
Alpha Window
Software Architecture

Revision 1.0

30 May, 1992

Display Industry Association
1007 Elwell Court Suite B

Palo Alto
CA94303

USA

Tel: 415-967-6888
Fax: 415 960 3522

Copyright C 1992, Display InduStry Association

A Display Industry Association standard implies a concensus of those substantially
concerned with its scope and provisions. This standard is intended as a guide to aid the
manufacturer, the consumer and the general public. The existence of a Display Industry
Association standard does not in any respect preclude anyone, whether he has approved
the standard or not, from manufacturing, marketing, purchasing, or using products,
processes, or procedures not conforming to the standard. Display Industry Association
standards are subject to periodic review and users are cautioned to obtain the latest
editions.

CAUTION NOTICE: This Display Industry Association standard may be revised or
withdrawn at any time. Purchasers of Display Industry Association standards may receive
current information on all standards by calling or writing the Display Industry Association.

Published by:

Display Industry Association
1007 Elwell Court Suite B
Palo Alto
CA94303
USA

Copyright © 1992 by Display Industry Association
All rights reserved

No part of this publication may be reproduced in any form, in an electronic retrieval
system or otherwise, without the prior written permission of the publisher.

Page 2

Copyright @ 1992, Display Industry Association

Introduction

This document describes a software architecture layered on top of the existing
Alpha Window Terminal Protocol. It provides a focus for the activities of DIA at this time.
The purpose of the architecture is to provide a concrete framework for developers,
vendors, system integrators and users to build working systems using components from
potentially several different vendors.

Developers need to be assured that their software will work with the widest possible
variety of other components. Vendors want their customers to know that their equipment
is compatible with other systems. System integrators need to be able to design and
n .. n'l'V'1>c!~ C!"C!t~ft'\C! ",lth I"nn~r1~nI"A th .. t thA'" ,,,.i11 ~.nMI"'n ""'_AMl h"" ... "'''''''''''mh1""A A 11 "'~
t'l.vr'~ ~}~,,'-'~~ YYI.UI. '-'VUL.lU'-'U""",, "110" UI"} \'1'111 LUU"UVU "VI.I.""U, WU"H ~"H VI""' • ..c-~ .. u VI..

these reasons will increase user uptake of Alpha Window technology.

The Alpha Window protocol is concerned solely with the mechanics of creating and
maintaining windows and the use of the mouse. It, and this architecture, do not restrict or
define what is drawn or how an application draws its output within these windows. What
can be displayed within a window is a function of the underlying terminal emulation.

This architecture specifies four layers of software interface. In ascending order from the
physical terminal, these are:

• The AlphaWindow Terminal Protocol. This has been defined by DIA. It is the
physical terminal interface and comprises low-level control sequences.

• The Alpha Window Application Protocol. This is a guide to the use of the Terminal
Protocol by applications and window managers. It should be used directly by
applications which need low-level control and by higher software layers.

• The Alpha Window Application Programming Interface Specification. This is a
specification for a C language binding to the Application Protocol. It is a higher-level
interface and is event-driven in nature.

• Third party toolkits. A number of these already exist and need to be made available in
the Alpha Window environment. This is the level at which applications are already
being written for windowing environments such as the X Window System, Microsoft
Windows 3 and several "virtual" toolkits.

Page 3

Copyright @ 1992, Display Industry Association

Architecture Diagram

,.
'" Turnkey Existing Slightly Windowed Windowed

App App Modified App App
(direct connection App

(Toolkit) to terminal) (unchanged)

AlphaWindow
\.. Libra Librar

~::::~ \ I- /
Protoco;' ~ r~baWindOW

,.-------------'" Application

W· d M Protocol In ow anager

.~_~ Alpha Window Protocol
to and from tenninal

Copyright C1992, Display Industry AIIoc:iatioo

Notes:

and
Multiplexer

-t Alpha Window
Architecture

1. The window management and multiplexing functions of the host based software have
to be closely coupled. They are shown in the same module within the diagram. This
does not imply that the functionality has to be implemented within a single process. It
would be possible to have separate window manager and multiplexer processes, but
this would require a private protocol between the two to allow the window manager to
impose its policy on the display.

2. Window management functionality is not mandatory within a system. Where the same
set of clients will always be executed with fixed window sizes and positions, a suitable
multiplexer module could be written which gives no window management capability at
all. This will only apply to dedicated, special purpose applications.

3. A windowed application may consist of newly written code, or existing code ported to
the new environment. DIA expects that existing proprietary toolkits will be ported to
the Alpha Window environment and that other industry standard API's such as
OSF/Motifwill also be produced by independent software vendors.

Page 4

Copyright © 1992, Display Industry Association

Clients

A client is an application which the user wants to run on an AlphaWindow terminal.
There are four broad categories of software to consider.

1. Existing applications. These will run unchanged with the assistance of the window
manager (see below) to create a window for them on the terminal screen. This will be
by far the largest use of AlphaWindow terminals, at least initially.

2. Slightly modified applications and toolkits. We envisage that both application
developers and toolkit vendors will want to enhance their products to take advantage
of the mouse and perhaps resizable windows. It is an aim of this architecture that this
level of integration with the terminal should not require large scale software changes.
This class of software forms a very large pool of potentially Alpha Window aware
applications.

3. Windowed applications and toolkits. It is very likely that one or more standard GUI's
such as OSF/Motif or Windows 3 will be made available for AlphaWindow terminals
by third party software vendors. Supporting these new toolkits is an important part of
this architecture.

4. Turnkey applications. These are applications which will be written from scratch, or
modified, to work directly with the AlphaWindow Terminal Protocol. This is the
route by which applications can directly interface to the terminal using the low-level
protocol specification. An application which is written in this way is very unlikely to
be able to coexist with other applications on the same terminal screen at the same time,
so it is not a recommended method of development for general purpose applications.

Alpha Window Window Managers are one important class of applications which will
be written in this way in order to provide support for multiple concurrent applications.

Window Manager

The term window manager is used in the context of this architecture as a generic term to
refer to a number of separate, but in practice related areas of functionality:

• Allowing the user to move, resize, restack and otherwise manipulate application
windows.

• Multiplexer functionality to support multiple concurrent applications over a single
connection.

• Communications protocol handling in order to ensure efficient and reliable host­
terminal data transfer.

• Session management in order to allow the user to start and restart applications.

PageS

Copyright @ 1992, Display Industry Association

• Support for existing, non-Alpha Window applications.

The window manager is therefore a key component. Its presence ensures that different
applications are able to share the terminal screen peacefully and that the user has a high
level of control over the display.

Application Protocol

The application protocol defines the way in which applications should use the
Alpha Window Terminal Protocol to communicate with the terminal or window manager.
It also determines the ways in which a window manager is allowed to modify application
commands to maintain its window management policy. The protocol is computer and
human language independent and has no operating system dependencies. It is layered on
top of the character terminal protocol being used, which will obviously depend on the
terminal vendor. The Application Protocol is not required to run existing applications, but
accommodates the other classes of software which were identified above. It is important
that the protocol is clearly and unambiguously defined to ensure that applications from
many different vendors can work together on the same terminal. The protocol allows
access to all of the application-related OUI functionality of the terminal.

The Application Protocol ensures that different applications will work correctly with
window managers from different vendors and that multiple applications may share the
same terminal without conflict. A developer may choose to work at this level, coding the
appropriate escape sequences into a product, but most companies will find it easier to use
the Alpha Window API or a third party toolkit as described below.

The Alpha Window API Specification

An Alpha Window library is a set of functions which provide more or less direct access to
the Application Protocol. DIA will define a single reference C language binding called
A Wlib. Since there are many different languages, application architectures and operating
systems with which Alpha Window terminals will be used, other language bindings may
emerge in due course. DIA expects that software vendors will make products available
which implement the A W1ib specification.

An AlphaWindow library may also be useful to software developers who want only to
make minor changes to their software, perhaps to allow the use of the mouse within an
applicati on.

Page 6

Copyright © 1992, Display Industry Association

Toolkits

A toolkit is a higher level library (possibly layered on top of an AlphaWindow library such
as A Wlib) which provides GUI functionality in terms of user interface objects such as
windows, scrolling lists, menus and so on. DIA anticipates that existing toolkit and
development environment vendors such as the many 4GL providers will port their
products to the Alpha Window environment and will actively encourage this process. In
addition, DIA should encourage the production of well known graphical API's such as
Windows 3.

These toolkitS will probably be most useful to developers planning new products or
contemplating large scale code changes. Competition in trJs marketplace will allow
developers to choose an API which suits their programmers and their product architecture.

Conclusions

1. Details of the Alpha Window Application Protocol are contained in a separate
document.

2. The A Wlib API is defined in the Alpha Window Application Programming Interface
Specification.

3. The Application Protocol and AlphaWindow API definitions will be made available
without requirement for membership of DIA.

4. DIA will vigorously promote the Alpha Window Application Protocol and A Wlib
specification to ensure its widespread adoption and use.

5. DIA will not attempt to standardise interfaces at higher levels of the architecture. It
expects that independent software vendors will migrate existing toolkits and also
produce new toolkits, including implementations of standard API's such as OSF /Motif.
The marketplace will decide which of these are the most useful.

6. A revenue opportunity is in producing libraries to implement the A Wlib specification,
toolkits and applications using A WIib, and window managers on top of the existing
Alpha Window Protocol.

7. Although this architecture does not specifically exclude applications which interface
directly to the terminal, DIA will clearly explain to application developers the pros and
cons of this approach.

Page 7

A1pbaWindow

Terminal Specification

Revision 1.2

April 7, 1992

Display Industry Association

1007 Elwell Court Suite B

Palo Alto, Ca. 94303

Tel: 415 960-1200

or: 415 967-6888

Fax: 415 960-3522

Copyright

1991 Display Industry Association.

All rights reserved

No pan of this publication may be reproduced, transmitted, stored in a retrieval system, or translated into any
language in any form by any means without the prior written permission of DIA Ponions of this document
can be incorporated into AlphaWindow product documentation, without the written approval of the DIA, as
long as all DIA copyrights and trademarks are acknowledged.

Trademarks

Alpha Window is a registered trademark of the Display Industry Association.

DEC, VTI02 and VT100 are registered trademarks of Digital Equipment Corporation.

Unix is a registered trademark of AT&T.

mM PC is a registered trademark of International Business Corporation.

Microsoft Windows 3.0 and Microsoft Windows are registered trademarks of Microsoft Corporation.

If any other trademarks are mentioned herein, they are the property of their respective owners.

1 Change Notice

Changes and additions that are incorporated in the present revision are noted with a " I" in the left margin,
outside of the text area. Changes will be indicated per paragraph in sections 1 through 4 and per description
division in the command section. Please note that these bars will differ each revision and reflect only that a
change has been made rather than the exact change. Also note that change bars are not included in the TOe.
Each revision is indicated by the date and revision number on the cover page and a revision number on the
lower left side of the footer.

Revision 1.2 Page - i

Section 1 ••••••.••..••••.•.•.••••..•••••...•.. 1
Introduction and Definitions

Introduction 2
Look and Feel Issues 2
Keyboard Issues 2
The Terminal Model 2
Definitions 3

Display Server 3
Window Manager 3
Session 3
WindOwing Terminal
L'lterface 3
Window 4
Main Windows 4
Transparent Windows 4
Virtual TerminaL 4
Window Decorations 4
Widgets 5
Select 5

Section 2•••••••..••.•••.•.•..•..•....... 6
Power-on Assumptions

Power-on State 7

Section 3 •••••.••.••••••••.•.••...•.....•...•• 8
Command Set and Parameter
Descriptions

Group Definitions 9
Group 1 Firmware 9
General Notes 9
Group 2 Firmware 10
Group 3 Firmware 12
Group 4 Firmware 13
General Notes 13

Command Structure 14
Common Parameter
Definitions 15

Section 4 ..•.•.••••.••••••.••.•..••.•.••••••• 16
Communications Protocol

Introduction : 17
Special Characters 17
Power-on State 18

Revision 1.2

Table of Contents

Windowing Commands •••••••••••• 19 AW_RWIN 48

Introduction 20 AW_SBORDER 49

Numbering and command
arrangement 20

AW _SDISPSZ 50

AW_SELECT 51

AW_ATIENTION 21 AW_SEND 53

AW_BEGIN 22 A W _SETA TIN 54

AW_CLOSE_WIN 23 AW_SGEOM 56

AW_CREATE_VT 24 AW_SKBD 58

AW_DA 25 AW_STACK 59

AW_DATA 26 AW_TI1LE 60

AW_DELETE_ VT 27 A W _ TI1L_HILIT 61

AW_DESELECT 28 AW_TRACK 62

AW _ENABLE_GROUP .. 29 A W _ VISmILITY 63

AW EXIT 30 - . MS_AITACH 64

AW_FREEZE_REF 31 MS_BOUND 66

AW_GBORDER 32 MS_ENQ 68

AW_GDISPSZ 33 MS_EVENT 69

AW_GEMUL 34 MS_GCONFIG 72

AW_GGEOM 35 MS_MODE 73

AW_OPEN_WIN 36 MS_MOVE 74

AW_RATIN 37 MS_RCONFIG 75
AW_RBEGIN 38 MS_SHORT_EVENT 76
AW_RBORDER 39 MS_STILE 77

AW_RDA 40 AW_SDECORATION 78

AW _RDISPSZ 41 AW_ADDCREDIT 80

A W _RESTORE 42 AW_CREDITENQ 81

AW_REXIT 43 A W _RCREDIT 82

A W _REMUL 44 AW _ZEROCREDIT 83
A W _RGEOM 45

AW_RVT 47

Page - ii

Section 1.
Introduction and Definitions

Revision 1.2 Page -1

Introduction
This work is the product of the Technical Committee of the DIA Much effort has been expended over a 9
month period to produce a specification for a device which has never existed before. The philosophy of the
first revision is to develop a specification which is sufficient to produce the first generation of Alpha Window
product without addressing details which would not add significant value. There are known areas of concern
in this first release, but on the whole, it is thought to be complete.

Look and Feel Issues

It is important to note that this document does not address the Look-and-Feel issue. This specification
defines mechanism not policy. The actual look and feel will be determined by a combination of the host
software driving the terminal, and by the terminal firmware's window drawing features.

Tne window management component is host-based so that full flexibility is achieved in terms of key strokes
and mouse interaction utilized by the user to rearrange and res tack windows. For a description of the term
"Window Manager" - see Definitions for the way it is being used here).

Keyboard Issues

The keyboard may be any keyboard the terminal manufacturer chooses in order to fit with a chosen
emulation. Enhanced PC style keyboards are desirable as they have developed into the de-facto standard in
the industry. It would be useful if at le.ast one. special key were provided for use as a ~..ndows meta~key. This
could then be used in an analogous way to the Alt key in a Microsoft Windows 3.0 environment.

The Terminal Model

The actual terminal emulation implemented is a decision to be made by the individual terminal
manufacturers. An ANSI-style terminal such as DEC VTI02 or the ANSI.SYS driver for the mM PC has
been used as the primary illustration during development of the specification.

Note that a terminal manufacturer may add value to a windOwing terminal as long as the additional value
does not conflict with the standard.

Finally, note that this Specification does not describe keyboards, emulations, screen appearances, hardware
options or toolkit APIs. None of these are within the scope of this document.

Revision 1.2 Page - 2

Definitions

Various windowing terms used tend to mean different things across different systems.

The following is a list of definitions to help reduce the potential confusion:

Display Server

This is the software component which drives the display. The Display Server is responsible for all
window clipping, per-window finite state machine maintenance, etc. It will be implemented in the
firmware of the Alpha Window terminal.

Window Manager

Is responsible for providing the user interface to the windowing system, and for interacting with the
user to control and adjust the windowing environment. For flexibility, Window Managers are
normally host-based. For example the OSF/Motif Window Manager and the Open Look Window
Manager are typical applications which provide their own look and feel.

In the past, Window Manager has meant the software component which actually controls display
output to the screen, including window clipping, etc. Nowadays, that component is referred to as the
Display Server (See above).

Session

A session is the composite of a host process and a virtual terminal, running over a single, multiplexed
connection between the terminal and the host computer. Each session is comprised of a finite state
machine with its associated screen memory.

Windowing Terminal Interface

Is the software interface to the terminal itself in order to control the windOwing functionality of the
terminal from the host. Relative to a character windowing terminal, it is the interface documented in
this document.

Revision 1.2 Page - 3

Window

A window is a viewport onto a virtual terminal screen. More than one window can be mapped onto a
specific virtual terminal. Windows may be one of two types; main windows or transparent windows.

A specific main window may be minimized, (ie. in its smallest possible state) or normal (ie.
windowed). A minimized window is also referred to as iconic. Maximized windows are implemented
as normal windows with the Window Manager recognizing the special condition.

A transient window is identified by a hint provided at creation time. It can be assumed to be of a
transient nature in that its existence time is expected to be of short duration and created to support
the pull-down menus, dialogue boxes, etc. of a typical windOwing interface. The hint is provided so
that manufacturers can utilize custom hardware features of their products to implement these types
of windows. Manufacturers may choose to implement transient windows as main windows. Although
a particular window manager may implement a hierarchical relationship between transients and
mains, there is no policy defined here in tenIlS of parent and child relationships. Such relationships
should be maintained from the host-based software components.

Main Windows

Typically, individual applications each run in their own individual main window. A main window is
very analogous to an OSF/Motif or a Microsoft Windows Main Window.

Transparent Windows

A transparent window is a "see-through" window. A major use of a transparent window is as a
bounding box, especially when its border style is set to be a rubber band. Although transparent
windows are still related to a specifiC virtual terminal, no data can ever be visualized within a
transparent window.

Virtual Terminal

The equivalent to an ordinary terminal executing an emulation such as VT100. The windowing
terminal will support multiple virtual terminals. The exact number varies by vendor and is
determined by the resources available to the specific unit. Application programs interact with the
virtual Terminal as if it were a physical terminal running only one application.

Window Decorations

There are graphic and text symbols that surround window client areas. Window decorations always
appear outside the client area, which is defined by its geometry. In level! implementations, the only
available window decorations are borders. In level 3, a decoration command is provided which
allows a variety of decorations such as caption bar, resizing borders, minimize and maximize icons,
etc.

Revision 1.2 Page - 4

Widgets

Select

There are parts of decorations which have meaning to the window manager and are reported in
mouse events. For example, a resizing border consist of eight widgets: top, bottom, left, right and
the four comers.

Virtual terminal data can be "selected" by the operator so that it can later be transmitted to the
computer. This is usually done by clicking points on the screen with the mouse. After which the host
transmits a "select" command, specifying a rectangular area of the virtual terminal. When the
terminal makes data "selected", it will highlight the data in some way to show the operator what data
has been selected. Later, the selected data can be transmitted to the host computer or de-selected.
See A W _SELECT for further explanation.

Revision 1.2 Page - 5

Section 2.
Power-on Assumptions

Revision 1.2 Page - 6

Power-on State

The terminal will behave as any ordinary terminal on power-up. A single virtual terminal session will have a
single main window associated with it, which will be zoomed to full screen size and have the keyboard
attached to it. This ensures that the terminal is immediately usable by any host software such as a lOgin
service.

The host system will have some mechanism such as 1ERMINFO under Unix which defines the base
emulation of the product for application software. Each implementation of Alpha Window terminals will
define a set of proprietary characters which are the Control Sequence Introducers for the windowing
commands defined in this specification. The codes are chosen by the terminal vendor and will not conflict
with the target terminal emulation. A mechanism will be defined on the host to allow applications access to
these characters. One example would be an environment variable under Unix. In addition, a keyboard
definition file needs to be defined such that Attention Key Sequences can be implemented.

Revision 1.2 Page -7

Section 3.
Command Set and Parameter Descriptions

Revision 1.2 Page - 8

Group Definitions

The following command specification is split-up into a number of functionality groups:

Group 1 Basic Support

Group 2

Group 3

Group 4

Mouse support

Window decoration

Communication

For a terminal to conform with the standards defined in this specification, at least Group 1 functionality must
be provided. One or more of the succeeding groups may then be optionally provided in order to supply a
more functional terminal.

An initial device enquiry will respond with the actual groups of implemented functionality so that the host
software may modify its behavior accordingly.

Group 1 Firmware

Group 1 support is basic windOwing. This is the mandatory group of functions that allow the host computer
to perform the following functions:

1. Initiate windOwing functions, determine terminal resources and windOwing capabilities, and enable
the other command groups.

2. Control physical terminal screen size.

3. Crea te and delete virtual terminals.

4. Open, close, poSition, size, stack, make visible, and form borders and titles for windows into the
virtual terminal screens.

5. Route data from and to virtual terminal screens and command processors. Also set keyboard
focus such that data typed by the operator is routed to the appropriate sessions.

6. Select virtual terminal screen data for copy and paste operations.

7. Set staCking order for windows.

General Notes

On creation, windows are initially hidden, with all other attributes of indeterminate state so that the host
computer may then adjust their geometry and state prior to being revealed.

While hidden, all operations such as geometry and stacking order are still valid.

Revision 1.2 Page - 9

Group 2 Firmware
Group 2 support is Group 1 support plus the ability to exploit a locally connected serial mouse. (Typically a
Microsoft 2-button mouse).

Group 2 support is based around the firmware sending mouse event messages back to the host whenever a
mouse event occurs.

In order to avoid flooding the serial connection back to the host, note the following:

The host software may dynamically request the firmware to either deliver, or not deliver, mouse
motion events.

Even when mouse motion events have been requested by the host, the firmware should attempt to
optimize in order to reduce the actual delivered data. The host software should not really rely on the
correctness of the positional information sent within a mouse motion event, it should always make a
positionai enquiry foiiowing a stream of motion events:

Revision 1.2

1. The host software will usually enable the mouse for solely button reporting until an
interaction occurs such that the host would wish to switch motion reporting on. This is
for operations of a transient nature such as block-mark operations.

2. Click, double-click and drag are the responsibility of the host software to analyze based on
button depression and motion reports sent back to the host. The mouse reports are
time-stamped to help the host software to detect double-clicks.

3. The enquiry response is coded separately so that it can easily be spotted by the host
software in a potential stream of regular motion events.

4. For Group 3 terminals, the host software may request the MS_ WIDGETCROSS mode.
In this mode the terminal indicates within the MS_EVENT/MS_STATUS reports an
actual widget type that the mouse cursor hotspot crossed at the time of the event.

5. Regardless of the mouse cursor style, the host software is only ever interested in the
position of the hotspot. (The host software may specify a particular style, though).

6. The "elapsed time" reported via MS_EVENT/MS_STATUS reports is a "sticky counter".
This means that it increments up to a maximum value and then sticks at that point. This
is in increments of one-tenth seconds up to a maximum of 10 seconds. It gets reset
automatically whenever a MS_EVENT/MS_STATUS report is sent

7. Whenever the mouse is activated by the host, the terminal should provide a locally driven
mouse cursor, by default invisible, to track mouse motion in addition to the text cursor.
The mouse cursor moves across the screen un-aided by the window manager. This
avoids jerky movements caused by communications delays. When it stops moving long
enough, an MS_EVENT message can be sent to the window manager, if appropriate,
indicating its new location. Movement is on a character cell basis only.

Page -10

Revision 1.2

8. A window can be "attached" to the mouse cursor so that local re-sizing and moving of
windows may occur. This operation will typically be performed on a transparent,
rubber-band bordered window, but this is not mandatory. The window will move with
the mouse cursor, locally.

There are three kinds of attachment: whole window, single border, and dual border. If the
whole window is attached then the whole window simply moves with the mouse. If a
single border is attached then the associated dimension can move only horizontally or
vertically. If a dual border is attached, two dimensions of the window will expand and
contract following mouse movement in any direction (as when a comer is grabbed for
resizing).

9. The mouse movements can be limited by the window manager. Mouse movement
boundaries can be hard or soft. A hard boundary stops the mouse cursor when
encountered and can be used, for example, for confining the mouse-cursor to a specific
window. Soft boundaries simply result in an MS_STATUS message when encountered.
This allows the window manager to highlight areas that the mouse cursor moves
through, etc. Only one set of mouse movement hard boundaries and one set of soft
boundaries can be set within the terminal.

10. Note that a "mouse" may in fact be any real or emulated device.

Page - 11

Group 3 Firmware

Group 3 support is the ability for the host software to specify which user interface objects, called decorations,
should be positioned on window borders.

The type of "decorations" which can be specified to be present are:

Maximize button: BD_MAX

Minimize button: BD_MIN

Restore button: BD_RESTORE

Control menu button: BD_MENU

Reshape indicators: BD_SIZE

Horizontal scroll bar: BD_HSCROLL

Vertical scroll bar: BD_VSCROLL

Caption bar: BD_CAPTION

These decorations are typical of the ones utilized by Microsoft Window 3.0, OSF/Motif and Presentation
Manager.

Ifa mouse is in use, then the MS_EVENT and MS_STATUS replies return an indication of whether the
mouse cursor hotspot is currently positioned over one of the "widgets" contained in a decoration. All
potentially ensuing window manipulation is controlled by the host.

A list of the valid widget identifiers are provided in the MS _EVENT command.

Revision 1.2 Page -12

Group 4 Firmware

Group 4 support is for special communications functions. These functions are referred to as a "credit" system
which allows for a handshaking alternative to XON/XOFF.

The credit system allows the terminal to start and stop the flow of data for a particular session while allowing
data to continue to flow for the other sessions.

Group 4 provides the following functions:

1. It equates a session, which is a virtual terminal within the windowing terminal coupled with an
application program running on the host to a "circuit".

2. It indicates to the computer the number of characters of data that it can receive without
overflowing its buffer for a particular circuit. The number of characters is expressed in credits,
which are actually multiples of characters.

3. It can cancel the credits it has made available.

4. It can inquire into credits available.

General Notes

Group 4 credit handling does not apply to the windowing commands themselves. This includes all groups
including Group 4.

Revision 1.2 Page -13

Command Structure
Commands are structured in an ANSI style using ascii coded decimal parameters separated by semicolons. A
manufacturer specific Windowing Command Introducer character (A W _ WCI) is defined for each product.
The default is ASCII SOH with a value of 01 Hex. Window manager implementations will be responsible for
determining this character sequence for the specific terminals used on a system. The first numeric parameter
(PI) determines which Alpha Window function is being requested. Additional parameters are referred to in
this document as P2, P3, etc. A final character, lower case w, is used to indicate the completion of a sequence.
Sequences which require text will provide the text after the final character and terminate the text with an
ANSI String Terminator (ST). A 7 bit equivalent of ST will also be recognized. Default parameters are
indicated by either a "0" or the omission of a parameter.

Once a windOwing commnd is initiated, no intervening codes may be imbedded in a command sent from the
host to the terminal or from the terminal to the host.

To better illustrate the structure, several sequences are shown below:

AW_WCI5;2w

AW_WCI5w

AW_WCI;2w

Same as above with P2 Defaulted

Invalid; PI is mandatory.

When referring to rows. columns, virtual terminals, or windows, the parameters are based at 1. For instance,
the first row n the sc-reen is row i and the first column in a row is column 1.

In commands which contain additive values, such as A W _ENABLE_GROUP, the values are added to the set
rather than replacing each other. They also are added to the set created by the previous execution of the same
command. In these commands, there is always a value (usually the default) which clears everything. A typical
A W _ENABLE_GROUP will first clear to group 1 only, then additively include 2,3, or 4.

To better illustrate the structure, several sequences are shown below:

A W _ WCI 33 ; 1 ; 2 w Set groups enabled to 1 and 2

A W _ WCI 33 ; 3 w Add group 3 to any previously enabled groups

A W _ WCI 33 1 w Reset to group 1 only

The symbol "ellipse" (; ... ;) means the values in the command are additive and that any number of values can be
present

Revision 1.2 Page - 14

Common Parameter Definitions
Parameters which are used in many sequences are defined below:

W _Handle A Window Handle. This handle is a unique value defined by the terminal at window
creation time and is used to uniquely identify windows.

Virtual_Width The number of columns in a virtual terminal screen. This value is specified at
creation of the Virtual Terminal, but may change in the course of an emulation
when applications affect the size of the virtual terminal display. An example is an
application which switches between 80 and 132 column mode.

Virtual_Height The number of rows in a virtual terminal screen. This value is specified at creation
of the Virtual Terminal, but may change in the course of an emulation when
applications affect the size of the virtual terminal display. An example is an
application which switches between 24 and 42 row mode in a Wyse 60 emulation.

Revision 1.2

A Virtual Terminal Handle. This is a unique value defined by the terminal at virtual
terminal creation time to uniquely identify a virtual session.

Page -15

Section 4.

Communications Protocol

Revision 1.2 Page - 16

Introduction
The communications protocol of this specification is a level of functionality that provides session switching,
session specific flow control, and session specific break events. Host computers already have several standard
protocols to manage flow control with existing terminals. XON/XOFF, xpc, and DTR/DSR are the most
common to the ASCII/ANSI terminal market and are almost universally supported. Multiple sessions on a
single device introduces some unique problems which are often not covered with existing host to terminal
protocols. These problems are further aggravated by the use of terminal servers in network installations and
their inherent latency.

This section describes the concepts which are supported by all Alpha Window terminals and the commands
which are provided in Group 4 which mayor may not be supported by individual hosts or terminals.

Special Characters
Three special characters are defined and supported by all Alpha Window terminals:

AW_WCI

AW_MPI

AW_LITERAL

These characters, or character sequences, are defined in a profile on the host for each manufacturers product:

Revision 1.2

The Windowing Command Introducer is a special character which indicates an
Alpha Window Command. The character is chosen by the vendor such that it has no
meaning in the base terminal emulation, and therefore can always be assumed to
indicate communication with the Display Manager.

The default value is ASCII SOH (Hex 01)

The Multiplexor Introducer is a special character which indicates a routing
command. The character is chosen by the vendor such that it has no meaning in the
base terminal emulation. The routing command can be sent either from terminal to
host or from host to terminal. Its purpose is to route display data or keyboard data
to their appropriate sessions. The connection between a virtual terminal and a
program is sometimes referred to as a circuit. The ID of a circuit is its virtual
terminal handle. A W _MPI need not be sent prior to each character, only when
routing in either direction changes. For performance purposes, an A W _MPI
command has a special format:

AW_MPI <HANDLE_PACKED>

The "packed" virtual terminal handle is packed by adding the binary value of the
virtual terminal to 30 hex, producing a single ASCII character.

The default value is ASCII STX (Hex 02)

Page - 17

A W _LITERAL This character is used to indicate that the next character received in the data stream
should not be interpreted, but should be passed through as data to the currently
selected session. This is necessary to allow the A W _ WCI and A W _MPI characters
to be embedded in data or passed through the terminal to local printers.
A W _LITERAL is indivisible from the character paired with iL There can be no
intervining characters between A W _LITERAL and the code to be passed through.

The default value is ASCII OLE (Hex 10)

DCl and DC3 characters in the data stream are replaced by A W _XON and
A W _XOFF respectively. This is to prevent the device drivers from doing improper
flow control interpretation.

A W _XON default value is ASCII DC2 (Hex 12)

A W _XOFF default value is ASCII DC4 (Hex 14)

A W _BREAK The host software, when receiving AW _BREAK, will interpret it as a break
condition and can substitute it for a real break condition.

A W _BREAK default value is ASCII EOT (Hex 04)

Power-on State

Initially Alpha Window terminals are single session terminals as defined in Section 2 under Initial State. Only
AW _BEGIN commands win be recognized. AW _LITERAL, AW _MPi, AW _XOFF, and AW _XON are all
ignored until A W _BEGIN is received by the terminal.

Revision 1.2 Page -18

Windowing Commands

Revision 1.2 Page - 19

Introduction

This section contains the presently defined commands. Below is a list of the commands separated by groups:

Group 1 Px Group 1 Cont. Px Group 2 Px

AW_ATIENTION 1 AW_RDISPSZ 61 MS_ATIACH 201

AW_BEGIN
..,

AW_RESTORE 62 MS_BOUND 205 I

AW_CLOSE_WIN 9 AW_REXIT 63 MS_ENQ 209

AW_CREATE_VT 13 AW_REMUL 64 MS_EVENT 213

AW_DA 17 AW_RGEOM 65 MS_GCONFIG 217

AW_DATA 21 AW_RVT ..,'" MS_MODE 221 I:>

AW_DELETE_VT 25 AW_RWIN 77 MS_MOVE 225

AW_DESELECf 29 AW_SBORDER 81 MS_RCONFIG 229

AW_ENABLE_GROUP33 AW_SDISPSZ 85 MS_SHORT_EVENT 2

AW_EXIT 37 AW_SELECf 89 MS_STYLE 233

AW_FREEZE 38 AW_SEND 91

AW_GBORDER 39 AW_SETATTN 93 Group 3 Px

AW_GDISPSZ 41 AW_SGEOM 97 AW_SDECORATION 261

AW_GEMUL 43 AW_SKBD 101

AW_GGEOM 45 AW_STACK 105 Group 4 Px

AW_OPEN_WIN 53 AW_TITLE 109 AW _ADDCREDIT 3

AW_RATTN 54 AW_TITL_HILIT 111 AW_CREDITENQ 309

AW_RBEGIN 55 AW_TRACK 113 AW_RCREDIT 313

AW_RBORDER 57 A W _ VISIBILITY 117 AW_ZEROCREDIT 317

AW_RDA 59

Numbering and command arrangement

Pl=X numbering is arranged in steps of5 or X + 4 = the next command number. This was done to allow
new commands to be inserted in between to maintain an alphabetical form for as long as practical with certain
assumptions made as to the necessary expansion of each group. Also, an amount of "dead space" was allowed
between each group. Group 1 starts with series 1 through 200, group 2 starts with 201 through 260, group 3
starts at 261 through 300, group 4 starts at 301 and ends at 400. Because numbering is arbitrary, 401 and on
can be any group. When adding new commands - fill the presently designated areas first.

In addition, certain commands have been shortened to improve performance. Specifically
MS_SHORT_EVENT has been implemented with Px=2,and AW _ADDCREDIT has been implemented
with Px=3.

Revision 1.2 Page - 20

AW ATTENTION -
Group:

Sequence:

Description:

Reply:

Direction:

Revision 1.2

1

Sent to the host whenever a set of keys predefined by a A W _SET A TIN is struck.
A W _A ITENTION is transmitted to the host when the key combination is made
(held down Simultaneously). Any subset key chords of an attention are also sent.

The order of subsets sent to the host is at the discretion of the terminal vendor.

The timing required to detect a key combination is at the discretion of the terminal
vendor.

[None]

Host ... -- Terminal

Page - 21

AW BEGIN -
Group:

Sequence:

Description:

Reply:

Direction:

Note:

Revision 1.2

1

Request from the host to the terminal to begin using the Alpha Window protocol. If
confirmation is not received within a specified time, the host will assume the
terminal is not an Alpha Window terminal. All other A W _ WeI commands are
ignored until AW _BEGIN is received by the terminal. The terminal will not
recognize special characters or Alpha Window commands until A W _BEG IN is
received.

An A W _BEG IN received while the terminal is in Alpha Window mode will place
the terminal in the same state as AW _BEGIN received after power-on (see
power-on state).

Host --.. Terminal

All virtual terminals, windows, attention keys, etc., are cleared and only wallpaper
shows on the display.

AW BEGIN Page - 22

AW CLOSE WIN - -
Group:

Sequence:

Description:

Reply:

Direction:

Note:

Revision 1.2

1

Close window. Window is deleted and resources freed. W _Handle is mandatory, if
missing or invalid, the command is ignored.

If the keyboard focus is assigned to the window being closed, the focus becomes
unassigned.

[None]

Host -..... Terminal

Does not affect associated virtual terminal session.

AW CLOSE WIN - - Page - 23

AW CREATE VT - -
Group:

Sequence:

Description:

Reply:

Direction:

Note:

Revision 1.2

1

AW _weI 13 ; <Virtual_Width>; <Virtual_Height>; <Maximum_Width>;
<Maximum_Height>; <Private_Hint> w <Name>ST

Creates a virtual terminal session, including a finite state machine, with virtual
terminal size specified by Virtual_Width, Virtual_Height. Virtual_Width and
Virtual_Height default to the normal height of virtual termi.'lal screen being
created. Virtuat Width and VirtuatHeight are the sizes of virtual terminal screens.

Maximum_Width and Maximum_Height indicate the maximum sizes that the
virtual terminal may become due to application screen size changes, at which time
an unsolicited A W _ R VT will be sent to the host. The default is Virtual_Width and
Virtual_Height.

Name is from AW_REMUL; default is the first emulation reported in the
AW_REMULlist.

Private_Hint indicates that the virtual terminal will be used by the window manager.
The terminal may use this hint to implement vendor specific features.

P6 < Private_Hint>

1 PH_NORMAL

2 PH_PRIVATE

Host - Terminal

If the terminal is unable to create a virtual terminal with the specified virtual width
and height, the terminal can create virtual terminal with a width and height of its
own choosing and report this via A W _RVT.

Virtual_Width and Virtual_Height are unconnected with P _Height and P _Width as
Specified in AW _SDISPSZ or AW _RDISPSZ, or with any application size
commands.

Page - 24 AW CREATE VT - -

AWDA -
Group: 1

Sequence:

Description: Windowing terminal device attribute query.

Reply:

Direction: Host - Terminal

Revision 1.2 AWDA Page - 25

AW DATA

Group:

Sequence:

Description:

Reply:

Direction:

Note:

Revision 1.2

1

AW _ WeI 21 w <Data> ST

Lines are separated with carriage return (CR) characters. No carrage return is
transmitted after the last line. The actual keyboard should be locked during this
transmission. The data immediately follows the final character of the sequence. A
string terminator character is sent upon completion.

[None]

Host •• -- Terminal

This is to support cut and paste. Data is selected by A W _ SELECf.

AW DATA Page - 26

AW DELETE VT - -
Group:

Sequence:

Description:

Reply:

Direction:

Revision 1.2

1

Deletes a virtual terminal session. Deleting a Vf will automatically close any open
windows associated with that Vf. If keyboard focus is on a window of the virtual
terminal, only attention keys will be transmitted after this command is executed.
Vf_Handle is required and the command will be ignored if it is omitted or invalid.

[None]

Host --.. Terminal

Page - 27

AW DESELECT

Group:

Sequence:

Description:

Reply:

Direction:

See Also:

Revision 1.2

1

Un-selects the virtual terminal screen data selected by the previous AW _SELECf.
The data is then un-highlighted.

[None]

Host - Terminal

Page - 28 '

AW ENABLE GROUP - -
Group:

Sequence:

Description:

Reply:

Direction:

Note:

Revision 1.2

1

AW_ WeI 33; <Group> ; ... ; <Group> w

Enables respective alpha window command groups. Group 1 is automatically
included in all selections. Groups are additive.

Po Group

1 Group 1 ONLY

2 Group 2 and 1

3 Group 3 and 1

4 Group 4 and 1

[None]

Host - Terminal

Additional groups are reserved.

Page - 29

AW EXIT

Group:

Sequence:

Description:

Reply:

Direction:

Note:

Revision 1.2

1

Request to exit Alpha Window mode. The terminal returns to it's power-up state.
Should a power failure occur, the operator should press a special key combination,
causing the terminal to send an A W _EXIT to the host computer, at which time the
computer can exit windOwing gracefully.

Host ... -.. Terminal

Even when the terminal is not in Alpha Window mode, it should be able to send
AW_EXIT.

AW EXIT Page - 30

AW FREEZE REF - -
Group:

Sequence:

Description:

Reply:

Direction:

Revision 1.2

1

AW _weI 38; <Freeze> w

Freeze or Unfreeze screen refreshes. This command allows the computer to prevent
the display of incomplete results of resizing, stacking, visibility, etc. The actual
appearance of the screen when this command is used is at the discretion of the
vendor.

P2 <Freeze>

1 Unfreeze

2 Freeze

When Freeze is used, refreshes of the display are delayed untill Unfreeze is used.

[None]

Host - Terminal

A W FREEZE REF - - Page - 31

AW GBORDER

Group:

Sequence:

Description:

Reply:

Direction:

Revision 1.2

1

Request the terminal to return an A W _RBORDER, indicating the size of the
border segments.

Host - Terminal

AW GBORDER Page - 32

AW GDISPSZ -
Group: 1

Sequence:

Description: Get display size palette (Refers to the physical screen size).

Reply:

Direction: Host - Terminal

Note: Screen size is vendor specified.

Revision 1.2 Page - 33

AW GEMUL PI= 43 -
Group: 1

Sequence: A W _ weI 43 w

Description: Get emulation support summary.

Reply: [AW_REMVL]

Direction: Host - Terminal

Revision 1.2 Page - 34

AW GGEOM Pl= 45 -
Group: 1

Description: Get geometry of specified window. W _Handle is required. If invalid or missing,
A W _RGEOM with a window handle of zero is returned.

Reply: [AW_RGEOM]

Direction: Host -..... Terminal

Revision 1.2 AW GGEOM Page - 35

AW OPEN WIN -
Group:

Sequence:

Description:

Reply:

Direction:

Revision 1.2

1

Open window onto specified virtual terminal. Window may be of type main, or
transparent. Window is initially hidden with all other attributes of indeterminate
value. Transient flag indicates whether the window is expected to be of a temporary
nature. Note that the Transient flag is simply a hint to the terminal that this window
is expected to be in existence for a short time. The terminal may choose to ignore
the hint if it so desires, or it may choose to perform some degree of optimization for
transients, if relevant. If Vf_Handle is missing or invalid or if the terminal fails to
open the window due to a lack of memory or some other failure, the reply
A W _R WIN will return a window handle of zero.

P3 < Window_Type>

1 Wf_MAIN

2 WT_TRANSPARENT

P4 <Transient_Flag>

1 TF_NORMAL

2 TF_TRANSIENT

Host --.. Terminal

AW OPEN WIN - - Page - 36

AW RATTN Pl= 54

Group: 1

Sequence: AW _weI 54 ; <Key_ID>; <Status> w

Description: Indicates the success or failure of an A W _SETA TIN command.

P3 Status

1 Success

2 Failure

Reply: [None]

Direction: Host •• -- Terminal

Revision 1.2 AW RATIN Page - 37

AW RBEGIN Pl= 55 -
Group: 1

Sequence: A W _ weI 55 w

Description: Returned to the host upon receipt of an A W _BEGIN sequence acknowledging
usage of the alpha Window commands.

Reply: [None]

Direction: Host Terminal

Revision 1.2 AW RBEGIN Page - 38

AW RBORDER -
Group:

Sequence:

Description:

Reply:

Direction:

Note:

Revision 1.2

1

AW_WCI 57; <W_Handle>; <Bd_Sz_Top>; <Bd_Sz_Rt>; <Bd_Sz_Bot>;
<Bd_Sz_Lt> W

Response to A W _ GBORDER. Top and bottom values indicate the number of
character rows used to create the border, including decorations. Left and right
border thicknesses indicate the number of character columns used to create the
border. This allows the window manager to determine total window size on the
display for calculating new positions during tiling and cascade arrangements.
If Bd_Sz_Top, Bd_Sz_Rt, Bd_Sz_Bot, or Bd_Sz_Lt are omitted, their values default
to 1.

[None]

Host •• -- Terminal

Window borders, including decorations, sit outside the window client area.

AW RBORDER Page - 39

AWRDA

Group:

Sequence:

Description:

Reply:

Direction:

Revision 1.2

1

AW_ WeI 59; <Major_Rev>; <Minor_Rev>; <Group>; ... ;<Group> w

Sent in response to A W _DA Specifies which functionality groups the firmware
supports. < Group>; ... ; <Group> is an explicit list of groups supported. If groups 1,
2, 3 and 4 are supported, then four parameters will be returned in addition to the
first three parameters indicating an A W _GROUPS sequence. Group 1 support is
mandatory. Major_Rev is the digit to the left of the decimal point and Minor_Rev
is the digit to the right of the decimal point reflecting the revision found on the
cover page of this specification.

[None]

Host ~- Terminal

AWRDA Page - 40

AW RDISPSZ -
Group:

Sequence:

Description:

Reply:

Direction:

Note:

Revision 1.2

1

AW_ WCI 61; <Width_I>; <Height_I>; <Width_C>; <Height_C>;
<Width_Lo>; <Width_Hi>; <Height_Lo>; <Height_Hi>; <Width>;
<Height> ; <Width>; <Height>; .. ; <Width>; <Height> w

Report display size palette. Icon widths and height, current display size, all possible
display size pairs. A W _RDISPSZ is sent in response to A W _ GDISPSZ

Width_I and Height_I are the number of character columns and rows the terminal
uses to produce ICONS (figures which depict minimized windows). This is the total
width and height including borders and titles.

Width_ C and Height_Care the number of columns and rows on the current physical
display.

Width_Lo and Width_Hi specify a range within which the host can specify, USing
AW _SDISPSZ, any display width (for those terminals capable).

Height_Lo and Height_Hi specify a range within which the host can specify any
display height.

Width and Height are repeated pairs indicating all possible width and height specific
combinations of display size that the terminal allows.

[None]

Host ~- Terminal

Response is based on resources available at the time A W _ GDISPSZ was received.

AW RDISPSZ Page - 41

AW RESTORE -
Group:

Sequence:

Description:

Reply:

Direction:

Revision 1.2

1

Sequence from terminal to host indicating that the terminal's environment has been
corrupted, such as a power failure. This sequence can be sent at any time, including
power-up. The host computer can then re-create the necessary virtual terminals and
windows to restore the terminal's state. Typically, this is accomplished by some
special key combination.

[None]

Host •• -- Terminal

AW RESTORE Page - 42

AW REXIT Pl= 63 -
Group: 1

Sequence: A W _ WeI 63 w

Description: Confirmation that Alpha Windowing has ceased. All virtual terminals are deleted
and all windows closed. The terminal reverts to the power-on default condition.

Reply: [None]

Direction: Host • • Terminal

Revision 1.2 Page - 43

AW REMUL Pl= 64

Group: 1

Sequence: AW _weI 64 w <name>; ... ; <name> ST

Description: Report emulations supported by the terminal. Names are separated by semicolons.
List is terminated by ST.

Reply: [None]

Direction: Host ... - Terminal

Revision 1.2 AW REMUL Page - 44

AW RGEOM Pl= 65 -
Group: 1

Sequence: AW _weI 65 ; <W _Handle>; <W _State>; <X>; <Y>; <Width>; <Height>;
<Virt_X>; <Virt_Y>; <Virtual_Screen Width>; <Virtual_Screen Height>;
<P _Width>; <P _Height>; <Caption_Width> w

Description: Report geometry of specified window. X, Y, Width, Height are relative to physical
terminal screen. Virt_X, Virt_ Yare the offset into the virtual screen.
Virtual_Width, Virtual_Height are the virtual screen size. W _State is WS_MIN or
WS_NORM for minimized or non-minimized states respectively. AW _RGEOM is
sent in reply to A W _ GGEOM. Caption width returns the current maximum caption
bar title text size. When state is WS_MIN, X and Y, refer to the Icon location. In all
cases, X and Y refer to the bottom right corner of the window, relative to the top
left corner of the physical terminal display.

P3 <W_State>

1 WS_NORM

2 WS_MIN

Reply: [None]

Direction: Host •• -- Terminal

Note: See following page illustrations of physical and virtual screen/display areas.

Revision 1.2 AW RGEOM Page - 45

AW RGEOM, Continued -

Revision 1.2

y

Border

Height

x Width

\
Physical Terminal Display

Note: The border, including decorations,
sit outside of the window boundries.

Virt_X

I Virt_Y

Height Virtual Height

Width

Virtual Width

Virtual Session Memory Image

A W _RGEOM, Continued Page - 46

AWRVT -
Group:

Sequence:

Description:

Reply:

Direction:

Revision 1.2

1

Sent in response to an A W _ CREA TE_ VI' request. VI' _Handle is assigned by the
terminal. On fail, for whatever reason, a VI' _Handle of zero is returned. This
sequence can be unsolicited as a result of an application's display size change
sequence. Virtual_Width and Virtual_Height are virtual terminal screen height and
width. The range ofVI'_Handle is 1 to 4F hex to allow for packed VI'_Handle
parameters in A W _MPI sequences.

[None]

Host ... -- Terminal

AW RVT Page - 47

AW RWIN -
Group:

Sequence:

Description:

Reply:

Direction:

Revision 1.2

1

Sent in response to an A W _OPEN_WIN request. Window handle is assigned by the
terminal. On fail, for whatever reason, a window handle of zero is returned.

[None]

Host ... - Terminal

AW RWIN Page - 48

AW SBORDER -
Group: 1

Sequence:

Description: Set border style for specified window.

P3 <Border_Style>

1 BS_THICKNORMAL

2 BS_THIN

3 BS_NONE

4 BS_THICKBOLD

5 BS_GHOSTOUTLINE

Reply: [None]

Direction: Host --+a Terminal

See Also: AW_SDECORATION

Note: If border style is BS_NONE, the window decorations are still displayed.

Revision 1.2 AW SBORDER Page - 49

AW SDISPSZ -
Group:

Sequence:

Description:

Reply:

Direction:

See Also:

Revision 1.2

1

Set physical screen size. P _Width, P _Height must be a valid pair reported in
A W _RDISPSZ The terminal will refresh the terminal screen. Invalid parameters
causes the sequence to be ignored. It is the window manager's responsibility to
ensure that window dimensions, mouse boundaries, etc., remain within proper
range.

[None]

Host - Terminal

AW SDISPSZ Page - 50

AW SELECT P1= 89 -
Group: 1

Sequence: AW _weI 89; <Vf_Handle>; <Start_Row>; <Start_Col>; <End_Row>;
<End_Col>; <Select_Mode> w

Description: The specified rectangle of the specified virtual terminal screen is "selected" (used by
A W _SEND) and is highlighted by the terminal. Any previously selected data is
de-selected by the terminal.

Reply:

Direction:

Revision 1.2

Coordinates are relative to the virtual terminal screen. Select mode indicates ether
rectangular or line-wrapped highlighted area the actual method of highlighting is at
the prerogative of the terminal manufacturer (Eg. reverse video blOCk). Wrap
occurs at the end of virtual lines. and wraps to the beginning of subsequent lines.
Once data is selected, it can scroll or move and the selection will move with it.
Changes to selected data and their results are undefined for this specification. Only
one selection can be active in the Alphawindow terminal at a time.

P7 < Select_Mode>

1 HS_REef

2 HS_WRAP

[None]

Host --+. Terminal

Page - 51

A W SELECT, Continued -

Start
Row

Revision 1.2

Start
Col

End
Col

.. ~---- .-/'

Start _
Row

; : ,-----,
1 I: : L _____ 2 ~ _____ l

;-------.
1 1
1 1
1 ______ 2

.-----, ,-----, t I
1 I 1 1 1 1
1 I I I I I
~ _____ 2 ~ _____ l ~ _____ 2

End
-Row

Virtual Terminal Display, Select_Mode = HS_REef

1
End
Col

Start
Col

1

Virtual Terminal Screen, Select_Mode = HS_WRAP

A W _ SELECf, Continued Page - 52

AW SEND -
Group:

Sequence:

Description:

Reply:

Direction:

Revision 1.2

1

Request the currently selected data to be sent to the host. H there is no data
selected, then AW_DATA will be returned with no data.

Host -..... Terminal

AW SEND Page - 53

AW SETATIN -
Group:

Sequence:

Description:

Reply:

Direction:

Revision 1.2

1

Define attention keys. Mechanism for host to define to terminal a range of key
sequences and identifiers to return.

Key numbers are assigned to keyboard keys according to mM EPC and DEC Vf420
keyboard standards. In addition, individual terminal manufactures can provide
additional documented key codes for their own keyboards. Key numbers are in
ASCII decimal format. All Key numbers in a single A W _SETA TIN command form
a "chord of keys" which when struck at the same time, will cause the terminal to
transmit an AW _ATTENTION sequence to the host with the KEY_IDN code
Specified. AW _SETATTN commands are cumulative. IfKEY_IDN is absent, all
AW _SETATTN are cleared. If Key_Number is absent, SETATIN for KEY_IDN is
cleared.

EPC (enhanced 101/102 keys)and Vf420 keyboards are shown on the follOwing
page. Corresponding decimal key numbers are also shown on the follOwing page.

Once a key chord has been set using this command, it will no longer be available as
session data.

Host --+. Terminal

Page - 54

AW_SETATTN, Continued

I

CiJ00000000~G@J@)GD ~~~
0@)~@J§J~§J§J§)~~@J§)D ~~~
~G§J§)~§J~§@§)8G§)G LJ ~
GQ~~~~~§~§@~~~ ~~~
0G (61) 00

VT320 Style Keyboard

I

CiJ00000000~G@J@)0
0@)~Q!J§J@)§J§J§J~~@J~~
0C!D§J§J~@J§J@J@§J~B0
[~)~@J~@J~@)§@~~[57) o G(61)0 0

AT Style Keyboard

~~@
§~~

~
@J§)~

AT Style Keyboard (International)

Revision 1.2 A W _SET A TIN, Continued Page - 55

Group: 1

Sequence: AW _weI 97 ; <W _Handle>; <W _State>; <X>; <Y>; <Width>; <Height>;
<Virt_X>; <Virt_Y> w

Description: Set geometry of specified window. X, Y, Width, Height are relative to physical
terminal screen. Virt_x, Virt_ Yare relative to the virtual screen. State is WS_MIN
or WS_NORM for minimized or non-minimized W _State(s) respectively; when the
state is WS_MIN, X and Yare relative to the icon location.

Reply:

Direction:

Example:

Revision 1.2

X and Y refer to the row and column of the bottom-right hand comer of the window
relative to the top left comer of the physical terminal display. This allows the
window to be positioned off the screen USing positive integer parameters.

P3 <W_State>

1 WS_NORM

2 WS_MIN

[None]

Host --•• Terminal

A W _ WeI 97 ; 1 ; ; 1 ; 1 ; 80 ; 24 ; 1 ; 1 w

Explanation: Open a window which occupies an entire 80 x 24 physical display and
displays an entire 80 x 24 virtual terminal.

AW SGEOM Page - 56

AW SGEOM, Continued -

Revision 1.2

Y

Border

Height

x Width

\
Physical Terminal Display

Note: The border, including decorations,
sits outside of the window boundries.

VirtY

Virt X

Height
Virtual Height

Width

Virtual Width

Virtual Session Memory Image

A W _SGEOM, Continued Page - 57

AW SKBD -
Group:

Sequence:

Description:

Reply:

Direction:

Note:

Revision 1.2

1

Assign keyboard focus to specified window. Active cursor appears in the specified
window and terminal sends a A W _MPI routing command with the virtual terminal
associated with the window each time the keyboard data is sent to the host (if
different from the previous virtual terminal). This is completely separate from host
display data which is routed from the host to a virtual terminal via A W _MPI. If
W _Handle is invalid, the command is ignored.

[None]

Host - Terminal

When keyboard focus is unassigned, only attention keys can be transmitted and no
active cursor appears.

AW SKBD Page - 58

AW STACK Pl [05 -
Group: 1

Sequence: AW_ WeI 105; <W_Handle>; <Stack_Request> w

Description: Promote or demote specified window in window stack. Promotion is always to top
most, demotion is always to bottom most.

P3 <Stack_Request>

1 SR_PROMOTE

2 SR_DEMOTE

Reply: [None]

Direction: Host --+. Terminal

Revision 1.2 Page - 59

AW TITLE PI 109

Group: 1

Sequence: AW _weI 109 ; <Vf_Handle> ; <W _Handle>; <Virt_Row> ; <Virt_ Col> ;
<Length> w

Description: Set window title. The text located in the virtual terminal screen specified by
Vf_Handle at the location specified by <Virt_Row> and <Virt_CoI> for a length
specified by <Length> becomes the title for the window Specified by
< W _Handle>. After execution of A W _TITLE, the text can be deleted from the
virtual terminal screen. If length = 0, no title will be displayed.

Reply: [None)

Direction: Host - Terminal

Note: Null text erases the title

See Also:

Revision 1.2 AW TITLE Page - 60

AW TITL HILIT Pl 111 -
Group: 1

Sequence:

Description: Highlight or Un-highlight a window's title according to Highlight_Request

P3 Highlight_Request

1 HR_NORMAL

2 HR_HILITE

Reply: [None]

Direction: Host --+. Terminal

Revision 1.2 Page - 61

AW TRACK Pl..;113 -
Group: 1

Sequence: AW_ WCI 113; <W_Handle>; <Track>; ... ;<Track> w

Description: Sets or resets cursor tracking on specified window. If cursor tracking is set on, the
terminal should ensure that the current cursor position is visible by scrolling the
virtual screen relative to the window. Tracking should occur regardless of the
activitie which requires the cursor to be scrolled into view, i.e., resize and move.
Horizontal and vertical tracking may be set independently. Tracking selections are
cumulative.

P3 <Track>

1 CS_NONE

2 CS_HlRACK

3 CS_VTRACK

Reply: [None]

Direction:

Note:

Revision 1.2

Host Terminal

Tracking occurs when cursor is outside of boundary, if boundary is moved away from
the cursor - cursor tracking must start.

AW TRACK Page - 62

AW VISIBILITY -
Group:

Sequence:

Description:

Reply:

Direction:

Note:

Revision 1.2

1

AW_ WeI 117; <W_Handle>; <Visibility> w

Hide or reveal specific window, (client area, borders, decorations, and minimized
window icorns), or all windows if Window handle is zero. It is the window manager's
responsibility to ensure that the window's geometry and decorations are appropriate
prior to USing this command.

P3 <Visibility>

1 VR_REVEAL

2 VR_HIDE

[None]

Host - Terminal

When VR_HIDE is used, decorations and borders are hidden.

AW VISmILITY Page - 63

MS ATTACH PI =201

Group: 2

Sequence: AW_ WCI 201; <W_Handle>; <X>;<Y>; <Attachment_Type> w

Description:

Revision 1.2

Attaches the specified window to the mouse at the specified attachment anchor
point (X,Y). If the mouse position is different from the anchor point at the time
this command is received, the difference is used to adjust the geometry of the
attached window. Any type of window, including icons, can be attached to the
mouse. The esthetics quality of the results is the responsibility of the manufacturer.
Attachment type BD _MOVE_ALL causes adjustments of the window position with
mouse movement and all other attachment types cause adjustments to window size.
Only one MS_ATIACH is allowed at a time.

P4 < Attachment_ Type>

1 BD_DETATCH

2 BD_STRETCH_N

3 BD_STRETCH_E

4 BD_STRETCH_S

5 BD_STRETCH_W

6 BD _STRETCH_NE

7 BD _STRETCH_SE

8 BD _STRETCH_NW

9 BD _STRETCH_SW

10 BD_MOVE_ALL

11 BD_SLIDE_H

12 BD_SLIDE_V

MS ATTACH Page - 64

MS_AT'TACH, Continued

Description:

Reply:

Direction:

Revision 1.2

Continued

Attachment types allow either one or two dimensions to be stretched in conjunction
with the mouse, or for the entire window to be moved along with the mouse. Also,
the slider attachments move the slider within a scroll bar.

The vendor can use a rubber band type of border to indicate the attached
movement, move an entire window, or use any other visual indication of the actual
movement of the attached window.

In a typical scenario in which MS_AITACH is used, the mouse is moved over some
widget, such as the caption bar, the operator presses down on a mouse button,
moves the mouse and releases the button.

When the button is pressed, a mouse event is sent to the host computer. As it may
take a while for the event to be recognized by the host-computer, the event will
contain the mouse's position at the time of the click. This is now the anchor point
for the attach.

In the meantime, the operator is probably moving the mouse. When the host
computer sends the MS _A IT ACH command, the mouse is probably somewhere
other than the original anchor point.

/ The terminal then compares the anchor point with the mouse's current poSition and
adjust the attached window as if the mouse was attached at the anchor point and
then moved.

[None]

Host --.. Terminal

MS_ATTACH, Continued Page - 65

MS BOUND PI 205 -
Group: 2

Sequence: AW _ WCI 205; <Status>; <Bound_Type>; <X>; <Y>; <Width>; <Height> w

Description: Sets hard or soft mouse boundaries. Coordinates are relative to the physical
terminal screen. Note that a maximum of one hard and one soft boundary may exist
at any time. Subsequent MS_BOUNDs replace current ones of the same type. If
<X>t <Y>t <Width> or <Height> are omittedt their values remain unchanged.
Boundary is the space between character cells formed to the outside of the rectangle
specified by the parameters.

Reply:

Direction:

Revision 1.2

P2 <Status>

1 Set

2 Clear

P3 < Bound_ Type>

1 MS_BSOFf

2 MS_BHARD

MS _BSOFf indicates a boundary which triggers a MS _EVENT when crossed in any
direction.

MS_BHARD indicates a boundary which the mouse cannot crosst except to enter
the boundary area, in which case the mouse cursor stops and no MS_EVENT is
output.

[None]

Host --.. Terminal

Page - 66

MS BOUND, Continued - PI =205

y

j-----j ,-- ---I i------, ~------I
, I I I I I, I
I f I I I • I I I ______ J ,___ ~ , ______ l , ______ .1

------:
x ;-------.

I I
I I 1 ______ .1

;-------,
I I
I I , ______ J

Height

;-------,
I I
I I I ______ J

I I j------, ;-------. ;-------,
I t I I I I I f
I I I I I I I I , ______ J I ______ J , ______ J , ______ J

Width

MS _BOUND - between Rows and Columns

Revision 1.2 MS BOUND, Continued Page - 67

MS ENQ -
Group: 2

Sequence:

Description: Perform a mouse enquiry.

Reply: [MS_EVENT] (Event Type = MS_STATUS)

Direction: Host - Terminal

Revision 1.2 Page - 68

MS EVENT PI =213 -
Group: 2

Sequence: AW _ WCI 213; <Event_Type>; <Px>; <Py>; <Elapsed_Time>; <W _Handle>;
<Widget>; <Button_Status>; ... ; <Button_Status>; <Key_ModUier>w

Description: Report a mouse event. Mouse cursor coordinates are reported for the location of
the mouse hot spot at the time of the report. Elapsed time is an integer number
representing tenths of a second since the last mouse event report (e.g 25 is
equivalent to 2.5 seconds, sticks at 10 seconds). There are two timers: One timer is
assigned only to the button events and the other is assigned to all other events. This
eases the timing of button events for the host computer. The first event contains the
maximum times value.

Revision 1.2

The Button Status indication is a series of single digit numbers which represents the
status of the mouse buttons. The number of parameters depends on the number
reported in the MS_RCONFIG report. This allows other pointing devices which
have more than the standard 2 or 3 found on mice. In addition, if devices evolve to
have multi-state buttons, the parameters will be allowed values other than 0 and 1.

The widget parameter indicates which widget the mouse cursor hotspot is located
over. Widget may be null, and will always be null for terminals which do not support
Group 3 operation.

W_Handle is omitted when the mouse is over wallpaper. W_Handle is reported
when the mouse is over the client or any widget including the border.
MS _ CLIENT_ENTER and MS _CLIENT_LEAVE indicate entry and departure of
a window's client area.

When the display is changed by Alpha Window commands, MS _EVENT reports will
reflect hte new screen state at the mouse location.

See Event_type, Button Status, and Widget descriptions on the following pages.

MS EVENT Page - 69

MS_EVENT, Continued

Note:

Revision 1.2

P2 <Event_Type>

1 MS_BUTION_UP

2 MS_BUTION_DOWN

3 MS_MOTION

4 MS_WIDGET

5 MS_BOUNDCROSS

6 MS_CLIENT_ENTER

7 MS_CLIENT_LEAVE

8 MS_STATUS

Po <Button Status>

1 MS_BUTTON_UP

2 MS_BUTION_DOWN

P9, PIO,
< Key_Modifier>

Pete. *
1 None

2 Ctrl

4 Shift

8 Alt (Left)

16 Alt (Right)

• Depends on numbers of Buttons.

Values for Key_Modifier can be added together in any combination. For example:
6=Ctrl + Shift.

MS_EVENT, Continued Page -70

MS EVENT, Continued -
P7 <Widget>

1 Wf-.NULLWIDGET

2 wr _MAX ,Maximize Button

3 wr_MIN,Minimize Button

4 wr_RESTORE ,Restore Button

5 wr_MENU ,Control Menu Button

6 wr _SIZEN ,North window size widget

7 wr _SIZES ,South window size widget

8 wr _ SIZEE ,East window size widget

9 wr_SIZEW ,West window size widget

10 wr _ SIZENW ,North-west window size widget

11 wr_SIZENE ,North-east window size widget

12 wr_SIZESW ,South-west window size widget

13 wr_SIZESE ,South-east window size widget

14 wr_HSCROLL1 ,Left scroll arrow

15 wr _HSCROLL2 ,Left of slider

16 wr _HSCROLL3 ,Slider

17 wr _HSCROLU ,Right of slider

18 wr_HSCROLLS ,Right scroll arrow

19 wr_ VSCROLL1 ,Top scroll arrow

20 wr _ VSCROLL2 ,Above slider

21 wr _ VSCROLL3 ,Slider

22 wr _ VSCROLU ,Below slider

23 wr_ VSCROLLS ,Bottom scroll arrow

24 wr_CAPTlON ,Title Bar

25 wr_BORDER

Reply: [None]

Direction: Host •• -- Terminal

Revision 1.2 MS_EVENT, Continued Page -71

MS GCONFIG -
Group: 2

Sequence:

Description: Requests the mouse hardware configuration.

Reply:

Direction: Host - Terminal

Revision 1.2 MS GCONFIG Page -72

MS MODE PI 221 -
Group: 2

Sequence: A W _ WCI 221 ; <Mode>; ... ; <Mode> w

Description: Set the mouse event reporting mode. Widget crossing events are only valid for
Group 3 terminals. Modes are additive.

Pn <Mode>

1 MS_DISABLE

2 MS_CLICKS

3 MS_MOTION

4 MS_WIDGET

5 MS_BOUNDCROSS

6 MS_ CLIENT_ENTER/LEA VE

7 MS_SHORT_EVENTS

Reply: MS _EVENT (Type = MS _STSTUS)

Direction: Host --... Terminal

Note: MS_DISABLE completely disables the mouse.

Revision 1.2 MS_MODE Page -73

Group: 2

Sequence: AW_WCI225; <X>; <Y> w

Description: Move mouse cursor. X and Yare the physical terminal coordinates for the cursor
hotspot.

Reply: [None]

Direction: Host - Terminal

Revision 1.2 MS MOVE Page -74

MS RCONFIG PI =229 -
Group:

Sequence:

Description:

Reply:

Direction:

Revision 1.2

2

AW _ WCI 229 ; <Buttons> w

Reply to MS_GCONFIG. H"Buttons" is zero then no mouse is attached to the
terminal. Otherwise it is the number of buttons that the mouse provides.

[None]

Host ... -- Terminal

MS RCONFIG Page -75

MS SHORT EVENT - -
Group:

Sequence:

Description:

Revision 1.2

2

High performance mouse event utilizing the minimum number of characters. If any
ofPx, Py, or W _Handle remains the same from the previous MS_MOTION /
MS_SHORT_EVENT then they can be omitted.

I P6 <Type>

MS_MOTION

MS_CLIENT_ENTER

MS_CLIENT_LEAVE

erminal

Page -76

MS STYLE PI 233 -
Group: 2

Description: Set mouse cursor style.

P2 < Cursor_Style> Description

1 MS_ARROW Free cursor· pointer

2 MS_INVISmLE No cursor

3 MS_mEAM Data entry cursor

4 MS_WAIT
Hourglass - wait for process to
complete

5 MS_CROSS "Move" window cursor

6 MS_UPARROW Upward pointing arrow

7 MS_SlZE
Small box on comer of larger box
for sizing

8 MS_SlZENWSE Diagonal resize (south to east)

9 MS_SlZENESW Diagonal resize (south to west)

10 MS_SlZEWE Resize (left to right)

11 MS_SIZENS Resize (up to down)

Reply: [None]

Direction: Host - Terminal

Revision 1.2 MS STYLE Page -77

AW SDECORATION

Group:

Sequence:

Description:

Reply:

Direction:

Note:

Revision 1.2

3

AW _ WCI 261 ; <W _Handle>; <Decoration>; ; <Decoration> w

Specifies border decoration requirements. The decorations are additive. Note that
an AW _SOECORATION request always overrides a conflicting A W _SBORDER
request if the terminal supports Group 3 functionality (Example: BS_NONE will
be overridden by BD _SIZE). A decoration can consist of one or more widgets

Pn <Decoration>

1 BD_NONE

2 BD_MAX

3 BO_MIN

4 BO_SlZE_NORM

5 BO_SlZE_BOLD

6 BO_RESTORE

7 BO_MENU

8 BO_VSCROLL

9 BO_HSCROLL

10 BO_CAPTION

[None]

Host --.. Terminal

BO _SIZE means a window border with 8 widgets which can be used for re-sizing.
This would override any border specified by A W _SBORDER.

AW_SDECORATION Page -78

AW SDECORATION, Continued -

Client Area

BD_HSCROLL

Consist of Left, Right, and Slider Widgets

Sample AJpbaWindow Layout (not to scale)

Revision 1.2 AW_SDECORATION, Continued

Pl-261

Consist of 8 Top,
Botton, Left, Right,
and Comer widgets

Consist of Top,
Bottom, and
Slider Widgets

Page -79

AW ADDCREDIT -
Group:

Sequence:

Description:

Reply:

Direction:

Note:

Note:

Revision 1.2

4

AW_ WCI 301; <VfHandle>; <Credits> w

Sent between the Alpha Window terminal and the host to allow characters to be
sent. One credit corresponds to a block of 32 bytes.

Vf Handle is the Circuit ID for the logical circuit.

Credits is the number of 32 byte blocks of characters allowed to be sent.

[None]

Host • • Terminal

Alpha Window commands do not use credits.

Default for credits is 4.

AW_ADDCREDIT Page - 80

Group:

Sequence:

Description:

Reply:

Direction:

Revision 1.2

4

Requests the number of credits available to the session, (i.e. how many more full
blocks can the transmitting device send to the specified session.)

Host - • Terminal

Page - 81

AW RCREDIT -
Group:

Sequence:

Description:

Reply:

Direction:

Note:

See Also:

Revision 1.2

4

AW _ WCI 313 ; <Vf Handle>; <Credits> w

Response to the AW _ CREDITENQ command. Indicates how many Credits are
available for the specified Circuit ID. Response is rounded downward.

[None]

Host .-.... Terminal

32 byte blocks

AW RCREDIT Page - 82

AW ZERO CREDIT -
Group: 4

Sequence: AW_WCI317; <VI'Handle> w

Description: Set the number of credits remaining for this session to zero.

Reply: [None]

Direction: Host - • Terminal

Revision 1.2 AW ZEROCREDIT Page - 83

Alpha Window
Application Protocol

Revision 1.0

30 May, 1992

Display Industry Association
1007 Elwell Court Suite B

Palo Alto
CA94303

USA

Tel: 415-967-6888
Fax: 415 9603522

Copyright C 1992, Display Industry Association

A Display Industry Association standard implies a concensus of those substantially
concerned with its scope and provisions. This standard is intended as a guide to aid the
manufacturer, the consumer and the general public. The existence of a Display Industry
Association standard does not in any respect preclude anyone, whether he has approved
the standard or not, from manufacturing, marketing, purchasing, or using products,
processes, or procedures not conforming to the standard. Display Industry Association
standards are subject to periodic review and users are cautioned to obtain the latest
editions.

CAUTION NOTICE: This Display Industry Association standard may be revised or
withdrawn at any time. Purchasers of Display Industry Association standards may receive
current information on all standards by calling or writing the Display Industry Association.

Published by:

Display Industry Association
1007 Elwell Court Suite B
Palo Alto
CA94303
USA

Copyright © 1992 by Display Industry Association
All rights reselVed

No part of this publication may be reproduced in any form, in an electronic retrieval
system or othelWise, without the prior written permission of the publisher.

Page 2

Copyright © 1992, Display Industry Association

Introduction

The AlphaWindow Application Protocol defines the way in which applications should use
the Alpha Window Terminal Protocol to communicate with the terminal or window
manager. It also determines the ways in which a window manager is allowed to modify
application commands to maintain its window management policy.

All of the commands in this document have the same format as defined in the
Alpha Window Terminal Specification unless othelWise indicated. Any differences in the
meaning or interpretation of commands and parameters are described. If no differences
are noted, the command operates in the same way as described in the terminal
specification.

Overview

As described in the Alpha Window Software Architecture, most applications will connect
to an AlphaWindow terminal via a window manager. The window manager allows the
user to run multiple applications at the same time.

Definitions

Client A single process which connects to the window manager or directly to the terminal
to display one or more windows. Multiple clients may be simultaneously
displaying multiple windows on a single AlphaWindow terminal by using a
window manager to multiplex several client-terminal conversations over the single
host-terminal connection.

Virtual Terminal
A single instance of a terminal emulation resident within an Alpha Window
terminal. The virtual terminal is visualised on the display by creating one or more
windows which display all or part of the virtual screen. Often abbreviated to vr.

Virtual terminals and windows are identified within the protocol by unique
numbers called handles. An individual client may only refer to virtual terminals
and windows created by itself.

Window
A rectangular area which maps part of a virtual terminal onto the physical screen.
A window may have a border drawn around it, and some Alpha Window terminals
support the ability to draw a set of decorations around a window as well. In
summary, a single physical screen may have, at any time, one or more virtual
terminals associated with it, each of which may be displayed via one or more
windows. All the user ever sees are the portions of the windows which are visible
at any time. That is, those parts which are not partially or wholly occluded by
other windows or clipped by the physical screen boundary.

Page 3

Copyright © 1992, Display Industry Association

Window manager
The process which mediates access to the Alpha Window terminal between several
clients and which ensures that keyboard and mouse input are delivered to the
correct client. A window manager will typically provide ways for the user to
move, resize and restack windows, and launch new applications.

Special Characters

The special characters AW _ WCI, A W _MPI, AW _LITERAL, AW _XON, AW _XOFF and
AW _BREAK function in the way defined in the AlphaWindow Protocol.

Windowing

The Alpha Window Protocol supports a single level hierarchy of windows. This means
that child windows have to be visualised by a client drawing into the window. Obviously
the visual appearance of this will depend on the terminal emulation being used.

Keyboard Focus

The keyboard focus policy to be adopted is at the discretion of the window manager. The
policy will not require client involvement unless any protocol extensions are in use.

Commands

Each command is dealt with in sequence, followed by a list of the responses which may be
received by clients. The following notes apply generally to all commands.

1. No application may directly change any property of a virtual terminal or window not
created by itself. Some commands do have side effects which affect other applications.
An example of this is the A W _STACK command which alters the global stacking
order of windows.

The window manager should police this restriction by checking the parameters of
commands received from applications. In cases where an illegal command is received
which demands a response (for example A W _ OPEN_WIN on a VT which does not
belong to the client) the response should be synthesised by the window manager in
such a way as to indicate failure (for example by returning a zero window handle in
the A W _RWIN). When an illegal command does not have a corresponding response
it should be ignored.

2. The window manager may always intercept or modify an application's request in order
to avoid its policy being breached. An example of this would be a window manager
which implemented a tiled display modifying or even refusing an A W _ SGEOM
command to maintain the tiling.

Page 4

Copyright © 1992, Display Industry Association

How Commands are Described

Each command is described in the format shown below.

AW COMMAND PI =n

Notes: Differences in the effect or meaning of the command when a window manager is
present.

Client Commands

A new command group and several new commands have been defined to allow explicit
communication between clients and the window manager and other future protocol
extensions. The definition of this command is extensible and allows the details to be
worked out as necessary by the API Working Group. The purpose of the command is to
allow the exchange of information which is outside of the scope of the existing protocol.

The following commands may be used by all clients.

Group 1

AW BEGIN PI =7

Notes: This command functions as specified in the Alpha Window Terminal Specification.

AW CLOSE WIN PI =9

Reply: None

Notes: W _Handle must identify a window created by this client. The command has no
effect othelWise.

AW CREATE VT PI = 13

Notes: An application wishing to size a VT or window relative to the screen may use
A W _ GDISPSZ to discover the current display size.

PageS

Copyright @ 1992, Display Industry Association

AWDA PI = 17

Notes: A window manager which implements the Extensions group (group 5) is required
to add group 5 to the A W _ RDA response if the terminal itself does not implement the
group. The window manager is then responsible for ensuring that no group 5
commands are passed through to a terminal which does not implement that group.

AW DELETE VT PI = 25

Reply: None

Notes: VT _Handle must refer to a VT created by this client. The command has no effect
othelWise.

AW ENABLE GROUP PI = 33

Reply: None

Notes: Although the underlying Alpha Window command is global in its effect, the
window manager will make it look as though the command only affects this client.
Thus, a client which has not enabled group 2 will never receive any group 2
commands even if another client has enabled group 2. The window manager will filter
the data stream to enforce this. A client will not normally request the use of group 4
when a window manager is present since flow control between the terminal and host
will be handled by the window manager.

AW EXIT PI = 37

Notes: This command functions as specified in the Alpha Window Terminal Specification.

AW GDISPSZ PI = 41

Reply: A W _RDISPSZ

Notes: This command functions as specified in the Alpha Window Terminal Specification.

AW GEMUL PI =43

Notes: This command functions as specified in the Alpha Window Terminal Specification.

Page 6

Copyright © 1992, Display Industry Association

AW GGEOM Pl = 45

Reply: A W _RGEOM

Notes: W _Handle must refer to a window created by this client or the A W _RGEOM reply
will contain a zero window handle to indicate an error.

AW OPEN WIN Pl =53

Notes: vr _Handle mQst refer to a vr created by this client or the A W _ RWIN reply will
contain a zero window handle to indicate an error.

AW SBORDER Pl = 81

Reply: None

Notes: W _Handle must refer to a window created by this client or the command will have
no effect.

AW SGEOM Pl = 97

Reply: None

Notes: The window manager is permitted to ignore or modify any or all of the parameters
to this command in order to maintain whatever display management policy it chooses
to impose.

AW STACK Pl = 105

Reply: None

Notes: W _Handle must refer to a window created by this client. If it does not,the
command will be ignored.

AW TITLE Pl = 109

Reply: None

Notes: This command functions as specified in the Alpha Window Terminal Specification.

Page 7

Copyright C 1992, Display Industry Association

A W VISIBILITY P1 = 117

Reply: None

Notes: W _Handle must refer to a window created by this client or the command will be
ignored.

Group 2

P1 = 209

Reply: MS_EVENT (with event type MS_STATUS)

Notes: This command functions as specified in the AlphaWindow Terminal Specification.

MS GCONFIG P1 = 217

Reply: MS _RCONFIG

Notes: This command functions as specified in the AlphaWindow Terminal Specification.

MS MODE P1 = 221

Reply: None

Notes: Not all modes may be used by clients. The mode MS_ WIDGET will be ignored as
it is reselVed for the window manager. Although the underlying AlphaWindow
command is global in its effect, the window manager should make it look as though
this command only affects this client.

MS MOVE P1 = 225

Reply: None

Notes: This command functions as specified in the Alpha Window Terminal Specification.

MS STYLE P1 = 233

Reply: None

Notes: Although the underlying Alpha Window command is global in its effect, the
window manager should ideally make it look as though this command only affects this
client.

Page 8

Copyright © 1992, Display Industry Association

Group 3

A W SDECORATION P1 = 261

Reply: None

Notes: This command functions as specified in the Alpha Window Terminal Specification.

Group 4

There are no group 4 commands which are normally used by clients when a window
manager is present.

GroupS

This new command group contains commands which allow an application to determine
the terminal and window manager configuration, and a command to allow extensions to
the protocol. None of these commands should be used until the application has
determined that this group is supported by the window manager/terminal to which it is
connected. The group will then need to be enabled using AW _ENABLE_GROUP.

Protocol extensions may be provided by both the terminal and the window manager. The
list of extensions supported in the current environment is returned to the application in the
A W _ RID response detailed below. An application may not attempt to use an extension
without first ascertaining that the extension is available. Applications which make use of
very specialised extensions may not be able to run in an environment where those
extensions are not available, but most applications should not rely exclusively on an
extension to be able to run.

Command codes 400 to 409 are allocated to group 5.

AW ID P1 = 401

Sequence: A W _WeI 401 w

Description: Device identification request. The A W _RID reply carries information about
the presence of a window manager, extensions and the terminal manufacturer.

Direction: Application -> Window Manager/l'erminal

Notes: This command functions as specified in the AlphaWindow Terminal Specification.

Page 9

Copyright @ 1992, Display Industry Association

A W EXTENSION PI = 405

Sequence: A W _ WCI 405; <Code>; <Tag>; <P 4>; ... ; <P n> w <Data> ST

Description: Used to invoke an extension command. <Code> is a number which
identifies the extension command. Ranges of commands for use by different
extensions will be agreed and published by the DIA. <Tag> is a number to be used as
the <Tag> in any reply to this command. This allows an application with several
outstanding A W _EXTENSION replies to identify which command a particular reply
relates to. If <Tag> is zero or omitted then the corresponding tag in any response may
be omitted. Parameters P 4 to P n are all optional and the number and meaning of them
is defined by the extension. <Data> allows a single string parameter to be passed.
Again, the format and interpretation of this is extension dependent.

Reply: Extension dependent, replies are carried in another A W _EXTENSION or
AW _SHORT_EXTENSION command with a defined command code. Not all
extension commands will cause a reply.

Direction: Bidirectional

Notes: This command is bidirectional, so that the window manager, or an extension
resident in the terminal may send information to the application asynchronously. An
example of this might be an extension command from the window manager to inform
the application that the user has selected the Close option from the window manager's
menu for a particular window. This would be dispatched asynchronously to the
application when the event occurs.

A W SHORT EXTENSION PI =4

Sequence: A W _ WCI 4; <Code>; <Tag>; <P 4>; ... ; <Pn> w

Description: Used to invoke an extension command which does not require a string
parameter. All other aspects of this command are the same as for AW_EXTENSION.

Reply: Extension dependent, replies are carried in another A W _EXTENSION or
AW _SHORT_EXTENSION command with a defined command code. Not all
extension commands will cause a reply.

Direction: Bidirectional

Client Responses

These are the responses which may be generated by the client commands listed above.
Certain of these responses may also be received unsolicited.

Group 1

Page 10

Copyright © 1992, Display Industry Association

AW RBEGIN P1 = 55

Reply to:

Notes: This command functions as specified in the Alpha Window Terminal Specification.

AW RDA P1 =59

Notes: This command functions as specified in the Alpha Window Terminal Specification.

AW RDISPSZ P1 = 61

Reply to: AW GDISPSZ

Notes: This command functions as specified in the Alpha Window Terminal Specification.

AW REMUL P1 =64

Reply to:

Notes: This command functions as specified in the Alpha Window Terminal Specification.

AW REXIT P1 = 63

Reply to: A W _EXIT

Notes: This command functions as specified in the Alpha Window Terminal Specification.

AW RGEOM P1 = 65

Reply to: Unsolicited

Notes: W _Handle will only ever refer to a window created by this client, or it may be zero
to indicate an incorrect A W _ GGEOM command. This reply may be received if the
window has been resized by the user or an A W _ SGEOM request has been modified by
the window manager, or in reply to an A W _ GGEOM command.

AW RVT P1 =73

Notes: This command functions as specified in the Alpha Window Terminal Specification.

Page 11

Copyright <C 1992, Display Industry ksociation

AW RWIN PI = 77

Notes: The window handle in this response will be zero if the terminal was unable to
create a new window or if an incorrect vr handle was given in the A W _OPEN_WIN
command.

Group 2

MS EVENT PI = 213

Reply to: MS_ENQ and unsolicited when the user employs the mouse.

Notes: A client will only receive MS_EVENT commands for mouse events relating to
windows which it has created.

MS RCONFIG PI = 229

Reply to: MS GCONFIG

Notes: This command functions as specified in the Alpha Window Terminal Specification.

MS SHORT EVENT PI =2

Reply to: Unsolicited when the user employs the mouse.

Notes: This command functions as specified in the Alpha Window Terminal Specification.

Group 3

There are no group three responses.

Group 4

There are no group four responses for normal use by clients.

Page 12

Copyright © 1992, Display Industry Association

GroupS

AW RID PI = 409

Sequence: AW _ WCI 409; <Connection_Type>; <Code>; <Version>; ... ; <Code>;
<Version> w <Data> ST

Description: Reply to a device identification request. <Connection_Type> specifies
whether the application is directly connected to the terminal or whether a window
manager is running. It may take the following values:

P2 <Connection _Type>
1 cr TERMINAL - direct terminal connection
2 cr WMGR - window manager running

The remaining numeric parameters form pairs which specify which extensions are present
and their version numbers. <Code> is the command code as registered with the DIA and
<Version> is the version number multiplied by 100.

The <Data> string is formatted into a number of fields, each separated by a forward slash
character. Any field may be left empty if the information is not known. The fields are
described in the table below:

Field Meanine
1 Terminal manufacturer
2 Terminal product name
3 Terminal firmware release
4 Window manager author
5 Window manager product name
6 Window manager software release

An example <Data> string would be:

Acme Corp/Acme 220/1.3/WM Inc/AW-WM/2.2

Reply: None

Direction: Window Manager/ferminal -> Application

Notes:

Page 13

Copyright C 1992, Display Industry Association

Window Manager Only Commands and Responses

The following commands are normally used only by window managers or turnkey
applications which take direct control of the terminal. They concern global terminal state
and commands and responses required by the window manager for layout information. In
addition, certain mouse functionality such as attaching a window to the mouse is reserved
for window managers.

Group 1

AW ATTENTION P1 = 1

Notes: This command functions as specified in the Alpha Window Terminal Specification.

AW DATA P1 = 21

Notes: This command functions as specified in the Alpha Window Terminal Specification.

AW DESELECf P1 =29

Notes: This command functions as specified in the Alpha Window Terminal Specification.

A W FREEZE REF P1 =38

Notes: A window manager will ignore this command.

AW GBORDER P1 = 39

Notes: This command functions as specified in the AlphaWindow Terminal Specification.

AW RATfN P1 = 54

Notes: This command functions as specified in the Alpha Window Terminal Specification.

AW RBORDER P1 = 57

Notes: This command functions as specified in the AlphaWindow Terminal Specification.

AW SDISPSZ P1 = 85

Notes: This command functions as specified in the Alpha Window Terminal Specification.

Page 14

Copyright@ 1992, Display Industry Association

AW SELECf PI = 89

Notes: What happens if all or part of the selected text is scrolled out of the VT (the spec
doesn't say). This should be tightened up.

AW SEND PI = 91

Notes: This command functions as specified in the AlphaWindow Terminal Specification.

AW SETA1TN PI =93

Notes: This command functions as specified in the Alpha Window Terminal Specification.

AW SKBD PI = 101

Notes: This command functions as specified in the Alpha Window Terminal Specification.

A W TITL HILIT PI = 111

Notes: A window manager will ignore this command.

AW TRACK PI = 113

Notes: This command functions as specified in the Alpha Window Terminal Specification.

Grouo2

MS ATTACH PI = 201

Notes: This command functions as specified in the AlphaWindow Terminal Specification.

MS BOUND PI = 205

Notes: This command functions as specified in the Alpha Window Terminal Specification.

Group 3

There are no group 3 commands reselVed for use by the window manager.

Group 4

AW ADDCREDIT PI =3

Notes: This command functions as specified in the Alpha Window Terminal Specification.

Page 15

Copyright@ 1992, Display Industry Association

P1 = 309

Notes: This command functions as specified in the AlphaWindow Terminal Specification.

AW RCREDIT P1 = 313

Notes: This command functions as specified in the AlphaWindow Terminal Specification.

AW ZEROCREDIT P1 = 317

Notes: This command functions as specified in the Alpha Window Terminal Specification.

Page 16

Alpha Window Library
Application Programming Interface

Specification

Revision 1.0

30 May, 1992

Display Industry Association
1007 Elwell Court Suite B

Palo Alto
CA 94303

USA

Tel: 415-967-6888
Fax: 415 960 3522

Copyright C 1992, Display Industty Association

A Display Industry Association standard implies a concensus of those substantially
concerned with its scope and provisions. This standard is intended as a guide to aid the
manufacturer, the consumer and the general public. The existence of a Display Industry
Association standard does not in any respect preclude anyone, whether he has approved
the standard or not, from manufacturing, marketing, purchasing, or using products,
processes, or procedures not conforming to the standard. Display Industry Association
standards are subject to periodic review and users are cautioned to obtain the latest
editions.

CAUTION NOTICE: This Display Industry Association standard may be revised or
withdrawn at any time. Purchasers of Display Industry Association standards may receive
current information on all standards by calling or writing the Display Industry Association.

Published by:

Display Industry Association
1007 Elwell Court Suite B
Palo Alto
CA94303
USA

Copyright © 1992 by Display Industry Association
All rights reserved

No part of this publication may be reproduced in any form, in an electronic retrieval
system or otherwise, without the prior written permission of the publisher.

2

Copyright © 1992, Display Industry Association

Introduction

This document describes a C language API known as A Wlib for use by application and
toolkit developers. It gives access to the full functionality of the Alpha Window
Application Protocol for the creation and control of windows and the use of the mouse. It
does not control or restrict what is displayed by an application within windows which it
creates. Applications are, however, only allowed to work with windows which they
themselves have created.

The underlying AlphaWindow Protocol, and hence the AlphaWindow Application
Protocol both contain optional elements such as mouse support and window decoration.
A Wlib contains a number of functions which enable applications to determine which, if
any, of those options are present in a particular environment. To guarantee application
portability and inter-operability it is important that developers take advantage of these
A Wlib facilities. This will also ensure that applications use Alpha Window terminals to
their best possible effect.

A Wlib gives full access to all of the functionality of an Alpha Window terminal, including
those operations designed for use by window managers. Those functions in this
specification which are marked with a dagger (t) would not normally be used by
applications when running in conjunction with a window manager. They are specified in
order that an application may use them to present a fully functional windowing interface
when running stand-alone in the absence of a window manager.

Overview

A Wlib provides a simple, low-level interface to the features of an Alpha Window terminal.
It is intended for use both by applications which will normally run with a window manager
and by turnkey software which assumes sole ownership of the terminal.

An AlphaWindow terminal provides multiple concurrent terminal emulations known as
virtual terminals (VTs). These virtual terminals are visualised on the terminal screen via a
single level of windowing. Each window has an associated virtual terminal and displays all
or part of the screen of that terminal. The window may be smaller than the virtual
terminal and can then be panned around the VT either under user or application control.
A window may be minimized, when the image of the window is replaced on the screen by
a small icon. A window may be displayed with several styles of border and many
terminals support the ability to add extra decorations to the edge of the window such as
resize handles, a title bar and scroll bars. The part of the window inside the border or
decorations is known as the client area.

The terminal may posess a mouse. If so, the application can ask for mouse events to be
delivered when the mouse is moved, clicked or crosses a window boundary. Other input,
including keyboard input is delivered to the application via other types of event.

3

Copyright @ 1992, Display Industry Association

Types

A number of new types are defined as part of the A Wlib API. The new types which are
used throughout the library are listed in Appendix A. A number of structures which are
only used with one or two functions are defined in the text.

Coordinates

All coordinates and dimensions are measured in characters. All coordinates related to
windowing begin from one. The coordinate system used by an individual emulation
within a virtual terminal is, of course, specified by the terminal manufacturer. All
coordinate parameters within A Wlib are of type Position, and all other measurements
such as window size are of type Dimension. As is customary in many windowing API's,
the origin of a window refers to the top left hand corner of the window's client area.

Error Handling

Errors are reported using error return codes from functions. Many functions return
A W _OK on successful completion and A W _ERROR if a problem was encountered. All
other functions which return other types have a distinguished return value which indicates
an error. More information about the error may be obtained by looking at the value of an
error code variable aw errno declared in <awlib.h> as follows.

extern int aw_errno;

Appendix B lists the error types which have been defined as part of this API.

4

Copyright © 1992, Display Industry Association

How Functions are Described

Each function in A Wlib is described in the format shown below:

A WUbFunctionO

AW_Status AWLibFunction(VT_Handle vt,
int arg2, ...)

Description: A summary of the effect of the function and the purposes of the arguments.

Returns:

Errors:

Possible return values and their meanings.

Possible values of aw errno after an error return. Individual A Wlib
implementations may also return other values.

Commands: AlphaWindow Application Protocol commands used by this function
(subject to any implementation specific optimisations).

5

Initialisation

AWInitO

AW_Status AWlnit(char
char
char
char
char
char

aw_wci,
aW_Inpi,
aw_literal,
aw_xon,
aw_xoff,
aw_break)

Copyright @ 1992, Display Industry Association

Description: This function must be called before any other A Wlib function. It initialises
various internal data structures. The parameters may be used to set the
values to be used by the library for the special characters within the
Alpha Window Protocol. To use the default value as defined in the
Alpha Window Terminal Specification pass zero as the parameter value.
The effect of calling A WInitO more than once is undefined.

Returns: AW_OK if initialisation was completed or AW_ERROR if a problem was
detected.

Errors: AW_NO_MEMORY
AW TIMED OUT - -

AWFinishO

AW_Status AWFinish(void)

Description: This function is called to indicate to the terminal that the use of
Alpha Window functionality by this application has finished. All virtual
terminals and windows will be destroyed and any pending events deleted.
After this function, A WResumeO must be called before any other A Wlib
functions may be used.

Returns: AW _OK if successful or AW_ERROR if a problem was detected ..

Errors: AW_TIMED_OUT

Commands: AW_EXIT,AW_REXIT

6

Copyright © 1992, Display Industry Association

AWResumeO

AW_Status AWResume(void)

Description: This function is called to indicate to the terminal that the application wishes
to resume the use of AlphaWindow functionality. The effect of calling

Returns:

Errors:

A WResume() at any time other than immediately after A WFinishO is
undefined.

A W _OK if successful or A W _ERROR if a problem was detected ..

AW TIMED OUT - -

Commands: AW _BEGIN, A W _RBEGIN

7

Copyright C 1992, Display Industry Association

Terminal Capabilities

The functions in this section allow an application to determine various facts about the
terminal such as the display size or whether there is a mouse attached.

A WIsMouseSupportedO

AW_Boolean AWIsMouseSupported()

Description: This function queries the terminal to find out whether it supports the use of
a mouse.

Returns:

Errors:

Note:

AW OK if the terminal has a mouse or AW ERROR if there is no mouse - -support or a problem was detected. If a problem was detected then
aw_ermo will be set to an appropriate value other than AW_NO_ERROR.

AW NO MEMORY

There is no A WEnableMouseO function in A Wlib since that is part of the
functionality of A WSetMouseModeO.

A WIsD ecoration Supported 0
AW_Boolean AWIsDecorationSupported()

Description: This function queries the terminal to find out whether window decorations
are supported.

Returns:

Errors:

AW _OK if window decorations are supported or AW _ERROR if there are
no window decorations or a problem was detected. If a problem occurred
then aw _ermo will be set to an appropriate value other than
AW NO ERROR.

AW NO MEMORY

8

Copyright © 1992, Display Industry Association

A WEnableDecorationO
A WDisableDecorationO

AW_Status AWEnableDecoration(void)
AW_Status AWDisableDecoration(void)

Description: These functions are called to respectively enable or disable window
decoration for this client.

Returns:

Errors:

A W _ OK if decorations were successfully enabled, or A W _ERROR if there
was a problem.

AW NO DECORATIONS

A WListEmulationsO

char **AWListEmulations(void)

Description: Returns an array of the names of the terminal emulations supported by the
user's terminal. The array is a list of strings (character pointers) terminated
by a null pointer and will always contain at least one element. The array is
a data structure belonging to the library and should not be modified by
applications. An example of the use of this function is:

Returns:

Errors:

char **list;
int i;

list = AWListEmulations();

i = 0;
while (list[i] 1= NULL) {

printf("Emulation %d is %s\n", i, list[i]);
i++;

}

The first name in this list is the default emulation used for a VT when no
other emulation is speci tied.

A pointer to the array of emulation names, or a null pointer to indicate an
error.

AW TIMED OUT - -
AW_NO_MEMORY

9

Copyright C 1992, Display Industty Association

Commands: AW_GEMUL,AW_REMUL

A WGetTerminallnfoO

typedef struct {
int code;

version;
/* Extension code number */

int /* Extension version number */
} ExtensionDesc;

typedef struct {
Terminal_Type
char
char
char
char
char
char
int
ExtensionDesc

} AWTerminallnfo;

type; /*
term maker;/
term-name- / - ,
*term release;
wm maker- / - ,
wm_name; /
*wm_release;
nwn_extensions;
*extensions;

AWTerminallnfo *AWGetTerminallnfo(void)

Terminal or window manager? */
Manufacturer of terminal */
Product name of terminal */

/* Firmware release */
Manufacturer of window manager */
Product name of window manager */

/* Window manager release */
/* Number of extensions */
/* List of extensions */

Description: This function queries the terminallwindow manager to find out the
information in the structure above. The structure member extensions is a
pointer to a list of extension descriptors that specify which extensions are
supported in this environment. The length of the list is given in the
num_extensions member. The data structure returned by this function
belongs to the library and should not be modified by the application.

Returns: A pointer to a filled-in A WferminalInfo structure if the call was successful
or a null pointer if there is no extension support or a problem was detected.

Errors: A W NO EXTENSION

Commands: AW_ID,AW_RID

10

Copyright © 1992, Display Industry Association

A WGetDispJaySizesO

/* All measurements in this structure are in characters */

typedef struct {
Dimension
Dimension
Dimension
Dimension
Dimension
Dimension
Dimension
Dimension
Dimension
Dimension
Dimension

} AWDisplaysize;

icon width;
icon=height;
disp width;
disp=height;
width 10;
width-hi;
height 10;
height-hi;
list count;
*width list;
*height_list;

/* width of an icon */
/* Height of an icon */
/* Physical display width */
/* Physical display height */
/* Lowest display width */
/* Highest display width */
/* Lowest display height */
/* Highest display width */
/* Size of width and height lists */
/* -> permitted display widths */
/* -> permitted display heights */

/AWDisplaysize *AWGetDisplaySizes(void)

Description: Queries the various size metrics of the terminal display. The data structure
returned belongs to the library and should not be modified by applications.

Returns:

Errors:

A pointer to a valid A WDisplaySize structure if the query succeeded and a
null pointer othelWise.

AW TIMED OUT - -
Commands: A W _ GDISPSZ, A W _RDISPSZ

t A WSetDispJaySizeO

~w_status AWSetDisplaySize(int
int

width,
height)

Description: This function selects width and height as the current physical display size
for the terminal. Note that a window manager may override a display size
setting with its own (presumably the user's) preference.

Returns: A W OK if the command was successful and A W ERROR othelWise. - -

Errors: AW TIMED OUT - -
Commands: A W GDISPSZ, A W RDISPSZ AI)..J S 1)

- - I

11

Virtual Terminal Creation and Deletion

" AWCreateVTO

VT_Handle AWCreateVT(Dimension
Dimension
Dimension
Dimension
Private_Hint
char

Copyright © 1992, Display Industry Association

init width,
init=height,
max_width,
max_height,
private_hint,
*emulation_type)

Description: Creates a new virtual terminal with the initial size specified by init Jteight
and init_width. If the virtual terminal may be resized to a larger size then
the maximum expected size should be passed in max_height and
max_width. Private_hint should be set to PH_PRIVATE if this virtual
terminal is for use by a window manager and PH_NORMAL otheIWise.
The terminal may use this hint to implement vendor specific features or
optimisations. The parameter emulation_type may either be one of the
names returned by A WListEmulationsO or a null pointer, in which case the
terminal's default emulation is used.

Returns: The VT handle to use in future calls, or NULL_ VT_HANDLE to indicate
an error.

Errors: AW_NO_MEMORY
AW TIMED OUT - -
AW_BAD_EMULATION

", A WDeleteVTO

AW_Status AWDeleteVT(VT_Handle vt)

Description: Deletes the given VT and all associated windows.

Returns:

Errors:

AW _OK if the VT was successfully deleted, or AW _ERROR if there was a
problem.

AW BAD VT - -

12

Window Creation and Deletion

./A WOpenWindowO
/AWOpenMainWindowO

W_Handle AWOpenWindow(VT_Handle
Dimension
Dimension
window_Type
Transient_Type

W_Handle AWOpenMainWindow(VT_Handle
Dimension
Dimension

Copyright © 1992, Display Industry Association

vt,
width,
height,
win_type,
transient_hint)

vt,
width,
height)

Description: A WOpenWindowO creates a new window onto the VT identified by the
handle vt. Height and width are measured in characters. Win_type may be
WT _MAIN to create a regular window or WT _ TRANSPARENT to create
a transparent window which only displays its outline. Transient_hint may
be TF NORMAL or TF TRANSIENT to indicate that this window is

Returns:

Errors:

- -
expected to be short lived. The window is not visible until made so by
calling A WRevealWindowO.

A WOpeoMain WindowO is a convenience function which creates a new
window with window type WT_MAIN and transient hint TF _NORMAL.

The window handle to use in future calls, or NULL_WIN_HANDLE to
indicate an error.

AW BAD VT - -
AW BAD TYPE - -
A W BAD TRANSIENT - -
AW TIMED OUT - -
AW NO MEMORY

13

Copyright@ 1992, Display Industry Association

\9' A WCloseWindowO

AW_Status AWCloseWindow(W_Handle window)

Description: Closes the given window. The window handle becomes invalid.

Returns:

Errors:

AW _OK if the window was successfully closed, or AW _ERROR if there
was a problem.

A W BAD WINDOW - -

14

Copyright © 1992, Display Industry Association

Window Size. Position. Stacking and Update

A WContigureWindowO

AW status AWConfigureWindow(W_Handle
W_state
position
position
Dimension
Dimension
position
position

window,
wstate,
x,
y,
width,
height,
virt_x,
virt....Y)

Description: The given window is configured as specified by the other parameters.

Returns:

Errors:

Wstate may be WS_NORM to place the window in the normal, visible state
or WS _MIN to minimize the window and replace it with an icon. X and y
specify the position of the window on the terminal screen, width and height
are the new size of the window, and virt-.x and virty specify the origin of
the window within the associated VT. Any of these parameters may be left
unchanged by passing the value o.

Note that any of these parameters other than virt _x and virt y may be
overridden by the window manager. In virtually all cases applications will
not care about the actual x and y position of the window. If the actual
dimensions are importantthen the application should call
A WGetWindowConfO following this function.

AW _OK if the window was successfully configured, or AW _ERROR if
there was a problem.

AW BAD WINDOW - -
Commands: AW_SGEOM

t A WResize WindowO

AW_Status AWResizeWindow(W_Handle
Dimension
Dimension

window,
width,
height)

Description: The given window is resized as specified by width and height. This is a
convenience function for use when only the size of a window is to be
changed. Note that a window manager is permitted to override the width
and height given in this call.

15

Copyright @ 1992, Display Industry Association

Returns: A W _OK if the window was successfully resized, or A W _ERROR if there
was a problem.

Errors:

Commands: A W SGEOM

t A WMoveWindowO

AW status AWMoveWindow(W Handle
- position

window,
x,

position y)

Description: The given window is moved as specified by x and y. This is a convenience
function for use when only the position of a window is to be changed.
Note that a window manager is permitted to override the coordinates given
in this call.

Returns: A W _OK if the window was successfully moved, or A W _ERROR if there
was a problem.

Errors: AW BAD WINDOW - -

Commands: AW SGEOM

A WSetWindowOriginO

AW_Status AWSetWindoWOriqin(W_Handle
Position
position

window,
virt_x,
virtJ)

Description: The virtual position of the given window within it's VT is changed as
specified by virt_x and virty. This is a convenience function for use when
only the virtual position of a window within the virtual terminal is to be
changed.

Returns:

Errors:

AW _OK if the window was successfully repositioned, or AW _ERROR if
there was a problem.

A W BAD WINDOW - -

Commands: A W SGEOM

16

Copyright © 1992, Display Industry Association

A WSetWindowStateO

AW status AWSetwindowstate(W_Handle
window_state

window,
state}

Description: The state of the window is changed as specified by state. This is a
convenience function for use when only the state of the window is to be
changed.

Returns: A W _ OK if the window state was successfully changed, or A W _ERROR if
there was a problem.

Errors: AW BAD WINDOW - -

Commands: A W SGEOM

/' A WGetWindowConfO

/* All coordinates in this structure are measured in characters */

typedef struct {
Window_State
position
position
Dimension
Dimension
position
position
Dimension
Dimension
Dimension
Dimension
Dimension

} AwwindoWConf;

state; /* Normal or minimized */
X; /* X position on screen */
y; /* Y position on screen */
width; /* width of window */
height; /* Height of window */
virt_x; /* X origin of window in VT */
virt-y; /* Y origin of window in VT */
virt screen width; /* VT width */
virt=screen=height; /* VT height */
disp_width; /* Current display width */
disp_height;/* Current display height */
caption_width; /* Max title bar text size */

AW status AWGetWindoWConf(AWWindoWConf *confp}

Description: Returns the current configuration of the given window by filling in the
structure pointed to by confp. The meanings of the structure members are
explained above.

Returns:

Errors:

A W _ OK if the configuration was retrieved successfully, or A W _ERROR if
there was a problem.

A W BAD WINDOW - -

17

Copyright C> 1992, Display Industry Association

Commands: AW_GGEOM,AW_RGEOM

v> <A WStackWindowO

AW_Status AWStackWindow(W_Handle win,
Stack_Type stack)

Description: Brings the given window to the front or back of the window stack. Stack
may take the value SR_PROMOTE to bring the window to the front, or
SR DEMOTE to send it to the back.

Returns: A W _OK if the command was successful, or A W _ERROR if there was a
problem.

Errors: AW BAD WINDOW - -

Commands: AW STACK

A WSetWindowTrackingO

AW_Status AWSetWindowTracking(W_Handle
int

win,
track)

Description: Sets the cursor tracking status of the given window. When cursor tracking
is enabled, the terminal will ensure that the current cursor position is visible
by changing the origin of the window within it's virtual terminal.
Horizontal and vertical tracking may be set independently of each other.
Track is the bitwise or of any of the following flag bits:

F1a2 Meanin2
CS NONE No tracking
CS HTRACK Horizontal tracking on
CS VTRACK Vertical tracking on

Returns: AW_OKifthe tracking was set successfully, or AW_ERROR if there was a
problem.

Commands: AW_TRACK

18

./ t A WFreezeDisplayO
,/ t A WTbawDisplayO

Aw_Status AWFreezeDisplay(void)

AW_Status AWThawDisplay(void)

Copyright © 1992, Display Industry Association

Description: A WFreezeDisplayO causes the refreshing of the terminal screen to be
paused and A WfhawDisplayO continues refresh and causes any pending
display changes to be made. This would typically be used to prevent the
display of incomplete results when a number of window management
operations are performed in succession.

Returns: AW _OK if the operation was successful, or AW _ERROR if there was a
problem.

Errors:

19

Copyright C 1992, Display Industry Association

Other Window Attributes

t A WSetWindowBorderO

AW_Status AwsetWindowBorder(W_Handle window,
Border_style border)

Description: The given window is changed to have the border style specified in border.
The styles available are BS_THICKNORMAL, BS_THIN, BS_NONE,
BS_THICKBOLD and BS_GHOSTOUTLINE. This function only gives a
hint to the window manager, which may override the border setting. The
next function, A WSetWindowDecorationO interacts with this function
since window decorations and border settings interact within the terminal.

Returns: AW _OK if the window was successfully rebordered, or AW _ERROR if
there was a problem.

Errors: AW_BAD_WINDOW
AW BAD BORDER - -

Commands: A W SBORDER

/A WGetWindowBorderO

/* All dimensions in this structure are measured in characters */

typedef struct {
Dimension
Dimension
Dimension
Dimension

} WindOW_Border;

top;
right;
bottom;
left;

/* Thickness of top border */
/* of right border */
/* of bottom border */
/* ••• of left border */

AW_Status AWGetWindowBorder(W_Handle
Window_Border

window,
*borderp)

Description: This function retrieves the border sizes for the given window. The size
information is placed in the Window_Border structure pointed to by
borderp.

Returns:

Errors:

A W _OK if the information was successfully retrieved, or A W _ERROR if
there was a problem.

Commands: AW_GBORDER,AW_RBORDER

20

Copyright © 1992, Display Industry Association

/t A WSetWindowDecorationO

AW_Status AWSetWindowDecoration(W_Handle window,
int flag)

Description: This function is called to change the decoration style of a window. Flag is
either zero to indicate no decoration, or the bitwise or of any of the
following flag bits:

Returns:

Errors:

Fla2 hit Meanin2
BD MAX Include maximise button
BD MIN Include minimise button
BD SIZE NORM Include normal weight resize handles
BD SIZE BOLD Include bold weight resize handles
BD RESTORE Include restore button
BD MENU Include the system menu button
BD VSCROLL Include a vertical scroll bar
BD HSCROLL Include a horizontal scroll bar
BD CAPTION Include a caption bar

This call only gives hints to the window manager, which is free to ignore or
override any of these flags. The flags themselves are defined in <awlib.h>.

Note that this function will override any conflicting window border which
has been set using A WSetWindowBorderO.

AW _OK if the decoration was successfully set, or AW _ERROR if there
was a problem.

AW_NO_DECORATION
AW _BAD _WINDOW

Commands: A W _SDECORATION

21

v,A WSetWindowTitleO

AW_Status AwsetwindowTi tle (W_Handle
VT Handle
position
position
Dimension

Copyright ~ 1992, Display Industry Association

window,
vt,
x,
y,
length)

Description: The title of the given window is changed to the length characters situated
at position (x, y) in the virtual terminal vt. The application draws the title
into a VT and then transfers it to the title bar of a window using this
function. This approach allows the use of visual attributes and alternate
character sets in the title. The title bar must first have been enabled using
A WSetWindowDecorationO.

Returns:

Errors:

A length of zero will result in no title being displayed.

AW_OK if the call succeeded, or AW_ERROR if there was a problem.

A W _BAD _WINDOW
AW_BAD_LENGTH

Commands: AW_TITLE

/' t A WHighUghtTitleO
",it A WUnhighUghtTitleO

AW_Status AWHighlightTitle(W_Handle win)

AW_Status AWUnhighlightTitle(W_Handle win)

Description: Sets the highlight state of the given window's title.

Returns:

Errors:

A W _OK if the highlight was set successfully, or A W _ERROR if there was
a problem.

A W BAD WINDOW - -

22

A WRevealWindowO
A WHideWindowO

AW_Status AWRevealWindow(W_Handle window)
AW_Status AWHideWindow(W_Handle window)

Copyright@ 1992, Display Industry Association

Description: A WRevealWindowO makes the given window visible on the display.
A WHide Window() removes the window from the display.

Returns: AW_OKifthe call succeeded, or AW_ERROR if there was a problem.

Errors: AW BAD WINDOW - -
Commands: A W VISIBILITY

23

Copyright ~ 1992, Display Industry Association

The Mouse

A WGetMouseConflgO

AW_Status AWGetMouseConfig(int *buttons_return)

Description: This function is called to get the number of mouse buttons. The variable
pointed to by buttons _return will be set to the number of buttons. This
may be zero if the terminal does not have a mouse attached.

Returns:

Errors:

AW_OKifthe function succeeded, or AW_ERROR if there was a
problem.

AW NO MOUSE

Commands: MS_GCONFIG, MS_RCONFIG

A WSetMouseModeO

AW_Status AWSetMouseMode(int flag)

Description: This function is called to configure what ev~nts will be generated about
mouse usage. Flag is either MS_DISABLEito disable mouse reporting
entirely, or the bitwise or of any of the following flag bits:

!

!

Returns:

Errors:

Fla2 bit Meaning
MS CLICKS Send mouse clicks
MS MOTION Send mouse motion
MS WIDGET Send clicks on window decorations
MS CLIENT ENTERLEA VE Send enterlleave window events

It is recommended that MS_MOTION is only turned on when required
during a user interaction. Setting the MS _ WIDGET flag will have no
effect if a window manager is running since the window manager will
consume those events for its own use.

AW _OK if the mouse was successfully enabled, or AW _ERROR if there
was a problem.

AW NO MOUSE

Commands: MS MODE

24

Copyright © 1992, Display Industry Association

J t A WSetMouseCursorO

AW_Status AWSetMouseMode(int style)

Description: This function is called to set the mouse cursor picture. Style is one of the
following:

Returns:

Errors:

Style Meanin2
MS ARROW Default arrow pointer
MS INVISIBLE No cursor
MS IBEAM 'I' shaped cursor for text entry
MS WAIT Hourglass
MS CROSS Cross shape used for move

operations
MS UPARROW Uparrow
MS SIZE Small box on comer of larger box
MS SIZENWSE Diagonal resize (south to east)
MS SIZENESW Diagonal resize (south to west)
MS SIZEWE Resize (left to right)
MS SIZENS Resize (up to down)

Note that the window manager is free to override this function.

AW _OK if the picture was successfully changed, or AW _ERROR if there
was a problem.

AW NO MOUSE

Commands: MS STYLE

vA WMouseEnqO

AW_Status AWMouseEnq(void)

Description: This function is called to request an update on the current state of the
mouse. After this function is called, a mouse event with the event_type
member set to MS _STATUS will be returned by a future call to
A WNextEventO. Note that it will not necessarily be the next event
returned - there may be several other intervening events.

25

Copyright @ 1992, Display Industry Association

Returns: AW _OK if the request was successfully sent, or AW _ERROR if there was
a problem.

Errors:

Commands: MS_ENQ, MS_EVENT

t A WSetMouseBoundsO

/AW_Status AWSetMouseBounds(Bound_Type
position
position
Dimension
Dimension

/AW_Status AWRemoveMouseBounds(Bound_Type

bound_type,
x,
y,
width,
height)

Description: An Alpha Window terminal which supports a mouse can maintain (on a
terminal wide basis only) two rectangular mouse boundaries. The soft
boundary indicates a boundary which triggers a mouse event when crossed
in any direction. The hard boundary defines a region which may only be
entered by the mouse. Once inside, the mouse pointer may not be moved
out again. No mouse event is generated by a hard boundary. Bound_type
may be either MS_BSOFf or MS_BHARD. For AWSetMouseBoundsO
the boundary rectangle is defined by x, y, width and height. To leave any
of these unchanged, pass 0 as the parameter value.

Returns:

Errors:

A WRemoveMouseBounds() removes the current boundary definition of
the given type.

Note that subsequent boundary settings replace current ones of the same
type. In addition, a window manager is permitted to override boundary
settings.

A W _OK if the boundary was successfully set, or A W _ERROR if there was
a problem.

AW NO MOUSE

Commands: MS BOUND

26

Copyright @ 1992, Display Industry Association

/t A W AttachMouseO
./ t A WDetachMouseO

AW_Status AWAttachMouse{W_Handle
position
position
Attach_Type

win,
x,
y,
attach)

AW_Status AWDetachMouse{void)

Description: A W AttachMouseO attaches the given window to the mouse with anchor
point (x, y). Attach controls the type of attachment and hence the precise
effect of this function. The attachment may cause the resizing or
movement of the window or movement of either of the scrollbars which
can decorate a window. If the mouse position is different from the anchor
point when the terminal receives this command then the difference is used
to adjust the geometry or position of the window or scrollbar. As the
mouse is moved by the user the appropriate geometry or position is
continuously updated by the terminal. Only one mouse attachment is
allowed at anyone time over the whole terminal. A WDetachMouseO ends
the attachment.

Returns:

Errors:

An example of the use of this function would be in a turnkey application
which wanted to perform window management. When a mouse button
press in the title area of a window was detected (via an event) the
application could use A W AttachMouseO to allow the user to move the
window. The anchor point would normally be the mouse position given in
the mouse event. When the button is released, the mouse would be
detached by calling A WDetachMouseO.

A W _OK if the attachment was successful, or A W _ERROR if there was a
problem.

AW BAD WINDOW - -

Commands: MS ATTACH

27

Copyright @ 1992, Display Industry Association

Event Handling

Input (both from the keyboard and other sources) is provided to the application in the
form of events. An event is data generated asynchronously by the AlphaWindow terminal
or Window Manager normally as a result of user activity such as typing or moving the
mouse. There are ten types of event defined, some of which have a variety of sub-types.

Event Structure
Each type of event has an individual structure defined to specify the parameters of the
event. In addition the A WEvent structure is defined as a union of all of these individual
structures.

typedef union {
int
AWKeyboardEvent
AWMouseEvent
AWGeometryEvent
AWRoutingEvent
AWExtensionEvent
AWAttentionEvent
AWSelectedDataEvent
AWSpecialCharEvent
AWAddCreditEvent
AWRestoreEvent
AWExitEvent

} AWEvent;

type;
keyboard;
mouse;
geometry;
routing;
extension;
attention;
selecteddata;
specialchar;
addcredit;
restore;
exit;

An event structure's first member is always the type. This means that the type can always
be accessed as shown below:

AWEvent event;
AWStatus status;

status = AWNextEvent(&event);

switch (event. type) {
case GeometryEvent:

new_x = event.geometry.x;

}

28

Copyright © 1992, Display Industry Association

Keyboard Input Event
This event is generated when keyboard input or other emulation data is received from the
terminal. The type of this event is KeyboardEvent.

typedef struct {
int
int
char

} AWKeyboardEvent;

Mouse Event

64

type;
length;
string[AW_MAX_STRING];

This event is generated when mouse input is received from the terminal. The type of this
event is MouseEvent.

typedef struct {
int
int
position
position
int
W Handle
Widget_Type
int
int

} AWMouseEvent;

Geometry Event

type;
event_type;
X;
y;
time;
window;
widget;
buttons;
modifiers;

When a window is moved, resized, or changes state a geometry event is generated. The
event type is GeometryEvent.

typedef struct {
int
W Handle
wIndow state
position
position
Dimension
Dimension
position
position
Dimension
Dimension
Dimension
Dimension
Dimension

} AWGeometryEvent;

type;
window;
state;
X;
y;
width;
height;
virt_x;
virtJ;
virt_width;
virt_height;
p_width;
p_height;
caption_width;

29

Copyright @ 1992, Display Industry Association

Routing Event
A routing event is generated when a notification is received from the terminal that input is
now being sent from a different VT. The event type is RoutingEvent.

typedef struct {
int
VT_Handle

} AWRoutingEvent;

Extension Event

type;
vt;

An extension event is reported when an extension command is received by the library.
The event type is ExtensionEvent.

typedef struct {
int
int
int
int
int

} AWExtensionEvent;

type;
code;
tag;
int_count;
char_count;

The extension command will have zero or more numeric parameters and a string
parameter associated with it. To retrieve these, use the function AWGetExtensionParmsO
described in the section on extensions below.

Attention Event
An attention event is reported when a set of keys which have been registered by an
application along with an attention identifier are pressed at the same time. The event type
is AttentionEvent.

typedef struct {
int
int

} AWAttentionEvent;

Selected Data Event

type;
id;

A selected data event is reported at some time after a call to A WGetSelectionO. The
event structure contains a pointer to a buffer containing the selected data and a count of
the bytes in the buffer. The buffer is owned by the library, and the pointer is only valid
until the next call to AWGetSelectionO. If an application wishes to preserve the data it
should copy it into a buffer of its own. The event type is SelectedDataEvent.

30

typedef struct {
int
int
char

} AWAttentionEvent;

Special Character Event

type;
count;
*data;

Copyright@ 1992, Display Industry Association

This event is generated when one of the three special characters A W _BREAK, A W _XON
and A W _XOFF is received by the library. The event type is SpecialCharEvent.

typedef struct {
int
VT_Handle
char

} AWSpecialCharEvent;

tAdd Credit Event

type;
vt;
special;

When an A W _ADDCREDIT command is received, the library will report an event of type
AddCreditEvent.

typedef struct {
int
VT_Handle
int

} AWAddCreditEvent;

Restore Event

type;
vt;
credits;

When the library receives an A W _RESTORE command (indicating that the terminal's
environment has been corrupted by, for example, a power failure) an event of type
RestoreEvent is reported. When the event is received, the application should consider all
existing window and vr handles invalid.

typedef struct {
int

} AWRestoreEvent;

Exit Event

type;

When the library receives an A W _EXIT command (indicating that the terminal's exit key
or key chord has been pressed) an event of type ExitEvent is reported. When the event is
received, the application should close down in as orderly a way as possible ..

31

typedef struct {
int

} AWExitEvent;

A WNextEventO

type;

AW_Status AWNextEvent(AWEvent
AW_Boolean
AW_Boolean

*eventp,
block,
peek)

Copyright @ 1992, Display IndusUy Association

Description: This function attempts to read the next event. The type and parameters of
the event will be copied into the event structure pointed to by eventp. This
structure must have been previously allocated by the application (either
statically as a variable or dynamically) before A WNextEventO is called. If
block is true and there are no events on the library's internal event queue
then the function will block until the next event is read otherwise the
routine will return without reading an event. If peek is true then any event
read will not be removed from the internal event queue and will be
returned again by the next call to A WNextEventO.

Returns:

Errors:

A W _OK if an event was read, or A W _ERROR if there was no event to
read or a problem was detected. If an error occurred then aw _errno will
be set to a value other than AWN 0 ERROR.

A W COMMS ERROR - -

32

Copyright © 1992, Display Industry Association

Keyboard Control

The application may request that the pressing of certain key combinations ("chords") be
reported as a special attention event rather than as keyboard characters.

/'A WSetAttentionO

AW_Status AWSetAttention{ int
int
int

attn_id,
key_count,
*key_list)

Description: This function sets an attention. Attn id is an identifier for the attention
which will be included in any attention events generated by the user.
Key _count is the number of elements in key _list, which is a list of the key
numbers which, when pressed at the same time, will generate the attention.
If key _count is zero, the attention whose identifier is given will be cleared
and the pointer key _list will not be dereferenced. Several standard
keyboards with key numbers are illustrated in the Alpha Window Terminal
Specification. Other key number information will be published by
individual vendors.

Returns: A W _OK if the window was successfully resized, or A W _ERROR if there
was a problem.

Errors:

33

Copyright @ 1992, Display Industry Association

Application Input and Output

A Wlib sends Alpha Window commands to the standard output device and reads events
from the standard input device. Applications which make their own use of these devices
must co-operate with the library to avoid data loss or mis-ordering of output. An
application may not read directly from the standard input device - all input must be
obtained via A WNextEvent(). When A WInit() is called, the library will change the device
settings of standard input and output. It is the application's responsibility to ensure that
these same device settings are in force before making any other calls to A Wlib functions.

It is recommended that the A WOutput() routine described below is used to send
application output to the terminal. An application is, however, permitted to write directly
to standard output provided that all pending output is flushed prior to calling an A Wlib
function. Such an application will need to call A WRoute() to direct output to the
appropriate VT. Note that the library will always flush its own output prior to returning.

/AwOutputO

AW_Status Awoutput(VT_Handle vt,
char
int

*buf,
buflen)

Description: This function sends application output to the given virtual terminal. Bufis
a pointer to the start of a buffer containing the characters to output and
buflen is the number of bytes which have been placed in the buffer.

Returns:

Errors:

AW _OK if the output was successfully sent, or AW _ERROR if there was a
problem.

Commands: None

34

Copyright © 1992, Display Industry Association

AWRouteO

AW_Status AWRoute(VT_Handle vt)

Description: This function is for use by applications which write directly to standard
output. All subsequent output data will be directed to the VT specified
here.

Returns:

Errors:

A W _OK if the output VT was successfully switched, or A W _ERROR if
there was a problem.

Commands: A W MPI

35

Copyright ~ 1992, Display Industry Association

tFlow Control

Most applications will not need to concern themselves with flow control since data
transfer between host and terminal will be coordinated for them by the window manager.
Note that in any case, an application should not attempt to use the credit function
described here without first determining that group 4 of the Alpha Window protocol is
supported by the terminal via the A WIsCreditsSupportedO function. Most window
managers will not advertise themselves as supporting group 4.

The flow control system implemented by Group 4 is based on credits. Posession of a
credit for a virtual terminal gives permission to transmit up to 32 bytes of application data
for that virtual terminal. The credit system is bidirectional, so that the application must
grant credits to the terminal to allow keyboard input to be received. The transmission of
Alpha Window commands is not governed by credits.

An event of type AddCreditEvent will be reported as described above when an
A W _ADD CREDIT command is received from the terminal. This event may be taken as a
signal that the terminal is ready to receive the indicated number of characters on the given
VT.

v/tAWIsCreditsSupportedO

AW_Boolean AWIsCreditsSupported()

Description: This function queries the terminal to find out whether it supports the use of
credits for flow control. This will be true if the terminal supports group 4
of the Alpha Window Protocol.

Returns:

Errors:

AW_OKifthe terminal supports credits or AW_ERROR if there is no
credit support or a problem was detected. If a problem was detected then
aw _ermo will be set to an appropriate value other than AW _NO_ERROR.

AW NO MEMORY

Commands: A W DA

36

tAW AddCreditsO

AW_Status AWAddCredits(VT_Handle
int

vt,
credits)

Copyright ~ 1992, Display Industry Association

Description: This function is called to allow the terminal to send keyboard characters on
the given virtual terminal. Credits is measured in 32 byte blocks.

Returns: A W _ OK if the credits were added, or A W _ERROR if there was a problem.

Errors: A W COMMS ERROR - -
Commands: A W ADD CREDIT

37

Copyright C 1992, Display Industry Association

Selection Handling·

An Alpha Window terminal supports a single selection. A particular region of a virtual
terminal may be notified to the terminal and the characters within that area then become
the current selection value and are highlighted in some way by the terminal. An
application can request the current selection value and unhighlight it by deselecting the
data.

/t A WSelectO
/t A WDeselectO

AW_Status AWSelect(VT_Handle
position
position
position
position
Select Mode

AW_Status AWDeselect(void)

vt,
start_row,
start_col,
end_row,
end_col,
mode)

Description: A WSelectO is called to select the area of the given vr between (start_col,
startJow) and (end_col, endJow). The shape of the area selected will be
a rectangle if mode is HS_RECT or contiguous lines if mode is HS_ WRAP.
The selected area will be highlighted by the terminal, perhaps using reverse
video. Any previous selection is automatically cancelled by this command.
Once data has been selected, it can scroll or move according to application
output and the highlight moves with it. This means that selected data
which is scrolled out of the vr is lost.

A WDeselectO cancels the current selection.

Returns: AW _OK if the selection was set, or AW _ERROR if there was a problem.

Errors:

Commands: A W _SELECT, A W _DESELECT

38

Copyright © 1992, Display Industry Association

AAWGetSelectlonO

Aw_status AWDeselect(void)

Description: This function is called to request the characters currently highlighted as the
selection. After this function is called, an event of type SelectedDataEvent
containing the selected characters will be returned by a future call to
AWNextEventO. Note that it will not necessarily be the next event
returned - there may be several other intervening events.

Returns: A W _OK if the command was successful, or A W _ERROR if there was a
problem.

Errors:

39

Copyright C 1992, Display Industry Association

Extensions

A mechanism is defined in the Alpha Window Application Protocol to allow protocol
extensions to be defined. Each extension consists of one or more commands with well
known command codes. Each command takes zero or more integer parameters and a
single string parameter. The meaning of these parameters is defined by the individual
extension. Some commands will be defined to have a response. The reponse is simply
another extension command with its own defined command code.

The extension mechanism is bidirectional- extensions may asynchronously send
commands to the application. These commands will be received as extension events as
described in the section on events.

A WCallExtensionO

AW_Status AWCallExtension(int
int
int
int
char

code,
tag,
int_count,
*intparms,
*strparm)

Description: This function is called to issue an extension command. Code is the
command code for the extension and tag is the tag number which will be
placed in any reply to this command. Replies may be dealt with
synchronously be calling A WWaitExtensionO with the same tag value, or
asynchronously by waiting for an extension event with the appropriate tag.
[nt_count is the number of integer parameters for the command, which
must be stored in an array pointed to by intparms. The string parameter is
passed as strparm. If a command does not require a string parameter, a
null pointer should be passed.

Returns: A W _OK if the call was successful, or A W _ERROR if there was a problem.

Errors: A W NO EXTENSION

Commands: AW _EXTENSION, A W _SHORT_EXTENSION

40

A WWaitExtensionO

AW_Status AWWaitExtension(int
int
int
int

command,
tag,
*int_count,
*str_count)

Copyright © 1992, Display Industry Association

Description: To wait for a reply to an extension command, call this function. Command
is the command code for the desired reply and tag is the tag value passed in
the original command. The integer whose address is given by int_count
will be set to the number of integer parameters included with the reply.
Similarly, * str _count will be set to the length of the string parameter.
A WGetExtensionParmsO may then be called to retrieve the actual
parameter val ues.

Returns: AW _OK if the call was successful, or AW _ERROR if there was a problem.

Errors: AW_TIMED_OUT

Commands: A W _EXTENSION, A W _SHORT_EXTENSION

A WGetExtensionParmsO

AW_Status AWGetExtensionParms(int
char

*intparms
*strparm)

Description: This function is called after an event of type ExtensionEvent has been
reported or after a call to A WWaitExtensionO, to retrieve the parameters
of the extension command. The integer parameters are placed into the area
of memory pointed to by intparms. This area must be at least large enough
to hold the number of integers specified by the int_count member of the
extension event structure. Similarly, the string parameter is copied to
* strparm, which must be a memory block large enough to hold str _count
characters plus one character as a null terminator.

Returns: A W _ OK if the call was successful, or A W _ERROR if there was a problem.

Errors:

Commands: None

41

Copyright e 1992, Display Industry Association.

Appendix A - Type Definitions

A number of new types are defined in the header file <awlih.h>. Note that types
associated with events are defined in the section on event handling. A few other structure
types are defined with the functions which use them.

typedef short AW_Status;

#define AW_OK «AW_Status) 0)
#define AW_ERROR «AW_status) -1)

typedef short VT_Handle;

#define NULL_VT_HANDLE «VT_Handle) 0)

typedef short W_Handle;

typedef short Position;

typedef short Dimension;

typedef short AW_Boolean;

typedef enum {
WT_MAIN = 1,
WT_TRANSPARENT = 2

} Window_Type;

typedef enum {
WS_NORMAL = 1,
WS_MINIMISED = 2

} Window_State;

typedef enum {
TF_NORMAL = 1,
TF_TRANSIENT = 2

} Transient_Type;

typedef enum {
BS_THICKNORMAL = 1,
BS_THIN = 2,
BS_NONE = 3,
BS_THICKBOLD = 4,
BS_GHOSTOUTLINE = 5

} Border_Style;

typedef enum {
PH_NORMAL = 1,
PH_PRIVATE = 2

} Private_Hint;

A-1

typedef enum {
MS_BSOFT = 1,
MS_BHARD = 2

} Bound_Type;

typedef enum {
CT _TERMINAL = 1,
CT_WMGR = 2

} Terminal_Type;

typedef enum {
BD_DETACH = 1,
BD_STRETCH_N = 2,
BD_STRETCH_E = 3,
BD_STRETCH_S = 4,
BD_STRETCH~W = 5,
BD_STRETCH_NE = 6,
BD_STRETCH_SE = 7,
BD_STRETCH_NW = 8,
BD_STRETCH_SW = 9,
BD_MOVE_ALL = 10,
BD_SLIDE_H = 11,
BD_SLIDE_V = 12

} Attach_Type;

typedef enum {
SR _PROMOTE = 1,
SR_DEMOTE = 2

} stack_Type;

typedef enum {
HS_RECT = 1,
HS_WRAP = 2

} Select_Mode;

Copyright © 1992, Display Industry Association.

A-2

Copyright © 1992, Display Industry Association.

Appendix B - Error Types

The following error types are defined in the header file <awlib.h>:

AW_NO_ERROR
No error has been detected.

AW NOT AW TERMINAL - - -
The terminal does not appear to support the Alpha Window protocol.

AW BAD VT - -
The VT handle supplied does not refer to a VT created by this client.

AW BAD WINDOW - -
The window handle supplied does not refer to a window opened by this
client.

AW_BAD_TYPE
The window type supplied was invalid.

A W BAD TRANSIENT - -
The transient hint value supplied was invalid.

AW NO MEMORY
The function was unable to allocate memory.

AW TIMED OUT - -
A reply from the terminal was not received during the timeout period.

AW COMMS ERROR - -
An error occured in reading from or writing to the window manager or
terminal.

A W BAD BORDER - -
The border style supplied was invalid.

AW BAD LENGTH - -
The length parameter supplied was invalid.

AW NO MOUSE
The terminal does not support a mouse.

AW NO DECORATIONS
The terminal does not support window decorations.

A W NO EXTENSION
The terminal does not support the extension command group.

B-1

Copyright © 1992, Display Industry Association.

A W _BAD:-EMULATION
The emulation requested is flqt§UPPOrted by the terminal.

A \V _ UNDEFINEP~ERROR
... .c\p .. er,ror not cove.red by tnei,~boved?ssificaHons occured. It is acceptable
forthis error type to be, generated by anyfunctioo,

