
Systems Technology

FACTOR
Manual

DECEMBER, 1970

© 1970 by Fairchild Systems Technology, 974 East Arques Ave., Sunnyvale, Calif. 94086
F=AIRCHILCJ

SYSTEMS TECHNOLOGY

TABLE OF CONTENTS

Page

SECTION I INTRODUCTION 1-1

SECTION II ELEMENTS OF FACTOR 2-1

. 2-1 2 .1
2.2
2.3
2. 3 .1
2.3.2
2.3.3
2.3.4
2.4

Introduction .
Character Set
Record Format
Cards . . .

• • • • • • 2-1

Di SC • • • •
Paper Tape
Teletype . . • . .
Error Messages .

SECTION III FACTOR OPERATING PROCEDURES

3. 1
3.2
3.2.l
3.2.2
3.3

Introduction ..•.•.
Program Initiation
Input
Output • . . . •
Interpreter Interfacing

SECTION IV EXPRESSIONS

4. 1
4.2
4 .2 .1
4.2.2
4.2.3
4.3
4. 3. 1
4.3.2
4.3.3
4.3.4
4.4
4.5
4.6
4. 6 .1
4.6.2
4.6.3
4.6.4
4.6.5

Introduction •..
Numbers •
Integers . . . • • .
Decimal Fractions
Exponentials .••...•.
Variables . . .••
Variable Identifiers
Scalar Values •.•
Boolean Values .••.•..
Array Values
Functions . • •..
Arithmetic Expression Evaluation .•......
"Boolean" Operators {Logical and Relational} .
OR • . • • • • • • •
Exclusive OR (EOR} ••..
AND • .
NOT • • • • • • • • •
Relational Operators .

i

• • • . 2- l
. 2-1
. 2-2

2-2
. 2-3
. 2-3

3-1

. 3-1

. 3-1

. 3-1
3-1

. 3-2

4-1

. 4-1

. 4-1

. 4-1

. 4-2

. 4-2

. 4-2

. 4-2

. 4-4

. 4-4

. 4-4

. 4-4

. 4-5

. 4-5
4-6

. 4-6

. 4-6

. 4-6

. 4-6

TABLE OF CONTENTS (CONTINUED)

SECTION IV EXPRESSIONS (Continued)

4.7
4.8

Boolean Expressions .•.•.
Mixed Expressions .••.••

SECTION V BLOCK-COMMAND AND PROGRAM CONCEPTS

5.l Introduction •..••••••.
5.2 Label ...•...••.•..
5.3 Block Concept •••.••
5.3.l Establishing the Block
5.3.2 Nesting Blocks •...

. 4-7
. .4-7

5-l

. .5-l

. .5-l

. .5-1

.. 5-1

. . 5-2

SECTION VI VARIABLE DECLARATION AND VALUE ASSIGNMENT 6-l

.. 6-1

. .6-1
.6-1

. . .6-2
. .6-2

6.1 Introduction • . .•.
6. 2 DCL . . • • • • •
6.2.1 Scalar Declaration ..•.•.
6.2.2 Array Declaration ..•
6.3 Assignment Statement

SECTION VII CONTROL STATEMENTS

7. 1
7.2
7.3
7.4
7 .4 .1
7.5
7.6

Introduction •
PAUSE • .
GOTO . . . • • .
IF. • • • • • • • •
The Conditional ELSE .•..
BEGIN . . . • .
FOR . • • • • • • • • • • • • • •

SECTION VIII SUBPROGRAMS AND FUNCTIONS

8. l
8.2
8.2.1
8.3
8.4
8.4 .1

Introduction . • • •
Subprograms . . • • •
SUBR • • . .
CALL · • .
FUNCT . • . • .
Functj 9~ Ca 11 •
.T ;v ,>Ef_ T

. . . .

SECTION IX INPUT/OUTPUT STATEMENTS

9 .1
9.2
9.3

Introduction
READ • . . • •
WRITE . • . . •

.
.

ii

7-1

• • 7- l
. . 7-1
. . 7-1

. 7-2
• • • • • . • 7 --2

. 7-3
. 7-3

8-1

. .8-1 ·
• • • 8- l

. 8-1
. .8-3

... 8-3
. .8-4

9-l

.. 9-l

. . 9-1
• • 9-2

TABLE OF CONTENTS (CONTINUED)

SECTION X NOTATIONAL STATEMENTS

10 .1
10.2
10.3

Introduction
NOISE .
REM • •

SECTION XI TEST STATEMENT FORMATS

11. l Introduction
11.1.l Brackets
11.1.2 Parentheses
11.1.3 Semicolons
11 .1.4 Voltage and Current Ranges
11. l.5 Time Delay Dependent Instructions .
11.2 Set-up Statements
11 .2 .1 Set Delay •
11 .2 .2 Set Clamp
11.2.3 Enable •
11 .2 .4 On Program Branch Control
11 .2 .5 Socket Identification
11.3 Progranmable Power Supply Statements
11.3.l Force DPS Voltage Supplies . . . •
11.3.2 Force DPS Current • .
11.3.3 Enable Trip
11.3.4 Enable Voltage Trip
11.3.5 Disconnect DPS Unit •
11.4 Set Logic •
11.4.l Force Voltage Conditioner References

.

. .

. . .

. . .
. .

. . . .
. . . .

. . . .

. .

.
.

• .
.

11.4.2 Set Reference Supplies for Functional Test Comparators.
11.4.3 Functional Test Statements . . .
11 .4 .4 Set D • •
11.4.5 Set F •
11.4.6 Set M •
11.4.7 Set S •
11.4.8 Set R • . . . r1.1.1~e.r "s'£.,..· ~.
11 .4. 9 Force Strobe
11.4.10 Enable Latches . . •
11.4.11 Enable Comparators
11 .4.12 Enable Strobe
11.5 Precision Measuring Unit Statements .
11.5.l Set PMU Ranges . . .
11.5.2 Force Voltage/Current
11.5.3 Force PMU •
11.5.4 Connect PMU •
11.5.5 Measure Value/Node
11.5.6 Measure Pin
11.5.7 Disconnect PMU
11.5.8 Enable DC _P~rameter Li~i~~-

iii

10-1

. 10-1
10-1

. 10-1

11-1

. 11-1

. 11-1
11-1

. 11-1

. 11-1

. 11-2

. 11-2

. 11-2

. 11-5 . 11-5
11-6
11-7 . 11-7

. 11-7

. 11-8

. 11-9 . 11-10
11-10

• 11-11
• 11-11 . 11-12
• 11-13

11-15
. 11-15 . 11-16 . 11-16 . 11-J.§. . 11-17
• 11-17 . 11-18
• 11-18 . 11-19
• 11-19 . 11-20
• 11-21

11-21
. 11-22 . 11-23 . 11-24 . 11-24

11-' (,..rA

TABLE OF CONTENTS (CONTINUED)

SECTION XI TEST STATEMENT FORMATS (Continued)

11.5.9 Enable Relay 11-25
11 .6 Auxiliary Clock Statements 11-25
11 .6 .1 Set Clock 11-26
11.6.2 Enable Clock 11-26
11.6.3 Force Clock 11-27
11. 7 Miscellaneous Control Statements 11-28
11.7.l Force Reset . 11-28
11.7.2 Force Delay . 11-28
11.7.3 Force Wait . . . • 11-29
11 .8 External Interface Register Read/Write 11-29
11.9 Reading and Writing Long and Short Registers . . 11-30

APPENDIX A CHARACTER CODING (TRASCII) A-1

APPENDIX B READING AND WRITING OF LONG AND SHORT REGISTERS B-1

B. 1
B. l. l
B. l.2
B.2
B. 2. 1
B.2.1.l
B.2.1.2
B.2.1.3
B.2.1.4
B.2.1.5
B.2.1.6
B.2.1.7
B.2.1.8
B.2.1.9
B.2.1.10
B.2.1.11
B.2.1.12
B.3
B. 3. l
B.3.1.l
B.3.1.2
B.3.l.3
B.3.1.4
B.3.1.5
B.3.1.6
B.3.2
B.3.3
B.3.3.l

Introduction ..•.•.•.
Long Registers .•...•..•......•.
Short Register . . .•...
Addressing Short Registers .
Short Register Descriptions
Mode Register . •
Status Register ·
Instruction Register •...
Memory Address Register ..
Test Station Control Register
Clock Burst Count Register ...
Time De1ay Register . • . • . . • • ••.
Instruction Number Compare Register .•••
Instruction Number ·Display Register • . • • • •.•
Digitally Programmable Power Supply Registers ..
Digitally Programmable Power Supply Trip Registers ••.
Reference Voltage Supply Registers .
Long Register Description . • • . . .•••.
D, M, S, R, .F and C Registers••...•..
D Register. . . • . . • • • . ••.
M Register .••.•••••.•
S Register . • • • • . •..
R Register . • •••
F Register • • . . ••.
C Register••.••.
Format of Functional Test Word .
Special Test Station Registers .
Pin Address Register •..••.•••.•••.

iv

B-1
B-1
B-1
B-1
B-2
B-3
B-4
B-4
B-5
B-5
B-5
B-5
B-5
B-5
B-6
B-6
B-7
B-7
B-7
B-7
B-7
B-8
B-8
B-8
B-8
B-8
B-10
B-10

TABLE OF CONTENTS (CONTINUED)

APPENDIX B READING AND WRITING OF LONG AND SHORT REGISTERS (Continued)

B.3.3.2
B.3.3.3
8.3.3.4
B.3.3.5

B.3.3.6
B.3.3.7
B.4

Socket ID . • • • . • • . • • • . • . . . • . •B-11
Statement Number Display Register ••....••..•... B-11
Clock and Strobe Register • • • • • • • . • • • • • . . .B-11
Precision Power Source Register/Precision Measurement

Unit Forcing Register . . . • • • • . • • • B-11
Precision Sense Leve 1 Register . • • • . B-12
External Interface Register ••.•••.....•..... B-12
Formatting of Factor Write and Read Statements. • . . .B-13

APPENDIX C VOLTAGE AND CURRENT RANGE DEFINITIONS C-1

APPENDIX D TIME DELAY DEPENDENT STATEMENTS D-1

APPENDIX E READ/WRITE MAGNETIC TAPE STATEMENTS E-1

E. 1 Definition E-1
E.2 Read ErrorsE-3
E.2 .1 Array Element Count ErrorE-3
E.2.2 Data Transfer ErrorE-3
E.2.3 End of Tape ErrorE-3
E.2.4 Memory ProtectE-3
E.3 Write Errors.E-3
E. 3 .1 Data Transfer ErrorE-3
E.3.2 End of Tape ErrorE-3
E.3.3 Array Element Count ErrorE-4
E.3.4 Unrecoverable ErrorE-4
E.4 ; Standard Mag Tape Operation in TOPSY .E-4
E.5 Unusua 1 Mag Tape Operation in TOPSY . . .E-4
E. 5. 1 Catastrophic Errors . .E-4
E.5.1.1 Write OperationE-4
E.5.1.2 Read OperationE-5
E.5.1.3 WarningE-5

APPENDIX F SUMMARY OF TOPSY ERROR MESSAGES F-1

APPENDIX G CALIBRATION RESISTOR TABLE G-1

APPENDIX H INTERNAL NODES H-1

APPENDIX I FACTOR SPECIFICATIONS I-1
v

Table A

Table B.4-1

Table B.4-2

Table F

Table G

Table H

TABLES

Character Loading {TRASCII) •.•...•

Short Register Reading and Writing Codes

Long Register Reading and Writing Codes .

Summary of TOPSY Error Messages

Calibration Resistor Table

Internal Nodes

vi

Page

.A-1

.B-14

.B-15

.F-1

• G-1

.H-1

Fi g u re 11 . 2 . 1 -1

Fi g u re 11 . 2 • 1 -2

Figure B.3.2-1

Figure E. 1-1

FIGURES

Basic Interpreter Flowchart ..

Typical DC Measurement Sequence

Test Word Function Format . . ' .

Array Data Segment . • • •

vii

Page

. 11-3

. 11-4

B-9

• • • • • • • • • • E-2

SECTION I

INTRODUCTION

FACTOR is a procedural programming language which consists of control
statements for the Sentry 400 Test System.

FACTOR provides two basic types of statements: (1) arithmetic and logical
control statements, such as those which normally comprise procedural lan
guages; (2) test control statements which set up and execute functional/
parameter tests on electronic elements or devices.

FACTOR is an acronym derived from 'Fairchild ~lgorithmic Compiler-Tester
ORiented'.

The sections in this manual discuss such subjects as the codes and symbols
used by FACTOR; the test statements which are part of FACTOR, its operating
procedures, expressions, control statements, input/output statements, and
subprograms.

1-1

2.1 INTRODUCTION

SECTION II

ELEMENTS OF FACTOR

This section provides the syntax infonnation and describes the input devices
necessary for producing programs which are legal input to the compiler.

2.2 CHARACTER SET

Letters
Digits
Special
Characters

A, B, C, •••• z
0, 1, 2, 3, 4, 5, 6, 7, 8, 9
! I # % & I () * + ' - • I :

< => ?@[]+SPACE+$

Appendix A shows the internal code for the character set. Valid characters
are the printing ASCII characters which are produced directly by the teletype,
except for 11

[
11 and 11

]
11 which are upper case K and M respectively. In the case

of the 029 card punch some substitutions are required. These are shown in
Appendix A. Appendix A also shows where the 029 character set differs from
the teletype character set. The rules for using the character set in FACTOR
programs are discussed in the text of this manual.

2.3 RECORD FORMAT

A FACTOR source program is prepared on punched cards, or can be entered via
the teletype keyboard. A FACTOR program is a list of statements or commands,
which define particular actions. When the program is executed, these commands
are carried out, sequentially, in the order written, unless a specific FACTOR
command is used which alters the command sequence.

A statement is the basic record of a FACTOR program. "END" or "ELSE" or a
semicolon, "; 11

, are all legal terminators for statements. An example of a
statement is:

LABEL: A= B+l;

This statement consists of a label (optional) and a command. The fonnat of
statements is essentially free form (spaces are ignored by the compiler).

2.3.1 ~

When the user prepares his card deck of source statements there are several
options:

2-1

Up to 72 columns of the card may be used for one or more statements, providing
a semicolon delimits each statement. Also, a FACTOR statement may be started
on one card and be carried over to the next, provided that individual words
of tester instructions are not divided between two cards.

Cards can be sequenced either alphabetically or numerically, or both. The
sequence characters are placed in columns 73 through 80. This is why only
columns 1 through 72 may be used for statements, since otherwise a portion
of the statement would be interpreted as a sequence symbol.

The normal form of sequence numbers is a fixed a.lpha identifier in (say)
columns 73-75, followed by numeric digits in the remaining columns through
column 80. These (five) digits will ascend in sequence through the program
by a convenient increment, one, ten, etc. Sequence symbols are checked for
progression. Gaps (e.g. sequencing by tens) in the sequence may be left,
so that program corrections and additions may be made without changing every
sequence number in the deck. If a single deck contains more than one alpha
identifier, these identifiers must be chosen so that the TRASCII ascending
collating sequence is maintained, otherwise a sequence error will be produced.

When an error is detected, the compiler will always type the full current
record and a message "SEQUENCE ERROR".

Examples:

Legal Sequences Illegal Sequences

NUMERIC 1 3 3 10 20 99999999 0 1 3 2 5 4
COMBINED 1 LB 2LB 3LB lA OA 3A lA
ALPHA A c D E E E F A B p E c

2.3.2 Disc

Disc files may be used as a source program input to FACTOR. They must be
type "string" and are loaded onto the disc as discussed in the DOPSY manual.

2.3.3 Paper Tape

Source programs may be prepared on punched paper tape. The format rules are
the same as previously described for cards. Sequence numbers are not normally
used when preparing the tape via a teletype, since paper tape is restricted
to 72 readable characters per line. The end of the input line is signalled
by 11carriage return 11

-
11 line feed".

Two editing characters may be punched on the paper tape for correcting punch
errors. A character back space is obtained by typing the teletype "control"
and 118 11 keys simultaneously. The number of times this key combination is
typed corresponds to the number of previously entered characters which are to
be ignored. A line delete is obtained by typing "control" and "L" simultan
eously. This character deletes the current line only. It is necessary to

2-2

type "carriage return" and "line feed" after the last END statement in the
program.

The file is tenninated by a // followed by "carriage return" and "line feed".

At least 20 characters of blank tape should be provided for leader/trailer.

2.3.4 Teletype

Source programs may be entered directly via the teletype keyboard using the
format and rules described in Section 2.3.3, describing paper tape input.
In this mode of operation the statements in each input record are compiled
as they are entered. The two editing characters discussed above for paper
tape apply here also, viz: ·~control 11-

118 11 and 11control 11-
11 L 11

•

2.4 ERROR MESSAGES

Most of the error messages issued by FACTOR are self-explanatory. They are
listed below with some comment for clarification .. The error messages are
accompanied by an up-arrow 11 t 11

, where appropriate, to indicate the position
in the statem~nt text where the error was detected.

Text

"VARIABLE NAME"
DEFINED PREVIOUSLY

"VARIABLE NAME"
IMPROPERLY USED

SEQUENCE ERROR

SS FULL

NW FULL

WORK FULL

DISC OVERFLOW

TOO MANY
NESTED BLOCKS

SYSTEM 2 ERROR

Description

Notifies user of duplicate lable definition within
the same block.

A label has been referenced which has not been
defined, or a mistake in logic has been detected,
i.e., using a variable as a scaler when it has been
defined as an array.

An error has been found in the sequence numbers
punched in columns 73-80 of the source card deck.

The compiler's capacity for the storage of symbols
has been exceeded. (Reduce the number of symbols
used.)

There are too many noise words.

The program has a compound tail too large to be pro
cessed as one statement.

There is not enough space on the disc for further
object program to be built up in working storage.

The allowable maximum number of nested blocks has
been exceeded. (See Appendix I)

"Never-happen" error-return (e.g. PUTW E-0-F).

2-3

PROGRAM TOO BIG

MISSING))

EXPRESSION SYNTAX

MISSING]]

MISSING NAME

MISSING NUMBER

STATEMENT SYNTAX

STATEMENT TERMINATOR

NUMBER SYNTAX

INVALID TERMINATOR

I/0 SPECIAL ERROR

END OF FILE INPUT

TOO MANY VARIABLES

2-4

The program exceeds FACTOR capabilities (see
Appendix I).

A left or right paren has been left out.

An expression has been written incorrectly.

A left or right bracket has been left out.

An identifier should have been specified in this
syntactical position.

A number should have been specified.

A statement has been incorrectly written.

A syntactical delimiter, or a semicolon is missing.

A number has been specified incorrectly.

An expected terminator or delimiter is incorrectly
specified or missing.

The I/0 control word has indicated an error.

The input file has been exhausted without finding
an END statement.

The allowable maximum number of variables per block
has been exceeded (see Appendix I).

SECTION III

FACTOR OPERATING PROCEDURES

3.1 INTRODUCTION

A program written in FACTOR must be compiled before it can be executed on
the Sentry-400. The Compiler converts the FACTOR English-like statements
into a program file of object codes. The object code is then input to the
TOPSY system, which interprets and executes the program.

3.2 PROGRAM INITIATION

To initiate the FACTOR compiler, using the DOPSY monitor, the user must type:

11 COMPILE [TTKITTRICRI 'file name 1][TTP/LP] [LIST/OBJILISTOBJ]

This command format is general and includes all possible options.

3.2.l Input

The first group of enclosed options in the above command indicates that the
compiler input may be specified from the teletype keyboard (TTK), from paper
tape via the teletype paper tape reader (TTR), from cards via the card reader
(CR), or from a file on the disc ('file name') which was previously created
as outlined in the DOPSY Manual.

Not more than one of these options may be specified. The user may, however,
elect not to specify any option, in which case the compiler will expect its
input from the current principal input device (PIO) assigned to DOPSY.

3.2.2 Output

The second and third groups of options, in the general format command, are
used to specify the output desired.

The listing may be specified for either the teletype or the line printer.
Again, no more than one option may be entered with the corTITland. If no entry
is made, the output, if any, will go to the principal output device which is
currently assigned to DOPSY. If LIST is selected, then source statements
only are listed; if LISTOBJ is selected, then both source statements and their
resulting object code will be listed. If either OBJ or LISTOBJ is selected,
then the compiler places its translated program in working storage on the disc.
Note the distinction between 'LISTOBJ' and 'LIST OBJ'.

3-1

A typical initiation conmand might be:

II COMPILE CR LP LISTOBJ

followed by a carriage return, if entered at the teletype. This command
would read its source program from the card reader and produce both an
object program in working storage and also a listing of the source state
ments and the interleaved object code on the line printer.

If a specified input and/or output device is not available, an error halt
will be taken to 1008 with the I/0 device ordinal in the accumulator.

When a program error is detected, one of two procedures is taken: (1) if
the error is recoverable, i.e., if the compiler can continue, FACTOR will
continue to compile and notify the user of further errors, (2) if the error
1s not recoverable, the DOPSY monitor will be called and an asterisk will
be typed to notify the user that DOPSY is in control again.

Note that when parens or brackets are missing the up-arrow error position
indicator may be placed within the error message text. Two parentheses or
brackets are used in the text of the error message, since a single symbol
might be obliterated by the up-arrow, making the message illegible.

3.3 INTERPRETER INTERFACING

FACTOR produces an object program which must be saved by the user if it is
to be executed. Once a compilation has been completed return is made to
the DOPSY.system monitor with the compiled program in working storage. The
user then has the option of correcting any errors in the source program and
redoing the compilation, or if the program compiled error free, he may save
the object program by creating a type "DATA" file on the disc:

II CREATE DATA 1file name•

(See the DOPSY System Manual for a description of the CREATE command). The
user program may now be executed under the control of the TOPSY interpreter.
TOPSY is called by typing// TOPSY, followed by a carriage return. The oper
ation of the program from this point, using the/. LOAD command, etc., is
described in the Sentry 400 TOPSY User's Manual.

3-2

4.1 INTRODUCTION

SECTION IV

EXP RESS IONS

An expression is a grouping of one or more numbers, variables, and functions
combined with arithmetic or Boolean operators and parentheses so as to rep
resent a quantity or an operation. Note that a single number or variable is
considered an expression by this definition.

4.2 NUMBERS

FACTOR accepts numbers in any of the three forms discussed below, viz:
integers, decimal fractionals or exponentials. In all cases, numbers are
converted to a floating point internal representation for manipulation in
the computer. The range of allowable decimal numbers is:

2.1105 * 10-20 ~INl~9.2228 * 1018

where INI means the 11magnitude of N".

4.2.1 Integers

An integer is defined as a whole number, including zero. It will be inter
preted as octal if immediately followed by a B. It will be interpreted as
decimal if it is not followed by a B. It may be either signed (preceded by
a + or -) or unsigned. If unsigned, it will be interpreted as positive.

The limits for decimal and octal integers are:

Form

decimal integer
octal integer

Limits

-8388607~n~8388607
40000001B~n~37777777B
(in two's compliment form)

The following integers

1) are acceptable: 2) are unacceptable:

0
4000000
+2361
-5
68

4,000,000 (Corrmas not allowed)
10000000000000000000 (Too large)
125 B (Imbedded space between number and octal

specifier)

4-1

4.2.2 Decimal Fractionals

A decimal fractional is any decimal number with a fractional part preceded
by a period. These numbers cannot have a B (octal) notation. An attempt
to use octal notation in combination with a decimal fractional results in
an error message. Decimal fractionals may be signed or unsigned.

The following fractional numbers

l) are acceptable:

4.0
0.0

.671
+.734650

-42.0
0.734650

4.2.3 Exponentials

2) are unacceptable:

4. (A number cannot end with a period)
l .234B (A fractional number cannot be specified

octal)

Exponentials are either decimal integers or decimal fractionals, followed
immediately by an E and a decimal integer. They also may be signed or un
signed.

The following exponential numbers

1) are acceptable: 2) are unacceptable:

0.1E2
+l .23E-5

7E-3
-1 .OE+5
-5E+2

4.3 VARIABLES

0 .1 E2+

lE
.234 ES
2BE2

(The sign must come between E and its
integer)

(The exponent must have an E number)
(lmbedded spaces are illegal)
(Octal numbers may not be exponentially
specified)

In FACTOR, a variable denotes any quantity which is referred to be a name
rather than by an explicit value. A variable may take on many values, one·
at a time, rather than being restricted to only one value. The values which
are assigned to a variable may be any of the forms as discussed above. Also,
variables may be either scaler or Boolean. A variable identifier (see below)
may reference either a single variable or a set of variables considered as
an array.

4.3.l Variable Identifiers

Variable identifiers are names which are given to variables by the progranmer.
There are no restrictions imposed, except that the identifier must begin with
a letter and contain only letters and digits. Identifiers can be of any length;
note, however, that FACTOR retains only the first 8 characters. Consequently,

4-2

the user must insure, when using long identifiers in the same block, that
the first 8 characters are unique, or else an error message will be produced.
Furthermore, reserved words must not be used as identifiers. The following
is a list of reserved words in FACTOR:

AND
BEGIN
BLOCK
BY
CALL
CPMU
DCL
DISABLE
DO
ELSE
ENABLE
END
EOR
EQ
FOR
FORCE
FUN CT
GE
GOTO
GT
IF

=Rle.Q.
LT
MEASURE
NEG
NEQ
NOISE
NOT
ON
OR
PAUSE
READ
REM
SET
SOCKET
SUBR
THEN
THRU
XCON
XPMU

It is good practice, since the usage of identifiers is totally determined
by the programmer, to use names (identifiers) which represent the meaning
or use of a variable. PI, for instance, could be the name given to a var
iable whose value is set equal to TI. COUNTER might be the name given a
variable which used as a general purpose counter, and so on. (This does
not imply, however, that FACTOR attaches any significance to these names.
They are purely artificial devices which aid the user's memory and make a
program more intelligible.

If variables are referenced without being declared with a statement they are
assumed to be scalar; if they are not assigned an initial value they are
given a value of zero. Refer to Section VI for variable declaration informa
tion.

The following are acceptable variable identifiers:

A
CHI SQUARE
ALARGEIDENTIFIER
AlB2C3D4
PHOENIX

4-3

The following are not acceptable variable identifiers:

123
A BC
END

(Identifiers may not start with a digit)
(Special characters, including blanks, are not allowed)
(Reserved words are illegal)

This is a general definition of identifiers which holds for the other several
types of identifiers which are used in FACTOR.

4.3.2 Scalar Values

The FACTOR variable in its simplest form is scalar. Scalars are defined .
as being nonarrayed, nonBoolean quantities. (Note that, as defined below,
an array element may be a scalar value and/or a Boolean value). In addition,
scalars may take on any legal numbered values. To use the scalar value which
is currently assigned to a variable, the user writes the variable's identi
fier in his statements or expressions.

4.3.3 Boolean Values

Boolean values are quantities which when evaluated have a value of either
one (true) or zero (false). Expressions involving Boolean operators (para
graph 4.6) can only take on a true or false value, i.e., a one, or a zero;
thus expressions are not evaluated for any other absolute value. Whenever
the user references the variable identifier the current Boolean value will
be returned.

4.3.4 Array Values

An array is an ordered series of values which are grouped together posi
tionally with respect to some variable identifier (usually the first array
element identifier). The elements of the array are restricted to either
signed or unsigned numbers (i.e. alpha values are illegal). FACTOR arrays
are restricted to one dimension.

To obtain an array value, the user must follow the array identifier with
an expression which is enclosed in brackets. The value of the expression
is the subscript which tells FACTOR which element of the array is wanted.
If the subscript is zero, i.e., A[O] for instance, FACTOR returns the array
size. Any other value of the subscript will refer to the appropriate ele
ment in the array of values. For example, A[2] would reference the second
element in the array A. Note: if the value of the expression is negative
or greater than the array size, a terminal error will result during execution.

4.4 FUNCTIONS

Functions are parametered calls and are used to obtain a value through a
standardized set of operations. The FUNCT statement is described in Section
VIII.

4-4

4.5 ARITHMETIC EXPRESSION EVALUATION

Arithmetic expressions are evaluated left-to-right according to the fol
lowing rules.

l. Parenthesized expressions are evaluated first. If parenthesized
expressions are nested, the innermost expression is evaluated, then
the next innermost until the entire expression has been evaluated.

2. Within parenthesis and/or whenever parenthesis do not govern the order
or evaluation, the hierarchy of operations in order of precedence is

a) Negation (NEG)
b) Multiplication or division {*,/),
c) Addition or subtraction (+~-).

Note: Exponentiation is not allowed.

Example:
The expression

A*(Z-((Y-R)/T)) + VAL

is evaluated in the following sequence.

Y-R-.e1
e1/T•e2
Z-e2 .. e3
e3*A..e4
e4+VAL .. e5

4.6 "BOOLEAN" OPERATORS (LOGICAL AND RELATIONAL)

Symbol

OR
EOR
AND
LT
EQ
LEQ
GT
NEQ
GE
NOT

Operation

inclusive or
exclusive or
logical and
less than
equal to
less than or equal
greater than
not equal
greater than or equal
not

A description of the above operators follows.

4-5

4.6.1 QB.

The following truth table explatns the result P OR Q, where P, Qare two
expressions:

p

1
1
0
0

4.6.2 Exclusive OR (EOR)

1
0
1
0

1
1
1
0

P EOR Q is similarily explained in the following truth table:

4.6.3 AND -

p

1
1
0
0

1
0
1
0

.. P EOR

0
1
1
0

The following is the truth table for P AND Q:

4.6.4 !iQ.!

p

1
1
0
0

1
0
1
0

p·AND

1
0
0
0

The NOT operator forms the ones complement of the expression upon which it
operates. For example, if A fs true, (1), then NOT A is false, (0).

Prior to fanning the ones complement the expression is evaluated and then
fixed as an integer. The integer form is limited to 24 bfts, therefore
conversion underflow or overflow from floating point to fixed fonnat must be
considered by the programmer.

4.6.5 Relational Operators

The remaining group of Boolean operators are relational operators. They
deal with the comparison of two or more arithmettc values. The result of the
comparison is either a Boolean true or false.

4-6

For example, consider the following comparison:

A LT B

If the values of the two variables is 16 and 25, respectively, the comparison
is effectively:

16 LT 25,

which is a true statement.

Consider now:

B LT A, i.e. (25 LT 16)

This is of course a false condition. Similar examples could be given for
EQ, LEQ, GT, NEQ and GE.

4.7 BOOLEAN EXPRESSIONS

A Boolean expression defines whether a true or a false condition exists.

The order of operations for Boolean expressions depends upon the precedence
values of the operators, unless parentheses are used which override the pre
cedence order (a recommended procedure, especially in the case of complicated
expressions). The precedence order of Boolean operands is:

a) relational operators (LT, LEQ, EQ, GE, GT, NEQ},
b) NOT,
c) AND,
d) OR and EOR.

The following are examples of Boolean expressions:

l. A (where A is either true or false)
2. A OR B EOR C
3. A GE B OR A LT C

In example two the expression is evaluated from left to right: A is ORed
with B and then the result is EORed with C. In example three the expression
A GE B is evaluated for a true or false condition: the expression A LT C is
evaluated: the results of these two operations are ORed together.

4.8 MIXED EXPRESSIONS

FACTOR allows free mixing of arithmetic and Boolean expressions, without
adhering to pure Boolean values. It is the responsibility of the programmer
to ensure that values in mixed expressions can be fixed to valid integers
(see Section 4.6.4) when they are involved in a Boolean expression. Further,
arithmetic operators take precedence over Boolean operators in mixed ex
pressions.

4-7

SECTION V

BLOCK-COMMAND AND PROGRAM CONCEPTS

5.1 INTRODUCTION

Blocks are groups of program statements between the delineators, BLOCK (or
BEGIN) and END. Local variable storage and local labels do not exist outside
of the block which contains them; in other words, local variables or labels
cannot be referenced (accessed) outside of their parent block. A block is
in effect then an independent compilation, since a progr~m can consist of
several completely independent blocks.

5.2 LABEL

A label is an identifier similar to a variable identifier except that it
is always followed by a colon and it refers to a statement. The complete
definition and all restrictions which apply to labels can be found in para
graph 4.3.1, which describes variable identifiers. The following is an
example of a label identifying. an assignment statement.

TOTAL: A = 1 + 2 + 3 + C/D;

5.3 BLOCK CONCEPT

A block consists of a beginning and closing statement. In addition, a block
can be either independent or dependent. The following information will des
cribe the block and its function.

5.3.l Establishing the Block

A block is established in two ways.

1. It may be opened directly by writing the command BLOCK and
closed by the command END; cf the command BEGIN (Section 7.5)
which is very similar in concept.

2. A block will also open following the FUNCT and SUBR commands.
These commands are discussed in Section VIII.

The initial BLOCK declaration need not be specified because FACTOR will assume
a BLOCK 0. For clarity, the user may spell out the initial block in his list
ing. It must have an END statement, however.

5-1

5.3.2 Nesting Blocks

Blocks do not need to be completely independent. One of the easiest methods
of introducing block dependence is by 11 nesting 11 one block within another.
This results in the execution of the inner block being dependent on the
execution of the outer block. Nesting can occur up to eight levels on the
Sent~y 400 implementation. Nesting is illustrated in the following example:

BLOCK
BLOCK
END;
BLOCK

END;
END

BLOCK
END;

The inner block of a nested set is considered part of the enclosing blocks.
Another form of dependence is that of global variables. A global quantity
is one that is accessible to a block, but is not necessarily contained in
(i.e., is not local to) that block. Variables and labels can be either local
or glob:al. This is illustrated in the following example:

BLOCK
L: DCL A, B/10/;

BLOCK

END

' DCL A,C;
END;

Each block in the above example contains the local variable A. The A in the
inner block cannot be accessed from the outer block and vice versa. The
variable B in the outer block is accessible from either block, but the variable
C can be accessed only from the inner block. In this example, then, B is a
global variable, but C and the two variables A are all local.

Note, that if there had been a label L in the inner block, any reference to
it within the inner block would have used that L rather than the one in the
outer block. Any nested set of blocks establishes a block context; i.e., a
relationship of local and global variables. From the example, it can be seen
that a reference to a variable or label is associated with the occurrence of
that identifier or label in the same block, if it is present. If it is not,
then the next outer block is examined, etc.,

It should be noted that it is possible to make variables global from within
a nested block in FACTOR by simply never declaring the variable as local.
When the nested block is closed, the variable, and any residual value is
relocated to the next outer block, where it may now be considered as global
to any further nesting. When this outer block is closed, if it was nested,
the variable will again be relocated to the next outer block and so forth
until block O is closed.

5-2

The fact that the declaration of a variable within a block makes it local
has important implications for the FACTOR user. After leaving a block, i.e.,
closing it with an END command, the values of all variables declared within
the block, and thus made local, are lost. Upon re-opening the block, the values
fa these variables are initailized to 0.

5-3

SECTION VI

VARIABLE DECLARATION AND VALUE ASSIGNMENT

6.1 INTRODUCTION

As described in paragraph 4.3, variables may be used in expressions without
giving them initial values or by declaring them. If they are not declared,
they will be assumed to be scalar. If they are not given an initial value,
they will be automatically given an initial value of zero. Variables may be
declared and assigned values at any point in the program.

A variable may also be used as an array reference, but then it must be declared.
Thus, a declaration (DCL) statement must always be executed before any refer
ences are made to the declared arrays. If this rule is violated, TOPSY will
indicate the programming error with a terminal error at run time (see Appendix
F). .

If the DCL statement is executed more than once in a currently open block,
all but the first exe~ution will be ignored; however, a value assignment will
always occur at every execution. This paint must be emphasized. It means
that the evaluation of an array size will occur once only: at the first DCL
for that array. But, values will be assigned for every DCL specified.

6.2 DCL

The DCL command is used to reserve storage for variables, assign initial values,
and to make a variable local to the block in which it is declared.

Two types of variables may be declared: scalars and arrays.

6.2.1 Scalar Declaration

The general formats of the scalar declaration are as follows:

DCL Vl;
DCL Vl , V2, ...•• VN;
DCL Vl/VALUE l/,V2/VALUE 2/, .•. VN/VALUE N/;
DCL Vl, V2/VALUE 2/,V3 .•. VN;

Vl ••• VN stand for variables number 1 through N. VALUE l ... VALUE N stand for
single signed or unsigned numbers which declare the value of a variable. When
declared without value, the variable is set equal to O. Multiple declaration
and assignment can be made with one statement. As shown in the last two ex
amples, each variable of a multiple declaration can be optionally assigned an
initial value.

6-1

6.2.2 Array Declaration

The general formats of·the array declaration are as follows:

DCL Vl[AlSIZE];
DCL Vl[AlSIZE], ... VN[ANSIZE];
DCL Vl[AlSIZE]/AEl, .•. AEM/, ... ,VN[ANSIZE]/AEl, ... AEM/;
DCL Vl[AlSIZE],V2[A2SIZE]/AEl ... AEM/, ... ,VN[ANSIZE];

Formats are similar to those for scalar declaration; however, the array
identifier, Vl, requires an argument to specify the number of elements, i.e.,
the size of the array. This quantity is enclosed in square brackets. The
size is specified by an expression which allows it to be variable or fixed.
The evaluation of array size and a·ll oca ti on of storage is performed by TOPSY
at run time. The array size of necessity is automatically truncated to the
nearest integer.

The elements of an array may be optionally assigned initial values when
declared. The assignment is' specified by the terms AEl through AEM as shown
above; M is the size of the array. The initial values of the elements are
restricted to signed or unsigned numbers. (Alpha is illegal). If the size
and number of initial value assignments do not agree, the missing (trailing)
elements are set to zero. If too many elements are specified, a run time
error will occur.

Note: The distinction must be drawn between the value in square brackets
used in a DCL statement, where it represents the array size, and the value in
square brackets used in a non-DCL statement, where it specifies the array
element desired.

Examples:
DCL ARR[lO]; REM ARRAY SIZE = 10 ELEMENTS;
For J = l THRU 10
ARR[J] = 2*J; REM COMPUTE ARRAY ELEMENT VALUES;
FIFTH = ARR [5]; REM ASSIGN VARIABLE FIFTH

THE VALUE OF THE FIFTH ARRAY ELEMENT;

6.3 ASSIGNMENT STATEMENT

The assignment (or "replacement") statement is the most fundamental of all
FACTOR statements. It takes the general form:

VARIABLE = EXPRESSION

This command results in the replac~ment of the value of the variable on the
left by the value of the expression on the right. (In general, it is not an
equation, since the variable on the left may form part of the expression on
the right).

6-2

Thus the statement:

A = A+B;

means: take the value of the variable A, add the value of the variable B to
this value and replace the value of the variable A with the result.

6-3

7.1 INTRODUCTION

SECTION VI I

CONTROL STATEMENTS

Control statements are used to direct the flow of the program by a transfer
of control to different part of the program. Such a transfer may be imperative
(e.g., GOTO) or conditional (e.g., IF).

The control statements to be discussed in this section are PAUSE; GOTO; IF;
BEGIN; and FOR.

7.2 PAUSE

The PAUSE statement i~ used to stop the execution of further statements until
START is depressed. The fonnat for this statement is:

PAUSE expression;

Prior to halting, the value of the expression is evaluated and printed on the
Primary Output Device.

This statement can be used to provide programmed halt when debugging new FACTOR
programs.

NOTE: Refer to the TOPSY User's Manual for instructions for using the monitor
mode PAUSE command.

7.3 GOTO.

A program is essentially a series of statements which in general are executed
sequentially and thereby accomplish a particular task. The computer thus
operates one step at a time. However, it is essential to be able to enter or
leave the sequence of instructions at any desired point.

This is the function of the GOTO statement. When executed, a GOTO statement
usually changes the program flow from the statement immediately following it
to the one specified within the GOTO statement.

The general form of the GOTO statement is

GOTO LABEL;

where LABEL as defined in Section 5.2 specifies the statement to be executed
next.
7-1

7.4 IF

The GOTO statement provides a method for altering the sequence of statement
executions unconditionally. It is also essential to be able to change the
sequence of execution based on what happens as the program executes, i.e., a
conditional change of execution. This is the principal use of the IF state
ment.

The simplest form of the IF statement is:

IF relation THEN statement-1;
Statement-2;

Upon execution of the IF statement, if the relation is true, statement-1 is
executed followed by statement-2 (unless statement-1 carries control away
from statement-2). If the relation is false, statement-2 is executed instead.

For instance

IF A EQ 3 THEN GOTO LABEL;

will, if it is true that A is equal to 3, cause the sequence of execution to
change to the point in the program having a statement labeled LABEL. If A is
not equal to 3 the next sequential statement, after the IF statement, will be
executed.

The true-false nature of the above relation gives a clue to the second general
form of the IF relational clause. It is:

IF Boolean-expression THEN statement;

where "Boolean-expression" is any legal expression as defined in paragraph 4.6.

Suppose, for example, that we wish to continue doing something until the value
of A and B, two variables we are manipulating, both become less than some
terminal value, O. We could make this decision and monitor the values of A
and B with one IF statement as follows:

IF A LT 0 AND B LT 0 THEN GOTO DONE;

The process we wish to continue doing immediately follows the IF statement.

In all cases of IF statement usage, the following THEN can introduce any type
of FACTOR statement.

7.4.1 The Conditional ELSE

The simple IF statement is one which causes a statement to execute
·or Boolean expression is true and skips statement execution if the
expression is false. A complete conditional statement does more.
a second statement to be carried out if, and only if, the relation
is false.

if a relation
relation or
It specifies
or expression

7-2

The general forms are:

IF relation THEN Sl ELSE 52;
IF Boolean expression THEN Sl ELSE 52;

where 51 and 52 are any two statements. When the .result of the 1 IF 1 operation
is true, Sl will execute and S2 will be ignored. When the result is false,
Sl will be skipped over and 52 executed. S2 may be any statement, including
another IF statement. This nesting of conditionals can go to any depth.

Example:
IF relation THEN Sl ELSE IF relation THEN S2 ELSE 53;

7.5 BEGIN

FACTOR allows the grouping of a series of statements within the bracket com
mands BEGIN and END;. The con1T1and, END;, must immediately follow the last
command executed. Note the ; which is an integral part of the END; bracket.
One of the purposes of this command is to allow a compound statement to follow
the THEN of the IF command. For example:

IF relation THEN
BEGIN

statement;
statement;
statement;

END;

The above example is an example of a compound statement, and is an acceptable
method of writing the IF statement. The statements between BEGIN and END;
are legal and, as far as the IF statement is concerned, are considered to be
one s~atement.

Note: In many respects BEGIN and BLOCK are equivalent, except that declara
tions after a BEGIN are transferred to the BLOCK head containing the
BEGIN.

7.6 FOR

One of the techniques most widely used in programming is that of the program
loop. This is the repetition of some program statement or statements over and
over with different parameters. The FOR statement is the looping mechanism
within FACTOR.

The general format of the FOR statement is:

FOR variable = expression THRU expression DO statement;

where variable, expression and statement may be in any legal form defined in
this manual.

7-3

Several statements may be included in the DO loop portion of the FOR statement
by specifying a compound statement with BEGIN and END;

An example of a typical loop is one designed to solve the following problem.
Suppose it is desired to set the elements of an array to zero. This can be
achieved with the IF statement sequence of statements, in the following

I = 1
NXT: A[I]=O;

I = I+l
IF I LE A [OJ THEN GOTO NXT;

but it is better accomplished with the statement:

FOR I = 1 THRU A[O]DO A[I]=O;

The simple FOR statement provides an index value which has three important
features:

rn
and (3)

an initial value,
an (assumed) increment of +l,
a 1 imi t .

In the above example, I takes on the values 1, 2, 3, ... , A[O], where A[O] is
the last value corresponding to the size of the array.

The implementation of the FOR causes the address of the index, the increment
and the limit to be evaluated each time the loop is executed. Therefore,
caution must be exercised within the loop when chaing values that might affect
this evaluation.

The loop will be executed the number of times specified by the initial value,
limit, and increment. (This may be zero.) Also, there is no restriction on
transfers of control into or out of the loop. When the loop has finished its
specified number of executions, control will pass to the next sequentially
executable statement, unless this sequence is interrupted by a statement in
the DO 1 oop.

In the above discussion an automatic increment of +l from the initial value C~
to the final value was assumed. There is second fonn of the FOR statement; t~
this allows the user to specify, using BY , some value which will be used J,._ ~,
as the increment. This adds considerably more power to the FOR statement. AJf.t'• •

It should be pointed out that because the values may be all positive, all
negative, or mixed positive and negative, the user should consider the range
of possible values he expects. It makes sense to go from a negative number
to a more negative number in negative increments or from a positive number
to a negative number by negative increments. Going from positive to more
positive or negative to positive, the increment must be positive. Going from
-2 to +6 in increments of -2, as from +8 to +2 in increments of +2 is not
logical and will be flagged as errors. ·

7-4

Caution must be exercised when using fractional values for the index, since
it is possible to introduce a steo error. For example, a statement such as:

FOR I= 0 THRU 1000 BY 0.1 DO I= I+ l;

may operate the DO statement more than 10,000 times because of a rounding
error in the floating point conversion of 0.1.

7-5

8.1 INTRODUCTION

SECTION VI I I

SUBPROGRAMS AND FUNCTIONS

This section discusses the function and operation of subprograms, the calling
of subroutines and how to make a function out of a subprogram.

8.2 SUBPROGRAMS

Programs frequently have groups of statements which can be used several times
with different parameters. Of course, the required statements could be dupli
cated wherever they are needed in the program, but to do so is wasteful of
user time and machine storage and is error prone. Therefore, it is desirable
to be able to write statements in a way such that they may be executed from
any point in the program with a different set of parameters each time they
are executed. The subroutine statement allows this.

8.2.1 SUBR

The general formats of the subroutine declaration are as follows:

Format One:
SUBR

END;

Format Two:
SUBR

END;

Identifier;
statement l;
s ta teme n t 2 ;

•
•
• statement n;

Identifier (Vil, VI2, ... ,VIN)
statement l;

•
•
•

statement n;

8-1

The identifier after the SUBR command is used to reference the subroutine
from the main program. The statements within the subroutine will not be
executed until the subroutine is called from the main program by the SUBR
identifier. Any number of statements are allowed within the subroutine.

The END; statement is necessary because the SUBR command effectively opens
a new block. When it is completed, it must be closed. The END; indicates
the last statement in the subroutine.

Format Two indicates another important feature of the SUBR statement. The
terms VIl through VIN represent variable identifiers l through N. They are
enclosed in parentheses and indicate to FACTOR that whenever a reference is
made to this subroutine, the reference will specify actual values which are
to be substituted at specific places within the subroutine body. These iden
tifiers are called formal parameters. There is a one for one corr.espondence
between the position of the formal parameters and the position of the para
meters or values used in the call. For reference and further explanation,
see the next section on the CALL statement. The manner in which values
transferred to the subroutine are used in the subroutine's statements is
illustrated in the following example:

SUBR TOTAL (Vil, VI2, VI3};
VIl = VI2 + VI3;

END;

When the above subroutine is referenced:

CALL TOTAL (Al, A2, A3);

the values passed to it, obtained from the actual parameters Al, A2 and A3,
will positionally replace VIl, VI2, VI3 and they will be used in the arith
metic expression and assignment. The value of the variable represented by
VI2 will be added to that represented by VI3 and the total will be assigned
to the variable represented by the formal parameter VIl.

As an example of a subroutine with no formal parameters specified, we will
use a similar statement as follows:

SUBR TOTAL2;
A = B+C;

END;

When TOTAL2 is called, the current values of the variables B and Care added
and the total is assigned to the variable A. In this case A, B and C are not
fonnal parameters. They are working variables with current values in the
outer blocks to the SUBR statement block.

Because the subroutine forms a new block, it must be remembered that any
variables which are declared in the subroutine will be local.

8-2

8.3 CALL

A subroutine is executed by using a CALL statement, which can be placed at
any point in the program where the programmer can legally place a statement.
The general formats are as follows:

CALL SI;
CALL SI (expression 1, expression 2, ... , expression N);

SI is the identifier of the subroutine block to be activated. The values,
changed by the subroutine statements and by any other task executed, will be
accomplished as if the subroutine's body of statements has been placed at the
point of the CALL statement. Then, the next sequential statement, following
the CALL, will be executed.

The expressions are evaluated at the time of the execution of the call and,
therefore, will remove many constraints which are ordinarily placed on the CALL
values. As the subroutine statements are executed, the value of expression l
will be used wherever formal parameter 1 was used. The same will hold true for
other formal parameters and expressions. The only restriction is that when a
formal parameter receives a result, the corresponding actual parameter should
not be an expression but a single variable identifier.

8.4 FUNCT

The subroutine call, when encountered in the program execution, brings the
subroutine statements into action to accomplish whatever processing is spe
cified (ordinarily assigning new values to outer block variables). Control
then usually passes to the next sequential statement.

When only one variable is assigned a new value, as a result of executing a
subprogram, the call can be simplified by making the subprogram a function.
When FUNCT is used, simply writing the identifier of the function will cause
its statements to execute. However, the identifier now represents a value
that may be used wherever a variable is legal. Thus, it is as though the
fu~ction call represents a variable of the same name.

The general form of the function statement is:

FUNCT identifier (VIl, ... ,VIN);
statement 1;

statement n;
END;

The format, except for the FUNCT command portion, is exactly like the SUBR
statement. It als6 defines a new block and it will be called by the iden
tifier, following the FUNCT. The difference is in the way the function is
activated and also that it always returns a value for the function identifier.
If no assignment of a value to the function identifier is made within the

8-3

statements following FUNCT and before END; is encountered, a value of zero
will be returned. Assignments of values to a function, which are external
to the function declaration statement are illegal, i.e., the function name
must not be used on the left hand side of an assignment statement.

The function identifier is not local to its function block and therefore must
not be declared within the function statements.

As with a subroutine call, the FUNCT statement, with its compound tail of
statements, is not executed until the function identifier is used in an ex
pression.

8.4. 1 Function Call

As stated, using the function identifier as a variable identifier in an
expression will cause the function statement block to activate and to return
a value for the identifier. Note the following example:

FUNCT TOTAL3 (VI1,VI2,VI3);
TOTAL3 = VIl+VI2-VI3;

END;
When it is desired to reference a value by executing the above function, its
identifier is used as follows:

NEWTOTAL = TOTAL3(A,2,B+C}+(A-B);

The function TOTAL3. will be eval~ated usi~g the current value of A for formal para
meter Vil, 2 for formal parameter VI2 and the current value of B+C for parameter
VI3. This overall value will then be added to the value calculated for the sub
expression, A-B, usinq current values for A and B. Finally, the end value arrived
at will be assigned to the variable, NEWTOTAL.

The same symbol must not be used for formal and call parameters.

It is worth considering a further example to illustrate the range of versa
tility of a function. Assume there are two sums to evaluate:

8-4

Sum 1:

A =8~ 1B2

Sum 2:
E + H

C = J: E+F(G]/D
D = l

Because expressions are allowed in the function call, one general function
statement could be set up to handle both sums as shown below:

FUNCT TOTAL (W,Z,Y,X,R);
W = O;
FOR Z = Y THRU X DO W = W + R;
END;

To evaluate Sum 1, the call is written as:

TOTAL (A,B,l,10,B*B)

Sum 2 could also be evaluated by the same function with the call:

TOTAL (C,D,l,E+H,E+F[GJ/D)

The effective result of the two function calls is shown below:

Sum 1:
A = Oi
FOR B = l THRU 10 DO A = A+ B*B;
END;

Sum 2:
c = o;
FOR D = l THRU E+H DO C = C+E+F[G)/D;
END;

The parameters of a function call can also include other function calls.
In fact, a function may even call itself recursively~ For instance, a
factorial could be calculated as follows:

FUNCT FACTORIA (N) ;
IF N = 1 THEN FACTORIA = 1

ELSE FACTORIA = N * FACTORIA (N-1);
END;

This is an example of recursion, the use of a function within the same
function. The user should remember that the number of recursive calls is de
termined (and limited) at run time by the size of core.

8-5

iNTERNAL CORRESPONDENCE

c;'·(;;_;--rT:l\/iE3 TECHNOLOGY

:i.1 L Acciuc:s Ave., Sum:y;rale, Calif. 94086 October 22, 1970

To: A. T. Smith cc. K. Rina 1 do

From: H. R. Gillette

Subject: INSERT Statement in FACTOR

Development of the subject change has been completed and on direction
of Ken Rinaldo I am transmitting complete material to you for incorpo
ration into the standard system. The following materials are attach-.
men ts to this memo and constitute the results of the change effort. ·

l& Two (2) boxes of cards, consisting of the following:
a. A copy of the control program (*COMPI) for generation and

loading of this part of the compiler. Red cards are DOPSY
JCL statements, blue cards are ASM statements. The ORG
card was deleted from REV 2 of the deck~ location now being
determined on the CREATE COREIMAGE card for DOPSY.

b. A copy of the updated compn er (*COMPl) for generation and
loading of the main FACTOR compiler. Red cards are DOPSY
JCL statements, blue ca.rds are REV 2 compiler statements
unchanged and white cards are actual revisions. An inven
tory of the changes is included in the documentation.

c. Finally is a test deck which should be run as a separate
job. Two compiles wi 11 result - the generated object code
should be identical.

2. A draft of documentation for the change, including as an appendix,
an update to the FACTOR language manual a

3. Three listings, including:
a. The output of the inc 1 uded test case compiles.

b. The output of an assembly of 1 *COMPI 1
•

c. The output of an assembly of 1 *COMPl 1
•

HG/mp

Attachment

A. IDENTIFICATION

a. Title: FACTOR Modification

b. FST ID Code:

c. Machine: FST-1 -----
d. Categ__~: Change to FACTOR for CPR #J017

e. Language: Assembly

f. Pr o_g ram~1er: H. R. Gillette

g. Documentor: H. R~ Gillette --·----

B. PURPOSE ---
Introduces the INSERT statement into the FACTOR language. INSERT allows

a set of one or more FACTOR source statements to be catalogued (a sub

routine, for example) on the disk and to be included in any FACTOR program

simply by nam"ing the file at the appropriate point. For example, the

effect of the factor statement:

INSERT DECK

would cause the content of the file whose name is 'DECK' to be compiled

as part of the source string, following which scan of the original source

string would resume.

C. RESTRICTIONS

a. Machi~~Confi~_t_:_at_ion: SK minimum core.

b. frograrnmi ng Sy? tern__ Conf!£t.urati OI!._: DOPSY sys tern.

c. Other Subroutines Required: Does not apply.

d. Externa_l SymboJ s: Does not app 1y.

e. Register Usage.: Changes introduced use A, E, X2, X3, X4, X5, and X7.

f. Re}ocatabil1~y: Part of FACTOR~ does not apply.

g. ~eg~ired Console Switch Setting: None.

h. Other Restrictions: The named file must have the following charac

teristics:

i) Be catalogued, available to DOPSY under the current JOB. The

file name must be a valid FACTOR identifier.

ii} Not be of type GI or OB.

iii) Be of type "STRING" or be of type 11 DAiA 11 with record 1 ength_ .=:.. 20 ~.

iv) Be a string of statements in the FACTOR language. Sequence

checking is reset, so that character positions 73-80 of the

first and last statement need have no sequence relationship to

the requesting source deck.

v) The control overlay must be loaded at 140008 or above. Finally,

INSERT becomes a reserved word of the FACTOR 1 anguage.

D. USAGE

a. Entry.Point: Does not apply.

b. Calling Sequence: A new "basic statement 11 is added to the FACTOR

language called the "INSERT statement".

i). Syntax:

<INSERT statement> ::=INSERT <identifier>

ii) Semantics:

The first 6 (or fewer) characters of the identifier are used as

a file name. If the file is catalogued and available, the

environment of the current input stream is saved, the requested

file is opened and becomes the current input stream. On detection ·

of the end-of-file for the current input, the saved input environ

ment is restored and input scan continues at the first character

after the identifier. Inserted text is free to use the INSERT
'

statement. Recursion in this manner is limited only by the amount

of core used by tables.

c. · l\!:guments and ·Parameters: Does _not a pp 1 y.

d. ·Error Conditions:

i) If the entity following INSERT is not a valid identifier, the

following diagnostic message is issued:

"FILE NAME ERROR"

ii) If the requested file cannot be opened successfully, the

followi_ng diagnostic message is issued:

"FILE NAME ERROR"

iii) If the requested file is of)type CI or OB, the following diag

nostic message is issued:

HfILE TYPE ERROR"

iv) Sequence checking is performed within an inserted file.

v) Norma1 syntax checking takes place within the inserted text.

vi) If the inserted text is not a sequence of complete statements,

an "END OF FILE INPUT" error occurs which aborts the compilation.

e. Space ...B_~g_gj_]:eme_!!_ts_: The change adds 247 1 oca tions to the compi 1 er,

plus table space only if an INSERT occurs.

L Irnut Format: --~----~--·-- FACTOR source statements.

E. METHOD

A new statement processor (INSERT) was added to the compiler. In addition,

the table management routine (TADD) was rewritten to provide management

for the dynamic allocation of space needed to save an input environment

and for processing an ·insert file .. With these changes, memory usage is

as follows:

17777B } -+

or 37777B ,__Disk file PMF 1 s and buffer sp-~c;---

TOP
t

+
BOTTOM

2208 -+

as required
+--~-~~~~~-'-~~~~~~~-----

Insert Save Stack
!-------·-·------------~

Noise Word Stack
!-·-----·----·------------

Exit Stack
... -----·--------------·----

Working Stack

Symbol Stack

Reserved Word Stack

I/O Buffers

Compiler Code

The routine TADD is called whenever an entry is added to any one of the

dynamic stacks. If space is required, the work stack, exit stack, etc.,

are moved toward the symbol stack making room at the top of the area

requiring space. TADD was rewritten to generalize the distance moved

which is now table driven (by the MVSIZE vector). The move was previously

a fixed 4 locationse In the current implementation (as also before),

storage usage grows as required - there is no scheme for garbage callee-.

tion and compression. If available storage is exceeded, the compiler

simp1y commits suicide.

Management of the stacks is table driven, four values being defined for

each region: TOP, BOTTOM, SIZE, and MVSIZE. The TOP of one region is

not allowed to overlap the bottom of the n_ext higher region~ The manage:-
.

ment table is arranged into 4 vectors so that each area has an "·index"

name.

ti on.

The following two dimensional array defines the current implementa-

Index Name TOP BOTTOM SIZE MVSIZE ---
0 NT 0 0 4 4

1 RW (Reserved Words) RWTOP END 3 3 ...
2 SS (Symbol Stack) SSTOP SS BOT 4 4

3 WS {Working Stack) WSTOP SS BOT l 4

4 ES {Exit Stack) EST OP ESBOT 1 4

5 NW (Noise Word) NWT OP NW BOT 2· 4

6 IN (Insert) INTOP INBOT 83 83

7 DE (Dummy Entry) MAXMEM MAXMEM

SIZE - defines the size of a single entry

MVSIZE - defines the amount of additional space to be allocated at

the TOP when additional space is required

BOTTOM - low memory base

TOP - current top of area and high word allocation to most current

entry

If TOP = BOTTOM, the area is empty.

Each insert entry requfres 83 words which are a 11 oca ted as fo 11 ows:

INTOP

INTOP-8

INTOP-9

INTOP-56

INTOP-57

INTOP-76
INTOP-77
INTOP-·78
INTOP-79
INTOP-·80
INTOP-8l
INTOP-82

)
)
)

)
)
)

)
)
)

PMF for new file

Buffer, one sector in length,
for new input file

. (INBUF)

(LSEQ2)
(LSEQl)
(FSTNO)
{SCNPTR)
(INDCB)
(INFID)

l
)

j previous input file
) d.vnarnic environment
)
)
)

The call chain leading to INSERT is as follows:

CTAIL
~·

STSCN~"'
's. \ on EOF for input fi 1 e
IN~ERT ~:J
~ on EOS

STSCN
~

etc.

Both CTAIL and STSCN are recursively entered so that the statements in the

inserted file may be any valid sequence of statement. The syntactic

element following:

INSERT <file name>

must be "ELSE", "END 11
, or "; 11 otherwise an error wi 11 result from the

STSCN processor Q The end-of-f"il e which results in the exit out of INSERT

is detected in the NXTCHR routine which branches to INEOF to initiate

restoration of the previous input file environment.

Finally~ a utility subroutine MOVE was added to facilitate storage moves.

MOVE is ca 11 ed by both INSERT and TADD. The ca 11 i ng sequence is as

follows:

Set (x3) = FWA of From Area
(x2) = LWA of From Area

(PARX) ~ FWA of To Area
Then BSM MOVE

F. INVENTORY OF CHANGES

a. Add INSTAK definition to miscellaneous equates. INSTAK defines the

11 index 11 to the stack management vectors.

b. Add INTOP, INBOT, INSIZE defin·itions to storage management tables.

c. Add MVSIZE vector to storage management tables.

d. Change end-of-file return in NXTCHR to branch to INEOF.

e. Replace TADD with generalized version.

f. Add INSERT processor

g. Add MOVE subroutine.

h. Add initialization for INTOP, INBOT to initialization process.

i. Add INSERT to Reserved Word Stack. (INSERT will not cause the state

ment number to be incremented.)

~I-;: !LG TY/'£
f:.1lK ot(""'

-1

- ·--- -1- -

t · +·-· -----·'-·-···t-- -.. 1.~_l!.-S.t.Q.t:":el_ _ _ '._ -1----·•-··-·--+----+----..------;---;--.- -11--------------··->--·

rN~.J: l>
IN-To~---·T----r

.J'ro~r r.. __
/..le.Jc #::: . ~t ~:ttntf

-j------,.-.------+-·-·- ·-·+-·-----·i---·-•-----t··-·--•·-·-- --·-T-··-t-~ <>f .- ''"' ~e;:'te-d -

. ·-·f--·-- ~·' -···--·

/(..e rl-v~ .r_ ___ .

INtu f

-,-------·· ·-------t- -- -·- ·-----,,--·---.. r·-··--·--:----·'--..... :·--·-

TS ~T/J~-

G-.x.i+J __ jhr~

- r~'=-.t..l(.,t __ .. _____ . ------

·-;---

!

APPENDIX

UPDATE FOR FACTOR PROGRAMMING GUIDE

Ref: FACTOR Programming Guide - July 1969

5.1 INSERT Statement

It is frequently desirable to be able to write a set of code which can be

used in many programs. One way to accomplish this is to produce a card

copy for each programmer. The drawbacks of this approach are apparent ·j f

the logistics of a change to this code is considered. A better way is to

create one copy of the common code on direct access storage and then pro-

vide a simple means for ~ach programmer to include a copy at the desired
'

point of his text. The INSERT statement is defined to pro vi de for this

faci1 i ty.

Assume, for example, that two files, named TEST2 and TEST3 respectively,

exist on disk. Assume further that TEST2 contains the text:

REM TEST2 11/29/70 FILE FOR INSERT TEST;

A = B+C*D;

and that TEST3 contains the text:

REM TEST # 11/29/70 FILE FOR INSERT TEST;

A= B+l;

B = C/D;
I .

then the following program will illustrate valid usage of the INSERT statement.

REM TEST OF INSERT STATEMENT 10/19/70;

DCL A,B i1C,D;·

INSERT TEST2;

If A EQ 0

END

THEN BEGIN

INSERT TEST2;
END

ELSE BEGIN

INSERT TEST3;
END;

This otherwise meaningless program is offered as a. test case. The generated

code will be identical to that produced by the followi~g program:

REM TEST PROTOTYPE;

DCL A,B,C,D;

A = B+C*D;

IF A EQ 0

END

THEN BEGIN

A = B+C*D;
END

ELSE BEGIN

A= B+l;

B + CJD;
END;

This is, ineffect, the same program, except that the INSERTed code of the

previous program is imbedded in the actual program. Each time it is used~

the single statement

INSERT <file name>;

is replaced by the set of statements contained in the named file.

There is no restriction on the code that can be INSERTed; the INSERTed code

could be a set of DCL statements, a BLOCK, a subroutine, etc.

SECTION IX

INPUT/OUTPUT STATEMENTS

9.1 INTRODUCTION

In Section III, the input of source statements to the compiler and the output
of compiled data statements from the compiler was discussed in detail. The
compilation of a source program is referred to as compile time. The execution
of the compiled program, using TOPSY, is called run-time. This section deals
with READ and WRITE statements that make it possible to input or output run
time data.

The statements READ and WRITE described in this section use the following
syntax notation.

• Outer parentheses 1
(

1
,

1
)

1 are used to enclose items that are optional; at
least one item must be selected; items are separated by slashes; '/'.

• A 0 indicates that none of the elements of the set need be chosen. When
none are selected, the system assigns the current DOPSY Primary input or
output device.

• A file name identifier is shown in lower case letters and is enclosed by
double quotation marks.

9.2 READ

The general format of the input statement is:

READ((CR)/(EIR)/(TTK)/(TTR)/(MTR) 11 name 11/0)Vl, V2, ... Vn;

The items enclosed by parentheses are peripheral devices defined as follows:

Card Reader
Teletype Keyboard
Te 1 etype Reader
Magnetic Tape
External Interface Reg

(CR)
(TTK)
(TTR)
(MTR)
(EIR) - See Section 11.8

When magnetic tape, MTR, is specified the statement must include a file name
which is enclosed by double quotation marks. The file name syntax is defined
in the same manner as Identifiers (see Section 4.3.1).

Magnetic tape file "names" are used to uniquely identify data segments on the
tape. These names are assigned with the WRITE statement (Appendix E).

9-1

The terms Vl through Vn may be any legal variable identifier, including arrays.
As the input numerical data is read from the peripheral, it is assigned to
the specified variable(s).

The input data is restricted to numbers as defined in Section 4.2.

When values of an array are to be read, they must be separated by at least one
space (for TTK, TTR, CR). More than one card can be used to enter these values.
All numbers following the last array element number on a card are ignored.
Note that the first value for each new variable identifier must start on a new
card.

When the input peripheral is the magnetic tape unit, the tape is searched
forward until the file "name" is located. The numerical data from this file
is read and assigned to the variables VI, ... etc. as specified by the READ
statement. For magnetic tape, the variables must be arrays which have no
less than 7 elements. The maximum array size is limited by the amount of
core memory available when the array is declared. It is recommended that
arrays be no larger than ~ 512 elements. Appendix E gives a detailed
description of the magnetic tape operation and responses to the READ (MTR)
and WRITE (MTW) statements.

9.3 WRITE

The formats for output statements are:

WRITE((EIR)/(TIP)/(LP)) (Vi, 'Si', Vj, 'Sj', .. ,Vn);
WRITE (MTW) "name" Vl, V2, V3, V4;

where: Vi .•. Vj ... Vn ... Vl ... V4 .are legal variable identifiers including arrays
which may occur in any sequence. Si, Sj ... are strings of alphanumeric
characters.

The i terns enclosed by parentheses are periphera 1 devices defined as follows:

Teletype Printer/Punch ...
Line Printer .. .
Magnetic Tape .. .
External Interface Register ...

(TIP)
(LP)
(MTW)
(EIR) - See Section 11.8

When magnetic tape (MTW) is specified the statement must include a file seg
ment name which is enclosed by double quotation marks. When writing to
magnetic tape, the variables Vi must be arrays which have no less than seven
(7) elements and are recommended to be no larger than five hundred and twelve
(512) elements as described in Section 9.2. Aopendix E gives a detailed
description of the magnetic tape operation and responses to the WRITE (MTW)
statement.

When the teletype or line printer is specified as the output device there may
be one or more strings of alphanumeric characters and one or more variables
in a single WRITE statement. All ~trings must be enclosed by single quotes

9-2

and must not contain semicolons (;}. Multiple variables are separated by
commas as are 1ntennixed combinations of strings and variables.

Variables are output in one of two fonns. If the numeric value of the variable
is an integer whose magnitude is less than one thousand (1000), it will be
printed in the following fonn:

S999

where S is the sign of the number (+ or-) and the '9' terms are decimal digits.
Leadinq zeros print as spaces.

Non-integers and integers whose magnitude exceed nine hundred and ninety-nine
(999}, print in the following format:

S9.999EP99

where S again is the sign of the value and the '9.999' represent the decimal
digits of the mantissa, the '99' represent the decimal digits of the exponent
of the value and P is the sign (+ or -) of6the exponent. The character 'E'
prints as shown. For example, 8.979 x 10 prints as '8.979E-06'.

Numeric values ~s described above occupy a field of twelve (12) characters
and are left justified within this field.

The maximum number of variables printed per line is five (5) with the first
character field left justified. ·

When a variable is an array, its current values are printed five (5) per line
beginning with array element one (1) left justified on .the line.

More than five (5) variables can be specified per WRITE statement with the
result that five values per line will be printed on all lines including the
last, unless there are fewer .than five values to fill the last line.

Strin~s of characters are printed as they appear in the enclosed parentheses.
The characters may be any of those in the character set (Section 2.2) exclud
ing single quotation marks and semicolons(;}. Leading spaces are printed
according to the number of spaces followinq the single quote of a string.
The total number of printed characters will be an integral multiple of four (4).
(The restriction is automatically imposed at· run-time with the addition of no
more than three (3l spaces following the character preceding the trailing
quote of a string.

A single string of seventy-two· (72) characters can be printed on a single line
when the teletype is the output device. When the line printer is the output
device, a string of eighty (80} characters can be printed on one line. Single
strings which extend beyond column seventy-two (72) of a punched card can be
continued beginning with column one (1) of the next card, etc. When the
single string exceeds the character counts described abov~, the excess
characters are printed on the following line. The teletype will ignore
characters between column seventy-three (73) and eighty (80).

9-3

When variables and strings are intennixed in a single statement, the follow
ing output rule holds:

If the count of characters printed on the current line
exceeds fifty-six (56), then the first character of the
next entity (either a variable or string) will be
printed left justified beginning on the next line.
Otherwise, it will be printed beginning on the current
line and character position. Overflow to the next
line will occur whenever the character count of a
string exceeds the number of available characters
on the line.

Example:
(FACTOR Code):

WRITE 'CATALOG';
WRITE I I ;

WRITE 'TEST#=' ,N,' VALUE=' ,VALUE;
WRITE 'NODE=' ,PINN, ' EXPECTED VALUE=' ,EV;

(Output Data):

DATALOG

TEST#= + 6
NODE= - 0

VALUE= +l.200E-06
EXPECTED VALUE= + 2

In this example, the variables are N, VALUE, PINN, and EV. At the time the
WRITE statemints are executed, these variables had the ,followin9 numeric values;
6, 1.2 x lo-, 0, 2, respectively.

9-4

SECTION X

NOTATIONAL STATEMENTS

10.l INTRODUCTION

Notational statements are used to enhance the readabili~y and clarity of
programs. The notational statements discussed in this section are NOISE and
REM.

10.2 NOISE

The NOISE statement is used to define words which will make the FACTOR state
ments read like English sentences. Its fonnats are:

NOISE WORDl;
NOISE WORDl, WORD2, ... WORDN;

The command NOISE is followed by at least one space and the noise word or
words which are separated by conmas. After defining the noise words they are
ignored by the FACTOR compiler. This provides a me~ns for adding clarity to
FACTOR statements. An example is shown below:

NOISE VOLTS, AMPS, WATTS;
V = 10.0 VOLTS;
I= l.OE-3 AMPS;
P = V*I WATTS:

Noise words are restricted to the fonnat of identifiers, however, the reserved
words listed in Section 4.3.1, as well as user-declared identifiers are dis
allowed as noise words.

10.3 REM

The REM (remark) statement provides a means for adding commentary to a program
listing. It is not executable and it can occur anywhere in the context of a
program provided its fonnat rules are followed. The general format is:

REM text;

where text is anything but END, ELSE or

10-1

I • I ' .

For example:

REM THIS SECTION CALCULATES AVERAGE VALUE;

As noted above, anything except END, ELSE or ';' is legal in the REM state
ment. All other elements of the character set will be positionally listed as
located in the REM statement at compile time.

10-2

SECTION XI

TEST STATEMENT FORMATS

11.l INTRODUCTION

Within the following sections the statements which are available for testing
digital elements are described. Each statement description consists of a
general form which gives the following information; time delay, definition,
and in most cases, an example.

The nine major statement types discussed in this section are: Set state
ments, Enable statements, Disable statements, Force statements, Connect
statements, Disconnect statements, Measure statements, On statements and
Socket ID statements. The general form of the statement definition uses
the syntax notation defined below.

11 . 1 . 1 Brackets

Brackets, "[] 11 are used to enclose items that are optional. The choice of
options are separated by slashes.

11 .1 .2 Parentheses

Parentheses 11
()

11 are used to enclose items that are optional. The choice
of opt1ons are separated by slashes. The underlined option is assumed if
none is specified.

11.1.3 Semicolons

Semicolons 11
;

11 terminate the statement.

l1 . 1 . 4 Vo 1 tage and Current Ranges

The programmable Voltage and Current modules of the Sentry-400 have from
one (1) to four (4) ranges of operation. The four ranges are specified by
reserved words as follows:

II

II

II

II

11-1

RNGO
RNGl
RNG2
RNG3

The full scale value of voltage or current corresponding to each range depends
on the statement and module involved. Appendix C summarizes range numbers
and their correllation to full scale value, resolution, statement and module.

11 .1 .5 Time Delay Dependent Instructions

The execution of a time delay dependent instruction is automatically delayed
so as to allow the preceding test conditions to stabilize. For example a DC
measurement is not executed until all previously programmed power and voltage
supplies have stabilized. The value of the time delay is determined by the
type of tester instruction previously executed. Time delay dependent instruc
tions wait for the status 'Tester Busy' to be null.

The instructions which are not time delay dependent are executed without
waiting for stabilization, even thoush they may initiate a Tester Busy status.
This allows a series of programmed responses to essentially stabilize during
the same time period, rather than in a sequence. The statements which are
time delay dependent are listed in Appendix D.

11 .2 SET-UP STATEMENTS

This section describes statements which are typically used to initialize the
tester prior to performing actual tests.

11 . 2. 1 Set De 1 ay

General Form:

SET DELAY expression (,DC);

Time Delay Generated:

0

Description:

A. Without DC Modifier

The value of the expression is loaded into the tester time delay register TD.
This presets the delay time for subsequent ex3cutions of functional tests of
the fonn SET F. That is, the expression plus 0.7 microseconds will be the
value of the time delay between input stimulus execution and output comparator
strobing (a SET F instruction). The 0.7 sec offset is equal to the typical
driver response time to 62% of its final value from initial value. The delay
used should allow for device under test response time plus 0.4 sec comparator
response time. The Set Delay statement has a resolution of 0.35 microseconds
and a mazimum value of 5.734 milliseconds.

11-2

11-3

Fetch Instruction

Interpret Instruction

No Is instruction
time delay
dependent?

Is Tester Busy?

Execute Instruction

Figure 11.2.1-·1

BASIC INTERPRETER FLOWCHART

Tester Busy
540µsec

,,

Tester Busy
540µsec or value
specified by SET
DELAY DC Statement

Execute CPMU
Fetch. next instruction (Force PMU)
Interpret instruction
Wait for Tester Busy

Execute Force
Fetch next instruction (ENABLE DCTl)
Interpret instruction
Execute (not time delay dependent)
Fetch next instruction (MEASURE)
Interpret instruction
Wait for Tester Busy

Execute MEASURE
Do A/D conversion
Compare result with OCT limits
Fetch next instruction

Figure 11. 2 .1-2

Typical DC measurement sequence showing overlap
of 'non time delay dependent' instructions with
tester busy.

11-4

Example: Set the functional test delay for 350 microseconds.

SET DELAY 350E-6;

B. With DC Modifier

The value of the required time delay is scaled by .FACTOR and loaded in the
tester time delay register. The resolution is 0.35 milliseconds with a max
imum value of 5.734 milliseconds. When a FORCE PMU, FORCE (VOLTAGE/CURRENT)
or FORCE DELAY instruction is executed then the 'tester busy' status will
remain "on" for the amount of time defined by the Set Delay, DC statement.
Even if this instruction is not used a time delay generated by a fixed delay
generator of l .75 msec, if a range is changed, or 0.54 msec if no range is
changed, will occur.

Example:

SET DELAY 0.005, DC;

11 .2.2 Set Clamp

General Form:

SET CLAMP (POS/NEG/SYM) number

Time Delay Generated:

0

Description:

POS means no negative voltages below -0.7 volts will be forced, NEG means
no positive voltages greater than +0.7 volts will be forced, SYM means that
positive and negative voltages may be forced, and number is the absolute value
of the maximum voltage to be forced.

There are 15 values at which the PMU can be c1amped (positive or negative).
They are: 4, 6, 8, 10, 12, 14, 16, 18, 20, 23, 25, 28, 31, 35, and 39 volts.
Any number will be accepted by the SET CLAMP statement and the next higher
(if not equal) clamp value will be selected. For example, if SET CLAMP POS
8.2; is given, the allowed voltages are to be between 0.7 and 10 volts.
Actual clamp values produced by the hardware will be + l volt pl'us or minus
10% the value specified.

11.2.3 Enable

General Form:

ENABLE [ILO/IHI/VLO/VHI] (GT/LT) number;

Time Delay Generated:

11-5
0

Description:

These instructions enable limit comparisons to be made on all programmed
current/voltage operands prior to an instruction execution. If the operand
fails to be within the LIMIT bounds, a system terminal error is issued. (See
Appendix F). Instructions with operands in the LIMIT bounds are executed.

The "pass" regions are established by the LIMIT pairs ILO, IHI for currents
and by the LIMIT PAIRS, VLO, VHI for voltages. -.l£. tbe RAP481! epti u i & •• srni;J-.

.xan!•*~..;Y-+,.¥e'l"ii•• The absence of ENABLE LIMIT instructions in a program
allows all magnitudes less than the range limits to pass. The function of
the limit comparison is to protect the device under test where source forcing
parameters are calculated or may be unknown. Once the program is operational
and safe parameters are known, there instructions may be removed for execution
time efficiency.

Note: Specification of limits with these statements will increase test exe
. cuti on time.

Examples:

Enable limits to 11 pass 11 voltages which are between the values of
+5.0 and 0 volts.

11.2.3.a DISABLE

General form:

DISABLE [ILO/IHI/VLO/VHIJ;

Time delay generated:

0

Description:

These instructions nullify the ENABLE limit comparisons invoked
by the ·instructions of 11.2.3.

Time Delay Generated:

0

Description:

These statements establish program branch control on DC test failures (OCT),
functional test failures (FCT), and current trip failures (TRIP). The label
specifies the branch location. The current trip branch has priority in the
event a DC or functional failure occurs simultaneously with a current trip
failure. The label must be in the outermost block of the test program in all
cases.

11-6

When a trip, functional or DC failure occurs at statement n and if the cor
responding ON statements have not been processed, the program control will
resume at statement n+l.

Example:

Set branch points to alter program control when functional, DC
and current trip failures are detected.

ON OCT, DFAIL:
ON FCT, FFAIL;
ON TRIP, CFAIL;

11 .2.5 Socket Identification

General Form:

SOCKET ID number;

Time Delay Generated:

0

Description:

This statement compares the value of the number with the identifier code of
the performance board in the test.socket. If the values are not equal, a
system terminal error is issued and the program aborts. If the values com
pare, the program execution continues. The maximum Socket ID is 4095 (7777B).

Example:

Test the socket ID for a value of 4095.

SOCKET ID 4095;

11 .3 PROGRAMMABLE POWER SUPPLY STATEMENTS

This section describes the statements which provide programmable control of
the Sentry-400 power supplies. The power supplies can force either voltage
or current and can detect the resulting voltage or current.

11.3.l Force DPS Voltage Supplies

General Form:

FORCE [VF1/VF2/VF3] expression (,[RNG2/RNG3]);

Ti me De 1 ay Generated:

1. 75 mi 11 iseconds ¢'(

11-7

Description:

The instruction forces the programnable voltage forcing supplies to the value
specified by the expression. If the range is not specified, then the highest
range is set. This instruction automatically connects the addressed unit to
the test station load board.

The VF units will automatically disconnect under the following conditions:

(1) when the magnitude of the supply current, Ii I, is greater
than 150 milliamps and the trip register is in Range 2.

Example:

(2) when the magnitude of the supply ~urrent, lkl, is greater
than 1.50 amps and the trip register in in Range 3.

Force units VFl, VF2, VF3 to +8, -5 and -30 volts respectively.

FORCE VFl 8, RNG2;
FORCE VF2 -5, RNG2;
FORCE VF3 -30;

11.3.2 Force DPS Current

General Form:

ENABLE [TRIPV1/TRIPV2/TRIPV3] [LT/GT] expression (,RNG2/RNG3);
FORCE [IF1/IF2/IF3] expression (,RNG2/RNG3);

Time Delay Generated:

1 . 75 mi 11 i second

Description:

The ENABLE statement signifies that the DPS unit is to be put into the voltage
trip/current force mode. Then the Force Statement specifies the current to
be forced.

Examples:

ENABLE TRIPVl LT 5, RNG3;
FORCE IFl lOOE-3, RNG3;

ENABLE TRIPV3 GT 4, RNG2;
FORCE IF3 -5E-3, RNG2;

ENABLE TRIPV2 GT l;
FORCE IF2 30E-2;

Note: An ENABLE TRIPV statement must precede the FORCE IF statement or a
voltage will be forced rather than a current.

11-8

11.3.3 Enable Trip

General Fonn:

ENABLE [TRIP1/TRIP2/TRIP3] [LT/GT] expression [,(RNG2/RNG3)];

Time Delay Generated:

1.75 milliseconds

Description:

These instructions enable the current-trip detector of the corresponding
voltage forcing unit VFl, VF2, VF3. If the source/load current of the
forcing unit, VF, exceeds the enabled trip value during a test sequence,
indicating a DC failure, then program control is transferred to the instruc
tion as specified by the "ON TRIP" instruction, if that instruction was
given. If an "ON TRIP 11 has not been executed prior to the 11 tri p 11 the pro
gram proceeds normally. At a pause or end-of-test, the parameter fail
indicator will be lit if a trip occurred. If the TRIP datalogger is set,
the value specified by this instruction will be written on the output device.

The VF units will automatically disconnect under the following conditions:

(1) when the magnitude of the current is greater than 150 milli
amps and the trip register is in Range 2.

(2) when the magnitude of the current is greater than 1.50 amps
and the trip register is in Range 3.

The automatic disconnect is a safety feature which protects both the device
under-test and the DPS units. The trips will be processed, provided they
have been enabled, even though the automatic disconnect occurs. The trips
are automatically disabled for 1.75 milliseconds, following a programmed
instruction to the VF units. If a trip occurs after this time interval, the
trip interrupt will occur at the conclusion of the 1.75 milliseconds delay.
This feature allows for surge currents when the VF units are driving capacitive
loads. Trips are automatically inhibited any time the 'tester busy' status
is on. If a highly capacitative load is present, the current trip may be
delayed longer by inserting a FORCE DELAY after FORCE VF or by using the
ENABLE TRIP several instructions after the FORCE VF.

Example:

11-9

Enable the voltage forcing unit VFl so that it will trip on load
currents exceeding lOOmA and VF2 to trip on currents more nega
tive than -50mA.

ENABLE TRIPl GT lOOi-3, RNG3;
ENABLE TRIP2 LT -0.05, RNG2;

Caution:
•f"\TP\ ..!- - • .• • .t..L-...-. ~'t .. .,....., .. _

Add 11.3.3a

DISABLE TRIPS

The TRIP
1 be enabled

Gen2ra1 ~orm:

DISABLE TRIPS;

The p.urpose of this instruction is t9 nullify any previous ENABLE
ACTOR er is thus allowed to TRIP instructions. The F ?sr?gramm .

selectively enable the uoN TRIP 1nstruct1on execution or the
TOPSY/PAUSE ON FAIL command. RNG3);
11me ue1ay ueneratea:

1.75 milliseconds

Description:

This statement signifies that the selected DPS unit is to be put into the
current forcing mode.

Example: Enable triQ interrupts if the voltage on DPSl is more negative than -10
volts or if the voltage on DPS3 is more positive than 30 volts.

ENABLE TRIPV2 LT -10.0, RNG2;
ENABLE TRIPV3 GT +30;

11.3.5 Disconnect DPS Unit

Genera 1 Form:

XCON [VF1/VF2/VF3];

Time Delay Generated:

1.75 milliseconds

Descri pti.on:

This statement disconnects the specified voltage forcing unit from the test
head. The magnitude of the specified unit is automatically set to O in the
low range prior to disconnecting. The DPS units will automatically discon
nect from the test head at End of Test without this instruction. Also, the trip
function for the specified unit is disabled.
Example:

Disconnect all VF units

XCON VFl
XCON VF2;
XCON VF3;

11-10

11.4 SETLOGIC

General Fonn:

SET LOGIC [POS/NEG];

Time Delay Generated:

0

Description:

These statements initilize the functional test comparator logic pass condi
tions for either positive or negative voltage logic for the device under
test (OUT}. If this instruction is not used, the positive logic condition
is assumed.

For positive logic the pass conditions are defined as follows:

(a} F(i) = 1 (expected output function for pin (i} = 1)
Pass= OUT OUTPUT SIGNAL>Sl, otherwise fail.

(b} F(i} = 0 (expected output function for pin (i) = 0)
Pass = OUT OUTPUT SIGNAL<SO, otherwise fail.

For negative logic the pass conditions are defined as follows:

(a) F(i} = 1 (expected output function for pin (i) = 1)
Pass = OUT OUTPUT SIGNAL<Sl, otherwise fail.

(b} F(i) = 0 (expected output function for pin (i) = 0)
Pass = OUT OUTPUT SIGNAL>SO, otherwise fail.

Note that all voltages, plus or minus, are treated algebraically, thus -10
is less than -1.

Example:

SET LOGIC NEG;

11 .4.1 Force Voltage Conditioner References

General Form:

FORCE (EO/El/EAO/EAl/EBO/EBl/ECO/ECl) expression (,[RNG2/RNG3]);

Time Delay Generated:

0.54 milliseconds

11-11

Description:

These instructions force the voltage conditioner reference supplies to the
proyrarrmed values. If the range is not specified, then the lowest range is
automatically set.

EO, El, EAO and EAl are voltage conditioner references. The truth table
below shows the relationship of F, S and these supplies. The supplies EBO,
EBl, ECO and ECl are optional and connect to the test station load boards
for use as bias supplies.

Example:

Force the standard reference pair to 3.5 and .5 volts respec
tively for the 11 111 and 11 011 levels.

FORCE El 3.5, RNG2;
FORCE EO .5, RNG2;

The following combinations of F and S bits per pin determine which reference
voltage is applied to the pin.

F S

0 0 EO
1 0 El
l 1 EAl
0 1 EAO

11~4.2 Set Reference Supplies for Functional Test Comparators

General Form:

SET [Sl/SO] expression (,[RNG2/RNG3]);

Time Delay Generated:

0.54 milliseconds

Sl and SO are reference supplies for the Functional Test Comparators. Sl is
the reference level for the expected logic 11r" levels and SO is the reference
level for the logic 11 011 levels. The value of the expression is loaded into
the functional test comparator reference voltage supply register.

For testing positive logic, Sl>SO. For testing negative logic, as defined
by the instruction SET LOGIC NEG, Sl<SO. The following table shows pass/
fail decisions made by the comparators:

ll-12

POS LOGIC: NEG LOGIC:

Sl f.=l p_ass so F=.Q. E_ass
F=l fail F=O fail

so F=O fail Sl F=l fail ---- ----
F=O pass F=l pass

Example:

Set SO comparator reference voltage to -5 volts:

SET SO -5, RNG2;

11 .4.3 Functional Test Statements

SET D/M/R/S/F bi nary pattern for DEFINITION, MASK,
S

1

ELECT, RELAY or FUNCTION.

Description:

This statement controls five functions which can.be used to control the
programmed functional test for each pin. The five functions are: D, M
S, Rand F. They are each described as follows:

11-13

D This sets the DEFINITION pattern for the input and output
pins. A 1 defines the pin as an input and the corresponding
driver amplifier will be connected. A 0 defines an output
pin. In either case, the level detectors are connected to
the pin. Time Delay Generated: .54 milliseconds.

M This control condition sets the MASK pattern which defines
the pins on which test results will be measured. A O means
a don't care for that pin. A 1 means a care and the com
parators will be enabled for that pin. Time Delay Genera
ted: O.

S This control condition sets the SELECT pattern which speci
fies the alternate or standard forcing logic level pair
for each pin defined as an input. A 0 selects the standard
reference pair El or EO. A 1 selects the alternate reference
pair EAl or EAO. Time Delay Generated: 0.

R This control condition sets the utility RELAY pattern which
specifies which relays are closed and which relays are open.
A 1 closes the corresponding utility relay. Time Delay Gen
erated: .54 milliseconds.

F This control condition sets the binary FUNCTION pattern for
the logical input states and the expected output states.
For an input pin, a 1 specifies that the input level will
be that specified by al reference (El or EAl). For an
output, a l means the output voltage is compared to Sl ref
erence. Time Delay Generated: Value specified by SET DELAY
statement.

The general form of the statements for programming the test conditions is:

SET (D/M/S/R) binary pin pattern;
SET F binary pattern, binary pin pattern ... ;

The binary pin pattern is defined by a binary value of up to 240 bit which
has a one to one correspondence between pin and pattern bit location. Only
pins that change from the previous state need be specified by the SET state
ment. Even if all pins are specified, only codes for the ranks* in which
pin data changes are generated for max~mum test rate.

The binary pin pattern can be programmed by either specifying each bit of
the pattern or else by use of the following operators: [n] = pin origin
and (:) = pattern replica tor. These two opera tors a re defined as fo 11 ows:

[n] = pin origin operator
where: n is an integer l~n<240

(m: bp) = binary pattern replicator operator
where: m is an integer l<m<240
and bp is the binary pattern<240 bits

All non-addressed pins will take on the previously specified values. The
absence of a previous specification is interpreted as a binary 0. Further
more, non-addressed ranks will not be affected, i.e. no code will be gener
ated and hence, at runtime, the non-addressed ranks will not be modified.

A sequence of binary patterns, which are separated by commas 11
,

11
, represent

a series of functional tests. To illustrate the use of these statements,
two examples are shown below. The first example uses the origin and repli
cator operators. The second example yields the same binary pin patterns,
but does not make use of the operators.

Example (l):

SET F (3:0) (13:1) (2:0),
(3:101) 010 (6:1),
[8] (2:1) (9:0);

Example (2):

SET F 000 111 111 111 111 100,
101 101 101 010 111 111'
101 101 111 000 000 000;

* For a description of Ranks - See Appendix B.3
11-14

Explanation:

{3:0) means three O values specified, (13:1) means thirteen 1 values, (2:0)
means two O va 1 ues, (3: 101) means 3 sets of 101 values , 01 O means set the
next three pins to this pattern, etc., etc. The [8] means: preserve the
previous pattern and start at pin 8 with the following specifications.
(Note pins are numbered from 1).

It should be noted that blanks are ignored within the binary pin pattern.

11.4.4 Set D

General Form:

SET D bi nary pin pattern;

Time Delay Generated:

0.54 milliseconds

Description:

This instruction loads the D register. A binary 1 in the pattern field
specifies the corresponding test pin to be used as an input, thus connect
ing the pin to a voltage driver via a reed relay. A binary 0 in the pattern
field specifies the corresponding test pin to be an output, thus discon
necting this pin from the voltage driver. In both cases, the test pin
remains connected to the corresponding pin voltage level detector.

11.4.5 Set F

Genera 1 Form:

SET F binary pin pattern, binary pattern .•. ;

Time Delay Generated:

Specified by SET Delay instruction.

Description:

This instruction loads the F register. A binary l in the binary pin pattern
specifies a logic 1 level and a binary 0 specifies a logic 0 level. The bits
in the binary pin pattern corresponding to inputs, as specified by (D), are
the forcing function. T~e bits in the binary pin pattern corresponding to
outputs, as specified by (D), are the expected outputs. The input forcing
analog.voltage levels and the expected output comparison thresholds are de
termined by the contents of the progranmable reference supplies SO, Sl, EO,
El, EAO, EAl, and by the S register.

ll-15

11.4 .. 6 Set M

General Form:

SET M binary pattern;

Time Delay Generated:

0

Description:

This instruction loads the M register. A binary 1 in the binary pin pat
tern enables the associated pin level detector. A binary O in the binary
pin pattern disables the associated pin level detector. These two states
are referred to respectively as the 11 care 11 and 11don 1 t care" conditions for
pins on which functional test results will be measured. The functional test
results are strobed from the level detector outputs to the comparison reg
ister C, for 11 care 11 pins. The strobe is inhibited for 11 don 1 t care 11 pins.

11.4.7 Set S -
Genera 1 Form:

SET S binary pin pattern;

Time Delay Generated:

0

Description:

This instruction loads the S register. A binary 0 in the binary pin pattern
selects the standard logic level pair El/EO as input forcing voltages for
the corresponding test pin. A binary 1 selects the alternate logic level
pair EAl/EAO.

11.4.8 Set R

General Form:

SET R binary pin pattern;

Time Delay Generated:

0.54 milliseconds

Description:

This statement (instruction provides the control for opening or closing the
utility relays. There is only one utility relay which is associated with
each tester pin. A 1 in the binary pin pattern will close a utility relay 16 and an O will open a relay.

't. ~o s .. j..
SET {D/M/R/S/F)* binary pattern;

This instruction executes just like the normal lona re~ister instructions, how
ever the Compiler will generate data for all pins specified regardless of the
µrevious state of the reqister.

Exam11le: Instruction

SET F (6 0 : 1) ;

SET F (59~ 1} O;

CALL X;
SET F * (60: 1);

Como fled Data

06077777
06177777
06277777
26377777
26337777;

06077777
06177777
06277777
26377777

In the example, note that the second SET F qenerated only one word. Normally,
words are aenerated only for ranks with data that changes. However, the third
instruction follows a subroutine call and at run time, the subroutine X- may alter
the F register. To insure that all 60 pins qet set tn·1, the programmer may
use the asterisk. This asterisk will force the compiler to generate data for
all ranks used in the instruction.

3
FAIRC.HlLO SYSTEMS TECHNOLOGY. DIVISION

11 .4.9 Force Strobe

General Form:

FORCE STROBE;

Time Delay Generated:

0

Description:

This instruction forces a single functional test strobe, thus transferring
the functional comparator output states to the C register. The strobe is
generated, even though the COMPARATORS may be disabled (11 .4.11). The de
tection of a failure is processed in the same manner as is normally done
during functional testing.

Example:

FORCE STROBE:

11 .4.10 Enable Latches

General Form:

[ENABLE/DISABLE] LATCHES;

Time Delay Generated:

0

Description:

The DISABLE instruction initializes the functional test control so that the
C register is cleared prior to strobing the functional test comparators for
each functional test.

If no latch statement is made, the disable latch mode is assumed.

The ENABLE instruction initializes the functional test control so that the
C register is not cleared prior to strobing the functional test comparators.
In this mode all functional failures are retained in the C register through
out a sequence of tests.

11-17

Examples:

Enable the comparison register to retain a history of all func
tional failures throughout a sequence of functional tests.

ENABLE LATCHES;

Disable the comparison register latches so that the C register
contains only the current functional test failures.

DISABLE LATCHES;

11.4.11 Enable Comparators

Genera 1 Form:

[ENABLE/DISABLE] COMPARATORS;

Time Delay Generated:

0

The ENABLE instruction initializes the functional test control logic so
that the comparator outputs will be strobed to the C register for each
functional test. The· Enable comparator state is assumed if no statement
is given.

Also the DISABLE instruction initializes the functional test control logic
so that the comparator output will not be strobed to the C register for each
functional test.

The disable comparator instruction should be issued when a series of func
tional patterns are to be executed but the device under test response is
not defined.

Example:

Enable the comparators.

ENABLE COMPARATORS;

11 .4.12 Enable Strobe

General Form:

ENABLE STROBE binary pattern;

Time Delay Generated:

0

11-18

Description:

This instruction enables the functional test comparator strobe to be con
trolled by the contents of F (l-4) and the "binary Pattern" (or equivalently
the 4 bit nvalue 11

). The "binary pattern" for this instruction must be a
4-bit binary number and it is defined as follows:

binary pattern = b1b2b3b4,
where the subscripts refer to the tester pin number and b is
either a 0 or a 1.

After executing the ENABLE STROBE instruction, all subsequent functional
test results will be strobed to the C register according to the following
logical condition('. 1 AND, '+' OR):

Example:

STROBE= b1 • F(l) + b2 • F(2) + b3 • F(3) + b4 . F(4)

Enable the strobe to be controlled by F(l).

ENABLE STROBE 1000;

Note: This statement automatically DISABLES the normal comparator
strobe, i.e.,.DISABLE COMPARATORS

11 .5 PRECISION MEASURING UNIT STATEMENTS

This section describes the statements which control the operation of the
Sentry-400 Precision Measuring Unit. This unit is used for measuring device
DC parameters and for system self check.

11 . 5 .1 Set PMU Ranges

General Form:

SET PMU [SENSE/FORCEV/FORCEI], [RNGO/RNG1/RNG2/RNG3/AUTO];

Time Delay Generated:

l .75 milliseconds

Description:

This instruction initializes the Precision Measuring Unit (PMU). The force
and sense functions are complimentary with respect to voltage and current;
i.e. when the unit is set to force voltage (or current) it is automatically
initialized to sense current (or voltage). When sensing in Auto range, the
first measurement is made in Range 3, then Range 2 if necessary and so on,
downward.

11-19

Example:

SET PMU SENSE, AUTO;
SET PMU FORCE!, RNG3;

In this example the statements initialize the PMU to force
current in range 3 and sense voltage with auto ranging.

11 .5.2 Force Voltage/Current

General Form:

FORCE [VOLTAGE/CURRENT] expression (,[RNGO/RNG1/RNG2/RNG3]) (HOLD);

Time Delay Generated:

1 .75 millisecond with range change, or
0.54 milliseconds with no range change, or
that specified by the SET DELAY DC statement
(whichever is greater).

Description:

This instruction is used to force a programmed voltage or current via the
precision measurement unit.

The HOLD form loads the master side of the precision measurement unit forc
ing register, PPS, and, hence, the output voltage or current does not change
from its existing value. The held value is transferred to the slave side of
the register (the output of the unit then takes on the held value) whenever
an EXECUTE occurs as a result of a SET F instruction.

Caution:

Do not attempt to perform a FORCE and HOLD, followed by another FORCE with
out an intervening SET For else the actual value forced will be in error.

The EXECUTE form loads the loads the slave side of P.PS and hence the output
of the precision measurement unit wtll beqin to slew to the proqrammed value
upon execution of the ins true ti on_,_ .. If th.e range is not s.peci. fted, then the
highest ~ange 1s automati.cally set.

Example:

Force the output of the precision measurement unit to -1 microamp.

FORCE CURRENT -lE-6, RNGl;

11-20

11.5.3 Force PMU

General Form:

FORCE PMU expression (,HOLD);

Time Delay Generated:

O. 54 mi 11 i second or that specified by a SET DELAY DC statement,
(whichever is greater).

Description:

The expression of this instruction is scaled according to the mode, V or I,
and range as is preset by the SET PMU SENSE/FORCE ..•• statement. If AUTO
ranging has been preset, then the range which gives best resolution will be
automatically determined (at run-time) prior to loading the PPS register
(if the expression is a variable). This instruction is especially useful
when several PMU forcing values in the same range are to be executed, but
it has a slightly longer execution .time than FORCE VOLTAGE/CURRENT.

This instruction is used in conjunction with the conditions established by:

Example:

SET PMU [SENSE/FORCEV/FORCEI], [RNGO/RNG1/RNG2/RNG3/AUTO]

Force the output of the precision measurement unit to -1 microamps.

SET PMU FORCE!, AUTO;

FORCE PMU -A/B;

11.5.4 Connect PMU

General Form:

CPMU PIN expression;

Time Delay Generated:

0.54 milliseconds

Description:

This, statement connects the precision measurement unit to the pin number
specified by the expression (or equivalent "value"). Device-under-test (DUT)
pins are specified by values in the range 1 to 24010· Calibration nodes are

11-21

specified by node numbers 254lo and 25510· If numbers other than these are
progranmed the tester will ha t with a terminal error. Pin numbers 3768
{25410) and 3778 (25510) are, respectively, connections to an open circuit
and calibration network which is located in the Test-Head. The calibration
network. consists of fixed precision resistors. The value of the connected
resistor is a function of the force and measure ranges as shown in Appendix
G.

Example:

Force 10 volts with a lOOK ohm resistor as a load. Connect
with 0 volts applied (assume PMU is initially not connected
to a load).

SET PMU Sense, RNGl;
FORCE VOLTAGE 0, RNG2;
CPMU PIN 3778;
FORCE VOLTAGE 10, RNG2;

11 .5.5 Measure Value/Node

General Form:

MEASURE (VALUE/NODE number) [,LOG];

Time Delay Generated:

0

Description:

This statement initiates an analog-to-digital conversion within the precision
measurement unit.

When the VALUE option is specified, the measurement is made according to
the existing conditions. The measured value is appropriately scaled to float
ing point format and is stored in the system global variable:. VALUE. If DC
trips are enabled (see Section 11.5.8) VALUE is tested to determine if it falls
within the pass window. If it passes, the 11 DC pass" indicator is set. If it
fails, the "fail 11 indicator is set. If the option [LOG] is specified, then
the measured value will be logged according to the MONITOR logging command con
ditions {see SENTRY-400 TOPSY Manual) ..

If AUTO ranging has been spedified, the system will automatically determine the
measuring range which gives best resolution. Auto-ranging begins with Range 3
and it ranges downward until either the best resolution is obtained or until
Range·o is encountered.

Use of the [NODE number] option provides the means for measuring a parameter
at a system internal monitor node point, The node numbers and their descrip
tions are summarized in Appendix H. Ranging and measuring conditions are auto
matically invoked.

11-22

For internal nodes, the measured value and logging and pass/fail conditions
are the same as was previously described. At the conclusion of an internal
node measurement cycle, the precision measurement unit is automatically dis
connected and it is initialized to force O current in Range 1.

Internal nodes 2028 to 20~8 for the E reference supplies are divided by 8.
That is, when a reference supply El, EO, etc. is programmed to V volts, the
reference value is actually V/8 volts since the buffer amplifier at each pin
has a gain of eight.

Example:

Measure and log the current from VFl

MEASURE NODE 2178, LOG

Datalogging options specified by the TOPSY monitor are:

1) Datalog MEASURE: All 'MEASURE VALUE' statement are logged.
2) Datalog LOG: 'MEASURE VALUE, LOG'; statements are logged

i.e. only those having the 'LOG' modifier.
3) Datalog OCT: All 'MEASURE VALUE'; statements that fail to pass

the limits specified by ENABLE DCT statements are logged.

11 .5.6 Measure Pin

General Form:

MEASURE PIN;

Time Delay Generated:

0

Description:

Measure Pin allows fast go/no go d.c. parameter tests. It is similar to
MEASURE VALUE except that go/no go comparisons with ENABLE OCT limits are
made in tester hardware format (and hence no floating point conversion is
made, nor is the result stored in VALUE).

Since comparison is made in hardware format, ENABLE OCT must be executed
after the PMU force and sense conditions are specified, so the DCT limit
can be scaled properly. ·

If any datalogging conditions are specified (Datalog DCT or Datalog measure)
then the resultant measurement will be converted to floating point as in the
MEASURE VALUE instruction.

11-23

Example:

11.5.7

SET PMU SENSE, RNGl;
CPMU PIN 5;
FORCE VOLTAGE 4.5, RNG2;
ENABLE DCTl GT 6.0 E-6;
MEASURE PIN;

Disconnect PMU

General Form:

XPMU PIN;

Time Delay Generated:

0.54 millisecond

11 .5.8 Enable DC Parameter Limits

General Form:

ENABLE [DCTO/DCTl] [LT/GT] expression;
DISABLE [DCTO/DCTl];

Time Delay Generated:

0

Description:

The ENABLE forms a pass or fail threshold for level DCTl and/or DCTO. Either
one or both OCT thresholds may be specified; using only one OCT function spe
cifies a level for comparison trips.

Using both OCT functions specified a "pass window 11 for subsequent DC measure
ments. The pass region is specified by the operators LT/GT and by the value
of the expression in the ENABLE statements. The programmer must be careful
not to specify an impossible pass condition.

When a MEASURE VALUE or MEASURE PIN does not pass the level specified by each
OCT function, a DC fail is indicated and the program control is transferred to
the instruction specified by the "ON DCT 11 instruction. If an "ON OCT" has not
been previously executed, then the next instruction following the MEASURE is
executed. At a pause or end-of-test a failure will light the parameter fail
indicator.

The DISABLE form disables the comparison limits and inhibits the DC fail re
gardless of the measured value.

11-24

Example:

Enable DC trip limits which will pass all measured values
between -2 milliamps and +2 microamps.

ENABLE DCTl GT 2E-6;
ENABLE DCTO LT -2E-3;

11.5.9 Enable Relay - Connect PMU to Functional Circuitry

General Form:

[ENABLE/DISABLE] RELAY;

Time Delay Generated:

0.54 milliseconds

Description:

The DISABLE instruction initialized the pin address control logic such that
the voltage conditioner for pin (n) will be automatically disconnected when
the precision measurement unit is connected to pin (n). 'If no relay state
ment is made, the disable mode is assumed.

The ENABLE instruction initializes the pin address control logic such that
the voltage conditioner for pin (n) will remain connected, even though the
precision measurement unit is connected to pin (n). After connecting the
precision measurement unit to pin (n) the voltage conditioner cpn be dis
connected by executing the instruction: DISABLE RELAY; i.e., allowing a
make-before-break sequence to maintain bias on a pin.

Example:

Connect the precision measurement unit to pin (10) with the
voltage conditioner connected and then disconnect the voltage
conditioner.

ENABLE RELAY;
CPMU PIN 10;
DISABLE RELAY;

11.6 AUXILIARY CLOCK STATEMENTS

This section describes the statements which control the auxiliary clock
functions of the Sentry-400. The clock functions allow a string of up to
255 clock pulses to be generated for each functional test. In addition,
these clocks can be selectively enabled or disabled for each functional test.

11-25

11.6. l Set Clock

General Form:

SET CLOCK expression;

Time Delay Generated:

0

Description:

The value of the expression is loaded into the clock burst count register
of the tester. The count specifies the number of clock signals which the
tester will output for each functional test. The time delay between clocks
is equal to the current contents of the time delay register. The maximum
clock count is 255.

Example:

SET CLOCK 2;

The resultant timing is explained in the following diagram:

td
Execute Clock

l

td
Clock

2

td
Strobe

Campa ra tors

td = contents of time delay register +0.7 µsec

11 .6.2 Enable Clock

General Form:

ENABLE CLOCK binary pattern;

Time Delay Generated:

0

Description:

This instruction enables clock signals to be connected to tester pins l, 2,
3, 4, according to the "binary pattern" (or equivalently the 4 bit 11 value 11

).

The binary pattern for this instruction must be a 4 bit binary number and it
is defined as follows:

bi nary pattern = b1b2b3b4,
where the subscripts refer to the tester pin number and b is
either a 0 or a 1.

11-26

Four clock sync lines for the first four pins are brought to the load board
and convenience panel connector. These are used to drive an external clock
generator. The clock generator may be as simple as an IC gate mounted on
the load board or may be a complex 4-phase clock. The clock may be connected
to the device-under-test (OUT) via a utility relay pin on the load board or
with a separate relay to the OUT directly. If a separate relay is used, it
may be driven by the clock relay (CRLY) signals at the convenience panel con
nector. Whenever the PMU is addressed to one of the clock pins, the clock
relay will automatically open.

Enabled clock signal pins are disconnected from their corresponding functional
test circuits. In addition to connecting the clock lines, this instruction
enables the sync signals. Sync signals are programmed by the logical "and'
condition of the enabled clock pins. The contents of F(l-4) is as follows:

SYNC1 =bl F(l)
SYNC2 = b2 . F(2)
SYNC3 = b3 • F(3)
SYNC4 = b4 . F(4)

The number of sync pulses and their periods are specified by:

Example:

SET CLOCK number; (clock burst counter)

Period= 0.7 microseconds + td, where td is the time delay
specified by the SET DELAY instruction.

Enable clock signals to pins 1 and 4.

ENABLE CLOCK 1001;

11 .6.3 Force Clock

General Form:

FORCE CLOCK;

Time Delay Generated:

- as specified by the SET DELAY instruction.

Description:

This instruction forces a single clock pulse to occur at each of the 4 SYNC
lines. The width of the SYNC pulse is equal to the value specified by the
SET DELAY instruction.

Example:

11-27 FORCE CLOCK;

11 .7 MISCELLANEOUS CONTROL STATEMENTS

This section describes the statements which control the timing as well as
initialization of the Sentry-400.

11.7.1 Force Reset

General Form:

FORCE RESET;

Time Delay Generated:

0

Description:

This instruction forces the test system into the reset state, thus clearing
all programmable test conditions.

Example:

Clear the test system.

FORCE RESET;

Note: This does not cause a 'software' reset. Hence, functional
tests succeeding a Force Reset must:be preceded with the
instructions: SET F (240:0); SET M '(240:0), etc. to clear
the software.

11 .7.2 Force Delay

Genera 1 Form:

FORCE DELAY;

Time Delay Generated:

- as specified by SET DELAY, DC statement.

Description:

This instruction forces a time delay to occur, prior to executing the next
delay dependent instruction.

11-28

Example:

Provide a delay after programming the VFl unit to provide settling
time for the change of programmed voltage prior to executing a
forced STROBE.

FORCE VFl 10.0;
FORCE DELAY;
FORCE STROBE;

11 .7.3 Force Wait

General Form:

FORCE WAIT;

Time Delay Generated:

- the time required for the tester to become not-busy.

Description:

This instruction forces the tester to wait until the tester status is not
busy before processing the next instruction.

Note: The tester goes busy after executing those instructions with a non
zero time de 1 ay.

Example:

Provide a delay until the tester is not busy after forcing the El
reference voltage.

FORCE El 2.5 VOLTS;
FORCE WAIT;

11 .8 EXTERNAL INTERFACE REGISTER READ/WRITE

General Form:

WRITE (EIR) expression;
READ (EIR) variable;

Time Delay Generated:

0

11-29

Description:

This fifteen bit register is used to display test results and control ex
ternal handlers. Bits 0-9 are available to the programmer to use in any
form, such as to define various pass categories. Bits 10-14 are defined
by system software. All bits are read/write. If the user wishes to use
some bits to read the status of external equipment, then a simple hardware
modification can be made to the register by disconnecting the bit storage
device from the register. Consult your field service representative if
this is desired.

11 .9 READING AND WRITING LONG AND SHORT REGISTERS

The Sentry-400 is capable of reading and writing both the long and short
registers of the tester. The formats for porgrarrming the long and short
registers are as follows:

WRITE (XXXXB) expression;
where: XXXX is any register number and

B is the octal indicator.

The format for reading information from a short or long register is:

READ (XXXXB) Y;

For more detailed coding information regarding the reading and writing of
~he long and short registers, see Appendix B.

Add 11.9

ENABLE ACCESS

Genera 1 form:

ENABLE ACCESS;

Time De 1 ay Generated:

30-75ms (one dtsc.access)

11-30

APPENDIX A
Table A. Character Coding (TRASCII)

029 029
Code Char. Special Code Char. Special

Character Character

00 SPACE 40 @

01 ! 41 A
02 II 42 B
03 # 43 c
04 $ 44 D
05 % 45 E
06 & 46 F
07 ' 47 G

10 (50 H
11) 51 I
12 * 52 J
13 + 53 K
l4' I 54 L
15 - 55 M
16 . 56 N
17 I 57 0

20 0 60 p
21 1 61 Q
22 2 62 R
23 3 63 s
24 4 64 T
25 5 65 u
26 6 66 v
27. 7 67 w

30 8 70 x
31 9 71 y
32 . 0-8-2 72 z .
33 ; 73 [<
34 ·< 12-0 74 ' --,
35 = 75 -) >
36 > 11-0 76 t I
37 ? 77 + -

A-1

APPENDIX B

READING AND WRITING OF LONG AND SHORT REGISTERS

B.l INTRODUCTION

The Sentry-400 possesses additional READ and WRITE capabilities which use
the system 1s long and short registers. (The long and short registers consist
of one bus each). The following is a description of the operation of the
long and short registers.

B.l .1 Long Registers

The long registers are interfaced to the memory interface unit, called the
Instruction Register, which sends information to and from the test station.
It has a bus which is used primarily for transmitting functional test data
to the test station. The S, F, D, M, C and R registers are the only registers
which are programmable with functional test data. There are other registers
that are essentially like the short register, but since the hardware resides
in the test station, they are interfaced to the long register data bus and
use rank address bits for identification.

B.l.2 Short Register

The short register is interfaced to the computer accumulator. The register
is used for controlling the digital to analog converter sub-systems and for
communicating the tester status, mode and interrupt information. Therefore,
the El, EO, EAl, EAO, etc., registers, which contain data for reference sup
plies are interfaced to the short register data bus.

B.2 ADDRESSING SHORT REGISTERS

Each register can be addressed by the three computer SPU (Select Peripheral
Unit) commands: READ, WRITE and SPECIAL. They are each discussed as follows:

READ

To examine the contents of a register, the register is first
addressed with an SPU READ command. The contents of the register
are then read into the CPU accumulator.

B-1

WRITE

SPECIAL

To write a bit pattern into a register, the register is first
addressed with an SPU WRITE command. The command is followed
by the bit assignment for that register.

An SPU SPECIAL command is defined as an instruction which executes
some function, but no read or write data transfer is involved,
e.g., Increment IND Counter or Disconnect DPS.

Each register corrmand consists of an 8 digit octal code. The code in effect
identifies a specific register in a specific unit and informs this register
that it is about to either receive or transmit data. The data will be either
read out of the register, written into the register or the register will per
fonn a special function. The command format is shown below.

Consider an example of an SPU command so that its mode and function within
the system can be understood. The following table shows the MODE register
SPU READ conmand and its octal and binary equivalents:

Bit Location: 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 ;a 1 6 5 4 3 2 l 0
!Octal Vai ue: -u 6 6 0 0 5 2 _Q

Binary Value: 0 0 0 l 1 0 1 1 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0
6=Read

OP CODE 4=Wri te TESTER UNIT
(SPU) 2=Special REGISTER ADDRESS

Qi::No-o_12_

Starting from the left, the high-order six binary bits (23-18) represent the
octal code 06. This octal code is the SPU op code for the READ, WRITE, or
SPECIAL command functions. The op code informs the system that it is about
to address a register in a unit with either READ, WRITE or SPECIAL infonnation.

The 3-bit value in bits 17--15 defines the command as READ, WRITE, or SPECIAL
transfer. Octal 6 = READ; 4 = WRITE; 2 = SPECIAL and 0 = No-op.

The six bits shown under tester register (13-8) specify one of 64 unique
registers. The remaining bits (7-0) are used to fonn·the unit address. The
tester is unit 1208.

B.2.1 SHORT REGISTER DESCRIPTIONS

The short regfsters implemented in the Sentry-400 will be described below.
The register number j_? the _oc~ii.J eq_uj val ent of bit~ 13-8 __ Q_f _1:b_g ___ SPU commgnd.
Table Bl summarizes the short registers, their addresses and special functions.

B-2

B.2.1.1 Mode Register (MR)

The mode register controls modal functions affecting the total test system
as shown below:

--· -· ·-

BIT FUNCTION Read Write
0 Reset Tester Short Reg. ,/

1 Reset Tester Long Reg. ,/

2 Monitor Mode I

3 Auto Mode I

4 Negative Logic Mode ,/ ,/

5 Latch C Mode ,/ ,/

6 Strobe Inhibit Mode ,/ I

7 Force Strobe I

8 Force Sync Pulse I

9 OMA Mode ,/

; 10 Manual Software Flag ,/ ,/

11 Function Test Suspended ,/ I

12 Trip Fail ,/ ,/

13 Functional Fail I I

14 Pass (Cleared by 11 or 12) I I

15 Spare I ,/

NOTE: A SPECI'AL command clears the mode register.

B-3

B.2.1 .2 Status Register (SR)

The status register contains interrupt information as shown below:

- -

BIT FUNCTION Read Write

0 Instruction Number Compare ./ ./
Interrupt Enable

1 Instruction Number _Compare Interrupt I ./

2 Delay Complete Int. Enable ./ ./

3 Delay Complete Int. ./ ./

4 Trap Interrupt Enable I I

5 Trap Interrupt I ./

6 Fail Interrupt Enable I ./

7 Fail Interrupt I ./

8 Trip Interrupt Enable I ./

9 DPS #1 Trip (~ must be on) I ./

10 DPS #2 Trip (8 must be on) I ./

11 DPS #3 Trip (8 must be on) ./ ./

12 Stop Interrupt Enable I I

13 Stop Interrupt I I

14 Interrupt in Process I ./

15 S__Q_are I ./

A SPECIAL command clears the status register.

B.2.1.3 Instruction Register (IR)

The instruction register is a buffer between B memory and the long registers
via the accumulator. It contains the following information:

-elT\51 FUNCTION Rea a Write
0 Pin Data .. Pin 1 ./ I

14 Pin 15 I I
15-18 Rank Address I

19-21 Register Address ;/

B-4
22-23 Long'Reg. Read/Write Control I

B.2.1.4 Memory Address Register (MAR)

The memory address register contains the memory address for the tester DMA
mode. The fourteen bits are all read and write. When the tester is in the
DMA mode, phase loop control automatically increments MAR.

B.2.1.5 Test Station Control Register

The test station control register controls four channel multiplexing as follows:

BITS FUNCTION Read Write

0-1 Station Address ./ I

2-5 Start Requests from Stations 1 to 4 ./

6-9 Manual Mode from Stations 1 to 4 ./

10-13 Reset Request from Stations l to 4 ./

B.2.1.6 Clock Burst Count Register

The clock burst count register consists of eight bits, all read/write, which
contain the count of the number of clock syncs generated per function test.

B.2.1.7 Time Delay Register

The t~me delay register consists of fourteen bits, all read/write, representing
the value of a functional or DC time delay to be generated by certain tester
instructions. For function tests, the least significant bit represents 0.35
microseconds and full scale is 5.734 milliseconds. The phase loop counter
triggers the time delay counter when a SET F instruction is executed. For DC
tests, the least significant bit represents 0.35 milliseconds and the full
scale value is 5.734 seconds. An SPU SPECIAL command triggers the DC time delay.

B.2.1.8 Instruction Number Compare Register

The instruction number compare register consists of sixteen bits, all read/write,
representing the test instruction number at which a pause or external sync pulse
occurs.

B.2.1.9 Instruction Number Display Register

The instruction number display register i.s a sixteen bit register, all sixteen
bits read/write, representing the test instruction being executed. An SPU
SPECIAL command increments the contents of the register by one.

B-5

B.2.1.10 Digitally Programmable Power Supply Registers DPSl, DPS2 and DPS3

Registers DPSl, DPS2 and DPS3 contain the range, polarity and magnitude of
the DPS voltage being forced or the voltage trip point.

BIT(S) FUNCTION Read Write

0-9 Voltage Magnitude ,/ ,/

LSB = 0.01 volt in low range

10 Polarity O = Pos ,/ ,/

1 = Neg
11 Range 0 = low ,/ ,/

1 = hi.gh

An SPU SPECIAL command disconnects the corresponding supply.

B.2.1.11 DPS Trip Registers - DPTl, DPT2 and DPT3

Registers DPTl, DPT2 and DPT3 contain the current trip point or the current
being forced and the trip greater than or less than control plus the DPS
forcing mode control.

BIT(S) FUNCTION Read Write

0-9 Current Magnitude ,/ ,/

LSB = O.lmA in low range

10 Polarity 0 = low ,/ ,/

1 = high
11 Range O = low ,/ I 1 = high
13 GT or LT:l ~ GT I I

0 = LT
14 Voltage/current O = voltage force I ,/

1 = current force

B-6

B.2.1.12 Reference Voltage Supply Registers SO, Sl, EO, El, EAO, EAl,
EBO, EBl, ECO, ECl

The reference voltage supply registers contain the range, polarity and magni
tude of the reference voltage supply.

BIT(S) FUNCTION Read Write

0-9 Voltage Magnitude ,/ ,/

LSB = 0.01 volt in low range
LSB = 0.04 volt in high range

10 Polarity 0 = Pos ,/ ,/
1 = Neg

11 Range O = low ,/ ,/
1 = high

B.3 LONG REGISTER DESCRIPTION

The registers which are associated with the long register are divided into
two groups. The first group consists of the D, M, S, R, F and C registers.
The second group consists of Pin Address,Socket ID, Statement Number Display,
Clock and Strobe, Precision Power Source, Precision Sense Level, and External
Interface registers.

B.3.1 THE D, M, S, R, F AND C REGISTERS

The six registers of the first group are discussed below.

B.3.1.l D Register

The D register is termed the Input/Output register. If the D register is
programmed as a 1, the associated pin is defined as an input pin. Conse
quently, the relays are then energized so as to connect the output of the
driver to the pin. If the D register is programmed 0, the associated pin
is defined as an output pin; as a result, the relays are configured to
disconnect the driver.

B.3.1.2 M Register

The M register is the "care/don't care" or "mask" register. The output of
the M register is applied as an input to the detector. If the programmer is
interested (care) in knowing the output level of a pin, the M register is
programmed as a 1. The care or 1 condition enables the detector to make the
comparison between the actual output and the expected output. If the pro
grammer is not interested (don't care) in the output level of a pin, the M
register is programmed as a 11don 1 t care", "mask", or 11 011

• The "don't care"
B-7

condition 1 nhi bi ts the. output of the detector. Logic circuitry at the output
of the detector will provide a 0 level to the C register, and the function
test output will indicate a pass. An input pin, or an output pin with an un
defined state, would normally be programmed as "don't care" to prevent false
failure indications on that pin.

B.3.1.3 S Register

The select reference register selects which set of reference supplies are to
be used by the functional test driver for each tester pin. A binary O selects
the EO/El reference supplies, while a binary 1 selects the EAO/EAl reference
supplies.

B.3.1.4 R Register

The utility relay register controls the utility relay~ one relay per tester
pin. A binary l indicates a closed relay and a binary 0 indicates an open
relay. The utility relays can be used for such functions as connecting a
load resistor for an output pin to a programmable power supply.

B.3.1.5 F Register

The F register contains the logic patterns l or 0 ·to be applied to those
pins which are defined as input ~ins by the D register. If the F register
is programmed as a high level (l}, the F register will cause the high output
of the driver to be applied to the associated pin. If the F register is
programmed with a low level (0), the low output of the driver will be applied
to the pin. The F register also contai.ns the expected logical output of those
pins which are d~fined as output pins.

B.3.1.6 C Register

The C register stores the go/no-go results of a comparison between the actual
output of a device and the expected output. A binary 1 represents a com
parison failure and a binary 0 represents a pass condition. If the signal is
high (fail), the output of the register is displayed at the test console. If
the signal is low (pass), no signal will be displayed.

B.3.2 FORMAT UF FUNCTIONAL TEST WORD

The primary difference between the long and short registers is that the
short registers consist of fixed btt test words. The long registers are
variable length words, with the same format as those registers which are
associated with the short register. The format of a 24-bit function test
word is discussed below and it is illustrated in the accompanying Figure Bl.
The fonnat for all function test registers is the same, except that the
address for each register is different.

B-8

···; i I

" I J o I
I

24 Bit Functional Test Word

23 22 ~, . .20 19 18 17 16 15 14 13 12 11 l 0 9 8 . 7 6 5 4 3 2 l 01
Control Register Rank Pin Data Field

ddress Address

Rank Address

4 Bits = l to 16 Ranks
Maximum Register Length = 16 x 15 = 240 Bits

·Reqi ster Address

Bits:

0 0
0 1
0 1
1 0
1 0
1 1
l 1

1
0
1
()

1
0
l

PE
D DEFINE I/0 PINS
M MASK (CARE/DON'T CARE)
F FUNCTIONAL PATTERN
S SELECT ALTERNATE REFERENCE
C COMPARE (FAIL PATTERN)
R UTILITY RELAY
SPECIAL TEST STATION REGISTERS

Cont-~ol ,-,------··· -·--· ····-----------

0 1
l 0
l 1

Register Load Times
1.75 {1 + N) microseconds
where: N = Number of Ranks Changing

Figure B.3.2-1. Test Word Function Format

B-9

Starting from the right, the 0 bit represents pin 1, the 1 bit represents
pin 2, etc., up to bit 14 which represents pin 15.

Rank Address
Bits 15 through 18 represent the rank to which the first 15 bits have been
assigned. The ranks are determined by the normal 8-4-2-1 binary code minus one.
0000 inserted in bits 15 through 18 represent rank l; 1111 represent rank
16. In this manner, 16 ranks of 15 pins can be programmed, thus providing a
capacity of 240 pins.

Register Address
Bits 19, 20 and 21 determine the register to which the rank of 15 bits is to
be sent.

Control
Bits 22 and 23 control the read/write function. Assume the device under test
is a 15-pin device; all 15 pins will be programmed on one line and will be
assigned to rank 1. The correct address code is inserted and bits 22 and 23
are programmed as 01 (write and execute), i.e., there: are no more pins to
Arogram. If the device is a 45-pin device, the first 15 pins are programmed
as described above, except for bits 22 and 23 which are programmed as 00
{write and hold), i.e., there are more pins to program. The second group of
15 pins is assigned to rank 2 and, again, bits 22 and 23 are programmed as 00,
i.e., there are more pins to program. The third group of 15 pins is assigned
to rank 3 and bits 22 and 23 are programmed as 01 (write and execute), i.e.,
there are no more pins to program-execute the command. The F and S registers
are MASTER/SLAVE so that all bits execute together~

. ' .

8.3.3 SPECIAL TEST STATION REGISTERS
The seven registers of the second group are discussed below.

B.3.3.l Pin Address Register (Rank Address= 0)

The pin address register addresses the precision measuring unit to one of the
pins of the device-under-test or to an internal node.
The reset state of this register is 3778, the calibration node.

BIT (s) FUNCTION Read Write

0-3 Pin Number 1-15 ,/

4-6 Rank Number 1-8 ,/
(or Rank 9-16)

7 Internal Node Address I

8 Connect Voltage Conditioner ,/
(Enable Relay FACTOR Instruction)

B-10

B.3.3.2 Socket ID (Rank address= 1)

The socket ID register reads a hard wired address on the load board so that
a FACTOR program can compare the load board ID with the program ID.

The register is 12 bits, read only.

B.3.3.3 Statement Number.Display Register (Rank address= 2)

The statement number display register contains the statement number to be
displayed on the test station control panel. This register is interfaced to
the IND register with software in TOPSY. Whenever the test sequence pauses,
the software updates SND.

The register is 15 bits - both read and write.

B.3.3.4 Clock and Strobe Register (Rank address = 3)

The clock and strobe register is actually two registers under one address.
The first part, clock address, is bits 0-3. The clock address bits are ANDed
with the first four bits of the F register to generate clock sync signals,
(see Enable Clock Description, 11.6.2}. The second part, Enable Strobe, is
bits 4-7, (see the Enable Strobe Description, 11.4.12). All eight bits are
read/write.

This register contains the magnitude, polarity and range information of the
PMU forcing value. It also contains the voltage or current force mode bit.

~

BIT (S)
.,.- .. -·· Read Write FUN CTI.ON

0-9 Magnitude ,/ ·1

LSB Range Full Scale

1mV 1 1 .023V
lOmV 2 10.23V
40mV 3 40.92V
lnA 0 1 .023µA ·
lOOnA 1 102.3µA
lOµA 2 l0.23mA
lOOµA 3 102.3mA

10 Polarity 0 = POS ,/ ,/

1 = NEG
11-12 Forcing Range 00 = Range O ,/ ,/

01 = Range l
10 = Range 2
11 = Range 3

13 VF/IF 1 = Voltage Force ,/ ,/

O = Current Force
14 Execute ,/ ,/

..

B-11

B.3.3.6 Precision Sense Level Register (Rank address = 5)

This register serves several functions which are to contain (1) the measuring
range, {2) the PMU voltage clamp levels and (3) the results of the analog to
digital (A/D) conversion. Some bits (0-10) serve a dual purpose, (a) as read
only and (b) as write only. .

-- ·-
_...,,. - ~ --· .--cc-

BIT(S)
----- -

FUNCTION Read Write

(a) 0-9 A/D Conversion Magnitude I
10 A/D Conversion Polarity I

(b) 0-5 Clamp Magnitude I

6-7 Spares I

8 Positive Clamp On ./

9 Negative Cl amp On · I

10 Clamp Range l = 40 volt I
O = 10 volt

12-11 Measuring Range 00 = Range 0 I I
01 = Range l
10 = Range 2
11 = Range 3

13 Vm/Im l = Voltage Measure ,/
O = Current Mea~ure

14 Start A/D Conversion ,/
- -

B.3.3.7 External Interface Register (Rank address= 6)

This fifteen bit register is used to display test results and control external
handlers. Bits 0-9 are available to the programmer to use in any form, such
as to define various pass categories. Bits 10-14 are defined by system soft
ware. All bits are read/write. If the user wishes to use some bits to read
the status of external equipment, then a simple hardware modification can be
made to the register by disconne:cting the bit storage device from the register.
Consult your field service representative if this is desired.

BIT (.S) FUNCTION Read Write
- --- -----~ -- -- --

0-9 Defined by User
Di_splayed on Station Control Panel ,/ ,/

10 D. C . Pa fl Lamp I ,/

11 O.C. Pass Lamp I I
12 Functional Fatl Lamp I ,/

13 Functional Pass Lamp ,/ I
14 End-of ... Test I ,/

B-12 ~ ,"J,]. f

B.4 FORMATTING OF FACTOR WRITE AND READ STATEMENTS

The fonnat for programming the short or long registers is:

WRITE (XXXXB) expression;
where: XXXX is any register number, and

B is the octal indicator

Reading information from a short or long register is:

READ (XXXXB) Z;

The following tables provide the necessary information for reading from or
writing to a SPECIFIC register for a SPECIFIC function on the long and short
registers.

B-13

Table B.4-1. Short Register Reading and Writing Codes

--

A=l-= SPECIAL.
A=2=' WRITE
A=3=, READ

... --- ··-·

Reg.
SPECIAL Function No. Register x x x x

0 No-op
1 MODE A 0 0 2 Clear Mode Reg
2 STATUS A 0 0 4 Clear Status Reg
3 Instruction A 0 0 6
4 Memory Address A O l O
5 TSC A 0 1 2

10 Clock Burst Count A 0 2 0
11 Time Delay A O 2 2 Start D.C. Delay
14 Instruction Number Display A 0 3 O Increment Count

Counter
15 Instruction Number Compare A 0 3 2

21 DPSl A 0 4 2 Disconnect DPSl
22 DPS2 A 0 4 4 Disconnect DPS2
23 DPT3 A 0 4 6
24 DPS3 A 0 5 0 Disconnect DPS3
25 DPT2 A 0 5 2
26 DPTl A O 5 4

-32 El A 0 6 4
33 EO A 0 6 6
34 Sl A 0 7 0
35 so A 0 7 2
36 EAl A 0 7 4
37 EAO A 0 7 6

42 EBl A 1 0 4
43 EBO A 1 0 6 :

44 ECl A 1 1 0
45 ECO A 1 1 2

j

B-14

Table B.4-2. Long Register Reading and Writing Codes

Write Read
Register
(Pins)

Register No. x x x x x x x x

D 1-5 020 0 2 2 0 0 4 2 0
D 16-30 021 0 2 2 1 0 4 2 1
D 31-45 022 0 2 2 2 0 4 2 2
D 46 ... 60 023 0 2 2 3 0 4 2 3
D 61-75 024 0 2 2 4 0 4 2 4

I D 76-90 025 0 2 2 5 0 4 2 5
D 91 .. 105 026 0. 2 2 6 0 4 2 6
D 106-120 027 0 2 2 7 0 4 2 7
D 226-240 037 0 2 3 7 0 4 3 7

M 1-15 040 0 2 4 0 0 4 4 0
M 16-30 041 0 2 4 1 0 4 4 1
M 31, -45 042 0 2 4 2 0 4 4 2
M 46-60 043 0 2 4 3 0 4 4 3
M s1 ... 75 044 0 2 4 4 0·4 4 4
M 76-90 045 0 2 4 5 0 4 4 5
M 91-105 046 0 2 4 6 0 4 4 6
M 106-120 047 0 2 4 7 0 4 4 7
M 226-240 057 0 2 5 7 0 4 5 7

F 1-15 060 0 2 6 0 0 4 6 0
F 16-30 061 0 2 6 1 0 4 6 1
F 31-45 062 0 2 6 2 0 4 6 2
f 46-60 063 0 2 6 3 0 4 6 3
F 61-75 064 0 2 6 4 0 4 6 4
F 76-90 065 0 2 6 5 0 4 6 5
F 91-105 066 0 2 6 6 0 4 6 6
F 106-120 067 0 2 6 7 0 4 6 7
F 226-240 077 0 2 7 7 0 4 7 7

s 1-15 100 0 3 0 0 0 5 0 0
s 16-30 101 0 3 0 l 0 5 0 l

. s 31-45 102 0 3 0 2 0 5 0 2 s 46-60 103 0 3 0 3 0 5 0 3
s 61-75 104 0 3 0 4 0 5 0 4 s 76-90 105 0 3 0 5 0 5 0 5
s 91-105 106 0 3 0 6 0 5 0 6
s 106-120 107 0 3 0 7 0 5 0 7 s 226-240 117 0 3 1 7 0 5 l 7

B-15

Table B.4-2. Long Register Reading and Writing Codes (Con'd)

Write Read
Regtster Register No. x x x x x x x x
(Pins)

c 1-15 120 0 3 2 0 0 5 2 0
c 16 .. 30 , 21 0 3 2 1 0 5 2 1
c 31-45 122 0 3 2 2 0 5 2 2
c 46-60 123 0 3 2 3 0 5 2 3
c 61-75 124 0 3 2 4 0 5 2 4
c 76 .. 90 125 0 3 2 5 0 5 2 5
c 91-105 126 0 3 2 6 0 5 2 6
c 106-120 127 0 3 2 7 0 5 2 7
c 226-240 137 0 3 3 7 0 ·5 3 7

R 1-15 140 0 3 4 0 0 5 4 0
R 16-30 141 0 3 4 1 0 5 4 1
R 31-45 142 0 3 4 2 0 5 4 2
R 46-60 143 0 3 4 3 0 5 4 3
R 61-75 144. 0 3 4 4 0 5 4 4
R 76-90 145 0 3 4 5 0 5 4 5
R 91-105 146 0 3 4 6 0 5 4 6
R 106-120 147 0 3 4 7 0 5 4 7
R 226-240 157 0 3 5 7 0 5 5 7

Pin Address 160 0 3 6 0 0 5 6 0
Socket ID 161 0 3 6 1 0 5 6 1
Statement Number Display 162 0 3 6 2 0 5 6 2

Clock and Strobe I 163 0 3 6 3 0 5 6 3
Precision Power Source 164 0 3 6 4 0 5 6 4
Precision Sense Level 165 0 3 6 5 0 5 6 5
External Interface Register 166 0 3 6 6 0 5 6 6

•

B-16

..-
I

u

APPENDIX C
VOLTAGE AND CURRENT RANGE DEFINITIONS

~---.-.---· ·r- -····· ·- ··--~-~-~-" .,. ____ ... _,,,..,...... ~ .. -
. i

MODULE I . STATEMENT i

-·------..-.--~ ~ RANGE Q.

PMU Force Voltage Oto 1.023v/1 mv 0 to ~10.23V/10mV to +40.92V/40mV
PMU Set PMU ForceV 0 to 1.023v/ 1 mv o to ~l0.23V/10mV to +40.92V/40mV

..

Pftl.I Force Current Oto ~l.023µA/lnA 0 to :_.1023mA/ .1 ~A O to + 1O.23mA/l OuA to + 102. 3mA/. lmA
PMU Set PMU Forcer o·to +l.023 A/lnA Oto +.1023mA/lµA o to ~10.23mA/lOJJA to +102.3mA/.lmA
PMU Set PMU Sense Voltage O to ~1.023V/lmV o to +l0.23V/10mV to +40.92V/40mV

..

PHU Set PMU Sense Current o to +l.023µA/lnA 0 to +.1023mA.lµA 0 to +10.23mA/lOµA to +102.3mA/.lmA

DPS Force VF 0 to ~10.23V/10mV to +40.92V/40mV
DPS Force IF o to ~102.3mA/.lmA to ±l.023A/lmA
DPS Enable Trip o to +l02.3mA/.lmA to +l.023A/lmA
DPS Enable TripV 0 to +10.23V/1ClnV to +40.92V/40mV

RVS Set (SO/Sl) 0 to +10.23V/10mV to +30.00V/40mV
RVS Force E 0 to +10.23V/10mV to +30.00V/40mV

l

Software Enable (ILO/IHI) Oto +l.023µA/lnA 0 to +.1023mA/.1 A 0 to +10.23mA/lOµA to + 102. 3mA/. lmA
. Software Enable {VLO/VHI} 0 to +10.23V/10mV to +40.92V/40mV

·-· _ _,__ ... _,...-.__;:ow"';~-----~----~-------------------"6--------+---------l~-----__;

APPENDIX D
TIME DELAY DEPENDENT STATEMENT$

TIME DELAY DEPENDENT STATEMENT - TIME DELAYS GENERATED (msec.)

CPMU PIN
ENABLE TRIP
ENABLE TRIPV
FORCE CLOCK
FORCE CURRENT :
FORCE PMU
FORCE STROBE
FORCE VOLTAGE
MEASURE VALUE
SET DELAY
SET D
SET F
SET M
SET R

SET S
SET PMU
XCON
XPMU PIN
FORCE WAIT

·-···-· ···--·-

SET (Sl/S~)

SET PMU
SET CLAMP
SET (D/R)
ENABLE TRIP
ENABLE TRIPV
ENABLE RELAY
FORCE (El/E~/ •••)
FORCE VF
FORCE IF
FORCE (VOLTAGE/CURRENT)
FORCE DELAY

·---·-------··-------

0.54
1. 75
1.75
0.54
1.75
1.75
0.54
0.54
1. 75
1. 75
1.75/0.54*
**

*l.75 msec with Ranqe Chanqe-~0.54 msec with no range chan9e or DC time delay,
whichever is lonqer.

**DC time delay.

D-1

APPENDIX E
READ/WRITE MAGNETIC TAPE STATEMENTS

E.1 DEFINITION

The FACTOR READ {MTR) and WRITE {MTW) statements are defined as follows:

RE-AO· (MTR) "name" Vl, V2, V3, V4;

WRITE (MTW) "name" Vl, V2, V3, V4;

The tenns Vl through V4 re·present array identifiers which have been declared
prior to executing the READ/WRITE statements. There may be one to four arrays
per statement. The tenn "name", enclosed by double quotations specifies the
file name of the data to be written on magnetic tape.

Execution of the WRITE (MTW) statement causes the Array Data Segment(s) to
be written on magnetic tape at the tape's current position •. Figure E.l gives
the format specification of an Array Data Segment.

An EOF (End of File) tape mark is written under the f~llowing conditions:

• When End of Test occurs and the tester is in automatic mode, and
at least one WRITE (MTW) statement has been executed.

• At the completion of each WRITE (MTW) statement when the tester
is in manual mode.

• When the tester pauses as the result of a TOPSY "PAUSE" command
or a FACTOR "PAUSE" and at least one WRITE (MTW) statement has been
executed.

Only one magnetic tape unit may be used with the SENTRY-400 even though the
system may have more than one test station. Any of the four stations which
execute programs containing READ (MTR) and/or WRITE (MTW) statements will have
access to the magnetic tape unit. To avoid having read/write conflicts which
could destroy valid data, only one station of a multiple station system should
execute programs which utilize magnetic tape.

E-1

Physical Record
Number

1

2

2

E-2

FIGURE E.1-1

ARRAY DATA SEGMENT

Word
Number Contents

·-··~---·---·

1 · { 8 character TRASCII code word

2 for the file "name".
3 Data record length = N (integer)
4 0

5 0

6 0

,.
1 · Words l to N are the contents of
2 one variable length FACTOR array.
. 1 (FST-1 fl oa ting point}
. ~

.
The maximum number of words per
each record is limited to 512,

N 'ii. (but must not be fewer .than 7).

E.2 READ ERRORS

E.2.1 Array Element Count Error

If the word count of the tape data exceeds the number of elements in the
specified array(s) or if the declared array has less than seven (7) elements,
the system issues terminal error 40. If the array size is less than 7 ele
ments, the tape is not advanced. When the tape data word count exceeds the
array size, the tape·will have advanced to the end of the excessive tape
segment prior to accepting the next station "START".

E.2.2 Data Transfer Error

If a data transfer error is detected, terminal error 31 is issued and the
tape is positioned forward to t'he beginning of the next file. The TOPSY
program statement counter is reset such that when station "START" is de
presseQ, the loaded program will begin execution at statement one (1).

E.2.3 End of Tape Error

If the £.nd Qf Iape (EOT) mark is encountered before the specified segment is
found, the tape is rewound to the Beginning Of Iape (BOT) mark and terminal
error 36 is issued. The TOPSY program statement counter is reset such that
when station 11START 11 is depressed, the loaded program will begin execution
at statement one (1).

E.2.4 Memory Protect

If the memory protect switch located on the tape controller is enabled, the
system issues terminal error 37 and the TOPSY program counter is reset such
that when station 11 START 11 is depressed, the loaded program will begin exe
cution at statement one (1).

E.3 WRITE ERRORS

E.3.l Data Transfer Error

If a data transfer error is detected, terminal error 33 is issued and the
tape is positioned backwards to the start of the current file. The TOPSY
program counter is reset so that when station "START" is depressed, the
loaded program will begin execution at statement one (1).

E.3.2 End of Tape Error

If the End OF Tape (EOT) mark is encountered prior to completion of a WRITE
operation, the tape is rewound and the system issues terminal error 35. The
unit is unloaded so that it cannot be restarted by pushing station 11START 11

•

This avoids accidental writing over good data at the beginning of the tape.
E-3

E.3.3 Array_Element Count Error

If an array of size less than seven (7) appears in the WRITE statement, ter
minal error 40 1s issued, see below (E.3.4).

E.3.4 Unrecoverable Errors

Any errors other than those described above are considered to be unrecoverable
and the system issues terminal error 40. The TOPSY program statement counter
is reset.

E.4 STANDARD MAG TAPE OPERATION IN TOPSY

E.4.1 Before executing a program employing mag tape read or write statements,
the operator must set the tape at the BOT marker of the tape file the program
is to read or write.

E.4.2 The instructions relating to the periodic maintenance of the mag tape
should be attended to if error free operation is desired.

E.4.3 Before executing the TOPSY program, the REMOTE switch on the mag tape
unit must be enabled.

E.4.4 After steps E.4.1 through E.4.3 it is only necessary to execute the
TOPSY program from the tester station. All mag tape controls are performed
by TOPSY.

E.5 UNUSUAL MAG TAPE OPERATION IN TOPSY

E.5.1 Catastrophic Errors

If a 'catastrophic' error occurs during mag tape operation and the user
·desires to make some attempts to recover then the following course of action
is recommended as a des pa ration procedure.

E.5.1.1 Write Operation

Go back to DOPSY manually and execute two tape mark writes, viz:

II MTAP TMARK (twice),

f o 11 owed by :

II MTAP SKIP BACK 1 RECS

E-4

E.5.1.2 Read Operation

Go back to DOPSY manually. Rewind the tape via the tape transport REWIND
switch and restart TOPSY.

E.5.1.3 Warning

The user should be aware that these recov~ry actions bypass the normal
TOPSV-DOPSY return and, as consequence, do not update the present state of
TOPSY. When TOPSY is reentered, it is initialized to the state prior to
the last return to DOPSY.

E-5

APPENDIX F

SUMMARY OF TOPSY ERROR MESSAGES

Error Number

1
2
3

5

21
22
23
24
25
26
31
33
35
36
37
40

42
50
51

52
53
54
55
56
57
58
59

Meaning

Program Not Loaded
Station Disabled {Power Off)
Magnitude or Polarity Error in Pin Number,

Clock Count, or Time Delay
Magnitude Error in Voltage or Current {Exceeds

Hardware Limitations)
Current Value Not Within Set Limits
Voltage Value Not Within Set Limits
Improper Pin Address
Voltage Value Exceeds 30 Volts
Wrong Socket,Address on Load Board
Undefined OP Code
READ {File Skip Forward Executed)
WRITE {File Skip Backward Executed)
EOT Tape on Write {Catastrophic)
EOT Tape on Read
Memory Protect on Tape Read
Data Count Error Less Than 7 or Greater Than

Assigned Array
Unrecoverable Error
Improper Vector Declaration
The-Number of Formal and Actual Parameters

Do Not Agree
Subscript Violation
Empty Stack
Program Too Big
EOF on Test Program
Illegal OP Code
Improper Vector Initialization
1/0 Error
Improper FOR Loop Constants

On Terminal Error 31, the tape is moved to the next tape file.
On Terminal Error 33, the tape is moved back to the start of the last file.
When START is pressed, the program will continue execution from these tape
1 ocati ons.

F-1

CALIBRATION VOLTAGE
RESISTANCE RANGE

lOOn
i:O~Jo

RANGE 2
lOV FS

lKn vi?. RANGE 2
0 0 lOV FS

lOOKn
,o/ t RANGE 2

lOV FS

lOMn o-i..1<> RANGE 2
' lOV FS

400n oS lo RANGE 3
~ 40V FS

4Ka ,oi ?J RANGE 3
40V FS

400Kn
, 1 I~

RANGE 3
40V FS

40Mn
0 i?o RANGE 3

40V FS

lOOn oJ..-l.o RANGE l
• lV FS

lOn -.o?Jo RANGE 1
lV FS

Fs· = Full Scale

APPENDIX G
CALIBRATION RESISTOR TABLE

CURRENT
RANGE

RANGE·3
lOOma FS

RANGE 2
lOma FS

RANGE 1
O. lma FS

RANGE 0
lita FS.

RANGE 3
lOOma FS

RANGE 2
lOma FS

RANGE l
O. lma FS

RANGE 0
1~ FS

RANGE 2
lOma FS

RANGE 3
100ma FS

G-1

NODE NUMBER

DECIMAL OCTAL

128 200
129 201
130 202
131 203
132 204
133 205
134 206
135 207
136 210
137 211
140 214
141 215
142 216
143 217
144 220
145 221
ti;"/ ,,,
;J.!'< -.C??

H-1

MEASURED PARAMETER

NAME DESCRIPTION

Sl COMPARATOR Sl REF. VOLTAGE
so COMPARATOR SO REF. VOLTAGE
El FORCING LEVEL El REF. VOLTAGE
EO FORCING LEVEL EO REF. VOLTAGE
EAl FORCING LEVEL EAl REF. VOLTAGE
EAO FORCING LEVEL EAO REF. VOLTAGE
EBl FORCING LEVEL EBl REF. VOLTAGE
EBO FORCING LEVEL EBO REF. VOLTAGE
ECl FORCING LEVEL ECl REF. VOLTAGE
ECO FORCING LEVEL ECO REF. VOLTAGE
VFl VOLTAGE FORCING UNIT 1 OUTPUT VOLTAGE
VF2 VOLTAGE FORCING UNIT 2 OUTPUT VOLTAGE
VF3 VOLTAGE FORCING UNIT 3 OUTPUT VOLTAGE
TRI Pl VFl LOAD CURRENT
TRIP2 VF2 LOAD CURRENT
TRIP3

tltU>I'
I VF3 LOAD CURRENT

1
£.

~t) .,, IJO 1--0lltO /t rJO

,,,,, -,MtJ e"4 ,,_, ti IL A rn»I IJDOE.. .¥..

APPENDIX H
INTERNAL NODES

APPENDIX I

FACTOR SPECIFICATIONS

1) Maximum Number of Tests ~,..k· W"'·I ~ lo. belt J..
' •-" C..S!Jl' ~110 tests. ,,.s·--. .-, ... , •

(IND counter allows up to 177777B tests).

2) Maximum Number of Blocks per Program
Block O : used by the system
7 Blocks: Blocks 1-7 for users

3) Maximum Number of Variables per Block
Block O 119 variables
Blocks 1-7: 127 variables per block

1-1

