

C ASCII and Hexadecimal Conversions PL/I Language Reference Manual

Table C-2. (continued)

Binary Decimal Hexadecimal ASCII

0000100 4 4 EaT (CTRL-D)
0000101 5 5 ENQ (CTRL-E)
0000110 6 6 ACK (CTRL-F)
0000111 7 7 BEL (CTRL-G)
0001000 8 8 BS (CTRL-H)
0001001 9 9 HT (CTRL-I)
0001010 10 A LF (CTRL-J)
0001011 11 B VT (CTRL-K)
0001100 12 C FF (CTRL-L)
0001101 13 D CR (CTRL-M)
0001110 14 E so (CTRL-N)
0001111 15 F SI (CTRL-O)
0010000 16 10 DLE (CTRL-P)
0010001 17 11 DCl (CTRL-Q)
0010010 18 12 DC2 (CTRL-R)
0010011 19 13 DC3 (CTRL-S)
0010100 20 14 DC4 (CTRL-T)
0010101 21 15 NAK (CTRL-U)
0010110 22 16 SYN (CTRL-V)
0010111 23 17 ETB (CTRL-W)
0011000 24 18 CAN (CTRL-X)
0011001 25 19 EM (CTRL-Y)
0011010 26 1A SUB (CTRL-Z)
0011011 27 1B ESC (CTRL-[)
0011100 28 1C FS (CTRL-\)
0011101 29 1D GS (CTRL-])
0011110 30 1E RS (CTRL-A)
0011111 31 1F US (CTRL-_)
0100000 32 20 (SPACE)
0100001 33 21 !
0100010 34 22 II

0100011 35 23 #
0100100 36 24 $
0100101 37 25 %
0100110 38 26 &
0100111 39 27 ,

0101000 40 28 (
0101001 41 29)

188

PL/I Language Reference Manual C ASCII and Hexadecimal Conversions

Table C-2. (continued)

Binary Decimal Hexadecimal ASCII

0101010 42 2A *
0101011 43 2B +
0101100 44 2C ,
0101101 45 2D -
0101110 46 2E
0101111 47 2F /
0110000 48 30 0
0110001 49 31 1
0110010 50 32 2
0110011 51 33 3
0110100 52 34 4
0110101 53 35 5
0110110 54 36 6
0110111 55 37 7
0111000 56 38 8
0111001 57 39 9
0111010 58 3A :
0111011 59 3B ;
0111100 60 3C <
0111101 61 3D =
0111110 62 3E >
0111111 63 3F ?
1000000 64 40 @
1000001 65 41 A
1000010 66 42 B
1000011 67 43 C
1000100 68 44 D
1000101 69 45 E
1000110 70 46 F
1000111 71 47 G
1001000 72 48 H
1001001 73 49 I
1001010 74 4A J
1001011 75 4B K
1001100 76 4C L
1001101 77 4D M
1001110 78 4E N
1001111 79 4F 0
1010000 80 50 P

189

C ASCII and Hexadecimal Conversions PL/I Language Reference Manual

Table C-2. (continued)

Binary Decimal Hexadecimal ASCII

1010001 81 51 Q
1010010 82 52 R
1010011 83 53 S
1010100 84 54 T
1010101 85 55 U
1010110 86 56 V
1010111 87 57 W
1011000 88 58 X
1011001 89 59 Y
1011010 90 SA Z
1011011 91 5B [
1011100 92 5C
1011101 93 5D]
1011110 94 5E "

1011111 95 SF <
1100000 96 60 ,

1100001 97 61 a
1100010 98 62 b
1100011 99 63 c
1100100 100 64 d
1100101 101 65 e
1100110 102 66 f
1100111 103 67 g
1101000 104 68 h
1101001 105 69 i
1101010 106 6A J
1101011 107 6B k
1101100 108 6C 1
1101101 109 6D m
1101110 110 6E n
1011111 111 6F 0

1110000 112 70 p
1110001 113 71 q
1110010 114 72 r
1110011 115 73 s
1110100 116 74 t
1110101 117 75 u
1110110 118 76 v

190

PL/I Language Reference Manual C ASCII and Hexadecimal Conversions

Table C-2. (continued)

Binary Decimal Hexadecimal ASCII

1110111 119 77 w
1111000 120 78 x
1111001 121 79 y
1111010 122 7A z
1111011 123 7B {
1111100 124 7C I
1111101 125 7D }
1111110 126 7E ~

1111111 127 7F DEL

End of Appendix C

191

End of Appendix C PL/I Language Reference Manual

192

Appendix D
Implementation Notes

The Digital Research implementation of PLfI is for microcomputers that use the
8080/8086, 280, 8084/8088 or similar processors. It is formally based on the ANSI
General Purpose Subset (Subset G) as specified by the ANSI PLfI Standardization
Committee X3J1.

PLfI conforms to the Subset G specification with the following exceptions.

PLfI does not include the following attributes:

• DEFINED
• FLOAT DECIMAL
• PICTURE (it is implemented as an edit format item on output)
• Asterisk Extents and Dynamic Arrays

PLfI does not include the following built-in functions:

• ATANH
• DATE
• STRING
• TIME
• VALID

The following built-in functions are additions from the full PL/I:

• ASCII
• RANK

In PLfI, the %REPLACE statement is extended allowing multiple replaces in a single
statement.

The following 110 facilities for ASCII file processing are added to PL/I:

• READ and WRITE statement forms for processing variable-length ASCII rec­
ords

• The GET EDIT statement is extended to full record input in A format
• Control characters are allowed in string constants

193

D Implementation Notes PL/I Language Reference Manual

PLII is designed for use in limited resource environments. The following are imple­
mentation constraints imposed by the design.

194

• The PL/I condition stack is fixed at 16 levels. In any given block, PL/I stacks
ON-units for the same condition. Therefore, you should not enable ON-units
inside iterative loops because the condition stack can quickly overflow.

• An ON-unit cannot free storage for a variable that is being used when the
condition is signaled, or close the file for which an 110 condition is signaled.
The ON-unit must branch to a non-local label.

• PL/I does not support partially-subscripted, and/or partially-qualified mixed
aggregate references that specify unconnected storage.

• PL/I does not support comparison operations for FIXED BINARY values whose
sum or difference is greater than 32767 in absolute value.

• In the implementation of PL/I for the 8080 and Z80® processors, the Compiler
produces relocatable object code in the MicroSoft® format. This format restricts
the length of external names to six characters.

• In the implementation of PL/I for the 8086 and 8088 processors, the Compiler
produces relocatable object code in the Intel® format. There are no restrictions
on the length of external names with this format.

End of Appendix D

Appendix E
PL/I Bibliography

This appendix lists several PL/I programming reference books. Some are introductory
textbooks for classroom use, while others are more advanced applications guides. Each
reference is followed by a short description of the general content. You can obtain
these books through your local bookstore, or order them directly from the publisher.

Although there are books now being prepared that specifically cover PL/I Subset G,
the books listed below cover subsets such as PL/C and SP/k ™ or the full IBM ™ imple­
mentations of PL/I. The statement forms of PL/C and SP/k are generally included in
the Subset G definition while full PLiI contains a number of language facilities excluded
from the subset. Therefore, you should be aware that differences can arise even though
the sample programs and definitions are substantially the same.

Your own reference library might consist of Lynch's book (12), that covers very
general aspects of computing with introductory language details provided by the Xenakis
book (14). Structured programming and program formulation is presented by one of
the Conway books, such as (6). Additional application programming details are given
in the Hughes book (9). Details of more advanced data structures are given in the
Augenstein book (1).

Readers are encouraged to critique the individual books, and any additional reference
material they find useful. Digital Research appreciates your comments and suggestions
so that we can update this list.

(1) Augenstein, M., and A. Tenenbaum. Data Structures and PLII Programming.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1979 (643p, Hardback, Type­
set).

An advanced presentation of full PL/I. This is a college textbook presenting the
PL/I language through a series of progressive examples covering recursion, list
processing, trees and graphs, sorting, searching, hash coding, and storage man­
agement. An extensive bibliography is included. Emphasis is upon implementing
data structures using a subset of full PLiI that nearly matches subset G. Structured
programming is not emphasized.

(2) Bates, F., and M. Douglas. Programming LanguagelOne. Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1970 (419p, Paperback, Hand Typed).

195

E PL/I Bibliography PL/I Language Reference Manual

A simple introduction to PL/I. This book presents fundamental elements of full
PL/I, with some emphasis on commercial processing including structures, records,
formatting and error processing. Explanations are emphasized rather than exam­
ples. Structured programming is not emphasized.

(3) Cassel, D. PLII: A Structured Approach. Reston Publishing, Inc., Reston, Virginia,
1978 (219p, Paperback, Typeset).

A middle level introduction to PL/I. A portion of full PL/I is presented emphasizing
batch processing and commercial applications. Language elements are clearly
presented, but there is no particular emphasis on program formulation or proper
structuring, as the title implies.

(4) Clark, F. J. Introduction to PLII Programming. Allyn and Bacon, Inc., Boston
1971 (243p, Paperback, Typeset).

A basic self-study introduction to PL/I through exercises. This text presents a
portion of full PL/I from a traditional card-oriented approach, starting with a
discussion of binary numbers and continuing through the basic statement types
to simple STREAM and RECORD 110. Structured programming is not empha­
sized, although commercial processing examples are given.

(5) Conway, R. A Primer on Disciplined Programming. Winthrop Publishers, Cam­
"bridge, Mass., 1978 (419p, Paperback, Computer Typed).

A textbook used for PL/C, Cornell University's dialect of PL/I. One of three college
textbooks by Conway et. aI., covering introductory programming, with emphasis
on techniques used to formulate, develop, and test programs. Includes short
discussions of searching and ordering lists, accounting, string operations, and
interactive systems. Emphasis is upon structured programming practices and pro­
gramming mechanisms rather than extensive examples of working programs.

(6) Conway, R., and D. Gries. Primer on Structured Programming. Winthrop Pub­
lishers, Cambridge, Mass., 1976 (397p, Paperback, Computer Typed).

A book on structured programming centered around PL/C. Essentially the same
content as the previous book by Conway, with perhaps more emphasis on the
operation of the PL/C programming system at Cornell.

(7) Conway, R., D. Gries, and D. Wortman. Introduction to Structured Programming.
Winthrop Publishers, Cambridge, Mass., 1977 (420p, Paperback, Computer Typed).

196

PL/I Language Reference Manual E PL/I Bibliography

A book on structured programming using Cornell's PLfC and Toronto's SPfk
systems. Again, similar to Conway's first book with the addition of sections on
file processing, and language translation using compilers and interpreters.

(8) Groner, G. PLfI Programming in Technological Applications. John Wiley & Sons,
New York, 1971 (230p, Paperback, Typeset).

An introduction to engineering applications programming in PLfI. This book
discusses full PLfI, with examples derived from batch processing under IBM
implementations. Program formulation through flowcharting is presented, with
many complete examples of scientific applications. Several examples of plot and
graph generation are presented. Emphasis is upon explanations of FLOAT BINARY
computations through complete examples. Programs are not particularly well
structured.

(9) Hughes, J. K. PLfI Structured Programming. Second edition, John Wiley & Sons,
New York, 1979 (825p, Hardback, Typeset).

A comprehensive guide to general PLfI programming. This is one of the more
complete presentations of the full PLfI language. Topics include structured pro­
gramming, processing simple data items, record and file handling, and list process­
ing. Emphasis is toward commercial programming using IBM's PLfI.

(10) Hume, J. N. P., and R. C. Holt. Structured Programming Using PLII and SPfk.
Reston Publishing, Inc., Reston, Virginia 1975 (340p, Paperback, Computer Typed).

An introduction to structured PLfI programming. This textbook introduces PLfI
through a graduated series of subsets called SPI1 through SP/8. Each successive
subset incorporates more of the full PLfI language. The text begins with basic
programming concepts, and progresses through the various PLfI language con­
structs. Sample programs include string and array handling, list processing, and
file handling. Machine language, assembly language, and compiling is also pre­
sented. Emphasis is upon structured programming.

(11) Kennedy, M., and M. B. Solomon. Structured PLfZero Plus PLfOne. Prentice­
Hall, Englewood Cliffs, New Jersey, 1977 (695p, Paperback, Computer Typed).

A fairly comprehensive introduction to PLfI. This book covers the basic elements
of PLfI in some detail, using PLfC for examples. IBM's PLfI Level F language is
discussed briefly. Most language facilities are well illustrated in simple examples.

197

E PL/I Bibliography PL/I Language Reference Manual

(12) Lynch, R. E., and J. R. Rice. Computers, Their Impact and Use. Holt, Rhinehart
and Winston, New York, 1978 (440p, Paperback, Typeset).

A basic introductory book to computers and PL/I. This is a college textbook
intended to introduce computers to nontechnical people. Half the book gives an
overview of computers, their history, their impact upon society, and how they
are used. Operating systems, languages, and language types are discussed. The
remainder discusses IBM PL/I using a variety of applications, ranging up to simple
file processing. Structured programming is not emphasized.

(13) Ruston, H. Programming with PLII. McGraw Hill, New York, 1978 (541p,
Paperback, Typeset).

A comprehensive textbook introduction to PL/I. This book presents PL/I from a
batch processing viewpoint, using the full PL/I language for examples. Program
construction through flowcharting is emphasized. Elements of PL/I are presented,
including simple statements, control structures, arrays, strings, procedures, and
file handling. Examples have a scientific orientation. Basics of error processing
are discussed. Structured programming is not emphasized.

(14) Xenakis, J. J. Structured PLII Programming. Duxbury Press, North Scituate,
Mass., 1979 (413p, Paperback, Typeset).

198

A comprehensive introduction to PL/I, close to Subset G. Basic programming
concepts are presented, with a brief history of programming languages. Elements
of full PL/I are shown, including conversion between data types, arrays, strings,
and procedures. A section on go-to-Iess programming is included, followed by a
game-playing section that includes a tic-tac-toe program. The book is simple in
scope and easy to read.

End of Appendix E

Appendix F
Glossary

aggregate: collection of related data items that you can reference together or indi­
vidually.

algorithm: any procedure consisting of a finite number of unambiguous, repeatable
steps that characterize the solution of a problem.

allocation: A) process of obtaining storage for a variable, or B) specific unit of storage
that you obtain for a based variable.

argument: value that you pass to a subroutine or function.

argument list: zero or more arguments that you specify when invoking a procedure
or a built-in function.

array: named collection of data items with the same attributes, and in which you
access individual items, called elements, by subscripts.

ASCII character set: set of numeric values that represent characters and control infor­
mation, established by American Standard Code for Information Interchange.

assignment statement: executable statement that assigns a value to a variable.

attribute: any characteristic of a data item, such as fixed- or floating-point, decimal
or binary, extent, and so on.

automatic variable: variable for which the Compiler allocates storage when the block
that declares it is activated. The storage is released when the block is deactivated.

based variable: variable that describes storage that you access using a pointer.

BEGIN block: one or more statements delimited by a BEGIN statement and a cor­
responding END statement. A BEGIN block is entered when control reaches the BEGIN
statement. When control flows into a BEGIN block, PLfI creates a block activation for
it and for the variables declared within it.

bit string: zero or more binary digits (0 or 1).

199

F Glossary PL/I Language Reference Manual

block: any sequence of PL/I statements delimited by one of the statement pairs PRO­
CEDURE and END or BEGIN and END.

bound-pair: expression that sets the number of elements in each dimension of an
array.

built-in function: any function provided as part of the PL/I language.

character string: zero or more ASCII characters.

comment: any sequence of characters appearing between the composite pairs /* and
*/. Comments provide documentary text and are ignored by the Compiler.

comparison operator: see relational operator.

Compiler: program that translates source statements of a high-level programming
language into an object module. The object module consists of processor instructions
and certain relocation information that the linkage editor uses to form a command
(CMD) file.

computational: data type on which you can perform operations. The computational
data types are arithmetic and string.

concatenation operator: operator, II, that joins two string values to form a single
string.

condition: any occurrence that interrupts the normal program execution and initiates
a user-defined, or system default response.

condition name: PL/I keyword associated with a specific condition.

connected storage: contiguous storage locations.

constant: A) any literal value that you specify to represent a computational data item,
or B) any entry or label name that you declare implicitly in context, or C) any identifier
that you declare with one of the attributes ENTRY or FILE but without the VARIABLE
attribute.

control variable: variable whose value changes on each iteration of a DO-group and
that can be tested to determine whether or not to continue executing the statements
in the DO-group.

200

PL/I Language Reference Manual F Glossary

conversion: process of transforming a value from one data type to another.

data type: class to which a data item belongs, and which determines the operations
that you can perform on it.

declaration: explicit or implicit specification of an identifier and its data type.

dimension: set of bounds that determine one extent of an array.

DO-group: any sequence of executable statements delimited by a DO statement and
a corresponding END statement.

element: any individual data item in an array, which you can reference with subscripts.

entry point: statement or instruction where the execution of a procedure begins.

expression: any valid combination of operands and operators that reduces to a single
value.

extent: range between the low-bound and the high-bound for one dimension of an
array.

external procedure: procedure that is not contained in any other procedure.

external variable: variable that is known in any block where you declare it with the
EXTERNAL attribute.

file: A) in PL/I, the input source or output target that you specify in an I/O statement,
or B) the collection of data on a mass storage device.

file constant: any identifier that you declare with the FILE attribute but not the
VARIABLE attribute.

filetype: zero- to three-character component of a CP/M-86 file specification that
generally describes the file's use.

FIXED BINARY: data type that represents integer values.

FIXED DECIMAL: data type that represents decimal values with a decimal point
and a fixed number of fractional digits.

201

F Glossary PLfI Language Reference Manual

floating-point: data type that represents very small or very large numbers. A floating­
point number has a mantissa and an optionally signed integer exponent.

flow of control: the sequence in which the processor executes the individual instruc­
tions in a program.

format item: value indicating data representation and formatting information used
with EDIT-directed 1/0.

format list: list of format items corresponding to data items for EDIT-directed 110.

function: procedure that executes when you use its name in an expression, and that
returns a value to its point of reference.

function reference: any reference to the name of a built-in function or a user-written
function in a PL/I statement.

high bound: upper limit of an array dimension.

110 category: general method you use to read or write data items in a file. The 110
categories are STREAM 110 and RECORD 110.

identifier: name consisting of 1 to 31 characters that you specify for a variable,
statement label, entry point, or file constant.

%INCLUDE file: external file from which the Compiler reads source text when
compiling a PL/I program.

integer constant: any optionally signed string of decimal digits.

integer data: data represented as FIXED BINARY or FIXED DECIMAL with a zero
scale factor.

internal procedure: procedure that is contained within some other procedure.

internal variable: variable whose value you can reference within the block that declares
it and any blocks contained within the block that declares it.

iteration factor: integer constant enclosed in parentheses that specifies the number
of times to use a value when initializing array elements, or the number of times to use
a given format item in an EDIT-directed 110 statement.

202

PL/I Language Reference Manual F Glossary

key: (A) any value that you use to specify a particular record in a file, or (B) data"
item that is part of a record in an indexed sequential file, or (C) relative record number
of a record in a RECORD file.

keyword: any PL/I identifier that has a specific meaning when you use it in the
appropriate context.

label: any PL/I identifier, terminated by a colon, which you use to identify a statement.

level number: integer constant that defines the hierarchical relationship of a name
within a structure with respect to other names in the structure.

library: file containing object modules and a directory of the external names within
the object modules.

linker: program that arranges relocatable object modules into a command (CMD)
file, and resolves references among external variables declared in the modules.

LIST-directed 110: any transmission of data between a program and an external
device, for which PL/I provides automatic data conversion and formatting.

listing: output file created by the Compiler that lists the statements in the source
program, with corresponding line numbers, and additional information.

logical operator: operator that performs a logical operation on bit-string values.

low bound: lower limit of an array dimension.

main procedure: procedure that receives control when the program begins executing.
The main procedure is always an external procedure.

major structure: name of an entire structure by which you can specify all members
of the structure in a single reference. A major structure always has a level number of
1.

member: data item in a structure. A member can be a scalar data item, an array, or
a structure.

memory: any addressable location that stores code or data.

minor structure: structure that is a member of a structure.

203

F Glossary PL/I Language Reference Manual

noncomputational: data item that is not string or arithmetic. The noncomputational
data types are ENTRY, FILE, and LABEL.

nonlocal GOTO: GOTO statement that transfers program control to a statement in
an encompassing block.

object module: output from the Compiler or assembler that you can link with other
modules to form a command (CMD) file.

ON condition: anyone of several named conditions that can interrupt a program
and generate a signal.

ON-unit: PL/I statements specifying the action to take when a program signals a
specific ON condition.

one-bit: the binary digit 1.

operator: symbol that directs PL/I to perform a specific function.

parameter: variable that PL/I matches with an argument when the program invokes
a procedure.

parameter list: list of variable names whose values are determined when a procedure
is invoked. The PROCEDURE statement for the procedure's entry point specifies the
parameter list.

password: user-specified extension to a filename enabling file security.

Picture: character-string representation of an arithmetic value consisting of a char­
acter string constant defining the position of a decimal point, zero suppression, sign
conventions.

pointer: data item whose value is the address of a storage location.

pointer-qualified reference: specification of a based variable in terms of a pointer
value that indicates the location of the variable.

pointer qualifier: pointer reference and punctuation symbol that associates a specific
storage location with a based variable.

204

PLII Language Reference Manual F Glossary

precedence: priority of an operator that PLfI uses when evaluating operations in an
expression. PLfI performs an operation with a higher precedence before an operation
with a lower precedence.

precision: number of digits associated with an arithmetic data item.

prefix operator: operator that precedes a variable or constant to indicate or change
its sign.

PRINT file: STREAM OUTPUT file for which PLfI aligns certain data on predefined
tab stops, and controls the output with a specified page size and line size. In a PRINT
file, PLfI does not enclose strings in apostrophes.

procedure: sequence of statements, delimited by a PROCEDURE statement and an
END statement. A procedure can be a subroutine that you invoke with a CALL state­
ment or a function that you invoke with a function reference.

procedure block: sequence of statements delimited by a PROCEDURE statement and
an END statement. Control flows into a procedure block when you specify its name
in a CALL statement or a function reference, at which point PL/I creates a block
activation for it and for the internal variables declared within it.

pseudo-variable: name of a built-in function that you can use on the left-hand side
of an assignment statement to give a special meaning to the assignment.

qualified reference: unambiguous reference to a member of a structure that specifies
each higher-level name within the structure and separates the names with periods.

random access: 110 operation on a RECORD file where individual records within
the file are accessed using FIXED BINARY values called keys.

record: organized collection of data that PLfI transmits using RECORD I/O state­
ments.

RECORD file: file containing binary data that PLfI transmits without conversion.

RECORD 1/0: transmission of data grouped in user-defined units called records.

recursive procedure: procedure that can invoke itself.

reference: appearance of an identifier in any context other than its declaration.

205

F Glossary PL/I Language Reference Manual

relational operator: operator that defines a relationship between two expressions and
results in a. Boolean value indicating whether the relationship is true or false.

return value: value returned by a function that replaces the function at its point of
reference.

row-major order: order in which PL/I stores elements, or assigns values to elements
in an array. In row-major order, the rightmost subscript varies the most rapidly.

Run-time Subroutine Library: library of procedures that support the execution of a
PL/I program.

scalar: data item that is not an aggregate.

scale factor: number of fractional digits that you specify for a FIXED DECIMAL
data item.

scope: set of blocks within a program in which the declaration of an identifier is
known.

sequential access: access method that allows you to access records in a RECORD file
serially.

sequential file: RECORD file in which the records are arranged serially. You can
only add new records at the end of the file, and read records one after the other.

signal: mechanism by which PL/I indicates that a condition has occurred.

statement: valid sequence of PL/I keywords, identifiers, and special symbols that
specifies an executable instruction or data declaration.

static variable: variable for which the Compiler allocates storage for the entire exe­
cution of a program.

storage: any region of memory that is associated with a particular variable.

storage class: attribute of a variable that describes how its storage is allocated and
released by PL/I. The storage classes are AUTOMATIC, STATIC, and BASED.

STREAM I/O: transmission and interpretation of data in terms of sequences of ASCII
characters delimited by spaces, tabs, commas, or fields defined by format items.

206

PL/I Language Reference Manual F Glossary

string data: data type consisting of either characters or bits.

structure: hierarchical arrangement of logically related data items, called members,
that are not required to have the same data type.

structure reference: variable reference to an entire structure (as opposed to a member
of a structure).

subroutine: procedure that receives control when you invoke it with a CALL state­
ment.

subscript: integer expression specifying an individual element of an array or a label.

variable: data item whose value can change during the execution of a program.

variable reference: any reference to a variable including qualification by subscripts
and member names.

zero-bit: the binary digit O.

Note: Material in this appendix has been adapted in part from publication(s) of Digital
Equipment Corporation TM. The material so published herein is the sole responsibility
of Digital Research Inc.

End of Appendix F

207

End of Appendix F PL/I Language Reference Manual

208

Index

A

%INCLUDE statement, 25
%REPLACE statement, 26
ABS, 154
ACOS, 154
actual parameters, 12, 13
ADDR,155
ADDR BIF, 83
aggregates, 27
ALLOCA TE statement, 79, 84
ambiguous reference, 110
And operator, 69
argument, 72, 83
argument list, 11

function, 11
arithmetic constants, 122
arithmetic conversion functions, 45, 49
arithmetic data, 27
arithmetic error conditions, 97, 104
arithmetic functions, 147
arithmetic operators, 42
arithmetic to bit-string conversion, 47
arithmetic to character conversion, 48
array, 65
array references, 53
array variable, 51
arrays, 51, 76
arrays in assignment statements, 57
ASCII, 155 .
ASCII characters, 19, 31, 108
ASIN, 152
assignment and output ordering, 56
assignment statements, 3, 57, 65
ATAN,152
ATAND, 152
attribute factoring, 35, 39

attribute list, 40
A UTOMA TIC attribute, 77
A[(w)] format, 127

B

base 10 logarithmic functions, 148
base 2 logarithmic functions, 148
base e logarithmic functions, 148
BASED, 59
based variables, 77, 84
BCD format, 29
BEGIN blocks, 4, 77, 93, 98
BEGIN statements, 4
BIF, 2, 70
BINARY, 153
BINARY BIF, 46
BIT, 72, 153
bit SUBSTR, 71
bit to character-string conversion, 49
bit-string constants, 33, 122
bit-string data, 32
bit-string to arithmetic conversion, 49
bit-string variables, 32
block activation,S, 67
block balance, 4
block deactivation, 85
block termination, 5
block-structure, 4
blocks, 4
BOOL,150
Boolean algebra, 69
Boolean expression, 88
Boolean function, 69
Boolean test, 92
bound-pair, 51

209

bound-pair list, 35
Buff(b), 111
built-in function (BIF) subroutine, 147
built-in functions, 2, 42
BUILTIN, 147
B[n][(w)] format, 128

c
CALL statement, 12, 16
carriage return, 19
carriage return line-feed, 22
CEIL, 150
CHARACTER, 70, 71, 151
character set, 20
character SUBSTR, 70
character to bit-string conversion, 50
CHARACTER VARYING, 70, 71,

124, 125, 143
character-string constants, 31, 122
character-string data, 31
character-string variables, 32
Chebyshev polynomial approximations,

148
circumflex character, 32
CLOSE statement, 115
COLLATE, 151
column position, 116
COLUMN(nc), 130
comments, 19, 24
commercial applications, 29
common data type, 43
common logarithmic functions, 148
compatibility, 32, 44, 112, 126, 131,

139
Compiler, 11
composite operators, 22
concatenate, 23
condition handling statements, 3
condition stack, 100

210

condition-handling functions, 149
conditional branching, 87
conditional digit, 136
conditions, 97
conflicting attributes, 40, 108, 112
connected aggregate, 143
connected arrays, 57
connected storage, 62
constants, 18, 21

arithmetic, 21
bit, 21
character string, 21

constant, 21
contained block, 34, 147
containing block, 9, 95
context, 3, 21, 29
contexts, 42
control,S, 11
control character, 2
control characters, 32
control data items, 33
control format items, 126, 130, 141
control-variable, 88
controlled DO statement, 88
conversion, 28
conversion functions, 149
COS, 156
COSD,156
COSH,156
CP IM-86 file specification, 25
credit characters, 137
current line, 117
current line count, 116
current line number, 117
current page count, 116
current page number, 119
current record position, 116

D

data aggregates, 51
data attributes, 1, 58
data conversion, 41, 120, 148
data format items, 126
data items, 27
data set, 107
data type, 16, 31, 57
data types, 40
data variables, 27
debit characters, 137
DECIMAL, 48, 157
DECIMAL BIF, 46
decimal integer constant, 44
declarative statements, 3
DECLARE statement, 27, 37, 93
declared names, 21
declared record size, 108
default attributes, 40
default data conversion, 40
default filename, 111
default 1/0 units, 118
default ON-units, 106
default OPEN statement, 125, 126
default precision, 29, 30
default rules, 137
default system action, 118
default values, 108
delimiters and separators, 23
dimension, 57
DIMENSION, 157
dimension attribute, 61
dimensions, 51, 149
DIRECT, 143
DIRECT files, 109
DIVIDE, 157
DIVIDE BIF, 47
DO statement, 87
DO-group, 87, 94
DO-groups, 19

documentary text, 24
double circumflex, 32
double-precision, 30, 148
drifting, 135
drifting characters, 135
drive specification, 113
dynamic storage area, 79, 81, 102

E

E(w[d]) format, 128, 129
ENDPAGE, 97, 116, 131
ENDPAGE condition, 117
ENTRY, 41, 67
encompassing block, 7, 98
END statement, 16, 87, 93
END statements, 4
ENDFILE, 97, 116
ENDPAGE, 97, 16, 131
ENDPAGE condition, 117
ENTRY, 67
ENTR Y attribute, 34
entry constant, 35
ENTRY constant, 83
entry constants, 34
ENTR Y data, 34
ENTR Y declaration, 34
entry names, 75
entry point, 67
ENTR Y statement, 93
entry variable, 35
entry variables, 34
environment, 3
ENVIRONMENT, 143, 144
ENVIRONMENT attribute, 108
equal comparison operator, 34
equal not equal comparison operators,

36
ERROR, 50, 79, 97, 116, 128, 137
ERROR condition, 101
executable statements, 3

211

EXP, 158
expression, 65
extent, 52
EXTERNAL attribute, 9, 107
external blocks, 7, 9
external data set, 111, 127
external device, 109, 115
external entry points, 21
EXTERNAL option, 17
external procedures, 7, 8, 34
external variable, 10

F

fatal conditions, 97, 103
FILE, 41, 67, 123
FILE constant, 83
file constant, 107, 115, 143
file constants, 37
File Control Block, 116
FILE data, 37 .
File Descriptor, 116
file open mode, 110
file parameter block, 68
File Parameter Block, 115
file status, 115
file variable, 107, 115, 143
file variables, 37
filenames, 75
filetype, 110
FIXED, 158
FIXED BIF, 45
FIXED BINARY, 27, 28, 47, 48, 49,

70, 72, 143, 144
FIXED BINARY expression, 145

. FIXED DECIMAL, 29, 49, 130
FIXED OVERFLOW, 29
fixed record, 116
fixed record file, 109

212

Fixed(i), 110, 111
fixed-length record size, 109
fixed-length records, 111, 143
fixed-point data, 129
FIXEDOVERFLOW, 97
FIXEDOVERFLOW[(i)], 104
FLOAT, 159
FLOA T BIF, 45
FLOAT BINARY, 27, 30, 46, 49, 148
FLOA T BINARY constant, 30
floating-point, 148
floating-point data, 128
FLOOR,159
flow of control, 3, 33, 89, 99
formal parameter, 16
formal parameters, 13, 34
format label, 132
format list, 127, 130, 131, 141
FORMAT statement, 93, 132
fractional digits, 27, 45, 48, 137
FREE statement, 79, 81
free-format language, 19
function, 11, 34
function procedure, 12

G

GET EDIT, 128, 129, 130, 131
GET EDIT statement, 141
GET LIST statement, 123
global data, 17,
GOTO statement, 89, 93

H

HBOUND,159
high-level organization, 3
hyperbolic sin and cos functions, 147

I

I/O categories, 120
I/O condition BIFs, 118
I/O conditions, 97, 106
I/O processing, 42, 106
I/O statements, 3
identifier, 21, 26, 35, 37, 51
identifiers, 21
IF ELSE, 92-93, 89, 92
IF statement, 89, 92
IF THEN, 92-93
implied attributes, 111, 112
INDEX, 160
infix expression, 66
infix operator, 66, 67
INITIAL attribute, 55, 56, 76
initializing arrays, 55
INPUT file, 109
input-list, 123, 130, 141
insertion character, 136
insertion characters, 133, 136, 137
integer, 29, 42
integer exponent, 30, 49
integer subscripts, 51
integer values, 27
internal block, 9
internal blocks, 7
internal buffer size, 111, 116
internal buffers, 115
internal data representation, 29, 72, 84
internal procedures, 34
internal representation, 120
iteration factor, 55, 76
iterative DO-groups, 122
iterative

controlled, DO, 87

K

KEY, 97, 116
key, 109
KEY condition, 117
KEY condition, 117
key value, 143
KEYED file, 109
keys, 109
keyword, 4, 21, 65
keywords, 21, 108

L

label, 4
LABEL, 41, 68
LABEL constant, 83
label constant, 93, 95, 132
label constants, 33
LABEL data, 33
label identifier, 33
label variables, 33
labels, 37
LBOUND,160
LENGTH, 160
level, 59
level numb~rs, 39
LINE, 131
line-feed, 22
linemark, 108, 123, 130, 131
linemarks, 120, 123, 131
LINENO, 118, 161
LINENO function, 119
LINESIZE, 109
LINK-86, 34
LIST, 123
local, 107
local variable, 9
LOCK,161
Locked, 110

213

LOG,161
LOG10, 162
LOG2,162
logical data items, 32
logical units, 3, 4
low-level organization, 19
lower-bound

M

MAIN option, 17
main procedure, 7
main program, 16
main structure, 58
major structure, 59, 61, 75
mantissa, 30
mathematical functions, 147
MAX, 163
members, 58
memory management statements, 3
MIN,163
minor structure, 59, 61
miscellaneous functions, 149
mixed aggregate, 61
mixed aggregate referencing, 62
mixed aggregates, 61
MOD,163
most significant digit, 48
multiple %REPLACE statements, 26
multiple allocations, 79
multiple attribute, 38
multiple attributes, 108
multiple data items, 27, 51
multiple declarations, 38

N

natural exponent function, 148
natural logarithmic functions, 148

214

nested %INCL UDE statements, 25
nested BEGIN blocks, 4
nested block, 7
nested blocks, 19, 26"
nested IF statements, 93
nine's complement, 29
nonfatal conditions, 97, 103
noniterative

simple, DO, 87
nonlocal GOTO, 98
nonlocal GOTO statement, 95
not equal comparison operator, 34
Not operator, 69
NULL,164
NULL BIF, 82
NULL built-in function, 55
null character string, 31
NULL pointer value, 76
null statements, 3
null string, 50, 118

o
ON statement, 97
ON-unit, 98, 117, 134, 149

active, 100
enabled, 100

ON-units, 95
ONCODE,164
ONCODE BIF, 105
ONFILE, 118, 164
ONFILE condition, 118
ONKEY, 118, 165
ONKEY function, 119
OPEN statement, 37, 107
operands, 66
operators, 19, 22, 65
Or operator, 69
OUTPUT file, 109
output list, 124, 130

output-list, 126
OVERFLOW, 97
OVERFLOW [(i)], 104

p

padding, 48, 68, 76, 131, 145
PAGE, 123
pagemark, 100, 124, 131
pagemarks, 120
PAGE;NO, 118, 165
PAGENO function, 119
PAGESIZE, 109, 117
parameters, 13

passed by reference, 14
passed by value, 14

partially qualified, 62
partially subscripted, 62
password, 109, 117
password protection level, 110
picspec, 132, 133, 136, 137, 138-140
Picture format item, 132
Picture semantics, 135
picture syntax, 133
PLII keywords, 1
POINTER, 41, 68
pointer, 77
POINTER data, 36
pointer-qualified reference, 84
precedence rules, 66
precision, 15, 28, 42, 43, 44, 45, 46,

71, 130, 137
predefined files, 119
prefix expressions, 65
prefix operators, 66
preprocessor statements, 3, 25
PRINT, 112, 116, 124, 130, 131
procedure names, 35
PROCEDURE statement, 13, 16,41,93
PROCEDURE statements,S

procedure blocks, 11
procedure entry point, 16
procedure exit point, 16
procedure invocation,S, 11, 12
procedure names, 35
PROCEDURE statement, 13, 16, 93
PROCEDURE statements,S
pseudo-variable, 65
pseudo-variables, 70
PUT EDIT, 128, 129, 130, 131
PUT EDIT statement, 141
PUT LIST statement, 9, 123
qualified name, 61
qualified reference, 51

Q

qualified name, 61
qualified reference, 51

R

RANK,165
READ statement, 121, 124, 143
READ Varying statement, 124
READ with KEYTO statement, 144
readability, 16
Readonly, 110
RECORD file, 108, 116
RECORD files, 143
RECORD 1/0, 120
RECURSIVE, 75
RECURSIVE attribute, 19
relational operators, 67
remote format items, 126, 127
REPEA T option, 89
repetition factor, 127
result, 41
RETURN statement, 12, 16, 41, 98

215

RETURNS attribute, 13, 19
REVERT statement, 100
ROUND,166
run-time errors, 3
run-time stack, 17
Run-time Subroutine Library (RSL),

147

s
scalar data items, 51, 58
scalar data type, 143
scalar variables, 37
scale, 15, 28, 29, 42, 43, 44, 45, 46,

130, 137
scientific applications, 29
scientific notation, 30, 48, 129
scope, 11, 34, 78, 94, 132, 147
scope of a variable, 9
separators, 122
sequence control statements, 3, 87
SEQUENTIAL, 143
SEQUENTIAL files, 109
Shared, 110
SIGN, 166
SIGNAL statement, 100
simple DO statement, 87
SIN, 167
SIND, 167
single-precision, 30, 148
SINH, 167
SKIP, 123, 131
source, 41
source program, 19, 24, 25
source text, 25
spaces, 22
special characters, 2, 23
SQRT, 168
square root function, 148
STACK(b) option, 17

216

statement forms, 1
STATIC, 59
static, 135
STATIC attribute, 75
static characters, 138
STOP statement, 93
storage class attribute, 75
storage class attributes, 40
storage sharing, 14, 75, 83, 84
STREAM file, 36, 112
STREAM 1/0, 120
string conversions, 47
string-handling functions, 148
structural statements, 3
structure, 35, 58
structure members, 39
structure variable, 51
subcodes, 101
subroutine, 11
subroutine invocation, 12
subscripted array references, 53
subscripted arrays, 34
subscripted entry variable, 12
subscripted entry variables, 34
subscripted label variables, 94
subscripted labels, 34
Subset G, 84
Subset G standard, 17, 76
SUBSTR, 70, 168
substructure, 58
substructures, 58
SYSIN, 119, 123, 124
SYSPRINT, 119, 123

T

TAN, 169
TAND,169
TANH, 170
target, 41

temporary result, 83
TITLE attribute, 109
TRANSLA TE, 170
trigonometric functions, 148

. TRUNC, 170
two's complement, 28

u
unconditional branching, 87
UNDEFINEDFILE, 97, 116
UNDEFINED FILE condition, 117
UNDERFLOW, 97
UNDERFLOW [(i)], 104
UNLOCK,171
unsigned decimal constant, SS
UNSPEC, 70, 72, 171
unsubscripted variable references, 79
up-level reference, 9
UPDA TE file, 109
upper-bound, Sl

v
variable, 27
VARIABLE attribute, 3S
variable length ASCII, 12S
variable length records, 111, 144
variable subscripts, 53
variable-length ASCII records, 124
variable-length record size, 110
variables, 1, 36

local, 9
variables

external, 9
VERIFY, 172

w
WHILE expression, 89
WRITE statement, 121, 124, 144
WRITE Varying statement, 126

x
X,131

z
zero supression, 136
zero supression characters, 136
ZERODIVIDE, 97
ZERODIVIDE [(i)], 104

217

218

219

220

Reader Comment Form
We welcome your comments and suggestions. They help us provide you with better
product documentation.

Date _____ Manual Title ____________ Edition ____ _

1. What sections of this manual are especially helpful?

2. What suggestions do you have for improving this manual? What information
is missing or incomplete? Where are examples needed?

3. Did you find errors in this manual? (Specify section and page number.)

COMMENTS AND SUGGESTIONS BECOME THE PROPERlY OF DIGITAL RESEARCH.

---~--.~ ~.~,~ ~~-.~~-~---.---.- .-.--------.---.-----~-~~- '---'---"-~ ----~.-~.----~-.;.. ~ -- - --- - - ------

Attn: Publication Production

BUSINESS REPLY MAIL
FIRST CLASS / PERMIT NO. 182 / PACIFIC GROVE, CA

POSTAGE WILL BE PAID BY ADDRESSEE

[Q] DIGITAL RESEARCHN
P.o. Box 579
Pacific Grove, California
93950

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

