
"'~""~:'!'X~f!U':';
'" .~

".;'

tHE PICTURE SYSTEM
USER'S MANUAL

': .. ··.:;x ~;

Evans & Sutherland Computer Corporation
.3 Research Road

Salt Lake City, Utah 84112

, . ' ..

, "

• ••• .

. .. ~:~ ..
. ~

•

Preliminary Edition
Revised
First Edition

Copyright 1974

April
June
December

All refe~ence to this document should be made to:
No. ES-PS-SOC1-003.

1974
1974
1974

.:: '

Evans & sutherland Computer Corporation assumes no responsibility
for any errors that may appear in this manual. The information
in this document is subiect to change without notice.

CHAPTER 1.

CHA PT ER 2.

2. 1
2.1.1
2.1.2
2.1.3
2.1.4
2.1.5

2.2-

2.3
2.3.1
2~3.2
2.1..;:)
2. J~:4
2.3.5
2.3.6

2.4

CHAPTER 3.

3.1

3.2
3.2.1
3.2.2
3.2.3

3.3

3.4

3.5

3.6

3.7
3.7.1
3.7.2
3.7.3
3.7.4

CHA PT ER 4.

4. 1

,.'

TABLE OF CON"T.ENT$

Paqe ••
PREFACE

INTRODUCTION ••••••••••••••••••••••••••••••••••••• 1-1

OVERVIEW OF INTERACTIVE coapUTER GRAPHICS •••••••• 2-1

PICTURE PRESENTATION •••••• _ •••••••••••••••••••••• 2-2
Gr.aphical O'utput Media 2-2
Ref resh . R:i:J;.te' •.• , ••• -•••••• "e- ' e". 2- 2
line Gene·ration •• · •••••••••••••••••••••••••••••••• 2-3
Update Rate·· •••••••••••••••.•••••••••••••••••• ~ ..•.•••. 2-3
Picture Bufferinq · •••• 2-3

PICTURE DEFINIT·IqN 2- 5

P leT UR EPRE'PARA:TrclL';, ... ~ ••.••••• .; •••• ~ ~ ... ,~ .•••• 2 - 7
S im ple·~,ii'rrear·r·tans f~r'mati 0 ns •••••••••••••••. ..; ~ 2-7
Co mpoun.~·ti ne~~~Tl:ansfor·mations ••.••.••••••.• -... -• ..; 2-7

~f·ri.~~:~f~~$~::~t:: •. ::;.:';:~I.·~~B;:·,··:.:':··:-: :': ::.:,:':.:'::':: ::.: :':,::: ::.:~::
conversion: :to:'sbreE{iF/Coo;r:d.i na tes~, ''; .,; .•.• 2-10,\.
iext D··i·~:iri~.Y·"~'~ ~"~'::-~'~:.~:~.::: ~.~~'~'.-~'~~~~ e' ~' •..• ~ ., 2-15"~-

. ~_ " - .1 • . ".

PICTURE· :tNTERACTION.~.:: ' ~ •• 2- 1Sl1
OVERVIEW OF THE PiCTURE SYSTEM ••••••••••••• ~ ••••• 3-1i.

THE PICTURE CONTROLLER ••••••••••••••••••••••••••• 3-3

'IHE PICTURE PROCESSOR •• .' ••••.••• ;; 3- 4
Interface Cha·nneT 3- 4 .
Matrix Arithmetic Processor 3-4
terminal Control ••••••••••••••••••••••••••• ~ 3-5

'lEE REFRESH BUFFER ••••••••••••• •• e ••••••••• 3- 6

CHARACTER GENERATOR •••••••••••••••••••••••••••••• 3-7

'lHE PICTURE GENERATOR •••••••••••••••••••••••••••• 3-7

'lHE PICT~RE DISPLAY •••••••••••••••••••••••••••••• 3-7

INPUT •• 3-B
'Iablet e 3- 8
Centrol pials •••••••••••••••••••• _.~ ••••••••••••• 3-8
Function Switches & Liqhts ••••••••••••••••••••••• 3-8
Alphanumeric Keyboard •••••••••••••••••••••••••••• 3-9

THE PICTUBE SYSTEM GRAPH~CS SOFTWARE PACKAGE ••••• 4-1

THE GRAPHICS SUBROUTINES ••••••••••••••••••••••• ~.4-3

; i

·:·~{~·:-:·;;}3?~?'J.\,Z '~?, .->';: 'Y'··

4 •. 1.1

4.1.2

4.2

CHAPTER 5.

5.1

5.2
5.2.1
5,,2.1.1
5.2.1.2
5.2.1.3
5.2.2
5.2.3
5.2.3.1
5.2.3.2
5.2.3.3

5 .. 3
5.3. 1

5.3.2

,~~{,.

Subroutines •••
PSINIT •••••

~ser •••••••••••••••••••••••••• ·•.................... •• 4-4
..4-4
..4- 9
..4-10

,-'-

VWPOBT •••••••••• · .. · ·
W IN DOW ·
BOT ••••••••
TRAN •••••••
SCALE ••••••

· · . • ••• 4- 11 · ·
PU SHe · ... ~
POP •• ·
DBAW2D ••••••• ·

· . ..
~ ·

..
DRAW3D •••
CHAB.
TEXT.
INST ••• ·
MASTER
DASH ••••••• · · · ... BL.! NK ••
SCOPE •• · .
TABLET. · · .

. ..

. · . ..4-12
• ••••• 4- 13

• ••• 4-14
..4-15 ·4-16

• •••••• 4- 184-19
• 4- 20
· . • ••• 4-21

• 4- 22
• ••••••••• 4-23

• .4- 24
..4-25 • .4- 26

" ISPDWN ••••• • ••••••••••••••••• 4-27
L.cURSOR. · • ••••• 4-28
'LHITWIN. ..4-29

••• __ •••••• 4-30
·•.•..•..

.. · · " · . • ••• 4-:31
HITEST •••••••
NUFBAM •••••
SETBUF. . . · .. · • ••• 4-32

• ••••• 4-33 PSWAIT •••••••••••••••••
System Subroutines. · .. • 4~' 34

•• · ••....•...•...... • .4-34• . . . · • ••••••• ·~-_35
BLOCON ...
P$A VE ••••
R$STOBE •••• · • •••• ~·4-35

. .•... 4~j5 P$DMA ••••••••••••••••
I$MATX ••• · .. ·4-36
ERROR •••••• · · . ..4-36
P$OIV •• · . . . · .. ~ .. • •••••• 4- 37
P$MUL •••••• · • ••••••••• 4-31

PICTURE SYSTEM EBBORS •••••••••••••••••••••••••••• 4-38

fROGRAMMING THE PICTURE SYSTEM ••••••••••••••••••• 5-1

GENERAL PROGRAM STRUCTURE •••••••••••••••••••••••• 5-2

SCENE DEFIN.!TION •••
Coordinate
£ata Space

Systems.
·

· ... Coordina tes ••
Hcmoqeneous Coordinates •• ·
Screen Coordinates.
Data Definition ••••
lransformations ••

·
· ... · ·

~he Identity Transformation ••
Sim~le ~inear Transformations ••
Ccmpound Transformations ••••••

· .
......

· . . . •• 5-9
• ••••••••• 5-9

·
·

..5-9
• .5- 11
.5-14

• ••• 5-18
..5- 22

• ••••• 5- 22
..5- 23
.5-23

PROGRAM INITIALIZATION [PSINIT1 •••••••••••••••• 5-35
Initialization of THE PICTURE SYSTEM Hardware
and Software •••
Initiatinq Autqmatic

•• 5-35
[TABLET,CUBSOR1.5-45

·
Operations

iii

5.3.2.1
5.3.2.2
5.3.2.3
5.3.3

5.4
5.4. 1
5.4.2
5.4.3

5.5
5.5. 1
5.5.2
5.5.3
5.5.4
5.5.5
5.5.6
5.5.7
5.5.8

5.6

5.7

5.8 .
5.8. 1
5.8~2
5.8.-J

5.9
5.9. 1
5.9.1.1
5.9.1.2
5.9.1.3
5.9.2
5.9.2 .. 1
5.9.2.2
5.9.2.3
5.9.3
5.9.4
5.9.4.1
5.9.4.2
5.9.4.3

5. 10
5.10.1
5.10.2
5.10.3

5.11
5.1.1.1
5.11.2
5.11.2.1
5.11.2.2
5.11.3

Automatic Tablet Update •••••••••••••••••••••••••• 5-45
Automatic Cursor Display ••••••••••••••••••••••••• 5-45
Use of Automatic Tablet and Cursor MOdes ••••••••• 5-46.y
Initial~zation of User Variables ••••••••••••••••• 5-48

VIEWPORTS rVWPORt1 •••••••••••••••••••••••••••••• 5-50
Full Screen Viewport ••••••••••••••••••••••••••••• 5-53
Multiple Viewports~ •••••••••••••••••••••••••••••• 5-53
Depth-cueinq •••.•••.••••••••.•••••••••••••••••••• 5-57

WINDOWING rWINDOW1 •••••••••••••••••••••••• ~ ••••• 5-58
Two-Dimensional Views •••••••••••••••••••••••••••• 5-61
Three-Dimensional orthoqraphic Views ••••••••••••• 5-62
Three-Dimensional Perspective views ••• ~ •••••••••• 5-63
Non-Square Windows and Viewports ••••••••••••••••• 5-66
Sectioninq ••••••••••••••••••••.•••••••••••••••••• 5-69
Depth-cueinq ••••••••••••••••• ~ ••••••••••••••••••• 5-69
Rear-facinq Views •••••••••••••••••••••••••••••••• 5-70
Flacementof the Hither and Yon Planes ••••••••••• 5-72~ ' '.

:::-;;::~jS·:·
ROTATION .. -r ROT , ••••••••••••••••••••••••••• .; ••• ~ •• 5-73:;ik<

- • " '.. :'!.~j: [.. '.-

TRANSLATIoN ,[TRAN 1 •••••••••••••••••••••••••• ~ • •• 5-i't~Ws:"
":'::" - ' '. .' -.f, " _ :,..\~~~}\;'

SCALING ...• [SCALE , •• L ~ ••••• ~ ••••••••••••• ~ ••••• 5-7~(~f:'·(i:
Data Dl.~tortion~ •••••••••• ~ •• e ••••• ~ ... ~ ••• e~ ~.~ •• 5-79,:S;;r
I1irrorin-q. ~ ~"~- •• ~ ~'. ~.~: .. :~ ~-."~~'.'. e" •• -. ~ •• 9 •. ~ ~':::.:.~ .•• 5- 80'::{\~;:'·'
Scalinq Usinq the Homoqeneous Coordinate, Ii. ~ ••• 5-8L,:;i
DATA DISPLAY ••••••••••••••••••••••••••••••••••••• 5-83~1II
Display 6f Lines and Dots •••••••••••••••••••••••• 5-8j;
Drawing Two-Dimensional Data ••••••••••••••••••••• 5-84
Drawinq Three~Dimensional Data •••••••••••••• ~ •••• 5-89
Specific Drawing Functiciris •••••••• ~: ••••••• ~ ••• :~5-9b
Display of Char~cters •••••••••••••••••••••••••••• 5-92
Character Size and Orientation rCHAR1 ••••••••• ~~5-92
Positioninq for Text Display ••••••••••• ~ •••• ~ •••• 5-96
Text output rTEXT1 ••••••••••••••••••••••••• ~ •••• 5-98
Instancinq rINST,MASTER1 •••••••• _~ •••••••••••• ~.5-102
Display Modes •••••••••• :~ •••••••••• ~ ••••••••••••• 5-111
bashed Di~play Mode rCASH' ••••••• ~~ ••••••••••• ~~5-111
~link. Display Mode rBLINK1 •••••••• ~ ••••••••••• ~.5-111
Scope Selection rSCOPE1 •••••••••• ~ •••••••••••• ~~5-113

INITIATING THE DISPLAY OF DATA rNUFRAM,SETBUF1 •• 5-114
Display of Data Without a Refresn Bqffer ••••••• ~~5-114
Display qt Data in sinq~~-Buffer Mo4e ••••••••••• ~5-117
Display of Data in Double-Buffer Mode •••••••••••• 5-123

INTERACTION USING THE TABLET ••••••••••••••••••••• 5-127
Iablet and Cursor Use rTABLET,CURSOR,ISPDWN1 •• ~.5-127
Poin tinq ~ .. • 5-136
Pointinq at Menu Items ••••••••••••••••••••••••• ~~5-13'

:~;~ ~t~~i ~~. ~~~~. ~:~~~~~~ .. ~ ~:: ~~~: ~~:=~: .': ::::::~: ~!.
-,'.17':\:.
i . ",)~). ~,

. :y,-
.'.:"

iv

", BE1ERENCES

APPENDIX A

•

•'" .'

A.1
A. 1. 1
A. 1.2
A.l.3
A.1.4
A.l.S
A.l.6
A.1.7

A.2
A.2.1
A.2.1.1

A.2.l.2

A.2.1.3
A.2.1.4

A.2.2
A.2.2.1
A.2.2.2
A.2.2.3
A.2.2.4

A~2.2.5
A.2.2.6
A.2.2.7
A.2.2.8
A.2.2.9
A.2.2.10
A.2.2.11
A.2.2.12
A.2.3
A.2.3.1
A.2.3.2
A.2.3.3
A.2.3.4
A.2.3.5
A.2.3.6
A.2.3.7
A.2.3.8
A.2.4

A.3
A.3.1
A.3.2
A.3.3

SPECIFICATIONS OF THE PICTURE SYSTEM ••••••••••••• A-1

TEE PICTURE SYSTEM FUNCTIONAL SPECIFICATIONS ••••• A-2
Picture Controller ••••••••••••••••••••••••••••••• A-3
Picture Processor •••••••••••••••••••••••••••••••• A-S
Refresh Buffer ••••••••••••••••••••• ~ ••••••••••••• A-7
Character Generator •••••••••••••••••••••••••••••• A-8
Picture Generator and Picture Display •••••••••••• A-9
Tablet .. A-l1
PDP-11 UNIBUS Addresses Reserved by
THE PICTURE SYSTEM ••••••••••••••••••••••••••••••• A-12

!HE PICTURE PROCESSOR HARDWARE SPECIFICATIONS •••• A-13
PDP-11 Picture Processor Interface Registers ••••• A-14
Refresh Timinq Register •••••••••••••••••••••••••• A-16

RealTime CLock (RTC) A-16
command Registers •••••••••••••••••••••••••••••••• a-18

Status Register(SR).~.~ ••••••••••••••••••• A-18
Repeat statu~Register (8SR) ••••••••••••••• A-25

Ccmmand Execution •••••••••••••••••••••••••••••••• A-30
Data Transfer Registers ~ •••••• A-30., ..

Word Count Register (DRWC) •••••••• ~ ••• ~ •••• A-31
Bus Address .Reql.ster (ORB A) •••••••••••• ~ ••• A-31
DMA Status and:Command Register (DRST) ••••• A-32
Data Forma~s ••• ~~.~~ •• ~ •••• ~ •• ~~ ••••••••••• A-35

Picture Processor Int~r~al Registers ••••••••••••• A~41 .
Transformation Matrix' (TRANl'fA-TT: ••••••••••••••••• A;" 41-
Temporary Matrix (TEMPMAT) ••••••• ~ ••••••••••••••• A-41
Refresh Buffer (REFBUF) •••••••••••••••••••••••••• A~41
Viewport Left, Bottom, Hither (VIEWL,VIEWB,
VIEWH) ... •• 1-4..1
Save (SAVE).~ ,. · A-4'
New Clip (NC) ••••••• ~ •••••••••••••••••••••••••••• A-43
New View (NV) A-43
Viewport, Right, Top, Yon (VIEWB,VIEWT,VIEWY) •••• 1-43
Ease (BASE) ••• ~ •••••••••••••••••••••••••••••••••• A-44
Previous Clip (PC} ••••••••••••••••••••••••••••••• A-44
Previous View (PV} ••••••••••••••••••••••••••••••• A-44
Matrix Stack ••••••••••••••••••••••••••••••••••.•• A-44
Command Execution Details •••••••••••••••••••••••• A-46
2DDRAW and 3DDRAW, FSM1=DRAWTO ••••••••••••••••••• A-46
2DDRAW and 3DDRAW, FSM1=MOVETO or DOT •••••••••••• A-46
2DDRAW and 3DDRAW, FSM1=STATUS or CHARACTER •••••• A-48
PUSH ••• A-48
POP •••.•• A-48
MATCON ... A- 48
LOAD .. A-48
STORE ••••••••••••• ~ •••••••••••••••••••••••••••••• A-49
Character Generator •••••••••••••••••••••••••••••• A-SO

PROGRAMMING THE PICTURE SYSTEM ••••••••••••••••••• A-53
Program Description •••••••••••••••••••••••••••••• A-53
MACRO-l1 Program &xample ••••••••••••••••••••••••• A-57
FORTRAN Program Example •••••••••••••••••••••••••• A-58

v

APPENDIX B

B.l

B.2.

APPENDIX C

C.l

C.2

C.J

C.4

C.S

.' -.

.~. -:'-' '. ,

APPENDIX D

D.l

t.2

D.3

APPENPIX E

E. 1

E.2

APPE NDIX F ".

F.l

F.2

SUMMARY OF THE GRAPHICS SUBROUTINES •••••••••••••• B-l

FORTRAN CALLING SEQUENCES ••••••••••••••• :. •••••••• B-3 •

ASSEMBLY LANGUAGE CALLING SEQUENCES •••••••••••••• B-4

PDP-l1 FORTRAN CALLING SEQUENCE CONVENTION ••••••• C-l
,.

INTRODUCTION ••••••••• ~ C-l

THE CALL SITE •••••••••••••••••••••••••••••••••••• C-l

BETUBN ••••••••••••••••••••••• 4 ••••••••••••••••••• C-2

BETURN VALUE TBANSMISSION •••••••••••••••••••••••• C-2

CONTEXT SAVE AND BESTOBE.CONVENTION.~ •••••••••••• C-3 .' . .

NCN- REENTR'A N~ EXAMPLE,; •••• -;,' ... ,;,~,,; •••• ;.'-. : .;;~; .~ •••• C- 3
REEN.IRANT EXAMPLE •• ~ .• ~ ••• ~~.~.~:~;;:! •• ~~~ :,~';';;~'';:~ ••• C-4:.

... .'~.::. "..~ .;. ";'." _. ·i_~- "<>.~.;'_._:'~'_\ .. <::': :{" ," .: ", ,-~. ' •. :' _"'. "
A.RGU MENT S ~:" •• -':,." _ .~ .. ~ .• ~' •• ~ ~. ~ •• ~. ~.;.:-'~ ...• "~.'~ •••• " •••. ~ ... ~ ..•• • c- 6

.' :", '.: ," ~ "

",' .;' :; .. ~. ""

U SEOFTHEGRAPHICS·~SOITWAR·Ei ITJTH E' .'.
PAPER TAPE 'SOFTWARE SYSTEM ~ ••••• .: •••••••••• D-1-

tESIGN .AND USE OF THE PAllER TAPE GRAPH.ICS·
SOFTWARE •••••••••••••••••••••••••• ~ •••••••••••••• D-'

EBBORS USING THE PAPER TAPE GRAPHICS SOFTWARE •••• D-3

PROGRAMMING THERICTURE SYSTEM USING THE
PAPER TAPE GRAPHICS SOFTWARE ••••••••••••••••••••• D-7

USE OF THe GRAPHICS SOFTWARE WITH THE
DOS/BATCH DISK OPERATING SYSTEM •••••••••••••••• ~.E-l

OSE OF THE GRAPHICS SOFTWARE PACKAGE ••••••••••••• E-l

USE OF PDP-l1 FORTRAN IV WITH THE PICTURE
SySTEM ••• ~.E-2

USE OF THE GRAPHICS SOFTWARE WITH THE
RT-l1 OPERATING SYSTEM ••••••••••••••••••••••••••• F-l

USE OF THE GRAPHICS SOFTWARE PACKAGE ••••••••••••• F-l

USE OF PDP-11 FORTRAN IV WITH THE PICTURE
SYSTEM •••••••••••••••••••••••• ~ ~.F-2

vi

••

1.

• "

,

CHAPTER ONE

INTRODUCTION

THE PICTURE SYSTEft is a stand-alone, qeneral purpose,
interactive computer graphics system which can display
smoothly moving pictures of two- or three-dimensional
obiects. This system has all the capabilities which have
been found to be needed and wanted by users of computer
graphics systems. It has been designed as a problem-solvinq
tool, a hardware/software system which satisfies real needs
and can be used to solve practical problems.

Evans & ~utherland line drawing systems traditionally have
been applied to applications where perspective and dynamic
motion, like rotation and, zooming, are required. THE
PICTURE SYSTEM has the same digital hardware capabilities as
the previous systems, but in addition, has digital picture
bufferinq for refreshing the display. ,The built-in Refresh
Buffer memory allo~s more lines and ch~racters in a picture
~nd eases the tim~ and data storage:burden on the, co~put~r
which control.!ii THE PICTURESYSTEfi. '/ "

All the' dynallic" "capabilities"'?'for 'pict:.ure,pro~es~iIig are'
standard in' THE PICTURE, SYSTEH/", The: baslccomponents<of' the
system ,.' are a' DEC C\,PDP-11;' h'ardwai:e\procesing. units for
performillcj' such; funbtionsa~;"; rota tion~." zooming' and
perspective'; . ana192~point : Refresh'.' Buffer; " a':Picture

. Generato'r(a<::haracter Generat.or; a 21" Picture Display; 'a
Tablet 'to 'facili t~tepicture interaction; and the softw,are
to support the system.

1-1

•

•

2 •

CHAPTER TWO

OVERVIEW OF INTERACfIVE COMPUTER GRAPHICS

Computer graphics is a relatively new and important
branch of computer technology in which computers prepare
and present pictorial output. Interactive computer
graphics qoes one step further in that it allows a user
to dictate changes to the picture and see the results
immediately. If a system's time lag is more than a few
seconds, it does not qualify as interactive; in some
systems, however, the ,time lag is a very small fraction
of a second, in which case the user gets the feeling that
he is actually manipulating the picture itself.

Computer graphics is a very broad subject and even an
overview of it can diverge into a great many topics. The
purpose of this chapter is to present in general terms
the concepts necessary for understanding and using THE ~
PICTURE SYSTEM. Consequently, it devotes little
discussion to some aspects of graphics which may be .of
interest and importance. to some readers but which arenof,;
pre,requisi t~s tounder,standing the rest of this manual 1'.'

.;,
.'t· \; .~<,:-:. ;~~. ::. '" .,"-

A'studY·,cof : graphics:' can be broken down into four ma ior:'
toPi6~~~e~s:~~resen~i~g a prepared picture, representing
stru6tures to b~ de~icted, preparing a picture of such
structures and interacting with..--thepicture. Eacho-f .'
these areas is explored in the following sections.

Ifri~2iEle2 Q£ !nt§~ti~ ~Q~EY!~~ Gr~£~i£~, Newman and Sproull,
McGraw-Hill, 1973 is a recommended reference coverinq most
aspects of computer graphics •

2-1

>.

2.1 PICTURE PRESENTATION

2. 1. 1

2. 1.2

Computer users are familiar with output media such as
listinqs and magnetic tape, where computed results are •
recorded in numerical form. Often the numerical form is
an artifial way of presenting pictorial data. Computer
qraphics offers a new output medium on which data can be
presented visually.

Graphical Output Media

At one end of the qraphics spectrum lie plotters, where a
computer-driven pen creates a picture on a stroke-by
stroke basis. Plotters are unmatched for resolution (a
measure of the density of individually distinguishable
output values), but are extremely slow compared to other
graphic output devices.

Next there are raster printers, where the computer
selectively fills elements of a rectanqular mesh with
ink. The pattern of filled and empty elem~nts can be
assem~led by theeYel.nfo.a·"picture when viewed from a
reasonabledist:.ance.R·aster· pri.nters. have rather coarse
J:esclution'but Ciremuch-faster'than plotters. . ":., "-

Ou tput : on . paper ispetmari~~'t, •... which can be an ad vantage
or disadvantage~ To meet the, need for an impermanent
qraphic -output medilim,the--.Cilthode ray rube (CRT) is
used. Information is presented o~ a CRT by directing a'."
beam of electrons abo~ton its phosphor coated face. One
form'of CRT, called the storage tube, 'retainspi~tures
semi-permanently bV "~apturing" the electrons in tiny
cells on its f~ce so that t~ose cells qlow until the
electrons are "freed" bV an erase pulse. The other form
is the refresh CRT, whose face emits light for an instant
when it is struck by the electron beam and then turns
picture to retain the image which is referred to as
refreshinq.

Like paper, the refresh CRT can be filled with a matrix
of dots or can be drawn upon with a set of strokes at any
position and any anqle. An example of the former is the
home television; an example of the latter is THE. PICTURE
SYSTEM's Picture Display.

Refresh Rate

Since the phosphor on the refresh CRT fades almost
immediately after it is struck by the electron beam, the
picture must be continually redrawn to be viewed. This
rate at which it is redrawn is called the refresh rate
usually measured in frames per second. If the picture is

2-2 •

•
2. 1.3

•
2. 1.4

2. 1.5

•

not redrawn frequently enouqh, the eye will notice it
fading between refreshes, producinq an unsightly effect

'known as flicker. The flicker threshold varies somewhat
from phos~hor to phosphor and from observer to observer,
but most observers of the common phosphor, P4, beqin to
see flicker at a refresh rate of about 30 times per
second. That is, pictures redrawn more than 30 times per
second appear flicker free; pictures drawn less than 30
times per second do flicker; and pictures drawn exactly
30 times per second are marqinal.

Line Generation

A line is specified by two end-points (x,y) and (x'y'),
expressed in the coordinate system of the CRT, called
screen coordinates. The actual movement of the electron
beam between the two points is accomplished bv a hardware
device called a line qenerator or a vector qenerator. A
sophosticated line generator is also capable of drawinq
lines with a proqram-specified intensity, or even varyinq
the intensity of a line from one end to the other. In .,.
this most general case, whete line endpoints~r~
specified by the three coordinates (x, y .z) , -the intensity"
or briqhtness· or.' lines can ·appear to trail off in the'
distance. pr:oducinq an illusion of depth~, ... This techniqlle!·
is known as depth-cueinq. :;/,~.>,

Line qenerators can often be made to draw lines in ahY,of
a' choice of modes such'as solid, dashed~.'blinkinq, dashed.
-~nd--blinking, etc. Line :qenerators ~hi~h ~an servi6~~
m6re than cne CRT ate 'equipped~ith i f~cility for s~ope
selection. A display program may sel~ct~ne or more
scopes and then any subseguent lines drawn appear on all
the selected scopes.

Update Rate

The advantaqe of the refresh CRT is that it can show
smoothly changinq pictures. Lines drawn on a CRT do not
really move, of course, but the illusion of motion is
imparted by continually redrawing the picture with lines
at slightly different positions each time, or each frame.
The eye blends this sequence of slightly different frames
together into a smoothly movinq picture such as a motion
picture. The rate at which these different frames can be
displayed is called the update rate. In contrast to the
refresh rate which counts the number of pictures drawn
per second, whether or not they are changed, the update
rate counts only those frames that are different.

Picture Bufferinq

2-3

·{-W,-\,·~.;··:-·

In !HE PICTURE S~SrEM a refresh buffer provides storaqe
so that the refresh and update rates may be different.
Althouqh refresh of 30-40 frames per second is required •
to avoid flicker, update of 10-20 frames per. second is
adequate to provide smooth motion. In effect, each new
frame is shown two, three, or even four times while the
next frame is beinqcomputed.

Data resident in a refresh buffer is called a display
file. . Full frames stored in this buffer may be read out
and used to refresh the CRT any number of times before a
new frame is created. Typically, new frames are created
20 times a second and the picture is refreshed 40 times a
second; i.e., each frame is shown twice. Thus, the
presence cf a refresh buffer allows both refresh and
update to proceed at their respective optimal rates and
tbe system has a larger line capacity than it otherwise
would. .

A poten tialpr.obl.em· area . exists when a pictu~e is"
refreshed·fro)oa memory"which' is simultaneously being
filled'1Iith,a,.newframe;,namely,that a picture displayed
maycon·sist·ht,some\l.in~f:j:'from;one frame and sOlie froOt
another~' ;'. This';ca~}~\pr()dudia: number of effects ,sola~very.
uilsiqhtlY. ' •. T()''a1r~id':',Jhis':,'p;-oblem, the refresh buff~r ca~
be splitip~o ;: .. tw():l;;,sepa~at..e 'buffers and u'pdate, and.,·';
refresh':can be.swit'ch'ed"bei~e'en the two in a way .. whicijj,>:

a v 0 ids., conf iict s.';;T his lsc all e d do-u-hle~ b u f fe ring, and.,., .. ' :., ... : ..•... ,.,.,.,',';, .. ' ... , •.. :,.i.· .. ,,'./,:, its only, disadv~ntaqe .!stiiat '. the: amount. 'of pictorial',
data, which 'may' be ,buffered is. halved.' In some cases this
can pl~~e :a~unnece~sa~ili':l~~ ceiling on the lin~~'
capacity. ,The' alternati,.ve,sin'qle-buffering; can be used ."
to take adva'nt,age of the entire 'buffering . space when the
effects are not too dist~rbin~, usual1ywh~n the pictures
shown are not highly dynamic.' In systems without a
refresh buffer the update and refresh rates must be the
same. This limits the amount of data that can be
displayed and the complexity of the picture that can be
px:ocessed.

• 2-4

..

•

•

•

2.2 P~CTURE DEFINITJ:OH

Data ultimately deposited in a refresh buffer must
originate in the memory of the computer controlling the
system. This computer-resident data is called a data
base and may be vastly different in form from the display
file which emanates from it.

Data bases may be highly structured, requiring a complex
program to weave through them, or they may be very
straightforward. The data base contains the coordinates
of Feints in the structure to be displayed, along, with
instructions for interpreting those points. Along with
coordinate information there may be pointers,
substructure names, and othernon~graphic information and
attributes.

Points are the tasic geometric entities in the data base.
There are three basic instructions for treating a point:
move the beam to that point, draw a line to that point,
or draw a dot at that point. Graphics systems are often,
designed to understand ,c6desfor several of the mrist
common sequences of the basic instructions' (such as;
"move,draw,move,draw, ••• "), so that large tabI~s of~
points can be processed 'based on a single pre-specifi~i
code.

The most straightforward vayto specify 'the position of a'
point is simply to'state'its absolute coordinates. An
alternatilc..a. that often in-troduces considerable",
efficiencies, called' telati ve' ' coordinates , entails
stating tbe displacement reguired to get toa point from
the previous point. Codes for common sequences like
"absolute, relative# absolute, relative ••• " can be made
recognizable to facilitate handling tables of points.

If a structure to be displayed lies in a plane, it is
simplest and most efficient to define it using two
dimensional data. In this case it is typical to supply
an "x" and a "y" coordinate for each point in the
structure, and then perhaps a single "z" coordinat~ which
applies to all the points.

If however, the structure is non-planar, it must be
defined as three-dimensional data where a coordinate
triple of the form (x,y,z) is given for each point.

In general a full computer word is devoted to each
coordinate of each peint and all coordinates are
expressed as integers. In a 16-bit computer, then, the
largest expressable positive number is 32767. This is
sufficient for many applications, but the need to express
larqer numters sometimes arises. This need can be met,

2-5

.. ~ ." .. o·

at the expe.nse' Qf some
definition" by em.ployi.nq an
data called hOlloq.eneou·s
ex, y,z) is d.efined· by
(hx, hy, hz, h.32767)" wh.ere
between zeto aDd one.

lo·ss: of resolution in. d~.ta.
a;lt'e-rnate means of expressinq;
coordinates. He're a po-int

the four coordinates.
lI'hlt is an arbitrary number

If each of the numbers x, v,· and z is less than or equal.
to 32767 in ma.q.nitu,de., 'th" would be made equal to one (in
otder to preserve maximum pr.ecision) and the eX'pression
becomes (x,y,z,327b7). If one of the Car.tesian
coordinates, say x, is 5.0.000,. the value of homoqeneous
coordinates becc.mes ap'parent becau'se "h" can be· made 1:./'2
to make· x exp,ressable; the point is then. de-fined as:
(12-50.00.·0·,1/2:-·y, 1/2.z ... 1/2- 3'2761') or
(250.00.,1/2 ey .. 1/2e Z',.16.l84-)'. all perfectly expressab:le'
numbers. It is app.arent tho·uqh that resolution is lost;
when. "h·'" is: 1/2, it is impossible to exactl.y ex.p·res.s odd
values, for the ori.qx.nal coordinates. In. the exam:ple
above, the.. ex.pression, of an x. of 5000.0. is ident:ic:a,l to:
the expression of an: x: 0.£ 50:0'0.1' • Furthermore, reso:l.u;t£.OIL
is ·lostin .. all·thr~e-c:O:Grdinat.eseve:n.if o.nly: oae: ,oif.thenf
is .O\1t . of: '. bounds~~:-: ~.mClller:v:alues: o-t. II h tI, imp()se a
cOJ:respon:dfnq:ly-~reate£loss, of ,.resolution.

•

It iscustomaI:} .. ~tO-;conserve'co.re b,y suppIyinq only .the
firstt,hree cOQrclinates:thx;:fuy':.hzl·for t.hree-dimens·ic);nal '
p.:oints" - . or '~':lUst', tWQ·c.oo'rdinates, -(hx",hYl fo'!:" two-.'·· 1

d'iuiensional pO:l.nts ("with'acamDfon- value for hz.), . and to" .• '.:"
pr'e~specify a' fourth: coordinate.' (.usually referred to as: .:.
"wIlJw:hich app.lies: to several' such po.ints'~:

The user may be telitp·tedto assume that relative
coord'in-ates are another methOd of extendinq' the bounds of
the data space. heyondthe normal limit of 32767 (e.g;.
setpoint to (300.00,30000,) r d-r:att relative to
(20000: •. 20000) , leavinq the heam - pos.itioned at
(SQOOO,5000.0n,. such is'!!.Qi ~~ g2~ and.an att-empt to
accumulate relative. position.s beyond the maximum
representable valQes w±ll cause wrap-around, i.e. a
number of opposite siqn and erroneous maq,ni tude will
result.

2-6

2.3

•

• 2.3.1

2. J. 2

•

-'.'..:": E,':-.- r:"

PICTURE PREPABA7ION

The data base is almost never identical to the display
file because the data base represents some scene, or
collection of structures while the display flle
represents some view of that scene. To create a display
file, transformation of the data base is reguired. In
order to prepare a structure for display, it may have to
be changed in size, position, or orientation; it may have
to be put in perspective as seen from a given vantage
point; parts of it may have to be removed to keep
everything within a given field of view; and its
coordinate system may have to be changed to conform with
the outpat device. All of these steps can be expressed
mathematically and implemented insoftvare or hardware.

It is possible to implement the picture preparation steps
in software using a general-purpose computer, but this is
relatively slow. Hardware, while less flexible, is much
faster. Portunately, many of the steps involved in
picture preparation are invariant from application to
applic~tion which makes it very worthwhile to implement
them with speci~l purpose hardware. Any calculati6ns .,
unique to a given application can still be performed ,i~
software." ';:r,:

,": '.;'.,. ;;\: ..
To meet' the demand ' fot fast' frame CI"ea tion, hiqh";;;,
performance gdiphi<;:s 'syst~ms,employ , special purpose"
hardware ~rocess~~~~6 impl~ment the picture preparation

. steps. These stepsa.re described ~ in thelie----xe- sections. " '

Simple Linear Transformations

Linear transformations (rotations, translations,
scalings, etc.) can be described by parameters which
indicdte the type and degree of transformation. If the
transformation parameters are properly arranged into a
matrix, a vector of original coordinates can be
multiplied by this matrix to yield a vector of new
coordinates reflecting the desired transformation.

A 4x~ matrix can represent any rotation, translation or
change in scale and can be used to transform points
represented by homogeneous coordinates or as special
cases, two- or three-dimensional coordinates.

This matrix expression of transformations is used because
of its sim~licity and because system design can then take
advantage of the large body of knowledge about matrix
arithmetic.

Compound Linear Transformations

2-7

2.3.3

2.3.4

All linear transformations can be expressed as a sequence
of simple translations. rotations and chanqes in scale.
A transformation expressable only by such a sequence is
called a compound transformation. When a compound •
transformation is to be applied to a set of points. it
would be possible. but extremely time-consuminq. to apply
the first simple transformation to the oriqinal
coordinates, then apply the second transformation to the
resultinq coordinates, and so forth. for each point in
the set. Enormous savinqs can be introduced. however, by
taking advantage of the fact that matrix multiplication
is associative: it is equivalent to first forminq a
composite matrix by multiplingtogether matrices
representinq all the simple transformations in the
sequence, in the same order in which the data would have
encountered the oriqinal tranformations and then applyinq
this composite matrix to all points to be transformed.
The process is known as transformation concatenation.

Perspective

It is relatively straightforward to prepare, two
dimensional data for dis~layon a two-dimensional medium.
Thrse-dimensi()haldata may be converted to two 'dimen~ions
after transformation by simplydroppinq the depth (or z)
dimension. ,~~i::resulting,' picture, , however, WQuid not
lookrealisti<;b€callse 'in "real life the depth, dimension
has' an enoimous 'effect on the--:: apPearance of, the
horizontal and vertical dimensions. This effect, known
as perspective, accounts for the converqence of parallel
lines in the distance. '

The perspective operation entails computing a point
proiection of three-dimensional points onto a plane
representative of the screen, as depicted in Fiqure 2.3-
1. ~erspective can be applied to three-dimensional data
by takinq advantage of the fact that the perspective
transformation is expressable in matrix form: a
perspective transformation matrix can be included at the
end of the sequence of rotation. translation, and scale
matrices to transform three-dimensional data into a two
dimensional perspective representation.

Windowinq

In some qraphics applications, the data bas~ is to be
displayed in its entirety on the screen. Often, however,
a closeup of SORe portion of the data base is desired and
the rest is preferably omitted. Determininq what to omit
is not easy. and is particularly difficult if parts of
the data base have been transformed. In fact, this
determination is so time-consuminq in software that it
;eopardizes the dynamic movement of the picture •

2-8

--,<. '
"

",""'.:, ,

"

: c". " <~'-~'.

'-.' .

•

•

•

•

Sophisticated graphics systems address this so-called
windowing problem by performing a visibility check in
hardware after the transformation stage and drawing only
visible lines on the display. One implementation of
windowing is called clipping and entails comparing all
lines with the boundaries of a program-specified field of
view superimposed on the data base. Lines or portions of
lines outside the field of view are eliminated and only
visible lines are passed on for display on the screen.

In two dimensions, the field of view is a rectangle
called a window, superimposed on the plane of the data
base. Cl~pping is easiest if the sides of the rectangle
are parallel with the coordinate axes; however, this
presents no restriction since the effect of a rotated
windo~ can be obtained by rotating the data in the
opposite direction.

A window is specified by supplying values for its left,
right, bottom ~ndtop boundaries using the same
coordinate system used in the data base. Two-dimensional
clipping is diagrammed in Figure 2.3-2.

In three dimensions the field of view isa thre~
dimensional region. It may be a rectangular volume, or,
if its contents are to be seen in perspective, a section"
of a pyramid called a frustrum of vision~ -Stich -. a
frustrum is shown in Figure 2.3-3 along ,with the'
parameters necessary to completely specify i t~

In Fiqure 2.3-3 an eye positi6ned at point E alonqthe ~
axis is to see the portion of the database that lies
within the frustrum whose hither (near) boundary is at
peint H, yon (far) bounda~y is at point I, and whose side
boundaries are determined, as in the two-dimensional
case, by the window left, right, bottom and top
boundaries at the hither plane.

As in the two-dimensional case, lines are retained,
completely eliminated, or partially eliminated depending
on whether they are completely within, completely
outside, or partially outside the frustrum of vision.

Another approach to windowing is called scissoring.
Scissoring entails making available a screen coordinate
drawing space which is somewhat larger than the screen
itself and then intensifying' only the lines and line
segments actually en the screen. Scissoring is easier to
implement than clipping and does not take up time in the
picture preparation staqe. On the other hand, scissorinq
permits an effective drawing area only sliqhtly larqer
than the screen as opposed to the vastly larger effective
drawinq area permitted by clipping. Another disadvantage

2-9

',,--',,','.1

2.3.5

. - ...• - . ~" "

of sci.sso,l:in,q. is that th,e·. lin.e qenerator spend's time
tr.acinq OU.t all lines botlL visible and in.visible, which
ma.k.es flicker OCCUI:: lI,ore.· rea.dily.

Conversion to Screen Coordinates

Coordinate data that is not reiected by the clipping
pIocess is within limits determined by the field of view
which may be of any size and a .. t' any position in the data
tase def1n1t1on.· space., Itow.ever, 1t 1S' q·eneral.1y
undesirable to display that. dat'a in a corresponding size
and position on. the,s.cre,eIl. Rather, the data should be
PIoperl y scaled, '(elI: map.ped) sotha t it fills some
proqram-sp.ecifiedreq::.i.ononthe: screen' called a viewport.
This can be accomplished by performing a final processing
step which linearly maps all data from the window to the
viewport.

.; :

2-10

•

•

.S- i'.r~,;~ ,r;·::;--:t·tt:·~t!.',·, :.;
; :.",

Left Blank Intentionally .

•

• 2-11

....... -- 0 --~----t

~-----Z,---~-~-------.---~

Fiqure 2.3-1

Three-Dimensional Perspective Pro;ection
cnto a T~o-Dimensional Plane

2-12

•

•

•

•

•

WINDOW

TOP

".' ,

WINDOW

LEFT

,; ... ~". " ,

WINDOW

RIGHT

Fiqure 2.3-2
Two-Dimensional Clippinq

2-13

LINE LEFT INTACT BY TH.E

CLIPPING PROCESS

LINE SEGMENT REMAINING

AFTER CL IPPING PROCESS

,-,'

LINE .SEGMEN,TS REMOVED

BY THE CLIPPING PROCESS

LINE ENTIRELY REMOVED

BY THE CLIPPING PROCESS

I
I.

y

<

H

I
-.;..J

\
\ ,
.\ ,

\
\

Fiqure 2.3-3

. ,.. o~

\ r

\\, 1·-
\ ..

\
\

\
\

\
\
'\

\
\

FrustI:'um of Vision showinq. the- Eye po,sition in Relation to an
Artitrary Coordina:te Axi.s

2-14

•

•

•

. :"1

• 2.3.6

•

.", ',""

If the viewport is a rectangular region aligned with the'
screen axes, it can be specified by supplying the screen
coordinates for its left, right, bottom and top edges.
If the system's Line Generator can draw lines of varying
intensity, a viewport may also specify the intensity
limits for the data displayed. These limits s~ecify the
intensities of the data at the hither and yon boundaries
and are called the hither and yon intensities. When the
hither and yon intensities are different, the intensity
of the dis~layed picture elements varies between these
limits, allowing an illusion of depth to be imparted to
the ~icture. Thus, a viewport is used to specify the
region of screen and the intensity limits for the data to
which, in the most general case, the frustrum of v~s~on
is mapped. Figures 2.3-4a and b show how data may be
displayed within a viewport which is the entire screen or
only a portion of it. Viewports may also be utilized to
map data into the coordinates of devices other than a
display. For example, viewport boundaries could be
specified in the coordinate system of a ~lotter or
similar device to provide the capability of obtaining
hard ctipy o~tpuito the precision of the plotting device~~

An advantage of proqram-specified viewports is that
sevet~l'may be assigned in the same program -each
recei vinqdiffereIit,da ta. This technique proves
con~enietit for many purposes in graphics, such as showinq
diff~rent views ~fJ an obiect or views in different
directions from th~ same point 6nthe.same output device
simu1-tan~ousl y •

Text Display

Almost all graphics applications call for the
presentation of alphanUmerics on the screen at one time
or another. It is cf course possible to define character
shapes in the data bas~ like other picture elements and
in fact this is necessary if characters are to be treated
like other obiects, i.e., rotated, clipped, etc.
However, it is possible to derive efficiencies from the
foreknowledge of character properties when they do not
require such sophisticated treatment, by generating the
actual strokes of the characters iust prior to drawing
them and dealing only with character codes up to that
peint.

A hardware device which accepts character codes and
produces the strckes comprising the character is called a
character generator. Character generators generally
provide flexibilities in the size, shape and orientation
of the characters they produce •

2-15

';.,

.". :).'

r
r- - - - -;,"

:~ ~ -VIEWPORT

I r
I
I~I
L _ ___ -l

,

cFiqure, 2.3-4a:

pa.i~ia.i' screen.~iewPQrt _

Fiqure 2.3-4h

Full Screen Viewpo~t

2-16

.. '. "

___ - VIEWPORT

•

" ._'.

•

-----~

. "." ~. ~

•

•

".-;_.:-',.

To use such a device to draw a strinq of characters, a
display proqram must first stipulate character size,
shape and orientation values; then positio~.to where the
strinqis to beqin and insert a set of packed character
codes, called a text strinq, into the display file. The
character generator would then interpret the text strinq,
look up the set of strckes associated with each code,
size and orient the strokes p~operly and draw the
characters on the output device. Codes are packed into
text strings as a memory conservation measure •

2-17

2.4 PICTURE INTERACTION

Sophisticated qraphics applications often require that •
the form or content of the picture be changeable by the
user. A number of input devices for this purpose are
generally made available and each has its strong points.

A ccmmon input device is the light pen which is a light
sensitive stylus connected to the computer. When the tip
of the stylus is held against the screen and over a line
segment, an interrupt is qenerated. The computer can
then determine what line fD the display file was being
pointed at.

Function switches are frequently attached to the computer
in a qraphics system. These'are toggle switches or push
buttons whose polarity can be read. Each switch can be
assiqned a meaning unique to the program.

Several analog input devices are sometimes used for
interaction, including control dials, joysticks and
trackhalls. These' devices offer one or more degrees of
freedom over which a user ca~ enter input values used to
control ~otation, tr~uslation, s~aling, ~tc.

A versatile ~nteractive .input device is the tablet, which
is a £lat iecti~gulat ~latewhich may be positioned on a
tablei-n' ·-:f.rcntof, or\near,the' .display . screen •. " " ,
Associa ted wi ththe' 'tablet· is a pen vhich may be movea :.'.'.·
atout over the plate and whbse position on the plate may
be read with fine resolution by the computer controlling
the system. The computer can also detect whether the pen
is a~tually to~~hing th~ plate and may also indicate if
the pen is near the plate~ To tie pen motion together
with a picture, a cursor is generally drawn on the
screen. lhis cursor is a s~all symbol which continually
moves about in concert with the pen. It soon becomes
natural to guide the cursor' to a desired position on the
scr~en by an appropriatemot~on of the pen.

1

A tablet is considered th~ best input device for entry 6f
precise positional information. It can also be
programmed to perform the functions of function switches
or the analoq devices. In order to enable a tablet to
perform the pointing function of the light pen, the
system should be equipped with a hit test feature which
checks all data as it emerges from the transformation
stage for proximity to the pen position. The user
positions his cursor over the target structure and
initiates the hit test feature (perhaps by touchinq the I

pen down). If a target structure is encountered a flag
is set which may be later tested or may be programmed to
cause an interrupt. This method of pointinq has the

2-18
I'" .. '

•

•

•

advantaqe
base, not the display'· file.- It·.isofte ifficultor
impossible to backtrack from ancentry ill the'dl.splay file
to find its correspondinqentry in the data base.

The tablet also has a human engineerinq advantage over a
liqht pen. The user of the tablet is allowed to sit in a
natural writinq position and at any distance desired from
the qraphic display. This reduces user fatique and
improves operating conditions •

2-19

• . 3.

•

•

. '·'1, , , '. " '~. ""-.-,,' .

CHAPTER THREE

OVERVIEW OF THE PICTURB SYSTEM

This chapter provides an overview of the hardware
components which comprise THE PICTURE SYSTEM. A
functional diagram of the Standard configuration of THE
PICTURE SYSTEM is shown in Figure 3-1. The user of THE
PICTURE SYSTE~ will normally interface with these
components by means of the Graphics Software Package
described in Chapter 4 of this manual. The user should,
however. gain afunc.~i9nal understanding of the hardware
components· to fully understand the ~se of the graphics
software provided with .THE PICTURE SYSTEM.

3-1

PICTURE
CONTROLLER

(PDP-II)

'j

PICTURE
. PROCESSOR

REFRESH
.BUFFER

Fiqure·3-1

PICTURE
GENERATOR

The Standard configuration of THE PICTURE SYSTEM

3-2

•

'"
:•.

•

3.1

•

•

•

>.,,' ,~',~ ··.~~·:f~~'~ ;~··-t1 :~.:~; .. :j.~:~~,:f'~; ;!;~;r;~ ~~:-~.

THE PICTURE CONTBOLLER

The Picture controller in THE PICTURE SYSTEM is a Diqital
Equipment Corporation PDP-11 computer. The PDP-11 is a
powerful 16-bit general purpose computer which provides
the capability of interfacing a large number of
peripheral devices for standard system support as well as
options for specialized data acquisition or
communications app~ications. In addition, extensive
software consisting of paper tape, DECtape and disk
systems is available for the PDP-11 family of computers.
Software available also includes a Text Editor, Macro
Assembler, Linker, File Utility Packages, Debugging
Packages and higher level languages including aASIC and
PORTRAN. The availability of these software systems and
the Graphics Software Package provided with THE PICTURE
SYSTEM enables the PDP-11 to act as· the Pictur~
Controller.

The Picture Controller is used to:

-Contain th~ data base which describes
the object(s)to be viewed •

• Coitrol the processing of the obiect
coordinate;data by the Picture Processor.

- Perform all input and· output required
to· facilitate graphical interaction •.

• computeparam.etet::sfor use in simulation
of objectmovement~ data representation, etc.

- P~rform all standard operating functions
required by the operating system under which
the contrel program executes.

:;

The Picture Controller communicates with the Picture
Processor by an Interface Channel. By means of this
interface, all commands and data are communicated to theJ
Picture Processor, Refr~sh Buffer and Picture Generator.

/

3-3

3.2 THE PICTUREPROCE-5S0a

3.2.1

3.2.2

The Picture Processor is controlled by the 'Pictur,e
Controller through the use of the graphics software
provided with THE PICTURE SYSTEM. The use of this
software provides control over the three basic units o£
the Picture Processor:

1. Interface Channel
2. Matrix Arithmetic Processor
3. Terminal control

Interface Channel

The Interface channel contains registers which provide
status and commands to the Picture Processor. This
interface also handles all data transfers to and from the
Matrix Arithmetic Processor.

i
Ma trixAri thmetic:P roce~sor

The 'Hat:riX" Arithmetic ~Processorconsists ofa
7ransformation JMatt::ix,'a Transformation ·Mat.rix Stack, aJi
Ari thmet'ic.lJnit ··and.a.p ara m.e te r·.'Re g i st,e r :Fi Ie.

"," ",,:.'.". ,. '. .

The: Transformation Matrix is :a 4x4e~lement m.atr.ix,vhere
eac'h elemenf lsa16-bit ',word.- This ·4x4 :.matrix is use'd

•

to transform,' object _. cOoId-inate data. It .canal-so ~b.e•.
concatenatedwith-other.4x4 matrices to obtain a combine .. d
transformation.

Th.e "rransforma. tion Matrix Stack is .:astoraqe area where
up ·to four 4x4 element matrices may be "stacked" orsavea
for zuture recall.

The Arithmetic Unit performs all arithmetic operations in
the Picture Processor. This includes- subtraction"
addition, multiplication, division and normalization.

The Picture Processor contains
registers into which parameters
boundaries, scale factors, etc.
retrieved.

an arra) of 16-bit
specifying 'vie~port
are stored and may be

The Picture Processor utilizes these units to perform
digital operations on the data received from the Picture
Controller.

These operations are:

• To process two-dimensional data.
• To process three-dimensional data.
• To push the Tr~nsformation Matrix onto

3-4

•

•

• 3.2.3

•

the Matrix Stack.
• To pop the top 4x4 matrix of the Matrix

Stack into the Transformation Matrix.
• To load the Transformation Matrix with

data from the Picture controller's
memory.

• To store the contents of the Transforma
tion Matrix into the Picture Controller's
memory.

• To concatenate the contents of the
Transformation Matrix with a 4x4 matrix in
the picture controller's memory to obtain
a compound transformation.

• To load and store the registers of the
Picture Processor.

• To check transformed coordinate data for
visibility by comparison with a two- or
three-dimensional viewing window. Lines
or portions of lines outside the window
are removed by a clippinq process so that
only visible segments are processed further.
At this point thr~e-di~ensional data i~
converted to two dimensions by computing
perspective or orthographic views. ~.

• To perform a linear ma ppinq of points from
the object l s coordinate system into that of
the picture Display.

Each data coordinate that is transformed maybe written
into the Refresh Memory by the Terminal Control to become
a portion of the new frame. --

Terminal Control

The Terllinal Control is the unit of the Picture Processor
that controls the refresh of pictures seen on the Picture
Display. The function of the Terminal Control is to
receive data from the Matrix Arithmetic Processor and
store it in the write portion of the Refresh Buffer. It
is usually concurrently reading data froll the read
portion of the Refresh Buffer and sendinq it to the
Picture Generator •

3-5

1.1 THE REPRESH BUPPER

The Refresh Buffer isa memory (distinct from the Picture •
ContJ:oller's) into which processed data is deposited
still in digital form. This data represeni:s the picture
to be displayed on the Picture Display. For each frame
refresh, the Terminal Control reads the data in the
Refresh Buffer and passes the data to the Picture
Generator, where the data is converted to analog signals
to drive the Picture Display. Character strings from the
Picture controller pass through the Picture Processor
unmodified and are deposited in the Refresh Buffer as
packed character codes.

The Refresh Buffer may be operated in single or double
buffer mode under program control. In single buffer
mode, the entire Refresh, Buffer is used to store a single
di~play,fra~e. In this mode, display refresh may be
in'itiat.a '.frollpartially updated display frame.. In
double'"buffermode, One half of the refresh buffer is
designated ~s" 'an' .old frame and one half a new frame~
DisplayrefrEtsh',i~t.heninitiated 'froll the' oldfralle,
ll!lil~"'·JhE!,;:ne,,:.frallle .. is . being constructed. Wh~n the
cpnstructi9D'ofthe "'new" frame' 1S complete.. the, :frame
buffers .. are.slfapped and the nevly constructed fralle is
displa,ed~ild ·fh~spa.ce. occupied by the old frame becomes
avai1able fornew:frame construction.

'. ,'::-., '. . , -"

,'. ,"

,.

3-6

•

•

•

•

•

3.4

3.5

CHARACTER GENERATOR

Character strings from the Picture Controller pass
through the Picture Processor unmodified and are
deposited in the Refresh Buffer as packed character
codes. When character words are read out of the Refr~sh
Buffer, the Terminal Control recognizes these codes and
calls upon the Character Generator to access a read-only
memory containing character stroking data. The strokes
are read out of the read-only memory one by one,
multiplied by a pre-specified sizing parameter, and drawn
by the Picture Generator on the Picture Display.

THE PICTURE GENERATOR

The Picture Generator receives digital data consisting of
x,y coordinate and intensity information read from the
Refresh Memory by the Terminal Control Unit. This
digital data is converted by the Picture Generator into
analog signals and used to draw the picture on the
Picture Display.

3.6 THE PICTURE DIS,LAY

The "Picture.lDf~play receives analog" signals from the
Picture Generator:, which are used for 'electron beam
po~ition:lng'aIld,Intensity control •..... ThePicture Generator
controls beam';.po'~~,t~oni..nq and the dravinqpfallvectors
and dots on the'j?icture Displa y.'" .

.. '~. ,'? (- .'

3-7

3.7 DATA INPUT

3.7.2

3.7.3

All data is input directly to the picture Controller in
THE PICTURE SYSTEK. Data may be input by any. of the\."
various standard peripherals available with the PDP-11 or
by any of the standard graphical input devices available
with THE PICTURE SYSTEM. There are four graphical input
devices supported by THE PICTURE SYSTEM:

1. Tablet
2. Control Dials
3. Function Switches & Lights
4. Alphanumeric Keyboard

The use of these standard graphical input devices
provides all the capabilities normally required for
graphical interaction with THE PICTURE SYSTEM. The
appropriate use of these interactive devices alonq with
the dynamic qualities of rHE PICTURE SYSTEM provide the
user with all of the tools required for a three
dimensional, truly interactive graphics system.

Tablet
. .

The Tablet serves as the stanaard, qeneral purpose
qraphic input device in THE PIC,TURE SYSTEM. The Tablet
can be . used for . positioning or 'pointinq to the picture
elemen~y ~se of a penvhose -%,y -coordinates are read
by the Picture controller. .l "cursor'.' ma y be drawn on ..•
the Picture bis~lay to indicate the position of the pen
on the Tablet. with these capabilities, the Tablet and
pen can perform the interactive fUnctions usually
reserved for such graphic input 1evices as liqht pens,
joy sticks and function switches. The Tablet is fully
software su pported un'der the Gra phic s Sof tware Package
provided with THE PICTURE SYS~EK.

Control Dials

Control Dials are available with THE PICTURE SYSTEM which
permit the user to dynamically vary values which may be
used to cont~ol angles of rotation, scaling factors,
velocity rates, etc.

Function Switches & Lights

Function Switches & Liqhts are available with THE PICTURE
SYSTEM to provide the capability for the user to utilize
switches to be used for ·functions assigned under proqram
control. An additional capability available with the
switches is that the lights (one per switch) which may be
used to indicate function switch polarity or for
displaying prog~ammed information.

3-8 .. /
•

3.7.4

-"'. ,. ."'.,

Alphanumeric Keyboard

The Alphanumeric Keyboard available with THE PICTURE
SYSTEM is a standard 61 key, 128 character keyboard which
may be used for text or data input to the Pictu~e .
Controller for qraphical interaction or other functions
required by the user.

..

3-9

•

•

•

4 •

CHAPTEB FOUR

THE PICTURE SYSTEM GRAPHICS SOFTWARE PACKAGE

The Graphics Software Package furnished with THE PICTURE
SYSTE~ consists of a set of FORTRAN-callable subroutines
written for the Digital Equipment Corporation PDP-11
computer using the MACRO-11 assembly language. These
subLoutines are written with the intent of providing a
user with the full capabilities of THE PICTURE SYSTEM
without the necessity of the user to interface, on a
system level, with THE PICTURE SYSTEM hardware. These
subroutines provide the general user with the facilities
necessary for writing interactive computer graphics
programs without the need to comprehensively understand
the matrix arithmetic utilized within THE PICTURE SYSTEM
Processor. Instead, the user merely "calls" a subroutine
to perform a required graphical function; i.e. TRANslate,
ROTate, SCALE, read TABLET information, display CURSOR,
display TEXT, etc.

The graphics subroutines for THE PICTURE SISTEM have be~n
written utilizing the PDP-11 PORTRAN calling sequence
convEntion of the PDP-11 FORTRAN compiler V06. This
calling ieguence convention, supported under the DEC. RT-
11, DOS/BATCH, RSI-11Mand RSX-l1D operating systems,
provides the user the' flexibility 'of utilizing·. argument
lists that are reentrant or non-teentrant~:in-form •

All FORTRAN-callable PICTURE SISTEM subroutines use the
standard call by name (as opposed to call by value)
parameter passing technique and specify the non-reentrant
inline form of calliag sequence l • Those subroutines which
are not FORTRAN-callable specify no FORTBAN calling
sequence.

THE PICTURE SYSTEM Graphics Software Package may be
separated into two sets of subroutines:

(1) user subroutines
(2) system subroutines

li~on-reentrant in-line form of calling sequence need
not be used for the Graphics Software Subroutines. Beference
Appendix C for specific details of alternate forms of calling
sequences •

4-1

\~~~~~'fl~y:~;J' .
. " :",~ / .

" <' .. ' ~ .

''the 'user :s.uhro:u·ti:nes pr;0vi.de ::a3..1 the capabil.i:ties
requi'r.ed iorthe '"Qen'eral. :.qratphi.c:al ap·.pllcat:i-on
-proqram.mer. The sys·tem sdbroltt±ne:sare uti 1l-zed to
. imlllement the usersu~broutinesand a"re availa'bleto the
programller who desi'res to interfacewi"th the .svstem
softtlar·e directly .•

The user subtoutinespr'ovided are:

PSINIT
VWPORT
WINDOW
BOT
TRAN
SCALE
PUSH
POP
DRAW2D
DRlli3D
CHAR
TEXT
INST
MASTER
tASH
'BLINK
SCOPE · __
T1BLE'T
ISPDWN
CURSOR
HI'fW'IN
HI'fES1:
NUFBAM
SETBUF
'PSWAI'T

The system subroutines provided are:

BLDCON
P$AVE
F$TORE
P$DMA
I$l!l"rl
ERROR
P$DIV
P$MUL

1 detailed description of each subroutine is contained in
the following sEctions. Chapter 5 should be referenced
for specific examples of the use of these subroutines."

4-2

•

•

•

4.1

•

•

•

. THE GRAPHICS SUBROUTINES

This section describes in detail the subroutines which
comprise THE PICTURE SYSTE~ Graphics Software Package~
The calling sequence for each of the subroutines and the
valid parameter values for each of the arguments is
listed. The specification of optional arguments is
denoted by the inclusion of the argument in brackets
(arg). Arguments that may be omitted entirely are
designated by (,arg]. In particular, the inclusion of a
scaling factor [,IW] should always be considered to be
optional. In this manner the user familiar with the
homoqeneous coordinate system of matrix manipulation has
the freedom of utilizinq the increased range of data
values provided by this technique, while the user who is
unfamiliar with the technique or who has no need to
utilize it may use the shorter calling sequence. For a
further description of the use of the homoqeneous
coordinate [IW] refer to Section 5.2.

Appendix B contains a summary of all FORTRAN and MACBO-11
assembly calling sequences for each of the subroutines
described bere.

4-3

",.1.1

The PSINIT su'broutine i,·scalledto initialize THE PICTURE
SISTEM haJ:dware and sof"tware. The initialization ,pLocess
includes the follovinq:

THE PICTURE SYSTEt! Real Time Clock interrupt handler
is connected to t:he interrupt vector and set to
provide automatic refresh ·of the old frame and tillinq
for frame update at the i'ntervals specified by the
calling arqument list.

All variables are .assi.qned their default values. All
reqisters used in the Picture Processor are
initialized £or tyo~dimensional drawing lIode. The
Picture ,Processor is set to'display data unJ:otated,
un~ranslated,atfull :brightlless, withinavievport
,lihichjust £illst'he:dis,play 'Screen. .

A "window is ,set to i,ncludethe entiredefiilition
" ~s:pacei(±'327]61') ;.

•

" ~he ,;Befresh:Bu.ffe'r. is :'s~fto double buffer 'mode ,with
·anji.:n1.·tial.,.fra,l!l.e:o.ons.l:sti119 .:ofanull ·:c ur.sor.The
Pic!=-,ux::e ,'. ~~Jierator.· ,s~tatusisini tiali zed. to solid, ,
,:0.28 inch c'haractet size,., . and, ,hcrizontal", ,character:::._,"·_

. '. . ", .. " .

mOde."'.

111 :Picture Displays :(scopes 1-4) are selected for
cutput.

•
4-4

•

•

•

lQ!I!A1-~lling_Se~y~qce:

[EXTERNAL ERBSUB]

CALL PSI Hl'r' (IFTll1E, IN RISH, (ICLOCK J, r ERRSUB J,r ISTKCT 1,
[ISTKAD]f ,1IMCNT])

where:
1FTIME is an integer used to designate the number

of 1/120 second intervals per frame refresh.
The refresh rates that may be obtained are:

IFTlME= 1 for
IFTIME=2 for
I.FTIME=3 for
IFTIME=4 for

120 frames per second
60 frames per second
40 frames per second
30 frames per second

IHRPSH is an integer which specifies the number of
frame refreshes which must be completed before
a frame update will be recognized. If INRFSH
contains'a value ~O, then frame update will be
allowed upon the next refresh~interval after
a new frame has been requested.

ICLOCK is an integer variable which, if specified, is
incremented upon each frame refresh. This provides
the user with the ability to display ite'ms for
gi~en lengths of time synchronized to the refresh
rate •

ERRSUB is a subroutine supplied by the user which is called
using the standard FORTRAN calling sequence Upon t~e
occurrence of a PICTURE SYSTEM error~ One arqument
is passed to the user's errcrsubroutine specifyinq
the PICTURE SYSTEM subroutine in which the error
occurred and the ~articular error conditicn encounter
ed. The argument is of the following form:

EYTE 0: PICTURE SYSTEM Subroutine Identifier
(0-22) •

EYTE 1: Error condition code.

The specification of the user error subroutine
is optional. The system subroutine PSERRS will be
called if the user error subroutine is ~mitted from
the marameter list.

ISTKCT is an integer which specifies the number of 16-word
continuous arrays allocated as software matrix stack
area. The amount of matrix stack area that need be
allocated by the user is dependent upon the level
of Picture Processor Matrix Transformations that are

4-5

~ t: " .

pushed ontotbe matrix stack (usinq the PUSH sub
routine) :by tbe':user. TbisarquDlentiD·eedbe speci
fied only if theoumber of matrix transformations
that need be stacked exceeds four, the flumber .
implemented with the Picture Processor.

ISTKAO is an integer array allocated as software matrix
stack area. This contiguous area need be 16*ISTKCT
words in length. If ISTKCT contains the value 0
or is not specified, then this arqument will not
be utilized.

IFMCNT is an inteqervariablewhich, is specified, will be
incremented.upon each refresh interval by the number
of 1/120 seconds that have elapsed since the last
frame refresh. This provides the user with the
ability to determine the frame update rate for
qiven disFlaysegments.

"
. ~ ",".

. ... ;
. '.',

" .'

'-. :~ ,. .. ~-.,: -

"'. ,1

4-6

•

•

•

•

•

•

PSINIT, as veIl as all FORTRAN-callable subroutines, may
be called in assembly lanquage by followinq the FORTRAN
calling sequence convention, described in Appendix C. To
illustrate this, the assembly callinq sequences for
PSINIT are shown here. The other graphics subroutines
described in this section may be called in a similar
manner usinq assembly lanquage.

EXAMPLE 1: 6-word Parameter List
------Moy----iADR;RS----7MOVE:THE ADDRESS OF THE ARGUMENT

;LIST TO R5
JSR
BR

PC,PSINIT ;JUMP TO THE SUBROUTINE
ADR: .+14. ;SPECIFY NO. OF PARAMETERS AND

• WORD IFTIME
.WORD INRFSH
.WORD. ICLOCK
.WORD ERRSUB
.WORD ISTKeT

.• WORD_. IS'IKAD

;BRANCH
;ADDRESS OF
; ADDRESS OF
;ADDR,ESS OF
;ADDRESS OF
; ADDRESS OF
;ADDRESS OF

REFRESH RATE
FRAME UPDATE RATE
CLOCK INCREMENTAL
ERROR SUBROUTINE
MATRIX STACK COUNT
ARRAY RESERVED FOR

WORD

STACK

EX!MP1L~L1=:!.Qrd fgg.!!~te.t~i2t
.MOV . tADR,B5

JSR PC,PS~NIT

ADR: BR • + 16.

.WORD If TIME

.WORD INRFSH

.WORD ICLOCK

.WORD ERRSUB
• WORD ISTKCT
.WORD ISTKAD
.iORD IFBCNT

•

IFTHIE: .WORD 3
INRFSH: .WORD 0
ICLOCK: .WORD 0

ISTKCT: .WORD 1
ISTKAD: .=.+32.
IFMCNT: .WORD 0

•

ERRSUB:

;MOVE THE ADDRESS OF THE AR,GUMENT
LIST TO R5
JUMP TO THE SUBROUTINE
SPECIFY NO. OF PARAMETERS AND
BRANCH
ADDRESS OF REFRESH RATE
ADDRESS OF FRAME UPDATE RATE
ADDRESS OF CLOCK INCREMENTAL
ADDRESS OF ERROR SUBROUTINE
ADDRESS OF MATRIX STACK COUNT
ADDRESS OF ARRAY RESERVED FOR
ADDRESS OF REFRESH INTERVAL

:INCREMENTAL WORD

;REFRESH RATE OF 40 FRAMES/SEC
;DYNAMIC UPDATE RATE
;WORD TO BE INCREMENTED EACH
;REFRESH

liORD

·STACK

;DEPTH OF USER MATRIX STACK
;RESERVE 16 WORDS FOR MATRIX STACK
;WORD TO BE UPDATED EVERY REFRESH
;INTERVAL

;USER'S ERROR SUBROUTINE

4-7

The use'rshouldnote that ,the, address of the parameter
list is passed to :the '~subroutine' 'inRS and that the
elements of the parameter l~ist,are the addresses of the
arquaents.

1,0: Invalid number of arquments in the parameter list.
1,1: Invalid parameter values. This error may be

caused by:
IFT.UIE'~O.
:rSTKCT(O.
ISTKADomitted:in .parameter list for ISTKCT>O.

1,2: Direct ftemoryAccess Error.' 'rhis is a system
error indicatinqthat an error occurred durinq the
last DMA Gperation.

4-8

•

•

•

•

•

•

The YNPORT subroutine is called to set a viewport specified by
the values supplied by the calling parameters.

PQBTB!I-~lli~~~~~£§A
CALL YWPORT(~YL,IVR.IVB,IVT,IHI,IYI)

where:
IYL

Iva

IVB

IVT

·IHI

III

JBRORS:
3,0:

is an integer which specifies the viewport left
~osition ,in display screen (or other output medium)
coordinates. Normal range for IVL is -2048 to 2047.
is an integer which specifies the viewport, right
position in display screen (or other output medium)
coordinates. Normal range for IVR is -2048 to 2047.
is an integer which specifies the viewport bottom
~osition in display screen (or other output medium)
coordinates. Normal range for lYB is -2048 to 2047.
is an integer which specifies the viewport top
position in display screen (or other output medium)
coordinates. Normal range for IVT is -2048 to 2047.
is an integer which specifies the display intensity
at the hither clipping plane. The normal range for
IHI is 255 foi full intensity to 0 for no intensity.
is an infegeijhichspeci~ies the display intensity
at the yonclip~ing plane~ The normal range for
IYI is 255foi full iritensity to 0 for no intensity.

Invalid numberofargtimen-t-s--in the parameter list.-

4-9

,··!WQ!

The WINDOW subroutine concatenates a two-dimensional or three
dimensional windowing transformation to the Picture Processor
Transformation, Matrix. This subroutine can be used to perform
two-dimensional windowing, orthographic proiection or a true
perspective transformation of data. The windowing transformation
is constructed from the arguments specified in the parameter
list.

lQilj!I_Ca!lins-~~g~§~:
For two-dimensional windowing:

CALL WINDOW(IWL,IWR,IWB,IiTf,IW])

20r three-dimensional windowinq:
CALL WIHDOW(IWL,IWB,IWB,IWT,IWH,IiY[,IE[,IW]l)

where:
IWL

IWR

IWT

IWH

IWY

IE

Ii

~!ijQBS :
4,0:

is an integer which specifies the scaled window left
toundary in definition space coordinates (±32161).
is an integer which specifies the scaled wind~.w right
boundary in definition space coordinates (±32161).
is an integer which specifies the scaled window bottom
boundary in definition space coordinates (±32161).
is an integer which specifies the scaled window toP.
boundary in definition space coordinates (±32761) •. -
is an integer which specifies the scaled window hither
boundary in definition space coordinates (±32161).
For two-dimensional windowing, the window front, or
hither boundary is O.
is an integer which specifies the scaled window yon
boundary in definition space coordinates (±32167).
for two-dimensional windowing, the window rear, or
yon boundary is equal to Ii. If this parameter=IWH,
the yon boundary is positioned at infinity on the side
of the hither clipping plane opposite the eye so that
no yon clipping will be performed.
is an integer Which, if specified, is the scaled
Z position of the eye. If this parameter is omitted
or equals IiH, the eye is positioned at _00, which
produces an orthographic view of the data.
is an integer used to scale the window boundaries
and eye position. If the scale factor is omitted,
or is given as zero, it is treated as 32767.

Invalid number of arguments in the parameter list.

4-10
t ; ~

•

•

•

•

•

•

;. .~ ::.:.

iQ1
rotation spicified in the parameter list. The transformation is
then concatenated to the Picture Processor Transformation Matrix.

where:
lANGLE is an inteqer wbich specifies the anqle of rotation.

the angle is given by dividing a circle into 216 equal
parts, with zero being equal to zero degrees and -2 15

equaling 180 degrees. Two's complement addition,
ignoring overflow, causes the angle to increase
counter-clockwise througb 360 degrees, when viewed
along the specified axis in the positive direction.

lAXISI is an· int.qer which specifies the axis of rotation.

I!!BOM:
. . 9,0:

9,1:

Valid values for lAXIS are:

1 for rotation about X axis.
2 for rotation about Y axis.
J for rotation about Z axis.

Invalid number of arguments in the parameter list.
Invalid aiqument specified 10r the axis of rotation.

ITHE PICTURE SYSTEM software is designed for a left-handed
coordinate system.

4-11

" \,.- ., "', "?';~W :;~"\'r J;:;~;n~;:;t"~};"~ff1~0'i7Y~1ij:'~;:~~!~r~F'

.: :':',~~'J/

The TRAN subroutine is called to build a tr a'D:slat ion
transformation based on the X, Y and Z translational values
specified in the parameter list. The transformation is then
concatenated to the Picture Processor Transformation Matrix.

IQjli!I-cal1ing_~~gy~~:
CALL TRAN(ITX,ITY,ITZ[,IW])

where:
ITX

ITY

ITZ

Ii

is an inteqer which specifies the scaled X trans
lation value •.
is an inteqer which specifies the scaled y trans-
lation value.
is an integer which specifies the scaled Z trans-
lation value.
is an inteqer which specifies the factor used to
scale the translational values. If the scale
factor is omitted, or is qivenas zero, it is
treated as 32767.

1i!UiQj~ : . ,
8,0:. Invalid number .. of arq.uaents in the parameter list.

4-12

•

•

•

•

•

•

The SCALE subroutine is called to build a scaling transformation
based on the X, Y and Z scaling terms specified in the parameter
list. The transformation is then concatenated to the Picture
Processor Xran~formation Matrix.

where:
1: SI
ISY
J:SZ
IW

jj!Q&l:
17,0:

is an integer which specifies the X scaling value.
is an integer which specifies the Y scaling value.
is an inteqer which specifies the Z scaling value.
is an integer which specifies the factor us~d to
scale the scaling definition values. lithe scale
factor is omitted, or is given as zero, it is
treated as 32767.

Invalid number of arguments in the parameter list.

4-13

".:" "

The PUSH subroutine is called to push the current Picture
Processor Transformation Matrix onto the matrix stack (hardware
or mellory stack, dependent on the current stack depth).

iijjOBS:
6,0: PDSH error (matrix stack overflow). This indicates

that thelllatrixstack requir_ement has exceeded the
amount allocated bY the user during the call to
P~:rNI~.

4-14

•

';; .

•

•

•

•

7he POP subroutine is called to pop the top element of the matrix
stack (hardware or memory stack, ;dependent on the current stack
depth) into the Picture Processor Transformation Matrix.

IQBlilB_~l!i~Segu~£~~
CA.LL POP

niQ~:
7,0: POP error (matrix stack underflow). This indicates

that the user has attempted to retrieve a matrix
which had not been previously saved (or pushed)
cnto the matrix stack.

4-15

. I .

The DRAi2D subroutine is called to draw two-dimensional data
coordinate points using the drawing mode specified in the •
parameter list. The data to be drawn is arranqed in x,y pairs
and is displayed at the intensity specified by the IZ parameter.

lQjIiAJ_~lling_~§gY~D&~:
CALL DRlW2D(IDlTl,INUM,Irl,IF2,IZ[,IW])

where:
lDllA

INUS

IF1·

IF2

is an integer array (2*INUM words in length)
which contains the x,y coordinate points to be
drawn. This data vill be drawn in the drawing
mode specified by the arguments IF1 and IF2 and
at the intensity specified by argument IZ.
is an integer which specifies the number of
coordinate pairs to be drawn.
is an integer which specifies the type of draw
function to be performed. Valid values £or IF1
·are:

0
1
2
3
4

=
=
=
=
=

diSjoint lines from ~ew position.
disjoint lines from current position.
connected lines from new position.
CO~Hl~ctedli nes froll current position.
dot at 'each point. .

is an integer which specifies the mode invhich
the coordinates are interpreted. Valid values
for IF2 are:

o = absolute-relative-relative~relative-etc.
1 = relative always.
2 = absolute always.

IZ is an integer which specifies the Z position
of the x,y coordinate pairs drawn. This Z
position is used to compute the intensity of
the data to be drawn. A value of IZ=O
will produce lines of maximum intensity when
drawn using a two-dimensional window l •

Ii is an integer used to scale the coordinate
data. If the scale factor is omitted, or
given as zero, it is treated as 327~7.

lThe maximum intensity is specified using the VWPORT
s ubro utine.

4-16

•

•

•

•

•

JliQ~..t
10,0:

10, 1:

Invalid number ofargume~ts in the parameter
list.
Invalid parameter value.
This error maybe ~~used by:

INUM SO.
IF1(0 or >4.
1F2(0 or >2.
For ~F2=0 or 1, IW does not equal that
of the previous draw.

4-17

The DRAW3D subroutine is called to draw three"'dimensional d:ata:
coordina te J::oints usinq the drawinq mode specified in the. •
parameter list. The data to be drawn is arranged in x",z
triplets and is displayed at the intensity dependent upon the z
coordinates and the values specified for the hither and yon
planes.

lQ~1jA!_~!liag_~g~~~s:
CALL DRAW3D(IDATA,INOM,I}1,IF2[,IW1)

where:
.IDATA

INUM

IFl

IF2

IW·

1!R!!QRS:
11,0:
1 1, 1 :

is an inteqer array (3*INUM words in length)
which contains thex,y,z coordinate points
to be drawn. This data will be drawn in the
drawing mode specified by the arguments IFl
and IF2.
is.an integer which specifies the number of
coordinate triples to be drawn.
is an integer which specifi'es the type of draw
function to be performed •. valid yal~uesfor IF1

0
1
2
3
4

=
=
,-
=
=

disiointlines: from ne,w p·osition.
diSJoint lines from current position. '
conne~ted lines from new position.
connected lines from current position.
dot at each point.

is an integer which specifies the mode in which
the coordinates are interpreted. Valid valueS for
IE2 are:

o = absolute-relati ve-rela t.i ve-rela ti ve-etc.
1 = relative always.
2 = absolute always.

is an integer used to scale the coordinate data.
If the scale factor is omitted, or given as zero,
it is treated as 32767.

Invalid number of arquments in the parameter list.
Invalid parameter value.
This error may be caused by:

INUM '50
IF1<0 or > 4.
IF2<0 or > 2.
For IF2=0 or 1, Ii does not equal that of
the previous draw.

4-18

•

•

•

•

" "/ ~ ,

The CHAR subroutine is called to update the status used by\the
Character Generator when characters are to be displayed· on the
displa y screen.

lQiDlL~lli.ruL~~~J!£§ :
CALL CHAR(IXSIZE,IYSIZE,ITILT)

where:
IXSIZE is an integer which specifies the X character size.
IXSIZE is an integer which specifies the Y character size.

Valid values for IISIZE and IYSIZE are:

0 = .07 inches
1 = • 14 inches
2 = .21 inches
3 = .28 inches
4 = .35 inches
5 = .42 inches
6 = .49 inches
7 = .56 inches

The specification of a value (0 or >7 viII cause the
value to be modified (modulo 8) to a value in the range
o to 7.

. . . :",.:.

ITILT . is an integer1iliich specifies the hori-zontall
ye~tical tilt stat~s •. Valid values for ITILT are:

jiBBOBS:

ITILT = 0 for horizontal character status.
ITILT ~ 0 for 90 0 counter-clockwise character

status.

18,0: Invalid number of arguments in the parameter list.

4-19

The r EXT sub-rout'ine is called to disp.lay' the, te,xt· s.trtin'q.!
specified in the par.ameter, list., The displa y o:f' t·he· text·; v.ili]), bec' •
fr.-om the current beam position and a t the intensi t y associa'ted.
vi th the last inform.ation displayed. The character sta tus' if,ilL
be that as initializ.ed by PSI NIT or. updated by the CR'AR-:
subroutine if previously called by the user.

IQi:HAL~lliIl.!L~gg~Bce :
CALL TE.I'I (NCHARS,L-TE·XT)·

where:
NCHARS. is. an.. inteqer: which, specifies the number of char-

acters:.to bEdisplaved.
ITEXT is aninteqer array which contains the text to be

displayed, ~acked two characters per word, with
the right, byte t·o be displayed first (as in a FOR

.iRANi,DATA state.men.t): •.

JUljQj§:: . '",
12~ .0:' In;vaii.cL 'n.ulltber: o.f:;:a~rquments' in the· para.meter list. "

-. '," ,' ... ,' ", ,', ':

4-20

•

•

•

•

•

rhe INST subroutine concatenates a two- or three-dimensional
instancing transformation to the Picture Processor Transformation
Matrix. This subroutine is used, in conjunction with the MASTER
subroutine, to produce multiple instances of an object·or symbol.
'or each desired appearance of the object, the INST subroutine is
called to specify the location (and implici~ly the size) of that
appearance; then the user-supplied routine describing the object
is called to display the object previously defined within a two
dimensional or three dimensional enclosure. The INST subroutine
pushes the initial Transformation Matrix onto the Transformation
Stack before concatenating the instancing transformation, so that
it may be restored (POPped) by the user after the object has been
drawn.

lQiISA]L~!!ing Seg~n£~:
lor two-dimensional instancing:

CALL INST{INL,INR,INS,INT[.,IW])

For three-dimensional instancing:
CALL IN ST (INL, INR, INS, INT ,INH,_I.NY[,I W])

where:

EBEORS:
5,0:

INL is an inteqer which speGifies;the scaled instance left
boundary in definition space coordinates (±32767).

INR is an integer whichspeci~ies the scaled instanc~right
boundary in definitio~ .pacecoordinates (±32767).

INS is a~integer which specifies the scaled inst~nce
bottom boundary in .d~finition space coordinate~ (±l2767)

INT is an inteqer which specifies the scaled instance top
boundary in definition space coordinates (±32767).

INH is an integer which specifies the scaled instance hither
boundary in definition space coordinates (±32767).
For two-dimensional instancing the window front or hither
boundary is O. .

IWY is an integer which specifies the scaled instance yon
boundary in definition space coordinates (±32767).
For two-dimensional windowing the instance rear or
yon boundary is equal to IW.

IW is an integer used to scale the instance boundaries.
If the scale factor is omitted, or qiven as zero,
it is treated as 32767.

Invalid number of arguments in the parameter list.

4-21

Al~B.

The MASTER subroutine concatenates a tvo-dimensional or three-
dimensional master transformation to the picture Processor •
Transformation Matrix. This subroutine is used in coniunction
with the INSt subrcutine for instancinq of data. The master
transformaticn is constructed from the arquments specified in the
parameter list.

lQiIil~_~g11igg_~~gY~n£~~
For a two-dimensional master:

CALL MASTER (IML,IMR,IMB,IMT[,IW1)

Fora three-dimensional master:
CALL MASTER(IML,IMQ,lMB,IMT,IMH,tMY[,IW1)

where:
IliL

IliR

1MB

IMT

.IMH

IMY

Iii

&i!!EORS:
4;1:

is an integer which specifies the scaled master left
boundary in definition space coordinates (±32767).
is an integer which specifies the scaled master riqht
boundary in definition spacie'co6rdinates (±32767);
is an integer vhich specifies the 'scaled master bottom
boundary in defil1l.tion'~paceco()rdinates (±32767).·
isa.nintegerwhichspecifiesthe,s~aled master top
boundary in ,'. defini:tlon'spat:ecoor'dfhates . (±32767)." .
is an integer;'wJiichspecifies'the'scaled master hi ther
boundary in ,de'f l.nitions pace' cocH:di na t.es (±] 2167) •
For a two...;dimens:lonal inaster,th~front, or h-.i.:t.her,

'b'oundary is o. , . ' "
is ~n inte~er ~hichspecifies the scaled window yon
boundary indefiIiition space coordinates (±32767).
For a two~dimeri~ional master, the rear, or yon,
boundary is equal to Ii. .
is aninteqer used to scale the master boundaries.
If the sca1e factor is omitted, or is given as zero,
it is treated .s 32767.

Invalid number of arquments in parameter list.

4-22

•

•

'.

•

•

•

The DASH subtoutine is called to set the Picture Generator status
such that all subsequent lines drawn will be dashed or non-dashed
dependent on the value of the arqument.

where:
ISTAT is an inteqer which specifies the line mode status.

jRBORS:
19,0:

ISTAT = 0 for solid line mode.
ISTAT ~ 0 for dash line mode.

Invalid number of arquments specified in the
parameter list.

' .. ,'.:' "

. .
.. ---

4-23

" ····'~:i{·\;;: ;;~\1;~;)~!tWf~?~r~;i~}"
:~:II -" .,.:o.~,.;"" ,:~:;':'_

-":,,',

fhe BLINK subroutine isca~led to set the Picture Generato~
status such that all subsequent lines drawn vill blink 1 or will: .•
not blink, dependent on the value of the arqument.

lQiIBA!_Cgllifig_~~g~~~~:
CALL BLINK(ISTAT)

where:
ISTAT is an inteqer vhich specifies the blink/non-blink

mode.

~i!iOBS:
20,0:

ISTAT = 0 for non-blink mode.
ISTAT ~ 0 fat blink mode.

1Data drawn in Blink mode will blink at approximately
90 blinks per minute.

4-24

.... ;

',.

•

", -" '~.'

fhe SCOPE sub~outine is called to select the Picture Display to which,
output will be directed.

~. IQl1iA1-~lling_~eguen~:

~

~

CALL SCOPE(INUM)

where:
INUM

.Ii~:

is an inteqer which specifies the scope unit to select.
~his will cause the scope selected to be connected for
output as well as any previously selected scopes. Valid
values for INUM are:

INUM = 1,2,3,4 to select scope. units 1,2,3, or 4.
INUM <lor)4 to deselect all scope unit selections •

21,0: Invalid number of arguments parameter list.

"- '" ~

4-25

The TABLET subroutine is called to read the current pen position
and status in relation to the tablet. The user may also ,SpeCifY." ,
initiation of automatic tablet mode. This will cause the current
pen position to be updated at each frame refresh. This ability,
used in conjunction with the automatic cursor mode, allows
completely dynamic cursor tracking irrespective of new frame
update rate. It should be noted that once the pen information is
updated with the pen down bit set (bit 1~, the pen position will
not be updated until the user has cleared (zeroed) the pen value
word (IPEN) indicating that the pen down position has been read
or until the pen is set down again.

rQ~I§A!_~glllng_~gy~n£s:
CALL TABLET (.ISTATr ,IX,.lY,IPEN1)

where:
ISTAT is an integer which spe~ifies the automatic

tablet mode:"

.lSTAT, =; 0 fo:r" automa t~c: tablet mode off.
, ISTAT#O,i()rautoma t1C tablet. moq.e on.
1:hefour~'ar5l~'iDe~tpara.m_eter' list is
required', fO~~:~±STAT #0 and optional if
ISTAt= ()~ - "-,;,-,'-' ,

. : .>- . ',: ~.;~.>:>. .:"

IX is' aIi;i~tege~ which~:i--S-updatedwith the cu+re-n-t
X pe~ pojiEion.lri au~omatictablet mode, this

'value will be updated upon, each' frame refresh.'
The approximate limits of IX are ±32700.

II is,an integer which is updated with the current
y pen ~osition. In automatic tablet mode, this
value will be updated upon each frame refresh.
The approximate limits of IY are ±32700.

IPEN is an integer which is updated with the c~rrent
pen information. Bit 1 will be set if the pen

i!!i.!lQBS :

is down and bit 0 will be set if the pen is
within proximity of the tablet surface. If bit 1
of IPEN is set then IX and IY will be updated only
if the pen is down.

13,0: . Invalid n umber of arguments in the parameter list.

4-26

•

•

•

•

•

~ " : , .; . .':

LSPDWN (Is Pen DoWN) is a FORTRAN-callable integer function
subroutine which may be used to determine whether the pen is down
(i.e. ~~§~g against the surface of the tablet). This function
routine allows FORTRAN applications programs, which do not have
the ability to perform bit testing, to test the pen up/down
status.

c
C SET PEN DCWN ~LAG
C

lOGiN = ISPDWN(IPEN)

or

c
C IF PEN IS DOWN GO TO 100
C

where:

IF(ISPDWN(IFEN).BQ.1) GO TO 100

IPEN is an integer which contains the pen information
returned by the TABLET subroutine.

ISPDWN(lPEN) ~ 0 if·the pen is not down.
ISPDWN(I~EN} = 1 if the pen is down.

4-27

The CURSOR subrou~ine is called to display a curs.or :at\~he
position specified by the parameter list. The user ·may also
specify initiation of automatic cursor mod~. This will cause a
cursor to be displayed upon each frame refresh irrespective of
the new frame update rate. The cursor displayed in automatic
cursor mode will be at the position specified by the x and y
position values and within the viewport that had been specified
at the time of the initial CURSOR call. The cursor displayed
consists af a cross whose center is at the x and y position
specified.

lQ!!I!!!lL~all.i.nfL~gg]!s!!l~ :
CALL CURSOg(lX,IY,ISTAT[,IPEN1)

where:
IX

IY

ISTAT

IPEN

is an integer which specifies the x cursor position.
In automatic cursor mode, the cursor will be placed
at the position .specified by ·the contents of this
word at the time of frame refresh. The value of IX
should be in. theapproxima:te~range of ±32767 •.
is an integer ,which specifies the ycursor position.
In automatic cur~or:mode,the cursor will be placed
at the: position ~pecified by 'the contents of this.
word at :the' t.ime.of frame'::r,efreph. The .valueof ~y
should be.in 'the,approxiina£erange of ±32761.
is an inteq..er '.which specifies the automatic cursor
mode:

ISTAT = 0 for automatic cursor mode off.
lSTAT ~ 0 for automatic cursor ~ode on.

is an integer which, if specified, should be the pen
information which is returned from the TABLET
subroutine. The specification of this parameter
allows the-cursor to be increased in intensity
whenever the pen is down providing visual feed-
back of the pen status.

~RBOB~ :

NOTE:

14,0: Invalid number of arguments in the parameter list.

In automatic cursor mode, the cursor is displayed the
view~ort that had been specified at the time of the
initial CURSOB call. This is done by saving the
addresses of the viewport values in effect at that time.
When the cursor is displayed the viewport is set from the
values found in these addresses.

4-28

:0;'.

•

•

•

•

•

The HITWIN subroutine is called to specify a window through which
data will be passed to determine whether data is being drawn
within a qiven area. The user specifies an x and y coordinate at
which to center a window transformation of t"he specified size.
This window transformation is then pre-concatenated with the
transformation in the Picture Processor Transformation Matrix,
after first saving the original transformation so that it may be
restored after all hit testing has been completed. The Picture
Processor status is then set to prohibit all data drawn from
being output to the Refresh Buffer. The subroutine then returns
to allow the user to draw all data against which hit testing is
to_ be performed.

lOBlj!~~gll~ng_~gg~n£g:
CALL HITWIN(IX,IY,ISIZE[,IW])

where:
IX is an integer which specifies the hit window x

coordinate. The value of IX should be in the
approximate range cf ±32700.

_~Y is an integer which specifies the hit window y
coordinate. The value of IY should be in the
approximate range of ±32700.

ISIZE is an integer whic~ specifies the hit window half
size. This parameter is used to determine whether
lines pass within a given distance (ISIZE) of the
specifiedpoirit {IX,I!).

151 is an integer used to scale the hit window parameters.

mORS :

If the scale factor is omitted, or is'qiven as zero,
it is treated as 32767.

15,0: Invalid number of arguments in the parameter list.

4-29

·the HITEST subroutine is called to determine if any output data
has passed within a pre-specified hit' window (see HITliIN). The •.
procedure for this test is of the form:

1. CALL HITWIN to set up the desired hit window.
2. Draw data (DB1W2D and/or DRAW 3D) for compari

son against that window.
3. CALL HITEST to determine if there was a "hit".
4. Repeat steps 2 and 3 as often as necessary, setting

HITEST argument 2 to a non-zero value on the last
call to HITEST to ~estore the former user transformation.

FO]~Rl!_~g~lins-~gy~n£g:
CALL HITEST (IHIT,I.STAT)

where:
IHIT

ISTAT

is an'integer which is set to zero by the HITEST
subroutine if there has been no hit or set to Qne
if there' has .been~ a hit.
is an integer" supplied by the user which indicates

. whether the hit t~stinq ha~ been completed or
not~ ... '

ISTA.T =. 0" for" intermediate' hit test.
ISTAT .. IO fortinal hit' test.·

. . .

The Picture. 'pl:06e~sor Trans£-orma tionMatrix will. be restored to
the transformation that existed before the call. to .the HITWIN•
subroutine a~d the ~ictureProcessor status reset so that all
subsequent data drawn will be sent to the Refresh Buffer.

~RRORS.£
16,0: Invalid number of arqu.mEmts in the parameter list.

• 4-30

•

•

•

::', """""! '

The NUEBAM subroutine is called to initiate the switch from
displayinq the old f~ame data to displayinq the new frame data
(the actual frame switch does not occur until the appropriate
refresh interval).

!REOB~:
None

4-31

The SETBUF subroutine is called to set the Refresh Buffer to •
sinqle- or double-buffer mode. Once tbe Befresb Buffer has been
set to a mode, it may be reset at any time to the other mode.
The user need call this subroutine only if the Refresh Buffer is
used in single buffer mode. PSINIT during the initialization
process sets the Refresh Buffer to the default double buffer
mode.

where:
ISTAT is an inteqer which specifies the mode the

:ujQj~:
22,0:
22,1:

Refresh Buffer is to be set to.
Valid values for ISTAT are:

1 = sinqle~riffer ~ode.
2 -=:doublE.:buffermode.

'"
'.L.-:.

Invalid-.;'ilumhet>:(J~farq·u·nient,s'.::in the. -param~terlist.;· .
. 1~'valfa:pa.ra~ereiva1ue.'· .f:: •

Th'is' ·errormaYbe causedby(
' ISTA.T <l:or >2.

'4-32

•

•

".

•

•

•

. , ;' .. ; ',:';. ~:. . '.,', ' ", i., ".. ,. ~ "' .::" '".: . . r ~.

The PSWAIT subroutine is callEd whenever it is necessary to wait
until the Picture Processor and Direct ~emory Access Unit have
completed their present operations before continuinq. This is
used to insure that the data transfer to or from ~he Picture
Controller's memory is complete before the data is referenced or
modified.

FOBX!A!_~a!ling_~~ygn£s:
CALL PSWAIT

'&;RRORS:
None

4-33

ij.1.2 System 5ub[outines

The BLDCON subroutine is called to perform all trans
formation operations and matri~ manipulations.

lQi1jA!_Calli~g_~g3uen~:
CALL BLDCON(ITYPE,IARRAY)

where:
ITYPE is an inteqer which specifies the type of call.

Valid values for ITYPE and the operation performed
for each are:

0= Initialize matri~ stack pointer and stack length.
1= Load the Transformation Matrix from the 16-word

array specified as argument 2.
2= Concatenate the Transformation Matri~ with the

16-~ord array specified as arqument 2.
3=, store the Transformation Matrix into the'

16-word array specified as argument 2.
ij= Pop the top element of the matrix~tack into

the Transformation Matrix.
5= Push the Transform~tion Matrix onto the matrix

stack.

•

IABBA! is an integer array (16 words in lenqth) which is
used as specified by arqument 1. This argument •
must be a 16-word array for only ,those, operatio~s

l!1!BOBS:
0,0:
0,1:
6,0:

7,0:

which utili2e this parameter (operations 1, 2 and 3).

Invalid number of arguments in parameter list.
Invalid parameter valae (ItYPE < 0 or > 5).
PUSH error (matrix stack overflow). This indicates
that the matrix stack requirements have exceeded
the amount allocated by the tiser during the call
cf PSI NIT. '
POP error (matrix stack underflow).
cates that the user has attempted ,to
matrix which had not been previously
PUSHed) onto the matrix stack.

4-3ij

This indi
retrieve a
saved (i.e.

•

•

•

•

rhe P$AVE subroutine is called to save reqisters RO-R5 on the
proqram stack.

As~mb!~_~s11!Rg~~gy~n£~:
JSR PC,P$AVE

,Ii!TORE

The B$TORE subroutine is called to restore registers RO-R5 from
the proqram stack.

~~mb!~~al!i~~~Y~&~:
~SR . PC, R~TbRE

The P$DMA subroutine is called to initiate.a Direct Memory Access
(DMA) transfer and check for the correct ~ompletion of the
operation.

Ae§gmb!~~g!!!ng_?egu§nce:
RO = Repeat status Reqister (RSa) value
B1 = DMA word count value
R2 = DMA base address for transfer

JSB PC,P$DMA

£;1!liORS:
1,2: DMA er~or. This indicates that an error occurred in the

last Direct Memory Access operation.

4-35

The I$MATX subroutine is called to initialize a 16-vord array
in memory (P$MATX) to a 4x4 identity matrix.

AS~~Rly_~g!ling_~gY~n~§:
JSR PC,I$MATX

. . ~.

. .

TheERROBsubroutiIle i~cal1edby all PICTURE SYSTEM ,subroutines
that encounter'an'ettor'c::ondition durinq the course of execution.
This subz:outlneinturncalls the user error subroutine specified
in the call to PSI NIT o''t:the default ,system error --r-ou-tine.

As §~J!!R1I_!;; a l.!in~L~~g'y~n£g:
JSR PC,EBROR
.BYtE ICODE,IERR

where:
ICODE is the error code used to indicate the oriqin

, cf the erz:or detected. 1

LEBR is the error type used to indicate the error
condition encountered.

lReference Table 4-1 for the subroutine-error code correspondence
list.

4-36

•

•

•

•

•

•

The followinq two function subroutines are optimized for the
particular PDP-ll hardware configuration.

The P$DIV function subroutine divides the signed divided in RO
and R1 by the signed divisor in R2, leaving the guotient in RO
and the remainder in Rl, with R2 undisturbed. The quotient bears
the algebraic sign of the division, while the remainder retains
the sign of the dividend.

A2~lY_~slliag~~gY§n£~
BO,R1 = Dividend
R2 = £i visor

JSR EC,P$DIV

.BREORS:
v=1 (overflow condition code set) if the magnitude

of the dividend is not less than half that of the
divisot, .pr if the divisor is zero.

The P$MUL function subroutine mutliplies the signed multiplicand
in RO bV the signed multiplier in R2, leaving a signed product in
BO and Rl, with R2 undisturbed.

A§§embly~glling_segY§~§:
RO = Multiplicand
R2 = Multiplier

JSR PC,P!MUL

EiliOBS:
None

4-37

, ""'.""\',.~~',:~w:-;1~{~~f~~:?

4.2 PICTURE SYSTEM ERRORS

Error detection by the Graphics Software
performed to ensure program integLity and to
proqram debugging. A user may make four
proqramminq errors that will be detected by the
Software Packaqe. These are:

Package is
facilitate

types of
Graphics

1. The call of a qraphics subroutine with an invalid
number of parameters specified.

2. The call of a graphics subroutine with an invalid
parameter value.

3. The attempt by the user to PUSH the matrix
stack to a depth greater than that specified by
the user in the call to PSINIT.

4. The attempt by the user to POP a transformation
frem the matrix stack which had not been
previously PUSHed.

When an error is detected by a qraphics subroutine, the
system sub~outine EBBOR is called with an argument that
specifies the origin of the ~tror detected and the e~ror
condition encountered. The system subroutine ERROR then
calls the uset error subroutine, specified' in the call to
PSINIT. When called, the user error subroutine will be
passed a parameter which specit"ies the origin and type 9f
erro~ detect~d. The error parameter is of the followin~
form:

BYTE 1 BYTE 0
ICODE I lCODE,IERR: ~(I~E~R~R~ __ ~ __ ~~~~

where:

---",.

ICODE is the error code used
of the error detected.

to indicate the orig~n

lERR is the error type used
condition encountered.

to indicate the error

A summary of the error codes and their meaninq is
contained in Table 4-1. Return from the user error
subroutine will result in the termination of the proqram.
If, in the call to PSINIT, the user does not specify an
error subroutine, the graphics error subroutine PSERRS
will be called. PSERBS, when called, will output the
following messaqe to the console terminal:

ERBOR X DETECTED IN GRAPHICS SUBROUTINE YY.

and terminate the execution of the proqram. X and YY
(YY,X) are the error codes listed in Table 4-1.

NOTE: Unless the users error subroutine is named PSERRS, ,
the resultant core imaqe created by the LINKER viII
include the grap'hics error subroutine PSEBRS.

4-38 i.

- .' ~~; .. i1'

•

,c:..
I

w
\0

• •
TABLE 4-1

SUBBOUTINE INFORMATION

Subroutine Lenqth' Length' ~eqisters
!f,gJHL ___ ~n~lO !!.u§!~8 r~!~:i~Hl ~~~_~Qg~2_gng_~~a~ing

1. PSINIT 1250 2342 i None 1,0-Invalid No. of Parameters
1,1-Invalid Parameter
1,2-Direct Memory Access Error

2. NUPRAM (1) (1) None None
3. VWPORT (1) (1) None 3,0-In~alid No. of Parameters
4. WINDOW 216 732 None' 4,0-Invalid No. of Parameters
5. MASTER (4) (4) None 4,1-Invalid No. of Parameters
6. INST (4) (4) None 5,0-Invalid No. of Parameters
7. PUSH (1) (1) None 6,0-PUSH Error
8. POP (1) (1) None 7,0-POP Error
9. ROT 386 602 None 9,0-Invalid No. of Parameters

9,1-Invalid Parameters
10. TRAN 150 226 None 8,0-Invalid No. of Parameters
11. SCALE 138 212 None 17,O-Invalid No. of Parameters
12. DRAW2D 260 404 None 10,0-Invalid No. of Parameters

10,1-Invalid Parameter
13. DRAW3D. (12) (12) None 1l,0-Invalid No. of Parameters

11,1-Invalid Parameter
14. TEXT 188 274 , None 12,0-Inva.lid No. of Parameters
15. TAdLET 188 274 None 13,0-Invalid No. of Parameters
16. CURSOR 440 662 None 14,0-Invalid No. of Parameters
17. HITWIN 276 422 None 15,0-Invalid No. of Parameters
18. HITEST (17) (17) None 16,0-Invalid No. of Parameters
19. P Sii AIT (1) (1) .' None None
20. CHAR 258 402 None 18,0-Invalid No. of Parameters
21. DASH (20) (20) None 19,0-Invalid No. of Parameters
22. BLINK (20) (20) None 20,0-Invalid No. of Parameters
23. SCOPE (20) (20) None 21,0-Invalid No. of Parameters
24. S ETBUF 88 72 None 22,0-Invalid No. of Parameters

22,1-Invalid Parameter

'The numbers in these cclumns within parenthesis (i.e., (1)) indicate that the
subroutine is included as part of the subroutine whose number is in parenthesis.

•

~
I
~
o

TABLE 4-2
SYSTEM ~EVELSU~ROUTINE INFORMATION

.. ;;.,/;.
~'S ubr-outi~~ Length1 ~el\gt4~ Reqis,1:,ers
!si!i~L ____ ~llesl 0 £lYl~§8]g§t~oY§fl ~£~2~_~Qgg§_~ng_tlg~ninq

25. BLDCON (1) (1) None. ' O,O-Invalid No. of Parameters
0,1-Invalid Parameter

26 R$TORE (1) (1) RO-ap. None
27. P$AVE (1) (1) None! None
28. I$MAIX (1) (1) RO.R~,R2 None
29~ P$DMA , 1) (1) None 1,0-Direct Memory Access Error
30. ERROR (1) (1) None Branch to user error routine or

. branch to graphics error routine PSERRS
31. P$DIV (1) (1) BO,Rl Overflow set on error
32. P$MUl (1) (1) RO,Rl None

lThe numbers in these ~olumns ~ithinparent4esis (i.e., (1)) ,indicate that the
s~routine is included as part of the. ~u~routine ,hose num~er is in parenthesis •

• • •

•

•

•

• 'I',
:.

Because a comprehensive set of system diagnostics is
provided with THE PICTURE SYSTEM, hardware error
detection is performed to,a minimal level. There are,
however, three error codes which may indicate a hardware
failure. These are:

1,2: Direct Memory Access Error. This indicates that
an error occurred during the last Direct Memory
Access operation.

6,0: 202 error. This error may be induced by a user
- software error or by a hardware failure in the

Transformation Matrix Stack. If this error occurs,
an exhaustive software verification should be made.
If no software error is apparent, the PUSH/POP diaq
nostic routine may be run to verify the integrity
of the hardware.

7,0: POP error. This error may be induced by user soft-
ware error or by a hardware failure in the Transfor
~ation Matrix Stack. If this error occurs, an ex
haustivesoftware verification should be made. If
no software-error is apparent, the PUSH/POP diaq
nostic routine may be run to verify the integrity
of the hardware. '

4-41

• 5.

•

•

. . ~ . .: . {~'.)" t' ", . '

CHAPTER FIVE

PROGRAMMING THE PICTURE SYSTEM

This chapter demonstrates the use of THE PICTURE
SYSTEM Graphics Subroutines to perform qeneral purpose
graphics functions. The intent of this chapter is not
tc provide instruction in programminq technique, but
rather to illustrate the use of .the Graphics Software
Package. Each of the user subroutines described in
Chapter 4 is used, with typical parameter values, in
the programming examples contained in this chapter •

•

•

•

;,." .

DISPLAY
LOOP

. . ' .
. ----

PROGRAM
INIT IALIZATION

. DATA

INPUT

UPDATE OF
DYNAMIC VALUES

PICTURE
DISPLAY

FRAME
UPDATE

Figure 5.1-1

_.: '"j: ' .• -,'0', ,.1 •. ; ".-- ..

General Interactive Program structure

5-3

system as it allows maximum utilization of
processing Controller and increases the frame upda
rate. The program structure of Figure 5.1-1 maybe
modified as shown in Figure 5.1-2 to increase th~'
frame update rate. A comparison of Figures 5.1-1 and
5.1-2 shows that the difference in program structure
is the ihclusion of the test for "Data to Input".
This test, while not necessary, improves the frame
update rate by allowing the data input procedure to be
bypassed unless the user initiated some form of data
input since the previous frame update. This technique
is particularly valuable when used in con;unction with
the tablet. In this case, menu selection testing or
hit testing need not be done unless the pen is "down",
ie.e. touching the surface of the tablet. The TABLET
subroutine may be used in automatic or non-automatic
mode to perform this function. The user need only
test the IPEN parameter to determine whether data
input is to be done from the tablet (see Section
5.11).

The program structure of Figure-5.1-1 may be further
modified to increase the response of the system to
data 'input and provide that frame update be done only
as reqtiired. This new program struct~re, shown 'in.
Figure, 5~1-3, is a modification of Figure 5.1-2 in
that a test for Values to Update" is made prior to the
"Update of Dynami~_Values"~ This test allows a more "
efficient use of the Picture Controller, since a new.,
frame is created Qn!! if a portion of the picture is
changed. The inclusion of this,test is a function of
the program design and the particular application of
the program. For example, if a picture contains an
ob;ect which changes' with each frame update, the
inclusion of the test would be superfluous, but if a
picture is essentially static and changes only upqn
user interaction, the response to user input will be
improved by the inclusion of a test of this type. If
should be noted that the program structures of Fiqures
5.1-1 and 5.1-2 create a new frame with each execution
of the display loop, whether a new frame creation is
necessary or not.

If THE PICTURE SYSTEM is operating in a stand-alone
environment in which graphics display and interaction
is the only function of the Picture Controller, frame
update rate is the only time constraint, and the user
program may remain in the ~isplay loop in Figures 5.1-
1, 5.1-2 or 5.1-3 without concern for processinq time.
However, if the qraphi¢s system shares a Picture

5-4 •

•

•

.'

DISPLAY
LOOP

PROGRAM
INITIALIZATION

YES

DATA
INPUT

NO

UPDATE OF
DYNAMIC VALUES

PICTURE
DISPLAY

FRAME
UPDATE

Figure 5.1-2

Proqram structure to Increase Frame
Update Rate

5-5

. OfSPt.A·Y·
LOO~.

NO

PROGRAM
INITIALIZATION

DATA
INPUT

UPDATE OF
DYNAMIC VALUES

PICTURE
DISPLAY

FRAME
UPDATE

Figure 5.1-3

NO

Program structure to Increase System Response to User Action

5-6

••

•

•

•

-' . ,.' " ,. ~ " ..

Controller in a Foreground/Background model of
operation, the display loops in these program
structures would be disasterous unless the graphics
application executed in the Background mode. However,
a program in the Background mode may 'suffer in
response time to user interaction, depending upon the
Foreground program which ·is executing. To overcome
this difficulty, user programs may wish to utilize the
program structure shown in Figure 5.1-4. This
structure would allow a graphics program to execute in
Foreground mode, with all the priorities and
privileges afforded a Foreground program, and yet
allow Background programs to execute whenever
possible •

lSee-RT:11 FIB Operating System Reference Manual, Digital
Eguipment Corporation •

5-7

, .. ,.'- -,
:,~ ."

DISPLAY
LOOP

WAIT FOR USER
IN PUT OR WAIT
·FOR A FIXED

LENGTff OF TIME

PROGRAM
INITIALIZATION

DATA
INPUT

NO

UPDATE OF
DYNAM I C VALUES

PICTURE
DISPLAY

FRAME
UPDATE

Fiqure 5.1-4

Proqram structure for Foreground Execution

5-8

•

•

5.2

•
5.2.1

5.2.1. 1

•

•

SCEN E DEFINITIO N

All data that is displayed on THE PICTURE SYSTEM may
be considered to be a scene which is viewed by the
user. The way in which a scene is constructed is
dependent upon the coordinate system the data was
defined in, the definition of the data and the
transformations which may be applied to the data. The
following sections describe the coordinate systems
which are available for data definition and display,
the manner in which data is defined within these
coordinate systems and the transformations and the
order in which they should be applied to the data.

Coordinate Systems

The user of THE PICTURE SYSTEM need only be concerned
with the data space coordinate system in which the
data to be displayed is defined. However, the user
may optionally choose to expand the range of the data
space available or to provide for convenient scaling
of de~ined data by use of the homogeneous coordinate
system. In either case, the image which is ultimately
displayed is viewed within the screen coordinate
system of the Picture Display. Following is a
description of each ot these coordinate systems.

Data Space Coordinates

The data space coordinate system is the region of
definition space in which all data which is to be
viewed is defined. The data space by convention is
treated as a left handed coordinate system. Thus,
positive X increases to the right and positive Y
increases upward, while positive Z increases away from
the X-Y plane when viewed as in Figure 5.2-1. Any
data point may be uniquely represented within this
coordinate system by providing the x,y,z coordinates
which define the position of the data point in three
space. Within this data space resides all of the
parameters which define the windowing boundaries, the
eye position for perspective views, the translational
values, the scaling values as well as all of the data
which is to be viewed. The bounds of the data space
are ±215-1, but may be extended to an effective ranqe
of ±230 by using the homogeneous coordinate system.

5-9

•

•

Piqure 5.2-1

The"- Data~ Space 'Coordinate System

• 5-10

5.2. 1.2

•

•

•

Homogeneous Coordinates

All data defined for use on THE PICTURE SYSTEM is
. treated by the hardware as homogeneous coordinate
data; that is, each data point consists of x,y,z,w
coordinates. This coordinate system was made
available to the user because the need to express
numbers larqer than 32767 (the largest expressable
integer value of the Picture Controller's 16-bit word
size) arises in some applications. The homoqeneous
coordinate system allows the user the capability of
expressing numbers of ±230 in magnitude, by
representing a point. in three dimensions whose
coordinates are x,y and z by the four coordinates
(h.x, hey ,h.z ,h e 32767) , where "h" is an arbi trary
number between zero and one. If each of the numbers
x,y,z are less than or equal to 32767 in magnitude,
"h" would be made equal to 1 and the expression
becomes (x,y,z,32767). But if one of the coordinates
of the point is greater than 32767 in magnitude, Uh"
may be adjusted such that the number is expressable~
For example, if the data point (100000,60000,-16000)
were to be expressed in homoqenaous coordinates so
that each of the numbers could be represented by a 16-
bit integer, "h" could be cho~en to be 1/4 tesulting
in (1/4.100000,1/4.60000,1/4.-16000,1/4-32767) or
(25000,15000,4000,8192). It should be noted that "h"
could not be chosen to.be 1/2 since this would result
in an x coordin~te of 50000, again unexpressable as a
16-bit integer. Tlils eiampleillustrates how "hit may
be chosen. However, it may be required in some
instances to minimize the loss of resolution that
results in the conversion of unexpressable numbers to
homogeneous coordinates. In these instances, the
following formula may be used to compute an "h" which
minimizes the resolution loss:

32767 .
h = -----------------------------

1 maximum X,1 or z coordinatel

In the above example, this would result in:

32767
h = -------- = .32767

11000001

or the homogeneous coordinates:

(32767,19660,-5243,10737)

5-11

, ";

Usually though, a convenient value (SUCb as 1/2, 1/4,
1/10, etc.) may be chosen for "h" which yields
homogeneous coordinates whose loss of resolution is
not significantly greater than if the resolution loss
had been minimized.

The previous discussion emphasizes the use of the
homogeneous coordinate system to extend the effective
range ,of the data-space. However, the homogeneous
coordinate aay also be used to define obiects
according to their own coordinate system and scale.
For example, an object which may have been previously
defined with 2000 data units/inch as its scale ~ay be
required to be displayed in relation to a similar
object which had been defined to the scale of ,1000
data units/centimeter. One of the objects may be
connectea' to the scale of the other by merely
supplying the appropriate homogeneous coo~dinate '(IW)(
when drawing.,thed'ata ,using. the'" I)RAW2D or'DRAW3D ,
subroutine., To det4!~mine the appropriate homoqen~ous':,
coordin~te for th:ls exallplethefollowinq equation
would, beus4!d': ' " '

l~OO data units 2000 data units
h = --------------- = ---------------

1 centimeter 1 inch

or

1000 data units 2.54 centimeters 2000 da ta units
h = ------------~--.---------------- = ---------------

, 1 cen timeter 1 inch 1 inch

or

2540 data units 2000 data units
h = --------------- = ---------------

1 inch 1 inch

or

2000
h = = .78740

2540

Therefore, the homogeneous coordinate, Ii, would be:

5-12

•

•

•

•

•

•

Ii = .18140-32767 = 25800

The homogeneous coordinate would then be used to
"scale" the data that vas previously defined in inches
into the centimeter data space, as shown in Example
5.2-1 •

5-13

s. 2.1.3

C
C DRAW THE CENTI!ETEB DEFINED DATA
C

C
C
C

CALL DBAi3D(ICENT,500,O,2)

DRAW THE "SCALED" INCH DEFINED DATA.

CALL ORAI30(INCH5,500,O,2,25800)
CALL NUPR!M

Example 5.2-1

As specified in Chapter 4, there are eight subroutines
in THE PICTURE SYSTEM Graphics Software in which the
user may utilize the homogeneous coordinate system.
They are:

WINDOW
TRAN
SCALE
DRAW2D
DIlAW30
lUSTER
INST
HITWIN

In each of these su.:brou tines, the inclu sion of the
homoqeneous coordin~te, Ii, is optional so ·that the
u.ser who has no. need to utilize the homogeneous
coordinate is not even required to specify the
argument in the calling sequ.nce to the subroutine.
Those users who initially do not use homogenedUs
coordinates may easily modify their programs to
utilize their capabilities if required at a later
time. .

Screen Coordinates

All data within the data space (homogeneous or not)
that is defined for display is ultimately mapped into
the screen coordinate system for display by t.he
Picture Generator. This mapping from the dat a space
to the screen coordinate system is called the viewport
mapping and occurs after the data has been
transformed, clipped and the perspective projection
performed. This prbc~ss, accomplished by the h~rdware
of the Picture Processor, is transparent to the user

5-14

I I'

•

•

•

•

who need be concerned with the screen coordinate
system only when specifyinq viewport boundaries.

The screen coordinate system for the Picture Display
of THE PICTURE SYSTEM is shown in Fiqure 5.2-2. As
the fiqure illustrates the oriqin of this coordinate
system is at the center of the display screen and has
a range of -2048 to +2047 display units. This two
dimensional screen coordinate system may be considered
a three-dimensional coordinate system whose third
dimension is the intensity range of the display. This
is shown in Fiqure 5.2-3. It is within this
coordinate system that all viewports are specified.
Since viewports may encompass a portion of the screen
and pictorial data is mapped within the viewport
boundaries (NOT TO THE SCREEN BOUNDARIES), the screen
may be used to define multiple viewports. This allows
the screen to be used to view a single object in many
orientations or many obiects simultaneously. The user
should be cautioned, however, that should a viewport
specification exceed the range of the screen
coordinate system, lines mapped to the edqes of the
viewport_~ill wrap~around to the opposite side of the

. screen •

5-15

THE PICTURE SYSTEM

2041

y

-2048 ~x 2047

-2048

Figure 5.2-2

Screen Coordinate System of the
picture Display

5-16

•

•

•

•

•

•

4096
DISPLAY
UNITS

I
I
I X

1 J<~SITV
./~ Y

./ " ./

./ " " "

Figure 5.2-3

----It- SCREEN FACE

The Two-dimensional Screen Coordinate System
considered as a Three-dimensional System whose

Third Dimension is the Intensity Range.

5-11

5.2.2 Data Definition

Graphic da ta 'that is to bedispla yed on THE PICT'ORI
SYSTEK is defined in the Picture Controller in the
form of vhat may be termed a data set. A data set is
an array of tvo- or three- dimensional coordinate
points that are to be dravn in a particular dravinq
mode.

All data displayed on THE PICTURE SYSTEM is treated by
the hardvare as homogeneous ccordina teda ta; that is,
each data points consists of %,y,% and v coordinates.
Thus tvo-dimensional ,data consists of x,y pairs vith
constantz and v coordinates (tvo-dimensional data is
actually three-dimensional data that resid~s in a
constant z plane), and threedimensional data consists
of x,y,% triples vith a constant v coordinate. The
notation used to represent a data set is illustrated

.inf'iqures 5.2-4aand b. All data of a particular
data.' set that is' to be displayed should be stored in
t'he memory of the Picture Controller _l,n a contiguous
integer arraY, to facilitate the accessing of the data

, by'the.'Direct . semory Access '(DMA) interface of the
. Picture' Processor. ~o ensure that data is stored as
',conttgud~~data ~lements in mem6ry, the us~r should
'uriderstandthe array storage convention of PDP-11
FOR~~~NIV, summarized as follovs:

•

Arrays ,are stored in contiguous storage ,:.
locati~ns that are addressed in ascendinq' order
vith the first subscript varying most rapidly.
For. instance, the tvo-dimensional array N(J,K)
is stored in the follovinq order: 1

N(1,l), N(2,1), ••• , N(J,1)
N(1,2), 'N(2,2), ••• , N(J,2)

N (1, K) , , N (J,K)

lSee Reference 3, Part 7, Section 5.3.1 for further details.

5-18 •

•

•

•

XIY' with constant xIV, Z v
x2Y2 Z and w %2~Z v
%3 Y3 coord ina tes = x3 3 z w
• . • • • • . • · . . · · ... ·
I:nYn xn Yn Z w

. (1) (2)

Figure 5.2 -4a

Two-dimensional data showing: (1) the notation of the
data set as stored in the memory of the Picture
Controller (with implied c~nstant Z and w coordinates)
and (2) the equivalent homogeneous data set as
processed by the Picture Processor.

XIYI %1 with constant xI YI zl w
%2Y2 z2 W coordinate = x2Y2 z 2w
1:3 y3 z 3 x~Y3z3w

· • · · · · · · • • • · • •
· · · • • • ·
xnYn zn xnYnzn w

(1) (2)

Figure 5.2-4b

Three dimensional data showing: (1) the notation of
the data set as stored in.the memory of the Picture
Controller (with implied constant w coordinate) and
(2) the equivalent homoqeneous data set as processed
by the Picture Processor.

5-19

This convention should be used in the following manner
to ensure that all tvo- and three-dimensional data is
accessed properly:

All two-dimensional data should be stored in an
array specified as:

DIMENSION IDATA(2,n) 1

All three-dimensional data should be stored in
an array specified as:

DIKENSION IDATA(3,n)1

In this manner the data will appear as:
IDATA(l / i) = xi
IDAXA (2. i) = yi

and for the three-dimensional data:
IDATA (3.i) = zi

A data set specified as described above may then be
displayed by calling the appropriate display
subroutine (DR1W2D or DRAW3D) and providing the
drawing· specifications. Figures 5.2-5a and b show the
calling sequence used to display tvo- and three
dimensional data. Although the z and v coordinates
are constant for a particular data set when ased in a
DRAW2D call.~~hey·m~y be varied from call to call. In
this manner. a two-dimensional data- set ma y reside in

•

any z-plane and all data sets may be scaled (using the •
w coordinate) by any value. It should be noted by the
user that the intensity of a picture displayed is
dependent upon the z position of the data in relation
to the hither clipping plane (assuming that depth-
cueing is being used). Thus to decrease the intensity
of a data set, the tiser need only to increase the
distance of the data set from the hither clipping
plane {normally the hither clipping plane = 0 for two
dimensional display}.

Data that is displayed on the Picture Display is
transformed, clipped and mapped to a portion of the
display screen (viewport mapped) by the Picture
Processor and stored into the Refresh Buffer for
display. Because of' this, data within the Refresh
Buffer is referred to as transformed data and may bear
little resemblance to the original data.

lsIiilarly, a one-dimensional array may be used to contain two
or three-dimensional coordinate data.

5-20 •

•

•

•

2-dimensional
data set

number of
coordinate pair

r------------ type of draw
function

drawing mode

r-------- Z position

scalinq factor
(optional)

CALL DBAi2D (lDATA (1,1) ,N,lF1, IP2,lZ,IW)

FiqureS.2-Sa

Calling Sequence for Two-dimensional Display of Data

3-dillensional
r-----------~---------data set

number of r--------------- coordinate trip

r-__ ~ __ --____ --type of draw
function

/

r/-_-----------drawing mode

r·---------- scaling factor
(optional)

CALL DBAW3D(IDATA(1,1) ,N,lF1,IF2,IW)

Fiqure S.2-Sb

Calling Sequence for Three-dimensional Display of Data

5-21

5.2.3

5.2.3. 1

I'··:"·

-rransformations

111 da ta that is displa yed on the Picture Display is •
transformed by multiplying each coordinate point to be
drawn by a 4x41 matrix which represents the linear
transformation to be applied to the data. This
process is performed by the Picture Processor
hardware, greatly increasing the speed at which the
data may be transformed and displayed. rhe use of
linear

0

transformations in the 'programming of
interacti ve graphics programs is discussed in detail
in the following sections.

The Identity Transformation

THE PICTURE SYSTEM initialization subroutine, PSINIT,
initializes the Picture Processor's Transformation
Katrixto a 4x4 identity matrix of the form:

1 000
o 1 0 0
o 0 1 0
o 0 0 1

THE PICTURE SYSTEM subroutines which alter othe •
transformation matrix do so by matrix concatenation.
-InitiaOlizinq to the oidentifymatrixassures that the
£irst concatenation is equivalent to loading the
desired matrix. It should be noted that any
homogeneous vector or matrix may have all its elements
multiplied by some °non-zero scalar quantity without
changing its graphic effect at all. Thus, THE PICTURE
SYSTEM automatically scales all concatenated matrices
to the greatest value short of overflow, in . order to
preserve 0 arithmeticprecl.sl.on. The l' s in the above
matrix,therefore r are shown merely for mathematical
clarity, 0 and in fact, subroutine PSINIT uses the
value, 16384, in their place.

~Por an in-depth discussion of the properties and theory of
matrices and linear transformations, see Reference 2.

• 5-22

5. 2.3. ~

•

5.2.3.3

•

•

Simple Linear Transformation

All transformations performed by the graphics
subroutines (i.e. WINDOWinq, ROTation, TRANslation
and SCAL(E)inq) are simple linear transformations;
each are expressable as a 4x4 matrix. When called,
the subroutines create a 4x4 matrix to perform the
required linear transformation (e.g. ROTate 90 0 , etc.)
and concantenate it with the Picture Processor's
Transformation Matrix to form a compound matrix. If
the initial contents of the Transformation Matrix was
the identity matrix, the resultant compound matrix
would be the simple transformation created by the
qraphics subroutine; otherwise, the compound matrix
would be a combination of the transformations
previously concatenated and the newly concantenated
matrix.

Figure 5.2-6 illustrates the matrix multiplication
involved in transforming a data point [x y z wl by the
transformation matrix A to get the transformed data
point [x' y' z" w']. If data is to be displayed wi thout
transfcirmatiori in any manner, the Transformation
Matrix must contain the identify matrix as shown in
riqure 5.~~7. .

Compound Transformations ---

A compound transformation may be thouqht of as a
series of tvo or more 4x4 matrices multiplied toqether
as illustrated in Figure 5.2-8.

Typically, all. transformations that are to be applied
to a given set of PICTURE SYSTEM data are concatenated
into one matrix as in Figure 5.2-8, so that the data
to be displayed may be transformed (i.e. multiplied)
by the compound transformation.

5-23

[x y Z V][1] = {x·y·,,·.·]

(1) (2)

Figure 5.2-61Z3

Transformation of a data point by a sinqle
transformation showinq (1) the transformation notation
and (2) the transformed data.

•

lInthIsdIscussloii-alI-data-will be represented by •
the homogeneous coordinate point [x y z w] which maY
by thought of as a representative data point (two- or
three-diMensional) of any data set.

21n this discussion~
by the notation:

~mEJ :
all 4x4 matrices will be represented

wher-e "NAME'identifies the linear transformation
represented by the 4x4 matrix. For a detailed
d~scussion of the contents (i.e. each of the 16
elements) of the 4x4 matrices used in THE PICTURE
SYSTEM graphics software see Reference 1, Chapter 12.

3The transformed data.fx·y'z·w·] is usually clipped,
viewport mapped and stored into the Refresh Buffer
to be displayed on the Picture Display.

5-24 •

•

•

[x y Z V][I] = [x'f'z·w] = (x f Z w]

(1 (2) (3)

Figure 5.2-7 1

Transformation of a data point by the identity matrix
I shoving (1) the transformation notation, (2) the
transformed data, and (3) the equivalence of the
transformed data and the original data.

Figure 5.2-8

Three Simple;Transformations arid an Equivalent Compound
Transformation. .
, ,~ " i". . ",'

lIn thIs discussion, the indentity matrix viII be represented

by the r:In: ~ ~ ! ~

5-25

~ .. ,", ~,) "·'(·~(.~~'.\zq,.'):.,\.""::,,,,/; ";J>~""~£;:<f, ".';,~:,~:",~:.~{.[;,::;·t:(?:4.:~~~f~f5~~%f~r,:::
I '::'.;', ...

The a sso.ci. a ti-we property of: ma txi.ces a.n.d the- \l'se' of
this property i.1l. com·.po.und transforDtation.s a·r:e
illustra.ted in Fi.qure 5.2-9. In this fiqure: 6 · matrix .:
is pos:t-multiplied: by ma.trix B resultinq in. t.:h.e- •
(compound) matrix AB vh ich is' thea used to' transfo:rur .
data points.

01 Y Z v] [AJ) [&] = [x y' Z v{[A J [B J) =

(1) (2)

[x y Z v] [AB] = [x' y' z· v' 1

(3l (4) .

Figure' 5 .2-9.

Transform.ation of a data point by compound
trans·formati.QIts·· snav.inq (1:) the trans:formation
notation; (2) ·the· u.se~ afthe' assoeiati ve property af
matrices,: (3) the compound matrix and: (4) the •

. transformed data.

Fiqure 5. Z~9 is indica ti ve of the- technique used to
specify the transformations used in PICTURE SYSrEft
application proqrams. The transformations to be
perf'ormed apon a given set of data are· determined and
diaqrammed, IN· THE ORDER TKAT THE DATA .IS TO. ENCOUNTER
THE TRANSFORftATI'ONS TO BE PERFORMED. 1 1 suqqested
ordar in which transformations may be performed is~

lrhe order in which matrices are multiplied is very import'ant
as matrix multiplication, in qeneral, is not commutative; i.e.

[1J[BJ # [BJ[1J

5-26 •

•

•

•

1. Scaling of the data (SCALE)
2. Rotation about the origin of the data (BOT)
3. Translation of the data (TRAN)
4. Windowing of the data and setting the angle

and point of view (WI NDOW)

Figure 5.2-10 illustrates this order of transformation i
the matrix notation previously defined.

Figure 5.2-10

A suggested Order in which Transformations may be Performed.

It should b~ n~ted that inclusion of all of the
transformatic)'nsis,not n-ecessary and, in fact~ --is-
often ..• undesirable. For example, in displa ying two
dimensional data, a rotation about the X or Y axis
results in making a three-dimensional picture of two
dimensional data. A suggested order of
transformations for two-dimensional data is shown in
Figure 5.2-11.

5-21

[SCAL~ ~OT~ rBA~ [WINDO~ [I] = [::::~
Fiqure 5.2-11

"A Suggested Order in which Two-di mensional
Transformation may be Performed.

A comparison of figures 5.2-10 and 5.2-11 shows tnat
the display of two-dimensional data is a special case
of the more general three-dimensional case.
Therefore, all further discussions of transformations
and the examples given viII be for the three
dimensional. case. Discussions and examples for,' the
two-diDlensionalcase , 'may' be formed in a. siliailar
manner.

Figure 5.2-12 sh~~s'th~-transformation of a data point
by the, transformations. of "Figure 5.2-10.

[x J Z [X 1 y I Z'W'] W]
[

comp.] _-

tran.

(2) (3)

Figure 5.2-12

Transformation of a data point showing (1) the use of
the associative property of matrices, (2) the compound
transformation and (3) the transformed data.

5-28

•

• =

•

•

•

•

,e.

Once the transformations to be performed on a setaf
data have been diagrammed as in Figure 5.2-12 it is a
relatiavely simple task to implement them in a
qraphics application program. Because the matrix
concatenation implemented in hardware pre-multiplies
the existinq transformation matrix by the new
component matrix and retains the result as the new
transformation matrix, the order in which the
transformation matrix must be created usinq the system
software is: windowing, Iotation, translation and
scaling. Note that this order is the reverse of the
order in which the transformations will be effectively
applied to the drawn data. The most recent
transfo~mation applies first! This is illustrated in
Fiqure 5.3-13 alonq with the FORTRAN subroutine calls
required to implement this transformation sequence in
a user program. usually, the transformation sequence
would be executed repeatedly by chanqing the
parameters in the transformations to produce a dynamic
picture. The PUSH and POP operation s facilitate
multiple use of compound matrices. For example, the
identity matrix might be saved prior to the
concanten~t,ion of the transformations and restored
after all thedata.had been transformed and before ·the
"n~xtn s~ries of transformations. This technigue ~~
shown in ptqu~e 5.2~14.It should be emphasized th~t
the saving (PUSHing) and restorinq (POPping) of the
Transforma tion .Matrix is performed in hardware,
therefore incurring very little overhead. The saving
of transformations need not be limited to the identity
matrix. Any transformation may be saved for future
recall by similarly PUSHinq in onto the matrix stac~.
For example. if the WINDOWinq transformation of Fiq~re
5.2-14 were constant, an increase in frame update rate,
could be achieved by creating the WINDOW
transformation only once and saving and restorinq that
transformation rather than the identiy matrix. This
is shown in Fiqure 5.2-15.

5-29

[I]
rmo~
[raAN]

[aOTZ]

~OTYl
r;IoT~l':
L J,
rcuj ,

[x y z w 1

. ,

, ".

CALL PSI NIT (1,0",,)

CALL WINDOW (IWL,IWR,I~B,IWT,IH,IY,IE)

CALL TRAN (TX,ITY 6 ITZ)

CALL ROT (IAZ,3)

CALL BOT (IAY,2)

ROT (lAX, 1) ,

CALL SCALE {I5I,ISY,ISZ)

CALL DRAW3D (IDAT'A, H,IP1 ,I.F2)

CAL~NUFRAM

,Figure 5.2-13

The Order in which Transformations are Concatenated
into the corresponding FORTRAN Subroutine Calls

5-30

•

•

•

•

•

Save Identity
Matrix Here

. ,
rOTj [ROT~ rOT~ ~RA~ ~INDO~ [I] =

[Je'y'ztw"

C INITIALIZE THE PICTURE SYSTEM
G

CALL PSINIT(3,0",,)
C
C SAVE THE IDENTITY MATRIX AND BEGIN THE DISPLAY LOOP
C
100 CALL PUSH
C
C MODIFY OR OBTAIN NEW TRANSFORMATION PARAMETERS
C

C
C
C

C
C
C

C

..
CONCATENATE THE TRANSFORMATIONS

CALL WINDOW(IWL,IWR,IWB,IWT,IH,IY,IE)
CAL-LTRAN (ITX,ITY,ITZ) . - ---
CALL ROT (lAY, 3)
CALL BOT (lAX, 2)
CALL ROT (IAX.1)
CALL SCALE(ISX,ISY,ISZ)

NOW TRANSFORM THE DATA BY THE COMPOUND TRANSFORMATION

CALL DRAW3D(IDATA,N,IF1,IF2)

C RESTORE THE IDENTITY MATRIX AND DISPLAY TOTE DATA
C

CALL POP
CALL NUFHAM
GO TO 100

Figure 5.2-14

Diagrammed saving of the Identity Matrix and the
Corresponding FORTRAN Code.

5-31

::~~~t):f~:,;:!! :-.~:"; ';", '\'
': '. ~;, ~,:. '

Save the WINDOW

[xy z v 1 ~CAL~ ~OT~ ~OT~ GOT~TraG::~·;~::D:~e [I] = •

C INITIALIZE THE PICTURE SYSTEft
C

CALL PSINIT(3,O,;,,)
C
C SET THE WINDOWING TRANSFORMATION
C

CALL WINDOW(IWL,IWR,IWB,IWT,IH,IY,IE)
C
C SAVE THE WINDOWING TRANSFORliATION AND BEGIN THE DISPLAY LOOP
C
100 CALL PUSH
C
C MODIFY OR OBTAIN NEW TRAN SFORftATION PARAMETERS
C

C
C
C

C

_ .
•

- --..

CONCATENATE THE TRANSFORMATIONS

CALL TRAN(ITX,ITY,ITZ)
CALL ROT (IAZ,-])
CALL ROT (ilY,2)
CALL ROTeIlX, 1)
CALL SCALE (lSX, ISY,ISZ)

C NOW TRANSFORM THE DATA BY r-HE COMPOUND TRANSFORMATION
C

CALL DRAW3D(IDAT1,N,IF1.~F2)
C
C RESTORE THE ORIGINAL WINDOW THAT WAS SAVED
C

CALL POP
CALL NUFBAM
GO TO 100

Figure 5.2.-15

Diagrammed Saving of the Windowing Transformation
and the corresponding FORTRAN Code.

5-32

: II

•

•

•

•

•

The ability to save and restore transformati~ns is a
poverful capability which can be used to effectively
increase the speed with which data can be transformed
and dynamically displayed. An example of this
capability is a modificati~n of Figure 5.2-15. If the
data array IDATA were to be displayed twice, in the
same orientation but SCALEd differently to emphasize
different aspects of its geometry, the technique would
be used as illustrated in Figure 5.2-16. This ability
to nest or stack transformations is available to four
levels in hardware, and may be extended by the
software to any level required.

The capability of merely call ing a subroutine to
perform a qiven transformation, the speed with which
matrices can be concatenated, the ability to stack
transformations and the speed with which data can be
transformed and displayed make the use of 4x4 matrices
and the associated linear transformations a powerful
feature of THE PICTURE SYSTEM.

5-33

save the compound save the WINDOW
transformation here transformation here

[If Z W 1 ~C::~ ~ ~OTj GOT~ [ROTj ~BA~ .. ~INDO~ [I]

~CALEJ
[X'ylzIWI]

C INITIALIZE THE PICTURE SYSTE~
C

CALL PSINIT(3,0",,)
C
C SET THE WINDOWING TRANSFORMATION
C

CALLiiNDOW (IWL,IWR,IWB,IWT;IH,IY, IE)
-' C

C SAVE THE WINDOWING TRANSFORMATION
C
100 CALL PUSH
C
C MODIFY.OR OBTAIN NEW TRANSFORMATION PARAMETERS

• '. --._-

=

C
C

CONCATENATE THE TRANSFORMATioNS A~DDISPLAY THE DATA TWICE

C

CALL TRAN(ITX,ITy,I~Z)
CALL BOT (IAZ, 3)·
CALL ROT(t1Y,2)
CALL ROT (lAX, 1)
CALL PUSH
CALL SCALE(ISX1,ISY1,ISZ1)
CALL DRAW3D(ID1TA,N,IF1,IF2)
CALL POP
CALL SC1LE(lSX2,ISY2,ISZ2)
CALL DRAW3D(ID1Tl,N,IF1,IF2)

C RESTORE THE ORIGIN1L WINDOW THAT WAS SAVED
C

CALL POP
CALL NUFRAM
GO TO 100

Figure 5.2-16

Diagrammed Nesting of CompOund trasnformations
and the corresponding FORTRAN Code.

5-34

•

•

•

•

•

•

5.3

5.3.1

PBOGRAli INITIALIZAT ION [PSINIT]

Program initialization for PICTURE SYSTEM q~aphics
applications programs consists of:

1. Calling the subroutine PSINIT to initialize
THE PICTURE SYSTEM hardware and software.

2. Initiating automatic operations
3. initializing all user variables to their

initial state.

Each of these steps in the program initialization
process is described and illustrated in the following
sections.

Initialization of THE PICTURE SYSTEM Hardw~re and"
Software

Typically, the first statement in a user applications
program 1S the call to PSINITI to initialize the
hardware and softvareof THE" PICTURE SYSTEM. A
typical call to PSINIT is shown in Example 5.3-1.

refresh at 40 frames

.,;:r--------:::a:::O::ame update
CALL PSINIT(3,O",,)

Example 5.3-1

In this example, typical parameter values have been
chos~n: a refresh rate of 40 frames per second and the
specification of a dynamic frame update rate. One
should note that the last "four parameters in the
subroutine call are specified as null parameters
(e.g.".,).

lSee Section 4.1 for a detailed specification of PSINIT.

5-35

j'.;

When null parameters are specified, the default values
are assumed for these parameters. The following is
the PSIHIT calling sequence specification of section
4.1:

[EXTERNAL ERRSUB]
CALL PSINIT(IFTI!E,IHRFSH,[ICLOCK],(ERRSUB],[ISTKCTl

,[ISTKAD](,IFMCNT])

A discussion of the uses' of each of the parameters
follows:

IFTI!E is used to· specify the rate with which the
Picture Display is to be refreshed. Typical values
for this are 2; 3 or 4 indicatinq refresh of 60, 40 or
30 frames per second, respectively, appropriate for
the P4 phosphor of the Picture Display. If the
current frame refresh has not been completed when the
refresh interval has elapsed~ then the frame r~fresh
vill'occur'upon the next 1/120 second interval after
the frame refresh is completed. Tabie 5.3-1 contains
all valid values and the· correspondinq refresh rates
of IF7'I!E.

'.

INRFSH 'is used to .designate the number of frame
refreshesvhieh' 'must be completed before a frame
update, (NritRA!) viII be recognized. Typically;
INR~~H=,O indicates' that dynamic frame update is
desired. However, certain applications require fixed" ..••.
lenqths of time between frame updates. In these
applications, this parameter provides this capability •.
Example 5.3-2 demonstrates the calling sequence which
specifies that frame update be done no sooner than
every 20th of a second.

CALL PSINIT(3,2",,)

Example 5.3-2

• 5-36

•. ; ,. I

TABLE 5.3-1

11%11) illU3-Blni

• 1 120.0 frames per second
2 60.0 frames per second
3 40.0 frames per second
4 30.0 frames per second
5 24.0 frames per second
6 20.0 frames per second
7 17.1 frames per second
8 15.0 frames per second
9 13.3 frames per second

10 12.0 frames per second
11 10.9 frames per second
12 10.0 frames per second
13 9.2 frames per second
14 8.6 frames per second
15 8.0 frames per second
16 7.5 frames per second

;'.

-

•

• 5-37

The update rate in seconds may.be,computed from
parameters of the PSINIT call in example 5.3-2 as'
follows:

IFf IME 3 1
update rate = ------ * INRFSH = * 2 = second

120 120 20

If a longer interval of time is required to generate a
new frame, the update rate vill automatically ,extend
in order for the system to complete the new frame. A
new frame ~ill Dot be displayed more often than
specified byINFRSH but may take longer depending on
the time required to compute the new frame. Parameter
IFMCNT may be used to deterMine the nu_ber of 1/120
second increments required to create a nev frame.

ICLOCK is used to allow user synchronization with the
refre~h of the display. When specified, this
parameter' 'is incremented. vi th each frame refresh and

, is'iyp1c:ai1y used to 'display an item' for a fixed,
lenqthof time (or number of refreshes). For example ..
ifa:llser error message is to be displayed fO,r 10
seco'nds 'it would be programmed as shown in Example
5.3-3. ' lt~hould be noted that in the example, the
,numb~r··)~QO. used to terminate, the Qisplay loop was
deriv-ed" from '" a refresh rate of 40 frames/second"

, rIFTI8E=j)~.·10:seconds = 400 frames.

5-38

•

•

•

•

•

C
C
C
C

C

CALL PSINIT(3,0,ICLOCK",,)
•
•
•

BEGIN ERROR DISPLAY LOOP

CALL USER SUBROUTINE TO DISPLAY THE ERROR MESSAGE

CALL ERMSG
CALL NUFRAM

C RESET CLOCKING VALUE
C

C
C
C
100
C
C
C

ICLOCK=O

DONE?

IF (ICLOCK.NE.QOO) GO TO 100

FINISHED ••• CONTINUE WITH USER PROGRAM

•

Example, 5~3-3

5-39

. . -'. . ,.'

ERBSUB is a user error subroutine, which .if speci£lel1
may determine vhere the user error occurred. If DO
user error subroutine is provided, the qraphicserror
subroutine PSERBSl is called to report the occurrence•..
of the user error. Typically, the system error
subroutine is specified by default as shown in
Examples 5.3-2 and 5.3-3. The user requiring more
memory may consider a user error subroutine vhich is
shorter in length than PSERRS. It is suggested in
this case however .. that the user error subroutine be
named PSERRS or that a global symbol PSERBS be
declared to avoid loading the system error subroutine
~SERRS. Example 5.3-4 demoristrates the use of a user
error subroutine which avoids the loading of the
system error subroutine .. PSERBS.

EXTERNAL FSER RS
CALL PSINIT(3 .. 0 .. ,PSERRS.,)

•
•
•

END

. SUBROUTINE PSERRS
STOP
RETURN
END

Example 5.,)-4

ISTKCT is .used to specify the number of 16 wdfd
contiguous arrays alloca ted as ma trix stack area.
This is reguired only if the stacking (PUSHes) of
transformations exceeds 4, the number implemented
within the Picture Processor. If this is required,
ISTKCT is the number of additional levels of matrix
stack space that are required.

iPor Paper Tape software users a halt viII occur rather than
an ~ ror message being printed out. See Appendix D for
specific Paper Tape details.

5-40

•

•

•

•

•

: ~::.: •• ~ ,": 'J" "r "i ~,. ,". ~ "-. "' ,'_,.1

ISTK1D is an integer arrray allocated as matrix stack
area. ~his contiquous area need be 16*ISTKCT words in
lenqth. If ISTKCT contains the value 0 or is not
specified, then this argument will not be utilized.
Example 5.3-5 illustrates the use of this feature.

IFMCNT is an optional parameter which, if specified,
will allow a user to determine the frame update rate
at which his picture is being created. This parameter
is intended for information purposes only. For
example, if a frame update rate of 15 frames per
second is required, this parameter may be monitored to
determine if frame update is proceeding at this rate.
IFMCNT should be initialized (or zeroed) by the user
each time the frame update rate is to be determined.
IFMCNT is never initialized by the system software,
but rather is always incremented upon each refresh
interval by the number of 1/120 seconds that have
elapsed since the last frame refresh. Table 5.3-2
shows the values of IFMCNT for frame update rates down
to 10 frames per second. Example 5.3-6 illustrates
the use of IFMCNT.

5-41

...... 1'- "', .. ':;

DiMENSiON ISlKAD (16, l)
CALL PSINiT(3,O",1,IST~AD)

C
C LEVEL 1 • C

CALL PUSH
• •

C •
CALL PUSH

• •
C •

CALL PUSH
• · C •

CALL PUSH
• •

C •
CALL POP

<, • '. C :',
CALL PUSS

• '.
C •

CALL PUSH,
• .' '

C •
CALL POP,

'. • ------
C • • CALL POP

• •
C •

CALL POP
• •

C •
CALL POP

• · C --
CALL POP

• · •
Example 5.3-5

• 5-42

TABLE 5.3-2

• l.m~HI YPD!1I_ill~

1 120.0 frames per second
2 60.0 frames per second
3 40.0 frames per second
4 30.0 frames per second
5 24.0 frames per second
6 20.0 frames per second
7 17.1 frames per second
8 15.0 frames per second
9 13.3 frames per second

10 12.0 frames per second
11 10.9 frames per second
12 10.0 frames per second

•

• 5-43

CALL PSINIT(J,O,.",IFMCNT)
•
•

C
C BEGIN DISPLAY LOOP
C
100 IFMCNT=O

•

CALL NUPRAM
C
C ENSURE UPDATE RATE OF AT LEAST 15 FRAMES PER SECOND
C

C
C SLOW
C

IF(IFMCN~.LE.a) GO TO 100

FRAME PPV1~E. PJINT A MESSAGE AND THEN CONTINUE
,.' . ~ - :'J ':" ',~'~ ,;,

•

2000

." . X::120~·/iF'~C~~{>·
PRINT >200'0"> X:' .
FORMAT'f'PRlftE',.UPDATE RATE=' ,F5. 2, "FRABES PER SECOND')

. G()TQ:~OQ,::": ,'/
:' ~ :.~: . ., . .

-.' --:~---

Example 5.3- 6 •

• 5-44

5.3.2

•

5.3.2. 1

•
5.3.2.2

•

Initiating Automatic operations [TABLET, CURSOR]

The Graphics Software Package provides the facility to
have certain operations occur automatically. These
operations are:

1. The updating of the tablet position and
status of the pen.

2. The display of a cursor within an initial
viewport.

These automatic operations can be used independently
or together to provide dynamic pointing capabilities
without proqramming effort.

The automatic operations occur at the rate specified
as the refresh rate in the call to PSINIT. After each
frame refresh has been initiated the automatic
operations that have been "tu~ned on" are performed.

Automatic Tablet Update

The automatic tablet update is initiated by a call ~o
the TABLET subroutine specifyinq that the tablet is to
be used in automatic mode as shown in Example 5.3-7.

CALL TAB LET (1 , I X , I Y , I PEN)

Example. 5.3-7

In this example, the parameters IX,IY and IPEN are
variables which are to be automatically updated with
the x-pen position (IX), the y-pen position (IY) and
the pen status information (IPEN). This information
may be used to determine menu selections and in
conjunction with the CURSOR subroutine to display the
current pen position.

Automatic Cursor Display

Automatic cursor display is initiated by a call to the
CURSOR subroutine specifying that the cursor is to be
displayed in automatic mode as shown in Example 5.3-8.

CALL CURSOR(IX,IY,l)

Example 5.3-8

5-45

5.3.2. 3

1:n '.thise:xaap'l·e" the ,parameters -IX and -II ;are.the
variables·which "con-ta:in .thex,y ,position at -which ithe
cursor is 'to :bedisp'layed. These .paralletersare
usually 't'he villueswh ich indicate the x, yposi tionof
the pen, but need not be the tablet values and may
indicate 'any information.

Use of Automatic Tablet and Cursor Modes

~nitiation of automatic tablet and cursor modes should
proceed in the £ollowinq ~rder:

:1. CALL iPSINIT ,to.~ini:tialize THE PICTURESISTEM •
. 2. CALL V,WPORTto specify the viewport boundaries 1

withinvhich th,ecursor is to appear, if other
than the default .boundaries are -required.

3. CALL'lABLETto initiate automatic tablet
update.

-4.ClLL ,CURSOBto .-initiateautomatic cursor
display_.

iE;j(alDples 5-. ~-9and .5.3-10 cshovthe .use -of .. automatic
~t:a'blef ;--andcursor~modes.

0_:-_____ _

lXhe boundary ~ariables used in the VWPOBT call may be
modified thereafter and the cursor will continue to appear
within the dynamically changing viewport.

5-46

•

•

•

•

•

C

" .. - ," r':~r':'~r::, ";'2~~~'\::~'1?~;?~: /'~'~!;.i~rt· } :!\}\~,:f\"~~~t~\~:,;~~~f~~{~71~~~~~mnJ~9:1~;"~.:;!:~;',1' .
~:~::J~~:>~:{'\ .:-; _., '>i~; :::.::'"

C INITIALIZE THE PICTURE SYSTEM
C

C
C
C
C

c

CALL PSINIT(3,0",,)

USE DEFAULT VIEWPORT OF ENTIRE SCREEN INITIALIZED BY
PSINIT FOR CURSOR DISPLAY

CALL TABLET(l,IX,IY,IPEN)
CALL CURSOR(IX,IY,1)

C BEGIN DISPLAY LOOP
C

Example 5.3-9

DATA IVL,IVR,IVB,IVT/-2047,0,O,2047/
C
C INITIALIZE THE PICTURE SYSTEM
C

C
C
C

C

CA LL PSI NI T (3,0, I , ,)

SET UP THE VIEWPORT FOR CURSOR DISPLAY

CALLVWPOBT(IVL,IVR,IVB,IVT,255,255)
CALL T1BLET(1,IX,IY,IPEN)
CALL CURSOR(IX,IY,l)

C BEGIN DISPLAY LOOP .
C

•

Example 5.3-10

5-47

5.3.3· Initializ.at·io.D; Q'f Uiser. VCl;J:i.abIe:s

v,ariables a1re ~-a:li.l.y used in. an a.p,plications pt:oq:ra.
ta', r:e·tain val1Les: v&ich a-re passed to the qrapliics'•
sunrolLtines to indi.cate anqles· of rotati.on·.,
t.rans·lat.ion. valu:es .. etc'. Upon initi.al. loadinq o,f ita.e·
pro.q,·ram, these v'CJJri.ables will contain. their initial
V'aIu.e.g. Hovever" if the proqram is re-started or has
a proqramlled J:e~start facil.ity, these var.iables will
cont.ainv:atu:es whi.ch: lIay not be· the initial values
requi.re:ci- Fo:r: t.b.i.s: reason, it is' suqq.ested th,at all
user v;ar'iab:les be. ini..tia.1,.ized b-efore the display loop
is· be,gun. Fi.qmre' 5.3.-1 illustrates a suqqes:ted
placem:ellt of the. u'ser- varia.bIe- fni tializa tion process-.

:: ~, -, \ .,.', '.'

5-48

•

•

•

•

•

DISPLAY
LOOP

r---- ----I
I PROGRAM INITIALIZATION I

I
I
I

I ~
I USER

I
VARIABLE

INITIALIZAT ION

I
I
I

PICTURE
SYSTEM

I INITIALIZATION

L ____ ---
-'

-

DISPLAY
_ ..• _- . PROCESSING

;;::
If

NUFRAM

Figure 5.3-1

I
I
I
I

_-1

sugqested Program Initialization structure

5-49

5.4 VIEilPO&TS r VWPORT]

A viewport is a proqram-specified rectanqular reqion
of an output device within which the windowed data is
mapped for display. Typically, the output device is
the Picture Display of THE PICTURE SYSTEM.

Fiqures 5.4-1a and b illustrate the two- and three
dimensional display of data which is mapped into the
viewport. A viewport is. specified for THE PICTURE
SYSTEM by calling the VWPORT subroutine. The
fol-lowing is the VWPORT calling sequence specification
of Section 4.1:

CALLVWPORT (IVL,IVR,IVB,IVT,IHI,IYI).

The parameters passed ,to the subroutine specify the
boundaries of the vie~port in the coordinate system of
the output device; viewport left boundary (IVL),
viewptirt riqht boundary (IVR), viewport bottom
boung.ary (IVB) and viewport top boundary (IVT). The
subroutine also provides the ability to specify the.
intensity at' . which data . will be displayed at the
hither and YOll clipping planes; hither intensity (1H1)
and. Jon inte.nsity (.IY!.).

5-50

•

•

•

VI
I

VI

•

DATA SPACE
(I)

•

VIEWPORT

I I I"" I r--
. I

Fiqure 5.4-1a

I
I
I

I
I ,.....Jl
I
I
I

L_I J 1-1-

SCREEN
(2)

Two-dimensional clippiJgand vievport mapping showinq
(1) the tvo-dimensional vindov.anddata and (2) the
picture as it would a.ppe,a;r on.the Picture D.ispl.A.·t-____ ...

•

-,

---l

(I)

~

I

...............

(2)

Fiqure 5.4-1b

Tbree-Di~ensional clippinq and viewport mappinq showinq
(1) the three-dimensional 'perspective window and data and

(2) the picture as it would appear on the Picture Display •

5-52

•

•

5.4.1

•

5.4.-2-"--

•

•

Full Screen viewport

The entire Picture Display may be selected as a
viewport by specifying the maximum coordinate range
for the viewport boundaries as shown in Example 5.4-1 •

CALL VWPORT (-2048,2047,-2048,2047,255,255)

Example 5.4-1

A call with these parameters specified would result in
all data subsequently drawn being displayed within a
viewport the size of the entire Picture Display.
View ports may be specified to be non~square, but this
causes distortion of the data to be displayed as
illustrated in"tiqure 5.4-2. This distortion, caus~d
by "t he linear mapping of the data space in to viewport
coordinates,. may be compensated by an appropriate
windo~inq transformation as described in section 5.5.

MultipleView'ports --

The Picture Display may be used for simultaneous
display of different pictures. For example, the
screen could be used to show the entire street map of
Figure 5.4-1a and the magnified portion of the map
simultaneously as illustrated in Figure 5.4-3. The
statements used to accomplish this are shown in
Example 5.4-2. The use of multiple viewports on one
display is a powerful feature of THE PICTURE SYSTEM.
The ability of THE PICTURE SYSTEM to display data on
up to four displays _ allows programs written using
multiple vievports on one display to be upgraded at a
later date using several displays to produce pictures
of full screen size •

5-53

C

INTEGER IP1(2),IP2(2)
DATA IP1/1000,16384/
DATA IP2/8192,OI

C INITIALIZE THE PICTURE SYSTEM
C

CALL PSINIT(3,O",,)
C
C SAVE THE INITIAL TRANSPORMATION
C
100 CALI. PUSH
C

'," .. ~

C SET THE VIEWPORT FOR THE TEXT AND ANOTATE THE DISPLAY
C

C

CALL VWPORT(-2048,2047,-2040,2047,255,255)
CALL DRAW2D(IP1,l,2,2,0)
CALL TEXT(17,'ENTIRE STREET MAP')
CALL DRAW2D(IP2,l,2,2,0)
CALL TEXT (13,' SAGNIFICATION')

C DISPLAY THE ENTIRE MAP
C

c- .

CALL VVPORT (-2048,0,0,2047,255,255)
CALL· WINDOW (-32767,32167,-32767,32767)
CALI. MAP
CALL POP

. CALL PUSH

C DISPLAY THE KAGNIFIED PORTION OF THE KAP
C
C NOTE THE NON-SQUARE VIEWPORT AND COMPENSATING
C NON-SQUARE WINDO~
C

C

CALI. VWPORT(-2048,2047,-2048,O,255,255)
CALL WINDOW(2000,10192,12288,16384)
CALL KAP

CALL POP
CALL NUFR1M
GO TO 100

END

Example 5.4-2

5-54

•

•

•

•

•

Me THE PICTURE SYSTEM ---

r-------
I
I
I
I

: II 1 I I I
~_L ____ :1.

ENTIRE STREET MAP

MAGNIFICATION --T---r--'
. I

I
I
I
I
I
I
I
I _________ -.1

Figure 5.4-3

Simultaneous Use of the Screen to Display an Entire Street Map,
a Portion of the Map Magnified and Text Anotation usinq Three

vievports to specify the Portion of the Screen to be Used •

5-55

In
I

In
0'

•

VIEWPORT

I

I

Q
,-------------,
i-c:::ri

"--__ --' _~----+----~~-_1-L - - - - - - - - -...- - --.J

!

DATA SPACE SCREEN

Fiqure 5.4-2

A non-square vievport which illustrates the data
distortion which can occur if a corresponding non-square
window is not specified •

• •

5.4.3

•

•

Depth-cueing

1 heightened sense of perspective may be imparted to
three-dimensional obiects by specifying that depth
cueing be performed. This feature provides the
ability to vary the intensity of lines as the lines
become "further away" by specifyinq differing hither
and yon intensities when calling the VWPORT
subroutine. The maximum depth-cueing effect is
obtained by specifyinq a maximum hither intensity
(255) and a minimu m yo n inte nsi ty (0). Exam pIe 5.4- 3
shows the use of the VWPORT subroutine to specify
depth-cueing.

NOTE:

CALL VWPORT (-2048,2047.-2048.2047.255,0)

Example 5.4-3

The specification of viewport boundaries larger thaI
the~apability of the output device will cause linef
to wrap-around the device. The maximum viewport
boundari.~ for ~he Picture Display are:

IVL. IVR, IVB, IVT: -2048 to +2047

IHI,IYI: 255 to O.

• 5-57

5.5 IINDO WING [WIlDOI 1

A window is a two- or three-dimensional framework or
enclosure in the data space. All lines vhich fall •
within the window boundaries appear on the Picture
Display while those portions of the lines falling
outside the boundaries are not displayed. Should a
line extend from within this region to someplace
outside it, only that portion of the line falling
inside the boundaries will be displayed (lines are
clipped to the window boundaries). This process of
windowing includes the definition of both an enclosure
and a point-ot-view, that is, the position of the
observer as shown in Figure 5.5-1a, band c. This is
in contrast to the positioning (i.e. rotating,
translating, etc.) and displaying of the data (i.e.
line and text output) which may be considered to set a
scene to be vieved.

The following are the WINDOW calling sequence
specifications of section 4.1:

CALL WINDOW (I~L,IWR,IWB,I'T[,IW]) .

. C1LL WINDOW. (IWL;I~R,IWB,IWT,IWH,IWY[,IE[,IW1])

These c;alling sequences allow . the user to view a scene
from ,any number of diff~rent positions,---llnd ·in several; '.
different ways. ' Por'example, a scene may be viewed in .•.
perspective as an orthographic projection or even as a
two-dimensional picture with no implication of
apparent depth.' The following sections describe how
the WINDOW ·subroutine may be used to view a scene in
these different wars •.

• 5-58

•

•

•

20 DATA SPACE

20 WINDOW

Figure 5.5-1a

Two-dimensional windowing showinq (1) the eye whose
x,y position iS,at the center of the window and whose
position is at negative infinity and (2) the window whose
x,y posi~ion is determined by the left, riqht, bottom,
top parameters (IWL,IWR,IWB,IWT) and whose z 'position
is at O.

---c'-' _'_. •. •••• •• •. __ -c-T~~ ~~_~' '_ 30 OATA.SPACE

,'--"":', "I ' ' --- ',' "IWT ' ",',' :' -_
t<_ _ I,' --==J I . ___ ___ ---

I - -- I ,WH-- -IWY
I I
I I

I ---- I --J 1.:.-_ _ IWR _ -

---~--------.--
(2) ----1----

Figure 5.5-1b

Three-dimensional orthographic windowing showinq
(1) the eye whose x, y position is at the center of the
window and whose z position is at negative infinity and
(2) the 3D orthographic window whose'x,y position
is determined by the left, riqht, bottom, top
parameters (IWL,IWR,IWB,IWT) and whose z position is
determined by the hither and yon para meters (IH,IY).

5-59

.' L3DDATA

........ --- --- T --- ---- -... -- -- -----" - - \ ---;:::::.,
r==::IWT \ --- I
I -- - -- I --.. --. ----. ---

'1- - r IWY \

\ 1
I IE:~;.4 _ 1

\
- - ('r) _- -- --__ \

. - -'- IWB IWFf ----_- I I _." ;..--~ ;,-.-- ~
~ .--' ~.--

.. ~-- ---. --- -...... I ___ ------- ---~ . ---(2.) - ---1.--- .

Fiqure- 5 • .5-1 c

Three--d:imens:ionaI- p-erspecti.ve- windowing showinq (1) the
eye' wh-ose x;:,y pos'ition is at the center of the window

SPACE'

and whose' z- posr-tion. is determined by the eye position
paralleter- (IE) and (2) the 3D perspec-tive window whose
position at the hith~r clippinq plane (IB) is determined
by the Ieft_"riqht-,bottolD,top parameters (IWL,IWR,IIIB,IWT)
and whose- yon posit-ion is determined by the yon parameter
fIllY) •

5-60

•

•

••

5.5.1

•

•

•

Two-Dimensional Views

A two-dimensional view is established by allowing the
X-Y boundaries of the window to be specified, thus
permitting the side of the WINDOW facing the viewer to
be shaped into any sort of rectangle and placed at the
viewer's convenience anywhere on the X-Y plane. This
is done by a two-dimensional (four-or five-parameter)
call to the WINDOW subroutine, specifying the
parameters IWL, IWR, IVB. IWT, and the optional
scaling parameter IW. The first four define,
respectively, the left, right, bottom and top
boundaries of the WINDOW.. The hither and yon
boundaries remain fixed; that is, the hither boundary
is set at zero, while the yon is set equal to the
homogeneous coordinate IW if specified and 32767
otherwise.

This transformation is generally used in connection
with the display of two-dimensional data, since the z
coordinate has no effect on the placement of the lines
in the picture, except to control their intensity.

Example 5.5-1 shows a call to the WINDOW subroutine to
set a two-dimensional windowing transformation.

c
c
c

SET THE 2D WINDOWING TRANSFORMATION

CALL WINDOW{-20000,-5000,-20000,-5000)

Example 5.5-1

5-61

5.5.2 Three-Dimensional orthographic Views

An extension of the two-dimensional WINDOW call to six
parameters provides for the definition of a
rectanqular parallelepiped (i.e. box-shaped) enclosure
for the WINDOW, the six boundaries of which are
directly specifiable, thus allowing the user visual
access to any portion of the data definition space.
This is done by adding parameters which specify the
position of the hither and yon boundaries (IWH,IWY) to
the WINDOW left, right, bottom and top parameters.
When called in this manner, a WINDOW is defined which
is then viewed as if from an infinite distance away.
The pictures which result are analogous to photoqra phs
of ob;ects taken at great distances throuqh a
telescopic lens of extre.ely hiqh magnification; the
picture may appear clear and sharp, but evidence of
perspective is lost. By setting the eye positio~ at
neqative infinity, this same effect is obtained,
wherein only the x and y coordinates of the displayed
lines and 'dots affect the picture, with the z
co~rd:Lnatehaving no effect except perhaps in-' the
intensity of. the data displayed. This type of view,
known. as orthographic projection, is specified ,by a
call to the WIND6w subroutine as illustrated by
Example 5.5-:.2. .. ".'".. . .

•
C
C SET. THE ORTHOGRAPHIC WINDOWING TRANSFORftATION
C

'CALL WINDOW(-2000,-1000,-2000,-1000,-5000,-5000)

•
•

Example 5.5-2

5-62
, .'

•

•

•

•

• 5.5.3

If the scaling parameter, IW, is required, the IE and
Ii parametets must both be specified to distinguish
this calling sequence from the standard perspective
view specification. The IE parameter should then be
specified as egual to the IWH value, the convention
chosen to specify that the eye be positioned at
negative infinity as shown in Example 5.5-3.

c
C SET SCALED ORTHOGRAPHIC WINDOWING TRANSFORMATION
C
C THIS IS EQUIVALENT TO:
C
C CALL WINDOW(-40000,-20000,-40000,-20000,-10000,10000:
C
C (NOTE: IE=IWH)
C

CALL WINDOW (-20000,-10000,-10000,-10000,-5000,
1 5000~-5000,16384)

Example 5.5-3

Perspective views

When three-dimensional objects are viewed, the viewer
infers depth from the fact that distant obiects appear
smaller and that parallel lines extending away from
the viewer appear to come together in the distance.
This effect may be invoked for three-dimensional data
(and even for two-dimensional data where the z
coordinate is specified as a constant) by calling the
WINDOW subroutine with the IE parameter not equal to
IHH. The effect of this subroutine call is to modify
the shape and position of the six-sided, three
dimensional orthographic window so as to produce a
"frustrum of vision"; that is, a right rectangular
pyramid, with the top sliced off by a cut parallel to
the base. If the eye is placed at the position
previously occupied by the apex of the pyramid, then
the edges of the rectangular cut will define the
hither boundaries of the four side walls of the
frustrum. Anythi~g lying within the frustrum will

5-6]

appear to be framed in the rectangle, and will thus be
viewed when displayed on the Picture Display.

Seven parameters are supplied in a perspective call to •
the WINDOW subroutine. These parameters completely
specify the shape and position of the enclosure, with
the one restriction that the direction of view be
always along a line parallel to the Z axis. The
effect of rotational changes to the direction of view
must be explicitly accomplished by calls to the ROT
subroutine to perform opposite rotations to the
coordinate data. The position and size of the
rectangular side of the frustrum closest to the eye
(known as the hither clipping plane) is uniguely
determined by the five parameters IWL,IR,IWB,IWT and
IWH. These specify its left, right, bottom and top
boundaries, as veIl as the Z-position of the plane of
the rectangle. The position of the back plane of the
frustrum (called the yon clipping plane) is specified
by the parameter IWY, while theZ-posi tion of the eye
(centered in front of the "hither plane) is specified
by IE., as shown tuFiqUre 5.5';'2. An optional eighth
parameter; IW·,· 'may also be supplied when one or more
of the othetpar.a.metersis too large to be expressed
directly •. · These'parameters not only specif y the shape
and positiOn ·of.: the window enclosure, but also
implicitly d~firi~ the angle of view (e) as follows: 1

e I iR-I5fL

Tan = ---------
.2 2 (IWH-IE)

The angle of view may be varied by ad;usting the
VINDOW parameters to provide an effect similar to a
telephoto camera ljns (viewing angle < 20 0) or a fish
eve camera lens (viewing angle> 400).

~ThIs-defines the x-viewing angle only. The Y viewing angle is
inferred automatically by the aspect ratio as described in the
next section.

5-64

•

•

•

•

•

\ z f·
\ I
\ I
~--------------------~-------------,

,
HITHER CLIPPING PLANE ----\-__......

EYE
POSITION

,
IWB

f
IE

SCOPE FACE

I WH

YON CLIPPING PLANE

IWY

--~r-----------~----~----------L-------.. x

y

Fiqure 5.5-2

The Frustram of Vision as defined by the WINDOW subroutine

5-65

5.5.4

'~ ... >~.' " : ;::.~ >~<:!~t\-~~tr.~,)~?~W'

Hon-Square Windows and View ports

In specifyinq a WINDOW (square or non-square) the user
should display the data within a viewport of a
corresponding shape to ensure that the data is
displayed without distortion. This may be stated more
explicitly by defining the term "aspect ratio". The
"aspect ratio" of the window is simply the ratio of
the horizontal width of the window to its vertical
heiqht, or:

IWR-IWL
Window Aspect Ratio = ------

IWT-liB

In order for data to be displayed without distortion,
the aspect ratio of the window must be equal to the
aspect ratio of the viewport. This may be expressed
in terms of the parameters as:

IWR-IWL IVR-IVL
------- = -------
liT-liB IVT-IVB

The user should maintain this equality for all types

. ~'~ "

•

of windo,inq; tvo-dimensional, three-dimensional
orthoqraphl.c and three-dimensional perspective views.
'The-user "who "desires to--:-:.. vie·w a three-dimensional
picture in proper perspective has the addi tional •
con~traint that the angular width of the frustrum of
vision" be approximately equal to the anqle through
which the viewport is observed by the user. This
means that the user should specify the WINDOW
parameters such that the frustrum of vision assumes a
shape which is proportional to that which exists when
the user actually views the picture Display as shown
in Figure 5.5-3. In this figure the user is shown
view~nq the Picture Display from a distance of
approximately 20 inches with a viewport width
specified as the entire Picture Display (10 inches).
From this it may be seen that the user should specify
a window which has a responding ratio:

IWB-liL actual viewport width
------- = ---------------------------------------
lWH-IE distance of viewer from Picture Display

5-66 •

•

•

•

-
z

\ \
\ \
\ \

10"
IWL = -1000
IWR. 1000
IWB • -1000
IWT = 1000
IWH = SOOO
IWY = Q) (5000)
IE • 1000

HITHER CLIPPING
PLANE

• IWB

·20"

IV(H

~ EYE f POSITION

IE

Y

Figure 5.5-3

Window Specification which creates a "proper"
perspective for the actual position of the viewer

I NR-liL liT-INB 1 10"
------- = ------- = =
INH-IE IWH-IE 2 20"

5-61

X

The statements used to specify such a window are shown
in Example 5.5-4.

c
c
C
C
C
C
C
C
C
C
C

C

ASSOME A VIEWPORT OF 10 INCHES IN WIDTH AND
HEIGHT. WITH THE DSER EYE POSITION AT APPROXIMATELY
20 INCHES FROK THE DISPLAY. THIS PRODUCES A VIEWING
ANGLE OF ABOUT 28 DEGREES. AN ANGLE COMPARABLE TO
THAT OF A CAMERA. SPECIFY THE WINDON SO THAT:

INB-IWL . IWT-liB 1
------- = ------ =
INH-IE liB-IE 2

CALL VWPORT (-2048.2047.-2048.2047.255,0)
CALL iINDOW. (-1000., 1000,-1000.1000.5000,5000, 1000)

C NOi PERfORM THE TR1N~.FORMATIOHS
C

CALL PUSH
CALL TRlN (ITI. ITY .~TZ)
,•. -.\

'. .
Exallple 5~ ?~4'

5-68

•

•

• !

5.5.5

•

5.; 5.6

•

•

;: ;-

sectioning

For most applications it is desirable not to have a
rear limit to the enclosure (i.e. it is desirable to
have the yon clipping plane at infinity). Since
infinity is not an expressable value, a convention has
been adopted which entails setting IiY equal to IiH,
as in Example 5.5-4, to achieve the effect of a yon
clipping plane at infinity.

However, in some applications it is desirable to
present the data to the viewer in a thin slice seen
face-on. This is known as sectioning and is achieved
simply by setting IiY to a value slightly beyond IiH.
The section thickness may be gradually increased or
decreased by advancing IiY steadily away from or
toward IWH from frame to frame. It should be noted,
however, that when IWY actually reaches IiH, the
condition mentioned above will have occurred and
because IiH = IWY, the yon clipping plane will be at
infinity. This visually annoying situation may be
easily avoided by choosing an increment for IiY which
is not an even divisor of the section wid.th (e. g. IWY
IWH=250, but IWY=-20). Then the section width, as it
decreases, will pass in steps through zero without
actually landing on it, and the above difficulty is
thus avoided.

Depth-cueing

To complete the ill~sion of per~pective, the intensity
of the lines drawn may be diminished with distance
from the eye. This feature is known as depth-cueing.
This may be accomplished by setting the viewport
hither and yon intensities at high and low values.
respectively. The maximum depth-cue values are shown
in the viewport specification of Example 5.5-5, as
full intensity for IHI and no intensity (or black) for
IYI.

c
C SPECIFY MAXIBUB DEPTH-CUEING
C

CALL VWPORT (-2000,2000,-2000,2000,255,0)

Example 5.5-5

5-69

5.5.7

For some viewers, however, these values tend to be a
little harsh and a small but non-zero value for IY,
permitting objects at apparently great distances to
remain slightly visable, may be used.

Both sectioning an d depth-cueing are permissible in
orthographic as well as p~rspective views. However,
when using sectioning and depth-cueing together in an
orthographic view, it should be noted that line
intensity decreases linearly through the section;
whereas, in a perspective view intensity is adiusted
such that the total light emitted by a given line
varies with apparent distance according to the
inverse-square law of optics. This PICTURE SYSTEM
feature allows data to be displayed as it wculd appear
when illuminated by a liqht source; thereby allowing
data to decrease rapidly in intensity with increase in
apparent distance.

Rear-facing ,views

For the sake of simplicity, all perspective and
orthographic views produced by the WINDOW subroutine
are oriented so that the viewer looks in the direction

-,~~--of positive Z-values~ --To -alter this ,view, the user

•

merely has to' provide the appropriate rotation and •
translation transformations by making appropriate
calls to the ROT and TRAN subroutines. Assuming that
north lies along the Z-axis with the Y-axis pointing
up , a perspective view of the vorld looking northeast
from a point 100 units east along the X-axis is
generated by the statements shown in Example 5.5-6.

However, due to the fact that values of IE may be
specified which are greater than corresponding values
of IWH, perspective views may be produced, without the
aid of transformations, which look "south". In the~e
views, the parameters lWL and IWR are automatically
interchanged, so that the view appears as though the
viewer had actually turned around and looked "south",
rather than having obtained a "southern" view by
looking "northward" through a mirror, as shown in
Example 5.5-7. Thus, the effect obtained is exactly
the same as if a northern view had been rotated 180
degrees by a call to the ROT subroutine shown in
Exam pIe 5.5- 8.

5-70 •

•

•

•

C
C
C
C
C
C
C

/ . C

•
•

VIEW LOOKING NORTHEAST FROM A POINT 100 DNITS
EAST OF THE ORIGIN. HITHER CLIPPING PLANE IS
400 UNITS AWAY, YON PLANE IS 5000 UNITS AWAY.
(THE VIEWPORT IS MODIFIED BY ROTATING AND
TRANSLATING THE DATA IN THE OPPOSITE DIRECTION.)

CALL WINDOW(-100,100,-100,100,400,5000,0)
IROT45=-8192
1YAXIS=2
CALL ROT(IROT45,IYAXIS)
CALL TRAN(-100,0,0)

•

Example 5.5-6

. C VIEW WITH SOUTHERN EXPOSURE, WITHOUT TRANSFORMATIONS
C

CALL WINDOW(-100,100,-100,100,-400,-5000,O)

.Example 5.5-7

C
C VIEW WITH "SOUTHERN" EXPOSURE, BY A ROTATION
C TRANSFORMATION
C

CALL WINDOW(-100,100,-100,100,400,5000,O)
IR 180=-32767
IY1XIS=2
CALL ROT(IR180,IYAXIS)

Example 5.5-8

5-71

5.5.8 Placement of the Bither and Yon Planes

Por two-dimensionalwindowinq, the hither plane is
placed at %=0 and the yon plane at Ii (normally
32167). Thus transformed data with a negative z
coordinate will be clipped at the hither clipping
plane. Por three-dimensional vindowinq (orthographic
o~ perspective), the placement of the hither and yon
planes is explicitly specified by the arguments in the
window call. By convention if IWH=IWY, then the yon
plane will be placed at infinity on the side of hither
plane opposite the ey~ position. If IWB#IVY then the
hither and yon planes vill be placed at the positions
specified. However, to maintain utllost precision of
transfor.med data, the hither and yon planes should not
be qiven unnecessarily extreme positions; e.g., the
hither plan e should ordinarily not be placed
immediately in front of the eye. Maximal precision is
maintained ~ifthe-distance between the hither and yon
planes is in 1:hesalleorder of maqni tude as the width
and. hei9ht of'thehither plane •

. :. .

5-72

•

•

•

5.6

•

•

•

ROTATION [BOT]

A rotation transformation is applied to coordinate
data using the ROT subroutine to cause a rotation of
subsequent data drawn ~aQY~ aD a!is !a£Qg~ ~h~ Q~!gin
Q{ ~h~ dat~ §~£g. Thus, if an object is described
about the origin of the data space, a rotation
transformation will rotate the object about its
or1g1n. However~ if an object is not described about
the origin of its data space, then a rotation
transformation will rotate the object about the oriqin
of the data space. The effect would be that of
swinging the object on a strinq rather than tumbling
it. In order to rotate such as object about its own
or1g1D, it would first need to be translated to the
oriqin of the data space then rotated and finally
translated back to the position it occupied in the
data space.

The following is the ROT· calling sequence
specification of Section 4.1:

CALL ROT(IANGLE,IAXIS)

The Parameters passed to this subroutine specify the
angle of rotation (IANGLE) to be applied and the axis
(IAIIS) about which the rotation will be performed~
The angle of rotation is qiven by dividing a circle
into .2 16 equal parts, wi_th zero beinq equal to zero

--·----degree and ':"2 15 equaling -180 degrees. This· method
allows a greater amount of precision for rotational
values since:

32767/180 -=
182 .. 04/60 -=

182.04 = 182 increments/degree
3.03 -= 3 increments/minute

This allows rotations to be performed to a qreater
precision without the need for special floating-point
hardware or increased execution time due to software
floating-point calculations.

Table 5.6-1 shows some common anqles and their
correspond~ng IANGLE values. Example 5.6-1
illustrates the continuous rotation of an object about
all three axes. It should be noted tha t a new
rotation transformation for each axis is computed for
each frame update and these new rotation
transformations represent the entire rotation about
each axis rather than an incremental rotation for each
axis. This technique prevents rotational roundoff
error due to sequential matrix concatenations •

5-73

Note: Rotation of data throuqh a positlveaDql~'apDear:s
counter-clockwisevhen viewed .along 'the:spec..LL.JL ,....
axis in thepositi·ve .direction in the lef't~han
coordinate system.

5-74

•

•

.'

•

•

30 0

450
60 0

90 0

180 0

270 0 (-90 0)

3150 (-45 0)

360 0 (0 0)

Table 5.6-1

5-75

lA~kl£

5461
8192

10922
16384
32767 or -32767

-16384
-8192

o

C ONE DEGREE
DATA 1/182/

C
C
C

C

INITIALIZE THE PICTURE SYSTEM

CALL PSINIT(3,O",,)
CALL SETERR(3,-1)
IANGLX = 0
IANGLY = 0
IANGLZ = 0

C PERFORM THE PERSPECTIVE TRANSFORMATION
C

CALL WINDOW(-10000,10000.-10000,-10000,~10000,-10000)

C
C BEGIN THE DISPLAY LOOP BY UPDATING THE "ANGLES"
C
100 IANGLX = IANGLX + I

IANGLY = IANGLY + I
IANGLZ = IANGLZ + I

C
C SAVE THE ORIGINAL TRANSFORKATION
C

CALL PUSH -
C
C ROTATE ABOUT THE Z AXIS
C

C
C
C

C

-------CALL ROT (IANGLZ, 3)

ROTATE ABOUT Y AXIS

CALL ROT (IANGLY,2)

C ROTATE ABOUT THE X AXIS
C

CALL ROT(IANGLX,')
C
C CALL A SUBROUTINE TO DISPLAY THE OBJECT
C

CALL OBJECT
C
C RESTORE THE ORIGINAL TRANSFORMATION
C

CALL POP
CALL NUFRAM
GO TO 100

END

Example 5.6-:-1

•

•

Note: The SETERR subroutine is used to avoid FORTRAN error
detection of the integer overflow caused by this ~~ample.
The call of the example is for DOS/BATCH FORTRAN.

• 5-76

•

•

•

5.7

.' "

TRANSLATIOH [TRAN]

A translation transformation is applied to coordinate
data, using the TRAN subroutine, to cause a
translation of all subsequent data drawn in the X, Y
and Z directions of the data space. The .following is
the TRAN calling seguence specification of Section
4.1:

CALL TRAN(ITX,ITY,ITZ[,IW])

The parameters passed to this subroutine specify the X
(ITX), Y (ITY) and Z (ITZ) translational values.

Translation is often performed after an obiect has
been rotated about its origin. However, in terms of
coding an applications program, this means that the
TRAN subroutine should be called gefQ£g the ROT
subroutine 1 • This order is illustrated by Example
5.7-1

•

C
·C NOi PERFORM THE TRANSFORMATIONS

C
CALL TRAN(ITX,ITY,ITZ)
CALL ROT (IANGLZ, 3~
CALL ROT(IANGLY,2)
CALL ROT (IANGLX, 1)

C
C AND DISPLAY THE OBJECT
C

CALL DRAW3D, (IDATA,INUM,IF1,IF2)

Example 5.7-1.

lsee-Section 5.2.3 for a further discussion of the placement
of CALLs •

5-77

I If it is necessar.y· to t.r·anslate an obtec.t to· a
pos·ition in the data. space. which is o,utside the ranqe·
of val ues which c:an be expressed by a t6-bit nnaber
(±2 15 -1),' the opt.io.nal arqument [til may be. used. •
This argullent may be, used to increase the effective
range of the translational values to ±2 30 •

Example 5.7-2 illustrates the callinq sequence
required to translate an object by 100000 in the x, Y
and Z directions •

• . '

TRANSLATE THK OBJECT BY 100000 LN X.Y AND Z

. " EFF~TiVBLY: " CALL Ta~N (l00000, 1 ()OOOO, 10000,0)
, "

25000 ,;;:. 100000/4
~.~ 192= 32761/ it

CALL' THAN (25000~250.00.25000~8192)
'. '. . .~." ',.'. , ,.

Example 5.7-2

5-78

•

•

•

•

5.8

5.8.1

SCALING [SCALE]

A scaling transformation is applied to coordinate
data, using the SCALE subroutine, to cause an increase
or decrease in the size of subsequent data drawn. The
following is the SCALE calling sequence specification
of Section 4.1:

CALL SCALE(ISX,ISY,ISZ[,IW])

The parameters passed to the subroutine specify the X
(ISX), Y (IS Y) and Z (I SZ) scaling values. The
scaling values are integers which specify the number
of 1/32767 by which coordinate data is to scaled. For
example if an object were to be decreased in size by
1/2 in the X, Y and Z axes then the appropriate
scaling values would be:

ISX = lSI = ISZ = 1/2-32767 = 16384

and the following calling sequence would be used:

CALL SCALE (16384,16384,16384)

If ISX = ISY = ISZ = 32767 then the coordinate data
would remain unsealed.

If an obiect is to be increased in size larger than
its definition in the data space, the homogeneous

-coordinate Ii is used as -described in Section 5.8-3 •

Data Distortion

If the scaling values ISX, ISY and ISZ are not equal,
they ha~e the effect of distorting pictures by
elongating or shrinking them along the directions
parallel to the coordinate axes. This may be used to
emphasize certain structural characteristics of the
data displayed. It should be noted that if the
scaling is to be always parallel to the X, Y and Z
axes of tb.~_Q!U~£t.·, the scaling should be performed
before ,the object has been rotated about its origin.
This means that the SCALE subroutine should be called
g!~~~ the ROT subroutine 1 • This order is illustrated
by Example 5.8-1.

lSee Section 5.2.3 for a further discussion of the placement of
CALLs.

5-79

5.8.2

•

C
C NOW PERFORM THE TBAHSFORMATIONS
C

C

CALL TBAN(ITX,ITI,ITZ)
CALL ROT(IANGLZ,3)
CALL ROT(IANGLY,2)
CALL ROT (IANGLX,1)
CALL SCALE (ISX,ISY,ISZ)

C NOW DISPLAY THE OBJECTS
C

CALL DBAW3D(IDA~A,INU!,IF1,IF2)
•
•

Example 5.8-1

Mirroring

The mirror imag.e of an object may be generated by
using neqativ. values for ISX, ISYor ISZ. With tht.
ability, an object·vhich is symetricalalonq an a][i,~
or a~es may be described as a half or quarter ima4~
and ~irrored to produce a full image for display.
Typical mirrorinq calling sequences are shown in
Example 5.8-2.

5-80
'j I

.. ~.

•

•

•

•

•
5.8.3

•

C
C
C

C

•

MIRROR DATA ABOUT THE X-AXIS

CALL PUSH
CALL SCALE(-32767,32767,32767)

CALL POP

C MIRROR DATA ABOUT THE Y-AIIS
C

CALL PUSH
CALL SCALE(32767,-32767,32767)

CALL POP
C
C MIRROR DATA ABOUT THE Z-AXIS
C

CALL PUSH
CALL SCALE{32767,32767,-32767)

•

CALL POP
•

Example 5.8-2

Scaling Using the Homogeneous Coordinate, Ii

Coordinate data may be decreased in size by specifying
scaling values for ISX, ISY and ISZ less than 32767 as
described in Section 5.8. However, a corresponding
increase in size may not be done if ISX=ISY=ISZ=32767
unless the hom6geneous coordinate, Ii is utilized. As
IW is decreased from the value 32767, the effective
range of the scaling values lSI, ISY and ISZ is
increased to ±2 30 •

5-81

Example 5.8-4 illustrates the callinq
required to scale data to twice its size.

•

•
C
C NOW SCALE THE DATA TO TWICE ITS SIZE

sequence

C EFFECTIVELY: CALL SCALE(65534,65534,65534)
C 32767 = 65534/2
C 16384 = 32767/2
C

CALL SCALE(32167~32767.32767.16384}
• '.
•

Example 5.8-4

5-82

•

•

•

5.9

•

5.9.1

•

•

DATA DISPLAY

Data that is displayed on THE PICTURE SYSTEM may
consist of three data types:

1. Lines and dots
2. Characters
3. Instances

Of these three data types. the first two may be
considered the primitives from which the third is
constructed. The user is free to utilize each of the
data types available without regard for the mixing of
the data types and constrained only by the length of
the Refresh Buffer and the frame update rate required
to provide the dynamic motion of the data displayed.
The following sections describe the use of the
subroutines contained in the Graphics Software Package
which allow the display of each of these data types.

Display of Lines and Dots [DBAW2D.DBAW3D]

The display of two-_or three-dimensional data sets as
lines or dots is accomplished by calling the DBAW2D or
DBAW3D subroutines. The" following are the DBAW2D and
DRAW]D calling sequence specifications of Section 4.1:

CALL DBAW2D(IDATA ,NUM,IP1.IF2.IZ[,IW])

CALL DBAW3D(IDATA,NUM.IF1.IF2[,IW])

These subroutines are very general; the user specifies
using the IFl parameter, the type of draw function to
be performed (i.e. disioint lines, connected lines,
dots) and using IF2 parameter. the mode in which the
x,y or x,y,z coordinates are to be interpreted (i.e.
absolute, relative. absolute-relative). The valid
values for IFl are:

0 = Disjoint lines from new position.
1 = Disjoint lines from curren t position.
2 = Connected lines from new position.
3 = Connected lines from current posi-tion.
4 = Dot at each point.

The valid values for IF2 are:

o = absolute-relative-relative-relative-etc.
1 = relative always.
2 = absolute always.

5-83

5.9.1.1

The DRAi2D and DRAi 3D subroutines may display the sa ..
set in a variety of ways dependent upon the values';iof'
the IF 1 and IF2 parameters at the time of th·e ca:l-l~>'~":' .~
To illustrate this, Pigure 5.9-1 shows the simplistic
data set:

X1,Yl = 1,0
X2,12 = -1,-2
X3,Y3 = 1,-2
X4,Y4 = 1,0
'xS,YS = 3,2

as it would be displayed for each of the valid values
of IF 1 and IF 2 on a qrid which ranges from - 4 to 4.

It is assumed for each of these drawinqs that the
current position before the draw beqins is at the x,y
= 0,1 position. The user is free to utilize these
drawinq functions in whatever manner is required by
his particular application. The decision to use a
two-dimensional or three-dimensional data set is
dependent upon the data, but the ability to display a
tvo-dimensional data set -·within a three-dimensional
environment is available to the user.

Drawing Two-Dimensional Data

Two-ai~ensional data is defined within a data set as a.
series of x~y coordinates with constant z and w
coordinates for the entire data set. Thus, two- .•
dimensional data is really three-dimensional data
which resides ~n a constant plane and may therefore be
ROTated, TRANslated, etc. as a three-dimensional data
set. Example 5.9-1 shows atypical call to the DRli2D
subroutine to draw the data set IDATA, which contains
five data poin~s# as connected lines from the first
data point with all coordinate data interpreted ii
atsolute coordinates. The entire data set will be
drawn as if it resides in the.z = 16384 plane.

5-84

I;'

. , ~ ,

•

•

•

•

C
C
C

INTEGER IDATA (2, 5)
DATA IDATA/10000,10000,-10000,10000,-10000,-1000(
1 10000,-10000,10000,10000/

•
• · .

NOW DRAW THE 2D DITA

CALL DR1W2D(IDAT1,5,2,2,16384}
•
•

Example 5.9-1

5-85

If I '¢
DI'~JOIN' I.INf.~' , ROM t.lr;.W PO";ITION
tr .. ~· ¢
A~~'()LUI Eo -Io(HATlV" -R"LATIVE-E'-T.

1 F"\ = 1
O'5JOI~T L1tJ'-5 F~OM ('U~R:"-NT PO~1T10N
IF2=¢ .
Ae>50LUH -Rt;OLATlllt-R.E.LATIVe:· E'-T.

IF"!- Z
(.OIJlJe:l.TE.D LINE':> ~ROM tJEW PO!:lITlON
IFZ=¢
Ae~OLUH; -Re:lAT1't'E..-R:~I."'T1V~"'£'T.

_. --
.. - - .. --

J ,0,1) - I-- -
. - _. (l

~ -+-~v-b ~ I--

Iq~Q)

DI·,JOI~IT LloJ"", I="PoOM ue:w PO~ITlON
If2·1
RbLI'ITIVIi. ALWAY~

I
"

op

11=1 & 1
DI~JOINT LING.!:> FROM 'URRG.~T POSITION
1F2= 1
RIi.LATlVI; ALWA.VS

I I
III
I I 1

I

~I
1 "', I, /' I I

I I I I
IFI=2
{.O~NE(.T£[7 LIIJe:'=> FROM N~W PQ5ITIOI-l
II=Z~ \
R~LATIVE ALWA'I<::J

,
qI;

1 /1
\ './ I I

I Ll

tFI-¢
OI!:>JOINT LIIoJE.'!> I=IlOI.A r.lEW PO!:oITlON
IF2- Z
A8!:tOLurE. ALWA"/!!>

I I I
J I i

L i
T
0,0

1 ! '

IF1 = I
VlSJOINT LI'" £5 I="ROM GURRUIT A::'SlTIori
IF2 =2
A550LUTE ALWAYS

1

V
V ~

I 0,0

,

I~I=Z
CONIIIE.~TE.P L1N~5 FIZOM NEW Pl'51T10N
IFZ~ 2
A8SOLUTE. ALWAV5

I
i

1/1
V . i

1 0,0 1
1 1

I ! I i

I I I ; I

IF1=~ . IFI:3 '., .

•

CO"'IJ~(.T~I7LIN£.-:' FROMCURRE.tJ, P~ITION £:O",IIIE(.TED LINES FROM CURRENTPOSITIO)J
IFZ=I' ---- 11=2-2 - -.~ ..
!<:£LATIV£.ALWM5 Ae~LIJTe. AI..W,..,Y5

I I
I I

1
I /
I 'II jo,o' .' , \1 I i.Y'
I \:. i,/ !

! , II I 1

IF"l = 4-
DOTS AT 5P£.GIF"I&.D POI\ll"S
11'2 = I
""LATIYE. ALWA"(5

!
I
I

!
I op I ,

I ,
I

I i

FlbUI2~ ? 9-1

1 1 1 i I
, I , 1 .1
I , I I· !I"i
! '/: V

,

IJ ~,ol 1 I
, I I : J I

, , ,
I

J~I=4
DOTS AT 5PE.(.I~I&.D POINTS
11="2=Z
ABSOLUTE. ALWAY5

I 1 , 1 ; i

llli 1
11 I 1 I
1 , : r , 'op
I I I j I

1 1 J ; ~ , '1 i ~

nl~ DRAWIIIIG FUloi(.TIO"'S 01' n~ ... DRAW2D AND DR./>.vJ3D 5Ue,ROUTIN£.?
I-IOT£: It, ~IeTPOINT I'" INOIGATE.D e>'(TH'- 0 !l,/Me,OL,

5-86

•

•

•

•

•

When the DRAW2D subroutine is used to draw two
dimensional data, the constant z coordinate CIZ) is
used to specify the intensity at which the image is to
be displayed 1 • When viewed through a two-dimensional
window, IZ = 0 will cause the data to be displayed at
the maximum intensity2 as specified in the call to the
ViPORT subroutine. To decrease the intensity of the
data displayed through such a window, the user need
only adiust the value of IZ to be more positive. In
two-dimensional windowing, the intensity of the data
displayed decreases linearly as IZ = 0-.32767 with 256
distinct levels of intensity available for user
specification. Once the intensity level which is
required by the user is determined, the value of IZ
may be directly computed by the ratio:

where:

IH - IL IZ
------- =
IH - IY 32767

IH is the hither intensity in the viewport specif
cation.

II is the yon inten'sity in the viewport specifica
tion.

IL is the intensity level required by the user.
(IH~IL~II)

,From this ratio, it can be seen that to display two
dimensi-onal,data at an intensity level which .is 'one
half the maximum (128), a call such as that shown in
Example 5.9-2 would be required.

lrhis-assumes that a viewport was specified which allows inten
sity variation (i.e. depth-cueing).

2rhis is because the data is drawn in the same Z plane as the
hither clipping plane, which is positioned at Z = 0 for two
dimensional windowing.

5-87

c
c
c

C
C
C
C
C
C
C

". '.: ... '

•
• ..

SET FOB DEPTH-CUEING AND 2D WINDOWING

CALL VWPORT(-2047,2047,-2047,2047,255,O)
CALL WINDOW(-10000,10000,-10000,10000)

NOW DRAW THE DATA AT HALF INTENSITY (LEVEL 128)

255 - 128 127 1 IZ
--------- = = = ----- THEREFORE IZ : 16384
255 - 0 255 2 32767

CALL DRAW2D(IDATA,N,2,2,16384)

•

Exa1llple 5.9-2

5-88

•

•

•

•

•

•

5.9.1.2 Drawing Three-Dimensional Data

Three-dimensional data is defined within a data set as
a series of x,y coordinates with a constant (or
default) w coordinate. Example 5.9-3 shows a typical
call to the DRAW3D subroutine to draw the data set
IDAT1, which contains five data points, as connected
lines from the first data point with all coordinate
data interpreted as absolute coordinates.

c

INTEGER IDATA(3,5)
DATA IDATA/10000,10000,16384,-10000,10000,16384,

1 -10000,-10000,16384,10000,-10000,16384,10000,10000,
1 16384/

•

CALL DR1W3D(IDATA,5,2,2)

Example 5.9-3 1

lThis example is equivalent to the two-dimensional case of Example 5.9-
and would produce the same imaqe if displayed.

5-89

When tile D'R~1l3-D 'subroutine :is ;ll·sed t.C!)dr·av ·thr:ee
dimensi'onal .Q·ata, the z"'position :of the tran'sfo.r.m.ed
data .in r'elation to the hither and yon cli.p'Pinq 'PJ.an(eB
determines t.heintensity at ,vhic'h ·th·e .. data -is •
displayed .• ·1 When vie·wed· orthographi:cal-ly, the
intensi-ty 'a-t which the data is displayed varies
linearly from the hither to yon clipping planes. When

5.9.1.3

viewed in pers-pecti ve, hovever.the intensity a tvhich
the data is diapla yed -variesreci procall y from the
hither to 'yon clipping planes.

Spe.ciiicDrawing Functions

The DR AW2D and ;DRAW3D subroutines allow the user to
dralldatainaany modes. Oftenhovever. the user
needs ,only a specific drawing mode (i.e. needs todrav
only-one .1.i'oe ·or ;may o~lyneed to position toa given
poi"nt) • Tn.cases -such 'as these .• the four ,fiveor .six
parBimeters :of "t'hese stibroutines call-sseem overly
complicated. . :In-these:cases t'he user lIlay ,create
subroU'tines ,of ihis .ovn, 'Which :i'll turn :call the D'RAi2D
and' DRAW3Dsubroutines, to :performas-.--p'e-cifi-ctype ;of
-draw' :.fun.ction~'ExalDples5.9-4 :and 5.9-5 show how this
:may;be :doneto -;provide'the tW.o-dimensiona1 J1l1love to"
{abs.o;Vilte).pr '''lIl,ove'u (r-elati vel-functions.

:1'.1~iJlisassulles that a viewport was specified which allows intensity
-varia-tion (i.'e. depth-cueing).

5-90

•

•

•

•

•

. -," :"-:i"" "'. :. '.,.' ~.~' :·."-r.' '~~ .. ~,., .;~:,: :;'f;.~\ >F/:',' -: ;': .. ~ '\'
.:;.; •... :., ·-,0

C
C ,.. ...
C
C
C
C
C
C
C
C
C

C

SUBROUTINE MOVETO(IX,IY)

THIS SUBROUTINE PROVIDES THE ABILITY TO "J!OVE TOil A GIVEN X,Y
POSITION BY SPECIFYING ONLY THE I,Y COORDINATES.

CALLING SEQUENCE:

CALL MOVETO(IX,IY)

WHERE:
IX IS AN INTEGER WHICH SPECIPIES THE X COORDINATE
IY IS AN INTEGER WHICH SPECIFIES THE Y COORDINATE

INTEGER IDATA (2)
IDATA(1)=IX
IDATA(2)=~Y
CALL DRAW2D(IDATA,1,2,2,O)
RETURN
END

Example 5.9-4

SUBROUTINE MOVE (IX,IY)

C THIS SUBROUTINE PROVIDES THE ABILITY TO "MOVE" A GIVEN DELTA)
C AND DELTA Y ·BY SPECI~YING ONLY THE X AND Y RELATIVE VALUES •

. C
C
C CALLING SEQUENCE:
c- - - ~ - - - - - -
C CALL MOVE(IDX,IDY)
C
C WHERE:
C IDX IS AN INTEGER WHICH SPECIFIES THE DELTA X VALUE.
C lOY IS AN INTEGER .WHICH SPECIF~ES THE DELTA Y VALUE.
C

INTEGER ~DATA (2)
IDATA (1) =IDX
I DATA (2) =IDY
CALL DRAW2D(IDATA,1,2,1,O)
RETURN
END

Example 5.9-5

5-91

5.9.2

5.9. 2. ~

This technique, of course, may be used in coniunctioll
with any of the general purpos.e subroutines of the
Grapb.ics Software Package to pro.vide for PIC.TURB
SYSTEM cOllpatibility with existing graphics •
applications or to facilitate the development of a
device-independent graphics "language".

Display of Characters

The display of characters, represented within the
Picture Controller as an ASCII text strinq, is
accomplished by:

1. C.alling the CHAR subroutine to specify the
size and orientation in which the characters
are to appear.

2. Calling the DRAW2D and DRAW3D subroutine to
move to the position to where the text is to
be displayed.

3. Calling the TEXT subroutine to output the char
acte~s to be displayed.

The folloving·are the CHAR and TEXT calling sequence spec
ifications of Section 4.1:

CALL CHAR (IXSIZE,IYSIZE,ITILT)

CALL TEXT (NCHABS, ITEXT)

Character Size and Orientation [CHAR]

The CHAR subroutine may specify a total of 64
character sizes and 2 orientations for text display.
7ypically thouqh,the X and Y charac ter si zes are
equal (or nearly equal; ±1 or 2) so that the
characters do not appear extremely flat or thin. The
character sizes available are shown in Figure 5.9-2.
As this figure illustrates, the sizes may ranqe from
0.07 inches to 0.56 inches. The characters which are
displayed may be oriented either horizontally or
vertically depending on the value of the ITILT
parameter as shown in Figure S.9-3a and b. The CHAR
subroutine may be called at any time during the
execution of the user's program and the character size
and orientation viII remain in effect throughout the
duration of the program or until a subsequent call to
the CHAR subroutine. Therefore, if the default
character specificatiqn (horizontal 0.28 characters)
is sufficient for the user's application, the CHAR
subroutine need not be called at all. It should be
noted, however, that character size and orientation

5-92

•

•

•

•

•

., ", ''':'~ :·'~·\~~!:·::··?.i·,:7.';;~>~':.' rvt#;·, ;, ;'<::-: :". : "::.~ .. ~';' ··.:~~~/:~:::<%iN:·~?~~i;5?:~'·~·:;':>::: ")"~;f~,'
I.'; .", ,. '., ,c:,~t~*;*~~~;IW~fw':\
changes applied halfway through a given frame will
still be in effect at the beginning of the next :frame,
and thus the default values may no longer be relied
on, but must be explicitly specified.

5-93

.01
.14 .21

.28 oM .35 M .42 M .~9 M·S6 M
== M =M =M

:1~ .,
"0" ~

U\ II II • I I I I I I ,
'i

I I t I I I
.07 .14 .21 .28 .~5 .42 .49 .56

i

Figure 5.~-2

standard Character Sizes in Inc4es.

"

• • •

•

•

•

-(:,-

HORIZONTAL

Figure S.9-3a

Horizontal Character Orientation (ITILT=O)

....J
«
u
~
~
w
>

Figure S.9-3b

Vertical Character Orientation (ITILT10)

5-95

5.9.2.2 Positioning for Text Display

Text is positioned for display within a two- or three
dimensional environment by callinq the ORAW20 or
DRAW30 subroutine to perform a move to an x,y (or
x."z) position or to draw a data set whose last point
is the position from which the text strinq is to be
displayed. This position vill be at the lower left
corner of the first character drawn. The intensity ~f
the move (or of the last line drawn) determines the
intensity at ¥hich all of the subsequent characters
drawn are displayed. Hence, characters may be
displayed at any of the 256 levels of intensity.
Typically though, characters are displayed at the
maximum intensity available and a two-dimensional
window is used to make positioninq and intensity
specification simple. A natural two-dimensional
window to use is the one ,which is initialized when
PSINIT is called. This window 1 is one whose
boun dar iesarE!:

.....

window left boundary: -32767
window'r'iqht boundary: 32767
window bottom boundary:_~32767
window top boundary: 32767
hither boundary: 0
yon boundary: 32767

The user then, is free to position anywhere within
this window and to define the intensity at which the
text string will be displayed (IZ=O for maximum
intensity). To ensure that this window is alvays
available to be used for text positioning, the user
should PUSH ,it before any transformations are
performed and POP back to it' before the next frame is
to be created. Example 5.9-6 shows how this may be
done.

The user should note that the viewport in effect at
the time the text is positioned for display will
determine the position on the screen where the text
will be displayed. For example, if the viewport in

'This two-dimensional window is ~erely an identity matrix.

5-96

'.

•

•

•

•

•

C

INTEGER ID1Tl (2)
DATA IDATA/-32767,01

C INITI1LIZE THE PICTURE SYSTEM
C

CALL PSINIT(3,O",,)
C

,. :' """ >-: ':';:':~i'~":" 1~.·:'-f\ ...• ; •. ,. .'.
~". , ; .~ ~ "',:.: <

C BEGIN THE DISPLAY LOOP BY SAVING THE IDENTITY M1TRIX
C
100 CALL PUSH
C
C

C

CALL VWPORT(-2048,2047,-2048,2047,255,255)
CALL DRAW2D(IDATA,l,2,2,O)
CALL TEXT(18,'THE PICTUE SYSTEM')

C SET THE VIEWPORT AND POINT OF VIEW
C

CALL VWPORT(0,2047,-2048,0,255,50)
CALL WINDOW(-1000,1000,-1000,1000,-1000,5000,-5000)

C
C lND SlVE THE POINT OF VIEW
C

·c
C
C

C
C
C

c

CALL PUSH
, ,

NOW THE TRANSFORM1TIONS

CALL RQT(163a4~1)
•
•
•

CALL POP

DISPLAY THE NEW FRAME

CALL NUFRAH

C RESTORE THE IDENTITY AND CONTINUE
C

CALL POP
GO TO 100

Example 5.9-6

5-97

effect at the time the text is positioned is the' lower.
right qua.drant of the screen, then DQ x, Y coordinat.e
pair could position text for display in any· of the
other quadrants of the screen. For this reason" text •
is typically displayed within a viewport whose'
boundaries are the maximum boundaries of the screen.
The user should also note that since the characters
are stored in the Refresh Buffer as packed ASCII codes
and generated relative to the last character
displayed, they are not passed throuqh the clipping
process of the Picture Processor and hence, are not
clipped at viewport or screen boundaries. If the user
attempts to display more character s than may fit
within a viey~ort, the string will extend out into the
neighboring area and if the text strinq extends out to
(and past) the screen boundary, the characters will
"wrap-around" to the opposite side of the screen where
they will continue to be displayed. A similar warninq
should .be issued for the positioning of the text. If
the point or line which positions the tett is clipped
by 'the Picture· Processor, the text strinq will be
displayed positioned from the last x.y coordinates
which. were _placed into the Refresh Buffer. This may
lead to confusion for users who are unaware of the
cause.

T~~t Output [TEXT]

Text is output for display on THE PICTURE SYSTEM by •
calling the TEXT subroutine specifyinq the number of
characters to be displayed and an ASCII text string
which contains the characters to be displayed, as
shown in Example 5.9-7.

CALL TE~T (18,'THE PICTURE SYSTE~')

Example 5.9-1 I

This will cause the ASCII character strinq "THE
PICTURE SYSTEM" to be displa yed a t the posi tion and
intensity last specified by a call to the DRAi2D or
DRAW3D subroutine (or positioned by previous text
display) and at the size last specified in a call to
the CHAR subroutine or initialized by PSINIT.

All text is output to
character codes. The 96

5-98

the Refresh Buffer as ASCII
characters which may be

•

•

•

•

displayed are shown, along their ASCII codes, in Table
5.9-1. Whea these codes are encountered in the
Refresh Buffer during the refresh cycle, the
Character Generator is called to stroke the character
encountered relative to the current position of the
beam on the scope.

A character is always stroked (in horizontal or
vertical mode) relative to the lower left position of
the are a in which any qiven character is defined.
Figures 5.9-4a and b show the area in which a
character is displayed by the Character Generator.

5-99

ASCII
~Q12'£;

040
041
042
043
044
045
046
047
050
051
052
053
054
055
056
057
060
061
062,"
063
064
065
066
067
070
071
072
073
074
075
076
071
100
101
102
103
10lJ
105
106
101
110
111
112
113
114
115
116
111

~l!A~jl
space

!

" J
$

" &
•
(
)

•
+
r

•
I
o
1
2

-3
4
5
6

---1----
8
9
· · · ..
<
=
>
?
ii)

A
B
C
D
E
F
G
H
I
J
K
L
M
N
o

,Table 5.9-1

ASCII
~QDB

120
121
122
123
124
125
126
121
130
131
132
133
134
135
136
137
140
141
142
llJ3
144
145
146
llJ7
150
151
152
153
154
155
156
157
160
161
162
163
164
165
166
161
170
171
172
173
114
175
116
117

5-100

-;"~/\"~'''~~;~:''f:!;~~7~~~~~w~"f
.... >;~.

&!!lRl~lB.
p

Q
R
S
T
U
V
W
x
y
z
r
\
]

t
\

a
b
c
d
e
f
q
h
i
i
k
1
m
n
o
p
q
r
s
t
u
v
v
x
y
z
{
I
} ,

null

. ',.-:,-:,".,

•

•

•

•

•

•

-..,
I
1
I
1

I
1
I
1
I
I __ I

Figure 5.9-4a
Horizontal Character stroking Relative to the Current

position of the Beam •.

r--------~---_,

I I

Figure 5.9-4b
vertical Character stroking Relative to the Current

position of the Beam.

5-101

5.9.3 Instancing rINST,MASTERl

As was pointed out previously, the data ~hich
comprises a scene is made up of a series of •
primitives, i.e. lines, dots and strings of text.
These primitives are used, either singly or
repeatedly, to generate objects which ;i0mprise a scene
to be viewed. The ability to create a easily position
more complex primitives greatly simplifies
construction of a scene. For example, suppose a
transistor symbol is defined as a primitive. Then, in
order to construct a complicated schematic diagram
containing several transistors, the user need only
specify the position, size and orientation of every
occurrence of the transistor symbol and display of the
sy~bol is then automatic for each occurrence. The
technique of constructing and positioning complex
primitives such as these, and generating repeated
copies thereof, is called instancing. It constitutes
one of the more powerful tooois of computer graphics.

An instance of a given primitive is invoked using the
qraphics software by:

1. Calling the INST subroutine to define the
,boundaries within which the instance is to be
placed. rhese boundaries define the position
of the instance within the data space and,
typically, also within the WINDOW. If the
instance boundaries are outside of the window
boundaries, the instance will be totally clipped;

i
if the instance boundaries are partially inside
the window boundaries, only that portion of the
instance which lies within the window will be
displayed; if the instance boundaries are within
the window, the entire instance will be displayed.

2. Calling the ROT subroutine one or more times
if the instance is to appear in an orientation
which is different from that in which the oriqinal
primitive was defined (i.e •. if a symbol is to
appear rotated 90 0 from its original position,
etc.). This call maybe omitted otherwise.

3. Callinq the subroutine which defines and outputs
the given primitive.

5-102

•

•

•

•

The following is the INSX calling sequencespecifica
tioD of section 4.1:

CALL INST(INL,INB,INB,INT[,IW1)
or

CALL INST (INL,INR,INB,INT,INH,INY[, IW])

As described above, the INST parameters define the
boundaries within which the instance is to be placed.
If the instance is two-dimensional, INST is called
with a fourl argument parameter list such as that
shown in Example 5.9-8.

C
C SEX A TiO-DIMENSIONAL WINDOW
C

C
C
C

CALL WINDOW (0, 16000, 0, 16000)

•

DISPLAY A TWO-DIMENSIONAL INSTANCE OF A HOUSE
; . . .

CALL INST (4000, a·ooo, 4000, 8000)
CALL HOUSE2 . . .

•

Example 5.9-8

If the instance is three-dimensional, INST is called
with a Six2 argument parameter list such as that shown
in Example 5.9-9.·

lThe four argument parameter list may be extended to
five argu.ents with the inclusio~ of the scale factor,
IW.

2The six argument parameter list may be extended to
seven arguments with the inclusion of the scale factor,
IW •

5-103

-:'~' -,:" ,> -.". .. . "-"'1": . -I"'.

C
C SET A THREE-DIMENSIONAL WINDOW
C

C
C
C

CALL iIRDOW(O,16000,O,16000,O.O.32000)
•

DISPLAY

CALL
CALL

•
•
•

1

-: ~-

THREE-DIMENSIONAL INSTANCE OF A BOUSE

INST(4000,6000.4000.6000.2000,6000)
HOUSE3

Example 5.9-9

- . -'-

5-104

•

•

•

,,'"

•

•

•

In the tvo previous examples, HOOSE2 and HOUSE3 are
subroutines which define a graphic primitive or
"master copy". A "master copy" defines an object or
symbol which is to be instanced and takes the form of
a FORTRAN subroutine. A subroutine of this type
always contains four parts which must be . executed in
the following order:

a. A call to the graphics subroutine MASTER
to set the boundaries of the data space
within which the master copy will be
defined.

b. Calls to the various transformation and
data output subroutines (ROT,TRAN,
DBAW2D, etc.) which define the primitive.

c. A call· to the qraphics subroutine POP.
d. A FORTRAN BETURN statement.

Example 5.9-10 shows the FORTRAN subroutine, HOOSE2
referenced previously in Example 5.9-8, which contains
these four parts •

5-105

C
C
C

C
C
C

C

SUBROUTINE HOUSE2
INTE.GER HOUSE (2,6), DOOR (2,5)'

DEFINE THE TWO-DIMENSIONAL BOUSE DATA • DATA HOU5E/o.,3200o., 320.0.0.,160.0.0.,320.0.0.,- 3200.0., -32000,-32000,
1 -32000,16000.,0,3200.0./

AND A DOOR

DATA DOOR/4000,46000,4000,-l2000,-40o.O,-32o.o.o.,
1 -40.00,-16000,4000,-160-00/

C BEGIN THE TWO-DIKENSIONAL MASTER COPY
C

C
C,

C

C
C
C

C
C
C

CALL MASTER (-32767,32767,-l2767,32767)

DRAW THE HOUSE

CALL DRAW2D(HOUSE,6,22~0)

AND THE DOOR
. . . - '

CALL :DRAW2D.:(DOOB;5,2,2~c}) "

NOW REST.ORETHE TB.ANSFORI!ATrON~ATRIX AliD RETURN

·CALL POP
RE~URN
END

Example 5.9-10

5-10.6

•

•

•

•

•

,The following discussion describes each of the parts,
illustrated by Example 5.9-10 in more detail:

a. A call to the MASTER subroutine generates a
six-sided, box-shaped enclosure, similar to

b.

that produced by an orthographic call to the
WINDOW subroutine (in fact the transformations
produced by the two routines are exactly identi
cal). This enclosure is used as the definition
space for the primitive. As each instance
of the primitive is invoked, the "master copy"
is mapped (subject to rotation) onto the
instance enclosure (defined hereafter). Since
all four (or six) boundaries of both enclosures
are individually specifiable, the instance may
therefore differ in size, shape and location
from the master; however, the basic primitives
comprising the instance bear the same spatial
relationship to each other as do those of the
master--in other words, a transistor still
looks like a transistor, although its size
and shape may be modified. The following are
the MASTER subroutine calling sequence specifi
cations of Section 4.1:

CALL MASTER (IML,IMR,IMB,IMT[,IW])
or

CALL MASTER (IML,IMR,IMB,IMT,IMH,IMY[,IW])

The parameters define the left, riqht,~bottom,
top~ hither and yon boundaries of the master
enclosure in data space coordinates. For two
dimensional calls, the IMH and 1MY parameters
are omitted. The origin (~nd thus the center
of rotation) of th~ master copy is at center
of the front boundary of the master enclosure.
NOTE: Each instance invoked produces two
transformations, the master and the instance
which are concatenated. Because instances
tend to be small compared to the window
in which they are viewed, this concatenated
transformation may suffer a loss of pre-
cision if the ~!~!~g g~~lo§~ ~§ ~Qt def~~gg
~ ~~gg ~2 ~Q2§~~!~. Therefore, a MASTER
enclosure should not be defined more than an
Qrder of magnitude ~maller than the scaling
parameter, IW (normally 32161). The data should
also be defined so that it extends the full
range of the master enclosure.

The output comprising the primitive may consist
of any executable FORTRAN statements and

5-101

graphics subroutine calls, normally calls to
the subroutines DBAW2D, DRAW3D, TEXT and the
transformation subroutines ROT, TRAN and SCALE;
as well'as calls to other instancinq subroutines •
Thus, nested instances and even recursive calls
to the same primitive definition subroutine are
permitted, so long as a conditional exit is
provided to prevent i~finite recursion, and
that sufficient Matrix Stack space is alloca
ted when callinq the PSINIT Subroutine, since
each instance call results in an implied PUSH.
However, the loss of precision previously
mentioned is compounded with each level of
nestinq.

While the MISTER call transformation is identi
cal to that of a WINDOW call, data is not
clipped at the master boundaries as it is at
the boundaries of a normal window; there-
fore dat e ond the master
boundari e ond
tAQ bOUDQS easBsPQcifieQ iB&t~e, ~rov1 ed
t~t iJ does Dot alsO extend beyond the bounas
ftbewi.RdQy~·. --
~ - .. '

c. Each call to a master copy subroutine is
preceededby il call to the INST subroutine
which contains--an· implicit PUSH. In order to
restore the oriqin~l transformation for use
following the instance, a call to the POP
subroutine to restore that transformation must
be performed.

d. The subroutine RETURN statement should
immediately follow the POP call. Note that
the master copy subroutine may just as easily
be coded in assembly lanquaqe, provided that
it meets the above specifications and that it
is FORTRAN-callable (see Appendix C).

Using this technique, two- and three-dimensional
primitives may be defined and libraries of these
"master copies" maintained. Example 5.9-11 shows a
simple program which uses the primitive defined by
Example 5.9-10. Fiqure 5.9-5 shows the mappinq
performed by THE PICTURE SYSTEM durinq instancing.

5-108

•

•

•

•

•

•

';'. ,: .. ;.',

C
C INITIALIZE THE PICTURE SYSTEM
C

C
C
C

C

CALL PSINIT(3.0",,)

SET THE TWO-DIMENSIONAL WINDOW

CALL WIBDOW(O,16000,0,16000)

C DISPLAY THE FIRST INSTANCE OF THE HOOSE
C

C

CALL INST(4000,8000,4000,8000)
CALL HOOSE2

C DISPLAY THE SECOND INSTANCE OF THE HOUSE
C (ROTATED -90 0)

C

c

CALL INST(14000,18000,10000,14000)
CALL BOT(-16384,3)
CALL HOOSE2

C DISPLAY THE DATA
C

C

CALL" NOFRAM
PAUSE

. STOP
El{J>

Example 5.9-4

5-109

lJ1
I
.....
o

•

MASTER DEFINITION SPACE

MASTER copy

< i -:J __ _ Ie::::: ,.

--------..

-----...
...... -I !r:: __ 1 'I,.

(I)

DATA SPACE

-'NstANCES

E§ TH£ PICTURE SYSTEM

(2) (3)

Figure 5.9-5
Illustration of the Mapping of the Instances to the Window and
the Window to the viewport of Example 5.9-11 Shovinq (1) the master
c~py definition of Example 5.9-10, (2) Jthe mapping of the master
copy into tvo instance regions of the data space and (3) the Mappinq of the
window to the Viewport •

•

VIEWPORT

PICTURE
DISPLAY

•

5.9.4

•

5.9.4.1

•

5.9.4.2

•

Display Modes

All lines, dots, characters and instances may be
displayed in dashed and/or blinking display mode on
one to four Picture Displays (or any combination
thereof) simultaneously. The following sections
describe how each of the display modes are initiated
and the manner in which Picture Displays may be
selected for output. It should be noted that once
set, these display modes remain in effect until the
mode is reset with a correspondinq subroutine call.
Thus, a display may remain in effect for subsequent
frames overriding the default setting and even
affecting the cursor (which, if used, is output to the
beginning of the Refresh Buffer). Therefore, if a
user was employing blink mode, it should be reset
before calling NUFRAM unless the cursor is intended to
blink.

Dashed Display Mode [DASH]

~hen PSINIT is called to initialize THE PICTURE
SYSTEM, the display mode is set so that all subsequent
data output will be'drawn in solid line mode. This
mode will remain in effect until the user calls the
DASH subroutine to initiate dashed line mode~ Tqe
followinq is the DASH callinq sequence specification
of Section 4.1:

CALL DASH{ISTAT)

The parameter passed to this subroutine specifies the
mode which all subsequent lines will be drawn in,
until PSINIT is called to re-initialize the system or
DASH is called ~o reset the line status. If DASH is
called with ISTATIO, all subsequent data output will
be drawn in dashed line mode. Characters may also be
displayed in dash modes but may appear
indistinguishable because of the dashed lines. A call
to DASH with ISTAT=O resets solid line mode. Dots
which are drawn in dashed display mode appear as dots.

Blink Displav Mode [BLINK]

When PSINIT is called to initialize THE PICTURE SYSTEM
the display mode is set so that all subsequent data
output will be drawn in non-blink mode. This mode
will remain in effect until the user calls the BLIN~
subroutine to initiate blink display mode. The

5-111

.I

follovinq is the BLINK calling sequence specificatioD
of section 4.1:

CALL BLINK(ISTAT)

The parameter passed to this subroutine specifies the
mode which all subsequent lines will be drawn in,
until PSINIT is called to re-initialize the system or
BLINK is called to reset the display mode. If BLINK
is called with ISTAT=O, all subsequent data output
vill be displayed non-blinkinq. If BLINK is called
with ISTAT#O, .all subsequent data output vill be
displayed blinkinq at the approximate rate of 90
blinks per minute •. Example 5.9-10 shows hov blink
mode may be used to cause a blinkinq cursor to be
displayed.

C
C
C

INITIALIZE THE PICTURE SYSTEM

CALL PSINIT(3,0",,)
CALL TABLET(1,IX,IY,IPEH)
CALL CURSO~(IX,Iy,1,IPEN)

•

c
C
C

.. , C

BEGIN THE DISPLAY LOOP, RESET THE BLINK MODE LEFT
FROM THE END OF THE DISPLAY LOOP.

. ·'100 CALL BLINK (0)

C
C SET THE BLINK MODE FOR THE CURSOR
C

CAll BLINK (1)
C
C NEV FRAME
C

CALL BUFRAM
GO TO 100

Example 5.9-10

5-112

•

•

5.9.4.3

•

••

•

),.

Scope Selection [SCOPE]

Vhen PSINIT is called to initialize THE PICTURE
SYSTEM, all Picture Displays (Scopes 1-4) are selected
for output. This selection will remain in effect
until the SCOPE subroutine is called to de-select the
Picture Displays to which output is directed. The
following is the SCOPE calling sequence specification
of Section 4. 1:

CALL SCOPE (lNU M)

The parameter passed to this subroutine specifies the
Picture Display to be selected (1-4). If IHUM is less
than 1 or greater than 4, all scopes will be de
selected and all subsequent data output will not be
displayed until the SCOPE subroutine is called again
to select a Picture Display.

If the user's particular PICTURE SYSTEM configuration
has less than four Picture Displays, the selection of
all scopes for output incurs no additional overhead,
but insures that output will be directed to the
Picture Display(s), regardless of the actual
configuration of the components of the Picture
Generator •.

5-113

5~ 10

5. 10.1

INITIATING THE DISPLAY OF DATA [NUFRAK,SETBUP]

The manner in which frames are displayed on THE
PICTURE SYSTEK is dependent upon the environment in
which the control program executes. The environments
that are available are:

1. The Refresh Buffer absent from the system
configuration.

2. The Refresh Buffer used 'in single-buffer
mode.

3. The Refresh Buffer used in double-buffer
mode.

In each of these enVironments, the basic progta.
structure is the same, and the only difference is the
way in which the display of data is initiated. The
following sections describe the display of data within
each of these environments. .

Di~play of Data without a Refresh Buffer

THE PICTURE SYSTEK may b. configured in what is known
as a Starter' Configuration. This minimal
configuration, shown in Figure 5.10-1, has all of the
hardware processing features ~fthe standard PICTURE
SYSTEM, but'; . does not include a Refresh Buffer. The
absence of the Refresh Buff_er.... reg.llires that as data is

•

transformed, clipped and viewport mapped it be sent •
directly to the Picture Generator rather than being
deposited in the Refresh Buffer for display on the
screen. This means that a new frame must be generated
by the control program for each refresh cycle. To
avoid flicker, the control program is therefore
constrained to update the display at least 30 times
per second. This limits, to a certain· extent, the
applications in which THE PICTURE SYSTEK can be used,
but provides for programs and applications written for
this minimal configuration to be easily upgraded to
the more flexible standard PICTURE SYSTEM
configuration.

5-114 •

•

•

•

The Graphics Software Package· is used as in the
standard PICTURE SYSTEM configuration with the
exception of the KUFRAH subroutine. This subroutine,
usually called to initiate the display of a new frame,
is not required in programminq a non-Refresh Buffer
confiquration. This is because all data ~s displayed
as it is transformed. For this reason, the user
simply restarts the display loop rather than call
NUPRlM1. The user variables ICLOCK and IFMCNT are
available to the user for display synchronization with
the line frequency •

1The NUPalM call may be included but viII function as a
no-operation call •

5-115

PICTURE.

CONTROLLER

PICTURE

PROCESSOR
PICTURE

GENERATOR

Piqure 5.10-1

THE PICTURB SYSTEM starter Confiquration

5-116

•

•

•

5. 10.2

•

•

•

Display of Data in Single Buffer Mode

THE PICTORE SISTEM may be used in sinqle-buffer mode
when the user's display requirements exceed the
capacity of half of the Refresh Buffer. This
condition may be diagnosed by the absence of most of
the expected data from the picture. (The Refresh
Buffer Address Reqister wraps around, leaving only the
last data drawn available for display.) The user
selects the single-buffer mode of the Refresh Buffer
by calling the SETBOF subroutine as illustrated in
Example 5.10-1.

C
C INITIALIZE THE PICTURE SYSTEM
C

C
C
C

C
C
C

CALL PSINIT(3,0",,)

AND SET THE REFRESH BUFFER TO SINGLE BUFFER MODE
\ . .

CALL SETBUF (1)

BEGIN THE DISPLAY LOOP

•

Example 5.10-1

The user may select single- or double-buffer modes at
any time during the execation of any given program.
The user should, however, be aware \of the subtle
difference between the use of the Refresh Buffer in
sinqle- and double-buffer modes. As Figure 5.10-2
illustrates, in single buffer mode, the data displayed
on the Picture Display is the same data which is beinq
updated by the user prog~am. This may result in a
refresh cycle which displays a portion of the user's
old data (old frame). In cases where the data may not
change drastically from frame to frame or where there
are many refresh cycles between frame updates, this

5-117

POSITION OF NEW

FRAME UPDATE

POINTER WHEN

THE REFRESHPOIN

PASSES IT

LAST DATA

OF T·HEOL'D

FRAME

..
TER

-

. ~.
. "

NEW FRAM.E

DATA

OLD FRAME

DATA v

- '

Fiqure'S.10-2

~

'~

~HE REF~£aH CYCL£

DISPLAYS ALL OF

THIS DATA

A Single Buffered Refresh Buffer

S-118

•

•

•

•

be of little consequence. The structure of a proqram
which uses single-buffer mode is, nonethele~s, the
same as if the Refresh Buffer were double-buffered.
In either case the user dra WSl all of the data that is
to be displayed and then calls the NUFRAM subroutine
so that the next data drawn will be stored at the
beginning of the Refresh Buffer. This is shown in
Example 5.10-2. If· no subsequent data is drawn, the
picture will appear static on the screen.
Alternately, the sinqle-buffered Refresh Buffer may be
used in a manner similar to a storaqe tube display.
In this manner, the user fills the Refresh Buffer with
the data which is to be viewed. This data will
continue to be refresed until an "erase" of the
Refresh Buffer is initiated by the user. The
equivalent of an "erase" is provided by callin~ the
NUFRAM subroutine twice in succession. Therefore, a
user could write an ERASE subrou~ine. Example 5.10-3,
which could then be called to "erase" the Picture
Display •

lThe~erm draws here means that the data will be
transformed, clipped, viewport mapped and stored into the
Refresh Buffer where it will be displayed (or drawn) upon
the next refresh cycle •

5-119

C
C INITIALIZE THE PICTURE SYSTEIi
C

C
C
C

C

CALL PSINIT(3,O",,)
I

SET THE REFRESH BUFFER TO SINGLE BUlYER MODE

CALL SETBUF(1)

C SET THE WINDOWING TR1NSFOR8ATION
C

. :;~

CALL WINDOW(-4000,4000,-4000,4000,-4000,4000,8000)
C
C SAVE WINDOWING TRANSFORMATION AND BEGIN THE DISPLAY LOOP
C
100 CALL PUSH
C
C MODIFY OR OBTAIN NEW TRANSFORMATION PARAMETERS
C

•
•

c
C CONCATENATE. THE TRANSFORaATIONS
C

c
C
C

C

CALL TRAN(ITX,ITY ,ITZ)
CALL BOT (IANGLZ,3)
CALL ROT (IANGLY,2)
CALL ROT'IANGLX~i)
CALL SCALE(ISI,ISY,ISZ)

NOW TRANSFORK THE DATA BY THE COMPOUND TRANSFORMATION

CALi DRAW3D(IDATA,N,IF1,IF2)

C AND DISPLAY THE DATA AND LOOP AGAIN
C

CALL NUFRAM
CALL POP
GO TO 100

Example 5.10-2

5-120

•

•

•

•

•

•

C
C
C
C
C
C
C
C

SUBROUTINE ERASE

THIS WILL ESSENTIALLY ERASE THE CONTENTS OF THE
REFRESH BUFFER ALLOWING THE PICTURE SYSTEM TO BE
USED AS IF IT iERE A STORAGE TUBE DISPLAY.

NOTE! THE "ERASURE" WILL TAKE ONE REFRESH CYCLE
AS DEFINED IN THE CALL TO PSINIT.

CALL NUFRAM
CALL NUFRAH
RETURN
END

Example 5.10-3

The user is free to use the single buffered Refresh
Buffer in either of the previous ways described, or in
some combination thereof. Example 5.10-4 illustrates
this with the use of the ERASE subroutine of Example
5.10-3 only between major frame chanqes.

5-121

C
C
C
C
C
C
C
C
C

C
C
C

C

C
C
C
1000

-" '.', ;

SUBROUTINE~PRAM2

THIS SUBROUTINE .DISPLAYS THE 2ND MAJOR PRAftE OP
THIS PROGRAft. IT IS ASSUftED THAT AN ERASE WAS
PERFORftED IKftEDIATELY BEFORE THIS ftODULE WAS
CALLED (WITH THE REFRESH BUFFER SET TO SINGLE
BUPPER !lODE).

BEGIN DISPLAY LOOP

•

•

EXIT PBOB THIS !tODULE YET ? GO TO 1000 IF SO

IF (IDONE.NE.O) GO TO 1000

CALL HUFRAH.
GO TO 100

POP THE '~~IGINALHATRIX~ ERASE THE DISPLAY AND EXIT
,. ,-' ,"

.cAiL ,i)GP·,.
. CALL ,E'RASE .".

RETURN' ,.
····END,;;'·

Example 5.10-4

5-122

•

•

•

5. 10-3

•

•

•

Display of Data in Double-Buffer Mode

The Refresh Buffer is typically used in what is termed
double-buffer mode where the Refresh Buffer is divided
into two separate buffers. Por this reason, the
default usage of the Refresh Buffer· is double
buffered, initialized to that state by PSINIT when
called by user program. In this mode, the user fills
a buffer with data to be displayed, calls the NUFRAM
subroutine to initiate its display and then may
proceed to fill the other buffer with new frame data.
This is illustrated by Fiqure 5.10-3. This method of
frame display frees the user to create a new frame at
his leisure without worry of degradation of his
picture. Example 5.10-5 shows the structure of the
display loop of a typical applications proqram which
utilizes the double-buffer mode. If the user's
application requires that the Refresh Buffer be used
in single-buffer mode for a given set of frames and
then returned to double-buffer mode, it would be done
as shown in Example 5.10-6.

5-123

C INITIALIZE THE PICTURE SYSTEK
C

C
C
C

C

CALL PSINIT(3,0",,)

SET THE WINDOWING TRANSFORMATION

CALL WINDOW(-4000,4000,-4000,4000,-4000,4000,8000)

C SAVE THE aINDOWING TRANSFORBATION
C
100 CALL PUSH
C
C MODIFY OR OBTAIN NEW TRANSFORMATION PARA!ETERS
C

•
c
C CONCATENATE THE TRANSFORMATIONS AND DISPLAY THE DATA
C TillCE

C

CALL TRAN(ITX,ITY,ITZ)
CALL ROT(IANGLZ,3)
C1LLROT(IAHGLY,2)
CALL ROT (IANGLX, 1)
CALL PUSH .. , , . '.
CALL SCALE(ISX1,ISY1,ISZ1)
CALL DRAW3D(IDAT-A,N,IF1,IF2)
CALL POP
CALL SCALE(ISX2,ISY2,ISX2)
CALL DBAW3D(IDATA,N,IF2,IF2)

C RESTORE THE ORIGINAL WINDOW THAT WAS SAVED
C

CALL POP
C
C AND DISPLAY THE DATA AND LOOP AGAIN
C

CALL NUFRAM
GO TO 100

Example 5.10-5

5-124

•

•

•

•

•

•

c
C ENTER THE DISPLAY SEGMENT WHICH MUST OSE SINGLE BOFFER
C

C
C
C
500

C

CALL SETBUP (1)

BEG~N DISPLAY OF THE SINGLE BUFPERED DATA

•
•
•

C EXIT SINGLE BUPPER BODE? (LOOP IF NOT)
C

IF (IDONE.EQ.O) GO TO 500
·C
C RESET BUFFER BODE TO DOUBLE BUFFERED
C

CALL SETBU.P (2)
•
•

'Example 5.10-6

5-125

BUFFER I

CURRENT POSITION

OF NEW

FRAME UPDATE

POINTER

BUFFER 2

LAST DATA

OF THE OLD

FRAME

.....
". NEW FRAME

DATA

)

.....
".

OLD FRAME

DATA

)

Figure 5.10-3

A Double-Buffered Refresh Buffer.

5-126

THE REFRESH CYCLE

DISPLAYS ALL OF

THIS DATA

•

•

•

•

•

•

5. 11

5. 11.1

INTERACTION USING THE TABLET

Data may be input to THE PICTURE SYSTEM by any of the
various standard DEC peripherals available for the
PDP-ll, or by any of the standard Evans & Sutherland
graphical input devices. The Tablet, however, serves
as the standard, qeneral purpose graphic input device
for THE PICTURE SYSTEM, performing those interactive
functions usually reserved for such graphic input
devices as light pens, ;oy sticks and function
switches. This section discusses in detail how the
Tablet may be used to perform pointing, positioning,
and other miscellaneous functions required for
flexible i"nteractive data input.

Tablet and Cursor Use [TABLET,CURSOR,ISPDWN]

Data is input from the Tablet within a user
application program by calling the TABLET subroutine.
The following is the TABLET calling sequence
specification of section 4.1:

CALL TABLET (ISTAT[,IX,IY,IPEN])

This subroutine is called with ISTAT=O to read the
current pen x,y coordinates and status. The pen x,y
coordinates which are returned in the IX and IY
parameters are scaled' ~nteqer values whose
approximate range is ±32700. The Tablet is considered
to be a tvo-dimensional input device whose~-coordinate
system origin is at the center of the tablet, as shown
in Figure 5.11-1.

This .coordinate system vas chosen for the tablet so
that the values returned to the user could be used
directly for pointing, positioning and tracking. The
pen status is returned to the user in the parameter
IPEN, so that the pen information may be determined by
the user. The status that is returned is the
information as read directly from the tablet. The
status information returned is shown in Figure 5.11-2.

i¥he-X;y coordinate values are scaled from the actual tablet
coordinate range {0-1777a) to the approximate data space
range t32700 (±77700 a).

5-127

As Figure 5.11-2 shows, the user may determine wben
the pen is down (1. e. pressed against the surf.ace of
the tablet) by testing bit 1 of the pen status vord.
since bit testing capabilities are not provided •
directly by FORTBAN, the integer function subroutine
ISPDWN is available to the FORTRAN progra.mer to
determine whether or not the pen is down. This
function subroutine returns the value 0 if the pen is
not down or 1 if the pen is down. This is illustrated
by Example 5.11-1 •

•
• ..

C
C READ THE TABLET VALUES AND PEN STATUS
C

C
C
C

c
c
C

CALL ~ABLET (O,IX,IY,IPEN)

IF 'THE PENIS "DOWN, ,GO'fOl 00

Ii (ISPDiN (IPEN).NE.O) 'GO TO 100
. "~'.' ,~.,.- • I _"

,THE PEN' IS NOT_DJHIN ,SO CONTINUE

'.
:Example ,5.11-1

The user may choose to utilize the tablet in what is
termed autolll:atic ,mode by setting the ISTAT parameter
to a non-zero value. In this mode, the user "tut~s
onHthe TABLET subroutine and the pen x, y coordina'te
and status are then updated automatically upon e~bh
refresh interrupt. In this way, the user constantly
has avilable the most recent tablet values without
explicitly calling the TABLET subroutine. Example
5.11-2 shows how the tablet may be used in automatic
mode.

5-126

•

•

•

•

•

00 _ ... - 00

Filjure 5-11-1

, " '.i/.!~~f /":'~ ti~· ~¥ ~;~~~~~fI1t~?~t-1~~1C(~: .. ' ~,,:i: .:\~
·::'r:-::'· '.

The Two-dimensional Coordinate System of the Tablet

15 14 13 12 II 10 9 8 7 6 5 4 3 2 I 0

'~" ~ ',I I' 'I 'l 'I: ~ : I,: ',: ~ -1'.::
PEN UP/DOWN

0= PEN UP

I =PEN DOWN
PEN PROXIMITY'-----------------I

0= NOT IN PROXIMITY

I = IN PROXIMITY

Figure 5.11-2

The Pen status as Returned by the TABLET Subroutine

5-129

c
c
C

c

INTEGER IX,IY,IPEN
•
•

INITIALIZE THE PICTURE SYSTEM

CALL PSINIT(3,O",,)

C AND TUBN ON THE TABLET FOR AUTOMATIC SODE
C

CALL TABLET (1,IX,IY,IPEN)
•
•
•

C
C BEGIN THE DISPLAY LOOP BY SEEING IF THE PEN IS DOWN
C
100 IF(ISPDVH(IPEN).EQ.O)GO TO 200
C
C THE PEN WAS DOWN •••
C_ .

•
•
•

Example-5.11-2

When ased in· either automatic or non-au tomatic mode,
the TABLET subroutine requires the user to acknowledqe
that the pen infor.ation has been read by clearinq the
IPEN parameter. If. this parameter is not zero when
the tablet values are to be updated, then the x, y and
pen status will not be updated unless the pen is down.
This requirement ensures that the user will not "miss"

. an occasion when the pen has been set down and always
has the most recent position (x,y) where the pen was
set down. Example 5.11-3 illustrates the clearinq of
the IPEN parameter after the pen position has been
determined.

5-130

•

•

•

•

•

•

•
•

c
C IF THE PEN IS NOT DOWN, BRANCH TO 200
C
100 IF (ISPDWN{IPEN) .EQ.O) GO TO 200
C
C THE PEN IS DOWN ••• DETERMINE THE MENU SELECTION
C

•
•
•

c
C MENU SELECTION DETERHINED ••• INDICATE PEN POSITION
C READ
C

IPEN=O
C·
C CONTINOE DISPLAY LOOP
C
200CQNTINUE

•
•
•

Example 5.11-3

It is often convenient to provide a visual feed back
of the current pen position in relation to the tablet.
For this purpose, a "cursor" may be drawn on the
Picture Display at a position which corresponds to the
x,y position of the pen on the tablet by callinq the
CURSOR subroutine. The followinq is the CURSOR
callinq sequence specification of Section 4.1:

CALL CURSOR(IX,IY,ISTAT[,IPEN])

This callinq sequence allows a cursor symbol to be
displayed at the position specified by the IX and IY
parameters. The cursor which is displayed is a simple
cross which is centered at the x,y coordinate

5-131

specified. The pen stat us (IPEN) is an optional
arqullen.t which. if specified, provides visual fe'edback
of the pen sta.tus by disp,layinq the cursor briqhter
whenever the pen is dowa, and also provides the •
information so that the cursor viII not be displayed
when the pen is not in the proximity of the tablet.
If the arqument is not specified, the cursor will
always be displayed at maximum iate'nsi ty. Example
5.11-4 shows the use of the CURSOR subroutine vith the
optional argument.

As vith the TABLET subroutine, the user may optionally
choose to display a cursor in "hat is termed automatic
1I0de" by setting the ISTAT parameter to a non-zero
val tle. 111 this mode, the user "turns on" the CURSOR
subroutine and a cursor viII then be displayed
automatically upon each refresh interrupt. In this
way, the user constantly has displayed the current pen
position without explicitly callinq the CURSOR
subroutine. When used in autollatic lIode in
con;unction with 'the TABLET subroutine, the user will
always have the current position o'f,the pen displayed
r'eqardless of the frame update ra te of a particular
applications proqram. Example 5.11-5 shows how the
automatic mode of the TABLET and CURSOR subroutine may
be'. specified •

INT'EGER IX, II, IPEN
C
C INITIALIZE THE PICTURE SYSTEM
C

CALL PSINIT(3,O",,)
C
C "TURN ON" AUTOMATIC MODE FOR THE TABLET AND CURSOR

'C

C

CALL TABLET (1,IX,IY,IPEN)
CALL CURSOR (IX,IY,1,IPEN)

C NOW BEGIN THE. DISPLAY LOOP WITHOUT WORRYING
C ABOUT TABLET UPDATE AND CURSOR DISPLAY.
C

Example 5.11-5

5-132

•

•

•

•

•

It should be noted that the tablet x,y coordinates
need not be used to position the .cursor. If· the
cursor is to be positioned by other means (i.e.
control dials, arithmetic computations, etc.), the
variable which will contain the x or y positioning
information should be specified rather than the pen
coordinate variables. The CURSOR subroutine, however,
e~pects an x,y position value in the ranqe of
approximately ±32700 to be specified. There is, of
cour3e, no restriction on the use of values to specify
that the cursor always be displayed at a qiven x or y
position, as shown by Example 5.11-6.

C

INTEGER IX,IY,IPEN,ZERO
DATA ZERO/O/

C INITIALIZE THE PICTURE SYSTEM
C

CAiL PSINIT(3,~",,)
C
C SET TABLET, CURSOR AUTOMATIC MODE(CUBSOB ALWAYS AT
C -Y=O)
C

CALL TABLET (l,IX,IY,IPEN)
CALLCURSOB (IX,ZEBO,1)

•
•
•

Example 5.11-6

5-133

The curs'or is defined in a window runninq froll -32767
to +32767 in x and Y, which coincides appoximately
with the ranqe of tablet values.

The cursor vill alva,s be displayed within a viewport
which is specified by the variables which defined the
viewport in effect when the CURSOR subroutine was
called. In Examples 5.11-5 and 5.11-6. this means
that the cursor will always be displayed in a viewport
which is the entire screen (since PSINIT last
specified a viewport). However, as· Example 5.11-7
shows, a cursor can be displayed within a dynamically
chanqinq vi.ewport lIerely' by callinq the VWPORT
subroutine before initiatinq a utomatic TABLET and
CORSOR mod'es and then- IDGdifyinq the '1ariables which
defined the viewport. This feature proves useful in
menu and. data poin.tinq functions.

!,-.... '.:

5-134

•

•

•

•

•

•

C
C
C

C

INTEGER IVL,IVR,IVB,IVT,IB,IY
DATA IVL,IVR,IVB /-2048,2047,-2048/
DATA IVT,IVH,IVY/2047,255,0/

INITIALIZE THE PICTURE SYSTEM

CALL PSINIT(3,0",,)

C SET THE ~NITIAL VIEWPORT
CALL VWPOBT(IVL,IVR,IVB,IVT,IH,IY)

c
C SET TABLET, CURSOR AUTOMATIC MODE
C

C

CALL TABLET (1,IX,IY,IPEH)
CALL CURSOR (IX,IY,1,IPEN)
IPOIHT=O

CBEGIN THE DISPLAY LOOP •••
C

•
•
• c

C .. IF IPOINT=O THEN RESET THE lUX VIEWPORT FOR
C . CURSOR .DISPLAY, OTHERWISE SET ANOT~ER VIEWPORT

.c

C

IF (IP(hNT~r:Q;-O) GO TO 200
IVL=-1024
IVR= 1024
IVB=-1024
IVT= 1024
GO TO 210

C RESET THE VIEWPORT VARIABLES FOR BAX SIZE VIEWPORT
C
200 IVL=-2048

IVR= 2047
IVB=-2048
IVT= 2047

210 CONTINUE

Example 5.11-1

5-135

5. 11.1

5. 11.2.1

Pointing

The user may input data interactively with the tablet
by:

1. selecting a menu item which specifies a
command to be performed.

2. identifying a data element with which the
user wishes to interact.

Both of these functions may be considered to be
pointing functions; i.e. the user points to a menu
item or points to a particular data element. However,
the implementations of the two pointing functions are
typically different. The following two sections
describe the use of the Tablet to perform these two
pointing fuDctions.

Pointing at Menu Items

A menu item is a symbol, usually text, which when
selected by the user issues a command to the user's
proqram. Figure 5.11-3 shows a menu which includes
both te~t and other symbols as menu items. In thi~
program, the user would position the pen on the tablet
to the location which would . correspond to the menu
itam to be selected, and press the pen down indicating

•

to the proqra~thatthe particular menu item, whose
boundaries contain that x,y position, is being •
selected. The program would then initiate the action
required for the particular menu item selected. The
user may proqrallmably determine which (if any) menu
item is being selected by comparing the x"
coordinates of the pen with the boundaries defined for
each of the menu items. However this comparison need
be performed only if the pen is down. Example 5.11-8
illustrates how this may be done.

5-136 •

•

11\

MENU ITEMS

•
PLACE ROTATE MOVE

DELETE HIGHER

SPIN LONGER

ILT WIDER LEFT

Fiqure 5.11-3

A Menu which Includes both Text and other Symbols

• 5-137

C
C
C
C

C

•
•

IF THE PEN IS DOWN, ENTER THE KENU SELECTION CODE,
OTHERWISE, BRANCH TO 300

IF(ISPDWN(IPEN).EQ.) GO TO 300

C MENU SELECTION ••• COMPARE THE MENU AREAS WITH
C THE TABLET X,I COORDINATES

IP(II.LE.O) GO TO 250
C
C UPPER PORTION OF MENU AREA, LEFT OR RIGHT SIDE?
C

IF(IX.LE.24576) GO TO 230
C
C UPPER RIGHT SIDE ••• UPPER OR LOWER MENU ITEM?
C

IP(IY.LE.16384) GO TO 210
C
C UPPER,UPPER RIGHT KENU ITEM ••• PERPORM SELECTED
C FUNCTION
C

C
C
C
C

•
•

HEND ITEM SELECTION COMPLETED, INDICATE PEN
POSITION READ

IPEN=O
300 CONTINUE

Example 5.11-8

A feature of the tablet is that the menu may be only a
paper overlay which is placed on the tablet, or a menu
may be displayed on the screen which corresponds to
the menu areas on the tablet, enabling the user to
point with the cursor to the menu area on the screen
to select a menu item. An additional feature is that
a viewport may be defined within which the non-menu
data may be mapped and displayed without extendinq
into the menu areas, as shown in Figure 5.11-4.

5-138

•

•

•

5.11.2.2

•

•

•

Pointing at Data" Elements [HITWXN,HITESTl

A data element is typically pointed at by the user to
indicate that a particular function is to be performed
upon, or in relation to, the data element pointed at.
Such functions might be the deletion of the data
element, the stress computation on the element in
relation to its neighboring elements, or any other
function which may be programmed as a particular
application. This pointing function, often
erroneously considered to be strictly a light pen
operation, is performed with THE PICTURE SYSTEM by
what is known as nhit testing". This function,
performed by the Picture Processor's clipping process,
allows a nhit window" to be defined through which all
data in question may be processed to determine whether
any of the data was "hit"; i.e. whether any point
(visible or not), or any part of any line, fell within
the "hit window~.

This process is superior to the analogous function of
the light pen in several ways:

1. The hit testing feature, when coupled with the
TABLET and CURSOR subroutines, allows the
user the ~bility to point at and identify data
elements, with the added flexibility that the
size" of the "hit window" or region of interest
described about the pen position may be varied
dynamicaLly to allow a wide range of pointing
resolution upon user demand.

2. The "hit window", while usually positioned by
the x,y coordinates of the pen on the tablet,
may be specified arithmetically, allowing data
which is not even displa yed to be "hit".

3. The "hit testing" technique requires no trace
back within the display file to determine which
data element was "hit" since the user programmal
controls the level to which "hit testinq" is
performed.

5-139

PLACE

DELETE

SPIN

TILT x

NOTE:
CLIPPED
DATA MAPPED
TO VIEWPORT
BOUNDARIES

ROTATE

HIGHER

LONGER

WIDER

MOVE

LOWER RIGHT UP

SHORTER

NARROWER LEFT DOWN

Figure 5.11-4

A Displayed Menu Illustrating Pointinq

OUT

IN

at Menu Item with the Cursor and Data which
had been Clippe~ Mapped to the Viewport

Boundaries.

5-140

11\

1\

•

•

•

•

The "hit testing" capaoility is provided within the
Graphics Software Package by the HITiIN and HITEST
subroutines. The following are the HITWIN and HITEST
calling sequence specifications of Section 4. 1:

CALL HITWIN(IX,IY,ISIZE[,IW])
CALL HITEST (IHIT,ISTAT)

The HITWIN subroutine is called to specify a "hit
window" through which data may be processed to
determine whether any pf the data was "hit". HITiIN
also suspends output to the Refresh Buffer, since
"hit" testing uses the transformation and clipping
facilities of the Picture Processor in a way which
would result in misplaced picture elements if ~hey
were allowed to be displayed. The "hit window" is
centered at the x,y coordinates specified by the IX
and IY parameters and whose half-width and half-height
is specified by the ISIZE parameter. All three
parameters will· be scaled by the homogeneous
coordinate, IW, if it is specified. Such a "hit
window" is considered to have finite boundaries in x
and y directions (determined by the ISIZE parameter)
and to extend from 0 to IW in the Z direction as Shown
in Figure 5.11-5. Th~ size of the "hit window" may be
varied by:modifying the. value of the ISIZE parameter.
The actual size of the hit window (in inches) may be
determined by the following ratio:

ISIZE actual "hlt--window" width
----- = -----------------------------------
Ii actual "hit testing" viewport width

with a "hit testing" viewport which is the entire
screen (10 inches_and IW its typical default value
(IW=32767), this ratio would reduce to:

ISIZE actual "hit window" width
----- = -------------------------
32767 10

In this case, to achieve a "hit window" which is 1
inch in width:

5-141

,I,

~HIT WINDOW

Fiqure 5.11-5

Tbe "~it Window" as specified by the HIT WIN Subroutine Illustratinq

its Boundary = Ii.

5-142

•

•

•

• Left Blank Intentionally •

•

• 5-143

ISIZE 1
----- = or ISIZE = 3216
32167 10

These subroutines allow the tablet to be used in a
manner similar to a light pen, i.e. any data element
which appears behind the "hit window" will be "hit" if
tested during the "hit testing" process. Hit testing
is performed at a staqe in the picture Processor's
operation where pictorial data has been completely
transformed, put in perspective and mapped onto a
region running from -32767 to +32767 in both x and y,
Which is identical to the reqion in which the cursor
is defined. Hence, if the picture's viewport is
identical to that of the cursor (namely, the viewport
in effect when the CURSOR subroutine was called
usually the full screen), then a picture element which
appears near the cursor will be hit. If the picture
occupies a viewport other than the full scope, the
cursor should also be confined to that viewport if hit
testing is to be performed.

Hit testing may be performed on lines, dots, or the
origin of a character string, but not the characters
themselves, since they are generated by the Character
Generator after the clipping process.

•

The HITEST subroutine is called (normally with •
ISTAT=O) to determine whether any data has been "hit"
since the "hit window" has been specified or since the
last call to the HITEST subroutine. This allows the
user centrol over the level to which hit testing 1S
performed; i.e. groups of data sets may be tested at
once, or a single data element can be individually
tested merely by the placement of the call to the
HITEST subroutine. This subroutine is also called at
the completion of the "hit testing" process vith
ISTAT~O to restore the transformation which was in
effect at the initiation of "hit testing" and to res~t
the Picture Processor so that all subsequent data
drawn viII be output to the Refresh Buffer.

The HJTWIN and HITEST subroutines should be called in
the following manner:

1. CALL the HITWIN subroutine to set the
desired "hit window". This window
will be centered at the x,v coordinate
and of the size specified by the user.
Typically, the x,y coordinates are

5-144 •

•

•

•

those returned by the TABLET sub
routine but may correspond to any
values, dynamic or otherwise.

2. Draw each data element, or data set,
for which "hit testing" is to be performed
(the data is not actually drawn but is
processed for hit testing purposes
only) •

3. Determine whether a "hit" has been made
upon the data element or data set by
calling the HITEST subroutine and
testing the IHIT parameter whose
value will be returned:

=0 if no hit occurred.
=1 if a hit has occurred since the

initial call to HITWIN or the
last call to HITEST.

4. steps 2 and 3 may be repeated as required
to determine the data element or data
set which was "hit". The final call to
HITEST should have the second argument,.
ISTAT, set to a non-zero value to restore
the transformation in effect when the
HITWIN subroutine was called and to allow
subsequent data drawn to be written into
the Refresh Buffer.

The previous steps (1-4) specify the manner in which
hit testing Sb,OJ,ll,.g. be performed using th-.e HITWIN and
HITEST subroutines. The user should note that the
transformations performed upon the data when it is
displayed must also be performed upon the data when
"hit testing". These . transformations include
WINDOWing, ROTation, TRANslation, SCAL{E)ing and
INSTancing. This simplifies the "hit testing" process
since it may be done within the logical flow of the
program# while (or as if) - a new frame is being
created. Example 5.11-9 illustrates how "hit testing"
may be used to determine if an object, in this case a
"HOUSE" has been hit.

5-145

c
c
C
C

C

INITIALIZE THE PICTURE SYSTEM AND TURN :ON
AUTOMAT~C TABLET AND CURSOR

CALL PSINIT(3,0",,)
CALL TABLET {l,IX,IY,IPEN}
CALL CURSOR (IX,IY,l,IPEN)

C SET THE PERSPECTIVE WINDOW
C

C
C
C
C
100

C

CALL WINDOW(-5000,5000,O,10000,0, 10000,-20000)

BEG~N THE DISPLAY LOOP BY PERFORMING THE
TRANSFORIUTIONS

CALL PUSH
CALL TRAN
CALL ROT
CALL ROT
CALL ROT

(IT X, .IX Y, IT Z)
(IA NGLZ,3)
(IANGLY,2)
(IANGLX,l)

C .IF NOT HIT TESTING PROCEED WITH _ THE .DISPLAY
C LOOP, OTHERWISE •••
C

IP(I.EQ.O) GO TO 200
C
CHIT TESiING ••• WAS BEGIN PERF~RHED
C

C

CALL HITEST (J,l)
IF{J.EQ.O) GO ~o 200

C IT WAS HIT, UPDATE THE VALUES ACCORDINGLY

C

· ·
IPEN=O

C CONTINUE THE DISPLAY LOOP
C
200 CONTINUE

· ·
Example 5.11-9-

5-146

•

•

•

5.11.3

•

•

•

Positioning
\", ',' ",.,' ,

The Tablet is a natural positioning device, since the
current x,y coordinates of the pen may be read at'any
time, and when the TABLET subroutine is used in
automatic mode the most recently read pen coordinates
are available at all times without specifically
calling the TABLET subroutine. The x,y coordinates of
the pen which are returned by the TABLET subroutine
are in the range ±32700, a direct relation with the
range of the data space values. This allows the user
to directly use the pen coordinates to position data
elements within the data space performinq such
functions as; line endpoint positioning, draqging,
inkinq and rubber-band lines, with a minimal amount of
software effort •

5-147

•

•

1 •

REFERENCES

"Principles of Interactive Computer Graphics"
Newman and Sproull, McGraw-Hill, 1973

2. "Matrices"
F. Ayers, McGraw-Hill, 1967

3. "The DOS/Batch Handbook", DEC-11-0DBHA-A-D
Digital Equipment Corporation, 1974

4. "BT-l1 FOR~BAN Compiler and Object Time System
User's Manual", DEC-11-LRFPA-A-D
Digital Equipment Corporation, 1974

5. "RT-11 System Reference' Manual", DEC-11-0RUGA-A-D
Digital Equipment Corporation, 1973

•

•

•

APPENDIX A

SPECIFICATIONS OF THE PICTURE SYSTEft

This appendix includes the Functional Specifications for
THE PICTURE SYSTEM as well as the detailed Hardware Specifi
cations for the Picture Processor. The Functional Specifica
tions provide the performance statistics describing the
capabilities of THE PICTURE SYSTEft as a general purpose
graphics system. The Picture Processor Hardware Specifica
tions provide the interfacing, command and data details
required to utilize the hardwar~ at a systems level •

1-1

A .. t ~H:a PICTURE; S;YS,'V]!'!! JroJBC'rION§A,L spm:c.'IP:ECA:'I'HWIS

rna folIo:winq: tfesr::.rme5 the: f:u:nc:tional. speci.fi.ca'1tio,D:s Of.
T'HB: PLCTtrR:Pl SYSTM_ %'hes:e sp'ee::ifi.catiQ.ns dlet.ail. the ca.pa.
h·ili.ties o:f each: O'£' toe coorponents of the sJs·t.elm: t.b.e
P:ii.ctQre C()lltEollar, Picture Processor ~ Ref.r:esh ErllOffer ..
Cha'racter Generatar" pictuI:'e G:ene:ratoJ:" Pi.ctllre D'isp.~ay
and T'ab1.et.

'., ... ~ .

•

•
A-2

• :

•

•

A.1.1 Picture controller
General Functions

Computer 1

Word Size

Dimension Modes

Coordinate Specific~~
tion Modes

Drawing Modes

- Contains the data base.
- Executes the display programs.
- Performs input/output operations •

- Any DEC PDP-11 Family Computer.

- 16 Bi t.

- THE PICTURE SYSTEM displays two
and three-dimensional objects.

- I~Q-1!m~n2iQnA! data requires two
words of Picture Controller memory
to store the x and y coordinate
values of a point.
Ia~~=gim~§iQnal data requires
three words of Picture Controller
memory to store the x, y, and z
coordinate values of a point.

- Homogeneous coordinate data repre
sentation can be used with THE
PICTURE SYSTEM in order to provide
a much larger effective dynamic
range by scaling the normal two
and three-dimensional data.

- lb§Q!~~g coordinates (A) used to
define points which are a given
displacement from the origin of
the data space:

- Relative coordinates CR) used to
define points which are a given
displacement from the previous set
of coordina tes.

- Picture elements may be specified
in any of the following sequences
of coordinate point definitions:

• A,A,A,A, •••
• A,R,R,R, •••
• R,R,R,R, •••

- The ~QY~ mode (M) moves the beam
position to a specified location
with the beam intensity off.

lTHE PICTURE SYSTEM may be interfaced tO,any PDP-11 Family Computer.
PICTURE SYSTEMS have been interfaced to PDP-11/05, PDP-11/35 and
PDP-11/45 computers with various standard DEC peripherals includ
ing disks, DECtapes, magtapes, printers, etc •

1-3

Instancing

Parameter Load/Store

A-4

- The Qr~~ IQ mod~ (OT) draws a
straight line from the current
beam position to a new specified
location and leaves the beam
position at a new location.

- The QQt mode (D) moves the beam
position to a specified location
with the beam intensity off and
then intensifies the beam at that
specified location. The beam
position remains at the dot location.

- The ~h~~!£!~~ mode ee) draws the
specified character beginning at
the current beam position and then
moves the beam position with in
tensity off, to the position where
the next character in a string begins.

- Picture elements may be drawn using
any of the above modes one by one or
they may be drawn using any of the
following sequences of the above
modes:

• H,DT,l'l,DT, •••

• PI.DT,DT.OT ••••

(unconnected
lines)
(lines connected
end-to-end)

•

• OT,H,DT.M ••••

• OT,DT,DT,DT ••••

(another mode
sequence for
unconnected line~
(another mode •
sequence for
lines connected
end-to-end)

• O,O,D,O, ••• Ca series of
dots)

• c.c,c,c, ... (a string of char
acters)

- A method of defining in the data
base a two- or three-dimensional
structure once and replicating it
several times in a picture in dif
ferent positions, sizes and orien
ta tions.

- Instancing may be performed to any
level.

- The Picture Controller can load and
store all control registers, status
registers and matrix registers that
reside in the other components of
THE PICTURE SYSTEM.

•

\

•
1.1.2 Picture Processor

General

Transformations

Compound Tran~forma
tions

.-----
Clipping

Perspective

• 1-5

- The Picture Processpr operations
are implemented in digital hardware.

I~n2!~!~ objects in any direction
in three space.
Rotat~ ob;ects about any axis in
three space.

- ~£gle2 obiects with respect to any
of the dimensions in three
space.

- Perspective transformations can be
performed on data passed to the
Picture Processor.'

- The Transformation Matrix is expressed
in" homogeneous coordinates which
allows much larger translational
values than would otherwise be
possible.

- creates mirror images of ob;ects
about a plane.

- Multiplies transformation matrices I)
together while maintaining full-word
ac.curacy.

- The Transformation Matrix may be
loaded from the data base or stored
into the data base residing in the
picture controller memory.

- There is a push-down stack for stor
ing four full transformation matrices
with provision for continuing the
stack in the Picture Controller memory.

- Extracts the portions of the objects,
defined in the data base, that are
within a program-specified field of
view.

- In two dimensions, the field of view
is a program-specified rectangular
region of the data space.

- In three dimensions, the field of
view is a pyramid or frustrum (trun
cated pyramid) in the data space
whose apex is at the eye.

- Clipping is performed with respect
to the program-controlled six sur
faces of the frustrum.

- Displays realistic line representa
tions of three-dimensional obiects
as they appear to the eye with
refer~nce to relative distance or
depth •

Viewport

zoominq

Hit Test

Memory write Back

1-6

- The viewport specification is under
proqram control and ~efiDes a six
surface region of the Picture Dis·play •
where the picture is to appear. Data
which has been transformed, clipped,
and put in perspective is linearly
mapped into the viewport which allows
complete separation of the coordinate
systems of the drawinq space and the
Picture Display.

- The resolution of the data mapped
into the viewport is 16 bits, which
allows this data to be used-for
precision plots.

- Multiple viewports may be defined
for a given frame to give simultan
eous use of several areas of the
screen.

- Specification of viewport front and
back provides the intensi ty bounds
for depth-cueing.

- The Picture Processor allows for
moving smoothly and quickly into
(or out of) a cQmplex data structure
in order to obtain a more detailed.
(or wide a~qle) view of a c~o$~n
region in the drawinq space.

- THE PICTURE SYSTEl'l .can detect whether
any part of a given picture element
is within a program-specified region
in the data space or on the Picture
Display. Hit Test is used for imple
menting the pointing function with a
data tablet, eliminating the need for
a light pen.

•
- Under program control, transformed

digital data can be written back into
the Picture Controller's memory to
drive a hard copy plotter, for example,
or as data for further computation •

•

•

•

•

1.1.3 Refresh Buffer
General Punction

Data Content

Buffering

Cursor

Size1

- The Refresh Buffer is for storing
processed digital frame data allow
ing complete separation of Picture
Display refresh requirements from
the dynamic picture update require
ments.

- Dots and line endpoint data for use
by the Picture Generator (one com
plete dot or line endpoint defination
per buffer entry containinq 12 bits
for each of the x and y coordinate
values and 8 bits for the intensity
value) •

- Packed character codes for use by
the Character Generator (up to three
codes per buffer entry).

- Status information used to control
the displaying of the data.

- Program-.selectable single or double
buffering is standard.

- A dynamic cursor can be maintained
regardless of the frame update rate.

- In single buffer mode, up to 8188 dots,
line endpoints, or character code

-·entries can be stored in th-e- buffer
in any combination.

- In double buffer mode, up to 4092
dots, line endpoints, or character
code entries can be stored in the
buffer in any combination~

lThe Standard Refresh Buffer is 8K, 36 bit words. An additional
8K of Refresh Memory may be obtained to provide a 16K Refresh
Buffer •

A-7

1.1.4 Character Generator
General Function

Character Set

Sizes

Character 'O~ientation

Capacity, "

"

- Accepts character codes and produces
properly sized digital character •
strokinq data for the Picture Genera~
tor.

- Ninety-six character extended ASCII
cha rac ter set.

- There are 8 character sizes avail
able under program control ranging
from 0.Q7 inches high in increments
of 0.07, inches to 0.56 inches high
on the Picture Displa v. The ,charac
ter width is also under proqram
control with 8 different widths
selectable for each size.

- Horizontal 90 0 counter-clockwise.
orientation.

- A ~aximumof 1725 charactetscan be
.displayed at a refresh rate of 30
frames per second.

•

•

•

•

•

1.1.5 Picture Generator and Picture Display
General Function - Converts digital coordinate and

intensity information to analog
voltaqes to drive an electron beam
across a phosphor-coated surface.

Line Modes - ~Qlig.

Intensity Modes

Intensity and'
contrast-Controls

Refresh Control

Disp1ay Rates

Display Type

1-9

- ~li~~mode allows selected picture
elements to blink on and off.

- ~9~~ mode allows selected lines
of a picture to be dashed.

- ~Qn~~an! intensity of program-selected
picture elements may be chosen from
256 levels. Lines are drawn at a
constant rate which assures uniform
brightness for the chosen intensity
level.

- R~E!h-£g~ing allows the intensity of
lines to vary continuously with depth
(,i. e., the z coordinate of the displa y) •

" - In order to pres~nt a uniform varia- :
tiOD in briqhtness, the intensity '"
control of the Picture Display treats
the z coordinate data as the logarithm
of the intensity to be shown on the
display. '

- The contrast control of the Picture
Display is completei y indep~ndent of-
the intensity control.

- The refresh cycle is controlled by
synchronization with the power line.

- I1QY~ ti1!~ (for an nIt move)
, S .48 x n + 2.0 usec for n ~ 2"

< 3.0 usec for n < 1/2"
R£a~ Ii~ (for an nn line)

S 1.85 x n + 2.0 usec for n ~ 1/2"
< 3.0 usec for n <1/2"

- Q.Q~ Iim~ (for dots spaced nIt apart) ,
S .6 x n + 4.85 usec for n ~ 1/2"
< 5. 15 usee for < 1/2"

- Appoximate display capacities at
30 frames per second refresh rate:

-11500 connected 1/2" lines
• 1625 connected 10" lines
• 6650 dots 1/4" apart
• 1725 characters .14" high (average)
• 1500 characters .56" hiqh (average)

- Ca11igra phic.

Deflect iOI1 TJ pe

Spot Size

Addressable Locations

Endpoint Katching

CRT Size

Phosphor

- ElectroRaqnetic

- 0.020 inch.

- 4096 x 4096.

- 0.020 inch ..

- 21" rectanqularr 10" x 10" quality
viewing area ..

- P4.

1-10

•

•

•

•

•

•

1.1.6 Tablet
General

output

Resolution

Samp1inq Rate

Size

Cursor

- General purpose interactive input
device.

- 11 bits of x, 11 bits of y, and pen
up/down status.

- Digital:
- Graphic:

11 bits for both x and y.
100 lines per inch.

- Variable up to 200 samples per
second.

11" x 11" useful area.

- The cursor location on the Picture
Display may be made to correspond to
the stylus pen position on the
tablet.

1-11

A.1.1 PDP-l1 UNIBUS ~ddresses Reserved for the Picture System

The Standard PICTURE SYSTEM reserves the PDP-l1 UNIBUS
addresses summarized by Table A-1, for interfacing to •
the Picture PI:ocessor and the various PICTURE SYSTEM
peripherals available.

Table A-1

Reserved Interrupt
Devi£g ~~iRy§_!dd[g§2g§8 __ ve£~Q.k8

Picture Processor 167110 - 767776 300,304

Lorgnette 161760 - 761766 310

Keyboard 167750 - 767756 324

Svitches·& Lights tl 761740 - 767746 none

switches & Liqhts #2 761730 - 161736 none

Switches & Liqhts #3 ·761120 - 761726 none

Tablet 777730 - 771736 330 • Proqrammable 761700 - 767706 none
ftaintenance Panel

DR 11- B 712410 - 772416 124
(Picture Processor)

• 1-12

•

•

•

A.2 THE PICTURE PROCESSOR HARDWARE SPECIPICATIONS

The followinq describes the PDP-11/Picture 'Processor inter
face reqisters used to communicate the commands and data to
and from the Picture Processor and the internal reqister struc
ture and functions performed by the Picture Processor •

1-13

•• 2.1 PDP-11 Picture Pr,ocessor Interface Beqisters

This section describes the PDP-11 UNIBUS addressable req-
isters that COli prise the command and data interface paths •
between the PDP-11 and the Picture Processor. They are
functionally divided into three classifications:

1. Refresh Timinq Register
2. Command Registers
3. Data Transfer Registers

Table A-2 lists these registers and the interrupt vectors
which are associated with them. The sections that follow
qive detailed descriptions of the functions of the reqis-
ters and the bits within thell. .

A-14

•

•

TABLE A-2

UNIBUS INTERRUPT

• BAD .§l11DQL AQJH!~§..§II --y'~~!Q!8

Real Time Cleck BTC 761770 300
status Register SR 761772 none
Repeat Status Reqister RSR 167714 none
Word Count Register DRWC 772410 none
Bus Address Register DRBA 772412 none
DMA Status Register DRST 172414 124

•

A-15

A.2.,l.1 Refresh Timing Reqister (RTe): .1677108

15 14 13 12 II 10 9 8 7 6 5 4 3 2 o

~~III
:;0 ____ -----" 1

'----.. .. .,.--~,

lEA --------------------------------------~

RUN --~

CNT--J

The RTe provides a mechanism for interruptinq the PDP-ll
at intervals which are programmable multiples of 1/120
second. (ThePDP-T 1 Line Frequency Clock interrupts at
1/60th second).

15-9-

8

11Mlt '

,,' 'unas's'fgned
' ...

, Master Clear
(ftC)

7 Unassiqned

6 Reqllest
interrupt
(REQ)

A-16

When set causes a pulse
that resets the Pict~re
Processor and picture .-... --.~.--
Generator to ~heir
initial state'. This
provides a mechanism
for initializing the'
Picture Processor
without executinq a
RESET command. This
bit always reads as
zero.

Set every n/120 seconds
where n is the two's
complement of the count
field (see bits 3-0),
if bit 4 is set. This
bit must be cleared by
the interrupt routine
to acknowledge interrupt
service.

•

•

•

5

• 4

3-0

•

•

Interrupt
Enable
(IEl)

Run (RUN)

count 3,2,1,0

1-17

set to allow REO (bit 6)
to cause an interrupt.

set to allow REO to
be set.

Four bit field loaded
with two's complement
of the number Cn) of
1/120 second intervals
that are desired to
elapse before REO is
set. Bit 3 is the
MSB. Clearinq all
bits results in n=16.

1.2.1.2 Command Registers

_.-•... _-_._-

a. status Register (SR): 767772,

15 14 13 12 II 10 9 8 7 6 5 4 3 2

RBSTOPPED J t
RBDONE ~
RBSS

SINGLE

NO

NC

DC

SPTR
J

CURSOR
~ .'

ENO

lOUT

ERU

·PPDONE

o

The status Reqiste~ is used to provide global operatinq
mode information, such as single or double buffer, to the
Picture Processor, and also to initiate the display[re
fresh process in the Refresh Suffer.

15 RBSTOPPED

14 RBDONE

1-18

set by the Refresh Buffer
Control when the refresh
process stops. Clearing
this bit causes the re
fresh process to start.
Set. by INIT.

If this bit is set when
RBSTOPPED is sat it indi
cates that the refresh
process has stopped be
cause the end of the
current refresh data has

/

•

•

•

•

•

•

13

12

RB Single
Step
(RBSS)

SINGLE Buffer

11 Unassigned

12,9,8 Nev Data eND),
New Cursor (NC),
Display Cursor
(DC)

A-19

been reached. If it is
not set it means the
refresh process has stop
ped because a "status Halt"
(see Section A.2.1.4) was
e ncoun tered by the Refresh
Buffer control, or that
bit 13, RBSS, is set.
Set by INIT. (Read only
bi t.)

When this bit is set the
Refresh Buffer control will
stop the refresh process
after each read access
(RBSTOPPED will be set).
This is a diagnostic mode
that" enables the data
accessed by the refresh
process to be read back
to the PDP-11 using a
STORE command. Cleared
by INIT.

If this bit is set, the
Refresh Buffer is confiqured
as a single buffer with a
four word cursor area and
an 8188 word data area. If
it is clear, the Refresh
Buffer functions as a
double buffer with two four
word cursor areas and two
4092 word data areas.
cleared by INIT. See
Figure A-1.

These bits are used to
indicate special actions
to be taken by the Refresh
Buffer control when it
begins a refresh operation.
These bits are only sampled
by the Picture Processor at
the beginning of the re
fresh cycle (i.e. whenever
RBSTOPPED is cleared).
Their functions are as
follows:

'C
I

I"IJ
o

o

8191

•

REFRESH MEMORY
AVAILABLE

? ICURSOR
:3 AREA

4

8191

DATA
AREA

STRUCTURED AS
SINGLE BUFFER

Figure A-1

? lCURSOR ~
:5 AREA.:#:'_'

'4

. .i,.:

,;:,D,ATA:',,:.,
"AREA#'r

4095 ' ___ ---I
4096· ."

4 o~9>ligmi~ 2' ·1
5000 j

8191

DATA
AREA-#:2

STRUCTUR£D AS
DOUBLE BUFFER

Refresh Memory structure

•

NOTE: THE REFRESH BUFFER MAY
OPTIONAllY BE EXPANDED
TO TWICE ITS STANDARD
SIZE TO PROVIDE FOR A
REFRESH BUFFER OF 16384
WORDS.

• ,',

•

•

• A-21

!n_QQ~~!~_~Y!!~£_HQde:
ND - Causes the area of the
Refresh Buffer currently
assigned as the "write"
data area to become the
"read" data area, and as
signs the current "read"
data area as the new
"write" area. This pre-.
pares for the display of'
the data which was just
written into the Refresh
Buffer.

NC - Causes the area of
the Refresh Buffer cur
rently assigned as the
"write" cursor area to
become the "read" cursor
area, and assigns the
current "read" cursor
area to be the new "write"
cursor area. S ubseguen t 1

refresh cycles that dis
play a cursor will re
fresh from the new "read"
cursorarea._ The re
fresh Buffer "write"
cursor area addressing
mechanism is initialized
to point to the begin
ning of the assigned area.

~.

DC - If this bit is set
when a refresh cycle is
started, the current
"read" cursor area con
tents will be displayed
in addition to the con
tents of the current
"read" data area.

In Single_~~!!~£:
ND - Causes the Refresh
Buffer "write" data
addressing mechanism to
reset to the beginning
of the data area, and
causes the subsequent
refresh cycle to start
reading fro. the beginning
of the data area.

'Stac·k ;P-obrte-r
,;(SP:TB)

£.uas.o.a

-::Ena b3.:e ~!H.o

.oYsria:p
JE'NQj

..:1--22

NC - .Ca usest.he 'Re-.f;r'9sh
Buffer nw.ri ten :cw::s.oJ:
area.a~d-:e~si~q :mech'.8.:ll'i~m a
to be ~n.1 t1al1z·edto :P010tW
to the beqinninq of the
cursor area.

DC- (same as double buffer).

ND, NC, and DC are cleared
by IN IT.

These bits are used to
addr~ss the currently avail
able matrix area on the
Matrix stack (see section
A.2.2). This field is auto
~atically incremented after
a 'PUSH operation and decre
'men·ted before a :POPope:ra·
-tion. - .Ifthe stacki.s
:,(S:PTR=4) a'nd a PUSH is
ittempted, or empt:y(SPTR=O)
B.~n:d a POP is at-tempted ·the
S'T:ACK ERROR :bit of the :DMA
.:s·tatusRegi ster (se eS.ection
A .• 2.1.4) wi'll be set and
,the ope ra ti on "",111 'no-tbe
performed. ·,Cleared by .-IN.I'l.

~hen this bit is set, any
data that is normally
~ritten in th~ Refresh
Enffer will· be written in
-t:~.ecurrently assigned
''',vri,te-n cursor area. If
~ore than four draw com
mands ~hich result in data
being vritteninto the
cursor area are executed,
then the previous contents
of the cursor area will be
overwri tten.

If this bi t is se-t, the
ATTENTION bit of the DMA
status Reqister (see
-sectionA.2. 1.4) will be
set ~ach time a DRAW2D
or DRAW3D command is
e.xecuted by the Picture
Processor and if the RSR
coordinate Count (see

•

•

•
2

1

•
o

•

Inhibit
Output
(lOUT)

Enable RSR
Update
(ERU)

Picture
Processor
Done
(PPDONE)

1-23

section A.2.2b) is such
that the command would
normally be repeated, the
subsequent command execution
will be inhibited until bit
o of the DMA status Register
is cleared. This bit is
useful in "hit testinq" to
determine which draw com
mand resulted in the "hit".
Cleared by INIT.

When this bit is s~t, it
will prevent any data from
beinq written into the
Refresh Buffer. This bit
is also useful in "hit
testing" where data passinq
through a hit window would
appear misplaced if dis
played. Cleared by INIT.

If this bit is set, the
Coordina te Coun t field of the
Repeat status Register (see
Section b below) equals neq
ative-one (all l's), the
Picture Processor will auto
matically fetch new con
tents for the RSR via the
DMA data path at the end of
the current command execu
tion. Once the new RSR has
been fetched, it will then
be treated as a new command
and a new command execution
will automatically take
place. Cleared by INIT.

When this bit is set it
means that the Picture Pro
cessor is waiting for input
and has no processinq pend
inq (it is not an indica- .
tion of the state of the
Refresh Buffer). The con
tents of the SR and RSR
register3 should not be
modified until this bit is
set. The "hit" bits of
the DRST (see section
A.2.1.4) should not be
examined until this bit is
set, nor should data beinq

'i', .

1-24

written into the memory of
the PDP-11 by a STORE
command. Set by INIT.
(Read onlv.) •

•

•

•

•

•

b. Repeat Stat~s Reqister (RSR): 76777qa

15 14 13 12 " 10 9 8 7 6 5 4 3 2 0

I I I I I
L..---v----J L------J L.--v--JL - .J

COM f
f r FSMI

FSM2

CNT

The Repeat status Reqister is used to supply commands
to the Picture Processor. It is called a "Repeat"
status Register because portions of its contents may be
automatically modified in a predetermined manner after
the specified command has beenexecij~ed, and in certain
cases the command is repeated after the modification,
without required program intervention.

The bits of the R SR are divided into 3 fields:

1. ~~~nd - specifie~ what command type is to be
executed. This field is never automatically
modified.

2. li!!itg_~!g~~_Hg£l!in~ - these bits give further
specification of the command to be executed.
This field is automatically updated after each
execution.

3. ~22~g!!!At!_~QYn! - these bits determine how

15,14,13

many times the command should be executed before
proqram intervention is required. If the field
contains a neqative number, it is automatically
incremented after each command,execution.

Command Bits
(COM)

000-2DDR1W

1-25

These bits define the
command type to be
executed. The bit combin
atiions and interpreta
tion are as follows:

Two words are accessed
from the PDP-ll via the
data transfer mechanism,
and are then processed

O'01-3DDRAW

O'10-PUSH

() 11-J!ATCON

,;1-26

. ~".:.

by the Picture Processor.
as specified by the, '
Finite state Machine
bits. Note that if the.'
Finite state Machine
bits specify CHARACTER
or STATUS, then three
words are accessed from
the PDP-11.

Three words are accessed
from the PDP-11 via the
data transfer mechanism,
and are then processed
by the Picture Processor
as specified by the
Finite state Machine
bits.

The current contents
of the Transformation
Matrix (see Section
A.2.2.1) are placed
into the currently
available element of
the Matrix Stack and the
SPTR is incremented. If
theSPTR is 4, the
execution does not take •
place and the STKRR bit
of the DMA status Register
is set.

Matrix Concatenation -
Four words are accessed
from the PDP-11 via
the data transfer path.
These four words are
treated as a row (0-3)
of a matrix that is
beinq post multiplied
by the Transformation
Matrix in the Picture
Processor. 'The row is
specified by the Finite
state Machine (FSM)
bits. The resultinq
row is placed in the
Temporary Matrix (see
Section A.2.2) of the
Picture Processor. If
the row specified is row
3 then at the end of the
post multiplication •

•

•

12,11,10

9,8

•

100-POP

101-L01D

110-STORE

l11-NO OP

Fini te state
Machine 1
CFSM 1)
Finite state
Machine 2
(PSM2)

1-27

process the matrix
stored in the Temporary
Matrix is normalized
and placed in the
Transformation Matrix,
destroying the old
contents of the Trans
formation Matrix.

The last matrix PUSHed
is returned to the
Transformation Matrix
and the SPTR is decre
mented. If the SPTR
is 0 the execution does
not take place and the
STKRR bit of the DMA
status Register is set.

Four words are
accessed from the
PDP-l1 via the data
transfer path and placed
in the Picture Processor
Reqister (see section
1.2.2) specified bv the
FSM bits.

The "four words which
represent the contents
of the Picture
Processor Reqister
specified by the FSM
bits are sent to PDP-l1
via the data transfer
path.

This command is treated
bV the Picture Processor
as a NO OPe It requires
that FSM1=7.

These five bits comprise
the fields known as the
Finite State Machines.
The way they are inter
preted is a function of
the Command bit.

f!lS!! ... POf
No effect on operation.
~QAQL~TOB~: the given
b~ts are interpreted
as a single field

... ·.i,

F5M 1
OCTAL
!Al!Yl;

0 ,
2
3
4
5
6
7

A-28

containing an octal
address (0-27) speci
fyinq which Picture
Processor Reqister is •
to be manipulated. .
The address is incre-
mented at the comple-
tion of the command.

~AI~QH: The three
F5M' bits must be zeros.
The FSM2 bits represent
an address (0-3) that"
specifies which row of
the matrix to be
concatenated with the
Transformation Matrix
is currently beinq sept.
The address is incre
mented at the completion
of the command.

~~~RA!L-l~~R!~: The 
F5M' bits are used to. 
describe the type DRAW 
that is desired. At 
the end of the command 
the bits-are -upda ted. ' 
The type, update defini- • 
tions and the FSM1 . 
sequences initiated are 
listed below: 

VALUE 
AFTER 

IIRJ:; YPD!Il! ~l;QY£;!i~~~ 

MOVETO (M) 1 (M,D,M,D, ••• ) 
DRAWTO (D) 0 (D,M,D,M, ••• ) 
MOVETO (M) 3 (11,D,D,D, ••• ) 
DRAWTO CD) 3 (D,D,D,D, ••• ) 
DOT (DOT) 4 (DOT,DOT, ••• ) 
STATUS (5) 5 (5,5,5,5, ••• ) 
not used 7 
CHARACTER (C) 7 (C,C,C,C, ••• ) 

The interpretations of the 
various types of FSM1 are as 
follows: 

~OVEIQ: specifies a point in 
the coordinate system, normal
ly used as the beqinninq point • 



• 

• 

• A-29 

of a line. 

DiA!IQ: indicates that a line 
is to be drawn from the last 
specified point to the point 
being specified. 

DOT: Specifies that a dot is to 
be drawn at the point specified. 

~IAIY~: causes a word to be 
written into the Refresh Buffer 
that consists of parts of the 
three PDP-11 words that must 
accompany the command (see 
section A.2.1.4d). These words 
are used to change the status 
of the Picture Generator, the 
Character Generator or Color 
within the definition of a picture. 

~[!i~!§R: causes a word to be 
written into the Refresh Buffer 
that contains the three ASCII 
codes specified by the three. 
PDP-11 words that must accompany 
the command (one ASCII code, 
r~ght justified, per word). 
When the refresh processencount
ersthe word in the Refresh Buffer, 
it accesses the Character 
Generator and draws the speci-
fied characters before making any 
subsequent accesses from the Re
fresh Buffer. 

NOTE: See section A.2.1.4d which 
follows, for the data formats 
of the DRAW Commands. 

The FSM2 bits are used to specify 
whether the data accompanying 
DRAW commands is to be inter-
preted as absolute or relative 
coordinate data (added to previous 
data). Note that STATUS and 
CHARACTER commands always imply 
absolute data. At the completion 
of a command execution the bits 
are updated. The interpretation, 
update definitions and the FSM2 
sequences initiated are listed below: 



7-0 Coordinate 
Count 
(CNT) 

1.2.1.3 Command Execution 

FSM2 VALUE 
OCTAL AFTER 
!ALY~ I!IIRfi!IAIIQ! ~fQ!I~ ~gQ!lllf~J~ 

(A,R,a, •••• 
(R,R,a, ••• ) 
(A,A,A, ••• ) 

o 
1 
2 
3 

ABSOLUTE (A) 
a ELATIVE (R) 
ABSOLUTE (A) 
not used 

1 
1 
2 
3 

This 8-bit field is used to 
specify how many times the 
command specified by the 
COM bits is to be repeatedly 
executed (with additional 
data each time). The field 
is treated as a two4s 
cQ.mplement numb'er, with bit 
7 being the sign bit. 

If the value of the number 
is posi ti ve (bi t7=0) the 
command is executed once and 
the 8-bitnumber is not 
incremented at the completion 
of the executi~n. If the 
value of the number is nega-
tive then the command is 
executed repeatedly, ~iththe 
number incremented at the end • 
of each command execution, 
until it goes positive (all 1's 
to all O·s). . .. 
If, at the time the co~rdinate 
count increments from -1 to 
0, the Enable RSR Update bit 
(hit 2) of the Status Register 
is set, th:~ : WO;d will auto
matically -- -cce-sQQf~om ~ 
PDP-l1 via tb Q .tatll Lr ans£e£_ 
~ath and placed in tbe aSR. 
The new contents of the aSR 
will then be interpreted and a 
command execution initiated 
dutomatically. 

The registers described above merely serve to specify the 
command to be executed. To initiate execution a bit in one 
of the data transfer registers must be manipulated. This 
bit is bit 0 of the DRST register, as described in the 
following section. 

1.2.1.4 Data Transfer Reqisters 

• A-30 



• 

• 

• 

The preceding section dealt with the UNIBUS registers of 
the Picture Processor that are used to pas~ command infor
mation. This section deals with the mechanism that is used 
to pass data between the PDP-l1 and Picture Processor • 
Note that data can be transfgrred in either direction. 

The data transfer path is a DEC DR11-B, Direct Memory Access 
Interface unit. To pass data to or from the Picture Proces
sor, a block of PDP-l1 memory which contains the data, or 
which will receive the data, is specified by loading regis
ters in the DR11-B. The Picture Processor, then, in its 
normal course of executing commands specified by the RSR 
requests the DR11-B to access the memory locations specified. 

a. Word count Register (DRilC) :'. 7724108 

The DRWC is a 16-bit Read/Write register. It is ini
tially loaded with the two'S complement of the number 
of words to be transferred and increments up towards 
zero after each bus cycle. When overflow occurs (all 
lis to all O'~), the READY bit of the DRST is set "'""
and bus cvcles. stop. .DRile is a word register, byte \ 
instructions should not be used when loading this \ 
register. This register is cleared by the UNIBUS \ 
INIT signal. 

b. Bus Address Register (DRBA): 7724128 

The DRBA is a 15-bit R/R register. Bit 0 is always 
a zero, and is a read-only bit. Along with bits 
5 and 4 of the DRST (XBA17 and XBA16), the DRBA is 
used to specify the address used when the DR11-B 
accesses the UNIBUS. The register is incremented 
(by 2) after each bus access, advancing the address 
to the next sequential word location on the bus. 
If DRBA overflows (177776 to 0) the ERROR bit 
in the DRST is set. This error condition is 
cleared by loading DRBA or by INIT. DRBA is a 
word register; byte instructions should not be 
used when loading this register. Cleared by INIT. 

~-----------
-~ 

( i 
J .~. 

:"'::))~./ .;j_ r: 

A-31 

; 
/ 



c. D!A status an~ Co •• and Begister (DRST): 7724148 

15 14 13 r2 II 10 9 8 7 6 5 4 3 2 0 

I I I I I I I I I I I I I I I I 
ERROR~ .f 
N'EX~ 
ATTN -

MAINT

STKERR -

HB--

CYCL£

,READY-

1£---

XBA'--

FNCT 3,2 

,FNCT'1 

I 

, 

'-----' L--v--.J L.---v--J 

II ~ ~ I ~ 

UO ------------~--~------------------------------------~ 

15 

This r~gister is' used to provide status indicato['s 
of.the DR11-B~ status indicators of the. Pictu['e, 
PrGcessor. and to provide a mearis for initiating execu
tionaf {)i,etu,~e Processor commands sp~cified by the SR 
and RSH. 

lUI 

ERROR set to indicate an error 
condition: either NEX 
(BIT 14) • ATTN (BIT 13) 6 

interlock error (test 
board is neither in slots 
AB02 nor CD04). or bus 
address overflow (BAOF: DRBA 
incremented from 177776 to 0). 
Sets READY (BIT7) and causes 
interrupt if IE (BIT 6) is set. 
ERROR is clea['ed by removing 
all four possihle er['or condi
tions; interlock error is 
removed by inserting test 
board in CD04 for diagnostic 

• 

• 

tests or in AB02 for no['mal opera-

• 1-32 



• 

• 

• 

13 

12 

Nonexistent 
MeDlory 
(NEX) 

Attention 
(ATTN) 

Maintenance 
. (MAINT) 

.¥ . ". :"-.. :' .. ::' :'b.~ .. ~,:, -:,(~:1·.j):.:~~~~J;~1:: r.1~~i~\:~·~·:;S:< 
>~~': ';3:' .0:" 

tion; bus address overflow is 
cleared by loading DRBA; NEX' 
is cleared by loading bit 14 
with a zero; ATTN is cleared 
by the method described below • 
Read only. 

set to indicate that an UNIBUS 
master, the DR11-B did not 
~eceive a SSYNl response 20 
usec after assertinq MSYN2. 
Cleared by INIT or loading with 
a 0; cannot be loaded with a 1. 
sets ERROR. 

This bit is set by the picture 
Processor whenever PUSH or 
POP operation is executed or 
when a 200RAW or 3DORAW command 
is executed and the ENO bit of 
the SR is set. (See Section 
A.2.1.2, bit 3.) The bit is 
read only, in the· sense that it 
cannot.be set or cleared by 
MOVing to DRST. It is cleared 
whenever GO CORST bit 0) is 
set. 

Maintenance bit used by diaqnos
~ic--proqrams. Cleared by I NI T, 

Read/lfrite. 

lSee f~f=11_f~~i~~s!§_RangaQQ&, for further UNIBUS signal details. 
2Ibid • 

A-33 



a; 

11 

10-9 

8 

stack Error 
(STKRR) 

Hit Bits 
(HB) 

. .: '. . 

HB: 00 

CYCLE 

1-34 

If this bit is set when ATTN 
is set, it indicates that ~ 
Matrix Stack overflow or 
underflow has occu~red. This 
read only bit is cleared by 
the same method used to clear 
ATTN. 

These bits are used to 
determine whether data tha-t has 
;ust been processed during 
2DDRAW or 3DDRAW command execu
tion (except STATUS and CHAR
ACTER) has been clipped. Once 
the bits have been set they can 
only be cleared by having FNCT1 
set when GO is set. The values 
of the bits indicate something 
of the geometry of the data. 

• 

The figures below show the geome
tries that result in the four 
possible combinations of thes~ 
bits, where "N" is the most 
recent coordinate processe~, 
and np" is the one directly 
preceding it. The rectangle 
represents the clipping 

. bound.aries. . 

N P 

J HI 
01 10 I I 

For the bits to be meaningful 
they must be clear immediately 
before execution of the 
2DDRAW or 3DDRAW command in 
question. 

Cycle is used to prime bus 
cycles; if set when GO is 
issued, an immediate bus cycle 
occurs. Cleared when bus 
cycle begins; cleared by INIT. 

• 
N 

• 



• 

• 

• 

7 

6 

5-4 

3-2 

1 

o 

READY 

Interrupt 
Enable 
(IE) 

Extended Bus 
Address 
(XBA) 

FNCTJ,2 

FNCTl 

GO 

d. Data Formats 

@4 

Read/lir ite. 

Set to indicate that the DRll-B 
is able to accept a new command. 
Set by INIT or ERROR; cleared 
by GO; 'set on word coun t over
flow. Causes interrupt if 
bit 6 is set. Forces DR11-B to 
release control of the UNIBUS 
and prevents further DMA cycles. 
Read only. 

Set to allow ERROR or READY=1 
to cause an interrupt. Clear
ed by INIT. Read/Write. 

Extended bus address bit 17 
and 16 that in coniunction 
with DRBA specify an 18 bit 
address to be used for 
direct memory transfers. 
Cleared by INIT. XBA17 and 
XBA16 do not increment when 
DRBA overflows; instead' 
ERROR is set. Read/Write. 

Unassigned, may be used as 
general Read/Write bits. 

This bit isu~i~ to allow the 
clearing of DRST bits 10 
and 9 (HB). The method for 
ciearing these bits is to 
set this bit prior to setting 
bit 0 of the DRST. Read/ 
Wri tee 

l 

This bit is set to initiate the 
execution of a command by the 
Picture Processor. Setting 
this bit clears ATTN, if set, 
and if FNCT1 is set it also 
clears the HB bits. Note that 
the setting of this bit always 
causes a command execution by 
the Picture Processor. 

The preceding sections detailed the registers used in 
transferring data. Th'is section details the formats 
of the data that accompany the various commands that 
can be specified by the RSR. For each case, the 
data required for one execution cycle is qiven • 

A-35 



_. 

addi.ti.o.n.al da'ta, is r_e.q,uired fo,r. each execution as 
specif.ied by: the· CNT field o.f t'he RSH. 

lllUlM.::· 

. ~"" .~- .'. 

No d'a ta necessary. 

4 PDP-ll words. 

For all except STATUS AND 
CkARACTER, 2 PDP-11 words 
representinq x aad y coordin
ate values. For STATUS and 
CHARACTER: 3 PDP-11 words,. 
See the data format for STATUS 
and CHARACTER in 3DDRAW. 

For all except STATUS and 
CHARACTER: 3 PDP-11 
words representinq x~ y 
and z coordinate values. 

STATUS: 3 words r&presenting: 

1. Picture Generator status_ ~ 
2. Character Generator Status4 
3~ Not used. I 

CHARACTER: 3 wordf;t#c eaGh con
tainiag the right iustified 
7-bit ASCII code of the char
act er- desired. 

Picture Generator status Word: 

15 14 13 12 II 10 9 8 7 6 5, 4 3 2 0 

rA I ~ J I I III I I I 
::~;R ________ +_---'J T 
DASH 

BLINK 

S3 

S2 

SI 

SO 

A-36 

• 

• 

• 



• 

• 

• 

This word accessed by a 2DDRAW or 3DDRAW command and 
a STATUS FSM1, is used to specify global information to 
the Picture Generator. the information specifies that 
color is to be displayed (for color monitor use only), 
whether to draw DASHed lines, put the Picture 
Generator in BLINK mode, what scopes should be 
selected, or whether to stop the Refresh process 
(ItStatus Halt"). 

!l!~ 

15-12 

1 1 

10 

Unused 

TAKE 

HALT 

9 Unused 

8-6 

5 

COLOR 

~Q1QJ! 

o 
1 
2 
3 
4 
5 
6 
7 

CASH 

A-37 

This bit signals the Refresh 
Buffer control that bits 8-0 
are valid and should be loaded 
in the Picture Generator Status 
Register. If it is not set, 
~its 8-0 are not interpreted. 

If this bit is set the Refresh 
Buffer con~rol will stop the 
refresh process (Status Halt). 

These bits specify the color 
status for the scopes selected 
by bits 3-0. The octal value 
of these bits specifies the 
color of all subseguent data 
drawn. A value of 0, 1 or 2 
must be used when a black and 
white display is selected. 
Values 3-7 are used when a 
beam penetration monitor is 
selected. 

(Black and White Display) 
(Black and White Display) 
(Black and White Display) 
Red 
Red/Orange 
Orange 
Yellow 
Green 

Indicates that all succeedinq 



4 

3 

2 

1 

o 

BLINK 

Scope 3 
Select 
(S3) 

Scope 2 
Select 
(S2) 

Scope 1 
select 
(S 1) • 

Scope 0 
sele<c::t 
(SO) . 

lines and characters are to 
be drawn dashed. 

Indicates that all succeedinq 
dots, lines, and characters 
are to blink on the display. 

Indicates that the Picture 
Display whose scope driver 
card is in Picture Generator 
back panel slot 24 will 
display all data subsequently 
drawn. 

Same as bit 3, but for slot 
22. 

Same as bit 3, but for slot 
20. 

Same as bit 3, but for slot 
18. 

Character Generator status Word: 
15 1413-- 12 ---'I· 10 9 8 7 65 4 3· 2 0 

~FMIIIIIII 
t 

f 

L.--v---..J ~ 

TAKE--' 1 
ROTATE 

XSCALE --------------------------------------~ 
YSCALE 

This word, accessed by a 2DDRAW or 3DDRAW command and 
a STATUS FSM1 is used to specify rotation and scalinq 
information to the Character Generator. 

15-12 Unused 

1 1 TAKE 

A-38 

This bit signals tha Refresh 
Buffer control that bits 6-0 
are valid and are to be loaded 
in the Character Generator 
status Reqister. If it is not 
set bits 6-0 are not interpreted. 

• 

• 

• 



• 

• 

• 

10-7 Unused 

6 

5-3 

2-0 

-:: , .. 

ROTATE 

XSCALE 

o 
1 
2 
3 
4 
5 
6 
7 

YSCALE 

If this bit is set, all sub
sequent characters drawn by 
the Character Generator will 
be rotated 90 0 in the counter
clockwise direction. 

This octal (0-7) number speci
fies the X size of all subsequent 
characters; 0 is the smallest, 
7 the larqest. 

APPROXIMATE SIZE 
lQ'~~~iial_1et~I§1 

0.07" 
0.14" 
0.21" 
0.28" 
0.35" 
0.42" 
0.49" 
0.56" 

Same as XSCALE, except speci
fying the Y size. 

FiquteA-2 illustrates the data formats for the 2DDRAW 
and 3DDR1W commands. 

A-39 



ALL FSM VALUES EXCEPT CHARACTER AND STATUS 

2DDRAW 

30DRAW 

CHA'RACTERFSM VALUE 

STATUS FSM VALUE 

ADD~ESS I X 

n+21 Y 

ADD:ESS .... I ____ x ____ ..... 

n + 2 I'--____ y ____ .... 

n+4 z 

ADD:ESS W ~_CHAR1CTER 
n+2 ~//jCHAR~CTER 

n + 4 kWMCHAR~CTER 

ADD:ESS I PICTURE GENERATOR 
. STATUS 

n + 2 I CHARACTER GENERATOR I 
. STATUS . 

n + 4 1 NOT USED 

Fiqure 1-2 

Data Formats for 2DDRAW and 
3DDRAW Commands 

A-40 

• 

• 



• 

• 

• 

1.2.2 Picture Processor Internal Registers 

The procedinq sections describe the registers of the 
Picture Processor that may be accessed directly with 
PDP-11 instructions. This section describes the registers 
that are internal to the Picture Processor and used to 
contain parameters for various functions or as workinq 
storage during command execution. Fiqure 1-3 shows these 
registers and the addresses assiqned to them. These 
addresses are specified using the FSM fields for LOAD and 
STORE commands. Each register consists of four 16-bit ele
ments. LOAD and STORE commands always refer to four-element 
reqisters. 

A.2.2.1 Transformation Matrix (TRANMAT), Reqister 0-3 8 

These four registers are used to contain the 4x4 Trans
formation Matrix. This matrix is post-multiplied by the 
data processed during the execution of 2DDRAW or 3DDRAW 
commands (except STATUS and CHARACTER). 

A.2.2.2 Temporary Matrix (TEMPMAT), Reqister 4-13 8 

These eiqht reqisters are used to stor-e' the temporary 
results durinq a MATCON operation. They are workinq 
registers of the Picture Processor and have addresses 
for diaqnostic purposes only. They cannot be loaded with 
a ~OAD command. 

A.2.2 • .] Refresh Buffer. (REFBUE), _Register 148 

This read only register (cannot be LOADed) always con
tains the data last read from the Refresh Buffer. It is 
addressable fo~ diagnostic purpbses only. 

A.2.2.4 Viewport Left, Bottom, Hither (VIEWL,VIEWB,VIEWH), 
Reqister 20 8 

This register (in conjunction with reqister 24) is used 
to specify the boundaries to which data that lies within 
the clipping boundaries will be mapped by the viewport 
mappinq process. 

VIEWL is the left boundary 
VIEWB is ~he bottcm boundary 
VIEWH is the hither boundary 

The fourth component is not used and is undefined. 

A.2.2.5 Save (SAVE), Reqister 218 

This is a working register. At the completion of a 
2DDRAW or 3DDRAW command execution (except STATUS and 
CHARACTER) this register'contains the data as it 

A-41 



ADDRESS 8 

o 
I 
2 
3 
4 
5 
6 
7 

10 

II 
12 
13 

·14 
15 
16 
17 
20 
21 
22 
23 
24 
25 
26 
27 

- ' 

REFBUFX 

VIEWL 
SAVE X 

NCX 
NVX 

VIEW R 
BASE X 

PCX 
PVX 

REFBUFY 

VIEW B 
SAVE Y 

NCY 
NVY 

VIEWT 
BASE Y 

PCY 
PVY 

, 

REFBUFZ REFBUFS 

VIEW H 

SAVEZ SAVE W 
NCZ NCW 

NVZ 
VIEWY 
BASE Z BASEW 

PCZ PCW 

PVZ 

Fiqure'A-3 

} 
> 

TRANSFORMATION 

MATRIX 

TEMPORARY 

MATRIX 

REFRESH BUFFER 

'. 

}NOTUSED • 
VIEWPORT LEFT BOTTOM, HITHER 

SAVE 
NEWCLIP 

NEWVIEW 
VIEW PORT RIGHT, TOP, YON 
BASE .. 

PREVIOUS,~LIP 

PREVIOUS VIEW 

Addressable Picture Processor Reqisters 

• A-42 



exists after it has been multiplied by the Trans
formation Matrix, but prior to any clipping that may 
have taken place. 

~ A.2.2.6 New Clip (NC), Register 228 

• 

• 

This is a working reqister. The contents are only of in
terest at the completion of a 2DDRAV or 3DDRAW command 
execution, (except STATUS and CHARACTER) and then only if 
the data that accompanied the command resulted in data 
that would normally be passed to the Refresh Buffer and 
then the Picture Generator (i.e. a DOT or MOVETO that 
was within the clipping boundaries, or a DRAWTO that 
resulted in a line with some portion within the clippinq 
boundaries). For all otmer cases the contents of this 
reqister are not defined. (N ate tha t the sta tus of the 
"hit bits" of the DRST are an indication of whether the 
data was within the clipping boundaries.) If the contents 
are valid, they represent the coordinate values of the 
data within the clipping boundaries. If clipping has 
occurred, th~y represent the results of the clippinq 
computational process, either the original endpoint or 
the coordinates where the line intersected the clipping 
boundary. 

A.2.2.7 New View (NV); Register 238 

This is a-working register. The contents are only of in
terest. when the Ne register. !l_~~_ valid information stoI...ed~._ 
in it. The ~ontents repres.rit the results of the vie~~ 
port mapping process that performs the linear mapping and 
perspective division of the data in the NC, from the clipping 
boundaries to the viewport botindaries (specified by the 
viewport registers, 20 and 24). 

Only three of the four elements contain valid information: 
NVX, NVY, NVZ. The fourth element is used strictly as a 
working register, and its contents are not defined. 

It is the 12 least siqnificant bits of N~X and NVY, and 
the 8 least significant bits of NVZ that are written in 
the Refresh Buffer and subsequently passed to the Picture 
Generator durinq the refreshing process. 

A.2.2.8 Viewport Riqbt, Top, Yon (VIEWR,VIEWT,VIEWY), Reqister 248 

This register (in conjunction with reqister 20) is used 
to specify the boundaries to which data, that li~s within 
the clippinq boundaries, will be mapped by the viewport 
mappinq process. 

VlEVR is the 'riqht boundary 
VIEWT is the top boundary 
VIEWY is the yon boundary 

A-43 



The fourth component is not used and is undefined. 

1.2.2.9 Base Register (BASE), Register 25 8 

All 2DDRAW and 3DDRAW commands (except STATUS and CHARACTER) 
result in the picture Processor performing computations 
on 4 data elements representing the drawing coordinates. 
The BASE register provides tvo functions. It supplies the 
fourth element, v, for 3DDRAW commands, and the third and 
fourth, z and w respectively, for 2DDR1W commands. The base 
register is also used as the absolute coordinates to which 
all relative details added to compute absolute coordin-
ates when FSM2 specifies RELATIVE. The base register should 
always be LOADED vith the necesssaryvalues prior to executing 
2DDR1W and 3DDRAW commands. 

A.2.2.10 Previous Clip (PC), Register 26 8 

This is a working register. Its contents are valid only 
at the completion of a 2DDRAW or 3DDRAW command whose FSM1 
specified a DRAWTO, and llh:>se execution result.ed in a portion 
of the "line being within the clipping boundaries, but the 
beginning of the line being outside the clipping boundaries 
(i.e. the most recent 2DDRAW or JDDRAW whose FSM1 was BOVETO 
or DRAWTO was accompanied by data that was not wi thin the . 
clipping boundaries). For all other cases the contents of 
this register is not defined. (Note that the "hit bits" 
of the DRST are· an indica_~ion of whether the above conditions 

•• 

are satisfied.) If the contents are valid, they represent • 
a point computed by the clipping process that is interpreted . 
as a MOVETO which specifies the beginning point of the por-
tion of the 1iriethat lies within the clipping boundaries. 

1.2.2.11 Previous Viev (PV), Register 278 

This is a working register. The contents are only of 
interest when the PC register has valid information 
stored in it. The contents represent the results of the. 
viewport mapping process that performs a linear mapping and 
perspective division of the PC from the clipping boundaries 
to the vievpcrt boundaries (specified by the viewport reg
isters, 20 and 24). 

Only three of the four elements contain valid information: 
PVX,PVY,PVZ. The fourth element is used strictly as a 
working register, and its contents are not defined. 

When the beginning point of a line has been clipped, it is 
the 12 least significant bits of PVX and PVY and the 8 least 
significant bits of PVZ that are written in the Refresh 
Buffer and subsequently passed to the Picture Generator 
during the refreshing process. 

1.2.2.12 Matrix Stack 

A-44 
• 



e 

e· 

e 

The Matrix Stack is a non-addressable (bV LOAD or STORE com
mands) collection of registers that are used to temporarily 
store transformation matrices. It is a four level matrix 
stack and is accessed whenever a PUSH or POP command is 
executed. 

A-45 



, ,;.~ ,\·'<t·'~~~~t£:::~~~·~1;t~~~r~~~.? 
J ",,'.!, "~'.' '"i 

1.2.3 Co •• and Execution Details 

This section details the flow of data within the Picture 
Processor internal register structure for each of the 
commands that can be specified by the RSR. In the case of 
2DDRAW and 3DDRAW the operations that take place are 
treated step by step. 

Notes on nomenclature: 

1. IN represents the incoming data that accompanies 
the command. 

2. A "~" refers to a four component (4 16-bit words) 
set of data. 

l. Subscripts such as x, y, z and w refer to the 
individual 16-bit elements of the incoming data (IN) 
or internal registers. 

4. The subscript i is used to specify an internal 
register address (i.e. REGi). 

5. SB refers to the Refresh Buffer. 
6. In the description of 2DDRAW and lDDRAW, "new. 

point" refers to the data accompanying the com
m~nd,and "previous point" refers to the d~t~·' 

,that accompanied the most rec~nt 2DDRAW or lDDRAW. 
The term "line" refer~ to the vector that begins 

. at the previous point and ends at the nev point. 

A.2.3.1 2DDRAW and lDDRAW, FSMl = DRAWTO 

a. Input Data to Internal Registers. 

1. If 2DDRAW and FSM2 = ABSOLUTE 
INx ___ PCx, BASEx 
INy __._PCy. BASEy 
BASEz ____ PCz, BASEz 
BASEw ____ PCw, BASEw 

2. If 2DDRAW and FSM2 = RELATIVE 
INx + BASEx ~ PCx, BASEx 
INy + BASEy ~PCy, BASEy 
BASEz ~PCz, BASEz 
dASEw ~PCw, BASEw 

3. If 3DDRAW and FSM2 = ABSOLUTE 
INx __ PCx, BASEx 
IN Y ____ PCy, BAS Ey 
INz __ PCz, BASEz 
BASEw ___ PCw, BASEw 

4. If lDDRAW and FSM2 = RELATIVE 
INx + BASEx ~PCx, BASEx 
INy + BASEy--.PCy, BASEy 
INz + BASEz ____ PCz, BAS Ez 

A-46 

• 

• 

• 



• 

• 

• 

b. 

c. 

BASEw ____ pew, BASEw 

Transform Data. 
~ ~ ~ 

(PC) x (TRANMAT)-.. SAVE, NC 

Clip 

The clipping process determines whether the data lies within 
the clippinq boundaries. In order for a point to be within 
these boundaries, it must satisfy the followinq requirements: 

-SAVEw ~ SAVEx S SAVEw 
-SAVEw S SAVEy S SAVEw 
o S SAVEz S SAVEz 

1. If a portion of the line is inside the clippinq 
boundaries: 

.....:=. 
new point clipped ... NC 

2. If a portion of the line is inside the clipping 
boundaries, and the previous p-oint is outside the 
clipping boundaries: 

. .---=a 
previous point clipped~ ~c 

d. Perspective/Viewport Transformation 

1. If a portion of the line is inside the clipping 
boundaries, and ,the pr~vious point is outside the 
clipping boundaries: 

PCx (perspectiv.e and viewport transformed)-.pVx, RBx 
PCy (perspective and viewport transformed)~PVy, RBy 
PCz (perspective and viewport transformed)-..PVz, RBz 

2. If a portion of the line is inside the clippinq 
boundaries: 

NCx (perspective and viewport transformed)~NVx, HBx 
NCy (perspective and viewport transformed)-..NVy, RBy 
NCz (perspective and viewport transformad)-..NVz, RBz 

A.2.3.2 2DDRAW and 3DDRAW, FSM1 = MOVETO or DOT. 

a. Input Data to Internal Reqisters. 

1. If 2DDRAW and FSM2 = ABSOLUTE 
INx __ PCx, BASEx 
INy --. pey, BA'SEy 
BASEz ____ pez, BASEz 
BAS Ew ____ pew, BASEw 

A-47 



2. If 2DDBAW and FSM2 = RELATIVE 
INx + BASEx ~PCx, BASEx 
INy + BASEy ~PCy, BASEy 
B1SEz -'-PCz, BASEz 
BASEw __ PCw, BASEw 

3. If 3DDRAi and FSM2 = ABSOLUTE 
INx __ PCx, BASEx 
IN.y __ PCy, BASEy 
1Nz ~PCz, BASEz 
BASEw ~PCw, BASEw 

4. If 3DDRAW and FSM2 = RELATIVE 
INx + BASEx -. PCx, BASEx 
INy + BASEy __ pcy, BASEy 
INz + BASEz ..... PCz, BASEz 
BASEw __ PCw, BASEw 

b. Transform Data. 
~ ~ .. ~ 
fPc) x (TRANMAT) .. SAVE, NC 

c. Perspective/Viewport Tran~formation. 

If the transformed data (SAVE) is within 
the clipping boundaiie~: 

~ ....... ;', ~ ~ 

NC (perspective/~iewport transformed)-NV, RB 

1.2.3.3 2DDRAW and 3DDB1W, FSMl = STATUS or CHARACTER. 

A.2.3.4 PUSH 

A.2.3.5 POP 

1Nx ...... PCx, RBx 
INy-. PCy, RBy 
tNz ___ PC-z, RBz 

TRANMAT ___ Top of Matrix Stack 
(TRANMAT is not destroyed). 

Top of Stack~TRANMAT. 

A.2.3.6 MATCON Matrix concatenation 
...... 

(IN) x (TRANMATi)-..TEMPM1Ti where i is the row specified 
by FSM2. If FSM2 = 3, then at the completion of the multi
plication the TEMPMAT is normalized and the 16 most siqni
ficant bits of each element placed in TRANMAT. 

A.2.3.7 LOAD 
~ ---==-
IN-.-REGi where i is specified by the FSM fields of the RSR. 

1-48 

• 

• 

• 



• 

• 

• 

1.2.3.8 STORE 

REGi-e-PDP-11 Memory via DM1, where i is specified by the 
FSM fields of the RSR • 

A-49 



." .. , ~ :.:<:'}<;.~:~~:fj:'~~~fj~~;::· 
-",:",;,;.,!-

Character Generator 

The Character Generator portion of the Picture System 
supplies x and y displacement data directly to the Picture • 
Generator. The characters to be displayed are specified 
by ASCII codes that are passed unmodified through the 
Picture Processor and stored in the Refresh Buffer. 

The x and y data provided by the Character Generator is 
treated by the Picture Generator as relative vector draw
inq information. Therefore, the position at which a 
character strinq is to be displayed should be specified 
in the normal manner (i .. e. 2DDRAW or 3DDRAW; MOVETO or 
DRAWTO) before the characters are output. 

The Scale Register·in the Character Generator is used 
to specify the size of the characters to be drawn. This 
register is loaded using 2DDRAW or 3DDRAW STATOS commands. 
This section provides information relating the size of the 
characters to the screen coordinate system. (Note: the 
screen coordinates range is -2048 to 2047 as described 
in section 5.2.1.3). _. 

The Character Generator contains character descriptions 
defined in screen coordinates. If the scale x and Scale y 
portions of the Scale Register are both equal to O.the 
smallest size is specified. This size character occupies 
anx space in the screen coordinate system that is.30 
screen units vide. It occupies a y space that ranges from 
+30 to -12 screen units, depending on the character, 
specified (lower case characters are the only ones that 
may occupy space in the negative direction; all upper case 
characters occupy the full +30 range). Figure 1-4 shows 
the relative proportion of the upper and lower case 
smallest characters. 

It is important to note that the character definition in
cludes a HOVETO to the right boundary of the space it occu
pies in x to provide uniform spacing of characters. 

The Scale Register contains a bit that provides for the 
rotation of the character counter-clockwise 900. When this 
bit is set the range in scope units that the characters oc
cupy (at the smallest size) is -30 to +12 in x and +30 in y. 
The final 80VETO in the chaiacter defintion qoes to the 
top boundary in this case. 

1-50 

• 

• 



• 

• 

• 

30 
SCREEN 
UNITS 

12 
SCREEN 

UN~~ __________________ ~ 

1_··. SC~~EN ··_1 
r-UNITS~ 

(I) 

r 
30 

SCREEN 
UNITS 

Figure 1-4 

~ / 

(2) 

Relative Character Sizes in Screen Units 
shoving: (1) the Range of Upper Case Characters 

and (2) the Range of Lover Case Characters 
for the Smallest Size Characters • 

A-51 



'. ·.l~ .•... ~';- ._ .:. ., , •. ' 

The Scale Registj~ i and y ~c~le lie~ds provide for inde
pendent scalinq of the heiqht and~idth of the characters. 
T.able 1 shows the ranqe in screen uni ts and inches for 
the various sizes: 

Scale 
!A!!H~ 

o 
1 
2 
3 
4 
5 
6 
7 

30 
60 
90 

120 
150 
180 
210 
240 

Range in 
ag[~!uL!l!!i t§ 

::"'., 

.. ,.: 

+30,-12 
+60,-24 
+90 .. -36 

+120 ..... 48 
+150 .. -60 
+180,-72 
+210,-84 
+240,-96 

A-52 

Ranqe in 
IJl£ll~§ 

! 

+.07 
+.14 
+.21 
+.28 
+.35 
+.42 
+.49 
+.56 

+.07,-.03 
+. 14, -.06 
+.21,-.09 
+.28 .. -. 12 
+.35, -.15 
+.42,-.18 
+.49,-.21 
+.56 .. -.24 

•• 

• 

• 



1.3 

• 
A.3.1 

• 

• 

-., 
PROGaA~MING THE PICTURE SYSTEM 

Sections 1.2.1 and 1.2.2 described the PDP-ll and Picture 
Processor registers which are used in programming THE PIC
TURE SYSTEM. The purpose of this section is to describe how 
these registers may be used to produce a program which inter
faces with the hardware at an assembly language level. 

Program Description 

To illustrate how to interface with THE PICTURE SYSTEM 
hardware, a simple program will be described which displays 
a cube and allows the cube to be translated in x,y and z 
according to console switch settings, while displaying the 
characters "CUBE" which blink continually. However, in addi
tion to the details which this program will illustrate, the 
following points should be emphasized: 

1. The RSR Coordinate count (CNT) and the DMA word count 
(DRWC) must have corresponding values to ensure that 
the operation specified continues to completion. Exact
ly what the relationship is depends upon the command 
(COM) specified. The following shows the CNT/DRNe· re
lation for each of the .commands: (It should be noted 
that the CNT field of the aSR will contain the 
two'S complement of the number of executions to be 
performed and the DRiC will contain the two's complement 
of the number of PDP-ll words to be transferred.) 

COM 
000-2DDRAW 

00l-JDDRAi 

010-PUSH 

01l-MATCON 

100-POP 

101-LOAD 

If FSHl = MOVETO, DRAWTO or DOT: 
CNT 4--(number of 16 bit word pairs) 
DRWC4- 2*CNT 

If FSM1 = STATUS OR CHARACTER 
CNT ~-(number of 16 bit word triples) 
DRWC4- 3*CNT 

CNT ~-(number of 16 bit word triples) 
DRWC4- 3*CNT 

CNT ~-1 
DRWC~ 0 

CNT ~-(number of rows to concatenate) 
DRWC'- 4*CNT 

CNT 4--1 
DRWC4- 0 

CNT 4--(number of sequential registers 
to load) 

DRWC4- 4*CNT 

A-53 



110-STORE CNT ~-(number of sequential reqisters 
to store) 

DRWC 4- 4*CNT • 

111-NO OP CNT ~ 0 
DRWC 4- 0 

It should be noted that vhen the Enable RSR Update 
function is used, the DRVC must be ad;usted to account 
for each of the commands which viII be executed and 
the RSRs which are embedded within the data. The NO OP 
command should be used as the last RSR within the aSR/data 
list. 

2. Data which has been processed by the Picture Processor 
may be read back into the memory of the PDP-11 by using 
the STORE command and addressing those registers where 
the data results are stored. These registers of inter
est are: 

a. SAVE Register: This will contain the transformed 
data coordinates before clippinq vas performed. 

b. New Clip (HC) Reqister: This viII contain the 
transformed and clipped data coordinates if the 
most recent data resulted in an element vhich 
would normally be displayed. 

-c. - -New View (NV) Register: This will contain the 
transformed, clipped, and viewport mapped data • 
coordinates if the most recent data resulted in 
an element which would normally be displayed. 

d. Previous Clip (PC) ~egister: This will contain 
the transformed and clipped data coordinates of 
the computed beqinning point of a line whose actual 
beginning point coordinates were clipped •. 

e •. Previous View (PV) Register: This will contain 
the transformed, clipped and viewport mapped 
data coordinates computed of the beginning point 
of a line whose actual beginning point coordinates 
were clipped. 

The "hit bits" may be interrogated as described in 
section A.2.1.4 to determine when the HC, NV, PC and PV 
registers contain meaningful information. 

3. Before a 2DDRAW or 3DDRAW command is performed (except 
STATUS and CHARACTER) the BASE Register (25 ) should 
be loaded with the constant z and v coordinates if 
2DDRAW or the constant v coordinate if 3DDRAW. This is 
done because the BASE register supplies the z and w 
coordinates for 2DDRAW commands and the w coordinate. 
for 3DDRAW commands. When the 2DDRAW command is used in 
conjunction with the STATUS or CHARACTER specification, 
three words will be accessed from the PDP-11, rather than. 

A-54 



• 

• 

• 

4. 

the two normally accessed for 2DDRAW commands. 

It should be noted that the STATUS words are deposited 
directly into the Refresh Buffer, and once a STATUS is 
encountered by the Picture Generator, the STATUS speci
fied will remain in effect (through subsequent frames 
when no STATUS is encountered) until an overriding STATUS 
is encountered. A STATUS command which does not have the 
TAKE bit (bit 11) set is considered to be a Refresh Buffer 
NO OP command, and hence does not affect the status of 
the Picture Generator or Character Generator. 

The structure of this sample program is consistent with the 
qeneral structure of a PICTURE SYSTEM program as described 
in Chapter~5 of THE PICTURE SYSTEM User's Manual and shown 
in Figure A~5. The following section contains the MACRO-11 
assembly language listing of this program. A careful study 
of this program should clarify many of the topics covered 
within ~his appendix. The same program, but written in 
FORTRAN usinq the Graphics Software Package, is also shown. 

A-55 



NO 

PROGRAM 
INITIALIZATION 

. " " 

INPUT" 
DATA, 

.. -:~/ .. " 

UPDATE OF 
DYNAMIC' 
VALUES 

PICTURE, 
DISPLAY 

FRAME 
DISPLAY 

Figure A-5 

Sample Program Structure 

A-56 

CLEAR NEW FRAME 
BIT 

I 

SET NEW 
FRAME BIT 

CLEAR NEW· ' 
FRAME FLAG 

RESTART 
RTC 

INTERRUPT 

• 

NO 

• 

• 



1.3.2 MACRO-11 program Example 

• 

• 

• A-57 



~D I X A: SA:.RE PROGRAtt1 
L=: o:=- CQI\/TE~TS 

MACRO V06-03 01-SEP-74 08:30 

2- 1 
3- 1 
~.-

!:"- i 
-

.. ?-
'7'_ 

• 

DE~INIT~O~ OF REGISTERS pND COMMA~DS 
D~:=- ~:-; I"" I o:'~ OF CO~":S:A"'HS ~\;:) DATA 
?~:X;;,~1 !"' r 1'! A'_ I ZA7: ,:.~ 
::<rc !>":··E~::;"'-J:J'" SE.'C"\l:C:: ~O,-T:""'E 

r ~TA"'C' : > :J. .. :-:? 
F' ! C:Tt;~=: :.) ~ SF~A~( 
l>YlA C-';""P . .'; ~O";T! t'-;E 

• • 



fI.l flJ f\) N : ,. 1 • 1 • 1 ' 1 • I' I " I • : _. I," 
I"Ij Il) I "I' (.-, (Ij ..... ; I./j 'J'I .f'. i}J Cd I' ~ ,: .• (!J ((I ",1 U') 1:1 .!~. t,] jl.J 14 

(f) 1/) Vl (f.o i./) If) If) 
'~£EEF.EE .-t_ ............ ..-c ....... _) 

-1 -J -1 -1 -J -J ...... 

222Q2~~2 
I··'" ... ", .-" .1""'" 1-" .. ~ 

J) 
i.!)(5)."l\,lw-r--m 

F 
;0 

~ 
-1 
(l) 

;(1 
ill 
(.rJ 
I'll 

~ g 

~ 
8 
x • D 

(f) 
1> 

~ 
1-
III 

~ 
0 
G"J 
;0 
I> 
:r 

• 

• 



• 

• 

• 

0.1 ".', 0.', I .• ) 1\1 !"J 1\1 r,.) Il.ll'j'r~1 fo,) N,' ' .. " : .• ;.'. ".~' "1-' .... 
I'.).i' ' .. ' (., '·· ... 1 ..... 1 I,., I.II·P /,1 1·~I., (:-) (J) .. .I '11'.), 1.11 .," I" !"j I' , . .', '.0 1/) ·"·lIJ·lfl .~'. 1.0 ro,) 1-' 

r"':' I" ,~- ,-:--).;,;) I'~ 1;.) ~:;"('I.) 
1 • .1 1,'1 I., 1\.1 ~I.·I ' . .11 C~ ~'. II) ,~) 
1\\ f'o.J ,~) (,; I\J ,~) (') ('.:0 ,~ ,'9 
'I (,I 10) I.:, ~ . .) o:..i hI ()j '.:,) (.) 
".J ",1 "" '.J ',I -,I 'I ··· .. 1 .;.) (i) 
. .~' " ! \L '.J -, - . oJ .... J IJ .... \:1 

...... 
1'0) ( 
1J1 
..... II 

(."1 

,~ : ' J \ I ... I·) , , .. t \, 

",1 ',I '" .• '" Ci, oj) OJ 
\J 1'0 I'J IU '" ".J "\J 
(JJ f' r·, p. 'I 'I 'J 
'.1 I'~ ,-, I~ ".1 "1 ..•. j 
.~~ , .. I d t' .. ~·1 .. ·L I't.) \,.\.) 

nt' 1"1 t:I ';;0 I./J ·AJ o : \. :.:( 3: VI ;()·1 
Z J) l> .:.L'>:;O () 

.1/) . 
J.l «) tl-' E~!] ;U AJ 
I . -I :t'} ~) 1'1 I q 1'1 
iii .!.:. I.i.1 h'\ ',) 'J) (j') 

J. I'll t:l • '. ,., , .• 
. i.ol (~ v', VI v) 
~ .. : (.):'(> ('J .. ~ - I .-1 
, • U c. r,,· ,,'1 ill 
,-I .n t".1 C iAJ AJ ;U 
()Pl ·;;11 Z 
:J.:. ,Ii) (11 -l 

...... (J) 
;0 (J) (J)AJ 
rll -l rn 
G) iTl ~(j) :;U (11 .... 
I.'i G) (J) 

i~ .V) ~ 
;:J -i ;0 

,,1 
AJ 

.4.-:., (10) 
(.::. ,:--) 

() '~.' 
r.lloJ 
. ~ . - .::,;. 
o,:~ • • ::) 

.;U Al 
.-,i ';1 
O() 
'lJ< Vlrn .n 

,I 

1J 
.'.~ 

(11 

N 



• • 
~~!X A: SAMPLE PROG~AM MACRO V06-03 01-SEP-74 08:30 PAGE 3 
~~!!I.;~-:-!O''l OF CONSTA:-.ITS ~:-':D DATA 

.S3TTL D~INITION OF CONSTANTS AND DATA 
2 

~00'~0 BEG!N: 
,'. 

I D;::\'T 1 T'Y MATR r X (D! r>SO:-':A'_=40000 TO AVO! It NOR!'rlAL I ZAT r 0'1) 
S 
/ e~?'000'~ 

:.::~Z0~~:3S 

C' ~;2'Z.zS.0 

~~~ ? 'c,(:- :.. 12 
S: .. :: :·-·;~?~12~

·~.·J.~:·.:-2~"::

~:? .. ~ ':';2 ?~:?~,

~: :?:-:-:'c23
~ .~

(0).1.0000
0030Z3
r)0'<30':::0
'?'080';~
,,~~:~?;0 -~~~?:

.?:::~17:0·:~· ~?;

0€:2;"';i)
0.:1.'0000

000000 000000 IDENT: ,WO~D 40000.0.21.'0

04e0~?0 0e2'ne ,WORD 0~ <"Ze~~13, 0, 0

e~~0C:;.:~ e·::: .. 2'C·~;!~ ,WORD c.~ , 8, ':::'),:;'03. '3

8000C!2l Z0:2"Ze~~ .WOR) e , 0 I ,~ I ~~ .. e3CO

.. ~
_t::" TRAt~SLAT I ON MA';R: X
.' -..:. .. :.
:'" ?2'~~4!2 0400('2 ecooe.o 000!?e0 """RNfY:o.T: . t.,'CRD

·-·,,~:~·~~ .. G e~}Q~2·)

~::; ',<; '::'2:52 ~ 00"j';~;'~~ 'J~-~e:e e?~'~:"'::'r

~'-,< ~?s.; e~r:,'.)c)

~~'=: .~~~. ~;~.~::0 (,~~cc;~::) e00e0~ ~~~ .. e!?0~

:.7
:.~:

2)

e,:.·c:· =:S 0e~:::c2Z

:~::)0'~ :70
~·<:~;372
')2(;074

(~e0'~;(~

'JC,z!0 ::-;(;
\~2~?;2:<'~~~ 0~e?!80

TX:
-v:
":,,z:

,t::O~D

.IJ.:ORD

,IiORD
.I;.;ORr
.WORf-

4002e.0,o.0

0, ~~~~~j3,0,-::

0.0. ·~e.~-N;.- 0

o
o
0.0::·0:Z-2'0

;4e000,0000e.00000.e00(~

; 090%- • .::.e':~~32. 0',2)1300. 0'?OCZ!

;e~~~010l~ee~40~e0/00ee?

TXI T'i. TZ, ~e.~(~e

~.

L_ • INITIAL PICTUR=: G~:'..':::~~TO~ STATUS
:::;:.:=t

Z2el~ '?e~·2:J.7
::. ~~--::: :'. ~~.~::: ·~~:z~ ~.'37;;

?'-0,"j::' :;;t~ e::'~ ,~"z')

.:

?GSTA::-':
I

.!..JORI:

.wC:RL

.WC~D

BL I t~K STATUS

. ·?'2'?!~.C5 C0L0::?7 0001300 012'00';)0 BL~'::<Olo..l: ,WORD .. ~
e·~40::"7 ·3:~~::.?:~··0 z.~2:e0:~~e 3:"'~.r<C;=: . ~'ORJ

~·0::'7

'-077
3

':;·037.0.0
c·e~.7. "j, 0

; SEL~C! A'_'_ SCooES. ~O BUNIC NO DASH
; S=:L.=::"I" :-.'.)l~ I Z'J~"T';;_" ':...~~/:'=:ST CH.~~A1:-rERS
; ;;:'::S=:~V=:: =-OR CO,-CR ;.)s=:

; SE~~CT ~Lrr-.;'< ~"-!D FlLL SC(lP~S
; S=:L~C~ c~.'~~ 'l' ~~_ sco~~s

V I E~!PORT SPEC I ~ I GAT ~ 0\~ (FULL SC~:::E~'!. f't'.~ D:=:PT:-i 0;:::: "'~G)

::;::'. ?~~:-::"22 2.740(.'::' 174€e.: 000377 Vt.LS"rl:
....... ~:. ':':-';2: ce~~~:e

~.= -.. ,!,. ~~ e~):?777 0:'?3;77 ~2Z020 V!;J~~:

... _.;.):: ~:- 3 "3e:~~'0C?

. wORD

.t.JO~)

-2~M7 .• -2047. ,255. , 0

i
2e4;' .. 204-7 .• 3,13

•

•

•

•

i.'IHl
III .('.

~E ,0
;'0 :;lJ
·UU

1:-:
n
:.0

'U

1
1\),)
~'.
l,J

I
1'\1 o
.f>.
I))

N (!;
(.)

,
[\l
.;-)
.p.
(0

/'oJ
(')
·f'\
I))

(J 1 !J1
l'oJ ·1"

E:
0
;0
tJ

I
N
~-
00

I
,'(I
0
.f>.
CO

I
I\)
<S-
~
00

1\)
.. ~
r.-
oo

F
<5
;;0
U

I

~
.f"
00

I
1\)
t\,',
r-,.
00

r>j
.~)
.p.
(:I)

f\)
~')
f,
I;')

(11
,.)

E £ E 1-:
0 £ ° ()
:;0 a ;;u
l:J U U

N I N I
(') r,) I~ r\)
~:,. 0 i'. 0
(0 ~~. ((I .p.

(,0 CQ

r:J ·N

p~ I~ I (" .f.>. f\)
,f, ·f.:.. 00 0
((J 00 .f.>.

t'O
I

I'll 1'\) N
0 (9 lSI I
.p. +' .~ N
C<) 00 (I) 0 .p.

00

N I N

"" I"l <';>
i~ ,-) i:' ,\)
(r) r'" ttl 0

ctJ r··
00

N 1\.1
& 1 0
-1" ") ." ,
C~l ~ 00 I'll

.f. (';I
OJ Po-

1'\) flj 00
<') 0
{' I"J 1':.
(00 0 ((I ,

.f>. I\)
(x) . ~.;)

r.-
(0

()

~
t··

~
0 a
I\)

''r ~,

00

f\J
('»
.p-
00

1

~
.f.>.
00

.,
I"j
~
r.:a.
00

N
0
oj:>
00

I
N
0 .p-
(;(1

m
-<
r;1

" ~ r ,-
~
.-1

-!
.C
1'1
()
0
C
Z
•• j

.-j
0
(f)
x
,~

'1
I

0 ..
(f)

.j ~f)

!~1 ~ 1
. i 'J.'

'"I

.• 'i.) roJ ~
(I) I.~j '.J .

'.:'., I.y
'.J (.~

l~0 ~~
I ' I ~
UI.r,;.
.'5) f\)

(.) I')

:'j ,~
<J ~
" , ;:.
'J ,")

/<';J
(y
(:)
0
~
IS>

~
0
(;)
,a:y
IS>

N l"-:
1.<.1 t;I;l
J) D
(f) v)
I'll 1'1

~
F Ii)
(5
el ~

ro'l
::tI.

0 <:
J>

(l.) r-
c

Q ,11
v'j

(,J
I\)
'J
(J)
'J

N

~

1-= II
r~)
f'1l

~
'J

x
[.">

-<
CI
0
Z

~

()
0
C
Z
-!

"I ~.",
".

" ,I, :.~ "r., •

~~ ,.
Z .
.... ~J
.. j
..... X
0
L..I>

~
VJ

OJ>
.o~ z·
~ III
J>
f"lJ
• oj :;(J
(f)O

G1
:D .;"1
'2' D
t=' -'"
t=' .' D
.-i
J>

~
()
~1
v

<:
~
1

0
tv
lSI
~

I
VJ

~
I
'J
oj:>

IS)
00

r l
0

'0 -B
fl1

w
I

".:'.'

.(\, ." 1:' ~ .r.,.. r.t) (,', (•• (II r,) it) fd (01 "l i.l ") I') Id ,\1 1"1' rl.) 1"') i\) r',) fv I I' ~ ~ I"
~, (d ("' .. ' 1·'- (-.,', (() (.. , ... ·~.I ry, .Jt f', i ... ll\I 1'1,.';' ,',':: ",' • I""; IH :". (j' 1'1) I ('~'Ij i ' ".J I~) 1.11

(-:) .s>
'") (;>
<'~ C~
.~.' ·r'
LI' I.Jl
!. <9

,~.) (9
I-"~

~~
NOS)
1"0

I~ oS!
"J L..J
.... J f\)
"'J to
..... 1 'j
(11 'j

3:3:
00 «

#** , 'l)
(.1 ~

" ,
I •. /;

..]
,,)

(.J III
111

E .-1
o
;;0 .. J
UT
V) f!1

-i (I) o _.J
1>

W-l
fTle

(f)

2n
-lO
,) :;.;::
Co:!
,.-j :D

"7
e;

f./I
111
-i

1
fIl

.....
z
-i

fl
'U

n
---)
(-
:A.J
Irj

!il
ff'J

f.1
:;0
J> ._J
o
;:0

(II
.~
:J)
.-1
c
iii

'/':'
o
.-j

fTl

t:1 r- XI
;'.J 0[11
E1>G)
nt::l

'11 (/)
3t::1~

t·} ;0 .-) -<
~(l (\)
:1", \1 (n
'/: If! .
'1"'1.(", (i
'I /;j I~)

'" 'I] c: AJ :-(" rq u
~Z

-It: :;r 1>
oz<
~ Co) rn

--l~
f-'r 1'1 <i flj I
;n z
H;Q
V) l,) ,

),J (')
.>

roc;,
~11j

~ \;
. i,i

I'>' -~

]} :;I)
Z Pl
tJ r:.1

f./I (/)
fI1 --I
--:I 111
'i AJ ...
Zf\)
!ill>-

~ "':.;
~(:D
III C/)

~ .. :~: :-'.' :. ~
(~\ (',l

r·· ,:,. C'"
f'). (.:, ~ ,)
C··:· ~

.... , C.L ,~) (;.)

f' t:,j I'~ N
',I 'J1 "J
t~.:·1 rJ ::;t· r;~

(":) ~\ t.l. I·":"
h'o (."', \ .. 1 r,l

.' c·;;. ' .. J j'<)
II , •.•.. j -,I .j, r't '.J . ',J
" .. ! r'v ,~, 'I

, -~. '"' :c
(.00;Jb
XI«<

'I) 41 'l~ *1·
o ~'I , '"
• :-, I·' 0
r1 W' :[>
:~ J)' U ,> (.'J .q II.)
() ... , 1-'- 'i)
(.. , ,
. -j ..• ,) .. i)

C\l (')

J> V') .f,. (/)
:.:: 1'1 I f'J
lJ -I r::: --I

()
':) -l ."'J '-1
'.(:1'. i.' (
.,> "", '/~ j. J

, .• \.11 . J I
--1 J .• 00

(i) I>
,..:;, fq '-'1 l""
C III

i D n
t;ll- 0

~ j~ ~
111 U D
, ••.) PI 7.
(.) U U

...,..
AJ

"' ,,-)
if)

J
1'1
.()

ex

" " .. j
I, ' ,. ,\ ('.' (~.~
(,) ,'.J ,)
.() .;.... ·r~ ·r~·
1,.'1 [\.l .-. , ...

~.) f" :9

. ',' 0 ,.:;, (~\

... ~ 1·)0" I·,) I·"
C' 1\,\ 1\) [\)
",j1 ',1 "J
f:'\ ,) (.) ()
'd I.J I' Q

... j : .. \ 1-' ..
.:) I.:',,', 1 f,)
,'.~, t,.~) ',.j 1\)
(1'1 ." (,)
'J o:..l ",j '.j
[',.) [I.) f. \..1 ..

C. ::{ 3:: :Z (.i',Ono
;0 <: .~: c:=

-I) 'It # #
{\ <: , ,--
... ~.'-:- .:: .. {)
t·! itJ· _1>
.; "I' U
-" .. ' J .,'
0" j'\ :.\)
C .• l .

., 1'.) ,.!J
'$I

... .:. ,'.} \'~~ ~'Y
to';' ,'.'\ :) ('i'
':.' I.~ ~~~ ~
·f' ~" ('.J I .•)
(;, OS> 'J '-J
,". I~) -!" 0

(,,':9 0 (~
~~ l-.:& t·.:. t·)·
.p. rl.) r,) rv
'J '>1 '>1 '-1
._'0)'-''';'00
'J 1\) 1- '-:>1

I~~ t:~ 5·\, I')'
.~;) '':.' '..I (.J
("~I () 'J (-~
j\) t' '.1 (.)
• • 1\) '.J 'J
1".1 IV .p. "J

<-~:{:.=<:~
(,'iOOO Al«<

·u .:j, "* 4.j:
() <:: I r
· ~.,:.. 0
t::I r- -]) >{ I.J.I· \'J
I) _I. ~'(J <:
0' 1'1" C: ;;I) •

.j ,,) : .. (.1
(.,)

:J) (I) .p. (l) :I> VI .po (1:0
',(Pl 1'1 .[I" PI
t1 -J £ -) VJ -I E --I o ()
(.I --J itJ • J l~1 -I ,tJ -j
::~. or: U T. - _-{ T q "(
:1> "j ,.) 1'1 " 1'1 '1) 1'1

i .• }. I r"
--1 't} () ~)

iI) :')
', .. ' IIJ 'i) CO
C 1'1
--I -f~ n

ur-o
~g~ :~
1'1 U D
(/) Pl Z
i,r, ;:' t:'

;0
1f'J
(,) . ,
t/) .. ~
PI
/0

~

• • 1 .. ~1 -I r
---1.1> 0 0

if) T> o fll '.!.:.I tj
C 11'
.-j j) ()

1.-11- 0
c;, 0 '-(
,tJ ~D ~<
fTl!jJ)
Il) 1'1 'T.
'.1) U ~

.....
~
G')

(I)
-.;
rll
;0

~

I"
o
.D
t,1

--1 .,-
iii

<
tTl
l:: -u
!:r~
:'j

-j)
'/'
d
1.',1
'r>
If)
1'1

jIJ

~ .. ,
if)
.. i
1f'J
'011
Vi

, ~l " ; ~',' (~
(~ (.... , I~,') ()

.', ":'~0
i'-I t':) i.J (,j
,.:ol ('II iJ 1 U1

• '.,1 f· ~

0,,)~0
,,~ ~-,
I~ rv i') f\)
',j '-J "J '-J
(,,) .~.) '''Y \"i)
"J r·J I· (')
f-).~ , .. "It. I~

(.J <-) 'J f\)
.-.;·(;;,'>10
I',) (9 '.j loJ
(.1. '.i Ii) '.,J
1\)00.po.

(•. -< 3: :-r
(nOOO
;'~J«<

-0 '1* '# ~'" o lr
- ~j I,' 0
~,) I q (',) I> .. .(z· n
'j) ::.j, --I
<) - : .. 0 'r c· ",) I" ,
'-'1 h) ~:n ... , ~

:D tr) •. ~ (I)
:;::: PI I)') ... ,
t:.l -.; .. j

1': .
U '-I 0 .. _)

-to. :'1·. AJ :,,: :1) I" I I. 1 (II
v)

•. ~ ~ 1
"I l} -~ 0

(/) () J)
0 ... 1 U
C 1,1.,

-ir,~?
IIJ 0 ;t
Pl'!) 1>
(I) 1-:1 Z
VI II) c;,

I='

; "It. 1'\ , ... IJIo
(,l ~ I' il! : ..• J 'J \)~I en .~''\. (.J f\) ~ ...

1-
o
J)
t:l

-l
_I:
1f'J

--I

~
" o
AJ
"'{
:D
-.;

o
.z:

~
-I
;u .-x
E

~
-t
,'1

'J
III
-I'
-i ..
-oJ
-<

,)
.... ,
~
101
.f'.
P.l

'-' m
i\1
'-J
ri)
'.I

."$)
(":'
f··.~1

,:,~
~~;a , .
.....
I,))
'-1
'>1
"J
I

0;,

,,/)
~

:1*
I~

;0
)

n
+
I,'

~~
iIJ tJ l1 t:;t (fl ... C/)

1 .A I :A .. I .AJ ;0 (/) .. .; r., (r! t., :=: 1"
-.; J) () t:;l ;U

o
....... ~\ ·,Alq()

" II " " " '/) r ", ',,' r·..J ." .~;) I'~ -l 1>
() po x :.0
(-~ ~ Pl o -i

0-" T
I~ 0 pi ru

0
~: ()
•• 4j
7.C
\.'l :.:aJ
.. I"

VI
<
vi
I~
.-<

(')
,.)
,,>,

~~
I';)

~
1·'-

~
('-)
0)

G
(')
(-y

o o o

(j)
I 'r,

)J .,
:.:r o
<

OJ ,.,
LJ .. ,
r:

v")
-0

~
-i

--I
I
,f'J

V)
,-1

~
~
~
fTl
;u

~
~
-l

~

(11
1.1;
-l
.~ r-

--0
;.0
o
~
~
.....
Z
--I
.J} r-.....
~
-.;
2

n ~ :., .
o
o~') I'
c1' .z.
"'> l:I :-:e .~

X

:/" :D
--I
'J) (II
1- 1>
1 ""4 ~-:::
1'\10
J> 1-
-; fTl

0"(1

:z:~
C)
.. 0
I>
~

~
2
< o
r'
,~

w
CS>
I

v")
1'1
U
1

~
o
(:(I

(0
CS>

~
C)
1f'J
.po.

•
!

•

•

•
V)
~ ~

I- [- ("')
~<r.1 - ~ (Y.'Cl'JIl
0:: ~
W 0: 1.01 ::-)
~O'f' D_

. (f) <r: Yo
...... (.t) O~

1..1.1
Lt.1 O:r. <I
~. 0 (I) fo-

V) .[I.L1 <!
CI'J !Y- ea

~
1..1.. u_
o ~ 11..1 lJl

n..lY. I
0 CI V> :) -.J ~
<I I-- z ~~i u ::> 0 Q
t·.I 0 (..) II.I~ Z
(/) u_1 n (-- (I~ :)
<rl- V) Q 7. r.;. ,.:r) , cr .•• I rI

tJ) _ J:. <J..

~ <r ~J 101 loJ 1- ' -p >- :.C .I~
(-- .-,-, <I f- f·· 1·-·

~ fY. tll .7.
.~~ LI_ I-- [- <r ~- <I:
m Lt I hi t- <i IY.

(J: G V> <J) l) ,ff tf\
'd

~ U~ t-
([V)

..-I WU ,~

I I >lrJ • 'd <J) U> IJ_

fi! 1--
Lt.l l-· 0

Itl uJ (I': !Y 1-

~
. :) u_ . Ct~ .,'

l- 0 I.J.I I· II I"-
0_ <Y. <I": C/, }:.. Cr. / (i"I J ... :>-

~ "'- [(I .[,' • .: Ct w (- <i: -,.-
!Sl (/) :") , .. 1 /1" () UU (I) _I
PI e· ((, 1.1 , l-- f . F-- 1.(1 (I' n

" n.. u (l ~-' ;() .. [} (l. LI~ r" :ij ~ 00 ~ 0.. Z (_. 1-- U 41 it. 4-~
~ ~ fo-

G:: ~
V :> ([
f\. W
I W I M .~

n.. :> 0,:: hi !Y- o:: n~ (I~ 1- »> -)

llJ 0(1) _I .J _ .. 1 .J 000 ~ a::
\fJ l':: .) --.I uur,) U b J=: :r~ ::;.: (Ii
I <I ~

..-I ... 0
oSo ~ -/ .. -. ti-' CI
("') Z ~ Z
0 fo· ([
I

~
:> ~

(» ("'-.I ~=.J

~
;;:'~I I.~"·' I',
(...) l" r"

U 0,<:) I',
<r: G (-;. ~ ;'1

E ~ (:) . ,
~ " 0 (\' (0 \?- rq "'~ oj (" 1.1
IS' (oj (') f',. ~(j {O (') -,J I',
..-Il(o '.0 C'J (') ('! In (-.) c' :r: N N ~ 1', f~ r-·. (~ \~) ~:I

<r {y ('" h r-, ~,;I (~ I.~'

O~ ~ ~:;) , , '.' , , , . 0 I~ ,
CI
0
if. :/. 1'-1 '" "'- [', r, [, r·, r-,_ ('- 1'--' n.. U (,\' '.ll (Q If' ~'.) OJ (() t~O ~'.J " , 1'. '" 0 (So 0" 0 '" r ... I', In
LoJ l- N ~. [tl If) to Li" f\J 1'1 [\J (i/
.J <"(..-I (:;> 0 () 0 0$1 ,-4 rI d G

~ N 0 G' ,~o (., ('~t (:" .~.)j (!~
<r: .J • Vl <r I~'> '-.~ ~) "": (:.. .. -..;i c- t.'! ~-' N ...

i ((I 1', r, '" (:;, ,., .1 ('>.) p)
~ ,:. v ',1 iii 1.0 1ft III 1.1. III N ~ .. 't I» "':;0.' I~" f~ \ (:)

<.r L (",-' (.;, .') (.) I.,' ,,,~I (,) .:-.) "":., (-.oJ
(" <',."1 6 1,\, : (-:- I~ " .~:.' ,-.:.

X .. ;}. Ifl ' .. IJ I, ((~ .; ~ • :.··.1 i , i I;. J I. n) iii <.;. , , 1.' •. 1 f'; •. j
£\ <.1: '\.i ' ' '.~ ,j :. "1 l') Ii, I.fJ II) Ii' 11-' II', II) II) (() ((I '~\I I (I l!"
:ZW .'
Lil P
R. fJ
(r •

•
,...,
CI

5 u y LJJ
U v':l If)

t- V) "

r- G V) v)
t-- CQ II Ld III ~ ,
~ co u n J '. g <r () <:r: :.; cr. If _J hi (Y I"Y.: !Y.

0 LL ~~ t- CL LL (j~
Cl C) l1. hI C-I <I LJ.l
W W r-- Z ll1 IX r:r'l f..~i I lSI 1·-·

8: n_ u z)- <r: }-: lr. ([(f) "" 7.:
0... r- Cl)-. lLl <I. IJl -.I , l.tl

0 0 fY. « c:~~ z hI U cr. :3 E k r~
r-' I- L W <r (I :.~ :;~. L'_ 1,1 -T l0- U ').~
V) (/'J 1.0..1 c, (~~ uJ (~ 0 z It. l}' l1l r- 0

J: r~ 0:: '" 3 u. [oj (\': IY. O~
1--: J'. ~. II. <r n ~l lJJ 0 (I) lI.
Ck: (Y :i" 1:-" (T I, .,' 7. Z ~:j .:) 1,1 III

r- z w (J }.: I) LJI :r: :C -:Z:
[t lL [0' n~ Z .~: ,,1 lol 10. I 101 1;-- I- fV
0 {[:..-, It-:: f(X :l. . .). :J
l.L ~. [(.) LI. (.) I,. f - I·· 101 r I , I- .

I V) hI II. .--; IJ. : , J: :1 .. II': O~ iJl
:::l U 0:- 0:: y U r-- n'" <t <.I': f;"

W U :%: hl r- O. 1·- 0_ <r: (,,) 7' <1: 1:-. I··
Z L,I « V) (..~ 0 , ... 1 0 to.! u.l C I L,I (j) (/J (:)

0 O~ _I 7. ([0 (l. 0 • .1 J. II:: 1,.1 .,1 l,..1 III 7:

~
!Xl l,.I <r. =~ - I

-J _J U U til (/) U if. rv: <L ... -, .-. -. ., -, -, --. .. b
I-

W <r:
U u

If) ... ~
:> p.

LLI JY .. I f-· 7.. ... 1 • l., ~l + (/'J + <r: Cr: U (r' ... ·1 ~I Q' ()
0... V) (f) f-- C"i (,\ .: + ,,1 -;;: N + ::::: (I) t··

I- ~ Ll: N I, III Ii: ',. «(\.'Y H. g~ (Y
(5) O .. ~ rI , (~ ,. , Vi ,-I ({I <Y 0:: ('I ti) (9
(Y) :J ('-;) U "'- N (I , U (r.' I •. U " C':) I.n

0:: (\J l- f', N ~. ... ·1 [.. r, 1.0 .. :;, I· ",. :,> (\1 '" OJ lY. ** 0::: 4"-~ H l}: H fY. =n z I.l: # Z ~t- ff·
0 Lol

~ r-
v z r-
[jXI Pl ,,~ CQ ('r.j <I en e M

fu u 1:-- lJJ :>- I- (1 l- ei u fo· e (I) LV ".
fo- ... Z 0 (.... I.IJ ,,·1 [oJ O~ v-) IIIJ , .. 0 lo-

t./) Ck: en (Q :F. il~ p~ (i~ (0) 1(/ t·) () l-- ~tl ('(1 () (I) i:: IX
I l1. .. /
~ .J ~- os. (-J f- .. (Sl

I- Z lSI II' t(o 0
(') l- .. .-I • ·1 W (\J
lSI '(1 U U U f- U
I (J) 1-- ~ - I fo-

CO") (}: ". rr~ jV , C(
(5)
:> , , ". ..

PJ (;j oj f'd f'J (oJ ('J c·
0 "'- "'- . , t<. r,. r'·. I', I"',
CY. I'- I'- ,J- (,'. r', I" I" r,. U I'- r" N I', h r, h h.
<I Ul (0 h. to) (0 (,(, (0 (11

:E .. I , , ..r .~ -, , , ..r i '"
I G I'- 0 \,." h. ~.t oJ (~I c.,) LIl

loll IS.' I'- ~ ,(',~, .::;:. (\1 N , , (') r·· ..
Z ('oj ~ (,.I (.. j I~: .. , LO ('.j In ('J l:V

:E (-:) ~> ~;I C ... (~I r-., 0 r ~) (.. J

<"I: 1:-. (.) " 0 (.) () 1', 6> r·, .. (J (.:.
O~ -_1 (~, (.) 0 (. .) (.; .,..1 0 1 (S) (';,
L? 0
OIY
[I'- '.; r··. f'" h ,'' 1". ~.I' r--.. I'- ll) r·, r·. .1". '"'. f·.1

1.01 (0 « .. ' ((l 0) (.1 ~ I" ~. In f···. i.'.l (J.) (~~~ l.fi ((0 (\1 (:-,
I~.~I

U I'- <V I'·, ~ .• I "- r··, 1', r" I', 1' \:I' r'·. 0 h (,~ (;,
I..oJ (\1 ... ! (,'J (;) (" ·of r' .. 1 --~ ('.' Lf) -.·1 (\1 ID (\I (\J 0
_I :> P) (,j , 1 I~.~, ('i ("'~ "J (9 ~J ,~ I~) III ,.,: ... '.;.1 . ~ ,..
0_ lY. "l"': G· ~ r:::. d ~.j -:-1 -:.') ,-I Go (:J r..~ C" ,-I ~'I 0
:E ll.l

~ VI -~. N ~J (.,1 .. ~ I> ; r~, 1 ',,:' ('0.' (':1 (\ '. (' .. ''-',
~

r) -.-;. :. If 0 1:'1 1,(1 .. ,
/'" I"', (. .1 l-') ,.J fl..l .. ., (.-,

lO 1.11 IJ) Ij: II' II) ill II! In 1.0.1 (I) (I"' ~""i If) ".1 I'':. • .. _l ~ N \.~ t' '" (:, ~~ " :.' (.) .:. : (: ~I ,'~ " ~",~,

<r I.~. (", c-,', , .. \ {") " , '. (.. , () (.:) t·", .~ .:\ ,.,
O~ ~, ~. .. ~ ,.,

,'" (.:. ('.' . I, • ~ ,'" , ,.,
X !'J .. ,. , N p" ,: HI 1/, I ,,", 1,'11 , , : ,., 1',1 .i' If' 11,) I' .. f'l '10 '1 (, . ,
,-:) :L . , , , ,I I 0 . ,1 . I (.J I\! r.o \"1 ','.1

~I
. 0

l I ,,,
<r_ 11

m
LJJ
l?
<I.
CL r-
IS)

f--
~)

f') Q
~.

~
0

~ f--

'" I <r:
CL f--

~ <r:
CI

1
.-I
0 _I

E-
f') E-
IS) ,XI
I (tI

(J)
IS)
:>
0 cv.
U
q:
1-:

~ <e
C...: (-'
0
0:
CL

w
_1
n.
1::
<r:
ill ".
~
O.

4: ~~:

X .. 0 , , (\'
('l I
/.,

~' <:r
I·
<1

<1 , 1

f-.
lJ.J
(tI

(tIf-
-. w

(/)
Ci.
Z(/)

LLJ T
::J f- 10
_I 0 T~
<I.Z3
:> ~f)

lJ.
I L'_
II
f-- 0
~-, 0 ,--
3ui"!:··.
V) _J <r

f
f--Cllj)
W7/
Ci ([0:

.SI
(r.:

:r
U Q J ..
f· (... , I": -, cS ~r
:.~ ..I f-
(.IJ 0.. '.'J

:;:- 0 E-
0 1.1.1 ..J
::E m (\'1

O.
O
C'
_I
u

IS>
h,
lfJ

~
......

(') 10 p',
oS' r, r'l

" r, (!)
(j"1 d (,,I
...... 0 (,)
($I Go ~;>

0 ~:' (('I
-.;j '1 ',.1
(.(, ~l) in
tSl (- ~I ~.:I
(,) l··' ~

IS> <-.,\ .:",1

~"'J ~. I I

',j' .. ~
{5
f-.

~~~ 
V) 

~ 
U 
t,l 
:r 
t) 

'\, 1", i .... 1 

~ y 
Ct' I 

& -' & <'" 
~ ('l " -, U 

"'" 
' , '/. ." 

:of~ Il) f') ... 
:r 
U 
1-' 

(~. 0 Cil 
~, to.1 -) :~ 
Cl) ft'~ 1.',1 (.0") 

Y. 
U 
1.1.1 
J 
(.1 

" (5;, 

rv 
~ 
,·1 

G- f'" 
,;,) In 
(~I ... J 
0 r" 
"'.i- 1', 
0 ,I 

(~, p', I·, .:.;. I,~ .. , II'! 

'" '\.; ,', 
N '.1 (() 
f') (-.) (.r) 

~ IS.) • ·1 

-0 .:~ (0 

l8 III II, 
((I HI 

<:,) ( .. ) ' . .-<, I,' t,) 
~'.J "".' , 

')' .. , , fll ,,': 
,,'1 , I , , . 

('0. 

1-- . 
0)-
7.1 

f- t'. I" t,l" [
(J) <r: :r: _ J 
(') '.'J."(1t 
-17. Z • <f 4~ 

;~ rr.: J)~ 
. VJ·r;))·!--

~ 
)-. 
1-.. . 

(of ._.1 
0 .~ 
(-;,1 hI --' (p , I U 
flJ ~~ Z . ' ,; t ..... ~ . 

1-- o I'll 
.'. W·:')· 
t'Q. (J) 7fj 

(") 
d 
3 
ill 

~ 
·d 
I'-. 
1', 
d 

(:;, (I.) 
(,) (~ ) 
(;.1 ,,-,. 
G) r,. 
(\1 '" C), • 1 

(-J. (,) r·,. 
(;;- (J (1:-
r::J ". I'-. f' ,d'IJ) 
(Y) ~" ':.i) 
lSI ~~, ,I 

v (fJ (,J 
(0 I' .. I' 
'.0 {(I (~l 

(" ( ..... ('!.' 
(;;~ (.~. ':'--' 
(.;. (;-

11'1 ((1 I~ , , '. 1 ... 

(tJ 
.-I 

:r~ 
U 
I-..... 
3 v) 
Y. 
I.) 
til 
J: 
U 

(I" (i', 

'. , : 
,'" 
eJ 

('0. 

1-
Ol"\! 
ZI 

1'- II. hI 
I" ,. , (". 
(.0) <1: 

:r: .. 1 
(\J U '.II 
dZ[ 

(); (t_ 
~ O~ ft' 
v) (,) f--

(:~, N 
O-~ 1-

(':) .. I 
(~I (T 
'So d ::.> 
(,1 :~ .. ( ) 
... 1 , 

~':j '*~ 

1-. G'i(tl 
~. »lth ,:" 

C'J 
~.~ 

:.:< 
(() 

<S' 
Ui 
... 1 
I'-. 
1', 
T·I 

~) ('1 
( ... 1 f'.J 
Co,) '''~ 
C-) r~, 
.1 [,-, c: ... 1 

(:;, r-il r', 
("v I~) (0 

" ". r, 
(\J .. '" ((I 
f') '..':-.~ 1.\.1 
0 0 0·1 

~) ~J' lO 
(';> (") t;. ", ["", r" 
(.J (,~, f~" 
~.;. (-~~I "", 
('. .. '. 

("'.' (1"1 

('.J (,j V'.f 

, I ..... 

~ 
~ ... 
3 
l.lJ 

~ 
U 
Lo! 
J. 
U 

" 

Iii tl, 

(I.} ,. I ·1 

v 
(;) (-
0-: 

- 1 
(;) <'. 
(':.J N .:~ 
('~, I .. 1 
-,j' :.< ~;: 
ti' v) H (~l 

,'1 

I 
U 
I--

[- 0 n .-_. 
tI.l C~ 3 

~ p:, ([ (l) 

(l 
ltl 

.·1 :1: , I U 
:-~ 
V) 

{~ 

,,' d 
r, 
1', , , 

.;" (.'.1 

&: ~~, 

-.:.' 
':J- r', 
0 1', 
0 ... : 

0 I:'I~I I , 
~~ " ~l ".1. 1 

f\. .,.t 1'-'. 
'.\J .-1 (," 
P) 's, Q.,I 
IS) ~\.' ':-:) 

'<j- ~..J ~""I 
, I ~J rq 

" 1', I' C, .... .... ~ 
(, '.J 

C 
, , , ", 1.-' , 
I) 1 (,'; '.'1 

". 

~- N • ~;. 1- \9 1-
O~ (y 

_.1 , >- _I 
I~j <'- ~) (i" i( 
('~ 0) ::::-- N .~.I ':~ 

(:) r" ': ) 0 11_ U 
I'd -( .... , (g L ..... 
'H 0) ,., tt· • ~. 0) 

J.: 
U 
1--

f-- (3 c. f-- 0 (:) ..... 11.1 '-) :-·t .... toJ t:.I 
(J) I'll (L VI t» ,,~ (( 

y 
U 
W 

0 :r 111 ,., U t.:) 
3 :'< 
I.') , 1 .... 1 

i,r> ..,.; 
n.J ... ·1 
, I • I 
r', " 1', 1', . , • ..-1 

(.~~ "J (';. i'-I 

1"" 1:-,' Ln 
(,) (') (:) P) 
I~.j 1', d " ( •. ) r', -S' ,' .. 
IS- , , (':1 ··1 

.~ 1'-' , " (~;-. r", ('\" 
(:> (..) I.u ('.., I~~ (I, 

r, ...;. r·, f\. <j r< 
(\J ,-~ r.o (\J , I W 
(') 6.~ to (.,) (~ (,', 
0 c· (;> (;,;, ':J N • ('i "d (0 " \"'.1 \'d 
(') (f .I l'l . ; , .... ':0 I', ", !.:.::'; 

r, h r, 
';.) (".' (') (. .... )"~ .., 
(~'I ( .. ('.1 .,~. I '., 
(;.1 ':.1 .:- C,.' ~" '-"'--

:·1 , 1 ,. , , ; 
:'.1 ',', l'l\ ,') 1,'.1 ) h I'; '.j' ,:. 





.... -a-: 
(1"' 
L':i 
o 
~ 
W 
_J 
O. 
~: 
<r>-
V) ([ 

_J 
0.. 

.. (,I) 
<r .... 04 

X
Cl 

~"LJJ 

~: ~i 
V,I t.i n .4 
fi· " 

I,() 
iJ) 
lJl 
(Y. 
Cl 
Q 
<I: 

W 
I,() 
<I: 
Ol 

l1.. 
l1.. 
0 

f-

~;S 

~n:' 
IJI <T 
J:. >: 
f-C'l 

~. Col 

~~ 

(\J 
fY ~ .. 
.:J 

IJ. () 
04: y ¥. - .;-, 
Z ~~ 
.J 
OlU 
#0-

>Ct:: oU) 
':F. ") 

" v '.l' 
... 1 , 1 
~ ~ 

~ C· 
~ ('\', 
~ 0 

1).1 r···. 
(-.> 1./.1 

~ ~ '.j 
~ 0 
~) (\:. 

to r\i 
"- (oJ 
OS' .,..f 
"1 , I 
.0 () 
~ ( ~.,1 

LO (,"I r', 
-J J <.j 

X 

(I' 
~ 
<r: 
:E 

Z 
0 

f-
<I: 
:E 
(Y. 
0 
L, 
(/1 

Z 
<T 
(Y. 
[-

[. 
7 
lol 
(Y. 
(Y. 

a 
Lol 

~ 
J. 
(,I) 
:> 
0._ 

0:: 
.,; t" 

'.J 

C) 
7' 

<t Cl l? 
:E7.L: 
J" ([ ... 
0:>': .J.: 
U 1:: 1·- (_. 

0)-, 
-I . J '/ .) 
Vi~ <t.'C 
:) (l) (". 
.0 (,) 1,1 ,~ 

W(C) 
• ..l.Lo.I <"1.1 7' ~1: ... ,>;. 
1-.. [ .. <L W 

<ru 
~-·Cr n 
loJ N Z 
IJ'J <r rx·([ 

E--
(.;. .J 
n" e 

<L :c ~~-
(,) C) 
J 
Q .. ~ U 
*~ IX (L 

> O~ ~ 0 • .1 
>- t. ... 

r, f'.1 r·, c;) 
(,') -. 1 
() (';1 
-.. f () 
(:- (,\ 

(~I ",1 r-, 
0 I ..•• lO 
~ ~) [" 
('IJ If) <J , ., Go (:) «,) r..:.-:" (\:. 

~(j 0".1 ··.1 
IS! -.. ,-I 
,-i .... 1 ,I 
d I , 1 
,~ (.";1 0 
t!" 0 (,' 

' . .,' .. l,'o.J F) 
I.f) If! II) I,IJ 

'J Lo) 

x .... 
(1' 
1--

~ 
7.. o 
1-« 
. J 
(i) 
'j' 
([ 
1'1:: 
1--

1.01 

t 

i.n 
III 

<11 
i'll 

I,() 

[l 
CY 

r-' 0 
c,:JQ 
2,~.<l. 

~j~ 
U III ~ 
7 C£I X 1-_ 
(,) _.1 .... :; 
U . .IlY 0 
....... f-
<r'~{(I-' 
:;:.: . }'~ t·, 

(/) 
101 Q 1t..1 <I. 
TIl'X:F 
i·~ (j [ .. () 

3 
( .[ .. 0 
loJ (0 hI Z 
(/).-f(f)([ 
."" ." : ........ " 

.. 
.J' I .... ' ,~~ ('IJ r, .. -, 

'" Ct, 
[OJ r'< ~ 

() 
(';l !', {~,: ~ 

U.I 1'" ,'-, N 
~) { (.) (') 

c- , (\1 1". 
~''') .~.;, " ,., 
~ r·, r-, I\. 
(\) I\J (\J 'j ... , , ..,f a 
G' (') (:-) N 

\S, "j- (,) ,i· 
(\J ftf (t) (, ) 
,I ,·1 .... J "1;'" 

< 1 d "" -·1 
t.' 0:1 I.;..) I.~) 
N (.) (-,I «) 

I·. f.' fit (~ 
1.11 I':' IIi ((J 

.. I 
I() 

1\.1 

7. ... 
"'" 
1.01 
CQ 
::;. 
U 

~ 

('1 
t,'1 

1.(1 
(0 
(, .I 
Ln r,,I 
0::,:0 

(-:' 
(" 
[" 
('I.J 
"'~ 
('Y 

c..1 

-;1 
,,'1 
.-.J 
( .. ) 
C' 

I:) '.:. 
1 .• ':1 en 

.~ ...... " ." 

,i" 
\(, 

>:>G::: 
OOIIJ 
>'.:F ") 

'" ('1.1 (",.,I 1'<.1 
'C,j- r, -. .1' 
~ ,·1 (,) 

~~ ('.~ 1,'-':-) 
l~.,l (.) .... (~I (.~ 

.., 1 f'.1 I' ... 
~';I (.) ('.I 
.r, I' r, 
(\J I~J ow:-j. 
.... ·1 ... 1 0 
(;:;.. (0,;:.\ i\l 

".t ~) ,I' 
~J 111 If) 
.... -1 .... J ... 
d , , vi 
0 ~~ 1·", 
N (..;~ oS) 
lr:1 l"- f,.; 
'.(1 (J (1.1 

:> »n:: o () f) t,J,' 
:F }-' Co \ 

.. 
('IJ ",(1 ((j i,l 
r· .. til III I\J 
Pi I"- f'l ('.' 
~., ~ (,) 1.;.".; 
C,I' r .. ('.., r··-·' 
(,) "C'.: <:.1 .~.: .. 

c-:.' "1 p.) I'. 
Go .: 1 c, ~ i) 

~ r, f·,. f',. 
(lJ ('II ,~ 

d ... 1 , , I:':": 
oS' !'S.' ~~·c, 

(-;- "'' (~. ,I 
1,0 1..0 " r· . 
,\ ,·1 or-! , , 
0'1 " ! 

,., ! 
( ... ~) ('\'1 I:'" 
(. , (; ... ' ". 

'.1.: (\' .... 1 f\l /'.' d 
til I, h I" '. [. '. I 

I ,~ 
I, 

(' .. 
(j 

)
(r. 
. _1 
O. 
(j) 

o 

~ 
hI 
( .. 
<l 

r
z ..... 

~f'i 

\". 

(() 
Cd 
-.1 
r', 
1', 
.,.-1 

r·, 
to 
(\1 
lJ) 
0 
G' 

(S> 

gj , 
"I 
(." 
0 

". l') (.",1 , . 
1"" I', 1". 

y 
u 
<I: 
(Y'o 

x , .. 
C< r
<I: 
J::: 

5 
1---

~ 
O~ o 
I •. 
v) 
7 
<&. 
W 
(-. 

....I 

~ ..... 
~ 

0:: o 
(01 
J: 
~. 

0.. 
(.) 
0._ 

(.) 

v) 
'." 

( .. ;j 

~o 
<l:Z 

£~ 
O:F (-
00:) uo 
D_ o (J) i-· 
0_ (I) r I 

lJ..I 
1.'1 _ f (0: 
I <1::::. 
f- I . C-) 

([ 
~~o 

~<r~ 

r,. ';I-

" (5.:\ 
("1 0 
(~I (0;,' 
0 (y 
d IS> 

0 ..-l r'. 
(':) & UJ 
"- IS> r, 
N 111 oj. 
..... 0 (-:) 
~ IS' N 

".t (.) ('.1 
() -' , 
N 1\1 I.U 
01 , , 0" 

~~' I~; ',;'.' 
.) ~;. (.j 

P.l ('1 "',I-
rJ) ~\J /)J 

IfJ 
(If 

D. o 
Co 
_I 

~ 
_J 
(L 
(,"1 -CI 

~ 
l-

f
IY. 
<r. 
tr; 
~ 

!,Q 
(;(1 

I'. 
Co:') 

z o 
u 
o 
:~ 

o. -a o 
....I 
0.. 

0_ 
~: 
-) 

(0 
""I 
"d' 
~ 
[,-, 
.... 1 

r, 
1,.\1 
~I 

'(5) 
<9 
c::.> 

(.'.J 
.,1 

.N 

'" (So) 
~) 

It' 
t~' 

• 

• 

• 



• 
A~! X A: SA~~LE PROGRAM 
:: Y~ :.~-oo:~ RO'~'T! ,,:: 

2 

:. 

~- ee~222 022767 000200 
. ·:-~:222 20177"'. 

: .. '::::::..:.-.::~::: 9101'37 1724.10 ' 
·:3::'2::.'3 3:32:37 :72£',::'2 ' 

:; ;:.~:. 2~·2 1327'57 000001 
=. ~:. '::::C 0(;1.774. 

~ .:. '_' 'j:'::'; ~ C:;~·. ~:0S7 !. 57774 ' 

?' 
'--. 
-, 
'- -

?~ .. ::.?=~ lS27!37 

2~_" ?? ._:,=-.!~ ~~'~2~:;;' 
:::..;' 
_.,j 

c--- ~,:, · ... ·?:?::::G' 

C2CC0::' 

• 
MACRO V06-03 01-SEP-74 08:30 PAGE 8 

172414' 

167772 ' 

::'7241.(~1 

, SBTTL D~ OUTP'.JT RO~JT! ~E 

TH!S ROCTINC:::: DOES A~'- OF THE DMA OUTPUT FOR THIS PROGRAM. 

D,T1AOIJT : 

PPDONE: 

,::,)(oECTE:: PA~A,v.::::TS~SA.~: 

:SIT 
3EO 

~,10\J 

:t'/~IJ 

3ITB 
E"EC 
;<0\.1 

3ISS 

~TS 

.~~:. 

R~=RSR CO:~A.'\D 
:<l=m"~ ,""OR!) COUNT' FOR D~:JC REGISTER 
~:2=J~·.~ 3ASS A)D~::SS FO;'· C~SA ~EGISTER 

~22~~ ;RS:' 
:.~>~:c!~ r 

R~ J ~~~~~ 

R2 .. :.~3A 

~1,SR 

P~D::~\::: 

R0J~SI~ 

#:, J'=;.'ST 

PC 

START 

; IS Th'S ::¥CA" ~::P.DY"? 
',LOOP 1:= '-":OT 

;SET T~:: ~A ~OR!) C~vNT 
; SE'i Ti-l~ I:';-Y:~ SASE Ri::G I STC::::R. 

;WAIT ~CR THE P!CTU~:::: PRO:ESSOR 
; 'T"O ~::~::S:-~ 

; A:\D 7!-:=::'-I SET TH::: ~SR 

;STA~':" Tt-E :;::'1A TRA:-':S'=E~ 

; A\'!) RE"" .... :~~ 

• 



• 

... 1 
I • 00 

uJ 
~ 
<I IY w ry f\ ' rt': rl". (~ w (Y (" I . a.. to f'.J • )1 1...-.' r'" ,d r" ":'!- r·· /(\ fo.J (:) " 

11,1 I'l H 
0 ~ d f.',) \'.1 

" 
V) I" r" 't,.:. r'· .. I'- 1 II) f" 1'/ 

\Sl ... 1 U I'\. (,) (,) (OJ 1'/ r" (\1 II) I' In f". 'd (,) .1 
C') !So , ; (\j (;) ': .... ,"\ R) h (" .:~. I', r> ,;;) I;') (i/ ~ 

IS) 'S' I'\. (y (~~ (i', '$) ,~~) (n ~) fl.) ~" 
,,,:) '.::) ( " 

00 (;) c ...... , , C" ') , : ,,'. I , I ~ ;, ") '.' , ., 0 "S.I G'I t:) 
IS) 

-, 

" " " " " " " "d' Z ~ >- .... 1 -.1 J': {;I :C 
'I' 0 3 (f 'J. ::> <c (/) Ui ( I 

~ ~ <T I :':> n 0:. (I. ,. , [ .. ,., [ 
0- ('. "-I U. ( ) (l It. " ~: (J p • t X 
Ltl ... 1 -.;- fY (l", :.r 0 :) , ) I}) [ n·: t(; 3 I., )- :~ 
(I) Cil (--:i ~~') (." , . _ .. 1 'i!.: o. fr: j ..... U" 'll (,) [.- , .. :> 
t _., 

G' 

I'i 
is' , 
lO 
is) 
::- Ct' 0< (.: r,' I' fI' C'. il': ~ I:' fl' , r 

"d' ~~ 
(:) (', "-' 'j .J ( ..... r·. .; ',; i,,i I" '.".' ... ) ." 0 ... , (.> r·· I~,. "') r, i'" II:' 1.1) 

" I'.' I!.) I', j,1 
0:: .. I (\J 0 '\."~ (,) ~ , ) f,) (n Ii, 1"1 , r, i'" r-.. (I] ,~~) .. , 
U (5) .~ (.) (. i (' .. ) (.;. , ... :) ''? .:.~-' .. ..,' 1,\.:;. t.'.) PI ,.-) ;i.J " .~' (-,' 

~ ~ (0." ,·1 I'. '" '" -' ('J (.;. l'.' ", ( ~) i.) , .J (',) 

~ ,":~ c.:'.l '. • 0 ·1 (.) ,':) \'-J '" " I>~' .. ) , .' (:-) (',' ':) i,,1 

II II " II II II LJI 
U .. Cl r: ',,: ~ .. (.) V. _I 
0 ~ fl,' 

/--.. 0 n I. ISJ I· : ) ::J: 0 

7- :'1 ~-: /~ t.) ( ) ,', '. , I n f· ,":."1 t··:, f'" >: .. - <J' <I 1.1 <f ~ ( , (~ .. () , ) , ~ I . .1 p,.1 ~ .e. 
<I: ':'1 C.1 ". 11" I " ( ) .". I .) ~ l i·,1 ! . , 

)t .. 
cY 0.'1 l.'.l ( I , ., I )~ n " ;'!' I,', 1.t.1 , .) r·· V 
~ Lt. 
0 VI 0:: 
[ o$l ,·1 C"I ' .. ' 

~ 
I"l (to': " 6> 0 'F 

\.J.t \Sl -~. ~ .. 

~ .. lJ) _.1 
CY no: n:: o· (,,' n·· n· I',,,,: ,., 

,~ . fl' c .... () ,'.:. • , 
(.I) ,;:- r'J .--:-, ,j" r" r, (.) ,'., , .' t'-.. '.\! , ,. . t I.:" , ) .. ; "I ( ... ;. 'II ~ II ~;. " 

19 " 6 ,. I r:, r, ", ") 'I' 1', c· ".1 I" I .... ~. ,:' !" 'J' 0 '" 
i " 

1,'1 

IJJ ("~, 
(~ 

.', 
(i'l 

r, h "j -, f,r :' fl', t.'.1 ~ • I , 1-- .:,) .:.:., , I .... J "J I _J ~ ~:~ '.' '\J 1."1 (,,', , I'., ,"'. ;'. \ ,., ":, ,: .~, "':~ (:." " \";1 -.. 1 ~ I I n. 
<I "0 '" .') 

. , .'. '.'1 1.',1 .... , ':11 ,,', , ,,' ,'" ~·~.I (;:1 , .'., ' . 
~ (,; ... « (' ..... i'-" . , .. , ': .. ' ','.1 , , .. ,-, , ., " . , '::.: I,! ,., 

X E- '~\.£j t.'·' 
II " II II II " P _.1 () (-..\ I,', ,;" I.I! ( ) ,.;. ,. l' , v,, ( .. '01 

~j 
0 "./ d f'l.' , : ;"~I 

i') " ,- 1. 1 ,- , (f (il ~J'I ("v' i 
M I .. ::-{ 1 \ " 

. ) I (.:' ;:-; 1'1 II. 0', (\J ~~{.: <I: (iJ e- III il. 
)-' l' {I' <f tn ':1: (I .. , • ) " 

,'. , .. , ttl « r .... 1,,1 ) . 
~ }~ [1 I.r: I .. ,,' ( , i~:J ( ., u. i' I ~. 

(0; 
, i"Y. '" .( e', G: " ~ (/J 'l (. I h ... 1 -1 'I. ". ~: Lf: t;' 0) C/j r , (. i (/, 



~ '. '~-.(:' .~. "j:>~.: ': 1·~/5;\.~~E<:':~·~:~·'~f~~~·/<··~·' ~ ':. /(" ,;;;, 

1.3.3 PORTRAN Proqraa Exa.~l~ 

• 

• 

• A-58 



C'i) 
o 

:L 
W 

Z l--_. 
(/) 

:r '-
f- (,) 

3 toJ ltl 
I tY 

)- 1- :> _ I (--
• .1 t? U 
<I: Z .... , 
U ... D._ 
~ .. (,l) 
:c :") hi 
0.. :L 

* 
Z ~ 
101 l' W 0 

0 CY: f-:r U 
f- If) III 
IY. U 
Q 1.1 <I 

O~ II.. 
lrJ ..... 0': 
CO (-- b.! -:j , 

~ U ll' 
~ , 

(/) W 
>- :r (~ ,:r: (-- I-
.J 
(I.. (f) I.d 
\/1 .• J It' 

<1. 
C) w .:.J. 

IL' f-. 
,- ~. !J. 
([ I'. e) 
n~ . , Ii:, 
',." , I 

".} i,', iiJ 
0": II, l) 
CI.. VI .. 

J: z (,.. II 
([ .-. (r~ 
(} 0: 
(- :r .; ,r~ 

Dc C) 
0 .' , -. ' 

I.L T id 
:-'< ~ 

III V) 
-' ~ )-
D_ n': Vl 
1': c) 
J, O. 1'1 
VI ::-< n-' 

1.1 :~) 
to') , . ! , .. , -. I .. ~ --' :r 
1,- <:]." 11, 

z: 
0 
CL 
:> 

W 
1-- I z: f-
l,] 
'-~("l 
:z: z 
lU ... 
(I ;-
W « 
Q -' O. 
(/". V) 
7~ ~ ... 
0 n 
~ 

~. lO) 
U --l 
1 • .1 .. ~ 
rt J: 
~3 
r.'J uJ 
N :c 

f· 
n 
Z -, 
<J: <.t 
)-

--. '.'J 
~.:~ ~~ 
:/~ ",, 
~., f· 

f--
n 1.1 
1 • .1 (I) 

f-' 
"r: ,'. 

.! '_J 
('~I r 
/.. 

_. 
':1: -'? 

(1:' i",/j 
f- <I" 
ltl I-
~·c. ··1 

0 
-" {.J: I.JJ 
E .• J 

0 
Lil (l) 

"', Z -, '-) 

U u 
1.1 Itl 
:-.. ,1-
1- [ .. -

:r 
.. 1 , 
;;,.-
=-) .. , 
,-,-, 
( .. 
Z 
C"I 
C .. 

;~.; 

, 
(11 

.I, 
U 

:r 
'"? 

ioJ 
~, 

(~ 
::-

(I) 
1'1:' 
101 
1-
U 
<I: 
n: 
~r 
,I' 
U 

( ... n 
.r; 
:1 
f 
~. 

Lol 
~""f ,. 
r ! 
f-

3 
(1'1 

hi 
.J 
() 
(J) 
:? 
( } 

(.:0 

~-
fI'. 
-:1.: ,_. )( >- I'.J :.-c ,_ I",J 
\I) f I -I- -I- " 
1 .. 1 
r-..: I" I" I" I.of I d lLl 

f·- [.- r - 1- [ - ~-

-:.T_ :\ :1 1 <~ 'J; ~1; ,rj 
I"'~ r:J _, 1 •. 1 \ 'I 1,1, (.r I ( .. I~I 

C'.' ...... . -'. .Z. :.,,: /. :.l 
t') '.I :1. 'I. (t: :]: <.r 
IY. (I", II', I.t'. II:: n:. 1:1": 
f', [ .. : - I" !-- I - [, 

[,n ,:1 [i'l ( • .1 ,.. 0 ti:o 
... ~f .. 1 ~ o;-f rl -. J 

:1 _L.'I r T T 'l~ 
LJ U U () U U C, 
1-. f- f' f - 1-- 1 - [ ... 

, .. , ._, ..... r : ~-t to-, 
3 :~ :'.$ :.:$ _~~ ~ :1 
(l) (/J i.i) If) t·,) (I)' t./) 

I:} c \ " ) ( '.1 ( ) " ) ( " '.) t ) r.l ( ~ '",) " ) t.) (.) ( ... ) 

u 
u 
C~ o 
C' C) 
U 
U 
U 
U , " 

o 
u u 
u u 
( ) 

o 
U 
t) 
U (.J 
U 
U f-. 
l) D,_ 
U 1--
U 1,/ 
U V:o 
U 
1.1 
U to 
U 
U . [0) 
U .1 
:::.: i'~ g: 
i3 g ~~ 
( ,:. (:' .. I 

(-) 
( :0 r·. r',J 
1 •...• 1 .. s. f-.. 
1)- .... ~ 

.: J 
,~ } ('1)' 
\ 1 '.' (-. 
("1 <:-. I I 

() 1--,-
U <f>C 
U O[ 
t) () 
t :0 
U [I" ry' 
~_) 111 '-" 
( ) (~ I.,.!:r 
(I III LI.I 
U ~I-
( :1 :-: 'Z: . " 
~:j 
I.) 
U 
U 
() 
U 

OUff 

1=: 
ltJ 
(--
()) 
), 
f./) 

[II 
0:' 
'J 
F u 
O. 
lJl 
:J. 
(-, 

~ 
~' 

oJ: 
(,n 
IJI 

~ 
"T. 
r>'. 
(I. 
"> 

([ <1' <:r: <t !.II 
[, (-- ~ ... (-- N 
<1: -q:- <1: <I 
C:l '" (,-J F) -,t 1 • .... I ('I.J ,~ ,:,. • J 

<I: 

u 

6,' 
(") 
~<' 

f-..... 
7 

V) 
O. 

QQf.j 

" II " - I ,,- )- N _1 
E- [- [ <,1" 
"'·i ,._, ~. U 

' .... ,,,:. 

l·J 
-"-
<l. 
0:: 
lI. 

ttl 
:Z 
() 

~ 
(./) 

<I 
W __ I 

1-. 
<:I 
)
<I 
.1 
n . 
(/) ..... 
C'I 
()
l'l 

ut)O 

• 

& 
>,'J' 

o 
f-. 

o cry 

• 

• 



• 

• 

• 

N 

W 
L'i 
<r 
0_ 

«:::I' r, 
1 

11_ 
Lt.1 
V) 
I 
~I 

0 

IX' [11 

v' 
G 

" 
I)) 
(;) 

z 
tf 
t', 
0: o 
1I_ 

C,· 
~. 

III 
1.1) 

( .. ) 
ld 
:r. 
U 
~. 
~. 

? 
(j) 

IJI 
_I 
0 
~I~! 
r"\ 
() 
'. 
/ 
(I 

U ( .. 

lS' 
0 
f,J 

() 
f-

0-
~ (.:, 
:r 
u 
[ G" -. 0 V) ld 

.J ~. 
.1 
'1 I.. 
(i 

c· 
~. 

(,' \,.1 ("l 

(\J C'l .. , . , 
(~l ,<:) 
c.;. ~~ 

(.r) 
LLI 
I 
U 
f-
~ .. 
:~ 
(I) 

_J 
([ :) 
C'I .... 
:> .... 
Ci 
Z 

~ 
1--

~ 
U 
LtJ 
:r~ 
U (;. 

0 
d 

(-- c) 
:y f' 
Q, 1[1 

"~I (', 

('j 
:1 F) ('" 

<r 
; .0 

t 1 

'I" (, ,.) ; :0 
f '.':. iF, ,01 
)' () 
n n·- _ J 

0 I 
'" ! I. 

[ f • 
(,. 

1.11 .:, 
Lt' I 
Il' (.'I 

.I 1.1 
I II 

': ,1 I.' l , , .0 .. , 

<J III , I I 
<".) 0 
(,) ~\ 

_I .,1 _,I 
<I <I. <", 
:> :;. :;.:-
u U (.:1 
:z ~z: /" 

1 I I 
X >- ,'J ,-, t'- I' I , , , 

, II II /I 
.. .J- /( I:I~' ":-. 1\1 r·,.] : 

f 
, 

, , ( , , < 
, r .,~ 

T )' :1 T 
ij U I _.I I .. ) 

~I !-.J. ,,' (, , , ( ~ , , ~.~ >~ " 

t.'J ,-.:". 1/ ,I c; (I" \ I.,"" ','. "I 1'''1 f ..... It! i/', Id ",,',: 
U 
r ,.1 , . I ,.I . . I 

I .1 ,.,1 :,1 .-, I, .:, I, 'I: I. '1 
I,i', I • . . , I , 

t' 
101 :, 
u 
t...:. () 

(£J r,. 1)-, 0·, () , (\1 , I , ,., d N [ . .) (.J 

&. ':.~) .:. t·,) .. (·.-r ..... ,j 

~.,) .. ~,.; ~ .. ~l .-s. (0) 

. .1 .. I .. I ,r 9, ~T 
-::~ "~ 

-,< r-} (,} ( 1 

/. :1: :/. 
+ -I- ': 
(. )- I'·,] 

i I , 
II, ,II II 

I' ,J ~', , ..... 
( ( , li:. I 

.J: :' ( :0 
f'"' " 

, ( : : 
.:-~ 

( .;; I,', ,"j .... , \ .' 

J'i II?' ! :) ",il I,' 

.. I I 
I I 

I. , I, ,,- I' 
r, " '. '. 

u 

(.) 'J I.'" (.I.:I I, 
C,..! C·I I.\J (\1 ()J 
.0;:::, 0 (.~. ':<, 'oJ' 
,~ (o~. 0 ~ ~.-

(r. 
r 
<I ,-:, 
III 
:'.: 
I' 

}-
(r 

;, I 
(I, 

n 

C, 
:/. 
( :. ( I 

"/J 
h 

" h"l 

" .... 

" \... .... 
\..; 

~ 
~ 

...J 
"-l 

~ 
\j 

~ ,.... 
(.) 

('oj 

( .... 1 . , 
I ' L1.I 

. I 
I 

0 .. 0:: 
I _.) 

101 ( ) 

(,I) -

I -·1 ., 
t I I, I I I I 

0.) (I) (:~.) '·1 
(\1 ('I \'., 
~ 0 () (:) 
~ ~ .. ) N (~ 

l!' ,.,.. 
'''' cr: 
IJ.. 

:~ 
':'\J 

(\J 
~,q .. ...:. 

I:'<J 
(\J uJ 

(,.J :[ 
... 1 f.fl ~. 

., iU It 
I r () 
(I: <L 
~:.! { ~I >. 
() '.) <L 

C:·I ,-" fl 
I :r: 

(" i.') (I"' -;J: 
~. ~ [I' ~., 

<.1 (I: 
("I' il< 

j..:., I.' (-) 
,j 1\1 

101 i , " 

£t'., 
I I ) 

(, ) I I 
<I , 

101 :.( 
~ 0 
f- I 

,_. 
I Ct 101 ;.1' ~ 

101 i 
.' 
, .. , I i .J (') 1'1 

T q 
f . . 

~ 
f , -, 
<J 

:/ 

( ) c " .. , u I .. ) C) 

(\J C', ".t Ii) ( ~·I 
(') ('j fil ('J ,:.) 
0 0 c:~ ,') '":.' 
0 (~ ~ .::.. ':.;0 



• 

("~J • Cl 
r! 

Lo.I 
._, 

C3 iJ: 
<I: (I:: 
D- C. 

oj 
I'\, f--
I )( 

CL Lo] 
LtJ I-
to 
I 
~ C'I 
G (',: 

:..:.: 
<.r: 
CI:' 
Cl 

CO 
P) 

0", ~-;:; .. s.;. J' 

,)) I 
G in 

-:t~.~ lJl ·t rq , 
~< L,' -: ,'. j ,,-, 

:r '~~I ;( r:- III ;"1 I': 
u ,.. ... td 

" 
(,', r:', 

I- '~J 0. .. -:-::" . .... , 
-~. . , •.••• 1 

~~; - I T f\':. 1 •• - I ','I '.',.' ;,;1 
u) I (~ .,1 f· ! .' 

Q ( ~, ~.'1 ,,' ~ ; . 
C'l ~. ,i ':. : 
Lol T i,' " .' .~ -, ( .' - I 
_I ( 

(l ':') <I." 1)'1 I,ll ({, 

'.) " n "I 

v' II t' , L,' , 
(/) ...J III r·· {)" '-

l,.1 Y:! (tl :r ':r • r'"l ~, " 
" 

I . , 'J: ('I .,:.', , ~ , 
I ~, II' l~ " '. " I f: .. 'I '01 lei :1 tl ( :- ( ) ( I '01 I,', 

(:.;I , , ' .. " ,.> I', ,I ., ::.( l" I,',' 
"> ('i. I' (" ~ CII .~.I .. , I 101 ., 
~. 

<c 
Cf 
~., 

(to:: 
0 
lI. 



.,' 
1 ' 

, .1 [,:' 
I I 

i ,j 
".J: 
" " ~;. 

'11 'J '. ' 'rl .'J .,' '1 .,' " 1/ "I 'r, . .., 
" ) I I i IJ t J i. J I . " , ,I t,) 

, I " ) I I I I I t 'I .. 1 ',J' I ~, U to', V) 
"j , ' , 1/ • , ,() I)·' 
• , II i " I I •• I) ,,'~ ,"'" I) 
,.' ". 'IIi 1'1 , 

'1" .', .;( I • r" '" r . 0 0 , •• 1 J I , ' , 1 It) , , 
i) (, .! .... ~ 'I I " I ., (. , 1'1 !j;" ••.. 1 ., I' .'.1 

, I I " l,· ',,- I' I ,I I. I I' I I, ,~. I' 
" • ':. , " ~ ) I. I \.! .,' .. ' "J' CJ l . ).: 

'", ~., .1 I I I, "I I \0 I). 1.1 ,\) 

,.' ... < ~')I '.; < "I., 

.I', (") ':' 0 ••• i I", 
( \) '. J 1 , "I 
') .',' 0) /. /; G) 
() J-lA;o:,,·~ 
, .' )"I) ... ( ) (.' 2 
i '4 " 

~'~J ' .. " ("r": ~" 1.11 (0 01 .r', 4\ (f~ ," ,» ".J tX', ',J II) '.\ ' ... J f". '1 "l. r· , , .. ~) '- .. "".1 (,', (1,1 rfl I:f, 'J '\,1 ..... J 
I , , I I I , , I I , , , , , I , , I' ,"1 I ", ", 'I '1 I I I I I I I I 

I' 1,0, I'.: : '. r'J 1 '. 01 '-'I I" til 1 r,) I'· f· I' 1'1 '!I 1\.11\) (J : ·r·· 1 . • (,I !\.' III 
(0 i',', ., '.1 'I) r,.) , ':,) ',I (I) (., PI ('I C;~ "'.11') p. Iii 1,'" L':) .... ) " I '.11<' 011\1 .~ ',1 '. i,' '." !" .", til '.1 r" 
,'", (o,~, '.J it,; \. ,;t (0) ';, /0', leJ C (0.) (i) . (t:') (il 

"-J ,r>- ",,1 (J, ·r, (JI !' .(~ 'J 'J ~." Ul ".1 01 'J !"Q " " ,~ I I I I I I I , I , , I I I , I I I , 
III III .:. J ~ 01 '\] 1.11 til 'll iJl 1'1 ,.:. r,) •• I I,", (\'\ (,j 

~ f. 'I .;:\ (0) i'IJ HI c~ (I) .'.1,) 
1,1 ~~ " '. ~ 'J loJ N ~ 0 0 ,',.j ,I:l ,ill (~ (.: (il) (~ ..: '1* 

.... J ,~'\. "J 0) ~ U1 'J .f.~ U1 m i..:) 'J ',J !'. , I I I I I I I I I I I '11 )"1.1 ",1 r .. l N l'ii loJ ru N "'J 'I .. !.j 
i.,I.(.I,1 I>,,' ~I) 'J './l , .. ;, ( .... ' ~~ 'JJ ,',' II ... II: 
f: Ii;, (r~ (~ ml ,.,.~ C;-) Ie) (eJ 

".J f' '.J 'J ~ U1 '''iJ r.> " 0) 'J ~ , , , , , , I I , I , 
ll'o /.,) <:(1 ':,) I\) (',) til ~. 1') " .r>-(';, I,:' :'" 'I rv r.) ,'y) l.Ill,) (0 i:-· 0) (,'l (U (i!.o (j~ (£:j i~ (1.:1 Cil 

"J r.. en 'J .r-- ''4 f' " m 'J" I , I I I I I , , , I 'J .f'. , .• flJ .r--
" .f' " IIJ (X) ...... 

I".j !'. IXI ~ W ~., I)) 00 iJl .r> 0) M (0) (i:) Ie) ('J (r:-) (i) 

'J" ytp Y)l m tpy I I I 
(;0 ~ (.) 

00 ..... .~ 

~~ (0) ro , .- I"m ..... 
r.::> (,) lei (~ 

... 
(i~ Cil ,'* 

(1)" Y'r oo',j cp.~ I , '-1 I 
.. F\l (,J I\) N ,·"W (,I I ' OlUl r,) I,) . ' ;.~ 

{/~ @ (,~ (iO) 

" "0) 'J " I I , , I I'J .f>. , ... til W (0 WUl ..... Ul (i,) Iril Iril 

~~ 
(fl 
V') 

~ • rrI 
Al 
t2 
(") 
III 

-l 
J> 
~ ,-
m 

VI 
I , ... 

• 

• 



r J -:.,- , , 
,) 1 (.I'. I{'I I .. Ii', , ::1 , , .:\ 1./, ,II :., I I~ n 1.1 

, .. I. ,II ! 'J , .,. I .J U II: "I VIo. I.) 

~ \,i.l ~U 
. , , . I .... , :1) f) ~ '. ,~ ":, ,> .1 I.' ;.{. 1 (.,' ";' I ( :. J ·1 :>lj ~ • J 

\,oJ '""' I: .0 \ \ ( : 'II 
1'1 ~ .: (II 

i~ , '. :.' ,., ".r ,., l ~ I :11 ". ,. I" I I , '" '-,) ." ,., ,'\.1 " 1'.' ',1 
I , I I I I I I I I l l I I I I I I .1 I I., ,., i.l I .• ) • I , I I·, ,., ,., , .... "J I' (~ I,d ..Q 

• "., '" ~ ~ ~ , " Iii II) .. , ," , , ',. UI 1'1 
". ;!. ii· /. 
" 0 

, 1'1 
r- !" "I I I,I! 

,,, 
I" i:1 ":1 I I ~ !':. (II 01 r· "J ~ j'r.. 

I I I I 1 I I I I I I I 1 I I I I I .~ , , I'", I'; ,'I "' III ;.) , ! ;! ,,1 1,'1 ,.I r· ' .. J r· I" It ." .,' il,l ., .,', I." , , it! ",:', ~; ~: I ., I.' ." , .• 1 ;.1 1..1\ 1,1 t· , ,'0) ,:j '.J I.'J 
'. , " , i:1\ IF "I~ 1;1 lei 1-

PI 
'·,1 l'" li.l I)) " (1:1 fJl 'J ·r ... .' I I I I I I I I I 
I 'J :\\ ; , " I'.: , ' IJ; ~~) lJ:, 
.-<1 1.1 '.J I·· (':, '.\J ',. I 

'ol CI~'I ri!) ":1 I~' fv 

I.) (l', tJ') 'J LI1 'J .r. 
I 1.1 I I I I 
~ . (~I N .f'.. , .. 0) 1\) 

I '. 'II 10 I., f..) '., U) 
{ ", a!" (iii (i~ ,~I 

U1 '.J r· 
I I I .... " (..) 

''0 'i) r,. 
1,1-:; ll,:' (oi;r 

In rj) .r-
I I I 

f..:r ,,, .r.. 
,~..:r f'· Ul 
(.;;, (Qj 

CO '..I 
1 I 

---()) Ij') 
.(2). 

'..I 
I 

N r·.) 
Ii) 

• '..I 
I 

W 
~ (a. 

• 



• 

• 

• 

APPENDIX B 

SUMMARY OF THE GRAPHICS SUBROUTINES 

This appendix contains a summary of the FORTRAN AND MACRO-ll 
assembly language calling sequence specifications for THE PICTURE 
SYSTE" Graphics Subroutines. Also included is Table B-1, which 
summarizes the Graphics Subroutines Error Codes. This code is 
used to indicate the subroutine which detected a user error 
should one occur • 

B-1 



-------

TABLE B-1 
SUBROUTINE ERROR CODE CORRESPONDENCE 

PSI NIT 
NUFHAM 
VWPOBT 
WINDOW, MASTER 
INST 
PUSH 
POP 
TRAN 
ROT 
DRAW2D 
DRAW3D 
TEXT' 
TABLET 
CORSOR 
HITWIN 
HITEST 
SCALE 
CHAR_'" 
DASH -: 
BLIN'K 
SCOPE 
SETBUF 
BLDCON 

~ E'!!Q!L~Qjtr;~ 

1 
2 
J 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
o 

lIf an eccoc occucs that is detected by cne of these sub-
coutines, then the eccoc code will indicate which subrou
tine the ercoc was detected in. 

B-2 

• 

• 

• 



B. 1 

• 

• 

• 

FORTRAN CALLING SEQUENCES: 

[EXTERNAL eRRSUB] 
CALL PSI~IT(IFTIME,INRFSH,[ICLOCK],[ERRSUB],[~STKCT1, 

( ISTKA D]( , IFl1CNT ]) 
CALL VWPORT(IVL,IVR,IVB,IVT,IHI,IYI) 
CALL WINDOW(1WL,IWR,IWB,IWT[,IW]) 
CALL WINDOW(IWL,IWB,IWT,IWH,IWY[,IE[,IW]]) 
CALL ROT (IANGLE, IAXIS) 
CALL TRAN (IT X ,IT Y, ITZ[ , Ii 1) 
CALL SCALE(I5X,ISY.ISZ[,IWl) 
CALL PUSH 
CALL POP 
CALL DRAW2D (IDATA,INUM,IF1,IF2,IZ[ ,IW]) 
CALL DRAW3D(IDATA,INUM,IF1,IF2[,IW]) 
CALL CHAR(IXSIZE,IYSIZE,ITILT) 
CALL TEXT(NCHARS,ITEXT) 
CALL INST(INL,INR,INB,INT[,IW]) 
CALL INST(INL.INR,1NB,INT,INH,1NY[,IW]) 
CALL MASTER (IML,IMR,IMB,IMT(,IW]) 
CALL MASTER(IML,IMR,Il1B,IMT,IMH,IMY[,IW]) 
C ALL DASH (1STAT) 
CALL BLINK (ISTAT) 
CALL SCOPE (INUM) 
C ALL TABLET (ISTAT[ ,IX ,IY , IPEN ]) 
CALL CURSOR(IX,IY,ISTAT[,IPEN]) 
CALL HIT WIN (I X,IY ,ISIZF;[, IW ]) 
CALL HITEST(IHIT,ISTAT) 
CALL NUFRAH 
CALt SETBUF(ISTAT) 
CALL PSWAIT 
CALL BLDCON(ITYPE,IARRAY) 

B-3 



B.2 ASSE~BLY LANGUAGE CALLING SEQUENCES 

111 subroutines should be declared qlobal ,(.GLOBL) • All. 
arguments are addresses of parameters. 

f~!HII 

MOV 
JSR 

ADR: BR 
.WORD 

or 
MOV 
JSR 

i AOR,R 5 
PC,PSINIT 
• +14. 
IFTIME,INRFSH,ICLOCK,ERRSUB,ISTKCT,ISTKAD 

iAOR,RS 
PC,PSINIT 

.... '.-

A DR: BR 
.WORD 

• + 16. 
IFTIME,INRFSH,ICLOCK,ERBSUB,ISTKCT,ISTKAO,IFMCNT 

HOV 
JSR 

ADR:-' BR 

lDR: 

or 

• WORD 

~OV 

JSR 
BR 
.WORD 

aov 
JSR 

A DR: ER 
I • WORD 

or 
MOV 
JSR 

AOR: BR 
• WORD 

or 
MOV 
JSR 

AOR: BR 
• WORD 

or 
MOV 
JSR 

AOR: BR 
• WORD 

IAOR,R5 
PC, VWPORT 
• +14. 
IVL, IVR,IVB,IVX,'IHI ,III 

#ADR,R5 ... 
PC,WINDOi 
.+10. 
IWL,IiR,IiB,IiT 

#ADR,R5 
PC,WINDOW 
• +12. 
IWL,IWR,IWB,IWT,IW 

#ADR,R5 
PC, WINDOW 
.+14. 
IWL,IWR,I~B,IWT,IWH,IWY 

#ADR,R5 
PC,WINDOW 
• + 16. 
IWL,IWR,IWB,IWT,IWH,IWY,IE 

#ADR,R5 
PC, WINDOW 
• + 18. 
IWL,IWR,IWB,IWT,IWH,IWY,IE,IW 

B-4 

• 

• 

• 



'·~·~~·f·.,. 

iQI 
, 

MOV tADR,R5 

• JSR PC, ROT 
ADR: BR • +6. 

• WORD I ANGL E ,IAXIS 

I-gAM 

MOV #ADR,a5 
JSR PC,TRAN 

ADR: BR .. +8. 
• WORD ITX,ITY,ITZ 

or 
MOV tADR,R5 
JSR PC,TRAN 

ADR: BR • + 10. 
• WOaD ITX,I'lY,ITZ,IW 

~&!1£! 

HOV 'ADR,R5 
JSR PC, SCALE 

ADR: BR • +8 •. 
.WORD ISX,ISY,ISZ 

or 
HOV jAl>R~R5 
JSR PC;SCALE '" 

, 

ADR: BR • +10. • • WORD ISX,ISY,ISZ, Ii 

g!l~.H 

JSR PC,POSH 

~OP 

JSR PC, POP 

QgAR~Q 

MOV #ADR,R5 
JSR PC,DRAW2D 

ADR: BR • + 12. 
• WORD IDATA,INUH,IF1,IF2,IZ 

or 
MOV #ADR,R5 
JSR PC,DRAW2D 

ADR: SR • +14. 
• WORD ItATA,INUH,IF1,IF2,.IZ,IW 

• B-5 



Q!!!lR 

KOV IAOR,R5 
JSR PC,ORAW30 • lOR: BR • +10. 
• WORD IOATA,INUK,IF1,IF2 

or 
MOV iADR,R 5 
JSR PC,DBAW3D 

A DR: ER • +12. 
• WORD IOATA,INUK,IF1,IF2,IW 

~l!A.R 

MOV IADR,R5 
JSR PC, CHAR 

ADR: BR • +8. 
• WORD I XSIZE ,IYSIZE, ITI LT 

II!! 

KOV #ADR.,R5. 
JSR PCiTEXT 

ADR: BR • +6. 
.WORD NCHARS,ITEXT 

!!f~1 

MOV #1DR,R5 • JSR PC,INST 
ADR: BR • +10. 

.WORD INL,I NR, INB, INT 
or 

MOV #ADR,R5 
Jsa PC,INST 

ADR: ER .+12. 
• WORD INL,INR,INB,INT,IW 

or 
MOV #ADR,E 5 
JSR PC,INST 

ADR: SR • +14. 
.WORD INL,INR,INB,INT,INH,INY 

or 
MOV #ADR,R5 
JSR PC,INST 

A DR: BR • + 16. 
• WORD INL,INR,INB,INT,INH,INY,IW 

• B-6 



• ; r •• '.: ." •••• ~;. .' •• ':~" • 

!1!~If!! 

MOV jADR,R5 

• JSR PC,MAsTER 
ADR: BB • + 1 O. 

• WORD IML,IMR,IMB,IMT 
or 

MOV jADR,R5 
JSR PC,MAsTEB 

ADR: BR • +12. 
.WORD IML,IMR,IMB,IMT,IW 

or 
HOV iADR,R5 
JSR PC,MAsTER 

ADR: BR • +14. 
• WORD IML,IMR,IMB,IMT,IMH,IMY 

or 
MOV tADR,R5 
JSR PC, MASTER 

ADR: BR • +16. 
• RORD IML,IMR,IMB,IHT,IMH,IMY,IW 

!!~l! 

HOV tADR,R5 
JSR pc, DASH 

ADR: ... BR • +4. 
.WORD ISTAT 

• IlLI NK 

MOV #ADR,RS 
JSR PC,BLINK 

ADB: BR • +4. 
.WORD ISTAT 

~~Qgf! 

HOV· 'ADR,R5 
JSR pc, SCOPE 

ADR: BR • +4. 
• WORD INOM 

IAIl1f!I 

MOV JADR,RS 
JSR PC, TABLET 

ADR: BR • +4. 
.WORD ISTAT 

• B-1 



or 
HOV 'ADR,BS 
JSB PC,TAB1ET 

ADR: ER • +10. _i. 
• WORD ISTAT,IX,II,IPEN 

£!H!~QB 

MOV 'ADR,BS 
JSR PC,CURSOR 

ADB: BR • +8. 
• WORD IX,II,ISTAT 

or 
HOV 'ADR,BS 
JSR PC,CUBSOR 

ADR: BR .+10. 
• WORD IX,IY,ISTAT,IPEN 

HITWIN ------
MOV #ADR,BS 
JSR -PC, HIT WIN 

ADR: BR • +8. 
.• WORD IX, II ,ISIZE 

or 
110V 'ADR,BS 
JSB PC,HITWIN i 

-- - ADR: BR • +10. 1 ___ -

• WORD IX,IY,ISIZE,IW • !!ITi!SX 

MOV #ADR,BS 
JSR PC,HITEST 

ADR: BR • +6. 
• woaD IHIT,ISTAT 

H!l[!!!!1 

JSR PC,NUFRAM 

a~I1H!l 

MOV #ADR,RS 
JSH PC,SETBUP' 

ADR: ER • +4. 
• WORD ISTAT 

f~iA!I 

JSR PC,PSWAIT 

• 
8-8 



• 

• 

MOV #ADR,RS 
JSR PC,BLDCON 

ADR: SR • +6. 
• WORD ITYPE 
• WORD IARRAY 

RO = Repeat Status Register (RSR) Value 
Rl = DMA Word count 
R2 = DMA Base Address 
J SR PC ,P$DMA 

JSR PC,I$MATX 

JSR PC, ERROR 
• BYTE ICODE ,IERR 

HO,R1 ;: Dividend 
R2 = Divisor 
JSR PC,P$DIV 

aD ;: Multiplicand 
R2 = Multiplier 
JSR PC,P$MUL 

B-9 



APPENDIX C 

PDP-l1 FORTRAN CALLING SEQUENCE CONVENTION 

• C. 1 INTRODUCTION 

• 

• 

This calling sequence convention is compatible with all 
PDP-l1 processor options, (including use of distinct 
Instruction and Data Space capabilities of the KT-l1D 
Kemory Management Option), provides both reentrant and 
non-reentrant forms, and is as fast and short as possible, 
consistent with these requirements. 

This description is oriented toward the programmer who 
vishes to write assembly language routines which can be 
called by or which call FORTRAN-compiled routines. This 
calling convention is completely ccmpatible with the 
Threaded Polish code of the FORTRAN Compiler V06, though 
the assembly language programmer need not be concerned 
with or use the Polish technique or service routines. 

C.2 THE CALL SITE 

The basic form of the non-reentrant out of line call is: 

; INSTRUCTION SPACE 
HOV #LIST,R5 

IN DATA SPACE 
LIST: .BYTE N,O 

• WORD ADR 1 

• WORD ADRN 

1 DR 1: • WORD 1 

ADRN: • WORD N 

C-l 

; ADDRESS OF ARGUMENT LIST 
; TO REGISTER 5 

;NUMBER OF ARGUMENTS 
;FIRS~ ARGUMENT ADDRESS 

;NITH ARGUMENT ADDRESS 

;.FIRST ARGUMENT 

;NITH AEGUMENT 



,.; .' .. ',. 

C.3 RETURN 

Control is returned to the callinq program by restorinq 
(if necessary) the stack pointer to its value on entry and • 
executinq: 

RTS PC 

C.4 RETURN VALUE TRANSMISSION 

FORTRAN FUNCTION subprograms will return the function 
value in general reqister RO through R3 as appropriate to 
the type as follows: 

. 
BYTE (LOGICAL.l) , RO 
LOGICAL, INTEGER 

REAL RO, Rl 

DOUBLE PRECISION RO, Rl, R2, R3 
REAL-'COMPLEX 

The only 'difference between a SUBROUTINE subprogram and a 
FUNCTION subprogram is that a FUNCTION returns a value in 
the general registers. 

C.S CONTEXT SAVE AND RESTORE CONVENTION 

A calling program must save any values in qeneral purpose 
registersRO through R4, which it requires after a return 
from a subprogram. The arqument list pointer value in 
register RS may nQ~ be assumed to be valid after return. 

C.6 NON-REENTRANT EXAMPLE 

In non-reentrant forms, the argument list may either be 
placed in line with the call or be placed out of line in 
an impure data section. (The latter is recommended and 
illustrated here.) Figure C-l illustrates the assembly 
language code to implement a small FORTRAN FUNCTION subprogram 
usinq the non-reentrant form of call. !Note that the non
reentrant form, is shorter and qenerally faster than the 
reentrant form since addresses of simple variables can be 
assembled into the argument list. 

C-2 

• 

• 



• 

FNC: 

• 
LIST: 

LITS: 

• 

INTEGER FUNCTION FNC(I,J) 
INTEGER FNCl 

FNC=fNC U+J, S) +1 

RETURN 
END 

.CSECT 
~ GLOBL 
KOV 
KOV 
·ADD. 
KOV 

KOV 
JSR 
ADD 
MOV 
ADD 
RTS 

.BYTE 

.WORD 

.WORD 
• WORD 
• END 

FNC,FNCl 
RS,-(SP) 
Gl2(RS) ,- (SP) 
Q)4 (RS) , wSP 
SP,LIST+2 

#LIST,RS 
PC,FNCl 
'2,SP 
(SP)+,RS 
w2(RS),RO 
PC 

2,0 
o 
LITS 
S 

;SAVE ARG LIST POINTEB 
;FORM I+J ON STACK 

;ADDRESS OF I+J TO 
; ARG LIST 

;DELETE TEMPORARY I+J 
; RESTORE RS 
;ADD I TO FNCl RESULT 
;RETURN VALUE IN RO 
; DATA AREA 
;TWO ARGUMENTS 
;DYNAMICALLY FILLED IN 
;ADDRESS OF CONSTANT S 
;CONSTANT S 

Figure C-l 

Example Call Sequence Convention Usage: Non-Reentrant 

c-) 



C.7 REENTRANT EXAMPLE 

FNC: 

CON5: 

The PDP-11 FORTRAN callinq convention also has a reentran 
form in which the argument list is constructed at run-time 
on the execution stack. Note that the arqument addresses 
must be pushed on the stack backwards in order to be correctly 
arranqed in memory for the subroutine that references the ' 
list. Basically it consists of: 

MOV 

• 
MOV 
MOV 
MOV 
MOV 
JSR 
ADD 

#A DRn, - (SP) 

#ADR2- (SP) 
tADR 1- (SP) 
#N,- (SP) 
SP,R5 
PC, SUB 
#2*N+2,SP 

;ADDRESS OF NTH ARGU~ENT 

;ADDRESS OF 1ST ARGUMENT 
; NUMBER OF ARGUMENTS 

; CALL SUBROUTINE 
; DELETE ARGUMENT LIST 

'. ". 

:.~ .. 

Figure C-2 illustrates assembly languaqe code usinq ree~trantfrjf 
call forlls for the same example shown in Fiqure C-l. . :etFc . -:,t~~~~>;~ ': 

INTEGER FUNCTION FNC (I, J) 
INTEGEB FNC1 

FNC=lNC 1 (I+J, 5) +1-

RETURN 
END 

• SCEer 
.GLOBL 
lIOY 
ftOV 
ADD 
ftOV 
MOV 
MOVi' 
MOV 
I'! 0 V 
JSR 
ADD 
MOVV 
ADD 
RTS 

.WORD 
• END 

FNC,FNCl 
RS,- (SP) 
al2 (BS) ,-(SP) 
ii4 (R5) ,-iSP 
SP,R4 
'CON5,- (SP) 
R4,-(SP) 
#2,-'(SP) 
SP,R5 
PC,FNC1 
'10,SP 
(SP)+,R5 
al2 (R5) ,BO 
PC 

5 

;SAVE ARG LIST POINTER 
; FORM I+J 
; REMEMBER WHERE 
;BUILD ARG LIST ON STACK 
;ADDRESS OF TEMPORARY 
;ARGUMENT COUNT 
;ADDRESS OF LIST TO R5 
;CALL FNCl 
;DELETE ARG LIST AND TEMP I+J 
;RESTORE ARG LIST POINTER 
;ADD I -TO RESULT OF FNC1 
;RETURN RESULT IN RO 
; DATA AREA 

Figure C-2 
Example Call Seguence Convention Usage: Reentrant Form 

C-4 
• 



• 

• 

• 

" .'.','- , i, j .J .. .'. .' ., J. .' ,; 

Note that the list must reside in Data-space and that 
except for label type arguments, all addresses in the 
list must also refer to Data-space. 

Also note that the byte at address LIST+1 should be 
considered undefined and not referenced. (Use of 
this byte is reserved for use as defined by DEC.) 

rhe basic form of the non-reentrant in line call is: 1 

· IN INSTRUCTION/DATA SPACE 
• 
MOY #LIST, R5 ; ADDRESS OF ARGUMENT 

; TO REGISTER 5 

JSR PC, SUB ;CALL SUBROUTINE 

LIST: BR .+2*N+2 ; BRANCH AROUND 
; PARAMETER LIST 

LIST 

• WORD ADR1 ; FIRST ARGUMENT ADDRESS 

• WORD ADRN ;N'TH ARGUMENT ADDRESS 

1 DR1: 
; IN DATA SPACE 
• WORD 1 ; PI RST AR GU 1'1 ENT 

• • 

lDRN: • WORD N ; N' TH ARGUM ENT 

Note that the byte at address LIST will contain the value 
N and that the byte at address LIST+l will contain the 
Value 1. 

1This form of call is not compatible with distinct use of 
Instruction and Data Space capabilities. 

C-5 

, 



, .. "" .. :' .... 

I 

N ~~! aI:gu~~~t.f? ~~~ re.et;e~ellted in a n argulD~A1: li~.t_ by 
usinq an 'address of~l (177777 octal) • This' add,r.ess' 
is ChOSE!n' because it is easy to test for an4 aiso 'to 
assure'that the use of null arquments, in subroutine's 
that 'are not prep~~ed to handle them, will result iri 
an error when the routine is called at execution time. 
rhe errors most likely to occur are illegal memory 
reference and/or word reference to odd byte address~ 

~ote that null arguments are included in the arqument 
count as shown in Figure C-3. 

CALL SUB 

CALL SUB ( ) 

CALL SUB (A,) 

CALL SUB ('- B) 

Fiqur~ C-3 

.BYTE 0,0 

.BYTE 1,0 
• WORD -1 

.BYTE 2,0 
• WORD A 
• WORD -1 

--~ BYTE 2,0 
• WORD -1 
• WORD B 

Exa,~ple Arqument Lists wi th Null Arquments 

C-:6: 

.' .. -; . 

• 

• 

• 



• 

• 

• 

D. 1 

APPENDIX D 

DSE OF THE GRAPHICS SOFTWARE WITH 
THE PAPER TAPE SOFTWARE SYSTEM 

DESIGN AND USE OF THE PAPER TAPE GRAPHICS SOFTWARE 
PACKAGE 

The Paper Tape Graphics Software Package was desiqned to 
execute in a minimal memory configuration and yet provide 
user flexibility in using only those subroutines necessary 
for a particular application program, allowing a maximum 
memory availability for the application program and data 
base. This was done in the following manner: 

THE PICTURE SYSTEM initialization subroutine (PSINIT) 
is written as an absolute program to be loaded at a 
fixed location in memory. This subroutine contains 
s!l the system level software required to interface 
to THE PICTURE SYSTEM, as well as all global constants 
and-variables that are used for intercommunication 
between subroutines. Since ~SINIT ~s written as an 
absolute routine, all references to these qlobal 
constants and variables may be made to an absolute 
location. 

All other subrouti~es are in position independent 
code l (i.e., may be loaded and executed anywhere in 
memory). This allows a user to load only those 
subroutines necessary for a particular application 
by utilizing a feature of the PDP-11 Absolute Loader2. 
This feature is the ability to load a routine from 
the last location loaded previously by the loader. 
Using this technique, the user may load those routines 
necessary in any order, ensuring that the minimum core 
required will be taken. 

All PICTURE SYSTEM Subroutines must have a Transfer vector 
linkage of the form shown in Figure D-1. 

-------lReference PDP-l1 Paper Tape software Programming Handbook 
DEC-l1-XPTSA-A-D,Chapter 6. 

2Ibid, Chapter 9.1 • 

D-l 



1st word: 

2nd word: 

3rd word: 

4th word: 

nth word: 

167754 8 (subroutine identifier) (=IIPI +"CS+" IS) 

Relative location of last word of routine 
f rom 1st word 

SubtoutinEidentifier (=relative location to 
PSINIT in Transfer Vector) 

Relative focatiott'of subroutine entry point 
from ls,t,word 

-1 (if last entry point, otherwise same as 
words 3 and 4 above for subroutines with 
multiple entry points 1 .) 

Figure D-1 

P'rCTURE SYSTEM Graphics Software Package 
Subroutine Heading Format 

lReference listinq of subroutine CHAR for example. 

D-2 

• 

• 

• 



• 

• 

D.2 ERRORS USING THE BASIC TAPE SOFTWARE PACKAGE 

Errors taat occur during use of the Paper Tape PICTURE SYSTEM 
Graphics Software Package may be of two types: 

a. User Software Errors 
b. Equipment Failure (Hardware Errors) 

The conditions that may cause these errors are as follows: 

A user may make five programming errors that will be detected 
by the Graphics Software Package. These are: 

1. The call of a routine which has not been loaded 
(or loaded properly) into memory. 

2. The call of a routine with an invalid number of 
parameters specified. 

3. The call of a routine with an invalid parameter value. 
4. The attempt by a user to PUSH a transformation to a 

depth greater than that specified by the user. 
5. The attempt by a user to POP a matrix that 

had not been previously PUSHed. 

Error detection results in the following for errors 1-5 above: 

Error 1: 
Upon-the call of a routine which has not been loaded 
into memory, a halt will oc~ur at locati6n 276 (show
ing 300 in the console da ta lights) ;"TKe user then 
may determine the origin of the "invalid" call by 
examining the last element on the stack as pointed to 
by Register 6 (SP). 

]![Q[-~: 
Upon the call of a routine with an invalid number of 
parameters, the user's error routine (as specified in 
call to PSINIT) will be called using the standard FORTRAN 
calling sequence and a parameter indicating the origin 
of the error detected (see Figures 0-2 and 0-3) will 
be passed. If the user's error routine has not yet been 
established, then a halt will occur at location 276 1 (showing 
300 in the console data lights). The error code may then be 
determined by examining the location pointed to by 
the second from last element on the stack (SP-4) as 
pointed to by Register 6 (SP). Return from the 
user's error routine will result in a aalt occuring at 
location 276. 

lI~should be noted that if the user's error routine has not yet been 
established by PSINIT, then the programmer will be unable to discern 
the difference between Error 1 and Errors 2,3,4,5 without a detailed 
knovledqe of the position of the routines in memory. 

0-) 



0, 
I 

"'" 

Subroutine 
!i!l.!!~ _____ _ 

1 PSINIT 

2. NUFRAM 
1. Vii PORT 
4. WINDOW 
5. INST 
6. PO SH 
7. POP 
8. TRAN 
9. ROT 

1 o. SCAL E 
11. DR AW 2D 

12. DRAW3D 

13. TEXT 
14. TABLET 
15. CURSOR 
16. HITilIN 
17. HI TEST 
18. PSWAIT 
19. CHAR 
20. DASH 
21. BLINK 
22. SCOPE 
23. SETBUF 

Vector 
Qff§gt

lO 

o 

4 
8 

12 
16 
20 
24 
28 
32 

64 
36 

40 

44 
48 
52 
56 
60 
72 
76 
80 
84 
88 
68 

Length l -

~It~§l 0 

1846 

( 1 ) 
( 1) 
498 
( 4) 
( 1) 
( 1 ) 
150 
386 

138 
260 

( 11 ) 

188 
188 
440 
276 
( 16) 
( 1) 
2S8 
(19 ) 
(19) 
(19 ) 
80 

PIGURE D-2 

SUBROUTINE INFORMATION 

Length! 
!l.I.t~§8 

3466 

( 1) 
( 1) 
762 
( 4) 
( 1) 
(1 ) 
226 
602 

212 
404 

( 11 ) 

274 
274 
662 
422 
(16 ) 
( 1) 
402 
(19) 
( 19) 
(19) 
98 

stack2 

Space. - -, . 
!!~g]li~gg 

30 

2 
16 
38 
36 
20 

· .• 20 
28 
30 

28 
20 

20 

18 
16 
76 

.. 32 
20 

2 
16 
16 
16 
16 

2 

Reqisters 
Q~§:t~QygQ. ~~!:Q£_~QQ.~§._§;_l1e!lD.;i!!~ 

None 

None 
·None 
None 
None 
None 
None 
None 
None 

None 
.None 

None 

None 
None 
None 
None 
None 
None 
None 
None 
None 
None 
None 

1,0-Invalid No. of Parameters 
1,'-Invalid Parameter 
1,2-Direct Memory Access Error 
None 
3,0-Invalid No. of Parameters 
4,O-Invalid No. of Parameters 
S,O-Invalid No. of Parameters 
6,O-PUSH Error 
7,0-POP Error 
8,O-Invalid No. of Parameters 
9,0-Invalid No. of Parameters 
9,1-Invalid Parameter 

'7,O-Invalid No. of Parameters 
10,0-Invalid No. of Parameters 
10,1-Invalid Parameter 
11,O-Invalid No. of Parameters 
",l-Invalid Parameter 
12,O-Invalid No. of Parameters 
13,0-Invalid No. of Parameters 
14,0-Invalid No. of Parameters 
lS,O-Invalid No. of Parameters 
16,0-Invalid No. of Parameters 
None 
l8,0-Invalid No. of Parameters 
19,O-Invalid No. of Parameters 
20,0-Invalid No. of Parameters 
21,O-Invalid No. of Parameters 
22,0-Invalid No. of Parameters 
22-l-Invalid Parameter 

lThe numbers in these columns within parenthesis (i-Ie., (1) ) indicate that the subroutine is 
-"included as part of the subroutine whose number is.in parenthesis. 
2This column indicates the number of bytes of stack space that must be available when this 
subroutine in called (includes the call). 

• • • 
.",.' 



• 

Subroutine Vector 
!!a!!~ _____ Qf1§~11 0 

BLDCON ( 1) -4 

RSTORE -8 

P$AVE -12 

• 
FIGURE D-3 

SYSTEM LEVEL SUBROUTINE INFORKATION. 

Stack2 

Lenqth1 Lenqth1 I 

spacel 
~yt~§l 0 ~Y·~~§8 !!~!l!!i[~~ 

( 1 ) (1 ) 18 

( 1 ) (1 ) 2 

( 1 ) (1 ) 14 

Registers 
n~§1[.Qlea 

None 

RO-R5 

None 

• 

~£[Q[_~Q~~§_~_n~sn!nq 

O,O-Invalid No. of Parameters 
O,l-Invalid Parameter 
None 

None 

o I$MATX -16 (1 ) (1 ) 2 RO, R 1 ,·R2 None 
I 

lJ1 
P$ Dl! A -20 (1 ) 

ERROR -24 ( 1) 

P$DIV -28 ( 1 ) 

P$MUL -32 ( 1) 

--------

(1 ) 2 

( 1 ) 6 

( 1 ) 12 

(1 ) 8' 

None 

None 

RO,Rl 

RO,Rl 

Halt at Location 272 
Direct Memory Access Error 
Branch to User Error Routine 
or Halt at Location 276 
.Overflow set on Error 

None 

1The numbers in these columns within parenthesis (i.e.,(l) ) indicate that the subroutine is 
included as part of the subroutine whose number is in parenthesis. 

2This column indicates the number of bytes of stack space that must be available when this 
subroutine is callgd (includes the call). 



llIt:Q.~_J: 
Same as Error 3 (Parameter error) . 
j;J;:~Q~-!!: 
Same as Error 2 (Push error) 

Er[Q~-2: 
Same as Error 2 (Pop error) 

~~giE!g~!_lgi!~~~_jHa£g!~~~_~J;:tQI§) 
detection of hardware errors is to a min.imal level, within 
the Graphics Software Package. The only error that may be 
detected is a OMA error which will result in a halt occuring 
at location 272 (showing 274 in the console data lights) 
If this occurs, it indicates a failure in the Digital Eguipment 
Corporation OR-l1B DMA unit. However, other errors may 
occur as a result of a hardware malfunction or a general 
programming problem. These errors will result in a halt 
occurinq at a-location in memory. These halt locations are 
summarized in Figure D-4. 

tf!~I_l!Q~!I!ON8 

000006 (000010) 1 

000012 (000014) 1 

000016 (000020) 1 

000022 (000024) 1 

000026 (000030) 1 

000032 (000034) 1 

000036 (000040) 1 
000272 (000274)1 
000276 (000300) 1 

I 

~!!!!OR_I.lg~ 

Time Out 
Illegal & Reserved Instructions 
BPT 
lOT 
Power Fail/Auto Restart 
EMT 
TRAP 
DMAError 
Non-Existant Program Error 

FIGURE 0-4 

Paper Tape PICTURE SYSTEM Graphics Software Package 
Halt Locations 

lLocation (xxxxxx) is the location ·shown in the console data 
lights when the halt occurs. 

0-6 

• 

• 

• 



• 

• 

• 

D.3 PROGRAMMING THE PICTURE SYSTEM USING THE PAPER TAPE 
SOFTWARE PACKAGE 

Programs written for use with the Paper Tape Software Pack
age use the same general program structure and techniques 
as described in Chapter 5. The user, however, has the 
additional responsibility of: 

1. Defining the linkaqe to the graphics subroutines. 
2. Initializing the program stack pointer (register 6) 

to the reserved stack area. 
3. Ensurinq that the program does occupy the same 

area of memory fts the graphics software. 

The linkage to the graphics subroutines is provided by 
equating the entry in the transfer vector to the subrou
tine name as defined in Figure D-2. This method allows 
the subroutines to be referenced symbolically and also 
make the program upward compatible with all DEC operating 
systems by simply replacinq the equate with a global symbol 
definition (.GLOBL). Figure D-5 illustrates the manner 
in which the transfer vector entries are equated with the 
graphics subroutines. 

An area of memory is reserved for the program stack area· 
beginning at 6208 and extending through 400 in memory as 
shown in Figure D-6. The stack pointer to this area must, 
however I be initialized by the user's program before an y 
subroutines are called or any interrupts occur. Figure 
D-5 shows a typical manner in which this may be done. 

fhe user must ensure that his program's startinq address 
does not overlap an area of memory where a graphics sub
routine resides. To do this the user must total the lengths 
of all of the graphics subroutines used (Figure D-2) and 
position his program above that area of mamory by using 
the H.= start address" notation of the DEC assemblers. Fig
ure D-5 illustrates this. 

Except for these three additional responsibilities, the 
user is free to utilize all of the capabilities of the 
graphics subroutines without constraint in the Paper Tape 
environment. 

lSee eference 3, Part 3, Chapter 2, Monitor Keyboard 
Commands, for specific details • 

D-7 



. • 

=1000. 
=T$VECT+O. 
=T$VECT+4. 
=T$VECT+8. 
=T$VECT+12. 
=T$VECT+16. 
=T$VECT+20. 
=T$VECT+24. 
=T$VECT+32. 
=T$VECT+28. 
=T$VECT+64. 
=T$VECT+36. 
=T$VECT+40. 
=T$VECT+44. 
=T$VECT+48. 
=T$VECT+52. 
=T$VECT+56. 
=T$VECT+60. 
=T$VECT+72. 
=T$VECT+76. 
=T$VECT+!30. 
=T$VECT+84. 
=T$VECT+88 .. 
=T$VECT+~8. 

-=T$VECT-.4 •. 

=620 

(R5) + 
Q)(R5),RO 

#STACKP,S~ 

· II. 

· , · , 

SE.T. Tij~ ~ ~OG.~~ ~ ST ~RT ADJ;>R~S.S 

A U~~R ~~~Q~ SU~~Qg~I"E 
~QV~ t~~ ,«~g~ G9QI '9 80 
A~J? ~!I,.'J.I 

INITIALIZE THE PICTURE SYSTEM 

MOV 
JSR 
BR 
• WORD 

• 

#.+8.,R5 
PC,PSINIT 
• + 14. 
THREE,ZERO,-l,STOP,-l,-l 

Figure D-5 
User Responsibilities in the Paper Tape Software system 

D-8 

• 

• 

• 



• 

4K 

• 

• 

INTERRUPT VECTORS 

4 
STACK 

I 
PICTURE SYSTEM 

TRANSFER VECTOR 

PSI NIT 
RTCINT 
BLDCON 

ETC. 

OTHER PICTURE SYSTEM 
SUBROUTINES AS REQUIRED 

OTHER PICTURE SYSTEM 
SUBROUTINES AS REQUIRED . 

OTHER PICTURE SYSTEM 
SUBROUTINES A,S REQUIRED 

,":/.' 

USER SPACE 

~ 

"-. 

I 

lOX 
(OPTIONAL) 

ABSOLUTE LOADER 

BOOTSTRAP 

Figure D-.6 

, 

OO":>J 128 10 WORDS 
40() 
402: 

62() 

(VARIABLE) 

15100! 
~3410 WORDS 

17472 

17474'} 
17742 72 10 WORDS 

1774~J 
17776 14 10 WORDS 

Typical PICTURE SYSTEM Paper 
Tape Memory Configuration (4K) 

0-9 



• 

• 

• 

E.l 

APPENDIX E 

USE OF THE GRAPHICS SOFTWARE WITH THE 
DOS/BATCH DISK OPERATING SYSTEM 

USE OF THE GRAPHICS SOFTWARE PACKAGE 

The Graphics Software Package is available to the 
DOS/BATCH user as a library of catalogued ob;ect Modules 
which may be linked with the user's FORTRAN1 or MACRO-11 Z 

Program to form graphics application programs. The 
PICTURE SYSTEM Graphics Library (PICLIB), which contains 
all of the subroutines described in Chapter 4, is searched 
by the linker (LINK)3 to load those subroutines called 
by the user program. The resulting program forms a 
load module (LOA format) which may be executed upon 
user demand. 

I DOS/BATCH 
Part 7. 

zOOS/BATCH 
300S/BArCH 

PORTRAN Compiler and Ob;ect Time System, Reference 3, 

Assembler (HACRO), Reference 3, Part 6. 
Linker (LINK), Reference 3, Part 9. 

E-1 



E.2 USE OF PDP-11 FORtRAN IV WITH THE PICTURE SYStEM 

DOS/BATCH FORTRAN conforms to the specifications for 
American National Standard FORrRAN and is also hiqhly " 
compatable with IBM 1130 FORTRAN. DOS/BATCH FORTRAN 
programs can be compiled and run on any PICTURE SYSTEM 
configuration that support the DOS/BATCH Operating 
System, and which has a minimum of 16K of memory. 
DOS/~ATCH FORTRAN supports all standard hardware options 
supported by the operating system. 

Graphics applications programs written using FORTRAN 
interface to THE PICTURE SYStEM by means of the sub
routines contained in the Graphics Library (PICLIB). 
All FORTRAN statements and "functions are available 
to the user of tHE PICTURE SYSTEM; however, the following 
should be stressed to the PICTURE SYSTEM FORTRAN user: 

1. All parameters passed to the subroutines 
of the" Graphics ~ibrary areintegers~ Should 
a REAL param~ter be "passed as a parameter to 
a qraphics subroutine, the sign, binary excess 
128exp~nent(andhigh~order maritissa will be 
treated as an"in~eqer. 

2. "Th~ "orie.w~rd in~egers" switch (/ON) should 
bespecifi~dto the .FORTRAN ~ompiler to ensure 
that the eiements "O~ 1nteger_arrays are 
contiguous in memory as required by the 
graphics software. 

"Figure E-1 outlines the steps reguired to"prepare 
a FORTRAN source program for ~xecution under the 
DOS/BATCH monitor: (1) compilation, (2J Linking 
and (3) Execution. 

E-2 

• 

• 

• 



• 

• 

• 

COMPILER 
OBJECT 
MODULE 

FORTRAN LIBRARY 
(FTNLIB) 

GRAPHICS LIBRARY 
(PICLIB) 

LINKER 

Figure E-1 

LOAD 
MODULE 

Steps in Compiling and Executing 
a FORTRAN Graphics Program 

Step 1 in Figure E~l is initiated by a call to the 
PORTRANcompiler, accompanied by a command string 
that describes input and output files, and switch 
OptiOD$ to be used by the Compiler. step 2 is 
initiated bya call to the Linker, accompanied by . 
a 'similaI:'_command string. Step 3 is initiated upon 
user keyboard reguest or a user--pro-g-ram,med request • 

§t~2-~: The DOS/BATCH FORTRAN compiler accepts a 
standard DOS command string of the form: 

!obiect module, listing < source/options 

RUNNING 
PROGRAM 

A typical FORTRAN command string is of the form: 

!SY:PROG1.0BJ,SY:PROG1.LST < SY:PROG1.FTN/ON 
or 

!PROG1,PROG1 < PROG1/0N 

(device SY: assumed the default device, ;ust 
as the filename extentions .OBJ, .LST and .FTN 
are the default filename extentions when not 
specified. ) 

In the above example, the user should note the use 
of the "one word integers" switch (ION) in.the 
source file specification: < PROG1/0N. 

. ' 

lsee Reference 3, Part 7. Chapter 9, Operating Procedures, for 
specific details • 

E-3 



a 

~~~R_i!: The DOS/BATCH Linker accepts a standard DOS 
command strinq of the form:

!load module,load map,symbol table < object modules/E

A typical LINK command strinq is of the form:

!SY:PROG1.LDA,SY:PROG1.MAP,SY:PROG1.STB < SY:PROG1.QBJ
!SY:PICLIB.OBJ,SY:FTNLIB.OBJ/E

or
!PROG1,PROG1,PROG1<PROG1,PICLIB,FTNLIB/E

(device SY:is assumed to default device, just as the
filename extentions .LDA, .HAP, .STB and .OBJ are the
default filename extensions when not specified.)

In the above example, the user 3hould note the
specification of THE PICTURE SYSTEM Graphics
Library (PICLIB) and the FORTRAN OTS Library (FTNLIB).
These libraries are seached to resolve all qlobal
references for the load module. These libraries
(PICLIB) and. (F~HLIB) reside in the system~ area
[1,1] and are therefore available to all users.
Note: The Linker searches the user's (UIC] area
for all object files specified. If an object tile
is not 'found, the system ,area [1,1] is searched
reqardless of theuser- UIC.

•

~1~R-12: To run a load module which has been created by the •
Linker, a user need only request the monitor to
run the program. This is accomplished by the
monitor command: .

JRUN SY:PBOG1.LDA
or

iRUN PROGl

(device SY: is assumed the default davice, ;ust as
the filename extention .LDA is the default
filename extention when not specified.)

The following is a typical listing which illustrates
the process described by Fiqure E-1 and steps 1, 2 and
3 above.

lSee Reference 3, Part 9, Chapter 3, Operating Procedures, for
specific details.

2See Reference 3, Part 3, Chapter 2, Monitor Keyboard Commands.

E-4
•

$LOG 1132,113
DATE: -31-t1AY-74
T I t1E : -15: 35: 135
$RUN FORTRN
FORTRAN '1136. 13
~PROG1,KB:<PROG1/0N

FORTRAN ve6. 13 15:35:44

C FORTRAN DEMONSTRATION PROGRAM
C

1313131 DIMENSION IHOLlSE(14)
c

31-MA'r'-74 PAGE 1

1313£12 DATA IHOUSE/-1eeee,le000,-leeee,-leeee,leee0,-100e0,lee0e
1 ,100013/-11313013,10131313,13/21313013,100130,1001301

013£13

0004

• 013135

0006

•

91307
013£18

C
C INITIALIZE THE PICTURE SYSTEM
C

CALL PSINIT(3 .. e/",,)
C
C DRAW THE [:'ATA
C

CALL DRAW2D(IHOUSE/7,2,2,e)
C
C_AND DISPLAY THE "NEW FRAME"
C

C

C

CALL NUFRAM

PAUSE

STOP
EN[)

ROUT I r~ES CALLE[:':
PSINIT, DRAW2D. NUFRAM

OPTIONS =/ON,/OP:2

BLOCK
MAl N. t::- .., . (LENGTH

(0002136)*

COMPILER ----- CORE
PHASE USED FREE

DECLARATIVES 00622 10228
EXECUTABLES 00702 10148
ASSEMBLY 00889 14601

E-S

$RUN L I NI(

LINI(1/01-03
.PROG1,PROG1(PROG1,PICLIB,FTNLIB/E

SPACE USED 005530, SPACE FREE 063304
tt'"'C
.I<ILL

$RUN PROG1

E-6

•

•

•

•

•

•

APPENDIX F

USE OF THE GRAPHICS SOFTWARE WITH THE
RT-l1 OPERATING SYSTEM

F. 1 USE OF THE GRAPHICS SOFTWARE PACKAGE

The Gr~phics Software Package is available to the RT-ll
user as a library of catalogued obiect Modules which may
be linked with the user's FORTRAN1 or MACRO-11 2 program
to form graphics application programs. THE PICTURE
SYSTEM Graphics Library (PICLIB), which contains all of
the subroutines described in Chapter 4, is searched by
the Linker (LINK) 3 to load those subroutines called by
the user program. The resulting program forms a load
module (SA V format) which may be executed upon user
demand •

1 Reference 4.
zReference 5, Chapter 5.
3Reference 5, Chapter 6 •

P-l

F.2 USE OF PDP-11 FORtRAN IV WITH rHE PICTURE SYSTEM

KT-11 FORTRAN conforms to the specifications for
American National Standard FORTRAN and is also hiqhly
compatible with IBM 1130 FORTRAN. RT-11 FORTRAN pro
qrams can be compiled and run of any PICTURE SYSTEM
confiquration that supports the RT-11 Operating
System. and which has a minimum of 8K of memory.
BT-11 FORTRAN supports all standard hardware options
supported by the operating system.

Graphics applications programs written usinq FORTRAN
interface to THE PICTURE SYSTE8 by means of the sub
routines contained in the Graphics Library (PIeLIB).
111 FORTRAN statements and functions are available to
the user of THE PICTURE SYSTEM: however, the followinq
should be stressed to THE PICTURE SYStEM FORTRAN uS.er:

All parameters passed to the subroutines
of the Graphics Library are integers.
Should a REAL paralite·ter be passed -.as a
parameter to a graphics subroutine, the
sign, binary~x¢esst28 exponent and hiqh
order mantissa -vill be treated as an integer.

Figure F':"· ou tlines the':step!i required to prepare a
FORTRAN source program for execution under the

-KT-11 Monitor: (1) Compilation," (2) Linking, and
(3) Execution.

1-2

•

•

•

•

•

•

COMPILER
OBJECT
MODULE

FORTRAN LIBRARY
(FORLlB)

GRAPlilCS LIBRARY
(PICLlB)

LINKER

Figure F-l

steps in Compiling and Executing
a FORTRAN Graphics Program

LOAD
MODULE

Step 1 in Figure F-1 is initiated by a call to the
FORTRAN Compiler, accompanied by a command string .that
describes input and output files, and switch options to
be used by "ihe Compiler. Step 2 is initiated ~y a call

. to the Linker, accompanied by a similar command string.
tep 3 is initi~ted upon user keyboard r~quest or a

user ptogrammedrequest.

Step 11: The RT-ll FORTRAN compiler accepts a
command string of the form:

!obiect module, listing = source/options

A typical FORTRAN command strinq is of the
form:

!SY:PROG1.0BJ,SY:PROG1.LST=5Y:PBOG1.FOR
or

!PROG1,PROG1=PROG1

(devic~ 5Y: is assumed the default device,
;ust as the filename extensions .OBJ, .L5T
and .FOR are the default filename extensions
when not specified.)

-------lSee Reference 4, Chapter 1 for specific details •

F-3

RUNNING
PROGRAM

step 21: The RT-11 Linker accepts a command strinq of
the form:

!load module, load map=obiect modules/switches

A typical LINK command string is of the form:

!SY:PROG1.SAV,SY:PROG1.MAP=SY:PROG1.0BJ,SY;PICLIB.OBJ/F
or

!PROG1,PROG1,PROG1=PROG1,PICLIB/F

(device SY: is assumed to be the default device,
;ust as the filename extensions. SAV, • MAP and
.OBJ are the default filename extensions when not
specified.)

In the above example, the user should note the
explicit specification of THE PICTURE SYSlEM
Graphics Library (PIeLIB) and the FORTRAN
OTS' Library (PORLIB) by the /F svi tch. These
libraries ,are searched to resolve all global
referencesof,or the load module.

:".'."

step 3 2 : To run alq~dmodule which ha's been created
by the Linker, a user need only request the .
monit9r to t~n'the program. This is accomplish
edbythe 'monitor command: -

~RUN SY:PROG1.SAV
or

£RUN PROG1

(de~ice S1: is assumed the default device,
;ust as the filename extension .SAV is the
default filename extension when not specified).

The following is a typical listing which illustrates
the process described by Figure F-1 and steps 1, 2
and 3 above.

ISee Reference 5, Chapter 6 for specific details.
2See Reference 5, Chapter 2 for specific details.

F-4

•

'.

•

•

•

•

RT-ll Vfl1···15I

. DATE 25··NOV-?4

. RUN FOlnRfiN
*PF<:OCiL TT : =PPOG1

RT-l1 FORTRAN IV VB1-ll SOURCE LISTINC

C FORTRAN DEMONSTRAT:ON PROGRAM
c

0001 DIMENSION IHOUSE(14)
C

F'flGE 0(11

(1002 DATA IHOUSE!-lBOB~, 10800,-10£10£1,-1£1£1£1£1,1£1£1£10, -100£1£1,1000£1
1 ,1£10£10, -10£100, 10£10£1,£1,2£1000,1£1£1£18, IB0B£1!

0003

0004

Ot305

0007

C
C 1NITIALIZE THE PICTURE SYSTEM
C

CALL F'SINITC~,(I",,)

C
C DRA~4 THE ['I1TA
C

CALL DRAW2DCIHOUSE,7,2,2,0)
C
C AND DISPLfl'l' THE "NEW F~:flt'1E"

C
C-ALL NUF~:flt1

c
Pf,USE

C
STOP

~~1008 ENO
RT-l1 FORTRAN IV STO~:fiGE t'1FIF

NAME OFFSET ATTRIBUTES'

IHOUSE 000006 INTECiER*2 ARRAY (14)
PSINIT 000000 REAL*4 PROCEDURE
DRAW2D 000000 REAL~4 PROCEDURE
NUFRAM £100000. INTEGER*2 PROCEDURE

'""

F-S

·~c

.F:UN LitH:
*PROG1,PROGj=PROG1,PICLIB/F

. RUN P~:OG1

F-6

, " . . . "',\:.', ~ "1.;_ t~'

•

••••

•

