PERCENT =N/100;

20. Write the FACTOR statement equivalent to

X=A+B
C+D

=(A ¢+ :

21. The compiler 4/ .2, scans an
e

expression from [p F 7 to /3 ok~
P

22. The FACTOR operator for division

is
Y4 Y

/ 4 slash

)

18.
A = P*(I4+R*T);

23. Since the FACTOR operator for division cannot

B —

group terms you must use parentheses to program
e ———— o——

a fraction where the numerator or denominator

is a polynomial.

24. A+ B > A+ B/C+D
C+D
You know it. I know it.
BUT
The FACTOR compiler w—ill never know what that
"thing' on the left is.

20.
X=(A+B) / (C+D);

25.

The FACTOR operator for ex onentiation is
the up arrow (_wf!‘_), .
That is

Given: X =Ny

Program: X =Y (s

21.

26.

Since NE_GATION takes precedence over

EXPONENTIATION never try to raise a negative

number to a power. IF Y in frame 25 were

s

negative, X would be "imaginary".
FACTOR handles only real numbers.

22.

27.

Given: N =3*412;
Result: 48 (not 144) is stored in N.
Because exponentiation has"éﬂz_f_grqg;dgnge over

multiplication

28.

The FACTOR compiler ALWAYS scans an

expression from left to right but performs operations

in order of precedence.

Read the rules on the next page.

RULES FOR EVALUATION OF FACTOR
ARITHMETIC EXPRESSIONS

~.

Arithmetic expressions are evaluated left-to-right according to the fbllowing
rules:

L.) Rarenthesized expressions are evaluated first. If parenthesized expressions
‘are nested, the innermost expression is evaluated, then the next innermost
until the entire expression has been evaluated.

2.) Withjn parenthesis and/or whenever parenthesis_do not govern the order or
evaluation, the hierarchy of operations in order of precedence is

a.) Negation (NEG)
b.) Exponentiation (p)
c.) Multiplication or division (*, /),

d.) Addition or subtraction (+,-).

Example:

The expression
A* (Z-(BrC)/T)) + VAL
is evaluated in the following sequence:
B*C»e; NOTE: That is, BTC is temporarily held as partial solution ej.
e1 / T2e2
Z-egreg
eg*Adeyq
e4 + VAL%e5

4-10

29. Program the equation
A=P (1+RT)N

where R is rate and T is time

Az Px((1+AR¥T) tA);

30. CAUTION

] 113 3 "
The Sentry's computer does not handle imaginary
numbers. Therefore Bt C is not allowed when B is

negative, since the result could be "imaginary".
S —

3l. Circle the incorrect FACTOR statements

Y =-(572);
Z = 5M(-2);

e e A D

32. Negation takes highest precedence! The minus sign
in front of the 5 in the value assigned to X (frame

31) is a negation not a subtraction.

4-11

33. Compare frame 34 with frame 32. 29.

A =P* (14R*T)4N;

34. Q =15 ~ 342;
is just fine. Plus 9 is subtracted from 15.
This time the minus gsign is a subtractiog

operator.

35. Negation can be programmed with the symbol "NEG" 3L

or with the minus sign in a context other than sub- X = 512
traction. ’

Note examplés in frame 36.

36. A = -6; All these examples are permis-
C= g;N}LECSg;; sable but most programmers use
C= D¥ ~E; only the first and last forms, a-
C = D* (-E);

voiding the others as unnecessar-

ily confusing.

<

4-12

LESSON FIVE

TOPIC:
PIN DEFINITIONS
GIVEN:
1. The booklet: Pin Definitions
2. Pencil and eraser
PREREQUISITE:
Completion of Lesson Four
PERFORMANCE:

Student proceeds through the number frames responding
to branching instructions,

Student writes short responses in the response frames,
compares his responses with the data provided in answer
frames and corrects his responses to agree with the
furnished answers.

Standard: The student provides 100% correct responses
within one hour.

5-1

PIN DEFINITIONS

A PROGRAMMED STUDY AID

SENTRY 600 PROGRAMMING

© 1974 by FAIRCHILD SYSTEMS TECHNOLOGY
1725 Technology Drive
San Jose, California 95110

5-2

PIN DEFINITIONS

In this lesson, a pin refers to a land on a pjn_
‘electronics card that mates with a connector on
the performance board.

Apinisa [/ 40/ on an electronics
card. ‘

There are two sets of identical pin electronics.
per card; hence, two electronically_identical
pins per card.

Therefore, the pin electronics of: ,
A "30-PIN" Sentry 600 requires /5
cards.

A "60-PIN" Sentry 600 requires 32 g

cards.

5-3

5. Since all pins are electronically ideptical, any
pin can be programmed as either an input ot an
_ output pin.

6. The terms_input and output are relative to the DUT; 2.
an input pin connects an input to the DUT from the
Sentry 600. ‘
land
| 7. An input pin connects an input 72 the
DUT Frows the Sentry 600.
8. Input pins may be used to apply power, clocks
ot data to the DUT. 4,
15
30

—— e e

9. Input pins may be used to apply pow €,
Llock ot o4 7.+ tothe DUT.

10. Power pins provide a steady DC voltage to the
UT. ~

|

o

11. Data pins normally apply NRZ (non-retum-to-zero)
data to the DUT. -

Sr—

12. Data pins normally apply NRZ (tpe - reruvn -
7o - zpero) data to the DUT.

13, The source of the data is local memory ig the high 9.
speed test station controller.
Pl e power
~ clocks
data
14. The source of thedatais Locel Momory
in the high speed test station controller,
15. NRZ data stays at the programmed level for a
period equal to that programmed by the SET
PERIOD statement.
16. NRZ data, stays at the programmed level for a 12.

period £gual to that programmed by the
SET PERIOD statement.

non-retum-to-zero

5-6

17.

NRZ data stays at the i v/ n e &
7 7

Leve/ for a period frFgivm L

to that programmed by the S£7_
_fEAIOLD statement.

18. Compare the statements in frame 19 with 14,

the waveforms in frame 20.

. source
local memory

19. SET DA 1111 . .; '

SET F 10T@ . .; REM lst PERIOD DATA;

SET F @111 . .; REM 2nd PERIOD DATA;

SET F 1801 . .; REM 3rd PERIOD DATA;

SET PERIOD 500E- 9 RNGO;

ENABLE TEST; -
20. Assume positive logic 15,

T% Td ﬂé To equal

! |

! |

5-7

21. The simplest programming for a data 17.
pin, syncs the data with the programmed

period. Review frames 19 and 20, noting programmed level

the data transition points, then go on

to Frame_22. cqual

ET PERIOD

22. The simplest programing case for a data
pin applies (NRZ/RZ) A/ 2 data
to the pin. This data is in synchron-

ization with the fros ramedperiod.

23. NRZ data can be synchronized with a

timing _generator by connecting a
timing generator to the pin.

-

24, NRZ data can be synchronized with a

7777,229 G en@yrplerby connecting
it to the pin. '

25. Frame 26 shows the same data on pins
1 and 2 but pin 1 is connected to a
"timing generator while pin 2 is not.

Both pins are NRZ.

26 té ﬁé ﬁé Rb 22.
| 1 | .
Timing L_rj | J'l LJ—T ' NRZ
Gen. Iy] Lo '
Lo o o | programmed.
|
PNt] LT -
i]
— —
PIN 2 z |
. | } I !
27. Note that the data on pins 1 and 2
have the same period but different
transition points.
28. Transitions on pin 1 are synchronlzed 24,

by the leading edge of the 7 ., .5

Gruerslay Pulse. Transitions on pin
2 occur at. /7

‘timing

generator

5-9

29.

If no timing generator is connected to
a data pin, data transitions occur at
. s

T .

If a timing generator is connected to
an NRZ data pin, dat Lran5|tions

occur at paﬁn‘ Yo ef*p/yw

o £

/h‘u/aj Aual s

NRZ data stavs &at the programmed level

for a period equ

1 tc that programmed
by the S£E7 PES { O statement.

Machines with the '"]-nanosecond option"

provide & special case that can viclate
the statement in frame 31.

is covered in the OPTIONS

This case”
lesson.

28.
timing generator

K]

5-10

_%LQQ____Q_I ns normally provide RZ 29,
tUFA=tO-zero) waveforms_&%

“the DUT, Té

34. Clock pins normally orovide RZ (yje7urn 30.

~Jo- Zero) waveforms to the DUT. the leading

edge of the

timing generator

pulse.
35. Data _can drive an RZ waveform to a 1! 31.
“Tevel only during the timing generator : SET PERIOD

pulse. When the pulse ends, the wave-
form returns to_zero.

36. Data can drive an RZ waveform to a
el

/ e level only during

the 7im/ns be~rraferpulse. When
the pulse ends, the waveform returns

to = ero

37. Since a clock pin normally applies RZ
data to the DUT and RZ data requires
a timing generator, a 7,5
Gopor . 7 or must be connected to a
clock pin.
38. An input pin becomes a clock pin when 34,
its number appears in a CONN-CLK pin "~
list; statement. return-to-zero
39. Input pins can provide Fowver
Dol a , or _Clock
to the DUT.
LO. An input pin becomes a Clo, 4 36.

pin when its number appears in a CONN
CLK pin list; statement.

n

timing generator

Zero

e

41, An Lpput pin becomes a-power pin when 37.

its number appears in a

.CONN_[BPS|1/DPS2/DPS3/TCOM] pin list; timing

statement.

generator

42, A Y]!" must appear in the ;ﬁf1 position

of either a SET DA or a SET DB pin-

pattern; statement before pin n can. -

€ an input pin. _

“3. SET DA 1001001, 39.

SET DB 0000111, power

Pins 1, 4, 5, £ and 7 can clocks

be input pins. ‘ data
L, igudy frame 45 then respond to frame Lo,

. clock

5-13

4s.

" CONN DPS1

SET DA 100
CONN CLK 1

7
CONN TCOM 8

(Assume no SET DB statement)

Lé.

Pins 1.4, snof § are clock pins.
Pins 7 s,/ & are power pins.
Pin =2

programmed.

is. incorrectly

47.

Data pins require more definition.
Pin_n can be a _data %fn only ifa
"1" appears _in the n position of
a SET |DA/DB| pin pattern; statement
and the DA/DB register is enabled.

L3.

-~

L8.

Pin n can be a data pin only if a

1 appears in the nth position
of a SET[!Z44fQéj]pin pattern;

statement and the DA/DB register is

enabled.

5-14

Lg.

“input pin must be

In order for an input pin to be a data
pin, the DA/DB register defining the
EpAbled T .

50.

The DA register is enabled by the
ENABLE DA; statement. The DB
register is enabled by the ENABLE
DB; statement. The enable statement
applies to the memory loads that
follow it. T

Leé.

51.

If no ENABLE (DA/DB] ; statement
appears in a FACT program, DA
is enabled by default. [If an

ENABLE [DA/DBl statement appears,
it prevails until the.next one appears.

52.

No ENABLE DA; statement is required
to epable the DA register unless an
Earall e LfF; statement is
currently programmed.

L8,
'n]n
DA/DB

5-15

53.

A power or clock pin must have a
"1 in the pin pattern of either

“the DA or the DB register but a

data pin must. have a '"1' in the
pin pattern of the Af?ug'élfe/
D register.

L9,

enabled

5k.

A power or clock pin must have a
1" in the pin pattern of é:ffﬂ“/

the DA ¢4 the DB register, but a
Jgzz _ Pin must have a "1" in the

pin pattern of the rfopple .
D register.

55.

Power, clock and data ins are
mutually exclusive. e last

“definition in the FACTOR program

prevails.

56.

Therefore, if a pin number apggaﬁw
in the_pin list o

CONN (DPST/DPS 2/DP53/TCOM/CLK]
pinlist; statement it cannot be

a data pin.

A — 7

52.

ENABLE DB

5-16

57. The data shown on pin 4 in frame 53.
58 is (RZ/NRZ) _ /4 =
data. enabled
58. To Td To Té 54,
| ! | [
- : | ‘ either
DATA IN [« |—&— 0—>— |— -
Local ; : | ' or
Memory | | !
| | | | data
I |
PIN L I - : . enabled
I | | |
59. Pin 4 could be either a _Ugs 7 4
or a Llec X pin depending upon
whether or not 4 appears in a CONN
CLK pinlist; statement. ’
60. An RZ pulse can appear during a data
period only if the data for that
period is a logical

5-17

| 61.

with NRZ waveforms, a SET RZ pin
'pattern statement is necessary to
apply RZ waveforms to a data pin.

57.

62.

A logical Ul in the pin pattern of a

SET RZ statement defines a pin as RZ,’

a “@” defines the pln as NRZ.

63.

SET RZ 0011;

The above statement defines pins
1 and 2. as

NRZ and pins - and

as Al 2.

|

59.

‘clock

data

6l. An RZ pin receives a pulse on]y

durang a pernod where E= dgta is a
(gne/zero) _1 .

60.

5-18

65. Choose the waveform in frame 66 that is

2

correct for an RZ pin (i.e. choose A orB).

{

66, To To
A (T ﬂl
|

F-DATA

T
I
|
|

I T

A. The programmed period.
(B.> The width of the timing generator
pulse.
C. The F-data

5-19

The width of an RZ pulse is determined by:

l TR R | T L (] ‘ (GIVEN)

| R TR nin
A ‘ | n ﬁ T LT
SR IR R T
SRR M o

!67. An RZ pin receives a pulse only during 63.

a period where F-data is a '
- 1 and 2
3 and 4 as Rz
68. Circle A, B, or C. 6L .

one

69. A data pin IS NRZ unless a "1" is

programmed for the pin in SET _/ Z
pinlist.

70. A clock pin is normally (RZ/NRZ) A Z .

l

—— =

66.

B
(An RZ pulse can appear
during a data period only

if the data for that
period is a logical one.)

but clock pins.are normally (RZ/NRZ) Az .

1 71. The GONN CLK pinlist; statement auto- ' 67.
matically loads a "1l into the RZ register!
Tor every pin specified in the Elplnst. one
72. Data pins are normally (RZ/NRZ) A/ Z 68.

B. The width of the
timing generator
pulse.

5-20

73.

C-Lc\c.k_p_uns_can be redefined as NRZ by

programming a SET RZ pinlist; statement
after the CONN CLK pinlist; statement.

e
1

69.

7h.

Clock pins can be redefined as NRZ by
programming a (one/zero) Zer@ into the
SET RZ pinlist; statement (before/after)

éfff.fy’ the appropriate CONN CLK p1nlist, state-
ment, .

75.

Data transitions for NRZ pins, with
no timin%/generator connected to them,

are at Vi

70.

76.

f(/f/m #lor pulse’

Data transitions for NRZ pins, with a
timing generator connected to them,
are at the Jegeliny Fuop oOf the 7";,.4,,

72.

I8 |2

5-21

77.

Pulses are applied to RZ pins only

during the programmed wid 74 of a timing
generator pulse and only if the F-data

for the pin is a logical 1 .

on each pin during each period of a
functional test.

78. Each pin -can be programmed as either 74,
an input or an ou7,4 77 PiN :
zero
after
79. Each pin_is connected to a functional 75.
test comparator during functional test-
ing. - T
TP
80. The functional test arator can be
programmed to perform a_pass/fail test 76.

leading edge
timing generator pulse

5-22

81.

output plns

77.

width

one

pin that is ngf an |ngut pin can
5 considered an output pin. .

83.

A pin that is neither a po in nor '
a clock pin and that does ngt have a ‘

"1V assigned in the pin pattern of an
enab}ed D register is an sury w7 pin.

78. output

————ans ——

8L

Functional test data for a pin is ignored
unless a "]!' appears for that pin in "’
an enabled MA or_MB register.

5-23

’

85. [f no ENABLE lMA[MBl;
statement is programmed, the MA _register
i-s enabled by default. Once
programmed, an ENABLE [MA/MB] ; statement

—preavails for subsequent memory loads
until replaced by %Qggher ENABLE MA/MB |

J

L g—

86. Definition [DA/DB] and Mask [MA/MB];

régisters can be enabled together in
one statement or separately. See frame

87.

87. Possible valid enable statements

ENABLE MA; ENABLE DA
ENABLE MA, DA; ENABLE DA, MA;
ENABLE MA, DB; ENABLE DA,_MB;
ENABLE MB; ENABLE DB;
ENABLE MB, DA; ENABLE DB, MA;
ENABLE MB, DB; ENABLE DB, MB;

——— e e o

out Eut

88. Only the mask register that is Ergé4led

specifies the pins to be tested.

Vo e

5-24

e e - e

e T L T p———

88.

enabled

5-25

LESSON SIX

TOPIC:
LOCAL MEMORY MANAGEMENT
GIVEN:
1. The booklet: Local Memory Management
2. Pencil and eraser
PREREQUISITE:
Completion of Lesson Five
PERFORMANCE :

Student proceeds through the number frames responding
to branching instructions,

Student writes short responses in the response frames,
compares his responses with the data provided in answer
frames and corrects his responses to agree with the
furnished answers,

Standard: The student provides 100% correct responses
within one hour,

6-1

LOCAL MEMORY
MANAG EMENT

A PROGRAMMED STUDY AID

SENTRY 600 PROGRAMM|NG

(©1974 by FAIRCHILD SYSTEM TECHNOLOGY
1725 Technology Drive
San Jose, California 95110

6-2

LOCAL MEMORY'MANAGEMENT

1. Local memory locations are loaded segyen-
t:allx by a series of SEI F statements.

(REF: FACTOR MANUAL paragraph
11-4.5)

2. A series of SE] statements]oad local
Memory /[ocairos (hOW?)

Sggu p,v?’”z_/ﬁ! /[///

3. Each memory lgad starts at address @,
funless modified by an é;‘statement. -

L, Unless modified by an AT statement, each
memory load starts at address .

5. A memory load consisting of 16 SET E

statements:gpads local memory locations o©
/ .

through

6. The first SET F (or_SET FIl) following an

each memory load starts at address Q} '

2. sequentially
EN E TI statement starts a new memory
oad. ‘
7. |If sixteen memory locations are pro-
grammed followed by ENABLE TEST, the next
SET F statement loads address _ Q’ .
"18. Unless modified by an AT statement, L,

9. An AT statement can specify .an address
to be 10aded. For example AT I|I; -SET F
pin pattern; loads memory location eleven
(decimal).

(REF: FACTOR MANUAL paragraph 11'4-23)

10. The_AJI statement can be used to start
a pew memory load at an address Qther than.
L., Subsequent . loads are sequential. Note
the programming and remarks. in frame 11.

11. ENABLE TEST; REM THE PREVIOUS TEST LOADED
T 16 LOCATIONS;

AT 11;)
SET F pin pattern; REM THIS LOADS
280 LOCATION L1;
SET F pin pattern; REM THIS LOADS
LOCATION 12;
SET F pin pattern; REM THIS LOADS
- LOCATION 13;

ENASBLE TEST;

12. The programming in frame 11 modified
the contents of locations 11, 12 and 13 but
did not change locations Q through 18 14,
and_15. "

6-5

13. The first SET F statement of a memory
loa d_QL_fOllQWIng an AT statement programs

all pins to zero that are not sgeC|f|ed as
Jogical ones. Examples are given in frame

14,

14. SET_PAGE 100; REM 30-PIN SYSTEM
. ... set-up instructions
ENABLE DA, MA;

SET’?”OOTOIII REM 3,5, 6 and_7 PRO-
i : TO ONES THE OTHER 26

. PINS ARE PROGRAMMED TO
_LERQES;

ENABLE TEST;
AT 10; SET F_1; REM F-DATA IS ONE

15. The first SET F statement of a memory
load or after an 1&_7_ statement programs
all pins to zero that are not specified as

logical K

16. Subseguent SET F statements within one
memory load need specify only the chang. thggg_
from Qne location to the next. Note the
examp]e in frame 17.

6-6

7

17-Sequential SET F's LOC F-DATA (30 PINS)
SET F 00001 ; ‘
SET F 0001 ;

SET 291 ;
@1,
1

—_

SET
SET

M

2
1

-

f

0

) 00001 00000 00000 Q0000 00000 VOPP0
1 00011 00000 00000 00000 00000 P0000
2 09111 90000 00000 00000 BP000 0000
3 01111 00000 00000 00000 P0000 Q0000
L1111 00000 00000 00000 90000 00000

18. During compilation of a FACTOR program,
gach statement that controls the tester is
converted into a code that can be_executed
by the Sentry 600. N

19. During execution, this executable code
causes the pin pattern of edch- SEI F state-

mentto be loaded into local memory &s F-Datal
-.‘\——.__————_-ﬁ

15.

ones

memory along with the F-Tlata. QOne enables

20. Two enable bits are loaded into the locall

a D register. The other epables an M register.

a

21. .Two enable bits are loaded into local
memory along with thefy/s7 4 .

/1 ‘ register.

One enables
register. The other enables an

22. The. state of these two epable bits is

etermin at compile time, ENABLE
EA/MB/DA/ DBl (,MA/MB/DA/DB); statement.

23. The state of these two enable bits is
determined at cosp/detime.

24, Thus, the ENABLE MA etc. statement does
not appear as exécutable code in the campiled
program. |t has already caused the compiler
to_modify the code that loads local memory.

6-8

25. Since ENABLE MA etc. Eroduces no_execu-

21.

Ao T be 1abelled

| table code Tt does not ex15t in the execu- F-Data
table DATA file.
o 0
M
26. Since it is impossible to branch to a
statement that does not exist at execution-
_time, an ENABLE MA etc. stgggment should
not be labelled.
er—— T
27. An ENABLE MA ete sta;emert should 323' Compile

28. Any executable statement written within
a string of SET F statements starts a new
memory load. _

6-9

29. Any executable statement written within

3 e e
a string of SET F statements starts a /€ &«
local memory:1load. :

31. In frame 30, note fhat thé\flrst location of
local memory is changéé if A equals 2 but the second
location (LOC 1) ;;/Ehanged if A do&s not equal 2.

/

// JQ \Q *—Q

o W
J 30. Note the remarks Ue o Te
SET F\ REM LOAD LOC §; /
SET Fx\ REM LOAD LOC 1; - p
SET'F; \REM LOAD LOC 2; .
//
If A RQ 2 //
THEN SET F\
ELSE SET F5 S/
ENABLE TEST; /
N
! AN S S
{ // N |

not

32. BUT

ENABLE [MA/MB/DA/DB} (,MA/MB/DA/DB/)
generates no executable code
TTTTT—

Therefore it CAN
be nested within a string of SET F statements
without starting a new load. "

e

6-10 '

33. A D or an_M enable ¢4 (can/cannot)
be loaded within a string of SET.F statements
without starting a new memory load.

29.

new

34. This characteristic of the D or M

enable allows changing pLin definition (data/
loutput) and mask definition (care/ don't care
during execution of a functional test.

35. When the Test Operating System executes
the ENABLE TEST; statement the F-Data are

executed at the high-speed test rate.

-
36. F-Data are executed at the ‘52\ {-ffégst

rate.

6-11

37. The high-speed test rate is programmed
by the SET PERIOD.&LaLgmgg;_ This statemeént
must.appear the first ENABLE TEST; in
a program. :

(REF: FACTOR MANUAL paragraph LL:4.17)

33.

38. The functional test rate is programmed

by the SET__~ PFA 10 D statement,

'~ 39. The shortest er od ts_determtned by T
the system_capabili Thus, minimum period

for a 10 MHZ system B 100 nanoseconds,

RE—
minimum pertod for a 5_MHZ system 15 200
nanoseconds

4LO0. Rate (frequency) and period are

@s.w_oc_é%s i.e. '
} Fequency =] ; period = |

period frequenc

HERTZ = 1 ; seconds =]
seconds Hertz

36.

" high-speed

6-12

41. A test rate of 2_MHZ reguires a pro-
grammed period of _swp 4« .

{

- - £
e S ke = Soo o n s

L2, When the functiopal test takes lace,
the first local memory word executed is tThat
in location @ unless a SET START statement’
appeared since the last ENABLE TEST; state-
ment. :

43, During functional test execution the
first F-data is from memory location

unless a SET START statement appeared since
the last ENABLE TEST; statement.

(REF: FACTOR MANUAL paragraph 11:4-22)

P, e —

38.

SET PERIOD

LiL., A SET START statement dggs not ‘carry-
aver'" from one functional test to the next,.

That is, if the first functional test has
a SET_SIART statement but the second does
ng;, the second test starts at location zero.

i

6-13

does not) carry over from one functional
test to the next..

| L5, A SET START statement 4/&85 woT (does/

Ly,

500 manoseconds

L6, Noté the difference between the

A SET START, statement controls the F]rst
]ocat1on executed.

47. An AT statement may control the first

location™ I, soleof. A SET START statement
controls the ?srst statement executed.

AT and
the SET START statements. An AT statement"
may control the first -location Toaded.

L3,

L8. It is possible to modify part
of local memory using the_zi statement but
execute all of local memory by not using

EET START. Constder the remarks Thn frame
q. -

6-14

49. ENABLE TEST; REM THIS TEST USED LOCA-
TIONS @ THRU 15;

Ls.

AT 12; does not
SET F ; .
SET F ;
SET-F ;
SET F !
ENABLE TEST; REM TEST STARTS AT LOCATION @;
50. If frame 49 were modified by a SET START]
12; statement placed just before the AT or
Jjust before the Tast ENABLE TEST; the fest
would execute locations ough 15 |th-
out using or changing 1dcat ions @ tAfu 1T,
) e
51. A functional test starts at location @ | 47.
unless modified by a SE7 S7TAAT statement.;
_loaded

52. Unless a SET MAJOR statement is pro-
grammed, the I1dst Tocal” memory location .

executed for a specific load is the hlghest
ocation loaded during that | load.

e ——— T~

(REF: FACTOR MANUAL paragraph
6.5.2.2)

6-15

i

...53.. Unless a SET MAJOR statement is pro=

grammed, the last memory location executed
for a specific Toad is thef,;4e,7— location
loaded during that load. '

Sh. Unless a S£g7 MATo/A statement is

programmed, the last memory location exe-

cuted for a specific load is the 4,407
location loaded during 7 4 g7 Ioéﬁ.

51.

'SET START

6-16

B o v

53.

highest

54,

h'ghesq
that

SET MAJOR

[e e -

6-17

	000
	001
	002
	003
	004
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17

