
REVAS

Release 3

Z80/8080 DISASSEMBLER

USER'S MANUAL

by

A.E. Hawley

REVAS is Copyright 1982, 1985 by A.E. Hawley. No part of this
document may be reproduced in any way or by any means without
prior written permission of publisher. Address requests to
Echelon, Inc., 101 First Street, Los Altos, CA 94022.

TABLE OF CONTENTS

CHAPTER l, INTRODUCTION

........................... 1-l

CHAPTER 2, REVAS3 OVERVIEW

........................
2-1

A DISASSEMBLY ALGORITHM

...................
2-2

THE REVAS3 ALGORITHM

......................
2-6

DEFINITIONS
2-8

INVOKING REVAS

............................
2-9

EXIT & RE-ENTRY

...........................
2-9

COMMAND EDITING

..........................
2-10

GENERAL COMMAND DESCRIPTION

..............
2-lO

RESERVED WORDS

........................... 2-ll
PARAMETER NAMES

..........................
2-11

SYMBOLS AND LABELS

.......................
2-11

MACRO NAMES

..............................
2-12

ABBREVIATIONS

............................
2-12

COMMAND PARSING & INTERPRETATION

......... 2-13
MEMORY USAGE

.............................
2-13

MNEMONICS

................................
2-14

SUMMARY

..................................
2-15

CHAPTER 3, GETTING STARTED

........................
3-1

CHAPTER 4, DISASSEMBLY WITH REVAS3

FIELD NAMES

............................... 4-1
DESTINATION OF THE DISASSEMBLY

............ 4-1
CODE INTERPRETATION

.......................
4-2

DISASSEMBLY OF XD.OBJ

.....................
4-3

LABELS

.................................... 4-3
SYMBOL TABLES

............................. 4-4
TARGET CODE ANALYSIS

......................
4-J

REAL SYMBOLS & LABELS

.....................
4-8

REMOVING SYMBOLS & LABELS

................. 4-9
CONTROL ENTRIES

.......................... 4-lO
CROSS REFERENCING

........................ 4-lO
SAVING THE SYMBOL TABLES

................. 4-ll
COMMENTS

................................. 4-11

Page O-1

CONTENTS

CHAPTER 5, UTILITY COBMANDS

INSTANT COPMANDS

.......................... 5-3

CALC

...................................... 5-3
CALL

...................................... 5-4
ERASE (A MACRO)

........................... 5-4
HELP

...................................... 5-4
MACRO

..................................... 5-5
MEMQRY/VIRTUAL

............................
5-5

REINIT 5-6
QUIT

...................................... 5-6
SHOW

...................................... 5-6
SET, TURN

................................. 5-7
STATUS

.................................... 5-8
TITLE 5-8

CHAPTER 6, DISPLAY CLASS COMMANDS

.................
6-1

DISPLAY, IDISPLAY,
BDISPLAY, WDISPLAY

....................
6-2

PRINT, IPRINT, BPRINT, WPRINT

............. 6-4
BUILD, IBUILD, BBUILD, WBUILD

............. 6-5

CHAPTER 7, DISASSEMBLY COMMANDS

AT

.. 7-l
EQUALS

.................................... 7-1
FIND

......................................
7-2

KILL
7-3

LOCK, UNLOCK

..............................
7-3

MARK

......................................
7-4

XREF

......................................
7-5

CHAPTER 8, DISK FILE ACCESS COMMANDS

.............. 8-l

FILES
8-2

PGMFILE

...................................
8-3

TBLFILE
8-3

LSTFILE
8-3

WRITE

.....................................
8-4

SAVE

......................................
8-4

CLOSE

.....................................
8-4

Page O-2

CONTENTS

CHAPTER 9, PARAMETER DESCRIPTIONS

AMODE

.....................................
9-1

ARGRAD

....................................
9-1

ASMFLAG

................................... 9-l
BOTMAR

....................................
9-2

CMT

.......................................
9-2

CONSOLE

...................................
9-2

DMODE

.....................................
9-2

ECHO

......................................
9-2

HLINES

....................................
9-3

LSTFILE
9-3

MNE

.......................................
9-3

MODE

......................................
9-4

ORG

.......................................
9-4

OUTRAD

....................................
9-4

PAGER

.....................................
9-5

PAUSE

.....................................
9-5

PLINES

....................................
9-5

PRINTER

...................................
9-6

PS, PE

....................................
9-5

PUNCH

.....................................
9-6

RPTRAD

....................................
9-6

TABLE

.....................................
9-7

TOP

.......................................
9-7

CHAPTER 10, CHANGING REVAS3

SETTING DEFAULT PARAMETERS

...............
lO-1

FORBIDDEN OUTPUT CHARACTERS

..............
lO-2

USER PATCH AREA

.......................... 10-2
INTERUPTS

................................
10-2

FINDING MNEMONIC TABLES

..................
10-3

BUFFER SIZES

............................. 10-5

APPENDIXES

FORMAL COMMAND SYNTAX

..................... A-l
COMMAND LIST A-2
PARAMETER LIST A-3
RESERVED WORD LIST A-3

MEMORY MAP

................................ B-1

Initial Disassembly of XD.OBJ

............. C-l
Disassembly after Building Tables C-3
Disassembly with Labels

................... C-5

A MACRO demonstration
..................... D-1

Page O-3

CHAPTER I
INTRODUCTION

For several years a disassembler named REVAS has been available
for systems whichuse a Z80 central processor. It produces the
mnemonics originated by Technical Design Labs: an extension of
the Intel 8080 mnemonic set. It was originally designed to
operate under a monitor (TDL'S ZAPPLE and functionally similar
ones) and was completely relocatable so that it could disassemble
code resident anywhere in the CPU'S memory space. It was
modified to operate under CP/M, making elementary use of CP/M

file handling capabilities. REVAS is by now a mature and
effectiveprogram that is beingusedall over the world. It is
good, but I felt that an even better disassembler could be
written.

Users of the original REVAS have asked for a disassembler that
handles either TDL or ZILOG mnemonic sets; they also wanted one
that would disassemble a program too large for available memory
space. Incorporation of these and many other suggestions from
users would have resulted in major surgery to the architecture of
the original REVAS program. Such surgery usually incurs the risk
of unacceptable compromises, bugs, and inefficient code. The
best approach seemed to be a complete rewrite, incorporating new

data and control structures along with the proven functional
features of the old revas.

REVAS3 is the result. The rest of this manual describes its use
and, as seems necessary, the algorithms employed to implement
some of the main functions.

The manual is arranged in three major sections: a tutorial
section (OVERVIEW, GETTING STARTED, and DISASSEMBLY), a command

description section, and an interface and configuration section
(CHANGING REVAS). Ready reference is provided by the table of
contents, Appendices, an index, and page headings.

The tutorial section introduces you to the language defined by
REVAS3 commands and to the concepts involved in using REVAS3.

The OVERVIEW chapter tells you how to invoke and exit from
REVAS3, introduces you to the syntax and editing of REVAS3

commands, and defines many of the terms used in the rest of the
manual. GETTING STARTED introduces you to some of theutilitycommands and leads you through a simple disassembly. DISASSEMBLY

continues with more advanced tutorial examples which include the
disassembly of a real program whose source code is not available.

In the commanddescriptionchapters, a complete description of
the function and forms of each command is presented. The
emphasis is on how commands work so that youcan make full and
effective use of their EjK)wer and flexibility.

Page l-1

INTRODUCTION

The configuration chapter (CHANGING REVAS) is small, because itis not necessary to change REVAS3 to make it run in a standard
CP/M system. You may have preferences regarding screen format
parameters, list device characteristics, or the label and comment
delimiters in a disassembly listing. If so, you can consult that
chapter.

The appendix contains a formal command syntax description and
lists of command words, reserved words, and parameter names.
There is a memory map which you will find useful in understanding
the organization of REVAS and its table structure. Lastly, there
are some sample disassemblies which are referenced in the
tutorial sections.
REVAS3 was written in assembly language. Assembly language
programming for all but trivial programs has been described as an

"exercise in masochism". To my wife Stephanie, I oweadebt of
gratitude for her love and forbearance during the long program-
ming anddebugging period; I am surethat she lookson assembly
language programming as an "exercise in sadism"!

What would life be like without friends? I am grateful for the
encouragement and intellectual support that Bob Doolittle, Tom

Gallant, andAl Krug extended during the development of REVAS3.

Many of the capabilities included in the program were selected as
a result of their observations and advice. The many discussions
about programming styles, techniques, and architecture eased the
task of selecting 'the right way' to impfementREVAS3. Thanks,
Tom, for the critical proofreading that improved the organization
of this manual, made me stick to good english usage, and protec-
ted the reader from inaccuracies in the command descriptions.
And thanks to Al Krug for the hours of frustration he spent
running developmental versions with their inevitable bugs.

Excitement exists in my relationship with Echelon and the Z-
System with REVAS3 becoming a z-Tool.

It is my intent to supply software and documentation that is as
useful and free of errors as Fc)s8ible. All known bugs have been
exterminated from REVAS3. I am interested in improving the
quality of REVAS3 and its documentation wherever FK)ssible. Thus,
I will welcome and respond to comments and recommendations sent
to the address below.

Al Hawley
2 February 1985

Echelon Team Member
6032 Charlton Avenue

Los Angeles, CA 90056

Page l-2

CHAPTER 2

REVAS3 OVERVIEW

The purEK)se of this chapter is to make you comfortable with the
operation of the REVAS3 disassembler. The main concepts involved
in disassembly are given here along with an introduction to some

of the commands fromREVAS3's rich set. Someof theterms used
in later chapters are defined here. You want to know what the
programs on your distribution disk are for and how to execute
REVAS3. As you progress through the manual, the concepts and
commands are expanded on in increasing detail. This chapter
forms the foundation of understanding that will helpyou keep

your bearings in a sea of detail. Study it before going on to
actual examples.

Your distribution disk contains a file named REVAS.COM, a number
of files with the extension "MNE", and a "READ.ME" file. The
".MNE" files are overlays that provide interactive selection of
mnemonic sets during disassembly. One of the sets (normally
TDL.MNE) is already present in REVAS. Other files may also be
present. All are described in the READ.ME file, which can be
listed using the Z-System and CP/M 'TYPE' command.

REVAS3 executes under the Z-System and CP/M operating systems.
(CP/M is a registered trademark of Digital Research, Inc.) Here
are some of the features that you will find in REVAS3 as you
become familiar with it:

* disassembly of programs oRg'd anywhere
* disassembly of memory or disk resident programs
* disassembly of programs too large to fit into memory
* automatic symbol generation
* automatic data type assignment
* assignmnet & control real labels
* include comments in the disassembly
* interactive, dynamic choice of mnemonic sets
* undocumented Z80 opcodes
* easy-to-remember command words & abbreviations
* symbolic command arguments
* multiple commands on a command line
* command macros
* control over source, destination, and names of files* a calculator that operates in your choice of radix
* a HELP command reviews commands, parameters for you

In order to make effective use of a program like REVAS, you must
know what functions it can perform. You must also know how to
request those functions (the Command Set). The next few pages
will introduce you to many of the basic functions and commands.

Page 2-l

A SIMPLE DISASSEMBLY ALGORITEM

Let's review just what it is that we expect a disassembler to do.
Youareprobably familiar with the'L' cornmandof z-Tool ZDM or
DDT CP/M debugger; it produces a list of assembly language
mnemonics. Other debuggers are available which do about the
same. We expect more from a disassembler, though. We expect a
disassembler to display the address of each instruction, the code
itself, and the entire instruction; and we expect to see labels
and symbols where they are appropriate. We expect to see some-
thing like the PRN file that most assemblers produce, even
including data ('DB' or '.BYTE') entries where the code does not
represent instructions.

How does a disassembler produce such a result? The answer to that
question will be a disassembly algorithm. The algorithm on page
2-4 is a simplified version of that used by REVAS. A good way to
understand theprocess is to perform the disassembly manually,
then relate the experience to the REVAS command set. The para-
graphs which follow set up the logical environment within which
the algorithm operates.

First, there must be some object code to disassemble, and it must
be accessible for 'reading' on a byte-by-byte basis. We'll call
it the Target Program. (Use XD.OBJ if you want a concrete
example. Your debugger or monitor can produce a HEX listing for
manual use. Also, see the example in the Appendix, page C-l.)

Bytes will be accessed serially from the target program code and
supplied on demand to the disassembler. Associated with each
byte is its memory address. A logical register (the Program
Counter, or PC) contains the address of each byte as it is
accessed.

The algorithm requests exactly the number of bytes requiredto
produce a line of disassembled code. The line of code is trans-
lated into appropriate mnemonics, register names, numbers, and
other symbols. The line is then sent to an output deviee for
display (with appropriate formatting). The arguments of the
instructionare recorded in the symbol table when appropriate.
The process is repeated for each line of disassembly to be
produced.

To execute the algorithm manually, you will need three sheets of
paper. The first sheet is titled DISASSEMBLY LISTING and will
contain the disassembled code. The second contains a single line
divided into 7 fields. It is the 'scratch-pad' working space for
the algorithm. Here's how it looks:

DISASSEMBLY LINE

ADDRESS: CODE: LABEL: OPR: opAl: OPA2: COMMENT:

Page 2-2

A SIMPLE DISASSEMBLY ALGORITHM

Here is the third sheet format. It provides for an indefinitely
large number of lines. (In REVAS the number of lines is limited
by the amount of available memory space.) Everything that the
algorithm is required to "remember" is stored in the Symbol
Table. The simplified REVAS algorithm does not use all the
fields; they are included here for later reference.

SYMBOLTABLE

VALUE: SYMBOL: SYMBOL-TYPE: DATA-TYPE: MODE-LOCK:

Here are some typical entries for the first two fields:
0100 : BEGIN : (BEGIN & COUNTR are symbols)

1A4C : COUNTR : (assigned by a human)

Here are the allowed entries for the other fields:

: : SYNTHETIC : INSTRUCTION : UNLOCKED :

: : REAL : BYTE(or DB) : LOCKED :

: : NONE : WORD(or DW) : :

There is one further requirement. The disassembler algorithm
must have access to a table of op-codes which contains relevant
information on each instruction: number of bytes, the equivalent
mnemonic, register(s) referenced, and location of byte or word
data bytes. This table is derived from information supplied by
the manufacturer of your 8080/Z80 CPU. It will be called the op-
code table. For manual disassembly, you must use the manufac-
turer's data, your assembler manual, or one of the several books
available at computer suppliers.

Step 3 of the algorithm calls for generation of a synthetic
symbol. Such a symbol is generated by concatenating one or two
letters and the hex ASCII value field contents. For now, use the
letter 'S' (for Symbol). A typical synthetic symbol is 'S12F8'.

Page 2-3

A SIMPLE DISASSEMBLY ALGORITHM

Manual DisassemblyAlgorithm

1. Erase the contents of the disassembly line, then copy the
value of the PC into the disassembly line address field.
2. Search the symbol table for a value field which matches the
address field of the disassembly line. If none exists, skip to
step 4. Otherwise, fill in the label field by continuing with
step 3.

3. A symbol table entry has been found. If a symbol has been
assigned, transfer it to the field; else make a synthetic symbol
and transfer it to the field.

4. Transfer the next byte of code from the target to the code
field and increment the PC.

5. Look up the byte in a table of op codes. If it is not found
there, go to step 4.

6. An op code has been found. From data in the opcode table,
determine the length of the instruction and finish transferring
bytes from the target to the code field. The code field now
contains the entire instruction.

7. Get the mnemonic for the instruction from the opcode table;
enter it in the OPR field of the disassembly.

8. If OPA field entries are not required, go to step 9. Else

fill the fields as required. If one of the fields is a 16 bit
quantity which matches a value entry in the symbol table, then
use the procedure of step 3 to replace that quantity with a Real
or Synthetic symbol.

9. Place a comment field delimiter (';') in the comment field and
then transfer the code bytes to the comment field, translating
them into theirASCII equivalents. Ignore the high bit of each
byte, and replace non-printing characters with ".".

10. Copy the line to the DISASSEMBLY LISTING.

11. If there are no 16 bit values in the operand fields, go to
step 12. Otherwise, a 16 bit argument is present inone of the
OPA fields. Search the symbol table for a record containing that
value. If none is found, then write the 16 bit argument in the
next empty value field of the symbol table list.
12. end of algorithm (Repeat from step 1 for each line)

Page 2-4

THE REVAS ALGORITHM

It doesn't take long to become disenchanted with a manual

disassembly; if you've tried it previously, you probably used a

different procedure. This algorithm is worthwhile to study and
understand because it brings to light a number of important
observations about the process.

Notice the unconventional use of the comment field; it isn't
being used for comments at all! The characters entered there are
really a different way of interpreting the code from the target
program: as ASCII characters rather than as instructions for the
8080 or Z80 CPU to execute. After all, some code bytes represent

strings of ASCII data in real programs. This alternate
interpretation in the comment field helps you to spot those areas
easily. But there's a more important observation to make. THERE

ARE A NUMBER OF POSSIBLE WAYS TO INTERPRET THE CODE. Disassembly
is not just a matter of translating op codes into mnemonics! We

can classify segments of code into Data Types, each with its own
MODE of interpretation. The four modes of interpretation that we

will consider are INSTRUCTION, BYTE, WORD, and ASCII.

You will already have noticed that the simple algorithm makes no

provision for B-bit (BYTE or DB) and 16-bit (WORD or DW) data
segments. That's not fatal for an assembler, but it sure is
inconvenient for people!

In step 3 of the algorithm, the symbol table is searchedto see

if a label belongs in the label field. A similar search is made

at step 8 in order to use any symbol found to replace a 16 bit
argument. A symbol table is necessary to store such information
for later use. More significantly, notice that new symbol table
information is only available for later'use. An argument whose
value is less than the current address is called a backward
reference. Only on a subsequentpass through the code will new
backward references result in a symbol being generated in the
label field.
In step 11, all 16-bit arguments are entered in the symbol table.
Is that really what we want done? Some 16-bit arguments are
really being used as numbers rather than addresses; such numbers
should not result in symbol generation.

Although a field was reserved in the symbol table for a label,
there is no provision for entering one there. The synthetic
label of step 3 is not actually stored; it is generated as needed
from the value field of the table. Similarly, no use was made of
the data-type and mode-lock fields in the symbol table.

Clearly, a better algorithm is needed for execution by REVAS.

There are at least two functions beingperformedbythe simple
algorithm; DISPLAY the disassembly, and BUILD the symbol tables.
The display function includes the actual disassembly according to
an INSTRUCTION mode algorithm in steps 4 through 9, after which
the completed line is sent to an output device represented by the
DISASSEMBLY LISTING. The Symbol Table BUILDing function occurs
in step 11.

Page 2_5

THE REVAS ALGORITHM

DISPLAY and BUILD are two of the principle commands in REVAS.

The principle which solves the backward reference problem is
simple: DISPLAY does not make symbol table entries, and BUILD
does not produce disassembled output.

We'll get to the other problems by giving the REVAS algorithm.
For this algorithm, REVAS uses an output buffer which is
logically organized to contain one line of output with the same

fields as illustrated for the "disassembly line", except that
there are up to four OPA fields instead of two. The symbol table
is a table in memory (initially empty) which is built and main-
tained by REVAS with your help. The SYMBOL-TYPE, DATA-TYPE, and
MODE-LOCK fields are used to store information about interpreta-
tion of the code which starts at the address value in the symbol
record. In the algorithm, the contents of these fields are
called "attributes".

THE REVAS DISASSEMBLY ALGORITHM

l. Fill the line buffer with spaces, then enter the current
program counter contents in the address field.

2. Search the symbol table for an entry whose value field is
the same as the PC. If not found, goto step 5.

3. Table entry exists. Fetch attributes which specify:
a) DATA-TYPE, i.e. which mode of interpretation is
appropriate for the code which follows.
b) SYMBOL-TYPE, Real or Synthetic Symbol or none at all

4. Change the current MODE to agree with daÉa type from step
3a. If SYMBOL-TYPE is 'none', then go to step 5.
Otherwise, enter a Real or synthetic symbol in the label
field.

5. Using the current MODE (of interpretation), fill in the
CODE, OPR, COMMENT, and OPA fields of the line buffer.

6. If DISPLAY, send line buffer to output device(s)

If BUILD, make entries or changes to symbol tables.

7. end of algorithm

As before, the algorithm is for the disassembly of only one line,
and the starting address must be supplied. Furthermore, 'current
MODE' is not necessarily defined within the algorithm, so it too
must be supplied. These parameters are variables within REVAS.

Their values are initially determined by default and respecified
in commands. The MODE is specified by the I,B, or W prefixes
permitted with the DISPLAY, PRINT, and BUILDcoinmands; the ad-
dress range for disassembly is determined from arguments supplied
with the commands.

Page 2-6

THE REVAS ALGORITHM

The REVAS algorithm requires, in step 5, that there be several
different algorithms available for interpretation of code, and
that a means be provided for selection of the relevant algorithm.
The selection mechanism isthe MODEparameter which is inturn
controlled both by keyboard entry and dynamically by information
stored in the symbol table. Only the INSTRUCTION, BYTE, and WORD

modes are implemented, andtheASCII interpretation is left in
the comment field. The INSTRUCTIONalgorithm is equivalentto
steps 4 through 9 of the first algorithm.

The BYTE algorithm is simpler; it need only supply a pseudo-op

for theOPR field and reformat the data from the code field for
the OPA fields. Output format restrictions limit the number of
bytes per line to 4. The WORD algorithm is somewhat more
complex, because it is dealing with words which must be replaced
with symbols when appropriate.
How about the handling of 16 bit arguments which are not really
to be interpretedas addresses? Twoapproaches are employed by
REVAS to handle the problem. First, REVAS checks to see if the
value is within the range of the target program's addresses, as
determined by the values of the PS (Program Start) and PE

(Program End) parameters. Automatic entry in the symbol table is
skipped if the value is out of range. The second method involves
the use of the KILL command. KILL removes entries from the
symbol table. In subsequent disassemblies, a 16 bit quantity
which has been KILLed will be shown as a hex value.

If REVAS stopped and waited for you to assign a symbol of your
choice (a 'Real' symbol in the algorithm) each time it encoun-
tered a new 16 bit argument during BUILD, you would be aggravated
beyond belief. You need time to analyze the disassembled code in
order to assign meaningful symbols. The solution is to let REVAS

go ahead and use synthetic labels during BUILD. Later, after you
have displayed the resulting disassembly, you can use the EQUALS
command to insert Real symbols. In fact, you don't even have to
wait for BUILD to make a symbol table entry; you can use the
EQUALS command at any time to assign a symbol to any 16-bit
quantity. with the EQUALS command, you have absolute control
over the contents of that 'symbol' field in the symbol table.
For examples see the disassemblies in Appendix C.

During the BUILD FKjrtion of step 6, allusion is made to 'changes'
to the symbol tables. Such changes are modification of the data
type information stored there, and occur because of blind
application of an algorithm to ambiguous code constructs. What
is needed is a method to control such situations. One of the
attributes in the symbol table is a "mode-lock". When locked, itprevents changes to the data type attribute during execution of
the BUILD function. The MARK command controls the mode-lock.

In summary, BUILD, EQUALS, and KILL determine the main contents
of the symbol tables; MARK gives you keyboard control over the
effect of the DATA-TYPE in the tables. And DISPLAY gives you the
main disassembly output.

Page 2-7

DEFINITIONS

Metalanguage

Throughout this manual, and particularly in the command descrip-
tion sections, certain symbols are used to avoid excessively
wordy and confusing descriptions. These symbols are not a

literal part of the command but serve to express alternatives and
choices incommandconstruction. In the caseof CR and SP, the
symbols express an entity which may be included in a command, but
is otherwise difficult to describe. This collection of symbols
is called a Metalanguage, and its definitions follow so that you
can refer to them as necessary while reading the manual. The
same set of metalanguage definitions will also be found inthe
Appendix.

! = logical OR
{] = optionally present
[...] = present any number of times
< > = defines syntactic unit
() = establishes logical grouping
CR = ASCII CR (carriage return)
SP = ASCII SP (input from space bar)
^ = next character is ASCII control character

Hórd

There are two definitions of"word" used in this manual. Which
one is applicable depends on, and is usually apparent from, the
context.

a) In a command string, a word is defined as a string of alpha-
numeric characters terminated by a space, comma, semicolon, or
carriage return.

b) In a DATA context, a word is taken to mean 16 binary bits of
data and is equivalent to two bytes. This is the definition used
in most assemblers for 8 bit computers.

A number is a word which is comEKjsed entirely of characters from
the currently active radix. If the first character of a word
entered from the keyboard is a digit (O to 9), then that word

will be interpreted by REVAS as a number. If the first character
is not a digit, then REVAS will first attempt to identify the
word as a command, label, reserved word, parameter name, or macro
name before interpretation as a number.

Arglj=nt

An argument is a word distinguished primarily by its lexical
position in a conunand string. Once the command word (defined
below) is identified, all other words in a command string are
considered arguments.

Page 2-8

ENTRY, EXIT

ENTRY: INVOKING REVAS

REVAS is invoked in the same manner as other utilities under the
Z-System or CP/M operating system: by typing its name after the
command prompt. Called in this manner, the target code that
REVAS disassembles is assumed to be in some portion of your
systems memory space. Naturally, the target code cannot overlay
REVAS or the operating system.

As you might expect, an unambiguous file name may be included on
the calling line from the system level:

A> revas xd.obj

or A> revas xd (REVAS assumes a .COM extension)

In such cases, the code from the named file is disassembled as if
it were in memory. The file, however, never overlays memory
outside the bounds of REVAS. The file may be as long as 64K

bytes! This is the virtual memory mode of access. These forms,
as well as other extensions will be discussed in section 8. For
now, the simplest invocation will suffice:

A> revas

Once loaded, REVAS will print a sign-on message, a status report,
and finally a prompt (!q#). The prompt indicates that the program
is waiting for a line of input from the console: a command line.

Once a command line has been entered, REVAS begins command
execution. During command execution, a few single-character
commands are recognized. These are called instant commands.
Their function is to permit stopping/restarting command execution
and aborting further execution by returning to command mode.

EXIT FROM REYAS

The next most important thing to know about a program like REVAS

is how to return gracefully to the operating system. There are
two ways to leave REVAS; they are completely equivalent. The

first, as your intuition has already suggested, is to typea ^C

from the keyboard. This method only works when the ^C is the
first character typed following REVAS' prompt; at other times ^C

is completely ignored. The second method is to enter the command

word QUIT.

RE-ENTRY

Provided that no other system transient commands have been
executed, it is Ejc)ssible to re-enter REVAS and pick up where you
left off prior to the'^C' or'QUIT' exits from REVAS. just save
a file with zero length and '.COM' extension ('@.COM', for
example) and execute it. REVAS, whose code is still at location
100, will be restarted without reinitializing files or tables.

Page 2-9

RE-ENTRY, COMMAND EDITING, COMMAND FORMAT

COMMANDEDITING

For all but instant commands, REVAS uses the operating system
buffered console input; the command buffer will hold 70 charac-
ters. The normal editing functions are active until the CR is
entered at the end of the command line. You can correct typing
errors using the system editing functions. For editing details,
refer to your operating system manual.

There is one exception. Control-C (^C), as the first character
of the input line, results in a return to the operating system
without a warm boot operation. Since REVAS does not disturb the
operating system routines, the warm boot is not necessary.

WORDS REVAS KNOWS

REVAS contains a built-in "dictionary" which contains three kinds
of words: command words, reserved words, and parameter names. A

list of the words in each category is given in Appendix A. In
addition, user defined words are recognized once they are defined
as Macro Names or Labels.

COMMANDFORMAT

A command is a string of words and/or numbers terminated by a

semicolon or carriage return. Each command element (word or
number) must be delimited by spaces or a comma. The rules for
well formed commands are more flexible than just implied; more
detailed descriptions are given in the command descriptions and
in Appendix A (Formal Command Syntax, Page A-l).

Acommand contains exactly one command word, and as many other
words or numbers as may be appropriate. One number (or other
word) may precede the command word. The other words follow the
command word. A Macro Name is treated as and may replace a
command word once the Macro is defined. The 'other words' are
called arguments. A number is a numeric argument; anything else
can be called a symbolic argument. The argument which precedes a
command word is referred to as the RPT argument. RPT stands for
the word 'repeat'; the name reflects the fact that in many of the
commands this argument specifies the number of times that disas-
sembly of the next instruction is to be executed.

If you refer to the Formal Command Syntax in the Appendix, you
will note that no reference is made to command words; a command

is simply defined as a delimited sequence of arguments, or a

macro name. Syntactically, that is correct. Functionally,
either the first or second argument must be a command word.

Arguments not expected by the current command are ignored. For
instance, the SAVEcommand requires noarguments; if arguments

Page 2-10

RESERVED WORDS, PARAMETERS, SYMBOL NAMES

are supplied following thecommand word, they are ignored. If
one argument precedes the command word (SAVE), that one will also
be ignored. There is a limit, however, to the number of argu-
ments which may precede a command word: no more than one. REVAS

expects one of the first two words in a command string to be a

command word; if neither word is, then the entire string is
ignored and an irreverent reminder will be displayed on your
console.

RESERVED WORDS

Reserved words are symbols whose value is predefined. ON and OFF

are typical reserved words. Reserved words are much easier to
use instead of their equivalent numeric value because they make

mnemonic sense in the command. In fact, in any command that
expects to find a numeric value as part of the command, a re-
served word or user assigned label may be used instead of the
number. Command words, Macro Names, and parameter names do not
have associated numeric values, and cannot be used that way.

PARAMETERNAMES

Parameter names are used in only one context: as one of the
arguments of the SET command. In any other context they will be
unrecognized unless they have been assigned a value as a label.
(That might confuse you, but REVAS will distinguish between the
two usages of the same name. You can assign command names as
labels, too, without conflict.)

SYMBOLS AND LABELS

A symbol is a string of six or less characters. A string (see
<string> in the FORMAL COMMAND SYNTAX in Appendix A.) starts with
an alphabetic character, and may contain all but a few of the
printable alphanumeric set of characters. A symbol has an equi-
valent 16 bit numeric value. When a symbol is used as a label,
its value is a memory address (location).
A label is a symbol which may appear in the label field of an
assembly listing with proper termination.

There are two kinds of symbols: Real and Synthetic. A Real
symbol is one which you create by a keyboard entry; it is stored
and used literally. A Synthetic symbol is created by REVAS. Itis created by concatenation of one or two letters and the Hex

ASCII value of the symbol. Only the hex part of a synthetic
symbol will be recognized in a command string.

During executionof the BUILD command, REVAS identifies 16 bit
quantities in the operand field of machine language instructions.
Each such newly identifiedquantity is added to a table in free

Page 2-ll

MACRO NAMES; ABBREVIATIONS

memory above REVAS' disk buffer areas. On subsequent DISPLAY of
a disassembly, a Synthetic Symbol (Synthetic Label) is generated
and displayed wherever its 16 bit value would have occurred. If
you have created a real label with the EQUALS command, then that
label will be displayed instead of the synthetic label. Labels
and Symbols are thus associated each with a specific numeric
value; that value is usually an address.

MACRONAMES

A macro is a command line which has beenassigned a MACRONAME

using the MACROcommand. A macro name may contain from one to
six alphanumeric characters. Once assigned, the macro name may
be used as a command word in a command string, where it results
in execution of all the commands included in its definition.

ABBREVIATIONS

Command words may be abbreviated by truncation. For example, the
word DISPLAY may be shortened to any of the following:

D, DI, DIS, DISP, DISPL, DISPLA

The names of parameters in the SET (or TURN) command may be
similarly abbreviated. Reserved words maybeabbreviated to 2

letters, but will not be recognized if abbreviated to 1 letter.

Labels, Symbols, and Macro names may not be abbreviated. These
symbols are all assigned by the u3er and are treated literally by
REVAS. If you assign a macro name which is a possible abbre-
viation of a command word, the macro will not be executed when
you include it in a command string; instead, the command will be

executed.

Here is the algorithm REVAS uses to recognize an abbreviation.
The command, parameter, or reserved word list is searched in the
order given in the HELP listing, and the first match found is the
one used by REVAS. Thus, you must include enough letters of the
word to avoid ambiguity.

Appendix A contains lists of all thekey words thatREVASuses.
In those listings, the smallest unambiguous abbreviation is shown
in parentheses after each word. The HELP command produces
similar lists on your console or printer. In the HELP listings,
the key words are shown in mixed upper and lower case; the upper
case pjrtion of each word is the shortest possible abbreviation.

Page 2-12

COFMAND PARSING

COMMAND PARSING & INTERPRETATION

a) The first <arg> in a command is compared with entries in the
command word list. If a match (EK)ssibly abbreviated) is found,
then that argument is identified as the command word, and the
command list is excluded from any further searches.

If a match is not found, then
b) the symbol table and the reserved word table are searched (in
that order). If a match is found, then the argument has been
identified and the parsing is continued with the next argument.

If a match is not found, then the argument is assumed to be a

number, and it is converted to binary according to the current
input radix; parsing is continued with the next argument.

If the first argument was a command word, then all lexically
subsequent arguments are identified by the same procedure as in
(b). If the first argument was NOT a command word, the second is
assumed to be; the command word list is searched. If no match is
found, then an error condition exists and parsing is terminated
with an error message. If a match is found, then the command is
identified, and subsequent arguments are identified as in (b).

Parsing is terminated when a semicolon or end-of-line is
encountered.

When Macros have been defined, the list of Macro names is
searched as if it were appended to the command word list.

MEMORYUSAGE

Appendix B contains a memory map which will help you to visualize
the organization of the major parts of REVAS. Many of the
addresses given on the map are symbolic because they are differ-
ent in the various versions and revisions of REVAS that may

follow the printing of this manual. You will not need these
addresses to configure REVAS for your system. When REVAS is
first invoked without any arguments, one of the reports issued by
the implicit STATUS display is theaddress of the first byte of
free memory. That address is where the first byte of the symbol
tables will be stored; it immediately follows the 128 byte buffer
reserved for the symbol table header (HDR, on the memory map).
Later, after symbol table entries have been generated, the 'free
memory' report is simply an indicator of the extent to which you
have utilized your available memory space.

Page 2-13

MEMORY USAGE, MNEMONICS

When you ERASE or KILL symbol table entries, the space so libe-
rated is added toa list of empty records that is maintained in
the symbol table area. Subsequent new symbol table entries will
utilize space from the empty reeord list if possible; only when

insufficient space exists in the empty record list will new
entries use memory at the 'free' location and thereby increase
the size of the symbol tables. If you use the STATUS command
frequently you will be able to observe the incremental changes in
symbol table size. There is no mechanism provided for reducing
the size of the symbol tables short of complete annihilation (the
REINIT command).

MNEMONICS

Since Z80 code is a superset of that used by the 8080 CPU, REVAS
3 disassembles code intended for either. The mnemonic sets
supported by REVAS 3 include the set introduced by TDL and the
ZIIÁJG set. Several .MNE files will be found on your distribution
disk. TDL.MNE is the overlay file which produces TDL mnemonics;
Z80.MNE produces ZILOG mnemonics. When the TDL mnemonics are
chosen, the pseudo-ops produced are consistent with the TDL

assembler (.BYTE, .WORD, and .END). When ZILOG mnemonics are
chosen the corresponding pseudo-ops are DB, DW, and END. You can
interactively select among the mnemonic sets which are present on
the default disk drive using the SET MNE

... command. If you
prefer, you can use your system debugger to change the default
MNE set to one of the others. Just follow the directions in the
READ.ME file or in chapter 10 (CHANGING REVAS) of this manual.

Page 2-14

OVERVIEW SUMMARY

You may have occasion to disassemble Z80 code that makes use of
the undocumented Z80 opcodes. Or, you may encounter them during
DISPLAY of a code segment that contains data. REVAS 3 detects
and displays these opcodes using the 5 new mnemonics listed
below. The undocumented opcodes were described by Daniel R.

Lunsford in Dr. Dobb's journal, Number 44, April 1980 (vol 5,

Issue 4), p 47. See also a more recent discussion of them in
Microcomputing, April 1981, page 58, "Secret Codes Revealed" by
Edwin E. Freed.

HX, HY = high order bytes of IX and IY registers
LX, LY = low order bytes of IX an IY registers
SLLR = shift left, set low bit to one (Freed calls this

one RIJO)

SUMYIARY

In this chapter, you have been introduced to the strategy that
REVAS employs in performing a disassembly. The terms 'command',
'word', 'number', 'argument', 'symbol', and 'label' have been
defined. The concepts of command words, reserved words, and
parameters have been described. Some notes about memory usage
have been presented, and the command parsing algorithm has been
given. Finally, the unique opcodes produced by REVAS were
introduced.

I hope that this list of diverse subjects serves its intended
purpose: establishing a common ground of comprehension so that
the more detailed treatment in following chapters will be clear
and unambiguous. In the next chapter, we will go through a

simple set of operations which will give you a more intuitive
feel for REVAS operation. You will have an opportunity to
experience the practical aspect of some of the concepts presented
so far. So, turn on your computer and try out REVAS as you read
Chapter 3.

Page 2-15

CHAPTER 3

GETTING STARTED

Before trying to execute REVAS, make sure that you have a copy of
the distribution disk (marked with the copyright notice, of
course) as a working master, and that the distribution disk is
safely archived. If you are using Z-System or CP/M Version 2.2,

all the files on both disks should be marked RIO (READ ONLY).
Now transfer a copy of REVAS.COM onto a blank disk along with
your operating system and any system utilities you might need.
You may also wish to copy one or more of the .MNE files (You will
be using PIP; be sure to include the lol switch, since these
files contain binary code!). On the Master Disk is a file named

XD.OBJ. If you wish to duplicate the examples that follow, you
should also transfer that file to the Test Disk. If your system
uses more than one disk drive, make sure that there is nothing
irreplaceable on the alternate drives. These are the precautions
that I always follow when first trying out new software, and
apply to ANY program. REVAS does not eat disks, destroy files,
or cause system crashes; after initial trial it can be used like
any other utility program under Z-System and CP/M.

REVAS is executed just like any other transient program under Z-
System or CP/M. Assuming drive A: is logged in, type

A>revas ('A>' is the system prompt)

On your terminal you should now see the copyright notice, a

message to type HELP for assistance, and a display of STATUS

information. On the last line will be the REVAS prompt:

M#

The second iInExjrtant command you need to know is how to get out
of REVAS and back to the operating system level; there are two
ways. Either type"quit" or""c" (control-c). Theyare exactly
equivalent in function, but "c only works when it is the firstcharacter following the prompt. Try one, reinvoke REVAS, try the
other, reinvoke REVAS, and then try the HELP command:

M# QUIT
A> REYAS

0

0

m ^C
A> REVAS

0

0

m help

Page 3-1

GETTING STARTED

Now try the three commands suggested by the main HELP command
listing. Count the number of lines displayed before the
continuation message. You can change that number to anything
that you desire by preceding the "H" by the required number. Try
the following sequence of commands:

M# 5 h c (sets screen paging to 5 lines)
M# h p (See? REVAS remembers!)
M# 8 h
M# h p

You now know how to invoke REVAS and exit from it, and how to get
the HELP functions. Did you notice that after each command word
in the HELP listing is the shortest abbreviation that you can use
forthat word? Youhavealso introducedyourself to the idea of
an argument that precedes the command word in REVAS commands.
For the HELP command, this argument updates the parameter HLINES

which you saw in the parameter listing when you typed "h p".

Now let's explore the STATUS command. Try the following command

sequence:

m status
m s all
m s hlines
m s c

This is the command that lets you check on the state of REVAS'

internal parameters. You can, if you wish, change the values
assigned to these parameters by using the SET command. Try the
followingcommands:

m set echo on; set hlines 5
Mi# stat argrad; h p

Notice that you can issue multiple commands in a eommand line by
separating them witha';'. Also notice the connection between
'argrad', the number following 'hlines' above, and the number of
lines displayed by the 'H' command.

REVAS considers the command words SET and TURN to be completely
equivalent; youcanuse the one which seems most natural in the
command string context. To activate the command-echo feature
above, you could have typed:

m turn echo on; set hlines 5

Youhave seenthe effect of the'ECHO' parameter. Youshould be
able to turn the command echo feature off now. Do it, and in the
same line set HLINES to the value that seems right for your
screen display.

Page 3-2

GETTING STARTED

Now that you're getting the feel of the REVAS command format,
let's do some disassembling. We'll disassemble the start of
REVAS itself, but for now don't bother with trying to analyse the
code itself. (You can feel free to do that later, after you have
mastered the instruction set.) Try the following command
sequence:

M# d lOó

How many lines were displayed? You can control the number of
lines displayed by including a REPEAT (abbreviated RPT) argument
in front of the command, as in the following:

M# 4 d lOó (the '4' is the RPT argument)

M# d
M# d 100 110
M# d
M# 10 d
M# d lOó

Experiment with the commands (particularly the DISPLAY command

just demonstrated) we've covered so far until they become
familiar. Use different arguments. Look at the STATUS display
after each command and see the relation to the displayed values
and the commands you have executed. You will notice that the RPT

argument is not included in the parameter list. That's because
there's never any reason to SET it independently; its value is
always controlled by being specified as the argument which pre-
cedes a DISPLAY class command.

If you specify a value of O (zero) for the RPT argument, then the
number of lines displayed will be essentially infinite. How do
you stop the process? That's where the 'instant commands' come
in. Instant commands are recognized at any time except during
entry of a command string:

^S!S!S Stops current display activity. Display resumes
following any other keyboard input (except the instant commands).

"E!e!E Aborts the current command execution and continues with
the next (if any) command.

"X!X!X Aborts the entire command line and prompts for another
command. (If the command line only contains one command, then
'E' and 'X' are equivalent.)

Note: These commands use direct input, bypassing the system input
editing procedures (^C has no effect).

Page 3-3

GETTING STARTED

Now issue the following command and use 'S' to stop the
disassembly, and any key except E, S, or X to restart; use 'E' or
'X' to get back to the REVAS command level.

M# O d 100 114
M# d (here's where instant commands are needed)

This use of the RPT argument is good for scanning a long section
of code rapidly. It can cause trouble, however, if the console
parameter is OFF (as it is during the BUILD command) because you
can't see what is happening. It's a good idea to re-establish
the RPT argument at some finite value (such as a screen full of
lines) by issuing another display command like:

m 15 d

Are you ready now for a real file? OK, let's try the XD.OBJ file.
Try the following:

M# pgm xd

CXJPS! If the filename extension is not given, REVAS expects it to
be 'COM', and then can't find xd.com on the disk! ok, then,
let's try it again:

V# pgm xd.obj

By the way, did you notice the change in prompt character? The
'V' means that REVAS is now in virtual memory mode; it reads
segments of code from the disk file (as required by the dis-
assembly) instead of from absolute memory locations. If you
disassemble REVAS, you will find how it's done among the disk
file handling routines.

OK, back to business. Use the STATUS command to see the values
of PS(prograni start) and PE(pgm end) in the line starting with
V#. How do they relate tothe lengthof the file XD.OBjondisk?
(Hint: subtract PE from PS; that's HEX arithmetic, and you can do

it with the CALC command) Also note that STATUS informs youof
the file names currently active.
Now use the parameter setting command (T or SE) to turn on the
PRINTER; then give the STATUS command again. If your system
doesn't have a list device (or if you don't want printed output)
turn the Printer back off. Use the STATUS command to be sure you
were successful.

Page 3-4

GETTING STARTED

Go ahead and use the DISPLAY command to scan the code. Start
with:

V# d (you did set the RPT argument, didn't you?)

Notice that the display started at address lOClH. That's because
the default starting address was automatically set to the value
of PS. It does that in Memory mode, too.

As you disassemble beyond address 50OH, you will notice a disk
access. Don't panic! REVAS just read in the next code segment.
Now stop the disassembly (instant command if necessary), and try:

V# d 120 (or some other address less than 4ffH)

There was another disk access, as REVAS automatically read in the
appropriate code segment.

Now try disassembling code outside the range of addresses defined
by PS and PE. What happens? Why does it make no sense to
disassemble outside the PS-PE range? (Hint: where does the next
code segment come from?)

So far, it's just a little better than using the disassembly
feature of your debugger program. Right? Don't give up yet; read
the section of this manual on the DISPLAY commands. Experiment
with BDisplay and WDisplay to see what they do. After using each
form, display a few lines with the D command (no prefix). Now

try the IDisplay command, then try Display again. Experiment
until you feel comfortable with the commands discussed up to this
point. Don't be tempted to try other commands until you are
familiar with these.

At this point, you have become acquainted with the basic commands

and command format that REVAS understands. You can invoke REVAS

and return to the operating system. You can perform rudimentary
disassemblies of memory resident code and of code from a disk
file. You have been introduced to the parameters that control
many of the functions in REVAS. You have used two of the
Reserved Words (ON and OFF) to supply values (Offh and DO) for
the SET command. And, for those (rare?) times when you need it,
you can use the HELP command to refresh your memory.

.

Page 3-5

GETTING STARTED

Now you are ready to explore the other commands and features.
While you are exploring, make frequent use of the Status command;

the parameters that it displays tell you what is going on. Start
with the MARK, KILL, and EQUALS commands and use Display
frequently to see their effects. Once Mark or Equals has been
used, a symbol table will have been started, and you can save itwith the SAVE command. Read about each command and understand itbefore going to the next. The next chapter, DISASSEMBLY, will be

of particular help with the BUILD command. You have already met
with some of the Utility commands. Learn the rest at your
leisure. As you get acquainted with REVAS, you will find that
"tearing apart" some mysterious code (or entire programs) pro-
duces disassemblies that are more complete andunderstandable
than with anything you have seen before!

Page 3-6

FIELD NAMES; DESTINATIONS

CHAPTER 4

DIsAssmBLY WITH REVAS

FIELDNAMES

As we have seen in 'GETTING STARTED', REVAS disassembles code to
produce a listing which contains one instruction per line. One

such disassembled instruction is shown below. It is the first
instruction from the XD.OBJ file. The line is composed of seven
fields; the name of each field appears just above its contents.

ADDR CODE LABEL OPR OPA1,OPA2 CMT

0100 21 0000 LXI H,0OOOH ;!..

The ADDR field contains the address in hexadecimal of the memory
location of the first byte of the code shown in the CODE field.
The LABEL field is blank because no label has been assigned to
the instruction at this address. The code in the CODE field has
been translated into the instruction which appears in the next
three fields: the Operator (OPR) mnemonic, and the two operands
in the OPAl andOPA2 fields. For many instructions one or both
of the operand fields will be blank. The comment (CMT) field
contains a different kind of translation: the ASCII equivalent of
the hex values in the code field. For this purpose, the high
order bit of each byte is ignored and non-printing characters are
replaced with periods('.').

These field name assignments correspond to the terminology used
for the listing produced by many assemblers. The source text for
an assembler includes only the label, operator, operand, and
comment fields. In order to use the output of REVAS for re-
assembly, the address and code fields must be suppressed; the
comment field is of no use to the assembler, so it can be
suppressed also.

DESTINATION OF THE DISASSEMBLY

The disassembly can be sent to the console, the printer, the
punch, or a disk file by turning the appropriate switch para-
meter(s) on. In all cases, suppression of the address, code, and
comment fields is controlled by the ASMFLAG switch parameter;
when ASMFLAG is turned ON, the fields are suppressed and will not
appear in the output. If, instead, only the CMT switch is turned
OFF thenall but the comment fieldwill bedisplayedor sent to
the .LST file. User supplied comments, each of which is on a

line by itself, are never suppressed. If the ECHO switch has
been turned ON then each command will be repeated on the output
just before it is executed.

Page 4-l

CODE INTERPRETATION

Disassembly is sent to the .LST file by turning ON the LSTFILE
switch. When the switch is turned OFF, transmission to the file
cea3es, but the file is not closed. Subsequent output can be
appended to the file by turning the switch back on. The filewill be closed when you exit from REVAS. You may also close the

file with the CIX)SE command. The file manipulation commands are
more fully explained in chapter 8. See also the LSTFILE para-
meter description in chapter 9.

Another way to send a disassembly to the .LST file is by means of
the WRITE command. The WRITE command open8 the file, sends the
disassembly to the file with the ASMFLAG ON, closes the file,then turns the ASMFLAGOFF. Any previous contents of the file
are overwritten and lost.

CODE INTERPRETATION

The remark above that the comment field is a different trans-
lation of the code introduees an important concept in
disassembly. Any given segment of code in memory could have been
generated by a number of different types of source statements in
the assembler source, and the code itself carries no information
about how it was generated. The threebytes ofcode ataddress
lOó could have been generated exactly as shown by an assembler
using Intel mnemonics, but exactly the same code would have been
generated if an entirely different assembler using Zilog
rnnemonies were used. Likewise, to emphasize the FKjint, it could
have been the result of a .BYTE or .WORD (equivalent to DB and DW

pseudo-ops in many assemblers) data area in which the contents of
the memory locations are defined at assembly time, or of an
assembler pseudo-op that simply sets aside memory locations with-
out initialization. In the latter case, any random bytes present
at that location would have been included. The point is that
there are a number of FKjssible ways to translate the raw code: to
instructions or to one of several kinds of data. REVAS must
"know" at all times which translation algorithm to use in order
to supply the disassembly that makes the most sense to you. REVAS

can translate to straight ASCII (in the comment field), to
Instructions, to byte oriented data, and to word oriented data.

The IDISPLAY command tells REVAS to use the Instruction transla-
tion algorithm until a new mode is requestedorbecomesappro-
priate. The BDISPLAY and WDISPLAY commands similarly request
disassembly to byte and word type data modes. The DISPLAY
command requests disassembly in the most recently specified mode.

Page 4-2

XD.OBJ DISASSEMBLY; LABELS

DISASSEMBLY OF XD.OBJ

An initial disassembly of a portion of XD.OBJ is shown in
Appendix C. It was produced by the following command line (after
invoking REVAS):

M# PGM XD.OBJ ; 55 PRINT

Notice that the "most recently specified" mode must have been
Instruction. That's because until otherwise requested, the
default disassembly mode is "Instruction". Notice also that the

listing is broken up by blank lines inserted after each uncondi-

tional branch instruction. That's because such an instruction
breaks the flow of program instructions; following instructions
are almost certainly not related to those preceding the hard
branch. The blank line helps you to visualize program structure.

Look at the first five instructions. Clearly, the CPU stack
pointer is being saved at location 06BBH in the first three, then
a new stack is being designated in the fourth instruction.
Finally, there is an unconditional jump to location 0135H.
Nothing strange here! Scanning on down the listing, the code
"looks" sensible until we come to address 0160. Why would anyone
load the accumulator twice from the same location? And what sense
does it make tohave 8 JRNZ instructions in a row? A lookat the
comment field doesn't help; all the bytes are non-printing. But
lookat the code itself; 0D is a carriage return inASCII and Da

is a line-feed. And the jRNZ's are actually a string of ASCII
spaces. This must be a data area! But where does it end? You can
probably figure it out by listing XD.OBJ yourself until you find
code that makes sense, but let's instead consider a much more
powerful tool that REVAS has for you.

LABELS

Each of the 16 bit operands encountered so far is potentially a

pointer to a segment of code; in other words, they could be used
as labels. Assemblers don't like labels that start with a
number, and they generally accept a label that is six characters
long. If REVAS could put one or two letters in front of the 16

bit number (in hex) and supplya suitable label delimiter, that
entity could beused as a label in the label field at the appro-
priate address. REVAS wouldalsohaveto'remember' to consist-
ently use such a synthetic label in other operand fields where
appropriate. If such assignments were made indiscriminately
during the DISPLAY command, a whole bunch of incorrect labels
would have been generated at the string of JRNZ commands at
location 0163 to 0171, though. We need a special command so the
process caribe controlled. That command is the BUILD command,
whose other forms (IBUILD, BBUILD, AND WBUILD) are analogous to
the similar forms of the DISPLAY command.

Page 4-3

SYMBOL TABLES

SYMBOLTABLES

Here's how it works. We have decided that all the code from 0100
through 015D looks like valid instructions. Usethe following
command:

V#ibuild lOó 15d

All the code in the range specified is disassembled. The dis-
assembly is not sent to any output device; instead, a slash is
displayed on the console for each 60 lines of disassembly pro-
cessed as a 'working' indication. (see the BUILD command
description.) Each 16 bit argument found in an operand field is
examined to see if it is within the range of the program. If itis, then it is stored as an entry inthe Symbol Table inmemory
above REVAS. In the same record, mode information is stored
which identifies the nature of the instruction which referenced
this value. Certain instructions characteristically reference
data areas; others always reference an instruction. Also, this
table entry contains a marker which indicates that a symbol is to
be generated.

The 16 bitvalue mentionedabove is the valueassociated with a
symbol or label. The marker which indicates that a symbol is to
be generated also indicates whether the symbol is to be synthetic
or is one which you have designated with the EQUALS command.
When a synthetic symbol is required during a disassembly, it is
generated from the 16 bit value. The synthetic label itself is
not stored here; only its 16 bit value is stored. If you have
assigned a symbolic name, then that name is the symbol which will
be used by REVAS.

The table in which the address record is stored is a binary tree
which shares high memory with other binary trees. The key on
which the tree is organized is the 16 bit argument referenced
above. Another tree contains user assigned labels (discussed
below); the records in these two trees are cross-referenced by
appropriatepointers. Athirdtree store3command macros when
they are defined by the user. There is no connection between
this tree and the first two.

The collection of tables is referred to as 'Symbol Tables' in
this manual. In some cases where the context permits, the word
'Tables' is used and should cause no confusion with other tables
in REVAS such as command or parameter lists.
After the BUILD command has been executed, we can look at the
results withthe DISPLAY command. Do it, displaying a screen-
full at a time, starting with address 100 and stopping at address
18F. The disassembly you get will be similar to the second

listing in the appendix. Notice that the zero argument at lOó
was not assigned as a symbol, but remains as a hex constant.
That's because it is outside the bounds of the target code
(XD.OBJ). Likewise, the argument of the instruction at O1lC has
also been treated as a constant for the same reason. The CALL
0005H instruction at 0137 is another instance.

Page 4-4

SYMBOL TABLES

The load and store type instructions which have numeric operands
are now displayed with synthetic symbols starting with the
letters'UT' and ending with thevalue of the argument (in hex).
The arguments of branch type instructions (as at O1OAand 0123)

start with the letter 'S'.

These letters all have meanings. The 'S' stands for 'symbol',
and implies that the code at the address represented by the
symbol is an instruction. The letter 'T' stands for 'table', and
implies that as a label its associated code is to be interpreted
as BYTES of data. The letter 'W' implies a table of data
organized as WORDS.

When a synthetic label in the label field contains an 'S', the
DISPLAY procedure will automatically switch to the instruction
mode of disassembly; when a synthetic label contains a'T', the
switch is tobyte mode disassembly. For a'W', the switch is to
WORD mode.

The letter 'U' stands for 'uncommitted', 'uncertain', or
'unlocked' (take your choice!). A label is 'unlocked' if REYAS

can automatically interchange'T','S', and'W'. THEABSENCEOFA
'U' IN A SYNTHETIC LABEL(SYMBOL) MEANS THAT REVAS CAN NO LONGER
MODIFY THE MODE INFORMATION ALGORITHMICALLY; ANY CHANGE IN THE
MODE MUST BE BY USER REQUEST. You can specify (with the MARK
command) which data type the label will imply; and you may do so
again if you change your mind. When you specify a data mode
using the MARK command, that mode is locked. It can be changed
by another MARK command, and unlocked by the UNLOCK command. The

MARK, LOCK, and UNLOCK commands give you absolute control of the
disassembly process.

At the start of a line of disassembly, the Program Counter (PC)

contains the address of the first byte of code. The first
responsibility of the disassembly algorithm is to search the
Tables for an entry whose value equals that of the PC. If an
entry is found, then the disassembly (display) mode is set to
correspond to that recorded in the tables. If a synthetic label
is called for, it is generated and placed in the label field; ifa user assigned label is present, then it is used instead of the
synthetic label.
Now let's get back to that suspected data area at address 0160 in
the disassembly. There are twocourses of action possible. a)
We could use the MARK command to designate the first byte (at
160H) as BYTE. Or, b) we could use the BUILD command starting
where we think instruction code starts after the data segment.

Page 4-5

SYMBOL TABLES

Using the DISPLAY command, we observe that there is now a syn-
thetic label at 018C, and that it is an instruction. So, letW
use the BUILD command to convert some more arguments into symbol
table entries; to keep things under control we'll just build over
a small range of code that looks like valid instructions, then
display the results:

V# b 18c l9b ; di8 100 19b

The results so far are shown in the second listing in Appendix C.
REVAS has detected (at addr 18C) a data reference to address 160,
and assigned a synthetic label to the code at that address. The
label is UTO160. The 'U' tells us that the label is unlocked so
that subsequent references could change the type from'T' to 'S'

or 'W'. The subsequent code is now listed in byte format, in
accord with the 'T' in the label.

Although the data area at 160 appears to be quite valid {it's a

buffer with some ASCII already present, and terminated with the
'$' that the 'print buffer' function of CP/M uses), let's use itto experiment with the other forms of the BUILD command. Try the
following:

V# ib 160 160; d 15d 18c

The effect is to change the label to USO160 and, inaccord with
the 'S', disassemble all the code up to the next label as
instructions. If the range of the 'build' above had been from
160 to 18b, then all of the 'jrnz' instructions would have
generated locked synthetic labels. Now try:

V# wb 160 161; d 15d 18c

This changes the label to UWOl60, and all the code up to the next
label is now displayed in'WORD' format. OOPS! The last line in
the block of data is .BYTE format, andthere is justone byteof
code there. What happened? The word format starts at address 160

and continues through 018B; that's an odd number of bytes. Since
each word in the data area requires 2 bytes, the one byte left at
the end cannot be used to construct a word, and REVAS automatic-
ally switches to byte format display for that byte.

It is wise to be careful in specifying the range, because the
WBUILD function will (by default) assign all words within its
range as symbols of type 'US' (unlocked instruction). If the
first word in the list had been within the program address

limits, that would have happened here. Also observe that the
address range included 2 bytes rather than only one as in the
previous example. That's because it doesn't make sense to
process one byte as if it were a (2 byte) word!

Now return to the original byte format display with:
V# bb 160 160; d 15d 18c

Page 4-6

TARGET CODE ANALYSIS

There is a general principal to be observed about the conduct of
a disassembly from these examples. If you simply use the BUILD

command inthe instruction mode to initially build tables (and
thus assign labels) over a range of addresses that contain tables
of data, the result will be a bunch of false labels. Even more
of them would be generated if you used the WBUILD command indis-
criminately. The best way to starta disassembly is touse the
DISPLAY commands only to identify ranges of code that are
instructions. Use the BUILD command to extract the argument
information from the instruction areas as thoroughly as Fc)ssible.
After doing that, most of thedata areas will have been identi-
fied (by synthetic labels starting with 'UT').

IBUILD is usually used to ensure instruction mode after one of
the other modes has been used. WBUILD is used principally after
you have decided that the code segment of interest really is
addresses (typicajÁLy a jump table). And BBUILD might be used
when you want to recover from one of the other forms.

TARGET CODE ANALYSIS

The object of complete disassembly is to gain a thorough under-
standing of the function, logic flow, and data organization of
the target program. Perhaps youwish to generate a source filefor modification and subsequent reassembly. Or perhaps you wish
to learn the techniques used, so you can add them to your own
arsenal of programming expertise. For such purposes both heuris-
tic and analytic approaches are required; REVAS supplies the
tools for analysis and you supply the heuristic intelligence.
You will use every clue you can get to piece together a complete
analysis of the program.

We will continue to refer to XD.OBJ for examples. Rename it to
XD.COM and run it, if you haven't already done so. Here is what
we know about it now:

XD is a directory listing program that operates under the CP/M

operating system. It is invoked with an optional drive designa-
tor argument, and you will observe that it is not necessary to
include the usual colon after the drive name. The directory
display produced is sorted and formatted on the console, and
includes the length of each file and finally the number of kilo-
bytes of space left on the disk. Such a statement of program
function furnishes you with clues about the kinds of routines
that must be present in the program.

During the initial disassembly and table building processes,
additional clues became evident. The code has been organized
into segments, each of which can be analysed to determine its
function. The data areas have been identified, and those that
contain ASCII give a further clue as to function. You will have
already started the analysis by observing at address 0104 that
thecaller's (CP/M) stackpointer is being stored at a location
with the symbolic label UT06BBand that a local stack is estab-
lished starting at symbolic address UT06F9. As you decipher the

Page 4-7

REAL SYMBOLS

intent of the code, youcan use the AT command to insert short
comments; thenyouwon'thavetodecipher itagain! Be careful,
though; the comments do take up memory space! Youco'uldeasily
over-do it and use up available space.

REAL SYMBOLS & LABELS

We know without even trying that we will not be able to remember
more than a half-dozen or so such labels and what they mean. The
trick is to rename such symbols with a mnemonic that will be
meaningful. So, wecanuse the EQUALS commandto assign such a
mnemonic:

V# 6bb eqOLDSP; 6f9 eq STACK; d 100

This command string assigns two labels (OLDSP and STACK), then
displays a screenfull of disassembled code starting at 0100.
Notice that only the address portion of the synthetic label is
used, and that it is not necessary to include the leading zero.
REVAS will also recognize a synthetic label (such as s6bb or
UT6f9) as one of its command arguments; however, only the address
portion is actually stored in the symbol table or used for a
search in the tables. You should avoid assigning REAL symbols
that look like synthetic ones in order to avoid confusion.

Suppose you change your mind about the name 'STACK' and would
liketochange it tO'NEWSP'. Eitherof the following commands
will work:

V# 6f9 equal NEWSP

or V# STACK e NEWSP

Notice, in the second example, the symbolic reference to the
value(06f9H). THIS IS THE FIRST OBVIOUS EXAMPLE OF REVAS'

ABILITY TO USE SYMBOLIC REFERENCES. It's a lot easier for us
humans to reference a subroutine by its name than by its numeric
address!

For illustrative purposes, the above examples have used several
abbreviations of the 'equals' command. REVAS doesn't care which
you use, as long as no ambiguity results. The HELP list of the
commands shows the minimum unambiguous abbreviation of each com-
mand. Also note that the labels assigned in the examples are
upper case. That's only for emphasis. If you wish to use lower
case, do so. REVAS, however, converts all console input to upper
case, so the labels you assign will apFear that way in listings.
LABELS WHICH YOU ASSIGN WITH THE EQUALS COMMAND ARE RECORDED AND

RECOGNIZEDLITERALLY. If you try to abbreviate a user assigned
label, it will not be recognized.

Incidentally, REVAS won't let you as3ign a symbol which
duplicates an existing one. If you try it, you will be reminded.

Mode information stored in the symbol table is not altered by

user label assignment. Inpartieular, the mode lockbit is un-

Page 4-8

REMOVING SYMBOLS

changed. Assume that disassembly has shown a data area at hex
address 160, and there is a synthetic label (UTO160) resulting
from a previous BUILD command execution. The leading 'U' implies
that the mode is not permanently defined, and can still be
affected by subsequent BUILD commands whose address range in-
cludes the label. If you want the data type (mode) to beperm-
anent, then use the LOCK command. For example, to prevent inad-

vertent changes in the buffer at 0160, you could use:

V# lock 160 byte

Or, if you had assigned the label 'BUFFER' to that address, you
could use the alternate form:

V# lock buffer byte

REMOVING SYMBOLS & LABELS

Suppose that, during the initial table building process, some
erroneous synthetic labels were generated. If they were
generated as a result of code that looked like branch-type
instructions, then their modes will be locked. How do you get
rid of them? The answer is to use the KILL command, which
completely removes all reference to its argument from the symbol
tables. If you have assigned a label to an address, the KILL
command can use that label as its argument. Using as an example
the same address as above, either of the following will work:

V# kill 160

or V# kill buffer

On a subsequent display listing, the code at 160 will now be
interpreted as instructions because the most recently encountered
label (at 15d) is flagged as instruction mode. Address 160 and

its assigned symbol have been "forgotten".

The EQUALS command and the MARK command can be used even when no

synthetic label has been generated. For example, it's convenient
to have a label on the first executable statement of the program.
So far, there has been none generated there, so let's put a label
there and mark it as instruction mode:

V# 100 eq xd;mark xd instr
or V# mark lOó inst; 100 eq xd

The first option clearly creates a table entry which associates
the label 'XD' with address 0100 and then marks it as instruction
mode. Not so obvious is the fact that the mode is also locked
against inadvertant change. The second option illustrates a

subtle characteristic of the mark command. At the time it is
invoked here, there is no symbol table entry for address 0100;
there is nothing to mark! In such a case MARK creates a table
entry, marks it as directed, locks the mode, but does not record
the presence of a symbol of any kind. The subsequent EQUALS

Page 4-9

CONTROL ENTRIES; CROSS REFERENCING

command then finds this table entry and enters the symbol without
disturbing the mode information.

CONTROL ENTRIES

Earlier, when discussing disassembly of the buffer data area at
address 0160, it was pjinted out that the MARK command could be
used. (MARK produces a control record in REYAS' tables.) If the
command:

V# mark 160 byte

had been issued at that time, then subsequent display would have
shown the code from 0160 through 0l8b in byte format and any
attempt to change that display with the DISPLAY or BUILD commands

would fail, EVEN THOUGH NO SYNTHETIC SYMBOL IS DISPLAYED. How-
ever, once the BUILD command encounters a reference to address
0160 (as at address 18C), the generation of a synthetic label
(TO160:) will be enabled withthedata mode locked inbyte for-
mat. Therearecases of data areas for which the first byte of
the area is never referenced; a push-down stack is an example of
suchan area. Once youhave found such anarea, theonly way to
get it todisassembleproperly is to MARK the first byteappro-
priately.

Control entries can be modified with the MARK, LOCK, and UNLOCK

commands; can be removed with the KILL command; and can be dis-
played with the SHOW INDEX command.

CROSS REFERENCING

During analysis of the disassembled code, a logical approach is
to functionally identify as many routines and data storage loca-
tions as possible by assigning meaningful labels. As these
labels appear in operand fields during subsequent displays, they
help in figuring out what the more complicated routines are
doing. Youcanuse the FIND command to locate all the places a

particular routine or memory location is referenced. Or, once
symbol tables have been built, you can use the XREF command to
produce a similar listing for a group of such references.

At this FKjint, you should be able to complete the disassembly of
xd. It will be a good way to gain facility with the REVAS
command set usage, and you may wish ultimately to modify the .LST

FILE and reassemble it to create your own customized version. As

you will see during analysis of the program, it was written for
version 1.4 of CP/Mandassumes an 8" singledensitydisk, so itis likely that you would want to change it if your system
differ8.

Page 4-lO

SAVING SYMBOL TABLES; COPMENTS

SAVING THE SYMBOL TABLES

Seldom is a disassembly completed at one sitting. Even if it
were complete, you want theoption of saving the symbol tables
that you and REVAS have generated for the disassembly so you
won't have to repeat it next time you want to examine the target
code. The SAVE command saves the symbol tables in a file whose
name is shown in the STATUS display after 'TBL: :'. If you SAVE

the tables periodically during a disassembly/analysis session,
then you will not lose what you have done sq far when the
'inevitable' system crash occurs.

There are other commands and parameters that have not been dis-
cussed in this section. Also, many of the commands discussed
here possess additional capabilities. With the background pre-
sented here, you should have little difficulty in understanding

their capabilities and use from the descriptions given in the
following sections. I strongly recommend that you experiment
with each command while you are disassembling the XD program (or
some other that you are interested in).

COMMENTS

Comments up to about 62 characters long may be inserted inthe
disassembly with the AT command. The comment will appear just
before the address with which it is associated. The AT command

will replace an existing comment with a new one if the location
specified is the same. If the AT command is given without a
comment string, then any existing comment will be removed.

So, you can insert, replace, and remove comment lines. This
facility is sufficient to document functions for which a six
character label would be too cryptic. Longer elaborations will
have to be inserted in the .LST file later with your system
editor.

Page 4-11

cjomAND DESCRIPTIONS

The following chapters contain the
formal descriptions of the commands,
parameters, and reserved words used by
REVAS.

A command may follow one of REVAS'

prompts (V# or M), or it may be part
of a command string. For this reason,
no indication of a prompt or command
delimiters is given in the explanatory
examples which follow. From the intro-
ductory sections, you will have recog-
nized that a command may only be
entered after a prompt or as part of a
command string or macro.

Page 5-l

INSTANT COMMANDS, CALC

CHAPTER 5

UTILITY cQmANDs

INSTANTCOMMANDS

A few single-letter commands are recognizedatanytimeexcept
during entry of a command string. They permit you to suspend and
restart output activity, and to abort execution at any time.

"S!S!S Stops current display class activity. Activity resumes
following any other keyboard input except instant commands.

"E!e!E Aborts the current command execution and continues with
the next (if any) command.

^X!X!X Atrorts the current command, ignores the remainder of the
command line, and prompts for another command. (If the command

line only contains one command, then 'E' and 'X' are equivalent.)

Note: These commands use direct input, bypassing the system input
editing procedures (^C has no effect).

CALC <arq1> <arg2>

<arg1> and <arg2> are added, subtracted, multiplied, and divided
using integer arithmetic. The arguments may be numbers, symbols
which have already been defined, or reserved words.

Addition and subtraction are performed modulo 0FFFF(HEX); if a

sum is greater than the modulus, then the quantity displayed is
equivalent to the 16 least significant bits. If the result of a

subtraction is less than O (i.e., negative), then the quantity
displayed is equivalent to the l's complement of the result.

Note that the product is displayed as a 32 bit result (4 bytes),
while the other results are displayed as 16 bit quantities. Also
displayed is the remainder from the division; thisquantity is
identified as "X MOD Y".

The arguments are entered in the currentlydefined input radix
(see the ARGRAD parameter); the results are displayed in the
currently defined output radix (see the OUTRAD parameter). Thus,
in addition to the arithmetic functions, this command can be used
to perform radix conversions.

Page 5-3

CALL, ERASE, HELP

CALL <address)

Transfers execution control to the subroutine starting at
<address>. <address> may be a number, symbol, or reserved word,
as long as it has a value which is a real memory address at which
executable machine code starts. If the called routine ends with
a 'RET', then REVAS will continue execution if the called routine
has not altered the code in REVAS or its tables. Naturally, the
routine must preserve the CPU stack pointer and stack contents in
order to return to REVAS. During execution of such external
code, you will have to establish a separate stack if the routines
use more than 20 words of stack space; that's the amount
available on REVAS' 8tack after a CALL command.

ERASE <macro name>

Macros occupy space in the symbol table area of memory. The
ERASE command deletes the macro and returns the spacetoREVAS
for other use, such as storing symbols. This command works only
on macros; deletion of other typeg of user assigned names is
accomplished with the KILL or EQUALS commands. <macro name>
must be spelled out in full; abbreviations are not recognized.

lnl HELP 1<option>l

This command produces one of three listings on the active output
device(s). Each list contains brief reminders of the functions
of the key words inthe list. Someof the lists are long enough
to scroll off the screen. To prevent the consequent loss of
information, <n> lines are displayed and then REVAS pauses for
permission to continue. Instant commands may be used during the
pause to abort the listing if you wish. When REVAS is first
invoked, n has a default value which is suitable for most
terminals; n, if present, redefines the default value. The
parameter HLINES is identical to <n> specified in the HELP

command; thus, analternate methodof specifying the numberof
lines to display is to use the SET command (see the section on
parameters).

If <option> is present, it defines which of the HELP lists is to
be displayed. If <option> is not present, HELP explains the
options. The recognizedoptions areCOMMANDS, PARAMETERS, and
RESERVED. Abbreviations can be used for the command word and for
the options. For example, the command string "H C: H p;h r" will
cause the display of all three listings.

Page 5-4

MACRO, MEMORY/VIRTUAL

MACRO <macro name)j <command strinq> C,R.

This is the command by which Command Macros are defined. The
macro name may be up to 6 characters long, and must not start
with a digit or ")". The semicolon command separator must follow
the macro name to define the start of the macro command string.
The command string may contain as many commands (delimitedby
semicolons) as required to define the function you want. A car-
riage return terminates the macro definition. In practice, the
length of a Macro is limited to 60 characters by the size of the
input buffer. Macros may be nested as deeply as you wish; that
is, the command string may include macro calls. Recursive use of
macros is not supported; i.e, the command string may not contain
a macro call to its defining name at any level of nesting.

A macro is invoked (called) by including its name in a console
generated command string or in the command string of another
macro. Appendix D contains an example of a macro and its use.

MEMORY and VIRTUAL

REVAS is able to disassemble code either directly from a disk
file or from program code that is resident in memory (but does
not overlay REVAS or its table space). The type of access cur-
rently active is indicated by theprompt issuedat the start of
each command line: M# or V#. You may switch from one type of
access to the other by issuing one of these commands.

EXAMPLE (including prompt):

M#VIR
V# (REVAS issues new prompt)

During virtual program access, target code is transferred from
disk to a buffer as required for the disassembly process.Logical addresses for the PC are calculated continuously based on
the value assigned to PS (program start or origin). The default
value of PS is 1OOH, consistent with most CP/M compatible
programs that are designed to run at 1OOH. revas will not
attempt to disassemble outside the range of PS to PE, since that
would involve access to completely undefined disk areas.

Page 5-5

REINIT, QUIT, SHOW

REINIT

Reinitializes all file control blocks, symbol tables, and macro
definitions. Any title for the list device page heading is
erased. Does not flush buffers or close files. Usedtoabort a
disassembly and start over.

QUIT (no arquments)

Flushes the .LST buffer and closes the .LST file if necessary,
gives you an opportunity (when it makes sense) to save symbol
tables, then returns control to the CP/M Console Command
Processor (CCP). Within REVAS, control-C as the first character
of the command line has the same effect as the QUIT command. Ifexit from REVAS is via cold boot or system reset, then no buffer
flush or file closure takes place.

SHH <name> 1<start> 1<end>]]

The SHOW command displays information from REVAS' tables. <name>

has four possible symbolic values: Comment, Index, Macro, and
Symbol. If the <start> and <end arguments are absent, then data
from the entire table referenced by <name> will be displayed. If<name> is MACRO or SYMBOL, then the <start> and <end> arguments
are ignored, and the entire table is di8played. For the COMMENT

and INDEX forms of the command, <start> represents the value
(usually an address) of the first item to be displayed, and <end>

represents the value of the last item to be displayed. If <end>

is missing, then only the item represented by <start> is dis-
played. <name> may be abbreviated to as little as one letter,
and the <start> and <end> arguments may be any numeric or
symbolic value.

SHOW COMMENT Lists the comments stored in the tables, one per
line, along with their locations in the disassembly. The list is
sorted by location (address).

EXAMPLES:

SH C 43A might produce the following display:
043A ;THIS IS A COMMENT AT 43A IN THE DISASSEMBLY

SH COM 43A PE

Produces a list of all comments from address 43Ato the endof
the disassembly

Page 5-6

SHOW, SET/TURN

SHOW INDEX tabulates entries for which synthetic symbols or dis-
assembly controls will be generated during disassembly. This is
the only command which displays the control entries produced by
the MARK command. Such entries are distinguished by a leading
'*' on the synthetic symbol in this display. A typical row from
the table might look like this:
XSOOOO SOlOO UTO132 *WO156 *US0211 S026E T0271 ..., etc.

The 'X' prefix on the first symbol indicates that this is an
external symbol (outside the limits set by PS and PE). The data
types specified at 0000, 0100, 026E, and 0284 are locked instruc-
tion; the data type at 0132 is unlocked byte and that at 0271 is
locked byte. Control records arepresent for adresses 0156 and
0211 which specify locked word and unlocked instruction data
types. Note that the display is sorted on the address value.

SHOW MACROS Lists currently defined Macros, one per display line.
The list will be in alphabetic order, sorted on the MACRO name.
Each macro is enclosed in brackets for display purposes. The
brackets are not part of the macro.

SHOW SYMBOLS Lists user assigned symbols and their values in
tabular form. The table is arranged with the symbols in
alphabetic order. The value is displayed as a synthetic symbol
so that you can see the extant MODE and MODE LOCK assignments.
If OUTPUT is a locked symbol which you have assigned to the
subroutine at address 1A43, then it will be shown in the table as
follows:

...(other symbols).... OUTPUT =S1A43

..............

SET '(parameter naine> <new value>
or TURN '(parameter name)' '(new value>

These two commands are completely equivalent and interchangeable.
The only reason for the two command words is to permit command
entry in the form that seems most natural for each parameter.

EXAMPLES:

set pe Oa11O tells REVAS where pgm ends
se pr 1 turns on list device
set pr on turns on list device
se eon O turns off console
turn con off turns off console

Most of the functions within REVAS are controlled by parameters
stored within the program. Many can be changed at will by using
the SET (or TURN) command. For a list of parameters, type HELP
PARAMETERS (or an abbreviation of it such as H P).

Page 5-7

STATUS, TITLE, TURN, VIRTUAL

STATUS [<parameter name> .!, ALLI

The STATUS command without arguments produces a display of some

of the current parameter values, file assignments, and the start
of unused memory space. The abbreviation8 PC, PS, PE, DS, and DE

in the Status display stand for Program Counter, Program Start,
Program End, Display Start, and Display End, respectively. They
are discussed below in the Parameters section. This form of the
STATUS command is automatically executed during initial start-up
of REVAS

The STATUS command with an argument reFc)rts the current values of
parameters. If a parameter name is given as the argument, then
that parameter name and its value is displayed. If the word ALL

is the argument, then all of the parameters are listed with their
values. PE and ORG are always displayed in Hex; the switches,
ECHO through TOP, are displayed with ON/OFF values; and the
remaining parameters are ALWAYS displayed with DECIMAL values.

As in other command strings, unambiguous abbreviations are
recognized.

TITLE <string>
When output is sent to the printer and pagination has been
requested by turning ON the PAGER switch parameter, a 5-line
space is left at the top of each page. The second line in this
vertical tabulation can be used for a title which will appear on
each subsequent page. The TITLE command is used to define the
content of that page heading line. <string> may contain any
characters except semicolonor carriage return. Either of the
latter will terminate the string. <string> starts with the firstnon-blank character; after that one, blanks (spaces) may be
included in the string. The maximum length of the title string
is 60 characters. If there is no string specified (first non-
blank character is ';' or carriage return), then any previouUy
entered title is erased.

TURN

This command is identical to SET. See SET/TURN, on the preceding
page·

VIRTUAL

This command directs REVAS to access code from a disk file
instead of directly from memory space addresses. See the
description under MEMORY/VIRTUAL on page 5-5.

Page 5-8

DISPLAY CLASS COMMAND FORMAT

CHAPTER 6

DISPLAY CIASS coíHANDs

<cmd word>= DISPLAY ! PRINT ! BUILD

format: lnj [<prefix>l<cmd word> [argl) Iarg21

n, if present, is a symbol or number which defines the default
number of lines of output to beprocessed. If n=O, the process
is repeated for an unlimited number of lines. The default value
of n (before it is specified in a command) is 15. n is
'remembered' until it is respecified, so it need not be included
in each new command string. If n is input as a number, then its
radix is determined by the 'RPTRAD' parameter. The default radix
is decimal.

<prefix>, if present, is one of the letters I,B, or W. The
effect of the prefix is to establish the default mode of inter-
pretation of subsequently disassembled code as Instruction, Byte,
or Word, respectively. The default mode is shared byall three
DISPLAY class commands; once specified for DISPLAY, for example,
PRINT and BUILD will also use the same default.

argl, if present, defines the starting address in the target
program for the appropriate action by setting the program counter
(PC) to the value of argl. If argl is absent or blank, then the
current value of the PC is used.

arg2, if present, defines the last address to be processed. The

range defined by (arg2 - argl) temporarily over-rides the default
number of lines specified by n. If arg2 is absent or blank, then
the current value of PE is used.

arg1 and arg2, if present as numbers, are interpreted in the
current input radix. The input radix for arguments is specified
by the ARGRAD parameter, whose default setting is HEX (16
decimal).

Page 6-l

DISPLAY

DISPLAY, IDISPLAY, BDISPLAY, WDISPLAY

Disassembles and displays code in the form (or mode) 8peycified by
one of the prefixes I,B, or W.

DISPLAY (no prefix) uses the most recently specified (default)
prefix. When REVAS is first started, the default value of the
prefix is 'I', so code is interpreted and DISPLAYed as
instructions.

If symbol tables are active, then the display MODE is controlled
by table entries. Each time a label is encountered, its recorded
MODE is noted and the display changesautomaticallytothenew
mode. A flow chart of this process is shown on the next page·

EXN1PLES:

DIS displays disassembled code, starting at the
current PC. The number of lines is determined
by the current default value of n

21 D 12FF

displays 21 lines starting at 12FFH and sets
the default value of n to 21 (decimal)

D PS

displays the default number of lines, starting at
the logical program origin. For CP/M transient
programs, PS normally has a value of IOOH.

BD Displays n lines of BYTE data, 4 bytes per line,
starting at the current PC.

WD ,,PE
Displays data in WORD format, 4 words per line,
starting at PC and continuing to the end of the
program as indicated by PE.

O ID Displays disassembled code as Instructions until
interrupted by an Instant Command or the end of
the program (PE)

Page 6-2

DISPLAY

(DISPLAY or PRINT command)

(Entry from Conunand Processor)
0
*

0
O

-> >:
^ U

" toNE YET?

^ 0e

^ *-——-YES——~---—-->.

^ : t^ NO RETURN TO
^ : COMMAND PROCESSOR
^ 0

*

^ V

" SYMBOL PRESENT?
^ 0

0

^ *————YES_"__"~___>.

^ : G

^ NO COPY MODE FROM
^ : SYMBOL RECORD
^ 0 *

0 e

^ : < < L

^ &
0

^ G
^ PROCESS CODE FOR ONE
^ DISPLAY LINE IN THE
^ CURRENT !4ODE
^ WV

^ G

^ SEND THE LINE TO THE
^ ACTIVE OUTPUT DEVICES
^ **
^ U

" UPDATE THE
^ PRCGRAM COUNTER
^ Oe

^ T
^ < <—L

FLOW CHART FOR DISPLAY AND PRINT CCMMANDS

Page 6-3

PRINT

PRINT, IPRINT, BPRINT, WPRINT

Sameas the DISPLAYcommand, exceptthatoutput isal'go sentto
the list device. For examples, see DISPLAY command, Page 6-2.

Sorne elementary page formatting is available for output sent to
the list device (the Printer) if the PAGER switch is turnedON.
In this mode of output, 5 lines are reserved for a header at the
topof the output page. The second line of theheaderarea may
containa brief titleof your choice. You may designate such a

title byusing the TITLEcommand. (See the descriptionof this
command in the UTILITY COMMANDS chapter.) The number of text
lines to be printed per page and the number of blank lines to
leave as a bottom margin are parameters which you may inter-
actively specify with the SET command. (See PLINES and BOTMAR in
the Parameter Description chapter). Total page length is, of
course, the sum of PLINES, BOTMAR, and the 5 header lines. If
you choose to change these from the keyboard, you will probably
find it convenient to SET ARGRAD DECIMAL first. Don't forget to
change ARGRAD back to HEX if you're used to using hex addresses!

If you are using a printer which allows single page feed (like a

typewriter) thenyouwill want thedisassemblyoutput to pause
while you insert a fresh page in the machine. Turning the PAUSE

switch ON will cause that to happen. The PAUSE switch is
described in the PARAMETER DESCRIPTIONS chapter.

Finally, you must have some way of telling the REVAS routines
that you have just set the printer to top-of-page. That is
accomplished by SETting the TOP parameter. The only time it is
necessary to SET TOP is after you have manually readjusted the
positionof thepaper inyourprinterand want the new position
to be considered top-of-page. It is not necessary to SET TOP
when inserting a new single page during a PAUSE for that purpose,
since REVAS already knows it is at top-of-page.

Although all of the parameters may be set and the TITLE command

may be executed at any time, none of them will take effect until
the PAGER switch is turned ON. Also note that these parameters
are physically located in the block of values at the start of
REVAS where you may, if you wish, change their default values to
those which are most generally useful in your system. (See the
CHANGING REVAS section.)

Page 6-4

BUILD

BDILD, IBUILD, BBUILD, WBUILD

The main function of the BUILD command is to create symbols and
store them in the symbol tables. The BUILD function also
generates and stores disassembly control information with each
symbol. The eontrol information comprises the data type (I,B,W)
associated with the symbol and a flag (the mode-lock) that tells
whether the data type can be changed again without specific
direction from you.

IBUILD (or BUILD if the default MODE is already 'I') is used to
process the code in address ranges that you believe to be filled
with instruction typecode. For mostdisassemblies, this form

will produce the majority of synthetic labels. Because of
ambiguities in code interpretation, some of the symbols produced

will have an incorrect data type assignment. (You'll see them in
subsequent DISPLAY of the disassembly.)

BBUILD does not create symbol table entries. It's main use is to
change all labels within its argument range to type BYTE (ifpermitted by the mode-lock flag).
WBUILD creates a table entry for each 16 bit word in its argument
range. It's main use is to process data segments which you have
decided contain address-type data.

BUILD operates by algorithmic creation and modification of
address records in the symbol tables. Code is disassembled line-
by-line, as if it were to be displayed. Instead of sending the
code to the console buffer, however, it is searched for 16 bit
arguments. Each argument detected is used to create a new symbol
table record or update an existing one.

The interpretation of a line of code (as Instruction, Byte, or
Word) is controlled by the current content of the MODE parameter.

If a symbol table record exists for the address of the current
line of code, that record also contains a mode specification.
(Such a record also indicates that a label would occur in the
label field for this line.) When a table entry exists REVAS has a

decision to make: does it interpret the line according to the
MODE parameter, or according to the mode specified in the symbol
table record? The decision depends on the status of the mode-lock
('U' or blank) in the symbol record. If the symbol record mode

is Unlocked, then it is changed to agree with MODE; if the symbol
record mode is locked, then MODE is changed to agree with the
mode specified in the symbol record.

Page 6-5

BUILD

The algorithm used for BUILD is illustrated by the flow chart on
page 6-7; the actions taken during proce88ing a line of code are
summarized in the table on page 6-8.

Those 16 bit argumentg that fall outside the range of the target
program (as defined by PS and PE) are treated as constants, and
are not automatically entered in the symbol tables.

If the range of addresses over which the BUILD command is
executed is very large, significant time elapses before
completion of the process. During that time, there is no dis-
assembly output on the con8ole. Inorder to let you know that
revas is still alive and well (and busy), a series of slashes is
sent to the consoleat a rate of aboutone for every 60 lines of
disassembly processed. Actually, this mechanism comes into play
any time the console is turned OFF, as it is during BUILD.

Each address record in the symbol tables contains a flag which
specifies whether the data type (Instruction, byte, or word)
associated with that symbol may be changed automatically. This
flag bit is called the mode-lock. When the mode is locked by
setting the flag the data type cannot be changed by the BUILD
command. When the data type is unlocked, it may be changed
during execution of a BUILD command. The only time that REVAS

automatically sets the mode lock is during the creation of symbol
table entries for the arguments of branch-type instructions such
as 'call' or 'jnip' That's because such argulnent8 almost
invariably addre8s instruction type code, and the instruction
data type assigned should not be changed by inadvertent use of
the BUILDcommand. Once you have identified a segment of dis-
assembly as INSTRuction, BYTE, or WORD, you may use the MARK
command (refer to its description in section 7) to lock the mode

against inadvertent changes.

Page 6-6

BUILD

(BUILD Command)

(Entry from Command Processor)
O*

e0
—> >:
^ t" IX)NE YET?
^ e

0

^ *—---YES---------->.
^ : tí
" NO RETURN TO
^ : COMMAND PROCESSOR
~ D0

^ t" SYMBOL PRESENT?
^ 0*

" *————>NO >:

" YES :

" Ó :

^ SYMBOL MODE :

" IDCKED? :

" Ó :

" NO * YES :

" t U t
" COPY DEFAULT MODE COPY MODE :

" TO SYMBOL RECORD FROM :

^ AND TO MODE SYMBOL RECORD :

" V Ü V
^ '—: > >: <
^ 0+

^ t" DISASSEMBLE CODE FOR ONE
^ DISPLAY LINE IN THE

" CURRENT mDE
~ 0

0

" U
^ MAINTAIN TABLES
^ AS REQUIRED

^ a0
^ G

" UPDATE THE
^ PRCGRAM COUNTER

^ *e

^ G

^"< < ¶

FLOW CHART FOR THE BUILD COMMAND

Page 6-7

BUILD

THE BUILD ALGORITHM

MODE: Action:
INSTR a) The data type of any Label encountered is

changed to INSTR if its data type is not locked.

b) 16 bit arguments are entered in the tables
with DATA TYPE determined by the nature of the
instruction. If the argument already exists in
the tables, the entry is checked to see if its
recorded mode is locked; if not, then the mode is
set to INSTRdata type forarguments of aCALL or
JMP type instruction, and to BYTE data type for
all others. If theargumentbelongs toa CALLor
JMP type instruction, then the data type is locked
to prevent future change.

BYTE a) The data type of any Label encountered is
changed to BYTE if its data type is not locked.

b) No table entries are generated

WORD a) The data type of any Label encountered is
changed to WORD if its data type is not locked.

b) Each 16 bit word of data which follows is
considered to be a valid address if it is within
the program range defined by parameters PS and PE.

A symbol table entry is made for each such word
and a data type (mode) is assigned to the entry.
The data type assigned is the value of the AMODE

(Argument MODE) parameter, whose default value 18

0(instr). This default value can be changed,of
course, with the parameter setting command.

Page 6-8

AT; EQUALS

CHAPTER 7

DISASSEMBLY cjomANDs

l!!T. <arq> [<string>]

The AT command provides the means for adding comments to the
disassembly and for removing comments. <arg> may be an address,
a symbol, or a reserved word; it is the location at which the
comment will be inserted or removed. <string> is the comment you
wish inserted. If <string) is absent, then any comment already
present at location <arg> will be removed. If both arguments are
missing, then nothing is done.

<string> may be up to 62 characters long and may contain any
printable characters except ';'. The argument string is termi-
nated by ';' or a carriage return. It will also be terminated
automatically if the console input buffer becomes full.

<arq> EQUALS <syrribol>

The EQUALS command is used to assign, replace, and erase user
assigned symbols. <arg> may be an address or a label, and its
value may be anything from 0000 to OffffH. <symbo1> is a string
of up to six printable characters. (See <string> in the Formal
Command Syntax in Appendix A.) The string should not start with a

digit and may not contain spaces, commas, or semicolons.

<addr> EQUALS <symbol> assigns a new symbol
cold symbol> EQ <new syrribol> replaces a symbol with another
<addr> EQ erases any symbol at <addr>
EQU <symbol> erases the symbol

EXAMPLES:

100 EQ START

enters the symbol START in the symbol tables so that "START" will
appear in the label field of the instruction at location IO0(HEX)

and in the argument field of any instruction that references
location IOOH. If the same symbol is already in use, REVAS will
notify you and refuse to enter the duplicate symbol.

START EQUALS BEGIN

replaces the label START with BEGIN.

Page 7-l

FIND

If either one of the arguments of the EQUALS command is missing,
then any label associated with the argument given is erased; in
subsequent disassembly a synthetic label will bedisplayed. A

symbol table entry still exists; only the user assigned symbol is
erased. Note the difference between this use of the EQUALS com-
mand, and the KILL command.

EXAMPLES: lOó EQU
EQUALS BEGIN

Assuming that, as above, the label "BEGIN" has been assigned to
the instruction at location O1OOH; either of these commands would
erase the label "BEGIN" from memory, leaving only a synthetic
label with its MODE information. The KILL command, on the other
hand, removes both the real and synthetic labels, leaving only a
HEX constant.

If both arguments are missing, then the eorrunand is ignored.

In) FIND <srch addr> 1<start>l [<end of srch>)

This command searches a range of targetprogram code for those
instructions that reference the <srch addr> argument as a 16 bit
quantity. Each line containing a 16 bit reference to the <srch
addr> will be output to the currently assigned output device(s).

The range searched is determined the same way as in the DISPLAY

class commands; if <start> is not given, the current PS is used
as the place to start searching. If <end of srch> is not given,
then the last specified value of <n> is used to define the range.
If n=O and <end of srch> is not given, then the search will end
at the current value of PE (logical program end).

Examples:
('STRING', 'BEGIN', and 'END' have been assigned as labels with
the EQUALS command)

FIND lOó 140 92F

displays all lines in which IOOH is an argument, within the
address range of 140H to 92fH.

O FIND 100,140

displays all lines in which 1OOH is an argument, within the
address range of 140H to the end of the program.

FIND STRING, BEGIN, END

displays all lines in which'STRINg' is anargument, withinthe
range starting with the label 'BEGIN' and ending with the label
'END'.

Page 7-2

KILL; LOCK/UNLOCK

T printer on; fi string, begin, end;t pr off
Same as the previous example, except that output also goes to
your system printer.

KILL <arg1> {-<arg2>)

Removes all reference to addresses within the range of <arg1> to
<arg2> from the symbol tables. In subsequent disassembly lis-
tings, these addresses will be shown as constant(s). Reassign-
ment as a symbol requires a BUILD or EQUALS command.

If <arg2> or its minus sign prefix is absent, then only one
record (the one that represents <arg1>) will be deleted. If both
arguments are missing, then nothing is done.

IÁJCK I<arg1> [-<arq2>)1

or
UNLOCK {<arg1> [-<arq2>]]

The effect of these commands is to prohibit (LOCK) or permit
(UNLOCK) automatic data type assignment during execution of the
BUILD command. They operate on symbol table entries within the
address range represented by <arg1> and <arg2>.

<arg2>, if present, must be prefixed by a minus sign as shown.

If <arg2> is not present, then only the symbol address <arg1> is
affected. The command is ignored if no arguments are present.

These commands do not create symbol table entries; they operate
only on the control bits of existing table entries.

Page 7-3

MARK

MARK I<arg1> [-<arq2>] 1<mode>)]

This command establishes the data type associated with addresses
in the range specified by <arg1> and <arg2>. If notable entry
exists for <argl>, thenone is created; entries are NOT created
for other addresses in the range. Beyond the first argument, the
effects of MARK occur only for already existing table entries.
<arg2>, if present, MUST be prefixed with a minus sign as shown.

If you forget to include the minus sign, <arg2> will be inter-
preted as if it were a <mode> argument.

As withothercommands, thearguments maybe numbers, reserved
words, or defined labels. In particular, the reserved words
INSTR, BYTE, and WORD are useful with the MARK command; and have
the values O, I, and 2, respectively.

If the <mode> argument value is O, I, or 2, then the data type
stored in each symbol table entry(the mode assignment) within
range is set accordingly (i.e., to INSTRuction, BYTE, or WORD

data type) and the mode is locked.

If the <mode> argument is blank or if its value is greater than
two then a default value of O (INSTruction) is used.

Although a symbol table entry may be created, no label is
generated; labels are generated only as a result of other
commands such as BUILD or equals.

EXAMPLES:

MARK OUTSUB INSTR

Establishes the data starting at label OUTSUB as instructions and
locks the assignment against automatic change during subsequent
BUILD command operation.

MARK CONDTA -PE BYTE

All labels present in the range from CONDTA to the end of the
program carry the BYTE attribute and associated code will display
in the BYTE (or DB) format.

Page 7-4

XREF

XREF <arq1> <arq2> <arq3> <arq4>

The cross-reference command repeatedly searches the address range
defined by arg3 to arg4 for instructions that reference a label
within the range of values defined by argl to arg2. Each such
instruction found is printed out on the currently active output
device(s). The instructions that reference the smallest value
label in the label range are printed first, followed by groups of
instructions which reference successively higher label values.
This procedure is actually a repeated execution of the FIND
command, in which the <srch addr> is obtained by a sequential
search of the symbol tables. If the symbol tables contain no
entries (i.e., no BUILD or symbol-generating command has been
executed), then XREF will fail. XREF only works after synthetic
or real symbols have been generated. The arguments all have
default values which will be used if the argument is left blank
(two successive commas):

arg1: current value of DS (Display Range Start)
arg2: current value of DE (Display Range End)
arg3: current value of PS (Pgm Start address)
arg4: current value of PE (Pgm End address)

EXAMPLES:

XREF lOó 200

Produces a listing of all the references to labels in the
range of 100 to 200. References come from the entire
program defined by PS and PE

turn console off:turn 1st on:xref PS PE: turn 1st off:close

produces a cross reference listing for the entire program
with output going only to the file shown in the STATUS

display after 'LST: '. This will take a while and will
produce a large file, so be prepared with lots of disk
space and time!

T printer on;XREF subl sub2;T pr off
Produces a cross reference listing for code in the range
of subl to sub2, with output going to console and your
system printer. By default, the entire program is scanned
for references to labels in the code range.

Page 7-5

CHAPTER 8

DISK FILE ACCESS cxjmANDs

REVAS can access three files associated with the disassembly
process. The following four commands (FILES, PGMFILE, TBLFILE,
and LSTFILE) provide the means of telling REVAS what file names

you wish to specify. REVAS then fills in appropriate file con-
trol blocks, accesses files as required, and sets up internal
parameters to work with those files.
The three types of file are referred to here as the PGM file, the
TBL file, and the LST file.
The PGM file contains the object code which you wish to dis-
assemble. REVAS reads from the PGM file, but never writes to it.
The TBL file contains the symbol tables for the disassembly; the
tables are written into the file when you invoke the SAVE com-
mand. This file, if present, is loaded during a FILES or TBLFILE
command; it will also be loaded during the implied FILES command

at the time REYAS is invoked if the <fi1ename> argument list is
present.
The LST file contains the Assembly format output which you create
with the WRITE command. The LST file also has a second use which

will conflict with its primary function as an assembly format
output file: if the LSTFILE switch is turned on, then all REVAS

output is copied into that file forming a record of the current
session. (See the LSTFILE parameter description.)

File names must be unambiguous, and follow the conventions of the
CP/M operating system. You may specify a disk drive in the usual
way. Default entries are present in the file control blocks. If
you omit the drive specification, then the current default disk
is assumed. If you omit the filename or the extension, then the
default values are used. If only the extension is specified in
the filename argument, you must include the "." that separates
the filename and extension just as you do for other system util-ities. The STATUS command reports the current assignment of the
three file control blocks. If none of the four commands has been
executed, then the STATUS command will display the default file
assignments.

The files which REVAS is to use may be specified on the invoking
command line (at the CP/M prompt level) by appending the file
name argument list (see FILES command below for sample argument
lists)

Page 8-l

FILES COMMAND

FILES I<FN1>J [<FN2>1 I<FN3>1

The FILES command takes from one to three CP/M filenames as
arguments. Its simplest form (FILES <FN>) is usually all that
is needed for a disassembly. The TBL and LST files produced will
have the same name as thePGM file; only the extensions will be
different. The following table shows what assignments will be
made for the possible permutations oftheargument list. Note
that any one of the arguments may be no more than a file name
extension you wish to specify; it must be of the form: '.<EXT>'
in order to be distinguished from a name. An argument of the
form 'B: ' is also acceptable and properly specifies or changes
the drive assignment for the appropriate file name. If no argu-
ments are given, file assignments are displayed on active output
devices.

ARGUMENT LIST: AssIgmENTs: ACTION:

PGM TBL LST

- - - - - - 4
FN1 - - FNI FNI FNI 1,2,3
FN1 FN2 - FN1 FN2 FN2 1,2,3
FNI FN2 FN3 FN1 FN2 FN3 1,2,3
FN1 () FN3 FNI FNI FN3 1,2,3
() FN2 - * FN2 FN2 2
() FN2 FN3 * FN2 FN3 2
() () FN3 * * FN3 none

Notes: - = missing terminal argument(s)
() = empty argument (n+l commas for n arguments)

* = uses default or most recent assignment

Actions:
i. Initialize tables to null.
2. Load TBL file if present on disk (see TBLFILE)
3. Access FNI (see PGMFILE)

4. Display file assignments

Examples:
FILES B:FNI (last 2 args missing)

FILES B: FN1, ,B:NF3 (2nd arg empty)

FILES ,,A:FN2 (1St arg empty, last missing)

FILES , , A:FN2 (1st arg empty, last missing)

FILES ,,A:FN2,FN3 (1St arg empty)

FILES,,,B: FN3 (1St two args empty)

FILES , , ,B:FN3 (1st two args empty)

Page 8-2

PGMFILE, TBLFILE, LSTFILE COMMANDS

PGMFILE <CP/M filename>

Open the PGM file and access it if present. Switch to Virtual
access mode if not already there. This command does not affect
assignments or access to TBL or LST files.
Example:

PGMFILE B: XD.OBJ

TBLFILE <FN>

Establishes <FN> as the active TBL file, without affecting PGM or
LST file assignments. The disk is searched for <FN>. If found,
<FN> is loaded into the symbol table area and data from the file
header is used to update PS, PE, PC, and the memory/virtual
access mode. If the file is not found, REVAS waits until a SAVE

command is executed to create the file and save the current
symbol tables in it.
Example:

TBLFILE FN2 (creates FCB for FN2 and current drive)

LSTFILE <FN>

Establishes <FN> as the active LST file, without affecting PGM or
TBL file assignments. The file is not opened until REVAS

attempts to write to theLST file. Thereare two ways to write
to the file: by TURNing LSTFILE ON, and via the WRITE command
(see next page). The first method sends everything that would
display on the console to the LST file without editing, while the
second sends only a disassembly in assembler input format to the

fije and then automatically closes the file. (See LSTFILE para-
meter on Page 9-3, and the CLOSE command below.)

Example:
LSTFILE B: FN3 (creates FCB for FN3 using drive B:)

This command is exactly equivalent to the following form of the
FILES command:

FILES,,,B: FN3 (1St two args empty)

The reason for having the two equivalent forms is that the FILES
command is implicitly executed when REVAS is first invoked by
CPM; the assembly format output file may be specified at that
time by:

A>REVAS ,,,B: FN3

After REVAS has been invoked, the more convenient method of
specifying the assembly format output file is by use of the
LSTFILE command.

Page 8-3

WRITE, SAVE, CLOSE COMMANDS

#I,T,E, I<arql>1 l<arq2>1

Writes the label, operator, and operand fields of the disassembly
to the .LST file shown in the STATUS display. The same data is
displayedontheconsole andthe listdevice if they are turned
on. For .BYTE format portions of the disassembly, the auto-
comment field is included. The disassembly range is specified
only by the two arguments which follow the command word ([n] is
ignored). If arg1 is empty, PS is used; if arg2 is empty, PE is
used in its place. The file is automatically opened, written,
terminated with the ".END" or"END" pseudo-op and closed during
the execution of this command. Any existing file with the same
name is over-written and lost.

SAVE

Automatically opens the .TBL file, writes the symbol tables into
it, and closes the file. Any arguments are ignored. Any extant
file with the same name is over-written.

CLOSE

The text in the LST file buffer is terminated with the End-Of-
File character, then the buffer is flushed to disk and the fileclosed. Any previous file with the same name will have been
over-written and lost. This command is used to close the LST

file after it has been enabled by the LSTFILE command and written
to. An example of the use of the CLOSE command is given under
XREF on Page 7-5.

Page 8-4

PARAMETERS; HLINES, LSTFILE, PINE

HLINES

This is the number of lines of information to be displayed on
your console by the HELP command before pausing for permission to
continue. When changing this parameter, remember that the
desired number of lines must be expressed in the current
ARGRADix.

LSTFILE

This parameter controls writing to the file designated for dis-
assembly output (NOTthe symbol table file). Its default value
is OFF. When turned ON, all text displayed on the console is
sent to the .LST file. It is NOT closed by returning the value
of LSTFILE parameter to OFF; OFF simply inhibits writing to the

fije. The file must be closed in order to ensure retention of
the last buffer-full of text and the proper end-of-file mark.
Closure is automatic during execution of the WRITE and QUIT
commands. If you are using the .LST File to record XREF output,
then you will want to expiicitely CLOSE the file in order to
reassign the .LST output to another filename for other listing
purposes. You will use the CLOSE command.

MNE

The MNE parameter controls the use of Instruction Data Tables
(see the memory map in appendix B). These tables are present on
the REVAS distribution disk as a set of files whose extension is
".PINE" and whose <FN> field defines the allowed words that may be

used as an argument in the 'SET MNE <FN>' command. These files
are used to overlay the instruction data tables in REVAS with the
net effect of changing the mnemonic set that is used to display a

disassembly. If the appropriate files are not present on the
default disk when the 'SET MNE' command is issued, an error
message will be generated. They do not have to be present if you
will not be using that command, but if present they must retain
their as-distributed name in order to be accessed. The possible
names are listed in the Reserved Words list in Appendix A and can
be displayed using the HELP command. You can change mnemonic
sets as often as you like at any time during a disassembly with
commands like:

SET MNE Z80 (for ZILCX3 standard mnemonics)
SET MNE 185 (for INTEL 8085 mnemonics)
SET MNE MAC (for Digital Research's MACRO Z80 set)
SET MNE TDL (for the TDL set initially in REVAS)

Page 9-3

PARAMETERS; MODE, ORG, OUTRAD

MODE

The MODE parameter controls the interpretation of source code
during disassembly. At the start of execution of each DISPLAY
CLASS command, its value is reset to agree with DMODE. During
disassembly, the mode control information associated with each
label (in the label field) encountered is used to update the
value of MODE. MODE controls the interpretation of code until
the next label or MARKed control entry is encountered. The value
of MODE cannot be SET from the keyboard. It is described here
for reference only. The Fc)ssible values of MODE and DMODE are:

mDE: Interpretation:
O INSTRuction mnemonics
1 BYTE data
2 WORD data (i.e., addresses)

Note that capitalized FK)rtions of the interpretations above are
RESERVED WORDS which have the values O, 1, and 2, respectively.

ORG

This parameter specifies the origin of the code ina diskfile.Such code might not originate at the CP/M standard 1OOH (the
default value); the actual origin must then be specified by
setting the value of ORG either before or after the PGM file has
been loaded. This value will appear in the STATUS listing as the
value of PS for the VIRTUAL access mode. When ORG is specified,
PE is automatically recalculated also. The use of ORG allows you
to disassemble code intended to run anywhere in memory space,
even if you have no memory there!

OUTRAD

Determines the number base to be used when sending data to output
devices from the CALC command. The default radix 18 HEX.

Examples:
SET OUT 8 sets radix to OCTAL from HEX or DEC

SET OUTRAD 20 sets radix to HEX from OCTAL

SET OUT DEC sets radix to DECIMAL

Note that, as in the last example, you can always get back to a

familiar radix byusingoneof the familiar words: HEX, BINARY,
OCTAL, or (as shown) DECIMAL.

Page 9-4

PARAMETERS; AMODE, ARGRAD, ASMFLAG

CHAPTER 9

PARAMETER DESCRIFTIONS

Parameters are internal variables within REVAS whose numeric or
symbolic value is reported by one of the forms of the STATUS

command. All parameters have initial default values. A new

value can be assigned to most of the parameters by use of the SET

or TURN commands. SETting of parameters is a method of control-
ling the disassembly and display functions.

AMODE

The AMODE parameter controls the mode assigned to synthetic
symbols generated while building symbol tables in WORD mode (WB
command or equivalent). Possible values for AMODE are limited to
0,1,2, and 255. The default value is 255, which causes all the
values in the operand field of WORD type data to be treated as
constants; they are not entered in the symbol tables. A value of
00 (INSTRuction), results in assignment of symbols of the form
"USXXXX" where xxxx is the Hex value of the symbol. A value of
O1(BYTE) causes symbols to by assigned in the form "CTxxxx"
implying that the data at address xxxx is a list of bytes. A

value of 02(WORD) causes symbols to be assigned in the form
"UWxxXx", implying a list of words at address xxxx. The value of
AMODE is determined by keyboard entry using the SET command.
When SETting the value, any attempt to assign a value other than
the ones listed above will result in assignment of the defau1t
value (255). AMODE retains its value until a new value is SET.

ARGRAD

Determines the number base for input of arguments whi-ch follow
the command word. The default radix is Hex.

Examples:
SET ARG 8 sets radix to Octal from Hex or Dec
SET ARGRAD 20 sets radix to HEX from Octal
SET ARG DEC sets radix to Decimal

ASMFLAG

This switch controls format of disassembly display. Its default
value is OFF, and results in a display that simulates an
assembler PRN output listing. WhenASMFLAG is turnedON, only
Label, Operator, and Operand fields are displayed for Instruction
or Word type displays. For Byte type displays, the comment field
is also transmitted since it may contain convenient ASCII infor-
mation. This switch is automatically turned ON while the LST

file is being written and is responsible for format in that file.

Page 9-l

PARAMETERS; BOTMAR, CMT, CONSOLE, DMODE, ECHO

BOTMAR

The number of blank lines to be left at the bottom of a page
during output to the list device. Since the number of lines in
the top margin is fixed at 5, the total page length is
5+PLINES+BOTMAR. Thedefault value of BOTMAR is 6, making the
total page length the standard 66 lines (at 6 lines per inch for
8.5x11 inchpaper). If BOTMAR is assigned a value greater than
127 (decimal), then REVAS will send a form feed character to the
printer instead of a defined number of line feeds after the page
full of output is printed. Some printers will feed faster in
this mode than withdiscrete line feeds. It also saves you the
bother of calculating page length.

CMT

Controls display of the automatic comment field generated by
REVAS. The default value is ON. When CMT is turned OFF, the
automatic comment field is not generated for lines that display
instructions.

CONSOLE

Controls the display of disassemblies on the console device. The
default (initial) value is ON. When the console is OFF,
commands inay still be entered normally, since the console echo is
an operating system function.

IMODE

This parameter is thedefault mode setting. Its value isauto-
matically set by the I,B, and W prefixes of the DISPLAY CLASS
commands (such as, for example, BDISPLAY, which sets the default
mode to BYTE). DMODE cannot be SET from the keyboard. It is
described here for reference only.

ECHO

This parameter is initially OFF. When it is turned ON, each
command in the command line is repeated on the console and prin-
ter (if theyarecurrentlyON) before execution of the command.
This function is useful when multiple commands are to be given in
thecommand line; youdon'thave to look back to see which com-
mands and arguments were used to produce the current output.

Page 9-2

PARAMETERS; PAGER, PAUSE, PE, PLINES

PAGER

PAGER is a switch that controls the printer paging function. Its
value is zero or not-zero (OFF/ON). Its default value is 'OFF'
and the paging function is not active. Output to the printer
will be continuous with no top or bottom margins. The command:

TURN PAGER ON

will activate the paging function. Subsequent printout on the
printer will be formatted into a top margin, lines of disassembly
text, and a bottom margin.

PAUSE

If you are using a printer that accepts single sheets of paper,
you want printing to stop while you insert a new sheet. PAUSE is
a switch that allows this. Its value may be zero or not-zero
(OFF/ON). Its default value is OFF. When it is turned ON,

output is suspended at the end of each page until you depress any
key at your console. Printing will then continue with the top
margin (including any Title you have specified), the disassembjy

text, and the bottom margin. Although you may turn PAUSE on or
off any time with the SET/TURN command, the pause function will
only be active when PAGER is also ON. You will also find PAUSE

handy if you are using continuous form paper and are near the end

of the box!

PE

Program End address. For complete description, see PS/PE on page
9-6.

PLINES

The number of lines of disassembly which you wish to bave dis-
played per page on the printer. When this number of lines has
been printed, enough line feeds will be issued to simulate a form
feed. A value of 0FFFF(HEX) results in continuous listing (no
page breaks) after an initial top margin. The default value is
37H (55 Decimal) lines.

Page 9-5

PARAMETERS; PRINTER, PS/PE, PUNCH, RPTRAD

PRINTER

Controls the display of disassernblies on the system printer. The
default value is OFF. When turned ON, output is sent to the
printer without affecting other I/O devices. Each is controlled
by its own switch parameter.

PS
,

P,E.

Program Start, Program End addresses

These parameters are used to define the limits of the program
being disassembled, and values are maintained for both the Memory
(M#) and Virtual W#) access modes. Default values are built in,
with values visible in the STATUS command. Arguments encountered
during disassembly which fall outside the range defined by PS and
PE are treated as constants and not assigned as symbols during
BUILD. When a disk file is first accessed for disassembly, PE is
reset to correspond with the file length in the diskdirectory;
i.e., at the end of the last segment of the file. Thevalues of
PS and PEare stored with the symbol tables inthe.TBLfile, so
on the next disassembly of the same file, they are automatically
reset to the values last used.

PUNCH

Controls output to the device assigned to the CP/M punch channel.
The default value is OFF.

RPTRAD

Determines the number base (radix) which REVAS uses to interpret
the RPT argument preceding a command word. The default radix is
decimal. You may SET this parameter to another radix by 8peci-
fying the new base numerically in terms of the current one, or by
using one of the four Reserved Words (BINARY, OCTAL, DECIMAL,
HEX) to specify the base. When the reserved word method is used,
you don't have to worry about getting the numeric argument right;
it works just like you expect it to.

Examples:
SET RPTRAD 16 sets radix to HEX from DECIMAL

SET RPT DA sets radix to DECIMAL from HEX
SET RPT DECIMAL sets radix to DECIMAL

Page 9-6

PARAMETERS; TABLE, TOP

TABLE

Access to the symbol tables is controlled by the TABLE switch
parameter. · Its initial value is ON, permitting entry and
retrieval of records from the tables. The status of this switch
is sensitive to the kindof target program access (indicated by
the REVAS prompt character, ME or V#) in effect when the first
entry is made in the symbol table. Thereafter, the switch will
be ON for that program access mode, and OFF for the other. When

the switch isoFF, the BUILD, EQUALS, and MARK commands will do
nothing, and the tables will appear to be empty to all
disassembly functions. If table access is permitted (TABLE is
ON) for VIRTUAL access (\M, a switch to memory access mode nm
will cause the TABLE parameter to be OFF, prohibiting access to
the symbol tables. In those rare cases where this is
inconvenient, the TABLE switch can be turned ON/OFF as required.

TOP

When sending paginated text to the printer it is necessary to
adjust the paper so that the printer will start printing at the
topof the page; and then to so inform REVAS. TOP is the switch
parameter which records the fact that the printer is at the top
of a page. It has the same zero/not-zero (OFF/ON) values as
other switches. When you have adjusted the printer to top-of-
page, then you must type one of the following commands to let
REVAS know:

SET TOP

or TURN TOP ON

The TOP parameter is automatically maintained by REVAS; its value
is not altered while PAGER is OFF, and is automatically SET at
top-of-page when PAGER is ON and a page of print has been output.
The only time that it is necessary for you to SET TOP is when
printing has stopped at other than a page end, and you wish to
advance the paper and continue on a new page.

Page 9-7

CHAPTER 10

CHANGING REYAS

DEFAULT PARAMETER VALUES

Some of the "permanent" control parameters in REVAS may need to
be changed to suit your particular desires or sYstem configura-
tion. For this purpose, there is a block of constants and µ: jn-
ters near the beginning of the program whose values may be appro-
priately modified using your system debugger or monitor. The
contents of that block are shown in the listing below. In order
to make changes, load REVAS at location 0100 with your system
debugger. Make a note of the length of REVAS, then make the
changes you desire. If necessary, consult your debugger manual
for instructions on how to load a file, make changes, and resave
it. You will need the length of the REVAS file for use when
saving the modified copy. DO NOT EXECUTE REVAS UNTIL AFTER IT
HAS BEEN RESAVED WITH THE NEW PATCH VALUES. REVAS is designed to
run properly only as a transient program under CP/M.

Address Hex contents Description
0100 C3 XX XX Jump around CONSTANTS section

Do not change the values at XX XX!

0103 DA Default number of lines to display
before pausing during HELP

0105 37 Printer text lines/page
0107 06 Bottom margin on print page
0109 00 paging control byte: OFFH enables
O1OB 00 OFFH enables pause at top-of-page
O1OD 3A ASCII value of label delimiter
OIOE 3B ASCII value of comment delimiter
O1OF 2F ASCII value of BUILD action char.

0 0
O11E 00 40H free bytes for user patches

0 0

015D
.

SYNTHETIC LABEL CHARACTER

The initial letter for locked synthetic labels is obtained from a

list of three ASCII values ("STW") in memory. The location of
this list can be found by subtracting 4 from the 16 bit pointer
value at address 0118H in REVAS. You can use your debugger to
change these characters to suit your fancy. The default
characters were selected such that they would not be visually
confused with HEX digits in a printout.

Page 10-l

CHANGING REVAS

"FORBIDDEN" OUTPUT CHARACTERS

REVELS does not sendcontrol characters to theconsole, printer,
punch, or ASCII files (Except for the standard EOF character,
1AH). The automatic Comment field in a line of disassembly is a

literal transmission of the code being disassembled, except that
non printing code bytes are replaced with a period. Control
character8 fall into this category, and are handled automatically
within the body of REVAS. 'RUBOUT' is another such character
which could cause strange results if allowed to be sent in an
ASCII string. Your system may not be able to display certain
characters, or may have special resFK)nses to certain characters.
If you need to avoid having such characters sent to your periph-
erals, you can patch them into the data string near the beginning
of REVAS as shown below. Up to six such 'forbidden' characters
will then be replaced with '.' in the comment field, avoiding any
unwanted side effects.

Address Hex contents Description
0111 7F 00 00 List of up to six values for
0114 00 00 00 ASCII characters which must be
0117 00 replaced with '.' in corrunent

field. (See cm parameter.)

Note that control characters are already so treated, and 7FH

(rubout) is in the list already. Other typical candidates for
inclusion are 5EH, 5FH, and 7EH. A value of zero terminates the

list, so you may add 5 more character values (Hex ASCII) starting
at location 112H by replacing successive null entries. Do not
modify the (null) value at location 117H, since that is the last
available list terminator!

USER PATCH AREA

Starting at HEX address OllE is a 64-byte (40 HEX) region of
memory that is currently not used by REVAS. This area is
available for user patches or routines that would be available to
the CALL command. One such patch might be a minor revision that
does not warrant reassembly and redistribution of a new version.

INTERUPTS

REVAS disables interupt8 during certain functions, then re-
enables interupts using the code (EI, RET) at location 015FH. If
your system requires that interupts not be enabled by REVAS, then
you mu8t change the EI instruction at 015FH to either NOP or DI.

Page lO-2

CHANGING REVAS

FINDING THE MNEMONIC TABLES

Address Hex contents Description
0118 (PNTR) Address at which mnemonic-dependant

tables begin

The value at 0118H, (PNTR), is the address of the list of vectors
at the beginning of the instruction data tables (IDT). The
actual value is entered at the indicated location during assembly
and is present inyour copy. It is present to helpyou find the
table of mnemonics in order to make minor changes such as
changing '.END' to 'END' or '.BYTE' to 'DB', etc. You will find
the MEMORY MAP in Appendix B-1 helpful in understanding the
organization of the tables. (PNTR) is the address of the first
word in the list. The 22nd word (WORD22) is the address of the
list of mnemonics.

To find the tables, execute REVAS in MEMORY mode Ü'i# prompt).
First, display the word value at 118H to see PNTR. Then display
at least 22 words at that address. The 22nd one is the starting
address of the mnemonics. Ifyoudisplay at that address using
byte format, you will see the ASCII for the mnemonics in the
comment field of the disassembly. Whew! Record the address for
future reference. Exit REVAS (QUIT command or CNTL-C), then
bring in a copy of REVAS from disc with your system debugger.
The object is to make any changes to an unexecuted copy of REVAS.

Use the address you recorded to locate the mnemonics. They are
in alphabetic order except for a few at the end of the list.Consult the paragraph on page 10-l for additional information.

If you elect to make changes to any of the mnemonics, observe
that:

a) the total number of bytes in the table must be unchanged,
b) the last byte of each mnemonic entry must have the high

bit set (=1) or may be null or '$'.
C) there must be no more than ONE byte with high bit set for

each mnemonic entry, and no nulls or '$' in the mnemonic.

If the new mnemonic is shorter than that irí the table, the entry
must be filled with spaces (20H). The last byte may be OAOH (20H

with high bit set), or it may be null (DO) or '$'. For example,
to change '.BYTE' to 'DB',

WAS: 2E 42 59 54 C5
CHANGE TO: 44 42 20 20 AO

The terminal byte marks the end of a mnemonic entry. The next
byte is assumed to be the beginning of the next mnemonic in the
list. If the terminal byte is null or'$', it is not printed out
aspartof themnemonic. If the terminal byte has its high bit
set, then the seven low order bits are considered to be printable
ASCII to be included in the mnemonic.

Page lO-3

CHANGING REVAS

CHANGING THE DEFAULT MNEMONIC SET

REVAS as di8tributed disassemble8 using the TDL mnemonic set.
You may wish to change to one of theothers that arepresent on
your distribution disk as the default set. (You have your choice
of one of the .MNE files.) To do so, bring an unexecuted
REVAS.COM into memory at its normal execution address under CP/M
(1OOH), locate the address at which the nuiemonic-dependant tables
begin, loadthede8ired .!4NE file at that address, and then re-
save REVAS.COM with the CP/M SAVE command. Here are the steps:

I). Use STATtodeterminethe length of REVAS.COM. Make a note
of the length for future reference.

2). Use your system debugger to load REVAS at IOOH, and find the
destination address (PNTR) as described on the preceding
page.

3). Examine the code at the target address. For the TDL mnemonic
set, the first two bytes will be OOH. For other mnemonic
sets, the first byte will be non-zero; the second willalways be OOH.

4). Use your debugger to load the XXX.MNE file at the
destination address. If you're unsure about the offset
(bias) to use, consult your debugger documentation and make

trial runs until you are satisfied that you have the offset
properly defined. Then reload REVAS and the xxx.MNE file.

WARNING!! DO NOT EXECUTE REVAS FROM THE DEGUGGER PRIOR TO SAVING

IT!! REVAS WILL BE ALTERED AND THE SUBSEQUENTLY SAVED IMAGE WILL
NOT WORK PROPERLY!!

5). Exit the debugger (control-C) and immediately SAVE the newly
created version with the length you recorded in step I,
giving it a name like TEMP.COM.

6). Test the new version in the usual way by typing its name
after the Z or CP/M prompt. If the DISPLAY command works
properly, everything else 18 probably OK.

7). Rename TEMP.COM to REVAS.COM (or whatever else you like) on
your working disk(s), but do not replace the master copy. Ifthe overlay was not done accurately, you can always retreat
to the master copy and try again..

Page lO-4

CHANGING REVAS

BUFFER SIZES

The size of I/O buffers is allocated during initialization of
revas just before sending the sign-on message to the console. You

can change the buffer size if you wish by changing the values
stored at the following addresses. Note carefully that these are
16 bit values stored in standard low-byte-first order. Unless you
have an absolutely incredible amount of memory to squander, the
high byte will always be zero!

Address Hex contents Description
O11A 08 00 size of target program buffer
Ollc 04 00 size of the .LST buffer

Both of the above sizes are expressed as the number of 128 byte
records in the buffer. Larger buffers mean less time is required
for disk access during a disassembly session, but at the expense
of Jess memory available for symbol tables.

Page 10-5

APPENDIX A

SYNTAX

Metalanguage Definitions:

! = logical OR
[) = optionally present
{ ...] = present any number of times
< > = defines syntactic unit
() = establishes logical grouping
CR = ASCII CR (carriage return)
SP = ASCII SP (input from space bar)

Comnand Syntax:

<corrunand line> =: <cormand>l;<comnand>...) CR!<null command>

<command> =: [<macro name>) ! { [<arg>] {<arg>]...]

<null command> =: [...] CR ! (; I;...])
 =: tSP...] (SP ! ',') [SP...]

<num> =: 1<digit>j 1<rdigit>...]

<digit> =: 0!1!2!3!4!5!6!7!8!9

<rdigit> =: <any char in current input radix>

<arg> =: <num> ! <string>

<string> =: <alpha>1 (<alpha> ! <digit>)...]
<alpha> =: any printable char except (<digit>!<special>)

<speciaj> =: ',' ! SP ! CR ! ';'
Notes:

I) A null command terminates parsing of the command line;
any following commands on that line will be ignored.

2) Commas have a special delimiter function:
a) one comma (see) is a delimiter
b) n commas define n-l blank arguments

3) At least one delimiter must separate elements of a
conunand

4) Nurríbers must start with a decimal digit if there is a

possibility of confusion with a symbol, command word, or
abbreviation.

Page A-1

APPENDIX A

CCN4AND LIST

Command Abbr. Function Page

AT (A) Enter/Delete corrunents

....................... 7-l
BBUILD (BB) BYTE mode build: .. 6-5
BDISPLAY (BD) BYTE display 6-2
BPRINT (BP) BYTE display and print 6-4
BUILD (B) BUILD SYMBOL TBLS

...........................
6-5

CALC (CA) A+B, A-B, A*B, A DIV B, A MOD B

.............
5-3

CALL Call a user subroutine
...................... 5-4

CIX)SE (C) Close the .LST file 8-4
DISPLAY (D) MAIN DISASSEMBLY COPMAND

.................... 6-l
EQUALS (E) Assign or change a label 7-l
ERASE (ER) Remove a MACRO

..............................
5-4

FILES (F) Set up PGM, TBL, and LST files
8-2

FIND (FIN) Find <LABEL> or <ADDR ARG>

..................
7-2

HELP (H) Print HELP lists 5-4
IBUILD (IB) INSTR mode build

6-5
IDISPLAY (ID) INSTR rtiode display 6-2
IPRINT (IP) INSTR mode display and print

6-4
KILL (K) Remove table entry 7-3
LOCK (L) Prohibit automatic mode change

..............
7-3

LSTFILE (LS) Establish <FN> for LST file
8-3

MACRO (MAC) Define following cinds as MACRO <NAME>

....... 5-5
MARK (M) Set data type at named address

..............
7-4

MEMORY (ME) switch to MEMORY mode

.......................
5-5

PGMFILE (PG) Establish <FN> for FGM file
8-3

PRINT (P) Display on printer & console
................

6-4
REINIT (REINIT) erase memory & restart

5-6
QUIT (Q) exit to CPM

.................................
5-6

SAVE (SA) Save symbol tables
8-4

SET (SE) Set parameters
5-7

SHOW (SH) Display symbols, macros, coments 5-6
STATUS (S) List current parameters

5-8
TBLFILE (TB) Establish <FN> for TBL file

8-3
TITLE (TI) define page header for PRINT

................
5-8

TURN (T) same as SET

................................. 5-7
UNLOCK (U) Allow REYAS to reassign mode

................
7-3

VIRTUAL (V) switch to disk FILE mode

....................
5-5

WBUILD (WB) WORD mode build
6-5

WDISPLAY (IND) WORD display
6-2

WPRINT (WP) WORD display and print
6-4

WRITE (WR) Send disassy to lstfile
8-4

XREF (X) Print cross reference table
7-5

E,X,S
INSTANT COMMANDS

............................
5-3

Page A-2

APPENDIX A

PARAMETER LIST

Parameter Abbr. Value/Function Page

AMODE (AM) argument mode for WORD data 9-1
ARGRAD (AR) input radix for numeric arguments 9-l
ASMFLAG (A) ON/OFF, ASM/PRN format

9-1
BOTMAR (BOT) bottom margin, lines

9-2
CMT (CM) ON/OFF, auto comments

9-2
CONSOLE (C) ON/OFF

..................................
9-2

ECHO (E) ON/OFF, command repeat
9-2

HLINES (H) lines per screen for HELP

...............
9-3

LSTFILE (L) ON/OFF

..................................
9-3

MNE (M) Select new Mnemonic Set
9-3

ORG (O) Origin of PGM file
9-4

OUTRAD (OU) display radix for CALC

..................
9-4

PAGER (PA) ON/OFF, paging on list device 9-5
PAUSE (PAU) ON/OFF, pause at page top

9-5
PE (P) PGM file end

9-5
PLINES (PL) text lines per page

9-5
PRINTER (PR) ON/OFF

..................................
9-6

PUNCH (PU) ON/OFF

..................................
9-6

RPTRAD (R) input radix for (n)
9-6

TABLE (T) ON/OFF, access in current mode

.......... 9-7
TOP (TO) list device is at top of page 9-7

RESERVED WORD LIST

Res. Wd. Abbr. HEX value Page

OFF (OF) = 0000

................................... 2-ll
ON (ON) = OFFFF

.................................. 2-ll
INSTR (IN) = 0000

...................................
2-11

BYTE (BY) = 0001

...................................
2-11

WORD (WO) = 0002

................................... 2-ll
TPA (TP) = 0100

................................... 2-ll
PSTART (PS) = current PS or ORG

...................... 2-ll
PEND (PE) = current pgm end

........................ 2-ll
BINARY (BI) = 0002

................................... 2-11
OCTAL (OC) = 0008

................................... 2-ll
DECIMAL (DE) = OOOA

................................... 2-11
HEX (HE) = 0010

................................... 2-11

The following words are arguments for SET MNE

....TDL (TDL)= 0000 selects TDL 8080/Z80 mnemonics...... 9-3
Z80 (Z80)= 0001 selects Zilog Z80 mnemonics......... 9-3
MAC (MAC)= 0002 selects Z80 mnemonics per RMAC...... 9-3
IBO (180)= 0080 selects Intel 8080 mnemonics........ 9-3
185 (185)= 0081 selects Intel 8085 mnemonics........ 9-3
(The values shown are the first word in the PINE table file.)

Page A-3

MAIN MEMORY MAP TNSTRUCTION DATA TABLES

0000 : .
:: ": CP/M POINTERS,BUFFERS, ETC : --(PNTR) ..

::, : :: 23 WORD VECTOR LIST ::0100 :. ..
:: WORDO1 :::: CONSTANTS & POINTERS :: :: .

::0 0

0 * 0 0

:: MAIN BODY OF REVAS :: :: WORD23 :::: APPROX 13K BYTES :: ::
:::: :: WORD02

.. ":: :: :: REGISTER NAMES ::
(PNTR) :. ..

:: ":: INSTRUCTION DATA TABLES :: :: ":: APPROX IK BYTES :: WORD08
.. "'

:: :: :: INSTRUCTION DECODE DATA ::0 » 0 +BUFI
.. ··

: PGMFILE BUFFER : :: ": 1024 BYTES (DEFAULT) : ::
::: : WORD21

.. "BUF2 : .
:: MNEMONIC LIST ::: LSTFILE BUFFER : ::

::: 512 BYTES (DEFAULT) : ::
::HDR .

" ::
::: SYMBOL TABLE HEADER : WORD22 :: ---------: :: : :: 'END' PSEUDO-OP + CRLF ::

. .
--WORD23

.. ··
: SYMBOL TABLES : : (BUFI STARTS HERE) :

0 0
0 0 0 0

" >

,
T

'U T

A) CCP . .
t7
:Z%

: CP/M CONSOLE COMMAND : S

to PROCESSOR & OPERATING >

I

,»
SYSTEM tj

0 *

: TOP OF SYSTEM MEMORY :

0 W

APPENDIX C

Initial Disassembly of XD.OBJ

0100 21 0000 LXI H,OOO0H ;!..
0103 39 DAD SP ;9
0104 22 BB06 SHLD 06BBH ;";.
0107 31 F906 LXI SP,06F9H ;ly.
O1OA C3 3501 JMP 0135H ;C5.

OIOD 2600 MVI H,0OH ;&.
O1OF 3A B606 LDA 06B6H ;:6.
0112 6F mv L,A ;O
0113 54 MOV D,H ;T
0114 29 DAD H ;)
0115 29 DAD H ;)
0116 29 DAD H ;)
0117 3A B706 LDA 06B7H ;:7.
OllA 5F mv E,A ;_
O11B 19 DAD D ;.
OllC 11 E6FF LXI D,OFFE6H ;.f.OI1F 3EO1 MVI A,O1H ;>.
0121 19 DAD D ;.
0122 3C INR A ;<
0123 DA 2101 JC 0121H ;Z!.
0126 11 1907 LXI D,0719H ;...0129 19 DAD D ;.
012A 32 Bl06 STA 06B1H ;21.
012D 7E MOV A,M ;"
012E 32 B206 STA 06B2H ;22.
0131 32 B306 STA 06B3H ;23.
0134 C9 RET ;1

0135 OEl9 PIVI C,19H ;..0137 CD 0500 CALL 0005H ;M..
013A 32 BO06 STA 06BOH ;20.
013D 3A 8100 LDA 0081H ;:..0140 B7 ORA A ;7
0141 CA 5DOl JZ 015DH ;J].
0144 3A 8200 LDA 0082H ;:..0147 FE41 CPI 41H ;"A
0149 C2 5301 JNZ 0153H ;BS.
014C AF XRA A ;/
014D 32 BO06 STA 06BOH ;20.
0150 C3 5DOl JMP 015DH ;C).

0153 FE42 CPI 42H ;"B
0155 C2 4D05 JNZ 054DH ;BM.
0158 3EOl MVI A,0IH ;>.
015A 32 BO06 STA 06BOH ;20.
015D C3 8COl JMP 018CH ;C..

Page C-1

APPENDIX C

0160 OD DCR C ;.
0161 DA LDAX B ;.0162 DA LDAX B ;.0163 2020 JRNZ 0185H ;..0165 2020 JRNZ 0187H ;..0167 2020 JRNZ 0189H ;..0169 2020 JRNZ 018BH ;..016B 2020 JRNZ 018DH ;..016D 2020 JRNZ 018FH ;..016F 2020 JRNZ 0191H ;..0171 2020 JRNZ 0193H ;..0173 2020 JRNZ 0195H ;..0175 2020 JRNZ 0197H ;..0177 2020 JRNZ 0199H ;..0179 44 MOV B,H ;D
017A 49 YOV C,C ;1
017B 52 MOV D,D ;R
0l7C 45 mv B,L ;E
017D 43 MOV B,E ;C
017E 54 mv D,H ;T
017F 4F MOV C,A ;0
0180 52 mv D,D ;R
0181 59 MOV E,C ;Y
0182 2044 JRNZ O1C8H ;.D
0184 52 MOV D,D ;R
0185 49 mv C,C ;1
0186 56 MOV D,M ;V
0187 45 mv ELL ;E
0188 202D JRNZ OIB7H ;.-018A 2024 JRNZ OIBOH ;.$
018C 11 6001 LXI D,0160H ;.".
018F OE09 MVI C,09H ;..

,

Page C-2

APPENDIX C

Disassembly after Building Tables

0100 21 0000 LXI H,0OOOH ;!..
0103 39 DAD SP ;9
0104 22 BB06 SHLD UT06BB ;";·
0107 31 F906 LXI SP,UT06F9 ;ly.
OIOA C3 3501 JMP SO135 ;C5.

O1OD 2600 MVI H,O0H ;&.
OIOF 3A B606 LIJA UT06B6 ;:6.
0112 6F mv L,A ;O
0113 54 MOV D,H ;T
0114 29 DAD H ;)
0115 29 DAD H ;)
0116 29 DAD H ;)
0117 3A B706 LIJA UT06B7 ;:7.
OIIA 5F mv E,A ;

_O11B 19 DAD D ;.
O11C 11 E6FF LXI D,OFFE6H ;.f.
O1IF 3EO1 MVI A,O1H ;>.
0121 19 SO121: DAD D ;.0122 3C INR A ;<
0123 DA 2101 JC SO121 ;Z!.
0126 11 1907 LXI D,UT0719 ;...0129 19 DAD D ;.
012A 32 B106 STA UT06B1 ;21.
012D 7E MOV A,M ;"
012E 32 B206 STA UT06B2 ;22.
0131 32 B306 STA UT06B3 ;23.
0134 C9 RET ;1

0135 OE19 SO135: MVI C,19H ;..0137 CD 0500 CALL 0005H ;M..
013A 32 BO06 STA UT06BO ;20.
013D 3A 8100 LIJA 0081H ;:..0140 B7 ORA A ;7
0141 CA 5DOl JZ SO15D ;J].
0144 3A 8200 LDA 0082H ;:..0147 FE41 CPI 41H ;"A
0149 C2 5301 JNZ SO153 ;BS.
014C AF XRA A ;/
014D 32 BO06 STA UT06BO ;20.
0150 C3 5DO1 JMP SO15D ;C).
0153 FE42 sOl53: CPI 42H ;"B
0155 C2 4D05 JNZ S054D ;BM.
0158 3EOl MVI A,C1H ;>.
015A 32 BO06 STA UT06BO ;20.
015D C3 8CO1 SO15D: JMP SO18C ;C..
0160 ODOA OA20 UTO160: .BYTE ODH,OAH,OAH,20H ;....0164 2020 2020 .BYTE 20H,20H,20H,20H ;....0168 2020 2020 .BYTE 20H,20H,20H,20H ;....016C 2020 2020 .BYTE 20H,20H,20H,20H ;....0170 2020 2020 .BYTE 20H,20H,20H,20H ;....0174 2020 2020 .BYTE 20H,20H,20H,20H ;....

Page C-3

APPENDIX C

0178 2044 4952 .BYTE 20H,44H,49H,52H ;.DIR
017C 4543 544E .BYTE 45H,43H,54H,4FH ;ECTO
0180 5259 2044 .BYTE 52H,59H,20H,44H ;RY.D
0184 5249 5645 .BYTE 52H,49H,56H,45H ;RIVE
0188 202D 2024 .BYTE 20H,2DH,20H,24H ;.-.$
018C II 6001 SO18C: LXI D,UTO160 ;.".
018F OE09 MVI C,09H ;..0191 CD 0500 CALL 0005H ;M..
0194 3A BO06 LDA UT06BO ;:0.
0197 B7 ORA A ;7
0198 C2 AEO1 JNZ SOIAE ;B..
019B C3 A301 JMP SOIA3 :C#.

019E 41 MOV B,C ;A
019F OD DCR C ;.O1AO QA LDAX B ;.OlAl DA LDAX B ;.O1A2 24 INR H ;$
O1A3 li 9EOl SO1A3: LXI D,019EH ;...O1A6 OE09 MVI C,09H ;..O1A8 CD 0500 CALL 0005H ;M..
O1AB C3 ClOl JMP O1C1H ;CA.
O1AE C3 B601 SOIAE: JMP O1B6H ;C6.

O1B1 42 MOV B,D
.

;B
OIB2 OD DCR C ;.O1B3 DA LDAX B ;.O1B4 DA LDAX B ;.O1B5 24 INR H ;$
QIB6 II BiOl LXI D,0IBIH ;.1.
O1B9 OE09 MVI C,09H ;..OIBB CD 0500 CALL 0005H ;M..
O1BE CD 8004 CALL 0480H ;M..
OlCl AF XRA A ;/
O1C2 32 B706 STA UT06B7 ;27.

Page C-4

APPENDIX C

Disassembly with Real Labels
and Corrunent Examples

;REVAS INSERTS CCMMENTS LIKE THIS
0100 21 0000 XI): LXI H,0OOOH ;!..
0103 39 DAD SP ;9
0104 22 BB06 SHLD OLDSP ;";.
0107 31 F906 LXI SP,STACK ;ly.
O1OA C3 3501 JMP START ;C5.

O1OD 2600 DSKADR: MVI H,0OH ;&.
O1OF 3A B606 LDA GROUP ;:6.
0112 6F !'K)V L,A ;O
;FREE ZERO FROM H
0113 54 MOV D,H ;T
;GROUP*8=LQGICAL SECTORS
0114 29 DAD H ;)
0115 29 DAD H ;)
0116 29 DAD H ;)
0117 3A B706 LIJA REMSEC ;:7.
O11A 5F MOV E,A ;

_O11B 19 DAD D ;.
;DE= -26 (SECTORS/TRACK)
Ol1C II E6FF LXI D,OFFE6H ;.f.
OllF 3EO1 MVI A,O1H ;>.
0121 19 NXTRK: DAD D ;.
0122 3C INR A ;<
0123 DA 2101 JC NXTRK ;Z!.
0126 11 1907 LXI D,DIRBUF ;...0129 19 DAD D ;.
012A 32 B106 STA TRACK ;21.
012D 7E MOV A,M ;"
012E 32 B206 STA SECTOR ;22.
0131 32 B306 STA RECORD ;23.
0134 C9 RET ;1

;FROM HERE ON USE YOUR OWN COMMENTS
0135 OE19 START: MVI C,19H ;..0137 CD 0500 CALL BDOS ;M..
013A 32 BO06 STA REQDRV ;20.
013D 3A 8100 LDA 0081H ;:..0140 B7 ORA A ;7
0141 CA 5DOl JZ DODIR ;J].
0144 3A 8200 LDA 0082H ;:..0147 FE41 CPI 41H ;"A
0149 C2 5301 JNZ NOT.A ;BS.
014C AF XRA A ;/
014D 32 BD06 STA REQDRV ;20.
0150 C3 5DOl JMP IXJDIR ;C].
0153 FE42 NOT.A: CPI 42H ;"B
0155 C2 4D05 JNZ JDRERR ;BM.
0158 3EOl MVI A,0IH ;>.
015A 32 BO06 STA REQDRV ;20.
015D C3 8COl IX)DIR: JMP DDHDR ;C..

Page C-5

APPENDIX C

0160 ODOA OA20 HDRTXT: .BYTE ODH,OAH,OAH,20H ;....0164 2020 2020 .BYTE 20H,20H,20H,20H ;....0168 2020 2020 .BYTE 20H,20H,20H,20H ;....0l6C 2020 2020 .BYTE 20H,20H,20H,20H ;....0170 2020 2020 .BYTE 20H,20H,20H,20H ;....0174 2020 2020 .BYTE 20H,20H,20H,20H ;....0178 2044 4952 .BYTE 20H,44H,49H,52H ;.DIR
017C 4543 544F .BYTE 45H,43H,54H,4FH ;ECTO
0180 5259 2044 .BYTE 52H,59H,20H,44H ;RY.D
0184 5249 5645 .BYTE 52H,49H,56H,45H ;RIVE
0188 202D 2024 .BYTE 20H,2DH,20H,24H ;.-.$
018C II 6001 DOHDR: LXI D,HDRTXT ;.".
018E OE09 MVI C,09H ;..0191 CD 0500 CALL BOOS ;M..
0194 3A BO06 LIJA REQDRV ;:0.
0197 B7 ORA A ;7
0198 C2 AEO1 JNZ JDRVB ;B..
019B C3 A301 JMP DRVA :C#.

' 019E 41OD DADA HDRA: .BYTE 41H,ODH,OAH,OAH ;A...
O1A2 24 .BYTE 24H ;$

O1A3 II 9EOl DRVA: LXI D,HDRA ;...OIA6 OE09 MVI C,09H ;..O1A8 CD 0500 CALL BIOS ;M..
OIAB C3 ClOl JMP INIT ;CA.
O1AE C3 B601 JDRVB: JMP DRVB ;C6.

O1B1 420D DADA HDRB: .BYTE 42H,ODH,OAH,OAH ;B...
O1B5 24 .BYTE 24H ;$

O1B6 li BiOl DRVB: LXI D,HDRB ;.1.
OIB9 OE09 MVI C,09H ;..O1BB CD 0500 CALL BIOS ;M..
OIBE CD 8004 CALL UJGREQ ;M..
OlCl AF INIT: XRA A ;/
OlC2 32 B706 STA REMSEC ;27.
O1C5 32 B606 STA GROUP ;26.
O1C8 32 B806 STA FCOUNT ;28.
OICB 21 1907 LXI H,DIRBUF ;!..DICE OE83 MVI C,83H ;..DIDO 1EOO MVI E,0OH ;..O1D2 73 ..FILL: MOV M,E ;S
O1D3 23 INX H :#
O1D4 OD DCR C ;.
O1D5 C2 D20l JNZ ..FILL ;BR.
O1D8 21 9B07 LXI H,SORTBF ;!..O1DB 22 FD06 SHLD SBFPTR ;"}.
O1DE 21 1907 LXI H,DIRBUF ;!..O1El 22 AD06 SHLD DIRPTR ;"-·
OIE4 3A BO06 LDA REQDRV ;:0.
O1E7 5F mv E,A ;

_

Page C-6

APPENDIX D

A MACRO DEMONSTRATION

This appendix illustrates the result of execution of the MACro,

Help, Status, and SHow commands. Paragraphs typed in upper case
only were produced by REVAS; paragraphs which contain lower case
text (like this one) were inserted later with an editor. The file
into which REVAS wrote was named XD.DOC. You will see itreported in the 'FILES IN USE' portion of the STATUS command
output. All of theoutput wasproduced withREvAs by execution
of a command macro named DEMO, which is itself displayed as a

result of the SHow Macro command.

Here are the steps used to produce the listing:
a) disassembly of XD.OBJ to produce XD.TBL

b) generate the DEMO macro with:
MACRO DEMO: T E ON: T L ON: SH M;H;S;SH I:SH S: T L OFF: T E OFF

c) assign the name XD.DOC to the LST file:
command used: LST .DOC

d) execute the macro with the command: DEMO

And here is the result:

The SHOW Macro command displays all currently defined command
macros. The command (preceded by '###') is displayed before
execution because the Echo parameter was turned on by'T E ON'.
The first two commands in the macro are not displayed here
because output to the XD.DOC file was not initiated until after
execution of the second command, 'T L ON' (Turn Lstfile ON).

###síi M

DEMO It E ON: T L ON: SH M;H;S;SH I:SH S: T L OFF: T E OFFI

This is what you get if you type HELP, HEL, HE, or H. As you
see, it tells you how to get more specific assistance.

###tii

FOR BRIEF DESCRIPTIONS OF:
COMMANDS

, TYPE: HELP C

PARAMETERS
, TYPE: HELP P

RESERVED WORDS, TYPE: HELP R

Page D-1

APPENDIX D

The Status command gives information on the current program
counter (PC), the logical first address of the program (PS), the
program end (PE), the most recent range operated on (DS, DE),
current file assignments, and an indication of memory used.

###S

V# PC=O1OO PS=O1OO PE=07FF DS=0lOO DE=FFFF
MEI PC=0OOO PS=0OOO PE=FFFF DS=0OOO DE=OO0O

DISPLAY MODE: INSTR, DEFAULT: INSTR

FILES IN USE:
PGM:: XD.COM
TBL: : XD.TBL
LST: : XD.DOC

FREE MEM AT: 4A8D

The SHow Index command displays synthetic symbols for table
entries to which real symbols have not been assigned. Each
symbol is a concatenation of a variable length attribute prefix
and a 4 digit hex value. If the prefix contains '*L a control
entry is implied. If a 'U' is present, then the data type can be
changed only by specific operator command. The letters 'S', 'T',
and 'W' identify the data type of the code at this address as
Instruction, Byte, or Word, respectively.
###SH I
*SO103 UT020E UT0223 UT022E S0257 S0271
S0272 S027C S0293 S0297 S02A2 S02AC
S02DF S02F3 S0300 S0306 S031E S0323
S032F UT034A S0351 UT037D S0384 S03C2
UT03CD S03CF S03FA S0408 UT040E S0411
S041C UT041F S0423 S042B S0439 S0442
S045F UT0465 S0467 S0470 UT04AE S04BO
UT04C3 S04C5 UT04CE UT04D9 S04DC UT04DF
S04EE UT0502 S050D UT0524 S0540 S0548
UT0550 S056E S059B S05CO S05C7 S05D5
S05DC S05DF S05EA S060D S0631 S0656
S0664 *T069A UT069F UT06A1 UT06A3 UT06A5
UT06A7 UT06A9 UT06B4 UT06B5 UT06BA *T06BD

*T06FF

Page D-2

APPENDIX D

The SHow Symbol command displays real (user assigned) symbols and
their equivalent synthetic ones. Use of this command is a way to
review the value and attributes associated with a real symbol,
since only the symbol itself is displayed during disassembly.

###SH S

DIRBUF=UT0719 DIRPTR=UT06AD DODIR =SO15D DOHDR =SO18C

FENCE =UT06B9 GROUP =UT06B6 HDRA =UTO19E HDRB =UTO1B1
HDRTXT=UTO160 INIT =SO1C1 JDRERR=S054D JDRVB =SO1AE
LCGREQ=S0480 MOVSEC=S0245 NOT.A =SO153 NXTRK =SO121
REMSEC=UT06B7 REQDRV=UT06BO RHLR =S05E2 SBFPTR=W06FD

STACK =W06F9 START =SO135 TESTMT=S0230 TRACK =UT06B1

Turn Lstfile OFf terminates output to XD.DOC

#ÑT L OFF

The last command in the DEMO macro (T E OFF) does not appear here
because output to the Lstfile has already beeo terminated.

Page D-3

