
THE

I

DESIGN R:ATIONALE

OF THE

E A I 8 400 SCIENTIFI~C COMPUTING SYSTEM

NOTICE: REPRINTED WITH PERMISSION OF EAI

BY: D. SINNOTT
Oct 1964,

INTRODUCTION

• The design retionale employed in configuratln8 the EAI 8400 digital

computing system will be described. The characteristics of this system

represent a significant step in the evolution of coaputer design. In

contrast with the approach of establishing scaled down versions of the more

prominent large scale systems, the EAI 8400 has been configured to expressly

meet the demands of scientific fields of applications. These fields include

the general purpose scientific, Simulation, industrial control and other

real-time and integrated systems.

The active design phase of the EAI 8400 was initiated in 1961, based on

a fundamental tenet of EAI management:

HEAl's primary business is in the simulation and scientific

computat1.on field and the Company' s future growth depends

in major' measure upon its ability to serve well the needs

of this rna rket. "

The background for initiating the EAI 8400 development goes back to 1957

when work was begun on digital approaches to simulation analysis. The early

work was perfo~ed on the Datatron 205 which was installed and operated at the

EAI Princeton Computation Center. Following that effort were a number of

studies on the use of Digital Differential Analyzers (DDA) both serial and

parallel for simulation. The parallel approach was extended to a large

scale parallel-parallel system to be employed in the Pacific Missile Range

for computations at better than 20 times real ti.me. Still other efforts were

expended in analog/digital link~ge systems and EAI's revolutionarJ parallel

logic Digital Operating System. Many of these systems have been installed and

operated in advanced simulation facilities, solving problems which up until

- 1 -

that time were impossible to solve on either the analog or digital computer

alone. '

Significant effort has also been expended in establishing a digital

computer for the efficient processing of matrix and vector operations with

particular emphasis on linear and non-linear programming and other optimiza

tion algorithms.

Coupled with each of these developments has been the groundwork of

scientific computation itself--the development and utilt.zation of computational

procedures and processes. Without this effort by the various EAr computation

centers, and the System Analysis and Advanced Study Groups of the Research

and Computation Division, a digital computer development would be reduced to

the basic "nuts and boltsn design. The overall background of this group at

the starting point and their continuous input through the course of the dev

elopment cycle penmitted the establishment of a digital computer system which

would truly meet the demands of the intended fields of application.

Basic Design Premise

The fundamental reason for the existance of a computational tool is to

produce results f rom input stimuli. Therefore, the only applicable 11leaSU're

of performance in a realistic world is the ratio:

where:

Computational ThroughputlTotal Cost

computational Throughput is measured from the time of problem

formulation to the point where results are generated with

appropriate forms of documentation.

--and--

Total Cost includes the level of effort expended in translating

the problem to an exact and acceptable machine-dependent language,

in addition to the initial hardware system investment and attendant

maintenance costs.

- 2 -

To maximize this ratio means ptoviding an overall computation system

built upon the following design goals:

1. Economical high speed processing

2. Ease of programming

Ca.tlng each of these goals in the light of an everyday problem we start

with a "user with a particular problem. fox.ulation." This problem must be

coded into some intermediate language. and the language must be processed.

Then the iterative cycle of debugging, running and program modification.

must be executed. This phase may require many passes before the ultimate

goal of obtaining results is achieved. Therefore, it can be easily seen that

the main criteria for establishing a -computing tool is ~ the glamour and

elegance of the device itself but rather what a user needs to accomplish his

ends. Consequently it was recognized early in the game that ·the centroid

of design waS the user--what does he need to accomplish his task and h0w does

he want to use it?--In more terse terms "the dog wagging the tail and not the

tail wagging the dog."

In reviewing the workload of the everyday problem described above it is

noted that there are two separate portions; ON-LINE operations where the user

is processing the intermediate languages, debugging and running the program

and the OFF-LINE operations including the initial coding and any program

mod if ications.

Economical High Speed Processing

In the ON-LINE portion of a typical workload, a number of factors are

involved. Initially. a given system must have sufficient capacity to haadle

the program. If not. the only recourse is to partition the problem into a

number of segments and run each sequentially with appropriate program

linkages. Obviously this criteria can be satisfied by having available a

- 3 -

high capacity system. However with due regard to EConomic factors this may

be prohibitive. Therefore, it is necessary to squeeze as much efficiency as

possible out of each system element, in particular the memory.

Secondly, in terms of running a program, the two basic factors involved

are the total number of instructions required and the execution time of each

instruction. The product of these factors is the running time ofa program,

either the program for performing the intermediate language translation or

the actual object program. Therefore, if internal high speed processing is

to be provided both of these factors must be considered. To reduce the total

number of program instructions a powerful instruction repertoire is required.

This is in contrast to providing a basic instruction set where related

operations must be handled with small instruction groups or packets. In

addition to increasing the processing speed, a repertoire of singly powel~ul

instructions contributes directly to the overall system efficiency since it

will require fewer memory locations to store the program.

The execution time for each instruction is a function of the types of

operations required and the logical implementation of the system. The latter

aspect includes the types and capabilities of the logic blocks employed, the

level of parallel operations available and the basic clock ra,te. As for

desired operations; the most salient point in tenns of arithmetic processing

is floating point arithmetic. Up to the present time, high speed floating

point capabilities have been available on only the most sophistfc,ated systems.

Even with this capability, many real-time ·system applicati::Jt:s found it to be

advantageous, speed-wise, to use fixed pOint arithmetic and to program the

required scaling and alignment procedures. Quite f1 paradox! The dtgital

computer via the floating point mode provides a superior facility for automatically

handling all scaling operations required in arithmetic operations.. This

facility markedly reduces the level of programming complexities--An obvious

- 4 -

fact when one notes that floating point arithmetic is the standarU arithmetic

mode in all algebraic compilers \vhether or not the machine the compilQt" was

implemented on had built-in floating pOint hardware. Therefore, it was

decided that the system design of the EAI 8400 had to be centered around

providing "the natural ability to handle floating point. '.1 To be more specific,

the floating point facilities provided had to be of such a capability that the

programmer need not be tempted to use fixed pOint arithmetic. This implies

for real-time Simulation, floating point multiplies in the 5 to 8 usec range

with correspondingly faster addition times.

In the past, a separation existed between scientific and data processing

type systems, the former with the capability of pel~orming internal high speed

arithmetic processing and the latter with the facility for high speed inputl

output and non-arithmetic data manipulation. It was learned that the separation

was fallacious. Scientific problems require a fair amount of data processing,

particularly when it comes to manipulating intermediate languages and other

fonns of list processing. In the other camp the users, who were initially

concerned· with only simple arithmetic computations, were turning to the more

sophisticated matrix and/or statistical models. Therefore, it was recognized

that to allow for economical high speed processing, significant data or byte

handling facilities must be provided. This manifests itself in both the

exchange or input/ou.tput system provided and the internal capabilities for

manipulating bytes.

Ease of Programming

When conSidering the OFF-LINE workload-- initial program coding and program

modification--a number of the· factors considered above for Economical High

Speed ProceSSing a.pply. The powerful instruction repertoire, the natural

- 5 -

ability to handle floating point and the capacity for extensive byte manipu

lations pemlt '4 prograamer to concentrate on his own problem. without sP"''''S

large amounts of "machine dependent tl t1me. That 18, after establishing the

requirement for a particular operation, he can then simply select the 8ingle

instruction to accomplish it. This is in contrast to forcing him to be learned

in the internal logical organization and knowing how the machine works before

he can set about the primary task of solving" a problem.

With regard to pmgram modification, consider the floating versus fixed

pOint question again. If in the initial coding the programmer used u every

trick in the book'" to squeeze out the maximum amount of computation in the

aln~ulll amount of time he is virtually backed in a comer if any program

changes are required. Since in more cases than not such ehanges are required,

the experienced programmer builds upon a more stralghforward program which

in the end will typically use the floating point facilities. The straight

fo~ardapproach is a doctrine which is widely touted by many, since it

pemnits reconstruction of the prog~ing app~ch employed after the fact.

The "squeezing" phenomena becomes particularly acute in real time

applications. In particular, real time simulations generally require a

given computational workload to be executed at an iteration rate of from 20

to 50 cycles per second, thus requiring a 50 to 20 millisecond computing

window, respectively. In present day systems this represents a significant

chore. However, with the potential for high speed processing--in particular,

floating point--this task could be readily handled using straight forward

programming. Therefore such programs can be prepared and modified without

requiring an extensive detailed programming effort.

Providing an extensive and powerful instruction repertoire can p~uce

the opposite results unless serious consideration is given to the human factors

- 6 -

involved. In addition to providing a "human engineered" mnemonic language~

an extensive software system must be made available. ntis inl!erface must

include the programming packages, necessary for operation close to the program-

mers natural language.

The Moment of Truth

Configuring a digital computing system under the above criteria--economical

high speed processing and ease of programming--obviously offers a vast pot en-

tial for maximizing the initial Computational Throughput/Total Cost ratio.

In establishing the overall product line it was recognized that a significant

level of software support was required. As such, we at EAI will be one of the

largest users of the 8400 system and therefore, the Computational Throughputl

Total Cost ratio is of dual concern.

Programming costs are. determined on an instruct.ion per man-month basis.

Therefore, unless each of the above design criteria is I4tisfied any so-called

hardware savings will be more than spent in programming. Put somewhat crudely,

it has been said that:

" ••. every internal simplification of digital computer

organization which reduces the completeness of its command

structure will be taken out of the hide of the programmers t.l

The following sections of this paper outline in more detail the design

I
rationale employed in establishing the specifications of the EAI 8400 system.

- 7 -

WORD LENGTH CONSIDERATIONS

After establishing the basic system specifications and design goals,

the next step involves the detailed analysis of the anticipated computational

workload. The results of this analysis set the primary characterization

of the system--word length. From this mile post each of the remaining

features of the system are refined--instructlon repertoito, processing

rates and structural organization. In practice, all of these features

must be considered concurrently, much like solving a set of simultaneous

equations against an optimization critera. However, once this is

accomplished, it is easier to sequentially portray each of the steps in the

process.

Turning to the word length considerations, the starting points are the

basic questions of binary vs. decimal (BCD) representation and fixed vs.

variable word lengths. These questions a re probably reviewed in the

early stages of most systems designs and typically for h;tgh speed considera

tions, the same decision is reached--binary and fixed word length. The coding

simplicattons and efficiency of utilization of the available number of

bits in a binary m~ule (2D), f&>r overshadow the Unatural feel" for decimal

- conventions particularly when the software systems provide a more convenient

udecimal interface. tf In the case of variable word lengths, the problems

associated with boundry identifications, (tags and word marks) int roduce

coding and housekeeping difficulties which again outweigh the potential

memory efficiencies available. However, the variable word length concept

does provide a key input in analyzing word lengths. This key suggests

that more than one fixed word length is desirable with each particular

length serving the reqUirements for which it was intended. Therefore, the

word length question is not which size should be selected, but which sizes?

Furthennore, 1f a multitude of sizes are in order, what' relationship must each

have to one another?

- 8 -

The answers to each of these questions was resolved by considering the

following requirements:·

1. The accuracy required for arithmetic computations, particularly

with regard to Itthe natural ability to handle floating point"

2. Facilities for handling convenient byte sizes, as relate~ to

the non-arithmetic computational workload, including logical

operations, data manipulations and list processing.

3. An instruction word length, which can directly address a large

memory capacity and provide sufficient latitude for a powerful

yet consistently fonnatted repertoire

4. With more than one word length, a symetrical organization is

required to permit inter-word size manipulations, efficient

utilization of memory capacity and a convenient structure for

the programmer to work with.

5. Control bit facilities for the flagging of individual memory

locations •

. 6. . Finally, error detection features in the form of parity.

The word length complement selected for the EAr 8400 is depicited in
,

Figure 1. In the following material, some of the rationale used in the

selection process will be outlined.

Arithmetic ProceSSing

The most important item considered in this category was II the natural

ability to handle floating point". This meant that a basic word size had

to be selected which could house a respectable floating pO·!1nt word length .'lnci,

as such, would be available within a single memory cycle. The general approach

to attacking this selection process is to define the hi.ghest accurracy

required in the intended fields of application and set the length accordingly.

- 9 -

FLOATING POINT

DOUBLE PRECISION
FLOATING POINT

INTEGER

FIXED POINT

EXTENDED FIXED POINT

INDEX

LOGICAL; I -16 BIT BYTE

2 - 8 BIT BYTES

4. - 4 BIT BYTES

8·- 2 BIT BYTES

!6-' I BIT BYTES

INSTRUCTION

MEMORY ADDRESS

MEMORY DATA

BIT SCALE

(51 23 Tsf- 7 I
I I
(51 23 151 7 I
I I
lSi 23 =oJ$'1 - - ;- - -1

. ...J _____J

I I
151 15 I - - '----, T--- --,

t ! I ______ I ..J. ______ ..J

I I
lSi 15 I
I I
151 15 151 15

I I
151 I~)

I I
I I
I I
[I I

I
~ I

f

I I I I I I ! I
I

III1IIIIIII I IIII

LEFT HALF I ---RIGHT HALF IEI~IElro
I

10 I I I I I I bl.1 I I I I I 1,161 I 1 I ~41 I I I I I 1..I3~
- EAI 8400 WORD FORMATS

FIGURE t

However, this is unrealistic. Since hardware c~sts are directly related to

word length a more systematic approach must be employed. Looking deeper into

the accuracy requivement, a frequency distribution emerges which indicates

that the percentage utilization of the initial highest accuracy estimate is

very low exeept for particular applications such as the steps involyed in

inverting a large matrix. Therefore, the obvious choice is to provide more

that Ole floating point word length. For the &,AI 8400, a 32 bit standard

size was selected with facilities for 56 bit double precision operations.
,

Starting with the basic rationale of employing high speed floating point

arithmetic for all but the less sophisticated computations, a reasonable look

was required at the fixed pOint facilities to be included. Basically in

a system where floating pOint calculations can be perfonned faster, and much

more convenientl" the fixed point workload reduces to those tasks in which

scaling and/or overflow considerations are not encountered. This amounts

to low accuracy computations, such as the a) manipulation of function generation

tables ·where the data elements of the table are derived from emperical calcula-

tions,or transducers, b) computations involving address or indexing words and

c) preliminary calculations on data involved in an interface with analog

components through analog-to-digital and digital-to-analog converters. With

these considerations, the standa rd fixed point word' length was set at 16

bits with the provision for 32 bft extended fixed pOint operatfons.

In both the floating and fixed pOint domains, the word formats for the

double precision f loati.ng point and the extended fixed point facilities were

established to be consistent with their respective standards. That is, in

. executing a 32 bit floating p.oint multiply, the resultant double precision

product is exactly the .format selected for the double precision floating pOint

word. A similar situation arises in division. Therefore, the res~u1ts of 32 bit

floating point multiply operations can be accumulated using the double

- 10 -

precision floating pOint add operations, eg in the case of forming the

dot product ~ Y (I) * ~ (I). Furthermore, each of the respective most signif

icant and least significant portions of the results can be operated on

separately since the sign and exponents are preserved.

In modern computational procedures, it is mandatory to be able to

communicate between the floating and fixed paint domains. The earliest

demand for such a facility was established in requirements for "Mixed Mode"

arithmetic statements, or lack of them in algebraic compilers. Typically,

computations which involved address indicies in floating point had to

converted to integer type operands, - the statement A=I + B being illegal.

In other instances, particularly processing converted data with a fixed

point analog type source, continuous calling of fixed to floating and

floating to fixed routines was required. To eradicate these deficiencies

an "Integer" arithmetic mode was included in the EAI 8400. With this facility,

data in 16 bit fixed paint formats are automatically !If loated" as they are

fetched from memory for processing and "integerized" as they are stored in

memQry.

Byte Processing

Turning from the arithmetic processing demands to the data manipulation

class of operations, the most salient requirement is established by the byte

sizes and codes of peripheral devices. With the recent establishment of a

II standa rd inte rchange codell
, designed to bridge the gap between the data

processing 6 bit Hollerith or BCD codes md the communication, 5 bit, Baudot codes,

a new generation of peripheral devices is being established. While the

official code from the X 3.4 committee, the ASC II code, has been adopted as

a "standard", IBM in recognition of the translation problems involved in

changing fI'Dlll the present BCD code" has more recently announced an Extended

- 11 -

BCD Interchange Code. The relationship between the BCD, EBCDIC and the ASCII

codes are shown in Figure 2.

By configuring an 8 bit interface to the peripheral device world all of

the above codes can be conveniently handled including the present 6 and 5 bit

codes. Therefore, this selection was made. At this pOint, all other word

length consideration factors must be treated with regard to the 8 bit selection

such that the lengths be multiplies of the 8 bit byte.

Looking at the data handling criteria in more detail, a number of other

factors must be included. The standard interchange codes not no1y establish

8 bits as the overall byte or character size, but in addition define a 4 bit

subset for representing pure numeric or decimal data. This provides more

efficient utilization of the 8 bit byte by pennitting the packing of 2,4 bit

bytes in an 8 bit byte.

Finally, it is obviously not sufficient to consider these factors only

in terms of interfacing with peripheral devices. Of more significant

concern is the requirement for internal data manipulation. These facilities

take on a high degree of importance in the tasks of manipulating programming

language statements, output documentation and the general non-arithmetic

portion of a systems workload encountered both in scientific and data

processing problems. For these takss, facilities must be available for

handling not only the 8/4 bit bytes but their subsets, the 2 and 1 bit bytes

and a superset 16 bit byte.

Instruction Word Length

While a latter section of this paper outlines in more detail the

considerations involved in configuring the instruction word format, it is

worthwhile to note the basic delinations. The address field was established

to be exactly equal to the standard fixed point word length which in turn

-12-

01

81T POSITIONS '2 :3
00 01 1,0 H

BIT POSITIONS 2 3

4 5 6 7 :0 0 0 I I 0 , I 4 5 6 7 o iO 0 I I 0 I I 0 a a I I 0 I I o 0 0 I I 0 I I 0 0 0 , I 0 I I

:0 0 0 0 '0 BLANK - + 0 0 0 0, NUUL BLANK S - > < :t: 0
:0 0 0 I I I : J" A 0 0 0 I / a j A J I

to 0 I 0 2 S K B 0 0 I 0 b k s B ·K S 2

\0 0 I I 3 T L C 0 0 I I c I t C L T :3

~O J O 0 4 .. , V M D a I 0 0 PF RES BYP PN d m u 0 M U. 4

K>- I 0 I , 5 V N E 0 I 0 I HT NL LF RS e " v E N V 5
!o I I 0 6 W Q F 0 I I 0 LC as EOS uc f 0 w F 0 W 6

10 I I I } 7 X P G 0 I I ! DEL IOL PRE EOT ~ p x G P X 7

; t 0 0 0 i e Y Q H I 0 0 0 h q y H Q Y 8

:1 0 0 I , 9 Z R I
..

I 0 0 I " i I R Z 9 .
I r z

it 0 I 0 i rI * ' , ~ ~ I 0 I 0 ? !

it 0 I l ! :, $! t . I 0 I I $ I #

I I 0 0 I I (•) I I 0 0 ... * 0/0 @

:1 I 0 I I : '"' l [I I 0 I
,

() f"n I

: I I I 0 > \ ; , < I I I 0 + ; - :

I I , I .r -+t+ • *
, I I I * rt ± .J

;

. Q,~) STANDARD 6 81T BCD CODE e.) EXTENDED BCD INTERCHANGE CODE (EBCDIC)

76

8tT POSITIONS \2 :3 ; x $
GO 01 10

"
tl ,

BIT POSITIONS

---14" '5' 6 7 -10"0 0 T -I 0 I I 4 '3 2 f 0 :0 0 I I 0 I I 0 '0 0 I I '0 I I 00 a I 1 -0 I I 0 '0 0 t 1 .() t 1

!O 0 0 0 I 0 + - BLANK 0 0 0 0 NUL.L DCO BLANK 0 @) p p

;0 0 0 I I A
: :r I i 0 0 0 I SOM DC, ! I A 0 a G

iO 0
I a

,
I 0 2 K S 0 0 I 0 EOA DeZ

..
2 B R b r

0 0 I I 3 C L T 0 0 I , EOM DC3 '** 3 C S c . s

0 I 0 0 1 4 0 M U I 0 I 0 0 EQT OC4 . $ 4 0 T d t
STriP

0 I 0 I 5 E N V 0 I 0 , WfW ERR 0/0 5 E U e u

0 I I 0 6 F 0 W 0 I , 0 RU 5YNC S 6 F V f v

0 I I I 7 G P X 0 I I I BELL LEM
,

7 G' W 9 w , 0 0,<· 0 8 H Q Y I 0 0 0 BK5P So (8 H X h lC

I 0 0 I 9 I R Z I ;0 0 I HT SI) 9 I y i Y

I 0 I 0 ~ ? I * I 0 I 0 LF 52 *
. J Z , j z .

I 0 I I : $. I 0 I I VT S3 + i K (: k
. , -+. 0--0·

I
l +-* (. - t- .. t --_'-0 '-'-0 FF "'54 -- -.. , I·· < . L \ I.

I I 0 I . [J IY\ . I I 0 I CR 55 - = M J m

t t t 0 > < . \ I I " I 0 SO 56 . >. N t n ESC
..

I I I I .r * • I ' I I I SI 57 I ? 0 4- 0 DEL

b.l 6 BIT COLLATING CODE dJAMERICAN STANDARD CODE FOR INFORMATION INTERCHANGE (ASCII

FiGURE 2

·1s equal to the r8114uiag field. of the ether balf of the instruction word.

In both fields suffieie.~ laditude is provided for direct addressing of a

large a.-ry capacityaad est4bllahf.tlg a .. powerful instruction reperto,t.i:e.

. .
SyaetricalOqanlzaalon " MeIIIory Ifficleacy

, Coapleting the coapl_at of word l_the included in the EAI 8400 are

the • ..ory acld-res8 and .emory data words. The former, a 16 bit word 8i&a, is

caui.tently formatted with the address field in the instruction word aDd the

index word.

The aemory data woId prOvi~e. 32 data bits and 4 control bits. The

function of the control' bits will be described in a following section.

Centering on the 32 data bits, it can now be appreciated what is meant by

symetrica1 organization. Looking over the entire complement of word

formats, th.ee main sizes dominated-the 32 bit full word and 16 bit half

word both multiplies of the 8 bit byte. Consequently, the user need only

remember the key numbers 32/16/8 to remember the primary characterization of

the systeJD •.

Furthermore, ,since the 32 bit memory data words can be manipulated as

one 32 bit full word or two 16 bit half words, maximum meDlOry packing efficiency

can be obtained. This is better illustrated in Figure 3 which outlines the

Ueffective memory capacity" as a, function of the percentage of full to half

words. In the limit a 641< full word memory capacity represents an effective

memory capacity of 128K half words each of which can be directly addressed.

Actually since the byte manipulating facilities in the EAI 8400 permit

addressing of 8, 4, 2 and 1 bit bytes the effective byte memory capacity

in te~s of 64K full words is .. tended to 256K, 8 bit bytes; 5llK, 4 bit

bytes; 1,024K, 2 bit bytes and 2,048K, 1 bit bytes.

- 13 -

EFFECTIVE WORD
CAPACITY (E we)

K= 1024

128K I----------r---------T---------__ --------_ G

120K

F
112 K

I04K
E

96K~--------~--------~--------~--~--~~ 0

SSKI

80K~---------4---------4----~--~-~~--~~
I

72K I·
I

64Kr---------+---------+-~-+~-+4---~----~

56K

48K~--------+----+~-~~~~~--~--------~

40K

32K~--------~~~~--~--------4---------~

24K

16K~--~~~~--------~--------4---------~

8K

c

B

A

PROGRAM
MIX

.1\

a

C

0

E

F

G

%

FULL
WO~~D

iOO

80

60

50

40

20

0

_______ .L-____ ____ -'-_____ -'-_ FULL WORD

0/0

HALF
WORD

0

20

40

50

60

80

100

o 8K 16K 24K 32K 40K 48K 56K 64K CAPACITY (FWC)
K; 1024

FIGURE 3.

%

E% FWC

100

120

140

150

160

180

1
200

Control Bits

In the overall computational workload of a digital computer system it

becomes necessary to be able to mark memory data words. More specifically

in the case of memory protection, dynamic relocation of object programs and

stack or table pointing the particular data words which require special

attention must be separated from the remaining words. For example, when

relocating a program from one section of memory to another a base address

must be added to some but not all of the instruction word address fields.

This facility is provided for via a pair of EXEC bits included in every

memory data word. The Left and Right EXEC bits relate to the Left and Right

16 bit half words respectively. Therefore each half word can be individually

"marked. "

The instruction repertoire provides the facility to set, reset and test

'individual EXEC bits. This unique facility permits a wide latitude control

system heretofore not available in high speed digital computing systems.

Error Cont rol

As the demands for computational throughput increase the requirement

for error control becomes more stringent. This manifests itself in the

processing of data with regard to memory and peripheral device operations.

While the intrinsic reliability of memory systems has increased significantly

in recent years, if a single error occurs it would be virtually impossible

to discover it when conSidering the vast error sources avaiiable-:-the

combinatorial electronics which manipulate over 2 x 106 bits in a 64K system.

The two memory bits included in every memory data work are partitioned one

for each half word, thereby increasing the level of error sensitivity and

providing individual half word pin-pointing of an error source.

- 14-

As for peripheral devices, a 9th bit is appended to the 8 bit byte

fo~t in acco~nce with the ~BCDIC conventions. With existing BCD devices,

the 7th bit i8coupled into the bit 9 position.

- 15 -

ESTABLISHING THE INSTRUcrlON REPER'I'OIRE

The basic system specifications relating to the instruction repertoire

are:

1. High .peed processing as a function of both the number of instructions

required and thettme to execute each instruction. Therefore, to reduce

the total number of :Instructions, a powerful instruction repertoire must

be provided such that a number of related operations can be specified

in a single instruction as opposed to using a group or packet from a

more basic instruction set.

2. Ease of programming as related to the facilities available to the user

in the form of a convenient instruction set properly "human engineered"

to reduce the OFF-LINE programming workload.

In establishing the instruction repertoire for the EAI 8400 a number of studies

were petformed and analyzed to decide on the following features.

Addressing Configurations

For .the normally encounte'red address manipulations involving locations in

core memory, a ful.l range of indirect and indexing facilities were required.

The indirect and indexing facilities must be independent to permit multi-level

indirect a~dressing with indexing at each level. This feature finds wide

use in handling subscripted arrays of data, subroutine transfer vectors and

the table pOinting operations involved in list processing. With regard to

index register capacity, it was found that the number of index registers

which may be gainfully employed ranges from 2 to 7 depending on the depth of

inner loops and any attendant housekeeping (tallying) operations required.

Therefore, it was decided to include independent s~lection of up to 7 index

registers, each of which is 16 bits In length commensurate with the directly

addressable capacity range.

For operations involving half-word operands, an immediate addressing

facility was included. This penaits handling the actual operand in the address

- 16 -

field of the instruction word. In addition to conserving memory capacity,

this feature reduces the number of memory accesses required for this

class of instruction and, therefore, increasing the processing speed.

Furthermore, since the immediate operand is located in the address field of

the instruction word, it can be modified by contents of a specified index

register. This modification is affected prior to using the irnmedi..1.te operand.

Therefore, one can think., in tenns of "effective immediate operands. II

An extension of the immediate operand system is employed in the shift

class of instructions. With this class, the number of shifts desired is

specified as an arithmetic operand with the sign of the shift count specifying

the direction. As above, shift counts can be modified by the contents of a

specified index register.

Finally, the accumulator itself can be specified in the address field to

permit inter- register operations and direct communication with external

devices.

Two's Complement Notation

For all the a.rithmetic modes of operations in the EAI 8400, the two's

complement notation for negative numbers was selected. This notation provides

a unique representation of zero and eliminates the requirement fa r recornplemen

tatlon, thereby increasing the processing speed. The programmer need not

concern himself with this particular selection in as much as software system

provides a number system interface.

Universal Accumulator

The internal register complement for arithmetic and byte processing,

provides a Universal Accumulator interface to the programmer. In earlier

digital computing systems it was a common practice to configure the arith

metic registers such that the appropriate operands were available in different

- 17 -

registers as a function of the type of operation required and the internal

logic required to perform the different types of q>erations. More specifically,

while the operations of addition and subtraction were performed in the accumula-

tor, multiplication operations were performed with the multiplier in an MQ or

Q register, and the resultant product formed in the accumulator. This

generated a housekeeping task for the programmer and necessitated the inclusion

of inter-register transfer type instruction further complicating the programming

workload.
,

Since the underlying design rationale for a single address digital

computing systems specifies one operand at the memory address location and

implicity assumes the location of the second operEnd in the accumulator,

the latter need only exist with regard to the programmer at a single location.

Therefore,. in the EAI 8400, this location was universally established as the

accumulator. All operations involving the implicit operand simply refer to

the accumulator and the internal control logic automatically sequences the

appropriate inter- register transfers in the execution of the operations. In

addition to eliminating the requirement for special instructions and their

attendant programming difficulties much processing time is saved by elimina-

ting the execution time required for these special instructions.

Push-Pop Stacks and Multiple Accumulators

In recent years, much attention has been directed towards the use of

register stack configurations which can be operated in a push-pop mode. While

this mode is in l'ne with the Polish notation employed in algebraic compilers

and permits the use of "short", "relative addressing" type instructions, it

has some serious limitations. Among the most significant are the special

instructions and housekeeping operations required to manipulate the stack and

the fact that .the stack cannot be bottomless in a realistic system. The

- 18 -

latter limitation tends to magnify housekeeping problems by another order of

magnitude.

Mult~ple accumulators on the other hand, is in the digital computing time

span, a relatively old idea. One of the early 1950 vintage system has some

20 accumulators. Then as now, the primary reason for including more than one

accumulator is to pennit retention of operands in high speed flip-flop storage

in contrast to core memory locations. The real question is how many accumula

tors are required? As each addition accumulator is added, it requires more

space in the instruction word to specify which one(s) is to operated on and in

which one the final result should be placed. Furthennore, as the available

number of accumulators increases, the programmer is faced with another

housekeeping chore. In analyzing typical workloads, ~t was found that the

addi.tion of one additional register satisfied the high speed demands of from

70% to 80% of the programs. This can be recognized when one considers the

frequency distribution of the instructions.

STORE in TEMP 1

ADD f rom TEMP 1

and the number of times a TEMP 1 and TEMP 2 are used.

In light of this fact, it was decided to include in the EAI 8400 one such

register -- the SAVE register. Operation with only one register permits a

number of powerful functions without placing serious demands on the capacity

of the inst ruction word. These functions include a) SA VEing the contents of

the universal accumulator prior to the execution of the instruction in which

its specified and b) addressing the contents of the SAVE register in the

address field of an instruction word. Use' of each of these functions is

outlined in the following examples:

- 19 -

1. Form the dot product: E Y(I)Z(I)

LOAD A with Y(l)
MULTIPLY A by Z(l) Porm Y(l)Z(1)

SAVE A and LOAD A with Y(2) SAVE Y(l)Z(l)
MULTIPLY A by Z(2) Form Y(2)Z(I)
ADD A with .sAVE Form Y(l)Z(l) + Y(2)Z(2)

SAVE A and LOAD A with Y(3) SAVE Y(1) Z(1) + Y(2)Z(2)

ADD A with SAVE Fonn Y(I)Z< I)

In this progra.m, the SAVE register is used to hold the a.ccumulated

element products. Establishing an indexing loop would shorten the program.

2. Evaluate the polynomial: F(x) = B(n)XO + B(n-l)XO- l + ••• + B(l)X + B(O)

In the nested fOl'TBat: F(x) = « ••• (B(n)X + B(n-l» X + ••• + B(l»X + B(O»

LOAD A with X
SAVE A and LOAD A with B(n) SAVE X and load B(n)

MULTIPLY A by SAVE Form B(n)X
ADD A with B(n-1) Form B(n) X + B(n-l)
MULTIPLY A by SAVE Form tB(n) X + B(n-l»X

ADD A with B(O) Form F(x)

This program serves to illustrate the use of the SAVE register as a

high speed location for the variable, X, and as in the first example can be

shortened with indexing.

Obviously, the power of the SAVE register adds a new dimension to high

speed process!. ng.

In addition to this facility and in recognition of the fact that a limited

number of high speed storage locations can increase computational throughput a

16 word rapid access file is available. The individual locations in this file

are specified as any other memory location and as such can be used to house

either instructions or operands or both. In the former case, short high speed

loops can be preloaded into the file and then operated upon from their relocated

position. This provides for an increase in throughput on operations such as

- 20 -

table searching with a wide variety of test criterias, and each of the above

sample programs in their indexing format.

Byte Size Operations

In recognition of the logical and data manipulation or list processing

facilities required in a scientific computing system an extremely extensive

repertoire of byte size operations has been included. In addition to the

ability to select either 16, 8, 4, 2, or 1 bit bytes, individual byte positions

can be specified as outlined in Figure 1. This eliminates the necessity for

establishing complicated masks and permits more rapid processing. Further

more, to increase processing rates even further all 16 possible logical

connectives are provided. This means that any desired byte processing step

can be specified in a single-instruction -- byte size, byte position and

logical connective.

On Line Flag Register

In the course of running typical programs, a number of comparison

operations and control steps are required. These include the ability to

algeb~aically compare operands with respect to other operands and in the more

specific case with regard to zero. The IF statement in algebraic compilers

asks if an operand is t'equal taU, "'greater than", or "less thanLl zero. Coupled

with comparison operations are the actions desired as a function of the result.

To date it has been common practice to provide "SKIpll or "Jill1P" type facilities.

The former (SKIP) being more popular from a logical designers standpoint

because of the problems associated with including jump addresses in the shorter

instruction word formats. However, this approach has many shortcomings when

conSidering what the programmer needs. First of all, use of "SKIP" type

opel~tions typically forces the programmer to carefully manipUlate the instruc

tion steps following the USKIptt instruction. Generally, one or more of these

- 21 -

following steps must be a JUMP instruction. So why not use JUMP instead of

SKIP in the first place? Secondly, jumping is not the only action desired

as a result of some comparison. In many instances, operations such as HALT,

LINK to a subroutine, EXEcute are desired. With the JUMP on~y faci1ity~

the instruction at the JUMP address must be filled in with the desired opera

tion. Again, why not provide the desired operation in the first place instead

of forcing the programmer to wind his way around the mulberry bush of many

other instructions? Thirdly, in addition to the results of algebraic

comparisons there are a number of other internal status conditions that the

programmer must concern himself with such as CARRY, OVERFLOW and console settings

of flags. Finally, the testing of status conditions is only the first step

in control type sequences. It is necessary to be able to SET, RESET and/or

TRIGGER their conditions either in the form of initialization sequences or

the establishment of branching steps.

Therefore, in the EAI 8400 it was decided to provide a) the ability to

execute a full range of control type operations, JUHP, HALT, LINK, EXECUTE

b) the entire ganut of internal status conditions and 8 console flags and

c) the capacity of control (SET, RESET, TRIGGER) the status conditions.

In line with the philosophy of singly powerful instructions all of these

facilities can be specified in one instruction. This instruction class operates

in conjunction~th a 16 bit Flag register. The status of the individual

bits of this register are established following the execution of other instruc

tions. For example, after the execution of an ADD operation, the results

in the accumulator are automatically checked and the ZERO, GREATER THAN or

LESS THAN bits set. In this way, the FLAG register maintains the on-line

status of the program.

- 22--

Indexing Cont rol

Under the earlier discussion on addressing configurations, the need for

seven index registers was established. For complete program modification,

control facilities must be available to increment or decrement and test their

contents with regard to an established base. For indexing through the

multi-dimensional arrays in matrix, function generation and list processing

operations, it must be possible to increment or decrement by a quantity equal

to or greater than 1. Furthermore, it most be possible to rnainpulate arrays

in both directions up or down a table. Again with the singly powerful inst-

ruction philosophy a::-11 of the facilities for a) modifying index values, b)

algebraically testing the results,'of modifications and c) conditional jumping

to desired locations are combined in one instruction.

Completing the Repertoire

Rounding out the instruction repertoire are the facilities for shifting,

register loading and storing, status and function line control, EXEC bit

control and EXCHANGE cormnunication and control with Access devices. Some

details on the latter class will be presented in a later portion of this paper.

Human Engineering

One of the most difficult tasks encountered in establishing a powerful

instruction repertoi re is that of finding the p:oper'mnemonic inte rface to

permit a programmer to make use of its power. If the list of available

instructions is teo extensive then its is difficult if not impossible to remember

all of its elements such that the proper one can be singled out for use.

Consequently, the programmer will tend to ignore most of the set and concentrate

on using a subset. In this mode he will be back to writing small groups or

packets of instructions to perform operations he could otherwise specify with

a single instruction.

- 23 -

In the repertoire for the EAr 8400 this problem was solved by properly

subdividing the instruction repertoire into convenient classes (·C) each 'i~ith

a consistent set of class modifiers (M). In this way, the programmer need

only remember C + M mnemonics to have at his fingertips C x H instructions.

For example, the arithmetic operations include:

CLASSES

F - Floating Point

D - Double Precision Floating Point

I - Integer

- Fixed Point

E - Extended Fixed Point

X - Index

MODIFIERS

CA- Clear Add

AD - Add

CS - Clear Subtract

SB - Subtract

CP - Compare

NP - Multiply

DV - Divide

CD - Clear and Divide

ST - Store

SR - Store Rounded

Combining each of these FCA, FAD, etc. provide 6 x 10 = 60 instructions by

remembering 6 + 10 = 16 mnemonics. Other instruction classes are arranged in

a similar fashion.

Coupling the human engineered mnemonics, the symetrical structuring of

32/16/8 word formats, and a clear and consistent scheme of address modification

provides a progra~R.er with a powerful computational tool whose facilities can

be easily and readily drawn upon.

- 24 -

THE EXCHANGE

Through the evolution of digital computing system, the facilities provided

for the exchange of data between processing and memory elements and access

devices have ranged from simple input/output gating systems to data assembly

and editing complexes. The basic premise was one of attempting to balance the

exchange type sequences required against the internal processing workload.

This is a particularly difficult task because a) the ratio of exchange to

processing workloads covers a very wide range - a fact which led to the

establishment of separate data processing and scientific computing systems,

and b) the range of access device transfer rates covers several orders of

magnitude. This last fact is illustrated in Figure 4.

Another facet of the problem centers around the myriad of devices depicted

in Figure 4. Each of these devices present different interface reqUirement

which on earlier systems meant special control and/or translation units.

As in any system synthesis procedure, having formulated the problem the

next task is to sort out each of the applicable elements to establish a solu

tion. Analyzing the transfer rate data in Figure 4 and recognizing the fact

that

a) Scientific workloads demand a wide range and level of exchange operations -

particularly when one considers the assembly, compilation and other

language processing tasks.

b) Over the wide range of problem formulations it is typical to operate at

least one input and one output device simultaneously.

c) Since exchange sequences can be reasonably "hatched", to increase the

overall computational throughput some sorm of concurrent exchange/

processing is advantageous.

- 25 -

f

r
I

PEWiUTER
Y
1&

\

I

,
2

I

l

I

!

I
3

i

I

I
I
&

I I II '

'I I I
I · I II
I ! I I

! I I I ! !

I II I '
I I
I I

I

SSC'
\ 300 ip;'n

I I ! II
, • ~ ~ 1

t3l0
(600 IPI'E)

cpmj J rpm i ~, ... ,.I. cj)m

I I
I I !

I

! !
I ! I II i t

I

! CARD PUNCH I

I

" .--3 I ! I I 130 4.}OO ! I i (IOOcpm) C300cpm) !

I I I I
INCREMENT MAG. TAPE I I

I I :to 1& 410 loo!
PAPER TAPE READER

;!O " Y
500 1000

PAPER TAP.! PUNCH I I I
I

I
• S y

I 63 110 200
I

TELETYPE
1: ,

6t.3 100
f

I
I I I I

: ,I : I :.: l -:- ; I: I
""I'

& 8 I 6 8 i

• 2

254·0
(\2.00 Ipm;

I
!

t

I
t

!

I
I

!
I

I
3

""

I
i

!
!
!
!

I

I I ! II
~~''l''eII'r
6.000

(30 IPS)
200 bpi

I i
I

I !
! I I ; , I I
[I

I !

I

,
I
! i

II , I

I I I I
I ~ r-"T""T'TT"""*
4 5 "f I ~ I

!

MAGNETI(: TAPE

! r
2- 3

I I \ I II

I I
I

I I I
, II

I
I

MAGNETiC
DISC ..

CRT.
t .,

MAGNETIC
DRUM •

Dole
• .. ____ r_u£~

AOC
t .,

!

i i i I i I
t'!¥:r.m_" V i i

4 5 ., 9 2 S 4
6 6 I

,.

I
i i I i I 5 7 9

& e ,
\. -------v--------..J/\.'---------v---=------.I\I.--------y--- -y-- ---" --y

/

X 10,000 X 100.000

.J\.. _____ _

x to)(100 X &,000

DEVICE RATES : BYTES/ SECOND

~~~~~~~~~~~~~~~~~~~~-~-~-~~·~J51 15 "'~J3 : .~~~~~- -~·~J5 -I6.H 18J5~' ~~ ! 6.M 18~ t'l~ i &l&5 i i I r I ;]5 1".!51 2.5 3.75 IS 6.25 
La 7.S0 10 \.25 

V 
1\ \"--------

XI 

I i I I I 1~.512:'51 5 7.5 .0 i2.5 r 
15 20 2.5 

'-------V 
/\ 

XI 

-v--
Xta 

7,50' 10 1.25 7.~O 10 I. ~5 7,50 10 1.25 7.50 10 1.25 

-~_.J\'-~-----.-=v I'--------.,~--~-__V-------.. -J"----.. ~~S_~">- I 

FULL WORDS /SECOND 
X 100 X 'poa x 10,000 

RATE: 8 - 4 BIT BYTES/ WORD 

I 
5 

"T----,-----r-<7-W'r""TT"")' r 
5 7.5 IU 12.15 '1'7,5 22,51 /5'"*-;*0 12',5 1"17!!'J 12~.51 ! =~----;~-~""~7o 121.5 1 =:r~ 12:. sr I 

1.5 
I ""'r--r-,""T'T1 
10 12.5 I 17.~ hi: 5' 

v 
X 10 

15 :211 2.5 15 20 2.5 

-----1 '" _______ -.... _-------1\'-------
V 

X 100 

FULL WORDS / SECOND RATE: 4 - 8 BIT BYTES /WORD 

15 20 2.5 is ;ao a.s 

_.r ... --1\\-. --~---"""'\v---------'I 
X 10,000 

A.CCESS DEVICE ,TRANSFER RATES 
FiGURE 4 ' 



d) With the adoption of "standard interchange codes" as described in the 

section on Word Length Considerations, a common denominator for byte 

handling could be reasonably established. 

e) In considering multi-processor and/or time sharing systems, facilities 

must be provided for both "private" and "common" exchange configurations. 

f) For real-time and other integrated systems involving special considerations, 

a flexible system interface is required including interrupt, single and 

multi-line control and data communication facilities. 

Data Channels 

The Exchange system established for the EAI 8400 as a function of each of 

the above elements includes both a data channel complex and system interface. 

The data channel complex provides for up to 8 bi-directional channels each 

with the capacity for handling up to 15 access devices. Each channel performs 

devic~ control, data assembly/disassembly, collating code conversion and 

parity generation or checking. To permit the connection of many types of 

access devices without providing an all encompassing channel, the "standard 

interchange codes'" was established as a common denominator. That is, all 

channels are designed to handle 8 bit bytes plus parity. All devices whose 

internal code is a subset of the standard code can be readily accommodated. 

In addition, each channel is capable of executing exchange sequences on 16 bit 

half words and the 4 bit byte "standard code subset." Therefore, the complete 

thread of consistency is continued through the byte processing powers provided 

in the instruction repertoire and the data exchange facilities. 

With the common denominator channel, the specialized facilities required 

for the various types of devices are handled with individual device controllers. 

With this approach all of the existing devices and those being planned for the 

near future can be connected to a data channel. 

- 26 -



The exchange sequences can be controlled from either single instructions 

in the main line of instructions or in a block transfer mode concurrently with 

internal processing. In this way, the programmer can elect either form of 

control depending on the particular operation desired. 

System Interface 

The demands of particular real-time and other integrated systems require 

a wide variation of control facilities. Since a standard set cannot be 

established andlor defined each of them must be tailored to the respective 

systems. Custom designs however tend to be very uneconomical. Therefore, in 

the design of the EAI 8400 it was decided to establish a standard, general 

purpose system interface. This interface includes interrup~ single and multi

line controls and data' communication facilities. From the interface outw.J,rd 

a wide variety of configurations may be established either internally to the 

EAI 8400 with standard logic elements or in external devices of systems. The 

decision as to which to employ is based on the particular control, device or 

system in question and the economies offered with each approach. 

The interrupt system provides a full range of up to 256 levels of masked 

priority control. The masking feature permits, via internal instruction 

sequences, the capability of re-allocating priority levels. As such, it could 

be accurately defined as a dynamic priority interrupt system. 

For the setting, resetting or testing of external control lines a 

comprehensive single or multi-line control facility is provided. This 

provides for establishing the condition of external functions and monitorin(i; 

status line. The multi-line facility permits parallel function line control 

or status line testing. 

- 27 -



The data communication feature in the system interface prernits direct 

communication with up to 16 input and 16 output busses. Each of these busses 

are independent of the data channel system and can be directly addressed. 

A single instruction provides for the transfer of 16 bit half words between 

memory and the addressed bus. In this way, ex~ernal data and/or control 

registers can be treated as intimately as the internal processing registers. 

This approach provides an extremely powerful facility for integrating a system 

configured with a wide variety of components. 

Request/Response Organization 

In both the data channel complex and the system interface all communica

tion exchanges are synchronized under a request/response organization. That is, 

for each transfer, a request line is raised and is maintained in that status 

until an appropriate response is received. Where applicable, the next sequence 

is held in abeyance until the request/response action is fully satisfied. 

This organization eliminates the necessity for programmers to calculate timing 

sequences and device delays and further eliminates the dead time spans commonly 

introduced by the programmer to circumvent timing overlap problems. 

Access Devices 

As mentioned a number of times 'in the above discussions, the exchange 

design has been based on providirig a gen'eral purpose facility for connecting 

to a wide variety of present and planned access devices. At the present time 

this includes all of the common document handling devices from paper tape to 

magnetic tape in addition to linkage systems, CRT display monitors and other 

real-time or integrated system components. In the near future the capacity 

and capabilities of ~ny of these devices will be improved or augmented. However, 

- 28 -



a more pronounced effort will be expended in establishing a more intimate form 

of man-machine communications. Extensions of the CRT, simple and complex remote 

or inquiry stations and other facilities are required and will be provided as 

the state-of-the-art advances. 

- 29 -



STRUCTURAL ORGANIZATION 

Having established all of the EAI8400 system parameters, the next step is 

to perform the detailed logical design and establish the physical structural 

elements. Since the potential range of system configurations was wide, a 

modular organization was required. Actually, the modular approach proved to 

offer many important advantages including: 

a) The potential for configuring systems from their most basic form up to 

and including high capacity single and multi-processor systems. 

b) The capacity for plToviding "in field expansions" of individual elements 

as the user"'s computational demands increased. 

c) An autonomous relationship between elements which provides adequate 

provisions for up-dating the system as a function of conceptual advances. 

This last item deserves special attention particularly in light of the 

rapid studies being made in both system and component design in the digital 

computing field. With the autonomous organization each of the system elements 

are essentially separate entities--Processor, Memory, Exchange and Access 

Devices. The built in capacity to append forthcoming Access Devices was 

discussed in an earlier section. In other areas such as memory, with an 

autonomous structure as new memory devices or improved versions of present 

devices are made available, th~y can be included into the system without 

modification of existing elements. 

In the case of proceSSing elements, the range of expansibility has been 

further provided for by not completely saturating the instruction repertoire. 

Spare capacity is available for adding more complex arithmetic operations or 

algorithms such as square root. 

- 30 -



Finally, with the standard system interface described in the Exchange 

section a wide laditude of external configurations can be established as a 

function of advances in real-time or other integrated systems. 

Design Technology 

Turning to the details of the present system structuring, the high 

processing speeds has been achieved by a hybrid logi,c element implementation. 

The standard EAI, DB3 1 s (Digital Basic Building Blocks) are combined with the 

latest monolythic integrated circuit elements. The 20 Mc DB3's designed and 

manufactured by EAI have many houts of in-field, reliable operation and the 

integrated circuit elements have been designed and validated against MIL 

specifications. Each of these elements are woven into a high speed, high 

quality signal transmission system over a sophisticated ground plane structure. 

The overa1l1 system is combined into a modular packaging scheme. The individual 

racks are integrated in a "domino" type organization to provide compact system 

configurations, in-field expansion and the shortest possible transmission 

paths. 

To further enhance in-field up time, a number of dynamic maintenance 

facilities have been included to permit more rapid execution of preventative 

maintenance routines. In 'particular, a full range of marginal controls are 

available each of which can be set and tested by control instructions. This 

permits the setting of n~rginal operating status followed by the high speed 

execution of the appropriate diagnostiC routine. 

- 31 -


	00
	01
	02
	03
	04
	05
	06
	07
	08
	09
	09a
	10
	11
	12
	12a
	13
	13a
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	25a
	26
	27
	28
	29
	30
	31

