
FACTOR PROGRAMMING

LANGUAGE

Reference Manual

S::AIRCHILC

SYSTEMS TECHNOLOGY
A DIV'5tON Of fAIACHILD- CAMERA AND INSTRUMENT CORPORATION

SENTRY

SENTRY
FACTOR PROGRAMMING LANGUAGE

Reference Manual

© Fairchild Camera and Instrument Corporation 1977
1725 Technology Drive, San Jose, California 95110

Part Number: 67095738
Date Issued: March 1977

PREFACE

This manual discusses the Fairchild Sentry II and Sentry VII Programming Language
called FACTOR (Fairchild Algorithmic Compiler-Tester ORiented). FACTOR is a
procedural programming language that consist of two basic types of statements:

(1) Arithmetic and logical control

(2) Test control statements which set up and execute functional/parametric
tests on electronic elements or devices.

This manual is intended for a person with a general knowledge of electronics and a
working knowledge of programming concepts. It is suggested that the user become
familiar with the glossary of terms before reading this manual. Sections 1 and 2
discuss elements and expressions as well as general format of the FACTOR
language. Sections 3 through 5 discuss control statements, blocks and subprogram
concepts and statements. Section 6 discusses FACTOR test statements and their
format. Sections 7 through 9 discuss FACTOR 1/0 and operating procedures. A
glossary of terms and acronyms, appendices and a a comprehensive index are also
included for user convenience.

The following manuals are suggested as supplementary reading and/or reference:

Description

Sentry VII User Reference Manual
Reference Manual

Sequence Processor (SPM)
Reference Manual

Pattern Processor (PPM) User
and Programming Reference Manual

Sentry Utility Reference Manual
FST-2 Computer Manual

Publication Number

67095733

67095589

67095583

67095661
67095701

TABLE OF CONTENTS

Page

PREFACE

SECTION 1 ELEMENTS OF FACTOR

1.1 CHARACTER SET 1-1
1.2 FACTOR STATEMENTS 1-1
1.3 PROGRAM PREPARATION 1-1
1.3.1 Record Format 1-2
1.3.2 Cards 1-2
1.3.3 Disc 1-3
1.3.4 Video Keyboard Terminal 1-3
1.4 SYNTAX 1-3
1.4.1 Constant Parameters 1-3
1.4.2 Variable Parameters 1-4
1.4.3 Required Parameters 1-4
1.4.4 Optional Parameters 1-4
1.4.5 Syntax Characters 1-5

SECTION 2 EXPRESSIONS

2.1 NUMBERS 2-1
2.1.1 Integers 2-1
2.1.2 Decimal Fractionals 2-2
2.1.3 Exponentials 2-2
2.2 VARIABLES 2-2
2.2.1 System Global Variables 2-3
2.2.2 User Variable Identifiers 2-4
2.2.3 Scalar Values 2-5
2.2.4 Boolean Values 2-5
2.2.5 Array Values 2-6
2.3 FUNCTIONS 2-6
2.4 ARITHMETIC EXPRESSION EVALUATION 2-6
2.5 LOGICAL EXPRESSIONS 2-7
2.5.1 Logical Operators 2-7
2.5.2 Logical Expression Evaluation 2-8
2.6 BOOLEAN EXPRESSIONS 2-8
2.6.1 Relational Operators 2-8
2.6.2 Evaluation of Boolean Expressions 2-9
2.7 MIXED EXPRESSIONS 2-9

iii

TABLE OF CONTENTS (Continued)

SECTION 3 CONTROL STATEMENTS

3.1 PAUSE 3-1
3.2 GOTO 3-1
3.2.1 Indexed GOTO 3-2
3.3 IF 3-2
3.3.1 The Conditional ELSE 3-3
3.4 BEGIN 3-4
3.5 FOR 3-4

SECTION 4 SUBPROGRAMS AND BLOCK PROGRAM CONCEPTS

4.1 BLOCKS 4-1
4.1.1 Nesting Blocks 4-1
4.2 SUBPROGRAMS 4-2
4.2.1 SUBR 4-3
4.3 CALL 4-4
4.4 FUN CT 4-5
4.4.1 Function Call 4-5
4.5 EXEC 4-7
4.5.1 Writing the Assembly Language Program 4-8
4.5.2 Referencing Parameters 4-8
4.5.3 Accessing System Routines 4-9

SECTION 5 NOTATIONAL STATEMENTS AND COMPILER
DIRECTIVES

5.1 NOISE 5-1
5.2 REM 5-1
5.3 PAGE 5-2
5.4 LIST/NOLIST 5-2
5.5 INSERT 5-3

SECTION 6 TEST STATEMENTS FORMATS 6-1

6.1 PROGRAM INITIALIZATION 6-2
6.1.1 Set Page 6-2
6.2 ANALOG SUBSYSTEMS 6-3
6.2.1 Digital Power Supplies 6-3
6.2.2 Reference Voltage Supplies (RVS)

and Clock Selection 6-9
6.2.3 Precision Measurement Unit (PMU) 6-13
6.2.4 Analog System Time Delays 6-26
6.2.5 Miscellaneous Analog Subsystem 6-28
6.3 FUNCTIONAL TEST TIMING SUBSYSTEMS 6-30
6.3.1 Time Delay and Width Generators 6-30
6.3.2 Test Rate Generator 6-32
6.4 PIN CONTROL LOGIC - FORMATTING AND ·

FAIL RESPONSE 6-34

iv

TABLE OF CONTENTS (Continued)

6.4.1 Long Register Formatting 6-34
6.4.2 Input Pin Definition Registers 6-40
6.4.3 Output Mask Definition Registers 6-41
6.4.4 Output Compartor Strobes 6-42
6.4.5 Input Waveform Control 6-42
6.4.6 Input/Output Modes 6-46
6.4.7 Multiplexing Pin Channels 6-48
6.4.8 Chaining Local Memory Channels 6-49
6.5 LOCAL MEMORY TEST SEQUENCE LOGIC 6-50
6.5.1 Loading Local Memory 6-50
6.5.2 Initiating Local Memory Function Tests 6-54
6.5.3 Function Test Execution 6-57
6.5.4 Function Test Execution Options 6-61
6.5.5 Function Test Termination 6-64
6.6 MISCELLANEOUS TEST STATEMENTS 6-65
6.6.1 Branch on Fail 6-65
6.6.2 Clearing Branch on Fail Flags 6-65
6.6.3 Clearing Fail Indicators 6-66
6.6.4 Controlling Load Board Utility Relays 6-66
6.6.5 System Reset During Program Execution 6-66
6.6.6 Enable Access 6-67

SECTION 7 VARIABLE DECLARATION AND VALUE
ASSIGNMENT 7-1

7.1 DCL 7-1
7.1.1 Single Variable Declaration 7-1
7.1.2 Array Declaration 7-2
7.1.3 Literal Variable Capability 7-2
7.2 VARIABLE ASSIGNMENT STATEMENT 7-4

SECTION 8 READ/WRITE STATEMENTS 8-1

8.1 READ 8-1
8. 'l WRITE 8-2
8.2.1 Numeric Variables 8-3
8.2.2 Literal Variables 8-4
8.3 FACTOR DISC 1/0 8-5
8.3.1 ON DIF EOF, LABEL 8-5
8.3.2 RESET FDIF 8-5
8.3.3 Programming Conventions for use with

FACTOR Disc 1/0 8-5
8.4 Examples of Programs that READ and

WRITE to Disc 8-6

v

TABLE OF CONTENTS (Continued)

SECTION 9 FACTOR OPERATING PROCEDURES AND
ERROR MESSAGES

9.1
9.1.1
9.1.2
9. '2
9.3

GLOSSARY

PROGRAM INITIATION
Input
Output

INTERPRETER INTERFACING
ERROR MESSAGES

LIST OF APPENDICES

APPENDIX A - CHARACTER CODING (TRASCII)

APPENDIX B - READING & WRITING OF LONG & SHORT
REGISTERS

B.1
B.1.1
B.1.2
B.2
B.2.1
B.3
B.3.1
B.3.2
B.3.3
B.4

B.5

INTRODUCTION
Long Registers
Short Registers

ADDRESSING SHORT REGISTERS
Short Register Descriptions

LONG REGISTER DESCRIPTION
The D,M,S,R,F,RZ,ST,INVERT,TG and C Registers
Format of Functional Test Word
Special Test Station Registers

FORMATTING OF FACTOR WRITE AND READ
STATEMENTS

LONG REGISTER ASSIGNMENT IN ALTERNATE
BANK

APPENDIX C - DMA MODE STATEMENTS

APPENDIX D - TIME DELAY RELATED STATEMENTS

APPENDIX E - EXECUTION TERMINAL ERROR NUMBERS

APPENDIX F - CALIBRATION RESISTOR TABLE

APPENDIX G - INTERN AL NODE MEASUREMENT

APPENDIX H - STATEMENT LIST

H.1
H.2
H.3

vi

BASIC STATEMENT FORMS
INPUT/OUTPUT STATEMENT FORMS
TESTER STATEMENTS

9-1

9-1
9-1
9-1
9-2
9-3

Page

Glossary-1

A-1

B-1

B-1
B-1
B-1
B-1
B-3
B-8
B-8
B-11
B-12

B-24

B-30

C-1

D-1

E-1

F-1

G-1

H-1

H-1
H-3
H-4

H.4
H.5
H.6
H.7

TABLE OF CONTENTS (Continued)

ENABLE FORMS
FORCE FORMS
MISCELLANEOUS FORMS
LOCAL MEMORY MANAGEMENT

APPENDIX I- READ/WRITE MAGNETIC TAPE STATEMENTS

1.1
1.2
I.2.1
I.2.2
I.2.3
1.2.4
1.3
I.3.1
1.3.2
1.3.3
I.3.4
I.4
1.5
1.5.1

DEFINITION
READ ERRORS

Array Element Count Error
Data Transfer Error
End of Tape Error
Memory Protect

WRITE ERRORS
Data Transfer Error
End of Tape Error
Array Element Count Error
Unrecoverable Errors

STANDARD MAG TAPE OPERATION IN TOPSY
UNUSUAL MAG TAPE OPERATION IN TOPSY

Catastrophic Errors

APPENDIX J- FLOATING POINT PACKAGE

APPENDIX K - COMPILER GENERATED TESTER OP CODES DMA

APPENDIX L- VOLTAGE AND CURRENT RANGE DEFINITIONS

APPENDIX M - STATEMENT LIST, REGISTERS WRITTEN, CODE
TYPE, AND TIME DELAY

Figure 6-1
Figure 6-2
Figure 6-3
Figure 6-4
Figure 6-5
Figure 6-6
Figure 6-7
Figure 6-8
Figure 6-9
Figure 6-10
Figure 6-11

LIST OF FIGURES

Timing Generator Pulse Generation for TG12
Period and Pulse Response for Pulse Exceeding Period
Pin Relay Sequence
F-Data Inversion of RZ and NRZ Pins
RTO Waveform and Inverted RTO Waveform
XOR Waveform for a Binary 1
MUXMODE Example
Local Memory
Timing in Internal Sync MATCH Mode
External Sync Pulse Characteristics
Timing in External Sync Match Mode

H-6
H-7
H-7
H-8

1-1

1-1
1-2
1-2
1-2
1-2
1-3
1-3
1-3
I-3
1-3
1-3
1-3
1-4
1-4

J-1

K-1

L-1

M-1

6-31
6-32
6-39
6-43
6-44
6-45
6-48
6-55
6-61
6-62
6-64

vii

Table 2-1
Table 4-1
Table 6-1
Table 6-2

Table 6-3
Table 6-4
Table 6-5
Table 6-6
Table 6-7
Table 6-8
Table 6-9
Table 6-10
Table 9-1
Table B-1
Table B-2
Table B-3
Table B-4
Table B-5
Table B-6
Table B-7
Table B-8
Table B-9
Table B-10
Table B-11
Table B-12
Table B-13
Table B-14
Table B-15

Table B-16
Table B-17
Table B-18
Table B-19
Table B-20
Table B-21
Table B-22
Table B-23
Table B-24
Table B-25
Table B-26
Table B-27
Table B-28
Table C-1
Table D-1
Table D-2
Table E-1
Table F-1

viii

TABLE OF CONTENTS (Continued)

LIST OF TABLES

Precedence Values of Operators
System Routines and Memory Address Locations
Results of Set Page Integer Statement
Clock Option, Power Supply, and Set F and Set S

Statements
Comparator Pass/Fail Conditions
Voltage Statements
Timing Generator Range Scale and Resolution
Period Range, Scale and Resolution
Tester Surviving and Conditioning Pins
IOM3 Extended Pin List
Set Chain Surviving Pin List
Results of SET PAGE Integer Statement
Factor Error Messages
SPU Command Format
Mode Register
Status Register
Instruction Register
Test Station Control Register
Digital Programmable Power Supply Register
n p~ 'T'r>in "R nn'ieotnr>c<
................ ..._. .a..1..1.p -L"'-'·5.1...;;il\,.~J...:l

Reference Voltage Supply Registers
Test Word Function Format
Pin Address Register
Test Rate Register
PPSR/PMUF Register
Precision Sense Level Register
External Interface Register
Local Memory Test Start/Delayed Memory

Address Register (Address 1700)
Local Memory Address Register
DC Trip Limit Register
Chaining Register
Status and Mode Register A
Status and Mode Register B
Status and Mode Register C
Timing Generator Pulse Width Register
Timing Generator Pulse Delay Register
Power Pin Address Register
Timing Generator Delay/Width Vernier
Short Register Reading and Writing Codes
Long Register Reading & Writing Codes
Long Register Assignment In Alternate Bank
Statements Executed In DMA Mode
Time Delay Dependent Statements
Time Delay Generating Statements
Execution Terminal Error Numbers
Calibration Resistor Table

2-10
4-10
6-2

6-10
6-13
6-29
6-30
6-32
6-46
6-47
6-49
6-58
9-3
B-2
B-3
B-4
B-4
B-5
B-7
B-7
B-8
B-11
B-13
B-13
B-14
B-15
B-16

B-16
B-17
B-18
B-19
B-19
B-20
B-20
B-21
B-22
B-23
B-23
B-25
B-26
B-30
C-2
D-1
D-2
E-1
F-1

Table G-1
Table I-1
Table L-1
Table L-2

TABLE OF CONTENTS (Continued)

Internal Nodes Measurement
Array Data Segment
Normal Force and Measure Ranges
Force and Measure Ranges with 2V/2mV Option

G-1
I-2
L-1
L-2

ix

SECTION 1.0

ELEMENTS OF FACTOR

This section defines the basic elements used in the FACTOR programming
language, and the syntax information used to prepare programs for input to the
compiler.

1.1 CHARACTER SET

Letters
Digits
Special
Other

A through Z and $ #
O through 9
() * + -/ , • : ; = @ (] space f. & ,,,,, ,., ,.., F b ,p 0 ~
! % ? ~ !, EE- I".?' I!/ ,Jp I ;./I

h: c e'

The above characters are YJ!l.id for a FACTOR source program. The "~cial"
characters have meanings in FACTOR, ffie"O~' characters IJl\l~ p~ used only ma
FACTOR program ~EMA!ili statement. The JE~!liP£ of a see~ character
_9el2.~.Jl9s on the~.s>.JU~,~J in some ~· For example, the coloQ is used to define the
i11gyediately w;,gg~d,ing J,.9£Vtifier as a statement~~~ it Jll§.Q_~.J>~.-u~~in the

, binarv pin eattern definition in a fJ!ncti~nal ~.filll. The correct ~aning is
chosen by the comeqer from ~en1 wformation in the statement. The Q!eafimg
of _gll special characters is discussed in the text of this manual. Appendix ~
tabulates the internal code for the character set.

1.2 FACTOR STATEMENTS

A FACTOR statement is the basic functional entity in a FACTOR program. Except
-~ for the 2£ statement, ~tatements are t~minat~ by as~~

Example:

LABEL: A= A+ 1;

1.3 PROGRAM PREPARATION

A FACTOR program is a group of statements de§i~ed to do a specific ~ i.e.,
:tfill.a particular ~vice. The program is compiled or translated into as~ of object
~. which are interpreted by the ~ The result of this !ranslation is 'iliill'.;r
the .Qinary .te~t frogram, test plan, or data file. "TlleCompi~r i~t is called the
source version o the test plan.

1-1

A SII/SVII FACTOR program begins with a SET P4GE statement followed by the
main body of the program, and terminated with an EljD statement. A program is
executed in the~ written unless a sgeci~i_c statement ~the ~ of control.

1.3.1 Record Format

A !..ecor.Q is an 1trbitrlit:ry amount of data_read from~ writ!!;_n into an i.Qput/outrnY,.
device. A recru:d typically contairiS'from 1 to 80 characters, depending on the
input/output device type. For a VKT, a record is the amount of ~.!rom one
carriage return character lUl!il.,. thenext carriage return character. For a '1Trie
prmter, a record is one line,. Character position within the record is frequeiit'Jr
called a colu1u_p; !!!dependently of the the medrnm on which the record is written -
even if it is not punched CRflls. ~the fjfst '7tcolumns of a record are used for
FACTOR inptit' The nex!.!..columns are reserved'lor segµenc~ numbers. -

FACTOR provides .ir.ee field input. That is, there is ~implied .correspondence
between the ~ of the record and the end of the statement. Also, whf(rever Im.t
stace is legal, as man~ §paces as .iJesired can. be...JW.: Hence, a statemen'r may
s art in tne" middle o a record and continue for as many records as desired.
Conversely, ~than Q!llL_Statement can be placed in one recor_9. Statement
labels need 1!2t start in a fixed field such as column 1, and so on. The restrictions
are: J.U.lndividual terms, such as variable names, .. reserve .. d word. s, .and JlOise wo:eds
~ ,?e divided between two records, and the record !!!.~Y_Q~, terminated at~
pomt where a space is a lfgal character; (2) only the first 72 columns of the record
may be used for statemen s.i =+; _ _,,___ .

1.3.2 Cards

When the user prepares the card deck of source statements there are several
options. ~to 72 columns of the card may be used for QWL or l!lQ!'..e s.!!!_tements,
proyidjng a semicolon ~limit:; ep.~ statement. seauence char?Cters are placed tn

columns .Jl through ~ q_tberwise a portion of the statement is interpreted as a
seouence symbol. A FACTOR statement miy be started on ~c.fil:.9_ and be carried
over to the next, provided that individua words or tester mstructions are not
divided betweentwo cards. ~

Cards can be segeunced either alphabetically. numerically, or both. The normal
form of sequence numbers is a fixed alR_ha identifier in columns 73-75, followed by
numeric digits in the remaining columns through column 80. These (five) digits
ascend in sequence through the program by a convenient increment, one, ten, etc.
Sequence symbols are checked for progression. Gaps (e.g. sequencing by tens) in
the sequence may be left, so that program corrections and additions may be made
without changing every sequence number in the deck. If a sinirle deck contains
more than ~alpha identifier.. these i~Q,!lfl~J:~. !!lli§rbe cn§Sen- so that the
TRASCII (TRuncated ASCII) ascending fil?llating sequence is maintained, otherwise
a sequence ~r is produced.

When an error is detected, the compiler types the full current record and the
warning message "SEQUENCE ERROR".

1-2

Examples:

Legal Sequences Illegal Sequences

NUMERIC 1 3 3 10 20 99999999 4
COMBINED lLB 2LB 3LB
ALPHA A C D E F

1.3.3 Disc

Disc files may be used as a source program input to FACTOR. They mus,!_ be ~~
"string".
-~..-...

1.3.4 Video Keyboard Terminal

Source programs may be entered ill.rectly, .Yi~- the ~ In this ~~ of
operation the statements in each _ipput record are com@.~,£,.as they are entere~,:.

Two editing characters may be entered from the VKT keyboard. A character back
space is obtained by typing the "S.s>~ntr;,qi~' and "B" keys simultaneously. The number
of times this key combination is typed corresponds to the number of previously
entered characters which are to be ignored. A line delete is obtained by typing
"~)£Ql''. and ~simult.aneously. Thischaracter deletes the current line only. It ~s
necessary to type "car.r.1age.J.:!:,!!!.rn".~-:..~.fter the~ ~statement m
the program.

1.4 SYNTAX

Many FACTOR statements have numerous possible forms. Syntax notation provides
a convenient method of identifying all options precisely and succinctly. Special
syntactical characters are used to identify alternative forms of the statement.
These characters are not entered as part of the statement; they simply define the
statement's structure. Throughout this manual, the term "General Format", is used
as notification that the next line is presented in syntax notation.

1.4.1 Constant Parameters

Any word shown in%,l.!1?(2~.~.ase in the general form is a ..Q.onstant parameter and is
alwa$5 entered exactly as snown.. The general form of a statement required to
dTsconn~ci. the precision measuriQg:JJ.nit is as shown below.

- '• . -·-- ""'·"""""""""""·~'+

Example:

XPMU PIN;

This statement has no options.

1-3

1.4.2 Variable Parameters

Any word shown in lower case in the general form is a \l~rjahle parameter; the word
used indi<::~,!.es what !ill15Lof ~n is req!!ir~d. The limits on the value of the
variahledepend on the statement in which it IS used.

Example:

CPMU PIN expression;

The word expression indicates a number or variable must be entered and
not the ten characters that comprise the word expression.

CPMU PIN 3; is a legal statement.

1.4.3 Required Parameters

Brackets are used to enclose a set of parameters where one, and onlx one, of the
parameters in the set wust be u~d. The parameters in the set are separated by the
slash character. An underlined parameter identifies the default case if the entire

,.....statement is omitted. ...p..._ ~~
.--~~----- ~

Examples:

1. ON [FCT/DCT/TRIP], label;

Either FCT, DCT or TRIP must be specified.

2. [ENABLE/DISABLE] RELAY;

Either ENABLE or DISABLE must be used in this statement. If the
entire statement is omitted, however, the disable relay state is
assumed.

1.4.4 Optional Parameters

parenth.eses are used to enclose a set of....2Eill.2u~ parameters where, at~.~ of
the parameters in the set pay be used. A -s1ash is used to §eperate parameters in
~he s~t. An underlined parameter_!~ptifj;:s the ~~1!!!.,;ase if only that parameter
IS Oml tted. "'-·

Examples:

1-4

1. MEASURE VALUE (,LOG);

The ", LOG" is optional in this statement, if LOG is used, the comma
must be used.

2. . .. (, RNG2/ ,RNG3);

If the range is programmed, either ,RNG2 or ,RNG3 is used. If the
range parameter is omitted, RNG3 is assumed.

1.4.5 Syntax Characters

The breckets __ an~theses characters are also used as a reguireQ._,part of the
~t-~~Jor certain statements: -----.. """"""'

The-b£,_qg'rnts a~ parentheses are used to define pattern replication of binary pin
pattern control statement (refer to section 6.4.1.1). In those g~tterns where the
J2!~~.!5.~!s and gar~nUt~§_es are sh_ow~ they are rE;.guired and l!r_e not part of the
syntax nQtation. •• ~~

O> ' l'l':r.";.;:,,_,.,,,,,•,o • ,\ > ~"'

R_a.r~~!~~ses are a required part of the J!~J:'~ut/output statements syntax (refer to
section 8.01. ~ ,., .. ,,_,_,,,_,.

Examples:

1) SET F [8] (2:1);
The J;2reviou~ pin pattern is pres~r~ed-12. g,in 8 and a new eattern ~ting_
at _Qj.n 8 is specified by the following pattern of two "ones". -- __ ,,,

2) READ (CR) & DEVNAM, &STAT;
Information is read from the card reader and input data for literal
variable DEVNAM and STAT is extracted.

3) DCL ARR [10] ;
Defines array size as 10 elements.

1-5

SECTION 2.0

EXPRESSIONS

An expJ;e~n is a grouping of one or more numbers, variables, and functions
combined with arittun.~JJc._~ BoQ!e~!}_ operators and parenthes~s so as to represent a
quaf!..ti~y or ,;:in operation_. -Note that a ~~1e .!!_umber or variable is considered an
expressioif'by this definiti9n. · -

2.1 NUMBERS

FACTOR accepts numbers in three forms: -
.J.U. integers
JlL decimal fractionals
J;iL.exponen tials

In~ cases, numbers are converted to a floating point internal representation for
manipulation in the computer (refer to Appendix Jf. The range of allowable
decimal numbers is:

2. 7105 ~o-20)~nl ~9.2228 ~o18)or n = o
where: lnl means the "magnitude of n".

2.1.1 Integers

An integer is defined as a whole number, incluQ,ipg zero.! It is interpret~d as octal
if itislrp,mJ!dia~ely followed by a~ .Qtberwjse it isjilterg~d as ,Se~iqi.,~J. It may
be .;UV£r s,i~ed "(preceded by a + or -) or ~~~,?i.~;~· If ~~~ig~.:.~· it Is !D1fil.l?J:tled. as
posI Ive •
..,,,.,, ,;.;«''47·'"'~""·'·-~··

The limits for decimal and octal integers are:

Decimal integer -8388607~n~+8388607

Octal integer

2-1

The following are examples of integers:

ACCEPTABLE

0
4000000

+2361
-5
6B

2.1.2 Decimal Fractionals

UNACCEPTABLE

1.i.0011.,000
10000000000000000000
125,.)3

Commas not allowed
Too large
Imbedded blank between
number and octal identi
fier

A decimal fractional is any signed or unsigned decimal number with a fractional
part preceded by a period. Decimal fractionals cannot be octaJ. An attempt to use
octal notation in combination with a decimal fractional resUltSin fil'ierror' message:--___ - ~-

The following are examples of fractional numbers:

ACCEPTABLE

4.0
0.0
.671
+.734650
42.0
o. 734650

2.1.3 Exponentials

UNACCEPTABLE

4. A number cannot end with a period

.1234B A fractional number cannot be
specified as octal

Exponentials may be signed or unsigned decimal integers or decimal fractionals
followed immediately by an E and a positive or negative decimal integer.

The following are examples of exponential numbers:

ACCEPTABLE

0.1E2
+1.23E-5
7E-3
-1.0E+5
-5E+2

2.2 VARIABLES

0.1E2+

lE

.234 E5
2.BE2

UN ACCEPTABLE

The sign must come between
and its integer
The exponent must have a
number
Imbedded spaces are illegal
Octal numbers may not be exponentially
specified

In FACTOR, a variable denotes a~_g_ua!!_!Lty which is r~to by allllJil~
than by an ~lffiitc.!f' value. A v r1able may take on many values. The values

2-2

assigned may be any of the forms discussed above or they~ be either ~ ..W:...
Jlqo_lean. A Y,~r!"~l~-~~!11i!J~er ~ ~~!~~c,e ~ill!!.~!' a .s!ngl~ v~f!~e ~ a set of
variables considered as an array.

~J L ,__, ----.

~general classes of variables may be referenced by the FACTOR program;
system global variables and · user variables. The values of the system gloQ,a.l
variables are retained from one execution of the program to the next. This allows
the programmer to accumulate such information as total number of qevices t~

: -.._,. _ --
number of parts Qassmg or falimg certain tests within the program. The v.alues of
all user yarjahlei; are losr"at the end of the test seguences and a~ reset to zero at

tTre ~of the n~xf~ence. -:rile _§y!Stem global variables are sa¥ed. f ~
_s.tation or t~st position. System global variables are automatically declared.

~

2.2.1 SysteIB Global Variables

There are twenty-three system global variables which ~ acgessable from a
FACTOR program. The names and special uses of these system global variables
are:

SWITCH

VALUE

TIME

GLOBl through
GLOB20

SWITCH is normally accessed through the TOPSY
command SWITCH from the system PID. The global
variable SWITCH may then be interrogated using a
FACTOR statement to perform such operations as
conditional branching.

Contains the last value obtained by executing the
statement:

MEASURE VALUE/NODE/VARIABLE

Value set by TIME is retained from one execution to the
next execution.

May be assigned a single value each through a FACTOR
variable assignment statement. May be set by a TOPSY
command for program control.

~ ,fA/ 5el'1.,.L A./w/ff ~-er
In addition to the initialization procedures the ~y command LOAD e affects
the ~Sfem global variables conten~s depending upon whether ~ the modifier.
SA VE is usea With the command; If it is not used, the global variabl~s· af"e
initFaiized to zero. If it is use~, the current Values of the global variables are

-retained and maw used by the new program being loaded.

Examples:

GLOBl = GLOBl + 1;
WRITE 'DEVICE SERIAL NUMBER', GLOBl;

outputs an ascending device serial number to the POD each time the program is
executed.

IF SWITCH EQ 2 THEN GOTO LOOP;

The global variable SWITCH may be interrogated using the following FACTOR
statement to perform conditional branching.

SWITCH = SWITCH + 1

2-3

SWITCH may also be assigned a value from within the user1s FACTOR program
using a variable assignment statement.

MEASURE VALUE;
USERVAR =VALUE;

The content of the global variable VALUE may then be assigned to a user declared
variable, if desired, using a FACTOR variable assignment:

SET PAGE 512;

TIME = TIME + 1;
XYZ = XYZ + 1;
WRITE TIME, XYZ;
END;

The results of TIME and XYZ would look as follows for 3 pressings of the START
buttom:

TIME XYZ
1 1
2 1
3 1

This is because TIME is a global and its value is kept from one executio to the next,
where as XYZ is a user variable and is set to 0 after each execution.

2.2.2 User Variable Identifiers

Variable identifiers are names given to variables to aid the user's memory and make
the program more intelligible. The identifier must begin with a letter ,#, or a
dollar sign and may contain only letters, periods, dollar signs, pound signs, and
digits. Identifiers can be of any length, however, FACTOR retains only the first
eight characters. The first eight characters must be unique. System global
variable names or reserved words must not be used as identifiers. The following is
a list of reserved words:

2-4

AND
AT
BEGIN
BLOCK
BRANCH
BY
CALL
CGEN
CLEAR
CONN
CPMU
DCL
DISABLE
DO
ELSE
ENABLE
END
EOR
EQ
EXEC

FOR
FORCE
FUN CT
GE
GOTO
GT
IF
INSERT
LC GEN
LEQ
LSET
LSUBR
LT
MEASURE
NEG
NEQ
NOISE
NOT
ON
OR

PAUSE
PGEN
PGM
RD
READ
REM
RESET
REX EC
SET
SOCKET
SPEC
SUBR
THEN
THRU
UPDATE
WR
WRITE
XCON
XPMU

It is good programming practice to use identifier names that represent the meaning
or use of a variable. For instance, TEMP could be the name given to a working
variable. COUNTER might be the name given a variable that is used as a general
purpose counter, and so on. Variables are assigned an initial value of zero. Arrays
must be declared before the array is r.eferenced. Refer to Section 7 for vanaf>Ie""
arurarray nameoecrnfttion informatio'Ii:" -

The following are examples of variable identifiers:

ACCEPTABLE

A
CHISQUARE
ALARG EID ENTIFIER
A1B2C3D4
DARRYL

2.2.3 Scalar Values

UNACCEPTABLE

123 Identifiers may not
start with a digit

AB*C Special characters,
including blanks are not
allowed

END Reserved words are
illegal

The FACTOR vari~,b_le in its ~st form is scalar. _§calars are d~fined as
quantities having ~~1~~~ and ... ~ direction (i.e., no vectors). (Note thaf,' as
de~ined below, an array element may be a scalar value and/or a Boolean value.) In
addition s~~-may be 1!!1)1 ~_g-~l.n_1::1!!1~~~~Lyal~e·.~

Example:
2.352
3.1414
+6
-3

To use the scalar value currently assigned to a variable, the user writes the
variable's identifier in the program statements or expressions.

Example:

VCC=5;
FORCE VFl VCC,RNG2;

2.2.4 Boolean Values

Boolean v~ are guantities which ~n evaluated have a value 2f fil~her. one
(true) .!ir ~fil,Q (false). Expressions jnvolvJng Boolean operators can.__QJ)Jy take on a
true or false value~ expressions are not evaluated for l.!!!Y.2.!he_r _?~_Ylllue.
Whenever the user references the variable identifier the current Boolean value is
returned.

2-5

2.2.5 Array Values

An~ ,is. an Qrdered series 0,: values which are g;,tQllD~ together o.ositio1WP
With C~r;)PCt to §OIDe variable identifier (usually thef.Ju! array elem nt
idegtifier). The elkments of the array are restris=ted to. eiy~w;. §i1'QGd or urisiID!ed
numbers (except alpha values are legal for literal variables • FACTOR ar~ are
restricted.to Q.ne dimension. :g:=

$
To obtain an array value, the user zt' .fgllow the array jdentifi~r with an
ex:pressi.Qn ~pie~ is enclosed in bracw. The value of the .expression is the
subscript which ~ FACTOR which element of the arra¥- is wanted. .!L the
subscript is •• (i.e.,A [O]) FACTOR returns the arr'1v siie. Any.Qthe~ ~e_ of
the subscript refers to the appropriate element in the array of values. For
example, A [2] would reference the second element frrarray A.

NOTE

If the value of the expression is negative or greater
than the array size, a terminal error results during
execution.

2.3 FUKCDO:NS

Functions are Qarameterizeo <:fill§... and are used to obtain a value, through a
,ataogardiz~d s~ of ogeratio~ The F~ statemeflt is "@§~rib~.9 in ~~~ion 4. ---
2.4 ARITHMETIC EXPRESSION EVALUATION

AtiUHlleti.c expressions are ~~]U~<l l~!t-tg-cigl}t according to the following rules.

(2)
""'Jiiii

2-6

Parenthesized expressions are evaluated first. If parenthesized expressions
are nested, the innermost expression is evaluated, then the next innermost
until the entire expression has been evaluated.

Within parenthesis and/or whenever parenthesis do not govern the order or
evaluation, the hierarchy of operations in order of precedence are shown in
Table 2-1. The arithmetic expressions are:

(a) Negation (NEG)
(b) Exponentiation (+)
(c) Multiplication or division (*,/),
(d) Addition or subtraction(+,-).

Example:

The expression

A*(Z-((B+C)/T)) +VAL

is evaluated in the following sequence.

BtC+e1

e1/T+e2

Z-e2+e3

e3 *A+e4

e4+VAL+e5

NOTE

The value of B is limited to positive or zero, since the general result
for a negative quantity raised to a power is a complex number. C
may be positive, negative or zero.

2.5 LOGICAL EXPRESSIONS

2.5.1 Logical Operators

The logical operators defined for the Test System operate on full word integers.
The logical operators are:

/Syffibfil:::.~: Operation

(
AND Logical and
0 R Inclusive or

, EOR Exclusive or
\ NOT . One's complement

W~~xP;:~sions or constants P and Q, for each bit of P matched with the
corresponding bit of Q, the following truth table holds:

p

1
1
0
0

1
0
1
0

PAND Q

1
0
0
0

POR Q

1
1
1
0

P EOR Q

0
1
1
0

NOT P

0
0
1
1

2-7

Example:

Calculate a percentage and form an integer before printing:

PC = lOO*X/Y;
PC =PC AND NOT 0;
WRITE 'PERCENT GOOD=', PC;

Prior to performing the logical operation the expression is evaluated and then fixed
as an inte_ger. The integer form is limited to 16 bits, therefore conversion
underflow or overflow from floating point to fixed format must be considered by
the programmer.

2.5.2 Logical Expression Evaluation

Logical expressions are evaluated in order of operator precedence and from left to
right when two or more operators of the same precedence exist.

Logical expressions are useful for specifying more than one option in a single
variable. Using octal notation, suppose that the "hundreds" digit of the system
variable SWITCH is used to select ABORT on first fail if the digit is non-zero, the
tens digit is used to select a device grade, and the units digit is another quantity of
interest. The logical AND operator can separate this information as follows:

SWITCH AND 700B extracts the "hundredsrr octal digit.
SWITCH AND 70B extracts the "tens" digit.
SWITCH AND 7B extracts the "units" digit.

Example:

IF (SWITCH AND 700B) NEQ 0 THEN BEGIN

ON FCT, ABORT;
ON DCT, ABORT;
ON TRIP, ABORT:

END;

where ABORT is a label at the end of the program.

2.6 BOOLEAN EXPRESSIONS

2.6.1 Relational Operators

Relational operators deal with the comparison of two logical expressions,
arithmetic expressions, variables, or constants in any combination. The result of
the comparison is either true or false. The relational operators are:

2-8

Symbol

EQ
GE
GT
LT
LEQ
NEQ

Operation

equal
greater than or equal
greater than
less than
less than or equal
not equal

Consider the following examples:

A=16
B=25
A LT B

16 LT 25 This is a true statement.

B LT A This is a false condition.

All relational operators have the same precedence level. (Refer to Table 2-2).

2.6.2 Evaluation of Boolean Expressions

A Boolean expression uses logical and relational operators and defines whether a
true or a false condition exists. True and false conditions are represented by non
zero and zero respectively.

The order of operations for Boolean expressions depends upon the precedence
values of the operators. The precedence order is shown in Table 2-1. The Boolean
expressions are:

(a) NOT
(b) relational operators (LT, LEQ, EQ, GE, GT, NEQ)
(c) AND
(d) OR and EOR

The following are examples of Boolean expressions:

1. A (where A is either true or false)
2. A ORB EOR C
3. A GE B OR A LT C

In example 2, the expression is evaluated from left to right. A is ORed with Band
theft the result is EORed with C. In example 3, the expression A GE B is evaluated
for a true or false condition: the expression A LT C is evaluated: the results of
these two operations are ORed together.

2. 7 MIXED EXPRESSIONS

FACTOR allows mixing of arithmetic and Boolean expressions, without adhering to
pure Boolean values. It is the responsibility of the programmer to ensure that
values in mixed expressions are valid integers when they are involved in a Boolean
expression. Arithmetic operators take precedence over Boolean operators in mixed
expressions.

2-9

TABLE 2-1 PRECEDENCE VALUES OF OPERATORS

Symbol Operation Precedence Value

NEG Unary negate 1 (highest precedence)
NOT Not

t Exponentiation 2

I Division 3

* Multiplication

+ Addition 4
- Subtraction

LT Less than
LEQ Less than or equal
EQ Equal to 5
GE Greater than or equal
GT Greater than
NEQ Not equal

AND Logical and 6

EOR Exclusive or
OR Inclusive or 7 (lowest precedence)

2-10

SECTION 3.0

CONTROL STATEMENTS

Control statements are used to direct the flow of the program by a transfer of
control to different parts of the program. Such a transfer may be imperative (e.g.,
GOTO) or conditional (e.g., IF).

The control statements discussed in this section are PAUSE; GOTO; IF; BEGIN; and
FOR.

3.1 PAUSE

The PAUSE statement is used to stop the execution of further statements until the
START button is depressed. The general form is:

PA USE expression;

The statement number and the value of the expression is output to the POD. The
EIR register displays the pass/fail results of functional and DC tests which were
executed since the last pause or beginning of test.

The PAUSE statement can be used to provide a programmed halt when debugging
new FACTOR programs

NOTE

Refer to the Sentry User's Manual for use of the manual analysis
PAUSE command

3.2 GOTO

A program is essentially a series of statements which, in general, are executed
sequentially, and thereby accomplish a particular task. The computer thus operates
one step at a time. However, it is essential to be able to enter or leave the
sequence of instructions at any desired point

This is the function of the GOTO statement. When executed, a GOTO statement
always changes the program flow from the statement immediately following it to
the one specified in the GOTO statement.

The simplest form of the GOTO statement is:

GOTO label;

3-1

where label is an identifier up to eight characters specifying the statement to be
executed next. The statement label is terminated by a colon.

The label must be in the same block or a lower block (ref er to Section 4), it is not
permissible to jump into a subroutine from the main block or from another
subroutine.

3.2.1 Indexed GOTO

General Form:

GOTO (labell, label2, .•. , labeln) expression;

As in a GOTO statement, program control is transferred to a specified location
(defined by a label) in the FACTOR program. In the indexed GOTO statement, a
multiple of such locations are allowed. The choice of one of the locations depends
upon the result from evaluating the expression.

GOTO Location

Label 1
Label 2
Label 3

Label n

Next consecutive
statement is fetched
and executed.

Expression Value

1
2
3

n

0, negative or> n

In cases where the expression contains variables, the same indexed GOTO
statement may cause branching to different locations at different times, depending
upon the changing expression value.

3.3 IF

The GOTO statement provides one method for altering the sequence of statement
executions. It is also essential to be able to change the sequence of execution
based on what happens as the program executes, i.e., a conditional change of
execution. This is the principal use of the IF statement.

The simplest form of the IF statement is;

IF relation THEN statementl;

statement2;

Upon execution of the IF statement, if the relation is true, statementl is executed
followed by statement2 (unless staternentl carries control away from statement2).
If the relation is false, statement2 is executed instead and statementl is skipped.

~-2

Example:

IF A EQ 3 THEN GOTO LABEL;

If A is equal to 3, the sequence of execution is changed to the point in the program
having a statement labeled LABEL. If A is not equal to 3 the next sequential
statement, after the IF statement, is executed.

The true-false nature of the above relation gives a clue to the second general form
of the IF relational clause. It is:

IF Boolean-expression THEN statement;

where Boolean-expression is any legal expression.

Example:

To continue doing something until the value of A and B, two variables being
manipulated, both become less than some terminal value, 0. We could
make this decision and monitor the values of A and B with one IF statement
as follows:

IF A LT 0 AND BLT 0 THEN GOTO DONE;

In all cases of IF statement usage, the statements following THEN can introduce
any type of FACTOR statement.

3.3.1 The Conditional ELSE

The simple IF statement is one which causes a statement to execute if a relation or
Boolean expression is true and skips statement execution if the relation or
expression is false. A complete conditional statement does more. It specifies a
second statement to be carried out if, and only if, the relation or expression is
false. The general forms are:

IF relation THEN Sl ELSE S2;
IF Boolean expression THEN Sl ELSE S2;

where 81 and S2 are any two statements. When the result of the IF operation is
true, 81 executes and S2 is ignored. Notice here that ELSE terminates the first
statement (Sl) instead of a semicolon. When the result is false, Sl is skipped over
and 82 executed. 82 may be any statement, including another IF statement. This
nesting of conditionals can go to any depth.

Example:

IF relation THEN Sl ELSE IF relation THEN 82 ELSE 83;

3-3

3.4 BEGIN

FACTOR allows the grouping of a series of statements between the statements
BEGIN and END. The END, must immediately follow the last statement executed.
Note that the semicolon is an integral part of the END; bracket. One purpose of
this is to allow a compound statement to follow the THEN or the IF statement.

Example 1:

IF relation THEN
BEGIN

END;

statement;
statement;
statement;

Example 2:

IF relation THEN
BEGIN

statement 1;
statement 2;

END ELSE BEGIN
statement 3; ·
statement 4;

END;

The above are examples of compound statements, and are an acceptable method of
writing the IF statement. The statements between BEGIN and END; are legal and,
as far as the IF statement is concerned, are considered to be one statement. In
other words, if the relation is false the statement after the BEGIN-END; block is
executed next. Any FACTOR statement may be part of the compound statement,
including another IF statement.

3.5 FOR

One of the techniques most widely used in programming is that of the program
loop. This is the repetition of some program statement or statements over and
over with different parameters. The FOR statement is the looping mechanism
within FACTOR.

The general format of the FOR statement is:

FOR variable= expression THRU expression DO statement;

where variable expression and statement may be in any legal form defined in this
manual.

Several statements may be included in the DO loop portion of the FOR statement
by specifying a compound statement with BEGIN and END.

3-4

Example:

FOR variable=expression THRU expression BY expression DO

BEGIN
statement 1;
statement 2;
END;

An example of a typical loop is one designed to solve the following problem.
Suppose it is desired to set the elements of an array to zero This can be achieved
with the following IF statement sequence of statements:

I= 1
NEXT: A [I] =O;

I= I+l
IF I LEQ A [O] THEN GOTO NEXT;

but it is more easily programmed with the statement:

FOR I= 1 THRU A [OJ DO A [I] =O;

The simple FOR statement provides an index value which has three important
features:

(1) an initial value,
(2) an (assumed) increment of +l,
(3) a limit

In the above example, I takes on the values 1, 2, 3, ... , A [OJ , where A [O] is the
last value corresponding to the size of the array.

The implementation of the FOR causes the address of the index, the increment and
the limit to be evaluated each time the loop is executed. Therefore, caution must
be exercised within the loop when changing values that might affect this
evaluation.

The loop is executed the number of times specified by the initial value, limit, and
increment. (This may be zero.) Also, there is no restriction on transfers of coritrol
into or out of the loop. When the loop has finished its specified number of
executions, control passes to the next sequentially executable statement, unless
this sequence is interrupted by a statement in the DO loop.

In the above discussion an automatic increment of +1 from the initial value to the
final value was assumed. There is a second form of the FOR statement which uses
BY; this allows the user to specify some value which is used as the increment.

Example:
FOR I= 1 THRU A[O] DO A [I] =OBY 2;

It should be pointed out that because the values may be all positive, all negative, or
mixed positive and negative, the user should consider the range of possible values
expected. It makes sense to go from a negative number to a more negative number
in negative increments or from a positive number to a negative number by negative
increments. Going from positive to more positive or negative to positive, the
increment must be positive. Going from -2 to +6 in increments of -2, as from +8 to
+2 in increments of +2 is not logical and is flagged as an error at execution time.

3-5

Caution must be exercised when using fractional values for the index, since it is
possible to introduce a step error. For example, a statement such as:

FOR I= 0 THRU 1000 BY 0.1 DO X =I+ 1;

may operate the DO statement more than 10,000 times because of a rounding error
in the floating point conversion of 0.1.

FOR statement also applies to a compounded set of statements written within a
"BEGIN" and "END" pair. In the examples shown thus far, simple statements are
used with the FOR statement. Consider the following example:

DCL ARRAY [100];
J = 1;
FOR I= 15E-6 THRU 5E-6 BY-lOOE-9 DO

BEGIN
ARRAY [J] = I;
J = J + 1;
WRITE I;
END;

WRITE ARRAY;

The FOR loop contains 3 statements compounded within the BEGIN-END pair of
statements. The three statements are repeated for the number of times taken to
reach the terminating value of I, the loop's variable. The FOR loop variable, I, is
decrementing (instead of incrementing as previously shown) by lOOE-9. The initial,
the ending, and the incrementing values of I are all exponentiated instead of
integers. The total number of looping times is 100.

Restriction:

The DO BEGIN words, even though they are written on two separate lines, must not
have any other word or symbol in between them. Violation of this rule results in
the error message, "WARNING NO STATEMENT INSIDE DO LOOP".

3-6

SECTION 4.0

SUBPROGRAMS AND BLOCK PROGRAM CONCEPTS

This section describes subprograms, and block program concepts.

4.1 BLOCKS

Blocks are groups of program statements between the delineators, BLOCK and
END. Local variable storage and local labels do not exist outside of the parent
block they are in and cannot be referenced outside of the parent block. A block is
an independent compilation. A program can consist of several completely
independent blocks.

A block must have a beginning and a closing statement. In addition, a block can be
either independent or dependent . .
A block can be established in two ways:

(1) It may be opened directly by writing the command BLOCK and
closed by the command END.

(2) A block may also be opened following the FUNCT and SUBR
commands.

The initial BLOCK declaration need not be specified because FACTOR assumes a
BLOCK 0.

4.1.1 Nesting Blocks

Blocks do not need to be completely independent. One of the easiest methods of
introducing block dependence is by "nesting" one block within another. This results
in the execution of the inner block being dependent on the execution of the outer
block. Nesting can occur up to eight levels on the Sentry. Nesting is illustrated in
the following example:

BLOCK
BLOCK
END;
BLOCK

END;
END;

BLOCK
END;

4-1

The inner block of a nested set is considered part of the enclosing blocks. Another
form of dependence is that of global variables. A global quantity is one that is
accessible to a block, but is not necessarily contained in (i.e., is not local to) that
block. Variables and labels can be either local or global. This is illustrated in the
following example:

BLOCK
L: DCL A, B/10/;

BLOCK
DCL A,C;
END;

END;

Each block in the above example contains the local variable A. The A in the inner
block cannot be accessed from the outer block and vice versa. The variable B in
the outer block is accessible from either block, but the variable C can be accessed
only from the inner block. In this example, then, B is a global variable but C and
the two variables A are all local.

Note, that if there had been a label L in the inner block, any reference to it within
the inner block would have used that rather than the one in the outer block. Any
nested set of blocks establishes a block context; i.e., a relationship of local and
global variables. From the example, it can be seen that a reference to a variable
or label is associated with the occurrence of that identifier or label in the same
block, if it is present. If it is not, then the next outer block is examined, etc.

It should be noted that it is possible to make variables global from within a nested
block in FACTOR by simply never declaring the variable as local. When the nested
block is closed, the variable, and any residual value is relocated to the next outer
block, where it may now be considered as global to any further nesting. When this
outer block is closed, if it was nested, the variable again relocates to the next
outer block and so forth until block 0 is closed.

NOTE

Compilation time can be decreased by declaring (in block 0) all the
variables which are not local.

The fact that the declaration of a variable within a block makes it local has
important implications for the FACTOR user. After leaving a block, i.e., closing it
with an END command, the values of all variables declared within the block, and
thus made local, are lost. Upon re-opening the block, the values of these variables
are initialized to 0.

4.2 SUBPROGRAMS

Programs frequently have groups of statements which can be used several times
with different parameters. The required statements could be duplicated wherever
they are needed in the program, but to do so is error prone, and wastes user time
and machine storage. Therefore, it is desirable to be able to write statements so
that they may be executed from any point in the program with a different set of
parameters each time they are executed. The subroutine statement makes this
possible.

4-2

4.2.1 SUBR

The general formats of the subroutine declaration are as follows:

Format One:

SUBR ·~ntifier;

END;

Format Two:

statement 1;
statement 2;

statement n;

SUBR identifier (Vil, VI2, ... , Vln)
statement 1; ·

statement n;

END;

The identifier after the SUBR command is used to reference the subroutine from
the main program. The statements within the subroutine are not executed until the
subroutine is called from the main program by the SUBR identifier. Any number of
statements are allowed within the subroutine.

The END; statement is necessary because the SUBR command effectively opens a
new block. When it is completed, it must be closed. The END; indicates the last
statement in the subroutine.

Format Two indicates another important feature of the SUBR statement. The
terms Vil through Vln represent variable identifiers 1 through n. They are enclosed
in parentheses and indicate to FACTOR that whenever a reference is made to this
subroutine, the reference specifies actual values which are to be substituted at
specific places within the subroutine body. These identifiers are called formal
parameters There is a one for one correspondence between the position of the
formal parameters and the position of the parameters or values used in the call.
For reference and further explanation, see the next section on the CALL
statement. The manner in which values transferred to the subroutine are used in
the subroutine's statements is illustrated in the following example:

SUBR TOTAL (Vll, VI2, VI3);
Vll = VI2 + VI3;

END;

4-3

When the above subroutine is referenced:

CALL TOTAL (Al, A2, A3);

the values passed to it, obtained from the actual parameters Al, A2, and A3,
positionally replace Vll, VI2, VI3 and are used in the arithmetic expression and
assignment. The value of the variable represented by VI2 is added to that
represented by VI3 and the total is assigned to the variable represented by the
formal parameter VIL

The following is an example of a subroutine with no formal parameters specified:

SUBR TOTAL2;
A= B+C;

END;

When TOT AL2 is called, the current values of the variables B and C are added and
the total is assigned to the variable A. In this case A, B, and C are not formal
parameters. They are working variables with current values in the outer blocks to
the SUBR statement block.

Because the subroutine forms a new block, it must be remembered that any
variables which are formally (i.e., DCL variable name/value;) declared in the
subroutine are local.

4.3 CALL

A subroutine is executed by using a CALL statement, which can be placed at any
point in the program where the programmer can legally place a statement. The
general formats are as follows:

CALL SI;
CALL SI (expression 1, expression 2, ... , expression n);

/
,//

SI is ~identifier of the subroutine block to be activated. The values, changed by
the subroutine statements and by any other task executed, are accomplished as if
the subroutine's body of statements has been placed at the point of the CALL
statement. Then, the next sequential statement, following the CALL, is executed.

The expressions are evaluated at the time of the execution of the call and
therefore, removes many constraints which are ordinarily placed on the CALL
values. As the subroutine statements are executed, the value of expression 1 in the
formal parameter list of the CALL statement is used wherever dummy parameter 1
was used. The same holds true for other dummy parameters and expressions. The
only restriction is that when a dummy parameter recieves a result, the
corresponding actual parameter from the formal parameter list in the CALL should
not be an expression but a single variable identifier.

4.4 FUNCT

The subroutine call, when encountered in the program execution, brings the
subroutine statements into action to accomplish whatever processing is specified
(ordinarily assigning new values to outer block variables). Control then usually
passes to the next sequential statement.

When only one variable is assigned a new value, as a result of executing a
subprogram, the call can be simplified by making the subprogram a function. When
FUNCT is used, simply writing the identifier of the function causes its statements
to execute. However, the identifier now represents a value that may be used
wherever a variable is legal. Thus, it is as though the function call represents a
variable of the same name.

The general form of the function statement is:

FUNCT identifier (Vil, ..• , Vin);
statement 1;

statement n;

END;

The format, except for the FUNCT command portion, is exactly like the SUBR
statement. It also defines a new block and it is called by the identifier, following
the FUNCT. The difference is in the way the function is activated and also that it
always returns a value for the function identifier. If no assignment of a value to
the function identifier is made within the statements following FUN CT and before
END; is encountered, a value of zero is returned. Assignments of values to a
function, which are external to the function declaration statement are illegal, i.e.,
the function name must not be used on the left hand side of an assignment
statement.

The function identifier is not local to its function block and therefore must not be
declared within the function statements.

Like the subroutine call, the FUNCT statement, with its compound tail of
statements, is not executed until the function identifier is used in an expression.

4.4.1 Function Call

Using the function identifier as a variable identifier in an expression causes the
function statement block to activate and to return a value for the identifier.

Example:

FUNCT TOTAL3 (Vll,Vl2,Vl3);
'TOTAL3 = Vll+VI2-Vl3;

END;

4-5

When it is desired to reference a value by executing the above function, the
identifier is used as follows:

NEWTOTAL = TOTAL3(A,2,B+C)+(A-B);

The function TOTAL3 is evaluated using the current value of A for dummy
parameter Vil, 2 for dummy parameter VI2 and the current value of B+C for
parameter Vl3" This overall value is then added to the value calculated for the
subexpression, A-B, using current values for A and B. Finally, the end value arrived
at is assigned to the variable NEWTOTAL.

The same symbol must not be used for dummy and actual call parameters.

A further example illustrates the range of versatility of a function. Assume that
the following sum is to be evaluated:

10
A= I B2

B=l

The function statement to handle the sum is shown below:

FUN CT TOT AL (X, Y);
TOTAL= O;
FOR Z = X THRU Y DO TOTAL= TOTAL+ (Z*Z);
END;

to evaluate the sum, the call is written as:

SUMB =TOTAL (1, 10);

The parameters of a function call can also include other function calls. In fact, a
function may even call itself recursively. For instance, a factorial could be
calculated as follows:

FUN CT FACTO RIA (N);
IF N EQ 1 THEN F ACTORIA = 1
ELSE FACTO RIA = N * FACTO RIA (N-1);

END;

This is an example of recursion, the use of a function within the same function.
The user should remember that the number of recursive calls is determined (and
limited) at run time by the size of memory. Also, because new blocks are opened
whenever a call activates a function, this recursion of the function causes nesting.
Since nesting can go only 8 blocks deep, this example could easily exceed this depth
in most cases.

4-6

4.5 EXEC

An assembly language program is executed by using an EXEC statement. The
general for mats are as follows:

EXEC PROGRM;

EXEC PROGRM (parameter 1, parameter 2 •. parameter n);

PROGRM is a FACTOR identifier which is also the name of a core image file on
disc. Each parameter is evaluated at the time of the EXEC, and may be a global
variable, variable, array name array-element, function, formal parameter or
arithmetic expression. A maximum of 63 parameters is allowed.

After the assembly language program has been written, it is assembled and an
object file is created from which a core image file is created at a particular origin.
This must be done either under the system job or under the same job used to run the
FACTOR program. The origin, must be greater than the top of $TOPSY. Up to six
assembly language linkage files (ALLINK files) may be resident in memory
simultaneously. If any ALLINK file overlaps a currently resident file all resident
files are removed from memory and their next execution forces a disc access.
Refer to the Sentry User's Reference Manual for a description of how TOPSY
handles EXEC programs. ·

The assembly language program is brought into memory at its origin location. All
index regsiter values are saved, and then the index regsiters are set to the values
described below. Control is passed to the assembly language program. The
assembly language program may return normally after executing, or it may take
the ABORT exit causing a terminal error message to be printed. After a normal
return the index registers are restored and the state switches reset.

It is desirable to keep a short assembly language program in memory after
execution so that it may be repeatedly executed without having to access the disc
each time. However, since an assembly language program reduces the space
available for the FACTOR program, it may be desirable to remove a long program
or one not called often to mimimize the number of disc accesses required for
executing the FACTOR program.

The ALLINK file can request that the space for it and all other resident ALLINK
files be returned to the test program by calling the subroutine ALPCLR. This call
is coded as follows:

AL PC LR EQU 1244B

BSM* ALPCLR

The A register is destroyed by this call.

4-7

There also exists a system constant which can be modified to fit the needs of each
installation. If an assembly language program is longer than the system constant
(set at 4K or lOOOOB) a disc access is made after execution, allowing the memory
area to be used to store the FACTOR program. If the program is shorter than the
system constant it remains in memory until a different assembly language program
is executed, and its space does not become available for FACTOR program storage.
If it is desired to change the maximum size of ALLINK files which remains
resident, cell 1243B of $TOPSY may be changed from lOOOOB to the desired length
by PATCH.

4.5.1 Writing the Assembly Language Program

For additional information on writing assembly language programs ref er to
Appendix J and the FST-2 Assembler Manual.

There must be an entry point. It does not have to be the first statement in the file,
however, the file must begin with a BSS statement.

ENTRY PROC 0

Normal return is:

BRU* ENTRY

An error exit is provided and should be coded as follows:

AOM ENTRY
LDA message number
BRU* ENTRY

where O ~ message number < 900. This causes a terminal error message (message
number + 100) to be printed, and the FACTOR test program is aborted.

4.5.2 Referencing Parameters

In order to reference the assembly language program pa.rameters, the working stack
contains pointers to the values with Index Register 4 (X4) pointing in front of the
first parameter location and Index Register 3 containing the parameter count.
Thus, for a routine with five parameters the working stack is as follows:

PP5
PP4
pp3

pp2

pp1

x4-+

LDA*

STA*

4-8

1, 4

1, 4

gets the value of the 1st parameter

stores a new value into the 1st parameter

If the second parameter is an array of size 10

ARRAYLDA* 2,4
LXA 5
LDA 10, 5 gets the value of the 10th element of

the array.

If it is not known if a parameter is an array or a variable a check may be made.

LDA 2, X4

BN ARRAY
LDA* 2, X4

4.5.3 Accessing System Routines

if the contents are negative it is an
array
array
variable, get value

Input and output routines, the floating point routines, and other utilities may be
used by ALLINK files. However, the input/output routines (or any routine with an
interrupt address) must not be called directly. Other routines may be called
directly, however, if they are already resident as part of TOPSY the ALLINK file
can be kept smaller by calling routines indirectly.

The address in memory of each resident routine is stored in low memory locations
in TOPSY called GLOBAL. To access these routines indirectly the user programs a
BSM* (branch and store memory-return-address, indirect) to the address of the
memory location of the routine. (A direct call is a branch and store memory
return-address to the memory location of the routine.)

There are two methods for coding this calling sequence. The first is the preferable
method because it is easier to read. TTRIO, whose address in memory is always
stored at location 520B, may be called as follows:

Method 1

TTRIO EQU 520B

BSM* TT RIO
DATA 1
DATA DCB

Method 2

BSM* 520B
DATA 1
DATA DCB

The remainder of the calling sequence is identical to that of a direct call.

The 1/0 driver, floating point, and other miscellaneous system routines and their.
memory address locations are shown in Table 4-1.

4-9

4-10

TABLE 4-1 SYSTEM ROUTINES AND MEMORY ADDRESS LOCATIONS

System Routine Address of Memory Location

CLIO
CRIO
DISC IO
LPIO
MTIO
TAPIO
TT PIO
TTRIO

I/O D~VERS

FLOATING POINT ROUTINES

FADD
FDIV
FFIX
FFIXS
FFLTS

ADRXLATE
ALPCLR
BIND EC
CILOAD
CLOSE
ENTRFN
FIND
GET
GFREC
IN REC
OPEN
PF REC
PUT
PUTN
READ
SRCH
WRITDS
WRITE

OTHER SYSTEM ROUTINES

1232B
553B
554B
543B
552B
541B
512B
520B

540B
521B
542B
514B
515B

1236B
1244B
513B
510B
537B
1235B
511B
517B
1205B
551B
547B
1204B
516B
1210B
545B
1233B
1234B
544B

SECTION 5.0

NOTATIONAL STATEMENTS AND COMPILER DIRECTIVES

Notational statements and compiler directives are used to enhance the readability
and clarity of programs as well as direct the compiler. Notational and compiler
statements discussed in this section are NOISE, REM, PAGE, LIST, NOLIST, and
INSERT.

5.1 NOISE

The NOISE statement is used to define words that make FACTOR statements read
like English sentences. Its general forms are:

NOISE wordl;
NOISE wordl, word2, ... wordn;

The command NOISE is followed by at least one space and the noise word, or words
which are separated by commas. After defining the noise words they are ignored
by the FACTOR compiler. This provides a means for adding clarity to FACTOR
statements. An example is shown below:

NOISE VOLTS, AMPS;

FORCE VFl 5.0 VOLTS;

Noise words are restricted to the format of identifiers, however, the reserved
words, as well as user-declared identifiers, are not allowed as noise words.

5.2 REM

General Form:

REM text;

The REM (remark) statement provides a means for adding commentary to a
program listing. It is not executable and it can occur anywhere in the context of a
program provided its format rules are followed. The text may be any alphanumeric
or special character except a semicolon.

Example:

REM THIS SECTION PERFORMS VOL MEASUREMENTS;

All elements of the character set except the semicolon are positionally listed as
located in the REM statements at compile time.

5-1

A REM statement is not allowed between a DO and BEGIN of a FOR loop. A
warning message is generated if this occurs.

5.3 PAGE

General Form:

PAGE;

PAGE causes an ejection to top-of-form when the compiled output is being listed
on the line printer. Subsequent compiled listings start on a new page. PAGE does
not generate any object code.

5.4 NOLIST/LIST

General Form:

NO LIST;
LIST;

NOLIST suppresses the source listing from the point it appears in the source
program until a LIST appears in the source program or until the end of the source is
reached.

LIST removes the suppression imposed by NOLIST. If LIST was not specified in
the compile command it has no effect.

Example:

5-2

SET PAGE 1024;
CONN DPSl 12;
CONN DPS3 11;
SET PMU SENSE, RNG3;
NO LIST;
SET F 1010;
SET F 1010;

LIST;
FORCE VFl 4.5;

END;

These statements are suppressed
and do not appear in the source listing

5.5 INSERT

General Form:

INSERT string file name;

This statement causes the FACTOR statements of the referenced string file name
to be compiled, with the resultant data code inserted into working storage, along
with the current FACTOR program compilation.

The string file name must be a file under the current job name. In addition, the
string file must not contain an END statement as a block end. The inclusion of one
causes the compilation to terminate incorrectly at that point. The INSERT string
file must not contain a SET PAGE statement.

5-3

SECTION 6.0

TEST STATEMENT FORMATS

This section describes the test statements available for testing electronic devices.
The statements are grouped within this section by their logical subsystem function.
The subsystem functions are:

Program Initialization Section 6.1

Analog Subsystem (Power, Analog
reference, PMU) Section 6.2

Timing Subsystems (Period delay,
Width generators) Section 6.3

Pin Control Logic (Formatting and
Fail response) Section 6.4

Local Memory (Loading and Executing) Section 6.5

Miscellaneous Test Statements Section 6.6

6-1

6.1 PROGRAM INITIALIZATION

This section describes the statement used to initialize the tester prior to
performing actual tests.

6.1.1 Set Page

General Form:

SET PAGE integer (,SPM);

Description:

This statement identifies the program being compiled as a high speed test program
and sets the number of words of local memory available. The integer should be in
the range of 1 to 4096, not to exceed, however, the actual local memory size. The
SET PAGE statement is required for running on the Sentry II or VII. If a test
program is to be run without a tester, no SET PAGE statement should be used.

If during compilation of the program, a block of consecutive test patterns is found
which would require more local memory than was specified, the compiler generates
an ENABLE TEST statement. Refer to Section 6.5.

Upon execution of the SET PAGE statement, the integer given is compared with
the actual local memory size of the station currently on line. Terminal error 71 is
issued if the memory is not at least as large as specified.

The SET PAGE statement is also an indicator to the compiler and the operating
system that the current test program is for a high speed station. It is the key for
allowing the high speed instruction set and for noting any illegal FACTOR
statements.

If the program is to be run on a system with the SPM (Sequence Processor Module)
then SPM must be included in the statement. (Ref er to the SPM reference manual
for a description of the SPM statement.)

For a selected memory size of 1024 words, CHAIN TWO or CHAIN FOUR mode is
available. If the memory size specified is between 1025 and 2048 only CHAIN TWO
mode is available if SPM is not included in the SET PAGE statement. If the
memory size is greater than 2048, chaining is not allowed. (Refer to Section
6.4.8.1 for a description of the SET CHAIN statement.)

During execution, when the last address of local memory is reached, wrap around to
location 0 occurs. The effective address, CHAIN TWO and CHAIN FOUR modes
are determined by the SET PAGE statement as shown in Table 6-1.

TABLE 6-1 RESULTS OF SET PAGE INTEGER STATEMENT

SET PAGE Local Memory CHAIN TWO CHAIN FOUR Required Local
integer; Wrap Around Allowed Allowed Memory Sizes

1-1024 1023 YES YES lk, 2k, or 4k
1025 - 2048 2047 YES NO 2k, or 4k
2049 - 4096 4095 NO NO 4k

6-2

6.2 ANALOG SUBSYSTEMS

6.2.1 Digital Power Supplies

6.2.1.1 DIRECT LOAD BOARD CONNECTION vs PIN ELECTRONICS
CONNECTION

There are two methods for the user to route the digitally programmable power
supplies to the device under test. For applications where the load current is under
100 milliamperes, the most convenient connection is via the tester pin electronics.
When using this method (see CONN statement description), the digital to analog
connector for the DPS supplies gives a programmable reference voltage to the
analog reference subsystem for pins specified in this mode. A relay (Kl) on the pin
electronics card routes the "zero" analog reference buffer directly to the driver
connect relay (K3-controlled by SET DA/DB) thus shunting the pin driver switching
circuitry and giving a low impedance source for power. Hence, no special load
board relay need be used, however, normal supply decoupling at the test socket is
recommended. Power supply current measurements in this mode are made directly
with the precision measurement unit (PMU).

The second method of power supply routing is the "direct load board connection."
This method is normally used for greater than 1004milliampere applications. Each
DPS has a one ampere buffer following the DI A connector. The one ampere output
is brought out to the test station load board edge connectors. Wiring on the load
board makes the final connection to the test socket. It is recommended that direct
DPS connections be made via a utility relay on the load board for software
controllable connect and disconnect. Also the DPS should be decoupled at the
device test socket. Power supply current is measured in this mode with the PMUs
internal node sensing capability to allow up to a full one ampere scale.

DPS related statements below point out the differences in these two usage modes.

6.2.1.2 FORCE DPS VOLTAGE SUPPLIES

General Form:

FORCE [VF1/VF2/VF3] expression (,RNG1/,RNG2/,RNG3);

Description:

This statement forces the programmable voltage forcing supplies to the value
specified. If the range is not specified, then the highest range is set. Refer to
Appendix L. FORCE automatically connects the specified unit to the test station
performance board.

When the DPS is in the voltage forcing mode (initiated by the FORCE statement) a
current sensing circuit monitors the DPS load currents (when a direct performance
board connection is used). The current sense circuit has two purposes:

1) To activate an automatic disconnect function if the current exceeds the
current range by 50% (refer to Section 6.2.1.3 for a definition of the
current ranges).

2) To be used by the programmable current trip function to detect an
overcurrent condition less than the hardware disconnect limit.

6-3

For 5MHz and lOMHz test stations, direct DPS voltages are referenced to system
ground, which is eleven volts above tester common. Hence, one should subtract
eleven volts from the desired programmed level when using direct performance
board connections.

If a current trip has been previously enabled refer to the ENABLE TRIPx statement
for the affect on the DPS.

Examples:

Force units VF1,VF2,VF3, to +8, 5 and -30 volts respectively.

FORCE VFl 8,RNG2;
FORCE VF2 -5,RNG2;
FORCE VF3 -30; REM RNG3 IS DEFAULT RANGE VALUE;

The following is an example of a program that has the ability to branch upon
detecting a trip condition by using the ON TRIP statement. Upon branching the
program can then measure the DPS load current and record the resultant
measurement on an output device by using a FACTOR WRITE statement.

SET PAGE 1024;

ON TRIP,TRIPl;
ENABLE TRIPil GT 80E-3,RNG2;
FORCE VFl 5,RNG2;

GOTO EOT;
TRIPl: DISABLE DCTO;.

DISABLE DCTl;
MEASURE NODE 143;
WRITE (LP) 'DPSl TRIP - DPSl LOAD CURRENT IS',value;
GOTO EOT;

EOT: END;

6.2.1.3 ENABLE CURRENT TRIP (DPS)

General Form:

ENABLE [TRIPI1/TRIPI2/TRIPI3] [LT/GT] expression (,RNG2/,RNG3);

Description:

This statement enables the current-trip detector of the corresponding voltage
forcing unit (VFl, VF2, VF3). If the source/load current of the forcing unit (VF)
exceeds the enabled trip value during a test sequence, indicating a DC failure, then
program control is transferred to the instruction as specified by the ON TRIP
statement, if issued and the DC FAIL indicator is set. If an ON TRIP has not been
executed prior to the trip, the program proceeds normally. At a pause or end-of
test, the DC FAIL indicator is on if a trip occurred. If the DATALOG~ TRIP is
set, the value specified by this instruction is written on the output device.

6-4

The trips are ignored while the Tester Busy status is 'ON', i.e., until the time delay
generated has expired. This feature allows surge currents without setting the trip
when the VF supplies are driving capacitive loads. For additional time without
increasing the value programmed in the SET DELAY, DC statement, the ENABLE
TRIP may be programmed several statements after the FORCE.

The VF units automatically disconnect under the following conditions:

~ (1) When the magnitude of the current is greater than 150 milliamps and
the trip register is in range 2.

(2) When the magnitude of the current is greater than 1.50 amps and the
trip register is in range 3.

NOTE

The initial condition of the current
trip register is RNG2.

The automatic disconnect from the test station is a safety feature that protects
both the device under test and the DPS units. The trips are processed, provided
they have been enabled, even though the automatic disconnect occurs.

Examples:

Enable the voltage forcing unit VFl so that it trips on load currents
exceeding 100 milliamps and VF2 trips on currents more negative than -50
milliamps.

ENABLE TRIPil GT lOOE-3, RNG3;
ENABLE TRIPI2 LT -0.05, RNG2;

NOTE

If any trip is enabled, then all trips are enabled by
implication. The trip specified is enabled for the
particular value; the other is enabled for less than -1
ampere if the DPS is in voltage force mode or for less
than -40 volts if the DPS is forcing current.

6.2.1.4 FORCE DPS CURRENT

General Form:

FORCE [IF1/IF2/IF3] expression (,RNG2/ ,RNG3);

Description:

This statement directs the programmable power supplies to force the specified
currents. If the range is not specified, RNG3 is used. The direction of the positive
current is out of the supply. This feature may only be used with a direct
performance board connection to a load circuit or device under test. This
statement automatically connects the specified unit to the test station perfor
mance board.

If a voltage trip has not been programmed, an "impossible" trip of less than -40
volts is set, but not enabled.

6-5

Examples:

FORCE IFl 100E-3,RNG3;
FORCE IF3 -5E-3,RNG2;
FORCE IF2 30E-2; REM RNG3 IS DEFAULT VALUE;

6.2.1.5 ENABLE VOLTAGE TRIP (DPS)

General Form:

ENABLE [TRIPV1/TRIPV2/TRIPV3] [LT/GT] expression (,RNG2/,RNG3);

Description:

This statement enables the voltage trip detector of the corresponding power supply
in the current forcing mode. Voltage trips are processed in the same fashion as
current trips. This statement automatically connects the specified unit to the test
station performance board.

Example:

Enable trip interrupts occur if the voltage on DPSl is more positive than -9
volts or if the voltage on DPS3 is more negative than +30 volts.

ENABLE TRIPVl GT -9.0,RNG2;
ENABLE TRIPV3 LT-30; REM RNG3 IS THE DEFAULT VALUE

6.2.1.6 DISABLE CURRENT OR VOLTAGE TRIPS

General Form:

DISABLE TRIPS;

Description:

This statement causes all voltage and current trips to be disabled.

6.2.1.7 DISCONNECTION FROM LOAD BOARD AND OVERCURRENT
DISCONNECTION

General Form:

XCON [VF1/VF2/VF3] ;

Description:

This statement disconnects the specified DPS unit from the load board when using
direct load board connection. If current forcing, the magnitude of the specified
unit is automatically set to 0 in the low range prior to disconnecting. When forcing
a voltage, the user should force a value which minimizes current flow before
disconnecting. After execution of this statement, the DPS automatically is set to
voltage force mode and an impossible current trip condition. The trip function for
the specified unit is disabled.

Example:

6-6

Disconnect all VF units.

XCON VFl;
XCON VF2;
XCON VF3;

6.2.1.8 DPS CURRENT OR VOLTAGE MEASUREMENT

General Form:

MEASURE NODE number (,LOG);

Description:

This statement causes the prec1s1on measurement unit (PMU) to measure the
voltage or current of a DPS at an internal tester monitor node. The DPS as well as
the voltage or current measurement function (including automatic measuring and
ranging conditions) is defined by the node number (octal or decimal) as summarized
below.

NODE NUMBER DESCRIPTION
DECIMAL OCTAL

140 214 DPSl voltage output

141 215 DPS2 voltage output

142 216 DPS3 voltage output

143 217 DPSl load current

144 220 DPS2 load current

145 221 DPS3 load current

At the conclusion of the measurement cycle, the PMU is automatically discon
nected from the DPS mode and then initialized to force 0 current in range 1. For a
more complete description and examples refer to Section 6.2.3.8.

6.2.1.9 MODE CHANGE AND TIME DELAYS

Mode Change

Changing from voltage force to current force implies a disconnect. The user should
minimize current flow with a FORCE VFx before a FORCE IFx or ENABLE TRIPx
is programmed.

Programmed Delays

A hardware delay is initiated when necessary for relay changes, an additional delay
may be desirable in some cases. For example, when forcing voltage into a
capacitive load and a trip is programmed, an additional delay may be used to
prevent a trip while the capacitance is being charged. The trip can then be used
for the steady state load.

The first time the DPS is programmed to a certain mode the delay generated is
5.37 milliseconds or the programmed DC delay, whichever is greater. Subsequent
DPS programming in the same mode results in a delay of 0.56 milliseconds or the
programmed DC delay, whichever is greater.

6-7

Trips

Enabling a trip for any DPS enables trips for all DPS's. If trips are not programmed
for remaining power supplies, an "impossible" value of less than -1 ampere or -40
volts is used. Note that this enables the supply to deliver maximum power.
Disconnecting any or all supplies does not disable the general trip interrupt in all
cases. The disconnected supply can not trip until it is reprogrammed. (Actually,
not until its DPS register and any DPT register are reprogrammed.) The general
trip interrupt enable can be turned off only with a DISABLE TRIP statement.

Note that programming an ENABLE TRIPV also causes the supply to be connected
to the performance board.

6.2.1.10 CONNECTION OF DPS VIA PIN ELECTRONICS (POWER PIN MODE)

General Form:

CONN [DPS1/DPS2/DPS3/TCOM] decimal pin list;

Description:

This statement provides the means for connecting the pins listed to power supplies
DPS1/DPS2/DPS3 or to tester common TCOM via the pin electronics card.

The pin list should be comprised of decimal pin numbers separated by blanks or a
comma.

Pins which are connected to one supply need not be disconnected before being
connected to a different supply. This statement only defines the mode of the pin
electronics card and analog reference selection. The final connection of a pin and
driver to the device under test must be made with the SET DA/DB statement.
Refer to figure 6-3 (Section 6.4.2.1) for the pin relay sequence.

NOTE

When using this method of applying power to the device
under test, the DPS supply is acting as a programmable
reference voltage to the analog reference buffers which
supply current to the pin electronics. Hence, the
current monitoring circuits of the DPS do not see the
device load current and voltages at the pin are limited
to +6/-30(-16) volt swing of the pin cards.

6.2.1.11 DISCONNECTION OF PIN FROM DPS (RETURN TO DATA MODE)

General Form:

XCON PIN decimal pin list;

Description:

This statement causes the listed pins to be disconnected from their current power
supplies, bias supplies, tester common, or clock reference supplies and reverts to an
NRZ data pin state.

The pin list should be comprised of decimal pin numbers separated by blanks or a
comma and become data pins.

6-8

When a pin is disconnected, it is reconnected to the selected data reference pair as
defined by the SET S statemen. Also, the data driver mode is NRZ (refer to
Section 6.4.5.3).

6.2.1.12 POWER UP SEQUENCE EXAMPLE

A. For power supply connection via the pin electronics:

FORCE VFl O;
FORCE VF2 O;
SET DA 00100 00100 00000 1;
ENABLE DA;
SET F O;
SET PERIOD lE-6;
ENABLE TEST; REM CONNECT PIN DRIVERS, PRE

CHARGE DECOUPLING CAPACITORS VIA
I/0 SWITCH;

CONN TCOM 8; REM SUBSTRATE;
CONN DPSl 16; REM VDD;
CONN DPS2 3; REM VBB;
FORCE VFl VDD;
FORCE VF2 VBB;

The above procedure allows the solid state I/O switch to make initial connection.
This is desirable because decoupling capacitors are usually tied to system ground
(+11 volts relative to tester common) and electro-mechanical reed relays are
degraded if required to switch large transient currents. After closing the I/0
switch with the ENABLE TEST statement, the CONN statements cause closure of
relays bypassing the I/O switch and thus creating the lowest impedance path for
power supply currents.

B. For direct load board connection:

FORCE VFl -11;
FORCE VF2 -11;
SET R 00100 00100 00000 l; REM CONNECT SUPPLIES ON LOAD

BOARD;
SET VFl VDD-11;
FORCE VF2 VBB-11;

6.2.2 Reference Voltage Supplies (RVS) and Clock Selection

This section describes the statements that control selection and forcing of
reference voltage supplies or the alternate or interpretative forms of the reference
supplies. This section also describes the statements used for setting output levels
and defining logic polarity.

6.2.2.1 CLOCK MODE SELECTION

General Form:

CONN CLK decimal pin list;

Description:

This statement defines the listed pins as clock pins. The pin list should be
comprised of decimal pin numbers separated by blanks or a comma.

6-9

The CONN CLK option along with appropriate hit ags in SET F and SET S °""' e o "1i! -t " "'I' statements may br, employed to connect -et:tl'ia th~ reference power supply
pair or ~"cf'oSk reference power supply pair to any particular testing pin
according to Table 6-2. Refer to figure 6-3 (Section 6.4.2.1) for the pin relay
sequence.

CLK

0
0

0
0

TABLE 6-2 CLOCK OPTION, POWER SUPPLY, AND SET F
AND SET S STATEMENTS

s F
REG REG SUPPLY

0 0 EO Data Reference Pair
0 1 El

1 0 EBO Data Reference Pair
1 1 EBl (Alternate)

1 0 0 EAO Clock Reference Pair
1 0 1 EAl

1 1 0 ECO Clock Reference Pair
1 1 1 ECl (Alternate) .

When a pin is defined as a clock pin, a relay is closed which shunts the solid state
I/0 switch in order to provide a lower source impedance and a greater capacitive
load drive capability. A clock pin is aut.grpatically put into the 2 {l:~)t~ro ..
(RZ) mode, however, a SET RZ to zero statement can'""be used to put a c oc pin m
the NRZ mode a#eT the CONN CLK statement. / r /r (Jt'it!(f>dl'~~
To remove a pin from clock mode use the previously defined XCON PIN statement.

6.2.2.2 SELECTING ALTERNATE REFERENCE SUPPLIES

General Form:

SETS binary pin pattern;

Description:

This statement loads the S register. A binary O in the pin pattern selects the
standard logic level pair El/EO as input forcing voltages for data pins and the
standard comparator reference pair SO/Sl for the corresponding test pin. A binary
1 selects the optional alternate logic level pair EBl/EBO, and the optional
comparator reference SAO/SAL When switching from one comparator reference
pair to the other, the user must program a one millisecond delay to allow switching
of the relay multiplexer for the references.

For CLOCK pins, a binary 0 selects EAO/EAl reference pair and a binary 1 selects
the ECO/ECl reference pair.

This statement always loads a complete rank of 15 pins. Pins whose status are not
specified are assumed by the compiler to be zero or in the last programmed state.

6-10

6.2.2.3 INTERPRETIVE REFERENCE VOLTAGE SUPPLIES BIT CHANGES

General Form:

SET SI binary pin pattern;

Description:

This statement is a companion to the SET S statement, except that this statement
generates interpretive code.

When this statement is used, all the bits of the S register which are to be modified,
must be explicitly specified in the binary pin pattern using the normal SET S coding
techniques. Bits not specified in the SET SI statement remain in their current
state.

6.2.2.4 FORCING REFERENCE SUPPLIES

General Form:

FORCE [EO/El/EAO/EAl/EBO/EBl/ECO/ECl]expression (,RNG 1/ ,RNG2/ ,RNG3);'

Description:

This statement forces the reference voltage supplies to the programmed values. If
the range is not specified the default (RNG3) is selected. Refer to Appendix L.

EO, El, EAO, and EAl are primary voltage references. The truth table in Section
6.2.2.1 shows the assignment of RVS supplies to the tester pins. The supplies EBO,
EBl, ECO, and ECl are optional.

Example:

Force the standard reference pair to 3.5 and .5 volts respectively for the
"l" and "0" levels.

FORCE El 3.5, RNG2;
FORCE EO .5, RNG2;

6.2.2.5 SETTING OUTPUT REFERENCE LEVELS

General Form:

SET [SO/ Sl/SAO/SAl] expression (,RNG1/,RNG2/,RNG3);

Description:

SO and Sl (and optionally SAO and SAl) are reference supplies for the functional
test comparators. Sl(SAl) is the reference level for the expected logic "l" levels
(F(i)=l) and SO(SAO) is the reference level for the logic "0" levels (F(i)=O). The
programmed value is loaded into the functional test comparator reference voltage
suppply register.

The default range (RNG3) is selected if no range is specified.

Example:

Set SO comparator reference voltage to -5 volts:

SET SO -5, RNG2;

6-11

G.2.2.6 RVS VOLTAGE MEASUREMENT

General Form:

MEASURE NODE number (,LOG);

Description:

This statement causes the prec1s1on measurement unit (PMU) to measure the
voltage output of an RVS at an internal tester monitor node: The RVS to be
measured is defined by the node number (octal or decimal) as summarized below.
At the conclusion of the measurement cycle the PMU is automatically disconnected
from the RVS node and then initialized to force 0 current in range 1.

NODE NUMBER DESCRIPTION
DECIMAL OCTAL

128 200 Comparator Sl ref erC::'lCe voltage

129 201 Comparator SO reference voltage

130* 202 Data driver El reference voltage

131* 203 Data driver EO reference voltage

132* 204 Clock driver EAl reference voltage

133* 205 Clock driver EAO reference voltage

134 206 Data driver EBl reference voltage

135 207 Data driver EBO reference voltage

136 210 Clock driver ECl reference voltage

137 211 Clock driver ECO reference voltage

138 212 Comparator SAl reference voltage

139 213 Comparator SAO reference voltage

* Values measured at internal nodes 130 through 133 are actually 1/8
of the programmed values due to an internal hardware design of
these particular RVS supplies.

6.2.2. 7 DEFINE OUTPUT LOGIC POLARITY

General Form:

SET LOGIC [POS/NEG] ;
Description:

This statement initializes the functional test comparator logic pass conditions for
either positive or negative voltage logic for the device under test (DUT). If this
statement is not used, the positive logic condition is assumed.

6-.12

Table 6-3 shows the pass/fail decisions made by the comparators. For testing
positive logic Sl should be greater than SO. For testing negative logic Sl should be
less than SO.

For SET LOGIC POS the pass conditions are defined as follows:

(1) F(i) = 1 (expected output function for pin(i) = 1)
Pass= DUT OUTPUT SIGNAL Sl, otherwise fail

(2) F(i) = 0 (expected output function for pin (i) = 0)
Pass= DUT OUTPUT SIGNAL SO, otherwise fail

Where F(i) is the expected functional state of pin(i),
ref er to Section 6.4.5.1.

For SET LOGIC NEG pass conditions are defined as follows:

(1) F(i) = 1 (expected output function for pin (i) = 1)
Pass= DUT OUTPUT SIGNAL Sl, otherwise fail.

(2) F(i) = O (expected output function for pin (i) = 0)
Pass= DUT OUTPUT SIGNAL SO, otherwise fail.

TABLE 6-3 COMPARATOR PASS/FAIL CONDITIONS

POS LOGIC: NEG LOGIC:

F=l pass F=O pass

Sl t so t
t t

F=l fail F=O fail

F=O fail F=l fail,

so t Sl t
• • F=O pass F=l pass

6.2.3 Precision Measurement Unit (PMU)

This section describes the statements that control the operation of the Sentry Test
System precision measuring unit. This unit is used for measuring device under test
DC parameters and for system self-check. DC test macro statements are provided
to reduce programming and increase test throughput.

6.2.3.1 PMU FORCING MODE

General Form:

FORCE CURRENT expression (J!.!:!GO/,RNG1/,RNG2/ dB:lJ;
FORCE VOLTAGE expression (,RNG1/,RNG2/,~ftC],.3/, . ;

6-13

Description:

These statements are used to force a programmed current or voltage via the
precision measurement unit. Upon execution of these statements, the output of the
PMU begins to slew to the desired value. If the range is not specified, the def a ult
range is automatically set. If the expression contains only a constant, these
statements are executed in DMA mode.

Example:

Force the output of the precision measurement unit to -1 microamp.

FORCE CURRENT -lE-6,RNGl;

6.2.3.2 DEFINE PMU SENSING RANGEeu'e
vf'J// f

General Form: 0.t'

SET PMU SENSE (,RNQa/,RNGl/,RNG2/,RNG3,
RNG4/,AUTO); . -

t,.)r",...../ ~{,Ii fa
Description:

This statement initializes the PMU sensing range. The sense function is
complementary with respect to voltage and current (i.e., when the unit is set to
force voltage (or current) it is automatically initialized to sense current (or
voltage)). When sensing voltage, the legal ranges are 1, 2, 3, and 4. When sensing
current the legal ranges are 0, 1, 2, and 3. Refer to appendix L for range limits.

When sensing with autorange is requested the initial measurement is made in the
highest range and the range is decreased automliltically one range at a time if
necessary to provide the best measurement resolution.

Example:

SET PMU SENSE,RNG2;

This example senses the PMU in range 2.

SET PMU SENSE,AUTO;

This example senses the PMU in the range that provides the best measurement
resolution.

6.2.3.3 CONNECTION OF PMU TO PIN UNDER TEST

General Form:

CPMU PIN expression;

Description:

This statement connects the PMU to the pin number specified by the expression (or
equivalent value). When the expression is a constant, the PMU is connected in
DMA mode. The PMU is automatically removed from a previous connection before
a new connection is completed.

6-14

6.2.3.4 DISCONNECTION OF PMU

General Form:

XPMU PIN;

Description:

This statement disconnects the PMU from its present pin connection and
reconnects it to pin 0, an internal tester pin. If a forcing current condition exists
pin 0 is connected as an internal tester pin which has a 100 resistor relative to
tester common. If a forcing voltage condition exists tester pin O is in an open
state.

6.2.3.5 DEFINING GO/NO-GO PMU TEST LIMITS

General Form:

SET DCT [LT/GT] expression (,RNGO/,RNG1/,RNG2/,RNG3/ ,RNG4);

Description:

The SET DCT forms a pass or fail threshold. When a MEASURE PIN does not pass
the level specified by the DCT function, a DC fail is indicated and program control
is transferred to the statement specified by the ON DCT statement. If an ON DCT
has not been previously executed, then the next statement following the MEASURE
is executed. A failure causes the DC FAIL indicator to be lit at the next pause or
at the end-of-test. The range specified in this statement overrides that specified
in the SET PMU SENSE statement.

Example:

Enable DC trip limits which pass all measured values between -2 milliamps
and +2 microamps.

SET DCT GT 2E-6,RNG1;
MEASURE PIN;
SET DCT LT-2E-3,RNG2;
MEASURE PIN;

This statement sequence is executed at DMA speed.

6.2.3.6 PMU GO/NO-GO Test

General Form:

MEASURE PIN;

Description:

MEASURE PIN allows fast go/no-go DC parameter tests. It is similar to the
MEASURE VALUE statement (Section 6.2.3.8) except that go/no go comparisons
are made against the SET DCT limit. No floating point conversion is made, nor is
the result stored in VALUE.

6-15

No autoranging occurs when MEASURE PIN is used.

If any datalogging conditions are specified and met (DATALOG DCT or MEASURE),
the resultant measurement is determined by successive approximation.

Example:

FORCE VOLTAGE 4.5,RNG2;
SET PMU SENSE,RNGl;
SET DCT GT 6.0E-6,RNGl;
CPMU PIN 5;
FORCE VOLTAGE 4.5, RNG2;

MEASURE PIN;

REM ACTIVATES A DC TIME
DELAY IN DMA MODE;

6.2.3.7 SOFTWARE DUAL PMU MEASUREMENT LIMITS

General Form:

ENABLE [DCTO/DCTl] [LT/GT] expression;
DISABLE [DCTO/DCTl] ;

Description:

Execution of EN ABLE DCTO/DCTl forms a pass or fail threshold for level DCTO
and/or DCTl. Either one or both thresholds may be specified.

Using both thresholds specifies a "pass window" for subsequent DC measurements
(see MEASURE VALUE, Section 6.2.3.8). The pass region may be specified by the
operators LT/GT and by the value of the expression in the ENABLE statement.

When a measurement caused by the statement MEASURE VALUE does not fall
within the "pass window" specified by the DCT function, a DC fail is indicated and
program control is transferred to the statement specified by the ON DCT
statement (Section 6.2.3.14). If an ON DCT has not been executed, then the
statement following the MEASURE is executed. A failure causes the DC FAIL
indicator to be lit at the next pause or end-of-test.

The DISABLE statement disables the specified comparison limit.

NOTE
This statement provides a measurement limit comparison
for the statement:

Example: MEASURE VALUE/NODE/VARIABLE ;

Enable DC limits which pass all measured values in the range from -2
milliamperes to +2 microamperes.

ENABLE DCTl GT 2E-6;
ENABLE DCTO LT -2E-3;
MEASURE VALUE;

6.2.3.8 ANALOG TO DIGITAL CONVERSION MEASUREMENTS

General Form:

MEASURE [VALUE/NODE number] (,LOG);

6-16

Description:

This statement initiates a measurement within the precision measurement unit
(PMU).

When the VALUE option is specified, the measurement is made according to the
existing state of the PMU. The measured value is converted and scaled to floating
point, using a successive approximation algorithm, and stored in the system global
variable, VALUE. If DC limits are enabled (see Section 6.2.3. 7), VALUE is tested
to determine if it falls within the pass window (defined by the previous ENABLE
DCTO/l statements, regardless of the current DCT register contents). If it fails
the DC FAIL light is on at the next pause or end-of-test. Conditions required for
datalogging the resulting value are described in the note at the end of this section.

If AUTO ranging has been specified (see Section 6.2.3.2), the system automatically
selects the measuring range which gives best resolution. Autoranging begins with
the highest range and ranges downward until best resolution is obtained or until the
lowest range is reached.

Use of the NODE option provides a means for measuring a parameter at a system
internal monitor node. The node numbers and their descriptions are listed in
Appendix G. Ranging and measuring conditions are automatically controlled.

For internal nodes, the measured value, logging, and pass/fail conditions are the
same as previously described. At the conclusion of an internal node measurement
cycle, the PMU is automatically disconnected from the RVS mode and initialized to
force 0 current in Range 1.

Values measured at internal nodes 130 thru 133 are actually 1/8 of the programmed
values due to an internal hardware design of those RVS supplier.

Values measured for DPS current nodes (143, 144, 145) are automatically scaled so
the DCT l/DCTO limits should be expressed in amperes for this case.

The LOG option allows datalogging to occur for only those measurements specified
with the parameter LOG. Ref er to Section 3 of the Sentry User's Reference
Manual for a complete description of DATALOGGING.

Example:

Measure and log the current from VFl:

ENABLE DCTl GT ICCMAX;
ENABLE DCTO LT ICCOPEN;
MEASURE NODE 217B, LOG;

6.2.3.9 INDIRECT MEASUREMENTS

General Form:

MEASURE VARIABLE variable (,LOG);

Description:

The value of the variable, in floating point format, is stored in the system global
variable: VALUE. Variable may be a variable identifier or an array element.

6-17

If DC limits are enabled (see Section 6.2.3. 7), VALUE is tested to determine if it
falls within the pass window. If it fails, the DC FAIL light is on at the next pause
or end-of-test. The value of the variable is logged according to the Monitor logging
command conditions.

The LOG option allows datalogging to occur for only those measurements specified
with the parameter LOG. Refer to Section 3 of the Sentry User's Reference
Manual for a complete description of DATALOGGING.

Example:

Measure and selectively log the value of variable XVAL.

MEASURE VARIABLE XVAL, LOG;

6.2.3.10 CONNECTION OF THE PMU TO FUNCTIONAL PIN DRIVERS

General Form:

[EN ABLE/DISABLE] RELAY;

Description:

The ENABLE statements initializes the pin address control logic such that the
driver for pin (n) remains connected, even though the precision measurement unit is
connected to pin (n). This assumes a driver was previously connected by a SET
DA/DB statement.

The DISABLE statement initializes the pin address control logic such that the
driver for pin (n) is automatically disconnected when the precision measurement
unit is connected to pin (n). If no relay statement is made, the disable mode is
assumed.

Example:

Connect the prec1s1on measurement unit to pin (10) with the driver
connected and then disconnect the driver (make before break sequence in
order to maintain bias on a pin).

EN ABLE RELAY;
CPMU PIN 10;
DISABLE RELAY;

6.2.3.11 OTHER PMU FORCE FORMS

General Form:

SET PMU [FORCEV/FORCEI] (,RNGO/,RNG1/,RNG2/,RNG3/,RNG4/,AUTO);
FORCE PMU expression; · --

Description:

Refer to Section 6.2.3.2 for a detailed description of the SET PMU statement.

The FORCE PMU statement is especially useful when the PMU is to be forced to
several values in the same range, however, it has a slightly longer execution time
than the FORCE VOLTAGE or FORCE C.URRENT statements. The expression in
the FORCE PMU statement is scaled according to the mode, V or I, and range.
When forcing voltage, the legal ranges are 1, 2, 3, and 4. When forcing current, the
legal ranges are 0, 1, 2, and 3. Refer to appendix L for range limits.

6-18

If AUTO ranging has been preset the range which gives the best resolution is
automatically determined (at run time) prior to loading the forcing register (PPS).

Example:

Force the output of the PMU to -1 microamps.

SET PMU FORCEI,AUTO;
A=5E-6;
B=5;
FORCE PMU -A/B;

6.2.3.12 MACRO SEQUENCES FOR DC PARAMETERIC TESTING

Most compiler languages provide the programmer with MACRO programming
capabilities - that is, the ability to write one compiler statement which causes a
predefined set of operations to be performed. The way in which the MACRO call
and subsequent execution sequence is performed, however, varyies between
languages.

The FACTOR language provides the test programmer with the ability to write a
single statement which causes a set of PMU related operations to be performed.
The PMU operations, performed at execution time under control of TOPSY,
constitute a complete DC parametric measurement sequence - hereafter referred
to as a MACRO DC measurement sequence, or simply, a DC MACRO.

In many respects, this DC macro sequence appears very similar to a subroutine but
has several distinct advantages over using a subroutine or even writing the
measurement sequence in line.

A total of nine different DC MACROs are available to support a variety of
commonly used DC measurement sequences. The macros provide less danger of
damaging the device-under-test (DUT) and potentially more accurate test results as
each DC macro is designed to provide an optimized measurement sequence. Each
sequence insures that the PMU forcing and sensing ranges and modes (current and
voltage) are not changed while the PMU is connected to the DUT, thereby
preventing possible harmful transients to the DUT. The DC macro sequences also
insure that tester pin electronics relays are switched at minimum current flow
conditions, thereby prolonging the life and reliability of the test system. Many of
the DC macro sequences also allow the PMU to be "pre-charged" to any desired
potential before connecting to the DUT. This is useful in preventing the functional
state of the DUT from being disturbed when the PMU connection is made. In
addition to providing a means of preventing possible harmful transients to the DUT,
pre-charging can also reduce the response time of both the PMU and DUT after the
PMU connection before making the actual measurement. The latter produces a
reduction in test time which results. in greater test throughput, often times a
critical factor for digital IC manufacturers.

When using a DC macro in place of in-line measurement sequences potential
programming errors and subsequent program debugging time can be reduced since
fewer statements are written. The execution time of the DC macro sequence is
also generally faster than in-line sequences which, of course, results in faster
program execution time.

6-19

When using a DC macro sequence in place of a FACTOR subroutine, the program
execution time is faster as there is less software overhead time involved.

Macro Definition and Description

General Form:

SET TEST number;
MEASURE PIN number(,LOG);

Description:

The statement, SET TEST number, together with an immediately preceeding setup
procedure provides a macro definition for performing a particular type of DC
measurement. The DC measurement sequence is then initiated with the statement
'MEASURE PIN number'. Depending on the test type, the setup procedure may
contain the PMU connected to a precharge pin, open, or short circuit. The PMU is
forced to the desired current or voltage value in the desired sense range. The LOG
option on the MEASURE PIN statement allows datalogging for the particular pin
being measured.

6.2.3.13 DC MACRO MEASUREMENT

There are nine available macro DC measurements. They are:

•SET TEST 1 = VOH Voltage output high
•SET TEST 2 =VOL Voltage output low
• SET TEST 3 = IIH (IR) Input high current
•SET TEST 4 = ICEX Output leakage current
•SET TEST 5 = IIL (IFX) Input low current
•SET TEST 6 = VCD Input diode clamp
• SET TEST 7 = ISC Short circuit current with outputs high
• SET TEST 9 = IOL Output current with outputs low
•SET TEST 10 = VBD Voltage breakdown

Each macro is discussed below along with the resultant macro measurement
sequence and the state of the PMU after the MEASURE PIN number statement. A
sample setup is provided for a YOH test to illustrate how the macro works.

1. SET TEST 1; OUTPUT HIGH VOLTAGE TEST (VOH)

Set-up Procedure:

6-20

EN ABLE RELAY;
CPMU PIN r; REM CONNECT TO REST

PIN - PRECHARGE;
FORCE CURRENT i, RNGx;
SET PMU SENSE, RNGy;
SET TEST 1; REM SELECT TEST MACRO;

·ENABLE DCTO LT lower limit;
ENABLE DCTl GT upper limit;

MEASURE PIN t;
/_,,,..-,···

/ ''r:1MACRO ON PIN T; ,,,_,,
Macro Measurement Sequence:

CPMU PIN t;
DISABLE RELAY;
FORCE CURRENT i, RNGx;

REM EXECUTES THE TEST
MEASUREMENT :=,:

.:._...;,::, __

MEASURE VALUE; REM PERFORM MEASUREMENT;
FORCE CURRENT 0, RNGx;
EN ABLE RELAY; REM RECONNECT THE REST PIN;
CPMU PIN r;

State of PMU after MEASURE PIN t statement:

FORCING: 0 Current
PIN: Set up pin

2. SET TEST 2; OUTPUT LOW VOLTAGE TEST (VOL)

Set-Up Procedure:

EN ABLE RELAY;
XPMU PIN;
FORCE CURRENT i, RNGx;
SET PMU SENSE, RNGy;
SET TEST 2;
ENABLE DCTl GT limit;
ENABLE DCTO LT limit,

MEASURE PIN t;

Macro Measurement Sequence:

Same as SET TEST 1.

State of PMU after MEASURE PIN t statement:

FORCING: 0 Current
PIN: Set up pin

t I I /~i ii e

3. SET TEST 3; ~PUT HI<?~1 CURRENT TEST (IIH (IR))

Set-up Procedure:

DISABLE RELAY;
XPMU PIN;
FORCE VOLTAGE v, RNGx;
SET PMU SENSE, RNGy;
SET TEST 3;
ENABLE DCTO LT limit;
ENABLE DCTl GT limit;

MEASURE PIN t; REM EXECUTE TEST MEASUREMENT
MACRO;

Macro Measurement Sequence:

CPMU PIN t;
FORCE DELAY;
MEASURE VALUE; REM PERFORM MEASUREMENT;

6-21

State of PMU after MEASURE PIN t statement:
ti

FORCING: .A Voltage
PIN: t

4. SET TEST 4; OUTPUT LEAKAGE CURRENT TEST (ICEX)

The setup procedure and measurement sequence and PMU state are
identical to SET TEST 3; IIH (IR). It was originally designed to test a tri
state TTL device with an open collector on the output and the output
trnnsistor in the "off" condition.

5. SET TEST 5; INPUT LOW CURRENT TEST (IIL(IFX))

Set-up Procedure

DISABLE RELAY;
XPMU PIN;
FORCE VOLTAGE v, RNGx;
SET PMU SENSE, RNGy;
SET Sl vih, RNGx;

SET TEST 5;
ENABLE DCTO LT limit;
EN ABLE DC Tl GT limit;

MEASURE PIN t;

Macro Measurement Sequence:

CPMU PIN t;
FORCE VOTLAGE v, RNGx;
MEASURE VALUE;

REM SET REFERENCE Sl SLIGHTLY
GREATER THAN DEVICE VIH ON
SAME RANGE AS PMU FORCE;

REM EXECUTE TEST MEASUREMENT
MACRO;

FORCE VOLTAGE vih, RNGx;
XPMU PIN; REM IF XPMU PIN WAS GIVEN IN THE

SET-UP PROCEDURE, OTHER WISE
THE LAST PIN NUMBER;

State of PMU after MEASURE PIN t statement:

FORCING: vih Voltage
PIN: t

6. SET TEST 6; INPUT DIODE CLAMPS (VCD)

6-22

Set-up Procedure:

ENABLE RELAY;
XPMU PIN;
FORCE CURRENT i RNGx;

SET PMU SENSE, RNGy;
SET TEST 6;
ENABLE DCTO LT limit;
EN ABLE DC Tl GT limit;

MEASURE PIN t;

Macro Measurement Sequence:

CPMU PIN t;
DISABLE RELAY;
FORCE CURRENT i, RNGx;
MEASURE VALUE;

REM EXECUTE TEST MACRO;

FORCE CURRENT 0, RNGx;
ENABLE RELAY;

State of PMU after MEASURE PIN t statement:

FORCING: 0 Current
PIN: t

7. SET TEST 7; OUTPUT SHORT CIRCUIT CURRENT TEST (ISC)

Set-up Procedure:

DISABLE RELAY;
XPMU PIN;
FORCE VOLTAGE v, RNGx;
SET PMU SENSE, RNGy;
SET Sl voh, RNGx; REM SET REFERENCE Sl SLIGHTLY

GREATER THAN YOH ON SAME RANGE AS
PMU FORCE;

SET TEST 7;
ENABLE DCTO LT limit;
ENABLE DCTl GT limit;

MEASURE PIN t; REM EXECUTE TEST MACRO;

Macro Measurement Sequence:

CPMU PIN t;
FORCE VOLTAGE v, RNGx;
MEASURE VALUE;
FORCE VOLTAGE voh, RNGx;
XPMU PIN; REM IF XPMU PIN WAS GIVEN IN THE SET

UP PROCEDURE, OTHER WISE THE LAST
CONNECT PIN NUMBER;

State of PMU after MEASURE PIN t statement:

FORCING: voh voltage
PIN: Set up pin

8. SET TEST 8; Not Available

6-23

9. SET TEST 9; OUTPUT LOW CURRENT TEST (OUTPUTS LOW (IOL))

Set-up Procedure

DISABLE RELAY;
XPMU PIN
FORCE VOLTAGE v, RNGx;
SET PMU SENSE, RNGy;
SET SO vol, RNGx; REM SET REFERENCE SO SLIGHTLY LESS

THAN DEVICE VOL ON SAME RANGE AS
PMU FORCE;

SET TEST 9; ~·~\
ENABLE DCTO LT ,.JJY!rl~ iv
EN ABLE DC Tl G , . Ij;

'· .<"·

MEASURE PIN t; .,., ... REM EXECUTE TEST MACRO;

Macro Measurement Sequence:

CPMU PIN t;
FORCE VOLTAGE v, RNGx;
MEASURE VALUE;
FORCE VOLTAGE vol, RNGx;
XPMU PIN;

State of PMU after MEASURE PIN t statement:

FORCING: vol Voltage
PIN: Set up pin

10. SET TEST 10; VOLTAGE BREAKDOWN (VBD)

6-24

Set-up Procedure:

XPMU PIN; REM SAME PROCEDURE AS TEST 6;
EN ABLE RELAY;
FORCE CURRENT i, RNGx;
SET PMU SENSE, RNGy;
SET TEST 10;
LINH~ .. -2.;
ENABLE D G·r I &

tt1 E 1i1 ii/.t~i ~
Macro Measurement Sequence

CPMU PIN t; REM SAME PROCEDURE AS TEST 6;
DISABLE RELAY;
FORCE CURRENT i, RNGx;
MEASURE VALUE;
FORCE CURENT 0, RNGx;
EN ABLE RELAY;

State of PMU after MEASURE PIN t statement:

FORCING: 0 Current
PIN: t

EXAMPLE:

A sample setup for a VOH test is as fallows:

ENABLE RELAY;
CPMU PIN 16; REM PIN 16 = VCC FOR PRECHARGE;
FORCE CURRENT -360E-6, RNG2;
SET PMU SENSE, RNG2;
SET TEST 1;
ENABLE DCTl GT 3.5;
ENABLE DCTO LT 2.7;
MEASURE PIN 12;

The execution of the SET TEST 1 statement causes the connected test pin, pin 16,
and the forcing mode and value, current -360E- 6 RNG2, to be saved. In addition,
when current is being forced, the PMU is reset to force zero current on the same
range whenever relay switching occurs. The statement MEASURE PIN 12 causes
the following measurement sequence to be performed.

CPMU PIN 12;
DISABLE RELAY; t
FORCE CURRENT 360E-6, RNG2;

MEASURE VALUE;

FORCE CURRENT O,RNG2;
ENABLE RELAY; t
CPMU PIN 16;

NOTE

REM THE PMU IS SWITCHED FROM
THE PRECHARGE PIN TO THE PIN
UNDER TEST;

REM THE MEASUREMENT IS MADE;

REM THE PMU IS RECONNECTED
TO THE REST PIN WHILE THE PMU
IS FORCING 0 CURRENT;

The FACTOR statement MEASURE PIN is different from MEASURE
PIN number. MEASURE PIN is retained for performing a go/no-go
comparison on the currently connected tester pin. The MEASURE
VALUE performed by the macro does not update the variable
VALUE ,,..;,·,_,_~~ . '.; .. ---

tThe Enable Relay-Connect-disable relay sequence is used to allow the input pin
buffer of the pin electronics to clamp the current forcing PMU when initially
connected to the pin. That is, a make-before-break sequence between the PMU
relay and D relay occurs. To make use of this feature, the pins must be previously
defined as input by the SET D instruction.

6-25

6.2.3.14 PROGRAMMABLE PMU VOLTAGE CLAMP

General Form:

SET CLAMP [SYM/POS/NEG] number;
SET CLAMP OFF;

Description:

The purpose of the SET CLAMP statement is to define a limited range within which
PMU voltages may occur when the PMU is forcing a current into a load.

The PMU voltage clamp may be used when forcing voltage (to protect a device
from a programming error) or when forcing current and sensing voltage.

POS means no voltages less than -0. 7 volts are allowed and NEG means that no
voltages greater than 0.7 volts are allowed. SYM allows both positive and negative
voltages to occur. At the other limit, number defines the absolute value of the
maximum PMU voltage which is allowed.

There are 30 values at which the PMU may be clamped (positive or negative).
They are:

1.5, 3.0, 4.5, 7 .5, 9.0, 10.5, 13.5, 15, 16.5,
19.5, 21.0, 22.5, 25.5, 27.0, 28.5, 31.5, 33.0,
34.5, 37.5, 39.0, 40.5, 43.5, 45.0, 46.5, 51.0,
57.0, 63.0, 60.0, 75.0, 81.0, 87.0, 93.0, volts.

Any value is accepted, however, the next higher (if not equal) clamp value is
selected.

Example:

SET CLAMP POS 8.2;
}

The allowed voltages from the ~d are between-0. 7 volts,., and 9.0 volts. The
actual clamp values produced by the hardware are +1 volt<'.:1,,+10% of the value
specified. When sensing voltage, extra delay should be provided for clamp
stabilization for each FORCE CURRENT statement executed.

6.2.4 Analog System Time Delays

There are two sources of time delays to allow for relay and analog settling times.
One source is fixed delays which are appropriate for whatever hardware activities
need them. The second source is a user programmable time delay generator to
allow for special cases where increased settling time is needed for best accuracy.
Ref er to Appendix D.

6.2.4.1 INITIALIZING PROGRAMMABLE TIME DELAYS

General Form:

SET DELAY expression, DC;

Description:

The value of the required time delay is loaded in the tester time delay register.
The resolution is 0.35 milliseconds with a maximum value of 5. 734 seconds. When a
DC delay is invoked, the Tester Busy status remains "ON" for the amount of time
defined by the SET DELAY statement or for the fixed time delay generated by the
hardware, whichever is greater. The DC delay is used in execution of FACTOR
statements for power supplies and precision measuring unit programming (refer to
Section 6.3). It is also used for expressing MATCH or EXT SYNC mode time out
duration (ref er to Section 6.5.2.4).

6-26

Example:

SET DELAY 0.005, DC;

6.2.4.2 TIME DELAY GENERATION

General Form:

FORCE DELAY;

Description:

This statement forces TESTER BUSY for the time initialized by the last "SET
DELAY" statement that was executed. No time-delay-dependent statement can be
executed during TESTER BUSY. Hence if a time delay dependent statement
follows a FORCE DELAY statement then a time delay is actually encountered. If
the statement following the FORCE DELAY is a non-time delay dependent
statement it is executed immediately regardless of the tester busy/not busy
condition. Then the next statement is examined for execution.

Example:

Provide a 3 millisecond delay after connecting pin 10 to provide settling
time for the change of programmed voltage prior to executing a MEASURE
VALUE.

SET DELAY 3 E-3, DC;
CPMU PIN 10;
FORCE DELAY;
MEASURE VALUE;

The following diagram shows the sequence of the statements listed in reference to
a timing diagram.

Tester Busy

1 2 3 4 5

1. SET DELAY 5E-3, DC;
2. FORCE DELAY;
3. A=B+C;
4. MEASURE VALUE;
5. RESULT=VALUE-A;

6-27

6.2.4.3 TIME DELAY DEPENDENCY

General Form:

FORCE WAIT; TC I

Description: 10,ft JN'rer1e'

This statement forces the~ to wait until the status of the tester is not-busy
before processing the next statement. This statement is not necessary prior to
time delayyStatements such as MEASURE VALUE.
Example: Oe1eftld pp'('

Provide a delay until the tester is not busy after forcing a power supply
voltage.

FORCE VFl 5.0, RNG2;
FORCE WAIT;

6.2.5 Miscellaneous Analog Subsystem Statements

6.2.5.1 DEFINING PROGRAM OFFSET VOLTAGES

General Form:

SET VOFFSET number;

Description:

This statement allows the specification of a voltage offset value which is
automatically added to the values programmed l:>Y al!_ subseguent l£Q]tage farcing
statements. -
~~-.-~-

The VOFFSET level can be used as a reference level for all other forcing voltages,
thus reducing the programming task and improving the readability of the listing.

If range modifiers are used, they must be consistent with the sum of the
programmed voltage and VOFFSET.

Example:

If a supply absolute voltage range is +6 to -30 volts (5MHz) and a device
requires greater than +6 volts with voltage swings within the 36 volt range,
the offset value and supplies can be programmed as follows:

SET VOFFSET-18;
VSS=20;
FORCE VFl 0, RNG 3; I'S 1!!'4S"""" Is 7/1~ r
FORCE VF2 VSS, RNG 2;

The actual voltages programmed are:

VFl=-18 volts
VF2=+2 volts

The voltage statements affected by the voltage offset value are listed in Table 6-4.

6-28

TABLE 6-4 VOLTAGE STATEMENTS

FORCE [VF1/VF2/VF3] expression (,RNG1/,RNG2/,RNG3);
FORCE (EO/El/EAO/EA1/EBO/EB1/ECO/EC1) expression (,RNG1/,RNG2/,RNG3);
FORCE PMU expression;
FORCE VOLTAGE expression (RNG1/,RNG2/,RNG3/,RNG4);
SET [SO/Sl/SAO/SAl] expression (,RNG1/RNG2/,RNG3);
ENABLE [TRIPV1/TRIPV2/TRIPV3] [LT/G1} expression (,RNG2/,RNG3);
SET DCT ~T/GT] expression (,RNGO/,RNG1/,RNG2/,RNG3/,RNG4);
ENABLE VLO/VHI] [LT/GT] number;
ENABLE CTO/DCT:(J [LT/GT] expression;

Note: Voltage offset does not apply to the SET CLAMP statement as there is no D
to A converter in the hardware.

6.2.5.2 ESTABLISHING ABSOLUTE PROGRAM ANALOG LIMITS

General Form:

ENABLE [ILO/IHl/VLO/VHI] [GT/LT] number;

Description:

This statement enables limit comparisons to be made on all programmed
current/voltage operands prior to an instruction execution. If the operand fails to
be within the LIMIT bounds, a system terminal error of 21 or 22 is issued. (Refer to
Appendix E for terminal error numbers and descriptions.)

Statements with operands in the LIMIT bounds are executed. The "allowed" regions
are established by the LIMIT pairs ILO and IHI for currents and by the LIMIT pairs
VLO and VHI for voltages. The absence of ENABLE LIMIT statements in a program
allows all magnitudes less than the hardware range limits to be programmed. The
function of the limit compairsons is to protect the device under test where source
forcing parameters are calculated or may be unknown. Once the program is
operational and safe parameters are known, these statements may be removed for
execution time efficiency.

Examples:

Enable limits to "pass" voltages which are between the values of +5.0 and 0
volts.

ENABLE VHI GT 5;
ENABLE VLO LT O;

Enable limits to pass currents which are between the values of +lOOmA and
-5mA.

ENABLE IHI GT lOOE-3;
ENABLE ILO LT -5E-3;

6-29

6.3 FUNCTIONAL TEST TIMING SUBSYSTEMS

This section describes the FACTOR programming statements for the Sentry
function test timing subsystem. The timing subsystem consists of the Test Rate
Generator and delay/width generators.

6.3.1 Time Delay and Width Generators

Time delay and width generators are used to define functional test driver switching
points of an input waveform and output sampling times.

6.3.1.1 DEFINING TIMING GENERATOR DELAY AND WIDTH

General Form:

SET TGx [DELAY/WIDTH] expression (,RNGO/,RNG1/,RNG2/,RNG3);

Description:

Eight timing generators are availabl_e for use, six of whicn may be used for data and
clock timing (TGl through TG6) and two of which may be used for strobing (TG7
and TG8).

This statement set provides the user with the capability of programming the delay
and width of any one of the timing generators. The full range for pulse delay and
pulse 'Nidth is 10 nsec to 10 msec with a minimum resolution of .16 nsec shown in
Table 6-5.

TABLE 6-5 TIMING GENERATOR RANGE SCALE AND RESOLUTION

Range Full-Scale Resolution

0 10 usec. .16 nsec
1 100 usec. 100 nsec.
2 1 msec. 1 usec.
3 10 msec. 10 usec.

If range is not specified in the statement, the lowest range consistent with the
specified magnitude is used.

6.3.1.2 TIMING RANGE RESTRICTIONS

The range of pulse width must be less than or equal to the range of pulse delay,
since all time base outputs are synchronized to TO rather than to the end of delay.
The range of the pulse delay must be less than or equal to the range of the period.

Pulse width and pulse delay must be less than or equal to test period as
programmed by the statement SET PERIOD.

6-30

6.3.1.3 ASSIGNING TIMING GENERATORS TO PINS

General Form:

CGEN [TGO/TG1/TG2/TG3/TG4/TG5/TG6/TG12) decimal pin list;

Description:

There are eight timing generators available, two of which are used for generating
comparator strobes (ref er to Section 6.4.4.1 and Section 6.3.2.1). Any one of the
remaining six (TGl to TG6) may be connected to one or more tester pins specified
in the decimal pin list by issuing this statement. These six timing generators are
used for data and clock timing during functional testing.

\/ Connecting a pin to TGO results in that pin being clocked at reference time TO.
--r:.-- Pins not connected to a timing generator are clocked at time TO. -

The decimal pin list is comprised of one or more decimal pin numbers. Connecting
a specific pin to a timing generator causes that pin to be automatically
disconnected from any other timing generator. Otherwise, a pin remains connected
until it is spe,cified in a CGEN TGO statement. Figure 6-1 illustrates timing
generator pulse generation.

Connecting a pin whose mode is RZ to TG12 results in that pin being provided with
an effective input of the logical OR of TGl and TG2 which produces a double pulse.
Double pulse has no effect on pins whose mode is NRZ, as the definition of NRZ is
retained.

TO

TGI

TG21-----'

TO

F-DATA -----i
(I)

RZPINDATA

NRZ PIN DATA i-----+--.

TO TO TO TO

(O) (I) (I)

Figure 6-1 Timing Generator Pulse Generation For TG12

TO

6-31

6.3.2 Test Rate Generator

6.3.2.1 DEFINING TEST RATES

General Form:

SET PERIOD expression (,RNGO/,RNG1/,RNG2/,RNG3);

D~scription:

This statement is required prior to an EN ABLE TEST statement and defines the
functional test period or test rate between 100 nsec and 40 msec. The full-scale
value and resolution for each range is shown in Table 6-6.

TABLE 6-6 PERIOD RANGE, SCALE AND RESOLUTION

Range Scale Resolution
0 40 usec 10 nsec
1 400 usec lOll nsec
2 4 msec 1 usec
3 40 msec 10 usec

The period and range specified is tested for consistency at execution time. If no
range is specified, the range giving the best resolution for the selected period is
chosen by the compiler. Full scale values are 10 usec, 100 usec, and 1 msec for
ranges 0, 1, and 2 respectively for autoranging. For example, in order to obtain the
finest resolution for periods greater than 10 usec and less than 40 usec, the RNGO
modifier must be used. Otherwise autoranging selects RNGl. The autorange points
are set to best prevent range violations as described in Section 6.3.2.2.

If a pin in the NRZ mode is driven by a timing generator with a delay plus width
exceeding the test period, the F-data becomes O at TO on a 1 to O transition of
memory data. Figure 6-2 shows data and pulse response for RZ and NRZ F-data
during set periods.

TO TO TO TO

TG(x)

F-DA TA ----1
(I) (I) (0)

RZ PIN DATA----.....

NRZ PIN DATA-__,i--_ __.

loELA vlw1DTHI

Figure 6-2 Period and Pulse Generator For Pulse Exceeding Period

6-32

6.3.2.2 RANGES AND RESTRICTIONS

The value of the test rate must be greater than or equal to the pulse width or the
pulse delay values specified for any programmed timing generator. Also the range
of the test rate generated must be greater than or equal to the range of range of
the test rate generated must be greater than or equal to the range of any delay
generated.

Specifications less than 100 nsec (200 nsec for a 5 MHz test station) or more than
40 msec for period, results in a terminal error message.

6-33

6.4 PIN CONTROL LOGIC - FORMATTING AND FAIL RESPONSE

6.4.1 Long Register Formatting

This section describes two basic forms of tester statements which fundamentallv
manipulate tester pin registers interfaced to the tester long register data bus. •

The binary register (long registers) are used to set up local memory and other
hardware conditions for functional testing.

The general format of the statements for programming functional test conditions is
as follows:

SET register(*) binary pin pattern (,binary pin pattern, .••);

where the register may be one of the following:

DA,DB,MA,MB,S,R,F,INVERT,I,STROBE,RZ, or XOR

The binary pin pattern is defined by a binary value which has a one to one
correspondence between the pin and the pattern bit locatu:m. Only pins that change
from the previous state need be specified by the SET statement. Even if all pins
are specified and the asterisk is omitted (ref er to Section 6.4.1.4 for asterisk
notation), only codes for the ranks (ref er to Appendix B) in which pin data has
'~hanged are generated for maximum test rate. In the first statement of a type
executed by a program, or for SET F statements the first of each local memory
load, all pin states not specified are assumed to be zero.

3.4.1.1 PIN ORIGIN AND PATTERN REPLICATION

The binary pin pattern can be programmed by either specifying each bit of the
pattern or by using one of the following operators:

[n] Pin origin operator where n is an integer.
(m:bpp) Binary pin pattern replicator operator, where m is an integer

and bpp is the binary pin pattern.

A sequence of binary pin patterns seperated by commas represent a series of
functional tests. To better illustrate the use of these statements, two examples
are shown below. The first example uses the pin origin and replicator operators.
The second example yields the same binary pin patterns, however, it does not make
use of the operators.

Example 1:

SET F (j) (3:0) (13:1) (2:0)1'
(3:101) 010 (6:1),
[8] (2:1) (9:0);

Example 2:

SET F 0000 111 111 111 111 100,
00101 101 101 010 111 111,

01 101 111 000 000 000;

6-34

Explanation:

(3:0) means three O values specified
(13:1) means thirteen 1 values specified
(2:0) means two values of 0 specified
(3:101) means three sets of 101 values
010 means set the next three pins to this pattern
(6:1) means six values of 1 specified
[8] means preserve the previous pattern and start at pin 8 with the

following specifications (Note the pins are numbered starting with 1.)
The (2:1) and (9:0) follow the same format as the other pattern replicators
specified

It should be noted that blanks are ignored ~ the binary pin patterns, however,
when using the pattern replicator no .Qklnks. are !:!J.IB!¥ed within the binary pin
pattern. A system error message is 1.ified if blanks are entered. - -
6.4.1.2 RANK ORGANIZATION

The tester is organized into ranks of 15 pins each, as follows:

rank 1 =pins 1-15 and ENABLE DA/DB
rank 2 =pins 16-30 and ENABLE MA/MB
rank 3 =pins 31-45
rank 4 = pins 46-60

When loading the long registers, all 15 pins of the rank are load~d ~
.J.tom-.one .li...Jlj.t word of the CPU's memory. Due to this-;'"aII 15 pins must be
· deterffi'iiled Oythe compiler in order to fully define the rank. All pins not specified
in a given statement are assumed to be zero or in the last defined state.

The SET FI and SET SI statements also operate on a rank basis; however, since they
are interpretive rather than DMA, they are first read back during test execution
and the specified pin definitions only are changed.

6.4.1.3 COMPILER GENERATION OF MINIMUM DATA

The compiler minimizes the number of ranks of data generated in order to reduce
the size of the test program, and also reduce the time to load local memory.

The following decisions are made in the compiler:

(1) If all pins of any rank are in the same state as the last SET register and
there is no asterisk, then no code is generated for that rank.

Example:

SET F (60:1); REM GENERATE RANK 1,2,3,4;
SET F (30:0) (30:1); REM GENERATE RANK 1,2 ONLY;

If there are no pin changes in any rank, code for rank 1 is generated.

6-35

(2) If the statement contains an asterisk, then data is generated for each rank
for which a pin is specified, even if it is not a change in the pin condition.

Example:

SET F (60:1);
SET F* (30:0) (30:1);
SET F* [1] 1 [45] O;

REM GENERATE RANKS 1,2,3,4;
REM GENERATE RANKS 1,2,3,4;
REM GENERATE RANKS 1,3;

(3) Regardless of pin data, a SET F following a change of the enabled D
register (ENABLE DA/DB) causes code to be generated for rank 1. A
change of the enabled M register (EN ABLE MA/MB) causes code to be
generated for rank 2.

(4) All ranks are automatically generated at the first SET F of the program,
the first SET F following an AT statement, after an ENABLE TEST, and
after SPM statements loading local memory.

A four rank holding register is used for loading iocal memory. Thus, ranks
that are not loaded from CPU memory are replicated into each local
memory location.

(5) Unless defined otherwise, the compiler generates a pin state of binary 0 for
the following conditions:

(1) beginning of the program
(2) after a FORCE RESET statement
(3) after an AT statement
(4) after an ENABLE TEST statement

6.4.1.4 ASTERISK NOTATION

General Form:

SET register* binary pin pattern (,binary pin pattern);

Description:

The asterisk form of the statement forces data codes to be generated for all ranks
in which pins are specified. It should be used whenever the flow of control is
altered.

Example:

6-36

Statement
Number

1
2
3

n

X:

Statement

SET S (30:1);
SET S (29:1)0;
SETS* (30:1);

.
SET S (30:0);
GOTO X;

Compile Ranks

1 and 2
2
1and2

1 and 2

Explanation:

Statement 1 is included in order to get the S register into a known state.
Since pins 1 to 15 are already l's, only rank 2 is generated for statement 2.
Without the asterisk in statement 3, only rank 3 would be generated for the
same reason, however, since the first 15 pins are O's at statement n,
execution of statement 3 as the result of a branch statement from
statement n+l would be an error. Using the asterisk form of the SET S
statement corrects the problem in the above example

The asterisk form with all the pins specified should always be used after a
subroutine call, subroutine entry, conditional statement, or after a label in order to
force generation of code for all ranks and account for any changes which may have
occurred outside of the mainstream flow of the program.

Example:

Statement

SET F (60:1);

SET F (59:1) 0;

CALL X;

SET F* (60:1);

Explanation:

Compiled Data

06077777
06177777
06277777
06377777

26337777

06077777
06177777
06277777
26377777

In the above example, note the second SET F statement generated only one
word. Normally, words are generated only for ranks with data that
changes. However, the fourth statement follows a subroutine call and, at
run time, subroutine X may alter the F register. To insure that all 60 pins
were returned to "one", the programmer used an asterisk to force the
compiler to generate data for all the ranks explicitly mentioned in the
statement.

6.4.1.6 MINIMUM PIN DEFINITION

General Form:

SET MPIN number;

Description:

This statement allows a user to define the maximum pin count allowed in their
FACTOR program and to control the maximum number of ranks of long register
data that the compiler generates. If subsequent pin-related statements contain a
pin count greater than the specified limit, the error message:

NUMBER EXCEEDS LIMIT

is issued for each statement.

6-37

Example:

000001
000002
000002

SET PAGE 1024;
SET MPIN 30;
SET F 25 1010101;

NUMBER EXCEEDS LIMIT t
000002 END;
OOOlB COMPILATION ERRS

6.4.1.7 PIN LIST FORMAT- PROGRAM:v:IING CONDITIONS

This discussion explains the compiler handling of the following tester statements:

CONN CLK
XCON PIN
CGEN TGx

(1) The compiler keeps a buffer in memory of all clock, DPS, and timin{~
generator conditions. This allows the compiler to generate the correct
code when reassignments are made. For example:

CGEN TGl 1,2,3;

CGEN TGl 4,5,6;
REM PINS 1 THRU 6 ARE NOW CONNECTED TO TGl;

(2) The compiler makes the pin assignments in the order of presentation to the
compiler. This can cause complications when the program is executed in a
different sequence. For example:

IF A EQ 0 THEN GOTO LABEL;
CGEN TGl 1,2,3;
LABEL:
CGEN TGl 4,5,6;
REM PINS 1 THRU 6 ARE NOW CONNECTED TO TGl;

(3) The compiler assumes that all assignments will occur, even if a conditional
expression causes the tester statement to be skipped at execution time.
For example:

IF A EQ 0 THEN CGEN TGl 1,2,3t
ELSE CGEN TGl 4,5,6;

REM PINS 1 THRU 6 ARE NOW CONNECTED TO TGl;

(4) A possible programming technique to avoid the pitfalls of examples 2 and 3
is to program the disconnection. For example:

6-38

IF A EQ 0 THEN CGEN TGl 1,2,3f . , F' 1
ELSE BEGIN -~""' .i!1'¥'c /Al' ,pe ""

CGEN TG04 1,2,3; <('-- o,...,.,,r 7 s' tVo TG- -ro /)hVJ' /, ;z., ~
CGEN TG144,5,6;
REM PINS 4 THRU 6 ARE NOW CONNECTED TO TGl;
END;

POWER
PIN

CLOCK
PIN

DATA
PIN

OUTPUT
PIN

Kl

-~-

K2

-~~

1/0 SWITCH

I
I
I
I
I
I

I
ENABLE DA/DB

I
K3

Figure 6-3 Pin Relay Sequence

K5
(NORMALLY

CLOSED)

DUT

6-39

6.4.2 Input Pin Definition Registers

There are two registers which provide the capabilities of defining input pins. They
are the DA and DB registers. Only one of the two register is effective or enabled
at any time during a functional test execution. This implementation allows the
high speed functional pattern to control the connection or disconnection of pin
electronics drivers from the pin under test. The selection of which input definition
register is active is under control of the local memory or other optional pattern
generators. In the case of local memory operation the ENABLE DA/DB statement
(Section 6.4.2.2) defines the selection of DA or DB within the functional test truth
table.

6.4.2.1 DEFINING INPUT PINS

General Form:

SET [DA/DB] binary pin patterTl;

Description:

This statement provides the capability for setting either the primary DA or
alternate DB pin definition register. The 1/0 pin definition register in use at any
particular time may be specified by the ENABLE DA/DB statement.

This statement loads one of the input definition registers. A binary 1 in the pattern
field declares the associated test pin to be an input pin and a binary 0 in the
pattern field declares the associated pin not to be an input pin. The OR of the pin
data from the DA and DB registers energizes a relay (K3) through which inputs may
be programmed (refer to figure 6-3 for relay sequence). If the DA register
contains a binary 1 for a certain pin and ENABLE DA is effective in the functional
test, the high speed I/0 switch in the pin electronics for that pin is on, thus
completing the connection of the functional driver to the device pin. If the DA or
DB register contains a 0 for a certain pin, and that DA or DB register is effective
then the high speed I/O switch is off (open) thus disconnecting a data driver from
the device pins. In any case the test pin remains connected to the corresponding
pin voltage level detector.

6.4.2.2 SELECTION OF INPUT DEFINITION REGISTER FROM LOCAL MEMORY

General Form:

ENABLE [DA/DB] (,MA/MB);
~

Description: fJr L 1 c CN ,,;

This statement selects input definition register and optionally selects the pin mask
register to be used in subsequent functional tests (in the order in which the D or M
registers appear in the program). When executing a test pattern, changes in
enabling DA or DB always occur at time TO (the beginning of a test cycle period).
DA is enabled prior to execution of this statement.

This statement generates no object code but is merely an informational statement
for the compiler and affects the generation of subsequent SET F statements. If the
statement is referenced by a local memory label, the label refers to the next
available location in local memory. Therefore, this statement must be immediately
followed by at least one SET F statement.

6-40

Refer also to Section 6.4.3.2 for the form and description of the ENABLE MA/MB
statement for selection of the output mask definition registers.

6.4.3 Output Mask Definition Registers

There are two registers which provide the capabilities of defining output pins.
They are the MA and MB registers. Either one of the two registers is effective or
enabled at any time during a functional test exercise. This implementation allows
the high speed functional pattern to control the enabling and disabling of pin
electronics comparators. The selection of which mask definition register is active
is under control of the local memory or other optional pattern generators. For
local memory usage EN ABLE MA/MB statement defines the selection of MA or MB
within the functional truth table.

6.4.3.1 DEFINING CARE PINS

General Form:

SET [MA/MB] binary pin pattern;

Description:

The function of this statement is to allow the setting of the primary MA or
alternate MB pin mask register. The pin-mask register in use at any particular
time it is specified by the ENABLE MA/MB statement.

This statement loads one of the mask registers. A binary 1 in the binary pin
pattern enables the associated pin level detector. A binary 0 in the pin pattern
disables the associated pin level detector. These two states are referred to
respectively as the "care" and "don't care" conditions. The functional test results
(pass/fail) are strobed from the level detector outputs into the comparison register
(C) for "care" pins. The transfer of the fail signal into the C register is inhibited
for "don't care" pins.

6.4.3.2 SELECTION OF OUTPUT MASK REGISTER FROM LOCAL MEMORY

General Form:

ENABLE [MA/MB] (,DA/DB);
~ ..

Description: "j;t' I" /11-o:. 1 c"' ~ .H1 t- ,.,.,,..,

This statement selects the pin mask register and optionally selects the input
definition register to be used in subsequent functional tests (in the order in which
they appear in the program). MA is enabled prior to execution of this statement.

This statement generates no object code but is merely an informational statement
for the compiler and affects the generation of subsequent SET F statements. If the
statement is referenced by a local memory label, the label refers to the next
available location in local memory. Therefore, this statement must be immediately
followed by at least one SET F statement.

Refer to Section 6.4.2.2 for the form and description of ENABLE DA/DB statement
for the selection of the input definitions register.

6-41

5.4.3.3 MASK CONTROL RELATING TO 1/0 DEFINITION

General Form:

[ENABLE/DISABLE] IMASK;

Description:
This statement provides automatic masking (i.e., specifying "don't care") of all
input pins. The input pins are defined by either the SET DA or SET DB statements,
whichever is effective. Any pin programmed as an input pin in the enabled D
register is not functionally tested as long as ENABLE IMASK is active, regardless
of the contents of the enabled M register.

))& Tf Ip OA/j 0 h' I/ i; /

6.4.4 Output Comparator Strobes

Timing generators 7 and 8 are used to define the time during which output pin
comparator data is sampled (or strobed) and compared to expected results.

6.4.4.1 STROBE TIMING GENERATOR SELECTION

General Form:

SET STROBE binary pin pattern;

Description:

This statement may be used to select one or both of two possible strobe times for
each tester pin. A binary 0 in the pattern field connects TG7 to the pin, whiie a
binary 1 connects TG8 to the pin.

If the statement ENABLE DOUBLE STROBE is executed by the program, then all
pins indicated by a binary 0 is strobed by both TG7 and TG8. A single strobe (TG8)
still exists on pins indicated by a binary 1 in the pattern field.

If either TG7 and TG8 is being used for strobing, they must have a programmed
delay and width (ref er to Section 6.3.1.1). The strobe window is equal to the
programmed width.

6.4.4.2 DOUBLE STROBING

General Form:

[ENABLE/DISABLE} DOUBLE STROBE; ...---

Description:

This statement is used in conjunction with the SET STROBE statement described
above. When double strobing is enabled, all pins may be strobed by both TG7 and
TG8. The composite strobe pattern allows failures to be detected during both of
the strobe windows. All pins with a binary 1 in the pin pattern are strobed by TG8
only, overriding the DOUBLE STROBE statement.

6.4.5 Input Waveform Control

This section describes the FACTOR statements which define the functional test
pattern and associated waveform format controls.

6-42

6.4.5.1 DEFINITION OF FUNCTION DATA

General Form:

SET F binary pin pattern (,binary pin pattern, ...);

Description:

This statement loads a binary functional test pattern into the local memory in the
high speed test station controller. After each SET F statement, the local memory
load address register (MCS) is incremented to the next location.

The binary pin pattern consists of binary l's and O's which have a one to one
correspondence between the pattern bit location and the tester pin number.

The binary pin pattern contains the logic levels to be forced as data or clock on
those pins defined as inputs as well as the expected logical response for those pins
to be used as outputs.

The voltage levels corresponding to the input logic levels in the binary pin pattern
are obtained from the programmable reference supplies EO,El,EAO,and EAl (or
alternate EBO,EBl,ECO, and ECl). The reference voltage levels corresponding to
the expected output logic levels are obtained from the programmable SO and Sl (or
alternate SAO and SAl) reference supplies.

6.4.5.2 DEFINITION OF LOGIC INVERSION

General Form:

SET [INVERT/I] binary pin pattern;

Description:

This statement provides the capability of inverting the functional data on any pin.
A binary 1 in the pin pattern enables that pin's F-data to be inverted (return-to-one
condition). A binary 0 in the pin pattern disables the F-data inversion. The pins
remain in their programmed state until reprogrammed. The F-data inversion for
both RZ and NRZ pins is shown in Figure 6-4.

TG(x)

F-DAT A __ co_> __

NORMAL
PIN DATA RZ MODE-----

INVERT
PIN DAT A RZ MODE

NORMAL
PIN DATA NRZ MODE-----

INVERT
PIN DATA NRZ MODE

(I) (I)

Figure 6-4 F Data Inversion of RZ and NRZ Pins

(0)

6-43

6.4.5.3 RETURN-TO-ZERO FORMAT

General Form:

SET RZ binary pin pattern;

Description:

This statement allows any tester pin to be programmed to either of two data driver
modes. The normal condition is for all data pins to be in a Non-Return-to-Zero
(NRZ) mode. By inserting a one at the proper place in the bit pattern, the user may
program the pin to a Return-to-Zero (RZ) mode. All pins programmed to a given
mode remain in that mode until reprogrammed. Pins defined as clock pins by the
CONN CLK statement (refer to Section 6.2.2.1) are set to RZ mode because the
compiler automatically generates data for the RZ register. However, if it is
desired to have a clock pin be in NRZ mode, the pin should be set to 0 using the
SET RZ statement after the CONN CLK statement. • 'P"~ t

,,.,.. ti' . /
6.4.5.4 RETURN-TO-ONE FORMAT c P1 1 i' ~. 1 ,

/(; () 'I\ I I

General Form: ,, ~ ··r'J A ~. 1 (JI .e t1 t: ,I (t' .
[ENABLE/DISABLE] RTO; ~ ". 111 1,. 't l't Jiii ,--\

1 e '(v;t
Description: fl\ i,i' ,; P 1. fi4f fcf

------------------ I), "' This statement allows inverting the entire waveform produced when RZ mode and
.6l~VERTED data have been programmed for a particular pin. With the tr'l and the

INVERT bits set to binary l's, the resultant waveform is essentially a Return-To
one function, hence the name of the mode.

The RTO waveform and its inversion which results from a DISABLE RTO statement
is illustrated in Figure 6-5.

TO
TG (x)

TO

F-DATA 1--------1

INVERT PIN DAT A
RZ MODE

(Return-To-One)
INVERT PIN DAT A

RZ MODE
("DISABLE RTO";)

TO TO

Figure 6-5 RTO Waveform and Inverted RTO Waveform

6-44

6.4.5.5 RETURN TO COMPLIMENT FORMAT (EXCLUSIVE OR)

General Form:

SET XOR binary pin pattern~(rulJ1u!~piH=f)attern, ...);

Description:

All pins having a binary 1 in this register are in either of two XOR modes depending
on the INVERT register. If the INVERT bit for a particular pin is a binary O, the
waveform applied to that pin is equivalent to the logical coincidence (i e., the
inversion of an exclusive-Or) of the F-data and the programmed timing generator.
In Boolean symbols, the logical coincidence can be expressed as:

(A· B) + (A• B)

where A•B stands for A "AND" B,

and A•B stands for inverted A "AND" with inverted B,

and + is the logical "OR" between the two expressions

All possible combinations for this expression are as follows:

A B Logical Coincidence
0 0 1 c
0 1 0
1 0 0
1 1 1 (/

If the INVERT bit for that pin is a binary 1, the waveform applied to the pin is the
true exclusive-or of the F-data and the programmed timing generator.

CAUTIONS:

a For any pin, the RZ bit must be a binary 0 whenever the XOR bit is
programmed to be a binary 1. Else the waveform applied to the pin is
undefined.

b. The timing generator pulse must not exceed the test period when the XOR
bit is a binary 1.

Waveforms generated when the XOR bit is a binary 1 are shown in Figure 6-6.

TO
TG (x)

TO

F-DATA------1

XOR = II I", INV = "0"

XOR= "I", INV= "I"

TO

Figure 6-6 XOR Waveforms For a Binary 1

TO

6-45

6.4.6 Input/Output Modes

This section describes two methods of controlling 1/0 pin states other than the
previously described ENABLE DA/DB methods. These methods do not change relay
states.

6.4.6.1 REGULAR 1/0 MODE

General Form:

SET IOMODE [OFF/surviving pin list];

Description:

This statement provides the capability for selecting certain tester pins to provide
I/O definition independent of the definition specified by the SET DA and SET DB
statements. The tester pins which the I/0 definition specifies are known as the
"surviving pins". These are the pins which may be connected to a device while
using IOMODE. The tester pins which supply I/0 definition are known as
"conditioning pins". The pin list consists of the surviving- pins separated by spaces
or commas. Table 6-7 shows which tester pins may be .;pecified as surviving pins
and their corresponding conditioning pins.

TABLE 6-7 TESTER SURVIVING AND CONDITIONING PINS

SURVIVING PINS 1 5 9 13 16 20 24 28 31 35 39 43 46 50 !14

CONDITIONING PINS 2 6 10 14 17 21 25 29 32 36 40 44 47 51 55

The state of the F-data of the conditioning pins determines the I/0 definition of its
surviving pin as shown below:

F=O Output
F=l Input

Furthermore, when the conditioning pin specifies the surviving pin to be an input,
then the surviving pins comparator response is disabled (i.e., its output is a "don't
care"). For each surviving pin specified, the mask registers MA and MB should be
set to a zero for the associated conditioning pin and the surviving pin must be
specified as an input pin by setting a 1 in either the DA or DB register. IOMODE
may be used to control the mask for surviving IOMODE pins. By setting both the
DA and DB registers to zerb for surviving pins (outputs only), their mask can be
made "don't care" by the conditioning pin's F-data set to a 1. Also note that the
conditioning pin can have a timing generator assigned to it to delay the time at
which the 1/0 switch changes state within a test cycle period. Furthermore, the
controlling pin could be in the RZ mode thus causing on-off-on or off-on-off I/0
switch sequences within a period.

IOMODE and CHAIN MODE are mutually exclusive modes. Therefore, only one or
the other may be active at any one time.

6-46

Example:

SET MA xOxxxO;
SET MB xOxxxO;
SET DB lxxxlx;
SET IOMODE 1, 5;
SET F xOxxxO;
SET F xlxxxO;
SET F xOxxxl;
SET F xlxxxl;

REM X = DON'T CARE;

REM PIN 1 =OUTPUT
REM PIN 1 = INPUT
REM PIN 1 =OUTPUT
REM PIN 1 = INPUT

6.4.6.2 THREE FOR ONE l/0 MODE

General Form:

SET IOM3 [OFF/surviving pin list]

Description:

PIN 5 =OUTPUT;
PIN 5 =OUTPUT;
PIN 5 =INPUT;
PIN 5 = INPUT;

This statement is similar to the SET IOMODE statement. For a given conditioning
pin, the list of surviving pins has been extended. Table 6-8 shows the extended 3
for 1 pin list.

TABLE 6-8 IOM3 EXTENDED PIN LIST
__ ·:._·_--·-

Surviving Pins

1 5 9 13 16 20 24 28 31 35 39 43 46 50 54

3 7 11 15 18 22 26 30 33 37 41 45 48 52 56

4 8 12 19 23 27 34 38 42 49 53 57

Conditioning Pins

2 6 10 14 17 21 25 29 32 36 30 44 47 51 55

The pin list, however, contains only the first of the three surv1vmg pins for a
particular conditioning pin, thereby retaining the same format as the SET IOMODE
statement.

Like in the SET IOMODE statement at least one of the l/0 mode definition
registers DA or DB has to be set to a 1 (in order to close the relay that connects
the pin electronics driver to the DUT).

The effect of IOM3 on the "care/don't care" state of the controlled pins is as
follows:

(1) If F data on pin 2 is a binary 1, pins 1, 3, and 4 are "don't care" pins.
Being the controlling pin in IOM3, pin 2 defines pins 1, 3, and 4 as
input pins. Pins defined as input are automatically "don't care" pins
in the data comparison.

(2) If F data on pin 2 is a binary 0, "care or don't care" on pins 1, 3, and
4 is determined by the effective "care" mask (i.e., MA or MB
whichever is being ENABLED at that time).

6-47

The effect of IOM3 on the "1/0 definition" of the controlled pins is as follows:

(1) If F data on pin 2 is a binary 1: Pin 1, 3, or 4 is an input pin, if
either DA = 1 or DB = 1 for the respective pins, regardless which is
in effect (i.e., ENABLED) at the time.

Pin 1, 3, or 4 is an output pin, if both DA = 0 and DB = 0 for the
respective pin.

(2) If F data on pin 2 is a binary 0:

Pin 1 is an output pin regardless of DA or DB.

Pin 3 and pin 4 are controlled by the state of the ENABLED D
register rather than by the I/O control pin 2. That is a binary 1 in
the ENABLED D register defines the pin as an input pin and a 0 as an
output pin.

6.4.7 Multiplexing Pin Channels

6.4.7.1 MUXMODE

General Form:

[EN ABLE/DISABLE] MUXMODE;

This statement enables the alternate output gates for all pins such that the
functional waveform generated for one pin B is hard-wired OR'ed with that of
another pin A. This produces an effective multiplexing of the waveforms of the
pins involved on pin A.

This is most useful for the case where the pins involved are in the RZ mode and
their timing generators do not overlap. An example of this is shown in Figure 6-7.

6-48

WAVEFORM 111
F -OUTPUT PIN A

TO

MUXMODE DISABLED--+---'

WAVEFOHM 112
F -OUTPUT PIN B
MUXMOOE DISABLED
OR ENABLED

WAVEFORM 113
F -OUTPUT PIN A
MUXMODEENABLED~-+---'

TO

THE MULTIPLEXING IS DONE ON 16 PAIRS OF PINS:

PIN A I 2 3 Ll 5 6 7 8 31 32 33 34 35 36 37 38
PIN B 16 17 18 19 20 21 22 23 46 47 48 49 50 5 I 52 53

Figure 6-7 Muxmode Example

The third waveform is the F-output waveform going to pin A when the EN ABLE
MUXMODE statement has been executed.

6.4.8 Chaining Local Memory Channels

6.4.8.1 CHAINING t

General Form:

SET CHAIN [TWO/FOUR] surviving pin list;
SET CHAIN OFF;

Description:

This statement allows 2 or 4 test patterns to be generated for each following SET F
statement, thus utilizing local memory more efficiently. When a sequence of test
patterns is executed in the Chain 4 mode, each memory access generates 4 test
patterns by using the memory data for the 4 chained pins in sequence and applying
th~m to the surviving pin. Non-chained pins repeat the same test pattern 4 times.

The pin list consists of "surviving pin" members, separated by spaces or commas.
Surviving pins are those that may be connected to a device. Table 6-9 shows which
pins may be chained together.

TABLE 6-9 SET CHAIN SURVIVING PIN LIST

"Chained Surviving"
Pin 1 5 9 13 16 20 24 28 31 35 39 43 46 50 54

Pin chained to it in
"Chain 2" mode 2 6 10 14 17 21 25 29 32 36 40 44 47 51 55

Pins chained to it 2 6 10 - 17 21 25 - 32 36 40 - 47 51 55
in "Chain 4" mode 3 7 11 - 18 22 26 - 33 37 41 - 48 52 56

4 8 12 - 19 23 27 - 34 38 42 - 49 53 57

Rank 1 2 3 4

SET CHAIN OFF restores the non-chaining mode whereby each memory access
generates only 1 test pattern. This form of the statement does not have a pin list.

Only Chain Two mode is available when the local memory size requested by the
SET PAGE statement is greater than 1024 but less than or equal to 2048. Chaining
is not allowed when the local memory size requested is greater than 2048.

t This statement is not allowed for programs using SPM.

6-49

6.5 LOCAL MEMORY TEST SEQUENCE LOGIC

The high speed test station controller contains a local memory which allows the
test station to execute high speed functional test. This local memory is available
in 30 and 60 pin widths and contains 2048 or 4096 words.

Functional testing patterns (F-data) are loaded into local memory with the SET F
and SET FI statements (ref er to Sections 6.4.5.1 and 6.5.1.3 respectively). The
actual functional testing takes place when the EN ABLE TEST statement is
executed (ref er to Section 6.5.2.4). While the local memory is executing the F
data, the test plan may continue to execute. For example, the device under test
can be exercised in a continuous loop while the F-data is being altered outside of
the continuous loop.

It is possible to loop within a major and/or a minor loop. Local memory can be
loaded with F-data and then have the test start, test end, looping conditions, and
the F-data altered by local memory management statements. F-data can also be
altered in local memory while in a continuous loop.

6.5.1 Loading Local Memory

Each SET F statement generates code that occupies one word in local memory.
Therefore, SET F 1,1,l,l; is actually considered to be four statements even though
written as one and occupies four locations (words) in local memory. Any pins not
programmed to one (1) in the initial SET F statement of the load are programmed
to the zero state. Care should be taken especially when using the AT statement, as
all pins in the following SET F statement not specified are set to zero

Any statement in a local memory load may be labeled. The purpose of such labels
is to allow symbolic referencing of local memory locations when designating start
addresses, loop limits, and locations of modifications. Local memory labels must
meet the requirements imposed on regular labels and they must be unique. Local
memory labels may only be used in local memory statements and they must be
defined before being referenced in statements other than LGOTO. Local memory
labels can only be referenced within the block in which they are defined. A local
memory label preceeds the statement referenced and must be terminated by an @
symbol.

Example:

LABEL@

In any statement in which a local memory label is used as an operand, the
acceptable forms are:

(1) label
(2) label + constant
(3) constant
(4) label:_ expression
(5) expression

The first three forms are evaluated at compile time and produce DMA code (refer
to Appendix C). The fourth and fifth forms cause interpretive codes to be produced
and are evaluated at execution time.

6-50

It is important to consider that because of the domain of the definition of local
memory labels and because of the possible variation in sizes of local memory loads,
it is possible to have a legal label above the last location in a particular load. For
example, in the following example in the second load the end of the major loop is
set at location 750 (label AA) although the load ended at location 500.

Example:

SET PAGE 1024;
SET F ,
SET F ,

AA@ ENABLE MB;
SET F •.... ;
EN ABLE TEST;
SET F ...•. ,

SET F •.... ,
SET MAJOR 25, AA;

REM FIRST MEMORY LOAD;

REM LOCATION 750
LAST SET F OF LOAD;

REM SUBSEQUENT LOAD;

REM LAST SET F LOCATION 500;

The high speed test station operates in one of four modes while executing
functional tests, they are:

NORMAL
CONTINUOUS
MOMENTARY
MATCH

In the simplest form (NORMAL mode), only the test start address (SET START or
location 0) and test end address (SET MAJOR or last location of the load) need be
provided in order to bound the execution of a series of functional tests. Testing is
initiated by an ENABLE TEST statement and begins at the start address indicated
by a SET ST ART statement or at location 0 if no other address is provided.
Execution proceeds sequentially until the test end address is reached, wrapping
around from the end of physical memory if necessary.

The user may also program one or two loops into the test sequence described above.
The minor loop may contain all or part of the test sequence and is programmed
with the SET MINOR statement. This loop may be executed from 1 to 4096 times.
The major loop may contain all or part of the test sequence but always contains the
test end address as the end of the major loop. It is programmed with the SET
MAJOR statement and also may be executed up to 4096 times. The major loop
branches to location 0 from the test end address. When the major loop execution is
terminated (i.e., when the location indicated by the test end address is executed)
and the major loop count is zero the functional test sequence is terminated.

After execution of a series of functional tests, the user may wish to modify
selected locations in local memory before executing further tests. This
modification may take place while the local memory is stopped or in continuous
mode.

6-51

This modification may be performed either in the DMA (SET F) mode for fast
executions or in the interpretive (SET FI) mode which allows setting of each pin
independently.

A modification may be initiated by specifying an AT local memory label expression,
followed by either of the following statements:

(1) SET F binary pin pattern, ... ;
(2) SET FI binary pin pattern;

The local memory label expression may be any of the five forms specified earlier.
The same constraint regarding DMA versus interpretive execution applies.
Following the AT statement, it is suggested that an EN ABLE ([MA/MB])
([DA/DB]); statement appear to explicitly select the effective mask and I/0
definition registers.

The appearance of the AT statement causes the setting of the local memory load
address register (MCS) and software location counter if the address is in DMA
format. Also, for the initial SET F statement following, all pins which are not
programmed to a "1" state are automatically forced to 0. Subsequent SET F
statements may assume that the compiler remembers pin states.

6.5.1.1 POSITIONING START ADDRESS OF LOAD

General Form:

AT [label/label ~ constant/label_:::expression/ constant/ expression] ;

Description:

The AT statement may be used to designate a local memory address at which it is
desired to make one or more modifications. In other words, the load of the
subsequent· F-data (until the load is terminated) begins at the location defined by
the label.

The only statements which may be used to modify local memory are the SET F and
the SET FI statements. Since the .Uf F "'f'B·~jt{U'Zry is reset by the AT
statement, the first SET F following the AT must specify all pins which are to be
set to the "1" level. Those pins not specified are set to O.

If no variable is contained in the expression, the code generated is DMA.

Example:

AT O;
SET F 1011. .. 1101;

SET F 1101. . 1000;
Ll@ SET F 1111. .. 1010;

If a variable is contained in the expression the resulting code generated is
interpretive.

6-52

6.5.1.2 LOADING THE FUNCTIONAL TEST PATTERN

There are two statements for loading of functional test patterns, they are:

ENABLE {[DA/DB])([MA/MB]'
SET F binary pin pattern (,binary pin pattern, ...);

The ENABLE DA/DB statement is used to select the input definition register to be
used in conjunction with subsequent SET F or SET FI functional patterns loaded into
local memory. This statement is discussed in detail in Section 6.4.2.2.

The ENABLE MA/MB statement is used to select the output mask register to be
used in conjunction with subsequent SET For SET FI functional patterns loaded into
local memory. This statement is discussed in detail in Section 6.4.3.2.

The SET F statement is used to load a binary functional test pattern into local
memory in the high speed test station controller. The SET F statement is discussed
in detail in Section 6.4.5.1.

6.5.1.3 INTERPRETIVE LOCAL MEMORY BIT CHANGES

General Form:

SET FI binary pattern;

Description:

This statement is used to modify one or more bits of data at a local memory
address location rather than the entire location contents as done by a SET F
statement. When this statement is used, all bits which are to be modified must be
explicitly specified in the binary pin pattern using the normal SET F coding
techniques (ref er to Section 6.4.1). Bits not specified in the SET FI statement
remain in their current state.

This statement must be preceeded by an AT statement in order to specify the
location "at" which the change is to be made. Since the SET FI statement does not
increment the local memory address register (MCS register) each succeeding
SET FI statement must also be preceeded by an AT statement.

Examples:

(1) Current state of memory location 500:
1010110 .•. 00101

t'-----·~~-;.,.·J

(2) AT 500;
SET FI [2] 1010;

(3) Final state:
1J:_~_!9'10. • . 00101

6-53

6.5.2 Initiating Local Memory Function Tests

This section describes the FACTOR statements which are used to initiate
functional testing from the local memory.

6.5.2.1 TEST START ADDRESS DEFINITION

General Form:

SET ST ART [label/ constant/label~constant/ expression/label~expression] ;
Description:

This statement is used to specify the test start address for the next functional test
execution. The evaluated start address must be a positive integer within the range
of local memory addresses established by the SET PAGE statement.

If no address is specified for a- particular functional test execution, the test starts
at location zero (0) in local memory.

If the operand does not contain a variable, the instruction produced by this
statement executes in DMA mode.

6.5.2.2 TEST STOP ADDRESS DEFINITION AND LOOPING

General Form:

SET MAJ 0 R expression [,label/label +constant/ constant/label +expression/ exoressi on] ;
SET MAJOR N ,L; - - L

Description:

This statement defines the major loop within local memory (Figure 6-8) by setting:

(1) Major loop count (N) expression. This is the number of times the
functional patterns within the major loop is executed (l~N ~ 4096).

If N is greater than 1, when the local memory address equals L
during pattern execution, a branch to location 0 is made and the
major loop count decremented by one. Functional execution
continues in the major loop (0 to L). Until the loop count is
exhausted. N-1 branches from L to 0 are made.

(2) Major loop end address (L). This is the last memory location to be
executed unless a fail occurs first, interrupting testing. This is
defined by the last local memory word loaded in the previous load or
the one defined by the SET MAJOR statement.

Operation and terminology relating to the local memory is explained in Section
6.5.1.

The evaluated loop count (N) must be in the range l.S.N.S.4096 and indicates the
number of times the code within the major loops is executed. A SET MAJOR
statement must occur prior to each functional test during which a major loop is
desired. Otherwise, the major loop code is executed only once and testing
terminates after execution of the last local memory word loaded.

If no variables are contained in either operand, the generated statements are
executed in DMA mode.

6-54

I I-(CONTROLLED BY ~MEMORY MAD ---------- DATA
SET ST ART) TO PINS

MEMORY
ADDRESS
REGISTER

LOCAL MEMORY/CONTROLLER

0:::
LU

0::: ti:; FUNCTION PATTERN
LU G I-
(/) LU

~ 0::: -0::: 0
~ ::::.
(/)

~ <
~ lb I-
u Q
UJ I-...J u UJ LU (/)

..J
LU
(/)

1-----PINS---60

I MCS F-(CONTROLLED BY_A T) - FST CONTROLLER

MEMORY LOAD
ADDRESS REG.

Figure 6-8 Local Memory

L---.

K

0::: (/) oga. ~ z --...JI-
~ ~

J

START
DD RESS A

·-o-----

6-55

6.5.2.3 MINOR LOOP DEFINITION t

General Form:

SET MINOR expression ([,label/label +constant/ constant/label +expression/
expression][label/ ••• expression]); -

SET MINOR M (,J,K);

Description:

This statement defines the minor loop within local memory by setting:

(1) Minor loop count (M) expression. This is the number of times the
functional patterns within the minor loop are executed (l~M~4096).

(2) Minor loop start address (J). This is the local memory address for
the start of the minor loop.

(3) Minor loop end address (K). This is the last address in the loop
before execution controls returns to the minor loop start address.

Once programmed, these values remain set until reprogrammed. The minor loop
may be removed by programming the minor loop count to 1. If no minor loop is
required for a function test the SET MINOR statement need not be included for the
default value of Mis one.

If the loop boundaries are not altered, the statement may indicate only a new loop
count (operand 1). However, if either boundary is to be altered, both must be
programmed in the statement.

If no variables are contained in the statement, the code is executed in DMA mode.

6.5.2.4 IGNORING TEST COMPARISONS

General Form:

SET IF AIL [label/ constant/label+constant/ expression/label+expression] ;
SET IFAIL expression~COUNT; - -

Description:

These statements indicate a local memory address in the first form or the number
of test cycles in the second where functional test failures are ignored.

The SET IFAIL [label/constant/ ••.] ; statement designates a local memory address
for which, after local memory function testing commences (via the ENABLE TEST
IFAIL statement) failures are ignored until a test vector is accessed from the IFAIL
address. After the test at the IF AIL location is executed, the next test strobes
enabled comparators for failures. Once the IF AIL location has been executed, fail
strobing is enabled outside continuous loops as long as local memory execution
continues.

The SET IF AIL expression COUNT statement indicates that functional failures are
to be ignored up to the number of test ~ specified for a test sequence initiated
by the EN ABLE TEST IF AIL statement. \ .t ; tu 1 fe1111.s er 6 's)

The ignore fail count must be in the range of 0 to 377777778 or 8,388,607 decimal.
The count may also be specified as an expression whose value can be program
controlled throughout a test plan execution. In this case, the user should be aware
that the count value loses its order of significance (i.e., truncation errors occur)
once it is greater than 1777778.

tThis statement is not allowed for programs using SPM.

6-56

The SET !FAIL COUNT and the SET !FAIL statements are mutually exclusive for an
ENABLE TEST !FAIL statement. The last one before the ENABLE TEST !FAIL
statement prevails.

6.5.2.5 LATCHING FAIL COMPARE RESULTS

General Form:

(ENABLE/DISABLE] LATCHES;

Description:

The ENABLE statement initializes the functional test control so that the C register
is not cleared prior to strobing the functional test comparators. In this mode, when
testing is enabled, (each ENABLE TEST) the C register is initially cleared and
functional testing is not terminated regardless of the number of failures which
occur and until local memory reaches the major loop end address and the major
loop count is exhausted. The C register accumulates failures on all care pins during
functional testing.

The DISABLE statement initializes the functional test control so that the C
register is cleared prior to strobing the functional test comparators for each
functional test.

If no latch statement is made, the disable latch mode is active.

6.5.3 Function Test Execution

This section describes the statements which initiate functional test execution and
control various function test modes.

6.5.3.1 NORMAL MODE TESTING

General Form:

ENABLE TEST (NORMAL);

Description:

This statement is the simplest form of the test execution statements. The purpose
of this statement is to initiate functional testing. The NORMAL mode of execution
is assumed.

In NORMAL mode testing begins at the test start address and continues to the test
end address. The test end address is the one specified in the SET MAJOR
statement.

The local memory loop capability may be used in NORMAL mode (ref er to
Section 6.5.1).

If the wrap around location in local memory (Table 6-10) is executed without
reaching the test end address, control is transferred to local memory address O and
testing continues until the test terminates.

6-57

TABJ.R 6 10 RESULTS OF SET PAGE INTEGER STATEMENT

SET PAGE Local Memory CHAIN TWO CHAIN FOUR
integer; Wrap Around Allowed Allowed

1-1024 1023 YES YES
1025 - 2048 2047 YES NO
2049 - 4096 4095 NO NO

6.5.3.2 LOCAL MEMORY CONTINUOUS LOOPS

General Form:

ENABLE TEST CONTINUOUS (IFAIL); t

Description:

Required Local
Memory Sizes

lk, 2k, or 4k
2k, or 4k
4k

This statement initiates functional testing in CONTINUOUS mode. This mode is
identical to NORMAL test execution except that testing remains in a loop until the
tester mode is changed by execution of ENABLE TEST MOMENTARY. In this mode
the FACTOR statements following the ENABLE TEST CONTINUOUS are executed
while the local memory data from the minor loop is applied to the device under
test.

Upon execution of EN ABLE TEST CONTINUOUS, the local memory starts sending
out data from consecutive local memory locations. If the major loop end address,
L, is encountered, a branch to location 0 occurs. This is a continuous major loop.
The strobing of enabled output pins occurs in this loop. If the beginning of the
minor loop, J, is passed, output comparator strobing is suppressed. If the minor
loop end, K, is reached, a branch to J occurs. This is a continuous minor loop.

When the tester is operating in continuous mode in the minor loop, local memory
can be altered to contain a new test sequence. Execution of an EN ABLE TEST
MOMENTARY then causes the tester to fall out of the minor loop and execute the
new test sequence.

6.5.3.3 EXIT FROM CONTINUOUS LOOP

General Form:

ENABLE TEST MOMENTARY (IFAIL);

Description:

The purpose of the ENABLE TEST MOMENTARY statement is to allow the user to
exit from CONTINUOUS mode. After the ENABLE TEST MOMENTARY statement
is executed the first time the minor loop end address (K) is reached, the branch to
the minor loop start address (J) is inhibited, and NORMAL testing is resumed as
follows:

(1)

(3)

When the minor loop end address (K) is not equal to the major loop
end address (L), the system goes from (K) to (K+l).

When (K) and (L) are equal and the major loop count (N) is zero, the
system stops at (K,L).

When (K) and (L) are equal and the major loop count (N) is not zero,
the system goes from (K,L) to location 0 and (N) is decremented by 1.

t This statement is not allowed for programs using SPM.
6-58

6.5.3.4 CONSECUTIVE CONTINUOUS LOOPS

General Form:

EN ABLE TEST MOMENTARY CONTINUOUS (IF AIL):

Description:

The ENABLE TEST MOMENTARY CONTINUOUS statement combines the functions
previously described for ENABLE TEST CONTINUOUS and ENABLE TEST
MOMENTARY. This statement is used after the local memory is already in the
continuous loop mode and allows the normal execution of data outside of the minor
loop and reentry into a continuous loop without stopping.

After the ENABLE TEST MOMENTARY CONTINUOUS statement is executed, the
first time the minor loop end address (K) is reached, the branch to the minor loop
start address (J) is inhibited. Then the following events occur:

(1) If the major loop end address (L) is greater than (K), the address
sequence goes from (K) to (K+L). Since (K+L) is outside of the minor
loop, the comparator strobing is no longer suppressed and since
continuous mode is on, a major loop branch to 0 occurs when L is
encountered. The sequence continues and when location J is
encountered, a continuous monitor loop has been reentered with
looping from K to J and comparator strobing inhibited.

(2) When (K) and (L) are equal, the address sequence goes from (K) to O
and comparator strobing is no longer suppressed. When (J) is
encountered, the continuous minor loop is reentered as described
above.

Note that in both cases above, the major loop count (N) has no meaning since
testing is always in a continuous major or minor loop.

The ENABLE TEST MOMENTARY CONTINUOUS statement is primarily used for
continuous, or non stop execution of several local memory loads while testing
dynamic devices. The minor loop functional exercise is normally called a "keep
alive loop" and contains the necessary data to "refresh" the device under test.

Final termination of functional testing after a series of ENABLE TEST MOMEN
TARY CONTINUOUS statements would be executed by ENABLE TEST MOMEN
TARY.

Example:

Page= 1;
CALL LOAD (PAGE); REM LOAD FIRST PAGE OF LOCAL MEMORY DATA;
SET START 5;
SET MINOR 1, J, K;
SET MAJOR 1, L;
ENABLE TEST CONTINUOUS: REM TEST FIRST PAGE AND FALL INTO

MINOR LOOP;
FOR PAGE= 2 THRU 10 DO BEGIN
CALL LOAD (PAGE); REM LOAD NEW PAGE;
ENABLE TEST MOMENTARY CONTINUOUS; REM TEST NEW PAGE;
END;
PAGE= 1;
CALL LOAD (PAGE); REM LOAD LAST PAGE;
ENABLE TEST MOMENTARY; REM TEST LAST PAGE AND STOP;

6-59

6.5.3 5 MATCH MODE

General Form:

EN ABLE TEST MATCH (IM MEDIA TE);

Description:

The purpose of MATCH mode is to functionally exercise a device under test whose
outputs are initially in an indeterminent state, and when a certain output state is
sensed, branch to a normal functional exercise pattern.

When EN ABLE TEST MATCH is executed, functional testing starts at location (S)
in the MATCH mode. The match search continues until a match is found. This
means that the pass/fail logic from the C register is reversed, and a "functional

1filr'.._ on any care pins is a "non-match'~condition. As long as a "non-match"
condition is found, the functional exercise keeps executing with the local memory
address incrementing each cycle. Normally a minor loop is used for a match search
to confine the local memory address between J and K inclusive. Whenever all care
pins pass, a match has been found and the local memory address is set to zero on_,
the next cycle. Normal functional testing then proceeds from location 0 until the
test terminates. · --

A bad device under test could possibly never generate a functional state which
matches a test pattern in the match loop. This would mean that match mode
would never terminate. The match search can be set up to terminate after a
defined length of time.

The timer value used with the ENABLE TEST MATCH statement is set by the
statement SET DELAY expression, DC. The timer value should be at least as long
as the match mode test time + normal functional test time. If it is known that a
device always finds a match, the timer delay can be eliminated by setting a delay
of zero or by using the statement ENABLE TEST MATCH IMMEDIATE. ENABLE
TEST MATCH IMMEDIATE executes in DMA mode and therefore has a short .,ij:r
execution time. E-'f

While in the minor loop under MATCH mode, testing proceeds at the programmed
rate. Timing in internal sync MATCH mode is shown in Figure 6-9.

Use of match mode:

6-60

(1) Minimum test period = 800 ns

(2) Allowable Strobe region: TG7 DELAY + WIDTH = PERIOD MINUS
600 ns. Only TG7 is used during search for match.

TG8: Disabled during search for match. After match is found, TG8
is enabled if selected by the SET STROBE and ENABLE DOUBLE
STROBE statements.

(3) For the first two test periods, finding a match is inhibited. (This is
required for external match).

800 ns I 0 MHZ INT SYNC MATCH MODE
-j (minimum) !-

TZERO CTO>
F DAT A CHANGE AT OUT --t=,-----'

TG7 STROBE REGION

MATCH DETECT
TEST DAT A PREPARATION

TG8 STROBE REGION
P" 11 t ~~fl'.

MATCH MATCH
SEARCH SEARCH

Figure 6-9 Timing in Internal Sync MATCH mode

6.5.4 Function Test Execution Options

6.5.4.1 INITIATING TESTS IN THE IGNORE FAIL MODE

General Form:

EN ABLE TEST IF AIL;

Description:

This statement initiates testing in the Ignore Fail mode. This mode is identical to
ENABLE TEST NORMAL except that it allows functional failures to be ignored
until the !FAIL address or !FAIL count is executed (refer to section 6.5.2.4). The
Ignore Fail mode may be activated by appending IF AIL to any of the EN ABLE TEST
modes except MATCH mode.

EXAMPLE:

EN ABLE TEST IF AIL;
ENABLE TEST CONTINUOUS !FAIL;
ENABLE TEST MOMENTARY CONTINUOUS !FAIL;
ENABLE TEST MOMENTARY !FAIL.

6.5.4.2 DEFINING EXTERNAL SYNC OPERATION

General Form:

ENABLE TEST(NORMAL/MOMENTARY/CONTINUOUS) (EXT/EXTA) (!FAIL);
ENABLE TEST MATCH (EXT/EXTA); ~

~-~

Description:

For those devices which have their own internal clock, ENABLE TEST, EXT
provides the capability of replacing the system test rate generator with the device
internal clock to act as a sync for starting functional test and timing generators.
Tester pin 1 is used to provide the sync signal to the system. Pin 1 is programmed
as an output pin and is connected to the clock pin of the device under test (DUT),
or to an external generator if required.

6-61

External Sync Pulse Characteristics:

Logic levels of the External Sync signal must be compatible with other outputs of
the DUT. Level shifters are otherwise required at the Performance Board to
provide appropriate levels. Figure 6-10 shows the external pulse characteristics for
the following conditions:

Trigger is on the falling edge of the level detector output for pin 1.

Pulse width 50 nsec~.

Pulse amplitude - higher than SO/Sl at high state and lower than SO/Sl at
low state.

Use of pin 1 as trigger pin:

(a) Set DA = 0, DB = 0 for Pin 1 (always output)
(b) Set MA = 0, MB = O for Pin 1 (always don't care)
(c) If F = 0 on Pin 1:

DUT PULSE
ONPIN I

so __ _ -+-/ __
i\ Ii
I I
: • I

LEVEL DETECTOR ---1i 50ns mm. r-1 --

TQ---;~~

..,. 1---__ 2_3_0_ns ___ __..~ (FOR I OMHz HEAD)
260ns (FOR SMHz HEAD)

-v ~
DELAY .__

When the DUT pulse on Pin 1 crosses the SO level, it triggers the level detector
pulse which in turn starts the test cycle, TO after the respective delay.

(d) If F = 1 on Pin 1:

OUT PULS~-----.\ I

K I!
LEVEL DETECTOR ---;I SOns min. 1;-• --

TO-__,.,.~

230ns (IOMHz HEAD)
260ns (5MHz HEAD) -p

Here F-data is programmed to 1 on Pin 1. The determining factor, then, is when
the DUT pulse crosses the Sl level.

(e) Negative logic does not make a difference.

Figure 6-10 External Sync Pulse Characteristics

6-62

External Sync Mode:

Since the device in the DUT socket may fail to give external sync pulses, the
internal test rate generator is used to prepare the tester and to send out the F-data
for the first test. The tester then switches over to external sync mode. At the end
of a test or in the case of a fail, the internal test rate generator is used again to
shut down the tester. The DUT however, does not see the internal rate.

External Sync Error Conditions:

If the external sync fails to occur or fails to continue after its first occurrence and
causes the functional test to halt, the failure is detected after a programmed delay
has expired and a functional test failure is indicated. The value of the delay is
obtained from the FACTOR statement:

SET DELAY expression, DC;

and must be programmed longer than the time expected for the entire functional
test sequence. A DC delay value of zero disables the external sync failure check.

Internal and External sync cannot be mixed in the ENABLE TEST CONTINUOUS
(MOMENTARY /IF AIL/NORMAL) modes.

Use of External Sync Mode:

(1) Minimum test period of external sync pulses is 200 ns. (Equal to a 5
MHz maximum test rate.)

(2) The internal test rate generator has to be programmed in range 0 to
300 ns or greater.

(3) Test data appears at the DUT 230 ns on a lOMHz test head and 260
ns on a 5MHz test head after the external sync pulse is applied to
Pin 1.

(4) For the first F-data sent out, the timing generators are disabled.
The pins used for the first F-data must be in NRZ mode, and the
first test has to be programmed as a dummy test.

This avoids the problem of an unpredictable period occurring
between the last internal sync and the first external sync.

(5) The minimum period during switch-over from internal to external
sync can be ~ 170 ns.

When External Sync mode is used with CONTINUOUS mode the maximum test time
cannot be programmed to detect failure of the external sync signal. The proper
funcioning of the external sync should be verified by the FACTOR program prior to
entering the CONTINUOUS mode.

When External Sync is used with Ml\';r~H mode, MATCH mode timing is changed.
The test data appears at the DUT:::::: ~ nsec (10 MHztJ.ead) after the external sync.
The minimum test period remains at 800 nsec. Only TG7 can be used as a strobe
during search for match. TG8 is enabled after a match has been found. Matching
in the first two tests is inhibited. Timing in external sync MATCH is shown in
Figure 6-11.

6-63

''\JO JAHZ EX I • SYNC. MA I CH MODE
-I ~WNSFOR IOMHZHEAD

SYSTEM CLOCK / ..---_,,....q 380 NS FOR 5 MHZ HEAD

SCLK ~-58-0 ~NS J LJ U
rn-J ~TO

TZERO no,_n ____ __,n n n n~-~IL
FDATACHANGEATDUT____,;:;;;;;;:;:;;;-~~--t;;;;::=-~~-t::;;:;;;;;;::--~-'E===-~~-t==--~~-;

TG7 STROBE REGION
(TG7)

MATCH DETECT
TEST DATA PREPARATION

TG8 STROBE REGION i
MATCH
SEARCH

i
MATCH
SEARCH

MATCH
FOUND
BRANCH
TO ADDO

Figure 6-11 Timing in External Sync Match Mode

External Sync Alternate

The ENABLE TEST EXTA statement does not disable the timing generators during
the first F-data sent out. Also no dummy test is required for the first test. The
user must be responsible for using this mode only with predictable devices which
give an external sync pulse at a known time, so that the period is not shorter than
the delay or width of any timing generators which are programmed. For a free
running external clock the minimum period between the first and second tests still
could be~ 1 7 Ons.

6.5.5 Function Test Termination

The tester terminates testing in NORMAL mode under three conditions:

6-64

(1) The test end address is reached and the major loop counter is zero.

(2) A functional fail has occurred.

(3) In external sync or MATCH mode, execution of the functional test
sequence exceeded the programmed value of maximum test time
(via the SET DELAY expression, DC; statement). A functional fail
condition occurs to terminate test execution.

6.6 MISCELLANEOUS TEST STATEMENTS

6.6.1 Branch on Fail

General Form:

ON [DCT/FCT/TRIP] ,label;

Description:

These statements establish program branch control on DC test failures (DCT),
functional test failures (FCT) and DPS trip failures (TRIP). The label specifies the
branch location to which program control is transferred when the event occurs.
The label must be in the outermost block of the test program in all cases, (i.e., the
label must be in the main program, not in a subroutine).

The three branch conditions are programmed independently. Once a branch is
taken, the ON statement is cancelled; a second failure of the same type does not
alter program control unless the branch is reprogrammed. In the event of multiple
fails on the same test, a DPS trip branch has priority over a DC or functional fail
branch.

When a trip, functional or DC failure occurs at statement n and, if the
corresponding ON statement has not been processed or if the branch has been used
and not reprogrammed, program control resumes at statement n+l. The ON
statement is cleared by the CLEAR [FCT/DCT/TRIP]; statement and is overridden
by a subsequent ON statement of the same type.

Example:

ON DCT,DF AILl;
ON FCT,FF AIL;
ON TRIP,CFAIL;

DFAILl: ON DCT,DFAIL2;

6.6.2 Clearing Branch on Fail Flags

General Form:

CLEAR [FCT/DCT/TRIP] ;

Description:

This statement clears a corresponding previously programmed ON WCT/DCT/TRI~
statement if the program branch has not yet been taken.

Example:

SET F 1;
SET F 11;
SET F 11;
SET F 111;
SET F 1111;
ON FCT,FAILl;
EN ABLE TEST;
CLEAR FCT; REM NO FAILURE, PREVENT GOING TO FAILl

IF AN FCT FAILURE OCCURS LATER;

6-65

LOOP:

FAIL!: FFLAG=l; REM REMEMBER FAIL OCCURRED;
GOTO LOOP;

In the example, a functional failure occurring on the ENABLE TEST statement
causes a branch to the label FAIL!. The test program sets a flag to indicate that
the failure occurred, and then returns to the test sequence at the label LOOP.

If no functional failure occurs the CLEAR FCT statement rests the ON FCT, FAIL!
request because it is not wished for it to go to FAIL! if a functional failure occurs
later in the program. Another ON FCT statement would also clear the previous ON
FCT but may not be desired.

6.6.3 Clearing Fail Indicators

General Form:

CLEAR FAIL [FCT/DCT/TRIP] (,FCT/DCT/TRIP);

Description:

This statement clears the system software fail flags. When a fail is normal (e.g.,
for device pre-conditioning, this statement may be used to inhibit this fail from
being displayed at end of test. More than one option may be specified, separated
by commas.

6.6.4 Controlling Load Board Utility Relays

General Form:

SET R binary pin pattern;

Description:

This statement provides the control for opening or closing the utility relays. There
is one relay associated with each tester pin. A binary 1 in the binary pin pattern
closes the utility relay and a binary 0 opens the relay.

6.6.5 System Reset During Program Execution

General Form:

FORCE RESET;

Description:

This statement forces the test system into the reset state, thus clearing all
programmable test conditions. The programmable supplies are forced to a reset
condition in the following sequence prior to being disconnected from the device
under test:

6-66

Clear DPS 1, 2, and 3 in that order without changing the range.

Clear DPS trips (DPT register) 1, 2, and 3 in the order without changing the
mode and range.

Forces PMU to 0 voltage.

Clear PPS register without changing the mode and range.

Clear El, Sl, EAl, EBl, ECl, SAl, EO, SO, EAO, EBO, ECO, SAO in that
order without changing the range.

Wait for 3.36MS

Clear all short and long registers
(all relays are disconnected)

6.6.6 Enable Access

General Form:

EN ABLE ACCESS;

Description:

This statement forces a disc access at run time to reload the memory buffer with
the test program. Normally TOPSY dynamically allocates the amount of data in
the memory buffer. With a 16K memory, the maximum buffer size is about 4000
words. A disc access and reload of this buff er takes place at the end of the buff er
and takes about 70 milliseconds. When testing dynamic MOS devices with large
programs, it may be desirable to control when the buff er is refreshed so some
initializing data for the device under test can follow the disc access period. This
may be done with the EN ABLE ACCESS instruction.

6-67

SECTION 7.0

VARIABLE DECLARATION AND VALUE ASSIGNMENT

As described in Section 2.2, variables may be used in expressions without giving
them initial values or by declaring them. If they are not declared, they are
assumed to be a single variable. If they are not given an initial value, they are
automatically given an initial value of zero. Variables may be declared and
assigned values at any point in a program.

A variable may also be used as an array reference, but then it must be declared.
Thus,. a declaration (DCL) statement must always be executed before any
references are made to the declared arrays. If this rule is violated, TOPSY
indicates the programming error with a terminal error at run time (see
Appendix E).

7.1 DCL

The DCL command is used to reserve storage for variables, assign initial values,
and to make a variable local to the block in which it is declared.

If the DCL statement is executed more than once in a currently open block, all but
the first execution is ignored; however, a value assignment always occurs at every
execution. It means that the evaluation of an array size occurs only once at the
first DCL for that array. However, values are assigned for every DCL specified.

Two types of variables may be declared: single variable and arrayed (one
dimensional variables).

7.1.1 Single Variable Declaration

The general formats on the scalar declaration are as follows:

DCL Vl;
DCL Vl ,V2, Vn;
DCL Vl/value l/,V2/value 2/, ... Vn/value n/;
DCL Vl,V2/value 2/,V3 •.. ,Vn;

Vl. .. Vn stand for variable numbers 1 through n. value 1. •. value n stand for
single signed or unsigned numbers which declare the value of a variable. When
declared without a value, the variable is set equal to O. Multiple declaration and
assignment can be made with one statement. As shown in the last two examples,
each variable of a multiple declaration can be optionally assigned an initial value.

7-1

7 .1.2 Array Declaration

The general formats of the array declaration are as follows:

DCL Vl [asize 1] ;
DCL Vl [asize 1] , ... Vn [asize n];
DCL Vl [as~ze 1] l AEl, .AEm/, ••. ,Vn (asize n] I AEl, ... AE m/;
DCL Vl [as1ze 1] , V2 [as1ze 2] I AEl. •. AE m/, ••. ,Vn [asize n] ;

The formats are similar to those for a single variable declaration; however, the
array identifier, Vl, requires an argument to specify the number of elements, i.e.,
the size of the array. This quantity (asize) is enclosed in square brackets. The size
is specified by an expression which allows it to be variable or fixed. The evaluation
of array size and allocation of storage is performed by TOPSY at run time. The
array size, of necessity, is automatically truncated to the nearest integer if it
should be expressed as a non-integer value.

The elements of an array may be optionally assigned initial values when declared.
The assignment is specified by the terms AEl through AEm as shown above; m is
the size of the array. If the size and number of initial value assignments do not
agree, the missing (trailing) elements are set to zero (or blanks in the case of
literals). If too many elements are specified, a compiler error (if the size is a
constant) or, a run time error (if the size is an expression) occurs.

NOTE

The distinction must be drawn between the value in
square brackets used in a DCL statement, where it
represents the array size, and the value in square
brackets used in a non-DCL statement, where it
specifies the array element desired.

Examples:

DCL ARR [10]; REM ARRAY SIZE= 10 ELEMENTS;

FOR J = 1 THRU 10 DO

ARR [J] = 2*J; REM COMPUTE ARRAY ELEMENT VALUES;

FIFTH = ARR [5] ; REM ASSIGN VARIABLE FIFTH
THE VALUE OF THE FIFTH ARRAY ELEMENT;

7 .1.3 Literal Variable Capability
II J/MHJ: t/,JAM!li£

K1variable or an array'1may be used as a literal (i.e., as a string variable or a string
array response) in FACTOR READ, WRITE, and assignment statements.

The "&" (ampersand) sign indicates a single variable or an arrayed variable as being
literal. Without the "&", a single variable or an arrayed variable is treated as being
numeric. All displayable characters (except a semicolon(;) and another single
quote(') are allowed within a literal variable declaration. Mixed mode usage causes
indeterminate results. For a literal array declaration, ;the size of the array (in
terms of word count) must be large enough to include the whole string. Four
characters fit into 1 word.

7-2

The text within the literal variable declaration may be grouped into 4-character
groups by single quotes and commas.

Example:

DCL MSG [6] I 'NAME', 'OF P', 'ROGR', 'AM I', 'S'/;
is the same as
DCL MSG [6] I 'NAME OF PROGRAM IS'/;

Grouping a message text this way may help the user in checking for the proper size
of the array being declared.

Example #1:

000001
000002
000003
000004
000005
000006
000007
000007
000010
000011
000012
000013
000014
000015
000016
000016
000017
000017
000020
000021
000022
000022
000022
OOOOB

SET PAGE 1;
DCL MSG (6] /'THE DEVICE HAS'/;
DCL PASS [2] /'PASSED'/, FAIL [2] /'FAILED'/;
FORCE RESET;
IF SWITCH EQ 1 THEN BEGIN
SET,l(>A 1;
END· L'ibfi. ' ,~ ... ~·"' ,
ON FCT,IJJFAIL;
SET F 1;
SET PERIOD lOOE-6;
EN ABLE TEST;
MSG (5] = PASS [1] ;
MSG (6] = PASS (2] ;
WRITE &,MSG;

'f;~s REM 'THE DEVICE HAS PASSED';
GOTO PENlf;ct"

DFAIL:
MSG [5] = FAIL [1] ;
MSG [6] = FAIL [2] ;
WRITE &MSG;

REM 'THE DEVICE HAS FAILED';
PEND:

END;
COMPILATION ERRS

The following are the results from executing the test program. At first, SWITCH
was set to 0

STAT3D TEST PLAN
THE DEVICE HAS PASSED

c SN 16

Then/. SWITCH 1 STAT3D was entered to set SWITCH to 1

ST A T3D TEST PLAN
THE DEVICE HAS FAILED

c SN 17

7-3

Example #2:

SET PAGE 1; 00001
00002
00003
00004
00005
00005
00006
00007
OOOOB

DCL MSG [6] /'NAME OF PROGRAM IS'/;
WRITE 'TYPE IN NAME OF PROGRAM';
READ (TTK) &NAME;

REM NAME IS LIMITED TO 4 CHARACTERS;
MSG [6] =NAME;
WRITE &MSG;
END;
COMPILATION ERRS

The following are results from executing the test program. ABCD, 1234 and D808
were the inputs respectively for the three times.

STAT3D TEST PLAN D
TYPE IN NAME OF PROGRAM
NAME OF PROGRAM IS ABCD

STAT3D TEST PLAN D
TYPE IN NAME OF PROGRAM
NAME OF PROGRAM IS 1234

ST AT3D TEST PLAN D
TYPE IN NAME OF PROGRAM
NAME OF PROGRAM IS D808

SN

SN

SN

7.2 VARIABLE ASSIGNMENT STATEMENT

2

3

4

The variable assignment (or replacement) statement is the most fundamental of all
FACTOR statements. It takes the general form:

variable = expression;

This statement results in the replacement of the value of the variable on the left
by the value of the expression on the right. (In general, it is not an equation, since
the variable on the left may form part of the expression on the right).

Thus the statement:

A= A+B;

means take the value of the variable A, add the value of the variable B and replace
the value of the variable A with the result.

7-4

SECTION 8.0

READ/WRITE STATEMENTS

The READ and WRITE statements that control data-flow in and out of the
computer during execution are described in this section. They use the following
syntax notation.

(1) A 0 indicates that none of the elements of the set need be chosen.
When none are selected, the system assigns the current DOPSY
primary input device or the primary output device unless a current
DATALOG statement requests another output device.

(2) A file name identifier is shown in lower case letters and is ,..,~closed
by double quotation marks. 1_ 1, 5t

.t</c-

8.1 RHAD .; I 5 ,,~/ P;;; /"" 1"'')

·fh .· f
11 ·f'yl The general formats of the i,nput state}l}ent are: f -:-t' L e .

~
{/n $()I ~ t fl .· t 1 /l' 1 ,; •

REA ~fil I (FDIF I (EIR) I (TTK) I (TTR) I (MTR)'r r4" ' ~ '5 / f',. ~ ~1 r:,
11 Vl V2 V ---:?"" I J_, I' A.-nam , ,. . • ; 7 r

-:ff t/111/', 4blt
READ((CR) I (TTK) I (TTR) I (FDIF) I O)&Vi, ·f Vj • -;vn; ~ l r 7 I'" r ,,,, t

The items enclosed by parentheses are peripheral devices defined as follows:

Card Reader
Video Terminal

Keyboard

(CR)
(TTK)

Magnetic Tape (MTR)
External Interface Registers (EIR) tJ, ~, 1,,..,1"'.rt r,,.1 t
Disc Input File (FDIF) -=9 r.:u 7"' ' 1

1Jtfl. (Jt1T/t1r 'f'd"' /JtJf"
When magnetic tape, MTR, is specified the statement must include a file name
which is enclosed by double quotation marks. The file name syntax is defined in the
same manner as identifiers (see paragraph 2.2.2).

Magnetic tape file 11names11 are used to uniquely identify data segments on the tape.
These names are assigned with the WRITE statement (Appendix I).

8-1

The terms Vl through Vn may be any legal variable identifier, including arrays. As
the input numerical data is read from the peripheral, it is assigned to the specified
variable(s).

The input data for literal variables (variables preceded by'&') must be of the form:
il~~lt'

cp2c3c4 for a~ variable

for an array of size n

where:

C belongs to the FACTOR character set.

All of the characters must fit on one card (or one record of a different media). The
first or single value for each new variable identifier must start on a new card. The
characters are converted to TRASCII and stored into the variable without further
conversion. c 1 must appear in the first column of the card. This capability has not
been implemen""ted for magnetic tape. _ e ""~

1tl-i 1 ;f11111-Yr-c 11-co- ·

Whenavalues of an array are to be read, they must be separated byAat least one
space (for TTK, CR, FDIF). -More tl:uul OR9 eat'el RUt.y be..uaed to eRt0 r these ualttes;
All numbers following the last array element number on a card are ignored.

When the input peripheral is the magnetic tape unit, the tape is searched forward
until the file "name" is located. The numerical data from this file is read and
assigned to the variables Vl, .•• etc. as specified by the READ statement. For
magnetic tape, the variables rriust be arrays which have no less than 7 elements.
The maximum array size is limited by the amount of core memory available when
the array is declared. It is recommended that arrays be no larger than 512
elements. Appendix I gives a detailed description of the magnetic tape operation
and responses to the READ (MTR) and WRITE (MTW) statements.

When the input is a disc input file, the information is sequentially read from the
disc and stored in variables Vl, through Vn. (No formatting occurs.) The Disc Input
file (FDIF) must have been opened and each READ continues processing the file
where the previous READ left off. The assumption is made that the file is
composed of records written by a FACTOR WRITE (FDOF) statement, and
therefore consists of floating point numbers and alphanumeric text.

If an attempt is made to read beyond the information written in the file, a flag is
transferred to the statement label, which appears in the ON DIFEOF statement. If
no ON DIFEOF statement has been encountered, a terminal error message #68 is
issued. If the DIF is not open, terminal error message #67 is issued.

8.2 WRITE

The formats for output statements are: f 0 .p

8-2

WRITE ((FDOF)/(TTP)/(LP)/CLO)) expression, Vi, 'Si',&Vj,'Sj',
/col/Vl,/col/'Sl', .•• Vn;

Where: Vi ••. Vj ••• Vn ••. Vl. •. V 4 are legal variable identifiers including arrays
which may occur in any sequence. Si, Sj .•• are strings of alphanumeric characters,
col is a numeric column number between 1 and 80, enclosed by slashes

The items enclosed by parentheses are peripheral devices defined as follows:

VKT
Line Printer
External Interface Register
Disc Output File
Magnetic Tape
Communications Link

WRITE (MTW) "name" Vl, V2, V3, V4;

(TTP)
(LP)
(EIR)
(FDOF)
(MTW)
(CLO)

When magnetic tape (MTW) is specified the statement must include a file segment
name which is enclosed by double quotation marks. When writing to magnetic tape,
the variables Vi must be arrays which have no less than seven (7) elements and are
recommended to be no larger than five hundred and twelve (512) elements as
described in paragraph 9.1. Appendix I gives a detailed description of the magnetic
tape operation and responses to the WRITE (MTW) statement.

When the line printer is specified as the output device there may be one or more
strings of alphanumeric characters and one or more variables in a single WRITE
statement. All strings must be enclosed by single quotes and must not contain
semicolons (;). Multiple variables are separated by commas as are intermixed
combinations of strings and variables.

When the output is to a disc output file, the information stored in the variables and
the string is output to the disc. (No formatting occurs.) As each word is output, it
is added to that file which has been previously specified to be the Disc Output File
(DOF). It an attempt is made to write beyond the end of the file, a terminal error
message #69 is issued and the test program is aborted. If the DOF is not open,
terminal error message #67 is issued.

8.2.1 Numeric Variables

Numeric variables are output in one of three forms. If the numeric value of the
variable is a positive integer whose magnitude is less than ten thousand (10000), it
is printed in the form 9999.

If the value is negative and of magnitude less than one thousand (1000), it is printed
in the form S999.

S is the minus sign (-) and the '9's' are decimal digits. Leading zeroes in a positive
number print as spaces.

Integers and non-integers whose magnitudes exceed 999, or 9999, print in the
following format:

S9.999EP99

8-3

where S is the sign of the value and the '9.999' represents the decimal digits of the
mantissa, the '99' represents the decimal digits of the exponent of the value and P
is the sign (+ or -) of the exponent. The character 'E' prints as shown. For
example, 8.979 x 10-6 prints as '8.979E-06'.

Numeric values as described above occupy a field of twelve (12) characters and are
left justified within this field.

8.2.2 Literal Variables

Literal variables (variables preceded by '&') are output as a string of characters.
Four charactes are output for a simple variable, 4n characters for an array of size
n. The string of characters is followed by four blanks.

Strings of characters are printed as they appear in the enclosed quotes. The
characters may be any of those in the character set excluding single quotation
marks and semicolons(;). Leading spaces are printed according to the number of
spaces following the single quote of a string. The total number of printed
characters is an integral multiple of four (4). (The restriction is automatically
imposed at run-time with the addition of no more than three (3) spaces following
the character preceding the trailing quote of a string.)

NOTE

Where a 'data string' or a literal variable array is written
under column format control, the entire string or array
must fit on one line.

The maximum number of variables printed per line is five (5) with the first
character field left justified, unless column formatting is specified.

When a variable is an array, its current values are printed five (5) per line beginning
with array element one (1) left justified on the line.

More than five (5) variables can be specified per WRITE statement with the result
that five values per line is printed on all lines including the last, unless there are
fewer than five values to fill the last line.

A single string of seventy-two (72) characters may be printed on a single line when
the VKT is the output device. When the line printer is the output device, a string
of eighty (80) characterst may be printed on one line. Single strings which extend
beyond column seventy-two (72) of a punched card can be continued beginning with
column one (1) of the next card, etc. When the single string exceeds the character
counts described above, the excess characters are printed on the following line.
The VKT ignores characters between column seventy-three (73) and eighty (80).

t Standard line printer - other line printers are available.

8-4

When variables and strings are intermixed in a single statement, without column
formatting specified, the following output rule holds:

If the count of characters printed on the current line exceeds fifty--six (56),
then the first character of the next entity (either a variable or string) is
printed left justified beginning on the next line. Otherwise, it is printed
beginning on the current line and character position. Overflow to the next
line occurs whenever the character count of a string exceeds the number of
available characters on the line.

Example:

(FACTOR Code):

WRITE 'DATALOG';
WRITE I ';

WRITE 1TEST#=1,N,1

WRITE 'NODE=',PINN,

(Output Data):

DATALOG

TEST#=+ 6
NODE= -0

VALUE=',VALUE;
EXPECTED VALUE=',EV;

VALUE=', VALUE;
EXPECTED VALUE=+ 2

In this example, the variables are N, VALUE, PINN, and EV. At the time the
WRITE statements are executed, these variables had the following numeric values;
6, 1.2 x 10-6, 0, and 2, respectively.

Whenever column formatting is specified, the fifth character of the output is right
justified in the specified column (except column 0). This capability is primarily
oriented toward outputting integer values, which always are right justified in the
specified column. By specifying columns, the programmer can concatenate values.

8.3 FACTOR DISC 1/0

8.3.1 cJH DIFEOF, Label ;

When a READ (FDIF) statement encounters the end of the written file, control is
transferred to the statement Label.

8.3.2 Reset FDIF fi t 1

Reset FDIF initializes the DIF pointer to the beginning of the DIF file.

8.3.3 Programming Conventions for use with FACTOR Disc I/O

The following conventions are suggested to simplify use of disc I/O. It should be
kept in mind that several different programs on different stations can be writing to
the disc file and that the records from each station are intermixed.

8-5

1. All WRITE FDOF statements in all programs should write the same
number of words to the disc (i.e., the record size should be
constant).

2. Each WRITE FDOF statement should output at least 3 words of
identifying information at the beginning of the record:

Words 1 and 2 - Device name
Word 3 - Station number

Other identifying information could be included, such as the
current date.

3. The READ/WRITE and variable capability can be used to read in
identifying alpha information such as the device name, the station
number, or the date. This information may then be output to the
disc in a WRITE statement, or may be used in a data reduction
program to compare the desired device name, station number, date,
etc., against the corresponding characteristic read from the disc
file.

8.4 EXAMPLES OF PROGRAMS THAT READ AND WRITE TO DISC

8-6

REM PROGRAM TIIAT WRITES TO DISC;

FACTl: DCL DEVNAM [2], ARRAY [10];

READ (CR) &DEVNAM, &STAT;

MEASURE VALUE;

Xl =VALUE;

MEASURE VALUE;

X2 =VALUE;

.
WRITE (FDOF) &DEVNAM, &STAT, Xl, X2, ARRAY;

END;

REM DATA REDUCTION PROGRAM;
FACT2: DCL DEV [2] DEVNAM [2], ARRAY [10], SUM;

RESET FDIF;
ON DIFEOF, AVER;
I= O;
READ(CR) &DEV;
WRITE (LP) 'DEVICE IS' &DEV;

LOOP: READ(FDIF) &DEVNAM, &STAT, Xl, X2, ARRAY;

REM ONLY PROCESS DATA FOR CURRENT DEVICE;

IF DEV [1] NEQ DEVNAM[l] THEN GOTO LOOP;

IF DEV [2] NEQ DEVNAM [2] THEN GOTO LOOP;

WRITE (LP) I I ,Xl, X2;
SUM= SUM+ ARRAY 1

GOTO LOOP;

A VER: SUM = SUM/I;
WRITE (LP) 'AVERAGE IS,' SUM;

END;

8-7

SECTION 9.0

FACTOR OPERATING PROCEDURES AND ERROR MESSAGES

A program written in FACTOR must be compiled before it can be executed on the
Sentry Test System. The DOPSY compiler converts the FACTOR English-like
statements into a program file of object codes. The object code is then used by the
TOPSY system, which interprets and executes the program.

9.1 PROGRAM INITIATION

The syntax of the DOPSY command to request the FACTOR compiler is:

I I COMPILE ('filenamel' ICRITTKIMTR) ('filename2') (TTPILPIMTW)

(LISTILISTOBJ) (OBJINOOBJ) (~INOADDR) ("title")

9.1.1 Input

The first group of enclosed options in the above command indicates that the
compiler input may be specified from the keyboard (TTK) from cards via the card
reader (CR), from magnetic tape (MTR) via the magnetic tape unit, or from a file
on the disc ('filename'). If a second file name is included, then at the end of the
compilation 'filename2' is deleted and a data file is created automatically on the
disc with the specified file name.

Not more than one of these options may be specified. The user may, however,
elect not to specify any option, in which case the compiler expects its input from
the current principal input device (PID) assigned to DOPSY.

9.1.2 Output

The remaining options define the output generated. A listing may be output to
either the console (TTP), magnetic tape (MTW), or the line printer (LP). No more
than one output device may be entered with the command. If no entry is made, the
output, if any, goes to the principal output device (POD) which is currently assigned
to DOPSY. MTR and MTW may not be specified together. If LIST is selected, then
source statements only are listed. If LISTOBJ is selected, then both source
statements and their resulting object codes are listed. Unless NOOBJ is selected,
the compiler places its translated program in working storage on the disc. The
ADDR option causes the local memory address to be listed for all SET F
statements. This is the default case. If a title is included in double quotes, then it
is printed at the top of the compiled listing if LIST is also selected.

A typical initiation command might be:

11 COMPILE '*TEST' 'TEST' LIST LP

9-1

followed by a carriage return, if entered from the VKT keyboard. This command
causes the source program to be read from the file on disc name '*TEST' and
produces both a data file on disc named 'TEST' and also a listing of the source
statements on the line printer. Local memory addresses are printed beside local
memory load statements.

When a program error is detected, one of two procedures is taken:

(1) If the error is recoverable, i.e., if the compiler can continue,
FACTOR continues to compile and notifies the user of further
errors.

(2) If the error is not recoverable, the DOPSY monitor is called and an
asterisk is typed to notify the user that DOPSY is in control again.

9.2 INTERPRETER INTERFACING

FACTOR produces a data file which must be saved by the user if it is to be
executed. Once a compilation has been completed return is made to the DOPSY
system monitor with the compiled program in working storage. The user then has
the option of correcting any errors in the source program and redoing the
compilation, or if the program compiled error free, save the object program by
creating a type "DATA" file on the disc:

II CREATE DATA 'filename'

The user program may now be executed under the control of the TOPSY
interpreter.

When two filenames are entered on the compile command this step is handled
automatically. The following three DOPSY commands are issued:

I I DELETE 'filename2'
II CREATE 'filename2' DATA
I I SET TTK TTP

This procedure always returns control to the TTK and TTP.

TOPSY is called by typing

II TOPSY

followed by a carriage return. The operation of the program from this point, using
the I. LOAD command, etc., is described in the Sentry User's Manual.

9.3 ERROR MF.SSAGES

Most of the error messages issued by FACTOR are self-explanatory. They are
listed in Table 9-1 with some comment for clarification. The error messages are
accompanied by an up-arrow "t ", where appropriate, to indicate the position in the
statement text where the error was detected. Two parentheses or brackets may be
used in the text of the error message, since a single symbol might be obliterated by
the up-arrow, making the message illegible. The total number of errors is output to
the POD at the end of compilation.

9-2

TABLE 9-1 FACTOR ERROR MESSAGES

TEST

"variable name"
ALREADY DEFINED

SEQUENCE ERROR

SS FULL

NW FULL

WORK FULL

DISC OVERFLOW

EXCESS BLOCK - -
STOP OBJ

SYSTEM 2 ERROR

PROGRAM TOO BIG

MISSING))

EXPRESSION SYNTAX

MISSING

MISSING NAME

MISSING NUMBER

DESCRIPTION

A duplicate definition of a variable within the
same block.

It is a warning message. The sequence
numbers punched in columns 73-80 of the
source card deck are out of ordef:--

There is not enough space in memory for the
number of symbols used.

There are too many noise words.

A compound statement is too long and exce
eded work area of ·memory.

There is not enough space on the disc for the
data file to be built up in working storage.

The allowable maximum number of nested
blocks has been exceeded. Blocks may be
nested to a depth of 8 (including Block 0).

Disc error. File cannot be read or closed.
Compiler returns to DOPSY.

Object code generated exceeds 777777B.

A left or right parenthesis has been left out.

An expression has been written incorrectly.

A left or right bracket has been left out.

An identifier should have been specified in
this syntactical position.

A number should have been specified.

9-3

TABLE 9-1 FACTOR ERROR MESSAGES (Continued)

TEST

STATEMENT SYNTAX

USE ERROR-
DEFINED USAGE-
[SCALAR/FOR PAR/
ARRAY/FUNCT/SUBR
LABEL/LM LABEL]

NUMBER SYNTAX

INVALID TERMINATOR

I/0 SPECIAL ERROR

END OF FILE INPUT

EXCESS VARIABLES -
STOP OBJ

NUMBER EXCEEDS
LIMIT
PIN MISSING

SET PAGE ERROR

ILLEGAL INSTRUCTION

LOCAL MEMORY NOT LOADED

LABEL NOT IN BLOCK 0

9-4

DESCRIPTION

A statement has been incorrectly written.

Incorrect usage of variable; where SCALAR =
simple variable, FOR PAR - arguments in
CALL or FUNCT, ARRAY = array variable,
FUNCT = function, SUBR = subroutine,
LABEL = statement label, and LM LABEL =
local memory label.

A number has been specified incorrectly.

An expected terminator or delimiter is incor
rectly specified or missing.

Format used for READ or WRITE statement
is incorrect.

The inout file has been exhausted without
finding ·an END statement.

The allowable maximum number of variables
per block has been exceeded or too many
parameters in an EXEC statement. (Max
imum number of variables/block is 127,
except Block 0 which is 104. The maximum
number of parameters in an EXEC statement
is 63.)

Number exceeds hardware capabilities.

No pin list with SET TG(x) statement.

More than one SET PAGE statement appeared
in the program, or it is preceded by some
thing other than PGMID or REM, or a CHAIN
mode was selected that is not compatible
with the page size.

Instruction is not applicable to system being
operated on.

No last local memory address defined i.e., no
SET F statements before ENABLE TEST.

ON fail-type label is not defined in Block 0.

TABLE 9-1 FACTOR ERROR MESSAGES (Continued)

TEXT

COMPILER GENERATED
"ENABLE TEST"

FILE NAME ERROR

NUMBER EXCEEDS RANGE

WARNING NUMBER EXCEEDS
LIMIT

FILE TYPE ERROR

RESERVE WORD USE ERROR

WARNING - LOG IGNORED

DESCRIPTION

Number of SET F statements comprising a
local memory load has exceeded the local
memory size defined by SET PAGE. Com
piler has generated code for an ENABLE
TEST statement.

Incorrect file name was used with an INSERT
statement.

The value specified exceeds the limit of the
range used in the tester instruction.

The number used is greater than 16 bits
(177777B).

Wrong file type was used for an INSERT file.

A reserved word was used in place of an
identifier.

LOG specified in MEASURE PIN instruction
is ignored since it is a DMA instruction.

9-5

Code Char.

00 SPACE
01 I

02 Tt

03 #
04 $
05 %
06 &
07 ,

10 (
11)
12 *
13 +
14 4

' 15 -
16 .
17 I

20 0
21 1
22 2
23 3
24 4
25 5
26 6
27 7

30 8
21 9
32
33 ;
34 <
35 =
36 >
37 ?

APPENDIX A

CHARACTER CODING (TRASCII)

029
Special
Character Code Char.

BLANK 40 @
11-2-8 41 A
7-8 42 B
3-8 43 c
11-3-8 44 D
0-4-8 45 F
12 46 F
5-8 47 G

12-5-8 50 H
11-5-8 51 I
11-4-8 52 J
12-6-8 53 K
0-3-8 54 L
11 55 M
12-3-8 56 N
0-1 57 0

0 60 p
1 61 Q
2 62 R
3 63 s
4 64 T
5 65 u
6 66 v
7 67 w

8 70 x
9 71 y
o-8-2 JJi,.t:t I 72 z
11-6-8 73 [
12-0 74 \
6-8 75 J
11-0 76 +
0-7-8 77 +

029
Special
Character

4-8
12-1
12-2
12-3
12-4
12-6
12-6
12-7

12-8
12-9
1-1
11-2
11-3
11-4
11-5
11-6

11-7
11-8
11-9

0-2
0-3
0-4
0-5
0-6

0-7
0-8
0-9

12-4-8< I
11-7-81

0-6-8 >)
12-7-8 I

0-5-8 _

A-1

APPENDIX B

READING AND WRITING OF LONG AND SHORT REGISTERS

B.1 INTRODUCTION

The Sentry Test System READ and WRITE capabilities reference the system's long
and short registers. (The long and short registers consist of one bus each). The
following is a description of the operation of the long and short registers.

B.1.1 Long Registers

The long registers are interfaced to the memory interface unit, called the
Instruction Register, which sends information to and from the test station. It has a
bus, which is used primarily for transmitting functional test data and PMU control
data to the test station. The S, F, D, M, C, RZ, STROBE, INVERT and R registers
are the only registers programmable with functional test data. There are other
registers that are essentially like the short registers, but since the hardware resides
in the test station, they are interfaced to the long register data bus and use rank
address bits for identification.

B.1.2 Short Registers

The short register is interfaced to the computer accumulator. The register is used
for controlling the digital to analog converter subsystems and for communicating
the tester status, mode and interrupt information. Therefore, the El, EO, EAl,
EAO, etc., registers, that contain data for reference supplies are interfaced to the
short register data bus.

B.2 ADDRESSING SHORT REGISTERS

Each register can be addressed by the three computer Select Peripheral Unit (SPU)
commands: READ, WRITE and SPECIAL. They are each discussed as follows:

READ

To examine the contents of a register, the register is first addressed with
an SPU READ command. The contents of the register are then read into
the CPU accumulator.

B-1

WRITE

To write a bit pattern into a register, the register is first addressed with an
SPU WRITE command. The command is followed by the bit assignment for
that register.

SPECIAL

An SPU SPECIAL command is defined as an instruction that executes some
function, but no read or write data transfer is involved, e.g., Increment IND
Counter or Disconnect DPS.

Each register command consists of an 8 digit octal code. The code, in effect,
identifies a specific register in a specific unit and informs this register that it is
about to either receive or transmit data. The data is either read out of the
register, written into the register or the register performs a special function. The
command format is shown in Table B-1.

Consider an example of an SPU command so that its mode and function within the
system can be understood. The following table shows the MODE register SPU
READ command and its octal and binary equivalents:

TABLE B-1 SPU COMMAND FORMAT

Bit Location: 23 22 21J 20 19 18 17 16 15 14 13 12 11 10 !q 8 7 s I 5 4 3I2 1 0

Octal Value: 0 I 6 6 0 0 T 5 T 2 T 0

Binary Value: 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0.

OP CODE 6=Read TESTER UNIT
(SPU) 4=Write REGISTER ADDRESS

2=Special
O=No-op

Starting from the left, the high-order six binary bits (23-18) represent the octal
code 06. This octal code is the SPU op code for the READ, WRITE, or SPECIAL
command functions. The op code informs the system that it is about to address a
register in a unit with a READ, WRITE or SPECIAL command.

The 3-bit value in bits 17-15 defines the command as READ, WRITE, or SPECIAL
transfer. Octal 6 =READ; 4 =WRITE; 2 =SPECIAL and 0 =No op.

The six bits shown for the tester register (13-8) specify one of 64 unique registers.
The remaining bits (7-0) are used to form the unit address. The tester is unit 120B.

B.2.1 Short Register Descriptions

The register number is the octal equivalent of bits 13-8 of the SPU command. The
following paragraphs summarize the short registers, their addresses and special
functions.

B-2

B.2.1.1 Mode Register (MR) Address 01

The mode register controls mode functions affecting the total test system as shown
in Table B-2.

TABLE B-2 MODE REGISTER

BIT FUNCTION READ WRITE

0 Reset Tester Short Register x
1 Reset Tester Long Register x
2 Monitor Mode x
3 Auto Mode x
4 Negative Logic Mode x x
5 Latch C Mode x x
6 Strobe Inhibit Mode x x
7 Force Strobe x
8 Force Sync Pulse x
9 DMA Mode x

10 DMCRS Last function test register used x x
11 Function Test Suspended x x
12 Trip Fail x x
13 Functional Fail x x
14 Pass (Cleared by 2 or 13) x x
15 Spare x x

NOTE: A SPECIAL command clears the mode register.

B-3

B.2.1.2 Status Register (SR) Address 02

The status register contains interrupt information as shown in Table B-3.

TABLE B-3 STATUS REGISTER

BIT FUNCTION

Instruction Number Compare
Interrupt Enable

Instruction Number Compare
Delay Complete Interrupt Enable
Delay Complete Interrupt
Trap Interrupt Enable
Trap Interrupt
Fail Interrupt Enable
Fail Interrupt
Trip Interrupt Enable
DPS #1 Trip (8 must be on)
DPS #2 Trip (8 must be on)
DPS #3 Trip (8 must be on)
Stop Interrupt Enable
Stop Interrupt
Interrupt in Process
Spare

tSet by short register reset.

READ

x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

WRITE

x

x
x
x
x
x
x
x
x
x
x
x
x
t

x

NOTE: A SPECIAL command clears the status register. (BO-B13)

/J '4 r·

3
J-/-- H ti' I 7 - 15 I Lf .5 f/ £A//

/JJ'-t // z;vl 18' - J r Al /'f T f ,A:./ "'i' .e L- e~

6 ~ F/l i f /9 f'fAP;T f/t//

'1 ~

?(- Tr 1 ~
--...,, __ , __ ~ (J I

B.2.1.3 Instruction Register (IR) Address 03

The instruction register is a buffer between B memory and the long registers via
the accumulator. It contains the information listed in Table B-4.

BIT(S)

0
. . .

14
15-18
19-21
22-23

TABLE B-4. INSTRUCTION REGISTER

FUNCTION

Data
.
.
.
Data
Rank Address
Register Address
Long Reg. Read/Write Control

00 =WRITE & HOLD BITS 0-14
01 =WRITE & EXEC BITS 0-14
10 =READ BITS 0-14

Read

x
.
.
.
x

Write

x
.
.
.
x
x
x
x

WRITE & EXEC in DMA mode advances the Instruction Number Counter
(IND) and waits for 1tester not busy1•

B.2.1.4 Memory Address Register (MAR) Address 04

The memory address register contains the memory address for the tester DMA
mode. The fourteen bits are all read and written. When the tester is in the DMA
mode, phase loop control automatically increments MAR.

B.2.1.5 Test Station Control Register (TSC) Address 05

The test station control register controls four channel multiplexing as listed in
Table B-5.

TABLE B-5. TEST STATION CONTROL REGISTER

BITS FUNCTION READ WRITE

0-1 Station Address (Write places on-line) x x
2-5 Start Requests from Stations 1 to 4 x
6-9 Manual Mode from Stations 1 to 4 x
10-13 Reset Request from Stations 1 to 4 x

Reset and Start are written only by addressing the associated station.

B-5

B.2.1.6 Clock Burst Count Register (CBC) Address 10

The clock burst count register consists of eight bits, all read/write, which contain
the count of the number of clock syncs generated per function test. This register is
not used on the Sentry 600.

B.2.1. 7 Time Delay Register (TD) Address 11

The time delay register consists of fourteen bits, all read/write, representing the
value of a functional or DC time delay to be generated by certain tester
instructions. For function tests, the least significant bit represents 0.35
microsecond and full scale is 5. 734 milliseconds. The phase loop counter triggers
the time delay counter when a SET F instruction is executed. For DC tests, the
least significant bit represents 0.35 millisecond and the full scale value is 5. 734
seconds. An SPU SPECIAL command triggers the DC time delay. The functional
delay is not used by the Sentry 600.

B.2.1.8 Instruction Number Compare Register (INC) Address 14

The instruction number compare register consists of sixteen bits, all read/write,
representing the test instruction number at which a pause or external sync pulse
occurs. A compare interrupt is generated if the INC Interrupt is enabled, else a
sync pulse occurs.

B.2.1.9 Instruction Number Display Register (IND) Address 15

The instruction number display register is a sixteen bit register, all sixteen bits
read/write, representing the test instruction being executed. An SPU SPECIAL
command increments the contents of the register by one. It is also incremented in
DMA mode when bits 23 and 22 = 01, WRITE and EXECUTE, are set as shown.

B.2.1.10 Digital Programmable Power Supply Registers DPSl, DPS2, and
DPS3 Addresses 21, 22, 24

Registers DPSl, DPS2, and DPS3 contain the range, polarity and magnitude of the
DPS voltage being forced or the voltage trip point (Refer to Table B-6).

B-6

TABLE B-6. DIGIT AL PROGRAMMABLE POWER SUPPLY REGISTERS

BITS FUNCTION Read Write

0-9 Voltage Magnitude (Forced or Trip Value) x x
LSB = 0.01 volt in low range

= 0.04 volt in high range

10 Polarity 0 = Pos x x
1 =Neg

11 Range 0 =low x x
1 =high x x

NOTE: An SPU SPECIAL command disconnects the corresponding supply.
A DPS write connects the unit to the load board.

B.2.1.11 DPS Trip Registers - DPTl, DPT2, and DPT3 Addresses 23, 25, 26

Registers DPTl, DPT2, and DPT3 contain the current trip point or the current
being forced and the trip greater than or less than control plus the DPS forcing
mode control (Ref er to Table B-7).

TABLE B-7. DPS TRIP REGISTERS

BIT(S) FUNCTION Read Write

0-9 Current Magnitude (Forced or Trip Value) x x
LSB = O.lmA in low range
LSB = 1. mA in high range

10 Polarity 0 = Pos
1 =Neg

11 Range 0 =low x x
1 =high

13 GT or LT 1 =GT x x
0 =LT

14 Voltage/current 0 =voltage force x x
1 = current force

B-7

B.2.1.12 Reference Voltage Supply Registers SO, Sl, EO, El, EAO, EAl,
EBO; EBl, ECO, ECl, SAO, SAl Addresses 32-37, 42-47 .

The reference voltage supply registers contain the range, polarity and magnitude of
the reference voltage supply (Refer to Table B-8).

TABLE B-8. REFERENCE VOLTAGE SUPPLY REGISTERS

BIT(S) FUNCTION Read Write

0-9 Voltage Magnitude x x
LSB = 0.01 volt in low range
LSB = 0.04 volt in high range

10 Polarity O = Pos x x
1 =Neg

11 Range 0 =low x x
1 =high

B.3 LONG REGISTER DESCRIPTION

The registers associated with the long register are divided into two groups. The
first group consists of the D, M, S, R, F, RZ, ST, INVERT, TGAO, TGAl, TGA2 and
C registers. The second group consists of Pin Address, Statement Number Display,
Functional Test Rate, Precision Power Source, Precision Sense Level, External
Interface, Slave TSC, DC Trip, Status and Mode A and B registers, and Local
Memory Registers.

B.3.1 The D, M, S, R, F, RZ, ST, INVERT, TG and C Registers

The twelve registers of the first group are discussed below.

B.3.1.1 D/DA Register, Address 02

The D/DA register is termed the input/output register. If the D register is
programmed as a binary 1, the associated pin is defined as an input pin. If the D
register is programmed as a binary 0, the associated pin is defined as an output pin.
When a pin is defined as an input pin in the DA or DB register, a relay is energized
to connect the output of the driver to the pin.

B.3.1.2 DB Register, Address 03

As above, except DB is the alternate input/output register.

B-8

B.3.1.3 M/MA Register, Address 04

The M register is the care/don't care or "mask" register. If the programmer is
interested (care) in knowing the output level of a pin, the M register is programmed
as a binary 1. If the programmer is not interested (don't care) in the output level of
a pin, the M register is programmed as a don't care, or a binary 0. An input pin, or
an output pin with an undefined state, would normally be programmed as don't care
to prevent false failure indications on that pin. The don't care condition inhibits
any fail indication from the output of the detector.

B.3.1.4 MB Register, Address 05

As above, except MB is the alternate mask register.

B.3.1.5 S Register, Address 10

The select reference register selects which set of reference supplies are to be used
by the functional test driver for each tester pin. A binary 0 selects the primary
Data/Clock reference pairs, while a binary 1 selects the alternate Data/Clock
reference pairs.

B.3.1.6 RZ Register, Address 00

The RZ register selects between two data driver modes. The normal condition,
binary 0, is for the Non-Return-to-Zero (NRZ) mode. A binary 1, selects the
Return-to-Zero (RZ) mode for the programmed pin.

B.3.1.7 ST Register, Address 01

The strobe (ST) register selects one of two possible strobe times for each tester
pin. A binary 0 selects TG7 while a binary 1 selects TG8. If the statement
ENABLE DOUBLE STROBE has been executed, then a binary 0 selects both TG7
and TG8 for that pin, and a binary 1 selects TG8 only.

B.3.1.8 R Register, Address 14

The utility relay register controls the utility relays, one relay per tester pin. A
binary 1 indicates a closed relay and a binary 0 indicates an open relay. The utility
relays can be used for such functions as connecting a load resistor for an output pin
to a programmable power supply.

B.3.1.9 F Register, Address 06

Writing F data to the register address results in loading the data into the local
memory at the local memory address set by the Local Memory Main Frame Access
Register (see B.3.3.11). The local memory contains the logic patterns 1 or 0 to be
applied to those pins which are defined as inputs pins by the DA DB register. If the
pin data is programmed as a high level (1), the high output of the driver is applied
to the associated pin. If the pin data is programmed with a low level (0), the low
output of the driver is applied to the pin. The local memory also contains the
expected logical output of those pins which are defined as output pins.

B-9

Local memory F data also contains bits to select the primary or alternate I/0
registers and Mask registers (DA/DB and MA/MB). The selection is programmed
via bit 18 when writing F data to ranks 1 and 2 and shown:

Rank Bit 18

1 0 =DA
1 =DB

2 0 =MA
1 =MB

Reading F data from local memory is accomplished by first writing the local
memory address to the Local Memory Main Frame Access Register and then
reading the F data via the F register ·address. The bits to select DA/DB and
MA/NB are read back through the status and Mode B register (see B.3.3.19).

B.3.1.10 C Register, Address 12 (Read Only)

The C register stores the go/no-go results of a comparison between the actual
output of a device and the expected output. A binary 1 represents a comparison
failure and a binary 0 represents a pass condition.

B.3.1.11 INVERT Register Address 12 (Write Only)

This register provides a means of inverting the functional data for any pin. A
binary 1 in the pin pattern enables the F data for that pin to be inverted (Return
to-One).

B.3.1.12 TGAO/TGA1/TGA2 Registers (Address 11, 13, 15)

These registers provide selection of timing generators TG1-TG6 for each tester pin.
A timing generator is selected for a pin by programming the timing generator
number (1-2-4 code) in the pin position in each of the three registers. The 1-bit in
TGAO, the 2-bit in TGAl and the 4-bit in TGA2. The assignment is:

TGA2 TGAl TGAO

0 0 0 No generator assigned
0 0 1 TGl
0 1 0 TG2

1 1 0 TG6
1 1 1 TGl and TG2

B-10

B.3.2 Format of Functional Test Word

The primary difference between the long and short registers is that the short
registers are variable length words. The format of a 24-bit function test word is
discussed below and it is illustrated in the accompanying Figure B-9. The format
for all function test registers is the same, except that the address for each register
is different.

TABLE B-9. TEST WORD FUNCTION FORMAT

24 Bit Functional Test Word

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 l 0

Control Register
Address

Rank Address

Rank
Address

3 Bits = 1 to 8 Ranks

Pin Data Field

Maximum Register Length= 8 x 15 = 120 Bits

Register Address

Bits: 21 20 19 18 Meaning

0 0 0 0 RZ RETURN TO ZERO
0 0 0 1 ST STROBE SELECT
0 0 1 0 D/DA DEFINE 1/0 PINS
0 0 1 1 DB DEFINE 1/0 PINS (ALTERNATE)
0 1 0 0 M/MA MASK
0 1 0 1 F FUNCTIONAL PATTERN
1 0 0 0 S SELECT ALTERNATE REFERENCE
1 0 0 1 TGAO TIMING GENERATOR PIN ADDR (1)
1 0 1 0 C COMPARE (FAIL PATTERN)/INVERT
1 0 1 1 TGAl TIMING GENERATOR PIN ADDR (2)
1 1 0 0 R UTILITY RELAY
1 1 0 1 TGA2 TIMING GENERATOR PIN ADDR (4)
1 1 1 x TEST ST A TION REGISTERS

Control

Bits: 23 22 Meaning

0 0 WRITE AND HOLD
0 1 WRITE AND EXECUTE
1 0 READ
1 1 TRAP

B-11

Register Load Times:

1. 75 (1 + N) microseconds where: N =Number of ranks changing

Starting from the right, the 0 bit represents pin 1, the 1 bit represents pin 2, etc.,
up to bit 14 which represents pin 15.

Rank Address:

Bits 15 through 17 represent the rank to which the first 15 bits have been assigned.
The ranks are determined by the normal 4-2-1 binary code minus one. 000 inserted
in bits 15 through 17 represent rank 1; 111 represent rank 8. In this manner, 8
ranks of 15 pins can be programmed, thus providing a capacity of 120 pins.

Register Address:

Bits 18, 19, 20, and 21 determine the register to which the rank of 15 bits is to be
sent.

Control:

Bits 22 and 23 control the read/write function. Assume the device under test is a
15-pin device; all 15 pins are programmed on one line and assigned to rank 1. The
correct address code is inserted and bits 22 and 23 are programmed as 01 (write and
execute), i.e., there are no more pins to program. If the device is a 45-pin device,
the first 15 pins are programmed as described above, except for bits 22 and 23
which are programmed as 00 (write and hold), i.e., there are no more pins to
program. The second group of 15 pins is assigned to rank 2 and, again, bits 22 and
23 are programmed as 00, i.e., there are more pins to program. The third group of
15 pins is assigned to rank 3 and bits 22 and 23 are programmed as 01 (write and
execute), i.e., there are no more pins to program-execute the command. The F and
S registers are MASTER/SLAVE so that all bits execute together.

B.3.3 Special Test Station Registers

The registers of the second group are discussed below.

B.3.3.1 Pin Address Register (Address = 160)

The pin address register addresses the precision measuring unit to one of the pins of
the device under test or to an internal node (Refer to Table B-10). The reset state
of this register is O.

B-12

TABLE B-10. PIN ADDRESS REGISTER

BIT(S) FUNCTION Read Write

0-3 Pin Number 1-15 0000 = disconnect x *
0001 = pin 1

4-6 Rank Number 1-8 000 1111 =pin 15 x *
001 0001 = pin 16

7 Internal Node Address x *

8 Connect Voltage Conditioner x **
(ENABLE RELAY FACTOR Instruction)

14 Write Protect Bit x

*Write Protected if bit 14 is a 1.
**Write Protected if bit 14 is a O.

B.3.3.2 Statement Number Display Register (Address = 162)

The statement number display register contains the statement number to be
displayed on the test station control panel. This register is interfaced to the IND
register with software in TOPSY. Whenever the test sequence pauses, the software
updates SND. The register is 15 bits, both read and write. This register is not used
on the Sentry 600.

B.3.3.3 Functional Test Rate Register (Address = 163)

The test rate register contains the magnitude and the range of the functional test
period. It controls the rate at which functional testing is executed.

TABLE B-11. TEST RATE REGISTER

BIT(S) FUNCTION Read Write

0-11 Magnitude x x

LSB Range Full Scale

20 ns (lOns)* 0 80 us (40us)*
100 ns 1 400 us

1 us 2 4 ms
10 us 3 40 ms

*1 OM Hz System

B-13

TABLE B-11. TEST RATE REGISTER (Continued)

BIT(S) FUNCTION Read

12-13 Range

00 =Range 0
01=Range1
10 =Range 2
11 =Range 3

B.3.3.4 Precision Power Source Register/Precision Measurement
Unit Forcing Register (Address= 164)

Write

This register contains the magnitude, polarity and range information of the PMU
forcing value. It also contains the voltage or current force mode bit (Refer to
Table B-12).

TABLE B-12. PPSR/PMUF REGISTER

BIT(S) FUNCTION Read Write

0-9 Magnitude x x

LSB Range Full Scale

,0 lmV 1 1.023V
,~ lOmV 2 10.23V

40mV 3 40.92V
lOOmV 4 102.3~~
lnA 0 1.023uA
lOOnA 1 102.3uA
lOuA 2 10.23mA
lOOuA 3 102.3mA

10 Polarity 0 = POS x x
1 =NEG

11-12 Forcing Range 00 =Range 0 (Current x x
Force only)

01=Range1
10 =Range 2
11 =Range 3
00 =Range 4 (Voltage

Force only)
13 FV/IF 1 =Voltage Force x x

0 = Current Force

B-14

B.3.3.5 Precision Sense Level Register (Address = 165)

This register contains the PMU voltage clamp levels and the measuring range
(Refer to Table B-13).

TABLE B-13. PRECISION SENSE LEVEL REGISTER

BIT(S) FUNCTION Read Write

0-3 Voltage Clamp Magnitude x *
4 Clamp Control (1 = on, 0 = off) x *
5 Clamp Range x *

Range ClamQ Voltage Range of Values

0 (1.5+3n)V O<n<15 1.5 to 46.5
1 (3.0+6n)V o<n<"l5 3.0 to 93.0

6 Allow Negative Voltages (SET CLAMP NEG) x *
7 Allow Positive Voltages (SET CLAMP POS) x *
8-9 Not used
10 Write Protect Bit
11-12 Sense Range x **
13 VM/IM (complement of PPS bit 13) x

*Write Protect if bit 10 is a 1.
**Write Protect if bit 10 is a 0.

B.3.3.6 External Interface Register, Address 166B

This fifteen bit register is used to display test results and control external
equipment (Refer to Table B-14). All bits are read/write. Bits 10-14 are defined
by the system software. Bits 0-9 are available to the user to use in any form. The
user may wish to interface these bits to an external unit (Refer to Sentry Display
Control PCB, Dwg. # 97233401-04 and Wafer Prober Interface PCB, Dwg.
#97239919). Signal Levels should be TTL level compatible. Bits 0-9 have a drive
capability of 24 L and present a load of 1 L. Consult PST Custom Produce
Engineering for interfacing to non-standard handlers, wafer probers or custom
equipment.

B-15

TABLE B-14. EXTERNAL INTERFACE REGISTER

BIT(S) FUNCTION Read Write

0-9 Defined by User
Displayed on Station Control Panel x x

10 D.C. Fail Lamp* x x
11 D.C. Pass Lamp* x x
12 Functional Fail Lamp x x
13 Functional Pass Lamp x x
14 End-of-Test x x

*If both DC fail and DC pass are set, the
Terminal Error lamp will go 'ON'.

B.3.3. 7 Slave Test Station Control (Address = 167)

This register is a copy of the TSC short register and is used at each station
equipped with relay mux. It is used to put the test head on line; and contains
Reset, Manual and Start data from each of the substation test heads.

B.3.3.8 Local Memory Test Start/Delayed Memory Address Register
(Address 1700)

The test start address in local memory is set by writing to this register. The
address at which local memory stopped execution is obtained by reading this
register. This register is not on the system reset line.

BIT

0-9

10-11

B-16

TABLE B-15. LOCAL MEMORY TEST START/DELAYED MEMORY
ADDRESS REGISTER (ADDRESS 1700)

FUNCTION Read Write

Memory Address* x x
Read - Halted Location
Write - Start Location

Chain Address* x x
00 =No Chain Address
10 = Chain 2 Address
11 = Chain 4 Address

*Bit 10 becomes the most significant bit
of the local memory address if local
memory size is set to > 1024.

B.3.3.9 Local Memory Minor Loop Count Register (Address 1701)

This 12 bit register contains the number of loops through the minor loop in local
memory. The loop count ranges from 0 to 4095. This register is not on the system
reset line. All bits are read/write.

B.3.3.10 Local Memory Major Loop Count Register (Address 1702)

This 12 bit register contains the number of loops through the major loop in local
memory from the end address to location O. The loop count ranges from O to 4095.
This register is not on the system reset line. All bits are read/write.

B.3.3.11 Local Memory Main Frame Access Register (Address 1703)

This register controls the local memory address to which succeeding functional
patterns will be loaded. It must also be set to the local memory address from
which it is desired to read back a functional pattern. This register is not on the
system reset line.

TABLE B-16. LOCAL MEMORY ADDRESS REGISTER

BIT FUNCTION Read Write

0-9 Local Memory Address* x x

10-11 Chain Address* x x

00 = No Chain Address
10 =Chain 2 Address
11 = Chain 4 Address
*Bit 10 becomes the most significant bit
of the local memory address if the
memory size is set to > 1024.

B.3.3.12 Local Memory Minor Loop Start Address Register (Address 1704)

This register defines the minor loop start address within local memory. This
register is not on the system reset line. Ref er to Table B-17.

B.3.3.13 Local Memory Minor Loop End Address Register (Address 1705)

This register defines the minor loop end address within local memory. This register
is not one the system reset line. Ref er to Table B-17.

B.3.3.14 Local Memory Loop End/Test End Address Register (Address 1706)

This register defines the major loop end or test end address within local memory.
This register is not on the system reset line. Refer to Table B-16.

B-17

B.3.3.15 Local Memory Ignore Fail Register (Address 1707)

This register sets the local memorw address up to and including which fails are to
be ignored. Status and Mode register A, bit 8 must be set to enable this mode.
This register is not on the system reset line. Refer to Table B-16.

B.3.3.16 DC Trip Limit Register (Address = 171)

The DC trip limit register holds a go/no-go limit for PMU tests made in DMA mode
(MEASURE PIN). It is also used to hold trial limits in the software A to D
conversion routine. (Reference Table B-17).

TABLE B-17. DC TRIP LIMIT REGISTER

BIT(S) FUNCTION Read Write

0-9 Magnitude (See PPS register) x *
10 Polarity (0 = POS, 1 =NEG) x *
11-12 Sense Range (Set by PSL register) x *
13 LT/GT Bit (0 =LT, 1 =GT) x *

14 n r l<'n;J
.J..J • '-"• .J... UJ.J. x

14 D.C. Strobe x

*Write Protect if DC strobe is 1.

NOTE

A DC strobe is generated either by writing bit 14 or reading the
register. A comparator fail on a strobe sets on a latch on bit 14; a
comparator pass during a strobe resets the latch.

B.3.3.17 Chaining Register (Address 172)

This register controls the chaining of data and I/O modes for the selected pins. A
binary 1 denotes Chain 1/0 mode.

B-Hs

TABLE B-18. CHAINING REGISTER

BIT FUNCTION Read Write

0 Surviving Pin 1 x x
1 Surviving Pin 5 x x
2 Surviving Pin 9 x x
3 Surviving Pin 13 (Chain 2 only) x x
4 Surviving Pin 16 x x
5 Surviving Pin 20 x x
6 Surviving Pin 24 x x
7 Surviving Pin 28 (Chain 2 only) x x
8 Surviving Pin 31 x x
9 Surviving Pin 35 x x
10 Surviving Pin 39 x x
11 Surviving Pin 43 (Chain 2 only) x x
1 '2 Surviving Pin 46 x x
13 Surviving Pin 50 x x
14 Surviving Pin 54 x x

B.3.3.18 Status and Mode Register A (Address= 1730)

The Status and Mode A Register contains control and status information to
supplement the functional/DC fail interrupt in the status register and for local
memory control (Reference Table B-19).

TABLE B-19. STATUS AND MODE REGISTER A

BIT FUNCTION Read Write

0 R - Local Memory Busy x x
W - Start Local Memory

1 R - No match x x
W - Match Mode

2 Momentary Mode x x
3 Continuous Loop State x
4 Functional Fail x
5 Parametric Fail x
6 Functional Fail Enable x x
7 Parametric Fail Enable x x
8 Enable Ignore Fail x x
9 Rank Load Mode x x
10-11 Memory Size* x
12 Enable Fail in Continuous Loop x x
13 Continuous Loop Mode x x

*LOCAL MEMORY SIZE (B2(SAMC)) BlO Bll
1 1 1 512
1 0 1 1024
1 0 0 2048
0 0 0 4096

B-19

I

B.3.3.19 Status and Mode Register B (Address 1734)

The Status and Mode B Register allows control of Chain mode, Sync, Double Strobe
and Interrupt Enable for a DC pass. This register may not be read or written from
a FACTOR program.

TABLE B-20. STATUS AND MODE REGISTER B

BIT FUNCTION Read Write

0 1/0 Mode x x
1 Sync Mode x x
2 2K Page Size x x
3 External Sync Function Test x x
4 Double Strobe x x
5 Chain 2 Mode x x
6 Chain 4 Mode x x
7 D/L Measure Interrupt Enable x x
8 Local Memory Data Rank 1 (DA/DB) x
9 Loc~l Memory Data Rank 2 (MA/MB) x
10 Local Memory Data Rank 3 x
11 Loca~ Memory Data Rank 4 x

B.3.3.20 Status and Mode Register C (Address 1735)

The Status and Mode Register C contains data denoting the test system
configuration. All bi ts in this register are read only.

TABLE B-21. STATUS AND MODE REGISTER C

BIT FUNCTION Read Write

4 One nanosecond option x
5 Ten MHz option x
6 Ten MHz test head x

B-20

B.3.3.21 Timing Generator Pulse Width Register (Address 175)

There are eight timing generator pulse width registers. Each contains the range
and magnitude data for the associated timing generator.

TABLE B-22. TIMING GENERATOR PULSE WIDTH REGISTER

BIT FUNCTION Read Write

0-9 Magnitude x x

LSB Range Full Scale
10 ns 0 10 us

100 ns 1 100 us
1 us 2 1 ms

10 us 3 10 ms

10-11 Range

00 =Range O
01=Range1
10 =Range 2
11 =Range 3

12-14 Timing Generator Number

000 Timing Generator 8
001 Timing Generator 1
. . .
. . .
. .
110 Timing Generator 6
111 Timing Generator 7

B.3.3.22 Timing Generator Pulse Delay Register (Address 176)

There are eight timing generator pulse delay registers. Each contains the range
and magnitude data for the associated timing generator.

B-21

TABLE B-23. TIMING GENERATOR PULSE DELAY REGISTER

BIT FUNCTION Read Write

0-9 Magnitude x x

LSB Range Full Scale
10 ns 0 10 us

100 ns 1 100 us
1 us 2 1 ms

10 us 3 10 ms

10-11 Range

00 =Range 0
01 =Range 1
10 =Range 2
11 = Range 3

12-14 Timing Generator Number

000 Timing Generator 8
001 Timing Generator 1
. . .
. . .
. . .
110 Timing Generator 6
111 Timing Generator 7

B.3.3.23 Power Pin Address Register (Address 177}

This register connects a tester pin to one of the following: Data Reference pair,
Tester Common, Clock Reference pair, DPSl, DPS2, or DPS3. There is a 3 bit
subregister for each tester pin. These registers are addressed through the Power
Pin Address Register.

B-22

TABLE B-24. POWER PIN ADDRESS REGISTER

BIT FUNCTION Read Write

ll_') Pin ~!umber (1-15)* y x v v ,,.

4-6 Rank Number* x x
7 Not used
8 p **
9 PRSB ** x x

10 PRSA ** x x
11 PPA Register Sub Address (0) x x

* Pin sub register is addressed through the Rank and Pin Number
**P, PRSB and PRSA bits set the pin connection type:

PRSA PRSB p CONNECTION
-- -- -

0 0 0 Data Reference Pair
0 0 1 Tester Common
0 1 0 Clock Reference Pair
0 1 1 DPS2
1 0 1 DPSl
1 1 1 DPS3

B.3.3.24 Timing Generator Delay/Width Vernier (Address 17704-17774)

The timing generator delay vernier and width vernier registers contain the delay
and width value within the range of .16 usec to 10.24 nsec. There is a delay vernier
and width vernier for each timing generator. These registers are used only for the
One-Nanosecond Option.

TABLE B-25. TIMING GENERATOR DELAY/WIDTH VERNIER

BIT FUNCTION Read Write

0-3 Strobe Generator Round Trip Delay x

(Timing Generator 1 Delay Vernier only)
These bits are hardwired to a value of 0-9 ns
(LSB = 1 ns) and represent the physical round
trip delay time needed to deskew the timing
generator pulses and strobes. This value is
automatically used by TOPSY.

B-23

TABLE B-25. TIMING GENERATOR DELAY/WIDTH VERNIER (Continued)

BIT FUNCTION Read

4-9 Timing Generator Vernier Value x

LSB Full Scale
.16 nsec 10.24 nsec

10 Width/Delay Register x
0 = Width Vernier
1 = Delay Vernier

11 Subregister Address (1) x

12-14 Timing Generator Number x

0 =Timing Generator 8
1 =Timing Generator 1
. . .

. .
. . .

J 7 = Timing Generator 7

B.4 FORMATTING OF FACTOR WRITE AND READ STATEMENTS

The format for programming the short or long registers is:

WRITE (xxxxB) expression;

where: xxxx is any register number, and
B is the octal indicator.

Reading information from a short or long register is:

READ (xxxxB) variable;

Write

x

x

x

x

Tables B-27 and B-28 provide the necessary information for reading from or writing
to a specific register for a specific function on the short and long registers.

B-24

Reg.
No.

0
1
2
3
4
5

10
11
14

15

21
22
23
24
25
26

32
33
34
35
36
37

42
43
44
45
46
47

TABLE B-26. SHORT REGISTER READING AND WRITING CODES

Register

No-op
MODE
MODE
Instruction
Memory Address
TSC

Clock Burst Count
Time Delay
Instruction Number Compare

Instruction Number Display

DPSl
DPS2
DPT3
DPS3
DPT2
DPTl

El
EO
Sl
so
EAl
EAO

EBl
EBO
ECl
ECO
SAl
SAO

..

A=l= SPECIAL
A=2= WRITE
A=3= READ

xx xx

A002
A 0 0 4
A 0 0 6
A 0 1 0
A 0 1 2

A 0 2 0
A 0 2 2
A 0 3 0

A 0 3 2

A 0 4 2
A 0 4 4
A046
A 0 5 0
A 0 5 2
A 0 5 4

A 0 6 4
A 0 6 6
A 0 7 0
A 0 7 2
A 0 7 4
A 0 7 6

A 1 0 4
A 1 0 6
A 11 0
A 11 2
A 11 4
A 11 6

SPECIAL Function

Clear Status Reg
Clear Status Reg

Start D.C. Delay

Disconnect DPSl
Disconnect DPS2

Disconnect DPS3

B-25

TABLE B-27. LONG REGISTER READING AND WRITING CODES

Register (Pins) Register No. Write Read
xxx xxx

RZ 1-15 000 200 400
RZ 16-30 001 201 401
RZ 31-45 002 202 402
RZ 46-60 003 203 403
RZ 61-75 004 204 404
RZ 76-90 005 205 405
RZ 91-105 006 206 406
RZ 106-120 007 207 407

ST 1-15 010 210 410
ST 16-30 011 211 411
ST 31-45 012 212 412
ST 46-60 013 213 413
ST 61-75 014 214 414
ST 76-90 015 215 415
ST 91-105 016 216 416
ST 106-120 017 217 417

D/DA 1-15 020 220 420
D/DA 16-30 021 221 421
D/DA 31-45 022 222 422
D/DA 46-60 023 223 423
D/DA 61-75 024 224 424
D/DA 76-90 025 225 425
D/DA 91-105 026 226 426
D/DA 106-120 027 227 427

DB 1-15 030 230 430
DB 16-30 031 231 431
DB 31-45 032 232 432
DB 46-60 033 233 433
DB 61-75 034 234 434
DB 76-90 035 235 435
DB 91-105 036 236 436
DB 106-120 037 237 437

M/MA 1-15 040 240 440
M/MA 16-30 041 241 441
M/MA 31-45 042 242 442
M/MA 46-60 043 243 443
M/MA 61-75 044 244 444
M/MA 76-90 045 245 445
M/MA 91-105 046 246 446
M/MA 106-120 047 247 447

B-26

TABLE B-27. LONG REGISTER READING AND WRITING CODES (Continued)

Register (Pins) Register No. Write Read
xxx xxx

MB 1-15 050 250 450
MB 16-30 051 251 451
MB 31-45 052 252 452
MB 46-60 053 253 453
MB 61-75 054 254 454
MB 76-90 055 255 455
MB 91-105 056 256 456
MB 106-120 057 257 457

:{/ 1:7
·!)

'? (J / .·'/V
• i t

F 1-15 060 (070)* 260 (270)* 460
F 16-30 061 (071)* 261 (271)* 461
F 31-45 062 262 462
F 46-60 063 263 463
F 61-75 064 264 464
F 76-90 065 265 465
F 91-105 066 266 466
F 106-120 067 267 467

*Note: F register Rank 1, Bit 18 = 1 Sets DB register selection
Bit 18 = 0 Sets DA register selection

F register Rank 2, Bit 18 = 1 Sets MB register selection
Bit 18 = O Sets MA register selection

s 1-15 100 300 500
s 16-31 101 301 501
s 31-45 102 302 502
s 46-60 103 303 503
s 61-75 104 305 504
s 76-90 105 305 505
s 91-105 106 306 506
s 106-120 107 307 507

TGAO 1-15 110 310 510
TGAO 16-30 111 311 511
TGAO 31-45 112 312 512
TGAO 46-60 113 313 513
TGAO 61-75 114 314 514
TGAO 76-90 115 315 515
TGAO 91-105 116 316 516
TGAO 106-120 117 317 517

C/INVERT 1-15 120 320* 520*
C/INVERT 16-30 121 321* 521*
C/INVERT 31-45 122 322* 522*

B-27

TABLE B-27. LONG REGISTER READING AND WRITING CODES (Continued)

Register (Pins) Register No. Write Read
xxx xxx

C/INVERT 46-40 123 323* 523*
C/INVERT 61-75 124 324* 524*
C/INVERT 76-90 125 325* 525*
C/INVERT 91-105 126 326* 526*
C/INVERT 106-120 127 327* 527*

*READ: C REGISTER/WRITE: INVERT REGISTER

TGAl 1-15 130 330 530
TGAl 16-30 131 331 531
TGAl 31-45 132 332 532
TGAl 46-60 133 333 533
TGAl 61-75 134 334 534
TGAl 76-90 135 335 535
TGAl 91-105 136 336 536
TGAl 106-120 137 337 537

R 1-15 140 340 540
R 16-30 151 351 551
R 31-45 142 342 542
R 46-60 143 343 543
R 61-75 144 344 544
R 76-90 145 345 545
R 91-105 146 346 546
R 106-120 147 347 547

TGA2 1-15 150 250 550
TGA2 16-30 151 351 551
TGA2 31-45 152 352 552
TGA2 46-60 153 353 553
TGA2 61-75 154 354 554
TGA2 76-90 155, 355 555
TGA2 91-105 156 356 556
TGA2 106-120 157 357 557

Pin Address 160 360 560
Statement Number Display 162 362 562
Test Rate 163 363 563
Precision Power Source 164~ 364 564
Precision Sense Level 165 365 565
External Interface 166 366 566
Register

B-2fs

TABLE B-27. LONG REGISTER READING AND WRITING CODES (Continued)

Register (Pins)

Slave Test Station
Control
Test Start/Delayed
Memory Address

Register No.

167

170

Write
xxx

367

370

Read
xxx

567

570

READ: Delayed Memory Address/WRITE: Test Start.

Minor Loop Count
Major Loop Count
Main Frame Access
Minor Loop Start Address
Minor Loop End Address
Major Loop End Address
Ignore Fail

DC Trip
Chaining
Status & Mode A
Status & Mode B
Status & Mode C

Pulse Width
· Pulse Delay

1701
1702
1703
1704
1705
1706
1707 I

171
172
173
1734
1735

175
176

These registers cannot be
read or written from FACTOR

371
372
373

These registers cannot be

571
572
573

read or written from FACTOR

375
376

575
576

NOTE: Only TG8 registers can be read or written from FACTOR.

Power Pin Address
Timing Generator Vernier

177
17704

I 377 577
Cannot be read/written from FACTOR.

B-29

B.5 LONG REGISTER ASSIGNMENT IN ALTERNATE BANK

For formats and detailed information refer to the Register Formats Reference
Manual, publication number 67095504.

TABLE B-28. LONG REGISTER ASSIGNMENT IN ALTERNATE BANK

REG.ADDR SYMBOL FUNCTION SPM PPM

060 DRl DATA READOUT #1 x
062 DR2 DATA READOUT #2 x
100 TOPO TOPOLOGICAL SCRAMBLER x
102 HLDl/IRl HOLD/INDEX REG x
104 HLD2/IR2 HOLD/INDEX REG x
106 HLD3/IR3 HOLD/INDEX REG x
110 MAX/CMP MAXIMUM/COMPARE x
112 DELl DELTA REG. x
114 DEL2 DELTA REG. x
116 DEL3 DELTA REG. x
120 CDl CONTROL RAM x
122 CD2 CONTROL RAM x
124 CA CONTROL RAM x
126 SD/CRA SHIFT DATA/EXEC ADDR x
130 DRAM DATA RAM x
132 CSMD CHIP SELECT & MASK x
134 SSA STOP & STORAGE ADDR x
136 RFC REFRESH COUNT x

140-147 RESERVED FOR USE
BY C.P.E.

1701 RA RETURN ADDR x
1703 FC CLOCK BURST x
1704 LCS LOOP COUNT STACK x
1705 LC LOOP COUNT x
1706 ·STAM STACK ADDR x
1710 OL. SEQUENTIAL LENGTH x
1711 Q SEQUENTIAL PATTERN x
1740 LMI LOCAL MEMORY INST. x

B-30

APPENDIX C

DMA MODE STATEMENTS

FACTOR statements that cause a value to be loaded in a tester long register are
normally executed in direct memory access (DMA) mode. Briefly, in this mode, the
system software determines the start address of a sequence of these statements,
loads the MAR register, and initiates DMA mode. The hardware then executes the
test program directly until an instruction that cannot be processed in this mode is
encountered. Such an instruction may require several operations to be performed;
these instructions are executed interpretatively by the system software. Execution
in DMA mode is more efficient, particularly if the programmer structures his
program so that long DMA sequences are not broken by interpretative statements
or statement labels.

Table C-1 indicates which FACTOR instructions are executed in DMA mode and
which long registers may be affected.

C-1

TABLE C-1. STATEMENTS EXECUTED IN DMA MODE

INSTRUCTION

SET D/DA/DB
SET M/MA/MB
SET F
SETS

SET R
SET STROBE
SET RZ
SET INVERT

CPMU PINt
XPMU PIN
EN ABLE/DISABLE RELAY

SET PMU FORCEV /FORCEit
FORCE VOLTAGE/CURRENTt
SET PMU SENSE
SET CLAMP number

MEASURE PINttt
EN ABLE TESTtttt
CGEN TG(x)
CONN DPS(x)/TCOM/CLK
XCON PIN
AT label tt
SET START tt
SET MAJOR tt
SET MINOR tt

SET DCT

'

LONG REGISTER NUMBER

020 through 027)
040 through 047
06af'through 067
100 through 107

140 through 14 7
010 through 017
000 through 007
120 through 127

160
160
160

164
164
165
165

171, 173

Functional test state
ments load from 1 to 8
ranks per statement de
pending on the specified
pins.

1700, 1703, 1706, 173
110-117' 130-137' 150-157
177
177
1703
1700
1702, 1706
1701, 1704, 1705

171, 165

tOnly when the expression is a simple constant. (If the expression must be
evaluated at execution time, the statement is executed interpretively.

ttOnly when the label or constant can be evaluated at compile time.

tttOnly when a SET DCT statement is programmed prior to MEASURE PIN
statement.

ttttAny enable test except with a modifier EXT or MATCH without IMMED.

C-2

APPENDIX D

TIME DELAY RELATED STATEMENTS

FACTOR statements that start a software delay, i.e., cause the time delay register
countdown to be initiated, must also be time delay dependent. This is necessary in
order to avoid disturbing a previous countdown in progress, if any, which could have
a longer net value than the countdown to be started. Table D-1 lists all statements
that are time delay dependent; the execution of these statements which generate
time delays (a fixed number if hardware initiated or a variable if software
initiated) are listed in Table D-2. Note that x implies a DPS number 1 through 3
and y implies a reference voltage supply (RVS) level of O or 1.

TABLE D-1. TIME DELAY DEPENDENT STATEMENTS

FORCE WAIT
SET DELAY
ENABLE TRIPVx (if changing to current force mode)
ENABLE_JRI~ (if changing to voltage force mode)
FORCE ~Vx (after a FORCE IFx)
FORCE IFx (after a FORCE VFx or FORCE RESET)
FORCE VOLTAGE
FORCE CURRENT
FORCE PMU
SET PMU FORCEl/FORCEV /SENSE
SET D
SET M
SET R
SETS
CPMU PIN expression
XPMU PIN
MEASURE PIN
MEASURE VALUE/NODE/PIN number

The first statement of any DMA mode sequence. (Refer to Appendix C).

D-1

TABLE D-2. TIME DELAY GENERATING STATEMENTS

FORCE DELAY Programmed DC Time Delay

SETS 0.28 millisecond

SET D, SET CLAMP, c,cov,v (p/15 ,Tc 0 /''J
CPMU PIN, XPMU PIN, CONN CLOCK 0.56 millisecond
EN ABLE RELAY, DISABLE RELAY

SET R 1. 7 5 millisecond

~"F01teEV;'FOKC1!r· Programmed DC Time· Delay or 0.56
FORCE VOLTAGE, millisecond with no current range
FORCE CURRENT change or 4 millisecond (±.1 milli-
~ second) with current range change,

whichever is greater.

SET PMU SENSE 0.56 millisecond with no current range
change or 4 millisecond with current
rannge change.

FORCE VFx, FORCE IFx,
J/it'i.

Programmed DC Time Delay or 5.37
ENA:BtE· TRIPx, = ;:,v;p"~ i TAI milliseconds, whichever is greater.
-&NABbE-~IJ:l.~-r- £,U /j If E

Tfl

XCON VFx, FORCE RESET ,, 15'1 I
IJ •

SET Sy, SET SAy, FORCE Ey, Approximately 300 microseconds per
FORCE EAy, FORCE EBy, volt of change o:fl 0.56 millisecond,
FORCE ECy Jiv 5 's whichever is greater.

SET DCT, MEASURE PIN 56 microseconds

D-2

APPENDIX E

EXECUTION TERMINAL ERROR NUMBERS

Certain set up and programming errors cannot be detected at compilation time;
these errors are discoverable only while testing. The Terminal Error lamp goes
'ON' for errors described in the following table. The error number is logged. Bot:i
the Parameter FAIL and Parameter PASS lights are 'ON', but the EOT light is
'OFF'. The error number is displayed (in binary format) in the EIR register, bits 0-
10; least significant bit to the left (bit 0).

T•:?r minol
Error Number

1
2
3

4

5

6

21
22
23
24

Description

A program has not been loaded for this station.
Station is disabled (power off)
Value programmed is negative or exceeds
the hardware limit:

SET DELAY, DC > 5. 734 sec
SET MAJOR loop count > 4096
SET MINOR loop count > 4096

DMA statement execution process did not start.
(Hardware error).
Magnitude programmed exceeds hardware limit:

FORCE~O/El/EAO/---/ECl]'>lO bits+-1024 or 1023
SET[SO/Sl/SAO/SAl] > 10 bits
FORCE [VF1/VF2/VF3] > 10 bits
FORCE l}Fl/IF2/IF3] > 10 bits
ENABLE [TRIPI1/TRIPI2/TRIPI3] > 10 bits
ENABLE rrRIPV1/TRIPV2/TRIPV3]>10 bits
SET DCT >10 bits
SET TG [DELAY /WIDTH]>lO bits

Value programmed is negative, zero or is outside of limit:

SET PERIOD > 40 milliseconds
SET PERIOD >12 bits-+-4096 or 4095
SET PERIOD< 200 nanosec for 5 MHZ
SET PERIOD< 100 nanosec for 10 MHZ
SET TG(X) [DELAY /WIDTH]<lO nanosec

Value outside of limits set by ENABLE IHI/ILO
Value outside of limit.5 set by VHI/VLO
Pin number is greater than 120; CPMU PIN
Value programmed for RVS exceeds hardware limit:

[SET SO/Sl/SAO/SAl] +6, -30V for 5 MHZ
[SET SO/Sl/SAO/SAl] +6, -16V for 10 MHZ
FORCE [EO/El/-ECl]+as above

E-1

Terminal
Error Number

26

31t

33t

35t
36t
37t
40t

42t

50 (a)

(b)
51 (a)

(b)

52 (a)

(b)
53 (a)

(b)

54 (a)
(b)

55

56
57

58 (a)
(b)
(c)
(d)
(e)

E-2

Description

Illegal OPCODE in FACTOR interpretive tester statement.

FACTOR magtape read error (File skip forward executed to
move tape to the next tape file).
FACTOR magtape write error (File skip backward executed
to move tape to the start of the last file. When start is
pressed the program continues execution from this tape
location).
FACTOR magtape EOT on write.
FACTOR magtape EOT on read.
FACTOR magtape memory protect on tape read.
FACTOR magtape data count less than 7 or greater than
assigned buff er size. Also a memory overflow may have
occurred.
FACTOR magtape irrecoverable error.

No DCL statement appears before this reference to the array
element.
Array has zero or negative number of elements.
The number of actual parameters does not agree with the
number of formal parameters.
TOPSY internal address error during store of a value, array
element or formal value.
Array subscript exceeds 8388607, is negative or greater than
the array size.
Attempt to change array element 0 (i.e., the array size)
The number of entries on the top of the working stack is less
than required for current statement execution. (System
error.)
A block header memory address of zero has been encountered
during update of Current Active Block pointer table. (System
error.)
Array size declared exceeds 8388607 or available memory.
Memory buff er available for the test program is less than 1
disc sector (48 words).
The statement to be executed is not within the FACTOR
object file. (System error).
Illegal FACTOR data code. (System error).
The number of array elements being initialized exceeds the
declared array size.
FACTOR I/O started without previous 1/0 being completed.
Text is to be output without I/O being initialized.
Column formatting outside of I/0 process.
Literal variable outside of 1/0 process.
Column formatting is allowed on output only.

Terminal
Error Number

59
60

61

62

67
68

69

70

71

72

74

75

76

77

Description

For statement loop control start value is less than end value.
Assembly Language Linkage program or PPM microprogram is
not on the disc.
Assembly Language Linkage program or PPM microprogram
load entry point overlaps the top of the working stack.
Arithmetic or logical operation overflow (ADD, SUBTRACT,
MULTIPLY, DIVIDE, EXPONENTIATION, AND, OR, EOR,
NOT, NEGATE).

DOF (disc output file) is not open.
Attempt to read beyond EOF (end of file) if DIF (disc input
file) or DIF not open.
Attempt to write beyond EOF (end of file) of DOF (disc
output file)
Attempt to execute a program without a SET PAGE state
ment on a Sii and SVII or a Sii and SVII program on a S200/ 400
or a system without a tester.
Local memory size requested exceeds local memory avail
able.
Programmed timing generator delay/width error (checked on
SET PERIOD):

Delay+ Width 2 Period SII/SVII
Delay or Width 2 Period Sil/SVII + 1 nsec. option
Delay or Width range 2 Period range
Width range 2 Delay range

Local memory address is negative or exceeds size requested
by SET PAGE.
Attempt to execute a 10 MHZ FACTOR statement on a 5
MHZ system.
(ENABLE/DISABLE LATCHES, ENABLE TEST, EXT)
Attempt to execute a program with SET PAGE, SPO on a
Sentry II without the Sequence Processor Module.
Attempt to execute a PPO program on a Sentry II without the
Pattern Processor Module, i.e., one of the following was
encountered:

SET APERIOD
SET ATG4 [DELAY/WIDTH]
SET PPM
REXEC

t Tape status issued in octal. On terminal errors 35 or 36 a tape rewind is executed.

E-3

Terminal
Error Number

78

79

81

82

83

84

100-999

E-4

Description

Attempt to execute a program with extended capabilities on
a system without the hardware, i.e., one of the following was
encountered:

SET !FAIL, COUNT
SET IOM3
SET Q
ENABLE TEST AMATCH

Attempt to execute a 2v /2mv program on standard hard
ware.
The microprogram called by REXEC contains an assembly
error.
The module number passed to the microprogram by the
REXEC statement is negative.
The module number passed to the microprogram by the
REXEC statement is greater than the number of modules in
the microprogram.
Error in DMA loading the control RAM or in DMA loading the
PPM registers when a PPM microprogram is executed.
Terminal errors generated by ALLINK programs.

APPENDIX F

TABLE F-1. CALIBRATION RESISTOR TABLE

TVFY LOAD CALIBRATION VOLTAGE CURRENT
BOARD PIN RESISTANCE RANGE RANGE

1 10 1 (1 V)* 3 (lOOmA)*
3 100 1 2 (lOmA)*
11 10 K 1 1 (100-a)*
17 lM 1 O (1 a)*
3 100 2 (lOV) 3
7 1 K 2 2
13 100 K 2 1
19 10 M 2 0
5 400 3 (40V)* 3
9 4 3 2
15 400 K 3 1
21 40 M 3 0

*Full scale.

F-1

APPENDIX G

INTERNAL NODE MEASUREMENT

Internal nodes are listed in the table below. The PMU ~ be programmed to
force zero current in ran[e 2 before the PM U is connected to any internal node,
including the load curreril i10aes (143-145). The voltage sensing range and the limit
is programmed according to the expected value.

TABLE G-1. INTERNAL NODES MEASUREMENT

NODE NUMBER MEASURED PARAMETER

DECIMAL OCTAL NAME DESCRIPTION

128 200 Sl COMPARATOR Sl REF. VOLTAGE
129 201 so COMPARATOR SO REF. VOLTAGE
130 202 El FORCING LEVEL El REF. VOLTAGE
131 203 EO FORCING LEVEL EO REF. VOLTAGE
132 204 EAl FORCING LEVEL EAl REF. VOLTAGE
133 205 EAO FORCING LEVEL EAO REF. VOLTAGE
134 206 EBl FORCING LEVEL EBl REF. VOLTAGE
135 207 EBO FORCING LEVEL EBO REF. VOLTAGE
136 210 ECl ?ORCING LEVEL ECl REF. VOLTAGE
137 211 ECO FORCING LEVEL ECO REF. VOLTAGE
138 212 SAl COMPARATOR SAl REF. VOLTAGE
139 213 SAO COMPARATOR SAO REF. VOLTAGE
140 214 VFl VOLTAGE FORCING UNIT 1 OUTPUT VOL.
141 215 VF2 VOLTAGE FORCING UNIT 2 OUTPUT VOL.
142 216 VF3 VOLTAGE FORCING UNIT 3 OUTPUT VOL.
143 217 TRIPI VFl LOAD CURRENT
144 220 TRIP2 VF2 LOAD CURRENT
145 221 TRIP3 VF3 LOAD CURRENT

Load currents are proportional to the voltage drop across an internally connected
resistor chosen such that the full scale measurement value is l.023 volts. If the
power supply is in range 3, 1 millivolt :)f voltage drop corresponds to l milliamp of
load current. If the power supply is in range 2, 1 millivolt of voltage drop
corresponds to 0.1 milliamp of load current.

When load currents are measured, the measured voltage is automatically converted
into the corresponding current value by the FACTOR "MEASURE NODE"
statement.

G-1

APPENDIX H

STATEMENT LIST

The following statement forms are allowed in programming the Sii or SVII.

H.1 BASIC STATEMENT FORMS

BLOCK

Creates groups of program statements.

SUBR identifier;
SUBR identifier (parameters);
FUNCT identifier (parameters);

Delineates a group of statements which can be repeated with a call statement.

END;

Closes BLOCK or subroutine or

CALL identifier;
CALL identifier (parameters);

Subroutine is executed and at completion control is returned to the calling routine.

INSERT filename;

Allows inclusion and compilation of the names source file at point specified.

NOISE xxx, XXX, ----;

"Words listed as noise may be used in any statement but is ignored by the compiler.
(Must not include reserved words.)

REM------;

Allows user to give documentation which is ignored by the compiler.

PAGE;

Ejects paper to top of form if listing to line printer.

H-1

LIST;
NOLIST; Controls listing.

EXEC identifier (parameters);

DCL Vl V2, VN;
DCL Vl/valuel/, V2/value2/;
DCL Vl asize /avaluel,avalue2, ••• /;

Declares variables and arrays which may be assigned values.

GOTO label;
GOTO (labell, label2, ... /labeln) expression;

Causes unconditional branch.

LABEL: - - -; -

An address is assigned to label to allow branching to label.

IF relation THEN statement;
IF relation THEN BEGIN - - - - - END;
IF relation THEN statementl ELSE statement2;

Statements are executed if the 'if' condition is met.

FOR variable = expression THR U expression
BY increment DO statement;

Allows looping under control of a variable.

PA USE expression;

Program pauses -- value of expression printed on POD

FORMS OF ARITHMETIC STATEMENTS

variable = expression;

Variable is assigned a value.

ARITHMETIC EXPRESSIONS:

With parenthetical expressions:
Read from left to right only:

Arithmetic replacement statements may use the following operators:

+ADDITION
- SUBTRACTION

H-2

SET CHAIN [TWO/FOUR] pin list;

SET CHAIN OFF:

Allows 2 or 4 test patterns to be generated for each SET F. 'OFF' restores non
chaining mode.

SET [D/M/S/R/F] (*) binary-pin-pattern;

Definition, mask, select, relay, or function registers are set to pattern.

SET SI binary-pattern;

Similar to set S, but generates interpretive code.

SET FI binary-pattern;

Selectively changes specific bits in local memory.

SET [M/MA/MB] binary-pattern;

Sets primary or alternate pin mask register.

SET [D/DA/DB]binary-pattern;

Sets either primary or alternate I/O pin definition register.

SET RZ binary-pattern;

Sets any pin (Data or Clock) to be either NRZ (0) or RZ (1).

SET PAGE integer (,SPM);

Indicates to compiler and TOPSY that program is for hi-speed station, specifies
size of a local memory load, and selects SPM option.

SET TGx [DELAY /WIDTH] expression (,RNGO/,RNG1/,RNG2/,RNG3);

Sets delay and width of timing generators 1-8.

SET MPIN integer;

Defines maximum pin count allowed.

SET VOFFSET number;

Specifies an offset voltage to be added to all tester statements which control a
voltage level.

SET DCT [LT/GT] expression (,RNGO/,RNG1/,RNG2/,RNG3/,RNG4);

Sets a hardware passf ail limit for one DCT threshold at a time, for MEASURE PIN.

H-5

H.4 ENABLE FORMS

ENABLE [ILO/IHl/VLO/VHI] [GT/LT] number;

Enables limit comparisons to be made on all programmed current/voltage operands
prior to an instruction execution.

ENABLE [TRIPV1/TRIPV2/TRIPV3] [LT/GT] expression (,RNG2/,RNG3);

Enables the voltage-trip detector of the corresponding current forcing unit.

ENABLE [TRIPI1/TRIPl2/TRIPI3] [LT/GT] expression (,RNG2/,RNG3);

Enables current-trip detector of the corresponding voltage forcing unit.

[ENABLE/DISABLE] LATCHES;

Determines if C register is to be cleared prior to strobing functional test
comparators.

EN ABLE ACCESS;

Forces a disc access to reload the memory buffer.

l:EN ABLE/DISABLE_~ RELAY;

Determines if voltage conditioner remains connected to a pin when the PMU is
connected.

DISABLE TRIPS;

Clears trip limits set up with Enables.

ENABLE [DCTO/DCTl] [LT/GT] expression;

Forms a software pass-fail threshold, or if both DCTO and DCTl are specified, a
pass-fail window, for 'MEASURE VALUE'.

DISABLE [DCTO/DCTl] ;

Disables comparison limits.

~EN ABLE/DISABLE] DOUBLE STROBE:

Pins indicated by a 0 in 'SET STROBE' will be strobed by both TG7 and TG8.

EN ABLE [MA/MB/DA/DB] (,MA/MB/DA/DB);

Specifies which 1/0 definition and/or mask register is to be used.

H-6

H.5 FORCE FORMS

FORCE [VF1/VF2/VF3] expression (,RNG2/,RNG3);

Forces DPS voltage supply to value specified.

FORCE [IF1/IF2/IF3] expression (RNG2/,RNG3J;

DPS unit is to force current specified.

FORCE [EO/El/EAO/EAl/EBO/EBl/ECO/ECl] expression (,RNG2/,RNG3);

Forces voltage conditioner reference supplies to programmed value.

FORCE PMU expression;

Forces output of PMU to value specified.

FORCE VOLTAGE expression (,RNG1/,RNG2/,RNG3/,RNG4);

Forces PMU to voltage specified.

FORCE CURRENT expression (,RNGO/,RNG1/,RNG2/,RNG3);

Forces PMU to current specified.

FORCE RESET;

Clears all programmable test conditions and causes a hardware reseL

FORCE DELAY;

Forces the time delay to occur and to wait until tester not busy.

FORCE WAIT;

Forces tester to wait until 'tester not busy'.

H.6 MISCELLANEOUS FORMS

ON [DCT/FCT/TRIP] , label;

Causes program branch to label on failure.

XCON [VF1/VF2/VF3];

Specified voltage forcing unit is disconnected from the test head.

CPMU PIN expression ;

PMU is connected to pin specified.

H-7

XPf11lU PIN;

Disconnects PMU.

MEASURE PIN ;

Pass-foil comparison is made with programmed limit. No floating point conversion.

:VIEASURE [VALUE/NODE number] (,LOG);

Measurement is made and a software analog-to-digital conversion takes place, with
result stored in global variable 'VALUE'.

MEASURE VARIABLE variable (,LOG)

Similar to MEASURE VALUE except that no measurement is made but the value of
the variable is used and compared against the enabled DCT0/1 limits.

CLEAR FAIL [DCT/FCT/TRIP];

Previous fail indicator is cleared.

CLEAR [DCT/FCT/TRIP] ;

Clear previous ON fail-type, label instruction.

CONN [DPS1/DPS2/DPS3/TCOM/CLK] pin list;

Connects listed pins to power supply or to tester common or defines them as clock
pins.

XCON PIN pin list;

Reconnects pin to selected data reference.

CGEN [TG1/TG2/TG3/TG4/TG5/TG6/TG12] pinlist;

Connects listed pin to specified timing generator

H.7 LOCAL MEMORY MANAGEMENT

In the following instructions, addresses ref er to locations in local memory and are
of the following form:

label/ constant/variable/label +-constant/label +-variable

SET ST ART test-start-address ;

Specifies functional test start address.

H-8

AT memory-address ;

Designates memory address at which it is desired to make modifications.

SET MAJOR major-loop-count, major-loop-end-address;

Defines major loop within local memory. (Also used to redefine (L), test end).

SET MINOR minor-loop-count, minor-loop-start-address, minor-loop-end-address;

Defines minor loop within local memory.

EN ABLE TEST [NORMAL/CONTINUOUS/MOMENTARY /IF AIL] (,EXT/ ,EXTA);
ENABLE TEST MATCH (,EXT/,EXTA/,IMMED);

Initiates testing in mode specified.

SET IFAIL memory-address (,COUNT);

Sets local memory address or step count up to which fails will be ignored.

KEY

one of options is required.
one of options may be used but none is required.
user must select appropriate expression or number.
any floating point number but may not be a variable.

[X/Y/Z]
(X/Y/Z)
integer
number
expression any floating point number or variable or arithmetic combina

tion of numbers and variables.

H-9

APPENDIX I

READ/WRITE MAGNETIC TAPE STATEMENTS

I.1 DEFINITION

The FACTOR READ (MTR) and WRITE (MTW) statements are defined as follows:

READ (MTR) "name" Vl, V2, V3, V4;

WRITE (MTW) "name" Vl, V2, V3, V4;

The terms Vl through VI/represent array identifiers which have been declared prior
to executing the READ/WRITE statements. There may be one to four arrays per
statement, of at least seven elements. The term "name", enclosed by double
quotations specifies th: file name of the data to be written on magnetic tape.

Execution of the WRITE (MTW) statement causes the Array Data Segment(s) to be
written on magnetic tape at the tape's current position. Table 1.1 gives the format
specification of an Array Data Segment.

An EOF (End of File) tape mark is written under the following conditions:

(a)

(b)

(c)

When End of Test occurs and the tester is in automatic mode,
and at least one WRITE (MTW) statements has been executed.

At the completion of each WRITE (MTW) statement when the
tester is in manual mode.

When the tester pauses as the result of a TOPSY "PAUSE"
command or a FACTOR "PAUSE" and at least one WRITE
(MTW) statement has been executed.

Only one magnetic tape unit may be used with the SENTRY II/VII even though the
system may have more than one test station. Any of the four stations which
execute programs containing READ (MTR) and/or WRITE (MTW) statements have
access to the magnetic tape unit. To avoid having read/write conflicts which could
destroy valid data, only one station of a multiple station system should execute
programs which utilize magnetic tape.

I-1

TABLE I-1. ARRAY DATA SEGMENT

Physical Record Word
Number Number Contents

1 1 8 character TRASCII code word
2 for the file "name".
3 Data record length = N (integer)
4 0
5 0
6 0

2 1 Words 1 to N are the contents of
2 one variable length FACTOR array.
. (FST floating point)
.
. The maximum number of words per each

record is recommended to be 512,
2 N (but must not be fewer than 7).

I.2 READ ERRORS

I.2.1 Array Element Count Error

If the word count of the tape data exceeds the number of elements in the specified
array(s) or if the declared array has less than seven (7) elements, the system issues
terminal error 40. If the array size is less than 7 elements, the tape is not
advanced. When the tape data word count exceeds the array size, the tape will
have advanced to the end of the excessive tape segment prior to accepting the next
station "START".

I.2.2 Data Transfer Error

If a data transfer error is detected, terminal error 31 is issued and the tape is
positioned for ward to the beginning of the next file. The TOPSY program
statement counter is reset such that when station "START" is depressed, the loaded
program begins execution at statement one (1).

I.2.3 End of Tape Error

If the End Of Tape (EOT) mark is encountered before the specified segment is
found, the tape is rewound to the Beginning of Tape (BOT) mark and terminal error
36 is issued. The TOPSY program statement counter is reset such that when
station "START" is depressed, the loaded program begins execution at statement
one (1).

1-2

I.2.4 Memory Protect

If the memory protect switch located on the tape controller is enabled, the system
issues terminal error 37 and the TOPSY program counter is reset such that when
station "START" is depressed, the loaded program begins execution at statement
one (1).

I.3 WRITE ERRORS

I.3.1 Data Transfer Error

If a data transfer error is detected, terminal error 33 is issued and the tape is
positioned backwards to the start of the current file. The TOPSY program counter
is reset so that when station "START" is depressed, the loaded program will begin
execution at statement one (1).

I.3.2 End of Tape Error

If the End of Tape (EOT) mark is encountered prior to completion of a WRITE
operation, the tape is rewound and the system issues terminal error 35. The station
is unloaded so that it cannot be restarted by pushing station "START". This avoids
accidental writing over good data at the beginning of the tape.

I.3.3 Array Element Count Error

If an array of size less than seven (7) appears in the WRITE statement, terminal
error 40 is issued.

I.3.4 Unrecoverable Errors

Any errors other than those described above are considered to be unrecoverable and
the system issues terminal error 40. The TOPSY program statement counter is
reset.

1.4 STANDARD MAG TAPE OPERATION IN TOPSY

Before executing a program employing mag tape read or write statements, the
operator must set the tape at the BOT marker of the tape file the program is to
read or write.

The instructions relating to the periodic maintenance of the mag tape should be
attended to if error free operation is desired.

Before executing the TOPSY program, the REMOTE switch on the mag tape unit
must be enabled.

After the above steps it is only necessary to execute the TOPSY program from the
tester station. All mag tape controls are performed by TOPSY.

I-3

1.5 UNUSUAL MAG TAPE OPERATION IN TOPSY

1.5.1 Catastrophic Errors

If a 'catastrophic' error occurs during mag tape operation and the user desired to
make some attempts to recover then the following course of action is recom
mended as a desperation procedure.

1.5.1.1 Write Operation

Go back to DOPSY manually and execute two tape mark writes, viz:

I I MTAP TMARK
I I MTAP TMARK

followed by:

I I MT AP SKIP BACK 1 RECS

1.5.1.2 Read Operation

Go back to DOPSY manually. Rewind the tape via the tape transport REWIND
switch and restart TOPSY.

I.5.1.3 Warning

The user should be aware that these recovery actions bypass the normal TOPSY
DOPSY return and, consequently, do not update the present state of TOPSY. When
TOPSY is reentered, it is initialized to the state prior to the last return to DOPSY.

I-4

APPENDIX J

FLOATING-POINT PACKAGE

Calling sequences and timings for the individual subroutines of the floating-point
package, and the internal format and range of floating-point values are discussed
below.

Calling Sequences:

Type 1 Subroutines:

FCAM, FMUL, FDIV, FSUB, FADD, FAND, FOR, FEOR

All of these subroutines require two floating-point parameters. Value 1
must be in the A-register, value 2 is obtained indirectly, (the floating-point
result is returned in the A-register):

CALL FPSUBR call each subroutine by name with value 1 in A-reg
NOP ADDRV2 address of value 2 in address field

Type 2 Subroutines:

(FNOT, FNEG, SQRTF, FLOG, FEXP):

All of these subroutines require one floating-point value in the A-register.
(The floating-point result is returned in the A-register):

CALL FPSUBR call each subroutine by name with value in A-reg

Type 3 Subroutine (One-Word Fixed-to-Floating):

On entry the A-register has a signed integer value. On exit the A-register
has the required floating-point value:

CALL FFLT

Type 4 Subroutine (One-Word Floating-to-Fixed):

On entry the A-register has a floating-point value. On exit the A-register
has the one-word (signed) integer value:

CALL FFIX

J-1

Type 5 Subroutine (Two Word Fixed To Floating)

On entry the A-register has a (signed) integer value and the E-register has
the power of 10 multiplier (+ or - power). On exit the A-register has the
required floating-point value:

CALL FFLTS

Type 6 Subroutine(Two-Word Floating-To-Fixed):

.Timings:

On entry the A-register has the floating-point value to be fixed. On exit
the A-register contains a signed integer and the E-register contains the
power of 10 multiplier:

CALL FFIXS

FNEG: 3 cycles (constant)

FCAM: 24 cycles (constant)

FDIV: 103 cycles (maximum) .. if either or both arguments negative
101 cycles for both arguments positive
96 cycles for overflow: both arguments negative
95 cycles for overflow: either argument negative
94 cycles for overflow: both arguments positive
89 cycles for underflow (0 result): both arguments

negative
88 cycles for underflow (0 result): either argument

negative
87 cycles for underflow (0 result): both arguments

positive
31 cycles for 0 divisor (dividend negative): overflow

bit set
30 cycles for 0 divisor (dividend positive): overflow

bit set
3 cycles for 0 dividend

FMUL: 101 cycles (maximum) .. if either or both arguments negative
99 cycles for both arguments positive

J-2

94 cycles for overflow: both arguments negative
93 cycles for overflow: either argument negative
92 cycles for overflow: both arguments positive
87 cycles for underflow (0 result): both arguments

negative
86 cycles for underflow (0 result): either argument

negative

85 cycles for underflow (0 result): both arguments
positive

26 cycles for 0 multiplier (0 result): multiplicand
negative

25 cycles for 0 multiplier (0 result): multiplicand
positive

3 cycles for 0 multiplicand

FFLT: 36 cycles (maximum): values -1 through -7
35 cycles: -10 thru -377 octal,)-8 thru -255 decimal)
34 cycles: -400 thru -17777 octal
34 cycles (maximum for positive values): 1 thru 7 octal
33 cycles: -20000 thru -37777777 octal
33 cycles: 10 through 377 octal
32 cycles: 400 through 17777 octal
31 cycles: 20000 through 37777777 octal
3 cycles: value O

FFIX: 41 cycles (maximum): 53100000 (-1000000) to 52200001
(-17777700)

40 cycles: 54400004 (-20000) to 53200001 (-777774)
39 cycles: 55600200 (-400) to 54400005 (-17777)
39 cycles: 24700000 (1000000) to 25577777 (17777700)
38 cycles: 57500000 (-1) to 55600201 (-377)
38 cycles: 23377774 (20000) to 24577777 (777774)
37 cycles: 22177600 (400) to 23377773 (17777)
36 cycles: 20300000 (1) to 22177577 (377)
24 cycles: negative overflow: threshold: 52100000
23 cycles: positive overflow: threshold: 25700000
17 cycles: negative underflow: threshold: 57600001
16 cycles: positive underflow: threshold: 20177777
3 cycles: value 0

SQRTF: 160 cycles (maximum) .. exponent even
156 cycles if exponent odd
10 cycles for negative argument: overflow bit set
3 cycles for 0 argument

Note 1: By 1signed1 is meant that a negative value is the internal machine
representation for negative values (two1s complement of the corre
sponding positive value).

Note 2: Any error results in the overflow bit being set on exit.

CAUTION

It is the programmer1s own responsibility to clear this bit before a
subsequent subroutine call.

J-3

Note 3: Internal floating-point format:

Bit 23: Sign (of value, i.e., sign of 'MANTISSA')
0: value is positive,
1: value is negative (TCA of positive value)

Bits 22--16: Biased characteristic (7 bits)
(100)8 =BIAS, i.e, represents 0 characteristic
(177)8 represents (63)10 characteristic
(000)8 represents (-64)10 characteristic

Bits 15--0: Fractional mantissa, i.e., octal point is to the left of bit 15. Thus bit 15 =
1/2,
bit 14 = 1/4, etc.

Examples: Representation of (23.5)10:
(23.5)10 = (27.4)8 = 10111.1)2
= (0.101111)2 *2 5
Thus to create the floating-point number:
number is positive, therefore sign = 0
characteristic= (105)8 = (1000101)2
i.e., bias+ 5 --(100 + 5 from 2 5 above)
mantissa= (1011110000000000)2
i.e., the (0.101111)2 from above left-justified in
16 bits.
Putting the sign, characteristic and mantissa
toe:ether: 0 1000101 1011110000000000
i.e~, (O 10001011011110000000000)2
i.e., (2 1 3 6 O O O)8
Thus (21336000)8 is the required value.

Representation of (-23.5)10:
Take the two's complement of the floating-point
value for (23.5(10, i.e., 21s complement of
(21336000)8
i.e., (56442000)8. This is the required value.

Note 4: Range of Floating-Point Values:

J-4

The smallest positive floating-point value which FPP can handle is
represented by (11011111)8. The value of this is (.1)2 *2 (-64) = (.5)10
*2 (-64) = 2 (-65) = 2. 711E-20 (approximately).

The largest positive floating-point value which FPP can handle is
represented by (37777777)8. The value of this is (. 77777 4)8 *2 (63) = 2
(62) = 2 (61) + 2 (60) + 2 (59) •.•• + 2 (47) = 2 (47) = 2 (63) - 2 (47) =
9.445E18 (approximately).

The negative range exactly parallels the positive range.

APPENDIX K

COMPILER GENERATED TESTER OP CODES-DMA

OP CODE OPTION DESCRIPTION

00000000 SET RZ
00000000 SET XOR (Alternate Bank)
01000000 * SET STROBE
02000000 * SET DA/D
03000000 * SET DB
04000000 * SET MA/M
04000000 * SET CRO (Alternate Bank)
05000000 * SET MB
06000000 * SET F
06710004 s LSETIX
06730001 s LSET STROBE
06730002 s LSET RZ
06730003 s LSET XOR
06730004 s LSET INVERT/I
06730005 s LCGEN TGl
06730006 s LCGEN TG2
06730007 s LCGEN TG3
06730010 s LSET DB
06730011 s LSET DA
06730012 s LSET MB
06730013 s LSET MA
06740000 s SET F-LCALL
06750000 s LSET IX-LCALL
06760000 s SET F-LGOTO
06770000 s SET F-LEND
07700000 s LSUBR NORMAL
07710000 s LSUBR MATCH
07720000 s LSUBR CONTINUOUS
07740000 s SET FC NORMAL
07750000 s SET FC MATCH
07760000 s SET FC CONTINUOUS
10000000 * SETS
12000000 * SET INVERT

Options

S - Sequence Processor
P - Pattern Generator

K-1

COMPILER GENERATED TESTER OP CODES-DMA

OP CODE OPTION DESCRIPTION

14000000 * SET R
16000000 * CPMU/XPMU PIN
16040000 * DISABLE RELAY
16040400 * EN ABLE RELAY
16400000 * FORCE CURRENT
16420000 * FORCE VOLTAGE
16420002 * SET PMU FORCEV
16500000 * SET CLAMP
16502000 * SET DCT (PSL REGISTER)
17000000 * SET START
17010000 * SET MINOR
17020000 * SET MAJOR
17100000 * SET DCT
17140000 * MEASURE PIN (DCT. REGISTER)
17300000 * ENABLE TEST
17300200 * MEASUHrE PIN (2nd WORD)

(SAMA REGISTER)
17360000 * ENABLE/DISABLE SPLIT/RTO/MUX/IMAS
17374000 * ENABLE ALTERNATE BANK
17400000 p RD/WR ONE/ZERO
17400100 p RD/WR CHECK/NCHECK
17400200 p BRANCH UNLESS
17400300 p BRANCH TO/RESET
17410000 p PGEN LOAD/START/ENABLE/DISABLE

PGEN
17420000 p SET PGENl (WORD 2)
17430000 p SET PGENl (WORD 3)
17440000 p SET PGENA

17443200 p SET PGENl
17443400 p SET PGEND
17443600 p SET PGENDN
17444000 p PIN CONFIGURE (WORDl)
17444400 p PIN CONFJGURE (WORD2)
17443600 p SET PGENCN
17447600 p SET PGENC
17700000 * XCON PIN
17700400 * CONN TCOM
17701000 * CONN CLK
17701400 * CONN DPS2
17702400 * CONN DPSl
17703400 * CONN DPS3

Options

N - Sequence Processor
P - Pattern Generator
T- Time

K-2

COMPILER GENERATED OP CODES - INTERPRETIVE (TESTER)

OP CODE S6 DESCRIPTION

50000001 * FUNCTION TRAP
50000002 * PMU TRAP
50100000 * SET PAGE
50200000 * SET START
50220000 * SET IFAIL
50300000 * AT
50400000 * SET MAJOR (ADDR)
50500000 * SET MINOR (ADDR)
50600000 * SET MAJOR/MINOR (LOOP COUNT)
50700000 * SET PERIOD
51000000 * SET TGl
51100000 * SET TG2
51200000 * SET TG3
51300000 * SET TG4
51400000 * SET TG5
51500000 * SET TG6
51600000 * SET TG7
51700000 * SET TG8
52014000 * SET FI
52020000 * SET SI
52101000 * ENABLE TEST
52102000 * SET CHAIN
52104000 * DISABLE DOUBLE STROBE
52104020 * ENABLE DOUBLE STROBE
52110000 * SET IOMODE
52130000 * SET IOM3 (ALTERNATE BANK)
52200000 * SET Q
52300000 * SET ATG4
60100000 * ENABLE TRIPl/TRIPll
60200000 * ENABLE TRIP2/TRIPl2
60300000 * EN ABLE TRIP3/TRIPI3
60400000 * FORCE CURRENT
60520000 * FORCE VOLTAGE
60700000 * FORCE PMU
61100000 * SET DELAY, DC
61200000 * CPMU PIN
61202000 * *XCON VF1/VF2/VF3
61300000 * EN ABLE TRIPVl
61400000 * ENABLE TRIPV2
61500000 * EN ABLE TRIPV3
61600000 * MEASURE PIN
61600000 * MEASURE VALUE/NODE
61640000 * MEASURE VARIABLE
61700000 * SET PMU
62000000 * FORCE EO
62020000 * FOREC El
62100000 * FORCE EAO

K-3

COMPILER GENERATED OP CODES - INTERPRETIVE (TESTER)

OP CODE S6 DESCRIPTION

62120000 * FORCE EAl
62200000 * FORCE EBO
62220000 * FORCE EBl
62300000 * FORCE ECO
62320000 * FORCE ECl
62400000 * SET CLAMP
62460000 * SET VOFFSET
62500000 * FORCE VFl
62600000 * FORCE FV2
62700000 * FORCE VF3
63000000 * SET SO
63020000 * SET Sl
63100000 * DISABLE DCTO
63100001 * ENABLE DCTO
63200000 * DISABLE DCTl
63200001 * ENABLE DCTl
63300000 * ENABLEILO
63400000 * ENABLE IHI
63500000 * ENABLE VLO
63600000 * ENABLE VHI
64000003 * FORCE RESET
64000020 * SET LOGIC NEGATIVE
64100020 * SET LOGIC POSITIVE
64206000 * FORCE DELAY
64210000 * FORCE WAIT
64300000 * ENABLE/DISABLE RELAYS
64400000 * ON DCT
64400001 * ON FCT
64400002 * ON TRIP
64400000 * CLEAR DCT
64400001 * CLEAR FCT
64400002 * CLEAR TRIP
64500000 * LIN
64600400 * DISABLE TRIP
64700000 * FORCE IFl
65000000 * FORCE IF2
65100000 * FORCE IF3
65200000 * SET DCT
65300000 * CLEAR FAIL
65400000 * SET SAO
65420000 * SET SAl
65500000 * SET TEST#

K-4

COMPILER GENERATED OPCODES - ARITHMETIC

OP CODE S6 DESCRIPTION

70000000 ADD
70000001 SUB
70000002 * MUL
70000003 * DIV
70000004 * EXP
70000005 * AND
70000006 * OR
70000007 * EOR
70000010 * NOT
70000011 * NEG
70100002 * LTN
70100004 * EQ
70100006 * LEQ
70100010 * GTR
70100012 * NEQ
70100014 * GEQ
70200000 * STR Store
70200001 * CF Call procedure with argu.
70200002 * PAE Parameter array elements
70200003 PEX Parameter expression on

STACK top
70200004 * STKC Stack floating point

constant
70200005 * STKCI Stack integer constant
70200006 * INDR Calculate index result
70200007 * INDA Calculate index address
70200010 * PAUSE PAUSE statement
70200011 * CIO Complete IO statement

(END OF READ/WRITE)
70200012 * FOR FOR statement
70200013 * DO DO statement
70200014 * EAS end of DCL statement
70200015 * COL Column format for WRITE
70200016 * LIT Literal variable for

READ/WRITE
* 70300000 * DCLV declare array

*** 70400000 * CPN check parameter count

*** 70500000 * SIO Start IO

* 70600000 * INV Initialize array

* 70700000 * INS Initialize scalar

* 71000000 * STKV Stack value

* 71100000 * STKFV Stack parameter value

* 71200000 * STKAA Stack array address

* 71300000 * STKA Stack variable address

* 71400000 * STKFA Stack parameter address

* 71500000 * GOTO GOTO statement

K-5

COMPILER GENERATED OPCODES - ARITHMETIC

OP CODE S6 DESCRIPTION

71600000 * BE block end
l<** 71700000 * TEXT Text for WRITE

* 72000000 * BB block begin
* 72100000 * PB program begin
* 72200000 * PE procedure end
* 72300000 * PS argument parameter is

scalar
* 72400000 * PA argument parameter is

array
* 72500000 * PFP argument parameter is

parameter
* 72600000 * PFE FUNCT procedure end
* 72700000 * EXP EX EXEC parameter on

STACK top
** 73000000 * ONDIF ON DIFEOF

73100000 * RDIF RESET FDIF

*** 73200000 * INDX indexed GOTO statement
GOTO

** 74000000 * IFJ IF false, jump
** 75000000 * JMP unconditional jump
** 75100000 * ONFJ ON fail jump
** 76000000 * TRAFZ Transfer to subroutine

(no parameter)
** 77000000 * TRAF Transfer to function,

subroutine
*** 77400000 * EXEC Transfer to ALLINK program
*** 77600000 * REX EC execute Micro program

77777776 * PAGE Disc access

*Carry block/variable number
**Carry OBJ address

***Number unique for core

K-6

APPENDIX L

VOLTAGE AND CURRENT RANGE DEFINITIONS

TABLE L-1. NORMAL FORCE AND MEASURE RANGES
MODULE STATEMENT PROGRAMMABLE VALUE/RESOLUTION

RANGEO RANGE 1 RANGE 2** RANGE 3** RANGE 4

PMU Force Voltage 0 to 1.023V /1 mV 0 to +10.23V/10mV O to +40.92V /40mV 0 to +102.3V/100mV
PMU Set PMU ForceV 0 to 1.023V /1 mV Oto +10.23V/10mV 0 to +40.92V/40mV 0 to !l02.3V/100mV
PMU Force Current 0 to +1.023uA/lnA 0 to +102.3 uA/. luA O to +10.23mA/10uA 0 to +102.3mA/. lmA
PMU Set PMU Force! 0 to !L023uA/lnA 0 to+ 102.3 uA/. luA O to +10.23mA/10uA 0 to +102.3mA/. lmA
PMU Set PMU Sense Voltage 0 to +L023V/lmV 0 to +10.23V/10mV 0 to +40.92V/40mV 0 to :'._102.3V/100mV
PMU Set PMU Sense Current 0 to :'._1.023uA/lnA 0 to +102.3 uA/. luA 0 to::!:: 10.23mA/10uA 0 to !l02.3mA/. lmA

DPS Force VF 0 to +10.23V/10mV 0 to +40.92V /40mV
DPS Force IF Oto +102.3mA/. lmA 0 to +t.023A/lmA
DPS Enable Trip 0 to +102.3mA/. lmA 0 to +L023A/lmA
DPS Enable TripV 0 to !10.23V /lOmV 0 to !40.92V/40mV

RVS Set (SO/Sl) +6.0V to -10.23V/10mV +6.0V to -30.72/40mV*
RVS Force E +6.0V to -10.23V/10mV +6.0V to -30.72/40mV*

TABLE L-2. FORCE AND MEASURE RANGES WITH 2V/2mV OPTION
MODULE STATEMENT PROGRAMMABLE VALUE/RESOLUTION

RANGE 0 RANGE 1 RANGE 2** RANGE 3** RANGE4

PMU Force Voltage 0 to 2.046V/2 mV 0 to +10.23V/10mV Oto +40.92V/40mV Oto +102.3V/100mV
PMU Set PMU ForceV 10 to 2.046V/2 mV Oto +10.23V/10mV 0 to +40.92V /40mV 0 to !102.3V /lOOmV
PMU Force Current 0 to +1.023uA/lnA 0 to +102.3uA/. luA 0 to +10.23mA/10uA 0 to +102.3mA/. lmA
PMU Set PMU Force! 0 to !L023uA/lnA 0 to+ 102.3uA/.luA 0 to +10.23mA/10uA O to +102.3mA/. lmA
PMU Set PMU Sense Voltage 0 to +2.046V/2mV 0 to +"10.23V /lOmV 0 to +40.92V /40mV 0 to :'._102.3V /lOOmV
PMU Set PMU Sense Current 0 to :'._1.023uA/lnA 0 to +102.3uA/. luA 0 to~ 10.23mA/10uA Oto ~102.3mA/. lmA

DPS Force VF 0 to:'._ 2.046V/2mV 0 to +10.23V /lOmV 0 to +40.92V /40mV
DPS Force IF Oto +102.3mA/. lmA 0 to +L023A/lmA
DPS Enable Trip 0 to +102.3mA/. lmA 0 to +"1.023A/lmA
DPS Enable TripV 0 to ~10.23V /lOmV 0 to ~40.92V/40mV

RVS Set {SO/Sl) Oto 2.046V /2mV +6.0V to -10.23V/10mV +6.0V to -30.72V /40mV*
RVS Force E +6.0V to-10.23V/10mV +6.0V to 30.72V/40mV*

NOTES
•Max limit is -30.72V for a 5 MHz Pin Electronics Board, -16.00V for a 10 MHz Pin Electronics Board.
••Current ranges depend on the hardware module: 102.3 milliamps is full scale in range 2 for power supplies, but is full scale in range 3 for the PMU.

l{ I) l7 I y • J .t,.

_,k' -r·
/1 l) /1.../ t::.

APPENDIX M

STATEMENT LIST, REGISTERS WRITTEN, CODE TYPE, AND TIME DELAY

Statement and Options Registers Written DMA/ITNTPR TD*

AT MCS D/I (503) 0
BRANCH UNLESS/TO/RESET PG-MIL D
CGEN TGn TG1,TG2,TG3 D 0
CONN CLK PPA D 2
CONN DPS1/DPS2/DPS3/TCOM PPA D 2
CPMU PIN PA D/I (612) 2
DISABLE TRIPS SR I (646) 0
EN ABLE/DISABLE DCTO/DCTl none I (631,632) 0
ENABLE/DISABLE DOUBLE

STROBE SAMB I (521) 0
EN ABLE/DISABLE LATCHES SR I (640/641) 0
ENABLE/DISABLE RELAY PA D 2
EN ABLE/DISABLE SPLIT /RTO/

MUX/IMASK SAMD D
ENABLE DA/DB F-RANKl 0
EN ABLE ILO /IHI/VLO /VHI none I (632, 635) 0
ENABLE MA/MB F-RANK 2 0
ENABLE PPM SAMA D 0
ENABLE TEST (no SET ST ART) S (W) D 0

(no SET MAJOR) L D
MCS, SAMA D
SAMA, IF, LRAX, IF2(AB) I (521)

EXTA SAMB I
LOOP SAMC I
MATCH SR (if time out fail) I
AMATCH SAMD, SR (if time out fail)

EN ABLE TRIPI1/TRIPl2/TRIPI3 SR, DPTl/2/3/, DPSl/2/3 I (601-603) 6
EN ABLE TRIPV1/TRIPV2/TRIPV3 SR, DPTl/2/3, DPSl/2/3 I (613-615 6
FORCE CURRENT/VOLTAGE PPS D/I (605) 4
FORCE DELAY TD (special) I (642) 9
FORCE EO/El/ ••• /ECl EO/El/ ••• /ECl I (620-623) 7
FORCE IF1/IF2/IF3 SR, DPTl/2/3, DPSl/2/3 I (647-651) 6
FORCE PMU PPS D/I (605) 4

FORCE RESET DPSl/2/3, DPTl/2/3,PPS, I (640) 6

*See page M-4 for time delay generator.

M-1

STATEMENT LIST, REGISTERS WRITTEN, CODE TYPE, AND TIME DELAY (Cont'd.)

Statement and Options

FORCE VF1/VF2/VF3

FORCE WAIT
label:
LCGEN TG1/TG2/TG3
LSET IX/STROBE/RZ/INVERT/

DA/DB/MA/MB
LSUBR
Iv'IEASURE NODE

MEASURE PIN (no EN ABLE
DCTl/DCTO)

(EN ABLE DC Tl/
DCTO)

MEASURE PIN # 1,2,6,10

3,4

5,7,9

MEASURE VARIABLE
PGEN LOAD
RD/WR ONE/ZERO/CHECK/

NC HECK
SET APERIOD
SET ATG4 DELAY

WIDTH
SET CHAIN TWO/FOUR

OFF
SET CLAMP

SET CRO
SET DA
SET DB
SET DCT
SET DELAY
SET F

M-2

Registers Written DMA/ITNTPR

R VS's, all registers on
hardware reset line, MR,
DA, DB, MA, MB, SR,
SAMA, EIR, TD
These registers are restored:
bits 1, 2, 7, SAMB, all bits
except 4 and 5 MR, bit O
SR, bit 11 SAMC, SPM
mode bit in SAMD, and IND,
INC, EIR
SR, DPT1/DPT2/DPT3,
DPS1/DPS2/DPS3
None
IND
F

F
F
SAMA, PA, PSL, DCT,
SR on faiiure

DCT, SAMA

SAMA, PSL if AUTO
specified, SR on failure
PA, PPS, SAMA, DCT

SR on failure
P A,SAMA,DCT ,SR

on failure
PA, PPS,SAMA,DCT ,SR

on failure
SAMA, SR on failure
PG-PCNTR
PG-MIL

SAMD,TR
SAMD,PDV,PD,PWV,PW
SAMD,PWV,PW
SAMB,CH
SAMB
PSL (Called SPSL
in Analysis)
LRAX,CRO(AB)
DA
DB
PSL,DCT
TD
F

I (625-627)

I (642)
I (645)
D

D
D
I (616)

D

I (616)

I (616)

I (616)
D
D

I (507)
I (523)

I (521),D
I (521)
D/I (624)

D
D
D
D/I (652)
I (611)
D

TD*

6

10
0
0

0
0

8

0

0
0

0

2

2
2
8
0
0

STATEMENT LIST, REGISTERS WRITTEN, CODE TYPE, AND TIME DELAY (Cont'd.)

Statement and Options Registers Written DMA/ITNTPR TD*

SET FC F D 0
SET FI SAMA,F I (520) 0
SET IF AIL IF,SAMC I (502) 0

COUNT IF ,LRAX,IF2 (AB),SAMC
SET INVERT INVERT (W) D 0
SET IOM3 pin list SAMD,SAMB,CH I (501),D 0

OFF SAMD,SAMB I (521)
SET IOMODE pin list SAMB,CH I (521),D 0

OFF SAMB I (521)
SET LOGIC SR I (640,641) 0
SET MA MA D 0
SET MAJOR loop count N D/I (506) 0

last address L D/I (504)
SET MB MB D 0
SET MINOR loop-count M D/I (506) 0

start & end J,K D/I (505)
SET PAGE SAMB,SAMA,S,N ,MCS, I (501) 0

I
J,K.L,M,TR,F,DA,DB,
MA,MB,IND,SAMD

SPM SAMD
SET PERIOD TR I (507) 0
SET PGENl PG-PS, PG-SIZE, D

PG-XSIZE
SET PGENA/PGENC/PGENCN/
PGEND/PGENDN PG-PS D
SET PMU SENSE PSL I (617) 5

FORCEV PPS 4
FORCEI PSL 4

SET PPM SAMD I (524) 0
SET Q LRAX,QL,Q I {522) 0
SET R R D 3
SET RZ RZ D 0
SET Sl/SO/SAl/SAO Sl/SO/SAl/SAO I (630,654) 7
SETS s D 1
SET SI SAMA,S I (520) 0
SET START s D/I (502) 0
SET STROBE ST D 0
SET TG DELAY PDV,PD,PWV,PW I (510-517) 0

WIDTH PWV,PW
SET TEST# PPS,PA I (655)
SET XOR LRAX,XOR (AB) D

WRITE (register) (register) I (605) 0

XCON PIN PPA D 2

XCON VF1/VF2/VF3 PA I (612) 6

XPMU PIN PA D 2

M-3

STATEMENT LIST, REGISTERS WRITTEN, CODE TYPE, AND TIME DELAY (Cont'd.)

M-4

TD

0

1

2

3

4

5

6

7

8

9

10

Time Delay Generated

Description

no delay

0.28 millisecond

0.56 millisecond

1. 7 5 millisecond

Programmed DC Time Delay or 0.56 millisecond
with no current range change or 4 millisecond
(:H millisecond) with current range change,
whichever is greater.

0.56 millisecond with no current range change
or 4 millisecond with current range change.

Programmed DC Time Delay or 5.37 milliseconds,
whichever is greater.

Approximately 300 microseconds per volt of
change or 0.56 millisecond, whichever is greater.

56 microseconds

Programmed DC Time Delay

The time required for the tester to become
not busy.

Array

Block

Chaining

CPU

CR
DIF

DOF

DMA

DOPSY

DUT

Expression

FACTOR

FDIF

FDOF

GLOSSARY OF TERMS AND ACRONYMS

An ordered arrangement or pattern of values
which are grouped together positionally with
respect to some variable identifier.

A group of program statements between the
BLOCK and END statements compiled indepen
dently, or a subroutine or function.

Expansion of local memory pattern depth by
"chaining" or interleaving data from selected
local memory channels into adjacent channels.
This allows certain pins with a lK local memory
to have effective pattern depths of 2K or 4K.
Likewise, certain pins with a 2K local memory
can have a pattern depth of 4K.

Central processing unit

Card reader
Disc input file

Disc output file

Direct memory access

Disc operating system

Device under test

A grouping of one or more numbers, variables,
and ·functions combined with arithmetic or
Boolean operators and parenthesis so as to
represent a quantity or an operation.

Fairchild Algorithmic Compiler Tester Ori
ented.

FACTOR disc input file.

FACTOR disc output file.

Glossary-1

Function

Integer

Label (local memory type)

Label (non-local memory type)

Load

Location count

Long register

LP

Major loop count (N)

Glossary-2

Parametered calls used to obtain values through
a standardized set of operations.

A whole number including zero.

A symbolic identifier (terminated by an @
symbol), preceeding a "SET F binary pattern"
statement, for the local memory location the
binary pattern is loaded into. This allows
symbolic references to local memory addresses
in subsequent FACTOR statements.

A symbolic identifier (terminated by a colon)
for a FACTOR statement which allows that state
ment to be referenced in a branching type
statement symbolically, rather than by state
ment number (which is unknown at compilation
time).

A local memory load is defined as a sequence of
SET F statements interspersed only with
ENABLE MA/MB DA/DB statements. A local
memory load always commences at location O in
local memory, unless specifically altered by an
AT statement. The load is terminated by some
instruction other than the SET F and the
ENABLE MA/MB DA/DB. Subsequent SET F
statements cause the compiler to assume that a
new load is beginning.

The compiler keeps a location counter during
the sequence of instructions forming the load.
When the load is terminated the location count
is the test end address for the EN ABLE TEST,
unless a different end address is specified by a
SET MAJOR statement.

Binary registers used to set up local memory
and other hardware. conditions for functional
testing. The long registers are:

DA, DB, MA, MB, S, R, F, INVERT, I, STROBE,
RZ, and XOR

Line printer

The number of times the major loop is to be
executed as defined in the SET MAJOR state
ment. The loop count equals one if no SET
MAJOR statement is entered.

Major loop end address (L)
or test end address

Minor loop count (M)

Minor loop end address (K)

Minor loop start address (J)

MTR

MTW

PID

PMU

POD

Record

Scalar value

System Global

Test start address (S)

TOPSY

TR ASCII

The last memory location to be executed unless
a fail occurs first, interrupting testing. This is
defined by the last local memory word loaded in
the previous load, or the one defined in the SET
MAJOR statement.

The number of times the minor loop is to be
executed. Note that in the ENABLE TEST
CONTINUOUS mode the minor loop continues
to execute even when the loop count is one.

The last address in the minor loop before
execution controls returns to the minor loop
start address.

The local memory address for the start of the
minor loop.

Magnetic tape read.

Magnetic tape write.

Primary input device

Precision measuring unit

Primary output device

An arbitrary amount of data read from or
written into an 1/0 device. For a TTY or VKT a
record is the amount of data from one carriage
return until the next. For a line printer a
record is one line.

A signed numeric quantity having magnitude but
no direction, nonarrayed, non Boolean quantity.

A variable that is retained from one execution
of a program to the next.

The local memory address at which testing
begins. This is always location 0 unless altered
by a SET START statement.

Tester operating system.

Truncated ASCII, six bit code instead of ASCII 8
bit code.

Glossary-3

Variable

ws

Glossary-4

Any quantity which is referred to by a name
rather than by an explicit value. Can be a
single variable or an arrayed (one dimensional)
variable.

Working Storage (area on disc not currently
storing files).

Accessing system routine, 4-9
Addressing short registers, B-1
Alternate bank registers, B-30
Alternate reference supplies, 6-10
Analog subsystems, 6-3
Analog to digital conversion

measurements, 6-16
AND operator, 2-7
Arithmetic expressions, 2-6
Array declaration, 7-2
Array values, 2-6
Assembly language program, 4-8

Changing the FACTOR program, 4-9
I/O, 4-9
Referencing parameters, 4-8
Writing of, 4-8, J-1

Assignment statement 7-4
Asterisk form of SET F, 6-34
AT statement, 6-52
Automatic disconnect, 6-5

BEGIN statement, 3-4
Binary register formatting, 6-34
Blocks, 4-1
Boolean values, 2-5, 2-8
Branch on fail, 6-65

C register, B-8
Calibration resistor table, F-1
CALL statement, 4-4
Card format, 1-2
CGEN statement, 6-31, 6-38
Chaining, 6-4 9
Chaining register, B-18
Character set, 1-1, A-1
Clamp values, 6-26
CLEAR FAIL statement, 6-66
CLEAR FCT/DCT/TRIP statement, 6-65
Clock burst count register, B-6
Clock mode selections, 6-9
Clock pins, 6-10
Comparator logic statements, 6-10

INDEX

Force voltage conditioner
reference, 6-12

Set logic, 6-12
Set reference supplies, 6-11
Set voltage offset, 6-28

Comparator pass/fail conditions, 6-13
Compiler input, 9-1
Compiler statements, 5-1
Compiling a FACTOR program, 9-1
Conditional ELSE statement, 3-3
CONN CLK, 6-9, 6-38
CONN DPSx/TCOM statement, 6-8
Connecting DPS via pin electronics, 6-8
Connecting the pins, 6-14
Constant parameters, 1-3
Continuous test mode, 6-61, 6-58
Control statements, 3-1
CPMU PIN statement, 6-14
Current measurement, 6-7

D register, 6-40, B-8
Data files, 9-2
Datalogging options, 6-18
DC macro definition, 6-20
DC macro execution, 6-20
DC macro measurement, 6-20
DC trip limit register, B-18
DCL statement, 7-1
Decimal fractions, 2-1
Defining input pins, 6-40, 6-41
Digital power supplies, 6-3
Digital programmable register, B-7
Direct load board connection, 6-3
DISABLE MUXMODE, 6-48
DISABLE TRIP statement, 6-6
Disc I/O, 8-5

Examples of, 8-6
Files, 1-3
ON DIFEOF statement, 8-5
Programming conventions, 8-5
Reset disc input file, 8-5
RESET FDIF statement, 8-5

Index-1

INDEX (Continued)

Disconnection from load board, 6-6
Disconnection of the PMU, 6-15
DMA mode statements, C-1
DMA SET F statement, 6-43, 6-53
DO loop, 3-5
DOPSY monitor, 9-2
Double strobing, 6-42
DPS programming, 6-3

Mode change, 6-7
Programmed delays, 6-7
Trips, 6-8

DPS trip registers, B-7
Dual PMU measurement limits, 6-16

ELSE conditional statement, 3-3
ENABLE ACCESS, 6-67
ENABLE current trip (DPS), 6-4
ENABLE DA/DB, 6-40, 6-53
ENABLE/DISABLE DCTx statement, 6-16
ENABLE/DISABLE DOUBLE STROBE

statement, 6-42
ENABLE/DISABLE IMASK, 6-42
EN ABLE/DISABLE LATCH statement, 6-57
ENABLE/DISABLE lVIUXMODE, 6-48
EN ABLE/DISABLE RELAY Statement, 6-18
ENABLE/DISABLE RTO, 6-44
ENABLE ILO/IHI/VLO/VHI, 6-29
ENABLE MA/MB, 6-41
ENABLE TEST CONTINUOUS, 6-58
ENABLE TEST IF AIL statement, 6-58, 6-61
ENABLE TEST MATCH, 6-60
ENABLE TEST MOMENTARY, 6-58
ENABLE TEST NORMAL, 6-57
ENABLE TRIP statement, 6-4, 6-6
Enable voltage trip (DPS), 6-6
END statement, 3-4, 4-1, 4-3
EOR operator, 2-7
EQ operator, 2-8
Error messages, 9-3, E-1
Exclusive OR, 6-45
EXEC statement, 4-7
Exiting from continuous loop, 6-58
Exponentials, 2-2
Expressions, 2-1
External interface register READ/

WRITE, B-15
External sync alternate mode, 6-61, 6-64
External sync mode, 6-61, 6-63

F register, B-9
FACTOR, 1-1

Block commands, 4-1
Control statements, 3-1
Disc I/0, 8-5

lndex-2

Elements of, 1-1
Error messages, 9-3
Expressions, 2-1
External interface register statements, B-15
Notational statements, 5-1
Operating procedures, 9-1
Power supply statements, 6-3
Precision measuring unit statements, 6-13
Program concepts, 4-1
READ/WRITE statements, 8-1
Setup statements, 6-1
Test macro statements, 6-20
Value assignments, 7-1
Variable declarations, 2-2, 7-1

Floating point package, J-1
Floating point routines, 4-10
FOR statement, 3-4
FORCE CURRENT statement, 6-13
FORCE DELAY statement, 6-27
Force DPS current, 6-5
Force DPS voltage supplies, 6-3
FORCE Exx statement, 6-11
FORCE IFx statement, 6-5
FORCE PMU statement, 6-18
FORCE RESET statement, 6-66
FORCE VFx statement, 6-3
FORCE VOLTAGE statement, 6-13
FORCE WAIT statement, 6-28
Forcing reference supplies, 6-11
Formatting of FACTOR READ/WRITE

statements, B-24
FUNCT statement, 2-6, 4-5
Function call, 4-5
Functional test modes, 6-51

Continuous, 6-51
External sync, 6-63
Ignore fail, 6-56
Match, 6-51
Momentary, 6-51,
Normal, 6-51, 6-57

GE operator, 2-8
Global variables, 2-3
Go/no-go PMU test limits, 6-15
GOTO statement, 3-1
GT operator, 2-8

ICEX macro test, 6-22
IF statement, 3-2
Ignore fail mode, 6-56, 6-61
IIH(IR) macro test, 6-21
IIL (IFx) macro test, 6-22
Indexed GOTO statement, 3-2

INDEX (Continued)

Indirect measurement, 6-17
Input definition register, 6-40
Input/Output drivers, 4-10
Input/Output modes, 6-46
Input waveform control, 6-42
INSERT statement, 5-3
Instruction number compare register, B-6
Instruction number display register, B-6
Instruction register, B-5
Integers, 2-1
Internal node measurement, G-1
Interpreter interfacing, 9-2
Interpretive reference voltage supplies, 6-11
INVERT registers, B-8
IOL macro test, 6-24
IOM3 extended pin list, 6-47
ISC macro test, 6-23

Label, 3-1, 6-50
Latching fail compare results, 6-57
LEQ operator, 2-8
Limit comparisons, 6-5
Literal variables, 7-2, 8-4
LIST statement, 5-2
Local memory, 6-50

Control of, 6-50, 6-57
Initiating function tests, 6-54
Labels, 6-51
Loading of, 6-50

Local memory registers, B-16, B-17
Logic inversion, 6-43
Logical expression evaluation, 2-8
Logical operators, 2-7
Long registers, 6-34, B-1, B-8

Alternate bank, B-30
Formatting of, 6-34
Reading and writing codes, B-26

LT operator, 2-8

M register, B-8
Macro test statements, 6-20

Available DC measurements, 6-20
Definition of, 6-20
FACTOR statements, 6-20
ICEX (output leakage) test, 6-22
IIH(IR) (input leakage) test, 6-21
IIL (IFX) (input low current) test, 6-22
IOL (output current with outputs low)

test, 6-24
ISC (short circuit current with output

high) test, 6-23
VBD (voltage breakdown) test, 6-24

Magnetic tape statements, 1-1
Major loop statement, 6-54
Mask control, 6-41
Match test mode, 6-51, 6-60
MEASURE PIN statement, 6-15, 6-20
MEASURE VALUE/NODE statement, 6-7, 6-16
MEASURE VARIABLE statement, 6-17
Memory address locations, 4-10
Memory address register, B-5
Minimum pin definition, 6-37
Minor loop statement, 6-56
Mixed expressions, 2-9
Mode change, 6-7
Mode register, B-3
Momentary test mode, 6-51
Multiplexing pin channels, 6-48
MUX mode, 6-48

NEQ operator, 2-8
Nesting of blocks, 4-1
Node numbers, 6-7
NOISE statement, 5-1
NOLIST statement, 5-2
Normal test mode, 6-51
NOT opera tor, 2-7
Notational statements, 5-1

INSERT, 5-3
LIST, 5-2
NOISE, 5-1
NOLIST, 5-2
PAGE, 5-2
REM, 5-1

Numbers, 2-1
Numeric variables, 7-2

Offset voltages, 6-28
ON DCT/FCT/TRIP statement, 6-65
ON DIFEOF statement, 8-5
Operator precedence, 2-10
Optional parameters, 1-4
OR operator, 2-7
Output listing options, 9-1
Output logic polarity, 6-12
Output mask registers, 6-41
Output reference levels, 6-11
Output strobes, 6-42
Overcurrent disconnection, 6-6

PAGE statement, 5-2
Parameterized calls, 2-4

lndex-3

INDEX (Continued)

Pattern replication, 6-34
PA USE statement, 3-1
Period and Pulse generation, 6-32
Period statement, 6-32
Peripheral devices, 8-1,
Pin address register, B-12
Pin chaining, 6-49
Pin control logic, 6-34
Pin definition, 6-12
Pin electronics connection, 6-3

Reserved words, 2-4
RESET FDIF statement, 8-5
Reset state, 6-66
Return-to-data mode, 6-7
Return-to-one format, 6-44
Return-to-zero format, 6-44
RVS voltage measurement, 6-12
RZ register, B-8 .

Pin origin and pattern, 6-34 S register, 6-10, 6-34, B-9
PMU D.C. macros, 6-19 Scalar declaration, 7-1
PMU forcing mode, 6-13 Scalar values, 2-5
PMU sensing range, 6-14 1.f a Selecting alternate reference supplies, 6-10
Power pin mode, 6-10 fJrl c fl SET CHAIN statement, 6-49
Power pin register, B-22 1' SET CLAMP statements, 6-26
Power selection, 6-9 <; e & ,-.-~ET DA/DB statement, 6-40
Power up sequence, 6-9 1,111° ;,,.J SET OCT statement, 6-15
PPSR/PMUF register, B-14 /r r~e,.;rv"'~r< SET DELAY statement, 6-26
Precedence value operators, 2-9 c r ll <~., · SET F statement, 6-40, 6-53
Precision measuring unit statements, 6-13 rr SET FI statement, 6-53

Connect PMU, 6-14, 6-18 SET !FAIL statement, 6-56
Disconnect PMU, 6-14 SET INVERT/I statement, 6-43
Enable relay, 6-18 SET IOMODE statement, 6-46
Force PMU scaling, 6-18 SET IOM3, 6-47
Force voltage/current, 6-13 SET LOGIC statement, 6-12
Initialize PMU, 6-14 SET MA/MB statement, 6-38
Measure pin, 6-20 SET MAJOR statement, 6-54
Measure value/node, 6-16 SET MINOR statement, 6-56
Measure variable, 6-17 SET MPIN statement, 6-37
Set DC parameter limit, 6-15 SET PAGE statement, 6-2
Set PMU ranges, 6-14 SET PERIOD statement, 6-32

Precision sense level register, B-15 SET PMU statement, 6-14, 6-18
Program branch control, 6-4 SET R statement, 6-66
Program flow control, 3-1 SET register statement, 6-34
Program initialization, 6-2 SET RZ statement, 6-44
Program initiation, 9-1 SETS statement, 6-10
Program preparation, 1-1 SET SI statement, 6-11
Programmable PMU voltage clamp, 6-26 SET Sxx statement, 6-11
Programmable time delay, 6-26 SET START statement, 6-54
Programmed delays, 6-7 SET STROBE statement, 6-42
Pulse delay statement, 6-34 SET Sx statement, 6-11
Pulse width statement, 6-34 SET TEST statements, ·6-20

R register, B-9
Ranges, 6-33
Rank organization, 6-35
READ statements, 8-1, B-24, 1-1
Record format, 1-2
Reference voltage supplies (RVS), 6-9
Reference voltage supply registers, B-8
Relational operators, 2-8
REM statement, 5-1
Required parameters, 1-4

lndex-4

SET TGx statement, 6-30
SET VOFFSET statement, 6-28
SET XOR statement, 6-45
Setting output reference levels, 6-11
Setup statements, 6-1

CLEAR DCT/FCT/TRIP, 6-65
EN ABLE Ixx, 6-29
ON DCT/FCT/TRIP, 6-65
SET CLAMP, 6-26
SET DELAY, 6-27
SET MPIN, 6-37
SET PAGE, 6-2

INDEX (Continued)

Short registers, B-1, B-25
Slave test station control, B-16
Special test station registers, B-12
SPU command format, B-2
ST register, B-9
Status register, B-4, B-19
String files, 6-50
Strobe timing generator selection, 6-42
Subprograms, 4-2
SUBR statement, 4-3
Subroutine declaration, 4-3
SWITCH global variable, 2-3
Syntax notation, 1-3

Characters , 1-4
Constant parameters, 1-3
Optional parameters, 1-4
Required parameters, 1-4
Variable parameters, 1-4

System global variable, 2-3
System 1/0 drivers, 4-10
System routines, 4-10

Terminal error number description, E-1
Test rate generator, 6-32
Test rate register, B-13
Test station control register, B-5
Test termination, 6-64
Test word format, B-11
TG registers, B-10
Three for one 1/0 mode, 6-4 7
Time delay registers, B-6
Time delay statements, 6-27, D-1
TIME global variable, 2-3
Timing generator pulse generation, 6-30
Timing generator registers, B-21
Timing generator statements, 6-30
Timing ranges and restrictions, 6-30
Timing subsystems, 6-30
TOPSY command, 9-2

TOPSY interpreter, 9-2
TRASCII character set, A-1
Trips, 6-8

User variable identifier, 2-4
Utility relays, 6-18
Value assignment, 7-1
VALUE global variable, 2-3
Variables, 2-2, 7-1

Array, 2-6
Boolean, 2-5
Global, 2-3, 9-5
Scalar, 2-5
User identified, 2-3

Variable declaration, 2-2, 7-1
Variable parameters, 1-4
VBD macro test, 6-24
VCD macro test, 6-22
Video keyboard terminal, 1-3
YOH macro test, 6-20
VOL macro test, 6-21
Voltage and current ranges, 6-6, L-1
Voltage forcing statements, 6-29
Voltage measurement, 6-7
Voltage clamp, 6-26

Waveform control, 6-42
WRITE statement, 8-2

Format of, 8-2, B-24
Literal variables, 8-4
Numeric variables, 8-3

XCON PIN, 6-7, 6-38
XCON VFx statement, 6-6
XOR Waveform, 6-45
XPMU PIN, 6-15

lndex-5

MANUAL REGISTRATION FORM
AND COMMENT SHEET

FILL OUT AND MAIL TO RECEIVE UPDATES AND SUPPLEMENTS AUTOMATICALLY

AS THEY ARE PRINTED.

FROM:

COMMENTS:

NAME _____ ~~~~--~-~~~~~~--

TITLE_~~~~-~~~~~~~~--~-~~-

BUSINESS
ADDRESS_~--~---------~~~~~

BUSINESS
PHONE __ ~~~--~-~~~~~~~~-~

MANUAL PART NO. 67095738
--------~--~----

REVISION NO. _________________ _

DATE OF PUBLICATION March 1977
--~-~~------~~

(Please describe errors, suggested additions or deletions, and reference part
number, page number, paragraph number, or drawing number.

ERRORS, OR CHANGE SUGGESTED, ON PAGE(S)

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.
FOLD ON DOTTED LINES AND STAPLE

STAPLE

Fold Along Dotted Line

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

Postage Will Be Paid By

FAIRCHILD SYSTEMS TECHNOLOGY

1725 TECHNOLOGY DRIVE

SAN JOSE, CA 95110

ATTN: SYSTEMS TECHNICAL PUBLICATION DEPT.

Fold Along Dotted Line

STAPLE

STAPLE

FIRST CLASS

PERMIT NO. 5699

San Jose.

California

STAPLE

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	1-01
	1-02
	1-03
	1-04
	1-05
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	5-01
	5-02
	5-03
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	6-35
	6-36
	6-37
	6-38
	6-39
	6-40
	6-41
	6-42
	6-43
	6-44
	6-45
	6-46
	6-47
	6-48
	6-49
	6-50
	6-51
	6-52
	6-53
	6-54
	6-55
	6-56
	6-57
	6-58
	6-59
	6-60
	6-61
	6-62
	6-63
	6-64
	6-65
	6-66
	6-67
	7-01
	7-02
	7-03
	7-04
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	9-01
	9-02
	9-03
	9-04
	9-05
	A-01
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	B-23
	B-24
	B-25
	B-26
	B-27
	B-28
	B-29
	B-30
	C-01
	C-02
	D-01
	D-02
	E-01
	E-02
	E-03
	E-04
	F-01
	G-01
	H-01
	H-02
	H-05
	H-06
	H-07
	H-08
	H-09
	I-01
	I-02
	I-03
	I-04
	J-01
	J-02
	J-03
	J-04
	K-01
	K-02
	K-03
	K-04
	K-05
	K-06
	L-01
	M-01
	M-02
	M-03
	M-04
	glossary-01
	glossary-02
	glossary-03
	glossary-04
	index-01
	index-02
	index-03
	index-04
	index-05
	replyA
	replyB

