
PLjrM

Language

[!ill
DIGITAL

RESEARCHT~

PL/r
Language

Programmer's Guide

Foreword

The PL/I system is a complete software package for both applications and system
programming. PL/I runs under the Digital Research single-user operating systems,
CP/M® or CP/M-86®. PL/I runs in a multiuser environment, under MP/M II™,
or MPIM-86™. This manual assumes you are familiar with your operating system and
minimizes references to it.

PL/I is formally based on the Subset G language defined by the ANSI PL/I Stan
dardization Committee X3Jl. Subset G contains all the necessary application pro
gramming constructs of full PL/I, and discards seldom-used or redundant forms. The
resulting language encourages good programming practices while simplifying the com
pilation task.

The PLII Language Programming Guide is divided into three parts. The first part,
Sections 1 through 6, presents a brief introduction to the PL/I language, with emphasis
on block structure, data types, and its various executable statements. Section 5 gives
guidelines for developing a readable programming style. Section 6 explains the oper
ation of the system as a whole, and introduces you to the mechanics of compiling,
linking, and executing programs.

The second part, Sections 7 through 16, contains detailed sample programs that
illustrate the useful facilities of the language, including Input/Output processing, string
and list processing, scientific computation, and business applications. Each section
presents general concepts, and then a detailed discussion of one or more example
programs to illustrate the concepts.

The third part, Section 17 through 20, presents advanced programming topics, such as
the internal representation of data, conventions for interfacing assembly language
prbgrams with PL/I modules, making direct operating system calls, and writing PL/I
programs that use overlays.

The best way to learn any programming language is to study working examples. To
learn PL/I, you should study these example programs along with the associated text,
and cross-check the material with the PLII Language Reference Manual when necessary.
Once you understand the operation of a particular program, you can modify the
program to enhance its operation and further your experience with the language.

III

COPYRIGHT

Copyright © 1982 by Digital Research. All rights reserved. No part of this publication
may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated
into any language or computer language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual or otherwise, without the prior written
permission of Digital Research, Post Office Box 579, Pacific Grove, California, 93950.

This manual is, however, tutorial in nature. Thus, permission is granted to reproduce
or abstract the example programs shown in the enclosed figures for the purposes of
inclusion within the reader's programs.

DISCLAIMER

Digital Research makes no representations or warranties with respect to the contents
hereof and specifically disclaims any implied warranties of merchantability or fitness
for any particular purpose. Further, Digital Research reserves the right to revise this
publication and to make changes from time to time in the content hereof without
obligation of Digital Research to notify any person of such revision or changes.

TRADEMARKS

CP/M and CP/M-86 are registered trademarks of Digital Research. MP/M II,
MP/M-86, SID and SID-86 are trademarks of Digital Research. TEX and ED are
utilities of Digital Research. ADM-3A is a product of Lear-Siegler Incorporated.

The PL/I Language Programming Guide was prepared using the Digital Research
TEX-80 Text formatter and printed in the United States of America by Commercial
Press/Monterey.

First Edition: December 1982

IV

Table of Contents

1 Introduction

1.1 What is PL/I? .. 1
1.2 Using This Manual .. 1
1.3 Notation ... 2

2 The PL/I Language

2.1
2.2
2.3
2.4
2.5
2.6

Structural Statements
Declarative Statements
Executable Statements
PL/I Blocks .. .
Procedures
DO-groups

3
3
3
5
6
7

3 Declarations

3. 1 Scalar Data ... 10
3.1.1 Arithmetic Data 10
3.1.2 String Data .. 12
3.1.3 Control Data ... 13
3.1.4 Pointer Data ... 16
3.1.5 File Data 16

3.2 Data Aggregates ... 16
3.2.1 Arrays ... 17
3.2.2 Structures .. 18

4 Executable Statements

4.1 Assignment Statements 21
4.2 Sequence Control Statements 23

4.2.1 Iteration ... 24
4.2.2 Procedure Invocation 26
4.2. 3 Parameter Passing 26
4.2.4 Conditional Branch 29
4.2.5 Unconditional Branch 29

v

Table of Contents (continued)

4.3' 1/0 and File-handling Statements 29
4.3.1 Opening Files .. 30
4.3.2 File Attributes .. 33
4.3.3 Implied Attributes 34
4.3.4 Closing Files ... 35
4.3.5 File Access Methods 35
4.3.6 Data Format Items 36
4.3.7 Control Forniat Items 36
4.3.8 Predefined Files 37

4.4 Condition-processing Statements 37
4.4.1 The ON Statement 38
4.4.2 The REVERT Statement.......................... 38
4.4.3 The SIGNAL Statement 39
4.4.4 Condition Categories 39
4.4.5 Condition Processing Built-in Functions 41

4.5 Memory Management Statements 41
4.5.1 BASED Variables and Pointers 42
4.5.2 The ALLOCATE Statement 44
4.5.3 The FREE Statement 44

4.6 Preprocessor Statements 45
4.7 Null Statements ... 46

5 Programming Style

5.1 Case ... 49
5.2 Indentation ... 49
5.3 Abbreviations ... 50
5.4 Modular Format 50
5.5 Comments .. 51

6 Using the System

6.1 PL/I System Files ... 54
6.2 Invoking the Compiler 55

VI

Table of Contents (continued)

6.3 Compiler Operation ... 57
6.4 The DEMO Program .. 59
6.5 Running DEMO .. 60
6.6 Error Messages and Codes 61

6.6. 1 General Errors .. 62
6.6.2 Pass 1 Errors ... 63
6.6. 3 Pass 2 Errors ... 64
6.6.4 Pass 3 Errors ... 67
6.6.5 Run-time Errors 67
6.6.6 Fatal Run-time Errors 67
6.6.7 Nonfatal Errors 68

7 Using Different Data Types

7.1 The FL TPO L Y Program
7.2 The D ECPO L Y Program

8 STREAM and RECORD File Processing

71
74

8.1 File Copy Program ... 77
8.2 Name and Address File 80

8.2. 1 The CREATE Program 80
8.2.2 The RETRIEVE Program 83

8.3 An Information Management System 88
8.3. 1 The ENTER Program 88
8.3.2 The KEYFILE Program 91
8.3.3 The UPDATE Program 92
8.3.4 The REPORT Program 96

9 Label Constants, Variables, and Parameters

9.1 Labeled Statements .. 101
9.2 Program 4be1s .. 102
9.3 Computed GOTO ... 103
9.4 Label References ... 104
9.5 Example Program ... 105

Vll

Table of Contents (continued)

10 Condition Processing

10.1
10.2

10.3

Condition Categories
Condition Processing Statements
10.2.1 ON and REVERT
10.2.2 SIGNAL .. .
Examples of Condition Processing
10.3.1 The FLTPOLY2 Program
10.3.2 The COPYLPT Program

107
108
108
110
110
111
112

11 Character String Processing

11.1 The OPTIMIST Program 119
11.2 A Parse Function ... 123

11. 2.1 The GNT Procedure 125
11.2.2 The DO-Group................................ 126

12 List Processing

12.1 Based and Pointer Variables 129
12.2 The REVERSE Program 132
12.3 A Network Analysis Program 136

12.3.1 NETWORK List Structures 139
123.2 Traversing the Linked Lists 141
12 3. 3 Overall Program Structure 142
12.3.4 The Setup Procedure 142
123.5 The Connect Procedure..... 142
12. 3.6 The Find Procedure 143
123.7 The Print-.All Procedure 143
12.3.8 The Print_Paths Procedure 143
123.9 The Print_Route Procedure 143
123.10 The Shortest_Distance Procedure. 144
12.3.11 The Free-.All Procedure 144
12.3.12 NETWORK Expansion 145

VIII

Table of Contents (continued)

13 Recursive Processing

13.1 The Factorial Function 153
13.2 FIXED DECIMAL and FLOAT BINARY Evaluation 158
13.3 The Ackermann Function 161
13.4 An Arithmetic Expression Evaluator 163

13.4. 1 The Exp Procedure 165
13.4.2 Condition Processing 166
13.4.3 Improvements 167

14 Separate Compilation

14.1 Data and Program Declarations 173
14.2 ENTRY Data .. 174
14.3 An Example of Separate Compilation 176

15 Decimal Computations

15.1 A Comparison of Decimal and Binary Operations 183
15.2 Decimal Representation 185
15.3 Addition and Subtraction.......... 188
15.4 Multiplication ... 191
15.5 Division ... 193

16 Commercial Processing

16.1 A Simple Loan Program 197
16.2 Ordinary Annuity .. 201

16.2.1 Mixed Data Types 203
16.2.2 Evaluating the Present Value PV 205
16.2.3 Evaluating the Payment PMT 206
16.2.4 Evaluating the Number of Periods n 207

16.3 Loan Payment Schedule Format 208
16.3.1 Variable Declarations 215
16.3.2 Program Execution. 216
16.3.3 Display Formats 217

ix

Table of Contents (continued)

(

16.4 Computation of Depreciation Schedules 222 \
16.4.1 General Algorithms 222
16.4.2 Selecting the Schedule 231
16.4.3 Displaying the Output 232

17 Internal Data Representation

17.1 FIXED BINARY Representation 239
17. 2 FLOAT BINARY Representation 240
17.3 FIXED DECIMAL Representation 243
17.4 CHARACTER Representation 244
17.5 BIT Representation 245
17.6 POINTER, ENTRY and LABEL Data 245
17.7 File Constant Representation 246
17.8 Aggregate Storage .. 246

18 Interface Conventions

18. 1 Parameter Passing Conventions 247
18.2 Returning Values from Functions 253

18.2.1 Returning FIXED BINARY Data 254
18.2.2 Returning FLOA T BINARY Data ;......... 254
18.2.3 Returning FIXED DECIMAL Data 255
18.24 Returning CHARACTER Data 255
18.2.5 Returning BIT Data : 255
18.2.6 Returning POINTER, ENTRY, LABEL Variables 256

18.3 Direct Operating System Function Calls 259

19 Dynamic Storage and Stack Routines

19.1 Dynamic Storage Subroutines 263
19.1.1 The TOTWDS and MAXWDS Functions 263
19.1.2 The ALLWDS Subroutine 264

19.2 The STKSIZ Function 266

x

Table of Contents (continued)

20 Overlays

20.1 Using Overlays in PL/I 267
20.2 Writing Overlays in PL/I 269

20.2.1 Overlay Method One 270
20.2.2 Overlay Method Two 271
20.2.3 General Overlay Constraints 273

20.3 Command Line Syntax 273

List of Tables
3-1. PL/I Data Types ... 9
4-1. PL/I Valid File Attributes. 33
4-2 File Attributes Associated with 110 Access 34
4-3. PL/I Condition Categories and Subcodes 39
6-1. PL/I System Files '............................. 54
6-2 PL/I Compiler Options ... 56

List of Figures
2-1. PL/I Procedure Components 6
3-1. Arrays .. 17
3-2 Structure Declaration Hierarchy 19
4-1. Forms of the DO Statement 24
6-1. PL/I Program Development 53
8-1. Default Filenames in the Command Tail 78

17-1. FIXED BINARY Representation 239
17-2 Single-precision Floating-point Binary 240
17-3. Double-precision Floating-point Binary 242
17-4. Bit-string Data Representation 245
17-5. POINTER, ENTRY, and LABEL Data Storage 245
17-6. Aggregate Storage .. 246
18-1. PL/I Parameter Passing Mechanism 247

Xl

Table of Contents (continued)

List of Listings (
2-1. SAMPLE PL/I Program .. 4
3-1a. External Procedure A ... 15
3-1b. The CALL Program .. 15
4-1. Parameter Passing .. 28
5-1. PL/I Stylistic Conventions 51
6-1a. Compilation of DEMO Using $N Switch 58
6-1b. Compilation of DEMO Using $L Switch 59
6-2 Interaction with the DEMO Program 60
6-3. Error Traceback with the DEMO Program 61
7-1. Polynomial Evaluation Program (FLOA T BINARY) 72
7-2 Interaction with FL TPOLY Program '0' • • • • • • • • • • • • • • 73
7-3. Polynomial Evaluation Program (FIXED DECIMAL) 74
7-4. Interaction with DEC POL Y Program 75
8-1. COpy (File-to-File) Program 78
8-2 Interaction with the COpy Program 79
8- 3. CREA TE Program ... 80
8-4. Interaction with the CREATE Program 82
8-5. Output from the CREATE Program 83
8-6. RETRIEVE Program ... 84
8-7. Interaction with the RETRIEVE Program 86
8-8. The ENTER Program .. 89
8-9. Interaction with the ENTER Program 90
8-10. The KEYFILE Program ... 91
8-11. Interaction with the KE YFILE Program 92
8-12 Contents of the KEYFILE 92
8-13. The UPDATE Program ... 93
8-14. Interaction with the UPDATE Program 95
8-15. The REPORT Program ... 97
8-16. REPORT Generation to the Console 98
8-17. REPORT Generation to a Disk File 99

XII

9-1.
10-1.
10-2
10-3.
10-4.
10-5.
11-1.
11-2
11-3.
11-4.
12-1.
12-2
12-3.
12-4.
13-1.
13-2
13-3.
13-4.
13-5.
13-6.
13-7.
13-8.
13-9.
13-10.
13-11.
13-12
13-13.
13-14.
14-1.
14-2
14-3.
14-4.

Table of Contents (continued)

Illustration of Label Variables and Constants 106
Processing the REVERT Statement 109
The FL TPOL Y2 Program 111
The COPYLPT Program....................................... 112
Interaction with COPYLPT 115
Output from COPYLPT 116
The OPTIMIST Program 121
Interaction with OPTIMIST 122
The FSCAN Program... 124
Interaction with the FSCAN Program 125
The REVERSE Program 133
Interaction with the REVERSE Program 134
Interaction with the NETWORK Program 137
The NETWORK Program 145
The IFACT Program ;.. 155
Output from the IFACT Program 156
The RFACT Program ... 156
Output from the FACT Program 157
The DFACT Program ... 158
Output from the DFACT Program 159
The FFACT Program· .. 159
Output from the FFACT Program................. 160
The ACK Program .. 162
Interaction with ACK Program 162
EXPRESSION Program Using Evaluator EXPRl 164
Interaction with EXPRl 167
Expression Evaluator EXPR2 168
Interaction with EXPR2 171
Illustration of ENTRY Constants and Variables 176
MAININVT -Matrix Inversion Main Program Module 178
INVERT -Matrix Inversion Subroutine 180
Interaction with the INVMAT Program 180

xiii

16-1.
16-2
16-3.
16-4.
16-5.
16-6.
16-7.
16-8.
16-9.
16-10.
16-11.
16-12.
16-13.
16-14.
18-1.
18-2
18-3.
18-4.
18-5.
18-6.
18-7.
18-8.
18-9.
19-1.
19-2
19-3.
19-4.

Table of Contents (continued)

The LOAN1 Program ... 199
Output from the LOAN1 Program.............................. 200
The ANNUITY Program 201
Interaction with the ANNUITY Program 203
The LOAN2 Program ... 209
First Interaction with LOAN2 218
Second Interaction with LOAN2 219
Third Interaction with LOAN2 220
Fourth Interaction with LOAN2 221
The D EPREC Program .. 223
First Interaction with DEPREC 234
Second Interaction with DEPREC 235
Third Interaction with DEPREC 236
Fourth Interaction with DEPREC 237
The DTEST Program .. 249
DIV2ASM Assembly Language Program (8080) 250
DIV2 A86 Assembly Language Program (8086) 251
DTEST Output (abbreviated).................................... 253
The FDTEST Program .. 256
FDIV2ASM Assembly Language Program (8080) 257
FDIV2A86 Assembly Language Program (8086) 258
D10MOD.DCL ... 260
FCB.DCL .. 261
The ALL TST Program .. 265
Interaction with the ALL TST Program 266
The ACKTST Program .. 267
Output from the ACKTST Program 268

xiv

1.1 What is PL/I?

Section 1
Introduction

PL/I is a programming language that you can use to write either applications or
system-level programs. It is formally based on the ANSI General Purpose Subset (Subset
G) as specified by the ANSI PL/I Standardization Committee X3Jl. PL/I Subset G has
the formal structure of the full language, but in some ways it is a new language, and
in many ways an improved language compared to its parent.

PL/I Subset G is easy to learn and use. It is a highly portable language because its
design generally ensures hardware independence. It is also more efficient and cost
effective, because programs written in PL/I Subset G are easier to implement, document,
and maintain.

1.2 Using This Manual

This manual is designed to help you learn PL/I by studying sample programs. If you
have never programmed in a structured, high-level language such as PL/I, you should
read Sections 1 through 4 first. These sections provide you with a brief introduction
to the language. PL/I has features that are similar to other programming languages,
but it also has its own unique constructs and syntax.

Sections 1 through 4 outline the fundamental structure and features of PL/I in an
informal and conceptual framework. This summary can help you become familiar with
the overall capabilities of PL/I and encourage you to use its full power.

Sections 1 through 4 are not a complete tutorial on PL/I programming in general.
If you find the overview is not sufficiently detailed, you might want to read some of
the books listed in Appendix E of the P LII Language Reference Manual. You should
also refer to the material in Sections 1 through 4 of the P LII Language Reference
Manual.

If you are already an experienced PL/I programmer, you might want to begin with
Section 6, which describes how to compile and link programs.

ALL iNfORtv'IAT!ON 1

1.3 Notation PL/I Programming Guide

1.3 Notation

2

The following notational conventions appear throughout this document:

• Words in capital letters are PLII keywords or the names of PLII programs that
are described in the text.

• Words in lower-case letters or in a combination of lower-case letters and digits
separated by a hyphen represent variable information for you to select. These
words are described or defined more explicitly in the text.

• Example statements are given in lower-case.

• The vertical bar I indicates alternatives.

• ~ represents a blank character.

• Square brackets [] enclose options.

• Ellipses ... indicate that the immediately preceding item can occur once or any
number of times in succession.

• Except for the special characters listed above, all other punctuation and special
characters represent the actual occurrence of those characters.

• In text, the symbol CTRL represents a control character. Thus, CTRL-C means
control-C. In a PLII source program listing or any listing that shows. example
console interaction, the symbol" represents a control character.

• The acronym BIF refers to one of the PLII built-in functions.

• Throughout this manual, program listings have brackets on the left side to
illustrate and emphasize the block structure of the language.

• References to material in the PLII Language Reference Manual are noted at the
end of each section. The acronym LRM denotes Language Reference Manual.
For example,

References: LRM Section 3.1.1

End of Section 1

Section 2
The PLfI Language

Every PL/I program consists of one or more statements from three general categories:

• structural statements
• declarative statements
• executable statements

These categories are not mutually exclusive, but provide a convenient starting point.
The following sections describe and illustrate the statements in each general category.

2.1 Structural Statements

Structural statements are the foundation of any program because they define the
logical units in a program. These logical units are called blocks. When a program
executes, control always flows from one logical unit to another. Logical units can
contain other logical units, causing control to flow into and out of the units. You use
structural statements to specify the hierarchical and logical structure in a program.

2.2 Declarative Statements

Declarative statements always occur in a logical unit defined by a structural statement,
and determine the environment of a logical unit. The environment is the name and
type of all the data variables available in a logical unit. Use declarative statements to
specify the context of the variables you want to manipulate in a logical unit.

2.3 Executable Statements

Executable statements manipulate storage, transfer the flow of control between log
ical units, control the flow of data to and from 1/0 devices, and perform calculations.
Both structural statements and declarative statements serve only to create a context
for executable statements.

iNfORIViAT10N 3

2.3 Executable Statements PL/I Programming Guide

Listing 2-1 shows a PL/I program that illustrates statements from each category. You
need not fully understand the program or the syntax of each statement at this point. The
program consists of distinct blocks of statements; each block is a logical unit of control.

4

s aMP Ie:
procedure options(Main);
declare

c cnaracter(10) varyin~;

[

dO;ut sKip list('Input: ');
~et list(c);
c = upper(c); 1* function reference *1
put sKip list('Output: ''c);

end;

Ibe~in;

I declare

l
c float binary(Z4);

put sKip list('Input: ');
~et list(c);
call output(c); 1* subroutine invocation *1

en d ;

upper:
procedure(c) returns(cnaracter(10) varyin~);

declare
c cnaracter(10) varyin~;

return(translate(c,'A5CDEFGHIJKLMNOPQRSTUVWXYZ' ,
'abcdef~nijKlMnopqrstuvwxyZ')) ;

end uPper;

[
Output~rocedUre(C) ;

deC!a;~oat binary(Z4);

put sKip edit(c) (coluMn(20) ,e(10,Z));
end output;

end saMPle;

Listing 2-1. SAMPLE PL/I Program

INfORlVlAT10N

PL/I Programming Guide 2.3 Executable Statements

Every PL/I program must have a main procedure block. Although you can separately
develop and compile external procedures that can be linked to and called from a main
procedure, there can be only one main procedure block in a program. In Listing 2-1,
the first two statements, together with the last statement, determine the outermost, or
main block of the program.

2.4 PL/I Blocks

In PL/I a block can have its own local environment, and possibly an environment
inherited from a containing block. A containing block is any block that contains another
block. For example, in Listing 2-1 the DO-group inherits the environment of the main
procedure block. However, the BEGIN block has its own local environment, even
though it is contained in the main procedure block.

In PL/I there are two types of blocks:

• PROCEDURE blocks
• BEGIN blocks

You can nest either type of block. This means that you can put one block inside
another, but the blocks cannot overlap. The essential difference between a PROCE
DURE block and a BEGIN block is the way that PL/I executes each block in the overall
program.

PL/I executes BEGIN blocks as they are encountered in the normal sequence of
statements in the program. A BEGIN block ends when its corresponding END statement
is encountered or when control passes outside the block. When control reaches a BEGIN
block, the statements inside the block execute sequentially. Usually, when control leaves
the block, it simply passes to a containing block or goes to the next sequential block.

RESEARCH 5

2.4 PL/I Blocks PL/I Programming Guide

PL/I ignores PROCEDURE blocks as theyare encountered in the usual sequence of
statements in the program. Control only passes to and enters a PROCEDURE block
when the program invokes the procedure with a CALL statement or a function ref
erence. A PROCEDURE block is active when the statements inside the block are
executing. When the statements inside t~e procedure finish executing, the PROCEDURE
block returns control to the point of the call.

For this reason, you can place a procedure anywhere in a program. It is good
programming practice to put all procedures at the bottom of the main program. This
makes debugging and maintaining a program easier.

2.5 Procedures

Every procedure consists of a procedure name, procedure header, the procedure body
of zero or more statements, and an end statement. Figure 2-1 shows the components
of the main procedure in the SAMPLE program.

procedure name 7 pro~edure header

sample: .
procedure options(main);

procedure body ·1 :
end sample;~

end statement ~ .

Figure 2-1. PL/I Procedure Components

6 ALL !NfORlVlAT!ON PRESENTED HERE. PROPRIETARY DIGITAL f\L-J!_nr,~j i,

PL/I Programming Guide 2.5 Procedures

If you nest procedures, they inherit the environment of containing blocks. However,
any variable that you declare in a containing block can be rededared, with local
attributes, in the nested procedure.

There are two general types of procedures in PL/I:

• subroutine procedures
• function procedures

Use the CALL statement to invoke a subroutine procedure. A subroutine procedure
performs a specific task, and optionally returns values to the invoking procedure.

Invoke a function procedure by making a function reference. A function reference
is simply using the name of the function in a statement. PL/I evaluates the function
reference and replaces it with a scalar value at the point of the reference.

Procedures are either internal or external in relation to the main procedure. An
internal procedure is contained in the body of the main procedure, while external
procedures are written and compiled separately from the main program. To make an
external procedure known to the main procedure, you must declare the procedure name
as an entry constant (see Section 3.1.3). You must also link the external procedure to
the main procedure after both are compiled. All the procedures in the SAMPLE program
are internal to the main procedure.

2.6 DO-groups

The DO-group is similar to the BEGIN block. There are several forms of the DO
group, and they are executable statements because they influence the flow of control.
However, they are also considered structural statements because they define logical
units.

Listing 2-1 illustrates the simplest form of the DO-group. It looks like a BEGIN
block, but there is a crucial difference. Although a DO-group binds all the statements
in its body into one logical unit, it cannot define a new environment. A DO-group
cannot define new variables whose environment is limited to the body of the DO
group.

ALL [NFORMA nON PRESENTED IS PROPRIETARY TO DIG!TAL RESEARCH 7

2.6 Procedures PL/I Programming Guide

A DO-group can bind only executable statements. However, a BEGIN block can
bind both declarative statements and executable jstatements. The environment of a DO
group is determined by the environment of the block where it occurs.

End of Section 2

8 ALL lNFORMAT10N PRESENTED HERE PROPR!£T/\RY DIGITAL RESfj\RCH

Section 3
Declarations

Use declarative statements to specify the data items you want to manipulate with
the executable statements in your program. PLII has a rich variety of data types. In
addition to arithmetic and string data, PL/I supports pointer, label, and entry data,
which are generally not available in other languages. Table 3-1 shows the PL/I data
types divided into categories and subcategories.

Table 3-1. PL/I Data Types

Category Subcategory

Arithmetic· FIXED BINARY
FLOAT BINARY
FIXED DECIMAL

String CHARACTER
BIT

Control Label Variable
Label Constant
Entry Variable
Entry Constant

Pointer POINTER

File File Variable
File Constant

Data Aggregates Arrays
Structures

Procedures Subroutines
Functions

ALL iNfORMATION PRESENTED 9

3.1 Scalar Data PL/I Programming Guide

All declarative statements specify either data constants or data variables. You must
explicitly declare all data variables in a DECLARE statement, but data constants are
usually declared implicitly by their occurrence in an executable statement. A PLII
variable is defined by an identifier name. The name can consist of up to thirty-one
alphanumeric characters or underscores. The first character must be a letter.

Usually, declarative statements, whether explicit or implicit, result in a specific allo
cation of storage for the data item declared. The Compiler determines the amount of
storage required for the type of data, and associates the item with this storage. BASED
variables are an exception because they do not necessarily force an allocation of storage
(see Section 4.5).

3.1 Scalar Data

There are two main kinds of data: scalar, or single, data items, and aggregate, or
multiple, data items. Scalar data types are the fundamental data types of the language.

3.1.1 Arithmetic Data

You use arithmetic data for direct numerical calculation. PL/I provides several types
of arithmetic data, so you can match the data to the application.

FIXED BINARY

You can use FIXED BINARY data to represent integers. PL/I internally represents
this data type in two's complement binary form. The precision of a FIXED BINARY
number is the number of bits used to represent it, independent of the sign. PL/I uses from
1 to 15 bits, so it can represent integers in the range from -32768 to + 32767.

FLOAT BINARY

You can use FLOAT BINARY data to represent very small or very large numbers.
FLOAT BINARY data has a binary fractional part (called the mantissa), a binary
exponent, and a sign. PLII supports both single-precision and double-precision FLOAT
BINARY numbers. The precision of a FLOAT BINARY number is the number of bits
in the mantissa.

Single-precision numbers can have from 1 to 24 bits, while the exponent part is
always represented by 8 bits. The maximum range of single-precision FLOAT BINARY
numbers in decimal is approximately 5.88 * 10**-39 to 3.40 *10**38.

10 ALL !NfORMATION PRESENTED HERE TO

PL/I Programming Guide 3.1 Scalar Data

Double-precision numbers can have from 24 to 53 bits, while the exponent has 11 bits.
The maximum range of double-precision FLOAT BINARY numbers in decimal is
approximately 9.40 ,:- 10':-':--308 to 1.80 ,:- 10':-':-308.

FIXED DECIMAL

You can use FIXED DECIMAL data to represent numbers with a fixed decimal
point. You can also use FIXED DECIMAL data to represent integers. Internally,
PL/I represents FIXED DECIMAL data in binary coded decimal (BCD) digits.

FIXED DECIMAL numbers have both precision and scale. The precision is the total
number of decimal digits used to represent the number. The scale is the number of
decimal digits to the right of the decimal point.

In PL/I, the precision of a FIXED DECIMAL number can vary from one to fifteen,
while the scale can vary from zero to fifteen. This arithmetic data type is particularly
useful for commercial calculations, which require exact representations of dollars and
cents and cannot accept the truncation errors of binary arithmetic.

You declare an arithmetic data variable in a declaration statement of one of the
following forms, where p is the precision and q is the scale.

Statement:

DECLARE identifier FIXED BINARY[(p)];

Example:

declare index counter fixed binarv(7);

Statement:

DECLARE identifier FLOAT BINARY[(p)];

Example:

declare pi float binarv(53);

Statement:

DECLARE identifier FIXED DECIMAL[(p[,q])];

11

3.1 Scalar Data PL/I Programming Guide

Example:

declare base pa}' fixed decifTlal (5 tZ);

Note: precision and scale are optional. If you omit them,--PL/I supplies default values.

You should use binary arithmetic for most-numerical work, because it is faster and
uses the least storage. If you are doing scientific work, PL/I has a complete library of
built-in mathematical functions, which includes the trigonometric and the hyperbolic
functions.

3.1.2 String Data

The ability to manipulate string variables is one of the most useful features of
PL/I. PL/I has a complete set of built-in functions that you can use to manipulate string
data. You declare a string variable to be either a bit string or a character string in a
declaration of one of the following forms:

Statement:

DECLARE identifier CHARACTER[(n)];

Example:

declare alphabet character(ZG);

Statement:

DECLARE identifier CHARACTER[(n)] VARYING;

Example:

declare state character(ZO) uaryin~;

Statement:

DECLARE identifier BIT[(n)];

Example:

declare fla~ bit(1);

12

PL/I Programming Guide 3.1 Scalar Data

The VARYING attribute means that the character string can vary in length, but
cannot exceed the value of n. For CHARACTER variables, the value of n can be
between 0 and 254. If you want to manipulate longer strings, you can use one-dimen
sional arrays.

Character-string constants are implicitly declared by their occurrence in a program.
Indicate a character-string constant by enclosing it in apostrophes. If you want to
include an apostrophe in the string, you must precede it with an extra apostrophe.
PL/I also allows you to include control characters in a character string.

The following are examples of character strings:

'Ada LOl.lelace'
'~~ ~~ Input Error'
'Can"t Read Previous Line'

Bit-string variables cannot have the VARYING attribute, and the length of a bit
string cannot exceed sixteen. PL/I allows you to specify bit-string constants in several
different formats. Each format corresponds to a different base, which is the number
of bits used to represent the item. The formats for bit-string constants are:

• base 2 (B or B1 format)
• base 4 (B2 format)
• base 8 (B3 format)
• base 16 (B4 format)

In each of the formats, write the bit-string constant as a string of numeric digits for
the desired base, enclosed in apostrophes and followed by the format type. The fol
lowing are examples of the four formats:

'101111'5 equals 101111
'101111'51 equals 101111
'233'52 equals 101111
'57'53 equals 101111
'2F'511 equals 00101111

3.1.3 Control Data

There are two types of control data:

• LABEL data
• ENTRY data

13

3.1 Scalar Data PL/I Programming Guide

LABEL data allows you to reference individual statements in your program. PL/I
not only allows individual statements to have labels, it also allows you to declare label
variables. This means that you can manipulate labels in your program like any other
valid data items.

The value of a label variable is always a label constant, implicitly defined and declared
by its occurrence as a label of a statement in the program. PL/I allows you to subscript
label constants. You can also declare arrays of label variables.

You can use label variables to manipulate the flow of control between logical units of
a program. It is better programming practice to do this without using GOTOs and
labels.

The following program is a whimsical example of label variables.

chase >'our tail:
procedure options(Main);
declare

l,.Iherel)er label;

there:
IlIlherel)er = here;

her e :
wherel)er = there;

goto l,.Iherel)er;

end chase your tail;

PL/I also supports a powerful data type called ENTRY data. ENTRY data allows
you to reference procedures just like any valid data item. You can declare an entry
variable then assign it a value. The value of an entry variable is an entry constant.

Entry constants are the labels of procedures, rather than labels of executable state
ments. An entry constant is implicitly declared by its appearance as a label to an
internal procedure.

When you declare an entry variable, you must explicitly define the type of entry
constant that the variable can assume. When you explicitly declare an entry constant,
you must declare it with the same attributes as the procedure it references.

14

PL/I Programming Guide 3.1 Scalar Data

The programs shown in Listing 3-1 illustrate these concepts. Listing 3-1a shows an
external procedure called a. Listing 3-1 b shows the program CALL, that references a.
In CALL, f is an entry variable that assumes three different constant values. To create
an executable program, you compile each module separately then link them together.

[

a: procedure(x) returns(float);
declare x float;
return(x/2) ;

end ai

1* external procedure *1

Listing 3-1a. External Procedure A

call:
procedure options(Main);
declare

f(3) entry(float) returns(float) variable I

a entry(float) returns(float); 1* entrY constant 1*
declare

i fixed, x float;

f (1) a;
f (2) b i
f (3) c;

1 to 3;
put sKip list('Type x ');
9'et list(x)i
put list('f(',i,/)=',f(i)(x)); [

do

end;
stop;

procedure(x) returns(float); 1* internal procedure *1
declare x float;
return (2*x + 1); [

b:

end bi

procedure(x) returns(float) i 1* internal procedure *1
declare x float;
return(sin(x)) i [

c:

end c;

end calli

Listing 3-1h. The CALL Program

15

3.1 Scalar Data PL/I Programming Guide

3.1.4 Pointer Data

Pointer data allows you to manipulate the storage allocated to variables. The value
of a pointer variable is the address of another variable.

3.1.5 File Data

File data items describe and provide access to the data associated with an external
device. File data items are either file constants or variables. You must always assign a
file constant to a file variable before you access the data in the file.

Declare file data in a declaration statement in one of the following forms:

Statement:

DECLARE identifier FILE;

Example:

declare current transaction file;

Statement:

DECLARE identifier FILE VARIABLE;

Example:

declare feZ) file variable;

The executable statements used for file access determine the file attributes. (Section
4.3 describes file-handling and 1/0 operations.)

3.2 Data Aggregates

A data aggregate is a combination of data types that forms a data type on a higher
level. There are two kinds of aggregates in PL/I:

• arrays
• structures

16

PL/I Programming Guide 3.2 Data Aggregates

3.2.1 Arrays

An array is a subscripted collection of data items of the same data type. PL/I allows
arrays of arithmetic values, character strings, bit strings, label constants, entry con
stants, pointers, files, or structures (see Section 3.2.2).

The following are examples of array declarations:

declare test scores(100);

declare A(4 t5);

declare A(1:4 t2:5 to: 10);

You make direct references to individual elements of an array by using a subscripted
variable reference. PL/I also allows you to make cross-sectional references, with the
restriction that the reference must specify a data component whose storage is connected.
For example, using the following declarations,

declare A(5t2) fixed binary;

declare B(5t2) fixed binan';

you can visualize the arrays pictured in Figure 3-1:

A B
1 2 1 2

1 1
2 2
3 3
4 4
5 5

Figure 3-1. Arrays

17

3.2 Data Aggregates PL/I Programming Guide

In this example, A and B are identical in size and attributes. Therefore, an assignment
such as

A(3) = BUD;

is valid because the cross-sectional reference specifies connected storage.

3.2.2 Structures

A structure is a very different type of data aggregate than an array. A structure is
hierarchical, much like a tree, where the leaves of the tree, called nodes, can be various
PL/I data types.

Each node of the tree, beginning with the root, has a name and a level number. The
level number indicates the level of each node in relation to the root. The following
example illustrates a structure declaration.

declare

18

1 elT1Plo)'ee t

2 nalTle add ress t

3 nalTle t

a first character(10),
a Middle initial character(1),
a last character(20),

3 address,
a street character(aO),
a city character(10),
a state character(2),
a zip code character(S),

2 position,
3 departMent no character(3) t

3 job title character(20),
2 salan' fixed decilTlal (S ,2) t

2 n U ITI b e r _ 0 f _ d e pen d. en t s fix ed,
2 health plan bit(1),
2 date hired character(S);

PL/I Programming Guide 3.2 Data Aggregates

Figure 3-2 illustrates the hierarchy of levels that corresponds to the declaration.

______ middle_initial
empIOyeer-----name_address~name ~ first

last

address~s~reet
Clty

state
zip_code

position ~ department_no
job_title

salary
number_of _ dependents
health_plan
date_hired

Figure 3-2. Structure Declaration Hierarchy

Nodes on each level can also determine a structure. Such a substructure is a member
of the main structure. You can give the BASED attribute to the main structure with
the result that all the members of the structure receive the attribute.

Structures are powerful tools because they enable you to group logically related data
items that might not have the same data type. Thus, structures allow you to characterize
and manipulate logical objects in your program to more closely resemble real data.

End of Section 3

19

End of Section 3 PL/I Programming Guide

20

Section 4
Executable Statements

The category of executable statements is divided into several subcategories based on
the type of function that the statement performs. The subcategories are:

• assignment statements
• sequence control statements
• 110 and file-handling statements
• memory management. statements
• condition processing statements
• preprocessor statements
• null statements

4.1 Assignment Statements

An assignment statement places the value of an expression into the storage location
associated with a variable.

An expression is a combination of operators, operands, function references, and
parentheses that control the order of evaluation of the expression.

In PL/I, the assignment statement has the form:

variable reference = expression;

21

4.1 Assignment Statements PL/I Programming Guide

An expression in PL/I can be fairly complicated. The simplest type of variable ref
erence is instantiating the variable name, which means to assign the variable a specific
value. A variable reference can also be a reference to a data aggregate, or to a component
of the aggregate. If the variable is BASED, a pointer-qualified reference might be
required (see Section 4.5.1).

PLiI also allows certain built-in functions such as UNSPEC and SUBSTR to appear
as targets on the left side of assignment statements. When they appear as variables in
this context, they are called pseudo-variables.

Expressions can be computational. This means that the expression involves arithmetic
or string values of the various types and their respective operators. Expressions can
also be noncomputational, involving comparisons of noncomputational data types such
as labels, entry constants, and pointers.

PLiI allows computational expressions of different data types, and automatically
performs conversion between the various types following a standard set of default rules.
You should become familiar with the automatic conversion rules and the properties
of the built-in conversion functions (see Section 4 LRM).

22

PL/I Programming Guide 4.1 Assignment Statements

The following sequence of code illustrates some simple examples of assignment
statements. These examples also illustrate some of the ways you can reference a variable
in PL/I. Such references can also occur in expressions, although PL/I limits aggregate
expressions to comparison for equality.

assign:
procedure options(main);
declare

p pointer,
i fixed binary(7),
r bit(lG),
s bit(lG) based,
(u,!}) float binan(24),
A(5,2) character(2),
B(5,2) character(2),
C character(20),

2 x fixed binary,
2 ~' bit(lG),
z ,
2 x fixed binary,
2}' bit(lG);

u = u + !}; 1* simple assignment *1
A = B; 1* array aggregate assignment *1
A(3) = B(4); 1* cross-sectional reference *1
w = z; 1* structure aggregate assignment *1
p -> s = (r = w.y); 1* pointer-~ualified reference *1
w.x = w.x + z.x; 1* partially-~ualified aggregate reference *1
unspec(I.I.)') = unspec(A(5t1)); 1* pseudo-I)ariable reference *1
substr(Cti+l,3) = substr(CdO,3); 1* pseudo-I)ariable reference *1
A(2*i+l) = B(4); 1* !}ariable is expression *1

end assign;

4.2 Sequence Control Statements

You can use sequence control statements to alter the normal sequential flow of
control. In PLII, sequence control statements perform unconditional branching, con
ditional branching, iteration, branch and return through procedure invocation, and a
more unique construct called condition processing.

23

4.2 Se6}1HRce Control Statements PL/I Programming Guide

4.2.1 Iteration

PLiI provides an extensive variety of iteration control in the various forms of the
00 sta$ement. For example, you can perform iteration not only with an arithmetic
control variable, but also with a pointer control variable that is moving through a
linked list of pointers.

The following diagrams illustrate the basic forms of the DO statement and the flow
of control that they induce. The values el, e2, e3, and e4 represent any scalar expressions.

DO;

END;

F

DO WHILE(e);

END;

DO i = el REPEAT(e2);

END;

Figure 4-1. Forms of the DO Statement

14

PL/I Programming Guide 4.2 Sequence Control Statoenunts

DO i = el REPEAT(e2) WHILE(e3);

END;

F

F

DO i = el TO e2 BY e3 WHILE(e4);

END;

F

Figure 4-1. (continued)

PL/I Programming Guide 4.2 Sequence Control Statements

4.2.2 Procedure Invocation

A branch and return occurs as the result of a procedure invocation. As we have seen,
in PLII there are two types of procedures: subroutine procedures and function pro
cedures. There are two corresponding forms of invocation.

You invoke a subroutine procedure with a CALL statement, but you invoke a function
procedure by using its name in an expression. You call a subroutine procedure for a
specific reason, such as altering the value of variables passed to the procedure, or input
and output. You always invoke a function procedure in an expression to return a scalar
data item. In PL/I, both types of procedures can be recursive, which means they can call
themselves.

There is an important distinction between a procedure definition and a procedure
invocation. A procedure definition is a declarative statement; a procedure invocation
is an executable statement. The data items you pass to the procedure when you invoke
it are called the actual parameters. The actual parameters are distinguished from the
formal parameters you give in the procedure definition. Thus, the actual parameters
are the parameters as they are known in the invoking block, while the formal parameters
are the corresponding parameters as they are known in the invoked block, the procedure.

4.2.3 Parameter Passing

In PL/I, you can pass parameters by reference or by value. You pass them by reference
if the actual parameters and the formal parameters share storage. You pass them by
value if the value of the formal parameter is held as a local copy of the value of the
actual parameter.

Under PL/I rules, the formal parameter and actual parameter always share storage
if they have identical attributes. If the actual parameter is an expression, or if its data
attributes do not match those of the corresponding formal parameter, then the param
eter is passed by value. PL/I passes the parameter by value if you enclose the formal
parameter in parentheses in the procedure header statement of the procedure definition.

26

PL/I Programming Guide 4.2 Sequence Control Statements

A procedure is an independent logical unit that performs a specific function. If you
carefully define the specific function that the procedure performs and the parameters
that it expects from the invoking environment, you can divide the design, coding, and
debugging of the overall program into separate units.

If you pass a parameter by reference to conserve storage, be aware that the invoked
procedure can change the value of a variable outside its local environment. If you want
to assure that the procedure. does not change a variable outside its local environment,
then you must pass the parameters by value and use extra storage.

Parameter passing is a trade-off between the amount of storage available on your
system and the level of modularity and isolation you want in your program. There are
three alternatives for parameter passing, characterized as the high, middle, and low
road. The skeletal program in Listing 4-1 illustrates the concepts they represent.

In the low road, you pass by reference but pay close attention to the possible side
effects that can result. The advantage of this method is that it conserves storage.

In the middle road, you pass by value, enclosing the actual parameter in parentheses
at the point of invocation in the CALL statement or function reference.

In the high road, you declare a duplicate variable for each formal parameter in the
procedure definition. You then assign the corresponding formal parameter to its dupli
cate, and use the duplicate as a local copy in the procedure. Equally you can enclose
the formal parameter in parentheses in the procedure header. The high road is least
efficient in its use of storage.

27

4.2 Sequence Control Statements PL/I Programming Guide

28

Main:
procedure optionsIMain);
declare

a float binary;

call low_subia); 1* pass by reference *1

call Middle sublla)); 1* pass by value *1

call hi~h sub(a); 1* pass by reference *1

low sub:
procedure(x) ;
declare

x float binary;

end low sub;

Middle sub:
procedure(x) ;
declare

x float binary;

end Middle sub;

-hi!lh sub:
procedl.lre(x) ;
declare

(X,MY x) float binary;
MY x = x; 1* reassi~n I.lsin~ local variable *1

end hi~h sub;

end Main;

Listing 4-1. Parameter Passing

PL/I Programming Guide 4.2 Sequence Control Statements

4.2.4 Conditional Branch

PL/I provides a conditional branch in the form of an IF statement. The conditional
branch has one of the following forms,

IF condition THEN group

IF condition THEN group-l ELSE group-2

where the condition is a scalar expression that PL/I evaluates and reduces to a single
value, and the groups are either single statements, DO-groups, or BEGIN blocks.

You can nest IF statements, in which case PL/I matches each ELSE with the innermost
unmatched IF-THEN pair. However, you can use NULL statements following an ELSE
to force an arbitrary matching of ELSE statements with IF-THEN pairs. (See Section
4.7 NULL Statements.)

4.2.5 Unconditional Branch

PL/I provides an unconditional branch in the form of a GOTO statement. The
unconditional branch has one of the following forms:

GOTO
GOTO

label_ constant;
label_ variable;

Because PL/I is block-structured, certain rules apply to the use of the GOTO. The
target label must be in the same block containing the GOTO, or in a containing block.
You cannot transfer control to an inner block.

4.3 I/O and File-handling Statements

The executable I/O statements provide PL/I with a device-independent input/output
system that allows a program to transmit data between memory and external devices.
To understand the I/O statements, you must first know about files and their attributes.

The collection of data elements that you transmit to or from an external device is
called the data set. The corresponding internal file constant or variable is called a file.

29

4.3 110 and File-handling Statements PL/I Programming Guide

As with other data items, you must declare files before you use them in a program.
The general form of a file declaration is,

DECLARE file_id FILE [VARIABLE];

where file_id is the file identifier. If you do not include the optional VARIABLE attrib
ute, the declaration defines a file constant. With the VARIABLE attribute, the decla
ration defines a file variable that can take on the value of a file constant through an
assignment statement. You must assign a file constant to a file variable before you can
perform any 110 operations.

4.3.1 Opening Files

PLII requires that a file be open before performing any 110 operations on the data
set. You can open a file explicitly by using the OPEN statement, or implicitly by
accessing the file with the following 110 statements:

• GET EDIT
• PUT EDIT
• GET LIST
• PUT LIST
• READ
• WRITE
• READ Varying
• WRITE Varying

The general form of the OPEN statement is,

OPEN FILE(file_id) [file-attributes];

where file_id is the file identifier that appears in a FILE declaration statement, and file
attributes denotes one or more of the following:

• STREAM! RECORD • TITLE
• PRINT • ENVIRONMENT
• INPUT! OUTPUT! UPDATE • PAGESIZE
• SEQUENTIAL! DIRECT • LINESIZE
• KEYED

30

PL/I Programming Guide 4.3 I/O and File-handling Statements

Multiple attributes on the same line are conflicting attributes, so you can only specify
one attribute. The first attribute listed is the default attribute. All the attributes are
optional; you can specify them in any order.

A STREAM file contains variable length ASCII data. You can visualize it as a stream
of ASCII character data, organized into lines and pages. Each line in a STREAM file
is determined by a linemark, which is a line-feed or a carriage return/line-feed pair.
Each page is determined by a pagemark, which is a form-feed. Generally, you must
convert the data in a STREAM file from character form to pure binary form before
using it. ED automatically inserts a line-feed following each carriage return, but files
that PLII creates can contain line-feeds without preceding carriage returns. In this case,
PL/I senses the end of the line when it encounters the line-feed.

A RECORD file contains binary data. PL/I accesses the data in blocks determined
by a declared record size, or by the size of the data item you use to access the file. A
RECORD file must also have the KEYED attribute, if you use FIXED BINARY keys
to directly access the fixed-length records.

The PRINT attribute applies only to STREAM OUTPUT files. PRINT indicates that
the data is for output on a line printer.

For an INPUT file, PL/I assumes that the file already exists when it executes the
OPEN statement. When it executes the OPEN statement for an OUTPUT file, PL/I
also creates the file. If the file already exists, PL/I first deletes it, then creates a new
one.

You can read from and write to an UPDATE file. PL/I creates an UPDATE file, if it
does not exist, when executing the OPEN statement. An UPDATE file cannot have the
STREAM attribute.

You access SEQUENTIAL files sequentially from beginning to end, but you access
DIRECT files randomly using keys. PL/I automatically gives DIRECT files the RECORD
attribute. PL/I also requires you to declare all UPDATE files with the DIRECT attribute,
so you can locate the individual records.

31

4.3 1/0 and File-handling Statements PL/I Programming Guide

A KEYED file is simply a fixed-length record file. The key is the relative record
position of the record within the file based upon the fixed record size. You must use
keys to access a KEYED file. PL/I automatically gives KEYED files the RECORD
attribute.

The TITLE(c) attribute defines the programmatic connection between an internal
filename and an external device or a file in the operating system's file system. If you
omit the TITLE attribute, PL/I assigns the default title file_id.DAT, where file_id is
the file identifier specified in the OPEN statement.

If the character string c specifies a disk file, it must be in the form,

d: filename. typ ;password

where the drive code d, the filetype, and the password are all optional. You must specify
a filename. The filename cannot be an ambiguous wildcard reference.

You can also specify $1 or $2 for both the filename and filetype. $1 gets the first
default name from the command line, $2 gets the second default name.

The ENVIRONMENT attribute defines fixed record sizes for RECORD files, internal
buffer sizes, the file open mode, and the level of password protection. You can open
a file in one of three modes: Locked, Read-Only, or Shared. Locked is the default
mode, and means that no other user can access the file while it is open. Read-Only
means that other users can access the file, but only to read it. Shared mode means that
other users can also simultaneously open and access the file. You can use the built-in
LOCK and UNLOCK functions to lock and unlock individual records in the file, so
there are no collisions with other users.

If you assign a password to a file, you can also assign the level of protection that
the password provides. The levels of protection are: Read, Write, and Delete. Read
means that you must supply the password to read the file. Write means that you can
read the file, but you must supply the password to write to the file. Delete means that
you can read the file or write to it, but you cannot delete the file without the password.

The LINESIZE attribute applies only to STREAM files, and defines the maximum
number of characters in the· input or output line length. The PAGESIZE attribute
applies only to STREAM OUTPUT files, and defines the number of lines per page on
output.

32

PL/I Programming Guide 4.3 110 and File-handling Statements

4.3.2 File Attributes

PL/I controls all file transactions through an internal data structure called the File
Parameter Block (FPB). The FPB contains information about the file, such as whether
it is open or closed, the external device or file associated with the file, the current line
and column, or record being accessed, and the internal buffer size. The FPB also contains
a File Descriptor that describes the file's attributes. These attributes in turn describe
the allowable methods of access. Table 4-1 summarizes the valid attributes that you
can assign to a file, either through an explicit OPEN statement, or implicitly by an
110 access statement.

Table 4-1. PL/I Valid File Attributes

STREAM INPUT ENVIRONMENT TITLE LINESIZE

STREAM OUTPUT ENVIRONMENT TITLE LINESIZE PAGESIZE

STREAM OUTPUT PRINT ENVIRONMENT TITLE LINESIZE PAGESIZE

RECORD INPUT SEQUENTIAL ENVIRONMENT TITLE

RECORD OUTPUT SEQUENTIAL ENVIRONMENT TITLE

RECORD INPUT SEQUENTIAL KEYED ENVIRONMENT TITLE

RECORD OUTPUT SEQUENTIAL KEYED ENVIRONMENT TITLE

RECORD INPUT DIRECT KEYED ENVIRONMENT TITLE

RECORD OUTPUT DIRECT KEYED ENVIRONMENT TITLE

RECORD UPDATE DIRECT KEYED ENVIRONMENT TITLE

33

4.3 110 and File-handling Statements PL/I Programming Guide

4.3.3 Implied Attributes

If you do not open a file with explicit attributes, PL/I determines the attributes from
the type o£ 110 statement you use to access the file. Table 4-2 summarizes the attributes
implied by each o£ the 1/0 statements. In the following table, £ is a file constant, x is
scalar or aggregate data type that is not CHARACTER VARYING, and k is a FIXED
BINARY key value.

Table 4-2. File Attributes Associated With 1/0 Access

110 Statement

GET FILE(£) LIST

PUT FILE(£) LIST

GET FILE(£) EDIT

PUT FILE(£) EDIT

READ FILE(£) INTO(v)

WRITE FILE(f) FROM(v)

READ FILE(£) INTO(x)

READ FILE(£) INTO(x) KEYTO(k)

READ FILE(£) INTO(x) KEY(k)

Implied Attributes

STREAM INPUT

STREAM OUTPUT

STREAM INPUT

STREAM OUTPUT

STREAM INPUT

STREAM OUTPUT

RECORD INPUT SEQUENTIAL

RECORD INPUT SEQUENTIAL KEYED
ENVIRONMENT(Locked,Fixed(i))

RECORD INPUT DIRECT KEYED
ENVIRONMENT(Locked,Fixed(i))

RECORD UPDATE DIRECT KEYED
ENVIRONMENT(Locked,Fixed(i))

WRITE FILE(£) FROM(x) RECORD OUTPUT SEQUENTIAL

WRITE FILE(£) FROM(x) KEYFROM(k) RECORD OUTPUT DIRECT KEYED
ENVIRONMENT(Locked,Fixed(i))

34

RECORD UPDATE DIRECT KEYED
ENVIRONMENT(Locked,Fixed(i))

PL/I Programming Guide 4.3 I/O and File-handling Statements

4.3.4 Closing Files

The CLOSE statement disassociates the file from the external data set. The form of
the CLOSE statement is,

CLOSE FILE(file_id);

where file _ id is a file constant for which PL/I clears the internal buffers, records all
the data on the disk, and closes the file at the operating system level. You can subse
quently reopen the same file using the OPEN statement. PL/I automatically closes all
open files at the end of the program or upon execution of a STOP statement.

4.3.5 File Access Methods

PLII supports two methods of file access:

• STREAM 110
• RECORD 110

There are three different kinds of STREAM 110:

• LIST-directed uses the GET LIST and PUT LIST statements, which transfer a list
of data items without any format specifications.

• Line-directed uses the READ and WRITE statements, which allow you to access
variable-length CHARACTER data in an unedited form. These statements might
not be available in other implementations of PL/I.

• EDIT-directed uses the GET EDIT and PUT EDIT statements, which allow
formatted access to character data items.

EDIT-directed I/O is similar to list-directed I/O except that it writes data into
particular fields of the output line, as described by a list of format items. The data list
specifies a number of values to write in fixed fields defined by the format list.

The format list can contain two kinds of format items: data format items and control
format items. PL/I pairs each element of the data list with a data format item in the
format list. The format item determines how PL/I interprets the data element. PL/I
executes control format items as they are encountered in the format list.

35

4.3 I/O and File-handling Statements PL/I Programming Guide

You can precede any format item with a positive constant integer value, not exceeding
254, that determines the number of times to apply the format item or group of format
items.

4.3.6 Data Format Items

The following examples show the various format items you can use in a GET EDIT
or PUT EDIT statement.

A[(w)]

The A format reads or writes the next alphanumeric field whose width is specified
by w, with truncation or blank padding on the right. If you omit w, the A format uses
the size of the converted character data as a field width.

B[n][(w)]

The B format reads or writes bit-string values. n is the number of bits used to repre
sent each digit. w is the field width that you must include on input.

E(w[,d])

The E format reads or writes a data item into a field of w characters in scientific
notation, with maximum precision allowed in the field width. w must be at least 8.

F(w[,d])

The F format reads or writes fixed-point arithmetic values with a field width of w
digits, and d optional digits to the right of the decimal point.

4.3.7 Control Format Items

LINE(ln)

Moves to the line In in the data stream before writing the next data item.

COLUMN(nc)

Moves to column position nc in the data stream before reading or writing the next
data item. This can flush the current line.

36

PL/I Programming Guide 4.4 Condition-processing Statements

PAGE

Performs a page eject for PRINT files.

SKIP[(nl)]

Skips nl lines before reading or writing the next data item.

X(n)

Advances n blank characters into the data stream before reading or writing the next
data item.

R(fmt)

Specifies a remote format. This means that the format is specified elsewhere in a
FORMAT statement.

4.3.8 Predefined Files

PL/I has two predefined file constants called SYSIN, the console keyboard, and
SYSPRINT, the console output display. These files do not need to be declared unless
you make an explicit reference to them in an OPEN or 110 statement.

SYSIN has the default attributes:

STREAM INPUT ENVIRONMENT(LocKedtBuff(12B» TITLE(\$CON')
LINESIZE(BO) PAGESIZE(O)

SYSPRINT has the default attributes:

STREAM PRINT ENVIRONMENT(LocKedtBuff(12B» TITLE(\$CON')
LINESIZE(BO) PAGESIZE(O)

4.4 Condition-processing Statements

PL/I has several features that make it ideal for applications programming. One of
these features is its capability for condition processing. In most languages, the program
cannot recover from run-time error conditions, such as an invalid data conversion
control reverts to the operating system.

37

4.4 Condition-processing Statements PL/I Programming Guide

Because PL/I is designed as a production-programming language, it has various
features that allow you to intercept run-time errors, program a response, and recover
control. These features are collectively called condition processing.

PL/I provides condition processing with these executable statements:

• ON
• REVERT
• SIGNAL

4.4.1 The ON Statement

Use the ON statement to intercept and program a response to a run-time condition
signaled by the system, or by the execution of a SIGNAL statement. The ON statement
is an executable statement that defines the response. It has the form,

ON condition on-body;

where condition is one of the major condition categories, with or without a subcode
(see Section 4.4.4). The on-body is a PL/I statement or statement group that you process
when the condition occurs.

If the subcode is not present, then PL/I processes the ON statement when any of the
subcode conditions occur. This is equivalent to subcode O. The file conditions must
have a file reference describing the file for which the condition is signaled.

4.4.2 The REVERT Statement

Use the REVERT statement to disable the ON condition set by the ON statement.
This is important because you can have only sixteen ON conditions set without over
flowing the condition code area. If overflow happens, the PL/I run-time system stops
processing. The form of the REVERT statement is:

REVERT condition;

PL/I automatically reverts an ON condition set in a given block when control leaves
the environment of that block.

38

PL/I Programming Guide 4.4 Condition-processing Statements

4.4.3 The SIGNAL Statement

The SIGNAL statement allows you to activate the response for a condition. The
form of the SIGNAL statement is:

SIGNAL condition;

4.4.4 Condition Categories

The condition categories describe the various conditions that the run-time system
can signal or that your program can signal by executing a SIGNAL statement.

There are nine major condition categories with subcodes, some of which are system
defined, and some of which you can define yourself. Table 4-3 shows the predefined
subcodes.

Table 4-3. PL/I Condition Categories and Subcodes

Type Meaning

ERROR

ERROR(O) Any ERROR subcode
ERROR(l) Data conversion
ERROR(Z) 110 Stack overflow
ERROR(3) Function argument invalid
ERROR (£1) 110 Conflict
ERROR(5) Format stack overflow
ERROR(G) Invalid format item
ERROR(7) Free space exhausted
ERROR(8) Overlay error, no file
ERROR(S) Overlay error, invalid drive
ERROR(10) Overlay error, size
ERROR(ll) Overlay error, nesting
ERROR(lZ) Overlay error, disk read error
ERROR(13) Invalid OS call
.ERROR (1 Ll) Unsuccessful Write
ERROR(15) File Not Open
ERROR(lG) File Not Keyed

39

4.4 Condition-processing Statements PL/I Programming Guide

Table 4-3. (continued)

Type Meaning

FIXED OVERFLOW

FIXEDOVERFLOW(O) Any FIXEDOVERF~OW subcode

OVERFLOW

OlyJERFLOW (0) Any OVERFLOW subcode
OlyJERFLOW (1) Floating-point operation
OlyJERFLOW (Z) Float precision conversion

UNDERFLOW

UNDERFLOW(O) Any UNDERFLOW sub code
UNDERFLOW(l) Floating-point operation
UNDERFLOW(Z) Float precision conversion

ZERODIVIDE

ZEROD I lyJ I DE (0) Any ZERODIVIDE subcode
ZERODIl)IDE(1) Decimal divide
ZEROD I lyJ I DE (Z) Floating-point divide
ZEROD I l) I DE (3) Integer divide

ENDFILE

UNDEFINEDFILE

KEY

END PAGE

In addition to these predefined system condition subcodes, you can define certain
sub codes for a specific application, test for the desired condition, and then use the
SIGNAL statement to signal the condition.

40

PL/I Programming Guide 4.4 Condition-processing Statements

4.4.5 Condition Processing Built-in Functions

PL/I provides certain built-in functions to help handle conditions when they occur.
These functions are:

.ONCODE
• ONFILE
.ONKEY
• PAGENO
• LINENO

The ONCODE function returns the subcode of the most recently signaled condition,
or zero if no condition has been signaled.

The ONFILE function returns the internal filename of the file involved in an 110
operation that signaled a condition.

The ONKEY function returns the value of the last key involved in an 110 operation
that signaled a condition.

The PAGENO and LINENO functions return the current page number and line
number for a PRINT file named as the parameter.

4.5 Memory Management Statements

Every variable in a PL/I program has a storage-class attribute. The storage class
determines how and when PL/I allocates storage for a variable, and whether the variable
has its own storage or shares storage with another variable.

PL/I supports three different storage classes:

• STATIC
• AUTOMATIC (the default in PL/I)
• BASED

PL/I treats AUTOMATIC storage as STATIC storage, except in procedures marked
as RECURSIVE. The Compiler allocates storage for STATIC variables prior to exe
cution, and the storage remains allocated as long as the program is running. You can
use the INITIAL attribute to assign initial constant values to STATIC data items.

41

4.5 Memory Management Statements PL/I Programming Guide

Note: only STATIC variables can have the INITIAL attribute, to be compatible with
the ANSI Subset G PLfI standard. .

Storage-class attributes are properties of scalars, arrays, major structure variables,
and file variables. You cannot assign storage-class attributes to entry names, file con
stants, or members of data aggregates.

4.5.1 BASED Variables and Pointers

The Compiler does not allocate storage for variables with the BASED storage class.
A based variable is a variable that describes storage that you must access with a pointer.
The pointer is the location where the storage for the based variable begins, and the
based variable itself determines how PLfI interprets the contents of the storage beginning
at that location. Thus, the pointer and the based variable taken together are essentially
equivalent to a nonbased variable.

You can visualize a based variable as a template that overlays the storage specified
by its base. Thus, a based variable can refer to storage allocated for the based variable
itself, or to storage allocated for other variables.

The format of the BASED variable declaration is,

DECLARE name BASED[(pointer-reference));

For example,

declare A(5t5) character(lO) based;
declare bit vector bit(S) based(p);

where the pointer reference is an unsubscripted POINTER variable, or a function call,
with zero arguments, that returns a POINTER value.

A pointer-qualified reference can be either implicit or explicit. When you declare a
variable as BASED without a pointer reference, then each reference to the variable in
the program must include an explicit pointer qualifier of the form,

pointer-exp -> variable

42

PL/I Programming Guide 4.5 Memory Management Statements

When you declare a variable as BASED with a pointer reference, then you can
reference it without a pointer qualifier. The run-time system reevaluates the pointer
reference at each occurrence of the unqualified variable using the pointer expression
given in the variable declaration. The following code sequence illustrates the concept
of based variables.

declare
p pointert
a character(128) t
b(12S) character(1) based(p) t
c(O:127) bit(S) based(p) t
d(G4) bit(1G) based(p)t
e(StO:15) bit(S) based(p);

p = addr(a);

In this example, after pointer p is set to the address of a, each of the variables b, c,
d, and e refers to the same 128 bytes of storage occupied by the variable a, although
they do so in different ways. Thus, the variables b, c, d, and e overlay the variable a.

There is one important point to consider here. The overlays illustrated above depend
on the method a particular processor uses to internally represent and store the data
items. Such code makes a program implementation-dependent. For example, in imple
mentations other than PL/I, the internal representation of an array could include some
header bytes in addition to the bytes used to represent the data elements. In each case,
you must investigate the internal representation before using based variables to overlay
other data types.

43

4.5 Memory Management Statements PL/I Programming Guide

4.5.2 The ALLOCATE Statement

The ALLOCA TE statement explicitly allocates storage for a BASED variable. The
ALLOCATE statement takes the form:

ALLOCATE based variable SET(pointer variable);

For example,

allocate input buffer set(buffer ptr);

The run-time system obtains sufficient memory for the based variable from the free
storage area and then sets the pointer variable to the address of this memory segment.

4.5.3 The FREE Statement

The FREE statement releases the storage allocated to a BASED variable. The FREE
statement takes the form:

FREE [pointer variable ->] based variable;

For example,

free input buffer;

Note: the pointer variable reference is optional if you declared the based variable with
a pointer reference.

44 INfORM.A TION

PL/I Programming Guide 4.5 Memory Management Statements

The following code sequence illustrates the use of the ALLOCATE and FREE statements.

declare
(ptqtr) pointert
a character basedt
b fixed based(r);

allocate a set(p);
allocate b set(r);
allocate a set(q);

free p -> a;
free q -> a;
free b;

4.6 Preprocessor Statements

Preprocessor statements allow you to include other files and modify the source
program at compile time.

The %INCLUDE statement copies PLII source from another file at compile time.
The % INCLUDE statement is useful for filling in declarations that are repeated through
out a program. The %INCLUDE statement takes the form:

%INCLUDE 'filespec';

For example,

%include 'fcb.dcl';

45

4.6 Preprocessor Statements PL/I Programming Guide

The %REPLACE statement allows you to replace identifiers by literal constants
throughout the text of a PL/I program at compile time. The %REPLACE statement
takes the form:

%REPLACE identifier BY literal constant;

You can put more than 1 identifier-constant pair in a single %REPLACE statement
by separating the pairs with commas.

For example,

'X,replace
true by \l/bt
false b}' \O/t.;

4.7 Null Statements

The null statement does not perform any action. Its form is simply:

You can use the null statement as the target of a THEN or ELSE clause in an IF
statement. In the following example,

if x > avera~e then
~oto print it;

else;

no action takes place when x is less than or equal to average, and the sequence of
execution continues at the statement following the ELSE. As another example, consider
this statement:

on endpa~e(report file);

Here, no action takes place when PL/I processes the ON-unit for ENDPAGE, and the
1/0 statement that signaled the condition continues.

46

PL/I Programming Guide 4.7 Null Statements

You can also use null statements to give more than one label to the same executable
statement. For example,

A·· . ,
B: statement-l;

statement-2;

References: Section 4 LRM

End of Section 4

47

End of Section 4 PL/I Programming Guide

48

Section 5
Programming Style

PL/I is a free-format language. You can write programs without regard to column
positions and specific line formats. Each line can be up to 120 characters long terminated
by a carriage return, and logically connected to the next line in sequence. The Compiler
simply reads the source program from the first through the last line, disregarding line
boundaries.

In exchange for this freedom of expression, you should adhere to some stylistic
conventions, so that your programs can be easily read and understood by other pro
grammers. A professional program not only produces the correct output, but is con
sistent in form and divided into logical segments that are easy to comprehend. A
logically structured program is also much easier to debug. A well-constructed program
is appreciated for its form and its function.

There are many stylistic conventions in use by individual programmers. The following
rules illustrate one set of conventions that are used throughout the examples in this
guide. Listing 5-1 illustrates the conventions presented in this section.

5.1 Case

You can write PL/I programs in either upper- or lower-case. Internally, the PL/I
Compiler translates all characters, outside of string quotes, to upper-case. Using lower
case throughout programs generally improves readability.

5.2 Indentation

Use indentation throughout your program to set off various declarations and state
ments. To simplify indentation, the Compiler expands tabs ("I characters) to every
fourth column position. Some text editors expand tabs to multiples of eight columns,
so the line appears wider during the edit and display operations. The Compiler issues
the TRUNC (truncate) error if the expanded line length exceeds 120 columns.

Program statements start at the outer block level in the first column position. Each
successive block level, initiated by a DO-group, BEGIN, or PROCEDURE block, starts

49

5.2 Indentation PL/I Programming Guide

at a new indentation level, four spaces or one tab stop. Give statements in a group the
same indentation level, with procedure names and labels on a single line by themselves.

An IF statement should be directly followed by the condition and the THEN keyword,
with the next statement indented on the next line. When the IF statement has an
associated ELSE, start the ELSE at the same level as the IF. Indent the statement
following the ELSE and place it on the next line. For declarations, place the DECLARE
keyword on a single line, followed by the declared elements indented on the following
line.

Avoid complicated attribute factoring because it reduces program readability. Insert
blank lines when necessary to improve paragraphing and to separate logically distinct
segments of the program.

5.3 Abbreviations

Many of the longer PL/I keywords have abbreviations (see the PL/I Command Sum
mary for a complete list). Inconsistent use of abbreviations decreases readability, so
use either the long or short forms, but not both. Make use of the underscore in variable
names to improve readability.

5.4 Modular Format

You should divide large programs into several logical groups, or modules, where
each module performs a specific primitive function. You should make these modules
PLII subroutines that are either locally or externally defined. Local subroutines become
a part of the same main program or subprogram, while you can separately compile
and link together external subroutines.

Place locally defined subroutines at the end of the program, so that the beginning
contains only declarations and top-level statements that call the local subroutines.
Neither the top-level statements nor the locally defined subroutines should exceed one
or two pages in length.

While learning to program in PL/I, use a main program, with locally defined sub
routines, following the form of the examples in this guide. When your application
programs increase in size, however, you will find it more effective to break them into
separate modules. This allows you to compile and link individual segments in pieces,
thereby reducing overall development time.

50

PL/I Programming Guide 5.5 Comments

5.5 Comments

Comments should become an integral part of your program. They are an essential
element in making your program readable, for yourself and other programmers. Avoid
introducing random comments throughout the source file, and do not nest them. Con
sistency is the watchword. Place your comments at the beginning of subroutines or
logical statement groups. If your program is properly structured into well-defined
modules, these explanatory remarks provide the information required to understand
the overall purpose and operation of your program. They also simplify the task of
maintaining and updating the code without introducing errors.

1**1
1* This pro~ram computes the lar~est of three *1
1* FLOAT BINARY nurnbe rs x, }', and z. *1
1**1
test:

procedure options(main);
declare

(a,b,c) float binan';
put list ('Type Three Numbers: ');
~et list (a,b,c);
put list ('The Lar~est l,Jalue is / ,rnax3(a,b,c));

1* this procedure computes the lar~est of x, y, and *1
max3: procedure(xtY,z) returns(float binan');

declare
(x,y,zImax) float binary;

[

icf ~fl xY the~hen
Max x;

els:
ax

z;

e I s e

C
if }' > Z then

Max Y;
else

Max Z;
return(max) i

Max3i

end test;

Listing 5 -1. PL/I Stylistic Conventions

51

End of Section 5 PL/I Programming Guide

52

Section 6
Using the System

Developing a PL/I program is a 3-step process:

1. Write the source file using ED or a similar text editor.
2. Compile the source file and generate the relocatable object file.
3. Link the relocatable object file with the Run-time Subroutine Library to gen

erate an executable command file.

PL/I is a compiled language. Consequently, if you make any change to the source
file, you must recompile the program. Try to divide large programs into several small
modules, compile each module separately, then link them together. Small programs
compile faster and use less storage for the Symbol Table.

Figure 6-1 illustrates the development process.

PLiI
Compiler

Figure 6-1. PL/I Program Development

53

6.1 PL/I System Files PL/I Programming Guide

6.1 PL/I System Files

When you receive your PL/I system you should first copy all of the files onto a back
up disk. If you are unsure how to do this, read your operating system documentation.

Note: you have certain responsibilities when making copies of Digital Research pro
grams. Be sure you read your licensing agreement.

After you make back-up disks, load your Compiler disk and type a DIR command:

A>dir

The directory contains several types of files, as shown in Table 6-1.

Type

CMD

COM

DAT

DCl

IRl

OB]

OVl

OVR

54

Table 6-1. PL/I System Files

Definition

Executable command file (8086 implementation), for example,
DEMO.CMD

Executable command file (8080 implementation), for example,
DEMO.COM

Default data filetype

%INClUDE file (data declarations)

Indexed Relocatable File, for example PlILIB.lRL

Relocatable object code file (8086 implementation), for example,
DEMO.OB]

PL/I Compiler Overlays (8080 implementation), PLIO, PLI1, and PLI2

PL/I Compiler Overlays (8086 implementation). PLIO, PLI1, and PLI2

tNFORMATION

6.1 PL/I System Files PL/I Programming Guide

Table 6-1. (continued)

Type Definition

PLI PL/I source programs, for example, DEMO.PLI

PRN Printer disk file; compiled program listing on disk

REL Relocatable object code file (8080 implementation), for example,
DEMO.REL

SYM Symbol Table File, for example DEMO.SYM

Note: the only files that contain printable characters are the PLI source programs the
PRN printer listing files and the SYM Symbol table files.

6.2 Invoking the Compiler

Invoke the PL/I Compiler using a command of the general form:

pli filespec [$s1. .. $s7]

where filespec designates the program to compile and can include an optional drive
specification. For example,

d:myfile.pli

You need not specify the filetype because the Compiler assumes type PLI.

$s1. .. $s7 represent a list of parameters that you can optionally include in the com
mand line when compiling a program. These parameters are called switches, and they
enable the various Compiler options as shown in Table 6-2 on the following page.

In each case, the single-letter option follows the $ symbol in the command line. You
can specify a maximum of seven options following the dollar sign. The default mode
using no options compiles the program but produces no source listing and sends all
error messages to the console.

55

6.2 Invoking the Compiler PL/I Programming Guide

Option

B

D

K

L

N

o

P

S

56

Table 6-2. PL/I Compiler Options

Action Enabled

Built-in subroutine trace. Shows the Run-time Subroutine Library
functions that are called by your PL/I program.

Disk file print. Sends the listing file to disk, using the filetype PRN.

Interlist source and machine code. Decodes the machine language
code produced by the Compiler in a pseudo-assembly language form.

Kill parameter and %INCLUDE listings. Disables the listing of
parameters and %INCLUDE statements during the Compiler's first
pass.

List source program. Produces a listing of the source program with
line numbers and machine code locations (automatically set by the
I switch).

Nesting level display. Enables a pass 1 trace that shows exact balance
of DO, PROCEDURE, and BEGIN statements with their corre
sponding END statements.

Object code off. Disables the output of relocatable object code nor
mally produced by the Compiler.

Page mode print. Inserts form-feeds every 60 lines, and sends the
listing to the printer.

Symbol Table display. Shows the program variable names, along
with their assigned, defaulted, and augmented attributes.

PL/I Programming Guide 6.3 Compiler Operation

6.3 Compiler Operation

The PL/I Compiler reads source program files and generates a relocatable, native
code object file as output. PLII is a 3-pass Compiler, with each pass a separate overlay.
Pass 1 collects declarations, and builds a Symbol Table used by subsequent passes.
Pass 2 processes executable statements, augments the Symbol Table, and generates
intermediate language in tree-structure form. Both passes analyze the source text using
recursive descent.

Pass 3 performs the actual code generation, and includes a comprehensive code
optimizer that processes the intermediate tree structures. Alternate forms of an equiv
alent expression are reduced to the same form, and expressions are rearranged to
reduce the number of temporary variables. There is also a special-forms recognizer
that detects and matches approximately three hundred tree structures of special interest.
Special-forms recognition allows the Compiler to generate concise code sequences for
many common statements.

Note: all the Compiler overlays (PLIO, PLI1, and PLI2) must be on the default drive.

As the Compiler proceeds through the first two passes, it displays the messages:

NO ERROR(S) IN PASS

NO ERROR(S) IN PASS 2

If there are errors, the Compiler lists each line containing an error with the line number
to the left, a short error message, and a ? below the position in the line where the error
occurs.

At the end Pass 3, the Compiler displays the message,

CODE
DATA
FREE
END

SIZE = nnnn
AREA = nnnn
SYMS = nnnn
COMPILATION

where nnnn are hexadecimal numbers representing the amount of storage used for the
code and data, as well as the amount of Transient Program Area (TPA) left for Symbol
Table space.

57

6.3 Compiler Operation PL/I Programming Guide

Note: in the 8080 implementation, PL/I requires at least a 48K TPA. In the 8086
implementation, PL/I requires an 96K TPA.

If the number of error messages is excessive and you want to make corrections before
proceeding, you can halt the compilation by typing a carriage return. The Compiler
responds with the message:

STOP PL/l (YIN)?

Enter Y to halt the compilation.

If you use the N switch, the Compiler lists the program line number on the left,
followed by a letter a through z that denotes the nesting level for each line. The main
program level is a, and each nested BEGIN advances the level by one letter, while each
nested PROCEDURE advances the level by two letters.

If you use the L switch, the Compiler lists the relative machine code address for each
line as a four-digit hexadecimal number. This address is useful for determining the
amount of machine code generated for each statement and the relative machine code
address for each line of the program. The Compiler prints the source language statement
on the line following the relative machine code value.

Listings 6-1a and 6-1b show two compilations of a program called DEMO that is
on your sample program disk.

1 a
2 b
3 b
4 b
5 b
6 b
7 b
8 b
9 b

10 b
11 b
12 b

58

deMO:
procedure options(Main);

declare
naMe character(20) varyin~;

put sKip(2) list('PLEASE ENTER YOUR FIRST NAME: I);

get list(naMe);
put sKip(2) list('HELLO '::naMe::', WELCOME TO PUI I):

end deMO;

Listing 6-1a. Compilation of DEMO Using $N Switch

PL/I Programming Guide 6.3 Compiler Operation

1 a
2 a
3 a
4 c
5 c
6 c
7 c
8 c
9 c

0000
0006
0006
0006
0006
0006
0006
0006
0022

deMO:
procedure options(Main);

declare
naMe character(20) varying;

put sKip(2) list('PLEASE ENTER YOUR FIRST NAME: '
get list(naMe);

10 c 003C put sKip(2) list('HELLO '::naMe::', WELCOME TO PL/I I):

11 c 006A
12 a 006A end deMo;

Listing 6-1h. Compilation of DEMO Using $L Switch

6.4 The DEMO Program

You can start learning to use the PLII system by compiling the program called DEMO.
The source file for DEMO is on your PLfI sample program disk, so you do not have
to write the code. To display the source file, use the TYPE command, as follows:

A:>type defrlo,pli

To compile the DEMO program, enter the command:

A:>pli demo

Now examine your directory and find the object file that contains the relocatable
machine code produced by the Compiler. The machine code produced by the Compiler
is not directly executable, so you have to link the object file with the Run-time Sub
routine Library (RSL) with the command:

A:>link demo

Now examine your directory and find the command file and the Symbol Table file
produced by the linkage editor. You can load the Symbol Table file under SID™ or
SID-86™ for debugging.

59

6.S Running DEMO PL/I Programming Guide

6.5 Running DEMO

To run the compiled program, enter the name of the command file,

A>defrlD

The operating system loads the DEMO program, which begins processing and prompts
you with the message,

PLEASE ENTER YOUR FIRST NAME:

Console input is free-field and incorporates the full line-editing facilities of the oper
ating system. When you enter your name, DEMO gives an appropriate response. Listing
6-2 shows interaction with DEMO.

A>deIT1D

PLEASE ENTER YOUR FIRST NAME: Larry

HELLO LarrYt WELCOME TO PL/I
A>

Listing 6-2. Interaction with the DEMO Program

Various run-time errors can halt processing if the program does not explicitly inter
cept them. In this case, PL/I displays the message in the following form:

error-condition (code), file-option, auxiliary-message
Traceback: aaaa bbbb cccc dddd # eeee ffff gggg hhhh

The error-condition is one of the standard PL/I condition categories (see Section 4.4.4).
Code is an error subcode identifying the origin of the error.

PLiI prints the file option when the error involves an 110 operation, and takes the
form,

File: internal = external

where internal is the internal program name that references the file involved in the
error, and external is the external device or filename associated with the file. PL/I prints
the auxiliary message whenever the preceding information is insufficient to identify the
error.

60

PLfI Programming Guide 6.5 Running DEMO

The traceback portion lists up to eight elements of the internal stack. In the preceding
general form, element aaaa corresponds to the top of the stack, while hhhh corresponds
to the bottom of the stack. If the stack depth exceeds eight elements, the # character
separates the four topmost elements on the left from the four lowermost elements on
the right.

Listing 6-3 is an example of the diagnostic form. In this case, the console input is
an end-of-file (CTRL-Z) character. Entering a CTRL-Z signals the END FILE condition
for the SYSIN file. This is standard console input. In this example, the external device
connected to the SYSIN file is the console, denoted by CON.

A>delrlD

PLEASE ENTER YOUR FIRST NAME:

END OF FILE (1) t File: SYSIN=CON
TracebacK: 075E 0768 012E acoo # 0702 0322 8080 012E
A>

Listing 6-3. Error Traceback for the DEMO Program

6.6 Error Messages and Codes

PLfI prints error messages and codes during compilation and while running the
compiled program. During compilation, nonfatal errors are marked with an error
message following the line in error, with a ? character near the position of the line in
error. The ? might follow the actual error position by a few columns. One error on a
line in some cases leads to additional errors.

Fatal errors, marked with an asterisk in the following list, cause the Compiler to
halt immediately. Run-time errors occur while the program is running. Although some
run-time errors are fatal, most can be intercepted using ON statements. The Compiler
errors are listed first.

61

6.6 Error Messages and Codes PL/I Programming Guide

6.6.1 General Errors

D I R F U L L * The operating system's disk directory has overflowed. Erase unnec
essary files and try again.

DIS K F U L L * All disk file space has been consumed. Erase unnecessary files and
try again.

I NVAL I D I NCLUDE A %INCLUDE statement IS not properly formed. The
%INCLUDE statement has the general form

%include 'd:filename.typ';

where d is the (optional) drive, and filename.typ is the file specification.

LEN G T H The item exceeds the maximum field width for the keyword or data item
(31 characters for identifiers, 128 for strings).

NO F I LEx * The file x does not exist on disk. If x is of type PLI, then check to
see that your source file is on the named disk. If the type is OVR, or OVL, then ensure
that all three PL/I Compiler overlays (PLIO, PLI1, PLI2) are on the default disk.

OUT OF MEMORY The memory size of the host system is too small. In the 8080
implementation, PL/I requires at least a 48K Transient Program Area (TP A) for program
compilation. In the 8086 implementation, PL/I requires a 96K TPA.

READ ONL Y x * The named file cannot be closed. Typically caused by disk that
is set to Read-Only through hardware.

T E R MIN ATE D • * Program error count exceeds 255, or terminated at the console
by user typing return during the compilation process.

TRUNC Line exceeds 120 characters in length and has been truncated.

U NE}{ P E C TED EO F * The end of the source program was encountered before the
logical end of program. Typically due to unbalanced block levels (recompile with the
$n toggle for nesting trace), or unbalanced comments and strings (check balance for
missing * I or apostrophe characters).

I.JALUE Indicates that the converted number exceeds the 16-bit capacity for FIXED
BINARY constants (- 32768, + 32767).

62

PL/I Programming Guide 6.6 Error Messages and Codes

6.6.2 Pass 1 Errors

BAD I) A L The constant encountered in a format is invalid for this format item.

B A LAN C E The parentheses for the expression are not balanced.

BLOCK AT LINE x I)AR I ABLE I} E){CEEDS STORAGE The block begin
ning at source line x contains a variable v that caused the collective allocation of storage
to exceed 65535 bytes.

B L 0 C K 0 I.! E R FLO W The nesting level of PROCEDURE, DO, and BEGIN blocks
exceeds thirty-one levels. Simplify the program structure and try again.

CON F L I C T The attributes given in a declaration conflict with one another.

D UP L I C The indicated variable is declared more than once within this block.

LAB E L The label for this statement is not properly formed. Only one label per
statement is allowed, and subscripted label constants must have constant indexes.

LEN G T H The length of the indicated symbol exceeds the maximum symbol size.
Simplify the structure and retry. Can also be caused by an unbalanced string.

N EST E D REP The % REPLACE statement is placed improperly in the block struc
ture. %REPLACE statements must occur at the outer block level before the occurrence
of nested inner blocks.

NOD C L: I) 1 t l) 2 t +. + t I) n The listed procedure parameters occurred In

the procedure header, but were not declared within the procedure body.

NOT B I F The BUILTIN attribute is applied to an identifier that is not a PL/I
built-in function.

NOT IMP The statement uses a feature that is not implemented in PL/I.

NOT I.! A R I A B LEThe declared name is treated as a variable, but does not have
the VARIABLE attribute.

NUMBER Numeric constant is required at this position in the format.

63

6.6 Error Messages and Codes PL/I Programming Guide

. ON BODY Invalid statement occurs in the ON condition body. RETURN cannot
be used to exit from an ON-unit. DO and IF require enclosing BEGIN ... END block.

PIC T U R E Picture declaration or P format item is improperly formed.

R E CUR PRO C Recursive procedure contains invalid nested block. Only embedded
DO-groups are allowed in recursive procedures.

S T Rue T U R E The indicated structure is improperly formed. Nesting levels cannot
exceed 255.

S Y M B 0 L LEN G THO t.J E R FLO W * Maximum symbol size exceeded during con
struction of Symbol Table entry. Simplify and try again.

S Y M B 0 L TAB LEO VE R FLO W * This program cannot be compiled in the current
memory size. Break the module into separate compilations, or increase the size of the
TPA on your system.

SYNTA){ The specified statement is improperly formed. See the PLII Language
Reference Manual for proper statement formulation.

6.6.3 Pass 2 Errors

A G G t.J A L Actual parameter. is an aggregate value that does not match the formal
parameter. Change actual or (ormal parameter to match.

A R G CO U N T One of the following has occurred: subscript count does not match
declaration; DEFINED reference to array eleme'nt; more than 15 bound pairs; bound
pairs do not match; or formal and actual parameter count does not match.

BAS E Invalid based variable reference. Occurs when pointer qualifier references
nonbased variable, or variable is declared BASED(x), where x is not a simple pointer
variable or simple pointer function call, as in BASED(P) or BASED(QO).

BAS E D R E Q A based variable is required in this context.

BAD T Y P E Control variable in iterative DO-group is invalid. Only scalar variables
are allowed.

BAD VALUE Invalid argument to built-in function.

64

PLfI Programming Guide 6.6 Error Messages and Codes

B A LAN C E The parentheses for this expression are unbalanced.

BIT CON Bit substring constant is out of range. The last argument to bit SUBSTR
must be a constant in the range 1 to 16.

BIT R E Q A bit expression is required in this context.

C LOS U R E The label following the END does not match the preceding correspond
ing PROCEDURE name.

COM PRE Q A noncomputational expression has been used where a computational
expression is required.

COM P I L ERE R R 0 R A compiler error has occurred. The error might be due to
previous errors.

CON F LIe T Data attributes are in conflict, or attributes in OPEN statement are
not compatible.

CON I.' E R T Cannot convert the constant to the required type.

E}{ PRE S S ION 0 I.' E R FLO W * The expression has overflowed the Compiler's internal
structures. Simplify and try again.

I D R E Q An identifier is required in this context.

IN T R E Q An integer (FIXED BINARY) expression is required in this context.

LAB E L Improperly formed label encountered where label expected.

NOB U I L TIN Referenced built-in function not implemented in PLfl.

NOD C L Indicated variable has not been declared in the scope of this reference.

NOT F I LEThe reference within a FILE option is not a file variable or file constant ..

NOT FORMAT The format field of a GET or PUT EDIT does not reference a
format.

NOT IMP The construct in this statement is not implemented in PLfl.

65

6.6 Error Messages and Codes PL/I Programming Guide

NOT KEY The expression within a KEYTO, KEYFROM, or KEY option is not a
FIXED BINARY variable.

NOT LAB E L The target of this GOTO statement is not a label value.

NOT PRO C The reference following a CALL is not a procedure value.

NOT S CAL A R A nonscalar value was encountered in a context requiring a scalar
expression.

NOT S TAT I C An attempt was made to initialize automatic storage. Declare with
STATIC attribute and retry.

P T R R E Q A pointer variable is required in this context.

QUA L IF Y This reference to a structure does not properly qualify the variable
name; usually due to non unique substructure reference.

RET EX p. The expression in a return statement is not compatible with the RETURNS
attribute of the corresponding procedure.

RET URN An attempt to return value from procedure was made without RETURNS
attribute.

SYNTA}-{ Statement is improperly formed. See PLI! Language Reference Manual
for proper statement formulation.

SCALE GREATER THAN 0 The resulting FIXED BINARY expression produces
a nonzero scale factor. If the expression involved division, replace x/y by DIVIDE(x,y,O).
This is necessary to maintain full language compatibility.

SYMBOL TABLE Ol.JERFLOW* Free memory space exhausted during compila
tion. (See similar error in Pass 1.)

S T R R E Q A string variable is required in this context. In the case of the SUBSTR
built-in function, assign the expression to a temporary variable before the substring
operation takes place.

T Y PES NOT = The types of a binary operation are not compatible. Check dec
larations and conversion rules. Might be due to aggregate data items that do not match
in structure.

66 ALL

PL/I Programming Guide 6.6 Error Messages and Codes

UNSPEC Source or target of UNSPEC operation is not an 8- or 16-bit variable.

l.J A L U E S The number of items specified in an INITIAL statement is not com
patible with the variable being initialized.

l.J A R R E Q A variable is required in this context.

6.6.4 Pass 3 Errors

AUTOMAT I C STORAGE Ol.JERFLOW The total storage defined within
this program module exceeds 65535 bytes.

BAD I NT F I LEThe intermediate file sent to Pass 3 is invalid, and is usually due
to a hardware malfunction.

B L 0 C K 0 l.J E R FLO W Nesting level has exceeded the Compiler's internal tables
(maximum 32 levels).

EO F 0 N I NT F I L E Premature end-of-file encountered while reading interme
diate file. Usually due to hardware failure.

E}< PRE S S ION 0 l.J E R FLO W * The Compiler's internal structure sizes have been
exceeded. Simplify expression and retry.

LINE x 0 PERAT I ON NOT IMPLEMENTED An invalid intermediate opera
tion has occurred. Usually due to hardware failure or errors in a previous pass.

6.6.5 Run-time Errors

Run-time errors occur when the linked program is loaded and executed. Run-time
errors are divided into two categories: fatal errors, which stop execution, and nonfatal
errors, which can be intercepted with ON-units.

6.6.6 Fatal Run-time Errors

F R E ERE QUE S T 0 U T 0 F RAN G E A FREE statement specifies a storage address
outside the range of the free storage area, and is usually caused by reference to an
un initialized base pointer.

67

6.6 Error Messages and Codes PLfI Programming Guide

F R E ESP ACE 0 t.' E R W R I T E The free storage area has been destroyed, and is
usually caused by an out-of-range subscript reference or a stack overflow. If stack
overflow occurs, use the STACK(n} keyword in the OPTIONS field to increase the
stack size.

INS U F FIe lEN T ME M 0 R Y The loaded program cannot execute in the memory
size allocated to the transient program. If possible, increase the size of the Transient
Program Area.

INt.' A LID I /0 LIS T The list of active files has been destroyed during execu
tion, and the attempt to close all active files at the end of execution failed. Usually due
to subscript values out-of-range.

6.6.7 Nonfatal Errors

The following errors are printed when no ON-unit is active, or if control returns
from an ON-unit corresponding to a fatal condition (marked by an asterisk). In each
case, the condition prefix is listed, followed by an optional subcode that identifies the
error source, followed in some cases by an auxiliary message that further identifies the
source of the error.

ERR 0 R (1) II Con I} e r 5 ion II * Occurs whenever conversion cannot be per
formed between data types, and might be signaled during arithmetic operations, assign
ments, and 110 processing with GET and PUT statements.

ERROR (2) II I/O S t a c ~\ 0 \) e r flo 1,,1
11 * The run-time 110 stack has exceeded

16 simultaneous nested I/O operations. Simplify the source program and try again.

ERROR (3) * Transcendental function argument is out-of-range.

ERR 0 R (4) II I /0 Con f 1 i c t x II * A file has been explicitly or implicitly opened
with one set of attributes, and subsequently accessed with a statement requiring con
flicting attributes. The value of x is one of the following:

• STREAM/RECORD
• SEQUENIDIRECT
• INPUT/OUTPUT
• KEYED Access

The first conflict arises when ASCII files are processed using READ or WRITE, but
the INTO or FROM option does not specify a varying character string.

68

PL/I Programming Guide 6.6 Error Messages and Codes

ERR 0 R (5) II For ITI a t 0 \,l e r flo 1,,1 II ·It The nesting level of embedded formats
has exceeded 32. Simplify the program and try again.

ERROR (G) II I n I} ali d F 0 rlTl a tIt e IT11I * The format processor has encoun
tered a format item that cannot be processed. The P format is not implemented in
PL/I.

ERR 0 R (7) II F r e e Spa c e Ex h au 5 ted II * No more free space is available.
If intercepted by an ON-unit, do not execute ALLOCATE, OPEN, or recursion without
first releasing storage.

ERR 0 R (8) II OI.J E R LAY t NO F I LEd : f i 1 e n a ITI e II The indicated file could
not be found.

ERR 0 R (8) II 0 1.J E R LAY t DR I 1.J Ed: f i 1 en a ITI e II An invalid drive code was
passed as a parameter to overlay.

ERROR (10) II OI.)ERLAY t SIZE d: f i 1 en alTI e II The indicated overlay will
overwrite the PL/I stack and/or free space if loaded.

ERR 0 R (11) II OI.J E R LAY t N EST I N G d: f i 1 e 1"1 a ITI e II Loading the indi
cated overlay would exceed the maximum nesting depth.

ERR 0 R (1 2) II 0 I.) E R LAY t REA D d: f i 1 e 1"1 a ITI e II Disk read error during
overlay load; probably caused by premature EOF.

ERR 0 R (1 3) II I n \,l ali d 0 S l.J e r 5 i 01"1 II Caused by any operation that gen
erates an operating system call not supported under the current operating system.

ERROR (14) II Un 5 uc c e 5 5 f U 1 W r it e II Caused by any unsuccessful write
operation on a file due to lack of directory space, lack of disk space, etc.

ERROR (15) II F i 1 e Not 0 pen II Caused by any attempt to lock or unlock a
record in a file that is not open.

ERROR (1 G) II F i 1 e Not K e)' e d II Caused by any attempt to lock or unlock
a record in a file that does not have the KEYED attribute.

F I >< E DOl.) E R FLO W A decimal add or multiply produced a value exceeding 15
decimal digits of precision, or an attempt was made to store to a variable with insuf
ficient precision.

69

6.6 Error Messages and Codes PL/I Programming Guide

o V E R FLO W (1) A floating-point operation produced a value too large to be rep
resented in floating-point format.

o t.J E R FLO W (2) A double-precision floating-point value has been assigned to a
single-precision value with insufficient precision.

UN D E R FLO W (1) A floating-point operation produced a value too small to be
represented in floating-point format.

UN D E R FLO W (2) A double-precision floating-point value has been assigned to a
single-precision value with insufficient precision.

Z E ROD I I.J IDE (1) A decimal divide or modulus operation was attempted with a
divisor of zero.

Z E ROD I I.J IDE (2) A floating-point divide or modulus operation was attempted
with a divisor of zero.

Z E ROD I 1.1 IDE (3) An integer divide or modulus operation was attempted with
a divisor of zero.

END F I LEAn attempt was made to read past the end of the listed file, or the disk
full condition occurred during output.

UN D E FIN E D F I LEThe named file cannot be found on the disk if input, or cannot
be created if output. Also occurs when an input device is opened for output, or an
output device is opened for input.

KEY (1) Invalid key detected in output operation.

KEY (2) Invalid key encountered during input operation.

END PA G E An end-of-page condition was detected. This condition does not cause
termination if no ON-unit is active.

End of Section 6

70 ALL

Section 7
Using Different Data Types

PL/I programs allow you to use different data types to suit different applications. In
programs throughout the manual, you should note how and why each type of data is
used in a particular situation.

7.1 The FLTPOLY Program

Listing 7-1 shows a program for evaluating a polynomial expression. The program
begins by reading three values, x, y, and z, from the console, and then uses the values
to evaluate the polynomial expression:

p(Xt}'tZ) = x2 + 2}1 + Z

The main part of the program is bounded by a single DO-group. On each successive
iteration, the program reads the values of x, y, and z from the standard SYSIN, console,
file. The program then writes the v~lue produced by p(x,y,z) to the SYSPRINT file,
again, the console file. Finally, if all the input values are zero, the program executes
the STOP statement and ends the indefinite loop.

The program uses the %REPLACE statement on line 8 to define the literal value of
true as the bit-string constant, '1 'b. The Compiler substitutes this value whenever it
encounters the name true. Thus, the Compiler interprets the DO-group beginning on
line 13 as,

do IAlhile('l'b);

which loops until it executes the contained STOP statement. Using %REPLACE state
ments to define constants can improve the readability of your programs.

71

7.1 The FLTPOLY Program PL/I Programming Guide

1 a 1**1
2 a 1* This pro~raM evaluates a POlYnoMjal expression *1
3 a 1* usin~ FLOAT BINARY data. *1
4 a 1**1
5 a fltpoly:
6 procedure options(~ain);
7
8 b %replace
9 b true by 'lit,;

10 declare
11
12

(x I}' IZ) float binard24);

13 c do while(true);
14 c put sKip(2) list('Type Xt}'IZ: I);

15 c ~et list(x 1'1 IZ);

16 c
17 c if x=O & y=o & z=O then
18 c stop;
19 c
20 c
21 c
22 c
23
24
25 c
26 c

27 c
28 c
29 c
30 b
31

put sKip list('
put sKip list('

end;

21) ;

+ 2'1 + Z =/,P(Xt}',Z));

[

P:
procedure (x 1'1 IZ) returns (float binard24)) i
declare

(x 1'1 IZ) float binary;
return (x * x + 2 * y + z);

end P;

end fltpo!>';

Listing 7-L Polynomial Evaluation Program (FLOAT BINARY)

PL/I Programming Guide 7.1 The FLTPOLY Program

Listing 7-2 shows the console interaction with the FLTPOLY program. The initial
values for x, y, and z are: 1.4, 2.3, and 5.67, but on the next loop, the input takes the
form:

til. 5 t t

This form changes the value of y only. Thus, on this loop, the values of x, y, and z
are 1.4, 4.5, and 5.67. The third input line changes y and z, while the fourth line
changes x only.

A>fitpoiy

Type HIYIZ: 1.41 2.3, 5.S7

2
+ 21 + z = 1.223000E+Ol

Type HIYIZ: 14.511

2
+ 21 + z = 1.GG3000E+Ol

Type HIYIZ: I .Se-3, 7

2
+ 21 + z = O.89G118E+Ol

Type HIYIZ: 2.3111

2
+ 21 + z = 1.229119E+Ol

Type HIYIH: 0,0,0

A>

Listing 7-2. Interaction with FLTPOLY Program

73

7.2 The DECPOLY Program PL/I Programming Guide

7.2 The DECPOL Y Program

Listing 7-3 shows the DECPOLY program, which is essentially the same program
as Listing 7-1. The difference between the two programs is that FLTPOL Y uses FLOAT
BINARY data items, while DECPOL Y uses FIXED DECIMAL items. FLOAT BINARY
computations execute significantly faster than their FIXED DECIMAL equivalents, but
single-precision FLOAT BINARY computations involve truncation errors, and produce
an answer with only about 7 decimal places of accuracy.

1 a 1**1
2 a 1* This prO'raM evaluates a PUIYnOMial expression *1
3 a 1* usin. FIXED DECIMAL data. *1
4 a 1**1
5 a tiecpoly:
6 procedure options (Main);
7

8
9

10
11
12

'Xreplace
true by 'lib;

declare
(x,y,z) fixed deciMal(15,4);

13 c do while(true);
14 c put sKip(2) list('Type x ,y ,z: I);

15 c
16 c
17 c
18 c
19 c
20 c
21 c

.et list(x,}',z)i

if x=O & y=O & z=O then
stop;

put sKip list('
put sKip list('

21) i

+ 2y + z =1,P(xt}',z»i

22 c end;
23
24
25 c
26 c
27 c
28 c
29 c
30
31

procedure (x'}',z) returns (fixed decifTlal(15,l));
declare

(x,}',z) fixed decifTlal(15,l);

return (x * x + 2 * Y + z); [

P:

end Pi

end decpoly;

Listing 7-3. Polynomial Evaluation Program (FIXED DECIMAL)

74 1S

PL/I Programming Guide 7.2 The DECPOLY Program

Listing 7-4 shows the console interaction with the DECPOL Y program. The initial
input values for x, y, and z are: 1.4, 2.3, and 5.67. These are the same values used for
the FLTPOL Y program, but notice the difference in the output. The second loop changes
the values of y and z, and the third loop changes all three values.

A>decpoly

2
+ 2y + Z = 12.2300

Type x,)',z: ,.0006,7

2

+ 2y + Z = 8.8612

Type x,)',z: 723.445180.5410

2
+ 2y + Z = 523533.7480

A>

Listing 7-4. Interaction with DECPOLY Program

Experiment with these two programs by comparing the results when you enter the
same values in each one. Then read Section 17, which describes the internal data
representation for all PL/I data types. Understanding how PL/I internally treats the
different data types helps you choose the right type of data to suit the application.

End of Section 7

References: Section 3.1 LRM

75

End of Section 7 PL/I Programming Guide

76

Section 8
STREAM and RECORD File

Processing

The example programs in this section illustrate STREAM and RECORD file process
ing using the various 110 statements.

8.1 File Copy Program

Listing 8-1 shows a general purpose, file-to-file copy program. The program first
defines and opens two file constants called input_file and output_file. It then begins
executing a continuous loop that reads data from input_file and copies it to output_file.

Both OPEN statements define STREAM files with internal buffers of 8192 characters
each. In the first OPEN statement, PL/I supplies the default attribute INPUT, while the
second OPEN statement explicitly specifies an OUTPUT file. Otherwise, it would also
default to an INPUT file.

This program shows the special use of READ and WRITE statements to process
STREAM files. The READ statement on line 19 reads a STREAM file into buff, a
character string of varying length. It reads each line of input up to and including the
next carriage return line-feed into buff, and sets the length of buff to the amount of
data read, including the carriage return line-feed character. The WRITE statement
performs the opposite action. It sends the data to a STREAM file from buff. The output
file receives all characters from the first position through the length of buff.

The program terminates by reading through the input file until it reaches the end
of-file (CTRL-Z) character. PL/I automatically closes all open files, and writes the
internal buffers onto the disk, thus preserving the newly created output file.

77

8.1 File Copy Program PL/I Programming Guide

1 a
2 a
3 a
4 a
5 a
6 b
7 b
8 b
8 b

10 b
11 b
12 b
13 b
14 b
15 b
16 b
17 b
18 c
19 c
20 c
21 c
22

1***1
1* This pr09raM copies one file to another usin9 *1
1* buffered liD. *1
1***1
copy:

[
end

procedure options(Main);
declare

(input file,output file) file;

open file (input file) streaM
en vir 0 n Men t (b (8192 » tit 1 e (1 $1. $1 ') ;

open file (output file) streaM output
environMent(b(8182» title(1$2.$2');

declare
buff character(254) varyin9;

do while(ll'b)j
re ad f i 1 e (input f i 1 e) into (b u f f) j

w r it e file (output f i 1 e) froM (buff) j -
end;
co Pi' j

Listing 8-1. COPY (File-to-File) Program

Listing 8-2 shows a sample execution of the copy program using the following
command line:

A}CDPY CDPy,pli $con

In this case, the input file is COPY.PLI, the original source file, while the output file
is the system console. Thus, the program simply lists COPY.PLI at the terminal.

The TITLE options connect the internal filenames to external devices and files. The
command line has two parts: the command itself, and the command tail, which can
contain two filenames.

Command~ Command ~

~ $1~2/
copy I copy. pH I $con I

Figure 8-1. Default Filenames in the Command Tail

78 !NFOR}\I\ATfON

PL/I Programming Guide 8.1 File Copy Program

The OPEN statement on line 10 takes the first default name, including the drive in
the command tail (denoted by $1.$1), and assigns it to the internal file constant called
input_file. Similarly, the second OPEN statement on line 13 takes the second default
name including the drive in the command tail (denoted by $2.$2), and assigns it to
the internal file constant called output_file.

For example, the command,

A)CDPY a:xfdat C:Ufnew

copies the file X.DAT from drive a to the new file U.NEW on drive c. The input file
must exist, but PL/I erases the output file if it exists, and recreates it.

A)copy copy,pii 'con

1 a 1***1
2 a 1* This pro.raM copies one file to another usin. *1
3 a 1* buffered liD. *1
4 a 1***1
5 a copy:
6 procedure options(Main);
7 declare
8 (input file,output file) file;
9

10
11
12
13
14
15
16
17

open file (input file) streaM
environMent(b(8192)) title('$l.$l /);

open file (output file) streaM output
environMent(b(8192)) title('$2.$2 /);

declare
buff character(254) varyin.j

18 c do while('lib);
19 read file (input file) into (buff);
20 c write file (output file) froM (buff);
21 c end;
22 end copy;

END OF FILE (3), File: INPUT=CoPY.PLI
Traceback 0445 03AF 0155
A)

Listing 8-2. Interaction with the COpy Program

79

8.2 Name and Address File PL/I Programming Guide

8.2 Name and Address File

The two programs in Listings 8-3 and 8-6 manage a simple name and address file.
The CREATE program produces a STREAM file containing individual names and
addresses that are subsequently accessed by the RETRIEVE program.

8.2.1 The CREATE Program

The CREATE program in Listing 8-3 contains a data structure that defines the name,
address, city, state, zip code, and phone number format. This data structure is not in
the source file CREATE.PLI. It is contained in a separate file named RECORD.DCL,
and CREATE uses an %INCLUDE statement to read and merge this file with the source
file. Both files are on your sample program disk. The + symbols to the right of the
source line number in the listing indicate that the code comes from an %INCLUDE
file. The actual line in the source program appears as follows:

create:
procedure optionS(Main);

%include 'record.dcl';

The file specified in the %INCLUDE statement can be any valid filename. The Compiler
simply copies the file at the point of the %INCLUDE statement, and then continues.

The OPEN statement, line 29, does not specify the PRINT attribute. This means the
output file is in a form suitable for later input using a GET LIST statement.

1 a 1***I
2 a 1* This prOgraM creates a naMe and address file. The *1
3 a 1* data structure for each record is in the IINClUDE *1
4 a 1* file RECORD.Del. *1
5 a 1***I
6 a rcreate:
7 b procedure options(Main) j

8 b

Listing 8-3. CREATE Program

80

PL/I Programming Guide 8.2 Name and Address File

9+b
10+b
11+b
12+b
13+b
14+b
15+b
16+b
17 b
18 b
19
20
21
22
23
24
25
26
27
28
29
30
31 c
32 c
33 c
34 c
35 c
36
37
38
39 d

40 d
41

42
43

44
45
46
47
48
49
50 c
51
52
53
54

declare
1 record,

2

2
2
2
2
2

'X,replace

naMe
addr
cit i'
state
zip
phone

character(30) varyin~,

character(30) varyin~,

character(20) varyin~,

character(10) varyin~,

fixed deciMal(S),
character(12) I)aryin~j

true by 'lib,

false bi' 'O'bi

declare
output file,
filenaMe character(14) varyin~,

eofile bit(l) static initial(false);

put list ('NaMe and Address Creation Pro~raM' File NaMe: ');
~et list (filenaMe);

open file(output) streaM output title(filenaMe);

do while ('·eofile)l
put skip(3) list('NaMe: ');
~et list(nalrle);
eofile = (naMe = 'EOF');
if ~eofile then

-- do;
1* write prOMPt strin.s to console *1

put list('Address: I);

set list(addl'),
put list('City, State, Zip: ');
~et li.st(citi', state, zip);
put list('Phont!~ I);

get l.ist(phone);

1* data in MeMOry, write to output file *1
put file(output)

1 is t (n alrl e , add r ,c it Y 1St ate,;:: i p ,p f1 0 n e) ;
put file(output) skip; L end;

endi
put file(out,put) sKip list('EOF');
put file(output) skip;

end create?

Listing 8-3. (continued)

81

8.2 Name and Address File PL/I Programming Guide

Listing 8-4 shows the console interaction with the CREATE program. You specify the
output file as names.dat in the first input line. The GET LIST statement, line 33, accepts
input delimited by blanks and commas, unless the delimiters are included in single
apostrophes. Thus, CREATE takes the input line,

'John Robinson

as a single string value with PL/I automatically inserting the implied closing apostrophe
at the end of the line. The last entry includes the three input values,

Urd,nol"ln t 'Can lIt Find 't 99999

that CREATE assigns to the variables city, street, and state. Because the first value
does not begin with an apostrophe, the I/O system scans the data item until the next
blank, tab, comma, or end-of-line occurs. The second data item begins with an apos
trophe, and this causes the 110 system to consume all input through the trailing balanced
apostrophe, and reduce all embedded double apostrophes to a single apostrophe. The
last value, 99999, is assigned to a decimal number, and must contain only numeric
data.

You can use the command,

A:>t}'pe namesfdat

to display the STREAM file that the program creates. Listing 8-5 shows the output
resulting from each input entry.

A>create
NaMe and Address Creation PrOgraM, File NaMe: names.dat

NaMe: '~rthur JacKson'
Address: '100 W. 3rd St.'
City, State, Zip: 'Fresno', 'Ca. 'I. 93706
Phone: '529-1277'

NaMe: 'Donna Harris'
Address: '2999 Serra Rd.'
City, State, Zip: 'Chico', 'Ca.', 95926
Phone: '635-3570'

Listing 8-4. Interaction with the CREATE Program

82

8.2 Name and Address File PL/I Programming Guide

NaMe: 'John Robinson
Address: '805 Franklin St, 1

Cit y, S tat e, Zip: ' !1 0 n t ere)' I! ' C a, I! EJ 3 9 40

Phone: '84EJ-1000'

NaMe: 'Virginia Wi1son '
Address: '?I

City, State, Zip: Unknown! 'Can"t Find ' , EJEJEJEJEJ
Phone: '?I

NaMe: 'EOF '

A>

Listing 8-4. (continued)

A>type naMes,dat

'Arthur JacKson' '100 W. 3rd St.' 'Fresno' 'Ca.' 93708 '529-1277'
'Donna Harris' '2999 Serra Rd.' 'Chico' 'Ca,' 95928 '835-3570'
'John Robinson' '805 FranKlin St.' 'Monterey' 'Ca.' 93940 '849-1000'
'Virginia Wilson' '?' 'UnKnown' 'Can"t Find' 99999 '?'

'EDF'
A>

Listing 8-5. Output from the CREATE Program

8.2.2 The RETRIEVE Program

The RETRIEVE program shown in Listing 8-6 reads the file created by CREATE,
and displays the name and address data upon user request. The Compiler includes the
same RECORD.DCL file used in the CREATE program, shown in Listing 8-3.

The main DO-group in the RETRIEVE program, between lines 30 and 59, reads
two string values corresponding to the lowest and highest names to print on each
iteration. The embedded DO-group between lines 41 and 57 reads the entire input file
and lists only those names between the lower and upper bounds.

The RETRIEVE program, similar to the CREATE program, reads the name of the
source file from the console. However, RETRIEVE opens and closes this source file
each time it receives a retrieval request from the console.

83

8.2 Name and Address File PL/I Programming Guide

The OPEN statement on line 38 sets the internal buffer size of the input file to 1024
bytes. After processing the file, RETRIEVE executes the CLOSE statement on line 58
and flushes all internal buffers. Thus, RETRIEVE sets the input file back to the beginning
on each retrieval request.

1 a
2 a
3 a
1I a
5 a
8 b
7 b
8+b
9+b

10+b
11+b
12+b
13+b
111+b
15+b
18 b
17 b
18 b
19 b
20 b
21 b
22 b
23 b
211 b
25 b
26 b
27 b
28 b
29 b

1***1
1* This pro~raM reads a naMe and address data file *1
1* and displays the inforMation on request. *1
1***1
retrieve:

procedure options(Main);

declare
1 record,

2 naMe character(30) varYin~,

2 ad d r character(30) varYin~,

2 city character(20) varying',
2 state character(10) varyin~,

2 zip fixed deciMal (8) ,
2 phone character(12) varYing';

'Z.replace
true by , lib,

false by '0 ' b;

declare
(sYsprint, input) file,
filenaMe character(ll1) varYin~,

(lower, upper) character(30) varYin~,

eofile bit(l);

open file(sysprint) print title('$con/);
put list('NaMe and Address Retrieval, File NaMe: ');
~et list(filenaMe);

30 c do while(true);
31 clower = 'AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/;
32 c
33 c
311 c
35 c
38 c
37 c

84

upper = 'zzzzzzzzzzzzzzzzzzzzzzzzZZZZZZ/;
put sKip(2) list('Type Lower, Upper Bounds: ');
~et list(lower,upper);
if lower = 'EOF ' then

stop;

Listing 8-6. RETRIEVE Program

PL/I Programming Guide 8.2 Name and Address File

38 c
39 c
40 c
41 d
42
43
411
45 e
4S e
47e
48 e
4S
50
51 f
52
53
511
55

open file(input) streaM input environMent(b(1024))
titleUilename) ;

eofile = false;
do while ('eofile)j

~et file(input) list(naMe);
eofile = (name = 'EOF') j
if 'eofile then
- do;

~et file(input)
list(addr,citY,state,zip,phone);
if name >= lower & name <= upper then

[

do;
put
put
put
put
put

end;

pa~e sKip(3)list(name);
sKip list(addr);
sKip list(citY,state);
sKip list(zip)j
sKip list(phone);

5S e end;
57 d end;
58 c close file(input);
5S c end;
60
61 b end retrieve;

Listing 8-6. (continued)

Listing 8-7 shows user interaction with the RETRIEVE program. Again, the input
file is names.dat, and exists on the disk in the form produced by CREATE. The input
values,

5tE

set lower to B and upper to E and cause RETRIEVE to list only Donna Harris. The
second console input line sets lower to B and upper to K. This causes RETRIEVE to
list Donna Harris and John Robinson. The comma in the next input value sets the
lower bound at AAA ... A and the upper bound as K. Thus RETRIEVE lists Arthur
Jackson, Donna Harris, and John Robinson. The last entry consists only of a comma
pair, leaving the lower bound as the sequence AAA ... A and the upper bound at zzz ... z.
These two bounds include the entire alphabetic range, so that RETRIEVE displays the
entire list of names and addresses. Finally, entering EOF ends the program.

Line 26 of Listing 8-6 opens the SYSPRINT file with the PRINT attribute and title
of $CON. It is good programming practice to open all files with explicit attributes. In
this case the statement is redundant because when PLfI executes the PUT LIST statement
rm line 27, it supplies the same attributes to the file by default.

85

PL/I Programming Guide

A>retrieve
NaMe and Address Retrieval, File NaMe: names.dat

Type Lower, Upper Bounds: BIE

Donna Harris
2998 Serra Rd.
Chico Ca.

95926
635-3570

Type Lower, Upper Bounds: B,K

Donna Harris
2998 Serra Rd.
Chico Ca.

95926
635-3570

John Robinson
805 Frankli.n St.
Monterey Ca.

93940
649-1000

Type Lowe r, Uppe r Bounds: IK

Arthur Jackson
100 W. 3rd St.
Fresno Ca.

93706
529-1277

Donna Harris
2899 Serra Rd.
Chico Ca.

95926
635-3570

8.2 Name and Address File

Listing 8-7. Interaction with the RETRIEVE Program

86 ALL INfORMATION PRESENTED HERE PROPRlETARY TO DlGiTAl RESEARCH

PL/I Programming Guide

John Robinson
805 FranUin St.
Monterey Ca.

83840
648-1000

Type Lower, Upper Bounds: 1/

Arthur JacKson
100 l.-l. 3rd St.
Fresno Ca.

83706
528-1277

Donna Harris
2888 Serra Rd.
Chico Ca.

85926
635-3570

John Robinson
805 FranKlin St.
Monterey Ca.

83940
649-1000

l,Jir9'ini,a l~ilson

?

UnKnown Can't Find
99999

?

Type Lower, Upper Bounds: EOFu

A)

Listing 8-7. (continued)

li"lFORJV1AT!OH IS

8.2 Name and Address File

87

8.3 An Information Management System PL/I Programming Guide

8.3 An Information management System

The next four sample programs provide a model for an information management
system. These programs manage a file of employee names, addresses, wage schedules,
and wage reporting mechanisms. Each of these programs is simple, but together they
contain all the elements of a more advanced data base management system. They
demonstrate the power of the PLII programming system, while providing the basis for
custom application programs.

First, the ENTER program establishes the data base. A second program, called
KEYFILE, reads this data base and prepares a key file for direct access to individual
records in the data base. A third program, called UPDATE, interacts with the user at
the console and allows access to the data base for retrieval and update. Finally, the
REPO R T program reads the data base to produce a report.

8.3.1 The ENTER Program

Listing 8-8 shows the ENTER program. The ENTER program interacts with the
user at the console and constructs the initial data base. The basic input loop between
lines 40 and 53 promptsthe user for an employee name, age, and hourly wage. ENTER
fills the employee data structure with this information. In the example, line 48 fills the
address fields with default values defined in the structure on lines 24 through 33. You
can terminate the console input by entering EOF.

The employee record contains several fields whose total length is 101 bytes. You
can use the $S Compiler switch to verify this value. The OPEN statement on line 37
specifies a fixed record size of 128 bytes, so you can expand the records later. Each
record of the emp file holds exactly one employee data structure.

The OPEN statement gives emp the KEYED attribute, and makes each record the
fixed size specified in the ENVIRONMENT option. The OPEN statement also specifies
the buffer size as 8000 bytes, which PL/I automatically rounds off to 8192 bytes. The
program fills each employee record from the console input and writes the record to
the employee file named in the command line, with the file type EMP, line 38.

The WRITE statement is in a separate subroutine, named WRITE-IT, starting on line
55. Placing the code in a separate subroutine helps reduce the size of the program because
the program calls WRITE-IT at two different points, lines 45 and 52.

88

PL/I Programming Guide 8.3 An Information Management System

Listing 8-9 shows the user interaction with the ENTER program as several employee
records are entered. Entering EOF ends the program, closes the file plantl.emp, and
records the data on the disk.

1 a 1***1
2 a 1* This prOgraM constructs a data base of eMPloyee *1
3 a 1* records using a structure declaration. *1
4 a 1***1
S a
6 a enter:
7 procedure options(Main);
8 b lreplace
9 b

10 b
11 b

true by 'l'b,
false by 'O'b;

12 declare
13 b 1 eMPloyee static,
14 b 2 naMe character(30) varying,
lS 2 address,
16
17
18
19
20
21
22
23

2
2
2

3 street
3 city
3 state
3 zip
age
wage
hours

character(30) varying,
cha racte r (10) varying,
cha racte r (12) varYing,
fixed deciMal(S) ,
fixed deciMal(3) ,
fixed deciMal(S,2) ,
fixed deciMal(Sd);

24 declare
2S b default static,
26 b 2 street character(30) varying
27 initial('(no street)'),
28 2 city character(10) varying
29 b

30
31
32
33
34
3S
36
37
38
39

initial('(no city)'),
2 state character(12) varying

initial(' (no state)'),
2 zip fixed deciMal(5)

in i t i a I (00000) ;
declare

eMP file;

open file(eMP) Keyed output environMent(f(128) ,b(8000))
title ('$1.EMP') j

Listing 8-8. The ENTER Program

89

8.3 An Information Management System

40 c do while(true);
41 c put list('EMPloyee: ');

42 c 9'et list(naMe);

43 c
44
45
46
47
48 c
49 c

if naMe = 'EOF' then
do j

call write it();
stop;

end;
address = default;
put list (' A!let Wa9'e: ');

50 c 9'et list (a9'e ,wage);

51 c hours = OJ
52 c call w r i t e it () ;
53 c end;
54
55
56 c
57 c
58 c
59

[

write it:
procedure;
write file(eMP)

end write it;

60 end enter;

frOM(eMPloYee) ;

Listing 8-8. (continued)

A>enter plant1
EMPloyee: Jackson

A9'et Wa9'e: 2518.75
EMPloyee: Harris

A9'et Wa9'e: 3019.00
EMPloyee: Robinson

A9'et Wa9'e: 41115.00
EMPloyee: Wilson

A9'et Wa9'e: 271 7.50
EMPloyee: Smith

A9'et Wa!le: 25, 1

Elrlployee: Jones
A9'et Wa!le: 1 1

Elrlplo}'ee: EOF
A>

PL/I Programming Guide

Listing 8-9. Interaction with the ENTER Program

90 ALL INfORfVt/\TION PRESENTED f'lERE PROPRIETARY TO DiC!T;\L 1"<." . .f~!".1

8.3 An Information Management System PL/I Programming Guide

8.3.2 The KEYFILE Program

Listing 8-10 shows the KEYFILE program, which constructs a key file by reading
the data base file created by ENTER. The key file is a sequence of entries consisting
of an employee name followed by the key number corresponding to that name. In this
case, the key file is also a STREAM file, so you can display it at the console. Line 16
opens the $1.EMP file with the KEYED attribute, specifies each record to be 128 bytes
long, and sets a buffer size of 10000 bytes. Line 19 opens the key file named keys as
a STREAM file with LINESIZE(60) and a TITLE option that appends KEY as the
filetype.

On line 23, the KEYFILE program reads successive records, extracts the key with
the KEYTO option, and writes the name and key to both the console and to the key
file. The sample interaction in Listing 8-11 illustrates the output from KEYFILE using
the plant1.emp data base. Each key value extracted by the READ statement is the
relative record number corresponding to the position of the record in the file.

After executing the KEYFILE program, you can use the command

A)type plantl,key

to display the actual contents of the plant1.key file as shown in Listing 8-12.

1 a
2 a
3 a
Ll a
5 a
6 a
7
8
9

10 b
11 b
12 b
13 b
ill b
15
16
17 b
18 b
19 b
20 b
21

1***1
1* This pro~ram reads an employee record file and *1
1* creates another file of keys to access the records. *1
1***1

Keyfile:
procedure options(main) j
declare

emplo}'ee static,
2 naMe character(30) varYin~j

declare
(input, Keys) file,

fixed;

open file(input) Ke}'ed enl)ironment(f(128) ,b(10000))
title('$1.eMP');

open file(Keys) streaM output
linesize(60) title('$l.key');

Listing 8-10. The KEYFILE Program

AlllNFORM!\]"lON PRESENTED HERE PROPRIETARY TO DIGITAL RESEARCH 91

8.3 An Information Management System

22 c do while('l');
23 c read file(input) into(employee) keyto(k);
211 c put skip list(k ,name) j
25 c put file(keys) list(name,k)j
26 c if name = 'EOF' then
27 c stop;
28 c end;
29 b
30 bend keyfile;

A>keyfile plant1

A>

o Jackson
1 Harris
2 Robinson
3 Wilson
II Smith
5 Jones
6 EOF

Listing 8-10. (continued)

PL/I Programming Guide

Listing 8-11. Interaction with the KEYFILE Program

A>type plant1.key
'Jackson' 0 'Harris' 1 'Robinson' 2
'Wilson' 3 'Smith' II 'Jones' 5'EOF

6

Listing 8-12. Contents of the Key File

8.3.3 The UPDATE Program

The UPDATE program in Listing 8-13 allows you to access the data base created
by ENTER and indexed through the file created by KEYFILE. The UPDATE program
first reads the key file, a STREAM file, into a data structure called key list. Keylist cross
references the employee name with the corresponding key value in the data base. Lines
20 to 23 declare the data structure that holds these cross-reference values, and lines
37 to 40 fill in the data.

Note: line 39 is not a multiple assignment statement, but rather a definition of a Boolean
expression for the variable, eolist.

92

PL/I Programming Guide 8.3 An Information Management System

UPDATE opens the emp file on line 31. The OPEN statement assigns the file the
DIRECT attribute, that allows both READ and WRITE operations with the individual
records identified by a key value. You then enter an employee name as matchname,
and the DO-group between lines 47 and 61 directly accesses the individual records in
the data base.

The direct access takes place as follows. Line 48 searches the list of names read from
the key file. If there is a match, the READ with KEY statement on line 50 brings the
employee record into memory from the emp file. The program displays and updates
various fields from the console, and then rewrites the record to the data base with the
WRITE with KEYFROM statement on line 58. UPDATE ends execution when you
enter an EOF.

Listing 8-14 shows three successive update sessions during which various addresses
and work times are updated. In each session, you enter the employee name, access and
display the record, and optionally, update the fields. The GET LIST statement is useful
here. To change a value, you simply type the new value in the field position. If you do
not want to change a value, entering a comma delimiter leaves the field unchanged.

1 a 1***I
2 a 1* This pro.raM allows YOU to retrieve and update *1
3 a 1* individual records in an eMPloyee data base usin. *1
4 a 1* a Keyed file. *1
S a 1***I
6 a update:
7 procedure options(Main)j
8 declare
8 1 eMPloyee static,

10 2 naMe character(30) varyin.,
11 2 address,
12
13
14
1S
16
17
18
18
20
21
22
23
24

3 street character(30) varYin.,
3 cit }' character(lO) vardn.,
3 state character(12) varYin.,
3 zip fixed deciMal (S) ,

2 a .e fixed deciMal(3) ,
2 wa.e fixed deciMal (S ,2) ,

2 hours fixed deciMal(S,l)j

declare
KeYlist(100) ,
2 KeynaMe character(30) varyin.,
2 Keyval fixed binary;

Listing 8-13. The UPDATE Program

93

PL/I Programming Guide 8.3 An Information Management System

25 b
26 b
27 b
28 b
29 b
30 b
31 b
32 b
33 b
311 b
35 b
36 b
37 c
38 c
39 c
lIO c
III b
lI2 c
lI3 c
1I11 c
1I5 c
1I6 c
lI7 d
lI8 d
lI9 e
50 e
51 e
52 e
53 e
511 e
55 e
56 e
57 e
58 e
59 e
60 e
61 d
62 c
63 b
611 b

94

declare
(i, endlist) fixed,
eolist bit(l) static initial('O/b),
MatchnaMe character(30) varying,
(eMP, keys) file;

open file(eMP) update direct environMent(f(128»
title ('$l.EMP/);

open file(Keys) streaM environMent(b(1I000»
tit 1 e (\ $1. k e)' I) j

[

do i = 1 to 100 ,,.)hile ("""eolist) j
get file(Keys) list(keynaMe(i) ,keyval(i» j
eolist = keynaMe(i) = 'EOF/j

end;

do while('l/b)j
put skip list('EMPloyee: I);

get list(MatchnaMe);
if MatchnaMe = 'EOF ' then

stop;
do i = 1 to 100;

if MatchnaMe = KeynaMe(i) then
do j

en d ;
en d ;

end update;

read file(eMP) into(eMPloyee)
key(keyval(i»;

put skip list('Address: I,
street, city, state, zip);

put skip list(' I);

get list(street, city, state, zip);
put list('Hours: I ,hours,
get list(hours);
write file(eMP) froM (eMPloyee)

KeyfroM(keyval(i» ;
end;

Listing 8-13. (continued)

ALL H\!fORMATION HERE IS PROPRIETARY TO RESEARCH

PL/I Programming Guide 8.3 An Information Management System

A>update plantl

Employee: Jackson

Address: (no street) (no city) (no state) o
'100 W, 3rd St,', 'Fresno', 'Ca,', 93706

Hours: 0.0: 40,0

Employee: Harris

Address: (no street) (no city) (no state) ° '2999 Serra Rd,', 'Chico', 'Ca,', 95926
Ho u rs : 0,0 46,0

A>update plantl

Employee: Harris

Address: 2999 Serra Rd. Chico Ca. 95926

Hours: lI6.0: 48,0

Employee: Wilson

Address: (no street) (no city) (no state) o

Hours: 0.0 35,5

EMPloHe: EOF

A>update plantl

EMPloyee: Wilson

Address: (no street) (no city) (no state) 0
'556 Palm Ave, " 'Burbank', 'Ca,', 91507

Hours: 35.5

EMPloyee: EOF
A>

Listing 8-14. Interaction with the UPDATE Program

95

8.3 An Information Management System PL/I Programming Guide

8.3.4 The REPORT Program

Listing 8-15 shows the REPORT program. The REPORT program uses the updated
employee file to produce a list of employees along with their paycheck values. The
REPORT program also accesses the employee file, but it reads the file sequentially to
produce the desired output. The main DO-group between lines 35 and 51 reads each
successive employee record and constructs a title line of the form,

[name]

followed by a dollar amount. REPORT uses the STREAM form of the WRITE
statement, lines 41 and 50, to produce the output line. Line 40 includes the embedded
control characters" M and "J at the end of buff to cause a carriage return and line-feed
when writing the buffer. The REPORT program then computes the pay value and
assigns it to the CHARACTER-VAR YING string called buff, on line 44. In this
assignment, PL/I performs an automatic data conversion from FIXED DECIMAL to
CHARACTER, with leading blanks. REPORT also scans the leading blanks, replacing
them by a dollar sign dash sequence to align the output, and writes the data to the report
file.

Listings 8-16 and 8-17 show the output from the REPORT program. In the first
case, the command,

A)report plant1 $con

sends the report to the console for review. In the second case, the command,

A}report plant1 planti,prn

sends the output to the disk file plant1.prn. You can then examine the contents of the
file with the command:

A)type plant1,prn

96

PL/I Programming Guide 8.3 An Information Management System

1 a
2 a
3 a
4 a
5 a
6

7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

1**1
1* This pro~ram reads an eMPloyee data base and *1
1* prints a list of paychecks. */

1**1
repo rt:

procedure options(main);

declare
employee static,

Z name character(30) I)a rl' 1 II ~,

2 add ress t

3 street character(30) I)Cl ri' i n ~,

3 cit }' character(10) I) a rY in 9' ,

3 state character(1Z) I)aryin~t

3 zip fixed decimal(S),

Z a~e fixed decit1lal(3) t

2 wa~e fixed deci~1al (5 ,Z) ,

2 h 0 u rs fixed decirnal(Sd) ;

declare
i fixed,
dashes character(lS) static initial

('$--------------') ,

buff character(20) uaryin~,

(~rosspa}', withhold) fixed decirnal(7,Z),
(repfile, empfile) fi.le;

open file(empfile) f~eyed elll)irOnillent(f(lZ8) ,b(LlOOO))

title ('S1.EMP');

open file(repfile) stream print enuiroliment(b(ZOOO))
title('$Z.$Z') ;

put list('Set Top of Forms, Press Return')i
~et sf~ip;

Listing 8-15. The REPORT Program

97

8.3 An Information Management System

do while('l / b);
read file(eMPfile) into(eMPloyee);
if naMe = 'EOF' then

stop;
put file(repfile) sKip(2);
buff = '[' !! naMe !! ']'M'j/j
write file(repfile) froM (buff);
9rOSSpay = wage * hours;
withhold = 9rOSSpay * .15;
buff = 9rOSSpay - withhold;

[

do i = 1 to 15
while (substr(buffdtl) = ' ');

end;
i = i - 1;
substr(bufftld) = substr(dashestld)j
write file (repfile) froM(buff);

end;

35 c
36 c
37 c
38 c
39 c
1I0 c
1I1 c
1I2 c
1I3 c
1I1i c
liS d
1I6 d
1I7 d
1I8 c
1I9 c
50
51 c
52 b

53 b end report;

Listing 8-15. (continued)

A>report plantl $con
Set Top of ForMs, Press Return

[JacKson]
$----229.50

[Harris]
$----351.90

[[~obinson]

$------0.00

[Wilson]
$----226.32

[SMith]
$------0.00

[Jones]
$------0.00
A>

PL/I Programming Guide

Listing 8-16. REPORT Generation to the Console

98

PL/I Programming Guide 8.3 An Information Management System

A)report plant1 plant1.prn
Set Top of ForMs I Press Return

A)type plant1.prn

[JacKson]
$----229.50

[Harris]
$----351.90

[Robinson]
$------0.00

[Wilson]
$----226.32

[SMith]
$------0.00

[Jones]
$------0.00

Listing 8-17. REPORT Generation to a Disk File

End of Section 8

References: Sections 10.1, 10.8, 11.2, 12 LRM

99

End of Section 8 PL/I Programming Guide

100

Section 9
Label Constants, Variables, and

Parameters

Each of the programs presented so far ends'execution either by encountering an end
of-file condition with a corresponding END FILE traceback, or by using a special data
value that signals the end-of-data condition. The EPOL Y program detects the end-of
dat~ condition by checking for the special case where all three input values, x, y, and
z, are zero.

Fortunately, PL/I provides more elegant ways to sense the end-of-data condition. In
fact, sensing the end-of-data condition is just one of many facilities under the general
heading of condition processing. Most often, handling these conditions involves labeled
statements. You need some background in label processing before you take up the
general topic of condition processing in Section 10.

9.1 Labeled Statements

It is an axiom of programming to avoid labeled statements and GOTOs because of
the unstructured programs that result. Programs containing many labeled statements
are often difficult for other programmers to comprehend. Such programs become
unreadable, even to the author, as the program grows in size.

PL/I encourages good structure by providing a comprehensive set of control structures
in the form of iterative DO-groups with REPEAT and WHILE options. These control
structures preclude the necessity for labeled statements in the general programming
schema. You should use these control structures whenever possible, and limit the use
of labeled statements to condition processing and locally-defined, computed GOTOs.

Judicious use of labeled statements is appropriate in condition processing. The occur
rence of an error, such as a mistyped input data line, is easily handled by transferring
program control to a label in an outer block, where recovery takes place. This method
of understanding the program flow is simpler than the usual system of flags, tests, and
return statements.

101

9.2 Program Labels PL/I Programming Guide

9.2 Program Labels

Program labels, like other PL/I data types, fall into two broad categories: label
constants and label variables. A label constant appears literally within the source
program, and its value does not change during program execution. A label variable
has no initial value, and you must assign it the value of a label constant through a
direct assignment statement, or through the parameter assignments implicit in a sub
routine call.

The following code sequence is an example of a label constant preceding a PL/I
statement.

on error(l)
begin;

put skip list(\5ad Inputt Try Again');
gota ret ry;

en d ;

retrY: get list(naMe);

The statement 0 n err 0 r (1) sets a trap for a particular condition. If the condition
arises due to an invalid input, then control transfers to the BEGIN block, which
outputs an error message, and then transfers control back to the labeled statement.
If there is no error on input, control transfers to the next statement following the
GET LIST statement.

102

PL/I Programming Guide 9.3 Computed GOTO

9.3 Computed GOTO

In PL/I, a label constant can contain a single positive or negative literal subscript.
A subscripted label constant corresponds to the target of an n-way branch, that is, a
computed GOTO. The following code sequence shows a specific example.

get list(x);
gO to CJ(X);

CJ(-l):
}'::: fl(x);

goto endCJ;
CJ(O):

}' = fZ(x);

goto endCJ;
CJ(Z):;
CJ(3):

}' = f3(x);

endCJ:
put sKip list('f(x)=' tY);

This code implicitly defines four label constants: q(-l), q(O), q(2), and q(3). The Com
piler automatically defines an internal label constant vector,

CJ(-1:3) label constant

to hold the values of these label constants.

The preceding statement is not a valid PL/I statement, but indicates what the Compiler
does internally when it encounters such statements in the source code. Also, when
using such constructs, do not transfer control to a subscript that does not have a
corresponding label-constant value. In the preceding case, a branch to q (1) produces
undefined results.

103

9.4 Label References PL/I Programming Guide

9.4 Label References

A reference to a label constant can be either local or nonlocal. A local reference to
a label constant means that the label occurs as the target of a GOTO statement only
in the PROCEDURE or BEGIN block that contains the GOTO. A nonlocal reference
to a label constant means that the label occurs on the right side of an assignment to
a label variable, as an actual parameter to a subroutine, or as the target of a GOTO
statement in an inner nested PROCEDURE or BEGIN block.

Although there is no functional difference between processing a locally-referenced
and nonlocally-referenced label constant, a nonlocal reference requires additional space
and time. For this reason, PL/I assumes that a subscripted label constant will be only
locally referenced. If program control transfers to a subscripted label constant from
outside the current environment, undefined results can occur.

As an example, consider the following code sequence:

ITl a in:
procedure options(Main);
P 1 :

procedure;
sota labl;
goto lab2;

[

P?'
... ~rocedure;

goto lab2;
end P2;

labl:;
lab2: ;

end Pl;
end fllain;

The label constant labl is only locally referenced in the procedure Pl, while lab2 is
the target of both a local reference in Pl and a nonlocal reference in P2.

104

9.5 Example Program PL/I Programming Guide

9.5 Example Program

Listing 9-1 shows a nonfunctional program that illustrates the use of various label
constants and variables. The label constants in the LABELS program are c(l), c(2),
c(3), labl, and lab2. They are defined by their literal occurrence in the program. The
label variables are x, y, z, and g, and are defined by the declarations· on lines 10 and
38.

At the start of execution, the label variables have undefined values. The program
first assigns the constant value lab 1 to the variable x. Label variable y then indirectly
receives the constant value labl through the assignment o~ line 12. As a result, all
three GOTO statements on lines 14, 15, and 16 are functionally equivalent. Each
statement transfers control to the null statement following the label lab 1 on line 32.

The subroutine call on line 18 shows a different form of variable assignment. Lab2
is an actual parameter sent to the procedure P, and assigned to the formal label variable
g. In this program, the subroutine call transfers program control directly to the state
ment labeled lab 1.

The DO-group beginning on line 20 initializes the variable label vector z to the
corresponding constant label vector values of c. Due to this initialization, the two
computed GOTO statements, starting on line 25, have exactly the same effect.

1 a I************************~***************************I
2 a 1* This is a nonfunctional pro~raM. Its purpose is *J
3 a 1* to illustrate the connept of label constants and *1
4 a 1* variables. */

5 a 1**/
6 a Labels:
7 procedure DPtions(main);
8 declare
9 i fi)(ed,

10 (X'}'I z(3)) label;
11 x = labl;
12 }' :: x;
13
1L1
15
16
17
18
19

goto lab1;
goto xi
goto }'!

call P(lab2);

Listing 9-1. An Illustration of Label Variables and Constants

105

9.5 Example Program

20 c
21 c
22 c
23
211 b
25
26
27 b
28 b
29 b
30 b
31 b
32 b
33 b
34 b
35 b
36 c
37 c
38 c
39 c
40 c
41 b
112 b

do i = 1 to 3;

[z(i) = c(i);
end;

i = 2;
9'oto z(i);
9'oto c(i);

c (1): ;

c (2) : ;

c (3) : ;

lab 1 : ;
1 ab2: ;

procedure (9');
declare

[

Po

9' label;
9'oto 9';

end P;

end Labels;

Listing 9-1. (continued)

End of Section 9

References: Sections 3.3, 8.5 LRM

106 PROPRIETARY

PL/I Programming Guide

Section 10
Condition Processing

Condition processing is an important facility of any production programming lan
guage. The language should allow a program to intercept and handle run-time error
conditions with program-defined actions, and then continue execution.

For example, a common condition occurs when a program is reading input data
from an interactive console, and you inadvertently enter a value that does not conform
to the data type of the input variable. The PL/I run-time system signals a conversion
error, and in the absence of any program-defined action, ends program execution with
a traceback. If this premature termination occurs after hours of data entry, it causes
a considerable amount of wasted effort. This is unacceptable in a production environment.

10.1 Condition Categories

PL/I provides nine categories of conditions. They are:

• ERROR
• FIXED OVERFLOW
• OVERFLOW
• UNDERFLOW
• ZERODIVIDE
• ENDFILE
• UNDEFINED FILE

• KEY
• END PAGE

The first five categories include all arithmetic error conditions and miscellaneous
conditions that can arise during 1/0 setup and processing. They also include conversion
errors between the various data types. The last four categories apply to a specific file
that the run-time 110 system is accessing. Each condition has an associated subcode
that provides information about the source of the condition.

107

10.2 Condition Processing Statements PL/I Programming Guide

10.2 Condition Processing Statements

The ON, REVERT, and SIGNAL statements implement condition processing in
PL/I. The ON statement defines the actions that take place upon encountering a con
dition. The REVERT statement disables the ON statement, and recovers any previously
stacked condition. The SIGNAL statement allows your program to signal various
conditions.

10.2.1 ON and REVERT

The following code sequence illustrates the ON and REVERT statements inside a
DO-group.

do I hile('l/b);
on endfile(sysin)
EOF = '1 I b ;

revert endfile(sysin);
en d ;

Here, both the ON and the REVERT statement execute on each iteration. Processing
the ON and REVERT statements involves run-time overhead. To avoid this, code the
same DO-group as follows:

on endfile(sysin)
EOF = 'lib;

[dO while(' 1 'bJ;

end ~
PLiI automatically executes the REVERT statement for any ON conditions that you

enable inside a procedure block when control passes outside the block. The program
shown in Listing 10-1 illustrates this concept.

108

PL/I Programming Guide 10.2 Condition Processing Statements

1 a
2 a
3 a
4 a
5 a
6 a
7
8
8

10
11
12 c
13 c
14
15 c
16
17

18 c
18 c
20 c
21 c
22 c

1***I
1* This pro~raM is nonfunctional. Its purpose is to *1
1* illustrate how PL/I executes the ON and REVERT *1
1* stateMents. *1
1***I
auto rel)ert:

procedure options(Main);
declare

i fixed,
sysin file;

[

- do i = 1 to 10000;
call P(i,exit);
ex it:

end;

P:
procedure (index dab);
declare

(t, index) fixed,
lab label;

23 c on endfile(sysin)
24 c ~oto lab;
25 c
26 c put sKip list(index,':');
27 c ~et list(t);
28 c if t = index then
28 c ~oto lab;
30 c end P; 1* iMPlicit REVERT supplied here *1
31
32 end auto revert;

Listing 10-1. The REVERT Program

In the REVERT program, line 13 calls the procedure P and passes to it the actual
parameters i, the DO-group index, and the label constant exit. The ON statement
inside P executes every time the procedure is called. If PLfI did not supply the REVERT
statement automatically, the Condition Stack would overflow when the value of the
index count reached 17. Thus, REVERT has three possible ways to exit the procedure
P.

If you enter an end-of-file character, CTRL-Z, REVERT executes the enabled ON
condition and sends control through the label variable lab to the statement labeled
exit. PLfI deactivates the procedure and executes the REVERT statement because the
GOTO statement transfers control outside the environment of P.

109

10.2 Condition Processing Statements PL/I Programming Guide

The second possible exit follows the test on line 28. If you enter a value equal to
the index, then the GOTO statement on line 29 executes and again sends control
outside the environment of P.

Finally, if control reaches the end of P, PL/I executes the REVERT statement and
disables the ON condition set on line 23. No matter how control leaves the environment
of the procedure, PL/I always disables the ON condition.

10.2.2 SIGNAL

The SIGNAL statement activates the ON-body, the body of statements corresponding
to a particular ON statement. Thus, processing a SIGNAL statement has the same
effect as when the run-time system signals the condition.

The following code sequence illustrates the SIGNAL statement.

on endfile(sysin)
stop;

do IAlhile(\1'b);
get list(buff);
if buff = \END' then

signal endfile(sysin);
put sKip list(buff);

end;

This code executes the SIGNAL statement whenever the GET LIST statement reads
the value END from the file SYSIN. Thus, the ON condition receives control on a real
end-of-file, or when the value END is read.

10.3 Examples of Condition Processing

The following two programs, FLTPOL Y2 and COPYLPT, incorporate some con
dition processing, so you can see how these concepts are implemented.

110

PL/I Programming Guide 10.3 Examples of Condition Processing

10.3.1 The FLTPOLY2 Program

Listing 10-2 shows the FLTPOLY2 program. This is essentially the same program
listed in Section 7-1. The only difference is that it incorporates condition processing
to intercept the end-of-file condition for the file SYSIN. If you run this program, you
will see how you can end execution with a CTRL-Z character. Unlike FLTPOLY, if
you enter all zeros, FLTPOLY2 simply evaluates the polynomial and prompts you for
more input.

1 a 1***1
2 a 1* This pro~raM evaluates a POlYnOMial expression *1
3 a 1* usin~ FLOAT BINARY data. It also traps the end-of- *1
4 a 1* file condition for the file SYSIN. *1
5 a 1***1
6 a fltpoly2:
7 procedure options(Main);
8 %replace
9 false by 'O/b,

10
11 b
12 b
13
14 b
15 b
16 b
17 b
18
19 c
20 c
21 c
22 c
23 c
24 c
25 c
26 c
27 c
28 c
29 b
30 b
31 c
32 c
33 c
34 c
35 c
36 b
37

[

true by 'lib;

declare
(x , Y ,z) fl 0 a t bin a rY (24) ,
eofile bit(l) static initial(false),
sysin file;

on endfile(sysin)
eofile : true;

do while(true);
put sKip(2) list('Type x,y,z: ');
~et list(x ,y ,z);

if eofile then
stop;

put sKip list('
put sKip list('

end;

P:

2') ;

+ 2Y + z :1,P(x,y,z)H

procedure (x ,y ,z) returns (float binary(24)) i
declare

(x,y,z) float binary(24);
return (x * x + 2 * Y + zH

end Pi

end fltpolY2i

Listing 10-2. The FL TPOL Y2 Program

111

10.3 Examples of Condition Processing PL/I Programming Guide

10.3.2 The COPYLPT Program

Listing 10-3 shows an example of I/O processing using ON conditions. The COPYLPT
program copies a STREAM file from the disk to a PRINT file, while properly formatting
the output line with a page header and line numbers. The· program accepts console
input to obtain the parameters for the copy operation, and provides error exits and
retry operations for each input value. COPYLPT sets up various ON-units to intercept
errors during the copy operation that takes place in the iterative DO-group between
lines 71 and 76. The following sections discuss the individual parts of the program.

1 a 1**1
2 a 1* This pro~raM copies a STREAM file on disK to a *1
3 a 1* PRINT file, and forMats the output with a pa~e *1
4 a 1* header, and line nUMbers. *1
5 a 1**1
6 copy: procedure options(Main);
7

8 declare
9 (sYsin, sourcefile, printfile) file,

10 (pa~esize, pa~ewidth, spaces, linenuMber) fixed,
11 (line character(14), buff character(254)) varYin~;

12
13
14
is
16
17
18
19
20
21
22
23
24
25
26 c
27 c
28 c
29 c
30
31
32
33
34

35
36
37

112

File to Print COpy Pro~raM');

on endfile(sysin)
~o to typeover;

put sKip(S) list(How Many Lines Per Pa~e?
~et list(pa~esize);

') ;

put sKip list('How Many ColuMn Positions? ');
~et sKip list(pa~ewidth);

on error(!)
be~in ;

[

put list('Invalid NUMber, TYpe Inte~er');
~o to ~etnuMber;

end;
~etnuMber:

put sKip list('Line Spacin~ (l=Sin~le)? ');
~et sKip list(spaces) j
revert error(1)j

put sKip list('Destination Device/File: ') j
~et sKip list(line);

Listing 10-3. The COPYLPT Program

PL/I Programming Guide 10.3 Examples of Condition Processing

38
39
40
41
42 c
43 c
411 c
45 c
46
47
48
49
50
51
52 c
53 c
511 c
55 c
56
57
58 c
59 c
60 c
61 c
62
63
6a c
65 c
66 c
67 c
68 c
69
70
71 c
72c
73 c
7a c
75 c
76 c
77 b

open file(printfile) print pagesize(pagesize)
linesize(pagewidth) title(line);

on undefinedfile(sourcefile)
begin;

[

put skip list('"',line,'"
gO to retrY;

isn"t a Valid NaMe');

end;
retrY:

put skip list('Source File to Print?
get list(line);

') ;

open file(sourcefile) streaM environMent(b(8000))
title(line);

on endfile(sourcefile)
begin;

[

put file(printfile) page;
stop;

end;

on endfile(printfile)

[

begin;
put skip list('"g"g"g"g Disk is Full');
stop;

end;

on endpage(printfile)

[

begin;
put file(printfile) page skip(Z)

list('PAGE' ,pageno(printfile));
put file(printfile) skip(a);

e·n d ;

signal endpage(printfile);

[

do linenuMber = 1 repeat(linenuMber + 1);
get file (sourcefile) edit(buff) (a);
put file (printfile)

edit(linenuMber,':' ,buff) (f(S) 'xU) ,a(Z) ,a);
put file (printfile) skip(spaces);

en d ;

78 b - end copy;

Listing 10-3. (continued)

The COPYLPT program begins by reading five values:

• the number of lines on each page
• the width of the printer line

113

10.3 Examples of Condition Processing PL/I Programming Guide

• the line spacing, normally single- or double-spaced output
• the destination file or device
• the source file or device

While entering these parameters, you can type an end-of-file CTRL-Z character and
restart the prompting.

The PUT LIST statement on line 13 writes the initial sign-on message. Recall that
PL/I allows control characters in string constants. Here, the first character of the message
is a CTRL-Z, which clears the screen if you are using an ADM-3ATM CRT device. If
you are using some other device, you can substitute the proper character and recompile
the program.

The ON statement of line 15 traps the ENDFILE condition for the file SYSIN, so
that execution begins at typeover whenever the console reads an end-of-file character.

Lines 19 through 23 read the first two parameters with no error checking other than
detecting the end-of-file. Line 25 however, intercepts conversion errors for all operations
that follow. If the GET statement on line 32 reads a nonnumeric field, control passes
to the on-body between lines 26 and 29 that writes an error message, branches to
getnumber, and retries the input operation. Following successful input of the parameter
spaces, the REVERT statement on line 33 disables the conversion error handling.

COPYLPT opens the input and output files between lines 38 and 50. The program
assumes that the output file can always be opened, but detects an UNDEFINED input
file, so you can correct the filename.

The program executes two ON ENDFILE statements between lines 51 and 61. The
first statement traps the input end-of-file condition and performs a page eject on the
output file. This ensures that the printer output is at the top of a new page after
completing the print operation. The STOP statement included in this ON-unit completes
the processing with an exit.

The second ON-unit intercepts the end-of-file condition on the print file. This can
only occur if the disk file fills, so the unit prints the message,

Dis~\ is Full

and ends execution. The CTRL-G character sends a series of beeps to the CRT as an
alarm. The run-time system closes all files upon termination, so that the print file is
intact to the full capacity of the disk.

114

PL/I Programming Guide 10.3 Examples of Condition Processing

Line 63 begins an ON ENDPAGE unit that intercepts the end-of-page condition for
the print file. Whenever the run-time system signals this condition, the ON-unit moves
to the top of the next page, skips two lines, prints the page number, and skips four
more lines before returning to the signal source. The SIGNAL statement on line 70
starts the print file output on a new page by sending control to the ON-unit defined
on line 63. All subsequent END PAGE signals are generated by the run-time system at
the end of each page.

The DO-group beginning on line 71 initializes and increments a line counter on each
iteration. The GET EDIT statement on line 72 specifies an A, alphanumeric, format.
This fills the buffer with the next input line up to, but not including, the carriage return
line-feed sequence. The PUT EDIT statement on line 73 writes the line to the destination
file with a preceding line number, a blank, a vertical bar, and another blank, resulting
from the A(2) field. If the run-time system signals the END PAGE condition while
executing the PUT statement on line 75, the format item SKIP(spaces) might not be
processed.

Listing 10-4 shows the user interaction with the COPYLPT program. Here, the source
file is the LABELS.PLI program, and $LST, the physical printer, is the destination.

A>copy1pt
File to Print COpy Pro~raM

How Many Lines Per Pa~e? 26

How Many ColuMn Positions? 80

Line Spacin~ (l=Sin~le)? Yes
Invalid NUMbert Type Inte~er

Line Spacin~ (l=Sin~le)?

Destination Device/File:

Source File to Print?

$lst

copy,pi1

" COP}'.pil " isn't a Valid NaMe
Source File to Print? coPy,p1i

Listing 10-4. Interaction with COPYLPT

115

10.3 Examples of Condition Processing PL/I Programming Guide

Listing 10-5 shows two pages of output produced by the program.

PAGE

1***1
2 1* This prOgraM copies one file to another using *1
3 1* buffered lID. *1
4 1***1
5 COpy:
6 procedure options(Main);
7 declare
8 (input file,output file) file;
8

10 open file (input file) streaM
11 environMent(b(8182)) title('$l.$l /);
12
13 open file (output file) streaM output
14 environMent(b(8182)) title('$2.$2 /);
15 declare
16 buff character(254) varying;
17
18
18
20

PAGE

21

do while('lib);

2

read file (input file) into (buff) i
write file (output file) frOM (buff);

end;
22 end copy;

Listing 10-5. Output from COPYLPT

116

PL/I Programming Guide 10.3 Examples of Condition Processing

This example shows that you can incorporate error handling in your programs to
make them easier to use. In fact, you could enhance the COPYLPT program to handle
errors in the first two input lines, or errors in the destination filename.

To gain further experience, you could go back over all the previous examples and
add ON-units to trap invalid input data and end-of-file conditions. Modifying these
small programs gives you a good foundation in condition processing.

End of Section 10

References: Section 9 LRM

117

End of Section 10 PL/I Programming Guide

118

Section 11
Character String Processing

PLII provides powerful character-string handling capabilities essential in a commer
cial production language. This section presents two sample programs that illustrate
the use of some PLII character-string functions. After you read the text and study the
sample programs, you can make changes in the programs to expand your knowledge
of PL/I.

11.1 The OPTIMIST Program

Our first example of string processing is a program called the OPTIMIST. The
OPTIMIST program turns a negative sentence into a positive sentence. The OPTIMIST
performs this task by using the character-string facilities of PL/I.

Listing 11-1 shows the OPTIMIST program. The first segment, between lines 12 and
23, defines the data items used in the program. The remaining portion reads a sentence
from the console, ending with a period, and retypes the sentence in its positive form.
Listing 11-2 shows a sample console interaction with the OPTIMIST. The OPTIMIST
works well if sentences are simple, but complicated sentences confuse the program.

Line 13 gives the OPTIMIST vocabulary of negative words, with the corresponding
positive words on line 15. Thus, never becomes always, and none becomes all. OPTI
MIST replaces the word not with an empty string. Lines 17 through 20 declare the
upper- and lower-case alphabets for case translation in the sentence processing section.

OPTIMIST constructs each successive input sentence between lines 28 and 32, where
the DO-group reads another word, and concatenates the word on the end of the
sentence. The SUBSTR test in the DO WHILE heading checks for a period at the end.

Note: OPTIMIST can only accept a sentence whose maximum length is 254 characters.
PLII discards any additional characters.

After reading the complete sentence, OPTIMIST translates all upper-case characters
to lower-case to scan the negative words. It performs this case translation on line 33
by using the built-in TRANSLATE function. OPTIMIST uses the built-in VERIFY
function on line 34 to ensure that the sentence consists only of letters and a period.

119

11.1 The OPTIMIST Program PL/I Programming Guide

If the sentence consists of characters other than letters or a period, the VERIFY function
returns the first nonzero position that does not match, and the OPTIMIST responds.
with:

ActuallYt that's an interestin~ idea.

If the VERIFY function returns a zero value, then the sentence contains only trans
lated lower-case letters and a period. In this case, control transfers to the DO-group
between lines 36 and 42. On each iteration, OPTIMIST uses the built-in INDEX
function to search for the next negative word, given by negative (i). If found, it sets j to
the position of the negative word, and in the assignment statement on line 39, replaces it
with the corresponding positive word. In this· assignment, the portion of the sentence
that occurs before the negative word is given by,

substr(senttl tj-l)

while the replacement value for the negative word is given by,

positil)e(i)

and the portion of the sentence that follows the negative word being replaced is given
by:

subst r (sent tj+l en ~th (ne ~at i\Je (i»)

The OPTIMIST concatenates these three segments to produce ·a new sentence with
the negative word replaced by the positive word. It then sends the resulting sentence
to the console, and loops back to read another input. Because all negative words have
a leading blank, the negative portion is always found at the beginning of a word. Thus,
OPTIMIST replaces nevermind with alwaysmind. This can produce interesting results.

You could make at least three improvements to the OPTIMIST. First, if the sentence
exceeds 254 characters, the input scan never stops, because the period is not found.
You could include a check to ensure that the newly appended word does not exceed
the maximum size.

Second, there is no condition processing in the DO-group between lines 25 and 45,
so the OPTIMIST never stops talking. It ends only through input of a CTRL-Z, end
of-file, or CTRL-C, system warm start. You could include an ON-unit to detect an
end-of-file to end the program in a reasonable fashion.

Finally, you could try to make the OPTIMIST smarter!

120

(

PL/I Programming Guide 11.1 The OPTIMIST Program

1 a
2 a
3 a
1I a
5 a
6 a
7 b
8 b
9

10
11
12
13
111
15
16
17
18
19
20
21
22
23
211
25 c
26 c
27 c
28
29
30
31
32
33 c
311 c
35 c
36
37
38
39
ao
al
a2
a3 c
all c
a5 c
a6
a7

1**1
1* This prOgraM deMonstrates PL/I character string *1
1* processing by turning a negative sentence into a *1
1* positive one, *1
1**1
optiMist:

procedure options(Main);
'.treplace

true by 'lib,

false by 'O/b,
nwords by 5;

declare
negative (l:nwords) character(S) varying static initial

(' never / ,' none',' nothing',' not',' no'),
positive (l:nwords) character(10) varying static initial

(' always',' all',' sOMething',' ',' sOMe'),
upper character(2S) static initial

('ABCDEFGHIJKLMNOPQRSTUl,JWXYZ, '),
lower character(28) static initial

('abcdefghijKlMnop~rstuvwxyZ, ') I

sent character(254) varying,
word character(32) varying,
(i,j) fixed;

do while(true);
put sKip list('What"s up? ');
sent = ' ';

[

do while
(substr(sentdength(sent)) "= ',');
get list (word);
sent = sent!I"!! word;

end;
sent = translate(sentdower,upper);
if verif}'(sent dower) "= 0 then

sent = ' that' 'is an interesting idea, ';

[

do i = 1 to nwords;
J = lndex(sent,ne9'ative(l))j
if J "= 0 then

sent = substr(sentd,j-l) !!
positive(i) !!
subst r(sent ,j+len9'th (ne9'atil)e (i)));

en d ;
put list('Actually ,'! Isent);
put sKip;

end;

end optiMist;

Listing 11-1. The OPTIMIST Program

121

11.1 The OPTIMIST Program

A)optimist

What's up? Nothing is UP.

ActuallY, sOMething is uP.

What's up? This is not fun.
Actually, this is fun.

What's up? Programs like this never make sense.
Actually, prOgraMS liKe this always MaKe sense.

What's up? Nothing is easy that is not complicated.
Actually I sOMething is easy that is cOMPlicated.

What's up? Nobody cares and its none of your business.
Actually, SOMebodY cares and its all of your business.

What's up? The price of everything.
Actually, the price of everything.

What's up? Boy are YUU stupid.
Actually, bo)' are YOU stupid.

What's up? Dont ge t sma r t !,..Ii t h file.
Actually, dont get SMart with Me.

What's up? l'ou started it I d i dn t •

ActuallY , YOU started it i didnt.

What's up? No I did not.
Actually, SOMe i did.

What's up? Tha t s better.
ActuallY , thats better.

What's up? l'ou are hard to talk to.
Actually, YOU are hard to tal K to.

Whatls up? The re you gO again.
Actually, there YOU 90 again.

Whatls up? Tha t s it I quit.
Actually, thats it quit.

PL/I Programming Guide

Listing 11-2. Interaction with the OPTIMIST

122

PLfI Programming Guide 11.1 The OPTIMIST Program

What's up? Stop that.
Actually, stop that.

What's up? If YOU

Actualb, if you

What's up? \'ou can
Actually, YOU can

What's up? I know.
Actually, i Know.

What's up? "Z

dont
dont

not
pull

stop I ,.1 iII ptt11 }'OU r pI U 9.

stop will pull your plu!!'.

pull my pI U 9.

MY plu!!'.

END OF FILE (1), File: SYSIN=CON
TracebacK: 09C5 0970 0157 al00 # 0909 0529 8090 0157
A)

Listing 11-2. (continued)

11.2 A Parse Function

This section presents a more practical application of string processing. It is often
useful to have a separate subroutine in a program that reads a line of input and separates
it into individual numbers and characters. Such a subroutine is called a parser, or a
free-field scanner. The FSCAN program, shown in Listing 11-3, gives an example of
a parser.

FSCAN demonstrates the embedded subroutine called GNT, Get Next Token, which
parses an input line into separate items called tokens. Once you test GNT, you can
extract it from this program and put it into a production program where required.
Section 13.4 uses GNT to compute values of arithmetic expressions.

Listing 11-4 shows interaction with the FSCAN program. FSCAN reads a line of
input, parses the line into separate tokens, and then writes the tokens back to the
console, with surrounding apostrophes. The tokens are just numeric values, such as
1234.56, or individual letters and special characters. GNT bypasses all intervening
blanks between the tokens in the token scan.

The FSCAN program has three parts. The first part, lines 10 to 12, defines the global
data area called token, used by the GNT procedure. The second part, lines 14 to 42,
is the GNT procedure itself. The third part is the DO-group between lines 44 and 47
that performs the test of the GNT function procedure.

123

11.2 A Parse Function PL/I Programming Guide

1 a
2 a
3 a
4 a
5 a
6 a
7 b
8 b
8 b

10 b
11 b
12 b
13 b
14 b
15 c
16 c
17 c
18 c
18 c
20 c
21 c
22 d
23
24 d
25 d
26 d
27 d
28
28 e
30 e
31 e
32
33 e
34 e
35
36 e
37 e
38 e

1**1
1* This pro~raM tests the procedure called GNTt a *1
1* free-field scanner (parser) that reads a line *1
1* of input and breaks it into individual parts. *1
1**1
fscan:

procedure options(Main);
'X.replace

true by 'l'b;
declare

~n t:

toKen character(80) varying
static initial(");

procedure;
declare

i fixedt
line character(80) varyin~

static initial(");

line = substr(linetlength(toKen)+1);
do while(true);

if line = " then
~et edit(line) (a);

i = verify(linet' ');
if i = 0 then

line = ";
else
do;

line = substr(lineti);
i = verify(linet'0123456788. ');

I
if i = 0 then

token = line;
- el se

[

if i = 1 then
token substr(linetltl);

else
token substr(linetlti-l};

38 e return;
40 e end;
41 end;
42 c end ~nt;

43

Listing 11-3. The FSCAN Program

124

PL/I Programming Guide 11.2 A Parse Function

44

i lend

do while(true);

45 call 9'n t;
46 put ed i t (' , , , ! ! toKen! ! ' , , ') (x (1) ,a) ;

47 end;

48

48 fscan;

Listing 11-3. (continued)

A)fscan
88+8,8

'88' '+' '8.9'
1234567 88,10

'1234567' '89.10'
1,2,3,4,5,6,7

'1' ',' '2' ',' '3' ',' '4' ',"5' ',' '6' ',' '7'
, , , ,666, , " 7, 7, 7,

, ••••. 666 •••• I '7.7.7.'

"Z

End of File (7), File: SYSIN=CON

TracebacK: OB6E 27CA 0143 OOFF # OB78 0986 0143 01F5
A)

Listing 11-4. Interaction with the FSCAN Program

11.2.1 The GNT Procedure

GNT stores the input line in the character variable called line that is initially empty
due to the declaration on line 18. On the first call, GNT extracts the first portion of
line and places it in token, which becomes the next input item. On each successive
call, GNT removes the previous token value from the beginning of a line before scanning
the next item.

For example, suppose the input line is,

~)S»88*9.9

where)S represents a blank character. On the first call to GNT, both token and line
are empty strings. The assignment on line 21 removes the previous value of token and
leaves line as an empty string. The DO-group between lines 22 and 41 ensures that
the line buffer is always filled. If GNT encounters an empty buffer, the GET EDIT
statement, line 24, immediately refills it. The call to the built-in VERIFY function on
line 25 returns the first position in line that is not blank.

125

11.1 The OPTIMIST Program PL/I Programming Guide

If VERIFY returns a 0, then the entire line is blank and must be cleared. The refill
operation takes place on the next iteration. If the line is not entirely blank, then control
transfers to the DO-group beginning on line 29.

11.2.2 The DO-Group

Processing in the DO-group takes place as follows. On entry, the value of i is the
first nonblank position of the line buffer. Thus, the statement on line 30 removes the
preceding blanks from line, so the next token starts at the first position. GNT then
calls the VERIFY function to determine if the next item in line is a number.

The assignment statement on line 31 sets i to ° if the entire buffer consists of numbers
and decimal points. Line 31 sets i to 1 if the first item is not a number or a period. It sets i
to a larger value than 1 if the first item is a number that does not extend through the
entire line buffer. Thus, this sequence of tests, starting at line 32, either extracts the entire
line (i = 0), the first character of the line (i = 1), or the first portion of the line (i >1).

In the preceding example input line, on the first iteration GNT sets line to,

8 8 * 9 9

1 2 3 4 5 6 7 8 9

where the index 1 through 9, in line, is shown below each character. On line 30, GNT
removes the initial blanks, leaving line as:

8 8 * 9 9

1 2 3 4 5 6

Line 31 calls the VERIFY function that locates the first position containing a nondigit
or period character. In this case, VERIFY returns the value 3, which corresponds to
the * in position 3. As a result of the tests, FSCAN executes line 38 and produces the
equivalent of:

This results in a token value of 88, which is the next number in line.

126

PL/I Programming Guide 11.2 A Parse Function

On the next call, GNT removes token from line using the SUBSTR operation on
line 21 and leaves line as:

* 9 9

1 2 3 4

The VERIFY function on line 31 returns the value 1, because the leading position
of line is not a digit or a period. Line 36 extracts and returns the first character of line
as the value of token.

The third call to GNT gets the last token in line by first extracting the *. This leaves
line as:

9 9

1 2 3

This time, because all characters are either digits or periods, the VERIFY function
returns a 0 and GNT executes line 33. This results in a token value of 9.9, which is
the remainder of line.

The fourth call to GNT clears the previous value of token from line, so that line is
the empty string. This causes GNT to execute the GET EDIT statement, line 24, and
refill line from the console. Execution proceeds in this manner until you stop the
program with a CTRL-Z or CTRL-C input.

This simple parser has some obvious flaws. It does not trap end-of-file conditions.
You could include an ON-unit to detect this condition, and return a null token value
to indicate there'is no' more input. Furthermore, GNT does not detect multiple period
characters. This would cause a subsequent conversion signal (ERROR(1)) if you attempt
to convert to a decimal value.

These enhancements give you an improved version of GNT that you can incorporate
into any of your programs.

End of Section 11

References: Sections 3.2, 6.4, 6.8 LRM

127

End of Section 11 PL/I Programming Guide

128

Section 12
List Processing

For some programs it is difficult to determine the exact memory requirements before
the program runs. List processing is an example of this kind of program because the
number of data elements can vary considerably while the program is running.

PL/I has subroutines in the Run-time Subroutine Library (RSL) that dynamically
manage storage allocation. When the operating system loads a PL/I program into the
Transient Program Area (TPA) or partition, PL/I first initializes all the remaining free
memory as a linked list. The list elements contain information fields and pointers to
other list elements. A program dynamically allocates memory by using the ALLOCATE
statement and releases memory using the FREE statement. PL/I continuously keeps all
memory segments connected to one another by using the linked-list mechanism.

The programs in this section illustrate list processing in two cases where it is not
easy to predetermine the amount of storage required.

12.1 Based and Pointer Variables

You can visualize a based variable as a template that fits over a region of memory
but has no storage directly allocated to it. A pointer variable is just a two-byte value
that holds the address of a variable. When you use a pointer variable, you are pro
grammatically placing this based variable template over a particular piece of memory.
The method depends on the form of the based variable declaration.

If the based variable declaration does not include an implied base, then you must
qualify any reference to the based variable with a pointer. If the based variable dec
laration includes an implied base, then you can include a pointer qualifier in any
reference to the based variable, or you can simply use the implied pointer given in the
declaration as a base.

129

12.1 Based and Pointer Variables

Consider the following example declaration:

declare
i fixed t
ITlat(O:5) fixedt
(Pt q) pointert
x fixed basedt
Y fixed based(p) t
z fixed based(f(»;

PL/I Programming Guide

PL/I allocates storage for the two variables i and mat because they are not based
variables. PL/I also assigns storage locations for the two pointer variables p and q.
However, the three variables x, y, and z are declared as based variables, and they have
no storage locations prior to execution. Instead, PL/I determines their actual storage
addresses as the program runs. The variable x has no implied base, so every reference
to x must have a pointer qualifier such as:

p-}x = 5;

or,

q-}x = 6;

The first statement assigns the value 5 to the fixed two-byte variable at the memory
location given by p. The second statement assigns the value 6 to the location given by
q.

The variable y, on the other hand, has an implied base that means you can reference
it with or without a pointer qualifier. The reference

Y = 5;

equals

p-}y = 5;

and thus,

y = 5; and q-}y = 6;

have exactly the same effect as the two preceding assignments to x.

130

PL/I Programming Guide 12.1 Based and Pointer Variables

The variable z, like the variable y, has an implied base. In this case, the base is an
invocation of a pointer-valued function with no arguments. For example, the function
f can take the form:

f :
procedure returns(pointer);
return (addr(Mat(i»);

end f;

Using this definition of f, you can reference z as:

P-:>z = 5;

or,

z = 6;

The first form is equivalent to those shown above, with the location derived from the
pointer variable p. The second form however, is an abbreviation for:

f() -> z = 6;

In this case, PL/I evaluates the function f to produce the storage address for the based
variable z. This form has a twofold advantage. First, the pointer-valued expression can
be complex, and not restricted to a simple pointer variable. Second, the code for function
f appears only once, rather than being duplicated at each variable reference. This can
save a considerable amount of space in a program.

Note: the implied base must be in the scope of the declaration for the based variable.

131

12.1 Based and Pointer Variables PL/I Programming Guide

The following incorrect code sequence illustrates this concept:

- Ma in:
procedure options(Main);
declare

x based(p)t
Y based(q) t
p pointer;

[

be:!:~are
(Ptq) pointer;

x = 5;
Y = 1 CH

end;
declare

q pointer;
end (flain;

Because the variables x and yare based on p and q, the pointers p and q must be
in the same or encompassing scope. Here the pointers p and q are declared in the
embedded BEGIN block that is a different environment.

12.2 The REVERSE Program

Our first example of list processing is a program called REVERSE. The OPTIMIST
program in Section 11 can accept a sentence with a maximum of 254 characters, the
maximum string length. REVERSE, however, accepts sentences of virtually any length
by using a list structure instead of a single character string. Instead of performing word
substitution, REVERSE simply reverses the input sentence.

Listing 12-1 shows the REVERSE program, which is divided into three parts. The
first part, lines 12 through 17, reads a sentence from the console and writes the sentence
back to the console in reverse order. Each input sentence consists of a sequence of
words up to 35 characters in length. This is sufficient to hold,

supercalifragilisticexpialidocio·us

one of the longest words in the English language.

To simplify the input processing, REVERSE requires a space before the period that
ends the sentence. REVERSE also ends execution when you type an empty sentence.

132

PL/I Programming Guide 12.2 The REVERSE Program

The second part of RE VERSE is a separate subroutine, called read_- it, which starts on
line 19. The third part is a subroutine called write_it, which begins on line 37. Making
these functions separate subroutines in the main program simplifies the overall structure.

Listing 12-2 shows the console interaction with REVERSE.

1 a 1**1
2 a 1* This prOgraM reads a sentence and reverses it. *1
3 a 1**1
4 a reverse:
5 b procedure options(Main);
6 declare
7 sentence pointer,
8 wordnode based (sentence),
9 2 word character(35) varying,

10 2 next pointer;
11
12 c
13 c
14 c
15 c
16 c
17 c
18

19

20 c
21 c
22 c
23 c
24 c
25 c
26
27
28
29
30

31
32
33

[

do while('l / b);
call read it();
if sentence = null then

stop;
call write it();

end;

read it:
procedure;
declare

newword character(35) varying,
newnode pointer;

sentence = null;
put sKip list('What"s up? ') j
do while('l/b)j

get list(newword) j
if newword = '. I then

return j
allocate wordnode set (newnode);
newnode->next
sentence
wo rd

sentence;
newnodej
newword;

34 end;
35 c end read it;
36

Listing 12-1. The REVERSE Program

133

PL/I Programming Guide

37
38 c
39 c
ao c
a1 c
a2 d
a3 d
aa
as
a6
a7
a8 c
a9 c
50 c
51

write it:
procedure;
declare

p pointer;
put skip list('Actually, I);

[

do while (sentence "= null);
put list(word);
p = sentence;
sentence = next;
free p->wordnodei

end;
put list('./);
put skip;

end write it;

52 end reverse;

12.2 The REVERSE Program

Listing 12-1. (continued)

A>reverse

What's up? North is UP ,

Actually, UP is North

What's up? The rain in Spain falls mainly in the plain,

Actually, plain the in Mainly falls Spain in rain The

What's up? 3 + 5 8

Actually, 8 5 + 3

What's up? ,

A>

Listing 12-2. Interaction with the REVERSE Program

The REVERSE program stores each word in a separate area of memory, obtained
using the ALLOCATE statement on line 30. On each iteration of the DO-group, the
ALLOCATE statement obtains a unique section of the free memory space sufficiently
large to hold the wordnode structure defined on line 8. The wordnode elements are
linked together through the next field of each allocation, and the beginning of the list
is given by the value of the sentence pointer variable.

134

PL/I Programming Guide 12.2 The REVERSE Program

Each allocation consumes 38 bytes. You can verify this by examining the Symbol
Table. The wordnode structure is 38 bytes long because word is declared as CHAR
ACTER(35) VARYING, and requires one byte to hold the current length, 35 bytes to
hold the string itself, and is followed by a two-byte pointer value.

For example, given the input sentence,

I SHALL RETURN •

REVERSE executes the ALLOCATE statement three times, once for each word in the
list.

Suppose that these three memory allocations are found at addresses 1000, 2000,
and 3000. The REVERSE program begins by reading the sentence in the main DO
group in the read_it procedure. It initializes the sentence pointer to the null address
(0000). Upon entering the DO-group at line 26, the value of sentence appears as follows:

SENTENCE: 0000

REVERSE reads the first word with the GET statement on line 27, and because the
value is not a period, it allocates the first 38-byte area to hold the word. As it constructs
the sentence, REVERSE places the pointer value of the sentence variable into the next
field, and the input word into the word field. The most recently read word then becomes
the new head of the list. After processing the word I, the list appears as shown below:

SENTENCE: 1000

1000:~

~
REVERSE then proceeds through the loop again. This time, it reads the word SHALL

and allocates the second 38-byte area. The newly allocated area becomes the new head
of the list, with the resulting pointer structure:

SENTENCE 2000

2000: 1000:@d

~ 0000
~ __ --J

SHALL

1000

135

12.2 The REVERSE Program PL/I Programming Guide

REVERSE repeats the loop once again and processes the last word, RETURN, and
allocates the final 38-byte area, placing it at the head of the list that results in the
following sequence of nodes:

SENTENCE: 3000

SHALL 1000: ~

1000 / ~
3000: RETURN 2000:

2000 /

The program follows the pointer structure from the sentence variable to the node for
RETURN, then to the node for SHALL, and finally to the node for I, where it encounters
an end-of-list value 0000.

REVERSE actually builds the list in reverse order. The DO-group in the write_it
procedure, lines 42 to 47, simply searches through the list, starting at the sentence
pointer, and prints each word it encounters. As soon as the word is written, the FREE
statement on line 46 releases the 38-byte area allocated to it. The write_it procedure
moves the sentence pointer variable to the next item in the list before it executes the
FREE statement to free the current element.

Note: storage does not remain intact after it is released.

The advantage of the list structure is that the sentence can be arbitrarily long, limited
only by the size of available memory. The disadvantage, of course, is that there is
considerably more storage consumed for sentences that could be represented by a 254-
character string.

12.3 A Network Analysis Program

The next example is extensive and illustrates two points. First, it demonstrates the
power of PLII list-handling constructs. Second, it shows how to divide a large, complex
program into small, logically distinct units, and thereby simplify the coding task.

The NETWORK program shown in Listing 12-4 performs a network analysis. That
is, it finds the shortest path between nodes in a network. The user enters a network
of cities and distances between the cities. Then NETWORK constructs a connected set
of nodes using list processing structures. Upon demand from the user, NETWORK
computes the shortest path from all cities in the network to the assigned destination,
and then selectively displays particular optimal paths through the network.

136

PL/I Programming Guide 12.3 A Network Analysis Program

It is easier to understand how the program operates if you first examine the console
interaction shown in Listing 12-3. First, you enter a list of cities and distances between
the cities, ending the entry with a CTRL-Z. Entering a CTRL-Z triggers a display of
the entire network to aid in detection of input errors. NETWORK then prompts you
for a destination city, in this case, Tijuana, and a starting city, in this case, Boise.

NETWORK then displays a best route. There can be several of equal length. Next,
NETWORK prompts for another starting city. If you enter a CTRL-Z, NETWORK
reverts to another destination prompt, leaving the network intact. Interaction continues
in this manner until you enter a CTRL-Z in response to the destination prompt. When
this occurs, NETWORK clears the network and returns to accept an entirely new
network of cities and distances. The entire program ends if you enter an empty network
at this point, for example, a CTRL-Z.

A)netlltlork
Type "Cityl ,Oist, City2"
Seattle, 150, Boise
Boise, 300, Modesto
Seattle, 400, Modesto
Modesto, 150, Monterey
Modesto, 50, San-Francisco
San-Francisco, 200, Las-Veias
Las-Ve5as, 350, Monterey
Los-An5eles, 400, Las-Veias
Bakersfield, 300, Monterey
Bakersfield, 250, Las-Veias
Los-An5eles, 450, Tijuana
Tijuana, 700, Las-Veias
Las-Ve5as, 820, Boise
Pacific-Grove, 5, Monterey

Pacific-Grove
5 Miles to Monterey

Tijuana :
700 Miles to Las-Vegas
450 Miles to Los-Angeles

Bakersfield :
250 Miles to Las-Vegas
300 Miles to Monterey

Los-Angeles :
450 Miles to Tijuana
400 Miles to Las-Vegas

Listing 12-3. Interaction with the NETWORK Program

137

12.3 A Network Analysis Program PL/I Programming Guide

Las-Ve!fas
920 Miles to Boise
700 Miles to Tijuana
250 Miles to BaKersfield
400 Miles to Los-An!feles
350 Miles to Monterey
200 Miles to San-Francisco

San-Francisco :
200 Miles to Las-Ve!fas

50 Miles to Modesto
Monterey :

:5 Miles to Pacific-Grove
300 Miles to BaKersfield
350 Miles to Las-l)e!fas
150 Miles to Modesto

Modesto :
50 Miles to San-Francisco

150 Miles to Monterey
400 Miles to Seattle
300 Miles to Boise

Boise
920 Miles to Las-Ve!fas
300 Miles to Modesto
150 Miles to Seattle

Seattle :
400 Miles to Modesto
150 Miles to Boise

Type Destination Tijuana

Type Start Boise

1250 Miles reMain, 300 Miles to Modesto
950 Miles reMain, 50 Miles to San-Francisco
900 Miles reMain, 200 Miles to Las-Ve9'as
700 Miles reMain, 700 Miles to Tijuana

Type Start '\Z

Listing 12-3. (continued)

138

PL/I Programming Guide 12.3 A Network Analysis Program

Type Destination Pacific-Grove

Type Start Seattle

555 Miles reMain,
155 Miles reMain,

5 Miles reMain,
Type Start "Z

Type Destination 'Z

Type "City1, Dist, City2"

A)

400 Miles to Modesto
150 Miles to Monterey

5 Miles to Pacific-Grove

Listing 12-3. (continued)

12.3.1 NETWORK List Structures

NETWORK uses two data structures as list elements. The first structure is called a
city_node and corresponds to a particular city. It is defined on line 16 of Listing 12-
4. The city_node structure is shown below:

total distance
investigate
city list

The city_name field holds the character-string value of the city's name, while the
total_distance and investigate fields are used by the shortest_distance procedure. The
city_list and route_head pointer values link together all the cities in the network.

The second structure is called a route_node, and is defined on line 23. A route_node
establishes a single connection between a city and one of its neighbors. You allocate
several route_nodes for a city, corresponding to the number of connections to its
neighboring cities. The route_node structure is shown below:

ROUTE NODE: next city
route distance
route_list

139

12.3 A Network Analysis Program PL/I Programming Guide

The list of route_nodes associated with a particular city begins at the pointer value
called route_head that is a part of the city_node structure. The route is determined by
following the route_list pointer to additional route_nodes, until you encounter a rou
te_node with a null entry in the route_list. Each route_node also has a pointer value,
denoted by next_city, that leads to a neighboring city_node, along with a route_dist
ance field that gives the mileage to the next city.

The following example illustrates this concept. Assume Monterey is 350 miles from
Las Vegas. NETWORK must allocate two city_nodes and two route_nodes with sample
addresses to the left of each allocation as follows. You can temporarily ignore the fields
marked x in the diagram.

CITY NODE CITY_NODE

1000 Monterey 2000 Las Vegas

xxxxxxx xxxxxxx

xxxxxxx xxxxxxx

xxxxxxx xxxxxxx

3000 4000

ROUTE_NODE ROUTE_NODE

3000 2000 4000 1000

350 350

140

PL/I Programming Guide 12.3 A Network Analysis Program

A linked list, starting at city_head, leads to all cities in the network. Given the
preceding two cities, the list of cities appears as follows:

CITY HEAD

1000

CITY NODE

1000 Monterey 2 000 Las Vegas

xxxxxxx xxxxxxx

xxxxxxx xxxxxxx

2000 0000

xxxxxxx xxxxxxx

12.3.2 Traversing the Linked Lists

Several of the procedures in NETWORK use one particular form of an iterative DO
group to traverse the linked lists. The statement on line 95 is typical:

do p = city head repeat (p->city list) while (ph=null);

The DO-group header successively processes each element of the linked list starting at
city_head until it encounters a null link, 0000. On the first iteration, the DO-group
sets the pointer variable p to the value of the pointer variable city_head. In the example
above, this results in the assignment p = 1000.

On the next iteration, p takes on the value of the city_list field at 1000 that addresses
Las Vegas. This results in the value p = 2000. On the last iteration, p takes on the
value of the city_list field based at 2000, resulting in p = 0000. The DO-group then
stops executing because p is equal to null.

141

12.3 A Network Analysis Program PL/I Programming Guide

12.3.3 Overall Program Structure

Keeping in mind the preceding discussion, look at the overall program structure.
The top-level program calls occur in the DO-group between lines 31 and 38. The
remainder of the program consists entirely of the nested subroutines described below.

NETWORK is logically divided into four parts:

• The input section constructs and echoes the network of cities, consisting of four
procedures beginning on line 45: setup, connect, find, and print_all.

• The analysis of the shortest path between the cities takes place In the
shortest_distance procedure starting on line 164.

• The shortest path display operations are split between the two procedures
print_paths and print_route, respectively.

• The free_all procedure clears the old network before loading a new network.

Beginning on line 32, the main program calls setup to read the network. If the
city_list is empty, then NETWORK stops. Otherwise, it calls print_all to display the
network, and then calls print_paths to prompt and display the shortest routes. Upon
return, NETWORK calls free_all to release storage. This process continues until you
enter an empty network.

12.3.4 The Setup Procedure

The main loop in setup occurs between lines 54 and 58. On each iteration, the GET
LIST statement, line 55, reads a pair of cities with a connecting distance. Next, setup
calls the connect subroutine twice to establish the connection in both directions between
the cities. The ON-unit on line 50 intercepts the CTRL-Z.

12.3.5 The Connect Procedure

The connect procedure establishes a single route_node to connect the first city to
the second city. The connect procedure does this by calling the find procedure twice,
once for the first city and once for the second city. The find procedure locates a city
if it exists in the network, or creates the city_node if it does not yet exist. Upon return
from find, the connect procedure creates and fills in the route_node, lines 79 to 82.

142

PL/I Programming Guide 12.3 A Network Analysis Program

In the previous example, the first call to connect establishes the city_nodes for
Monterey and Las Vegas, indirectly through the find procedure, and then produces the
route_node under Monterey only. The second call to connect establishes the route_node
under Las Vegas.

12.3.6 The Find Procedure

The find procedure, starting at line 89, searches the city_list, beginning at city_head,
until it finds the input city or exhausts the city_list. If the input city does not exist,
find creates it between lines 100 and 105. In any case, find returns a pointer to the
requested city_node.

12.3.7 The Print_All Procedure

The print_all procedure appears between lines 113 and 127. NETWORK calls
print_all after creating the network. This procedure starts at city_head and displays
all the cities in the city_list. As it visits each city, print_all also traverses and dis
plays the route_head. Upon completion of the print_all procedure, all city_nodes and
route_nodes have been visited and displayed.

12.3.8 The Print Paths Procedure

The print_paths procedure reads a destination city on line 143 and sends it to the
shortest_distance procedure. Upon return, print_paths sets the total_distance field of
each city_node to the total distance from the destination city. You enter the starting
city on line 148, and print_paths sends it to the print_route procedure for the display
operation.

12.3.9 The Print_Route Procedure

The print_route procedure at line 214 displays the best route from the input city to
the destination. The procedure finds the best route as follows: The total distance from
the input city to the destination has already been computed and stored in the
total_ distance field. The procedure obtains the first leg of the best route by finding a
neighboring city whose total_distance field differs by exactly the distance to the neigh
bor. It then displays the neighbor, moves to the neighboring city, and repeats the same
operation. Eventually, it reaches the destination city and completes the display operation.

Line 221 finds the original city_node. Line 231 displays the remaining distance, and
the search for the first or next leg occurs between lines 233 and 244. On each iteration,
line 236 tests to determine if a neighbor has been found whose total distance plus the
leg distance matches the current city. If so, line 238 displays the leg distance and the
search terminates by setting q to null.

143

12.3 A Network Analysis Program PL/I Programming Guide

12.3.10 The Shortest_Distance Procedure

This procedure takes an input city, called the destination, and computes the minimum
total distance from every city in the network to the destination. It then records this
total at each city_node in the total_distance field. In calculating the minimum total
distance, the procedure implements the following algorithm:

1. Initially mark all total_distance fields with infinity, 32767 in PL/I, to indicate
that the node currently has no connection.

2. Set the investigate flag to false for each city. The investigate flag marks a
city_node that needs further processing.

3. Set the total_distance to the destination at zero; all others are currently set
to infinity, but change during processing.

4. Set the investigate flag to true for the destination only.

5. Examine the city_list for the city_node that has the least total_distance, and
whose investigate flag is true. At first, only the destination is found. When no
city_node has a true investigate flag, all processing is complete and all min
imum totaCdistance fields have been computed.

6. Clear the investigate flag for the city found in 4, and extract the current value
of its total_distance field. Examine each of its neighbors; if the current
total_distance field plus the leg distance is less than the total_distance field
marked at the neighbor, then replace the neighbor's total_distance field by
this sum. Then mark the neighbor for processing by setting its investigate flag
to true. After processing each neighbor, return to step 4.

The algorithm thus proceeds through the network, developing the shortest path to
any node, and as a result, visiting each city exactly once. This is because the process
is linear, and any additional nodes do not significantly effect the time to analyze the
network.

12.3.11 The Free_All Procedure

The final procedure, free_all starting at line 251, returns the network storage at the
end of processing each network. The procedure visits and then discards each city_node
and the entire list of route_node connections.

144

PL/I Programming Guide 12.3 A Network Analysis Program

12.3.12 NETWORK Expansion

You can expand NETWORK in several ways. First, you can open a STREAM file
and read the graph from disk, because it is inconvenient to type an entire network
each time you run the program. You can also store several networks on disk and
retrieve them on command from the console.

1 a 1**1
2 a 1* This prOgraM finds the shortest path between nodes *1
3 a
LI a
5 a

1* in a networK. It has 8 internal procedures:
1* SETUP, CONNECT, FIND, PRINT_ALL, PRINT_PATHS,
1* SHORTEST_DISTANCE, PRINT_ROUTE, and FREE_ALL.

*1
*1
*1

6 a 1**1
7 a networK:
8 procedure options(Main);
9 %replace

10

11
12
13
1L1
15
16
17
18

19
20
21
22
23
2L1
25
26
27

true by
false by
citysize by
infinite by

declare
snin file;

declare

\ l' b ,
\ 0' b ,
20,
32767;

1 city node based,
2 city naMe character(citYsize) varying,
2 total distance fixed,
2 investigate bit,
2 city list pointer,
2 route head pointer;

declare
1 route node based,

2 next city pointer,
2 route distance fixed,
2 route list pointer;

28 declare
29 city head pointer;
30
31 c do while(true);
32 c call setup();
33 c if city head = null then
3L1 c stop;
35 c call print all();
36 c call print paths();
37 c call tree all();
38 c end;
39

Listing 12-4. The NETWORK Program

145

12.3 A Network Analysis Program PL/I Programming Guide

ao b
a1
az b
a3 b
aa
a5 b
a6 c
a7 c
a8 c
lI9 c
50 c
51 c
5Z c
53 c
5a d
55 d
56 d
57 d
58 d
59 c
60 c
61 b
6Z b
63
6a
65
66 b
67 b
68 b
69 c
70 c
71 c
72
73 c
7a c
75 c
76 c
77 c
78 c
79 c
80. c
81 c
8Z c
83 c
8a

146

1**1
1* This procedure reads two cities and then calls the *1
1* procedure CONNECT to establish the connection (in *1
1* both directions) between the cities. *1
1**1

setup:
procedure;
declare

distance fixed,
(city1, cityZ) character(citYsize) varying;

on endfile(sysin) goto eof;
city head = null;
put sKip list('Type "City1, Dist, CityZ;" ');
put skip;

[

do while(true);
get list(city1, distance, cityZ);
call connect(city1, distance, cityZ);
call connect(cityZ, distance, city1);

end;
eof:

end setup;

1**1
1* This procedure establishes a single route_node to *1
1* connect the first city to the second city by *1
1* calling the FIND procedure twice; once for the *1
1* first city and once for the second city. *1
1**1

connect:
procedure(source city, distance, destination city);
declare

source city character(citYsize) varying,
destination city character(citysize) varying,
distance fixed,
(r, s, d) pointer;

s = find(source city);
d = find(destination city);
allocate route node set (r);
r->route distance = distance;
r->next city di
r->route list
s->route head
connect;

s->route head;
r;

Listing 12-4. (continued)

PL/I Programming Guide 12.3 A Network Analysis Program

85
86
87
88
89
90 c
91 c
92
93 c
94 c
95
96
97
98 d
99 d

100 c
101 c
102 c
103 c
104 c
105 c
106 c
107 c
108
109
110 b
111 b
112 b
113 b
114 c
115 c
116 c
117 c
118
119
120
121 e
122 e
123 e
124 e
125 e
126
127 c
128

1**1
1* This procedure searches the list of cities and *1
1* returns a pointer to the re9uested city_node. *1
1**1

fin d :
procedure(city) returns(pointer);
declare

city character(citYsize) varyingt
(Pt 9) pointer;

[

0 P = city head
repeat(p->city list) while(p'=null);
if city = p->city naMe then

return(p) ;
en d ;
allocate city node set(p);
p->city naMe
p->city list
city head

cit y ;
= city head;
= p;

p->total distance = infinite;
p->route head = null;
return(p) ;

end find;

1**1
1* This procedure starts at the city head and *1
1* displays all the cities in the city list. *1
1**1

print all:
procedure;
declare

(Pt 9) pointer;

do p = city head
repeat(p->city list) while(p'=null);
put sKip list(p->city naMet':');

repeat(9->route list) while(9'=null);

[

do 9 = p->route head

put sKip list(9->route_distance t'Miles to' t
9->next city->city naMe); - -

end;
end;

end print all;

Listing 12-4. (continued)

147

PL/I Programming Guide 12.3 A Network Analysis Program

129 b
130 b
131 b
132 b
133 b
134
135 b
136 c
137 c
138 c
139 c
140 c
141
142
143
144 d
145 d
146 e
147 e
148 e
149 e
150 e
151 d
152
153 c
154
155

148

1**1
1* This procedure reads a destination city, calls the *1
1* SHORTEST_DISTANCE procedure, and sets the *1
1* total_distance field in each city_node to the *1
1* total distance froM the destination city,
I*************~**1

print paths:
procedure;
declare

city character(citysize) varyin~;

on endfile(sysin) ~oto eof;
do while(true);

put sKip list('Type Destination ');
~et list(city);
call shortest distance(city);
on endfile(sysin) ~oto eol;
do while(true);

[

put sKip list('TYpe Start
~et list(city);

end;
eof:

call print route(city);
end;
eol: revert endfile(sysin);

end print paths;

') ;

Listing 12-4. (continued)

PL/I Programming Guide 12.3 A Network Analysis Program

156
157
158
159
160
161
162
163
164
165 c
166 c
167 c
168 c
169 c
170 c
171 c
172
173
174
175
176
177 c
178 c
179
180
181
182
183 e
184 e
185 e
18B f
187 f
188
189
190
191 !:I

192 f
193 e
194
1~5

196

1**1
1* This procedure is the heart of the pro!:lraM. It *1
1* taKes an input city, the destination, and COMPutes *1
1* the MiniMuM total distance froM every city in the *1
1* networK to the destination. It then records this *1
1* MiniMuM value in the total_distance field of every *1

1**1
shortest distance:

procedure(cityl;
declare

city character(citysizel varyin!:l;
declare

bestp pointer,
(d, bestdl fixed,
(p, "l' rl pointer;

do p = city head

[

repeat(p->city_listl while(p"=nulll;
p->total distance infinite;
p->investi!:late = false;

end;
p = find(cityl;
p->total distance = 0;
p->investi!:late = true;
do while(truel;

bestP = null;
bestd = infinite;
do p = cit}' head

repeat(p->city listl while(p"=nulll;
if p->investigate then

[
dO~f p->total_distance (bestd then

[dO~estd = p->total dlstance;
bestp p;

end i
end;

end;
if bestp = null then

return;
bestp->investigate = false;

Listing 12-4. (continued)

149

PL/I Programming Guide 12.3 A Network Analysis Program

197 e
198 e
199 e
200 e
201 e
202
203
204
205
206 e
207
208 c
209
210
211
212
213
214
215 c
216 c
217 c
218 c
219 c
220 c
221 c
222
223
224
225 e
226 e
227 e
228 e
229
230
231
232

150

do q = bestp->route head
repeat(q->route list) while(q'=null);
r = q->next city;
d = bestd + q->route distance;
if d < r->total distance then

do;

[

r->total distance = dj
r->investl~ate = true;

end;
end;

end;
end shortest distance;

1***1
1* This procedure displays the best route frOM *1
1* the input city to the destination. *1

1***1
-p r i n t r 0 ute:

procedure(city) ;
declare

city character(citysize) varyin~;

declare
(p,q) pointer,
(t,d) fixed;

p = find(city);
do while(true);

t = p->total distance;
if t = infinite then

do;

[

put sKip
return;

end;
if t = 0 then

return;

list('(No Connection) ');

put sKip list(t ,'Miles reMain ,');
q = p->route head;

Listing 12-4. (continued)

PL/I Programming Guide 12.3 A Network Analysis Program

233 e
234 e
235 e
236 e
237
238
239
240
241 e
242
243 e
244
245 c
246 b

247 b
248
249
250
251
252 c
253 c
254 c
255
256
257 e
258 e
259 e
260 e
261
262
263 c
264

while(q"=nulll ;
P = q->next city;
d = q->route distance;
if t = d + p->total distance then

do;

[

put list(d,'Miles to',p->city naMe);
q = null;

end;
else

q = q->route list;
end;

end;
end print route;

1**1
1* This procedure frees all the storage allocated *1
1* by the prOgraM while processing the networK. *1
1**1

free all:
procedure;
declare

(p, q) pointer;
do p = city head

repeat(p->city list) while(p'=null);

[

do q = p->route head
repeat(q->route list) while(q'=null);
free q->route node;

en d ;
free p->city node;

end;
end free all;

265 end networK;

Listing 12-4. (continued)

End of Section 12

References: Sections 3.4, 7.1-7.8, 8.2 LRM

151

End of Section 12 PL/I Programming Guide

152

Section 13
Recursive Processing

Recursive processing occurs when an active procedure calls itself, or is called by
another active procedure. There are many programming problems that lend themselves
to this kind of construct. This section has three such problems. The first two illustrate
the basic concepts, and the last one uses recursion in a practical problem.

In a recursive procedure, a CALL statement, or function reference contained in the
procedure itself, reinvokes the procedure before returning to the first level call. There
fore, you must declare all such procedures with the RECURSIVE attribute so PL/I can
properly save and restore the local data areas at each level of recursive call.

PL/I places two restrictions on RECURSIVE procedures. First, it passes all procedure
parameters by value. You cannot return values from a recursive procedure by assign
ment to formal parameters. Instead, you can return a functional value or assign values
to global variables.

Note: to maintain compatibility with full PL/I, you should not use formal parameters
on the left of an assignment statement in a PL/I RECURSIVE procedure.

Second, PL/I does not allow BEGIN blocks in RECURSIVE procedures. However,
it does allow nested procedures and DO-groups. The examples that follow illustrate
the proper formulation of RECURSIVE procedures.

13.1 The Factorial Function

The classic example of recursion is evaluation of the Factorial function. This function,
used throughout mathematics, is a good illustration because you can define it by
iteration and recursion.

The iterative definition of the Factorial function is

n! = (n)(n-1)(n-2) ... (2)(1)

153

PL/I Programming Guide 13.1 The Factorial Function

where n! is the Factorial function, and n is a nonnegative integer. Therefore:

(n-1)! = (n-1)(n-2) ... (2)(1)

You can define the Factorial function using the recursive relation:

n! = n(n-l)! (by definition, O! = 1)

Evaluating the Factorial function using either iteration or recursion produces the
following values:

O! = 1
1! = 1
2! = (2) (1) = 2
3! = (3) (2) (1) = 6
4! = (4) (3) (2) (1) = 24
5! = (5) (4) (3) (2) (1) = 120
6! = (6) (5) (4) (3) (2) (1) = 720
7! = (7) (6) (5) (4) (3) (2) (1) = 5040
8! = (8) (7) (6) (5) (4) (3) (2) (1) = 40320
9! = (9) (8) (7) (6) (5) (4) (3) (2) (1) = 362880

10! = (10) (9) (8) (7) (6) (5) (4) (3) (2) (1) = 3628800

Listing 13-1 shows a program called IFACT that computes values of the Factorial
function using iteration. The variable F is declared as a FIXED BINARY data item
that accumulates the value of the factorial up to a maximum of 32767.

Listing 13-2 shows the output from IFACT. IFACT gives the proper value for the
Factorial function up to 7!, 5040. At this point, the variable F overflows and produces
improper results, but the output continues.

Note: PLII does not signal FIXED OVERFLOW for binary computations.

Listing 13-3 shows the program RFACT that performs the equivalent evaluation of
the Factorial function using recursion. For comparison, RFACT uses the REPEAT form
of the DO-group to control the test. RFACT declares factorial as a RECURSIVE
procedure, and calls the procedure at the top level in the PUT statement on line 10.

154

PL/I Programming Guide 13.1 The Factorial Function

Line 19 contains an embedded recursive call in the RETURN statement. Factorial
returns when the input value is zero. All other cases require one or more recursive
evaluations of factorial to produce the result. For example, 3! produces the sequence
of computations,

factorial(3) = 3 * factorial (2)
factorial(2) 2 *factorial(1)

factorial(1) 1 * factorial (0)
factorial (0) 1

1 * 1
2 * 1 * 1

= 3 * 2 * 1 * 1

producing the value 6. Listing 13-4 shows the output for the recursive factorial eval
uation produced by RFACT. The values again overflow beyond 5040 due to the pre
cision of the computations.

1 a 1**1
2 a 1* This prOgraM evaluates the Factorial *1
3 a 1* function (n!) using iteration. *1
4 a 1**1
5 a ifact:
6 procedure options(Main);
7 declare
8 (i, n, F) fixed;
8

10
11 c
12
13
14

do i =
F =

Con
end~

0
1 ;

=
.-

by 1 ;

i to by -1 ;
n * F;

15 c put edit('factorial(',i,')=',F)
16 c (skip, a,f(2), a, f(7));
17 c end;
18 end ifacti

Listing 13-1. The IFACT Program

155

13.1 The Factorial Function PL/I Programming Guide

A>ifact

factorial(0)=
factorial(1)=
factorial(2) = 2
factorial(3) = 6
factorial(4)= 24
factorial(5) = 120
factorial(6) = 720
factorial(7)= 5040
factorial(8)= -25216 * the values are incorrect
facto rial (9)= -30336 from this point on
facto rial (10) = 24320
factorial(11)= 5376
factorial(12)= -1024
factorial(13)= -13312
factorial(14)= 10240
factorial(15)= 22528
factorial(16)= -32768
factorial(17)= -32768
factorial(18)= 0
factorial(19)= 0

Listing 13-2. Output from the IFACT Program

1 a
2 a
3 a
4 a
5 a
6
7
8
9 c

10 c
11 c
12
13

156

1**1
1* This prograM evaluates the Factorial *1
1* function (n!) using recursion. *1
1**1
rfact:

procedure options(Main);
declare

i fixed;

[

do i = 0 repeat(i+1);
put sKip list('factorial(' ,i ,')=' ,factorial(i));

end;
stop;

Listing 13-3. The RFACT Program

PL/I Programming Guide 13.1 The Factorial Function

14
15 c
16 c
17 c
18 c
19 c
20 c
21

[
facto;~:!~dUre(l) returns(fixed)

declare
i fIxed;

If i = 0 then return (1);
return (i * factorlal(I-1));

end facto rial;

recursive;

22 end rfact;

Listing 13-3. (continued)

A)fact

factorial(0)=
factorial(1) =
factorial(2)= 2
factorial(3)= 6
factorial(4)= 24
factorial(5)= 120
factorial(G)= 720
factorial(7)= 5040
factorial(8)= -2521G * the values are incorrect
factorial(9)= -30336 from this point on
factorial(10) = 24320
factorial(11) = 537G
factorial(12)= -1024
factorial(13)= -13312
f act 0 r i °a 1 (14) = 10240
factorial(15) = 22528
f acto rial (1 G) = -32768
factorial(17) = -327G8
factorial(18)= 0
factorial(19) = 0

Listing 13-4. Output from the RFACT Program

157

13.2 DECIMAL/BINARY Evaluation PL/I Programming Guide

13.2 FIXED DECIMAL and FLOAT BINARY Evaluation

The Factorial evaluation programs here illustrate an important point about arithmetic
calculations using different data types. Listing 13-5 shows a program called DFACT.
It is the same recursive evaluation of the Factorial function found in RFACT, but it
uses the FIXED DECIMAL data with the maximum allowable precision. Listing 13-6
shows the output from DFACT. The largest value produced by the program is:

Factorial(17) = 355,687,428,096,000

At this point, the run-time system signals FIXED OVERFLOW to indicate that the
decimal computation has overflowed the maximum 15 digit value.

Listing 13-7 shows the program FFACT that evaluates the Factorial function using
FLOAT BINARY data. Listing 13-8 shows the output from FFACT. FFACT can com
pute the value of the function beyond 17. PLII truncates the number of significant digits
on the right to approximately 7 equivalent decimal digits. Again, FFACT ends when
the run-time system signals the OVERFLOW condition because the program produces
an exponent value that cannot be maintained in the floating-point representation.

1 a
2 a
3 a
4 a
5 a
6

7
8 b

9 c
10 c
11 c
12 b
13
14
15 c
16 c
17 c
18
19 c

1***1
1* This prograM evaluates the Factorial function *1
1* (n!) using recursion and FIXED DECIMAL data. *1
1***1
dfact:

proceduie options(Main);
declare

i fixed;

[

d 0 i = 0 rep eat (i + 1) j
put skip list('Factorial(' Ii 1')=' Ifactorial(i));

end;
stop;

factorial:
procedure(i) returns(fixed deciMal(1510))

recursive;
declare

fixed;

20 if i = 0 then return (1);
21 c return (deciMal(id5) * factorial(i-l));
22 c end factorial;
23 b

24 bend dfact;

Listing 13-5. The DFACT Program

158

PL/I Programming Guide 13.2 DECIMAL/BINARY Evaluation

A>dfact

Factorial(0)=
Factorial(1) =
Factorial(2)= 2
Factorial(3)= 6
Factorial(4)= 24
Factorial(5)= 120
Factorial(8)= 720
Factorial(7)= 5040
Factorial(8)= 40320
Factorial(9)= 362880
Factorial(10)= 3628800
Factorial(11) = 39916800
Factorial(12)= 479001600
Factorial(13)= 6227020800
Factorial(14) = 87178291200
Factorial(15) = 1307674368000
Factorial(16) = 20922789888000
Factorial(17) = 355687428096000
Factorial(18)=
FIXED OVERFLOW (1)
TracebacK: 0007 019F 0018 0000 # 2809 6874 0355 0141
A>

1 a
2 a
3 a
4 a
5 a
6

7
8
9 c

10 c
11 c
12
13
14
15
16 c
17 c
18 c
19 c
20 c
21

Listing 13-6. Output from the DFACT Program

1***1
1* This prOgraM evaluates the Factorial function *1
1* (n!) using recursion and FLOAT BINARY data. *1
1***1
ffact:

procedure options(~ain);
declare

i fixed;

[

do i = 0 repeat(i+1);
put sKip list('Factorial('ti,')=',factorial(i»;

end;
stop;

[
facto;~:!;dUre(i) returns(float)

declare
i fixed;

if 1 = 0 then return (1);
return (1 * factorial(i-1»;

end facto rial;

recursive;

22 end ffact;

Listing 13-7. The FFACT Program

159

13.2 DECIMAL/BINARY Evaluation PL/I Programming Guide

A)ffact

Factorial< 0) = 1.000000E+00
Factorial<)::: 1.000000E+00
Factorial< 2) = 2.000000E+00
Factorial< 3) = 0.600000E+Ol
Factorial< 4) = 2.400000E+Ol
Factorial< 5) = 1.200000E+02
Factorial< 6) = 0.720000E+03
Factorial< 7) = 0.504000E+04
Factorial< 8) = 4.032000E+04
Factorial< 9) = 3.628799E+05
Factorial< 10) = 3.628799E+06
Factorial < 11) = 3.S91679E+07
Factorial< 12) = 4.7S0015E+08
Factorial< 13) = 0.622702E+l0
Factorial< 14) = 0.871782E+ll
Factorial< 15) = 1.307674E+12
Factorial< 16) = 2.0S2278E+13
Factorial< 17) = 3.556874E+14
Factorial< 18) = 0.640237E+16
Factorial< 19) = 1.216450E+17
Factorial< 20) = 2.432901E+18
Factorial< 21) = 0.510909E+20
Factorial< 22) = 1.124000E+21
Factorial< 23) = 2.585201E+22
Factorial< 24):. 0.620448E+24
Factorial< 25) = 1.551121E+25
Factorial< 26) = 4.032914E+26
Factorial< 27) = 1.088887E+28
Factorial< 28) = 3.048883E+29
Factorial< 29) = 0.884176E+31
Factorial< 30) = 2.652528E+32
Factorial < 31) = 0.822283E+34
Factorial< 32) = 2.631308E+35
Factorial< 33) = 0.868331E+37
Factorial< 34) =
OVERFLOW < 1)
TracebacK: 006C 13C5 0195 0000 # 8608 0515 F551 0141
A)

Listing 13-8. Output from the FFACT Program

160

PL/I Programming Guide 13.3 The Ackermann Function

13.3 The Ackermann Function

The PL/I run-time system maintains a 512-byte stack area to hold subroutine return
addresses and some temporary results. Under normal circumstances, this stack area is
sufficiently large for nonrecursive and most simple recursive procedure processing. The
program in this section, however, illustrates multiple recursion using a stack depth
that can exceed the 512-byte default value.

The Ackermann function, denoted by A(m,n), comes from Number Theory and has
the following recursive definition:

1
n + 1 ~ if m = 0, otherwise

A(m,n) = A(m -1,1) if n = 0, otherwise
A((m -1), A(m,n -1))

Listing 13-9 shows the ACK program that reads two values for the maximum m
and, n on line 11, and then evaluates the function for these values. Listing 13-10 shows
the program interaction. Although the Ackermann function returns a FIXED BINARY
value, the program uses the built-in DECIMAL function to control the size of the
converted field in the PUT statements on lines 12, 15, and 17.

In this example, ACK uses the STACK option on line 7 to increase the size of the
run-time stack from its default value, 512 bytes, to 2000 bytes.

Note: the STACK option is only valid with the MAIN option. You must determine
the value of the STACK option empirically, because the Compiler cannot compute the
depth of recursion. If the allocated stack size is too small and the stack overflows
during recursion, the run-time system outputs the message:

FREE SPACE OVERWRITE

and then ends the program.

This kind of multiple recursion processing is CPU intensive. You should experiment
with some different values for max, and see if you can determine how much stack is
being used.

161

13.3 The Ackermann Function PL/I Programming Guide

1 a 1***1
2 a 1* This pro~ram evaluates the AcKermann function *1
3 a 1* A(m,n) I and increases the size of the stacK *1
a a 1* because of the large number of recursive calls. *1
5 a 1***1
6 a acK:
7 procedure options(main IstacK(2000»;
8 declare
8

10
11

(m Imaxm In Imaxn) fixed;
put sKip list('Type max m,n: I);

get list(maxm,maxn);
put sKip 12

13
14 c
15 c
16
17
18
18 c
20
21
22
23 c
24 c
25 c

lis t (, ''(decimal(nl4) do n=O to maxn»; ..
do m = 0 to maxm;

[

put sKip list(decimal(ml4) I': ');
do n = 0 to maxn;

put list (decimal (acKe rmann (m ,n) 14»;
end;

end;
s top;

acKermann:
procedure(m,n) returns(fixed) recursive;
declare (m,n) fixed;
if m = 0 then

26 c return(n+ll;
27 c if n = 0 then
28 c return(acKermann(m-1 t1»;
28 c return(acKermann(m-1,acKermann(m,n-1»);
30 c end acKermann;
31
32 end acK;

Listing 13-9. The ACK Program

A>ack

0 2 3 4 5
0: 1 2 3 4 5 6
1 : 2 3 4 5 6 7
2: 3 5 7 8 11 13
3: 5 13 29 61 125 253

A>

Listing 13-10. Interaction with the ACK Program

162

PL/I Programming Guide 13.4 An Arithmetic Expression Evaluator

13.4 An Arithmetic Expression Evaluator

One of the practical uses of recursion is the translation of statements in a high-level
programming language. This is because most languages are defined recursively. In
block-structured languages like PL/I for example, DO-groups and BEGIN and PRO
CEDURE blocks can all be nested, and the resulting structure lends itself easily to
recursive processing.

The next example illustrates how you can use recursion to evaluate arithmetic expres
sions. Here is a simple, recursive definition of an arithmetic expression: An expression
is a simple number, or a pair of expressions separated by a +, -, *, or I, and enclosed
in parentheses.

Using this definition, the number 3.6 is an expression because it is a simple number.
Clearly,

(3.8 + 8.Ll)

is an expression because it consists of a pair of expressions that are both simple numbers,
separated by a +, and enclosed in parentheses. Also,

(1.2 * (3.8 + 8.Ll»

is a valid expression because it contains the two valid expressions 1.2 and (3.6 + 6.4),
separated by a * and enclosed in parentheses.

Using the definition given above, the sequences,

3.8 + 8.Ll

(1.2 + 3.8 + 8.Ll)

are not valid expressions because the first is not enclosed in parentheses, while the
second is not a pair of expressions in parentheses.

The preceding definition of an expression is somewhat restricted, but once established,
you can expand it to include more complex expressions.

163

13.4 An Arithmetic Expression Evaluator PL/I Programming Guide

Listing 13-11 shows an expression evaluation program called EXPR1. The main
processing takes place between lines 27 and 31 where EXPR1 reads an expression from

. the console and types the evaluated result back to you. Listing 13-12 shows the console
interaction with EXPR1 where the user enters several properly and improperly formed
expressions.

1 a
2 a
3 a
4 a
5 a
8 a
7 a
8 a
9

10
11 b
12 b
13
14
15
18
17
18
19 c
20 c
21 c
22 c
23 c
24
25
28 b
27 c
28 c
29 c
30 c
31 c
32
33
3l! c
35 c
38 c
37

164

1***1
1* This pro~raM evaluates an arithMetic expression *1
1* usin~ recursion. It contains two procedures. GNT *1
1* obtains the input expression consistin~ of separate *1
1* tokens, and EXP that perforMs the recursive *1
1* evaluation of the tokens in the input line.
1***1

pression:
procedure options(Main);
declare

s15in file,
value float,
token character(10) varYin~;

on endfile(sysin)
stop;

on error(1) 1* conversion or si~nal *1

[

b e : I~ ~ ; ski p lis t (, I n val i dIn put a t I, t 0 Ken) j

get skip;
~oto restart j

end;

restart:

[

d 0 w h i I e (, 1 I b Ii
put sKip(3) list('Type expression: I);

\)alue = exp();
put skip list('l)alue is:/,value)j

end;

!lnt:

I procedure;
!let list(toKen);

end ~nt;

Listing 13-11. The EXPRESSION Program using Evaluator EXPR1

PL/I Programming Guide 13.4 An Arithmetic Expression Evaluator

38
39 c
40 c
41 c
42 c
43
411
45
46
47
48
49
50
51
52
53
511
55
56
57

exp:
procedure returns(float binary) recursive;
declare x float binary;
call9'nt();

-if token = '(I then
do;

x = exp();
call9'nt(); . [if token

x = x +
else [i f token

x = x -
else [if token

x = x '*
else [i f token

x = x
else

'+ ' then
ex p () ;

, - , then
ex p () ;

'* ' then
ex p () ;

' / ' then
ex p () ;

58 si9'nal error(l);
59 call 9'nt(H
60 if token "= ')' then
61 si9'nal error(l)j
62 end;
63 c else
611 c x = token;
65 c return(x);
66 c end exp;
67
68 expression;

Listing 13-11. (continued)

13.4.1 The Exp Procedure

The heart of the expression analyzer is the RECURSIVE procedure expo This pro
cedure implements the recursive definition given above and decomposes the input
expressions piece by piece. The GNT, Get Next Token, procedure reads the next element
or token, a left or right parenthesis, a number, or one of the arithmetic operators in
the input line. GNT uses a GET LIST statement, so you must separate each token with
a blank or end-of-line character.

165

13.4 An Arithmetic Expression Evaluator PL/I Programming Guide

On line 41, exp calls GNT. GNT places the next input token into the CHARAC
TER(10) variable called token. If the first item is a number, then the series of tests in
exp sends control to line 64. The assignment to x automatically converts the value of
token to a floating-point value. Then exp returns this converted value to line 29, where
EXPRl stores it into value, and subsequently writes it out as the result of the expression.

If the expression is nontrivial, then exp scans the leading left parenthesis on line 42,
and enters the DO-group on line 43. EXPRl immediately evaluates the first sub
expression no matter how complicated, and stores it into the variable x on line 44.
EXPRl then checks token for an occurrence of +, -, *, or I. Suppose, for example,
token contains the * operator. The statement on line 53 recursively invokes the exp
procedure to evaluate the right side of the expression. Upon return, it multiplies this
result by the value of the left side that was previously computed. EXPRl then checks
the balancing, right parenthesis starting on line 60, and returns the resulting product
as the value of exp on line 64.

13.4.2 Condition Processing

EXPRl performs condition processing in three places. The first ON-unit, line 15,
intercepts an end-of-file, CTRL-Z, condition on the input file, and executes a STOP
statement. The second ON-unit, line 18, receives control if an error occurs during
conversion from character to floating-point representation at the assignment on line
64. The ON-unit displays the token in error, and then executes a GET SKIP statement
to clear the data to the end of the line. It then transfers control to the restart label,
which prompts for another input expression.

EXPRl signals a condition when it encounters an invalid operator or an unbalanced
expression. If the operator is not a +, -, *, or I, then EXPRl executes line 58 and
signals the ON-unit, line 18. Again, the ON-unit displays the error and transfers control
to the restart label. Similarly, a missing right parenthesis on line 60 triggers the ERROR(l)
ON-unit to report the error and restart the program. When the program restarts,
PL/I discards the information on the current level of recursion.

166

PL/I Programming Guide 13.4 An Arithmetic Expression Evaluator

A)exprl

Type expression: (4 + 5,2)

Value is: O.920000E+Ol

Type expression: 4,5e-l

Value is: 4,499999E-Ol

Type expression: 4 & 5)

Invalid input at &

Type expression: ((3 + 4) - (10 / 8))

Value is: O.575000E+Ol

Type expression: (3 * 4)

Value is: 1.200000E+Ol

Type Expression: 'Z

A)

Listing 13-12. Interaction with EXPR1

13.4.3 Improvements

The expression analyzer requires spaces between tokens in the input line. Recall that
Section 11.2 contains a more advanced version of GNT.

We incorporate this expanded version of GNT into the expression analyzer, and
also change the error recovery mechanism so that now line 27 discards the remainder
of the current input when restarting the program. Listing 13-13 shows the improved
version called EXPR2, and Listing 13-14 shows the console interaction with this improved
expression evaluator.

167

13.4 An Arithmetic Expression Evaluator PL/I Programming Guide

Even in EXPR2 there is room for expansion. First, you can add more operators to
expand upon the basic arithmetic functions. Also, you can add operator precedence
and eliminate the requirement for explicit parentheses. Beyond that, you can add
variable names and assignment statements to turn the program into a BASIC interpreter!

1 a 1***I
2 a 1* This pro~raM evaluates an arithMetic expression *1
3 a 1* usin~ recursion. It contains an expanded version *1
4 a 1* of the GNT procedure that obtains an expression *1
5 a 1* containin~ separate toKens. EXP then recursively *1
6 a 1* evaluates the toKens in the input line.
7 a 1***I
8 a
9 a expression:

10 procedure optionS(Main);
11
12 kreplace
13 true by \l'b;
14
15
16
17
18
19
20
21
22
23
24
25 c
26 c
27 c
28 c
29 c
30
31
32
33 c
34
35 c
36
37 c
38

168

declare
sysin file,
value float,
(toKen character(10), line character(80)) varyin~

static initial(\I)j

on endfile(sysin)
stop;

on error(l) 1* conversion or si~nal *1

[

b e ! ~ ~ ; sKi p lis t(\ I n val i dIn put at', t 0 Ken) ;
toKen = \\; line = "i
~oto restart j

. end;

restart:

[

do while(\l'b)j
put sKip(3) list(\Type expression: ');
value = exp();
put edit(\Value is: ',value) (sKiP,a,f(10,4))j

end;

Listing 13-13. (continued)

PL/I Programming Guide 13.4 An Arithmetic Expression Evaluator

39 gn t:
40 c procedurei
41 c declare

42 c i fixedi
43 c
44 cline = substr(lineden9th(toKenl+lli
45 do while(trueli

46 if line = " then
47 get edit(linel (ali

48

49
50
51

52 e
53 e
54 e
55 e
56 e
57 e
58 e
59 e
60 e
61 e
62 e
63 e
64

i = verify(line,' ')i

if i = 0 then

line
else

do i

" . ,

line = substr(linetili

i = verify(line ,'0123456789. 'l i

[

if i = 0 then
toKen = linei

e 1 s e
'f ' = 1 then

[
1 ~oKen substr(linetlt1li

else
toKen substr(linetl,i-llj

return;
end;

65 c end gnti

66

Listing 13-13. (continued)

169

13.4 An Arithmetic Expression Evaluator PL/I Programming Guide

67
68 c
69 c
70 c
71 c
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88 d
89 d
90 d
91
92 c
83 c
84 c
95 c
96
97

170

exp:
procedure returns(float binary) recursive;
declare x float binary;
call !tnt();
if toKen = '(' then

do;
x = exp();
call !tnt();

[

if toKen '+' then
x=x+exp();

else

[

if toKen '-' then
x=x-exp();

else

[

if toKen '*' then
x=x*exp();

else

[

if toKen
x = x

else

'/' then
exp();

si!tnal error(1);
call !tnt();
if toKen '= ')' then

si!tnal error(1);
end;

else
x = toKen;

return(x) ;
end exp;

end expression;

Listing 13-13. Expression Evaluator EXPR2

13.4 An Arithmetic Expression Evaluator

A)expr2

Type expression: (2 * 14.5)

Value is: 29.0000

Type expression: «2*3) / (4.3-1.5»

Value is: 2.1429

Type expression: zot

Invalid Input at

Type expression: «2*3) -5)

Value is: 1.0000

Type expression: (2 n5)

Invalid Input at n

Type expression: "Z
A)

Listing 13-14. (continued)

End of Section 13

References: Sections 2.8-2.9, 3.1-3.2, 4.2, 9 LRM

PL/I Programming Guide

171

End of Section 13 PLfI Programming Guide

172

Section 14
Separate Compilation

All of the programs presented so far are single, complete units, although many contain
one or more internal procedures. It is often useful to break larger programs into distinct
modules to be subsequently linked with one another and with the PL/I Run-time
Subroutine Library (RSL).

There are two reasons for separately compiling and linking programs in this manner.
First, large programs take longer to compile. Smaller segments can be independently
developed, tested, and integrated, requiring less overall compilation time for the entire
project. A large program can also overrun the memory space available for the Symbol
Table.

Second, particular subroutines are useful for your own application programming.
You can build your own library of subroutines and selectively link them to your
programs. Having such a library of common subroutines greatly reduces the overall
development time for any particular program.

This section presents basic information required to link program segments. It also
presents an example of a program that is compiled as two separate modules and then
linked together.

14.1 Data and Program Declarations

You can direct separate modules to share data areas by including the EXTERNAL
attribute in the declaration of the data item. For example, the statement,

declare x(10) fixed binary external;

defines a variable named x occupying 10 FIXED BINARY locations, 20 contiguous
bytes, that is accessible by any other module that uses the same declaration.

173

14.1 Data and Program Declarations PL/I Programming Guide

Similarly, the statement,

declare
1 5 exte rnal ,

2 y(10) bit(8),
2 z character(9) uaryin~;

defines a structure named s, occupying a lO-byte area that is accessible by any other
modules that use the same declaration.

The following list summarizes basic· rules that apply to the declaration of external
data:

• EXTERNAL data items are accessible in any block in which you declare them.
The EXTERNAL attribute overrides the scope rules for internal data.

• Initialize an EXTERNAL data item in only one module. Other modules can
then reference the item.

• Declare all EXTERNAL data areas with the same length in all modules in which
they appear.

• In the 8080 implementation, EXTERNAL data items must be unique in the
first six characters because the linkage editing format truncates from the seventh
character on. In the 8086 implementation, there is no such restriction.

• Avoid using ? symbols in variable names, because this character is used as a
prefix for names in the RSL.

• Remember that PL/I automatically assigns the STATIC attribute to any EXTER
NAL data item.

14.2 ENTRY Data

ENTRY constants and ENTRY variables are data items that identify procedure
names and describe their parameter values. ENTRY constants correspond to external
procedures, or procedures defined in the main procedure.

-174

PL/I Programming Guide 14.2 ENTRY Data

ENTRY variables take on ENTRY constant values during program execution through
a direct assignment statement, or an actual-to-formal parameter assignment implicit
in a subroutine call.

You invoke a procedure directly through a call to an ENTRY constant, or indirectly
by calling a procedure constant value held by an ENTRY variable. As with label
variables, you can also subscript ENTRY variables.

The program shown in Listing 14-1 illustrates ENTRY data. The ENTRY variable
f declared on line 8 is an array containing three ENTRY constants. Starting on line
12, the program initializes the subscripted elements to the constants a, b, and c respec
tively. Note that the constant a corresponds to an externally compiled procedure (see
Listing 3-1a).

The ENTRY variable called f declared on line 8 contains three elements. Starting
on line 13, the program initializes the individually subscripted elements to the constants
sin, g, and h, respectively.

On line 16, the DO-group prompts for input of a value to send to each function, and
then on line 19 calls each function once with the invocation,

f(i)(x)

where the first parenthesis pair defines the subscript, and the second encloses the list
of actual arguments.

The declaration of ENTRY constants and ENTRY variables is similar to FILE con
stants and FILE variables. PLfI assumes all formal parameters declared as type ENTRY
to be entry variables. In all other cases, an entry is constant unless you declare it with
the VARIABLE keyword.

The following rules apply to external procedure declarations:

• You can access data items with the EXTERNAL attribute in any procedure
where they are declared EXTERNAL.

• In the 8080 implementation, you must make external procedure names unique
in the first six characters (see Section 14.1). In the 8086 implementation, there
is no restriction.

• Avoid using the? symbol in procedure names.

175

14.2 ENTRY Data PL/I Programming Guide

Note: in addition, you must ensure that each formal parameter exactly matches the
actual procedure declaration, and that the RETURNS attribute exactly matches the
form returned for fun,ction procedures.

1 a 1**1
2 a 1* This prograM illustrates ENTRY variables and *1
3 a 1* constants. *1
4 a 1**1
5 a call:
6 procedure optionslMainl;
7 declare
8 fl31 entrylfloatl returnslfloatl variable,
9 a entrl'lfloatl returnslfloatl,

10 i fixed, x float;
11
12
13
14
15
16 c
17 c
18 c
19 c
20 c
21
22
23
24 c
25 c
26 c
27 c
28
29
30 c
31 c
32 c
33 c
34

f 11 I a;
f 121 b;
f 131 c;

put sKip listl/Type x 'I;
get listlxl; l

d 0 i = 1 to 3;

put listl/fl/,t,/I=',flillxll;
end;
stop;

b:

[

procedurelxl returnslfloatl;
declare x float;
returnl2*x + 11;

end b;

c:

[

procedurelxl returnslfloatl;
declare x float;
returnlsinlx";

end c;

1* internal procedure *1

1* internal procedure *1

35 end call;

Listing 14-1. An Illustration of ENTRY Constants and Variables

14.3 An Example of Separate Compilation

This section presents an example program of two modules that are compiled sepa
rately and then linked together. The two modules are called MAININVT and INVERT,
and are shown in Listings 14-2 and 14-3, respectively. Compiling each of these modules
and then linking them together produces a program that interacts with the console to
produce the solution set for a system of simultaneous equations.

176

PL/I Programming Guide 14.3 An Example of Separate Compilation

To understand how the programs work, first consider the following system of equa
tions in three unknowns:

a-b+c=2
a+b-c=O

2a - b = °
The values,

a = 1 a = 2.25
b = 2 and b = 5.50
c = 3 c = 6.75

a - b + c = 3.5
a + b - c = 1

2a - b = -1

constitute valid solutions to this system of equations, because:

1-2+3=2
1 + 2 - 3 = °

2*1 - 2 = °
2.25 - 5.50 + 6.75 = 3.50

and 2.25 + 5.50 - 6.75 = °
2 *2.25 - 5.50 = °

The values 2,0,0 and 3.5,0,0 are called solution vectors for the matrix. The coefficients
of the matrix are:

1 -1 1
1 1-1
2 -1 °

The MAININVT module interacts with the console to read the coefficients and the
solution vectors for a system of equations. The INVERT module performs the actual
matrix inversion that solves the system of equations.

The essential difference between these two modules is found in the procedure heading.
The maininvt procedure is the main program because it is defined with the MAIN
option. The invert procedure is a subroutine called by the main program. In Listing
14-2, the declaration starting on line 15 defines invert as an EXTERNAL entry constant
that is then called on line 49.

On line 21, MAININVT declares the parameters for the invert procedure as a matrix
of floating-point numbers denoted by maxrow and maxcol. Invert is defined with two
additional FIXED(6) parameters, but does not return a value.

The invert procedure, shown in Listing 14-3 has three formal parameters called a,
r, and c. They are defined on line 2 and declared in lines 7 and 8. INVERT takes the
actual values of maxrow and maxcol, corresponding to the largest possible row and

177

14.3 An Example of Separate Compilation PLII Programming Guide

column value, from a %INCLUDE file, as indicated by the + symbols following the
line number at the left of both listings.

After you compile both of the modules, link them together with the command:

A>link invMat=Maininvt,invert

The linkage editor combines the two modules, selects the necessary subroutines from
the RSL, and creates the command file, named INVMAT.

Listing 14-4 shows the interaction with INVMAT. In this sample interaction, the
user first enters the identity matrix to test the basic operations. The inverse matrix
produced for this input value is also the identity matrix.

The user then enters the system of equations shown above, along with two solution
vectors. The output values for this system are shown under Solutions: and match the
values shown above. The second set of solutions corresponds to the second solution
vector input.

Finally, the user tests INVMAT with an invalid input matrix size, and then ends the
program by entering a zero row size.

1 a
2 a
3 a
1I a
5 a
6 a
7 b
8 b
9 b

10 b
11+b
12+b
13+b
111 b
15
16 b
17 b
18 b
19
20 b
21
22
23

178

1***I
1* This pro~ram is the main module in a pro~ram that *1
1* performs matrix inversion. It calls -the entry *1
1* constant INVERT which does the actual inversion. *1
1***I
maininvt:

procedure options(main);
'.treplace

true by 'l'b,
false by 'O'b;
kreplace
maxrow by 26,
maxcol by 40;

declare
mat(maxrow,maxcol) float binary(211),
(i ,j ,n ,m) fixed (6) ,
var character (26) static initial
('abcdef~hijKlmnopqrstuvwxYZ') ,
invert entry
((maxrow,maxcol) float(211), fixed(6), fixed(6));

put list('Solution of Simultaneous Equations');

Listing 14-2. MAININVT - Matrix Inversion Main Program Module

PL/I Programming Guide 14.3 An Example of Separate Compilation

2Ll c
25 c
26 c

27 c
28 c
29 c
30 c
31 c
32 c
33 c
3Ll
35
36 d
37 e
38 e

39 e
ao e
a1 d
a2 d
43 d
all e
a5 e
a6 e
a7 e
as d
49
50 d
51 e
52 e
53 e
511 e
55 e
56
57 d
5S e
59 e
60 e
61 e
62

63 c
611 b

do while(true);
put sKip(2) list('Type rows, coluMns: ');
get list(n);

if n = 0 then
stop;

get list(M);

[

if n > Maxrow ! M > Maxcol then
put sKip list('Matrix is Too Large');

else

end;

do;

put sKip list('Type Matrix of Coefficients');
put sKip;

[

do i = 1 to n;
put list('Row'ti,':');
get list((Mat(i ,j) do j = 1 to n»;

end;

put sKip list('Type Solution Vectors') j

put sKip;

[

do j = n + 1 to M;
put list('Variable' ,substr(var,j-n ti) ,': ');
get list«Mat(i,j) do i = 1 to n»;

end;

call invert(Mat,n,M);
put sKip(2) list('Solutions: ');

do i = 1 to n;

[

put sKip list(substr(varti,l),'=');.

put edit«Mat(i,j) do j = 1 to M-n»
(f(8,Z» ;

end;

put sKip(Z) list('Inverse Matrix is');

[

do ~u~ !K:: :~it«Mat(i,j) do j = M-n+1 to M»
(x(3) ,6f(S,Z) ,sKip);

end;
end;

65 bend Maininvt;

Listing 14-2. (continued)

INfORMAT!ON PROPR!ETARY TO 179

14.3 An Example of Separate Compilation

1 a
2 b

3+b
4+b
5+b
6 b
7

8
8 c

10 c
11
12
13
14 c
15
16
17 e
18 e
18
20
21
22 e

invert:
procedure (a,r,c)i

:treplace
M a x ,'0 W b Y 26,
Maxcol by lIO;

declare
(d, a(Maxrow,Maxcol» float binary(24),
(i,j,Krl,r,c) fixed binary(6)i

do i = 1 to r j
d=aUrili

[

do j = 1 to c - 1;
aU,j) = aU ,j+1)/di

endi
a(i,c) = lIdi
do K = 1 to r;

if K "= i then
do i

d = a(Krl);

[

do 1 = 1 to c - 1;
a(Krl) = a(Krl+1) - aUrl) * d;

end;

23 e endi
24 end i
25 c end;
26
27 end invert;

PL/I Programming Guide

Listing 14-3. INVERT - Matrix Inversion Subroutine

A>invMat
S~lution of SiMultaneous Equations

Type rows, coluMns: 3,3

Type Matrix of Coefficients
Row 1 : 1 0 0
Row 2 :0 1 0
Row 3 : 0 0

Type Solution Vectors

Listing 14-4. Interaction with the INVMA T Program

180

PL/I Programming Guide

Solutions:
a=

b=

c=

Inverse Matrix is
1.00 0.00 0.00
0.00
0.00

1. 00
0.00

0.00
1.00

Type rows, coluMns: 3,5

Type Matrix of Coefficients
Row 1 : 1 -1 1
Row 2 :1 1 -1
Row 3 :2 -1 0

Type Solution Vectors
Variable a :2 0 0
Variable b :3.5 1 -1

Solutions:
a =
b
c =

1.00
2.00
3.00

5.50
6.75

Inverse Matrix is
0.50
1.00
1. 50

0.50
1.00
0.50

0.00
-1.00
-1. 00

T}'pe rows, coluMns: 41,0

Matrix is Too Large

T}'pe rows, coluMns: 0

A>

14.3 An Example of Separate Compilation

Listing 14-4. (continued)

End of Section 14

References: Sections 3.3.2, 5.1-5.4, 8.2 LRM

181

End of Section 14 PL/I Programming Guide

182 INFORi\1ATION PRESENTED HERE IS PROPRiETARY

Section 15
Decimal Computations

This section explains how PL/I handles decimal computations, stores decimal data,
and converts data types. Study this material thoroughly because it is vital to under
standing commercial processing.

15.1 A Comparison of Decimal and Binary Operations

The arithmetic with which we are most familiar uses the decimal number system.
All operations, such as addition and multiplication, are based on the number ten, and
involve the digits zero through nine. Computers, however, perform arithmetic opera
tions using binary or base 2 numbers. Computers use binary numbers because the 1s
and Os can be directly processed by the on-off electronic switches found in arithmetic
processors.

Most programming languages allow you to write programs that process base 10
constants and data items in simple and readable forms. Because the programs process
decimal values, it is necessary to convert values into a binary form on input and back
to a decimal form on output. This conversion from one type to another can introduce
truncation errors that are unacceptable in commercial processing. Thus, decimal arith
metic is often required to avoid propagating errors throughout computations.

In most programming languages, you have no control over the internal format used
for numeric processing. In fact, two of the most popular BASIC interpreters for micro
processors differ primarily in the internal number formats. One uses floating-point
binary, while the other performs calculations using decimal arithmetic.

PASCAL Compilers generally use floating- and fixed-point binary formats with imple
mentation-defined precision, while FORTRAN Compilers always use floating- or fixed
point binary.

COBOL on the other hand, was designed for use in commercial applications where
exact dollars and cents must be maintained throughout computations. Therefore, COBOL
processes data items using decimal arithmetic.

183

15.1 Decimal and Binary Operations PL/I Programming Guide

PLiI gives you a choice between representations, so that you can tailor the data in
each program to the exact needs of the particular application. PL/I uses FIXED DEC
IMAL data items to perform commercial functions, and FLOAT BINARY items for
scientific processing where computation speed is the most important factor, and trun
cation errors are insignificant or ignored altogether.

The two programs shown below illustrate the essential difference between the two
data types.

dec iMa Lc OMP:
procedure options(Main) i
declare

fixed,
t fixed deciMaH7 ,2);

t = 0 i

[

do i = 1 to 10000;
t = t + 3.10i

end;
put edit(t) (f(10,Z))i

end deciMal_coMPi

binary_coMP:
procedure options(Main) i
declare

i fixed,
t float binary(Z4);

t = Oi

[

do i = 1 to 10000i
t = t + 3.10i

endi
put edit(t) (f(10,Z))i

end binary_coMP;

Both of these programs sum the value 3.10 a total of 10,000 times. The only difference
between these programs is that DECIMAL_CaMP computes the result using a FIXED
DECIMAL variable, while BINARY_CaMP performs the computation using FLOAT
BINARY.

DECIMAL_CaMP produces the correct result 31000.00, while BINARY_CaMP
produces the approximation 30997.30. The 2.70 difference is due to the inherent
truncation errors that occur when PL/I converts certain decimal constants, such as
3.10, to their binary approximations. DECIMAL_CaMP produces the exact result
because no conversion occurs when using FIXED DECIMAL variables.

These two programs illustrate a more general problem. Suppose that during a par
ticular day, Chase Manhattan Bank processes 10,000 deposits of $3.10. Using a pro
gram with FLOAT BINARY data, $3.10 cannot be represented as a finite binary
fractional expansion. Therefore it is approximated in FLOAT BINARY form as
3.099999E + 00. Each addition propagates a small error into the sum, resulting in an
extra $2.70 unaccounted for at the end of the day.

184

PL/I Programming Guide 15.1 Decimal and Binary Operations

There are also situations where decimal arithmetic produces truncation errors that
can propagate throughout computations. For example, the fraction 1/3 cannot be
represented as a finite decimal fraction, and thus is approximated as

0.3333333 ...

to the maximum possible precision. Such errors only occur when explicit division
operations take place.

The difficulty with FLOAT BINARY representations is that some decimal constants
expressed as finite fractional expansions in FIXED DECIMAL cannot be written as
finite binary fractions. PL/I necessarily truncates these during conversion to FLOAT
BINARY form.

There are both advantages and disadvantages in selecting FIXED DECIMAL arith
metic instead of FLOAT BINARY. One advantage of FIXED DECIMAL arithmetic is
that it guarantees there is no loss of significant digits. All digits are considered significant
in a computation, so that multiplication, for example, does not truncate digits in the
least significant positions. Another advantage is that FIXED DECIMAL arithmetic
precludes the necessity for exponent manipulation, and the operations are relatively
fast when compared to alternative decimal arithmetic formats.

The disadvantage is that you must keep track of the range of values that arithmetic
operands can assume because all digits are considered significant.

15.2 Decimal Representation

Decimal variables and constants have both precision and scale. The precision is the
number of digits in the variable or constant, while the scale is the number of digits in
the fractional part. For FIXED DECIMAL variables and constants, the precision cannot
exceed 15, and the scale cannot exceed the precision.

185

15.2 Decimal Representation PL/I Programming Guide

You can define the precision and scale of a variable in the variable declaration. For
example,

declare x fixed decicTlal (10,3);

declares the variable x to have precision 10 and scale 3. The Compiler automatically
derives the precision and scale of a constant by counting the number of digits in the
constant, and the number of digits following the decimal point. For example, the
constant

-324.76

has precision 5 and scale 2.

Internally, PL/I stores FIXED DECIMAL variables and constants as Binary Coded
Decimal (BCD) pairs, where each BCD digit occupies either the high- or low-order
four bits of each byte. The most significant BCD digit defines the sign of the number.
A zero denotes a positive number, and a nine denotes a negative number in the 10's
complement form, as described below. Because PL/I always stores numbers into 8-bit
byte locations, there can be an extra pad digit at the end of the number to align it to
an even byte boundary.

For example, PL/I stores the number 83.62 as,

1081361201
where each digit represents a 4-bit half-byte position in the 8-bit value. PL/I stores the
leading BCD pair lowest in memory.

PLiI stores negative numbers in 10's-complement form to simplify arithmetic oper
ations. A 10's-complement number is similar to a 2's-complement binary representa
tion, except the complement value of each digit x is 9-x.

To derive the 10's-complement value of a number, form the complement of each
digit by subtracting the digit from 9, and add 1 to the final result. Thus, the 10's
complement of -2 is formed as follows:

(9 - 2) + 1 = 7 + 1 = 8

PL/I adds the sign digit to the number that then appears as the single-byte value:

186

PL/I Programming Guide 15.2 Decimal Representation

Look at an example. Suppose you want to add - 2 and + 3. PL/I represents these
numbers as follows:

1@]

PL/I ignores the integers beyond the sign digit above, and produces the correct result
01. In the following discussion, we show negative numbers with a leading - sign, with
the assumption that the internal representation is in 10's-complement form. Thus, we
write the number -2 as:

There is no need to explicitly store the decimal position in memory, because the
Compiler knows the precision and scale for each variable and constant. Before each
arithmetic operation, the compiled code causes the necessary alignment of the operands.
In later examples, we show a decimal point position to emphasize the effect of alignment.

For example, the number - 324.76 appears as:

When PL/I prepares this value for arithmetic processing, it first loads it into an 8-
byte stack frame, consisting of 15 BCD digits with a high-order sign. In this case, the
-324.76 is shown as:

In ordinary arithmetic, when beginning each operation you must properly align the
operands for that operation and, upon completion, you must decide where the resulting
decimal point appears.

In PL/I, the Compiler performs the alignment and accounts for the decimal point
position, but it is useful for you to imagine what is taking place, so you can avoid
overflow or underflow conditions. In some cases, you might want to force a precision

187

15.2 Decimal Representation PL/I Programming Guide

or scale change during the computation using the DECIMAL or DIVIDE built-in
functions. The sample programs discussed in the following sections give examples of
these functions.

15.3 Addition and Subtraction

In PL/I, addition and subtraction are functionally equivalent. This is because in
subtraction, PLII first forms the 10's complement of the subtrahend and then performs
the addition. Given two numbers x and y, with precision and scale (p,q) and (r,s),
respectively, the addition operation proceeds as follows.

First, PL/I loads the two operands onto the stack and then aligns them by shifting
the operand with the smaller scale to the left until the decimal positions are the same.
Given that the scale of x is greater than the scale of y, y is shifted q-s positions to the
left, with zero values introduced in the least significant positions.

After alignment, y has precision r+ (q -s) and scale q. PL/I signals a FIXED OVER-,
FLOW condition if significant digits are shifted into the sign position during the align
ment process.

Here is a specific example. Suppose x = 31465.2437 and y = 9343.412 so that x
has precision p = 9 and scale q = 4, while y has precision r = 7 and scale s = 3.
Before alignment, the numbers appear as:

188

l~p=9~1
< q=4 >

x= +000000314652437

y= + 000000009343412

r
I

<s=3> I
~r=7~

PL/I Programming Guide

PL/I aligns y with x by shifting q-s = 4 - 3

I~P=9~1
< q=4 >

x= +000000314652437

y= +000000093434120

I
< q > I

< r + (q-s) = 8 >

15.2 Decimal Representation

1 positions to the left, producing:

The number of digits in the whole part of x is p-q, while the whole part of y contains
r-s digits,

1< p-q=5 > I
31465

9343
I <r-s=4> I

so the sum must contain p-q = 5 digits in the whole part:

31465
+ 9343

40808
1< p-q=5 > I

There is a possibility that some values could produce an overflow, requiring one
extra digit in the whole part:

99999
+99999

199998
I «p-q)+1=6> I

189

15.2 Decimal Representation PL/I Programming Guide

The total number of digits in the sum of x and y is the number of digits in the whole
part, (p-q) + 1 = 6, plus the number of digits in the fraction, given by q, resulting in a
precision of:

(p-q) + 1 + q = P + 1

Given two values x and y, of arbitrary precision and scale, you can use the specific
case shown above to derive the form of the resulting precision and scale. First, the
scale must be the greater of q and s, given by,

max (q,s)

and the resulting precision must have max(q,s) fractional digits.

Second, the whole part of x contains p-q digits, while the whole part of y contains
r-s digits. The result contains the larger of p-q and r-s digits, plus the fractional digits,
along with one overflow digit, for a total of,

max (p-q,r-s) + max (q,s) + 1

digit positions.

Because the precision cannot exceed 15 digits, the resulting precision must be,

min(15,max(p-q,r-s) + max(q,s) + 1)

digits.

The precision and scale of the resulting addition or subtraction written as a pair
(p' ,q') is:

1 p' .11 q' 1

(min(15,max(p-q,r-s) + max(q,s) + 1), max(q,s))

190 IS

PL/I Programming Guide 15.3 Adaltlon and Subtraction

Using the preceding example:

~p=9~

<q=4>
x= +000000314652437

y = + 000000093434120

I
~q----71

< r+(q-s) = 8 >

x + y = + 000000408086557

<-4->
~ 10 :>

The precision (10,4) shown in the diagram is derived using the expression,

I P' II q' I
(min(15,max(9-4,7-3) + max(4,3) + 1), max(4,3))

or:

(min(15,max(5,4) +4+ 1), 4) (min(15, 1 0),4) (10,4)

15.4 Multiplication

Evaluating the precision and scale for multiplication is simpler than addition and
subtraction because PL/I does not have to align the decimal point before the multipli
cation. Given two operands x and y with precision and scale (p,q) and (r,s) respectively,
PL/I multiplies the two operands digit by digit to produce the result.

is 191

15.4 Multiplication PL/I Programming Guide

Just as in ordinary hand calculations, the number of decimal places in the result is
the sum of the scale factors q and s. The total number of digits in the result is the sum
of the precisions of the two operands. To conform to the PL/I Subset G standard,
PL/I includes one additional digit position in the final precision. The precision and scale
of the result (p' ,q') is given by:

p' q'

(min(15,p + r + l),q + s)

Suppose that x = 924.5 and y = 862.33, with the precision and scale values (4,1)
and (5,2):

x= +000000000009245

y= +000000000086233

The product of the digits of x and y is shown with the resulting precision and scale,

x*y= +000000797224085

<3>
<EE('---1 0 ---:>~

where PLII computes the precision and scale as:

(min(15,4 + 5 + 1),1 + 2) = (min(15,10),3) = (10,3)

PLiI signals the FIXED OVERFLOW condition if the product contains more than
15 significant digits. In the previous section, where x = 31465.2437 and y = 9343.412,
the product x*y has precision 17, causing FIXED OVERFLOW.

In this particular case, you must apply the DECIMAL function to reduce the number
of significant digits in either x or y. The computation is carried out as,

DECIMAL(x,9,3) * y

192

PL/I Programming Guide 15.4 Multiplication

which loads the stack with the two following values before the multiplication takes
place:

DECIMAL(x,9,3) =1+ 00000031465 .2431

y = 1+ 000000009343.412 1

The precision and scale of the product is:

+293992729029116

~6~

~<--------15---------->~

PL/I first computes the precision as p + r + 1
maximum 15 digit precision by:

16, and then reduces this to the

min(15,p + r + 1) = min(15,16) = 15

When performing multiplication, it is your responsibility to ensure that the precisions
of the operands involved do not produce overflow. You can explicitly declare the
precision and scale of the variables involved in the computation, or apply the DECIMAL
function to reduce the precision of a temporary result.

15.5 Division

Division is the only one of the four basic arithmetic operations that can produce
truncation errors. Therefore each division operation produces a maximum precision
value consisting of 15 decimal digits, and a resulting scale that depends upon the scale
values of the two operands.

Assuming that x and y have precision and scale (p,q) and (r,s) respectively, and that
x is to be divided by y, the division operation takes place as follows.

193

15.5 Division PL/I Programming Guide

First, PL/I shifts x to the extreme left by introducing 15-p zero values on the right,
leaving the dividend on the stack as:

I x x ... x x 0 0 .. 0 I

PLII then shifts the decimal point of x right by an amount s to properly align the
decimal point in the result, producing the following operands:

<EE(~-p >
< q-s >

xx xx

~15-p~

~15-p----7

00 .. 0

4£'E(--- r -----7

<s>

00 ... 0 yyy .. yy

The significant digits of y then continuously divide the significant digits of x until
the operation generates 15 decimal digits.

In the diagram above, the number of fractional digits produced by the division is
determined by the placement of the adjusted decimal point in x. The field following
the decimal point contains (q-s) plus (15-p) positions, yielding the following precision
and scale for the result of the division:

(15, (q-s) + (15-p)) or (15,15-p + q-s)

Suppose x = 31465.243, and y = 9343.41, have precision and scale values of (8,3)
and (6,2), respectively. The value x when loaded on the stack appears as:

194

~8~

<-3->
x= +000000031465243

TO RESEA.RCH

PL/I Programming Guide 15.5 Division

PL/I then shifts the value of x to the extreme left and loads the value of y, producing
the values:

<: 8~ ~15-8=7~

/< 3 >1
x= +314652430000000

y= +000000000934341

1 <2>1
~6~

The imaginary decimal points are shifted to the right by two positions to properly
align the decimal point in the result, producing:

<: 8----71 ~ 7 -71
1

x= +314652430000000

y= +000000000934341

~6~1

The six significant digits of y divide the significant digits of x, and the result is:

15 :> I
~1+7=8~

x/y = + 0 0 0 0 0 0 0 3 3 6 7 6 4 0 1

In this case, the precision and scale of the result is given by:

(15,(15-p + q-s) = (15,15-8 + 3-2) = (15,8)

The most important consideration in decimal division is generating enough digits in
the fractional part for the computation being performed. This is done in two ways.

First, when aligning the dividend, PL/I pads with zeros and provides 15-p fractional
digits. Thus, dividend values with small precision generate more fractional digits.

195

15.5 Division PL/I Programming Guide

Second, if q is greater than s, then PL/I generates (q-s) additional fractional digits
as shown above. If on the other hand, the dividend contains fewer fractional digits
than the divisor, then q is less than sand (s-q) fractional digits are consumed.

The case of q = s occurs quite often. In this particular situation, the number of
fractional digits depends entirely upon the precision of the divisor, and results in
15-p fractional digits.

You might also want to truncate or extend the result with zeros using the DIVIDE
built-in function during a particular computation (see the PLII Language Reference
Manual, Section 4.2.5). The form of the function is,

DIVIDE (x,y,p,q)

where p and qare literal constants. They can appear as an expression or subexpression
in an arithmetic computation, and have the same effect as the statement:

DECIMAL (x/y,p,q)

As before, y divides x, but the precision and scale values are forced to (p,q). PL/I
carries out the computation as described above, and then shifts the resulting value by
the appropriate number of digits to obtain the desired precision and scale.

End of Section 15

References: Sections 3.1.2,4.2 LRM

196

Section 16
Commercial Processing

Commercial applications of PL/I use decimal calculations. The four programs in this
section illustrate PLII built-in functions, EDIT formats including Picture, and the method
of breaking down a complex program into small, logically distinct procedures.

16.1 A Simple Loan Program

Listing 16-1 shows the LOAN1 program that computes a loan payment schedule
using three input values corresponding to the loan principal (P), the yearly interest rate
(i), and monthly payment (PMT). LOAN1 continuously applies the following algorithm
until the remaining principal reaches zero, and the loan is paid off.

The algorithm is:

1. Each month, increase the starting principal P by an amount fixed by the interest
rate.

p = P + (i * P)

2. Each month, reduce the remaining principal by the payment amount.

P = (P + (i * P» - PMT

LOAN1 assumes that the principal does not exceed $999,999,999.99. Thus the
declaration on line 12 defines P as a FIXED DECIMAL variable with precision 11 and
scale 2. The payment does not exceed $9,999.99, so PMT is declared as FIXED DEC
IMAL with precision 6 and scale 2. Finally, LOAN1 defines the interest rate i as FIXED
DECIMAL(4,2), allowing numbers as large as 99.99%. The two variables m and y
correspond to the month and year, beginning at the first month of the first year.

LOAN1 reads the initial values between lines 17 and 22. In this example, LOAN1
does not perform any range checking. Thus it can accept negative values, and can
process payment values that cannot payoff the loan. These checks would have to be
made in a real application environment.

197

16.1 A Simple Loan Program PL/I Programming Guide

On each iteration, LOAN1 increases the month until it reaches the 12th month, at
which point the built-in MOD function, line 26, increments the year. LOAN1 then
displays the current principal P on line 32, and adds the monthly interest on the
following line.

LOAN1 performs the computation on line 33. The variable i has precision and scale
4(2), while the variable P has precision and scale 11 (2). Therefore, the multiplication i
::'p yields a temporary result with precision and scale, 15(4).

Next the divisipn by the literal constant 1200 is required because the interest rate is
expressed as a percentage (division by 100) over a one-year period (division by 12). The
result of the division (i :~ P)/1200 has precision 15, because the constant 1200 has
precision and scale, 4(0). PL/I computes precision and scale in division as (15,15-15+
4-0). Finally, LOAN1 uses the built-in function ROUND to round the second decimal
place, the cents position.

In the last month, if the remaining principal is less than the payment, LOAN1
performs the test on line 34. If the test is true, line 35 changes the payment to equal
the principal. Line 36 prints the payment, and finally, line 37 reduces the principal by
the payment using the assignment statement:

p = P - PMT

Listing 16-2 shows the output from LOAN1 using an initial loan of $500, interest
rate of 140/0, and payment of $22.10 per month.

198 ALllNfORMA.T!ON PRESENTED

PL/I Programming Guide 16.1 A Simple Loan Program

1 a 1***1
2 a 1* This prOgraM produces a schedule of loan paYMents *1
3 a 1* using the following algorithM: if P = loan paYMent, *1
4 a 1* i = interest, and PMT is the Monthly paYMent then *1
5a I*P=(P+(i*P)-PMT). *1
6 a 1***1
7 a loan1:
8
9

10
11

12
13
14

15

procedure
declare
M fixed

fixed
P fixed
PMT fixed

fixed

options(rTlain) ;

binan,
binan,
decirTlal(11 ,2),
deciMal (6 ,2) ,

deciMal (4 ,2);

16 c do while('l'b);
17 c
18 c
19 c
20 c
21 c
22 c
23 c
24 c
25
26
27 e
28 e
29 e
30 e
31 d

32 d

33 d

34 d

35 d

36
37
38

39 c
ao
a1

put sKi p list('Principal ') ;
get list(P) ;
put list('Interest ') ;
get list(i);
put list('PaYMent ') ;
get lis t (PMT) ;
M = 0' - ,
Y = 0;
do while (P > 0);

if Mod(M,12) 0 then

[dO}~ = Y + 1;

put sKip list('Year' ,y);

en d ;
M = M + 1;
put sKip list(M,P);
P = P + round(i * P 11200,2);
if P < PMT

then PMT = P;
put list(PMT);
P = P - PMT;

end;
end;

end loan1;

Listing 16-1. The LOAN1 Program

ALL INFORJvlAnON PRESENTED HERE IS PROPRIETARY TO RESEARCH 199

16.1 A Simple Loan Program PL/I Programming Guide

A>loan1

Principal 500
Interest 14
Pa}'Ment 22.10

Year
500.00 22.10

2 483.73 22.10
3 487.27 22.10
II 450.82 22.10
5 433.78 22.10
6 418.74 22.10
7 399.50 22.10
8 382.08 22.10
9 384.42 22.10

10 348.57 22.10
11 328.51 22.10
12 310.24 22.10

Year 2
13 291.78 22.10
ill 273.08 22.10
15 254.15 22.10
16 235.02 22.10
17 215.88 22.10
18 198.08 22.10
19 178.27 22.10
20 158.23 22.10
21 135.95 22 • .1 0
22 115.44 22.10
23 94.89 22.10
211 73.89 22.10

Year 3
25 52.45 22.10
28 30.98 22.10
27 9.22 22.10

Principal ·'C

A>

Listing 16-2. Output from the LOAN1 Program

200

PL/I Programming Guide 16.2 Ordinary Annuity

16.2 Ordinary Annuity

Listing 16-3 shows the ANNUITY program. Given the interest rate (i) and two of
three values, ANNUITY computes either the present value (PV), the payment (PMT),
or the nur.nber of pay periods (n) for an ordinary annuity.

ANNUITY contains one main loop between lines 35 and 80 which reads the present
value, payment, and yearly interest from the console. On each iteration, you enter two
nonzero values and one zero value, then ANNUITY computes the value of the variable
that you enter as zero. ANNUITY retains the values on each loop so that you can
enter a comma if you do not want to change the value. In this example, ANNUITY
does not check that the input values are in the proper range.

1 a
2 a
3 a
LI a
5 a
6 a
7 b
8
9

10
11
12
13
1L1
15
16 b
1.7 b
18
19
20 b
21
22 b
23 b
ZLI
25
26
27
28
29 c
30 c
31 c
32 c
33

1***1
1* This prograM COMPutes either the present valueIPV), *1
1* the paYMentIPMT), or the nUMber of periods in an *1
1* ordinary annuity,

1***1
annuity:

procedure optionsIMain);
'X,replace

clear by , ... z ' ,

t ru e by , 1 ' b i
declare

PMT fixed deciMal (7 ,2),
PV fixed deciMal 19 ,Z),
I P fixed deciMal 16 ,6),

fl 0 at binary,
Y i fl oat binarY,

fl oat binan,
n fi}{edi

declare
ftc entrylfloat binary(24))

returnslchal'acter(17) vaning) i

put list Iclear,'AiAiO R DNA R Y
put sKip(2) list

ANNUITY');

1"iEnter Known Values; or 0, on Each Iteration');

err 0 r
begin;

put sKip listl 'Ailnvalid Data, Re-enter') i
!loto retrY;

end;

Listing 16-3. The ANNUITY Program

201

16.2 Ordinary Annuity

311 retrY:
35 C do while (true);
36 C

37 C

38 C

39 C

1I0 C

1I1 C

1I2 C

1I3 C

1I1i C

1I5 C

1I6 C

1I7 C

1I8 C

1I9 C

50 C

51 C

52 C

53 C

511
55 d
56 d
57 d
58 C

59 C

60 C

61 C

62 C

63 d
611 d
65
66
67
68 C

69 C

70 C

71 C

72 C

73
711 d
75
76
77
78 d
79
80 C

81

put skip(3) list('~iPresent Value ');
get list(PV);
put list('~iPaYMent I);

get list(PMT);
put list('~ilnterest Rate ');
get list(yi);
i = Y i I 1200;
put list('~iPay Periods ');
get list(n);

if PV = 0 : PMT = 0 then
x = 1 - lI(1+i)*/n;

1*****************************1
1* COMPute the present value *1
1*****************************1
if PV = 0 then

[

do;
PV = PMT * dec(ftc(x/i) 115,6);
put edit('~iPresent Value is ',PV)

(a,p'$$$,$$$,$$$V.99') ;

end;

1***********************1
1* COMPute the paYMent *1
1***********************1
if PMT = 0 then

[

do;
PMT = PV * dec(ftc(i/x) 115,8);
put edit('~iPaYMent is ',PMT)

(a,p'$$,$$$,$$$V.99') ;

end;

1*****************************1
1* COMPute nUMber of periods *1
1*****************************1
if n = 0 then

l
ldO;p = ftc(i);

n
x :_ char(PV * IP I PMT);

ceil (- log(l-x)/log(l+i));
put edit('~i' ,n,' Pay Periods')

(a ,p' ZZZ9 ' ,a) ;
end;

end;

82 end annuity;

Listing 16-3. (continued)

202 ALL !NFORJVlAT!ON PRf5ENTED

PL/I Programming Guide

PL/I Programming Guide 16.2 Ordinary Annuity

Listing 16-4 shows an interaction with the ANNUITY program in which several
different values are used as input.

A>annuity
o R DIN A R Y ANN U I T Y

Enter Known Values, or 0, on Each Iteration

Present Value 32000
PaYMent 0
Interest Rate 8.75
Pay Periods 360
PaYMent is $251.74

Present Value I

PaYMent 0
Interest Rate I

Pay Periods 240
PaYMent is $282.78

Present Value 0
PaYMent
Interest Rate I

Pay Periods
Present Value is

Present Value 32000
PaYMent
Interest Rate I

Pay Periods 0
240 Pay Periods

Present Value 'C
A>

$31,998.87

Listing 16-4. Interaction with the ANNUITY Program

16.2.1 Mixed Data Types

ANNUITY uses both FLOAT BINARY and FIXED DECIMAL data because it must
perform a mixture of decimal arithmetic calculations and analytic function evaluations.
The variables used throughout the program are "defined between lines 12 and 18 as
follows:

• PMT holds the payment value, is declared as FIXED DECIMAL(7,2), and can
be as large as $99,999.99.

INfOf:tM.r\TlON UU"'-T",n.n 203

16.2 Ordinary Annuity PL/I Programming Guide

• PV holds the present value, is declared as FIXED DECIMAL(9,2), and can be
as large as $99,999,999.99.

• The variable IP holds the interest rate for a one month period, and is declared
as FIXED DECIMAL with six decimal places.

• The variable n holds the number of payment periods, is declared as FIXED
BINARY, and can range from 1 to 32767.

• The variables x, yi, and i are FLOAT BINARY numbers used during the com
putations to approximate decimal numbers with 7 decimal places.

ANNUITY computes the unknown value using the equations shown below, rather
than the iteration. ANNUITY assumes the interest rate is greater than zero.

First, the present value is given by:

1
1

(1)
PV = PMT

Transposing equation (1) gives:

PMT = PV
1

1
(1 + i) n (2)

Finally, solving for n gives:

Log (1 - PV))
PMT

n = (3)
Log (1 + i)

The following expression appears in both equations (1) and (2):

1 -1/(1 + i) ** n

204

PL/I Programming Guide 16.2 Ordinary Annuity

Therefore, ANNUITY stores this value in the variable x, line 47, and uses it when
evaluating PV and PMT. x is only an approximation of the decimal value given
by this expression.

16.2.2 Evaluating the Present Value PV

If you enter a zero value for PV, then ANNUITY executes the DO-group between
lines 53 and 57, and computes PVas:

pl,l = PMT * dec (ftc (x / i) ,1S .6>;

Line 20 declares ftc as an external subroutine. It is part of the PLII Run-time Sub
routine Library (RSL), so ANNUITY only needs to declare it as an entry constant to
use it.

The division xli produces a FLOAT BINARY temporary result that ftc then converts
from FLOAT to CHARACTER form. For example, suppose that xli produces the value
3.042455E + 01. Then ftc(x/i) returns 30.42455 which is acceptable for conversion to
decimal. If PL/I cannot convert the floating-poiJ?t argument to a 15-digit decimal num
ber, ftc signals the ERROR(1) condition, indicating a conversion error.

Finally, the built-in DECIMAL function is applied to the character string to convert it
to a specific precision and scale, 15(6). When this is done, the multiplication and
subsequent assignment to PMT takes place.

How is this particular value for precision and scale decided? To answer the question,
first consider a restricted form of the same program,

declare
PMT fixed decilTlal (7 .2).
PI,! fixed decilTlal (8 .2).
Q fixed deciITlal(u.I.l);

PI,! = PMT * Q;

where you must decide on the appropriate constant values for u and v.

PV has precision and scale 9(2), and thus there must be seven digits in the whole part
and two digits in the fraction. PL/I generates the full seven digits in the whole part if the
product PMT ::. Q results in any of the precision and scale values:

(9,2) (10,3) (11,4) (12,5) (13,6) (14,7) (15,8)

205

16.2. Ordinary Annuity PL/I Programming Guide

Theassignment to PV truncates any fractional digits beyond the second decimal place.
Because PMT has precision and scale (7,2), you can choose Q with a precision and scale
of (15,6). Then the multiplication produces a result with precision and scale,

(min(15,7 + 15 + 1),2 + 6) = (15,8)

according to the rules stated previously.

Given an expression with precision and scale values as shown below,

a
(p,q)

b
(r,s)

* c
(u,v)

where p, q, r, and s are constants, you can set the precision and scale of eta:

u = 15 v = 15 - (p + q - s)

Thus, using the values shown in the original program, the precision and scale of Q
becomes:

v = 15 - (9 + 2 - 2) = 8, or (u,v) (15,6)

16.2.3 Evaluating the Payment PMT

If you enter a nonzero present value for PV and a zero value for the payment PMT,
then ANNUITY enters the DO-group beginning at line 63 and computes the value of
PMT as:

PMT = pl,) * dec (ftc(i/x)t15tB);

The computation uses essentially the same technique as shown in the previous exam
ple. You must decide the precision and scale of the second operand in the multiplication.
You are really concerned only with the value of the scale because the precision can be
taken as 15.

Using the analysis shown above, evaluate the form,

a
(7,2)

206

b
(9,2)

* c
(15,v)

DIGITA.L

PL/I Programming Guide 16.2 Ordinary Annuity

and determine the value for v:

v = 15 - (p + q - s) = 15 - (7 + 2 - 2) 8

16.2.4 Evaluating the Number of Periods n

When you enter nonzero values for PV and PMT, but set the number of periods to
zero, ANNUITY executes the DO-group beginning on line 73 to compute n. The
assignment on line 74 first changes the interest for a monthly period from FLOAT
BINARY to FIXED DECIMAL.

Next, the assignment on line 75,

x = char(PV * IP / PMT);

first comput~s the partial decimal result PV * IP / PMT, then converts the result to
CHARACTER, and then to FLOAT BINARY through the assignment to x.

The multiplication PV * IP produces a temporary result with the precision and scale:

PV
(9,2)

I
* IP

(7,2)

I

The temporary result is now divided by PMT and results in another temporary result
with the following precision and scale,

PV '~IP /
(15,4)

I
I

(15,2)

PMT
(7,2)

I

because, according to the rules for division,

(15,15-p+q-s) = (15,15-15+4-2) = (15,2)

thus providing two decimal places in the computation.

DIGITAL RESEARCH 207

16.2 Ordinary Annuity PL/I Programming Guide

The intermediate conversion to CHARACTER form is necessary because otherwise
PL/I would first convert the intermediate result to FIXED BINARY, and then to FLOAT
BINARY, resulting in truncation of the fraction. This sequence of conversions is nec
essary to maintain compatibility with the full language.

If required, you could generate additional fractional digits by applying the DECIMAL
built-in function following the multiplication,

x = char(dec(PV*P, 11,4) I PMT);

and produce a quotient with precision and scale:

(15,15-11 +4-2) = (15,6)

ANNUITY uses the value x in the expression on line 76 to compute the number of
payment periods, and applies the CEIL function to the result so that any partial month
is treated as a full month in the payment period analysis.

Finally, ANNUITY uses the Picture edit format to write out the values of PV, PMT
and n.

16.3 Loan Payment Schedule Format

The LOAN2 program shown in Listing 16-5 is essentially the same as that presented
in Section 16.1, but it has a more elaborate analysis and display format. LOAN2 uses
an algorithm similar to that described in Section 16.1. The main processing occurs
between lines 101 and 136, where the program increases the initial principal by the
monthly interest, and reduces it by the monthly payment until the principal becomes
zero.

The four listings that follow the discussion of the program show several examples
of interaction with LOAN2.

Listing 16-6 shows a minimal display corresponding to a loan of $3000 at a 14 %
interest rate with a payment of $144.03. Assume an inflation rate of 0% with a starting
payment on 11180, and end-of-year taxes due in December.

The display shows the principal, interest in December, monthly payment, amount
paid toward principal in December, and amount of interest paid in the last month of
the fiscal year.

208

PL/I Programming Guide 16.3 Loan Payment Schedule Format

Listing 16-7 shows another execution using the same values as the first time, but
using a display level of 1. The output also contains the yearly interest paid on the loan
for each fiscal year that would be deducted from the taxable income.

Listing 16-8 uses the same initial values of the previous examples, but provides a
full display of the monthly principal, interest, monthly payment, payment applied to
the principal, and interest payment.

Listing 16-9 also shows the same loan and interest rate with an adjustment in dollar
value due to inflation. This example assumes the inflation rate of 10%, so that all
amounts are scaled to the value of the dollar at the time the loan is issued.

For tax reporting, the display showing the total interest paid at the end of each year
is not scaled, and thus does not match the sum of the interest paid during the year. If
we assume a 0% inflation rate, the total loan payment is 3,456.97, taken from the
previous output.

But if we assume an inflation rate of 10%, the total cost of the loan in dollars today
IS,

2,457.00
+ 374.25

2,831.25

resulting in a net gain of 68.75 over a two year period!

1 a 1***I
2 a 1* This prOgraM COMPutes a schedule of loan paYMents *1
3 a 1* using an elaborate analysis and display forMat. *1
1I a
5 a

1* It contains five internal procedures: DISPLAY,
1* SUMMARY, CURRENT_YEAR, HEADER, and LINE.

6 a 1***I
7 a loan2:
8 procedure options(Main) j
8 b ~replace

10 b true by'l'b,
11 false by 'O'b,
12
13

clear by'hz'j

Listing 16-5. The LOAN2 Program

209

16.3 Loan Payment Schedule Format PL/I Programming Guide

14 b
15 b
16 b
17 b
18 b
19 b
20 b
21 b
22 b
23 b
24
25 b
26 b
27
28
29
30 b
31 b
32 b
33
34
35 b
36 b
37 b
38 b
39 b
40 b
41 b
42 b
43 b
44 b
45 c
46 c
47 c
48 c
49 b
50 b
51 b
52 b
53 b
54 b
55 b
56 b
57 b

210

declare
end bit(1),
M fixed binary,
SM fixed binary,

fixed binarY ,
sy fixed binary,
fM fixed binary,
dl fixed binary,
P fixed deciMal(10,Z) ,
PV fixed deciMal(10,2) ,
PP fixed deciMal(10,2) ,
PL fixed deciMal (10,2) ,
PMT fixed deciMal (10,2) ,
PMV fixed deciMal (10,2) ,
INT fixed deciMal (10,2) ,
YIN fixed deciMal (10,2) ,
IP fixed deciMal (10,2) ,
yi fixed deciMal(4,2) ,

fixed deciMal (4 ,2),
INF fixed deciMal (4 ,3) ,
ci fixed deciMal(15114) ,
f i fixed deciMal (7,5) ,
i r fixed deciMal (4 ,2);

declare
naMe character(14) varyin~ static initial('$con'),
output file;

put list(clear"AiAiS U M MAR Y o F PAYMENTS');

on undefinedfile(output)

L
be~in;

put skip list(,AiAicannot write to' ,naMe);
~oto open output;

end;

open output:
put skip(2) list(,AiAiOutput File NaMe ');
~et list(naMe);

[

if naMe = '$con' then
open file(output) title('$con') print pa~esize(O);

else
open file(output) title(naMe) print;

Listing 16-5. (continued)

lNFOR?V1/\nON

PL/I Programming Guide 16.3 Loan Payment Schedule Format

58
59 c
60 c
61 c
62 c
63

on error

[

begin;
put sKip list("i'iBad Input Datal RetrY');
goto ret ry;

en d ;

64 retrY:
65 c do while(true);
66 c
67 c
68 c
69 c
70 c
71 c
72 c
73 c
74 c
75 c
76 c
77 c

78 c
79 c
80 c
81 c
82 c

83 c
84 c
85 c
86 c
87 c
88 c

89 c
90 c
91 c
92 c
93 c
94 c
95 c
96 c
97 c
98 c
88 c

100 c

put sKip(2) list("i'Principal
get list(PV) ;
P = PV;
put list("i'iInterest
get list(Yi);
i = Yi;
put lis t (, ,. i ,. i Pay Men t
get lis t (PMl.)) ;
PMT = PMl,l;
put list (' ,. i·' iX,Inflation
get list(ir);
fi = 1 + ir/1200;
ci = 1.00;

') ;

') ;

;) ;

put list('"i"iStarting Month ');
get list(sM);
put list('"i"iStarting Year ');
get list(sy);

put list("·i'·iFiscal Month ');
get list(fM);
put edit('"i"iDisplay Level

'···i'·iYr Results: 0 '

'"i"iYr Interest: 1 '
"·i'·iAll l,lalues: 2 ')

(s Kip, a) ;
get list(dl);
if dl < 0: dl > 2 then

signal error;
M = S M ;

}' = s Y ;

I P = 0;
PP = 0;
YIN = 0;
if naMe "= " then

put file(output) page;
call header();

') ;

Listing 16-5. (continued)

lNFORMATION PRESENTED 15 PROPRiETARY TO Dl(:rrAl RESEARCH 211

16.3 Loan Payment Schedule Format PL/I Programming Guide

101
102
103
104
105
106
107
108
108
110
111
112
113
114 e
115 e
116 e
117 e
118 e
118 e
120 d
121 d
122 d
123 d
124 e
125 e
126 e
127 e
128 e
129 e
130 d
131 c
132 c

133 c
134 c
135 c
136 c

212

do while (P > 0);
end false;
INT = roun d (i * P I
IP IP + INTi
PL P;
P P + INT;
if P < PMT then

PMT = P;
P P - PMT;
PP = PP + (PL - P);
I NF = c i ;
ci=ci/fi;

1200, 2) ;

if P = 0 : dl > 1 : M = fM then
do;

[

put file(output) sKip
edit(':'tlOO*M+Y) (a,p'99/99');

call display(PL * INF, INT * INF,
PMT * INF, PP * INF, IP * INF);

en d ;
if M = fM & dl > 0 then

call SUMMarY();
M = M + 1;
if M > 12 then

[

do ~ : : \ 1;

if Y > 99 then
Y = 0;

end;
end;

o then

[

if dl
cailline();

else
if hend then

call SUMMary();
end retrY;

Listing 16-5. (continued)

PL/I Programming Guide 16.3 Loan Payment Schedule Format

137 1**1
138 1* This procedure perforMs the output of the actual *1
139 1* paraMeters passed to it by the Main part of the *1
140 1* pro!!'raM. *1
141
142
143 c
144 c
145 c
146 c
147 c
148 c
149 c
150 c
151 c
152
153
154 b
155 b
156
157
158
159
160
161
162
163
164
165
166
167 b
168 b
169 c
170 c
171 c
172 c
173 c
174 c
175 c
176 c
177 c
178 c
179 c
180 c
181 c
182

1**1
display:

pro c e d u re (a I b I C I d,e) ;
declare

(a,b,c,d,e) fixed deciMal<10,2)j

put file (output) edit
(': ',a,':' Ib,': ',c,': ',d,': ',e,': ')
(a,2(2(p'$zz,zzz,zz9v.99' ,a),

p'$zzz Izz9.v99' ,a)) j
end displayj

1***1
1* This procedure COMPutes the SUMMary of Yearly *1
1* interest. *1
1***1
SUMMary:

procedure;
end = true;
call current year(IP-YIN);
YIN = IPj

end SUMMary;

1**1
1* This procedure COMPutes the interest paid durin!!' *1
1* current Year. *1
1**1
current year:

procedure(l);
declare

yp fixed binary,
I fixed deciMal(10,2)j

y p = y;

if fM < 12 then
yp = yp - 1j

call line()i
put sKip file(output) edit

(':','Interest Paid Durin!!' ,\I,yp,'_\\',y,' is 'til':')
(a,x(15) ,2(a,p'99') ,a,p'$$$,$$$,$$9V.99' ,x(16) ,a);

call line()i
end current Year;

Listing 16-5. (continued)

213

16.3 Loan Payment Schedule Format PL/I Programming Guide

183
184
185
186
187
188 c
189 c
190 c
191 c
192 c
193 c
194 c
195 c
196 c
197 c
198 c
199 c
200 c
201 c
202 c
203 c
204
205
206
207
208
209 c
210 c
211 c
212 c
213 c
214 c
215 c
2.16
217

1**1
1* This procedure defines and prints out an elaborate *1
1* header forMat. *1
1**1
header:

procedure;
put file(output) list(clear);
call line();
put file(output) sKip edit

(':' ,'L 0 A N PAY MEN T
(a,x(19))j

cailline()i
put file(output) sKip edit

SUMMARY',':')

(':','Interest Rate',yi,':t','Inflation Rate'rir,':t',':')
(a,x(15) ,2(a,p'b99v.99' ,a ,x(6)) ,x(9) ,a);

call line();
put file(output) sKip edit
(':Date :',' Principal :','Plus Interest:',' PaYMent :',

'Principal Paid:','Interest Paid :') (a);
call line();

end header;

1***1
1* This procedure prints out a series of dashed lines. *1
1***1
lin e :

procedure;
declare

i fixed bin;
put file(output) sKip edit

('-------' ,'------------',
('---------------' do i = 1 to 4)) (a);

end line;

218 end loan2i

Listing 16-5. (continued)

214 ALL iNfORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

PL/I Programming Guide 16.3 Loan Payment Schedule Format

16.3.1 Variable Declarations

Starting on line 14, LOAN2 declares several data items:

• PV
• yi
• PMV
• ir
• sm
• sy
• fm
• dl

present value, initial principal
yearly interest rate
monthly payment
yearly inflation rate
starting month of payment (1-12)
starting year of payment (0-99)
fiscal month, end of fiscal year (1-12)
display level (0-2)

LOAN2 declares the initial principal and payment variables as FIXED DECIMAL
(10,2), allowing values as large as $99,999,999.99.

It also allows the yearly interest rate and yearly inflation rate to be as large as 99.99.

The month and year variables, sm, sy, and fm are FIXED BINARY and LOAN2
assumes that these variables properly represent month and year values.

The variable dl is the display level and defines the amount of information LOAN2
displays during a particular iteration of the program. That is, 0 produces an abbreviated
display, 1 produces additional information, and 2 gives the full trace.

LOAN2 also declares several other variables used throughout the program:

• P
• PP
• PL
• PMT
• INT
• YIN
• IP

• i .INF

• ci

• fi

initially set to PV, but changes during execution
total principal paid
principal for current line, holds P for display purposes
payment initially set to PMV; changes during execution
computed interest during current month
interest at beginning of current year
total interest paid
interest rate, initialized to yi
percent devaluation of original dollar due to inflation
current devaluation due to inflation
factor for computing current inflation

P and PMT are working variables for the principal and payment, so that the program
does not destroy the original variables PV and PMV during the computations. If you
enter a comma for subsequent input requests, LOAN2 retains the previous value.

215

16.3 Loan Payment Schedule Format· PL/I Programming Guide

16.3.2 Program Execution

The program execution begins on line 42 with a clear screen character for the Lear
Siegler ADM-3A CRT. This control character is defined in the %REPLACE statement
on line 12. If you are not using an ADM-3A, you can substitute the proper character
and recompile the program.

LOAN2 sets an ON-condition to trap possible errors in the OPEN statement, lines
54 to 56, and then prompts for the report output filename. LOAN2 initializes the
variable name to the value $con, and if you enter a comma rather than a file or device
name, LOAN2 assumes the console as the output device.

If you enter either a comma or the name $con as the output filename, then the OPEN
statement, line 54, opens the console with a zero page size. This means that the run
time system does not issue any form-feeds at the end of each logical page. Otherwise,
LOAN2 opens the output file or device as a normal PRINT file so that the run-time
system places form-feeds into the output file or sends them to the physical output
device, usually the printer, denoted by $lst.

The ON condition set at line 58 traps any occurrence of the ERROR condition,
including ERROR(l), which indicates a data conversion error. LOAN2 also program
matically signals invalid data on line 92 if the value of dl is out of range.

LOAN2 does not contain a complete set of routines for error checking. To make
the program commercially functional, it should signal errors for all other invalid input
data items, such as a negative interest rate. Furthermore, out-of~bounds computations
should signal a FIXED OVERFLOW condition.

Beginning on line 67, LOAN2 reads a set of input values, and then initializes the
variables for each set of input values beginning on line 93. The PUT LIST statement
on line 99 executes a page eject if the output file is not the console. Line 100 then
prints a page header by calling the HEADER subroutine. You should compare the
formatting statements in the header subroutine with the output values shown in the
output listings.

The main processing takes place in the DO-group beginning at line 101, that executes
repeatedly until the principal is reduced to zero. The variable end indicates whether
an end-of-year summary has been printed, line 159, and thus avoids the possibility of
printing a duplicate summary, line 134.

216

PL/I Programming Guide 16.3 Loan Payment Schedule Format

On lines 103 and 104, LOAN2 computes the monthly interest INT for the current
principal P and sums it in IP. LOAN2 saves the current principal for later display in
PL, and then adds the monthly interest to the principal. If the payment exceeds the
remaining principal on line 107, LOAN2 reduces the payment to cover this remainder.
It then reduces the principal by the payment amount, eventually producing a zero value
if the original payment is sufficient to payoff the loan. Then on lines 111 and 112
LOAN2 sums the total principal paid and computes the inflation rate.

16.3.3 Display Formats

The decision logic for displaying the current computation is somewhat complicated
because LOAN2 has three display formats. If it is the last iteration, the principal P is
zero, you select the full display format, dl > 1, or the current month is the end of the
fiscal year, m = fm, then LOAN2 writes the current computation between lines 114
and 118.

The Picture format p'99/99' displays the month and year, where 100*m + y produces
a four-digit number to match this format. For example, if m = 11 and y = 64, then,

100 * m + y = 100 * 11 + 64 = 1164

1164 appears as 11164, when printed using the given Picture format.

The DISPLAY subroutine actually performs the output function, based upon the six
actual parameters listed in the CALL statement on line 117. The main program first
adjusts each argument, by the current inflation rate INF, and then passes it to DISPLAY.
If the inflation rate is set to 0%, the value of INF is 1.00 at this point in the computation.

The body of the display subroutine, listed between lines 142 and 151 could be
included in the line subroutine because there is only one call to display. However,
display illustrates FIXED DECIMAL parameter passing mechanisms and serves to break
the program into smaller, more readable, segments. Again, you should compare the
format specifications in the display subroutine with the actual program output.

The statement on line 120 then checks for the end of fiscal year, m = fm, and, if
the display mode is either 1 or 2, LOAN2 prints a yearly interest summary using the
summary subroutine. Summary in turn, calls the current_year subroutine to write the
yearly interest paid, IP-YIN. The assignment on line 161 retains the base value for the
next year's display in YIN.

217

16.3 Loan Payment Schedule Format PL/I Programming Guide

If the fiscal year does not end in December, fm< 12, current_year splits the interest
rate payment between two calendar years, yp = y - 1. Again, you could combine
current_year with the summary subroutine without changing the overall program logic.

The end of the main loop, between lines 131 and 136, contains statements that
finalize the report. If you select the abbreviated display format, dl = 0, the CALL
statement on line 132 invokes LINE and prints a line of dashes to complete the display .

. Otherwise, LOAN2checks to ensure there have been intervening output lines f end). If
there have been, it prints an interest summary on line 130. Finally, control returns to the
top of the DO-group, and LOAN2 reads additional input parameters.

A>loan2
403
404 SUM MAR Y 0 F PAY MEN T S
405
400 Output File NaMe I

401
402
403
404
405
406
407
408

Principal
Interest
PaYMent
l:Inflation
Starting Month
Starting Year
Fiscal Month

409 ~isplay Level
410 Yr Results: 0
411 Yr Interest: 1
412 All Values: 20
413
414
415

3000
14
144.03
0
11
80
12

416
417

LOA N PAY MEN T SUM MAR Y

418
419

Interest Rate 14.00l: Inflation Rate 00,00l:

420 :Date :Principal :Plus Interest:PaYMent :Principal Paid:Interest Paid:
421
422
423
424
425

218

:12/80:$ 2,890,97:$
:12181:$ 1,479.02:$
:11/82:$ 0,25:$

33,73:$ 144,03:$
17,26:$ 144,03:$
0,00:$ 0,25:$

219,33:$
1,647,75:$
3,000,00:$

Listing 16-6. First Interaction with LOAN2

68,73:
368,67:
456,97:

PL/I Programmer's Guide 16.3 Loan Payment Schedule Format

Output File NaMe I

Principal
Interest
PaYMent
IInflation
Starting Month
Starting Year
Fiscal Month

~isplay Level
Yr Results: 0
Yr Interest: 1
All Values:

LOA N PAY MEN T SUM MAR Y

Interest Rate 14.001 Inflation Rate OO.OOI

:Date :Principal :Plus Interest :PaYMent :Principal Paid:Interest Paid:

219.33:$ 68.73:

Interest Paid During '80-'80 is $68.73

: 12/81 : 1,479.02:$ 368.67 :

Interest Paid During '81-'81 is $299.94

0.25:$ 0.00:$ 0.25:$ 3,000.00:$ 456.97 :

Interest Paid During '82-'82 is $88.30

Listing 16-7. Second Interaction with LOAN2

219

16.3 Loan Payment Schedule Format

Output File NaMe I

Principal
Interest
PaYMent
1Inflation
Startin~ Month
Startin~ Year
Fiscal Month

Display Level
Yr Results:
Yr Interest:
All Values: 2 2

LOA N PAY MEN T

Interest Rate la.001

5 U M MAR Y

Inflation Rate 00.001

PL/I Programmer's Guide

:Oate :Principal :Plus Interest :PaYMent :Principal Paid:Interest Paid:

: 11/80:$ 3.000.00:$
:12/80:$ 2.890.97:$

35.00 : $ 1 aa. 03: $
33.73 :$ laa.03:$

Interest Paid During '80-'80 is

109.03:$
219.33:$

$68.73

35.00:
68.73:

--

:01181:$ 2.780.67:$ 32.aa:$ laa.03:$ 330.92:$ 101.17:
:02/81:$ 2.669.08:$ 31.1a:$ laa.03:$ aa3.81 :$ 132.31 :
:03/81:$ 2.556.19:$ 29.82:$ laa.03:$ 558.02:$ 162.13:
:Oa/81:$ 2.aal.98:$ 28.a9:$ laa.03:$ 673.56:$ 190.62:
:05/81:$ 2.326.aa:$ 27.1a:$ laa.03:$ 790.a5:$ 217.76:
:06/81:$ 2.209.55:$ 25.78:$ laa.03:$ 908.70:$ 2a3.5a:
:07181:$ 2.091.30:$ 2a.aO:$ laa.03:$ 1,028.33:$ 267.9a:
:08/81:$ 1,971.67:$ 23.00:$ laa.03:$ 1 ,1 a9. 36: $ 290.9a:
:09/81:$ 1,850. 6a: $ 21.59:$ laa.03:$ 1,271.80:$ 312.53:
: 10/81 : $ 1,728.20:$ 20.16:$ laa.03:$ 1.395.67:$ 332.69:
: 11181 : $ 1.60a.33:$ 18.72: $ Il1lI.03:$ 1,520.98:$ 351.al:
: 12/81: $ l.a79.02:$ 17.26:$ laa.03:$ 1.6a7.75:$ 368.67:

Inte rest Paid Du r i n g '81- '81 is $299.9a
--
:01182:$ 1,352.25:$ 15.78:$ laa.03:$ 1.776.00:$ 38a.a5:
:02182:$ 1 ,22a. 00: $ la.28:$ laa.03:$ 1,905.75:$ 398.73:
:03/82:$ 1,0911.25:$ 12.77: $ ll1a.03:$ 2,037.01:$ 1111.50:
:Oa/82:$ 962.99:$ 11.23:$ laa.03:$ 2.169.81:$ a22. 73:
:05/82:$ 830.19:$ 9.69:$ laa.03:$ 2.30a.15:$ a32.a2:
:06/82:$ 695.85:$ 8.12: $ laa.03:$ 2.aaO.06:$ lIaO.5a:
:07/82:$ 559.9a:$ 6.53:$ laa.03:$ 2.577.56:$ aa7.07:
:08/82',$ a22.aa:$ a.93:$ laa.03:$ 2,716.66:$ a52.00:
:09/82:$ 283.3a:$ 3.31: $ laa.03:$ 2,857.38:$ 1155.31 :
: 10/82:$ la2.62:$ 1.66: $ laa.03:$ 2.999.75:$ a56.97:
:11182:$ 0.25:$ 0.00:$ 0.25:$ 3.000.00:$ a56.97:

Interest Paid During '82-'82 is $88.30

Listing 16-8. Third Interaction with LOAN2

220 INfORMATION

PL/I Programmer's Guide 16.3 Loan Payment Schedule Format

Output File Name,
Principal
Interest
Payment
lInflation 10
Starting Month
Starting Year
Fiscal Month 10

Display Level
Yr Results: 0
Yr Inte rest:
All Values: Z

LOA N PAY MEN T SUM MAR Y

Interest Rate 14.00l Inflation Rate 10.00!

:Date : Principal :Plus Interest: Payment :Principal Paid: Interest Paid:

:11180:$
: 12/80:$
:01181:$
:02/81:$
:03/81:$
:04/81:$
:05/81:$
:06/81:$
:07/81:$
:08/81:$
:09/81:$
: 10181 : $

3,000.00:$
2,864.95:$
2,733.39:$
2,602.35:$
2,471.83:$
2,341.85:$
2,212.44:$
2,083.60:$
1,955.36:$
1,829.70:$
1,702.58\$
1,576.11: $

Inte rest Paid

35.00:$
33.42:$
31.88:$
30.36:$
28.83:$
27.32:$
25.81: $
24.31 \$
22.81: $
21.34:$
19.86:$
18.38:$

144.03:$
142.73:$
141.58\$
140.42:$
139.27:$
138.12: $
136.97:$
135.82:$
134.66:$
133.65: $
132.50:$
131.35:$

Du r i n g '80-' 81 is

109.03:$
217.35:$
325.29:$
432.71:$
539.60:$
645.94:$
751.71\$
856.90:$
961.48:$

1,066.60:$
1.170.05:$
1,272.85:$

$332.69

35.00:
68.11 :
99.45:

129.00:
156.77:
182.80:
207.08:
229.65:
250.52:
269.99:
287.52:
303.41:

: 11181 : $ 1 ,451.91: $ 16.94\$ 130.34:$ 1,376.48:$ 318.02:
: 12/81 : $ 1,326.68:$ 15.48:$ 129.19: $ 1,478.03:$ 330.69:
:01182:$ 1,203.50:$ 14.04:$ 128.18:$ 1,580.64:$ 342.16 :
:02/82:$ 1,079.56:$ 12.59:$ 127.03:$ 1,680.87:$ 351.67 :
:03/82:$ 957.46:$ 11. 17: $ 126.02:$ 1,7~2.38:$ 360.06:
:04/82:$ 835.87:$ 9.74:$ 125.01: $ 1,883.39:$ 366.92:
:05/82:$ 714.79:$ 8.34 \$ 124.00:$ 1,983.87:$ 372.31 :
:06/82:$ 594.25:$ 6.93:$ 123.00:$ 2,083.81:$ 376.22:
:07/82:$ 474.26:$ 5.53:$ 121.99:$ 2.183.19:$ 378.66:
:08/82:$ 354.84:$ 4.14: $ 120.98:$ 2,281.99:$ 379.68:
:09/82:$ 236.02:$ 2.75:$ 119.97:$ 2,380.19:$ 379.27:
:10/82:$ 117.80: $ 1.37: $ 118.96:$ 2,477.79:$ 377.45:
---_.-

Interest Paid Du r i n g '81-' 82 is $124.28

:11182:$ 0.00:$ 0.20:$ 2,457.00:$ 374.25:

Interest Paid During '81-'82 is $0.00

Listing 16-9. Fourth Interaction with LOAN2

221

16.4 Computation of Depreciation Schedules PL/I Programming Guide

16.4 Computation of Depreciation Schedules

The final example of commercial processing involves evaluating depreciation sched
ules. Listing 16-10 shows the program called DEPREC that reads several input values
and prints a table of output according to one of three different depreciation schedules:

• straight-line
• sum of the years
• double declining

The program also accounts for bonus depreciation during the first year, reduction
in taxable income due to sales tax, and investment tax credit on new or used equipment.

Listings 16-11 through 16-15 illustrate sample interaction with DEPREC using var
ious input parameters.

16.4.1 General Algorithms

DEPREC uses the following general algorithms:

222

• Investment Tax Credit (ITC) is assumed to be 10% of the selling price applied to
the full price of new equipment, or up to $100,000 in the case of used equipment.
(See the %REPLACE statement, line 11.)

• Bonus depreciation is assumed to be 10% of the selling price, up to a maximum
of $2,000. (See lines 12 and 13.)

• Under all three depreciation schedules, the amount to depreciate is taken as the
difference between the selling price, minus the bonus depreciation, and the
residual value of the equipment.

• Under all three schedules, the depreciation value computed for the first year is
prorated by month through the remainder of the fiscal year, not including bonus
depreciation.

PL/I Programming Guide 16.4 Computation of Depreciation Schedules

• In straight-line depreciation, the amount to depreciate is spread uniformly over
the number of years in which the depreciation occurs.

• For the sum of the years, the year values are summed starting at 1, through the
number of years in which depreciation takes place:

ys = 1 + 2 + 3 + . . . + years

• The depreciation is distributed over the total number of years by computing
years/ys multiplied by the depreciation value for the first year, (years-l)/ys
multiplied by the remainder for the second year, and so forth, until the last
year, in which lIys multiplied by the remaining depreciation value is taken.

• For double declining, yearly depreciation is computed as the book value divided
by the number of years, which is then multiplied by 2 for new equipment, or
1.5 if the equipment is used.

DEPREC first reads the selling price, residual value, percentage sales tax, the per
centage income tax bracket, the number of months remaining in the current fiscal year,
and the number of years in which to depreciate the equipment. It then asks whether
the equipment is new or used, and reads the depreciation schedule code for the sub
sequent report.

1 a
2 a
3 a
II a
5 a
G a
7
8
9

10
11
12
13
111

1***1
1* This prOgraM calculates three Kinds of depreciation *1
1* schedules: straight_line, sUM_of_the_years, and *1

1***1
depreciate:

procedure optionslMainl;
'X:replace

clear screen by \·Z/,

indent b}' 15,
ITe rate by .1,
bonus rate by .1,
bonus Max by 2000;

Listing 16-10. The DEPREC Program

H~FORMATlON 223

16.4 Computation of Depreciation Schedules PL/I Programming Guide

15
16
17

18
19
20
21
22
23
211
25
26
27
28
29
30
31
32
33
311
35
36
37
38
39
1I0
1I1
1I2
1I3
1I1i
liS
1I6
1I7
1I8
1I9
50
51

52
53

224

declare
sellin9' price decima1(8,2),
adjusted price decimal(8,2),
residual l)alue decima1(8 ,2),
year value decimal(8,2),
depreciation value decimal<8 ,2),
total depreciation decimal(8,2),
book value decimal(8,2),
tax rate decimal<3,2),
sales tax decimal (8 ,2) ,
tax bracket decimal(2),
FYD decimal(8,2),
ITe dec imal (8 ,2) ,
bonus dep decimal (8 ,2) ,
months refTlainin9' decimal (2),
new character(lI),
factor decimal(2t1),
}'ears decimal(2),
year sum decimal(3),
current year deciMal(2),
select sched character(!);

declare
copy to list character(lI),
output file variable,
(s}'sprint, list) file;

declare
schedules character(3) static initial ('syd'),
schedule (0:3) entry variable;

schedule (0) error;
schedule (1) strai9'ht lin e ;
schedule (2) SUM of Years;

- -
schedule (3) double declinin9';

open file (sysprint) streaM print pa9'esize(O)
title ('$con')j

Listing 16-10. (continued)

PL/I Programming Guide 16.4 Computation of Depreciation Schedules

54 c do whilel 'l'b);
55 c put listlclear screen,'"i"i"iDepreciation Schedule');
56 c put skip(3) list('"i"iSellin~ Price? ');
57 c ~et listlsellin~ price);
58 c put list('"i"iResidual Value? ');
59 c
60 c
61 c
62 c
63 c
64 c
65 c
66 c
67 c
68 c
69 c
70 c
71 c
72 c
73 c
74 c

75 c
76 c
77 c
78 c
79 c
80 c
81 c
82 c

83 c
84 c
85 c
86 c
87 c
88 c
89 c
90 c
91 c
92 c
93 c
94 c
95 c
96 c
97 b

~et listl residual value);
put list('"i"iSales Tax IX)? ');
~et list(tax rate);
put list('"i"iTax Bracket(%)? ');
~et list(tax bracket);
put list('"i"iProRate Months? ');
~et list(Months reMaining);
put listl '"i"iHow Many Years? ');
get list(years);
put list('"i"iNew? Iyes/no) ');
get listlnel",);
put edit('···i···iSchedule:',

'·'i···iStraight Is)',
'"i"iSuM-of-Yrs Iy)',
"·i'·iDouble Dec Id)? ') (a,skip)!

get listlselect sched);
put list('"i'·iList? I}'es/no) ');
~et list(copy to list);
if COpy to list = 'yes' then

open filellist) streaM print titlel '$lst');
factor = 1.S;
if new = 'yes' then

factor = 2.0;
sales tax = deciMallsellin9' priceHax ratet12,2)/lOO+.00Si

[

if new = 'yes' : selling_price <= 100000.00 then
ITC = selling price * ITC rate;

- -
e 1 s e

ITC = 100000 * ITC rate;
bonus dep = selling price * bonus rate;
if bonus dep > bonus Max then

bonus dep = bonus Max; - -
put list(·clear screen);
call displaylsysprint);
if COpy to list = 'yes' then

call displayllist);
put skip listl"·i'·i·'i
~et skip(2);

end;

Type RETURN to Continue');

Listing 16-10. (continued)

225

PL/I Programming Guide 16.4 Computation of Depreciation Schedules

98 1**1
99 1* This procedure displays the various depreciation *1

100 1* schedules. It calls the appropriate schedule with *1
101 1* an index into an array of entrY constants. *1
102
103
104
105
106
107
108
109
110

1**1
display:

procedure(f) ;
declare

f file;
output = f;
call schedule (index (schedules ,select sched));

end displaYi

111 1**1
112 1* This is a ~lobal error recovery routine. *1
113 1**1
114
115
116
117
118
119
120
121
122
123
124
125 c
126
127 c
128 c
129 c
130 c
131 c
132 c

226

error:
procedure;
put file (output) edit('lnvalid Schedule - Enter s, y, or d')

(pa~e ,coluMn(indent) ,x(8) ,a);
call line();

end error;

1* *;;. *.* * * * * * * * * * I
1* This procedure COMPutes strai~ht_Iine depreciation. *1
1***1
strai~ht line:

procedure;
adjusted_price = sellin~ price - bonus_dep;
put file (output) edit('S T R A I G H T LIN E')

(pa~e ,coluMn(indent) ,x(Ill) ,a);
call header();
depreciation value = adjusted price - residual value;
booK value = adjusted price;
total depreciation = 0;

Listing 16-10. (continued)

ALL lNfORMATION HERE is PftOPR!£T ARY

PL/I Programming Guide 16.4 Computation of Depreciation Schedules

133
134
135
136 e
137 e
138 e
139 e
140
141
142
143
144
145 c
146 c
147

do current year = 1 to years;
year value = deciMal(depreciation value/}'ears ,8,2) + ,OOS;
if current year = 1 then

[

do;
year value = year value * Months reMaining I 12;
FYD = year value;

end;
depreciation value = depreciation value - year value;
total depreciation = total depreciation + year value;

- - -
book value = adjusted price - total depreciation;
call print line();

end;
call sUMMarY();

end straight line;

148 1***1
149 1* This procedure COMPutes depreciation based on *1
150 1* the sUM_of_the_years, *1
151 1***1
152
153 c
154
155 c
156 c
157 c
158 c
159 c
160 c
161 c
162
163 d
164 d

SUM of years:
procedure;
adjusted price = selling price - bonus depj
put file (output) edit('S U M D F THE

(page, c (j I UMn (in den t) ,)((11) ,a) ;
call header();

YEARS')

depreciation value = adjusted price - residual value;
book value = adjusted price;
total depreciation = 0;
year SUM = 0;

[

do current year = 1 to years;
year SUM year SUM + current

end;
year;

Listing 16-10. (continued)

227

16.4 Computation of Depreciation Schedules PL/I Programming Guide

165 c
166
167
168
169
170 !!

171 e
172 e
173 e
174
175
176
177
178
179 c
180 c
181
182
183
184

185
186
187 c
188 c
189 c
190 c
191 c
192 c
193 c
194 c
195 d
186
197
198 d
199 e
200 e
201 e
202 e
203 d
204 d
205 d
206 d
207 d
208 d
209 d
210 c
211 c
212 b

228

do current year = 1 to years;
year value = deciMal(depreciation value *
(year; - current year + 1) ,1Z,Z)/ year SUM + .005;
if current year 1 then

[

dO~ear_value = year_value * Months_reMainin~ / 1Z;
FYD = year value;

end;
depreciation value = depreciation value - year value;
total depreciation = total depreciation + year value;
book value = adjusted price - total depreciation;
call print line();

Lend;
call sUMMan()i

end SUM of Years;

/**1
/* This procedure COMPutes double_declinin~ */
1* depreciation. *1
1**/
double declinin~:

procedure;
adjusted price = sellin~ price - bonus dep;
put file (output) edit('D 0 U B LED EeL I N I N G/)

(pa~e ,coluMn(indent) ,x(lO) ,a);
call header();
depreciation value = adjusted price - residual value;
book value = adjusted price; - -
total depreciation = 0;
do current_Year ~ 1 to years

while (depreciation value> 0);
year value = deciMal(book value/Years,8,Z) * factor+.OOS;
if current year 1 then

[

do;
year value = year value * Months reMainin~ / 12;
FYD = year value;

end;
if Year_value> depreciation_value then

year value = depreciation value;
depreciation value = depreciation value - year value;
total depreciation = total depreciation + year_value;
book value = adjusted price - total depreciation;
call print line() j

end;
call sUhlMarY();

end double declinin~;

Listing 16-10. (continued)

IS PROPRIETARY

16.4 Computation of Depreciation Schedules PL/I Programming Guide

213 b
214 b
215
216
217 c
218 c
219 c
220 c
221 c
222 c
223 c
224 c
225 c
226 c
227 c
228 c
229 c
230 c
231 c
232 c
233 c
234 c
235 c
236 c
237 c
238 c
239 c
240 c
241 c
242
243 b

244 b
245

255

1**1
1* This procedure prints an output header record. *1
1**1
header:

procedure;
declare

new or used character(5);

[

if new = 'yes' then
new or used 'New';

else
new or used = ' Used';

put file (output) edit(

-- ,
':' ,selling price+sales tax ,new or used,

- - --
residual value,' Residual Value:',

':' ,Months reMaining,' Months Left',
tax rate,"x, Tax',tax bracKet,"X, Tax BracKet:') - -

(2(sKip,coluMn(indent) ,a),
2(p'5$$,$$$,$$9.V99' ,a),
sKip,coluMn(indent) ,a,x(5) ,f(2) ,a,2(x(2) ,p'599' ,a));

put file (output) edit(
--1 t

': Y : Depreciation: Depreciation: BooK Value
': r: For Year ReMaining I I

I

'------------------------------------~------- ______ ')
(sKip,coluMn(indent) ,a);

end header;

1***1
1* This procedure prints the current line. *1
1***1

Listing 16-10. (continued)

229

16.4 Computation of Depreciation Schedules PL/I Programming Guide

256
257
258 b
259 b
260
261 C

262 c
263 C

264 C

265 C

1***1
1* This procedure prints the SUMMary of values for *1
1* each type of depreciation schedule. *1
1***1
SUMMary:

procedure;
declare

adJ ITC decirnal(8,2),
total deciMal(S,2),
direct deciMal(8,2)i

call line();
adJ ITC = ITC * 100 I tax bracKet;
total = FYD + sales tax + adJ ITC + bonus depj
direct = total * tax bracKet I 100;
put file (output) edit(
, I

I First Year Reduction in Taxable InCOMe : I t

266 C

267 c
268 c
269 C

270 C

271 C

272 C

273 C

274 C

275 C

276 C

277 c
278 c

,--, ,
, I Depreciation , ,FYD, \: It I

, I Sales Tax , ,sales_tax, " I I I ,

, , ITC (Adjusted) , ,adJ_ITC, \: I t I

, I Bonus Depreciation , ,bonus_dep, '" I I ,

, I ------------- : I t I

, I Total for Firs t Year , ,total, '" I I , 279 c
280 c ': Direct Reduction in Tax ',direct, ':')
281 c
282 c
283 c
284
285
286
287
288

(2(sKip,coluMn<indent) ,a) ,2U!(sKiplcoluMn(indent) ,a,
p'$z,zzz,zz9v.99' ,x(3) ,a) ,sKip,coluMn(indent) ,a)) i
call line() i

end SUMMarY;

1***1
1* This procedure prints a line of dashes. *1
1***1

289
290
291
292
293
294
295
296

b line:

c[procedure;
c put file (output) edit(

c '--')
c (sKi p 'co lUMn (indent) ,a) j
c end line;
b

297 end depreciate;

Listing 16-10. (continued)

230

PL/I Programmer's Guide 16.4 Computation of Depreciation Schedules

16.4.2 Selecting the Schedule

There are two constructs in DEPREe that merit special consideration.

DEPREe uses an array of ENTRY variables to select one of three schedules. Line
42 defines the array with a subscript range of zero to three. Lines 46 to 49 initialize
the individual elements of the array, and allow indirect calls to either the ERROR
subroutine or one of the depreciation schedule handling subroutines. The actual calls
to the subroutines occur later in the program.

The schedule selection takes place on line 74, where DEPREe reads one of the
characters s, y, or d from the console into the character variable select_sched. Line 93
then invokes the DISPLAY subroutine which performs the actual dispatch to the sched
ule handler with the statement on line 108:

call schedule (index (schedules tselect sched»;

This particular statement works as follows. Line 43 defines the variable schedules,
and initializes them to the character string 'syd', where each letter corresponds to one
of the schedule-handling following subroutines:

syd
123

lli=LdOUble _declining
Lsum_of_years

straight_line

Therefore, the statement

call schedule (index(schedulestselect sched»

is equivalent to,

call schedule (index(sydtselect sched»;

and for the valid inputs s, y, or d, produces 1, 2, or 3 respectively.

231

16.4 Computation of Depreciation Schedules PL/I Programmer's Guide

Thus, if select_sched is s, the call statement evaluates to,

call schedule(1);

which calls the subroutine STRAIGHT_LINE. Similarly, an input of y or devaluates
to,

call schedule(2); or call schedule(3);

producing a call to SUM_OF_ YEARS or DOUBLE_DECLINING respectively.

If the value of select_sched is not s, y, or d, then the INDEX function returns a zero
value. All invalid character input values produce,

call schedule(O);

which calls the ERROR subroutine and prints the error message.

16.4.3 Displaying the Output

Another construct of DEPREC is the output file variable, defined on line 39. During
the parameter input phase, DEPREC prompts you with:

List? (yes/no)

A yes response sends the output from the program to both the console and the list
device.

Line 40 declares two file constants, sysprint and list, to address the console and the
list device. DEPREC first opens the console file, line 51, using an infinite page length
to avoid form-feed characters.

232

PL/I Programmer's Guide 16.4 Computation of Depreciation Schedules

On any iteration of the main DO-group, if you give an affirmative response on line
77, DEPREC subsequently opens the list device, line 78. This statement can be executed
several times during a particular execution of the program, but only the first OPEN
statement has any effect; PL/I ignores the OPEN statement if the file is already open.

Line 91 calls the DISPLAY subroutine to compute and display the output report for
a specific set of input values. DISPLAY has a single actual parameter consisting of the
file constant sysprint that is defined as the formal parameter f on line 104. Line 107
assigns the formal parameter to the global variable output. Subsequent PUT statements
write data to the console, producing the first report.

On line 92, if the variable copy_to_list has the character value yes, then DEPREe
calls D ISPLA Yonce again. This time, the actual parameter is list, corresponding to the
system list device. Thus, the output file variable is indirectly assigned the value list,
and all PUT statements that reference file output send data to the printer. This results
in both a soft and hard copy of the report.

DEPREC uses several different forms of decimal arithmetic. Examine the various
declarations while cross-checking the output formats with the displayed results.

233

16.4 Computation of Depreciation Schedules

A)deprec

Selling Price? 200000
Residual Value? 40000
Sales Tax ('X)? 6
Tax BracKet(',U? 50
Pr·oRate Months? 10
How Many Years? 7
New? (}'es/no) no
Schedule:
Straight (s)
SUhl-of-Yrs (y)
Double Dec (d) ? d
List? (yes/no) no

$212,000.00 Used
10 Months Left

Depreciation Schedule

D D U 5 L E DEC LIN I N G

$40,000.00 Residual Value:
06% Tax 50% Tax BracKet:

--
I Y I Depreciation I Depreciation I 500K Value I I I I

I r I For Year ReMaining I I

--
:$ 35,357.14 :$ 122,642.86 :$ 162,642.86

2 :$ 34,852.04 :$ 87,790.82 :$ 127,790.82
3 :$ 27,383.75 :$ 60,407.07 :$ 100,407.07
4 :$ 21,515.79 :$ 38,891.28 :$ 78,891.28
5 :$ 16,905.27 :$ 21,986.01 :$ 61,986.01
6 :$ 13,282.71 \$ 8,703.30 :$ 48,703.30
7 :$ 8,703.30 :$ 0.00 :$ 40,000.00

First Year Reduction in Taxable IncoMe

Deprec_iation $ 35,357.14
Sales Tax $ 12,000.00
ITC (Adjusted) $ 20,000.00
Bonus Depreciation $ 2,000.00

Total for First Year $ 69,357.14
Direct Reduction in Tax $ 34,678.57

PL/I Programmer's Guide

Listing 16-11. First Interaction with DEPREC

234

PL/I Programming Guide 16.4 Computation of Depreciation Schedules

Selling Price?
Residual l,Jalue?
Sales Tax (%)?

Tax BracKet('X,)?
ProRate Months? B
How Many Years?
New? (yes/no) yes

Schedule:
Straight (5)

SUM-of-Yrs (y)

Double Dec (d)? y

List? (yes/no) no

SUM o F

$212,000.00 NeltJ
8 Months Left

Depreciation Schedule

THE YEA R S

$40,000.00 Residual Value:
06% Tax 50% Tax BracKet:

: Y : Depreciation : Depreciation: BooK Value
For Year ReMaining

------------------------~.-------------------------

:$ 28,333.33 :$ 131,888.87 :$ 171,888.87
2 :$ 28,214.29 :$ 103,452.38 :$ 143,452.38
3 :$ 18,473.84 :$ 84,978.74 :$ 124,978.74
4 :$ 121139.82 :$ 72,838.92 :$ 112,838.92
5 :$ 7,804.17 :$ 85,034.75 :$ 105,034.75
8 :$ 4,845.34 :$ 80,389.41 :$ 100,389.41
7 :$ 21158.78 :$ 58,232.85 :$ 98,232.65

First Year Reduction in Taxable IncoMe

Depreciation $ 28,333.33
Sales Tax $ 12,000.00
ITe (AdJuste,j) $ 40,000.00
Bonus Depreciation $ 2,000.00

Total for Fir s t Year $ 80,333.33
Di rect Reduction in Tax $ 40d88.88

Listing 16-12. Second Interaction with DEPREe

lNFORhAAT10N 235

16.4 Computation of Depredation Schedules

Sellin!!' Price? 310000
Residual Value? 30000
Sales Tax ('Xl?

Tax BracKet('.U?
ProRate Months? 12
How Many Years? 5
New? (yes/no) }'es
Schedule:
Strai!!'ht (s)
SUM-of-Yrs (y)
Double Dec (d) ? d
Li st? (}'es/no) no

D 0 U B L E

$328,600.00 New
12 Months Left

Depreciation Schedule

DEC LIN I N G

$30,000.00 Residual Value:
06% Tax 50% Tax BracKet:

: Y : Depreciation: Depreciation: Book Value
: r: For Year ReMainin~

--
:$ 123,200.00 :$ 1511,800.00 :$ 1811,800.00

2 :$ 73,820.00 :$ 80,880.00 :$ 110,880.00
3 :$ 1I11,352.00 :$ 36,528.00 :$ 66,528.00
1I :$ 26,611.20 :$ 8,816.80 :$ 38,916.80
5 :$ 8,816.80 :$ 0.00 :$ 30,000.00

First Year Reduction in Taxable IncoMe

Depreciation $ 123,200.00
Sales Tax $ 18,600.00
ITC (Adjusted) $ 62,000.00
Bonus Depreciation $ 2,000.00

Total for First Year $ 205,800.00
Di rect Reduction in Tax $ 102,800.00

PL/I Programmer's Guide

Listing 16-13. Third Interaction with DEPREC

236

PL/I Programmer's Guide 16.4 Computation of Depreciation Schedules

551 Depreciation Schedule

Selling Price?
Residual Value?
Sales Tax ('Xl?
Tax BracKet('X)?
ProRate Months?
How Man}' Years?
New? (yes/no)
Schedule:
Straight (s)
SUM-of-Yrs (y)
Double Dec (dl?
List? (Hs/no)

S T R A I G H T LIN E

$328t600.00 New
12 Montns Left

$30tOOO.00 Residual Value:
06'X Tax 50'X Tax BracKet:

: Y : Depreciation : Depreciation: BooK Value
: r: For Year ReMaining

:$ 55t600.00 :$ 222t400.00 :$ 252t400.00
2 :$ 44t480.00 :$ 177t820.00 :$ 207t820.00
3 :$ 35t584.00 :$ 142t336.00 :$ 172t336.00
4 :$ 28t467.20 :$ 113t868.80 :$ 143t868.80
5 :$ 22t773.76 :$ 81 t085.04 :$ 121 t085.04

First Year Reduction in Taxable IncoMe

Depreciation $ 55t600.00
Sales Tax $ 18t600.00
ITC (Adjusted) $ 62tOOO,00
Bonus Depreciation $ 2tOOO.OO

Total for First Year $ 138t200.00
Di rect Reduction in Tax $ 68t100.00

Listing 16-14. Fourth Interaction with DEPREC

End of Section 16

References: Sections 3.1, 3.5, 4.2, 11.3 LRM

237

/ End of Section 16 PL/I Programming Guide

238

Section 17
Internal Data Representation

This section describes how PL/I represents data internally. This knowledge is vital
when using based variables to overlay storage so you do not destroy adjacent storage
locations. Knowledge of the internal data representation is also useful when so you
want to interface assembly language routines with high-level language programs and
the PL/I Run-time Subroutine Library.

Note: the discussion in this section applies to the implementation of PL/I for both 8-
bit and 16-bit processors.

17.1 FIXED BINARY Representation

PL/I stores FIXED BINARY data in one of two forms, depending upon the declared
precision. It stores FIXED BINARY values with precision 1-7 in single-byte locations,
and values with precision 8-15 in a word (double-byte) location. With multibyte storage,
PL/I stores the least significant byte first.

PL/I represents all FIXED BINARY data in two's complement form, allowing single
byte values in the range -128 to + 127, and word values in the range -32768 to + 32767.

The following figure shows the representation of storage in both single-byte and
double-byte locations for the values 0, 1, and -1. Each boxed value represents a byte
of memory, and is shown in both binary and hexadecimal values.

FIXED BINARY(7)

1 0000 0000 I

~.

FIXED BINARY(15)

I 0000 0000 I 0000 0000 I

1
00

1
00

I

Figure 17-1. FIXED BINARY Representation

PROPRIETARY 239

17.1 FIXED BINARY Representation PL/I Programming Guide

FIXED BINARY (7)

1 0000 0001 1

@J

FIXED BINARY (7)

/1111 1110 /

~

FIXED BINARY(15)

1 0000 000.110000 0000 I

~
FIXED BINARY(15)

/11111110\11111111 I

1 FEIFF I

17.2 FLOAT BINARY Representation

PL/I stores single-precision floating-point binary numbers in four consecutive bytes.
The 32 bits contain the. following fields: a 23-bit mantissa, a sign bit, and an 8-bit
exponent. The least significant byte of the mantissa appears first in memory.

exponent I s I mantissa

32 23 22 0

Figure 17-2. Single-precision Floating-point Binary

PL/I normalizes floating-point numbers so the most significant bit of the mantissa is
always 1 for nonzero numbers. Because the most significant bit of the mantissa must
be 1 for nonzero numbers, PL/I replaces this·bit position with the sign. PLII represents
a zero mantissa with an exponent byte of 00.

240

PL/I Programming Guide 17.2 FLOAT BINARY Representation

In order to make certain kinds of comparisons easier, the binary exponent byte has
a bias of 80 (hexadecimal), so that 81 represents an exponent of 1 while 7F represents
an exponent of -1.

Suppose a floating-point binary value appears in memory as shown in the following
example:

Low High

In this case, the mantissa is a bit stream of the form

4 0

0100 0000

and the high-order bit equal to zero indicates that the mantissa sign is positive. Nor
malizing the number produces the bit stream:

1100 0000 ...

The exponent 81 has a bias of 80, so the binary exponent is 1. This means that the
binary point is one position to the right, resulting in the binary value

1 100 0000

1~..1 in binary represents 2° 2-1; therefore 1 1 base 2 is equivalent to 1. 5 base 10.

000040 81

is the floating-point binary representation of the decimal number 1.5.

241

17.2 FLOAT BINARY Representation PL/I Programming Guide

PL/I stores double-precision floating-point binary numbers in eight consecutive bytes.
The 64 bits contain the following fields: a 52-bit mantissa, an Il-bit exponent with a
bias of 3FF(hexadecimal), and a sign-bit.

1 s 1 exponent I· mantissa

63 62 51 o

Figure 17-3. Double-precision Floating-Point Binary

For example, suppose that a floating-point binary value appears in memory as shown
in the following:

Low High

In this case, the mantissa is a bit stream of the form,

3 c o

0011 1100 0000

Normalizing the number produces,

1001 1110 0000 ...

The exponent evaluates as follows:

c o 4

1100 0000 0100

The high-order bit is 1 so the sign is negative. Ignoring the sign bit yields an exponent
of,

4 0 4
0100 0000 0100

242

PLII Programming Guide 17.2 FLOAT BINARY Representation

which has a bias of 3FF, so the real exponent is,

404
-3FF

5

Therefore, the binary number is,

1001 11 10 0000

which is 39.5 in decimal. Thus, the eight-byte value,

00 00 00 00 00 CO 43 CO

is the double-precision float-binary representation of the decimal number -39.5.

17.3 FIXED DECIMAL Representation

PL/I stores FIXED DECIMAL data items in packed BCD (Binary Coded Decimal)
form. Each BCD digit occupies a half-byte, or nibble. PL/I stores the least significant
BCD pair first, with one BCD digit position reserved for the sign. Positive numbers
have a 0 sign, while negative numbers have a 9 in the high-order sign digit position.

The number of bytes occupied by a FIXED DECIMAL number depends upon its
declared precision. Given a decimal number with precision p, PLII reserves a number
of bytes equal to:

FLOOR((p + 2)/2)

where p varies between 1 and 15. This results in a minimum of 1 byte and a maximum
of 8 bytes to hold a FIXED DECIMAL data item.

For example, if you declare the number 12345 with precision 5, then PL/I reserves
FLOOR((5 + 2)/2) = 3 bytes of storage and represents the number as:

45 23 01

243

17.3 FIXED DECIMAL Representation PL/I Programming Guide

PLiI stores negative FIXED DECIMAL numbers in ten's complement form. To derive
the ten's complement of a number, first derive the nine's complement and then add 1
to the result. For example, the number -2 expressed in ten's complement is,

(9 - 2) + 1 = 8

Adding the sign digit gives,

98

If you declare -2 with precision 5, then PL/I represents it as:

98 99 99

17.4 CHARACTER Representation

PL/I stores character data in one of two forms, depending upon the declaration. It
stores fixed-length character strings, declared as CHARACTER(n) in n contiguous
bytes, with the first character in the string stored lowest in memory.

PL/I reserves n + 1 bytes for variables declared as CHARACTER(n) V AR YING with
the extra byte holding the character string's length, ranging from 0 to 254. The max
imum length of either type of string is 254 characters.

As an example, suppose the variable A is declared as CHARACfER(20). The assignment

A = 'Walla Walla Wash';

results in the following storage allocation,

WallabWallabWashxxxx

where b represents a blank, and x represents an undefined character position. If A is
declared as CHARACTER(20) VARYING data, PL/I stores the same string as

10 Wall a b W all a b Was h x x x x

where 10 is the (hexadecimal) string length.

244

PL/I Programming Guide 17.5 BIT Representation

17.5 BIT Representation

PL/I represents bit-string data in two forms, depending upon the declared precision.
It stores bit strings of length 1-8 in a single byte, and bit strings of length 9-16 in a
word (double-byte) value. PL/I stores the least significant byte of a word value first in
memory. Bit values are stored left-justified, and if the precision is not exactly 8 or 16
bits, the bits to the right are ignored.

The following figure shows the storage for the bit-string constant values 'l'b, 'AO'b4,
and '1234'b4 in both single- and double-byte locations. Each boxed value represents
a byte.

BIT(8)

1 0000 0001 1

BIT(8)

11010 0000 I

BIT(8)

N/A

Figure 17-4.

BIT(16)

1 0000 00001 0000 0001 I

BIT(16)

I 0000 00001 1010 0000 -,

BIT(16)

I 0011 010010001 0010 I

Bit-string Data Representation

17.6 POINTER, ENTRY and LABEL Data"

PL/I stores variables that provide access to memory addresses as two contiguous
bytes, with the low-order byte stored first. POINTER, ENTRY, and LABEL data items
appear as

Figure 17-5. POINTER, ENTRY, and LABEL Data Storage

where LS denotes the least significant half of the address, and MS denotes the most
significant portion. MS contains the page address, where each memory page is 256
bytes, and LS contains the offset within the page.

245

PL/I Programming Guide 17.7 File Constant Representation

17.7 File Constant Representation

PL/I associates each file constant with a File Parameter Block (FPB). The FPB occupies
57 contiguous bytes containing various fields, some of which are implementation
dependent.

Note: each file declaration causes a static allocation for the associated FPB. When you
open the file, there is an additional overhead of 50 bytes, including the operating
system's FeB and the amount specified for buffer space. The run-time system dynam
ically allocates this storage from the free storage area.

17.8 Aggregate Storage

PL/I stores aggregate data items contiguously with no filler bytes. Bit data is always
stored unaligned. Arrays are stored in row-major order, with the rightmost subscript
varying fastest.

For example, the declaration

declare A(2t2t2);

results in the following storage allocation:

low high

Figure 17-6. Aggregate Storage

End of Section 17

246

Section 18
Interface Conventions

This section describes a standard set of conventions for interfacing PL/I programs
with assembly language routines and with programs written in other high-level lan
guages. This section also describes the mechanism for making direct operating system
calls using a set of optional subroutines not included in the Run-time Subroutine
Library.

18.1 Parameter Passing Conventions

You can pass parameters between a PL/I program and an assembly language routine
by loading a register pair with the address of a Parameter Block containing pointer
values. These pointers in turn lead to the actual parameter values. The number of
parameters and the parameter length and type must be determined implicitly by agree
ment between the calling program and called subroutine. The following figure illustrates
the concept. The address fields are arbitrary.

Register pair Parameter Block Actual Parameters

HL (80~1000: 2000 2000: I parameter 1 1

1
1000 3000

BX (8086) 4000 3000: 1 parameter 21

4000: 1 parameter 31

5000

5000: 1 parameter n 1

Figure 18-1. PL/I Parameter Passing Mechanism

247

PL/I Programming Guide 18.1 Parameter Passing Conventions

The following example illustrates this parameter passing mechanism. Suppose a
PL/I program uses a considerable number of floating-point divide operations, where
each division is by a power of two. Suppose also that the iterative loop where the
divisions occur is speed-critical, and that it is useful to have an assembly language
subroutine to perform the division.

The assembly language routine simply decreases the binary exponent of the floating
point number for each power of two in the division. Decreasing the exponent effectively
performs the divide operation without the overhead involved in unpacking the number,
performing the general division operation, and repacking the result. During the division,
the assembly language routine can produce underflow, and must signal the UNDER
FLOW condition to the PL/I program if this occurs.

The following three listings show programs that demonstrate parameter passing.
Listing 18-1 shows the program DTEST, which tests the division operation. Listing
18-2 shows DIV2.ASM, the 8080 assembly language subroutine that performs the
division. On line 8, DTEST defines DIV2 as an external entry constant with two
parameters: a FIXED(7) and a floating-point binary value. Listing 18-3 shows
DIV2.A86, which is the same subroutine in 8086 assembly language.

On each iteration of the DO-group, DTEST stores the test value 100 into f (line 13),
and passes it to the DIV2 subroutine (line 14). At each call to DIV2, DTEST changes
the value of f to f/(2 * *i) and prints it using a PUT statement. At the point of call,
DIV2 receives two addresses that correspond to the two parameters i and f.

Upon entry, DIV2 loads the value of i to the accumulator, and sets the appropriate
register pair to point to the exponent field of the input floating-point number. If the
exponent is zero, DIV2 returns immediately, because the resulting value is zero.

Otherwise, the subroutine loops at the label dby2 while counting down the exponent
as the power of two diminishes to zero. If the exponent reaches zero during this counting
process, DIV2 signals the UNDERFLOW condition .

. In DIV2, the call to ?signal demonstrates the assembly language format for param
eters that use the interface. The ?signal subroutine is part of the PL/I Run-time Sub
routine Library (PLILIB.lRL).

This subroutine loads the appropriate register pair with the address of the Signal
Parameter List, denoted by siglst. The Signal Parameter List, in turn, is a Parameter
Block of four addresses leading to the signal code sigcode, the signal sub code sigsub,
the filename indicator sigfil (not used here), and the auxiliary message sigaux that is
the last parameter.

248

PL/I Programming Guide 18.1 Parameter Passing Conventions

The auxiliary message can provide additional information when an error occurs.
The signal subroutine prints the message until it either exhausts the string length (32,
in this case), or it encounters a binary 00 in the string.

Listing 18-4 shows the abbreviated output from this test program. The loop counter
i becomes negative when it reaches 128, but the DIV2 subroutine treats this value as
an unsigned magnitude value; thus UNDERFLOW occurs when i reaches -123.

1 a
2 a
3 a
4 a
5 a
6
7

8
9

10
11

12 c
13 c
14 c
15 c
16 c
17

1**1
1* This prOgraM tests an asseMbly lansuage routine to *1
1* do floatins-point division. *1
1**1
dtest:

procedure optionslMainl;
declare

dil)2 entn'lfixed(7) ,float),
i fixed(7),
f float;

[

do i = 0 by 1;
f = 100;
call dil)21i,fli
put skip listl'100 I 2 **'ti,'=',f)i

en d i

18 end dtest;

Listing 18-1. The DTEST Program

249

18.1 Parameter Passing Conventions PL/I Programming Guide

div2:

dby2:

250

title 'division by power of two'
public dit)2
extrn ?si!l'nal
ent n':

exit:

MOV

inx
MOV

inx
ldax
Mat)
inx
MOV

xchg

p1 -> fixed(7) power of two
p2 -> floating-point nUMber

p1 -> (unchanged)
p2 -> p2 / (2**p1)

elM

dIM
h

e,M

dIM

iHL = .1ow(,p1)
ilow(,p1)
iHL ,hi!l'h(,p1)
iDE = ,p1
iHL = ,low(p2)
ia = p1 (power of two)
ilow(,p2)
iHL ,hi!l'h(,p2)
iDE
iHL

,p2
, p2

A = power of 21 HL = ,low byte of fp nUM
in x
inx
inx
in r
dcr

h
h
M

M

ito Middle of Mantissa
ito high byte of Mantissa
ito exponent byte

;p2 already zero?
rz ireturn if so
idivide by two
ora
rz
dc r
dcr
Jnz

a

a
M

dby2

icounted power of 2 to zero?
ireturn if so
icount power of two down
icount exponent down
iloop again if no underflow

Listing 18-2. DIV2.ASM Assembly Language Program (8080)

lNfORtvlATION PROPRIHARY TO DIGITAL RESEARCH

PL/I Programming Guide 18.1 Parameter Passing Conventions

junderflow occurred, signal underflow condition

sdlst:

sigcod:
sigsub:
sigfil:
sigaux:
undMsg:

div2:

lxi h,siglstisignal paraMeter list
call ?signal isignal underflow
ret

dseg
dw
dw
dw
dw
end of
db
db
dw
dw
db
end

sigcod
sigsub
sigfil

inorMally, no return

iaddress of signal code
iaddress of subcode
iaddress of file code

sigaux iaddress of aux Message
paraMeter vector, start of paraMS

3 i03 = underflow
128 iarbitrary subcode for id
0000 ino associated file naMe
undMsg iOOOO if no aux ~essage

32,'Underflow in Divide by Two',O

Listing 18-2. (continued)

Routine to divide single precision float value by 2

cseg
public div2
extrn ?signal:near

entrl':
pi -> fixed(7) power of two
p2 -> floating point nUMber

ex it:
pi - > (unchanged)
p2 -> p2 I (2**pl)

iBX .low(,pl)
MOV si ,[bx] is I • pi
MOV bx,2[bx] iBX .p2
lods al iAL pi (power of 2)

AL = power of 2, BX = .101,,1 byte of fp nUM

c~p byte ptr 3[bx] ,0 ip2 already zero?
jz done iexit if so

Listing 18-3. DIV2.A86 Assembly Language Program (8086)

18.1 Parameter Passing Conventions PL/I Programming Guide

dby2:

done:

si!llst

si!lcod
si !lsub
s i !I f i 1
si!laux
undMs~

252

idivide by two
or a 1 ,a 1 icounted po we r of 2 to zero?
jz done ireturn if so
dec al icount power of two down
dec byte pt r 3[bx] icount exponent down
jn z dby2 i 1 0 0 p a9'ain if no underflow

Underflow occurred, si!lnal underflow condition

MOV
call
re t

dse!l
dw
dw
dw
dw
en d of
db
db
dw
dw
db

end

bx ,offset si9'lstisi!lnal paraMeter list
?si!lnal

offset si!lcod

isi9'nal underflow
inOrMally, no return

iaddress of si9'nal code
offset si!lsub iaddress of subcode
off set s i !I f i 1 i a ld res 5 0 f f i 1 e cod e
offset si!laux iaddress of aux Messa!le

paraMeter vectorl start of paraMS
3 i03 = underflow
128 iarbitrary subcode for id
0000 ino associated file naMe
offset undMs!l iOOOO if no aux Messa!le
32,'Underflow in Divide by Two/,O

Listing 18-3. (continued)

PL/I Programming Guide 18.1 Parameter Passing Conventions

A>dtest

100 2 ** 0 1.000000E+02
100 2 ** 5.000000E+Ol
100 2 ** 2 2.500000E+Ol
100 2 ** 3 1.250000E+Ol
100 2 ** 4 0.625000E+Ol
100 2 ** 5 3.125000E+00
100 2 ** 6 1.562500E+OO
100 2 ** 7 0.781250E+00
100 2 ** 8 3.906250E-Ol
100 2 ** 9 1.953125E-Ol
100 2 ** 10 0.976562E-Ol

100 2 ** 127 0.587747E-36
100 2 ** -128 2.938735E-37
100 2 ** -127 1.469367E-37
100 2 ** -126 0.734683E-37
100 2 ** -125 3.673419E-38
100 2 ** -124 1.836709E-38
100 2 ** -123 O.918354E-38
100 2 ** -122 4.591774E-39
UNDERFLOW (128) , Underflow in o i t) i d I:! B}' Two
Traceback: 017F Oil B
A>

Listing 18-4. DTEST Output (abbreviated)

18.2 Returning Values from Functions

As an alternative to returning values through a Parameter Block, PL/I has subroutines
that produce function values that are then returned directly in the registers or on the
stack. This section shows the conventions for returning data as functional values.
References to 8086 registers are in parentheses.

253

18.2 Returning Values from Functions PL/I Programming Guide

18.2.1 Returning FIXED BINARY Data

Functions that return FIXED BINARY data items do so by leaving the result in a
register, or register pair, depending upon the precision of the data item.

PL/I returns FIXED BINARY data with precision 1-7 in the A(AL) register, and data
with precision 8-15 in the HL(BX) register pair. It is always safe to return the value
in HL(BX), and copy the low-order byte to A(AL) so register A(AL) is equal to register
L(BL) upon return.

18.2.2 Returning FLOAT BINARY Data

PL/I returns single-precision floating-point numbers as four contiguous bytes on the
stack. The low-order byte of the mantissa is at the top of the stack, followed by the
middle byte, then the high byte. The fourth byte is the exponent of the number.

For example, PL/I returns the value 1.5 as:

[QQ[001401811 (low stack) ~

SP

PL/I returns double-precision floating-point numbers as eight contiguous bytes on
the stack. The low-order byte of the mantissa is at the top of the stack. The exponent
occupies three nibbles: the eighth byte, and the high-order nibble of the seventh byte.

For example, PL/I returns the value -39.5 as:

I ool00100100100lcol431co I (low stack) ~

SP

254

PL/I Programming Guide 18.2 Returning Values from Functions

18.2.3 Returning FIXED DECIMAL Data

PLfI returns FIXED DECIMAL data as 8 contiguous bytes on the stack. The low
order BCD pair is at the top of the stack. The number is represented in nine's com
plement form, and sign-extended through the high-order digit position, with a positive
sign denoted by 0, and a negative sign denoted by 9.

For example, PLfI returns the decimal number - 2 as:

SP

18.2.4 Returning CHARACTER J?ata

PLfI returns CHARACTER data items on the stack, with the length of the string in
a register. For example, PLfI returns the string

\Walla Walla Wash'

as shown in the following diagram:

A (8080)

G
AL (8086)

SP

where register contains the string length 10 (hexadecimal), and the Stack Pointer SP
addresses the first character in the string.

18.2.5 Returning BIT Data

PLfI returns bit-string data in a register, or register pair, depending upon the precision
of the data item.

PLfI returns bit strings of length 1-8 in the A(AL) register, and bit strings of length
9-16 in the HL(BX) register pair. Bit strings are left justified in their fields, so the BIT(1)

255

18.2 Returning Values from Functions PL/I Programming Guide

value true is returned in the HL(BX) register as 80 (hexadecimal). It is safe to return
a bit value in the HL(BX) register pair and copy the high-order byte in A(AL), so
register A(AL) is equal to register H(BH) upon return.

18.2.6 Returning POINTER, ENTRY, and LABEL Variables

PL/I returns POINTER, ENTRY, and LABEL variables in the HL(BX) register pair.
When returning a label variable that can be the target of a GOTO operation, the
subroutine containing the label must restore the stack to the proper level when control
reaches the label.

The following program listings illustrate the concept of returning a functional value.
Listing 18-5 shows the program called FDTEST that is similar to the previous floating
point divide test. However, FDTEST includes an entry definition for an assembly
language subroutine called FDIV2 that returns the result on the stack. Listing 18-6
shows FDIV2.ASM in 8080 assembly language, and Listing 18-7 shows FDIV2.A86,
the same routine in 8086 assembly language.

FDIV2 resembles the previous subroutine DIV2 with some minor changes. First,
FDIV2 loads the input floating-point value into the BC(CX) and DE(DX) registers so
that it can manipulate a temporary copy and not affect the original input value FDIV2
then decreases the exponent field in register B (CH) by the input count, and returns it on
the stack before executing the PCHL instruction.

1 a 1**1
2 a 1* This pro~raM tests the asseMbly lan~ua~e routine *1
3 a 1* called FDIV2 which returns a FLOAT BINARY value. *1
4 a 1**1
5 a fdtest:
6 procedure options(Main) j
7 declare
8 fdil)2 entry(fixed(7) ,float) returns(float),
8 i fixed(7),

10 f float j
11
12 c do i = 0 by 1 j
13 c put sKip list('100 I 2 **'d,'=',fdil)2(i1100))j
14 c end;
15
16 end fdtestj

Listing 18-5. The FDTEST Program

256

(

PL/I Programming Guide 18.2 Returning Values from Functions

title 'div by power of two (function) I

public fdiv2
extrn ?signal
entrY:

ex it:

pi -> fixed(7) power of two
p2 -> floating-point nUMber

pi -> (unchanged)
p2 -> (unchanged)

stacK: p2 (2 ** pi)
fdiv2: ;HL = .low(.pi)

dby2:

MOV
inx
MO !)

inx
Idax
MOV
in x
MOV
xchs

e ,M

d ,M

e ,M

d ,M

ilow(.pl)
;HL .hi9h(.p1)
;OE = .pi
;HL = .10w(p2)
;a = pi (power of two)
;10w(.p2)
;HL .high(.p2)
;OE
;HL

.p2

.p2

A = power of 2, HL = .low byte of fp nUM
MO !)

inx
MOV
in x
MOV
inx

e ,M

d ,M

C ,M

MOV b,M
in r b
dcr
jz fdret
;di!)ide by two
ora
jz
dcr
dcr
jn z

a
f d re t
a

dby2

;E = low Mantissa
ito Middle of Mantissa
;0 = Middle Mantissa
ito high byte of Mantissa
;C = hish Mantissa
ito exponent byte
;5 = exponent
;5 = 00?
;becoMes 00 if so
ito return froM float div

;counted power of 2 to zero?
;return if so
icount power of two down
;count exponent down
;loop asain if no underflow

;underflow occurred, sisnal underflow condition
lxi h,sislst;sisnal paraMeter list
call ?sisnal ;sisnal underflow
lxi b,O ;clear to zero
lxi d ,0 Hor default return

Listing 18-6. FDIV2.ASM Assembly Language Program (8080)

257

PL/I Programming Guide 18.2 Returning Values from Functions

fdret: pop irecall return address
;save hi~h order fp nUM
;save low order fp nUM
;return to callin~ routine

si~lst:

si~cod:

si~sub:

si~fil:

sdaux:
undMs9:

f d i I)Z:

push
push
pchl

dse~

dw
dw
dw
diN
end
db
db
dw
dw
db
end

cse~

of

si~cod

si~sub

s19fil

;address of si~nal code
iaddress of subcode
jaddress of file code

si~auK iaddress of aUK Messa.e
paraMeter vector, start of paraMS
3 ;03 = underflow
1Z8 jarbitrary subcode for id
0000 ;no associated file naMe
undMS~ ;0000 if no aux Messa.e
3Z,'Underflow in Dil)i.de by Two',O

Listing 18-6 (continued)

Division by power of two (function)

public fdivZ
extrn ?si.nal:near

ent f}':
pi fixed(7) power of two
pZ floatin. point nUMber

ex it:
p1 -> (unchanged)
pZ -> (unchan.ed)

stack: pZ (Z ** p 1)

jBX .low(,p1)
MOV si ,[bx] ;51 • p 1
lads al jAL p1 (power of Z)
MOV bx ,Z[bxJ iBX ,pZ

AL = paiN e r of 2 t B){ .101,.,1 byte of fp nUM

Mal) dx ,[bx] iDX = low an oj ITl i d die
MO I) cx ,Z[bx] ;CL = hi.h Illantissat
or c h ,c h jexponent z e r o?
jz f d re t ito return fro III fl 0 a t

Illantissa
CH = exponent

d i I)

Listing 18-7. FDIV2.A86 Assembly Language Program (8086)

258

PL/I Programming Guide 18.2 Returning Values from Functions

dbyZ:

fdret:

sis'lst

sigcod
sigsub
sigfil
sis'aux
UndMSg

i d i I) ide by t I"JO
or ai, a 1 icounted PO l"Je r of 2 to zero?
JZ f d re t ireturn if 50

dec al icount PO I"J e r of two dOl"ln
dec ch ;count exponent do lAin
Jnz dbyZ ; 1 00 P again if no underflol"J

Underflow occurred, si~nal underflow condition

MO I)
call
sub
MO I)

pop
push
push
JMP
dseg
dw
dw
d 1,,1

dw
end of
db
db
dw
dw
db

end

bx,offset si9lstisi9nal paratTieter list
?signal
c x ,c x
d x ,c x

bx
cx
dx
bx

isignal underflow
iclear result to zero for default return

irecall return address
isave high order fp nUM
isave low order fp nUM
Ireturn to calling routine

offset sigcod iaddress of signal code
offset sigsub iaddress of subcode
offset sigfil iaddress of file code
offset sigaux iaddress of aux Message

parameter vector, start of params
3 ;03 = underflow
128
0000
offset undmsg

larbitrary subcode for id
Ina associated file name
;0000 if no aux Message

3Z,'Underflow in Dil)ide bi' Two',O

Listing 18-7. (continued)

18.3 Direct Operating System Function Calls

You can have direct access to all the operating system functions through the optional
subroutines in assembly language programs which are included in source form on your
PL/I sample program disk. The sample program disk also contains the file REL
NOTES.PRN which describes these assembly language programs and several PL/I pro
grams that test the various function calls.

The subroutines in these programs are not included in the standard PLILIB.lRL file
because specific applications might require changes to the system functions that either
remove operations to decrease space, or alter the interface to a specific function. If the
interface to a function changes, you must change the entry point to avoid confusion.

259

18.3 Direct Operating System Function Calls PL/I Programming Guide

Note: be careful when you use these entry points instead of the normal PL/I facilities.
For example, if you use the MEMPTR function to effect memory management, be
aware that PL/I uses the dynamic storage area for processing RECURSIVE procedures
and file 110 buffering. There is no guarantee that the dynamic storage area will not be
used for other purposes as addtional facilities are added to PL/I.

Also, when you use the various file maintenance functions, such as DELETE(#19)
or RENAME (#23), do not access a file that is currently open in the PL/I file system.
Simple peripheral access, as shown in these examples, is generally safe because no
buffering takes place.

End of Section 18

260

Section 19
Dynamic Storage and Stacl<

Routines

This section describes some functions in the PL/I Run-time Subroutine Library (RSL)
that perform dynamic memory management and manipulate the stack size.

19.1 Dynamic Storage Subroutines

The RSL includes a number of functions that provide access to the dynamic storage
routines. These routines maintain a linked list of all unallocated storage. Upon request,
these routines search for the first available segment in the free list that satisfies the
request size, remove the requested segment, and return the remaining portion to the
free list. If the storage is not available, the run-time system signals ERROR(7), Free
Space Exhausted.

PL/I dynamically allocates storage upon entry to RECURSIVE procedures, when
processing explicit or implicit OPEN statements for files performing disk 110, or when
processing an ALLOCATE statement. PL/I always allocates an even number of bytes
or whole words, no matter what the request size.

19.1.1 The TOTWDS and MAXWDS Functions

It is often useful to find the amount of storage available at any given point while
the program is running. The TOTWDS (Total Words) and MAXWDS (Max Words)
functions provide this information.

You must declare the functions in the calling program as:

declare totwds entrY returns(fixed(15»;
declare Maxwds entrY returns(fixed(15»;

261

19.1 Dynamic Storage Subroutines PL/I Programming Guide

When you invoke the T01WDS subroutine, it scans the free storage list and returns
the total number of words (double bytes) available. The MAXWDS subroutine returns
the size (in words) of the largest contiguous segment in the free list. A subsequent
ALLOCATE statement that specifies a segment size less than or equal to MAXWDS (
does not signal ERROR(7), because at least that much storage is available. ~

Both TOTWDS and MAXWDS count in word units, so the returned values can be
held by FIXED BINARY(15) counters. Both TOTWDS and MAXWDS return the value
-1 if they encounter invalid link words while scanning the free space list. This is usually
due to an out-of-bounds subscript or pointer store operation. Otherwise, these functions
return a nonnegative integer value.

19.1.2 The ALL WDS Subroutine

The PL/I Run-time Subroutine Library contains a subroutine, called ALL WDS, that
you use to control the dynamic allocation size. You must declare the subroutine in the
calling program as:

dec 1 are a 1 liN d 5 e n t r >' (fix e d (1 5'» ret urn 5 (poi n t e r) ;

The ALL WDS subroutine allocates a memory segment in words equal to the size
given by the input parameter, and returns a pointer to the allocated segment. If no
segment is available, ALL WDS signals the ERROR(7) condition. The input value must
be a nonnegative integer.

Listing 19-1 shows the ALLTST program which is an example of how to use the
TOTWDS, MAXWDS, and ALLWDS functions. Listing 19-2 shows a sample inter
action with the ALL TST program.

262 lNfORIVt}\,T!ON HERE IS TO

PL/I Programming Guide 19.1 Dynamic Storage Subroutines

1 a
2 a
3 a
4 a
5 a
6

7
8
9

10
11
12
13
14
15
16
17

1***I
1* This pro~raM tests the TOTWDS, MAXWDS, and ALLWDS *1
1* functions froM the Run-tiMe Subroutine Library, *1
1***I
alltst:

procedure options(Main) i
declare

totwds entrY returns(fixed(15)),
Maxwds entrY returns(fixed(15)),
allwds entry(fixed(15)) returns(pointer) i

declare
allreq fixed(15),

MeMinx fixed(15),
MemOry (0:0) bit(16) based(MeMPtr) j

18 c do while('l'b)j
19 c put edit (totwds(),' Total Words Available',
20 c Maxwds(),' MaxiMUM Se~Ment Size',
21 c 'Allocation Size? ') (2(sKip,f(S),a),sKiP,a)i
22 c ~et list(allreq)i
23 c MeMPtr = allwds(allreq);
24 c put edit('Allocated',allreq,' Words at ',unspec (MeMPtr))
25 c (sKiPlalf(6) lalb4);
26 c
27 c
28

29
30
31 c
32
33

1* clear MeMOry as exaMPle *1

[

do MeMinx = 0 to allre9-ii
MeMOrY(MeMinx) = '0000'b4i

endi
endi

end alltsti

Listing 19-1. The ALLTST Program

ALllNfO!Zi'ViATION PRESENTED HERE IS PROrR1EXARY TO DlGl1AL "' ... ·n.""''' .. , , 263

19.1 Dynamic Storage Subroutines

A>alltst

24470 Total Words Available
24470 MaxiMuM SegMent Size

Allocation Size? 0

Allocated 0 Words at 28D6
24468 Total Words Available
24468 MaxiMuM SegMent Size

Allocation Size? 100

Allocated 100 Words at 28DA
24366 Total Words Available
24366 MaxiMUM SegMent Size

Allocation Size? 500

Allocated 500 Words at 29A6
23864 Total Words Available
23864 MaxiMuM SegMent Size

Allocation Size? 23865

ERROR (7), Free Space Exhausted
Traceback: 016D
A>

PL/I Programming Guide

Listing 19-2. Interaction with the ALL TST Program

19.2 The STKSIZ Function

In PL/I, the program stack is placed above the code and data area, and below the
dynamic storage area (TPA). The default size of the program stack is 512 bytes, but
can be changed using the STACK(n) option in the main procedure heading.

The STKSIZ (Stack Size) function returns the current stack size in bytes. This function
is particularly useful for checking possible stack overflow conditions, or in determining
the maximum stack depth during program testing.

You must declare the STKSIZ function in the calling program as:

declare stKsiz returns(fixed(15»;

Listing 19-3 shows an example of the STKSIZ function in the program called ACKTST,
where it checks the maximum stack depth during RECURSIVE procedure processing.
Listing 19-4 shows an interaction with this program.

264 ALL INfORMATION PRESE.NTED HERE is PROPRIETARY TO DIGITAL RESEARCH

PL/I Programming Guide 19.2 The STKSIZ Function

1 a
2 a
3 a
4 a
5 a
6
7
8
9

10
11
12
13
14
15
16 c
17
18
19
20
21
22
23
24
25 c
26 b
27

1**1
1* This pro~raM tests the STKSIZ function while *1
1* evaluatin~ a RECURSIVE procedure.
1**1
acK:

procedure options(Main IstacK(2000));
declare

(MIn) fixedl
(MaxMIMaxn) fixedl
nealls deeiMal(6) I
(curstacK I stacKsize) fixedl
stKsiz entrY returns(fixed);

put sKip list('Type Max MIn: ');
~et list(MaxMIMaxn);
do M = 0 to MaxM;

do n = 0 to Maxn;
ncalls 0;
curstacK = 0;
stacKsize = 0;
put edit('AcK(' IMI' I' Inl')=' laeKerMann(Mln) I

neallsl' Callsl' IstacKsizel' StacK Bytes')
(sKipla 12(f(2) la) If(6) If(7) la If(4) la);

end;
end;
stop;

28 acKerMann:
29 c procedure(Mln) returns(fixed) recursive;
30 c
31 c declare
32 c (MIn) fixed;
33 c ncalls = ncalls + 1;
34 c curstacK = stKsiz();
35 c if curstacK > stacKsize then
36 c stacKsize = curstacK;
37 c if M = 0 then
38 c return(n+ll;
39 c if n = 0 then
40 c return(acKerMann(M-lt1));
41 c return(acKerMann(M-l1aeKerMann(Mln-l)));
42 c end acKerMann;
43
44 end acK;

Listing 19-3. The ACKTST Program

ALL lNfORMATK)0·j PRESENTED H.ERE PROPR!ETARY 265

19.2 The STKSIZ Function PL/I Programming Guide

A>acktst

Type Max M ,n: 6,6

AcK< 0, 0)= 1 Calls, 4 StacK Bytes
AcK< 0, 1)= 2 Calls, 4 StacK Bytes
AcK(0, 2):: 3 Calls, 4 StacK Bytes
AcK< 0, 3)= 4 Callst 4 StacK Bytes
AcK(0, 4)= 5 Calls, 4 StacK Bytes
AcK< o t 5)= 6 Calls, 4 StacK Bytes
AcK< 0, 6)= 7 Ca 11 s , 4 StacK Bytes
AcK< 1 , 0)= 2 2 Calls, 6 StacK Bytes
AcK< 1 , 1) = 3 4 Callsl 8 StacK Bytes
AcK< 1 , 2)= 4 6 Calls, 10 StacK Bytes
AcK(1 , 3)= 5 8 Calls, 12 StacK Bytes
AcK(1 , 4)= 6 10 Ca 11 s , 14 StacK Bytes
AcK(1 t 5)= 7 12 Calls, 16 StacK Bytes
AcK(1 , 6)= 8 14 Ca 11 s , 18 StacK Bytes
AcK(2 I 0)= 3 5 Calls, 10 StacK Bytes
AcK(2, 1) = 5 14 Calls, 14 StacK Bytes
AcK(2, 2)= 7 27 Ca 11 s , 18 StacK Bytes
AcK(2 I 3)= 9 44 Calls, 22 StacK Bytes
AcK(2, 4)= 11 65 Calls, 26 StacK Bytes
AcK(2, 5)= 13 90 Calls, 30 StacK Bytes
AcK(2, 6)= 15 119 Calls, 34 StacK Bytes
AcK(3, 0)= 5 15 Calls, 16 StacK Bytes
AcK(3 I 1) = 13 106 Ca 11 s , 32 StacK Bytes
AcK(3, 2)= 29 541 Ca 11 s , 64 StacK Bytes
AcK(3, 3)= 61 2432 Calls, 128 StacK Bytes
AcK(3, 4)= 125 10307 Calls, 256 StacK Bytes
AcK(3 t 5)=

Listing 19-4. Output From the ACKTST Program

End of Section 19

266 ii\lFOR.Mf\TION HERE 15 PROPRiETARY DIGITAL RESEARCH

Section 20
Overlays

This section describes how to use the linkage editor to create PL/I overlays. Overlays
are programs comprised of separate files. The advantage of overlays is that they share
the same memory locations, so you can write large programs that run in a limited
memory environment.

20.1 Using Overlays in PL/I

In both the 8080 and 8086 implementations, the size of the Transient Program Area
(TPA) determines the upper limit on the size of a program. However, there is another
constraint in the 8086 implementation. Although there can be enough memory space
available on the system, the Compiler generates code that assumes the Small memory
model. The Small model means that when you link one or more OBJ files with the
Run-time Subroutine Library (RSL), the size of the code and data sections in the CMD
are each limited to 64K. Thus, the Compiler determines the upper limit on the size of
any program, but the size limit is not encountered until link time.

With modular design, you can write a large program that does not need to reside
in memory all at once. For example, many application programs are menu-driven, in
which the user selects one of a number of functions to perform. Because the functions
are separate and invoked sequentially, they do not need to reside in memory simul
taneously. When one of the functions is complete, control returns to the menu portion
of the program, from which the user selects the next function. Using overlays, you can
divide such a program into separate subprograms that can be stored on disk and loaded
only when required.

INfORJv'!ATION 267

PL/I Programming Guide 20.1 Using Overlays in PL/I

The following figure illustrates the concept of overlays. Suppose a menu-driven
application program consists of three separate user-selected functions. If each function
requires 30K of memory, and the menu portion requires 10K, then the total memory
required for the program is lOOK, as shown in Figure 20-la. However, if the three
functions are designed as overlays, as shown in Figure 20-1 h, the program requires
only 40K, because all three functions share the same memory locations.

Function
3

30K

Function
2

Function
1

Menu

Function Function Function
1 2 3

l I

Menu

30K

1
t lOOK

30K

~
30K 40K

10K 1 10K

20-1a. Without Overlays 20-1h. Separate Overlays

Figure 20-1. Using Overlays in a Large Program

You can also create nested overlays in the form of a tree structure, where each overlay
can call other overlays up to· a maximum nesting level that the Overlay Manager
determines. Section 20.3 describes the command line syntax for creating nested overlays.

268 ALL !NfORlv'lAT!ON PRESENTED HERE 15 PROPRlETARY TO DIGITAL RESEJ\RCH

PL/I Programming Guide 20.1 Using Overlays in PL/I

Figure 20-2 illustrates the tree structure of overlays. The top of the highest overlay
determines the total amount of memory required. In Figure 20-2, the highest overlay
is SUB4. This is substantially less memory than would be required if all the functions
and sub functions had to reside in memory simultaneously.

func 1 func 2

Menu

Figure 20-2. Tree Structure of Overlays

20.2 Writing Overlays in PL/I

There are two ways to write PL/I programs that use overlays. The first method
involves no special coding, but has two restrictions. The first restriction is all that
overlays must be on the default drive; the second is that the overlay names must he
determined at translation time and cannot he changed at run-time.

The second method requires a more involved calling sequence, but does not have
either of the restrictions of the first method.

AtlINfO~AT!ON PRESENTED HERE is PROPRIETARY TO D!GrTAl RESEf\RCH 269

20.2 Writing Overlays in PL/I PL/I Programming Guide

20.2.1 Overlay Method One

To use the first method, you declare an overlay as an entry constant in the module
where it is referenced. As an entry constant, the overlay can have parameters declared
in a parameter list. The overlay itself is simply a PL/I procedure or group of procedures.

For example, the following program is a root module with one overlay:

root:
procedure options(Main);
declare

oulaY1 entrY(character(15»;
put sKip list(\root/);
call oulaY1(\ouerlay 1/);

end root;

The overlay OVLAY1.PLI is defined as follows:

ovla.yl:
procedure(c) ;
declare

c characte r(15);
put sKip list(c);

end ol.da}'1;

Note: when passing parameters to an overlay, you must ensure that the number and
type of the parameters are the same in both the calling program and the overlay.

When the program runs, ROOT first displays the message 'root' at the console. The
CALL statement then transfers control to the Overlay Manager. The Overlay Manager
loads the file OVLA Yl from the default drive and transfers control to it.

When the overlay receives control, it displays the message 'overlay l' at the console.
OVLAY1-then returns control directly to the statement following the CALL statement
in ROOT. The program then continues from that point.

If the requested overlay is already in memory, the Overlay Manager does not reload it
before transferring control.

270 PROPRIETARY DIG!TAL RESE/-\RCH

PL/I Programming Guide 20.2 Writing Overlays in PL/I

The following constraints apply to overlay method one:

• The label in the call statement is the actual name of the overlay file loaded by the
Overlay Manager; consequently, the two names must agree.

• The name of the entry point to an overlay need not agree with the name used
in the calling sequence, but using the same name avoids confusion.

• The Overlay Manager only loads overlays from the drive that was the default
when the root module began execution. The Overlay Manager disregards any
changes in the default drive that occur after the root module begins execution.

• The names of the overlays are fixed. To change the names of the overlays, you
must edit, recompile, and relink the program.

• No nonstandard PL/I statements are needed. Thus, you can postpone the deci
sion on whether or not to create overlays until link time.

20.2.2 Overlay Method Two

In some applications, you might want to have greater flexibility with overlays, such
as loading overlays from different drives, or determining the name of an overlay from
the console or a disk file at run-time.

To do this, a PL/I program must declare an explicit entry point into the Overlay
Manager, as follows:

dec 1 are ? a l,I 1 a)' e n t r)' (C h a rae t e r (1 0) , fix.e d (1)) ;

This entry point requires two parameters. The first is a 10-character string that
specifies the name of the overlay to load, and an optional drive code in the standard
format (d:filename).

The second parameter is the Load Flag. If the Load Flag is 1, the Overlay Manager
loads the specified overlay whether or not it is already in memory. If the Load Flag is 0,
the overlay manager loads the overlay only if it is not already in memory.

271

20.2 Writing Overlays in PL/I PL/I Programming Guide

Using this method, the example illustrating method one appears as follows:

root:
procedure options(Main);
declare

?ot.lla}' entn'(character(10) ,fixed(I»,
dUMMY entrY(character(15»,
naMe character(IO);

put skip list('root');
nalTle = 'Ot.'l';
call ?ol.lla}'(naITle ,0);
call dUMMy('ouerlay 1');

end root;

The file OVl.PLI is the same as the previous example.

At run-time, the statement

directs the Overlay Manager to load OV1 from the default drive (1 is the current value of
the variable name); control then transfers to OVI. When OVI finishes processing,
control returns to the statement following the invocation.

In this example, the variable name is assigned the value 'OVl'. However, you could
also supply the overlay name as a character string from some other source, such as
the console keyboard.

The following constraints apply to overlay method two:

272

• You can specify a drive code so the Overlay Manager can load overlays from
drives other than the default drive. If you do not specify a drive code, the
Overlay Manager uses the default drive as described in method one .

• If you pass any parameters to the overlay, they must agree in number and type
with the parameters that the overlay expects.

PL/I Programming Guide 20.2 Writing Overlays in PL/I

20.2.3 General Overlay Constraints

The following general constraints apply when creating overlays in a PL/I program:

• Each overlay has only one entry point. The Overlay Manager in the PL/I Run
time Subroutine Library assumes that this entry point is at the load address of
the overlay.

• You cannot make an upward reference from a module to entry points in overlays
higher on the tree. The only exception is a reference to the main entry point of
the overlay. You can make downward references to entry points in overlays
lower on the tree or in the root module.

• Common segments (EXTERNALS in PL/I) that are declared in one module
cannot be initialized by a module higher in the tree. The linkage editor ignores
any attempt to do so.

• You can nest overlays to a depth of five levels.

• The Overlay Manager uses the default buffer located at 80H, so user programs
should not depend on data stored in this buffer. Note that in the 8086 implemen
tation, the default buffer is at 80H relative to the base of the Data segment.

20.3 Command Line Syntax

To specify overlays in the command line of the linkage editor, enclose each overlay
specification in parentheses. You can create overlays with LINK-80 in one of the
following forms:

link root(ov 1)

link root(ovl,part2,part3)

link root(ovl = partl,part2,part3)

The first form produces the file OV1.0VL from the file OV1.REL. The second form
produces the file OV1.0VL from OV1.REL, PART2.REL, and PART3.REL. The third
form produces the file OV1.0VL from PART1.REL, PART2.REL, and PART3.REL.

273

20.2 Writing Overlays in PL/I PL/I Programming Guide

Create overlays with LINK-86 using the same forms:

link86 root(ovl)

link86 root(ovl,part~,part3)

link86 root(ovl = partl,part2,part3)

The first form produces the file OV1.0VR from the file OV1.0BJ. The second form
produces the file OV1.0VR from OV1.0BJ, PART2.0BJ, and PART3.0BJ. The third
form produces the file OV1.0VR from PART1.0BJ, PART2.0BJ, and PART3.0BJ.

In the command line, a left parenthesis indicates the start of a new overlay specifi
cation, and also indicates the end of the group preceding it. All files to be included at
any point on the tree must appear together, without any intervening overlay specifi
cations. You can use spaces to improve readability, but do not use commas to set off
the overlay specifications from the root module or from each other.

For example, the following command line is invalid:

A>link root(ovl) lfT1oreroot

The correct command is as follows:

A>link root,fT1oreroot(ovl)

To nest overlays, you must specify them in the command line with nested parentheses.
For example, the following command line creates the overlay system shown in Figure
20-2:

A>link fT1enu(funcl (subl)(sub 2» (func2) (func3 (sub3)(sub~

End of Section 20

274

Index

A

A format, 36, 115
actual parameter, 26, 104, 109, 233
aggregate data, 10
algorithms, 144, 197, 199, 222
ALLOCATE statement, 44, 129, 134
application programs, menu-driven,

267-8
arguments, 42, 64, 65
arithmetic data, 10
arrays, 13, 17, 231
ASCII character data, 31
assignment statement, 21, 92, 120,

126, 153, 168, 198
AUTOMATIC, 41

B

B format, 36
Bl format, 13
B2 format, 13
B3 format, 13
B4 format, 13
BASED storage class, 42
BASED variable, 10, 43, 129-131
BASIC, 183
BCD, 186
BEGIN, 163
BEGIN block,S, 49, 102, 132, 153
BIF, 2
Binary Coded Decimal (BCD), 186
binary exponent, 10
bit-string constant, 13
bit-string variables, 13
blank padding, 36

block,S
block nesting, 5
block-structure, 29, 163
buffer, 77, 125, 126
buffer size, 84
built-in

c

DECIMAL function, 205
functions, 2, 12
LOCK,32
MOD function, 198
ROUND function, 198

CALL statement, 6, 7, 26, 27, 153,
217, 218, 270

call statement, label in, 153, 217,
271

calls by reference, 26
case, 49, 120
CEIL function, 208
CHARACTER, 96, 207
CHARACTER variables, 13
character-string constants, 13
CLOSE statement, 84
COBOL, 183
code generation, 57
code optimization, 57
COLUMN,36
command file, 54, 59
comments, 51
common segments, declared in one

module, 273
Compiler

options, 55
overlays, 57

D!GITAl RESf:j\.RCH 275

complement,
2's, 186
10's, 186, 187, 188

computational expressions, 22
computed GOTO, 101
condition

categories, 38, 39, 60
processing, 23, 37, 38, 111, 166
Stack, 109

conditional branching, 23, 29
connected storage, 18
containing blocks,S, 7, 29
context, 3
control

characters, 2, 96, 216
data, 13
format items, 36
variable, 24

cross-sectional reference, 17

D

data
aggregate, 16
constants, 10
conversion, 22, 96, 107, 127, 166,

183, 207
format items, 36
set, 29, 30
structure, 80, 88, 92, 139
variables, 10

debugging, 59
DECIMAL, 188
DECIMAL built-in function, 161,

208
DECIMAL function, 192, 193
declarations, 49, 50
declarative statements, 3, 9
DECLARE keyword, 50
DECLARE statement, 10

276

default buffer, 273
default drive, changing, 272
default values, 12
delete, 32
DEMO program, 59
dimension array, 43
DIRECT attribute, 93
DIRECT files, 31
DIVIDE built-in functions, 188, 196
DO-group, 7, 49, 71, 83, 93, 96,

101, 105, 108-109, 120, 123,
125, 126, 134-135, 142, 153-
154, 166

double-precision number, 10-11
downward reference to entry point,

273
drive code, 272
dynamic memory management, 129,

261

E

E format, 36
EDIT formats, 197
EDIT-directed 110, 35
END PAGE condition, 115
entry constant, 7, 14, 177
ENTRY constants, 14, 174-176, 270
ENTRY data, 13, 14
entry point, explicit, 271
ENTRY variables, 14, 174-176, 231
environment, 3, 5, 7, 27, 38, 113,

132
ENVIRONMENT

attribute, 32
option, 88

ERROR condition, 216
error messages 49, 57, 58
executable statements, 3, 10, 57
explicit declaration, 10

expression, 21
EXTERNAL attribute, 174, 175
external

F

device, 16, 29, 60
procedures, 5, 7, 15

F format, 36
file

access methods, 35
constant, 16, 30
data, 16
Descriptor, 33
Parameter Block (FPB), 33
variable, 16, 27

FILE variables, 175
file-handling statements, 29, 32
file_id, 30, 32, 35
FIXED BINARY, 10, 161, 173, 215

data, 10, 158
FIXED DECIMAL, 11, 74, 96, 185,

186, 197, 203, 204, 215, 217
data, 11

FIXEDOVERFLOW, 158, 192
FIXED OVERFLOW, 188,216
fixed record size, 32, 88
FLOAT BINARY, 10, 158, 185,

203, 205, 207
data, 10, 74, 184

formal parameter, 26, 175-176, 233
format items list, 35
FORMA T statement, 37
FORTRAN, 183
FREE statement, 44, 129, 136
free storage area, 44
free-format language, 49
function procedure, 7, 26
function reference, 6, 7, 27, 153

G

GET EDIT, 35
statement, 115, 125, 127

GET LIST, 35, 82
statement, 35, 80, 93, 102, 142

GOTO, 101, 103
statement, 29, 104, 109, 110

H

halting the Compiler, 58
hierarchical structure, 3
high-level language, 1

I

IF statement, 29, 46, 50
implicit declaration, 10, 13, 14
implied attributes, 34
implied base, 129, 131
%INCLUDE statement, 45, 80
indentation, 49
INDEX function, 120, 232
INITIAL attribute, 41, 42
INPUT file, 31
integers, 10
internal

buffer, 35, 84
buffer sizes, 32, 84
procedure, 7, 15
representation, 43, 183
stack, 61

invoking Compiler, 55
iteration, 23

277

K

key, 32, 40, 91
KEYED

attribute, 31, 88, 91
file, 32, 91, 92

KEYTO option, 91
keywords, 50

L

label constants, 14, 102, 105
LABEL data, 14
label variables, 14, 102, 105
level, 32
LINE, 36
line-directed, 35
linemark, 31
LINESIZE attribute, 32
LINK-80, 273
LINK-86, 274
linkage editor, creating overlays with,

273
list processing, 132
list-directed, 35
load address, 273
load flag, 271
local reference, 104
locked mode, 32
logical units, 3-4, 14, 27

M

MAIN option, 161
malO

procedure, 5
structure, 19

mantissa, 10
mathematical functions, 12

278 lNfORtviATlON

member, 19
menu-driven application programs,

267-8
modular design, 267
module, upward reference from, 273
multiple data items, 10

N

native code, 57 .
nested overlays, 268
nesting levels, 58

maximum, 268
nesting overlays, 273, 274
noncomputational expressions, 22
nonlocal reference, 104
null

o

pointer, 141, 143
statement, 29, 46

object
code, 56
file, 54, 59

ON END FILE statements, 114
ON ENDPAGE, 115
ON

condition, 38, 109-110, 112, 216
statement, 38, 109, 110, 114

ON-body, 38, 110
ON-unit, 112-117, 120, 142, 166
ONCODE function, 41
ONFILE function, 41
ONKEY function, 41
open mode, 32
OPEN statement, 30, 31, 35, 80, 84,

88, 93, 216, 233

OUTPUT file, 31
overlay

entry point, 271, 273
manager, 270-3
method one constraints, 271
method two constraints, 272
name of entry point to, 271
names, when determined, 269
SUB4,269
specifications, 274

overlays

p

changing names of, 271
composition of, 268
creating with LINK-80, 273
creating with LINK-86, 274
enclosing in parentheses, 273
flexibility with, 271
general constraints, 273
higher on tree, 273
left parenthesis in, 274
lower on tree, 273
method one, 270
method two, 271
nested, 268
nesting, 273, 274
passing parameters to, 270
referencing entry points of, 273
restrictions to, 269
storing on disk, 267
tree structure of, 268-9
use of, 267
using in a large program, 268
when to create, 271
writing, 269

PAGE, 37
pagemark, 31
P AGESIZE attribute, 32

IN FORI\M no]'·] PRESENTED

parameter list, 270
parameter passing, 26-27, 270, 272
parameters, agreeing with overlay,

272
parse function, 123
PASCAL, 183
pass

1,57
2,57
3,57
by reference, 26
by value, 26, 153

password protection, 32
Picture edit format, 208, 217
pointer

data, 16, 42
qualifier, 42, 130
variable, 16, 42, 131-132

pointer-qualified reference, 42
precision, 11-12, 155, 186-196,

206-208
predefined file constants, 37
preprocessor statements, 45
PRINT, 31, 37, 41, 80, 85, 112, 216
PROCEDURE block,S, 49, 104, 163
procedure

body, 6
definition, 26
header, 6
heading, 177
invocation, 7, 23, 26
name 6, 175

program
development, 53
maintenance, 6, 51, 101

program size, upper limit, 267
PUT EDIT statements, 35, 115
PUT LIST statements, 35, 85, 114,

216

PRO?R1ET/\RY TO DIGITAL RESEARCH 279

R

R, 37
read, 32
READ statement, 35, 91
READ with KEY statement, 93
Read-Only, 32
RECORD

file, 32
110, 35

recursive, 26, 36, 153, 154, 161
relative record, 32

number, 91
remote format, 37
%REPLACE statement, 46, 71, 216,

222
RETURN statement, 155
RETURNS attribute, 176
REVERT statement, 38, 109-110
root module, 271

with one overlay, 270
run-time stack, 161
Run-Time Subroutine Library (RSL)

53, 59, 129, 173, 205, 267

s
scalar data items, 10
scalar value, 7
scale, 11, 190-196, 207-208
saving memory with overlays, 267
sequence control statements, 23
SEQUENTIAL files, 31
shared, 32
SIGNAL statement, 38-40, 108, 110,

115
single-precision number, 10
size of programs, upper limit, 267
SKIP, 37, 115
small memory model, 267

280

source file, 51, 53
special characters, 2
special forms, 57
stack, 187, 188, 193-194
STACK option, 161
standard, 42
STATIC attribute, 41, 174
STOP statement, 71, 166
storage class, 41
storage sharing, 26
STREAM file, 31, 80, 91-92, 112,

145
STREAM 1/0,35
string

processing, 119, 123
variables, 12
variables, .12

structural statements, 1, 3
structure, 18, 132-136, 139-140,

142, 174
structured language, 1
subcode, 38, 39, 60, 107
subroutine, 50-51, 123, 133, 173,

205
subroutine procedures, 7, 26
subscripts, 14, 17
Subset G, 42, 192
SUBSTR, 119, 120, 127
SYM file, 53
Symbol Table, 53, 55, 56, 57, 59
SYSIN, 37,61, 110, 111, 114
SYSPRINT, 37, 71, 85
system files, 54

T

temporary variables, 57
TITLE attribute, 32
token, 125-127, 165-166
traceback, 60-61

Transient Program Area, 57, 129,
267

TRANSLATE function, 119
tree structures, 57
TRUNC, 49
truncation, 36, 74, 184-185, 206

error, 11

u
unconditional branching, 23, 29
UNLOCK functions, 32
UPDATE file, 31
upward reference to entry point, 273

v
VARYING attribute, 13
vector, 103, 105
VERIFY function, 119, 125-127

w

wildcard reference, 32
Write, 32
WRITE statement, 35, 88, 96
WRITE with KEYFROM statement,

93

281

Reader Comment Form
We welcome your comments and suggestions. They help us provide you with better
product documentation.

Date _____ Manual Title ____________ Edition ____ _

1. What sections of this manual are especially helpful?

2. What suggestions do you have for improving this manual? What information
is missing or incomplete? Where are examples needed?

3. Did you find errors in this manual? (Specify section and page number.)

COMMENTS AND SUGGESTIONS BECOME THE PROPERlY OF DIGITAL RESEARCH.

Attn: Publication Production

BUSINESS REPLY MAIL
FIRST CLASS / PERMIT NO. 182 / PACIFIC GROVE, CA

POSTAGE WILL BE PAID BY ADDRESSEE

l!ID DIGITAL RESEARCHTM
P.o. Box 579
Pacific Grove, California
93950

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

