
PROGRAMMER 1 S
REFERENCE
MANUAL

ORDER NUMBER S-15 $9.00

PROGRAMMER 1 S
REFERENCE
MANUAL (RELEASE VII)

ENTREX1Nc.
168 Middlesex Turnpike

Burlington, Mass . 01803

MARCH 1974

"THIS DOCUMENT CONTAINS PROPRIETARY INFORMATION
OF ENTAEX, INC., ANO IS TO BE USED ONLY FOR THE
PURPOSE .FOR WHICH IT HAS BEEN SUPPLIED. THIS DOCU ·
MENT IS NOT TO BE DUPLICATED JN WHOLE OR IN PA R T
WITHOUT PRIOR WRITTEN PERMISSION FROM A DULY
AUTHOR IZ ED REPRESENTATIVE OF ENTREX . INC."

TABLE OF CONTENTS

SECTION 1 INTRODUCTION

Paragraph

TRODUCTIO
Record End Edit Routine
Batch End Edit Routine ·
Sort Programs ·
Output Programs .

PROGRAM CODING
MANUAL LAYOUT.

SECTION 2 OPERAND TYPES

VARIABLE
ARITHMETIC EXPRESSIO

SECTION 3 INSTRUCTIONS

INTRODUCTION
ADD ..
BYPASS .
CLEAR .
DECLARE
DIVIDE .
FLAG
GOTO
IF ..
MOVE
MULTIPLY
OUTPUT ..

iii

1- 1

1- 1

1- 1

1- 2
J- 2
1- 3
1- 3

. 2- 1

. 2- 1

. 2- 1

. 2- 2

. 2- 2

. 2- 3

3- 1
3- 2
3- 3

. 3

. 3- 5

. 3- 6

. 3- 7

. 3- 8

. 3- 9

. 3- 11

. 3- 12

. 3- 13

TABLE OF CONTENTS (Cont)

Paragraph

PAUSE

PERFORM

RELEASE

SORT .. .

STOP .. .

SUBTRACT.

WHEN ...

SECTION 4 PROGRAM GRAMMAR

INTRODUCTION · · · · · ·

Sentence Structure ·

Sentence Punctuation

Sentence Labels · · ·

VALIDA TOR PROGRAMMING EFFICIENCIES·

SECTION 5 COMPILER ERROR CODES

INTRODUCTION · · · · · · · · · · ·

COMPILER ERROR CODES (01 - 08) ·

COMPILER ERROR CODES (09 - 18) ·

COMPILER ERROR CODES (19 - 26) ·

COMPILER ERROR CODES (27 - 37) ·

COMPILER ERROR CODES (38 - 45) ·

COMPILER ERROR CODES (45 - 55) .

COMPILER ERROR CODES (71 - 78) .

COMPILER ERROR CODES (79 - 83) ·

iv

. 3-23

. 3- 24

. 3-25 .

. · 3-26

. 3-27

. 3-28

. 3-29

. 4- 1

. 4- 1

. 4- 1

. 4- 2

. 4- 2

. 5- 1

. 5- 1

. 5- 2

. 5- 3

. 5-4

. 5- 5

. 5- 6

. 5-7

. 5- 8

PREFACE

This Programmer's Reference Manual describes the
syntactic features of ENTREX's System 480 Validator
language. With this language, ex tended data editing,
output reformatting, and validating may be accom
plished. This manual provides the basic program
building blocks; examples and descriptions of how
these are combined to form working routines and
programs are given in the System 480 Formatting
Techniques Manual (order no. S-13).

A publications "Comments Mailer Form" is included
in this manual (last page). If errors, ambiguities,
or inconsistencies are encountered, forward these
comments to ENTREX, Inc. via this form.

v

SECTION 1
INTRODUCTION

ENTR,EX'S System 480 provides extended editing, validating, and output
reformatting capabilities using its COBOL like VALIDATOR language. Three
types of programs may be written - error detection, output reformatting and
sorting. These routines and programs are written in a "free-form" style and may
range from simple to complex depending on the User's application.

As with any high-level language, various techniques are employed to accomplish
specific tasks. With the VALIDATOR language these tasks are accomplished
using either a Record End Edit routine, Batch End Edit routine, sort routine,
or output program. These are explained in detail in sections 5, 6, 7, and 8 in
ENTREX's System 480 Formatting Techniques Manual (order no. S-13).
However, a brief summary of each will be offered in the following paragraphs :

Record End Edit Routine

The key parameters of a Record End Edit Routine are:

• Used for· simple range, crossfooting, contents, and extension
checking,

• Performed when the entire record has been entered and
released (Entry, Update, and Verify Mode (if correction is made)).

• Used exclusively for intra-record operations,

• Three variables are allowed in a Record End Edit routine,

• An error flag or error message is used to note errors found by
the routine,

• Primarily used to check for operator entry errors.

Batch End Edit Routine

The key parameters of a Batch End Edit Routine are:

• Used for complex crossfooting, extensions, and range checks as
well as batch totaling/subtotaling operations,

1- 1

• Performed upon batch termination in all modes,

• Vari bles (accumulators) are cumulative (retains value from
record-to-record) and up to 99 may be as igned. Variable are
Initialized (et to zero) when tarting the batch,

• Three methods of pccifying errors:

Error flag,

Error message and error tone,

Create a batch error log.

• Primarily used when error will be corrected in a eparate
operation (not during entry).

Sort Program

The key parameter of a ort routine arc:

• sed t sort records wi thin nc or more bntche in a cending or
de ccndlng order.

• Performed upon upervi r reque t,

• Da ra can b vallda rcd while being rted,

• Vari bles (or accumulator) arc cumulative relain value fr m
record-to-record); up to 99 may be assigned. Variable are
initialized (set to zero) when starting a batch

• Errors can be nagged or the ort can be immediately terminated,

• Three methods of pecifying errors:

,. rror flag,

Error me age and error tone,

Output Program

The key parameter of an output program are:

• Used for reformatting and outputting data to an output device ,

• Performed upon upervisor request.

l ·-2

• Variables (or accumulator) are cumulative (retain values from
record-to-record); up to 99 may be a igned. Variables are
initialized (set to zero) when starting a batch,

• Three methods of pecifying errors:

Error flag,

Error message and error tone,

Printed error listing.

PROGRAM CODING

Sy tern 4 0 pr grams and routine are written In a "free-form" style on
TR X Editor oding Form (order no. M-102 . The heels onsi t of ten

line f forty characters each and repre ent one p ge or screen in the output
form t libr ry. A many page as required may be used.

M UALLAYOUT

With.In the V lldat r I nguag ther are five op rand typ , the e Include:
Oeld, num rlc lit r I, alph merlc lit r I, var! ble and arithmetic expr Ion .
The e p r nd type are de crib d In ti n 2.

Tile VA I ATOR I ngu ge I comp d of action (proce Ing and condition J
in truction tatement . Action instruction are u ed to perform arithmetic,
editing, utput, error ignalling, and program control functions. ondition I
tatem nt perform logical and peel I t t function . The e in tructlon are

de rlbed in ction 3.

Section 4 describe the VALIDATOR program grammar and punctuation
rule . ction 5 provides compiler error code and their definitions.

1- 3

INTRODUCTION

SECTION 2
OPERAND TYPES

Within the VALIDA TOR language there are five operand types that can be
manipulated; these include: field, numeric literal, alphameric literal, variable and
arithmetic expression. These will be described in the following paragraphs.

FIELD NUMBER

Field numbers can be from 1 to 2047 and must be enclosed in parentheses.
For example:

• (5),

• (200),

• (2013).

A field number can further be defined to a subfield level. To manipulate data
on the character level , the convention (n: P-Q) should be used, where:

• n - the field number,

• P - the first character position in the sub-field,

• Q - the last character position in the sub-field.

Sub-field examples include :

• (5 : 2- 4),

• (200: 70-98),

• (2013: 5-6).

NUMERIC LITERAL

A numeric literal is a string of digits not more than 14-characters long. If the
number is a negative value, an oversign convention is used (e.g., 786). The
oversign can be positioned over any character in the string, except the first.
Numeric literal examp1es include :

• 786,

• 56954,

• 6884914,

• 123456789.

2- 1

ALPHAMERIC Ll!ERAL

lphameric literal is an alphabetic character, a numeric character string, a
word, r a sentence composed of any keyboard character up to 120 characters
long. Alphameric literals are distinguished by quotation marks. These literals

r u d primarily for outputting messages or headers to the screen display or
printing operations, respectively. Examples of alphameric literals include:

• 'EXTENSION ERROR - "PLEASE CHECK".'

• " BATCH TOTAL" .

• " QUANTITY" .

- NOTE-

Literal may also be enclosed by single quote. This is important
if User wishes a double quote within the literal (e.g. , 'EXTENSION
ERROR - "PLEASE CHECK".').

Another alphameric literal convention used primarily in output operations is
nnn 'x' where nnn is the number of times (I - 120) the single character in
quotes ('x') is repeated. A typical example would be 5 'O' instead of 00000.

VARIABLE

-NOTE-

This convention is used to define a variable's size
when used in conjunction with the MOVE verb.

A variable is defined as a storage area which is set aside, contains some value,
and is assigned a unique name. This value may be numeric (14-characters long)
or alphanumeric (20-characters long). The variable name may be from one to
eight-characters long, the first character being A- Z and the remaining charac
ters being A-Z or 0- 9.

Record End variables are initialized at Record End because inter-record opera
tions are prohibited and are defined as 14-digit operands (alphameric data
cannot be stored).

Batch End, Sort and Output variables are initialized at Batch Start or can be
set to zero during operation, as follows:

MOVE 0 TO VARIABLE.

2- 2

Variable types and sizes are defined by the MOVE statement as follows:

Variable Variable
Operand Size Type

Field/Subfield Operand's Size Alphameric
Alpha Literal Operand's Size Alphameric
Numeric Literal 14 Characters Numeric
Arithmetic Expression 14 Characters Numeric
Variable Operand's Size Operand Type

-NOTE-

Arithmetic operations may be performed utilizing either numeric
or alphameric variables, however, the destination variable type
(after the arithmetic operation) will be changed to numeric and
the logical size will remain unaltered.

The DECLARE instruction is used to define a variable as the first statement
in a Record End Routine, Sort Routine , Batch End Routine , or Output
Program, as follows:

DECLARE CUSNUBR, TOTAL, , SUBTOTAL.

ARITHMETIC EXPRESSION

An arithmetic expression is composed of the previously defined operands
(Field Number, Numeric Literal, or Alphameric Literal) connected by a
plus(+), minus(-), times(*) or divide(/) sign; for example:

• (2) + (3),

• QUANTITY* NUMBER,

• 2/(3) *TOTAL- (5).

Arithmetic expressions are written and processed from left to right, i.e.,
there is no hierarchy of operators.

2- 3

INTRODUCTION

SECTION 3
INSTRUCTIONS

The VALIDATOR language is composed of action (processing) and conditional
instruction statements. Action instructions are used to perform arithmetic,
editing, output,.error signalling,- and program control functions . These instruc
tions include :

• ADD • MULTIPLY

• BYPASS • OUTPUT

• CLEAR • PAUSE

• DECLARE • PERFORM

• DIVIDE • RELEASE

• FLAG • SORT

• GOTO • STOP

• MOVE • SUBTRACT

Conditional statements perform logical and special test functions. These
instructions include: IF and WHEN. These instructions are described in the
following pages.

3- 1

ADD

DESCRIPTION:

The ADD instruction is used to add the contents of a field, literal, variable or
arithmetic expression to the contents of a variable. The total is stored in the
variable; the operand remains the same. At the conclusion of this operation,
the destination operand (variable) is considered to be numeric, however, the
logical size remains unchanged. If the physical size of the system accumulators
(14 characters) is exceeded, results of this and future arithmetic operations are
unpredictable.

FORMAT:

ADD

FIELD
LITERAL
VARIABLE
ARITH. EXPR.

CODING EXAMPLES:

• ADD (I) TO TOTAL.

• ADD (2) + (3) TO CREDITS .

• ADD WEIGHT TO RATE .

• ADD 1 TO COUNT .

• ADD (13 :3-5) TO TEMP .

3- 2

{ VARIABLE } .

BYPASS

DESCRIPTION:

This instruction terminates processing of the current batch and initiates
processing for the next batch in the name file . Most commonly it will be used
in conjunction with a conditional statement to allow the testing of customer
set switches. This function bypasses the entire data batch without stepping
through each character individually.

FORMAT:

BYPASS {OPTIONAL AT END STATEMENT~ .

CODING EXAMPLES:

• BYPASS.

• IF (1) = "Y" BYPASS.

• BYPASS, AT END OUTPUT <EOF> <RWD>.

3- 3

CLEAR

DESCRIPTION:

The CLEAR instruction is used to insert a space in the left-most character
position of any specified field, sub-field or into a character position, if that
position contains an error flag. If the position does not contain an error flag,
the position is left undisturbed.

FORMAT:

CLEAR {FIELD} .

CODING EXAMPLES:

• CLEAR (2).

• CLEAR (2:3).

• CLEAR (2 :3- 5).

3- 4

DECLARE

DESCRIPTION:

The DECLARE instruction is used exclusively for assigning variables.
Variables are assigned with the DECLARE statement as the first sentence in
a program. This minimizes the possibility of referencing an invalid variable
within an operating program. Three variables may be assigned for Record
End Routines and 99·variables may be assigned for Batch End Routines, Sort
Routines and Output Programs.

FORMAT:

DECIARE { V ARlABLE NAME} , { V ARlABLE NAME}, . .. , t V ARIABIB NAME}.

CODING EXAMPLES:

• DECLARE CUSNUBR.

• DECLARE TOTAL, SUBTOTAL, QUANTITY.

Notice that the variables are separated with a comma or a space and end with a
period. This is practiced for readability purposes, however, there must be a
space or comma (with no space) divider.

3- 5

DIVIDE

DESCRIPTION:

The DIVIDE instruction is used to divide the contents of a field, literal;
variable , or arithmetic expression into the contents of a variable. The total
is stored in the variable and the contents of the operand remain the same. At
the conclusion of this operation, the destination variable is considered to be
numeric, however, the logical size remains unchanged. If the physical size of
the system accumulators (14 characters) is exceeded, results of this and future
arithmetic operations are unpredictable.

FORMAT:

DIVIDE

FIELD
LITERAL
VARIABLE
ARITH. EXPR.

CODING EXAMPLES:

INTO { VARIABLE } .

• DIVIDE (1) INTO TOTAL.

• DIVIDE (2) + (3) INTO CREDITS.

• DIVIDE WEIGHT INTO RATE.

• DIVIDE 100 INTO COUNT.

• DIVIDE (13 :3- 5) INTO TEMP.

3-6

FLAG

DESCRIPTION:

The FLAG instruction is used to insert an error character (#)into the left-most
character position of any specified field, sub-field or into a character position.
This instruction is usually used in conjunction with the IF or WHEN verbs.

FORMAT:

FLAG {FIELD } .

CODING EXAMPLES:

• FLAG (2).

• FLAG (2:3).

• FLAG (2 :3- 5).

3- 7

GOTO

DESCRIPTION:

The GOTO instruction is used to branch or skip over/back to some other point
in the program (designated by a "sentence label"). A sentence label is a word
or an abbreviation which can be up to eight-characters long. The first character
must be from A- Z; all others may be any alphanumeric character combination.
In addition, the sentence label must begin with an exclamation point (!).

- NOTE-

A branch may be executed to anywhere within a program with
the exception of into or out of the contents of a subroutine.

FORMAT:

GOTO { !SENTENCE LABEL } .

CODING EXAMPLES:

• GOTO !TESTI.

• GOTO !Al03675.

• GOTO !PGM3.

3- 8

IF

DESCRIPTION:

The IF statement is used for performing simple and compound logical compari
sons. Comparisons are con~idered to be either alphameric or numeric. Alpha
meric comparisons are performed one character at .a time from left to right.
Should one operand be shorter than the other, it is assumed to be right space
filled to allow comparison for entire length of longer operand. All alphameric
comparisons are made utilizjng a standard EBCDIC collating sequence. In a
numeric compare, operands which look different but have equal values are
considered equal. For instance, '-0021' is equal to '- 21' and equal to '2J'
(least significant digit oversign). When comparing an alphameric operand to
a numeric operand, the comparison is numeric.

The results of the IF comparison are used to determine the logical direction of
a program. If the comparison is true, the next instruction is executed; if it
is false the next sentence is executed.

FORMAT (Simple IF Instruction):

LITERAL . =I= LITERAL
IF

FIELD 11 = 11 FIELD

VARIABLE > VARIABLE
ARITH. EXPR. < ARITH. EXPR.

CODING EXAMPLES (Simple IF Instruction):

• IF(3)=(4)

• IF (1) 'f 'TOTAL'

e IF TEMP<99

FORMAT (Compound IF Instruction):

IF
FIELD !
LITERAL
VARIABLE
ARITH. EXPR.

FIELD
LITERAL
VARIABLE
ARITH. EXPR.

3-9

OR =I= l ~~i~~AL I
< VARIABLE
> ARITH. EXPR.

IF
(continued)

CODING EXAMPLES (Compound IF Instruction):

• IF TEMP < 99 or> 70

• IF TEMP= 100 or> 50

FORMAT (Multi-Condition Compound IF Instruction):

FIELD

\~ I
FIELD I

IF
LITERAL LITERAL

OR
VARIABLE VARIABLE
ARITH. EXPR. ARITH. EXPR.

FIELD I
l~
l FIELD LITERAL LITERAL

IF VARIABLE VARIABLE
ARITH. EXPR. ARITH. EXPR.

CODING EXAMPLES (Multi-Condition Compound IF Instruction):

• IF TIME = 1200 OR IF TEMP = 1800

• IF (1) = 'XY' OR IF (2) = 'AB'

To execute a numeric comparison between fields, the instruction must be
coded as an arithmetic expression, for example :

•
•
•

IF(3) = (4)

IF(3)*1=(4)

IF(3) + 0=(4)

Alphameric - INCORRECT

Numeric - CORRECT

Numeric - CORRECT

If a series of IF instructions (e .g., IF N = Y and IF A + B = C) is required,
the two instructions are separated by a comma(,) or a space. This format implies
a logical AND as follows:

• IF TOT AL = 100, IF COUNT = 31

• IF (4) + 0 = (76), IF END = 76

3- 10

MOVE

DESCRIPTION:

The MOVE instruction moves data into a specified variable. When this
instruction is executed, the contents of the operand overlay the contents of
the variable, and the operand's contents remain the same. For example, if
TEMP is equal to 99 and TODAY is equal to 76, when TEMP is moved to
TODAY - TEMP would equal 99 and TODAY would equal 99.

One property of the MOVE statement is that it may be used to define the
logical size and type (alpha or numeric) of a variable. This is simply done by
allowing the variable to take on the attributes of the data being moved to it.

FORMAT:

MOVE l
FIELD
LITERAL
VARIABLE
ARITH. EXPR.

CODING EXAMPLES:

• MOVE (1) TO TOTAL.

TO

• MOVE (2) + (5) TO CREDITS.

• MOVE WEIGHT TO RATE.

• MOVE 1 TO COUNT.

3- 11

{ VARIABLE } .

MULTIPLY

DESCRIPTION:

The MULTIPLY instruction is us.ed to multiply the contents of a field, literal,
variable , or arithmetic expression times the contents of a variable. The total is
stored in the variable with the contents of the operand remaining the same.
At the conclusion of this operation, the destination variable is considered to
be numeric. However, the logical size remains unchanged. If the physical size
of the system accumulators (14 characters) is exceeded, results of this and
future arithmetic operations are unpredictable.

FORMAT:

MULTIPLY
FIELD l
UIBRll { l
VARIABLE TIMES VARIABLE f .

ARITH. EXPR.

CODING EXAMPLES:

• MULTIPLY (l) TIMES TOT AL.

• MULTIPLY (2) + (3) TIMES CREDITS.

• MULTIPLY WEIGHT TIMES RATE.

• MULTIPLY 1 TIMES COUNT.

• MULTIPLY (13 :3- 5) TIMES TEMP.

3- 12

OUTPUT

DESCRIPTION:

The OUTPUT instruction is used to reformat and output data (batches, records
or fields) to tape or other output devices. For example, this instruction may be
used to generate error listings, headers (column headings or printouts), printouts
of data entered, etc. 1n addition, control functions and operand modifiers are
used in conjunction with the instruction to format outputs ; these will be
described on the following pages. The physical output occurs only at the end of
the execution of the whole statement. Consequently, one 'OUTPUT statement,
unless deferred (page 3- 18), creates one logical record.

FORMAT:

FIELD

OUTPUT LITERAL
VARIABLE
CONTROL

CODING EXAMPLES:

FIELD j
LITERAL
VARIABLE '

CONTROL

• OUTPUT (I), (2), (3).

• OUTPUT 'ENTREX'.

e OUTPUT (I), <LF>, (2),<LF>, (3), <TOP>.

• OUTPUT FILENAME.

3- 13

FIELD
LITERAL
VARIABLE
CONTROL

OUTPUT
(operand modifiers)

DESCRIPTION:

Operand modifiers may be used to further define any field , variable , or arith
metic expression to allow for character editing. An operand modifier consists
of a vertical bar (1) followed by an edit specification, and immediately follows
the operand which it modifies.

FORMAT:

OUTPUT {
FIELD }
VARIABLE

{ OPERAND MODIFIER }

The following are legal edit specifications:.

IPK Packed decimal format

!LS Truncate all leading spaces

ILZ Truncate all leading zeroes

ISG Positively oversign last digit in field

ITS Truncate all trailing spaces

ITZ Truncate all trailing zeroes

I 'MASK' - Where MASK is an alphameric literal whose largest size is
2(/J characters iricluding all MASK characters. If the
operand is longer than the MASK, it will be truncated and
any floating or fixed dollar sign will be lost. Table 3- 1
provides a description of the legal characters used with the
mask edit. Table 3- 2 provides examples of the mask edit
specification. It should be noted that zone portions of all
characters in a masked operand are stripped, yielding only
the non-overpunched digits (/J- 9.

3- 14

OUTPUT
(mask characters)

TABLE 3-1. LEGAL MASK CHARACTERS

Character Description

*

$

. , ~

An underscore in the edit mask is replaced by the corres
ponding digit from the specified variable.

A zero is used to indicate zero suppression. It is placed in the
right-most position where zero suppression is to take place.
It is replaced with the corresponding character from the
variable unless that character is a zero.

An asterisk is used for asterisk protection and zero suppres
sion. It is put in the right-most position where asterisk
protection is required.

A floating dollar sign is used for zero suppression code and
causes the insertion of a dollar sign in the position to the
left of the first significant digit. A dollar sign in the left-most
position of the MASK is considered fixed. A fixed dollar
sign is placed in the same location each time.

Decimal points, commas and blanks are placed in the output
field in the relative positions they were written in the MASK
unless they are to the left of significant digits.

CR - The characters CR or a minus sign in the last positions of the
edit MASK are undisturbed if the sign of the variable field is
negative . If the sign is plus the CR or minus sign is blanked
out.

- NOTE-

Zero, asterisk and floating dollar sign are mutually exclusive.
If two or more should occur, the one in the least significant
position will take precedence.

3- 15

OUTPUT
(mask examples)

TABLE 3- 2. MASK EDIT EXAMPLES

Result

Mask ±Operand +Data -Data

' 0. ' 000005 .05 .05 --- --
' $. ' 000005 $.05 $.05 -- --
'$ 0. ' 000005 $~~~.05 $~~~.05 -- --
'$ * ' 000005 $***.05 $***.05 -- --
' -' 13560 135 . 60~ 135.60------
' CR' 13560 135.60~~ 135.60CR ---- -
' ___ ._-~CR' 13560 135.60~~~ 135 .60~CR

'$ O* . -' 149363 $*1493.63~ $*1493.63---- --
'$ *O. -' 149363 $~1493.63~ $~1493.63---- --
' $0. -' 1763421 1,763.421~ $1,763.421-___ ,_ --- -

' __ _ $~Q. _ _ CR' 17631 17~6.31~~ $17~6.31CR

' __ o_ - - ' 000005 005 005

3- 16

OUTPUT
(control functions)

DESCRIPTION:

Control functions may be defined as program control verbs (programming
short cuts), e.g., OUTPUT <ALI>; or instructions which control the
physical aspects of output devices, e.g., OUTPUT <TOP>, <RWND>, etc.
These functions may be used at any time within the OUTPUT instruction and
are enclosed in less-than(<) and greater-than(>) symbols.

FORMAT:

OUTPUT { <CONTROL FUNCTION> ~ .

CODING EXAMPLES:

The following paragraphs will describe the legal control functions used in the
System 480 Validator language.

<ALLmm-nn>

This control function is used for outputting specific groups of fie_lds or an entire
file as entered (i .e., no reformatting). The above format is used to output
multiple fields. For example, to output fields 2 through 6 one would code :

OUTPUT <ALL 2- 6>.

If nn is not specified, field mm through the end of the record is outputted;
for example :

OUTPUT <ALL 2>.

If neither mm nor nn is specified, the entire record will be outputted; for
example:

OUTPUT <ALI>.

3-17

OUTPUT
(control functions)

<APPEND>

This function is used to "APPEND" or add data to a tape that was previously
written on the System 480. This may be desirable in two different instances :

• To append data to a tape using consecutive write-to-tape opera
tions ; i.e ., output two standard jobs back-to-back with no
intervening tape marks, labels, etc. Hereafter referred to as
consecutive appending.

• To append data to tape that was written previously (day before,
etc.). Hereafter referred to as non-consecutive appending.

Obviously, there are two different procedures used depending on the instance
with which one is faced, as follows :

• Consecutive appending - In this situation, the tape will be
positioned after the last data block. Therefore, one would code :

WHEN ST ART OUTPUT <APPEND>.

• Non-consecutive appending - In this situation, one would load
the tape to be appended, and either:

Position it after the first tape mark and code :

WHEN START OUTPUT <BSP I> <APPEND>.

Position it after the first tape mark, manually backspace
one record and code :

WHEN ST ART OUTPUT <APPEND>.

- NOTE-

1. <APPEND> is ignored at Beginning of
Tape (BOT).

2. A successful <APPEND> execution turns
off the When Start indicator.

3- 18

OUTPUT
(control functions)

Considering the above notes, one may program for either - at BOT or within
the data, as follows :

WHEN ST ART OUTPUT <BSP 1> <APPEND>.

WHEN START OUTPUT <LABEL> (New Data) <EOF>.

If at BOT the following occurs:

• <BSP 1> is ignored,

• <APPEND> is ignored,

• When Start indicator remains on,

• Second WHEN START statement is executed.

If not at BOT the following occurs :

• <BSP 1> is executed,

• <APPEND> is executed,

• When Start indicator is turned off.

• Second WHEN ST ART statement is ignored .

Using the <APPEND> function the following restraints must be observed :

• All output parameters of appended data must conform to those
of the existing data.

• User cannot precede a <LABEL> by more than two tape marks.

• User cannot use more than five User labels following last data
block.

<BATCH>

This control function causes the current batch name to be inserted into the next
ten character positions of the output record.

3- 19

OUTPUT
(control functions)

<BLKn>

The BLK function allows the EDITOR to output the physical tape block count
'n' specifies the size of the field in characters within which the count is output .
If n is smaller than the actual count the count will be truncated. If n is zero
there is no output regardless of the count.

- NOTE-

n must be equal to or less than 5.

< BSP nnnn>

This function is used for tape positioning (on a block level). When executed,
the tape will be "backspaced" nnnn blocks or to the BOT marker, whichever
comes first (nnnn can be any number from 1 through 2047). This function is
usually used in conjunction with the < APPEND> function, for example:

• OUTPUT <BSP 3> <ALL>.

• OUTPUT <BSP 1 > <APPEND>.

<COUNT xxxx>

This function outputs the number of characters contained within each record .
The count may be in either binary or decimal digits from one to four character
with leading or trailing spaces but no imbedded spaces. In the above format
"x" may be either a "B", "D" or "S", as shown below:

• DOSS . Two digit decimal count with two trailing spaces,

• BBSS Two digit binary count with two trailing spaces,

• DOD Three digit decimal count ,

• SSBB Two digit binary count with two leading spaces.

3- 20

OUTPUT
(control functions)

<DATEx >
This function accesses the system Global date which consists of six characters
in a format entered by the User. "x", shown in the above format provides the
capability to format the data field as follows :

• Left blank - six character formatless.

• Any legal keyboard character (except an underscore) - this
option creates the format mmXddXyy.

• Underscore - this inserts blanks as follows : mm~dd~yy.

< DEFER>

This function provides the capability to close files on tape. If fixed length has
been specified, it will pad out the current block, and write an industry com
patible tape mark. If not fixed, it will write a short block followed by an
industry compatible tape mark. If the tape drive is not the output device, the
instruction is ignored.

<EOF>

This function provides the capability to close files on tape. If a pad character
has been specified, it will pad out the current block, and write an industry
compatible tape mark. If no pad character has been specified it will write a
short block followed by an industry compatible tapemark. If a tape drive is
not available, the instruction is ignored.

<HEX xx>

The HEX feature allows eight-bits to be outputted (described by the HEX
convention) without going through code conversion. Therefore, 256 possible
combinations of eight-bits may be outputted.

<JOB>

This function causes the standard job name used to enter the current batch to
be inserted into the next eight character positions of the output record.

3- 21

OUTPUT
(control functions)

<LABEL>

This function may appear anywhere within an OUTPUT statement and is used
to specify that the current record is a label and not a data record . The
occurrence of such a record would cause the output buffer to be handled as if
an EOF were encountered, with the exception of writing a tape mark, after
which the label would be output regardless of any specified blocking options.

< LF >

This function initiates a line feed and carriage return to be executed by the
printer.

-NOTE-

A line feed will be initiated by the OUTPUT instruction itself
Therefore, "OUTPUT <LF> <LF>." would initiate three
line feeds.

<PGM>

This function initiates the current record's input format number to be inserted
in the output record.

<RWND>

This function initiates the tape drive to execute an unconditional tape rewind.
If no tape is mounted the instruction is bypassed.

<SKIPnnnn >

This function inserts blanks into the output record starting from the current
character position up to and including the character position specified by
''nnnn''.

<TOP>

This function initiates the printer to skip over the remaining lines on the page
to the top of the next page on a printout.

3- 22

PAUSE

DESCRIPTION:

The PAUSE instruction is used for error signalling. When this instruction is
executed, an error message (up to 40 characters) is displayed, and an error tone
is sounded. This instruction is used most often in conjunction with a conditional
statement. If an alphapleric literal (error message) is not coded, the message
"PAUSE" is displayed.

FORMAT:

PAUSE { ALPHAMERIC LITERAL } .

CODING EXAMPLES:

• PAUSE 'EXTENSION ERROR - PLEASE CHECK'.

• IF RECNO = 1000, PAUSE 'OVER 1000 RECORDS IN BATCH'.

3-23

PERFORM

DESCRIPTION:

The PERFORM instruction, a program control instruction, is used to execute a
specific subroutine within a program. When the subroutine has been performed,
program control will return to the instruction immediately following the
PERFORM statement. There are various constraints associated with the
PERFORM instruction - as follows:

• A "sentence label" and the special words ENTER and EXIT must
be used in conjunction with this instruction.

• A program branch (GOTO) within the specified confines
(between ENTER and EXIT) of a subroutine is legal.

• A program branch (GOTO) out of a subroutine is illegal.

• A program branch (GOTO) from outside a subroutine to a
statement within a subroutine is illegal.

FORMAT:

PERFORM !SENTENCE LABEL, ENTER { SUBROUTINE } . EXIT.

CODING EXAMPLES:

• PERFORM !TEST.

!TEST, ENTER WHEN PGMl OUTPUT "1 ". EXIT.

• PERFORM !FINI.

!FINI, ENTER OUTPUT '!INVOICE INVERRORS'. EXIT.

- NOTE-

Notice that a period is required at the end of each sentence in
the subroutine and after exit.

3- 24

RELEASE

DESCRIPTION:

When this instruction is executed, the current record is released and the next
record will be called-in; also, the program will branch to the beginning of th
program for further processing.

If a RELEASE is not encountered, the function will be performed after the 1 t
statement in the program. In this case, a STOP function is implied when the
last record has been processed. However, a "RELEASE AT END" statement
may be incorporated as the last statement in the program.

FORMAT:

RELEASE {OPTIONAL AT END STATEMENT} .

CODING EXAMPLES:

e RELEASE.

• RELEASE, AT END GOTO !FINI.

• RELEASE, AT END OUTPUT <EOF> <RWD>.

3- 25

SORT

DESCRIPTION:

The SORT instruction is used to sort a file of records by field, literal, control
function, or variable in ascending or descending order. Ascending and descending
sorts may be intermixed within a SORT statement. In addition, all control
functions and address modifiers allowed by the OUTPUT statement are allowed
by the SORT statement. Two address modifiers can be used in conjunction with
this instruction :

• I AK - specifies ascending sort.

• I DK - specifies descending sort.

These modifiers are coded directly behind the operand :

SORT (1) IDK 'l'.

- NOTE-

In the absence of either of the above modifiers, the sort defaults
to ascending.

FORMAT:

SORT
HEID l LITERAL
VARIABLE
CONT. FUNCT.

CODING EXAMPLES:

HEID I LITERAL
VARIABLE
CONT. FUNCT.

• SORT INVNUMBR 'l '.

• SORT <PGM>, (1) IAK (6:3).

3-26

HELD l LITERAL
VARIABLE
CONT. FUNCT.

STOP

DESCRIPTION:

The STOP instruction is used to halt a program. If the STOP instruction is not
coded, the program will stop when the last record has been processed. The
format for this instruction is given below.

-NOTE-

This instruction should not be used unless an abnormal break
is desired in the program.

FORMAT:

STOP.

CODING EXAMPLES:

• STOP.

• WHEN OVERFLOW, STOP.

3-27

SUBTRACT

DESCRIPTION:

The SUBTRACT instruction is used to subtract the contents of a field, literal,
variable, or arithmetic expression from the contents of a variable. The total is
stored in the variable with the operand contents remaining the same. At the
conclusion of this operation, the destination operand (variable) is considered to
be numeric, however, the logical size remains unchanged. If the physical size
of the system's accumulators (14 characters) is exceeded, results of this and
future arithmetic operations are unpredictable.

FORMAT:

SUBTRACT l
FIELD
LITERAL
VARIABLE
ARITH. EXPR.

CODING EXAMPLES:

• SUBTRACT (1) FROM TOTAL.

FROM { VARIABLE } .

• SUBTRACT (2) + (3) FROM CREDITS.

• SUBTRACT WEIGHT FROM RATE.

• SUBTRACT 1 FROM COUNT.

• SUBTRACT (13 :3-5) FROM TEMP.

3- 28

WHEN

DESCRIPTION:

The WHEN instruction functions exactly as does the IF instruction except that
it tests certain "conditions" within the system as opposed to logical relation
ships within the data. These conditions include:

• WHEN· BATCH - is used to test for the batch's first input
record. This facilitates batch initialization procedures when
multiple batches are being processed via the asterisk convention.

• WHEN EOT - checks for an "end-of-tape" marker during
output operations.

• WHEN FLAG - this statement is used to check for the
existence of an error flag within the current record. If possible,
use this statement sparingly as it decreases system efficiency.

• WHEN OVERFLOW - The WHEN OVERFLOW statement is
used for checking for logical arithmetic overflow. It refers to
the last arithmetic operation that took place, and applies to
operands which are arithmetic expressions as well as the ADD,
SUBTRACT, MULTIPLY and DIVIDE instructions.

• WHEN (NOT) PGM n (where n = 0- 9) - this instruction checks
the current record's program level (input format number). This
instruction can be written for negative logic programming (e.g.,
WHEN NOTPGM 2).

• WHEN START - tests for the first input record of a file .

- NOTE-

It is important to note that arithmetic overflow occurs in two
different forms - logical and arithmetic. Logical overflow
occurs when a number (within a variable) exceeds that specified
in the associated MOVE statement. In this case the number
will be truncated to the specified parameters. Physical over
flow can not be checked with WHEN OVERFLOW and
occurs when the system encounters a number which is
greater than 14 digits. When this occurs, the system display s
"SYSTEM ARITHMETIC OVERFLOW".

3- 29

WHEN
(continued)

FORMAT:

WHEN { CONDITION } .

CODING EXAMPLES:

e . WHEN BATCH, OUTPUT'! ' <JOB> < BATCH>.

• WHEN EOT, PAUSE 'MOUNT NEW TAPE'.

• WHEN FLAG, GOTO !ERROR.

• WHEN OVERFLOW, PAUSE 'EXCEEDED 999'.

• WHEN PGM 2 SORT INVNUBR 'l ' .

• WHEN NOT PGM 1 GOTO !DONE.

• WHEN START, PERFORM !HEADER.

3- 30

INTRODUCTION

SECTION 4
PROGRAM GRAMMAR

When writing a computer program to a specific computer language, certain
grammatical rules must be observed. System 480 VALIDATOR language
is no exception to this rule. The VALIDATOR grammar and punctuation
rules are described in the following paragraphs.

Sentence Structure

In all cases, a program sentence must contain one and only one action
instruction. Any number of conditional instructions (IF and WHEN) can
precede the action instruction, for example:

• IF (I) = (2). (Incorrect - no action instruction).

e IF (1) = (2), ADD (5) TO TOTAL (Correct).

An exception to this rule is the RELEASE instruction.

When the System 480 processes a conditional instruction, one of two
executions will occur, depending on whether the statement proves true or
false:

• TRUE - The System 480 will execute the next instruction,

• FALSE - The System 480 will branch to the next sentence
disregarding the action instruction.

An example of this program sequence is :

• Line 1 - WHEN PGM 3 GOTO !PRINT.

• Line 2 - WHEN PGM 4 GOTO !OUT.

If the current record is Program Level 3, the program will branch to !PRINT,
however, if the current record is not Program Level 3, the program will
disregard "GOTO !PRINT" and branch to Line 2.

Sentence Punctuation

Periods (.) are used as a· sentence delimiter. It is critical that the period be
used correctly to insure that sentences with conditional statements are
executed properly. All sentences must end with a period.

4- 1

Commas are commonly used to separate statements. When separating two
conditional statements, the comma implies a logic,al "AND". Commas may
also be used to separate sentence labels from sentences as well as anywhere
they make sense and are used primarily for program legibility.

Spaces must separate all instructions, arithmetic operators, and operands; a
rule that is similar to the English language.

Sentence Labels

Sentences may be preceded with a label so that they may be branched to with
a GOTO statement or called with a PERFORM statement. A label must be
immediately preceded by exclamation point and may be up to 8-characters
long with the first character being A-Zand all other characters A-Z or 0- 9.

VALIDA TOR PROGRAMMING EFFICIENCIES

System 480 programming can be best accomplished using good programming
techniques (Section 4, System 480 Formatting Techniques Manual) and
bearing in mind the System 480 idiosyncrasies described in the following
paragraphs.

Program size (binary) can be determined using the data shown in Table 4- 1.

TABLE 4-1. BINARY SIZES

Element Binary Words

Field I
Sub-field 2
Variable I
Literals

Numeric 4
Alpha (CHARS/2) + I
Repetitive Alpha 2

Operand Modifiers
'Mask' (CHARS/2) + 2
Others I

Control Functions
Without Descriptors* I
With One Descriptor 2
With Two Descriptors 3

Action Verbs I
Conditional Verbs I
Arithmetic Operators (+, -, *, /) I
Label (In GOTO/PERFORM) 2

*Descriptors modify the control function, e.g. , SKIP may have
one descriptor ; ALL may have two.

4- 2

Generally, the larger the binary program, the slower it will execute. Programs
are disk resident and are read into core 120 words at a time. Only 120 wo'rds
are kept in core at any one time, therefore, each increment of 120 will slow
the program down. Conversely, if the program is less than or equal to 120
words, the interpreter will execute at peak efficiency. Therefore, a Record
End Edit Routine should be limited to 120 words.

Whenever possible, use numeric literals in place of alphameric literals since
they take up less space in the binary program.

Use as few variables as possible during Batch End/Sort/Output processing.
Processing speed will be degraded for every new 11 variables. That is,
processing speed will not vary if using 1 or 11 variables and will not be
degraded again until 23 variables are used.

Use short messages whenever possible.

In output statements use the repetitive alpha literals whenever possible (i.e .,
20 'fJ' instead of ''/JQ'/J'/J'/J'/J'/J'/J'/J'/J'/J'/J'/J'/J'/J'/J'/J'/J'/J'/J').

Use arithmetic expressions whenever possible :

• Instead of: MOVE (1) TO PRODUCT
MULTIPLY (2) TIMES PRODUCT.
IF PRODUCT 1 (3), PAUSE.

• Use: IF (1) * (2) :f: (3), PAUSE.

Use common programming techniques such as subroutining. Position least
often used subroutines towards end of program. This could, conceivably,
save disk accesses; for example :

WHEN ST-ART, PERFORM !SETUP.

!SETUP should be the last subroutine in the program since it will be used only
once.

4- 3

SECTION 5
COMPILER ERROR CODES

INTRODUCTION

When an output program, Batch or Record End routine, or a sort routine has
been keyed into the system and terminated, the system does a quasi-COBOL
compile. If any coding or keying errors are found, these are displayed in the
following format :

PAGE NO. - LINE NO. - ERROR CODE NO.

Error code definitions are given in numeric sequence below:

- NOTE-

If an error is encountered from error codes 1-55, the entire
statement will be compiled. However, if an error is encountered
from error codes 71 through 83, the compilation for this
statement will end.

NUMBER DEFINITION

01

02

03

04

05

06

07

08

Numeric literal illegal operand within context of statement.

Alpha literal illegal operand within context of statement.

Field illegal operand within context of statement.

Variable illegal operand within context of statement.

Arithmetic expression illegal operand within context of
statement.

Operand modifier illegal within context of statement:

An operand modifier is legal only in an OUTPUT or
SORT instruction.

Control function illegal within context of statement :

A control function is legal only in an OUTPUT and
SORT instruction.

Size of numeric literal exceeded:

A numeric literal can contain no more than 14 digits.

5- 1

NUMBER

09

10

11

12

13

14

15

16

17

18

DEFINITION

Operand type cannot be determined.

Alpha literal format error:

An opening quote character can not be immediately
followed by a closing quote character. At least one
character must be inserted between the quotes.

Size of alpha literal exceeded:

An alpha literal cannot contain more than 120 charac
ters (excluding quotes).

Repetitive alpha literal format error:

Only one character is permitted within quotes. The
opening and closing quote characters must be identical
both single or double.

Repetitive alpha literal format error :

The repeat count cannot be greater than 120.

Size of variable name exceeded:

The name of a variable cannot contain more than
8 characters.

Illegal use of EXIT instruction:

An EXIT instruction must be the first and only
instruction of a sentence.

Illegal use of a DECLARE instruction:

A DECLARE instruction must be the first and only
instruction of a sentence.

Field format error:

A field number of no greater than 2047 can be
specified. The field number must be numeric only
(0- 9).

Field format error:

A field number can be followed only by a right paren
thesis or a colon, if a sub-field is specified.

5- 2

NUMBER

19

20

21

22

23

24

25

26

DEFINITION

Sub-field format error:

The correct format for a sub-field specification is :

(starting character position) - (ending character position)

A character pQsition may be any number from 1 through
99. The starting character position must be less than or
equal to the ending character position.

If the two character positions are equal, an ending
character position specification is not necessary. In
this case the dash (-) must not appear.

A sub-field specification must be followed by a right
parenthesis.

Operand modifier specification error :

The EDIT MASK or PACK operand modifier must be
the last modifier of a string of modifiers. This implies
that a string of modifiers may not contain both an
EDIT MASK and a PACK modifier.

Operand modifier type cannot be determined.

Size of variable name exceeded :

The name of a variable used in a DECLARE instruction
can not contain more than eight characters.

COUNT control function format error:

The COUNT function requires an operand.

BLK control function format error:

The BLK function requires an operand. This operand
is a number which may not exceed the maximum
allowable character size (5).

HEX control function format error :

The HEX function requires an operand. This operand
must be two consecutive hexadecimal characters.

ALL control function format error:

The use of an operand in an ALL function is optjonal.
When specified, it must be a number no greater than the
m~imum allowable field number (2047). If both a
starting and ending field number are specified, they must
be separated with a dash(-) ; the last field number must
be greater than the starting field number.

5- 3

NUMBER

27

29

30

32

33

34

35

36

37

DEFINITION

BSP/SKIP control function format error:

The BSP/SKIP function requires an operand. The
operand must be a number no greater than the
maximum allowable field number (204 7).

Control function format error:

A control function specification must be terminated
with a greater than symbol(>).

Control function type can not be determined.

DECLARE instruction format error:

All variable names within a DECLARE instruction must
be separated by either a comma, space or both. The
last variable must be followed by a period.

The first character of a variable name must be an A
through Z; all following characters must be an A
through Z or 0- 9.

Sentence label format error:

A label preceding a sentence can not contain more than
eight characters, excluding the exclamation point. The
first character of the label must be alpha (A-Z) and
must immediately follow the exclamation point.

Sentence label format error:

A label which precedes a sentence must be separated
from the sentence by either a space, comma or both.

Instruction type can not be determined.

Format error in ADD, SUBTRACT, MULTIPLY, DIVIDE or
MOVE instruction:

These instructions require either a TO, FROM, TIMES,
or INTO separating the source and destination
operands.

Format error in a GOTO or PERFORM instruction :

The sentence label must be immediately preceded by an
exclamation point.

5-4

NUMBER

38

39

40

42

43

44

45

DEFINITION

Format error in a GOTO or PERFORM instruction:

A sentence label within a GOTO or PERFORM instruc
tion can not contain more than eight characters
(excluding exclamation point). The first character of
the label must be alpha (A-Z) and must immediately
follow the exclamation point.

RELEASE or BYPASS instruction format error. Valid formats
of RELEASE and BYPASS instructions are:

RELEASE.

RELEASE AT END .. .

BYPASS.

BYPASS AT END .. .
For the second format, commas may be used in place
of, or with blanks separating, words.

WHEN instruction operand type can not be determined.

WHEN (NOT) PGM instruction format error:

The PGM number specified in a WHEN (NOT) PGM
instruction must be a one digit number (0- 9).

WHEN (NOT) PGM instruction format error. Valid formats
for this instruction are :

WHENPGM n,

WHEN NOT PGM n.

Spaces must appear between all words in this instruction.

WHEN (NOT) PGM instruction format error :

The PGM in this instruction must immediately be
followed by either a comma and/or a space.

IF instruction format error. Valid formats for this instruction
are :

I) IF <SI> R < DI>
2) IF <SI> R <DI> OR IF <S2> R <D2> .. .
3) IF <SI> R <DI> ORR <D2> ...

where <S> source operand
<D> = destination operand

R = relationship

In type 2, an OR IF implies a new source and destination
operand. For type 3, OR without IF implies reuse of the
previously specified source operand. In this case the rela
tionship must be repeated, even if it is the same as the
last specified relationship.

5- 5

NUMBER

46

47

48

49

50

51

52

53

54

55

DEFINITION

Valid relationships are: >,<, =, i=.

Spaces are required between words and operands but are
not required between operands and relationships.
Commas may be used whenever they make sense.

Sentence format error:

The last statement of any sentence must be followed by
a period. The first non-conditional statement of a
sentence must be the last statement of a sentence.

Subroutine format error:

ENTER can not be followed by a period.

Invalid termination of source program:

The last sentence of a program must be terminated with
a period.

Subroutine format error:

A subroutine was closed (EXIT) but had never been
opened (missing ENTER).

Variable name format error:

The first character of a variable name must be alpha
(A- Z).

Program error:

SORT instruction legal only within a SORT routine.

Program error:

OUTPUT instruction illegal within RECORD END and
SORT routines.

Variable table overflow:

Only 3 variables are allowed within a RECORD END
routine; or 99 variables for other routines.

Size of PAUSE statement exceeded:

A PAUSE statement cannot exceed 40 characters
(excluding quotes).

AT END not valid in Record End Edit Routine:

AT END statement illegal within Record End Edit
Routine.

5-6

NUMBER

71

72

73

74

75

76

77

78

DEFINITION

Multiply defined variable:

A variable can only be defined once within a
program.

Undefined variable :

A variable must be defined within a DECLARE
instruction prior to other references to it.

Subroutine format error:

The last subroutine in the program was not closed
(missing EXIT).

Subroutine format error:

A new subroutine was opened (ENTER) before the
preceding subroutine was closed (missing EXIT).

Subroutine format error :

A PERFORM instruction is illegal within a sub
routine . The nesting of subroutines is not allowed.

Subroutine format error:

A subroutine may be entered only by using a
PERFORM instruction.

The only valid sentences which can immediately
precede a subroutine are those containing one of
these instructions : STOP, EXIT, GOTO .or
RELEASE. The AT END option of the RELEASE
instruction is not valid.

Variable table overflow:

Only 99 different variables can be specified within
a program.

Multiply defined label :

Two or more sentences can not be preceded by
the same label. Each sentence label must be
unique.

5- 7

. NUMBER DEFINITION

79 Multiply defined label reference:

The GOTO/PERFORM instructions reference a
multiply defined label.

80 Undefined label reference:

The GOTO/PERFORM instructions reference an
undefined label.

81 Invalid subroutine call:

A label specified in a PERFORM instruction must
be one which precedes a valid subroutine entrance,
e.g., !LABEL, ENTER .. .

82 Illegal branch into a subroutine :

A GOTO instruction can not be performed on a
subroutine from outside that subroutine.

83 Illegal branch out of a subroutine:

A GOTO instruction can not be performed outside
a subroutine.

5-8

NTREX, INC.
chnical Publications Remarks Form*

TITLE :
PROGRAMMER'S

REFERENCE GUIDE

ERRORS IN PUBLICATION :

SUGGESTI ONS FOR IMPROVEMENT TO PUBL ICAT ION

(Pleese Print)

~ROM : NAME

COMPANY

TITLE

DATE --------

O RDER No. S-15

DATED I MARCH 74 I

*Your comments will be promptly investiga ted by appropri a te technica l personnel, a nd action will
be ta ken as required.

